]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/ext4/inode.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/hid
[mirror_ubuntu-artful-kernel.git] / fs / ext4 / inode.c
1 /*
2 * linux/fs/ext4/inode.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * 64-bit file support on 64-bit platforms by Jakub Jelinek
16 * (jj@sunsite.ms.mff.cuni.cz)
17 *
18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19 */
20
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/highuid.h>
24 #include <linux/pagemap.h>
25 #include <linux/dax.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/bitops.h>
40 #include <linux/iomap.h>
41
42 #include "ext4_jbd2.h"
43 #include "xattr.h"
44 #include "acl.h"
45 #include "truncate.h"
46
47 #include <trace/events/ext4.h>
48
49 #define MPAGE_DA_EXTENT_TAIL 0x01
50
51 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
52 struct ext4_inode_info *ei)
53 {
54 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
55 __u32 csum;
56 __u16 dummy_csum = 0;
57 int offset = offsetof(struct ext4_inode, i_checksum_lo);
58 unsigned int csum_size = sizeof(dummy_csum);
59
60 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
61 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
62 offset += csum_size;
63 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
64 EXT4_GOOD_OLD_INODE_SIZE - offset);
65
66 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
67 offset = offsetof(struct ext4_inode, i_checksum_hi);
68 csum = ext4_chksum(sbi, csum, (__u8 *)raw +
69 EXT4_GOOD_OLD_INODE_SIZE,
70 offset - EXT4_GOOD_OLD_INODE_SIZE);
71 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
72 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
73 csum_size);
74 offset += csum_size;
75 }
76 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
77 EXT4_INODE_SIZE(inode->i_sb) - offset);
78 }
79
80 return csum;
81 }
82
83 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
84 struct ext4_inode_info *ei)
85 {
86 __u32 provided, calculated;
87
88 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
89 cpu_to_le32(EXT4_OS_LINUX) ||
90 !ext4_has_metadata_csum(inode->i_sb))
91 return 1;
92
93 provided = le16_to_cpu(raw->i_checksum_lo);
94 calculated = ext4_inode_csum(inode, raw, ei);
95 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
96 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
97 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
98 else
99 calculated &= 0xFFFF;
100
101 return provided == calculated;
102 }
103
104 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
105 struct ext4_inode_info *ei)
106 {
107 __u32 csum;
108
109 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
110 cpu_to_le32(EXT4_OS_LINUX) ||
111 !ext4_has_metadata_csum(inode->i_sb))
112 return;
113
114 csum = ext4_inode_csum(inode, raw, ei);
115 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
116 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
117 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
118 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
119 }
120
121 static inline int ext4_begin_ordered_truncate(struct inode *inode,
122 loff_t new_size)
123 {
124 trace_ext4_begin_ordered_truncate(inode, new_size);
125 /*
126 * If jinode is zero, then we never opened the file for
127 * writing, so there's no need to call
128 * jbd2_journal_begin_ordered_truncate() since there's no
129 * outstanding writes we need to flush.
130 */
131 if (!EXT4_I(inode)->jinode)
132 return 0;
133 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
134 EXT4_I(inode)->jinode,
135 new_size);
136 }
137
138 static void ext4_invalidatepage(struct page *page, unsigned int offset,
139 unsigned int length);
140 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
141 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
142 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
143 int pextents);
144
145 /*
146 * Test whether an inode is a fast symlink.
147 */
148 int ext4_inode_is_fast_symlink(struct inode *inode)
149 {
150 int ea_blocks = EXT4_I(inode)->i_file_acl ?
151 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
152
153 if (ext4_has_inline_data(inode))
154 return 0;
155
156 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
157 }
158
159 /*
160 * Restart the transaction associated with *handle. This does a commit,
161 * so before we call here everything must be consistently dirtied against
162 * this transaction.
163 */
164 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
165 int nblocks)
166 {
167 int ret;
168
169 /*
170 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
171 * moment, get_block can be called only for blocks inside i_size since
172 * page cache has been already dropped and writes are blocked by
173 * i_mutex. So we can safely drop the i_data_sem here.
174 */
175 BUG_ON(EXT4_JOURNAL(inode) == NULL);
176 jbd_debug(2, "restarting handle %p\n", handle);
177 up_write(&EXT4_I(inode)->i_data_sem);
178 ret = ext4_journal_restart(handle, nblocks);
179 down_write(&EXT4_I(inode)->i_data_sem);
180 ext4_discard_preallocations(inode);
181
182 return ret;
183 }
184
185 /*
186 * Called at the last iput() if i_nlink is zero.
187 */
188 void ext4_evict_inode(struct inode *inode)
189 {
190 handle_t *handle;
191 int err;
192
193 trace_ext4_evict_inode(inode);
194
195 if (inode->i_nlink) {
196 /*
197 * When journalling data dirty buffers are tracked only in the
198 * journal. So although mm thinks everything is clean and
199 * ready for reaping the inode might still have some pages to
200 * write in the running transaction or waiting to be
201 * checkpointed. Thus calling jbd2_journal_invalidatepage()
202 * (via truncate_inode_pages()) to discard these buffers can
203 * cause data loss. Also even if we did not discard these
204 * buffers, we would have no way to find them after the inode
205 * is reaped and thus user could see stale data if he tries to
206 * read them before the transaction is checkpointed. So be
207 * careful and force everything to disk here... We use
208 * ei->i_datasync_tid to store the newest transaction
209 * containing inode's data.
210 *
211 * Note that directories do not have this problem because they
212 * don't use page cache.
213 */
214 if (inode->i_ino != EXT4_JOURNAL_INO &&
215 ext4_should_journal_data(inode) &&
216 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) {
217 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
218 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
219
220 jbd2_complete_transaction(journal, commit_tid);
221 filemap_write_and_wait(&inode->i_data);
222 }
223 truncate_inode_pages_final(&inode->i_data);
224
225 goto no_delete;
226 }
227
228 if (is_bad_inode(inode))
229 goto no_delete;
230 dquot_initialize(inode);
231
232 if (ext4_should_order_data(inode))
233 ext4_begin_ordered_truncate(inode, 0);
234 truncate_inode_pages_final(&inode->i_data);
235
236 /*
237 * Protect us against freezing - iput() caller didn't have to have any
238 * protection against it
239 */
240 sb_start_intwrite(inode->i_sb);
241 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
242 ext4_blocks_for_truncate(inode)+3);
243 if (IS_ERR(handle)) {
244 ext4_std_error(inode->i_sb, PTR_ERR(handle));
245 /*
246 * If we're going to skip the normal cleanup, we still need to
247 * make sure that the in-core orphan linked list is properly
248 * cleaned up.
249 */
250 ext4_orphan_del(NULL, inode);
251 sb_end_intwrite(inode->i_sb);
252 goto no_delete;
253 }
254
255 if (IS_SYNC(inode))
256 ext4_handle_sync(handle);
257 inode->i_size = 0;
258 err = ext4_mark_inode_dirty(handle, inode);
259 if (err) {
260 ext4_warning(inode->i_sb,
261 "couldn't mark inode dirty (err %d)", err);
262 goto stop_handle;
263 }
264 if (inode->i_blocks) {
265 err = ext4_truncate(inode);
266 if (err) {
267 ext4_error(inode->i_sb,
268 "couldn't truncate inode %lu (err %d)",
269 inode->i_ino, err);
270 goto stop_handle;
271 }
272 }
273
274 /*
275 * ext4_ext_truncate() doesn't reserve any slop when it
276 * restarts journal transactions; therefore there may not be
277 * enough credits left in the handle to remove the inode from
278 * the orphan list and set the dtime field.
279 */
280 if (!ext4_handle_has_enough_credits(handle, 3)) {
281 err = ext4_journal_extend(handle, 3);
282 if (err > 0)
283 err = ext4_journal_restart(handle, 3);
284 if (err != 0) {
285 ext4_warning(inode->i_sb,
286 "couldn't extend journal (err %d)", err);
287 stop_handle:
288 ext4_journal_stop(handle);
289 ext4_orphan_del(NULL, inode);
290 sb_end_intwrite(inode->i_sb);
291 goto no_delete;
292 }
293 }
294
295 /*
296 * Kill off the orphan record which ext4_truncate created.
297 * AKPM: I think this can be inside the above `if'.
298 * Note that ext4_orphan_del() has to be able to cope with the
299 * deletion of a non-existent orphan - this is because we don't
300 * know if ext4_truncate() actually created an orphan record.
301 * (Well, we could do this if we need to, but heck - it works)
302 */
303 ext4_orphan_del(handle, inode);
304 EXT4_I(inode)->i_dtime = get_seconds();
305
306 /*
307 * One subtle ordering requirement: if anything has gone wrong
308 * (transaction abort, IO errors, whatever), then we can still
309 * do these next steps (the fs will already have been marked as
310 * having errors), but we can't free the inode if the mark_dirty
311 * fails.
312 */
313 if (ext4_mark_inode_dirty(handle, inode))
314 /* If that failed, just do the required in-core inode clear. */
315 ext4_clear_inode(inode);
316 else
317 ext4_free_inode(handle, inode);
318 ext4_journal_stop(handle);
319 sb_end_intwrite(inode->i_sb);
320 return;
321 no_delete:
322 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
323 }
324
325 #ifdef CONFIG_QUOTA
326 qsize_t *ext4_get_reserved_space(struct inode *inode)
327 {
328 return &EXT4_I(inode)->i_reserved_quota;
329 }
330 #endif
331
332 /*
333 * Called with i_data_sem down, which is important since we can call
334 * ext4_discard_preallocations() from here.
335 */
336 void ext4_da_update_reserve_space(struct inode *inode,
337 int used, int quota_claim)
338 {
339 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
340 struct ext4_inode_info *ei = EXT4_I(inode);
341
342 spin_lock(&ei->i_block_reservation_lock);
343 trace_ext4_da_update_reserve_space(inode, used, quota_claim);
344 if (unlikely(used > ei->i_reserved_data_blocks)) {
345 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
346 "with only %d reserved data blocks",
347 __func__, inode->i_ino, used,
348 ei->i_reserved_data_blocks);
349 WARN_ON(1);
350 used = ei->i_reserved_data_blocks;
351 }
352
353 /* Update per-inode reservations */
354 ei->i_reserved_data_blocks -= used;
355 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
356
357 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
358
359 /* Update quota subsystem for data blocks */
360 if (quota_claim)
361 dquot_claim_block(inode, EXT4_C2B(sbi, used));
362 else {
363 /*
364 * We did fallocate with an offset that is already delayed
365 * allocated. So on delayed allocated writeback we should
366 * not re-claim the quota for fallocated blocks.
367 */
368 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
369 }
370
371 /*
372 * If we have done all the pending block allocations and if
373 * there aren't any writers on the inode, we can discard the
374 * inode's preallocations.
375 */
376 if ((ei->i_reserved_data_blocks == 0) &&
377 (atomic_read(&inode->i_writecount) == 0))
378 ext4_discard_preallocations(inode);
379 }
380
381 static int __check_block_validity(struct inode *inode, const char *func,
382 unsigned int line,
383 struct ext4_map_blocks *map)
384 {
385 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
386 map->m_len)) {
387 ext4_error_inode(inode, func, line, map->m_pblk,
388 "lblock %lu mapped to illegal pblock "
389 "(length %d)", (unsigned long) map->m_lblk,
390 map->m_len);
391 return -EFSCORRUPTED;
392 }
393 return 0;
394 }
395
396 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
397 ext4_lblk_t len)
398 {
399 int ret;
400
401 if (ext4_encrypted_inode(inode))
402 return fscrypt_zeroout_range(inode, lblk, pblk, len);
403
404 ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
405 if (ret > 0)
406 ret = 0;
407
408 return ret;
409 }
410
411 #define check_block_validity(inode, map) \
412 __check_block_validity((inode), __func__, __LINE__, (map))
413
414 #ifdef ES_AGGRESSIVE_TEST
415 static void ext4_map_blocks_es_recheck(handle_t *handle,
416 struct inode *inode,
417 struct ext4_map_blocks *es_map,
418 struct ext4_map_blocks *map,
419 int flags)
420 {
421 int retval;
422
423 map->m_flags = 0;
424 /*
425 * There is a race window that the result is not the same.
426 * e.g. xfstests #223 when dioread_nolock enables. The reason
427 * is that we lookup a block mapping in extent status tree with
428 * out taking i_data_sem. So at the time the unwritten extent
429 * could be converted.
430 */
431 down_read(&EXT4_I(inode)->i_data_sem);
432 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
433 retval = ext4_ext_map_blocks(handle, inode, map, flags &
434 EXT4_GET_BLOCKS_KEEP_SIZE);
435 } else {
436 retval = ext4_ind_map_blocks(handle, inode, map, flags &
437 EXT4_GET_BLOCKS_KEEP_SIZE);
438 }
439 up_read((&EXT4_I(inode)->i_data_sem));
440
441 /*
442 * We don't check m_len because extent will be collpased in status
443 * tree. So the m_len might not equal.
444 */
445 if (es_map->m_lblk != map->m_lblk ||
446 es_map->m_flags != map->m_flags ||
447 es_map->m_pblk != map->m_pblk) {
448 printk("ES cache assertion failed for inode: %lu "
449 "es_cached ex [%d/%d/%llu/%x] != "
450 "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
451 inode->i_ino, es_map->m_lblk, es_map->m_len,
452 es_map->m_pblk, es_map->m_flags, map->m_lblk,
453 map->m_len, map->m_pblk, map->m_flags,
454 retval, flags);
455 }
456 }
457 #endif /* ES_AGGRESSIVE_TEST */
458
459 /*
460 * The ext4_map_blocks() function tries to look up the requested blocks,
461 * and returns if the blocks are already mapped.
462 *
463 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
464 * and store the allocated blocks in the result buffer head and mark it
465 * mapped.
466 *
467 * If file type is extents based, it will call ext4_ext_map_blocks(),
468 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
469 * based files
470 *
471 * On success, it returns the number of blocks being mapped or allocated. if
472 * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
473 * is marked as unwritten. If the create == 1, it will mark @map as mapped.
474 *
475 * It returns 0 if plain look up failed (blocks have not been allocated), in
476 * that case, @map is returned as unmapped but we still do fill map->m_len to
477 * indicate the length of a hole starting at map->m_lblk.
478 *
479 * It returns the error in case of allocation failure.
480 */
481 int ext4_map_blocks(handle_t *handle, struct inode *inode,
482 struct ext4_map_blocks *map, int flags)
483 {
484 struct extent_status es;
485 int retval;
486 int ret = 0;
487 #ifdef ES_AGGRESSIVE_TEST
488 struct ext4_map_blocks orig_map;
489
490 memcpy(&orig_map, map, sizeof(*map));
491 #endif
492
493 map->m_flags = 0;
494 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
495 "logical block %lu\n", inode->i_ino, flags, map->m_len,
496 (unsigned long) map->m_lblk);
497
498 /*
499 * ext4_map_blocks returns an int, and m_len is an unsigned int
500 */
501 if (unlikely(map->m_len > INT_MAX))
502 map->m_len = INT_MAX;
503
504 /* We can handle the block number less than EXT_MAX_BLOCKS */
505 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
506 return -EFSCORRUPTED;
507
508 /* Lookup extent status tree firstly */
509 if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
510 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
511 map->m_pblk = ext4_es_pblock(&es) +
512 map->m_lblk - es.es_lblk;
513 map->m_flags |= ext4_es_is_written(&es) ?
514 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
515 retval = es.es_len - (map->m_lblk - es.es_lblk);
516 if (retval > map->m_len)
517 retval = map->m_len;
518 map->m_len = retval;
519 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
520 map->m_pblk = 0;
521 retval = es.es_len - (map->m_lblk - es.es_lblk);
522 if (retval > map->m_len)
523 retval = map->m_len;
524 map->m_len = retval;
525 retval = 0;
526 } else {
527 BUG_ON(1);
528 }
529 #ifdef ES_AGGRESSIVE_TEST
530 ext4_map_blocks_es_recheck(handle, inode, map,
531 &orig_map, flags);
532 #endif
533 goto found;
534 }
535
536 /*
537 * Try to see if we can get the block without requesting a new
538 * file system block.
539 */
540 down_read(&EXT4_I(inode)->i_data_sem);
541 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
542 retval = ext4_ext_map_blocks(handle, inode, map, flags &
543 EXT4_GET_BLOCKS_KEEP_SIZE);
544 } else {
545 retval = ext4_ind_map_blocks(handle, inode, map, flags &
546 EXT4_GET_BLOCKS_KEEP_SIZE);
547 }
548 if (retval > 0) {
549 unsigned int status;
550
551 if (unlikely(retval != map->m_len)) {
552 ext4_warning(inode->i_sb,
553 "ES len assertion failed for inode "
554 "%lu: retval %d != map->m_len %d",
555 inode->i_ino, retval, map->m_len);
556 WARN_ON(1);
557 }
558
559 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
560 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
561 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
562 !(status & EXTENT_STATUS_WRITTEN) &&
563 ext4_find_delalloc_range(inode, map->m_lblk,
564 map->m_lblk + map->m_len - 1))
565 status |= EXTENT_STATUS_DELAYED;
566 ret = ext4_es_insert_extent(inode, map->m_lblk,
567 map->m_len, map->m_pblk, status);
568 if (ret < 0)
569 retval = ret;
570 }
571 up_read((&EXT4_I(inode)->i_data_sem));
572
573 found:
574 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
575 ret = check_block_validity(inode, map);
576 if (ret != 0)
577 return ret;
578 }
579
580 /* If it is only a block(s) look up */
581 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
582 return retval;
583
584 /*
585 * Returns if the blocks have already allocated
586 *
587 * Note that if blocks have been preallocated
588 * ext4_ext_get_block() returns the create = 0
589 * with buffer head unmapped.
590 */
591 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
592 /*
593 * If we need to convert extent to unwritten
594 * we continue and do the actual work in
595 * ext4_ext_map_blocks()
596 */
597 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
598 return retval;
599
600 /*
601 * Here we clear m_flags because after allocating an new extent,
602 * it will be set again.
603 */
604 map->m_flags &= ~EXT4_MAP_FLAGS;
605
606 /*
607 * New blocks allocate and/or writing to unwritten extent
608 * will possibly result in updating i_data, so we take
609 * the write lock of i_data_sem, and call get_block()
610 * with create == 1 flag.
611 */
612 down_write(&EXT4_I(inode)->i_data_sem);
613
614 /*
615 * We need to check for EXT4 here because migrate
616 * could have changed the inode type in between
617 */
618 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
619 retval = ext4_ext_map_blocks(handle, inode, map, flags);
620 } else {
621 retval = ext4_ind_map_blocks(handle, inode, map, flags);
622
623 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
624 /*
625 * We allocated new blocks which will result in
626 * i_data's format changing. Force the migrate
627 * to fail by clearing migrate flags
628 */
629 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
630 }
631
632 /*
633 * Update reserved blocks/metadata blocks after successful
634 * block allocation which had been deferred till now. We don't
635 * support fallocate for non extent files. So we can update
636 * reserve space here.
637 */
638 if ((retval > 0) &&
639 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
640 ext4_da_update_reserve_space(inode, retval, 1);
641 }
642
643 if (retval > 0) {
644 unsigned int status;
645
646 if (unlikely(retval != map->m_len)) {
647 ext4_warning(inode->i_sb,
648 "ES len assertion failed for inode "
649 "%lu: retval %d != map->m_len %d",
650 inode->i_ino, retval, map->m_len);
651 WARN_ON(1);
652 }
653
654 /*
655 * We have to zeroout blocks before inserting them into extent
656 * status tree. Otherwise someone could look them up there and
657 * use them before they are really zeroed. We also have to
658 * unmap metadata before zeroing as otherwise writeback can
659 * overwrite zeros with stale data from block device.
660 */
661 if (flags & EXT4_GET_BLOCKS_ZERO &&
662 map->m_flags & EXT4_MAP_MAPPED &&
663 map->m_flags & EXT4_MAP_NEW) {
664 clean_bdev_aliases(inode->i_sb->s_bdev, map->m_pblk,
665 map->m_len);
666 ret = ext4_issue_zeroout(inode, map->m_lblk,
667 map->m_pblk, map->m_len);
668 if (ret) {
669 retval = ret;
670 goto out_sem;
671 }
672 }
673
674 /*
675 * If the extent has been zeroed out, we don't need to update
676 * extent status tree.
677 */
678 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
679 ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
680 if (ext4_es_is_written(&es))
681 goto out_sem;
682 }
683 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
684 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
685 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
686 !(status & EXTENT_STATUS_WRITTEN) &&
687 ext4_find_delalloc_range(inode, map->m_lblk,
688 map->m_lblk + map->m_len - 1))
689 status |= EXTENT_STATUS_DELAYED;
690 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
691 map->m_pblk, status);
692 if (ret < 0) {
693 retval = ret;
694 goto out_sem;
695 }
696 }
697
698 out_sem:
699 up_write((&EXT4_I(inode)->i_data_sem));
700 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
701 ret = check_block_validity(inode, map);
702 if (ret != 0)
703 return ret;
704
705 /*
706 * Inodes with freshly allocated blocks where contents will be
707 * visible after transaction commit must be on transaction's
708 * ordered data list.
709 */
710 if (map->m_flags & EXT4_MAP_NEW &&
711 !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
712 !(flags & EXT4_GET_BLOCKS_ZERO) &&
713 !IS_NOQUOTA(inode) &&
714 ext4_should_order_data(inode)) {
715 if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
716 ret = ext4_jbd2_inode_add_wait(handle, inode);
717 else
718 ret = ext4_jbd2_inode_add_write(handle, inode);
719 if (ret)
720 return ret;
721 }
722 }
723 return retval;
724 }
725
726 /*
727 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
728 * we have to be careful as someone else may be manipulating b_state as well.
729 */
730 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
731 {
732 unsigned long old_state;
733 unsigned long new_state;
734
735 flags &= EXT4_MAP_FLAGS;
736
737 /* Dummy buffer_head? Set non-atomically. */
738 if (!bh->b_page) {
739 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
740 return;
741 }
742 /*
743 * Someone else may be modifying b_state. Be careful! This is ugly but
744 * once we get rid of using bh as a container for mapping information
745 * to pass to / from get_block functions, this can go away.
746 */
747 do {
748 old_state = READ_ONCE(bh->b_state);
749 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
750 } while (unlikely(
751 cmpxchg(&bh->b_state, old_state, new_state) != old_state));
752 }
753
754 static int _ext4_get_block(struct inode *inode, sector_t iblock,
755 struct buffer_head *bh, int flags)
756 {
757 struct ext4_map_blocks map;
758 int ret = 0;
759
760 if (ext4_has_inline_data(inode))
761 return -ERANGE;
762
763 map.m_lblk = iblock;
764 map.m_len = bh->b_size >> inode->i_blkbits;
765
766 ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
767 flags);
768 if (ret > 0) {
769 map_bh(bh, inode->i_sb, map.m_pblk);
770 ext4_update_bh_state(bh, map.m_flags);
771 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
772 ret = 0;
773 } else if (ret == 0) {
774 /* hole case, need to fill in bh->b_size */
775 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
776 }
777 return ret;
778 }
779
780 int ext4_get_block(struct inode *inode, sector_t iblock,
781 struct buffer_head *bh, int create)
782 {
783 return _ext4_get_block(inode, iblock, bh,
784 create ? EXT4_GET_BLOCKS_CREATE : 0);
785 }
786
787 /*
788 * Get block function used when preparing for buffered write if we require
789 * creating an unwritten extent if blocks haven't been allocated. The extent
790 * will be converted to written after the IO is complete.
791 */
792 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
793 struct buffer_head *bh_result, int create)
794 {
795 ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
796 inode->i_ino, create);
797 return _ext4_get_block(inode, iblock, bh_result,
798 EXT4_GET_BLOCKS_IO_CREATE_EXT);
799 }
800
801 /* Maximum number of blocks we map for direct IO at once. */
802 #define DIO_MAX_BLOCKS 4096
803
804 /*
805 * Get blocks function for the cases that need to start a transaction -
806 * generally difference cases of direct IO and DAX IO. It also handles retries
807 * in case of ENOSPC.
