]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - fs/ext4/inode.c
Merge branch 'locking-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-jammy-kernel.git] / fs / ext4 / inode.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/fs/ext4/inode.c
4 *
5 * Copyright (C) 1992, 1993, 1994, 1995
6 * Remy Card (card@masi.ibp.fr)
7 * Laboratoire MASI - Institut Blaise Pascal
8 * Universite Pierre et Marie Curie (Paris VI)
9 *
10 * from
11 *
12 * linux/fs/minix/inode.c
13 *
14 * Copyright (C) 1991, 1992 Linus Torvalds
15 *
16 * 64-bit file support on 64-bit platforms by Jakub Jelinek
17 * (jj@sunsite.ms.mff.cuni.cz)
18 *
19 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
20 */
21
22 #include <linux/fs.h>
23 #include <linux/time.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/dax.h>
27 #include <linux/quotaops.h>
28 #include <linux/string.h>
29 #include <linux/buffer_head.h>
30 #include <linux/writeback.h>
31 #include <linux/pagevec.h>
32 #include <linux/mpage.h>
33 #include <linux/namei.h>
34 #include <linux/uio.h>
35 #include <linux/bio.h>
36 #include <linux/workqueue.h>
37 #include <linux/kernel.h>
38 #include <linux/printk.h>
39 #include <linux/slab.h>
40 #include <linux/bitops.h>
41 #include <linux/iomap.h>
42 #include <linux/iversion.h>
43
44 #include "ext4_jbd2.h"
45 #include "xattr.h"
46 #include "acl.h"
47 #include "truncate.h"
48
49 #include <trace/events/ext4.h>
50
51 #define MPAGE_DA_EXTENT_TAIL 0x01
52
53 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
54 struct ext4_inode_info *ei)
55 {
56 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
57 __u32 csum;
58 __u16 dummy_csum = 0;
59 int offset = offsetof(struct ext4_inode, i_checksum_lo);
60 unsigned int csum_size = sizeof(dummy_csum);
61
62 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
63 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
64 offset += csum_size;
65 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
66 EXT4_GOOD_OLD_INODE_SIZE - offset);
67
68 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
69 offset = offsetof(struct ext4_inode, i_checksum_hi);
70 csum = ext4_chksum(sbi, csum, (__u8 *)raw +
71 EXT4_GOOD_OLD_INODE_SIZE,
72 offset - EXT4_GOOD_OLD_INODE_SIZE);
73 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
74 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
75 csum_size);
76 offset += csum_size;
77 }
78 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
79 EXT4_INODE_SIZE(inode->i_sb) - offset);
80 }
81
82 return csum;
83 }
84
85 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
86 struct ext4_inode_info *ei)
87 {
88 __u32 provided, calculated;
89
90 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
91 cpu_to_le32(EXT4_OS_LINUX) ||
92 !ext4_has_metadata_csum(inode->i_sb))
93 return 1;
94
95 provided = le16_to_cpu(raw->i_checksum_lo);
96 calculated = ext4_inode_csum(inode, raw, ei);
97 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
98 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
99 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
100 else
101 calculated &= 0xFFFF;
102
103 return provided == calculated;
104 }
105
106 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
107 struct ext4_inode_info *ei)
108 {
109 __u32 csum;
110
111 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
112 cpu_to_le32(EXT4_OS_LINUX) ||
113 !ext4_has_metadata_csum(inode->i_sb))
114 return;
115
116 csum = ext4_inode_csum(inode, raw, ei);
117 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
118 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
119 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
120 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
121 }
122
123 static inline int ext4_begin_ordered_truncate(struct inode *inode,
124 loff_t new_size)
125 {
126 trace_ext4_begin_ordered_truncate(inode, new_size);
127 /*
128 * If jinode is zero, then we never opened the file for
129 * writing, so there's no need to call
130 * jbd2_journal_begin_ordered_truncate() since there's no
131 * outstanding writes we need to flush.
132 */
133 if (!EXT4_I(inode)->jinode)
134 return 0;
135 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
136 EXT4_I(inode)->jinode,
137 new_size);
138 }
139
140 static void ext4_invalidatepage(struct page *page, unsigned int offset,
141 unsigned int length);
142 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
143 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
144 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
145 int pextents);
146
147 /*
148 * Test whether an inode is a fast symlink.
149 * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
150 */
151 int ext4_inode_is_fast_symlink(struct inode *inode)
152 {
153 if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) {
154 int ea_blocks = EXT4_I(inode)->i_file_acl ?
155 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
156
157 if (ext4_has_inline_data(inode))
158 return 0;
159
160 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
161 }
162 return S_ISLNK(inode->i_mode) && inode->i_size &&
163 (inode->i_size < EXT4_N_BLOCKS * 4);
164 }
165
166 /*
167 * Restart the transaction associated with *handle. This does a commit,
168 * so before we call here everything must be consistently dirtied against
169 * this transaction.
170 */
171 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
172 int nblocks)
173 {
174 int ret;
175
176 /*
177 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
178 * moment, get_block can be called only for blocks inside i_size since
179 * page cache has been already dropped and writes are blocked by
180 * i_mutex. So we can safely drop the i_data_sem here.
181 */
182 BUG_ON(EXT4_JOURNAL(inode) == NULL);
183 jbd_debug(2, "restarting handle %p\n", handle);
184 up_write(&EXT4_I(inode)->i_data_sem);
185 ret = ext4_journal_restart(handle, nblocks);
186 down_write(&EXT4_I(inode)->i_data_sem);
187 ext4_discard_preallocations(inode);
188
189 return ret;
190 }
191
192 /*
193 * Called at the last iput() if i_nlink is zero.
194 */
195 void ext4_evict_inode(struct inode *inode)
196 {
197 handle_t *handle;
198 int err;
199 int extra_credits = 3;
200 struct ext4_xattr_inode_array *ea_inode_array = NULL;
201
202 trace_ext4_evict_inode(inode);
203
204 if (inode->i_nlink) {
205 /*
206 * When journalling data dirty buffers are tracked only in the
207 * journal. So although mm thinks everything is clean and
208 * ready for reaping the inode might still have some pages to
209 * write in the running transaction or waiting to be
210 * checkpointed. Thus calling jbd2_journal_invalidatepage()
211 * (via truncate_inode_pages()) to discard these buffers can
212 * cause data loss. Also even if we did not discard these
213 * buffers, we would have no way to find them after the inode
214 * is reaped and thus user could see stale data if he tries to
215 * read them before the transaction is checkpointed. So be
216 * careful and force everything to disk here... We use
217 * ei->i_datasync_tid to store the newest transaction
218 * containing inode's data.
219 *
220 * Note that directories do not have this problem because they
221 * don't use page cache.
222 */
223 if (inode->i_ino != EXT4_JOURNAL_INO &&
224 ext4_should_journal_data(inode) &&
225 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
226 inode->i_data.nrpages) {
227 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
228 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
229
230 jbd2_complete_transaction(journal, commit_tid);
231 filemap_write_and_wait(&inode->i_data);
232 }
233 truncate_inode_pages_final(&inode->i_data);
234
235 goto no_delete;
236 }
237
238 if (is_bad_inode(inode))
239 goto no_delete;
240 dquot_initialize(inode);
241
242 if (ext4_should_order_data(inode))
243 ext4_begin_ordered_truncate(inode, 0);
244 truncate_inode_pages_final(&inode->i_data);
245
246 /*
247 * Protect us against freezing - iput() caller didn't have to have any
248 * protection against it
249 */
250 sb_start_intwrite(inode->i_sb);
251
252 if (!IS_NOQUOTA(inode))
253 extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
254
255 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
256 ext4_blocks_for_truncate(inode)+extra_credits);
257 if (IS_ERR(handle)) {
258 ext4_std_error(inode->i_sb, PTR_ERR(handle));
259 /*
260 * If we're going to skip the normal cleanup, we still need to
261 * make sure that the in-core orphan linked list is properly
262 * cleaned up.
263 */
264 ext4_orphan_del(NULL, inode);
265 sb_end_intwrite(inode->i_sb);
266 goto no_delete;
267 }
268
269 if (IS_SYNC(inode))
270 ext4_handle_sync(handle);
271
272 /*
273 * Set inode->i_size to 0 before calling ext4_truncate(). We need
274 * special handling of symlinks here because i_size is used to
275 * determine whether ext4_inode_info->i_data contains symlink data or
276 * block mappings. Setting i_size to 0 will remove its fast symlink
277 * status. Erase i_data so that it becomes a valid empty block map.
278 */
279 if (ext4_inode_is_fast_symlink(inode))
280 memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
281 inode->i_size = 0;
282 err = ext4_mark_inode_dirty(handle, inode);
283 if (err) {
284 ext4_warning(inode->i_sb,
285 "couldn't mark inode dirty (err %d)", err);
286 goto stop_handle;
287 }
288 if (inode->i_blocks) {
289 err = ext4_truncate(inode);
290 if (err) {
291 ext4_error(inode->i_sb,
292 "couldn't truncate inode %lu (err %d)",
293 inode->i_ino, err);
294 goto stop_handle;
295 }
296 }
297
298 /* Remove xattr references. */
299 err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
300 extra_credits);
301 if (err) {
302 ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
303 stop_handle:
304 ext4_journal_stop(handle);
305 ext4_orphan_del(NULL, inode);
306 sb_end_intwrite(inode->i_sb);
307 ext4_xattr_inode_array_free(ea_inode_array);
308 goto no_delete;
309 }
310
311 /*
312 * Kill off the orphan record which ext4_truncate created.
313 * AKPM: I think this can be inside the above `if'.
314 * Note that ext4_orphan_del() has to be able to cope with the
315 * deletion of a non-existent orphan - this is because we don't
316 * know if ext4_truncate() actually created an orphan record.
317 * (Well, we could do this if we need to, but heck - it works)
318 */
319 ext4_orphan_del(handle, inode);
320 EXT4_I(inode)->i_dtime = (__u32)ktime_get_real_seconds();
321
322 /*
323 * One subtle ordering requirement: if anything has gone wrong
324 * (transaction abort, IO errors, whatever), then we can still
325 * do these next steps (the fs will already have been marked as
326 * having errors), but we can't free the inode if the mark_dirty
327 * fails.
328 */
329 if (ext4_mark_inode_dirty(handle, inode))
330 /* If that failed, just do the required in-core inode clear. */
331 ext4_clear_inode(inode);
332 else
333 ext4_free_inode(handle, inode);
334 ext4_journal_stop(handle);
335 sb_end_intwrite(inode->i_sb);
336 ext4_xattr_inode_array_free(ea_inode_array);
337 return;
338 no_delete:
339 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
340 }
341
342 #ifdef CONFIG_QUOTA
343 qsize_t *ext4_get_reserved_space(struct inode *inode)
344 {
345 return &EXT4_I(inode)->i_reserved_quota;
346 }
347 #endif
348
349 /*
350 * Called with i_data_sem down, which is important since we can call
351 * ext4_discard_preallocations() from here.
