]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - fs/ext4/inode.c
Merge branch 'xfs-4.10-misc-fixes-3' into for-next
[mirror_ubuntu-zesty-kernel.git] / fs / ext4 / inode.c
1 /*
2 * linux/fs/ext4/inode.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * 64-bit file support on 64-bit platforms by Jakub Jelinek
16 * (jj@sunsite.ms.mff.cuni.cz)
17 *
18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19 */
20
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/highuid.h>
24 #include <linux/pagemap.h>
25 #include <linux/dax.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/bitops.h>
40
41 #include "ext4_jbd2.h"
42 #include "xattr.h"
43 #include "acl.h"
44 #include "truncate.h"
45
46 #include <trace/events/ext4.h>
47
48 #define MPAGE_DA_EXTENT_TAIL 0x01
49
50 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
51 struct ext4_inode_info *ei)
52 {
53 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
54 __u32 csum;
55 __u16 dummy_csum = 0;
56 int offset = offsetof(struct ext4_inode, i_checksum_lo);
57 unsigned int csum_size = sizeof(dummy_csum);
58
59 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
60 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
61 offset += csum_size;
62 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
63 EXT4_GOOD_OLD_INODE_SIZE - offset);
64
65 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
66 offset = offsetof(struct ext4_inode, i_checksum_hi);
67 csum = ext4_chksum(sbi, csum, (__u8 *)raw +
68 EXT4_GOOD_OLD_INODE_SIZE,
69 offset - EXT4_GOOD_OLD_INODE_SIZE);
70 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
71 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
72 csum_size);
73 offset += csum_size;
74 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
75 EXT4_INODE_SIZE(inode->i_sb) -
76 offset);
77 }
78 }
79
80 return csum;
81 }
82
83 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
84 struct ext4_inode_info *ei)
85 {
86 __u32 provided, calculated;
87
88 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
89 cpu_to_le32(EXT4_OS_LINUX) ||
90 !ext4_has_metadata_csum(inode->i_sb))
91 return 1;
92
93 provided = le16_to_cpu(raw->i_checksum_lo);
94 calculated = ext4_inode_csum(inode, raw, ei);
95 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
96 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
97 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
98 else
99 calculated &= 0xFFFF;
100
101 return provided == calculated;
102 }
103
104 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
105 struct ext4_inode_info *ei)
106 {
107 __u32 csum;
108
109 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
110 cpu_to_le32(EXT4_OS_LINUX) ||
111 !ext4_has_metadata_csum(inode->i_sb))
112 return;
113
114 csum = ext4_inode_csum(inode, raw, ei);
115 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
116 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
117 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
118 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
119 }
120
121 static inline int ext4_begin_ordered_truncate(struct inode *inode,
122 loff_t new_size)
123 {
124 trace_ext4_begin_ordered_truncate(inode, new_size);
125 /*
126 * If jinode is zero, then we never opened the file for
127 * writing, so there's no need to call
128 * jbd2_journal_begin_ordered_truncate() since there's no
129 * outstanding writes we need to flush.
130 */
131 if (!EXT4_I(inode)->jinode)
132 return 0;
133 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
134 EXT4_I(inode)->jinode,
135 new_size);
136 }
137
138 static void ext4_invalidatepage(struct page *page, unsigned int offset,
139 unsigned int length);
140 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
141 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
142 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
143 int pextents);
144
145 /*
146 * Test whether an inode is a fast symlink.
147 */
148 int ext4_inode_is_fast_symlink(struct inode *inode)
149 {
150 int ea_blocks = EXT4_I(inode)->i_file_acl ?
151 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
152
153 if (ext4_has_inline_data(inode))
154 return 0;
155
156 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
157 }
158
159 /*
160 * Restart the transaction associated with *handle. This does a commit,
161 * so before we call here everything must be consistently dirtied against
162 * this transaction.
163 */
164 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
165 int nblocks)
166 {
167 int ret;
168
169 /*
170 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
171 * moment, get_block can be called only for blocks inside i_size since
172 * page cache has been already dropped and writes are blocked by
173 * i_mutex. So we can safely drop the i_data_sem here.
174 */
175 BUG_ON(EXT4_JOURNAL(inode) == NULL);
176 jbd_debug(2, "restarting handle %p\n", handle);
177 up_write(&EXT4_I(inode)->i_data_sem);
178 ret = ext4_journal_restart(handle, nblocks);
179 down_write(&EXT4_I(inode)->i_data_sem);
180 ext4_discard_preallocations(inode);
181
182 return ret;
183 }
184
185 /*
186 * Called at the last iput() if i_nlink is zero.
187 */
188 void ext4_evict_inode(struct inode *inode)
189 {
190 handle_t *handle;
191 int err;
192
193 trace_ext4_evict_inode(inode);
194
195 if (inode->i_nlink) {
196 /*
197 * When journalling data dirty buffers are tracked only in the
198 * journal. So although mm thinks everything is clean and
199 * ready for reaping the inode might still have some pages to
200 * write in the running transaction or waiting to be
201 * checkpointed. Thus calling jbd2_journal_invalidatepage()
202 * (via truncate_inode_pages()) to discard these buffers can
203 * cause data loss. Also even if we did not discard these
204 * buffers, we would have no way to find them after the inode
205 * is reaped and thus user could see stale data if he tries to
206 * read them before the transaction is checkpointed. So be
207 * careful and force everything to disk here... We use
208 * ei->i_datasync_tid to store the newest transaction
209 * containing inode's data.
210 *
211 * Note that directories do not have this problem because they
212 * don't use page cache.
213 */
214 if (inode->i_ino != EXT4_JOURNAL_INO &&
215 ext4_should_journal_data(inode) &&
216 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) {
217 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
218 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
219
220 jbd2_complete_transaction(journal, commit_tid);
221 filemap_write_and_wait(&inode->i_data);
222 }
223 truncate_inode_pages_final(&inode->i_data);
224
225 goto no_delete;
226 }
227
228 if (is_bad_inode(inode))
229 goto no_delete;
230 dquot_initialize(inode);
231
232 if (ext4_should_order_data(inode))
233 ext4_begin_ordered_truncate(inode, 0);
234 truncate_inode_pages_final(&inode->i_data);
235
236 /*
237 * Protect us against freezing - iput() caller didn't have to have any
238 * protection against it
239 */
240 sb_start_intwrite(inode->i_sb);
241 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
242 ext4_blocks_for_truncate(inode)+3);
243 if (IS_ERR(handle)) {
244 ext4_std_error(inode->i_sb, PTR_ERR(handle));
245 /*
246 * If we're going to skip the normal cleanup, we still need to
247 * make sure that the in-core orphan linked list is properly
248 * cleaned up.
249 */
250 ext4_orphan_del(NULL, inode);
251 sb_end_intwrite(inode->i_sb);
252 goto no_delete;
253 }
254
255 if (IS_SYNC(inode))
256 ext4_handle_sync(handle);
257 inode->i_size = 0;
258 err = ext4_mark_inode_dirty(handle, inode);
259 if (err) {
260 ext4_warning(inode->i_sb,
261 "couldn't mark inode dirty (err %d)", err);
262 goto stop_handle;
263 }
264 if (inode->i_blocks)
265 ext4_truncate(inode);
266
267 /*
268 * ext4_ext_truncate() doesn't reserve any slop when it
269 * restarts journal transactions; therefore there may not be
270 * enough credits left in the handle to remove the inode from
271 * the orphan list and set the dtime field.
272 */
273 if (!ext4_handle_has_enough_credits(handle, 3)) {
274 err = ext4_journal_extend(handle, 3);
275 if (err > 0)
276 err = ext4_journal_restart(handle, 3);
277 if (err != 0) {
278 ext4_warning(inode->i_sb,
279 "couldn't extend journal (err %d)", err);
280 stop_handle:
281 ext4_journal_stop(handle);
282 ext4_orphan_del(NULL, inode);
283 sb_end_intwrite(inode->i_sb);
284 goto no_delete;
285 }
286 }
287
288 /*
289 * Kill off the orphan record which ext4_truncate created.
290 * AKPM: I think this can be inside the above `if'.
291 * Note that ext4_orphan_del() has to be able to cope with the
292 * deletion of a non-existent orphan - this is because we don't
293 * know if ext4_truncate() actually created an orphan record.
294 * (Well, we could do this if we need to, but heck - it works)
295 */
296 ext4_orphan_del(handle, inode);
297 EXT4_I(inode)->i_dtime = get_seconds();
298
299 /*
300 * One subtle ordering requirement: if anything has gone wrong
301 * (transaction abort, IO errors, whatever), then we can still
302 * do these next steps (the fs will already have been marked as
303 * having errors), but we can't free the inode if the mark_dirty
304 * fails.
305 */
306 if (ext4_mark_inode_dirty(handle, inode))
307 /* If that failed, just do the required in-core inode clear. */
308 ext4_clear_inode(inode);
309 else
310 ext4_free_inode(handle, inode);
311 ext4_journal_stop(handle);
312 sb_end_intwrite(inode->i_sb);
313 return;
314 no_delete:
315 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
316 }
317
318 #ifdef CONFIG_QUOTA
319 qsize_t *ext4_get_reserved_space(struct inode *inode)
320 {
321 return &EXT4_I(inode)->i_reserved_quota;
322 }
323 #endif
324
325 /*
326 * Called with i_data_sem down, which is important since we can call
327 * ext4_discard_preallocations() from here.
328 */
329 void ext4_da_update_reserve_space(struct inode *inode,
330 int used, int quota_claim)
331 {
332 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
333 struct ext4_inode_info *ei = EXT4_I(inode);
334
335 spin_lock(&ei->i_block_reservation_lock);
336 trace_ext4_da_update_reserve_space(inode, used, quota_claim);
337 if (unlikely(used > ei->i_reserved_data_blocks)) {
338 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
339 "with only %d reserved data blocks",
340 __func__, inode->i_ino, used,
341 ei->i_reserved_data_blocks);
342 WARN_ON(1);
343 used = ei->i_reserved_data_blocks;
344 }
345
346 /* Update per-inode reservations */
347 ei->i_reserved_data_blocks -= used;
348 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
349
350 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
351
352 /* Update quota subsystem for data blocks */
353 if (quota_claim)
354 dquot_claim_block(inode, EXT4_C2B(sbi, used));
355 else {
356 /*
357 * We did fallocate with an offset that is already delayed
358 * allocated. So on delayed allocated writeback we should
359 * not re-claim the quota for fallocated blocks.
360 */
361 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
362 }
363
364 /*
365 * If we have done all the pending block allocations and if
366 * there aren't any writers on the inode, we can discard the
367 * inode's preallocations.
368 */
369 if ((ei->i_reserved_data_blocks == 0) &&
370 (atomic_read(&inode->i_writecount) == 0))
371 ext4_discard_preallocations(inode);
372 }
373
374 static int __check_block_validity(struct inode *inode, const char *func,
375 unsigned int line,
376 struct ext4_map_blocks *map)
377 {
378 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
379 map->m_len)) {
380 ext4_error_inode(inode, func, line, map->m_pblk,
381 "lblock %lu mapped to illegal pblock "
382 "(length %d)", (unsigned long) map->m_lblk,
383 map->m_len);
384 return -EFSCORRUPTED;
385 }
386 return 0;
387 }
388
389 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
390 ext4_lblk_t len)
391 {
392 int ret;
393
394 if (ext4_encrypted_inode(inode))
395 return fscrypt_zeroout_range(inode, lblk, pblk, len);
396
397 ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
398 if (ret > 0)
399 ret = 0;
400
401 return ret;
402 }
403
404 #define check_block_validity(inode, map) \
405 __check_block_validity((inode), __func__, __LINE__, (map))
406
407 #ifdef ES_AGGRESSIVE_TEST
408 static void ext4_map_blocks_es_recheck(handle_t *handle,
409 struct inode *inode,
410 struct ext4_map_blocks *es_map,
411 struct ext4_map_blocks *map,
412 int flags)
413 {
414 int retval;
415
416 map->m_flags = 0;
417 /*
418 * There is a race window that the result is not the same.
419 * e.g. xfstests #223 when dioread_nolock enables. The reason
420 * is that we lookup a block mapping in extent status tree with
421 * out taking i_data_sem. So at the time the unwritten extent
422 * could be converted.
423 */
424 down_read(&EXT4_I(inode)->i_data_sem);
425 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
426 retval = ext4_ext_map_blocks(handle, inode, map, flags &
427 EXT4_GET_BLOCKS_KEEP_SIZE);
428 } else {
429 retval = ext4_ind_map_blocks(handle, inode, map, flags &
430 EXT4_GET_BLOCKS_KEEP_SIZE);
431 }
432 up_read((&EXT4_I(inode)->i_data_sem));
433
434 /*
435 * We don't check m_len because extent will be collpased in status
436 * tree. So the m_len might not equal.
437 */
438 if (es_map->m_lblk != map->m_lblk ||
439 es_map->m_flags != map->m_flags ||
440 es_map->m_pblk != map->m_pblk) {
441 printk("ES cache assertion failed for inode: %lu "
442 "es_cached ex [%d/%d/%llu/%x] != "
443 "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
444 inode->i_ino, es_map->m_lblk, es_map->m_len,
445 es_map->m_pblk, es_map->m_flags, map->m_lblk,
446 map->m_len, map->m_pblk, map->m_flags,
447 retval, flags);
448 }
449 }
450 #endif /* ES_AGGRESSIVE_TEST */
451
452 /*
453 * The ext4_map_blocks() function tries to look up the requested blocks,
454 * and returns if the blocks are already mapped.
455 *
456 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
457 * and store the allocated blocks in the result buffer head and mark it
458 * mapped.
459 *
460 * If file type is extents based, it will call ext4_ext_map_blocks(),
461 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
462 * based files
463 *
464 * On success, it returns the number of blocks being mapped or allocated. if
465 * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
466 * is marked as unwritten. If the create == 1, it will mark @map as mapped.
467 *
468 * It returns 0 if plain look up failed (blocks have not been allocated), in
469 * that case, @map is returned as unmapped but we still do fill map->m_len to
470 * indicate the length of a hole starting at map->m_lblk.
471 *
472 * It returns the error in case of allocation failure.
473 */
474 int ext4_map_blocks(handle_t *handle, struct inode *inode,
475 struct ext4_map_blocks *map, int flags)
476 {
477 struct extent_status es;
478 int retval;
479 int ret = 0;
480 #ifdef ES_AGGRESSIVE_TEST
481 struct ext4_map_blocks orig_map;
482
483 memcpy(&orig_map, map, sizeof(*map));
484 #endif
485
486 map->m_flags = 0;
487 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
488 "logical block %lu\n", inode->i_ino, flags, map->m_len,
489 (unsigned long) map->m_lblk);
490
491 /*
492 * ext4_map_blocks returns an int, and m_len is an unsigned int
493 */
494 if (unlikely(map->m_len > INT_MAX))
495 map->m_len = INT_MAX;
496
497 /* We can handle the block number less than EXT_MAX_BLOCKS */
498 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
499 return -EFSCORRUPTED;
500
501 /* Lookup extent status tree firstly */
502 if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
503 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
504 map->m_pblk = ext4_es_pblock(&es) +
505 map->m_lblk - es.es_lblk;
506 map->m_flags |= ext4_es_is_written(&es) ?
507 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
508 retval = es.es_len - (map->m_lblk - es.es_lblk);
509 if (retval > map->m_len)
510 retval = map->m_len;
511 map->m_len = retval;
512 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
513 map->m_pblk = 0;
514 retval = es.es_len - (map->m_lblk - es.es_lblk);
515 if (retval > map->m_len)
516 retval = map->m_len;
517 map->m_len = retval;
518 retval = 0;
519 } else {
520 BUG_ON(1);
521 }
522 #ifdef ES_AGGRESSIVE_TEST
523 ext4_map_blocks_es_recheck(handle, inode, map,
524 &orig_map, flags);
525 #endif
526 goto found;
527 }
528
529 /*
530 * Try to see if we can get the block without requesting a new
531 * file system block.
532 */
533 down_read(&EXT4_I(inode)->i_data_sem);
534 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
535 retval = ext4_ext_map_blocks(handle, inode, map, flags &
536 EXT4_GET_BLOCKS_KEEP_SIZE);
537 } else {
538 retval = ext4_ind_map_blocks(handle, inode, map, flags &
539 EXT4_GET_BLOCKS_KEEP_SIZE);
540 }
541 if (retval > 0) {
542 unsigned int status;
543
544 if (unlikely(retval != map->m_len)) {
545 ext4_warning(inode->i_sb,
546 "ES len assertion failed for inode "
547 "%lu: retval %d != map->m_len %d",
548 inode->i_ino, retval, map->m_len);
549 WARN_ON(1);
550 }
551
552 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
553 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
554 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
555 !(status & EXTENT_STATUS_WRITTEN) &&
556 ext4_find_delalloc_range(inode, map->m_lblk,
557 map->m_lblk + map->m_len - 1))
558 status |= EXTENT_STATUS_DELAYED;
559 ret = ext4_es_insert_extent(inode, map->m_lblk,
560 map->m_len, map->m_pblk, status);
561 if (ret < 0)
562 retval = ret;
563 }
564 up_read((&EXT4_I(inode)->i_data_sem));
565
566 found:
567 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
568 ret = check_block_validity(inode, map);
569 if (ret != 0)
570 return ret;
571 }
572
573 /* If it is only a block(s) look up */
574 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
575 return retval;
576
577 /*
578 * Returns if the blocks have already allocated
579 *
580 * Note that if blocks have been preallocated
581 * ext4_ext_get_block() returns the create = 0
582 * with buffer head unmapped.
583 */
584 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
585 /*
586 * If we need to convert extent to unwritten
587 * we continue and do the actual work in
588 * ext4_ext_map_blocks()
589 */
590 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
591 return retval;
592
593 /*
594 * Here we clear m_flags because after allocating an new extent,
595 * it will be set again.
596 */
597 map->m_flags &= ~EXT4_MAP_FLAGS;
598
599 /*
600 * New blocks allocate and/or writing to unwritten extent
601 * will possibly result in updating i_data, so we take
602 * the write lock of i_data_sem, and call get_block()
603 * with create == 1 flag.
604 */
605 down_write(&EXT4_I(inode)->i_data_sem);
606
607 /*
608 * We need to check for EXT4 here because migrate
609 * could have changed the inode type in between
610 */
611 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
612 retval = ext4_ext_map_blocks(handle, inode, map, flags);
613 } else {
614 retval = ext4_ind_map_blocks(handle, inode, map, flags);
615
616 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
617 /*
618 * We allocated new blocks which will result in
619 * i_data's format changing. Force the migrate
620 * to fail by clearing migrate flags
621 */
622 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
623 }
624
625 /*
626 * Update reserved blocks/metadata blocks after successful
627 * block allocation which had been deferred till now. We don't
628 * support fallocate for non extent files. So we can update
629 * reserve space here.
630 */
631 if ((retval > 0) &&
632 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
633 ext4_da_update_reserve_space(inode, retval, 1);
634 }
635
636 if (retval > 0) {
637 unsigned int status;
638
639 if (unlikely(retval != map->m_len)) {
640 ext4_warning(inode->i_sb,
641 "ES len assertion failed for inode "
642 "%lu: retval %d != map->m_len %d",
643 inode->i_ino, retval, map->m_len);
644 WARN_ON(1);
645 }
646
647 /*
648 * We have to zeroout blocks before inserting them into extent
649 * status tree. Otherwise someone could look them up there and
650 * use them before they are really zeroed. We also have to
651 * unmap metadata before zeroing as otherwise writeback can
652 * overwrite zeros with stale data from block device.
653 */
654 if (flags & EXT4_GET_BLOCKS_ZERO &&
655 map->m_flags & EXT4_MAP_MAPPED &&
656 map->m_flags & EXT4_MAP_NEW) {
657 ext4_lblk_t i;
658
659 for (i = 0; i < map->m_len; i++) {
660 unmap_underlying_metadata(inode->i_sb->s_bdev,
661 map->m_pblk + i);
662 }
663 ret = ext4_issue_zeroout(inode, map->m_lblk,
664 map->m_pblk, map->m_len);
665 if (ret) {
666 retval = ret;
667 goto out_sem;
668 }
669 }
670
671 /*
672 * If the extent has been zeroed out, we don't need to update
673 * extent status tree.
674 */
675 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
676 ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
677 if (ext4_es_is_written(&es))
678 goto out_sem;
679 }
680 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
681 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
682 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
683 !(status & EXTENT_STATUS_WRITTEN) &&
684 ext4_find_delalloc_range(inode, map->m_lblk,
685 map->m_lblk + map->m_len - 1))
686 status |= EXTENT_STATUS_DELAYED;
687 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
688 map->m_pblk, status);
689 if (ret < 0) {
690 retval = ret;
691 goto out_sem;
692 }
693 }
694
695 out_sem:
696 up_write((&EXT4_I(inode)->i_data_sem));
697 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
698 ret = check_block_validity(inode, map);
699 if (ret != 0)
700 return ret;
701
702 /*
703 * Inodes with freshly allocated blocks where contents will be
704 * visible after transaction commit must be on transaction's
705 * ordered data list.
706 */
707 if (map->m_flags & EXT4_MAP_NEW &&
708 !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
709 !(flags & EXT4_GET_BLOCKS_ZERO) &&
710 !IS_NOQUOTA(inode) &&
711 ext4_should_order_data(inode)) {
712 if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
713 ret = ext4_jbd2_inode_add_wait(handle, inode);
714 else
715 ret = ext4_jbd2_inode_add_write(handle, inode);
716 if (ret)
717 return ret;
718 }
719 }
720 return retval;
721 }
722
723 /*
724 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
725 * we have to be careful as someone else may be manipulating b_state as well.
726 */
727 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
728 {
729 unsigned long old_state;
730 unsigned long new_state;
731
732 flags &= EXT4_MAP_FLAGS;
733
734 /* Dummy buffer_head? Set non-atomically. */
735 if (!bh->b_page) {
736 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
737 return;
738 }
739 /*
740 * Someone else may be modifying b_state. Be careful! This is ugly but
741 * once we get rid of using bh as a container for mapping information
742 * to pass to / from get_block functions, this can go away.
743 */
744 do {
745 old_state = READ_ONCE(bh->b_state);
746 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
747 } while (unlikely(
748 cmpxchg(&bh->b_state, old_state, new_state) != old_state));
749 }
750
751 static int _ext4_get_block(struct inode *inode, sector_t iblock,
752 struct buffer_head *bh, int flags)
753 {
754 struct ext4_map_blocks map;
755 int ret = 0;
756
757 if (ext4_has_inline_data(inode))
758 return -ERANGE;
759
760 map.m_lblk = iblock;
761 map.m_len = bh->b_size >> inode->i_blkbits;
762
763 ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
764 flags);
765 if (ret > 0) {
766 map_bh(bh, inode->i_sb, map.m_pblk);
767 ext4_update_bh_state(bh, map.m_flags);
768 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
769 ret = 0;
770 } else if (ret == 0) {
771 /* hole case, need to fill in bh->b_size */
772 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
773 }
774 return ret;
775 }
776
777 int ext4_get_block(struct inode *inode, sector_t iblock,
778 struct buffer_head *bh, int create)
779 {
780 return _ext4_get_block(inode, iblock, bh,
781 create ? EXT4_GET_BLOCKS_CREATE : 0);
782 }
783
784 /*
785 * Get block function used when preparing for buffered write if we require
786 * creating an unwritten extent if blocks haven't been allocated. The extent
787 * will be converted to written after the IO is complete.
788 */
789 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
790 struct buffer_head *bh_result, int create)
791 {
792 ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
793 inode->i_ino, create);
794 return _ext4_get_block(inode, iblock, bh_result,
795 EXT4_GET_BLOCKS_IO_CREATE_EXT);
796 }
797
798 /* Maximum number of blocks we map for direct IO at once. */
799 #define DIO_MAX_BLOCKS 4096
800
801 /*
802 * Get blocks function for the cases that need to start a transaction -
803 * generally difference cases of direct IO and DAX IO. It also handles retries
804 * in case of ENOSPC.
