]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - fs/ext4/inode.c
ext4: convert DAX faults to iomap infrastructure
[mirror_ubuntu-zesty-kernel.git] / fs / ext4 / inode.c
1 /*
2 * linux/fs/ext4/inode.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * 64-bit file support on 64-bit platforms by Jakub Jelinek
16 * (jj@sunsite.ms.mff.cuni.cz)
17 *
18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19 */
20
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/highuid.h>
24 #include <linux/pagemap.h>
25 #include <linux/dax.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/bitops.h>
40 #include <linux/iomap.h>
41
42 #include "ext4_jbd2.h"
43 #include "xattr.h"
44 #include "acl.h"
45 #include "truncate.h"
46
47 #include <trace/events/ext4.h>
48
49 #define MPAGE_DA_EXTENT_TAIL 0x01
50
51 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
52 struct ext4_inode_info *ei)
53 {
54 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
55 __u32 csum;
56 __u16 dummy_csum = 0;
57 int offset = offsetof(struct ext4_inode, i_checksum_lo);
58 unsigned int csum_size = sizeof(dummy_csum);
59
60 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
61 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
62 offset += csum_size;
63 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
64 EXT4_GOOD_OLD_INODE_SIZE - offset);
65
66 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
67 offset = offsetof(struct ext4_inode, i_checksum_hi);
68 csum = ext4_chksum(sbi, csum, (__u8 *)raw +
69 EXT4_GOOD_OLD_INODE_SIZE,
70 offset - EXT4_GOOD_OLD_INODE_SIZE);
71 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
72 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
73 csum_size);
74 offset += csum_size;
75 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
76 EXT4_INODE_SIZE(inode->i_sb) -
77 offset);
78 }
79 }
80
81 return csum;
82 }
83
84 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
85 struct ext4_inode_info *ei)
86 {
87 __u32 provided, calculated;
88
89 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
90 cpu_to_le32(EXT4_OS_LINUX) ||
91 !ext4_has_metadata_csum(inode->i_sb))
92 return 1;
93
94 provided = le16_to_cpu(raw->i_checksum_lo);
95 calculated = ext4_inode_csum(inode, raw, ei);
96 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
97 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
98 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
99 else
100 calculated &= 0xFFFF;
101
102 return provided == calculated;
103 }
104
105 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
106 struct ext4_inode_info *ei)
107 {
108 __u32 csum;
109
110 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
111 cpu_to_le32(EXT4_OS_LINUX) ||
112 !ext4_has_metadata_csum(inode->i_sb))
113 return;
114
115 csum = ext4_inode_csum(inode, raw, ei);
116 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
117 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
118 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
119 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
120 }
121
122 static inline int ext4_begin_ordered_truncate(struct inode *inode,
123 loff_t new_size)
124 {
125 trace_ext4_begin_ordered_truncate(inode, new_size);
126 /*
127 * If jinode is zero, then we never opened the file for
128 * writing, so there's no need to call
129 * jbd2_journal_begin_ordered_truncate() since there's no
130 * outstanding writes we need to flush.
131 */
132 if (!EXT4_I(inode)->jinode)
133 return 0;
134 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
135 EXT4_I(inode)->jinode,
136 new_size);
137 }
138
139 static void ext4_invalidatepage(struct page *page, unsigned int offset,
140 unsigned int length);
141 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
142 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
143 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
144 int pextents);
145
146 /*
147 * Test whether an inode is a fast symlink.
148 */
149 int ext4_inode_is_fast_symlink(struct inode *inode)
150 {
151 int ea_blocks = EXT4_I(inode)->i_file_acl ?
152 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
153
154 if (ext4_has_inline_data(inode))
155 return 0;
156
157 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
158 }
159
160 /*
161 * Restart the transaction associated with *handle. This does a commit,
162 * so before we call here everything must be consistently dirtied against
163 * this transaction.
164 */
165 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
166 int nblocks)
167 {
168 int ret;
169
170 /*
171 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
172 * moment, get_block can be called only for blocks inside i_size since
173 * page cache has been already dropped and writes are blocked by
174 * i_mutex. So we can safely drop the i_data_sem here.
175 */
176 BUG_ON(EXT4_JOURNAL(inode) == NULL);
177 jbd_debug(2, "restarting handle %p\n", handle);
178 up_write(&EXT4_I(inode)->i_data_sem);
179 ret = ext4_journal_restart(handle, nblocks);
180 down_write(&EXT4_I(inode)->i_data_sem);
181 ext4_discard_preallocations(inode);
182
183 return ret;
184 }
185
186 /*
187 * Called at the last iput() if i_nlink is zero.
188 */
189 void ext4_evict_inode(struct inode *inode)
190 {
191 handle_t *handle;
192 int err;
193
194 trace_ext4_evict_inode(inode);
195
196 if (inode->i_nlink) {
197 /*
198 * When journalling data dirty buffers are tracked only in the
199 * journal. So although mm thinks everything is clean and
200 * ready for reaping the inode might still have some pages to
201 * write in the running transaction or waiting to be
202 * checkpointed. Thus calling jbd2_journal_invalidatepage()
203 * (via truncate_inode_pages()) to discard these buffers can
204 * cause data loss. Also even if we did not discard these
205 * buffers, we would have no way to find them after the inode
206 * is reaped and thus user could see stale data if he tries to
207 * read them before the transaction is checkpointed. So be
208 * careful and force everything to disk here... We use
209 * ei->i_datasync_tid to store the newest transaction
210 * containing inode's data.
211 *
212 * Note that directories do not have this problem because they
213 * don't use page cache.
214 */
215 if (inode->i_ino != EXT4_JOURNAL_INO &&
216 ext4_should_journal_data(inode) &&
217 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) {
218 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
219 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
220
221 jbd2_complete_transaction(journal, commit_tid);
222 filemap_write_and_wait(&inode->i_data);
223 }
224 truncate_inode_pages_final(&inode->i_data);
225
226 goto no_delete;
227 }
228
229 if (is_bad_inode(inode))
230 goto no_delete;
231 dquot_initialize(inode);
232
233 if (ext4_should_order_data(inode))
234 ext4_begin_ordered_truncate(inode, 0);
235 truncate_inode_pages_final(&inode->i_data);
236
237 /*
238 * Protect us against freezing - iput() caller didn't have to have any
239 * protection against it
240 */
241 sb_start_intwrite(inode->i_sb);
242 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
243 ext4_blocks_for_truncate(inode)+3);
244 if (IS_ERR(handle)) {
245 ext4_std_error(inode->i_sb, PTR_ERR(handle));
246 /*
247 * If we're going to skip the normal cleanup, we still need to
248 * make sure that the in-core orphan linked list is properly
249 * cleaned up.
250 */
251 ext4_orphan_del(NULL, inode);
252 sb_end_intwrite(inode->i_sb);
253 goto no_delete;
254 }
255
256 if (IS_SYNC(inode))
257 ext4_handle_sync(handle);
258 inode->i_size = 0;
259 err = ext4_mark_inode_dirty(handle, inode);
260 if (err) {
261 ext4_warning(inode->i_sb,
262 "couldn't mark inode dirty (err %d)", err);
263 goto stop_handle;
264 }
265 if (inode->i_blocks) {
266 err = ext4_truncate(inode);
267 if (err) {
268 ext4_error(inode->i_sb,
269 "couldn't truncate inode %lu (err %d)",
270 inode->i_ino, err);
271 goto stop_handle;
272 }
273 }
274
275 /*
276 * ext4_ext_truncate() doesn't reserve any slop when it
277 * restarts journal transactions; therefore there may not be
278 * enough credits left in the handle to remove the inode from
279 * the orphan list and set the dtime field.
280 */
281 if (!ext4_handle_has_enough_credits(handle, 3)) {
282 err = ext4_journal_extend(handle, 3);
283 if (err > 0)
284 err = ext4_journal_restart(handle, 3);
285 if (err != 0) {
286 ext4_warning(inode->i_sb,
287 "couldn't extend journal (err %d)", err);
288 stop_handle:
289 ext4_journal_stop(handle);
290 ext4_orphan_del(NULL, inode);
291 sb_end_intwrite(inode->i_sb);
292 goto no_delete;
293 }
294 }
295
296 /*
297 * Kill off the orphan record which ext4_truncate created.
298 * AKPM: I think this can be inside the above `if'.
299 * Note that ext4_orphan_del() has to be able to cope with the
300 * deletion of a non-existent orphan - this is because we don't
301 * know if ext4_truncate() actually created an orphan record.
302 * (Well, we could do this if we need to, but heck - it works)
303 */
304 ext4_orphan_del(handle, inode);
305 EXT4_I(inode)->i_dtime = get_seconds();
306
307 /*
308 * One subtle ordering requirement: if anything has gone wrong
309 * (transaction abort, IO errors, whatever), then we can still
310 * do these next steps (the fs will already have been marked as
311 * having errors), but we can't free the inode if the mark_dirty
312 * fails.
313 */
314 if (ext4_mark_inode_dirty(handle, inode))
315 /* If that failed, just do the required in-core inode clear. */
316 ext4_clear_inode(inode);
317 else
318 ext4_free_inode(handle, inode);
319 ext4_journal_stop(handle);
320 sb_end_intwrite(inode->i_sb);
321 return;
322 no_delete:
323 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
324 }
325
326 #ifdef CONFIG_QUOTA
327 qsize_t *ext4_get_reserved_space(struct inode *inode)
328 {
329 return &EXT4_I(inode)->i_reserved_quota;
330 }
331 #endif
332
333 /*
334 * Called with i_data_sem down, which is important since we can call
335 * ext4_discard_preallocations() from here.
336 */
337 void ext4_da_update_reserve_space(struct inode *inode,
338 int used, int quota_claim)
339 {
340 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
341 struct ext4_inode_info *ei = EXT4_I(inode);
342
343 spin_lock(&ei->i_block_reservation_lock);
344 trace_ext4_da_update_reserve_space(inode, used, quota_claim);
345 if (unlikely(used > ei->i_reserved_data_blocks)) {
346 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
347 "with only %d reserved data blocks",
348 __func__, inode->i_ino, used,
349 ei->i_reserved_data_blocks);
350 WARN_ON(1);
351 used = ei->i_reserved_data_blocks;
352 }
353
354 /* Update per-inode reservations */
355 ei->i_reserved_data_blocks -= used;
356 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
357
358 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
359
360 /* Update quota subsystem for data blocks */
361 if (quota_claim)
362 dquot_claim_block(inode, EXT4_C2B(sbi, used));
363 else {
364 /*
365 * We did fallocate with an offset that is already delayed
366 * allocated. So on delayed allocated writeback we should
367 * not re-claim the quota for fallocated blocks.
368 */
369 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
370 }
371
372 /*
373 * If we have done all the pending block allocations and if
374 * there aren't any writers on the inode, we can discard the
375 * inode's preallocations.
376 */
377 if ((ei->i_reserved_data_blocks == 0) &&
378 (atomic_read(&inode->i_writecount) == 0))
379 ext4_discard_preallocations(inode);
380 }
381
382 static int __check_block_validity(struct inode *inode, const char *func,
383 unsigned int line,
384 struct ext4_map_blocks *map)
385 {
386 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
387 map->m_len)) {
388 ext4_error_inode(inode, func, line, map->m_pblk,
389 "lblock %lu mapped to illegal pblock "
390 "(length %d)", (unsigned long) map->m_lblk,
391 map->m_len);
392 return -EFSCORRUPTED;
393 }
394 return 0;
395 }
396
397 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
398 ext4_lblk_t len)
399 {
400 int ret;
401
402 if (ext4_encrypted_inode(inode))
403 return fscrypt_zeroout_range(inode, lblk, pblk, len);
404
405 ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
406 if (ret > 0)
407 ret = 0;
408
409 return ret;
410 }
411
412 #define check_block_validity(inode, map) \
413 __check_block_validity((inode), __func__, __LINE__, (map))
414
415 #ifdef ES_AGGRESSIVE_TEST
416 static void ext4_map_blocks_es_recheck(handle_t *handle,
417 struct inode *inode,
418 struct ext4_map_blocks *es_map,
419 struct ext4_map_blocks *map,
420 int flags)
421 {
422 int retval;
423
424 map->m_flags = 0;
425 /*
426 * There is a race window that the result is not the same.
427 * e.g. xfstests #223 when dioread_nolock enables. The reason
428 * is that we lookup a block mapping in extent status tree with
429 * out taking i_data_sem. So at the time the unwritten extent
430 * could be converted.
431 */
432 down_read(&EXT4_I(inode)->i_data_sem);
433 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
434 retval = ext4_ext_map_blocks(handle, inode, map, flags &
435 EXT4_GET_BLOCKS_KEEP_SIZE);
436 } else {
437 retval = ext4_ind_map_blocks(handle, inode, map, flags &
438 EXT4_GET_BLOCKS_KEEP_SIZE);
439 }
440 up_read((&EXT4_I(inode)->i_data_sem));
441
442 /*
443 * We don't check m_len because extent will be collpased in status
444 * tree. So the m_len might not equal.
445 */
446 if (es_map->m_lblk != map->m_lblk ||
447 es_map->m_flags != map->m_flags ||
448 es_map->m_pblk != map->m_pblk) {
449 printk("ES cache assertion failed for inode: %lu "
450 "es_cached ex [%d/%d/%llu/%x] != "
451 "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
452 inode->i_ino, es_map->m_lblk, es_map->m_len,
453 es_map->m_pblk, es_map->m_flags, map->m_lblk,
454 map->m_len, map->m_pblk, map->m_flags,
455 retval, flags);
456 }
457 }
458 #endif /* ES_AGGRESSIVE_TEST */
459
460 /*
461 * The ext4_map_blocks() function tries to look up the requested blocks,
462 * and returns if the blocks are already mapped.
463 *
464 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
465 * and store the allocated blocks in the result buffer head and mark it
466 * mapped.
467 *
468 * If file type is extents based, it will call ext4_ext_map_blocks(),
469 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
470 * based files
471 *
472 * On success, it returns the number of blocks being mapped or allocated. if
473 * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
474 * is marked as unwritten. If the create == 1, it will mark @map as mapped.
475 *
476 * It returns 0 if plain look up failed (blocks have not been allocated), in
477 * that case, @map is returned as unmapped but we still do fill map->m_len to
478 * indicate the length of a hole starting at map->m_lblk.
479 *
480 * It returns the error in case of allocation failure.
481 */
482 int ext4_map_blocks(handle_t *handle, struct inode *inode,
483 struct ext4_map_blocks *map, int flags)
484 {
485 struct extent_status es;
486 int retval;
487 int ret = 0;
488 #ifdef ES_AGGRESSIVE_TEST
489 struct ext4_map_blocks orig_map;
490
491 memcpy(&orig_map, map, sizeof(*map));
492 #endif
493
494 map->m_flags = 0;
495 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
496 "logical block %lu\n", inode->i_ino, flags, map->m_len,
497 (unsigned long) map->m_lblk);
498
499 /*
500 * ext4_map_blocks returns an int, and m_len is an unsigned int
501 */
502 if (unlikely(map->m_len > INT_MAX))
503 map->m_len = INT_MAX;
504
505 /* We can handle the block number less than EXT_MAX_BLOCKS */
506 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
507 return -EFSCORRUPTED;
508
509 /* Lookup extent status tree firstly */
510 if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
511 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
512 map->m_pblk = ext4_es_pblock(&es) +
513 map->m_lblk - es.es_lblk;
514 map->m_flags |= ext4_es_is_written(&es) ?
515 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
516 retval = es.es_len - (map->m_lblk - es.es_lblk);
517 if (retval > map->m_len)
518 retval = map->m_len;
519 map->m_len = retval;
520 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
521 map->m_pblk = 0;
522 retval = es.es_len - (map->m_lblk - es.es_lblk);
523 if (retval > map->m_len)
524 retval = map->m_len;
525 map->m_len = retval;
526 retval = 0;
527 } else {
528 BUG_ON(1);
529 }
530 #ifdef ES_AGGRESSIVE_TEST
531 ext4_map_blocks_es_recheck(handle, inode, map,
532 &orig_map, flags);
533 #endif
534 goto found;
535 }
536
537 /*
538 * Try to see if we can get the block without requesting a new
539 * file system block.
540 */
541 down_read(&EXT4_I(inode)->i_data_sem);
542 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
543 retval = ext4_ext_map_blocks(handle, inode, map, flags &
544 EXT4_GET_BLOCKS_KEEP_SIZE);
545 } else {
546 retval = ext4_ind_map_blocks(handle, inode, map, flags &
547 EXT4_GET_BLOCKS_KEEP_SIZE);
548 }
549 if (retval > 0) {
550 unsigned int status;
551
552 if (unlikely(retval != map->m_len)) {
553 ext4_warning(inode->i_sb,
554 "ES len assertion failed for inode "
555 "%lu: retval %d != map->m_len %d",
556 inode->i_ino, retval, map->m_len);
557 WARN_ON(1);
558 }
559
560 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
561 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
562 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
563 !(status & EXTENT_STATUS_WRITTEN) &&
564 ext4_find_delalloc_range(inode, map->m_lblk,
565 map->m_lblk + map->m_len - 1))
566 status |= EXTENT_STATUS_DELAYED;
567 ret = ext4_es_insert_extent(inode, map->m_lblk,
568 map->m_len, map->m_pblk, status);
569 if (ret < 0)
570 retval = ret;
571 }
572 up_read((&EXT4_I(inode)->i_data_sem));
573
574 found:
575 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
576 ret = check_block_validity(inode, map);
577 if (ret != 0)
578 return ret;
579 }
580
581 /* If it is only a block(s) look up */
582 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
583 return retval;
584
585 /*
586 * Returns if the blocks have already allocated
587 *
588 * Note that if blocks have been preallocated
589 * ext4_ext_get_block() returns the create = 0
590 * with buffer head unmapped.
591 */
592 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
593 /*
594 * If we need to convert extent to unwritten
595 * we continue and do the actual work in
596 * ext4_ext_map_blocks()
597 */
598 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
599 return retval;
600
601 /*
602 * Here we clear m_flags because after allocating an new extent,
603 * it will be set again.
604 */
605 map->m_flags &= ~EXT4_MAP_FLAGS;
606
607 /*
608 * New blocks allocate and/or writing to unwritten extent
609 * will possibly result in updating i_data, so we take
610 * the write lock of i_data_sem, and call get_block()
611 * with create == 1 flag.
612 */
613 down_write(&EXT4_I(inode)->i_data_sem);
614
615 /*
616 * We need to check for EXT4 here because migrate
617 * could have changed the inode type in between
618 */
619 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
620 retval = ext4_ext_map_blocks(handle, inode, map, flags);
621 } else {
622 retval = ext4_ind_map_blocks(handle, inode, map, flags);
623
624 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
625 /*
626 * We allocated new blocks which will result in
627 * i_data's format changing. Force the migrate
628 * to fail by clearing migrate flags
629 */
630 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
631 }
632
633 /*
634 * Update reserved blocks/metadata blocks after successful
635 * block allocation which had been deferred till now. We don't
636 * support fallocate for non extent files. So we can update
637 * reserve space here.
638 */
639 if ((retval > 0) &&
640 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
641 ext4_da_update_reserve_space(inode, retval, 1);
642 }
643
644 if (retval > 0) {
645 unsigned int status;
646
647 if (unlikely(retval != map->m_len)) {
648 ext4_warning(inode->i_sb,
649 "ES len assertion failed for inode "
650 "%lu: retval %d != map->m_len %d",
651 inode->i_ino, retval, map->m_len);
652 WARN_ON(1);
653 }
654
655 /*
656 * We have to zeroout blocks before inserting them into extent
657 * status tree. Otherwise someone could look them up there and
658 * use them before they are really zeroed. We also have to
659 * unmap metadata before zeroing as otherwise writeback can
660 * overwrite zeros with stale data from block device.
661 */
662 if (flags & EXT4_GET_BLOCKS_ZERO &&
663 map->m_flags & EXT4_MAP_MAPPED &&
664 map->m_flags & EXT4_MAP_NEW) {
665 ext4_lblk_t i;
666
667 for (i = 0; i < map->m_len; i++) {
668 unmap_underlying_metadata(inode->i_sb->s_bdev,
669 map->m_pblk + i);
670 }
671 ret = ext4_issue_zeroout(inode, map->m_lblk,
672 map->m_pblk, map->m_len);
673 if (ret) {
674 retval = ret;
675 goto out_sem;
676 }
677 }
678
679 /*
680 * If the extent has been zeroed out, we don't need to update
681 * extent status tree.
682 */
683 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
684 ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
685 if (ext4_es_is_written(&es))
686 goto out_sem;
687 }
688 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
689 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
690 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
691 !(status & EXTENT_STATUS_WRITTEN) &&
692 ext4_find_delalloc_range(inode, map->m_lblk,
693 map->m_lblk + map->m_len - 1))
694 status |= EXTENT_STATUS_DELAYED;
695 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
696 map->m_pblk, status);
697 if (ret < 0) {
698 retval = ret;
699 goto out_sem;
700 }
701 }
702
703 out_sem:
704 up_write((&EXT4_I(inode)->i_data_sem));
705 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
706 ret = check_block_validity(inode, map);
707 if (ret != 0)
708 return ret;
709
710 /*
711 * Inodes with freshly allocated blocks where contents will be
712 * visible after transaction commit must be on transaction's
713 * ordered data list.
714 */
715 if (map->m_flags & EXT4_MAP_NEW &&
716 !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
717 !(flags & EXT4_GET_BLOCKS_ZERO) &&
718 !IS_NOQUOTA(inode) &&
719 ext4_should_order_data(inode)) {
720 if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
721 ret = ext4_jbd2_inode_add_wait(handle, inode);
722 else
723 ret = ext4_jbd2_inode_add_write(handle, inode);
724 if (ret)
725 return ret;
726 }
727 }
728 return retval;
729 }
730
731 /*
732 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
733 * we have to be careful as someone else may be manipulating b_state as well.
734 */
735 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
736 {
737 unsigned long old_state;
738 unsigned long new_state;
739
740 flags &= EXT4_MAP_FLAGS;
741
742 /* Dummy buffer_head? Set non-atomically. */
743 if (!bh->b_page) {
744 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
745 return;
746 }
747 /*
748 * Someone else may be modifying b_state. Be careful! This is ugly but
749 * once we get rid of using bh as a container for mapping information
750 * to pass to / from get_block functions, this can go away.
751 */
752 do {
753 old_state = READ_ONCE(bh->b_state);
754 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
755 } while (unlikely(
756 cmpxchg(&bh->b_state, old_state, new_state) != old_state));
757 }
758
759 static int _ext4_get_block(struct inode *inode, sector_t iblock,
760 struct buffer_head *bh, int flags)
761 {
762 struct ext4_map_blocks map;
763 int ret = 0;
764
765 if (ext4_has_inline_data(inode))
766 return -ERANGE;
767
768 map.m_lblk = iblock;
769 map.m_len = bh->b_size >> inode->i_blkbits;
770
771 ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
772 flags);
773 if (ret > 0) {
774 map_bh(bh, inode->i_sb, map.m_pblk);
775 ext4_update_bh_state(bh, map.m_flags);
776 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
777 ret = 0;
778 } else if (ret == 0) {
779 /* hole case, need to fill in bh->b_size */
780 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
781 }
782 return ret;
783 }
784
785 int ext4_get_block(struct inode *inode, sector_t iblock,
786 struct buffer_head *bh, int create)
787 {
788 return _ext4_get_block(inode, iblock, bh,
789 create ? EXT4_GET_BLOCKS_CREATE : 0);
790 }
791
792 /*
793 * Get block function used when preparing for buffered write if we require
794 * creating an unwritten extent if blocks haven't been allocated. The extent
795 * will be converted to written after the IO is complete.
796 */
797 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
798 struct buffer_head *bh_result, int create)
799 {
800 ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
801 inode->i_ino, create);
802 return _ext4_get_block(inode, iblock, bh_result,
803 EXT4_GET_BLOCKS_IO_CREATE_EXT);
804 }
805
806 /* Maximum number of blocks we map for direct IO at once. */
807 #define DIO_MAX_BLOCKS 4096
808
809 /*
810 * Get blocks function for the cases that need to start a transaction -
811 * generally difference cases of direct IO and DAX IO. It also handles retries
812 * in case of ENOSPC.