808 */
809 static int ext4_get_block_trans(struct inode *inode, sector_t iblock,
810 struct buffer_head *bh_result, int flags)
811 {
812 int dio_credits;
813 handle_t *handle;
814 int retries = 0;
815 int ret;
816
817 /* Trim mapping request to maximum we can map at once for DIO */
818 if (bh_result->b_size >> inode->i_blkbits > DIO_MAX_BLOCKS)
819 bh_result->b_size = DIO_MAX_BLOCKS << inode->i_blkbits;
820 dio_credits = ext4_chunk_trans_blocks(inode,
821 bh_result->b_size >> inode->i_blkbits);
822 retry:
823 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
824 if (IS_ERR(handle))
825 return PTR_ERR(handle);
826
827 ret = _ext4_get_block(inode, iblock, bh_result, flags);
828 ext4_journal_stop(handle);
829
830 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
831 goto retry;
832 return ret;
833 }
834
835 /* Get block function for DIO reads and writes to inodes without extents */
836 int ext4_dio_get_block(struct inode *inode, sector_t iblock,
837 struct buffer_head *bh, int create)
838 {
839 /* We don't expect handle for direct IO */
840 WARN_ON_ONCE(ext4_journal_current_handle());
841
842 if (!create)
843 return _ext4_get_block(inode, iblock, bh, 0);
844 return ext4_get_block_trans(inode, iblock, bh, EXT4_GET_BLOCKS_CREATE);
845 }
846
847 /*
848 * Get block function for AIO DIO writes when we create unwritten extent if
849 * blocks are not allocated yet. The extent will be converted to written
850 * after IO is complete.
851 */
852 static int ext4_dio_get_block_unwritten_async(struct inode *inode,
853 sector_t iblock, struct buffer_head *bh_result, int create)
854 {
855 int ret;
856
857 /* We don't expect handle for direct IO */
858 WARN_ON_ONCE(ext4_journal_current_handle());
859
860 ret = ext4_get_block_trans(inode, iblock, bh_result,
861 EXT4_GET_BLOCKS_IO_CREATE_EXT);
862
863 /*
864 * When doing DIO using unwritten extents, we need io_end to convert
865 * unwritten extents to written on IO completion. We allocate io_end
866 * once we spot unwritten extent and store it in b_private. Generic
867 * DIO code keeps b_private set and furthermore passes the value to
868 * our completion callback in 'private' argument.
869 */
870 if (!ret && buffer_unwritten(bh_result)) {
871 if (!bh_result->b_private) {
872 ext4_io_end_t *io_end;
873
874 io_end = ext4_init_io_end(inode, GFP_KERNEL);
875 if (!io_end)
876 return -ENOMEM;
877 bh_result->b_private = io_end;
878 ext4_set_io_unwritten_flag(inode, io_end);
879 }
880 set_buffer_defer_completion(bh_result);
881 }
882
883 return ret;
884 }
885
886 /*
887 * Get block function for non-AIO DIO writes when we create unwritten extent if
888 * blocks are not allocated yet. The extent will be converted to written
889 * after IO is complete from ext4_ext_direct_IO() function.
890 */
891 static int ext4_dio_get_block_unwritten_sync(struct inode *inode,
892 sector_t iblock, struct buffer_head *bh_result, int create)
893 {
894 int ret;
895
896 /* We don't expect handle for direct IO */
897 WARN_ON_ONCE(ext4_journal_current_handle());
898
899 ret = ext4_get_block_trans(inode, iblock, bh_result,
900 EXT4_GET_BLOCKS_IO_CREATE_EXT);
901
902 /*
903 * Mark inode as having pending DIO writes to unwritten extents.
904 * ext4_ext_direct_IO() checks this flag and converts extents to
905 * written.
906 */
907 if (!ret && buffer_unwritten(bh_result))
908 ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
909
910 return ret;
911 }
912
913 static int ext4_dio_get_block_overwrite(struct inode *inode, sector_t iblock,
914 struct buffer_head *bh_result, int create)
915 {
916 int ret;
917
918 ext4_debug("ext4_dio_get_block_overwrite: inode %lu, create flag %d\n",
919 inode->i_ino, create);
920 /* We don't expect handle for direct IO */
921 WARN_ON_ONCE(ext4_journal_current_handle());
922
923 ret = _ext4_get_block(inode, iblock, bh_result, 0);
924 /*
925 * Blocks should have been preallocated! ext4_file_write_iter() checks
926 * that.
927 */
928 WARN_ON_ONCE(!buffer_mapped(bh_result) || buffer_unwritten(bh_result));
929
930 return ret;
931 }
932
933
934 /*
935 * `handle' can be NULL if create is zero
936 */
937 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
938 ext4_lblk_t block, int map_flags)
939 {
940 struct ext4_map_blocks map;
941 struct buffer_head *bh;
942 int create = map_flags & EXT4_GET_BLOCKS_CREATE;
943 int err;
944
945 J_ASSERT(handle != NULL || create == 0);
946
947 map.m_lblk = block;
948 map.m_len = 1;
949 err = ext4_map_blocks(handle, inode, &map, map_flags);
950
951 if (err == 0)
952 return create ? ERR_PTR(-ENOSPC) : NULL;
953 if (err < 0)
954 return ERR_PTR(err);
955
956 bh = sb_getblk(inode->i_sb, map.m_pblk);
957 if (unlikely(!bh))
958 return ERR_PTR(-ENOMEM);
959 if (map.m_flags & EXT4_MAP_NEW) {
960 J_ASSERT(create != 0);
961 J_ASSERT(handle != NULL);
962
963 /*
964 * Now that we do not always journal data, we should
965 * keep in mind whether this should always journal the
966 * new buffer as metadata. For now, regular file
967 * writes use ext4_get_block instead, so it's not a
968 * problem.
969 */
970 lock_buffer(bh);
971 BUFFER_TRACE(bh, "call get_create_access");
972 err = ext4_journal_get_create_access(handle, bh);
973 if (unlikely(err)) {
974 unlock_buffer(bh);
975 goto errout;
976 }
977 if (!buffer_uptodate(bh)) {
978 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
979 set_buffer_uptodate(bh);
980 }
981 unlock_buffer(bh);
982 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
983 err = ext4_handle_dirty_metadata(handle, inode, bh);
984 if (unlikely(err))
985 goto errout;
986 } else
987 BUFFER_TRACE(bh, "not a new buffer");
988 return bh;
989 errout:
990 brelse(bh);
991 return ERR_PTR(err);
992 }
993
994 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
995 ext4_lblk_t block, int map_flags)
996 {
997 struct buffer_head *bh;
998
999 bh = ext4_getblk(handle, inode, block, map_flags);
1000 if (IS_ERR(bh))
1001 return bh;
1002 if (!bh || buffer_uptodate(bh))
1003 return bh;
1004 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &bh);
1005 wait_on_buffer(bh);
1006 if (buffer_uptodate(bh))
1007 return bh;
1008 put_bh(bh);
1009 return ERR_PTR(-EIO);
1010 }
1011
1012 int ext4_walk_page_buffers(handle_t *handle,
1013 struct buffer_head *head,
1014 unsigned from,
1015 unsigned to,
1016 int *partial,
1017 int (*fn)(handle_t *handle,
1018 struct buffer_head *bh))
1019 {
1020 struct buffer_head *bh;
1021 unsigned block_start, block_end;
1022 unsigned blocksize = head->b_size;
1023 int err, ret = 0;
1024 struct buffer_head *next;
1025
1026 for (bh = head, block_start = 0;
1027 ret == 0 && (bh != head || !block_start);
1028 block_start = block_end, bh = next) {
1029 next = bh->b_this_page;
1030 block_end = block_start + blocksize;
1031 if (block_end <= from || block_start >= to) {
1032 if (partial && !buffer_uptodate(bh))
1033 *partial = 1;
1034 continue;
1035 }
1036 err = (*fn)(handle, bh);
1037 if (!ret)
1038 ret = err;
1039 }
1040 return ret;
1041 }
1042
1043 /*
1044 * To preserve ordering, it is essential that the hole instantiation and
1045 * the data write be encapsulated in a single transaction. We cannot
1046 * close off a transaction and start a new one between the ext4_get_block()
1047 * and the commit_write(). So doing the jbd2_journal_start at the start of
1048 * prepare_write() is the right place.
1049 *
1050 * Also, this function can nest inside ext4_writepage(). In that case, we
1051 * *know* that ext4_writepage() has generated enough buffer credits to do the
1052 * whole page. So we won't block on the journal in that case, which is good,
1053 * because the caller may be PF_MEMALLOC.
1054 *
1055 * By accident, ext4 can be reentered when a transaction is open via
1056 * quota file writes. If we were to commit the transaction while thus
1057 * reentered, there can be a deadlock - we would be holding a quota
1058 * lock, and the commit would never complete if another thread had a
1059 * transaction open and was blocking on the quota lock - a ranking
1060 * violation.
1061 *
1062 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1063 * will _not_ run commit under these circumstances because handle->h_ref
1064 * is elevated. We'll still have enough credits for the tiny quotafile
1065 * write.
1066 */
1067 int do_journal_get_write_access(handle_t *handle,
1068 struct buffer_head *bh)
1069 {
1070 int dirty = buffer_dirty(bh);
1071 int ret;
1072
1073 if (!buffer_mapped(bh) || buffer_freed(bh))
1074 return 0;
1075 /*
1076 * __block_write_begin() could have dirtied some buffers. Clean
1077 * the dirty bit as jbd2_journal_get_write_access() could complain
1078 * otherwise about fs integrity issues. Setting of the dirty bit
1079 * by __block_write_begin() isn't a real problem here as we clear
1080 * the bit before releasing a page lock and thus writeback cannot
1081 * ever write the buffer.
1082 */
1083 if (dirty)
1084 clear_buffer_dirty(bh);
1085 BUFFER_TRACE(bh, "get write access");
1086 ret = ext4_journal_get_write_access(handle, bh);
1087 if (!ret && dirty)
1088 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1089 return ret;
1090 }
1091
1092 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1093 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1094 get_block_t *get_block)
1095 {
1096 unsigned from = pos & (PAGE_SIZE - 1);
1097 unsigned to = from + len;
1098 struct inode *inode = page->mapping->host;
1099 unsigned block_start, block_end;
1100 sector_t block;
1101 int err = 0;
1102 unsigned blocksize = inode->i_sb->s_blocksize;
1103 unsigned bbits;
1104 struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
1105 bool decrypt = false;
1106
1107 BUG_ON(!PageLocked(page));
1108 BUG_ON(from > PAGE_SIZE);
1109 BUG_ON(to > PAGE_SIZE);
1110 BUG_ON(from > to);
1111
1112 if (!page_has_buffers(page))
1113 create_empty_buffers(page, blocksize, 0);
1114 head = page_buffers(page);
1115 bbits = ilog2(blocksize);
1116 block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1117
1118 for (bh = head, block_start = 0; bh != head || !block_start;
1119 block++, block_start = block_end, bh = bh->b_this_page) {
1120 block_end = block_start + blocksize;
1121 if (block_end <= from || block_start >= to) {
1122 if (PageUptodate(page)) {
1123 if (!buffer_uptodate(bh))
1124 set_buffer_uptodate(bh);
1125 }
1126 continue;
1127 }
1128 if (buffer_new(bh))
1129 clear_buffer_new(bh);
1130 if (!buffer_mapped(bh)) {
1131 WARN_ON(bh->b_size != blocksize);
1132 err = get_block(inode, block, bh, 1);
1133 if (err)
1134 break;
1135 if (buffer_new(bh)) {
1136 clean_bdev_bh_alias(bh);
1137 if (PageUptodate(page)) {
1138 clear_buffer_new(bh);
1139 set_buffer_uptodate(bh);
1140 mark_buffer_dirty(bh);
1141 continue;
1142 }
1143 if (block_end > to || block_start < from)
1144 zero_user_segments(page, to, block_end,
1145 block_start, from);
1146 continue;
1147 }
1148 }
1149 if (PageUptodate(page)) {
1150 if (!buffer_uptodate(bh))
1151 set_buffer_uptodate(bh);
1152 continue;
1153 }
1154 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1155 !buffer_unwritten(bh) &&
1156 (block_start < from || block_end > to)) {
1157 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1158 *wait_bh++ = bh;
1159 decrypt = ext4_encrypted_inode(inode) &&
1160 S_ISREG(inode->i_mode);
1161 }
1162 }
1163 /*
1164 * If we issued read requests, let them complete.
1165 */
1166 while (wait_bh > wait) {
1167 wait_on_buffer(*--wait_bh);
1168 if (!buffer_uptodate(*wait_bh))
1169 err = -EIO;
1170 }
1171 if (unlikely(err))
1172 page_zero_new_buffers(page, from, to);
1173 else if (decrypt)
1174 err = fscrypt_decrypt_page(page->mapping->host, page,
1175 PAGE_SIZE, 0, page->index);
1176 return err;
1177 }
1178 #endif
1179
1180 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1181 loff_t pos, unsigned len, unsigned flags,
1182 struct page **pagep, void **fsdata)
1183 {
1184 struct inode *inode = mapping->host;
1185 int ret, needed_blocks;
1186 handle_t *handle;
1187 int retries = 0;
1188 struct page *page;
1189 pgoff_t index;
1190 unsigned from, to;
1191
1192 trace_ext4_write_begin(inode, pos, len, flags);
1193 /*
1194 * Reserve one block more for addition to orphan list in case
1195 * we allocate blocks but write fails for some reason
1196 */
1197 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1198 index = pos >> PAGE_SHIFT;
1199 from = pos & (PAGE_SIZE - 1);
1200 to = from + len;
1201
1202 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1203 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1204 flags, pagep);
1205 if (ret < 0)
1206 return ret;
1207 if (ret == 1)
1208 return 0;
1209 }
1210
1211 /*
1212 * grab_cache_page_write_begin() can take a long time if the
1213 * system is thrashing due to memory pressure, or if the page
1214 * is being written back. So grab it first before we start
1215 * the transaction handle. This also allows us to allocate
1216 * the page (if needed) without using GFP_NOFS.
1217 */
1218 retry_grab:
1219 page = grab_cache_page_write_begin(mapping, index, flags);
1220 if (!page)
1221 return -ENOMEM;
1222 unlock_page(page);
1223
1224 retry_journal:
1225 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1226 if (IS_ERR(handle)) {
1227 put_page(page);
1228 return PTR_ERR(handle);
1229 }
1230
1231 lock_page(page);
1232 if (page->mapping != mapping) {
1233 /* The page got truncated from under us */
1234 unlock_page(page);
1235 put_page(page);
1236 ext4_journal_stop(handle);
1237 goto retry_grab;
1238 }
1239 /* In case writeback began while the page was unlocked */
1240 wait_for_stable_page(page);
1241
1242 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1243 if (ext4_should_dioread_nolock(inode))
1244 ret = ext4_block_write_begin(page, pos, len,
1245 ext4_get_block_unwritten);
1246 else
1247 ret = ext4_block_write_begin(page, pos, len,
1248 ext4_get_block);
1249 #else
1250 if (ext4_should_dioread_nolock(inode))
1251 ret = __block_write_begin(page, pos, len,
1252 ext4_get_block_unwritten);
1253 else
1254 ret = __block_write_begin(page, pos, len, ext4_get_block);
1255 #endif
1256 if (!ret && ext4_should_journal_data(inode)) {
1257 ret = ext4_walk_page_buffers(handle, page_buffers(page),
1258 from, to, NULL,
1259 do_journal_get_write_access);
1260 }
1261
1262 if (ret) {
1263 unlock_page(page);
1264 /*
1265 * __block_write_begin may have instantiated a few blocks
1266 * outside i_size. Trim these off again. Don't need
1267 * i_size_read because we hold i_mutex.
1268 *
1269 * Add inode to orphan list in case we crash before
1270 * truncate finishes
1271 */
1272 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1273 ext4_orphan_add(handle, inode);
1274
1275 ext4_journal_stop(handle);
1276 if (pos + len > inode->i_size) {
1277 ext4_truncate_failed_write(inode);
1278 /*
1279 * If truncate failed early the inode might
1280 * still be on the orphan list; we need to
1281 * make sure the inode is removed from the
1282 * orphan list in that case.
1283 */
1284 if (inode->i_nlink)
1285 ext4_orphan_del(NULL, inode);
1286 }
1287
1288 if (ret == -ENOSPC &&
1289 ext4_should_retry_alloc(inode->i_sb, &retries))
1290 goto retry_journal;
1291 put_page(page);
1292 return ret;
1293 }
1294 *pagep = page;
1295 return ret;
1296 }
1297
1298 /* For write_end() in data=journal mode */
1299 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1300 {
1301 int ret;
1302 if (!buffer_mapped(bh) || buffer_freed(bh))
1303 return 0;
1304 set_buffer_uptodate(bh);
1305 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1306 clear_buffer_meta(bh);
1307 clear_buffer_prio(bh);
1308 return ret;
1309 }
1310
1311 /*
1312 * We need to pick up the new inode size which generic_commit_write gave us
1313 * `file' can be NULL - eg, when called from page_symlink().
1314 *
1315 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1316 * buffers are managed internally.
1317 */
1318 static int ext4_write_end(struct file *file,
1319 struct address_space *mapping,
1320 loff_t pos, unsigned len, unsigned copied,
1321 struct page *page, void *fsdata)
1322 {
1323 handle_t *handle = ext4_journal_current_handle();
1324 struct inode *inode = mapping->host;
1325 loff_t old_size = inode->i_size;
1326 int ret = 0, ret2;
1327 int i_size_changed = 0;
1328
1329 trace_ext4_write_end(inode, pos, len, copied);
1330 if (ext4_has_inline_data(inode)) {
1331 ret = ext4_write_inline_data_end(inode, pos, len,
1332 copied, page);
1333 if (ret < 0)
1334 goto errout;
1335 copied = ret;
1336 } else
1337 copied = block_write_end(file, mapping, pos,
1338 len, copied, page, fsdata);
1339 /*
1340 * it's important to update i_size while still holding page lock:
1341 * page writeout could otherwise come in and zero beyond i_size.
1342 */
1343 i_size_changed = ext4_update_inode_size(inode, pos + copied);
1344 unlock_page(page);
1345 put_page(page);
1346
1347 if (old_size < pos)
1348 pagecache_isize_extended(inode, old_size, pos);
1349 /*
1350 * Don't mark the inode dirty under page lock. First, it unnecessarily
1351 * makes the holding time of page lock longer. Second, it forces lock
1352 * ordering of page lock and transaction start for journaling
1353 * filesystems.
1354 */
1355 if (i_size_changed)
1356 ext4_mark_inode_dirty(handle, inode);
1357
1358 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1359 /* if we have allocated more blocks and copied
1360 * less. We will have blocks allocated outside
1361 * inode->i_size. So truncate them
1362 */
1363 ext4_orphan_add(handle, inode);
1364 errout:
1365 ret2 = ext4_journal_stop(handle);
1366 if (!ret)
1367 ret = ret2;
1368
1369 if (pos + len > inode->i_size) {
1370 ext4_truncate_failed_write(inode);
1371 /*
1372 * If truncate failed early the inode might still be
1373 * on the orphan list; we need to make sure the inode
1374 * is removed from the orphan list in that case.
1375 */
1376 if (inode->i_nlink)
1377 ext4_orphan_del(NULL, inode);
1378 }
1379
1380 return ret ? ret : copied;
1381 }
1382
1383 /*
1384 * This is a private version of page_zero_new_buffers() which doesn't
1385 * set the buffer to be dirty, since in data=journalled mode we need
1386 * to call ext4_handle_dirty_metadata() instead.
1387 */
1388 static void zero_new_buffers(struct page *page, unsigned from, unsigned to)
1389 {
1390 unsigned int block_start = 0, block_end;
1391 struct buffer_head *head, *bh;
1392
1393 bh = head = page_buffers(page);
1394 do {
1395 block_end = block_start + bh->b_size;
1396 if (buffer_new(bh)) {
1397 if (block_end > from && block_start < to) {
1398 if (!PageUptodate(page)) {
1399 unsigned start, size;
1400
1401 start = max(from, block_start);
1402 size = min(to, block_end) - start;
1403
1404 zero_user(page, start, size);
1405 set_buffer_uptodate(bh);
1406 }
1407 clear_buffer_new(bh);
1408 }
1409 }
1410 block_start = block_end;
1411 bh = bh->b_this_page;
1412 } while (bh != head);
1413 }
1414
1415 static int ext4_journalled_write_end(struct file *file,
1416 struct address_space *mapping,
1417 loff_t pos, unsigned len, unsigned copied,
1418 struct page *page, void *fsdata)
1419 {
1420 handle_t *handle = ext4_journal_current_handle();
1421 struct inode *inode = mapping->host;
1422 loff_t old_size = inode->i_size;
1423 int ret = 0, ret2;
1424 int partial = 0;
1425 unsigned from, to;
1426 int size_changed = 0;
1427
1428 trace_ext4_journalled_write_end(inode, pos, len, copied);
1429 from = pos & (PAGE_SIZE - 1);
1430 to = from + len;
1431
1432 BUG_ON(!ext4_handle_valid(handle));
1433
1434 if (ext4_has_inline_data(inode))
1435 copied = ext4_write_inline_data_end(inode, pos, len,
1436 copied, page);
1437 else {
1438 if (copied < len) {
1439 if (!PageUptodate(page))
1440 copied = 0;
1441 zero_new_buffers(page, from+copied, to);
1442 }
1443
1444 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1445 to, &partial, write_end_fn);
1446 if (!partial)
1447 SetPageUptodate(page);
1448 }
1449 size_changed = ext4_update_inode_size(inode, pos + copied);
1450 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1451 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1452 unlock_page(page);
1453 put_page(page);
1454
1455 if (old_size < pos)
1456 pagecache_isize_extended(inode, old_size, pos);
1457
1458 if (size_changed) {
1459 ret2 = ext4_mark_inode_dirty(handle, inode);
1460 if (!ret)
1461 ret = ret2;
1462 }
1463
1464 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1465 /* if we have allocated more blocks and copied
1466 * less. We will have blocks allocated outside
1467 * inode->i_size. So truncate them
1468 */
1469 ext4_orphan_add(handle, inode);
1470
1471 ret2 = ext4_journal_stop(handle);
1472 if (!ret)
1473 ret = ret2;
1474 if (pos + len > inode->i_size) {
1475 ext4_truncate_failed_write(inode);
1476 /*
1477 * If truncate failed early the inode might still be
1478 * on the orphan list; we need to make sure the inode
1479 * is removed from the orphan list in that case.
1480 */
1481 if (inode->i_nlink)
1482 ext4_orphan_del(NULL, inode);
1483 }
1484
1485 return ret ? ret : copied;
1486 }
1487
1488 /*
1489 * Reserve space for a single cluster
1490 */
1491 static int ext4_da_reserve_space(struct inode *inode)
1492 {
1493 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1494 struct ext4_inode_info *ei = EXT4_I(inode);
1495 int ret;
1496
1497 /*
1498 * We will charge metadata quota at writeout time; this saves
1499 * us from metadata over-estimation, though we may go over by
1500 * a small amount in the end. Here we just reserve for data.
1501 */
1502 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1503 if (ret)
1504 return ret;
1505
1506 spin_lock(&ei->i_block_reservation_lock);
1507 if (ext4_claim_free_clusters(sbi, 1, 0)) {
1508 spin_unlock(&ei->i_block_reservation_lock);
1509 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1510 return -ENOSPC;
1511 }
1512 ei->i_reserved_data_blocks++;
1513 trace_ext4_da_reserve_space(inode);
1514 spin_unlock(&ei->i_block_reservation_lock);
1515
1516 return 0; /* success */
1517 }
1518
1519 static void ext4_da_release_space(struct inode *inode, int to_free)
1520 {
1521 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1522 struct ext4_inode_info *ei = EXT4_I(inode);
1523
1524 if (!to_free)
1525 return; /* Nothing to release, exit */
1526
1527 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1528
1529 trace_ext4_da_release_space(inode, to_free);
1530 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1531 /*
1532 * if there aren't enough reserved blocks, then the
1533 * counter is messed up somewhere. Since this
1534 * function is called from invalidate page, it's
1535 * harmless to return without any action.