352 */
353 void ext4_da_update_reserve_space(struct inode *inode,
354 int used, int quota_claim)
355 {
356 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
357 struct ext4_inode_info *ei = EXT4_I(inode);
358
359 spin_lock(&ei->i_block_reservation_lock);
360 trace_ext4_da_update_reserve_space(inode, used, quota_claim);
361 if (unlikely(used > ei->i_reserved_data_blocks)) {
362 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
363 "with only %d reserved data blocks",
364 __func__, inode->i_ino, used,
365 ei->i_reserved_data_blocks);
366 WARN_ON(1);
367 used = ei->i_reserved_data_blocks;
368 }
369
370 /* Update per-inode reservations */
371 ei->i_reserved_data_blocks -= used;
372 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
373
374 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
375
376 /* Update quota subsystem for data blocks */
377 if (quota_claim)
378 dquot_claim_block(inode, EXT4_C2B(sbi, used));
379 else {
380 /*
381 * We did fallocate with an offset that is already delayed
382 * allocated. So on delayed allocated writeback we should
383 * not re-claim the quota for fallocated blocks.
384 */
385 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
386 }
387
388 /*
389 * If we have done all the pending block allocations and if
390 * there aren't any writers on the inode, we can discard the
391 * inode's preallocations.
392 */
393 if ((ei->i_reserved_data_blocks == 0) &&
394 !inode_is_open_for_write(inode))
395 ext4_discard_preallocations(inode);
396 }
397
398 static int __check_block_validity(struct inode *inode, const char *func,
399 unsigned int line,
400 struct ext4_map_blocks *map)
401 {
402 if (ext4_has_feature_journal(inode->i_sb) &&
403 (inode->i_ino ==
404 le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_journal_inum)))
405 return 0;
406 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
407 map->m_len)) {
408 ext4_error_inode(inode, func, line, map->m_pblk,
409 "lblock %lu mapped to illegal pblock %llu "
410 "(length %d)", (unsigned long) map->m_lblk,
411 map->m_pblk, map->m_len);
412 return -EFSCORRUPTED;
413 }
414 return 0;
415 }
416
417 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
418 ext4_lblk_t len)
419 {
420 int ret;
421
422 if (IS_ENCRYPTED(inode))
423 return fscrypt_zeroout_range(inode, lblk, pblk, len);
424
425 ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
426 if (ret > 0)
427 ret = 0;
428
429 return ret;
430 }
431
432 #define check_block_validity(inode, map) \
433 __check_block_validity((inode), __func__, __LINE__, (map))
434
435 #ifdef ES_AGGRESSIVE_TEST
436 static void ext4_map_blocks_es_recheck(handle_t *handle,
437 struct inode *inode,
438 struct ext4_map_blocks *es_map,
439 struct ext4_map_blocks *map,
440 int flags)
441 {
442 int retval;
443
444 map->m_flags = 0;
445 /*
446 * There is a race window that the result is not the same.
447 * e.g. xfstests #223 when dioread_nolock enables. The reason
448 * is that we lookup a block mapping in extent status tree with
449 * out taking i_data_sem. So at the time the unwritten extent
450 * could be converted.
451 */
452 down_read(&EXT4_I(inode)->i_data_sem);
453 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
454 retval = ext4_ext_map_blocks(handle, inode, map, flags &
455 EXT4_GET_BLOCKS_KEEP_SIZE);
456 } else {
457 retval = ext4_ind_map_blocks(handle, inode, map, flags &
458 EXT4_GET_BLOCKS_KEEP_SIZE);
459 }
460 up_read((&EXT4_I(inode)->i_data_sem));
461
462 /*
463 * We don't check m_len because extent will be collpased in status
464 * tree. So the m_len might not equal.
465 */
466 if (es_map->m_lblk != map->m_lblk ||
467 es_map->m_flags != map->m_flags ||
468 es_map->m_pblk != map->m_pblk) {
469 printk("ES cache assertion failed for inode: %lu "
470 "es_cached ex [%d/%d/%llu/%x] != "
471 "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
472 inode->i_ino, es_map->m_lblk, es_map->m_len,
473 es_map->m_pblk, es_map->m_flags, map->m_lblk,
474 map->m_len, map->m_pblk, map->m_flags,
475 retval, flags);
476 }
477 }
478 #endif /* ES_AGGRESSIVE_TEST */
479
480 /*
481 * The ext4_map_blocks() function tries to look up the requested blocks,
482 * and returns if the blocks are already mapped.
483 *
484 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
485 * and store the allocated blocks in the result buffer head and mark it
486 * mapped.
487 *
488 * If file type is extents based, it will call ext4_ext_map_blocks(),
489 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
490 * based files
491 *
492 * On success, it returns the number of blocks being mapped or allocated. if
493 * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
494 * is marked as unwritten. If the create == 1, it will mark @map as mapped.
495 *
496 * It returns 0 if plain look up failed (blocks have not been allocated), in
497 * that case, @map is returned as unmapped but we still do fill map->m_len to
498 * indicate the length of a hole starting at map->m_lblk.
499 *
500 * It returns the error in case of allocation failure.
501 */
502 int ext4_map_blocks(handle_t *handle, struct inode *inode,
503 struct ext4_map_blocks *map, int flags)
504 {
505 struct extent_status es;
506 int retval;
507 int ret = 0;
508 #ifdef ES_AGGRESSIVE_TEST
509 struct ext4_map_blocks orig_map;
510
511 memcpy(&orig_map, map, sizeof(*map));
512 #endif
513
514 map->m_flags = 0;
515 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
516 "logical block %lu\n", inode->i_ino, flags, map->m_len,
517 (unsigned long) map->m_lblk);
518
519 /*
520 * ext4_map_blocks returns an int, and m_len is an unsigned int
521 */
522 if (unlikely(map->m_len > INT_MAX))
523 map->m_len = INT_MAX;
524
525 /* We can handle the block number less than EXT_MAX_BLOCKS */
526 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
527 return -EFSCORRUPTED;
528
529 /* Lookup extent status tree firstly */
530 if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
531 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
532 map->m_pblk = ext4_es_pblock(&es) +
533 map->m_lblk - es.es_lblk;
534 map->m_flags |= ext4_es_is_written(&es) ?
535 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
536 retval = es.es_len - (map->m_lblk - es.es_lblk);
537 if (retval > map->m_len)
538 retval = map->m_len;
539 map->m_len = retval;
540 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
541 map->m_pblk = 0;
542 retval = es.es_len - (map->m_lblk - es.es_lblk);
543 if (retval > map->m_len)
544 retval = map->m_len;
545 map->m_len = retval;
546 retval = 0;
547 } else {
548 BUG();
549 }
550 #ifdef ES_AGGRESSIVE_TEST
551 ext4_map_blocks_es_recheck(handle, inode, map,
552 &orig_map, flags);
553 #endif
554 goto found;
555 }
556
557 /*
558 * Try to see if we can get the block without requesting a new
559 * file system block.
560 */
561 down_read(&EXT4_I(inode)->i_data_sem);
562 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
563 retval = ext4_ext_map_blocks(handle, inode, map, flags &
564 EXT4_GET_BLOCKS_KEEP_SIZE);
565 } else {
566 retval = ext4_ind_map_blocks(handle, inode, map, flags &
567 EXT4_GET_BLOCKS_KEEP_SIZE);
568 }
569 if (retval > 0) {
570 unsigned int status;
571
572 if (unlikely(retval != map->m_len)) {
573 ext4_warning(inode->i_sb,
574 "ES len assertion failed for inode "
575 "%lu: retval %d != map->m_len %d",
576 inode->i_ino, retval, map->m_len);
577 WARN_ON(1);
578 }
579
580 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
581 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
582 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
583 !(status & EXTENT_STATUS_WRITTEN) &&
584 ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
585 map->m_lblk + map->m_len - 1))
586 status |= EXTENT_STATUS_DELAYED;
587 ret = ext4_es_insert_extent(inode, map->m_lblk,
588 map->m_len, map->m_pblk, status);
589 if (ret < 0)
590 retval = ret;
591 }
592 up_read((&EXT4_I(inode)->i_data_sem));
593
594 found:
595 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
596 ret = check_block_validity(inode, map);
597 if (ret != 0)
598 return ret;
599 }
600
601 /* If it is only a block(s) look up */
602 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
603 return retval;
604
605 /*
606 * Returns if the blocks have already allocated
607 *
608 * Note that if blocks have been preallocated
609 * ext4_ext_get_block() returns the create = 0
610 * with buffer head unmapped.
611 */
612 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
613 /*
614 * If we need to convert extent to unwritten
615 * we continue and do the actual work in
616 * ext4_ext_map_blocks()
617 */
618 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
619 return retval;
620
621 /*
622 * Here we clear m_flags because after allocating an new extent,
623 * it will be set again.
624 */
625 map->m_flags &= ~EXT4_MAP_FLAGS;
626
627 /*
628 * New blocks allocate and/or writing to unwritten extent
629 * will possibly result in updating i_data, so we take
630 * the write lock of i_data_sem, and call get_block()
631 * with create == 1 flag.
632 */
633 down_write(&EXT4_I(inode)->i_data_sem);
634
635 /*
636 * We need to check for EXT4 here because migrate
637 * could have changed the inode type in between
638 */
639 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
640 retval = ext4_ext_map_blocks(handle, inode, map, flags);
641 } else {
642 retval = ext4_ind_map_blocks(handle, inode, map, flags);
643
644 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
645 /*
646 * We allocated new blocks which will result in
647 * i_data's format changing. Force the migrate
648 * to fail by clearing migrate flags
649 */
650 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
651 }
652
653 /*
654 * Update reserved blocks/metadata blocks after successful
655 * block allocation which had been deferred till now. We don't
656 * support fallocate for non extent files. So we can update
657 * reserve space here.
658 */
659 if ((retval > 0) &&
660 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
661 ext4_da_update_reserve_space(inode, retval, 1);
662 }
663
664 if (retval > 0) {
665 unsigned int status;
666
667 if (unlikely(retval != map->m_len)) {
668 ext4_warning(inode->i_sb,
669 "ES len assertion failed for inode "
670 "%lu: retval %d != map->m_len %d",
671 inode->i_ino, retval, map->m_len);
672 WARN_ON(1);
673 }
674
675 /*
676 * We have to zeroout blocks before inserting them into extent
677 * status tree. Otherwise someone could look them up there and
678 * use them before they are really zeroed. We also have to
679 * unmap metadata before zeroing as otherwise writeback can
680 * overwrite zeros with stale data from block device.
681 */
682 if (flags & EXT4_GET_BLOCKS_ZERO &&
683 map->m_flags & EXT4_MAP_MAPPED &&
684 map->m_flags & EXT4_MAP_NEW) {
685 ret = ext4_issue_zeroout(inode, map->m_lblk,
686 map->m_pblk, map->m_len);
687 if (ret) {
688 retval = ret;
689 goto out_sem;
690 }
691 }
692
693 /*
694 * If the extent has been zeroed out, we don't need to update
695 * extent status tree.
