2 * linux/fs/ext4/inode.c
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
11 * linux/fs/minix/inode.c
13 * Copyright (C) 1991, 1992 Linus Torvalds
15 * 64-bit file support on 64-bit platforms by Jakub Jelinek
16 * (jj@sunsite.ms.mff.cuni.cz)
18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
21 #include <linux/module.h>
23 #include <linux/time.h>
24 #include <linux/jbd2.h>
25 #include <linux/highuid.h>
26 #include <linux/pagemap.h>
27 #include <linux/quotaops.h>
28 #include <linux/string.h>
29 #include <linux/buffer_head.h>
30 #include <linux/writeback.h>
31 #include <linux/pagevec.h>
32 #include <linux/mpage.h>
33 #include <linux/namei.h>
34 #include <linux/uio.h>
35 #include <linux/bio.h>
36 #include <linux/workqueue.h>
37 #include <linux/kernel.h>
38 #include <linux/printk.h>
39 #include <linux/slab.h>
40 #include <linux/ratelimit.h>
42 #include "ext4_jbd2.h"
45 #include "ext4_extents.h"
48 #include <trace/events/ext4.h>
50 #define MPAGE_DA_EXTENT_TAIL 0x01
52 static inline int ext4_begin_ordered_truncate(struct inode
*inode
,
55 trace_ext4_begin_ordered_truncate(inode
, new_size
);
57 * If jinode is zero, then we never opened the file for
58 * writing, so there's no need to call
59 * jbd2_journal_begin_ordered_truncate() since there's no
60 * outstanding writes we need to flush.
62 if (!EXT4_I(inode
)->jinode
)
64 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode
),
65 EXT4_I(inode
)->jinode
,
69 static void ext4_invalidatepage(struct page
*page
, unsigned long offset
);
70 static int noalloc_get_block_write(struct inode
*inode
, sector_t iblock
,
71 struct buffer_head
*bh_result
, int create
);
72 static int ext4_set_bh_endio(struct buffer_head
*bh
, struct inode
*inode
);
73 static void ext4_end_io_buffer_write(struct buffer_head
*bh
, int uptodate
);
74 static int __ext4_journalled_writepage(struct page
*page
, unsigned int len
);
75 static int ext4_bh_delay_or_unwritten(handle_t
*handle
, struct buffer_head
*bh
);
78 * Test whether an inode is a fast symlink.
80 static int ext4_inode_is_fast_symlink(struct inode
*inode
)
82 int ea_blocks
= EXT4_I(inode
)->i_file_acl
?
83 (inode
->i_sb
->s_blocksize
>> 9) : 0;
85 return (S_ISLNK(inode
->i_mode
) && inode
->i_blocks
- ea_blocks
== 0);
89 * Restart the transaction associated with *handle. This does a commit,
90 * so before we call here everything must be consistently dirtied against
93 int ext4_truncate_restart_trans(handle_t
*handle
, struct inode
*inode
,
99 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
100 * moment, get_block can be called only for blocks inside i_size since
101 * page cache has been already dropped and writes are blocked by
102 * i_mutex. So we can safely drop the i_data_sem here.
104 BUG_ON(EXT4_JOURNAL(inode
) == NULL
);
105 jbd_debug(2, "restarting handle %p\n", handle
);
106 up_write(&EXT4_I(inode
)->i_data_sem
);
107 ret
= ext4_journal_restart(handle
, nblocks
);
108 down_write(&EXT4_I(inode
)->i_data_sem
);
109 ext4_discard_preallocations(inode
);
115 * Called at the last iput() if i_nlink is zero.
117 void ext4_evict_inode(struct inode
*inode
)
122 trace_ext4_evict_inode(inode
);
123 if (inode
->i_nlink
) {
125 * When journalling data dirty buffers are tracked only in the
126 * journal. So although mm thinks everything is clean and
127 * ready for reaping the inode might still have some pages to
128 * write in the running transaction or waiting to be
129 * checkpointed. Thus calling jbd2_journal_invalidatepage()
130 * (via truncate_inode_pages()) to discard these buffers can
131 * cause data loss. Also even if we did not discard these
132 * buffers, we would have no way to find them after the inode
133 * is reaped and thus user could see stale data if he tries to
134 * read them before the transaction is checkpointed. So be
135 * careful and force everything to disk here... We use
136 * ei->i_datasync_tid to store the newest transaction
137 * containing inode's data.
139 * Note that directories do not have this problem because they
140 * don't use page cache.
142 if (ext4_should_journal_data(inode
) &&
143 (S_ISLNK(inode
->i_mode
) || S_ISREG(inode
->i_mode
))) {
144 journal_t
*journal
= EXT4_SB(inode
->i_sb
)->s_journal
;
145 tid_t commit_tid
= EXT4_I(inode
)->i_datasync_tid
;
147 jbd2_log_start_commit(journal
, commit_tid
);
148 jbd2_log_wait_commit(journal
, commit_tid
);
149 filemap_write_and_wait(&inode
->i_data
);
151 truncate_inode_pages(&inode
->i_data
, 0);
155 if (!is_bad_inode(inode
))
156 dquot_initialize(inode
);
158 if (ext4_should_order_data(inode
))
159 ext4_begin_ordered_truncate(inode
, 0);
160 truncate_inode_pages(&inode
->i_data
, 0);
162 if (is_bad_inode(inode
))
165 handle
= ext4_journal_start(inode
, ext4_blocks_for_truncate(inode
)+3);
166 if (IS_ERR(handle
)) {
167 ext4_std_error(inode
->i_sb
, PTR_ERR(handle
));
169 * If we're going to skip the normal cleanup, we still need to
170 * make sure that the in-core orphan linked list is properly
173 ext4_orphan_del(NULL
, inode
);
178 ext4_handle_sync(handle
);
180 err
= ext4_mark_inode_dirty(handle
, inode
);
182 ext4_warning(inode
->i_sb
,
183 "couldn't mark inode dirty (err %d)", err
);
187 ext4_truncate(inode
);
190 * ext4_ext_truncate() doesn't reserve any slop when it
191 * restarts journal transactions; therefore there may not be
192 * enough credits left in the handle to remove the inode from
193 * the orphan list and set the dtime field.
195 if (!ext4_handle_has_enough_credits(handle
, 3)) {
196 err
= ext4_journal_extend(handle
, 3);
198 err
= ext4_journal_restart(handle
, 3);
200 ext4_warning(inode
->i_sb
,
201 "couldn't extend journal (err %d)", err
);
203 ext4_journal_stop(handle
);
204 ext4_orphan_del(NULL
, inode
);
210 * Kill off the orphan record which ext4_truncate created.
211 * AKPM: I think this can be inside the above `if'.
212 * Note that ext4_orphan_del() has to be able to cope with the
213 * deletion of a non-existent orphan - this is because we don't
214 * know if ext4_truncate() actually created an orphan record.
215 * (Well, we could do this if we need to, but heck - it works)
217 ext4_orphan_del(handle
, inode
);
218 EXT4_I(inode
)->i_dtime
= get_seconds();
221 * One subtle ordering requirement: if anything has gone wrong
222 * (transaction abort, IO errors, whatever), then we can still
223 * do these next steps (the fs will already have been marked as
224 * having errors), but we can't free the inode if the mark_dirty
227 if (ext4_mark_inode_dirty(handle
, inode
))
228 /* If that failed, just do the required in-core inode clear. */
229 ext4_clear_inode(inode
);
231 ext4_free_inode(handle
, inode
);
232 ext4_journal_stop(handle
);
235 ext4_clear_inode(inode
); /* We must guarantee clearing of inode... */
239 qsize_t
*ext4_get_reserved_space(struct inode
*inode
)
241 return &EXT4_I(inode
)->i_reserved_quota
;
246 * Calculate the number of metadata blocks need to reserve
247 * to allocate a block located at @lblock
249 static int ext4_calc_metadata_amount(struct inode
*inode
, ext4_lblk_t lblock
)
251 if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
))
252 return ext4_ext_calc_metadata_amount(inode
, lblock
);
254 return ext4_ind_calc_metadata_amount(inode
, lblock
);
258 * Called with i_data_sem down, which is important since we can call
259 * ext4_discard_preallocations() from here.
261 void ext4_da_update_reserve_space(struct inode
*inode
,
262 int used
, int quota_claim
)
264 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
265 struct ext4_inode_info
*ei
= EXT4_I(inode
);
267 spin_lock(&ei
->i_block_reservation_lock
);
268 trace_ext4_da_update_reserve_space(inode
, used
);
269 if (unlikely(used
> ei
->i_reserved_data_blocks
)) {
270 ext4_msg(inode
->i_sb
, KERN_NOTICE
, "%s: ino %lu, used %d "
271 "with only %d reserved data blocks\n",
272 __func__
, inode
->i_ino
, used
,
273 ei
->i_reserved_data_blocks
);
275 used
= ei
->i_reserved_data_blocks
;
278 /* Update per-inode reservations */
279 ei
->i_reserved_data_blocks
-= used
;
280 ei
->i_reserved_meta_blocks
-= ei
->i_allocated_meta_blocks
;
281 percpu_counter_sub(&sbi
->s_dirtyblocks_counter
,
282 used
+ ei
->i_allocated_meta_blocks
);
283 ei
->i_allocated_meta_blocks
= 0;
285 if (ei
->i_reserved_data_blocks
== 0) {
287 * We can release all of the reserved metadata blocks
288 * only when we have written all of the delayed
291 percpu_counter_sub(&sbi
->s_dirtyblocks_counter
,
292 ei
->i_reserved_meta_blocks
);
293 ei
->i_reserved_meta_blocks
= 0;
294 ei
->i_da_metadata_calc_len
= 0;
296 spin_unlock(&EXT4_I(inode
)->i_block_reservation_lock
);
298 /* Update quota subsystem for data blocks */
300 dquot_claim_block(inode
, used
);
303 * We did fallocate with an offset that is already delayed
304 * allocated. So on delayed allocated writeback we should
305 * not re-claim the quota for fallocated blocks.
307 dquot_release_reservation_block(inode
, used
);
311 * If we have done all the pending block allocations and if
312 * there aren't any writers on the inode, we can discard the
313 * inode's preallocations.
315 if ((ei
->i_reserved_data_blocks
== 0) &&
316 (atomic_read(&inode
->i_writecount
) == 0))
317 ext4_discard_preallocations(inode
);
320 static int __check_block_validity(struct inode
*inode
, const char *func
,
322 struct ext4_map_blocks
*map
)
324 if (!ext4_data_block_valid(EXT4_SB(inode
->i_sb
), map
->m_pblk
,
326 ext4_error_inode(inode
, func
, line
, map
->m_pblk
,
327 "lblock %lu mapped to illegal pblock "
328 "(length %d)", (unsigned long) map
->m_lblk
,
335 #define check_block_validity(inode, map) \
336 __check_block_validity((inode), __func__, __LINE__, (map))
339 * Return the number of contiguous dirty pages in a given inode
340 * starting at page frame idx.
342 static pgoff_t
ext4_num_dirty_pages(struct inode
*inode
, pgoff_t idx
,
343 unsigned int max_pages
)
345 struct address_space
*mapping
= inode
->i_mapping
;
349 int i
, nr_pages
, done
= 0;
353 pagevec_init(&pvec
, 0);
356 nr_pages
= pagevec_lookup_tag(&pvec
, mapping
, &index
,
358 (pgoff_t
)PAGEVEC_SIZE
);
361 for (i
= 0; i
< nr_pages
; i
++) {
362 struct page
*page
= pvec
.pages
[i
];
363 struct buffer_head
*bh
, *head
;
366 if (unlikely(page
->mapping
!= mapping
) ||
368 PageWriteback(page
) ||
369 page
->index
!= idx
) {
374 if (page_has_buffers(page
)) {
375 bh
= head
= page_buffers(page
);
377 if (!buffer_delay(bh
) &&
378 !buffer_unwritten(bh
))
380 bh
= bh
->b_this_page
;
381 } while (!done
&& (bh
!= head
));
388 if (num
>= max_pages
) {
393 pagevec_release(&pvec
);
399 * The ext4_map_blocks() function tries to look up the requested blocks,
400 * and returns if the blocks are already mapped.
402 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
403 * and store the allocated blocks in the result buffer head and mark it
406 * If file type is extents based, it will call ext4_ext_map_blocks(),
407 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
410 * On success, it returns the number of blocks being mapped or allocate.
411 * if create==0 and the blocks are pre-allocated and uninitialized block,
412 * the result buffer head is unmapped. If the create ==1, it will make sure
413 * the buffer head is mapped.
415 * It returns 0 if plain look up failed (blocks have not been allocated), in
416 * that casem, buffer head is unmapped
418 * It returns the error in case of allocation failure.
420 int ext4_map_blocks(handle_t
*handle
, struct inode
*inode
,
421 struct ext4_map_blocks
*map
, int flags
)
426 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
427 "logical block %lu\n", inode
->i_ino
, flags
, map
->m_len
,
428 (unsigned long) map
->m_lblk
);
430 * Try to see if we can get the block without requesting a new
433 down_read((&EXT4_I(inode
)->i_data_sem
));
434 if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
)) {
435 retval
= ext4_ext_map_blocks(handle
, inode
, map
, 0);
437 retval
= ext4_ind_map_blocks(handle
, inode
, map
, 0);
439 up_read((&EXT4_I(inode
)->i_data_sem
));
441 if (retval
> 0 && map
->m_flags
& EXT4_MAP_MAPPED
) {
442 int ret
= check_block_validity(inode
, map
);
447 /* If it is only a block(s) look up */
448 if ((flags
& EXT4_GET_BLOCKS_CREATE
) == 0)
452 * Returns if the blocks have already allocated
454 * Note that if blocks have been preallocated
455 * ext4_ext_get_block() returns th create = 0
456 * with buffer head unmapped.
458 if (retval
> 0 && map
->m_flags
& EXT4_MAP_MAPPED
)
462 * When we call get_blocks without the create flag, the
463 * BH_Unwritten flag could have gotten set if the blocks
464 * requested were part of a uninitialized extent. We need to
465 * clear this flag now that we are committed to convert all or
466 * part of the uninitialized extent to be an initialized
467 * extent. This is because we need to avoid the combination
468 * of BH_Unwritten and BH_Mapped flags being simultaneously
469 * set on the buffer_head.
471 map
->m_flags
&= ~EXT4_MAP_UNWRITTEN
;
474 * New blocks allocate and/or writing to uninitialized extent
475 * will possibly result in updating i_data, so we take
476 * the write lock of i_data_sem, and call get_blocks()
477 * with create == 1 flag.
479 down_write((&EXT4_I(inode
)->i_data_sem
));
482 * if the caller is from delayed allocation writeout path
483 * we have already reserved fs blocks for allocation
484 * let the underlying get_block() function know to
485 * avoid double accounting
487 if (flags
& EXT4_GET_BLOCKS_DELALLOC_RESERVE
)
488 ext4_set_inode_state(inode
, EXT4_STATE_DELALLOC_RESERVED
);
490 * We need to check for EXT4 here because migrate
491 * could have changed the inode type in between
493 if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
)) {
494 retval
= ext4_ext_map_blocks(handle
, inode
, map
, flags
);
496 retval
= ext4_ind_map_blocks(handle
, inode
, map
, flags
);
498 if (retval
> 0 && map
->m_flags
& EXT4_MAP_NEW
) {
500 * We allocated new blocks which will result in
501 * i_data's format changing. Force the migrate
502 * to fail by clearing migrate flags
504 ext4_clear_inode_state(inode
, EXT4_STATE_EXT_MIGRATE
);
508 * Update reserved blocks/metadata blocks after successful
509 * block allocation which had been deferred till now. We don't
510 * support fallocate for non extent files. So we can update
511 * reserve space here.
514 (flags
& EXT4_GET_BLOCKS_DELALLOC_RESERVE
))
515 ext4_da_update_reserve_space(inode
, retval
, 1);
517 if (flags
& EXT4_GET_BLOCKS_DELALLOC_RESERVE
)
518 ext4_clear_inode_state(inode
, EXT4_STATE_DELALLOC_RESERVED
);
520 up_write((&EXT4_I(inode
)->i_data_sem
));
521 if (retval
> 0 && map
->m_flags
& EXT4_MAP_MAPPED
) {
522 int ret
= check_block_validity(inode
, map
);
529 /* Maximum number of blocks we map for direct IO at once. */
530 #define DIO_MAX_BLOCKS 4096
532 static int _ext4_get_block(struct inode
*inode
, sector_t iblock
,
533 struct buffer_head
*bh
, int flags
)
535 handle_t
*handle
= ext4_journal_current_handle();
536 struct ext4_map_blocks map
;
537 int ret
= 0, started
= 0;
541 map
.m_len
= bh
->b_size
>> inode
->i_blkbits
;
543 if (flags
&& !handle
) {
544 /* Direct IO write... */
545 if (map
.m_len
> DIO_MAX_BLOCKS
)
546 map
.m_len
= DIO_MAX_BLOCKS
;
547 dio_credits
= ext4_chunk_trans_blocks(inode
, map
.m_len
);
548 handle
= ext4_journal_start(inode
, dio_credits
);
549 if (IS_ERR(handle
)) {
550 ret
= PTR_ERR(handle
);
556 ret
= ext4_map_blocks(handle
, inode
, &map
, flags
);
558 map_bh(bh
, inode
->i_sb
, map
.m_pblk
);
559 bh
->b_state
= (bh
->b_state
& ~EXT4_MAP_FLAGS
) | map
.m_flags
;
560 bh
->b_size
= inode
->i_sb
->s_blocksize
* map
.m_len
;
564 ext4_journal_stop(handle
);
568 int ext4_get_block(struct inode
*inode
, sector_t iblock
,
569 struct buffer_head
*bh
, int create
)
571 return _ext4_get_block(inode
, iblock
, bh
,
572 create
? EXT4_GET_BLOCKS_CREATE
: 0);
576 * `handle' can be NULL if create is zero
578 struct buffer_head
*ext4_getblk(handle_t
*handle
, struct inode
*inode
,
579 ext4_lblk_t block
, int create
, int *errp
)
581 struct ext4_map_blocks map
;
582 struct buffer_head
*bh
;
585 J_ASSERT(handle
!= NULL
|| create
== 0);
589 err
= ext4_map_blocks(handle
, inode
, &map
,
590 create
? EXT4_GET_BLOCKS_CREATE
: 0);
598 bh
= sb_getblk(inode
->i_sb
, map
.m_pblk
);
603 if (map
.m_flags
& EXT4_MAP_NEW
) {
604 J_ASSERT(create
!= 0);
605 J_ASSERT(handle
!= NULL
);
608 * Now that we do not always journal data, we should
609 * keep in mind whether this should always journal the
610 * new buffer as metadata. For now, regular file
611 * writes use ext4_get_block instead, so it's not a
615 BUFFER_TRACE(bh
, "call get_create_access");
616 fatal
= ext4_journal_get_create_access(handle
, bh
);
617 if (!fatal
&& !buffer_uptodate(bh
)) {
618 memset(bh
->b_data
, 0, inode
->i_sb
->s_blocksize
);
619 set_buffer_uptodate(bh
);
622 BUFFER_TRACE(bh
, "call ext4_handle_dirty_metadata");
623 err
= ext4_handle_dirty_metadata(handle
, inode
, bh
);
627 BUFFER_TRACE(bh
, "not a new buffer");
637 struct buffer_head
*ext4_bread(handle_t
*handle
, struct inode
*inode
,
638 ext4_lblk_t block
, int create
, int *err
)
640 struct buffer_head
*bh
;
642 bh
= ext4_getblk(handle
, inode
, block
, create
, err
);
645 if (buffer_uptodate(bh
))
647 ll_rw_block(READ_META
, 1, &bh
);
649 if (buffer_uptodate(bh
))
656 static int walk_page_buffers(handle_t
*handle
,
657 struct buffer_head
*head
,
661 int (*fn
)(handle_t
*handle
,
662 struct buffer_head
*bh
))
664 struct buffer_head
*bh
;
665 unsigned block_start
, block_end
;
666 unsigned blocksize
= head
->b_size
;
668 struct buffer_head
*next
;
670 for (bh
= head
, block_start
= 0;
671 ret
== 0 && (bh
!= head
|| !block_start
);
672 block_start
= block_end
, bh
= next
) {
673 next
= bh
->b_this_page
;
674 block_end
= block_start
+ blocksize
;
675 if (block_end
<= from
|| block_start
>= to
) {
676 if (partial
&& !buffer_uptodate(bh
))
680 err
= (*fn
)(handle
, bh
);
688 * To preserve ordering, it is essential that the hole instantiation and
689 * the data write be encapsulated in a single transaction. We cannot
690 * close off a transaction and start a new one between the ext4_get_block()
691 * and the commit_write(). So doing the jbd2_journal_start at the start of
692 * prepare_write() is the right place.