805 */
806 static int ext4_get_block_trans(struct inode *inode, sector_t iblock,
807 struct buffer_head *bh_result, int flags)
808 {
809 int dio_credits;
810 handle_t *handle;
811 int retries = 0;
812 int ret;
813
814 /* Trim mapping request to maximum we can map at once for DIO */
815 if (bh_result->b_size >> inode->i_blkbits > DIO_MAX_BLOCKS)
816 bh_result->b_size = DIO_MAX_BLOCKS << inode->i_blkbits;
817 dio_credits = ext4_chunk_trans_blocks(inode,
818 bh_result->b_size >> inode->i_blkbits);
819 retry:
820 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
821 if (IS_ERR(handle))
822 return PTR_ERR(handle);
823
824 ret = _ext4_get_block(inode, iblock, bh_result, flags);
825 ext4_journal_stop(handle);
826
827 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
828 goto retry;
829 return ret;
830 }
831
832 /* Get block function for DIO reads and writes to inodes without extents */
833 int ext4_dio_get_block(struct inode *inode, sector_t iblock,
834 struct buffer_head *bh, int create)
835 {
836 /* We don't expect handle for direct IO */
837 WARN_ON_ONCE(ext4_journal_current_handle());
838
839 if (!create)
840 return _ext4_get_block(inode, iblock, bh, 0);
841 return ext4_get_block_trans(inode, iblock, bh, EXT4_GET_BLOCKS_CREATE);
842 }
843
844 /*
845 * Get block function for AIO DIO writes when we create unwritten extent if
846 * blocks are not allocated yet. The extent will be converted to written
847 * after IO is complete.
848 */
849 static int ext4_dio_get_block_unwritten_async(struct inode *inode,
850 sector_t iblock, struct buffer_head *bh_result, int create)
851 {
852 int ret;
853
854 /* We don't expect handle for direct IO */
855 WARN_ON_ONCE(ext4_journal_current_handle());
856
857 ret = ext4_get_block_trans(inode, iblock, bh_result,
858 EXT4_GET_BLOCKS_IO_CREATE_EXT);
859
860 /*
861 * When doing DIO using unwritten extents, we need io_end to convert
862 * unwritten extents to written on IO completion. We allocate io_end
863 * once we spot unwritten extent and store it in b_private. Generic
864 * DIO code keeps b_private set and furthermore passes the value to
865 * our completion callback in 'private' argument.
866 */
867 if (!ret && buffer_unwritten(bh_result)) {
868 if (!bh_result->b_private) {
869 ext4_io_end_t *io_end;
870
871 io_end = ext4_init_io_end(inode, GFP_KERNEL);
872 if (!io_end)
873 return -ENOMEM;
874 bh_result->b_private = io_end;
875 ext4_set_io_unwritten_flag(inode, io_end);
876 }
877 set_buffer_defer_completion(bh_result);
878 }
879
880 return ret;
881 }
882
883 /*
884 * Get block function for non-AIO DIO writes when we create unwritten extent if
885 * blocks are not allocated yet. The extent will be converted to written
886 * after IO is complete from ext4_ext_direct_IO() function.
887 */
888 static int ext4_dio_get_block_unwritten_sync(struct inode *inode,
889 sector_t iblock, struct buffer_head *bh_result, int create)
890 {
891 int ret;
892
893 /* We don't expect handle for direct IO */
894 WARN_ON_ONCE(ext4_journal_current_handle());
895
896 ret = ext4_get_block_trans(inode, iblock, bh_result,
897 EXT4_GET_BLOCKS_IO_CREATE_EXT);
898
899 /*
900 * Mark inode as having pending DIO writes to unwritten extents.
901 * ext4_ext_direct_IO() checks this flag and converts extents to
902 * written.
903 */
904 if (!ret && buffer_unwritten(bh_result))
905 ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
906
907 return ret;
908 }
909
910 static int ext4_dio_get_block_overwrite(struct inode *inode, sector_t iblock,
911 struct buffer_head *bh_result, int create)
912 {
913 int ret;
914
915 ext4_debug("ext4_dio_get_block_overwrite: inode %lu, create flag %d\n",
916 inode->i_ino, create);
917 /* We don't expect handle for direct IO */
918 WARN_ON_ONCE(ext4_journal_current_handle());
919
920 ret = _ext4_get_block(inode, iblock, bh_result, 0);
921 /*
922 * Blocks should have been preallocated! ext4_file_write_iter() checks
923 * that.
924 */
925 WARN_ON_ONCE(!buffer_mapped(bh_result) || buffer_unwritten(bh_result));
926
927 return ret;
928 }
929
930
931 /*
932 * `handle' can be NULL if create is zero
933 */
934 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
935 ext4_lblk_t block, int map_flags)
936 {
937 struct ext4_map_blocks map;
938 struct buffer_head *bh;
939 int create = map_flags & EXT4_GET_BLOCKS_CREATE;
940 int err;
941
942 J_ASSERT(handle != NULL || create == 0);
943
944 map.m_lblk = block;
945 map.m_len = 1;
946 err = ext4_map_blocks(handle, inode, &map, map_flags);
947
948 if (err == 0)
949 return create ? ERR_PTR(-ENOSPC) : NULL;
950 if (err < 0)
951 return ERR_PTR(err);
952
953 bh = sb_getblk(inode->i_sb, map.m_pblk);
954 if (unlikely(!bh))
955 return ERR_PTR(-ENOMEM);
956 if (map.m_flags & EXT4_MAP_NEW) {
957 J_ASSERT(create != 0);
958 J_ASSERT(handle != NULL);
959
960 /*
961 * Now that we do not always journal data, we should
962 * keep in mind whether this should always journal the
963 * new buffer as metadata. For now, regular file
964 * writes use ext4_get_block instead, so it's not a
965 * problem.
966 */
967 lock_buffer(bh);
968 BUFFER_TRACE(bh, "call get_create_access");
969 err = ext4_journal_get_create_access(handle, bh);
970 if (unlikely(err)) {
971 unlock_buffer(bh);
972 goto errout;
973 }
974 if (!buffer_uptodate(bh)) {
975 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
976 set_buffer_uptodate(bh);
977 }
978 unlock_buffer(bh);
979 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
980 err = ext4_handle_dirty_metadata(handle, inode, bh);
981 if (unlikely(err))
982 goto errout;
983 } else
984 BUFFER_TRACE(bh, "not a new buffer");
985 return bh;
986 errout:
987 brelse(bh);
988 return ERR_PTR(err);
989 }
990
991 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
992 ext4_lblk_t block, int map_flags)
993 {
994 struct buffer_head *bh;
995
996 bh = ext4_getblk(handle, inode, block, map_flags);
997 if (IS_ERR(bh))
998 return bh;
999 if (!bh || buffer_uptodate(bh))
1000 return bh;
1001 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &bh);
1002 wait_on_buffer(bh);
1003 if (buffer_uptodate(bh))
1004 return bh;
1005 put_bh(bh);
1006 return ERR_PTR(-EIO);
1007 }
1008
1009 int ext4_walk_page_buffers(handle_t *handle,
1010 struct buffer_head *head,
1011 unsigned from,
1012 unsigned to,
1013 int *partial,
1014 int (*fn)(handle_t *handle,
1015 struct buffer_head *bh))
1016 {
1017 struct buffer_head *bh;
1018 unsigned block_start, block_end;
1019 unsigned blocksize = head->b_size;
1020 int err, ret = 0;
1021 struct buffer_head *next;
1022
1023 for (bh = head, block_start = 0;
1024 ret == 0 && (bh != head || !block_start);
1025 block_start = block_end, bh = next) {
1026 next = bh->b_this_page;
1027 block_end = block_start + blocksize;
1028 if (block_end <= from || block_start >= to) {
1029 if (partial && !buffer_uptodate(bh))
1030 *partial = 1;
1031 continue;
1032 }
1033 err = (*fn)(handle, bh);
1034 if (!ret)
1035 ret = err;
1036 }
1037 return ret;
1038 }
1039
1040 /*
1041 * To preserve ordering, it is essential that the hole instantiation and
1042 * the data write be encapsulated in a single transaction. We cannot
1043 * close off a transaction and start a new one between the ext4_get_block()
1044 * and the commit_write(). So doing the jbd2_journal_start at the start of
1045 * prepare_write() is the right place.
1046 *
1047 * Also, this function can nest inside ext4_writepage(). In that case, we
1048 * *know* that ext4_writepage() has generated enough buffer credits to do the
1049 * whole page. So we won't block on the journal in that case, which is good,
1050 * because the caller may be PF_MEMALLOC.
1051 *
1052 * By accident, ext4 can be reentered when a transaction is open via
1053 * quota file writes. If we were to commit the transaction while thus
1054 * reentered, there can be a deadlock - we would be holding a quota
1055 * lock, and the commit would never complete if another thread had a
1056 * transaction open and was blocking on the quota lock - a ranking
1057 * violation.
1058 *
1059 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1060 * will _not_ run commit under these circumstances because handle->h_ref
1061 * is elevated. We'll still have enough credits for the tiny quotafile
1062 * write.
1063 */
1064 int do_journal_get_write_access(handle_t *handle,
1065 struct buffer_head *bh)
1066 {
1067 int dirty = buffer_dirty(bh);
1068 int ret;
1069
1070 if (!buffer_mapped(bh) || buffer_freed(bh))
1071 return 0;
1072 /*
1073 * __block_write_begin() could have dirtied some buffers. Clean
1074 * the dirty bit as jbd2_journal_get_write_access() could complain
1075 * otherwise about fs integrity issues. Setting of the dirty bit
1076 * by __block_write_begin() isn't a real problem here as we clear
1077 * the bit before releasing a page lock and thus writeback cannot
1078 * ever write the buffer.
1079 */
1080 if (dirty)
1081 clear_buffer_dirty(bh);
1082 BUFFER_TRACE(bh, "get write access");
1083 ret = ext4_journal_get_write_access(handle, bh);
1084 if (!ret && dirty)
1085 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1086 return ret;
1087 }
1088
1089 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1090 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1091 get_block_t *get_block)
1092 {
1093 unsigned from = pos & (PAGE_SIZE - 1);
1094 unsigned to = from + len;
1095 struct inode *inode = page->mapping->host;
1096 unsigned block_start, block_end;
1097 sector_t block;
1098 int err = 0;
1099 unsigned blocksize = inode->i_sb->s_blocksize;
1100 unsigned bbits;
1101 struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
1102 bool decrypt = false;
1103
1104 BUG_ON(!PageLocked(page));
1105 BUG_ON(from > PAGE_SIZE);
1106 BUG_ON(to > PAGE_SIZE);
1107 BUG_ON(from > to);
1108
1109 if (!page_has_buffers(page))
1110 create_empty_buffers(page, blocksize, 0);
1111 head = page_buffers(page);
1112 bbits = ilog2(blocksize);
1113 block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1114
1115 for (bh = head, block_start = 0; bh != head || !block_start;
1116 block++, block_start = block_end, bh = bh->b_this_page) {
1117 block_end = block_start + blocksize;
1118 if (block_end <= from || block_start >= to) {
1119 if (PageUptodate(page)) {
1120 if (!buffer_uptodate(bh))
1121 set_buffer_uptodate(bh);
1122 }
1123 continue;
1124 }
1125 if (buffer_new(bh))
1126 clear_buffer_new(bh);
1127 if (!buffer_mapped(bh)) {
1128 WARN_ON(bh->b_size != blocksize);
1129 err = get_block(inode, block, bh, 1);
1130 if (err)
1131 break;
1132 if (buffer_new(bh)) {
1133 unmap_underlying_metadata(bh->b_bdev,
1134 bh->b_blocknr);
1135 if (PageUptodate(page)) {
1136 clear_buffer_new(bh);
1137 set_buffer_uptodate(bh);
1138 mark_buffer_dirty(bh);
1139 continue;
1140 }
1141 if (block_end > to || block_start < from)
1142 zero_user_segments(page, to, block_end,
1143 block_start, from);
1144 continue;
1145 }
1146 }
1147 if (PageUptodate(page)) {
1148 if (!buffer_uptodate(bh))
1149 set_buffer_uptodate(bh);
1150 continue;
1151 }
1152 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1153 !buffer_unwritten(bh) &&
1154 (block_start < from || block_end > to)) {
1155 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1156 *wait_bh++ = bh;
1157 decrypt = ext4_encrypted_inode(inode) &&
1158 S_ISREG(inode->i_mode);
1159 }
1160 }
1161 /*
1162 * If we issued read requests, let them complete.
1163 */
1164 while (wait_bh > wait) {
1165 wait_on_buffer(*--wait_bh);
1166 if (!buffer_uptodate(*wait_bh))
1167 err = -EIO;
1168 }
1169 if (unlikely(err))
1170 page_zero_new_buffers(page, from, to);
1171 else if (decrypt)
1172 err = fscrypt_decrypt_page(page);
1173 return err;
1174 }
1175 #endif
1176
1177 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1178 loff_t pos, unsigned len, unsigned flags,
1179 struct page **pagep, void **fsdata)
1180 {
1181 struct inode *inode = mapping->host;
1182 int ret, needed_blocks;
1183 handle_t *handle;
1184 int retries = 0;
1185 struct page *page;
1186 pgoff_t index;
1187 unsigned from, to;
1188
1189 trace_ext4_write_begin(inode, pos, len, flags);
1190 /*
1191 * Reserve one block more for addition to orphan list in case
1192 * we allocate blocks but write fails for some reason
1193 */
1194 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1195 index = pos >> PAGE_SHIFT;
1196 from = pos & (PAGE_SIZE - 1);
1197 to = from + len;
1198
1199 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1200 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1201 flags, pagep);
1202 if (ret < 0)
1203 return ret;
1204 if (ret == 1)
1205 return 0;
1206 }
1207
1208 /*
1209 * grab_cache_page_write_begin() can take a long time if the
1210 * system is thrashing due to memory pressure, or if the page
1211 * is being written back. So grab it first before we start
1212 * the transaction handle. This also allows us to allocate
1213 * the page (if needed) without using GFP_NOFS.
1214 */
1215 retry_grab:
1216 page = grab_cache_page_write_begin(mapping, index, flags);
1217 if (!page)
1218 return -ENOMEM;
1219 unlock_page(page);
1220
1221 retry_journal:
1222 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1223 if (IS_ERR(handle)) {
1224 put_page(page);
1225 return PTR_ERR(handle);
1226 }
1227
1228 lock_page(page);
1229 if (page->mapping != mapping) {
1230 /* The page got truncated from under us */
1231 unlock_page(page);
1232 put_page(page);
1233 ext4_journal_stop(handle);
1234 goto retry_grab;
1235 }
1236 /* In case writeback began while the page was unlocked */
1237 wait_for_stable_page(page);
1238
1239 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1240 if (ext4_should_dioread_nolock(inode))
1241 ret = ext4_block_write_begin(page, pos, len,
1242 ext4_get_block_unwritten);
1243 else
1244 ret = ext4_block_write_begin(page, pos, len,
1245 ext4_get_block);
1246 #else
1247 if (ext4_should_dioread_nolock(inode))
1248 ret = __block_write_begin(page, pos, len,
1249 ext4_get_block_unwritten);
1250 else
1251 ret = __block_write_begin(page, pos, len, ext4_get_block);
1252 #endif
1253 if (!ret && ext4_should_journal_data(inode)) {
1254 ret = ext4_walk_page_buffers(handle, page_buffers(page),
1255 from, to, NULL,
1256 do_journal_get_write_access);
1257 }
1258
1259 if (ret) {
1260 unlock_page(page);
1261 /*
1262 * __block_write_begin may have instantiated a few blocks
1263 * outside i_size. Trim these off again. Don't need
1264 * i_size_read because we hold i_mutex.
1265 *
1266 * Add inode to orphan list in case we crash before
1267 * truncate finishes
1268 */
1269 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1270 ext4_orphan_add(handle, inode);
1271
1272 ext4_journal_stop(handle);
1273 if (pos + len > inode->i_size) {
1274 ext4_truncate_failed_write(inode);
1275 /*
1276 * If truncate failed early the inode might
1277 * still be on the orphan list; we need to
1278 * make sure the inode is removed from the
1279 * orphan list in that case.
1280 */
1281 if (inode->i_nlink)
1282 ext4_orphan_del(NULL, inode);
1283 }
1284
1285 if (ret == -ENOSPC &&
1286 ext4_should_retry_alloc(inode->i_sb, &retries))
1287 goto retry_journal;
1288 put_page(page);
1289 return ret;
1290 }
1291 *pagep = page;
1292 return ret;
1293 }
1294
1295 /* For write_end() in data=journal mode */
1296 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1297 {
1298 int ret;
1299 if (!buffer_mapped(bh) || buffer_freed(bh))
1300 return 0;
1301 set_buffer_uptodate(bh);
1302 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1303 clear_buffer_meta(bh);
1304 clear_buffer_prio(bh);
1305 return ret;
1306 }
1307
1308 /*
1309 * We need to pick up the new inode size which generic_commit_write gave us
1310 * `file' can be NULL - eg, when called from page_symlink().
1311 *
1312 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1313 * buffers are managed internally.
1314 */
1315 static int ext4_write_end(struct file *file,
1316 struct address_space *mapping,
1317 loff_t pos, unsigned len, unsigned copied,
1318 struct page *page, void *fsdata)
1319 {
1320 handle_t *handle = ext4_journal_current_handle();
1321 struct inode *inode = mapping->host;
1322 loff_t old_size = inode->i_size;
1323 int ret = 0, ret2;
1324 int i_size_changed = 0;
1325
1326 trace_ext4_write_end(inode, pos, len, copied);
1327 if (ext4_has_inline_data(inode)) {
1328 ret = ext4_write_inline_data_end(inode, pos, len,
1329 copied, page);
1330 if (ret < 0)
1331 goto errout;
1332 copied = ret;
1333 } else
1334 copied = block_write_end(file, mapping, pos,
1335 len, copied, page, fsdata);
1336 /*
1337 * it's important to update i_size while still holding page lock:
1338 * page writeout could otherwise come in and zero beyond i_size.
1339 */
1340 i_size_changed = ext4_update_inode_size(inode, pos + copied);
1341 unlock_page(page);
1342 put_page(page);
1343
1344 if (old_size < pos)
1345 pagecache_isize_extended(inode, old_size, pos);
1346 /*
1347 * Don't mark the inode dirty under page lock. First, it unnecessarily
1348 * makes the holding time of page lock longer. Second, it forces lock
1349 * ordering of page lock and transaction start for journaling
1350 * filesystems.
1351 */
1352 if (i_size_changed)
1353 ext4_mark_inode_dirty(handle, inode);
1354
1355 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1356 /* if we have allocated more blocks and copied
1357 * less. We will have blocks allocated outside
1358 * inode->i_size. So truncate them
1359 */
1360 ext4_orphan_add(handle, inode);
1361 errout:
1362 ret2 = ext4_journal_stop(handle);
1363 if (!ret)
1364 ret = ret2;
1365
1366 if (pos + len > inode->i_size) {
1367 ext4_truncate_failed_write(inode);
1368 /*
1369 * If truncate failed early the inode might still be
1370 * on the orphan list; we need to make sure the inode
1371 * is removed from the orphan list in that case.
1372 */
1373 if (inode->i_nlink)
1374 ext4_orphan_del(NULL, inode);
1375 }
1376
1377 return ret ? ret : copied;
1378 }
1379
1380 /*
1381 * This is a private version of page_zero_new_buffers() which doesn't
1382 * set the buffer to be dirty, since in data=journalled mode we need
1383 * to call ext4_handle_dirty_metadata() instead.
1384 */
1385 static void zero_new_buffers(struct page *page, unsigned from, unsigned to)
1386 {
1387 unsigned int block_start = 0, block_end;
1388 struct buffer_head *head, *bh;
1389
1390 bh = head = page_buffers(page);
1391 do {
1392 block_end = block_start + bh->b_size;
1393 if (buffer_new(bh)) {
1394 if (block_end > from && block_start < to) {
1395 if (!PageUptodate(page)) {
1396 unsigned start, size;
1397
1398 start = max(from, block_start);
1399 size = min(to, block_end) - start;
1400
1401 zero_user(page, start, size);
1402 set_buffer_uptodate(bh);
1403 }
1404 clear_buffer_new(bh);
1405 }
1406 }
1407 block_start = block_end;
1408 bh = bh->b_this_page;
1409 } while (bh != head);
1410 }
1411
1412 static int ext4_journalled_write_end(struct file *file,
1413 struct address_space *mapping,
1414 loff_t pos, unsigned len, unsigned copied,
1415 struct page *page, void *fsdata)
1416 {
1417 handle_t *handle = ext4_journal_current_handle();
1418 struct inode *inode = mapping->host;
1419 loff_t old_size = inode->i_size;
1420 int ret = 0, ret2;
1421 int partial = 0;
1422 unsigned from, to;
1423 int size_changed = 0;
1424
1425 trace_ext4_journalled_write_end(inode, pos, len, copied);
1426 from = pos & (PAGE_SIZE - 1);
1427 to = from + len;
1428
1429 BUG_ON(!ext4_handle_valid(handle));
1430
1431 if (ext4_has_inline_data(inode))
1432 copied = ext4_write_inline_data_end(inode, pos, len,
1433 copied, page);
1434 else {
1435 if (copied < len) {
1436 if (!PageUptodate(page))
1437 copied = 0;
1438 zero_new_buffers(page, from+copied, to);
1439 }
1440
1441 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1442 to, &partial, write_end_fn);
1443 if (!partial)
1444 SetPageUptodate(page);
1445 }
1446 size_changed = ext4_update_inode_size(inode, pos + copied);
1447 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1448 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1449 unlock_page(page);
1450 put_page(page);
1451
1452 if (old_size < pos)
1453 pagecache_isize_extended(inode, old_size, pos);
1454
1455 if (size_changed) {
1456 ret2 = ext4_mark_inode_dirty(handle, inode);
1457 if (!ret)
1458 ret = ret2;
1459 }
1460
1461 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1462 /* if we have allocated more blocks and copied
1463 * less. We will have blocks allocated outside
1464 * inode->i_size. So truncate them
1465 */
1466 ext4_orphan_add(handle, inode);
1467
1468 ret2 = ext4_journal_stop(handle);
1469 if (!ret)
1470 ret = ret2;
1471 if (pos + len > inode->i_size) {
1472 ext4_truncate_failed_write(inode);
1473 /*
1474 * If truncate failed early the inode might still be
1475 * on the orphan list; we need to make sure the inode
1476 * is removed from the orphan list in that case.
1477 */
1478 if (inode->i_nlink)
1479 ext4_orphan_del(NULL, inode);
1480 }
1481
1482 return ret ? ret : copied;
1483 }
1484
1485 /*
1486 * Reserve space for a single cluster
1487 */
1488 static int ext4_da_reserve_space(struct inode *inode)
1489 {
1490 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1491 struct ext4_inode_info *ei = EXT4_I(inode);
1492 int ret;
1493
1494 /*
1495 * We will charge metadata quota at writeout time; this saves
1496 * us from metadata over-estimation, though we may go over by
1497 * a small amount in the end. Here we just reserve for data.
1498 */
1499 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1500 if (ret)
1501 return ret;
1502
1503 spin_lock(&ei->i_block_reservation_lock);
1504 if (ext4_claim_free_clusters(sbi, 1, 0)) {
1505 spin_unlock(&ei->i_block_reservation_lock);
1506 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1507 return -ENOSPC;
1508 }
1509 ei->i_reserved_data_blocks++;
1510 trace_ext4_da_reserve_space(inode);
1511 spin_unlock(&ei->i_block_reservation_lock);
1512
1513 return 0; /* success */
1514 }
1515
1516 static void ext4_da_release_space(struct inode *inode, int to_free)
1517 {
1518 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1519 struct ext4_inode_info *ei = EXT4_I(inode);
1520
1521 if (!to_free)
1522 return; /* Nothing to release, exit */
1523
1524 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1525
1526 trace_ext4_da_release_space(inode, to_free);
1527 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1528 /*
1529 * if there aren't enough reserved blocks, then the
1530 * counter is messed up somewhere. Since this
1531 * function is called from invalidate page, it's
1532 * harmless to return without any action.
