]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/ext4/inode.c
fscrypt: Cleanup page locking requirements for fscrypt_{decrypt,encrypt}_page()
[mirror_ubuntu-artful-kernel.git] / fs / ext4 / inode.c
1 /*
2 * linux/fs/ext4/inode.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * 64-bit file support on 64-bit platforms by Jakub Jelinek
16 * (jj@sunsite.ms.mff.cuni.cz)
17 *
18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19 */
20
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/highuid.h>
24 #include <linux/pagemap.h>
25 #include <linux/dax.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/bitops.h>
40
41 #include "ext4_jbd2.h"
42 #include "xattr.h"
43 #include "acl.h"
44 #include "truncate.h"
45
46 #include <trace/events/ext4.h>
47
48 #define MPAGE_DA_EXTENT_TAIL 0x01
49
50 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
51 struct ext4_inode_info *ei)
52 {
53 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
54 __u32 csum;
55 __u16 dummy_csum = 0;
56 int offset = offsetof(struct ext4_inode, i_checksum_lo);
57 unsigned int csum_size = sizeof(dummy_csum);
58
59 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
60 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
61 offset += csum_size;
62 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
63 EXT4_GOOD_OLD_INODE_SIZE - offset);
64
65 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
66 offset = offsetof(struct ext4_inode, i_checksum_hi);
67 csum = ext4_chksum(sbi, csum, (__u8 *)raw +
68 EXT4_GOOD_OLD_INODE_SIZE,
69 offset - EXT4_GOOD_OLD_INODE_SIZE);
70 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
71 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
72 csum_size);
73 offset += csum_size;
74 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
75 EXT4_INODE_SIZE(inode->i_sb) -
76 offset);
77 }
78 }
79
80 return csum;
81 }
82
83 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
84 struct ext4_inode_info *ei)
85 {
86 __u32 provided, calculated;
87
88 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
89 cpu_to_le32(EXT4_OS_LINUX) ||
90 !ext4_has_metadata_csum(inode->i_sb))
91 return 1;
92
93 provided = le16_to_cpu(raw->i_checksum_lo);
94 calculated = ext4_inode_csum(inode, raw, ei);
95 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
96 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
97 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
98 else
99 calculated &= 0xFFFF;
100
101 return provided == calculated;
102 }
103
104 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
105 struct ext4_inode_info *ei)
106 {
107 __u32 csum;
108
109 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
110 cpu_to_le32(EXT4_OS_LINUX) ||
111 !ext4_has_metadata_csum(inode->i_sb))
112 return;
113
114 csum = ext4_inode_csum(inode, raw, ei);
115 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
116 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
117 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
118 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
119 }
120
121 static inline int ext4_begin_ordered_truncate(struct inode *inode,
122 loff_t new_size)
123 {
124 trace_ext4_begin_ordered_truncate(inode, new_size);
125 /*
126 * If jinode is zero, then we never opened the file for
127 * writing, so there's no need to call
128 * jbd2_journal_begin_ordered_truncate() since there's no
129 * outstanding writes we need to flush.
130 */
131 if (!EXT4_I(inode)->jinode)
132 return 0;
133 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
134 EXT4_I(inode)->jinode,
135 new_size);
136 }
137
138 static void ext4_invalidatepage(struct page *page, unsigned int offset,
139 unsigned int length);
140 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
141 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
142 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
143 int pextents);
144
145 /*
146 * Test whether an inode is a fast symlink.
147 */
148 int ext4_inode_is_fast_symlink(struct inode *inode)
149 {
150 int ea_blocks = EXT4_I(inode)->i_file_acl ?
151 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
152
153 if (ext4_has_inline_data(inode))
154 return 0;
155
156 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
157 }
158
159 /*
160 * Restart the transaction associated with *handle. This does a commit,
161 * so before we call here everything must be consistently dirtied against
162 * this transaction.
163 */
164 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
165 int nblocks)
166 {
167 int ret;
168
169 /*
170 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
171 * moment, get_block can be called only for blocks inside i_size since
172 * page cache has been already dropped and writes are blocked by
173 * i_mutex. So we can safely drop the i_data_sem here.
174 */
175 BUG_ON(EXT4_JOURNAL(inode) == NULL);
176 jbd_debug(2, "restarting handle %p\n", handle);
177 up_write(&EXT4_I(inode)->i_data_sem);
178 ret = ext4_journal_restart(handle, nblocks);
179 down_write(&EXT4_I(inode)->i_data_sem);
180 ext4_discard_preallocations(inode);
181
182 return ret;
183 }
184
185 /*
186 * Called at the last iput() if i_nlink is zero.
187 */
188 void ext4_evict_inode(struct inode *inode)
189 {
190 handle_t *handle;
191 int err;
192
193 trace_ext4_evict_inode(inode);
194
195 if (inode->i_nlink) {
196 /*
197 * When journalling data dirty buffers are tracked only in the
198 * journal. So although mm thinks everything is clean and
199 * ready for reaping the inode might still have some pages to
200 * write in the running transaction or waiting to be
201 * checkpointed. Thus calling jbd2_journal_invalidatepage()
202 * (via truncate_inode_pages()) to discard these buffers can
203 * cause data loss. Also even if we did not discard these
204 * buffers, we would have no way to find them after the inode
205 * is reaped and thus user could see stale data if he tries to
206 * read them before the transaction is checkpointed. So be
207 * careful and force everything to disk here... We use
208 * ei->i_datasync_tid to store the newest transaction
209 * containing inode's data.
210 *
211 * Note that directories do not have this problem because they
212 * don't use page cache.
213 */
214 if (inode->i_ino != EXT4_JOURNAL_INO &&
215 ext4_should_journal_data(inode) &&
216 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) {
217 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
218 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
219
220 jbd2_complete_transaction(journal, commit_tid);
221 filemap_write_and_wait(&inode->i_data);
222 }
223 truncate_inode_pages_final(&inode->i_data);
224
225 goto no_delete;
226 }
227
228 if (is_bad_inode(inode))
229 goto no_delete;
230 dquot_initialize(inode);
231
232 if (ext4_should_order_data(inode))
233 ext4_begin_ordered_truncate(inode, 0);
234 truncate_inode_pages_final(&inode->i_data);
235
236 /*
237 * Protect us against freezing - iput() caller didn't have to have any
238 * protection against it
239 */
240 sb_start_intwrite(inode->i_sb);
241 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
242 ext4_blocks_for_truncate(inode)+3);
243 if (IS_ERR(handle)) {
244 ext4_std_error(inode->i_sb, PTR_ERR(handle));
245 /*
246 * If we're going to skip the normal cleanup, we still need to
247 * make sure that the in-core orphan linked list is properly
248 * cleaned up.
249 */
250 ext4_orphan_del(NULL, inode);
251 sb_end_intwrite(inode->i_sb);
252 goto no_delete;
253 }
254
255 if (IS_SYNC(inode))
256 ext4_handle_sync(handle);
257 inode->i_size = 0;
258 err = ext4_mark_inode_dirty(handle, inode);
259 if (err) {
260 ext4_warning(inode->i_sb,
261 "couldn't mark inode dirty (err %d)", err);
262 goto stop_handle;
263 }
264 if (inode->i_blocks)
265 ext4_truncate(inode);
266
267 /*
268 * ext4_ext_truncate() doesn't reserve any slop when it
269 * restarts journal transactions; therefore there may not be
270 * enough credits left in the handle to remove the inode from
271 * the orphan list and set the dtime field.
272 */
273 if (!ext4_handle_has_enough_credits(handle, 3)) {
274 err = ext4_journal_extend(handle, 3);
275 if (err > 0)
276 err = ext4_journal_restart(handle, 3);
277 if (err != 0) {
278 ext4_warning(inode->i_sb,
279 "couldn't extend journal (err %d)", err);
280 stop_handle:
281 ext4_journal_stop(handle);
282 ext4_orphan_del(NULL, inode);
283 sb_end_intwrite(inode->i_sb);
284 goto no_delete;
285 }
286 }
287
288 /*
289 * Kill off the orphan record which ext4_truncate created.
290 * AKPM: I think this can be inside the above `if'.
291 * Note that ext4_orphan_del() has to be able to cope with the
292 * deletion of a non-existent orphan - this is because we don't
293 * know if ext4_truncate() actually created an orphan record.
294 * (Well, we could do this if we need to, but heck - it works)
295 */
296 ext4_orphan_del(handle, inode);
297 EXT4_I(inode)->i_dtime = get_seconds();
298
299 /*
300 * One subtle ordering requirement: if anything has gone wrong
301 * (transaction abort, IO errors, whatever), then we can still
302 * do these next steps (the fs will already have been marked as
303 * having errors), but we can't free the inode if the mark_dirty
304 * fails.
305 */
306 if (ext4_mark_inode_dirty(handle, inode))
307 /* If that failed, just do the required in-core inode clear. */
308 ext4_clear_inode(inode);
309 else
310 ext4_free_inode(handle, inode);
311 ext4_journal_stop(handle);
312 sb_end_intwrite(inode->i_sb);
313 return;
314 no_delete:
315 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
316 }
317
318 #ifdef CONFIG_QUOTA
319 qsize_t *ext4_get_reserved_space(struct inode *inode)
320 {
321 return &EXT4_I(inode)->i_reserved_quota;
322 }
323 #endif
324
325 /*
326 * Called with i_data_sem down, which is important since we can call
327 * ext4_discard_preallocations() from here.
328 */
329 void ext4_da_update_reserve_space(struct inode *inode,
330 int used, int quota_claim)
331 {
332 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
333 struct ext4_inode_info *ei = EXT4_I(inode);
334
335 spin_lock(&ei->i_block_reservation_lock);
336 trace_ext4_da_update_reserve_space(inode, used, quota_claim);
337 if (unlikely(used > ei->i_reserved_data_blocks)) {
338 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
339 "with only %d reserved data blocks",
340 __func__, inode->i_ino, used,
341 ei->i_reserved_data_blocks);
342 WARN_ON(1);
343 used = ei->i_reserved_data_blocks;
344 }
345
346 /* Update per-inode reservations */
347 ei->i_reserved_data_blocks -= used;
348 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
349
350 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
351
352 /* Update quota subsystem for data blocks */
353 if (quota_claim)
354 dquot_claim_block(inode, EXT4_C2B(sbi, used));
355 else {
356 /*
357 * We did fallocate with an offset that is already delayed
358 * allocated. So on delayed allocated writeback we should
359 * not re-claim the quota for fallocated blocks.
360 */
361 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
362 }
363
364 /*
365 * If we have done all the pending block allocations and if
366 * there aren't any writers on the inode, we can discard the
367 * inode's preallocations.
368 */
369 if ((ei->i_reserved_data_blocks == 0) &&
370 (atomic_read(&inode->i_writecount) == 0))
371 ext4_discard_preallocations(inode);
372 }
373
374 static int __check_block_validity(struct inode *inode, const char *func,
375 unsigned int line,
376 struct ext4_map_blocks *map)
377 {
378 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
379 map->m_len)) {
380 ext4_error_inode(inode, func, line, map->m_pblk,
381 "lblock %lu mapped to illegal pblock "
382 "(length %d)", (unsigned long) map->m_lblk,
383 map->m_len);
384 return -EFSCORRUPTED;
385 }
386 return 0;
387 }
388
389 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
390 ext4_lblk_t len)
391 {
392 int ret;
393
394 if (ext4_encrypted_inode(inode))
395 return fscrypt_zeroout_range(inode, lblk, pblk, len);
396
397 ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
398 if (ret > 0)
399 ret = 0;
400
401 return ret;
402 }
403
404 #define check_block_validity(inode, map) \
405 __check_block_validity((inode), __func__, __LINE__, (map))
406
407 #ifdef ES_AGGRESSIVE_TEST
408 static void ext4_map_blocks_es_recheck(handle_t *handle,
409 struct inode *inode,
410 struct ext4_map_blocks *es_map,
411 struct ext4_map_blocks *map,
412 int flags)
413 {
414 int retval;
415
416 map->m_flags = 0;
417 /*
418 * There is a race window that the result is not the same.
419 * e.g. xfstests #223 when dioread_nolock enables. The reason
420 * is that we lookup a block mapping in extent status tree with
421 * out taking i_data_sem. So at the time the unwritten extent
422 * could be converted.
423 */
424 down_read(&EXT4_I(inode)->i_data_sem);
425 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
426 retval = ext4_ext_map_blocks(handle, inode, map, flags &
427 EXT4_GET_BLOCKS_KEEP_SIZE);
428 } else {
429 retval = ext4_ind_map_blocks(handle, inode, map, flags &
430 EXT4_GET_BLOCKS_KEEP_SIZE);
431 }
432 up_read((&EXT4_I(inode)->i_data_sem));
433
434 /*
435 * We don't check m_len because extent will be collpased in status
436 * tree. So the m_len might not equal.
437 */
438 if (es_map->m_lblk != map->m_lblk ||
439 es_map->m_flags != map->m_flags ||
440 es_map->m_pblk != map->m_pblk) {
441 printk("ES cache assertion failed for inode: %lu "
442 "es_cached ex [%d/%d/%llu/%x] != "
443 "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
444 inode->i_ino, es_map->m_lblk, es_map->m_len,
445 es_map->m_pblk, es_map->m_flags, map->m_lblk,
446 map->m_len, map->m_pblk, map->m_flags,
447 retval, flags);
448 }
449 }
450 #endif /* ES_AGGRESSIVE_TEST */
451
452 /*
453 * The ext4_map_blocks() function tries to look up the requested blocks,
454 * and returns if the blocks are already mapped.
455 *
456 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
457 * and store the allocated blocks in the result buffer head and mark it
458 * mapped.
459 *
460 * If file type is extents based, it will call ext4_ext_map_blocks(),
461 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
462 * based files
463 *
464 * On success, it returns the number of blocks being mapped or allocated. if
465 * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
466 * is marked as unwritten. If the create == 1, it will mark @map as mapped.
467 *
468 * It returns 0 if plain look up failed (blocks have not been allocated), in
469 * that case, @map is returned as unmapped but we still do fill map->m_len to
470 * indicate the length of a hole starting at map->m_lblk.
471 *
472 * It returns the error in case of allocation failure.
473 */
474 int ext4_map_blocks(handle_t *handle, struct inode *inode,
475 struct ext4_map_blocks *map, int flags)
476 {
477 struct extent_status es;
478 int retval;
479 int ret = 0;
480 #ifdef ES_AGGRESSIVE_TEST
481 struct ext4_map_blocks orig_map;
482
483 memcpy(&orig_map, map, sizeof(*map));
484 #endif
485
486 map->m_flags = 0;
487 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
488 "logical block %lu\n", inode->i_ino, flags, map->m_len,
489 (unsigned long) map->m_lblk);
490
491 /*
492 * ext4_map_blocks returns an int, and m_len is an unsigned int
493 */
494 if (unlikely(map->m_len > INT_MAX))
495 map->m_len = INT_MAX;
496
497 /* We can handle the block number less than EXT_MAX_BLOCKS */
498 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
499 return -EFSCORRUPTED;
500
501 /* Lookup extent status tree firstly */
502 if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
503 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
504 map->m_pblk = ext4_es_pblock(&es) +
505 map->m_lblk - es.es_lblk;
506 map->m_flags |= ext4_es_is_written(&es) ?
507 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
508 retval = es.es_len - (map->m_lblk - es.es_lblk);
509 if (retval > map->m_len)
510 retval = map->m_len;
511 map->m_len = retval;
512 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
513 map->m_pblk = 0;
514 retval = es.es_len - (map->m_lblk - es.es_lblk);
515 if (retval > map->m_len)
516 retval = map->m_len;
517 map->m_len = retval;
518 retval = 0;
519 } else {
520 BUG_ON(1);
521 }
522 #ifdef ES_AGGRESSIVE_TEST
523 ext4_map_blocks_es_recheck(handle, inode, map,
524 &orig_map, flags);
525 #endif
526 goto found;
527 }
528
529 /*
530 * Try to see if we can get the block without requesting a new
531 * file system block.
532 */
533 down_read(&EXT4_I(inode)->i_data_sem);
534 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
535 retval = ext4_ext_map_blocks(handle, inode, map, flags &
536 EXT4_GET_BLOCKS_KEEP_SIZE);
537 } else {
538 retval = ext4_ind_map_blocks(handle, inode, map, flags &
539 EXT4_GET_BLOCKS_KEEP_SIZE);
540 }
541 if (retval > 0) {
542 unsigned int status;
543
544 if (unlikely(retval != map->m_len)) {
545 ext4_warning(inode->i_sb,
546 "ES len assertion failed for inode "
547 "%lu: retval %d != map->m_len %d",
548 inode->i_ino, retval, map->m_len);
549 WARN_ON(1);
550 }
551
552 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
553 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
554 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
555 !(status & EXTENT_STATUS_WRITTEN) &&
556 ext4_find_delalloc_range(inode, map->m_lblk,
557 map->m_lblk + map->m_len - 1))
558 status |= EXTENT_STATUS_DELAYED;
559 ret = ext4_es_insert_extent(inode, map->m_lblk,
560 map->m_len, map->m_pblk, status);
561 if (ret < 0)
562 retval = ret;
563 }
564 up_read((&EXT4_I(inode)->i_data_sem));
565
566 found:
567 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
568 ret = check_block_validity(inode, map);
569 if (ret != 0)
570 return ret;
571 }
572
573 /* If it is only a block(s) look up */
574 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
575 return retval;
576
577 /*
578 * Returns if the blocks have already allocated
579 *
580 * Note that if blocks have been preallocated
581 * ext4_ext_get_block() returns the create = 0
582 * with buffer head unmapped.
583 */
584 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
585 /*
586 * If we need to convert extent to unwritten
587 * we continue and do the actual work in
588 * ext4_ext_map_blocks()
589 */
590 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
591 return retval;
592
593 /*
594 * Here we clear m_flags because after allocating an new extent,
595 * it will be set again.
596 */
597 map->m_flags &= ~EXT4_MAP_FLAGS;
598
599 /*
600 * New blocks allocate and/or writing to unwritten extent
601 * will possibly result in updating i_data, so we take
602 * the write lock of i_data_sem, and call get_block()
603 * with create == 1 flag.
604 */
605 down_write(&EXT4_I(inode)->i_data_sem);
606
607 /*
608 * We need to check for EXT4 here because migrate
609 * could have changed the inode type in between
610 */
611 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
612 retval = ext4_ext_map_blocks(handle, inode, map, flags);
613 } else {
614 retval = ext4_ind_map_blocks(handle, inode, map, flags);
615
616 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
617 /*
618 * We allocated new blocks which will result in
619 * i_data's format changing. Force the migrate
620 * to fail by clearing migrate flags
621 */
622 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
623 }
624
625 /*
626 * Update reserved blocks/metadata blocks after successful
627 * block allocation which had been deferred till now. We don't
628 * support fallocate for non extent files. So we can update
629 * reserve space here.
630 */
631 if ((retval > 0) &&
632 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
633 ext4_da_update_reserve_space(inode, retval, 1);
634 }
635
636 if (retval > 0) {
637 unsigned int status;
638
639 if (unlikely(retval != map->m_len)) {
640 ext4_warning(inode->i_sb,
641 "ES len assertion failed for inode "
642 "%lu: retval %d != map->m_len %d",
643 inode->i_ino, retval, map->m_len);
644 WARN_ON(1);
645 }
646
647 /*
648 * We have to zeroout blocks before inserting them into extent
649 * status tree. Otherwise someone could look them up there and
650 * use them before they are really zeroed. We also have to
651 * unmap metadata before zeroing as otherwise writeback can
652 * overwrite zeros with stale data from block device.
653 */
654 if (flags & EXT4_GET_BLOCKS_ZERO &&
655 map->m_flags & EXT4_MAP_MAPPED &&
656 map->m_flags & EXT4_MAP_NEW) {
657 ext4_lblk_t i;
658
659 for (i = 0; i < map->m_len; i++) {
660 unmap_underlying_metadata(inode->i_sb->s_bdev,
661 map->m_pblk + i);
662 }
663 ret = ext4_issue_zeroout(inode, map->m_lblk,
664 map->m_pblk, map->m_len);
665 if (ret) {
666 retval = ret;
667 goto out_sem;
668 }
669 }
670
671 /*
672 * If the extent has been zeroed out, we don't need to update
673 * extent status tree.
674 */
675 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
676 ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
677 if (ext4_es_is_written(&es))
678 goto out_sem;
679 }
680 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
681 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
682 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
683 !(status & EXTENT_STATUS_WRITTEN) &&
684 ext4_find_delalloc_range(inode, map->m_lblk,
685 map->m_lblk + map->m_len - 1))
686 status |= EXTENT_STATUS_DELAYED;
687 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
688 map->m_pblk, status);
689 if (ret < 0) {
690 retval = ret;
691 goto out_sem;
692 }
693 }
694
695 out_sem:
696 up_write((&EXT4_I(inode)->i_data_sem));
697 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
698 ret = check_block_validity(inode, map);
699 if (ret != 0)
700 return ret;
701
702 /*
703 * Inodes with freshly allocated blocks where contents will be
704 * visible after transaction commit must be on transaction's
705 * ordered data list.
706 */
707 if (map->m_flags & EXT4_MAP_NEW &&
708 !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
709 !(flags & EXT4_GET_BLOCKS_ZERO) &&
710 !IS_NOQUOTA(inode) &&
711 ext4_should_order_data(inode)) {
712 if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
713 ret = ext4_jbd2_inode_add_wait(handle, inode);
714 else
715 ret = ext4_jbd2_inode_add_write(handle, inode);
716 if (ret)
717 return ret;
718 }
719 }
720 return retval;
721 }
722
723 /*
724 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
725 * we have to be careful as someone else may be manipulating b_state as well.
726 */
727 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
728 {
729 unsigned long old_state;
730 unsigned long new_state;
731
732 flags &= EXT4_MAP_FLAGS;
733
734 /* Dummy buffer_head? Set non-atomically. */
735 if (!bh->b_page) {
736 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
737 return;
738 }
739 /*
740 * Someone else may be modifying b_state. Be careful! This is ugly but
741 * once we get rid of using bh as a container for mapping information
742 * to pass to / from get_block functions, this can go away.
743 */
744 do {
745 old_state = READ_ONCE(bh->b_state);
746 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
747 } while (unlikely(
748 cmpxchg(&bh->b_state, old_state, new_state) != old_state));
749 }
750
751 static int _ext4_get_block(struct inode *inode, sector_t iblock,
752 struct buffer_head *bh, int flags)
753 {
754 struct ext4_map_blocks map;
755 int ret = 0;
756
757 if (ext4_has_inline_data(inode))
758 return -ERANGE;
759
760 map.m_lblk = iblock;
761 map.m_len = bh->b_size >> inode->i_blkbits;
762
763 ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
764 flags);
765 if (ret > 0) {
766 map_bh(bh, inode->i_sb, map.m_pblk);
767 ext4_update_bh_state(bh, map.m_flags);
768 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
769 ret = 0;
770 }
771 return ret;
772 }
773
774 int ext4_get_block(struct inode *inode, sector_t iblock,
775 struct buffer_head *bh, int create)
776 {
777 return _ext4_get_block(inode, iblock, bh,
778 create ? EXT4_GET_BLOCKS_CREATE : 0);
779 }
780
781 /*
782 * Get block function used when preparing for buffered write if we require
783 * creating an unwritten extent if blocks haven't been allocated. The extent
784 * will be converted to written after the IO is complete.
785 */
786 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
787 struct buffer_head *bh_result, int create)
788 {
789 ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
790 inode->i_ino, create);
791 return _ext4_get_block(inode, iblock, bh_result,
792 EXT4_GET_BLOCKS_IO_CREATE_EXT);
793 }
794
795 /* Maximum number of blocks we map for direct IO at once. */
796 #define DIO_MAX_BLOCKS 4096
797
798 /*
799 * Get blocks function for the cases that need to start a transaction -
800 * generally difference cases of direct IO and DAX IO. It also handles retries
801 * in case of ENOSPC.