694 * Also, this function can nest inside ext4_writepage() ->
695 * block_write_full_page(). In that case, we *know* that ext4_writepage()
696 * has generated enough buffer credits to do the whole page. So we won't
697 * block on the journal in that case, which is good, because the caller may
700 * By accident, ext4 can be reentered when a transaction is open via
701 * quota file writes. If we were to commit the transaction while thus
702 * reentered, there can be a deadlock - we would be holding a quota
703 * lock, and the commit would never complete if another thread had a
704 * transaction open and was blocking on the quota lock - a ranking
707 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
708 * will _not_ run commit under these circumstances because handle->h_ref
709 * is elevated. We'll still have enough credits for the tiny quotafile
712 static int do_journal_get_write_access(handle_t
*handle
,
713 struct buffer_head
*bh
)
715 int dirty
= buffer_dirty(bh
);
718 if (!buffer_mapped(bh
) || buffer_freed(bh
))
721 * __block_write_begin() could have dirtied some buffers. Clean
722 * the dirty bit as jbd2_journal_get_write_access() could complain
723 * otherwise about fs integrity issues. Setting of the dirty bit
724 * by __block_write_begin() isn't a real problem here as we clear
725 * the bit before releasing a page lock and thus writeback cannot
726 * ever write the buffer.
729 clear_buffer_dirty(bh
);
730 ret
= ext4_journal_get_write_access(handle
, bh
);
732 ret
= ext4_handle_dirty_metadata(handle
, NULL
, bh
);
736 static int ext4_get_block_write(struct inode
*inode
, sector_t iblock
,
737 struct buffer_head
*bh_result
, int create
);
738 static int ext4_write_begin(struct file
*file
, struct address_space
*mapping
,
739 loff_t pos
, unsigned len
, unsigned flags
,
740 struct page
**pagep
, void **fsdata
)
742 struct inode
*inode
= mapping
->host
;
743 int ret
, needed_blocks
;
750 trace_ext4_write_begin(inode
, pos
, len
, flags
);
752 * Reserve one block more for addition to orphan list in case
753 * we allocate blocks but write fails for some reason
755 needed_blocks
= ext4_writepage_trans_blocks(inode
) + 1;
756 index
= pos
>> PAGE_CACHE_SHIFT
;
757 from
= pos
& (PAGE_CACHE_SIZE
- 1);
761 handle
= ext4_journal_start(inode
, needed_blocks
);
762 if (IS_ERR(handle
)) {
763 ret
= PTR_ERR(handle
);
767 /* We cannot recurse into the filesystem as the transaction is already
769 flags
|= AOP_FLAG_NOFS
;
771 page
= grab_cache_page_write_begin(mapping
, index
, flags
);
773 ext4_journal_stop(handle
);
779 if (ext4_should_dioread_nolock(inode
))
780 ret
= __block_write_begin(page
, pos
, len
, ext4_get_block_write
);
782 ret
= __block_write_begin(page
, pos
, len
, ext4_get_block
);
784 if (!ret
&& ext4_should_journal_data(inode
)) {
785 ret
= walk_page_buffers(handle
, page_buffers(page
),
786 from
, to
, NULL
, do_journal_get_write_access
);
791 page_cache_release(page
);
793 * __block_write_begin may have instantiated a few blocks
794 * outside i_size. Trim these off again. Don't need
795 * i_size_read because we hold i_mutex.
797 * Add inode to orphan list in case we crash before
800 if (pos
+ len
> inode
->i_size
&& ext4_can_truncate(inode
))
801 ext4_orphan_add(handle
, inode
);
803 ext4_journal_stop(handle
);
804 if (pos
+ len
> inode
->i_size
) {
805 ext4_truncate_failed_write(inode
);
807 * If truncate failed early the inode might
808 * still be on the orphan list; we need to
809 * make sure the inode is removed from the
810 * orphan list in that case.
813 ext4_orphan_del(NULL
, inode
);
817 if (ret
== -ENOSPC
&& ext4_should_retry_alloc(inode
->i_sb
, &retries
))
823 /* For write_end() in data=journal mode */
824 static int write_end_fn(handle_t
*handle
, struct buffer_head
*bh
)
826 if (!buffer_mapped(bh
) || buffer_freed(bh
))
828 set_buffer_uptodate(bh
);
829 return ext4_handle_dirty_metadata(handle
, NULL
, bh
);
832 static int ext4_generic_write_end(struct file
*file
,
833 struct address_space
*mapping
,
834 loff_t pos
, unsigned len
, unsigned copied
,
835 struct page
*page
, void *fsdata
)
837 int i_size_changed
= 0;
838 struct inode
*inode
= mapping
->host
;
839 handle_t
*handle
= ext4_journal_current_handle();
841 copied
= block_write_end(file
, mapping
, pos
, len
, copied
, page
, fsdata
);
844 * No need to use i_size_read() here, the i_size
845 * cannot change under us because we hold i_mutex.
847 * But it's important to update i_size while still holding page lock:
848 * page writeout could otherwise come in and zero beyond i_size.
850 if (pos
+ copied
> inode
->i_size
) {
851 i_size_write(inode
, pos
+ copied
);
855 if (pos
+ copied
> EXT4_I(inode
)->i_disksize
) {
856 /* We need to mark inode dirty even if
857 * new_i_size is less that inode->i_size
858 * bu greater than i_disksize.(hint delalloc)
860 ext4_update_i_disksize(inode
, (pos
+ copied
));
864 page_cache_release(page
);
867 * Don't mark the inode dirty under page lock. First, it unnecessarily
868 * makes the holding time of page lock longer. Second, it forces lock
869 * ordering of page lock and transaction start for journaling
873 ext4_mark_inode_dirty(handle
, inode
);
879 * We need to pick up the new inode size which generic_commit_write gave us
880 * `file' can be NULL - eg, when called from page_symlink().
882 * ext4 never places buffers on inode->i_mapping->private_list. metadata
883 * buffers are managed internally.
885 static int ext4_ordered_write_end(struct file
*file
,
886 struct address_space
*mapping
,
887 loff_t pos
, unsigned len
, unsigned copied
,
888 struct page
*page
, void *fsdata
)
890 handle_t
*handle
= ext4_journal_current_handle();
891 struct inode
*inode
= mapping
->host
;
894 trace_ext4_ordered_write_end(inode
, pos
, len
, copied
);
895 ret
= ext4_jbd2_file_inode(handle
, inode
);
898 ret2
= ext4_generic_write_end(file
, mapping
, pos
, len
, copied
,
901 if (pos
+ len
> inode
->i_size
&& ext4_can_truncate(inode
))
902 /* if we have allocated more blocks and copied
903 * less. We will have blocks allocated outside
904 * inode->i_size. So truncate them
906 ext4_orphan_add(handle
, inode
);
910 ret2
= ext4_journal_stop(handle
);
914 if (pos
+ len
> inode
->i_size
) {
915 ext4_truncate_failed_write(inode
);
917 * If truncate failed early the inode might still be
918 * on the orphan list; we need to make sure the inode
919 * is removed from the orphan list in that case.
922 ext4_orphan_del(NULL
, inode
);
926 return ret
? ret
: copied
;
929 static int ext4_writeback_write_end(struct file
*file
,
930 struct address_space
*mapping
,
931 loff_t pos
, unsigned len
, unsigned copied
,
932 struct page
*page
, void *fsdata
)
934 handle_t
*handle
= ext4_journal_current_handle();
935 struct inode
*inode
= mapping
->host
;
938 trace_ext4_writeback_write_end(inode
, pos
, len
, copied
);
939 ret2
= ext4_generic_write_end(file
, mapping
, pos
, len
, copied
,
942 if (pos
+ len
> inode
->i_size
&& ext4_can_truncate(inode
))
943 /* if we have allocated more blocks and copied
944 * less. We will have blocks allocated outside
945 * inode->i_size. So truncate them
947 ext4_orphan_add(handle
, inode
);
952 ret2
= ext4_journal_stop(handle
);
956 if (pos
+ len
> inode
->i_size
) {
957 ext4_truncate_failed_write(inode
);
959 * If truncate failed early the inode might still be
960 * on the orphan list; we need to make sure the inode
961 * is removed from the orphan list in that case.
964 ext4_orphan_del(NULL
, inode
);
967 return ret
? ret
: copied
;
970 static int ext4_journalled_write_end(struct file
*file
,
971 struct address_space
*mapping
,
972 loff_t pos
, unsigned len
, unsigned copied
,
973 struct page
*page
, void *fsdata
)
975 handle_t
*handle
= ext4_journal_current_handle();
976 struct inode
*inode
= mapping
->host
;
982 trace_ext4_journalled_write_end(inode
, pos
, len
, copied
);
983 from
= pos
& (PAGE_CACHE_SIZE
- 1);
987 if (!PageUptodate(page
))
989 page_zero_new_buffers(page
, from
+copied
, to
);
992 ret
= walk_page_buffers(handle
, page_buffers(page
), from
,
993 to
, &partial
, write_end_fn
);
995 SetPageUptodate(page
);
996 new_i_size
= pos
+ copied
;
997 if (new_i_size
> inode
->i_size
)
998 i_size_write(inode
, pos
+copied
);
999 ext4_set_inode_state(inode
, EXT4_STATE_JDATA
);
1000 EXT4_I(inode
)->i_datasync_tid
= handle
->h_transaction
->t_tid
;
1001 if (new_i_size
> EXT4_I(inode
)->i_disksize
) {
1002 ext4_update_i_disksize(inode
, new_i_size
);
1003 ret2
= ext4_mark_inode_dirty(handle
, inode
);
1009 page_cache_release(page
);
1010 if (pos
+ len
> inode
->i_size
&& ext4_can_truncate(inode
))
1011 /* if we have allocated more blocks and copied
1012 * less. We will have blocks allocated outside
1013 * inode->i_size. So truncate them
1015 ext4_orphan_add(handle
, inode
);
1017 ret2
= ext4_journal_stop(handle
);
1020 if (pos
+ len
> inode
->i_size
) {
1021 ext4_truncate_failed_write(inode
);
1023 * If truncate failed early the inode might still be
1024 * on the orphan list; we need to make sure the inode
1025 * is removed from the orphan list in that case.
1028 ext4_orphan_del(NULL
, inode
);
1031 return ret
? ret
: copied
;
1035 * Reserve a single block located at lblock
1037 static int ext4_da_reserve_space(struct inode
*inode
, ext4_lblk_t lblock
)
1040 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
1041 struct ext4_inode_info
*ei
= EXT4_I(inode
);
1042 unsigned long md_needed
;
1046 * recalculate the amount of metadata blocks to reserve
1047 * in order to allocate nrblocks
1048 * worse case is one extent per block
1051 spin_lock(&ei
->i_block_reservation_lock
);
1052 md_needed
= ext4_calc_metadata_amount(inode
, lblock
);
1053 trace_ext4_da_reserve_space(inode
, md_needed
);
1054 spin_unlock(&ei
->i_block_reservation_lock
);
1057 * We will charge metadata quota at writeout time; this saves
1058 * us from metadata over-estimation, though we may go over by
1059 * a small amount in the end. Here we just reserve for data.
1061 ret
= dquot_reserve_block(inode
, 1);
1065 * We do still charge estimated metadata to the sb though;
1066 * we cannot afford to run out of free blocks.
1068 if (ext4_claim_free_blocks(sbi
, md_needed
+ 1, 0)) {
1069 dquot_release_reservation_block(inode
, 1);
1070 if (ext4_should_retry_alloc(inode
->i_sb
, &retries
)) {
1076 spin_lock(&ei
->i_block_reservation_lock
);
1077 ei
->i_reserved_data_blocks
++;
1078 ei
->i_reserved_meta_blocks
+= md_needed
;
1079 spin_unlock(&ei
->i_block_reservation_lock
);
1081 return 0; /* success */
1084 static void ext4_da_release_space(struct inode
*inode
, int to_free
)
1086 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
1087 struct ext4_inode_info
*ei
= EXT4_I(inode
);
1090 return; /* Nothing to release, exit */
1092 spin_lock(&EXT4_I(inode
)->i_block_reservation_lock
);
1094 trace_ext4_da_release_space(inode
, to_free
);
1095 if (unlikely(to_free
> ei
->i_reserved_data_blocks
)) {
1097 * if there aren't enough reserved blocks, then the
1098 * counter is messed up somewhere. Since this
1099 * function is called from invalidate page, it's
1100 * harmless to return without any action.
1102 ext4_msg(inode
->i_sb
, KERN_NOTICE
, "ext4_da_release_space: "
1103 "ino %lu, to_free %d with only %d reserved "
1104 "data blocks\n", inode
->i_ino
, to_free
,
1105 ei
->i_reserved_data_blocks
);
1107 to_free
= ei
->i_reserved_data_blocks
;
1109 ei
->i_reserved_data_blocks
-= to_free
;
1111 if (ei
->i_reserved_data_blocks
== 0) {
1113 * We can release all of the reserved metadata blocks
1114 * only when we have written all of the delayed
1115 * allocation blocks.
1117 percpu_counter_sub(&sbi
->s_dirtyblocks_counter
,
1118 ei
->i_reserved_meta_blocks
);
1119 ei
->i_reserved_meta_blocks
= 0;
1120 ei
->i_da_metadata_calc_len
= 0;
1123 /* update fs dirty data blocks counter */
1124 percpu_counter_sub(&sbi
->s_dirtyblocks_counter
, to_free
);
1126 spin_unlock(&EXT4_I(inode
)->i_block_reservation_lock
);
1128 dquot_release_reservation_block(inode
, to_free
);
1131 static void ext4_da_page_release_reservation(struct page
*page
,
1132 unsigned long offset
)
1135 struct buffer_head
*head
, *bh
;
1136 unsigned int curr_off
= 0;
1138 head
= page_buffers(page
);
1141 unsigned int next_off
= curr_off
+ bh
->b_size
;
1143 if ((offset
<= curr_off
) && (buffer_delay(bh
))) {
1145 clear_buffer_delay(bh
);
1147 curr_off
= next_off
;
1148 } while ((bh
= bh
->b_this_page
) != head
);
1149 ext4_da_release_space(page
->mapping
->host
, to_release
);
1153 * Delayed allocation stuff
1157 * mpage_da_submit_io - walks through extent of pages and try to write
1158 * them with writepage() call back
1160 * @mpd->inode: inode
1161 * @mpd->first_page: first page of the extent
1162 * @mpd->next_page: page after the last page of the extent
1164 * By the time mpage_da_submit_io() is called we expect all blocks
1165 * to be allocated. this may be wrong if allocation failed.
1167 * As pages are already locked by write_cache_pages(), we can't use it
1169 static int mpage_da_submit_io(struct mpage_da_data
*mpd
,
1170 struct ext4_map_blocks
*map
)
1172 struct pagevec pvec
;
1173 unsigned long index
, end
;
1174 int ret
= 0, err
, nr_pages
, i
;
1175 struct inode
*inode
= mpd
->inode
;
1176 struct address_space
*mapping
= inode
->i_mapping
;
1177 loff_t size
= i_size_read(inode
);
1178 unsigned int len
, block_start
;
1179 struct buffer_head
*bh
, *page_bufs
= NULL
;
1180 int journal_data
= ext4_should_journal_data(inode
);
1181 sector_t pblock
= 0, cur_logical
= 0;
1182 struct ext4_io_submit io_submit
;
1184 BUG_ON(mpd
->next_page
<= mpd
->first_page
);
1185 memset(&io_submit
, 0, sizeof(io_submit
));
1187 * We need to start from the first_page to the next_page - 1
1188 * to make sure we also write the mapped dirty buffer_heads.
1189 * If we look at mpd->b_blocknr we would only be looking
1190 * at the currently mapped buffer_heads.
1192 index
= mpd
->first_page
;
1193 end
= mpd
->next_page
- 1;
1195 pagevec_init(&pvec
, 0);
1196 while (index
<= end
) {
1197 nr_pages
= pagevec_lookup(&pvec
, mapping
, index
, PAGEVEC_SIZE
);
1200 for (i
= 0; i
< nr_pages
; i
++) {
1201 int commit_write
= 0, skip_page
= 0;
1202 struct page
*page
= pvec
.pages
[i
];
1204 index
= page
->index
;
1208 if (index
== size
>> PAGE_CACHE_SHIFT
)
1209 len
= size
& ~PAGE_CACHE_MASK
;
1211 len
= PAGE_CACHE_SIZE
;
1213 cur_logical
= index
<< (PAGE_CACHE_SHIFT
-
1215 pblock
= map
->m_pblk
+ (cur_logical
-
1220 BUG_ON(!PageLocked(page
));
1221 BUG_ON(PageWriteback(page
));
1224 * If the page does not have buffers (for
1225 * whatever reason), try to create them using
1226 * __block_write_begin. If this fails,
1227 * skip the page and move on.