1533 */
1534 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1535 "ino %lu, to_free %d with only %d reserved "
1536 "data blocks", inode->i_ino, to_free,
1537 ei->i_reserved_data_blocks);
1538 WARN_ON(1);
1539 to_free = ei->i_reserved_data_blocks;
1540 }
1541 ei->i_reserved_data_blocks -= to_free;
1542
1543 /* update fs dirty data blocks counter */
1544 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1545
1546 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1547
1548 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1549 }
1550
1551 static void ext4_da_page_release_reservation(struct page *page,
1552 unsigned int offset,
1553 unsigned int length)
1554 {
1555 int to_release = 0, contiguous_blks = 0;
1556 struct buffer_head *head, *bh;
1557 unsigned int curr_off = 0;
1558 struct inode *inode = page->mapping->host;
1559 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1560 unsigned int stop = offset + length;
1561 int num_clusters;
1562 ext4_fsblk_t lblk;
1563
1564 BUG_ON(stop > PAGE_SIZE || stop < length);
1565
1566 head = page_buffers(page);
1567 bh = head;
1568 do {
1569 unsigned int next_off = curr_off + bh->b_size;
1570
1571 if (next_off > stop)
1572 break;
1573
1574 if ((offset <= curr_off) && (buffer_delay(bh))) {
1575 to_release++;
1576 contiguous_blks++;
1577 clear_buffer_delay(bh);
1578 } else if (contiguous_blks) {
1579 lblk = page->index <<
1580 (PAGE_SHIFT - inode->i_blkbits);
1581 lblk += (curr_off >> inode->i_blkbits) -
1582 contiguous_blks;
1583 ext4_es_remove_extent(inode, lblk, contiguous_blks);
1584 contiguous_blks = 0;
1585 }
1586 curr_off = next_off;
1587 } while ((bh = bh->b_this_page) != head);
1588
1589 if (contiguous_blks) {
1590 lblk = page->index << (PAGE_SHIFT - inode->i_blkbits);
1591 lblk += (curr_off >> inode->i_blkbits) - contiguous_blks;
1592 ext4_es_remove_extent(inode, lblk, contiguous_blks);
1593 }
1594
1595 /* If we have released all the blocks belonging to a cluster, then we
1596 * need to release the reserved space for that cluster. */
1597 num_clusters = EXT4_NUM_B2C(sbi, to_release);
1598 while (num_clusters > 0) {
1599 lblk = (page->index << (PAGE_SHIFT - inode->i_blkbits)) +
1600 ((num_clusters - 1) << sbi->s_cluster_bits);
1601 if (sbi->s_cluster_ratio == 1 ||
1602 !ext4_find_delalloc_cluster(inode, lblk))
1603 ext4_da_release_space(inode, 1);
1604
1605 num_clusters--;
1606 }
1607 }
1608
1609 /*
1610 * Delayed allocation stuff
1611 */
1612
1613 struct mpage_da_data {
1614 struct inode *inode;
1615 struct writeback_control *wbc;
1616
1617 pgoff_t first_page; /* The first page to write */
1618 pgoff_t next_page; /* Current page to examine */
1619 pgoff_t last_page; /* Last page to examine */
1620 /*
1621 * Extent to map - this can be after first_page because that can be
1622 * fully mapped. We somewhat abuse m_flags to store whether the extent
1623 * is delalloc or unwritten.
1624 */
1625 struct ext4_map_blocks map;
1626 struct ext4_io_submit io_submit; /* IO submission data */
1627 };
1628
1629 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1630 bool invalidate)
1631 {
1632 int nr_pages, i;
1633 pgoff_t index, end;
1634 struct pagevec pvec;
1635 struct inode *inode = mpd->inode;
1636 struct address_space *mapping = inode->i_mapping;
1637
1638 /* This is necessary when next_page == 0. */
1639 if (mpd->first_page >= mpd->next_page)
1640 return;
1641
1642 index = mpd->first_page;
1643 end = mpd->next_page - 1;
1644 if (invalidate) {
1645 ext4_lblk_t start, last;
1646 start = index << (PAGE_SHIFT - inode->i_blkbits);
1647 last = end << (PAGE_SHIFT - inode->i_blkbits);
1648 ext4_es_remove_extent(inode, start, last - start + 1);
1649 }
1650
1651 pagevec_init(&pvec, 0);
1652 while (index <= end) {
1653 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1654 if (nr_pages == 0)
1655 break;
1656 for (i = 0; i < nr_pages; i++) {
1657 struct page *page = pvec.pages[i];
1658 if (page->index > end)
1659 break;
1660 BUG_ON(!PageLocked(page));
1661 BUG_ON(PageWriteback(page));
1662 if (invalidate) {
1663 if (page_mapped(page))
1664 clear_page_dirty_for_io(page);
1665 block_invalidatepage(page, 0, PAGE_SIZE);
1666 ClearPageUptodate(page);
1667 }
1668 unlock_page(page);
1669 }
1670 index = pvec.pages[nr_pages - 1]->index + 1;
1671 pagevec_release(&pvec);
1672 }
1673 }
1674
1675 static void ext4_print_free_blocks(struct inode *inode)
1676 {
1677 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1678 struct super_block *sb = inode->i_sb;
1679 struct ext4_inode_info *ei = EXT4_I(inode);
1680
1681 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1682 EXT4_C2B(EXT4_SB(inode->i_sb),
1683 ext4_count_free_clusters(sb)));
1684 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1685 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1686 (long long) EXT4_C2B(EXT4_SB(sb),
1687 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1688 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1689 (long long) EXT4_C2B(EXT4_SB(sb),
1690 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1691 ext4_msg(sb, KERN_CRIT, "Block reservation details");
1692 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1693 ei->i_reserved_data_blocks);
1694 return;
1695 }
1696
1697 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1698 {
1699 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1700 }
1701
1702 /*
1703 * This function is grabs code from the very beginning of
1704 * ext4_map_blocks, but assumes that the caller is from delayed write
1705 * time. This function looks up the requested blocks and sets the
1706 * buffer delay bit under the protection of i_data_sem.
1707 */
1708 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1709 struct ext4_map_blocks *map,
1710 struct buffer_head *bh)
1711 {
1712 struct extent_status es;
1713 int retval;
1714 sector_t invalid_block = ~((sector_t) 0xffff);
1715 #ifdef ES_AGGRESSIVE_TEST
1716 struct ext4_map_blocks orig_map;
1717
1718 memcpy(&orig_map, map, sizeof(*map));
1719 #endif
1720
1721 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1722 invalid_block = ~0;
1723
1724 map->m_flags = 0;
1725 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1726 "logical block %lu\n", inode->i_ino, map->m_len,
1727 (unsigned long) map->m_lblk);
1728
1729 /* Lookup extent status tree firstly */
1730 if (ext4_es_lookup_extent(inode, iblock, &es)) {
1731 if (ext4_es_is_hole(&es)) {
1732 retval = 0;
1733 down_read(&EXT4_I(inode)->i_data_sem);
1734 goto add_delayed;
1735 }
1736
1737 /*
1738 * Delayed extent could be allocated by fallocate.
1739 * So we need to check it.
1740 */
1741 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1742 map_bh(bh, inode->i_sb, invalid_block);
1743 set_buffer_new(bh);
1744 set_buffer_delay(bh);
1745 return 0;
1746 }
1747
1748 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1749 retval = es.es_len - (iblock - es.es_lblk);
1750 if (retval > map->m_len)
1751 retval = map->m_len;
1752 map->m_len = retval;
1753 if (ext4_es_is_written(&es))
1754 map->m_flags |= EXT4_MAP_MAPPED;
1755 else if (ext4_es_is_unwritten(&es))
1756 map->m_flags |= EXT4_MAP_UNWRITTEN;
1757 else
1758 BUG_ON(1);
1759
1760 #ifdef ES_AGGRESSIVE_TEST
1761 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1762 #endif
1763 return retval;
1764 }
1765
1766 /*
1767 * Try to see if we can get the block without requesting a new
1768 * file system block.
1769 */
1770 down_read(&EXT4_I(inode)->i_data_sem);
1771 if (ext4_has_inline_data(inode))
1772 retval = 0;
1773 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1774 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1775 else
1776 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1777
1778 add_delayed:
1779 if (retval == 0) {
1780 int ret;
1781 /*
1782 * XXX: __block_prepare_write() unmaps passed block,
1783 * is it OK?
1784 */
1785 /*
1786 * If the block was allocated from previously allocated cluster,
1787 * then we don't need to reserve it again. However we still need
1788 * to reserve metadata for every block we're going to write.
1789 */
1790 if (EXT4_SB(inode->i_sb)->s_cluster_ratio == 1 ||
1791 !ext4_find_delalloc_cluster(inode, map->m_lblk)) {
1792 ret = ext4_da_reserve_space(inode);
1793 if (ret) {
1794 /* not enough space to reserve */
1795 retval = ret;
1796 goto out_unlock;
1797 }
1798 }
1799
1800 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1801 ~0, EXTENT_STATUS_DELAYED);
1802 if (ret) {
1803 retval = ret;
1804 goto out_unlock;
1805 }
1806
1807 map_bh(bh, inode->i_sb, invalid_block);
1808 set_buffer_new(bh);
1809 set_buffer_delay(bh);
1810 } else if (retval > 0) {
1811 int ret;
1812 unsigned int status;
1813
1814 if (unlikely(retval != map->m_len)) {
1815 ext4_warning(inode->i_sb,
1816 "ES len assertion failed for inode "
1817 "%lu: retval %d != map->m_len %d",
1818 inode->i_ino, retval, map->m_len);
1819 WARN_ON(1);
1820 }
1821
1822 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1823 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1824 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1825 map->m_pblk, status);
1826 if (ret != 0)
1827 retval = ret;
1828 }
1829
1830 out_unlock:
1831 up_read((&EXT4_I(inode)->i_data_sem));
1832
1833 return retval;
1834 }
1835
1836 /*
1837 * This is a special get_block_t callback which is used by
1838 * ext4_da_write_begin(). It will either return mapped block or
1839 * reserve space for a single block.
1840 *
1841 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1842 * We also have b_blocknr = -1 and b_bdev initialized properly
1843 *
1844 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1845 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1846 * initialized properly.
1847 */
1848 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1849 struct buffer_head *bh, int create)
1850 {
1851 struct ext4_map_blocks map;
1852 int ret = 0;
1853
1854 BUG_ON(create == 0);
1855 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1856
1857 map.m_lblk = iblock;
1858 map.m_len = 1;
1859
1860 /*
1861 * first, we need to know whether the block is allocated already
1862 * preallocated blocks are unmapped but should treated
1863 * the same as allocated blocks.
1864 */
1865 ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1866 if (ret <= 0)
1867 return ret;
1868
1869 map_bh(bh, inode->i_sb, map.m_pblk);
1870 ext4_update_bh_state(bh, map.m_flags);
1871
1872 if (buffer_unwritten(bh)) {
1873 /* A delayed write to unwritten bh should be marked
1874 * new and mapped. Mapped ensures that we don't do
1875 * get_block multiple times when we write to the same
1876 * offset and new ensures that we do proper zero out
1877 * for partial write.
1878 */
1879 set_buffer_new(bh);
1880 set_buffer_mapped(bh);
1881 }
1882 return 0;
1883 }
1884
1885 static int bget_one(handle_t *handle, struct buffer_head *bh)
1886 {
1887 get_bh(bh);
1888 return 0;
1889 }
1890
1891 static int bput_one(handle_t *handle, struct buffer_head *bh)
1892 {
1893 put_bh(bh);
1894 return 0;
1895 }
1896
1897 static int __ext4_journalled_writepage(struct page *page,
1898 unsigned int len)
1899 {
1900 struct address_space *mapping = page->mapping;
1901 struct inode *inode = mapping->host;
1902 struct buffer_head *page_bufs = NULL;
1903 handle_t *handle = NULL;
1904 int ret = 0, err = 0;
1905 int inline_data = ext4_has_inline_data(inode);
1906 struct buffer_head *inode_bh = NULL;
1907
1908 ClearPageChecked(page);
1909
1910 if (inline_data) {
1911 BUG_ON(page->index != 0);
1912 BUG_ON(len > ext4_get_max_inline_size(inode));
1913 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1914 if (inode_bh == NULL)
1915 goto out;
1916 } else {
1917 page_bufs = page_buffers(page);
1918 if (!page_bufs) {
1919 BUG();
1920 goto out;
1921 }
1922 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1923 NULL, bget_one);
1924 }
1925 /*
1926 * We need to release the page lock before we start the
1927 * journal, so grab a reference so the page won't disappear
1928 * out from under us.
1929 */
1930 get_page(page);
1931 unlock_page(page);
1932
1933 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1934 ext4_writepage_trans_blocks(inode));
1935 if (IS_ERR(handle)) {
1936 ret = PTR_ERR(handle);
1937 put_page(page);
1938 goto out_no_pagelock;
1939 }
1940 BUG_ON(!ext4_handle_valid(handle));
1941
1942 lock_page(page);
1943 put_page(page);
1944 if (page->mapping != mapping) {
1945 /* The page got truncated from under us */
1946 ext4_journal_stop(handle);
1947 ret = 0;
1948 goto out;
1949 }
1950
1951 if (inline_data) {
1952 BUFFER_TRACE(inode_bh, "get write access");
1953 ret = ext4_journal_get_write_access(handle, inode_bh);
1954
1955 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1956
1957 } else {
1958 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1959 do_journal_get_write_access);
1960
1961 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1962 write_end_fn);
1963 }
1964 if (ret == 0)
1965 ret = err;
1966 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1967 err = ext4_journal_stop(handle);
1968 if (!ret)
1969 ret = err;
1970
1971 if (!ext4_has_inline_data(inode))
1972 ext4_walk_page_buffers(NULL, page_bufs, 0, len,
1973 NULL, bput_one);
1974 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1975 out:
1976 unlock_page(page);
1977 out_no_pagelock:
1978 brelse(inode_bh);
1979 return ret;
1980 }
1981
1982 /*
1983 * Note that we don't need to start a transaction unless we're journaling data
1984 * because we should have holes filled from ext4_page_mkwrite(). We even don't
1985 * need to file the inode to the transaction's list in ordered mode because if
1986 * we are writing back data added by write(), the inode is already there and if
1987 * we are writing back data modified via mmap(), no one guarantees in which
1988 * transaction the data will hit the disk. In case we are journaling data, we
1989 * cannot start transaction directly because transaction start ranks above page
1990 * lock so we have to do some magic.
1991 *
1992 * This function can get called via...
1993 * - ext4_writepages after taking page lock (have journal handle)
1994 * - journal_submit_inode_data_buffers (no journal handle)
1995 * - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1996 * - grab_page_cache when doing write_begin (have journal handle)
1997 *
1998 * We don't do any block allocation in this function. If we have page with
1999 * multiple blocks we need to write those buffer_heads that are mapped. This
2000 * is important for mmaped based write. So if we do with blocksize 1K
2001 * truncate(f, 1024);
2002 * a = mmap(f, 0, 4096);
2003 * a[0] = 'a';
2004 * truncate(f, 4096);
2005 * we have in the page first buffer_head mapped via page_mkwrite call back
2006 * but other buffer_heads would be unmapped but dirty (dirty done via the
2007 * do_wp_page). So writepage should write the first block. If we modify
2008 * the mmap area beyond 1024 we will again get a page_fault and the
2009 * page_mkwrite callback will do the block allocation and mark the
2010 * buffer_heads mapped.
2011 *
2012 * We redirty the page if we have any buffer_heads that is either delay or
2013 * unwritten in the page.
2014 *
2015 * We can get recursively called as show below.
2016 *
2017 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2018 * ext4_writepage()
2019 *
2020 * But since we don't do any block allocation we should not deadlock.
2021 * Page also have the dirty flag cleared so we don't get recurive page_lock.
2022 */
2023 static int ext4_writepage(struct page *page,
2024 struct writeback_control *wbc)
2025 {
2026 int ret = 0;
2027 loff_t size;
2028 unsigned int len;
2029 struct buffer_head *page_bufs = NULL;
2030 struct inode *inode = page->mapping->host;
2031 struct ext4_io_submit io_submit;
2032 bool keep_towrite = false;
2033
2034 trace_ext4_writepage(page);
2035 size = i_size_read(inode);
2036 if (page->index == size >> PAGE_SHIFT)
2037 len = size & ~PAGE_MASK;
2038 else
2039 len = PAGE_SIZE;
2040
2041 page_bufs = page_buffers(page);
2042 /*
2043 * We cannot do block allocation or other extent handling in this
2044 * function. If there are buffers needing that, we have to redirty
2045 * the page. But we may reach here when we do a journal commit via
2046 * journal_submit_inode_data_buffers() and in that case we must write
2047 * allocated buffers to achieve data=ordered mode guarantees.
2048 *
2049 * Also, if there is only one buffer per page (the fs block
2050 * size == the page size), if one buffer needs block
2051 * allocation or needs to modify the extent tree to clear the
2052 * unwritten flag, we know that the page can't be written at
2053 * all, so we might as well refuse the write immediately.
2054 * Unfortunately if the block size != page size, we can't as
2055 * easily detect this case using ext4_walk_page_buffers(), but
2056 * for the extremely common case, this is an optimization that
2057 * skips a useless round trip through ext4_bio_write_page().
2058 */
2059 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2060 ext4_bh_delay_or_unwritten)) {
2061 redirty_page_for_writepage(wbc, page);
2062 if ((current->flags & PF_MEMALLOC) ||
2063 (inode->i_sb->s_blocksize == PAGE_SIZE)) {
2064 /*
2065 * For memory cleaning there's no point in writing only
2066 * some buffers. So just bail out. Warn if we came here
2067 * from direct reclaim.
2068 */
2069 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2070 == PF_MEMALLOC);
2071 unlock_page(page);
2072 return 0;
2073 }
2074 keep_towrite = true;
2075 }
2076
2077 if (PageChecked(page) && ext4_should_journal_data(inode))
2078 /*
2079 * It's mmapped pagecache. Add buffers and journal it. There
2080 * doesn't seem much point in redirtying the page here.
2081 */
2082 return __ext4_journalled_writepage(page, len);
2083
2084 ext4_io_submit_init(&io_submit, wbc);
2085 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2086 if (!io_submit.io_end) {
2087 redirty_page_for_writepage(wbc, page);
2088 unlock_page(page);
2089 return -ENOMEM;
2090 }
2091 ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
2092 ext4_io_submit(&io_submit);
2093 /* Drop io_end reference we got from init */
2094 ext4_put_io_end_defer(io_submit.io_end);
2095 return ret;
2096 }
2097
2098 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2099 {
2100 int len;
2101 loff_t size = i_size_read(mpd->inode);
2102 int err;
2103
2104 BUG_ON(page->index != mpd->first_page);
2105 if (page->index == size >> PAGE_SHIFT)
2106 len = size & ~PAGE_MASK;
2107 else
2108 len = PAGE_SIZE;
2109 clear_page_dirty_for_io(page);
2110 err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
2111 if (!err)
2112 mpd->wbc->nr_to_write--;
2113 mpd->first_page++;
2114
2115 return err;
2116 }
2117
2118 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
2119
2120 /*
2121 * mballoc gives us at most this number of blocks...
2122 * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2123 * The rest of mballoc seems to handle chunks up to full group size.
2124 */
2125 #define MAX_WRITEPAGES_EXTENT_LEN 2048
2126
2127 /*
2128 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2129 *
2130 * @mpd - extent of blocks
2131 * @lblk - logical number of the block in the file
2132 * @bh - buffer head we want to add to the extent
2133 *
2134 * The function is used to collect contig. blocks in the same state. If the
2135 * buffer doesn't require mapping for writeback and we haven't started the
2136 * extent of buffers to map yet, the function returns 'true' immediately - the
2137 * caller can write the buffer right away. Otherwise the function returns true
2138 * if the block has been added to the extent, false if the block couldn't be
2139 * added.
2140 */
2141 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2142 struct buffer_head *bh)
2143 {
2144 struct ext4_map_blocks *map = &mpd->map;
2145
2146 /* Buffer that doesn't need mapping for writeback? */
2147 if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2148 (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2149 /* So far no extent to map => we write the buffer right away */
2150 if (map->m_len == 0)
2151 return true;
2152 return false;
2153 }
2154
2155 /* First block in the extent? */
2156 if (map->m_len == 0) {
2157 map->m_lblk = lblk;
2158 map->m_len = 1;
2159 map->m_flags = bh->b_state & BH_FLAGS;
2160 return true;
2161 }
2162
2163 /* Don't go larger than mballoc is willing to allocate */
2164 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2165 return false;
2166
2167 /* Can we merge the block to our big extent? */
2168 if (lblk == map->m_lblk + map->m_len &&
2169 (bh->b_state & BH_FLAGS) == map->m_flags) {
2170 map->m_len++;
2171 return true;
2172 }
2173 return false;
2174 }
2175
2176 /*
2177 * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2178 *
2179 * @mpd - extent of blocks for mapping
2180 * @head - the first buffer in the page
2181 * @bh - buffer we should start processing from
2182 * @lblk - logical number of the block in the file corresponding to @bh
2183 *
2184 * Walk through page buffers from @bh upto @head (exclusive) and either submit
2185 * the page for IO if all buffers in this page were mapped and there's no
2186 * accumulated extent of buffers to map or add buffers in the page to the
2187 * extent of buffers to map. The function returns 1 if the caller can continue
2188 * by processing the next page, 0 if it should stop adding buffers to the
2189 * extent to map because we cannot extend it anymore. It can also return value
2190 * < 0 in case of error during IO submission.
2191 */
2192 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2193 struct buffer_head *head,
2194 struct buffer_head *bh,
2195 ext4_lblk_t lblk)
2196 {
2197 struct inode *inode = mpd->inode;
2198 int err;
2199 ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1)
2200 >> inode->i_blkbits;
2201
2202 do {
2203 BUG_ON(buffer_locked(bh));
2204
2205 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2206 /* Found extent to map? */
2207 if (mpd->map.m_len)
2208 return 0;
2209 /* Everything mapped so far and we hit EOF */
2210 break;
2211 }
2212 } while (lblk++, (bh = bh->b_this_page) != head);
2213 /* So far everything mapped? Submit the page for IO. */
2214 if (mpd->map.m_len == 0) {
2215 err = mpage_submit_page(mpd, head->b_page);
2216 if (err < 0)
2217 return err;
2218 }
2219 return lblk < blocks;
2220 }
2221
2222 /*
2223 * mpage_map_buffers - update buffers corresponding to changed extent and
2224 * submit fully mapped pages for IO
2225 *
2226 * @mpd - description of extent to map, on return next extent to map
2227 *
2228 * Scan buffers corresponding to changed extent (we expect corresponding pages
2229 * to be already locked) and update buffer state according to new extent state.
2230 * We map delalloc buffers to their physical location, clear unwritten bits,
2231 * and mark buffers as uninit when we perform writes to unwritten extents
2232 * and do extent conversion after IO is finished. If the last page is not fully
2233 * mapped, we update @map to the next extent in the last page that needs
2234 * mapping. Otherwise we submit the page for IO.