696 */
697 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
698 ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
699 if (ext4_es_is_written(&es))
700 goto out_sem;
701 }
702 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
703 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
704 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
705 !(status & EXTENT_STATUS_WRITTEN) &&
706 ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
707 map->m_lblk + map->m_len - 1))
708 status |= EXTENT_STATUS_DELAYED;
709 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
710 map->m_pblk, status);
711 if (ret < 0) {
712 retval = ret;
713 goto out_sem;
714 }
715 }
716
717 out_sem:
718 up_write((&EXT4_I(inode)->i_data_sem));
719 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
720 ret = check_block_validity(inode, map);
721 if (ret != 0)
722 return ret;
723
724 /*
725 * Inodes with freshly allocated blocks where contents will be
726 * visible after transaction commit must be on transaction's
727 * ordered data list.
728 */
729 if (map->m_flags & EXT4_MAP_NEW &&
730 !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
731 !(flags & EXT4_GET_BLOCKS_ZERO) &&
732 !ext4_is_quota_file(inode) &&
733 ext4_should_order_data(inode)) {
734 if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
735 ret = ext4_jbd2_inode_add_wait(handle, inode);
736 else
737 ret = ext4_jbd2_inode_add_write(handle, inode);
738 if (ret)
739 return ret;
740 }
741 }
742 return retval;
743 }
744
745 /*
746 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
747 * we have to be careful as someone else may be manipulating b_state as well.
748 */
749 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
750 {
751 unsigned long old_state;
752 unsigned long new_state;
753
754 flags &= EXT4_MAP_FLAGS;
755
756 /* Dummy buffer_head? Set non-atomically. */
757 if (!bh->b_page) {
758 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
759 return;
760 }
761 /*
762 * Someone else may be modifying b_state. Be careful! This is ugly but
763 * once we get rid of using bh as a container for mapping information
764 * to pass to / from get_block functions, this can go away.
765 */
766 do {
767 old_state = READ_ONCE(bh->b_state);
768 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
769 } while (unlikely(
770 cmpxchg(&bh->b_state, old_state, new_state) != old_state));
771 }
772
773 static int _ext4_get_block(struct inode *inode, sector_t iblock,
774 struct buffer_head *bh, int flags)
775 {
776 struct ext4_map_blocks map;
777 int ret = 0;
778
779 if (ext4_has_inline_data(inode))
780 return -ERANGE;
781
782 map.m_lblk = iblock;
783 map.m_len = bh->b_size >> inode->i_blkbits;
784
785 ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
786 flags);
787 if (ret > 0) {
788 map_bh(bh, inode->i_sb, map.m_pblk);
789 ext4_update_bh_state(bh, map.m_flags);
790 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
791 ret = 0;
792 } else if (ret == 0) {
793 /* hole case, need to fill in bh->b_size */
794 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
795 }
796 return ret;
797 }
798
799 int ext4_get_block(struct inode *inode, sector_t iblock,
800 struct buffer_head *bh, int create)
801 {
802 return _ext4_get_block(inode, iblock, bh,
803 create ? EXT4_GET_BLOCKS_CREATE : 0);
804 }
805
806 /*
807 * Get block function used when preparing for buffered write if we require
808 * creating an unwritten extent if blocks haven't been allocated. The extent
809 * will be converted to written after the IO is complete.
810 */
811 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
812 struct buffer_head *bh_result, int create)
813 {
814 ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
815 inode->i_ino, create);
816 return _ext4_get_block(inode, iblock, bh_result,
817 EXT4_GET_BLOCKS_IO_CREATE_EXT);
818 }
819
820 /* Maximum number of blocks we map for direct IO at once. */
821 #define DIO_MAX_BLOCKS 4096
822
823 /*
824 * Get blocks function for the cases that need to start a transaction -
825 * generally difference cases of direct IO and DAX IO. It also handles retries
826 * in case of ENOSPC.
827 */
828 static int ext4_get_block_trans(struct inode *inode, sector_t iblock,
829 struct buffer_head *bh_result, int flags)
830 {
831 int dio_credits;
832 handle_t *handle;
833 int retries = 0;
834 int ret;
835
836 /* Trim mapping request to maximum we can map at once for DIO */
837 if (bh_result->b_size >> inode->i_blkbits > DIO_MAX_BLOCKS)
838 bh_result->b_size = DIO_MAX_BLOCKS << inode->i_blkbits;
839 dio_credits = ext4_chunk_trans_blocks(inode,
840 bh_result->b_size >> inode->i_blkbits);
841 retry:
842 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
843 if (IS_ERR(handle))
844 return PTR_ERR(handle);
845
846 ret = _ext4_get_block(inode, iblock, bh_result, flags);
847 ext4_journal_stop(handle);
848
849 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
850 goto retry;
851 return ret;
852 }
853
854 /* Get block function for DIO reads and writes to inodes without extents */
855 int ext4_dio_get_block(struct inode *inode, sector_t iblock,
856 struct buffer_head *bh, int create)
857 {
858 /* We don't expect handle for direct IO */
859 WARN_ON_ONCE(ext4_journal_current_handle());
860
861 if (!create)
862 return _ext4_get_block(inode, iblock, bh, 0);
863 return ext4_get_block_trans(inode, iblock, bh, EXT4_GET_BLOCKS_CREATE);
864 }
865
866 /*
867 * Get block function for AIO DIO writes when we create unwritten extent if
868 * blocks are not allocated yet. The extent will be converted to written
869 * after IO is complete.
870 */
871 static int ext4_dio_get_block_unwritten_async(struct inode *inode,
872 sector_t iblock, struct buffer_head *bh_result, int create)
873 {
874 int ret;
875
876 /* We don't expect handle for direct IO */
877 WARN_ON_ONCE(ext4_journal_current_handle());
878
879 ret = ext4_get_block_trans(inode, iblock, bh_result,
880 EXT4_GET_BLOCKS_IO_CREATE_EXT);
881
882 /*
883 * When doing DIO using unwritten extents, we need io_end to convert
884 * unwritten extents to written on IO completion. We allocate io_end
885 * once we spot unwritten extent and store it in b_private. Generic
886 * DIO code keeps b_private set and furthermore passes the value to
887 * our completion callback in 'private' argument.
888 */
889 if (!ret && buffer_unwritten(bh_result)) {
890 if (!bh_result->b_private) {
891 ext4_io_end_t *io_end;
892
893 io_end = ext4_init_io_end(inode, GFP_KERNEL);
894 if (!io_end)
895 return -ENOMEM;
896 bh_result->b_private = io_end;
897 ext4_set_io_unwritten_flag(inode, io_end);
898 }
899 set_buffer_defer_completion(bh_result);
900 }
901
902 return ret;
903 }
904
905 /*
906 * Get block function for non-AIO DIO writes when we create unwritten extent if
907 * blocks are not allocated yet. The extent will be converted to written
908 * after IO is complete by ext4_direct_IO_write().
909 */
910 static int ext4_dio_get_block_unwritten_sync(struct inode *inode,
911 sector_t iblock, struct buffer_head *bh_result, int create)
912 {
913 int ret;
914
915 /* We don't expect handle for direct IO */
916 WARN_ON_ONCE(ext4_journal_current_handle());
917
918 ret = ext4_get_block_trans(inode, iblock, bh_result,
919 EXT4_GET_BLOCKS_IO_CREATE_EXT);
920
921 /*
922 * Mark inode as having pending DIO writes to unwritten extents.
923 * ext4_direct_IO_write() checks this flag and converts extents to
924 * written.
925 */
926 if (!ret && buffer_unwritten(bh_result))
927 ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
928
929 return ret;
930 }
931
932 static int ext4_dio_get_block_overwrite(struct inode *inode, sector_t iblock,
933 struct buffer_head *bh_result, int create)
934 {
935 int ret;
936
937 ext4_debug("ext4_dio_get_block_overwrite: inode %lu, create flag %d\n",
938 inode->i_ino, create);
939 /* We don't expect handle for direct IO */
940 WARN_ON_ONCE(ext4_journal_current_handle());
941
942 ret = _ext4_get_block(inode, iblock, bh_result, 0);
943 /*
944 * Blocks should have been preallocated! ext4_file_write_iter() checks
945 * that.
946 */
947 WARN_ON_ONCE(!buffer_mapped(bh_result) || buffer_unwritten(bh_result));
948
949 return ret;
950 }
951
952
953 /*
954 * `handle' can be NULL if create is zero
955 */
956 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
957 ext4_lblk_t block, int map_flags)
958 {
959 struct ext4_map_blocks map;
960 struct buffer_head *bh;
961 int create = map_flags & EXT4_GET_BLOCKS_CREATE;
962 int err;
963
964 J_ASSERT(handle != NULL || create == 0);
965
966 map.m_lblk = block;
967 map.m_len = 1;
968 err = ext4_map_blocks(handle, inode, &map, map_flags);
969
970 if (err == 0)
971 return create ? ERR_PTR(-ENOSPC) : NULL;
972 if (err < 0)
973 return ERR_PTR(err);
974
975 bh = sb_getblk(inode->i_sb, map.m_pblk);
976 if (unlikely(!bh))
977 return ERR_PTR(-ENOMEM);
978 if (map.m_flags & EXT4_MAP_NEW) {
979 J_ASSERT(create != 0);
980 J_ASSERT(handle != NULL);
981
982 /*
983 * Now that we do not always journal data, we should
984 * keep in mind whether this should always journal the
985 * new buffer as metadata. For now, regular file
986 * writes use ext4_get_block instead, so it's not a
987 * problem.