1536 */
1537 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1538 "ino %lu, to_free %d with only %d reserved "
1539 "data blocks", inode->i_ino, to_free,
1540 ei->i_reserved_data_blocks);
1541 WARN_ON(1);
1542 to_free = ei->i_reserved_data_blocks;
1543 }
1544 ei->i_reserved_data_blocks -= to_free;
1545
1546 /* update fs dirty data blocks counter */
1547 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1548
1549 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1550
1551 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1552 }
1553
1554 static void ext4_da_page_release_reservation(struct page *page,
1555 unsigned int offset,
1556 unsigned int length)
1557 {
1558 int to_release = 0, contiguous_blks = 0;
1559 struct buffer_head *head, *bh;
1560 unsigned int curr_off = 0;
1561 struct inode *inode = page->mapping->host;
1562 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1563 unsigned int stop = offset + length;
1564 int num_clusters;
1565 ext4_fsblk_t lblk;
1566
1567 BUG_ON(stop > PAGE_SIZE || stop < length);
1568
1569 head = page_buffers(page);
1570 bh = head;
1571 do {
1572 unsigned int next_off = curr_off + bh->b_size;
1573
1574 if (next_off > stop)
1575 break;
1576
1577 if ((offset <= curr_off) && (buffer_delay(bh))) {
1578 to_release++;
1579 contiguous_blks++;
1580 clear_buffer_delay(bh);
1581 } else if (contiguous_blks) {
1582 lblk = page->index <<
1583 (PAGE_SHIFT - inode->i_blkbits);
1584 lblk += (curr_off >> inode->i_blkbits) -
1585 contiguous_blks;
1586 ext4_es_remove_extent(inode, lblk, contiguous_blks);
1587 contiguous_blks = 0;
1588 }
1589 curr_off = next_off;
1590 } while ((bh = bh->b_this_page) != head);
1591
1592 if (contiguous_blks) {
1593 lblk = page->index << (PAGE_SHIFT - inode->i_blkbits);
1594 lblk += (curr_off >> inode->i_blkbits) - contiguous_blks;
1595 ext4_es_remove_extent(inode, lblk, contiguous_blks);
1596 }
1597
1598 /* If we have released all the blocks belonging to a cluster, then we
1599 * need to release the reserved space for that cluster. */
1600 num_clusters = EXT4_NUM_B2C(sbi, to_release);
1601 while (num_clusters > 0) {
1602 lblk = (page->index << (PAGE_SHIFT - inode->i_blkbits)) +
1603 ((num_clusters - 1) << sbi->s_cluster_bits);
1604 if (sbi->s_cluster_ratio == 1 ||
1605 !ext4_find_delalloc_cluster(inode, lblk))
1606 ext4_da_release_space(inode, 1);
1607
1608 num_clusters--;
1609 }
1610 }
1611
1612 /*
1613 * Delayed allocation stuff
1614 */
1615
1616 struct mpage_da_data {
1617 struct inode *inode;
1618 struct writeback_control *wbc;
1619
1620 pgoff_t first_page; /* The first page to write */
1621 pgoff_t next_page; /* Current page to examine */
1622 pgoff_t last_page; /* Last page to examine */
1623 /*
1624 * Extent to map - this can be after first_page because that can be
1625 * fully mapped. We somewhat abuse m_flags to store whether the extent
1626 * is delalloc or unwritten.
1627 */
1628 struct ext4_map_blocks map;
1629 struct ext4_io_submit io_submit; /* IO submission data */
1630 };
1631
1632 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1633 bool invalidate)
1634 {
1635 int nr_pages, i;
1636 pgoff_t index, end;
1637 struct pagevec pvec;
1638 struct inode *inode = mpd->inode;
1639 struct address_space *mapping = inode->i_mapping;
1640
1641 /* This is necessary when next_page == 0. */
1642 if (mpd->first_page >= mpd->next_page)
1643 return;
1644
1645 index = mpd->first_page;
1646 end = mpd->next_page - 1;
1647 if (invalidate) {
1648 ext4_lblk_t start, last;
1649 start = index << (PAGE_SHIFT - inode->i_blkbits);
1650 last = end << (PAGE_SHIFT - inode->i_blkbits);
1651 ext4_es_remove_extent(inode, start, last - start + 1);
1652 }
1653
1654 pagevec_init(&pvec, 0);
1655 while (index <= end) {
1656 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1657 if (nr_pages == 0)
1658 break;
1659 for (i = 0; i < nr_pages; i++) {
1660 struct page *page = pvec.pages[i];
1661 if (page->index > end)
1662 break;
1663 BUG_ON(!PageLocked(page));
1664 BUG_ON(PageWriteback(page));
1665 if (invalidate) {
1666 if (page_mapped(page))
1667 clear_page_dirty_for_io(page);
1668 block_invalidatepage(page, 0, PAGE_SIZE);
1669 ClearPageUptodate(page);
1670 }
1671 unlock_page(page);
1672 }
1673 index = pvec.pages[nr_pages - 1]->index + 1;
1674 pagevec_release(&pvec);
1675 }
1676 }
1677
1678 static void ext4_print_free_blocks(struct inode *inode)
1679 {
1680 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1681 struct super_block *sb = inode->i_sb;
1682 struct ext4_inode_info *ei = EXT4_I(inode);
1683
1684 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1685 EXT4_C2B(EXT4_SB(inode->i_sb),
1686 ext4_count_free_clusters(sb)));
1687 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1688 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1689 (long long) EXT4_C2B(EXT4_SB(sb),
1690 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1691 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1692 (long long) EXT4_C2B(EXT4_SB(sb),
1693 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1694 ext4_msg(sb, KERN_CRIT, "Block reservation details");
1695 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1696 ei->i_reserved_data_blocks);
1697 return;
1698 }
1699
1700 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1701 {
1702 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1703 }
1704
1705 /*
1706 * This function is grabs code from the very beginning of
1707 * ext4_map_blocks, but assumes that the caller is from delayed write
1708 * time. This function looks up the requested blocks and sets the
1709 * buffer delay bit under the protection of i_data_sem.
1710 */
1711 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1712 struct ext4_map_blocks *map,
1713 struct buffer_head *bh)
1714 {
1715 struct extent_status es;
1716 int retval;
1717 sector_t invalid_block = ~((sector_t) 0xffff);
1718 #ifdef ES_AGGRESSIVE_TEST
1719 struct ext4_map_blocks orig_map;
1720
1721 memcpy(&orig_map, map, sizeof(*map));
1722 #endif
1723
1724 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1725 invalid_block = ~0;
1726
1727 map->m_flags = 0;
1728 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1729 "logical block %lu\n", inode->i_ino, map->m_len,
1730 (unsigned long) map->m_lblk);
1731
1732 /* Lookup extent status tree firstly */
1733 if (ext4_es_lookup_extent(inode, iblock, &es)) {
1734 if (ext4_es_is_hole(&es)) {
1735 retval = 0;
1736 down_read(&EXT4_I(inode)->i_data_sem);
1737 goto add_delayed;
1738 }
1739
1740 /*
1741 * Delayed extent could be allocated by fallocate.
1742 * So we need to check it.
1743 */
1744 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1745 map_bh(bh, inode->i_sb, invalid_block);
1746 set_buffer_new(bh);
1747 set_buffer_delay(bh);
1748 return 0;
1749 }
1750
1751 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1752 retval = es.es_len - (iblock - es.es_lblk);
1753 if (retval > map->m_len)
1754 retval = map->m_len;
1755 map->m_len = retval;
1756 if (ext4_es_is_written(&es))
1757 map->m_flags |= EXT4_MAP_MAPPED;
1758 else if (ext4_es_is_unwritten(&es))
1759 map->m_flags |= EXT4_MAP_UNWRITTEN;
1760 else
1761 BUG_ON(1);
1762
1763 #ifdef ES_AGGRESSIVE_TEST
1764 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1765 #endif
1766 return retval;
1767 }
1768
1769 /*
1770 * Try to see if we can get the block without requesting a new
1771 * file system block.
1772 */
1773 down_read(&EXT4_I(inode)->i_data_sem);
1774 if (ext4_has_inline_data(inode))
1775 retval = 0;
1776 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1777 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1778 else
1779 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1780
1781 add_delayed:
1782 if (retval == 0) {
1783 int ret;
1784 /*
1785 * XXX: __block_prepare_write() unmaps passed block,
1786 * is it OK?
1787 */
1788 /*
1789 * If the block was allocated from previously allocated cluster,
1790 * then we don't need to reserve it again. However we still need
1791 * to reserve metadata for every block we're going to write.
1792 */
1793 if (EXT4_SB(inode->i_sb)->s_cluster_ratio == 1 ||
1794 !ext4_find_delalloc_cluster(inode, map->m_lblk)) {
1795 ret = ext4_da_reserve_space(inode);
1796 if (ret) {
1797 /* not enough space to reserve */
1798 retval = ret;
1799 goto out_unlock;
1800 }
1801 }
1802
1803 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1804 ~0, EXTENT_STATUS_DELAYED);
1805 if (ret) {
1806 retval = ret;
1807 goto out_unlock;
1808 }
1809
1810 map_bh(bh, inode->i_sb, invalid_block);
1811 set_buffer_new(bh);
1812 set_buffer_delay(bh);
1813 } else if (retval > 0) {
1814 int ret;
1815 unsigned int status;
1816
1817 if (unlikely(retval != map->m_len)) {
1818 ext4_warning(inode->i_sb,
1819 "ES len assertion failed for inode "
1820 "%lu: retval %d != map->m_len %d",
1821 inode->i_ino, retval, map->m_len);
1822 WARN_ON(1);
1823 }
1824
1825 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1826 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1827 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1828 map->m_pblk, status);
1829 if (ret != 0)
1830 retval = ret;
1831 }
1832
1833 out_unlock:
1834 up_read((&EXT4_I(inode)->i_data_sem));
1835
1836 return retval;
1837 }
1838
1839 /*
1840 * This is a special get_block_t callback which is used by
1841 * ext4_da_write_begin(). It will either return mapped block or
1842 * reserve space for a single block.
1843 *
1844 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1845 * We also have b_blocknr = -1 and b_bdev initialized properly
1846 *
1847 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1848 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1849 * initialized properly.
1850 */
1851 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1852 struct buffer_head *bh, int create)
1853 {
1854 struct ext4_map_blocks map;
1855 int ret = 0;
1856
1857 BUG_ON(create == 0);
1858 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1859
1860 map.m_lblk = iblock;
1861 map.m_len = 1;
1862
1863 /*
1864 * first, we need to know whether the block is allocated already
1865 * preallocated blocks are unmapped but should treated
1866 * the same as allocated blocks.
1867 */
1868 ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1869 if (ret <= 0)
1870 return ret;
1871
1872 map_bh(bh, inode->i_sb, map.m_pblk);
1873 ext4_update_bh_state(bh, map.m_flags);
1874
1875 if (buffer_unwritten(bh)) {
1876 /* A delayed write to unwritten bh should be marked
1877 * new and mapped. Mapped ensures that we don't do
1878 * get_block multiple times when we write to the same
1879 * offset and new ensures that we do proper zero out
1880 * for partial write.
1881 */
1882 set_buffer_new(bh);
1883 set_buffer_mapped(bh);
1884 }
1885 return 0;
1886 }
1887
1888 static int bget_one(handle_t *handle, struct buffer_head *bh)
1889 {
1890 get_bh(bh);
1891 return 0;
1892 }
1893
1894 static int bput_one(handle_t *handle, struct buffer_head *bh)
1895 {
1896 put_bh(bh);
1897 return 0;
1898 }
1899
1900 static int __ext4_journalled_writepage(struct page *page,
1901 unsigned int len)
1902 {
1903 struct address_space *mapping = page->mapping;
1904 struct inode *inode = mapping->host;
1905 struct buffer_head *page_bufs = NULL;
1906 handle_t *handle = NULL;
1907 int ret = 0, err = 0;
1908 int inline_data = ext4_has_inline_data(inode);
1909 struct buffer_head *inode_bh = NULL;
1910
1911 ClearPageChecked(page);
1912
1913 if (inline_data) {
1914 BUG_ON(page->index != 0);
1915 BUG_ON(len > ext4_get_max_inline_size(inode));
1916 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1917 if (inode_bh == NULL)
1918 goto out;
1919 } else {
1920 page_bufs = page_buffers(page);
1921 if (!page_bufs) {
1922 BUG();
1923 goto out;
1924 }
1925 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1926 NULL, bget_one);
1927 }
1928 /*
1929 * We need to release the page lock before we start the
1930 * journal, so grab a reference so the page won't disappear
1931 * out from under us.
1932 */
1933 get_page(page);
1934 unlock_page(page);
1935
1936 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1937 ext4_writepage_trans_blocks(inode));
1938 if (IS_ERR(handle)) {
1939 ret = PTR_ERR(handle);
1940 put_page(page);
1941 goto out_no_pagelock;
1942 }
1943 BUG_ON(!ext4_handle_valid(handle));
1944
1945 lock_page(page);
1946 put_page(page);
1947 if (page->mapping != mapping) {
1948 /* The page got truncated from under us */
1949 ext4_journal_stop(handle);
1950 ret = 0;
1951 goto out;
1952 }
1953
1954 if (inline_data) {
1955 BUFFER_TRACE(inode_bh, "get write access");
1956 ret = ext4_journal_get_write_access(handle, inode_bh);
1957
1958 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1959
1960 } else {
1961 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1962 do_journal_get_write_access);
1963
1964 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1965 write_end_fn);
1966 }
1967 if (ret == 0)
1968 ret = err;
1969 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1970 err = ext4_journal_stop(handle);
1971 if (!ret)
1972 ret = err;
1973
1974 if (!ext4_has_inline_data(inode))
1975 ext4_walk_page_buffers(NULL, page_bufs, 0, len,
1976 NULL, bput_one);
1977 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1978 out:
1979 unlock_page(page);
1980 out_no_pagelock:
1981 brelse(inode_bh);
1982 return ret;
1983 }
1984
1985 /*
1986 * Note that we don't need to start a transaction unless we're journaling data
1987 * because we should have holes filled from ext4_page_mkwrite(). We even don't
1988 * need to file the inode to the transaction's list in ordered mode because if
1989 * we are writing back data added by write(), the inode is already there and if
1990 * we are writing back data modified via mmap(), no one guarantees in which
1991 * transaction the data will hit the disk. In case we are journaling data, we
1992 * cannot start transaction directly because transaction start ranks above page
1993 * lock so we have to do some magic.
1994 *
1995 * This function can get called via...
1996 * - ext4_writepages after taking page lock (have journal handle)
1997 * - journal_submit_inode_data_buffers (no journal handle)
1998 * - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1999 * - grab_page_cache when doing write_begin (have journal handle)
2000 *
2001 * We don't do any block allocation in this function. If we have page with
2002 * multiple blocks we need to write those buffer_heads that are mapped. This
2003 * is important for mmaped based write. So if we do with blocksize 1K
2004 * truncate(f, 1024);
2005 * a = mmap(f, 0, 4096);
2006 * a[0] = 'a';
2007 * truncate(f, 4096);
2008 * we have in the page first buffer_head mapped via page_mkwrite call back
2009 * but other buffer_heads would be unmapped but dirty (dirty done via the
2010 * do_wp_page). So writepage should write the first block. If we modify
2011 * the mmap area beyond 1024 we will again get a page_fault and the
2012 * page_mkwrite callback will do the block allocation and mark the
2013 * buffer_heads mapped.
2014 *
2015 * We redirty the page if we have any buffer_heads that is either delay or
2016 * unwritten in the page.
2017 *
2018 * We can get recursively called as show below.
2019 *
2020 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2021 * ext4_writepage()
2022 *
2023 * But since we don't do any block allocation we should not deadlock.
2024 * Page also have the dirty flag cleared so we don't get recurive page_lock.
2025 */
2026 static int ext4_writepage(struct page *page,
2027 struct writeback_control *wbc)
2028 {
2029 int ret = 0;
2030 loff_t size;
2031 unsigned int len;
2032 struct buffer_head *page_bufs = NULL;
2033 struct inode *inode = page->mapping->host;
2034 struct ext4_io_submit io_submit;
2035 bool keep_towrite = false;
2036
2037 trace_ext4_writepage(page);
2038 size = i_size_read(inode);
2039 if (page->index == size >> PAGE_SHIFT)
2040 len = size & ~PAGE_MASK;
2041 else
2042 len = PAGE_SIZE;
2043
2044 page_bufs = page_buffers(page);
2045 /*
2046 * We cannot do block allocation or other extent handling in this
2047 * function. If there are buffers needing that, we have to redirty
2048 * the page. But we may reach here when we do a journal commit via
2049 * journal_submit_inode_data_buffers() and in that case we must write
2050 * allocated buffers to achieve data=ordered mode guarantees.
2051 *
2052 * Also, if there is only one buffer per page (the fs block
2053 * size == the page size), if one buffer needs block
2054 * allocation or needs to modify the extent tree to clear the
2055 * unwritten flag, we know that the page can't be written at
2056 * all, so we might as well refuse the write immediately.
2057 * Unfortunately if the block size != page size, we can't as
2058 * easily detect this case using ext4_walk_page_buffers(), but
2059 * for the extremely common case, this is an optimization that
2060 * skips a useless round trip through ext4_bio_write_page().
2061 */
2062 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2063 ext4_bh_delay_or_unwritten)) {
2064 redirty_page_for_writepage(wbc, page);
2065 if ((current->flags & PF_MEMALLOC) ||
2066 (inode->i_sb->s_blocksize == PAGE_SIZE)) {
2067 /*
2068 * For memory cleaning there's no point in writing only
2069 * some buffers. So just bail out. Warn if we came here
2070 * from direct reclaim.
2071 */
2072 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2073 == PF_MEMALLOC);
2074 unlock_page(page);
2075 return 0;
2076 }
2077 keep_towrite = true;
2078 }
2079
2080 if (PageChecked(page) && ext4_should_journal_data(inode))
2081 /*
2082 * It's mmapped pagecache. Add buffers and journal it. There
2083 * doesn't seem much point in redirtying the page here.
2084 */
2085 return __ext4_journalled_writepage(page, len);
2086
2087 ext4_io_submit_init(&io_submit, wbc);
2088 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2089 if (!io_submit.io_end) {
2090 redirty_page_for_writepage(wbc, page);
2091 unlock_page(page);
2092 return -ENOMEM;
2093 }
2094 ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
2095 ext4_io_submit(&io_submit);
2096 /* Drop io_end reference we got from init */
2097 ext4_put_io_end_defer(io_submit.io_end);
2098 return ret;
2099 }
2100
2101 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2102 {
2103 int len;
2104 loff_t size = i_size_read(mpd->inode);
2105 int err;
2106
2107 BUG_ON(page->index != mpd->first_page);
2108 if (page->index == size >> PAGE_SHIFT)
2109 len = size & ~PAGE_MASK;
2110 else
2111 len = PAGE_SIZE;
2112 clear_page_dirty_for_io(page);
2113 err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
2114 if (!err)
2115 mpd->wbc->nr_to_write--;
2116 mpd->first_page++;
2117
2118 return err;
2119 }
2120
2121 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
2122
2123 /*
2124 * mballoc gives us at most this number of blocks...
2125 * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2126 * The rest of mballoc seems to handle chunks up to full group size.
2127 */
2128 #define MAX_WRITEPAGES_EXTENT_LEN 2048
2129
2130 /*
2131 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2132 *
2133 * @mpd - extent of blocks
2134 * @lblk - logical number of the block in the file
2135 * @bh - buffer head we want to add to the extent
2136 *
2137 * The function is used to collect contig. blocks in the same state. If the
2138 * buffer doesn't require mapping for writeback and we haven't started the
2139 * extent of buffers to map yet, the function returns 'true' immediately - the
2140 * caller can write the buffer right away. Otherwise the function returns true
2141 * if the block has been added to the extent, false if the block couldn't be
2142 * added.
2143 */
2144 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2145 struct buffer_head *bh)
2146 {
2147 struct ext4_map_blocks *map = &mpd->map;
2148
2149 /* Buffer that doesn't need mapping for writeback? */
2150 if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2151 (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2152 /* So far no extent to map => we write the buffer right away */
2153 if (map->m_len == 0)
2154 return true;
2155 return false;
2156 }
2157
2158 /* First block in the extent? */
2159 if (map->m_len == 0) {
2160 map->m_lblk = lblk;
2161 map->m_len = 1;
2162 map->m_flags = bh->b_state & BH_FLAGS;
2163 return true;
2164 }
2165
2166 /* Don't go larger than mballoc is willing to allocate */
2167 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2168 return false;
2169
2170 /* Can we merge the block to our big extent? */
2171 if (lblk == map->m_lblk + map->m_len &&
2172 (bh->b_state & BH_FLAGS) == map->m_flags) {
2173 map->m_len++;
2174 return true;
2175 }
2176 return false;
2177 }
2178
2179 /*
2180 * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2181 *
2182 * @mpd - extent of blocks for mapping
2183 * @head - the first buffer in the page
2184 * @bh - buffer we should start processing from
2185 * @lblk - logical number of the block in the file corresponding to @bh
2186 *
2187 * Walk through page buffers from @bh upto @head (exclusive) and either submit
2188 * the page for IO if all buffers in this page were mapped and there's no
2189 * accumulated extent of buffers to map or add buffers in the page to the
2190 * extent of buffers to map. The function returns 1 if the caller can continue
2191 * by processing the next page, 0 if it should stop adding buffers to the
2192 * extent to map because we cannot extend it anymore. It can also return value
2193 * < 0 in case of error during IO submission.
2194 */
2195 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2196 struct buffer_head *head,
2197 struct buffer_head *bh,
2198 ext4_lblk_t lblk)
2199 {
2200 struct inode *inode = mpd->inode;
2201 int err;
2202 ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1)
2203 >> inode->i_blkbits;
2204
2205 do {
2206 BUG_ON(buffer_locked(bh));
2207
2208 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2209 /* Found extent to map? */
2210 if (mpd->map.m_len)
2211 return 0;
2212 /* Everything mapped so far and we hit EOF */
2213 break;
2214 }
2215 } while (lblk++, (bh = bh->b_this_page) != head);
2216 /* So far everything mapped? Submit the page for IO. */
2217 if (mpd->map.m_len == 0) {
2218 err = mpage_submit_page(mpd, head->b_page);
2219 if (err < 0)
2220 return err;
2221 }
2222 return lblk < blocks;
2223 }
2224
2225 /*
2226 * mpage_map_buffers - update buffers corresponding to changed extent and
2227 * submit fully mapped pages for IO
2228 *
2229 * @mpd - description of extent to map, on return next extent to map
2230 *
2231 * Scan buffers corresponding to changed extent (we expect corresponding pages
2232 * to be already locked) and update buffer state according to new extent state.
2233 * We map delalloc buffers to their physical location, clear unwritten bits,
2234 * and mark buffers as uninit when we perform writes to unwritten extents
2235 * and do extent conversion after IO is finished. If the last page is not fully
2236 * mapped, we update @map to the next extent in the last page that needs
2237 * mapping. Otherwise we submit the page for IO.
2238 */
2239 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2240 {
2241 struct pagevec pvec;
2242 int nr_pages, i;
2243 struct inode *inode = mpd->inode;
2244 struct buffer_head *head, *bh;
2245 int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2246 pgoff_t start, end;
2247 ext4_lblk_t lblk;
2248 sector_t pblock;
2249 int err;
2250
2251 start = mpd->map.m_lblk >> bpp_bits;
2252 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2253 lblk = start << bpp_bits;
2254 pblock = mpd->map.m_pblk;
2255
2256 pagevec_init(&pvec, 0);
2257 while (start <= end) {
2258 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start,
2259 PAGEVEC_SIZE);
2260 if (nr_pages == 0)
2261 break;
2262 for (i = 0; i < nr_pages; i++) {
2263 struct page *page = pvec.pages[i];
2264
2265 if (page->index > end)
2266 break;
2267 /* Up to 'end' pages must be contiguous */
2268 BUG_ON(page->index != start);
2269 bh = head = page_buffers(page);
2270 do {
2271 if (lblk < mpd->map.m_lblk)
2272 continue;
2273 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2274 /*
2275 * Buffer after end of mapped extent.
2276 * Find next buffer in the page to map.
2277 */
2278 mpd->map.m_len = 0;
2279 mpd->map.m_flags = 0;
2280 /*
2281 * FIXME: If dioread_nolock supports
2282 * blocksize < pagesize, we need to make
2283 * sure we add size mapped so far to
2284 * io_end->size as the following call
2285 * can submit the page for IO.
2286 */
2287 err = mpage_process_page_bufs(mpd, head,
2288 bh, lblk);
2289 pagevec_release(&pvec);
2290 if (err > 0)
2291 err = 0;
2292 return err;
2293 }
2294 if (buffer_delay(bh)) {
2295 clear_buffer_delay(bh);
2296 bh->b_blocknr = pblock++;
2297 }
2298 clear_buffer_unwritten(bh);
2299 } while (lblk++, (bh = bh->b_this_page) != head);
2300
2301 /*
2302 * FIXME: This is going to break if dioread_nolock
2303 * supports blocksize < pagesize as we will try to
2304 * convert potentially unmapped parts of inode.