1229 if (!page_has_buffers(page
)) {
1230 if (__block_write_begin(page
, 0, len
,
1231 noalloc_get_block_write
)) {
1239 bh
= page_bufs
= page_buffers(page
);
1244 if (map
&& (cur_logical
>= map
->m_lblk
) &&
1245 (cur_logical
<= (map
->m_lblk
+
1246 (map
->m_len
- 1)))) {
1247 if (buffer_delay(bh
)) {
1248 clear_buffer_delay(bh
);
1249 bh
->b_blocknr
= pblock
;
1251 if (buffer_unwritten(bh
) ||
1253 BUG_ON(bh
->b_blocknr
!= pblock
);
1254 if (map
->m_flags
& EXT4_MAP_UNINIT
)
1255 set_buffer_uninit(bh
);
1256 clear_buffer_unwritten(bh
);
1259 /* skip page if block allocation undone */
1260 if (buffer_delay(bh
) || buffer_unwritten(bh
))
1262 bh
= bh
->b_this_page
;
1263 block_start
+= bh
->b_size
;
1266 } while (bh
!= page_bufs
);
1272 /* mark the buffer_heads as dirty & uptodate */
1273 block_commit_write(page
, 0, len
);
1275 clear_page_dirty_for_io(page
);
1277 * Delalloc doesn't support data journalling,
1278 * but eventually maybe we'll lift this
1281 if (unlikely(journal_data
&& PageChecked(page
)))
1282 err
= __ext4_journalled_writepage(page
, len
);
1283 else if (test_opt(inode
->i_sb
, MBLK_IO_SUBMIT
))
1284 err
= ext4_bio_write_page(&io_submit
, page
,
1287 err
= block_write_full_page(page
,
1288 noalloc_get_block_write
, mpd
->wbc
);
1291 mpd
->pages_written
++;
1293 * In error case, we have to continue because
1294 * remaining pages are still locked
1299 pagevec_release(&pvec
);
1301 ext4_io_submit(&io_submit
);
1305 static void ext4_da_block_invalidatepages(struct mpage_da_data
*mpd
)
1309 struct pagevec pvec
;
1310 struct inode
*inode
= mpd
->inode
;
1311 struct address_space
*mapping
= inode
->i_mapping
;
1313 index
= mpd
->first_page
;
1314 end
= mpd
->next_page
- 1;
1315 while (index
<= end
) {
1316 nr_pages
= pagevec_lookup(&pvec
, mapping
, index
, PAGEVEC_SIZE
);
1319 for (i
= 0; i
< nr_pages
; i
++) {
1320 struct page
*page
= pvec
.pages
[i
];
1321 if (page
->index
> end
)
1323 BUG_ON(!PageLocked(page
));
1324 BUG_ON(PageWriteback(page
));
1325 block_invalidatepage(page
, 0);
1326 ClearPageUptodate(page
);
1329 index
= pvec
.pages
[nr_pages
- 1]->index
+ 1;
1330 pagevec_release(&pvec
);
1335 static void ext4_print_free_blocks(struct inode
*inode
)
1337 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
1338 printk(KERN_CRIT
"Total free blocks count %lld\n",
1339 ext4_count_free_blocks(inode
->i_sb
));
1340 printk(KERN_CRIT
"Free/Dirty block details\n");
1341 printk(KERN_CRIT
"free_blocks=%lld\n",
1342 (long long) percpu_counter_sum(&sbi
->s_freeblocks_counter
));
1343 printk(KERN_CRIT
"dirty_blocks=%lld\n",
1344 (long long) percpu_counter_sum(&sbi
->s_dirtyblocks_counter
));
1345 printk(KERN_CRIT
"Block reservation details\n");
1346 printk(KERN_CRIT
"i_reserved_data_blocks=%u\n",
1347 EXT4_I(inode
)->i_reserved_data_blocks
);
1348 printk(KERN_CRIT
"i_reserved_meta_blocks=%u\n",
1349 EXT4_I(inode
)->i_reserved_meta_blocks
);
1354 * mpage_da_map_and_submit - go through given space, map them
1355 * if necessary, and then submit them for I/O
1357 * @mpd - bh describing space
1359 * The function skips space we know is already mapped to disk blocks.
1362 static void mpage_da_map_and_submit(struct mpage_da_data
*mpd
)
1364 int err
, blks
, get_blocks_flags
;
1365 struct ext4_map_blocks map
, *mapp
= NULL
;
1366 sector_t next
= mpd
->b_blocknr
;
1367 unsigned max_blocks
= mpd
->b_size
>> mpd
->inode
->i_blkbits
;
1368 loff_t disksize
= EXT4_I(mpd
->inode
)->i_disksize
;
1369 handle_t
*handle
= NULL
;
1372 * If the blocks are mapped already, or we couldn't accumulate
1373 * any blocks, then proceed immediately to the submission stage.
1375 if ((mpd
->b_size
== 0) ||
1376 ((mpd
->b_state
& (1 << BH_Mapped
)) &&
1377 !(mpd
->b_state
& (1 << BH_Delay
)) &&
1378 !(mpd
->b_state
& (1 << BH_Unwritten
))))
1381 handle
= ext4_journal_current_handle();
1385 * Call ext4_map_blocks() to allocate any delayed allocation
1386 * blocks, or to convert an uninitialized extent to be
1387 * initialized (in the case where we have written into
1388 * one or more preallocated blocks).
1390 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
1391 * indicate that we are on the delayed allocation path. This
1392 * affects functions in many different parts of the allocation
1393 * call path. This flag exists primarily because we don't
1394 * want to change *many* call functions, so ext4_map_blocks()
1395 * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
1396 * inode's allocation semaphore is taken.
1398 * If the blocks in questions were delalloc blocks, set
1399 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
1400 * variables are updated after the blocks have been allocated.
1403 map
.m_len
= max_blocks
;
1404 get_blocks_flags
= EXT4_GET_BLOCKS_CREATE
;
1405 if (ext4_should_dioread_nolock(mpd
->inode
))
1406 get_blocks_flags
|= EXT4_GET_BLOCKS_IO_CREATE_EXT
;
1407 if (mpd
->b_state
& (1 << BH_Delay
))
1408 get_blocks_flags
|= EXT4_GET_BLOCKS_DELALLOC_RESERVE
;
1410 blks
= ext4_map_blocks(handle
, mpd
->inode
, &map
, get_blocks_flags
);
1412 struct super_block
*sb
= mpd
->inode
->i_sb
;
1416 * If get block returns EAGAIN or ENOSPC and there
1417 * appears to be free blocks we will just let
1418 * mpage_da_submit_io() unlock all of the pages.
1423 if (err
== -ENOSPC
&&
1424 ext4_count_free_blocks(sb
)) {
1430 * get block failure will cause us to loop in
1431 * writepages, because a_ops->writepage won't be able
1432 * to make progress. The page will be redirtied by
1433 * writepage and writepages will again try to write
1436 if (!(EXT4_SB(sb
)->s_mount_flags
& EXT4_MF_FS_ABORTED
)) {
1437 ext4_msg(sb
, KERN_CRIT
,
1438 "delayed block allocation failed for inode %lu "
1439 "at logical offset %llu with max blocks %zd "
1440 "with error %d", mpd
->inode
->i_ino
,
1441 (unsigned long long) next
,
1442 mpd
->b_size
>> mpd
->inode
->i_blkbits
, err
);
1443 ext4_msg(sb
, KERN_CRIT
,
1444 "This should not happen!! Data will be lost\n");
1446 ext4_print_free_blocks(mpd
->inode
);
1448 /* invalidate all the pages */
1449 ext4_da_block_invalidatepages(mpd
);
1451 /* Mark this page range as having been completed */
1458 if (map
.m_flags
& EXT4_MAP_NEW
) {
1459 struct block_device
*bdev
= mpd
->inode
->i_sb
->s_bdev
;
1462 for (i
= 0; i
< map
.m_len
; i
++)
1463 unmap_underlying_metadata(bdev
, map
.m_pblk
+ i
);
1466 if (ext4_should_order_data(mpd
->inode
)) {
1467 err
= ext4_jbd2_file_inode(handle
, mpd
->inode
);
1469 /* This only happens if the journal is aborted */
1474 * Update on-disk size along with block allocation.
1476 disksize
= ((loff_t
) next
+ blks
) << mpd
->inode
->i_blkbits
;
1477 if (disksize
> i_size_read(mpd
->inode
))
1478 disksize
= i_size_read(mpd
->inode
);
1479 if (disksize
> EXT4_I(mpd
->inode
)->i_disksize
) {
1480 ext4_update_i_disksize(mpd
->inode
, disksize
);
1481 err
= ext4_mark_inode_dirty(handle
, mpd
->inode
);
1483 ext4_error(mpd
->inode
->i_sb
,
1484 "Failed to mark inode %lu dirty",
1489 mpage_da_submit_io(mpd
, mapp
);
1493 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
1494 (1 << BH_Delay) | (1 << BH_Unwritten))
1497 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
1499 * @mpd->lbh - extent of blocks
1500 * @logical - logical number of the block in the file
1501 * @bh - bh of the block (used to access block's state)
1503 * the function is used to collect contig. blocks in same state
1505 static void mpage_add_bh_to_extent(struct mpage_da_data
*mpd
,
1506 sector_t logical
, size_t b_size
,
1507 unsigned long b_state
)
1510 int nrblocks
= mpd
->b_size
>> mpd
->inode
->i_blkbits
;
1513 * XXX Don't go larger than mballoc is willing to allocate
1514 * This is a stopgap solution. We eventually need to fold
1515 * mpage_da_submit_io() into this function and then call
1516 * ext4_map_blocks() multiple times in a loop
1518 if (nrblocks
>= 8*1024*1024/mpd
->inode
->i_sb
->s_blocksize
)
1521 /* check if thereserved journal credits might overflow */
1522 if (!(ext4_test_inode_flag(mpd
->inode
, EXT4_INODE_EXTENTS
))) {
1523 if (nrblocks
>= EXT4_MAX_TRANS_DATA
) {
1525 * With non-extent format we are limited by the journal
1526 * credit available. Total credit needed to insert
1527 * nrblocks contiguous blocks is dependent on the
1528 * nrblocks. So limit nrblocks.
1531 } else if ((nrblocks
+ (b_size
>> mpd
->inode
->i_blkbits
)) >
1532 EXT4_MAX_TRANS_DATA
) {
1534 * Adding the new buffer_head would make it cross the
1535 * allowed limit for which we have journal credit
1536 * reserved. So limit the new bh->b_size
1538 b_size
= (EXT4_MAX_TRANS_DATA
- nrblocks
) <<
1539 mpd
->inode
->i_blkbits
;
1540 /* we will do mpage_da_submit_io in the next loop */
1544 * First block in the extent
1546 if (mpd
->b_size
== 0) {
1547 mpd
->b_blocknr
= logical
;
1548 mpd
->b_size
= b_size
;
1549 mpd
->b_state
= b_state
& BH_FLAGS
;
1553 next
= mpd
->b_blocknr
+ nrblocks
;
1555 * Can we merge the block to our big extent?
1557 if (logical
== next
&& (b_state
& BH_FLAGS
) == mpd
->b_state
) {
1558 mpd
->b_size
+= b_size
;
1564 * We couldn't merge the block to our extent, so we
1565 * need to flush current extent and start new one
1567 mpage_da_map_and_submit(mpd
);
1571 static int ext4_bh_delay_or_unwritten(handle_t
*handle
, struct buffer_head
*bh
)
1573 return (buffer_delay(bh
) || buffer_unwritten(bh
)) && buffer_dirty(bh
);
1577 * This is a special get_blocks_t callback which is used by
1578 * ext4_da_write_begin(). It will either return mapped block or
1579 * reserve space for a single block.
1581 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1582 * We also have b_blocknr = -1 and b_bdev initialized properly
1584 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1585 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1586 * initialized properly.
1588 static int ext4_da_get_block_prep(struct inode
*inode
, sector_t iblock
,
1589 struct buffer_head
*bh
, int create
)
1591 struct ext4_map_blocks map
;
1593 sector_t invalid_block
= ~((sector_t
) 0xffff);
1595 if (invalid_block
< ext4_blocks_count(EXT4_SB(inode
->i_sb
)->s_es
))
1598 BUG_ON(create
== 0);
1599 BUG_ON(bh
->b_size
!= inode
->i_sb
->s_blocksize
);
1601 map
.m_lblk
= iblock
;
1605 * first, we need to know whether the block is allocated already
1606 * preallocated blocks are unmapped but should treated
1607 * the same as allocated blocks.
1609 ret
= ext4_map_blocks(NULL
, inode
, &map
, 0);
1613 if (buffer_delay(bh
))
1614 return 0; /* Not sure this could or should happen */
1616 * XXX: __block_write_begin() unmaps passed block, is it OK?
1618 ret
= ext4_da_reserve_space(inode
, iblock
);
1620 /* not enough space to reserve */
1623 map_bh(bh
, inode
->i_sb
, invalid_block
);
1625 set_buffer_delay(bh
);
1629 map_bh(bh
, inode
->i_sb
, map
.m_pblk
);
1630 bh
->b_state
= (bh
->b_state
& ~EXT4_MAP_FLAGS
) | map
.m_flags
;
1632 if (buffer_unwritten(bh
)) {
1633 /* A delayed write to unwritten bh should be marked
1634 * new and mapped. Mapped ensures that we don't do
1635 * get_block multiple times when we write to the same
1636 * offset and new ensures that we do proper zero out
1637 * for partial write.
1640 set_buffer_mapped(bh
);
1646 * This function is used as a standard get_block_t calback function
1647 * when there is no desire to allocate any blocks. It is used as a
1648 * callback function for block_write_begin() and block_write_full_page().
1649 * These functions should only try to map a single block at a time.
1651 * Since this function doesn't do block allocations even if the caller
1652 * requests it by passing in create=1, it is critically important that
1653 * any caller checks to make sure that any buffer heads are returned
1654 * by this function are either all already mapped or marked for
1655 * delayed allocation before calling block_write_full_page(). Otherwise,
1656 * b_blocknr could be left unitialized, and the page write functions will
1657 * be taken by surprise.
1659 static int noalloc_get_block_write(struct inode
*inode
, sector_t iblock
,
1660 struct buffer_head
*bh_result
, int create
)
1662 BUG_ON(bh_result
->b_size
!= inode
->i_sb
->s_blocksize
);
1663 return _ext4_get_block(inode
, iblock
, bh_result
, 0);
1666 static int bget_one(handle_t
*handle
, struct buffer_head
*bh
)
1672 static int bput_one(handle_t
*handle
, struct buffer_head
*bh
)
1678 static int __ext4_journalled_writepage(struct page
*page
,
1681 struct address_space
*mapping
= page
->mapping
;
1682 struct inode
*inode
= mapping
->host
;
1683 struct buffer_head
*page_bufs
;
1684 handle_t
*handle
= NULL
;
1688 ClearPageChecked(page
);
1689 page_bufs
= page_buffers(page
);
1691 walk_page_buffers(handle
, page_bufs
, 0, len
, NULL
, bget_one
);
1692 /* As soon as we unlock the page, it can go away, but we have
1693 * references to buffers so we are safe */
1696 handle
= ext4_journal_start(inode
, ext4_writepage_trans_blocks(inode
));
1697 if (IS_ERR(handle
)) {
1698 ret
= PTR_ERR(handle
);
1702 ret
= walk_page_buffers(handle
, page_bufs
, 0, len
, NULL
,
1703 do_journal_get_write_access
);
1705 err
= walk_page_buffers(handle
, page_bufs
, 0, len
, NULL
,
1709 EXT4_I(inode
)->i_datasync_tid
= handle
->h_transaction
->t_tid
;
1710 err
= ext4_journal_stop(handle
);
1714 walk_page_buffers(handle
, page_bufs
, 0, len
, NULL
, bput_one
);
1715 ext4_set_inode_state(inode
, EXT4_STATE_JDATA
);
1720 static int ext4_set_bh_endio(struct buffer_head
*bh
, struct inode
*inode
);
1721 static void ext4_end_io_buffer_write(struct buffer_head
*bh
, int uptodate
);
1724 * Note that we don't need to start a transaction unless we're journaling data
1725 * because we should have holes filled from ext4_page_mkwrite(). We even don't
1726 * need to file the inode to the transaction's list in ordered mode because if
1727 * we are writing back data added by write(), the inode is already there and if
1728 * we are writing back data modified via mmap(), no one guarantees in which
1729 * transaction the data will hit the disk. In case we are journaling data, we
1730 * cannot start transaction directly because transaction start ranks above page
1731 * lock so we have to do some magic.
1733 * This function can get called via...
1734 * - ext4_da_writepages after taking page lock (have journal handle)
1735 * - journal_submit_inode_data_buffers (no journal handle)
1736 * - shrink_page_list via pdflush (no journal handle)
1737 * - grab_page_cache when doing write_begin (have journal handle)
1739 * We don't do any block allocation in this function. If we have page with
1740 * multiple blocks we need to write those buffer_heads that are mapped. This
1741 * is important for mmaped based write. So if we do with blocksize 1K
1742 * truncate(f, 1024);
1743 * a = mmap(f, 0, 4096);
1745 * truncate(f, 4096);
1746 * we have in the page first buffer_head mapped via page_mkwrite call back
1747 * but other bufer_heads would be unmapped but dirty(dirty done via the
1748 * do_wp_page). So writepage should write the first block. If we modify
1749 * the mmap area beyond 1024 we will again get a page_fault and the
1750 * page_mkwrite callback will do the block allocation and mark the
1751 * buffer_heads mapped.
1753 * We redirty the page if we have any buffer_heads that is either delay or
1754 * unwritten in the page.
1756 * We can get recursively called as show below.
1758 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1761 * But since we don't do any block allocation we should not deadlock.
1762 * Page also have the dirty flag cleared so we don't get recurive page_lock.
1764 static int ext4_writepage(struct page
*page
,
1765 struct writeback_control
*wbc
)
1767 int ret
= 0, commit_write
= 0;
1770 struct buffer_head
*page_bufs
= NULL
;
1771 struct inode
*inode
= page
->mapping
->host
;
1773 trace_ext4_writepage(page
);
1774 size
= i_size_read(inode
);
1775 if (page
->index
== size
>> PAGE_CACHE_SHIFT
)
1776 len
= size
& ~PAGE_CACHE_MASK
;
1778 len
= PAGE_CACHE_SIZE
;
1781 * If the page does not have buffers (for whatever reason),
1782 * try to create them using __block_write_begin. If this
1783 * fails, redirty the page and move on.
