]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - fs/ext4/inode.c
Merge branch 'slab/urgent' of git://git.kernel.org/pub/scm/linux/kernel/git/penberg...
[mirror_ubuntu-zesty-kernel.git] / fs / ext4 / inode.c
1 /*
2 * linux/fs/ext4/inode.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * Goal-directed block allocation by Stephen Tweedie
16 * (sct@redhat.com), 1993, 1998
17 * Big-endian to little-endian byte-swapping/bitmaps by
18 * David S. Miller (davem@caip.rutgers.edu), 1995
19 * 64-bit file support on 64-bit platforms by Jakub Jelinek
20 * (jj@sunsite.ms.mff.cuni.cz)
21 *
22 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
23 */
24
25 #include <linux/module.h>
26 #include <linux/fs.h>
27 #include <linux/time.h>
28 #include <linux/jbd2.h>
29 #include <linux/highuid.h>
30 #include <linux/pagemap.h>
31 #include <linux/quotaops.h>
32 #include <linux/string.h>
33 #include <linux/buffer_head.h>
34 #include <linux/writeback.h>
35 #include <linux/pagevec.h>
36 #include <linux/mpage.h>
37 #include <linux/namei.h>
38 #include <linux/uio.h>
39 #include <linux/bio.h>
40 #include <linux/workqueue.h>
41 #include <linux/kernel.h>
42 #include <linux/printk.h>
43 #include <linux/slab.h>
44 #include <linux/ratelimit.h>
45
46 #include "ext4_jbd2.h"
47 #include "xattr.h"
48 #include "acl.h"
49 #include "ext4_extents.h"
50
51 #include <trace/events/ext4.h>
52
53 #define MPAGE_DA_EXTENT_TAIL 0x01
54
55 static inline int ext4_begin_ordered_truncate(struct inode *inode,
56 loff_t new_size)
57 {
58 trace_ext4_begin_ordered_truncate(inode, new_size);
59 /*
60 * If jinode is zero, then we never opened the file for
61 * writing, so there's no need to call
62 * jbd2_journal_begin_ordered_truncate() since there's no
63 * outstanding writes we need to flush.
64 */
65 if (!EXT4_I(inode)->jinode)
66 return 0;
67 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
68 EXT4_I(inode)->jinode,
69 new_size);
70 }
71
72 static void ext4_invalidatepage(struct page *page, unsigned long offset);
73 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
74 struct buffer_head *bh_result, int create);
75 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
76 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
77 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
78 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
79
80 /*
81 * Test whether an inode is a fast symlink.
82 */
83 static int ext4_inode_is_fast_symlink(struct inode *inode)
84 {
85 int ea_blocks = EXT4_I(inode)->i_file_acl ?
86 (inode->i_sb->s_blocksize >> 9) : 0;
87
88 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
89 }
90
91 /*
92 * Work out how many blocks we need to proceed with the next chunk of a
93 * truncate transaction.
94 */
95 static unsigned long blocks_for_truncate(struct inode *inode)
96 {
97 ext4_lblk_t needed;
98
99 needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
100
101 /* Give ourselves just enough room to cope with inodes in which
102 * i_blocks is corrupt: we've seen disk corruptions in the past
103 * which resulted in random data in an inode which looked enough
104 * like a regular file for ext4 to try to delete it. Things
105 * will go a bit crazy if that happens, but at least we should
106 * try not to panic the whole kernel. */
107 if (needed < 2)
108 needed = 2;
109
110 /* But we need to bound the transaction so we don't overflow the
111 * journal. */
112 if (needed > EXT4_MAX_TRANS_DATA)
113 needed = EXT4_MAX_TRANS_DATA;
114
115 return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
116 }
117
118 /*
119 * Truncate transactions can be complex and absolutely huge. So we need to
120 * be able to restart the transaction at a conventient checkpoint to make
121 * sure we don't overflow the journal.
122 *
123 * start_transaction gets us a new handle for a truncate transaction,
124 * and extend_transaction tries to extend the existing one a bit. If
125 * extend fails, we need to propagate the failure up and restart the
126 * transaction in the top-level truncate loop. --sct
127 */
128 static handle_t *start_transaction(struct inode *inode)
129 {
130 handle_t *result;
131
132 result = ext4_journal_start(inode, blocks_for_truncate(inode));
133 if (!IS_ERR(result))
134 return result;
135
136 ext4_std_error(inode->i_sb, PTR_ERR(result));
137 return result;
138 }
139
140 /*
141 * Try to extend this transaction for the purposes of truncation.
142 *
143 * Returns 0 if we managed to create more room. If we can't create more
144 * room, and the transaction must be restarted we return 1.
145 */
146 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
147 {
148 if (!ext4_handle_valid(handle))
149 return 0;
150 if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
151 return 0;
152 if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
153 return 0;
154 return 1;
155 }
156
157 /*
158 * Restart the transaction associated with *handle. This does a commit,
159 * so before we call here everything must be consistently dirtied against
160 * this transaction.
161 */
162 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
163 int nblocks)
164 {
165 int ret;
166
167 /*
168 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
169 * moment, get_block can be called only for blocks inside i_size since
170 * page cache has been already dropped and writes are blocked by
171 * i_mutex. So we can safely drop the i_data_sem here.
172 */
173 BUG_ON(EXT4_JOURNAL(inode) == NULL);
174 jbd_debug(2, "restarting handle %p\n", handle);
175 up_write(&EXT4_I(inode)->i_data_sem);
176 ret = ext4_journal_restart(handle, blocks_for_truncate(inode));
177 down_write(&EXT4_I(inode)->i_data_sem);
178 ext4_discard_preallocations(inode);
179
180 return ret;
181 }
182
183 /*
184 * Called at the last iput() if i_nlink is zero.
185 */
186 void ext4_evict_inode(struct inode *inode)
187 {
188 handle_t *handle;
189 int err;
190
191 trace_ext4_evict_inode(inode);
192 if (inode->i_nlink) {
193 truncate_inode_pages(&inode->i_data, 0);
194 goto no_delete;
195 }
196
197 if (!is_bad_inode(inode))
198 dquot_initialize(inode);
199
200 if (ext4_should_order_data(inode))
201 ext4_begin_ordered_truncate(inode, 0);
202 truncate_inode_pages(&inode->i_data, 0);
203
204 if (is_bad_inode(inode))
205 goto no_delete;
206
207 handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
208 if (IS_ERR(handle)) {
209 ext4_std_error(inode->i_sb, PTR_ERR(handle));
210 /*
211 * If we're going to skip the normal cleanup, we still need to
212 * make sure that the in-core orphan linked list is properly
213 * cleaned up.
214 */
215 ext4_orphan_del(NULL, inode);
216 goto no_delete;
217 }
218
219 if (IS_SYNC(inode))
220 ext4_handle_sync(handle);
221 inode->i_size = 0;
222 err = ext4_mark_inode_dirty(handle, inode);
223 if (err) {
224 ext4_warning(inode->i_sb,
225 "couldn't mark inode dirty (err %d)", err);
226 goto stop_handle;
227 }
228 if (inode->i_blocks)
229 ext4_truncate(inode);
230
231 /*
232 * ext4_ext_truncate() doesn't reserve any slop when it
233 * restarts journal transactions; therefore there may not be
234 * enough credits left in the handle to remove the inode from
235 * the orphan list and set the dtime field.
236 */
237 if (!ext4_handle_has_enough_credits(handle, 3)) {
238 err = ext4_journal_extend(handle, 3);
239 if (err > 0)
240 err = ext4_journal_restart(handle, 3);
241 if (err != 0) {
242 ext4_warning(inode->i_sb,
243 "couldn't extend journal (err %d)", err);
244 stop_handle:
245 ext4_journal_stop(handle);
246 ext4_orphan_del(NULL, inode);
247 goto no_delete;
248 }
249 }
250
251 /*
252 * Kill off the orphan record which ext4_truncate created.
253 * AKPM: I think this can be inside the above `if'.
254 * Note that ext4_orphan_del() has to be able to cope with the
255 * deletion of a non-existent orphan - this is because we don't
256 * know if ext4_truncate() actually created an orphan record.
257 * (Well, we could do this if we need to, but heck - it works)
258 */
259 ext4_orphan_del(handle, inode);
260 EXT4_I(inode)->i_dtime = get_seconds();
261
262 /*
263 * One subtle ordering requirement: if anything has gone wrong
264 * (transaction abort, IO errors, whatever), then we can still
265 * do these next steps (the fs will already have been marked as
266 * having errors), but we can't free the inode if the mark_dirty
267 * fails.
268 */
269 if (ext4_mark_inode_dirty(handle, inode))
270 /* If that failed, just do the required in-core inode clear. */
271 ext4_clear_inode(inode);
272 else
273 ext4_free_inode(handle, inode);
274 ext4_journal_stop(handle);
275 return;
276 no_delete:
277 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
278 }
279
280 typedef struct {
281 __le32 *p;
282 __le32 key;
283 struct buffer_head *bh;
284 } Indirect;
285
286 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
287 {
288 p->key = *(p->p = v);
289 p->bh = bh;
290 }
291
292 /**
293 * ext4_block_to_path - parse the block number into array of offsets
294 * @inode: inode in question (we are only interested in its superblock)
295 * @i_block: block number to be parsed
296 * @offsets: array to store the offsets in
297 * @boundary: set this non-zero if the referred-to block is likely to be
298 * followed (on disk) by an indirect block.
299 *
300 * To store the locations of file's data ext4 uses a data structure common
301 * for UNIX filesystems - tree of pointers anchored in the inode, with
302 * data blocks at leaves and indirect blocks in intermediate nodes.
303 * This function translates the block number into path in that tree -
304 * return value is the path length and @offsets[n] is the offset of
305 * pointer to (n+1)th node in the nth one. If @block is out of range
306 * (negative or too large) warning is printed and zero returned.
307 *
308 * Note: function doesn't find node addresses, so no IO is needed. All
309 * we need to know is the capacity of indirect blocks (taken from the
310 * inode->i_sb).
311 */
312
313 /*
314 * Portability note: the last comparison (check that we fit into triple
315 * indirect block) is spelled differently, because otherwise on an
316 * architecture with 32-bit longs and 8Kb pages we might get into trouble
317 * if our filesystem had 8Kb blocks. We might use long long, but that would
318 * kill us on x86. Oh, well, at least the sign propagation does not matter -
319 * i_block would have to be negative in the very beginning, so we would not
320 * get there at all.
321 */
322
323 static int ext4_block_to_path(struct inode *inode,
324 ext4_lblk_t i_block,
325 ext4_lblk_t offsets[4], int *boundary)
326 {
327 int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
328 int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
329 const long direct_blocks = EXT4_NDIR_BLOCKS,
330 indirect_blocks = ptrs,
331 double_blocks = (1 << (ptrs_bits * 2));
332 int n = 0;
333 int final = 0;
334
335 if (i_block < direct_blocks) {
336 offsets[n++] = i_block;
337 final = direct_blocks;
338 } else if ((i_block -= direct_blocks) < indirect_blocks) {
339 offsets[n++] = EXT4_IND_BLOCK;
340 offsets[n++] = i_block;
341 final = ptrs;
342 } else if ((i_block -= indirect_blocks) < double_blocks) {
343 offsets[n++] = EXT4_DIND_BLOCK;
344 offsets[n++] = i_block >> ptrs_bits;
345 offsets[n++] = i_block & (ptrs - 1);
346 final = ptrs;
347 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
348 offsets[n++] = EXT4_TIND_BLOCK;
349 offsets[n++] = i_block >> (ptrs_bits * 2);
350 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
351 offsets[n++] = i_block & (ptrs - 1);
352 final = ptrs;
353 } else {
354 ext4_warning(inode->i_sb, "block %lu > max in inode %lu",
355 i_block + direct_blocks +
356 indirect_blocks + double_blocks, inode->i_ino);
357 }
358 if (boundary)
359 *boundary = final - 1 - (i_block & (ptrs - 1));
360 return n;
361 }
362
363 static int __ext4_check_blockref(const char *function, unsigned int line,
364 struct inode *inode,
365 __le32 *p, unsigned int max)
366 {
367 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
368 __le32 *bref = p;
369 unsigned int blk;
370
371 while (bref < p+max) {
372 blk = le32_to_cpu(*bref++);
373 if (blk &&
374 unlikely(!ext4_data_block_valid(EXT4_SB(inode->i_sb),
375 blk, 1))) {
376 es->s_last_error_block = cpu_to_le64(blk);
377 ext4_error_inode(inode, function, line, blk,
378 "invalid block");
379 return -EIO;
380 }
381 }
382 return 0;
383 }
384
385
386 #define ext4_check_indirect_blockref(inode, bh) \
387 __ext4_check_blockref(__func__, __LINE__, inode, \
388 (__le32 *)(bh)->b_data, \
389 EXT4_ADDR_PER_BLOCK((inode)->i_sb))
390
391 #define ext4_check_inode_blockref(inode) \
392 __ext4_check_blockref(__func__, __LINE__, inode, \
393 EXT4_I(inode)->i_data, \
394 EXT4_NDIR_BLOCKS)
395
396 /**
397 * ext4_get_branch - read the chain of indirect blocks leading to data
398 * @inode: inode in question
399 * @depth: depth of the chain (1 - direct pointer, etc.)
400 * @offsets: offsets of pointers in inode/indirect blocks
401 * @chain: place to store the result
402 * @err: here we store the error value
403 *
404 * Function fills the array of triples <key, p, bh> and returns %NULL
405 * if everything went OK or the pointer to the last filled triple
406 * (incomplete one) otherwise. Upon the return chain[i].key contains
407 * the number of (i+1)-th block in the chain (as it is stored in memory,
408 * i.e. little-endian 32-bit), chain[i].p contains the address of that
409 * number (it points into struct inode for i==0 and into the bh->b_data
410 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
411 * block for i>0 and NULL for i==0. In other words, it holds the block
412 * numbers of the chain, addresses they were taken from (and where we can
413 * verify that chain did not change) and buffer_heads hosting these
414 * numbers.
415 *
416 * Function stops when it stumbles upon zero pointer (absent block)
417 * (pointer to last triple returned, *@err == 0)
418 * or when it gets an IO error reading an indirect block
419 * (ditto, *@err == -EIO)
420 * or when it reads all @depth-1 indirect blocks successfully and finds
421 * the whole chain, all way to the data (returns %NULL, *err == 0).
422 *
423 * Need to be called with
424 * down_read(&EXT4_I(inode)->i_data_sem)
425 */
426 static Indirect *ext4_get_branch(struct inode *inode, int depth,
427 ext4_lblk_t *offsets,
428 Indirect chain[4], int *err)
429 {
430 struct super_block *sb = inode->i_sb;
431 Indirect *p = chain;
432 struct buffer_head *bh;
433
434 *err = 0;
435 /* i_data is not going away, no lock needed */
436 add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
437 if (!p->key)
438 goto no_block;
439 while (--depth) {
440 bh = sb_getblk(sb, le32_to_cpu(p->key));
441 if (unlikely(!bh))
442 goto failure;
443
444 if (!bh_uptodate_or_lock(bh)) {
445 if (bh_submit_read(bh) < 0) {
446 put_bh(bh);
447 goto failure;
448 }
449 /* validate block references */
450 if (ext4_check_indirect_blockref(inode, bh)) {
451 put_bh(bh);
452 goto failure;
453 }
454 }
455
456 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
457 /* Reader: end */
458 if (!p->key)
459 goto no_block;
460 }
461 return NULL;
462
463 failure:
464 *err = -EIO;
465 no_block:
466 return p;
467 }
468
469 /**
470 * ext4_find_near - find a place for allocation with sufficient locality
471 * @inode: owner
472 * @ind: descriptor of indirect block.
473 *
474 * This function returns the preferred place for block allocation.
475 * It is used when heuristic for sequential allocation fails.
476 * Rules are:
477 * + if there is a block to the left of our position - allocate near it.
478 * + if pointer will live in indirect block - allocate near that block.
479 * + if pointer will live in inode - allocate in the same
480 * cylinder group.
481 *
482 * In the latter case we colour the starting block by the callers PID to
483 * prevent it from clashing with concurrent allocations for a different inode
484 * in the same block group. The PID is used here so that functionally related
485 * files will be close-by on-disk.
486 *
487 * Caller must make sure that @ind is valid and will stay that way.
488 */
489 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
490 {
491 struct ext4_inode_info *ei = EXT4_I(inode);
492 __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
493 __le32 *p;
494 ext4_fsblk_t bg_start;
495 ext4_fsblk_t last_block;
496 ext4_grpblk_t colour;
497 ext4_group_t block_group;
498 int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
499
500 /* Try to find previous block */
501 for (p = ind->p - 1; p >= start; p--) {
502 if (*p)
503 return le32_to_cpu(*p);
504 }
505
506 /* No such thing, so let's try location of indirect block */
507 if (ind->bh)
508 return ind->bh->b_blocknr;
509
510 /*
511 * It is going to be referred to from the inode itself? OK, just put it
512 * into the same cylinder group then.
513 */
514 block_group = ei->i_block_group;
515 if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
516 block_group &= ~(flex_size-1);
517 if (S_ISREG(inode->i_mode))
518 block_group++;
519 }
520 bg_start = ext4_group_first_block_no(inode->i_sb, block_group);
521 last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
522
523 /*
524 * If we are doing delayed allocation, we don't need take
525 * colour into account.
526 */
527 if (test_opt(inode->i_sb, DELALLOC))
528 return bg_start;
529
530 if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
531 colour = (current->pid % 16) *
532 (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
533 else
534 colour = (current->pid % 16) * ((last_block - bg_start) / 16);
535 return bg_start + colour;
536 }
537
538 /**
539 * ext4_find_goal - find a preferred place for allocation.
540 * @inode: owner
541 * @block: block we want
542 * @partial: pointer to the last triple within a chain
543 *
544 * Normally this function find the preferred place for block allocation,
545 * returns it.
546 * Because this is only used for non-extent files, we limit the block nr
547 * to 32 bits.
548 */
549 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
550 Indirect *partial)
551 {
552 ext4_fsblk_t goal;
553
554 /*
555 * XXX need to get goal block from mballoc's data structures
556 */
557
558 goal = ext4_find_near(inode, partial);
559 goal = goal & EXT4_MAX_BLOCK_FILE_PHYS;
560 return goal;
561 }
562
563 /**
564 * ext4_blks_to_allocate - Look up the block map and count the number
565 * of direct blocks need to be allocated for the given branch.
566 *
567 * @branch: chain of indirect blocks
568 * @k: number of blocks need for indirect blocks
569 * @blks: number of data blocks to be mapped.
570 * @blocks_to_boundary: the offset in the indirect block
571 *
572 * return the total number of blocks to be allocate, including the
573 * direct and indirect blocks.
574 */
575 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
576 int blocks_to_boundary)
577 {
578 unsigned int count = 0;
579
580 /*
581 * Simple case, [t,d]Indirect block(s) has not allocated yet
582 * then it's clear blocks on that path have not allocated
583 */
584 if (k > 0) {
585 /* right now we don't handle cross boundary allocation */
586 if (blks < blocks_to_boundary + 1)
587 count += blks;
588 else
589 count += blocks_to_boundary + 1;
590 return count;
591 }
592
593 count++;
594 while (count < blks && count <= blocks_to_boundary &&
595 le32_to_cpu(*(branch[0].p + count)) == 0) {
596 count++;
597 }
598 return count;
599 }
600
601 /**
602 * ext4_alloc_blocks: multiple allocate blocks needed for a branch
603 * @handle: handle for this transaction
604 * @inode: inode which needs allocated blocks
605 * @iblock: the logical block to start allocated at
606 * @goal: preferred physical block of allocation
607 * @indirect_blks: the number of blocks need to allocate for indirect
608 * blocks
609 * @blks: number of desired blocks
610 * @new_blocks: on return it will store the new block numbers for
611 * the indirect blocks(if needed) and the first direct block,
612 * @err: on return it will store the error code
613 *
614 * This function will return the number of blocks allocated as
615 * requested by the passed-in parameters.
616 */
617 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
618 ext4_lblk_t iblock, ext4_fsblk_t goal,
619 int indirect_blks, int blks,
620 ext4_fsblk_t new_blocks[4], int *err)
621 {
622 struct ext4_allocation_request ar;
623 int target, i;
624 unsigned long count = 0, blk_allocated = 0;
625 int index = 0;
626 ext4_fsblk_t current_block = 0;
627 int ret = 0;
628
629 /*
630 * Here we try to allocate the requested multiple blocks at once,
631 * on a best-effort basis.
632 * To build a branch, we should allocate blocks for
633 * the indirect blocks(if not allocated yet), and at least
634 * the first direct block of this branch. That's the
635 * minimum number of blocks need to allocate(required)
636 */
637 /* first we try to allocate the indirect blocks */
638 target = indirect_blks;
639 while (target > 0) {
640 count = target;
641 /* allocating blocks for indirect blocks and direct blocks */
642 current_block = ext4_new_meta_blocks(handle, inode,
643 goal, &count, err);
644 if (*err)
645 goto failed_out;
646
647 if (unlikely(current_block + count > EXT4_MAX_BLOCK_FILE_PHYS)) {
648 EXT4_ERROR_INODE(inode,
649 "current_block %llu + count %lu > %d!",
650 current_block, count,
651 EXT4_MAX_BLOCK_FILE_PHYS);
652 *err = -EIO;
653 goto failed_out;
654 }
655
656 target -= count;
657 /* allocate blocks for indirect blocks */
658 while (index < indirect_blks && count) {
659 new_blocks[index++] = current_block++;
660 count--;
661 }
662 if (count > 0) {
663 /*
664 * save the new block number
665 * for the first direct block
666 */
667 new_blocks[index] = current_block;
668 printk(KERN_INFO "%s returned more blocks than "
669 "requested\n", __func__);
670 WARN_ON(1);
671 break;
672 }
673 }
674
675 target = blks - count ;
676 blk_allocated = count;
677 if (!target)
678 goto allocated;
679 /* Now allocate data blocks */
680 memset(&ar, 0, sizeof(ar));
681 ar.inode = inode;
682 ar.goal = goal;
683 ar.len = target;
684 ar.logical = iblock;
685 if (S_ISREG(inode->i_mode))
686 /* enable in-core preallocation only for regular files */
687 ar.flags = EXT4_MB_HINT_DATA;
688
689 current_block = ext4_mb_new_blocks(handle, &ar, err);
690 if (unlikely(current_block + ar.len > EXT4_MAX_BLOCK_FILE_PHYS)) {
691 EXT4_ERROR_INODE(inode,
692 "current_block %llu + ar.len %d > %d!",
693 current_block, ar.len,
694 EXT4_MAX_BLOCK_FILE_PHYS);
695 *err = -EIO;
696 goto failed_out;
697 }
698
699 if (*err && (target == blks)) {
700 /*
701 * if the allocation failed and we didn't allocate
702 * any blocks before
703 */
704 goto failed_out;
705 }
706 if (!*err) {
707 if (target == blks) {
708 /*
709 * save the new block number
710 * for the first direct block
711 */
712 new_blocks[index] = current_block;
713 }
714 blk_allocated += ar.len;
715 }
716 allocated:
717 /* total number of blocks allocated for direct blocks */
718 ret = blk_allocated;
719 *err = 0;
720 return ret;
721 failed_out:
722 for (i = 0; i < index; i++)
723 ext4_free_blocks(handle, inode, 0, new_blocks[i], 1, 0);
724 return ret;
725 }
726
727 /**
728 * ext4_alloc_branch - allocate and set up a chain of blocks.
729 * @handle: handle for this transaction
730 * @inode: owner
731 * @indirect_blks: number of allocated indirect blocks
732 * @blks: number of allocated direct blocks
733 * @goal: preferred place for allocation
734 * @offsets: offsets (in the blocks) to store the pointers to next.
735 * @branch: place to store the chain in.
736 *
737 * This function allocates blocks, zeroes out all but the last one,
738 * links them into chain and (if we are synchronous) writes them to disk.
739 * In other words, it prepares a branch that can be spliced onto the
740 * inode. It stores the information about that chain in the branch[], in
741 * the same format as ext4_get_branch() would do. We are calling it after
742 * we had read the existing part of chain and partial points to the last
743 * triple of that (one with zero ->key). Upon the exit we have the same
744 * picture as after the successful ext4_get_block(), except that in one
745 * place chain is disconnected - *branch->p is still zero (we did not
746 * set the last link), but branch->key contains the number that should
747 * be placed into *branch->p to fill that gap.
748 *
749 * If allocation fails we free all blocks we've allocated (and forget
750 * their buffer_heads) and return the error value the from failed
751 * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
752 * as described above and return 0.