2305 */
2306 mpd->io_submit.io_end->size += PAGE_SIZE;
2307 /* Page fully mapped - let IO run! */
2308 err = mpage_submit_page(mpd, page);
2309 if (err < 0) {
2310 pagevec_release(&pvec);
2311 return err;
2312 }
2313 start++;
2314 }
2315 pagevec_release(&pvec);
2316 }
2317 /* Extent fully mapped and matches with page boundary. We are done. */
2318 mpd->map.m_len = 0;
2319 mpd->map.m_flags = 0;
2320 return 0;
2321 }
2322
2323 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2324 {
2325 struct inode *inode = mpd->inode;
2326 struct ext4_map_blocks *map = &mpd->map;
2327 int get_blocks_flags;
2328 int err, dioread_nolock;
2329
2330 trace_ext4_da_write_pages_extent(inode, map);
2331 /*
2332 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2333 * to convert an unwritten extent to be initialized (in the case
2334 * where we have written into one or more preallocated blocks). It is
2335 * possible that we're going to need more metadata blocks than
2336 * previously reserved. However we must not fail because we're in
2337 * writeback and there is nothing we can do about it so it might result
2338 * in data loss. So use reserved blocks to allocate metadata if
2339 * possible.
2340 *
2341 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2342 * the blocks in question are delalloc blocks. This indicates
2343 * that the blocks and quotas has already been checked when
2344 * the data was copied into the page cache.
2345 */
2346 get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2347 EXT4_GET_BLOCKS_METADATA_NOFAIL |
2348 EXT4_GET_BLOCKS_IO_SUBMIT;
2349 dioread_nolock = ext4_should_dioread_nolock(inode);
2350 if (dioread_nolock)
2351 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2352 if (map->m_flags & (1 << BH_Delay))
2353 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2354
2355 err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2356 if (err < 0)
2357 return err;
2358 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2359 if (!mpd->io_submit.io_end->handle &&
2360 ext4_handle_valid(handle)) {
2361 mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2362 handle->h_rsv_handle = NULL;
2363 }
2364 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2365 }
2366
2367 BUG_ON(map->m_len == 0);
2368 if (map->m_flags & EXT4_MAP_NEW) {
2369 clean_bdev_aliases(inode->i_sb->s_bdev, map->m_pblk,
2370 map->m_len);
2371 }
2372 return 0;
2373 }
2374
2375 /*
2376 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2377 * mpd->len and submit pages underlying it for IO
2378 *
2379 * @handle - handle for journal operations
2380 * @mpd - extent to map
2381 * @give_up_on_write - we set this to true iff there is a fatal error and there
2382 * is no hope of writing the data. The caller should discard
2383 * dirty pages to avoid infinite loops.
2384 *
2385 * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2386 * delayed, blocks are allocated, if it is unwritten, we may need to convert
2387 * them to initialized or split the described range from larger unwritten
2388 * extent. Note that we need not map all the described range since allocation
2389 * can return less blocks or the range is covered by more unwritten extents. We
2390 * cannot map more because we are limited by reserved transaction credits. On
2391 * the other hand we always make sure that the last touched page is fully
2392 * mapped so that it can be written out (and thus forward progress is
2393 * guaranteed). After mapping we submit all mapped pages for IO.
2394 */
2395 static int mpage_map_and_submit_extent(handle_t *handle,
2396 struct mpage_da_data *mpd,
2397 bool *give_up_on_write)
2398 {
2399 struct inode *inode = mpd->inode;
2400 struct ext4_map_blocks *map = &mpd->map;
2401 int err;
2402 loff_t disksize;
2403 int progress = 0;
2404
2405 mpd->io_submit.io_end->offset =
2406 ((loff_t)map->m_lblk) << inode->i_blkbits;
2407 do {
2408 err = mpage_map_one_extent(handle, mpd);
2409 if (err < 0) {
2410 struct super_block *sb = inode->i_sb;
2411
2412 if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2413 goto invalidate_dirty_pages;
2414 /*
2415 * Let the uper layers retry transient errors.
2416 * In the case of ENOSPC, if ext4_count_free_blocks()
2417 * is non-zero, a commit should free up blocks.
2418 */
2419 if ((err == -ENOMEM) ||
2420 (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2421 if (progress)
2422 goto update_disksize;
2423 return err;
2424 }
2425 ext4_msg(sb, KERN_CRIT,
2426 "Delayed block allocation failed for "
2427 "inode %lu at logical offset %llu with"
2428 " max blocks %u with error %d",
2429 inode->i_ino,
2430 (unsigned long long)map->m_lblk,
2431 (unsigned)map->m_len, -err);
2432 ext4_msg(sb, KERN_CRIT,
2433 "This should not happen!! Data will "
2434 "be lost\n");
2435 if (err == -ENOSPC)
2436 ext4_print_free_blocks(inode);
2437 invalidate_dirty_pages:
2438 *give_up_on_write = true;
2439 return err;
2440 }
2441 progress = 1;
2442 /*
2443 * Update buffer state, submit mapped pages, and get us new
2444 * extent to map
2445 */
2446 err = mpage_map_and_submit_buffers(mpd);
2447 if (err < 0)
2448 goto update_disksize;
2449 } while (map->m_len);
2450
2451 update_disksize:
2452 /*
2453 * Update on-disk size after IO is submitted. Races with
2454 * truncate are avoided by checking i_size under i_data_sem.
2455 */
2456 disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2457 if (disksize > EXT4_I(inode)->i_disksize) {
2458 int err2;
2459 loff_t i_size;
2460
2461 down_write(&EXT4_I(inode)->i_data_sem);
2462 i_size = i_size_read(inode);
2463 if (disksize > i_size)
2464 disksize = i_size;
2465 if (disksize > EXT4_I(inode)->i_disksize)
2466 EXT4_I(inode)->i_disksize = disksize;
2467 err2 = ext4_mark_inode_dirty(handle, inode);
2468 up_write(&EXT4_I(inode)->i_data_sem);
2469 if (err2)
2470 ext4_error(inode->i_sb,
2471 "Failed to mark inode %lu dirty",
2472 inode->i_ino);
2473 if (!err)
2474 err = err2;
2475 }
2476 return err;
2477 }
2478
2479 /*
2480 * Calculate the total number of credits to reserve for one writepages
2481 * iteration. This is called from ext4_writepages(). We map an extent of
2482 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2483 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2484 * bpp - 1 blocks in bpp different extents.
2485 */
2486 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2487 {
2488 int bpp = ext4_journal_blocks_per_page(inode);
2489
2490 return ext4_meta_trans_blocks(inode,
2491 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2492 }
2493
2494 /*
2495 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2496 * and underlying extent to map
2497 *
2498 * @mpd - where to look for pages
2499 *
2500 * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2501 * IO immediately. When we find a page which isn't mapped we start accumulating
2502 * extent of buffers underlying these pages that needs mapping (formed by
2503 * either delayed or unwritten buffers). We also lock the pages containing
2504 * these buffers. The extent found is returned in @mpd structure (starting at
2505 * mpd->lblk with length mpd->len blocks).
2506 *
2507 * Note that this function can attach bios to one io_end structure which are
2508 * neither logically nor physically contiguous. Although it may seem as an
2509 * unnecessary complication, it is actually inevitable in blocksize < pagesize
2510 * case as we need to track IO to all buffers underlying a page in one io_end.
2511 */
2512 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2513 {
2514 struct address_space *mapping = mpd->inode->i_mapping;
2515 struct pagevec pvec;
2516 unsigned int nr_pages;
2517 long left = mpd->wbc->nr_to_write;
2518 pgoff_t index = mpd->first_page;
2519 pgoff_t end = mpd->last_page;
2520 int tag;
2521 int i, err = 0;
2522 int blkbits = mpd->inode->i_blkbits;
2523 ext4_lblk_t lblk;
2524 struct buffer_head *head;
2525
2526 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2527 tag = PAGECACHE_TAG_TOWRITE;
2528 else
2529 tag = PAGECACHE_TAG_DIRTY;
2530
2531 pagevec_init(&pvec, 0);
2532 mpd->map.m_len = 0;
2533 mpd->next_page = index;
2534 while (index <= end) {
2535 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2536 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2537 if (nr_pages == 0)
2538 goto out;
2539
2540 for (i = 0; i < nr_pages; i++) {
2541 struct page *page = pvec.pages[i];
2542
2543 /*
2544 * At this point, the page may be truncated or
2545 * invalidated (changing page->mapping to NULL), or
2546 * even swizzled back from swapper_space to tmpfs file
2547 * mapping. However, page->index will not change
2548 * because we have a reference on the page.
2549 */
2550 if (page->index > end)
2551 goto out;
2552
2553 /*
2554 * Accumulated enough dirty pages? This doesn't apply
2555 * to WB_SYNC_ALL mode. For integrity sync we have to
2556 * keep going because someone may be concurrently
2557 * dirtying pages, and we might have synced a lot of
2558 * newly appeared dirty pages, but have not synced all
2559 * of the old dirty pages.
2560 */
2561 if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2562 goto out;
2563
2564 /* If we can't merge this page, we are done. */
2565 if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2566 goto out;
2567
2568 lock_page(page);
2569 /*
2570 * If the page is no longer dirty, or its mapping no
2571 * longer corresponds to inode we are writing (which
2572 * means it has been truncated or invalidated), or the
2573 * page is already under writeback and we are not doing
2574 * a data integrity writeback, skip the page
2575 */
2576 if (!PageDirty(page) ||
2577 (PageWriteback(page) &&
2578 (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2579 unlikely(page->mapping != mapping)) {
2580 unlock_page(page);
2581 continue;
2582 }
2583
2584 wait_on_page_writeback(page);
2585 BUG_ON(PageWriteback(page));
2586
2587 if (mpd->map.m_len == 0)
2588 mpd->first_page = page->index;
2589 mpd->next_page = page->index + 1;
2590 /* Add all dirty buffers to mpd */
2591 lblk = ((ext4_lblk_t)page->index) <<
2592 (PAGE_SHIFT - blkbits);
2593 head = page_buffers(page);
2594 err = mpage_process_page_bufs(mpd, head, head, lblk);
2595 if (err <= 0)
2596 goto out;
2597 err = 0;
2598 left--;
2599 }
2600 pagevec_release(&pvec);
2601 cond_resched();
2602 }
2603 return 0;
2604 out:
2605 pagevec_release(&pvec);
2606 return err;
2607 }
2608
2609 static int __writepage(struct page *page, struct writeback_control *wbc,
2610 void *data)
2611 {
2612 struct address_space *mapping = data;
2613 int ret = ext4_writepage(page, wbc);
2614 mapping_set_error(mapping, ret);
2615 return ret;
2616 }
2617
2618 static int ext4_writepages(struct address_space *mapping,
2619 struct writeback_control *wbc)
2620 {
2621 pgoff_t writeback_index = 0;
2622 long nr_to_write = wbc->nr_to_write;
2623 int range_whole = 0;
2624 int cycled = 1;
2625 handle_t *handle = NULL;
2626 struct mpage_da_data mpd;
2627 struct inode *inode = mapping->host;
2628 int needed_blocks, rsv_blocks = 0, ret = 0;
2629 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2630 bool done;
2631 struct blk_plug plug;
2632 bool give_up_on_write = false;
2633
2634 percpu_down_read(&sbi->s_journal_flag_rwsem);
2635 trace_ext4_writepages(inode, wbc);
2636
2637 if (dax_mapping(mapping)) {
2638 ret = dax_writeback_mapping_range(mapping, inode->i_sb->s_bdev,
2639 wbc);
2640 goto out_writepages;
2641 }
2642
2643 /*
2644 * No pages to write? This is mainly a kludge to avoid starting
2645 * a transaction for special inodes like journal inode on last iput()
2646 * because that could violate lock ordering on umount
2647 */
2648 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2649 goto out_writepages;
2650
2651 if (ext4_should_journal_data(inode)) {
2652 struct blk_plug plug;
2653
2654 blk_start_plug(&plug);
2655 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2656 blk_finish_plug(&plug);
2657 goto out_writepages;
2658 }
2659
2660 /*
2661 * If the filesystem has aborted, it is read-only, so return
2662 * right away instead of dumping stack traces later on that
2663 * will obscure the real source of the problem. We test
2664 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2665 * the latter could be true if the filesystem is mounted
2666 * read-only, and in that case, ext4_writepages should
2667 * *never* be called, so if that ever happens, we would want
2668 * the stack trace.
2669 */
2670 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2671 ret = -EROFS;
2672 goto out_writepages;
2673 }
2674
2675 if (ext4_should_dioread_nolock(inode)) {
2676 /*
2677 * We may need to convert up to one extent per block in
2678 * the page and we may dirty the inode.
2679 */
2680 rsv_blocks = 1 + (PAGE_SIZE >> inode->i_blkbits);
2681 }
2682
2683 /*
2684 * If we have inline data and arrive here, it means that
2685 * we will soon create the block for the 1st page, so
2686 * we'd better clear the inline data here.
2687 */
2688 if (ext4_has_inline_data(inode)) {
2689 /* Just inode will be modified... */
2690 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2691 if (IS_ERR(handle)) {
2692 ret = PTR_ERR(handle);
2693 goto out_writepages;
2694 }
2695 BUG_ON(ext4_test_inode_state(inode,
2696 EXT4_STATE_MAY_INLINE_DATA));
2697 ext4_destroy_inline_data(handle, inode);
2698 ext4_journal_stop(handle);
2699 }
2700
2701 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2702 range_whole = 1;
2703
2704 if (wbc->range_cyclic) {
2705 writeback_index = mapping->writeback_index;
2706 if (writeback_index)
2707 cycled = 0;
2708 mpd.first_page = writeback_index;
2709 mpd.last_page = -1;
2710 } else {
2711 mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2712 mpd.last_page = wbc->range_end >> PAGE_SHIFT;
2713 }
2714
2715 mpd.inode = inode;
2716 mpd.wbc = wbc;
2717 ext4_io_submit_init(&mpd.io_submit, wbc);
2718 retry:
2719 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2720 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2721 done = false;
2722 blk_start_plug(&plug);
2723 while (!done && mpd.first_page <= mpd.last_page) {
2724 /* For each extent of pages we use new io_end */
2725 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2726 if (!mpd.io_submit.io_end) {
2727 ret = -ENOMEM;
2728 break;
2729 }
2730
2731 /*
2732 * We have two constraints: We find one extent to map and we
2733 * must always write out whole page (makes a difference when
2734 * blocksize < pagesize) so that we don't block on IO when we
2735 * try to write out the rest of the page. Journalled mode is
2736 * not supported by delalloc.
2737 */
2738 BUG_ON(ext4_should_journal_data(inode));
2739 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2740
2741 /* start a new transaction */
2742 handle = ext4_journal_start_with_reserve(inode,
2743 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2744 if (IS_ERR(handle)) {
2745 ret = PTR_ERR(handle);
2746 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2747 "%ld pages, ino %lu; err %d", __func__,
2748 wbc->nr_to_write, inode->i_ino, ret);
2749 /* Release allocated io_end */
2750 ext4_put_io_end(mpd.io_submit.io_end);
2751 break;
2752 }
2753
2754 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2755 ret = mpage_prepare_extent_to_map(&mpd);
2756 if (!ret) {
2757 if (mpd.map.m_len)
2758 ret = mpage_map_and_submit_extent(handle, &mpd,
2759 &give_up_on_write);
2760 else {
2761 /*
2762 * We scanned the whole range (or exhausted
2763 * nr_to_write), submitted what was mapped and
2764 * didn't find anything needing mapping. We are
2765 * done.
2766 */
2767 done = true;
2768 }
2769 }
2770 /*
2771 * Caution: If the handle is synchronous,
2772 * ext4_journal_stop() can wait for transaction commit
2773 * to finish which may depend on writeback of pages to
2774 * complete or on page lock to be released. In that
2775 * case, we have to wait until after after we have
2776 * submitted all the IO, released page locks we hold,
2777 * and dropped io_end reference (for extent conversion
2778 * to be able to complete) before stopping the handle.
2779 */
2780 if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2781 ext4_journal_stop(handle);
2782 handle = NULL;
2783 }
2784 /* Submit prepared bio */
2785 ext4_io_submit(&mpd.io_submit);
2786 /* Unlock pages we didn't use */
2787 mpage_release_unused_pages(&mpd, give_up_on_write);
2788 /*
2789 * Drop our io_end reference we got from init. We have
2790 * to be careful and use deferred io_end finishing if
2791 * we are still holding the transaction as we can
2792 * release the last reference to io_end which may end
2793 * up doing unwritten extent conversion.
2794 */
2795 if (handle) {
2796 ext4_put_io_end_defer(mpd.io_submit.io_end);
2797 ext4_journal_stop(handle);
2798 } else
2799 ext4_put_io_end(mpd.io_submit.io_end);
2800
2801 if (ret == -ENOSPC && sbi->s_journal) {
2802 /*
2803 * Commit the transaction which would
2804 * free blocks released in the transaction
2805 * and try again
2806 */
2807 jbd2_journal_force_commit_nested(sbi->s_journal);
2808 ret = 0;
2809 continue;
2810 }
2811 /* Fatal error - ENOMEM, EIO... */
2812 if (ret)
2813 break;
2814 }
2815 blk_finish_plug(&plug);
2816 if (!ret && !cycled && wbc->nr_to_write > 0) {
2817 cycled = 1;
2818 mpd.last_page = writeback_index - 1;
2819 mpd.first_page = 0;
2820 goto retry;
2821 }
2822
2823 /* Update index */
2824 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2825 /*
2826 * Set the writeback_index so that range_cyclic
2827 * mode will write it back later
2828 */
2829 mapping->writeback_index = mpd.first_page;
2830
2831 out_writepages:
2832 trace_ext4_writepages_result(inode, wbc, ret,
2833 nr_to_write - wbc->nr_to_write);
2834 percpu_up_read(&sbi->s_journal_flag_rwsem);
2835 return ret;
2836 }
2837
2838 static int ext4_nonda_switch(struct super_block *sb)
2839 {
2840 s64 free_clusters, dirty_clusters;
2841 struct ext4_sb_info *sbi = EXT4_SB(sb);
2842
2843 /*
2844 * switch to non delalloc mode if we are running low
2845 * on free block. The free block accounting via percpu
2846 * counters can get slightly wrong with percpu_counter_batch getting
2847 * accumulated on each CPU without updating global counters
2848 * Delalloc need an accurate free block accounting. So switch
2849 * to non delalloc when we are near to error range.
2850 */
2851 free_clusters =
2852 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2853 dirty_clusters =
2854 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2855 /*
2856 * Start pushing delalloc when 1/2 of free blocks are dirty.
2857 */
2858 if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2859 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2860
2861 if (2 * free_clusters < 3 * dirty_clusters ||
2862 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2863 /*
2864 * free block count is less than 150% of dirty blocks
2865 * or free blocks is less than watermark
2866 */
2867 return 1;
2868 }
2869 return 0;
2870 }
2871
2872 /* We always reserve for an inode update; the superblock could be there too */
2873 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2874 {
2875 if (likely(ext4_has_feature_large_file(inode->i_sb)))
2876 return 1;
2877
2878 if (pos + len <= 0x7fffffffULL)
2879 return 1;
2880
2881 /* We might need to update the superblock to set LARGE_FILE */
2882 return 2;
2883 }
2884
2885 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2886 loff_t pos, unsigned len, unsigned flags,
2887 struct page **pagep, void **fsdata)
2888 {
2889 int ret, retries = 0;
2890 struct page *page;
2891 pgoff_t index;
2892 struct inode *inode = mapping->host;
2893 handle_t *handle;
2894
2895 index = pos >> PAGE_SHIFT;
2896
2897 if (ext4_nonda_switch(inode->i_sb) ||
2898 S_ISLNK(inode->i_mode)) {
2899 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2900 return ext4_write_begin(file, mapping, pos,
2901 len, flags, pagep, fsdata);
2902 }
2903 *fsdata = (void *)0;
2904 trace_ext4_da_write_begin(inode, pos, len, flags);
2905
2906 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2907 ret = ext4_da_write_inline_data_begin(mapping, inode,
2908 pos, len, flags,
2909 pagep, fsdata);
2910 if (ret < 0)
2911 return ret;
2912 if (ret == 1)
2913 return 0;
2914 }
2915
2916 /*
2917 * grab_cache_page_write_begin() can take a long time if the
2918 * system is thrashing due to memory pressure, or if the page
2919 * is being written back. So grab it first before we start
2920 * the transaction handle. This also allows us to allocate
2921 * the page (if needed) without using GFP_NOFS.
2922 */
2923 retry_grab:
2924 page = grab_cache_page_write_begin(mapping, index, flags);
2925 if (!page)
2926 return -ENOMEM;
2927 unlock_page(page);
2928
2929 /*
2930 * With delayed allocation, we don't log the i_disksize update
2931 * if there is delayed block allocation. But we still need
2932 * to journalling the i_disksize update if writes to the end
2933 * of file which has an already mapped buffer.
2934 */
2935 retry_journal:
2936 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2937 ext4_da_write_credits(inode, pos, len));
2938 if (IS_ERR(handle)) {
2939 put_page(page);
2940 return PTR_ERR(handle);
2941 }
2942
2943 lock_page(page);
2944 if (page->mapping != mapping) {
2945 /* The page got truncated from under us */
2946 unlock_page(page);
2947 put_page(page);
2948 ext4_journal_stop(handle);
2949 goto retry_grab;
2950 }
2951 /* In case writeback began while the page was unlocked */
2952 wait_for_stable_page(page);
2953
2954 #ifdef CONFIG_EXT4_FS_ENCRYPTION
2955 ret = ext4_block_write_begin(page, pos, len,
2956 ext4_da_get_block_prep);
2957 #else
2958 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2959 #endif
2960 if (ret < 0) {
2961 unlock_page(page);
2962 ext4_journal_stop(handle);
2963 /*
2964 * block_write_begin may have instantiated a few blocks
2965 * outside i_size. Trim these off again. Don't need
2966 * i_size_read because we hold i_mutex.
2967 */
2968 if (pos + len > inode->i_size)
2969 ext4_truncate_failed_write(inode);
2970
2971 if (ret == -ENOSPC &&
2972 ext4_should_retry_alloc(inode->i_sb, &retries))
2973 goto retry_journal;
2974
2975 put_page(page);
2976 return ret;
2977 }
2978
2979 *pagep = page;
2980 return ret;
2981 }
2982
2983 /*
2984 * Check if we should update i_disksize
2985 * when write to the end of file but not require block allocation
2986 */
2987 static int ext4_da_should_update_i_disksize(struct page *page,
2988 unsigned long offset)
2989 {
2990 struct buffer_head *bh;
2991 struct inode *inode = page->mapping->host;
2992 unsigned int idx;
2993 int i;
2994
2995 bh = page_buffers(page);
2996 idx = offset >> inode->i_blkbits;
2997
2998 for (i = 0; i < idx; i++)
2999 bh = bh->b_this_page;
3000
3001 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3002 return 0;
3003 return 1;
3004 }
3005
3006 static int ext4_da_write_end(struct file *file,
3007 struct address_space *mapping,
3008 loff_t pos, unsigned len, unsigned copied,
3009 struct page *page, void *fsdata)
3010 {
3011 struct inode *inode = mapping->host;
3012 int ret = 0, ret2;
3013 handle_t *handle = ext4_journal_current_handle();
3014 loff_t new_i_size;
3015 unsigned long start, end;
3016 int write_mode = (int)(unsigned long)fsdata;
3017
3018 if (write_mode == FALL_BACK_TO_NONDELALLOC)
3019 return ext4_write_end(file, mapping, pos,
3020 len, copied, page, fsdata);
3021
3022 trace_ext4_da_write_end(inode, pos, len, copied);
3023 start = pos & (PAGE_SIZE - 1);
3024 end = start + copied - 1;
3025
3026 /*
3027 * generic_write_end() will run mark_inode_dirty() if i_size
3028 * changes. So let's piggyback the i_disksize mark_inode_dirty
3029 * into that.