2235 */
2236 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2237 {
2238 struct pagevec pvec;
2239 int nr_pages, i;
2240 struct inode *inode = mpd->inode;
2241 struct buffer_head *head, *bh;
2242 int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2243 pgoff_t start, end;
2244 ext4_lblk_t lblk;
2245 sector_t pblock;
2246 int err;
2247
2248 start = mpd->map.m_lblk >> bpp_bits;
2249 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2250 lblk = start << bpp_bits;
2251 pblock = mpd->map.m_pblk;
2252
2253 pagevec_init(&pvec, 0);
2254 while (start <= end) {
2255 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start,
2256 PAGEVEC_SIZE);
2257 if (nr_pages == 0)
2258 break;
2259 for (i = 0; i < nr_pages; i++) {
2260 struct page *page = pvec.pages[i];
2261
2262 if (page->index > end)
2263 break;
2264 /* Up to 'end' pages must be contiguous */
2265 BUG_ON(page->index != start);
2266 bh = head = page_buffers(page);
2267 do {
2268 if (lblk < mpd->map.m_lblk)
2269 continue;
2270 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2271 /*
2272 * Buffer after end of mapped extent.
2273 * Find next buffer in the page to map.
2274 */
2275 mpd->map.m_len = 0;
2276 mpd->map.m_flags = 0;
2277 /*
2278 * FIXME: If dioread_nolock supports
2279 * blocksize < pagesize, we need to make
2280 * sure we add size mapped so far to
2281 * io_end->size as the following call
2282 * can submit the page for IO.
2283 */
2284 err = mpage_process_page_bufs(mpd, head,
2285 bh, lblk);
2286 pagevec_release(&pvec);
2287 if (err > 0)
2288 err = 0;
2289 return err;
2290 }
2291 if (buffer_delay(bh)) {
2292 clear_buffer_delay(bh);
2293 bh->b_blocknr = pblock++;
2294 }
2295 clear_buffer_unwritten(bh);
2296 } while (lblk++, (bh = bh->b_this_page) != head);
2297
2298 /*
2299 * FIXME: This is going to break if dioread_nolock
2300 * supports blocksize < pagesize as we will try to
2301 * convert potentially unmapped parts of inode.
2302 */
2303 mpd->io_submit.io_end->size += PAGE_SIZE;
2304 /* Page fully mapped - let IO run! */
2305 err = mpage_submit_page(mpd, page);
2306 if (err < 0) {
2307 pagevec_release(&pvec);
2308 return err;
2309 }
2310 start++;
2311 }
2312 pagevec_release(&pvec);
2313 }
2314 /* Extent fully mapped and matches with page boundary. We are done. */
2315 mpd->map.m_len = 0;
2316 mpd->map.m_flags = 0;
2317 return 0;
2318 }
2319
2320 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2321 {
2322 struct inode *inode = mpd->inode;
2323 struct ext4_map_blocks *map = &mpd->map;
2324 int get_blocks_flags;
2325 int err, dioread_nolock;
2326
2327 trace_ext4_da_write_pages_extent(inode, map);
2328 /*
2329 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2330 * to convert an unwritten extent to be initialized (in the case
2331 * where we have written into one or more preallocated blocks). It is
2332 * possible that we're going to need more metadata blocks than
2333 * previously reserved. However we must not fail because we're in
2334 * writeback and there is nothing we can do about it so it might result
2335 * in data loss. So use reserved blocks to allocate metadata if
2336 * possible.
2337 *
2338 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2339 * the blocks in question are delalloc blocks. This indicates
2340 * that the blocks and quotas has already been checked when
2341 * the data was copied into the page cache.
2342 */
2343 get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2344 EXT4_GET_BLOCKS_METADATA_NOFAIL |
2345 EXT4_GET_BLOCKS_IO_SUBMIT;
2346 dioread_nolock = ext4_should_dioread_nolock(inode);
2347 if (dioread_nolock)
2348 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2349 if (map->m_flags & (1 << BH_Delay))
2350 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2351
2352 err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2353 if (err < 0)
2354 return err;
2355 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2356 if (!mpd->io_submit.io_end->handle &&
2357 ext4_handle_valid(handle)) {
2358 mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2359 handle->h_rsv_handle = NULL;
2360 }
2361 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2362 }
2363
2364 BUG_ON(map->m_len == 0);
2365 if (map->m_flags & EXT4_MAP_NEW) {
2366 struct block_device *bdev = inode->i_sb->s_bdev;
2367 int i;
2368
2369 for (i = 0; i < map->m_len; i++)
2370 unmap_underlying_metadata(bdev, map->m_pblk + i);
2371 }
2372 return 0;
2373 }
2374
2375 /*
2376 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2377 * mpd->len and submit pages underlying it for IO
2378 *
2379 * @handle - handle for journal operations
2380 * @mpd - extent to map
2381 * @give_up_on_write - we set this to true iff there is a fatal error and there
2382 * is no hope of writing the data. The caller should discard
2383 * dirty pages to avoid infinite loops.
2384 *
2385 * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2386 * delayed, blocks are allocated, if it is unwritten, we may need to convert
2387 * them to initialized or split the described range from larger unwritten
2388 * extent. Note that we need not map all the described range since allocation
2389 * can return less blocks or the range is covered by more unwritten extents. We
2390 * cannot map more because we are limited by reserved transaction credits. On
2391 * the other hand we always make sure that the last touched page is fully
2392 * mapped so that it can be written out (and thus forward progress is
2393 * guaranteed). After mapping we submit all mapped pages for IO.
2394 */
2395 static int mpage_map_and_submit_extent(handle_t *handle,
2396 struct mpage_da_data *mpd,
2397 bool *give_up_on_write)
2398 {
2399 struct inode *inode = mpd->inode;
2400 struct ext4_map_blocks *map = &mpd->map;
2401 int err;
2402 loff_t disksize;
2403 int progress = 0;
2404
2405 mpd->io_submit.io_end->offset =
2406 ((loff_t)map->m_lblk) << inode->i_blkbits;
2407 do {
2408 err = mpage_map_one_extent(handle, mpd);
2409 if (err < 0) {
2410 struct super_block *sb = inode->i_sb;
2411
2412 if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2413 goto invalidate_dirty_pages;
2414 /*
2415 * Let the uper layers retry transient errors.
2416 * In the case of ENOSPC, if ext4_count_free_blocks()
2417 * is non-zero, a commit should free up blocks.
2418 */
2419 if ((err == -ENOMEM) ||
2420 (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2421 if (progress)
2422 goto update_disksize;
2423 return err;
2424 }
2425 ext4_msg(sb, KERN_CRIT,
2426 "Delayed block allocation failed for "
2427 "inode %lu at logical offset %llu with"
2428 " max blocks %u with error %d",
2429 inode->i_ino,
2430 (unsigned long long)map->m_lblk,
2431 (unsigned)map->m_len, -err);
2432 ext4_msg(sb, KERN_CRIT,
2433 "This should not happen!! Data will "
2434 "be lost\n");
2435 if (err == -ENOSPC)
2436 ext4_print_free_blocks(inode);
2437 invalidate_dirty_pages:
2438 *give_up_on_write = true;
2439 return err;
2440 }
2441 progress = 1;
2442 /*
2443 * Update buffer state, submit mapped pages, and get us new
2444 * extent to map
2445 */
2446 err = mpage_map_and_submit_buffers(mpd);
2447 if (err < 0)
2448 goto update_disksize;
2449 } while (map->m_len);
2450
2451 update_disksize:
2452 /*
2453 * Update on-disk size after IO is submitted. Races with
2454 * truncate are avoided by checking i_size under i_data_sem.
2455 */
2456 disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2457 if (disksize > EXT4_I(inode)->i_disksize) {
2458 int err2;
2459 loff_t i_size;
2460
2461 down_write(&EXT4_I(inode)->i_data_sem);
2462 i_size = i_size_read(inode);
2463 if (disksize > i_size)
2464 disksize = i_size;
2465 if (disksize > EXT4_I(inode)->i_disksize)
2466 EXT4_I(inode)->i_disksize = disksize;
2467 err2 = ext4_mark_inode_dirty(handle, inode);
2468 up_write(&EXT4_I(inode)->i_data_sem);
2469 if (err2)
2470 ext4_error(inode->i_sb,
2471 "Failed to mark inode %lu dirty",
2472 inode->i_ino);
2473 if (!err)
2474 err = err2;
2475 }
2476 return err;
2477 }
2478
2479 /*
2480 * Calculate the total number of credits to reserve for one writepages
2481 * iteration. This is called from ext4_writepages(). We map an extent of
2482 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2483 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2484 * bpp - 1 blocks in bpp different extents.
2485 */
2486 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2487 {
2488 int bpp = ext4_journal_blocks_per_page(inode);
2489
2490 return ext4_meta_trans_blocks(inode,
2491 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2492 }
2493
2494 /*
2495 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2496 * and underlying extent to map
2497 *
2498 * @mpd - where to look for pages
2499 *
2500 * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2501 * IO immediately. When we find a page which isn't mapped we start accumulating
2502 * extent of buffers underlying these pages that needs mapping (formed by
2503 * either delayed or unwritten buffers). We also lock the pages containing
2504 * these buffers. The extent found is returned in @mpd structure (starting at
2505 * mpd->lblk with length mpd->len blocks).
2506 *
2507 * Note that this function can attach bios to one io_end structure which are
2508 * neither logically nor physically contiguous. Although it may seem as an
2509 * unnecessary complication, it is actually inevitable in blocksize < pagesize
2510 * case as we need to track IO to all buffers underlying a page in one io_end.
2511 */
2512 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2513 {
2514 struct address_space *mapping = mpd->inode->i_mapping;
2515 struct pagevec pvec;
2516 unsigned int nr_pages;
2517 long left = mpd->wbc->nr_to_write;
2518 pgoff_t index = mpd->first_page;
2519 pgoff_t end = mpd->last_page;
2520 int tag;
2521 int i, err = 0;
2522 int blkbits = mpd->inode->i_blkbits;
2523 ext4_lblk_t lblk;
2524 struct buffer_head *head;
2525
2526 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2527 tag = PAGECACHE_TAG_TOWRITE;
2528 else
2529 tag = PAGECACHE_TAG_DIRTY;
2530
2531 pagevec_init(&pvec, 0);
2532 mpd->map.m_len = 0;
2533 mpd->next_page = index;
2534 while (index <= end) {
2535 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2536 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2537 if (nr_pages == 0)
2538 goto out;
2539
2540 for (i = 0; i < nr_pages; i++) {
2541 struct page *page = pvec.pages[i];
2542
2543 /*
2544 * At this point, the page may be truncated or
2545 * invalidated (changing page->mapping to NULL), or
2546 * even swizzled back from swapper_space to tmpfs file
2547 * mapping. However, page->index will not change
2548 * because we have a reference on the page.
2549 */
2550 if (page->index > end)
2551 goto out;
2552
2553 /*
2554 * Accumulated enough dirty pages? This doesn't apply
2555 * to WB_SYNC_ALL mode. For integrity sync we have to
2556 * keep going because someone may be concurrently
2557 * dirtying pages, and we might have synced a lot of
2558 * newly appeared dirty pages, but have not synced all
2559 * of the old dirty pages.
2560 */
2561 if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2562 goto out;
2563
2564 /* If we can't merge this page, we are done. */
2565 if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2566 goto out;
2567
2568 lock_page(page);
2569 /*
2570 * If the page is no longer dirty, or its mapping no
2571 * longer corresponds to inode we are writing (which
2572 * means it has been truncated or invalidated), or the
2573 * page is already under writeback and we are not doing
2574 * a data integrity writeback, skip the page
2575 */
2576 if (!PageDirty(page) ||
2577 (PageWriteback(page) &&
2578 (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2579 unlikely(page->mapping != mapping)) {
2580 unlock_page(page);
2581 continue;
2582 }
2583
2584 wait_on_page_writeback(page);
2585 BUG_ON(PageWriteback(page));
2586
2587 if (mpd->map.m_len == 0)
2588 mpd->first_page = page->index;
2589 mpd->next_page = page->index + 1;
2590 /* Add all dirty buffers to mpd */
2591 lblk = ((ext4_lblk_t)page->index) <<
2592 (PAGE_SHIFT - blkbits);
2593 head = page_buffers(page);
2594 err = mpage_process_page_bufs(mpd, head, head, lblk);
2595 if (err <= 0)
2596 goto out;
2597 err = 0;
2598 left--;
2599 }
2600 pagevec_release(&pvec);
2601 cond_resched();
2602 }
2603 return 0;
2604 out:
2605 pagevec_release(&pvec);
2606 return err;
2607 }
2608
2609 static int __writepage(struct page *page, struct writeback_control *wbc,
2610 void *data)
2611 {
2612 struct address_space *mapping = data;
2613 int ret = ext4_writepage(page, wbc);
2614 mapping_set_error(mapping, ret);
2615 return ret;
2616 }
2617
2618 static int ext4_writepages(struct address_space *mapping,
2619 struct writeback_control *wbc)
2620 {
2621 pgoff_t writeback_index = 0;
2622 long nr_to_write = wbc->nr_to_write;
2623 int range_whole = 0;
2624 int cycled = 1;
2625 handle_t *handle = NULL;
2626 struct mpage_da_data mpd;
2627 struct inode *inode = mapping->host;
2628 int needed_blocks, rsv_blocks = 0, ret = 0;
2629 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2630 bool done;
2631 struct blk_plug plug;
2632 bool give_up_on_write = false;
2633
2634 percpu_down_read(&sbi->s_journal_flag_rwsem);
2635 trace_ext4_writepages(inode, wbc);
2636
2637 if (dax_mapping(mapping)) {
2638 ret = dax_writeback_mapping_range(mapping, inode->i_sb->s_bdev,
2639 wbc);
2640 goto out_writepages;
2641 }
2642
2643 /*
2644 * No pages to write? This is mainly a kludge to avoid starting
2645 * a transaction for special inodes like journal inode on last iput()
2646 * because that could violate lock ordering on umount
2647 */
2648 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2649 goto out_writepages;
2650
2651 if (ext4_should_journal_data(inode)) {
2652 struct blk_plug plug;
2653
2654 blk_start_plug(&plug);
2655 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2656 blk_finish_plug(&plug);
2657 goto out_writepages;
2658 }
2659
2660 /*
2661 * If the filesystem has aborted, it is read-only, so return
2662 * right away instead of dumping stack traces later on that
2663 * will obscure the real source of the problem. We test
2664 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2665 * the latter could be true if the filesystem is mounted
2666 * read-only, and in that case, ext4_writepages should
2667 * *never* be called, so if that ever happens, we would want
2668 * the stack trace.
2669 */
2670 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2671 ret = -EROFS;
2672 goto out_writepages;
2673 }
2674
2675 if (ext4_should_dioread_nolock(inode)) {
2676 /*
2677 * We may need to convert up to one extent per block in
2678 * the page and we may dirty the inode.
2679 */
2680 rsv_blocks = 1 + (PAGE_SIZE >> inode->i_blkbits);
2681 }
2682
2683 /*
2684 * If we have inline data and arrive here, it means that
2685 * we will soon create the block for the 1st page, so
2686 * we'd better clear the inline data here.
2687 */
2688 if (ext4_has_inline_data(inode)) {
2689 /* Just inode will be modified... */
2690 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2691 if (IS_ERR(handle)) {
2692 ret = PTR_ERR(handle);
2693 goto out_writepages;
2694 }
2695 BUG_ON(ext4_test_inode_state(inode,
2696 EXT4_STATE_MAY_INLINE_DATA));
2697 ext4_destroy_inline_data(handle, inode);
2698 ext4_journal_stop(handle);
2699 }
2700
2701 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2702 range_whole = 1;
2703
2704 if (wbc->range_cyclic) {
2705 writeback_index = mapping->writeback_index;
2706 if (writeback_index)
2707 cycled = 0;
2708 mpd.first_page = writeback_index;
2709 mpd.last_page = -1;
2710 } else {
2711 mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2712 mpd.last_page = wbc->range_end >> PAGE_SHIFT;
2713 }
2714
2715 mpd.inode = inode;
2716 mpd.wbc = wbc;
2717 ext4_io_submit_init(&mpd.io_submit, wbc);
2718 retry:
2719 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2720 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2721 done = false;
2722 blk_start_plug(&plug);
2723 while (!done && mpd.first_page <= mpd.last_page) {
2724 /* For each extent of pages we use new io_end */
2725 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2726 if (!mpd.io_submit.io_end) {
2727 ret = -ENOMEM;
2728 break;
2729 }
2730
2731 /*
2732 * We have two constraints: We find one extent to map and we
2733 * must always write out whole page (makes a difference when
2734 * blocksize < pagesize) so that we don't block on IO when we
2735 * try to write out the rest of the page. Journalled mode is
2736 * not supported by delalloc.
2737 */
2738 BUG_ON(ext4_should_journal_data(inode));
2739 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2740
2741 /* start a new transaction */
2742 handle = ext4_journal_start_with_reserve(inode,
2743 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2744 if (IS_ERR(handle)) {
2745 ret = PTR_ERR(handle);
2746 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2747 "%ld pages, ino %lu; err %d", __func__,
2748 wbc->nr_to_write, inode->i_ino, ret);
2749 /* Release allocated io_end */
2750 ext4_put_io_end(mpd.io_submit.io_end);
2751 break;
2752 }
2753
2754 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2755 ret = mpage_prepare_extent_to_map(&mpd);
2756 if (!ret) {
2757 if (mpd.map.m_len)
2758 ret = mpage_map_and_submit_extent(handle, &mpd,
2759 &give_up_on_write);
2760 else {
2761 /*
2762 * We scanned the whole range (or exhausted
2763 * nr_to_write), submitted what was mapped and
2764 * didn't find anything needing mapping. We are
2765 * done.
2766 */
2767 done = true;
2768 }
2769 }
2770 /*
2771 * Caution: If the handle is synchronous,
2772 * ext4_journal_stop() can wait for transaction commit
2773 * to finish which may depend on writeback of pages to
2774 * complete or on page lock to be released. In that
2775 * case, we have to wait until after after we have
2776 * submitted all the IO, released page locks we hold,
2777 * and dropped io_end reference (for extent conversion
2778 * to be able to complete) before stopping the handle.
2779 */
2780 if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2781 ext4_journal_stop(handle);
2782 handle = NULL;
2783 }
2784 /* Submit prepared bio */
2785 ext4_io_submit(&mpd.io_submit);
2786 /* Unlock pages we didn't use */
2787 mpage_release_unused_pages(&mpd, give_up_on_write);
2788 /*
2789 * Drop our io_end reference we got from init. We have
2790 * to be careful and use deferred io_end finishing if
2791 * we are still holding the transaction as we can
2792 * release the last reference to io_end which may end
2793 * up doing unwritten extent conversion.
2794 */
2795 if (handle) {
2796 ext4_put_io_end_defer(mpd.io_submit.io_end);
2797 ext4_journal_stop(handle);
2798 } else
2799 ext4_put_io_end(mpd.io_submit.io_end);
2800
2801 if (ret == -ENOSPC && sbi->s_journal) {
2802 /*
2803 * Commit the transaction which would
2804 * free blocks released in the transaction
2805 * and try again
2806 */
2807 jbd2_journal_force_commit_nested(sbi->s_journal);
2808 ret = 0;
2809 continue;
2810 }
2811 /* Fatal error - ENOMEM, EIO... */
2812 if (ret)
2813 break;
2814 }
2815 blk_finish_plug(&plug);
2816 if (!ret && !cycled && wbc->nr_to_write > 0) {
2817 cycled = 1;
2818 mpd.last_page = writeback_index - 1;
2819 mpd.first_page = 0;
2820 goto retry;
2821 }
2822
2823 /* Update index */
2824 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2825 /*
2826 * Set the writeback_index so that range_cyclic
2827 * mode will write it back later
2828 */
2829 mapping->writeback_index = mpd.first_page;
2830
2831 out_writepages:
2832 trace_ext4_writepages_result(inode, wbc, ret,
2833 nr_to_write - wbc->nr_to_write);
2834 percpu_up_read(&sbi->s_journal_flag_rwsem);
2835 return ret;
2836 }
2837
2838 static int ext4_nonda_switch(struct super_block *sb)
2839 {
2840 s64 free_clusters, dirty_clusters;
2841 struct ext4_sb_info *sbi = EXT4_SB(sb);
2842
2843 /*
2844 * switch to non delalloc mode if we are running low
2845 * on free block. The free block accounting via percpu
2846 * counters can get slightly wrong with percpu_counter_batch getting
2847 * accumulated on each CPU without updating global counters
2848 * Delalloc need an accurate free block accounting. So switch
2849 * to non delalloc when we are near to error range.
2850 */
2851 free_clusters =
2852 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2853 dirty_clusters =
2854 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2855 /*
2856 * Start pushing delalloc when 1/2 of free blocks are dirty.
2857 */
2858 if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2859 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2860
2861 if (2 * free_clusters < 3 * dirty_clusters ||
2862 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2863 /*
2864 * free block count is less than 150% of dirty blocks
2865 * or free blocks is less than watermark
2866 */
2867 return 1;
2868 }
2869 return 0;
2870 }
2871
2872 /* We always reserve for an inode update; the superblock could be there too */
2873 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2874 {
2875 if (likely(ext4_has_feature_large_file(inode->i_sb)))
2876 return 1;
2877
2878 if (pos + len <= 0x7fffffffULL)
2879 return 1;
2880
2881 /* We might need to update the superblock to set LARGE_FILE */
2882 return 2;
2883 }
2884
2885 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2886 loff_t pos, unsigned len, unsigned flags,
2887 struct page **pagep, void **fsdata)
2888 {
2889 int ret, retries = 0;
2890 struct page *page;
2891 pgoff_t index;
2892 struct inode *inode = mapping->host;
2893 handle_t *handle;
2894
2895 index = pos >> PAGE_SHIFT;
2896
2897 if (ext4_nonda_switch(inode->i_sb)) {
2898 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2899 return ext4_write_begin(file, mapping, pos,
2900 len, flags, pagep, fsdata);
2901 }
2902 *fsdata = (void *)0;
2903 trace_ext4_da_write_begin(inode, pos, len, flags);
2904
2905 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2906 ret = ext4_da_write_inline_data_begin(mapping, inode,
2907 pos, len, flags,
2908 pagep, fsdata);
2909 if (ret < 0)
2910 return ret;
2911 if (ret == 1)
2912 return 0;
2913 }
2914
2915 /*
2916 * grab_cache_page_write_begin() can take a long time if the
2917 * system is thrashing due to memory pressure, or if the page
2918 * is being written back. So grab it first before we start
2919 * the transaction handle. This also allows us to allocate
2920 * the page (if needed) without using GFP_NOFS.
2921 */
2922 retry_grab:
2923 page = grab_cache_page_write_begin(mapping, index, flags);
2924 if (!page)
2925 return -ENOMEM;
2926 unlock_page(page);
2927
2928 /*
2929 * With delayed allocation, we don't log the i_disksize update
2930 * if there is delayed block allocation. But we still need
2931 * to journalling the i_disksize update if writes to the end
2932 * of file which has an already mapped buffer.
2933 */
2934 retry_journal:
2935 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2936 ext4_da_write_credits(inode, pos, len));
2937 if (IS_ERR(handle)) {
2938 put_page(page);
2939 return PTR_ERR(handle);
2940 }
2941
2942 lock_page(page);
2943 if (page->mapping != mapping) {
2944 /* The page got truncated from under us */
2945 unlock_page(page);
2946 put_page(page);
2947 ext4_journal_stop(handle);
2948 goto retry_grab;
2949 }
2950 /* In case writeback began while the page was unlocked */
2951 wait_for_stable_page(page);
2952
2953 #ifdef CONFIG_EXT4_FS_ENCRYPTION
2954 ret = ext4_block_write_begin(page, pos, len,
2955 ext4_da_get_block_prep);
2956 #else
2957 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2958 #endif
2959 if (ret < 0) {
2960 unlock_page(page);
2961 ext4_journal_stop(handle);
2962 /*
2963 * block_write_begin may have instantiated a few blocks
2964 * outside i_size. Trim these off again. Don't need
2965 * i_size_read because we hold i_mutex.