1785 if (!page_has_buffers(page
)) {
1786 if (__block_write_begin(page
, 0, len
,
1787 noalloc_get_block_write
)) {
1789 redirty_page_for_writepage(wbc
, page
);
1795 page_bufs
= page_buffers(page
);
1796 if (walk_page_buffers(NULL
, page_bufs
, 0, len
, NULL
,
1797 ext4_bh_delay_or_unwritten
)) {
1799 * We don't want to do block allocation, so redirty
1800 * the page and return. We may reach here when we do
1801 * a journal commit via journal_submit_inode_data_buffers.
1802 * We can also reach here via shrink_page_list
1807 /* now mark the buffer_heads as dirty and uptodate */
1808 block_commit_write(page
, 0, len
);
1810 if (PageChecked(page
) && ext4_should_journal_data(inode
))
1812 * It's mmapped pagecache. Add buffers and journal it. There
1813 * doesn't seem much point in redirtying the page here.
1815 return __ext4_journalled_writepage(page
, len
);
1817 if (buffer_uninit(page_bufs
)) {
1818 ext4_set_bh_endio(page_bufs
, inode
);
1819 ret
= block_write_full_page_endio(page
, noalloc_get_block_write
,
1820 wbc
, ext4_end_io_buffer_write
);
1822 ret
= block_write_full_page(page
, noalloc_get_block_write
,
1829 * This is called via ext4_da_writepages() to
1830 * calculate the total number of credits to reserve to fit
1831 * a single extent allocation into a single transaction,
1832 * ext4_da_writpeages() will loop calling this before
1833 * the block allocation.
1836 static int ext4_da_writepages_trans_blocks(struct inode
*inode
)
1838 int max_blocks
= EXT4_I(inode
)->i_reserved_data_blocks
;
1841 * With non-extent format the journal credit needed to
1842 * insert nrblocks contiguous block is dependent on
1843 * number of contiguous block. So we will limit
1844 * number of contiguous block to a sane value
1846 if (!(ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
)) &&
1847 (max_blocks
> EXT4_MAX_TRANS_DATA
))
1848 max_blocks
= EXT4_MAX_TRANS_DATA
;
1850 return ext4_chunk_trans_blocks(inode
, max_blocks
);
1854 * write_cache_pages_da - walk the list of dirty pages of the given
1855 * address space and accumulate pages that need writing, and call
1856 * mpage_da_map_and_submit to map a single contiguous memory region
1857 * and then write them.
1859 static int write_cache_pages_da(struct address_space
*mapping
,
1860 struct writeback_control
*wbc
,
1861 struct mpage_da_data
*mpd
,
1862 pgoff_t
*done_index
)
1864 struct buffer_head
*bh
, *head
;
1865 struct inode
*inode
= mapping
->host
;
1866 struct pagevec pvec
;
1867 unsigned int nr_pages
;
1870 long nr_to_write
= wbc
->nr_to_write
;
1871 int i
, tag
, ret
= 0;
1873 memset(mpd
, 0, sizeof(struct mpage_da_data
));
1876 pagevec_init(&pvec
, 0);
1877 index
= wbc
->range_start
>> PAGE_CACHE_SHIFT
;
1878 end
= wbc
->range_end
>> PAGE_CACHE_SHIFT
;
1880 if (wbc
->sync_mode
== WB_SYNC_ALL
|| wbc
->tagged_writepages
)
1881 tag
= PAGECACHE_TAG_TOWRITE
;
1883 tag
= PAGECACHE_TAG_DIRTY
;
1885 *done_index
= index
;
1886 while (index
<= end
) {
1887 nr_pages
= pagevec_lookup_tag(&pvec
, mapping
, &index
, tag
,
1888 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
-1) + 1);
1892 for (i
= 0; i
< nr_pages
; i
++) {
1893 struct page
*page
= pvec
.pages
[i
];
1896 * At this point, the page may be truncated or
1897 * invalidated (changing page->mapping to NULL), or
1898 * even swizzled back from swapper_space to tmpfs file
1899 * mapping. However, page->index will not change
1900 * because we have a reference on the page.
1902 if (page
->index
> end
)
1905 *done_index
= page
->index
+ 1;
1908 * If we can't merge this page, and we have
1909 * accumulated an contiguous region, write it
1911 if ((mpd
->next_page
!= page
->index
) &&
1912 (mpd
->next_page
!= mpd
->first_page
)) {
1913 mpage_da_map_and_submit(mpd
);
1914 goto ret_extent_tail
;
1920 * If the page is no longer dirty, or its
1921 * mapping no longer corresponds to inode we
1922 * are writing (which means it has been
1923 * truncated or invalidated), or the page is
1924 * already under writeback and we are not
1925 * doing a data integrity writeback, skip the page
1927 if (!PageDirty(page
) ||
1928 (PageWriteback(page
) &&
1929 (wbc
->sync_mode
== WB_SYNC_NONE
)) ||
1930 unlikely(page
->mapping
!= mapping
)) {
1935 wait_on_page_writeback(page
);
1936 BUG_ON(PageWriteback(page
));
1938 if (mpd
->next_page
!= page
->index
)
1939 mpd
->first_page
= page
->index
;
1940 mpd
->next_page
= page
->index
+ 1;
1941 logical
= (sector_t
) page
->index
<<
1942 (PAGE_CACHE_SHIFT
- inode
->i_blkbits
);
1944 if (!page_has_buffers(page
)) {
1945 mpage_add_bh_to_extent(mpd
, logical
,
1947 (1 << BH_Dirty
) | (1 << BH_Uptodate
));
1949 goto ret_extent_tail
;
1952 * Page with regular buffer heads,
1953 * just add all dirty ones
1955 head
= page_buffers(page
);
1958 BUG_ON(buffer_locked(bh
));
1960 * We need to try to allocate
1961 * unmapped blocks in the same page.
1962 * Otherwise we won't make progress
1963 * with the page in ext4_writepage
1965 if (ext4_bh_delay_or_unwritten(NULL
, bh
)) {
1966 mpage_add_bh_to_extent(mpd
, logical
,
1970 goto ret_extent_tail
;
1971 } else if (buffer_dirty(bh
) && (buffer_mapped(bh
))) {
1973 * mapped dirty buffer. We need
1974 * to update the b_state
1975 * because we look at b_state
1976 * in mpage_da_map_blocks. We
1977 * don't update b_size because
1978 * if we find an unmapped
1979 * buffer_head later we need to
1980 * use the b_state flag of that
1983 if (mpd
->b_size
== 0)
1984 mpd
->b_state
= bh
->b_state
& BH_FLAGS
;
1987 } while ((bh
= bh
->b_this_page
) != head
);
1990 if (nr_to_write
> 0) {
1992 if (nr_to_write
== 0 &&
1993 wbc
->sync_mode
== WB_SYNC_NONE
)
1995 * We stop writing back only if we are
1996 * not doing integrity sync. In case of
1997 * integrity sync we have to keep going
1998 * because someone may be concurrently
1999 * dirtying pages, and we might have
2000 * synced a lot of newly appeared dirty
2001 * pages, but have not synced all of the
2007 pagevec_release(&pvec
);
2012 ret
= MPAGE_DA_EXTENT_TAIL
;
2014 pagevec_release(&pvec
);
2020 static int ext4_da_writepages(struct address_space
*mapping
,
2021 struct writeback_control
*wbc
)
2024 int range_whole
= 0;
2025 handle_t
*handle
= NULL
;
2026 struct mpage_da_data mpd
;
2027 struct inode
*inode
= mapping
->host
;
2028 int pages_written
= 0;
2029 unsigned int max_pages
;
2030 int range_cyclic
, cycled
= 1, io_done
= 0;
2031 int needed_blocks
, ret
= 0;
2032 long desired_nr_to_write
, nr_to_writebump
= 0;
2033 loff_t range_start
= wbc
->range_start
;
2034 struct ext4_sb_info
*sbi
= EXT4_SB(mapping
->host
->i_sb
);
2035 pgoff_t done_index
= 0;
2038 trace_ext4_da_writepages(inode
, wbc
);
2041 * No pages to write? This is mainly a kludge to avoid starting
2042 * a transaction for special inodes like journal inode on last iput()
2043 * because that could violate lock ordering on umount
2045 if (!mapping
->nrpages
|| !mapping_tagged(mapping
, PAGECACHE_TAG_DIRTY
))
2049 * If the filesystem has aborted, it is read-only, so return
2050 * right away instead of dumping stack traces later on that
2051 * will obscure the real source of the problem. We test
2052 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2053 * the latter could be true if the filesystem is mounted
2054 * read-only, and in that case, ext4_da_writepages should
2055 * *never* be called, so if that ever happens, we would want
2058 if (unlikely(sbi
->s_mount_flags
& EXT4_MF_FS_ABORTED
))
2061 if (wbc
->range_start
== 0 && wbc
->range_end
== LLONG_MAX
)
2064 range_cyclic
= wbc
->range_cyclic
;
2065 if (wbc
->range_cyclic
) {
2066 index
= mapping
->writeback_index
;
2069 wbc
->range_start
= index
<< PAGE_CACHE_SHIFT
;
2070 wbc
->range_end
= LLONG_MAX
;
2071 wbc
->range_cyclic
= 0;
2074 index
= wbc
->range_start
>> PAGE_CACHE_SHIFT
;
2075 end
= wbc
->range_end
>> PAGE_CACHE_SHIFT
;
2079 * This works around two forms of stupidity. The first is in
2080 * the writeback code, which caps the maximum number of pages
2081 * written to be 1024 pages. This is wrong on multiple
2082 * levels; different architectues have a different page size,
2083 * which changes the maximum amount of data which gets
2084 * written. Secondly, 4 megabytes is way too small. XFS
2085 * forces this value to be 16 megabytes by multiplying
2086 * nr_to_write parameter by four, and then relies on its
2087 * allocator to allocate larger extents to make them
2088 * contiguous. Unfortunately this brings us to the second
2089 * stupidity, which is that ext4's mballoc code only allocates
2090 * at most 2048 blocks. So we force contiguous writes up to
2091 * the number of dirty blocks in the inode, or
2092 * sbi->max_writeback_mb_bump whichever is smaller.
2094 max_pages
= sbi
->s_max_writeback_mb_bump
<< (20 - PAGE_CACHE_SHIFT
);
2095 if (!range_cyclic
&& range_whole
) {
2096 if (wbc
->nr_to_write
== LONG_MAX
)
2097 desired_nr_to_write
= wbc
->nr_to_write
;
2099 desired_nr_to_write
= wbc
->nr_to_write
* 8;
2101 desired_nr_to_write
= ext4_num_dirty_pages(inode
, index
,
2103 if (desired_nr_to_write
> max_pages
)
2104 desired_nr_to_write
= max_pages
;
2106 if (wbc
->nr_to_write
< desired_nr_to_write
) {
2107 nr_to_writebump
= desired_nr_to_write
- wbc
->nr_to_write
;
2108 wbc
->nr_to_write
= desired_nr_to_write
;
2112 if (wbc
->sync_mode
== WB_SYNC_ALL
|| wbc
->tagged_writepages
)
2113 tag_pages_for_writeback(mapping
, index
, end
);
2115 while (!ret
&& wbc
->nr_to_write
> 0) {
2118 * we insert one extent at a time. So we need
2119 * credit needed for single extent allocation.
2120 * journalled mode is currently not supported
2123 BUG_ON(ext4_should_journal_data(inode
));
2124 needed_blocks
= ext4_da_writepages_trans_blocks(inode
);
2126 /* start a new transaction*/
2127 handle
= ext4_journal_start(inode
, needed_blocks
);
2128 if (IS_ERR(handle
)) {
2129 ret
= PTR_ERR(handle
);
2130 ext4_msg(inode
->i_sb
, KERN_CRIT
, "%s: jbd2_start: "
2131 "%ld pages, ino %lu; err %d", __func__
,
2132 wbc
->nr_to_write
, inode
->i_ino
, ret
);
2133 goto out_writepages
;
2137 * Now call write_cache_pages_da() to find the next
2138 * contiguous region of logical blocks that need
2139 * blocks to be allocated by ext4 and submit them.
2141 ret
= write_cache_pages_da(mapping
, wbc
, &mpd
, &done_index
);
2143 * If we have a contiguous extent of pages and we
2144 * haven't done the I/O yet, map the blocks and submit
2147 if (!mpd
.io_done
&& mpd
.next_page
!= mpd
.first_page
) {
2148 mpage_da_map_and_submit(&mpd
);
2149 ret
= MPAGE_DA_EXTENT_TAIL
;
2151 trace_ext4_da_write_pages(inode
, &mpd
);
2152 wbc
->nr_to_write
-= mpd
.pages_written
;
2154 ext4_journal_stop(handle
);
2156 if ((mpd
.retval
== -ENOSPC
) && sbi
->s_journal
) {
2157 /* commit the transaction which would
2158 * free blocks released in the transaction
2161 jbd2_journal_force_commit_nested(sbi
->s_journal
);
2163 } else if (ret
== MPAGE_DA_EXTENT_TAIL
) {
2165 * got one extent now try with
2168 pages_written
+= mpd
.pages_written
;
2171 } else if (wbc
->nr_to_write
)
2173 * There is no more writeout needed
2174 * or we requested for a noblocking writeout
2175 * and we found the device congested
2179 if (!io_done
&& !cycled
) {
2182 wbc
->range_start
= index
<< PAGE_CACHE_SHIFT
;
2183 wbc
->range_end
= mapping
->writeback_index
- 1;
2188 wbc
->range_cyclic
= range_cyclic
;
2189 if (wbc
->range_cyclic
|| (range_whole
&& wbc
->nr_to_write
> 0))
2191 * set the writeback_index so that range_cyclic
2192 * mode will write it back later
2194 mapping
->writeback_index
= done_index
;
2197 wbc
->nr_to_write
-= nr_to_writebump
;
2198 wbc
->range_start
= range_start
;
2199 trace_ext4_da_writepages_result(inode
, wbc
, ret
, pages_written
);
2203 #define FALL_BACK_TO_NONDELALLOC 1
2204 static int ext4_nonda_switch(struct super_block
*sb
)
2206 s64 free_blocks
, dirty_blocks
;
2207 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
2210 * switch to non delalloc mode if we are running low
2211 * on free block. The free block accounting via percpu
2212 * counters can get slightly wrong with percpu_counter_batch getting
2213 * accumulated on each CPU without updating global counters
2214 * Delalloc need an accurate free block accounting. So switch
2215 * to non delalloc when we are near to error range.
2217 free_blocks
= percpu_counter_read_positive(&sbi
->s_freeblocks_counter
);
2218 dirty_blocks
= percpu_counter_read_positive(&sbi
->s_dirtyblocks_counter
);
2219 if (2 * free_blocks
< 3 * dirty_blocks
||
2220 free_blocks
< (dirty_blocks
+ EXT4_FREEBLOCKS_WATERMARK
)) {
2222 * free block count is less than 150% of dirty blocks
2223 * or free blocks is less than watermark
2228 * Even if we don't switch but are nearing capacity,
2229 * start pushing delalloc when 1/2 of free blocks are dirty.
2231 if (free_blocks
< 2 * dirty_blocks
)
2232 writeback_inodes_sb_if_idle(sb
);
2237 static int ext4_da_write_begin(struct file
*file
, struct address_space
*mapping
,
2238 loff_t pos
, unsigned len
, unsigned flags
,
2239 struct page
**pagep
, void **fsdata
)
2241 int ret
, retries
= 0;
2244 struct inode
*inode
= mapping
->host
;
2247 index
= pos
>> PAGE_CACHE_SHIFT
;
2249 if (ext4_nonda_switch(inode
->i_sb
)) {
2250 *fsdata
= (void *)FALL_BACK_TO_NONDELALLOC
;
2251 return ext4_write_begin(file
, mapping
, pos
,
2252 len
, flags
, pagep
, fsdata
);
2254 *fsdata
= (void *)0;
2255 trace_ext4_da_write_begin(inode
, pos
, len
, flags
);
2258 * With delayed allocation, we don't log the i_disksize update
2259 * if there is delayed block allocation. But we still need
2260 * to journalling the i_disksize update if writes to the end
2261 * of file which has an already mapped buffer.
2263 handle
= ext4_journal_start(inode
, 1);
2264 if (IS_ERR(handle
)) {
2265 ret
= PTR_ERR(handle
);
2268 /* We cannot recurse into the filesystem as the transaction is already
2270 flags
|= AOP_FLAG_NOFS
;
2272 page
= grab_cache_page_write_begin(mapping
, index
, flags
);
2274 ext4_journal_stop(handle
);
2280 ret
= __block_write_begin(page
, pos
, len
, ext4_da_get_block_prep
);
2283 ext4_journal_stop(handle
);
2284 page_cache_release(page
);
2286 * block_write_begin may have instantiated a few blocks
2287 * outside i_size. Trim these off again. Don't need
2288 * i_size_read because we hold i_mutex.