753 */
754 static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
755 ext4_lblk_t iblock, int indirect_blks,
756 int *blks, ext4_fsblk_t goal,
757 ext4_lblk_t *offsets, Indirect *branch)
758 {
759 int blocksize = inode->i_sb->s_blocksize;
760 int i, n = 0;
761 int err = 0;
762 struct buffer_head *bh;
763 int num;
764 ext4_fsblk_t new_blocks[4];
765 ext4_fsblk_t current_block;
766
767 num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
768 *blks, new_blocks, &err);
769 if (err)
770 return err;
771
772 branch[0].key = cpu_to_le32(new_blocks[0]);
773 /*
774 * metadata blocks and data blocks are allocated.
775 */
776 for (n = 1; n <= indirect_blks; n++) {
777 /*
778 * Get buffer_head for parent block, zero it out
779 * and set the pointer to new one, then send
780 * parent to disk.
781 */
782 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
783 if (unlikely(!bh)) {
784 err = -EIO;
785 goto failed;
786 }
787
788 branch[n].bh = bh;
789 lock_buffer(bh);
790 BUFFER_TRACE(bh, "call get_create_access");
791 err = ext4_journal_get_create_access(handle, bh);
792 if (err) {
793 /* Don't brelse(bh) here; it's done in
794 * ext4_journal_forget() below */
795 unlock_buffer(bh);
796 goto failed;
797 }
798
799 memset(bh->b_data, 0, blocksize);
800 branch[n].p = (__le32 *) bh->b_data + offsets[n];
801 branch[n].key = cpu_to_le32(new_blocks[n]);
802 *branch[n].p = branch[n].key;
803 if (n == indirect_blks) {
804 current_block = new_blocks[n];
805 /*
806 * End of chain, update the last new metablock of
807 * the chain to point to the new allocated
808 * data blocks numbers
809 */
810 for (i = 1; i < num; i++)
811 *(branch[n].p + i) = cpu_to_le32(++current_block);
812 }
813 BUFFER_TRACE(bh, "marking uptodate");
814 set_buffer_uptodate(bh);
815 unlock_buffer(bh);
816
817 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
818 err = ext4_handle_dirty_metadata(handle, inode, bh);
819 if (err)
820 goto failed;
821 }
822 *blks = num;
823 return err;
824 failed:
825 /* Allocation failed, free what we already allocated */
826 ext4_free_blocks(handle, inode, 0, new_blocks[0], 1, 0);
827 for (i = 1; i <= n ; i++) {
828 /*
829 * branch[i].bh is newly allocated, so there is no
830 * need to revoke the block, which is why we don't
831 * need to set EXT4_FREE_BLOCKS_METADATA.
832 */
833 ext4_free_blocks(handle, inode, 0, new_blocks[i], 1,
834 EXT4_FREE_BLOCKS_FORGET);
835 }
836 for (i = n+1; i < indirect_blks; i++)
837 ext4_free_blocks(handle, inode, 0, new_blocks[i], 1, 0);
838
839 ext4_free_blocks(handle, inode, 0, new_blocks[i], num, 0);
840
841 return err;
842 }
843
844 /**
845 * ext4_splice_branch - splice the allocated branch onto inode.
846 * @handle: handle for this transaction
847 * @inode: owner
848 * @block: (logical) number of block we are adding
849 * @chain: chain of indirect blocks (with a missing link - see
850 * ext4_alloc_branch)
851 * @where: location of missing link
852 * @num: number of indirect blocks we are adding
853 * @blks: number of direct blocks we are adding
854 *
855 * This function fills the missing link and does all housekeeping needed in
856 * inode (->i_blocks, etc.). In case of success we end up with the full
857 * chain to new block and return 0.
858 */
859 static int ext4_splice_branch(handle_t *handle, struct inode *inode,
860 ext4_lblk_t block, Indirect *where, int num,
861 int blks)
862 {
863 int i;
864 int err = 0;
865 ext4_fsblk_t current_block;
866
867 /*
868 * If we're splicing into a [td]indirect block (as opposed to the
869 * inode) then we need to get write access to the [td]indirect block
870 * before the splice.
871 */
872 if (where->bh) {
873 BUFFER_TRACE(where->bh, "get_write_access");
874 err = ext4_journal_get_write_access(handle, where->bh);
875 if (err)
876 goto err_out;
877 }
878 /* That's it */
879
880 *where->p = where->key;
881
882 /*
883 * Update the host buffer_head or inode to point to more just allocated
884 * direct blocks blocks
885 */
886 if (num == 0 && blks > 1) {
887 current_block = le32_to_cpu(where->key) + 1;
888 for (i = 1; i < blks; i++)
889 *(where->p + i) = cpu_to_le32(current_block++);
890 }
891
892 /* We are done with atomic stuff, now do the rest of housekeeping */
893 /* had we spliced it onto indirect block? */
894 if (where->bh) {
895 /*
896 * If we spliced it onto an indirect block, we haven't
897 * altered the inode. Note however that if it is being spliced
898 * onto an indirect block at the very end of the file (the
899 * file is growing) then we *will* alter the inode to reflect
900 * the new i_size. But that is not done here - it is done in
901 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
902 */
903 jbd_debug(5, "splicing indirect only\n");
904 BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
905 err = ext4_handle_dirty_metadata(handle, inode, where->bh);
906 if (err)
907 goto err_out;
908 } else {
909 /*
910 * OK, we spliced it into the inode itself on a direct block.
911 */
912 ext4_mark_inode_dirty(handle, inode);
913 jbd_debug(5, "splicing direct\n");
914 }
915 return err;
916
917 err_out:
918 for (i = 1; i <= num; i++) {
919 /*
920 * branch[i].bh is newly allocated, so there is no
921 * need to revoke the block, which is why we don't
922 * need to set EXT4_FREE_BLOCKS_METADATA.
923 */
924 ext4_free_blocks(handle, inode, where[i].bh, 0, 1,
925 EXT4_FREE_BLOCKS_FORGET);
926 }
927 ext4_free_blocks(handle, inode, 0, le32_to_cpu(where[num].key),
928 blks, 0);
929
930 return err;
931 }
932
933 /*
934 * The ext4_ind_map_blocks() function handles non-extents inodes
935 * (i.e., using the traditional indirect/double-indirect i_blocks
936 * scheme) for ext4_map_blocks().
937 *
938 * Allocation strategy is simple: if we have to allocate something, we will
939 * have to go the whole way to leaf. So let's do it before attaching anything
940 * to tree, set linkage between the newborn blocks, write them if sync is
941 * required, recheck the path, free and repeat if check fails, otherwise
942 * set the last missing link (that will protect us from any truncate-generated
943 * removals - all blocks on the path are immune now) and possibly force the
944 * write on the parent block.
945 * That has a nice additional property: no special recovery from the failed
946 * allocations is needed - we simply release blocks and do not touch anything
947 * reachable from inode.
948 *
949 * `handle' can be NULL if create == 0.
950 *
951 * return > 0, # of blocks mapped or allocated.
952 * return = 0, if plain lookup failed.
953 * return < 0, error case.
954 *
955 * The ext4_ind_get_blocks() function should be called with
956 * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
957 * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
958 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
959 * blocks.
960 */
961 static int ext4_ind_map_blocks(handle_t *handle, struct inode *inode,
962 struct ext4_map_blocks *map,
963 int flags)
964 {
965 int err = -EIO;
966 ext4_lblk_t offsets[4];
967 Indirect chain[4];
968 Indirect *partial;
969 ext4_fsblk_t goal;
970 int indirect_blks;
971 int blocks_to_boundary = 0;
972 int depth;
973 int count = 0;
974 ext4_fsblk_t first_block = 0;
975
976 J_ASSERT(!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)));
977 J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
978 depth = ext4_block_to_path(inode, map->m_lblk, offsets,
979 &blocks_to_boundary);
980
981 if (depth == 0)
982 goto out;
983
984 partial = ext4_get_branch(inode, depth, offsets, chain, &err);
985
986 /* Simplest case - block found, no allocation needed */
987 if (!partial) {
988 first_block = le32_to_cpu(chain[depth - 1].key);
989 count++;
990 /*map more blocks*/
991 while (count < map->m_len && count <= blocks_to_boundary) {
992 ext4_fsblk_t blk;
993
994 blk = le32_to_cpu(*(chain[depth-1].p + count));
995
996 if (blk == first_block + count)
997 count++;
998 else
999 break;
1000 }
1001 goto got_it;
1002 }
1003
1004 /* Next simple case - plain lookup or failed read of indirect block */
1005 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO)
1006 goto cleanup;
1007
1008 /*
1009 * Okay, we need to do block allocation.
1010 */
1011 goal = ext4_find_goal(inode, map->m_lblk, partial);
1012
1013 /* the number of blocks need to allocate for [d,t]indirect blocks */
1014 indirect_blks = (chain + depth) - partial - 1;
1015
1016 /*
1017 * Next look up the indirect map to count the totoal number of
1018 * direct blocks to allocate for this branch.
1019 */
1020 count = ext4_blks_to_allocate(partial, indirect_blks,
1021 map->m_len, blocks_to_boundary);
1022 /*
1023 * Block out ext4_truncate while we alter the tree
1024 */
1025 err = ext4_alloc_branch(handle, inode, map->m_lblk, indirect_blks,
1026 &count, goal,
1027 offsets + (partial - chain), partial);
1028
1029 /*
1030 * The ext4_splice_branch call will free and forget any buffers
1031 * on the new chain if there is a failure, but that risks using
1032 * up transaction credits, especially for bitmaps where the
1033 * credits cannot be returned. Can we handle this somehow? We
1034 * may need to return -EAGAIN upwards in the worst case. --sct
1035 */
1036 if (!err)
1037 err = ext4_splice_branch(handle, inode, map->m_lblk,
1038 partial, indirect_blks, count);
1039 if (err)
1040 goto cleanup;
1041
1042 map->m_flags |= EXT4_MAP_NEW;
1043
1044 ext4_update_inode_fsync_trans(handle, inode, 1);
1045 got_it:
1046 map->m_flags |= EXT4_MAP_MAPPED;
1047 map->m_pblk = le32_to_cpu(chain[depth-1].key);
1048 map->m_len = count;
1049 if (count > blocks_to_boundary)
1050 map->m_flags |= EXT4_MAP_BOUNDARY;
1051 err = count;
1052 /* Clean up and exit */
1053 partial = chain + depth - 1; /* the whole chain */
1054 cleanup:
1055 while (partial > chain) {
1056 BUFFER_TRACE(partial->bh, "call brelse");
1057 brelse(partial->bh);
1058 partial--;
1059 }
1060 out:
1061 return err;
1062 }
1063
1064 #ifdef CONFIG_QUOTA
1065 qsize_t *ext4_get_reserved_space(struct inode *inode)
1066 {
1067 return &EXT4_I(inode)->i_reserved_quota;
1068 }
1069 #endif
1070
1071 /*
1072 * Calculate the number of metadata blocks need to reserve
1073 * to allocate a new block at @lblocks for non extent file based file
1074 */
1075 static int ext4_indirect_calc_metadata_amount(struct inode *inode,
1076 sector_t lblock)
1077 {
1078 struct ext4_inode_info *ei = EXT4_I(inode);
1079 sector_t dind_mask = ~((sector_t)EXT4_ADDR_PER_BLOCK(inode->i_sb) - 1);
1080 int blk_bits;
1081
1082 if (lblock < EXT4_NDIR_BLOCKS)
1083 return 0;
1084
1085 lblock -= EXT4_NDIR_BLOCKS;
1086
1087 if (ei->i_da_metadata_calc_len &&
1088 (lblock & dind_mask) == ei->i_da_metadata_calc_last_lblock) {
1089 ei->i_da_metadata_calc_len++;
1090 return 0;
1091 }
1092 ei->i_da_metadata_calc_last_lblock = lblock & dind_mask;
1093 ei->i_da_metadata_calc_len = 1;
1094 blk_bits = order_base_2(lblock);
1095 return (blk_bits / EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb)) + 1;
1096 }
1097
1098 /*
1099 * Calculate the number of metadata blocks need to reserve
1100 * to allocate a block located at @lblock
1101 */
1102 static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
1103 {
1104 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1105 return ext4_ext_calc_metadata_amount(inode, lblock);
1106
1107 return ext4_indirect_calc_metadata_amount(inode, lblock);
1108 }
1109
1110 /*
1111 * Called with i_data_sem down, which is important since we can call
1112 * ext4_discard_preallocations() from here.
1113 */
1114 void ext4_da_update_reserve_space(struct inode *inode,
1115 int used, int quota_claim)
1116 {
1117 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1118 struct ext4_inode_info *ei = EXT4_I(inode);
1119
1120 spin_lock(&ei->i_block_reservation_lock);
1121 trace_ext4_da_update_reserve_space(inode, used);
1122 if (unlikely(used > ei->i_reserved_data_blocks)) {
1123 ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d "
1124 "with only %d reserved data blocks\n",
1125 __func__, inode->i_ino, used,
1126 ei->i_reserved_data_blocks);
1127 WARN_ON(1);
1128 used = ei->i_reserved_data_blocks;
1129 }
1130
1131 /* Update per-inode reservations */
1132 ei->i_reserved_data_blocks -= used;
1133 ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
1134 percpu_counter_sub(&sbi->s_dirtyblocks_counter,
1135 used + ei->i_allocated_meta_blocks);
1136 ei->i_allocated_meta_blocks = 0;
1137
1138 if (ei->i_reserved_data_blocks == 0) {
1139 /*
1140 * We can release all of the reserved metadata blocks
1141 * only when we have written all of the delayed
1142 * allocation blocks.
1143 */
1144 percpu_counter_sub(&sbi->s_dirtyblocks_counter,
1145 ei->i_reserved_meta_blocks);
1146 ei->i_reserved_meta_blocks = 0;
1147 ei->i_da_metadata_calc_len = 0;
1148 }
1149 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1150
1151 /* Update quota subsystem for data blocks */
1152 if (quota_claim)
1153 dquot_claim_block(inode, used);
1154 else {
1155 /*
1156 * We did fallocate with an offset that is already delayed
1157 * allocated. So on delayed allocated writeback we should
1158 * not re-claim the quota for fallocated blocks.
1159 */
1160 dquot_release_reservation_block(inode, used);
1161 }
1162
1163 /*
1164 * If we have done all the pending block allocations and if
1165 * there aren't any writers on the inode, we can discard the
1166 * inode's preallocations.
1167 */
1168 if ((ei->i_reserved_data_blocks == 0) &&
1169 (atomic_read(&inode->i_writecount) == 0))
1170 ext4_discard_preallocations(inode);
1171 }
1172
1173 static int __check_block_validity(struct inode *inode, const char *func,
1174 unsigned int line,
1175 struct ext4_map_blocks *map)
1176 {
1177 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
1178 map->m_len)) {
1179 ext4_error_inode(inode, func, line, map->m_pblk,
1180 "lblock %lu mapped to illegal pblock "
1181 "(length %d)", (unsigned long) map->m_lblk,
1182 map->m_len);
1183 return -EIO;
1184 }
1185 return 0;
1186 }
1187
1188 #define check_block_validity(inode, map) \
1189 __check_block_validity((inode), __func__, __LINE__, (map))
1190
1191 /*
1192 * Return the number of contiguous dirty pages in a given inode
1193 * starting at page frame idx.
1194 */
1195 static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
1196 unsigned int max_pages)
1197 {
1198 struct address_space *mapping = inode->i_mapping;
1199 pgoff_t index;
1200 struct pagevec pvec;
1201 pgoff_t num = 0;
1202 int i, nr_pages, done = 0;
1203
1204 if (max_pages == 0)
1205 return 0;
1206 pagevec_init(&pvec, 0);
1207 while (!done) {
1208 index = idx;
1209 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
1210 PAGECACHE_TAG_DIRTY,
1211 (pgoff_t)PAGEVEC_SIZE);
1212 if (nr_pages == 0)
1213 break;
1214 for (i = 0; i < nr_pages; i++) {
1215 struct page *page = pvec.pages[i];
1216 struct buffer_head *bh, *head;
1217
1218 lock_page(page);
1219 if (unlikely(page->mapping != mapping) ||
1220 !PageDirty(page) ||
1221 PageWriteback(page) ||
1222 page->index != idx) {
1223 done = 1;
1224 unlock_page(page);
1225 break;
1226 }
1227 if (page_has_buffers(page)) {
1228 bh = head = page_buffers(page);
1229 do {
1230 if (!buffer_delay(bh) &&
1231 !buffer_unwritten(bh))
1232 done = 1;
1233 bh = bh->b_this_page;
1234 } while (!done && (bh != head));
1235 }
1236 unlock_page(page);
1237 if (done)
1238 break;
1239 idx++;
1240 num++;
1241 if (num >= max_pages) {
1242 done = 1;
1243 break;
1244 }
1245 }
1246 pagevec_release(&pvec);
1247 }
1248 return num;
1249 }
1250
1251 /*
1252 * The ext4_map_blocks() function tries to look up the requested blocks,
1253 * and returns if the blocks are already mapped.
1254 *
1255 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1256 * and store the allocated blocks in the result buffer head and mark it
1257 * mapped.
1258 *
1259 * If file type is extents based, it will call ext4_ext_map_blocks(),
1260 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
1261 * based files
1262 *
1263 * On success, it returns the number of blocks being mapped or allocate.
1264 * if create==0 and the blocks are pre-allocated and uninitialized block,
1265 * the result buffer head is unmapped. If the create ==1, it will make sure
1266 * the buffer head is mapped.
1267 *
1268 * It returns 0 if plain look up failed (blocks have not been allocated), in
1269 * that casem, buffer head is unmapped
1270 *
1271 * It returns the error in case of allocation failure.
1272 */
1273 int ext4_map_blocks(handle_t *handle, struct inode *inode,
1274 struct ext4_map_blocks *map, int flags)
1275 {
1276 int retval;
1277
1278 map->m_flags = 0;
1279 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
1280 "logical block %lu\n", inode->i_ino, flags, map->m_len,
1281 (unsigned long) map->m_lblk);
1282 /*
1283 * Try to see if we can get the block without requesting a new
1284 * file system block.
1285 */
1286 down_read((&EXT4_I(inode)->i_data_sem));
1287 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
1288 retval = ext4_ext_map_blocks(handle, inode, map, 0);
1289 } else {
1290 retval = ext4_ind_map_blocks(handle, inode, map, 0);
1291 }
1292 up_read((&EXT4_I(inode)->i_data_sem));
1293
1294 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
1295 int ret = check_block_validity(inode, map);
1296 if (ret != 0)
1297 return ret;
1298 }
1299
1300 /* If it is only a block(s) look up */
1301 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
1302 return retval;
1303
1304 /*
1305 * Returns if the blocks have already allocated
1306 *
1307 * Note that if blocks have been preallocated
1308 * ext4_ext_get_block() returns th create = 0
1309 * with buffer head unmapped.
1310 */
1311 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
1312 return retval;
1313
1314 /*
1315 * When we call get_blocks without the create flag, the
1316 * BH_Unwritten flag could have gotten set if the blocks
1317 * requested were part of a uninitialized extent. We need to
1318 * clear this flag now that we are committed to convert all or
1319 * part of the uninitialized extent to be an initialized
1320 * extent. This is because we need to avoid the combination
1321 * of BH_Unwritten and BH_Mapped flags being simultaneously
1322 * set on the buffer_head.
1323 */
1324 map->m_flags &= ~EXT4_MAP_UNWRITTEN;
1325
1326 /*
1327 * New blocks allocate and/or writing to uninitialized extent
1328 * will possibly result in updating i_data, so we take
1329 * the write lock of i_data_sem, and call get_blocks()
1330 * with create == 1 flag.
1331 */
1332 down_write((&EXT4_I(inode)->i_data_sem));
1333
1334 /*
1335 * if the caller is from delayed allocation writeout path
1336 * we have already reserved fs blocks for allocation
1337 * let the underlying get_block() function know to
1338 * avoid double accounting
1339 */
1340 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1341 ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
1342 /*
1343 * We need to check for EXT4 here because migrate
1344 * could have changed the inode type in between
1345 */
1346 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
1347 retval = ext4_ext_map_blocks(handle, inode, map, flags);
1348 } else {
1349 retval = ext4_ind_map_blocks(handle, inode, map, flags);
1350
1351 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
1352 /*
1353 * We allocated new blocks which will result in
1354 * i_data's format changing. Force the migrate
1355 * to fail by clearing migrate flags
1356 */
1357 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
1358 }
1359
1360 /*
1361 * Update reserved blocks/metadata blocks after successful
1362 * block allocation which had been deferred till now. We don't
1363 * support fallocate for non extent files. So we can update
1364 * reserve space here.
1365 */
1366 if ((retval > 0) &&
1367 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
1368 ext4_da_update_reserve_space(inode, retval, 1);
1369 }
1370 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1371 ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
1372
1373 up_write((&EXT4_I(inode)->i_data_sem));
1374 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
1375 int ret = check_block_validity(inode, map);
1376 if (ret != 0)
1377 return ret;
1378 }
1379 return retval;
1380 }
1381
1382 /* Maximum number of blocks we map for direct IO at once. */
1383 #define DIO_MAX_BLOCKS 4096
1384
1385 static int _ext4_get_block(struct inode *inode, sector_t iblock,
1386 struct buffer_head *bh, int flags)
1387 {
1388 handle_t *handle = ext4_journal_current_handle();
1389 struct ext4_map_blocks map;
1390 int ret = 0, started = 0;
1391 int dio_credits;
1392
1393 map.m_lblk = iblock;
1394 map.m_len = bh->b_size >> inode->i_blkbits;
1395
1396 if (flags && !handle) {
1397 /* Direct IO write... */
1398 if (map.m_len > DIO_MAX_BLOCKS)
1399 map.m_len = DIO_MAX_BLOCKS;
1400 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
1401 handle = ext4_journal_start(inode, dio_credits);
1402 if (IS_ERR(handle)) {
1403 ret = PTR_ERR(handle);
1404 return ret;
1405 }
1406 started = 1;
1407 }
1408
1409 ret = ext4_map_blocks(handle, inode, &map, flags);
1410 if (ret > 0) {
1411 map_bh(bh, inode->i_sb, map.m_pblk);
1412 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1413 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
1414 ret = 0;
1415 }
1416 if (started)
1417 ext4_journal_stop(handle);
1418 return ret;
1419 }
1420
1421 int ext4_get_block(struct inode *inode, sector_t iblock,
1422 struct buffer_head *bh, int create)
1423 {
1424 return _ext4_get_block(inode, iblock, bh,
1425 create ? EXT4_GET_BLOCKS_CREATE : 0);
1426 }
1427
1428 /*
1429 * `handle' can be NULL if create is zero
1430 */
1431 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
1432 ext4_lblk_t block, int create, int *errp)
1433 {
1434 struct ext4_map_blocks map;
1435 struct buffer_head *bh;
1436 int fatal = 0, err;
1437
1438 J_ASSERT(handle != NULL || create == 0);
1439
1440 map.m_lblk = block;
1441 map.m_len = 1;
1442 err = ext4_map_blocks(handle, inode, &map,
1443 create ? EXT4_GET_BLOCKS_CREATE : 0);
1444
1445 if (err < 0)
1446 *errp = err;
1447 if (err <= 0)
1448 return NULL;
1449 *errp = 0;
1450
1451 bh = sb_getblk(inode->i_sb, map.m_pblk);
1452 if (!bh) {
1453 *errp = -EIO;
1454 return NULL;
1455 }
1456 if (map.m_flags & EXT4_MAP_NEW) {
1457 J_ASSERT(create != 0);
1458 J_ASSERT(handle != NULL);
1459
1460 /*
1461 * Now that we do not always journal data, we should
1462 * keep in mind whether this should always journal the
1463 * new buffer as metadata. For now, regular file
1464 * writes use ext4_get_block instead, so it's not a
1465 * problem.