988 */
989 lock_buffer(bh);
990 BUFFER_TRACE(bh, "call get_create_access");
991 err = ext4_journal_get_create_access(handle, bh);
992 if (unlikely(err)) {
993 unlock_buffer(bh);
994 goto errout;
995 }
996 if (!buffer_uptodate(bh)) {
997 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
998 set_buffer_uptodate(bh);
999 }
1000 unlock_buffer(bh);
1001 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1002 err = ext4_handle_dirty_metadata(handle, inode, bh);
1003 if (unlikely(err))
1004 goto errout;
1005 } else
1006 BUFFER_TRACE(bh, "not a new buffer");
1007 return bh;
1008 errout:
1009 brelse(bh);
1010 return ERR_PTR(err);
1011 }
1012
1013 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1014 ext4_lblk_t block, int map_flags)
1015 {
1016 struct buffer_head *bh;
1017
1018 bh = ext4_getblk(handle, inode, block, map_flags);
1019 if (IS_ERR(bh))
1020 return bh;
1021 if (!bh || buffer_uptodate(bh))
1022 return bh;
1023 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &bh);
1024 wait_on_buffer(bh);
1025 if (buffer_uptodate(bh))
1026 return bh;
1027 put_bh(bh);
1028 return ERR_PTR(-EIO);
1029 }
1030
1031 /* Read a contiguous batch of blocks. */
1032 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count,
1033 bool wait, struct buffer_head **bhs)
1034 {
1035 int i, err;
1036
1037 for (i = 0; i < bh_count; i++) {
1038 bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */);
1039 if (IS_ERR(bhs[i])) {
1040 err = PTR_ERR(bhs[i]);
1041 bh_count = i;
1042 goto out_brelse;
1043 }
1044 }
1045
1046 for (i = 0; i < bh_count; i++)
1047 /* Note that NULL bhs[i] is valid because of holes. */
1048 if (bhs[i] && !buffer_uptodate(bhs[i]))
1049 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1,
1050 &bhs[i]);
1051
1052 if (!wait)
1053 return 0;
1054
1055 for (i = 0; i < bh_count; i++)
1056 if (bhs[i])
1057 wait_on_buffer(bhs[i]);
1058
1059 for (i = 0; i < bh_count; i++) {
1060 if (bhs[i] && !buffer_uptodate(bhs[i])) {
1061 err = -EIO;
1062 goto out_brelse;
1063 }
1064 }
1065 return 0;
1066
1067 out_brelse:
1068 for (i = 0; i < bh_count; i++) {
1069 brelse(bhs[i]);
1070 bhs[i] = NULL;
1071 }
1072 return err;
1073 }
1074
1075 int ext4_walk_page_buffers(handle_t *handle,
1076 struct buffer_head *head,
1077 unsigned from,
1078 unsigned to,
1079 int *partial,
1080 int (*fn)(handle_t *handle,
1081 struct buffer_head *bh))
1082 {
1083 struct buffer_head *bh;
1084 unsigned block_start, block_end;
1085 unsigned blocksize = head->b_size;
1086 int err, ret = 0;
1087 struct buffer_head *next;
1088
1089 for (bh = head, block_start = 0;
1090 ret == 0 && (bh != head || !block_start);
1091 block_start = block_end, bh = next) {
1092 next = bh->b_this_page;
1093 block_end = block_start + blocksize;
1094 if (block_end <= from || block_start >= to) {
1095 if (partial && !buffer_uptodate(bh))
1096 *partial = 1;
1097 continue;
1098 }
1099 err = (*fn)(handle, bh);
1100 if (!ret)
1101 ret = err;
1102 }
1103 return ret;
1104 }
1105
1106 /*
1107 * To preserve ordering, it is essential that the hole instantiation and
1108 * the data write be encapsulated in a single transaction. We cannot
1109 * close off a transaction and start a new one between the ext4_get_block()
1110 * and the commit_write(). So doing the jbd2_journal_start at the start of
1111 * prepare_write() is the right place.
1112 *
1113 * Also, this function can nest inside ext4_writepage(). In that case, we
1114 * *know* that ext4_writepage() has generated enough buffer credits to do the
1115 * whole page. So we won't block on the journal in that case, which is good,
1116 * because the caller may be PF_MEMALLOC.
1117 *
1118 * By accident, ext4 can be reentered when a transaction is open via
1119 * quota file writes. If we were to commit the transaction while thus
1120 * reentered, there can be a deadlock - we would be holding a quota
1121 * lock, and the commit would never complete if another thread had a
1122 * transaction open and was blocking on the quota lock - a ranking
1123 * violation.
1124 *
1125 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1126 * will _not_ run commit under these circumstances because handle->h_ref
1127 * is elevated. We'll still have enough credits for the tiny quotafile
1128 * write.
1129 */
1130 int do_journal_get_write_access(handle_t *handle,
1131 struct buffer_head *bh)
1132 {
1133 int dirty = buffer_dirty(bh);
1134 int ret;
1135
1136 if (!buffer_mapped(bh) || buffer_freed(bh))
1137 return 0;
1138 /*
1139 * __block_write_begin() could have dirtied some buffers. Clean
1140 * the dirty bit as jbd2_journal_get_write_access() could complain
1141 * otherwise about fs integrity issues. Setting of the dirty bit
1142 * by __block_write_begin() isn't a real problem here as we clear
1143 * the bit before releasing a page lock and thus writeback cannot
1144 * ever write the buffer.
1145 */
1146 if (dirty)
1147 clear_buffer_dirty(bh);
1148 BUFFER_TRACE(bh, "get write access");
1149 ret = ext4_journal_get_write_access(handle, bh);
1150 if (!ret && dirty)
1151 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1152 return ret;
1153 }
1154
1155 #ifdef CONFIG_FS_ENCRYPTION
1156 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1157 get_block_t *get_block)
1158 {
1159 unsigned from = pos & (PAGE_SIZE - 1);
1160 unsigned to = from + len;
1161 struct inode *inode = page->mapping->host;
1162 unsigned block_start, block_end;
1163 sector_t block;
1164 int err = 0;
1165 unsigned blocksize = inode->i_sb->s_blocksize;
1166 unsigned bbits;
1167 struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
1168 bool decrypt = false;
1169
1170 BUG_ON(!PageLocked(page));
1171 BUG_ON(from > PAGE_SIZE);
1172 BUG_ON(to > PAGE_SIZE);
1173 BUG_ON(from > to);
1174
1175 if (!page_has_buffers(page))
1176 create_empty_buffers(page, blocksize, 0);
1177 head = page_buffers(page);
1178 bbits = ilog2(blocksize);
1179 block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1180
1181 for (bh = head, block_start = 0; bh != head || !block_start;
1182 block++, block_start = block_end, bh = bh->b_this_page) {
1183 block_end = block_start + blocksize;
1184 if (block_end <= from || block_start >= to) {
1185 if (PageUptodate(page)) {
1186 if (!buffer_uptodate(bh))
1187 set_buffer_uptodate(bh);
1188 }
1189 continue;
1190 }
1191 if (buffer_new(bh))
1192 clear_buffer_new(bh);
1193 if (!buffer_mapped(bh)) {
1194 WARN_ON(bh->b_size != blocksize);
1195 err = get_block(inode, block, bh, 1);
1196 if (err)
1197 break;
1198 if (buffer_new(bh)) {
1199 if (PageUptodate(page)) {
1200 clear_buffer_new(bh);
1201 set_buffer_uptodate(bh);
1202 mark_buffer_dirty(bh);
1203 continue;
1204 }
1205 if (block_end > to || block_start < from)
1206 zero_user_segments(page, to, block_end,
1207 block_start, from);
1208 continue;
1209 }
1210 }
1211 if (PageUptodate(page)) {
1212 if (!buffer_uptodate(bh))
1213 set_buffer_uptodate(bh);
1214 continue;
1215 }
1216 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1217 !buffer_unwritten(bh) &&
1218 (block_start < from || block_end > to)) {
1219 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1220 *wait_bh++ = bh;
1221 decrypt = IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode);
1222 }
1223 }
1224 /*
1225 * If we issued read requests, let them complete.
1226 */
1227 while (wait_bh > wait) {
1228 wait_on_buffer(*--wait_bh);
1229 if (!buffer_uptodate(*wait_bh))
1230 err = -EIO;
1231 }
1232 if (unlikely(err))
1233 page_zero_new_buffers(page, from, to);
1234 else if (decrypt)
1235 err = fscrypt_decrypt_page(page->mapping->host, page,
1236 PAGE_SIZE, 0, page->index);
1237 return err;
1238 }
1239 #endif
1240
1241 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1242 loff_t pos, unsigned len, unsigned flags,
1243 struct page **pagep, void **fsdata)
1244 {
1245 struct inode *inode = mapping->host;
1246 int ret, needed_blocks;
1247 handle_t *handle;
1248 int retries = 0;
1249 struct page *page;
1250 pgoff_t index;
1251 unsigned from, to;
1252
1253 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
1254 return -EIO;
1255
1256 trace_ext4_write_begin(inode, pos, len, flags);
1257 /*
1258 * Reserve one block more for addition to orphan list in case
1259 * we allocate blocks but write fails for some reason
1260 */
1261 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1262 index = pos >> PAGE_SHIFT;
1263 from = pos & (PAGE_SIZE - 1);
1264 to = from + len;
1265
1266 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1267 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1268 flags, pagep);
1269 if (ret < 0)
1270 return ret;
1271 if (ret == 1)
1272 return 0;
1273 }
1274
1275 /*
1276 * grab_cache_page_write_begin() can take a long time if the
1277 * system is thrashing due to memory pressure, or if the page
1278 * is being written back. So grab it first before we start
1279 * the transaction handle. This also allows us to allocate
1280 * the page (if needed) without using GFP_NOFS.
1281 */
1282 retry_grab:
1283 page = grab_cache_page_write_begin(mapping, index, flags);
1284 if (!page)
1285 return -ENOMEM;
1286 unlock_page(page);
1287
1288 retry_journal:
1289 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1290 if (IS_ERR(handle)) {
1291 put_page(page);
1292 return PTR_ERR(handle);
1293 }
1294
1295 lock_page(page);
1296 if (page->mapping != mapping) {
1297 /* The page got truncated from under us */
1298 unlock_page(page);
1299 put_page(page);
1300 ext4_journal_stop(handle);
1301 goto retry_grab;
1302 }
1303 /* In case writeback began while the page was unlocked */
1304 wait_for_stable_page(page);
1305
1306 #ifdef CONFIG_FS_ENCRYPTION
1307 if (ext4_should_dioread_nolock(inode))
1308 ret = ext4_block_write_begin(page, pos, len,
1309 ext4_get_block_unwritten);
1310 else
1311 ret = ext4_block_write_begin(page, pos, len,
1312 ext4_get_block);
1313 #else
1314 if (ext4_should_dioread_nolock(inode))
1315 ret = __block_write_begin(page, pos, len,
1316 ext4_get_block_unwritten);
1317 else
1318 ret = __block_write_begin(page, pos, len, ext4_get_block);
1319 #endif
1320 if (!ret && ext4_should_journal_data(inode)) {
1321 ret = ext4_walk_page_buffers(handle, page_buffers(page),
1322 from, to, NULL,
1323 do_journal_get_write_access);
1324 }
1325
1326 if (ret) {
1327 unlock_page(page);
1328 /*
1329 * __block_write_begin may have instantiated a few blocks
1330 * outside i_size. Trim these off again. Don't need
1331 * i_size_read because we hold i_mutex.
1332 *
1333 * Add inode to orphan list in case we crash before
1334 * truncate finishes
1335 */
1336 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1337 ext4_orphan_add(handle, inode);
1338
1339 ext4_journal_stop(handle);
1340 if (pos + len > inode->i_size) {
1341 ext4_truncate_failed_write(inode);
1342 /*
1343 * If truncate failed early the inode might
1344 * still be on the orphan list; we need to
1345 * make sure the inode is removed from the
1346 * orphan list in that case.