2290 if (pos
+ len
> inode
->i_size
)
2291 ext4_truncate_failed_write(inode
);
2294 if (ret
== -ENOSPC
&& ext4_should_retry_alloc(inode
->i_sb
, &retries
))
2301 * Check if we should update i_disksize
2302 * when write to the end of file but not require block allocation
2304 static int ext4_da_should_update_i_disksize(struct page
*page
,
2305 unsigned long offset
)
2307 struct buffer_head
*bh
;
2308 struct inode
*inode
= page
->mapping
->host
;
2312 bh
= page_buffers(page
);
2313 idx
= offset
>> inode
->i_blkbits
;
2315 for (i
= 0; i
< idx
; i
++)
2316 bh
= bh
->b_this_page
;
2318 if (!buffer_mapped(bh
) || (buffer_delay(bh
)) || buffer_unwritten(bh
))
2323 static int ext4_da_write_end(struct file
*file
,
2324 struct address_space
*mapping
,
2325 loff_t pos
, unsigned len
, unsigned copied
,
2326 struct page
*page
, void *fsdata
)
2328 struct inode
*inode
= mapping
->host
;
2330 handle_t
*handle
= ext4_journal_current_handle();
2332 unsigned long start
, end
;
2333 int write_mode
= (int)(unsigned long)fsdata
;
2335 if (write_mode
== FALL_BACK_TO_NONDELALLOC
) {
2336 if (ext4_should_order_data(inode
)) {
2337 return ext4_ordered_write_end(file
, mapping
, pos
,
2338 len
, copied
, page
, fsdata
);
2339 } else if (ext4_should_writeback_data(inode
)) {
2340 return ext4_writeback_write_end(file
, mapping
, pos
,
2341 len
, copied
, page
, fsdata
);
2347 trace_ext4_da_write_end(inode
, pos
, len
, copied
);
2348 start
= pos
& (PAGE_CACHE_SIZE
- 1);
2349 end
= start
+ copied
- 1;
2352 * generic_write_end() will run mark_inode_dirty() if i_size
2353 * changes. So let's piggyback the i_disksize mark_inode_dirty
2357 new_i_size
= pos
+ copied
;
2358 if (new_i_size
> EXT4_I(inode
)->i_disksize
) {
2359 if (ext4_da_should_update_i_disksize(page
, end
)) {
2360 down_write(&EXT4_I(inode
)->i_data_sem
);
2361 if (new_i_size
> EXT4_I(inode
)->i_disksize
) {
2363 * Updating i_disksize when extending file
2364 * without needing block allocation
2366 if (ext4_should_order_data(inode
))
2367 ret
= ext4_jbd2_file_inode(handle
,
2370 EXT4_I(inode
)->i_disksize
= new_i_size
;
2372 up_write(&EXT4_I(inode
)->i_data_sem
);
2373 /* We need to mark inode dirty even if
2374 * new_i_size is less that inode->i_size
2375 * bu greater than i_disksize.(hint delalloc)
2377 ext4_mark_inode_dirty(handle
, inode
);
2380 ret2
= generic_write_end(file
, mapping
, pos
, len
, copied
,
2385 ret2
= ext4_journal_stop(handle
);
2389 return ret
? ret
: copied
;
2392 static void ext4_da_invalidatepage(struct page
*page
, unsigned long offset
)
2395 * Drop reserved blocks
2397 BUG_ON(!PageLocked(page
));
2398 if (!page_has_buffers(page
))
2401 ext4_da_page_release_reservation(page
, offset
);
2404 ext4_invalidatepage(page
, offset
);
2410 * Force all delayed allocation blocks to be allocated for a given inode.
2412 int ext4_alloc_da_blocks(struct inode
*inode
)
2414 trace_ext4_alloc_da_blocks(inode
);
2416 if (!EXT4_I(inode
)->i_reserved_data_blocks
&&
2417 !EXT4_I(inode
)->i_reserved_meta_blocks
)
2421 * We do something simple for now. The filemap_flush() will
2422 * also start triggering a write of the data blocks, which is
2423 * not strictly speaking necessary (and for users of
2424 * laptop_mode, not even desirable). However, to do otherwise
2425 * would require replicating code paths in:
2427 * ext4_da_writepages() ->
2428 * write_cache_pages() ---> (via passed in callback function)
2429 * __mpage_da_writepage() -->
2430 * mpage_add_bh_to_extent()
2431 * mpage_da_map_blocks()
2433 * The problem is that write_cache_pages(), located in
2434 * mm/page-writeback.c, marks pages clean in preparation for
2435 * doing I/O, which is not desirable if we're not planning on
2438 * We could call write_cache_pages(), and then redirty all of
2439 * the pages by calling redirty_page_for_writepage() but that
2440 * would be ugly in the extreme. So instead we would need to
2441 * replicate parts of the code in the above functions,
2442 * simplifying them because we wouldn't actually intend to
2443 * write out the pages, but rather only collect contiguous
2444 * logical block extents, call the multi-block allocator, and
2445 * then update the buffer heads with the block allocations.
2447 * For now, though, we'll cheat by calling filemap_flush(),
2448 * which will map the blocks, and start the I/O, but not
2449 * actually wait for the I/O to complete.
2451 return filemap_flush(inode
->i_mapping
);
2455 * bmap() is special. It gets used by applications such as lilo and by
2456 * the swapper to find the on-disk block of a specific piece of data.
2458 * Naturally, this is dangerous if the block concerned is still in the
2459 * journal. If somebody makes a swapfile on an ext4 data-journaling
2460 * filesystem and enables swap, then they may get a nasty shock when the
2461 * data getting swapped to that swapfile suddenly gets overwritten by
2462 * the original zero's written out previously to the journal and
2463 * awaiting writeback in the kernel's buffer cache.
2465 * So, if we see any bmap calls here on a modified, data-journaled file,
2466 * take extra steps to flush any blocks which might be in the cache.
2468 static sector_t
ext4_bmap(struct address_space
*mapping
, sector_t block
)
2470 struct inode
*inode
= mapping
->host
;
2474 if (mapping_tagged(mapping
, PAGECACHE_TAG_DIRTY
) &&
2475 test_opt(inode
->i_sb
, DELALLOC
)) {
2477 * With delalloc we want to sync the file
2478 * so that we can make sure we allocate
2481 filemap_write_and_wait(mapping
);
2484 if (EXT4_JOURNAL(inode
) &&
2485 ext4_test_inode_state(inode
, EXT4_STATE_JDATA
)) {
2487 * This is a REALLY heavyweight approach, but the use of
2488 * bmap on dirty files is expected to be extremely rare:
2489 * only if we run lilo or swapon on a freshly made file
2490 * do we expect this to happen.
2492 * (bmap requires CAP_SYS_RAWIO so this does not
2493 * represent an unprivileged user DOS attack --- we'd be
2494 * in trouble if mortal users could trigger this path at
2497 * NB. EXT4_STATE_JDATA is not set on files other than
2498 * regular files. If somebody wants to bmap a directory
2499 * or symlink and gets confused because the buffer
2500 * hasn't yet been flushed to disk, they deserve
2501 * everything they get.
2504 ext4_clear_inode_state(inode
, EXT4_STATE_JDATA
);
2505 journal
= EXT4_JOURNAL(inode
);
2506 jbd2_journal_lock_updates(journal
);
2507 err
= jbd2_journal_flush(journal
);
2508 jbd2_journal_unlock_updates(journal
);
2514 return generic_block_bmap(mapping
, block
, ext4_get_block
);
2517 static int ext4_readpage(struct file
*file
, struct page
*page
)
2519 trace_ext4_readpage(page
);
2520 return mpage_readpage(page
, ext4_get_block
);
2524 ext4_readpages(struct file
*file
, struct address_space
*mapping
,
2525 struct list_head
*pages
, unsigned nr_pages
)
2527 return mpage_readpages(mapping
, pages
, nr_pages
, ext4_get_block
);
2530 static void ext4_invalidatepage_free_endio(struct page
*page
, unsigned long offset
)
2532 struct buffer_head
*head
, *bh
;
2533 unsigned int curr_off
= 0;
2535 if (!page_has_buffers(page
))
2537 head
= bh
= page_buffers(page
);
2539 if (offset
<= curr_off
&& test_clear_buffer_uninit(bh
)
2541 ext4_free_io_end(bh
->b_private
);
2542 bh
->b_private
= NULL
;
2543 bh
->b_end_io
= NULL
;
2545 curr_off
= curr_off
+ bh
->b_size
;
2546 bh
= bh
->b_this_page
;
2547 } while (bh
!= head
);
2550 static void ext4_invalidatepage(struct page
*page
, unsigned long offset
)
2552 journal_t
*journal
= EXT4_JOURNAL(page
->mapping
->host
);
2554 trace_ext4_invalidatepage(page
, offset
);
2557 * free any io_end structure allocated for buffers to be discarded
2559 if (ext4_should_dioread_nolock(page
->mapping
->host
))
2560 ext4_invalidatepage_free_endio(page
, offset
);
2562 * If it's a full truncate we just forget about the pending dirtying
2565 ClearPageChecked(page
);
2568 jbd2_journal_invalidatepage(journal
, page
, offset
);
2570 block_invalidatepage(page
, offset
);
2573 static int ext4_releasepage(struct page
*page
, gfp_t wait
)
2575 journal_t
*journal
= EXT4_JOURNAL(page
->mapping
->host
);
2577 trace_ext4_releasepage(page
);
2579 WARN_ON(PageChecked(page
));
2580 if (!page_has_buffers(page
))
2583 return jbd2_journal_try_to_free_buffers(journal
, page
, wait
);
2585 return try_to_free_buffers(page
);
2589 * ext4_get_block used when preparing for a DIO write or buffer write.
2590 * We allocate an uinitialized extent if blocks haven't been allocated.
2591 * The extent will be converted to initialized after the IO is complete.
2593 static int ext4_get_block_write(struct inode
*inode
, sector_t iblock
,
2594 struct buffer_head
*bh_result
, int create
)
2596 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
2597 inode
->i_ino
, create
);
2598 return _ext4_get_block(inode
, iblock
, bh_result
,
2599 EXT4_GET_BLOCKS_IO_CREATE_EXT
);
2602 static void ext4_end_io_dio(struct kiocb
*iocb
, loff_t offset
,
2603 ssize_t size
, void *private, int ret
,
2606 struct inode
*inode
= iocb
->ki_filp
->f_path
.dentry
->d_inode
;
2607 ext4_io_end_t
*io_end
= iocb
->private;
2608 struct workqueue_struct
*wq
;
2609 unsigned long flags
;
2610 struct ext4_inode_info
*ei
;
2612 /* if not async direct IO or dio with 0 bytes write, just return */
2613 if (!io_end
|| !size
)
2616 ext_debug("ext4_end_io_dio(): io_end 0x%p"
2617 "for inode %lu, iocb 0x%p, offset %llu, size %llu\n",
2618 iocb
->private, io_end
->inode
->i_ino
, iocb
, offset
,
2621 /* if not aio dio with unwritten extents, just free io and return */
2622 if (!(io_end
->flag
& EXT4_IO_END_UNWRITTEN
)) {
2623 ext4_free_io_end(io_end
);
2624 iocb
->private = NULL
;
2627 aio_complete(iocb
, ret
, 0);
2628 inode_dio_done(inode
);
2632 io_end
->offset
= offset
;
2633 io_end
->size
= size
;
2635 io_end
->iocb
= iocb
;
2636 io_end
->result
= ret
;
2638 wq
= EXT4_SB(io_end
->inode
->i_sb
)->dio_unwritten_wq
;
2640 /* Add the io_end to per-inode completed aio dio list*/
2641 ei
= EXT4_I(io_end
->inode
);
2642 spin_lock_irqsave(&ei
->i_completed_io_lock
, flags
);
2643 list_add_tail(&io_end
->list
, &ei
->i_completed_io_list
);
2644 spin_unlock_irqrestore(&ei
->i_completed_io_lock
, flags
);
2646 /* queue the work to convert unwritten extents to written */
2647 queue_work(wq
, &io_end
->work
);
2648 iocb
->private = NULL
;
2650 /* XXX: probably should move into the real I/O completion handler */
2651 inode_dio_done(inode
);
2654 static void ext4_end_io_buffer_write(struct buffer_head
*bh
, int uptodate
)
2656 ext4_io_end_t
*io_end
= bh
->b_private
;
2657 struct workqueue_struct
*wq
;
2658 struct inode
*inode
;
2659 unsigned long flags
;
2661 if (!test_clear_buffer_uninit(bh
) || !io_end
)
2664 if (!(io_end
->inode
->i_sb
->s_flags
& MS_ACTIVE
)) {
2665 printk("sb umounted, discard end_io request for inode %lu\n",
2666 io_end
->inode
->i_ino
);
2667 ext4_free_io_end(io_end
);
2671 io_end
->flag
= EXT4_IO_END_UNWRITTEN
;
2672 inode
= io_end
->inode
;
2674 /* Add the io_end to per-inode completed io list*/
2675 spin_lock_irqsave(&EXT4_I(inode
)->i_completed_io_lock
, flags
);
2676 list_add_tail(&io_end
->list
, &EXT4_I(inode
)->i_completed_io_list
);
2677 spin_unlock_irqrestore(&EXT4_I(inode
)->i_completed_io_lock
, flags
);
2679 wq
= EXT4_SB(inode
->i_sb
)->dio_unwritten_wq
;
2680 /* queue the work to convert unwritten extents to written */
2681 queue_work(wq
, &io_end
->work
);
2683 bh
->b_private
= NULL
;
2684 bh
->b_end_io
= NULL
;
2685 clear_buffer_uninit(bh
);
2686 end_buffer_async_write(bh
, uptodate
);
2689 static int ext4_set_bh_endio(struct buffer_head
*bh
, struct inode
*inode
)
2691 ext4_io_end_t
*io_end
;
2692 struct page
*page
= bh
->b_page
;
2693 loff_t offset
= (sector_t
)page
->index
<< PAGE_CACHE_SHIFT
;
2694 size_t size
= bh
->b_size
;
2697 io_end
= ext4_init_io_end(inode
, GFP_ATOMIC
);
2699 pr_warn_ratelimited("%s: allocation fail\n", __func__
);
2703 io_end
->offset
= offset
;
2704 io_end
->size
= size
;
2706 * We need to hold a reference to the page to make sure it
2707 * doesn't get evicted before ext4_end_io_work() has a chance
2708 * to convert the extent from written to unwritten.
2710 io_end
->page
= page
;
2711 get_page(io_end
->page
);
2713 bh
->b_private
= io_end
;
2714 bh
->b_end_io
= ext4_end_io_buffer_write
;
2719 * For ext4 extent files, ext4 will do direct-io write to holes,
2720 * preallocated extents, and those write extend the file, no need to
2721 * fall back to buffered IO.
2723 * For holes, we fallocate those blocks, mark them as uninitialized
2724 * If those blocks were preallocated, we mark sure they are splited, but
2725 * still keep the range to write as uninitialized.
2727 * The unwrritten extents will be converted to written when DIO is completed.
2728 * For async direct IO, since the IO may still pending when return, we
2729 * set up an end_io call back function, which will do the conversion
2730 * when async direct IO completed.
2732 * If the O_DIRECT write will extend the file then add this inode to the
2733 * orphan list. So recovery will truncate it back to the original size
2734 * if the machine crashes during the write.
2737 static ssize_t
ext4_ext_direct_IO(int rw
, struct kiocb
*iocb
,
2738 const struct iovec
*iov
, loff_t offset
,
2739 unsigned long nr_segs
)
2741 struct file
*file
= iocb
->ki_filp
;
2742 struct inode
*inode
= file
->f_mapping
->host
;
2744 size_t count
= iov_length(iov
, nr_segs
);
2746 loff_t final_size
= offset
+ count
;
2747 if (rw
== WRITE
&& final_size
<= inode
->i_size
) {
2749 * We could direct write to holes and fallocate.
2751 * Allocated blocks to fill the hole are marked as uninitialized
2752 * to prevent parallel buffered read to expose the stale data
2753 * before DIO complete the data IO.
2755 * As to previously fallocated extents, ext4 get_block
2756 * will just simply mark the buffer mapped but still
2757 * keep the extents uninitialized.
2759 * for non AIO case, we will convert those unwritten extents
2760 * to written after return back from blockdev_direct_IO.
2762 * for async DIO, the conversion needs to be defered when
2763 * the IO is completed. The ext4 end_io callback function
2764 * will be called to take care of the conversion work.
2765 * Here for async case, we allocate an io_end structure to
2768 iocb
->private = NULL
;
2769 EXT4_I(inode
)->cur_aio_dio
= NULL
;
2770 if (!is_sync_kiocb(iocb
)) {
2771 iocb
->private = ext4_init_io_end(inode
, GFP_NOFS
);
2775 * we save the io structure for current async
2776 * direct IO, so that later ext4_map_blocks()
2777 * could flag the io structure whether there
2778 * is a unwritten extents needs to be converted
2779 * when IO is completed.
2781 EXT4_I(inode
)->cur_aio_dio
= iocb
->private;
2784 ret
= __blockdev_direct_IO(rw
, iocb
, inode
,
2785 inode
->i_sb
->s_bdev
, iov
,
2787 ext4_get_block_write
,
2790 DIO_LOCKING
| DIO_SKIP_HOLES
);
2792 EXT4_I(inode
)->cur_aio_dio
= NULL
;
2794 * The io_end structure takes a reference to the inode,
2795 * that structure needs to be destroyed and the
2796 * reference to the inode need to be dropped, when IO is
2797 * complete, even with 0 byte write, or failed.
2799 * In the successful AIO DIO case, the io_end structure will be
2800 * desctroyed and the reference to the inode will be dropped
2801 * after the end_io call back function is called.
2803 * In the case there is 0 byte write, or error case, since
2804 * VFS direct IO won't invoke the end_io call back function,
2805 * we need to free the end_io structure here.
2807 if (ret
!= -EIOCBQUEUED
&& ret
<= 0 && iocb
->private) {
2808 ext4_free_io_end(iocb
->private);
2809 iocb
->private = NULL
;
2810 } else if (ret
> 0 && ext4_test_inode_state(inode
,
2811 EXT4_STATE_DIO_UNWRITTEN
)) {
2814 * for non AIO case, since the IO is already
2815 * completed, we could do the conversion right here
2817 err
= ext4_convert_unwritten_extents(inode
,
2821 ext4_clear_inode_state(inode
, EXT4_STATE_DIO_UNWRITTEN
);
2826 /* for write the the end of file case, we fall back to old way */
2827 return ext4_ind_direct_IO(rw
, iocb
, iov
, offset
, nr_segs
);
2830 static ssize_t
ext4_direct_IO(int rw
, struct kiocb
*iocb
,
2831 const struct iovec
*iov
, loff_t offset
,
2832 unsigned long nr_segs
)
2834 struct file
*file
= iocb
->ki_filp
;
2835 struct inode
*inode
= file
->f_mapping
->host
;
2838 trace_ext4_direct_IO_enter(inode
, offset
, iov_length(iov
, nr_segs
), rw
);
2839 if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
))
2840 ret
= ext4_ext_direct_IO(rw
, iocb
, iov
, offset
, nr_segs
);
2842 ret
= ext4_ind_direct_IO(rw
, iocb
, iov
, offset
, nr_segs
);
2843 trace_ext4_direct_IO_exit(inode
, offset
,
2844 iov_length(iov
, nr_segs
), rw
, ret
);
2849 * Pages can be marked dirty completely asynchronously from ext4's journalling
2850 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
2851 * much here because ->set_page_dirty is called under VFS locks. The page is
2852 * not necessarily locked.
2854 * We cannot just dirty the page and leave attached buffers clean, because the
2855 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
2856 * or jbddirty because all the journalling code will explode.
2858 * So what we do is to mark the page "pending dirty" and next time writepage
2859 * is called, propagate that into the buffers appropriately.