3030 */
3031 new_i_size = pos + copied;
3032 if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
3033 if (ext4_has_inline_data(inode) ||
3034 ext4_da_should_update_i_disksize(page, end)) {
3035 ext4_update_i_disksize(inode, new_i_size);
3036 /* We need to mark inode dirty even if
3037 * new_i_size is less that inode->i_size
3038 * bu greater than i_disksize.(hint delalloc)
3039 */
3040 ext4_mark_inode_dirty(handle, inode);
3041 }
3042 }
3043
3044 if (write_mode != CONVERT_INLINE_DATA &&
3045 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3046 ext4_has_inline_data(inode))
3047 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
3048 page);
3049 else
3050 ret2 = generic_write_end(file, mapping, pos, len, copied,
3051 page, fsdata);
3052
3053 copied = ret2;
3054 if (ret2 < 0)
3055 ret = ret2;
3056 ret2 = ext4_journal_stop(handle);
3057 if (!ret)
3058 ret = ret2;
3059
3060 return ret ? ret : copied;
3061 }
3062
3063 static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
3064 unsigned int length)
3065 {
3066 /*
3067 * Drop reserved blocks
3068 */
3069 BUG_ON(!PageLocked(page));
3070 if (!page_has_buffers(page))
3071 goto out;
3072
3073 ext4_da_page_release_reservation(page, offset, length);
3074
3075 out:
3076 ext4_invalidatepage(page, offset, length);
3077
3078 return;
3079 }
3080
3081 /*
3082 * Force all delayed allocation blocks to be allocated for a given inode.
3083 */
3084 int ext4_alloc_da_blocks(struct inode *inode)
3085 {
3086 trace_ext4_alloc_da_blocks(inode);
3087
3088 if (!EXT4_I(inode)->i_reserved_data_blocks)
3089 return 0;
3090
3091 /*
3092 * We do something simple for now. The filemap_flush() will
3093 * also start triggering a write of the data blocks, which is
3094 * not strictly speaking necessary (and for users of
3095 * laptop_mode, not even desirable). However, to do otherwise
3096 * would require replicating code paths in:
3097 *
3098 * ext4_writepages() ->
3099 * write_cache_pages() ---> (via passed in callback function)
3100 * __mpage_da_writepage() -->
3101 * mpage_add_bh_to_extent()
3102 * mpage_da_map_blocks()
3103 *
3104 * The problem is that write_cache_pages(), located in
3105 * mm/page-writeback.c, marks pages clean in preparation for
3106 * doing I/O, which is not desirable if we're not planning on
3107 * doing I/O at all.
3108 *
3109 * We could call write_cache_pages(), and then redirty all of
3110 * the pages by calling redirty_page_for_writepage() but that
3111 * would be ugly in the extreme. So instead we would need to
3112 * replicate parts of the code in the above functions,
3113 * simplifying them because we wouldn't actually intend to
3114 * write out the pages, but rather only collect contiguous
3115 * logical block extents, call the multi-block allocator, and
3116 * then update the buffer heads with the block allocations.
3117 *
3118 * For now, though, we'll cheat by calling filemap_flush(),
3119 * which will map the blocks, and start the I/O, but not
3120 * actually wait for the I/O to complete.
3121 */
3122 return filemap_flush(inode->i_mapping);
3123 }
3124
3125 /*
3126 * bmap() is special. It gets used by applications such as lilo and by
3127 * the swapper to find the on-disk block of a specific piece of data.
3128 *
3129 * Naturally, this is dangerous if the block concerned is still in the
3130 * journal. If somebody makes a swapfile on an ext4 data-journaling
3131 * filesystem and enables swap, then they may get a nasty shock when the
3132 * data getting swapped to that swapfile suddenly gets overwritten by
3133 * the original zero's written out previously to the journal and
3134 * awaiting writeback in the kernel's buffer cache.
3135 *
3136 * So, if we see any bmap calls here on a modified, data-journaled file,
3137 * take extra steps to flush any blocks which might be in the cache.
3138 */
3139 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3140 {
3141 struct inode *inode = mapping->host;
3142 journal_t *journal;
3143 int err;
3144
3145 /*
3146 * We can get here for an inline file via the FIBMAP ioctl
3147 */
3148 if (ext4_has_inline_data(inode))
3149 return 0;
3150
3151 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3152 test_opt(inode->i_sb, DELALLOC)) {
3153 /*
3154 * With delalloc we want to sync the file
3155 * so that we can make sure we allocate
3156 * blocks for file
3157 */
3158 filemap_write_and_wait(mapping);
3159 }
3160
3161 if (EXT4_JOURNAL(inode) &&
3162 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3163 /*
3164 * This is a REALLY heavyweight approach, but the use of
3165 * bmap on dirty files is expected to be extremely rare:
3166 * only if we run lilo or swapon on a freshly made file
3167 * do we expect this to happen.
3168 *
3169 * (bmap requires CAP_SYS_RAWIO so this does not
3170 * represent an unprivileged user DOS attack --- we'd be
3171 * in trouble if mortal users could trigger this path at
3172 * will.)
3173 *
3174 * NB. EXT4_STATE_JDATA is not set on files other than
3175 * regular files. If somebody wants to bmap a directory
3176 * or symlink and gets confused because the buffer
3177 * hasn't yet been flushed to disk, they deserve
3178 * everything they get.
3179 */
3180
3181 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3182 journal = EXT4_JOURNAL(inode);
3183 jbd2_journal_lock_updates(journal);
3184 err = jbd2_journal_flush(journal);
3185 jbd2_journal_unlock_updates(journal);
3186
3187 if (err)
3188 return 0;
3189 }
3190
3191 return generic_block_bmap(mapping, block, ext4_get_block);
3192 }
3193
3194 static int ext4_readpage(struct file *file, struct page *page)
3195 {
3196 int ret = -EAGAIN;
3197 struct inode *inode = page->mapping->host;
3198
3199 trace_ext4_readpage(page);
3200
3201 if (ext4_has_inline_data(inode))
3202 ret = ext4_readpage_inline(inode, page);
3203
3204 if (ret == -EAGAIN)
3205 return ext4_mpage_readpages(page->mapping, NULL, page, 1);
3206
3207 return ret;
3208 }
3209
3210 static int
3211 ext4_readpages(struct file *file, struct address_space *mapping,
3212 struct list_head *pages, unsigned nr_pages)
3213 {
3214 struct inode *inode = mapping->host;
3215
3216 /* If the file has inline data, no need to do readpages. */
3217 if (ext4_has_inline_data(inode))
3218 return 0;
3219
3220 return ext4_mpage_readpages(mapping, pages, NULL, nr_pages);
3221 }
3222
3223 static void ext4_invalidatepage(struct page *page, unsigned int offset,
3224 unsigned int length)
3225 {
3226 trace_ext4_invalidatepage(page, offset, length);
3227
3228 /* No journalling happens on data buffers when this function is used */
3229 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3230
3231 block_invalidatepage(page, offset, length);
3232 }
3233
3234 static int __ext4_journalled_invalidatepage(struct page *page,
3235 unsigned int offset,
3236 unsigned int length)
3237 {
3238 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3239
3240 trace_ext4_journalled_invalidatepage(page, offset, length);
3241
3242 /*
3243 * If it's a full truncate we just forget about the pending dirtying
3244 */
3245 if (offset == 0 && length == PAGE_SIZE)
3246 ClearPageChecked(page);
3247
3248 return jbd2_journal_invalidatepage(journal, page, offset, length);
3249 }
3250
3251 /* Wrapper for aops... */
3252 static void ext4_journalled_invalidatepage(struct page *page,
3253 unsigned int offset,
3254 unsigned int length)
3255 {
3256 WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3257 }
3258
3259 static int ext4_releasepage(struct page *page, gfp_t wait)
3260 {
3261 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3262
3263 trace_ext4_releasepage(page);
3264
3265 /* Page has dirty journalled data -> cannot release */
3266 if (PageChecked(page))
3267 return 0;
3268 if (journal)
3269 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3270 else
3271 return try_to_free_buffers(page);
3272 }
3273
3274 #ifdef CONFIG_FS_DAX
3275 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3276 unsigned flags, struct iomap *iomap)
3277 {
3278 unsigned int blkbits = inode->i_blkbits;
3279 unsigned long first_block = offset >> blkbits;
3280 unsigned long last_block = (offset + length - 1) >> blkbits;
3281 struct ext4_map_blocks map;
3282 int ret;
3283
3284 if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3285 return -ERANGE;
3286
3287 map.m_lblk = first_block;
3288 map.m_len = last_block - first_block + 1;
3289
3290 if (!(flags & IOMAP_WRITE)) {
3291 ret = ext4_map_blocks(NULL, inode, &map, 0);
3292 } else {
3293 int dio_credits;
3294 handle_t *handle;
3295 int retries = 0;
3296
3297 /* Trim mapping request to maximum we can map at once for DIO */
3298 if (map.m_len > DIO_MAX_BLOCKS)
3299 map.m_len = DIO_MAX_BLOCKS;
3300 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
3301 retry:
3302 /*
3303 * Either we allocate blocks and then we don't get unwritten
3304 * extent so we have reserved enough credits, or the blocks
3305 * are already allocated and unwritten and in that case
3306 * extent conversion fits in the credits as well.
3307 */
3308 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
3309 dio_credits);
3310 if (IS_ERR(handle))
3311 return PTR_ERR(handle);
3312
3313 ret = ext4_map_blocks(handle, inode, &map,
3314 EXT4_GET_BLOCKS_CREATE_ZERO);
3315 if (ret < 0) {
3316 ext4_journal_stop(handle);
3317 if (ret == -ENOSPC &&
3318 ext4_should_retry_alloc(inode->i_sb, &retries))
3319 goto retry;
3320 return ret;
3321 }
3322
3323 /*
3324 * If we added blocks beyond i_size, we need to make sure they
3325 * will get truncated if we crash before updating i_size in
3326 * ext4_iomap_end(). For faults we don't need to do that (and
3327 * even cannot because for orphan list operations inode_lock is
3328 * required) - if we happen to instantiate block beyond i_size,
3329 * it is because we race with truncate which has already added
3330 * the inode to the orphan list.
3331 */
3332 if (!(flags & IOMAP_FAULT) && first_block + map.m_len >
3333 (i_size_read(inode) + (1 << blkbits) - 1) >> blkbits) {
3334 int err;
3335
3336 err = ext4_orphan_add(handle, inode);
3337 if (err < 0) {
3338 ext4_journal_stop(handle);
3339 return err;
3340 }
3341 }
3342 ext4_journal_stop(handle);
3343 }
3344
3345 iomap->flags = 0;
3346 iomap->bdev = inode->i_sb->s_bdev;
3347 iomap->offset = first_block << blkbits;
3348
3349 if (ret == 0) {
3350 iomap->type = IOMAP_HOLE;
3351 iomap->blkno = IOMAP_NULL_BLOCK;
3352 iomap->length = (u64)map.m_len << blkbits;
3353 } else {
3354 if (map.m_flags & EXT4_MAP_MAPPED) {
3355 iomap->type = IOMAP_MAPPED;
3356 } else if (map.m_flags & EXT4_MAP_UNWRITTEN) {
3357 iomap->type = IOMAP_UNWRITTEN;
3358 } else {
3359 WARN_ON_ONCE(1);
3360 return -EIO;
3361 }
3362 iomap->blkno = (sector_t)map.m_pblk << (blkbits - 9);
3363 iomap->length = (u64)map.m_len << blkbits;
3364 }
3365
3366 if (map.m_flags & EXT4_MAP_NEW)
3367 iomap->flags |= IOMAP_F_NEW;
3368 return 0;
3369 }
3370
3371 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3372 ssize_t written, unsigned flags, struct iomap *iomap)
3373 {
3374 int ret = 0;
3375 handle_t *handle;
3376 int blkbits = inode->i_blkbits;
3377 bool truncate = false;
3378
3379 if (!(flags & IOMAP_WRITE) || (flags & IOMAP_FAULT))
3380 return 0;
3381
3382 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3383 if (IS_ERR(handle)) {
3384 ret = PTR_ERR(handle);
3385 goto orphan_del;
3386 }
3387 if (ext4_update_inode_size(inode, offset + written))
3388 ext4_mark_inode_dirty(handle, inode);
3389 /*
3390 * We may need to truncate allocated but not written blocks beyond EOF.
3391 */
3392 if (iomap->offset + iomap->length >
3393 ALIGN(inode->i_size, 1 << blkbits)) {
3394 ext4_lblk_t written_blk, end_blk;
3395
3396 written_blk = (offset + written) >> blkbits;
3397 end_blk = (offset + length) >> blkbits;
3398 if (written_blk < end_blk && ext4_can_truncate(inode))
3399 truncate = true;
3400 }
3401 /*
3402 * Remove inode from orphan list if we were extending a inode and
3403 * everything went fine.
3404 */
3405 if (!truncate && inode->i_nlink &&
3406 !list_empty(&EXT4_I(inode)->i_orphan))
3407 ext4_orphan_del(handle, inode);
3408 ext4_journal_stop(handle);
3409 if (truncate) {
3410 ext4_truncate_failed_write(inode);
3411 orphan_del:
3412 /*
3413 * If truncate failed early the inode might still be on the
3414 * orphan list; we need to make sure the inode is removed from
3415 * the orphan list in that case.
3416 */
3417 if (inode->i_nlink)
3418 ext4_orphan_del(NULL, inode);
3419 }
3420 return ret;
3421 }
3422
3423 struct iomap_ops ext4_iomap_ops = {
3424 .iomap_begin = ext4_iomap_begin,
3425 .iomap_end = ext4_iomap_end,
3426 };
3427
3428 #endif
3429
3430 static int ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3431 ssize_t size, void *private)
3432 {
3433 ext4_io_end_t *io_end = private;
3434
3435 /* if not async direct IO just return */
3436 if (!io_end)
3437 return 0;
3438
3439 ext_debug("ext4_end_io_dio(): io_end 0x%p "
3440 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3441 io_end, io_end->inode->i_ino, iocb, offset, size);
3442
3443 /*
3444 * Error during AIO DIO. We cannot convert unwritten extents as the
3445 * data was not written. Just clear the unwritten flag and drop io_end.
3446 */
3447 if (size <= 0) {
3448 ext4_clear_io_unwritten_flag(io_end);
3449 size = 0;
3450 }
3451 io_end->offset = offset;
3452 io_end->size = size;
3453 ext4_put_io_end(io_end);
3454
3455 return 0;
3456 }
3457
3458 /*
3459 * Handling of direct IO writes.
3460 *
3461 * For ext4 extent files, ext4 will do direct-io write even to holes,
3462 * preallocated extents, and those write extend the file, no need to
3463 * fall back to buffered IO.
3464 *
3465 * For holes, we fallocate those blocks, mark them as unwritten
3466 * If those blocks were preallocated, we mark sure they are split, but
3467 * still keep the range to write as unwritten.
3468 *
3469 * The unwritten extents will be converted to written when DIO is completed.
3470 * For async direct IO, since the IO may still pending when return, we
3471 * set up an end_io call back function, which will do the conversion
3472 * when async direct IO completed.
3473 *
3474 * If the O_DIRECT write will extend the file then add this inode to the
3475 * orphan list. So recovery will truncate it back to the original size
3476 * if the machine crashes during the write.
3477 *
3478 */
3479 static ssize_t ext4_direct_IO_write(struct kiocb *iocb, struct iov_iter *iter)
3480 {
3481 struct file *file = iocb->ki_filp;
3482 struct inode *inode = file->f_mapping->host;
3483 struct ext4_inode_info *ei = EXT4_I(inode);
3484 ssize_t ret;
3485 loff_t offset = iocb->ki_pos;
3486 size_t count = iov_iter_count(iter);
3487 int overwrite = 0;
3488 get_block_t *get_block_func = NULL;
3489 int dio_flags = 0;
3490 loff_t final_size = offset + count;
3491 int orphan = 0;
3492 handle_t *handle;
3493
3494 if (final_size > inode->i_size) {
3495 /* Credits for sb + inode write */
3496 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3497 if (IS_ERR(handle)) {
3498 ret = PTR_ERR(handle);
3499 goto out;
3500 }
3501 ret = ext4_orphan_add(handle, inode);
3502 if (ret) {
3503 ext4_journal_stop(handle);
3504 goto out;
3505 }
3506 orphan = 1;
3507 ei->i_disksize = inode->i_size;
3508 ext4_journal_stop(handle);
3509 }
3510
3511 BUG_ON(iocb->private == NULL);
3512
3513 /*
3514 * Make all waiters for direct IO properly wait also for extent
3515 * conversion. This also disallows race between truncate() and
3516 * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3517 */
3518 inode_dio_begin(inode);
3519
3520 /* If we do a overwrite dio, i_mutex locking can be released */
3521 overwrite = *((int *)iocb->private);
3522
3523 if (overwrite)
3524 inode_unlock(inode);
3525
3526 /*
3527 * For extent mapped files we could direct write to holes and fallocate.
3528 *
3529 * Allocated blocks to fill the hole are marked as unwritten to prevent
3530 * parallel buffered read to expose the stale data before DIO complete
3531 * the data IO.
3532 *
3533 * As to previously fallocated extents, ext4 get_block will just simply
3534 * mark the buffer mapped but still keep the extents unwritten.
3535 *
3536 * For non AIO case, we will convert those unwritten extents to written
3537 * after return back from blockdev_direct_IO. That way we save us from
3538 * allocating io_end structure and also the overhead of offloading
3539 * the extent convertion to a workqueue.
3540 *
3541 * For async DIO, the conversion needs to be deferred when the
3542 * IO is completed. The ext4 end_io callback function will be
3543 * called to take care of the conversion work. Here for async
3544 * case, we allocate an io_end structure to hook to the iocb.
3545 */
3546 iocb->private = NULL;
3547 if (overwrite)
3548 get_block_func = ext4_dio_get_block_overwrite;
3549 else if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS) ||
3550 round_down(offset, 1 << inode->i_blkbits) >= inode->i_size) {
3551 get_block_func = ext4_dio_get_block;
3552 dio_flags = DIO_LOCKING | DIO_SKIP_HOLES;
3553 } else if (is_sync_kiocb(iocb)) {
3554 get_block_func = ext4_dio_get_block_unwritten_sync;
3555 dio_flags = DIO_LOCKING;
3556 } else {
3557 get_block_func = ext4_dio_get_block_unwritten_async;
3558 dio_flags = DIO_LOCKING;
3559 }
3560 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3561 BUG_ON(ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode));
3562 #endif
3563 ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter,
3564 get_block_func, ext4_end_io_dio, NULL,
3565 dio_flags);
3566
3567 if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3568 EXT4_STATE_DIO_UNWRITTEN)) {
3569 int err;
3570 /*
3571 * for non AIO case, since the IO is already
3572 * completed, we could do the conversion right here
3573 */
3574 err = ext4_convert_unwritten_extents(NULL, inode,
3575 offset, ret);
3576 if (err < 0)
3577 ret = err;
3578 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3579 }
3580
3581 inode_dio_end(inode);
3582 /* take i_mutex locking again if we do a ovewrite dio */
3583 if (overwrite)
3584 inode_lock(inode);
3585
3586 if (ret < 0 && final_size > inode->i_size)
3587 ext4_truncate_failed_write(inode);
3588
3589 /* Handle extending of i_size after direct IO write */
3590 if (orphan) {
3591 int err;
3592
3593 /* Credits for sb + inode write */
3594 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3595 if (IS_ERR(handle)) {
3596 /* This is really bad luck. We've written the data
3597 * but cannot extend i_size. Bail out and pretend
3598 * the write failed... */
3599 ret = PTR_ERR(handle);
3600 if (inode->i_nlink)
3601 ext4_orphan_del(NULL, inode);
3602
3603 goto out;
3604 }
3605 if (inode->i_nlink)
3606 ext4_orphan_del(handle, inode);
3607 if (ret > 0) {
3608 loff_t end = offset + ret;
3609 if (end > inode->i_size) {
3610 ei->i_disksize = end;
3611 i_size_write(inode, end);
3612 /*
3613 * We're going to return a positive `ret'
3614 * here due to non-zero-length I/O, so there's
3615 * no way of reporting error returns from
3616 * ext4_mark_inode_dirty() to userspace. So
3617 * ignore it.
3618 */
3619 ext4_mark_inode_dirty(handle, inode);
3620 }
3621 }
3622 err = ext4_journal_stop(handle);
3623 if (ret == 0)
3624 ret = err;
3625 }
3626 out:
3627 return ret;
3628 }
3629
3630 static ssize_t ext4_direct_IO_read(struct kiocb *iocb, struct iov_iter *iter)
3631 {
3632 struct address_space *mapping = iocb->ki_filp->f_mapping;
3633 struct inode *inode = mapping->host;
3634 size_t count = iov_iter_count(iter);
3635 ssize_t ret;
3636
3637 /*
3638 * Shared inode_lock is enough for us - it protects against concurrent
3639 * writes & truncates and since we take care of writing back page cache,
3640 * we are protected against page writeback as well.
3641 */
3642 inode_lock_shared(inode);
3643 ret = filemap_write_and_wait_range(mapping, iocb->ki_pos,
3644 iocb->ki_pos + count);
3645 if (ret)
3646 goto out_unlock;
3647 ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
3648 iter, ext4_dio_get_block, NULL, NULL, 0);
3649 out_unlock:
3650 inode_unlock_shared(inode);
3651 return ret;
3652 }
3653
3654 static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
3655 {
3656 struct file *file = iocb->ki_filp;
3657 struct inode *inode = file->f_mapping->host;
3658 size_t count = iov_iter_count(iter);
3659 loff_t offset = iocb->ki_pos;
3660 ssize_t ret;
3661
3662 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3663 if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode))
3664 return 0;
3665 #endif
3666
3667 /*
3668 * If we are doing data journalling we don't support O_DIRECT
3669 */
3670 if (ext4_should_journal_data(inode))
3671 return 0;
3672
3673 /* Let buffer I/O handle the inline data case. */
3674 if (ext4_has_inline_data(inode))
3675 return 0;
3676
3677 /* DAX uses iomap path now */
3678 if (WARN_ON_ONCE(IS_DAX(inode)))
3679 return 0;
3680
3681 trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
3682 if (iov_iter_rw(iter) == READ)
3683 ret = ext4_direct_IO_read(iocb, iter);
3684 else
3685 ret = ext4_direct_IO_write(iocb, iter);
3686 trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret);
3687 return ret;
3688 }
3689
3690 /*
3691 * Pages can be marked dirty completely asynchronously from ext4's journalling
3692 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3693 * much here because ->set_page_dirty is called under VFS locks. The page is
3694 * not necessarily locked.
3695 *
3696 * We cannot just dirty the page and leave attached buffers clean, because the
3697 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3698 * or jbddirty because all the journalling code will explode.
3699 *
3700 * So what we do is to mark the page "pending dirty" and next time writepage
3701 * is called, propagate that into the buffers appropriately.