802 */
803 static int ext4_get_block_trans(struct inode *inode, sector_t iblock,
804 struct buffer_head *bh_result, int flags)
805 {
806 int dio_credits;
807 handle_t *handle;
808 int retries = 0;
809 int ret;
810
811 /* Trim mapping request to maximum we can map at once for DIO */
812 if (bh_result->b_size >> inode->i_blkbits > DIO_MAX_BLOCKS)
813 bh_result->b_size = DIO_MAX_BLOCKS << inode->i_blkbits;
814 dio_credits = ext4_chunk_trans_blocks(inode,
815 bh_result->b_size >> inode->i_blkbits);
816 retry:
817 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
818 if (IS_ERR(handle))
819 return PTR_ERR(handle);
820
821 ret = _ext4_get_block(inode, iblock, bh_result, flags);
822 ext4_journal_stop(handle);
823
824 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
825 goto retry;
826 return ret;
827 }
828
829 /* Get block function for DIO reads and writes to inodes without extents */
830 int ext4_dio_get_block(struct inode *inode, sector_t iblock,
831 struct buffer_head *bh, int create)
832 {
833 /* We don't expect handle for direct IO */
834 WARN_ON_ONCE(ext4_journal_current_handle());
835
836 if (!create)
837 return _ext4_get_block(inode, iblock, bh, 0);
838 return ext4_get_block_trans(inode, iblock, bh, EXT4_GET_BLOCKS_CREATE);
839 }
840
841 /*
842 * Get block function for AIO DIO writes when we create unwritten extent if
843 * blocks are not allocated yet. The extent will be converted to written
844 * after IO is complete.
845 */
846 static int ext4_dio_get_block_unwritten_async(struct inode *inode,
847 sector_t iblock, struct buffer_head *bh_result, int create)
848 {
849 int ret;
850
851 /* We don't expect handle for direct IO */
852 WARN_ON_ONCE(ext4_journal_current_handle());
853
854 ret = ext4_get_block_trans(inode, iblock, bh_result,
855 EXT4_GET_BLOCKS_IO_CREATE_EXT);
856
857 /*
858 * When doing DIO using unwritten extents, we need io_end to convert
859 * unwritten extents to written on IO completion. We allocate io_end
860 * once we spot unwritten extent and store it in b_private. Generic
861 * DIO code keeps b_private set and furthermore passes the value to
862 * our completion callback in 'private' argument.
863 */
864 if (!ret && buffer_unwritten(bh_result)) {
865 if (!bh_result->b_private) {
866 ext4_io_end_t *io_end;
867
868 io_end = ext4_init_io_end(inode, GFP_KERNEL);
869 if (!io_end)
870 return -ENOMEM;
871 bh_result->b_private = io_end;
872 ext4_set_io_unwritten_flag(inode, io_end);
873 }
874 set_buffer_defer_completion(bh_result);
875 }
876
877 return ret;
878 }
879
880 /*
881 * Get block function for non-AIO DIO writes when we create unwritten extent if
882 * blocks are not allocated yet. The extent will be converted to written
883 * after IO is complete from ext4_ext_direct_IO() function.
884 */
885 static int ext4_dio_get_block_unwritten_sync(struct inode *inode,
886 sector_t iblock, struct buffer_head *bh_result, int create)
887 {
888 int ret;
889
890 /* We don't expect handle for direct IO */
891 WARN_ON_ONCE(ext4_journal_current_handle());
892
893 ret = ext4_get_block_trans(inode, iblock, bh_result,
894 EXT4_GET_BLOCKS_IO_CREATE_EXT);
895
896 /*
897 * Mark inode as having pending DIO writes to unwritten extents.
898 * ext4_ext_direct_IO() checks this flag and converts extents to
899 * written.
900 */
901 if (!ret && buffer_unwritten(bh_result))
902 ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
903
904 return ret;
905 }
906
907 static int ext4_dio_get_block_overwrite(struct inode *inode, sector_t iblock,
908 struct buffer_head *bh_result, int create)
909 {
910 int ret;
911
912 ext4_debug("ext4_dio_get_block_overwrite: inode %lu, create flag %d\n",
913 inode->i_ino, create);
914 /* We don't expect handle for direct IO */
915 WARN_ON_ONCE(ext4_journal_current_handle());
916
917 ret = _ext4_get_block(inode, iblock, bh_result, 0);
918 /*
919 * Blocks should have been preallocated! ext4_file_write_iter() checks
920 * that.
921 */
922 WARN_ON_ONCE(!buffer_mapped(bh_result) || buffer_unwritten(bh_result));
923
924 return ret;
925 }
926
927
928 /*
929 * `handle' can be NULL if create is zero
930 */
931 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
932 ext4_lblk_t block, int map_flags)
933 {
934 struct ext4_map_blocks map;
935 struct buffer_head *bh;
936 int create = map_flags & EXT4_GET_BLOCKS_CREATE;
937 int err;
938
939 J_ASSERT(handle != NULL || create == 0);
940
941 map.m_lblk = block;
942 map.m_len = 1;
943 err = ext4_map_blocks(handle, inode, &map, map_flags);
944
945 if (err == 0)
946 return create ? ERR_PTR(-ENOSPC) : NULL;
947 if (err < 0)
948 return ERR_PTR(err);
949
950 bh = sb_getblk(inode->i_sb, map.m_pblk);
951 if (unlikely(!bh))
952 return ERR_PTR(-ENOMEM);
953 if (map.m_flags & EXT4_MAP_NEW) {
954 J_ASSERT(create != 0);
955 J_ASSERT(handle != NULL);
956
957 /*
958 * Now that we do not always journal data, we should
959 * keep in mind whether this should always journal the
960 * new buffer as metadata. For now, regular file
961 * writes use ext4_get_block instead, so it's not a
962 * problem.
963 */
964 lock_buffer(bh);
965 BUFFER_TRACE(bh, "call get_create_access");
966 err = ext4_journal_get_create_access(handle, bh);
967 if (unlikely(err)) {
968 unlock_buffer(bh);
969 goto errout;
970 }
971 if (!buffer_uptodate(bh)) {
972 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
973 set_buffer_uptodate(bh);
974 }
975 unlock_buffer(bh);
976 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
977 err = ext4_handle_dirty_metadata(handle, inode, bh);
978 if (unlikely(err))
979 goto errout;
980 } else
981 BUFFER_TRACE(bh, "not a new buffer");
982 return bh;
983 errout:
984 brelse(bh);
985 return ERR_PTR(err);
986 }
987
988 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
989 ext4_lblk_t block, int map_flags)
990 {
991 struct buffer_head *bh;
992
993 bh = ext4_getblk(handle, inode, block, map_flags);
994 if (IS_ERR(bh))
995 return bh;
996 if (!bh || buffer_uptodate(bh))
997 return bh;
998 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &bh);
999 wait_on_buffer(bh);
1000 if (buffer_uptodate(bh))
1001 return bh;
1002 put_bh(bh);
1003 return ERR_PTR(-EIO);
1004 }
1005
1006 int ext4_walk_page_buffers(handle_t *handle,
1007 struct buffer_head *head,
1008 unsigned from,
1009 unsigned to,
1010 int *partial,
1011 int (*fn)(handle_t *handle,
1012 struct buffer_head *bh))
1013 {
1014 struct buffer_head *bh;
1015 unsigned block_start, block_end;
1016 unsigned blocksize = head->b_size;
1017 int err, ret = 0;
1018 struct buffer_head *next;
1019
1020 for (bh = head, block_start = 0;
1021 ret == 0 && (bh != head || !block_start);
1022 block_start = block_end, bh = next) {
1023 next = bh->b_this_page;
1024 block_end = block_start + blocksize;
1025 if (block_end <= from || block_start >= to) {
1026 if (partial && !buffer_uptodate(bh))
1027 *partial = 1;
1028 continue;
1029 }
1030 err = (*fn)(handle, bh);
1031 if (!ret)
1032 ret = err;
1033 }
1034 return ret;
1035 }
1036
1037 /*
1038 * To preserve ordering, it is essential that the hole instantiation and
1039 * the data write be encapsulated in a single transaction. We cannot
1040 * close off a transaction and start a new one between the ext4_get_block()
1041 * and the commit_write(). So doing the jbd2_journal_start at the start of
1042 * prepare_write() is the right place.
1043 *
1044 * Also, this function can nest inside ext4_writepage(). In that case, we
1045 * *know* that ext4_writepage() has generated enough buffer credits to do the
1046 * whole page. So we won't block on the journal in that case, which is good,
1047 * because the caller may be PF_MEMALLOC.
1048 *
1049 * By accident, ext4 can be reentered when a transaction is open via
1050 * quota file writes. If we were to commit the transaction while thus
1051 * reentered, there can be a deadlock - we would be holding a quota
1052 * lock, and the commit would never complete if another thread had a
1053 * transaction open and was blocking on the quota lock - a ranking
1054 * violation.
1055 *
1056 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1057 * will _not_ run commit under these circumstances because handle->h_ref
1058 * is elevated. We'll still have enough credits for the tiny quotafile
1059 * write.
1060 */
1061 int do_journal_get_write_access(handle_t *handle,
1062 struct buffer_head *bh)
1063 {
1064 int dirty = buffer_dirty(bh);
1065 int ret;
1066
1067 if (!buffer_mapped(bh) || buffer_freed(bh))
1068 return 0;
1069 /*
1070 * __block_write_begin() could have dirtied some buffers. Clean
1071 * the dirty bit as jbd2_journal_get_write_access() could complain
1072 * otherwise about fs integrity issues. Setting of the dirty bit
1073 * by __block_write_begin() isn't a real problem here as we clear
1074 * the bit before releasing a page lock and thus writeback cannot
1075 * ever write the buffer.
1076 */
1077 if (dirty)
1078 clear_buffer_dirty(bh);
1079 BUFFER_TRACE(bh, "get write access");
1080 ret = ext4_journal_get_write_access(handle, bh);
1081 if (!ret && dirty)
1082 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1083 return ret;
1084 }
1085
1086 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1087 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1088 get_block_t *get_block)
1089 {
1090 unsigned from = pos & (PAGE_SIZE - 1);
1091 unsigned to = from + len;
1092 struct inode *inode = page->mapping->host;
1093 unsigned block_start, block_end;
1094 sector_t block;
1095 int err = 0;
1096 unsigned blocksize = inode->i_sb->s_blocksize;
1097 unsigned bbits;
1098 struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
1099 bool decrypt = false;
1100
1101 BUG_ON(!PageLocked(page));
1102 BUG_ON(from > PAGE_SIZE);
1103 BUG_ON(to > PAGE_SIZE);
1104 BUG_ON(from > to);
1105
1106 if (!page_has_buffers(page))
1107 create_empty_buffers(page, blocksize, 0);
1108 head = page_buffers(page);
1109 bbits = ilog2(blocksize);
1110 block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1111
1112 for (bh = head, block_start = 0; bh != head || !block_start;
1113 block++, block_start = block_end, bh = bh->b_this_page) {
1114 block_end = block_start + blocksize;
1115 if (block_end <= from || block_start >= to) {
1116 if (PageUptodate(page)) {
1117 if (!buffer_uptodate(bh))
1118 set_buffer_uptodate(bh);
1119 }
1120 continue;
1121 }
1122 if (buffer_new(bh))
1123 clear_buffer_new(bh);
1124 if (!buffer_mapped(bh)) {
1125 WARN_ON(bh->b_size != blocksize);
1126 err = get_block(inode, block, bh, 1);
1127 if (err)
1128 break;
1129 if (buffer_new(bh)) {
1130 unmap_underlying_metadata(bh->b_bdev,
1131 bh->b_blocknr);
1132 if (PageUptodate(page)) {
1133 clear_buffer_new(bh);
1134 set_buffer_uptodate(bh);
1135 mark_buffer_dirty(bh);
1136 continue;
1137 }
1138 if (block_end > to || block_start < from)
1139 zero_user_segments(page, to, block_end,
1140 block_start, from);
1141 continue;
1142 }
1143 }
1144 if (PageUptodate(page)) {
1145 if (!buffer_uptodate(bh))
1146 set_buffer_uptodate(bh);
1147 continue;
1148 }
1149 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1150 !buffer_unwritten(bh) &&
1151 (block_start < from || block_end > to)) {
1152 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1153 *wait_bh++ = bh;
1154 decrypt = ext4_encrypted_inode(inode) &&
1155 S_ISREG(inode->i_mode);
1156 }
1157 }
1158 /*
1159 * If we issued read requests, let them complete.
1160 */
1161 while (wait_bh > wait) {
1162 wait_on_buffer(*--wait_bh);
1163 if (!buffer_uptodate(*wait_bh))
1164 err = -EIO;
1165 }
1166 if (unlikely(err))
1167 page_zero_new_buffers(page, from, to);
1168 else if (decrypt)
1169 err = fscrypt_decrypt_page(page->mapping->host, page,
1170 PAGE_SIZE, 0, page->index);
1171 return err;
1172 }
1173 #endif
1174
1175 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1176 loff_t pos, unsigned len, unsigned flags,
1177 struct page **pagep, void **fsdata)
1178 {
1179 struct inode *inode = mapping->host;
1180 int ret, needed_blocks;
1181 handle_t *handle;
1182 int retries = 0;
1183 struct page *page;
1184 pgoff_t index;
1185 unsigned from, to;
1186
1187 trace_ext4_write_begin(inode, pos, len, flags);
1188 /*
1189 * Reserve one block more for addition to orphan list in case
1190 * we allocate blocks but write fails for some reason
1191 */
1192 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1193 index = pos >> PAGE_SHIFT;
1194 from = pos & (PAGE_SIZE - 1);
1195 to = from + len;
1196
1197 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1198 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1199 flags, pagep);
1200 if (ret < 0)
1201 return ret;
1202 if (ret == 1)
1203 return 0;
1204 }
1205
1206 /*
1207 * grab_cache_page_write_begin() can take a long time if the
1208 * system is thrashing due to memory pressure, or if the page
1209 * is being written back. So grab it first before we start
1210 * the transaction handle. This also allows us to allocate
1211 * the page (if needed) without using GFP_NOFS.
1212 */
1213 retry_grab:
1214 page = grab_cache_page_write_begin(mapping, index, flags);
1215 if (!page)
1216 return -ENOMEM;
1217 unlock_page(page);
1218
1219 retry_journal:
1220 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1221 if (IS_ERR(handle)) {
1222 put_page(page);
1223 return PTR_ERR(handle);
1224 }
1225
1226 lock_page(page);
1227 if (page->mapping != mapping) {
1228 /* The page got truncated from under us */
1229 unlock_page(page);
1230 put_page(page);
1231 ext4_journal_stop(handle);
1232 goto retry_grab;
1233 }
1234 /* In case writeback began while the page was unlocked */
1235 wait_for_stable_page(page);
1236
1237 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1238 if (ext4_should_dioread_nolock(inode))
1239 ret = ext4_block_write_begin(page, pos, len,
1240 ext4_get_block_unwritten);
1241 else
1242 ret = ext4_block_write_begin(page, pos, len,
1243 ext4_get_block);
1244 #else
1245 if (ext4_should_dioread_nolock(inode))
1246 ret = __block_write_begin(page, pos, len,
1247 ext4_get_block_unwritten);
1248 else
1249 ret = __block_write_begin(page, pos, len, ext4_get_block);
1250 #endif
1251 if (!ret && ext4_should_journal_data(inode)) {
1252 ret = ext4_walk_page_buffers(handle, page_buffers(page),
1253 from, to, NULL,
1254 do_journal_get_write_access);
1255 }
1256
1257 if (ret) {
1258 unlock_page(page);
1259 /*
1260 * __block_write_begin may have instantiated a few blocks
1261 * outside i_size. Trim these off again. Don't need
1262 * i_size_read because we hold i_mutex.
1263 *
1264 * Add inode to orphan list in case we crash before
1265 * truncate finishes
1266 */
1267 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1268 ext4_orphan_add(handle, inode);
1269
1270 ext4_journal_stop(handle);
1271 if (pos + len > inode->i_size) {
1272 ext4_truncate_failed_write(inode);
1273 /*
1274 * If truncate failed early the inode might
1275 * still be on the orphan list; we need to
1276 * make sure the inode is removed from the
1277 * orphan list in that case.
1278 */
1279 if (inode->i_nlink)
1280 ext4_orphan_del(NULL, inode);
1281 }
1282
1283 if (ret == -ENOSPC &&
1284 ext4_should_retry_alloc(inode->i_sb, &retries))
1285 goto retry_journal;
1286 put_page(page);
1287 return ret;
1288 }
1289 *pagep = page;
1290 return ret;
1291 }
1292
1293 /* For write_end() in data=journal mode */
1294 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1295 {
1296 int ret;
1297 if (!buffer_mapped(bh) || buffer_freed(bh))
1298 return 0;
1299 set_buffer_uptodate(bh);
1300 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1301 clear_buffer_meta(bh);
1302 clear_buffer_prio(bh);
1303 return ret;
1304 }
1305
1306 /*
1307 * We need to pick up the new inode size which generic_commit_write gave us
1308 * `file' can be NULL - eg, when called from page_symlink().
1309 *
1310 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1311 * buffers are managed internally.
1312 */
1313 static int ext4_write_end(struct file *file,
1314 struct address_space *mapping,
1315 loff_t pos, unsigned len, unsigned copied,
1316 struct page *page, void *fsdata)
1317 {
1318 handle_t *handle = ext4_journal_current_handle();
1319 struct inode *inode = mapping->host;
1320 loff_t old_size = inode->i_size;
1321 int ret = 0, ret2;
1322 int i_size_changed = 0;
1323
1324 trace_ext4_write_end(inode, pos, len, copied);
1325 if (ext4_has_inline_data(inode)) {
1326 ret = ext4_write_inline_data_end(inode, pos, len,
1327 copied, page);
1328 if (ret < 0)
1329 goto errout;
1330 copied = ret;
1331 } else
1332 copied = block_write_end(file, mapping, pos,
1333 len, copied, page, fsdata);
1334 /*
1335 * it's important to update i_size while still holding page lock:
1336 * page writeout could otherwise come in and zero beyond i_size.
1337 */
1338 i_size_changed = ext4_update_inode_size(inode, pos + copied);
1339 unlock_page(page);
1340 put_page(page);
1341
1342 if (old_size < pos)
1343 pagecache_isize_extended(inode, old_size, pos);
1344 /*
1345 * Don't mark the inode dirty under page lock. First, it unnecessarily
1346 * makes the holding time of page lock longer. Second, it forces lock
1347 * ordering of page lock and transaction start for journaling
1348 * filesystems.
1349 */
1350 if (i_size_changed)
1351 ext4_mark_inode_dirty(handle, inode);
1352
1353 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1354 /* if we have allocated more blocks and copied
1355 * less. We will have blocks allocated outside
1356 * inode->i_size. So truncate them
1357 */
1358 ext4_orphan_add(handle, inode);
1359 errout:
1360 ret2 = ext4_journal_stop(handle);
1361 if (!ret)
1362 ret = ret2;
1363
1364 if (pos + len > inode->i_size) {
1365 ext4_truncate_failed_write(inode);
1366 /*
1367 * If truncate failed early the inode might still be
1368 * on the orphan list; we need to make sure the inode
1369 * is removed from the orphan list in that case.
1370 */
1371 if (inode->i_nlink)
1372 ext4_orphan_del(NULL, inode);
1373 }
1374
1375 return ret ? ret : copied;
1376 }
1377
1378 /*
1379 * This is a private version of page_zero_new_buffers() which doesn't
1380 * set the buffer to be dirty, since in data=journalled mode we need
1381 * to call ext4_handle_dirty_metadata() instead.
1382 */
1383 static void zero_new_buffers(struct page *page, unsigned from, unsigned to)
1384 {
1385 unsigned int block_start = 0, block_end;
1386 struct buffer_head *head, *bh;
1387
1388 bh = head = page_buffers(page);
1389 do {
1390 block_end = block_start + bh->b_size;
1391 if (buffer_new(bh)) {
1392 if (block_end > from && block_start < to) {
1393 if (!PageUptodate(page)) {
1394 unsigned start, size;
1395
1396 start = max(from, block_start);
1397 size = min(to, block_end) - start;
1398
1399 zero_user(page, start, size);
1400 set_buffer_uptodate(bh);
1401 }
1402 clear_buffer_new(bh);
1403 }
1404 }
1405 block_start = block_end;
1406 bh = bh->b_this_page;
1407 } while (bh != head);
1408 }
1409
1410 static int ext4_journalled_write_end(struct file *file,
1411 struct address_space *mapping,
1412 loff_t pos, unsigned len, unsigned copied,
1413 struct page *page, void *fsdata)
1414 {
1415 handle_t *handle = ext4_journal_current_handle();
1416 struct inode *inode = mapping->host;
1417 loff_t old_size = inode->i_size;
1418 int ret = 0, ret2;
1419 int partial = 0;
1420 unsigned from, to;
1421 int size_changed = 0;
1422
1423 trace_ext4_journalled_write_end(inode, pos, len, copied);
1424 from = pos & (PAGE_SIZE - 1);
1425 to = from + len;
1426
1427 BUG_ON(!ext4_handle_valid(handle));
1428
1429 if (ext4_has_inline_data(inode))
1430 copied = ext4_write_inline_data_end(inode, pos, len,
1431 copied, page);
1432 else {
1433 if (copied < len) {
1434 if (!PageUptodate(page))
1435 copied = 0;
1436 zero_new_buffers(page, from+copied, to);
1437 }
1438
1439 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1440 to, &partial, write_end_fn);
1441 if (!partial)
1442 SetPageUptodate(page);
1443 }
1444 size_changed = ext4_update_inode_size(inode, pos + copied);
1445 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1446 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1447 unlock_page(page);
1448 put_page(page);
1449
1450 if (old_size < pos)
1451 pagecache_isize_extended(inode, old_size, pos);
1452
1453 if (size_changed) {
1454 ret2 = ext4_mark_inode_dirty(handle, inode);
1455 if (!ret)
1456 ret = ret2;
1457 }
1458
1459 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1460 /* if we have allocated more blocks and copied
1461 * less. We will have blocks allocated outside
1462 * inode->i_size. So truncate them
1463 */
1464 ext4_orphan_add(handle, inode);
1465
1466 ret2 = ext4_journal_stop(handle);
1467 if (!ret)
1468 ret = ret2;
1469 if (pos + len > inode->i_size) {
1470 ext4_truncate_failed_write(inode);
1471 /*
1472 * If truncate failed early the inode might still be
1473 * on the orphan list; we need to make sure the inode
1474 * is removed from the orphan list in that case.
1475 */
1476 if (inode->i_nlink)
1477 ext4_orphan_del(NULL, inode);
1478 }
1479
1480 return ret ? ret : copied;
1481 }
1482
1483 /*
1484 * Reserve space for a single cluster
1485 */
1486 static int ext4_da_reserve_space(struct inode *inode)
1487 {
1488 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1489 struct ext4_inode_info *ei = EXT4_I(inode);
1490 int ret;
1491
1492 /*
1493 * We will charge metadata quota at writeout time; this saves
1494 * us from metadata over-estimation, though we may go over by
1495 * a small amount in the end. Here we just reserve for data.
1496 */
1497 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1498 if (ret)
1499 return ret;
1500
1501 spin_lock(&ei->i_block_reservation_lock);
1502 if (ext4_claim_free_clusters(sbi, 1, 0)) {
1503 spin_unlock(&ei->i_block_reservation_lock);
1504 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1505 return -ENOSPC;
1506 }
1507 ei->i_reserved_data_blocks++;
1508 trace_ext4_da_reserve_space(inode);
1509 spin_unlock(&ei->i_block_reservation_lock);
1510
1511 return 0; /* success */
1512 }
1513
1514 static void ext4_da_release_space(struct inode *inode, int to_free)
1515 {
1516 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1517 struct ext4_inode_info *ei = EXT4_I(inode);
1518
1519 if (!to_free)
1520 return; /* Nothing to release, exit */
1521
1522 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1523
1524 trace_ext4_da_release_space(inode, to_free);
1525 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1526 /*
1527 * if there aren't enough reserved blocks, then the
1528 * counter is messed up somewhere. Since this
1529 * function is called from invalidate page, it's
1530 * harmless to return without any action.