813 */
814 static int ext4_get_block_trans(struct inode *inode, sector_t iblock,
815 struct buffer_head *bh_result, int flags)
816 {
817 int dio_credits;
818 handle_t *handle;
819 int retries = 0;
820 int ret;
821
822 /* Trim mapping request to maximum we can map at once for DIO */
823 if (bh_result->b_size >> inode->i_blkbits > DIO_MAX_BLOCKS)
824 bh_result->b_size = DIO_MAX_BLOCKS << inode->i_blkbits;
825 dio_credits = ext4_chunk_trans_blocks(inode,
826 bh_result->b_size >> inode->i_blkbits);
827 retry:
828 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
829 if (IS_ERR(handle))
830 return PTR_ERR(handle);
831
832 ret = _ext4_get_block(inode, iblock, bh_result, flags);
833 ext4_journal_stop(handle);
834
835 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
836 goto retry;
837 return ret;
838 }
839
840 /* Get block function for DIO reads and writes to inodes without extents */
841 int ext4_dio_get_block(struct inode *inode, sector_t iblock,
842 struct buffer_head *bh, int create)
843 {
844 /* We don't expect handle for direct IO */
845 WARN_ON_ONCE(ext4_journal_current_handle());
846
847 if (!create)
848 return _ext4_get_block(inode, iblock, bh, 0);
849 return ext4_get_block_trans(inode, iblock, bh, EXT4_GET_BLOCKS_CREATE);
850 }
851
852 /*
853 * Get block function for AIO DIO writes when we create unwritten extent if
854 * blocks are not allocated yet. The extent will be converted to written
855 * after IO is complete.
856 */
857 static int ext4_dio_get_block_unwritten_async(struct inode *inode,
858 sector_t iblock, struct buffer_head *bh_result, int create)
859 {
860 int ret;
861
862 /* We don't expect handle for direct IO */
863 WARN_ON_ONCE(ext4_journal_current_handle());
864
865 ret = ext4_get_block_trans(inode, iblock, bh_result,
866 EXT4_GET_BLOCKS_IO_CREATE_EXT);
867
868 /*
869 * When doing DIO using unwritten extents, we need io_end to convert
870 * unwritten extents to written on IO completion. We allocate io_end
871 * once we spot unwritten extent and store it in b_private. Generic
872 * DIO code keeps b_private set and furthermore passes the value to
873 * our completion callback in 'private' argument.
874 */
875 if (!ret && buffer_unwritten(bh_result)) {
876 if (!bh_result->b_private) {
877 ext4_io_end_t *io_end;
878
879 io_end = ext4_init_io_end(inode, GFP_KERNEL);
880 if (!io_end)
881 return -ENOMEM;
882 bh_result->b_private = io_end;
883 ext4_set_io_unwritten_flag(inode, io_end);
884 }
885 set_buffer_defer_completion(bh_result);
886 }
887
888 return ret;
889 }
890
891 /*
892 * Get block function for non-AIO DIO writes when we create unwritten extent if
893 * blocks are not allocated yet. The extent will be converted to written
894 * after IO is complete from ext4_ext_direct_IO() function.
895 */
896 static int ext4_dio_get_block_unwritten_sync(struct inode *inode,
897 sector_t iblock, struct buffer_head *bh_result, int create)
898 {
899 int ret;
900
901 /* We don't expect handle for direct IO */
902 WARN_ON_ONCE(ext4_journal_current_handle());
903
904 ret = ext4_get_block_trans(inode, iblock, bh_result,
905 EXT4_GET_BLOCKS_IO_CREATE_EXT);
906
907 /*
908 * Mark inode as having pending DIO writes to unwritten extents.
909 * ext4_ext_direct_IO() checks this flag and converts extents to
910 * written.
911 */
912 if (!ret && buffer_unwritten(bh_result))
913 ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
914
915 return ret;
916 }
917
918 static int ext4_dio_get_block_overwrite(struct inode *inode, sector_t iblock,
919 struct buffer_head *bh_result, int create)
920 {
921 int ret;
922
923 ext4_debug("ext4_dio_get_block_overwrite: inode %lu, create flag %d\n",
924 inode->i_ino, create);
925 /* We don't expect handle for direct IO */
926 WARN_ON_ONCE(ext4_journal_current_handle());
927
928 ret = _ext4_get_block(inode, iblock, bh_result, 0);
929 /*
930 * Blocks should have been preallocated! ext4_file_write_iter() checks
931 * that.
932 */
933 WARN_ON_ONCE(!buffer_mapped(bh_result) || buffer_unwritten(bh_result));
934
935 return ret;
936 }
937
938
939 /*
940 * `handle' can be NULL if create is zero
941 */
942 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
943 ext4_lblk_t block, int map_flags)
944 {
945 struct ext4_map_blocks map;
946 struct buffer_head *bh;
947 int create = map_flags & EXT4_GET_BLOCKS_CREATE;
948 int err;
949
950 J_ASSERT(handle != NULL || create == 0);
951
952 map.m_lblk = block;
953 map.m_len = 1;
954 err = ext4_map_blocks(handle, inode, &map, map_flags);
955
956 if (err == 0)
957 return create ? ERR_PTR(-ENOSPC) : NULL;
958 if (err < 0)
959 return ERR_PTR(err);
960
961 bh = sb_getblk(inode->i_sb, map.m_pblk);
962 if (unlikely(!bh))
963 return ERR_PTR(-ENOMEM);
964 if (map.m_flags & EXT4_MAP_NEW) {
965 J_ASSERT(create != 0);
966 J_ASSERT(handle != NULL);
967
968 /*
969 * Now that we do not always journal data, we should
970 * keep in mind whether this should always journal the
971 * new buffer as metadata. For now, regular file
972 * writes use ext4_get_block instead, so it's not a
973 * problem.
974 */
975 lock_buffer(bh);
976 BUFFER_TRACE(bh, "call get_create_access");
977 err = ext4_journal_get_create_access(handle, bh);
978 if (unlikely(err)) {
979 unlock_buffer(bh);
980 goto errout;
981 }
982 if (!buffer_uptodate(bh)) {
983 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
984 set_buffer_uptodate(bh);
985 }
986 unlock_buffer(bh);
987 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
988 err = ext4_handle_dirty_metadata(handle, inode, bh);
989 if (unlikely(err))
990 goto errout;
991 } else
992 BUFFER_TRACE(bh, "not a new buffer");
993 return bh;
994 errout:
995 brelse(bh);
996 return ERR_PTR(err);
997 }
998
999 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1000 ext4_lblk_t block, int map_flags)
1001 {
1002 struct buffer_head *bh;
1003
1004 bh = ext4_getblk(handle, inode, block, map_flags);
1005 if (IS_ERR(bh))
1006 return bh;
1007 if (!bh || buffer_uptodate(bh))
1008 return bh;
1009 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &bh);
1010 wait_on_buffer(bh);
1011 if (buffer_uptodate(bh))
1012 return bh;
1013 put_bh(bh);
1014 return ERR_PTR(-EIO);
1015 }
1016
1017 int ext4_walk_page_buffers(handle_t *handle,
1018 struct buffer_head *head,
1019 unsigned from,
1020 unsigned to,
1021 int *partial,
1022 int (*fn)(handle_t *handle,
1023 struct buffer_head *bh))
1024 {
1025 struct buffer_head *bh;
1026 unsigned block_start, block_end;
1027 unsigned blocksize = head->b_size;
1028 int err, ret = 0;
1029 struct buffer_head *next;
1030
1031 for (bh = head, block_start = 0;
1032 ret == 0 && (bh != head || !block_start);
1033 block_start = block_end, bh = next) {
1034 next = bh->b_this_page;
1035 block_end = block_start + blocksize;
1036 if (block_end <= from || block_start >= to) {
1037 if (partial && !buffer_uptodate(bh))
1038 *partial = 1;
1039 continue;
1040 }
1041 err = (*fn)(handle, bh);
1042 if (!ret)
1043 ret = err;
1044 }
1045 return ret;
1046 }
1047
1048 /*
1049 * To preserve ordering, it is essential that the hole instantiation and
1050 * the data write be encapsulated in a single transaction. We cannot
1051 * close off a transaction and start a new one between the ext4_get_block()
1052 * and the commit_write(). So doing the jbd2_journal_start at the start of
1053 * prepare_write() is the right place.
1054 *
1055 * Also, this function can nest inside ext4_writepage(). In that case, we
1056 * *know* that ext4_writepage() has generated enough buffer credits to do the
1057 * whole page. So we won't block on the journal in that case, which is good,
1058 * because the caller may be PF_MEMALLOC.
1059 *
1060 * By accident, ext4 can be reentered when a transaction is open via
1061 * quota file writes. If we were to commit the transaction while thus
1062 * reentered, there can be a deadlock - we would be holding a quota
1063 * lock, and the commit would never complete if another thread had a
1064 * transaction open and was blocking on the quota lock - a ranking
1065 * violation.
1066 *
1067 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1068 * will _not_ run commit under these circumstances because handle->h_ref
1069 * is elevated. We'll still have enough credits for the tiny quotafile
1070 * write.
1071 */
1072 int do_journal_get_write_access(handle_t *handle,
1073 struct buffer_head *bh)
1074 {
1075 int dirty = buffer_dirty(bh);
1076 int ret;
1077
1078 if (!buffer_mapped(bh) || buffer_freed(bh))
1079 return 0;
1080 /*
1081 * __block_write_begin() could have dirtied some buffers. Clean
1082 * the dirty bit as jbd2_journal_get_write_access() could complain
1083 * otherwise about fs integrity issues. Setting of the dirty bit
1084 * by __block_write_begin() isn't a real problem here as we clear
1085 * the bit before releasing a page lock and thus writeback cannot
1086 * ever write the buffer.
1087 */
1088 if (dirty)
1089 clear_buffer_dirty(bh);
1090 BUFFER_TRACE(bh, "get write access");
1091 ret = ext4_journal_get_write_access(handle, bh);
1092 if (!ret && dirty)
1093 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1094 return ret;
1095 }
1096
1097 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1098 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1099 get_block_t *get_block)
1100 {
1101 unsigned from = pos & (PAGE_SIZE - 1);
1102 unsigned to = from + len;
1103 struct inode *inode = page->mapping->host;
1104 unsigned block_start, block_end;
1105 sector_t block;
1106 int err = 0;
1107 unsigned blocksize = inode->i_sb->s_blocksize;
1108 unsigned bbits;
1109 struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
1110 bool decrypt = false;
1111
1112 BUG_ON(!PageLocked(page));
1113 BUG_ON(from > PAGE_SIZE);
1114 BUG_ON(to > PAGE_SIZE);
1115 BUG_ON(from > to);
1116
1117 if (!page_has_buffers(page))
1118 create_empty_buffers(page, blocksize, 0);
1119 head = page_buffers(page);
1120 bbits = ilog2(blocksize);
1121 block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1122
1123 for (bh = head, block_start = 0; bh != head || !block_start;
1124 block++, block_start = block_end, bh = bh->b_this_page) {
1125 block_end = block_start + blocksize;
1126 if (block_end <= from || block_start >= to) {
1127 if (PageUptodate(page)) {
1128 if (!buffer_uptodate(bh))
1129 set_buffer_uptodate(bh);
1130 }
1131 continue;
1132 }
1133 if (buffer_new(bh))
1134 clear_buffer_new(bh);
1135 if (!buffer_mapped(bh)) {
1136 WARN_ON(bh->b_size != blocksize);
1137 err = get_block(inode, block, bh, 1);
1138 if (err)
1139 break;
1140 if (buffer_new(bh)) {
1141 unmap_underlying_metadata(bh->b_bdev,
1142 bh->b_blocknr);
1143 if (PageUptodate(page)) {
1144 clear_buffer_new(bh);
1145 set_buffer_uptodate(bh);
1146 mark_buffer_dirty(bh);
1147 continue;
1148 }
1149 if (block_end > to || block_start < from)
1150 zero_user_segments(page, to, block_end,
1151 block_start, from);
1152 continue;
1153 }
1154 }
1155 if (PageUptodate(page)) {
1156 if (!buffer_uptodate(bh))
1157 set_buffer_uptodate(bh);
1158 continue;
1159 }
1160 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1161 !buffer_unwritten(bh) &&
1162 (block_start < from || block_end > to)) {
1163 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1164 *wait_bh++ = bh;
1165 decrypt = ext4_encrypted_inode(inode) &&
1166 S_ISREG(inode->i_mode);
1167 }
1168 }
1169 /*
1170 * If we issued read requests, let them complete.
1171 */
1172 while (wait_bh > wait) {
1173 wait_on_buffer(*--wait_bh);
1174 if (!buffer_uptodate(*wait_bh))
1175 err = -EIO;
1176 }
1177 if (unlikely(err))
1178 page_zero_new_buffers(page, from, to);
1179 else if (decrypt)
1180 err = fscrypt_decrypt_page(page->mapping->host, page,
1181 PAGE_SIZE, 0, page->index);
1182 return err;
1183 }
1184 #endif
1185
1186 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1187 loff_t pos, unsigned len, unsigned flags,
1188 struct page **pagep, void **fsdata)
1189 {
1190 struct inode *inode = mapping->host;
1191 int ret, needed_blocks;
1192 handle_t *handle;
1193 int retries = 0;
1194 struct page *page;
1195 pgoff_t index;
1196 unsigned from, to;
1197
1198 trace_ext4_write_begin(inode, pos, len, flags);
1199 /*
1200 * Reserve one block more for addition to orphan list in case
1201 * we allocate blocks but write fails for some reason
1202 */
1203 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1204 index = pos >> PAGE_SHIFT;
1205 from = pos & (PAGE_SIZE - 1);
1206 to = from + len;
1207
1208 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1209 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1210 flags, pagep);
1211 if (ret < 0)
1212 return ret;
1213 if (ret == 1)
1214 return 0;
1215 }
1216
1217 /*
1218 * grab_cache_page_write_begin() can take a long time if the
1219 * system is thrashing due to memory pressure, or if the page
1220 * is being written back. So grab it first before we start
1221 * the transaction handle. This also allows us to allocate
1222 * the page (if needed) without using GFP_NOFS.
1223 */
1224 retry_grab:
1225 page = grab_cache_page_write_begin(mapping, index, flags);
1226 if (!page)
1227 return -ENOMEM;
1228 unlock_page(page);
1229
1230 retry_journal:
1231 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1232 if (IS_ERR(handle)) {
1233 put_page(page);
1234 return PTR_ERR(handle);
1235 }
1236
1237 lock_page(page);
1238 if (page->mapping != mapping) {
1239 /* The page got truncated from under us */
1240 unlock_page(page);
1241 put_page(page);
1242 ext4_journal_stop(handle);
1243 goto retry_grab;
1244 }
1245 /* In case writeback began while the page was unlocked */
1246 wait_for_stable_page(page);
1247
1248 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1249 if (ext4_should_dioread_nolock(inode))
1250 ret = ext4_block_write_begin(page, pos, len,
1251 ext4_get_block_unwritten);
1252 else
1253 ret = ext4_block_write_begin(page, pos, len,
1254 ext4_get_block);
1255 #else
1256 if (ext4_should_dioread_nolock(inode))
1257 ret = __block_write_begin(page, pos, len,
1258 ext4_get_block_unwritten);
1259 else
1260 ret = __block_write_begin(page, pos, len, ext4_get_block);
1261 #endif
1262 if (!ret && ext4_should_journal_data(inode)) {
1263 ret = ext4_walk_page_buffers(handle, page_buffers(page),
1264 from, to, NULL,
1265 do_journal_get_write_access);
1266 }
1267
1268 if (ret) {
1269 unlock_page(page);
1270 /*
1271 * __block_write_begin may have instantiated a few blocks
1272 * outside i_size. Trim these off again. Don't need
1273 * i_size_read because we hold i_mutex.
1274 *
1275 * Add inode to orphan list in case we crash before
1276 * truncate finishes
1277 */
1278 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1279 ext4_orphan_add(handle, inode);
1280
1281 ext4_journal_stop(handle);
1282 if (pos + len > inode->i_size) {
1283 ext4_truncate_failed_write(inode);
1284 /*
1285 * If truncate failed early the inode might
1286 * still be on the orphan list; we need to
1287 * make sure the inode is removed from the
1288 * orphan list in that case.
1289 */
1290 if (inode->i_nlink)
1291 ext4_orphan_del(NULL, inode);
1292 }
1293
1294 if (ret == -ENOSPC &&
1295 ext4_should_retry_alloc(inode->i_sb, &retries))
1296 goto retry_journal;
1297 put_page(page);
1298 return ret;
1299 }
1300 *pagep = page;
1301 return ret;
1302 }
1303
1304 /* For write_end() in data=journal mode */
1305 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1306 {
1307 int ret;
1308 if (!buffer_mapped(bh) || buffer_freed(bh))
1309 return 0;
1310 set_buffer_uptodate(bh);
1311 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1312 clear_buffer_meta(bh);
1313 clear_buffer_prio(bh);
1314 return ret;
1315 }
1316
1317 /*
1318 * We need to pick up the new inode size which generic_commit_write gave us
1319 * `file' can be NULL - eg, when called from page_symlink().
1320 *
1321 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1322 * buffers are managed internally.
1323 */
1324 static int ext4_write_end(struct file *file,
1325 struct address_space *mapping,
1326 loff_t pos, unsigned len, unsigned copied,
1327 struct page *page, void *fsdata)
1328 {
1329 handle_t *handle = ext4_journal_current_handle();
1330 struct inode *inode = mapping->host;
1331 loff_t old_size = inode->i_size;
1332 int ret = 0, ret2;
1333 int i_size_changed = 0;
1334
1335 trace_ext4_write_end(inode, pos, len, copied);
1336 if (ext4_has_inline_data(inode)) {
1337 ret = ext4_write_inline_data_end(inode, pos, len,
1338 copied, page);
1339 if (ret < 0)
1340 goto errout;
1341 copied = ret;
1342 } else
1343 copied = block_write_end(file, mapping, pos,
1344 len, copied, page, fsdata);
1345 /*
1346 * it's important to update i_size while still holding page lock:
1347 * page writeout could otherwise come in and zero beyond i_size.
1348 */
1349 i_size_changed = ext4_update_inode_size(inode, pos + copied);
1350 unlock_page(page);
1351 put_page(page);
1352
1353 if (old_size < pos)
1354 pagecache_isize_extended(inode, old_size, pos);
1355 /*
1356 * Don't mark the inode dirty under page lock. First, it unnecessarily
1357 * makes the holding time of page lock longer. Second, it forces lock
1358 * ordering of page lock and transaction start for journaling
1359 * filesystems.
1360 */
1361 if (i_size_changed)
1362 ext4_mark_inode_dirty(handle, inode);
1363
1364 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1365 /* if we have allocated more blocks and copied
1366 * less. We will have blocks allocated outside
1367 * inode->i_size. So truncate them
1368 */
1369 ext4_orphan_add(handle, inode);
1370 errout:
1371 ret2 = ext4_journal_stop(handle);
1372 if (!ret)
1373 ret = ret2;
1374
1375 if (pos + len > inode->i_size) {
1376 ext4_truncate_failed_write(inode);
1377 /*
1378 * If truncate failed early the inode might still be
1379 * on the orphan list; we need to make sure the inode
1380 * is removed from the orphan list in that case.
1381 */
1382 if (inode->i_nlink)
1383 ext4_orphan_del(NULL, inode);
1384 }
1385
1386 return ret ? ret : copied;
1387 }
1388
1389 /*
1390 * This is a private version of page_zero_new_buffers() which doesn't
1391 * set the buffer to be dirty, since in data=journalled mode we need
1392 * to call ext4_handle_dirty_metadata() instead.
1393 */
1394 static void zero_new_buffers(struct page *page, unsigned from, unsigned to)
1395 {
1396 unsigned int block_start = 0, block_end;
1397 struct buffer_head *head, *bh;
1398
1399 bh = head = page_buffers(page);
1400 do {
1401 block_end = block_start + bh->b_size;
1402 if (buffer_new(bh)) {
1403 if (block_end > from && block_start < to) {
1404 if (!PageUptodate(page)) {
1405 unsigned start, size;
1406
1407 start = max(from, block_start);
1408 size = min(to, block_end) - start;
1409
1410 zero_user(page, start, size);
1411 set_buffer_uptodate(bh);
1412 }
1413 clear_buffer_new(bh);
1414 }
1415 }
1416 block_start = block_end;
1417 bh = bh->b_this_page;
1418 } while (bh != head);
1419 }
1420
1421 static int ext4_journalled_write_end(struct file *file,
1422 struct address_space *mapping,
1423 loff_t pos, unsigned len, unsigned copied,
1424 struct page *page, void *fsdata)
1425 {
1426 handle_t *handle = ext4_journal_current_handle();
1427 struct inode *inode = mapping->host;
1428 loff_t old_size = inode->i_size;
1429 int ret = 0, ret2;
1430 int partial = 0;
1431 unsigned from, to;
1432 int size_changed = 0;
1433
1434 trace_ext4_journalled_write_end(inode, pos, len, copied);
1435 from = pos & (PAGE_SIZE - 1);
1436 to = from + len;
1437
1438 BUG_ON(!ext4_handle_valid(handle));
1439
1440 if (ext4_has_inline_data(inode))
1441 copied = ext4_write_inline_data_end(inode, pos, len,
1442 copied, page);
1443 else {
1444 if (copied < len) {
1445 if (!PageUptodate(page))
1446 copied = 0;
1447 zero_new_buffers(page, from+copied, to);
1448 }
1449
1450 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1451 to, &partial, write_end_fn);
1452 if (!partial)
1453 SetPageUptodate(page);
1454 }
1455 size_changed = ext4_update_inode_size(inode, pos + copied);
1456 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1457 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1458 unlock_page(page);
1459 put_page(page);
1460
1461 if (old_size < pos)
1462 pagecache_isize_extended(inode, old_size, pos);
1463
1464 if (size_changed) {
1465 ret2 = ext4_mark_inode_dirty(handle, inode);
1466 if (!ret)
1467 ret = ret2;
1468 }
1469
1470 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1471 /* if we have allocated more blocks and copied
1472 * less. We will have blocks allocated outside
1473 * inode->i_size. So truncate them
1474 */
1475 ext4_orphan_add(handle, inode);
1476
1477 ret2 = ext4_journal_stop(handle);
1478 if (!ret)
1479 ret = ret2;
1480 if (pos + len > inode->i_size) {
1481 ext4_truncate_failed_write(inode);
1482 /*
1483 * If truncate failed early the inode might still be
1484 * on the orphan list; we need to make sure the inode
1485 * is removed from the orphan list in that case.
1486 */
1487 if (inode->i_nlink)
1488 ext4_orphan_del(NULL, inode);
1489 }
1490
1491 return ret ? ret : copied;
1492 }
1493
1494 /*
1495 * Reserve space for a single cluster
1496 */
1497 static int ext4_da_reserve_space(struct inode *inode)
1498 {
1499 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1500 struct ext4_inode_info *ei = EXT4_I(inode);
1501 int ret;
1502
1503 /*
1504 * We will charge metadata quota at writeout time; this saves
1505 * us from metadata over-estimation, though we may go over by
1506 * a small amount in the end. Here we just reserve for data.
1507 */
1508 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1509 if (ret)
1510 return ret;
1511
1512 spin_lock(&ei->i_block_reservation_lock);
1513 if (ext4_claim_free_clusters(sbi, 1, 0)) {
1514 spin_unlock(&ei->i_block_reservation_lock);
1515 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1516 return -ENOSPC;
1517 }
1518 ei->i_reserved_data_blocks++;
1519 trace_ext4_da_reserve_space(inode);
1520 spin_unlock(&ei->i_block_reservation_lock);
1521
1522 return 0; /* success */
1523 }
1524
1525 static void ext4_da_release_space(struct inode *inode, int to_free)
1526 {
1527 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1528 struct ext4_inode_info *ei = EXT4_I(inode);
1529
1530 if (!to_free)
1531 return; /* Nothing to release, exit */
1532
1533 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1534
1535 trace_ext4_da_release_space(inode, to_free);
1536 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1537 /*
1538 * if there aren't enough reserved blocks, then the
1539 * counter is messed up somewhere. Since this
1540 * function is called from invalidate page, it's
1541 * harmless to return without any action.