3702 */
3703 static int ext4_journalled_set_page_dirty(struct page *page)
3704 {
3705 SetPageChecked(page);
3706 return __set_page_dirty_nobuffers(page);
3707 }
3708
3709 static int ext4_set_page_dirty(struct page *page)
3710 {
3711 WARN_ON_ONCE(!PageLocked(page) && !PageDirty(page));
3712 WARN_ON_ONCE(!page_has_buffers(page));
3713 return __set_page_dirty_buffers(page);
3714 }
3715
3716 static const struct address_space_operations ext4_aops = {
3717 .readpage = ext4_readpage,
3718 .readpages = ext4_readpages,
3719 .writepage = ext4_writepage,
3720 .writepages = ext4_writepages,
3721 .write_begin = ext4_write_begin,
3722 .write_end = ext4_write_end,
3723 .set_page_dirty = ext4_set_page_dirty,
3724 .bmap = ext4_bmap,
3725 .invalidatepage = ext4_invalidatepage,
3726 .releasepage = ext4_releasepage,
3727 .direct_IO = ext4_direct_IO,
3728 .migratepage = buffer_migrate_page,
3729 .is_partially_uptodate = block_is_partially_uptodate,
3730 .error_remove_page = generic_error_remove_page,
3731 };
3732
3733 static const struct address_space_operations ext4_journalled_aops = {
3734 .readpage = ext4_readpage,
3735 .readpages = ext4_readpages,
3736 .writepage = ext4_writepage,
3737 .writepages = ext4_writepages,
3738 .write_begin = ext4_write_begin,
3739 .write_end = ext4_journalled_write_end,
3740 .set_page_dirty = ext4_journalled_set_page_dirty,
3741 .bmap = ext4_bmap,
3742 .invalidatepage = ext4_journalled_invalidatepage,
3743 .releasepage = ext4_releasepage,
3744 .direct_IO = ext4_direct_IO,
3745 .is_partially_uptodate = block_is_partially_uptodate,
3746 .error_remove_page = generic_error_remove_page,
3747 };
3748
3749 static const struct address_space_operations ext4_da_aops = {
3750 .readpage = ext4_readpage,
3751 .readpages = ext4_readpages,
3752 .writepage = ext4_writepage,
3753 .writepages = ext4_writepages,
3754 .write_begin = ext4_da_write_begin,
3755 .write_end = ext4_da_write_end,
3756 .set_page_dirty = ext4_set_page_dirty,
3757 .bmap = ext4_bmap,
3758 .invalidatepage = ext4_da_invalidatepage,
3759 .releasepage = ext4_releasepage,
3760 .direct_IO = ext4_direct_IO,
3761 .migratepage = buffer_migrate_page,
3762 .is_partially_uptodate = block_is_partially_uptodate,
3763 .error_remove_page = generic_error_remove_page,
3764 };
3765
3766 void ext4_set_aops(struct inode *inode)
3767 {
3768 switch (ext4_inode_journal_mode(inode)) {
3769 case EXT4_INODE_ORDERED_DATA_MODE:
3770 case EXT4_INODE_WRITEBACK_DATA_MODE:
3771 break;
3772 case EXT4_INODE_JOURNAL_DATA_MODE:
3773 inode->i_mapping->a_ops = &ext4_journalled_aops;
3774 return;
3775 default:
3776 BUG();
3777 }
3778 if (test_opt(inode->i_sb, DELALLOC))
3779 inode->i_mapping->a_ops = &ext4_da_aops;
3780 else
3781 inode->i_mapping->a_ops = &ext4_aops;
3782 }
3783
3784 static int __ext4_block_zero_page_range(handle_t *handle,
3785 struct address_space *mapping, loff_t from, loff_t length)
3786 {
3787 ext4_fsblk_t index = from >> PAGE_SHIFT;
3788 unsigned offset = from & (PAGE_SIZE-1);
3789 unsigned blocksize, pos;
3790 ext4_lblk_t iblock;
3791 struct inode *inode = mapping->host;
3792 struct buffer_head *bh;
3793 struct page *page;
3794 int err = 0;
3795
3796 page = find_or_create_page(mapping, from >> PAGE_SHIFT,
3797 mapping_gfp_constraint(mapping, ~__GFP_FS));
3798 if (!page)
3799 return -ENOMEM;
3800
3801 blocksize = inode->i_sb->s_blocksize;
3802
3803 iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
3804
3805 if (!page_has_buffers(page))
3806 create_empty_buffers(page, blocksize, 0);
3807
3808 /* Find the buffer that contains "offset" */
3809 bh = page_buffers(page);
3810 pos = blocksize;
3811 while (offset >= pos) {
3812 bh = bh->b_this_page;
3813 iblock++;
3814 pos += blocksize;
3815 }
3816 if (buffer_freed(bh)) {
3817 BUFFER_TRACE(bh, "freed: skip");
3818 goto unlock;
3819 }
3820 if (!buffer_mapped(bh)) {
3821 BUFFER_TRACE(bh, "unmapped");
3822 ext4_get_block(inode, iblock, bh, 0);
3823 /* unmapped? It's a hole - nothing to do */
3824 if (!buffer_mapped(bh)) {
3825 BUFFER_TRACE(bh, "still unmapped");
3826 goto unlock;
3827 }
3828 }
3829
3830 /* Ok, it's mapped. Make sure it's up-to-date */
3831 if (PageUptodate(page))
3832 set_buffer_uptodate(bh);
3833
3834 if (!buffer_uptodate(bh)) {
3835 err = -EIO;
3836 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
3837 wait_on_buffer(bh);
3838 /* Uhhuh. Read error. Complain and punt. */
3839 if (!buffer_uptodate(bh))
3840 goto unlock;
3841 if (S_ISREG(inode->i_mode) &&
3842 ext4_encrypted_inode(inode)) {
3843 /* We expect the key to be set. */
3844 BUG_ON(!fscrypt_has_encryption_key(inode));
3845 BUG_ON(blocksize != PAGE_SIZE);
3846 WARN_ON_ONCE(fscrypt_decrypt_page(page->mapping->host,
3847 page, PAGE_SIZE, 0, page->index));
3848 }
3849 }
3850 if (ext4_should_journal_data(inode)) {
3851 BUFFER_TRACE(bh, "get write access");
3852 err = ext4_journal_get_write_access(handle, bh);
3853 if (err)
3854 goto unlock;
3855 }
3856 zero_user(page, offset, length);
3857 BUFFER_TRACE(bh, "zeroed end of block");
3858
3859 if (ext4_should_journal_data(inode)) {
3860 err = ext4_handle_dirty_metadata(handle, inode, bh);
3861 } else {
3862 err = 0;
3863 mark_buffer_dirty(bh);
3864 if (ext4_should_order_data(inode))
3865 err = ext4_jbd2_inode_add_write(handle, inode);
3866 }
3867
3868 unlock:
3869 unlock_page(page);
3870 put_page(page);
3871 return err;
3872 }
3873
3874 /*
3875 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3876 * starting from file offset 'from'. The range to be zero'd must
3877 * be contained with in one block. If the specified range exceeds
3878 * the end of the block it will be shortened to end of the block
3879 * that cooresponds to 'from'
3880 */
3881 static int ext4_block_zero_page_range(handle_t *handle,
3882 struct address_space *mapping, loff_t from, loff_t length)
3883 {
3884 struct inode *inode = mapping->host;
3885 unsigned offset = from & (PAGE_SIZE-1);
3886 unsigned blocksize = inode->i_sb->s_blocksize;
3887 unsigned max = blocksize - (offset & (blocksize - 1));
3888
3889 /*
3890 * correct length if it does not fall between
3891 * 'from' and the end of the block
3892 */
3893 if (length > max || length < 0)
3894 length = max;
3895
3896 if (IS_DAX(inode)) {
3897 return iomap_zero_range(inode, from, length, NULL,
3898 &ext4_iomap_ops);
3899 }
3900 return __ext4_block_zero_page_range(handle, mapping, from, length);
3901 }
3902
3903 /*
3904 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3905 * up to the end of the block which corresponds to `from'.
3906 * This required during truncate. We need to physically zero the tail end
3907 * of that block so it doesn't yield old data if the file is later grown.
3908 */
3909 static int ext4_block_truncate_page(handle_t *handle,
3910 struct address_space *mapping, loff_t from)
3911 {
3912 unsigned offset = from & (PAGE_SIZE-1);
3913 unsigned length;
3914 unsigned blocksize;
3915 struct inode *inode = mapping->host;
3916
3917 blocksize = inode->i_sb->s_blocksize;
3918 length = blocksize - (offset & (blocksize - 1));
3919
3920 return ext4_block_zero_page_range(handle, mapping, from, length);
3921 }
3922
3923 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3924 loff_t lstart, loff_t length)
3925 {
3926 struct super_block *sb = inode->i_sb;
3927 struct address_space *mapping = inode->i_mapping;
3928 unsigned partial_start, partial_end;
3929 ext4_fsblk_t start, end;
3930 loff_t byte_end = (lstart + length - 1);
3931 int err = 0;
3932
3933 partial_start = lstart & (sb->s_blocksize - 1);
3934 partial_end = byte_end & (sb->s_blocksize - 1);
3935
3936 start = lstart >> sb->s_blocksize_bits;
3937 end = byte_end >> sb->s_blocksize_bits;
3938
3939 /* Handle partial zero within the single block */
3940 if (start == end &&
3941 (partial_start || (partial_end != sb->s_blocksize - 1))) {
3942 err = ext4_block_zero_page_range(handle, mapping,
3943 lstart, length);
3944 return err;
3945 }
3946 /* Handle partial zero out on the start of the range */
3947 if (partial_start) {
3948 err = ext4_block_zero_page_range(handle, mapping,
3949 lstart, sb->s_blocksize);
3950 if (err)
3951 return err;
3952 }
3953 /* Handle partial zero out on the end of the range */
3954 if (partial_end != sb->s_blocksize - 1)
3955 err = ext4_block_zero_page_range(handle, mapping,
3956 byte_end - partial_end,
3957 partial_end + 1);
3958 return err;
3959 }
3960
3961 int ext4_can_truncate(struct inode *inode)
3962 {
3963 if (S_ISREG(inode->i_mode))
3964 return 1;
3965 if (S_ISDIR(inode->i_mode))
3966 return 1;
3967 if (S_ISLNK(inode->i_mode))
3968 return !ext4_inode_is_fast_symlink(inode);
3969 return 0;
3970 }
3971
3972 /*
3973 * We have to make sure i_disksize gets properly updated before we truncate
3974 * page cache due to hole punching or zero range. Otherwise i_disksize update
3975 * can get lost as it may have been postponed to submission of writeback but
3976 * that will never happen after we truncate page cache.
3977 */
3978 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
3979 loff_t len)
3980 {
3981 handle_t *handle;
3982 loff_t size = i_size_read(inode);
3983
3984 WARN_ON(!inode_is_locked(inode));
3985 if (offset > size || offset + len < size)
3986 return 0;
3987
3988 if (EXT4_I(inode)->i_disksize >= size)
3989 return 0;
3990
3991 handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
3992 if (IS_ERR(handle))
3993 return PTR_ERR(handle);
3994 ext4_update_i_disksize(inode, size);
3995 ext4_mark_inode_dirty(handle, inode);
3996 ext4_journal_stop(handle);
3997
3998 return 0;
3999 }
4000
4001 /*
4002 * ext4_punch_hole: punches a hole in a file by releasing the blocks
4003 * associated with the given offset and length
4004 *
4005 * @inode: File inode
4006 * @offset: The offset where the hole will begin
4007 * @len: The length of the hole
4008 *
4009 * Returns: 0 on success or negative on failure
4010 */
4011
4012 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
4013 {
4014 struct super_block *sb = inode->i_sb;
4015 ext4_lblk_t first_block, stop_block;
4016 struct address_space *mapping = inode->i_mapping;
4017 loff_t first_block_offset, last_block_offset;
4018 handle_t *handle;
4019 unsigned int credits;
4020 int ret = 0;
4021
4022 if (!S_ISREG(inode->i_mode))
4023 return -EOPNOTSUPP;
4024
4025 trace_ext4_punch_hole(inode, offset, length, 0);
4026
4027 /*
4028 * Write out all dirty pages to avoid race conditions
4029 * Then release them.
4030 */
4031 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
4032 ret = filemap_write_and_wait_range(mapping, offset,
4033 offset + length - 1);
4034 if (ret)
4035 return ret;
4036 }
4037
4038 inode_lock(inode);
4039
4040 /* No need to punch hole beyond i_size */
4041 if (offset >= inode->i_size)
4042 goto out_mutex;
4043
4044 /*
4045 * If the hole extends beyond i_size, set the hole
4046 * to end after the page that contains i_size
4047 */
4048 if (offset + length > inode->i_size) {
4049 length = inode->i_size +
4050 PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
4051 offset;
4052 }
4053
4054 if (offset & (sb->s_blocksize - 1) ||
4055 (offset + length) & (sb->s_blocksize - 1)) {
4056 /*
4057 * Attach jinode to inode for jbd2 if we do any zeroing of
4058 * partial block
4059 */
4060 ret = ext4_inode_attach_jinode(inode);
4061 if (ret < 0)
4062 goto out_mutex;
4063
4064 }
4065
4066 /* Wait all existing dio workers, newcomers will block on i_mutex */
4067 ext4_inode_block_unlocked_dio(inode);
4068 inode_dio_wait(inode);
4069
4070 /*
4071 * Prevent page faults from reinstantiating pages we have released from
4072 * page cache.
4073 */
4074 down_write(&EXT4_I(inode)->i_mmap_sem);
4075 first_block_offset = round_up(offset, sb->s_blocksize);
4076 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
4077
4078 /* Now release the pages and zero block aligned part of pages*/
4079 if (last_block_offset > first_block_offset) {
4080 ret = ext4_update_disksize_before_punch(inode, offset, length);
4081 if (ret)
4082 goto out_dio;
4083 truncate_pagecache_range(inode, first_block_offset,
4084 last_block_offset);
4085 }
4086
4087 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4088 credits = ext4_writepage_trans_blocks(inode);
4089 else
4090 credits = ext4_blocks_for_truncate(inode);
4091 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4092 if (IS_ERR(handle)) {
4093 ret = PTR_ERR(handle);
4094 ext4_std_error(sb, ret);
4095 goto out_dio;
4096 }
4097
4098 ret = ext4_zero_partial_blocks(handle, inode, offset,
4099 length);
4100 if (ret)
4101 goto out_stop;
4102
4103 first_block = (offset + sb->s_blocksize - 1) >>
4104 EXT4_BLOCK_SIZE_BITS(sb);
4105 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4106
4107 /* If there are no blocks to remove, return now */
4108 if (first_block >= stop_block)
4109 goto out_stop;
4110
4111 down_write(&EXT4_I(inode)->i_data_sem);
4112 ext4_discard_preallocations(inode);
4113
4114 ret = ext4_es_remove_extent(inode, first_block,
4115 stop_block - first_block);
4116 if (ret) {
4117 up_write(&EXT4_I(inode)->i_data_sem);
4118 goto out_stop;
4119 }
4120
4121 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4122 ret = ext4_ext_remove_space(inode, first_block,
4123 stop_block - 1);
4124 else
4125 ret = ext4_ind_remove_space(handle, inode, first_block,
4126 stop_block);
4127
4128 up_write(&EXT4_I(inode)->i_data_sem);
4129 if (IS_SYNC(inode))
4130 ext4_handle_sync(handle);
4131
4132 inode->i_mtime = inode->i_ctime = current_time(inode);
4133 ext4_mark_inode_dirty(handle, inode);
4134 out_stop:
4135 ext4_journal_stop(handle);
4136 out_dio:
4137 up_write(&EXT4_I(inode)->i_mmap_sem);
4138 ext4_inode_resume_unlocked_dio(inode);
4139 out_mutex:
4140 inode_unlock(inode);
4141 return ret;
4142 }
4143
4144 int ext4_inode_attach_jinode(struct inode *inode)
4145 {
4146 struct ext4_inode_info *ei = EXT4_I(inode);
4147 struct jbd2_inode *jinode;
4148
4149 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4150 return 0;
4151
4152 jinode = jbd2_alloc_inode(GFP_KERNEL);
4153 spin_lock(&inode->i_lock);
4154 if (!ei->jinode) {
4155 if (!jinode) {
4156 spin_unlock(&inode->i_lock);
4157 return -ENOMEM;
4158 }
4159 ei->jinode = jinode;
4160 jbd2_journal_init_jbd_inode(ei->jinode, inode);
4161 jinode = NULL;
4162 }
4163 spin_unlock(&inode->i_lock);
4164 if (unlikely(jinode != NULL))
4165 jbd2_free_inode(jinode);
4166 return 0;
4167 }
4168
4169 /*
4170 * ext4_truncate()
4171 *
4172 * We block out ext4_get_block() block instantiations across the entire
4173 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4174 * simultaneously on behalf of the same inode.
4175 *
4176 * As we work through the truncate and commit bits of it to the journal there
4177 * is one core, guiding principle: the file's tree must always be consistent on
4178 * disk. We must be able to restart the truncate after a crash.
4179 *
4180 * The file's tree may be transiently inconsistent in memory (although it
4181 * probably isn't), but whenever we close off and commit a journal transaction,
4182 * the contents of (the filesystem + the journal) must be consistent and
4183 * restartable. It's pretty simple, really: bottom up, right to left (although
4184 * left-to-right works OK too).
4185 *
4186 * Note that at recovery time, journal replay occurs *before* the restart of
4187 * truncate against the orphan inode list.
4188 *
4189 * The committed inode has the new, desired i_size (which is the same as
4190 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
4191 * that this inode's truncate did not complete and it will again call
4192 * ext4_truncate() to have another go. So there will be instantiated blocks
4193 * to the right of the truncation point in a crashed ext4 filesystem. But
4194 * that's fine - as long as they are linked from the inode, the post-crash
4195 * ext4_truncate() run will find them and release them.
4196 */
4197 int ext4_truncate(struct inode *inode)
4198 {
4199 struct ext4_inode_info *ei = EXT4_I(inode);
4200 unsigned int credits;
4201 int err = 0;
4202 handle_t *handle;
4203 struct address_space *mapping = inode->i_mapping;
4204
4205 /*
4206 * There is a possibility that we're either freeing the inode
4207 * or it's a completely new inode. In those cases we might not
4208 * have i_mutex locked because it's not necessary.
4209 */
4210 if (!(inode->i_state & (I_NEW|I_FREEING)))
4211 WARN_ON(!inode_is_locked(inode));
4212 trace_ext4_truncate_enter(inode);
4213
4214 if (!ext4_can_truncate(inode))
4215 return 0;
4216
4217 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4218
4219 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4220 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4221
4222 if (ext4_has_inline_data(inode)) {
4223 int has_inline = 1;
4224
4225 ext4_inline_data_truncate(inode, &has_inline);
4226 if (has_inline)
4227 return 0;
4228 }
4229
4230 /* If we zero-out tail of the page, we have to create jinode for jbd2 */
4231 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4232 if (ext4_inode_attach_jinode(inode) < 0)
4233 return 0;
4234 }
4235
4236 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4237 credits = ext4_writepage_trans_blocks(inode);
4238 else
4239 credits = ext4_blocks_for_truncate(inode);
4240
4241 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4242 if (IS_ERR(handle))
4243 return PTR_ERR(handle);
4244
4245 if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4246 ext4_block_truncate_page(handle, mapping, inode->i_size);
4247
4248 /*
4249 * We add the inode to the orphan list, so that if this
4250 * truncate spans multiple transactions, and we crash, we will
4251 * resume the truncate when the filesystem recovers. It also
4252 * marks the inode dirty, to catch the new size.
4253 *
4254 * Implication: the file must always be in a sane, consistent
4255 * truncatable state while each transaction commits.
4256 */
4257 err = ext4_orphan_add(handle, inode);
4258 if (err)
4259 goto out_stop;
4260
4261 down_write(&EXT4_I(inode)->i_data_sem);
4262
4263 ext4_discard_preallocations(inode);
4264
4265 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4266 err = ext4_ext_truncate(handle, inode);
4267 else
4268 ext4_ind_truncate(handle, inode);
4269
4270 up_write(&ei->i_data_sem);
4271 if (err)
4272 goto out_stop;
4273
4274 if (IS_SYNC(inode))
4275 ext4_handle_sync(handle);
4276
4277 out_stop:
4278 /*
4279 * If this was a simple ftruncate() and the file will remain alive,
4280 * then we need to clear up the orphan record which we created above.
4281 * However, if this was a real unlink then we were called by
4282 * ext4_evict_inode(), and we allow that function to clean up the
4283 * orphan info for us.
4284 */
4285 if (inode->i_nlink)
4286 ext4_orphan_del(handle, inode);
4287
4288 inode->i_mtime = inode->i_ctime = current_time(inode);
4289 ext4_mark_inode_dirty(handle, inode);
4290 ext4_journal_stop(handle);
4291
4292 trace_ext4_truncate_exit(inode);
4293 return err;
4294 }
4295
4296 /*
4297 * ext4_get_inode_loc returns with an extra refcount against the inode's
4298 * underlying buffer_head on success. If 'in_mem' is true, we have all
4299 * data in memory that is needed to recreate the on-disk version of this
4300 * inode.
4301 */
4302 static int __ext4_get_inode_loc(struct inode *inode,
4303 struct ext4_iloc *iloc, int in_mem)
4304 {
4305 struct ext4_group_desc *gdp;
4306 struct buffer_head *bh;
4307 struct super_block *sb = inode->i_sb;
4308 ext4_fsblk_t block;
4309 int inodes_per_block, inode_offset;
4310
4311 iloc->bh = NULL;
4312 if (!ext4_valid_inum(sb, inode->i_ino))
4313 return -EFSCORRUPTED;
4314
4315 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4316 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4317 if (!gdp)
4318 return -EIO;
4319
4320 /*
4321 * Figure out the offset within the block group inode table
4322 */
4323 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4324 inode_offset = ((inode->i_ino - 1) %
4325 EXT4_INODES_PER_GROUP(sb));
4326 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4327 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4328
4329 bh = sb_getblk(sb, block);
4330 if (unlikely(!bh))
4331 return -ENOMEM;
4332 if (!buffer_uptodate(bh)) {
4333 lock_buffer(bh);
4334
4335 /*
4336 * If the buffer has the write error flag, we have failed
4337 * to write out another inode in the same block. In this
4338 * case, we don't have to read the block because we may
4339 * read the old inode data successfully.
4340 */
4341 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4342 set_buffer_uptodate(bh);
4343
4344 if (buffer_uptodate(bh)) {
4345 /* someone brought it uptodate while we waited */
4346 unlock_buffer(bh);
4347 goto has_buffer;
4348 }
4349
4350 /*
4351 * If we have all information of the inode in memory and this
4352 * is the only valid inode in the block, we need not read the
4353 * block.
4354 */
4355 if (in_mem) {
4356 struct buffer_head *bitmap_bh;
4357 int i, start;
4358
4359 start = inode_offset & ~(inodes_per_block - 1);
4360
4361 /* Is the inode bitmap in cache? */
4362 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4363 if (unlikely(!bitmap_bh))
4364 goto make_io;
4365
4366 /*
4367 * If the inode bitmap isn't in cache then the
4368 * optimisation may end up performing two reads instead
4369 * of one, so skip it.
4370 */
4371 if (!buffer_uptodate(bitmap_bh)) {
4372 brelse(bitmap_bh);
4373 goto make_io;
4374 }
4375 for (i = start; i < start + inodes_per_block; i++) {
4376 if (i == inode_offset)
4377 continue;
4378 if (ext4_test_bit(i, bitmap_bh->b_data))
4379 break;
4380 }
4381 brelse(bitmap_bh);
4382 if (i == start + inodes_per_block) {
4383 /* all other inodes are free, so skip I/O */
4384 memset(bh->b_data, 0, bh->b_size);
4385 set_buffer_uptodate(bh);
4386 unlock_buffer(bh);
4387 goto has_buffer;
4388 }
4389 }
4390
4391 make_io:
4392 /*
4393 * If we need to do any I/O, try to pre-readahead extra
4394 * blocks from the inode table.
4395 */
4396 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4397 ext4_fsblk_t b, end, table;
4398 unsigned num;
4399 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4400
4401 table = ext4_inode_table(sb, gdp);
4402 /* s_inode_readahead_blks is always a power of 2 */
4403 b = block & ~((ext4_fsblk_t) ra_blks - 1);
4404 if (table > b)
4405 b = table;
4406 end = b + ra_blks;
4407 num = EXT4_INODES_PER_GROUP(sb);
4408 if (ext4_has_group_desc_csum(sb))
4409 num -= ext4_itable_unused_count(sb, gdp);
4410 table += num / inodes_per_block;
4411 if (end > table)
4412 end = table;
4413 while (b <= end)
4414 sb_breadahead(sb, b++);
4415 }
4416
4417 /*
4418 * There are other valid inodes in the buffer, this inode
4419 * has in-inode xattrs, or we don't have this inode in memory.
4420 * Read the block from disk.