1466 */
1467 lock_buffer(bh);
1468 BUFFER_TRACE(bh, "call get_create_access");
1469 fatal = ext4_journal_get_create_access(handle, bh);
1470 if (!fatal && !buffer_uptodate(bh)) {
1471 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1472 set_buffer_uptodate(bh);
1473 }
1474 unlock_buffer(bh);
1475 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1476 err = ext4_handle_dirty_metadata(handle, inode, bh);
1477 if (!fatal)
1478 fatal = err;
1479 } else {
1480 BUFFER_TRACE(bh, "not a new buffer");
1481 }
1482 if (fatal) {
1483 *errp = fatal;
1484 brelse(bh);
1485 bh = NULL;
1486 }
1487 return bh;
1488 }
1489
1490 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1491 ext4_lblk_t block, int create, int *err)
1492 {
1493 struct buffer_head *bh;
1494
1495 bh = ext4_getblk(handle, inode, block, create, err);
1496 if (!bh)
1497 return bh;
1498 if (buffer_uptodate(bh))
1499 return bh;
1500 ll_rw_block(READ_META, 1, &bh);
1501 wait_on_buffer(bh);
1502 if (buffer_uptodate(bh))
1503 return bh;
1504 put_bh(bh);
1505 *err = -EIO;
1506 return NULL;
1507 }
1508
1509 static int walk_page_buffers(handle_t *handle,
1510 struct buffer_head *head,
1511 unsigned from,
1512 unsigned to,
1513 int *partial,
1514 int (*fn)(handle_t *handle,
1515 struct buffer_head *bh))
1516 {
1517 struct buffer_head *bh;
1518 unsigned block_start, block_end;
1519 unsigned blocksize = head->b_size;
1520 int err, ret = 0;
1521 struct buffer_head *next;
1522
1523 for (bh = head, block_start = 0;
1524 ret == 0 && (bh != head || !block_start);
1525 block_start = block_end, bh = next) {
1526 next = bh->b_this_page;
1527 block_end = block_start + blocksize;
1528 if (block_end <= from || block_start >= to) {
1529 if (partial && !buffer_uptodate(bh))
1530 *partial = 1;
1531 continue;
1532 }
1533 err = (*fn)(handle, bh);
1534 if (!ret)
1535 ret = err;
1536 }
1537 return ret;
1538 }
1539
1540 /*
1541 * To preserve ordering, it is essential that the hole instantiation and
1542 * the data write be encapsulated in a single transaction. We cannot
1543 * close off a transaction and start a new one between the ext4_get_block()
1544 * and the commit_write(). So doing the jbd2_journal_start at the start of
1545 * prepare_write() is the right place.
1546 *
1547 * Also, this function can nest inside ext4_writepage() ->
1548 * block_write_full_page(). In that case, we *know* that ext4_writepage()
1549 * has generated enough buffer credits to do the whole page. So we won't
1550 * block on the journal in that case, which is good, because the caller may
1551 * be PF_MEMALLOC.
1552 *
1553 * By accident, ext4 can be reentered when a transaction is open via
1554 * quota file writes. If we were to commit the transaction while thus
1555 * reentered, there can be a deadlock - we would be holding a quota
1556 * lock, and the commit would never complete if another thread had a
1557 * transaction open and was blocking on the quota lock - a ranking
1558 * violation.
1559 *
1560 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1561 * will _not_ run commit under these circumstances because handle->h_ref
1562 * is elevated. We'll still have enough credits for the tiny quotafile
1563 * write.
1564 */
1565 static int do_journal_get_write_access(handle_t *handle,
1566 struct buffer_head *bh)
1567 {
1568 int dirty = buffer_dirty(bh);
1569 int ret;
1570
1571 if (!buffer_mapped(bh) || buffer_freed(bh))
1572 return 0;
1573 /*
1574 * __block_write_begin() could have dirtied some buffers. Clean
1575 * the dirty bit as jbd2_journal_get_write_access() could complain
1576 * otherwise about fs integrity issues. Setting of the dirty bit
1577 * by __block_write_begin() isn't a real problem here as we clear
1578 * the bit before releasing a page lock and thus writeback cannot
1579 * ever write the buffer.
1580 */
1581 if (dirty)
1582 clear_buffer_dirty(bh);
1583 ret = ext4_journal_get_write_access(handle, bh);
1584 if (!ret && dirty)
1585 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1586 return ret;
1587 }
1588
1589 /*
1590 * Truncate blocks that were not used by write. We have to truncate the
1591 * pagecache as well so that corresponding buffers get properly unmapped.
1592 */
1593 static void ext4_truncate_failed_write(struct inode *inode)
1594 {
1595 truncate_inode_pages(inode->i_mapping, inode->i_size);
1596 ext4_truncate(inode);
1597 }
1598
1599 static int ext4_get_block_write(struct inode *inode, sector_t iblock,
1600 struct buffer_head *bh_result, int create);
1601 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1602 loff_t pos, unsigned len, unsigned flags,
1603 struct page **pagep, void **fsdata)
1604 {
1605 struct inode *inode = mapping->host;
1606 int ret, needed_blocks;
1607 handle_t *handle;
1608 int retries = 0;
1609 struct page *page;
1610 pgoff_t index;
1611 unsigned from, to;
1612
1613 trace_ext4_write_begin(inode, pos, len, flags);
1614 /*
1615 * Reserve one block more for addition to orphan list in case
1616 * we allocate blocks but write fails for some reason
1617 */
1618 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1619 index = pos >> PAGE_CACHE_SHIFT;
1620 from = pos & (PAGE_CACHE_SIZE - 1);
1621 to = from + len;
1622
1623 retry:
1624 handle = ext4_journal_start(inode, needed_blocks);
1625 if (IS_ERR(handle)) {
1626 ret = PTR_ERR(handle);
1627 goto out;
1628 }
1629
1630 /* We cannot recurse into the filesystem as the transaction is already
1631 * started */
1632 flags |= AOP_FLAG_NOFS;
1633
1634 page = grab_cache_page_write_begin(mapping, index, flags);
1635 if (!page) {
1636 ext4_journal_stop(handle);
1637 ret = -ENOMEM;
1638 goto out;
1639 }
1640 *pagep = page;
1641
1642 if (ext4_should_dioread_nolock(inode))
1643 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
1644 else
1645 ret = __block_write_begin(page, pos, len, ext4_get_block);
1646
1647 if (!ret && ext4_should_journal_data(inode)) {
1648 ret = walk_page_buffers(handle, page_buffers(page),
1649 from, to, NULL, do_journal_get_write_access);
1650 }
1651
1652 if (ret) {
1653 unlock_page(page);
1654 page_cache_release(page);
1655 /*
1656 * __block_write_begin may have instantiated a few blocks
1657 * outside i_size. Trim these off again. Don't need
1658 * i_size_read because we hold i_mutex.
1659 *
1660 * Add inode to orphan list in case we crash before
1661 * truncate finishes
1662 */
1663 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1664 ext4_orphan_add(handle, inode);
1665
1666 ext4_journal_stop(handle);
1667 if (pos + len > inode->i_size) {
1668 ext4_truncate_failed_write(inode);
1669 /*
1670 * If truncate failed early the inode might
1671 * still be on the orphan list; we need to
1672 * make sure the inode is removed from the
1673 * orphan list in that case.
1674 */
1675 if (inode->i_nlink)
1676 ext4_orphan_del(NULL, inode);
1677 }
1678 }
1679
1680 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1681 goto retry;
1682 out:
1683 return ret;
1684 }
1685
1686 /* For write_end() in data=journal mode */
1687 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1688 {
1689 if (!buffer_mapped(bh) || buffer_freed(bh))
1690 return 0;
1691 set_buffer_uptodate(bh);
1692 return ext4_handle_dirty_metadata(handle, NULL, bh);
1693 }
1694
1695 static int ext4_generic_write_end(struct file *file,
1696 struct address_space *mapping,
1697 loff_t pos, unsigned len, unsigned copied,
1698 struct page *page, void *fsdata)
1699 {
1700 int i_size_changed = 0;
1701 struct inode *inode = mapping->host;
1702 handle_t *handle = ext4_journal_current_handle();
1703
1704 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1705
1706 /*
1707 * No need to use i_size_read() here, the i_size
1708 * cannot change under us because we hold i_mutex.
1709 *
1710 * But it's important to update i_size while still holding page lock:
1711 * page writeout could otherwise come in and zero beyond i_size.
1712 */
1713 if (pos + copied > inode->i_size) {
1714 i_size_write(inode, pos + copied);
1715 i_size_changed = 1;
1716 }
1717
1718 if (pos + copied > EXT4_I(inode)->i_disksize) {
1719 /* We need to mark inode dirty even if
1720 * new_i_size is less that inode->i_size
1721 * bu greater than i_disksize.(hint delalloc)
1722 */
1723 ext4_update_i_disksize(inode, (pos + copied));
1724 i_size_changed = 1;
1725 }
1726 unlock_page(page);
1727 page_cache_release(page);
1728
1729 /*
1730 * Don't mark the inode dirty under page lock. First, it unnecessarily
1731 * makes the holding time of page lock longer. Second, it forces lock
1732 * ordering of page lock and transaction start for journaling
1733 * filesystems.
1734 */
1735 if (i_size_changed)
1736 ext4_mark_inode_dirty(handle, inode);
1737
1738 return copied;
1739 }
1740
1741 /*
1742 * We need to pick up the new inode size which generic_commit_write gave us
1743 * `file' can be NULL - eg, when called from page_symlink().
1744 *
1745 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1746 * buffers are managed internally.
1747 */
1748 static int ext4_ordered_write_end(struct file *file,
1749 struct address_space *mapping,
1750 loff_t pos, unsigned len, unsigned copied,
1751 struct page *page, void *fsdata)
1752 {
1753 handle_t *handle = ext4_journal_current_handle();
1754 struct inode *inode = mapping->host;
1755 int ret = 0, ret2;
1756
1757 trace_ext4_ordered_write_end(inode, pos, len, copied);
1758 ret = ext4_jbd2_file_inode(handle, inode);
1759
1760 if (ret == 0) {
1761 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1762 page, fsdata);
1763 copied = ret2;
1764 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1765 /* if we have allocated more blocks and copied
1766 * less. We will have blocks allocated outside
1767 * inode->i_size. So truncate them
1768 */
1769 ext4_orphan_add(handle, inode);
1770 if (ret2 < 0)
1771 ret = ret2;
1772 }
1773 ret2 = ext4_journal_stop(handle);
1774 if (!ret)
1775 ret = ret2;
1776
1777 if (pos + len > inode->i_size) {
1778 ext4_truncate_failed_write(inode);
1779 /*
1780 * If truncate failed early the inode might still be
1781 * on the orphan list; we need to make sure the inode
1782 * is removed from the orphan list in that case.
1783 */
1784 if (inode->i_nlink)
1785 ext4_orphan_del(NULL, inode);
1786 }
1787
1788
1789 return ret ? ret : copied;
1790 }
1791
1792 static int ext4_writeback_write_end(struct file *file,
1793 struct address_space *mapping,
1794 loff_t pos, unsigned len, unsigned copied,
1795 struct page *page, void *fsdata)
1796 {
1797 handle_t *handle = ext4_journal_current_handle();
1798 struct inode *inode = mapping->host;
1799 int ret = 0, ret2;
1800
1801 trace_ext4_writeback_write_end(inode, pos, len, copied);
1802 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1803 page, fsdata);
1804 copied = ret2;
1805 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1806 /* if we have allocated more blocks and copied
1807 * less. We will have blocks allocated outside
1808 * inode->i_size. So truncate them
1809 */
1810 ext4_orphan_add(handle, inode);
1811
1812 if (ret2 < 0)
1813 ret = ret2;
1814
1815 ret2 = ext4_journal_stop(handle);
1816 if (!ret)
1817 ret = ret2;
1818
1819 if (pos + len > inode->i_size) {
1820 ext4_truncate_failed_write(inode);
1821 /*
1822 * If truncate failed early the inode might still be
1823 * on the orphan list; we need to make sure the inode
1824 * is removed from the orphan list in that case.
1825 */
1826 if (inode->i_nlink)
1827 ext4_orphan_del(NULL, inode);
1828 }
1829
1830 return ret ? ret : copied;
1831 }
1832
1833 static int ext4_journalled_write_end(struct file *file,
1834 struct address_space *mapping,
1835 loff_t pos, unsigned len, unsigned copied,
1836 struct page *page, void *fsdata)
1837 {
1838 handle_t *handle = ext4_journal_current_handle();
1839 struct inode *inode = mapping->host;
1840 int ret = 0, ret2;
1841 int partial = 0;
1842 unsigned from, to;
1843 loff_t new_i_size;
1844
1845 trace_ext4_journalled_write_end(inode, pos, len, copied);
1846 from = pos & (PAGE_CACHE_SIZE - 1);
1847 to = from + len;
1848
1849 if (copied < len) {
1850 if (!PageUptodate(page))
1851 copied = 0;
1852 page_zero_new_buffers(page, from+copied, to);
1853 }
1854
1855 ret = walk_page_buffers(handle, page_buffers(page), from,
1856 to, &partial, write_end_fn);
1857 if (!partial)
1858 SetPageUptodate(page);
1859 new_i_size = pos + copied;
1860 if (new_i_size > inode->i_size)
1861 i_size_write(inode, pos+copied);
1862 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1863 if (new_i_size > EXT4_I(inode)->i_disksize) {
1864 ext4_update_i_disksize(inode, new_i_size);
1865 ret2 = ext4_mark_inode_dirty(handle, inode);
1866 if (!ret)
1867 ret = ret2;
1868 }
1869
1870 unlock_page(page);
1871 page_cache_release(page);
1872 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1873 /* if we have allocated more blocks and copied
1874 * less. We will have blocks allocated outside
1875 * inode->i_size. So truncate them
1876 */
1877 ext4_orphan_add(handle, inode);
1878
1879 ret2 = ext4_journal_stop(handle);
1880 if (!ret)
1881 ret = ret2;
1882 if (pos + len > inode->i_size) {
1883 ext4_truncate_failed_write(inode);
1884 /*
1885 * If truncate failed early the inode might still be
1886 * on the orphan list; we need to make sure the inode
1887 * is removed from the orphan list in that case.
1888 */
1889 if (inode->i_nlink)
1890 ext4_orphan_del(NULL, inode);
1891 }
1892
1893 return ret ? ret : copied;
1894 }
1895
1896 /*
1897 * Reserve a single block located at lblock
1898 */
1899 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1900 {
1901 int retries = 0;
1902 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1903 struct ext4_inode_info *ei = EXT4_I(inode);
1904 unsigned long md_needed;
1905 int ret;
1906
1907 /*
1908 * recalculate the amount of metadata blocks to reserve
1909 * in order to allocate nrblocks
1910 * worse case is one extent per block
1911 */
1912 repeat:
1913 spin_lock(&ei->i_block_reservation_lock);
1914 md_needed = ext4_calc_metadata_amount(inode, lblock);
1915 trace_ext4_da_reserve_space(inode, md_needed);
1916 spin_unlock(&ei->i_block_reservation_lock);
1917
1918 /*
1919 * We will charge metadata quota at writeout time; this saves
1920 * us from metadata over-estimation, though we may go over by
1921 * a small amount in the end. Here we just reserve for data.
1922 */
1923 ret = dquot_reserve_block(inode, 1);
1924 if (ret)
1925 return ret;
1926 /*
1927 * We do still charge estimated metadata to the sb though;
1928 * we cannot afford to run out of free blocks.
1929 */
1930 if (ext4_claim_free_blocks(sbi, md_needed + 1)) {
1931 dquot_release_reservation_block(inode, 1);
1932 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1933 yield();
1934 goto repeat;
1935 }
1936 return -ENOSPC;
1937 }
1938 spin_lock(&ei->i_block_reservation_lock);
1939 ei->i_reserved_data_blocks++;
1940 ei->i_reserved_meta_blocks += md_needed;
1941 spin_unlock(&ei->i_block_reservation_lock);
1942
1943 return 0; /* success */
1944 }
1945
1946 static void ext4_da_release_space(struct inode *inode, int to_free)
1947 {
1948 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1949 struct ext4_inode_info *ei = EXT4_I(inode);
1950
1951 if (!to_free)
1952 return; /* Nothing to release, exit */
1953
1954 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1955
1956 trace_ext4_da_release_space(inode, to_free);
1957 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1958 /*
1959 * if there aren't enough reserved blocks, then the
1960 * counter is messed up somewhere. Since this
1961 * function is called from invalidate page, it's
1962 * harmless to return without any action.
1963 */
1964 ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: "
1965 "ino %lu, to_free %d with only %d reserved "
1966 "data blocks\n", inode->i_ino, to_free,
1967 ei->i_reserved_data_blocks);
1968 WARN_ON(1);
1969 to_free = ei->i_reserved_data_blocks;
1970 }
1971 ei->i_reserved_data_blocks -= to_free;
1972
1973 if (ei->i_reserved_data_blocks == 0) {
1974 /*
1975 * We can release all of the reserved metadata blocks
1976 * only when we have written all of the delayed
1977 * allocation blocks.
1978 */
1979 percpu_counter_sub(&sbi->s_dirtyblocks_counter,
1980 ei->i_reserved_meta_blocks);
1981 ei->i_reserved_meta_blocks = 0;
1982 ei->i_da_metadata_calc_len = 0;
1983 }
1984
1985 /* update fs dirty data blocks counter */
1986 percpu_counter_sub(&sbi->s_dirtyblocks_counter, to_free);
1987
1988 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1989
1990 dquot_release_reservation_block(inode, to_free);
1991 }
1992
1993 static void ext4_da_page_release_reservation(struct page *page,
1994 unsigned long offset)
1995 {
1996 int to_release = 0;
1997 struct buffer_head *head, *bh;
1998 unsigned int curr_off = 0;
1999
2000 head = page_buffers(page);
2001 bh = head;
2002 do {
2003 unsigned int next_off = curr_off + bh->b_size;
2004
2005 if ((offset <= curr_off) && (buffer_delay(bh))) {
2006 to_release++;
2007 clear_buffer_delay(bh);
2008 }
2009 curr_off = next_off;
2010 } while ((bh = bh->b_this_page) != head);
2011 ext4_da_release_space(page->mapping->host, to_release);
2012 }
2013
2014 /*
2015 * Delayed allocation stuff
2016 */
2017
2018 /*
2019 * mpage_da_submit_io - walks through extent of pages and try to write
2020 * them with writepage() call back
2021 *
2022 * @mpd->inode: inode
2023 * @mpd->first_page: first page of the extent
2024 * @mpd->next_page: page after the last page of the extent
2025 *
2026 * By the time mpage_da_submit_io() is called we expect all blocks
2027 * to be allocated. this may be wrong if allocation failed.
2028 *
2029 * As pages are already locked by write_cache_pages(), we can't use it
2030 */
2031 static int mpage_da_submit_io(struct mpage_da_data *mpd,
2032 struct ext4_map_blocks *map)
2033 {
2034 struct pagevec pvec;
2035 unsigned long index, end;
2036 int ret = 0, err, nr_pages, i;
2037 struct inode *inode = mpd->inode;
2038 struct address_space *mapping = inode->i_mapping;
2039 loff_t size = i_size_read(inode);
2040 unsigned int len, block_start;
2041 struct buffer_head *bh, *page_bufs = NULL;
2042 int journal_data = ext4_should_journal_data(inode);
2043 sector_t pblock = 0, cur_logical = 0;
2044 struct ext4_io_submit io_submit;
2045
2046 BUG_ON(mpd->next_page <= mpd->first_page);
2047 memset(&io_submit, 0, sizeof(io_submit));
2048 /*
2049 * We need to start from the first_page to the next_page - 1
2050 * to make sure we also write the mapped dirty buffer_heads.
2051 * If we look at mpd->b_blocknr we would only be looking
2052 * at the currently mapped buffer_heads.
2053 */
2054 index = mpd->first_page;
2055 end = mpd->next_page - 1;
2056
2057 pagevec_init(&pvec, 0);
2058 while (index <= end) {
2059 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2060 if (nr_pages == 0)
2061 break;
2062 for (i = 0; i < nr_pages; i++) {
2063 int commit_write = 0, redirty_page = 0;
2064 struct page *page = pvec.pages[i];
2065
2066 index = page->index;
2067 if (index > end)
2068 break;
2069
2070 if (index == size >> PAGE_CACHE_SHIFT)
2071 len = size & ~PAGE_CACHE_MASK;
2072 else
2073 len = PAGE_CACHE_SIZE;
2074 if (map) {
2075 cur_logical = index << (PAGE_CACHE_SHIFT -
2076 inode->i_blkbits);
2077 pblock = map->m_pblk + (cur_logical -
2078 map->m_lblk);
2079 }
2080 index++;
2081
2082 BUG_ON(!PageLocked(page));
2083 BUG_ON(PageWriteback(page));
2084
2085 /*
2086 * If the page does not have buffers (for
2087 * whatever reason), try to create them using
2088 * __block_write_begin. If this fails,
2089 * redirty the page and move on.
2090 */
2091 if (!page_has_buffers(page)) {
2092 if (__block_write_begin(page, 0, len,
2093 noalloc_get_block_write)) {
2094 redirty_page:
2095 redirty_page_for_writepage(mpd->wbc,
2096 page);
2097 unlock_page(page);
2098 continue;
2099 }
2100 commit_write = 1;
2101 }
2102
2103 bh = page_bufs = page_buffers(page);
2104 block_start = 0;
2105 do {
2106 if (!bh)
2107 goto redirty_page;
2108 if (map && (cur_logical >= map->m_lblk) &&
2109 (cur_logical <= (map->m_lblk +
2110 (map->m_len - 1)))) {
2111 if (buffer_delay(bh)) {
2112 clear_buffer_delay(bh);
2113 bh->b_blocknr = pblock;
2114 }
2115 if (buffer_unwritten(bh) ||
2116 buffer_mapped(bh))
2117 BUG_ON(bh->b_blocknr != pblock);
2118 if (map->m_flags & EXT4_MAP_UNINIT)
2119 set_buffer_uninit(bh);
2120 clear_buffer_unwritten(bh);
2121 }
2122
2123 /* redirty page if block allocation undone */
2124 if (buffer_delay(bh) || buffer_unwritten(bh))
2125 redirty_page = 1;
2126 bh = bh->b_this_page;
2127 block_start += bh->b_size;
2128 cur_logical++;
2129 pblock++;
2130 } while (bh != page_bufs);
2131
2132 if (redirty_page)
2133 goto redirty_page;
2134
2135 if (commit_write)
2136 /* mark the buffer_heads as dirty & uptodate */
2137 block_commit_write(page, 0, len);
2138
2139 /*
2140 * Delalloc doesn't support data journalling,
2141 * but eventually maybe we'll lift this
2142 * restriction.
2143 */
2144 if (unlikely(journal_data && PageChecked(page)))
2145 err = __ext4_journalled_writepage(page, len);
2146 else if (test_opt(inode->i_sb, MBLK_IO_SUBMIT))
2147 err = ext4_bio_write_page(&io_submit, page,
2148 len, mpd->wbc);
2149 else
2150 err = block_write_full_page(page,
2151 noalloc_get_block_write, mpd->wbc);
2152
2153 if (!err)
2154 mpd->pages_written++;
2155 /*
2156 * In error case, we have to continue because
2157 * remaining pages are still locked
2158 */
2159 if (ret == 0)
2160 ret = err;
2161 }
2162 pagevec_release(&pvec);
2163 }
2164 ext4_io_submit(&io_submit);
2165 return ret;
2166 }
2167
2168 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd,
2169 sector_t logical, long blk_cnt)
2170 {
2171 int nr_pages, i;
2172 pgoff_t index, end;
2173 struct pagevec pvec;
2174 struct inode *inode = mpd->inode;
2175 struct address_space *mapping = inode->i_mapping;
2176
2177 index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2178 end = (logical + blk_cnt - 1) >>
2179 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2180 while (index <= end) {
2181 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2182 if (nr_pages == 0)
2183 break;
2184 for (i = 0; i < nr_pages; i++) {
2185 struct page *page = pvec.pages[i];
2186 if (page->index > end)
2187 break;
2188 BUG_ON(!PageLocked(page));
2189 BUG_ON(PageWriteback(page));
2190 block_invalidatepage(page, 0);
2191 ClearPageUptodate(page);
2192 unlock_page(page);
2193 }
2194 index = pvec.pages[nr_pages - 1]->index + 1;
2195 pagevec_release(&pvec);
2196 }
2197 return;
2198 }
2199
2200 static void ext4_print_free_blocks(struct inode *inode)
2201 {
2202 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2203 printk(KERN_CRIT "Total free blocks count %lld\n",
2204 ext4_count_free_blocks(inode->i_sb));
2205 printk(KERN_CRIT "Free/Dirty block details\n");
2206 printk(KERN_CRIT "free_blocks=%lld\n",
2207 (long long) percpu_counter_sum(&sbi->s_freeblocks_counter));
2208 printk(KERN_CRIT "dirty_blocks=%lld\n",
2209 (long long) percpu_counter_sum(&sbi->s_dirtyblocks_counter));
2210 printk(KERN_CRIT "Block reservation details\n");
2211 printk(KERN_CRIT "i_reserved_data_blocks=%u\n",
2212 EXT4_I(inode)->i_reserved_data_blocks);
2213 printk(KERN_CRIT "i_reserved_meta_blocks=%u\n",
2214 EXT4_I(inode)->i_reserved_meta_blocks);
2215 return;
2216 }
2217
2218 /*
2219 * mpage_da_map_and_submit - go through given space, map them
2220 * if necessary, and then submit them for I/O
2221 *
2222 * @mpd - bh describing space
2223 *
2224 * The function skips space we know is already mapped to disk blocks.