1542 */
1543 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1544 "ino %lu, to_free %d with only %d reserved "
1545 "data blocks", inode->i_ino, to_free,
1546 ei->i_reserved_data_blocks);
1547 WARN_ON(1);
1548 to_free = ei->i_reserved_data_blocks;
1549 }
1550 ei->i_reserved_data_blocks -= to_free;
1551
1552 /* update fs dirty data blocks counter */
1553 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1554
1555 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1556
1557 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1558 }
1559
1560 static void ext4_da_page_release_reservation(struct page *page,
1561 unsigned int offset,
1562 unsigned int length)
1563 {
1564 int to_release = 0, contiguous_blks = 0;
1565 struct buffer_head *head, *bh;
1566 unsigned int curr_off = 0;
1567 struct inode *inode = page->mapping->host;
1568 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1569 unsigned int stop = offset + length;
1570 int num_clusters;
1571 ext4_fsblk_t lblk;
1572
1573 BUG_ON(stop > PAGE_SIZE || stop < length);
1574
1575 head = page_buffers(page);
1576 bh = head;
1577 do {
1578 unsigned int next_off = curr_off + bh->b_size;
1579
1580 if (next_off > stop)
1581 break;
1582
1583 if ((offset <= curr_off) && (buffer_delay(bh))) {
1584 to_release++;
1585 contiguous_blks++;
1586 clear_buffer_delay(bh);
1587 } else if (contiguous_blks) {
1588 lblk = page->index <<
1589 (PAGE_SHIFT - inode->i_blkbits);
1590 lblk += (curr_off >> inode->i_blkbits) -
1591 contiguous_blks;
1592 ext4_es_remove_extent(inode, lblk, contiguous_blks);
1593 contiguous_blks = 0;
1594 }
1595 curr_off = next_off;
1596 } while ((bh = bh->b_this_page) != head);
1597
1598 if (contiguous_blks) {
1599 lblk = page->index << (PAGE_SHIFT - inode->i_blkbits);
1600 lblk += (curr_off >> inode->i_blkbits) - contiguous_blks;
1601 ext4_es_remove_extent(inode, lblk, contiguous_blks);
1602 }
1603
1604 /* If we have released all the blocks belonging to a cluster, then we
1605 * need to release the reserved space for that cluster. */
1606 num_clusters = EXT4_NUM_B2C(sbi, to_release);
1607 while (num_clusters > 0) {
1608 lblk = (page->index << (PAGE_SHIFT - inode->i_blkbits)) +
1609 ((num_clusters - 1) << sbi->s_cluster_bits);
1610 if (sbi->s_cluster_ratio == 1 ||
1611 !ext4_find_delalloc_cluster(inode, lblk))
1612 ext4_da_release_space(inode, 1);
1613
1614 num_clusters--;
1615 }
1616 }
1617
1618 /*
1619 * Delayed allocation stuff
1620 */
1621
1622 struct mpage_da_data {
1623 struct inode *inode;
1624 struct writeback_control *wbc;
1625
1626 pgoff_t first_page; /* The first page to write */
1627 pgoff_t next_page; /* Current page to examine */
1628 pgoff_t last_page; /* Last page to examine */
1629 /*
1630 * Extent to map - this can be after first_page because that can be
1631 * fully mapped. We somewhat abuse m_flags to store whether the extent
1632 * is delalloc or unwritten.
1633 */
1634 struct ext4_map_blocks map;
1635 struct ext4_io_submit io_submit; /* IO submission data */
1636 };
1637
1638 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1639 bool invalidate)
1640 {
1641 int nr_pages, i;
1642 pgoff_t index, end;
1643 struct pagevec pvec;
1644 struct inode *inode = mpd->inode;
1645 struct address_space *mapping = inode->i_mapping;
1646
1647 /* This is necessary when next_page == 0. */
1648 if (mpd->first_page >= mpd->next_page)
1649 return;
1650
1651 index = mpd->first_page;
1652 end = mpd->next_page - 1;
1653 if (invalidate) {
1654 ext4_lblk_t start, last;
1655 start = index << (PAGE_SHIFT - inode->i_blkbits);
1656 last = end << (PAGE_SHIFT - inode->i_blkbits);
1657 ext4_es_remove_extent(inode, start, last - start + 1);
1658 }
1659
1660 pagevec_init(&pvec, 0);
1661 while (index <= end) {
1662 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1663 if (nr_pages == 0)
1664 break;
1665 for (i = 0; i < nr_pages; i++) {
1666 struct page *page = pvec.pages[i];
1667 if (page->index > end)
1668 break;
1669 BUG_ON(!PageLocked(page));
1670 BUG_ON(PageWriteback(page));
1671 if (invalidate) {
1672 if (page_mapped(page))
1673 clear_page_dirty_for_io(page);
1674 block_invalidatepage(page, 0, PAGE_SIZE);
1675 ClearPageUptodate(page);
1676 }
1677 unlock_page(page);
1678 }
1679 index = pvec.pages[nr_pages - 1]->index + 1;
1680 pagevec_release(&pvec);
1681 }
1682 }
1683
1684 static void ext4_print_free_blocks(struct inode *inode)
1685 {
1686 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1687 struct super_block *sb = inode->i_sb;
1688 struct ext4_inode_info *ei = EXT4_I(inode);
1689
1690 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1691 EXT4_C2B(EXT4_SB(inode->i_sb),
1692 ext4_count_free_clusters(sb)));
1693 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1694 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1695 (long long) EXT4_C2B(EXT4_SB(sb),
1696 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1697 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1698 (long long) EXT4_C2B(EXT4_SB(sb),
1699 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1700 ext4_msg(sb, KERN_CRIT, "Block reservation details");
1701 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1702 ei->i_reserved_data_blocks);
1703 return;
1704 }
1705
1706 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1707 {
1708 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1709 }
1710
1711 /*
1712 * This function is grabs code from the very beginning of
1713 * ext4_map_blocks, but assumes that the caller is from delayed write
1714 * time. This function looks up the requested blocks and sets the
1715 * buffer delay bit under the protection of i_data_sem.
1716 */
1717 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1718 struct ext4_map_blocks *map,
1719 struct buffer_head *bh)
1720 {
1721 struct extent_status es;
1722 int retval;
1723 sector_t invalid_block = ~((sector_t) 0xffff);
1724 #ifdef ES_AGGRESSIVE_TEST
1725 struct ext4_map_blocks orig_map;
1726
1727 memcpy(&orig_map, map, sizeof(*map));
1728 #endif
1729
1730 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1731 invalid_block = ~0;
1732
1733 map->m_flags = 0;
1734 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1735 "logical block %lu\n", inode->i_ino, map->m_len,
1736 (unsigned long) map->m_lblk);
1737
1738 /* Lookup extent status tree firstly */
1739 if (ext4_es_lookup_extent(inode, iblock, &es)) {
1740 if (ext4_es_is_hole(&es)) {
1741 retval = 0;
1742 down_read(&EXT4_I(inode)->i_data_sem);
1743 goto add_delayed;
1744 }
1745
1746 /*
1747 * Delayed extent could be allocated by fallocate.
1748 * So we need to check it.
1749 */
1750 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1751 map_bh(bh, inode->i_sb, invalid_block);
1752 set_buffer_new(bh);
1753 set_buffer_delay(bh);
1754 return 0;
1755 }
1756
1757 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1758 retval = es.es_len - (iblock - es.es_lblk);
1759 if (retval > map->m_len)
1760 retval = map->m_len;
1761 map->m_len = retval;
1762 if (ext4_es_is_written(&es))
1763 map->m_flags |= EXT4_MAP_MAPPED;
1764 else if (ext4_es_is_unwritten(&es))
1765 map->m_flags |= EXT4_MAP_UNWRITTEN;
1766 else
1767 BUG_ON(1);
1768
1769 #ifdef ES_AGGRESSIVE_TEST
1770 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1771 #endif
1772 return retval;
1773 }
1774
1775 /*
1776 * Try to see if we can get the block without requesting a new
1777 * file system block.
1778 */
1779 down_read(&EXT4_I(inode)->i_data_sem);
1780 if (ext4_has_inline_data(inode))
1781 retval = 0;
1782 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1783 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1784 else
1785 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1786
1787 add_delayed:
1788 if (retval == 0) {
1789 int ret;
1790 /*
1791 * XXX: __block_prepare_write() unmaps passed block,
1792 * is it OK?
1793 */
1794 /*
1795 * If the block was allocated from previously allocated cluster,
1796 * then we don't need to reserve it again. However we still need
1797 * to reserve metadata for every block we're going to write.
1798 */
1799 if (EXT4_SB(inode->i_sb)->s_cluster_ratio == 1 ||
1800 !ext4_find_delalloc_cluster(inode, map->m_lblk)) {
1801 ret = ext4_da_reserve_space(inode);
1802 if (ret) {
1803 /* not enough space to reserve */
1804 retval = ret;
1805 goto out_unlock;
1806 }
1807 }
1808
1809 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1810 ~0, EXTENT_STATUS_DELAYED);
1811 if (ret) {
1812 retval = ret;
1813 goto out_unlock;
1814 }
1815
1816 map_bh(bh, inode->i_sb, invalid_block);
1817 set_buffer_new(bh);
1818 set_buffer_delay(bh);
1819 } else if (retval > 0) {
1820 int ret;
1821 unsigned int status;
1822
1823 if (unlikely(retval != map->m_len)) {
1824 ext4_warning(inode->i_sb,
1825 "ES len assertion failed for inode "
1826 "%lu: retval %d != map->m_len %d",
1827 inode->i_ino, retval, map->m_len);
1828 WARN_ON(1);
1829 }
1830
1831 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1832 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1833 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1834 map->m_pblk, status);
1835 if (ret != 0)
1836 retval = ret;
1837 }
1838
1839 out_unlock:
1840 up_read((&EXT4_I(inode)->i_data_sem));
1841
1842 return retval;
1843 }
1844
1845 /*
1846 * This is a special get_block_t callback which is used by
1847 * ext4_da_write_begin(). It will either return mapped block or
1848 * reserve space for a single block.
1849 *
1850 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1851 * We also have b_blocknr = -1 and b_bdev initialized properly
1852 *
1853 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1854 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1855 * initialized properly.
1856 */
1857 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1858 struct buffer_head *bh, int create)
1859 {
1860 struct ext4_map_blocks map;
1861 int ret = 0;
1862
1863 BUG_ON(create == 0);
1864 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1865
1866 map.m_lblk = iblock;
1867 map.m_len = 1;
1868
1869 /*
1870 * first, we need to know whether the block is allocated already
1871 * preallocated blocks are unmapped but should treated
1872 * the same as allocated blocks.
1873 */
1874 ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1875 if (ret <= 0)
1876 return ret;
1877
1878 map_bh(bh, inode->i_sb, map.m_pblk);
1879 ext4_update_bh_state(bh, map.m_flags);
1880
1881 if (buffer_unwritten(bh)) {
1882 /* A delayed write to unwritten bh should be marked
1883 * new and mapped. Mapped ensures that we don't do
1884 * get_block multiple times when we write to the same
1885 * offset and new ensures that we do proper zero out
1886 * for partial write.
1887 */
1888 set_buffer_new(bh);
1889 set_buffer_mapped(bh);
1890 }
1891 return 0;
1892 }
1893
1894 static int bget_one(handle_t *handle, struct buffer_head *bh)
1895 {
1896 get_bh(bh);
1897 return 0;
1898 }
1899
1900 static int bput_one(handle_t *handle, struct buffer_head *bh)
1901 {
1902 put_bh(bh);
1903 return 0;
1904 }
1905
1906 static int __ext4_journalled_writepage(struct page *page,
1907 unsigned int len)
1908 {
1909 struct address_space *mapping = page->mapping;
1910 struct inode *inode = mapping->host;
1911 struct buffer_head *page_bufs = NULL;
1912 handle_t *handle = NULL;
1913 int ret = 0, err = 0;
1914 int inline_data = ext4_has_inline_data(inode);
1915 struct buffer_head *inode_bh = NULL;
1916
1917 ClearPageChecked(page);
1918
1919 if (inline_data) {
1920 BUG_ON(page->index != 0);
1921 BUG_ON(len > ext4_get_max_inline_size(inode));
1922 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1923 if (inode_bh == NULL)
1924 goto out;
1925 } else {
1926 page_bufs = page_buffers(page);
1927 if (!page_bufs) {
1928 BUG();
1929 goto out;
1930 }
1931 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1932 NULL, bget_one);
1933 }
1934 /*
1935 * We need to release the page lock before we start the
1936 * journal, so grab a reference so the page won't disappear
1937 * out from under us.
1938 */
1939 get_page(page);
1940 unlock_page(page);
1941
1942 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1943 ext4_writepage_trans_blocks(inode));
1944 if (IS_ERR(handle)) {
1945 ret = PTR_ERR(handle);
1946 put_page(page);
1947 goto out_no_pagelock;
1948 }
1949 BUG_ON(!ext4_handle_valid(handle));
1950
1951 lock_page(page);
1952 put_page(page);
1953 if (page->mapping != mapping) {
1954 /* The page got truncated from under us */
1955 ext4_journal_stop(handle);
1956 ret = 0;
1957 goto out;
1958 }
1959
1960 if (inline_data) {
1961 BUFFER_TRACE(inode_bh, "get write access");
1962 ret = ext4_journal_get_write_access(handle, inode_bh);
1963
1964 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1965
1966 } else {
1967 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1968 do_journal_get_write_access);
1969
1970 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1971 write_end_fn);
1972 }
1973 if (ret == 0)
1974 ret = err;
1975 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1976 err = ext4_journal_stop(handle);
1977 if (!ret)
1978 ret = err;
1979
1980 if (!ext4_has_inline_data(inode))
1981 ext4_walk_page_buffers(NULL, page_bufs, 0, len,
1982 NULL, bput_one);
1983 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1984 out:
1985 unlock_page(page);
1986 out_no_pagelock:
1987 brelse(inode_bh);
1988 return ret;
1989 }
1990
1991 /*
1992 * Note that we don't need to start a transaction unless we're journaling data
1993 * because we should have holes filled from ext4_page_mkwrite(). We even don't
1994 * need to file the inode to the transaction's list in ordered mode because if
1995 * we are writing back data added by write(), the inode is already there and if
1996 * we are writing back data modified via mmap(), no one guarantees in which
1997 * transaction the data will hit the disk. In case we are journaling data, we
1998 * cannot start transaction directly because transaction start ranks above page
1999 * lock so we have to do some magic.
2000 *
2001 * This function can get called via...
2002 * - ext4_writepages after taking page lock (have journal handle)
2003 * - journal_submit_inode_data_buffers (no journal handle)
2004 * - shrink_page_list via the kswapd/direct reclaim (no journal handle)
2005 * - grab_page_cache when doing write_begin (have journal handle)
2006 *
2007 * We don't do any block allocation in this function. If we have page with
2008 * multiple blocks we need to write those buffer_heads that are mapped. This
2009 * is important for mmaped based write. So if we do with blocksize 1K
2010 * truncate(f, 1024);
2011 * a = mmap(f, 0, 4096);
2012 * a[0] = 'a';
2013 * truncate(f, 4096);
2014 * we have in the page first buffer_head mapped via page_mkwrite call back
2015 * but other buffer_heads would be unmapped but dirty (dirty done via the
2016 * do_wp_page). So writepage should write the first block. If we modify
2017 * the mmap area beyond 1024 we will again get a page_fault and the
2018 * page_mkwrite callback will do the block allocation and mark the
2019 * buffer_heads mapped.
2020 *
2021 * We redirty the page if we have any buffer_heads that is either delay or
2022 * unwritten in the page.
2023 *
2024 * We can get recursively called as show below.
2025 *
2026 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2027 * ext4_writepage()
2028 *
2029 * But since we don't do any block allocation we should not deadlock.
2030 * Page also have the dirty flag cleared so we don't get recurive page_lock.
2031 */
2032 static int ext4_writepage(struct page *page,
2033 struct writeback_control *wbc)
2034 {
2035 int ret = 0;
2036 loff_t size;
2037 unsigned int len;
2038 struct buffer_head *page_bufs = NULL;
2039 struct inode *inode = page->mapping->host;
2040 struct ext4_io_submit io_submit;
2041 bool keep_towrite = false;
2042
2043 trace_ext4_writepage(page);
2044 size = i_size_read(inode);
2045 if (page->index == size >> PAGE_SHIFT)
2046 len = size & ~PAGE_MASK;
2047 else
2048 len = PAGE_SIZE;
2049
2050 page_bufs = page_buffers(page);
2051 /*
2052 * We cannot do block allocation or other extent handling in this
2053 * function. If there are buffers needing that, we have to redirty
2054 * the page. But we may reach here when we do a journal commit via
2055 * journal_submit_inode_data_buffers() and in that case we must write
2056 * allocated buffers to achieve data=ordered mode guarantees.
2057 *
2058 * Also, if there is only one buffer per page (the fs block
2059 * size == the page size), if one buffer needs block
2060 * allocation or needs to modify the extent tree to clear the
2061 * unwritten flag, we know that the page can't be written at
2062 * all, so we might as well refuse the write immediately.
2063 * Unfortunately if the block size != page size, we can't as
2064 * easily detect this case using ext4_walk_page_buffers(), but
2065 * for the extremely common case, this is an optimization that
2066 * skips a useless round trip through ext4_bio_write_page().
2067 */
2068 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2069 ext4_bh_delay_or_unwritten)) {
2070 redirty_page_for_writepage(wbc, page);
2071 if ((current->flags & PF_MEMALLOC) ||
2072 (inode->i_sb->s_blocksize == PAGE_SIZE)) {
2073 /*
2074 * For memory cleaning there's no point in writing only
2075 * some buffers. So just bail out. Warn if we came here
2076 * from direct reclaim.
2077 */
2078 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2079 == PF_MEMALLOC);
2080 unlock_page(page);
2081 return 0;
2082 }
2083 keep_towrite = true;
2084 }
2085
2086 if (PageChecked(page) && ext4_should_journal_data(inode))
2087 /*
2088 * It's mmapped pagecache. Add buffers and journal it. There
2089 * doesn't seem much point in redirtying the page here.
2090 */
2091 return __ext4_journalled_writepage(page, len);
2092
2093 ext4_io_submit_init(&io_submit, wbc);
2094 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2095 if (!io_submit.io_end) {
2096 redirty_page_for_writepage(wbc, page);
2097 unlock_page(page);
2098 return -ENOMEM;
2099 }
2100 ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
2101 ext4_io_submit(&io_submit);
2102 /* Drop io_end reference we got from init */
2103 ext4_put_io_end_defer(io_submit.io_end);
2104 return ret;
2105 }
2106
2107 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2108 {
2109 int len;
2110 loff_t size = i_size_read(mpd->inode);
2111 int err;
2112
2113 BUG_ON(page->index != mpd->first_page);
2114 if (page->index == size >> PAGE_SHIFT)
2115 len = size & ~PAGE_MASK;
2116 else
2117 len = PAGE_SIZE;
2118 clear_page_dirty_for_io(page);
2119 err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
2120 if (!err)
2121 mpd->wbc->nr_to_write--;
2122 mpd->first_page++;
2123
2124 return err;
2125 }
2126
2127 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
2128
2129 /*
2130 * mballoc gives us at most this number of blocks...
2131 * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2132 * The rest of mballoc seems to handle chunks up to full group size.
2133 */
2134 #define MAX_WRITEPAGES_EXTENT_LEN 2048
2135
2136 /*
2137 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2138 *
2139 * @mpd - extent of blocks
2140 * @lblk - logical number of the block in the file
2141 * @bh - buffer head we want to add to the extent
2142 *
2143 * The function is used to collect contig. blocks in the same state. If the
2144 * buffer doesn't require mapping for writeback and we haven't started the
2145 * extent of buffers to map yet, the function returns 'true' immediately - the
2146 * caller can write the buffer right away. Otherwise the function returns true
2147 * if the block has been added to the extent, false if the block couldn't be
2148 * added.
2149 */
2150 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2151 struct buffer_head *bh)
2152 {
2153 struct ext4_map_blocks *map = &mpd->map;
2154
2155 /* Buffer that doesn't need mapping for writeback? */
2156 if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2157 (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2158 /* So far no extent to map => we write the buffer right away */
2159 if (map->m_len == 0)
2160 return true;
2161 return false;
2162 }
2163
2164 /* First block in the extent? */
2165 if (map->m_len == 0) {
2166 map->m_lblk = lblk;
2167 map->m_len = 1;
2168 map->m_flags = bh->b_state & BH_FLAGS;
2169 return true;
2170 }
2171
2172 /* Don't go larger than mballoc is willing to allocate */
2173 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2174 return false;
2175
2176 /* Can we merge the block to our big extent? */
2177 if (lblk == map->m_lblk + map->m_len &&
2178 (bh->b_state & BH_FLAGS) == map->m_flags) {
2179 map->m_len++;
2180 return true;
2181 }
2182 return false;
2183 }
2184
2185 /*
2186 * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2187 *
2188 * @mpd - extent of blocks for mapping
2189 * @head - the first buffer in the page
2190 * @bh - buffer we should start processing from
2191 * @lblk - logical number of the block in the file corresponding to @bh
2192 *
2193 * Walk through page buffers from @bh upto @head (exclusive) and either submit
2194 * the page for IO if all buffers in this page were mapped and there's no
2195 * accumulated extent of buffers to map or add buffers in the page to the
2196 * extent of buffers to map. The function returns 1 if the caller can continue
2197 * by processing the next page, 0 if it should stop adding buffers to the
2198 * extent to map because we cannot extend it anymore. It can also return value
2199 * < 0 in case of error during IO submission.
2200 */
2201 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2202 struct buffer_head *head,
2203 struct buffer_head *bh,
2204 ext4_lblk_t lblk)
2205 {
2206 struct inode *inode = mpd->inode;
2207 int err;
2208 ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1)
2209 >> inode->i_blkbits;
2210
2211 do {
2212 BUG_ON(buffer_locked(bh));
2213
2214 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2215 /* Found extent to map? */
2216 if (mpd->map.m_len)
2217 return 0;
2218 /* Everything mapped so far and we hit EOF */
2219 break;
2220 }
2221 } while (lblk++, (bh = bh->b_this_page) != head);
2222 /* So far everything mapped? Submit the page for IO. */
2223 if (mpd->map.m_len == 0) {
2224 err = mpage_submit_page(mpd, head->b_page);
2225 if (err < 0)
2226 return err;
2227 }
2228 return lblk < blocks;
2229 }
2230
2231 /*
2232 * mpage_map_buffers - update buffers corresponding to changed extent and
2233 * submit fully mapped pages for IO
2234 *
2235 * @mpd - description of extent to map, on return next extent to map
2236 *
2237 * Scan buffers corresponding to changed extent (we expect corresponding pages
2238 * to be already locked) and update buffer state according to new extent state.
2239 * We map delalloc buffers to their physical location, clear unwritten bits,
2240 * and mark buffers as uninit when we perform writes to unwritten extents
2241 * and do extent conversion after IO is finished. If the last page is not fully
2242 * mapped, we update @map to the next extent in the last page that needs
2243 * mapping. Otherwise we submit the page for IO.
2244 */
2245 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2246 {
2247 struct pagevec pvec;
2248 int nr_pages, i;
2249 struct inode *inode = mpd->inode;
2250 struct buffer_head *head, *bh;
2251 int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2252 pgoff_t start, end;
2253 ext4_lblk_t lblk;
2254 sector_t pblock;
2255 int err;
2256
2257 start = mpd->map.m_lblk >> bpp_bits;
2258 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2259 lblk = start << bpp_bits;
2260 pblock = mpd->map.m_pblk;
2261
2262 pagevec_init(&pvec, 0);
2263 while (start <= end) {
2264 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start,
2265 PAGEVEC_SIZE);
2266 if (nr_pages == 0)
2267 break;
2268 for (i = 0; i < nr_pages; i++) {
2269 struct page *page = pvec.pages[i];
2270
2271 if (page->index > end)
2272 break;
2273 /* Up to 'end' pages must be contiguous */
2274 BUG_ON(page->index != start);
2275 bh = head = page_buffers(page);
2276 do {
2277 if (lblk < mpd->map.m_lblk)
2278 continue;
2279 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2280 /*
2281 * Buffer after end of mapped extent.
2282 * Find next buffer in the page to map.
2283 */
2284 mpd->map.m_len = 0;
2285 mpd->map.m_flags = 0;
2286 /*
2287 * FIXME: If dioread_nolock supports
2288 * blocksize < pagesize, we need to make
2289 * sure we add size mapped so far to
2290 * io_end->size as the following call
2291 * can submit the page for IO.
2292 */
2293 err = mpage_process_page_bufs(mpd, head,
2294 bh, lblk);
2295 pagevec_release(&pvec);
2296 if (err > 0)
2297 err = 0;
2298 return err;
2299 }
2300 if (buffer_delay(bh)) {
2301 clear_buffer_delay(bh);
2302 bh->b_blocknr = pblock++;
2303 }
2304 clear_buffer_unwritten(bh);
2305 } while (lblk++, (bh = bh->b_this_page) != head);
2306
2307 /*
2308 * FIXME: This is going to break if dioread_nolock
2309 * supports blocksize < pagesize as we will try to
2310 * convert potentially unmapped parts of inode.
