]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/ext4/inode.c
ext4: only call ext4_jbd2_file_inode when an inode has been extended
[mirror_ubuntu-artful-kernel.git] / fs / ext4 / inode.c
1 /*
2 * linux/fs/ext4/inode.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * 64-bit file support on 64-bit platforms by Jakub Jelinek
16 * (jj@sunsite.ms.mff.cuni.cz)
17 *
18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19 */
20
21 #include <linux/module.h>
22 #include <linux/fs.h>
23 #include <linux/time.h>
24 #include <linux/jbd2.h>
25 #include <linux/highuid.h>
26 #include <linux/pagemap.h>
27 #include <linux/quotaops.h>
28 #include <linux/string.h>
29 #include <linux/buffer_head.h>
30 #include <linux/writeback.h>
31 #include <linux/pagevec.h>
32 #include <linux/mpage.h>
33 #include <linux/namei.h>
34 #include <linux/uio.h>
35 #include <linux/bio.h>
36 #include <linux/workqueue.h>
37 #include <linux/kernel.h>
38 #include <linux/printk.h>
39 #include <linux/slab.h>
40 #include <linux/ratelimit.h>
41
42 #include "ext4_jbd2.h"
43 #include "xattr.h"
44 #include "acl.h"
45 #include "ext4_extents.h"
46 #include "truncate.h"
47
48 #include <trace/events/ext4.h>
49
50 #define MPAGE_DA_EXTENT_TAIL 0x01
51
52 static inline int ext4_begin_ordered_truncate(struct inode *inode,
53 loff_t new_size)
54 {
55 trace_ext4_begin_ordered_truncate(inode, new_size);
56 /*
57 * If jinode is zero, then we never opened the file for
58 * writing, so there's no need to call
59 * jbd2_journal_begin_ordered_truncate() since there's no
60 * outstanding writes we need to flush.
61 */
62 if (!EXT4_I(inode)->jinode)
63 return 0;
64 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
65 EXT4_I(inode)->jinode,
66 new_size);
67 }
68
69 static void ext4_invalidatepage(struct page *page, unsigned long offset);
70 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
71 struct buffer_head *bh_result, int create);
72 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
73 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
74 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
75 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
76
77 /*
78 * Test whether an inode is a fast symlink.
79 */
80 static int ext4_inode_is_fast_symlink(struct inode *inode)
81 {
82 int ea_blocks = EXT4_I(inode)->i_file_acl ?
83 (inode->i_sb->s_blocksize >> 9) : 0;
84
85 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
86 }
87
88 /*
89 * Restart the transaction associated with *handle. This does a commit,
90 * so before we call here everything must be consistently dirtied against
91 * this transaction.
92 */
93 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
94 int nblocks)
95 {
96 int ret;
97
98 /*
99 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
100 * moment, get_block can be called only for blocks inside i_size since
101 * page cache has been already dropped and writes are blocked by
102 * i_mutex. So we can safely drop the i_data_sem here.
103 */
104 BUG_ON(EXT4_JOURNAL(inode) == NULL);
105 jbd_debug(2, "restarting handle %p\n", handle);
106 up_write(&EXT4_I(inode)->i_data_sem);
107 ret = ext4_journal_restart(handle, nblocks);
108 down_write(&EXT4_I(inode)->i_data_sem);
109 ext4_discard_preallocations(inode);
110
111 return ret;
112 }
113
114 /*
115 * Called at the last iput() if i_nlink is zero.
116 */
117 void ext4_evict_inode(struct inode *inode)
118 {
119 handle_t *handle;
120 int err;
121
122 trace_ext4_evict_inode(inode);
123
124 ext4_ioend_wait(inode);
125
126 if (inode->i_nlink) {
127 /*
128 * When journalling data dirty buffers are tracked only in the
129 * journal. So although mm thinks everything is clean and
130 * ready for reaping the inode might still have some pages to
131 * write in the running transaction or waiting to be
132 * checkpointed. Thus calling jbd2_journal_invalidatepage()
133 * (via truncate_inode_pages()) to discard these buffers can
134 * cause data loss. Also even if we did not discard these
135 * buffers, we would have no way to find them after the inode
136 * is reaped and thus user could see stale data if he tries to
137 * read them before the transaction is checkpointed. So be
138 * careful and force everything to disk here... We use
139 * ei->i_datasync_tid to store the newest transaction
140 * containing inode's data.
141 *
142 * Note that directories do not have this problem because they
143 * don't use page cache.
144 */
145 if (ext4_should_journal_data(inode) &&
146 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) {
147 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
148 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
149
150 jbd2_log_start_commit(journal, commit_tid);
151 jbd2_log_wait_commit(journal, commit_tid);
152 filemap_write_and_wait(&inode->i_data);
153 }
154 truncate_inode_pages(&inode->i_data, 0);
155 goto no_delete;
156 }
157
158 if (!is_bad_inode(inode))
159 dquot_initialize(inode);
160
161 if (ext4_should_order_data(inode))
162 ext4_begin_ordered_truncate(inode, 0);
163 truncate_inode_pages(&inode->i_data, 0);
164
165 if (is_bad_inode(inode))
166 goto no_delete;
167
168 handle = ext4_journal_start(inode, ext4_blocks_for_truncate(inode)+3);
169 if (IS_ERR(handle)) {
170 ext4_std_error(inode->i_sb, PTR_ERR(handle));
171 /*
172 * If we're going to skip the normal cleanup, we still need to
173 * make sure that the in-core orphan linked list is properly
174 * cleaned up.
175 */
176 ext4_orphan_del(NULL, inode);
177 goto no_delete;
178 }
179
180 if (IS_SYNC(inode))
181 ext4_handle_sync(handle);
182 inode->i_size = 0;
183 err = ext4_mark_inode_dirty(handle, inode);
184 if (err) {
185 ext4_warning(inode->i_sb,
186 "couldn't mark inode dirty (err %d)", err);
187 goto stop_handle;
188 }
189 if (inode->i_blocks)
190 ext4_truncate(inode);
191
192 /*
193 * ext4_ext_truncate() doesn't reserve any slop when it
194 * restarts journal transactions; therefore there may not be
195 * enough credits left in the handle to remove the inode from
196 * the orphan list and set the dtime field.
197 */
198 if (!ext4_handle_has_enough_credits(handle, 3)) {
199 err = ext4_journal_extend(handle, 3);
200 if (err > 0)
201 err = ext4_journal_restart(handle, 3);
202 if (err != 0) {
203 ext4_warning(inode->i_sb,
204 "couldn't extend journal (err %d)", err);
205 stop_handle:
206 ext4_journal_stop(handle);
207 ext4_orphan_del(NULL, inode);
208 goto no_delete;
209 }
210 }
211
212 /*
213 * Kill off the orphan record which ext4_truncate created.
214 * AKPM: I think this can be inside the above `if'.
215 * Note that ext4_orphan_del() has to be able to cope with the
216 * deletion of a non-existent orphan - this is because we don't
217 * know if ext4_truncate() actually created an orphan record.
218 * (Well, we could do this if we need to, but heck - it works)
219 */
220 ext4_orphan_del(handle, inode);
221 EXT4_I(inode)->i_dtime = get_seconds();
222
223 /*
224 * One subtle ordering requirement: if anything has gone wrong
225 * (transaction abort, IO errors, whatever), then we can still
226 * do these next steps (the fs will already have been marked as
227 * having errors), but we can't free the inode if the mark_dirty
228 * fails.
229 */
230 if (ext4_mark_inode_dirty(handle, inode))
231 /* If that failed, just do the required in-core inode clear. */
232 ext4_clear_inode(inode);
233 else
234 ext4_free_inode(handle, inode);
235 ext4_journal_stop(handle);
236 return;
237 no_delete:
238 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
239 }
240
241 #ifdef CONFIG_QUOTA
242 qsize_t *ext4_get_reserved_space(struct inode *inode)
243 {
244 return &EXT4_I(inode)->i_reserved_quota;
245 }
246 #endif
247
248 /*
249 * Calculate the number of metadata blocks need to reserve
250 * to allocate a block located at @lblock
251 */
252 static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
253 {
254 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
255 return ext4_ext_calc_metadata_amount(inode, lblock);
256
257 return ext4_ind_calc_metadata_amount(inode, lblock);
258 }
259
260 /*
261 * Called with i_data_sem down, which is important since we can call
262 * ext4_discard_preallocations() from here.
263 */
264 void ext4_da_update_reserve_space(struct inode *inode,
265 int used, int quota_claim)
266 {
267 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
268 struct ext4_inode_info *ei = EXT4_I(inode);
269
270 spin_lock(&ei->i_block_reservation_lock);
271 trace_ext4_da_update_reserve_space(inode, used);
272 if (unlikely(used > ei->i_reserved_data_blocks)) {
273 ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d "
274 "with only %d reserved data blocks\n",
275 __func__, inode->i_ino, used,
276 ei->i_reserved_data_blocks);
277 WARN_ON(1);
278 used = ei->i_reserved_data_blocks;
279 }
280
281 /* Update per-inode reservations */
282 ei->i_reserved_data_blocks -= used;
283 ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
284 percpu_counter_sub(&sbi->s_dirtyblocks_counter,
285 used + ei->i_allocated_meta_blocks);
286 ei->i_allocated_meta_blocks = 0;
287
288 if (ei->i_reserved_data_blocks == 0) {
289 /*
290 * We can release all of the reserved metadata blocks
291 * only when we have written all of the delayed
292 * allocation blocks.
293 */
294 percpu_counter_sub(&sbi->s_dirtyblocks_counter,
295 ei->i_reserved_meta_blocks);
296 ei->i_reserved_meta_blocks = 0;
297 ei->i_da_metadata_calc_len = 0;
298 }
299 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
300
301 /* Update quota subsystem for data blocks */
302 if (quota_claim)
303 dquot_claim_block(inode, used);
304 else {
305 /*
306 * We did fallocate with an offset that is already delayed
307 * allocated. So on delayed allocated writeback we should
308 * not re-claim the quota for fallocated blocks.
309 */
310 dquot_release_reservation_block(inode, used);
311 }
312
313 /*
314 * If we have done all the pending block allocations and if
315 * there aren't any writers on the inode, we can discard the
316 * inode's preallocations.
317 */
318 if ((ei->i_reserved_data_blocks == 0) &&
319 (atomic_read(&inode->i_writecount) == 0))
320 ext4_discard_preallocations(inode);
321 }
322
323 static int __check_block_validity(struct inode *inode, const char *func,
324 unsigned int line,
325 struct ext4_map_blocks *map)
326 {
327 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
328 map->m_len)) {
329 ext4_error_inode(inode, func, line, map->m_pblk,
330 "lblock %lu mapped to illegal pblock "
331 "(length %d)", (unsigned long) map->m_lblk,
332 map->m_len);
333 return -EIO;
334 }
335 return 0;
336 }
337
338 #define check_block_validity(inode, map) \
339 __check_block_validity((inode), __func__, __LINE__, (map))
340
341 /*
342 * Return the number of contiguous dirty pages in a given inode
343 * starting at page frame idx.
344 */
345 static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
346 unsigned int max_pages)
347 {
348 struct address_space *mapping = inode->i_mapping;
349 pgoff_t index;
350 struct pagevec pvec;
351 pgoff_t num = 0;
352 int i, nr_pages, done = 0;
353
354 if (max_pages == 0)
355 return 0;
356 pagevec_init(&pvec, 0);
357 while (!done) {
358 index = idx;
359 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
360 PAGECACHE_TAG_DIRTY,
361 (pgoff_t)PAGEVEC_SIZE);
362 if (nr_pages == 0)
363 break;
364 for (i = 0; i < nr_pages; i++) {
365 struct page *page = pvec.pages[i];
366 struct buffer_head *bh, *head;
367
368 lock_page(page);
369 if (unlikely(page->mapping != mapping) ||
370 !PageDirty(page) ||
371 PageWriteback(page) ||
372 page->index != idx) {
373 done = 1;
374 unlock_page(page);
375 break;
376 }
377 if (page_has_buffers(page)) {
378 bh = head = page_buffers(page);
379 do {
380 if (!buffer_delay(bh) &&
381 !buffer_unwritten(bh))
382 done = 1;
383 bh = bh->b_this_page;
384 } while (!done && (bh != head));
385 }
386 unlock_page(page);
387 if (done)
388 break;
389 idx++;
390 num++;
391 if (num >= max_pages) {
392 done = 1;
393 break;
394 }
395 }
396 pagevec_release(&pvec);
397 }
398 return num;
399 }
400
401 /*
402 * The ext4_map_blocks() function tries to look up the requested blocks,
403 * and returns if the blocks are already mapped.
404 *
405 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
406 * and store the allocated blocks in the result buffer head and mark it
407 * mapped.
408 *
409 * If file type is extents based, it will call ext4_ext_map_blocks(),
410 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
411 * based files
412 *
413 * On success, it returns the number of blocks being mapped or allocate.
414 * if create==0 and the blocks are pre-allocated and uninitialized block,
415 * the result buffer head is unmapped. If the create ==1, it will make sure
416 * the buffer head is mapped.
417 *
418 * It returns 0 if plain look up failed (blocks have not been allocated), in
419 * that casem, buffer head is unmapped
420 *
421 * It returns the error in case of allocation failure.
422 */
423 int ext4_map_blocks(handle_t *handle, struct inode *inode,
424 struct ext4_map_blocks *map, int flags)
425 {
426 int retval;
427
428 map->m_flags = 0;
429 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
430 "logical block %lu\n", inode->i_ino, flags, map->m_len,
431 (unsigned long) map->m_lblk);
432 /*
433 * Try to see if we can get the block without requesting a new
434 * file system block.
435 */
436 down_read((&EXT4_I(inode)->i_data_sem));
437 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
438 retval = ext4_ext_map_blocks(handle, inode, map, 0);
439 } else {
440 retval = ext4_ind_map_blocks(handle, inode, map, 0);
441 }
442 up_read((&EXT4_I(inode)->i_data_sem));
443
444 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
445 int ret = check_block_validity(inode, map);
446 if (ret != 0)
447 return ret;
448 }
449
450 /* If it is only a block(s) look up */
451 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
452 return retval;
453
454 /*
455 * Returns if the blocks have already allocated
456 *
457 * Note that if blocks have been preallocated
458 * ext4_ext_get_block() returns th create = 0
459 * with buffer head unmapped.
460 */
461 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
462 return retval;
463
464 /*
465 * When we call get_blocks without the create flag, the
466 * BH_Unwritten flag could have gotten set if the blocks
467 * requested were part of a uninitialized extent. We need to
468 * clear this flag now that we are committed to convert all or
469 * part of the uninitialized extent to be an initialized
470 * extent. This is because we need to avoid the combination
471 * of BH_Unwritten and BH_Mapped flags being simultaneously
472 * set on the buffer_head.
473 */
474 map->m_flags &= ~EXT4_MAP_UNWRITTEN;
475
476 /*
477 * New blocks allocate and/or writing to uninitialized extent
478 * will possibly result in updating i_data, so we take
479 * the write lock of i_data_sem, and call get_blocks()
480 * with create == 1 flag.
481 */
482 down_write((&EXT4_I(inode)->i_data_sem));
483
484 /*
485 * if the caller is from delayed allocation writeout path
486 * we have already reserved fs blocks for allocation
487 * let the underlying get_block() function know to
488 * avoid double accounting
489 */
490 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
491 ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
492 /*
493 * We need to check for EXT4 here because migrate
494 * could have changed the inode type in between
495 */
496 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
497 retval = ext4_ext_map_blocks(handle, inode, map, flags);
498 } else {
499 retval = ext4_ind_map_blocks(handle, inode, map, flags);
500
501 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
502 /*
503 * We allocated new blocks which will result in
504 * i_data's format changing. Force the migrate
505 * to fail by clearing migrate flags
506 */
507 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
508 }
509
510 /*
511 * Update reserved blocks/metadata blocks after successful
512 * block allocation which had been deferred till now. We don't
513 * support fallocate for non extent files. So we can update
514 * reserve space here.
515 */
516 if ((retval > 0) &&
517 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
518 ext4_da_update_reserve_space(inode, retval, 1);
519 }
520 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
521 ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
522
523 up_write((&EXT4_I(inode)->i_data_sem));
524 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
525 int ret = check_block_validity(inode, map);
526 if (ret != 0)
527 return ret;
528 }
529 return retval;
530 }
531
532 /* Maximum number of blocks we map for direct IO at once. */
533 #define DIO_MAX_BLOCKS 4096
534
535 static int _ext4_get_block(struct inode *inode, sector_t iblock,
536 struct buffer_head *bh, int flags)
537 {
538 handle_t *handle = ext4_journal_current_handle();
539 struct ext4_map_blocks map;
540 int ret = 0, started = 0;
541 int dio_credits;
542
543 map.m_lblk = iblock;
544 map.m_len = bh->b_size >> inode->i_blkbits;
545
546 if (flags && !handle) {
547 /* Direct IO write... */
548 if (map.m_len > DIO_MAX_BLOCKS)
549 map.m_len = DIO_MAX_BLOCKS;
550 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
551 handle = ext4_journal_start(inode, dio_credits);
552 if (IS_ERR(handle)) {
553 ret = PTR_ERR(handle);
554 return ret;
555 }
556 started = 1;
557 }
558
559 ret = ext4_map_blocks(handle, inode, &map, flags);
560 if (ret > 0) {
561 map_bh(bh, inode->i_sb, map.m_pblk);
562 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
563 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
564 ret = 0;
565 }
566 if (started)
567 ext4_journal_stop(handle);
568 return ret;
569 }
570
571 int ext4_get_block(struct inode *inode, sector_t iblock,
572 struct buffer_head *bh, int create)
573 {
574 return _ext4_get_block(inode, iblock, bh,
575 create ? EXT4_GET_BLOCKS_CREATE : 0);
576 }
577
578 /*
579 * `handle' can be NULL if create is zero
580 */
581 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
582 ext4_lblk_t block, int create, int *errp)
583 {
584 struct ext4_map_blocks map;
585 struct buffer_head *bh;
586 int fatal = 0, err;
587
588 J_ASSERT(handle != NULL || create == 0);
589
590 map.m_lblk = block;
591 map.m_len = 1;
592 err = ext4_map_blocks(handle, inode, &map,
593 create ? EXT4_GET_BLOCKS_CREATE : 0);
594
595 if (err < 0)
596 *errp = err;
597 if (err <= 0)
598 return NULL;
599 *errp = 0;
600
601 bh = sb_getblk(inode->i_sb, map.m_pblk);
602 if (!bh) {
603 *errp = -EIO;
604 return NULL;
605 }
606 if (map.m_flags & EXT4_MAP_NEW) {
607 J_ASSERT(create != 0);
608 J_ASSERT(handle != NULL);
609
610 /*
611 * Now that we do not always journal data, we should
612 * keep in mind whether this should always journal the
613 * new buffer as metadata. For now, regular file
614 * writes use ext4_get_block instead, so it's not a
615 * problem.