2225 *
2226 */
2227 static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
2228 {
2229 int err, blks, get_blocks_flags;
2230 struct ext4_map_blocks map, *mapp = NULL;
2231 sector_t next = mpd->b_blocknr;
2232 unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
2233 loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
2234 handle_t *handle = NULL;
2235
2236 /*
2237 * If the blocks are mapped already, or we couldn't accumulate
2238 * any blocks, then proceed immediately to the submission stage.
2239 */
2240 if ((mpd->b_size == 0) ||
2241 ((mpd->b_state & (1 << BH_Mapped)) &&
2242 !(mpd->b_state & (1 << BH_Delay)) &&
2243 !(mpd->b_state & (1 << BH_Unwritten))))
2244 goto submit_io;
2245
2246 handle = ext4_journal_current_handle();
2247 BUG_ON(!handle);
2248
2249 /*
2250 * Call ext4_map_blocks() to allocate any delayed allocation
2251 * blocks, or to convert an uninitialized extent to be
2252 * initialized (in the case where we have written into
2253 * one or more preallocated blocks).
2254 *
2255 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
2256 * indicate that we are on the delayed allocation path. This
2257 * affects functions in many different parts of the allocation
2258 * call path. This flag exists primarily because we don't
2259 * want to change *many* call functions, so ext4_map_blocks()
2260 * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
2261 * inode's allocation semaphore is taken.
2262 *
2263 * If the blocks in questions were delalloc blocks, set
2264 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
2265 * variables are updated after the blocks have been allocated.
2266 */
2267 map.m_lblk = next;
2268 map.m_len = max_blocks;
2269 get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
2270 if (ext4_should_dioread_nolock(mpd->inode))
2271 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2272 if (mpd->b_state & (1 << BH_Delay))
2273 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2274
2275 blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
2276 if (blks < 0) {
2277 struct super_block *sb = mpd->inode->i_sb;
2278
2279 err = blks;
2280 /*
2281 * If get block returns EAGAIN or ENOSPC and there
2282 * appears to be free blocks we will call
2283 * ext4_writepage() for all of the pages which will
2284 * just redirty the pages.
2285 */
2286 if (err == -EAGAIN)
2287 goto submit_io;
2288
2289 if (err == -ENOSPC &&
2290 ext4_count_free_blocks(sb)) {
2291 mpd->retval = err;
2292 goto submit_io;
2293 }
2294
2295 /*
2296 * get block failure will cause us to loop in
2297 * writepages, because a_ops->writepage won't be able
2298 * to make progress. The page will be redirtied by
2299 * writepage and writepages will again try to write
2300 * the same.
2301 */
2302 if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2303 ext4_msg(sb, KERN_CRIT,
2304 "delayed block allocation failed for inode %lu "
2305 "at logical offset %llu with max blocks %zd "
2306 "with error %d", mpd->inode->i_ino,
2307 (unsigned long long) next,
2308 mpd->b_size >> mpd->inode->i_blkbits, err);
2309 ext4_msg(sb, KERN_CRIT,
2310 "This should not happen!! Data will be lost\n");
2311 if (err == -ENOSPC)
2312 ext4_print_free_blocks(mpd->inode);
2313 }
2314 /* invalidate all the pages */
2315 ext4_da_block_invalidatepages(mpd, next,
2316 mpd->b_size >> mpd->inode->i_blkbits);
2317 return;
2318 }
2319 BUG_ON(blks == 0);
2320
2321 mapp = &map;
2322 if (map.m_flags & EXT4_MAP_NEW) {
2323 struct block_device *bdev = mpd->inode->i_sb->s_bdev;
2324 int i;
2325
2326 for (i = 0; i < map.m_len; i++)
2327 unmap_underlying_metadata(bdev, map.m_pblk + i);
2328 }
2329
2330 if (ext4_should_order_data(mpd->inode)) {
2331 err = ext4_jbd2_file_inode(handle, mpd->inode);
2332 if (err)
2333 /* This only happens if the journal is aborted */
2334 return;
2335 }
2336
2337 /*
2338 * Update on-disk size along with block allocation.
2339 */
2340 disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
2341 if (disksize > i_size_read(mpd->inode))
2342 disksize = i_size_read(mpd->inode);
2343 if (disksize > EXT4_I(mpd->inode)->i_disksize) {
2344 ext4_update_i_disksize(mpd->inode, disksize);
2345 err = ext4_mark_inode_dirty(handle, mpd->inode);
2346 if (err)
2347 ext4_error(mpd->inode->i_sb,
2348 "Failed to mark inode %lu dirty",
2349 mpd->inode->i_ino);
2350 }
2351
2352 submit_io:
2353 mpage_da_submit_io(mpd, mapp);
2354 mpd->io_done = 1;
2355 }
2356
2357 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
2358 (1 << BH_Delay) | (1 << BH_Unwritten))
2359
2360 /*
2361 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
2362 *
2363 * @mpd->lbh - extent of blocks
2364 * @logical - logical number of the block in the file
2365 * @bh - bh of the block (used to access block's state)
2366 *
2367 * the function is used to collect contig. blocks in same state
2368 */
2369 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
2370 sector_t logical, size_t b_size,
2371 unsigned long b_state)
2372 {
2373 sector_t next;
2374 int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
2375
2376 /*
2377 * XXX Don't go larger than mballoc is willing to allocate
2378 * This is a stopgap solution. We eventually need to fold
2379 * mpage_da_submit_io() into this function and then call
2380 * ext4_map_blocks() multiple times in a loop
2381 */
2382 if (nrblocks >= 8*1024*1024/mpd->inode->i_sb->s_blocksize)
2383 goto flush_it;
2384
2385 /* check if thereserved journal credits might overflow */
2386 if (!(ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS))) {
2387 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
2388 /*
2389 * With non-extent format we are limited by the journal
2390 * credit available. Total credit needed to insert
2391 * nrblocks contiguous blocks is dependent on the
2392 * nrblocks. So limit nrblocks.
2393 */
2394 goto flush_it;
2395 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
2396 EXT4_MAX_TRANS_DATA) {
2397 /*
2398 * Adding the new buffer_head would make it cross the
2399 * allowed limit for which we have journal credit
2400 * reserved. So limit the new bh->b_size
2401 */
2402 b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
2403 mpd->inode->i_blkbits;
2404 /* we will do mpage_da_submit_io in the next loop */
2405 }
2406 }
2407 /*
2408 * First block in the extent
2409 */
2410 if (mpd->b_size == 0) {
2411 mpd->b_blocknr = logical;
2412 mpd->b_size = b_size;
2413 mpd->b_state = b_state & BH_FLAGS;
2414 return;
2415 }
2416
2417 next = mpd->b_blocknr + nrblocks;
2418 /*
2419 * Can we merge the block to our big extent?
2420 */
2421 if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
2422 mpd->b_size += b_size;
2423 return;
2424 }
2425
2426 flush_it:
2427 /*
2428 * We couldn't merge the block to our extent, so we
2429 * need to flush current extent and start new one
2430 */
2431 mpage_da_map_and_submit(mpd);
2432 return;
2433 }
2434
2435 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
2436 {
2437 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
2438 }
2439
2440 /*
2441 * __mpage_da_writepage - finds extent of pages and blocks
2442 *
2443 * @page: page to consider
2444 * @wbc: not used, we just follow rules
2445 * @data: context
2446 *
2447 * The function finds extents of pages and scan them for all blocks.
2448 */
2449 static int __mpage_da_writepage(struct page *page,
2450 struct writeback_control *wbc,
2451 struct mpage_da_data *mpd)
2452 {
2453 struct inode *inode = mpd->inode;
2454 struct buffer_head *bh, *head;
2455 sector_t logical;
2456
2457 /*
2458 * Can we merge this page to current extent?
2459 */
2460 if (mpd->next_page != page->index) {
2461 /*
2462 * Nope, we can't. So, we map non-allocated blocks
2463 * and start IO on them
2464 */
2465 if (mpd->next_page != mpd->first_page) {
2466 mpage_da_map_and_submit(mpd);
2467 /*
2468 * skip rest of the page in the page_vec
2469 */
2470 redirty_page_for_writepage(wbc, page);
2471 unlock_page(page);
2472 return MPAGE_DA_EXTENT_TAIL;
2473 }
2474
2475 /*
2476 * Start next extent of pages ...
2477 */
2478 mpd->first_page = page->index;
2479
2480 /*
2481 * ... and blocks
2482 */
2483 mpd->b_size = 0;
2484 mpd->b_state = 0;
2485 mpd->b_blocknr = 0;
2486 }
2487
2488 mpd->next_page = page->index + 1;
2489 logical = (sector_t) page->index <<
2490 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2491
2492 if (!page_has_buffers(page)) {
2493 mpage_add_bh_to_extent(mpd, logical, PAGE_CACHE_SIZE,
2494 (1 << BH_Dirty) | (1 << BH_Uptodate));
2495 if (mpd->io_done)
2496 return MPAGE_DA_EXTENT_TAIL;
2497 } else {
2498 /*
2499 * Page with regular buffer heads, just add all dirty ones
2500 */
2501 head = page_buffers(page);
2502 bh = head;
2503 do {
2504 BUG_ON(buffer_locked(bh));
2505 /*
2506 * We need to try to allocate
2507 * unmapped blocks in the same page.
2508 * Otherwise we won't make progress
2509 * with the page in ext4_writepage
2510 */
2511 if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2512 mpage_add_bh_to_extent(mpd, logical,
2513 bh->b_size,
2514 bh->b_state);
2515 if (mpd->io_done)
2516 return MPAGE_DA_EXTENT_TAIL;
2517 } else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2518 /*
2519 * mapped dirty buffer. We need to update
2520 * the b_state because we look at
2521 * b_state in mpage_da_map_blocks. We don't
2522 * update b_size because if we find an
2523 * unmapped buffer_head later we need to
2524 * use the b_state flag of that buffer_head.
2525 */
2526 if (mpd->b_size == 0)
2527 mpd->b_state = bh->b_state & BH_FLAGS;
2528 }
2529 logical++;
2530 } while ((bh = bh->b_this_page) != head);
2531 }
2532
2533 return 0;
2534 }
2535
2536 /*
2537 * This is a special get_blocks_t callback which is used by
2538 * ext4_da_write_begin(). It will either return mapped block or
2539 * reserve space for a single block.
2540 *
2541 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
2542 * We also have b_blocknr = -1 and b_bdev initialized properly
2543 *
2544 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
2545 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
2546 * initialized properly.
2547 */
2548 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2549 struct buffer_head *bh, int create)
2550 {
2551 struct ext4_map_blocks map;
2552 int ret = 0;
2553 sector_t invalid_block = ~((sector_t) 0xffff);
2554
2555 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
2556 invalid_block = ~0;
2557
2558 BUG_ON(create == 0);
2559 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
2560
2561 map.m_lblk = iblock;
2562 map.m_len = 1;
2563
2564 /*
2565 * first, we need to know whether the block is allocated already
2566 * preallocated blocks are unmapped but should treated
2567 * the same as allocated blocks.
2568 */
2569 ret = ext4_map_blocks(NULL, inode, &map, 0);
2570 if (ret < 0)
2571 return ret;
2572 if (ret == 0) {
2573 if (buffer_delay(bh))
2574 return 0; /* Not sure this could or should happen */
2575 /*
2576 * XXX: __block_write_begin() unmaps passed block, is it OK?
2577 */
2578 ret = ext4_da_reserve_space(inode, iblock);
2579 if (ret)
2580 /* not enough space to reserve */
2581 return ret;
2582
2583 map_bh(bh, inode->i_sb, invalid_block);
2584 set_buffer_new(bh);
2585 set_buffer_delay(bh);
2586 return 0;
2587 }
2588
2589 map_bh(bh, inode->i_sb, map.m_pblk);
2590 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
2591
2592 if (buffer_unwritten(bh)) {
2593 /* A delayed write to unwritten bh should be marked
2594 * new and mapped. Mapped ensures that we don't do
2595 * get_block multiple times when we write to the same
2596 * offset and new ensures that we do proper zero out
2597 * for partial write.
2598 */
2599 set_buffer_new(bh);
2600 set_buffer_mapped(bh);
2601 }
2602 return 0;
2603 }
2604
2605 /*
2606 * This function is used as a standard get_block_t calback function
2607 * when there is no desire to allocate any blocks. It is used as a
2608 * callback function for block_write_begin() and block_write_full_page().
2609 * These functions should only try to map a single block at a time.
2610 *
2611 * Since this function doesn't do block allocations even if the caller
2612 * requests it by passing in create=1, it is critically important that
2613 * any caller checks to make sure that any buffer heads are returned
2614 * by this function are either all already mapped or marked for
2615 * delayed allocation before calling block_write_full_page(). Otherwise,
2616 * b_blocknr could be left unitialized, and the page write functions will
2617 * be taken by surprise.
2618 */
2619 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
2620 struct buffer_head *bh_result, int create)
2621 {
2622 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2623 return _ext4_get_block(inode, iblock, bh_result, 0);
2624 }
2625
2626 static int bget_one(handle_t *handle, struct buffer_head *bh)
2627 {
2628 get_bh(bh);
2629 return 0;
2630 }
2631
2632 static int bput_one(handle_t *handle, struct buffer_head *bh)
2633 {
2634 put_bh(bh);
2635 return 0;
2636 }
2637
2638 static int __ext4_journalled_writepage(struct page *page,
2639 unsigned int len)
2640 {
2641 struct address_space *mapping = page->mapping;
2642 struct inode *inode = mapping->host;
2643 struct buffer_head *page_bufs;
2644 handle_t *handle = NULL;
2645 int ret = 0;
2646 int err;
2647
2648 ClearPageChecked(page);
2649 page_bufs = page_buffers(page);
2650 BUG_ON(!page_bufs);
2651 walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
2652 /* As soon as we unlock the page, it can go away, but we have
2653 * references to buffers so we are safe */
2654 unlock_page(page);
2655
2656 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
2657 if (IS_ERR(handle)) {
2658 ret = PTR_ERR(handle);
2659 goto out;
2660 }
2661
2662 ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
2663 do_journal_get_write_access);
2664
2665 err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
2666 write_end_fn);
2667 if (ret == 0)
2668 ret = err;
2669 err = ext4_journal_stop(handle);
2670 if (!ret)
2671 ret = err;
2672
2673 walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
2674 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2675 out:
2676 return ret;
2677 }
2678
2679 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
2680 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
2681
2682 /*
2683 * Note that we don't need to start a transaction unless we're journaling data
2684 * because we should have holes filled from ext4_page_mkwrite(). We even don't
2685 * need to file the inode to the transaction's list in ordered mode because if
2686 * we are writing back data added by write(), the inode is already there and if
2687 * we are writing back data modified via mmap(), noone guarantees in which
2688 * transaction the data will hit the disk. In case we are journaling data, we
2689 * cannot start transaction directly because transaction start ranks above page
2690 * lock so we have to do some magic.
2691 *
2692 * This function can get called via...
2693 * - ext4_da_writepages after taking page lock (have journal handle)
2694 * - journal_submit_inode_data_buffers (no journal handle)
2695 * - shrink_page_list via pdflush (no journal handle)
2696 * - grab_page_cache when doing write_begin (have journal handle)
2697 *
2698 * We don't do any block allocation in this function. If we have page with
2699 * multiple blocks we need to write those buffer_heads that are mapped. This
2700 * is important for mmaped based write. So if we do with blocksize 1K
2701 * truncate(f, 1024);
2702 * a = mmap(f, 0, 4096);
2703 * a[0] = 'a';
2704 * truncate(f, 4096);
2705 * we have in the page first buffer_head mapped via page_mkwrite call back
2706 * but other bufer_heads would be unmapped but dirty(dirty done via the
2707 * do_wp_page). So writepage should write the first block. If we modify
2708 * the mmap area beyond 1024 we will again get a page_fault and the
2709 * page_mkwrite callback will do the block allocation and mark the
2710 * buffer_heads mapped.
2711 *
2712 * We redirty the page if we have any buffer_heads that is either delay or
2713 * unwritten in the page.
2714 *
2715 * We can get recursively called as show below.
2716 *
2717 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2718 * ext4_writepage()
2719 *
2720 * But since we don't do any block allocation we should not deadlock.
2721 * Page also have the dirty flag cleared so we don't get recurive page_lock.
2722 */
2723 static int ext4_writepage(struct page *page,
2724 struct writeback_control *wbc)
2725 {
2726 int ret = 0, commit_write = 0;
2727 loff_t size;
2728 unsigned int len;
2729 struct buffer_head *page_bufs = NULL;
2730 struct inode *inode = page->mapping->host;
2731
2732 trace_ext4_writepage(inode, page);
2733 size = i_size_read(inode);
2734 if (page->index == size >> PAGE_CACHE_SHIFT)
2735 len = size & ~PAGE_CACHE_MASK;
2736 else
2737 len = PAGE_CACHE_SIZE;
2738
2739 /*
2740 * If the page does not have buffers (for whatever reason),
2741 * try to create them using __block_write_begin. If this
2742 * fails, redirty the page and move on.
2743 */
2744 if (!page_has_buffers(page)) {
2745 if (__block_write_begin(page, 0, len,
2746 noalloc_get_block_write)) {
2747 redirty_page:
2748 redirty_page_for_writepage(wbc, page);
2749 unlock_page(page);
2750 return 0;
2751 }
2752 commit_write = 1;
2753 }
2754 page_bufs = page_buffers(page);
2755 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2756 ext4_bh_delay_or_unwritten)) {
2757 /*
2758 * We don't want to do block allocation, so redirty
2759 * the page and return. We may reach here when we do
2760 * a journal commit via journal_submit_inode_data_buffers.
2761 * We can also reach here via shrink_page_list
2762 */
2763 goto redirty_page;
2764 }
2765 if (commit_write)
2766 /* now mark the buffer_heads as dirty and uptodate */
2767 block_commit_write(page, 0, len);
2768
2769 if (PageChecked(page) && ext4_should_journal_data(inode))
2770 /*
2771 * It's mmapped pagecache. Add buffers and journal it. There
2772 * doesn't seem much point in redirtying the page here.
2773 */
2774 return __ext4_journalled_writepage(page, len);
2775
2776 if (buffer_uninit(page_bufs)) {
2777 ext4_set_bh_endio(page_bufs, inode);
2778 ret = block_write_full_page_endio(page, noalloc_get_block_write,
2779 wbc, ext4_end_io_buffer_write);
2780 } else
2781 ret = block_write_full_page(page, noalloc_get_block_write,
2782 wbc);
2783
2784 return ret;
2785 }
2786
2787 /*
2788 * This is called via ext4_da_writepages() to
2789 * calulate the total number of credits to reserve to fit
2790 * a single extent allocation into a single transaction,
2791 * ext4_da_writpeages() will loop calling this before
2792 * the block allocation.
2793 */
2794
2795 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2796 {
2797 int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2798
2799 /*
2800 * With non-extent format the journal credit needed to
2801 * insert nrblocks contiguous block is dependent on
2802 * number of contiguous block. So we will limit
2803 * number of contiguous block to a sane value
2804 */
2805 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
2806 (max_blocks > EXT4_MAX_TRANS_DATA))
2807 max_blocks = EXT4_MAX_TRANS_DATA;
2808
2809 return ext4_chunk_trans_blocks(inode, max_blocks);
2810 }
2811
2812 /*
2813 * write_cache_pages_da - walk the list of dirty pages of the given
2814 * address space and call the callback function (which usually writes
2815 * the pages).
2816 *
2817 * This is a forked version of write_cache_pages(). Differences:
2818 * Range cyclic is ignored.
2819 * no_nrwrite_index_update is always presumed true
2820 */
2821 static int write_cache_pages_da(struct address_space *mapping,
2822 struct writeback_control *wbc,
2823 struct mpage_da_data *mpd,
2824 pgoff_t *done_index)
2825 {
2826 int ret = 0;
2827 int done = 0;
2828 struct pagevec pvec;
2829 unsigned nr_pages;
2830 pgoff_t index;
2831 pgoff_t end; /* Inclusive */
2832 long nr_to_write = wbc->nr_to_write;
2833 int tag;
2834
2835 pagevec_init(&pvec, 0);
2836 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2837 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2838
2839 if (wbc->sync_mode == WB_SYNC_ALL)
2840 tag = PAGECACHE_TAG_TOWRITE;
2841 else
2842 tag = PAGECACHE_TAG_DIRTY;
2843
2844 *done_index = index;
2845 while (!done && (index <= end)) {
2846 int i;
2847
2848 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2849 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2850 if (nr_pages == 0)
2851 break;
2852
2853 for (i = 0; i < nr_pages; i++) {
2854 struct page *page = pvec.pages[i];
2855
2856 /*
2857 * At this point, the page may be truncated or
2858 * invalidated (changing page->mapping to NULL), or
2859 * even swizzled back from swapper_space to tmpfs file
2860 * mapping. However, page->index will not change
2861 * because we have a reference on the page.
2862 */
2863 if (page->index > end) {
2864 done = 1;
2865 break;
2866 }
2867
2868 *done_index = page->index + 1;
2869
2870 lock_page(page);
2871
2872 /*
2873 * Page truncated or invalidated. We can freely skip it
2874 * then, even for data integrity operations: the page
2875 * has disappeared concurrently, so there could be no
2876 * real expectation of this data interity operation
2877 * even if there is now a new, dirty page at the same
2878 * pagecache address.
2879 */
2880 if (unlikely(page->mapping != mapping)) {
2881 continue_unlock:
2882 unlock_page(page);
2883 continue;
2884 }
2885
2886 if (!PageDirty(page)) {
2887 /* someone wrote it for us */
2888 goto continue_unlock;
2889 }
2890
2891 if (PageWriteback(page)) {
2892 if (wbc->sync_mode != WB_SYNC_NONE)
2893 wait_on_page_writeback(page);
2894 else
2895 goto continue_unlock;
2896 }
2897
2898 BUG_ON(PageWriteback(page));
2899 if (!clear_page_dirty_for_io(page))
2900 goto continue_unlock;
2901
2902 ret = __mpage_da_writepage(page, wbc, mpd);
2903 if (unlikely(ret)) {
2904 if (ret == AOP_WRITEPAGE_ACTIVATE) {
2905 unlock_page(page);
2906 ret = 0;
2907 } else {
2908 done = 1;
2909 break;
2910 }
2911 }
2912
2913 if (nr_to_write > 0) {
2914 nr_to_write--;
2915 if (nr_to_write == 0 &&
2916 wbc->sync_mode == WB_SYNC_NONE) {
2917 /*
2918 * We stop writing back only if we are
2919 * not doing integrity sync. In case of
2920 * integrity sync we have to keep going
2921 * because someone may be concurrently
2922 * dirtying pages, and we might have
2923 * synced a lot of newly appeared dirty
2924 * pages, but have not synced all of the
2925 * old dirty pages.
2926 */
2927 done = 1;
2928 break;
2929 }
2930 }
2931 }
2932 pagevec_release(&pvec);
2933 cond_resched();
2934 }
2935 return ret;
2936 }
2937
2938
2939 static int ext4_da_writepages(struct address_space *mapping,
2940 struct writeback_control *wbc)
2941 {
2942 pgoff_t index;
2943 int range_whole = 0;
2944 handle_t *handle = NULL;
2945 struct mpage_da_data mpd;
2946 struct inode *inode = mapping->host;
2947 int pages_written = 0;
2948 long pages_skipped;
2949 unsigned int max_pages;
2950 int range_cyclic, cycled = 1, io_done = 0;
2951 int needed_blocks, ret = 0;
2952 long desired_nr_to_write, nr_to_writebump = 0;
2953 loff_t range_start = wbc->range_start;
2954 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2955 pgoff_t done_index = 0;
2956 pgoff_t end;
2957
2958 trace_ext4_da_writepages(inode, wbc);
2959
2960 /*
2961 * No pages to write? This is mainly a kludge to avoid starting
2962 * a transaction for special inodes like journal inode on last iput()
2963 * because that could violate lock ordering on umount
2964 */
2965 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2966 return 0;
2967
2968 /*
2969 * If the filesystem has aborted, it is read-only, so return
2970 * right away instead of dumping stack traces later on that
2971 * will obscure the real source of the problem. We test
2972 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2973 * the latter could be true if the filesystem is mounted
2974 * read-only, and in that case, ext4_da_writepages should
2975 * *never* be called, so if that ever happens, we would want
2976 * the stack trace.