2966 */
2967 if (pos + len > inode->i_size)
2968 ext4_truncate_failed_write(inode);
2969
2970 if (ret == -ENOSPC &&
2971 ext4_should_retry_alloc(inode->i_sb, &retries))
2972 goto retry_journal;
2973
2974 put_page(page);
2975 return ret;
2976 }
2977
2978 *pagep = page;
2979 return ret;
2980 }
2981
2982 /*
2983 * Check if we should update i_disksize
2984 * when write to the end of file but not require block allocation
2985 */
2986 static int ext4_da_should_update_i_disksize(struct page *page,
2987 unsigned long offset)
2988 {
2989 struct buffer_head *bh;
2990 struct inode *inode = page->mapping->host;
2991 unsigned int idx;
2992 int i;
2993
2994 bh = page_buffers(page);
2995 idx = offset >> inode->i_blkbits;
2996
2997 for (i = 0; i < idx; i++)
2998 bh = bh->b_this_page;
2999
3000 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3001 return 0;
3002 return 1;
3003 }
3004
3005 static int ext4_da_write_end(struct file *file,
3006 struct address_space *mapping,
3007 loff_t pos, unsigned len, unsigned copied,
3008 struct page *page, void *fsdata)
3009 {
3010 struct inode *inode = mapping->host;
3011 int ret = 0, ret2;
3012 handle_t *handle = ext4_journal_current_handle();
3013 loff_t new_i_size;
3014 unsigned long start, end;
3015 int write_mode = (int)(unsigned long)fsdata;
3016
3017 if (write_mode == FALL_BACK_TO_NONDELALLOC)
3018 return ext4_write_end(file, mapping, pos,
3019 len, copied, page, fsdata);
3020
3021 trace_ext4_da_write_end(inode, pos, len, copied);
3022 start = pos & (PAGE_SIZE - 1);
3023 end = start + copied - 1;
3024
3025 /*
3026 * generic_write_end() will run mark_inode_dirty() if i_size
3027 * changes. So let's piggyback the i_disksize mark_inode_dirty
3028 * into that.
3029 */
3030 new_i_size = pos + copied;
3031 if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
3032 if (ext4_has_inline_data(inode) ||
3033 ext4_da_should_update_i_disksize(page, end)) {
3034 ext4_update_i_disksize(inode, new_i_size);
3035 /* We need to mark inode dirty even if
3036 * new_i_size is less that inode->i_size
3037 * bu greater than i_disksize.(hint delalloc)
3038 */
3039 ext4_mark_inode_dirty(handle, inode);
3040 }
3041 }
3042
3043 if (write_mode != CONVERT_INLINE_DATA &&
3044 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3045 ext4_has_inline_data(inode))
3046 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
3047 page);
3048 else
3049 ret2 = generic_write_end(file, mapping, pos, len, copied,
3050 page, fsdata);
3051
3052 copied = ret2;
3053 if (ret2 < 0)
3054 ret = ret2;
3055 ret2 = ext4_journal_stop(handle);
3056 if (!ret)
3057 ret = ret2;
3058
3059 return ret ? ret : copied;
3060 }
3061
3062 static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
3063 unsigned int length)
3064 {
3065 /*
3066 * Drop reserved blocks
3067 */
3068 BUG_ON(!PageLocked(page));
3069 if (!page_has_buffers(page))
3070 goto out;
3071
3072 ext4_da_page_release_reservation(page, offset, length);
3073
3074 out:
3075 ext4_invalidatepage(page, offset, length);
3076
3077 return;
3078 }
3079
3080 /*
3081 * Force all delayed allocation blocks to be allocated for a given inode.
3082 */
3083 int ext4_alloc_da_blocks(struct inode *inode)
3084 {
3085 trace_ext4_alloc_da_blocks(inode);
3086
3087 if (!EXT4_I(inode)->i_reserved_data_blocks)
3088 return 0;
3089
3090 /*
3091 * We do something simple for now. The filemap_flush() will
3092 * also start triggering a write of the data blocks, which is
3093 * not strictly speaking necessary (and for users of
3094 * laptop_mode, not even desirable). However, to do otherwise
3095 * would require replicating code paths in:
3096 *
3097 * ext4_writepages() ->
3098 * write_cache_pages() ---> (via passed in callback function)
3099 * __mpage_da_writepage() -->
3100 * mpage_add_bh_to_extent()
3101 * mpage_da_map_blocks()
3102 *
3103 * The problem is that write_cache_pages(), located in
3104 * mm/page-writeback.c, marks pages clean in preparation for
3105 * doing I/O, which is not desirable if we're not planning on
3106 * doing I/O at all.
3107 *
3108 * We could call write_cache_pages(), and then redirty all of
3109 * the pages by calling redirty_page_for_writepage() but that
3110 * would be ugly in the extreme. So instead we would need to
3111 * replicate parts of the code in the above functions,
3112 * simplifying them because we wouldn't actually intend to
3113 * write out the pages, but rather only collect contiguous
3114 * logical block extents, call the multi-block allocator, and
3115 * then update the buffer heads with the block allocations.
3116 *
3117 * For now, though, we'll cheat by calling filemap_flush(),
3118 * which will map the blocks, and start the I/O, but not
3119 * actually wait for the I/O to complete.
3120 */
3121 return filemap_flush(inode->i_mapping);
3122 }
3123
3124 /*
3125 * bmap() is special. It gets used by applications such as lilo and by
3126 * the swapper to find the on-disk block of a specific piece of data.
3127 *
3128 * Naturally, this is dangerous if the block concerned is still in the
3129 * journal. If somebody makes a swapfile on an ext4 data-journaling
3130 * filesystem and enables swap, then they may get a nasty shock when the
3131 * data getting swapped to that swapfile suddenly gets overwritten by
3132 * the original zero's written out previously to the journal and
3133 * awaiting writeback in the kernel's buffer cache.
3134 *
3135 * So, if we see any bmap calls here on a modified, data-journaled file,
3136 * take extra steps to flush any blocks which might be in the cache.
3137 */
3138 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3139 {
3140 struct inode *inode = mapping->host;
3141 journal_t *journal;
3142 int err;
3143
3144 /*
3145 * We can get here for an inline file via the FIBMAP ioctl
3146 */
3147 if (ext4_has_inline_data(inode))
3148 return 0;
3149
3150 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3151 test_opt(inode->i_sb, DELALLOC)) {
3152 /*
3153 * With delalloc we want to sync the file
3154 * so that we can make sure we allocate
3155 * blocks for file
3156 */
3157 filemap_write_and_wait(mapping);
3158 }
3159
3160 if (EXT4_JOURNAL(inode) &&
3161 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3162 /*
3163 * This is a REALLY heavyweight approach, but the use of
3164 * bmap on dirty files is expected to be extremely rare:
3165 * only if we run lilo or swapon on a freshly made file
3166 * do we expect this to happen.
3167 *
3168 * (bmap requires CAP_SYS_RAWIO so this does not
3169 * represent an unprivileged user DOS attack --- we'd be
3170 * in trouble if mortal users could trigger this path at
3171 * will.)
3172 *
3173 * NB. EXT4_STATE_JDATA is not set on files other than
3174 * regular files. If somebody wants to bmap a directory
3175 * or symlink and gets confused because the buffer
3176 * hasn't yet been flushed to disk, they deserve
3177 * everything they get.
3178 */
3179
3180 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3181 journal = EXT4_JOURNAL(inode);
3182 jbd2_journal_lock_updates(journal);
3183 err = jbd2_journal_flush(journal);
3184 jbd2_journal_unlock_updates(journal);
3185
3186 if (err)
3187 return 0;
3188 }
3189
3190 return generic_block_bmap(mapping, block, ext4_get_block);
3191 }
3192
3193 static int ext4_readpage(struct file *file, struct page *page)
3194 {
3195 int ret = -EAGAIN;
3196 struct inode *inode = page->mapping->host;
3197
3198 trace_ext4_readpage(page);
3199
3200 if (ext4_has_inline_data(inode))
3201 ret = ext4_readpage_inline(inode, page);
3202
3203 if (ret == -EAGAIN)
3204 return ext4_mpage_readpages(page->mapping, NULL, page, 1);
3205
3206 return ret;
3207 }
3208
3209 static int
3210 ext4_readpages(struct file *file, struct address_space *mapping,
3211 struct list_head *pages, unsigned nr_pages)
3212 {
3213 struct inode *inode = mapping->host;
3214
3215 /* If the file has inline data, no need to do readpages. */
3216 if (ext4_has_inline_data(inode))
3217 return 0;
3218
3219 return ext4_mpage_readpages(mapping, pages, NULL, nr_pages);
3220 }
3221
3222 static void ext4_invalidatepage(struct page *page, unsigned int offset,
3223 unsigned int length)
3224 {
3225 trace_ext4_invalidatepage(page, offset, length);
3226
3227 /* No journalling happens on data buffers when this function is used */
3228 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3229
3230 block_invalidatepage(page, offset, length);
3231 }
3232
3233 static int __ext4_journalled_invalidatepage(struct page *page,
3234 unsigned int offset,
3235 unsigned int length)
3236 {
3237 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3238
3239 trace_ext4_journalled_invalidatepage(page, offset, length);
3240
3241 /*
3242 * If it's a full truncate we just forget about the pending dirtying
3243 */
3244 if (offset == 0 && length == PAGE_SIZE)
3245 ClearPageChecked(page);
3246
3247 return jbd2_journal_invalidatepage(journal, page, offset, length);
3248 }
3249
3250 /* Wrapper for aops... */
3251 static void ext4_journalled_invalidatepage(struct page *page,
3252 unsigned int offset,
3253 unsigned int length)
3254 {
3255 WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3256 }
3257
3258 static int ext4_releasepage(struct page *page, gfp_t wait)
3259 {
3260 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3261
3262 trace_ext4_releasepage(page);
3263
3264 /* Page has dirty journalled data -> cannot release */
3265 if (PageChecked(page))
3266 return 0;
3267 if (journal)
3268 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3269 else
3270 return try_to_free_buffers(page);
3271 }
3272
3273 #ifdef CONFIG_FS_DAX
3274 /*
3275 * Get block function for DAX IO and mmap faults. It takes care of converting
3276 * unwritten extents to written ones and initializes new / converted blocks
3277 * to zeros.
3278 */
3279 int ext4_dax_get_block(struct inode *inode, sector_t iblock,
3280 struct buffer_head *bh_result, int create)
3281 {
3282 int ret;
3283
3284 ext4_debug("inode %lu, create flag %d\n", inode->i_ino, create);
3285 if (!create)
3286 return _ext4_get_block(inode, iblock, bh_result, 0);
3287
3288 ret = ext4_get_block_trans(inode, iblock, bh_result,
3289 EXT4_GET_BLOCKS_PRE_IO |
3290 EXT4_GET_BLOCKS_CREATE_ZERO);
3291 if (ret < 0)
3292 return ret;
3293
3294 if (buffer_unwritten(bh_result)) {
3295 /*
3296 * We are protected by i_mmap_sem or i_mutex so we know block
3297 * cannot go away from under us even though we dropped
3298 * i_data_sem. Convert extent to written and write zeros there.
3299 */
3300 ret = ext4_get_block_trans(inode, iblock, bh_result,
3301 EXT4_GET_BLOCKS_CONVERT |
3302 EXT4_GET_BLOCKS_CREATE_ZERO);
3303 if (ret < 0)
3304 return ret;
3305 }
3306 /*
3307 * At least for now we have to clear BH_New so that DAX code
3308 * doesn't attempt to zero blocks again in a racy way.
3309 */
3310 clear_buffer_new(bh_result);
3311 return 0;
3312 }
3313 #else
3314 /* Just define empty function, it will never get called. */
3315 int ext4_dax_get_block(struct inode *inode, sector_t iblock,
3316 struct buffer_head *bh_result, int create)
3317 {
3318 BUG();
3319 return 0;
3320 }
3321 #endif
3322
3323 static int ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3324 ssize_t size, void *private)
3325 {
3326 ext4_io_end_t *io_end = private;
3327
3328 /* if not async direct IO just return */
3329 if (!io_end)
3330 return 0;
3331
3332 ext_debug("ext4_end_io_dio(): io_end 0x%p "
3333 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3334 io_end, io_end->inode->i_ino, iocb, offset, size);
3335
3336 /*
3337 * Error during AIO DIO. We cannot convert unwritten extents as the
3338 * data was not written. Just clear the unwritten flag and drop io_end.
3339 */
3340 if (size <= 0) {
3341 ext4_clear_io_unwritten_flag(io_end);
3342 size = 0;
3343 }
3344 io_end->offset = offset;
3345 io_end->size = size;
3346 ext4_put_io_end(io_end);
3347
3348 return 0;
3349 }
3350
3351 /*
3352 * Handling of direct IO writes.
3353 *
3354 * For ext4 extent files, ext4 will do direct-io write even to holes,
3355 * preallocated extents, and those write extend the file, no need to
3356 * fall back to buffered IO.
3357 *
3358 * For holes, we fallocate those blocks, mark them as unwritten
3359 * If those blocks were preallocated, we mark sure they are split, but
3360 * still keep the range to write as unwritten.
3361 *
3362 * The unwritten extents will be converted to written when DIO is completed.
3363 * For async direct IO, since the IO may still pending when return, we
3364 * set up an end_io call back function, which will do the conversion
3365 * when async direct IO completed.
3366 *
3367 * If the O_DIRECT write will extend the file then add this inode to the
3368 * orphan list. So recovery will truncate it back to the original size
3369 * if the machine crashes during the write.
3370 *
3371 */
3372 static ssize_t ext4_direct_IO_write(struct kiocb *iocb, struct iov_iter *iter)
3373 {
3374 struct file *file = iocb->ki_filp;
3375 struct inode *inode = file->f_mapping->host;
3376 struct ext4_inode_info *ei = EXT4_I(inode);
3377 ssize_t ret;
3378 loff_t offset = iocb->ki_pos;
3379 size_t count = iov_iter_count(iter);
3380 int overwrite = 0;
3381 get_block_t *get_block_func = NULL;
3382 int dio_flags = 0;
3383 loff_t final_size = offset + count;
3384 int orphan = 0;
3385 handle_t *handle;
3386
3387 if (final_size > inode->i_size) {
3388 /* Credits for sb + inode write */
3389 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3390 if (IS_ERR(handle)) {
3391 ret = PTR_ERR(handle);
3392 goto out;
3393 }
3394 ret = ext4_orphan_add(handle, inode);
3395 if (ret) {
3396 ext4_journal_stop(handle);
3397 goto out;
3398 }
3399 orphan = 1;
3400 ei->i_disksize = inode->i_size;
3401 ext4_journal_stop(handle);
3402 }
3403
3404 BUG_ON(iocb->private == NULL);
3405
3406 /*
3407 * Make all waiters for direct IO properly wait also for extent
3408 * conversion. This also disallows race between truncate() and
3409 * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3410 */
3411 inode_dio_begin(inode);
3412
3413 /* If we do a overwrite dio, i_mutex locking can be released */
3414 overwrite = *((int *)iocb->private);
3415
3416 if (overwrite)
3417 inode_unlock(inode);
3418
3419 /*
3420 * For extent mapped files we could direct write to holes and fallocate.
3421 *
3422 * Allocated blocks to fill the hole are marked as unwritten to prevent
3423 * parallel buffered read to expose the stale data before DIO complete
3424 * the data IO.
3425 *
3426 * As to previously fallocated extents, ext4 get_block will just simply
3427 * mark the buffer mapped but still keep the extents unwritten.
3428 *
3429 * For non AIO case, we will convert those unwritten extents to written
3430 * after return back from blockdev_direct_IO. That way we save us from
3431 * allocating io_end structure and also the overhead of offloading
3432 * the extent convertion to a workqueue.
3433 *
3434 * For async DIO, the conversion needs to be deferred when the
3435 * IO is completed. The ext4 end_io callback function will be
3436 * called to take care of the conversion work. Here for async
3437 * case, we allocate an io_end structure to hook to the iocb.
3438 */
3439 iocb->private = NULL;
3440 if (overwrite)
3441 get_block_func = ext4_dio_get_block_overwrite;
3442 else if (IS_DAX(inode)) {
3443 /*
3444 * We can avoid zeroing for aligned DAX writes beyond EOF. Other
3445 * writes need zeroing either because they can race with page
3446 * faults or because they use partial blocks.
3447 */
3448 if (round_down(offset, 1<<inode->i_blkbits) >= inode->i_size &&
3449 ext4_aligned_io(inode, offset, count))
3450 get_block_func = ext4_dio_get_block;
3451 else
3452 get_block_func = ext4_dax_get_block;
3453 dio_flags = DIO_LOCKING;
3454 } else if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS) ||
3455 round_down(offset, 1 << inode->i_blkbits) >= inode->i_size) {
3456 get_block_func = ext4_dio_get_block;
3457 dio_flags = DIO_LOCKING | DIO_SKIP_HOLES;
3458 } else if (is_sync_kiocb(iocb)) {
3459 get_block_func = ext4_dio_get_block_unwritten_sync;
3460 dio_flags = DIO_LOCKING;
3461 } else {
3462 get_block_func = ext4_dio_get_block_unwritten_async;
3463 dio_flags = DIO_LOCKING;
3464 }
3465 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3466 BUG_ON(ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode));
3467 #endif
3468 if (IS_DAX(inode)) {
3469 ret = dax_do_io(iocb, inode, iter, get_block_func,
3470 ext4_end_io_dio, dio_flags);
3471 } else
3472 ret = __blockdev_direct_IO(iocb, inode,
3473 inode->i_sb->s_bdev, iter,
3474 get_block_func,
3475 ext4_end_io_dio, NULL, dio_flags);
3476
3477 if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3478 EXT4_STATE_DIO_UNWRITTEN)) {
3479 int err;
3480 /*
3481 * for non AIO case, since the IO is already
3482 * completed, we could do the conversion right here
3483 */
3484 err = ext4_convert_unwritten_extents(NULL, inode,
3485 offset, ret);
3486 if (err < 0)
3487 ret = err;
3488 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3489 }
3490
3491 inode_dio_end(inode);
3492 /* take i_mutex locking again if we do a ovewrite dio */
3493 if (overwrite)
3494 inode_lock(inode);
3495
3496 if (ret < 0 && final_size > inode->i_size)
3497 ext4_truncate_failed_write(inode);
3498
3499 /* Handle extending of i_size after direct IO write */
3500 if (orphan) {
3501 int err;
3502
3503 /* Credits for sb + inode write */
3504 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3505 if (IS_ERR(handle)) {
3506 /* This is really bad luck. We've written the data
3507 * but cannot extend i_size. Bail out and pretend
3508 * the write failed... */
3509 ret = PTR_ERR(handle);
3510 if (inode->i_nlink)
3511 ext4_orphan_del(NULL, inode);
3512
3513 goto out;
3514 }
3515 if (inode->i_nlink)
3516 ext4_orphan_del(handle, inode);
3517 if (ret > 0) {
3518 loff_t end = offset + ret;
3519 if (end > inode->i_size) {
3520 ei->i_disksize = end;
3521 i_size_write(inode, end);
3522 /*
3523 * We're going to return a positive `ret'
3524 * here due to non-zero-length I/O, so there's
3525 * no way of reporting error returns from
3526 * ext4_mark_inode_dirty() to userspace. So
3527 * ignore it.
3528 */
3529 ext4_mark_inode_dirty(handle, inode);
3530 }
3531 }
3532 err = ext4_journal_stop(handle);
3533 if (ret == 0)
3534 ret = err;
3535 }
3536 out:
3537 return ret;
3538 }
3539
3540 static ssize_t ext4_direct_IO_read(struct kiocb *iocb, struct iov_iter *iter)
3541 {
3542 struct address_space *mapping = iocb->ki_filp->f_mapping;
3543 struct inode *inode = mapping->host;
3544 ssize_t ret;
3545
3546 /*
3547 * Shared inode_lock is enough for us - it protects against concurrent
3548 * writes & truncates and since we take care of writing back page cache,
3549 * we are protected against page writeback as well.
3550 */
3551 inode_lock_shared(inode);
3552 if (IS_DAX(inode)) {
3553 ret = dax_do_io(iocb, inode, iter, ext4_dio_get_block, NULL, 0);
3554 } else {
3555 size_t count = iov_iter_count(iter);
3556
3557 ret = filemap_write_and_wait_range(mapping, iocb->ki_pos,
3558 iocb->ki_pos + count);
3559 if (ret)
3560 goto out_unlock;
3561 ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
3562 iter, ext4_dio_get_block,
3563 NULL, NULL, 0);
3564 }
3565 out_unlock:
3566 inode_unlock_shared(inode);
3567 return ret;
3568 }
3569
3570 static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
3571 {
3572 struct file *file = iocb->ki_filp;
3573 struct inode *inode = file->f_mapping->host;
3574 size_t count = iov_iter_count(iter);
3575 loff_t offset = iocb->ki_pos;
3576 ssize_t ret;
3577
3578 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3579 if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode))
3580 return 0;
3581 #endif
3582
3583 /*
3584 * If we are doing data journalling we don't support O_DIRECT
3585 */
3586 if (ext4_should_journal_data(inode))
3587 return 0;
3588
3589 /* Let buffer I/O handle the inline data case. */
3590 if (ext4_has_inline_data(inode))
3591 return 0;
3592
3593 trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
3594 if (iov_iter_rw(iter) == READ)
3595 ret = ext4_direct_IO_read(iocb, iter);
3596 else
3597 ret = ext4_direct_IO_write(iocb, iter);
3598 trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret);
3599 return ret;
3600 }
3601
3602 /*
3603 * Pages can be marked dirty completely asynchronously from ext4's journalling
3604 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3605 * much here because ->set_page_dirty is called under VFS locks. The page is
3606 * not necessarily locked.
3607 *
3608 * We cannot just dirty the page and leave attached buffers clean, because the
3609 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3610 * or jbddirty because all the journalling code will explode.
3611 *
3612 * So what we do is to mark the page "pending dirty" and next time writepage
3613 * is called, propagate that into the buffers appropriately.