616 */
617 lock_buffer(bh);
618 BUFFER_TRACE(bh, "call get_create_access");
619 fatal = ext4_journal_get_create_access(handle, bh);
620 if (!fatal && !buffer_uptodate(bh)) {
621 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
622 set_buffer_uptodate(bh);
623 }
624 unlock_buffer(bh);
625 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
626 err = ext4_handle_dirty_metadata(handle, inode, bh);
627 if (!fatal)
628 fatal = err;
629 } else {
630 BUFFER_TRACE(bh, "not a new buffer");
631 }
632 if (fatal) {
633 *errp = fatal;
634 brelse(bh);
635 bh = NULL;
636 }
637 return bh;
638 }
639
640 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
641 ext4_lblk_t block, int create, int *err)
642 {
643 struct buffer_head *bh;
644
645 bh = ext4_getblk(handle, inode, block, create, err);
646 if (!bh)
647 return bh;
648 if (buffer_uptodate(bh))
649 return bh;
650 ll_rw_block(READ_META, 1, &bh);
651 wait_on_buffer(bh);
652 if (buffer_uptodate(bh))
653 return bh;
654 put_bh(bh);
655 *err = -EIO;
656 return NULL;
657 }
658
659 static int walk_page_buffers(handle_t *handle,
660 struct buffer_head *head,
661 unsigned from,
662 unsigned to,
663 int *partial,
664 int (*fn)(handle_t *handle,
665 struct buffer_head *bh))
666 {
667 struct buffer_head *bh;
668 unsigned block_start, block_end;
669 unsigned blocksize = head->b_size;
670 int err, ret = 0;
671 struct buffer_head *next;
672
673 for (bh = head, block_start = 0;
674 ret == 0 && (bh != head || !block_start);
675 block_start = block_end, bh = next) {
676 next = bh->b_this_page;
677 block_end = block_start + blocksize;
678 if (block_end <= from || block_start >= to) {
679 if (partial && !buffer_uptodate(bh))
680 *partial = 1;
681 continue;
682 }
683 err = (*fn)(handle, bh);
684 if (!ret)
685 ret = err;
686 }
687 return ret;
688 }
689
690 /*
691 * To preserve ordering, it is essential that the hole instantiation and
692 * the data write be encapsulated in a single transaction. We cannot
693 * close off a transaction and start a new one between the ext4_get_block()
694 * and the commit_write(). So doing the jbd2_journal_start at the start of
695 * prepare_write() is the right place.
696 *
697 * Also, this function can nest inside ext4_writepage() ->
698 * block_write_full_page(). In that case, we *know* that ext4_writepage()
699 * has generated enough buffer credits to do the whole page. So we won't
700 * block on the journal in that case, which is good, because the caller may
701 * be PF_MEMALLOC.
702 *
703 * By accident, ext4 can be reentered when a transaction is open via
704 * quota file writes. If we were to commit the transaction while thus
705 * reentered, there can be a deadlock - we would be holding a quota
706 * lock, and the commit would never complete if another thread had a
707 * transaction open and was blocking on the quota lock - a ranking
708 * violation.
709 *
710 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
711 * will _not_ run commit under these circumstances because handle->h_ref
712 * is elevated. We'll still have enough credits for the tiny quotafile
713 * write.
714 */
715 static int do_journal_get_write_access(handle_t *handle,
716 struct buffer_head *bh)
717 {
718 int dirty = buffer_dirty(bh);
719 int ret;
720
721 if (!buffer_mapped(bh) || buffer_freed(bh))
722 return 0;
723 /*
724 * __block_write_begin() could have dirtied some buffers. Clean
725 * the dirty bit as jbd2_journal_get_write_access() could complain
726 * otherwise about fs integrity issues. Setting of the dirty bit
727 * by __block_write_begin() isn't a real problem here as we clear
728 * the bit before releasing a page lock and thus writeback cannot
729 * ever write the buffer.
730 */
731 if (dirty)
732 clear_buffer_dirty(bh);
733 ret = ext4_journal_get_write_access(handle, bh);
734 if (!ret && dirty)
735 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
736 return ret;
737 }
738
739 static int ext4_get_block_write(struct inode *inode, sector_t iblock,
740 struct buffer_head *bh_result, int create);
741 static int ext4_write_begin(struct file *file, struct address_space *mapping,
742 loff_t pos, unsigned len, unsigned flags,
743 struct page **pagep, void **fsdata)
744 {
745 struct inode *inode = mapping->host;
746 int ret, needed_blocks;
747 handle_t *handle;
748 int retries = 0;
749 struct page *page;
750 pgoff_t index;
751 unsigned from, to;
752
753 trace_ext4_write_begin(inode, pos, len, flags);
754 /*
755 * Reserve one block more for addition to orphan list in case
756 * we allocate blocks but write fails for some reason
757 */
758 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
759 index = pos >> PAGE_CACHE_SHIFT;
760 from = pos & (PAGE_CACHE_SIZE - 1);
761 to = from + len;
762
763 retry:
764 handle = ext4_journal_start(inode, needed_blocks);
765 if (IS_ERR(handle)) {
766 ret = PTR_ERR(handle);
767 goto out;
768 }
769
770 /* We cannot recurse into the filesystem as the transaction is already
771 * started */
772 flags |= AOP_FLAG_NOFS;
773
774 page = grab_cache_page_write_begin(mapping, index, flags);
775 if (!page) {
776 ext4_journal_stop(handle);
777 ret = -ENOMEM;
778 goto out;
779 }
780 *pagep = page;
781
782 if (ext4_should_dioread_nolock(inode))
783 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
784 else
785 ret = __block_write_begin(page, pos, len, ext4_get_block);
786
787 if (!ret && ext4_should_journal_data(inode)) {
788 ret = walk_page_buffers(handle, page_buffers(page),
789 from, to, NULL, do_journal_get_write_access);
790 }
791
792 if (ret) {
793 unlock_page(page);
794 page_cache_release(page);
795 /*
796 * __block_write_begin may have instantiated a few blocks
797 * outside i_size. Trim these off again. Don't need
798 * i_size_read because we hold i_mutex.
799 *
800 * Add inode to orphan list in case we crash before
801 * truncate finishes
802 */
803 if (pos + len > inode->i_size && ext4_can_truncate(inode))
804 ext4_orphan_add(handle, inode);
805
806 ext4_journal_stop(handle);
807 if (pos + len > inode->i_size) {
808 ext4_truncate_failed_write(inode);
809 /*
810 * If truncate failed early the inode might
811 * still be on the orphan list; we need to
812 * make sure the inode is removed from the
813 * orphan list in that case.
814 */
815 if (inode->i_nlink)
816 ext4_orphan_del(NULL, inode);
817 }
818 }
819
820 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
821 goto retry;
822 out:
823 return ret;
824 }
825
826 /* For write_end() in data=journal mode */
827 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
828 {
829 if (!buffer_mapped(bh) || buffer_freed(bh))
830 return 0;
831 set_buffer_uptodate(bh);
832 return ext4_handle_dirty_metadata(handle, NULL, bh);
833 }
834
835 static int ext4_generic_write_end(struct file *file,
836 struct address_space *mapping,
837 loff_t pos, unsigned len, unsigned copied,
838 struct page *page, void *fsdata)
839 {
840 int i_size_changed = 0;
841 struct inode *inode = mapping->host;
842 handle_t *handle = ext4_journal_current_handle();
843
844 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
845
846 /*
847 * No need to use i_size_read() here, the i_size
848 * cannot change under us because we hold i_mutex.
849 *
850 * But it's important to update i_size while still holding page lock:
851 * page writeout could otherwise come in and zero beyond i_size.
852 */
853 if (pos + copied > inode->i_size) {
854 i_size_write(inode, pos + copied);
855 i_size_changed = 1;
856 }
857
858 if (pos + copied > EXT4_I(inode)->i_disksize) {
859 /* We need to mark inode dirty even if
860 * new_i_size is less that inode->i_size
861 * bu greater than i_disksize.(hint delalloc)
862 */
863 ext4_update_i_disksize(inode, (pos + copied));
864 i_size_changed = 1;
865 }
866 unlock_page(page);
867 page_cache_release(page);
868
869 /*
870 * Don't mark the inode dirty under page lock. First, it unnecessarily
871 * makes the holding time of page lock longer. Second, it forces lock
872 * ordering of page lock and transaction start for journaling
873 * filesystems.
874 */
875 if (i_size_changed)
876 ext4_mark_inode_dirty(handle, inode);
877
878 return copied;
879 }
880
881 /*
882 * We need to pick up the new inode size which generic_commit_write gave us
883 * `file' can be NULL - eg, when called from page_symlink().
884 *
885 * ext4 never places buffers on inode->i_mapping->private_list. metadata
886 * buffers are managed internally.
887 */
888 static int ext4_ordered_write_end(struct file *file,
889 struct address_space *mapping,
890 loff_t pos, unsigned len, unsigned copied,
891 struct page *page, void *fsdata)
892 {
893 handle_t *handle = ext4_journal_current_handle();
894 struct inode *inode = mapping->host;
895 int ret = 0, ret2;
896
897 trace_ext4_ordered_write_end(inode, pos, len, copied);
898 ret = ext4_jbd2_file_inode(handle, inode);
899
900 if (ret == 0) {
901 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
902 page, fsdata);
903 copied = ret2;
904 if (pos + len > inode->i_size && ext4_can_truncate(inode))
905 /* if we have allocated more blocks and copied
906 * less. We will have blocks allocated outside
907 * inode->i_size. So truncate them
908 */
909 ext4_orphan_add(handle, inode);
910 if (ret2 < 0)
911 ret = ret2;
912 }
913 ret2 = ext4_journal_stop(handle);
914 if (!ret)
915 ret = ret2;
916
917 if (pos + len > inode->i_size) {
918 ext4_truncate_failed_write(inode);
919 /*
920 * If truncate failed early the inode might still be
921 * on the orphan list; we need to make sure the inode
922 * is removed from the orphan list in that case.
923 */
924 if (inode->i_nlink)
925 ext4_orphan_del(NULL, inode);
926 }
927
928
929 return ret ? ret : copied;
930 }
931
932 static int ext4_writeback_write_end(struct file *file,
933 struct address_space *mapping,
934 loff_t pos, unsigned len, unsigned copied,
935 struct page *page, void *fsdata)
936 {
937 handle_t *handle = ext4_journal_current_handle();
938 struct inode *inode = mapping->host;
939 int ret = 0, ret2;
940
941 trace_ext4_writeback_write_end(inode, pos, len, copied);
942 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
943 page, fsdata);
944 copied = ret2;
945 if (pos + len > inode->i_size && ext4_can_truncate(inode))
946 /* if we have allocated more blocks and copied
947 * less. We will have blocks allocated outside
948 * inode->i_size. So truncate them
949 */
950 ext4_orphan_add(handle, inode);
951
952 if (ret2 < 0)
953 ret = ret2;
954
955 ret2 = ext4_journal_stop(handle);
956 if (!ret)
957 ret = ret2;
958
959 if (pos + len > inode->i_size) {
960 ext4_truncate_failed_write(inode);
961 /*
962 * If truncate failed early the inode might still be
963 * on the orphan list; we need to make sure the inode
964 * is removed from the orphan list in that case.
965 */
966 if (inode->i_nlink)
967 ext4_orphan_del(NULL, inode);
968 }
969
970 return ret ? ret : copied;
971 }
972
973 static int ext4_journalled_write_end(struct file *file,
974 struct address_space *mapping,
975 loff_t pos, unsigned len, unsigned copied,
976 struct page *page, void *fsdata)
977 {
978 handle_t *handle = ext4_journal_current_handle();
979 struct inode *inode = mapping->host;
980 int ret = 0, ret2;
981 int partial = 0;
982 unsigned from, to;
983 loff_t new_i_size;
984
985 trace_ext4_journalled_write_end(inode, pos, len, copied);
986 from = pos & (PAGE_CACHE_SIZE - 1);
987 to = from + len;
988
989 BUG_ON(!ext4_handle_valid(handle));
990
991 if (copied < len) {
992 if (!PageUptodate(page))
993 copied = 0;
994 page_zero_new_buffers(page, from+copied, to);
995 }
996
997 ret = walk_page_buffers(handle, page_buffers(page), from,
998 to, &partial, write_end_fn);
999 if (!partial)
1000 SetPageUptodate(page);
1001 new_i_size = pos + copied;
1002 if (new_i_size > inode->i_size)
1003 i_size_write(inode, pos+copied);
1004 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1005 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1006 if (new_i_size > EXT4_I(inode)->i_disksize) {
1007 ext4_update_i_disksize(inode, new_i_size);
1008 ret2 = ext4_mark_inode_dirty(handle, inode);
1009 if (!ret)
1010 ret = ret2;
1011 }
1012
1013 unlock_page(page);
1014 page_cache_release(page);
1015 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1016 /* if we have allocated more blocks and copied
1017 * less. We will have blocks allocated outside
1018 * inode->i_size. So truncate them
1019 */
1020 ext4_orphan_add(handle, inode);
1021
1022 ret2 = ext4_journal_stop(handle);
1023 if (!ret)
1024 ret = ret2;
1025 if (pos + len > inode->i_size) {
1026 ext4_truncate_failed_write(inode);
1027 /*
1028 * If truncate failed early the inode might still be
1029 * on the orphan list; we need to make sure the inode
1030 * is removed from the orphan list in that case.
1031 */
1032 if (inode->i_nlink)
1033 ext4_orphan_del(NULL, inode);
1034 }
1035
1036 return ret ? ret : copied;
1037 }
1038
1039 /*
1040 * Reserve a single block located at lblock
1041 */
1042 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1043 {
1044 int retries = 0;
1045 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1046 struct ext4_inode_info *ei = EXT4_I(inode);
1047 unsigned long md_needed;
1048 int ret;
1049
1050 /*
1051 * recalculate the amount of metadata blocks to reserve
1052 * in order to allocate nrblocks
1053 * worse case is one extent per block
1054 */
1055 repeat:
1056 spin_lock(&ei->i_block_reservation_lock);
1057 md_needed = ext4_calc_metadata_amount(inode, lblock);
1058 trace_ext4_da_reserve_space(inode, md_needed);
1059 spin_unlock(&ei->i_block_reservation_lock);
1060
1061 /*
1062 * We will charge metadata quota at writeout time; this saves
1063 * us from metadata over-estimation, though we may go over by
1064 * a small amount in the end. Here we just reserve for data.
1065 */
1066 ret = dquot_reserve_block(inode, 1);
1067 if (ret)
1068 return ret;
1069 /*
1070 * We do still charge estimated metadata to the sb though;
1071 * we cannot afford to run out of free blocks.
1072 */
1073 if (ext4_claim_free_blocks(sbi, md_needed + 1, 0)) {
1074 dquot_release_reservation_block(inode, 1);
1075 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1076 yield();
1077 goto repeat;
1078 }
1079 return -ENOSPC;
1080 }
1081 spin_lock(&ei->i_block_reservation_lock);
1082 ei->i_reserved_data_blocks++;
1083 ei->i_reserved_meta_blocks += md_needed;
1084 spin_unlock(&ei->i_block_reservation_lock);
1085
1086 return 0; /* success */
1087 }
1088
1089 static void ext4_da_release_space(struct inode *inode, int to_free)
1090 {
1091 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1092 struct ext4_inode_info *ei = EXT4_I(inode);
1093
1094 if (!to_free)
1095 return; /* Nothing to release, exit */
1096
1097 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1098
1099 trace_ext4_da_release_space(inode, to_free);
1100 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1101 /*
1102 * if there aren't enough reserved blocks, then the
1103 * counter is messed up somewhere. Since this
1104 * function is called from invalidate page, it's
1105 * harmless to return without any action.
1106 */
1107 ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: "
1108 "ino %lu, to_free %d with only %d reserved "
1109 "data blocks\n", inode->i_ino, to_free,
1110 ei->i_reserved_data_blocks);
1111 WARN_ON(1);
1112 to_free = ei->i_reserved_data_blocks;
1113 }
1114 ei->i_reserved_data_blocks -= to_free;
1115
1116 if (ei->i_reserved_data_blocks == 0) {
1117 /*
1118 * We can release all of the reserved metadata blocks
1119 * only when we have written all of the delayed
1120 * allocation blocks.
1121 */
1122 percpu_counter_sub(&sbi->s_dirtyblocks_counter,
1123 ei->i_reserved_meta_blocks);
1124 ei->i_reserved_meta_blocks = 0;
1125 ei->i_da_metadata_calc_len = 0;
1126 }
1127
1128 /* update fs dirty data blocks counter */
1129 percpu_counter_sub(&sbi->s_dirtyblocks_counter, to_free);
1130
1131 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1132
1133 dquot_release_reservation_block(inode, to_free);
1134 }
1135
1136 static void ext4_da_page_release_reservation(struct page *page,
1137 unsigned long offset)
1138 {
1139 int to_release = 0;
1140 struct buffer_head *head, *bh;
1141 unsigned int curr_off = 0;
1142
1143 head = page_buffers(page);
1144 bh = head;
1145 do {
1146 unsigned int next_off = curr_off + bh->b_size;
1147
1148 if ((offset <= curr_off) && (buffer_delay(bh))) {
1149 to_release++;
1150 clear_buffer_delay(bh);
1151 }
1152 curr_off = next_off;
1153 } while ((bh = bh->b_this_page) != head);
1154 ext4_da_release_space(page->mapping->host, to_release);
1155 }
1156
1157 /*
1158 * Delayed allocation stuff
1159 */
1160
1161 /*
1162 * mpage_da_submit_io - walks through extent of pages and try to write
1163 * them with writepage() call back
1164 *
1165 * @mpd->inode: inode
1166 * @mpd->first_page: first page of the extent
1167 * @mpd->next_page: page after the last page of the extent
1168 *
1169 * By the time mpage_da_submit_io() is called we expect all blocks
1170 * to be allocated. this may be wrong if allocation failed.
1171 *
1172 * As pages are already locked by write_cache_pages(), we can't use it
1173 */
1174 static int mpage_da_submit_io(struct mpage_da_data *mpd,
1175 struct ext4_map_blocks *map)
1176 {
1177 struct pagevec pvec;
1178 unsigned long index, end;
1179 int ret = 0, err, nr_pages, i;
1180 struct inode *inode = mpd->inode;
1181 struct address_space *mapping = inode->i_mapping;
1182 loff_t size = i_size_read(inode);
1183 unsigned int len, block_start;
1184 struct buffer_head *bh, *page_bufs = NULL;
1185 int journal_data = ext4_should_journal_data(inode);
1186 sector_t pblock = 0, cur_logical = 0;
1187 struct ext4_io_submit io_submit;
1188
1189 BUG_ON(mpd->next_page <= mpd->first_page);
1190 memset(&io_submit, 0, sizeof(io_submit));
1191 /*
1192 * We need to start from the first_page to the next_page - 1
1193 * to make sure we also write the mapped dirty buffer_heads.
1194 * If we look at mpd->b_blocknr we would only be looking
1195 * at the currently mapped buffer_heads.