2311 */
2312 mpd->io_submit.io_end->size += PAGE_SIZE;
2313 /* Page fully mapped - let IO run! */
2314 err = mpage_submit_page(mpd, page);
2315 if (err < 0) {
2316 pagevec_release(&pvec);
2317 return err;
2318 }
2319 start++;
2320 }
2321 pagevec_release(&pvec);
2322 }
2323 /* Extent fully mapped and matches with page boundary. We are done. */
2324 mpd->map.m_len = 0;
2325 mpd->map.m_flags = 0;
2326 return 0;
2327 }
2328
2329 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2330 {
2331 struct inode *inode = mpd->inode;
2332 struct ext4_map_blocks *map = &mpd->map;
2333 int get_blocks_flags;
2334 int err, dioread_nolock;
2335
2336 trace_ext4_da_write_pages_extent(inode, map);
2337 /*
2338 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2339 * to convert an unwritten extent to be initialized (in the case
2340 * where we have written into one or more preallocated blocks). It is
2341 * possible that we're going to need more metadata blocks than
2342 * previously reserved. However we must not fail because we're in
2343 * writeback and there is nothing we can do about it so it might result
2344 * in data loss. So use reserved blocks to allocate metadata if
2345 * possible.
2346 *
2347 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2348 * the blocks in question are delalloc blocks. This indicates
2349 * that the blocks and quotas has already been checked when
2350 * the data was copied into the page cache.
2351 */
2352 get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2353 EXT4_GET_BLOCKS_METADATA_NOFAIL |
2354 EXT4_GET_BLOCKS_IO_SUBMIT;
2355 dioread_nolock = ext4_should_dioread_nolock(inode);
2356 if (dioread_nolock)
2357 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2358 if (map->m_flags & (1 << BH_Delay))
2359 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2360
2361 err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2362 if (err < 0)
2363 return err;
2364 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2365 if (!mpd->io_submit.io_end->handle &&
2366 ext4_handle_valid(handle)) {
2367 mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2368 handle->h_rsv_handle = NULL;
2369 }
2370 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2371 }
2372
2373 BUG_ON(map->m_len == 0);
2374 if (map->m_flags & EXT4_MAP_NEW) {
2375 struct block_device *bdev = inode->i_sb->s_bdev;
2376 int i;
2377
2378 for (i = 0; i < map->m_len; i++)
2379 unmap_underlying_metadata(bdev, map->m_pblk + i);
2380 }
2381 return 0;
2382 }
2383
2384 /*
2385 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2386 * mpd->len and submit pages underlying it for IO
2387 *
2388 * @handle - handle for journal operations
2389 * @mpd - extent to map
2390 * @give_up_on_write - we set this to true iff there is a fatal error and there
2391 * is no hope of writing the data. The caller should discard
2392 * dirty pages to avoid infinite loops.
2393 *
2394 * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2395 * delayed, blocks are allocated, if it is unwritten, we may need to convert
2396 * them to initialized or split the described range from larger unwritten
2397 * extent. Note that we need not map all the described range since allocation
2398 * can return less blocks or the range is covered by more unwritten extents. We
2399 * cannot map more because we are limited by reserved transaction credits. On
2400 * the other hand we always make sure that the last touched page is fully
2401 * mapped so that it can be written out (and thus forward progress is
2402 * guaranteed). After mapping we submit all mapped pages for IO.
2403 */
2404 static int mpage_map_and_submit_extent(handle_t *handle,
2405 struct mpage_da_data *mpd,
2406 bool *give_up_on_write)
2407 {
2408 struct inode *inode = mpd->inode;
2409 struct ext4_map_blocks *map = &mpd->map;
2410 int err;
2411 loff_t disksize;
2412 int progress = 0;
2413
2414 mpd->io_submit.io_end->offset =
2415 ((loff_t)map->m_lblk) << inode->i_blkbits;
2416 do {
2417 err = mpage_map_one_extent(handle, mpd);
2418 if (err < 0) {
2419 struct super_block *sb = inode->i_sb;
2420
2421 if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2422 goto invalidate_dirty_pages;
2423 /*
2424 * Let the uper layers retry transient errors.
2425 * In the case of ENOSPC, if ext4_count_free_blocks()
2426 * is non-zero, a commit should free up blocks.
2427 */
2428 if ((err == -ENOMEM) ||
2429 (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2430 if (progress)
2431 goto update_disksize;
2432 return err;
2433 }
2434 ext4_msg(sb, KERN_CRIT,
2435 "Delayed block allocation failed for "
2436 "inode %lu at logical offset %llu with"
2437 " max blocks %u with error %d",
2438 inode->i_ino,
2439 (unsigned long long)map->m_lblk,
2440 (unsigned)map->m_len, -err);
2441 ext4_msg(sb, KERN_CRIT,
2442 "This should not happen!! Data will "
2443 "be lost\n");
2444 if (err == -ENOSPC)
2445 ext4_print_free_blocks(inode);
2446 invalidate_dirty_pages:
2447 *give_up_on_write = true;
2448 return err;
2449 }
2450 progress = 1;
2451 /*
2452 * Update buffer state, submit mapped pages, and get us new
2453 * extent to map
2454 */
2455 err = mpage_map_and_submit_buffers(mpd);
2456 if (err < 0)
2457 goto update_disksize;
2458 } while (map->m_len);
2459
2460 update_disksize:
2461 /*
2462 * Update on-disk size after IO is submitted. Races with
2463 * truncate are avoided by checking i_size under i_data_sem.
2464 */
2465 disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2466 if (disksize > EXT4_I(inode)->i_disksize) {
2467 int err2;
2468 loff_t i_size;
2469
2470 down_write(&EXT4_I(inode)->i_data_sem);
2471 i_size = i_size_read(inode);
2472 if (disksize > i_size)
2473 disksize = i_size;
2474 if (disksize > EXT4_I(inode)->i_disksize)
2475 EXT4_I(inode)->i_disksize = disksize;
2476 err2 = ext4_mark_inode_dirty(handle, inode);
2477 up_write(&EXT4_I(inode)->i_data_sem);
2478 if (err2)
2479 ext4_error(inode->i_sb,
2480 "Failed to mark inode %lu dirty",
2481 inode->i_ino);
2482 if (!err)
2483 err = err2;
2484 }
2485 return err;
2486 }
2487
2488 /*
2489 * Calculate the total number of credits to reserve for one writepages
2490 * iteration. This is called from ext4_writepages(). We map an extent of
2491 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2492 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2493 * bpp - 1 blocks in bpp different extents.
2494 */
2495 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2496 {
2497 int bpp = ext4_journal_blocks_per_page(inode);
2498
2499 return ext4_meta_trans_blocks(inode,
2500 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2501 }
2502
2503 /*
2504 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2505 * and underlying extent to map
2506 *
2507 * @mpd - where to look for pages
2508 *
2509 * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2510 * IO immediately. When we find a page which isn't mapped we start accumulating
2511 * extent of buffers underlying these pages that needs mapping (formed by
2512 * either delayed or unwritten buffers). We also lock the pages containing
2513 * these buffers. The extent found is returned in @mpd structure (starting at
2514 * mpd->lblk with length mpd->len blocks).
2515 *
2516 * Note that this function can attach bios to one io_end structure which are
2517 * neither logically nor physically contiguous. Although it may seem as an
2518 * unnecessary complication, it is actually inevitable in blocksize < pagesize
2519 * case as we need to track IO to all buffers underlying a page in one io_end.
2520 */
2521 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2522 {
2523 struct address_space *mapping = mpd->inode->i_mapping;
2524 struct pagevec pvec;
2525 unsigned int nr_pages;
2526 long left = mpd->wbc->nr_to_write;
2527 pgoff_t index = mpd->first_page;
2528 pgoff_t end = mpd->last_page;
2529 int tag;
2530 int i, err = 0;
2531 int blkbits = mpd->inode->i_blkbits;
2532 ext4_lblk_t lblk;
2533 struct buffer_head *head;
2534
2535 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2536 tag = PAGECACHE_TAG_TOWRITE;
2537 else
2538 tag = PAGECACHE_TAG_DIRTY;
2539
2540 pagevec_init(&pvec, 0);
2541 mpd->map.m_len = 0;
2542 mpd->next_page = index;
2543 while (index <= end) {
2544 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2545 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2546 if (nr_pages == 0)
2547 goto out;
2548
2549 for (i = 0; i < nr_pages; i++) {
2550 struct page *page = pvec.pages[i];
2551
2552 /*
2553 * At this point, the page may be truncated or
2554 * invalidated (changing page->mapping to NULL), or
2555 * even swizzled back from swapper_space to tmpfs file
2556 * mapping. However, page->index will not change
2557 * because we have a reference on the page.
2558 */
2559 if (page->index > end)
2560 goto out;
2561
2562 /*
2563 * Accumulated enough dirty pages? This doesn't apply
2564 * to WB_SYNC_ALL mode. For integrity sync we have to
2565 * keep going because someone may be concurrently
2566 * dirtying pages, and we might have synced a lot of
2567 * newly appeared dirty pages, but have not synced all
2568 * of the old dirty pages.
2569 */
2570 if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2571 goto out;
2572
2573 /* If we can't merge this page, we are done. */
2574 if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2575 goto out;
2576
2577 lock_page(page);
2578 /*
2579 * If the page is no longer dirty, or its mapping no
2580 * longer corresponds to inode we are writing (which
2581 * means it has been truncated or invalidated), or the
2582 * page is already under writeback and we are not doing
2583 * a data integrity writeback, skip the page
2584 */
2585 if (!PageDirty(page) ||
2586 (PageWriteback(page) &&
2587 (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2588 unlikely(page->mapping != mapping)) {
2589 unlock_page(page);
2590 continue;
2591 }
2592
2593 wait_on_page_writeback(page);
2594 BUG_ON(PageWriteback(page));
2595
2596 if (mpd->map.m_len == 0)
2597 mpd->first_page = page->index;
2598 mpd->next_page = page->index + 1;
2599 /* Add all dirty buffers to mpd */
2600 lblk = ((ext4_lblk_t)page->index) <<
2601 (PAGE_SHIFT - blkbits);
2602 head = page_buffers(page);
2603 err = mpage_process_page_bufs(mpd, head, head, lblk);
2604 if (err <= 0)
2605 goto out;
2606 err = 0;
2607 left--;
2608 }
2609 pagevec_release(&pvec);
2610 cond_resched();
2611 }
2612 return 0;
2613 out:
2614 pagevec_release(&pvec);
2615 return err;
2616 }
2617
2618 static int __writepage(struct page *page, struct writeback_control *wbc,
2619 void *data)
2620 {
2621 struct address_space *mapping = data;
2622 int ret = ext4_writepage(page, wbc);
2623 mapping_set_error(mapping, ret);
2624 return ret;
2625 }
2626
2627 static int ext4_writepages(struct address_space *mapping,
2628 struct writeback_control *wbc)
2629 {
2630 pgoff_t writeback_index = 0;
2631 long nr_to_write = wbc->nr_to_write;
2632 int range_whole = 0;
2633 int cycled = 1;
2634 handle_t *handle = NULL;
2635 struct mpage_da_data mpd;
2636 struct inode *inode = mapping->host;
2637 int needed_blocks, rsv_blocks = 0, ret = 0;
2638 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2639 bool done;
2640 struct blk_plug plug;
2641 bool give_up_on_write = false;
2642
2643 percpu_down_read(&sbi->s_journal_flag_rwsem);
2644 trace_ext4_writepages(inode, wbc);
2645
2646 if (dax_mapping(mapping)) {
2647 ret = dax_writeback_mapping_range(mapping, inode->i_sb->s_bdev,
2648 wbc);
2649 goto out_writepages;
2650 }
2651
2652 /*
2653 * No pages to write? This is mainly a kludge to avoid starting
2654 * a transaction for special inodes like journal inode on last iput()
2655 * because that could violate lock ordering on umount
2656 */
2657 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2658 goto out_writepages;
2659
2660 if (ext4_should_journal_data(inode)) {
2661 struct blk_plug plug;
2662
2663 blk_start_plug(&plug);
2664 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2665 blk_finish_plug(&plug);
2666 goto out_writepages;
2667 }
2668
2669 /*
2670 * If the filesystem has aborted, it is read-only, so return
2671 * right away instead of dumping stack traces later on that
2672 * will obscure the real source of the problem. We test
2673 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2674 * the latter could be true if the filesystem is mounted
2675 * read-only, and in that case, ext4_writepages should
2676 * *never* be called, so if that ever happens, we would want
2677 * the stack trace.
2678 */
2679 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2680 ret = -EROFS;
2681 goto out_writepages;
2682 }
2683
2684 if (ext4_should_dioread_nolock(inode)) {
2685 /*
2686 * We may need to convert up to one extent per block in
2687 * the page and we may dirty the inode.
2688 */
2689 rsv_blocks = 1 + (PAGE_SIZE >> inode->i_blkbits);
2690 }
2691
2692 /*
2693 * If we have inline data and arrive here, it means that
2694 * we will soon create the block for the 1st page, so
2695 * we'd better clear the inline data here.
2696 */
2697 if (ext4_has_inline_data(inode)) {
2698 /* Just inode will be modified... */
2699 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2700 if (IS_ERR(handle)) {
2701 ret = PTR_ERR(handle);
2702 goto out_writepages;
2703 }
2704 BUG_ON(ext4_test_inode_state(inode,
2705 EXT4_STATE_MAY_INLINE_DATA));
2706 ext4_destroy_inline_data(handle, inode);
2707 ext4_journal_stop(handle);
2708 }
2709
2710 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2711 range_whole = 1;
2712
2713 if (wbc->range_cyclic) {
2714 writeback_index = mapping->writeback_index;
2715 if (writeback_index)
2716 cycled = 0;
2717 mpd.first_page = writeback_index;
2718 mpd.last_page = -1;
2719 } else {
2720 mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2721 mpd.last_page = wbc->range_end >> PAGE_SHIFT;
2722 }
2723
2724 mpd.inode = inode;
2725 mpd.wbc = wbc;
2726 ext4_io_submit_init(&mpd.io_submit, wbc);
2727 retry:
2728 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2729 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2730 done = false;
2731 blk_start_plug(&plug);
2732 while (!done && mpd.first_page <= mpd.last_page) {
2733 /* For each extent of pages we use new io_end */
2734 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2735 if (!mpd.io_submit.io_end) {
2736 ret = -ENOMEM;
2737 break;
2738 }
2739
2740 /*
2741 * We have two constraints: We find one extent to map and we
2742 * must always write out whole page (makes a difference when
2743 * blocksize < pagesize) so that we don't block on IO when we
2744 * try to write out the rest of the page. Journalled mode is
2745 * not supported by delalloc.
2746 */
2747 BUG_ON(ext4_should_journal_data(inode));
2748 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2749
2750 /* start a new transaction */
2751 handle = ext4_journal_start_with_reserve(inode,
2752 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2753 if (IS_ERR(handle)) {
2754 ret = PTR_ERR(handle);
2755 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2756 "%ld pages, ino %lu; err %d", __func__,
2757 wbc->nr_to_write, inode->i_ino, ret);
2758 /* Release allocated io_end */
2759 ext4_put_io_end(mpd.io_submit.io_end);
2760 break;
2761 }
2762
2763 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2764 ret = mpage_prepare_extent_to_map(&mpd);
2765 if (!ret) {
2766 if (mpd.map.m_len)
2767 ret = mpage_map_and_submit_extent(handle, &mpd,
2768 &give_up_on_write);
2769 else {
2770 /*
2771 * We scanned the whole range (or exhausted
2772 * nr_to_write), submitted what was mapped and
2773 * didn't find anything needing mapping. We are
2774 * done.
2775 */
2776 done = true;
2777 }
2778 }
2779 /*
2780 * Caution: If the handle is synchronous,
2781 * ext4_journal_stop() can wait for transaction commit
2782 * to finish which may depend on writeback of pages to
2783 * complete or on page lock to be released. In that
2784 * case, we have to wait until after after we have
2785 * submitted all the IO, released page locks we hold,
2786 * and dropped io_end reference (for extent conversion
2787 * to be able to complete) before stopping the handle.
2788 */
2789 if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2790 ext4_journal_stop(handle);
2791 handle = NULL;
2792 }
2793 /* Submit prepared bio */
2794 ext4_io_submit(&mpd.io_submit);
2795 /* Unlock pages we didn't use */
2796 mpage_release_unused_pages(&mpd, give_up_on_write);
2797 /*
2798 * Drop our io_end reference we got from init. We have
2799 * to be careful and use deferred io_end finishing if
2800 * we are still holding the transaction as we can
2801 * release the last reference to io_end which may end
2802 * up doing unwritten extent conversion.
2803 */
2804 if (handle) {
2805 ext4_put_io_end_defer(mpd.io_submit.io_end);
2806 ext4_journal_stop(handle);
2807 } else
2808 ext4_put_io_end(mpd.io_submit.io_end);
2809
2810 if (ret == -ENOSPC && sbi->s_journal) {
2811 /*
2812 * Commit the transaction which would
2813 * free blocks released in the transaction
2814 * and try again
2815 */
2816 jbd2_journal_force_commit_nested(sbi->s_journal);
2817 ret = 0;
2818 continue;
2819 }
2820 /* Fatal error - ENOMEM, EIO... */
2821 if (ret)
2822 break;
2823 }
2824 blk_finish_plug(&plug);
2825 if (!ret && !cycled && wbc->nr_to_write > 0) {
2826 cycled = 1;
2827 mpd.last_page = writeback_index - 1;
2828 mpd.first_page = 0;
2829 goto retry;
2830 }
2831
2832 /* Update index */
2833 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2834 /*
2835 * Set the writeback_index so that range_cyclic
2836 * mode will write it back later
2837 */
2838 mapping->writeback_index = mpd.first_page;
2839
2840 out_writepages:
2841 trace_ext4_writepages_result(inode, wbc, ret,
2842 nr_to_write - wbc->nr_to_write);
2843 percpu_up_read(&sbi->s_journal_flag_rwsem);
2844 return ret;
2845 }
2846
2847 static int ext4_nonda_switch(struct super_block *sb)
2848 {
2849 s64 free_clusters, dirty_clusters;
2850 struct ext4_sb_info *sbi = EXT4_SB(sb);
2851
2852 /*
2853 * switch to non delalloc mode if we are running low
2854 * on free block. The free block accounting via percpu
2855 * counters can get slightly wrong with percpu_counter_batch getting
2856 * accumulated on each CPU without updating global counters
2857 * Delalloc need an accurate free block accounting. So switch
2858 * to non delalloc when we are near to error range.
2859 */
2860 free_clusters =
2861 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2862 dirty_clusters =
2863 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2864 /*
2865 * Start pushing delalloc when 1/2 of free blocks are dirty.
2866 */
2867 if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2868 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2869
2870 if (2 * free_clusters < 3 * dirty_clusters ||
2871 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2872 /*
2873 * free block count is less than 150% of dirty blocks
2874 * or free blocks is less than watermark
2875 */
2876 return 1;
2877 }
2878 return 0;
2879 }
2880
2881 /* We always reserve for an inode update; the superblock could be there too */
2882 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2883 {
2884 if (likely(ext4_has_feature_large_file(inode->i_sb)))
2885 return 1;
2886
2887 if (pos + len <= 0x7fffffffULL)
2888 return 1;
2889
2890 /* We might need to update the superblock to set LARGE_FILE */
2891 return 2;
2892 }
2893
2894 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2895 loff_t pos, unsigned len, unsigned flags,
2896 struct page **pagep, void **fsdata)
2897 {
2898 int ret, retries = 0;
2899 struct page *page;
2900 pgoff_t index;
2901 struct inode *inode = mapping->host;
2902 handle_t *handle;
2903
2904 index = pos >> PAGE_SHIFT;
2905
2906 if (ext4_nonda_switch(inode->i_sb)) {
2907 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2908 return ext4_write_begin(file, mapping, pos,
2909 len, flags, pagep, fsdata);
2910 }
2911 *fsdata = (void *)0;
2912 trace_ext4_da_write_begin(inode, pos, len, flags);
2913
2914 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2915 ret = ext4_da_write_inline_data_begin(mapping, inode,
2916 pos, len, flags,
2917 pagep, fsdata);
2918 if (ret < 0)
2919 return ret;
2920 if (ret == 1)
2921 return 0;
2922 }
2923
2924 /*
2925 * grab_cache_page_write_begin() can take a long time if the
2926 * system is thrashing due to memory pressure, or if the page
2927 * is being written back. So grab it first before we start
2928 * the transaction handle. This also allows us to allocate
2929 * the page (if needed) without using GFP_NOFS.
2930 */
2931 retry_grab:
2932 page = grab_cache_page_write_begin(mapping, index, flags);
2933 if (!page)
2934 return -ENOMEM;
2935 unlock_page(page);
2936
2937 /*
2938 * With delayed allocation, we don't log the i_disksize update
2939 * if there is delayed block allocation. But we still need
2940 * to journalling the i_disksize update if writes to the end
2941 * of file which has an already mapped buffer.
2942 */
2943 retry_journal:
2944 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2945 ext4_da_write_credits(inode, pos, len));
2946 if (IS_ERR(handle)) {
2947 put_page(page);
2948 return PTR_ERR(handle);
2949 }
2950
2951 lock_page(page);
2952 if (page->mapping != mapping) {
2953 /* The page got truncated from under us */
2954 unlock_page(page);
2955 put_page(page);
2956 ext4_journal_stop(handle);
2957 goto retry_grab;
2958 }
2959 /* In case writeback began while the page was unlocked */
2960 wait_for_stable_page(page);
2961
2962 #ifdef CONFIG_EXT4_FS_ENCRYPTION
2963 ret = ext4_block_write_begin(page, pos, len,
2964 ext4_da_get_block_prep);
2965 #else
2966 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2967 #endif
2968 if (ret < 0) {
2969 unlock_page(page);
2970 ext4_journal_stop(handle);
2971 /*
2972 * block_write_begin may have instantiated a few blocks
2973 * outside i_size. Trim these off again. Don't need
2974 * i_size_read because we hold i_mutex.
2975 */
2976 if (pos + len > inode->i_size)
2977 ext4_truncate_failed_write(inode);
2978
2979 if (ret == -ENOSPC &&
2980 ext4_should_retry_alloc(inode->i_sb, &retries))
2981 goto retry_journal;
2982
2983 put_page(page);
2984 return ret;
2985 }
2986
2987 *pagep = page;
2988 return ret;
2989 }
2990
2991 /*
2992 * Check if we should update i_disksize
2993 * when write to the end of file but not require block allocation
2994 */
2995 static int ext4_da_should_update_i_disksize(struct page *page,
2996 unsigned long offset)
2997 {
2998 struct buffer_head *bh;
2999 struct inode *inode = page->mapping->host;
3000 unsigned int idx;
3001 int i;
3002
3003 bh = page_buffers(page);
3004 idx = offset >> inode->i_blkbits;
3005
3006 for (i = 0; i < idx; i++)
3007 bh = bh->b_this_page;
3008
3009 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3010 return 0;
3011 return 1;
3012 }
3013
3014 static int ext4_da_write_end(struct file *file,
3015 struct address_space *mapping,
3016 loff_t pos, unsigned len, unsigned copied,
3017 struct page *page, void *fsdata)
3018 {
3019 struct inode *inode = mapping->host;
3020 int ret = 0, ret2;
3021 handle_t *handle = ext4_journal_current_handle();
3022 loff_t new_i_size;
3023 unsigned long start, end;
3024 int write_mode = (int)(unsigned long)fsdata;
3025
3026 if (write_mode == FALL_BACK_TO_NONDELALLOC)
3027 return ext4_write_end(file, mapping, pos,
3028 len, copied, page, fsdata);
3029
3030 trace_ext4_da_write_end(inode, pos, len, copied);
3031 start = pos & (PAGE_SIZE - 1);
3032 end = start + copied - 1;
3033
3034 /*
3035 * generic_write_end() will run mark_inode_dirty() if i_size
3036 * changes. So let's piggyback the i_disksize mark_inode_dirty
3037 * into that.
3038 */
3039 new_i_size = pos + copied;
3040 if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
3041 if (ext4_has_inline_data(inode) ||
3042 ext4_da_should_update_i_disksize(page, end)) {
3043 ext4_update_i_disksize(inode, new_i_size);
3044 /* We need to mark inode dirty even if
3045 * new_i_size is less that inode->i_size
3046 * bu greater than i_disksize.(hint delalloc)
3047 */
3048 ext4_mark_inode_dirty(handle, inode);
3049 }
3050 }
3051
3052 if (write_mode != CONVERT_INLINE_DATA &&
3053 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3054 ext4_has_inline_data(inode))
3055 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
3056 page);
3057 else
3058 ret2 = generic_write_end(file, mapping, pos, len, copied,
3059 page, fsdata);
3060
3061 copied = ret2;
3062 if (ret2 < 0)
3063 ret = ret2;
3064 ret2 = ext4_journal_stop(handle);
3065 if (!ret)
3066 ret = ret2;
3067
3068 return ret ? ret : copied;
3069 }
3070
3071 static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
3072 unsigned int length)
3073 {
3074 /*
3075 * Drop reserved blocks
3076 */
3077 BUG_ON(!PageLocked(page));
3078 if (!page_has_buffers(page))
3079 goto out;
3080
3081 ext4_da_page_release_reservation(page, offset, length);
3082
3083 out:
3084 ext4_invalidatepage(page, offset, length);
3085
3086 return;
3087 }
3088
3089 /*
3090 * Force all delayed allocation blocks to be allocated for a given inode.