3614 */
3615 static int ext4_journalled_set_page_dirty(struct page *page)
3616 {
3617 SetPageChecked(page);
3618 return __set_page_dirty_nobuffers(page);
3619 }
3620
3621 static const struct address_space_operations ext4_aops = {
3622 .readpage = ext4_readpage,
3623 .readpages = ext4_readpages,
3624 .writepage = ext4_writepage,
3625 .writepages = ext4_writepages,
3626 .write_begin = ext4_write_begin,
3627 .write_end = ext4_write_end,
3628 .bmap = ext4_bmap,
3629 .invalidatepage = ext4_invalidatepage,
3630 .releasepage = ext4_releasepage,
3631 .direct_IO = ext4_direct_IO,
3632 .migratepage = buffer_migrate_page,
3633 .is_partially_uptodate = block_is_partially_uptodate,
3634 .error_remove_page = generic_error_remove_page,
3635 };
3636
3637 static const struct address_space_operations ext4_journalled_aops = {
3638 .readpage = ext4_readpage,
3639 .readpages = ext4_readpages,
3640 .writepage = ext4_writepage,
3641 .writepages = ext4_writepages,
3642 .write_begin = ext4_write_begin,
3643 .write_end = ext4_journalled_write_end,
3644 .set_page_dirty = ext4_journalled_set_page_dirty,
3645 .bmap = ext4_bmap,
3646 .invalidatepage = ext4_journalled_invalidatepage,
3647 .releasepage = ext4_releasepage,
3648 .direct_IO = ext4_direct_IO,
3649 .is_partially_uptodate = block_is_partially_uptodate,
3650 .error_remove_page = generic_error_remove_page,
3651 };
3652
3653 static const struct address_space_operations ext4_da_aops = {
3654 .readpage = ext4_readpage,
3655 .readpages = ext4_readpages,
3656 .writepage = ext4_writepage,
3657 .writepages = ext4_writepages,
3658 .write_begin = ext4_da_write_begin,
3659 .write_end = ext4_da_write_end,
3660 .bmap = ext4_bmap,
3661 .invalidatepage = ext4_da_invalidatepage,
3662 .releasepage = ext4_releasepage,
3663 .direct_IO = ext4_direct_IO,
3664 .migratepage = buffer_migrate_page,
3665 .is_partially_uptodate = block_is_partially_uptodate,
3666 .error_remove_page = generic_error_remove_page,
3667 };
3668
3669 void ext4_set_aops(struct inode *inode)
3670 {
3671 switch (ext4_inode_journal_mode(inode)) {
3672 case EXT4_INODE_ORDERED_DATA_MODE:
3673 case EXT4_INODE_WRITEBACK_DATA_MODE:
3674 break;
3675 case EXT4_INODE_JOURNAL_DATA_MODE:
3676 inode->i_mapping->a_ops = &ext4_journalled_aops;
3677 return;
3678 default:
3679 BUG();
3680 }
3681 if (test_opt(inode->i_sb, DELALLOC))
3682 inode->i_mapping->a_ops = &ext4_da_aops;
3683 else
3684 inode->i_mapping->a_ops = &ext4_aops;
3685 }
3686
3687 static int __ext4_block_zero_page_range(handle_t *handle,
3688 struct address_space *mapping, loff_t from, loff_t length)
3689 {
3690 ext4_fsblk_t index = from >> PAGE_SHIFT;
3691 unsigned offset = from & (PAGE_SIZE-1);
3692 unsigned blocksize, pos;
3693 ext4_lblk_t iblock;
3694 struct inode *inode = mapping->host;
3695 struct buffer_head *bh;
3696 struct page *page;
3697 int err = 0;
3698
3699 page = find_or_create_page(mapping, from >> PAGE_SHIFT,
3700 mapping_gfp_constraint(mapping, ~__GFP_FS));
3701 if (!page)
3702 return -ENOMEM;
3703
3704 blocksize = inode->i_sb->s_blocksize;
3705
3706 iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
3707
3708 if (!page_has_buffers(page))
3709 create_empty_buffers(page, blocksize, 0);
3710
3711 /* Find the buffer that contains "offset" */
3712 bh = page_buffers(page);
3713 pos = blocksize;
3714 while (offset >= pos) {
3715 bh = bh->b_this_page;
3716 iblock++;
3717 pos += blocksize;
3718 }
3719 if (buffer_freed(bh)) {
3720 BUFFER_TRACE(bh, "freed: skip");
3721 goto unlock;
3722 }
3723 if (!buffer_mapped(bh)) {
3724 BUFFER_TRACE(bh, "unmapped");
3725 ext4_get_block(inode, iblock, bh, 0);
3726 /* unmapped? It's a hole - nothing to do */
3727 if (!buffer_mapped(bh)) {
3728 BUFFER_TRACE(bh, "still unmapped");
3729 goto unlock;
3730 }
3731 }
3732
3733 /* Ok, it's mapped. Make sure it's up-to-date */
3734 if (PageUptodate(page))
3735 set_buffer_uptodate(bh);
3736
3737 if (!buffer_uptodate(bh)) {
3738 err = -EIO;
3739 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
3740 wait_on_buffer(bh);
3741 /* Uhhuh. Read error. Complain and punt. */
3742 if (!buffer_uptodate(bh))
3743 goto unlock;
3744 if (S_ISREG(inode->i_mode) &&
3745 ext4_encrypted_inode(inode)) {
3746 /* We expect the key to be set. */
3747 BUG_ON(!fscrypt_has_encryption_key(inode));
3748 BUG_ON(blocksize != PAGE_SIZE);
3749 WARN_ON_ONCE(fscrypt_decrypt_page(page));
3750 }
3751 }
3752 if (ext4_should_journal_data(inode)) {
3753 BUFFER_TRACE(bh, "get write access");
3754 err = ext4_journal_get_write_access(handle, bh);
3755 if (err)
3756 goto unlock;
3757 }
3758 zero_user(page, offset, length);
3759 BUFFER_TRACE(bh, "zeroed end of block");
3760
3761 if (ext4_should_journal_data(inode)) {
3762 err = ext4_handle_dirty_metadata(handle, inode, bh);
3763 } else {
3764 err = 0;
3765 mark_buffer_dirty(bh);
3766 if (ext4_should_order_data(inode))
3767 err = ext4_jbd2_inode_add_write(handle, inode);
3768 }
3769
3770 unlock:
3771 unlock_page(page);
3772 put_page(page);
3773 return err;
3774 }
3775
3776 /*
3777 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3778 * starting from file offset 'from'. The range to be zero'd must
3779 * be contained with in one block. If the specified range exceeds
3780 * the end of the block it will be shortened to end of the block
3781 * that cooresponds to 'from'
3782 */
3783 static int ext4_block_zero_page_range(handle_t *handle,
3784 struct address_space *mapping, loff_t from, loff_t length)
3785 {
3786 struct inode *inode = mapping->host;
3787 unsigned offset = from & (PAGE_SIZE-1);
3788 unsigned blocksize = inode->i_sb->s_blocksize;
3789 unsigned max = blocksize - (offset & (blocksize - 1));
3790
3791 /*
3792 * correct length if it does not fall between
3793 * 'from' and the end of the block
3794 */
3795 if (length > max || length < 0)
3796 length = max;
3797
3798 if (IS_DAX(inode))
3799 return dax_zero_page_range(inode, from, length, ext4_get_block);
3800 return __ext4_block_zero_page_range(handle, mapping, from, length);
3801 }
3802
3803 /*
3804 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3805 * up to the end of the block which corresponds to `from'.
3806 * This required during truncate. We need to physically zero the tail end
3807 * of that block so it doesn't yield old data if the file is later grown.
3808 */
3809 static int ext4_block_truncate_page(handle_t *handle,
3810 struct address_space *mapping, loff_t from)
3811 {
3812 unsigned offset = from & (PAGE_SIZE-1);
3813 unsigned length;
3814 unsigned blocksize;
3815 struct inode *inode = mapping->host;
3816
3817 blocksize = inode->i_sb->s_blocksize;
3818 length = blocksize - (offset & (blocksize - 1));
3819
3820 return ext4_block_zero_page_range(handle, mapping, from, length);
3821 }
3822
3823 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3824 loff_t lstart, loff_t length)
3825 {
3826 struct super_block *sb = inode->i_sb;
3827 struct address_space *mapping = inode->i_mapping;
3828 unsigned partial_start, partial_end;
3829 ext4_fsblk_t start, end;
3830 loff_t byte_end = (lstart + length - 1);
3831 int err = 0;
3832
3833 partial_start = lstart & (sb->s_blocksize - 1);
3834 partial_end = byte_end & (sb->s_blocksize - 1);
3835
3836 start = lstart >> sb->s_blocksize_bits;
3837 end = byte_end >> sb->s_blocksize_bits;
3838
3839 /* Handle partial zero within the single block */
3840 if (start == end &&
3841 (partial_start || (partial_end != sb->s_blocksize - 1))) {
3842 err = ext4_block_zero_page_range(handle, mapping,
3843 lstart, length);
3844 return err;
3845 }
3846 /* Handle partial zero out on the start of the range */
3847 if (partial_start) {
3848 err = ext4_block_zero_page_range(handle, mapping,
3849 lstart, sb->s_blocksize);
3850 if (err)
3851 return err;
3852 }
3853 /* Handle partial zero out on the end of the range */
3854 if (partial_end != sb->s_blocksize - 1)
3855 err = ext4_block_zero_page_range(handle, mapping,
3856 byte_end - partial_end,
3857 partial_end + 1);
3858 return err;
3859 }
3860
3861 int ext4_can_truncate(struct inode *inode)
3862 {
3863 if (S_ISREG(inode->i_mode))
3864 return 1;
3865 if (S_ISDIR(inode->i_mode))
3866 return 1;
3867 if (S_ISLNK(inode->i_mode))
3868 return !ext4_inode_is_fast_symlink(inode);
3869 return 0;
3870 }
3871
3872 /*
3873 * We have to make sure i_disksize gets properly updated before we truncate
3874 * page cache due to hole punching or zero range. Otherwise i_disksize update
3875 * can get lost as it may have been postponed to submission of writeback but
3876 * that will never happen after we truncate page cache.
3877 */
3878 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
3879 loff_t len)
3880 {
3881 handle_t *handle;
3882 loff_t size = i_size_read(inode);
3883
3884 WARN_ON(!inode_is_locked(inode));
3885 if (offset > size || offset + len < size)
3886 return 0;
3887
3888 if (EXT4_I(inode)->i_disksize >= size)
3889 return 0;
3890
3891 handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
3892 if (IS_ERR(handle))
3893 return PTR_ERR(handle);
3894 ext4_update_i_disksize(inode, size);
3895 ext4_mark_inode_dirty(handle, inode);
3896 ext4_journal_stop(handle);
3897
3898 return 0;
3899 }
3900
3901 /*
3902 * ext4_punch_hole: punches a hole in a file by releasing the blocks
3903 * associated with the given offset and length
3904 *
3905 * @inode: File inode
3906 * @offset: The offset where the hole will begin
3907 * @len: The length of the hole
3908 *
3909 * Returns: 0 on success or negative on failure
3910 */
3911
3912 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
3913 {
3914 struct super_block *sb = inode->i_sb;
3915 ext4_lblk_t first_block, stop_block;
3916 struct address_space *mapping = inode->i_mapping;
3917 loff_t first_block_offset, last_block_offset;
3918 handle_t *handle;
3919 unsigned int credits;
3920 int ret = 0;
3921
3922 if (!S_ISREG(inode->i_mode))
3923 return -EOPNOTSUPP;
3924
3925 trace_ext4_punch_hole(inode, offset, length, 0);
3926
3927 /*
3928 * Write out all dirty pages to avoid race conditions
3929 * Then release them.
3930 */
3931 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3932 ret = filemap_write_and_wait_range(mapping, offset,
3933 offset + length - 1);
3934 if (ret)
3935 return ret;
3936 }
3937
3938 inode_lock(inode);
3939
3940 /* No need to punch hole beyond i_size */
3941 if (offset >= inode->i_size)
3942 goto out_mutex;
3943
3944 /*
3945 * If the hole extends beyond i_size, set the hole
3946 * to end after the page that contains i_size
3947 */
3948 if (offset + length > inode->i_size) {
3949 length = inode->i_size +
3950 PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
3951 offset;
3952 }
3953
3954 if (offset & (sb->s_blocksize - 1) ||
3955 (offset + length) & (sb->s_blocksize - 1)) {
3956 /*
3957 * Attach jinode to inode for jbd2 if we do any zeroing of
3958 * partial block
3959 */
3960 ret = ext4_inode_attach_jinode(inode);
3961 if (ret < 0)
3962 goto out_mutex;
3963
3964 }
3965
3966 /* Wait all existing dio workers, newcomers will block on i_mutex */
3967 ext4_inode_block_unlocked_dio(inode);
3968 inode_dio_wait(inode);
3969
3970 /*
3971 * Prevent page faults from reinstantiating pages we have released from
3972 * page cache.
3973 */
3974 down_write(&EXT4_I(inode)->i_mmap_sem);
3975 first_block_offset = round_up(offset, sb->s_blocksize);
3976 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
3977
3978 /* Now release the pages and zero block aligned part of pages*/
3979 if (last_block_offset > first_block_offset) {
3980 ret = ext4_update_disksize_before_punch(inode, offset, length);
3981 if (ret)
3982 goto out_dio;
3983 truncate_pagecache_range(inode, first_block_offset,
3984 last_block_offset);
3985 }
3986
3987 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3988 credits = ext4_writepage_trans_blocks(inode);
3989 else
3990 credits = ext4_blocks_for_truncate(inode);
3991 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3992 if (IS_ERR(handle)) {
3993 ret = PTR_ERR(handle);
3994 ext4_std_error(sb, ret);
3995 goto out_dio;
3996 }
3997
3998 ret = ext4_zero_partial_blocks(handle, inode, offset,
3999 length);
4000 if (ret)
4001 goto out_stop;
4002
4003 first_block = (offset + sb->s_blocksize - 1) >>
4004 EXT4_BLOCK_SIZE_BITS(sb);
4005 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4006
4007 /* If there are no blocks to remove, return now */
4008 if (first_block >= stop_block)
4009 goto out_stop;
4010
4011 down_write(&EXT4_I(inode)->i_data_sem);
4012 ext4_discard_preallocations(inode);
4013
4014 ret = ext4_es_remove_extent(inode, first_block,
4015 stop_block - first_block);
4016 if (ret) {
4017 up_write(&EXT4_I(inode)->i_data_sem);
4018 goto out_stop;
4019 }
4020
4021 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4022 ret = ext4_ext_remove_space(inode, first_block,
4023 stop_block - 1);
4024 else
4025 ret = ext4_ind_remove_space(handle, inode, first_block,
4026 stop_block);
4027
4028 up_write(&EXT4_I(inode)->i_data_sem);
4029 if (IS_SYNC(inode))
4030 ext4_handle_sync(handle);
4031
4032 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4033 ext4_mark_inode_dirty(handle, inode);
4034 out_stop:
4035 ext4_journal_stop(handle);
4036 out_dio:
4037 up_write(&EXT4_I(inode)->i_mmap_sem);
4038 ext4_inode_resume_unlocked_dio(inode);
4039 out_mutex:
4040 inode_unlock(inode);
4041 return ret;
4042 }
4043
4044 int ext4_inode_attach_jinode(struct inode *inode)
4045 {
4046 struct ext4_inode_info *ei = EXT4_I(inode);
4047 struct jbd2_inode *jinode;
4048
4049 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4050 return 0;
4051
4052 jinode = jbd2_alloc_inode(GFP_KERNEL);
4053 spin_lock(&inode->i_lock);
4054 if (!ei->jinode) {
4055 if (!jinode) {
4056 spin_unlock(&inode->i_lock);
4057 return -ENOMEM;
4058 }
4059 ei->jinode = jinode;
4060 jbd2_journal_init_jbd_inode(ei->jinode, inode);
4061 jinode = NULL;
4062 }
4063 spin_unlock(&inode->i_lock);
4064 if (unlikely(jinode != NULL))
4065 jbd2_free_inode(jinode);
4066 return 0;
4067 }
4068
4069 /*
4070 * ext4_truncate()
4071 *
4072 * We block out ext4_get_block() block instantiations across the entire
4073 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4074 * simultaneously on behalf of the same inode.
4075 *
4076 * As we work through the truncate and commit bits of it to the journal there
4077 * is one core, guiding principle: the file's tree must always be consistent on
4078 * disk. We must be able to restart the truncate after a crash.
4079 *
4080 * The file's tree may be transiently inconsistent in memory (although it
4081 * probably isn't), but whenever we close off and commit a journal transaction,
4082 * the contents of (the filesystem + the journal) must be consistent and
4083 * restartable. It's pretty simple, really: bottom up, right to left (although
4084 * left-to-right works OK too).
4085 *
4086 * Note that at recovery time, journal replay occurs *before* the restart of
4087 * truncate against the orphan inode list.
4088 *
4089 * The committed inode has the new, desired i_size (which is the same as
4090 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
4091 * that this inode's truncate did not complete and it will again call
4092 * ext4_truncate() to have another go. So there will be instantiated blocks
4093 * to the right of the truncation point in a crashed ext4 filesystem. But
4094 * that's fine - as long as they are linked from the inode, the post-crash
4095 * ext4_truncate() run will find them and release them.
4096 */
4097 void ext4_truncate(struct inode *inode)
4098 {
4099 struct ext4_inode_info *ei = EXT4_I(inode);
4100 unsigned int credits;
4101 handle_t *handle;
4102 struct address_space *mapping = inode->i_mapping;
4103
4104 /*
4105 * There is a possibility that we're either freeing the inode
4106 * or it's a completely new inode. In those cases we might not
4107 * have i_mutex locked because it's not necessary.
4108 */
4109 if (!(inode->i_state & (I_NEW|I_FREEING)))
4110 WARN_ON(!inode_is_locked(inode));
4111 trace_ext4_truncate_enter(inode);
4112
4113 if (!ext4_can_truncate(inode))
4114 return;
4115
4116 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4117
4118 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4119 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4120
4121 if (ext4_has_inline_data(inode)) {
4122 int has_inline = 1;
4123
4124 ext4_inline_data_truncate(inode, &has_inline);
4125 if (has_inline)
4126 return;
4127 }
4128
4129 /* If we zero-out tail of the page, we have to create jinode for jbd2 */
4130 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4131 if (ext4_inode_attach_jinode(inode) < 0)
4132 return;
4133 }
4134
4135 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4136 credits = ext4_writepage_trans_blocks(inode);
4137 else
4138 credits = ext4_blocks_for_truncate(inode);
4139
4140 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4141 if (IS_ERR(handle)) {
4142 ext4_std_error(inode->i_sb, PTR_ERR(handle));
4143 return;
4144 }
4145
4146 if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4147 ext4_block_truncate_page(handle, mapping, inode->i_size);
4148
4149 /*
4150 * We add the inode to the orphan list, so that if this
4151 * truncate spans multiple transactions, and we crash, we will
4152 * resume the truncate when the filesystem recovers. It also
4153 * marks the inode dirty, to catch the new size.
4154 *
4155 * Implication: the file must always be in a sane, consistent
4156 * truncatable state while each transaction commits.
4157 */
4158 if (ext4_orphan_add(handle, inode))
4159 goto out_stop;
4160
4161 down_write(&EXT4_I(inode)->i_data_sem);
4162
4163 ext4_discard_preallocations(inode);
4164
4165 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4166 ext4_ext_truncate(handle, inode);
4167 else
4168 ext4_ind_truncate(handle, inode);
4169
4170 up_write(&ei->i_data_sem);
4171
4172 if (IS_SYNC(inode))
4173 ext4_handle_sync(handle);
4174
4175 out_stop:
4176 /*
4177 * If this was a simple ftruncate() and the file will remain alive,
4178 * then we need to clear up the orphan record which we created above.
4179 * However, if this was a real unlink then we were called by
4180 * ext4_evict_inode(), and we allow that function to clean up the
4181 * orphan info for us.
4182 */
4183 if (inode->i_nlink)
4184 ext4_orphan_del(handle, inode);
4185
4186 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4187 ext4_mark_inode_dirty(handle, inode);
4188 ext4_journal_stop(handle);
4189
4190 trace_ext4_truncate_exit(inode);
4191 }
4192
4193 /*
4194 * ext4_get_inode_loc returns with an extra refcount against the inode's
4195 * underlying buffer_head on success. If 'in_mem' is true, we have all
4196 * data in memory that is needed to recreate the on-disk version of this
4197 * inode.
4198 */
4199 static int __ext4_get_inode_loc(struct inode *inode,
4200 struct ext4_iloc *iloc, int in_mem)
4201 {
4202 struct ext4_group_desc *gdp;
4203 struct buffer_head *bh;
4204 struct super_block *sb = inode->i_sb;
4205 ext4_fsblk_t block;
4206 int inodes_per_block, inode_offset;
4207
4208 iloc->bh = NULL;
4209 if (!ext4_valid_inum(sb, inode->i_ino))
4210 return -EFSCORRUPTED;
4211
4212 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4213 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4214 if (!gdp)
4215 return -EIO;
4216
4217 /*
4218 * Figure out the offset within the block group inode table
4219 */
4220 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4221 inode_offset = ((inode->i_ino - 1) %
4222 EXT4_INODES_PER_GROUP(sb));
4223 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4224 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4225
4226 bh = sb_getblk(sb, block);
4227 if (unlikely(!bh))
4228 return -ENOMEM;
4229 if (!buffer_uptodate(bh)) {
4230 lock_buffer(bh);
4231
4232 /*
4233 * If the buffer has the write error flag, we have failed
4234 * to write out another inode in the same block. In this
4235 * case, we don't have to read the block because we may
4236 * read the old inode data successfully.
4237 */
4238 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4239 set_buffer_uptodate(bh);
4240
4241 if (buffer_uptodate(bh)) {
4242 /* someone brought it uptodate while we waited */
4243 unlock_buffer(bh);
4244 goto has_buffer;
4245 }
4246
4247 /*
4248 * If we have all information of the inode in memory and this
4249 * is the only valid inode in the block, we need not read the
4250 * block.
4251 */
4252 if (in_mem) {
4253 struct buffer_head *bitmap_bh;
4254 int i, start;
4255
4256 start = inode_offset & ~(inodes_per_block - 1);
4257
4258 /* Is the inode bitmap in cache? */
4259 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4260 if (unlikely(!bitmap_bh))
4261 goto make_io;
4262
4263 /*
4264 * If the inode bitmap isn't in cache then the
4265 * optimisation may end up performing two reads instead
4266 * of one, so skip it.
4267 */
4268 if (!buffer_uptodate(bitmap_bh)) {
4269 brelse(bitmap_bh);
4270 goto make_io;
4271 }
4272 for (i = start; i < start + inodes_per_block; i++) {
4273 if (i == inode_offset)
4274 continue;
4275 if (ext4_test_bit(i, bitmap_bh->b_data))
4276 break;
4277 }
4278 brelse(bitmap_bh);
4279 if (i == start + inodes_per_block) {
4280 /* all other inodes are free, so skip I/O */
4281 memset(bh->b_data, 0, bh->b_size);
4282 set_buffer_uptodate(bh);
4283 unlock_buffer(bh);
4284 goto has_buffer;
4285 }
4286 }
4287
4288 make_io:
4289 /*
4290 * If we need to do any I/O, try to pre-readahead extra
4291 * blocks from the inode table.
4292 */
4293 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4294 ext4_fsblk_t b, end, table;
4295 unsigned num;
4296 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4297
4298 table = ext4_inode_table(sb, gdp);
4299 /* s_inode_readahead_blks is always a power of 2 */
4300 b = block & ~((ext4_fsblk_t) ra_blks - 1);
4301 if (table > b)
4302 b = table;
4303 end = b + ra_blks;
4304 num = EXT4_INODES_PER_GROUP(sb);
4305 if (ext4_has_group_desc_csum(sb))
4306 num -= ext4_itable_unused_count(sb, gdp);
4307 table += num / inodes_per_block;
4308 if (end > table)
4309 end = table;
4310 while (b <= end)
4311 sb_breadahead(sb, b++);
4312 }
4313
4314 /*
4315 * There are other valid inodes in the buffer, this inode
4316 * has in-inode xattrs, or we don't have this inode in memory.
4317 * Read the block from disk.
