]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/ext4/inode.c
Merge branches 'acpica' and 'acpi-scan'
[mirror_ubuntu-artful-kernel.git] / fs / ext4 / inode.c
1 /*
2 * linux/fs/ext4/inode.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * 64-bit file support on 64-bit platforms by Jakub Jelinek
16 * (jj@sunsite.ms.mff.cuni.cz)
17 *
18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19 */
20
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/highuid.h>
24 #include <linux/pagemap.h>
25 #include <linux/dax.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/bitops.h>
40 #include <linux/iomap.h>
41
42 #include "ext4_jbd2.h"
43 #include "xattr.h"
44 #include "acl.h"
45 #include "truncate.h"
46
47 #include <trace/events/ext4.h>
48
49 #define MPAGE_DA_EXTENT_TAIL 0x01
50
51 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
52 struct ext4_inode_info *ei)
53 {
54 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
55 __u32 csum;
56 __u16 dummy_csum = 0;
57 int offset = offsetof(struct ext4_inode, i_checksum_lo);
58 unsigned int csum_size = sizeof(dummy_csum);
59
60 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
61 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
62 offset += csum_size;
63 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
64 EXT4_GOOD_OLD_INODE_SIZE - offset);
65
66 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
67 offset = offsetof(struct ext4_inode, i_checksum_hi);
68 csum = ext4_chksum(sbi, csum, (__u8 *)raw +
69 EXT4_GOOD_OLD_INODE_SIZE,
70 offset - EXT4_GOOD_OLD_INODE_SIZE);
71 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
72 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
73 csum_size);
74 offset += csum_size;
75 }
76 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
77 EXT4_INODE_SIZE(inode->i_sb) - offset);
78 }
79
80 return csum;
81 }
82
83 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
84 struct ext4_inode_info *ei)
85 {
86 __u32 provided, calculated;
87
88 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
89 cpu_to_le32(EXT4_OS_LINUX) ||
90 !ext4_has_metadata_csum(inode->i_sb))
91 return 1;
92
93 provided = le16_to_cpu(raw->i_checksum_lo);
94 calculated = ext4_inode_csum(inode, raw, ei);
95 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
96 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
97 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
98 else
99 calculated &= 0xFFFF;
100
101 return provided == calculated;
102 }
103
104 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
105 struct ext4_inode_info *ei)
106 {
107 __u32 csum;
108
109 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
110 cpu_to_le32(EXT4_OS_LINUX) ||
111 !ext4_has_metadata_csum(inode->i_sb))
112 return;
113
114 csum = ext4_inode_csum(inode, raw, ei);
115 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
116 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
117 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
118 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
119 }
120
121 static inline int ext4_begin_ordered_truncate(struct inode *inode,
122 loff_t new_size)
123 {
124 trace_ext4_begin_ordered_truncate(inode, new_size);
125 /*
126 * If jinode is zero, then we never opened the file for
127 * writing, so there's no need to call
128 * jbd2_journal_begin_ordered_truncate() since there's no
129 * outstanding writes we need to flush.
130 */
131 if (!EXT4_I(inode)->jinode)
132 return 0;
133 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
134 EXT4_I(inode)->jinode,
135 new_size);
136 }
137
138 static void ext4_invalidatepage(struct page *page, unsigned int offset,
139 unsigned int length);
140 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
141 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
142 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
143 int pextents);
144
145 /*
146 * Test whether an inode is a fast symlink.
147 */
148 int ext4_inode_is_fast_symlink(struct inode *inode)
149 {
150 int ea_blocks = EXT4_I(inode)->i_file_acl ?
151 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
152
153 if (ext4_has_inline_data(inode))
154 return 0;
155
156 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
157 }
158
159 /*
160 * Restart the transaction associated with *handle. This does a commit,
161 * so before we call here everything must be consistently dirtied against
162 * this transaction.
163 */
164 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
165 int nblocks)
166 {
167 int ret;
168
169 /*
170 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
171 * moment, get_block can be called only for blocks inside i_size since
172 * page cache has been already dropped and writes are blocked by
173 * i_mutex. So we can safely drop the i_data_sem here.
174 */
175 BUG_ON(EXT4_JOURNAL(inode) == NULL);
176 jbd_debug(2, "restarting handle %p\n", handle);
177 up_write(&EXT4_I(inode)->i_data_sem);
178 ret = ext4_journal_restart(handle, nblocks);
179 down_write(&EXT4_I(inode)->i_data_sem);
180 ext4_discard_preallocations(inode);
181
182 return ret;
183 }
184
185 /*
186 * Called at the last iput() if i_nlink is zero.
187 */
188 void ext4_evict_inode(struct inode *inode)
189 {
190 handle_t *handle;
191 int err;
192
193 trace_ext4_evict_inode(inode);
194
195 if (inode->i_nlink) {
196 /*
197 * When journalling data dirty buffers are tracked only in the
198 * journal. So although mm thinks everything is clean and
199 * ready for reaping the inode might still have some pages to
200 * write in the running transaction or waiting to be
201 * checkpointed. Thus calling jbd2_journal_invalidatepage()
202 * (via truncate_inode_pages()) to discard these buffers can
203 * cause data loss. Also even if we did not discard these
204 * buffers, we would have no way to find them after the inode
205 * is reaped and thus user could see stale data if he tries to
206 * read them before the transaction is checkpointed. So be
207 * careful and force everything to disk here... We use
208 * ei->i_datasync_tid to store the newest transaction
209 * containing inode's data.
210 *
211 * Note that directories do not have this problem because they
212 * don't use page cache.
213 */
214 if (inode->i_ino != EXT4_JOURNAL_INO &&
215 ext4_should_journal_data(inode) &&
216 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) {
217 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
218 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
219
220 jbd2_complete_transaction(journal, commit_tid);
221 filemap_write_and_wait(&inode->i_data);
222 }
223 truncate_inode_pages_final(&inode->i_data);
224
225 goto no_delete;
226 }
227
228 if (is_bad_inode(inode))
229 goto no_delete;
230 dquot_initialize(inode);
231
232 if (ext4_should_order_data(inode))
233 ext4_begin_ordered_truncate(inode, 0);
234 truncate_inode_pages_final(&inode->i_data);
235
236 /*
237 * Protect us against freezing - iput() caller didn't have to have any
238 * protection against it
239 */
240 sb_start_intwrite(inode->i_sb);
241 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
242 ext4_blocks_for_truncate(inode)+3);
243 if (IS_ERR(handle)) {
244 ext4_std_error(inode->i_sb, PTR_ERR(handle));
245 /*
246 * If we're going to skip the normal cleanup, we still need to
247 * make sure that the in-core orphan linked list is properly
248 * cleaned up.
249 */
250 ext4_orphan_del(NULL, inode);
251 sb_end_intwrite(inode->i_sb);
252 goto no_delete;
253 }
254
255 if (IS_SYNC(inode))
256 ext4_handle_sync(handle);
257 inode->i_size = 0;
258 err = ext4_mark_inode_dirty(handle, inode);
259 if (err) {
260 ext4_warning(inode->i_sb,
261 "couldn't mark inode dirty (err %d)", err);
262 goto stop_handle;
263 }
264 if (inode->i_blocks) {
265 err = ext4_truncate(inode);
266 if (err) {
267 ext4_error(inode->i_sb,
268 "couldn't truncate inode %lu (err %d)",
269 inode->i_ino, err);
270 goto stop_handle;
271 }
272 }
273
274 /*
275 * ext4_ext_truncate() doesn't reserve any slop when it
276 * restarts journal transactions; therefore there may not be
277 * enough credits left in the handle to remove the inode from
278 * the orphan list and set the dtime field.
279 */
280 if (!ext4_handle_has_enough_credits(handle, 3)) {
281 err = ext4_journal_extend(handle, 3);
282 if (err > 0)
283 err = ext4_journal_restart(handle, 3);
284 if (err != 0) {
285 ext4_warning(inode->i_sb,
286 "couldn't extend journal (err %d)", err);
287 stop_handle:
288 ext4_journal_stop(handle);
289 ext4_orphan_del(NULL, inode);
290 sb_end_intwrite(inode->i_sb);
291 goto no_delete;
292 }
293 }
294
295 /*
296 * Kill off the orphan record which ext4_truncate created.
297 * AKPM: I think this can be inside the above `if'.
298 * Note that ext4_orphan_del() has to be able to cope with the
299 * deletion of a non-existent orphan - this is because we don't
300 * know if ext4_truncate() actually created an orphan record.
301 * (Well, we could do this if we need to, but heck - it works)
302 */
303 ext4_orphan_del(handle, inode);
304 EXT4_I(inode)->i_dtime = get_seconds();
305
306 /*
307 * One subtle ordering requirement: if anything has gone wrong
308 * (transaction abort, IO errors, whatever), then we can still
309 * do these next steps (the fs will already have been marked as
310 * having errors), but we can't free the inode if the mark_dirty
311 * fails.
312 */
313 if (ext4_mark_inode_dirty(handle, inode))
314 /* If that failed, just do the required in-core inode clear. */
315 ext4_clear_inode(inode);
316 else
317 ext4_free_inode(handle, inode);
318 ext4_journal_stop(handle);
319 sb_end_intwrite(inode->i_sb);
320 return;
321 no_delete:
322 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
323 }
324
325 #ifdef CONFIG_QUOTA
326 qsize_t *ext4_get_reserved_space(struct inode *inode)
327 {
328 return &EXT4_I(inode)->i_reserved_quota;
329 }
330 #endif
331
332 /*
333 * Called with i_data_sem down, which is important since we can call
334 * ext4_discard_preallocations() from here.
335 */
336 void ext4_da_update_reserve_space(struct inode *inode,
337 int used, int quota_claim)
338 {
339 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
340 struct ext4_inode_info *ei = EXT4_I(inode);
341
342 spin_lock(&ei->i_block_reservation_lock);
343 trace_ext4_da_update_reserve_space(inode, used, quota_claim);
344 if (unlikely(used > ei->i_reserved_data_blocks)) {
345 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
346 "with only %d reserved data blocks",
347 __func__, inode->i_ino, used,
348 ei->i_reserved_data_blocks);
349 WARN_ON(1);
350 used = ei->i_reserved_data_blocks;
351 }
352
353 /* Update per-inode reservations */
354 ei->i_reserved_data_blocks -= used;
355 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
356
357 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
358
359 /* Update quota subsystem for data blocks */
360 if (quota_claim)
361 dquot_claim_block(inode, EXT4_C2B(sbi, used));
362 else {
363 /*
364 * We did fallocate with an offset that is already delayed
365 * allocated. So on delayed allocated writeback we should
366 * not re-claim the quota for fallocated blocks.
367 */
368 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
369 }
370
371 /*
372 * If we have done all the pending block allocations and if
373 * there aren't any writers on the inode, we can discard the
374 * inode's preallocations.
375 */
376 if ((ei->i_reserved_data_blocks == 0) &&
377 (atomic_read(&inode->i_writecount) == 0))
378 ext4_discard_preallocations(inode);
379 }
380
381 static int __check_block_validity(struct inode *inode, const char *func,
382 unsigned int line,
383 struct ext4_map_blocks *map)
384 {
385 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
386 map->m_len)) {
387 ext4_error_inode(inode, func, line, map->m_pblk,
388 "lblock %lu mapped to illegal pblock "
389 "(length %d)", (unsigned long) map->m_lblk,
390 map->m_len);
391 return -EFSCORRUPTED;
392 }
393 return 0;
394 }
395
396 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
397 ext4_lblk_t len)
398 {
399 int ret;
400
401 if (ext4_encrypted_inode(inode))
402 return fscrypt_zeroout_range(inode, lblk, pblk, len);
403
404 ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
405 if (ret > 0)
406 ret = 0;
407
408 return ret;
409 }
410
411 #define check_block_validity(inode, map) \
412 __check_block_validity((inode), __func__, __LINE__, (map))
413
414 #ifdef ES_AGGRESSIVE_TEST
415 static void ext4_map_blocks_es_recheck(handle_t *handle,
416 struct inode *inode,
417 struct ext4_map_blocks *es_map,
418 struct ext4_map_blocks *map,
419 int flags)
420 {
421 int retval;
422
423 map->m_flags = 0;
424 /*
425 * There is a race window that the result is not the same.
426 * e.g. xfstests #223 when dioread_nolock enables. The reason
427 * is that we lookup a block mapping in extent status tree with
428 * out taking i_data_sem. So at the time the unwritten extent
429 * could be converted.
430 */
431 down_read(&EXT4_I(inode)->i_data_sem);
432 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
433 retval = ext4_ext_map_blocks(handle, inode, map, flags &
434 EXT4_GET_BLOCKS_KEEP_SIZE);
435 } else {
436 retval = ext4_ind_map_blocks(handle, inode, map, flags &
437 EXT4_GET_BLOCKS_KEEP_SIZE);
438 }
439 up_read((&EXT4_I(inode)->i_data_sem));
440
441 /*
442 * We don't check m_len because extent will be collpased in status
443 * tree. So the m_len might not equal.
444 */
445 if (es_map->m_lblk != map->m_lblk ||
446 es_map->m_flags != map->m_flags ||
447 es_map->m_pblk != map->m_pblk) {
448 printk("ES cache assertion failed for inode: %lu "
449 "es_cached ex [%d/%d/%llu/%x] != "
450 "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
451 inode->i_ino, es_map->m_lblk, es_map->m_len,
452 es_map->m_pblk, es_map->m_flags, map->m_lblk,
453 map->m_len, map->m_pblk, map->m_flags,
454 retval, flags);
455 }
456 }
457 #endif /* ES_AGGRESSIVE_TEST */
458
459 /*
460 * The ext4_map_blocks() function tries to look up the requested blocks,
461 * and returns if the blocks are already mapped.
462 *
463 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
464 * and store the allocated blocks in the result buffer head and mark it
465 * mapped.
466 *
467 * If file type is extents based, it will call ext4_ext_map_blocks(),
468 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
469 * based files
470 *
471 * On success, it returns the number of blocks being mapped or allocated. if
472 * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
473 * is marked as unwritten. If the create == 1, it will mark @map as mapped.
474 *
475 * It returns 0 if plain look up failed (blocks have not been allocated), in
476 * that case, @map is returned as unmapped but we still do fill map->m_len to
477 * indicate the length of a hole starting at map->m_lblk.
478 *
479 * It returns the error in case of allocation failure.
480 */
481 int ext4_map_blocks(handle_t *handle, struct inode *inode,
482 struct ext4_map_blocks *map, int flags)
483 {
484 struct extent_status es;
485 int retval;
486 int ret = 0;
487 #ifdef ES_AGGRESSIVE_TEST
488 struct ext4_map_blocks orig_map;
489
490 memcpy(&orig_map, map, sizeof(*map));
491 #endif
492
493 map->m_flags = 0;
494 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
495 "logical block %lu\n", inode->i_ino, flags, map->m_len,
496 (unsigned long) map->m_lblk);
497
498 /*
499 * ext4_map_blocks returns an int, and m_len is an unsigned int
500 */
501 if (unlikely(map->m_len > INT_MAX))
502 map->m_len = INT_MAX;
503
504 /* We can handle the block number less than EXT_MAX_BLOCKS */
505 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
506 return -EFSCORRUPTED;
507
508 /* Lookup extent status tree firstly */
509 if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
510 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
511 map->m_pblk = ext4_es_pblock(&es) +
512 map->m_lblk - es.es_lblk;
513 map->m_flags |= ext4_es_is_written(&es) ?
514 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
515 retval = es.es_len - (map->m_lblk - es.es_lblk);
516 if (retval > map->m_len)
517 retval = map->m_len;
518 map->m_len = retval;
519 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
520 map->m_pblk = 0;
521 retval = es.es_len - (map->m_lblk - es.es_lblk);
522 if (retval > map->m_len)
523 retval = map->m_len;
524 map->m_len = retval;
525 retval = 0;
526 } else {
527 BUG_ON(1);
528 }
529 #ifdef ES_AGGRESSIVE_TEST
530 ext4_map_blocks_es_recheck(handle, inode, map,
531 &orig_map, flags);
532 #endif
533 goto found;
534 }
535
536 /*
537 * Try to see if we can get the block without requesting a new
538 * file system block.
539 */
540 down_read(&EXT4_I(inode)->i_data_sem);
541 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
542 retval = ext4_ext_map_blocks(handle, inode, map, flags &
543 EXT4_GET_BLOCKS_KEEP_SIZE);
544 } else {
545 retval = ext4_ind_map_blocks(handle, inode, map, flags &
546 EXT4_GET_BLOCKS_KEEP_SIZE);
547 }
548 if (retval > 0) {
549 unsigned int status;
550
551 if (unlikely(retval != map->m_len)) {
552 ext4_warning(inode->i_sb,
553 "ES len assertion failed for inode "
554 "%lu: retval %d != map->m_len %d",
555 inode->i_ino, retval, map->m_len);
556 WARN_ON(1);
557 }
558
559 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
560 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
561 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
562 !(status & EXTENT_STATUS_WRITTEN) &&
563 ext4_find_delalloc_range(inode, map->m_lblk,
564 map->m_lblk + map->m_len - 1))
565 status |= EXTENT_STATUS_DELAYED;
566 ret = ext4_es_insert_extent(inode, map->m_lblk,
567 map->m_len, map->m_pblk, status);
568 if (ret < 0)
569 retval = ret;
570 }
571 up_read((&EXT4_I(inode)->i_data_sem));
572
573 found:
574 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
575 ret = check_block_validity(inode, map);
576 if (ret != 0)
577 return ret;
578 }
579
580 /* If it is only a block(s) look up */
581 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
582 return retval;
583
584 /*
585 * Returns if the blocks have already allocated
586 *
587 * Note that if blocks have been preallocated
588 * ext4_ext_get_block() returns the create = 0
589 * with buffer head unmapped.
590 */
591 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
592 /*
593 * If we need to convert extent to unwritten
594 * we continue and do the actual work in
595 * ext4_ext_map_blocks()
596 */
597 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
598 return retval;
599
600 /*
601 * Here we clear m_flags because after allocating an new extent,
602 * it will be set again.
603 */
604 map->m_flags &= ~EXT4_MAP_FLAGS;
605
606 /*
607 * New blocks allocate and/or writing to unwritten extent
608 * will possibly result in updating i_data, so we take
609 * the write lock of i_data_sem, and call get_block()
610 * with create == 1 flag.
611 */
612 down_write(&EXT4_I(inode)->i_data_sem);
613
614 /*
615 * We need to check for EXT4 here because migrate
616 * could have changed the inode type in between
617 */
618 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
619 retval = ext4_ext_map_blocks(handle, inode, map, flags);
620 } else {
621 retval = ext4_ind_map_blocks(handle, inode, map, flags);
622
623 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
624 /*
625 * We allocated new blocks which will result in
626 * i_data's format changing. Force the migrate
627 * to fail by clearing migrate flags
628 */
629 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
630 }
631
632 /*
633 * Update reserved blocks/metadata blocks after successful
634 * block allocation which had been deferred till now. We don't
635 * support fallocate for non extent files. So we can update
636 * reserve space here.
637 */
638 if ((retval > 0) &&
639 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
640 ext4_da_update_reserve_space(inode, retval, 1);
641 }
642
643 if (retval > 0) {
644 unsigned int status;
645
646 if (unlikely(retval != map->m_len)) {
647 ext4_warning(inode->i_sb,
648 "ES len assertion failed for inode "
649 "%lu: retval %d != map->m_len %d",
650 inode->i_ino, retval, map->m_len);
651 WARN_ON(1);
652 }
653
654 /*
655 * We have to zeroout blocks before inserting them into extent
656 * status tree. Otherwise someone could look them up there and
657 * use them before they are really zeroed. We also have to
658 * unmap metadata before zeroing as otherwise writeback can
659 * overwrite zeros with stale data from block device.
660 */
661 if (flags & EXT4_GET_BLOCKS_ZERO &&
662 map->m_flags & EXT4_MAP_MAPPED &&
663 map->m_flags & EXT4_MAP_NEW) {
664 ext4_lblk_t i;
665
666 for (i = 0; i < map->m_len; i++) {
667 unmap_underlying_metadata(inode->i_sb->s_bdev,
668 map->m_pblk + i);
669 }
670 ret = ext4_issue_zeroout(inode, map->m_lblk,
671 map->m_pblk, map->m_len);
672 if (ret) {
673 retval = ret;
674 goto out_sem;
675 }
676 }
677
678 /*
679 * If the extent has been zeroed out, we don't need to update
680 * extent status tree.
681 */
682 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
683 ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
684 if (ext4_es_is_written(&es))
685 goto out_sem;
686 }
687 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
688 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
689 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
690 !(status & EXTENT_STATUS_WRITTEN) &&
691 ext4_find_delalloc_range(inode, map->m_lblk,
692 map->m_lblk + map->m_len - 1))
693 status |= EXTENT_STATUS_DELAYED;
694 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
695 map->m_pblk, status);
696 if (ret < 0) {
697 retval = ret;
698 goto out_sem;
699 }
700 }
701
702 out_sem:
703 up_write((&EXT4_I(inode)->i_data_sem));
704 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
705 ret = check_block_validity(inode, map);
706 if (ret != 0)
707 return ret;
708
709 /*
710 * Inodes with freshly allocated blocks where contents will be
711 * visible after transaction commit must be on transaction's
712 * ordered data list.
713 */
714 if (map->m_flags & EXT4_MAP_NEW &&
715 !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
716 !(flags & EXT4_GET_BLOCKS_ZERO) &&
717 !IS_NOQUOTA(inode) &&
718 ext4_should_order_data(inode)) {
719 if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
720 ret = ext4_jbd2_inode_add_wait(handle, inode);
721 else
722 ret = ext4_jbd2_inode_add_write(handle, inode);
723 if (ret)
724 return ret;
725 }
726 }
727 return retval;
728 }
729
730 /*
731 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
732 * we have to be careful as someone else may be manipulating b_state as well.
733 */
734 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
735 {
736 unsigned long old_state;
737 unsigned long new_state;
738
739 flags &= EXT4_MAP_FLAGS;
740
741 /* Dummy buffer_head? Set non-atomically. */
742 if (!bh->b_page) {
743 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
744 return;
745 }
746 /*
747 * Someone else may be modifying b_state. Be careful! This is ugly but
748 * once we get rid of using bh as a container for mapping information
749 * to pass to / from get_block functions, this can go away.
750 */
751 do {
752 old_state = READ_ONCE(bh->b_state);
753 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
754 } while (unlikely(
755 cmpxchg(&bh->b_state, old_state, new_state) != old_state));
756 }
757
758 static int _ext4_get_block(struct inode *inode, sector_t iblock,
759 struct buffer_head *bh, int flags)
760 {
761 struct ext4_map_blocks map;
762 int ret = 0;
763
764 if (ext4_has_inline_data(inode))
765 return -ERANGE;
766
767 map.m_lblk = iblock;
768 map.m_len = bh->b_size >> inode->i_blkbits;
769
770 ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
771 flags);
772 if (ret > 0) {
773 map_bh(bh, inode->i_sb, map.m_pblk);
774 ext4_update_bh_state(bh, map.m_flags);
775 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
776 ret = 0;
777 } else if (ret == 0) {
778 /* hole case, need to fill in bh->b_size */
779 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
780 }
781 return ret;
782 }
783
784 int ext4_get_block(struct inode *inode, sector_t iblock,
785 struct buffer_head *bh, int create)
786 {
787 return _ext4_get_block(inode, iblock, bh,
788 create ? EXT4_GET_BLOCKS_CREATE : 0);
789 }
790
791 /*
792 * Get block function used when preparing for buffered write if we require
793 * creating an unwritten extent if blocks haven't been allocated. The extent
794 * will be converted to written after the IO is complete.
795 */
796 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
797 struct buffer_head *bh_result, int create)
798 {
799 ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
800 inode->i_ino, create);
801 return _ext4_get_block(inode, iblock, bh_result,
802 EXT4_GET_BLOCKS_IO_CREATE_EXT);
803 }
804
805 /* Maximum number of blocks we map for direct IO at once. */
806 #define DIO_MAX_BLOCKS 4096
807
808 /*
809 * Get blocks function for the cases that need to start a transaction -
810 * generally difference cases of direct IO and DAX IO. It also handles retries
811 * in case of ENOSPC.