1196 */
1197 index = mpd->first_page;
1198 end = mpd->next_page - 1;
1199
1200 pagevec_init(&pvec, 0);
1201 while (index <= end) {
1202 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1203 if (nr_pages == 0)
1204 break;
1205 for (i = 0; i < nr_pages; i++) {
1206 int commit_write = 0, skip_page = 0;
1207 struct page *page = pvec.pages[i];
1208
1209 index = page->index;
1210 if (index > end)
1211 break;
1212
1213 if (index == size >> PAGE_CACHE_SHIFT)
1214 len = size & ~PAGE_CACHE_MASK;
1215 else
1216 len = PAGE_CACHE_SIZE;
1217 if (map) {
1218 cur_logical = index << (PAGE_CACHE_SHIFT -
1219 inode->i_blkbits);
1220 pblock = map->m_pblk + (cur_logical -
1221 map->m_lblk);
1222 }
1223 index++;
1224
1225 BUG_ON(!PageLocked(page));
1226 BUG_ON(PageWriteback(page));
1227
1228 /*
1229 * If the page does not have buffers (for
1230 * whatever reason), try to create them using
1231 * __block_write_begin. If this fails,
1232 * skip the page and move on.
1233 */
1234 if (!page_has_buffers(page)) {
1235 if (__block_write_begin(page, 0, len,
1236 noalloc_get_block_write)) {
1237 skip_page:
1238 unlock_page(page);
1239 continue;
1240 }
1241 commit_write = 1;
1242 }
1243
1244 bh = page_bufs = page_buffers(page);
1245 block_start = 0;
1246 do {
1247 if (!bh)
1248 goto skip_page;
1249 if (map && (cur_logical >= map->m_lblk) &&
1250 (cur_logical <= (map->m_lblk +
1251 (map->m_len - 1)))) {
1252 if (buffer_delay(bh)) {
1253 clear_buffer_delay(bh);
1254 bh->b_blocknr = pblock;
1255 }
1256 if (buffer_unwritten(bh) ||
1257 buffer_mapped(bh))
1258 BUG_ON(bh->b_blocknr != pblock);
1259 if (map->m_flags & EXT4_MAP_UNINIT)
1260 set_buffer_uninit(bh);
1261 clear_buffer_unwritten(bh);
1262 }
1263
1264 /* skip page if block allocation undone */
1265 if (buffer_delay(bh) || buffer_unwritten(bh))
1266 skip_page = 1;
1267 bh = bh->b_this_page;
1268 block_start += bh->b_size;
1269 cur_logical++;
1270 pblock++;
1271 } while (bh != page_bufs);
1272
1273 if (skip_page)
1274 goto skip_page;
1275
1276 if (commit_write)
1277 /* mark the buffer_heads as dirty & uptodate */
1278 block_commit_write(page, 0, len);
1279
1280 clear_page_dirty_for_io(page);
1281 /*
1282 * Delalloc doesn't support data journalling,
1283 * but eventually maybe we'll lift this
1284 * restriction.
1285 */
1286 if (unlikely(journal_data && PageChecked(page)))
1287 err = __ext4_journalled_writepage(page, len);
1288 else if (test_opt(inode->i_sb, MBLK_IO_SUBMIT))
1289 err = ext4_bio_write_page(&io_submit, page,
1290 len, mpd->wbc);
1291 else if (buffer_uninit(page_bufs)) {
1292 ext4_set_bh_endio(page_bufs, inode);
1293 err = block_write_full_page_endio(page,
1294 noalloc_get_block_write,
1295 mpd->wbc, ext4_end_io_buffer_write);
1296 } else
1297 err = block_write_full_page(page,
1298 noalloc_get_block_write, mpd->wbc);
1299
1300 if (!err)
1301 mpd->pages_written++;
1302 /*
1303 * In error case, we have to continue because
1304 * remaining pages are still locked
1305 */
1306 if (ret == 0)
1307 ret = err;
1308 }
1309 pagevec_release(&pvec);
1310 }
1311 ext4_io_submit(&io_submit);
1312 return ret;
1313 }
1314
1315 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd)
1316 {
1317 int nr_pages, i;
1318 pgoff_t index, end;
1319 struct pagevec pvec;
1320 struct inode *inode = mpd->inode;
1321 struct address_space *mapping = inode->i_mapping;
1322
1323 index = mpd->first_page;
1324 end = mpd->next_page - 1;
1325 while (index <= end) {
1326 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1327 if (nr_pages == 0)
1328 break;
1329 for (i = 0; i < nr_pages; i++) {
1330 struct page *page = pvec.pages[i];
1331 if (page->index > end)
1332 break;
1333 BUG_ON(!PageLocked(page));
1334 BUG_ON(PageWriteback(page));
1335 block_invalidatepage(page, 0);
1336 ClearPageUptodate(page);
1337 unlock_page(page);
1338 }
1339 index = pvec.pages[nr_pages - 1]->index + 1;
1340 pagevec_release(&pvec);
1341 }
1342 return;
1343 }
1344
1345 static void ext4_print_free_blocks(struct inode *inode)
1346 {
1347 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1348 printk(KERN_CRIT "Total free blocks count %lld\n",
1349 ext4_count_free_blocks(inode->i_sb));
1350 printk(KERN_CRIT "Free/Dirty block details\n");
1351 printk(KERN_CRIT "free_blocks=%lld\n",
1352 (long long) percpu_counter_sum(&sbi->s_freeblocks_counter));
1353 printk(KERN_CRIT "dirty_blocks=%lld\n",
1354 (long long) percpu_counter_sum(&sbi->s_dirtyblocks_counter));
1355 printk(KERN_CRIT "Block reservation details\n");
1356 printk(KERN_CRIT "i_reserved_data_blocks=%u\n",
1357 EXT4_I(inode)->i_reserved_data_blocks);
1358 printk(KERN_CRIT "i_reserved_meta_blocks=%u\n",
1359 EXT4_I(inode)->i_reserved_meta_blocks);
1360 return;
1361 }
1362
1363 /*
1364 * mpage_da_map_and_submit - go through given space, map them
1365 * if necessary, and then submit them for I/O
1366 *
1367 * @mpd - bh describing space
1368 *
1369 * The function skips space we know is already mapped to disk blocks.
1370 *
1371 */
1372 static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
1373 {
1374 int err, blks, get_blocks_flags;
1375 struct ext4_map_blocks map, *mapp = NULL;
1376 sector_t next = mpd->b_blocknr;
1377 unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
1378 loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
1379 handle_t *handle = NULL;
1380
1381 /*
1382 * If the blocks are mapped already, or we couldn't accumulate
1383 * any blocks, then proceed immediately to the submission stage.
1384 */
1385 if ((mpd->b_size == 0) ||
1386 ((mpd->b_state & (1 << BH_Mapped)) &&
1387 !(mpd->b_state & (1 << BH_Delay)) &&
1388 !(mpd->b_state & (1 << BH_Unwritten))))
1389 goto submit_io;
1390
1391 handle = ext4_journal_current_handle();
1392 BUG_ON(!handle);
1393
1394 /*
1395 * Call ext4_map_blocks() to allocate any delayed allocation
1396 * blocks, or to convert an uninitialized extent to be
1397 * initialized (in the case where we have written into
1398 * one or more preallocated blocks).
1399 *
1400 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
1401 * indicate that we are on the delayed allocation path. This
1402 * affects functions in many different parts of the allocation
1403 * call path. This flag exists primarily because we don't
1404 * want to change *many* call functions, so ext4_map_blocks()
1405 * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
1406 * inode's allocation semaphore is taken.
1407 *
1408 * If the blocks in questions were delalloc blocks, set
1409 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
1410 * variables are updated after the blocks have been allocated.
1411 */
1412 map.m_lblk = next;
1413 map.m_len = max_blocks;
1414 get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
1415 if (ext4_should_dioread_nolock(mpd->inode))
1416 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
1417 if (mpd->b_state & (1 << BH_Delay))
1418 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
1419
1420 blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
1421 if (blks < 0) {
1422 struct super_block *sb = mpd->inode->i_sb;
1423
1424 err = blks;
1425 /*
1426 * If get block returns EAGAIN or ENOSPC and there
1427 * appears to be free blocks we will just let
1428 * mpage_da_submit_io() unlock all of the pages.
1429 */
1430 if (err == -EAGAIN)
1431 goto submit_io;
1432
1433 if (err == -ENOSPC &&
1434 ext4_count_free_blocks(sb)) {
1435 mpd->retval = err;
1436 goto submit_io;
1437 }
1438
1439 /*
1440 * get block failure will cause us to loop in
1441 * writepages, because a_ops->writepage won't be able
1442 * to make progress. The page will be redirtied by
1443 * writepage and writepages will again try to write
1444 * the same.
1445 */
1446 if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
1447 ext4_msg(sb, KERN_CRIT,
1448 "delayed block allocation failed for inode %lu "
1449 "at logical offset %llu with max blocks %zd "
1450 "with error %d", mpd->inode->i_ino,
1451 (unsigned long long) next,
1452 mpd->b_size >> mpd->inode->i_blkbits, err);
1453 ext4_msg(sb, KERN_CRIT,
1454 "This should not happen!! Data will be lost\n");
1455 if (err == -ENOSPC)
1456 ext4_print_free_blocks(mpd->inode);
1457 }
1458 /* invalidate all the pages */
1459 ext4_da_block_invalidatepages(mpd);
1460
1461 /* Mark this page range as having been completed */
1462 mpd->io_done = 1;
1463 return;
1464 }
1465 BUG_ON(blks == 0);
1466
1467 mapp = &map;
1468 if (map.m_flags & EXT4_MAP_NEW) {
1469 struct block_device *bdev = mpd->inode->i_sb->s_bdev;
1470 int i;
1471
1472 for (i = 0; i < map.m_len; i++)
1473 unmap_underlying_metadata(bdev, map.m_pblk + i);
1474
1475 if (ext4_should_order_data(mpd->inode)) {
1476 err = ext4_jbd2_file_inode(handle, mpd->inode);
1477 if (err)
1478 /* Only if the journal is aborted */
1479 return;
1480 }
1481 }
1482
1483 /*
1484 * Update on-disk size along with block allocation.
1485 */
1486 disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
1487 if (disksize > i_size_read(mpd->inode))
1488 disksize = i_size_read(mpd->inode);
1489 if (disksize > EXT4_I(mpd->inode)->i_disksize) {
1490 ext4_update_i_disksize(mpd->inode, disksize);
1491 err = ext4_mark_inode_dirty(handle, mpd->inode);
1492 if (err)
1493 ext4_error(mpd->inode->i_sb,
1494 "Failed to mark inode %lu dirty",
1495 mpd->inode->i_ino);
1496 }
1497
1498 submit_io:
1499 mpage_da_submit_io(mpd, mapp);
1500 mpd->io_done = 1;
1501 }
1502
1503 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
1504 (1 << BH_Delay) | (1 << BH_Unwritten))
1505
1506 /*
1507 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
1508 *
1509 * @mpd->lbh - extent of blocks
1510 * @logical - logical number of the block in the file
1511 * @bh - bh of the block (used to access block's state)
1512 *
1513 * the function is used to collect contig. blocks in same state
1514 */
1515 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
1516 sector_t logical, size_t b_size,
1517 unsigned long b_state)
1518 {
1519 sector_t next;
1520 int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
1521
1522 /*
1523 * XXX Don't go larger than mballoc is willing to allocate
1524 * This is a stopgap solution. We eventually need to fold
1525 * mpage_da_submit_io() into this function and then call
1526 * ext4_map_blocks() multiple times in a loop
1527 */
1528 if (nrblocks >= 8*1024*1024/mpd->inode->i_sb->s_blocksize)
1529 goto flush_it;
1530
1531 /* check if thereserved journal credits might overflow */
1532 if (!(ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS))) {
1533 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
1534 /*
1535 * With non-extent format we are limited by the journal
1536 * credit available. Total credit needed to insert
1537 * nrblocks contiguous blocks is dependent on the
1538 * nrblocks. So limit nrblocks.
1539 */
1540 goto flush_it;
1541 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
1542 EXT4_MAX_TRANS_DATA) {
1543 /*
1544 * Adding the new buffer_head would make it cross the
1545 * allowed limit for which we have journal credit
1546 * reserved. So limit the new bh->b_size
1547 */
1548 b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
1549 mpd->inode->i_blkbits;
1550 /* we will do mpage_da_submit_io in the next loop */
1551 }
1552 }
1553 /*
1554 * First block in the extent
1555 */
1556 if (mpd->b_size == 0) {
1557 mpd->b_blocknr = logical;
1558 mpd->b_size = b_size;
1559 mpd->b_state = b_state & BH_FLAGS;
1560 return;
1561 }
1562
1563 next = mpd->b_blocknr + nrblocks;
1564 /*
1565 * Can we merge the block to our big extent?
1566 */
1567 if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
1568 mpd->b_size += b_size;
1569 return;
1570 }
1571
1572 flush_it:
1573 /*
1574 * We couldn't merge the block to our extent, so we
1575 * need to flush current extent and start new one
1576 */
1577 mpage_da_map_and_submit(mpd);
1578 return;
1579 }
1580
1581 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1582 {
1583 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1584 }
1585
1586 /*
1587 * This is a special get_blocks_t callback which is used by
1588 * ext4_da_write_begin(). It will either return mapped block or
1589 * reserve space for a single block.
1590 *
1591 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1592 * We also have b_blocknr = -1 and b_bdev initialized properly
1593 *
1594 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1595 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1596 * initialized properly.
1597 */
1598 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1599 struct buffer_head *bh, int create)
1600 {
1601 struct ext4_map_blocks map;
1602 int ret = 0;
1603 sector_t invalid_block = ~((sector_t) 0xffff);
1604
1605 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1606 invalid_block = ~0;
1607
1608 BUG_ON(create == 0);
1609 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1610
1611 map.m_lblk = iblock;
1612 map.m_len = 1;
1613
1614 /*
1615 * first, we need to know whether the block is allocated already
1616 * preallocated blocks are unmapped but should treated
1617 * the same as allocated blocks.
1618 */
1619 ret = ext4_map_blocks(NULL, inode, &map, 0);
1620 if (ret < 0)
1621 return ret;
1622 if (ret == 0) {
1623 if (buffer_delay(bh))
1624 return 0; /* Not sure this could or should happen */
1625 /*
1626 * XXX: __block_write_begin() unmaps passed block, is it OK?
1627 */
1628 ret = ext4_da_reserve_space(inode, iblock);
1629 if (ret)
1630 /* not enough space to reserve */
1631 return ret;
1632
1633 map_bh(bh, inode->i_sb, invalid_block);
1634 set_buffer_new(bh);
1635 set_buffer_delay(bh);
1636 return 0;
1637 }
1638
1639 map_bh(bh, inode->i_sb, map.m_pblk);
1640 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1641
1642 if (buffer_unwritten(bh)) {
1643 /* A delayed write to unwritten bh should be marked
1644 * new and mapped. Mapped ensures that we don't do
1645 * get_block multiple times when we write to the same
1646 * offset and new ensures that we do proper zero out
1647 * for partial write.
1648 */
1649 set_buffer_new(bh);
1650 set_buffer_mapped(bh);
1651 }
1652 return 0;
1653 }
1654
1655 /*
1656 * This function is used as a standard get_block_t calback function
1657 * when there is no desire to allocate any blocks. It is used as a
1658 * callback function for block_write_begin() and block_write_full_page().
1659 * These functions should only try to map a single block at a time.
1660 *
1661 * Since this function doesn't do block allocations even if the caller
1662 * requests it by passing in create=1, it is critically important that
1663 * any caller checks to make sure that any buffer heads are returned
1664 * by this function are either all already mapped or marked for
1665 * delayed allocation before calling block_write_full_page(). Otherwise,
1666 * b_blocknr could be left unitialized, and the page write functions will
1667 * be taken by surprise.
1668 */
1669 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
1670 struct buffer_head *bh_result, int create)
1671 {
1672 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
1673 return _ext4_get_block(inode, iblock, bh_result, 0);
1674 }
1675
1676 static int bget_one(handle_t *handle, struct buffer_head *bh)
1677 {
1678 get_bh(bh);
1679 return 0;
1680 }
1681
1682 static int bput_one(handle_t *handle, struct buffer_head *bh)
1683 {
1684 put_bh(bh);
1685 return 0;
1686 }
1687
1688 static int __ext4_journalled_writepage(struct page *page,
1689 unsigned int len)
1690 {
1691 struct address_space *mapping = page->mapping;
1692 struct inode *inode = mapping->host;
1693 struct buffer_head *page_bufs;
1694 handle_t *handle = NULL;
1695 int ret = 0;
1696 int err;
1697
1698 ClearPageChecked(page);
1699 page_bufs = page_buffers(page);
1700 BUG_ON(!page_bufs);
1701 walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
1702 /* As soon as we unlock the page, it can go away, but we have
1703 * references to buffers so we are safe */
1704 unlock_page(page);
1705
1706 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
1707 if (IS_ERR(handle)) {
1708 ret = PTR_ERR(handle);
1709 goto out;
1710 }
1711
1712 BUG_ON(!ext4_handle_valid(handle));
1713
1714 ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
1715 do_journal_get_write_access);
1716
1717 err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
1718 write_end_fn);
1719 if (ret == 0)
1720 ret = err;
1721 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1722 err = ext4_journal_stop(handle);
1723 if (!ret)
1724 ret = err;
1725
1726 walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
1727 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1728 out:
1729 return ret;
1730 }
1731
1732 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
1733 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
1734
1735 /*
1736 * Note that we don't need to start a transaction unless we're journaling data
1737 * because we should have holes filled from ext4_page_mkwrite(). We even don't
1738 * need to file the inode to the transaction's list in ordered mode because if
1739 * we are writing back data added by write(), the inode is already there and if
1740 * we are writing back data modified via mmap(), no one guarantees in which
1741 * transaction the data will hit the disk. In case we are journaling data, we
1742 * cannot start transaction directly because transaction start ranks above page
1743 * lock so we have to do some magic.
1744 *
1745 * This function can get called via...
1746 * - ext4_da_writepages after taking page lock (have journal handle)
1747 * - journal_submit_inode_data_buffers (no journal handle)
1748 * - shrink_page_list via pdflush (no journal handle)
1749 * - grab_page_cache when doing write_begin (have journal handle)
1750 *
1751 * We don't do any block allocation in this function. If we have page with
1752 * multiple blocks we need to write those buffer_heads that are mapped. This
1753 * is important for mmaped based write. So if we do with blocksize 1K
1754 * truncate(f, 1024);
1755 * a = mmap(f, 0, 4096);
1756 * a[0] = 'a';
1757 * truncate(f, 4096);
1758 * we have in the page first buffer_head mapped via page_mkwrite call back
1759 * but other bufer_heads would be unmapped but dirty(dirty done via the
1760 * do_wp_page). So writepage should write the first block. If we modify
1761 * the mmap area beyond 1024 we will again get a page_fault and the
1762 * page_mkwrite callback will do the block allocation and mark the
1763 * buffer_heads mapped.
1764 *
1765 * We redirty the page if we have any buffer_heads that is either delay or
1766 * unwritten in the page.
1767 *
1768 * We can get recursively called as show below.
1769 *
1770 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1771 * ext4_writepage()
1772 *
1773 * But since we don't do any block allocation we should not deadlock.
1774 * Page also have the dirty flag cleared so we don't get recurive page_lock.
1775 */
1776 static int ext4_writepage(struct page *page,
1777 struct writeback_control *wbc)
1778 {
1779 int ret = 0, commit_write = 0;
1780 loff_t size;
1781 unsigned int len;
1782 struct buffer_head *page_bufs = NULL;
1783 struct inode *inode = page->mapping->host;
1784
1785 trace_ext4_writepage(page);
1786 size = i_size_read(inode);
1787 if (page->index == size >> PAGE_CACHE_SHIFT)
1788 len = size & ~PAGE_CACHE_MASK;
1789 else
1790 len = PAGE_CACHE_SIZE;
1791
1792 /*
1793 * If the page does not have buffers (for whatever reason),
1794 * try to create them using __block_write_begin. If this
1795 * fails, redirty the page and move on.