2861 static int ext4_journalled_set_page_dirty(struct page
*page
)
2863 SetPageChecked(page
);
2864 return __set_page_dirty_nobuffers(page
);
2867 static const struct address_space_operations ext4_ordered_aops
= {
2868 .readpage
= ext4_readpage
,
2869 .readpages
= ext4_readpages
,
2870 .writepage
= ext4_writepage
,
2871 .write_begin
= ext4_write_begin
,
2872 .write_end
= ext4_ordered_write_end
,
2874 .invalidatepage
= ext4_invalidatepage
,
2875 .releasepage
= ext4_releasepage
,
2876 .direct_IO
= ext4_direct_IO
,
2877 .migratepage
= buffer_migrate_page
,
2878 .is_partially_uptodate
= block_is_partially_uptodate
,
2879 .error_remove_page
= generic_error_remove_page
,
2882 static const struct address_space_operations ext4_writeback_aops
= {
2883 .readpage
= ext4_readpage
,
2884 .readpages
= ext4_readpages
,
2885 .writepage
= ext4_writepage
,
2886 .write_begin
= ext4_write_begin
,
2887 .write_end
= ext4_writeback_write_end
,
2889 .invalidatepage
= ext4_invalidatepage
,
2890 .releasepage
= ext4_releasepage
,
2891 .direct_IO
= ext4_direct_IO
,
2892 .migratepage
= buffer_migrate_page
,
2893 .is_partially_uptodate
= block_is_partially_uptodate
,
2894 .error_remove_page
= generic_error_remove_page
,
2897 static const struct address_space_operations ext4_journalled_aops
= {
2898 .readpage
= ext4_readpage
,
2899 .readpages
= ext4_readpages
,
2900 .writepage
= ext4_writepage
,
2901 .write_begin
= ext4_write_begin
,
2902 .write_end
= ext4_journalled_write_end
,
2903 .set_page_dirty
= ext4_journalled_set_page_dirty
,
2905 .invalidatepage
= ext4_invalidatepage
,
2906 .releasepage
= ext4_releasepage
,
2907 .is_partially_uptodate
= block_is_partially_uptodate
,
2908 .error_remove_page
= generic_error_remove_page
,
2911 static const struct address_space_operations ext4_da_aops
= {
2912 .readpage
= ext4_readpage
,
2913 .readpages
= ext4_readpages
,
2914 .writepage
= ext4_writepage
,
2915 .writepages
= ext4_da_writepages
,
2916 .write_begin
= ext4_da_write_begin
,
2917 .write_end
= ext4_da_write_end
,
2919 .invalidatepage
= ext4_da_invalidatepage
,
2920 .releasepage
= ext4_releasepage
,
2921 .direct_IO
= ext4_direct_IO
,
2922 .migratepage
= buffer_migrate_page
,
2923 .is_partially_uptodate
= block_is_partially_uptodate
,
2924 .error_remove_page
= generic_error_remove_page
,
2927 void ext4_set_aops(struct inode
*inode
)
2929 if (ext4_should_order_data(inode
) &&
2930 test_opt(inode
->i_sb
, DELALLOC
))
2931 inode
->i_mapping
->a_ops
= &ext4_da_aops
;
2932 else if (ext4_should_order_data(inode
))
2933 inode
->i_mapping
->a_ops
= &ext4_ordered_aops
;
2934 else if (ext4_should_writeback_data(inode
) &&
2935 test_opt(inode
->i_sb
, DELALLOC
))
2936 inode
->i_mapping
->a_ops
= &ext4_da_aops
;
2937 else if (ext4_should_writeback_data(inode
))
2938 inode
->i_mapping
->a_ops
= &ext4_writeback_aops
;
2940 inode
->i_mapping
->a_ops
= &ext4_journalled_aops
;
2944 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
2945 * up to the end of the block which corresponds to `from'.
2946 * This required during truncate. We need to physically zero the tail end
2947 * of that block so it doesn't yield old data if the file is later grown.
2949 int ext4_block_truncate_page(handle_t
*handle
,
2950 struct address_space
*mapping
, loff_t from
)
2952 unsigned offset
= from
& (PAGE_CACHE_SIZE
-1);
2955 struct inode
*inode
= mapping
->host
;
2957 blocksize
= inode
->i_sb
->s_blocksize
;
2958 length
= blocksize
- (offset
& (blocksize
- 1));
2960 return ext4_block_zero_page_range(handle
, mapping
, from
, length
);
2964 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
2965 * starting from file offset 'from'. The range to be zero'd must
2966 * be contained with in one block. If the specified range exceeds
2967 * the end of the block it will be shortened to end of the block
2968 * that cooresponds to 'from'
2970 int ext4_block_zero_page_range(handle_t
*handle
,
2971 struct address_space
*mapping
, loff_t from
, loff_t length
)
2973 ext4_fsblk_t index
= from
>> PAGE_CACHE_SHIFT
;
2974 unsigned offset
= from
& (PAGE_CACHE_SIZE
-1);
2975 unsigned blocksize
, max
, pos
;
2977 struct inode
*inode
= mapping
->host
;
2978 struct buffer_head
*bh
;
2982 page
= find_or_create_page(mapping
, from
>> PAGE_CACHE_SHIFT
,
2983 mapping_gfp_mask(mapping
) & ~__GFP_FS
);
2987 blocksize
= inode
->i_sb
->s_blocksize
;
2988 max
= blocksize
- (offset
& (blocksize
- 1));
2991 * correct length if it does not fall between
2992 * 'from' and the end of the block
2994 if (length
> max
|| length
< 0)
2997 iblock
= index
<< (PAGE_CACHE_SHIFT
- inode
->i_sb
->s_blocksize_bits
);
2999 if (!page_has_buffers(page
))
3000 create_empty_buffers(page
, blocksize
, 0);
3002 /* Find the buffer that contains "offset" */
3003 bh
= page_buffers(page
);
3005 while (offset
>= pos
) {
3006 bh
= bh
->b_this_page
;
3012 if (buffer_freed(bh
)) {
3013 BUFFER_TRACE(bh
, "freed: skip");
3017 if (!buffer_mapped(bh
)) {
3018 BUFFER_TRACE(bh
, "unmapped");
3019 ext4_get_block(inode
, iblock
, bh
, 0);
3020 /* unmapped? It's a hole - nothing to do */
3021 if (!buffer_mapped(bh
)) {
3022 BUFFER_TRACE(bh
, "still unmapped");
3027 /* Ok, it's mapped. Make sure it's up-to-date */
3028 if (PageUptodate(page
))
3029 set_buffer_uptodate(bh
);
3031 if (!buffer_uptodate(bh
)) {
3033 ll_rw_block(READ
, 1, &bh
);
3035 /* Uhhuh. Read error. Complain and punt. */
3036 if (!buffer_uptodate(bh
))
3040 if (ext4_should_journal_data(inode
)) {
3041 BUFFER_TRACE(bh
, "get write access");
3042 err
= ext4_journal_get_write_access(handle
, bh
);
3047 zero_user(page
, offset
, length
);
3049 BUFFER_TRACE(bh
, "zeroed end of block");
3052 if (ext4_should_journal_data(inode
)) {
3053 err
= ext4_handle_dirty_metadata(handle
, inode
, bh
);
3055 if (ext4_should_order_data(inode
) && EXT4_I(inode
)->jinode
)
3056 err
= ext4_jbd2_file_inode(handle
, inode
);
3057 mark_buffer_dirty(bh
);
3062 page_cache_release(page
);
3066 int ext4_can_truncate(struct inode
*inode
)
3068 if (S_ISREG(inode
->i_mode
))
3070 if (S_ISDIR(inode
->i_mode
))
3072 if (S_ISLNK(inode
->i_mode
))
3073 return !ext4_inode_is_fast_symlink(inode
);
3078 * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3079 * associated with the given offset and length
3081 * @inode: File inode
3082 * @offset: The offset where the hole will begin
3083 * @len: The length of the hole
3085 * Returns: 0 on sucess or negative on failure
3088 int ext4_punch_hole(struct file
*file
, loff_t offset
, loff_t length
)
3090 struct inode
*inode
= file
->f_path
.dentry
->d_inode
;
3091 if (!S_ISREG(inode
->i_mode
))
3094 if (!ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
)) {
3095 /* TODO: Add support for non extent hole punching */
3099 return ext4_ext_punch_hole(file
, offset
, length
);
3105 * We block out ext4_get_block() block instantiations across the entire
3106 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3107 * simultaneously on behalf of the same inode.
3109 * As we work through the truncate and commmit bits of it to the journal there
3110 * is one core, guiding principle: the file's tree must always be consistent on
3111 * disk. We must be able to restart the truncate after a crash.
3113 * The file's tree may be transiently inconsistent in memory (although it
3114 * probably isn't), but whenever we close off and commit a journal transaction,
3115 * the contents of (the filesystem + the journal) must be consistent and
3116 * restartable. It's pretty simple, really: bottom up, right to left (although
3117 * left-to-right works OK too).
3119 * Note that at recovery time, journal replay occurs *before* the restart of
3120 * truncate against the orphan inode list.
3122 * The committed inode has the new, desired i_size (which is the same as
3123 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
3124 * that this inode's truncate did not complete and it will again call
3125 * ext4_truncate() to have another go. So there will be instantiated blocks
3126 * to the right of the truncation point in a crashed ext4 filesystem. But
3127 * that's fine - as long as they are linked from the inode, the post-crash
3128 * ext4_truncate() run will find them and release them.
3130 void ext4_truncate(struct inode
*inode
)
3132 trace_ext4_truncate_enter(inode
);
3134 if (!ext4_can_truncate(inode
))
3137 ext4_clear_inode_flag(inode
, EXT4_INODE_EOFBLOCKS
);
3139 if (inode
->i_size
== 0 && !test_opt(inode
->i_sb
, NO_AUTO_DA_ALLOC
))
3140 ext4_set_inode_state(inode
, EXT4_STATE_DA_ALLOC_CLOSE
);
3142 if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
))
3143 ext4_ext_truncate(inode
);
3145 ext4_ind_truncate(inode
);
3147 trace_ext4_truncate_exit(inode
);
3151 * ext4_get_inode_loc returns with an extra refcount against the inode's
3152 * underlying buffer_head on success. If 'in_mem' is true, we have all
3153 * data in memory that is needed to recreate the on-disk version of this
3156 static int __ext4_get_inode_loc(struct inode
*inode
,
3157 struct ext4_iloc
*iloc
, int in_mem
)
3159 struct ext4_group_desc
*gdp
;
3160 struct buffer_head
*bh
;
3161 struct super_block
*sb
= inode
->i_sb
;
3163 int inodes_per_block
, inode_offset
;
3166 if (!ext4_valid_inum(sb
, inode
->i_ino
))
3169 iloc
->block_group
= (inode
->i_ino
- 1) / EXT4_INODES_PER_GROUP(sb
);
3170 gdp
= ext4_get_group_desc(sb
, iloc
->block_group
, NULL
);
3175 * Figure out the offset within the block group inode table
3177 inodes_per_block
= EXT4_SB(sb
)->s_inodes_per_block
;
3178 inode_offset
= ((inode
->i_ino
- 1) %
3179 EXT4_INODES_PER_GROUP(sb
));
3180 block
= ext4_inode_table(sb
, gdp
) + (inode_offset
/ inodes_per_block
);
3181 iloc
->offset
= (inode_offset
% inodes_per_block
) * EXT4_INODE_SIZE(sb
);
3183 bh
= sb_getblk(sb
, block
);
3185 EXT4_ERROR_INODE_BLOCK(inode
, block
,
3186 "unable to read itable block");
3189 if (!buffer_uptodate(bh
)) {
3193 * If the buffer has the write error flag, we have failed
3194 * to write out another inode in the same block. In this
3195 * case, we don't have to read the block because we may
3196 * read the old inode data successfully.
3198 if (buffer_write_io_error(bh
) && !buffer_uptodate(bh
))
3199 set_buffer_uptodate(bh
);
3201 if (buffer_uptodate(bh
)) {
3202 /* someone brought it uptodate while we waited */
3208 * If we have all information of the inode in memory and this
3209 * is the only valid inode in the block, we need not read the
3213 struct buffer_head
*bitmap_bh
;
3216 start
= inode_offset
& ~(inodes_per_block
- 1);
3218 /* Is the inode bitmap in cache? */
3219 bitmap_bh
= sb_getblk(sb
, ext4_inode_bitmap(sb
, gdp
));
3224 * If the inode bitmap isn't in cache then the
3225 * optimisation may end up performing two reads instead
3226 * of one, so skip it.
3228 if (!buffer_uptodate(bitmap_bh
)) {
3232 for (i
= start
; i
< start
+ inodes_per_block
; i
++) {
3233 if (i
== inode_offset
)
3235 if (ext4_test_bit(i
, bitmap_bh
->b_data
))
3239 if (i
== start
+ inodes_per_block
) {
3240 /* all other inodes are free, so skip I/O */
3241 memset(bh
->b_data
, 0, bh
->b_size
);
3242 set_buffer_uptodate(bh
);
3250 * If we need to do any I/O, try to pre-readahead extra
3251 * blocks from the inode table.
3253 if (EXT4_SB(sb
)->s_inode_readahead_blks
) {
3254 ext4_fsblk_t b
, end
, table
;
3257 table
= ext4_inode_table(sb
, gdp
);
3258 /* s_inode_readahead_blks is always a power of 2 */
3259 b
= block
& ~(EXT4_SB(sb
)->s_inode_readahead_blks
-1);
3262 end
= b
+ EXT4_SB(sb
)->s_inode_readahead_blks
;
3263 num
= EXT4_INODES_PER_GROUP(sb
);
3264 if (EXT4_HAS_RO_COMPAT_FEATURE(sb
,
3265 EXT4_FEATURE_RO_COMPAT_GDT_CSUM
))
3266 num
-= ext4_itable_unused_count(sb
, gdp
);
3267 table
+= num
/ inodes_per_block
;
3271 sb_breadahead(sb
, b
++);
3275 * There are other valid inodes in the buffer, this inode
3276 * has in-inode xattrs, or we don't have this inode in memory.
3277 * Read the block from disk.
3279 trace_ext4_load_inode(inode
);
3281 bh
->b_end_io
= end_buffer_read_sync
;
3282 submit_bh(READ_META
, bh
);
3284 if (!buffer_uptodate(bh
)) {
3285 EXT4_ERROR_INODE_BLOCK(inode
, block
,
3286 "unable to read itable block");
3296 int ext4_get_inode_loc(struct inode
*inode
, struct ext4_iloc
*iloc
)
3298 /* We have all inode data except xattrs in memory here. */
3299 return __ext4_get_inode_loc(inode
, iloc
,
3300 !ext4_test_inode_state(inode
, EXT4_STATE_XATTR
));
3303 void ext4_set_inode_flags(struct inode
*inode
)
3305 unsigned int flags
= EXT4_I(inode
)->i_flags
;
3307 inode
->i_flags
&= ~(S_SYNC
|S_APPEND
|S_IMMUTABLE
|S_NOATIME
|S_DIRSYNC
);
3308 if (flags
& EXT4_SYNC_FL
)
3309 inode
->i_flags
|= S_SYNC
;
3310 if (flags
& EXT4_APPEND_FL
)
3311 inode
->i_flags
|= S_APPEND
;
3312 if (flags
& EXT4_IMMUTABLE_FL
)
3313 inode
->i_flags
|= S_IMMUTABLE
;
3314 if (flags
& EXT4_NOATIME_FL
)
3315 inode
->i_flags
|= S_NOATIME
;
3316 if (flags
& EXT4_DIRSYNC_FL
)
3317 inode
->i_flags
|= S_DIRSYNC
;
3320 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3321 void ext4_get_inode_flags(struct ext4_inode_info
*ei
)
3323 unsigned int vfs_fl
;
3324 unsigned long old_fl
, new_fl
;
3327 vfs_fl
= ei
->vfs_inode
.i_flags
;
3328 old_fl
= ei
->i_flags
;
3329 new_fl
= old_fl
& ~(EXT4_SYNC_FL
|EXT4_APPEND_FL
|
3330 EXT4_IMMUTABLE_FL
|EXT4_NOATIME_FL
|
3332 if (vfs_fl
& S_SYNC
)
3333 new_fl
|= EXT4_SYNC_FL
;
3334 if (vfs_fl
& S_APPEND
)
3335 new_fl
|= EXT4_APPEND_FL
;
3336 if (vfs_fl
& S_IMMUTABLE
)
3337 new_fl
|= EXT4_IMMUTABLE_FL
;
3338 if (vfs_fl
& S_NOATIME
)
3339 new_fl
|= EXT4_NOATIME_FL
;
3340 if (vfs_fl
& S_DIRSYNC
)
3341 new_fl
|= EXT4_DIRSYNC_FL
;
3342 } while (cmpxchg(&ei
->i_flags
, old_fl
, new_fl
) != old_fl
);
3345 static blkcnt_t
ext4_inode_blocks(struct ext4_inode
*raw_inode
,
3346 struct ext4_inode_info
*ei
)
3349 struct inode
*inode
= &(ei
->vfs_inode
);
3350 struct super_block
*sb
= inode
->i_sb
;
3352 if (EXT4_HAS_RO_COMPAT_FEATURE(sb
,
3353 EXT4_FEATURE_RO_COMPAT_HUGE_FILE
)) {
3354 /* we are using combined 48 bit field */
3355 i_blocks
= ((u64
)le16_to_cpu(raw_inode
->i_blocks_high
)) << 32 |
3356 le32_to_cpu(raw_inode
->i_blocks_lo
);
3357 if (ext4_test_inode_flag(inode
, EXT4_INODE_HUGE_FILE
)) {
3358 /* i_blocks represent file system block size */
3359 return i_blocks
<< (inode
->i_blkbits
- 9);
3364 return le32_to_cpu(raw_inode
->i_blocks_lo
);
3368 struct inode
*ext4_iget(struct super_block
*sb
, unsigned long ino
)
3370 struct ext4_iloc iloc
;
3371 struct ext4_inode
*raw_inode
;
3372 struct ext4_inode_info
*ei
;
3373 struct inode
*inode
;
3374 journal_t
*journal
= EXT4_SB(sb
)->s_journal
;
3378 inode
= iget_locked(sb
, ino
);
3380 return ERR_PTR(-ENOMEM
);
3381 if (!(inode
->i_state
& I_NEW
))
3387 ret
= __ext4_get_inode_loc(inode
, &iloc
, 0);
3390 raw_inode
= ext4_raw_inode(&iloc
);
3391 inode
->i_mode
= le16_to_cpu(raw_inode
->i_mode
);
3392 inode
->i_uid
= (uid_t
)le16_to_cpu(raw_inode
->i_uid_low
);
3393 inode
->i_gid
= (gid_t
)le16_to_cpu(raw_inode
->i_gid_low
);
3394 if (!(test_opt(inode
->i_sb
, NO_UID32
))) {
3395 inode
->i_uid
|= le16_to_cpu(raw_inode
->i_uid_high
) << 16;
3396 inode
->i_gid
|= le16_to_cpu(raw_inode
->i_gid_high
) << 16;
3398 inode
->i_nlink
= le16_to_cpu(raw_inode
->i_links_count
);
3400 ext4_clear_state_flags(ei
); /* Only relevant on 32-bit archs */
3401 ei
->i_dir_start_lookup
= 0;
3402 ei
->i_dtime
= le32_to_cpu(raw_inode
->i_dtime
);
3403 /* We now have enough fields to check if the inode was active or not.