4318 */
4319 trace_ext4_load_inode(inode);
4320 get_bh(bh);
4321 bh->b_end_io = end_buffer_read_sync;
4322 submit_bh(REQ_OP_READ, REQ_META | REQ_PRIO, bh);
4323 wait_on_buffer(bh);
4324 if (!buffer_uptodate(bh)) {
4325 EXT4_ERROR_INODE_BLOCK(inode, block,
4326 "unable to read itable block");
4327 brelse(bh);
4328 return -EIO;
4329 }
4330 }
4331 has_buffer:
4332 iloc->bh = bh;
4333 return 0;
4334 }
4335
4336 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4337 {
4338 /* We have all inode data except xattrs in memory here. */
4339 return __ext4_get_inode_loc(inode, iloc,
4340 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4341 }
4342
4343 void ext4_set_inode_flags(struct inode *inode)
4344 {
4345 unsigned int flags = EXT4_I(inode)->i_flags;
4346 unsigned int new_fl = 0;
4347
4348 if (flags & EXT4_SYNC_FL)
4349 new_fl |= S_SYNC;
4350 if (flags & EXT4_APPEND_FL)
4351 new_fl |= S_APPEND;
4352 if (flags & EXT4_IMMUTABLE_FL)
4353 new_fl |= S_IMMUTABLE;
4354 if (flags & EXT4_NOATIME_FL)
4355 new_fl |= S_NOATIME;
4356 if (flags & EXT4_DIRSYNC_FL)
4357 new_fl |= S_DIRSYNC;
4358 if (test_opt(inode->i_sb, DAX) && S_ISREG(inode->i_mode))
4359 new_fl |= S_DAX;
4360 inode_set_flags(inode, new_fl,
4361 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX);
4362 }
4363
4364 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4365 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4366 {
4367 unsigned int vfs_fl;
4368 unsigned long old_fl, new_fl;
4369
4370 do {
4371 vfs_fl = ei->vfs_inode.i_flags;
4372 old_fl = ei->i_flags;
4373 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4374 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
4375 EXT4_DIRSYNC_FL);
4376 if (vfs_fl & S_SYNC)
4377 new_fl |= EXT4_SYNC_FL;
4378 if (vfs_fl & S_APPEND)
4379 new_fl |= EXT4_APPEND_FL;
4380 if (vfs_fl & S_IMMUTABLE)
4381 new_fl |= EXT4_IMMUTABLE_FL;
4382 if (vfs_fl & S_NOATIME)
4383 new_fl |= EXT4_NOATIME_FL;
4384 if (vfs_fl & S_DIRSYNC)
4385 new_fl |= EXT4_DIRSYNC_FL;
4386 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
4387 }
4388
4389 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4390 struct ext4_inode_info *ei)
4391 {
4392 blkcnt_t i_blocks ;
4393 struct inode *inode = &(ei->vfs_inode);
4394 struct super_block *sb = inode->i_sb;
4395
4396 if (ext4_has_feature_huge_file(sb)) {
4397 /* we are using combined 48 bit field */
4398 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4399 le32_to_cpu(raw_inode->i_blocks_lo);
4400 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4401 /* i_blocks represent file system block size */
4402 return i_blocks << (inode->i_blkbits - 9);
4403 } else {
4404 return i_blocks;
4405 }
4406 } else {
4407 return le32_to_cpu(raw_inode->i_blocks_lo);
4408 }
4409 }
4410
4411 static inline void ext4_iget_extra_inode(struct inode *inode,
4412 struct ext4_inode *raw_inode,
4413 struct ext4_inode_info *ei)
4414 {
4415 __le32 *magic = (void *)raw_inode +
4416 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4417 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4418 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4419 ext4_find_inline_data_nolock(inode);
4420 } else
4421 EXT4_I(inode)->i_inline_off = 0;
4422 }
4423
4424 int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4425 {
4426 if (!ext4_has_feature_project(inode->i_sb))
4427 return -EOPNOTSUPP;
4428 *projid = EXT4_I(inode)->i_projid;
4429 return 0;
4430 }
4431
4432 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4433 {
4434 struct ext4_iloc iloc;
4435 struct ext4_inode *raw_inode;
4436 struct ext4_inode_info *ei;
4437 struct inode *inode;
4438 journal_t *journal = EXT4_SB(sb)->s_journal;
4439 long ret;
4440 int block;
4441 uid_t i_uid;
4442 gid_t i_gid;
4443 projid_t i_projid;
4444
4445 inode = iget_locked(sb, ino);
4446 if (!inode)
4447 return ERR_PTR(-ENOMEM);
4448 if (!(inode->i_state & I_NEW))
4449 return inode;
4450
4451 ei = EXT4_I(inode);
4452 iloc.bh = NULL;
4453
4454 ret = __ext4_get_inode_loc(inode, &iloc, 0);
4455 if (ret < 0)
4456 goto bad_inode;
4457 raw_inode = ext4_raw_inode(&iloc);
4458
4459 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4460 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4461 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4462 EXT4_INODE_SIZE(inode->i_sb)) {
4463 EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
4464 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
4465 EXT4_INODE_SIZE(inode->i_sb));
4466 ret = -EFSCORRUPTED;
4467 goto bad_inode;
4468 }
4469 } else
4470 ei->i_extra_isize = 0;
4471
4472 /* Precompute checksum seed for inode metadata */
4473 if (ext4_has_metadata_csum(sb)) {
4474 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4475 __u32 csum;
4476 __le32 inum = cpu_to_le32(inode->i_ino);
4477 __le32 gen = raw_inode->i_generation;
4478 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4479 sizeof(inum));
4480 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4481 sizeof(gen));
4482 }
4483
4484 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4485 EXT4_ERROR_INODE(inode, "checksum invalid");
4486 ret = -EFSBADCRC;
4487 goto bad_inode;
4488 }
4489
4490 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4491 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4492 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4493 if (ext4_has_feature_project(sb) &&
4494 EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4495 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4496 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4497 else
4498 i_projid = EXT4_DEF_PROJID;
4499
4500 if (!(test_opt(inode->i_sb, NO_UID32))) {
4501 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4502 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4503 }
4504 i_uid_write(inode, i_uid);
4505 i_gid_write(inode, i_gid);
4506 ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4507 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4508
4509 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
4510 ei->i_inline_off = 0;
4511 ei->i_dir_start_lookup = 0;
4512 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4513 /* We now have enough fields to check if the inode was active or not.
4514 * This is needed because nfsd might try to access dead inodes
4515 * the test is that same one that e2fsck uses
4516 * NeilBrown 1999oct15
4517 */
4518 if (inode->i_nlink == 0) {
4519 if ((inode->i_mode == 0 ||
4520 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4521 ino != EXT4_BOOT_LOADER_INO) {
4522 /* this inode is deleted */
4523 ret = -ESTALE;
4524 goto bad_inode;
4525 }
4526 /* The only unlinked inodes we let through here have
4527 * valid i_mode and are being read by the orphan
4528 * recovery code: that's fine, we're about to complete
4529 * the process of deleting those.
4530 * OR it is the EXT4_BOOT_LOADER_INO which is
4531 * not initialized on a new filesystem. */
4532 }
4533 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4534 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4535 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4536 if (ext4_has_feature_64bit(sb))
4537 ei->i_file_acl |=
4538 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4539 inode->i_size = ext4_isize(raw_inode);
4540 ei->i_disksize = inode->i_size;
4541 #ifdef CONFIG_QUOTA
4542 ei->i_reserved_quota = 0;
4543 #endif
4544 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4545 ei->i_block_group = iloc.block_group;
4546 ei->i_last_alloc_group = ~0;
4547 /*
4548 * NOTE! The in-memory inode i_data array is in little-endian order
4549 * even on big-endian machines: we do NOT byteswap the block numbers!
4550 */
4551 for (block = 0; block < EXT4_N_BLOCKS; block++)
4552 ei->i_data[block] = raw_inode->i_block[block];
4553 INIT_LIST_HEAD(&ei->i_orphan);
4554
4555 /*
4556 * Set transaction id's of transactions that have to be committed
4557 * to finish f[data]sync. We set them to currently running transaction
4558 * as we cannot be sure that the inode or some of its metadata isn't
4559 * part of the transaction - the inode could have been reclaimed and
4560 * now it is reread from disk.
4561 */
4562 if (journal) {
4563 transaction_t *transaction;
4564 tid_t tid;
4565
4566 read_lock(&journal->j_state_lock);
4567 if (journal->j_running_transaction)
4568 transaction = journal->j_running_transaction;
4569 else
4570 transaction = journal->j_committing_transaction;
4571 if (transaction)
4572 tid = transaction->t_tid;
4573 else
4574 tid = journal->j_commit_sequence;
4575 read_unlock(&journal->j_state_lock);
4576 ei->i_sync_tid = tid;
4577 ei->i_datasync_tid = tid;
4578 }
4579
4580 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4581 if (ei->i_extra_isize == 0) {
4582 /* The extra space is currently unused. Use it. */
4583 ei->i_extra_isize = sizeof(struct ext4_inode) -
4584 EXT4_GOOD_OLD_INODE_SIZE;
4585 } else {
4586 ext4_iget_extra_inode(inode, raw_inode, ei);
4587 }
4588 }
4589
4590 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4591 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4592 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4593 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4594
4595 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4596 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4597 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4598 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4599 inode->i_version |=
4600 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4601 }
4602 }
4603
4604 ret = 0;
4605 if (ei->i_file_acl &&
4606 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4607 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4608 ei->i_file_acl);
4609 ret = -EFSCORRUPTED;
4610 goto bad_inode;
4611 } else if (!ext4_has_inline_data(inode)) {
4612 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4613 if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4614 (S_ISLNK(inode->i_mode) &&
4615 !ext4_inode_is_fast_symlink(inode))))
4616 /* Validate extent which is part of inode */
4617 ret = ext4_ext_check_inode(inode);
4618 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4619 (S_ISLNK(inode->i_mode) &&
4620 !ext4_inode_is_fast_symlink(inode))) {
4621 /* Validate block references which are part of inode */
4622 ret = ext4_ind_check_inode(inode);
4623 }
4624 }
4625 if (ret)
4626 goto bad_inode;
4627
4628 if (S_ISREG(inode->i_mode)) {
4629 inode->i_op = &ext4_file_inode_operations;
4630 inode->i_fop = &ext4_file_operations;
4631 ext4_set_aops(inode);
4632 } else if (S_ISDIR(inode->i_mode)) {
4633 inode->i_op = &ext4_dir_inode_operations;
4634 inode->i_fop = &ext4_dir_operations;
4635 } else if (S_ISLNK(inode->i_mode)) {
4636 if (ext4_encrypted_inode(inode)) {
4637 inode->i_op = &ext4_encrypted_symlink_inode_operations;
4638 ext4_set_aops(inode);
4639 } else if (ext4_inode_is_fast_symlink(inode)) {
4640 inode->i_link = (char *)ei->i_data;
4641 inode->i_op = &ext4_fast_symlink_inode_operations;
4642 nd_terminate_link(ei->i_data, inode->i_size,
4643 sizeof(ei->i_data) - 1);
4644 } else {
4645 inode->i_op = &ext4_symlink_inode_operations;
4646 ext4_set_aops(inode);
4647 }
4648 inode_nohighmem(inode);
4649 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4650 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4651 inode->i_op = &ext4_special_inode_operations;
4652 if (raw_inode->i_block[0])
4653 init_special_inode(inode, inode->i_mode,
4654 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4655 else
4656 init_special_inode(inode, inode->i_mode,
4657 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4658 } else if (ino == EXT4_BOOT_LOADER_INO) {
4659 make_bad_inode(inode);
4660 } else {
4661 ret = -EFSCORRUPTED;
4662 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4663 goto bad_inode;
4664 }
4665 brelse(iloc.bh);
4666 ext4_set_inode_flags(inode);
4667 unlock_new_inode(inode);
4668 return inode;
4669
4670 bad_inode:
4671 brelse(iloc.bh);
4672 iget_failed(inode);
4673 return ERR_PTR(ret);
4674 }
4675
4676 struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino)
4677 {
4678 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
4679 return ERR_PTR(-EFSCORRUPTED);
4680 return ext4_iget(sb, ino);
4681 }
4682
4683 static int ext4_inode_blocks_set(handle_t *handle,
4684 struct ext4_inode *raw_inode,
4685 struct ext4_inode_info *ei)
4686 {
4687 struct inode *inode = &(ei->vfs_inode);
4688 u64 i_blocks = inode->i_blocks;
4689 struct super_block *sb = inode->i_sb;
4690
4691 if (i_blocks <= ~0U) {
4692 /*
4693 * i_blocks can be represented in a 32 bit variable
4694 * as multiple of 512 bytes
4695 */
4696 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4697 raw_inode->i_blocks_high = 0;
4698 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4699 return 0;
4700 }
4701 if (!ext4_has_feature_huge_file(sb))
4702 return -EFBIG;
4703
4704 if (i_blocks <= 0xffffffffffffULL) {
4705 /*
4706 * i_blocks can be represented in a 48 bit variable
4707 * as multiple of 512 bytes
4708 */
4709 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4710 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4711 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4712 } else {
4713 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4714 /* i_block is stored in file system block size */
4715 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4716 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4717 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4718 }
4719 return 0;
4720 }
4721
4722 struct other_inode {
4723 unsigned long orig_ino;
4724 struct ext4_inode *raw_inode;
4725 };
4726
4727 static int other_inode_match(struct inode * inode, unsigned long ino,
4728 void *data)
4729 {
4730 struct other_inode *oi = (struct other_inode *) data;
4731
4732 if ((inode->i_ino != ino) ||
4733 (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4734 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
4735 ((inode->i_state & I_DIRTY_TIME) == 0))
4736 return 0;
4737 spin_lock(&inode->i_lock);
4738 if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4739 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) == 0) &&
4740 (inode->i_state & I_DIRTY_TIME)) {
4741 struct ext4_inode_info *ei = EXT4_I(inode);
4742
4743 inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED);
4744 spin_unlock(&inode->i_lock);
4745
4746 spin_lock(&ei->i_raw_lock);
4747 EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode);
4748 EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode);
4749 EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode);
4750 ext4_inode_csum_set(inode, oi->raw_inode, ei);
4751 spin_unlock(&ei->i_raw_lock);
4752 trace_ext4_other_inode_update_time(inode, oi->orig_ino);
4753 return -1;
4754 }
4755 spin_unlock(&inode->i_lock);
4756 return -1;
4757 }
4758
4759 /*
4760 * Opportunistically update the other time fields for other inodes in
4761 * the same inode table block.
4762 */
4763 static void ext4_update_other_inodes_time(struct super_block *sb,
4764 unsigned long orig_ino, char *buf)
4765 {
4766 struct other_inode oi;
4767 unsigned long ino;
4768 int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4769 int inode_size = EXT4_INODE_SIZE(sb);
4770
4771 oi.orig_ino = orig_ino;
4772 /*
4773 * Calculate the first inode in the inode table block. Inode
4774 * numbers are one-based. That is, the first inode in a block
4775 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
4776 */
4777 ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
4778 for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
4779 if (ino == orig_ino)
4780 continue;
4781 oi.raw_inode = (struct ext4_inode *) buf;
4782 (void) find_inode_nowait(sb, ino, other_inode_match, &oi);
4783 }
4784 }
4785
4786 /*
4787 * Post the struct inode info into an on-disk inode location in the
4788 * buffer-cache. This gobbles the caller's reference to the
4789 * buffer_head in the inode location struct.
4790 *
4791 * The caller must have write access to iloc->bh.
4792 */
4793 static int ext4_do_update_inode(handle_t *handle,
4794 struct inode *inode,
4795 struct ext4_iloc *iloc)
4796 {
4797 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4798 struct ext4_inode_info *ei = EXT4_I(inode);
4799 struct buffer_head *bh = iloc->bh;
4800 struct super_block *sb = inode->i_sb;
4801 int err = 0, rc, block;
4802 int need_datasync = 0, set_large_file = 0;
4803 uid_t i_uid;
4804 gid_t i_gid;
4805 projid_t i_projid;
4806
4807 spin_lock(&ei->i_raw_lock);
4808
4809 /* For fields not tracked in the in-memory inode,
4810 * initialise them to zero for new inodes. */
4811 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4812 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4813
4814 ext4_get_inode_flags(ei);
4815 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4816 i_uid = i_uid_read(inode);
4817 i_gid = i_gid_read(inode);
4818 i_projid = from_kprojid(&init_user_ns, ei->i_projid);
4819 if (!(test_opt(inode->i_sb, NO_UID32))) {
4820 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4821 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4822 /*
4823 * Fix up interoperability with old kernels. Otherwise, old inodes get
4824 * re-used with the upper 16 bits of the uid/gid intact
4825 */
4826 if (ei->i_dtime && list_empty(&ei->i_orphan)) {
4827 raw_inode->i_uid_high = 0;
4828 raw_inode->i_gid_high = 0;
4829 } else {
4830 raw_inode->i_uid_high =
4831 cpu_to_le16(high_16_bits(i_uid));
4832 raw_inode->i_gid_high =
4833 cpu_to_le16(high_16_bits(i_gid));
4834 }
4835 } else {
4836 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4837 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4838 raw_inode->i_uid_high = 0;
4839 raw_inode->i_gid_high = 0;
4840 }
4841 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4842
4843 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4844 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4845 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4846 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4847
4848 err = ext4_inode_blocks_set(handle, raw_inode, ei);
4849 if (err) {
4850 spin_unlock(&ei->i_raw_lock);
4851 goto out_brelse;
4852 }
4853 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4854 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4855 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4856 raw_inode->i_file_acl_high =
4857 cpu_to_le16(ei->i_file_acl >> 32);
4858 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4859 if (ei->i_disksize != ext4_isize(raw_inode)) {
4860 ext4_isize_set(raw_inode, ei->i_disksize);
4861 need_datasync = 1;
4862 }
4863 if (ei->i_disksize > 0x7fffffffULL) {
4864 if (!ext4_has_feature_large_file(sb) ||
4865 EXT4_SB(sb)->s_es->s_rev_level ==
4866 cpu_to_le32(EXT4_GOOD_OLD_REV))
4867 set_large_file = 1;
4868 }
4869 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4870 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4871 if (old_valid_dev(inode->i_rdev)) {
4872 raw_inode->i_block[0] =
4873 cpu_to_le32(old_encode_dev(inode->i_rdev));
4874 raw_inode->i_block[1] = 0;
4875 } else {
4876 raw_inode->i_block[0] = 0;
4877 raw_inode->i_block[1] =
4878 cpu_to_le32(new_encode_dev(inode->i_rdev));
4879 raw_inode->i_block[2] = 0;
4880 }
4881 } else if (!ext4_has_inline_data(inode)) {
4882 for (block = 0; block < EXT4_N_BLOCKS; block++)
4883 raw_inode->i_block[block] = ei->i_data[block];
4884 }
4885
4886 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4887 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4888 if (ei->i_extra_isize) {
4889 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4890 raw_inode->i_version_hi =
4891 cpu_to_le32(inode->i_version >> 32);
4892 raw_inode->i_extra_isize =
4893 cpu_to_le16(ei->i_extra_isize);
4894 }
4895 }
4896
4897 BUG_ON(!ext4_has_feature_project(inode->i_sb) &&
4898 i_projid != EXT4_DEF_PROJID);
4899
4900 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4901 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4902 raw_inode->i_projid = cpu_to_le32(i_projid);
4903
4904 ext4_inode_csum_set(inode, raw_inode, ei);
4905 spin_unlock(&ei->i_raw_lock);
4906 if (inode->i_sb->s_flags & MS_LAZYTIME)
4907 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
4908 bh->b_data);
4909
4910 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4911 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4912 if (!err)
4913 err = rc;
4914 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4915 if (set_large_file) {
4916 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
4917 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
4918 if (err)
4919 goto out_brelse;
4920 ext4_update_dynamic_rev(sb);
4921 ext4_set_feature_large_file(sb);
4922 ext4_handle_sync(handle);
4923 err = ext4_handle_dirty_super(handle, sb);
4924 }
4925 ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4926 out_brelse:
4927 brelse(bh);
4928 ext4_std_error(inode->i_sb, err);
4929 return err;
4930 }
4931
4932 /*
4933 * ext4_write_inode()
4934 *
4935 * We are called from a few places:
4936 *
4937 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
4938 * Here, there will be no transaction running. We wait for any running
4939 * transaction to commit.
4940 *
4941 * - Within flush work (sys_sync(), kupdate and such).
4942 * We wait on commit, if told to.
4943 *
4944 * - Within iput_final() -> write_inode_now()
4945 * We wait on commit, if told to.
4946 *
4947 * In all cases it is actually safe for us to return without doing anything,
4948 * because the inode has been copied into a raw inode buffer in
4949 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL
4950 * writeback.
4951 *
4952 * Note that we are absolutely dependent upon all inode dirtiers doing the
4953 * right thing: they *must* call mark_inode_dirty() after dirtying info in
4954 * which we are interested.
4955 *
4956 * It would be a bug for them to not do this. The code:
4957 *
4958 * mark_inode_dirty(inode)
4959 * stuff();
4960 * inode->i_size = expr;
4961 *
4962 * is in error because write_inode() could occur while `stuff()' is running,
4963 * and the new i_size will be lost. Plus the inode will no longer be on the
4964 * superblock's dirty inode list.
4965 */
4966 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4967 {
4968 int err;
4969
4970 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
4971 return 0;
4972
4973 if (EXT4_SB(inode->i_sb)->s_journal) {
4974 if (ext4_journal_current_handle()) {
4975 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4976 dump_stack();
4977 return -EIO;
4978 }
4979
4980 /*
4981 * No need to force transaction in WB_SYNC_NONE mode. Also
4982 * ext4_sync_fs() will force the commit after everything is
4983 * written.
4984 */
4985 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
4986 return 0;
4987
4988 err = ext4_force_commit(inode->i_sb);
4989 } else {
4990 struct ext4_iloc iloc;
4991
4992 err = __ext4_get_inode_loc(inode, &iloc, 0);
4993 if (err)
4994 return err;
4995 /*
4996 * sync(2) will flush the whole buffer cache. No need to do
4997 * it here separately for each inode.
4998 */
4999 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5000 sync_dirty_buffer(iloc.bh);
5001 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5002 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
5003 "IO error syncing inode");
5004 err = -EIO;
5005 }
5006 brelse(iloc.bh);
5007 }
5008 return err;
5009 }
5010
5011 /*
5012 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
5013 * buffers that are attached to a page stradding i_size and are undergoing
5014 * commit. In that case we have to wait for commit to finish and try again.
5015 */
5016 static void ext4_wait_for_tail_page_commit(struct inode *inode)
5017 {
5018 struct page *page;
5019 unsigned offset;
5020 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5021 tid_t commit_tid = 0;
5022 int ret;
5023
5024 offset = inode->i_size & (PAGE_SIZE - 1);
5025 /*
5026 * All buffers in the last page remain valid? Then there's nothing to
5027 * do. We do the check mainly to optimize the common PAGE_SIZE ==
5028 * blocksize case
5029 */
5030 if (offset > PAGE_SIZE - (1 << inode->i_blkbits))
5031 return;
5032 while (1) {
5033 page = find_lock_page(inode->i_mapping,
5034 inode->i_size >> PAGE_SHIFT);
5035 if (!page)
5036 return;
5037 ret = __ext4_journalled_invalidatepage(page, offset,
5038 PAGE_SIZE - offset);
5039 unlock_page(page);
5040 put_page(page);
5041 if (ret != -EBUSY)
5042 return;
5043 commit_tid = 0;
5044 read_lock(&journal->j_state_lock);
5045 if (journal->j_committing_transaction)
5046 commit_tid = journal->j_committing_transaction->t_tid;
5047 read_unlock(&journal->j_state_lock);
5048 if (commit_tid)
5049 jbd2_log_wait_commit(journal, commit_tid);
5050 }
5051 }
5052
5053 /*
5054 * ext4_setattr()
5055 *
5056 * Called from notify_change.
5057 *
5058 * We want to trap VFS attempts to truncate the file as soon as
5059 * possible. In particular, we want to make sure that when the VFS
5060 * shrinks i_size, we put the inode on the orphan list and modify
5061 * i_disksize immediately, so that during the subsequent flushing of
5062 * dirty pages and freeing of disk blocks, we can guarantee that any
5063 * commit will leave the blocks being flushed in an unused state on
5064 * disk. (On recovery, the inode will get truncated and the blocks will
5065 * be freed, so we have a strong guarantee that no future commit will
5066 * leave these blocks visible to the user.)
5067 *
5068 * Another thing we have to assure is that if we are in ordered mode
5069 * and inode is still attached to the committing transaction, we must
5070 * we start writeout of all the dirty pages which are being truncated.
5071 * This way we are sure that all the data written in the previous
5072 * transaction are already on disk (truncate waits for pages under
5073 * writeback).
5074 *
5075 * Called with inode->i_mutex down.