812 */
813 static int ext4_get_block_trans(struct inode *inode, sector_t iblock,
814 struct buffer_head *bh_result, int flags)
815 {
816 int dio_credits;
817 handle_t *handle;
818 int retries = 0;
819 int ret;
820
821 /* Trim mapping request to maximum we can map at once for DIO */
822 if (bh_result->b_size >> inode->i_blkbits > DIO_MAX_BLOCKS)
823 bh_result->b_size = DIO_MAX_BLOCKS << inode->i_blkbits;
824 dio_credits = ext4_chunk_trans_blocks(inode,
825 bh_result->b_size >> inode->i_blkbits);
826 retry:
827 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
828 if (IS_ERR(handle))
829 return PTR_ERR(handle);
830
831 ret = _ext4_get_block(inode, iblock, bh_result, flags);
832 ext4_journal_stop(handle);
833
834 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
835 goto retry;
836 return ret;
837 }
838
839 /* Get block function for DIO reads and writes to inodes without extents */
840 int ext4_dio_get_block(struct inode *inode, sector_t iblock,
841 struct buffer_head *bh, int create)
842 {
843 /* We don't expect handle for direct IO */
844 WARN_ON_ONCE(ext4_journal_current_handle());
845
846 if (!create)
847 return _ext4_get_block(inode, iblock, bh, 0);
848 return ext4_get_block_trans(inode, iblock, bh, EXT4_GET_BLOCKS_CREATE);
849 }
850
851 /*
852 * Get block function for AIO DIO writes when we create unwritten extent if
853 * blocks are not allocated yet. The extent will be converted to written
854 * after IO is complete.
855 */
856 static int ext4_dio_get_block_unwritten_async(struct inode *inode,
857 sector_t iblock, struct buffer_head *bh_result, int create)
858 {
859 int ret;
860
861 /* We don't expect handle for direct IO */
862 WARN_ON_ONCE(ext4_journal_current_handle());
863
864 ret = ext4_get_block_trans(inode, iblock, bh_result,
865 EXT4_GET_BLOCKS_IO_CREATE_EXT);
866
867 /*
868 * When doing DIO using unwritten extents, we need io_end to convert
869 * unwritten extents to written on IO completion. We allocate io_end
870 * once we spot unwritten extent and store it in b_private. Generic
871 * DIO code keeps b_private set and furthermore passes the value to
872 * our completion callback in 'private' argument.
873 */
874 if (!ret && buffer_unwritten(bh_result)) {
875 if (!bh_result->b_private) {
876 ext4_io_end_t *io_end;
877
878 io_end = ext4_init_io_end(inode, GFP_KERNEL);
879 if (!io_end)
880 return -ENOMEM;
881 bh_result->b_private = io_end;
882 ext4_set_io_unwritten_flag(inode, io_end);
883 }
884 set_buffer_defer_completion(bh_result);
885 }
886
887 return ret;
888 }
889
890 /*
891 * Get block function for non-AIO DIO writes when we create unwritten extent if
892 * blocks are not allocated yet. The extent will be converted to written
893 * after IO is complete from ext4_ext_direct_IO() function.
894 */
895 static int ext4_dio_get_block_unwritten_sync(struct inode *inode,
896 sector_t iblock, struct buffer_head *bh_result, int create)
897 {
898 int ret;
899
900 /* We don't expect handle for direct IO */
901 WARN_ON_ONCE(ext4_journal_current_handle());
902
903 ret = ext4_get_block_trans(inode, iblock, bh_result,
904 EXT4_GET_BLOCKS_IO_CREATE_EXT);
905
906 /*
907 * Mark inode as having pending DIO writes to unwritten extents.
908 * ext4_ext_direct_IO() checks this flag and converts extents to
909 * written.
910 */
911 if (!ret && buffer_unwritten(bh_result))
912 ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
913
914 return ret;
915 }
916
917 static int ext4_dio_get_block_overwrite(struct inode *inode, sector_t iblock,
918 struct buffer_head *bh_result, int create)
919 {
920 int ret;
921
922 ext4_debug("ext4_dio_get_block_overwrite: inode %lu, create flag %d\n",
923 inode->i_ino, create);
924 /* We don't expect handle for direct IO */
925 WARN_ON_ONCE(ext4_journal_current_handle());
926
927 ret = _ext4_get_block(inode, iblock, bh_result, 0);
928 /*
929 * Blocks should have been preallocated! ext4_file_write_iter() checks
930 * that.
931 */
932 WARN_ON_ONCE(!buffer_mapped(bh_result) || buffer_unwritten(bh_result));
933
934 return ret;
935 }
936
937
938 /*
939 * `handle' can be NULL if create is zero
940 */
941 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
942 ext4_lblk_t block, int map_flags)
943 {
944 struct ext4_map_blocks map;
945 struct buffer_head *bh;
946 int create = map_flags & EXT4_GET_BLOCKS_CREATE;
947 int err;
948
949 J_ASSERT(handle != NULL || create == 0);
950
951 map.m_lblk = block;
952 map.m_len = 1;
953 err = ext4_map_blocks(handle, inode, &map, map_flags);
954
955 if (err == 0)
956 return create ? ERR_PTR(-ENOSPC) : NULL;
957 if (err < 0)
958 return ERR_PTR(err);
959
960 bh = sb_getblk(inode->i_sb, map.m_pblk);
961 if (unlikely(!bh))
962 return ERR_PTR(-ENOMEM);
963 if (map.m_flags & EXT4_MAP_NEW) {
964 J_ASSERT(create != 0);
965 J_ASSERT(handle != NULL);
966
967 /*
968 * Now that we do not always journal data, we should
969 * keep in mind whether this should always journal the
970 * new buffer as metadata. For now, regular file
971 * writes use ext4_get_block instead, so it's not a
972 * problem.
973 */
974 lock_buffer(bh);
975 BUFFER_TRACE(bh, "call get_create_access");
976 err = ext4_journal_get_create_access(handle, bh);
977 if (unlikely(err)) {
978 unlock_buffer(bh);
979 goto errout;
980 }
981 if (!buffer_uptodate(bh)) {
982 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
983 set_buffer_uptodate(bh);
984 }
985 unlock_buffer(bh);
986 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
987 err = ext4_handle_dirty_metadata(handle, inode, bh);
988 if (unlikely(err))
989 goto errout;
990 } else
991 BUFFER_TRACE(bh, "not a new buffer");
992 return bh;
993 errout:
994 brelse(bh);
995 return ERR_PTR(err);
996 }
997
998 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
999 ext4_lblk_t block, int map_flags)
1000 {
1001 struct buffer_head *bh;
1002
1003 bh = ext4_getblk(handle, inode, block, map_flags);
1004 if (IS_ERR(bh))
1005 return bh;
1006 if (!bh || buffer_uptodate(bh))
1007 return bh;
1008 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &bh);
1009 wait_on_buffer(bh);
1010 if (buffer_uptodate(bh))
1011 return bh;
1012 put_bh(bh);
1013 return ERR_PTR(-EIO);
1014 }
1015
1016 int ext4_walk_page_buffers(handle_t *handle,
1017 struct buffer_head *head,
1018 unsigned from,
1019 unsigned to,
1020 int *partial,
1021 int (*fn)(handle_t *handle,
1022 struct buffer_head *bh))
1023 {
1024 struct buffer_head *bh;
1025 unsigned block_start, block_end;
1026 unsigned blocksize = head->b_size;
1027 int err, ret = 0;
1028 struct buffer_head *next;
1029
1030 for (bh = head, block_start = 0;
1031 ret == 0 && (bh != head || !block_start);
1032 block_start = block_end, bh = next) {
1033 next = bh->b_this_page;
1034 block_end = block_start + blocksize;
1035 if (block_end <= from || block_start >= to) {
1036 if (partial && !buffer_uptodate(bh))
1037 *partial = 1;
1038 continue;
1039 }
1040 err = (*fn)(handle, bh);
1041 if (!ret)
1042 ret = err;
1043 }
1044 return ret;
1045 }
1046
1047 /*
1048 * To preserve ordering, it is essential that the hole instantiation and
1049 * the data write be encapsulated in a single transaction. We cannot
1050 * close off a transaction and start a new one between the ext4_get_block()
1051 * and the commit_write(). So doing the jbd2_journal_start at the start of
1052 * prepare_write() is the right place.
1053 *
1054 * Also, this function can nest inside ext4_writepage(). In that case, we
1055 * *know* that ext4_writepage() has generated enough buffer credits to do the
1056 * whole page. So we won't block on the journal in that case, which is good,
1057 * because the caller may be PF_MEMALLOC.
1058 *
1059 * By accident, ext4 can be reentered when a transaction is open via
1060 * quota file writes. If we were to commit the transaction while thus
1061 * reentered, there can be a deadlock - we would be holding a quota
1062 * lock, and the commit would never complete if another thread had a
1063 * transaction open and was blocking on the quota lock - a ranking
1064 * violation.
1065 *
1066 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1067 * will _not_ run commit under these circumstances because handle->h_ref
1068 * is elevated. We'll still have enough credits for the tiny quotafile
1069 * write.
1070 */
1071 int do_journal_get_write_access(handle_t *handle,
1072 struct buffer_head *bh)
1073 {
1074 int dirty = buffer_dirty(bh);
1075 int ret;
1076
1077 if (!buffer_mapped(bh) || buffer_freed(bh))
1078 return 0;
1079 /*
1080 * __block_write_begin() could have dirtied some buffers. Clean
1081 * the dirty bit as jbd2_journal_get_write_access() could complain
1082 * otherwise about fs integrity issues. Setting of the dirty bit
1083 * by __block_write_begin() isn't a real problem here as we clear
1084 * the bit before releasing a page lock and thus writeback cannot
1085 * ever write the buffer.
1086 */
1087 if (dirty)
1088 clear_buffer_dirty(bh);
1089 BUFFER_TRACE(bh, "get write access");
1090 ret = ext4_journal_get_write_access(handle, bh);
1091 if (!ret && dirty)
1092 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1093 return ret;
1094 }
1095
1096 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1097 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1098 get_block_t *get_block)
1099 {
1100 unsigned from = pos & (PAGE_SIZE - 1);
1101 unsigned to = from + len;
1102 struct inode *inode = page->mapping->host;
1103 unsigned block_start, block_end;
1104 sector_t block;
1105 int err = 0;
1106 unsigned blocksize = inode->i_sb->s_blocksize;
1107 unsigned bbits;
1108 struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
1109 bool decrypt = false;
1110
1111 BUG_ON(!PageLocked(page));
1112 BUG_ON(from > PAGE_SIZE);
1113 BUG_ON(to > PAGE_SIZE);
1114 BUG_ON(from > to);
1115
1116 if (!page_has_buffers(page))
1117 create_empty_buffers(page, blocksize, 0);
1118 head = page_buffers(page);
1119 bbits = ilog2(blocksize);
1120 block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1121
1122 for (bh = head, block_start = 0; bh != head || !block_start;
1123 block++, block_start = block_end, bh = bh->b_this_page) {
1124 block_end = block_start + blocksize;
1125 if (block_end <= from || block_start >= to) {
1126 if (PageUptodate(page)) {
1127 if (!buffer_uptodate(bh))
1128 set_buffer_uptodate(bh);
1129 }
1130 continue;
1131 }
1132 if (buffer_new(bh))
1133 clear_buffer_new(bh);
1134 if (!buffer_mapped(bh)) {
1135 WARN_ON(bh->b_size != blocksize);
1136 err = get_block(inode, block, bh, 1);
1137 if (err)
1138 break;
1139 if (buffer_new(bh)) {
1140 unmap_underlying_metadata(bh->b_bdev,
1141 bh->b_blocknr);
1142 if (PageUptodate(page)) {
1143 clear_buffer_new(bh);
1144 set_buffer_uptodate(bh);
1145 mark_buffer_dirty(bh);
1146 continue;
1147 }
1148 if (block_end > to || block_start < from)
1149 zero_user_segments(page, to, block_end,
1150 block_start, from);
1151 continue;
1152 }
1153 }
1154 if (PageUptodate(page)) {
1155 if (!buffer_uptodate(bh))
1156 set_buffer_uptodate(bh);
1157 continue;
1158 }
1159 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1160 !buffer_unwritten(bh) &&
1161 (block_start < from || block_end > to)) {
1162 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1163 *wait_bh++ = bh;
1164 decrypt = ext4_encrypted_inode(inode) &&
1165 S_ISREG(inode->i_mode);
1166 }
1167 }
1168 /*
1169 * If we issued read requests, let them complete.
1170 */
1171 while (wait_bh > wait) {
1172 wait_on_buffer(*--wait_bh);
1173 if (!buffer_uptodate(*wait_bh))
1174 err = -EIO;
1175 }
1176 if (unlikely(err))
1177 page_zero_new_buffers(page, from, to);
1178 else if (decrypt)
1179 err = fscrypt_decrypt_page(page->mapping->host, page,
1180 PAGE_SIZE, 0, page->index);
1181 return err;
1182 }
1183 #endif
1184
1185 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1186 loff_t pos, unsigned len, unsigned flags,
1187 struct page **pagep, void **fsdata)
1188 {
1189 struct inode *inode = mapping->host;
1190 int ret, needed_blocks;
1191 handle_t *handle;
1192 int retries = 0;
1193 struct page *page;
1194 pgoff_t index;
1195 unsigned from, to;
1196
1197 trace_ext4_write_begin(inode, pos, len, flags);
1198 /*
1199 * Reserve one block more for addition to orphan list in case
1200 * we allocate blocks but write fails for some reason
1201 */
1202 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1203 index = pos >> PAGE_SHIFT;
1204 from = pos & (PAGE_SIZE - 1);
1205 to = from + len;
1206
1207 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1208 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1209 flags, pagep);
1210 if (ret < 0)
1211 return ret;
1212 if (ret == 1)
1213 return 0;
1214 }
1215
1216 /*
1217 * grab_cache_page_write_begin() can take a long time if the
1218 * system is thrashing due to memory pressure, or if the page
1219 * is being written back. So grab it first before we start
1220 * the transaction handle. This also allows us to allocate
1221 * the page (if needed) without using GFP_NOFS.
1222 */
1223 retry_grab:
1224 page = grab_cache_page_write_begin(mapping, index, flags);
1225 if (!page)
1226 return -ENOMEM;
1227 unlock_page(page);
1228
1229 retry_journal:
1230 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1231 if (IS_ERR(handle)) {
1232 put_page(page);
1233 return PTR_ERR(handle);
1234 }
1235
1236 lock_page(page);
1237 if (page->mapping != mapping) {
1238 /* The page got truncated from under us */
1239 unlock_page(page);
1240 put_page(page);
1241 ext4_journal_stop(handle);
1242 goto retry_grab;
1243 }
1244 /* In case writeback began while the page was unlocked */
1245 wait_for_stable_page(page);
1246
1247 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1248 if (ext4_should_dioread_nolock(inode))
1249 ret = ext4_block_write_begin(page, pos, len,
1250 ext4_get_block_unwritten);
1251 else
1252 ret = ext4_block_write_begin(page, pos, len,
1253 ext4_get_block);
1254 #else
1255 if (ext4_should_dioread_nolock(inode))
1256 ret = __block_write_begin(page, pos, len,
1257 ext4_get_block_unwritten);
1258 else
1259 ret = __block_write_begin(page, pos, len, ext4_get_block);
1260 #endif
1261 if (!ret && ext4_should_journal_data(inode)) {
1262 ret = ext4_walk_page_buffers(handle, page_buffers(page),
1263 from, to, NULL,
1264 do_journal_get_write_access);
1265 }
1266
1267 if (ret) {
1268 unlock_page(page);
1269 /*
1270 * __block_write_begin may have instantiated a few blocks
1271 * outside i_size. Trim these off again. Don't need
1272 * i_size_read because we hold i_mutex.
1273 *
1274 * Add inode to orphan list in case we crash before
1275 * truncate finishes
1276 */
1277 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1278 ext4_orphan_add(handle, inode);
1279
1280 ext4_journal_stop(handle);
1281 if (pos + len > inode->i_size) {
1282 ext4_truncate_failed_write(inode);
1283 /*
1284 * If truncate failed early the inode might
1285 * still be on the orphan list; we need to
1286 * make sure the inode is removed from the
1287 * orphan list in that case.
1288 */
1289 if (inode->i_nlink)
1290 ext4_orphan_del(NULL, inode);
1291 }
1292
1293 if (ret == -ENOSPC &&
1294 ext4_should_retry_alloc(inode->i_sb, &retries))
1295 goto retry_journal;
1296 put_page(page);
1297 return ret;
1298 }
1299 *pagep = page;
1300 return ret;
1301 }
1302
1303 /* For write_end() in data=journal mode */
1304 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1305 {
1306 int ret;
1307 if (!buffer_mapped(bh) || buffer_freed(bh))
1308 return 0;
1309 set_buffer_uptodate(bh);
1310 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1311 clear_buffer_meta(bh);
1312 clear_buffer_prio(bh);
1313 return ret;
1314 }
1315
1316 /*
1317 * We need to pick up the new inode size which generic_commit_write gave us
1318 * `file' can be NULL - eg, when called from page_symlink().
1319 *
1320 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1321 * buffers are managed internally.
1322 */
1323 static int ext4_write_end(struct file *file,
1324 struct address_space *mapping,
1325 loff_t pos, unsigned len, unsigned copied,
1326 struct page *page, void *fsdata)
1327 {
1328 handle_t *handle = ext4_journal_current_handle();
1329 struct inode *inode = mapping->host;
1330 loff_t old_size = inode->i_size;
1331 int ret = 0, ret2;
1332 int i_size_changed = 0;
1333
1334 trace_ext4_write_end(inode, pos, len, copied);
1335 if (ext4_has_inline_data(inode)) {
1336 ret = ext4_write_inline_data_end(inode, pos, len,
1337 copied, page);
1338 if (ret < 0)
1339 goto errout;
1340 copied = ret;
1341 } else
1342 copied = block_write_end(file, mapping, pos,
1343 len, copied, page, fsdata);
1344 /*
1345 * it's important to update i_size while still holding page lock:
1346 * page writeout could otherwise come in and zero beyond i_size.
1347 */
1348 i_size_changed = ext4_update_inode_size(inode, pos + copied);
1349 unlock_page(page);
1350 put_page(page);
1351
1352 if (old_size < pos)
1353 pagecache_isize_extended(inode, old_size, pos);
1354 /*
1355 * Don't mark the inode dirty under page lock. First, it unnecessarily
1356 * makes the holding time of page lock longer. Second, it forces lock
1357 * ordering of page lock and transaction start for journaling
1358 * filesystems.
1359 */
1360 if (i_size_changed)
1361 ext4_mark_inode_dirty(handle, inode);
1362
1363 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1364 /* if we have allocated more blocks and copied
1365 * less. We will have blocks allocated outside
1366 * inode->i_size. So truncate them
1367 */
1368 ext4_orphan_add(handle, inode);
1369 errout:
1370 ret2 = ext4_journal_stop(handle);
1371 if (!ret)
1372 ret = ret2;
1373
1374 if (pos + len > inode->i_size) {
1375 ext4_truncate_failed_write(inode);
1376 /*
1377 * If truncate failed early the inode might still be
1378 * on the orphan list; we need to make sure the inode
1379 * is removed from the orphan list in that case.
1380 */
1381 if (inode->i_nlink)
1382 ext4_orphan_del(NULL, inode);
1383 }
1384
1385 return ret ? ret : copied;
1386 }
1387
1388 /*
1389 * This is a private version of page_zero_new_buffers() which doesn't
1390 * set the buffer to be dirty, since in data=journalled mode we need
1391 * to call ext4_handle_dirty_metadata() instead.
1392 */
1393 static void zero_new_buffers(struct page *page, unsigned from, unsigned to)
1394 {
1395 unsigned int block_start = 0, block_end;
1396 struct buffer_head *head, *bh;
1397
1398 bh = head = page_buffers(page);
1399 do {
1400 block_end = block_start + bh->b_size;
1401 if (buffer_new(bh)) {
1402 if (block_end > from && block_start < to) {
1403 if (!PageUptodate(page)) {
1404 unsigned start, size;
1405
1406 start = max(from, block_start);
1407 size = min(to, block_end) - start;
1408
1409 zero_user(page, start, size);
1410 set_buffer_uptodate(bh);
1411 }
1412 clear_buffer_new(bh);
1413 }
1414 }
1415 block_start = block_end;
1416 bh = bh->b_this_page;
1417 } while (bh != head);
1418 }
1419
1420 static int ext4_journalled_write_end(struct file *file,
1421 struct address_space *mapping,
1422 loff_t pos, unsigned len, unsigned copied,
1423 struct page *page, void *fsdata)
1424 {
1425 handle_t *handle = ext4_journal_current_handle();
1426 struct inode *inode = mapping->host;
1427 loff_t old_size = inode->i_size;
1428 int ret = 0, ret2;
1429 int partial = 0;
1430 unsigned from, to;
1431 int size_changed = 0;
1432
1433 trace_ext4_journalled_write_end(inode, pos, len, copied);
1434 from = pos & (PAGE_SIZE - 1);
1435 to = from + len;
1436
1437 BUG_ON(!ext4_handle_valid(handle));
1438
1439 if (ext4_has_inline_data(inode))
1440 copied = ext4_write_inline_data_end(inode, pos, len,
1441 copied, page);
1442 else {
1443 if (copied < len) {
1444 if (!PageUptodate(page))
1445 copied = 0;
1446 zero_new_buffers(page, from+copied, to);
1447 }
1448
1449 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1450 to, &partial, write_end_fn);
1451 if (!partial)
1452 SetPageUptodate(page);
1453 }
1454 size_changed = ext4_update_inode_size(inode, pos + copied);
1455 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1456 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1457 unlock_page(page);
1458 put_page(page);
1459
1460 if (old_size < pos)
1461 pagecache_isize_extended(inode, old_size, pos);
1462
1463 if (size_changed) {
1464 ret2 = ext4_mark_inode_dirty(handle, inode);
1465 if (!ret)
1466 ret = ret2;
1467 }
1468
1469 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1470 /* if we have allocated more blocks and copied
1471 * less. We will have blocks allocated outside
1472 * inode->i_size. So truncate them
1473 */
1474 ext4_orphan_add(handle, inode);
1475
1476 ret2 = ext4_journal_stop(handle);
1477 if (!ret)
1478 ret = ret2;
1479 if (pos + len > inode->i_size) {
1480 ext4_truncate_failed_write(inode);
1481 /*
1482 * If truncate failed early the inode might still be
1483 * on the orphan list; we need to make sure the inode
1484 * is removed from the orphan list in that case.
1485 */
1486 if (inode->i_nlink)
1487 ext4_orphan_del(NULL, inode);
1488 }
1489
1490 return ret ? ret : copied;
1491 }
1492
1493 /*
1494 * Reserve space for a single cluster
1495 */
1496 static int ext4_da_reserve_space(struct inode *inode)
1497 {
1498 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1499 struct ext4_inode_info *ei = EXT4_I(inode);
1500 int ret;
1501
1502 /*
1503 * We will charge metadata quota at writeout time; this saves
1504 * us from metadata over-estimation, though we may go over by
1505 * a small amount in the end. Here we just reserve for data.
1506 */
1507 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1508 if (ret)
1509 return ret;
1510
1511 spin_lock(&ei->i_block_reservation_lock);
1512 if (ext4_claim_free_clusters(sbi, 1, 0)) {
1513 spin_unlock(&ei->i_block_reservation_lock);
1514 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1515 return -ENOSPC;
1516 }
1517 ei->i_reserved_data_blocks++;
1518 trace_ext4_da_reserve_space(inode);
1519 spin_unlock(&ei->i_block_reservation_lock);
1520
1521 return 0; /* success */
1522 }
1523
1524 static void ext4_da_release_space(struct inode *inode, int to_free)
1525 {
1526 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1527 struct ext4_inode_info *ei = EXT4_I(inode);
1528
1529 if (!to_free)
1530 return; /* Nothing to release, exit */
1531
1532 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1533
1534 trace_ext4_da_release_space(inode, to_free);
1535 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1536 /*
1537 * if there aren't enough reserved blocks, then the
1538 * counter is messed up somewhere. Since this
1539 * function is called from invalidate page, it's
1540 * harmless to return without any action.