4421 */
4422 trace_ext4_load_inode(inode);
4423 get_bh(bh);
4424 bh->b_end_io = end_buffer_read_sync;
4425 submit_bh(REQ_OP_READ, REQ_META | REQ_PRIO, bh);
4426 wait_on_buffer(bh);
4427 if (!buffer_uptodate(bh)) {
4428 EXT4_ERROR_INODE_BLOCK(inode, block,
4429 "unable to read itable block");
4430 brelse(bh);
4431 return -EIO;
4432 }
4433 }
4434 has_buffer:
4435 iloc->bh = bh;
4436 return 0;
4437 }
4438
4439 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4440 {
4441 /* We have all inode data except xattrs in memory here. */
4442 return __ext4_get_inode_loc(inode, iloc,
4443 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4444 }
4445
4446 void ext4_set_inode_flags(struct inode *inode)
4447 {
4448 unsigned int flags = EXT4_I(inode)->i_flags;
4449 unsigned int new_fl = 0;
4450
4451 if (flags & EXT4_SYNC_FL)
4452 new_fl |= S_SYNC;
4453 if (flags & EXT4_APPEND_FL)
4454 new_fl |= S_APPEND;
4455 if (flags & EXT4_IMMUTABLE_FL)
4456 new_fl |= S_IMMUTABLE;
4457 if (flags & EXT4_NOATIME_FL)
4458 new_fl |= S_NOATIME;
4459 if (flags & EXT4_DIRSYNC_FL)
4460 new_fl |= S_DIRSYNC;
4461 if (test_opt(inode->i_sb, DAX) && S_ISREG(inode->i_mode) &&
4462 !ext4_should_journal_data(inode) && !ext4_has_inline_data(inode) &&
4463 !ext4_encrypted_inode(inode))
4464 new_fl |= S_DAX;
4465 inode_set_flags(inode, new_fl,
4466 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX);
4467 }
4468
4469 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4470 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4471 {
4472 unsigned int vfs_fl;
4473 unsigned long old_fl, new_fl;
4474
4475 do {
4476 vfs_fl = ei->vfs_inode.i_flags;
4477 old_fl = ei->i_flags;
4478 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4479 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
4480 EXT4_DIRSYNC_FL);
4481 if (vfs_fl & S_SYNC)
4482 new_fl |= EXT4_SYNC_FL;
4483 if (vfs_fl & S_APPEND)
4484 new_fl |= EXT4_APPEND_FL;
4485 if (vfs_fl & S_IMMUTABLE)
4486 new_fl |= EXT4_IMMUTABLE_FL;
4487 if (vfs_fl & S_NOATIME)
4488 new_fl |= EXT4_NOATIME_FL;
4489 if (vfs_fl & S_DIRSYNC)
4490 new_fl |= EXT4_DIRSYNC_FL;
4491 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
4492 }
4493
4494 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4495 struct ext4_inode_info *ei)
4496 {
4497 blkcnt_t i_blocks ;
4498 struct inode *inode = &(ei->vfs_inode);
4499 struct super_block *sb = inode->i_sb;
4500
4501 if (ext4_has_feature_huge_file(sb)) {
4502 /* we are using combined 48 bit field */
4503 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4504 le32_to_cpu(raw_inode->i_blocks_lo);
4505 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4506 /* i_blocks represent file system block size */
4507 return i_blocks << (inode->i_blkbits - 9);
4508 } else {
4509 return i_blocks;
4510 }
4511 } else {
4512 return le32_to_cpu(raw_inode->i_blocks_lo);
4513 }
4514 }
4515
4516 static inline void ext4_iget_extra_inode(struct inode *inode,
4517 struct ext4_inode *raw_inode,
4518 struct ext4_inode_info *ei)
4519 {
4520 __le32 *magic = (void *)raw_inode +
4521 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4522 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize + sizeof(__le32) <=
4523 EXT4_INODE_SIZE(inode->i_sb) &&
4524 *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4525 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4526 ext4_find_inline_data_nolock(inode);
4527 } else
4528 EXT4_I(inode)->i_inline_off = 0;
4529 }
4530
4531 int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4532 {
4533 if (!ext4_has_feature_project(inode->i_sb))
4534 return -EOPNOTSUPP;
4535 *projid = EXT4_I(inode)->i_projid;
4536 return 0;
4537 }
4538
4539 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4540 {
4541 struct ext4_iloc iloc;
4542 struct ext4_inode *raw_inode;
4543 struct ext4_inode_info *ei;
4544 struct inode *inode;
4545 journal_t *journal = EXT4_SB(sb)->s_journal;
4546 long ret;
4547 loff_t size;
4548 int block;
4549 uid_t i_uid;
4550 gid_t i_gid;
4551 projid_t i_projid;
4552
4553 inode = iget_locked(sb, ino);
4554 if (!inode)
4555 return ERR_PTR(-ENOMEM);
4556 if (!(inode->i_state & I_NEW))
4557 return inode;
4558
4559 ei = EXT4_I(inode);
4560 iloc.bh = NULL;
4561
4562 ret = __ext4_get_inode_loc(inode, &iloc, 0);
4563 if (ret < 0)
4564 goto bad_inode;
4565 raw_inode = ext4_raw_inode(&iloc);
4566
4567 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4568 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4569 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4570 EXT4_INODE_SIZE(inode->i_sb) ||
4571 (ei->i_extra_isize & 3)) {
4572 EXT4_ERROR_INODE(inode,
4573 "bad extra_isize %u (inode size %u)",
4574 ei->i_extra_isize,
4575 EXT4_INODE_SIZE(inode->i_sb));
4576 ret = -EFSCORRUPTED;
4577 goto bad_inode;
4578 }
4579 } else
4580 ei->i_extra_isize = 0;
4581
4582 /* Precompute checksum seed for inode metadata */
4583 if (ext4_has_metadata_csum(sb)) {
4584 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4585 __u32 csum;
4586 __le32 inum = cpu_to_le32(inode->i_ino);
4587 __le32 gen = raw_inode->i_generation;
4588 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4589 sizeof(inum));
4590 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4591 sizeof(gen));
4592 }
4593
4594 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4595 EXT4_ERROR_INODE(inode, "checksum invalid");
4596 ret = -EFSBADCRC;
4597 goto bad_inode;
4598 }
4599
4600 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4601 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4602 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4603 if (ext4_has_feature_project(sb) &&
4604 EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4605 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4606 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4607 else
4608 i_projid = EXT4_DEF_PROJID;
4609
4610 if (!(test_opt(inode->i_sb, NO_UID32))) {
4611 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4612 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4613 }
4614 i_uid_write(inode, i_uid);
4615 i_gid_write(inode, i_gid);
4616 ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4617 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4618
4619 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
4620 ei->i_inline_off = 0;
4621 ei->i_dir_start_lookup = 0;
4622 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4623 /* We now have enough fields to check if the inode was active or not.
4624 * This is needed because nfsd might try to access dead inodes
4625 * the test is that same one that e2fsck uses
4626 * NeilBrown 1999oct15
4627 */
4628 if (inode->i_nlink == 0) {
4629 if ((inode->i_mode == 0 ||
4630 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4631 ino != EXT4_BOOT_LOADER_INO) {
4632 /* this inode is deleted */
4633 ret = -ESTALE;
4634 goto bad_inode;
4635 }
4636 /* The only unlinked inodes we let through here have
4637 * valid i_mode and are being read by the orphan
4638 * recovery code: that's fine, we're about to complete
4639 * the process of deleting those.
4640 * OR it is the EXT4_BOOT_LOADER_INO which is
4641 * not initialized on a new filesystem. */
4642 }
4643 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4644 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4645 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4646 if (ext4_has_feature_64bit(sb))
4647 ei->i_file_acl |=
4648 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4649 inode->i_size = ext4_isize(raw_inode);
4650 if ((size = i_size_read(inode)) < 0) {
4651 EXT4_ERROR_INODE(inode, "bad i_size value: %lld", size);
4652 ret = -EFSCORRUPTED;
4653 goto bad_inode;
4654 }
4655 ei->i_disksize = inode->i_size;
4656 #ifdef CONFIG_QUOTA
4657 ei->i_reserved_quota = 0;
4658 #endif
4659 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4660 ei->i_block_group = iloc.block_group;
4661 ei->i_last_alloc_group = ~0;
4662 /*
4663 * NOTE! The in-memory inode i_data array is in little-endian order
4664 * even on big-endian machines: we do NOT byteswap the block numbers!
4665 */
4666 for (block = 0; block < EXT4_N_BLOCKS; block++)
4667 ei->i_data[block] = raw_inode->i_block[block];
4668 INIT_LIST_HEAD(&ei->i_orphan);
4669
4670 /*
4671 * Set transaction id's of transactions that have to be committed
4672 * to finish f[data]sync. We set them to currently running transaction
4673 * as we cannot be sure that the inode or some of its metadata isn't
4674 * part of the transaction - the inode could have been reclaimed and
4675 * now it is reread from disk.
4676 */
4677 if (journal) {
4678 transaction_t *transaction;
4679 tid_t tid;
4680
4681 read_lock(&journal->j_state_lock);
4682 if (journal->j_running_transaction)
4683 transaction = journal->j_running_transaction;
4684 else
4685 transaction = journal->j_committing_transaction;
4686 if (transaction)
4687 tid = transaction->t_tid;
4688 else
4689 tid = journal->j_commit_sequence;
4690 read_unlock(&journal->j_state_lock);
4691 ei->i_sync_tid = tid;
4692 ei->i_datasync_tid = tid;
4693 }
4694
4695 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4696 if (ei->i_extra_isize == 0) {
4697 /* The extra space is currently unused. Use it. */
4698 BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
4699 ei->i_extra_isize = sizeof(struct ext4_inode) -
4700 EXT4_GOOD_OLD_INODE_SIZE;
4701 } else {
4702 ext4_iget_extra_inode(inode, raw_inode, ei);
4703 }
4704 }
4705
4706 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4707 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4708 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4709 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4710
4711 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4712 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4713 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4714 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4715 inode->i_version |=
4716 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4717 }
4718 }
4719
4720 ret = 0;
4721 if (ei->i_file_acl &&
4722 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4723 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4724 ei->i_file_acl);
4725 ret = -EFSCORRUPTED;
4726 goto bad_inode;
4727 } else if (!ext4_has_inline_data(inode)) {
4728 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4729 if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4730 (S_ISLNK(inode->i_mode) &&
4731 !ext4_inode_is_fast_symlink(inode))))
4732 /* Validate extent which is part of inode */
4733 ret = ext4_ext_check_inode(inode);
4734 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4735 (S_ISLNK(inode->i_mode) &&
4736 !ext4_inode_is_fast_symlink(inode))) {
4737 /* Validate block references which are part of inode */
4738 ret = ext4_ind_check_inode(inode);
4739 }
4740 }
4741 if (ret)
4742 goto bad_inode;
4743
4744 if (S_ISREG(inode->i_mode)) {
4745 inode->i_op = &ext4_file_inode_operations;
4746 inode->i_fop = &ext4_file_operations;
4747 ext4_set_aops(inode);
4748 } else if (S_ISDIR(inode->i_mode)) {
4749 inode->i_op = &ext4_dir_inode_operations;
4750 inode->i_fop = &ext4_dir_operations;
4751 } else if (S_ISLNK(inode->i_mode)) {
4752 if (ext4_encrypted_inode(inode)) {
4753 inode->i_op = &ext4_encrypted_symlink_inode_operations;
4754 ext4_set_aops(inode);
4755 } else if (ext4_inode_is_fast_symlink(inode)) {
4756 inode->i_link = (char *)ei->i_data;
4757 inode->i_op = &ext4_fast_symlink_inode_operations;
4758 nd_terminate_link(ei->i_data, inode->i_size,
4759 sizeof(ei->i_data) - 1);
4760 } else {
4761 inode->i_op = &ext4_symlink_inode_operations;
4762 ext4_set_aops(inode);
4763 }
4764 inode_nohighmem(inode);
4765 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4766 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4767 inode->i_op = &ext4_special_inode_operations;
4768 if (raw_inode->i_block[0])
4769 init_special_inode(inode, inode->i_mode,
4770 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4771 else
4772 init_special_inode(inode, inode->i_mode,
4773 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4774 } else if (ino == EXT4_BOOT_LOADER_INO) {
4775 make_bad_inode(inode);
4776 } else {
4777 ret = -EFSCORRUPTED;
4778 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4779 goto bad_inode;
4780 }
4781 brelse(iloc.bh);
4782 ext4_set_inode_flags(inode);
4783 unlock_new_inode(inode);
4784 return inode;
4785
4786 bad_inode:
4787 brelse(iloc.bh);
4788 iget_failed(inode);
4789 return ERR_PTR(ret);
4790 }
4791
4792 struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino)
4793 {
4794 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
4795 return ERR_PTR(-EFSCORRUPTED);
4796 return ext4_iget(sb, ino);
4797 }
4798
4799 static int ext4_inode_blocks_set(handle_t *handle,
4800 struct ext4_inode *raw_inode,
4801 struct ext4_inode_info *ei)
4802 {
4803 struct inode *inode = &(ei->vfs_inode);
4804 u64 i_blocks = inode->i_blocks;
4805 struct super_block *sb = inode->i_sb;
4806
4807 if (i_blocks <= ~0U) {
4808 /*
4809 * i_blocks can be represented in a 32 bit variable
4810 * as multiple of 512 bytes
4811 */
4812 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4813 raw_inode->i_blocks_high = 0;
4814 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4815 return 0;
4816 }
4817 if (!ext4_has_feature_huge_file(sb))
4818 return -EFBIG;
4819
4820 if (i_blocks <= 0xffffffffffffULL) {
4821 /*
4822 * i_blocks can be represented in a 48 bit variable
4823 * as multiple of 512 bytes
4824 */
4825 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4826 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4827 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4828 } else {
4829 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4830 /* i_block is stored in file system block size */
4831 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4832 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4833 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4834 }
4835 return 0;
4836 }
4837
4838 struct other_inode {
4839 unsigned long orig_ino;
4840 struct ext4_inode *raw_inode;
4841 };
4842
4843 static int other_inode_match(struct inode * inode, unsigned long ino,
4844 void *data)
4845 {
4846 struct other_inode *oi = (struct other_inode *) data;
4847
4848 if ((inode->i_ino != ino) ||
4849 (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4850 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
4851 ((inode->i_state & I_DIRTY_TIME) == 0))
4852 return 0;
4853 spin_lock(&inode->i_lock);
4854 if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4855 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) == 0) &&
4856 (inode->i_state & I_DIRTY_TIME)) {
4857 struct ext4_inode_info *ei = EXT4_I(inode);
4858
4859 inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED);
4860 spin_unlock(&inode->i_lock);
4861
4862 spin_lock(&ei->i_raw_lock);
4863 EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode);
4864 EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode);
4865 EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode);
4866 ext4_inode_csum_set(inode, oi->raw_inode, ei);
4867 spin_unlock(&ei->i_raw_lock);
4868 trace_ext4_other_inode_update_time(inode, oi->orig_ino);
4869 return -1;
4870 }
4871 spin_unlock(&inode->i_lock);
4872 return -1;
4873 }
4874
4875 /*
4876 * Opportunistically update the other time fields for other inodes in
4877 * the same inode table block.
4878 */
4879 static void ext4_update_other_inodes_time(struct super_block *sb,
4880 unsigned long orig_ino, char *buf)
4881 {
4882 struct other_inode oi;
4883 unsigned long ino;
4884 int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4885 int inode_size = EXT4_INODE_SIZE(sb);
4886
4887 oi.orig_ino = orig_ino;
4888 /*
4889 * Calculate the first inode in the inode table block. Inode
4890 * numbers are one-based. That is, the first inode in a block
4891 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
4892 */
4893 ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
4894 for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
4895 if (ino == orig_ino)
4896 continue;
4897 oi.raw_inode = (struct ext4_inode *) buf;
4898 (void) find_inode_nowait(sb, ino, other_inode_match, &oi);
4899 }
4900 }
4901
4902 /*
4903 * Post the struct inode info into an on-disk inode location in the
4904 * buffer-cache. This gobbles the caller's reference to the
4905 * buffer_head in the inode location struct.
4906 *
4907 * The caller must have write access to iloc->bh.
4908 */
4909 static int ext4_do_update_inode(handle_t *handle,
4910 struct inode *inode,
4911 struct ext4_iloc *iloc)
4912 {
4913 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4914 struct ext4_inode_info *ei = EXT4_I(inode);
4915 struct buffer_head *bh = iloc->bh;
4916 struct super_block *sb = inode->i_sb;
4917 int err = 0, rc, block;
4918 int need_datasync = 0, set_large_file = 0;
4919 uid_t i_uid;
4920 gid_t i_gid;
4921 projid_t i_projid;
4922
4923 spin_lock(&ei->i_raw_lock);
4924
4925 /* For fields not tracked in the in-memory inode,
4926 * initialise them to zero for new inodes. */
4927 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4928 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4929
4930 ext4_get_inode_flags(ei);
4931 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4932 i_uid = i_uid_read(inode);
4933 i_gid = i_gid_read(inode);
4934 i_projid = from_kprojid(&init_user_ns, ei->i_projid);
4935 if (!(test_opt(inode->i_sb, NO_UID32))) {
4936 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4937 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4938 /*
4939 * Fix up interoperability with old kernels. Otherwise, old inodes get
4940 * re-used with the upper 16 bits of the uid/gid intact
4941 */
4942 if (ei->i_dtime && list_empty(&ei->i_orphan)) {
4943 raw_inode->i_uid_high = 0;
4944 raw_inode->i_gid_high = 0;
4945 } else {
4946 raw_inode->i_uid_high =
4947 cpu_to_le16(high_16_bits(i_uid));
4948 raw_inode->i_gid_high =
4949 cpu_to_le16(high_16_bits(i_gid));
4950 }
4951 } else {
4952 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4953 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4954 raw_inode->i_uid_high = 0;
4955 raw_inode->i_gid_high = 0;
4956 }
4957 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4958
4959 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4960 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4961 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4962 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4963
4964 err = ext4_inode_blocks_set(handle, raw_inode, ei);
4965 if (err) {
4966 spin_unlock(&ei->i_raw_lock);
4967 goto out_brelse;
4968 }
4969 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4970 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4971 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4972 raw_inode->i_file_acl_high =
4973 cpu_to_le16(ei->i_file_acl >> 32);
4974 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4975 if (ei->i_disksize != ext4_isize(raw_inode)) {
4976 ext4_isize_set(raw_inode, ei->i_disksize);
4977 need_datasync = 1;
4978 }
4979 if (ei->i_disksize > 0x7fffffffULL) {
4980 if (!ext4_has_feature_large_file(sb) ||
4981 EXT4_SB(sb)->s_es->s_rev_level ==
4982 cpu_to_le32(EXT4_GOOD_OLD_REV))
4983 set_large_file = 1;
4984 }
4985 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4986 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4987 if (old_valid_dev(inode->i_rdev)) {
4988 raw_inode->i_block[0] =
4989 cpu_to_le32(old_encode_dev(inode->i_rdev));
4990 raw_inode->i_block[1] = 0;
4991 } else {
4992 raw_inode->i_block[0] = 0;
4993 raw_inode->i_block[1] =
4994 cpu_to_le32(new_encode_dev(inode->i_rdev));
4995 raw_inode->i_block[2] = 0;
4996 }
4997 } else if (!ext4_has_inline_data(inode)) {
4998 for (block = 0; block < EXT4_N_BLOCKS; block++)
4999 raw_inode->i_block[block] = ei->i_data[block];
5000 }
5001
5002 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
5003 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
5004 if (ei->i_extra_isize) {
5005 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5006 raw_inode->i_version_hi =
5007 cpu_to_le32(inode->i_version >> 32);
5008 raw_inode->i_extra_isize =
5009 cpu_to_le16(ei->i_extra_isize);
5010 }
5011 }
5012
5013 BUG_ON(!ext4_has_feature_project(inode->i_sb) &&
5014 i_projid != EXT4_DEF_PROJID);
5015
5016 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
5017 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
5018 raw_inode->i_projid = cpu_to_le32(i_projid);
5019
5020 ext4_inode_csum_set(inode, raw_inode, ei);
5021 spin_unlock(&ei->i_raw_lock);
5022 if (inode->i_sb->s_flags & MS_LAZYTIME)
5023 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5024 bh->b_data);
5025
5026 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5027 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
5028 if (!err)
5029 err = rc;
5030 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5031 if (set_large_file) {
5032 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5033 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
5034 if (err)
5035 goto out_brelse;
5036 ext4_update_dynamic_rev(sb);
5037 ext4_set_feature_large_file(sb);
5038 ext4_handle_sync(handle);
5039 err = ext4_handle_dirty_super(handle, sb);
5040 }
5041 ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5042 out_brelse:
5043 brelse(bh);
5044 ext4_std_error(inode->i_sb, err);
5045 return err;
5046 }
5047
5048 /*
5049 * ext4_write_inode()
5050 *
5051 * We are called from a few places:
5052 *
5053 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5054 * Here, there will be no transaction running. We wait for any running
5055 * transaction to commit.
5056 *
5057 * - Within flush work (sys_sync(), kupdate and such).
5058 * We wait on commit, if told to.
5059 *
5060 * - Within iput_final() -> write_inode_now()
5061 * We wait on commit, if told to.
5062 *
5063 * In all cases it is actually safe for us to return without doing anything,
5064 * because the inode has been copied into a raw inode buffer in
5065 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL
5066 * writeback.
5067 *
5068 * Note that we are absolutely dependent upon all inode dirtiers doing the
5069 * right thing: they *must* call mark_inode_dirty() after dirtying info in
5070 * which we are interested.
5071 *
5072 * It would be a bug for them to not do this. The code:
5073 *
5074 * mark_inode_dirty(inode)
5075 * stuff();
5076 * inode->i_size = expr;
5077 *
5078 * is in error because write_inode() could occur while `stuff()' is running,
5079 * and the new i_size will be lost. Plus the inode will no longer be on the
5080 * superblock's dirty inode list.
5081 */
5082 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5083 {
5084 int err;
5085
5086 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
5087 return 0;
5088
5089 if (EXT4_SB(inode->i_sb)->s_journal) {
5090 if (ext4_journal_current_handle()) {
5091 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5092 dump_stack();
5093 return -EIO;
5094 }
5095
5096 /*
5097 * No need to force transaction in WB_SYNC_NONE mode. Also
5098 * ext4_sync_fs() will force the commit after everything is
5099 * written.
5100 */
5101 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5102 return 0;
5103
5104 err = ext4_force_commit(inode->i_sb);
5105 } else {
5106 struct ext4_iloc iloc;
5107
5108 err = __ext4_get_inode_loc(inode, &iloc, 0);
5109 if (err)
5110 return err;
5111 /*
5112 * sync(2) will flush the whole buffer cache. No need to do
5113 * it here separately for each inode.
5114 */
5115 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5116 sync_dirty_buffer(iloc.bh);
5117 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5118 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
5119 "IO error syncing inode");
5120 err = -EIO;
5121 }
5122 brelse(iloc.bh);
5123 }
5124 return err;
5125 }
5126
5127 /*
5128 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
5129 * buffers that are attached to a page stradding i_size and are undergoing
5130 * commit. In that case we have to wait for commit to finish and try again.
5131 */
5132 static void ext4_wait_for_tail_page_commit(struct inode *inode)
5133 {
5134 struct page *page;
5135 unsigned offset;
5136 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5137 tid_t commit_tid = 0;
5138 int ret;
5139
5140 offset = inode->i_size & (PAGE_SIZE - 1);
5141 /*
5142 * All buffers in the last page remain valid? Then there's nothing to
5143 * do. We do the check mainly to optimize the common PAGE_SIZE ==
5144 * blocksize case
5145 */
5146 if (offset > PAGE_SIZE - (1 << inode->i_blkbits))
5147 return;
5148 while (1) {
5149 page = find_lock_page(inode->i_mapping,
5150 inode->i_size >> PAGE_SHIFT);
5151 if (!page)
5152 return;
5153 ret = __ext4_journalled_invalidatepage(page, offset,
5154 PAGE_SIZE - offset);
5155 unlock_page(page);
5156 put_page(page);
5157 if (ret != -EBUSY)
5158 return;
5159 commit_tid = 0;
5160 read_lock(&journal->j_state_lock);
5161 if (journal->j_committing_transaction)
5162 commit_tid = journal->j_committing_transaction->t_tid;
5163 read_unlock(&journal->j_state_lock);
5164 if (commit_tid)
5165 jbd2_log_wait_commit(journal, commit_tid);
5166 }
5167 }
5168
5169 /*
5170 * ext4_setattr()
5171 *
5172 * Called from notify_change.
5173 *
5174 * We want to trap VFS attempts to truncate the file as soon as
5175 * possible. In particular, we want to make sure that when the VFS
5176 * shrinks i_size, we put the inode on the orphan list and modify
5177 * i_disksize immediately, so that during the subsequent flushing of
5178 * dirty pages and freeing of disk blocks, we can guarantee that any
5179 * commit will leave the blocks being flushed in an unused state on
5180 * disk. (On recovery, the inode will get truncated and the blocks will
5181 * be freed, so we have a strong guarantee that no future commit will
5182 * leave these blocks visible to the user.)
5183 *
5184 * Another thing we have to assure is that if we are in ordered mode
5185 * and inode is still attached to the committing transaction, we must
5186 * we start writeout of all the dirty pages which are being truncated.
5187 * This way we are sure that all the data written in the previous
5188 * transaction are already on disk (truncate waits for pages under
5189 * writeback).
5190 *
5191 * Called with inode->i_mutex down.