3091 */
3092 int ext4_alloc_da_blocks(struct inode *inode)
3093 {
3094 trace_ext4_alloc_da_blocks(inode);
3095
3096 if (!EXT4_I(inode)->i_reserved_data_blocks)
3097 return 0;
3098
3099 /*
3100 * We do something simple for now. The filemap_flush() will
3101 * also start triggering a write of the data blocks, which is
3102 * not strictly speaking necessary (and for users of
3103 * laptop_mode, not even desirable). However, to do otherwise
3104 * would require replicating code paths in:
3105 *
3106 * ext4_writepages() ->
3107 * write_cache_pages() ---> (via passed in callback function)
3108 * __mpage_da_writepage() -->
3109 * mpage_add_bh_to_extent()
3110 * mpage_da_map_blocks()
3111 *
3112 * The problem is that write_cache_pages(), located in
3113 * mm/page-writeback.c, marks pages clean in preparation for
3114 * doing I/O, which is not desirable if we're not planning on
3115 * doing I/O at all.
3116 *
3117 * We could call write_cache_pages(), and then redirty all of
3118 * the pages by calling redirty_page_for_writepage() but that
3119 * would be ugly in the extreme. So instead we would need to
3120 * replicate parts of the code in the above functions,
3121 * simplifying them because we wouldn't actually intend to
3122 * write out the pages, but rather only collect contiguous
3123 * logical block extents, call the multi-block allocator, and
3124 * then update the buffer heads with the block allocations.
3125 *
3126 * For now, though, we'll cheat by calling filemap_flush(),
3127 * which will map the blocks, and start the I/O, but not
3128 * actually wait for the I/O to complete.
3129 */
3130 return filemap_flush(inode->i_mapping);
3131 }
3132
3133 /*
3134 * bmap() is special. It gets used by applications such as lilo and by
3135 * the swapper to find the on-disk block of a specific piece of data.
3136 *
3137 * Naturally, this is dangerous if the block concerned is still in the
3138 * journal. If somebody makes a swapfile on an ext4 data-journaling
3139 * filesystem and enables swap, then they may get a nasty shock when the
3140 * data getting swapped to that swapfile suddenly gets overwritten by
3141 * the original zero's written out previously to the journal and
3142 * awaiting writeback in the kernel's buffer cache.
3143 *
3144 * So, if we see any bmap calls here on a modified, data-journaled file,
3145 * take extra steps to flush any blocks which might be in the cache.
3146 */
3147 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3148 {
3149 struct inode *inode = mapping->host;
3150 journal_t *journal;
3151 int err;
3152
3153 /*
3154 * We can get here for an inline file via the FIBMAP ioctl
3155 */
3156 if (ext4_has_inline_data(inode))
3157 return 0;
3158
3159 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3160 test_opt(inode->i_sb, DELALLOC)) {
3161 /*
3162 * With delalloc we want to sync the file
3163 * so that we can make sure we allocate
3164 * blocks for file
3165 */
3166 filemap_write_and_wait(mapping);
3167 }
3168
3169 if (EXT4_JOURNAL(inode) &&
3170 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3171 /*
3172 * This is a REALLY heavyweight approach, but the use of
3173 * bmap on dirty files is expected to be extremely rare:
3174 * only if we run lilo or swapon on a freshly made file
3175 * do we expect this to happen.
3176 *
3177 * (bmap requires CAP_SYS_RAWIO so this does not
3178 * represent an unprivileged user DOS attack --- we'd be
3179 * in trouble if mortal users could trigger this path at
3180 * will.)
3181 *
3182 * NB. EXT4_STATE_JDATA is not set on files other than
3183 * regular files. If somebody wants to bmap a directory
3184 * or symlink and gets confused because the buffer
3185 * hasn't yet been flushed to disk, they deserve
3186 * everything they get.
3187 */
3188
3189 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3190 journal = EXT4_JOURNAL(inode);
3191 jbd2_journal_lock_updates(journal);
3192 err = jbd2_journal_flush(journal);
3193 jbd2_journal_unlock_updates(journal);
3194
3195 if (err)
3196 return 0;
3197 }
3198
3199 return generic_block_bmap(mapping, block, ext4_get_block);
3200 }
3201
3202 static int ext4_readpage(struct file *file, struct page *page)
3203 {
3204 int ret = -EAGAIN;
3205 struct inode *inode = page->mapping->host;
3206
3207 trace_ext4_readpage(page);
3208
3209 if (ext4_has_inline_data(inode))
3210 ret = ext4_readpage_inline(inode, page);
3211
3212 if (ret == -EAGAIN)
3213 return ext4_mpage_readpages(page->mapping, NULL, page, 1);
3214
3215 return ret;
3216 }
3217
3218 static int
3219 ext4_readpages(struct file *file, struct address_space *mapping,
3220 struct list_head *pages, unsigned nr_pages)
3221 {
3222 struct inode *inode = mapping->host;
3223
3224 /* If the file has inline data, no need to do readpages. */
3225 if (ext4_has_inline_data(inode))
3226 return 0;
3227
3228 return ext4_mpage_readpages(mapping, pages, NULL, nr_pages);
3229 }
3230
3231 static void ext4_invalidatepage(struct page *page, unsigned int offset,
3232 unsigned int length)
3233 {
3234 trace_ext4_invalidatepage(page, offset, length);
3235
3236 /* No journalling happens on data buffers when this function is used */
3237 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3238
3239 block_invalidatepage(page, offset, length);
3240 }
3241
3242 static int __ext4_journalled_invalidatepage(struct page *page,
3243 unsigned int offset,
3244 unsigned int length)
3245 {
3246 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3247
3248 trace_ext4_journalled_invalidatepage(page, offset, length);
3249
3250 /*
3251 * If it's a full truncate we just forget about the pending dirtying
3252 */
3253 if (offset == 0 && length == PAGE_SIZE)
3254 ClearPageChecked(page);
3255
3256 return jbd2_journal_invalidatepage(journal, page, offset, length);
3257 }
3258
3259 /* Wrapper for aops... */
3260 static void ext4_journalled_invalidatepage(struct page *page,
3261 unsigned int offset,
3262 unsigned int length)
3263 {
3264 WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3265 }
3266
3267 static int ext4_releasepage(struct page *page, gfp_t wait)
3268 {
3269 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3270
3271 trace_ext4_releasepage(page);
3272
3273 /* Page has dirty journalled data -> cannot release */
3274 if (PageChecked(page))
3275 return 0;
3276 if (journal)
3277 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3278 else
3279 return try_to_free_buffers(page);
3280 }
3281
3282 #ifdef CONFIG_FS_DAX
3283 /*
3284 * Get block function for DAX IO and mmap faults. It takes care of converting
3285 * unwritten extents to written ones and initializes new / converted blocks
3286 * to zeros.
3287 */
3288 int ext4_dax_get_block(struct inode *inode, sector_t iblock,
3289 struct buffer_head *bh_result, int create)
3290 {
3291 int ret;
3292
3293 ext4_debug("inode %lu, create flag %d\n", inode->i_ino, create);
3294 if (!create)
3295 return _ext4_get_block(inode, iblock, bh_result, 0);
3296
3297 ret = ext4_get_block_trans(inode, iblock, bh_result,
3298 EXT4_GET_BLOCKS_PRE_IO |
3299 EXT4_GET_BLOCKS_CREATE_ZERO);
3300 if (ret < 0)
3301 return ret;
3302
3303 if (buffer_unwritten(bh_result)) {
3304 /*
3305 * We are protected by i_mmap_sem or i_mutex so we know block
3306 * cannot go away from under us even though we dropped
3307 * i_data_sem. Convert extent to written and write zeros there.
3308 */
3309 ret = ext4_get_block_trans(inode, iblock, bh_result,
3310 EXT4_GET_BLOCKS_CONVERT |
3311 EXT4_GET_BLOCKS_CREATE_ZERO);
3312 if (ret < 0)
3313 return ret;
3314 }
3315 /*
3316 * At least for now we have to clear BH_New so that DAX code
3317 * doesn't attempt to zero blocks again in a racy way.
3318 */
3319 clear_buffer_new(bh_result);
3320 return 0;
3321 }
3322
3323 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3324 unsigned flags, struct iomap *iomap)
3325 {
3326 unsigned int blkbits = inode->i_blkbits;
3327 unsigned long first_block = offset >> blkbits;
3328 unsigned long last_block = (offset + length - 1) >> blkbits;
3329 struct ext4_map_blocks map;
3330 int ret;
3331
3332 if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3333 return -ERANGE;
3334
3335 map.m_lblk = first_block;
3336 map.m_len = last_block - first_block + 1;
3337
3338 if (!(flags & IOMAP_WRITE)) {
3339 ret = ext4_map_blocks(NULL, inode, &map, 0);
3340 } else {
3341 int dio_credits;
3342 handle_t *handle;
3343 int retries = 0;
3344
3345 /* Trim mapping request to maximum we can map at once for DIO */
3346 if (map.m_len > DIO_MAX_BLOCKS)
3347 map.m_len = DIO_MAX_BLOCKS;
3348 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
3349 retry:
3350 /*
3351 * Either we allocate blocks and then we don't get unwritten
3352 * extent so we have reserved enough credits, or the blocks
3353 * are already allocated and unwritten and in that case
3354 * extent conversion fits in the credits as well.
3355 */
3356 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
3357 dio_credits);
3358 if (IS_ERR(handle))
3359 return PTR_ERR(handle);
3360
3361 ret = ext4_map_blocks(handle, inode, &map,
3362 EXT4_GET_BLOCKS_CREATE_ZERO);
3363 if (ret < 0) {
3364 ext4_journal_stop(handle);
3365 if (ret == -ENOSPC &&
3366 ext4_should_retry_alloc(inode->i_sb, &retries))
3367 goto retry;
3368 return ret;
3369 }
3370
3371 /*
3372 * If we added blocks beyond i_size, we need to make sure they
3373 * will get truncated if we crash before updating i_size in
3374 * ext4_iomap_end(). For faults we don't need to do that (and
3375 * even cannot because for orphan list operations inode_lock is
3376 * required) - if we happen to instantiate block beyond i_size,
3377 * it is because we race with truncate which has already added
3378 * the inode to the orphan list.
3379 */
3380 if (!(flags & IOMAP_FAULT) && first_block + map.m_len >
3381 (i_size_read(inode) + (1 << blkbits) - 1) >> blkbits) {
3382 int err;
3383
3384 err = ext4_orphan_add(handle, inode);
3385 if (err < 0) {
3386 ext4_journal_stop(handle);
3387 return err;
3388 }
3389 }
3390 ext4_journal_stop(handle);
3391 }
3392
3393 iomap->flags = 0;
3394 iomap->bdev = inode->i_sb->s_bdev;
3395 iomap->offset = first_block << blkbits;
3396
3397 if (ret == 0) {
3398 iomap->type = IOMAP_HOLE;
3399 iomap->blkno = IOMAP_NULL_BLOCK;
3400 iomap->length = (u64)map.m_len << blkbits;
3401 } else {
3402 if (map.m_flags & EXT4_MAP_MAPPED) {
3403 iomap->type = IOMAP_MAPPED;
3404 } else if (map.m_flags & EXT4_MAP_UNWRITTEN) {
3405 iomap->type = IOMAP_UNWRITTEN;
3406 } else {
3407 WARN_ON_ONCE(1);
3408 return -EIO;
3409 }
3410 iomap->blkno = (sector_t)map.m_pblk << (blkbits - 9);
3411 iomap->length = (u64)map.m_len << blkbits;
3412 }
3413
3414 if (map.m_flags & EXT4_MAP_NEW)
3415 iomap->flags |= IOMAP_F_NEW;
3416 return 0;
3417 }
3418
3419 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3420 ssize_t written, unsigned flags, struct iomap *iomap)
3421 {
3422 int ret = 0;
3423 handle_t *handle;
3424 int blkbits = inode->i_blkbits;
3425 bool truncate = false;
3426
3427 if (!(flags & IOMAP_WRITE) || (flags & IOMAP_FAULT))
3428 return 0;
3429
3430 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3431 if (IS_ERR(handle)) {
3432 ret = PTR_ERR(handle);
3433 goto orphan_del;
3434 }
3435 if (ext4_update_inode_size(inode, offset + written))
3436 ext4_mark_inode_dirty(handle, inode);
3437 /*
3438 * We may need to truncate allocated but not written blocks beyond EOF.
3439 */
3440 if (iomap->offset + iomap->length >
3441 ALIGN(inode->i_size, 1 << blkbits)) {
3442 ext4_lblk_t written_blk, end_blk;
3443
3444 written_blk = (offset + written) >> blkbits;
3445 end_blk = (offset + length) >> blkbits;
3446 if (written_blk < end_blk && ext4_can_truncate(inode))
3447 truncate = true;
3448 }
3449 /*
3450 * Remove inode from orphan list if we were extending a inode and
3451 * everything went fine.
3452 */
3453 if (!truncate && inode->i_nlink &&
3454 !list_empty(&EXT4_I(inode)->i_orphan))
3455 ext4_orphan_del(handle, inode);
3456 ext4_journal_stop(handle);
3457 if (truncate) {
3458 ext4_truncate_failed_write(inode);
3459 orphan_del:
3460 /*
3461 * If truncate failed early the inode might still be on the
3462 * orphan list; we need to make sure the inode is removed from
3463 * the orphan list in that case.
3464 */
3465 if (inode->i_nlink)
3466 ext4_orphan_del(NULL, inode);
3467 }
3468 return ret;
3469 }
3470
3471 struct iomap_ops ext4_iomap_ops = {
3472 .iomap_begin = ext4_iomap_begin,
3473 .iomap_end = ext4_iomap_end,
3474 };
3475
3476 #else
3477 /* Just define empty function, it will never get called. */
3478 int ext4_dax_get_block(struct inode *inode, sector_t iblock,
3479 struct buffer_head *bh_result, int create)
3480 {
3481 BUG();
3482 return 0;
3483 }
3484 #endif
3485
3486 static int ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3487 ssize_t size, void *private)
3488 {
3489 ext4_io_end_t *io_end = private;
3490
3491 /* if not async direct IO just return */
3492 if (!io_end)
3493 return 0;
3494
3495 ext_debug("ext4_end_io_dio(): io_end 0x%p "
3496 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3497 io_end, io_end->inode->i_ino, iocb, offset, size);
3498
3499 /*
3500 * Error during AIO DIO. We cannot convert unwritten extents as the
3501 * data was not written. Just clear the unwritten flag and drop io_end.
3502 */
3503 if (size <= 0) {
3504 ext4_clear_io_unwritten_flag(io_end);
3505 size = 0;
3506 }
3507 io_end->offset = offset;
3508 io_end->size = size;
3509 ext4_put_io_end(io_end);
3510
3511 return 0;
3512 }
3513
3514 /*
3515 * Handling of direct IO writes.
3516 *
3517 * For ext4 extent files, ext4 will do direct-io write even to holes,
3518 * preallocated extents, and those write extend the file, no need to
3519 * fall back to buffered IO.
3520 *
3521 * For holes, we fallocate those blocks, mark them as unwritten
3522 * If those blocks were preallocated, we mark sure they are split, but
3523 * still keep the range to write as unwritten.
3524 *
3525 * The unwritten extents will be converted to written when DIO is completed.
3526 * For async direct IO, since the IO may still pending when return, we
3527 * set up an end_io call back function, which will do the conversion
3528 * when async direct IO completed.
3529 *
3530 * If the O_DIRECT write will extend the file then add this inode to the
3531 * orphan list. So recovery will truncate it back to the original size
3532 * if the machine crashes during the write.
3533 *
3534 */
3535 static ssize_t ext4_direct_IO_write(struct kiocb *iocb, struct iov_iter *iter)
3536 {
3537 struct file *file = iocb->ki_filp;
3538 struct inode *inode = file->f_mapping->host;
3539 struct ext4_inode_info *ei = EXT4_I(inode);
3540 ssize_t ret;
3541 loff_t offset = iocb->ki_pos;
3542 size_t count = iov_iter_count(iter);
3543 int overwrite = 0;
3544 get_block_t *get_block_func = NULL;
3545 int dio_flags = 0;
3546 loff_t final_size = offset + count;
3547 int orphan = 0;
3548 handle_t *handle;
3549
3550 if (final_size > inode->i_size) {
3551 /* Credits for sb + inode write */
3552 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3553 if (IS_ERR(handle)) {
3554 ret = PTR_ERR(handle);
3555 goto out;
3556 }
3557 ret = ext4_orphan_add(handle, inode);
3558 if (ret) {
3559 ext4_journal_stop(handle);
3560 goto out;
3561 }
3562 orphan = 1;
3563 ei->i_disksize = inode->i_size;
3564 ext4_journal_stop(handle);
3565 }
3566
3567 BUG_ON(iocb->private == NULL);
3568
3569 /*
3570 * Make all waiters for direct IO properly wait also for extent
3571 * conversion. This also disallows race between truncate() and
3572 * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3573 */
3574 inode_dio_begin(inode);
3575
3576 /* If we do a overwrite dio, i_mutex locking can be released */
3577 overwrite = *((int *)iocb->private);
3578
3579 if (overwrite)
3580 inode_unlock(inode);
3581
3582 /*
3583 * For extent mapped files we could direct write to holes and fallocate.
3584 *
3585 * Allocated blocks to fill the hole are marked as unwritten to prevent
3586 * parallel buffered read to expose the stale data before DIO complete
3587 * the data IO.
3588 *
3589 * As to previously fallocated extents, ext4 get_block will just simply
3590 * mark the buffer mapped but still keep the extents unwritten.
3591 *
3592 * For non AIO case, we will convert those unwritten extents to written
3593 * after return back from blockdev_direct_IO. That way we save us from
3594 * allocating io_end structure and also the overhead of offloading
3595 * the extent convertion to a workqueue.
3596 *
3597 * For async DIO, the conversion needs to be deferred when the
3598 * IO is completed. The ext4 end_io callback function will be
3599 * called to take care of the conversion work. Here for async
3600 * case, we allocate an io_end structure to hook to the iocb.
3601 */
3602 iocb->private = NULL;
3603 if (overwrite)
3604 get_block_func = ext4_dio_get_block_overwrite;
3605 else if (IS_DAX(inode)) {
3606 /*
3607 * We can avoid zeroing for aligned DAX writes beyond EOF. Other
3608 * writes need zeroing either because they can race with page
3609 * faults or because they use partial blocks.
3610 */
3611 if (round_down(offset, 1<<inode->i_blkbits) >= inode->i_size &&
3612 ext4_aligned_io(inode, offset, count))
3613 get_block_func = ext4_dio_get_block;
3614 else
3615 get_block_func = ext4_dax_get_block;
3616 dio_flags = DIO_LOCKING;
3617 } else if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS) ||
3618 round_down(offset, 1 << inode->i_blkbits) >= inode->i_size) {
3619 get_block_func = ext4_dio_get_block;
3620 dio_flags = DIO_LOCKING | DIO_SKIP_HOLES;
3621 } else if (is_sync_kiocb(iocb)) {
3622 get_block_func = ext4_dio_get_block_unwritten_sync;
3623 dio_flags = DIO_LOCKING;
3624 } else {
3625 get_block_func = ext4_dio_get_block_unwritten_async;
3626 dio_flags = DIO_LOCKING;
3627 }
3628 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3629 BUG_ON(ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode));
3630 #endif
3631 if (IS_DAX(inode)) {
3632 ret = dax_do_io(iocb, inode, iter, get_block_func,
3633 ext4_end_io_dio, dio_flags);
3634 } else
3635 ret = __blockdev_direct_IO(iocb, inode,
3636 inode->i_sb->s_bdev, iter,
3637 get_block_func,
3638 ext4_end_io_dio, NULL, dio_flags);
3639
3640 if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3641 EXT4_STATE_DIO_UNWRITTEN)) {
3642 int err;
3643 /*
3644 * for non AIO case, since the IO is already
3645 * completed, we could do the conversion right here
3646 */
3647 err = ext4_convert_unwritten_extents(NULL, inode,
3648 offset, ret);
3649 if (err < 0)
3650 ret = err;
3651 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3652 }
3653
3654 inode_dio_end(inode);
3655 /* take i_mutex locking again if we do a ovewrite dio */
3656 if (overwrite)
3657 inode_lock(inode);
3658
3659 if (ret < 0 && final_size > inode->i_size)
3660 ext4_truncate_failed_write(inode);
3661
3662 /* Handle extending of i_size after direct IO write */
3663 if (orphan) {
3664 int err;
3665
3666 /* Credits for sb + inode write */
3667 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3668 if (IS_ERR(handle)) {
3669 /* This is really bad luck. We've written the data
3670 * but cannot extend i_size. Bail out and pretend
3671 * the write failed... */
3672 ret = PTR_ERR(handle);
3673 if (inode->i_nlink)
3674 ext4_orphan_del(NULL, inode);
3675
3676 goto out;
3677 }
3678 if (inode->i_nlink)
3679 ext4_orphan_del(handle, inode);
3680 if (ret > 0) {
3681 loff_t end = offset + ret;
3682 if (end > inode->i_size) {
3683 ei->i_disksize = end;
3684 i_size_write(inode, end);
3685 /*
3686 * We're going to return a positive `ret'
3687 * here due to non-zero-length I/O, so there's
3688 * no way of reporting error returns from
3689 * ext4_mark_inode_dirty() to userspace. So
3690 * ignore it.
3691 */
3692 ext4_mark_inode_dirty(handle, inode);
3693 }
3694 }
3695 err = ext4_journal_stop(handle);
3696 if (ret == 0)
3697 ret = err;
3698 }
3699 out:
3700 return ret;
3701 }
3702
3703 static ssize_t ext4_direct_IO_read(struct kiocb *iocb, struct iov_iter *iter)
3704 {
3705 struct address_space *mapping = iocb->ki_filp->f_mapping;
3706 struct inode *inode = mapping->host;
3707 ssize_t ret;
3708
3709 /*
3710 * Shared inode_lock is enough for us - it protects against concurrent
3711 * writes & truncates and since we take care of writing back page cache,
3712 * we are protected against page writeback as well.
3713 */
3714 inode_lock_shared(inode);
3715 if (IS_DAX(inode)) {
3716 ret = dax_do_io(iocb, inode, iter, ext4_dio_get_block, NULL, 0);
3717 } else {
3718 size_t count = iov_iter_count(iter);
3719
3720 ret = filemap_write_and_wait_range(mapping, iocb->ki_pos,
3721 iocb->ki_pos + count);
3722 if (ret)
3723 goto out_unlock;
3724 ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
3725 iter, ext4_dio_get_block,
3726 NULL, NULL, 0);
3727 }
3728 out_unlock:
3729 inode_unlock_shared(inode);
3730 return ret;
3731 }
3732
3733 static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
3734 {
3735 struct file *file = iocb->ki_filp;
3736 struct inode *inode = file->f_mapping->host;
3737 size_t count = iov_iter_count(iter);
3738 loff_t offset = iocb->ki_pos;
3739 ssize_t ret;
3740
3741 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3742 if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode))
3743 return 0;
3744 #endif
3745
3746 /*
3747 * If we are doing data journalling we don't support O_DIRECT
3748 */
3749 if (ext4_should_journal_data(inode))
3750 return 0;
3751
3752 /* Let buffer I/O handle the inline data case. */
3753 if (ext4_has_inline_data(inode))
3754 return 0;
3755
3756 trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
3757 if (iov_iter_rw(iter) == READ)
3758 ret = ext4_direct_IO_read(iocb, iter);
3759 else
3760 ret = ext4_direct_IO_write(iocb, iter);
3761 trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret);
3762 return ret;
3763 }
3764
3765 /*
3766 * Pages can be marked dirty completely asynchronously from ext4's journalling
3767 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3768 * much here because ->set_page_dirty is called under VFS locks. The page is
3769 * not necessarily locked.
3770 *
3771 * We cannot just dirty the page and leave attached buffers clean, because the
3772 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3773 * or jbddirty because all the journalling code will explode.
3774 *
3775 * So what we do is to mark the page "pending dirty" and next time writepage
3776 * is called, propagate that into the buffers appropriately.