1531 */
1532 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1533 "ino %lu, to_free %d with only %d reserved "
1534 "data blocks", inode->i_ino, to_free,
1535 ei->i_reserved_data_blocks);
1536 WARN_ON(1);
1537 to_free = ei->i_reserved_data_blocks;
1538 }
1539 ei->i_reserved_data_blocks -= to_free;
1540
1541 /* update fs dirty data blocks counter */
1542 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1543
1544 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1545
1546 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1547 }
1548
1549 static void ext4_da_page_release_reservation(struct page *page,
1550 unsigned int offset,
1551 unsigned int length)
1552 {
1553 int to_release = 0, contiguous_blks = 0;
1554 struct buffer_head *head, *bh;
1555 unsigned int curr_off = 0;
1556 struct inode *inode = page->mapping->host;
1557 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1558 unsigned int stop = offset + length;
1559 int num_clusters;
1560 ext4_fsblk_t lblk;
1561
1562 BUG_ON(stop > PAGE_SIZE || stop < length);
1563
1564 head = page_buffers(page);
1565 bh = head;
1566 do {
1567 unsigned int next_off = curr_off + bh->b_size;
1568
1569 if (next_off > stop)
1570 break;
1571
1572 if ((offset <= curr_off) && (buffer_delay(bh))) {
1573 to_release++;
1574 contiguous_blks++;
1575 clear_buffer_delay(bh);
1576 } else if (contiguous_blks) {
1577 lblk = page->index <<
1578 (PAGE_SHIFT - inode->i_blkbits);
1579 lblk += (curr_off >> inode->i_blkbits) -
1580 contiguous_blks;
1581 ext4_es_remove_extent(inode, lblk, contiguous_blks);
1582 contiguous_blks = 0;
1583 }
1584 curr_off = next_off;
1585 } while ((bh = bh->b_this_page) != head);
1586
1587 if (contiguous_blks) {
1588 lblk = page->index << (PAGE_SHIFT - inode->i_blkbits);
1589 lblk += (curr_off >> inode->i_blkbits) - contiguous_blks;
1590 ext4_es_remove_extent(inode, lblk, contiguous_blks);
1591 }
1592
1593 /* If we have released all the blocks belonging to a cluster, then we
1594 * need to release the reserved space for that cluster. */
1595 num_clusters = EXT4_NUM_B2C(sbi, to_release);
1596 while (num_clusters > 0) {
1597 lblk = (page->index << (PAGE_SHIFT - inode->i_blkbits)) +
1598 ((num_clusters - 1) << sbi->s_cluster_bits);
1599 if (sbi->s_cluster_ratio == 1 ||
1600 !ext4_find_delalloc_cluster(inode, lblk))
1601 ext4_da_release_space(inode, 1);
1602
1603 num_clusters--;
1604 }
1605 }
1606
1607 /*
1608 * Delayed allocation stuff
1609 */
1610
1611 struct mpage_da_data {
1612 struct inode *inode;
1613 struct writeback_control *wbc;
1614
1615 pgoff_t first_page; /* The first page to write */
1616 pgoff_t next_page; /* Current page to examine */
1617 pgoff_t last_page; /* Last page to examine */
1618 /*
1619 * Extent to map - this can be after first_page because that can be
1620 * fully mapped. We somewhat abuse m_flags to store whether the extent
1621 * is delalloc or unwritten.
1622 */
1623 struct ext4_map_blocks map;
1624 struct ext4_io_submit io_submit; /* IO submission data */
1625 };
1626
1627 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1628 bool invalidate)
1629 {
1630 int nr_pages, i;
1631 pgoff_t index, end;
1632 struct pagevec pvec;
1633 struct inode *inode = mpd->inode;
1634 struct address_space *mapping = inode->i_mapping;
1635
1636 /* This is necessary when next_page == 0. */
1637 if (mpd->first_page >= mpd->next_page)
1638 return;
1639
1640 index = mpd->first_page;
1641 end = mpd->next_page - 1;
1642 if (invalidate) {
1643 ext4_lblk_t start, last;
1644 start = index << (PAGE_SHIFT - inode->i_blkbits);
1645 last = end << (PAGE_SHIFT - inode->i_blkbits);
1646 ext4_es_remove_extent(inode, start, last - start + 1);
1647 }
1648
1649 pagevec_init(&pvec, 0);
1650 while (index <= end) {
1651 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1652 if (nr_pages == 0)
1653 break;
1654 for (i = 0; i < nr_pages; i++) {
1655 struct page *page = pvec.pages[i];
1656 if (page->index > end)
1657 break;
1658 BUG_ON(!PageLocked(page));
1659 BUG_ON(PageWriteback(page));
1660 if (invalidate) {
1661 if (page_mapped(page))
1662 clear_page_dirty_for_io(page);
1663 block_invalidatepage(page, 0, PAGE_SIZE);
1664 ClearPageUptodate(page);
1665 }
1666 unlock_page(page);
1667 }
1668 index = pvec.pages[nr_pages - 1]->index + 1;
1669 pagevec_release(&pvec);
1670 }
1671 }
1672
1673 static void ext4_print_free_blocks(struct inode *inode)
1674 {
1675 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1676 struct super_block *sb = inode->i_sb;
1677 struct ext4_inode_info *ei = EXT4_I(inode);
1678
1679 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1680 EXT4_C2B(EXT4_SB(inode->i_sb),
1681 ext4_count_free_clusters(sb)));
1682 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1683 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1684 (long long) EXT4_C2B(EXT4_SB(sb),
1685 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1686 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1687 (long long) EXT4_C2B(EXT4_SB(sb),
1688 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1689 ext4_msg(sb, KERN_CRIT, "Block reservation details");
1690 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1691 ei->i_reserved_data_blocks);
1692 return;
1693 }
1694
1695 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1696 {
1697 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1698 }
1699
1700 /*
1701 * This function is grabs code from the very beginning of
1702 * ext4_map_blocks, but assumes that the caller is from delayed write
1703 * time. This function looks up the requested blocks and sets the
1704 * buffer delay bit under the protection of i_data_sem.
1705 */
1706 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1707 struct ext4_map_blocks *map,
1708 struct buffer_head *bh)
1709 {
1710 struct extent_status es;
1711 int retval;
1712 sector_t invalid_block = ~((sector_t) 0xffff);
1713 #ifdef ES_AGGRESSIVE_TEST
1714 struct ext4_map_blocks orig_map;
1715
1716 memcpy(&orig_map, map, sizeof(*map));
1717 #endif
1718
1719 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1720 invalid_block = ~0;
1721
1722 map->m_flags = 0;
1723 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1724 "logical block %lu\n", inode->i_ino, map->m_len,
1725 (unsigned long) map->m_lblk);
1726
1727 /* Lookup extent status tree firstly */
1728 if (ext4_es_lookup_extent(inode, iblock, &es)) {
1729 if (ext4_es_is_hole(&es)) {
1730 retval = 0;
1731 down_read(&EXT4_I(inode)->i_data_sem);
1732 goto add_delayed;
1733 }
1734
1735 /*
1736 * Delayed extent could be allocated by fallocate.
1737 * So we need to check it.
1738 */
1739 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1740 map_bh(bh, inode->i_sb, invalid_block);
1741 set_buffer_new(bh);
1742 set_buffer_delay(bh);
1743 return 0;
1744 }
1745
1746 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1747 retval = es.es_len - (iblock - es.es_lblk);
1748 if (retval > map->m_len)
1749 retval = map->m_len;
1750 map->m_len = retval;
1751 if (ext4_es_is_written(&es))
1752 map->m_flags |= EXT4_MAP_MAPPED;
1753 else if (ext4_es_is_unwritten(&es))
1754 map->m_flags |= EXT4_MAP_UNWRITTEN;
1755 else
1756 BUG_ON(1);
1757
1758 #ifdef ES_AGGRESSIVE_TEST
1759 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1760 #endif
1761 return retval;
1762 }
1763
1764 /*
1765 * Try to see if we can get the block without requesting a new
1766 * file system block.
1767 */
1768 down_read(&EXT4_I(inode)->i_data_sem);
1769 if (ext4_has_inline_data(inode))
1770 retval = 0;
1771 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1772 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1773 else
1774 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1775
1776 add_delayed:
1777 if (retval == 0) {
1778 int ret;
1779 /*
1780 * XXX: __block_prepare_write() unmaps passed block,
1781 * is it OK?
1782 */
1783 /*
1784 * If the block was allocated from previously allocated cluster,
1785 * then we don't need to reserve it again. However we still need
1786 * to reserve metadata for every block we're going to write.
1787 */
1788 if (EXT4_SB(inode->i_sb)->s_cluster_ratio == 1 ||
1789 !ext4_find_delalloc_cluster(inode, map->m_lblk)) {
1790 ret = ext4_da_reserve_space(inode);
1791 if (ret) {
1792 /* not enough space to reserve */
1793 retval = ret;
1794 goto out_unlock;
1795 }
1796 }
1797
1798 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1799 ~0, EXTENT_STATUS_DELAYED);
1800 if (ret) {
1801 retval = ret;
1802 goto out_unlock;
1803 }
1804
1805 map_bh(bh, inode->i_sb, invalid_block);
1806 set_buffer_new(bh);
1807 set_buffer_delay(bh);
1808 } else if (retval > 0) {
1809 int ret;
1810 unsigned int status;
1811
1812 if (unlikely(retval != map->m_len)) {
1813 ext4_warning(inode->i_sb,
1814 "ES len assertion failed for inode "
1815 "%lu: retval %d != map->m_len %d",
1816 inode->i_ino, retval, map->m_len);
1817 WARN_ON(1);
1818 }
1819
1820 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1821 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1822 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1823 map->m_pblk, status);
1824 if (ret != 0)
1825 retval = ret;
1826 }
1827
1828 out_unlock:
1829 up_read((&EXT4_I(inode)->i_data_sem));
1830
1831 return retval;
1832 }
1833
1834 /*
1835 * This is a special get_block_t callback which is used by
1836 * ext4_da_write_begin(). It will either return mapped block or
1837 * reserve space for a single block.
1838 *
1839 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1840 * We also have b_blocknr = -1 and b_bdev initialized properly
1841 *
1842 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1843 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1844 * initialized properly.
1845 */
1846 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1847 struct buffer_head *bh, int create)
1848 {
1849 struct ext4_map_blocks map;
1850 int ret = 0;
1851
1852 BUG_ON(create == 0);
1853 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1854
1855 map.m_lblk = iblock;
1856 map.m_len = 1;
1857
1858 /*
1859 * first, we need to know whether the block is allocated already
1860 * preallocated blocks are unmapped but should treated
1861 * the same as allocated blocks.
1862 */
1863 ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1864 if (ret <= 0)
1865 return ret;
1866
1867 map_bh(bh, inode->i_sb, map.m_pblk);
1868 ext4_update_bh_state(bh, map.m_flags);
1869
1870 if (buffer_unwritten(bh)) {
1871 /* A delayed write to unwritten bh should be marked
1872 * new and mapped. Mapped ensures that we don't do
1873 * get_block multiple times when we write to the same
1874 * offset and new ensures that we do proper zero out
1875 * for partial write.
1876 */
1877 set_buffer_new(bh);
1878 set_buffer_mapped(bh);
1879 }
1880 return 0;
1881 }
1882
1883 static int bget_one(handle_t *handle, struct buffer_head *bh)
1884 {
1885 get_bh(bh);
1886 return 0;
1887 }
1888
1889 static int bput_one(handle_t *handle, struct buffer_head *bh)
1890 {
1891 put_bh(bh);
1892 return 0;
1893 }
1894
1895 static int __ext4_journalled_writepage(struct page *page,
1896 unsigned int len)
1897 {
1898 struct address_space *mapping = page->mapping;
1899 struct inode *inode = mapping->host;
1900 struct buffer_head *page_bufs = NULL;
1901 handle_t *handle = NULL;
1902 int ret = 0, err = 0;
1903 int inline_data = ext4_has_inline_data(inode);
1904 struct buffer_head *inode_bh = NULL;
1905
1906 ClearPageChecked(page);
1907
1908 if (inline_data) {
1909 BUG_ON(page->index != 0);
1910 BUG_ON(len > ext4_get_max_inline_size(inode));
1911 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1912 if (inode_bh == NULL)
1913 goto out;
1914 } else {
1915 page_bufs = page_buffers(page);
1916 if (!page_bufs) {
1917 BUG();
1918 goto out;
1919 }
1920 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1921 NULL, bget_one);
1922 }
1923 /*
1924 * We need to release the page lock before we start the
1925 * journal, so grab a reference so the page won't disappear
1926 * out from under us.
1927 */
1928 get_page(page);
1929 unlock_page(page);
1930
1931 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1932 ext4_writepage_trans_blocks(inode));
1933 if (IS_ERR(handle)) {
1934 ret = PTR_ERR(handle);
1935 put_page(page);
1936 goto out_no_pagelock;
1937 }
1938 BUG_ON(!ext4_handle_valid(handle));
1939
1940 lock_page(page);
1941 put_page(page);
1942 if (page->mapping != mapping) {
1943 /* The page got truncated from under us */
1944 ext4_journal_stop(handle);
1945 ret = 0;
1946 goto out;
1947 }
1948
1949 if (inline_data) {
1950 BUFFER_TRACE(inode_bh, "get write access");
1951 ret = ext4_journal_get_write_access(handle, inode_bh);
1952
1953 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1954
1955 } else {
1956 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1957 do_journal_get_write_access);
1958
1959 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1960 write_end_fn);
1961 }
1962 if (ret == 0)
1963 ret = err;
1964 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1965 err = ext4_journal_stop(handle);
1966 if (!ret)
1967 ret = err;
1968
1969 if (!ext4_has_inline_data(inode))
1970 ext4_walk_page_buffers(NULL, page_bufs, 0, len,
1971 NULL, bput_one);
1972 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1973 out:
1974 unlock_page(page);
1975 out_no_pagelock:
1976 brelse(inode_bh);
1977 return ret;
1978 }
1979
1980 /*
1981 * Note that we don't need to start a transaction unless we're journaling data
1982 * because we should have holes filled from ext4_page_mkwrite(). We even don't
1983 * need to file the inode to the transaction's list in ordered mode because if
1984 * we are writing back data added by write(), the inode is already there and if
1985 * we are writing back data modified via mmap(), no one guarantees in which
1986 * transaction the data will hit the disk. In case we are journaling data, we
1987 * cannot start transaction directly because transaction start ranks above page
1988 * lock so we have to do some magic.
1989 *
1990 * This function can get called via...
1991 * - ext4_writepages after taking page lock (have journal handle)
1992 * - journal_submit_inode_data_buffers (no journal handle)
1993 * - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1994 * - grab_page_cache when doing write_begin (have journal handle)
1995 *
1996 * We don't do any block allocation in this function. If we have page with
1997 * multiple blocks we need to write those buffer_heads that are mapped. This
1998 * is important for mmaped based write. So if we do with blocksize 1K
1999 * truncate(f, 1024);
2000 * a = mmap(f, 0, 4096);
2001 * a[0] = 'a';
2002 * truncate(f, 4096);
2003 * we have in the page first buffer_head mapped via page_mkwrite call back
2004 * but other buffer_heads would be unmapped but dirty (dirty done via the
2005 * do_wp_page). So writepage should write the first block. If we modify
2006 * the mmap area beyond 1024 we will again get a page_fault and the
2007 * page_mkwrite callback will do the block allocation and mark the
2008 * buffer_heads mapped.
2009 *
2010 * We redirty the page if we have any buffer_heads that is either delay or
2011 * unwritten in the page.
2012 *
2013 * We can get recursively called as show below.
2014 *
2015 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2016 * ext4_writepage()
2017 *
2018 * But since we don't do any block allocation we should not deadlock.
2019 * Page also have the dirty flag cleared so we don't get recurive page_lock.
2020 */
2021 static int ext4_writepage(struct page *page,
2022 struct writeback_control *wbc)
2023 {
2024 int ret = 0;
2025 loff_t size;
2026 unsigned int len;
2027 struct buffer_head *page_bufs = NULL;
2028 struct inode *inode = page->mapping->host;
2029 struct ext4_io_submit io_submit;
2030 bool keep_towrite = false;
2031
2032 trace_ext4_writepage(page);
2033 size = i_size_read(inode);
2034 if (page->index == size >> PAGE_SHIFT)
2035 len = size & ~PAGE_MASK;
2036 else
2037 len = PAGE_SIZE;
2038
2039 page_bufs = page_buffers(page);
2040 /*
2041 * We cannot do block allocation or other extent handling in this
2042 * function. If there are buffers needing that, we have to redirty
2043 * the page. But we may reach here when we do a journal commit via
2044 * journal_submit_inode_data_buffers() and in that case we must write
2045 * allocated buffers to achieve data=ordered mode guarantees.
2046 *
2047 * Also, if there is only one buffer per page (the fs block
2048 * size == the page size), if one buffer needs block
2049 * allocation or needs to modify the extent tree to clear the
2050 * unwritten flag, we know that the page can't be written at
2051 * all, so we might as well refuse the write immediately.
2052 * Unfortunately if the block size != page size, we can't as
2053 * easily detect this case using ext4_walk_page_buffers(), but
2054 * for the extremely common case, this is an optimization that
2055 * skips a useless round trip through ext4_bio_write_page().
2056 */
2057 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2058 ext4_bh_delay_or_unwritten)) {
2059 redirty_page_for_writepage(wbc, page);
2060 if ((current->flags & PF_MEMALLOC) ||
2061 (inode->i_sb->s_blocksize == PAGE_SIZE)) {
2062 /*
2063 * For memory cleaning there's no point in writing only
2064 * some buffers. So just bail out. Warn if we came here
2065 * from direct reclaim.
2066 */
2067 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2068 == PF_MEMALLOC);
2069 unlock_page(page);
2070 return 0;
2071 }
2072 keep_towrite = true;
2073 }
2074
2075 if (PageChecked(page) && ext4_should_journal_data(inode))
2076 /*
2077 * It's mmapped pagecache. Add buffers and journal it. There
2078 * doesn't seem much point in redirtying the page here.
2079 */
2080 return __ext4_journalled_writepage(page, len);
2081
2082 ext4_io_submit_init(&io_submit, wbc);
2083 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2084 if (!io_submit.io_end) {
2085 redirty_page_for_writepage(wbc, page);
2086 unlock_page(page);
2087 return -ENOMEM;
2088 }
2089 ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
2090 ext4_io_submit(&io_submit);
2091 /* Drop io_end reference we got from init */
2092 ext4_put_io_end_defer(io_submit.io_end);
2093 return ret;
2094 }
2095
2096 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2097 {
2098 int len;
2099 loff_t size = i_size_read(mpd->inode);
2100 int err;
2101
2102 BUG_ON(page->index != mpd->first_page);
2103 if (page->index == size >> PAGE_SHIFT)
2104 len = size & ~PAGE_MASK;
2105 else
2106 len = PAGE_SIZE;
2107 clear_page_dirty_for_io(page);
2108 err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
2109 if (!err)
2110 mpd->wbc->nr_to_write--;
2111 mpd->first_page++;
2112
2113 return err;
2114 }
2115
2116 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
2117
2118 /*
2119 * mballoc gives us at most this number of blocks...
2120 * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2121 * The rest of mballoc seems to handle chunks up to full group size.
2122 */
2123 #define MAX_WRITEPAGES_EXTENT_LEN 2048
2124
2125 /*
2126 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2127 *
2128 * @mpd - extent of blocks
2129 * @lblk - logical number of the block in the file
2130 * @bh - buffer head we want to add to the extent
2131 *
2132 * The function is used to collect contig. blocks in the same state. If the
2133 * buffer doesn't require mapping for writeback and we haven't started the
2134 * extent of buffers to map yet, the function returns 'true' immediately - the
2135 * caller can write the buffer right away. Otherwise the function returns true
2136 * if the block has been added to the extent, false if the block couldn't be
2137 * added.
2138 */
2139 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2140 struct buffer_head *bh)
2141 {
2142 struct ext4_map_blocks *map = &mpd->map;
2143
2144 /* Buffer that doesn't need mapping for writeback? */
2145 if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2146 (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2147 /* So far no extent to map => we write the buffer right away */
2148 if (map->m_len == 0)
2149 return true;
2150 return false;
2151 }
2152
2153 /* First block in the extent? */
2154 if (map->m_len == 0) {
2155 map->m_lblk = lblk;
2156 map->m_len = 1;
2157 map->m_flags = bh->b_state & BH_FLAGS;
2158 return true;
2159 }
2160
2161 /* Don't go larger than mballoc is willing to allocate */
2162 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2163 return false;
2164
2165 /* Can we merge the block to our big extent? */
2166 if (lblk == map->m_lblk + map->m_len &&
2167 (bh->b_state & BH_FLAGS) == map->m_flags) {
2168 map->m_len++;
2169 return true;
2170 }
2171 return false;
2172 }
2173
2174 /*
2175 * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2176 *
2177 * @mpd - extent of blocks for mapping
2178 * @head - the first buffer in the page
2179 * @bh - buffer we should start processing from
2180 * @lblk - logical number of the block in the file corresponding to @bh
2181 *
2182 * Walk through page buffers from @bh upto @head (exclusive) and either submit
2183 * the page for IO if all buffers in this page were mapped and there's no
2184 * accumulated extent of buffers to map or add buffers in the page to the
2185 * extent of buffers to map. The function returns 1 if the caller can continue
2186 * by processing the next page, 0 if it should stop adding buffers to the
2187 * extent to map because we cannot extend it anymore. It can also return value
2188 * < 0 in case of error during IO submission.
2189 */
2190 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2191 struct buffer_head *head,
2192 struct buffer_head *bh,
2193 ext4_lblk_t lblk)
2194 {
2195 struct inode *inode = mpd->inode;
2196 int err;
2197 ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1)
2198 >> inode->i_blkbits;
2199
2200 do {
2201 BUG_ON(buffer_locked(bh));
2202
2203 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2204 /* Found extent to map? */
2205 if (mpd->map.m_len)
2206 return 0;
2207 /* Everything mapped so far and we hit EOF */
2208 break;
2209 }
2210 } while (lblk++, (bh = bh->b_this_page) != head);
2211 /* So far everything mapped? Submit the page for IO. */
2212 if (mpd->map.m_len == 0) {
2213 err = mpage_submit_page(mpd, head->b_page);
2214 if (err < 0)
2215 return err;
2216 }
2217 return lblk < blocks;
2218 }
2219
2220 /*
2221 * mpage_map_buffers - update buffers corresponding to changed extent and
2222 * submit fully mapped pages for IO
2223 *
2224 * @mpd - description of extent to map, on return next extent to map
2225 *
2226 * Scan buffers corresponding to changed extent (we expect corresponding pages
2227 * to be already locked) and update buffer state according to new extent state.
2228 * We map delalloc buffers to their physical location, clear unwritten bits,
2229 * and mark buffers as uninit when we perform writes to unwritten extents
2230 * and do extent conversion after IO is finished. If the last page is not fully
2231 * mapped, we update @map to the next extent in the last page that needs
2232 * mapping. Otherwise we submit the page for IO.