5192 */
5193 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5194 {
5195 struct inode *inode = d_inode(dentry);
5196 int error, rc = 0;
5197 int orphan = 0;
5198 const unsigned int ia_valid = attr->ia_valid;
5199
5200 error = setattr_prepare(dentry, attr);
5201 if (error)
5202 return error;
5203
5204 if (is_quota_modification(inode, attr)) {
5205 error = dquot_initialize(inode);
5206 if (error)
5207 return error;
5208 }
5209 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
5210 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
5211 handle_t *handle;
5212
5213 /* (user+group)*(old+new) structure, inode write (sb,
5214 * inode block, ? - but truncate inode update has it) */
5215 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5216 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5217 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5218 if (IS_ERR(handle)) {
5219 error = PTR_ERR(handle);
5220 goto err_out;
5221 }
5222 error = dquot_transfer(inode, attr);
5223 if (error) {
5224 ext4_journal_stop(handle);
5225 return error;
5226 }
5227 /* Update corresponding info in inode so that everything is in
5228 * one transaction */
5229 if (attr->ia_valid & ATTR_UID)
5230 inode->i_uid = attr->ia_uid;
5231 if (attr->ia_valid & ATTR_GID)
5232 inode->i_gid = attr->ia_gid;
5233 error = ext4_mark_inode_dirty(handle, inode);
5234 ext4_journal_stop(handle);
5235 }
5236
5237 if (attr->ia_valid & ATTR_SIZE) {
5238 handle_t *handle;
5239 loff_t oldsize = inode->i_size;
5240 int shrink = (attr->ia_size <= inode->i_size);
5241
5242 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5243 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5244
5245 if (attr->ia_size > sbi->s_bitmap_maxbytes)
5246 return -EFBIG;
5247 }
5248 if (!S_ISREG(inode->i_mode))
5249 return -EINVAL;
5250
5251 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
5252 inode_inc_iversion(inode);
5253
5254 if (ext4_should_order_data(inode) &&
5255 (attr->ia_size < inode->i_size)) {
5256 error = ext4_begin_ordered_truncate(inode,
5257 attr->ia_size);
5258 if (error)
5259 goto err_out;
5260 }
5261 if (attr->ia_size != inode->i_size) {
5262 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5263 if (IS_ERR(handle)) {
5264 error = PTR_ERR(handle);
5265 goto err_out;
5266 }
5267 if (ext4_handle_valid(handle) && shrink) {
5268 error = ext4_orphan_add(handle, inode);
5269 orphan = 1;
5270 }
5271 /*
5272 * Update c/mtime on truncate up, ext4_truncate() will
5273 * update c/mtime in shrink case below
5274 */
5275 if (!shrink) {
5276 inode->i_mtime = current_time(inode);
5277 inode->i_ctime = inode->i_mtime;
5278 }
5279 down_write(&EXT4_I(inode)->i_data_sem);
5280 EXT4_I(inode)->i_disksize = attr->ia_size;
5281 rc = ext4_mark_inode_dirty(handle, inode);
5282 if (!error)
5283 error = rc;
5284 /*
5285 * We have to update i_size under i_data_sem together
5286 * with i_disksize to avoid races with writeback code
5287 * running ext4_wb_update_i_disksize().
5288 */
5289 if (!error)
5290 i_size_write(inode, attr->ia_size);
5291 up_write(&EXT4_I(inode)->i_data_sem);
5292 ext4_journal_stop(handle);
5293 if (error) {
5294 if (orphan)
5295 ext4_orphan_del(NULL, inode);
5296 goto err_out;
5297 }
5298 }
5299 if (!shrink)
5300 pagecache_isize_extended(inode, oldsize, inode->i_size);
5301
5302 /*
5303 * Blocks are going to be removed from the inode. Wait
5304 * for dio in flight. Temporarily disable
5305 * dioread_nolock to prevent livelock.
5306 */
5307 if (orphan) {
5308 if (!ext4_should_journal_data(inode)) {
5309 ext4_inode_block_unlocked_dio(inode);
5310 inode_dio_wait(inode);
5311 ext4_inode_resume_unlocked_dio(inode);
5312 } else
5313 ext4_wait_for_tail_page_commit(inode);
5314 }
5315 down_write(&EXT4_I(inode)->i_mmap_sem);
5316 /*
5317 * Truncate pagecache after we've waited for commit
5318 * in data=journal mode to make pages freeable.
5319 */
5320 truncate_pagecache(inode, inode->i_size);
5321 if (shrink) {
5322 rc = ext4_truncate(inode);
5323 if (rc)
5324 error = rc;
5325 }
5326 up_write(&EXT4_I(inode)->i_mmap_sem);
5327 }
5328
5329 if (!error) {
5330 setattr_copy(inode, attr);
5331 mark_inode_dirty(inode);
5332 }
5333
5334 /*
5335 * If the call to ext4_truncate failed to get a transaction handle at
5336 * all, we need to clean up the in-core orphan list manually.
5337 */
5338 if (orphan && inode->i_nlink)
5339 ext4_orphan_del(NULL, inode);
5340
5341 if (!error && (ia_valid & ATTR_MODE))
5342 rc = posix_acl_chmod(inode, inode->i_mode);
5343
5344 err_out:
5345 ext4_std_error(inode->i_sb, error);
5346 if (!error)
5347 error = rc;
5348 return error;
5349 }
5350
5351 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
5352 struct kstat *stat)
5353 {
5354 struct inode *inode;
5355 unsigned long long delalloc_blocks;
5356
5357 inode = d_inode(dentry);
5358 generic_fillattr(inode, stat);
5359
5360 /*
5361 * If there is inline data in the inode, the inode will normally not
5362 * have data blocks allocated (it may have an external xattr block).
5363 * Report at least one sector for such files, so tools like tar, rsync,
5364 * others doen't incorrectly think the file is completely sparse.
5365 */
5366 if (unlikely(ext4_has_inline_data(inode)))
5367 stat->blocks += (stat->size + 511) >> 9;
5368
5369 /*
5370 * We can't update i_blocks if the block allocation is delayed
5371 * otherwise in the case of system crash before the real block
5372 * allocation is done, we will have i_blocks inconsistent with
5373 * on-disk file blocks.
5374 * We always keep i_blocks updated together with real
5375 * allocation. But to not confuse with user, stat
5376 * will return the blocks that include the delayed allocation
5377 * blocks for this file.
5378 */
5379 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5380 EXT4_I(inode)->i_reserved_data_blocks);
5381 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5382 return 0;
5383 }
5384
5385 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5386 int pextents)
5387 {
5388 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5389 return ext4_ind_trans_blocks(inode, lblocks);
5390 return ext4_ext_index_trans_blocks(inode, pextents);
5391 }
5392
5393 /*
5394 * Account for index blocks, block groups bitmaps and block group
5395 * descriptor blocks if modify datablocks and index blocks
5396 * worse case, the indexs blocks spread over different block groups
5397 *
5398 * If datablocks are discontiguous, they are possible to spread over
5399 * different block groups too. If they are contiguous, with flexbg,
5400 * they could still across block group boundary.
5401 *
5402 * Also account for superblock, inode, quota and xattr blocks
5403 */
5404 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5405 int pextents)
5406 {
5407 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5408 int gdpblocks;
5409 int idxblocks;
5410 int ret = 0;
5411
5412 /*
5413 * How many index blocks need to touch to map @lblocks logical blocks
5414 * to @pextents physical extents?
5415 */
5416 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5417
5418 ret = idxblocks;
5419
5420 /*
5421 * Now let's see how many group bitmaps and group descriptors need
5422 * to account
5423 */
5424 groups = idxblocks + pextents;
5425 gdpblocks = groups;
5426 if (groups > ngroups)
5427 groups = ngroups;
5428 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5429 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5430
5431 /* bitmaps and block group descriptor blocks */
5432 ret += groups + gdpblocks;
5433
5434 /* Blocks for super block, inode, quota and xattr blocks */
5435 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5436
5437 return ret;
5438 }
5439
5440 /*
5441 * Calculate the total number of credits to reserve to fit
5442 * the modification of a single pages into a single transaction,
5443 * which may include multiple chunks of block allocations.
5444 *
5445 * This could be called via ext4_write_begin()
5446 *
5447 * We need to consider the worse case, when
5448 * one new block per extent.
5449 */
5450 int ext4_writepage_trans_blocks(struct inode *inode)
5451 {
5452 int bpp = ext4_journal_blocks_per_page(inode);
5453 int ret;
5454
5455 ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5456
5457 /* Account for data blocks for journalled mode */
5458 if (ext4_should_journal_data(inode))
5459 ret += bpp;
5460 return ret;
5461 }
5462
5463 /*
5464 * Calculate the journal credits for a chunk of data modification.
5465 *
5466 * This is called from DIO, fallocate or whoever calling
5467 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5468 *
5469 * journal buffers for data blocks are not included here, as DIO
5470 * and fallocate do no need to journal data buffers.
5471 */
5472 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5473 {
5474 return ext4_meta_trans_blocks(inode, nrblocks, 1);
5475 }
5476
5477 /*
5478 * The caller must have previously called ext4_reserve_inode_write().
5479 * Give this, we know that the caller already has write access to iloc->bh.
5480 */
5481 int ext4_mark_iloc_dirty(handle_t *handle,
5482 struct inode *inode, struct ext4_iloc *iloc)
5483 {
5484 int err = 0;
5485
5486 if (IS_I_VERSION(inode))
5487 inode_inc_iversion(inode);
5488
5489 /* the do_update_inode consumes one bh->b_count */
5490 get_bh(iloc->bh);
5491
5492 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5493 err = ext4_do_update_inode(handle, inode, iloc);
5494 put_bh(iloc->bh);
5495 return err;
5496 }
5497
5498 /*
5499 * On success, We end up with an outstanding reference count against
5500 * iloc->bh. This _must_ be cleaned up later.
5501 */
5502
5503 int
5504 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5505 struct ext4_iloc *iloc)
5506 {
5507 int err;
5508
5509 err = ext4_get_inode_loc(inode, iloc);
5510 if (!err) {
5511 BUFFER_TRACE(iloc->bh, "get_write_access");
5512 err = ext4_journal_get_write_access(handle, iloc->bh);
5513 if (err) {
5514 brelse(iloc->bh);
5515 iloc->bh = NULL;
5516 }
5517 }
5518 ext4_std_error(inode->i_sb, err);
5519 return err;
5520 }
5521
5522 /*
5523 * Expand an inode by new_extra_isize bytes.
5524 * Returns 0 on success or negative error number on failure.
5525 */
5526 static int ext4_expand_extra_isize(struct inode *inode,
5527 unsigned int new_extra_isize,
5528 struct ext4_iloc iloc,
5529 handle_t *handle)
5530 {
5531 struct ext4_inode *raw_inode;
5532 struct ext4_xattr_ibody_header *header;
5533
5534 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5535 return 0;
5536
5537 raw_inode = ext4_raw_inode(&iloc);
5538
5539 header = IHDR(inode, raw_inode);
5540
5541 /* No extended attributes present */
5542 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5543 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5544 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5545 new_extra_isize);
5546 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5547 return 0;
5548 }
5549
5550 /* try to expand with EAs present */
5551 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5552 raw_inode, handle);
5553 }
5554
5555 /*
5556 * What we do here is to mark the in-core inode as clean with respect to inode
5557 * dirtiness (it may still be data-dirty).
5558 * This means that the in-core inode may be reaped by prune_icache
5559 * without having to perform any I/O. This is a very good thing,
5560 * because *any* task may call prune_icache - even ones which
5561 * have a transaction open against a different journal.
5562 *
5563 * Is this cheating? Not really. Sure, we haven't written the
5564 * inode out, but prune_icache isn't a user-visible syncing function.
5565 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5566 * we start and wait on commits.
5567 */
5568 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5569 {
5570 struct ext4_iloc iloc;
5571 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5572 static unsigned int mnt_count;
5573 int err, ret;
5574
5575 might_sleep();
5576 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5577 err = ext4_reserve_inode_write(handle, inode, &iloc);
5578 if (err)
5579 return err;
5580 if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5581 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5582 /*
5583 * In nojournal mode, we can immediately attempt to expand
5584 * the inode. When journaled, we first need to obtain extra
5585 * buffer credits since we may write into the EA block
5586 * with this same handle. If journal_extend fails, then it will
5587 * only result in a minor loss of functionality for that inode.
5588 * If this is felt to be critical, then e2fsck should be run to
5589 * force a large enough s_min_extra_isize.
5590 */
5591 if (!ext4_handle_valid(handle) ||
5592 jbd2_journal_extend(handle,
5593 EXT4_DATA_TRANS_BLOCKS(inode->i_sb)) == 0) {
5594 ret = ext4_expand_extra_isize(inode,
5595 sbi->s_want_extra_isize,
5596 iloc, handle);
5597 if (ret) {
5598 if (mnt_count !=
5599 le16_to_cpu(sbi->s_es->s_mnt_count)) {
5600 ext4_warning(inode->i_sb,
5601 "Unable to expand inode %lu. Delete"
5602 " some EAs or run e2fsck.",
5603 inode->i_ino);
5604 mnt_count =
5605 le16_to_cpu(sbi->s_es->s_mnt_count);
5606 }
5607 }
5608 }
5609 }
5610 return ext4_mark_iloc_dirty(handle, inode, &iloc);
5611 }
5612
5613 /*
5614 * ext4_dirty_inode() is called from __mark_inode_dirty()
5615 *
5616 * We're really interested in the case where a file is being extended.
5617 * i_size has been changed by generic_commit_write() and we thus need
5618 * to include the updated inode in the current transaction.
5619 *
5620 * Also, dquot_alloc_block() will always dirty the inode when blocks
5621 * are allocated to the file.
5622 *
5623 * If the inode is marked synchronous, we don't honour that here - doing
5624 * so would cause a commit on atime updates, which we don't bother doing.
5625 * We handle synchronous inodes at the highest possible level.
5626 *
5627 * If only the I_DIRTY_TIME flag is set, we can skip everything. If
5628 * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
5629 * to copy into the on-disk inode structure are the timestamp files.
5630 */
5631 void ext4_dirty_inode(struct inode *inode, int flags)
5632 {
5633 handle_t *handle;
5634
5635 if (flags == I_DIRTY_TIME)
5636 return;
5637 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5638 if (IS_ERR(handle))
5639 goto out;
5640
5641 ext4_mark_inode_dirty(handle, inode);
5642
5643 ext4_journal_stop(handle);
5644 out:
5645 return;
5646 }
5647
5648 #if 0
5649 /*
5650 * Bind an inode's backing buffer_head into this transaction, to prevent
5651 * it from being flushed to disk early. Unlike
5652 * ext4_reserve_inode_write, this leaves behind no bh reference and
5653 * returns no iloc structure, so the caller needs to repeat the iloc
5654 * lookup to mark the inode dirty later.
5655 */
5656 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5657 {
5658 struct ext4_iloc iloc;
5659
5660 int err = 0;
5661 if (handle) {
5662 err = ext4_get_inode_loc(inode, &iloc);
5663 if (!err) {
5664 BUFFER_TRACE(iloc.bh, "get_write_access");
5665 err = jbd2_journal_get_write_access(handle, iloc.bh);
5666 if (!err)
5667 err = ext4_handle_dirty_metadata(handle,
5668 NULL,
5669 iloc.bh);
5670 brelse(iloc.bh);
5671 }
5672 }
5673 ext4_std_error(inode->i_sb, err);
5674 return err;
5675 }
5676 #endif
5677
5678 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5679 {
5680 journal_t *journal;
5681 handle_t *handle;
5682 int err;
5683 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5684
5685 /*
5686 * We have to be very careful here: changing a data block's
5687 * journaling status dynamically is dangerous. If we write a
5688 * data block to the journal, change the status and then delete
5689 * that block, we risk forgetting to revoke the old log record
5690 * from the journal and so a subsequent replay can corrupt data.
5691 * So, first we make sure that the journal is empty and that
5692 * nobody is changing anything.
5693 */
5694
5695 journal = EXT4_JOURNAL(inode);
5696 if (!journal)
5697 return 0;
5698 if (is_journal_aborted(journal))
5699 return -EROFS;
5700
5701 /* Wait for all existing dio workers */
5702 ext4_inode_block_unlocked_dio(inode);
5703 inode_dio_wait(inode);
5704
5705 /*
5706 * Before flushing the journal and switching inode's aops, we have
5707 * to flush all dirty data the inode has. There can be outstanding
5708 * delayed allocations, there can be unwritten extents created by
5709 * fallocate or buffered writes in dioread_nolock mode covered by
5710 * dirty data which can be converted only after flushing the dirty
5711 * data (and journalled aops don't know how to handle these cases).
5712 */
5713 if (val) {
5714 down_write(&EXT4_I(inode)->i_mmap_sem);
5715 err = filemap_write_and_wait(inode->i_mapping);
5716 if (err < 0) {
5717 up_write(&EXT4_I(inode)->i_mmap_sem);
5718 ext4_inode_resume_unlocked_dio(inode);
5719 return err;
5720 }
5721 }
5722
5723 percpu_down_write(&sbi->s_journal_flag_rwsem);
5724 jbd2_journal_lock_updates(journal);
5725
5726 /*
5727 * OK, there are no updates running now, and all cached data is
5728 * synced to disk. We are now in a completely consistent state
5729 * which doesn't have anything in the journal, and we know that
5730 * no filesystem updates are running, so it is safe to modify
5731 * the inode's in-core data-journaling state flag now.
5732 */
5733
5734 if (val)
5735 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5736 else {
5737 err = jbd2_journal_flush(journal);
5738 if (err < 0) {
5739 jbd2_journal_unlock_updates(journal);
5740 percpu_up_write(&sbi->s_journal_flag_rwsem);
5741 ext4_inode_resume_unlocked_dio(inode);
5742 return err;
5743 }
5744 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5745 }
5746 ext4_set_aops(inode);
5747 /*
5748 * Update inode->i_flags after EXT4_INODE_JOURNAL_DATA was updated.
5749 * E.g. S_DAX may get cleared / set.
5750 */
5751 ext4_set_inode_flags(inode);
5752
5753 jbd2_journal_unlock_updates(journal);
5754 percpu_up_write(&sbi->s_journal_flag_rwsem);
5755
5756 if (val)
5757 up_write(&EXT4_I(inode)->i_mmap_sem);
5758 ext4_inode_resume_unlocked_dio(inode);
5759
5760 /* Finally we can mark the inode as dirty. */
5761
5762 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5763 if (IS_ERR(handle))
5764 return PTR_ERR(handle);
5765
5766 err = ext4_mark_inode_dirty(handle, inode);
5767 ext4_handle_sync(handle);
5768 ext4_journal_stop(handle);
5769 ext4_std_error(inode->i_sb, err);
5770
5771 return err;
5772 }
5773
5774 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5775 {
5776 return !buffer_mapped(bh);
5777 }
5778
5779 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5780 {
5781 struct page *page = vmf->page;
5782 loff_t size;
5783 unsigned long len;
5784 int ret;
5785 struct file *file = vma->vm_file;
5786 struct inode *inode = file_inode(file);
5787 struct address_space *mapping = inode->i_mapping;
5788 handle_t *handle;
5789 get_block_t *get_block;
5790 int retries = 0;
5791
5792 sb_start_pagefault(inode->i_sb);
5793 file_update_time(vma->vm_file);
5794
5795 down_read(&EXT4_I(inode)->i_mmap_sem);
5796 /* Delalloc case is easy... */
5797 if (test_opt(inode->i_sb, DELALLOC) &&
5798 !ext4_should_journal_data(inode) &&
5799 !ext4_nonda_switch(inode->i_sb)) {
5800 do {
5801 ret = block_page_mkwrite(vma, vmf,
5802 ext4_da_get_block_prep);
5803 } while (ret == -ENOSPC &&
5804 ext4_should_retry_alloc(inode->i_sb, &retries));
5805 goto out_ret;
5806 }
5807
5808 lock_page(page);
5809 size = i_size_read(inode);
5810 /* Page got truncated from under us? */
5811 if (page->mapping != mapping || page_offset(page) > size) {
5812 unlock_page(page);
5813 ret = VM_FAULT_NOPAGE;
5814 goto out;
5815 }
5816
5817 if (page->index == size >> PAGE_SHIFT)
5818 len = size & ~PAGE_MASK;
5819 else
5820 len = PAGE_SIZE;
5821 /*
5822 * Return if we have all the buffers mapped. This avoids the need to do
5823 * journal_start/journal_stop which can block and take a long time
5824 */
5825 if (page_has_buffers(page)) {
5826 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5827 0, len, NULL,
5828 ext4_bh_unmapped)) {
5829 /* Wait so that we don't change page under IO */
5830 wait_for_stable_page(page);
5831 ret = VM_FAULT_LOCKED;
5832 goto out;
5833 }
5834 }
5835 unlock_page(page);
5836 /* OK, we need to fill the hole... */
5837 if (ext4_should_dioread_nolock(inode))
5838 get_block = ext4_get_block_unwritten;
5839 else
5840 get_block = ext4_get_block;
5841 retry_alloc:
5842 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5843 ext4_writepage_trans_blocks(inode));
5844 if (IS_ERR(handle)) {
5845 ret = VM_FAULT_SIGBUS;
5846 goto out;
5847 }
5848 ret = block_page_mkwrite(vma, vmf, get_block);
5849 if (!ret && ext4_should_journal_data(inode)) {
5850 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5851 PAGE_SIZE, NULL, do_journal_get_write_access)) {
5852 unlock_page(page);
5853 ret = VM_FAULT_SIGBUS;
5854 ext4_journal_stop(handle);
5855 goto out;
5856 }
5857 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5858 }
5859 ext4_journal_stop(handle);
5860 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5861 goto retry_alloc;
5862 out_ret:
5863 ret = block_page_mkwrite_return(ret);
5864 out:
5865 up_read(&EXT4_I(inode)->i_mmap_sem);
5866 sb_end_pagefault(inode->i_sb);
5867 return ret;
5868 }
5869
5870 int ext4_filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
5871 {
5872 struct inode *inode = file_inode(vma->vm_file);
5873 int err;
5874
5875 down_read(&EXT4_I(inode)->i_mmap_sem);
5876 err = filemap_fault(vma, vmf);
5877 up_read(&EXT4_I(inode)->i_mmap_sem);
5878
5879 return err;
5880 }
5881
5882 /*
5883 * Find the first extent at or after @lblk in an inode that is not a hole.
5884 * Search for @map_len blocks at most. The extent is returned in @result.
5885 *
5886 * The function returns 1 if we found an extent. The function returns 0 in
5887 * case there is no extent at or after @lblk and in that case also sets
5888 * @result->es_len to 0. In case of error, the error code is returned.
5889 */
5890 int ext4_get_next_extent(struct inode *inode, ext4_lblk_t lblk,
5891 unsigned int map_len, struct extent_status *result)
5892 {
5893 struct ext4_map_blocks map;
5894 struct extent_status es = {};
5895 int ret;
5896
5897 map.m_lblk = lblk;
5898 map.m_len = map_len;
5899
5900 /*
5901 * For non-extent based files this loop may iterate several times since
5902 * we do not determine full hole size.
5903 */
5904 while (map.m_len > 0) {
5905 ret = ext4_map_blocks(NULL, inode, &map, 0);
5906 if (ret < 0)
5907 return ret;
5908 /* There's extent covering m_lblk? Just return it. */
5909 if (ret > 0) {
5910 int status;
5911
5912 ext4_es_store_pblock(result, map.m_pblk);
5913 result->es_lblk = map.m_lblk;
5914 result->es_len = map.m_len;
5915 if (map.m_flags & EXT4_MAP_UNWRITTEN)
5916 status = EXTENT_STATUS_UNWRITTEN;
5917 else
5918 status = EXTENT_STATUS_WRITTEN;
5919 ext4_es_store_status(result, status);
5920 return 1;
5921 }
5922 ext4_es_find_delayed_extent_range(inode, map.m_lblk,
5923 map.m_lblk + map.m_len - 1,
5924 &es);
5925 /* Is delalloc data before next block in extent tree? */
5926 if (es.es_len && es.es_lblk < map.m_lblk + map.m_len) {
5927 ext4_lblk_t offset = 0;
5928
5929 if (es.es_lblk < lblk)
5930 offset = lblk - es.es_lblk;
5931 result->es_lblk = es.es_lblk + offset;
5932 ext4_es_store_pblock(result,
5933 ext4_es_pblock(&es) + offset);
5934 result->es_len = es.es_len - offset;
5935 ext4_es_store_status(result, ext4_es_status(&es));
5936
5937 return 1;
5938 }
5939 /* There's a hole at m_lblk, advance us after it */
5940 map.m_lblk += map.m_len;
5941 map_len -= map.m_len;
5942 map.m_len = map_len;
5943 cond_resched();
5944 }
5945 result->es_len = 0;
5946 return 0;
5947 }