3404 * This is needed because nfsd might try to access dead inodes
3405 * the test is that same one that e2fsck uses
3406 * NeilBrown 1999oct15
3408 if (inode
->i_nlink
== 0) {
3409 if (inode
->i_mode
== 0 ||
3410 !(EXT4_SB(inode
->i_sb
)->s_mount_state
& EXT4_ORPHAN_FS
)) {
3411 /* this inode is deleted */
3415 /* The only unlinked inodes we let through here have
3416 * valid i_mode and are being read by the orphan
3417 * recovery code: that's fine, we're about to complete
3418 * the process of deleting those. */
3420 ei
->i_flags
= le32_to_cpu(raw_inode
->i_flags
);
3421 inode
->i_blocks
= ext4_inode_blocks(raw_inode
, ei
);
3422 ei
->i_file_acl
= le32_to_cpu(raw_inode
->i_file_acl_lo
);
3423 if (EXT4_HAS_INCOMPAT_FEATURE(sb
, EXT4_FEATURE_INCOMPAT_64BIT
))
3425 ((__u64
)le16_to_cpu(raw_inode
->i_file_acl_high
)) << 32;
3426 inode
->i_size
= ext4_isize(raw_inode
);
3427 ei
->i_disksize
= inode
->i_size
;
3429 ei
->i_reserved_quota
= 0;
3431 inode
->i_generation
= le32_to_cpu(raw_inode
->i_generation
);
3432 ei
->i_block_group
= iloc
.block_group
;
3433 ei
->i_last_alloc_group
= ~0;
3435 * NOTE! The in-memory inode i_data array is in little-endian order
3436 * even on big-endian machines: we do NOT byteswap the block numbers!
3438 for (block
= 0; block
< EXT4_N_BLOCKS
; block
++)
3439 ei
->i_data
[block
] = raw_inode
->i_block
[block
];
3440 INIT_LIST_HEAD(&ei
->i_orphan
);
3443 * Set transaction id's of transactions that have to be committed
3444 * to finish f[data]sync. We set them to currently running transaction
3445 * as we cannot be sure that the inode or some of its metadata isn't
3446 * part of the transaction - the inode could have been reclaimed and
3447 * now it is reread from disk.
3450 transaction_t
*transaction
;
3453 read_lock(&journal
->j_state_lock
);
3454 if (journal
->j_running_transaction
)
3455 transaction
= journal
->j_running_transaction
;
3457 transaction
= journal
->j_committing_transaction
;
3459 tid
= transaction
->t_tid
;
3461 tid
= journal
->j_commit_sequence
;
3462 read_unlock(&journal
->j_state_lock
);
3463 ei
->i_sync_tid
= tid
;
3464 ei
->i_datasync_tid
= tid
;
3467 if (EXT4_INODE_SIZE(inode
->i_sb
) > EXT4_GOOD_OLD_INODE_SIZE
) {
3468 ei
->i_extra_isize
= le16_to_cpu(raw_inode
->i_extra_isize
);
3469 if (EXT4_GOOD_OLD_INODE_SIZE
+ ei
->i_extra_isize
>
3470 EXT4_INODE_SIZE(inode
->i_sb
)) {
3474 if (ei
->i_extra_isize
== 0) {
3475 /* The extra space is currently unused. Use it. */
3476 ei
->i_extra_isize
= sizeof(struct ext4_inode
) -
3477 EXT4_GOOD_OLD_INODE_SIZE
;
3479 __le32
*magic
= (void *)raw_inode
+
3480 EXT4_GOOD_OLD_INODE_SIZE
+
3482 if (*magic
== cpu_to_le32(EXT4_XATTR_MAGIC
))
3483 ext4_set_inode_state(inode
, EXT4_STATE_XATTR
);
3486 ei
->i_extra_isize
= 0;
3488 EXT4_INODE_GET_XTIME(i_ctime
, inode
, raw_inode
);
3489 EXT4_INODE_GET_XTIME(i_mtime
, inode
, raw_inode
);
3490 EXT4_INODE_GET_XTIME(i_atime
, inode
, raw_inode
);
3491 EXT4_EINODE_GET_XTIME(i_crtime
, ei
, raw_inode
);
3493 inode
->i_version
= le32_to_cpu(raw_inode
->i_disk_version
);
3494 if (EXT4_INODE_SIZE(inode
->i_sb
) > EXT4_GOOD_OLD_INODE_SIZE
) {
3495 if (EXT4_FITS_IN_INODE(raw_inode
, ei
, i_version_hi
))
3497 (__u64
)(le32_to_cpu(raw_inode
->i_version_hi
)) << 32;
3501 if (ei
->i_file_acl
&&
3502 !ext4_data_block_valid(EXT4_SB(sb
), ei
->i_file_acl
, 1)) {
3503 EXT4_ERROR_INODE(inode
, "bad extended attribute block %llu",
3507 } else if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
)) {
3508 if (S_ISREG(inode
->i_mode
) || S_ISDIR(inode
->i_mode
) ||
3509 (S_ISLNK(inode
->i_mode
) &&
3510 !ext4_inode_is_fast_symlink(inode
)))
3511 /* Validate extent which is part of inode */
3512 ret
= ext4_ext_check_inode(inode
);
3513 } else if (S_ISREG(inode
->i_mode
) || S_ISDIR(inode
->i_mode
) ||
3514 (S_ISLNK(inode
->i_mode
) &&
3515 !ext4_inode_is_fast_symlink(inode
))) {
3516 /* Validate block references which are part of inode */
3517 ret
= ext4_ind_check_inode(inode
);
3522 if (S_ISREG(inode
->i_mode
)) {
3523 inode
->i_op
= &ext4_file_inode_operations
;
3524 inode
->i_fop
= &ext4_file_operations
;
3525 ext4_set_aops(inode
);
3526 } else if (S_ISDIR(inode
->i_mode
)) {
3527 inode
->i_op
= &ext4_dir_inode_operations
;
3528 inode
->i_fop
= &ext4_dir_operations
;
3529 } else if (S_ISLNK(inode
->i_mode
)) {
3530 if (ext4_inode_is_fast_symlink(inode
)) {
3531 inode
->i_op
= &ext4_fast_symlink_inode_operations
;
3532 nd_terminate_link(ei
->i_data
, inode
->i_size
,
3533 sizeof(ei
->i_data
) - 1);
3535 inode
->i_op
= &ext4_symlink_inode_operations
;
3536 ext4_set_aops(inode
);
3538 } else if (S_ISCHR(inode
->i_mode
) || S_ISBLK(inode
->i_mode
) ||
3539 S_ISFIFO(inode
->i_mode
) || S_ISSOCK(inode
->i_mode
)) {
3540 inode
->i_op
= &ext4_special_inode_operations
;
3541 if (raw_inode
->i_block
[0])
3542 init_special_inode(inode
, inode
->i_mode
,
3543 old_decode_dev(le32_to_cpu(raw_inode
->i_block
[0])));
3545 init_special_inode(inode
, inode
->i_mode
,
3546 new_decode_dev(le32_to_cpu(raw_inode
->i_block
[1])));
3549 EXT4_ERROR_INODE(inode
, "bogus i_mode (%o)", inode
->i_mode
);
3553 ext4_set_inode_flags(inode
);
3554 unlock_new_inode(inode
);
3560 return ERR_PTR(ret
);
3563 static int ext4_inode_blocks_set(handle_t
*handle
,
3564 struct ext4_inode
*raw_inode
,
3565 struct ext4_inode_info
*ei
)
3567 struct inode
*inode
= &(ei
->vfs_inode
);
3568 u64 i_blocks
= inode
->i_blocks
;
3569 struct super_block
*sb
= inode
->i_sb
;
3571 if (i_blocks
<= ~0U) {
3573 * i_blocks can be represnted in a 32 bit variable
3574 * as multiple of 512 bytes
3576 raw_inode
->i_blocks_lo
= cpu_to_le32(i_blocks
);
3577 raw_inode
->i_blocks_high
= 0;
3578 ext4_clear_inode_flag(inode
, EXT4_INODE_HUGE_FILE
);
3581 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb
, EXT4_FEATURE_RO_COMPAT_HUGE_FILE
))
3584 if (i_blocks
<= 0xffffffffffffULL
) {
3586 * i_blocks can be represented in a 48 bit variable
3587 * as multiple of 512 bytes
3589 raw_inode
->i_blocks_lo
= cpu_to_le32(i_blocks
);
3590 raw_inode
->i_blocks_high
= cpu_to_le16(i_blocks
>> 32);
3591 ext4_clear_inode_flag(inode
, EXT4_INODE_HUGE_FILE
);
3593 ext4_set_inode_flag(inode
, EXT4_INODE_HUGE_FILE
);
3594 /* i_block is stored in file system block size */
3595 i_blocks
= i_blocks
>> (inode
->i_blkbits
- 9);
3596 raw_inode
->i_blocks_lo
= cpu_to_le32(i_blocks
);
3597 raw_inode
->i_blocks_high
= cpu_to_le16(i_blocks
>> 32);
3603 * Post the struct inode info into an on-disk inode location in the
3604 * buffer-cache. This gobbles the caller's reference to the
3605 * buffer_head in the inode location struct.
3607 * The caller must have write access to iloc->bh.
3609 static int ext4_do_update_inode(handle_t
*handle
,
3610 struct inode
*inode
,
3611 struct ext4_iloc
*iloc
)
3613 struct ext4_inode
*raw_inode
= ext4_raw_inode(iloc
);
3614 struct ext4_inode_info
*ei
= EXT4_I(inode
);
3615 struct buffer_head
*bh
= iloc
->bh
;
3616 int err
= 0, rc
, block
;
3618 /* For fields not not tracking in the in-memory inode,
3619 * initialise them to zero for new inodes. */
3620 if (ext4_test_inode_state(inode
, EXT4_STATE_NEW
))
3621 memset(raw_inode
, 0, EXT4_SB(inode
->i_sb
)->s_inode_size
);
3623 ext4_get_inode_flags(ei
);
3624 raw_inode
->i_mode
= cpu_to_le16(inode
->i_mode
);
3625 if (!(test_opt(inode
->i_sb
, NO_UID32
))) {
3626 raw_inode
->i_uid_low
= cpu_to_le16(low_16_bits(inode
->i_uid
));
3627 raw_inode
->i_gid_low
= cpu_to_le16(low_16_bits(inode
->i_gid
));
3629 * Fix up interoperability with old kernels. Otherwise, old inodes get
3630 * re-used with the upper 16 bits of the uid/gid intact
3633 raw_inode
->i_uid_high
=
3634 cpu_to_le16(high_16_bits(inode
->i_uid
));
3635 raw_inode
->i_gid_high
=
3636 cpu_to_le16(high_16_bits(inode
->i_gid
));
3638 raw_inode
->i_uid_high
= 0;
3639 raw_inode
->i_gid_high
= 0;
3642 raw_inode
->i_uid_low
=
3643 cpu_to_le16(fs_high2lowuid(inode
->i_uid
));
3644 raw_inode
->i_gid_low
=
3645 cpu_to_le16(fs_high2lowgid(inode
->i_gid
));
3646 raw_inode
->i_uid_high
= 0;
3647 raw_inode
->i_gid_high
= 0;
3649 raw_inode
->i_links_count
= cpu_to_le16(inode
->i_nlink
);
3651 EXT4_INODE_SET_XTIME(i_ctime
, inode
, raw_inode
);
3652 EXT4_INODE_SET_XTIME(i_mtime
, inode
, raw_inode
);
3653 EXT4_INODE_SET_XTIME(i_atime
, inode
, raw_inode
);
3654 EXT4_EINODE_SET_XTIME(i_crtime
, ei
, raw_inode
);
3656 if (ext4_inode_blocks_set(handle
, raw_inode
, ei
))
3658 raw_inode
->i_dtime
= cpu_to_le32(ei
->i_dtime
);
3659 raw_inode
->i_flags
= cpu_to_le32(ei
->i_flags
& 0xFFFFFFFF);
3660 if (EXT4_SB(inode
->i_sb
)->s_es
->s_creator_os
!=
3661 cpu_to_le32(EXT4_OS_HURD
))
3662 raw_inode
->i_file_acl_high
=
3663 cpu_to_le16(ei
->i_file_acl
>> 32);
3664 raw_inode
->i_file_acl_lo
= cpu_to_le32(ei
->i_file_acl
);
3665 ext4_isize_set(raw_inode
, ei
->i_disksize
);
3666 if (ei
->i_disksize
> 0x7fffffffULL
) {
3667 struct super_block
*sb
= inode
->i_sb
;
3668 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb
,
3669 EXT4_FEATURE_RO_COMPAT_LARGE_FILE
) ||
3670 EXT4_SB(sb
)->s_es
->s_rev_level
==
3671 cpu_to_le32(EXT4_GOOD_OLD_REV
)) {
3672 /* If this is the first large file
3673 * created, add a flag to the superblock.
3675 err
= ext4_journal_get_write_access(handle
,
3676 EXT4_SB(sb
)->s_sbh
);
3679 ext4_update_dynamic_rev(sb
);
3680 EXT4_SET_RO_COMPAT_FEATURE(sb
,
3681 EXT4_FEATURE_RO_COMPAT_LARGE_FILE
);
3683 ext4_handle_sync(handle
);
3684 err
= ext4_handle_dirty_metadata(handle
, NULL
,
3685 EXT4_SB(sb
)->s_sbh
);
3688 raw_inode
->i_generation
= cpu_to_le32(inode
->i_generation
);
3689 if (S_ISCHR(inode
->i_mode
) || S_ISBLK(inode
->i_mode
)) {
3690 if (old_valid_dev(inode
->i_rdev
)) {
3691 raw_inode
->i_block
[0] =
3692 cpu_to_le32(old_encode_dev(inode
->i_rdev
));
3693 raw_inode
->i_block
[1] = 0;
3695 raw_inode
->i_block
[0] = 0;
3696 raw_inode
->i_block
[1] =
3697 cpu_to_le32(new_encode_dev(inode
->i_rdev
));
3698 raw_inode
->i_block
[2] = 0;
3701 for (block
= 0; block
< EXT4_N_BLOCKS
; block
++)
3702 raw_inode
->i_block
[block
] = ei
->i_data
[block
];
3704 raw_inode
->i_disk_version
= cpu_to_le32(inode
->i_version
);
3705 if (ei
->i_extra_isize
) {
3706 if (EXT4_FITS_IN_INODE(raw_inode
, ei
, i_version_hi
))
3707 raw_inode
->i_version_hi
=
3708 cpu_to_le32(inode
->i_version
>> 32);
3709 raw_inode
->i_extra_isize
= cpu_to_le16(ei
->i_extra_isize
);
3712 BUFFER_TRACE(bh
, "call ext4_handle_dirty_metadata");
3713 rc
= ext4_handle_dirty_metadata(handle
, NULL
, bh
);
3716 ext4_clear_inode_state(inode
, EXT4_STATE_NEW
);
3718 ext4_update_inode_fsync_trans(handle
, inode
, 0);
3721 ext4_std_error(inode
->i_sb
, err
);
3726 * ext4_write_inode()
3728 * We are called from a few places:
3730 * - Within generic_file_write() for O_SYNC files.
3731 * Here, there will be no transaction running. We wait for any running
3732 * trasnaction to commit.
3734 * - Within sys_sync(), kupdate and such.
3735 * We wait on commit, if tol to.
3737 * - Within prune_icache() (PF_MEMALLOC == true)
3738 * Here we simply return. We can't afford to block kswapd on the
3741 * In all cases it is actually safe for us to return without doing anything,
3742 * because the inode has been copied into a raw inode buffer in
3743 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
3746 * Note that we are absolutely dependent upon all inode dirtiers doing the
3747 * right thing: they *must* call mark_inode_dirty() after dirtying info in
3748 * which we are interested.
3750 * It would be a bug for them to not do this. The code:
3752 * mark_inode_dirty(inode)
3754 * inode->i_size = expr;
3756 * is in error because a kswapd-driven write_inode() could occur while
3757 * `stuff()' is running, and the new i_size will be lost. Plus the inode
3758 * will no longer be on the superblock's dirty inode list.
3760 int ext4_write_inode(struct inode
*inode
, struct writeback_control
*wbc
)
3764 if (current
->flags
& PF_MEMALLOC
)
3767 if (EXT4_SB(inode
->i_sb
)->s_journal
) {
3768 if (ext4_journal_current_handle()) {
3769 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
3774 if (wbc
->sync_mode
!= WB_SYNC_ALL
)
3777 err
= ext4_force_commit(inode
->i_sb
);
3779 struct ext4_iloc iloc
;
3781 err
= __ext4_get_inode_loc(inode
, &iloc
, 0);
3784 if (wbc
->sync_mode
== WB_SYNC_ALL
)
3785 sync_dirty_buffer(iloc
.bh
);
3786 if (buffer_req(iloc
.bh
) && !buffer_uptodate(iloc
.bh
)) {
3787 EXT4_ERROR_INODE_BLOCK(inode
, iloc
.bh
->b_blocknr
,
3788 "IO error syncing inode");
3799 * Called from notify_change.
3801 * We want to trap VFS attempts to truncate the file as soon as
3802 * possible. In particular, we want to make sure that when the VFS
3803 * shrinks i_size, we put the inode on the orphan list and modify
3804 * i_disksize immediately, so that during the subsequent flushing of
3805 * dirty pages and freeing of disk blocks, we can guarantee that any
3806 * commit will leave the blocks being flushed in an unused state on
3807 * disk. (On recovery, the inode will get truncated and the blocks will
3808 * be freed, so we have a strong guarantee that no future commit will
3809 * leave these blocks visible to the user.)
3811 * Another thing we have to assure is that if we are in ordered mode
3812 * and inode is still attached to the committing transaction, we must
3813 * we start writeout of all the dirty pages which are being truncated.