2977 */
2978 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2979 return -EROFS;
2980
2981 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2982 range_whole = 1;
2983
2984 range_cyclic = wbc->range_cyclic;
2985 if (wbc->range_cyclic) {
2986 index = mapping->writeback_index;
2987 if (index)
2988 cycled = 0;
2989 wbc->range_start = index << PAGE_CACHE_SHIFT;
2990 wbc->range_end = LLONG_MAX;
2991 wbc->range_cyclic = 0;
2992 end = -1;
2993 } else {
2994 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2995 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2996 }
2997
2998 /*
2999 * This works around two forms of stupidity. The first is in
3000 * the writeback code, which caps the maximum number of pages
3001 * written to be 1024 pages. This is wrong on multiple
3002 * levels; different architectues have a different page size,
3003 * which changes the maximum amount of data which gets
3004 * written. Secondly, 4 megabytes is way too small. XFS
3005 * forces this value to be 16 megabytes by multiplying
3006 * nr_to_write parameter by four, and then relies on its
3007 * allocator to allocate larger extents to make them
3008 * contiguous. Unfortunately this brings us to the second
3009 * stupidity, which is that ext4's mballoc code only allocates
3010 * at most 2048 blocks. So we force contiguous writes up to
3011 * the number of dirty blocks in the inode, or
3012 * sbi->max_writeback_mb_bump whichever is smaller.
3013 */
3014 max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
3015 if (!range_cyclic && range_whole) {
3016 if (wbc->nr_to_write == LONG_MAX)
3017 desired_nr_to_write = wbc->nr_to_write;
3018 else
3019 desired_nr_to_write = wbc->nr_to_write * 8;
3020 } else
3021 desired_nr_to_write = ext4_num_dirty_pages(inode, index,
3022 max_pages);
3023 if (desired_nr_to_write > max_pages)
3024 desired_nr_to_write = max_pages;
3025
3026 if (wbc->nr_to_write < desired_nr_to_write) {
3027 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
3028 wbc->nr_to_write = desired_nr_to_write;
3029 }
3030
3031 mpd.wbc = wbc;
3032 mpd.inode = mapping->host;
3033
3034 pages_skipped = wbc->pages_skipped;
3035
3036 retry:
3037 if (wbc->sync_mode == WB_SYNC_ALL)
3038 tag_pages_for_writeback(mapping, index, end);
3039
3040 while (!ret && wbc->nr_to_write > 0) {
3041
3042 /*
3043 * we insert one extent at a time. So we need
3044 * credit needed for single extent allocation.
3045 * journalled mode is currently not supported
3046 * by delalloc
3047 */
3048 BUG_ON(ext4_should_journal_data(inode));
3049 needed_blocks = ext4_da_writepages_trans_blocks(inode);
3050
3051 /* start a new transaction*/
3052 handle = ext4_journal_start(inode, needed_blocks);
3053 if (IS_ERR(handle)) {
3054 ret = PTR_ERR(handle);
3055 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
3056 "%ld pages, ino %lu; err %d", __func__,
3057 wbc->nr_to_write, inode->i_ino, ret);
3058 goto out_writepages;
3059 }
3060
3061 /*
3062 * Now call __mpage_da_writepage to find the next
3063 * contiguous region of logical blocks that need
3064 * blocks to be allocated by ext4. We don't actually
3065 * submit the blocks for I/O here, even though
3066 * write_cache_pages thinks it will, and will set the
3067 * pages as clean for write before calling
3068 * __mpage_da_writepage().
3069 */
3070 mpd.b_size = 0;
3071 mpd.b_state = 0;
3072 mpd.b_blocknr = 0;
3073 mpd.first_page = 0;
3074 mpd.next_page = 0;
3075 mpd.io_done = 0;
3076 mpd.pages_written = 0;
3077 mpd.retval = 0;
3078 ret = write_cache_pages_da(mapping, wbc, &mpd, &done_index);
3079 /*
3080 * If we have a contiguous extent of pages and we
3081 * haven't done the I/O yet, map the blocks and submit
3082 * them for I/O.
3083 */
3084 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
3085 mpage_da_map_and_submit(&mpd);
3086 ret = MPAGE_DA_EXTENT_TAIL;
3087 }
3088 trace_ext4_da_write_pages(inode, &mpd);
3089 wbc->nr_to_write -= mpd.pages_written;
3090
3091 ext4_journal_stop(handle);
3092
3093 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
3094 /* commit the transaction which would
3095 * free blocks released in the transaction
3096 * and try again
3097 */
3098 jbd2_journal_force_commit_nested(sbi->s_journal);
3099 wbc->pages_skipped = pages_skipped;
3100 ret = 0;
3101 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
3102 /*
3103 * got one extent now try with
3104 * rest of the pages
3105 */
3106 pages_written += mpd.pages_written;
3107 wbc->pages_skipped = pages_skipped;
3108 ret = 0;
3109 io_done = 1;
3110 } else if (wbc->nr_to_write)
3111 /*
3112 * There is no more writeout needed
3113 * or we requested for a noblocking writeout
3114 * and we found the device congested
3115 */
3116 break;
3117 }
3118 if (!io_done && !cycled) {
3119 cycled = 1;
3120 index = 0;
3121 wbc->range_start = index << PAGE_CACHE_SHIFT;
3122 wbc->range_end = mapping->writeback_index - 1;
3123 goto retry;
3124 }
3125 if (pages_skipped != wbc->pages_skipped)
3126 ext4_msg(inode->i_sb, KERN_CRIT,
3127 "This should not happen leaving %s "
3128 "with nr_to_write = %ld ret = %d",
3129 __func__, wbc->nr_to_write, ret);
3130
3131 /* Update index */
3132 wbc->range_cyclic = range_cyclic;
3133 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
3134 /*
3135 * set the writeback_index so that range_cyclic
3136 * mode will write it back later
3137 */
3138 mapping->writeback_index = done_index;
3139
3140 out_writepages:
3141 wbc->nr_to_write -= nr_to_writebump;
3142 wbc->range_start = range_start;
3143 trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
3144 return ret;
3145 }
3146
3147 #define FALL_BACK_TO_NONDELALLOC 1
3148 static int ext4_nonda_switch(struct super_block *sb)
3149 {
3150 s64 free_blocks, dirty_blocks;
3151 struct ext4_sb_info *sbi = EXT4_SB(sb);
3152
3153 /*
3154 * switch to non delalloc mode if we are running low
3155 * on free block. The free block accounting via percpu
3156 * counters can get slightly wrong with percpu_counter_batch getting
3157 * accumulated on each CPU without updating global counters
3158 * Delalloc need an accurate free block accounting. So switch
3159 * to non delalloc when we are near to error range.
3160 */
3161 free_blocks = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
3162 dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
3163 if (2 * free_blocks < 3 * dirty_blocks ||
3164 free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
3165 /*
3166 * free block count is less than 150% of dirty blocks
3167 * or free blocks is less than watermark
3168 */
3169 return 1;
3170 }
3171 /*
3172 * Even if we don't switch but are nearing capacity,
3173 * start pushing delalloc when 1/2 of free blocks are dirty.
3174 */
3175 if (free_blocks < 2 * dirty_blocks)
3176 writeback_inodes_sb_if_idle(sb);
3177
3178 return 0;
3179 }
3180
3181 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
3182 loff_t pos, unsigned len, unsigned flags,
3183 struct page **pagep, void **fsdata)
3184 {
3185 int ret, retries = 0;
3186 struct page *page;
3187 pgoff_t index;
3188 struct inode *inode = mapping->host;
3189 handle_t *handle;
3190
3191 index = pos >> PAGE_CACHE_SHIFT;
3192
3193 if (ext4_nonda_switch(inode->i_sb)) {
3194 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
3195 return ext4_write_begin(file, mapping, pos,
3196 len, flags, pagep, fsdata);
3197 }
3198 *fsdata = (void *)0;
3199 trace_ext4_da_write_begin(inode, pos, len, flags);
3200 retry:
3201 /*
3202 * With delayed allocation, we don't log the i_disksize update
3203 * if there is delayed block allocation. But we still need
3204 * to journalling the i_disksize update if writes to the end
3205 * of file which has an already mapped buffer.
3206 */
3207 handle = ext4_journal_start(inode, 1);
3208 if (IS_ERR(handle)) {
3209 ret = PTR_ERR(handle);
3210 goto out;
3211 }
3212 /* We cannot recurse into the filesystem as the transaction is already
3213 * started */
3214 flags |= AOP_FLAG_NOFS;
3215
3216 page = grab_cache_page_write_begin(mapping, index, flags);
3217 if (!page) {
3218 ext4_journal_stop(handle);
3219 ret = -ENOMEM;
3220 goto out;
3221 }
3222 *pagep = page;
3223
3224 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
3225 if (ret < 0) {
3226 unlock_page(page);
3227 ext4_journal_stop(handle);
3228 page_cache_release(page);
3229 /*
3230 * block_write_begin may have instantiated a few blocks
3231 * outside i_size. Trim these off again. Don't need
3232 * i_size_read because we hold i_mutex.
3233 */
3234 if (pos + len > inode->i_size)
3235 ext4_truncate_failed_write(inode);
3236 }
3237
3238 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3239 goto retry;
3240 out:
3241 return ret;
3242 }
3243
3244 /*
3245 * Check if we should update i_disksize
3246 * when write to the end of file but not require block allocation
3247 */
3248 static int ext4_da_should_update_i_disksize(struct page *page,
3249 unsigned long offset)
3250 {
3251 struct buffer_head *bh;
3252 struct inode *inode = page->mapping->host;
3253 unsigned int idx;
3254 int i;
3255
3256 bh = page_buffers(page);
3257 idx = offset >> inode->i_blkbits;
3258
3259 for (i = 0; i < idx; i++)
3260 bh = bh->b_this_page;
3261
3262 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3263 return 0;
3264 return 1;
3265 }
3266
3267 static int ext4_da_write_end(struct file *file,
3268 struct address_space *mapping,
3269 loff_t pos, unsigned len, unsigned copied,
3270 struct page *page, void *fsdata)
3271 {
3272 struct inode *inode = mapping->host;
3273 int ret = 0, ret2;
3274 handle_t *handle = ext4_journal_current_handle();
3275 loff_t new_i_size;
3276 unsigned long start, end;
3277 int write_mode = (int)(unsigned long)fsdata;
3278
3279 if (write_mode == FALL_BACK_TO_NONDELALLOC) {
3280 if (ext4_should_order_data(inode)) {
3281 return ext4_ordered_write_end(file, mapping, pos,
3282 len, copied, page, fsdata);
3283 } else if (ext4_should_writeback_data(inode)) {
3284 return ext4_writeback_write_end(file, mapping, pos,
3285 len, copied, page, fsdata);
3286 } else {
3287 BUG();
3288 }
3289 }
3290
3291 trace_ext4_da_write_end(inode, pos, len, copied);
3292 start = pos & (PAGE_CACHE_SIZE - 1);
3293 end = start + copied - 1;
3294
3295 /*
3296 * generic_write_end() will run mark_inode_dirty() if i_size
3297 * changes. So let's piggyback the i_disksize mark_inode_dirty
3298 * into that.
3299 */
3300
3301 new_i_size = pos + copied;
3302 if (new_i_size > EXT4_I(inode)->i_disksize) {
3303 if (ext4_da_should_update_i_disksize(page, end)) {
3304 down_write(&EXT4_I(inode)->i_data_sem);
3305 if (new_i_size > EXT4_I(inode)->i_disksize) {
3306 /*
3307 * Updating i_disksize when extending file
3308 * without needing block allocation
3309 */
3310 if (ext4_should_order_data(inode))
3311 ret = ext4_jbd2_file_inode(handle,
3312 inode);
3313
3314 EXT4_I(inode)->i_disksize = new_i_size;
3315 }
3316 up_write(&EXT4_I(inode)->i_data_sem);
3317 /* We need to mark inode dirty even if
3318 * new_i_size is less that inode->i_size
3319 * bu greater than i_disksize.(hint delalloc)
3320 */
3321 ext4_mark_inode_dirty(handle, inode);
3322 }
3323 }
3324 ret2 = generic_write_end(file, mapping, pos, len, copied,
3325 page, fsdata);
3326 copied = ret2;
3327 if (ret2 < 0)
3328 ret = ret2;
3329 ret2 = ext4_journal_stop(handle);
3330 if (!ret)
3331 ret = ret2;
3332
3333 return ret ? ret : copied;
3334 }
3335
3336 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
3337 {
3338 /*
3339 * Drop reserved blocks
3340 */
3341 BUG_ON(!PageLocked(page));
3342 if (!page_has_buffers(page))
3343 goto out;
3344
3345 ext4_da_page_release_reservation(page, offset);
3346
3347 out:
3348 ext4_invalidatepage(page, offset);
3349
3350 return;
3351 }
3352
3353 /*
3354 * Force all delayed allocation blocks to be allocated for a given inode.
3355 */
3356 int ext4_alloc_da_blocks(struct inode *inode)
3357 {
3358 trace_ext4_alloc_da_blocks(inode);
3359
3360 if (!EXT4_I(inode)->i_reserved_data_blocks &&
3361 !EXT4_I(inode)->i_reserved_meta_blocks)
3362 return 0;
3363
3364 /*
3365 * We do something simple for now. The filemap_flush() will
3366 * also start triggering a write of the data blocks, which is
3367 * not strictly speaking necessary (and for users of
3368 * laptop_mode, not even desirable). However, to do otherwise
3369 * would require replicating code paths in:
3370 *
3371 * ext4_da_writepages() ->
3372 * write_cache_pages() ---> (via passed in callback function)
3373 * __mpage_da_writepage() -->
3374 * mpage_add_bh_to_extent()
3375 * mpage_da_map_blocks()
3376 *
3377 * The problem is that write_cache_pages(), located in
3378 * mm/page-writeback.c, marks pages clean in preparation for
3379 * doing I/O, which is not desirable if we're not planning on
3380 * doing I/O at all.
3381 *
3382 * We could call write_cache_pages(), and then redirty all of
3383 * the pages by calling redirty_page_for_writepage() but that
3384 * would be ugly in the extreme. So instead we would need to
3385 * replicate parts of the code in the above functions,
3386 * simplifying them becuase we wouldn't actually intend to
3387 * write out the pages, but rather only collect contiguous
3388 * logical block extents, call the multi-block allocator, and
3389 * then update the buffer heads with the block allocations.
3390 *
3391 * For now, though, we'll cheat by calling filemap_flush(),
3392 * which will map the blocks, and start the I/O, but not
3393 * actually wait for the I/O to complete.
3394 */
3395 return filemap_flush(inode->i_mapping);
3396 }
3397
3398 /*
3399 * bmap() is special. It gets used by applications such as lilo and by
3400 * the swapper to find the on-disk block of a specific piece of data.
3401 *
3402 * Naturally, this is dangerous if the block concerned is still in the
3403 * journal. If somebody makes a swapfile on an ext4 data-journaling
3404 * filesystem and enables swap, then they may get a nasty shock when the
3405 * data getting swapped to that swapfile suddenly gets overwritten by
3406 * the original zero's written out previously to the journal and
3407 * awaiting writeback in the kernel's buffer cache.
3408 *
3409 * So, if we see any bmap calls here on a modified, data-journaled file,
3410 * take extra steps to flush any blocks which might be in the cache.
3411 */
3412 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3413 {
3414 struct inode *inode = mapping->host;
3415 journal_t *journal;
3416 int err;
3417
3418 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3419 test_opt(inode->i_sb, DELALLOC)) {
3420 /*
3421 * With delalloc we want to sync the file
3422 * so that we can make sure we allocate
3423 * blocks for file
3424 */
3425 filemap_write_and_wait(mapping);
3426 }
3427
3428 if (EXT4_JOURNAL(inode) &&
3429 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3430 /*
3431 * This is a REALLY heavyweight approach, but the use of
3432 * bmap on dirty files is expected to be extremely rare:
3433 * only if we run lilo or swapon on a freshly made file
3434 * do we expect this to happen.
3435 *
3436 * (bmap requires CAP_SYS_RAWIO so this does not
3437 * represent an unprivileged user DOS attack --- we'd be
3438 * in trouble if mortal users could trigger this path at
3439 * will.)
3440 *
3441 * NB. EXT4_STATE_JDATA is not set on files other than
3442 * regular files. If somebody wants to bmap a directory
3443 * or symlink and gets confused because the buffer
3444 * hasn't yet been flushed to disk, they deserve
3445 * everything they get.
3446 */
3447
3448 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3449 journal = EXT4_JOURNAL(inode);
3450 jbd2_journal_lock_updates(journal);
3451 err = jbd2_journal_flush(journal);
3452 jbd2_journal_unlock_updates(journal);
3453
3454 if (err)
3455 return 0;
3456 }
3457
3458 return generic_block_bmap(mapping, block, ext4_get_block);
3459 }
3460
3461 static int ext4_readpage(struct file *file, struct page *page)
3462 {
3463 return mpage_readpage(page, ext4_get_block);
3464 }
3465
3466 static int
3467 ext4_readpages(struct file *file, struct address_space *mapping,
3468 struct list_head *pages, unsigned nr_pages)
3469 {
3470 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
3471 }
3472
3473 static void ext4_invalidatepage_free_endio(struct page *page, unsigned long offset)
3474 {
3475 struct buffer_head *head, *bh;
3476 unsigned int curr_off = 0;
3477
3478 if (!page_has_buffers(page))
3479 return;
3480 head = bh = page_buffers(page);
3481 do {
3482 if (offset <= curr_off && test_clear_buffer_uninit(bh)
3483 && bh->b_private) {
3484 ext4_free_io_end(bh->b_private);
3485 bh->b_private = NULL;
3486 bh->b_end_io = NULL;
3487 }
3488 curr_off = curr_off + bh->b_size;
3489 bh = bh->b_this_page;
3490 } while (bh != head);
3491 }
3492
3493 static void ext4_invalidatepage(struct page *page, unsigned long offset)
3494 {
3495 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3496
3497 /*
3498 * free any io_end structure allocated for buffers to be discarded
3499 */
3500 if (ext4_should_dioread_nolock(page->mapping->host))
3501 ext4_invalidatepage_free_endio(page, offset);
3502 /*
3503 * If it's a full truncate we just forget about the pending dirtying
3504 */
3505 if (offset == 0)
3506 ClearPageChecked(page);
3507
3508 if (journal)
3509 jbd2_journal_invalidatepage(journal, page, offset);
3510 else
3511 block_invalidatepage(page, offset);
3512 }
3513
3514 static int ext4_releasepage(struct page *page, gfp_t wait)
3515 {
3516 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3517
3518 WARN_ON(PageChecked(page));
3519 if (!page_has_buffers(page))
3520 return 0;
3521 if (journal)
3522 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3523 else
3524 return try_to_free_buffers(page);
3525 }
3526
3527 /*
3528 * O_DIRECT for ext3 (or indirect map) based files
3529 *
3530 * If the O_DIRECT write will extend the file then add this inode to the
3531 * orphan list. So recovery will truncate it back to the original size
3532 * if the machine crashes during the write.
3533 *
3534 * If the O_DIRECT write is intantiating holes inside i_size and the machine
3535 * crashes then stale disk data _may_ be exposed inside the file. But current
3536 * VFS code falls back into buffered path in that case so we are safe.
3537 */
3538 static ssize_t ext4_ind_direct_IO(int rw, struct kiocb *iocb,
3539 const struct iovec *iov, loff_t offset,
3540 unsigned long nr_segs)
3541 {
3542 struct file *file = iocb->ki_filp;
3543 struct inode *inode = file->f_mapping->host;
3544 struct ext4_inode_info *ei = EXT4_I(inode);
3545 handle_t *handle;
3546 ssize_t ret;
3547 int orphan = 0;
3548 size_t count = iov_length(iov, nr_segs);
3549 int retries = 0;
3550
3551 if (rw == WRITE) {
3552 loff_t final_size = offset + count;
3553
3554 if (final_size > inode->i_size) {
3555 /* Credits for sb + inode write */
3556 handle = ext4_journal_start(inode, 2);
3557 if (IS_ERR(handle)) {
3558 ret = PTR_ERR(handle);
3559 goto out;
3560 }
3561 ret = ext4_orphan_add(handle, inode);
3562 if (ret) {
3563 ext4_journal_stop(handle);
3564 goto out;
3565 }
3566 orphan = 1;
3567 ei->i_disksize = inode->i_size;
3568 ext4_journal_stop(handle);
3569 }
3570 }
3571
3572 retry:
3573 if (rw == READ && ext4_should_dioread_nolock(inode))
3574 ret = __blockdev_direct_IO(rw, iocb, inode,
3575 inode->i_sb->s_bdev, iov,
3576 offset, nr_segs,
3577 ext4_get_block, NULL, NULL, 0);
3578 else {
3579 ret = blockdev_direct_IO(rw, iocb, inode,
3580 inode->i_sb->s_bdev, iov,
3581 offset, nr_segs,
3582 ext4_get_block, NULL);
3583
3584 if (unlikely((rw & WRITE) && ret < 0)) {
3585 loff_t isize = i_size_read(inode);
3586 loff_t end = offset + iov_length(iov, nr_segs);
3587
3588 if (end > isize)
3589 vmtruncate(inode, isize);
3590 }
3591 }
3592 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3593 goto retry;
3594
3595 if (orphan) {
3596 int err;
3597
3598 /* Credits for sb + inode write */
3599 handle = ext4_journal_start(inode, 2);
3600 if (IS_ERR(handle)) {
3601 /* This is really bad luck. We've written the data
3602 * but cannot extend i_size. Bail out and pretend
3603 * the write failed... */
3604 ret = PTR_ERR(handle);
3605 if (inode->i_nlink)
3606 ext4_orphan_del(NULL, inode);
3607
3608 goto out;
3609 }
3610 if (inode->i_nlink)
3611 ext4_orphan_del(handle, inode);
3612 if (ret > 0) {
3613 loff_t end = offset + ret;
3614 if (end > inode->i_size) {
3615 ei->i_disksize = end;
3616 i_size_write(inode, end);
3617 /*
3618 * We're going to return a positive `ret'
3619 * here due to non-zero-length I/O, so there's
3620 * no way of reporting error returns from
3621 * ext4_mark_inode_dirty() to userspace. So
3622 * ignore it.
3623 */
3624 ext4_mark_inode_dirty(handle, inode);
3625 }
3626 }
3627 err = ext4_journal_stop(handle);
3628 if (ret == 0)
3629 ret = err;
3630 }
3631 out:
3632 return ret;
3633 }
3634
3635 /*
3636 * ext4_get_block used when preparing for a DIO write or buffer write.
3637 * We allocate an uinitialized extent if blocks haven't been allocated.
3638 * The extent will be converted to initialized after the IO is complete.
3639 */
3640 static int ext4_get_block_write(struct inode *inode, sector_t iblock,
3641 struct buffer_head *bh_result, int create)
3642 {
3643 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
3644 inode->i_ino, create);
3645 return _ext4_get_block(inode, iblock, bh_result,
3646 EXT4_GET_BLOCKS_IO_CREATE_EXT);
3647 }
3648
3649 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3650 ssize_t size, void *private, int ret,
3651 bool is_async)
3652 {
3653 ext4_io_end_t *io_end = iocb->private;
3654 struct workqueue_struct *wq;
3655 unsigned long flags;
3656 struct ext4_inode_info *ei;
3657
3658 /* if not async direct IO or dio with 0 bytes write, just return */
3659 if (!io_end || !size)
3660 goto out;
3661
3662 ext_debug("ext4_end_io_dio(): io_end 0x%p"
3663 "for inode %lu, iocb 0x%p, offset %llu, size %llu\n",
3664 iocb->private, io_end->inode->i_ino, iocb, offset,
3665 size);
3666
3667 /* if not aio dio with unwritten extents, just free io and return */
3668 if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
3669 ext4_free_io_end(io_end);
3670 iocb->private = NULL;
3671 out:
3672 if (is_async)
3673 aio_complete(iocb, ret, 0);
3674 return;
3675 }
3676
3677 io_end->offset = offset;
3678 io_end->size = size;
3679 if (is_async) {
3680 io_end->iocb = iocb;
3681 io_end->result = ret;
3682 }
3683 wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq;
3684
3685 /* Add the io_end to per-inode completed aio dio list*/
3686 ei = EXT4_I(io_end->inode);
3687 spin_lock_irqsave(&ei->i_completed_io_lock, flags);
3688 list_add_tail(&io_end->list, &ei->i_completed_io_list);
3689 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
3690
3691 /* queue the work to convert unwritten extents to written */
3692 queue_work(wq, &io_end->work);
3693 iocb->private = NULL;
3694 }
3695
3696 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate)
3697 {
3698 ext4_io_end_t *io_end = bh->b_private;
3699 struct workqueue_struct *wq;
3700 struct inode *inode;
3701 unsigned long flags;
3702
3703 if (!test_clear_buffer_uninit(bh) || !io_end)
3704 goto out;
3705
3706 if (!(io_end->inode->i_sb->s_flags & MS_ACTIVE)) {
3707 printk("sb umounted, discard end_io request for inode %lu\n",
3708 io_end->inode->i_ino);
3709 ext4_free_io_end(io_end);
3710 goto out;
3711 }
3712
3713 io_end->flag = EXT4_IO_END_UNWRITTEN;
3714 inode = io_end->inode;
3715
3716 /* Add the io_end to per-inode completed io list*/
3717 spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
3718 list_add_tail(&io_end->list, &EXT4_I(inode)->i_completed_io_list);
3719 spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);
3720
3721 wq = EXT4_SB(inode->i_sb)->dio_unwritten_wq;
3722 /* queue the work to convert unwritten extents to written */
3723 queue_work(wq, &io_end->work);
3724 out:
3725 bh->b_private = NULL;
3726 bh->b_end_io = NULL;
3727 clear_buffer_uninit(bh);
3728 end_buffer_async_write(bh, uptodate);
3729 }
3730
3731 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode)
3732 {
3733 ext4_io_end_t *io_end;
3734 struct page *page = bh->b_page;
3735 loff_t offset = (sector_t)page->index << PAGE_CACHE_SHIFT;
3736 size_t size = bh->b_size;
3737
3738 retry:
3739 io_end = ext4_init_io_end(inode, GFP_ATOMIC);
3740 if (!io_end) {
3741 pr_warn_ratelimited("%s: allocation fail\n", __func__);
3742 schedule();
3743 goto retry;
3744 }
3745 io_end->offset = offset;
3746 io_end->size = size;
3747 /*
3748 * We need to hold a reference to the page to make sure it
3749 * doesn't get evicted before ext4_end_io_work() has a chance
3750 * to convert the extent from written to unwritten.