2233 */
2234 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2235 {
2236 struct pagevec pvec;
2237 int nr_pages, i;
2238 struct inode *inode = mpd->inode;
2239 struct buffer_head *head, *bh;
2240 int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2241 pgoff_t start, end;
2242 ext4_lblk_t lblk;
2243 sector_t pblock;
2244 int err;
2245
2246 start = mpd->map.m_lblk >> bpp_bits;
2247 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2248 lblk = start << bpp_bits;
2249 pblock = mpd->map.m_pblk;
2250
2251 pagevec_init(&pvec, 0);
2252 while (start <= end) {
2253 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start,
2254 PAGEVEC_SIZE);
2255 if (nr_pages == 0)
2256 break;
2257 for (i = 0; i < nr_pages; i++) {
2258 struct page *page = pvec.pages[i];
2259
2260 if (page->index > end)
2261 break;
2262 /* Up to 'end' pages must be contiguous */
2263 BUG_ON(page->index != start);
2264 bh = head = page_buffers(page);
2265 do {
2266 if (lblk < mpd->map.m_lblk)
2267 continue;
2268 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2269 /*
2270 * Buffer after end of mapped extent.
2271 * Find next buffer in the page to map.
2272 */
2273 mpd->map.m_len = 0;
2274 mpd->map.m_flags = 0;
2275 /*
2276 * FIXME: If dioread_nolock supports
2277 * blocksize < pagesize, we need to make
2278 * sure we add size mapped so far to
2279 * io_end->size as the following call
2280 * can submit the page for IO.
2281 */
2282 err = mpage_process_page_bufs(mpd, head,
2283 bh, lblk);
2284 pagevec_release(&pvec);
2285 if (err > 0)
2286 err = 0;
2287 return err;
2288 }
2289 if (buffer_delay(bh)) {
2290 clear_buffer_delay(bh);
2291 bh->b_blocknr = pblock++;
2292 }
2293 clear_buffer_unwritten(bh);
2294 } while (lblk++, (bh = bh->b_this_page) != head);
2295
2296 /*
2297 * FIXME: This is going to break if dioread_nolock
2298 * supports blocksize < pagesize as we will try to
2299 * convert potentially unmapped parts of inode.
2300 */
2301 mpd->io_submit.io_end->size += PAGE_SIZE;
2302 /* Page fully mapped - let IO run! */
2303 err = mpage_submit_page(mpd, page);
2304 if (err < 0) {
2305 pagevec_release(&pvec);
2306 return err;
2307 }
2308 start++;
2309 }
2310 pagevec_release(&pvec);
2311 }
2312 /* Extent fully mapped and matches with page boundary. We are done. */
2313 mpd->map.m_len = 0;
2314 mpd->map.m_flags = 0;
2315 return 0;
2316 }
2317
2318 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2319 {
2320 struct inode *inode = mpd->inode;
2321 struct ext4_map_blocks *map = &mpd->map;
2322 int get_blocks_flags;
2323 int err, dioread_nolock;
2324
2325 trace_ext4_da_write_pages_extent(inode, map);
2326 /*
2327 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2328 * to convert an unwritten extent to be initialized (in the case
2329 * where we have written into one or more preallocated blocks). It is
2330 * possible that we're going to need more metadata blocks than
2331 * previously reserved. However we must not fail because we're in
2332 * writeback and there is nothing we can do about it so it might result
2333 * in data loss. So use reserved blocks to allocate metadata if
2334 * possible.
2335 *
2336 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2337 * the blocks in question are delalloc blocks. This indicates
2338 * that the blocks and quotas has already been checked when
2339 * the data was copied into the page cache.
2340 */
2341 get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2342 EXT4_GET_BLOCKS_METADATA_NOFAIL |
2343 EXT4_GET_BLOCKS_IO_SUBMIT;
2344 dioread_nolock = ext4_should_dioread_nolock(inode);
2345 if (dioread_nolock)
2346 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2347 if (map->m_flags & (1 << BH_Delay))
2348 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2349
2350 err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2351 if (err < 0)
2352 return err;
2353 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2354 if (!mpd->io_submit.io_end->handle &&
2355 ext4_handle_valid(handle)) {
2356 mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2357 handle->h_rsv_handle = NULL;
2358 }
2359 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2360 }
2361
2362 BUG_ON(map->m_len == 0);
2363 if (map->m_flags & EXT4_MAP_NEW) {
2364 struct block_device *bdev = inode->i_sb->s_bdev;
2365 int i;
2366
2367 for (i = 0; i < map->m_len; i++)
2368 unmap_underlying_metadata(bdev, map->m_pblk + i);
2369 }
2370 return 0;
2371 }
2372
2373 /*
2374 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2375 * mpd->len and submit pages underlying it for IO
2376 *
2377 * @handle - handle for journal operations
2378 * @mpd - extent to map
2379 * @give_up_on_write - we set this to true iff there is a fatal error and there
2380 * is no hope of writing the data. The caller should discard
2381 * dirty pages to avoid infinite loops.
2382 *
2383 * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2384 * delayed, blocks are allocated, if it is unwritten, we may need to convert
2385 * them to initialized or split the described range from larger unwritten
2386 * extent. Note that we need not map all the described range since allocation
2387 * can return less blocks or the range is covered by more unwritten extents. We
2388 * cannot map more because we are limited by reserved transaction credits. On
2389 * the other hand we always make sure that the last touched page is fully
2390 * mapped so that it can be written out (and thus forward progress is
2391 * guaranteed). After mapping we submit all mapped pages for IO.
2392 */
2393 static int mpage_map_and_submit_extent(handle_t *handle,
2394 struct mpage_da_data *mpd,
2395 bool *give_up_on_write)
2396 {
2397 struct inode *inode = mpd->inode;
2398 struct ext4_map_blocks *map = &mpd->map;
2399 int err;
2400 loff_t disksize;
2401 int progress = 0;
2402
2403 mpd->io_submit.io_end->offset =
2404 ((loff_t)map->m_lblk) << inode->i_blkbits;
2405 do {
2406 err = mpage_map_one_extent(handle, mpd);
2407 if (err < 0) {
2408 struct super_block *sb = inode->i_sb;
2409
2410 if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2411 goto invalidate_dirty_pages;
2412 /*
2413 * Let the uper layers retry transient errors.
2414 * In the case of ENOSPC, if ext4_count_free_blocks()
2415 * is non-zero, a commit should free up blocks.
2416 */
2417 if ((err == -ENOMEM) ||
2418 (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2419 if (progress)
2420 goto update_disksize;
2421 return err;
2422 }
2423 ext4_msg(sb, KERN_CRIT,
2424 "Delayed block allocation failed for "
2425 "inode %lu at logical offset %llu with"
2426 " max blocks %u with error %d",
2427 inode->i_ino,
2428 (unsigned long long)map->m_lblk,
2429 (unsigned)map->m_len, -err);
2430 ext4_msg(sb, KERN_CRIT,
2431 "This should not happen!! Data will "
2432 "be lost\n");
2433 if (err == -ENOSPC)
2434 ext4_print_free_blocks(inode);
2435 invalidate_dirty_pages:
2436 *give_up_on_write = true;
2437 return err;
2438 }
2439 progress = 1;
2440 /*
2441 * Update buffer state, submit mapped pages, and get us new
2442 * extent to map
2443 */
2444 err = mpage_map_and_submit_buffers(mpd);
2445 if (err < 0)
2446 goto update_disksize;
2447 } while (map->m_len);
2448
2449 update_disksize:
2450 /*
2451 * Update on-disk size after IO is submitted. Races with
2452 * truncate are avoided by checking i_size under i_data_sem.
2453 */
2454 disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2455 if (disksize > EXT4_I(inode)->i_disksize) {
2456 int err2;
2457 loff_t i_size;
2458
2459 down_write(&EXT4_I(inode)->i_data_sem);
2460 i_size = i_size_read(inode);
2461 if (disksize > i_size)
2462 disksize = i_size;
2463 if (disksize > EXT4_I(inode)->i_disksize)
2464 EXT4_I(inode)->i_disksize = disksize;
2465 err2 = ext4_mark_inode_dirty(handle, inode);
2466 up_write(&EXT4_I(inode)->i_data_sem);
2467 if (err2)
2468 ext4_error(inode->i_sb,
2469 "Failed to mark inode %lu dirty",
2470 inode->i_ino);
2471 if (!err)
2472 err = err2;
2473 }
2474 return err;
2475 }
2476
2477 /*
2478 * Calculate the total number of credits to reserve for one writepages
2479 * iteration. This is called from ext4_writepages(). We map an extent of
2480 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2481 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2482 * bpp - 1 blocks in bpp different extents.
2483 */
2484 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2485 {
2486 int bpp = ext4_journal_blocks_per_page(inode);
2487
2488 return ext4_meta_trans_blocks(inode,
2489 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2490 }
2491
2492 /*
2493 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2494 * and underlying extent to map
2495 *
2496 * @mpd - where to look for pages
2497 *
2498 * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2499 * IO immediately. When we find a page which isn't mapped we start accumulating
2500 * extent of buffers underlying these pages that needs mapping (formed by
2501 * either delayed or unwritten buffers). We also lock the pages containing
2502 * these buffers. The extent found is returned in @mpd structure (starting at
2503 * mpd->lblk with length mpd->len blocks).
2504 *
2505 * Note that this function can attach bios to one io_end structure which are
2506 * neither logically nor physically contiguous. Although it may seem as an
2507 * unnecessary complication, it is actually inevitable in blocksize < pagesize
2508 * case as we need to track IO to all buffers underlying a page in one io_end.
2509 */
2510 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2511 {
2512 struct address_space *mapping = mpd->inode->i_mapping;
2513 struct pagevec pvec;
2514 unsigned int nr_pages;
2515 long left = mpd->wbc->nr_to_write;
2516 pgoff_t index = mpd->first_page;
2517 pgoff_t end = mpd->last_page;
2518 int tag;
2519 int i, err = 0;
2520 int blkbits = mpd->inode->i_blkbits;
2521 ext4_lblk_t lblk;
2522 struct buffer_head *head;
2523
2524 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2525 tag = PAGECACHE_TAG_TOWRITE;
2526 else
2527 tag = PAGECACHE_TAG_DIRTY;
2528
2529 pagevec_init(&pvec, 0);
2530 mpd->map.m_len = 0;
2531 mpd->next_page = index;
2532 while (index <= end) {
2533 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2534 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2535 if (nr_pages == 0)
2536 goto out;
2537
2538 for (i = 0; i < nr_pages; i++) {
2539 struct page *page = pvec.pages[i];
2540
2541 /*
2542 * At this point, the page may be truncated or
2543 * invalidated (changing page->mapping to NULL), or
2544 * even swizzled back from swapper_space to tmpfs file
2545 * mapping. However, page->index will not change
2546 * because we have a reference on the page.
2547 */
2548 if (page->index > end)
2549 goto out;
2550
2551 /*
2552 * Accumulated enough dirty pages? This doesn't apply
2553 * to WB_SYNC_ALL mode. For integrity sync we have to
2554 * keep going because someone may be concurrently
2555 * dirtying pages, and we might have synced a lot of
2556 * newly appeared dirty pages, but have not synced all
2557 * of the old dirty pages.
2558 */
2559 if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2560 goto out;
2561
2562 /* If we can't merge this page, we are done. */
2563 if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2564 goto out;
2565
2566 lock_page(page);
2567 /*
2568 * If the page is no longer dirty, or its mapping no
2569 * longer corresponds to inode we are writing (which
2570 * means it has been truncated or invalidated), or the
2571 * page is already under writeback and we are not doing
2572 * a data integrity writeback, skip the page
2573 */
2574 if (!PageDirty(page) ||
2575 (PageWriteback(page) &&
2576 (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2577 unlikely(page->mapping != mapping)) {
2578 unlock_page(page);
2579 continue;
2580 }
2581
2582 wait_on_page_writeback(page);
2583 BUG_ON(PageWriteback(page));
2584
2585 if (mpd->map.m_len == 0)
2586 mpd->first_page = page->index;
2587 mpd->next_page = page->index + 1;
2588 /* Add all dirty buffers to mpd */
2589 lblk = ((ext4_lblk_t)page->index) <<
2590 (PAGE_SHIFT - blkbits);
2591 head = page_buffers(page);
2592 err = mpage_process_page_bufs(mpd, head, head, lblk);
2593 if (err <= 0)
2594 goto out;
2595 err = 0;
2596 left--;
2597 }
2598 pagevec_release(&pvec);
2599 cond_resched();
2600 }
2601 return 0;
2602 out:
2603 pagevec_release(&pvec);
2604 return err;
2605 }
2606
2607 static int __writepage(struct page *page, struct writeback_control *wbc,
2608 void *data)
2609 {
2610 struct address_space *mapping = data;
2611 int ret = ext4_writepage(page, wbc);
2612 mapping_set_error(mapping, ret);
2613 return ret;
2614 }
2615
2616 static int ext4_writepages(struct address_space *mapping,
2617 struct writeback_control *wbc)
2618 {
2619 pgoff_t writeback_index = 0;
2620 long nr_to_write = wbc->nr_to_write;
2621 int range_whole = 0;
2622 int cycled = 1;
2623 handle_t *handle = NULL;
2624 struct mpage_da_data mpd;
2625 struct inode *inode = mapping->host;
2626 int needed_blocks, rsv_blocks = 0, ret = 0;
2627 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2628 bool done;
2629 struct blk_plug plug;
2630 bool give_up_on_write = false;
2631
2632 percpu_down_read(&sbi->s_journal_flag_rwsem);
2633 trace_ext4_writepages(inode, wbc);
2634
2635 if (dax_mapping(mapping)) {
2636 ret = dax_writeback_mapping_range(mapping, inode->i_sb->s_bdev,
2637 wbc);
2638 goto out_writepages;
2639 }
2640
2641 /*
2642 * No pages to write? This is mainly a kludge to avoid starting
2643 * a transaction for special inodes like journal inode on last iput()
2644 * because that could violate lock ordering on umount
2645 */
2646 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2647 goto out_writepages;
2648
2649 if (ext4_should_journal_data(inode)) {
2650 struct blk_plug plug;
2651
2652 blk_start_plug(&plug);
2653 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2654 blk_finish_plug(&plug);
2655 goto out_writepages;
2656 }
2657
2658 /*
2659 * If the filesystem has aborted, it is read-only, so return
2660 * right away instead of dumping stack traces later on that
2661 * will obscure the real source of the problem. We test
2662 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2663 * the latter could be true if the filesystem is mounted
2664 * read-only, and in that case, ext4_writepages should
2665 * *never* be called, so if that ever happens, we would want
2666 * the stack trace.
2667 */
2668 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2669 ret = -EROFS;
2670 goto out_writepages;
2671 }
2672
2673 if (ext4_should_dioread_nolock(inode)) {
2674 /*
2675 * We may need to convert up to one extent per block in
2676 * the page and we may dirty the inode.
2677 */
2678 rsv_blocks = 1 + (PAGE_SIZE >> inode->i_blkbits);
2679 }
2680
2681 /*
2682 * If we have inline data and arrive here, it means that
2683 * we will soon create the block for the 1st page, so
2684 * we'd better clear the inline data here.
2685 */
2686 if (ext4_has_inline_data(inode)) {
2687 /* Just inode will be modified... */
2688 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2689 if (IS_ERR(handle)) {
2690 ret = PTR_ERR(handle);
2691 goto out_writepages;
2692 }
2693 BUG_ON(ext4_test_inode_state(inode,
2694 EXT4_STATE_MAY_INLINE_DATA));
2695 ext4_destroy_inline_data(handle, inode);
2696 ext4_journal_stop(handle);
2697 }
2698
2699 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2700 range_whole = 1;
2701
2702 if (wbc->range_cyclic) {
2703 writeback_index = mapping->writeback_index;
2704 if (writeback_index)
2705 cycled = 0;
2706 mpd.first_page = writeback_index;
2707 mpd.last_page = -1;
2708 } else {
2709 mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2710 mpd.last_page = wbc->range_end >> PAGE_SHIFT;
2711 }
2712
2713 mpd.inode = inode;
2714 mpd.wbc = wbc;
2715 ext4_io_submit_init(&mpd.io_submit, wbc);
2716 retry:
2717 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2718 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2719 done = false;
2720 blk_start_plug(&plug);
2721 while (!done && mpd.first_page <= mpd.last_page) {
2722 /* For each extent of pages we use new io_end */
2723 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2724 if (!mpd.io_submit.io_end) {
2725 ret = -ENOMEM;
2726 break;
2727 }
2728
2729 /*
2730 * We have two constraints: We find one extent to map and we
2731 * must always write out whole page (makes a difference when
2732 * blocksize < pagesize) so that we don't block on IO when we
2733 * try to write out the rest of the page. Journalled mode is
2734 * not supported by delalloc.
2735 */
2736 BUG_ON(ext4_should_journal_data(inode));
2737 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2738
2739 /* start a new transaction */
2740 handle = ext4_journal_start_with_reserve(inode,
2741 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2742 if (IS_ERR(handle)) {
2743 ret = PTR_ERR(handle);
2744 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2745 "%ld pages, ino %lu; err %d", __func__,
2746 wbc->nr_to_write, inode->i_ino, ret);
2747 /* Release allocated io_end */
2748 ext4_put_io_end(mpd.io_submit.io_end);
2749 break;
2750 }
2751
2752 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2753 ret = mpage_prepare_extent_to_map(&mpd);
2754 if (!ret) {
2755 if (mpd.map.m_len)
2756 ret = mpage_map_and_submit_extent(handle, &mpd,
2757 &give_up_on_write);
2758 else {
2759 /*
2760 * We scanned the whole range (or exhausted
2761 * nr_to_write), submitted what was mapped and
2762 * didn't find anything needing mapping. We are
2763 * done.
2764 */
2765 done = true;
2766 }
2767 }
2768 /*
2769 * Caution: If the handle is synchronous,
2770 * ext4_journal_stop() can wait for transaction commit
2771 * to finish which may depend on writeback of pages to
2772 * complete or on page lock to be released. In that
2773 * case, we have to wait until after after we have
2774 * submitted all the IO, released page locks we hold,
2775 * and dropped io_end reference (for extent conversion
2776 * to be able to complete) before stopping the handle.
2777 */
2778 if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2779 ext4_journal_stop(handle);
2780 handle = NULL;
2781 }
2782 /* Submit prepared bio */
2783 ext4_io_submit(&mpd.io_submit);
2784 /* Unlock pages we didn't use */
2785 mpage_release_unused_pages(&mpd, give_up_on_write);
2786 /*
2787 * Drop our io_end reference we got from init. We have
2788 * to be careful and use deferred io_end finishing if
2789 * we are still holding the transaction as we can
2790 * release the last reference to io_end which may end
2791 * up doing unwritten extent conversion.
2792 */
2793 if (handle) {
2794 ext4_put_io_end_defer(mpd.io_submit.io_end);
2795 ext4_journal_stop(handle);
2796 } else
2797 ext4_put_io_end(mpd.io_submit.io_end);
2798
2799 if (ret == -ENOSPC && sbi->s_journal) {
2800 /*
2801 * Commit the transaction which would
2802 * free blocks released in the transaction
2803 * and try again
2804 */
2805 jbd2_journal_force_commit_nested(sbi->s_journal);
2806 ret = 0;
2807 continue;
2808 }
2809 /* Fatal error - ENOMEM, EIO... */
2810 if (ret)
2811 break;
2812 }
2813 blk_finish_plug(&plug);
2814 if (!ret && !cycled && wbc->nr_to_write > 0) {
2815 cycled = 1;
2816 mpd.last_page = writeback_index - 1;
2817 mpd.first_page = 0;
2818 goto retry;
2819 }
2820
2821 /* Update index */
2822 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2823 /*
2824 * Set the writeback_index so that range_cyclic
2825 * mode will write it back later
2826 */
2827 mapping->writeback_index = mpd.first_page;
2828
2829 out_writepages:
2830 trace_ext4_writepages_result(inode, wbc, ret,
2831 nr_to_write - wbc->nr_to_write);
2832 percpu_up_read(&sbi->s_journal_flag_rwsem);
2833 return ret;
2834 }
2835
2836 static int ext4_nonda_switch(struct super_block *sb)
2837 {
2838 s64 free_clusters, dirty_clusters;
2839 struct ext4_sb_info *sbi = EXT4_SB(sb);
2840
2841 /*
2842 * switch to non delalloc mode if we are running low
2843 * on free block. The free block accounting via percpu
2844 * counters can get slightly wrong with percpu_counter_batch getting
2845 * accumulated on each CPU without updating global counters
2846 * Delalloc need an accurate free block accounting. So switch
2847 * to non delalloc when we are near to error range.
2848 */
2849 free_clusters =
2850 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2851 dirty_clusters =
2852 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2853 /*
2854 * Start pushing delalloc when 1/2 of free blocks are dirty.
2855 */
2856 if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2857 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2858
2859 if (2 * free_clusters < 3 * dirty_clusters ||
2860 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2861 /*
2862 * free block count is less than 150% of dirty blocks
2863 * or free blocks is less than watermark
2864 */
2865 return 1;
2866 }
2867 return 0;
2868 }
2869
2870 /* We always reserve for an inode update; the superblock could be there too */
2871 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2872 {
2873 if (likely(ext4_has_feature_large_file(inode->i_sb)))
2874 return 1;
2875
2876 if (pos + len <= 0x7fffffffULL)
2877 return 1;
2878
2879 /* We might need to update the superblock to set LARGE_FILE */
2880 return 2;
2881 }
2882
2883 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2884 loff_t pos, unsigned len, unsigned flags,
2885 struct page **pagep, void **fsdata)
2886 {
2887 int ret, retries = 0;
2888 struct page *page;
2889 pgoff_t index;
2890 struct inode *inode = mapping->host;
2891 handle_t *handle;
2892
2893 index = pos >> PAGE_SHIFT;
2894
2895 if (ext4_nonda_switch(inode->i_sb)) {
2896 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2897 return ext4_write_begin(file, mapping, pos,
2898 len, flags, pagep, fsdata);
2899 }
2900 *fsdata = (void *)0;
2901 trace_ext4_da_write_begin(inode, pos, len, flags);
2902
2903 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2904 ret = ext4_da_write_inline_data_begin(mapping, inode,
2905 pos, len, flags,
2906 pagep, fsdata);
2907 if (ret < 0)
2908 return ret;
2909 if (ret == 1)
2910 return 0;
2911 }
2912
2913 /*
2914 * grab_cache_page_write_begin() can take a long time if the
2915 * system is thrashing due to memory pressure, or if the page
2916 * is being written back. So grab it first before we start
2917 * the transaction handle. This also allows us to allocate
2918 * the page (if needed) without using GFP_NOFS.
2919 */
2920 retry_grab:
2921 page = grab_cache_page_write_begin(mapping, index, flags);
2922 if (!page)
2923 return -ENOMEM;
2924 unlock_page(page);
2925
2926 /*
2927 * With delayed allocation, we don't log the i_disksize update
2928 * if there is delayed block allocation. But we still need
2929 * to journalling the i_disksize update if writes to the end
2930 * of file which has an already mapped buffer.
2931 */
2932 retry_journal:
2933 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2934 ext4_da_write_credits(inode, pos, len));
2935 if (IS_ERR(handle)) {
2936 put_page(page);
2937 return PTR_ERR(handle);
2938 }
2939
2940 lock_page(page);
2941 if (page->mapping != mapping) {
2942 /* The page got truncated from under us */
2943 unlock_page(page);
2944 put_page(page);
2945 ext4_journal_stop(handle);
2946 goto retry_grab;
2947 }
2948 /* In case writeback began while the page was unlocked */
2949 wait_for_stable_page(page);
2950
2951 #ifdef CONFIG_EXT4_FS_ENCRYPTION
2952 ret = ext4_block_write_begin(page, pos, len,
2953 ext4_da_get_block_prep);
2954 #else
2955 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2956 #endif
2957 if (ret < 0) {
2958 unlock_page(page);
2959 ext4_journal_stop(handle);
2960 /*
2961 * block_write_begin may have instantiated a few blocks
2962 * outside i_size. Trim these off again. Don't need
2963 * i_size_read because we hold i_mutex.