5076 */
5077 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5078 {
5079 struct inode *inode = d_inode(dentry);
5080 int error, rc = 0;
5081 int orphan = 0;
5082 const unsigned int ia_valid = attr->ia_valid;
5083
5084 error = setattr_prepare(dentry, attr);
5085 if (error)
5086 return error;
5087
5088 if (is_quota_modification(inode, attr)) {
5089 error = dquot_initialize(inode);
5090 if (error)
5091 return error;
5092 }
5093 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
5094 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
5095 handle_t *handle;
5096
5097 /* (user+group)*(old+new) structure, inode write (sb,
5098 * inode block, ? - but truncate inode update has it) */
5099 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5100 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5101 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5102 if (IS_ERR(handle)) {
5103 error = PTR_ERR(handle);
5104 goto err_out;
5105 }
5106 error = dquot_transfer(inode, attr);
5107 if (error) {
5108 ext4_journal_stop(handle);
5109 return error;
5110 }
5111 /* Update corresponding info in inode so that everything is in
5112 * one transaction */
5113 if (attr->ia_valid & ATTR_UID)
5114 inode->i_uid = attr->ia_uid;
5115 if (attr->ia_valid & ATTR_GID)
5116 inode->i_gid = attr->ia_gid;
5117 error = ext4_mark_inode_dirty(handle, inode);
5118 ext4_journal_stop(handle);
5119 }
5120
5121 if (attr->ia_valid & ATTR_SIZE) {
5122 handle_t *handle;
5123 loff_t oldsize = inode->i_size;
5124 int shrink = (attr->ia_size <= inode->i_size);
5125
5126 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5127 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5128
5129 if (attr->ia_size > sbi->s_bitmap_maxbytes)
5130 return -EFBIG;
5131 }
5132 if (!S_ISREG(inode->i_mode))
5133 return -EINVAL;
5134
5135 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
5136 inode_inc_iversion(inode);
5137
5138 if (ext4_should_order_data(inode) &&
5139 (attr->ia_size < inode->i_size)) {
5140 error = ext4_begin_ordered_truncate(inode,
5141 attr->ia_size);
5142 if (error)
5143 goto err_out;
5144 }
5145 if (attr->ia_size != inode->i_size) {
5146 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5147 if (IS_ERR(handle)) {
5148 error = PTR_ERR(handle);
5149 goto err_out;
5150 }
5151 if (ext4_handle_valid(handle) && shrink) {
5152 error = ext4_orphan_add(handle, inode);
5153 orphan = 1;
5154 }
5155 /*
5156 * Update c/mtime on truncate up, ext4_truncate() will
5157 * update c/mtime in shrink case below
5158 */
5159 if (!shrink) {
5160 inode->i_mtime = ext4_current_time(inode);
5161 inode->i_ctime = inode->i_mtime;
5162 }
5163 down_write(&EXT4_I(inode)->i_data_sem);
5164 EXT4_I(inode)->i_disksize = attr->ia_size;
5165 rc = ext4_mark_inode_dirty(handle, inode);
5166 if (!error)
5167 error = rc;
5168 /*
5169 * We have to update i_size under i_data_sem together
5170 * with i_disksize to avoid races with writeback code
5171 * running ext4_wb_update_i_disksize().
5172 */
5173 if (!error)
5174 i_size_write(inode, attr->ia_size);
5175 up_write(&EXT4_I(inode)->i_data_sem);
5176 ext4_journal_stop(handle);
5177 if (error) {
5178 if (orphan)
5179 ext4_orphan_del(NULL, inode);
5180 goto err_out;
5181 }
5182 }
5183 if (!shrink)
5184 pagecache_isize_extended(inode, oldsize, inode->i_size);
5185
5186 /*
5187 * Blocks are going to be removed from the inode. Wait
5188 * for dio in flight. Temporarily disable
5189 * dioread_nolock to prevent livelock.
5190 */
5191 if (orphan) {
5192 if (!ext4_should_journal_data(inode)) {
5193 ext4_inode_block_unlocked_dio(inode);
5194 inode_dio_wait(inode);
5195 ext4_inode_resume_unlocked_dio(inode);
5196 } else
5197 ext4_wait_for_tail_page_commit(inode);
5198 }
5199 down_write(&EXT4_I(inode)->i_mmap_sem);
5200 /*
5201 * Truncate pagecache after we've waited for commit
5202 * in data=journal mode to make pages freeable.
5203 */
5204 truncate_pagecache(inode, inode->i_size);
5205 if (shrink)
5206 ext4_truncate(inode);
5207 up_write(&EXT4_I(inode)->i_mmap_sem);
5208 }
5209
5210 if (!rc) {
5211 setattr_copy(inode, attr);
5212 mark_inode_dirty(inode);
5213 }
5214
5215 /*
5216 * If the call to ext4_truncate failed to get a transaction handle at
5217 * all, we need to clean up the in-core orphan list manually.
5218 */
5219 if (orphan && inode->i_nlink)
5220 ext4_orphan_del(NULL, inode);
5221
5222 if (!rc && (ia_valid & ATTR_MODE))
5223 rc = posix_acl_chmod(inode, inode->i_mode);
5224
5225 err_out:
5226 ext4_std_error(inode->i_sb, error);
5227 if (!error)
5228 error = rc;
5229 return error;
5230 }
5231
5232 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
5233 struct kstat *stat)
5234 {
5235 struct inode *inode;
5236 unsigned long long delalloc_blocks;
5237
5238 inode = d_inode(dentry);
5239 generic_fillattr(inode, stat);
5240
5241 /*
5242 * If there is inline data in the inode, the inode will normally not
5243 * have data blocks allocated (it may have an external xattr block).
5244 * Report at least one sector for such files, so tools like tar, rsync,
5245 * others doen't incorrectly think the file is completely sparse.
5246 */
5247 if (unlikely(ext4_has_inline_data(inode)))
5248 stat->blocks += (stat->size + 511) >> 9;
5249
5250 /*
5251 * We can't update i_blocks if the block allocation is delayed
5252 * otherwise in the case of system crash before the real block
5253 * allocation is done, we will have i_blocks inconsistent with
5254 * on-disk file blocks.
5255 * We always keep i_blocks updated together with real
5256 * allocation. But to not confuse with user, stat
5257 * will return the blocks that include the delayed allocation
5258 * blocks for this file.
5259 */
5260 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5261 EXT4_I(inode)->i_reserved_data_blocks);
5262 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5263 return 0;
5264 }
5265
5266 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5267 int pextents)
5268 {
5269 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5270 return ext4_ind_trans_blocks(inode, lblocks);
5271 return ext4_ext_index_trans_blocks(inode, pextents);
5272 }
5273
5274 /*
5275 * Account for index blocks, block groups bitmaps and block group
5276 * descriptor blocks if modify datablocks and index blocks
5277 * worse case, the indexs blocks spread over different block groups
5278 *
5279 * If datablocks are discontiguous, they are possible to spread over
5280 * different block groups too. If they are contiguous, with flexbg,
5281 * they could still across block group boundary.
5282 *
5283 * Also account for superblock, inode, quota and xattr blocks
5284 */
5285 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5286 int pextents)
5287 {
5288 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5289 int gdpblocks;
5290 int idxblocks;
5291 int ret = 0;
5292
5293 /*
5294 * How many index blocks need to touch to map @lblocks logical blocks
5295 * to @pextents physical extents?
5296 */
5297 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5298
5299 ret = idxblocks;
5300
5301 /*
5302 * Now let's see how many group bitmaps and group descriptors need
5303 * to account
5304 */
5305 groups = idxblocks + pextents;
5306 gdpblocks = groups;
5307 if (groups > ngroups)
5308 groups = ngroups;
5309 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5310 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5311
5312 /* bitmaps and block group descriptor blocks */
5313 ret += groups + gdpblocks;
5314
5315 /* Blocks for super block, inode, quota and xattr blocks */
5316 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5317
5318 return ret;
5319 }
5320
5321 /*
5322 * Calculate the total number of credits to reserve to fit
5323 * the modification of a single pages into a single transaction,
5324 * which may include multiple chunks of block allocations.
5325 *
5326 * This could be called via ext4_write_begin()
5327 *
5328 * We need to consider the worse case, when
5329 * one new block per extent.
5330 */
5331 int ext4_writepage_trans_blocks(struct inode *inode)
5332 {
5333 int bpp = ext4_journal_blocks_per_page(inode);
5334 int ret;
5335
5336 ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5337
5338 /* Account for data blocks for journalled mode */
5339 if (ext4_should_journal_data(inode))
5340 ret += bpp;
5341 return ret;
5342 }
5343
5344 /*
5345 * Calculate the journal credits for a chunk of data modification.
5346 *
5347 * This is called from DIO, fallocate or whoever calling
5348 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5349 *
5350 * journal buffers for data blocks are not included here, as DIO
5351 * and fallocate do no need to journal data buffers.
5352 */
5353 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5354 {
5355 return ext4_meta_trans_blocks(inode, nrblocks, 1);
5356 }
5357
5358 /*
5359 * The caller must have previously called ext4_reserve_inode_write().
5360 * Give this, we know that the caller already has write access to iloc->bh.
5361 */
5362 int ext4_mark_iloc_dirty(handle_t *handle,
5363 struct inode *inode, struct ext4_iloc *iloc)
5364 {
5365 int err = 0;
5366
5367 if (IS_I_VERSION(inode))
5368 inode_inc_iversion(inode);
5369
5370 /* the do_update_inode consumes one bh->b_count */
5371 get_bh(iloc->bh);
5372
5373 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5374 err = ext4_do_update_inode(handle, inode, iloc);
5375 put_bh(iloc->bh);
5376 return err;
5377 }
5378
5379 /*
5380 * On success, We end up with an outstanding reference count against
5381 * iloc->bh. This _must_ be cleaned up later.
5382 */
5383
5384 int
5385 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5386 struct ext4_iloc *iloc)
5387 {
5388 int err;
5389
5390 err = ext4_get_inode_loc(inode, iloc);
5391 if (!err) {
5392 BUFFER_TRACE(iloc->bh, "get_write_access");
5393 err = ext4_journal_get_write_access(handle, iloc->bh);
5394 if (err) {
5395 brelse(iloc->bh);
5396 iloc->bh = NULL;
5397 }
5398 }
5399 ext4_std_error(inode->i_sb, err);
5400 return err;
5401 }
5402
5403 /*
5404 * Expand an inode by new_extra_isize bytes.
5405 * Returns 0 on success or negative error number on failure.
5406 */
5407 static int ext4_expand_extra_isize(struct inode *inode,
5408 unsigned int new_extra_isize,
5409 struct ext4_iloc iloc,
5410 handle_t *handle)
5411 {
5412 struct ext4_inode *raw_inode;
5413 struct ext4_xattr_ibody_header *header;
5414
5415 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5416 return 0;
5417
5418 raw_inode = ext4_raw_inode(&iloc);
5419
5420 header = IHDR(inode, raw_inode);
5421
5422 /* No extended attributes present */
5423 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5424 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5425 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5426 new_extra_isize);
5427 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5428 return 0;
5429 }
5430
5431 /* try to expand with EAs present */
5432 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5433 raw_inode, handle);
5434 }
5435
5436 /*
5437 * What we do here is to mark the in-core inode as clean with respect to inode
5438 * dirtiness (it may still be data-dirty).
5439 * This means that the in-core inode may be reaped by prune_icache
5440 * without having to perform any I/O. This is a very good thing,
5441 * because *any* task may call prune_icache - even ones which
5442 * have a transaction open against a different journal.
5443 *
5444 * Is this cheating? Not really. Sure, we haven't written the
5445 * inode out, but prune_icache isn't a user-visible syncing function.
5446 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5447 * we start and wait on commits.
5448 */
5449 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5450 {
5451 struct ext4_iloc iloc;
5452 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5453 static unsigned int mnt_count;
5454 int err, ret;
5455
5456 might_sleep();
5457 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5458 err = ext4_reserve_inode_write(handle, inode, &iloc);
5459 if (err)
5460 return err;
5461 if (ext4_handle_valid(handle) &&
5462 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5463 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5464 /*
5465 * We need extra buffer credits since we may write into EA block
5466 * with this same handle. If journal_extend fails, then it will
5467 * only result in a minor loss of functionality for that inode.
5468 * If this is felt to be critical, then e2fsck should be run to
5469 * force a large enough s_min_extra_isize.
5470 */
5471 if ((jbd2_journal_extend(handle,
5472 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5473 ret = ext4_expand_extra_isize(inode,
5474 sbi->s_want_extra_isize,
5475 iloc, handle);
5476 if (ret) {
5477 if (mnt_count !=
5478 le16_to_cpu(sbi->s_es->s_mnt_count)) {
5479 ext4_warning(inode->i_sb,
5480 "Unable to expand inode %lu. Delete"
5481 " some EAs or run e2fsck.",
5482 inode->i_ino);
5483 mnt_count =
5484 le16_to_cpu(sbi->s_es->s_mnt_count);
5485 }
5486 }
5487 }
5488 }
5489 return ext4_mark_iloc_dirty(handle, inode, &iloc);
5490 }
5491
5492 /*
5493 * ext4_dirty_inode() is called from __mark_inode_dirty()
5494 *
5495 * We're really interested in the case where a file is being extended.
5496 * i_size has been changed by generic_commit_write() and we thus need
5497 * to include the updated inode in the current transaction.
5498 *
5499 * Also, dquot_alloc_block() will always dirty the inode when blocks
5500 * are allocated to the file.
5501 *
5502 * If the inode is marked synchronous, we don't honour that here - doing
5503 * so would cause a commit on atime updates, which we don't bother doing.
5504 * We handle synchronous inodes at the highest possible level.
5505 *
5506 * If only the I_DIRTY_TIME flag is set, we can skip everything. If
5507 * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
5508 * to copy into the on-disk inode structure are the timestamp files.
5509 */
5510 void ext4_dirty_inode(struct inode *inode, int flags)
5511 {
5512 handle_t *handle;
5513
5514 if (flags == I_DIRTY_TIME)
5515 return;
5516 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5517 if (IS_ERR(handle))
5518 goto out;
5519
5520 ext4_mark_inode_dirty(handle, inode);
5521
5522 ext4_journal_stop(handle);
5523 out:
5524 return;
5525 }
5526
5527 #if 0
5528 /*
5529 * Bind an inode's backing buffer_head into this transaction, to prevent
5530 * it from being flushed to disk early. Unlike
5531 * ext4_reserve_inode_write, this leaves behind no bh reference and
5532 * returns no iloc structure, so the caller needs to repeat the iloc
5533 * lookup to mark the inode dirty later.
5534 */
5535 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5536 {
5537 struct ext4_iloc iloc;
5538
5539 int err = 0;
5540 if (handle) {
5541 err = ext4_get_inode_loc(inode, &iloc);
5542 if (!err) {
5543 BUFFER_TRACE(iloc.bh, "get_write_access");
5544 err = jbd2_journal_get_write_access(handle, iloc.bh);
5545 if (!err)
5546 err = ext4_handle_dirty_metadata(handle,
5547 NULL,
5548 iloc.bh);
5549 brelse(iloc.bh);
5550 }
5551 }
5552 ext4_std_error(inode->i_sb, err);
5553 return err;
5554 }
5555 #endif
5556
5557 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5558 {
5559 journal_t *journal;
5560 handle_t *handle;
5561 int err;
5562 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5563
5564 /*
5565 * We have to be very careful here: changing a data block's
5566 * journaling status dynamically is dangerous. If we write a
5567 * data block to the journal, change the status and then delete
5568 * that block, we risk forgetting to revoke the old log record
5569 * from the journal and so a subsequent replay can corrupt data.
5570 * So, first we make sure that the journal is empty and that
5571 * nobody is changing anything.
5572 */
5573
5574 journal = EXT4_JOURNAL(inode);
5575 if (!journal)
5576 return 0;
5577 if (is_journal_aborted(journal))
5578 return -EROFS;
5579
5580 /* Wait for all existing dio workers */
5581 ext4_inode_block_unlocked_dio(inode);
5582 inode_dio_wait(inode);
5583
5584 /*
5585 * Before flushing the journal and switching inode's aops, we have
5586 * to flush all dirty data the inode has. There can be outstanding
5587 * delayed allocations, there can be unwritten extents created by
5588 * fallocate or buffered writes in dioread_nolock mode covered by
5589 * dirty data which can be converted only after flushing the dirty
5590 * data (and journalled aops don't know how to handle these cases).
5591 */
5592 if (val) {
5593 down_write(&EXT4_I(inode)->i_mmap_sem);
5594 err = filemap_write_and_wait(inode->i_mapping);
5595 if (err < 0) {
5596 up_write(&EXT4_I(inode)->i_mmap_sem);
5597 ext4_inode_resume_unlocked_dio(inode);
5598 return err;
5599 }
5600 }
5601
5602 percpu_down_write(&sbi->s_journal_flag_rwsem);
5603 jbd2_journal_lock_updates(journal);
5604
5605 /*
5606 * OK, there are no updates running now, and all cached data is
5607 * synced to disk. We are now in a completely consistent state
5608 * which doesn't have anything in the journal, and we know that
5609 * no filesystem updates are running, so it is safe to modify
5610 * the inode's in-core data-journaling state flag now.
5611 */
5612
5613 if (val)
5614 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5615 else {
5616 err = jbd2_journal_flush(journal);
5617 if (err < 0) {
5618 jbd2_journal_unlock_updates(journal);
5619 percpu_up_write(&sbi->s_journal_flag_rwsem);
5620 ext4_inode_resume_unlocked_dio(inode);
5621 return err;
5622 }
5623 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5624 }
5625 ext4_set_aops(inode);
5626
5627 jbd2_journal_unlock_updates(journal);
5628 percpu_up_write(&sbi->s_journal_flag_rwsem);
5629
5630 if (val)
5631 up_write(&EXT4_I(inode)->i_mmap_sem);
5632 ext4_inode_resume_unlocked_dio(inode);
5633
5634 /* Finally we can mark the inode as dirty. */
5635
5636 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5637 if (IS_ERR(handle))
5638 return PTR_ERR(handle);
5639
5640 err = ext4_mark_inode_dirty(handle, inode);
5641 ext4_handle_sync(handle);
5642 ext4_journal_stop(handle);
5643 ext4_std_error(inode->i_sb, err);
5644
5645 return err;
5646 }
5647
5648 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5649 {
5650 return !buffer_mapped(bh);
5651 }
5652
5653 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5654 {
5655 struct page *page = vmf->page;
5656 loff_t size;
5657 unsigned long len;
5658 int ret;
5659 struct file *file = vma->vm_file;
5660 struct inode *inode = file_inode(file);
5661 struct address_space *mapping = inode->i_mapping;
5662 handle_t *handle;
5663 get_block_t *get_block;
5664 int retries = 0;
5665
5666 sb_start_pagefault(inode->i_sb);
5667 file_update_time(vma->vm_file);
5668
5669 down_read(&EXT4_I(inode)->i_mmap_sem);
5670 /* Delalloc case is easy... */
5671 if (test_opt(inode->i_sb, DELALLOC) &&
5672 !ext4_should_journal_data(inode) &&
5673 !ext4_nonda_switch(inode->i_sb)) {
5674 do {
5675 ret = block_page_mkwrite(vma, vmf,
5676 ext4_da_get_block_prep);
5677 } while (ret == -ENOSPC &&
5678 ext4_should_retry_alloc(inode->i_sb, &retries));
5679 goto out_ret;
5680 }
5681
5682 lock_page(page);
5683 size = i_size_read(inode);
5684 /* Page got truncated from under us? */
5685 if (page->mapping != mapping || page_offset(page) > size) {
5686 unlock_page(page);
5687 ret = VM_FAULT_NOPAGE;
5688 goto out;
5689 }
5690
5691 if (page->index == size >> PAGE_SHIFT)
5692 len = size & ~PAGE_MASK;
5693 else
5694 len = PAGE_SIZE;
5695 /*
5696 * Return if we have all the buffers mapped. This avoids the need to do
5697 * journal_start/journal_stop which can block and take a long time
5698 */
5699 if (page_has_buffers(page)) {
5700 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5701 0, len, NULL,
5702 ext4_bh_unmapped)) {
5703 /* Wait so that we don't change page under IO */
5704 wait_for_stable_page(page);
5705 ret = VM_FAULT_LOCKED;
5706 goto out;
5707 }
5708 }
5709 unlock_page(page);
5710 /* OK, we need to fill the hole... */
5711 if (ext4_should_dioread_nolock(inode))
5712 get_block = ext4_get_block_unwritten;
5713 else
5714 get_block = ext4_get_block;
5715 retry_alloc:
5716 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5717 ext4_writepage_trans_blocks(inode));
5718 if (IS_ERR(handle)) {
5719 ret = VM_FAULT_SIGBUS;
5720 goto out;
5721 }
5722 ret = block_page_mkwrite(vma, vmf, get_block);
5723 if (!ret && ext4_should_journal_data(inode)) {
5724 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5725 PAGE_SIZE, NULL, do_journal_get_write_access)) {
5726 unlock_page(page);
5727 ret = VM_FAULT_SIGBUS;
5728 ext4_journal_stop(handle);
5729 goto out;
5730 }
5731 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5732 }
5733 ext4_journal_stop(handle);
5734 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5735 goto retry_alloc;
5736 out_ret:
5737 ret = block_page_mkwrite_return(ret);
5738 out:
5739 up_read(&EXT4_I(inode)->i_mmap_sem);
5740 sb_end_pagefault(inode->i_sb);
5741 return ret;
5742 }
5743
5744 int ext4_filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
5745 {
5746 struct inode *inode = file_inode(vma->vm_file);
5747 int err;
5748
5749 down_read(&EXT4_I(inode)->i_mmap_sem);
5750 err = filemap_fault(vma, vmf);
5751 up_read(&EXT4_I(inode)->i_mmap_sem);
5752
5753 return err;
5754 }
5755
5756 /*
5757 * Find the first extent at or after @lblk in an inode that is not a hole.
5758 * Search for @map_len blocks at most. The extent is returned in @result.
5759 *
5760 * The function returns 1 if we found an extent. The function returns 0 in
5761 * case there is no extent at or after @lblk and in that case also sets
5762 * @result->es_len to 0. In case of error, the error code is returned.
5763 */
5764 int ext4_get_next_extent(struct inode *inode, ext4_lblk_t lblk,
5765 unsigned int map_len, struct extent_status *result)
5766 {
5767 struct ext4_map_blocks map;
5768 struct extent_status es = {};
5769 int ret;
5770
5771 map.m_lblk = lblk;
5772 map.m_len = map_len;
5773
5774 /*
5775 * For non-extent based files this loop may iterate several times since
5776 * we do not determine full hole size.
5777 */
5778 while (map.m_len > 0) {
5779 ret = ext4_map_blocks(NULL, inode, &map, 0);
5780 if (ret < 0)
5781 return ret;
5782 /* There's extent covering m_lblk? Just return it. */
5783 if (ret > 0) {
5784 int status;
5785
5786 ext4_es_store_pblock(result, map.m_pblk);
5787 result->es_lblk = map.m_lblk;
5788 result->es_len = map.m_len;
5789 if (map.m_flags & EXT4_MAP_UNWRITTEN)
5790 status = EXTENT_STATUS_UNWRITTEN;
5791 else
5792 status = EXTENT_STATUS_WRITTEN;
5793 ext4_es_store_status(result, status);
5794 return 1;
5795 }
5796 ext4_es_find_delayed_extent_range(inode, map.m_lblk,
5797 map.m_lblk + map.m_len - 1,
5798 &es);
5799 /* Is delalloc data before next block in extent tree? */
5800 if (es.es_len && es.es_lblk < map.m_lblk + map.m_len) {
5801 ext4_lblk_t offset = 0;
5802
5803 if (es.es_lblk < lblk)
5804 offset = lblk - es.es_lblk;
5805 result->es_lblk = es.es_lblk + offset;
5806 ext4_es_store_pblock(result,
5807 ext4_es_pblock(&es) + offset);
5808 result->es_len = es.es_len - offset;
5809 ext4_es_store_status(result, ext4_es_status(&es));
5810
5811 return 1;
5812 }
5813 /* There's a hole at m_lblk, advance us after it */
5814 map.m_lblk += map.m_len;
5815 map_len -= map.m_len;
5816 map.m_len = map_len;
5817 cond_resched();
5818 }
5819 result->es_len = 0;
5820 return 0;
5821 }