1796 */
1797 if (!page_has_buffers(page)) {
1798 if (__block_write_begin(page, 0, len,
1799 noalloc_get_block_write)) {
1800 redirty_page:
1801 redirty_page_for_writepage(wbc, page);
1802 unlock_page(page);
1803 return 0;
1804 }
1805 commit_write = 1;
1806 }
1807 page_bufs = page_buffers(page);
1808 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
1809 ext4_bh_delay_or_unwritten)) {
1810 /*
1811 * We don't want to do block allocation, so redirty
1812 * the page and return. We may reach here when we do
1813 * a journal commit via journal_submit_inode_data_buffers.
1814 * We can also reach here via shrink_page_list
1815 */
1816 goto redirty_page;
1817 }
1818 if (commit_write)
1819 /* now mark the buffer_heads as dirty and uptodate */
1820 block_commit_write(page, 0, len);
1821
1822 if (PageChecked(page) && ext4_should_journal_data(inode))
1823 /*
1824 * It's mmapped pagecache. Add buffers and journal it. There
1825 * doesn't seem much point in redirtying the page here.
1826 */
1827 return __ext4_journalled_writepage(page, len);
1828
1829 if (buffer_uninit(page_bufs)) {
1830 ext4_set_bh_endio(page_bufs, inode);
1831 ret = block_write_full_page_endio(page, noalloc_get_block_write,
1832 wbc, ext4_end_io_buffer_write);
1833 } else
1834 ret = block_write_full_page(page, noalloc_get_block_write,
1835 wbc);
1836
1837 return ret;
1838 }
1839
1840 /*
1841 * This is called via ext4_da_writepages() to
1842 * calculate the total number of credits to reserve to fit
1843 * a single extent allocation into a single transaction,
1844 * ext4_da_writpeages() will loop calling this before
1845 * the block allocation.
1846 */
1847
1848 static int ext4_da_writepages_trans_blocks(struct inode *inode)
1849 {
1850 int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
1851
1852 /*
1853 * With non-extent format the journal credit needed to
1854 * insert nrblocks contiguous block is dependent on
1855 * number of contiguous block. So we will limit
1856 * number of contiguous block to a sane value
1857 */
1858 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
1859 (max_blocks > EXT4_MAX_TRANS_DATA))
1860 max_blocks = EXT4_MAX_TRANS_DATA;
1861
1862 return ext4_chunk_trans_blocks(inode, max_blocks);
1863 }
1864
1865 /*
1866 * write_cache_pages_da - walk the list of dirty pages of the given
1867 * address space and accumulate pages that need writing, and call
1868 * mpage_da_map_and_submit to map a single contiguous memory region
1869 * and then write them.
1870 */
1871 static int write_cache_pages_da(struct address_space *mapping,
1872 struct writeback_control *wbc,
1873 struct mpage_da_data *mpd,
1874 pgoff_t *done_index)
1875 {
1876 struct buffer_head *bh, *head;
1877 struct inode *inode = mapping->host;
1878 struct pagevec pvec;
1879 unsigned int nr_pages;
1880 sector_t logical;
1881 pgoff_t index, end;
1882 long nr_to_write = wbc->nr_to_write;
1883 int i, tag, ret = 0;
1884
1885 memset(mpd, 0, sizeof(struct mpage_da_data));
1886 mpd->wbc = wbc;
1887 mpd->inode = inode;
1888 pagevec_init(&pvec, 0);
1889 index = wbc->range_start >> PAGE_CACHE_SHIFT;
1890 end = wbc->range_end >> PAGE_CACHE_SHIFT;
1891
1892 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1893 tag = PAGECACHE_TAG_TOWRITE;
1894 else
1895 tag = PAGECACHE_TAG_DIRTY;
1896
1897 *done_index = index;
1898 while (index <= end) {
1899 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
1900 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1901 if (nr_pages == 0)
1902 return 0;
1903
1904 for (i = 0; i < nr_pages; i++) {
1905 struct page *page = pvec.pages[i];
1906
1907 /*
1908 * At this point, the page may be truncated or
1909 * invalidated (changing page->mapping to NULL), or
1910 * even swizzled back from swapper_space to tmpfs file
1911 * mapping. However, page->index will not change
1912 * because we have a reference on the page.
1913 */
1914 if (page->index > end)
1915 goto out;
1916
1917 *done_index = page->index + 1;
1918
1919 /*
1920 * If we can't merge this page, and we have
1921 * accumulated an contiguous region, write it
1922 */
1923 if ((mpd->next_page != page->index) &&
1924 (mpd->next_page != mpd->first_page)) {
1925 mpage_da_map_and_submit(mpd);
1926 goto ret_extent_tail;
1927 }
1928
1929 lock_page(page);
1930
1931 /*
1932 * If the page is no longer dirty, or its
1933 * mapping no longer corresponds to inode we
1934 * are writing (which means it has been
1935 * truncated or invalidated), or the page is
1936 * already under writeback and we are not
1937 * doing a data integrity writeback, skip the page
1938 */
1939 if (!PageDirty(page) ||
1940 (PageWriteback(page) &&
1941 (wbc->sync_mode == WB_SYNC_NONE)) ||
1942 unlikely(page->mapping != mapping)) {
1943 unlock_page(page);
1944 continue;
1945 }
1946
1947 wait_on_page_writeback(page);
1948 BUG_ON(PageWriteback(page));
1949
1950 if (mpd->next_page != page->index)
1951 mpd->first_page = page->index;
1952 mpd->next_page = page->index + 1;
1953 logical = (sector_t) page->index <<
1954 (PAGE_CACHE_SHIFT - inode->i_blkbits);
1955
1956 if (!page_has_buffers(page)) {
1957 mpage_add_bh_to_extent(mpd, logical,
1958 PAGE_CACHE_SIZE,
1959 (1 << BH_Dirty) | (1 << BH_Uptodate));
1960 if (mpd->io_done)
1961 goto ret_extent_tail;
1962 } else {
1963 /*
1964 * Page with regular buffer heads,
1965 * just add all dirty ones
1966 */
1967 head = page_buffers(page);
1968 bh = head;
1969 do {
1970 BUG_ON(buffer_locked(bh));
1971 /*
1972 * We need to try to allocate
1973 * unmapped blocks in the same page.
1974 * Otherwise we won't make progress
1975 * with the page in ext4_writepage
1976 */
1977 if (ext4_bh_delay_or_unwritten(NULL, bh)) {
1978 mpage_add_bh_to_extent(mpd, logical,
1979 bh->b_size,
1980 bh->b_state);
1981 if (mpd->io_done)
1982 goto ret_extent_tail;
1983 } else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
1984 /*
1985 * mapped dirty buffer. We need
1986 * to update the b_state
1987 * because we look at b_state
1988 * in mpage_da_map_blocks. We
1989 * don't update b_size because
1990 * if we find an unmapped
1991 * buffer_head later we need to
1992 * use the b_state flag of that
1993 * buffer_head.
1994 */
1995 if (mpd->b_size == 0)
1996 mpd->b_state = bh->b_state & BH_FLAGS;
1997 }
1998 logical++;
1999 } while ((bh = bh->b_this_page) != head);
2000 }
2001
2002 if (nr_to_write > 0) {
2003 nr_to_write--;
2004 if (nr_to_write == 0 &&
2005 wbc->sync_mode == WB_SYNC_NONE)
2006 /*
2007 * We stop writing back only if we are
2008 * not doing integrity sync. In case of
2009 * integrity sync we have to keep going
2010 * because someone may be concurrently
2011 * dirtying pages, and we might have
2012 * synced a lot of newly appeared dirty
2013 * pages, but have not synced all of the
2014 * old dirty pages.
2015 */
2016 goto out;
2017 }
2018 }
2019 pagevec_release(&pvec);
2020 cond_resched();
2021 }
2022 return 0;
2023 ret_extent_tail:
2024 ret = MPAGE_DA_EXTENT_TAIL;
2025 out:
2026 pagevec_release(&pvec);
2027 cond_resched();
2028 return ret;
2029 }
2030
2031
2032 static int ext4_da_writepages(struct address_space *mapping,
2033 struct writeback_control *wbc)
2034 {
2035 pgoff_t index;
2036 int range_whole = 0;
2037 handle_t *handle = NULL;
2038 struct mpage_da_data mpd;
2039 struct inode *inode = mapping->host;
2040 int pages_written = 0;
2041 unsigned int max_pages;
2042 int range_cyclic, cycled = 1, io_done = 0;
2043 int needed_blocks, ret = 0;
2044 long desired_nr_to_write, nr_to_writebump = 0;
2045 loff_t range_start = wbc->range_start;
2046 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2047 pgoff_t done_index = 0;
2048 pgoff_t end;
2049
2050 trace_ext4_da_writepages(inode, wbc);
2051
2052 /*
2053 * No pages to write? This is mainly a kludge to avoid starting
2054 * a transaction for special inodes like journal inode on last iput()
2055 * because that could violate lock ordering on umount
2056 */
2057 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2058 return 0;
2059
2060 /*
2061 * If the filesystem has aborted, it is read-only, so return
2062 * right away instead of dumping stack traces later on that
2063 * will obscure the real source of the problem. We test
2064 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2065 * the latter could be true if the filesystem is mounted
2066 * read-only, and in that case, ext4_da_writepages should
2067 * *never* be called, so if that ever happens, we would want
2068 * the stack trace.
2069 */
2070 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2071 return -EROFS;
2072
2073 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2074 range_whole = 1;
2075
2076 range_cyclic = wbc->range_cyclic;
2077 if (wbc->range_cyclic) {
2078 index = mapping->writeback_index;
2079 if (index)
2080 cycled = 0;
2081 wbc->range_start = index << PAGE_CACHE_SHIFT;
2082 wbc->range_end = LLONG_MAX;
2083 wbc->range_cyclic = 0;
2084 end = -1;
2085 } else {
2086 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2087 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2088 }
2089
2090 /*
2091 * This works around two forms of stupidity. The first is in
2092 * the writeback code, which caps the maximum number of pages
2093 * written to be 1024 pages. This is wrong on multiple
2094 * levels; different architectues have a different page size,
2095 * which changes the maximum amount of data which gets
2096 * written. Secondly, 4 megabytes is way too small. XFS
2097 * forces this value to be 16 megabytes by multiplying
2098 * nr_to_write parameter by four, and then relies on its
2099 * allocator to allocate larger extents to make them
2100 * contiguous. Unfortunately this brings us to the second
2101 * stupidity, which is that ext4's mballoc code only allocates
2102 * at most 2048 blocks. So we force contiguous writes up to
2103 * the number of dirty blocks in the inode, or
2104 * sbi->max_writeback_mb_bump whichever is smaller.
2105 */
2106 max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2107 if (!range_cyclic && range_whole) {
2108 if (wbc->nr_to_write == LONG_MAX)
2109 desired_nr_to_write = wbc->nr_to_write;
2110 else
2111 desired_nr_to_write = wbc->nr_to_write * 8;
2112 } else
2113 desired_nr_to_write = ext4_num_dirty_pages(inode, index,
2114 max_pages);
2115 if (desired_nr_to_write > max_pages)
2116 desired_nr_to_write = max_pages;
2117
2118 if (wbc->nr_to_write < desired_nr_to_write) {
2119 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
2120 wbc->nr_to_write = desired_nr_to_write;
2121 }
2122
2123 retry:
2124 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2125 tag_pages_for_writeback(mapping, index, end);
2126
2127 while (!ret && wbc->nr_to_write > 0) {
2128
2129 /*
2130 * we insert one extent at a time. So we need
2131 * credit needed for single extent allocation.
2132 * journalled mode is currently not supported
2133 * by delalloc
2134 */
2135 BUG_ON(ext4_should_journal_data(inode));
2136 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2137
2138 /* start a new transaction*/
2139 handle = ext4_journal_start(inode, needed_blocks);
2140 if (IS_ERR(handle)) {
2141 ret = PTR_ERR(handle);
2142 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2143 "%ld pages, ino %lu; err %d", __func__,
2144 wbc->nr_to_write, inode->i_ino, ret);
2145 goto out_writepages;
2146 }
2147
2148 /*
2149 * Now call write_cache_pages_da() to find the next
2150 * contiguous region of logical blocks that need
2151 * blocks to be allocated by ext4 and submit them.
2152 */
2153 ret = write_cache_pages_da(mapping, wbc, &mpd, &done_index);
2154 /*
2155 * If we have a contiguous extent of pages and we
2156 * haven't done the I/O yet, map the blocks and submit
2157 * them for I/O.
2158 */
2159 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2160 mpage_da_map_and_submit(&mpd);
2161 ret = MPAGE_DA_EXTENT_TAIL;
2162 }
2163 trace_ext4_da_write_pages(inode, &mpd);
2164 wbc->nr_to_write -= mpd.pages_written;
2165
2166 ext4_journal_stop(handle);
2167
2168 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2169 /* commit the transaction which would
2170 * free blocks released in the transaction
2171 * and try again
2172 */
2173 jbd2_journal_force_commit_nested(sbi->s_journal);
2174 ret = 0;
2175 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
2176 /*
2177 * got one extent now try with
2178 * rest of the pages
2179 */
2180 pages_written += mpd.pages_written;
2181 ret = 0;
2182 io_done = 1;
2183 } else if (wbc->nr_to_write)
2184 /*
2185 * There is no more writeout needed
2186 * or we requested for a noblocking writeout
2187 * and we found the device congested
2188 */
2189 break;
2190 }
2191 if (!io_done && !cycled) {
2192 cycled = 1;
2193 index = 0;
2194 wbc->range_start = index << PAGE_CACHE_SHIFT;
2195 wbc->range_end = mapping->writeback_index - 1;
2196 goto retry;
2197 }
2198
2199 /* Update index */
2200 wbc->range_cyclic = range_cyclic;
2201 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2202 /*
2203 * set the writeback_index so that range_cyclic
2204 * mode will write it back later
2205 */
2206 mapping->writeback_index = done_index;
2207
2208 out_writepages:
2209 wbc->nr_to_write -= nr_to_writebump;
2210 wbc->range_start = range_start;
2211 trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
2212 return ret;
2213 }
2214
2215 #define FALL_BACK_TO_NONDELALLOC 1
2216 static int ext4_nonda_switch(struct super_block *sb)
2217 {
2218 s64 free_blocks, dirty_blocks;
2219 struct ext4_sb_info *sbi = EXT4_SB(sb);
2220
2221 /*
2222 * switch to non delalloc mode if we are running low
2223 * on free block. The free block accounting via percpu
2224 * counters can get slightly wrong with percpu_counter_batch getting
2225 * accumulated on each CPU without updating global counters
2226 * Delalloc need an accurate free block accounting. So switch
2227 * to non delalloc when we are near to error range.
2228 */
2229 free_blocks = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
2230 dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
2231 if (2 * free_blocks < 3 * dirty_blocks ||
2232 free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
2233 /*
2234 * free block count is less than 150% of dirty blocks
2235 * or free blocks is less than watermark
2236 */
2237 return 1;
2238 }
2239 /*
2240 * Even if we don't switch but are nearing capacity,
2241 * start pushing delalloc when 1/2 of free blocks are dirty.
2242 */
2243 if (free_blocks < 2 * dirty_blocks)
2244 writeback_inodes_sb_if_idle(sb);
2245
2246 return 0;
2247 }
2248
2249 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2250 loff_t pos, unsigned len, unsigned flags,
2251 struct page **pagep, void **fsdata)
2252 {
2253 int ret, retries = 0;
2254 struct page *page;
2255 pgoff_t index;
2256 struct inode *inode = mapping->host;
2257 handle_t *handle;
2258
2259 index = pos >> PAGE_CACHE_SHIFT;
2260
2261 if (ext4_nonda_switch(inode->i_sb)) {
2262 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2263 return ext4_write_begin(file, mapping, pos,
2264 len, flags, pagep, fsdata);
2265 }
2266 *fsdata = (void *)0;
2267 trace_ext4_da_write_begin(inode, pos, len, flags);
2268 retry:
2269 /*
2270 * With delayed allocation, we don't log the i_disksize update
2271 * if there is delayed block allocation. But we still need
2272 * to journalling the i_disksize update if writes to the end
2273 * of file which has an already mapped buffer.
2274 */
2275 handle = ext4_journal_start(inode, 1);
2276 if (IS_ERR(handle)) {
2277 ret = PTR_ERR(handle);
2278 goto out;
2279 }
2280 /* We cannot recurse into the filesystem as the transaction is already
2281 * started */
2282 flags |= AOP_FLAG_NOFS;
2283
2284 page = grab_cache_page_write_begin(mapping, index, flags);
2285 if (!page) {
2286 ext4_journal_stop(handle);
2287 ret = -ENOMEM;
2288 goto out;
2289 }
2290 *pagep = page;
2291
2292 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2293 if (ret < 0) {
2294 unlock_page(page);
2295 ext4_journal_stop(handle);
2296 page_cache_release(page);
2297 /*
2298 * block_write_begin may have instantiated a few blocks
2299 * outside i_size. Trim these off again. Don't need
2300 * i_size_read because we hold i_mutex.
2301 */
2302 if (pos + len > inode->i_size)
2303 ext4_truncate_failed_write(inode);
2304 }
2305
2306 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
2307 goto retry;
2308 out:
2309 return ret;
2310 }
2311
2312 /*
2313 * Check if we should update i_disksize
2314 * when write to the end of file but not require block allocation
2315 */
2316 static int ext4_da_should_update_i_disksize(struct page *page,
2317 unsigned long offset)
2318 {
2319 struct buffer_head *bh;
2320 struct inode *inode = page->mapping->host;
2321 unsigned int idx;
2322 int i;
2323
2324 bh = page_buffers(page);
2325 idx = offset >> inode->i_blkbits;
2326
2327 for (i = 0; i < idx; i++)
2328 bh = bh->b_this_page;
2329
2330 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2331 return 0;
2332 return 1;
2333 }
2334
2335 static int ext4_da_write_end(struct file *file,
2336 struct address_space *mapping,
2337 loff_t pos, unsigned len, unsigned copied,
2338 struct page *page, void *fsdata)
2339 {
2340 struct inode *inode = mapping->host;
2341 int ret = 0, ret2;
2342 handle_t *handle = ext4_journal_current_handle();
2343 loff_t new_i_size;
2344 unsigned long start, end;
2345 int write_mode = (int)(unsigned long)fsdata;
2346
2347 if (write_mode == FALL_BACK_TO_NONDELALLOC) {
2348 if (ext4_should_order_data(inode)) {
2349 return ext4_ordered_write_end(file, mapping, pos,
2350 len, copied, page, fsdata);
2351 } else if (ext4_should_writeback_data(inode)) {
2352 return ext4_writeback_write_end(file, mapping, pos,
2353 len, copied, page, fsdata);
2354 } else {
2355 BUG();
2356 }
2357 }
2358
2359 trace_ext4_da_write_end(inode, pos, len, copied);
2360 start = pos & (PAGE_CACHE_SIZE - 1);
2361 end = start + copied - 1;
2362
2363 /*
2364 * generic_write_end() will run mark_inode_dirty() if i_size
2365 * changes. So let's piggyback the i_disksize mark_inode_dirty
2366 * into that.