2964 */
2965 if (pos + len > inode->i_size)
2966 ext4_truncate_failed_write(inode);
2967
2968 if (ret == -ENOSPC &&
2969 ext4_should_retry_alloc(inode->i_sb, &retries))
2970 goto retry_journal;
2971
2972 put_page(page);
2973 return ret;
2974 }
2975
2976 *pagep = page;
2977 return ret;
2978 }
2979
2980 /*
2981 * Check if we should update i_disksize
2982 * when write to the end of file but not require block allocation
2983 */
2984 static int ext4_da_should_update_i_disksize(struct page *page,
2985 unsigned long offset)
2986 {
2987 struct buffer_head *bh;
2988 struct inode *inode = page->mapping->host;
2989 unsigned int idx;
2990 int i;
2991
2992 bh = page_buffers(page);
2993 idx = offset >> inode->i_blkbits;
2994
2995 for (i = 0; i < idx; i++)
2996 bh = bh->b_this_page;
2997
2998 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2999 return 0;
3000 return 1;
3001 }
3002
3003 static int ext4_da_write_end(struct file *file,
3004 struct address_space *mapping,
3005 loff_t pos, unsigned len, unsigned copied,
3006 struct page *page, void *fsdata)
3007 {
3008 struct inode *inode = mapping->host;
3009 int ret = 0, ret2;
3010 handle_t *handle = ext4_journal_current_handle();
3011 loff_t new_i_size;
3012 unsigned long start, end;
3013 int write_mode = (int)(unsigned long)fsdata;
3014
3015 if (write_mode == FALL_BACK_TO_NONDELALLOC)
3016 return ext4_write_end(file, mapping, pos,
3017 len, copied, page, fsdata);
3018
3019 trace_ext4_da_write_end(inode, pos, len, copied);
3020 start = pos & (PAGE_SIZE - 1);
3021 end = start + copied - 1;
3022
3023 /*
3024 * generic_write_end() will run mark_inode_dirty() if i_size
3025 * changes. So let's piggyback the i_disksize mark_inode_dirty
3026 * into that.
3027 */
3028 new_i_size = pos + copied;
3029 if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
3030 if (ext4_has_inline_data(inode) ||
3031 ext4_da_should_update_i_disksize(page, end)) {
3032 ext4_update_i_disksize(inode, new_i_size);
3033 /* We need to mark inode dirty even if
3034 * new_i_size is less that inode->i_size
3035 * bu greater than i_disksize.(hint delalloc)
3036 */
3037 ext4_mark_inode_dirty(handle, inode);
3038 }
3039 }
3040
3041 if (write_mode != CONVERT_INLINE_DATA &&
3042 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3043 ext4_has_inline_data(inode))
3044 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
3045 page);
3046 else
3047 ret2 = generic_write_end(file, mapping, pos, len, copied,
3048 page, fsdata);
3049
3050 copied = ret2;
3051 if (ret2 < 0)
3052 ret = ret2;
3053 ret2 = ext4_journal_stop(handle);
3054 if (!ret)
3055 ret = ret2;
3056
3057 return ret ? ret : copied;
3058 }
3059
3060 static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
3061 unsigned int length)
3062 {
3063 /*
3064 * Drop reserved blocks
3065 */
3066 BUG_ON(!PageLocked(page));
3067 if (!page_has_buffers(page))
3068 goto out;
3069
3070 ext4_da_page_release_reservation(page, offset, length);
3071
3072 out:
3073 ext4_invalidatepage(page, offset, length);
3074
3075 return;
3076 }
3077
3078 /*
3079 * Force all delayed allocation blocks to be allocated for a given inode.
3080 */
3081 int ext4_alloc_da_blocks(struct inode *inode)
3082 {
3083 trace_ext4_alloc_da_blocks(inode);
3084
3085 if (!EXT4_I(inode)->i_reserved_data_blocks)
3086 return 0;
3087
3088 /*
3089 * We do something simple for now. The filemap_flush() will
3090 * also start triggering a write of the data blocks, which is
3091 * not strictly speaking necessary (and for users of
3092 * laptop_mode, not even desirable). However, to do otherwise
3093 * would require replicating code paths in:
3094 *
3095 * ext4_writepages() ->
3096 * write_cache_pages() ---> (via passed in callback function)
3097 * __mpage_da_writepage() -->
3098 * mpage_add_bh_to_extent()
3099 * mpage_da_map_blocks()
3100 *
3101 * The problem is that write_cache_pages(), located in
3102 * mm/page-writeback.c, marks pages clean in preparation for
3103 * doing I/O, which is not desirable if we're not planning on
3104 * doing I/O at all.
3105 *
3106 * We could call write_cache_pages(), and then redirty all of
3107 * the pages by calling redirty_page_for_writepage() but that
3108 * would be ugly in the extreme. So instead we would need to
3109 * replicate parts of the code in the above functions,
3110 * simplifying them because we wouldn't actually intend to
3111 * write out the pages, but rather only collect contiguous
3112 * logical block extents, call the multi-block allocator, and
3113 * then update the buffer heads with the block allocations.
3114 *
3115 * For now, though, we'll cheat by calling filemap_flush(),
3116 * which will map the blocks, and start the I/O, but not
3117 * actually wait for the I/O to complete.
3118 */
3119 return filemap_flush(inode->i_mapping);
3120 }
3121
3122 /*
3123 * bmap() is special. It gets used by applications such as lilo and by
3124 * the swapper to find the on-disk block of a specific piece of data.
3125 *
3126 * Naturally, this is dangerous if the block concerned is still in the
3127 * journal. If somebody makes a swapfile on an ext4 data-journaling
3128 * filesystem and enables swap, then they may get a nasty shock when the
3129 * data getting swapped to that swapfile suddenly gets overwritten by
3130 * the original zero's written out previously to the journal and
3131 * awaiting writeback in the kernel's buffer cache.
3132 *
3133 * So, if we see any bmap calls here on a modified, data-journaled file,
3134 * take extra steps to flush any blocks which might be in the cache.
3135 */
3136 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3137 {
3138 struct inode *inode = mapping->host;
3139 journal_t *journal;
3140 int err;
3141
3142 /*
3143 * We can get here for an inline file via the FIBMAP ioctl
3144 */
3145 if (ext4_has_inline_data(inode))
3146 return 0;
3147
3148 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3149 test_opt(inode->i_sb, DELALLOC)) {
3150 /*
3151 * With delalloc we want to sync the file
3152 * so that we can make sure we allocate
3153 * blocks for file
3154 */
3155 filemap_write_and_wait(mapping);
3156 }
3157
3158 if (EXT4_JOURNAL(inode) &&
3159 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3160 /*
3161 * This is a REALLY heavyweight approach, but the use of
3162 * bmap on dirty files is expected to be extremely rare:
3163 * only if we run lilo or swapon on a freshly made file
3164 * do we expect this to happen.
3165 *
3166 * (bmap requires CAP_SYS_RAWIO so this does not
3167 * represent an unprivileged user DOS attack --- we'd be
3168 * in trouble if mortal users could trigger this path at
3169 * will.)
3170 *
3171 * NB. EXT4_STATE_JDATA is not set on files other than
3172 * regular files. If somebody wants to bmap a directory
3173 * or symlink and gets confused because the buffer
3174 * hasn't yet been flushed to disk, they deserve
3175 * everything they get.
3176 */
3177
3178 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3179 journal = EXT4_JOURNAL(inode);
3180 jbd2_journal_lock_updates(journal);
3181 err = jbd2_journal_flush(journal);
3182 jbd2_journal_unlock_updates(journal);
3183
3184 if (err)
3185 return 0;
3186 }
3187
3188 return generic_block_bmap(mapping, block, ext4_get_block);
3189 }
3190
3191 static int ext4_readpage(struct file *file, struct page *page)
3192 {
3193 int ret = -EAGAIN;
3194 struct inode *inode = page->mapping->host;
3195
3196 trace_ext4_readpage(page);
3197
3198 if (ext4_has_inline_data(inode))
3199 ret = ext4_readpage_inline(inode, page);
3200
3201 if (ret == -EAGAIN)
3202 return ext4_mpage_readpages(page->mapping, NULL, page, 1);
3203
3204 return ret;
3205 }
3206
3207 static int
3208 ext4_readpages(struct file *file, struct address_space *mapping,
3209 struct list_head *pages, unsigned nr_pages)
3210 {
3211 struct inode *inode = mapping->host;
3212
3213 /* If the file has inline data, no need to do readpages. */
3214 if (ext4_has_inline_data(inode))
3215 return 0;
3216
3217 return ext4_mpage_readpages(mapping, pages, NULL, nr_pages);
3218 }
3219
3220 static void ext4_invalidatepage(struct page *page, unsigned int offset,
3221 unsigned int length)
3222 {
3223 trace_ext4_invalidatepage(page, offset, length);
3224
3225 /* No journalling happens on data buffers when this function is used */
3226 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3227
3228 block_invalidatepage(page, offset, length);
3229 }
3230
3231 static int __ext4_journalled_invalidatepage(struct page *page,
3232 unsigned int offset,
3233 unsigned int length)
3234 {
3235 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3236
3237 trace_ext4_journalled_invalidatepage(page, offset, length);
3238
3239 /*
3240 * If it's a full truncate we just forget about the pending dirtying
3241 */
3242 if (offset == 0 && length == PAGE_SIZE)
3243 ClearPageChecked(page);
3244
3245 return jbd2_journal_invalidatepage(journal, page, offset, length);
3246 }
3247
3248 /* Wrapper for aops... */
3249 static void ext4_journalled_invalidatepage(struct page *page,
3250 unsigned int offset,
3251 unsigned int length)
3252 {
3253 WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3254 }
3255
3256 static int ext4_releasepage(struct page *page, gfp_t wait)
3257 {
3258 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3259
3260 trace_ext4_releasepage(page);
3261
3262 /* Page has dirty journalled data -> cannot release */
3263 if (PageChecked(page))
3264 return 0;
3265 if (journal)
3266 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3267 else
3268 return try_to_free_buffers(page);
3269 }
3270
3271 #ifdef CONFIG_FS_DAX
3272 /*
3273 * Get block function for DAX IO and mmap faults. It takes care of converting
3274 * unwritten extents to written ones and initializes new / converted blocks
3275 * to zeros.
3276 */
3277 int ext4_dax_get_block(struct inode *inode, sector_t iblock,
3278 struct buffer_head *bh_result, int create)
3279 {
3280 int ret;
3281
3282 ext4_debug("inode %lu, create flag %d\n", inode->i_ino, create);
3283 if (!create)
3284 return _ext4_get_block(inode, iblock, bh_result, 0);
3285
3286 ret = ext4_get_block_trans(inode, iblock, bh_result,
3287 EXT4_GET_BLOCKS_PRE_IO |
3288 EXT4_GET_BLOCKS_CREATE_ZERO);
3289 if (ret < 0)
3290 return ret;
3291
3292 if (buffer_unwritten(bh_result)) {
3293 /*
3294 * We are protected by i_mmap_sem or i_mutex so we know block
3295 * cannot go away from under us even though we dropped
3296 * i_data_sem. Convert extent to written and write zeros there.
3297 */
3298 ret = ext4_get_block_trans(inode, iblock, bh_result,
3299 EXT4_GET_BLOCKS_CONVERT |
3300 EXT4_GET_BLOCKS_CREATE_ZERO);
3301 if (ret < 0)
3302 return ret;
3303 }
3304 /*
3305 * At least for now we have to clear BH_New so that DAX code
3306 * doesn't attempt to zero blocks again in a racy way.
3307 */
3308 clear_buffer_new(bh_result);
3309 return 0;
3310 }
3311 #else
3312 /* Just define empty function, it will never get called. */
3313 int ext4_dax_get_block(struct inode *inode, sector_t iblock,
3314 struct buffer_head *bh_result, int create)
3315 {
3316 BUG();
3317 return 0;
3318 }
3319 #endif
3320
3321 static int ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3322 ssize_t size, void *private)
3323 {
3324 ext4_io_end_t *io_end = private;
3325
3326 /* if not async direct IO just return */
3327 if (!io_end)
3328 return 0;
3329
3330 ext_debug("ext4_end_io_dio(): io_end 0x%p "
3331 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3332 io_end, io_end->inode->i_ino, iocb, offset, size);
3333
3334 /*
3335 * Error during AIO DIO. We cannot convert unwritten extents as the
3336 * data was not written. Just clear the unwritten flag and drop io_end.
3337 */
3338 if (size <= 0) {
3339 ext4_clear_io_unwritten_flag(io_end);
3340 size = 0;
3341 }
3342 io_end->offset = offset;
3343 io_end->size = size;
3344 ext4_put_io_end(io_end);
3345
3346 return 0;
3347 }
3348
3349 /*
3350 * Handling of direct IO writes.
3351 *
3352 * For ext4 extent files, ext4 will do direct-io write even to holes,
3353 * preallocated extents, and those write extend the file, no need to
3354 * fall back to buffered IO.
3355 *
3356 * For holes, we fallocate those blocks, mark them as unwritten
3357 * If those blocks were preallocated, we mark sure they are split, but
3358 * still keep the range to write as unwritten.
3359 *
3360 * The unwritten extents will be converted to written when DIO is completed.
3361 * For async direct IO, since the IO may still pending when return, we
3362 * set up an end_io call back function, which will do the conversion
3363 * when async direct IO completed.
3364 *
3365 * If the O_DIRECT write will extend the file then add this inode to the
3366 * orphan list. So recovery will truncate it back to the original size
3367 * if the machine crashes during the write.
3368 *
3369 */
3370 static ssize_t ext4_direct_IO_write(struct kiocb *iocb, struct iov_iter *iter)
3371 {
3372 struct file *file = iocb->ki_filp;
3373 struct inode *inode = file->f_mapping->host;
3374 struct ext4_inode_info *ei = EXT4_I(inode);
3375 ssize_t ret;
3376 loff_t offset = iocb->ki_pos;
3377 size_t count = iov_iter_count(iter);
3378 int overwrite = 0;
3379 get_block_t *get_block_func = NULL;
3380 int dio_flags = 0;
3381 loff_t final_size = offset + count;
3382 int orphan = 0;
3383 handle_t *handle;
3384
3385 if (final_size > inode->i_size) {
3386 /* Credits for sb + inode write */
3387 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3388 if (IS_ERR(handle)) {
3389 ret = PTR_ERR(handle);
3390 goto out;
3391 }
3392 ret = ext4_orphan_add(handle, inode);
3393 if (ret) {
3394 ext4_journal_stop(handle);
3395 goto out;
3396 }
3397 orphan = 1;
3398 ei->i_disksize = inode->i_size;
3399 ext4_journal_stop(handle);
3400 }
3401
3402 BUG_ON(iocb->private == NULL);
3403
3404 /*
3405 * Make all waiters for direct IO properly wait also for extent
3406 * conversion. This also disallows race between truncate() and
3407 * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3408 */
3409 inode_dio_begin(inode);
3410
3411 /* If we do a overwrite dio, i_mutex locking can be released */
3412 overwrite = *((int *)iocb->private);
3413
3414 if (overwrite)
3415 inode_unlock(inode);
3416
3417 /*
3418 * For extent mapped files we could direct write to holes and fallocate.
3419 *
3420 * Allocated blocks to fill the hole are marked as unwritten to prevent
3421 * parallel buffered read to expose the stale data before DIO complete
3422 * the data IO.
3423 *
3424 * As to previously fallocated extents, ext4 get_block will just simply
3425 * mark the buffer mapped but still keep the extents unwritten.
3426 *
3427 * For non AIO case, we will convert those unwritten extents to written
3428 * after return back from blockdev_direct_IO. That way we save us from
3429 * allocating io_end structure and also the overhead of offloading
3430 * the extent convertion to a workqueue.
3431 *
3432 * For async DIO, the conversion needs to be deferred when the
3433 * IO is completed. The ext4 end_io callback function will be
3434 * called to take care of the conversion work. Here for async
3435 * case, we allocate an io_end structure to hook to the iocb.
3436 */
3437 iocb->private = NULL;
3438 if (overwrite)
3439 get_block_func = ext4_dio_get_block_overwrite;
3440 else if (IS_DAX(inode)) {
3441 /*
3442 * We can avoid zeroing for aligned DAX writes beyond EOF. Other
3443 * writes need zeroing either because they can race with page
3444 * faults or because they use partial blocks.
3445 */
3446 if (round_down(offset, 1<<inode->i_blkbits) >= inode->i_size &&
3447 ext4_aligned_io(inode, offset, count))
3448 get_block_func = ext4_dio_get_block;
3449 else
3450 get_block_func = ext4_dax_get_block;
3451 dio_flags = DIO_LOCKING;
3452 } else if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS) ||
3453 round_down(offset, 1 << inode->i_blkbits) >= inode->i_size) {
3454 get_block_func = ext4_dio_get_block;
3455 dio_flags = DIO_LOCKING | DIO_SKIP_HOLES;
3456 } else if (is_sync_kiocb(iocb)) {
3457 get_block_func = ext4_dio_get_block_unwritten_sync;
3458 dio_flags = DIO_LOCKING;
3459 } else {
3460 get_block_func = ext4_dio_get_block_unwritten_async;
3461 dio_flags = DIO_LOCKING;
3462 }
3463 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3464 BUG_ON(ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode));
3465 #endif
3466 if (IS_DAX(inode)) {
3467 ret = dax_do_io(iocb, inode, iter, get_block_func,
3468 ext4_end_io_dio, dio_flags);
3469 } else
3470 ret = __blockdev_direct_IO(iocb, inode,
3471 inode->i_sb->s_bdev, iter,
3472 get_block_func,
3473 ext4_end_io_dio, NULL, dio_flags);
3474
3475 if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3476 EXT4_STATE_DIO_UNWRITTEN)) {
3477 int err;
3478 /*
3479 * for non AIO case, since the IO is already
3480 * completed, we could do the conversion right here
3481 */
3482 err = ext4_convert_unwritten_extents(NULL, inode,
3483 offset, ret);
3484 if (err < 0)
3485 ret = err;
3486 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3487 }
3488
3489 inode_dio_end(inode);
3490 /* take i_mutex locking again if we do a ovewrite dio */
3491 if (overwrite)
3492 inode_lock(inode);
3493
3494 if (ret < 0 && final_size > inode->i_size)
3495 ext4_truncate_failed_write(inode);
3496
3497 /* Handle extending of i_size after direct IO write */
3498 if (orphan) {
3499 int err;
3500
3501 /* Credits for sb + inode write */
3502 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3503 if (IS_ERR(handle)) {
3504 /* This is really bad luck. We've written the data
3505 * but cannot extend i_size. Bail out and pretend
3506 * the write failed... */
3507 ret = PTR_ERR(handle);
3508 if (inode->i_nlink)
3509 ext4_orphan_del(NULL, inode);
3510
3511 goto out;
3512 }
3513 if (inode->i_nlink)
3514 ext4_orphan_del(handle, inode);
3515 if (ret > 0) {
3516 loff_t end = offset + ret;
3517 if (end > inode->i_size) {
3518 ei->i_disksize = end;
3519 i_size_write(inode, end);
3520 /*
3521 * We're going to return a positive `ret'
3522 * here due to non-zero-length I/O, so there's
3523 * no way of reporting error returns from
3524 * ext4_mark_inode_dirty() to userspace. So
3525 * ignore it.
3526 */
3527 ext4_mark_inode_dirty(handle, inode);
3528 }
3529 }
3530 err = ext4_journal_stop(handle);
3531 if (ret == 0)
3532 ret = err;
3533 }
3534 out:
3535 return ret;
3536 }
3537
3538 static ssize_t ext4_direct_IO_read(struct kiocb *iocb, struct iov_iter *iter)
3539 {
3540 struct address_space *mapping = iocb->ki_filp->f_mapping;
3541 struct inode *inode = mapping->host;
3542 ssize_t ret;
3543
3544 /*
3545 * Shared inode_lock is enough for us - it protects against concurrent
3546 * writes & truncates and since we take care of writing back page cache,
3547 * we are protected against page writeback as well.
3548 */
3549 inode_lock_shared(inode);
3550 if (IS_DAX(inode)) {
3551 ret = dax_do_io(iocb, inode, iter, ext4_dio_get_block, NULL, 0);
3552 } else {
3553 size_t count = iov_iter_count(iter);
3554
3555 ret = filemap_write_and_wait_range(mapping, iocb->ki_pos,
3556 iocb->ki_pos + count);
3557 if (ret)
3558 goto out_unlock;
3559 ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
3560 iter, ext4_dio_get_block,
3561 NULL, NULL, 0);
3562 }
3563 out_unlock:
3564 inode_unlock_shared(inode);
3565 return ret;
3566 }
3567
3568 static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
3569 {
3570 struct file *file = iocb->ki_filp;
3571 struct inode *inode = file->f_mapping->host;
3572 size_t count = iov_iter_count(iter);
3573 loff_t offset = iocb->ki_pos;
3574 ssize_t ret;
3575
3576 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3577 if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode))
3578 return 0;
3579 #endif
3580
3581 /*
3582 * If we are doing data journalling we don't support O_DIRECT
3583 */
3584 if (ext4_should_journal_data(inode))
3585 return 0;
3586
3587 /* Let buffer I/O handle the inline data case. */
3588 if (ext4_has_inline_data(inode))
3589 return 0;
3590
3591 trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
3592 if (iov_iter_rw(iter) == READ)
3593 ret = ext4_direct_IO_read(iocb, iter);
3594 else
3595 ret = ext4_direct_IO_write(iocb, iter);
3596 trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret);
3597 return ret;
3598 }
3599
3600 /*
3601 * Pages can be marked dirty completely asynchronously from ext4's journalling
3602 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3603 * much here because ->set_page_dirty is called under VFS locks. The page is
3604 * not necessarily locked.
3605 *
3606 * We cannot just dirty the page and leave attached buffers clean, because the
3607 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3608 * or jbddirty because all the journalling code will explode.
3609 *
3610 * So what we do is to mark the page "pending dirty" and next time writepage
3611 * is called, propagate that into the buffers appropriately.