3777 */
3778 static int ext4_journalled_set_page_dirty(struct page *page)
3779 {
3780 SetPageChecked(page);
3781 return __set_page_dirty_nobuffers(page);
3782 }
3783
3784 static const struct address_space_operations ext4_aops = {
3785 .readpage = ext4_readpage,
3786 .readpages = ext4_readpages,
3787 .writepage = ext4_writepage,
3788 .writepages = ext4_writepages,
3789 .write_begin = ext4_write_begin,
3790 .write_end = ext4_write_end,
3791 .bmap = ext4_bmap,
3792 .invalidatepage = ext4_invalidatepage,
3793 .releasepage = ext4_releasepage,
3794 .direct_IO = ext4_direct_IO,
3795 .migratepage = buffer_migrate_page,
3796 .is_partially_uptodate = block_is_partially_uptodate,
3797 .error_remove_page = generic_error_remove_page,
3798 };
3799
3800 static const struct address_space_operations ext4_journalled_aops = {
3801 .readpage = ext4_readpage,
3802 .readpages = ext4_readpages,
3803 .writepage = ext4_writepage,
3804 .writepages = ext4_writepages,
3805 .write_begin = ext4_write_begin,
3806 .write_end = ext4_journalled_write_end,
3807 .set_page_dirty = ext4_journalled_set_page_dirty,
3808 .bmap = ext4_bmap,
3809 .invalidatepage = ext4_journalled_invalidatepage,
3810 .releasepage = ext4_releasepage,
3811 .direct_IO = ext4_direct_IO,
3812 .is_partially_uptodate = block_is_partially_uptodate,
3813 .error_remove_page = generic_error_remove_page,
3814 };
3815
3816 static const struct address_space_operations ext4_da_aops = {
3817 .readpage = ext4_readpage,
3818 .readpages = ext4_readpages,
3819 .writepage = ext4_writepage,
3820 .writepages = ext4_writepages,
3821 .write_begin = ext4_da_write_begin,
3822 .write_end = ext4_da_write_end,
3823 .bmap = ext4_bmap,
3824 .invalidatepage = ext4_da_invalidatepage,
3825 .releasepage = ext4_releasepage,
3826 .direct_IO = ext4_direct_IO,
3827 .migratepage = buffer_migrate_page,
3828 .is_partially_uptodate = block_is_partially_uptodate,
3829 .error_remove_page = generic_error_remove_page,
3830 };
3831
3832 void ext4_set_aops(struct inode *inode)
3833 {
3834 switch (ext4_inode_journal_mode(inode)) {
3835 case EXT4_INODE_ORDERED_DATA_MODE:
3836 case EXT4_INODE_WRITEBACK_DATA_MODE:
3837 break;
3838 case EXT4_INODE_JOURNAL_DATA_MODE:
3839 inode->i_mapping->a_ops = &ext4_journalled_aops;
3840 return;
3841 default:
3842 BUG();
3843 }
3844 if (test_opt(inode->i_sb, DELALLOC))
3845 inode->i_mapping->a_ops = &ext4_da_aops;
3846 else
3847 inode->i_mapping->a_ops = &ext4_aops;
3848 }
3849
3850 static int __ext4_block_zero_page_range(handle_t *handle,
3851 struct address_space *mapping, loff_t from, loff_t length)
3852 {
3853 ext4_fsblk_t index = from >> PAGE_SHIFT;
3854 unsigned offset = from & (PAGE_SIZE-1);
3855 unsigned blocksize, pos;
3856 ext4_lblk_t iblock;
3857 struct inode *inode = mapping->host;
3858 struct buffer_head *bh;
3859 struct page *page;
3860 int err = 0;
3861
3862 page = find_or_create_page(mapping, from >> PAGE_SHIFT,
3863 mapping_gfp_constraint(mapping, ~__GFP_FS));
3864 if (!page)
3865 return -ENOMEM;
3866
3867 blocksize = inode->i_sb->s_blocksize;
3868
3869 iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
3870
3871 if (!page_has_buffers(page))
3872 create_empty_buffers(page, blocksize, 0);
3873
3874 /* Find the buffer that contains "offset" */
3875 bh = page_buffers(page);
3876 pos = blocksize;
3877 while (offset >= pos) {
3878 bh = bh->b_this_page;
3879 iblock++;
3880 pos += blocksize;
3881 }
3882 if (buffer_freed(bh)) {
3883 BUFFER_TRACE(bh, "freed: skip");
3884 goto unlock;
3885 }
3886 if (!buffer_mapped(bh)) {
3887 BUFFER_TRACE(bh, "unmapped");
3888 ext4_get_block(inode, iblock, bh, 0);
3889 /* unmapped? It's a hole - nothing to do */
3890 if (!buffer_mapped(bh)) {
3891 BUFFER_TRACE(bh, "still unmapped");
3892 goto unlock;
3893 }
3894 }
3895
3896 /* Ok, it's mapped. Make sure it's up-to-date */
3897 if (PageUptodate(page))
3898 set_buffer_uptodate(bh);
3899
3900 if (!buffer_uptodate(bh)) {
3901 err = -EIO;
3902 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
3903 wait_on_buffer(bh);
3904 /* Uhhuh. Read error. Complain and punt. */
3905 if (!buffer_uptodate(bh))
3906 goto unlock;
3907 if (S_ISREG(inode->i_mode) &&
3908 ext4_encrypted_inode(inode)) {
3909 /* We expect the key to be set. */
3910 BUG_ON(!fscrypt_has_encryption_key(inode));
3911 BUG_ON(blocksize != PAGE_SIZE);
3912 BUG_ON(!PageLocked(page));
3913 WARN_ON_ONCE(fscrypt_decrypt_page(page->mapping->host,
3914 page, PAGE_SIZE, 0, page->index));
3915 }
3916 }
3917 if (ext4_should_journal_data(inode)) {
3918 BUFFER_TRACE(bh, "get write access");
3919 err = ext4_journal_get_write_access(handle, bh);
3920 if (err)
3921 goto unlock;
3922 }
3923 zero_user(page, offset, length);
3924 BUFFER_TRACE(bh, "zeroed end of block");
3925
3926 if (ext4_should_journal_data(inode)) {
3927 err = ext4_handle_dirty_metadata(handle, inode, bh);
3928 } else {
3929 err = 0;
3930 mark_buffer_dirty(bh);
3931 if (ext4_should_order_data(inode))
3932 err = ext4_jbd2_inode_add_write(handle, inode);
3933 }
3934
3935 unlock:
3936 unlock_page(page);
3937 put_page(page);
3938 return err;
3939 }
3940
3941 /*
3942 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3943 * starting from file offset 'from'. The range to be zero'd must
3944 * be contained with in one block. If the specified range exceeds
3945 * the end of the block it will be shortened to end of the block
3946 * that cooresponds to 'from'
3947 */
3948 static int ext4_block_zero_page_range(handle_t *handle,
3949 struct address_space *mapping, loff_t from, loff_t length)
3950 {
3951 struct inode *inode = mapping->host;
3952 unsigned offset = from & (PAGE_SIZE-1);
3953 unsigned blocksize = inode->i_sb->s_blocksize;
3954 unsigned max = blocksize - (offset & (blocksize - 1));
3955
3956 /*
3957 * correct length if it does not fall between
3958 * 'from' and the end of the block
3959 */
3960 if (length > max || length < 0)
3961 length = max;
3962
3963 if (IS_DAX(inode)) {
3964 return iomap_zero_range(inode, from, length, NULL,
3965 &ext4_iomap_ops);
3966 }
3967 return __ext4_block_zero_page_range(handle, mapping, from, length);
3968 }
3969
3970 /*
3971 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3972 * up to the end of the block which corresponds to `from'.
3973 * This required during truncate. We need to physically zero the tail end
3974 * of that block so it doesn't yield old data if the file is later grown.
3975 */
3976 static int ext4_block_truncate_page(handle_t *handle,
3977 struct address_space *mapping, loff_t from)
3978 {
3979 unsigned offset = from & (PAGE_SIZE-1);
3980 unsigned length;
3981 unsigned blocksize;
3982 struct inode *inode = mapping->host;
3983
3984 blocksize = inode->i_sb->s_blocksize;
3985 length = blocksize - (offset & (blocksize - 1));
3986
3987 return ext4_block_zero_page_range(handle, mapping, from, length);
3988 }
3989
3990 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3991 loff_t lstart, loff_t length)
3992 {
3993 struct super_block *sb = inode->i_sb;
3994 struct address_space *mapping = inode->i_mapping;
3995 unsigned partial_start, partial_end;
3996 ext4_fsblk_t start, end;
3997 loff_t byte_end = (lstart + length - 1);
3998 int err = 0;
3999
4000 partial_start = lstart & (sb->s_blocksize - 1);
4001 partial_end = byte_end & (sb->s_blocksize - 1);
4002
4003 start = lstart >> sb->s_blocksize_bits;
4004 end = byte_end >> sb->s_blocksize_bits;
4005
4006 /* Handle partial zero within the single block */
4007 if (start == end &&
4008 (partial_start || (partial_end != sb->s_blocksize - 1))) {
4009 err = ext4_block_zero_page_range(handle, mapping,
4010 lstart, length);
4011 return err;
4012 }
4013 /* Handle partial zero out on the start of the range */
4014 if (partial_start) {
4015 err = ext4_block_zero_page_range(handle, mapping,
4016 lstart, sb->s_blocksize);
4017 if (err)
4018 return err;
4019 }
4020 /* Handle partial zero out on the end of the range */
4021 if (partial_end != sb->s_blocksize - 1)
4022 err = ext4_block_zero_page_range(handle, mapping,
4023 byte_end - partial_end,
4024 partial_end + 1);
4025 return err;
4026 }
4027
4028 int ext4_can_truncate(struct inode *inode)
4029 {
4030 if (S_ISREG(inode->i_mode))
4031 return 1;
4032 if (S_ISDIR(inode->i_mode))
4033 return 1;
4034 if (S_ISLNK(inode->i_mode))
4035 return !ext4_inode_is_fast_symlink(inode);
4036 return 0;
4037 }
4038
4039 /*
4040 * We have to make sure i_disksize gets properly updated before we truncate
4041 * page cache due to hole punching or zero range. Otherwise i_disksize update
4042 * can get lost as it may have been postponed to submission of writeback but
4043 * that will never happen after we truncate page cache.
4044 */
4045 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
4046 loff_t len)
4047 {
4048 handle_t *handle;
4049 loff_t size = i_size_read(inode);
4050
4051 WARN_ON(!inode_is_locked(inode));
4052 if (offset > size || offset + len < size)
4053 return 0;
4054
4055 if (EXT4_I(inode)->i_disksize >= size)
4056 return 0;
4057
4058 handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
4059 if (IS_ERR(handle))
4060 return PTR_ERR(handle);
4061 ext4_update_i_disksize(inode, size);
4062 ext4_mark_inode_dirty(handle, inode);
4063 ext4_journal_stop(handle);
4064
4065 return 0;
4066 }
4067
4068 /*
4069 * ext4_punch_hole: punches a hole in a file by releasing the blocks
4070 * associated with the given offset and length
4071 *
4072 * @inode: File inode
4073 * @offset: The offset where the hole will begin
4074 * @len: The length of the hole
4075 *
4076 * Returns: 0 on success or negative on failure
4077 */
4078
4079 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
4080 {
4081 struct super_block *sb = inode->i_sb;
4082 ext4_lblk_t first_block, stop_block;
4083 struct address_space *mapping = inode->i_mapping;
4084 loff_t first_block_offset, last_block_offset;
4085 handle_t *handle;
4086 unsigned int credits;
4087 int ret = 0;
4088
4089 if (!S_ISREG(inode->i_mode))
4090 return -EOPNOTSUPP;
4091
4092 trace_ext4_punch_hole(inode, offset, length, 0);
4093
4094 /*
4095 * Write out all dirty pages to avoid race conditions
4096 * Then release them.
4097 */
4098 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
4099 ret = filemap_write_and_wait_range(mapping, offset,
4100 offset + length - 1);
4101 if (ret)
4102 return ret;
4103 }
4104
4105 inode_lock(inode);
4106
4107 /* No need to punch hole beyond i_size */
4108 if (offset >= inode->i_size)
4109 goto out_mutex;
4110
4111 /*
4112 * If the hole extends beyond i_size, set the hole
4113 * to end after the page that contains i_size
4114 */
4115 if (offset + length > inode->i_size) {
4116 length = inode->i_size +
4117 PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
4118 offset;
4119 }
4120
4121 if (offset & (sb->s_blocksize - 1) ||
4122 (offset + length) & (sb->s_blocksize - 1)) {
4123 /*
4124 * Attach jinode to inode for jbd2 if we do any zeroing of
4125 * partial block
4126 */
4127 ret = ext4_inode_attach_jinode(inode);
4128 if (ret < 0)
4129 goto out_mutex;
4130
4131 }
4132
4133 /* Wait all existing dio workers, newcomers will block on i_mutex */
4134 ext4_inode_block_unlocked_dio(inode);
4135 inode_dio_wait(inode);
4136
4137 /*
4138 * Prevent page faults from reinstantiating pages we have released from
4139 * page cache.
4140 */
4141 down_write(&EXT4_I(inode)->i_mmap_sem);
4142 first_block_offset = round_up(offset, sb->s_blocksize);
4143 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
4144
4145 /* Now release the pages and zero block aligned part of pages*/
4146 if (last_block_offset > first_block_offset) {
4147 ret = ext4_update_disksize_before_punch(inode, offset, length);
4148 if (ret)
4149 goto out_dio;
4150 truncate_pagecache_range(inode, first_block_offset,
4151 last_block_offset);
4152 }
4153
4154 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4155 credits = ext4_writepage_trans_blocks(inode);
4156 else
4157 credits = ext4_blocks_for_truncate(inode);
4158 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4159 if (IS_ERR(handle)) {
4160 ret = PTR_ERR(handle);
4161 ext4_std_error(sb, ret);
4162 goto out_dio;
4163 }
4164
4165 ret = ext4_zero_partial_blocks(handle, inode, offset,
4166 length);
4167 if (ret)
4168 goto out_stop;
4169
4170 first_block = (offset + sb->s_blocksize - 1) >>
4171 EXT4_BLOCK_SIZE_BITS(sb);
4172 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4173
4174 /* If there are no blocks to remove, return now */
4175 if (first_block >= stop_block)
4176 goto out_stop;
4177
4178 down_write(&EXT4_I(inode)->i_data_sem);
4179 ext4_discard_preallocations(inode);
4180
4181 ret = ext4_es_remove_extent(inode, first_block,
4182 stop_block - first_block);
4183 if (ret) {
4184 up_write(&EXT4_I(inode)->i_data_sem);
4185 goto out_stop;
4186 }
4187
4188 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4189 ret = ext4_ext_remove_space(inode, first_block,
4190 stop_block - 1);
4191 else
4192 ret = ext4_ind_remove_space(handle, inode, first_block,
4193 stop_block);
4194
4195 up_write(&EXT4_I(inode)->i_data_sem);
4196 if (IS_SYNC(inode))
4197 ext4_handle_sync(handle);
4198
4199 inode->i_mtime = inode->i_ctime = current_time(inode);
4200 ext4_mark_inode_dirty(handle, inode);
4201 out_stop:
4202 ext4_journal_stop(handle);
4203 out_dio:
4204 up_write(&EXT4_I(inode)->i_mmap_sem);
4205 ext4_inode_resume_unlocked_dio(inode);
4206 out_mutex:
4207 inode_unlock(inode);
4208 return ret;
4209 }
4210
4211 int ext4_inode_attach_jinode(struct inode *inode)
4212 {
4213 struct ext4_inode_info *ei = EXT4_I(inode);
4214 struct jbd2_inode *jinode;
4215
4216 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4217 return 0;
4218
4219 jinode = jbd2_alloc_inode(GFP_KERNEL);
4220 spin_lock(&inode->i_lock);
4221 if (!ei->jinode) {
4222 if (!jinode) {
4223 spin_unlock(&inode->i_lock);
4224 return -ENOMEM;
4225 }
4226 ei->jinode = jinode;
4227 jbd2_journal_init_jbd_inode(ei->jinode, inode);
4228 jinode = NULL;
4229 }
4230 spin_unlock(&inode->i_lock);
4231 if (unlikely(jinode != NULL))
4232 jbd2_free_inode(jinode);
4233 return 0;
4234 }
4235
4236 /*
4237 * ext4_truncate()
4238 *
4239 * We block out ext4_get_block() block instantiations across the entire
4240 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4241 * simultaneously on behalf of the same inode.
4242 *
4243 * As we work through the truncate and commit bits of it to the journal there
4244 * is one core, guiding principle: the file's tree must always be consistent on
4245 * disk. We must be able to restart the truncate after a crash.
4246 *
4247 * The file's tree may be transiently inconsistent in memory (although it
4248 * probably isn't), but whenever we close off and commit a journal transaction,
4249 * the contents of (the filesystem + the journal) must be consistent and
4250 * restartable. It's pretty simple, really: bottom up, right to left (although
4251 * left-to-right works OK too).
4252 *
4253 * Note that at recovery time, journal replay occurs *before* the restart of
4254 * truncate against the orphan inode list.
4255 *
4256 * The committed inode has the new, desired i_size (which is the same as
4257 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
4258 * that this inode's truncate did not complete and it will again call
4259 * ext4_truncate() to have another go. So there will be instantiated blocks
4260 * to the right of the truncation point in a crashed ext4 filesystem. But
4261 * that's fine - as long as they are linked from the inode, the post-crash
4262 * ext4_truncate() run will find them and release them.
4263 */
4264 int ext4_truncate(struct inode *inode)
4265 {
4266 struct ext4_inode_info *ei = EXT4_I(inode);
4267 unsigned int credits;
4268 int err = 0;
4269 handle_t *handle;
4270 struct address_space *mapping = inode->i_mapping;
4271
4272 /*
4273 * There is a possibility that we're either freeing the inode
4274 * or it's a completely new inode. In those cases we might not
4275 * have i_mutex locked because it's not necessary.
4276 */
4277 if (!(inode->i_state & (I_NEW|I_FREEING)))
4278 WARN_ON(!inode_is_locked(inode));
4279 trace_ext4_truncate_enter(inode);
4280
4281 if (!ext4_can_truncate(inode))
4282 return 0;
4283
4284 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4285
4286 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4287 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4288
4289 if (ext4_has_inline_data(inode)) {
4290 int has_inline = 1;
4291
4292 ext4_inline_data_truncate(inode, &has_inline);
4293 if (has_inline)
4294 return 0;
4295 }
4296
4297 /* If we zero-out tail of the page, we have to create jinode for jbd2 */
4298 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4299 if (ext4_inode_attach_jinode(inode) < 0)
4300 return 0;
4301 }
4302
4303 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4304 credits = ext4_writepage_trans_blocks(inode);
4305 else
4306 credits = ext4_blocks_for_truncate(inode);
4307
4308 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4309 if (IS_ERR(handle))
4310 return PTR_ERR(handle);
4311
4312 if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4313 ext4_block_truncate_page(handle, mapping, inode->i_size);
4314
4315 /*
4316 * We add the inode to the orphan list, so that if this
4317 * truncate spans multiple transactions, and we crash, we will
4318 * resume the truncate when the filesystem recovers. It also
4319 * marks the inode dirty, to catch the new size.
4320 *
4321 * Implication: the file must always be in a sane, consistent
4322 * truncatable state while each transaction commits.
4323 */
4324 err = ext4_orphan_add(handle, inode);
4325 if (err)
4326 goto out_stop;
4327
4328 down_write(&EXT4_I(inode)->i_data_sem);
4329
4330 ext4_discard_preallocations(inode);
4331
4332 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4333 err = ext4_ext_truncate(handle, inode);
4334 else
4335 ext4_ind_truncate(handle, inode);
4336
4337 up_write(&ei->i_data_sem);
4338 if (err)
4339 goto out_stop;
4340
4341 if (IS_SYNC(inode))
4342 ext4_handle_sync(handle);
4343
4344 out_stop:
4345 /*
4346 * If this was a simple ftruncate() and the file will remain alive,
4347 * then we need to clear up the orphan record which we created above.
4348 * However, if this was a real unlink then we were called by
4349 * ext4_evict_inode(), and we allow that function to clean up the
4350 * orphan info for us.
4351 */
4352 if (inode->i_nlink)
4353 ext4_orphan_del(handle, inode);
4354
4355 inode->i_mtime = inode->i_ctime = current_time(inode);
4356 ext4_mark_inode_dirty(handle, inode);
4357 ext4_journal_stop(handle);
4358
4359 trace_ext4_truncate_exit(inode);
4360 return err;
4361 }
4362
4363 /*
4364 * ext4_get_inode_loc returns with an extra refcount against the inode's
4365 * underlying buffer_head on success. If 'in_mem' is true, we have all
4366 * data in memory that is needed to recreate the on-disk version of this
4367 * inode.
4368 */
4369 static int __ext4_get_inode_loc(struct inode *inode,
4370 struct ext4_iloc *iloc, int in_mem)
4371 {
4372 struct ext4_group_desc *gdp;
4373 struct buffer_head *bh;
4374 struct super_block *sb = inode->i_sb;
4375 ext4_fsblk_t block;
4376 int inodes_per_block, inode_offset;
4377
4378 iloc->bh = NULL;
4379 if (!ext4_valid_inum(sb, inode->i_ino))
4380 return -EFSCORRUPTED;
4381
4382 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4383 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4384 if (!gdp)
4385 return -EIO;
4386
4387 /*
4388 * Figure out the offset within the block group inode table
4389 */
4390 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4391 inode_offset = ((inode->i_ino - 1) %
4392 EXT4_INODES_PER_GROUP(sb));
4393 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4394 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4395
4396 bh = sb_getblk(sb, block);
4397 if (unlikely(!bh))
4398 return -ENOMEM;
4399 if (!buffer_uptodate(bh)) {
4400 lock_buffer(bh);
4401
4402 /*
4403 * If the buffer has the write error flag, we have failed
4404 * to write out another inode in the same block. In this
4405 * case, we don't have to read the block because we may
4406 * read the old inode data successfully.
4407 */
4408 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4409 set_buffer_uptodate(bh);
4410
4411 if (buffer_uptodate(bh)) {
4412 /* someone brought it uptodate while we waited */
4413 unlock_buffer(bh);
4414 goto has_buffer;
4415 }
4416
4417 /*
4418 * If we have all information of the inode in memory and this
4419 * is the only valid inode in the block, we need not read the
4420 * block.
4421 */
4422 if (in_mem) {
4423 struct buffer_head *bitmap_bh;
4424 int i, start;
4425
4426 start = inode_offset & ~(inodes_per_block - 1);
4427
4428 /* Is the inode bitmap in cache? */
4429 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4430 if (unlikely(!bitmap_bh))
4431 goto make_io;
4432
4433 /*
4434 * If the inode bitmap isn't in cache then the
4435 * optimisation may end up performing two reads instead
4436 * of one, so skip it.
4437 */
4438 if (!buffer_uptodate(bitmap_bh)) {
4439 brelse(bitmap_bh);
4440 goto make_io;
4441 }
4442 for (i = start; i < start + inodes_per_block; i++) {
4443 if (i == inode_offset)
4444 continue;
4445 if (ext4_test_bit(i, bitmap_bh->b_data))
4446 break;
4447 }
4448 brelse(bitmap_bh);
4449 if (i == start + inodes_per_block) {
4450 /* all other inodes are free, so skip I/O */
4451 memset(bh->b_data, 0, bh->b_size);
4452 set_buffer_uptodate(bh);
4453 unlock_buffer(bh);
4454 goto has_buffer;
4455 }
4456 }
4457
4458 make_io:
4459 /*
4460 * If we need to do any I/O, try to pre-readahead extra
4461 * blocks from the inode table.
4462 */
4463 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4464 ext4_fsblk_t b, end, table;
4465 unsigned num;
4466 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4467
4468 table = ext4_inode_table(sb, gdp);
4469 /* s_inode_readahead_blks is always a power of 2 */
4470 b = block & ~((ext4_fsblk_t) ra_blks - 1);
4471 if (table > b)
4472 b = table;
4473 end = b + ra_blks;
4474 num = EXT4_INODES_PER_GROUP(sb);
4475 if (ext4_has_group_desc_csum(sb))
4476 num -= ext4_itable_unused_count(sb, gdp);
4477 table += num / inodes_per_block;
4478 if (end > table)
4479 end = table;
4480 while (b <= end)
4481 sb_breadahead(sb, b++);
4482 }
4483
4484 /*
4485 * There are other valid inodes in the buffer, this inode
4486 * has in-inode xattrs, or we don't have this inode in memory.
4487 * Read the block from disk.