2367 */
2368
2369 new_i_size = pos + copied;
2370 if (new_i_size > EXT4_I(inode)->i_disksize) {
2371 if (ext4_da_should_update_i_disksize(page, end)) {
2372 down_write(&EXT4_I(inode)->i_data_sem);
2373 if (new_i_size > EXT4_I(inode)->i_disksize) {
2374 /*
2375 * Updating i_disksize when extending file
2376 * without needing block allocation
2377 */
2378 if (ext4_should_order_data(inode))
2379 ret = ext4_jbd2_file_inode(handle,
2380 inode);
2381
2382 EXT4_I(inode)->i_disksize = new_i_size;
2383 }
2384 up_write(&EXT4_I(inode)->i_data_sem);
2385 /* We need to mark inode dirty even if
2386 * new_i_size is less that inode->i_size
2387 * bu greater than i_disksize.(hint delalloc)
2388 */
2389 ext4_mark_inode_dirty(handle, inode);
2390 }
2391 }
2392 ret2 = generic_write_end(file, mapping, pos, len, copied,
2393 page, fsdata);
2394 copied = ret2;
2395 if (ret2 < 0)
2396 ret = ret2;
2397 ret2 = ext4_journal_stop(handle);
2398 if (!ret)
2399 ret = ret2;
2400
2401 return ret ? ret : copied;
2402 }
2403
2404 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2405 {
2406 /*
2407 * Drop reserved blocks
2408 */
2409 BUG_ON(!PageLocked(page));
2410 if (!page_has_buffers(page))
2411 goto out;
2412
2413 ext4_da_page_release_reservation(page, offset);
2414
2415 out:
2416 ext4_invalidatepage(page, offset);
2417
2418 return;
2419 }
2420
2421 /*
2422 * Force all delayed allocation blocks to be allocated for a given inode.
2423 */
2424 int ext4_alloc_da_blocks(struct inode *inode)
2425 {
2426 trace_ext4_alloc_da_blocks(inode);
2427
2428 if (!EXT4_I(inode)->i_reserved_data_blocks &&
2429 !EXT4_I(inode)->i_reserved_meta_blocks)
2430 return 0;
2431
2432 /*
2433 * We do something simple for now. The filemap_flush() will
2434 * also start triggering a write of the data blocks, which is
2435 * not strictly speaking necessary (and for users of
2436 * laptop_mode, not even desirable). However, to do otherwise
2437 * would require replicating code paths in:
2438 *
2439 * ext4_da_writepages() ->
2440 * write_cache_pages() ---> (via passed in callback function)
2441 * __mpage_da_writepage() -->
2442 * mpage_add_bh_to_extent()
2443 * mpage_da_map_blocks()
2444 *
2445 * The problem is that write_cache_pages(), located in
2446 * mm/page-writeback.c, marks pages clean in preparation for
2447 * doing I/O, which is not desirable if we're not planning on
2448 * doing I/O at all.
2449 *
2450 * We could call write_cache_pages(), and then redirty all of
2451 * the pages by calling redirty_page_for_writepage() but that
2452 * would be ugly in the extreme. So instead we would need to
2453 * replicate parts of the code in the above functions,
2454 * simplifying them because we wouldn't actually intend to
2455 * write out the pages, but rather only collect contiguous
2456 * logical block extents, call the multi-block allocator, and
2457 * then update the buffer heads with the block allocations.
2458 *
2459 * For now, though, we'll cheat by calling filemap_flush(),
2460 * which will map the blocks, and start the I/O, but not
2461 * actually wait for the I/O to complete.
2462 */
2463 return filemap_flush(inode->i_mapping);
2464 }
2465
2466 /*
2467 * bmap() is special. It gets used by applications such as lilo and by
2468 * the swapper to find the on-disk block of a specific piece of data.
2469 *
2470 * Naturally, this is dangerous if the block concerned is still in the
2471 * journal. If somebody makes a swapfile on an ext4 data-journaling
2472 * filesystem and enables swap, then they may get a nasty shock when the
2473 * data getting swapped to that swapfile suddenly gets overwritten by
2474 * the original zero's written out previously to the journal and
2475 * awaiting writeback in the kernel's buffer cache.
2476 *
2477 * So, if we see any bmap calls here on a modified, data-journaled file,
2478 * take extra steps to flush any blocks which might be in the cache.
2479 */
2480 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2481 {
2482 struct inode *inode = mapping->host;
2483 journal_t *journal;
2484 int err;
2485
2486 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2487 test_opt(inode->i_sb, DELALLOC)) {
2488 /*
2489 * With delalloc we want to sync the file
2490 * so that we can make sure we allocate
2491 * blocks for file
2492 */
2493 filemap_write_and_wait(mapping);
2494 }
2495
2496 if (EXT4_JOURNAL(inode) &&
2497 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2498 /*
2499 * This is a REALLY heavyweight approach, but the use of
2500 * bmap on dirty files is expected to be extremely rare:
2501 * only if we run lilo or swapon on a freshly made file
2502 * do we expect this to happen.
2503 *
2504 * (bmap requires CAP_SYS_RAWIO so this does not
2505 * represent an unprivileged user DOS attack --- we'd be
2506 * in trouble if mortal users could trigger this path at
2507 * will.)
2508 *
2509 * NB. EXT4_STATE_JDATA is not set on files other than
2510 * regular files. If somebody wants to bmap a directory
2511 * or symlink and gets confused because the buffer
2512 * hasn't yet been flushed to disk, they deserve
2513 * everything they get.
2514 */
2515
2516 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2517 journal = EXT4_JOURNAL(inode);
2518 jbd2_journal_lock_updates(journal);
2519 err = jbd2_journal_flush(journal);
2520 jbd2_journal_unlock_updates(journal);
2521
2522 if (err)
2523 return 0;
2524 }
2525
2526 return generic_block_bmap(mapping, block, ext4_get_block);
2527 }
2528
2529 static int ext4_readpage(struct file *file, struct page *page)
2530 {
2531 trace_ext4_readpage(page);
2532 return mpage_readpage(page, ext4_get_block);
2533 }
2534
2535 static int
2536 ext4_readpages(struct file *file, struct address_space *mapping,
2537 struct list_head *pages, unsigned nr_pages)
2538 {
2539 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2540 }
2541
2542 static void ext4_invalidatepage_free_endio(struct page *page, unsigned long offset)
2543 {
2544 struct buffer_head *head, *bh;
2545 unsigned int curr_off = 0;
2546
2547 if (!page_has_buffers(page))
2548 return;
2549 head = bh = page_buffers(page);
2550 do {
2551 if (offset <= curr_off && test_clear_buffer_uninit(bh)
2552 && bh->b_private) {
2553 ext4_free_io_end(bh->b_private);
2554 bh->b_private = NULL;
2555 bh->b_end_io = NULL;
2556 }
2557 curr_off = curr_off + bh->b_size;
2558 bh = bh->b_this_page;
2559 } while (bh != head);
2560 }
2561
2562 static void ext4_invalidatepage(struct page *page, unsigned long offset)
2563 {
2564 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2565
2566 trace_ext4_invalidatepage(page, offset);
2567
2568 /*
2569 * free any io_end structure allocated for buffers to be discarded
2570 */
2571 if (ext4_should_dioread_nolock(page->mapping->host))
2572 ext4_invalidatepage_free_endio(page, offset);
2573 /*
2574 * If it's a full truncate we just forget about the pending dirtying
2575 */
2576 if (offset == 0)
2577 ClearPageChecked(page);
2578
2579 if (journal)
2580 jbd2_journal_invalidatepage(journal, page, offset);
2581 else
2582 block_invalidatepage(page, offset);
2583 }
2584
2585 static int ext4_releasepage(struct page *page, gfp_t wait)
2586 {
2587 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2588
2589 trace_ext4_releasepage(page);
2590
2591 WARN_ON(PageChecked(page));
2592 if (!page_has_buffers(page))
2593 return 0;
2594 if (journal)
2595 return jbd2_journal_try_to_free_buffers(journal, page, wait);
2596 else
2597 return try_to_free_buffers(page);
2598 }
2599
2600 /*
2601 * ext4_get_block used when preparing for a DIO write or buffer write.
2602 * We allocate an uinitialized extent if blocks haven't been allocated.
2603 * The extent will be converted to initialized after the IO is complete.
2604 */
2605 static int ext4_get_block_write(struct inode *inode, sector_t iblock,
2606 struct buffer_head *bh_result, int create)
2607 {
2608 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
2609 inode->i_ino, create);
2610 return _ext4_get_block(inode, iblock, bh_result,
2611 EXT4_GET_BLOCKS_IO_CREATE_EXT);
2612 }
2613
2614 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
2615 ssize_t size, void *private, int ret,
2616 bool is_async)
2617 {
2618 struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
2619 ext4_io_end_t *io_end = iocb->private;
2620 struct workqueue_struct *wq;
2621 unsigned long flags;
2622 struct ext4_inode_info *ei;
2623
2624 /* if not async direct IO or dio with 0 bytes write, just return */
2625 if (!io_end || !size)
2626 goto out;
2627
2628 ext_debug("ext4_end_io_dio(): io_end 0x%p"
2629 "for inode %lu, iocb 0x%p, offset %llu, size %llu\n",
2630 iocb->private, io_end->inode->i_ino, iocb, offset,
2631 size);
2632
2633 /* if not aio dio with unwritten extents, just free io and return */
2634 if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
2635 ext4_free_io_end(io_end);
2636 iocb->private = NULL;
2637 out:
2638 if (is_async)
2639 aio_complete(iocb, ret, 0);
2640 inode_dio_done(inode);
2641 return;
2642 }
2643
2644 io_end->offset = offset;
2645 io_end->size = size;
2646 if (is_async) {
2647 io_end->iocb = iocb;
2648 io_end->result = ret;
2649 }
2650 wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq;
2651
2652 /* Add the io_end to per-inode completed aio dio list*/
2653 ei = EXT4_I(io_end->inode);
2654 spin_lock_irqsave(&ei->i_completed_io_lock, flags);
2655 list_add_tail(&io_end->list, &ei->i_completed_io_list);
2656 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
2657
2658 /* queue the work to convert unwritten extents to written */
2659 queue_work(wq, &io_end->work);
2660 iocb->private = NULL;
2661
2662 /* XXX: probably should move into the real I/O completion handler */
2663 inode_dio_done(inode);
2664 }
2665
2666 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate)
2667 {
2668 ext4_io_end_t *io_end = bh->b_private;
2669 struct workqueue_struct *wq;
2670 struct inode *inode;
2671 unsigned long flags;
2672
2673 if (!test_clear_buffer_uninit(bh) || !io_end)
2674 goto out;
2675
2676 if (!(io_end->inode->i_sb->s_flags & MS_ACTIVE)) {
2677 printk("sb umounted, discard end_io request for inode %lu\n",
2678 io_end->inode->i_ino);
2679 ext4_free_io_end(io_end);
2680 goto out;
2681 }
2682
2683 /*
2684 * It may be over-defensive here to check EXT4_IO_END_UNWRITTEN now,
2685 * but being more careful is always safe for the future change.
2686 */
2687 inode = io_end->inode;
2688 if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
2689 io_end->flag |= EXT4_IO_END_UNWRITTEN;
2690 atomic_inc(&EXT4_I(inode)->i_aiodio_unwritten);
2691 }
2692
2693 /* Add the io_end to per-inode completed io list*/
2694 spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
2695 list_add_tail(&io_end->list, &EXT4_I(inode)->i_completed_io_list);
2696 spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);
2697
2698 wq = EXT4_SB(inode->i_sb)->dio_unwritten_wq;
2699 /* queue the work to convert unwritten extents to written */
2700 queue_work(wq, &io_end->work);
2701 out:
2702 bh->b_private = NULL;
2703 bh->b_end_io = NULL;
2704 clear_buffer_uninit(bh);
2705 end_buffer_async_write(bh, uptodate);
2706 }
2707
2708 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode)
2709 {
2710 ext4_io_end_t *io_end;
2711 struct page *page = bh->b_page;
2712 loff_t offset = (sector_t)page->index << PAGE_CACHE_SHIFT;
2713 size_t size = bh->b_size;
2714
2715 retry:
2716 io_end = ext4_init_io_end(inode, GFP_ATOMIC);
2717 if (!io_end) {
2718 pr_warn_ratelimited("%s: allocation fail\n", __func__);
2719 schedule();
2720 goto retry;
2721 }
2722 io_end->offset = offset;
2723 io_end->size = size;
2724 /*
2725 * We need to hold a reference to the page to make sure it
2726 * doesn't get evicted before ext4_end_io_work() has a chance
2727 * to convert the extent from written to unwritten.
2728 */
2729 io_end->page = page;
2730 get_page(io_end->page);
2731
2732 bh->b_private = io_end;
2733 bh->b_end_io = ext4_end_io_buffer_write;
2734 return 0;
2735 }
2736
2737 /*
2738 * For ext4 extent files, ext4 will do direct-io write to holes,
2739 * preallocated extents, and those write extend the file, no need to
2740 * fall back to buffered IO.
2741 *
2742 * For holes, we fallocate those blocks, mark them as uninitialized
2743 * If those blocks were preallocated, we mark sure they are splited, but
2744 * still keep the range to write as uninitialized.
2745 *
2746 * The unwrritten extents will be converted to written when DIO is completed.
2747 * For async direct IO, since the IO may still pending when return, we
2748 * set up an end_io call back function, which will do the conversion
2749 * when async direct IO completed.
2750 *
2751 * If the O_DIRECT write will extend the file then add this inode to the
2752 * orphan list. So recovery will truncate it back to the original size
2753 * if the machine crashes during the write.
2754 *
2755 */
2756 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
2757 const struct iovec *iov, loff_t offset,
2758 unsigned long nr_segs)
2759 {
2760 struct file *file = iocb->ki_filp;
2761 struct inode *inode = file->f_mapping->host;
2762 ssize_t ret;
2763 size_t count = iov_length(iov, nr_segs);
2764
2765 loff_t final_size = offset + count;
2766 if (rw == WRITE && final_size <= inode->i_size) {
2767 /*
2768 * We could direct write to holes and fallocate.
2769 *
2770 * Allocated blocks to fill the hole are marked as uninitialized
2771 * to prevent parallel buffered read to expose the stale data
2772 * before DIO complete the data IO.
2773 *
2774 * As to previously fallocated extents, ext4 get_block
2775 * will just simply mark the buffer mapped but still
2776 * keep the extents uninitialized.
2777 *
2778 * for non AIO case, we will convert those unwritten extents
2779 * to written after return back from blockdev_direct_IO.
2780 *
2781 * for async DIO, the conversion needs to be defered when
2782 * the IO is completed. The ext4 end_io callback function
2783 * will be called to take care of the conversion work.
2784 * Here for async case, we allocate an io_end structure to
2785 * hook to the iocb.
2786 */
2787 iocb->private = NULL;
2788 EXT4_I(inode)->cur_aio_dio = NULL;
2789 if (!is_sync_kiocb(iocb)) {
2790 iocb->private = ext4_init_io_end(inode, GFP_NOFS);
2791 if (!iocb->private)
2792 return -ENOMEM;
2793 /*
2794 * we save the io structure for current async
2795 * direct IO, so that later ext4_map_blocks()
2796 * could flag the io structure whether there
2797 * is a unwritten extents needs to be converted
2798 * when IO is completed.
2799 */
2800 EXT4_I(inode)->cur_aio_dio = iocb->private;
2801 }
2802
2803 ret = __blockdev_direct_IO(rw, iocb, inode,
2804 inode->i_sb->s_bdev, iov,
2805 offset, nr_segs,
2806 ext4_get_block_write,
2807 ext4_end_io_dio,
2808 NULL,
2809 DIO_LOCKING | DIO_SKIP_HOLES);
2810 if (iocb->private)
2811 EXT4_I(inode)->cur_aio_dio = NULL;
2812 /*
2813 * The io_end structure takes a reference to the inode,
2814 * that structure needs to be destroyed and the
2815 * reference to the inode need to be dropped, when IO is
2816 * complete, even with 0 byte write, or failed.
2817 *
2818 * In the successful AIO DIO case, the io_end structure will be
2819 * desctroyed and the reference to the inode will be dropped
2820 * after the end_io call back function is called.
2821 *
2822 * In the case there is 0 byte write, or error case, since
2823 * VFS direct IO won't invoke the end_io call back function,
2824 * we need to free the end_io structure here.
2825 */
2826 if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
2827 ext4_free_io_end(iocb->private);
2828 iocb->private = NULL;
2829 } else if (ret > 0 && ext4_test_inode_state(inode,
2830 EXT4_STATE_DIO_UNWRITTEN)) {
2831 int err;
2832 /*
2833 * for non AIO case, since the IO is already
2834 * completed, we could do the conversion right here
2835 */
2836 err = ext4_convert_unwritten_extents(inode,
2837 offset, ret);
2838 if (err < 0)
2839 ret = err;
2840 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
2841 }
2842 return ret;
2843 }
2844
2845 /* for write the the end of file case, we fall back to old way */
2846 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
2847 }
2848
2849 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
2850 const struct iovec *iov, loff_t offset,
2851 unsigned long nr_segs)
2852 {
2853 struct file *file = iocb->ki_filp;
2854 struct inode *inode = file->f_mapping->host;
2855 ssize_t ret;
2856
2857 /*
2858 * If we are doing data journalling we don't support O_DIRECT
2859 */
2860 if (ext4_should_journal_data(inode))
2861 return 0;
2862
2863 trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
2864 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
2865 ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
2866 else
2867 ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
2868 trace_ext4_direct_IO_exit(inode, offset,
2869 iov_length(iov, nr_segs), rw, ret);
2870 return ret;
2871 }
2872
2873 /*
2874 * Pages can be marked dirty completely asynchronously from ext4's journalling
2875 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
2876 * much here because ->set_page_dirty is called under VFS locks. The page is
2877 * not necessarily locked.
2878 *
2879 * We cannot just dirty the page and leave attached buffers clean, because the
2880 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
2881 * or jbddirty because all the journalling code will explode.
2882 *
2883 * So what we do is to mark the page "pending dirty" and next time writepage
2884 * is called, propagate that into the buffers appropriately.