3612 */
3613 static int ext4_journalled_set_page_dirty(struct page *page)
3614 {
3615 SetPageChecked(page);
3616 return __set_page_dirty_nobuffers(page);
3617 }
3618
3619 static const struct address_space_operations ext4_aops = {
3620 .readpage = ext4_readpage,
3621 .readpages = ext4_readpages,
3622 .writepage = ext4_writepage,
3623 .writepages = ext4_writepages,
3624 .write_begin = ext4_write_begin,
3625 .write_end = ext4_write_end,
3626 .bmap = ext4_bmap,
3627 .invalidatepage = ext4_invalidatepage,
3628 .releasepage = ext4_releasepage,
3629 .direct_IO = ext4_direct_IO,
3630 .migratepage = buffer_migrate_page,
3631 .is_partially_uptodate = block_is_partially_uptodate,
3632 .error_remove_page = generic_error_remove_page,
3633 };
3634
3635 static const struct address_space_operations ext4_journalled_aops = {
3636 .readpage = ext4_readpage,
3637 .readpages = ext4_readpages,
3638 .writepage = ext4_writepage,
3639 .writepages = ext4_writepages,
3640 .write_begin = ext4_write_begin,
3641 .write_end = ext4_journalled_write_end,
3642 .set_page_dirty = ext4_journalled_set_page_dirty,
3643 .bmap = ext4_bmap,
3644 .invalidatepage = ext4_journalled_invalidatepage,
3645 .releasepage = ext4_releasepage,
3646 .direct_IO = ext4_direct_IO,
3647 .is_partially_uptodate = block_is_partially_uptodate,
3648 .error_remove_page = generic_error_remove_page,
3649 };
3650
3651 static const struct address_space_operations ext4_da_aops = {
3652 .readpage = ext4_readpage,
3653 .readpages = ext4_readpages,
3654 .writepage = ext4_writepage,
3655 .writepages = ext4_writepages,
3656 .write_begin = ext4_da_write_begin,
3657 .write_end = ext4_da_write_end,
3658 .bmap = ext4_bmap,
3659 .invalidatepage = ext4_da_invalidatepage,
3660 .releasepage = ext4_releasepage,
3661 .direct_IO = ext4_direct_IO,
3662 .migratepage = buffer_migrate_page,
3663 .is_partially_uptodate = block_is_partially_uptodate,
3664 .error_remove_page = generic_error_remove_page,
3665 };
3666
3667 void ext4_set_aops(struct inode *inode)
3668 {
3669 switch (ext4_inode_journal_mode(inode)) {
3670 case EXT4_INODE_ORDERED_DATA_MODE:
3671 case EXT4_INODE_WRITEBACK_DATA_MODE:
3672 break;
3673 case EXT4_INODE_JOURNAL_DATA_MODE:
3674 inode->i_mapping->a_ops = &ext4_journalled_aops;
3675 return;
3676 default:
3677 BUG();
3678 }
3679 if (test_opt(inode->i_sb, DELALLOC))
3680 inode->i_mapping->a_ops = &ext4_da_aops;
3681 else
3682 inode->i_mapping->a_ops = &ext4_aops;
3683 }
3684
3685 static int __ext4_block_zero_page_range(handle_t *handle,
3686 struct address_space *mapping, loff_t from, loff_t length)
3687 {
3688 ext4_fsblk_t index = from >> PAGE_SHIFT;
3689 unsigned offset = from & (PAGE_SIZE-1);
3690 unsigned blocksize, pos;
3691 ext4_lblk_t iblock;
3692 struct inode *inode = mapping->host;
3693 struct buffer_head *bh;
3694 struct page *page;
3695 int err = 0;
3696
3697 page = find_or_create_page(mapping, from >> PAGE_SHIFT,
3698 mapping_gfp_constraint(mapping, ~__GFP_FS));
3699 if (!page)
3700 return -ENOMEM;
3701
3702 blocksize = inode->i_sb->s_blocksize;
3703
3704 iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
3705
3706 if (!page_has_buffers(page))
3707 create_empty_buffers(page, blocksize, 0);
3708
3709 /* Find the buffer that contains "offset" */
3710 bh = page_buffers(page);
3711 pos = blocksize;
3712 while (offset >= pos) {
3713 bh = bh->b_this_page;
3714 iblock++;
3715 pos += blocksize;
3716 }
3717 if (buffer_freed(bh)) {
3718 BUFFER_TRACE(bh, "freed: skip");
3719 goto unlock;
3720 }
3721 if (!buffer_mapped(bh)) {
3722 BUFFER_TRACE(bh, "unmapped");
3723 ext4_get_block(inode, iblock, bh, 0);
3724 /* unmapped? It's a hole - nothing to do */
3725 if (!buffer_mapped(bh)) {
3726 BUFFER_TRACE(bh, "still unmapped");
3727 goto unlock;
3728 }
3729 }
3730
3731 /* Ok, it's mapped. Make sure it's up-to-date */
3732 if (PageUptodate(page))
3733 set_buffer_uptodate(bh);
3734
3735 if (!buffer_uptodate(bh)) {
3736 err = -EIO;
3737 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
3738 wait_on_buffer(bh);
3739 /* Uhhuh. Read error. Complain and punt. */
3740 if (!buffer_uptodate(bh))
3741 goto unlock;
3742 if (S_ISREG(inode->i_mode) &&
3743 ext4_encrypted_inode(inode)) {
3744 /* We expect the key to be set. */
3745 BUG_ON(!fscrypt_has_encryption_key(inode));
3746 BUG_ON(blocksize != PAGE_SIZE);
3747 WARN_ON_ONCE(fscrypt_decrypt_page(page->mapping->host,
3748 page, PAGE_SIZE, 0, page->index));
3749 }
3750 }
3751 if (ext4_should_journal_data(inode)) {
3752 BUFFER_TRACE(bh, "get write access");
3753 err = ext4_journal_get_write_access(handle, bh);
3754 if (err)
3755 goto unlock;
3756 }
3757 zero_user(page, offset, length);
3758 BUFFER_TRACE(bh, "zeroed end of block");
3759
3760 if (ext4_should_journal_data(inode)) {
3761 err = ext4_handle_dirty_metadata(handle, inode, bh);
3762 } else {
3763 err = 0;
3764 mark_buffer_dirty(bh);
3765 if (ext4_should_order_data(inode))
3766 err = ext4_jbd2_inode_add_write(handle, inode);
3767 }
3768
3769 unlock:
3770 unlock_page(page);
3771 put_page(page);
3772 return err;
3773 }
3774
3775 /*
3776 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3777 * starting from file offset 'from'. The range to be zero'd must
3778 * be contained with in one block. If the specified range exceeds
3779 * the end of the block it will be shortened to end of the block
3780 * that cooresponds to 'from'
3781 */
3782 static int ext4_block_zero_page_range(handle_t *handle,
3783 struct address_space *mapping, loff_t from, loff_t length)
3784 {
3785 struct inode *inode = mapping->host;
3786 unsigned offset = from & (PAGE_SIZE-1);
3787 unsigned blocksize = inode->i_sb->s_blocksize;
3788 unsigned max = blocksize - (offset & (blocksize - 1));
3789
3790 /*
3791 * correct length if it does not fall between
3792 * 'from' and the end of the block
3793 */
3794 if (length > max || length < 0)
3795 length = max;
3796
3797 if (IS_DAX(inode))
3798 return dax_zero_page_range(inode, from, length, ext4_get_block);
3799 return __ext4_block_zero_page_range(handle, mapping, from, length);
3800 }
3801
3802 /*
3803 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3804 * up to the end of the block which corresponds to `from'.
3805 * This required during truncate. We need to physically zero the tail end
3806 * of that block so it doesn't yield old data if the file is later grown.
3807 */
3808 static int ext4_block_truncate_page(handle_t *handle,
3809 struct address_space *mapping, loff_t from)
3810 {
3811 unsigned offset = from & (PAGE_SIZE-1);
3812 unsigned length;
3813 unsigned blocksize;
3814 struct inode *inode = mapping->host;
3815
3816 blocksize = inode->i_sb->s_blocksize;
3817 length = blocksize - (offset & (blocksize - 1));
3818
3819 return ext4_block_zero_page_range(handle, mapping, from, length);
3820 }
3821
3822 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3823 loff_t lstart, loff_t length)
3824 {
3825 struct super_block *sb = inode->i_sb;
3826 struct address_space *mapping = inode->i_mapping;
3827 unsigned partial_start, partial_end;
3828 ext4_fsblk_t start, end;
3829 loff_t byte_end = (lstart + length - 1);
3830 int err = 0;
3831
3832 partial_start = lstart & (sb->s_blocksize - 1);
3833 partial_end = byte_end & (sb->s_blocksize - 1);
3834
3835 start = lstart >> sb->s_blocksize_bits;
3836 end = byte_end >> sb->s_blocksize_bits;
3837
3838 /* Handle partial zero within the single block */
3839 if (start == end &&
3840 (partial_start || (partial_end != sb->s_blocksize - 1))) {
3841 err = ext4_block_zero_page_range(handle, mapping,
3842 lstart, length);
3843 return err;
3844 }
3845 /* Handle partial zero out on the start of the range */
3846 if (partial_start) {
3847 err = ext4_block_zero_page_range(handle, mapping,
3848 lstart, sb->s_blocksize);
3849 if (err)
3850 return err;
3851 }
3852 /* Handle partial zero out on the end of the range */
3853 if (partial_end != sb->s_blocksize - 1)
3854 err = ext4_block_zero_page_range(handle, mapping,
3855 byte_end - partial_end,
3856 partial_end + 1);
3857 return err;
3858 }
3859
3860 int ext4_can_truncate(struct inode *inode)
3861 {
3862 if (S_ISREG(inode->i_mode))
3863 return 1;
3864 if (S_ISDIR(inode->i_mode))
3865 return 1;
3866 if (S_ISLNK(inode->i_mode))
3867 return !ext4_inode_is_fast_symlink(inode);
3868 return 0;
3869 }
3870
3871 /*
3872 * We have to make sure i_disksize gets properly updated before we truncate
3873 * page cache due to hole punching or zero range. Otherwise i_disksize update
3874 * can get lost as it may have been postponed to submission of writeback but
3875 * that will never happen after we truncate page cache.
3876 */
3877 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
3878 loff_t len)
3879 {
3880 handle_t *handle;
3881 loff_t size = i_size_read(inode);
3882
3883 WARN_ON(!inode_is_locked(inode));
3884 if (offset > size || offset + len < size)
3885 return 0;
3886
3887 if (EXT4_I(inode)->i_disksize >= size)
3888 return 0;
3889
3890 handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
3891 if (IS_ERR(handle))
3892 return PTR_ERR(handle);
3893 ext4_update_i_disksize(inode, size);
3894 ext4_mark_inode_dirty(handle, inode);
3895 ext4_journal_stop(handle);
3896
3897 return 0;
3898 }
3899
3900 /*
3901 * ext4_punch_hole: punches a hole in a file by releasing the blocks
3902 * associated with the given offset and length
3903 *
3904 * @inode: File inode
3905 * @offset: The offset where the hole will begin
3906 * @len: The length of the hole
3907 *
3908 * Returns: 0 on success or negative on failure
3909 */
3910
3911 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
3912 {
3913 struct super_block *sb = inode->i_sb;
3914 ext4_lblk_t first_block, stop_block;
3915 struct address_space *mapping = inode->i_mapping;
3916 loff_t first_block_offset, last_block_offset;
3917 handle_t *handle;
3918 unsigned int credits;
3919 int ret = 0;
3920
3921 if (!S_ISREG(inode->i_mode))
3922 return -EOPNOTSUPP;
3923
3924 trace_ext4_punch_hole(inode, offset, length, 0);
3925
3926 /*
3927 * Write out all dirty pages to avoid race conditions
3928 * Then release them.
3929 */
3930 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3931 ret = filemap_write_and_wait_range(mapping, offset,
3932 offset + length - 1);
3933 if (ret)
3934 return ret;
3935 }
3936
3937 inode_lock(inode);
3938
3939 /* No need to punch hole beyond i_size */
3940 if (offset >= inode->i_size)
3941 goto out_mutex;
3942
3943 /*
3944 * If the hole extends beyond i_size, set the hole
3945 * to end after the page that contains i_size
3946 */
3947 if (offset + length > inode->i_size) {
3948 length = inode->i_size +
3949 PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
3950 offset;
3951 }
3952
3953 if (offset & (sb->s_blocksize - 1) ||
3954 (offset + length) & (sb->s_blocksize - 1)) {
3955 /*
3956 * Attach jinode to inode for jbd2 if we do any zeroing of
3957 * partial block
3958 */
3959 ret = ext4_inode_attach_jinode(inode);
3960 if (ret < 0)
3961 goto out_mutex;
3962
3963 }
3964
3965 /* Wait all existing dio workers, newcomers will block on i_mutex */
3966 ext4_inode_block_unlocked_dio(inode);
3967 inode_dio_wait(inode);
3968
3969 /*
3970 * Prevent page faults from reinstantiating pages we have released from
3971 * page cache.
3972 */
3973 down_write(&EXT4_I(inode)->i_mmap_sem);
3974 first_block_offset = round_up(offset, sb->s_blocksize);
3975 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
3976
3977 /* Now release the pages and zero block aligned part of pages*/
3978 if (last_block_offset > first_block_offset) {
3979 ret = ext4_update_disksize_before_punch(inode, offset, length);
3980 if (ret)
3981 goto out_dio;
3982 truncate_pagecache_range(inode, first_block_offset,
3983 last_block_offset);
3984 }
3985
3986 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3987 credits = ext4_writepage_trans_blocks(inode);
3988 else
3989 credits = ext4_blocks_for_truncate(inode);
3990 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3991 if (IS_ERR(handle)) {
3992 ret = PTR_ERR(handle);
3993 ext4_std_error(sb, ret);
3994 goto out_dio;
3995 }
3996
3997 ret = ext4_zero_partial_blocks(handle, inode, offset,
3998 length);
3999 if (ret)
4000 goto out_stop;
4001
4002 first_block = (offset + sb->s_blocksize - 1) >>
4003 EXT4_BLOCK_SIZE_BITS(sb);
4004 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4005
4006 /* If there are no blocks to remove, return now */
4007 if (first_block >= stop_block)
4008 goto out_stop;
4009
4010 down_write(&EXT4_I(inode)->i_data_sem);
4011 ext4_discard_preallocations(inode);
4012
4013 ret = ext4_es_remove_extent(inode, first_block,
4014 stop_block - first_block);
4015 if (ret) {
4016 up_write(&EXT4_I(inode)->i_data_sem);
4017 goto out_stop;
4018 }
4019
4020 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4021 ret = ext4_ext_remove_space(inode, first_block,
4022 stop_block - 1);
4023 else
4024 ret = ext4_ind_remove_space(handle, inode, first_block,
4025 stop_block);
4026
4027 up_write(&EXT4_I(inode)->i_data_sem);
4028 if (IS_SYNC(inode))
4029 ext4_handle_sync(handle);
4030
4031 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4032 ext4_mark_inode_dirty(handle, inode);
4033 out_stop:
4034 ext4_journal_stop(handle);
4035 out_dio:
4036 up_write(&EXT4_I(inode)->i_mmap_sem);
4037 ext4_inode_resume_unlocked_dio(inode);
4038 out_mutex:
4039 inode_unlock(inode);
4040 return ret;
4041 }
4042
4043 int ext4_inode_attach_jinode(struct inode *inode)
4044 {
4045 struct ext4_inode_info *ei = EXT4_I(inode);
4046 struct jbd2_inode *jinode;
4047
4048 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4049 return 0;
4050
4051 jinode = jbd2_alloc_inode(GFP_KERNEL);
4052 spin_lock(&inode->i_lock);
4053 if (!ei->jinode) {
4054 if (!jinode) {
4055 spin_unlock(&inode->i_lock);
4056 return -ENOMEM;
4057 }
4058 ei->jinode = jinode;
4059 jbd2_journal_init_jbd_inode(ei->jinode, inode);
4060 jinode = NULL;
4061 }
4062 spin_unlock(&inode->i_lock);
4063 if (unlikely(jinode != NULL))
4064 jbd2_free_inode(jinode);
4065 return 0;
4066 }
4067
4068 /*
4069 * ext4_truncate()
4070 *
4071 * We block out ext4_get_block() block instantiations across the entire
4072 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4073 * simultaneously on behalf of the same inode.
4074 *
4075 * As we work through the truncate and commit bits of it to the journal there
4076 * is one core, guiding principle: the file's tree must always be consistent on
4077 * disk. We must be able to restart the truncate after a crash.
4078 *
4079 * The file's tree may be transiently inconsistent in memory (although it
4080 * probably isn't), but whenever we close off and commit a journal transaction,
4081 * the contents of (the filesystem + the journal) must be consistent and
4082 * restartable. It's pretty simple, really: bottom up, right to left (although
4083 * left-to-right works OK too).
4084 *
4085 * Note that at recovery time, journal replay occurs *before* the restart of
4086 * truncate against the orphan inode list.
4087 *
4088 * The committed inode has the new, desired i_size (which is the same as
4089 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
4090 * that this inode's truncate did not complete and it will again call
4091 * ext4_truncate() to have another go. So there will be instantiated blocks
4092 * to the right of the truncation point in a crashed ext4 filesystem. But
4093 * that's fine - as long as they are linked from the inode, the post-crash
4094 * ext4_truncate() run will find them and release them.
4095 */
4096 void ext4_truncate(struct inode *inode)
4097 {
4098 struct ext4_inode_info *ei = EXT4_I(inode);
4099 unsigned int credits;
4100 handle_t *handle;
4101 struct address_space *mapping = inode->i_mapping;
4102
4103 /*
4104 * There is a possibility that we're either freeing the inode
4105 * or it's a completely new inode. In those cases we might not
4106 * have i_mutex locked because it's not necessary.
4107 */
4108 if (!(inode->i_state & (I_NEW|I_FREEING)))
4109 WARN_ON(!inode_is_locked(inode));
4110 trace_ext4_truncate_enter(inode);
4111
4112 if (!ext4_can_truncate(inode))
4113 return;
4114
4115 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4116
4117 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4118 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4119
4120 if (ext4_has_inline_data(inode)) {
4121 int has_inline = 1;
4122
4123 ext4_inline_data_truncate(inode, &has_inline);
4124 if (has_inline)
4125 return;
4126 }
4127
4128 /* If we zero-out tail of the page, we have to create jinode for jbd2 */
4129 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4130 if (ext4_inode_attach_jinode(inode) < 0)
4131 return;
4132 }
4133
4134 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4135 credits = ext4_writepage_trans_blocks(inode);
4136 else
4137 credits = ext4_blocks_for_truncate(inode);
4138
4139 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4140 if (IS_ERR(handle)) {
4141 ext4_std_error(inode->i_sb, PTR_ERR(handle));
4142 return;
4143 }
4144
4145 if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4146 ext4_block_truncate_page(handle, mapping, inode->i_size);
4147
4148 /*
4149 * We add the inode to the orphan list, so that if this
4150 * truncate spans multiple transactions, and we crash, we will
4151 * resume the truncate when the filesystem recovers. It also
4152 * marks the inode dirty, to catch the new size.
4153 *
4154 * Implication: the file must always be in a sane, consistent
4155 * truncatable state while each transaction commits.
4156 */
4157 if (ext4_orphan_add(handle, inode))
4158 goto out_stop;
4159
4160 down_write(&EXT4_I(inode)->i_data_sem);
4161
4162 ext4_discard_preallocations(inode);
4163
4164 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4165 ext4_ext_truncate(handle, inode);
4166 else
4167 ext4_ind_truncate(handle, inode);
4168
4169 up_write(&ei->i_data_sem);
4170
4171 if (IS_SYNC(inode))
4172 ext4_handle_sync(handle);
4173
4174 out_stop:
4175 /*
4176 * If this was a simple ftruncate() and the file will remain alive,
4177 * then we need to clear up the orphan record which we created above.
4178 * However, if this was a real unlink then we were called by
4179 * ext4_evict_inode(), and we allow that function to clean up the
4180 * orphan info for us.
4181 */
4182 if (inode->i_nlink)
4183 ext4_orphan_del(handle, inode);
4184
4185 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4186 ext4_mark_inode_dirty(handle, inode);
4187 ext4_journal_stop(handle);
4188
4189 trace_ext4_truncate_exit(inode);
4190 }
4191
4192 /*
4193 * ext4_get_inode_loc returns with an extra refcount against the inode's
4194 * underlying buffer_head on success. If 'in_mem' is true, we have all
4195 * data in memory that is needed to recreate the on-disk version of this
4196 * inode.
4197 */
4198 static int __ext4_get_inode_loc(struct inode *inode,
4199 struct ext4_iloc *iloc, int in_mem)
4200 {
4201 struct ext4_group_desc *gdp;
4202 struct buffer_head *bh;
4203 struct super_block *sb = inode->i_sb;
4204 ext4_fsblk_t block;
4205 int inodes_per_block, inode_offset;
4206
4207 iloc->bh = NULL;
4208 if (!ext4_valid_inum(sb, inode->i_ino))
4209 return -EFSCORRUPTED;
4210
4211 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4212 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4213 if (!gdp)
4214 return -EIO;
4215
4216 /*
4217 * Figure out the offset within the block group inode table
4218 */
4219 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4220 inode_offset = ((inode->i_ino - 1) %
4221 EXT4_INODES_PER_GROUP(sb));
4222 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4223 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4224
4225 bh = sb_getblk(sb, block);
4226 if (unlikely(!bh))
4227 return -ENOMEM;
4228 if (!buffer_uptodate(bh)) {
4229 lock_buffer(bh);
4230
4231 /*
4232 * If the buffer has the write error flag, we have failed
4233 * to write out another inode in the same block. In this
4234 * case, we don't have to read the block because we may
4235 * read the old inode data successfully.
4236 */
4237 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4238 set_buffer_uptodate(bh);
4239
4240 if (buffer_uptodate(bh)) {
4241 /* someone brought it uptodate while we waited */
4242 unlock_buffer(bh);
4243 goto has_buffer;
4244 }
4245
4246 /*
4247 * If we have all information of the inode in memory and this
4248 * is the only valid inode in the block, we need not read the
4249 * block.
4250 */
4251 if (in_mem) {
4252 struct buffer_head *bitmap_bh;
4253 int i, start;
4254
4255 start = inode_offset & ~(inodes_per_block - 1);
4256
4257 /* Is the inode bitmap in cache? */
4258 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4259 if (unlikely(!bitmap_bh))
4260 goto make_io;
4261
4262 /*
4263 * If the inode bitmap isn't in cache then the
4264 * optimisation may end up performing two reads instead
4265 * of one, so skip it.
4266 */
4267 if (!buffer_uptodate(bitmap_bh)) {
4268 brelse(bitmap_bh);
4269 goto make_io;
4270 }
4271 for (i = start; i < start + inodes_per_block; i++) {
4272 if (i == inode_offset)
4273 continue;
4274 if (ext4_test_bit(i, bitmap_bh->b_data))
4275 break;
4276 }
4277 brelse(bitmap_bh);
4278 if (i == start + inodes_per_block) {
4279 /* all other inodes are free, so skip I/O */
4280 memset(bh->b_data, 0, bh->b_size);
4281 set_buffer_uptodate(bh);
4282 unlock_buffer(bh);
4283 goto has_buffer;
4284 }
4285 }
4286
4287 make_io:
4288 /*
4289 * If we need to do any I/O, try to pre-readahead extra
4290 * blocks from the inode table.
4291 */
4292 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4293 ext4_fsblk_t b, end, table;
4294 unsigned num;
4295 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4296
4297 table = ext4_inode_table(sb, gdp);
4298 /* s_inode_readahead_blks is always a power of 2 */
4299 b = block & ~((ext4_fsblk_t) ra_blks - 1);
4300 if (table > b)
4301 b = table;
4302 end = b + ra_blks;
4303 num = EXT4_INODES_PER_GROUP(sb);
4304 if (ext4_has_group_desc_csum(sb))
4305 num -= ext4_itable_unused_count(sb, gdp);
4306 table += num / inodes_per_block;
4307 if (end > table)
4308 end = table;
4309 while (b <= end)
4310 sb_breadahead(sb, b++);
4311 }
4312
4313 /*
4314 * There are other valid inodes in the buffer, this inode
4315 * has in-inode xattrs, or we don't have this inode in memory.
4316 * Read the block from disk.