4488 */
4489 trace_ext4_load_inode(inode);
4490 get_bh(bh);
4491 bh->b_end_io = end_buffer_read_sync;
4492 submit_bh(REQ_OP_READ, REQ_META | REQ_PRIO, bh);
4493 wait_on_buffer(bh);
4494 if (!buffer_uptodate(bh)) {
4495 EXT4_ERROR_INODE_BLOCK(inode, block,
4496 "unable to read itable block");
4497 brelse(bh);
4498 return -EIO;
4499 }
4500 }
4501 has_buffer:
4502 iloc->bh = bh;
4503 return 0;
4504 }
4505
4506 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4507 {
4508 /* We have all inode data except xattrs in memory here. */
4509 return __ext4_get_inode_loc(inode, iloc,
4510 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4511 }
4512
4513 void ext4_set_inode_flags(struct inode *inode)
4514 {
4515 unsigned int flags = EXT4_I(inode)->i_flags;
4516 unsigned int new_fl = 0;
4517
4518 if (flags & EXT4_SYNC_FL)
4519 new_fl |= S_SYNC;
4520 if (flags & EXT4_APPEND_FL)
4521 new_fl |= S_APPEND;
4522 if (flags & EXT4_IMMUTABLE_FL)
4523 new_fl |= S_IMMUTABLE;
4524 if (flags & EXT4_NOATIME_FL)
4525 new_fl |= S_NOATIME;
4526 if (flags & EXT4_DIRSYNC_FL)
4527 new_fl |= S_DIRSYNC;
4528 if (test_opt(inode->i_sb, DAX) && S_ISREG(inode->i_mode) &&
4529 !ext4_should_journal_data(inode) && !ext4_has_inline_data(inode) &&
4530 !ext4_encrypted_inode(inode))
4531 new_fl |= S_DAX;
4532 inode_set_flags(inode, new_fl,
4533 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX);
4534 }
4535
4536 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4537 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4538 {
4539 unsigned int vfs_fl;
4540 unsigned long old_fl, new_fl;
4541
4542 do {
4543 vfs_fl = ei->vfs_inode.i_flags;
4544 old_fl = ei->i_flags;
4545 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4546 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
4547 EXT4_DIRSYNC_FL);
4548 if (vfs_fl & S_SYNC)
4549 new_fl |= EXT4_SYNC_FL;
4550 if (vfs_fl & S_APPEND)
4551 new_fl |= EXT4_APPEND_FL;
4552 if (vfs_fl & S_IMMUTABLE)
4553 new_fl |= EXT4_IMMUTABLE_FL;
4554 if (vfs_fl & S_NOATIME)
4555 new_fl |= EXT4_NOATIME_FL;
4556 if (vfs_fl & S_DIRSYNC)
4557 new_fl |= EXT4_DIRSYNC_FL;
4558 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
4559 }
4560
4561 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4562 struct ext4_inode_info *ei)
4563 {
4564 blkcnt_t i_blocks ;
4565 struct inode *inode = &(ei->vfs_inode);
4566 struct super_block *sb = inode->i_sb;
4567
4568 if (ext4_has_feature_huge_file(sb)) {
4569 /* we are using combined 48 bit field */
4570 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4571 le32_to_cpu(raw_inode->i_blocks_lo);
4572 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4573 /* i_blocks represent file system block size */
4574 return i_blocks << (inode->i_blkbits - 9);
4575 } else {
4576 return i_blocks;
4577 }
4578 } else {
4579 return le32_to_cpu(raw_inode->i_blocks_lo);
4580 }
4581 }
4582
4583 static inline void ext4_iget_extra_inode(struct inode *inode,
4584 struct ext4_inode *raw_inode,
4585 struct ext4_inode_info *ei)
4586 {
4587 __le32 *magic = (void *)raw_inode +
4588 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4589 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4590 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4591 ext4_find_inline_data_nolock(inode);
4592 } else
4593 EXT4_I(inode)->i_inline_off = 0;
4594 }
4595
4596 int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4597 {
4598 if (!ext4_has_feature_project(inode->i_sb))
4599 return -EOPNOTSUPP;
4600 *projid = EXT4_I(inode)->i_projid;
4601 return 0;
4602 }
4603
4604 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4605 {
4606 struct ext4_iloc iloc;
4607 struct ext4_inode *raw_inode;
4608 struct ext4_inode_info *ei;
4609 struct inode *inode;
4610 journal_t *journal = EXT4_SB(sb)->s_journal;
4611 long ret;
4612 int block;
4613 uid_t i_uid;
4614 gid_t i_gid;
4615 projid_t i_projid;
4616
4617 inode = iget_locked(sb, ino);
4618 if (!inode)
4619 return ERR_PTR(-ENOMEM);
4620 if (!(inode->i_state & I_NEW))
4621 return inode;
4622
4623 ei = EXT4_I(inode);
4624 iloc.bh = NULL;
4625
4626 ret = __ext4_get_inode_loc(inode, &iloc, 0);
4627 if (ret < 0)
4628 goto bad_inode;
4629 raw_inode = ext4_raw_inode(&iloc);
4630
4631 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4632 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4633 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4634 EXT4_INODE_SIZE(inode->i_sb)) {
4635 EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
4636 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
4637 EXT4_INODE_SIZE(inode->i_sb));
4638 ret = -EFSCORRUPTED;
4639 goto bad_inode;
4640 }
4641 } else
4642 ei->i_extra_isize = 0;
4643
4644 /* Precompute checksum seed for inode metadata */
4645 if (ext4_has_metadata_csum(sb)) {
4646 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4647 __u32 csum;
4648 __le32 inum = cpu_to_le32(inode->i_ino);
4649 __le32 gen = raw_inode->i_generation;
4650 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4651 sizeof(inum));
4652 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4653 sizeof(gen));
4654 }
4655
4656 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4657 EXT4_ERROR_INODE(inode, "checksum invalid");
4658 ret = -EFSBADCRC;
4659 goto bad_inode;
4660 }
4661
4662 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4663 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4664 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4665 if (ext4_has_feature_project(sb) &&
4666 EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4667 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4668 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4669 else
4670 i_projid = EXT4_DEF_PROJID;
4671
4672 if (!(test_opt(inode->i_sb, NO_UID32))) {
4673 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4674 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4675 }
4676 i_uid_write(inode, i_uid);
4677 i_gid_write(inode, i_gid);
4678 ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4679 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4680
4681 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
4682 ei->i_inline_off = 0;
4683 ei->i_dir_start_lookup = 0;
4684 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4685 /* We now have enough fields to check if the inode was active or not.
4686 * This is needed because nfsd might try to access dead inodes
4687 * the test is that same one that e2fsck uses
4688 * NeilBrown 1999oct15
4689 */
4690 if (inode->i_nlink == 0) {
4691 if ((inode->i_mode == 0 ||
4692 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4693 ino != EXT4_BOOT_LOADER_INO) {
4694 /* this inode is deleted */
4695 ret = -ESTALE;
4696 goto bad_inode;
4697 }
4698 /* The only unlinked inodes we let through here have
4699 * valid i_mode and are being read by the orphan
4700 * recovery code: that's fine, we're about to complete
4701 * the process of deleting those.
4702 * OR it is the EXT4_BOOT_LOADER_INO which is
4703 * not initialized on a new filesystem. */
4704 }
4705 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4706 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4707 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4708 if (ext4_has_feature_64bit(sb))
4709 ei->i_file_acl |=
4710 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4711 inode->i_size = ext4_isize(raw_inode);
4712 ei->i_disksize = inode->i_size;
4713 #ifdef CONFIG_QUOTA
4714 ei->i_reserved_quota = 0;
4715 #endif
4716 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4717 ei->i_block_group = iloc.block_group;
4718 ei->i_last_alloc_group = ~0;
4719 /*
4720 * NOTE! The in-memory inode i_data array is in little-endian order
4721 * even on big-endian machines: we do NOT byteswap the block numbers!
4722 */
4723 for (block = 0; block < EXT4_N_BLOCKS; block++)
4724 ei->i_data[block] = raw_inode->i_block[block];
4725 INIT_LIST_HEAD(&ei->i_orphan);
4726
4727 /*
4728 * Set transaction id's of transactions that have to be committed
4729 * to finish f[data]sync. We set them to currently running transaction
4730 * as we cannot be sure that the inode or some of its metadata isn't
4731 * part of the transaction - the inode could have been reclaimed and
4732 * now it is reread from disk.
4733 */
4734 if (journal) {
4735 transaction_t *transaction;
4736 tid_t tid;
4737
4738 read_lock(&journal->j_state_lock);
4739 if (journal->j_running_transaction)
4740 transaction = journal->j_running_transaction;
4741 else
4742 transaction = journal->j_committing_transaction;
4743 if (transaction)
4744 tid = transaction->t_tid;
4745 else
4746 tid = journal->j_commit_sequence;
4747 read_unlock(&journal->j_state_lock);
4748 ei->i_sync_tid = tid;
4749 ei->i_datasync_tid = tid;
4750 }
4751
4752 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4753 if (ei->i_extra_isize == 0) {
4754 /* The extra space is currently unused. Use it. */
4755 ei->i_extra_isize = sizeof(struct ext4_inode) -
4756 EXT4_GOOD_OLD_INODE_SIZE;
4757 } else {
4758 ext4_iget_extra_inode(inode, raw_inode, ei);
4759 }
4760 }
4761
4762 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4763 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4764 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4765 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4766
4767 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4768 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4769 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4770 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4771 inode->i_version |=
4772 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4773 }
4774 }
4775
4776 ret = 0;
4777 if (ei->i_file_acl &&
4778 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4779 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4780 ei->i_file_acl);
4781 ret = -EFSCORRUPTED;
4782 goto bad_inode;
4783 } else if (!ext4_has_inline_data(inode)) {
4784 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4785 if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4786 (S_ISLNK(inode->i_mode) &&
4787 !ext4_inode_is_fast_symlink(inode))))
4788 /* Validate extent which is part of inode */
4789 ret = ext4_ext_check_inode(inode);
4790 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4791 (S_ISLNK(inode->i_mode) &&
4792 !ext4_inode_is_fast_symlink(inode))) {
4793 /* Validate block references which are part of inode */
4794 ret = ext4_ind_check_inode(inode);
4795 }
4796 }
4797 if (ret)
4798 goto bad_inode;
4799
4800 if (S_ISREG(inode->i_mode)) {
4801 inode->i_op = &ext4_file_inode_operations;
4802 inode->i_fop = &ext4_file_operations;
4803 ext4_set_aops(inode);
4804 } else if (S_ISDIR(inode->i_mode)) {
4805 inode->i_op = &ext4_dir_inode_operations;
4806 inode->i_fop = &ext4_dir_operations;
4807 } else if (S_ISLNK(inode->i_mode)) {
4808 if (ext4_encrypted_inode(inode)) {
4809 inode->i_op = &ext4_encrypted_symlink_inode_operations;
4810 ext4_set_aops(inode);
4811 } else if (ext4_inode_is_fast_symlink(inode)) {
4812 inode->i_link = (char *)ei->i_data;
4813 inode->i_op = &ext4_fast_symlink_inode_operations;
4814 nd_terminate_link(ei->i_data, inode->i_size,
4815 sizeof(ei->i_data) - 1);
4816 } else {
4817 inode->i_op = &ext4_symlink_inode_operations;
4818 ext4_set_aops(inode);
4819 }
4820 inode_nohighmem(inode);
4821 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4822 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4823 inode->i_op = &ext4_special_inode_operations;
4824 if (raw_inode->i_block[0])
4825 init_special_inode(inode, inode->i_mode,
4826 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4827 else
4828 init_special_inode(inode, inode->i_mode,
4829 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4830 } else if (ino == EXT4_BOOT_LOADER_INO) {
4831 make_bad_inode(inode);
4832 } else {
4833 ret = -EFSCORRUPTED;
4834 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4835 goto bad_inode;
4836 }
4837 brelse(iloc.bh);
4838 ext4_set_inode_flags(inode);
4839 unlock_new_inode(inode);
4840 return inode;
4841
4842 bad_inode:
4843 brelse(iloc.bh);
4844 iget_failed(inode);
4845 return ERR_PTR(ret);
4846 }
4847
4848 struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino)
4849 {
4850 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
4851 return ERR_PTR(-EFSCORRUPTED);
4852 return ext4_iget(sb, ino);
4853 }
4854
4855 static int ext4_inode_blocks_set(handle_t *handle,
4856 struct ext4_inode *raw_inode,
4857 struct ext4_inode_info *ei)
4858 {
4859 struct inode *inode = &(ei->vfs_inode);
4860 u64 i_blocks = inode->i_blocks;
4861 struct super_block *sb = inode->i_sb;
4862
4863 if (i_blocks <= ~0U) {
4864 /*
4865 * i_blocks can be represented in a 32 bit variable
4866 * as multiple of 512 bytes
4867 */
4868 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4869 raw_inode->i_blocks_high = 0;
4870 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4871 return 0;
4872 }
4873 if (!ext4_has_feature_huge_file(sb))
4874 return -EFBIG;
4875
4876 if (i_blocks <= 0xffffffffffffULL) {
4877 /*
4878 * i_blocks can be represented in a 48 bit variable
4879 * as multiple of 512 bytes
4880 */
4881 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4882 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4883 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4884 } else {
4885 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4886 /* i_block is stored in file system block size */
4887 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4888 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4889 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4890 }
4891 return 0;
4892 }
4893
4894 struct other_inode {
4895 unsigned long orig_ino;
4896 struct ext4_inode *raw_inode;
4897 };
4898
4899 static int other_inode_match(struct inode * inode, unsigned long ino,
4900 void *data)
4901 {
4902 struct other_inode *oi = (struct other_inode *) data;
4903
4904 if ((inode->i_ino != ino) ||
4905 (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4906 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
4907 ((inode->i_state & I_DIRTY_TIME) == 0))
4908 return 0;
4909 spin_lock(&inode->i_lock);
4910 if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4911 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) == 0) &&
4912 (inode->i_state & I_DIRTY_TIME)) {
4913 struct ext4_inode_info *ei = EXT4_I(inode);
4914
4915 inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED);
4916 spin_unlock(&inode->i_lock);
4917
4918 spin_lock(&ei->i_raw_lock);
4919 EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode);
4920 EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode);
4921 EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode);
4922 ext4_inode_csum_set(inode, oi->raw_inode, ei);
4923 spin_unlock(&ei->i_raw_lock);
4924 trace_ext4_other_inode_update_time(inode, oi->orig_ino);
4925 return -1;
4926 }
4927 spin_unlock(&inode->i_lock);
4928 return -1;
4929 }
4930
4931 /*
4932 * Opportunistically update the other time fields for other inodes in
4933 * the same inode table block.
4934 */
4935 static void ext4_update_other_inodes_time(struct super_block *sb,
4936 unsigned long orig_ino, char *buf)
4937 {
4938 struct other_inode oi;
4939 unsigned long ino;
4940 int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4941 int inode_size = EXT4_INODE_SIZE(sb);
4942
4943 oi.orig_ino = orig_ino;
4944 /*
4945 * Calculate the first inode in the inode table block. Inode
4946 * numbers are one-based. That is, the first inode in a block
4947 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
4948 */
4949 ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
4950 for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
4951 if (ino == orig_ino)
4952 continue;
4953 oi.raw_inode = (struct ext4_inode *) buf;
4954 (void) find_inode_nowait(sb, ino, other_inode_match, &oi);
4955 }
4956 }
4957
4958 /*
4959 * Post the struct inode info into an on-disk inode location in the
4960 * buffer-cache. This gobbles the caller's reference to the
4961 * buffer_head in the inode location struct.
4962 *
4963 * The caller must have write access to iloc->bh.
4964 */
4965 static int ext4_do_update_inode(handle_t *handle,
4966 struct inode *inode,
4967 struct ext4_iloc *iloc)
4968 {
4969 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4970 struct ext4_inode_info *ei = EXT4_I(inode);
4971 struct buffer_head *bh = iloc->bh;
4972 struct super_block *sb = inode->i_sb;
4973 int err = 0, rc, block;
4974 int need_datasync = 0, set_large_file = 0;
4975 uid_t i_uid;
4976 gid_t i_gid;
4977 projid_t i_projid;
4978
4979 spin_lock(&ei->i_raw_lock);
4980
4981 /* For fields not tracked in the in-memory inode,
4982 * initialise them to zero for new inodes. */
4983 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4984 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4985
4986 ext4_get_inode_flags(ei);
4987 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4988 i_uid = i_uid_read(inode);
4989 i_gid = i_gid_read(inode);
4990 i_projid = from_kprojid(&init_user_ns, ei->i_projid);
4991 if (!(test_opt(inode->i_sb, NO_UID32))) {
4992 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4993 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4994 /*
4995 * Fix up interoperability with old kernels. Otherwise, old inodes get
4996 * re-used with the upper 16 bits of the uid/gid intact
4997 */
4998 if (ei->i_dtime && list_empty(&ei->i_orphan)) {
4999 raw_inode->i_uid_high = 0;
5000 raw_inode->i_gid_high = 0;
5001 } else {
5002 raw_inode->i_uid_high =
5003 cpu_to_le16(high_16_bits(i_uid));
5004 raw_inode->i_gid_high =
5005 cpu_to_le16(high_16_bits(i_gid));
5006 }
5007 } else {
5008 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
5009 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
5010 raw_inode->i_uid_high = 0;
5011 raw_inode->i_gid_high = 0;
5012 }
5013 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
5014
5015 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5016 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5017 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5018 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
5019
5020 err = ext4_inode_blocks_set(handle, raw_inode, ei);
5021 if (err) {
5022 spin_unlock(&ei->i_raw_lock);
5023 goto out_brelse;
5024 }
5025 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
5026 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
5027 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
5028 raw_inode->i_file_acl_high =
5029 cpu_to_le16(ei->i_file_acl >> 32);
5030 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
5031 if (ei->i_disksize != ext4_isize(raw_inode)) {
5032 ext4_isize_set(raw_inode, ei->i_disksize);
5033 need_datasync = 1;
5034 }
5035 if (ei->i_disksize > 0x7fffffffULL) {
5036 if (!ext4_has_feature_large_file(sb) ||
5037 EXT4_SB(sb)->s_es->s_rev_level ==
5038 cpu_to_le32(EXT4_GOOD_OLD_REV))
5039 set_large_file = 1;
5040 }
5041 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5042 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5043 if (old_valid_dev(inode->i_rdev)) {
5044 raw_inode->i_block[0] =
5045 cpu_to_le32(old_encode_dev(inode->i_rdev));
5046 raw_inode->i_block[1] = 0;
5047 } else {
5048 raw_inode->i_block[0] = 0;
5049 raw_inode->i_block[1] =
5050 cpu_to_le32(new_encode_dev(inode->i_rdev));
5051 raw_inode->i_block[2] = 0;
5052 }
5053 } else if (!ext4_has_inline_data(inode)) {
5054 for (block = 0; block < EXT4_N_BLOCKS; block++)
5055 raw_inode->i_block[block] = ei->i_data[block];
5056 }
5057
5058 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
5059 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
5060 if (ei->i_extra_isize) {
5061 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5062 raw_inode->i_version_hi =
5063 cpu_to_le32(inode->i_version >> 32);
5064 raw_inode->i_extra_isize =
5065 cpu_to_le16(ei->i_extra_isize);
5066 }
5067 }
5068
5069 BUG_ON(!ext4_has_feature_project(inode->i_sb) &&
5070 i_projid != EXT4_DEF_PROJID);
5071
5072 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
5073 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
5074 raw_inode->i_projid = cpu_to_le32(i_projid);
5075
5076 ext4_inode_csum_set(inode, raw_inode, ei);
5077 spin_unlock(&ei->i_raw_lock);
5078 if (inode->i_sb->s_flags & MS_LAZYTIME)
5079 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5080 bh->b_data);
5081
5082 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5083 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
5084 if (!err)
5085 err = rc;
5086 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5087 if (set_large_file) {
5088 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5089 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
5090 if (err)
5091 goto out_brelse;
5092 ext4_update_dynamic_rev(sb);
5093 ext4_set_feature_large_file(sb);
5094 ext4_handle_sync(handle);
5095 err = ext4_handle_dirty_super(handle, sb);
5096 }
5097 ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5098 out_brelse:
5099 brelse(bh);
5100 ext4_std_error(inode->i_sb, err);
5101 return err;
5102 }
5103
5104 /*
5105 * ext4_write_inode()
5106 *
5107 * We are called from a few places:
5108 *
5109 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5110 * Here, there will be no transaction running. We wait for any running
5111 * transaction to commit.
5112 *
5113 * - Within flush work (sys_sync(), kupdate and such).
5114 * We wait on commit, if told to.
5115 *
5116 * - Within iput_final() -> write_inode_now()
5117 * We wait on commit, if told to.
5118 *
5119 * In all cases it is actually safe for us to return without doing anything,
5120 * because the inode has been copied into a raw inode buffer in
5121 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL
5122 * writeback.
5123 *
5124 * Note that we are absolutely dependent upon all inode dirtiers doing the
5125 * right thing: they *must* call mark_inode_dirty() after dirtying info in
5126 * which we are interested.
5127 *
5128 * It would be a bug for them to not do this. The code:
5129 *
5130 * mark_inode_dirty(inode)
5131 * stuff();
5132 * inode->i_size = expr;
5133 *
5134 * is in error because write_inode() could occur while `stuff()' is running,
5135 * and the new i_size will be lost. Plus the inode will no longer be on the
5136 * superblock's dirty inode list.
5137 */
5138 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5139 {
5140 int err;
5141
5142 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
5143 return 0;
5144
5145 if (EXT4_SB(inode->i_sb)->s_journal) {
5146 if (ext4_journal_current_handle()) {
5147 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5148 dump_stack();
5149 return -EIO;
5150 }
5151
5152 /*
5153 * No need to force transaction in WB_SYNC_NONE mode. Also
5154 * ext4_sync_fs() will force the commit after everything is
5155 * written.
5156 */
5157 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5158 return 0;
5159
5160 err = ext4_force_commit(inode->i_sb);
5161 } else {
5162 struct ext4_iloc iloc;
5163
5164 err = __ext4_get_inode_loc(inode, &iloc, 0);
5165 if (err)
5166 return err;
5167 /*
5168 * sync(2) will flush the whole buffer cache. No need to do
5169 * it here separately for each inode.
5170 */
5171 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5172 sync_dirty_buffer(iloc.bh);
5173 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5174 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
5175 "IO error syncing inode");
5176 err = -EIO;
5177 }
5178 brelse(iloc.bh);
5179 }
5180 return err;
5181 }
5182
5183 /*
5184 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
5185 * buffers that are attached to a page stradding i_size and are undergoing
5186 * commit. In that case we have to wait for commit to finish and try again.
5187 */
5188 static void ext4_wait_for_tail_page_commit(struct inode *inode)
5189 {
5190 struct page *page;
5191 unsigned offset;
5192 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5193 tid_t commit_tid = 0;
5194 int ret;
5195
5196 offset = inode->i_size & (PAGE_SIZE - 1);
5197 /*
5198 * All buffers in the last page remain valid? Then there's nothing to
5199 * do. We do the check mainly to optimize the common PAGE_SIZE ==
5200 * blocksize case
5201 */
5202 if (offset > PAGE_SIZE - (1 << inode->i_blkbits))
5203 return;
5204 while (1) {
5205 page = find_lock_page(inode->i_mapping,
5206 inode->i_size >> PAGE_SHIFT);
5207 if (!page)
5208 return;
5209 ret = __ext4_journalled_invalidatepage(page, offset,
5210 PAGE_SIZE - offset);
5211 unlock_page(page);
5212 put_page(page);
5213 if (ret != -EBUSY)
5214 return;
5215 commit_tid = 0;
5216 read_lock(&journal->j_state_lock);
5217 if (journal->j_committing_transaction)
5218 commit_tid = journal->j_committing_transaction->t_tid;
5219 read_unlock(&journal->j_state_lock);
5220 if (commit_tid)
5221 jbd2_log_wait_commit(journal, commit_tid);
5222 }
5223 }
5224
5225 /*
5226 * ext4_setattr()
5227 *
5228 * Called from notify_change.
5229 *
5230 * We want to trap VFS attempts to truncate the file as soon as
5231 * possible. In particular, we want to make sure that when the VFS
5232 * shrinks i_size, we put the inode on the orphan list and modify
5233 * i_disksize immediately, so that during the subsequent flushing of
5234 * dirty pages and freeing of disk blocks, we can guarantee that any
5235 * commit will leave the blocks being flushed in an unused state on
5236 * disk. (On recovery, the inode will get truncated and the blocks will
5237 * be freed, so we have a strong guarantee that no future commit will
5238 * leave these blocks visible to the user.)
5239 *
5240 * Another thing we have to assure is that if we are in ordered mode
5241 * and inode is still attached to the committing transaction, we must
5242 * we start writeout of all the dirty pages which are being truncated.
5243 * This way we are sure that all the data written in the previous
5244 * transaction are already on disk (truncate waits for pages under
5245 * writeback).
5246 *
5247 * Called with inode->i_mutex down.