1347 */
1348 if (inode->i_nlink)
1349 ext4_orphan_del(NULL, inode);
1350 }
1351
1352 if (ret == -ENOSPC &&
1353 ext4_should_retry_alloc(inode->i_sb, &retries))
1354 goto retry_journal;
1355 put_page(page);
1356 return ret;
1357 }
1358 *pagep = page;
1359 return ret;
1360 }
1361
1362 /* For write_end() in data=journal mode */
1363 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1364 {
1365 int ret;
1366 if (!buffer_mapped(bh) || buffer_freed(bh))
1367 return 0;
1368 set_buffer_uptodate(bh);
1369 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1370 clear_buffer_meta(bh);
1371 clear_buffer_prio(bh);
1372 return ret;
1373 }
1374
1375 /*
1376 * We need to pick up the new inode size which generic_commit_write gave us
1377 * `file' can be NULL - eg, when called from page_symlink().
1378 *
1379 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1380 * buffers are managed internally.
1381 */
1382 static int ext4_write_end(struct file *file,
1383 struct address_space *mapping,
1384 loff_t pos, unsigned len, unsigned copied,
1385 struct page *page, void *fsdata)
1386 {
1387 handle_t *handle = ext4_journal_current_handle();
1388 struct inode *inode = mapping->host;
1389 loff_t old_size = inode->i_size;
1390 int ret = 0, ret2;
1391 int i_size_changed = 0;
1392 int inline_data = ext4_has_inline_data(inode);
1393
1394 trace_ext4_write_end(inode, pos, len, copied);
1395 if (inline_data) {
1396 ret = ext4_write_inline_data_end(inode, pos, len,
1397 copied, page);
1398 if (ret < 0) {
1399 unlock_page(page);
1400 put_page(page);
1401 goto errout;
1402 }
1403 copied = ret;
1404 } else
1405 copied = block_write_end(file, mapping, pos,
1406 len, copied, page, fsdata);
1407 /*
1408 * it's important to update i_size while still holding page lock:
1409 * page writeout could otherwise come in and zero beyond i_size.
1410 */
1411 i_size_changed = ext4_update_inode_size(inode, pos + copied);
1412 unlock_page(page);
1413 put_page(page);
1414
1415 if (old_size < pos)
1416 pagecache_isize_extended(inode, old_size, pos);
1417 /*
1418 * Don't mark the inode dirty under page lock. First, it unnecessarily
1419 * makes the holding time of page lock longer. Second, it forces lock
1420 * ordering of page lock and transaction start for journaling
1421 * filesystems.
1422 */
1423 if (i_size_changed || inline_data)
1424 ext4_mark_inode_dirty(handle, inode);
1425
1426 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1427 /* if we have allocated more blocks and copied
1428 * less. We will have blocks allocated outside
1429 * inode->i_size. So truncate them
1430 */
1431 ext4_orphan_add(handle, inode);
1432 errout:
1433 ret2 = ext4_journal_stop(handle);
1434 if (!ret)
1435 ret = ret2;
1436
1437 if (pos + len > inode->i_size) {
1438 ext4_truncate_failed_write(inode);
1439 /*
1440 * If truncate failed early the inode might still be
1441 * on the orphan list; we need to make sure the inode
1442 * is removed from the orphan list in that case.
1443 */
1444 if (inode->i_nlink)
1445 ext4_orphan_del(NULL, inode);
1446 }
1447
1448 return ret ? ret : copied;
1449 }
1450
1451 /*
1452 * This is a private version of page_zero_new_buffers() which doesn't
1453 * set the buffer to be dirty, since in data=journalled mode we need
1454 * to call ext4_handle_dirty_metadata() instead.
1455 */
1456 static void ext4_journalled_zero_new_buffers(handle_t *handle,
1457 struct page *page,
1458 unsigned from, unsigned to)
1459 {
1460 unsigned int block_start = 0, block_end;
1461 struct buffer_head *head, *bh;
1462
1463 bh = head = page_buffers(page);
1464 do {
1465 block_end = block_start + bh->b_size;
1466 if (buffer_new(bh)) {
1467 if (block_end > from && block_start < to) {
1468 if (!PageUptodate(page)) {
1469 unsigned start, size;
1470
1471 start = max(from, block_start);
1472 size = min(to, block_end) - start;
1473
1474 zero_user(page, start, size);
1475 write_end_fn(handle, bh);
1476 }
1477 clear_buffer_new(bh);
1478 }
1479 }
1480 block_start = block_end;
1481 bh = bh->b_this_page;
1482 } while (bh != head);
1483 }
1484
1485 static int ext4_journalled_write_end(struct file *file,
1486 struct address_space *mapping,
1487 loff_t pos, unsigned len, unsigned copied,
1488 struct page *page, void *fsdata)
1489 {
1490 handle_t *handle = ext4_journal_current_handle();
1491 struct inode *inode = mapping->host;
1492 loff_t old_size = inode->i_size;
1493 int ret = 0, ret2;
1494 int partial = 0;
1495 unsigned from, to;
1496 int size_changed = 0;
1497 int inline_data = ext4_has_inline_data(inode);
1498
1499 trace_ext4_journalled_write_end(inode, pos, len, copied);
1500 from = pos & (PAGE_SIZE - 1);
1501 to = from + len;
1502
1503 BUG_ON(!ext4_handle_valid(handle));
1504
1505 if (inline_data) {
1506 ret = ext4_write_inline_data_end(inode, pos, len,
1507 copied, page);
1508 if (ret < 0) {
1509 unlock_page(page);
1510 put_page(page);
1511 goto errout;
1512 }
1513 copied = ret;
1514 } else if (unlikely(copied < len) && !PageUptodate(page)) {
1515 copied = 0;
1516 ext4_journalled_zero_new_buffers(handle, page, from, to);
1517 } else {
1518 if (unlikely(copied < len))
1519 ext4_journalled_zero_new_buffers(handle, page,
1520 from + copied, to);
1521 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1522 from + copied, &partial,
1523 write_end_fn);
1524 if (!partial)
1525 SetPageUptodate(page);
1526 }
1527 size_changed = ext4_update_inode_size(inode, pos + copied);
1528 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1529 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1530 unlock_page(page);
1531 put_page(page);
1532
1533 if (old_size < pos)
1534 pagecache_isize_extended(inode, old_size, pos);
1535
1536 if (size_changed || inline_data) {
1537 ret2 = ext4_mark_inode_dirty(handle, inode);
1538 if (!ret)
1539 ret = ret2;
1540 }
1541
1542 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1543 /* if we have allocated more blocks and copied
1544 * less. We will have blocks allocated outside
1545 * inode->i_size. So truncate them
1546 */
1547 ext4_orphan_add(handle, inode);
1548
1549 errout:
1550 ret2 = ext4_journal_stop(handle);
1551 if (!ret)
1552 ret = ret2;
1553 if (pos + len > inode->i_size) {
1554 ext4_truncate_failed_write(inode);
1555 /*
1556 * If truncate failed early the inode might still be
1557 * on the orphan list; we need to make sure the inode
1558 * is removed from the orphan list in that case.
1559 */
1560 if (inode->i_nlink)
1561 ext4_orphan_del(NULL, inode);
1562 }
1563
1564 return ret ? ret : copied;
1565 }
1566
1567 /*
1568 * Reserve space for a single cluster
1569 */
1570 static int ext4_da_reserve_space(struct inode *inode)
1571 {
1572 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1573 struct ext4_inode_info *ei = EXT4_I(inode);
1574 int ret;
1575
1576 /*
1577 * We will charge metadata quota at writeout time; this saves
1578 * us from metadata over-estimation, though we may go over by
1579 * a small amount in the end. Here we just reserve for data.
1580 */
1581 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1582 if (ret)
1583 return ret;
1584
1585 spin_lock(&ei->i_block_reservation_lock);
1586 if (ext4_claim_free_clusters(sbi, 1, 0)) {
1587 spin_unlock(&ei->i_block_reservation_lock);
1588 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1589 return -ENOSPC;
1590 }
1591 ei->i_reserved_data_blocks++;
1592 trace_ext4_da_reserve_space(inode);
1593 spin_unlock(&ei->i_block_reservation_lock);
1594
1595 return 0; /* success */
1596 }
1597
1598 void ext4_da_release_space(struct inode *inode, int to_free)
1599 {
1600 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1601 struct ext4_inode_info *ei = EXT4_I(inode);
1602
1603 if (!to_free)
1604 return; /* Nothing to release, exit */
1605
1606 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1607
1608 trace_ext4_da_release_space(inode, to_free);
1609 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1610 /*
1611 * if there aren't enough reserved blocks, then the
1612 * counter is messed up somewhere. Since this
1613 * function is called from invalidate page, it's
1614 * harmless to return without any action.
1615 */
1616 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1617 "ino %lu, to_free %d with only %d reserved "
1618 "data blocks", inode->i_ino, to_free,
1619 ei->i_reserved_data_blocks);
1620 WARN_ON(1);
1621 to_free = ei->i_reserved_data_blocks;
1622 }
1623 ei->i_reserved_data_blocks -= to_free;
1624
1625 /* update fs dirty data blocks counter */
1626 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1627
1628 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1629
1630 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1631 }
1632
1633 static void ext4_da_page_release_reservation(struct page *page,
1634 unsigned int offset,
1635 unsigned int length)
1636 {
1637 int contiguous_blks = 0;
1638 struct buffer_head *head, *bh;
1639 unsigned int curr_off = 0;
1640 struct inode *inode = page->mapping->host;
1641 unsigned int stop = offset + length;
1642 ext4_fsblk_t lblk;
1643
1644 BUG_ON(stop > PAGE_SIZE || stop < length);
1645
1646 head = page_buffers(page);
1647 bh = head;
1648 do {
1649 unsigned int next_off = curr_off + bh->b_size;
1650
1651 if (next_off > stop)
1652 break;
1653
1654 if ((offset <= curr_off) && (buffer_delay(bh))) {
1655 contiguous_blks++;
1656 clear_buffer_delay(bh);
1657 } else if (contiguous_blks) {
1658 lblk = page->index <<
1659 (PAGE_SHIFT - inode->i_blkbits);
1660 lblk += (curr_off >> inode->i_blkbits) -
1661 contiguous_blks;
1662 ext4_es_remove_blks(inode, lblk, contiguous_blks);
1663 contiguous_blks = 0;
1664 }
1665 curr_off = next_off;
1666 } while ((bh = bh->b_this_page) != head);
1667
1668 if (contiguous_blks) {
1669 lblk = page->index << (PAGE_SHIFT - inode->i_blkbits);
1670 lblk += (curr_off >> inode->i_blkbits) - contiguous_blks;
1671 ext4_es_remove_blks(inode, lblk, contiguous_blks);
1672 }
1673
1674 }
1675
1676 /*
1677 * Delayed allocation stuff
1678 */
1679
1680 struct mpage_da_data {
1681 struct inode *inode;
1682 struct writeback_control *wbc;
1683
1684 pgoff_t first_page; /* The first page to write */
1685 pgoff_t next_page; /* Current page to examine */
1686 pgoff_t last_page; /* Last page to examine */
1687 /*
1688 * Extent to map - this can be after first_page because that can be
1689 * fully mapped. We somewhat abuse m_flags to store whether the extent
1690 * is delalloc or unwritten.