4317 */
4318 trace_ext4_load_inode(inode);
4319 get_bh(bh);
4320 bh->b_end_io = end_buffer_read_sync;
4321 submit_bh(REQ_OP_READ, REQ_META | REQ_PRIO, bh);
4322 wait_on_buffer(bh);
4323 if (!buffer_uptodate(bh)) {
4324 EXT4_ERROR_INODE_BLOCK(inode, block,
4325 "unable to read itable block");
4326 brelse(bh);
4327 return -EIO;
4328 }
4329 }
4330 has_buffer:
4331 iloc->bh = bh;
4332 return 0;
4333 }
4334
4335 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4336 {
4337 /* We have all inode data except xattrs in memory here. */
4338 return __ext4_get_inode_loc(inode, iloc,
4339 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4340 }
4341
4342 void ext4_set_inode_flags(struct inode *inode)
4343 {
4344 unsigned int flags = EXT4_I(inode)->i_flags;
4345 unsigned int new_fl = 0;
4346
4347 if (flags & EXT4_SYNC_FL)
4348 new_fl |= S_SYNC;
4349 if (flags & EXT4_APPEND_FL)
4350 new_fl |= S_APPEND;
4351 if (flags & EXT4_IMMUTABLE_FL)
4352 new_fl |= S_IMMUTABLE;
4353 if (flags & EXT4_NOATIME_FL)
4354 new_fl |= S_NOATIME;
4355 if (flags & EXT4_DIRSYNC_FL)
4356 new_fl |= S_DIRSYNC;
4357 if (test_opt(inode->i_sb, DAX) && S_ISREG(inode->i_mode))
4358 new_fl |= S_DAX;
4359 inode_set_flags(inode, new_fl,
4360 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX);
4361 }
4362
4363 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4364 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4365 {
4366 unsigned int vfs_fl;
4367 unsigned long old_fl, new_fl;
4368
4369 do {
4370 vfs_fl = ei->vfs_inode.i_flags;
4371 old_fl = ei->i_flags;
4372 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4373 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
4374 EXT4_DIRSYNC_FL);
4375 if (vfs_fl & S_SYNC)
4376 new_fl |= EXT4_SYNC_FL;
4377 if (vfs_fl & S_APPEND)
4378 new_fl |= EXT4_APPEND_FL;
4379 if (vfs_fl & S_IMMUTABLE)
4380 new_fl |= EXT4_IMMUTABLE_FL;
4381 if (vfs_fl & S_NOATIME)
4382 new_fl |= EXT4_NOATIME_FL;
4383 if (vfs_fl & S_DIRSYNC)
4384 new_fl |= EXT4_DIRSYNC_FL;
4385 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
4386 }
4387
4388 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4389 struct ext4_inode_info *ei)
4390 {
4391 blkcnt_t i_blocks ;
4392 struct inode *inode = &(ei->vfs_inode);
4393 struct super_block *sb = inode->i_sb;
4394
4395 if (ext4_has_feature_huge_file(sb)) {
4396 /* we are using combined 48 bit field */
4397 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4398 le32_to_cpu(raw_inode->i_blocks_lo);
4399 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4400 /* i_blocks represent file system block size */
4401 return i_blocks << (inode->i_blkbits - 9);
4402 } else {
4403 return i_blocks;
4404 }
4405 } else {
4406 return le32_to_cpu(raw_inode->i_blocks_lo);
4407 }
4408 }
4409
4410 static inline void ext4_iget_extra_inode(struct inode *inode,
4411 struct ext4_inode *raw_inode,
4412 struct ext4_inode_info *ei)
4413 {
4414 __le32 *magic = (void *)raw_inode +
4415 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4416 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4417 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4418 ext4_find_inline_data_nolock(inode);
4419 } else
4420 EXT4_I(inode)->i_inline_off = 0;
4421 }
4422
4423 int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4424 {
4425 if (!ext4_has_feature_project(inode->i_sb))
4426 return -EOPNOTSUPP;
4427 *projid = EXT4_I(inode)->i_projid;
4428 return 0;
4429 }
4430
4431 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4432 {
4433 struct ext4_iloc iloc;
4434 struct ext4_inode *raw_inode;
4435 struct ext4_inode_info *ei;
4436 struct inode *inode;
4437 journal_t *journal = EXT4_SB(sb)->s_journal;
4438 long ret;
4439 int block;
4440 uid_t i_uid;
4441 gid_t i_gid;
4442 projid_t i_projid;
4443
4444 inode = iget_locked(sb, ino);
4445 if (!inode)
4446 return ERR_PTR(-ENOMEM);
4447 if (!(inode->i_state & I_NEW))
4448 return inode;
4449
4450 ei = EXT4_I(inode);
4451 iloc.bh = NULL;
4452
4453 ret = __ext4_get_inode_loc(inode, &iloc, 0);
4454 if (ret < 0)
4455 goto bad_inode;
4456 raw_inode = ext4_raw_inode(&iloc);
4457
4458 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4459 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4460 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4461 EXT4_INODE_SIZE(inode->i_sb)) {
4462 EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
4463 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
4464 EXT4_INODE_SIZE(inode->i_sb));
4465 ret = -EFSCORRUPTED;
4466 goto bad_inode;
4467 }
4468 } else
4469 ei->i_extra_isize = 0;
4470
4471 /* Precompute checksum seed for inode metadata */
4472 if (ext4_has_metadata_csum(sb)) {
4473 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4474 __u32 csum;
4475 __le32 inum = cpu_to_le32(inode->i_ino);
4476 __le32 gen = raw_inode->i_generation;
4477 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4478 sizeof(inum));
4479 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4480 sizeof(gen));
4481 }
4482
4483 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4484 EXT4_ERROR_INODE(inode, "checksum invalid");
4485 ret = -EFSBADCRC;
4486 goto bad_inode;
4487 }
4488
4489 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4490 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4491 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4492 if (ext4_has_feature_project(sb) &&
4493 EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4494 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4495 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4496 else
4497 i_projid = EXT4_DEF_PROJID;
4498
4499 if (!(test_opt(inode->i_sb, NO_UID32))) {
4500 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4501 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4502 }
4503 i_uid_write(inode, i_uid);
4504 i_gid_write(inode, i_gid);
4505 ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4506 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4507
4508 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
4509 ei->i_inline_off = 0;
4510 ei->i_dir_start_lookup = 0;
4511 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4512 /* We now have enough fields to check if the inode was active or not.
4513 * This is needed because nfsd might try to access dead inodes
4514 * the test is that same one that e2fsck uses
4515 * NeilBrown 1999oct15
4516 */
4517 if (inode->i_nlink == 0) {
4518 if ((inode->i_mode == 0 ||
4519 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4520 ino != EXT4_BOOT_LOADER_INO) {
4521 /* this inode is deleted */
4522 ret = -ESTALE;
4523 goto bad_inode;
4524 }
4525 /* The only unlinked inodes we let through here have
4526 * valid i_mode and are being read by the orphan
4527 * recovery code: that's fine, we're about to complete
4528 * the process of deleting those.
4529 * OR it is the EXT4_BOOT_LOADER_INO which is
4530 * not initialized on a new filesystem. */
4531 }
4532 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4533 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4534 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4535 if (ext4_has_feature_64bit(sb))
4536 ei->i_file_acl |=
4537 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4538 inode->i_size = ext4_isize(raw_inode);
4539 ei->i_disksize = inode->i_size;
4540 #ifdef CONFIG_QUOTA
4541 ei->i_reserved_quota = 0;
4542 #endif
4543 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4544 ei->i_block_group = iloc.block_group;
4545 ei->i_last_alloc_group = ~0;
4546 /*
4547 * NOTE! The in-memory inode i_data array is in little-endian order
4548 * even on big-endian machines: we do NOT byteswap the block numbers!
4549 */
4550 for (block = 0; block < EXT4_N_BLOCKS; block++)
4551 ei->i_data[block] = raw_inode->i_block[block];
4552 INIT_LIST_HEAD(&ei->i_orphan);
4553
4554 /*
4555 * Set transaction id's of transactions that have to be committed
4556 * to finish f[data]sync. We set them to currently running transaction
4557 * as we cannot be sure that the inode or some of its metadata isn't
4558 * part of the transaction - the inode could have been reclaimed and
4559 * now it is reread from disk.
4560 */
4561 if (journal) {
4562 transaction_t *transaction;
4563 tid_t tid;
4564
4565 read_lock(&journal->j_state_lock);
4566 if (journal->j_running_transaction)
4567 transaction = journal->j_running_transaction;
4568 else
4569 transaction = journal->j_committing_transaction;
4570 if (transaction)
4571 tid = transaction->t_tid;
4572 else
4573 tid = journal->j_commit_sequence;
4574 read_unlock(&journal->j_state_lock);
4575 ei->i_sync_tid = tid;
4576 ei->i_datasync_tid = tid;
4577 }
4578
4579 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4580 if (ei->i_extra_isize == 0) {
4581 /* The extra space is currently unused. Use it. */
4582 ei->i_extra_isize = sizeof(struct ext4_inode) -
4583 EXT4_GOOD_OLD_INODE_SIZE;
4584 } else {
4585 ext4_iget_extra_inode(inode, raw_inode, ei);
4586 }
4587 }
4588
4589 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4590 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4591 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4592 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4593
4594 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4595 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4596 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4597 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4598 inode->i_version |=
4599 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4600 }
4601 }
4602
4603 ret = 0;
4604 if (ei->i_file_acl &&
4605 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4606 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4607 ei->i_file_acl);
4608 ret = -EFSCORRUPTED;
4609 goto bad_inode;
4610 } else if (!ext4_has_inline_data(inode)) {
4611 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4612 if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4613 (S_ISLNK(inode->i_mode) &&
4614 !ext4_inode_is_fast_symlink(inode))))
4615 /* Validate extent which is part of inode */
4616 ret = ext4_ext_check_inode(inode);
4617 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4618 (S_ISLNK(inode->i_mode) &&
4619 !ext4_inode_is_fast_symlink(inode))) {
4620 /* Validate block references which are part of inode */
4621 ret = ext4_ind_check_inode(inode);
4622 }
4623 }
4624 if (ret)
4625 goto bad_inode;
4626
4627 if (S_ISREG(inode->i_mode)) {
4628 inode->i_op = &ext4_file_inode_operations;
4629 inode->i_fop = &ext4_file_operations;
4630 ext4_set_aops(inode);
4631 } else if (S_ISDIR(inode->i_mode)) {
4632 inode->i_op = &ext4_dir_inode_operations;
4633 inode->i_fop = &ext4_dir_operations;
4634 } else if (S_ISLNK(inode->i_mode)) {
4635 if (ext4_encrypted_inode(inode)) {
4636 inode->i_op = &ext4_encrypted_symlink_inode_operations;
4637 ext4_set_aops(inode);
4638 } else if (ext4_inode_is_fast_symlink(inode)) {
4639 inode->i_link = (char *)ei->i_data;
4640 inode->i_op = &ext4_fast_symlink_inode_operations;
4641 nd_terminate_link(ei->i_data, inode->i_size,
4642 sizeof(ei->i_data) - 1);
4643 } else {
4644 inode->i_op = &ext4_symlink_inode_operations;
4645 ext4_set_aops(inode);
4646 }
4647 inode_nohighmem(inode);
4648 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4649 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4650 inode->i_op = &ext4_special_inode_operations;
4651 if (raw_inode->i_block[0])
4652 init_special_inode(inode, inode->i_mode,
4653 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4654 else
4655 init_special_inode(inode, inode->i_mode,
4656 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4657 } else if (ino == EXT4_BOOT_LOADER_INO) {
4658 make_bad_inode(inode);
4659 } else {
4660 ret = -EFSCORRUPTED;
4661 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4662 goto bad_inode;
4663 }
4664 brelse(iloc.bh);
4665 ext4_set_inode_flags(inode);
4666 unlock_new_inode(inode);
4667 return inode;
4668
4669 bad_inode:
4670 brelse(iloc.bh);
4671 iget_failed(inode);
4672 return ERR_PTR(ret);
4673 }
4674
4675 struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino)
4676 {
4677 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
4678 return ERR_PTR(-EFSCORRUPTED);
4679 return ext4_iget(sb, ino);
4680 }
4681
4682 static int ext4_inode_blocks_set(handle_t *handle,
4683 struct ext4_inode *raw_inode,
4684 struct ext4_inode_info *ei)
4685 {
4686 struct inode *inode = &(ei->vfs_inode);
4687 u64 i_blocks = inode->i_blocks;
4688 struct super_block *sb = inode->i_sb;
4689
4690 if (i_blocks <= ~0U) {
4691 /*
4692 * i_blocks can be represented in a 32 bit variable
4693 * as multiple of 512 bytes
4694 */
4695 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4696 raw_inode->i_blocks_high = 0;
4697 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4698 return 0;
4699 }
4700 if (!ext4_has_feature_huge_file(sb))
4701 return -EFBIG;
4702
4703 if (i_blocks <= 0xffffffffffffULL) {
4704 /*
4705 * i_blocks can be represented in a 48 bit variable
4706 * as multiple of 512 bytes
4707 */
4708 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4709 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4710 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4711 } else {
4712 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4713 /* i_block is stored in file system block size */
4714 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4715 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4716 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4717 }
4718 return 0;
4719 }
4720
4721 struct other_inode {
4722 unsigned long orig_ino;
4723 struct ext4_inode *raw_inode;
4724 };
4725
4726 static int other_inode_match(struct inode * inode, unsigned long ino,
4727 void *data)
4728 {
4729 struct other_inode *oi = (struct other_inode *) data;
4730
4731 if ((inode->i_ino != ino) ||
4732 (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4733 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
4734 ((inode->i_state & I_DIRTY_TIME) == 0))
4735 return 0;
4736 spin_lock(&inode->i_lock);
4737 if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4738 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) == 0) &&
4739 (inode->i_state & I_DIRTY_TIME)) {
4740 struct ext4_inode_info *ei = EXT4_I(inode);
4741
4742 inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED);
4743 spin_unlock(&inode->i_lock);
4744
4745 spin_lock(&ei->i_raw_lock);
4746 EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode);
4747 EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode);
4748 EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode);
4749 ext4_inode_csum_set(inode, oi->raw_inode, ei);
4750 spin_unlock(&ei->i_raw_lock);
4751 trace_ext4_other_inode_update_time(inode, oi->orig_ino);
4752 return -1;
4753 }
4754 spin_unlock(&inode->i_lock);
4755 return -1;
4756 }
4757
4758 /*
4759 * Opportunistically update the other time fields for other inodes in
4760 * the same inode table block.
4761 */
4762 static void ext4_update_other_inodes_time(struct super_block *sb,
4763 unsigned long orig_ino, char *buf)
4764 {
4765 struct other_inode oi;
4766 unsigned long ino;
4767 int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4768 int inode_size = EXT4_INODE_SIZE(sb);
4769
4770 oi.orig_ino = orig_ino;
4771 /*
4772 * Calculate the first inode in the inode table block. Inode
4773 * numbers are one-based. That is, the first inode in a block
4774 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
4775 */
4776 ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
4777 for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
4778 if (ino == orig_ino)
4779 continue;
4780 oi.raw_inode = (struct ext4_inode *) buf;
4781 (void) find_inode_nowait(sb, ino, other_inode_match, &oi);
4782 }
4783 }
4784
4785 /*
4786 * Post the struct inode info into an on-disk inode location in the
4787 * buffer-cache. This gobbles the caller's reference to the
4788 * buffer_head in the inode location struct.
4789 *
4790 * The caller must have write access to iloc->bh.
4791 */
4792 static int ext4_do_update_inode(handle_t *handle,
4793 struct inode *inode,
4794 struct ext4_iloc *iloc)
4795 {
4796 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4797 struct ext4_inode_info *ei = EXT4_I(inode);
4798 struct buffer_head *bh = iloc->bh;
4799 struct super_block *sb = inode->i_sb;
4800 int err = 0, rc, block;
4801 int need_datasync = 0, set_large_file = 0;
4802 uid_t i_uid;
4803 gid_t i_gid;
4804 projid_t i_projid;
4805
4806 spin_lock(&ei->i_raw_lock);
4807
4808 /* For fields not tracked in the in-memory inode,
4809 * initialise them to zero for new inodes. */
4810 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4811 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4812
4813 ext4_get_inode_flags(ei);
4814 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4815 i_uid = i_uid_read(inode);
4816 i_gid = i_gid_read(inode);
4817 i_projid = from_kprojid(&init_user_ns, ei->i_projid);
4818 if (!(test_opt(inode->i_sb, NO_UID32))) {
4819 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4820 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4821 /*
4822 * Fix up interoperability with old kernels. Otherwise, old inodes get
4823 * re-used with the upper 16 bits of the uid/gid intact
4824 */
4825 if (ei->i_dtime && list_empty(&ei->i_orphan)) {
4826 raw_inode->i_uid_high = 0;
4827 raw_inode->i_gid_high = 0;
4828 } else {
4829 raw_inode->i_uid_high =
4830 cpu_to_le16(high_16_bits(i_uid));
4831 raw_inode->i_gid_high =
4832 cpu_to_le16(high_16_bits(i_gid));
4833 }
4834 } else {
4835 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4836 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4837 raw_inode->i_uid_high = 0;
4838 raw_inode->i_gid_high = 0;
4839 }
4840 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4841
4842 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4843 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4844 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4845 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4846
4847 err = ext4_inode_blocks_set(handle, raw_inode, ei);
4848 if (err) {
4849 spin_unlock(&ei->i_raw_lock);
4850 goto out_brelse;
4851 }
4852 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4853 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4854 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4855 raw_inode->i_file_acl_high =
4856 cpu_to_le16(ei->i_file_acl >> 32);
4857 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4858 if (ei->i_disksize != ext4_isize(raw_inode)) {
4859 ext4_isize_set(raw_inode, ei->i_disksize);
4860 need_datasync = 1;
4861 }
4862 if (ei->i_disksize > 0x7fffffffULL) {
4863 if (!ext4_has_feature_large_file(sb) ||
4864 EXT4_SB(sb)->s_es->s_rev_level ==
4865 cpu_to_le32(EXT4_GOOD_OLD_REV))
4866 set_large_file = 1;
4867 }
4868 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4869 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4870 if (old_valid_dev(inode->i_rdev)) {
4871 raw_inode->i_block[0] =
4872 cpu_to_le32(old_encode_dev(inode->i_rdev));
4873 raw_inode->i_block[1] = 0;
4874 } else {
4875 raw_inode->i_block[0] = 0;
4876 raw_inode->i_block[1] =
4877 cpu_to_le32(new_encode_dev(inode->i_rdev));
4878 raw_inode->i_block[2] = 0;
4879 }
4880 } else if (!ext4_has_inline_data(inode)) {
4881 for (block = 0; block < EXT4_N_BLOCKS; block++)
4882 raw_inode->i_block[block] = ei->i_data[block];
4883 }
4884
4885 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4886 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4887 if (ei->i_extra_isize) {
4888 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4889 raw_inode->i_version_hi =
4890 cpu_to_le32(inode->i_version >> 32);
4891 raw_inode->i_extra_isize =
4892 cpu_to_le16(ei->i_extra_isize);
4893 }
4894 }
4895
4896 BUG_ON(!ext4_has_feature_project(inode->i_sb) &&
4897 i_projid != EXT4_DEF_PROJID);
4898
4899 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4900 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4901 raw_inode->i_projid = cpu_to_le32(i_projid);
4902
4903 ext4_inode_csum_set(inode, raw_inode, ei);
4904 spin_unlock(&ei->i_raw_lock);
4905 if (inode->i_sb->s_flags & MS_LAZYTIME)
4906 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
4907 bh->b_data);
4908
4909 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4910 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4911 if (!err)
4912 err = rc;
4913 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4914 if (set_large_file) {
4915 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
4916 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
4917 if (err)
4918 goto out_brelse;
4919 ext4_update_dynamic_rev(sb);
4920 ext4_set_feature_large_file(sb);
4921 ext4_handle_sync(handle);
4922 err = ext4_handle_dirty_super(handle, sb);
4923 }
4924 ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4925 out_brelse:
4926 brelse(bh);
4927 ext4_std_error(inode->i_sb, err);
4928 return err;
4929 }
4930
4931 /*
4932 * ext4_write_inode()
4933 *
4934 * We are called from a few places:
4935 *
4936 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
4937 * Here, there will be no transaction running. We wait for any running
4938 * transaction to commit.
4939 *
4940 * - Within flush work (sys_sync(), kupdate and such).
4941 * We wait on commit, if told to.
4942 *
4943 * - Within iput_final() -> write_inode_now()
4944 * We wait on commit, if told to.
4945 *
4946 * In all cases it is actually safe for us to return without doing anything,
4947 * because the inode has been copied into a raw inode buffer in
4948 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL
4949 * writeback.
4950 *
4951 * Note that we are absolutely dependent upon all inode dirtiers doing the
4952 * right thing: they *must* call mark_inode_dirty() after dirtying info in
4953 * which we are interested.
4954 *
4955 * It would be a bug for them to not do this. The code:
4956 *
4957 * mark_inode_dirty(inode)
4958 * stuff();
4959 * inode->i_size = expr;
4960 *
4961 * is in error because write_inode() could occur while `stuff()' is running,
4962 * and the new i_size will be lost. Plus the inode will no longer be on the
4963 * superblock's dirty inode list.
4964 */
4965 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4966 {
4967 int err;
4968
4969 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
4970 return 0;
4971
4972 if (EXT4_SB(inode->i_sb)->s_journal) {
4973 if (ext4_journal_current_handle()) {
4974 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4975 dump_stack();
4976 return -EIO;
4977 }
4978
4979 /*
4980 * No need to force transaction in WB_SYNC_NONE mode. Also
4981 * ext4_sync_fs() will force the commit after everything is
4982 * written.
4983 */
4984 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
4985 return 0;
4986
4987 err = ext4_force_commit(inode->i_sb);
4988 } else {
4989 struct ext4_iloc iloc;
4990
4991 err = __ext4_get_inode_loc(inode, &iloc, 0);
4992 if (err)
4993 return err;
4994 /*
4995 * sync(2) will flush the whole buffer cache. No need to do
4996 * it here separately for each inode.
4997 */
4998 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
4999 sync_dirty_buffer(iloc.bh);
5000 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5001 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
5002 "IO error syncing inode");
5003 err = -EIO;
5004 }
5005 brelse(iloc.bh);
5006 }
5007 return err;
5008 }
5009
5010 /*
5011 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
5012 * buffers that are attached to a page stradding i_size and are undergoing
5013 * commit. In that case we have to wait for commit to finish and try again.
5014 */
5015 static void ext4_wait_for_tail_page_commit(struct inode *inode)
5016 {
5017 struct page *page;
5018 unsigned offset;
5019 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5020 tid_t commit_tid = 0;
5021 int ret;
5022
5023 offset = inode->i_size & (PAGE_SIZE - 1);
5024 /*
5025 * All buffers in the last page remain valid? Then there's nothing to
5026 * do. We do the check mainly to optimize the common PAGE_SIZE ==
5027 * blocksize case
5028 */
5029 if (offset > PAGE_SIZE - (1 << inode->i_blkbits))
5030 return;
5031 while (1) {
5032 page = find_lock_page(inode->i_mapping,
5033 inode->i_size >> PAGE_SHIFT);
5034 if (!page)
5035 return;
5036 ret = __ext4_journalled_invalidatepage(page, offset,
5037 PAGE_SIZE - offset);
5038 unlock_page(page);
5039 put_page(page);
5040 if (ret != -EBUSY)
5041 return;
5042 commit_tid = 0;
5043 read_lock(&journal->j_state_lock);
5044 if (journal->j_committing_transaction)
5045 commit_tid = journal->j_committing_transaction->t_tid;
5046 read_unlock(&journal->j_state_lock);
5047 if (commit_tid)
5048 jbd2_log_wait_commit(journal, commit_tid);
5049 }
5050 }
5051
5052 /*
5053 * ext4_setattr()
5054 *
5055 * Called from notify_change.
5056 *
5057 * We want to trap VFS attempts to truncate the file as soon as
5058 * possible. In particular, we want to make sure that when the VFS
5059 * shrinks i_size, we put the inode on the orphan list and modify
5060 * i_disksize immediately, so that during the subsequent flushing of
5061 * dirty pages and freeing of disk blocks, we can guarantee that any
5062 * commit will leave the blocks being flushed in an unused state on
5063 * disk. (On recovery, the inode will get truncated and the blocks will
5064 * be freed, so we have a strong guarantee that no future commit will
5065 * leave these blocks visible to the user.)
5066 *
5067 * Another thing we have to assure is that if we are in ordered mode
5068 * and inode is still attached to the committing transaction, we must
5069 * we start writeout of all the dirty pages which are being truncated.
5070 * This way we are sure that all the data written in the previous
5071 * transaction are already on disk (truncate waits for pages under
5072 * writeback).
5073 *
5074 * Called with inode->i_mutex down.