2885 */
2886 static int ext4_journalled_set_page_dirty(struct page *page)
2887 {
2888 SetPageChecked(page);
2889 return __set_page_dirty_nobuffers(page);
2890 }
2891
2892 static const struct address_space_operations ext4_ordered_aops = {
2893 .readpage = ext4_readpage,
2894 .readpages = ext4_readpages,
2895 .writepage = ext4_writepage,
2896 .write_begin = ext4_write_begin,
2897 .write_end = ext4_ordered_write_end,
2898 .bmap = ext4_bmap,
2899 .invalidatepage = ext4_invalidatepage,
2900 .releasepage = ext4_releasepage,
2901 .direct_IO = ext4_direct_IO,
2902 .migratepage = buffer_migrate_page,
2903 .is_partially_uptodate = block_is_partially_uptodate,
2904 .error_remove_page = generic_error_remove_page,
2905 };
2906
2907 static const struct address_space_operations ext4_writeback_aops = {
2908 .readpage = ext4_readpage,
2909 .readpages = ext4_readpages,
2910 .writepage = ext4_writepage,
2911 .write_begin = ext4_write_begin,
2912 .write_end = ext4_writeback_write_end,
2913 .bmap = ext4_bmap,
2914 .invalidatepage = ext4_invalidatepage,
2915 .releasepage = ext4_releasepage,
2916 .direct_IO = ext4_direct_IO,
2917 .migratepage = buffer_migrate_page,
2918 .is_partially_uptodate = block_is_partially_uptodate,
2919 .error_remove_page = generic_error_remove_page,
2920 };
2921
2922 static const struct address_space_operations ext4_journalled_aops = {
2923 .readpage = ext4_readpage,
2924 .readpages = ext4_readpages,
2925 .writepage = ext4_writepage,
2926 .write_begin = ext4_write_begin,
2927 .write_end = ext4_journalled_write_end,
2928 .set_page_dirty = ext4_journalled_set_page_dirty,
2929 .bmap = ext4_bmap,
2930 .invalidatepage = ext4_invalidatepage,
2931 .releasepage = ext4_releasepage,
2932 .direct_IO = ext4_direct_IO,
2933 .is_partially_uptodate = block_is_partially_uptodate,
2934 .error_remove_page = generic_error_remove_page,
2935 };
2936
2937 static const struct address_space_operations ext4_da_aops = {
2938 .readpage = ext4_readpage,
2939 .readpages = ext4_readpages,
2940 .writepage = ext4_writepage,
2941 .writepages = ext4_da_writepages,
2942 .write_begin = ext4_da_write_begin,
2943 .write_end = ext4_da_write_end,
2944 .bmap = ext4_bmap,
2945 .invalidatepage = ext4_da_invalidatepage,
2946 .releasepage = ext4_releasepage,
2947 .direct_IO = ext4_direct_IO,
2948 .migratepage = buffer_migrate_page,
2949 .is_partially_uptodate = block_is_partially_uptodate,
2950 .error_remove_page = generic_error_remove_page,
2951 };
2952
2953 void ext4_set_aops(struct inode *inode)
2954 {
2955 if (ext4_should_order_data(inode) &&
2956 test_opt(inode->i_sb, DELALLOC))
2957 inode->i_mapping->a_ops = &ext4_da_aops;
2958 else if (ext4_should_order_data(inode))
2959 inode->i_mapping->a_ops = &ext4_ordered_aops;
2960 else if (ext4_should_writeback_data(inode) &&
2961 test_opt(inode->i_sb, DELALLOC))
2962 inode->i_mapping->a_ops = &ext4_da_aops;
2963 else if (ext4_should_writeback_data(inode))
2964 inode->i_mapping->a_ops = &ext4_writeback_aops;
2965 else
2966 inode->i_mapping->a_ops = &ext4_journalled_aops;
2967 }
2968
2969
2970 /*
2971 * ext4_discard_partial_page_buffers()
2972 * Wrapper function for ext4_discard_partial_page_buffers_no_lock.
2973 * This function finds and locks the page containing the offset
2974 * "from" and passes it to ext4_discard_partial_page_buffers_no_lock.
2975 * Calling functions that already have the page locked should call
2976 * ext4_discard_partial_page_buffers_no_lock directly.
2977 */
2978 int ext4_discard_partial_page_buffers(handle_t *handle,
2979 struct address_space *mapping, loff_t from,
2980 loff_t length, int flags)
2981 {
2982 struct inode *inode = mapping->host;
2983 struct page *page;
2984 int err = 0;
2985
2986 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
2987 mapping_gfp_mask(mapping) & ~__GFP_FS);
2988 if (!page)
2989 return -EINVAL;
2990
2991 err = ext4_discard_partial_page_buffers_no_lock(handle, inode, page,
2992 from, length, flags);
2993
2994 unlock_page(page);
2995 page_cache_release(page);
2996 return err;
2997 }
2998
2999 /*
3000 * ext4_discard_partial_page_buffers_no_lock()
3001 * Zeros a page range of length 'length' starting from offset 'from'.
3002 * Buffer heads that correspond to the block aligned regions of the
3003 * zeroed range will be unmapped. Unblock aligned regions
3004 * will have the corresponding buffer head mapped if needed so that
3005 * that region of the page can be updated with the partial zero out.
3006 *
3007 * This function assumes that the page has already been locked. The
3008 * The range to be discarded must be contained with in the given page.
3009 * If the specified range exceeds the end of the page it will be shortened
3010 * to the end of the page that corresponds to 'from'. This function is
3011 * appropriate for updating a page and it buffer heads to be unmapped and
3012 * zeroed for blocks that have been either released, or are going to be
3013 * released.
3014 *
3015 * handle: The journal handle
3016 * inode: The files inode
3017 * page: A locked page that contains the offset "from"
3018 * from: The starting byte offset (from the begining of the file)
3019 * to begin discarding
3020 * len: The length of bytes to discard
3021 * flags: Optional flags that may be used:
3022 *
3023 * EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED
3024 * Only zero the regions of the page whose buffer heads
3025 * have already been unmapped. This flag is appropriate
3026 * for updateing the contents of a page whose blocks may
3027 * have already been released, and we only want to zero
3028 * out the regions that correspond to those released blocks.
3029 *
3030 * Returns zero on sucess or negative on failure.
3031 */
3032 int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
3033 struct inode *inode, struct page *page, loff_t from,
3034 loff_t length, int flags)
3035 {
3036 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3037 unsigned int offset = from & (PAGE_CACHE_SIZE-1);
3038 unsigned int blocksize, max, pos;
3039 unsigned int end_of_block, range_to_discard;
3040 ext4_lblk_t iblock;
3041 struct buffer_head *bh;
3042 int err = 0;
3043
3044 blocksize = inode->i_sb->s_blocksize;
3045 max = PAGE_CACHE_SIZE - offset;
3046
3047 if (index != page->index)
3048 return -EINVAL;
3049
3050 /*
3051 * correct length if it does not fall between
3052 * 'from' and the end of the page
3053 */
3054 if (length > max || length < 0)
3055 length = max;
3056
3057 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3058
3059 if (!page_has_buffers(page)) {
3060 /*
3061 * If the range to be discarded covers a partial block
3062 * we need to get the page buffers. This is because
3063 * partial blocks cannot be released and the page needs
3064 * to be updated with the contents of the block before
3065 * we write the zeros on top of it.
3066 */
3067 if (!(from & (blocksize - 1)) ||
3068 !((from + length) & (blocksize - 1))) {
3069 create_empty_buffers(page, blocksize, 0);
3070 } else {
3071 /*
3072 * If there are no partial blocks,
3073 * there is nothing to update,
3074 * so we can return now
3075 */
3076 return 0;
3077 }
3078 }
3079
3080 /* Find the buffer that contains "offset" */
3081 bh = page_buffers(page);
3082 pos = blocksize;
3083 while (offset >= pos) {
3084 bh = bh->b_this_page;
3085 iblock++;
3086 pos += blocksize;
3087 }
3088
3089 pos = offset;
3090 while (pos < offset + length) {
3091 err = 0;
3092
3093 /* The length of space left to zero and unmap */
3094 range_to_discard = offset + length - pos;
3095
3096 /* The length of space until the end of the block */
3097 end_of_block = blocksize - (pos & (blocksize-1));
3098
3099 /*
3100 * Do not unmap or zero past end of block
3101 * for this buffer head
3102 */
3103 if (range_to_discard > end_of_block)
3104 range_to_discard = end_of_block;
3105
3106
3107 /*
3108 * Skip this buffer head if we are only zeroing unampped
3109 * regions of the page
3110 */
3111 if (flags & EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED &&
3112 buffer_mapped(bh))
3113 goto next;
3114
3115 /* If the range is block aligned, unmap */
3116 if (range_to_discard == blocksize) {
3117 clear_buffer_dirty(bh);
3118 bh->b_bdev = NULL;
3119 clear_buffer_mapped(bh);
3120 clear_buffer_req(bh);
3121 clear_buffer_new(bh);
3122 clear_buffer_delay(bh);
3123 clear_buffer_unwritten(bh);
3124 clear_buffer_uptodate(bh);
3125 zero_user(page, pos, range_to_discard);
3126 BUFFER_TRACE(bh, "Buffer discarded");
3127 goto next;
3128 }
3129
3130 /*
3131 * If this block is not completely contained in the range
3132 * to be discarded, then it is not going to be released. Because
3133 * we need to keep this block, we need to make sure this part
3134 * of the page is uptodate before we modify it by writeing
3135 * partial zeros on it.
3136 */
3137 if (!buffer_mapped(bh)) {
3138 /*
3139 * Buffer head must be mapped before we can read
3140 * from the block
3141 */
3142 BUFFER_TRACE(bh, "unmapped");
3143 ext4_get_block(inode, iblock, bh, 0);
3144 /* unmapped? It's a hole - nothing to do */
3145 if (!buffer_mapped(bh)) {
3146 BUFFER_TRACE(bh, "still unmapped");
3147 goto next;
3148 }
3149 }
3150
3151 /* Ok, it's mapped. Make sure it's up-to-date */
3152 if (PageUptodate(page))
3153 set_buffer_uptodate(bh);
3154
3155 if (!buffer_uptodate(bh)) {
3156 err = -EIO;
3157 ll_rw_block(READ, 1, &bh);
3158 wait_on_buffer(bh);
3159 /* Uhhuh. Read error. Complain and punt.*/
3160 if (!buffer_uptodate(bh))
3161 goto next;
3162 }
3163
3164 if (ext4_should_journal_data(inode)) {
3165 BUFFER_TRACE(bh, "get write access");
3166 err = ext4_journal_get_write_access(handle, bh);
3167 if (err)
3168 goto next;
3169 }
3170
3171 zero_user(page, pos, range_to_discard);
3172
3173 err = 0;
3174 if (ext4_should_journal_data(inode)) {
3175 err = ext4_handle_dirty_metadata(handle, inode, bh);
3176 } else
3177 mark_buffer_dirty(bh);
3178
3179 BUFFER_TRACE(bh, "Partial buffer zeroed");
3180 next:
3181 bh = bh->b_this_page;
3182 iblock++;
3183 pos += range_to_discard;
3184 }
3185
3186 return err;
3187 }
3188
3189 /*
3190 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3191 * up to the end of the block which corresponds to `from'.
3192 * This required during truncate. We need to physically zero the tail end
3193 * of that block so it doesn't yield old data if the file is later grown.
3194 */
3195 int ext4_block_truncate_page(handle_t *handle,
3196 struct address_space *mapping, loff_t from)
3197 {
3198 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3199 unsigned length;
3200 unsigned blocksize;
3201 struct inode *inode = mapping->host;
3202
3203 blocksize = inode->i_sb->s_blocksize;
3204 length = blocksize - (offset & (blocksize - 1));
3205
3206 return ext4_block_zero_page_range(handle, mapping, from, length);
3207 }
3208
3209 /*
3210 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3211 * starting from file offset 'from'. The range to be zero'd must
3212 * be contained with in one block. If the specified range exceeds
3213 * the end of the block it will be shortened to end of the block
3214 * that cooresponds to 'from'
3215 */
3216 int ext4_block_zero_page_range(handle_t *handle,
3217 struct address_space *mapping, loff_t from, loff_t length)
3218 {
3219 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3220 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3221 unsigned blocksize, max, pos;
3222 ext4_lblk_t iblock;
3223 struct inode *inode = mapping->host;
3224 struct buffer_head *bh;
3225 struct page *page;
3226 int err = 0;
3227
3228 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3229 mapping_gfp_mask(mapping) & ~__GFP_FS);
3230 if (!page)
3231 return -EINVAL;
3232
3233 blocksize = inode->i_sb->s_blocksize;
3234 max = blocksize - (offset & (blocksize - 1));
3235
3236 /*
3237 * correct length if it does not fall between
3238 * 'from' and the end of the block
3239 */
3240 if (length > max || length < 0)
3241 length = max;
3242
3243 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3244
3245 if (!page_has_buffers(page))
3246 create_empty_buffers(page, blocksize, 0);
3247
3248 /* Find the buffer that contains "offset" */
3249 bh = page_buffers(page);
3250 pos = blocksize;
3251 while (offset >= pos) {
3252 bh = bh->b_this_page;
3253 iblock++;
3254 pos += blocksize;
3255 }
3256
3257 err = 0;
3258 if (buffer_freed(bh)) {
3259 BUFFER_TRACE(bh, "freed: skip");
3260 goto unlock;
3261 }
3262
3263 if (!buffer_mapped(bh)) {
3264 BUFFER_TRACE(bh, "unmapped");
3265 ext4_get_block(inode, iblock, bh, 0);
3266 /* unmapped? It's a hole - nothing to do */
3267 if (!buffer_mapped(bh)) {
3268 BUFFER_TRACE(bh, "still unmapped");
3269 goto unlock;
3270 }
3271 }
3272
3273 /* Ok, it's mapped. Make sure it's up-to-date */
3274 if (PageUptodate(page))
3275 set_buffer_uptodate(bh);
3276
3277 if (!buffer_uptodate(bh)) {
3278 err = -EIO;
3279 ll_rw_block(READ, 1, &bh);
3280 wait_on_buffer(bh);
3281 /* Uhhuh. Read error. Complain and punt. */
3282 if (!buffer_uptodate(bh))
3283 goto unlock;
3284 }
3285
3286 if (ext4_should_journal_data(inode)) {
3287 BUFFER_TRACE(bh, "get write access");
3288 err = ext4_journal_get_write_access(handle, bh);
3289 if (err)
3290 goto unlock;
3291 }
3292
3293 zero_user(page, offset, length);
3294
3295 BUFFER_TRACE(bh, "zeroed end of block");
3296
3297 err = 0;
3298 if (ext4_should_journal_data(inode)) {
3299 err = ext4_handle_dirty_metadata(handle, inode, bh);
3300 } else
3301 mark_buffer_dirty(bh);
3302
3303 unlock:
3304 unlock_page(page);
3305 page_cache_release(page);
3306 return err;
3307 }
3308
3309 int ext4_can_truncate(struct inode *inode)
3310 {
3311 if (S_ISREG(inode->i_mode))
3312 return 1;
3313 if (S_ISDIR(inode->i_mode))
3314 return 1;
3315 if (S_ISLNK(inode->i_mode))
3316 return !ext4_inode_is_fast_symlink(inode);
3317 return 0;
3318 }
3319
3320 /*
3321 * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3322 * associated with the given offset and length
3323 *
3324 * @inode: File inode
3325 * @offset: The offset where the hole will begin
3326 * @len: The length of the hole
3327 *
3328 * Returns: 0 on sucess or negative on failure
3329 */
3330
3331 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
3332 {
3333 struct inode *inode = file->f_path.dentry->d_inode;
3334 if (!S_ISREG(inode->i_mode))
3335 return -ENOTSUPP;
3336
3337 if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
3338 /* TODO: Add support for non extent hole punching */
3339 return -ENOTSUPP;
3340 }
3341
3342 return ext4_ext_punch_hole(file, offset, length);
3343 }
3344
3345 /*
3346 * ext4_truncate()
3347 *
3348 * We block out ext4_get_block() block instantiations across the entire
3349 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3350 * simultaneously on behalf of the same inode.
3351 *
3352 * As we work through the truncate and commmit bits of it to the journal there
3353 * is one core, guiding principle: the file's tree must always be consistent on
3354 * disk. We must be able to restart the truncate after a crash.
3355 *
3356 * The file's tree may be transiently inconsistent in memory (although it
3357 * probably isn't), but whenever we close off and commit a journal transaction,
3358 * the contents of (the filesystem + the journal) must be consistent and
3359 * restartable. It's pretty simple, really: bottom up, right to left (although
3360 * left-to-right works OK too).
3361 *
3362 * Note that at recovery time, journal replay occurs *before* the restart of
3363 * truncate against the orphan inode list.
3364 *
3365 * The committed inode has the new, desired i_size (which is the same as
3366 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
3367 * that this inode's truncate did not complete and it will again call
3368 * ext4_truncate() to have another go. So there will be instantiated blocks
3369 * to the right of the truncation point in a crashed ext4 filesystem. But
3370 * that's fine - as long as they are linked from the inode, the post-crash
3371 * ext4_truncate() run will find them and release them.
3372 */
3373 void ext4_truncate(struct inode *inode)
3374 {
3375 trace_ext4_truncate_enter(inode);
3376
3377 if (!ext4_can_truncate(inode))
3378 return;
3379
3380 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3381
3382 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3383 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3384
3385 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3386 ext4_ext_truncate(inode);
3387 else
3388 ext4_ind_truncate(inode);
3389
3390 trace_ext4_truncate_exit(inode);
3391 }
3392
3393 /*
3394 * ext4_get_inode_loc returns with an extra refcount against the inode's
3395 * underlying buffer_head on success. If 'in_mem' is true, we have all
3396 * data in memory that is needed to recreate the on-disk version of this
3397 * inode.
3398 */
3399 static int __ext4_get_inode_loc(struct inode *inode,
3400 struct ext4_iloc *iloc, int in_mem)
3401 {
3402 struct ext4_group_desc *gdp;
3403 struct buffer_head *bh;
3404 struct super_block *sb = inode->i_sb;
3405 ext4_fsblk_t block;
3406 int inodes_per_block, inode_offset;
3407
3408 iloc->bh = NULL;
3409 if (!ext4_valid_inum(sb, inode->i_ino))
3410 return -EIO;
3411
3412 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3413 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3414 if (!gdp)
3415 return -EIO;
3416
3417 /*
3418 * Figure out the offset within the block group inode table
3419 */
3420 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3421 inode_offset = ((inode->i_ino - 1) %
3422 EXT4_INODES_PER_GROUP(sb));
3423 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3424 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3425
3426 bh = sb_getblk(sb, block);
3427 if (!bh) {
3428 EXT4_ERROR_INODE_BLOCK(inode, block,
3429 "unable to read itable block");
3430 return -EIO;
3431 }
3432 if (!buffer_uptodate(bh)) {
3433 lock_buffer(bh);
3434
3435 /*
3436 * If the buffer has the write error flag, we have failed
3437 * to write out another inode in the same block. In this
3438 * case, we don't have to read the block because we may
3439 * read the old inode data successfully.
3440 */
3441 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3442 set_buffer_uptodate(bh);
3443
3444 if (buffer_uptodate(bh)) {
3445 /* someone brought it uptodate while we waited */
3446 unlock_buffer(bh);
3447 goto has_buffer;
3448 }
3449
3450 /*
3451 * If we have all information of the inode in memory and this
3452 * is the only valid inode in the block, we need not read the
3453 * block.
3454 */
3455 if (in_mem) {
3456 struct buffer_head *bitmap_bh;
3457 int i, start;
3458
3459 start = inode_offset & ~(inodes_per_block - 1);
3460
3461 /* Is the inode bitmap in cache? */
3462 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3463 if (!bitmap_bh)
3464 goto make_io;
3465
3466 /*
3467 * If the inode bitmap isn't in cache then the
3468 * optimisation may end up performing two reads instead
3469 * of one, so skip it.