1691 */
1692 struct ext4_map_blocks map;
1693 struct ext4_io_submit io_submit; /* IO submission data */
1694 unsigned int do_map:1;
1695 };
1696
1697 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1698 bool invalidate)
1699 {
1700 int nr_pages, i;
1701 pgoff_t index, end;
1702 struct pagevec pvec;
1703 struct inode *inode = mpd->inode;
1704 struct address_space *mapping = inode->i_mapping;
1705
1706 /* This is necessary when next_page == 0. */
1707 if (mpd->first_page >= mpd->next_page)
1708 return;
1709
1710 index = mpd->first_page;
1711 end = mpd->next_page - 1;
1712 if (invalidate) {
1713 ext4_lblk_t start, last;
1714 start = index << (PAGE_SHIFT - inode->i_blkbits);
1715 last = end << (PAGE_SHIFT - inode->i_blkbits);
1716 ext4_es_remove_extent(inode, start, last - start + 1);
1717 }
1718
1719 pagevec_init(&pvec);
1720 while (index <= end) {
1721 nr_pages = pagevec_lookup_range(&pvec, mapping, &index, end);
1722 if (nr_pages == 0)
1723 break;
1724 for (i = 0; i < nr_pages; i++) {
1725 struct page *page = pvec.pages[i];
1726
1727 BUG_ON(!PageLocked(page));
1728 BUG_ON(PageWriteback(page));
1729 if (invalidate) {
1730 if (page_mapped(page))
1731 clear_page_dirty_for_io(page);
1732 block_invalidatepage(page, 0, PAGE_SIZE);
1733 ClearPageUptodate(page);
1734 }
1735 unlock_page(page);
1736 }
1737 pagevec_release(&pvec);
1738 }
1739 }
1740
1741 static void ext4_print_free_blocks(struct inode *inode)
1742 {
1743 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1744 struct super_block *sb = inode->i_sb;
1745 struct ext4_inode_info *ei = EXT4_I(inode);
1746
1747 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1748 EXT4_C2B(EXT4_SB(inode->i_sb),
1749 ext4_count_free_clusters(sb)));
1750 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1751 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1752 (long long) EXT4_C2B(EXT4_SB(sb),
1753 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1754 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1755 (long long) EXT4_C2B(EXT4_SB(sb),
1756 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1757 ext4_msg(sb, KERN_CRIT, "Block reservation details");
1758 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1759 ei->i_reserved_data_blocks);
1760 return;
1761 }
1762
1763 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1764 {
1765 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1766 }
1767
1768 /*
1769 * ext4_insert_delayed_block - adds a delayed block to the extents status
1770 * tree, incrementing the reserved cluster/block
1771 * count or making a pending reservation
1772 * where needed
1773 *
1774 * @inode - file containing the newly added block
1775 * @lblk - logical block to be added
1776 *
1777 * Returns 0 on success, negative error code on failure.
1778 */
1779 static int ext4_insert_delayed_block(struct inode *inode, ext4_lblk_t lblk)
1780 {
1781 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1782 int ret;
1783 bool allocated = false;
1784
1785 /*
1786 * If the cluster containing lblk is shared with a delayed,
1787 * written, or unwritten extent in a bigalloc file system, it's
1788 * already been accounted for and does not need to be reserved.
1789 * A pending reservation must be made for the cluster if it's
1790 * shared with a written or unwritten extent and doesn't already
1791 * have one. Written and unwritten extents can be purged from the
1792 * extents status tree if the system is under memory pressure, so
1793 * it's necessary to examine the extent tree if a search of the
1794 * extents status tree doesn't get a match.
1795 */
1796 if (sbi->s_cluster_ratio == 1) {
1797 ret = ext4_da_reserve_space(inode);
1798 if (ret != 0) /* ENOSPC */
1799 goto errout;
1800 } else { /* bigalloc */
1801 if (!ext4_es_scan_clu(inode, &ext4_es_is_delonly, lblk)) {
1802 if (!ext4_es_scan_clu(inode,
1803 &ext4_es_is_mapped, lblk)) {
1804 ret = ext4_clu_mapped(inode,
1805 EXT4_B2C(sbi, lblk));
1806 if (ret < 0)
1807 goto errout;
1808 if (ret == 0) {
1809 ret = ext4_da_reserve_space(inode);
1810 if (ret != 0) /* ENOSPC */
1811 goto errout;
1812 } else {
1813 allocated = true;
1814 }
1815 } else {
1816 allocated = true;
1817 }
1818 }
1819 }
1820
1821 ret = ext4_es_insert_delayed_block(inode, lblk, allocated);
1822
1823 errout:
1824 return ret;
1825 }
1826
1827 /*
1828 * This function is grabs code from the very beginning of
1829 * ext4_map_blocks, but assumes that the caller is from delayed write
1830 * time. This function looks up the requested blocks and sets the
1831 * buffer delay bit under the protection of i_data_sem.
1832 */
1833 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1834 struct ext4_map_blocks *map,
1835 struct buffer_head *bh)
1836 {
1837 struct extent_status es;
1838 int retval;
1839 sector_t invalid_block = ~((sector_t) 0xffff);
1840 #ifdef ES_AGGRESSIVE_TEST
1841 struct ext4_map_blocks orig_map;
1842
1843 memcpy(&orig_map, map, sizeof(*map));
1844 #endif
1845
1846 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1847 invalid_block = ~0;
1848
1849 map->m_flags = 0;
1850 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1851 "logical block %lu\n", inode->i_ino, map->m_len,
1852 (unsigned long) map->m_lblk);
1853
1854 /* Lookup extent status tree firstly */
1855 if (ext4_es_lookup_extent(inode, iblock, &es)) {
1856 if (ext4_es_is_hole(&es)) {
1857 retval = 0;
1858 down_read(&EXT4_I(inode)->i_data_sem);
1859 goto add_delayed;
1860 }
1861
1862 /*
1863 * Delayed extent could be allocated by fallocate.
1864 * So we need to check it.
1865 */
1866 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1867 map_bh(bh, inode->i_sb, invalid_block);
1868 set_buffer_new(bh);
1869 set_buffer_delay(bh);
1870 return 0;
1871 }
1872
1873 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1874 retval = es.es_len - (iblock - es.es_lblk);
1875 if (retval > map->m_len)
1876 retval = map->m_len;
1877 map->m_len = retval;
1878 if (ext4_es_is_written(&es))
1879 map->m_flags |= EXT4_MAP_MAPPED;
1880 else if (ext4_es_is_unwritten(&es))
1881 map->m_flags |= EXT4_MAP_UNWRITTEN;
1882 else
1883 BUG();
1884
1885 #ifdef ES_AGGRESSIVE_TEST
1886 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1887 #endif
1888 return retval;
1889 }
1890
1891 /*
1892 * Try to see if we can get the block without requesting a new
1893 * file system block.
1894 */
1895 down_read(&EXT4_I(inode)->i_data_sem);
1896 if (ext4_has_inline_data(inode))
1897 retval = 0;
1898 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1899 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1900 else
1901 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1902
1903 add_delayed:
1904 if (retval == 0) {
1905 int ret;
1906
1907 /*
1908 * XXX: __block_prepare_write() unmaps passed block,
1909 * is it OK?
1910 */
1911
1912 ret = ext4_insert_delayed_block(inode, map->m_lblk);
1913 if (ret != 0) {
1914 retval = ret;
1915 goto out_unlock;
1916 }
1917
1918 map_bh(bh, inode->i_sb, invalid_block);
1919 set_buffer_new(bh);
1920 set_buffer_delay(bh);
1921 } else if (retval > 0) {
1922 int ret;
1923 unsigned int status;
1924
1925 if (unlikely(retval != map->m_len)) {
1926 ext4_warning(inode->i_sb,
1927 "ES len assertion failed for inode "
1928 "%lu: retval %d != map->m_len %d",
1929 inode->i_ino, retval, map->m_len);
1930 WARN_ON(1);
1931 }
1932
1933 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1934 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1935 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1936 map->m_pblk, status);
1937 if (ret != 0)
1938 retval = ret;
1939 }
1940
1941 out_unlock:
1942 up_read((&EXT4_I(inode)->i_data_sem));
1943
1944 return retval;
1945 }
1946
1947 /*
1948 * This is a special get_block_t callback which is used by
1949 * ext4_da_write_begin(). It will either return mapped block or
1950 * reserve space for a single block.
1951 *
1952 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1953 * We also have b_blocknr = -1 and b_bdev initialized properly
1954 *
1955 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1956 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1957 * initialized properly.
1958 */
1959 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1960 struct buffer_head *bh, int create)
1961 {
1962 struct ext4_map_blocks map;
1963 int ret = 0;
1964
1965 BUG_ON(create == 0);
1966 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1967
1968 map.m_lblk = iblock;
1969 map.m_len = 1;
1970
1971 /*
1972 * first, we need to know whether the block is allocated already
1973 * preallocated blocks are unmapped but should treated
1974 * the same as allocated blocks.
1975 */
1976 ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1977 if (ret <= 0)
1978 return ret;
1979
1980 map_bh(bh, inode->i_sb, map.m_pblk);
1981 ext4_update_bh_state(bh, map.m_flags);
1982
1983 if (buffer_unwritten(bh)) {
1984 /* A delayed write to unwritten bh should be marked
1985 * new and mapped. Mapped ensures that we don't do
1986 * get_block multiple times when we write to the same
1987 * offset and new ensures that we do proper zero out
1988 * for partial write.
1989 */
1990 set_buffer_new(bh);
1991 set_buffer_mapped(bh);
1992 }
1993 return 0;
1994 }
1995
1996 static int bget_one(handle_t *handle, struct buffer_head *bh)
1997 {
1998 get_bh(bh);
1999 return 0;
2000 }
2001
2002 static int bput_one(handle_t *handle, struct buffer_head *bh)
2003 {
2004 put_bh(bh);
2005 return 0;
2006 }
2007
2008 static int __ext4_journalled_writepage(struct page *page,
2009 unsigned int len)
2010 {
2011 struct address_space *mapping = page->mapping;
2012 struct inode *inode = mapping->host;
2013 struct buffer_head *page_bufs = NULL;
2014 handle_t *handle = NULL;
2015 int ret = 0, err = 0;
2016 int inline_data = ext4_has_inline_data(inode);
2017 struct buffer_head *inode_bh = NULL;
2018
2019 ClearPageChecked(page);
2020
2021 if (inline_data) {
2022 BUG_ON(page->index != 0);
2023 BUG_ON(len > ext4_get_max_inline_size(inode));
2024 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
2025 if (inode_bh == NULL)
2026 goto out;
2027 } else {
2028 page_bufs = page_buffers(page);
2029 if (!page_bufs) {
2030 BUG();
2031 goto out;
2032 }
2033 ext4_walk_page_buffers(handle, page_bufs, 0, len,
2034 NULL, bget_one);
2035 }
2036 /*
2037 * We need to release the page lock before we start the
2038 * journal, so grab a reference so the page won't disappear
2039 * out from under us.