5075 */
5076 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5077 {
5078 struct inode *inode = d_inode(dentry);
5079 int error, rc = 0;
5080 int orphan = 0;
5081 const unsigned int ia_valid = attr->ia_valid;
5082
5083 error = setattr_prepare(dentry, attr);
5084 if (error)
5085 return error;
5086
5087 if (is_quota_modification(inode, attr)) {
5088 error = dquot_initialize(inode);
5089 if (error)
5090 return error;
5091 }
5092 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
5093 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
5094 handle_t *handle;
5095
5096 /* (user+group)*(old+new) structure, inode write (sb,
5097 * inode block, ? - but truncate inode update has it) */
5098 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5099 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5100 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5101 if (IS_ERR(handle)) {
5102 error = PTR_ERR(handle);
5103 goto err_out;
5104 }
5105 error = dquot_transfer(inode, attr);
5106 if (error) {
5107 ext4_journal_stop(handle);
5108 return error;
5109 }
5110 /* Update corresponding info in inode so that everything is in
5111 * one transaction */
5112 if (attr->ia_valid & ATTR_UID)
5113 inode->i_uid = attr->ia_uid;
5114 if (attr->ia_valid & ATTR_GID)
5115 inode->i_gid = attr->ia_gid;
5116 error = ext4_mark_inode_dirty(handle, inode);
5117 ext4_journal_stop(handle);
5118 }
5119
5120 if (attr->ia_valid & ATTR_SIZE) {
5121 handle_t *handle;
5122 loff_t oldsize = inode->i_size;
5123 int shrink = (attr->ia_size <= inode->i_size);
5124
5125 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5126 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5127
5128 if (attr->ia_size > sbi->s_bitmap_maxbytes)
5129 return -EFBIG;
5130 }
5131 if (!S_ISREG(inode->i_mode))
5132 return -EINVAL;
5133
5134 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
5135 inode_inc_iversion(inode);
5136
5137 if (ext4_should_order_data(inode) &&
5138 (attr->ia_size < inode->i_size)) {
5139 error = ext4_begin_ordered_truncate(inode,
5140 attr->ia_size);
5141 if (error)
5142 goto err_out;
5143 }
5144 if (attr->ia_size != inode->i_size) {
5145 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5146 if (IS_ERR(handle)) {
5147 error = PTR_ERR(handle);
5148 goto err_out;
5149 }
5150 if (ext4_handle_valid(handle) && shrink) {
5151 error = ext4_orphan_add(handle, inode);
5152 orphan = 1;
5153 }
5154 /*
5155 * Update c/mtime on truncate up, ext4_truncate() will
5156 * update c/mtime in shrink case below
5157 */
5158 if (!shrink) {
5159 inode->i_mtime = ext4_current_time(inode);
5160 inode->i_ctime = inode->i_mtime;
5161 }
5162 down_write(&EXT4_I(inode)->i_data_sem);
5163 EXT4_I(inode)->i_disksize = attr->ia_size;
5164 rc = ext4_mark_inode_dirty(handle, inode);
5165 if (!error)
5166 error = rc;
5167 /*
5168 * We have to update i_size under i_data_sem together
5169 * with i_disksize to avoid races with writeback code
5170 * running ext4_wb_update_i_disksize().
5171 */
5172 if (!error)
5173 i_size_write(inode, attr->ia_size);
5174 up_write(&EXT4_I(inode)->i_data_sem);
5175 ext4_journal_stop(handle);
5176 if (error) {
5177 if (orphan)
5178 ext4_orphan_del(NULL, inode);
5179 goto err_out;
5180 }
5181 }
5182 if (!shrink)
5183 pagecache_isize_extended(inode, oldsize, inode->i_size);
5184
5185 /*
5186 * Blocks are going to be removed from the inode. Wait
5187 * for dio in flight. Temporarily disable
5188 * dioread_nolock to prevent livelock.
5189 */
5190 if (orphan) {
5191 if (!ext4_should_journal_data(inode)) {
5192 ext4_inode_block_unlocked_dio(inode);
5193 inode_dio_wait(inode);
5194 ext4_inode_resume_unlocked_dio(inode);
5195 } else
5196 ext4_wait_for_tail_page_commit(inode);
5197 }
5198 down_write(&EXT4_I(inode)->i_mmap_sem);
5199 /*
5200 * Truncate pagecache after we've waited for commit
5201 * in data=journal mode to make pages freeable.
5202 */
5203 truncate_pagecache(inode, inode->i_size);
5204 if (shrink)
5205 ext4_truncate(inode);
5206 up_write(&EXT4_I(inode)->i_mmap_sem);
5207 }
5208
5209 if (!rc) {
5210 setattr_copy(inode, attr);
5211 mark_inode_dirty(inode);
5212 }
5213
5214 /*
5215 * If the call to ext4_truncate failed to get a transaction handle at
5216 * all, we need to clean up the in-core orphan list manually.
5217 */
5218 if (orphan && inode->i_nlink)
5219 ext4_orphan_del(NULL, inode);
5220
5221 if (!rc && (ia_valid & ATTR_MODE))
5222 rc = posix_acl_chmod(inode, inode->i_mode);
5223
5224 err_out:
5225 ext4_std_error(inode->i_sb, error);
5226 if (!error)
5227 error = rc;
5228 return error;
5229 }
5230
5231 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
5232 struct kstat *stat)
5233 {
5234 struct inode *inode;
5235 unsigned long long delalloc_blocks;
5236
5237 inode = d_inode(dentry);
5238 generic_fillattr(inode, stat);
5239
5240 /*
5241 * If there is inline data in the inode, the inode will normally not
5242 * have data blocks allocated (it may have an external xattr block).
5243 * Report at least one sector for such files, so tools like tar, rsync,
5244 * others doen't incorrectly think the file is completely sparse.
5245 */
5246 if (unlikely(ext4_has_inline_data(inode)))
5247 stat->blocks += (stat->size + 511) >> 9;
5248
5249 /*
5250 * We can't update i_blocks if the block allocation is delayed
5251 * otherwise in the case of system crash before the real block
5252 * allocation is done, we will have i_blocks inconsistent with
5253 * on-disk file blocks.
5254 * We always keep i_blocks updated together with real
5255 * allocation. But to not confuse with user, stat
5256 * will return the blocks that include the delayed allocation
5257 * blocks for this file.
5258 */
5259 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5260 EXT4_I(inode)->i_reserved_data_blocks);
5261 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5262 return 0;
5263 }
5264
5265 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5266 int pextents)
5267 {
5268 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5269 return ext4_ind_trans_blocks(inode, lblocks);
5270 return ext4_ext_index_trans_blocks(inode, pextents);
5271 }
5272
5273 /*
5274 * Account for index blocks, block groups bitmaps and block group
5275 * descriptor blocks if modify datablocks and index blocks
5276 * worse case, the indexs blocks spread over different block groups
5277 *
5278 * If datablocks are discontiguous, they are possible to spread over
5279 * different block groups too. If they are contiguous, with flexbg,
5280 * they could still across block group boundary.
5281 *
5282 * Also account for superblock, inode, quota and xattr blocks
5283 */
5284 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5285 int pextents)
5286 {
5287 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5288 int gdpblocks;
5289 int idxblocks;
5290 int ret = 0;
5291
5292 /*
5293 * How many index blocks need to touch to map @lblocks logical blocks
5294 * to @pextents physical extents?
5295 */
5296 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5297
5298 ret = idxblocks;
5299
5300 /*
5301 * Now let's see how many group bitmaps and group descriptors need
5302 * to account
5303 */
5304 groups = idxblocks + pextents;
5305 gdpblocks = groups;
5306 if (groups > ngroups)
5307 groups = ngroups;
5308 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5309 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5310
5311 /* bitmaps and block group descriptor blocks */
5312 ret += groups + gdpblocks;
5313
5314 /* Blocks for super block, inode, quota and xattr blocks */
5315 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5316
5317 return ret;
5318 }
5319
5320 /*
5321 * Calculate the total number of credits to reserve to fit
5322 * the modification of a single pages into a single transaction,
5323 * which may include multiple chunks of block allocations.
5324 *
5325 * This could be called via ext4_write_begin()
5326 *
5327 * We need to consider the worse case, when
5328 * one new block per extent.
5329 */
5330 int ext4_writepage_trans_blocks(struct inode *inode)
5331 {
5332 int bpp = ext4_journal_blocks_per_page(inode);
5333 int ret;
5334
5335 ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5336
5337 /* Account for data blocks for journalled mode */
5338 if (ext4_should_journal_data(inode))
5339 ret += bpp;
5340 return ret;
5341 }
5342
5343 /*
5344 * Calculate the journal credits for a chunk of data modification.
5345 *
5346 * This is called from DIO, fallocate or whoever calling
5347 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5348 *
5349 * journal buffers for data blocks are not included here, as DIO
5350 * and fallocate do no need to journal data buffers.
5351 */
5352 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5353 {
5354 return ext4_meta_trans_blocks(inode, nrblocks, 1);
5355 }
5356
5357 /*
5358 * The caller must have previously called ext4_reserve_inode_write().
5359 * Give this, we know that the caller already has write access to iloc->bh.
5360 */
5361 int ext4_mark_iloc_dirty(handle_t *handle,
5362 struct inode *inode, struct ext4_iloc *iloc)
5363 {
5364 int err = 0;
5365
5366 if (IS_I_VERSION(inode))
5367 inode_inc_iversion(inode);
5368
5369 /* the do_update_inode consumes one bh->b_count */
5370 get_bh(iloc->bh);
5371
5372 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5373 err = ext4_do_update_inode(handle, inode, iloc);
5374 put_bh(iloc->bh);
5375 return err;
5376 }
5377
5378 /*
5379 * On success, We end up with an outstanding reference count against
5380 * iloc->bh. This _must_ be cleaned up later.
5381 */
5382
5383 int
5384 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5385 struct ext4_iloc *iloc)
5386 {
5387 int err;
5388
5389 err = ext4_get_inode_loc(inode, iloc);
5390 if (!err) {
5391 BUFFER_TRACE(iloc->bh, "get_write_access");
5392 err = ext4_journal_get_write_access(handle, iloc->bh);
5393 if (err) {
5394 brelse(iloc->bh);
5395 iloc->bh = NULL;
5396 }
5397 }
5398 ext4_std_error(inode->i_sb, err);
5399 return err;
5400 }
5401
5402 /*
5403 * Expand an inode by new_extra_isize bytes.
5404 * Returns 0 on success or negative error number on failure.
5405 */
5406 static int ext4_expand_extra_isize(struct inode *inode,
5407 unsigned int new_extra_isize,
5408 struct ext4_iloc iloc,
5409 handle_t *handle)
5410 {
5411 struct ext4_inode *raw_inode;
5412 struct ext4_xattr_ibody_header *header;
5413
5414 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5415 return 0;
5416
5417 raw_inode = ext4_raw_inode(&iloc);
5418
5419 header = IHDR(inode, raw_inode);
5420
5421 /* No extended attributes present */
5422 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5423 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5424 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5425 new_extra_isize);
5426 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5427 return 0;
5428 }
5429
5430 /* try to expand with EAs present */
5431 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5432 raw_inode, handle);
5433 }
5434
5435 /*
5436 * What we do here is to mark the in-core inode as clean with respect to inode
5437 * dirtiness (it may still be data-dirty).
5438 * This means that the in-core inode may be reaped by prune_icache
5439 * without having to perform any I/O. This is a very good thing,
5440 * because *any* task may call prune_icache - even ones which
5441 * have a transaction open against a different journal.
5442 *
5443 * Is this cheating? Not really. Sure, we haven't written the
5444 * inode out, but prune_icache isn't a user-visible syncing function.
5445 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5446 * we start and wait on commits.
5447 */
5448 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5449 {
5450 struct ext4_iloc iloc;
5451 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5452 static unsigned int mnt_count;
5453 int err, ret;
5454
5455 might_sleep();
5456 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5457 err = ext4_reserve_inode_write(handle, inode, &iloc);
5458 if (err)
5459 return err;
5460 if (ext4_handle_valid(handle) &&
5461 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5462 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5463 /*
5464 * We need extra buffer credits since we may write into EA block
5465 * with this same handle. If journal_extend fails, then it will
5466 * only result in a minor loss of functionality for that inode.
5467 * If this is felt to be critical, then e2fsck should be run to
5468 * force a large enough s_min_extra_isize.
5469 */
5470 if ((jbd2_journal_extend(handle,
5471 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5472 ret = ext4_expand_extra_isize(inode,
5473 sbi->s_want_extra_isize,
5474 iloc, handle);
5475 if (ret) {
5476 if (mnt_count !=
5477 le16_to_cpu(sbi->s_es->s_mnt_count)) {
5478 ext4_warning(inode->i_sb,
5479 "Unable to expand inode %lu. Delete"
5480 " some EAs or run e2fsck.",
5481 inode->i_ino);
5482 mnt_count =
5483 le16_to_cpu(sbi->s_es->s_mnt_count);
5484 }
5485 }
5486 }
5487 }
5488 return ext4_mark_iloc_dirty(handle, inode, &iloc);
5489 }
5490
5491 /*
5492 * ext4_dirty_inode() is called from __mark_inode_dirty()
5493 *
5494 * We're really interested in the case where a file is being extended.
5495 * i_size has been changed by generic_commit_write() and we thus need
5496 * to include the updated inode in the current transaction.
5497 *
5498 * Also, dquot_alloc_block() will always dirty the inode when blocks
5499 * are allocated to the file.
5500 *
5501 * If the inode is marked synchronous, we don't honour that here - doing
5502 * so would cause a commit on atime updates, which we don't bother doing.
5503 * We handle synchronous inodes at the highest possible level.
5504 *
5505 * If only the I_DIRTY_TIME flag is set, we can skip everything. If
5506 * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
5507 * to copy into the on-disk inode structure are the timestamp files.
5508 */
5509 void ext4_dirty_inode(struct inode *inode, int flags)
5510 {
5511 handle_t *handle;
5512
5513 if (flags == I_DIRTY_TIME)
5514 return;
5515 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5516 if (IS_ERR(handle))
5517 goto out;
5518
5519 ext4_mark_inode_dirty(handle, inode);
5520
5521 ext4_journal_stop(handle);
5522 out:
5523 return;
5524 }
5525
5526 #if 0
5527 /*
5528 * Bind an inode's backing buffer_head into this transaction, to prevent
5529 * it from being flushed to disk early. Unlike
5530 * ext4_reserve_inode_write, this leaves behind no bh reference and
5531 * returns no iloc structure, so the caller needs to repeat the iloc
5532 * lookup to mark the inode dirty later.
5533 */
5534 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5535 {
5536 struct ext4_iloc iloc;
5537
5538 int err = 0;
5539 if (handle) {
5540 err = ext4_get_inode_loc(inode, &iloc);
5541 if (!err) {
5542 BUFFER_TRACE(iloc.bh, "get_write_access");
5543 err = jbd2_journal_get_write_access(handle, iloc.bh);
5544 if (!err)
5545 err = ext4_handle_dirty_metadata(handle,
5546 NULL,
5547 iloc.bh);
5548 brelse(iloc.bh);
5549 }
5550 }
5551 ext4_std_error(inode->i_sb, err);
5552 return err;
5553 }
5554 #endif
5555
5556 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5557 {
5558 journal_t *journal;
5559 handle_t *handle;
5560 int err;
5561 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5562
5563 /*
5564 * We have to be very careful here: changing a data block's
5565 * journaling status dynamically is dangerous. If we write a
5566 * data block to the journal, change the status and then delete
5567 * that block, we risk forgetting to revoke the old log record
5568 * from the journal and so a subsequent replay can corrupt data.
5569 * So, first we make sure that the journal is empty and that
5570 * nobody is changing anything.
5571 */
5572
5573 journal = EXT4_JOURNAL(inode);
5574 if (!journal)
5575 return 0;
5576 if (is_journal_aborted(journal))
5577 return -EROFS;
5578
5579 /* Wait for all existing dio workers */
5580 ext4_inode_block_unlocked_dio(inode);
5581 inode_dio_wait(inode);
5582
5583 /*
5584 * Before flushing the journal and switching inode's aops, we have
5585 * to flush all dirty data the inode has. There can be outstanding
5586 * delayed allocations, there can be unwritten extents created by
5587 * fallocate or buffered writes in dioread_nolock mode covered by
5588 * dirty data which can be converted only after flushing the dirty
5589 * data (and journalled aops don't know how to handle these cases).
5590 */
5591 if (val) {
5592 down_write(&EXT4_I(inode)->i_mmap_sem);
5593 err = filemap_write_and_wait(inode->i_mapping);
5594 if (err < 0) {
5595 up_write(&EXT4_I(inode)->i_mmap_sem);
5596 ext4_inode_resume_unlocked_dio(inode);
5597 return err;
5598 }
5599 }
5600
5601 percpu_down_write(&sbi->s_journal_flag_rwsem);
5602 jbd2_journal_lock_updates(journal);
5603
5604 /*
5605 * OK, there are no updates running now, and all cached data is
5606 * synced to disk. We are now in a completely consistent state
5607 * which doesn't have anything in the journal, and we know that
5608 * no filesystem updates are running, so it is safe to modify
5609 * the inode's in-core data-journaling state flag now.
5610 */
5611
5612 if (val)
5613 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5614 else {
5615 err = jbd2_journal_flush(journal);
5616 if (err < 0) {
5617 jbd2_journal_unlock_updates(journal);
5618 percpu_up_write(&sbi->s_journal_flag_rwsem);
5619 ext4_inode_resume_unlocked_dio(inode);
5620 return err;
5621 }
5622 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5623 }
5624 ext4_set_aops(inode);
5625
5626 jbd2_journal_unlock_updates(journal);
5627 percpu_up_write(&sbi->s_journal_flag_rwsem);
5628
5629 if (val)
5630 up_write(&EXT4_I(inode)->i_mmap_sem);
5631 ext4_inode_resume_unlocked_dio(inode);
5632
5633 /* Finally we can mark the inode as dirty. */
5634
5635 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5636 if (IS_ERR(handle))
5637 return PTR_ERR(handle);
5638
5639 err = ext4_mark_inode_dirty(handle, inode);
5640 ext4_handle_sync(handle);
5641 ext4_journal_stop(handle);
5642 ext4_std_error(inode->i_sb, err);
5643
5644 return err;
5645 }
5646
5647 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5648 {
5649 return !buffer_mapped(bh);
5650 }
5651
5652 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5653 {
5654 struct page *page = vmf->page;
5655 loff_t size;
5656 unsigned long len;
5657 int ret;
5658 struct file *file = vma->vm_file;
5659 struct inode *inode = file_inode(file);
5660 struct address_space *mapping = inode->i_mapping;
5661 handle_t *handle;
5662 get_block_t *get_block;
5663 int retries = 0;
5664
5665 sb_start_pagefault(inode->i_sb);
5666 file_update_time(vma->vm_file);
5667
5668 down_read(&EXT4_I(inode)->i_mmap_sem);
5669 /* Delalloc case is easy... */
5670 if (test_opt(inode->i_sb, DELALLOC) &&
5671 !ext4_should_journal_data(inode) &&
5672 !ext4_nonda_switch(inode->i_sb)) {
5673 do {
5674 ret = block_page_mkwrite(vma, vmf,
5675 ext4_da_get_block_prep);
5676 } while (ret == -ENOSPC &&
5677 ext4_should_retry_alloc(inode->i_sb, &retries));
5678 goto out_ret;
5679 }
5680
5681 lock_page(page);
5682 size = i_size_read(inode);
5683 /* Page got truncated from under us? */
5684 if (page->mapping != mapping || page_offset(page) > size) {
5685 unlock_page(page);
5686 ret = VM_FAULT_NOPAGE;
5687 goto out;
5688 }
5689
5690 if (page->index == size >> PAGE_SHIFT)
5691 len = size & ~PAGE_MASK;
5692 else
5693 len = PAGE_SIZE;
5694 /*
5695 * Return if we have all the buffers mapped. This avoids the need to do
5696 * journal_start/journal_stop which can block and take a long time
5697 */
5698 if (page_has_buffers(page)) {
5699 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5700 0, len, NULL,
5701 ext4_bh_unmapped)) {
5702 /* Wait so that we don't change page under IO */
5703 wait_for_stable_page(page);
5704 ret = VM_FAULT_LOCKED;
5705 goto out;
5706 }
5707 }
5708 unlock_page(page);
5709 /* OK, we need to fill the hole... */
5710 if (ext4_should_dioread_nolock(inode))
5711 get_block = ext4_get_block_unwritten;
5712 else
5713 get_block = ext4_get_block;
5714 retry_alloc:
5715 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5716 ext4_writepage_trans_blocks(inode));
5717 if (IS_ERR(handle)) {
5718 ret = VM_FAULT_SIGBUS;
5719 goto out;
5720 }
5721 ret = block_page_mkwrite(vma, vmf, get_block);
5722 if (!ret && ext4_should_journal_data(inode)) {
5723 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5724 PAGE_SIZE, NULL, do_journal_get_write_access)) {
5725 unlock_page(page);
5726 ret = VM_FAULT_SIGBUS;
5727 ext4_journal_stop(handle);
5728 goto out;
5729 }
5730 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5731 }
5732 ext4_journal_stop(handle);
5733 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5734 goto retry_alloc;
5735 out_ret:
5736 ret = block_page_mkwrite_return(ret);
5737 out:
5738 up_read(&EXT4_I(inode)->i_mmap_sem);
5739 sb_end_pagefault(inode->i_sb);
5740 return ret;
5741 }
5742
5743 int ext4_filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
5744 {
5745 struct inode *inode = file_inode(vma->vm_file);
5746 int err;
5747
5748 down_read(&EXT4_I(inode)->i_mmap_sem);
5749 err = filemap_fault(vma, vmf);
5750 up_read(&EXT4_I(inode)->i_mmap_sem);
5751
5752 return err;
5753 }
5754
5755 /*
5756 * Find the first extent at or after @lblk in an inode that is not a hole.
5757 * Search for @map_len blocks at most. The extent is returned in @result.
5758 *
5759 * The function returns 1 if we found an extent. The function returns 0 in
5760 * case there is no extent at or after @lblk and in that case also sets
5761 * @result->es_len to 0. In case of error, the error code is returned.
5762 */
5763 int ext4_get_next_extent(struct inode *inode, ext4_lblk_t lblk,
5764 unsigned int map_len, struct extent_status *result)
5765 {
5766 struct ext4_map_blocks map;
5767 struct extent_status es = {};
5768 int ret;
5769
5770 map.m_lblk = lblk;
5771 map.m_len = map_len;
5772
5773 /*
5774 * For non-extent based files this loop may iterate several times since
5775 * we do not determine full hole size.
5776 */
5777 while (map.m_len > 0) {
5778 ret = ext4_map_blocks(NULL, inode, &map, 0);
5779 if (ret < 0)
5780 return ret;
5781 /* There's extent covering m_lblk? Just return it. */
5782 if (ret > 0) {
5783 int status;
5784
5785 ext4_es_store_pblock(result, map.m_pblk);
5786 result->es_lblk = map.m_lblk;
5787 result->es_len = map.m_len;
5788 if (map.m_flags & EXT4_MAP_UNWRITTEN)
5789 status = EXTENT_STATUS_UNWRITTEN;
5790 else
5791 status = EXTENT_STATUS_WRITTEN;
5792 ext4_es_store_status(result, status);
5793 return 1;
5794 }
5795 ext4_es_find_delayed_extent_range(inode, map.m_lblk,
5796 map.m_lblk + map.m_len - 1,
5797 &es);
5798 /* Is delalloc data before next block in extent tree? */
5799 if (es.es_len && es.es_lblk < map.m_lblk + map.m_len) {
5800 ext4_lblk_t offset = 0;
5801
5802 if (es.es_lblk < lblk)
5803 offset = lblk - es.es_lblk;
5804 result->es_lblk = es.es_lblk + offset;
5805 ext4_es_store_pblock(result,
5806 ext4_es_pblock(&es) + offset);
5807 result->es_len = es.es_len - offset;
5808 ext4_es_store_status(result, ext4_es_status(&es));
5809
5810 return 1;
5811 }
5812 /* There's a hole at m_lblk, advance us after it */
5813 map.m_lblk += map.m_len;
5814 map_len -= map.m_len;
5815 map.m_len = map_len;
5816 cond_resched();
5817 }
5818 result->es_len = 0;
5819 return 0;
5820 }