3814 * This way we are sure that all the data written in the previous
3815 * transaction are already on disk (truncate waits for pages under
3818 * Called with inode->i_mutex down.
3820 int ext4_setattr(struct dentry
*dentry
, struct iattr
*attr
)
3822 struct inode
*inode
= dentry
->d_inode
;
3825 const unsigned int ia_valid
= attr
->ia_valid
;
3827 error
= inode_change_ok(inode
, attr
);
3831 if (is_quota_modification(inode
, attr
))
3832 dquot_initialize(inode
);
3833 if ((ia_valid
& ATTR_UID
&& attr
->ia_uid
!= inode
->i_uid
) ||
3834 (ia_valid
& ATTR_GID
&& attr
->ia_gid
!= inode
->i_gid
)) {
3837 /* (user+group)*(old+new) structure, inode write (sb,
3838 * inode block, ? - but truncate inode update has it) */
3839 handle
= ext4_journal_start(inode
, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode
->i_sb
)+
3840 EXT4_MAXQUOTAS_DEL_BLOCKS(inode
->i_sb
))+3);
3841 if (IS_ERR(handle
)) {
3842 error
= PTR_ERR(handle
);
3845 error
= dquot_transfer(inode
, attr
);
3847 ext4_journal_stop(handle
);
3850 /* Update corresponding info in inode so that everything is in
3851 * one transaction */
3852 if (attr
->ia_valid
& ATTR_UID
)
3853 inode
->i_uid
= attr
->ia_uid
;
3854 if (attr
->ia_valid
& ATTR_GID
)
3855 inode
->i_gid
= attr
->ia_gid
;
3856 error
= ext4_mark_inode_dirty(handle
, inode
);
3857 ext4_journal_stop(handle
);
3860 if (attr
->ia_valid
& ATTR_SIZE
) {
3861 inode_dio_wait(inode
);
3863 if (!(ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
))) {
3864 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
3866 if (attr
->ia_size
> sbi
->s_bitmap_maxbytes
)
3871 if (S_ISREG(inode
->i_mode
) &&
3872 attr
->ia_valid
& ATTR_SIZE
&&
3873 (attr
->ia_size
< inode
->i_size
)) {
3876 handle
= ext4_journal_start(inode
, 3);
3877 if (IS_ERR(handle
)) {
3878 error
= PTR_ERR(handle
);
3881 if (ext4_handle_valid(handle
)) {
3882 error
= ext4_orphan_add(handle
, inode
);
3885 EXT4_I(inode
)->i_disksize
= attr
->ia_size
;
3886 rc
= ext4_mark_inode_dirty(handle
, inode
);
3889 ext4_journal_stop(handle
);
3891 if (ext4_should_order_data(inode
)) {
3892 error
= ext4_begin_ordered_truncate(inode
,
3895 /* Do as much error cleanup as possible */
3896 handle
= ext4_journal_start(inode
, 3);
3897 if (IS_ERR(handle
)) {
3898 ext4_orphan_del(NULL
, inode
);
3901 ext4_orphan_del(handle
, inode
);
3903 ext4_journal_stop(handle
);
3909 if (attr
->ia_valid
& ATTR_SIZE
) {
3910 if (attr
->ia_size
!= i_size_read(inode
)) {
3911 truncate_setsize(inode
, attr
->ia_size
);
3912 ext4_truncate(inode
);
3913 } else if (ext4_test_inode_flag(inode
, EXT4_INODE_EOFBLOCKS
))
3914 ext4_truncate(inode
);
3918 setattr_copy(inode
, attr
);
3919 mark_inode_dirty(inode
);
3923 * If the call to ext4_truncate failed to get a transaction handle at
3924 * all, we need to clean up the in-core orphan list manually.
3926 if (orphan
&& inode
->i_nlink
)
3927 ext4_orphan_del(NULL
, inode
);
3929 if (!rc
&& (ia_valid
& ATTR_MODE
))
3930 rc
= ext4_acl_chmod(inode
);
3933 ext4_std_error(inode
->i_sb
, error
);
3939 int ext4_getattr(struct vfsmount
*mnt
, struct dentry
*dentry
,
3942 struct inode
*inode
;
3943 unsigned long delalloc_blocks
;
3945 inode
= dentry
->d_inode
;
3946 generic_fillattr(inode
, stat
);
3949 * We can't update i_blocks if the block allocation is delayed
3950 * otherwise in the case of system crash before the real block
3951 * allocation is done, we will have i_blocks inconsistent with
3952 * on-disk file blocks.
3953 * We always keep i_blocks updated together with real
3954 * allocation. But to not confuse with user, stat
3955 * will return the blocks that include the delayed allocation
3956 * blocks for this file.
3958 delalloc_blocks
= EXT4_I(inode
)->i_reserved_data_blocks
;
3960 stat
->blocks
+= (delalloc_blocks
<< inode
->i_sb
->s_blocksize_bits
)>>9;
3964 static int ext4_index_trans_blocks(struct inode
*inode
, int nrblocks
, int chunk
)
3966 if (!(ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
)))
3967 return ext4_ind_trans_blocks(inode
, nrblocks
, chunk
);
3968 return ext4_ext_index_trans_blocks(inode
, nrblocks
, chunk
);
3972 * Account for index blocks, block groups bitmaps and block group
3973 * descriptor blocks if modify datablocks and index blocks
3974 * worse case, the indexs blocks spread over different block groups
3976 * If datablocks are discontiguous, they are possible to spread over
3977 * different block groups too. If they are contiuguous, with flexbg,
3978 * they could still across block group boundary.
3980 * Also account for superblock, inode, quota and xattr blocks
3982 static int ext4_meta_trans_blocks(struct inode
*inode
, int nrblocks
, int chunk
)
3984 ext4_group_t groups
, ngroups
= ext4_get_groups_count(inode
->i_sb
);
3990 * How many index blocks need to touch to modify nrblocks?
3991 * The "Chunk" flag indicating whether the nrblocks is
3992 * physically contiguous on disk
3994 * For Direct IO and fallocate, they calls get_block to allocate
3995 * one single extent at a time, so they could set the "Chunk" flag
3997 idxblocks
= ext4_index_trans_blocks(inode
, nrblocks
, chunk
);
4002 * Now let's see how many group bitmaps and group descriptors need
4012 if (groups
> ngroups
)
4014 if (groups
> EXT4_SB(inode
->i_sb
)->s_gdb_count
)
4015 gdpblocks
= EXT4_SB(inode
->i_sb
)->s_gdb_count
;
4017 /* bitmaps and block group descriptor blocks */
4018 ret
+= groups
+ gdpblocks
;
4020 /* Blocks for super block, inode, quota and xattr blocks */
4021 ret
+= EXT4_META_TRANS_BLOCKS(inode
->i_sb
);
4027 * Calculate the total number of credits to reserve to fit
4028 * the modification of a single pages into a single transaction,
4029 * which may include multiple chunks of block allocations.
4031 * This could be called via ext4_write_begin()
4033 * We need to consider the worse case, when
4034 * one new block per extent.
4036 int ext4_writepage_trans_blocks(struct inode
*inode
)
4038 int bpp
= ext4_journal_blocks_per_page(inode
);
4041 ret
= ext4_meta_trans_blocks(inode
, bpp
, 0);
4043 /* Account for data blocks for journalled mode */
4044 if (ext4_should_journal_data(inode
))
4050 * Calculate the journal credits for a chunk of data modification.
4052 * This is called from DIO, fallocate or whoever calling
4053 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4055 * journal buffers for data blocks are not included here, as DIO
4056 * and fallocate do no need to journal data buffers.
4058 int ext4_chunk_trans_blocks(struct inode
*inode
, int nrblocks
)
4060 return ext4_meta_trans_blocks(inode
, nrblocks
, 1);
4064 * The caller must have previously called ext4_reserve_inode_write().
4065 * Give this, we know that the caller already has write access to iloc->bh.
4067 int ext4_mark_iloc_dirty(handle_t
*handle
,
4068 struct inode
*inode
, struct ext4_iloc
*iloc
)
4072 if (test_opt(inode
->i_sb
, I_VERSION
))
4073 inode_inc_iversion(inode
);
4075 /* the do_update_inode consumes one bh->b_count */
4078 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4079 err
= ext4_do_update_inode(handle
, inode
, iloc
);
4085 * On success, We end up with an outstanding reference count against
4086 * iloc->bh. This _must_ be cleaned up later.
4090 ext4_reserve_inode_write(handle_t
*handle
, struct inode
*inode
,
4091 struct ext4_iloc
*iloc
)
4095 err
= ext4_get_inode_loc(inode
, iloc
);
4097 BUFFER_TRACE(iloc
->bh
, "get_write_access");
4098 err
= ext4_journal_get_write_access(handle
, iloc
->bh
);
4104 ext4_std_error(inode
->i_sb
, err
);
4109 * Expand an inode by new_extra_isize bytes.
4110 * Returns 0 on success or negative error number on failure.
4112 static int ext4_expand_extra_isize(struct inode
*inode
,
4113 unsigned int new_extra_isize
,
4114 struct ext4_iloc iloc
,
4117 struct ext4_inode
*raw_inode
;
4118 struct ext4_xattr_ibody_header
*header
;
4120 if (EXT4_I(inode
)->i_extra_isize
>= new_extra_isize
)
4123 raw_inode
= ext4_raw_inode(&iloc
);
4125 header
= IHDR(inode
, raw_inode
);
4127 /* No extended attributes present */
4128 if (!ext4_test_inode_state(inode
, EXT4_STATE_XATTR
) ||
4129 header
->h_magic
!= cpu_to_le32(EXT4_XATTR_MAGIC
)) {
4130 memset((void *)raw_inode
+ EXT4_GOOD_OLD_INODE_SIZE
, 0,
4132 EXT4_I(inode
)->i_extra_isize
= new_extra_isize
;
4136 /* try to expand with EAs present */
4137 return ext4_expand_extra_isize_ea(inode
, new_extra_isize
,
4142 * What we do here is to mark the in-core inode as clean with respect to inode
4143 * dirtiness (it may still be data-dirty).
4144 * This means that the in-core inode may be reaped by prune_icache
4145 * without having to perform any I/O. This is a very good thing,
4146 * because *any* task may call prune_icache - even ones which
4147 * have a transaction open against a different journal.
4149 * Is this cheating? Not really. Sure, we haven't written the
4150 * inode out, but prune_icache isn't a user-visible syncing function.
4151 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4152 * we start and wait on commits.
4154 * Is this efficient/effective? Well, we're being nice to the system
4155 * by cleaning up our inodes proactively so they can be reaped
4156 * without I/O. But we are potentially leaving up to five seconds'
4157 * worth of inodes floating about which prune_icache wants us to
4158 * write out. One way to fix that would be to get prune_icache()
4159 * to do a write_super() to free up some memory. It has the desired
4162 int ext4_mark_inode_dirty(handle_t
*handle
, struct inode
*inode
)
4164 struct ext4_iloc iloc
;
4165 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
4166 static unsigned int mnt_count
;
4170 trace_ext4_mark_inode_dirty(inode
, _RET_IP_
);
4171 err
= ext4_reserve_inode_write(handle
, inode
, &iloc
);
4172 if (ext4_handle_valid(handle
) &&
4173 EXT4_I(inode
)->i_extra_isize
< sbi
->s_want_extra_isize
&&
4174 !ext4_test_inode_state(inode
, EXT4_STATE_NO_EXPAND
)) {
4176 * We need extra buffer credits since we may write into EA block
4177 * with this same handle. If journal_extend fails, then it will
4178 * only result in a minor loss of functionality for that inode.
4179 * If this is felt to be critical, then e2fsck should be run to
4180 * force a large enough s_min_extra_isize.
4182 if ((jbd2_journal_extend(handle
,
4183 EXT4_DATA_TRANS_BLOCKS(inode
->i_sb
))) == 0) {
4184 ret
= ext4_expand_extra_isize(inode
,
4185 sbi
->s_want_extra_isize
,
4188 ext4_set_inode_state(inode
,
4189 EXT4_STATE_NO_EXPAND
);
4191 le16_to_cpu(sbi
->s_es
->s_mnt_count
)) {
4192 ext4_warning(inode
->i_sb
,
4193 "Unable to expand inode %lu. Delete"
4194 " some EAs or run e2fsck.",
4197 le16_to_cpu(sbi
->s_es
->s_mnt_count
);
4203 err
= ext4_mark_iloc_dirty(handle
, inode
, &iloc
);
4208 * ext4_dirty_inode() is called from __mark_inode_dirty()
4210 * We're really interested in the case where a file is being extended.
4211 * i_size has been changed by generic_commit_write() and we thus need
4212 * to include the updated inode in the current transaction.
4214 * Also, dquot_alloc_block() will always dirty the inode when blocks
4215 * are allocated to the file.
4217 * If the inode is marked synchronous, we don't honour that here - doing
4218 * so would cause a commit on atime updates, which we don't bother doing.
4219 * We handle synchronous inodes at the highest possible level.
4221 void ext4_dirty_inode(struct inode
*inode
, int flags
)
4225 handle
= ext4_journal_start(inode
, 2);
4229 ext4_mark_inode_dirty(handle
, inode
);
4231 ext4_journal_stop(handle
);
4238 * Bind an inode's backing buffer_head into this transaction, to prevent
4239 * it from being flushed to disk early. Unlike
4240 * ext4_reserve_inode_write, this leaves behind no bh reference and
4241 * returns no iloc structure, so the caller needs to repeat the iloc
4242 * lookup to mark the inode dirty later.
4244 static int ext4_pin_inode(handle_t
*handle
, struct inode
*inode
)
4246 struct ext4_iloc iloc
;
4250 err
= ext4_get_inode_loc(inode
, &iloc
);
4252 BUFFER_TRACE(iloc
.bh
, "get_write_access");
4253 err
= jbd2_journal_get_write_access(handle
, iloc
.bh
);
4255 err
= ext4_handle_dirty_metadata(handle
,
4261 ext4_std_error(inode
->i_sb
, err
);
4266 int ext4_change_inode_journal_flag(struct inode
*inode
, int val
)
4273 * We have to be very careful here: changing a data block's
4274 * journaling status dynamically is dangerous. If we write a
4275 * data block to the journal, change the status and then delete
4276 * that block, we risk forgetting to revoke the old log record
4277 * from the journal and so a subsequent replay can corrupt data.
4278 * So, first we make sure that the journal is empty and that
4279 * nobody is changing anything.
4282 journal
= EXT4_JOURNAL(inode
);
4285 if (is_journal_aborted(journal
))
4288 jbd2_journal_lock_updates(journal
);
4289 jbd2_journal_flush(journal
);
4292 * OK, there are no updates running now, and all cached data is
4293 * synced to disk. We are now in a completely consistent state
4294 * which doesn't have anything in the journal, and we know that
4295 * no filesystem updates are running, so it is safe to modify
4296 * the inode's in-core data-journaling state flag now.
4300 ext4_set_inode_flag(inode
, EXT4_INODE_JOURNAL_DATA
);
4302 ext4_clear_inode_flag(inode
, EXT4_INODE_JOURNAL_DATA
);
4303 ext4_set_aops(inode
);
4305 jbd2_journal_unlock_updates(journal
);
4307 /* Finally we can mark the inode as dirty. */
4309 handle
= ext4_journal_start(inode
, 1);
4311 return PTR_ERR(handle
);
4313 err
= ext4_mark_inode_dirty(handle
, inode
);
4314 ext4_handle_sync(handle
);
4315 ext4_journal_stop(handle
);
4316 ext4_std_error(inode
->i_sb
, err
);
4321 static int ext4_bh_unmapped(handle_t
*handle
, struct buffer_head
*bh
)
4323 return !buffer_mapped(bh
);
4326 int ext4_page_mkwrite(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
4328 struct page
*page
= vmf
->page
;
4332 struct file
*file
= vma
->vm_file
;
4333 struct inode
*inode
= file
->f_path
.dentry
->d_inode
;
4334 struct address_space
*mapping
= inode
->i_mapping
;
4336 get_block_t
*get_block
;
4340 * This check is racy but catches the common case. We rely on
4341 * __block_page_mkwrite() to do a reliable check.
4343 vfs_check_frozen(inode
->i_sb
, SB_FREEZE_WRITE
);
4344 /* Delalloc case is easy... */
4345 if (test_opt(inode
->i_sb
, DELALLOC
) &&
4346 !ext4_should_journal_data(inode
) &&
4347 !ext4_nonda_switch(inode
->i_sb
)) {
4349 ret
= __block_page_mkwrite(vma
, vmf
,
4350 ext4_da_get_block_prep
);
4351 } while (ret
== -ENOSPC
&&
4352 ext4_should_retry_alloc(inode
->i_sb
, &retries
));
4357 size
= i_size_read(inode
);
4358 /* Page got truncated from under us? */
4359 if (page
->mapping
!= mapping
|| page_offset(page
) > size
) {
4361 ret
= VM_FAULT_NOPAGE
;
4365 if (page
->index
== size
>> PAGE_CACHE_SHIFT
)
4366 len
= size
& ~PAGE_CACHE_MASK
;
4368 len
= PAGE_CACHE_SIZE
;
4370 * Return if we have all the buffers mapped. This avoids the need to do
4371 * journal_start/journal_stop which can block and take a long time
4373 if (page_has_buffers(page
)) {
4374 if (!walk_page_buffers(NULL
, page_buffers(page
), 0, len
, NULL
,
4375 ext4_bh_unmapped
)) {
4376 /* Wait so that we don't change page under IO */
4377 wait_on_page_writeback(page
);
4378 ret
= VM_FAULT_LOCKED
;
4383 /* OK, we need to fill the hole... */
4384 if (ext4_should_dioread_nolock(inode
))
4385 get_block
= ext4_get_block_write
;
4387 get_block
= ext4_get_block
;
4389 handle
= ext4_journal_start(inode
, ext4_writepage_trans_blocks(inode
));
4390 if (IS_ERR(handle
)) {
4391 ret
= VM_FAULT_SIGBUS
;
4394 ret
= __block_page_mkwrite(vma
, vmf
, get_block
);
4395 if (!ret
&& ext4_should_journal_data(inode
)) {
4396 if (walk_page_buffers(handle
, page_buffers(page
), 0,
4397 PAGE_CACHE_SIZE
, NULL
, do_journal_get_write_access
)) {
4399 ret
= VM_FAULT_SIGBUS
;
4402 ext4_set_inode_state(inode
, EXT4_STATE_JDATA
);
4404 ext4_journal_stop(handle
);
4405 if (ret
== -ENOSPC
&& ext4_should_retry_alloc(inode
->i_sb
, &retries
))
4408 ret
= block_page_mkwrite_return(ret
);