2040 */
2041 get_page(page);
2042 unlock_page(page);
2043
2044 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2045 ext4_writepage_trans_blocks(inode));
2046 if (IS_ERR(handle)) {
2047 ret = PTR_ERR(handle);
2048 put_page(page);
2049 goto out_no_pagelock;
2050 }
2051 BUG_ON(!ext4_handle_valid(handle));
2052
2053 lock_page(page);
2054 put_page(page);
2055 if (page->mapping != mapping) {
2056 /* The page got truncated from under us */
2057 ext4_journal_stop(handle);
2058 ret = 0;
2059 goto out;
2060 }
2061
2062 if (inline_data) {
2063 ret = ext4_mark_inode_dirty(handle, inode);
2064 } else {
2065 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2066 do_journal_get_write_access);
2067
2068 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2069 write_end_fn);
2070 }
2071 if (ret == 0)
2072 ret = err;
2073 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
2074 err = ext4_journal_stop(handle);
2075 if (!ret)
2076 ret = err;
2077
2078 if (!ext4_has_inline_data(inode))
2079 ext4_walk_page_buffers(NULL, page_bufs, 0, len,
2080 NULL, bput_one);
2081 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2082 out:
2083 unlock_page(page);
2084 out_no_pagelock:
2085 brelse(inode_bh);
2086 return ret;
2087 }
2088
2089 /*
2090 * Note that we don't need to start a transaction unless we're journaling data
2091 * because we should have holes filled from ext4_page_mkwrite(). We even don't
2092 * need to file the inode to the transaction's list in ordered mode because if
2093 * we are writing back data added by write(), the inode is already there and if
2094 * we are writing back data modified via mmap(), no one guarantees in which
2095 * transaction the data will hit the disk. In case we are journaling data, we
2096 * cannot start transaction directly because transaction start ranks above page
2097 * lock so we have to do some magic.
2098 *
2099 * This function can get called via...
2100 * - ext4_writepages after taking page lock (have journal handle)
2101 * - journal_submit_inode_data_buffers (no journal handle)
2102 * - shrink_page_list via the kswapd/direct reclaim (no journal handle)
2103 * - grab_page_cache when doing write_begin (have journal handle)
2104 *
2105 * We don't do any block allocation in this function. If we have page with
2106 * multiple blocks we need to write those buffer_heads that are mapped. This
2107 * is important for mmaped based write. So if we do with blocksize 1K
2108 * truncate(f, 1024);
2109 * a = mmap(f, 0, 4096);
2110 * a[0] = 'a';
2111 * truncate(f, 4096);
2112 * we have in the page first buffer_head mapped via page_mkwrite call back
2113 * but other buffer_heads would be unmapped but dirty (dirty done via the
2114 * do_wp_page). So writepage should write the first block. If we modify
2115 * the mmap area beyond 1024 we will again get a page_fault and the
2116 * page_mkwrite callback will do the block allocation and mark the
2117 * buffer_heads mapped.
2118 *
2119 * We redirty the page if we have any buffer_heads that is either delay or
2120 * unwritten in the page.
2121 *
2122 * We can get recursively called as show below.
2123 *
2124 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2125 * ext4_writepage()
2126 *
2127 * But since we don't do any block allocation we should not deadlock.
2128 * Page also have the dirty flag cleared so we don't get recurive page_lock.
2129 */
2130 static int ext4_writepage(struct page *page,
2131 struct writeback_control *wbc)
2132 {
2133 int ret = 0;
2134 loff_t size;
2135 unsigned int len;
2136 struct buffer_head *page_bufs = NULL;
2137 struct inode *inode = page->mapping->host;
2138 struct ext4_io_submit io_submit;
2139 bool keep_towrite = false;
2140
2141 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
2142 ext4_invalidatepage(page, 0, PAGE_SIZE);
2143 unlock_page(page);
2144 return -EIO;
2145 }
2146
2147 trace_ext4_writepage(page);
2148 size = i_size_read(inode);
2149 if (page->index == size >> PAGE_SHIFT)
2150 len = size & ~PAGE_MASK;
2151 else
2152 len = PAGE_SIZE;
2153
2154 page_bufs = page_buffers(page);
2155 /*
2156 * We cannot do block allocation or other extent handling in this
2157 * function. If there are buffers needing that, we have to redirty
2158 * the page. But we may reach here when we do a journal commit via
2159 * journal_submit_inode_data_buffers() and in that case we must write
2160 * allocated buffers to achieve data=ordered mode guarantees.
2161 *
2162 * Also, if there is only one buffer per page (the fs block
2163 * size == the page size), if one buffer needs block
2164 * allocation or needs to modify the extent tree to clear the
2165 * unwritten flag, we know that the page can't be written at
2166 * all, so we might as well refuse the write immediately.
2167 * Unfortunately if the block size != page size, we can't as
2168 * easily detect this case using ext4_walk_page_buffers(), but
2169 * for the extremely common case, this is an optimization that
2170 * skips a useless round trip through ext4_bio_write_page().
2171 */
2172 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2173 ext4_bh_delay_or_unwritten)) {
2174 redirty_page_for_writepage(wbc, page);
2175 if ((current->flags & PF_MEMALLOC) ||
2176 (inode->i_sb->s_blocksize == PAGE_SIZE)) {
2177 /*
2178 * For memory cleaning there's no point in writing only
2179 * some buffers. So just bail out. Warn if we came here
2180 * from direct reclaim.
2181 */
2182 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2183 == PF_MEMALLOC);
2184 unlock_page(page);
2185 return 0;
2186 }
2187 keep_towrite = true;
2188 }
2189
2190 if (PageChecked(page) && ext4_should_journal_data(inode))
2191 /*
2192 * It's mmapped pagecache. Add buffers and journal it. There
2193 * doesn't seem much point in redirtying the page here.
2194 */
2195 return __ext4_journalled_writepage(page, len);
2196
2197 ext4_io_submit_init(&io_submit, wbc);
2198 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2199 if (!io_submit.io_end) {
2200 redirty_page_for_writepage(wbc, page);
2201 unlock_page(page);
2202 return -ENOMEM;
2203 }
2204 ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
2205 ext4_io_submit(&io_submit);
2206 /* Drop io_end reference we got from init */
2207 ext4_put_io_end_defer(io_submit.io_end);
2208 return ret;
2209 }
2210
2211 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2212 {
2213 int len;
2214 loff_t size;
2215 int err;
2216
2217 BUG_ON(page->index != mpd->first_page);
2218 clear_page_dirty_for_io(page);
2219 /*
2220 * We have to be very careful here! Nothing protects writeback path
2221 * against i_size changes and the page can be writeably mapped into
2222 * page tables. So an application can be growing i_size and writing
2223 * data through mmap while writeback runs. clear_page_dirty_for_io()
2224 * write-protects our page in page tables and the page cannot get
2225 * written to again until we release page lock. So only after
2226 * clear_page_dirty_for_io() we are safe to sample i_size for
2227 * ext4_bio_write_page() to zero-out tail of the written page. We rely
2228 * on the barrier provided by TestClearPageDirty in
2229 * clear_page_dirty_for_io() to make sure i_size is really sampled only
2230 * after page tables are updated.
2231 */
2232 size = i_size_read(mpd->inode);
2233 if (page->index == size >> PAGE_SHIFT)
2234 len = size & ~PAGE_MASK;
2235 else
2236 len = PAGE_SIZE;
2237 err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
2238 if (!err)
2239 mpd->wbc->nr_to_write--;
2240 mpd->first_page++;
2241
2242 return err;
2243 }
2244
2245 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
2246
2247 /*
2248 * mballoc gives us at most this number of blocks...
2249 * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2250 * The rest of mballoc seems to handle chunks up to full group size.
2251 */
2252 #define MAX_WRITEPAGES_EXTENT_LEN 2048
2253
2254 /*
2255 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2256 *
2257 * @mpd - extent of blocks
2258 * @lblk - logical number of the block in the file
2259 * @bh - buffer head we want to add to the extent
2260 *
2261 * The function is used to collect contig. blocks in the same state. If the
2262 * buffer doesn't require mapping for writeback and we haven't started the
2263 * extent of buffers to map yet, the function returns 'true' immediately - the
2264 * caller can write the buffer right away. Otherwise the function returns true
2265 * if the block has been added to the extent, false if the block couldn't be
2266 * added.
2267 */
2268 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2269 struct buffer_head *bh)
2270 {
2271 struct ext4_map_blocks *map = &mpd->map;
2272
2273 /* Buffer that doesn't need mapping for writeback? */
2274 if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2275 (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2276 /* So far no extent to map => we write the buffer right away */
2277 if (map->m_len == 0)
2278 return true;
2279 return false;
2280 }
2281
2282 /* First block in the extent? */
2283 if (map->m_len == 0) {
2284 /* We cannot map unless handle is started... */
2285 if (!mpd->do_map)
2286 return false;
2287 map->m_lblk = lblk;
2288 map->m_len = 1;
2289 map->m_flags = bh->b_state & BH_FLAGS;
2290 return true;
2291 }
2292
2293 /* Don't go larger than mballoc is willing to allocate */
2294 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2295 return false;
2296
2297 /* Can we merge the block to our big extent? */
2298 if (lblk == map->m_lblk + map->m_len &&
2299 (bh->b_state & BH_FLAGS) == map->m_flags) {
2300 map->m_len++;
2301 return true;
2302 }
2303 return false;
2304 }
2305
2306 /*
2307 * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2308 *
2309 * @mpd - extent of blocks for mapping
2310 * @head - the first buffer in the page
2311 * @bh - buffer we should start processing from
2312 * @lblk - logical number of the block in the file corresponding to @bh
2313 *
2314 * Walk through page buffers from @bh upto @head (exclusive) and either submit
2315 * the page for IO if all buffers in this page were mapped and there's no
2316 * accumulated extent of buffers to map or add buffers in the page to the
2317 * extent of buffers to map. The function returns 1 if the caller can continue
2318 * by processing the next page, 0 if it should stop adding buffers to the
2319 * extent to map because we cannot extend it anymore. It can also return value
2320 * < 0 in case of error during IO submission.
2321 */
2322 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2323 struct buffer_head *head,
2324 struct buffer_head *bh,
2325 ext4_lblk_t lblk)
2326 {
2327 struct inode *inode = mpd->inode;
2328 int err;
2329 ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
2330 >> inode->i_blkbits;
2331
2332 do {
2333 BUG_ON(buffer_locked(bh));
2334
2335 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2336 /* Found extent to map? */
2337 if (mpd->map.m_len)
2338 return 0;
2339 /* Buffer needs mapping and handle is not started? */
2340 if (!mpd->do_map)
2341 return 0;
2342 /* Everything mapped so far and we hit EOF */
2343 break;
2344 }
2345 } while (lblk++, (bh = bh->b_this_page) != head);
2346 /* So far everything mapped? Submit the page for IO. */
2347 if (mpd->map.m_len == 0) {
2348 err = mpage_submit_page(mpd, head->b_page);
2349 if (err < 0)
2350 return err;
2351 }
2352 return lblk < blocks;
2353 }
2354
2355 /*
2356 * mpage_map_buffers - update buffers corresponding to changed extent and
2357 * submit fully mapped pages for IO
2358 *
2359 * @mpd - description of extent to map, on return next extent to map
2360 *
2361 * Scan buffers corresponding to changed extent (we expect corresponding pages
2362 * to be already locked) and update buffer state according to new extent state.