1541 */
1542 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1543 "ino %lu, to_free %d with only %d reserved "
1544 "data blocks", inode->i_ino, to_free,
1545 ei->i_reserved_data_blocks);
1546 WARN_ON(1);
1547 to_free = ei->i_reserved_data_blocks;
1548 }
1549 ei->i_reserved_data_blocks -= to_free;
1550
1551 /* update fs dirty data blocks counter */
1552 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1553
1554 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1555
1556 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1557 }
1558
1559 static void ext4_da_page_release_reservation(struct page *page,
1560 unsigned int offset,
1561 unsigned int length)
1562 {
1563 int to_release = 0, contiguous_blks = 0;
1564 struct buffer_head *head, *bh;
1565 unsigned int curr_off = 0;
1566 struct inode *inode = page->mapping->host;
1567 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1568 unsigned int stop = offset + length;
1569 int num_clusters;
1570 ext4_fsblk_t lblk;
1571
1572 BUG_ON(stop > PAGE_SIZE || stop < length);
1573
1574 head = page_buffers(page);
1575 bh = head;
1576 do {
1577 unsigned int next_off = curr_off + bh->b_size;
1578
1579 if (next_off > stop)
1580 break;
1581
1582 if ((offset <= curr_off) && (buffer_delay(bh))) {
1583 to_release++;
1584 contiguous_blks++;
1585 clear_buffer_delay(bh);
1586 } else if (contiguous_blks) {
1587 lblk = page->index <<
1588 (PAGE_SHIFT - inode->i_blkbits);
1589 lblk += (curr_off >> inode->i_blkbits) -
1590 contiguous_blks;
1591 ext4_es_remove_extent(inode, lblk, contiguous_blks);
1592 contiguous_blks = 0;
1593 }
1594 curr_off = next_off;
1595 } while ((bh = bh->b_this_page) != head);
1596
1597 if (contiguous_blks) {
1598 lblk = page->index << (PAGE_SHIFT - inode->i_blkbits);
1599 lblk += (curr_off >> inode->i_blkbits) - contiguous_blks;
1600 ext4_es_remove_extent(inode, lblk, contiguous_blks);
1601 }
1602
1603 /* If we have released all the blocks belonging to a cluster, then we
1604 * need to release the reserved space for that cluster. */
1605 num_clusters = EXT4_NUM_B2C(sbi, to_release);
1606 while (num_clusters > 0) {
1607 lblk = (page->index << (PAGE_SHIFT - inode->i_blkbits)) +
1608 ((num_clusters - 1) << sbi->s_cluster_bits);
1609 if (sbi->s_cluster_ratio == 1 ||
1610 !ext4_find_delalloc_cluster(inode, lblk))
1611 ext4_da_release_space(inode, 1);
1612
1613 num_clusters--;
1614 }
1615 }
1616
1617 /*
1618 * Delayed allocation stuff
1619 */
1620
1621 struct mpage_da_data {
1622 struct inode *inode;
1623 struct writeback_control *wbc;
1624
1625 pgoff_t first_page; /* The first page to write */
1626 pgoff_t next_page; /* Current page to examine */
1627 pgoff_t last_page; /* Last page to examine */
1628 /*
1629 * Extent to map - this can be after first_page because that can be
1630 * fully mapped. We somewhat abuse m_flags to store whether the extent
1631 * is delalloc or unwritten.
1632 */
1633 struct ext4_map_blocks map;
1634 struct ext4_io_submit io_submit; /* IO submission data */
1635 };
1636
1637 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1638 bool invalidate)
1639 {
1640 int nr_pages, i;
1641 pgoff_t index, end;
1642 struct pagevec pvec;
1643 struct inode *inode = mpd->inode;
1644 struct address_space *mapping = inode->i_mapping;
1645
1646 /* This is necessary when next_page == 0. */
1647 if (mpd->first_page >= mpd->next_page)
1648 return;
1649
1650 index = mpd->first_page;
1651 end = mpd->next_page - 1;
1652 if (invalidate) {
1653 ext4_lblk_t start, last;
1654 start = index << (PAGE_SHIFT - inode->i_blkbits);
1655 last = end << (PAGE_SHIFT - inode->i_blkbits);
1656 ext4_es_remove_extent(inode, start, last - start + 1);
1657 }
1658
1659 pagevec_init(&pvec, 0);
1660 while (index <= end) {
1661 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1662 if (nr_pages == 0)
1663 break;
1664 for (i = 0; i < nr_pages; i++) {
1665 struct page *page = pvec.pages[i];
1666 if (page->index > end)
1667 break;
1668 BUG_ON(!PageLocked(page));
1669 BUG_ON(PageWriteback(page));
1670 if (invalidate) {
1671 if (page_mapped(page))
1672 clear_page_dirty_for_io(page);
1673 block_invalidatepage(page, 0, PAGE_SIZE);
1674 ClearPageUptodate(page);
1675 }
1676 unlock_page(page);
1677 }
1678 index = pvec.pages[nr_pages - 1]->index + 1;
1679 pagevec_release(&pvec);
1680 }
1681 }
1682
1683 static void ext4_print_free_blocks(struct inode *inode)
1684 {
1685 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1686 struct super_block *sb = inode->i_sb;
1687 struct ext4_inode_info *ei = EXT4_I(inode);
1688
1689 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1690 EXT4_C2B(EXT4_SB(inode->i_sb),
1691 ext4_count_free_clusters(sb)));
1692 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1693 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1694 (long long) EXT4_C2B(EXT4_SB(sb),
1695 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1696 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1697 (long long) EXT4_C2B(EXT4_SB(sb),
1698 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1699 ext4_msg(sb, KERN_CRIT, "Block reservation details");
1700 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1701 ei->i_reserved_data_blocks);
1702 return;
1703 }
1704
1705 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1706 {
1707 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1708 }
1709
1710 /*
1711 * This function is grabs code from the very beginning of
1712 * ext4_map_blocks, but assumes that the caller is from delayed write
1713 * time. This function looks up the requested blocks and sets the
1714 * buffer delay bit under the protection of i_data_sem.
1715 */
1716 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1717 struct ext4_map_blocks *map,
1718 struct buffer_head *bh)
1719 {
1720 struct extent_status es;
1721 int retval;
1722 sector_t invalid_block = ~((sector_t) 0xffff);
1723 #ifdef ES_AGGRESSIVE_TEST
1724 struct ext4_map_blocks orig_map;
1725
1726 memcpy(&orig_map, map, sizeof(*map));
1727 #endif
1728
1729 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1730 invalid_block = ~0;
1731
1732 map->m_flags = 0;
1733 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1734 "logical block %lu\n", inode->i_ino, map->m_len,
1735 (unsigned long) map->m_lblk);
1736
1737 /* Lookup extent status tree firstly */
1738 if (ext4_es_lookup_extent(inode, iblock, &es)) {
1739 if (ext4_es_is_hole(&es)) {
1740 retval = 0;
1741 down_read(&EXT4_I(inode)->i_data_sem);
1742 goto add_delayed;
1743 }
1744
1745 /*
1746 * Delayed extent could be allocated by fallocate.
1747 * So we need to check it.
1748 */
1749 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1750 map_bh(bh, inode->i_sb, invalid_block);
1751 set_buffer_new(bh);
1752 set_buffer_delay(bh);
1753 return 0;
1754 }
1755
1756 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1757 retval = es.es_len - (iblock - es.es_lblk);
1758 if (retval > map->m_len)
1759 retval = map->m_len;
1760 map->m_len = retval;
1761 if (ext4_es_is_written(&es))
1762 map->m_flags |= EXT4_MAP_MAPPED;
1763 else if (ext4_es_is_unwritten(&es))
1764 map->m_flags |= EXT4_MAP_UNWRITTEN;
1765 else
1766 BUG_ON(1);
1767
1768 #ifdef ES_AGGRESSIVE_TEST
1769 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1770 #endif
1771 return retval;
1772 }
1773
1774 /*
1775 * Try to see if we can get the block without requesting a new
1776 * file system block.
1777 */
1778 down_read(&EXT4_I(inode)->i_data_sem);
1779 if (ext4_has_inline_data(inode))
1780 retval = 0;
1781 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1782 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1783 else
1784 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1785
1786 add_delayed:
1787 if (retval == 0) {
1788 int ret;
1789 /*
1790 * XXX: __block_prepare_write() unmaps passed block,
1791 * is it OK?
1792 */
1793 /*
1794 * If the block was allocated from previously allocated cluster,
1795 * then we don't need to reserve it again. However we still need
1796 * to reserve metadata for every block we're going to write.
1797 */
1798 if (EXT4_SB(inode->i_sb)->s_cluster_ratio == 1 ||
1799 !ext4_find_delalloc_cluster(inode, map->m_lblk)) {
1800 ret = ext4_da_reserve_space(inode);
1801 if (ret) {
1802 /* not enough space to reserve */
1803 retval = ret;
1804 goto out_unlock;
1805 }
1806 }
1807
1808 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1809 ~0, EXTENT_STATUS_DELAYED);
1810 if (ret) {
1811 retval = ret;
1812 goto out_unlock;
1813 }
1814
1815 map_bh(bh, inode->i_sb, invalid_block);
1816 set_buffer_new(bh);
1817 set_buffer_delay(bh);
1818 } else if (retval > 0) {
1819 int ret;
1820 unsigned int status;
1821
1822 if (unlikely(retval != map->m_len)) {
1823 ext4_warning(inode->i_sb,
1824 "ES len assertion failed for inode "
1825 "%lu: retval %d != map->m_len %d",
1826 inode->i_ino, retval, map->m_len);
1827 WARN_ON(1);
1828 }
1829
1830 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1831 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1832 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1833 map->m_pblk, status);
1834 if (ret != 0)
1835 retval = ret;
1836 }
1837
1838 out_unlock:
1839 up_read((&EXT4_I(inode)->i_data_sem));
1840
1841 return retval;
1842 }
1843
1844 /*
1845 * This is a special get_block_t callback which is used by
1846 * ext4_da_write_begin(). It will either return mapped block or
1847 * reserve space for a single block.
1848 *
1849 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1850 * We also have b_blocknr = -1 and b_bdev initialized properly
1851 *
1852 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1853 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1854 * initialized properly.
1855 */
1856 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1857 struct buffer_head *bh, int create)
1858 {
1859 struct ext4_map_blocks map;
1860 int ret = 0;
1861
1862 BUG_ON(create == 0);
1863 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1864
1865 map.m_lblk = iblock;
1866 map.m_len = 1;
1867
1868 /*
1869 * first, we need to know whether the block is allocated already
1870 * preallocated blocks are unmapped but should treated
1871 * the same as allocated blocks.
1872 */
1873 ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1874 if (ret <= 0)
1875 return ret;
1876
1877 map_bh(bh, inode->i_sb, map.m_pblk);
1878 ext4_update_bh_state(bh, map.m_flags);
1879
1880 if (buffer_unwritten(bh)) {
1881 /* A delayed write to unwritten bh should be marked
1882 * new and mapped. Mapped ensures that we don't do
1883 * get_block multiple times when we write to the same
1884 * offset and new ensures that we do proper zero out
1885 * for partial write.
1886 */
1887 set_buffer_new(bh);
1888 set_buffer_mapped(bh);
1889 }
1890 return 0;
1891 }
1892
1893 static int bget_one(handle_t *handle, struct buffer_head *bh)
1894 {
1895 get_bh(bh);
1896 return 0;
1897 }
1898
1899 static int bput_one(handle_t *handle, struct buffer_head *bh)
1900 {
1901 put_bh(bh);
1902 return 0;
1903 }
1904
1905 static int __ext4_journalled_writepage(struct page *page,
1906 unsigned int len)
1907 {
1908 struct address_space *mapping = page->mapping;
1909 struct inode *inode = mapping->host;
1910 struct buffer_head *page_bufs = NULL;
1911 handle_t *handle = NULL;
1912 int ret = 0, err = 0;
1913 int inline_data = ext4_has_inline_data(inode);
1914 struct buffer_head *inode_bh = NULL;
1915
1916 ClearPageChecked(page);
1917
1918 if (inline_data) {
1919 BUG_ON(page->index != 0);
1920 BUG_ON(len > ext4_get_max_inline_size(inode));
1921 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1922 if (inode_bh == NULL)
1923 goto out;
1924 } else {
1925 page_bufs = page_buffers(page);
1926 if (!page_bufs) {
1927 BUG();
1928 goto out;
1929 }
1930 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1931 NULL, bget_one);
1932 }
1933 /*
1934 * We need to release the page lock before we start the
1935 * journal, so grab a reference so the page won't disappear
1936 * out from under us.
1937 */
1938 get_page(page);
1939 unlock_page(page);
1940
1941 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1942 ext4_writepage_trans_blocks(inode));
1943 if (IS_ERR(handle)) {
1944 ret = PTR_ERR(handle);
1945 put_page(page);
1946 goto out_no_pagelock;
1947 }
1948 BUG_ON(!ext4_handle_valid(handle));
1949
1950 lock_page(page);
1951 put_page(page);
1952 if (page->mapping != mapping) {
1953 /* The page got truncated from under us */
1954 ext4_journal_stop(handle);
1955 ret = 0;
1956 goto out;
1957 }
1958
1959 if (inline_data) {
1960 BUFFER_TRACE(inode_bh, "get write access");
1961 ret = ext4_journal_get_write_access(handle, inode_bh);
1962
1963 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1964
1965 } else {
1966 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1967 do_journal_get_write_access);
1968
1969 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1970 write_end_fn);
1971 }
1972 if (ret == 0)
1973 ret = err;
1974 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1975 err = ext4_journal_stop(handle);
1976 if (!ret)
1977 ret = err;
1978
1979 if (!ext4_has_inline_data(inode))
1980 ext4_walk_page_buffers(NULL, page_bufs, 0, len,
1981 NULL, bput_one);
1982 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1983 out:
1984 unlock_page(page);
1985 out_no_pagelock:
1986 brelse(inode_bh);
1987 return ret;
1988 }
1989
1990 /*
1991 * Note that we don't need to start a transaction unless we're journaling data
1992 * because we should have holes filled from ext4_page_mkwrite(). We even don't
1993 * need to file the inode to the transaction's list in ordered mode because if
1994 * we are writing back data added by write(), the inode is already there and if
1995 * we are writing back data modified via mmap(), no one guarantees in which
1996 * transaction the data will hit the disk. In case we are journaling data, we
1997 * cannot start transaction directly because transaction start ranks above page
1998 * lock so we have to do some magic.
1999 *
2000 * This function can get called via...
2001 * - ext4_writepages after taking page lock (have journal handle)
2002 * - journal_submit_inode_data_buffers (no journal handle)
2003 * - shrink_page_list via the kswapd/direct reclaim (no journal handle)
2004 * - grab_page_cache when doing write_begin (have journal handle)
2005 *
2006 * We don't do any block allocation in this function. If we have page with
2007 * multiple blocks we need to write those buffer_heads that are mapped. This
2008 * is important for mmaped based write. So if we do with blocksize 1K
2009 * truncate(f, 1024);
2010 * a = mmap(f, 0, 4096);
2011 * a[0] = 'a';
2012 * truncate(f, 4096);
2013 * we have in the page first buffer_head mapped via page_mkwrite call back
2014 * but other buffer_heads would be unmapped but dirty (dirty done via the
2015 * do_wp_page). So writepage should write the first block. If we modify
2016 * the mmap area beyond 1024 we will again get a page_fault and the
2017 * page_mkwrite callback will do the block allocation and mark the
2018 * buffer_heads mapped.
2019 *
2020 * We redirty the page if we have any buffer_heads that is either delay or
2021 * unwritten in the page.
2022 *
2023 * We can get recursively called as show below.
2024 *
2025 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2026 * ext4_writepage()
2027 *
2028 * But since we don't do any block allocation we should not deadlock.
2029 * Page also have the dirty flag cleared so we don't get recurive page_lock.
2030 */
2031 static int ext4_writepage(struct page *page,
2032 struct writeback_control *wbc)
2033 {
2034 int ret = 0;
2035 loff_t size;
2036 unsigned int len;
2037 struct buffer_head *page_bufs = NULL;
2038 struct inode *inode = page->mapping->host;
2039 struct ext4_io_submit io_submit;
2040 bool keep_towrite = false;
2041
2042 trace_ext4_writepage(page);
2043 size = i_size_read(inode);
2044 if (page->index == size >> PAGE_SHIFT)
2045 len = size & ~PAGE_MASK;
2046 else
2047 len = PAGE_SIZE;
2048
2049 page_bufs = page_buffers(page);
2050 /*
2051 * We cannot do block allocation or other extent handling in this
2052 * function. If there are buffers needing that, we have to redirty
2053 * the page. But we may reach here when we do a journal commit via
2054 * journal_submit_inode_data_buffers() and in that case we must write
2055 * allocated buffers to achieve data=ordered mode guarantees.
2056 *
2057 * Also, if there is only one buffer per page (the fs block
2058 * size == the page size), if one buffer needs block
2059 * allocation or needs to modify the extent tree to clear the
2060 * unwritten flag, we know that the page can't be written at
2061 * all, so we might as well refuse the write immediately.
2062 * Unfortunately if the block size != page size, we can't as
2063 * easily detect this case using ext4_walk_page_buffers(), but
2064 * for the extremely common case, this is an optimization that
2065 * skips a useless round trip through ext4_bio_write_page().
2066 */
2067 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2068 ext4_bh_delay_or_unwritten)) {
2069 redirty_page_for_writepage(wbc, page);
2070 if ((current->flags & PF_MEMALLOC) ||
2071 (inode->i_sb->s_blocksize == PAGE_SIZE)) {
2072 /*
2073 * For memory cleaning there's no point in writing only
2074 * some buffers. So just bail out. Warn if we came here
2075 * from direct reclaim.
2076 */
2077 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2078 == PF_MEMALLOC);
2079 unlock_page(page);
2080 return 0;
2081 }
2082 keep_towrite = true;
2083 }
2084
2085 if (PageChecked(page) && ext4_should_journal_data(inode))
2086 /*
2087 * It's mmapped pagecache. Add buffers and journal it. There
2088 * doesn't seem much point in redirtying the page here.
2089 */
2090 return __ext4_journalled_writepage(page, len);
2091
2092 ext4_io_submit_init(&io_submit, wbc);
2093 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2094 if (!io_submit.io_end) {
2095 redirty_page_for_writepage(wbc, page);
2096 unlock_page(page);
2097 return -ENOMEM;
2098 }
2099 ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
2100 ext4_io_submit(&io_submit);
2101 /* Drop io_end reference we got from init */
2102 ext4_put_io_end_defer(io_submit.io_end);
2103 return ret;
2104 }
2105
2106 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2107 {
2108 int len;
2109 loff_t size = i_size_read(mpd->inode);
2110 int err;
2111
2112 BUG_ON(page->index != mpd->first_page);
2113 if (page->index == size >> PAGE_SHIFT)
2114 len = size & ~PAGE_MASK;
2115 else
2116 len = PAGE_SIZE;
2117 clear_page_dirty_for_io(page);
2118 err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
2119 if (!err)
2120 mpd->wbc->nr_to_write--;
2121 mpd->first_page++;
2122
2123 return err;
2124 }
2125
2126 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
2127
2128 /*
2129 * mballoc gives us at most this number of blocks...
2130 * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2131 * The rest of mballoc seems to handle chunks up to full group size.
2132 */
2133 #define MAX_WRITEPAGES_EXTENT_LEN 2048
2134
2135 /*
2136 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2137 *
2138 * @mpd - extent of blocks
2139 * @lblk - logical number of the block in the file
2140 * @bh - buffer head we want to add to the extent
2141 *
2142 * The function is used to collect contig. blocks in the same state. If the
2143 * buffer doesn't require mapping for writeback and we haven't started the
2144 * extent of buffers to map yet, the function returns 'true' immediately - the
2145 * caller can write the buffer right away. Otherwise the function returns true
2146 * if the block has been added to the extent, false if the block couldn't be
2147 * added.
2148 */
2149 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2150 struct buffer_head *bh)
2151 {
2152 struct ext4_map_blocks *map = &mpd->map;
2153
2154 /* Buffer that doesn't need mapping for writeback? */
2155 if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2156 (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2157 /* So far no extent to map => we write the buffer right away */
2158 if (map->m_len == 0)
2159 return true;
2160 return false;
2161 }
2162
2163 /* First block in the extent? */
2164 if (map->m_len == 0) {
2165 map->m_lblk = lblk;
2166 map->m_len = 1;
2167 map->m_flags = bh->b_state & BH_FLAGS;
2168 return true;
2169 }
2170
2171 /* Don't go larger than mballoc is willing to allocate */
2172 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2173 return false;
2174
2175 /* Can we merge the block to our big extent? */
2176 if (lblk == map->m_lblk + map->m_len &&
2177 (bh->b_state & BH_FLAGS) == map->m_flags) {
2178 map->m_len++;
2179 return true;
2180 }
2181 return false;
2182 }
2183
2184 /*
2185 * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2186 *
2187 * @mpd - extent of blocks for mapping
2188 * @head - the first buffer in the page
2189 * @bh - buffer we should start processing from
2190 * @lblk - logical number of the block in the file corresponding to @bh
2191 *
2192 * Walk through page buffers from @bh upto @head (exclusive) and either submit
2193 * the page for IO if all buffers in this page were mapped and there's no
2194 * accumulated extent of buffers to map or add buffers in the page to the
2195 * extent of buffers to map. The function returns 1 if the caller can continue
2196 * by processing the next page, 0 if it should stop adding buffers to the
2197 * extent to map because we cannot extend it anymore. It can also return value
2198 * < 0 in case of error during IO submission.
2199 */
2200 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2201 struct buffer_head *head,
2202 struct buffer_head *bh,
2203 ext4_lblk_t lblk)
2204 {
2205 struct inode *inode = mpd->inode;
2206 int err;
2207 ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1)
2208 >> inode->i_blkbits;
2209
2210 do {
2211 BUG_ON(buffer_locked(bh));
2212
2213 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2214 /* Found extent to map? */
2215 if (mpd->map.m_len)
2216 return 0;
2217 /* Everything mapped so far and we hit EOF */
2218 break;
2219 }
2220 } while (lblk++, (bh = bh->b_this_page) != head);
2221 /* So far everything mapped? Submit the page for IO. */
2222 if (mpd->map.m_len == 0) {
2223 err = mpage_submit_page(mpd, head->b_page);
2224 if (err < 0)
2225 return err;
2226 }
2227 return lblk < blocks;
2228 }
2229
2230 /*
2231 * mpage_map_buffers - update buffers corresponding to changed extent and
2232 * submit fully mapped pages for IO
2233 *
2234 * @mpd - description of extent to map, on return next extent to map
2235 *
2236 * Scan buffers corresponding to changed extent (we expect corresponding pages
2237 * to be already locked) and update buffer state according to new extent state.
2238 * We map delalloc buffers to their physical location, clear unwritten bits,
2239 * and mark buffers as uninit when we perform writes to unwritten extents
2240 * and do extent conversion after IO is finished. If the last page is not fully
2241 * mapped, we update @map to the next extent in the last page that needs
2242 * mapping. Otherwise we submit the page for IO.
2243 */
2244 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2245 {
2246 struct pagevec pvec;
2247 int nr_pages, i;
2248 struct inode *inode = mpd->inode;
2249 struct buffer_head *head, *bh;
2250 int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2251 pgoff_t start, end;
2252 ext4_lblk_t lblk;
2253 sector_t pblock;
2254 int err;
2255
2256 start = mpd->map.m_lblk >> bpp_bits;
2257 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2258 lblk = start << bpp_bits;
2259 pblock = mpd->map.m_pblk;
2260
2261 pagevec_init(&pvec, 0);
2262 while (start <= end) {
2263 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start,
2264 PAGEVEC_SIZE);
2265 if (nr_pages == 0)
2266 break;
2267 for (i = 0; i < nr_pages; i++) {
2268 struct page *page = pvec.pages[i];
2269
2270 if (page->index > end)
2271 break;
2272 /* Up to 'end' pages must be contiguous */
2273 BUG_ON(page->index != start);
2274 bh = head = page_buffers(page);
2275 do {
2276 if (lblk < mpd->map.m_lblk)
2277 continue;
2278 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2279 /*
2280 * Buffer after end of mapped extent.
2281 * Find next buffer in the page to map.
2282 */
2283 mpd->map.m_len = 0;
2284 mpd->map.m_flags = 0;
2285 /*
2286 * FIXME: If dioread_nolock supports
2287 * blocksize < pagesize, we need to make
2288 * sure we add size mapped so far to
2289 * io_end->size as the following call
2290 * can submit the page for IO.
2291 */
2292 err = mpage_process_page_bufs(mpd, head,
2293 bh, lblk);
2294 pagevec_release(&pvec);
2295 if (err > 0)
2296 err = 0;
2297 return err;
2298 }
2299 if (buffer_delay(bh)) {
2300 clear_buffer_delay(bh);
2301 bh->b_blocknr = pblock++;
2302 }
2303 clear_buffer_unwritten(bh);
2304 } while (lblk++, (bh = bh->b_this_page) != head);
2305
2306 /*
2307 * FIXME: This is going to break if dioread_nolock
2308 * supports blocksize < pagesize as we will try to
2309 * convert potentially unmapped parts of inode.