3751 */
3752 io_end->page = page;
3753 get_page(io_end->page);
3754
3755 bh->b_private = io_end;
3756 bh->b_end_io = ext4_end_io_buffer_write;
3757 return 0;
3758 }
3759
3760 /*
3761 * For ext4 extent files, ext4 will do direct-io write to holes,
3762 * preallocated extents, and those write extend the file, no need to
3763 * fall back to buffered IO.
3764 *
3765 * For holes, we fallocate those blocks, mark them as uninitialized
3766 * If those blocks were preallocated, we mark sure they are splited, but
3767 * still keep the range to write as uninitialized.
3768 *
3769 * The unwrritten extents will be converted to written when DIO is completed.
3770 * For async direct IO, since the IO may still pending when return, we
3771 * set up an end_io call back function, which will do the convertion
3772 * when async direct IO completed.
3773 *
3774 * If the O_DIRECT write will extend the file then add this inode to the
3775 * orphan list. So recovery will truncate it back to the original size
3776 * if the machine crashes during the write.
3777 *
3778 */
3779 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3780 const struct iovec *iov, loff_t offset,
3781 unsigned long nr_segs)
3782 {
3783 struct file *file = iocb->ki_filp;
3784 struct inode *inode = file->f_mapping->host;
3785 ssize_t ret;
3786 size_t count = iov_length(iov, nr_segs);
3787
3788 loff_t final_size = offset + count;
3789 if (rw == WRITE && final_size <= inode->i_size) {
3790 /*
3791 * We could direct write to holes and fallocate.
3792 *
3793 * Allocated blocks to fill the hole are marked as uninitialized
3794 * to prevent paralel buffered read to expose the stale data
3795 * before DIO complete the data IO.
3796 *
3797 * As to previously fallocated extents, ext4 get_block
3798 * will just simply mark the buffer mapped but still
3799 * keep the extents uninitialized.
3800 *
3801 * for non AIO case, we will convert those unwritten extents
3802 * to written after return back from blockdev_direct_IO.
3803 *
3804 * for async DIO, the conversion needs to be defered when
3805 * the IO is completed. The ext4 end_io callback function
3806 * will be called to take care of the conversion work.
3807 * Here for async case, we allocate an io_end structure to
3808 * hook to the iocb.
3809 */
3810 iocb->private = NULL;
3811 EXT4_I(inode)->cur_aio_dio = NULL;
3812 if (!is_sync_kiocb(iocb)) {
3813 iocb->private = ext4_init_io_end(inode, GFP_NOFS);
3814 if (!iocb->private)
3815 return -ENOMEM;
3816 /*
3817 * we save the io structure for current async
3818 * direct IO, so that later ext4_map_blocks()
3819 * could flag the io structure whether there
3820 * is a unwritten extents needs to be converted
3821 * when IO is completed.
3822 */
3823 EXT4_I(inode)->cur_aio_dio = iocb->private;
3824 }
3825
3826 ret = blockdev_direct_IO(rw, iocb, inode,
3827 inode->i_sb->s_bdev, iov,
3828 offset, nr_segs,
3829 ext4_get_block_write,
3830 ext4_end_io_dio);
3831 if (iocb->private)
3832 EXT4_I(inode)->cur_aio_dio = NULL;
3833 /*
3834 * The io_end structure takes a reference to the inode,
3835 * that structure needs to be destroyed and the
3836 * reference to the inode need to be dropped, when IO is
3837 * complete, even with 0 byte write, or failed.
3838 *
3839 * In the successful AIO DIO case, the io_end structure will be
3840 * desctroyed and the reference to the inode will be dropped
3841 * after the end_io call back function is called.
3842 *
3843 * In the case there is 0 byte write, or error case, since
3844 * VFS direct IO won't invoke the end_io call back function,
3845 * we need to free the end_io structure here.
3846 */
3847 if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
3848 ext4_free_io_end(iocb->private);
3849 iocb->private = NULL;
3850 } else if (ret > 0 && ext4_test_inode_state(inode,
3851 EXT4_STATE_DIO_UNWRITTEN)) {
3852 int err;
3853 /*
3854 * for non AIO case, since the IO is already
3855 * completed, we could do the convertion right here
3856 */
3857 err = ext4_convert_unwritten_extents(inode,
3858 offset, ret);
3859 if (err < 0)
3860 ret = err;
3861 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3862 }
3863 return ret;
3864 }
3865
3866 /* for write the the end of file case, we fall back to old way */
3867 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3868 }
3869
3870 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3871 const struct iovec *iov, loff_t offset,
3872 unsigned long nr_segs)
3873 {
3874 struct file *file = iocb->ki_filp;
3875 struct inode *inode = file->f_mapping->host;
3876
3877 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3878 return ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3879
3880 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3881 }
3882
3883 /*
3884 * Pages can be marked dirty completely asynchronously from ext4's journalling
3885 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3886 * much here because ->set_page_dirty is called under VFS locks. The page is
3887 * not necessarily locked.
3888 *
3889 * We cannot just dirty the page and leave attached buffers clean, because the
3890 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3891 * or jbddirty because all the journalling code will explode.
3892 *
3893 * So what we do is to mark the page "pending dirty" and next time writepage
3894 * is called, propagate that into the buffers appropriately.
3895 */
3896 static int ext4_journalled_set_page_dirty(struct page *page)
3897 {
3898 SetPageChecked(page);
3899 return __set_page_dirty_nobuffers(page);
3900 }
3901
3902 static const struct address_space_operations ext4_ordered_aops = {
3903 .readpage = ext4_readpage,
3904 .readpages = ext4_readpages,
3905 .writepage = ext4_writepage,
3906 .write_begin = ext4_write_begin,
3907 .write_end = ext4_ordered_write_end,
3908 .bmap = ext4_bmap,
3909 .invalidatepage = ext4_invalidatepage,
3910 .releasepage = ext4_releasepage,
3911 .direct_IO = ext4_direct_IO,
3912 .migratepage = buffer_migrate_page,
3913 .is_partially_uptodate = block_is_partially_uptodate,
3914 .error_remove_page = generic_error_remove_page,
3915 };
3916
3917 static const struct address_space_operations ext4_writeback_aops = {
3918 .readpage = ext4_readpage,
3919 .readpages = ext4_readpages,
3920 .writepage = ext4_writepage,
3921 .write_begin = ext4_write_begin,
3922 .write_end = ext4_writeback_write_end,
3923 .bmap = ext4_bmap,
3924 .invalidatepage = ext4_invalidatepage,
3925 .releasepage = ext4_releasepage,
3926 .direct_IO = ext4_direct_IO,
3927 .migratepage = buffer_migrate_page,
3928 .is_partially_uptodate = block_is_partially_uptodate,
3929 .error_remove_page = generic_error_remove_page,
3930 };
3931
3932 static const struct address_space_operations ext4_journalled_aops = {
3933 .readpage = ext4_readpage,
3934 .readpages = ext4_readpages,
3935 .writepage = ext4_writepage,
3936 .write_begin = ext4_write_begin,
3937 .write_end = ext4_journalled_write_end,
3938 .set_page_dirty = ext4_journalled_set_page_dirty,
3939 .bmap = ext4_bmap,
3940 .invalidatepage = ext4_invalidatepage,
3941 .releasepage = ext4_releasepage,
3942 .is_partially_uptodate = block_is_partially_uptodate,
3943 .error_remove_page = generic_error_remove_page,
3944 };
3945
3946 static const struct address_space_operations ext4_da_aops = {
3947 .readpage = ext4_readpage,
3948 .readpages = ext4_readpages,
3949 .writepage = ext4_writepage,
3950 .writepages = ext4_da_writepages,
3951 .write_begin = ext4_da_write_begin,
3952 .write_end = ext4_da_write_end,
3953 .bmap = ext4_bmap,
3954 .invalidatepage = ext4_da_invalidatepage,
3955 .releasepage = ext4_releasepage,
3956 .direct_IO = ext4_direct_IO,
3957 .migratepage = buffer_migrate_page,
3958 .is_partially_uptodate = block_is_partially_uptodate,
3959 .error_remove_page = generic_error_remove_page,
3960 };
3961
3962 void ext4_set_aops(struct inode *inode)
3963 {
3964 if (ext4_should_order_data(inode) &&
3965 test_opt(inode->i_sb, DELALLOC))
3966 inode->i_mapping->a_ops = &ext4_da_aops;
3967 else if (ext4_should_order_data(inode))
3968 inode->i_mapping->a_ops = &ext4_ordered_aops;
3969 else if (ext4_should_writeback_data(inode) &&
3970 test_opt(inode->i_sb, DELALLOC))
3971 inode->i_mapping->a_ops = &ext4_da_aops;
3972 else if (ext4_should_writeback_data(inode))
3973 inode->i_mapping->a_ops = &ext4_writeback_aops;
3974 else
3975 inode->i_mapping->a_ops = &ext4_journalled_aops;
3976 }
3977
3978 /*
3979 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3980 * up to the end of the block which corresponds to `from'.
3981 * This required during truncate. We need to physically zero the tail end
3982 * of that block so it doesn't yield old data if the file is later grown.
3983 */
3984 int ext4_block_truncate_page(handle_t *handle,
3985 struct address_space *mapping, loff_t from)
3986 {
3987 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3988 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3989 unsigned blocksize, length, pos;
3990 ext4_lblk_t iblock;
3991 struct inode *inode = mapping->host;
3992 struct buffer_head *bh;
3993 struct page *page;
3994 int err = 0;
3995
3996 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3997 mapping_gfp_mask(mapping) & ~__GFP_FS);
3998 if (!page)
3999 return -EINVAL;
4000
4001 blocksize = inode->i_sb->s_blocksize;
4002 length = blocksize - (offset & (blocksize - 1));
4003 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
4004
4005 if (!page_has_buffers(page))
4006 create_empty_buffers(page, blocksize, 0);
4007
4008 /* Find the buffer that contains "offset" */
4009 bh = page_buffers(page);
4010 pos = blocksize;
4011 while (offset >= pos) {
4012 bh = bh->b_this_page;
4013 iblock++;
4014 pos += blocksize;
4015 }
4016
4017 err = 0;
4018 if (buffer_freed(bh)) {
4019 BUFFER_TRACE(bh, "freed: skip");
4020 goto unlock;
4021 }
4022
4023 if (!buffer_mapped(bh)) {
4024 BUFFER_TRACE(bh, "unmapped");
4025 ext4_get_block(inode, iblock, bh, 0);
4026 /* unmapped? It's a hole - nothing to do */
4027 if (!buffer_mapped(bh)) {
4028 BUFFER_TRACE(bh, "still unmapped");
4029 goto unlock;
4030 }
4031 }
4032
4033 /* Ok, it's mapped. Make sure it's up-to-date */
4034 if (PageUptodate(page))
4035 set_buffer_uptodate(bh);
4036
4037 if (!buffer_uptodate(bh)) {
4038 err = -EIO;
4039 ll_rw_block(READ, 1, &bh);
4040 wait_on_buffer(bh);
4041 /* Uhhuh. Read error. Complain and punt. */
4042 if (!buffer_uptodate(bh))
4043 goto unlock;
4044 }
4045
4046 if (ext4_should_journal_data(inode)) {
4047 BUFFER_TRACE(bh, "get write access");
4048 err = ext4_journal_get_write_access(handle, bh);
4049 if (err)
4050 goto unlock;
4051 }
4052
4053 zero_user(page, offset, length);
4054
4055 BUFFER_TRACE(bh, "zeroed end of block");
4056
4057 err = 0;
4058 if (ext4_should_journal_data(inode)) {
4059 err = ext4_handle_dirty_metadata(handle, inode, bh);
4060 } else {
4061 if (ext4_should_order_data(inode) && EXT4_I(inode)->jinode)
4062 err = ext4_jbd2_file_inode(handle, inode);
4063 mark_buffer_dirty(bh);
4064 }
4065
4066 unlock:
4067 unlock_page(page);
4068 page_cache_release(page);
4069 return err;
4070 }
4071
4072 /*
4073 * Probably it should be a library function... search for first non-zero word
4074 * or memcmp with zero_page, whatever is better for particular architecture.
4075 * Linus?
4076 */
4077 static inline int all_zeroes(__le32 *p, __le32 *q)
4078 {
4079 while (p < q)
4080 if (*p++)
4081 return 0;
4082 return 1;
4083 }
4084
4085 /**
4086 * ext4_find_shared - find the indirect blocks for partial truncation.
4087 * @inode: inode in question
4088 * @depth: depth of the affected branch
4089 * @offsets: offsets of pointers in that branch (see ext4_block_to_path)
4090 * @chain: place to store the pointers to partial indirect blocks
4091 * @top: place to the (detached) top of branch
4092 *
4093 * This is a helper function used by ext4_truncate().
4094 *
4095 * When we do truncate() we may have to clean the ends of several
4096 * indirect blocks but leave the blocks themselves alive. Block is
4097 * partially truncated if some data below the new i_size is refered
4098 * from it (and it is on the path to the first completely truncated
4099 * data block, indeed). We have to free the top of that path along
4100 * with everything to the right of the path. Since no allocation
4101 * past the truncation point is possible until ext4_truncate()
4102 * finishes, we may safely do the latter, but top of branch may
4103 * require special attention - pageout below the truncation point
4104 * might try to populate it.
4105 *
4106 * We atomically detach the top of branch from the tree, store the
4107 * block number of its root in *@top, pointers to buffer_heads of
4108 * partially truncated blocks - in @chain[].bh and pointers to
4109 * their last elements that should not be removed - in
4110 * @chain[].p. Return value is the pointer to last filled element
4111 * of @chain.
4112 *
4113 * The work left to caller to do the actual freeing of subtrees:
4114 * a) free the subtree starting from *@top
4115 * b) free the subtrees whose roots are stored in
4116 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
4117 * c) free the subtrees growing from the inode past the @chain[0].
4118 * (no partially truncated stuff there). */
4119
4120 static Indirect *ext4_find_shared(struct inode *inode, int depth,
4121 ext4_lblk_t offsets[4], Indirect chain[4],
4122 __le32 *top)
4123 {
4124 Indirect *partial, *p;
4125 int k, err;
4126
4127 *top = 0;
4128 /* Make k index the deepest non-null offset + 1 */
4129 for (k = depth; k > 1 && !offsets[k-1]; k--)
4130 ;
4131 partial = ext4_get_branch(inode, k, offsets, chain, &err);
4132 /* Writer: pointers */
4133 if (!partial)
4134 partial = chain + k-1;
4135 /*
4136 * If the branch acquired continuation since we've looked at it -
4137 * fine, it should all survive and (new) top doesn't belong to us.
4138 */
4139 if (!partial->key && *partial->p)
4140 /* Writer: end */
4141 goto no_top;
4142 for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
4143 ;
4144 /*
4145 * OK, we've found the last block that must survive. The rest of our
4146 * branch should be detached before unlocking. However, if that rest
4147 * of branch is all ours and does not grow immediately from the inode
4148 * it's easier to cheat and just decrement partial->p.
4149 */
4150 if (p == chain + k - 1 && p > chain) {
4151 p->p--;
4152 } else {
4153 *top = *p->p;
4154 /* Nope, don't do this in ext4. Must leave the tree intact */
4155 #if 0
4156 *p->p = 0;
4157 #endif
4158 }
4159 /* Writer: end */
4160
4161 while (partial > p) {
4162 brelse(partial->bh);
4163 partial--;
4164 }
4165 no_top:
4166 return partial;
4167 }
4168
4169 /*
4170 * Zero a number of block pointers in either an inode or an indirect block.
4171 * If we restart the transaction we must again get write access to the
4172 * indirect block for further modification.
4173 *
4174 * We release `count' blocks on disk, but (last - first) may be greater
4175 * than `count' because there can be holes in there.
4176 */
4177 static int ext4_clear_blocks(handle_t *handle, struct inode *inode,
4178 struct buffer_head *bh,
4179 ext4_fsblk_t block_to_free,
4180 unsigned long count, __le32 *first,
4181 __le32 *last)
4182 {
4183 __le32 *p;
4184 int flags = EXT4_FREE_BLOCKS_FORGET | EXT4_FREE_BLOCKS_VALIDATED;
4185 int err;
4186
4187 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
4188 flags |= EXT4_FREE_BLOCKS_METADATA;
4189
4190 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), block_to_free,
4191 count)) {
4192 EXT4_ERROR_INODE(inode, "attempt to clear invalid "
4193 "blocks %llu len %lu",
4194 (unsigned long long) block_to_free, count);
4195 return 1;
4196 }
4197
4198 if (try_to_extend_transaction(handle, inode)) {
4199 if (bh) {
4200 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4201 err = ext4_handle_dirty_metadata(handle, inode, bh);
4202 if (unlikely(err)) {
4203 ext4_std_error(inode->i_sb, err);
4204 return 1;
4205 }
4206 }
4207 err = ext4_mark_inode_dirty(handle, inode);
4208 if (unlikely(err)) {
4209 ext4_std_error(inode->i_sb, err);
4210 return 1;
4211 }
4212 err = ext4_truncate_restart_trans(handle, inode,
4213 blocks_for_truncate(inode));
4214 if (unlikely(err)) {
4215 ext4_std_error(inode->i_sb, err);
4216 return 1;
4217 }
4218 if (bh) {
4219 BUFFER_TRACE(bh, "retaking write access");
4220 ext4_journal_get_write_access(handle, bh);
4221 }
4222 }
4223
4224 for (p = first; p < last; p++)
4225 *p = 0;
4226
4227 ext4_free_blocks(handle, inode, 0, block_to_free, count, flags);
4228 return 0;
4229 }
4230
4231 /**
4232 * ext4_free_data - free a list of data blocks
4233 * @handle: handle for this transaction
4234 * @inode: inode we are dealing with
4235 * @this_bh: indirect buffer_head which contains *@first and *@last
4236 * @first: array of block numbers
4237 * @last: points immediately past the end of array
4238 *
4239 * We are freeing all blocks refered from that array (numbers are stored as
4240 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
4241 *
4242 * We accumulate contiguous runs of blocks to free. Conveniently, if these
4243 * blocks are contiguous then releasing them at one time will only affect one
4244 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
4245 * actually use a lot of journal space.
4246 *
4247 * @this_bh will be %NULL if @first and @last point into the inode's direct
4248 * block pointers.
4249 */
4250 static void ext4_free_data(handle_t *handle, struct inode *inode,
4251 struct buffer_head *this_bh,
4252 __le32 *first, __le32 *last)
4253 {
4254 ext4_fsblk_t block_to_free = 0; /* Starting block # of a run */
4255 unsigned long count = 0; /* Number of blocks in the run */
4256 __le32 *block_to_free_p = NULL; /* Pointer into inode/ind
4257 corresponding to
4258 block_to_free */
4259 ext4_fsblk_t nr; /* Current block # */
4260 __le32 *p; /* Pointer into inode/ind
4261 for current block */
4262 int err;
4263
4264 if (this_bh) { /* For indirect block */
4265 BUFFER_TRACE(this_bh, "get_write_access");
4266 err = ext4_journal_get_write_access(handle, this_bh);
4267 /* Important: if we can't update the indirect pointers
4268 * to the blocks, we can't free them. */
4269 if (err)
4270 return;
4271 }
4272
4273 for (p = first; p < last; p++) {
4274 nr = le32_to_cpu(*p);
4275 if (nr) {
4276 /* accumulate blocks to free if they're contiguous */
4277 if (count == 0) {
4278 block_to_free = nr;
4279 block_to_free_p = p;
4280 count = 1;
4281 } else if (nr == block_to_free + count) {
4282 count++;
4283 } else {
4284 if (ext4_clear_blocks(handle, inode, this_bh,
4285 block_to_free, count,
4286 block_to_free_p, p))
4287 break;
4288 block_to_free = nr;
4289 block_to_free_p = p;
4290 count = 1;
4291 }
4292 }
4293 }
4294
4295 if (count > 0)
4296 ext4_clear_blocks(handle, inode, this_bh, block_to_free,
4297 count, block_to_free_p, p);
4298
4299 if (this_bh) {
4300 BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
4301
4302 /*
4303 * The buffer head should have an attached journal head at this
4304 * point. However, if the data is corrupted and an indirect
4305 * block pointed to itself, it would have been detached when
4306 * the block was cleared. Check for this instead of OOPSing.
4307 */
4308 if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
4309 ext4_handle_dirty_metadata(handle, inode, this_bh);
4310 else
4311 EXT4_ERROR_INODE(inode,
4312 "circular indirect block detected at "
4313 "block %llu",
4314 (unsigned long long) this_bh->b_blocknr);
4315 }
4316 }
4317
4318 /**
4319 * ext4_free_branches - free an array of branches
4320 * @handle: JBD handle for this transaction
4321 * @inode: inode we are dealing with
4322 * @parent_bh: the buffer_head which contains *@first and *@last
4323 * @first: array of block numbers
4324 * @last: pointer immediately past the end of array
4325 * @depth: depth of the branches to free
4326 *
4327 * We are freeing all blocks refered from these branches (numbers are
4328 * stored as little-endian 32-bit) and updating @inode->i_blocks
4329 * appropriately.
4330 */
4331 static void ext4_free_branches(handle_t *handle, struct inode *inode,
4332 struct buffer_head *parent_bh,
4333 __le32 *first, __le32 *last, int depth)
4334 {
4335 ext4_fsblk_t nr;
4336 __le32 *p;
4337
4338 if (ext4_handle_is_aborted(handle))
4339 return;
4340
4341 if (depth--) {
4342 struct buffer_head *bh;
4343 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
4344 p = last;
4345 while (--p >= first) {
4346 nr = le32_to_cpu(*p);
4347 if (!nr)
4348 continue; /* A hole */
4349
4350 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb),
4351 nr, 1)) {
4352 EXT4_ERROR_INODE(inode,
4353 "invalid indirect mapped "
4354 "block %lu (level %d)",
4355 (unsigned long) nr, depth);
4356 break;
4357 }
4358
4359 /* Go read the buffer for the next level down */
4360 bh = sb_bread(inode->i_sb, nr);
4361
4362 /*
4363 * A read failure? Report error and clear slot
4364 * (should be rare).
4365 */
4366 if (!bh) {
4367 EXT4_ERROR_INODE_BLOCK(inode, nr,
4368 "Read failure");
4369 continue;
4370 }
4371
4372 /* This zaps the entire block. Bottom up. */
4373 BUFFER_TRACE(bh, "free child branches");
4374 ext4_free_branches(handle, inode, bh,
4375 (__le32 *) bh->b_data,
4376 (__le32 *) bh->b_data + addr_per_block,
4377 depth);
4378 brelse(bh);
4379
4380 /*
4381 * Everything below this this pointer has been
4382 * released. Now let this top-of-subtree go.
4383 *
4384 * We want the freeing of this indirect block to be
4385 * atomic in the journal with the updating of the
4386 * bitmap block which owns it. So make some room in
4387 * the journal.