5248 */
5249 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5250 {
5251 struct inode *inode = d_inode(dentry);
5252 int error, rc = 0;
5253 int orphan = 0;
5254 const unsigned int ia_valid = attr->ia_valid;
5255
5256 error = setattr_prepare(dentry, attr);
5257 if (error)
5258 return error;
5259
5260 if (is_quota_modification(inode, attr)) {
5261 error = dquot_initialize(inode);
5262 if (error)
5263 return error;
5264 }
5265 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
5266 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
5267 handle_t *handle;
5268
5269 /* (user+group)*(old+new) structure, inode write (sb,
5270 * inode block, ? - but truncate inode update has it) */
5271 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5272 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5273 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5274 if (IS_ERR(handle)) {
5275 error = PTR_ERR(handle);
5276 goto err_out;
5277 }
5278 error = dquot_transfer(inode, attr);
5279 if (error) {
5280 ext4_journal_stop(handle);
5281 return error;
5282 }
5283 /* Update corresponding info in inode so that everything is in
5284 * one transaction */
5285 if (attr->ia_valid & ATTR_UID)
5286 inode->i_uid = attr->ia_uid;
5287 if (attr->ia_valid & ATTR_GID)
5288 inode->i_gid = attr->ia_gid;
5289 error = ext4_mark_inode_dirty(handle, inode);
5290 ext4_journal_stop(handle);
5291 }
5292
5293 if (attr->ia_valid & ATTR_SIZE) {
5294 handle_t *handle;
5295 loff_t oldsize = inode->i_size;
5296 int shrink = (attr->ia_size <= inode->i_size);
5297
5298 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5299 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5300
5301 if (attr->ia_size > sbi->s_bitmap_maxbytes)
5302 return -EFBIG;
5303 }
5304 if (!S_ISREG(inode->i_mode))
5305 return -EINVAL;
5306
5307 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
5308 inode_inc_iversion(inode);
5309
5310 if (ext4_should_order_data(inode) &&
5311 (attr->ia_size < inode->i_size)) {
5312 error = ext4_begin_ordered_truncate(inode,
5313 attr->ia_size);
5314 if (error)
5315 goto err_out;
5316 }
5317 if (attr->ia_size != inode->i_size) {
5318 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5319 if (IS_ERR(handle)) {
5320 error = PTR_ERR(handle);
5321 goto err_out;
5322 }
5323 if (ext4_handle_valid(handle) && shrink) {
5324 error = ext4_orphan_add(handle, inode);
5325 orphan = 1;
5326 }
5327 /*
5328 * Update c/mtime on truncate up, ext4_truncate() will
5329 * update c/mtime in shrink case below
5330 */
5331 if (!shrink) {
5332 inode->i_mtime = current_time(inode);
5333 inode->i_ctime = inode->i_mtime;
5334 }
5335 down_write(&EXT4_I(inode)->i_data_sem);
5336 EXT4_I(inode)->i_disksize = attr->ia_size;
5337 rc = ext4_mark_inode_dirty(handle, inode);
5338 if (!error)
5339 error = rc;
5340 /*
5341 * We have to update i_size under i_data_sem together
5342 * with i_disksize to avoid races with writeback code
5343 * running ext4_wb_update_i_disksize().
5344 */
5345 if (!error)
5346 i_size_write(inode, attr->ia_size);
5347 up_write(&EXT4_I(inode)->i_data_sem);
5348 ext4_journal_stop(handle);
5349 if (error) {
5350 if (orphan)
5351 ext4_orphan_del(NULL, inode);
5352 goto err_out;
5353 }
5354 }
5355 if (!shrink)
5356 pagecache_isize_extended(inode, oldsize, inode->i_size);
5357
5358 /*
5359 * Blocks are going to be removed from the inode. Wait
5360 * for dio in flight. Temporarily disable
5361 * dioread_nolock to prevent livelock.
5362 */
5363 if (orphan) {
5364 if (!ext4_should_journal_data(inode)) {
5365 ext4_inode_block_unlocked_dio(inode);
5366 inode_dio_wait(inode);
5367 ext4_inode_resume_unlocked_dio(inode);
5368 } else
5369 ext4_wait_for_tail_page_commit(inode);
5370 }
5371 down_write(&EXT4_I(inode)->i_mmap_sem);
5372 /*
5373 * Truncate pagecache after we've waited for commit
5374 * in data=journal mode to make pages freeable.
5375 */
5376 truncate_pagecache(inode, inode->i_size);
5377 if (shrink) {
5378 rc = ext4_truncate(inode);
5379 if (rc)
5380 error = rc;
5381 }
5382 up_write(&EXT4_I(inode)->i_mmap_sem);
5383 }
5384
5385 if (!error) {
5386 setattr_copy(inode, attr);
5387 mark_inode_dirty(inode);
5388 }
5389
5390 /*
5391 * If the call to ext4_truncate failed to get a transaction handle at
5392 * all, we need to clean up the in-core orphan list manually.
5393 */
5394 if (orphan && inode->i_nlink)
5395 ext4_orphan_del(NULL, inode);
5396
5397 if (!error && (ia_valid & ATTR_MODE))
5398 rc = posix_acl_chmod(inode, inode->i_mode);
5399
5400 err_out:
5401 ext4_std_error(inode->i_sb, error);
5402 if (!error)
5403 error = rc;
5404 return error;
5405 }
5406
5407 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
5408 struct kstat *stat)
5409 {
5410 struct inode *inode;
5411 unsigned long long delalloc_blocks;
5412
5413 inode = d_inode(dentry);
5414 generic_fillattr(inode, stat);
5415
5416 /*
5417 * If there is inline data in the inode, the inode will normally not
5418 * have data blocks allocated (it may have an external xattr block).
5419 * Report at least one sector for such files, so tools like tar, rsync,
5420 * others doen't incorrectly think the file is completely sparse.
5421 */
5422 if (unlikely(ext4_has_inline_data(inode)))
5423 stat->blocks += (stat->size + 511) >> 9;
5424
5425 /*
5426 * We can't update i_blocks if the block allocation is delayed
5427 * otherwise in the case of system crash before the real block
5428 * allocation is done, we will have i_blocks inconsistent with
5429 * on-disk file blocks.
5430 * We always keep i_blocks updated together with real
5431 * allocation. But to not confuse with user, stat
5432 * will return the blocks that include the delayed allocation
5433 * blocks for this file.
5434 */
5435 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5436 EXT4_I(inode)->i_reserved_data_blocks);
5437 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5438 return 0;
5439 }
5440
5441 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5442 int pextents)
5443 {
5444 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5445 return ext4_ind_trans_blocks(inode, lblocks);
5446 return ext4_ext_index_trans_blocks(inode, pextents);
5447 }
5448
5449 /*
5450 * Account for index blocks, block groups bitmaps and block group
5451 * descriptor blocks if modify datablocks and index blocks
5452 * worse case, the indexs blocks spread over different block groups
5453 *
5454 * If datablocks are discontiguous, they are possible to spread over
5455 * different block groups too. If they are contiguous, with flexbg,
5456 * they could still across block group boundary.
5457 *
5458 * Also account for superblock, inode, quota and xattr blocks
5459 */
5460 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5461 int pextents)
5462 {
5463 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5464 int gdpblocks;
5465 int idxblocks;
5466 int ret = 0;
5467
5468 /*
5469 * How many index blocks need to touch to map @lblocks logical blocks
5470 * to @pextents physical extents?
5471 */
5472 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5473
5474 ret = idxblocks;
5475
5476 /*
5477 * Now let's see how many group bitmaps and group descriptors need
5478 * to account
5479 */
5480 groups = idxblocks + pextents;
5481 gdpblocks = groups;
5482 if (groups > ngroups)
5483 groups = ngroups;
5484 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5485 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5486
5487 /* bitmaps and block group descriptor blocks */
5488 ret += groups + gdpblocks;
5489
5490 /* Blocks for super block, inode, quota and xattr blocks */
5491 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5492
5493 return ret;
5494 }
5495
5496 /*
5497 * Calculate the total number of credits to reserve to fit
5498 * the modification of a single pages into a single transaction,
5499 * which may include multiple chunks of block allocations.
5500 *
5501 * This could be called via ext4_write_begin()
5502 *
5503 * We need to consider the worse case, when
5504 * one new block per extent.
5505 */
5506 int ext4_writepage_trans_blocks(struct inode *inode)
5507 {
5508 int bpp = ext4_journal_blocks_per_page(inode);
5509 int ret;
5510
5511 ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5512
5513 /* Account for data blocks for journalled mode */
5514 if (ext4_should_journal_data(inode))
5515 ret += bpp;
5516 return ret;
5517 }
5518
5519 /*
5520 * Calculate the journal credits for a chunk of data modification.
5521 *
5522 * This is called from DIO, fallocate or whoever calling
5523 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5524 *
5525 * journal buffers for data blocks are not included here, as DIO
5526 * and fallocate do no need to journal data buffers.
5527 */
5528 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5529 {
5530 return ext4_meta_trans_blocks(inode, nrblocks, 1);
5531 }
5532
5533 /*
5534 * The caller must have previously called ext4_reserve_inode_write().
5535 * Give this, we know that the caller already has write access to iloc->bh.
5536 */
5537 int ext4_mark_iloc_dirty(handle_t *handle,
5538 struct inode *inode, struct ext4_iloc *iloc)
5539 {
5540 int err = 0;
5541
5542 if (IS_I_VERSION(inode))
5543 inode_inc_iversion(inode);
5544
5545 /* the do_update_inode consumes one bh->b_count */
5546 get_bh(iloc->bh);
5547
5548 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5549 err = ext4_do_update_inode(handle, inode, iloc);
5550 put_bh(iloc->bh);
5551 return err;
5552 }
5553
5554 /*
5555 * On success, We end up with an outstanding reference count against
5556 * iloc->bh. This _must_ be cleaned up later.
5557 */
5558
5559 int
5560 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5561 struct ext4_iloc *iloc)
5562 {
5563 int err;
5564
5565 err = ext4_get_inode_loc(inode, iloc);
5566 if (!err) {
5567 BUFFER_TRACE(iloc->bh, "get_write_access");
5568 err = ext4_journal_get_write_access(handle, iloc->bh);
5569 if (err) {
5570 brelse(iloc->bh);
5571 iloc->bh = NULL;
5572 }
5573 }
5574 ext4_std_error(inode->i_sb, err);
5575 return err;
5576 }
5577
5578 /*
5579 * Expand an inode by new_extra_isize bytes.
5580 * Returns 0 on success or negative error number on failure.
5581 */
5582 static int ext4_expand_extra_isize(struct inode *inode,
5583 unsigned int new_extra_isize,
5584 struct ext4_iloc iloc,
5585 handle_t *handle)
5586 {
5587 struct ext4_inode *raw_inode;
5588 struct ext4_xattr_ibody_header *header;
5589
5590 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5591 return 0;
5592
5593 raw_inode = ext4_raw_inode(&iloc);
5594
5595 header = IHDR(inode, raw_inode);
5596
5597 /* No extended attributes present */
5598 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5599 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5600 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5601 new_extra_isize);
5602 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5603 return 0;
5604 }
5605
5606 /* try to expand with EAs present */
5607 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5608 raw_inode, handle);
5609 }
5610
5611 /*
5612 * What we do here is to mark the in-core inode as clean with respect to inode
5613 * dirtiness (it may still be data-dirty).
5614 * This means that the in-core inode may be reaped by prune_icache
5615 * without having to perform any I/O. This is a very good thing,
5616 * because *any* task may call prune_icache - even ones which
5617 * have a transaction open against a different journal.
5618 *
5619 * Is this cheating? Not really. Sure, we haven't written the
5620 * inode out, but prune_icache isn't a user-visible syncing function.
5621 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5622 * we start and wait on commits.
5623 */
5624 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5625 {
5626 struct ext4_iloc iloc;
5627 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5628 static unsigned int mnt_count;
5629 int err, ret;
5630
5631 might_sleep();
5632 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5633 err = ext4_reserve_inode_write(handle, inode, &iloc);
5634 if (err)
5635 return err;
5636 if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5637 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5638 /*
5639 * In nojournal mode, we can immediately attempt to expand
5640 * the inode. When journaled, we first need to obtain extra
5641 * buffer credits since we may write into the EA block
5642 * with this same handle. If journal_extend fails, then it will
5643 * only result in a minor loss of functionality for that inode.
5644 * If this is felt to be critical, then e2fsck should be run to
5645 * force a large enough s_min_extra_isize.
5646 */
5647 if (!ext4_handle_valid(handle) ||
5648 jbd2_journal_extend(handle,
5649 EXT4_DATA_TRANS_BLOCKS(inode->i_sb)) == 0) {
5650 ret = ext4_expand_extra_isize(inode,
5651 sbi->s_want_extra_isize,
5652 iloc, handle);
5653 if (ret) {
5654 if (mnt_count !=
5655 le16_to_cpu(sbi->s_es->s_mnt_count)) {
5656 ext4_warning(inode->i_sb,
5657 "Unable to expand inode %lu. Delete"
5658 " some EAs or run e2fsck.",
5659 inode->i_ino);
5660 mnt_count =
5661 le16_to_cpu(sbi->s_es->s_mnt_count);
5662 }
5663 }
5664 }
5665 }
5666 return ext4_mark_iloc_dirty(handle, inode, &iloc);
5667 }
5668
5669 /*
5670 * ext4_dirty_inode() is called from __mark_inode_dirty()
5671 *
5672 * We're really interested in the case where a file is being extended.
5673 * i_size has been changed by generic_commit_write() and we thus need
5674 * to include the updated inode in the current transaction.
5675 *
5676 * Also, dquot_alloc_block() will always dirty the inode when blocks
5677 * are allocated to the file.
5678 *
5679 * If the inode is marked synchronous, we don't honour that here - doing
5680 * so would cause a commit on atime updates, which we don't bother doing.
5681 * We handle synchronous inodes at the highest possible level.
5682 *
5683 * If only the I_DIRTY_TIME flag is set, we can skip everything. If
5684 * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
5685 * to copy into the on-disk inode structure are the timestamp files.
5686 */
5687 void ext4_dirty_inode(struct inode *inode, int flags)
5688 {
5689 handle_t *handle;
5690
5691 if (flags == I_DIRTY_TIME)
5692 return;
5693 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5694 if (IS_ERR(handle))
5695 goto out;
5696
5697 ext4_mark_inode_dirty(handle, inode);
5698
5699 ext4_journal_stop(handle);
5700 out:
5701 return;
5702 }
5703
5704 #if 0
5705 /*
5706 * Bind an inode's backing buffer_head into this transaction, to prevent
5707 * it from being flushed to disk early. Unlike
5708 * ext4_reserve_inode_write, this leaves behind no bh reference and
5709 * returns no iloc structure, so the caller needs to repeat the iloc
5710 * lookup to mark the inode dirty later.
5711 */
5712 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5713 {
5714 struct ext4_iloc iloc;
5715
5716 int err = 0;
5717 if (handle) {
5718 err = ext4_get_inode_loc(inode, &iloc);
5719 if (!err) {
5720 BUFFER_TRACE(iloc.bh, "get_write_access");
5721 err = jbd2_journal_get_write_access(handle, iloc.bh);
5722 if (!err)
5723 err = ext4_handle_dirty_metadata(handle,
5724 NULL,
5725 iloc.bh);
5726 brelse(iloc.bh);
5727 }
5728 }
5729 ext4_std_error(inode->i_sb, err);
5730 return err;
5731 }
5732 #endif
5733
5734 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5735 {
5736 journal_t *journal;
5737 handle_t *handle;
5738 int err;
5739 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5740
5741 /*
5742 * We have to be very careful here: changing a data block's
5743 * journaling status dynamically is dangerous. If we write a
5744 * data block to the journal, change the status and then delete
5745 * that block, we risk forgetting to revoke the old log record
5746 * from the journal and so a subsequent replay can corrupt data.
5747 * So, first we make sure that the journal is empty and that
5748 * nobody is changing anything.
5749 */
5750
5751 journal = EXT4_JOURNAL(inode);
5752 if (!journal)
5753 return 0;
5754 if (is_journal_aborted(journal))
5755 return -EROFS;
5756
5757 /* Wait for all existing dio workers */
5758 ext4_inode_block_unlocked_dio(inode);
5759 inode_dio_wait(inode);
5760
5761 /*
5762 * Before flushing the journal and switching inode's aops, we have
5763 * to flush all dirty data the inode has. There can be outstanding
5764 * delayed allocations, there can be unwritten extents created by
5765 * fallocate or buffered writes in dioread_nolock mode covered by
5766 * dirty data which can be converted only after flushing the dirty
5767 * data (and journalled aops don't know how to handle these cases).
5768 */
5769 if (val) {
5770 down_write(&EXT4_I(inode)->i_mmap_sem);
5771 err = filemap_write_and_wait(inode->i_mapping);
5772 if (err < 0) {
5773 up_write(&EXT4_I(inode)->i_mmap_sem);
5774 ext4_inode_resume_unlocked_dio(inode);
5775 return err;
5776 }
5777 }
5778
5779 percpu_down_write(&sbi->s_journal_flag_rwsem);
5780 jbd2_journal_lock_updates(journal);
5781
5782 /*
5783 * OK, there are no updates running now, and all cached data is
5784 * synced to disk. We are now in a completely consistent state
5785 * which doesn't have anything in the journal, and we know that
5786 * no filesystem updates are running, so it is safe to modify
5787 * the inode's in-core data-journaling state flag now.
5788 */
5789
5790 if (val)
5791 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5792 else {
5793 err = jbd2_journal_flush(journal);
5794 if (err < 0) {
5795 jbd2_journal_unlock_updates(journal);
5796 percpu_up_write(&sbi->s_journal_flag_rwsem);
5797 ext4_inode_resume_unlocked_dio(inode);
5798 return err;
5799 }
5800 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5801 }
5802 ext4_set_aops(inode);
5803 /*
5804 * Update inode->i_flags after EXT4_INODE_JOURNAL_DATA was updated.
5805 * E.g. S_DAX may get cleared / set.
5806 */
5807 ext4_set_inode_flags(inode);
5808
5809 jbd2_journal_unlock_updates(journal);
5810 percpu_up_write(&sbi->s_journal_flag_rwsem);
5811
5812 if (val)
5813 up_write(&EXT4_I(inode)->i_mmap_sem);
5814 ext4_inode_resume_unlocked_dio(inode);
5815
5816 /* Finally we can mark the inode as dirty. */
5817
5818 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5819 if (IS_ERR(handle))
5820 return PTR_ERR(handle);
5821
5822 err = ext4_mark_inode_dirty(handle, inode);
5823 ext4_handle_sync(handle);
5824 ext4_journal_stop(handle);
5825 ext4_std_error(inode->i_sb, err);
5826
5827 return err;
5828 }
5829
5830 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5831 {
5832 return !buffer_mapped(bh);
5833 }
5834
5835 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5836 {
5837 struct page *page = vmf->page;
5838 loff_t size;
5839 unsigned long len;
5840 int ret;
5841 struct file *file = vma->vm_file;
5842 struct inode *inode = file_inode(file);
5843 struct address_space *mapping = inode->i_mapping;
5844 handle_t *handle;
5845 get_block_t *get_block;
5846 int retries = 0;
5847
5848 sb_start_pagefault(inode->i_sb);
5849 file_update_time(vma->vm_file);
5850
5851 down_read(&EXT4_I(inode)->i_mmap_sem);
5852 /* Delalloc case is easy... */
5853 if (test_opt(inode->i_sb, DELALLOC) &&
5854 !ext4_should_journal_data(inode) &&
5855 !ext4_nonda_switch(inode->i_sb)) {
5856 do {
5857 ret = block_page_mkwrite(vma, vmf,
5858 ext4_da_get_block_prep);
5859 } while (ret == -ENOSPC &&
5860 ext4_should_retry_alloc(inode->i_sb, &retries));
5861 goto out_ret;
5862 }
5863
5864 lock_page(page);
5865 size = i_size_read(inode);
5866 /* Page got truncated from under us? */
5867 if (page->mapping != mapping || page_offset(page) > size) {
5868 unlock_page(page);
5869 ret = VM_FAULT_NOPAGE;
5870 goto out;
5871 }
5872
5873 if (page->index == size >> PAGE_SHIFT)
5874 len = size & ~PAGE_MASK;
5875 else
5876 len = PAGE_SIZE;
5877 /*
5878 * Return if we have all the buffers mapped. This avoids the need to do
5879 * journal_start/journal_stop which can block and take a long time
5880 */
5881 if (page_has_buffers(page)) {
5882 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5883 0, len, NULL,
5884 ext4_bh_unmapped)) {
5885 /* Wait so that we don't change page under IO */
5886 wait_for_stable_page(page);
5887 ret = VM_FAULT_LOCKED;
5888 goto out;
5889 }
5890 }
5891 unlock_page(page);
5892 /* OK, we need to fill the hole... */
5893 if (ext4_should_dioread_nolock(inode))
5894 get_block = ext4_get_block_unwritten;
5895 else
5896 get_block = ext4_get_block;
5897 retry_alloc:
5898 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5899 ext4_writepage_trans_blocks(inode));
5900 if (IS_ERR(handle)) {
5901 ret = VM_FAULT_SIGBUS;
5902 goto out;
5903 }
5904 ret = block_page_mkwrite(vma, vmf, get_block);
5905 if (!ret && ext4_should_journal_data(inode)) {
5906 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5907 PAGE_SIZE, NULL, do_journal_get_write_access)) {
5908 unlock_page(page);
5909 ret = VM_FAULT_SIGBUS;
5910 ext4_journal_stop(handle);
5911 goto out;
5912 }
5913 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5914 }
5915 ext4_journal_stop(handle);
5916 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5917 goto retry_alloc;
5918 out_ret:
5919 ret = block_page_mkwrite_return(ret);
5920 out:
5921 up_read(&EXT4_I(inode)->i_mmap_sem);
5922 sb_end_pagefault(inode->i_sb);
5923 return ret;
5924 }
5925
5926 int ext4_filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
5927 {
5928 struct inode *inode = file_inode(vma->vm_file);
5929 int err;
5930
5931 down_read(&EXT4_I(inode)->i_mmap_sem);
5932 err = filemap_fault(vma, vmf);
5933 up_read(&EXT4_I(inode)->i_mmap_sem);
5934
5935 return err;
5936 }
5937
5938 /*
5939 * Find the first extent at or after @lblk in an inode that is not a hole.
5940 * Search for @map_len blocks at most. The extent is returned in @result.
5941 *
5942 * The function returns 1 if we found an extent. The function returns 0 in
5943 * case there is no extent at or after @lblk and in that case also sets
5944 * @result->es_len to 0. In case of error, the error code is returned.
5945 */
5946 int ext4_get_next_extent(struct inode *inode, ext4_lblk_t lblk,
5947 unsigned int map_len, struct extent_status *result)
5948 {
5949 struct ext4_map_blocks map;
5950 struct extent_status es = {};
5951 int ret;
5952
5953 map.m_lblk = lblk;
5954 map.m_len = map_len;
5955
5956 /*
5957 * For non-extent based files this loop may iterate several times since
5958 * we do not determine full hole size.
5959 */
5960 while (map.m_len > 0) {
5961 ret = ext4_map_blocks(NULL, inode, &map, 0);
5962 if (ret < 0)
5963 return ret;
5964 /* There's extent covering m_lblk? Just return it. */
5965 if (ret > 0) {
5966 int status;
5967
5968 ext4_es_store_pblock(result, map.m_pblk);
5969 result->es_lblk = map.m_lblk;
5970 result->es_len = map.m_len;
5971 if (map.m_flags & EXT4_MAP_UNWRITTEN)
5972 status = EXTENT_STATUS_UNWRITTEN;
5973 else
5974 status = EXTENT_STATUS_WRITTEN;
5975 ext4_es_store_status(result, status);
5976 return 1;
5977 }
5978 ext4_es_find_delayed_extent_range(inode, map.m_lblk,
5979 map.m_lblk + map.m_len - 1,
5980 &es);
5981 /* Is delalloc data before next block in extent tree? */
5982 if (es.es_len && es.es_lblk < map.m_lblk + map.m_len) {
5983 ext4_lblk_t offset = 0;
5984
5985 if (es.es_lblk < lblk)
5986 offset = lblk - es.es_lblk;
5987 result->es_lblk = es.es_lblk + offset;
5988 ext4_es_store_pblock(result,
5989 ext4_es_pblock(&es) + offset);
5990 result->es_len = es.es_len - offset;
5991 ext4_es_store_status(result, ext4_es_status(&es));
5992
5993 return 1;
5994 }
5995 /* There's a hole at m_lblk, advance us after it */
5996 map.m_lblk += map.m_len;
5997 map_len -= map.m_len;
5998 map.m_len = map_len;
5999 cond_resched();
6000 }
6001 result->es_len = 0;
6002 return 0;
6003 }