2310 */
2311 mpd->io_submit.io_end->size += PAGE_SIZE;
2312 /* Page fully mapped - let IO run! */
2313 err = mpage_submit_page(mpd, page);
2314 if (err < 0) {
2315 pagevec_release(&pvec);
2316 return err;
2317 }
2318 start++;
2319 }
2320 pagevec_release(&pvec);
2321 }
2322 /* Extent fully mapped and matches with page boundary. We are done. */
2323 mpd->map.m_len = 0;
2324 mpd->map.m_flags = 0;
2325 return 0;
2326 }
2327
2328 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2329 {
2330 struct inode *inode = mpd->inode;
2331 struct ext4_map_blocks *map = &mpd->map;
2332 int get_blocks_flags;
2333 int err, dioread_nolock;
2334
2335 trace_ext4_da_write_pages_extent(inode, map);
2336 /*
2337 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2338 * to convert an unwritten extent to be initialized (in the case
2339 * where we have written into one or more preallocated blocks). It is
2340 * possible that we're going to need more metadata blocks than
2341 * previously reserved. However we must not fail because we're in
2342 * writeback and there is nothing we can do about it so it might result
2343 * in data loss. So use reserved blocks to allocate metadata if
2344 * possible.
2345 *
2346 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2347 * the blocks in question are delalloc blocks. This indicates
2348 * that the blocks and quotas has already been checked when
2349 * the data was copied into the page cache.
2350 */
2351 get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2352 EXT4_GET_BLOCKS_METADATA_NOFAIL |
2353 EXT4_GET_BLOCKS_IO_SUBMIT;
2354 dioread_nolock = ext4_should_dioread_nolock(inode);
2355 if (dioread_nolock)
2356 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2357 if (map->m_flags & (1 << BH_Delay))
2358 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2359
2360 err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2361 if (err < 0)
2362 return err;
2363 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2364 if (!mpd->io_submit.io_end->handle &&
2365 ext4_handle_valid(handle)) {
2366 mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2367 handle->h_rsv_handle = NULL;
2368 }
2369 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2370 }
2371
2372 BUG_ON(map->m_len == 0);
2373 if (map->m_flags & EXT4_MAP_NEW) {
2374 struct block_device *bdev = inode->i_sb->s_bdev;
2375 int i;
2376
2377 for (i = 0; i < map->m_len; i++)
2378 unmap_underlying_metadata(bdev, map->m_pblk + i);
2379 }
2380 return 0;
2381 }
2382
2383 /*
2384 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2385 * mpd->len and submit pages underlying it for IO
2386 *
2387 * @handle - handle for journal operations
2388 * @mpd - extent to map
2389 * @give_up_on_write - we set this to true iff there is a fatal error and there
2390 * is no hope of writing the data. The caller should discard
2391 * dirty pages to avoid infinite loops.
2392 *
2393 * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2394 * delayed, blocks are allocated, if it is unwritten, we may need to convert
2395 * them to initialized or split the described range from larger unwritten
2396 * extent. Note that we need not map all the described range since allocation
2397 * can return less blocks or the range is covered by more unwritten extents. We
2398 * cannot map more because we are limited by reserved transaction credits. On
2399 * the other hand we always make sure that the last touched page is fully
2400 * mapped so that it can be written out (and thus forward progress is
2401 * guaranteed). After mapping we submit all mapped pages for IO.
2402 */
2403 static int mpage_map_and_submit_extent(handle_t *handle,
2404 struct mpage_da_data *mpd,
2405 bool *give_up_on_write)
2406 {
2407 struct inode *inode = mpd->inode;
2408 struct ext4_map_blocks *map = &mpd->map;
2409 int err;
2410 loff_t disksize;
2411 int progress = 0;
2412
2413 mpd->io_submit.io_end->offset =
2414 ((loff_t)map->m_lblk) << inode->i_blkbits;
2415 do {
2416 err = mpage_map_one_extent(handle, mpd);
2417 if (err < 0) {
2418 struct super_block *sb = inode->i_sb;
2419
2420 if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2421 goto invalidate_dirty_pages;
2422 /*
2423 * Let the uper layers retry transient errors.
2424 * In the case of ENOSPC, if ext4_count_free_blocks()
2425 * is non-zero, a commit should free up blocks.
2426 */
2427 if ((err == -ENOMEM) ||
2428 (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2429 if (progress)
2430 goto update_disksize;
2431 return err;
2432 }
2433 ext4_msg(sb, KERN_CRIT,
2434 "Delayed block allocation failed for "
2435 "inode %lu at logical offset %llu with"
2436 " max blocks %u with error %d",
2437 inode->i_ino,
2438 (unsigned long long)map->m_lblk,
2439 (unsigned)map->m_len, -err);
2440 ext4_msg(sb, KERN_CRIT,
2441 "This should not happen!! Data will "
2442 "be lost\n");
2443 if (err == -ENOSPC)
2444 ext4_print_free_blocks(inode);
2445 invalidate_dirty_pages:
2446 *give_up_on_write = true;
2447 return err;
2448 }
2449 progress = 1;
2450 /*
2451 * Update buffer state, submit mapped pages, and get us new
2452 * extent to map
2453 */
2454 err = mpage_map_and_submit_buffers(mpd);
2455 if (err < 0)
2456 goto update_disksize;
2457 } while (map->m_len);
2458
2459 update_disksize:
2460 /*
2461 * Update on-disk size after IO is submitted. Races with
2462 * truncate are avoided by checking i_size under i_data_sem.
2463 */
2464 disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2465 if (disksize > EXT4_I(inode)->i_disksize) {
2466 int err2;
2467 loff_t i_size;
2468
2469 down_write(&EXT4_I(inode)->i_data_sem);
2470 i_size = i_size_read(inode);
2471 if (disksize > i_size)
2472 disksize = i_size;
2473 if (disksize > EXT4_I(inode)->i_disksize)
2474 EXT4_I(inode)->i_disksize = disksize;
2475 err2 = ext4_mark_inode_dirty(handle, inode);
2476 up_write(&EXT4_I(inode)->i_data_sem);
2477 if (err2)
2478 ext4_error(inode->i_sb,
2479 "Failed to mark inode %lu dirty",
2480 inode->i_ino);
2481 if (!err)
2482 err = err2;
2483 }
2484 return err;
2485 }
2486
2487 /*
2488 * Calculate the total number of credits to reserve for one writepages
2489 * iteration. This is called from ext4_writepages(). We map an extent of
2490 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2491 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2492 * bpp - 1 blocks in bpp different extents.
2493 */
2494 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2495 {
2496 int bpp = ext4_journal_blocks_per_page(inode);
2497
2498 return ext4_meta_trans_blocks(inode,
2499 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2500 }
2501
2502 /*
2503 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2504 * and underlying extent to map
2505 *
2506 * @mpd - where to look for pages
2507 *
2508 * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2509 * IO immediately. When we find a page which isn't mapped we start accumulating
2510 * extent of buffers underlying these pages that needs mapping (formed by
2511 * either delayed or unwritten buffers). We also lock the pages containing
2512 * these buffers. The extent found is returned in @mpd structure (starting at
2513 * mpd->lblk with length mpd->len blocks).
2514 *
2515 * Note that this function can attach bios to one io_end structure which are
2516 * neither logically nor physically contiguous. Although it may seem as an
2517 * unnecessary complication, it is actually inevitable in blocksize < pagesize
2518 * case as we need to track IO to all buffers underlying a page in one io_end.
2519 */
2520 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2521 {
2522 struct address_space *mapping = mpd->inode->i_mapping;
2523 struct pagevec pvec;
2524 unsigned int nr_pages;
2525 long left = mpd->wbc->nr_to_write;
2526 pgoff_t index = mpd->first_page;
2527 pgoff_t end = mpd->last_page;
2528 int tag;
2529 int i, err = 0;
2530 int blkbits = mpd->inode->i_blkbits;
2531 ext4_lblk_t lblk;
2532 struct buffer_head *head;
2533
2534 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2535 tag = PAGECACHE_TAG_TOWRITE;
2536 else
2537 tag = PAGECACHE_TAG_DIRTY;
2538
2539 pagevec_init(&pvec, 0);
2540 mpd->map.m_len = 0;
2541 mpd->next_page = index;
2542 while (index <= end) {
2543 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2544 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2545 if (nr_pages == 0)
2546 goto out;
2547
2548 for (i = 0; i < nr_pages; i++) {
2549 struct page *page = pvec.pages[i];
2550
2551 /*
2552 * At this point, the page may be truncated or
2553 * invalidated (changing page->mapping to NULL), or
2554 * even swizzled back from swapper_space to tmpfs file
2555 * mapping. However, page->index will not change
2556 * because we have a reference on the page.
2557 */
2558 if (page->index > end)
2559 goto out;
2560
2561 /*
2562 * Accumulated enough dirty pages? This doesn't apply
2563 * to WB_SYNC_ALL mode. For integrity sync we have to
2564 * keep going because someone may be concurrently
2565 * dirtying pages, and we might have synced a lot of
2566 * newly appeared dirty pages, but have not synced all
2567 * of the old dirty pages.
2568 */
2569 if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2570 goto out;
2571
2572 /* If we can't merge this page, we are done. */
2573 if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2574 goto out;
2575
2576 lock_page(page);
2577 /*
2578 * If the page is no longer dirty, or its mapping no
2579 * longer corresponds to inode we are writing (which
2580 * means it has been truncated or invalidated), or the
2581 * page is already under writeback and we are not doing
2582 * a data integrity writeback, skip the page
2583 */
2584 if (!PageDirty(page) ||
2585 (PageWriteback(page) &&
2586 (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2587 unlikely(page->mapping != mapping)) {
2588 unlock_page(page);
2589 continue;
2590 }
2591
2592 wait_on_page_writeback(page);
2593 BUG_ON(PageWriteback(page));
2594
2595 if (mpd->map.m_len == 0)
2596 mpd->first_page = page->index;
2597 mpd->next_page = page->index + 1;
2598 /* Add all dirty buffers to mpd */
2599 lblk = ((ext4_lblk_t)page->index) <<
2600 (PAGE_SHIFT - blkbits);
2601 head = page_buffers(page);
2602 err = mpage_process_page_bufs(mpd, head, head, lblk);
2603 if (err <= 0)
2604 goto out;
2605 err = 0;
2606 left--;
2607 }
2608 pagevec_release(&pvec);
2609 cond_resched();
2610 }
2611 return 0;
2612 out:
2613 pagevec_release(&pvec);
2614 return err;
2615 }
2616
2617 static int __writepage(struct page *page, struct writeback_control *wbc,
2618 void *data)
2619 {
2620 struct address_space *mapping = data;
2621 int ret = ext4_writepage(page, wbc);
2622 mapping_set_error(mapping, ret);
2623 return ret;
2624 }
2625
2626 static int ext4_writepages(struct address_space *mapping,
2627 struct writeback_control *wbc)
2628 {
2629 pgoff_t writeback_index = 0;
2630 long nr_to_write = wbc->nr_to_write;
2631 int range_whole = 0;
2632 int cycled = 1;
2633 handle_t *handle = NULL;
2634 struct mpage_da_data mpd;
2635 struct inode *inode = mapping->host;
2636 int needed_blocks, rsv_blocks = 0, ret = 0;
2637 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2638 bool done;
2639 struct blk_plug plug;
2640 bool give_up_on_write = false;
2641
2642 percpu_down_read(&sbi->s_journal_flag_rwsem);
2643 trace_ext4_writepages(inode, wbc);
2644
2645 if (dax_mapping(mapping)) {
2646 ret = dax_writeback_mapping_range(mapping, inode->i_sb->s_bdev,
2647 wbc);
2648 goto out_writepages;
2649 }
2650
2651 /*
2652 * No pages to write? This is mainly a kludge to avoid starting
2653 * a transaction for special inodes like journal inode on last iput()
2654 * because that could violate lock ordering on umount
2655 */
2656 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2657 goto out_writepages;
2658
2659 if (ext4_should_journal_data(inode)) {
2660 struct blk_plug plug;
2661
2662 blk_start_plug(&plug);
2663 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2664 blk_finish_plug(&plug);
2665 goto out_writepages;
2666 }
2667
2668 /*
2669 * If the filesystem has aborted, it is read-only, so return
2670 * right away instead of dumping stack traces later on that
2671 * will obscure the real source of the problem. We test
2672 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2673 * the latter could be true if the filesystem is mounted
2674 * read-only, and in that case, ext4_writepages should
2675 * *never* be called, so if that ever happens, we would want
2676 * the stack trace.
2677 */
2678 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2679 ret = -EROFS;
2680 goto out_writepages;
2681 }
2682
2683 if (ext4_should_dioread_nolock(inode)) {
2684 /*
2685 * We may need to convert up to one extent per block in
2686 * the page and we may dirty the inode.
2687 */
2688 rsv_blocks = 1 + (PAGE_SIZE >> inode->i_blkbits);
2689 }
2690
2691 /*
2692 * If we have inline data and arrive here, it means that
2693 * we will soon create the block for the 1st page, so
2694 * we'd better clear the inline data here.
2695 */
2696 if (ext4_has_inline_data(inode)) {
2697 /* Just inode will be modified... */
2698 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2699 if (IS_ERR(handle)) {
2700 ret = PTR_ERR(handle);
2701 goto out_writepages;
2702 }
2703 BUG_ON(ext4_test_inode_state(inode,
2704 EXT4_STATE_MAY_INLINE_DATA));
2705 ext4_destroy_inline_data(handle, inode);
2706 ext4_journal_stop(handle);
2707 }
2708
2709 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2710 range_whole = 1;
2711
2712 if (wbc->range_cyclic) {
2713 writeback_index = mapping->writeback_index;
2714 if (writeback_index)
2715 cycled = 0;
2716 mpd.first_page = writeback_index;
2717 mpd.last_page = -1;
2718 } else {
2719 mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2720 mpd.last_page = wbc->range_end >> PAGE_SHIFT;
2721 }
2722
2723 mpd.inode = inode;
2724 mpd.wbc = wbc;
2725 ext4_io_submit_init(&mpd.io_submit, wbc);
2726 retry:
2727 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2728 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2729 done = false;
2730 blk_start_plug(&plug);
2731 while (!done && mpd.first_page <= mpd.last_page) {
2732 /* For each extent of pages we use new io_end */
2733 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2734 if (!mpd.io_submit.io_end) {
2735 ret = -ENOMEM;
2736 break;
2737 }
2738
2739 /*
2740 * We have two constraints: We find one extent to map and we
2741 * must always write out whole page (makes a difference when
2742 * blocksize < pagesize) so that we don't block on IO when we
2743 * try to write out the rest of the page. Journalled mode is
2744 * not supported by delalloc.
2745 */
2746 BUG_ON(ext4_should_journal_data(inode));
2747 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2748
2749 /* start a new transaction */
2750 handle = ext4_journal_start_with_reserve(inode,
2751 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2752 if (IS_ERR(handle)) {
2753 ret = PTR_ERR(handle);
2754 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2755 "%ld pages, ino %lu; err %d", __func__,
2756 wbc->nr_to_write, inode->i_ino, ret);
2757 /* Release allocated io_end */
2758 ext4_put_io_end(mpd.io_submit.io_end);
2759 break;
2760 }
2761
2762 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2763 ret = mpage_prepare_extent_to_map(&mpd);
2764 if (!ret) {
2765 if (mpd.map.m_len)
2766 ret = mpage_map_and_submit_extent(handle, &mpd,
2767 &give_up_on_write);
2768 else {
2769 /*
2770 * We scanned the whole range (or exhausted
2771 * nr_to_write), submitted what was mapped and
2772 * didn't find anything needing mapping. We are
2773 * done.
2774 */
2775 done = true;
2776 }
2777 }
2778 /*
2779 * Caution: If the handle is synchronous,
2780 * ext4_journal_stop() can wait for transaction commit
2781 * to finish which may depend on writeback of pages to
2782 * complete or on page lock to be released. In that
2783 * case, we have to wait until after after we have
2784 * submitted all the IO, released page locks we hold,
2785 * and dropped io_end reference (for extent conversion
2786 * to be able to complete) before stopping the handle.
2787 */
2788 if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2789 ext4_journal_stop(handle);
2790 handle = NULL;
2791 }
2792 /* Submit prepared bio */
2793 ext4_io_submit(&mpd.io_submit);
2794 /* Unlock pages we didn't use */
2795 mpage_release_unused_pages(&mpd, give_up_on_write);
2796 /*
2797 * Drop our io_end reference we got from init. We have
2798 * to be careful and use deferred io_end finishing if
2799 * we are still holding the transaction as we can
2800 * release the last reference to io_end which may end
2801 * up doing unwritten extent conversion.
2802 */
2803 if (handle) {
2804 ext4_put_io_end_defer(mpd.io_submit.io_end);
2805 ext4_journal_stop(handle);
2806 } else
2807 ext4_put_io_end(mpd.io_submit.io_end);
2808
2809 if (ret == -ENOSPC && sbi->s_journal) {
2810 /*
2811 * Commit the transaction which would
2812 * free blocks released in the transaction
2813 * and try again
2814 */
2815 jbd2_journal_force_commit_nested(sbi->s_journal);
2816 ret = 0;
2817 continue;
2818 }
2819 /* Fatal error - ENOMEM, EIO... */
2820 if (ret)
2821 break;
2822 }
2823 blk_finish_plug(&plug);
2824 if (!ret && !cycled && wbc->nr_to_write > 0) {
2825 cycled = 1;
2826 mpd.last_page = writeback_index - 1;
2827 mpd.first_page = 0;
2828 goto retry;
2829 }
2830
2831 /* Update index */
2832 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2833 /*
2834 * Set the writeback_index so that range_cyclic
2835 * mode will write it back later
2836 */
2837 mapping->writeback_index = mpd.first_page;
2838
2839 out_writepages:
2840 trace_ext4_writepages_result(inode, wbc, ret,
2841 nr_to_write - wbc->nr_to_write);
2842 percpu_up_read(&sbi->s_journal_flag_rwsem);
2843 return ret;
2844 }
2845
2846 static int ext4_nonda_switch(struct super_block *sb)
2847 {
2848 s64 free_clusters, dirty_clusters;
2849 struct ext4_sb_info *sbi = EXT4_SB(sb);
2850
2851 /*
2852 * switch to non delalloc mode if we are running low
2853 * on free block. The free block accounting via percpu
2854 * counters can get slightly wrong with percpu_counter_batch getting
2855 * accumulated on each CPU without updating global counters
2856 * Delalloc need an accurate free block accounting. So switch
2857 * to non delalloc when we are near to error range.
2858 */
2859 free_clusters =
2860 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2861 dirty_clusters =
2862 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2863 /*
2864 * Start pushing delalloc when 1/2 of free blocks are dirty.
2865 */
2866 if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2867 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2868
2869 if (2 * free_clusters < 3 * dirty_clusters ||
2870 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2871 /*
2872 * free block count is less than 150% of dirty blocks
2873 * or free blocks is less than watermark
2874 */
2875 return 1;
2876 }
2877 return 0;
2878 }
2879
2880 /* We always reserve for an inode update; the superblock could be there too */
2881 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2882 {
2883 if (likely(ext4_has_feature_large_file(inode->i_sb)))
2884 return 1;
2885
2886 if (pos + len <= 0x7fffffffULL)
2887 return 1;
2888
2889 /* We might need to update the superblock to set LARGE_FILE */
2890 return 2;
2891 }
2892
2893 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2894 loff_t pos, unsigned len, unsigned flags,
2895 struct page **pagep, void **fsdata)
2896 {
2897 int ret, retries = 0;
2898 struct page *page;
2899 pgoff_t index;
2900 struct inode *inode = mapping->host;
2901 handle_t *handle;
2902
2903 index = pos >> PAGE_SHIFT;
2904
2905 if (ext4_nonda_switch(inode->i_sb) ||
2906 S_ISLNK(inode->i_mode)) {
2907 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2908 return ext4_write_begin(file, mapping, pos,
2909 len, flags, pagep, fsdata);
2910 }
2911 *fsdata = (void *)0;
2912 trace_ext4_da_write_begin(inode, pos, len, flags);
2913
2914 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2915 ret = ext4_da_write_inline_data_begin(mapping, inode,
2916 pos, len, flags,
2917 pagep, fsdata);
2918 if (ret < 0)
2919 return ret;
2920 if (ret == 1)
2921 return 0;
2922 }
2923
2924 /*
2925 * grab_cache_page_write_begin() can take a long time if the
2926 * system is thrashing due to memory pressure, or if the page
2927 * is being written back. So grab it first before we start
2928 * the transaction handle. This also allows us to allocate
2929 * the page (if needed) without using GFP_NOFS.
2930 */
2931 retry_grab:
2932 page = grab_cache_page_write_begin(mapping, index, flags);
2933 if (!page)
2934 return -ENOMEM;
2935 unlock_page(page);
2936
2937 /*
2938 * With delayed allocation, we don't log the i_disksize update
2939 * if there is delayed block allocation. But we still need
2940 * to journalling the i_disksize update if writes to the end
2941 * of file which has an already mapped buffer.
2942 */
2943 retry_journal:
2944 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2945 ext4_da_write_credits(inode, pos, len));
2946 if (IS_ERR(handle)) {
2947 put_page(page);
2948 return PTR_ERR(handle);
2949 }
2950
2951 lock_page(page);
2952 if (page->mapping != mapping) {
2953 /* The page got truncated from under us */
2954 unlock_page(page);
2955 put_page(page);
2956 ext4_journal_stop(handle);
2957 goto retry_grab;
2958 }
2959 /* In case writeback began while the page was unlocked */
2960 wait_for_stable_page(page);
2961
2962 #ifdef CONFIG_EXT4_FS_ENCRYPTION
2963 ret = ext4_block_write_begin(page, pos, len,
2964 ext4_da_get_block_prep);
2965 #else
2966 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2967 #endif
2968 if (ret < 0) {
2969 unlock_page(page);
2970 ext4_journal_stop(handle);
2971 /*
2972 * block_write_begin may have instantiated a few blocks
2973 * outside i_size. Trim these off again. Don't need
2974 * i_size_read because we hold i_mutex.
2975 */
2976 if (pos + len > inode->i_size)
2977 ext4_truncate_failed_write(inode);
2978
2979 if (ret == -ENOSPC &&
2980 ext4_should_retry_alloc(inode->i_sb, &retries))
2981 goto retry_journal;
2982
2983 put_page(page);
2984 return ret;
2985 }
2986
2987 *pagep = page;
2988 return ret;
2989 }
2990
2991 /*
2992 * Check if we should update i_disksize
2993 * when write to the end of file but not require block allocation
2994 */
2995 static int ext4_da_should_update_i_disksize(struct page *page,
2996 unsigned long offset)
2997 {
2998 struct buffer_head *bh;
2999 struct inode *inode = page->mapping->host;
3000 unsigned int idx;
3001 int i;
3002
3003 bh = page_buffers(page);
3004 idx = offset >> inode->i_blkbits;
3005
3006 for (i = 0; i < idx; i++)
3007 bh = bh->b_this_page;
3008
3009 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3010 return 0;
3011 return 1;
3012 }
3013
3014 static int ext4_da_write_end(struct file *file,
3015 struct address_space *mapping,
3016 loff_t pos, unsigned len, unsigned copied,
3017 struct page *page, void *fsdata)
3018 {
3019 struct inode *inode = mapping->host;
3020 int ret = 0, ret2;
3021 handle_t *handle = ext4_journal_current_handle();
3022 loff_t new_i_size;
3023 unsigned long start, end;
3024 int write_mode = (int)(unsigned long)fsdata;
3025
3026 if (write_mode == FALL_BACK_TO_NONDELALLOC)
3027 return ext4_write_end(file, mapping, pos,
3028 len, copied, page, fsdata);
3029
3030 trace_ext4_da_write_end(inode, pos, len, copied);
3031 start = pos & (PAGE_SIZE - 1);
3032 end = start + copied - 1;
3033
3034 /*
3035 * generic_write_end() will run mark_inode_dirty() if i_size
3036 * changes. So let's piggyback the i_disksize mark_inode_dirty
3037 * into that.