4388 *
4389 * We zero the parent pointer *after* freeing its
4390 * pointee in the bitmaps, so if extend_transaction()
4391 * for some reason fails to put the bitmap changes and
4392 * the release into the same transaction, recovery
4393 * will merely complain about releasing a free block,
4394 * rather than leaking blocks.
4395 */
4396 if (ext4_handle_is_aborted(handle))
4397 return;
4398 if (try_to_extend_transaction(handle, inode)) {
4399 ext4_mark_inode_dirty(handle, inode);
4400 ext4_truncate_restart_trans(handle, inode,
4401 blocks_for_truncate(inode));
4402 }
4403
4404 /*
4405 * The forget flag here is critical because if
4406 * we are journaling (and not doing data
4407 * journaling), we have to make sure a revoke
4408 * record is written to prevent the journal
4409 * replay from overwriting the (former)
4410 * indirect block if it gets reallocated as a
4411 * data block. This must happen in the same
4412 * transaction where the data blocks are
4413 * actually freed.
4414 */
4415 ext4_free_blocks(handle, inode, 0, nr, 1,
4416 EXT4_FREE_BLOCKS_METADATA|
4417 EXT4_FREE_BLOCKS_FORGET);
4418
4419 if (parent_bh) {
4420 /*
4421 * The block which we have just freed is
4422 * pointed to by an indirect block: journal it
4423 */
4424 BUFFER_TRACE(parent_bh, "get_write_access");
4425 if (!ext4_journal_get_write_access(handle,
4426 parent_bh)){
4427 *p = 0;
4428 BUFFER_TRACE(parent_bh,
4429 "call ext4_handle_dirty_metadata");
4430 ext4_handle_dirty_metadata(handle,
4431 inode,
4432 parent_bh);
4433 }
4434 }
4435 }
4436 } else {
4437 /* We have reached the bottom of the tree. */
4438 BUFFER_TRACE(parent_bh, "free data blocks");
4439 ext4_free_data(handle, inode, parent_bh, first, last);
4440 }
4441 }
4442
4443 int ext4_can_truncate(struct inode *inode)
4444 {
4445 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4446 return 0;
4447 if (S_ISREG(inode->i_mode))
4448 return 1;
4449 if (S_ISDIR(inode->i_mode))
4450 return 1;
4451 if (S_ISLNK(inode->i_mode))
4452 return !ext4_inode_is_fast_symlink(inode);
4453 return 0;
4454 }
4455
4456 /*
4457 * ext4_truncate()
4458 *
4459 * We block out ext4_get_block() block instantiations across the entire
4460 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4461 * simultaneously on behalf of the same inode.
4462 *
4463 * As we work through the truncate and commmit bits of it to the journal there
4464 * is one core, guiding principle: the file's tree must always be consistent on
4465 * disk. We must be able to restart the truncate after a crash.
4466 *
4467 * The file's tree may be transiently inconsistent in memory (although it
4468 * probably isn't), but whenever we close off and commit a journal transaction,
4469 * the contents of (the filesystem + the journal) must be consistent and
4470 * restartable. It's pretty simple, really: bottom up, right to left (although
4471 * left-to-right works OK too).
4472 *
4473 * Note that at recovery time, journal replay occurs *before* the restart of
4474 * truncate against the orphan inode list.
4475 *
4476 * The committed inode has the new, desired i_size (which is the same as
4477 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
4478 * that this inode's truncate did not complete and it will again call
4479 * ext4_truncate() to have another go. So there will be instantiated blocks
4480 * to the right of the truncation point in a crashed ext4 filesystem. But
4481 * that's fine - as long as they are linked from the inode, the post-crash
4482 * ext4_truncate() run will find them and release them.
4483 */
4484 void ext4_truncate(struct inode *inode)
4485 {
4486 handle_t *handle;
4487 struct ext4_inode_info *ei = EXT4_I(inode);
4488 __le32 *i_data = ei->i_data;
4489 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
4490 struct address_space *mapping = inode->i_mapping;
4491 ext4_lblk_t offsets[4];
4492 Indirect chain[4];
4493 Indirect *partial;
4494 __le32 nr = 0;
4495 int n;
4496 ext4_lblk_t last_block;
4497 unsigned blocksize = inode->i_sb->s_blocksize;
4498
4499 if (!ext4_can_truncate(inode))
4500 return;
4501
4502 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4503
4504 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4505 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4506
4507 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4508 ext4_ext_truncate(inode);
4509 return;
4510 }
4511
4512 handle = start_transaction(inode);
4513 if (IS_ERR(handle))
4514 return; /* AKPM: return what? */
4515
4516 last_block = (inode->i_size + blocksize-1)
4517 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
4518
4519 if (inode->i_size & (blocksize - 1))
4520 if (ext4_block_truncate_page(handle, mapping, inode->i_size))
4521 goto out_stop;
4522
4523 n = ext4_block_to_path(inode, last_block, offsets, NULL);
4524 if (n == 0)
4525 goto out_stop; /* error */
4526
4527 /*
4528 * OK. This truncate is going to happen. We add the inode to the
4529 * orphan list, so that if this truncate spans multiple transactions,
4530 * and we crash, we will resume the truncate when the filesystem
4531 * recovers. It also marks the inode dirty, to catch the new size.
4532 *
4533 * Implication: the file must always be in a sane, consistent
4534 * truncatable state while each transaction commits.
4535 */
4536 if (ext4_orphan_add(handle, inode))
4537 goto out_stop;
4538
4539 /*
4540 * From here we block out all ext4_get_block() callers who want to
4541 * modify the block allocation tree.
4542 */
4543 down_write(&ei->i_data_sem);
4544
4545 ext4_discard_preallocations(inode);
4546
4547 /*
4548 * The orphan list entry will now protect us from any crash which
4549 * occurs before the truncate completes, so it is now safe to propagate
4550 * the new, shorter inode size (held for now in i_size) into the
4551 * on-disk inode. We do this via i_disksize, which is the value which
4552 * ext4 *really* writes onto the disk inode.
4553 */
4554 ei->i_disksize = inode->i_size;
4555
4556 if (n == 1) { /* direct blocks */
4557 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
4558 i_data + EXT4_NDIR_BLOCKS);
4559 goto do_indirects;
4560 }
4561
4562 partial = ext4_find_shared(inode, n, offsets, chain, &nr);
4563 /* Kill the top of shared branch (not detached) */
4564 if (nr) {
4565 if (partial == chain) {
4566 /* Shared branch grows from the inode */
4567 ext4_free_branches(handle, inode, NULL,
4568 &nr, &nr+1, (chain+n-1) - partial);
4569 *partial->p = 0;
4570 /*
4571 * We mark the inode dirty prior to restart,
4572 * and prior to stop. No need for it here.
4573 */
4574 } else {
4575 /* Shared branch grows from an indirect block */
4576 BUFFER_TRACE(partial->bh, "get_write_access");
4577 ext4_free_branches(handle, inode, partial->bh,
4578 partial->p,
4579 partial->p+1, (chain+n-1) - partial);
4580 }
4581 }
4582 /* Clear the ends of indirect blocks on the shared branch */
4583 while (partial > chain) {
4584 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
4585 (__le32*)partial->bh->b_data+addr_per_block,
4586 (chain+n-1) - partial);
4587 BUFFER_TRACE(partial->bh, "call brelse");
4588 brelse(partial->bh);
4589 partial--;
4590 }
4591 do_indirects:
4592 /* Kill the remaining (whole) subtrees */
4593 switch (offsets[0]) {
4594 default:
4595 nr = i_data[EXT4_IND_BLOCK];
4596 if (nr) {
4597 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
4598 i_data[EXT4_IND_BLOCK] = 0;
4599 }
4600 case EXT4_IND_BLOCK:
4601 nr = i_data[EXT4_DIND_BLOCK];
4602 if (nr) {
4603 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
4604 i_data[EXT4_DIND_BLOCK] = 0;
4605 }
4606 case EXT4_DIND_BLOCK:
4607 nr = i_data[EXT4_TIND_BLOCK];
4608 if (nr) {
4609 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
4610 i_data[EXT4_TIND_BLOCK] = 0;
4611 }
4612 case EXT4_TIND_BLOCK:
4613 ;
4614 }
4615
4616 up_write(&ei->i_data_sem);
4617 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4618 ext4_mark_inode_dirty(handle, inode);
4619
4620 /*
4621 * In a multi-transaction truncate, we only make the final transaction
4622 * synchronous
4623 */
4624 if (IS_SYNC(inode))
4625 ext4_handle_sync(handle);
4626 out_stop:
4627 /*
4628 * If this was a simple ftruncate(), and the file will remain alive
4629 * then we need to clear up the orphan record which we created above.
4630 * However, if this was a real unlink then we were called by
4631 * ext4_delete_inode(), and we allow that function to clean up the
4632 * orphan info for us.
4633 */
4634 if (inode->i_nlink)
4635 ext4_orphan_del(handle, inode);
4636
4637 ext4_journal_stop(handle);
4638 }
4639
4640 /*
4641 * ext4_get_inode_loc returns with an extra refcount against the inode's
4642 * underlying buffer_head on success. If 'in_mem' is true, we have all
4643 * data in memory that is needed to recreate the on-disk version of this
4644 * inode.
4645 */
4646 static int __ext4_get_inode_loc(struct inode *inode,
4647 struct ext4_iloc *iloc, int in_mem)
4648 {
4649 struct ext4_group_desc *gdp;
4650 struct buffer_head *bh;
4651 struct super_block *sb = inode->i_sb;
4652 ext4_fsblk_t block;
4653 int inodes_per_block, inode_offset;
4654
4655 iloc->bh = NULL;
4656 if (!ext4_valid_inum(sb, inode->i_ino))
4657 return -EIO;
4658
4659 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4660 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4661 if (!gdp)
4662 return -EIO;
4663
4664 /*
4665 * Figure out the offset within the block group inode table
4666 */
4667 inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb));
4668 inode_offset = ((inode->i_ino - 1) %
4669 EXT4_INODES_PER_GROUP(sb));
4670 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4671 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4672
4673 bh = sb_getblk(sb, block);
4674 if (!bh) {
4675 EXT4_ERROR_INODE_BLOCK(inode, block,
4676 "unable to read itable block");
4677 return -EIO;
4678 }
4679 if (!buffer_uptodate(bh)) {
4680 lock_buffer(bh);
4681
4682 /*
4683 * If the buffer has the write error flag, we have failed
4684 * to write out another inode in the same block. In this
4685 * case, we don't have to read the block because we may
4686 * read the old inode data successfully.
4687 */
4688 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4689 set_buffer_uptodate(bh);
4690
4691 if (buffer_uptodate(bh)) {
4692 /* someone brought it uptodate while we waited */
4693 unlock_buffer(bh);
4694 goto has_buffer;
4695 }
4696
4697 /*
4698 * If we have all information of the inode in memory and this
4699 * is the only valid inode in the block, we need not read the
4700 * block.
4701 */
4702 if (in_mem) {
4703 struct buffer_head *bitmap_bh;
4704 int i, start;
4705
4706 start = inode_offset & ~(inodes_per_block - 1);
4707
4708 /* Is the inode bitmap in cache? */
4709 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4710 if (!bitmap_bh)
4711 goto make_io;
4712
4713 /*
4714 * If the inode bitmap isn't in cache then the
4715 * optimisation may end up performing two reads instead
4716 * of one, so skip it.
4717 */
4718 if (!buffer_uptodate(bitmap_bh)) {
4719 brelse(bitmap_bh);
4720 goto make_io;
4721 }
4722 for (i = start; i < start + inodes_per_block; i++) {
4723 if (i == inode_offset)
4724 continue;
4725 if (ext4_test_bit(i, bitmap_bh->b_data))
4726 break;
4727 }
4728 brelse(bitmap_bh);
4729 if (i == start + inodes_per_block) {
4730 /* all other inodes are free, so skip I/O */
4731 memset(bh->b_data, 0, bh->b_size);
4732 set_buffer_uptodate(bh);
4733 unlock_buffer(bh);
4734 goto has_buffer;
4735 }
4736 }
4737
4738 make_io:
4739 /*
4740 * If we need to do any I/O, try to pre-readahead extra
4741 * blocks from the inode table.
4742 */
4743 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4744 ext4_fsblk_t b, end, table;
4745 unsigned num;
4746
4747 table = ext4_inode_table(sb, gdp);
4748 /* s_inode_readahead_blks is always a power of 2 */
4749 b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
4750 if (table > b)
4751 b = table;
4752 end = b + EXT4_SB(sb)->s_inode_readahead_blks;
4753 num = EXT4_INODES_PER_GROUP(sb);
4754 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4755 EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
4756 num -= ext4_itable_unused_count(sb, gdp);
4757 table += num / inodes_per_block;
4758 if (end > table)
4759 end = table;
4760 while (b <= end)
4761 sb_breadahead(sb, b++);
4762 }
4763
4764 /*
4765 * There are other valid inodes in the buffer, this inode
4766 * has in-inode xattrs, or we don't have this inode in memory.
4767 * Read the block from disk.
4768 */
4769 get_bh(bh);
4770 bh->b_end_io = end_buffer_read_sync;
4771 submit_bh(READ_META, bh);
4772 wait_on_buffer(bh);
4773 if (!buffer_uptodate(bh)) {
4774 EXT4_ERROR_INODE_BLOCK(inode, block,
4775 "unable to read itable block");
4776 brelse(bh);
4777 return -EIO;
4778 }
4779 }
4780 has_buffer:
4781 iloc->bh = bh;
4782 return 0;
4783 }
4784
4785 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4786 {
4787 /* We have all inode data except xattrs in memory here. */
4788 return __ext4_get_inode_loc(inode, iloc,
4789 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4790 }
4791
4792 void ext4_set_inode_flags(struct inode *inode)
4793 {
4794 unsigned int flags = EXT4_I(inode)->i_flags;
4795
4796 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
4797 if (flags & EXT4_SYNC_FL)
4798 inode->i_flags |= S_SYNC;
4799 if (flags & EXT4_APPEND_FL)
4800 inode->i_flags |= S_APPEND;
4801 if (flags & EXT4_IMMUTABLE_FL)
4802 inode->i_flags |= S_IMMUTABLE;
4803 if (flags & EXT4_NOATIME_FL)
4804 inode->i_flags |= S_NOATIME;
4805 if (flags & EXT4_DIRSYNC_FL)
4806 inode->i_flags |= S_DIRSYNC;
4807 }
4808
4809 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4810 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4811 {
4812 unsigned int vfs_fl;
4813 unsigned long old_fl, new_fl;
4814
4815 do {
4816 vfs_fl = ei->vfs_inode.i_flags;
4817 old_fl = ei->i_flags;
4818 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4819 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
4820 EXT4_DIRSYNC_FL);
4821 if (vfs_fl & S_SYNC)
4822 new_fl |= EXT4_SYNC_FL;
4823 if (vfs_fl & S_APPEND)
4824 new_fl |= EXT4_APPEND_FL;
4825 if (vfs_fl & S_IMMUTABLE)
4826 new_fl |= EXT4_IMMUTABLE_FL;
4827 if (vfs_fl & S_NOATIME)
4828 new_fl |= EXT4_NOATIME_FL;
4829 if (vfs_fl & S_DIRSYNC)
4830 new_fl |= EXT4_DIRSYNC_FL;
4831 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
4832 }
4833
4834 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4835 struct ext4_inode_info *ei)
4836 {
4837 blkcnt_t i_blocks ;
4838 struct inode *inode = &(ei->vfs_inode);
4839 struct super_block *sb = inode->i_sb;
4840
4841 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4842 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4843 /* we are using combined 48 bit field */
4844 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4845 le32_to_cpu(raw_inode->i_blocks_lo);
4846 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4847 /* i_blocks represent file system block size */
4848 return i_blocks << (inode->i_blkbits - 9);
4849 } else {
4850 return i_blocks;
4851 }
4852 } else {
4853 return le32_to_cpu(raw_inode->i_blocks_lo);
4854 }
4855 }
4856
4857 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4858 {
4859 struct ext4_iloc iloc;
4860 struct ext4_inode *raw_inode;
4861 struct ext4_inode_info *ei;
4862 struct inode *inode;
4863 journal_t *journal = EXT4_SB(sb)->s_journal;
4864 long ret;
4865 int block;
4866
4867 inode = iget_locked(sb, ino);
4868 if (!inode)
4869 return ERR_PTR(-ENOMEM);
4870 if (!(inode->i_state & I_NEW))
4871 return inode;
4872
4873 ei = EXT4_I(inode);
4874 iloc.bh = 0;
4875
4876 ret = __ext4_get_inode_loc(inode, &iloc, 0);
4877 if (ret < 0)
4878 goto bad_inode;
4879 raw_inode = ext4_raw_inode(&iloc);
4880 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4881 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4882 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4883 if (!(test_opt(inode->i_sb, NO_UID32))) {
4884 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4885 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4886 }
4887 inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
4888
4889 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
4890 ei->i_dir_start_lookup = 0;
4891 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4892 /* We now have enough fields to check if the inode was active or not.
4893 * This is needed because nfsd might try to access dead inodes
4894 * the test is that same one that e2fsck uses
4895 * NeilBrown 1999oct15
4896 */
4897 if (inode->i_nlink == 0) {
4898 if (inode->i_mode == 0 ||
4899 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
4900 /* this inode is deleted */
4901 ret = -ESTALE;
4902 goto bad_inode;
4903 }
4904 /* The only unlinked inodes we let through here have
4905 * valid i_mode and are being read by the orphan
4906 * recovery code: that's fine, we're about to complete
4907 * the process of deleting those. */
4908 }
4909 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4910 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4911 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4912 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
4913 ei->i_file_acl |=
4914 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4915 inode->i_size = ext4_isize(raw_inode);
4916 ei->i_disksize = inode->i_size;
4917 #ifdef CONFIG_QUOTA
4918 ei->i_reserved_quota = 0;
4919 #endif
4920 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4921 ei->i_block_group = iloc.block_group;
4922 ei->i_last_alloc_group = ~0;
4923 /*
4924 * NOTE! The in-memory inode i_data array is in little-endian order
4925 * even on big-endian machines: we do NOT byteswap the block numbers!
4926 */
4927 for (block = 0; block < EXT4_N_BLOCKS; block++)
4928 ei->i_data[block] = raw_inode->i_block[block];
4929 INIT_LIST_HEAD(&ei->i_orphan);
4930
4931 /*
4932 * Set transaction id's of transactions that have to be committed
4933 * to finish f[data]sync. We set them to currently running transaction
4934 * as we cannot be sure that the inode or some of its metadata isn't
4935 * part of the transaction - the inode could have been reclaimed and
4936 * now it is reread from disk.
4937 */
4938 if (journal) {
4939 transaction_t *transaction;
4940 tid_t tid;
4941
4942 read_lock(&journal->j_state_lock);
4943 if (journal->j_running_transaction)
4944 transaction = journal->j_running_transaction;
4945 else
4946 transaction = journal->j_committing_transaction;
4947 if (transaction)
4948 tid = transaction->t_tid;
4949 else
4950 tid = journal->j_commit_sequence;
4951 read_unlock(&journal->j_state_lock);
4952 ei->i_sync_tid = tid;
4953 ei->i_datasync_tid = tid;
4954 }
4955
4956 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4957 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4958 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4959 EXT4_INODE_SIZE(inode->i_sb)) {
4960 ret = -EIO;
4961 goto bad_inode;
4962 }
4963 if (ei->i_extra_isize == 0) {
4964 /* The extra space is currently unused. Use it. */
4965 ei->i_extra_isize = sizeof(struct ext4_inode) -
4966 EXT4_GOOD_OLD_INODE_SIZE;
4967 } else {
4968 __le32 *magic = (void *)raw_inode +
4969 EXT4_GOOD_OLD_INODE_SIZE +
4970 ei->i_extra_isize;
4971 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
4972 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4973 }
4974 } else
4975 ei->i_extra_isize = 0;
4976
4977 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4978 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4979 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4980 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4981
4982 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4983 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4984 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4985 inode->i_version |=
4986 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4987 }
4988
4989 ret = 0;
4990 if (ei->i_file_acl &&
4991 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4992 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4993 ei->i_file_acl);
4994 ret = -EIO;
4995 goto bad_inode;
4996 } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4997 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4998 (S_ISLNK(inode->i_mode) &&
4999 !ext4_inode_is_fast_symlink(inode)))
5000 /* Validate extent which is part of inode */
5001 ret = ext4_ext_check_inode(inode);
5002 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
5003 (S_ISLNK(inode->i_mode) &&
5004 !ext4_inode_is_fast_symlink(inode))) {
5005 /* Validate block references which are part of inode */
5006 ret = ext4_check_inode_blockref(inode);
5007 }
5008 if (ret)
5009 goto bad_inode;
5010
5011 if (S_ISREG(inode->i_mode)) {
5012 inode->i_op = &ext4_file_inode_operations;
5013 inode->i_fop = &ext4_file_operations;
5014 ext4_set_aops(inode);
5015 } else if (S_ISDIR(inode->i_mode)) {
5016 inode->i_op = &ext4_dir_inode_operations;
5017 inode->i_fop = &ext4_dir_operations;
5018 } else if (S_ISLNK(inode->i_mode)) {
5019 if (ext4_inode_is_fast_symlink(inode)) {
5020 inode->i_op = &ext4_fast_symlink_inode_operations;
5021 nd_terminate_link(ei->i_data, inode->i_size,
5022 sizeof(ei->i_data) - 1);
5023 } else {
5024 inode->i_op = &ext4_symlink_inode_operations;
5025 ext4_set_aops(inode);
5026 }
5027 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
5028 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
5029 inode->i_op = &ext4_special_inode_operations;
5030 if (raw_inode->i_block[0])
5031 init_special_inode(inode, inode->i_mode,
5032 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
5033 else
5034 init_special_inode(inode, inode->i_mode,
5035 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
5036 } else {
5037 ret = -EIO;
5038 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
5039 goto bad_inode;
5040 }
5041 brelse(iloc.bh);
5042 ext4_set_inode_flags(inode);
5043 unlock_new_inode(inode);
5044 return inode;
5045
5046 bad_inode:
5047 brelse(iloc.bh);
5048 iget_failed(inode);
5049 return ERR_PTR(ret);
5050 }
5051
5052 static int ext4_inode_blocks_set(handle_t *handle,
5053 struct ext4_inode *raw_inode,
5054 struct ext4_inode_info *ei)
5055 {
5056 struct inode *inode = &(ei->vfs_inode);
5057 u64 i_blocks = inode->i_blocks;
5058 struct super_block *sb = inode->i_sb;
5059
5060 if (i_blocks <= ~0U) {
5061 /*
5062 * i_blocks can be represnted in a 32 bit variable
5063 * as multiple of 512 bytes
5064 */
5065 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
5066 raw_inode->i_blocks_high = 0;
5067 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5068 return 0;
5069 }
5070 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
5071 return -EFBIG;
5072
5073 if (i_blocks <= 0xffffffffffffULL) {
5074 /*
5075 * i_blocks can be represented in a 48 bit variable
5076 * as multiple of 512 bytes
5077 */
5078 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
5079 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5080 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5081 } else {
5082 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5083 /* i_block is stored in file system block size */
5084 i_blocks = i_blocks >> (inode->i_blkbits - 9);
5085 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
5086 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5087 }
5088 return 0;
5089 }
5090
5091 /*
5092 * Post the struct inode info into an on-disk inode location in the
5093 * buffer-cache. This gobbles the caller's reference to the
5094 * buffer_head in the inode location struct.
5095 *
5096 * The caller must have write access to iloc->bh.