3470 */
3471 if (!buffer_uptodate(bitmap_bh)) {
3472 brelse(bitmap_bh);
3473 goto make_io;
3474 }
3475 for (i = start; i < start + inodes_per_block; i++) {
3476 if (i == inode_offset)
3477 continue;
3478 if (ext4_test_bit(i, bitmap_bh->b_data))
3479 break;
3480 }
3481 brelse(bitmap_bh);
3482 if (i == start + inodes_per_block) {
3483 /* all other inodes are free, so skip I/O */
3484 memset(bh->b_data, 0, bh->b_size);
3485 set_buffer_uptodate(bh);
3486 unlock_buffer(bh);
3487 goto has_buffer;
3488 }
3489 }
3490
3491 make_io:
3492 /*
3493 * If we need to do any I/O, try to pre-readahead extra
3494 * blocks from the inode table.
3495 */
3496 if (EXT4_SB(sb)->s_inode_readahead_blks) {
3497 ext4_fsblk_t b, end, table;
3498 unsigned num;
3499
3500 table = ext4_inode_table(sb, gdp);
3501 /* s_inode_readahead_blks is always a power of 2 */
3502 b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
3503 if (table > b)
3504 b = table;
3505 end = b + EXT4_SB(sb)->s_inode_readahead_blks;
3506 num = EXT4_INODES_PER_GROUP(sb);
3507 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3508 EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
3509 num -= ext4_itable_unused_count(sb, gdp);
3510 table += num / inodes_per_block;
3511 if (end > table)
3512 end = table;
3513 while (b <= end)
3514 sb_breadahead(sb, b++);
3515 }
3516
3517 /*
3518 * There are other valid inodes in the buffer, this inode
3519 * has in-inode xattrs, or we don't have this inode in memory.
3520 * Read the block from disk.
3521 */
3522 trace_ext4_load_inode(inode);
3523 get_bh(bh);
3524 bh->b_end_io = end_buffer_read_sync;
3525 submit_bh(READ_META, bh);
3526 wait_on_buffer(bh);
3527 if (!buffer_uptodate(bh)) {
3528 EXT4_ERROR_INODE_BLOCK(inode, block,
3529 "unable to read itable block");
3530 brelse(bh);
3531 return -EIO;
3532 }
3533 }
3534 has_buffer:
3535 iloc->bh = bh;
3536 return 0;
3537 }
3538
3539 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3540 {
3541 /* We have all inode data except xattrs in memory here. */
3542 return __ext4_get_inode_loc(inode, iloc,
3543 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
3544 }
3545
3546 void ext4_set_inode_flags(struct inode *inode)
3547 {
3548 unsigned int flags = EXT4_I(inode)->i_flags;
3549
3550 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
3551 if (flags & EXT4_SYNC_FL)
3552 inode->i_flags |= S_SYNC;
3553 if (flags & EXT4_APPEND_FL)
3554 inode->i_flags |= S_APPEND;
3555 if (flags & EXT4_IMMUTABLE_FL)
3556 inode->i_flags |= S_IMMUTABLE;
3557 if (flags & EXT4_NOATIME_FL)
3558 inode->i_flags |= S_NOATIME;
3559 if (flags & EXT4_DIRSYNC_FL)
3560 inode->i_flags |= S_DIRSYNC;
3561 }
3562
3563 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3564 void ext4_get_inode_flags(struct ext4_inode_info *ei)
3565 {
3566 unsigned int vfs_fl;
3567 unsigned long old_fl, new_fl;
3568
3569 do {
3570 vfs_fl = ei->vfs_inode.i_flags;
3571 old_fl = ei->i_flags;
3572 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3573 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
3574 EXT4_DIRSYNC_FL);
3575 if (vfs_fl & S_SYNC)
3576 new_fl |= EXT4_SYNC_FL;
3577 if (vfs_fl & S_APPEND)
3578 new_fl |= EXT4_APPEND_FL;
3579 if (vfs_fl & S_IMMUTABLE)
3580 new_fl |= EXT4_IMMUTABLE_FL;
3581 if (vfs_fl & S_NOATIME)
3582 new_fl |= EXT4_NOATIME_FL;
3583 if (vfs_fl & S_DIRSYNC)
3584 new_fl |= EXT4_DIRSYNC_FL;
3585 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
3586 }
3587
3588 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3589 struct ext4_inode_info *ei)
3590 {
3591 blkcnt_t i_blocks ;
3592 struct inode *inode = &(ei->vfs_inode);
3593 struct super_block *sb = inode->i_sb;
3594
3595 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3596 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3597 /* we are using combined 48 bit field */
3598 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3599 le32_to_cpu(raw_inode->i_blocks_lo);
3600 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
3601 /* i_blocks represent file system block size */
3602 return i_blocks << (inode->i_blkbits - 9);
3603 } else {
3604 return i_blocks;
3605 }
3606 } else {
3607 return le32_to_cpu(raw_inode->i_blocks_lo);
3608 }
3609 }
3610
3611 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
3612 {
3613 struct ext4_iloc iloc;
3614 struct ext4_inode *raw_inode;
3615 struct ext4_inode_info *ei;
3616 struct inode *inode;
3617 journal_t *journal = EXT4_SB(sb)->s_journal;
3618 long ret;
3619 int block;
3620
3621 inode = iget_locked(sb, ino);
3622 if (!inode)
3623 return ERR_PTR(-ENOMEM);
3624 if (!(inode->i_state & I_NEW))
3625 return inode;
3626
3627 ei = EXT4_I(inode);
3628 iloc.bh = NULL;
3629
3630 ret = __ext4_get_inode_loc(inode, &iloc, 0);
3631 if (ret < 0)
3632 goto bad_inode;
3633 raw_inode = ext4_raw_inode(&iloc);
3634 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
3635 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
3636 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
3637 if (!(test_opt(inode->i_sb, NO_UID32))) {
3638 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
3639 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
3640 }
3641 inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
3642
3643 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
3644 ei->i_dir_start_lookup = 0;
3645 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
3646 /* We now have enough fields to check if the inode was active or not.
3647 * This is needed because nfsd might try to access dead inodes
3648 * the test is that same one that e2fsck uses
3649 * NeilBrown 1999oct15
3650 */
3651 if (inode->i_nlink == 0) {
3652 if (inode->i_mode == 0 ||
3653 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
3654 /* this inode is deleted */
3655 ret = -ESTALE;
3656 goto bad_inode;
3657 }
3658 /* The only unlinked inodes we let through here have
3659 * valid i_mode and are being read by the orphan
3660 * recovery code: that's fine, we're about to complete
3661 * the process of deleting those. */
3662 }
3663 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
3664 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
3665 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
3666 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
3667 ei->i_file_acl |=
3668 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
3669 inode->i_size = ext4_isize(raw_inode);
3670 ei->i_disksize = inode->i_size;
3671 #ifdef CONFIG_QUOTA
3672 ei->i_reserved_quota = 0;
3673 #endif
3674 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
3675 ei->i_block_group = iloc.block_group;
3676 ei->i_last_alloc_group = ~0;
3677 /*
3678 * NOTE! The in-memory inode i_data array is in little-endian order
3679 * even on big-endian machines: we do NOT byteswap the block numbers!
3680 */
3681 for (block = 0; block < EXT4_N_BLOCKS; block++)
3682 ei->i_data[block] = raw_inode->i_block[block];
3683 INIT_LIST_HEAD(&ei->i_orphan);
3684
3685 /*
3686 * Set transaction id's of transactions that have to be committed
3687 * to finish f[data]sync. We set them to currently running transaction
3688 * as we cannot be sure that the inode or some of its metadata isn't
3689 * part of the transaction - the inode could have been reclaimed and
3690 * now it is reread from disk.
3691 */
3692 if (journal) {
3693 transaction_t *transaction;
3694 tid_t tid;
3695
3696 read_lock(&journal->j_state_lock);
3697 if (journal->j_running_transaction)
3698 transaction = journal->j_running_transaction;
3699 else
3700 transaction = journal->j_committing_transaction;
3701 if (transaction)
3702 tid = transaction->t_tid;
3703 else
3704 tid = journal->j_commit_sequence;
3705 read_unlock(&journal->j_state_lock);
3706 ei->i_sync_tid = tid;
3707 ei->i_datasync_tid = tid;
3708 }
3709
3710 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3711 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
3712 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
3713 EXT4_INODE_SIZE(inode->i_sb)) {
3714 ret = -EIO;
3715 goto bad_inode;
3716 }
3717 if (ei->i_extra_isize == 0) {
3718 /* The extra space is currently unused. Use it. */
3719 ei->i_extra_isize = sizeof(struct ext4_inode) -
3720 EXT4_GOOD_OLD_INODE_SIZE;
3721 } else {
3722 __le32 *magic = (void *)raw_inode +
3723 EXT4_GOOD_OLD_INODE_SIZE +
3724 ei->i_extra_isize;
3725 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
3726 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
3727 }
3728 } else
3729 ei->i_extra_isize = 0;
3730
3731 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
3732 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
3733 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
3734 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
3735
3736 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
3737 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3738 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
3739 inode->i_version |=
3740 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
3741 }
3742
3743 ret = 0;
3744 if (ei->i_file_acl &&
3745 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
3746 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
3747 ei->i_file_acl);
3748 ret = -EIO;
3749 goto bad_inode;
3750 } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
3751 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
3752 (S_ISLNK(inode->i_mode) &&
3753 !ext4_inode_is_fast_symlink(inode)))
3754 /* Validate extent which is part of inode */
3755 ret = ext4_ext_check_inode(inode);
3756 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
3757 (S_ISLNK(inode->i_mode) &&
3758 !ext4_inode_is_fast_symlink(inode))) {
3759 /* Validate block references which are part of inode */
3760 ret = ext4_ind_check_inode(inode);
3761 }
3762 if (ret)
3763 goto bad_inode;
3764
3765 if (S_ISREG(inode->i_mode)) {
3766 inode->i_op = &ext4_file_inode_operations;
3767 inode->i_fop = &ext4_file_operations;
3768 ext4_set_aops(inode);
3769 } else if (S_ISDIR(inode->i_mode)) {
3770 inode->i_op = &ext4_dir_inode_operations;
3771 inode->i_fop = &ext4_dir_operations;
3772 } else if (S_ISLNK(inode->i_mode)) {
3773 if (ext4_inode_is_fast_symlink(inode)) {
3774 inode->i_op = &ext4_fast_symlink_inode_operations;
3775 nd_terminate_link(ei->i_data, inode->i_size,
3776 sizeof(ei->i_data) - 1);
3777 } else {
3778 inode->i_op = &ext4_symlink_inode_operations;
3779 ext4_set_aops(inode);
3780 }
3781 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
3782 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
3783 inode->i_op = &ext4_special_inode_operations;
3784 if (raw_inode->i_block[0])
3785 init_special_inode(inode, inode->i_mode,
3786 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
3787 else
3788 init_special_inode(inode, inode->i_mode,
3789 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
3790 } else {
3791 ret = -EIO;
3792 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
3793 goto bad_inode;
3794 }
3795 brelse(iloc.bh);
3796 ext4_set_inode_flags(inode);
3797 unlock_new_inode(inode);
3798 return inode;
3799
3800 bad_inode:
3801 brelse(iloc.bh);
3802 iget_failed(inode);
3803 return ERR_PTR(ret);
3804 }
3805
3806 static int ext4_inode_blocks_set(handle_t *handle,
3807 struct ext4_inode *raw_inode,
3808 struct ext4_inode_info *ei)
3809 {
3810 struct inode *inode = &(ei->vfs_inode);
3811 u64 i_blocks = inode->i_blocks;
3812 struct super_block *sb = inode->i_sb;
3813
3814 if (i_blocks <= ~0U) {
3815 /*
3816 * i_blocks can be represnted in a 32 bit variable
3817 * as multiple of 512 bytes
3818 */
3819 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
3820 raw_inode->i_blocks_high = 0;
3821 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
3822 return 0;
3823 }
3824 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
3825 return -EFBIG;
3826
3827 if (i_blocks <= 0xffffffffffffULL) {
3828 /*
3829 * i_blocks can be represented in a 48 bit variable
3830 * as multiple of 512 bytes
3831 */
3832 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
3833 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
3834 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
3835 } else {
3836 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
3837 /* i_block is stored in file system block size */
3838 i_blocks = i_blocks >> (inode->i_blkbits - 9);
3839 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
3840 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
3841 }
3842 return 0;
3843 }
3844
3845 /*
3846 * Post the struct inode info into an on-disk inode location in the
3847 * buffer-cache. This gobbles the caller's reference to the
3848 * buffer_head in the inode location struct.
3849 *
3850 * The caller must have write access to iloc->bh.
3851 */
3852 static int ext4_do_update_inode(handle_t *handle,
3853 struct inode *inode,
3854 struct ext4_iloc *iloc)
3855 {
3856 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
3857 struct ext4_inode_info *ei = EXT4_I(inode);
3858 struct buffer_head *bh = iloc->bh;
3859 int err = 0, rc, block;
3860
3861 /* For fields not not tracking in the in-memory inode,
3862 * initialise them to zero for new inodes. */
3863 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
3864 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
3865
3866 ext4_get_inode_flags(ei);
3867 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
3868 if (!(test_opt(inode->i_sb, NO_UID32))) {
3869 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
3870 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
3871 /*
3872 * Fix up interoperability with old kernels. Otherwise, old inodes get
3873 * re-used with the upper 16 bits of the uid/gid intact
3874 */
3875 if (!ei->i_dtime) {
3876 raw_inode->i_uid_high =
3877 cpu_to_le16(high_16_bits(inode->i_uid));
3878 raw_inode->i_gid_high =
3879 cpu_to_le16(high_16_bits(inode->i_gid));
3880 } else {
3881 raw_inode->i_uid_high = 0;
3882 raw_inode->i_gid_high = 0;
3883 }
3884 } else {
3885 raw_inode->i_uid_low =
3886 cpu_to_le16(fs_high2lowuid(inode->i_uid));
3887 raw_inode->i_gid_low =
3888 cpu_to_le16(fs_high2lowgid(inode->i_gid));
3889 raw_inode->i_uid_high = 0;
3890 raw_inode->i_gid_high = 0;
3891 }
3892 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
3893
3894 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
3895 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
3896 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
3897 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
3898
3899 if (ext4_inode_blocks_set(handle, raw_inode, ei))
3900 goto out_brelse;
3901 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
3902 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
3903 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
3904 cpu_to_le32(EXT4_OS_HURD))
3905 raw_inode->i_file_acl_high =
3906 cpu_to_le16(ei->i_file_acl >> 32);
3907 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
3908 ext4_isize_set(raw_inode, ei->i_disksize);
3909 if (ei->i_disksize > 0x7fffffffULL) {
3910 struct super_block *sb = inode->i_sb;
3911 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
3912 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
3913 EXT4_SB(sb)->s_es->s_rev_level ==
3914 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
3915 /* If this is the first large file
3916 * created, add a flag to the superblock.
3917 */
3918 err = ext4_journal_get_write_access(handle,
3919 EXT4_SB(sb)->s_sbh);
3920 if (err)
3921 goto out_brelse;
3922 ext4_update_dynamic_rev(sb);
3923 EXT4_SET_RO_COMPAT_FEATURE(sb,
3924 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
3925 sb->s_dirt = 1;
3926 ext4_handle_sync(handle);
3927 err = ext4_handle_dirty_metadata(handle, NULL,
3928 EXT4_SB(sb)->s_sbh);
3929 }
3930 }
3931 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
3932 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
3933 if (old_valid_dev(inode->i_rdev)) {
3934 raw_inode->i_block[0] =
3935 cpu_to_le32(old_encode_dev(inode->i_rdev));
3936 raw_inode->i_block[1] = 0;
3937 } else {
3938 raw_inode->i_block[0] = 0;
3939 raw_inode->i_block[1] =
3940 cpu_to_le32(new_encode_dev(inode->i_rdev));
3941 raw_inode->i_block[2] = 0;
3942 }
3943 } else
3944 for (block = 0; block < EXT4_N_BLOCKS; block++)
3945 raw_inode->i_block[block] = ei->i_data[block];
3946
3947 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
3948 if (ei->i_extra_isize) {
3949 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
3950 raw_inode->i_version_hi =
3951 cpu_to_le32(inode->i_version >> 32);
3952 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
3953 }
3954
3955 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
3956 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
3957 if (!err)
3958 err = rc;
3959 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
3960
3961 ext4_update_inode_fsync_trans(handle, inode, 0);
3962 out_brelse:
3963 brelse(bh);
3964 ext4_std_error(inode->i_sb, err);
3965 return err;
3966 }
3967
3968 /*
3969 * ext4_write_inode()
3970 *
3971 * We are called from a few places:
3972 *
3973 * - Within generic_file_write() for O_SYNC files.
3974 * Here, there will be no transaction running. We wait for any running
3975 * trasnaction to commit.
3976 *
3977 * - Within sys_sync(), kupdate and such.
3978 * We wait on commit, if tol to.
3979 *
3980 * - Within prune_icache() (PF_MEMALLOC == true)
3981 * Here we simply return. We can't afford to block kswapd on the
3982 * journal commit.
3983 *
3984 * In all cases it is actually safe for us to return without doing anything,
3985 * because the inode has been copied into a raw inode buffer in
3986 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
3987 * knfsd.
3988 *
3989 * Note that we are absolutely dependent upon all inode dirtiers doing the
3990 * right thing: they *must* call mark_inode_dirty() after dirtying info in
3991 * which we are interested.
3992 *
3993 * It would be a bug for them to not do this. The code:
3994 *
3995 * mark_inode_dirty(inode)
3996 * stuff();
3997 * inode->i_size = expr;
3998 *
3999 * is in error because a kswapd-driven write_inode() could occur while
4000 * `stuff()' is running, and the new i_size will be lost. Plus the inode
4001 * will no longer be on the superblock's dirty inode list.
4002 */
4003 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4004 {
4005 int err;
4006
4007 if (current->flags & PF_MEMALLOC)
4008 return 0;
4009
4010 if (EXT4_SB(inode->i_sb)->s_journal) {
4011 if (ext4_journal_current_handle()) {
4012 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4013 dump_stack();
4014 return -EIO;
4015 }
4016
4017 if (wbc->sync_mode != WB_SYNC_ALL)
4018 return 0;
4019
4020 err = ext4_force_commit(inode->i_sb);
4021 } else {
4022 struct ext4_iloc iloc;
4023
4024 err = __ext4_get_inode_loc(inode, &iloc, 0);
4025 if (err)
4026 return err;
4027 if (wbc->sync_mode == WB_SYNC_ALL)
4028 sync_dirty_buffer(iloc.bh);
4029 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4030 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4031 "IO error syncing inode");
4032 err = -EIO;
4033 }
4034 brelse(iloc.bh);
4035 }
4036 return err;
4037 }
4038
4039 /*
4040 * ext4_setattr()
4041 *
4042 * Called from notify_change.
4043 *
4044 * We want to trap VFS attempts to truncate the file as soon as
4045 * possible. In particular, we want to make sure that when the VFS
4046 * shrinks i_size, we put the inode on the orphan list and modify
4047 * i_disksize immediately, so that during the subsequent flushing of
4048 * dirty pages and freeing of disk blocks, we can guarantee that any
4049 * commit will leave the blocks being flushed in an unused state on
4050 * disk. (On recovery, the inode will get truncated and the blocks will
4051 * be freed, so we have a strong guarantee that no future commit will
4052 * leave these blocks visible to the user.)