3038 */
3039 new_i_size = pos + copied;
3040 if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
3041 if (ext4_has_inline_data(inode) ||
3042 ext4_da_should_update_i_disksize(page, end)) {
3043 ext4_update_i_disksize(inode, new_i_size);
3044 /* We need to mark inode dirty even if
3045 * new_i_size is less that inode->i_size
3046 * bu greater than i_disksize.(hint delalloc)
3047 */
3048 ext4_mark_inode_dirty(handle, inode);
3049 }
3050 }
3051
3052 if (write_mode != CONVERT_INLINE_DATA &&
3053 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3054 ext4_has_inline_data(inode))
3055 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
3056 page);
3057 else
3058 ret2 = generic_write_end(file, mapping, pos, len, copied,
3059 page, fsdata);
3060
3061 copied = ret2;
3062 if (ret2 < 0)
3063 ret = ret2;
3064 ret2 = ext4_journal_stop(handle);
3065 if (!ret)
3066 ret = ret2;
3067
3068 return ret ? ret : copied;
3069 }
3070
3071 static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
3072 unsigned int length)
3073 {
3074 /*
3075 * Drop reserved blocks
3076 */
3077 BUG_ON(!PageLocked(page));
3078 if (!page_has_buffers(page))
3079 goto out;
3080
3081 ext4_da_page_release_reservation(page, offset, length);
3082
3083 out:
3084 ext4_invalidatepage(page, offset, length);
3085
3086 return;
3087 }
3088
3089 /*
3090 * Force all delayed allocation blocks to be allocated for a given inode.
3091 */
3092 int ext4_alloc_da_blocks(struct inode *inode)
3093 {
3094 trace_ext4_alloc_da_blocks(inode);
3095
3096 if (!EXT4_I(inode)->i_reserved_data_blocks)
3097 return 0;
3098
3099 /*
3100 * We do something simple for now. The filemap_flush() will
3101 * also start triggering a write of the data blocks, which is
3102 * not strictly speaking necessary (and for users of
3103 * laptop_mode, not even desirable). However, to do otherwise
3104 * would require replicating code paths in:
3105 *
3106 * ext4_writepages() ->
3107 * write_cache_pages() ---> (via passed in callback function)
3108 * __mpage_da_writepage() -->
3109 * mpage_add_bh_to_extent()
3110 * mpage_da_map_blocks()
3111 *
3112 * The problem is that write_cache_pages(), located in
3113 * mm/page-writeback.c, marks pages clean in preparation for
3114 * doing I/O, which is not desirable if we're not planning on
3115 * doing I/O at all.
3116 *
3117 * We could call write_cache_pages(), and then redirty all of
3118 * the pages by calling redirty_page_for_writepage() but that
3119 * would be ugly in the extreme. So instead we would need to
3120 * replicate parts of the code in the above functions,
3121 * simplifying them because we wouldn't actually intend to
3122 * write out the pages, but rather only collect contiguous
3123 * logical block extents, call the multi-block allocator, and
3124 * then update the buffer heads with the block allocations.
3125 *
3126 * For now, though, we'll cheat by calling filemap_flush(),
3127 * which will map the blocks, and start the I/O, but not
3128 * actually wait for the I/O to complete.
3129 */
3130 return filemap_flush(inode->i_mapping);
3131 }
3132
3133 /*
3134 * bmap() is special. It gets used by applications such as lilo and by
3135 * the swapper to find the on-disk block of a specific piece of data.
3136 *
3137 * Naturally, this is dangerous if the block concerned is still in the
3138 * journal. If somebody makes a swapfile on an ext4 data-journaling
3139 * filesystem and enables swap, then they may get a nasty shock when the
3140 * data getting swapped to that swapfile suddenly gets overwritten by
3141 * the original zero's written out previously to the journal and
3142 * awaiting writeback in the kernel's buffer cache.
3143 *
3144 * So, if we see any bmap calls here on a modified, data-journaled file,
3145 * take extra steps to flush any blocks which might be in the cache.
3146 */
3147 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3148 {
3149 struct inode *inode = mapping->host;
3150 journal_t *journal;
3151 int err;
3152
3153 /*
3154 * We can get here for an inline file via the FIBMAP ioctl
3155 */
3156 if (ext4_has_inline_data(inode))
3157 return 0;
3158
3159 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3160 test_opt(inode->i_sb, DELALLOC)) {
3161 /*
3162 * With delalloc we want to sync the file
3163 * so that we can make sure we allocate
3164 * blocks for file
3165 */
3166 filemap_write_and_wait(mapping);
3167 }
3168
3169 if (EXT4_JOURNAL(inode) &&
3170 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3171 /*
3172 * This is a REALLY heavyweight approach, but the use of
3173 * bmap on dirty files is expected to be extremely rare:
3174 * only if we run lilo or swapon on a freshly made file
3175 * do we expect this to happen.
3176 *
3177 * (bmap requires CAP_SYS_RAWIO so this does not
3178 * represent an unprivileged user DOS attack --- we'd be
3179 * in trouble if mortal users could trigger this path at
3180 * will.)
3181 *
3182 * NB. EXT4_STATE_JDATA is not set on files other than
3183 * regular files. If somebody wants to bmap a directory
3184 * or symlink and gets confused because the buffer
3185 * hasn't yet been flushed to disk, they deserve
3186 * everything they get.
3187 */
3188
3189 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3190 journal = EXT4_JOURNAL(inode);
3191 jbd2_journal_lock_updates(journal);
3192 err = jbd2_journal_flush(journal);
3193 jbd2_journal_unlock_updates(journal);
3194
3195 if (err)
3196 return 0;
3197 }
3198
3199 return generic_block_bmap(mapping, block, ext4_get_block);
3200 }
3201
3202 static int ext4_readpage(struct file *file, struct page *page)
3203 {
3204 int ret = -EAGAIN;
3205 struct inode *inode = page->mapping->host;
3206
3207 trace_ext4_readpage(page);
3208
3209 if (ext4_has_inline_data(inode))
3210 ret = ext4_readpage_inline(inode, page);
3211
3212 if (ret == -EAGAIN)
3213 return ext4_mpage_readpages(page->mapping, NULL, page, 1);
3214
3215 return ret;
3216 }
3217
3218 static int
3219 ext4_readpages(struct file *file, struct address_space *mapping,
3220 struct list_head *pages, unsigned nr_pages)
3221 {
3222 struct inode *inode = mapping->host;
3223
3224 /* If the file has inline data, no need to do readpages. */
3225 if (ext4_has_inline_data(inode))
3226 return 0;
3227
3228 return ext4_mpage_readpages(mapping, pages, NULL, nr_pages);
3229 }
3230
3231 static void ext4_invalidatepage(struct page *page, unsigned int offset,
3232 unsigned int length)
3233 {
3234 trace_ext4_invalidatepage(page, offset, length);
3235
3236 /* No journalling happens on data buffers when this function is used */
3237 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3238
3239 block_invalidatepage(page, offset, length);
3240 }
3241
3242 static int __ext4_journalled_invalidatepage(struct page *page,
3243 unsigned int offset,
3244 unsigned int length)
3245 {
3246 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3247
3248 trace_ext4_journalled_invalidatepage(page, offset, length);
3249
3250 /*
3251 * If it's a full truncate we just forget about the pending dirtying
3252 */
3253 if (offset == 0 && length == PAGE_SIZE)
3254 ClearPageChecked(page);
3255
3256 return jbd2_journal_invalidatepage(journal, page, offset, length);
3257 }
3258
3259 /* Wrapper for aops... */
3260 static void ext4_journalled_invalidatepage(struct page *page,
3261 unsigned int offset,
3262 unsigned int length)
3263 {
3264 WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3265 }
3266
3267 static int ext4_releasepage(struct page *page, gfp_t wait)
3268 {
3269 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3270
3271 trace_ext4_releasepage(page);
3272
3273 /* Page has dirty journalled data -> cannot release */
3274 if (PageChecked(page))
3275 return 0;
3276 if (journal)
3277 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3278 else
3279 return try_to_free_buffers(page);
3280 }
3281
3282 #ifdef CONFIG_FS_DAX
3283 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3284 unsigned flags, struct iomap *iomap)
3285 {
3286 unsigned int blkbits = inode->i_blkbits;
3287 unsigned long first_block = offset >> blkbits;
3288 unsigned long last_block = (offset + length - 1) >> blkbits;
3289 struct ext4_map_blocks map;
3290 int ret;
3291
3292 if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3293 return -ERANGE;
3294
3295 map.m_lblk = first_block;
3296 map.m_len = last_block - first_block + 1;
3297
3298 if (!(flags & IOMAP_WRITE)) {
3299 ret = ext4_map_blocks(NULL, inode, &map, 0);
3300 } else {
3301 int dio_credits;
3302 handle_t *handle;
3303 int retries = 0;
3304
3305 /* Trim mapping request to maximum we can map at once for DIO */
3306 if (map.m_len > DIO_MAX_BLOCKS)
3307 map.m_len = DIO_MAX_BLOCKS;
3308 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
3309 retry:
3310 /*
3311 * Either we allocate blocks and then we don't get unwritten
3312 * extent so we have reserved enough credits, or the blocks
3313 * are already allocated and unwritten and in that case
3314 * extent conversion fits in the credits as well.
3315 */
3316 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
3317 dio_credits);
3318 if (IS_ERR(handle))
3319 return PTR_ERR(handle);
3320
3321 ret = ext4_map_blocks(handle, inode, &map,
3322 EXT4_GET_BLOCKS_CREATE_ZERO);
3323 if (ret < 0) {
3324 ext4_journal_stop(handle);
3325 if (ret == -ENOSPC &&
3326 ext4_should_retry_alloc(inode->i_sb, &retries))
3327 goto retry;
3328 return ret;
3329 }
3330
3331 /*
3332 * If we added blocks beyond i_size, we need to make sure they
3333 * will get truncated if we crash before updating i_size in
3334 * ext4_iomap_end(). For faults we don't need to do that (and
3335 * even cannot because for orphan list operations inode_lock is
3336 * required) - if we happen to instantiate block beyond i_size,
3337 * it is because we race with truncate which has already added
3338 * the inode to the orphan list.
3339 */
3340 if (!(flags & IOMAP_FAULT) && first_block + map.m_len >
3341 (i_size_read(inode) + (1 << blkbits) - 1) >> blkbits) {
3342 int err;
3343
3344 err = ext4_orphan_add(handle, inode);
3345 if (err < 0) {
3346 ext4_journal_stop(handle);
3347 return err;
3348 }
3349 }
3350 ext4_journal_stop(handle);
3351 }
3352
3353 iomap->flags = 0;
3354 iomap->bdev = inode->i_sb->s_bdev;
3355 iomap->offset = first_block << blkbits;
3356
3357 if (ret == 0) {
3358 iomap->type = IOMAP_HOLE;
3359 iomap->blkno = IOMAP_NULL_BLOCK;
3360 iomap->length = (u64)map.m_len << blkbits;
3361 } else {
3362 if (map.m_flags & EXT4_MAP_MAPPED) {
3363 iomap->type = IOMAP_MAPPED;
3364 } else if (map.m_flags & EXT4_MAP_UNWRITTEN) {
3365 iomap->type = IOMAP_UNWRITTEN;
3366 } else {
3367 WARN_ON_ONCE(1);
3368 return -EIO;
3369 }
3370 iomap->blkno = (sector_t)map.m_pblk << (blkbits - 9);
3371 iomap->length = (u64)map.m_len << blkbits;
3372 }
3373
3374 if (map.m_flags & EXT4_MAP_NEW)
3375 iomap->flags |= IOMAP_F_NEW;
3376 return 0;
3377 }
3378
3379 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3380 ssize_t written, unsigned flags, struct iomap *iomap)
3381 {
3382 int ret = 0;
3383 handle_t *handle;
3384 int blkbits = inode->i_blkbits;
3385 bool truncate = false;
3386
3387 if (!(flags & IOMAP_WRITE) || (flags & IOMAP_FAULT))
3388 return 0;
3389
3390 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3391 if (IS_ERR(handle)) {
3392 ret = PTR_ERR(handle);
3393 goto orphan_del;
3394 }
3395 if (ext4_update_inode_size(inode, offset + written))
3396 ext4_mark_inode_dirty(handle, inode);
3397 /*
3398 * We may need to truncate allocated but not written blocks beyond EOF.
3399 */
3400 if (iomap->offset + iomap->length >
3401 ALIGN(inode->i_size, 1 << blkbits)) {
3402 ext4_lblk_t written_blk, end_blk;
3403
3404 written_blk = (offset + written) >> blkbits;
3405 end_blk = (offset + length) >> blkbits;
3406 if (written_blk < end_blk && ext4_can_truncate(inode))
3407 truncate = true;
3408 }
3409 /*
3410 * Remove inode from orphan list if we were extending a inode and
3411 * everything went fine.
3412 */
3413 if (!truncate && inode->i_nlink &&
3414 !list_empty(&EXT4_I(inode)->i_orphan))
3415 ext4_orphan_del(handle, inode);
3416 ext4_journal_stop(handle);
3417 if (truncate) {
3418 ext4_truncate_failed_write(inode);
3419 orphan_del:
3420 /*
3421 * If truncate failed early the inode might still be on the
3422 * orphan list; we need to make sure the inode is removed from
3423 * the orphan list in that case.
3424 */
3425 if (inode->i_nlink)
3426 ext4_orphan_del(NULL, inode);
3427 }
3428 return ret;
3429 }
3430
3431 struct iomap_ops ext4_iomap_ops = {
3432 .iomap_begin = ext4_iomap_begin,
3433 .iomap_end = ext4_iomap_end,
3434 };
3435
3436 #endif
3437
3438 static int ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3439 ssize_t size, void *private)
3440 {
3441 ext4_io_end_t *io_end = private;
3442
3443 /* if not async direct IO just return */
3444 if (!io_end)
3445 return 0;
3446
3447 ext_debug("ext4_end_io_dio(): io_end 0x%p "
3448 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3449 io_end, io_end->inode->i_ino, iocb, offset, size);
3450
3451 /*
3452 * Error during AIO DIO. We cannot convert unwritten extents as the
3453 * data was not written. Just clear the unwritten flag and drop io_end.
3454 */
3455 if (size <= 0) {
3456 ext4_clear_io_unwritten_flag(io_end);
3457 size = 0;
3458 }
3459 io_end->offset = offset;
3460 io_end->size = size;
3461 ext4_put_io_end(io_end);
3462
3463 return 0;
3464 }
3465
3466 /*
3467 * Handling of direct IO writes.
3468 *
3469 * For ext4 extent files, ext4 will do direct-io write even to holes,
3470 * preallocated extents, and those write extend the file, no need to
3471 * fall back to buffered IO.
3472 *
3473 * For holes, we fallocate those blocks, mark them as unwritten
3474 * If those blocks were preallocated, we mark sure they are split, but
3475 * still keep the range to write as unwritten.
3476 *
3477 * The unwritten extents will be converted to written when DIO is completed.
3478 * For async direct IO, since the IO may still pending when return, we
3479 * set up an end_io call back function, which will do the conversion
3480 * when async direct IO completed.
3481 *
3482 * If the O_DIRECT write will extend the file then add this inode to the
3483 * orphan list. So recovery will truncate it back to the original size
3484 * if the machine crashes during the write.
3485 *
3486 */
3487 static ssize_t ext4_direct_IO_write(struct kiocb *iocb, struct iov_iter *iter)
3488 {
3489 struct file *file = iocb->ki_filp;
3490 struct inode *inode = file->f_mapping->host;
3491 struct ext4_inode_info *ei = EXT4_I(inode);
3492 ssize_t ret;
3493 loff_t offset = iocb->ki_pos;
3494 size_t count = iov_iter_count(iter);
3495 int overwrite = 0;
3496 get_block_t *get_block_func = NULL;
3497 int dio_flags = 0;
3498 loff_t final_size = offset + count;
3499 int orphan = 0;
3500 handle_t *handle;
3501
3502 if (final_size > inode->i_size) {
3503 /* Credits for sb + inode write */
3504 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3505 if (IS_ERR(handle)) {
3506 ret = PTR_ERR(handle);
3507 goto out;
3508 }
3509 ret = ext4_orphan_add(handle, inode);
3510 if (ret) {
3511 ext4_journal_stop(handle);
3512 goto out;
3513 }
3514 orphan = 1;
3515 ei->i_disksize = inode->i_size;
3516 ext4_journal_stop(handle);
3517 }
3518
3519 BUG_ON(iocb->private == NULL);
3520
3521 /*
3522 * Make all waiters for direct IO properly wait also for extent
3523 * conversion. This also disallows race between truncate() and
3524 * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3525 */
3526 inode_dio_begin(inode);
3527
3528 /* If we do a overwrite dio, i_mutex locking can be released */
3529 overwrite = *((int *)iocb->private);
3530
3531 if (overwrite)
3532 inode_unlock(inode);
3533
3534 /*
3535 * For extent mapped files we could direct write to holes and fallocate.
3536 *
3537 * Allocated blocks to fill the hole are marked as unwritten to prevent
3538 * parallel buffered read to expose the stale data before DIO complete
3539 * the data IO.
3540 *
3541 * As to previously fallocated extents, ext4 get_block will just simply
3542 * mark the buffer mapped but still keep the extents unwritten.
3543 *
3544 * For non AIO case, we will convert those unwritten extents to written
3545 * after return back from blockdev_direct_IO. That way we save us from
3546 * allocating io_end structure and also the overhead of offloading
3547 * the extent convertion to a workqueue.
3548 *
3549 * For async DIO, the conversion needs to be deferred when the
3550 * IO is completed. The ext4 end_io callback function will be
3551 * called to take care of the conversion work. Here for async
3552 * case, we allocate an io_end structure to hook to the iocb.
3553 */
3554 iocb->private = NULL;
3555 if (overwrite)
3556 get_block_func = ext4_dio_get_block_overwrite;
3557 else if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS) ||
3558 round_down(offset, 1 << inode->i_blkbits) >= inode->i_size) {
3559 get_block_func = ext4_dio_get_block;
3560 dio_flags = DIO_LOCKING | DIO_SKIP_HOLES;
3561 } else if (is_sync_kiocb(iocb)) {
3562 get_block_func = ext4_dio_get_block_unwritten_sync;
3563 dio_flags = DIO_LOCKING;
3564 } else {
3565 get_block_func = ext4_dio_get_block_unwritten_async;
3566 dio_flags = DIO_LOCKING;
3567 }
3568 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3569 BUG_ON(ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode));
3570 #endif
3571 ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter,
3572 get_block_func, ext4_end_io_dio, NULL,
3573 dio_flags);
3574
3575 if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3576 EXT4_STATE_DIO_UNWRITTEN)) {
3577 int err;
3578 /*
3579 * for non AIO case, since the IO is already
3580 * completed, we could do the conversion right here
3581 */
3582 err = ext4_convert_unwritten_extents(NULL, inode,
3583 offset, ret);
3584 if (err < 0)
3585 ret = err;
3586 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3587 }
3588
3589 inode_dio_end(inode);
3590 /* take i_mutex locking again if we do a ovewrite dio */
3591 if (overwrite)
3592 inode_lock(inode);
3593
3594 if (ret < 0 && final_size > inode->i_size)
3595 ext4_truncate_failed_write(inode);
3596
3597 /* Handle extending of i_size after direct IO write */
3598 if (orphan) {
3599 int err;
3600
3601 /* Credits for sb + inode write */
3602 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3603 if (IS_ERR(handle)) {
3604 /* This is really bad luck. We've written the data
3605 * but cannot extend i_size. Bail out and pretend
3606 * the write failed... */
3607 ret = PTR_ERR(handle);
3608 if (inode->i_nlink)
3609 ext4_orphan_del(NULL, inode);
3610
3611 goto out;
3612 }
3613 if (inode->i_nlink)
3614 ext4_orphan_del(handle, inode);
3615 if (ret > 0) {
3616 loff_t end = offset + ret;
3617 if (end > inode->i_size) {
3618 ei->i_disksize = end;
3619 i_size_write(inode, end);
3620 /*
3621 * We're going to return a positive `ret'
3622 * here due to non-zero-length I/O, so there's
3623 * no way of reporting error returns from
3624 * ext4_mark_inode_dirty() to userspace. So
3625 * ignore it.
3626 */
3627 ext4_mark_inode_dirty(handle, inode);
3628 }
3629 }
3630 err = ext4_journal_stop(handle);
3631 if (ret == 0)
3632 ret = err;
3633 }
3634 out:
3635 return ret;
3636 }
3637
3638 static ssize_t ext4_direct_IO_read(struct kiocb *iocb, struct iov_iter *iter)
3639 {
3640 struct address_space *mapping = iocb->ki_filp->f_mapping;
3641 struct inode *inode = mapping->host;
3642 size_t count = iov_iter_count(iter);
3643 ssize_t ret;
3644
3645 /*
3646 * Shared inode_lock is enough for us - it protects against concurrent
3647 * writes & truncates and since we take care of writing back page cache,
3648 * we are protected against page writeback as well.
3649 */
3650 inode_lock_shared(inode);
3651 ret = filemap_write_and_wait_range(mapping, iocb->ki_pos,
3652 iocb->ki_pos + count);
3653 if (ret)
3654 goto out_unlock;
3655 ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
3656 iter, ext4_dio_get_block, NULL, NULL, 0);
3657 out_unlock:
3658 inode_unlock_shared(inode);
3659 return ret;
3660 }
3661
3662 static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
3663 {
3664 struct file *file = iocb->ki_filp;
3665 struct inode *inode = file->f_mapping->host;
3666 size_t count = iov_iter_count(iter);
3667 loff_t offset = iocb->ki_pos;
3668 ssize_t ret;
3669
3670 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3671 if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode))
3672 return 0;
3673 #endif
3674
3675 /*
3676 * If we are doing data journalling we don't support O_DIRECT
3677 */
3678 if (ext4_should_journal_data(inode))
3679 return 0;
3680
3681 /* Let buffer I/O handle the inline data case. */
3682 if (ext4_has_inline_data(inode))
3683 return 0;
3684
3685 /* DAX uses iomap path now */
3686 if (WARN_ON_ONCE(IS_DAX(inode)))
3687 return 0;
3688
3689 trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
3690 if (iov_iter_rw(iter) == READ)
3691 ret = ext4_direct_IO_read(iocb, iter);
3692 else
3693 ret = ext4_direct_IO_write(iocb, iter);
3694 trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret);
3695 return ret;
3696 }
3697
3698 /*
3699 * Pages can be marked dirty completely asynchronously from ext4's journalling
3700 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3701 * much here because ->set_page_dirty is called under VFS locks. The page is
3702 * not necessarily locked.
3703 *
3704 * We cannot just dirty the page and leave attached buffers clean, because the
3705 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3706 * or jbddirty because all the journalling code will explode.
3707 *
3708 * So what we do is to mark the page "pending dirty" and next time writepage
3709 * is called, propagate that into the buffers appropriately.