5097 */
5098 static int ext4_do_update_inode(handle_t *handle,
5099 struct inode *inode,
5100 struct ext4_iloc *iloc)
5101 {
5102 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5103 struct ext4_inode_info *ei = EXT4_I(inode);
5104 struct buffer_head *bh = iloc->bh;
5105 int err = 0, rc, block;
5106
5107 /* For fields not not tracking in the in-memory inode,
5108 * initialise them to zero for new inodes. */
5109 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5110 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5111
5112 ext4_get_inode_flags(ei);
5113 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
5114 if (!(test_opt(inode->i_sb, NO_UID32))) {
5115 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
5116 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
5117 /*
5118 * Fix up interoperability with old kernels. Otherwise, old inodes get
5119 * re-used with the upper 16 bits of the uid/gid intact
5120 */
5121 if (!ei->i_dtime) {
5122 raw_inode->i_uid_high =
5123 cpu_to_le16(high_16_bits(inode->i_uid));
5124 raw_inode->i_gid_high =
5125 cpu_to_le16(high_16_bits(inode->i_gid));
5126 } else {
5127 raw_inode->i_uid_high = 0;
5128 raw_inode->i_gid_high = 0;
5129 }
5130 } else {
5131 raw_inode->i_uid_low =
5132 cpu_to_le16(fs_high2lowuid(inode->i_uid));
5133 raw_inode->i_gid_low =
5134 cpu_to_le16(fs_high2lowgid(inode->i_gid));
5135 raw_inode->i_uid_high = 0;
5136 raw_inode->i_gid_high = 0;
5137 }
5138 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
5139
5140 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5141 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5142 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5143 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
5144
5145 if (ext4_inode_blocks_set(handle, raw_inode, ei))
5146 goto out_brelse;
5147 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
5148 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
5149 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
5150 cpu_to_le32(EXT4_OS_HURD))
5151 raw_inode->i_file_acl_high =
5152 cpu_to_le16(ei->i_file_acl >> 32);
5153 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
5154 ext4_isize_set(raw_inode, ei->i_disksize);
5155 if (ei->i_disksize > 0x7fffffffULL) {
5156 struct super_block *sb = inode->i_sb;
5157 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
5158 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
5159 EXT4_SB(sb)->s_es->s_rev_level ==
5160 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
5161 /* If this is the first large file
5162 * created, add a flag to the superblock.
5163 */
5164 err = ext4_journal_get_write_access(handle,
5165 EXT4_SB(sb)->s_sbh);
5166 if (err)
5167 goto out_brelse;
5168 ext4_update_dynamic_rev(sb);
5169 EXT4_SET_RO_COMPAT_FEATURE(sb,
5170 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
5171 sb->s_dirt = 1;
5172 ext4_handle_sync(handle);
5173 err = ext4_handle_dirty_metadata(handle, NULL,
5174 EXT4_SB(sb)->s_sbh);
5175 }
5176 }
5177 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5178 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5179 if (old_valid_dev(inode->i_rdev)) {
5180 raw_inode->i_block[0] =
5181 cpu_to_le32(old_encode_dev(inode->i_rdev));
5182 raw_inode->i_block[1] = 0;
5183 } else {
5184 raw_inode->i_block[0] = 0;
5185 raw_inode->i_block[1] =
5186 cpu_to_le32(new_encode_dev(inode->i_rdev));
5187 raw_inode->i_block[2] = 0;
5188 }
5189 } else
5190 for (block = 0; block < EXT4_N_BLOCKS; block++)
5191 raw_inode->i_block[block] = ei->i_data[block];
5192
5193 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
5194 if (ei->i_extra_isize) {
5195 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5196 raw_inode->i_version_hi =
5197 cpu_to_le32(inode->i_version >> 32);
5198 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
5199 }
5200
5201 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5202 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
5203 if (!err)
5204 err = rc;
5205 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5206
5207 ext4_update_inode_fsync_trans(handle, inode, 0);
5208 out_brelse:
5209 brelse(bh);
5210 ext4_std_error(inode->i_sb, err);
5211 return err;
5212 }
5213
5214 /*
5215 * ext4_write_inode()
5216 *
5217 * We are called from a few places:
5218 *
5219 * - Within generic_file_write() for O_SYNC files.
5220 * Here, there will be no transaction running. We wait for any running
5221 * trasnaction to commit.
5222 *
5223 * - Within sys_sync(), kupdate and such.
5224 * We wait on commit, if tol to.
5225 *
5226 * - Within prune_icache() (PF_MEMALLOC == true)
5227 * Here we simply return. We can't afford to block kswapd on the
5228 * journal commit.
5229 *
5230 * In all cases it is actually safe for us to return without doing anything,
5231 * because the inode has been copied into a raw inode buffer in
5232 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
5233 * knfsd.
5234 *
5235 * Note that we are absolutely dependent upon all inode dirtiers doing the
5236 * right thing: they *must* call mark_inode_dirty() after dirtying info in
5237 * which we are interested.
5238 *
5239 * It would be a bug for them to not do this. The code:
5240 *
5241 * mark_inode_dirty(inode)
5242 * stuff();
5243 * inode->i_size = expr;
5244 *
5245 * is in error because a kswapd-driven write_inode() could occur while
5246 * `stuff()' is running, and the new i_size will be lost. Plus the inode
5247 * will no longer be on the superblock's dirty inode list.
5248 */
5249 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5250 {
5251 int err;
5252
5253 if (current->flags & PF_MEMALLOC)
5254 return 0;
5255
5256 if (EXT4_SB(inode->i_sb)->s_journal) {
5257 if (ext4_journal_current_handle()) {
5258 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5259 dump_stack();
5260 return -EIO;
5261 }
5262
5263 if (wbc->sync_mode != WB_SYNC_ALL)
5264 return 0;
5265
5266 err = ext4_force_commit(inode->i_sb);
5267 } else {
5268 struct ext4_iloc iloc;
5269
5270 err = __ext4_get_inode_loc(inode, &iloc, 0);
5271 if (err)
5272 return err;
5273 if (wbc->sync_mode == WB_SYNC_ALL)
5274 sync_dirty_buffer(iloc.bh);
5275 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5276 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
5277 "IO error syncing inode");
5278 err = -EIO;
5279 }
5280 brelse(iloc.bh);
5281 }
5282 return err;
5283 }
5284
5285 /*
5286 * ext4_setattr()
5287 *
5288 * Called from notify_change.
5289 *
5290 * We want to trap VFS attempts to truncate the file as soon as
5291 * possible. In particular, we want to make sure that when the VFS
5292 * shrinks i_size, we put the inode on the orphan list and modify
5293 * i_disksize immediately, so that during the subsequent flushing of
5294 * dirty pages and freeing of disk blocks, we can guarantee that any
5295 * commit will leave the blocks being flushed in an unused state on
5296 * disk. (On recovery, the inode will get truncated and the blocks will
5297 * be freed, so we have a strong guarantee that no future commit will
5298 * leave these blocks visible to the user.)
5299 *
5300 * Another thing we have to assure is that if we are in ordered mode
5301 * and inode is still attached to the committing transaction, we must
5302 * we start writeout of all the dirty pages which are being truncated.
5303 * This way we are sure that all the data written in the previous
5304 * transaction are already on disk (truncate waits for pages under
5305 * writeback).
5306 *
5307 * Called with inode->i_mutex down.
5308 */
5309 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5310 {
5311 struct inode *inode = dentry->d_inode;
5312 int error, rc = 0;
5313 int orphan = 0;
5314 const unsigned int ia_valid = attr->ia_valid;
5315
5316 error = inode_change_ok(inode, attr);
5317 if (error)
5318 return error;
5319
5320 if (is_quota_modification(inode, attr))
5321 dquot_initialize(inode);
5322 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
5323 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
5324 handle_t *handle;
5325
5326 /* (user+group)*(old+new) structure, inode write (sb,
5327 * inode block, ? - but truncate inode update has it) */
5328 handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
5329 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3);
5330 if (IS_ERR(handle)) {
5331 error = PTR_ERR(handle);
5332 goto err_out;
5333 }
5334 error = dquot_transfer(inode, attr);
5335 if (error) {
5336 ext4_journal_stop(handle);
5337 return error;
5338 }
5339 /* Update corresponding info in inode so that everything is in
5340 * one transaction */
5341 if (attr->ia_valid & ATTR_UID)
5342 inode->i_uid = attr->ia_uid;
5343 if (attr->ia_valid & ATTR_GID)
5344 inode->i_gid = attr->ia_gid;
5345 error = ext4_mark_inode_dirty(handle, inode);
5346 ext4_journal_stop(handle);
5347 }
5348
5349 if (attr->ia_valid & ATTR_SIZE) {
5350 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5351 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5352
5353 if (attr->ia_size > sbi->s_bitmap_maxbytes)
5354 return -EFBIG;
5355 }
5356 }
5357
5358 if (S_ISREG(inode->i_mode) &&
5359 attr->ia_valid & ATTR_SIZE &&
5360 (attr->ia_size < inode->i_size ||
5361 (ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS)))) {
5362 handle_t *handle;
5363
5364 handle = ext4_journal_start(inode, 3);
5365 if (IS_ERR(handle)) {
5366 error = PTR_ERR(handle);
5367 goto err_out;
5368 }
5369 if (ext4_handle_valid(handle)) {
5370 error = ext4_orphan_add(handle, inode);
5371 orphan = 1;
5372 }
5373 EXT4_I(inode)->i_disksize = attr->ia_size;
5374 rc = ext4_mark_inode_dirty(handle, inode);
5375 if (!error)
5376 error = rc;
5377 ext4_journal_stop(handle);
5378
5379 if (ext4_should_order_data(inode)) {
5380 error = ext4_begin_ordered_truncate(inode,
5381 attr->ia_size);
5382 if (error) {
5383 /* Do as much error cleanup as possible */
5384 handle = ext4_journal_start(inode, 3);
5385 if (IS_ERR(handle)) {
5386 ext4_orphan_del(NULL, inode);
5387 goto err_out;
5388 }
5389 ext4_orphan_del(handle, inode);
5390 orphan = 0;
5391 ext4_journal_stop(handle);
5392 goto err_out;
5393 }
5394 }
5395 /* ext4_truncate will clear the flag */
5396 if ((ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS)))
5397 ext4_truncate(inode);
5398 }
5399
5400 if ((attr->ia_valid & ATTR_SIZE) &&
5401 attr->ia_size != i_size_read(inode))
5402 rc = vmtruncate(inode, attr->ia_size);
5403
5404 if (!rc) {
5405 setattr_copy(inode, attr);
5406 mark_inode_dirty(inode);
5407 }
5408
5409 /*
5410 * If the call to ext4_truncate failed to get a transaction handle at
5411 * all, we need to clean up the in-core orphan list manually.
5412 */
5413 if (orphan && inode->i_nlink)
5414 ext4_orphan_del(NULL, inode);
5415
5416 if (!rc && (ia_valid & ATTR_MODE))
5417 rc = ext4_acl_chmod(inode);
5418
5419 err_out:
5420 ext4_std_error(inode->i_sb, error);
5421 if (!error)
5422 error = rc;
5423 return error;
5424 }
5425
5426 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
5427 struct kstat *stat)
5428 {
5429 struct inode *inode;
5430 unsigned long delalloc_blocks;
5431
5432 inode = dentry->d_inode;
5433 generic_fillattr(inode, stat);
5434
5435 /*
5436 * We can't update i_blocks if the block allocation is delayed
5437 * otherwise in the case of system crash before the real block
5438 * allocation is done, we will have i_blocks inconsistent with
5439 * on-disk file blocks.
5440 * We always keep i_blocks updated together with real
5441 * allocation. But to not confuse with user, stat
5442 * will return the blocks that include the delayed allocation
5443 * blocks for this file.
5444 */
5445 delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
5446
5447 stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
5448 return 0;
5449 }
5450
5451 static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
5452 int chunk)
5453 {
5454 int indirects;
5455
5456 /* if nrblocks are contiguous */
5457 if (chunk) {
5458 /*
5459 * With N contiguous data blocks, it need at most
5460 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
5461 * 2 dindirect blocks
5462 * 1 tindirect block
5463 */
5464 indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
5465 return indirects + 3;
5466 }
5467 /*
5468 * if nrblocks are not contiguous, worse case, each block touch
5469 * a indirect block, and each indirect block touch a double indirect
5470 * block, plus a triple indirect block
5471 */
5472 indirects = nrblocks * 2 + 1;
5473 return indirects;
5474 }
5475
5476 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
5477 {
5478 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5479 return ext4_indirect_trans_blocks(inode, nrblocks, chunk);
5480 return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
5481 }
5482
5483 /*
5484 * Account for index blocks, block groups bitmaps and block group
5485 * descriptor blocks if modify datablocks and index blocks
5486 * worse case, the indexs blocks spread over different block groups
5487 *
5488 * If datablocks are discontiguous, they are possible to spread over
5489 * different block groups too. If they are contiuguous, with flexbg,
5490 * they could still across block group boundary.
5491 *
5492 * Also account for superblock, inode, quota and xattr blocks
5493 */
5494 static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
5495 {
5496 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5497 int gdpblocks;
5498 int idxblocks;
5499 int ret = 0;
5500
5501 /*
5502 * How many index blocks need to touch to modify nrblocks?
5503 * The "Chunk" flag indicating whether the nrblocks is
5504 * physically contiguous on disk
5505 *
5506 * For Direct IO and fallocate, they calls get_block to allocate
5507 * one single extent at a time, so they could set the "Chunk" flag
5508 */
5509 idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
5510
5511 ret = idxblocks;
5512
5513 /*
5514 * Now let's see how many group bitmaps and group descriptors need
5515 * to account
5516 */
5517 groups = idxblocks;
5518 if (chunk)
5519 groups += 1;
5520 else
5521 groups += nrblocks;
5522
5523 gdpblocks = groups;
5524 if (groups > ngroups)
5525 groups = ngroups;
5526 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5527 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5528
5529 /* bitmaps and block group descriptor blocks */
5530 ret += groups + gdpblocks;
5531
5532 /* Blocks for super block, inode, quota and xattr blocks */
5533 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5534
5535 return ret;
5536 }
5537
5538 /*
5539 * Calulate the total number of credits to reserve to fit
5540 * the modification of a single pages into a single transaction,
5541 * which may include multiple chunks of block allocations.
5542 *
5543 * This could be called via ext4_write_begin()
5544 *
5545 * We need to consider the worse case, when
5546 * one new block per extent.
5547 */
5548 int ext4_writepage_trans_blocks(struct inode *inode)
5549 {
5550 int bpp = ext4_journal_blocks_per_page(inode);
5551 int ret;
5552
5553 ret = ext4_meta_trans_blocks(inode, bpp, 0);
5554
5555 /* Account for data blocks for journalled mode */
5556 if (ext4_should_journal_data(inode))
5557 ret += bpp;
5558 return ret;
5559 }
5560
5561 /*
5562 * Calculate the journal credits for a chunk of data modification.
5563 *
5564 * This is called from DIO, fallocate or whoever calling
5565 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5566 *
5567 * journal buffers for data blocks are not included here, as DIO
5568 * and fallocate do no need to journal data buffers.
5569 */
5570 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5571 {
5572 return ext4_meta_trans_blocks(inode, nrblocks, 1);
5573 }
5574
5575 /*
5576 * The caller must have previously called ext4_reserve_inode_write().
5577 * Give this, we know that the caller already has write access to iloc->bh.
5578 */
5579 int ext4_mark_iloc_dirty(handle_t *handle,
5580 struct inode *inode, struct ext4_iloc *iloc)
5581 {
5582 int err = 0;
5583
5584 if (test_opt(inode->i_sb, I_VERSION))
5585 inode_inc_iversion(inode);
5586
5587 /* the do_update_inode consumes one bh->b_count */
5588 get_bh(iloc->bh);
5589
5590 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5591 err = ext4_do_update_inode(handle, inode, iloc);
5592 put_bh(iloc->bh);
5593 return err;
5594 }
5595
5596 /*
5597 * On success, We end up with an outstanding reference count against
5598 * iloc->bh. This _must_ be cleaned up later.
5599 */
5600
5601 int
5602 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5603 struct ext4_iloc *iloc)
5604 {
5605 int err;
5606
5607 err = ext4_get_inode_loc(inode, iloc);
5608 if (!err) {
5609 BUFFER_TRACE(iloc->bh, "get_write_access");
5610 err = ext4_journal_get_write_access(handle, iloc->bh);
5611 if (err) {
5612 brelse(iloc->bh);
5613 iloc->bh = NULL;
5614 }
5615 }
5616 ext4_std_error(inode->i_sb, err);
5617 return err;
5618 }
5619
5620 /*
5621 * Expand an inode by new_extra_isize bytes.
5622 * Returns 0 on success or negative error number on failure.
5623 */
5624 static int ext4_expand_extra_isize(struct inode *inode,
5625 unsigned int new_extra_isize,
5626 struct ext4_iloc iloc,
5627 handle_t *handle)
5628 {
5629 struct ext4_inode *raw_inode;
5630 struct ext4_xattr_ibody_header *header;
5631
5632 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5633 return 0;
5634
5635 raw_inode = ext4_raw_inode(&iloc);
5636
5637 header = IHDR(inode, raw_inode);
5638
5639 /* No extended attributes present */
5640 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5641 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5642 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5643 new_extra_isize);
5644 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5645 return 0;
5646 }
5647
5648 /* try to expand with EAs present */
5649 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5650 raw_inode, handle);
5651 }
5652
5653 /*
5654 * What we do here is to mark the in-core inode as clean with respect to inode
5655 * dirtiness (it may still be data-dirty).
5656 * This means that the in-core inode may be reaped by prune_icache
5657 * without having to perform any I/O. This is a very good thing,
5658 * because *any* task may call prune_icache - even ones which
5659 * have a transaction open against a different journal.
5660 *
5661 * Is this cheating? Not really. Sure, we haven't written the
5662 * inode out, but prune_icache isn't a user-visible syncing function.
5663 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5664 * we start and wait on commits.
5665 *
5666 * Is this efficient/effective? Well, we're being nice to the system
5667 * by cleaning up our inodes proactively so they can be reaped
5668 * without I/O. But we are potentially leaving up to five seconds'
5669 * worth of inodes floating about which prune_icache wants us to
5670 * write out. One way to fix that would be to get prune_icache()
5671 * to do a write_super() to free up some memory. It has the desired
5672 * effect.
5673 */
5674 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5675 {
5676 struct ext4_iloc iloc;
5677 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5678 static unsigned int mnt_count;
5679 int err, ret;
5680
5681 might_sleep();
5682 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5683 err = ext4_reserve_inode_write(handle, inode, &iloc);
5684 if (ext4_handle_valid(handle) &&
5685 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5686 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5687 /*
5688 * We need extra buffer credits since we may write into EA block
5689 * with this same handle. If journal_extend fails, then it will
5690 * only result in a minor loss of functionality for that inode.
5691 * If this is felt to be critical, then e2fsck should be run to
5692 * force a large enough s_min_extra_isize.
5693 */
5694 if ((jbd2_journal_extend(handle,
5695 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5696 ret = ext4_expand_extra_isize(inode,
5697 sbi->s_want_extra_isize,
5698 iloc, handle);
5699 if (ret) {
5700 ext4_set_inode_state(inode,
5701 EXT4_STATE_NO_EXPAND);
5702 if (mnt_count !=
5703 le16_to_cpu(sbi->s_es->s_mnt_count)) {
5704 ext4_warning(inode->i_sb,
5705 "Unable to expand inode %lu. Delete"
5706 " some EAs or run e2fsck.",
5707 inode->i_ino);
5708 mnt_count =
5709 le16_to_cpu(sbi->s_es->s_mnt_count);
5710 }
5711 }
5712 }
5713 }
5714 if (!err)
5715 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5716 return err;
5717 }
5718
5719 /*
5720 * ext4_dirty_inode() is called from __mark_inode_dirty()
5721 *
5722 * We're really interested in the case where a file is being extended.
5723 * i_size has been changed by generic_commit_write() and we thus need
5724 * to include the updated inode in the current transaction.
5725 *
5726 * Also, dquot_alloc_block() will always dirty the inode when blocks
5727 * are allocated to the file.
5728 *
5729 * If the inode is marked synchronous, we don't honour that here - doing
5730 * so would cause a commit on atime updates, which we don't bother doing.
5731 * We handle synchronous inodes at the highest possible level.
5732 */
5733 void ext4_dirty_inode(struct inode *inode)
5734 {
5735 handle_t *handle;
5736
5737 handle = ext4_journal_start(inode, 2);
5738 if (IS_ERR(handle))
5739 goto out;
5740
5741 ext4_mark_inode_dirty(handle, inode);
5742
5743 ext4_journal_stop(handle);
5744 out:
5745 return;
5746 }
5747
5748 #if 0
5749 /*
5750 * Bind an inode's backing buffer_head into this transaction, to prevent
5751 * it from being flushed to disk early. Unlike
5752 * ext4_reserve_inode_write, this leaves behind no bh reference and
5753 * returns no iloc structure, so the caller needs to repeat the iloc
5754 * lookup to mark the inode dirty later.
5755 */
5756 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5757 {
5758 struct ext4_iloc iloc;
5759
5760 int err = 0;
5761 if (handle) {
5762 err = ext4_get_inode_loc(inode, &iloc);
5763 if (!err) {
5764 BUFFER_TRACE(iloc.bh, "get_write_access");
5765 err = jbd2_journal_get_write_access(handle, iloc.bh);
5766 if (!err)
5767 err = ext4_handle_dirty_metadata(handle,
5768 NULL,
5769 iloc.bh);
5770 brelse(iloc.bh);
5771 }
5772 }
5773 ext4_std_error(inode->i_sb, err);
5774 return err;
5775 }
5776 #endif
5777
5778 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5779 {
5780 journal_t *journal;
5781 handle_t *handle;
5782 int err;
5783
5784 /*
5785 * We have to be very careful here: changing a data block's
5786 * journaling status dynamically is dangerous. If we write a
5787 * data block to the journal, change the status and then delete
5788 * that block, we risk forgetting to revoke the old log record
5789 * from the journal and so a subsequent replay can corrupt data.
5790 * So, first we make sure that the journal is empty and that
5791 * nobody is changing anything.
5792 */
5793
5794 journal = EXT4_JOURNAL(inode);
5795 if (!journal)
5796 return 0;
5797 if (is_journal_aborted(journal))
5798 return -EROFS;
5799
5800 jbd2_journal_lock_updates(journal);
5801 jbd2_journal_flush(journal);
5802
5803 /*
5804 * OK, there are no updates running now, and all cached data is
5805 * synced to disk. We are now in a completely consistent state
5806 * which doesn't have anything in the journal, and we know that
5807 * no filesystem updates are running, so it is safe to modify
5808 * the inode's in-core data-journaling state flag now.
5809 */
5810
5811 if (val)
5812 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5813 else
5814 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5815 ext4_set_aops(inode);
5816
5817 jbd2_journal_unlock_updates(journal);
5818
5819 /* Finally we can mark the inode as dirty. */
5820
5821 handle = ext4_journal_start(inode, 1);
5822 if (IS_ERR(handle))
5823 return PTR_ERR(handle);
5824
5825 err = ext4_mark_inode_dirty(handle, inode);
5826 ext4_handle_sync(handle);
5827 ext4_journal_stop(handle);
5828 ext4_std_error(inode->i_sb, err);
5829
5830 return err;
5831 }
5832
5833 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5834 {
5835 return !buffer_mapped(bh);
5836 }
5837
5838 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5839 {
5840 struct page *page = vmf->page;
5841 loff_t size;
5842 unsigned long len;
5843 int ret = -EINVAL;
5844 void *fsdata;
5845 struct file *file = vma->vm_file;
5846 struct inode *inode = file->f_path.dentry->d_inode;
5847 struct address_space *mapping = inode->i_mapping;
5848
5849 /*
5850 * Get i_alloc_sem to stop truncates messing with the inode. We cannot
5851 * get i_mutex because we are already holding mmap_sem.
5852 */
5853 down_read(&inode->i_alloc_sem);
5854 size = i_size_read(inode);
5855 if (page->mapping != mapping || size <= page_offset(page)
5856 || !PageUptodate(page)) {
5857 /* page got truncated from under us? */
5858 goto out_unlock;
5859 }
5860 ret = 0;
5861 if (PageMappedToDisk(page))
5862 goto out_unlock;
5863
5864 if (page->index == size >> PAGE_CACHE_SHIFT)
5865 len = size & ~PAGE_CACHE_MASK;
5866 else
5867 len = PAGE_CACHE_SIZE;
5868
5869 lock_page(page);
5870 /*
5871 * return if we have all the buffers mapped. This avoid
5872 * the need to call write_begin/write_end which does a
5873 * journal_start/journal_stop which can block and take
5874 * long time
5875 */
5876 if (page_has_buffers(page)) {
5877 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
5878 ext4_bh_unmapped)) {
5879 unlock_page(page);
5880 goto out_unlock;
5881 }
5882 }
5883 unlock_page(page);
5884 /*
5885 * OK, we need to fill the hole... Do write_begin write_end
5886 * to do block allocation/reservation.We are not holding
5887 * inode.i__mutex here. That allow * parallel write_begin,
5888 * write_end call. lock_page prevent this from happening
5889 * on the same page though
5890 */
5891 ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
5892 len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
5893 if (ret < 0)
5894 goto out_unlock;
5895 ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
5896 len, len, page, fsdata);
5897 if (ret < 0)
5898 goto out_unlock;
5899 ret = 0;
5900 out_unlock:
5901 if (ret)
5902 ret = VM_FAULT_SIGBUS;
5903 up_read(&inode->i_alloc_sem);
5904 return ret;
5905 }