4053 *
4054 * Another thing we have to assure is that if we are in ordered mode
4055 * and inode is still attached to the committing transaction, we must
4056 * we start writeout of all the dirty pages which are being truncated.
4057 * This way we are sure that all the data written in the previous
4058 * transaction are already on disk (truncate waits for pages under
4059 * writeback).
4060 *
4061 * Called with inode->i_mutex down.
4062 */
4063 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4064 {
4065 struct inode *inode = dentry->d_inode;
4066 int error, rc = 0;
4067 int orphan = 0;
4068 const unsigned int ia_valid = attr->ia_valid;
4069
4070 error = inode_change_ok(inode, attr);
4071 if (error)
4072 return error;
4073
4074 if (is_quota_modification(inode, attr))
4075 dquot_initialize(inode);
4076 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
4077 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
4078 handle_t *handle;
4079
4080 /* (user+group)*(old+new) structure, inode write (sb,
4081 * inode block, ? - but truncate inode update has it) */
4082 handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
4083 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3);
4084 if (IS_ERR(handle)) {
4085 error = PTR_ERR(handle);
4086 goto err_out;
4087 }
4088 error = dquot_transfer(inode, attr);
4089 if (error) {
4090 ext4_journal_stop(handle);
4091 return error;
4092 }
4093 /* Update corresponding info in inode so that everything is in
4094 * one transaction */
4095 if (attr->ia_valid & ATTR_UID)
4096 inode->i_uid = attr->ia_uid;
4097 if (attr->ia_valid & ATTR_GID)
4098 inode->i_gid = attr->ia_gid;
4099 error = ext4_mark_inode_dirty(handle, inode);
4100 ext4_journal_stop(handle);
4101 }
4102
4103 if (attr->ia_valid & ATTR_SIZE) {
4104 inode_dio_wait(inode);
4105
4106 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4107 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4108
4109 if (attr->ia_size > sbi->s_bitmap_maxbytes)
4110 return -EFBIG;
4111 }
4112 }
4113
4114 if (S_ISREG(inode->i_mode) &&
4115 attr->ia_valid & ATTR_SIZE &&
4116 (attr->ia_size < inode->i_size)) {
4117 handle_t *handle;
4118
4119 handle = ext4_journal_start(inode, 3);
4120 if (IS_ERR(handle)) {
4121 error = PTR_ERR(handle);
4122 goto err_out;
4123 }
4124 if (ext4_handle_valid(handle)) {
4125 error = ext4_orphan_add(handle, inode);
4126 orphan = 1;
4127 }
4128 EXT4_I(inode)->i_disksize = attr->ia_size;
4129 rc = ext4_mark_inode_dirty(handle, inode);
4130 if (!error)
4131 error = rc;
4132 ext4_journal_stop(handle);
4133
4134 if (ext4_should_order_data(inode)) {
4135 error = ext4_begin_ordered_truncate(inode,
4136 attr->ia_size);
4137 if (error) {
4138 /* Do as much error cleanup as possible */
4139 handle = ext4_journal_start(inode, 3);
4140 if (IS_ERR(handle)) {
4141 ext4_orphan_del(NULL, inode);
4142 goto err_out;
4143 }
4144 ext4_orphan_del(handle, inode);
4145 orphan = 0;
4146 ext4_journal_stop(handle);
4147 goto err_out;
4148 }
4149 }
4150 }
4151
4152 if (attr->ia_valid & ATTR_SIZE) {
4153 if (attr->ia_size != i_size_read(inode)) {
4154 truncate_setsize(inode, attr->ia_size);
4155 ext4_truncate(inode);
4156 } else if (ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS))
4157 ext4_truncate(inode);
4158 }
4159
4160 if (!rc) {
4161 setattr_copy(inode, attr);
4162 mark_inode_dirty(inode);
4163 }
4164
4165 /*
4166 * If the call to ext4_truncate failed to get a transaction handle at
4167 * all, we need to clean up the in-core orphan list manually.
4168 */
4169 if (orphan && inode->i_nlink)
4170 ext4_orphan_del(NULL, inode);
4171
4172 if (!rc && (ia_valid & ATTR_MODE))
4173 rc = ext4_acl_chmod(inode);
4174
4175 err_out:
4176 ext4_std_error(inode->i_sb, error);
4177 if (!error)
4178 error = rc;
4179 return error;
4180 }
4181
4182 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4183 struct kstat *stat)
4184 {
4185 struct inode *inode;
4186 unsigned long delalloc_blocks;
4187
4188 inode = dentry->d_inode;
4189 generic_fillattr(inode, stat);
4190
4191 /*
4192 * We can't update i_blocks if the block allocation is delayed
4193 * otherwise in the case of system crash before the real block
4194 * allocation is done, we will have i_blocks inconsistent with
4195 * on-disk file blocks.
4196 * We always keep i_blocks updated together with real
4197 * allocation. But to not confuse with user, stat
4198 * will return the blocks that include the delayed allocation
4199 * blocks for this file.
4200 */
4201 delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
4202
4203 stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
4204 return 0;
4205 }
4206
4207 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4208 {
4209 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4210 return ext4_ind_trans_blocks(inode, nrblocks, chunk);
4211 return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
4212 }
4213
4214 /*
4215 * Account for index blocks, block groups bitmaps and block group
4216 * descriptor blocks if modify datablocks and index blocks
4217 * worse case, the indexs blocks spread over different block groups
4218 *
4219 * If datablocks are discontiguous, they are possible to spread over
4220 * different block groups too. If they are contiuguous, with flexbg,
4221 * they could still across block group boundary.
4222 *
4223 * Also account for superblock, inode, quota and xattr blocks
4224 */
4225 static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4226 {
4227 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4228 int gdpblocks;
4229 int idxblocks;
4230 int ret = 0;
4231
4232 /*
4233 * How many index blocks need to touch to modify nrblocks?
4234 * The "Chunk" flag indicating whether the nrblocks is
4235 * physically contiguous on disk
4236 *
4237 * For Direct IO and fallocate, they calls get_block to allocate
4238 * one single extent at a time, so they could set the "Chunk" flag
4239 */
4240 idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4241
4242 ret = idxblocks;
4243
4244 /*
4245 * Now let's see how many group bitmaps and group descriptors need
4246 * to account
4247 */
4248 groups = idxblocks;
4249 if (chunk)
4250 groups += 1;
4251 else
4252 groups += nrblocks;
4253
4254 gdpblocks = groups;
4255 if (groups > ngroups)
4256 groups = ngroups;
4257 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4258 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4259
4260 /* bitmaps and block group descriptor blocks */
4261 ret += groups + gdpblocks;
4262
4263 /* Blocks for super block, inode, quota and xattr blocks */
4264 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4265
4266 return ret;
4267 }
4268
4269 /*
4270 * Calculate the total number of credits to reserve to fit
4271 * the modification of a single pages into a single transaction,
4272 * which may include multiple chunks of block allocations.
4273 *
4274 * This could be called via ext4_write_begin()
4275 *
4276 * We need to consider the worse case, when
4277 * one new block per extent.
4278 */
4279 int ext4_writepage_trans_blocks(struct inode *inode)
4280 {
4281 int bpp = ext4_journal_blocks_per_page(inode);
4282 int ret;
4283
4284 ret = ext4_meta_trans_blocks(inode, bpp, 0);
4285
4286 /* Account for data blocks for journalled mode */
4287 if (ext4_should_journal_data(inode))
4288 ret += bpp;
4289 return ret;
4290 }
4291
4292 /*
4293 * Calculate the journal credits for a chunk of data modification.
4294 *
4295 * This is called from DIO, fallocate or whoever calling
4296 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4297 *
4298 * journal buffers for data blocks are not included here, as DIO
4299 * and fallocate do no need to journal data buffers.
4300 */
4301 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4302 {
4303 return ext4_meta_trans_blocks(inode, nrblocks, 1);
4304 }
4305
4306 /*
4307 * The caller must have previously called ext4_reserve_inode_write().
4308 * Give this, we know that the caller already has write access to iloc->bh.
4309 */
4310 int ext4_mark_iloc_dirty(handle_t *handle,
4311 struct inode *inode, struct ext4_iloc *iloc)
4312 {
4313 int err = 0;
4314
4315 if (test_opt(inode->i_sb, I_VERSION))
4316 inode_inc_iversion(inode);
4317
4318 /* the do_update_inode consumes one bh->b_count */
4319 get_bh(iloc->bh);
4320
4321 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4322 err = ext4_do_update_inode(handle, inode, iloc);
4323 put_bh(iloc->bh);
4324 return err;
4325 }
4326
4327 /*
4328 * On success, We end up with an outstanding reference count against
4329 * iloc->bh. This _must_ be cleaned up later.
4330 */
4331
4332 int
4333 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4334 struct ext4_iloc *iloc)
4335 {
4336 int err;
4337
4338 err = ext4_get_inode_loc(inode, iloc);
4339 if (!err) {
4340 BUFFER_TRACE(iloc->bh, "get_write_access");
4341 err = ext4_journal_get_write_access(handle, iloc->bh);
4342 if (err) {
4343 brelse(iloc->bh);
4344 iloc->bh = NULL;
4345 }
4346 }
4347 ext4_std_error(inode->i_sb, err);
4348 return err;
4349 }
4350
4351 /*
4352 * Expand an inode by new_extra_isize bytes.
4353 * Returns 0 on success or negative error number on failure.
4354 */
4355 static int ext4_expand_extra_isize(struct inode *inode,
4356 unsigned int new_extra_isize,
4357 struct ext4_iloc iloc,
4358 handle_t *handle)
4359 {
4360 struct ext4_inode *raw_inode;
4361 struct ext4_xattr_ibody_header *header;
4362
4363 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4364 return 0;
4365
4366 raw_inode = ext4_raw_inode(&iloc);
4367
4368 header = IHDR(inode, raw_inode);
4369
4370 /* No extended attributes present */
4371 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4372 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4373 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4374 new_extra_isize);
4375 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4376 return 0;
4377 }
4378
4379 /* try to expand with EAs present */
4380 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4381 raw_inode, handle);
4382 }
4383
4384 /*
4385 * What we do here is to mark the in-core inode as clean with respect to inode
4386 * dirtiness (it may still be data-dirty).
4387 * This means that the in-core inode may be reaped by prune_icache
4388 * without having to perform any I/O. This is a very good thing,
4389 * because *any* task may call prune_icache - even ones which
4390 * have a transaction open against a different journal.
4391 *
4392 * Is this cheating? Not really. Sure, we haven't written the
4393 * inode out, but prune_icache isn't a user-visible syncing function.
4394 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4395 * we start and wait on commits.
4396 *
4397 * Is this efficient/effective? Well, we're being nice to the system
4398 * by cleaning up our inodes proactively so they can be reaped
4399 * without I/O. But we are potentially leaving up to five seconds'
4400 * worth of inodes floating about which prune_icache wants us to
4401 * write out. One way to fix that would be to get prune_icache()
4402 * to do a write_super() to free up some memory. It has the desired
4403 * effect.
4404 */
4405 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4406 {
4407 struct ext4_iloc iloc;
4408 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4409 static unsigned int mnt_count;
4410 int err, ret;
4411
4412 might_sleep();
4413 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
4414 err = ext4_reserve_inode_write(handle, inode, &iloc);
4415 if (ext4_handle_valid(handle) &&
4416 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4417 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
4418 /*
4419 * We need extra buffer credits since we may write into EA block
4420 * with this same handle. If journal_extend fails, then it will
4421 * only result in a minor loss of functionality for that inode.
4422 * If this is felt to be critical, then e2fsck should be run to
4423 * force a large enough s_min_extra_isize.
4424 */
4425 if ((jbd2_journal_extend(handle,
4426 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4427 ret = ext4_expand_extra_isize(inode,
4428 sbi->s_want_extra_isize,
4429 iloc, handle);
4430 if (ret) {
4431 ext4_set_inode_state(inode,
4432 EXT4_STATE_NO_EXPAND);
4433 if (mnt_count !=
4434 le16_to_cpu(sbi->s_es->s_mnt_count)) {
4435 ext4_warning(inode->i_sb,
4436 "Unable to expand inode %lu. Delete"
4437 " some EAs or run e2fsck.",
4438 inode->i_ino);
4439 mnt_count =
4440 le16_to_cpu(sbi->s_es->s_mnt_count);
4441 }
4442 }
4443 }
4444 }
4445 if (!err)
4446 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4447 return err;
4448 }
4449
4450 /*
4451 * ext4_dirty_inode() is called from __mark_inode_dirty()
4452 *
4453 * We're really interested in the case where a file is being extended.
4454 * i_size has been changed by generic_commit_write() and we thus need
4455 * to include the updated inode in the current transaction.
4456 *
4457 * Also, dquot_alloc_block() will always dirty the inode when blocks
4458 * are allocated to the file.
4459 *
4460 * If the inode is marked synchronous, we don't honour that here - doing
4461 * so would cause a commit on atime updates, which we don't bother doing.
4462 * We handle synchronous inodes at the highest possible level.
4463 */
4464 void ext4_dirty_inode(struct inode *inode, int flags)
4465 {
4466 handle_t *handle;
4467
4468 handle = ext4_journal_start(inode, 2);
4469 if (IS_ERR(handle))
4470 goto out;
4471
4472 ext4_mark_inode_dirty(handle, inode);
4473
4474 ext4_journal_stop(handle);
4475 out:
4476 return;
4477 }
4478
4479 #if 0
4480 /*
4481 * Bind an inode's backing buffer_head into this transaction, to prevent
4482 * it from being flushed to disk early. Unlike
4483 * ext4_reserve_inode_write, this leaves behind no bh reference and
4484 * returns no iloc structure, so the caller needs to repeat the iloc
4485 * lookup to mark the inode dirty later.
4486 */
4487 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
4488 {
4489 struct ext4_iloc iloc;
4490
4491 int err = 0;
4492 if (handle) {
4493 err = ext4_get_inode_loc(inode, &iloc);
4494 if (!err) {
4495 BUFFER_TRACE(iloc.bh, "get_write_access");
4496 err = jbd2_journal_get_write_access(handle, iloc.bh);
4497 if (!err)
4498 err = ext4_handle_dirty_metadata(handle,
4499 NULL,
4500 iloc.bh);
4501 brelse(iloc.bh);
4502 }
4503 }
4504 ext4_std_error(inode->i_sb, err);
4505 return err;
4506 }
4507 #endif
4508
4509 int ext4_change_inode_journal_flag(struct inode *inode, int val)
4510 {
4511 journal_t *journal;
4512 handle_t *handle;
4513 int err;
4514
4515 /*
4516 * We have to be very careful here: changing a data block's
4517 * journaling status dynamically is dangerous. If we write a
4518 * data block to the journal, change the status and then delete
4519 * that block, we risk forgetting to revoke the old log record
4520 * from the journal and so a subsequent replay can corrupt data.
4521 * So, first we make sure that the journal is empty and that
4522 * nobody is changing anything.
4523 */
4524
4525 journal = EXT4_JOURNAL(inode);
4526 if (!journal)
4527 return 0;
4528 if (is_journal_aborted(journal))
4529 return -EROFS;
4530
4531 jbd2_journal_lock_updates(journal);
4532 jbd2_journal_flush(journal);
4533
4534 /*
4535 * OK, there are no updates running now, and all cached data is
4536 * synced to disk. We are now in a completely consistent state
4537 * which doesn't have anything in the journal, and we know that
4538 * no filesystem updates are running, so it is safe to modify
4539 * the inode's in-core data-journaling state flag now.
4540 */
4541
4542 if (val)
4543 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4544 else
4545 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4546 ext4_set_aops(inode);
4547
4548 jbd2_journal_unlock_updates(journal);
4549
4550 /* Finally we can mark the inode as dirty. */
4551
4552 handle = ext4_journal_start(inode, 1);
4553 if (IS_ERR(handle))
4554 return PTR_ERR(handle);
4555
4556 err = ext4_mark_inode_dirty(handle, inode);
4557 ext4_handle_sync(handle);
4558 ext4_journal_stop(handle);
4559 ext4_std_error(inode->i_sb, err);
4560
4561 return err;
4562 }
4563
4564 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
4565 {
4566 return !buffer_mapped(bh);
4567 }
4568
4569 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
4570 {
4571 struct page *page = vmf->page;
4572 loff_t size;
4573 unsigned long len;
4574 int ret;
4575 struct file *file = vma->vm_file;
4576 struct inode *inode = file->f_path.dentry->d_inode;
4577 struct address_space *mapping = inode->i_mapping;
4578 handle_t *handle;
4579 get_block_t *get_block;
4580 int retries = 0;
4581
4582 /*
4583 * This check is racy but catches the common case. We rely on
4584 * __block_page_mkwrite() to do a reliable check.
4585 */
4586 vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
4587 /* Delalloc case is easy... */
4588 if (test_opt(inode->i_sb, DELALLOC) &&
4589 !ext4_should_journal_data(inode) &&
4590 !ext4_nonda_switch(inode->i_sb)) {
4591 do {
4592 ret = __block_page_mkwrite(vma, vmf,
4593 ext4_da_get_block_prep);
4594 } while (ret == -ENOSPC &&
4595 ext4_should_retry_alloc(inode->i_sb, &retries));
4596 goto out_ret;
4597 }
4598
4599 lock_page(page);
4600 size = i_size_read(inode);
4601 /* Page got truncated from under us? */
4602 if (page->mapping != mapping || page_offset(page) > size) {
4603 unlock_page(page);
4604 ret = VM_FAULT_NOPAGE;
4605 goto out;
4606 }
4607
4608 if (page->index == size >> PAGE_CACHE_SHIFT)
4609 len = size & ~PAGE_CACHE_MASK;
4610 else
4611 len = PAGE_CACHE_SIZE;
4612 /*
4613 * Return if we have all the buffers mapped. This avoids the need to do
4614 * journal_start/journal_stop which can block and take a long time
4615 */
4616 if (page_has_buffers(page)) {
4617 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
4618 ext4_bh_unmapped)) {
4619 /* Wait so that we don't change page under IO */
4620 wait_on_page_writeback(page);
4621 ret = VM_FAULT_LOCKED;
4622 goto out;
4623 }
4624 }
4625 unlock_page(page);
4626 /* OK, we need to fill the hole... */
4627 if (ext4_should_dioread_nolock(inode))
4628 get_block = ext4_get_block_write;
4629 else
4630 get_block = ext4_get_block;
4631 retry_alloc:
4632 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
4633 if (IS_ERR(handle)) {
4634 ret = VM_FAULT_SIGBUS;
4635 goto out;
4636 }
4637 ret = __block_page_mkwrite(vma, vmf, get_block);
4638 if (!ret && ext4_should_journal_data(inode)) {
4639 if (walk_page_buffers(handle, page_buffers(page), 0,
4640 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
4641 unlock_page(page);
4642 ret = VM_FAULT_SIGBUS;
4643 goto out;
4644 }
4645 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
4646 }
4647 ext4_journal_stop(handle);
4648 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
4649 goto retry_alloc;
4650 out_ret:
4651 ret = block_page_mkwrite_return(ret);
4652 out:
4653 return ret;
4654 }