3710 */
3711 static int ext4_journalled_set_page_dirty(struct page *page)
3712 {
3713 SetPageChecked(page);
3714 return __set_page_dirty_nobuffers(page);
3715 }
3716
3717 static int ext4_set_page_dirty(struct page *page)
3718 {
3719 WARN_ON_ONCE(!PageLocked(page) && !PageDirty(page));
3720 WARN_ON_ONCE(!page_has_buffers(page));
3721 return __set_page_dirty_buffers(page);
3722 }
3723
3724 static const struct address_space_operations ext4_aops = {
3725 .readpage = ext4_readpage,
3726 .readpages = ext4_readpages,
3727 .writepage = ext4_writepage,
3728 .writepages = ext4_writepages,
3729 .write_begin = ext4_write_begin,
3730 .write_end = ext4_write_end,
3731 .set_page_dirty = ext4_set_page_dirty,
3732 .bmap = ext4_bmap,
3733 .invalidatepage = ext4_invalidatepage,
3734 .releasepage = ext4_releasepage,
3735 .direct_IO = ext4_direct_IO,
3736 .migratepage = buffer_migrate_page,
3737 .is_partially_uptodate = block_is_partially_uptodate,
3738 .error_remove_page = generic_error_remove_page,
3739 };
3740
3741 static const struct address_space_operations ext4_journalled_aops = {
3742 .readpage = ext4_readpage,
3743 .readpages = ext4_readpages,
3744 .writepage = ext4_writepage,
3745 .writepages = ext4_writepages,
3746 .write_begin = ext4_write_begin,
3747 .write_end = ext4_journalled_write_end,
3748 .set_page_dirty = ext4_journalled_set_page_dirty,
3749 .bmap = ext4_bmap,
3750 .invalidatepage = ext4_journalled_invalidatepage,
3751 .releasepage = ext4_releasepage,
3752 .direct_IO = ext4_direct_IO,
3753 .is_partially_uptodate = block_is_partially_uptodate,
3754 .error_remove_page = generic_error_remove_page,
3755 };
3756
3757 static const struct address_space_operations ext4_da_aops = {
3758 .readpage = ext4_readpage,
3759 .readpages = ext4_readpages,
3760 .writepage = ext4_writepage,
3761 .writepages = ext4_writepages,
3762 .write_begin = ext4_da_write_begin,
3763 .write_end = ext4_da_write_end,
3764 .set_page_dirty = ext4_set_page_dirty,
3765 .bmap = ext4_bmap,
3766 .invalidatepage = ext4_da_invalidatepage,
3767 .releasepage = ext4_releasepage,
3768 .direct_IO = ext4_direct_IO,
3769 .migratepage = buffer_migrate_page,
3770 .is_partially_uptodate = block_is_partially_uptodate,
3771 .error_remove_page = generic_error_remove_page,
3772 };
3773
3774 void ext4_set_aops(struct inode *inode)
3775 {
3776 switch (ext4_inode_journal_mode(inode)) {
3777 case EXT4_INODE_ORDERED_DATA_MODE:
3778 case EXT4_INODE_WRITEBACK_DATA_MODE:
3779 break;
3780 case EXT4_INODE_JOURNAL_DATA_MODE:
3781 inode->i_mapping->a_ops = &ext4_journalled_aops;
3782 return;
3783 default:
3784 BUG();
3785 }
3786 if (test_opt(inode->i_sb, DELALLOC))
3787 inode->i_mapping->a_ops = &ext4_da_aops;
3788 else
3789 inode->i_mapping->a_ops = &ext4_aops;
3790 }
3791
3792 static int __ext4_block_zero_page_range(handle_t *handle,
3793 struct address_space *mapping, loff_t from, loff_t length)
3794 {
3795 ext4_fsblk_t index = from >> PAGE_SHIFT;
3796 unsigned offset = from & (PAGE_SIZE-1);
3797 unsigned blocksize, pos;
3798 ext4_lblk_t iblock;
3799 struct inode *inode = mapping->host;
3800 struct buffer_head *bh;
3801 struct page *page;
3802 int err = 0;
3803
3804 page = find_or_create_page(mapping, from >> PAGE_SHIFT,
3805 mapping_gfp_constraint(mapping, ~__GFP_FS));
3806 if (!page)
3807 return -ENOMEM;
3808
3809 blocksize = inode->i_sb->s_blocksize;
3810
3811 iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
3812
3813 if (!page_has_buffers(page))
3814 create_empty_buffers(page, blocksize, 0);
3815
3816 /* Find the buffer that contains "offset" */
3817 bh = page_buffers(page);
3818 pos = blocksize;
3819 while (offset >= pos) {
3820 bh = bh->b_this_page;
3821 iblock++;
3822 pos += blocksize;
3823 }
3824 if (buffer_freed(bh)) {
3825 BUFFER_TRACE(bh, "freed: skip");
3826 goto unlock;
3827 }
3828 if (!buffer_mapped(bh)) {
3829 BUFFER_TRACE(bh, "unmapped");
3830 ext4_get_block(inode, iblock, bh, 0);
3831 /* unmapped? It's a hole - nothing to do */
3832 if (!buffer_mapped(bh)) {
3833 BUFFER_TRACE(bh, "still unmapped");
3834 goto unlock;
3835 }
3836 }
3837
3838 /* Ok, it's mapped. Make sure it's up-to-date */
3839 if (PageUptodate(page))
3840 set_buffer_uptodate(bh);
3841
3842 if (!buffer_uptodate(bh)) {
3843 err = -EIO;
3844 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
3845 wait_on_buffer(bh);
3846 /* Uhhuh. Read error. Complain and punt. */
3847 if (!buffer_uptodate(bh))
3848 goto unlock;
3849 if (S_ISREG(inode->i_mode) &&
3850 ext4_encrypted_inode(inode)) {
3851 /* We expect the key to be set. */
3852 BUG_ON(!fscrypt_has_encryption_key(inode));
3853 BUG_ON(blocksize != PAGE_SIZE);
3854 WARN_ON_ONCE(fscrypt_decrypt_page(page->mapping->host,
3855 page, PAGE_SIZE, 0, page->index));
3856 }
3857 }
3858 if (ext4_should_journal_data(inode)) {
3859 BUFFER_TRACE(bh, "get write access");
3860 err = ext4_journal_get_write_access(handle, bh);
3861 if (err)
3862 goto unlock;
3863 }
3864 zero_user(page, offset, length);
3865 BUFFER_TRACE(bh, "zeroed end of block");
3866
3867 if (ext4_should_journal_data(inode)) {
3868 err = ext4_handle_dirty_metadata(handle, inode, bh);
3869 } else {
3870 err = 0;
3871 mark_buffer_dirty(bh);
3872 if (ext4_should_order_data(inode))
3873 err = ext4_jbd2_inode_add_write(handle, inode);
3874 }
3875
3876 unlock:
3877 unlock_page(page);
3878 put_page(page);
3879 return err;
3880 }
3881
3882 /*
3883 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3884 * starting from file offset 'from'. The range to be zero'd must
3885 * be contained with in one block. If the specified range exceeds
3886 * the end of the block it will be shortened to end of the block
3887 * that cooresponds to 'from'
3888 */
3889 static int ext4_block_zero_page_range(handle_t *handle,
3890 struct address_space *mapping, loff_t from, loff_t length)
3891 {
3892 struct inode *inode = mapping->host;
3893 unsigned offset = from & (PAGE_SIZE-1);
3894 unsigned blocksize = inode->i_sb->s_blocksize;
3895 unsigned max = blocksize - (offset & (blocksize - 1));
3896
3897 /*
3898 * correct length if it does not fall between
3899 * 'from' and the end of the block
3900 */
3901 if (length > max || length < 0)
3902 length = max;
3903
3904 if (IS_DAX(inode)) {
3905 return iomap_zero_range(inode, from, length, NULL,
3906 &ext4_iomap_ops);
3907 }
3908 return __ext4_block_zero_page_range(handle, mapping, from, length);
3909 }
3910
3911 /*
3912 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3913 * up to the end of the block which corresponds to `from'.
3914 * This required during truncate. We need to physically zero the tail end
3915 * of that block so it doesn't yield old data if the file is later grown.
3916 */
3917 static int ext4_block_truncate_page(handle_t *handle,
3918 struct address_space *mapping, loff_t from)
3919 {
3920 unsigned offset = from & (PAGE_SIZE-1);
3921 unsigned length;
3922 unsigned blocksize;
3923 struct inode *inode = mapping->host;
3924
3925 blocksize = inode->i_sb->s_blocksize;
3926 length = blocksize - (offset & (blocksize - 1));
3927
3928 return ext4_block_zero_page_range(handle, mapping, from, length);
3929 }
3930
3931 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3932 loff_t lstart, loff_t length)
3933 {
3934 struct super_block *sb = inode->i_sb;
3935 struct address_space *mapping = inode->i_mapping;
3936 unsigned partial_start, partial_end;
3937 ext4_fsblk_t start, end;
3938 loff_t byte_end = (lstart + length - 1);
3939 int err = 0;
3940
3941 partial_start = lstart & (sb->s_blocksize - 1);
3942 partial_end = byte_end & (sb->s_blocksize - 1);
3943
3944 start = lstart >> sb->s_blocksize_bits;
3945 end = byte_end >> sb->s_blocksize_bits;
3946
3947 /* Handle partial zero within the single block */
3948 if (start == end &&
3949 (partial_start || (partial_end != sb->s_blocksize - 1))) {
3950 err = ext4_block_zero_page_range(handle, mapping,
3951 lstart, length);
3952 return err;
3953 }
3954 /* Handle partial zero out on the start of the range */
3955 if (partial_start) {
3956 err = ext4_block_zero_page_range(handle, mapping,
3957 lstart, sb->s_blocksize);
3958 if (err)
3959 return err;
3960 }
3961 /* Handle partial zero out on the end of the range */
3962 if (partial_end != sb->s_blocksize - 1)
3963 err = ext4_block_zero_page_range(handle, mapping,
3964 byte_end - partial_end,
3965 partial_end + 1);
3966 return err;
3967 }
3968
3969 int ext4_can_truncate(struct inode *inode)
3970 {
3971 if (S_ISREG(inode->i_mode))
3972 return 1;
3973 if (S_ISDIR(inode->i_mode))
3974 return 1;
3975 if (S_ISLNK(inode->i_mode))
3976 return !ext4_inode_is_fast_symlink(inode);
3977 return 0;
3978 }
3979
3980 /*
3981 * We have to make sure i_disksize gets properly updated before we truncate
3982 * page cache due to hole punching or zero range. Otherwise i_disksize update
3983 * can get lost as it may have been postponed to submission of writeback but
3984 * that will never happen after we truncate page cache.
3985 */
3986 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
3987 loff_t len)
3988 {
3989 handle_t *handle;
3990 loff_t size = i_size_read(inode);
3991
3992 WARN_ON(!inode_is_locked(inode));
3993 if (offset > size || offset + len < size)
3994 return 0;
3995
3996 if (EXT4_I(inode)->i_disksize >= size)
3997 return 0;
3998
3999 handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
4000 if (IS_ERR(handle))
4001 return PTR_ERR(handle);
4002 ext4_update_i_disksize(inode, size);
4003 ext4_mark_inode_dirty(handle, inode);
4004 ext4_journal_stop(handle);
4005
4006 return 0;
4007 }
4008
4009 /*
4010 * ext4_punch_hole: punches a hole in a file by releasing the blocks
4011 * associated with the given offset and length
4012 *
4013 * @inode: File inode
4014 * @offset: The offset where the hole will begin
4015 * @len: The length of the hole
4016 *
4017 * Returns: 0 on success or negative on failure
4018 */
4019
4020 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
4021 {
4022 struct super_block *sb = inode->i_sb;
4023 ext4_lblk_t first_block, stop_block;
4024 struct address_space *mapping = inode->i_mapping;
4025 loff_t first_block_offset, last_block_offset;
4026 handle_t *handle;
4027 unsigned int credits;
4028 int ret = 0;
4029
4030 if (!S_ISREG(inode->i_mode))
4031 return -EOPNOTSUPP;
4032
4033 trace_ext4_punch_hole(inode, offset, length, 0);
4034
4035 /*
4036 * Write out all dirty pages to avoid race conditions
4037 * Then release them.
4038 */
4039 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
4040 ret = filemap_write_and_wait_range(mapping, offset,
4041 offset + length - 1);
4042 if (ret)
4043 return ret;
4044 }
4045
4046 inode_lock(inode);
4047
4048 /* No need to punch hole beyond i_size */
4049 if (offset >= inode->i_size)
4050 goto out_mutex;
4051
4052 /*
4053 * If the hole extends beyond i_size, set the hole
4054 * to end after the page that contains i_size
4055 */
4056 if (offset + length > inode->i_size) {
4057 length = inode->i_size +
4058 PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
4059 offset;
4060 }
4061
4062 if (offset & (sb->s_blocksize - 1) ||
4063 (offset + length) & (sb->s_blocksize - 1)) {
4064 /*
4065 * Attach jinode to inode for jbd2 if we do any zeroing of
4066 * partial block
4067 */
4068 ret = ext4_inode_attach_jinode(inode);
4069 if (ret < 0)
4070 goto out_mutex;
4071
4072 }
4073
4074 /* Wait all existing dio workers, newcomers will block on i_mutex */
4075 ext4_inode_block_unlocked_dio(inode);
4076 inode_dio_wait(inode);
4077
4078 /*
4079 * Prevent page faults from reinstantiating pages we have released from
4080 * page cache.
4081 */
4082 down_write(&EXT4_I(inode)->i_mmap_sem);
4083 first_block_offset = round_up(offset, sb->s_blocksize);
4084 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
4085
4086 /* Now release the pages and zero block aligned part of pages*/
4087 if (last_block_offset > first_block_offset) {
4088 ret = ext4_update_disksize_before_punch(inode, offset, length);
4089 if (ret)
4090 goto out_dio;
4091 truncate_pagecache_range(inode, first_block_offset,
4092 last_block_offset);
4093 }
4094
4095 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4096 credits = ext4_writepage_trans_blocks(inode);
4097 else
4098 credits = ext4_blocks_for_truncate(inode);
4099 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4100 if (IS_ERR(handle)) {
4101 ret = PTR_ERR(handle);
4102 ext4_std_error(sb, ret);
4103 goto out_dio;
4104 }
4105
4106 ret = ext4_zero_partial_blocks(handle, inode, offset,
4107 length);
4108 if (ret)
4109 goto out_stop;
4110
4111 first_block = (offset + sb->s_blocksize - 1) >>
4112 EXT4_BLOCK_SIZE_BITS(sb);
4113 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4114
4115 /* If there are no blocks to remove, return now */
4116 if (first_block >= stop_block)
4117 goto out_stop;
4118
4119 down_write(&EXT4_I(inode)->i_data_sem);
4120 ext4_discard_preallocations(inode);
4121
4122 ret = ext4_es_remove_extent(inode, first_block,
4123 stop_block - first_block);
4124 if (ret) {
4125 up_write(&EXT4_I(inode)->i_data_sem);
4126 goto out_stop;
4127 }
4128
4129 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4130 ret = ext4_ext_remove_space(inode, first_block,
4131 stop_block - 1);
4132 else
4133 ret = ext4_ind_remove_space(handle, inode, first_block,
4134 stop_block);
4135
4136 up_write(&EXT4_I(inode)->i_data_sem);
4137 if (IS_SYNC(inode))
4138 ext4_handle_sync(handle);
4139
4140 inode->i_mtime = inode->i_ctime = current_time(inode);
4141 ext4_mark_inode_dirty(handle, inode);
4142 out_stop:
4143 ext4_journal_stop(handle);
4144 out_dio:
4145 up_write(&EXT4_I(inode)->i_mmap_sem);
4146 ext4_inode_resume_unlocked_dio(inode);
4147 out_mutex:
4148 inode_unlock(inode);
4149 return ret;
4150 }
4151
4152 int ext4_inode_attach_jinode(struct inode *inode)
4153 {
4154 struct ext4_inode_info *ei = EXT4_I(inode);
4155 struct jbd2_inode *jinode;
4156
4157 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4158 return 0;
4159
4160 jinode = jbd2_alloc_inode(GFP_KERNEL);
4161 spin_lock(&inode->i_lock);
4162 if (!ei->jinode) {
4163 if (!jinode) {
4164 spin_unlock(&inode->i_lock);
4165 return -ENOMEM;
4166 }
4167 ei->jinode = jinode;
4168 jbd2_journal_init_jbd_inode(ei->jinode, inode);
4169 jinode = NULL;
4170 }
4171 spin_unlock(&inode->i_lock);
4172 if (unlikely(jinode != NULL))
4173 jbd2_free_inode(jinode);
4174 return 0;
4175 }
4176
4177 /*
4178 * ext4_truncate()
4179 *
4180 * We block out ext4_get_block() block instantiations across the entire
4181 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4182 * simultaneously on behalf of the same inode.
4183 *
4184 * As we work through the truncate and commit bits of it to the journal there
4185 * is one core, guiding principle: the file's tree must always be consistent on
4186 * disk. We must be able to restart the truncate after a crash.
4187 *
4188 * The file's tree may be transiently inconsistent in memory (although it
4189 * probably isn't), but whenever we close off and commit a journal transaction,
4190 * the contents of (the filesystem + the journal) must be consistent and
4191 * restartable. It's pretty simple, really: bottom up, right to left (although
4192 * left-to-right works OK too).
4193 *
4194 * Note that at recovery time, journal replay occurs *before* the restart of
4195 * truncate against the orphan inode list.
4196 *
4197 * The committed inode has the new, desired i_size (which is the same as
4198 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
4199 * that this inode's truncate did not complete and it will again call
4200 * ext4_truncate() to have another go. So there will be instantiated blocks
4201 * to the right of the truncation point in a crashed ext4 filesystem. But
4202 * that's fine - as long as they are linked from the inode, the post-crash
4203 * ext4_truncate() run will find them and release them.
4204 */
4205 int ext4_truncate(struct inode *inode)
4206 {
4207 struct ext4_inode_info *ei = EXT4_I(inode);
4208 unsigned int credits;
4209 int err = 0;
4210 handle_t *handle;
4211 struct address_space *mapping = inode->i_mapping;
4212
4213 /*
4214 * There is a possibility that we're either freeing the inode
4215 * or it's a completely new inode. In those cases we might not
4216 * have i_mutex locked because it's not necessary.
4217 */
4218 if (!(inode->i_state & (I_NEW|I_FREEING)))
4219 WARN_ON(!inode_is_locked(inode));
4220 trace_ext4_truncate_enter(inode);
4221
4222 if (!ext4_can_truncate(inode))
4223 return 0;
4224
4225 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4226
4227 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4228 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4229
4230 if (ext4_has_inline_data(inode)) {
4231 int has_inline = 1;
4232
4233 ext4_inline_data_truncate(inode, &has_inline);
4234 if (has_inline)
4235 return 0;
4236 }
4237
4238 /* If we zero-out tail of the page, we have to create jinode for jbd2 */
4239 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4240 if (ext4_inode_attach_jinode(inode) < 0)
4241 return 0;
4242 }
4243
4244 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4245 credits = ext4_writepage_trans_blocks(inode);
4246 else
4247 credits = ext4_blocks_for_truncate(inode);
4248
4249 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4250 if (IS_ERR(handle))
4251 return PTR_ERR(handle);
4252
4253 if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4254 ext4_block_truncate_page(handle, mapping, inode->i_size);
4255
4256 /*
4257 * We add the inode to the orphan list, so that if this
4258 * truncate spans multiple transactions, and we crash, we will
4259 * resume the truncate when the filesystem recovers. It also
4260 * marks the inode dirty, to catch the new size.
4261 *
4262 * Implication: the file must always be in a sane, consistent
4263 * truncatable state while each transaction commits.
4264 */
4265 err = ext4_orphan_add(handle, inode);
4266 if (err)
4267 goto out_stop;
4268
4269 down_write(&EXT4_I(inode)->i_data_sem);
4270
4271 ext4_discard_preallocations(inode);
4272
4273 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4274 err = ext4_ext_truncate(handle, inode);
4275 else
4276 ext4_ind_truncate(handle, inode);
4277
4278 up_write(&ei->i_data_sem);
4279 if (err)
4280 goto out_stop;
4281
4282 if (IS_SYNC(inode))
4283 ext4_handle_sync(handle);
4284
4285 out_stop:
4286 /*
4287 * If this was a simple ftruncate() and the file will remain alive,
4288 * then we need to clear up the orphan record which we created above.
4289 * However, if this was a real unlink then we were called by
4290 * ext4_evict_inode(), and we allow that function to clean up the
4291 * orphan info for us.
4292 */
4293 if (inode->i_nlink)
4294 ext4_orphan_del(handle, inode);
4295
4296 inode->i_mtime = inode->i_ctime = current_time(inode);
4297 ext4_mark_inode_dirty(handle, inode);
4298 ext4_journal_stop(handle);
4299
4300 trace_ext4_truncate_exit(inode);
4301 return err;
4302 }
4303
4304 /*
4305 * ext4_get_inode_loc returns with an extra refcount against the inode's
4306 * underlying buffer_head on success. If 'in_mem' is true, we have all
4307 * data in memory that is needed to recreate the on-disk version of this
4308 * inode.
4309 */
4310 static int __ext4_get_inode_loc(struct inode *inode,
4311 struct ext4_iloc *iloc, int in_mem)
4312 {
4313 struct ext4_group_desc *gdp;
4314 struct buffer_head *bh;
4315 struct super_block *sb = inode->i_sb;
4316 ext4_fsblk_t block;
4317 int inodes_per_block, inode_offset;
4318
4319 iloc->bh = NULL;
4320 if (!ext4_valid_inum(sb, inode->i_ino))
4321 return -EFSCORRUPTED;
4322
4323 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4324 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4325 if (!gdp)
4326 return -EIO;
4327
4328 /*
4329 * Figure out the offset within the block group inode table
4330 */
4331 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4332 inode_offset = ((inode->i_ino - 1) %
4333 EXT4_INODES_PER_GROUP(sb));
4334 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4335 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4336
4337 bh = sb_getblk(sb, block);
4338 if (unlikely(!bh))
4339 return -ENOMEM;
4340 if (!buffer_uptodate(bh)) {
4341 lock_buffer(bh);
4342
4343 /*
4344 * If the buffer has the write error flag, we have failed
4345 * to write out another inode in the same block. In this
4346 * case, we don't have to read the block because we may
4347 * read the old inode data successfully.
4348 */
4349 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4350 set_buffer_uptodate(bh);
4351
4352 if (buffer_uptodate(bh)) {
4353 /* someone brought it uptodate while we waited */
4354 unlock_buffer(bh);
4355 goto has_buffer;
4356 }
4357
4358 /*
4359 * If we have all information of the inode in memory and this
4360 * is the only valid inode in the block, we need not read the
4361 * block.
4362 */
4363 if (in_mem) {
4364 struct buffer_head *bitmap_bh;
4365 int i, start;
4366
4367 start = inode_offset & ~(inodes_per_block - 1);
4368
4369 /* Is the inode bitmap in cache? */
4370 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4371 if (unlikely(!bitmap_bh))
4372 goto make_io;
4373
4374 /*
4375 * If the inode bitmap isn't in cache then the
4376 * optimisation may end up performing two reads instead
4377 * of one, so skip it.
4378 */
4379 if (!buffer_uptodate(bitmap_bh)) {
4380 brelse(bitmap_bh);
4381 goto make_io;
4382 }
4383 for (i = start; i < start + inodes_per_block; i++) {
4384 if (i == inode_offset)
4385 continue;
4386 if (ext4_test_bit(i, bitmap_bh->b_data))
4387 break;
4388 }
4389 brelse(bitmap_bh);
4390 if (i == start + inodes_per_block) {
4391 /* all other inodes are free, so skip I/O */
4392 memset(bh->b_data, 0, bh->b_size);
4393 set_buffer_uptodate(bh);
4394 unlock_buffer(bh);
4395 goto has_buffer;
4396 }
4397 }
4398
4399 make_io:
4400 /*
4401 * If we need to do any I/O, try to pre-readahead extra
4402 * blocks from the inode table.
4403 */
4404 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4405 ext4_fsblk_t b, end, table;
4406 unsigned num;
4407 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4408
4409 table = ext4_inode_table(sb, gdp);
4410 /* s_inode_readahead_blks is always a power of 2 */
4411 b = block & ~((ext4_fsblk_t) ra_blks - 1);
4412 if (table > b)
4413 b = table;
4414 end = b + ra_blks;
4415 num = EXT4_INODES_PER_GROUP(sb);
4416 if (ext4_has_group_desc_csum(sb))
4417 num -= ext4_itable_unused_count(sb, gdp);
4418 table += num / inodes_per_block;
4419 if (end > table)
4420 end = table;
4421 while (b <= end)
4422 sb_breadahead(sb, b++);
4423 }
4424
4425 /*
4426 * There are other valid inodes in the buffer, this inode
4427 * has in-inode xattrs, or we don't have this inode in memory.
4428 * Read the block from disk.
4429 */
4430 trace_ext4_load_inode(inode);
4431 get_bh(bh);
4432 bh->b_end_io = end_buffer_read_sync;
4433 submit_bh(REQ_OP_READ, REQ_META | REQ_PRIO, bh);
4434 wait_on_buffer(bh);
4435 if (!buffer_uptodate(bh)) {
4436 EXT4_ERROR_INODE_BLOCK(inode, block,
4437 "unable to read itable block");
4438 brelse(bh);
4439 return -EIO;
4440 }
4441 }
4442 has_buffer:
4443 iloc->bh = bh;
4444 return 0;
4445 }
4446
4447 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4448 {
4449 /* We have all inode data except xattrs in memory here. */
4450 return __ext4_get_inode_loc(inode, iloc,
4451 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4452 }
4453
4454 void ext4_set_inode_flags(struct inode *inode)
4455 {
4456 unsigned int flags = EXT4_I(inode)->i_flags;
4457 unsigned int new_fl = 0;
4458
4459 if (flags & EXT4_SYNC_FL)
4460 new_fl |= S_SYNC;
4461 if (flags & EXT4_APPEND_FL)
4462 new_fl |= S_APPEND;
4463 if (flags & EXT4_IMMUTABLE_FL)
4464 new_fl |= S_IMMUTABLE;
4465 if (flags & EXT4_NOATIME_FL)
4466 new_fl |= S_NOATIME;
4467 if (flags & EXT4_DIRSYNC_FL)
4468 new_fl |= S_DIRSYNC;
4469 if (test_opt(inode->i_sb, DAX) && S_ISREG(inode->i_mode) &&
4470 !ext4_should_journal_data(inode) && !ext4_has_inline_data(inode) &&
4471 !ext4_encrypted_inode(inode))
4472 new_fl |= S_DAX;
4473 inode_set_flags(inode, new_fl,
4474 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX);
4475 }
4476
4477 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4478 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4479 {
4480 unsigned int vfs_fl;
4481 unsigned long old_fl, new_fl;
4482
4483 do {
4484 vfs_fl = ei->vfs_inode.i_flags;
4485 old_fl = ei->i_flags;
4486 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4487 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
4488 EXT4_DIRSYNC_FL);
4489 if (vfs_fl & S_SYNC)
4490 new_fl |= EXT4_SYNC_FL;
4491 if (vfs_fl & S_APPEND)
4492 new_fl |= EXT4_APPEND_FL;
4493 if (vfs_fl & S_IMMUTABLE)
4494 new_fl |= EXT4_IMMUTABLE_FL;
4495 if (vfs_fl & S_NOATIME)
4496 new_fl |= EXT4_NOATIME_FL;
4497 if (vfs_fl & S_DIRSYNC)
4498 new_fl |= EXT4_DIRSYNC_FL;
4499 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
4500 }
4501
4502 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4503 struct ext4_inode_info *ei)
4504 {
4505 blkcnt_t i_blocks ;
4506 struct inode *inode = &(ei->vfs_inode);
4507 struct super_block *sb = inode->i_sb;
4508
4509 if (ext4_has_feature_huge_file(sb)) {
4510 /* we are using combined 48 bit field */
4511 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4512 le32_to_cpu(raw_inode->i_blocks_lo);
4513 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4514 /* i_blocks represent file system block size */
4515 return i_blocks << (inode->i_blkbits - 9);
4516 } else {
4517 return i_blocks;
4518 }
4519 } else {
4520 return le32_to_cpu(raw_inode->i_blocks_lo);
4521 }
4522 }
4523
4524 static inline void ext4_iget_extra_inode(struct inode *inode,
4525 struct ext4_inode *raw_inode,
4526 struct ext4_inode_info *ei)
4527 {
4528 __le32 *magic = (void *)raw_inode +
4529 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4530 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize + sizeof(__le32) <=
4531 EXT4_INODE_SIZE(inode->i_sb) &&
4532 *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4533 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4534 ext4_find_inline_data_nolock(inode);
4535 } else
4536 EXT4_I(inode)->i_inline_off = 0;
4537 }
4538
4539 int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4540 {
4541 if (!ext4_has_feature_project(inode->i_sb))
4542 return -EOPNOTSUPP;
4543 *projid = EXT4_I(inode)->i_projid;
4544 return 0;
4545 }
4546
4547 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4548 {
4549 struct ext4_iloc iloc;
4550 struct ext4_inode *raw_inode;
4551 struct ext4_inode_info *ei;
4552 struct inode *inode;
4553 journal_t *journal = EXT4_SB(sb)->s_journal;
4554 long ret;
4555 loff_t size;
4556 int block;
4557 uid_t i_uid;
4558 gid_t i_gid;
4559 projid_t i_projid;
4560
4561 inode = iget_locked(sb, ino);
4562 if (!inode)
4563 return ERR_PTR(-ENOMEM);
4564 if (!(inode->i_state & I_NEW))
4565 return inode;
4566
4567 ei = EXT4_I(inode);
4568 iloc.bh = NULL;
4569
4570 ret = __ext4_get_inode_loc(inode, &iloc, 0);
4571 if (ret < 0)
4572 goto bad_inode;
4573 raw_inode = ext4_raw_inode(&iloc);
4574
4575 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4576 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4577 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4578 EXT4_INODE_SIZE(inode->i_sb) ||
4579 (ei->i_extra_isize & 3)) {
4580 EXT4_ERROR_INODE(inode,
4581 "bad extra_isize %u (inode size %u)",
4582 ei->i_extra_isize,
4583 EXT4_INODE_SIZE(inode->i_sb));
4584 ret = -EFSCORRUPTED;
4585 goto bad_inode;
4586 }
4587 } else
4588 ei->i_extra_isize = 0;
4589
4590 /* Precompute checksum seed for inode metadata */
4591 if (ext4_has_metadata_csum(sb)) {
4592 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4593 __u32 csum;
4594 __le32 inum = cpu_to_le32(inode->i_ino);
4595 __le32 gen = raw_inode->i_generation;
4596 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4597 sizeof(inum));
4598 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4599 sizeof(gen));
4600 }
4601
4602 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4603 EXT4_ERROR_INODE(inode, "checksum invalid");
4604 ret = -EFSBADCRC;
4605 goto bad_inode;
4606 }
4607
4608 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4609 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4610 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4611 if (ext4_has_feature_project(sb) &&
4612 EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4613 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4614 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4615 else
4616 i_projid = EXT4_DEF_PROJID;
4617
4618 if (!(test_opt(inode->i_sb, NO_UID32))) {
4619 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4620 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4621 }
4622 i_uid_write(inode, i_uid);
4623 i_gid_write(inode, i_gid);
4624 ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4625 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4626
4627 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
4628 ei->i_inline_off = 0;
4629 ei->i_dir_start_lookup = 0;
4630 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4631 /* We now have enough fields to check if the inode was active or not.
4632 * This is needed because nfsd might try to access dead inodes
4633 * the test is that same one that e2fsck uses
4634 * NeilBrown 1999oct15
4635 */
4636 if (inode->i_nlink == 0) {
4637 if ((inode->i_mode == 0 ||
4638 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4639 ino != EXT4_BOOT_LOADER_INO) {
4640 /* this inode is deleted */
4641 ret = -ESTALE;
4642 goto bad_inode;
4643 }
4644 /* The only unlinked inodes we let through here have
4645 * valid i_mode and are being read by the orphan
4646 * recovery code: that's fine, we're about to complete
4647 * the process of deleting those.
4648 * OR it is the EXT4_BOOT_LOADER_INO which is
4649 * not initialized on a new filesystem. */
4650 }
4651 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4652 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4653 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4654 if (ext4_has_feature_64bit(sb))
4655 ei->i_file_acl |=
4656 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4657 inode->i_size = ext4_isize(raw_inode);
4658 if ((size = i_size_read(inode)) < 0) {
4659 EXT4_ERROR_INODE(inode, "bad i_size value: %lld", size);
4660 ret = -EFSCORRUPTED;
4661 goto bad_inode;
4662 }
4663 ei->i_disksize = inode->i_size;
4664 #ifdef CONFIG_QUOTA
4665 ei->i_reserved_quota = 0;
4666 #endif
4667 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4668 ei->i_block_group = iloc.block_group;
4669 ei->i_last_alloc_group = ~0;
4670 /*
4671 * NOTE! The in-memory inode i_data array is in little-endian order
4672 * even on big-endian machines: we do NOT byteswap the block numbers!
4673 */
4674 for (block = 0; block < EXT4_N_BLOCKS; block++)
4675 ei->i_data[block] = raw_inode->i_block[block];
4676 INIT_LIST_HEAD(&ei->i_orphan);
4677
4678 /*
4679 * Set transaction id's of transactions that have to be committed
4680 * to finish f[data]sync. We set them to currently running transaction
4681 * as we cannot be sure that the inode or some of its metadata isn't
4682 * part of the transaction - the inode could have been reclaimed and
4683 * now it is reread from disk.
4684 */
4685 if (journal) {
4686 transaction_t *transaction;
4687 tid_t tid;
4688
4689 read_lock(&journal->j_state_lock);
4690 if (journal->j_running_transaction)
4691 transaction = journal->j_running_transaction;
4692 else
4693 transaction = journal->j_committing_transaction;
4694 if (transaction)
4695 tid = transaction->t_tid;
4696 else
4697 tid = journal->j_commit_sequence;
4698 read_unlock(&journal->j_state_lock);
4699 ei->i_sync_tid = tid;
4700 ei->i_datasync_tid = tid;
4701 }
4702
4703 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4704 if (ei->i_extra_isize == 0) {
4705 /* The extra space is currently unused. Use it. */
4706 BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
4707 ei->i_extra_isize = sizeof(struct ext4_inode) -
4708 EXT4_GOOD_OLD_INODE_SIZE;
4709 } else {
4710 ext4_iget_extra_inode(inode, raw_inode, ei);
4711 }
4712 }
4713
4714 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4715 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4716 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4717 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4718
4719 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4720 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4721 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4722 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4723 inode->i_version |=
4724 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4725 }
4726 }
4727
4728 ret = 0;
4729 if (ei->i_file_acl &&
4730 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4731 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4732 ei->i_file_acl);
4733 ret = -EFSCORRUPTED;
4734 goto bad_inode;
4735 } else if (!ext4_has_inline_data(inode)) {
4736 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4737 if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4738 (S_ISLNK(inode->i_mode) &&
4739 !ext4_inode_is_fast_symlink(inode))))
4740 /* Validate extent which is part of inode */
4741 ret = ext4_ext_check_inode(inode);
4742 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4743 (S_ISLNK(inode->i_mode) &&
4744 !ext4_inode_is_fast_symlink(inode))) {
4745 /* Validate block references which are part of inode */
4746 ret = ext4_ind_check_inode(inode);
4747 }
4748 }
4749 if (ret)
4750 goto bad_inode;
4751
4752 if (S_ISREG(inode->i_mode)) {
4753 inode->i_op = &ext4_file_inode_operations;
4754 inode->i_fop = &ext4_file_operations;
4755 ext4_set_aops(inode);
4756 } else if (S_ISDIR(inode->i_mode)) {
4757 inode->i_op = &ext4_dir_inode_operations;
4758 inode->i_fop = &ext4_dir_operations;
4759 } else if (S_ISLNK(inode->i_mode)) {
4760 if (ext4_encrypted_inode(inode)) {
4761 inode->i_op = &ext4_encrypted_symlink_inode_operations;
4762 ext4_set_aops(inode);
4763 } else if (ext4_inode_is_fast_symlink(inode)) {
4764 inode->i_link = (char *)ei->i_data;
4765 inode->i_op = &ext4_fast_symlink_inode_operations;
4766 nd_terminate_link(ei->i_data, inode->i_size,
4767 sizeof(ei->i_data) - 1);
4768 } else {
4769 inode->i_op = &ext4_symlink_inode_operations;
4770 ext4_set_aops(inode);
4771 }
4772 inode_nohighmem(inode);
4773 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4774 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4775 inode->i_op = &ext4_special_inode_operations;
4776 if (raw_inode->i_block[0])
4777 init_special_inode(inode, inode->i_mode,
4778 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4779 else
4780 init_special_inode(inode, inode->i_mode,
4781 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4782 } else if (ino == EXT4_BOOT_LOADER_INO) {
4783 make_bad_inode(inode);
4784 } else {
4785 ret = -EFSCORRUPTED;
4786 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4787 goto bad_inode;
4788 }
4789 brelse(iloc.bh);
4790 ext4_set_inode_flags(inode);
4791 unlock_new_inode(inode);
4792 return inode;
4793
4794 bad_inode:
4795 brelse(iloc.bh);
4796 iget_failed(inode);
4797 return ERR_PTR(ret);
4798 }
4799
4800 struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino)
4801 {
4802 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
4803 return ERR_PTR(-EFSCORRUPTED);
4804 return ext4_iget(sb, ino);
4805 }
4806
4807 static int ext4_inode_blocks_set(handle_t *handle,
4808 struct ext4_inode *raw_inode,
4809 struct ext4_inode_info *ei)
4810 {
4811 struct inode *inode = &(ei->vfs_inode);
4812 u64 i_blocks = inode->i_blocks;
4813 struct super_block *sb = inode->i_sb;
4814
4815 if (i_blocks <= ~0U) {
4816 /*
4817 * i_blocks can be represented in a 32 bit variable
4818 * as multiple of 512 bytes
4819 */
4820 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4821 raw_inode->i_blocks_high = 0;
4822 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4823 return 0;
4824 }
4825 if (!ext4_has_feature_huge_file(sb))
4826 return -EFBIG;
4827
4828 if (i_blocks <= 0xffffffffffffULL) {
4829 /*
4830 * i_blocks can be represented in a 48 bit variable
4831 * as multiple of 512 bytes
4832 */
4833 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4834 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4835 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4836 } else {
4837 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4838 /* i_block is stored in file system block size */
4839 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4840 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4841 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4842 }
4843 return 0;
4844 }
4845
4846 struct other_inode {
4847 unsigned long orig_ino;
4848 struct ext4_inode *raw_inode;
4849 };
4850
4851 static int other_inode_match(struct inode * inode, unsigned long ino,
4852 void *data)
4853 {
4854 struct other_inode *oi = (struct other_inode *) data;
4855
4856 if ((inode->i_ino != ino) ||
4857 (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4858 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
4859 ((inode->i_state & I_DIRTY_TIME) == 0))
4860 return 0;
4861 spin_lock(&inode->i_lock);
4862 if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4863 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) == 0) &&
4864 (inode->i_state & I_DIRTY_TIME)) {
4865 struct ext4_inode_info *ei = EXT4_I(inode);
4866
4867 inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED);
4868 spin_unlock(&inode->i_lock);
4869
4870 spin_lock(&ei->i_raw_lock);
4871 EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode);
4872 EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode);
4873 EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode);
4874 ext4_inode_csum_set(inode, oi->raw_inode, ei);
4875 spin_unlock(&ei->i_raw_lock);
4876 trace_ext4_other_inode_update_time(inode, oi->orig_ino);
4877 return -1;
4878 }
4879 spin_unlock(&inode->i_lock);
4880 return -1;
4881 }
4882
4883 /*
4884 * Opportunistically update the other time fields for other inodes in
4885 * the same inode table block.
4886 */
4887 static void ext4_update_other_inodes_time(struct super_block *sb,
4888 unsigned long orig_ino, char *buf)
4889 {
4890 struct other_inode oi;
4891 unsigned long ino;
4892 int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4893 int inode_size = EXT4_INODE_SIZE(sb);
4894
4895 oi.orig_ino = orig_ino;
4896 /*
4897 * Calculate the first inode in the inode table block. Inode
4898 * numbers are one-based. That is, the first inode in a block
4899 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
4900 */
4901 ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
4902 for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
4903 if (ino == orig_ino)
4904 continue;
4905 oi.raw_inode = (struct ext4_inode *) buf;
4906 (void) find_inode_nowait(sb, ino, other_inode_match, &oi);
4907 }
4908 }
4909
4910 /*
4911 * Post the struct inode info into an on-disk inode location in the
4912 * buffer-cache. This gobbles the caller's reference to the
4913 * buffer_head in the inode location struct.
4914 *
4915 * The caller must have write access to iloc->bh.
4916 */
4917 static int ext4_do_update_inode(handle_t *handle,
4918 struct inode *inode,
4919 struct ext4_iloc *iloc)
4920 {
4921 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4922 struct ext4_inode_info *ei = EXT4_I(inode);
4923 struct buffer_head *bh = iloc->bh;
4924 struct super_block *sb = inode->i_sb;
4925 int err = 0, rc, block;
4926 int need_datasync = 0, set_large_file = 0;
4927 uid_t i_uid;
4928 gid_t i_gid;
4929 projid_t i_projid;
4930
4931 spin_lock(&ei->i_raw_lock);
4932
4933 /* For fields not tracked in the in-memory inode,
4934 * initialise them to zero for new inodes. */
4935 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4936 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4937
4938 ext4_get_inode_flags(ei);
4939 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4940 i_uid = i_uid_read(inode);
4941 i_gid = i_gid_read(inode);
4942 i_projid = from_kprojid(&init_user_ns, ei->i_projid);
4943 if (!(test_opt(inode->i_sb, NO_UID32))) {
4944 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4945 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4946 /*
4947 * Fix up interoperability with old kernels. Otherwise, old inodes get
4948 * re-used with the upper 16 bits of the uid/gid intact
4949 */
4950 if (ei->i_dtime && list_empty(&ei->i_orphan)) {
4951 raw_inode->i_uid_high = 0;
4952 raw_inode->i_gid_high = 0;
4953 } else {
4954 raw_inode->i_uid_high =
4955 cpu_to_le16(high_16_bits(i_uid));
4956 raw_inode->i_gid_high =
4957 cpu_to_le16(high_16_bits(i_gid));
4958 }
4959 } else {
4960 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4961 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4962 raw_inode->i_uid_high = 0;
4963 raw_inode->i_gid_high = 0;
4964 }
4965 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4966
4967 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4968 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4969 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4970 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4971
4972 err = ext4_inode_blocks_set(handle, raw_inode, ei);
4973 if (err) {
4974 spin_unlock(&ei->i_raw_lock);
4975 goto out_brelse;
4976 }
4977 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4978 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4979 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4980 raw_inode->i_file_acl_high =
4981 cpu_to_le16(ei->i_file_acl >> 32);
4982 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4983 if (ei->i_disksize != ext4_isize(raw_inode)) {
4984 ext4_isize_set(raw_inode, ei->i_disksize);
4985 need_datasync = 1;
4986 }
4987 if (ei->i_disksize > 0x7fffffffULL) {
4988 if (!ext4_has_feature_large_file(sb) ||
4989 EXT4_SB(sb)->s_es->s_rev_level ==
4990 cpu_to_le32(EXT4_GOOD_OLD_REV))
4991 set_large_file = 1;
4992 }
4993 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4994 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4995 if (old_valid_dev(inode->i_rdev)) {
4996 raw_inode->i_block[0] =
4997 cpu_to_le32(old_encode_dev(inode->i_rdev));
4998 raw_inode->i_block[1] = 0;
4999 } else {
5000 raw_inode->i_block[0] = 0;
5001 raw_inode->i_block[1] =
5002 cpu_to_le32(new_encode_dev(inode->i_rdev));
5003 raw_inode->i_block[2] = 0;
5004 }
5005 } else if (!ext4_has_inline_data(inode)) {
5006 for (block = 0; block < EXT4_N_BLOCKS; block++)
5007 raw_inode->i_block[block] = ei->i_data[block];
5008 }
5009
5010 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
5011 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
5012 if (ei->i_extra_isize) {
5013 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5014 raw_inode->i_version_hi =
5015 cpu_to_le32(inode->i_version >> 32);
5016 raw_inode->i_extra_isize =
5017 cpu_to_le16(ei->i_extra_isize);
5018 }
5019 }
5020
5021 BUG_ON(!ext4_has_feature_project(inode->i_sb) &&
5022 i_projid != EXT4_DEF_PROJID);
5023
5024 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
5025 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
5026 raw_inode->i_projid = cpu_to_le32(i_projid);
5027
5028 ext4_inode_csum_set(inode, raw_inode, ei);
5029 spin_unlock(&ei->i_raw_lock);
5030 if (inode->i_sb->s_flags & MS_LAZYTIME)
5031 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5032 bh->b_data);
5033
5034 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5035 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
5036 if (!err)
5037 err = rc;
5038 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5039 if (set_large_file) {
5040 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5041 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
5042 if (err)
5043 goto out_brelse;
5044 ext4_update_dynamic_rev(sb);
5045 ext4_set_feature_large_file(sb);
5046 ext4_handle_sync(handle);
5047 err = ext4_handle_dirty_super(handle, sb);
5048 }
5049 ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5050 out_brelse:
5051 brelse(bh);
5052 ext4_std_error(inode->i_sb, err);
5053 return err;
5054 }
5055
5056 /*
5057 * ext4_write_inode()
5058 *
5059 * We are called from a few places:
5060 *
5061 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5062 * Here, there will be no transaction running. We wait for any running
5063 * transaction to commit.
5064 *
5065 * - Within flush work (sys_sync(), kupdate and such).
5066 * We wait on commit, if told to.
5067 *
5068 * - Within iput_final() -> write_inode_now()
5069 * We wait on commit, if told to.
5070 *
5071 * In all cases it is actually safe for us to return without doing anything,
5072 * because the inode has been copied into a raw inode buffer in
5073 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL
5074 * writeback.
5075 *
5076 * Note that we are absolutely dependent upon all inode dirtiers doing the
5077 * right thing: they *must* call mark_inode_dirty() after dirtying info in
5078 * which we are interested.
5079 *
5080 * It would be a bug for them to not do this. The code:
5081 *
5082 * mark_inode_dirty(inode)
5083 * stuff();
5084 * inode->i_size = expr;
5085 *
5086 * is in error because write_inode() could occur while `stuff()' is running,
5087 * and the new i_size will be lost. Plus the inode will no longer be on the
5088 * superblock's dirty inode list.
5089 */
5090 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5091 {
5092 int err;
5093
5094 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
5095 return 0;
5096
5097 if (EXT4_SB(inode->i_sb)->s_journal) {
5098 if (ext4_journal_current_handle()) {
5099 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5100 dump_stack();
5101 return -EIO;
5102 }
5103
5104 /*
5105 * No need to force transaction in WB_SYNC_NONE mode. Also
5106 * ext4_sync_fs() will force the commit after everything is
5107 * written.
5108 */
5109 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5110 return 0;
5111
5112 err = ext4_force_commit(inode->i_sb);
5113 } else {
5114 struct ext4_iloc iloc;
5115
5116 err = __ext4_get_inode_loc(inode, &iloc, 0);
5117 if (err)
5118 return err;
5119 /*
5120 * sync(2) will flush the whole buffer cache. No need to do
5121 * it here separately for each inode.
5122 */
5123 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5124 sync_dirty_buffer(iloc.bh);
5125 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5126 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
5127 "IO error syncing inode");
5128 err = -EIO;
5129 }
5130 brelse(iloc.bh);
5131 }
5132 return err;
5133 }
5134
5135 /*
5136 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
5137 * buffers that are attached to a page stradding i_size and are undergoing
5138 * commit. In that case we have to wait for commit to finish and try again.
5139 */
5140 static void ext4_wait_for_tail_page_commit(struct inode *inode)
5141 {
5142 struct page *page;
5143 unsigned offset;
5144 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5145 tid_t commit_tid = 0;
5146 int ret;
5147
5148 offset = inode->i_size & (PAGE_SIZE - 1);
5149 /*
5150 * All buffers in the last page remain valid? Then there's nothing to
5151 * do. We do the check mainly to optimize the common PAGE_SIZE ==
5152 * blocksize case
5153 */
5154 if (offset > PAGE_SIZE - (1 << inode->i_blkbits))
5155 return;
5156 while (1) {
5157 page = find_lock_page(inode->i_mapping,
5158 inode->i_size >> PAGE_SHIFT);
5159 if (!page)
5160 return;
5161 ret = __ext4_journalled_invalidatepage(page, offset,
5162 PAGE_SIZE - offset);
5163 unlock_page(page);
5164 put_page(page);
5165 if (ret != -EBUSY)
5166 return;
5167 commit_tid = 0;
5168 read_lock(&journal->j_state_lock);
5169 if (journal->j_committing_transaction)
5170 commit_tid = journal->j_committing_transaction->t_tid;
5171 read_unlock(&journal->j_state_lock);
5172 if (commit_tid)
5173 jbd2_log_wait_commit(journal, commit_tid);
5174 }
5175 }
5176
5177 /*
5178 * ext4_setattr()
5179 *
5180 * Called from notify_change.
5181 *
5182 * We want to trap VFS attempts to truncate the file as soon as
5183 * possible. In particular, we want to make sure that when the VFS
5184 * shrinks i_size, we put the inode on the orphan list and modify
5185 * i_disksize immediately, so that during the subsequent flushing of
5186 * dirty pages and freeing of disk blocks, we can guarantee that any
5187 * commit will leave the blocks being flushed in an unused state on
5188 * disk. (On recovery, the inode will get truncated and the blocks will
5189 * be freed, so we have a strong guarantee that no future commit will
5190 * leave these blocks visible to the user.)
5191 *
5192 * Another thing we have to assure is that if we are in ordered mode
5193 * and inode is still attached to the committing transaction, we must
5194 * we start writeout of all the dirty pages which are being truncated.
5195 * This way we are sure that all the data written in the previous
5196 * transaction are already on disk (truncate waits for pages under
5197 * writeback).
5198 *
5199 * Called with inode->i_mutex down.
5200 */
5201 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5202 {
5203 struct inode *inode = d_inode(dentry);
5204 int error, rc = 0;
5205 int orphan = 0;
5206 const unsigned int ia_valid = attr->ia_valid;
5207
5208 error = setattr_prepare(dentry, attr);
5209 if (error)
5210 return error;
5211
5212 if (is_quota_modification(inode, attr)) {
5213 error = dquot_initialize(inode);
5214 if (error)
5215 return error;
5216 }
5217 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
5218 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
5219 handle_t *handle;
5220
5221 /* (user+group)*(old+new) structure, inode write (sb,
5222 * inode block, ? - but truncate inode update has it) */
5223 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5224 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5225 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5226 if (IS_ERR(handle)) {
5227 error = PTR_ERR(handle);
5228 goto err_out;
5229 }
5230 error = dquot_transfer(inode, attr);
5231 if (error) {
5232 ext4_journal_stop(handle);
5233 return error;
5234 }
5235 /* Update corresponding info in inode so that everything is in
5236 * one transaction */
5237 if (attr->ia_valid & ATTR_UID)
5238 inode->i_uid = attr->ia_uid;
5239 if (attr->ia_valid & ATTR_GID)
5240 inode->i_gid = attr->ia_gid;
5241 error = ext4_mark_inode_dirty(handle, inode);
5242 ext4_journal_stop(handle);
5243 }
5244
5245 if (attr->ia_valid & ATTR_SIZE) {
5246 handle_t *handle;
5247 loff_t oldsize = inode->i_size;
5248 int shrink = (attr->ia_size <= inode->i_size);
5249
5250 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5251 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5252
5253 if (attr->ia_size > sbi->s_bitmap_maxbytes)
5254 return -EFBIG;
5255 }
5256 if (!S_ISREG(inode->i_mode))
5257 return -EINVAL;
5258
5259 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
5260 inode_inc_iversion(inode);
5261
5262 if (ext4_should_order_data(inode) &&
5263 (attr->ia_size < inode->i_size)) {
5264 error = ext4_begin_ordered_truncate(inode,
5265 attr->ia_size);
5266 if (error)
5267 goto err_out;
5268 }
5269 if (attr->ia_size != inode->i_size) {
5270 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5271 if (IS_ERR(handle)) {
5272 error = PTR_ERR(handle);
5273 goto err_out;
5274 }
5275 if (ext4_handle_valid(handle) && shrink) {
5276 error = ext4_orphan_add(handle, inode);
5277 orphan = 1;
5278 }
5279 /*
5280 * Update c/mtime on truncate up, ext4_truncate() will
5281 * update c/mtime in shrink case below
5282 */
5283 if (!shrink) {
5284 inode->i_mtime = current_time(inode);
5285 inode->i_ctime = inode->i_mtime;
5286 }
5287 down_write(&EXT4_I(inode)->i_data_sem);
5288 EXT4_I(inode)->i_disksize = attr->ia_size;
5289 rc = ext4_mark_inode_dirty(handle, inode);
5290 if (!error)
5291 error = rc;
5292 /*
5293 * We have to update i_size under i_data_sem together
5294 * with i_disksize to avoid races with writeback code
5295 * running ext4_wb_update_i_disksize().
5296 */
5297 if (!error)
5298 i_size_write(inode, attr->ia_size);
5299 up_write(&EXT4_I(inode)->i_data_sem);
5300 ext4_journal_stop(handle);
5301 if (error) {
5302 if (orphan)
5303 ext4_orphan_del(NULL, inode);
5304 goto err_out;
5305 }
5306 }
5307 if (!shrink)
5308 pagecache_isize_extended(inode, oldsize, inode->i_size);
5309
5310 /*
5311 * Blocks are going to be removed from the inode. Wait
5312 * for dio in flight. Temporarily disable
5313 * dioread_nolock to prevent livelock.
5314 */
5315 if (orphan) {
5316 if (!ext4_should_journal_data(inode)) {
5317 ext4_inode_block_unlocked_dio(inode);
5318 inode_dio_wait(inode);
5319 ext4_inode_resume_unlocked_dio(inode);
5320 } else
5321 ext4_wait_for_tail_page_commit(inode);
5322 }
5323 down_write(&EXT4_I(inode)->i_mmap_sem);
5324 /*
5325 * Truncate pagecache after we've waited for commit
5326 * in data=journal mode to make pages freeable.
5327 */
5328 truncate_pagecache(inode, inode->i_size);
5329 if (shrink) {
5330 rc = ext4_truncate(inode);
5331 if (rc)
5332 error = rc;
5333 }
5334 up_write(&EXT4_I(inode)->i_mmap_sem);
5335 }
5336
5337 if (!error) {
5338 setattr_copy(inode, attr);
5339 mark_inode_dirty(inode);
5340 }
5341
5342 /*
5343 * If the call to ext4_truncate failed to get a transaction handle at
5344 * all, we need to clean up the in-core orphan list manually.
5345 */
5346 if (orphan && inode->i_nlink)
5347 ext4_orphan_del(NULL, inode);
5348
5349 if (!error && (ia_valid & ATTR_MODE))
5350 rc = posix_acl_chmod(inode, inode->i_mode);
5351
5352 err_out:
5353 ext4_std_error(inode->i_sb, error);
5354 if (!error)
5355 error = rc;
5356 return error;
5357 }
5358
5359 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
5360 struct kstat *stat)
5361 {
5362 struct inode *inode;
5363 unsigned long long delalloc_blocks;
5364
5365 inode = d_inode(dentry);
5366 generic_fillattr(inode, stat);
5367
5368 /*
5369 * If there is inline data in the inode, the inode will normally not
5370 * have data blocks allocated (it may have an external xattr block).
5371 * Report at least one sector for such files, so tools like tar, rsync,
5372 * others doen't incorrectly think the file is completely sparse.
5373 */
5374 if (unlikely(ext4_has_inline_data(inode)))
5375 stat->blocks += (stat->size + 511) >> 9;
5376
5377 /*
5378 * We can't update i_blocks if the block allocation is delayed
5379 * otherwise in the case of system crash before the real block
5380 * allocation is done, we will have i_blocks inconsistent with
5381 * on-disk file blocks.
5382 * We always keep i_blocks updated together with real
5383 * allocation. But to not confuse with user, stat
5384 * will return the blocks that include the delayed allocation
5385 * blocks for this file.
5386 */
5387 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5388 EXT4_I(inode)->i_reserved_data_blocks);
5389 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5390 return 0;
5391 }
5392
5393 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5394 int pextents)
5395 {
5396 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5397 return ext4_ind_trans_blocks(inode, lblocks);
5398 return ext4_ext_index_trans_blocks(inode, pextents);
5399 }
5400
5401 /*
5402 * Account for index blocks, block groups bitmaps and block group
5403 * descriptor blocks if modify datablocks and index blocks
5404 * worse case, the indexs blocks spread over different block groups
5405 *
5406 * If datablocks are discontiguous, they are possible to spread over
5407 * different block groups too. If they are contiguous, with flexbg,
5408 * they could still across block group boundary.
5409 *
5410 * Also account for superblock, inode, quota and xattr blocks
5411 */
5412 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5413 int pextents)
5414 {
5415 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5416 int gdpblocks;
5417 int idxblocks;
5418 int ret = 0;
5419
5420 /*
5421 * How many index blocks need to touch to map @lblocks logical blocks
5422 * to @pextents physical extents?
5423 */
5424 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5425
5426 ret = idxblocks;
5427
5428 /*
5429 * Now let's see how many group bitmaps and group descriptors need
5430 * to account
5431 */
5432 groups = idxblocks + pextents;
5433 gdpblocks = groups;
5434 if (groups > ngroups)
5435 groups = ngroups;
5436 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5437 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5438
5439 /* bitmaps and block group descriptor blocks */
5440 ret += groups + gdpblocks;
5441
5442 /* Blocks for super block, inode, quota and xattr blocks */
5443 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5444
5445 return ret;
5446 }
5447
5448 /*
5449 * Calculate the total number of credits to reserve to fit
5450 * the modification of a single pages into a single transaction,
5451 * which may include multiple chunks of block allocations.
5452 *
5453 * This could be called via ext4_write_begin()
5454 *
5455 * We need to consider the worse case, when
5456 * one new block per extent.
5457 */
5458 int ext4_writepage_trans_blocks(struct inode *inode)
5459 {
5460 int bpp = ext4_journal_blocks_per_page(inode);
5461 int ret;
5462
5463 ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5464
5465 /* Account for data blocks for journalled mode */
5466 if (ext4_should_journal_data(inode))
5467 ret += bpp;
5468 return ret;
5469 }
5470
5471 /*
5472 * Calculate the journal credits for a chunk of data modification.
5473 *
5474 * This is called from DIO, fallocate or whoever calling
5475 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5476 *
5477 * journal buffers for data blocks are not included here, as DIO
5478 * and fallocate do no need to journal data buffers.
5479 */
5480 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5481 {
5482 return ext4_meta_trans_blocks(inode, nrblocks, 1);
5483 }
5484
5485 /*
5486 * The caller must have previously called ext4_reserve_inode_write().
5487 * Give this, we know that the caller already has write access to iloc->bh.
5488 */
5489 int ext4_mark_iloc_dirty(handle_t *handle,
5490 struct inode *inode, struct ext4_iloc *iloc)
5491 {
5492 int err = 0;
5493
5494 if (IS_I_VERSION(inode))
5495 inode_inc_iversion(inode);
5496
5497 /* the do_update_inode consumes one bh->b_count */
5498 get_bh(iloc->bh);
5499
5500 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5501 err = ext4_do_update_inode(handle, inode, iloc);
5502 put_bh(iloc->bh);
5503 return err;
5504 }
5505
5506 /*
5507 * On success, We end up with an outstanding reference count against
5508 * iloc->bh. This _must_ be cleaned up later.
5509 */
5510
5511 int
5512 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5513 struct ext4_iloc *iloc)
5514 {
5515 int err;
5516
5517 err = ext4_get_inode_loc(inode, iloc);
5518 if (!err) {
5519 BUFFER_TRACE(iloc->bh, "get_write_access");
5520 err = ext4_journal_get_write_access(handle, iloc->bh);
5521 if (err) {
5522 brelse(iloc->bh);
5523 iloc->bh = NULL;
5524 }
5525 }
5526 ext4_std_error(inode->i_sb, err);
5527 return err;
5528 }
5529
5530 /*
5531 * Expand an inode by new_extra_isize bytes.
5532 * Returns 0 on success or negative error number on failure.
5533 */
5534 static int ext4_expand_extra_isize(struct inode *inode,
5535 unsigned int new_extra_isize,
5536 struct ext4_iloc iloc,
5537 handle_t *handle)
5538 {
5539 struct ext4_inode *raw_inode;
5540 struct ext4_xattr_ibody_header *header;
5541
5542 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5543 return 0;
5544
5545 raw_inode = ext4_raw_inode(&iloc);
5546
5547 header = IHDR(inode, raw_inode);
5548
5549 /* No extended attributes present */
5550 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5551 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5552 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5553 new_extra_isize);
5554 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5555 return 0;
5556 }
5557
5558 /* try to expand with EAs present */
5559 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5560 raw_inode, handle);
5561 }
5562
5563 /*
5564 * What we do here is to mark the in-core inode as clean with respect to inode
5565 * dirtiness (it may still be data-dirty).
5566 * This means that the in-core inode may be reaped by prune_icache
5567 * without having to perform any I/O. This is a very good thing,
5568 * because *any* task may call prune_icache - even ones which
5569 * have a transaction open against a different journal.
5570 *
5571 * Is this cheating? Not really. Sure, we haven't written the
5572 * inode out, but prune_icache isn't a user-visible syncing function.
5573 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5574 * we start and wait on commits.
5575 */
5576 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5577 {
5578 struct ext4_iloc iloc;
5579 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5580 static unsigned int mnt_count;
5581 int err, ret;
5582
5583 might_sleep();
5584 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5585 err = ext4_reserve_inode_write(handle, inode, &iloc);
5586 if (err)
5587 return err;
5588 if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5589 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5590 /*
5591 * In nojournal mode, we can immediately attempt to expand
5592 * the inode. When journaled, we first need to obtain extra
5593 * buffer credits since we may write into the EA block
5594 * with this same handle. If journal_extend fails, then it will
5595 * only result in a minor loss of functionality for that inode.
5596 * If this is felt to be critical, then e2fsck should be run to
5597 * force a large enough s_min_extra_isize.
5598 */
5599 if (!ext4_handle_valid(handle) ||
5600 jbd2_journal_extend(handle,
5601 EXT4_DATA_TRANS_BLOCKS(inode->i_sb)) == 0) {
5602 ret = ext4_expand_extra_isize(inode,
5603 sbi->s_want_extra_isize,
5604 iloc, handle);
5605 if (ret) {
5606 if (mnt_count !=
5607 le16_to_cpu(sbi->s_es->s_mnt_count)) {
5608 ext4_warning(inode->i_sb,
5609 "Unable to expand inode %lu. Delete"
5610 " some EAs or run e2fsck.",
5611 inode->i_ino);
5612 mnt_count =
5613 le16_to_cpu(sbi->s_es->s_mnt_count);
5614 }
5615 }
5616 }
5617 }
5618 return ext4_mark_iloc_dirty(handle, inode, &iloc);
5619 }
5620
5621 /*
5622 * ext4_dirty_inode() is called from __mark_inode_dirty()
5623 *
5624 * We're really interested in the case where a file is being extended.
5625 * i_size has been changed by generic_commit_write() and we thus need
5626 * to include the updated inode in the current transaction.
5627 *
5628 * Also, dquot_alloc_block() will always dirty the inode when blocks
5629 * are allocated to the file.
5630 *
5631 * If the inode is marked synchronous, we don't honour that here - doing
5632 * so would cause a commit on atime updates, which we don't bother doing.
5633 * We handle synchronous inodes at the highest possible level.
5634 *
5635 * If only the I_DIRTY_TIME flag is set, we can skip everything. If
5636 * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
5637 * to copy into the on-disk inode structure are the timestamp files.
5638 */
5639 void ext4_dirty_inode(struct inode *inode, int flags)
5640 {
5641 handle_t *handle;
5642
5643 if (flags == I_DIRTY_TIME)
5644 return;
5645 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5646 if (IS_ERR(handle))
5647 goto out;
5648
5649 ext4_mark_inode_dirty(handle, inode);
5650
5651 ext4_journal_stop(handle);
5652 out:
5653 return;
5654 }
5655
5656 #if 0
5657 /*
5658 * Bind an inode's backing buffer_head into this transaction, to prevent
5659 * it from being flushed to disk early. Unlike
5660 * ext4_reserve_inode_write, this leaves behind no bh reference and
5661 * returns no iloc structure, so the caller needs to repeat the iloc
5662 * lookup to mark the inode dirty later.
5663 */
5664 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5665 {
5666 struct ext4_iloc iloc;
5667
5668 int err = 0;
5669 if (handle) {
5670 err = ext4_get_inode_loc(inode, &iloc);
5671 if (!err) {
5672 BUFFER_TRACE(iloc.bh, "get_write_access");
5673 err = jbd2_journal_get_write_access(handle, iloc.bh);
5674 if (!err)
5675 err = ext4_handle_dirty_metadata(handle,
5676 NULL,
5677 iloc.bh);
5678 brelse(iloc.bh);
5679 }
5680 }
5681 ext4_std_error(inode->i_sb, err);
5682 return err;
5683 }
5684 #endif
5685
5686 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5687 {
5688 journal_t *journal;
5689 handle_t *handle;
5690 int err;
5691 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5692
5693 /*
5694 * We have to be very careful here: changing a data block's
5695 * journaling status dynamically is dangerous. If we write a
5696 * data block to the journal, change the status and then delete
5697 * that block, we risk forgetting to revoke the old log record
5698 * from the journal and so a subsequent replay can corrupt data.
5699 * So, first we make sure that the journal is empty and that
5700 * nobody is changing anything.
5701 */
5702
5703 journal = EXT4_JOURNAL(inode);
5704 if (!journal)
5705 return 0;
5706 if (is_journal_aborted(journal))
5707 return -EROFS;
5708
5709 /* Wait for all existing dio workers */
5710 ext4_inode_block_unlocked_dio(inode);
5711 inode_dio_wait(inode);
5712
5713 /*
5714 * Before flushing the journal and switching inode's aops, we have
5715 * to flush all dirty data the inode has. There can be outstanding
5716 * delayed allocations, there can be unwritten extents created by
5717 * fallocate or buffered writes in dioread_nolock mode covered by
5718 * dirty data which can be converted only after flushing the dirty
5719 * data (and journalled aops don't know how to handle these cases).
5720 */
5721 if (val) {
5722 down_write(&EXT4_I(inode)->i_mmap_sem);
5723 err = filemap_write_and_wait(inode->i_mapping);
5724 if (err < 0) {
5725 up_write(&EXT4_I(inode)->i_mmap_sem);
5726 ext4_inode_resume_unlocked_dio(inode);
5727 return err;
5728 }
5729 }
5730
5731 percpu_down_write(&sbi->s_journal_flag_rwsem);
5732 jbd2_journal_lock_updates(journal);
5733
5734 /*
5735 * OK, there are no updates running now, and all cached data is
5736 * synced to disk. We are now in a completely consistent state
5737 * which doesn't have anything in the journal, and we know that
5738 * no filesystem updates are running, so it is safe to modify
5739 * the inode's in-core data-journaling state flag now.
5740 */
5741
5742 if (val)
5743 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5744 else {
5745 err = jbd2_journal_flush(journal);
5746 if (err < 0) {
5747 jbd2_journal_unlock_updates(journal);
5748 percpu_up_write(&sbi->s_journal_flag_rwsem);
5749 ext4_inode_resume_unlocked_dio(inode);
5750 return err;
5751 }
5752 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5753 }
5754 ext4_set_aops(inode);
5755 /*
5756 * Update inode->i_flags after EXT4_INODE_JOURNAL_DATA was updated.
5757 * E.g. S_DAX may get cleared / set.
5758 */
5759 ext4_set_inode_flags(inode);
5760
5761 jbd2_journal_unlock_updates(journal);
5762 percpu_up_write(&sbi->s_journal_flag_rwsem);
5763
5764 if (val)
5765 up_write(&EXT4_I(inode)->i_mmap_sem);
5766 ext4_inode_resume_unlocked_dio(inode);
5767
5768 /* Finally we can mark the inode as dirty. */
5769
5770 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5771 if (IS_ERR(handle))
5772 return PTR_ERR(handle);
5773
5774 err = ext4_mark_inode_dirty(handle, inode);
5775 ext4_handle_sync(handle);
5776 ext4_journal_stop(handle);
5777 ext4_std_error(inode->i_sb, err);
5778
5779 return err;
5780 }
5781
5782 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5783 {
5784 return !buffer_mapped(bh);
5785 }
5786
5787 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5788 {
5789 struct page *page = vmf->page;
5790 loff_t size;
5791 unsigned long len;
5792 int ret;
5793 struct file *file = vma->vm_file;
5794 struct inode *inode = file_inode(file);
5795 struct address_space *mapping = inode->i_mapping;
5796 handle_t *handle;
5797 get_block_t *get_block;
5798 int retries = 0;
5799
5800 sb_start_pagefault(inode->i_sb);
5801 file_update_time(vma->vm_file);
5802
5803 down_read(&EXT4_I(inode)->i_mmap_sem);
5804 /* Delalloc case is easy... */
5805 if (test_opt(inode->i_sb, DELALLOC) &&
5806 !ext4_should_journal_data(inode) &&
5807 !ext4_nonda_switch(inode->i_sb)) {
5808 do {
5809 ret = block_page_mkwrite(vma, vmf,
5810 ext4_da_get_block_prep);
5811 } while (ret == -ENOSPC &&
5812 ext4_should_retry_alloc(inode->i_sb, &retries));
5813 goto out_ret;
5814 }
5815
5816 lock_page(page);
5817 size = i_size_read(inode);
5818 /* Page got truncated from under us? */
5819 if (page->mapping != mapping || page_offset(page) > size) {
5820 unlock_page(page);
5821 ret = VM_FAULT_NOPAGE;
5822 goto out;
5823 }
5824
5825 if (page->index == size >> PAGE_SHIFT)
5826 len = size & ~PAGE_MASK;
5827 else
5828 len = PAGE_SIZE;
5829 /*
5830 * Return if we have all the buffers mapped. This avoids the need to do
5831 * journal_start/journal_stop which can block and take a long time
5832 */
5833 if (page_has_buffers(page)) {
5834 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5835 0, len, NULL,
5836 ext4_bh_unmapped)) {
5837 /* Wait so that we don't change page under IO */
5838 wait_for_stable_page(page);
5839 ret = VM_FAULT_LOCKED;
5840 goto out;
5841 }
5842 }
5843 unlock_page(page);
5844 /* OK, we need to fill the hole... */
5845 if (ext4_should_dioread_nolock(inode))
5846 get_block = ext4_get_block_unwritten;
5847 else
5848 get_block = ext4_get_block;
5849 retry_alloc:
5850 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5851 ext4_writepage_trans_blocks(inode));
5852 if (IS_ERR(handle)) {
5853 ret = VM_FAULT_SIGBUS;
5854 goto out;
5855 }
5856 ret = block_page_mkwrite(vma, vmf, get_block);
5857 if (!ret && ext4_should_journal_data(inode)) {
5858 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5859 PAGE_SIZE, NULL, do_journal_get_write_access)) {
5860 unlock_page(page);
5861 ret = VM_FAULT_SIGBUS;
5862 ext4_journal_stop(handle);
5863 goto out;
5864 }
5865 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5866 }
5867 ext4_journal_stop(handle);
5868 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5869 goto retry_alloc;
5870 out_ret:
5871 ret = block_page_mkwrite_return(ret);
5872 out:
5873 up_read(&EXT4_I(inode)->i_mmap_sem);
5874 sb_end_pagefault(inode->i_sb);
5875 return ret;
5876 }
5877
5878 int ext4_filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
5879 {
5880 struct inode *inode = file_inode(vma->vm_file);
5881 int err;
5882
5883 down_read(&EXT4_I(inode)->i_mmap_sem);
5884 err = filemap_fault(vma, vmf);
5885 up_read(&EXT4_I(inode)->i_mmap_sem);
5886
5887 return err;
5888 }
5889
5890 /*
5891 * Find the first extent at or after @lblk in an inode that is not a hole.
5892 * Search for @map_len blocks at most. The extent is returned in @result.
5893 *
5894 * The function returns 1 if we found an extent. The function returns 0 in
5895 * case there is no extent at or after @lblk and in that case also sets
5896 * @result->es_len to 0. In case of error, the error code is returned.
5897 */
5898 int ext4_get_next_extent(struct inode *inode, ext4_lblk_t lblk,
5899 unsigned int map_len, struct extent_status *result)
5900 {
5901 struct ext4_map_blocks map;
5902 struct extent_status es = {};
5903 int ret;
5904
5905 map.m_lblk = lblk;
5906 map.m_len = map_len;
5907
5908 /*
5909 * For non-extent based files this loop may iterate several times since
5910 * we do not determine full hole size.
5911 */
5912 while (map.m_len > 0) {
5913 ret = ext4_map_blocks(NULL, inode, &map, 0);
5914 if (ret < 0)
5915 return ret;
5916 /* There's extent covering m_lblk? Just return it. */
5917 if (ret > 0) {
5918 int status;
5919
5920 ext4_es_store_pblock(result, map.m_pblk);
5921 result->es_lblk = map.m_lblk;
5922 result->es_len = map.m_len;
5923 if (map.m_flags & EXT4_MAP_UNWRITTEN)
5924 status = EXTENT_STATUS_UNWRITTEN;
5925 else
5926 status = EXTENT_STATUS_WRITTEN;
5927 ext4_es_store_status(result, status);
5928 return 1;
5929 }
5930 ext4_es_find_delayed_extent_range(inode, map.m_lblk,
5931 map.m_lblk + map.m_len - 1,
5932 &es);
5933 /* Is delalloc data before next block in extent tree? */
5934 if (es.es_len && es.es_lblk < map.m_lblk + map.m_len) {
5935 ext4_lblk_t offset = 0;
5936
5937 if (es.es_lblk < lblk)
5938 offset = lblk - es.es_lblk;
5939 result->es_lblk = es.es_lblk + offset;
5940 ext4_es_store_pblock(result,
5941 ext4_es_pblock(&es) + offset);
5942 result->es_len = es.es_len - offset;
5943 ext4_es_store_status(result, ext4_es_status(&es));
5944
5945 return 1;
5946 }
5947 /* There's a hole at m_lblk, advance us after it */
5948 map.m_lblk += map.m_len;
5949 map_len -= map.m_len;
5950 map.m_len = map_len;
5951 cond_resched();
5952 }
5953 result->es_len = 0;
5954 return 0;
5955 }