2363 * We map delalloc buffers to their physical location, clear unwritten bits,
2364 * and mark buffers as uninit when we perform writes to unwritten extents
2365 * and do extent conversion after IO is finished. If the last page is not fully
2366 * mapped, we update @map to the next extent in the last page that needs
2367 * mapping. Otherwise we submit the page for IO.
2368 */
2369 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2370 {
2371 struct pagevec pvec;
2372 int nr_pages, i;
2373 struct inode *inode = mpd->inode;
2374 struct buffer_head *head, *bh;
2375 int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2376 pgoff_t start, end;
2377 ext4_lblk_t lblk;
2378 sector_t pblock;
2379 int err;
2380
2381 start = mpd->map.m_lblk >> bpp_bits;
2382 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2383 lblk = start << bpp_bits;
2384 pblock = mpd->map.m_pblk;
2385
2386 pagevec_init(&pvec);
2387 while (start <= end) {
2388 nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping,
2389 &start, end);
2390 if (nr_pages == 0)
2391 break;
2392 for (i = 0; i < nr_pages; i++) {
2393 struct page *page = pvec.pages[i];
2394
2395 bh = head = page_buffers(page);
2396 do {
2397 if (lblk < mpd->map.m_lblk)
2398 continue;
2399 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2400 /*
2401 * Buffer after end of mapped extent.
2402 * Find next buffer in the page to map.
2403 */
2404 mpd->map.m_len = 0;
2405 mpd->map.m_flags = 0;
2406 /*
2407 * FIXME: If dioread_nolock supports
2408 * blocksize < pagesize, we need to make
2409 * sure we add size mapped so far to
2410 * io_end->size as the following call
2411 * can submit the page for IO.
2412 */
2413 err = mpage_process_page_bufs(mpd, head,
2414 bh, lblk);
2415 pagevec_release(&pvec);
2416 if (err > 0)
2417 err = 0;
2418 return err;
2419 }
2420 if (buffer_delay(bh)) {
2421 clear_buffer_delay(bh);
2422 bh->b_blocknr = pblock++;
2423 }
2424 clear_buffer_unwritten(bh);
2425 } while (lblk++, (bh = bh->b_this_page) != head);
2426
2427 /*
2428 * FIXME: This is going to break if dioread_nolock
2429 * supports blocksize < pagesize as we will try to
2430 * convert potentially unmapped parts of inode.
2431 */
2432 mpd->io_submit.io_end->size += PAGE_SIZE;
2433 /* Page fully mapped - let IO run! */
2434 err = mpage_submit_page(mpd, page);
2435 if (err < 0) {
2436 pagevec_release(&pvec);
2437 return err;
2438 }
2439 }
2440 pagevec_release(&pvec);
2441 }
2442 /* Extent fully mapped and matches with page boundary. We are done. */
2443 mpd->map.m_len = 0;
2444 mpd->map.m_flags = 0;
2445 return 0;
2446 }
2447
2448 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2449 {
2450 struct inode *inode = mpd->inode;
2451 struct ext4_map_blocks *map = &mpd->map;
2452 int get_blocks_flags;
2453 int err, dioread_nolock;
2454
2455 trace_ext4_da_write_pages_extent(inode, map);
2456 /*
2457 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2458 * to convert an unwritten extent to be initialized (in the case
2459 * where we have written into one or more preallocated blocks). It is
2460 * possible that we're going to need more metadata blocks than
2461 * previously reserved. However we must not fail because we're in
2462 * writeback and there is nothing we can do about it so it might result
2463 * in data loss. So use reserved blocks to allocate metadata if
2464 * possible.
2465 *
2466 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2467 * the blocks in question are delalloc blocks. This indicates
2468 * that the blocks and quotas has already been checked when
2469 * the data was copied into the page cache.
2470 */
2471 get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2472 EXT4_GET_BLOCKS_METADATA_NOFAIL |
2473 EXT4_GET_BLOCKS_IO_SUBMIT;
2474 dioread_nolock = ext4_should_dioread_nolock(inode);
2475 if (dioread_nolock)
2476 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2477 if (map->m_flags & (1 << BH_Delay))
2478 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2479
2480 err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2481 if (err < 0)
2482 return err;
2483 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2484 if (!mpd->io_submit.io_end->handle &&
2485 ext4_handle_valid(handle)) {
2486 mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2487 handle->h_rsv_handle = NULL;
2488 }
2489 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2490 }
2491
2492 BUG_ON(map->m_len == 0);
2493 return 0;
2494 }
2495
2496 /*
2497 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2498 * mpd->len and submit pages underlying it for IO
2499 *
2500 * @handle - handle for journal operations
2501 * @mpd - extent to map
2502 * @give_up_on_write - we set this to true iff there is a fatal error and there
2503 * is no hope of writing the data. The caller should discard
2504 * dirty pages to avoid infinite loops.
2505 *
2506 * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2507 * delayed, blocks are allocated, if it is unwritten, we may need to convert
2508 * them to initialized or split the described range from larger unwritten
2509 * extent. Note that we need not map all the described range since allocation
2510 * can return less blocks or the range is covered by more unwritten extents. We
2511 * cannot map more because we are limited by reserved transaction credits. On
2512 * the other hand we always make sure that the last touched page is fully
2513 * mapped so that it can be written out (and thus forward progress is
2514 * guaranteed). After mapping we submit all mapped pages for IO.
2515 */
2516 static int mpage_map_and_submit_extent(handle_t *handle,
2517 struct mpage_da_data *mpd,
2518 bool *give_up_on_write)
2519 {
2520 struct inode *inode = mpd->inode;
2521 struct ext4_map_blocks *map = &mpd->map;
2522 int err;
2523 loff_t disksize;
2524 int progress = 0;
2525
2526 mpd->io_submit.io_end->offset =
2527 ((loff_t)map->m_lblk) << inode->i_blkbits;
2528 do {
2529 err = mpage_map_one_extent(handle, mpd);
2530 if (err < 0) {
2531 struct super_block *sb = inode->i_sb;
2532
2533 if (ext4_forced_shutdown(EXT4_SB(sb)) ||
2534 EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2535 goto invalidate_dirty_pages;
2536 /*
2537 * Let the uper layers retry transient errors.
2538 * In the case of ENOSPC, if ext4_count_free_blocks()
2539 * is non-zero, a commit should free up blocks.
2540 */
2541 if ((err == -ENOMEM) ||
2542 (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2543 if (progress)
2544 goto update_disksize;
2545 return err;
2546 }
2547 ext4_msg(sb, KERN_CRIT,
2548 "Delayed block allocation failed for "
2549 "inode %lu at logical offset %llu with"
2550 " max blocks %u with error %d",
2551 inode->i_ino,
2552 (unsigned long long)map->m_lblk,
2553 (unsigned)map->m_len, -err);
2554 ext4_msg(sb, KERN_CRIT,
2555 "This should not happen!! Data will "
2556 "be lost\n");
2557 if (err == -ENOSPC)
2558 ext4_print_free_blocks(inode);
2559 invalidate_dirty_pages:
2560 *give_up_on_write = true;
2561 return err;
2562 }
2563 progress = 1;
2564 /*
2565 * Update buffer state, submit mapped pages, and get us new
2566 * extent to map
2567 */
2568 err = mpage_map_and_submit_buffers(mpd);
2569 if (err < 0)
2570 goto update_disksize;
2571 } while (map->m_len);
2572
2573 update_disksize:
2574 /*
2575 * Update on-disk size after IO is submitted. Races with
2576 * truncate are avoided by checking i_size under i_data_sem.
2577 */
2578 disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2579 if (disksize > EXT4_I(inode)->i_disksize) {
2580 int err2;
2581 loff_t i_size;
2582
2583 down_write(&EXT4_I(inode)->i_data_sem);
2584 i_size = i_size_read(inode);
2585 if (disksize > i_size)
2586 disksize = i_size;
2587 if (disksize > EXT4_I(inode)->i_disksize)
2588 EXT4_I(inode)->i_disksize = disksize;
2589 up_write(&EXT4_I(inode)->i_data_sem);
2590 err2 = ext4_mark_inode_dirty(handle, inode);
2591 if (err2)
2592 ext4_error(inode->i_sb,
2593 "Failed to mark inode %lu dirty",
2594 inode->i_ino);
2595 if (!err)
2596 err = err2;
2597 }
2598 return err;
2599 }
2600
2601 /*
2602 * Calculate the total number of credits to reserve for one writepages
2603 * iteration. This is called from ext4_writepages(). We map an extent of
2604 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2605 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2606 * bpp - 1 blocks in bpp different extents.
2607 */
2608 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2609 {
2610 int bpp = ext4_journal_blocks_per_page(inode);
2611
2612 return ext4_meta_trans_blocks(inode,
2613 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2614 }
2615
2616 /*
2617 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2618 * and underlying extent to map
2619 *
2620 * @mpd - where to look for pages
2621 *
2622 * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2623 * IO immediately. When we find a page which isn't mapped we start accumulating
2624 * extent of buffers underlying these pages that needs mapping (formed by
2625 * either delayed or unwritten buffers). We also lock the pages containing
2626 * these buffers. The extent found is returned in @mpd structure (starting at
2627 * mpd->lblk with length mpd->len blocks).
2628 *
2629 * Note that this function can attach bios to one io_end structure which are
2630 * neither logically nor physically contiguous. Although it may seem as an
2631 * unnecessary complication, it is actually inevitable in blocksize < pagesize
2632 * case as we need to track IO to all buffers underlying a page in one io_end.
2633 */
2634 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2635 {
2636 struct address_space *mapping = mpd->inode->i_mapping;
2637 struct pagevec pvec;
2638 unsigned int nr_pages;
2639 long left = mpd->wbc->nr_to_write;
2640 pgoff_t index = mpd->first_page;
2641 pgoff_t end = mpd->last_page;
2642 xa_mark_t tag;
2643 int i, err = 0;
2644 int blkbits = mpd->inode->i_blkbits;
2645 ext4_lblk_t lblk;
2646 struct buffer_head *head;
2647
2648 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2649 tag = PAGECACHE_TAG_TOWRITE;
2650 else
2651 tag = PAGECACHE_TAG_DIRTY;
2652
2653 pagevec_init(&pvec);
2654 mpd->map.m_len = 0;
2655 mpd->next_page = index;
2656 while (index <= end) {
2657 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2658 tag);
2659 if (nr_pages == 0)
2660 goto out;
2661
2662 for (i = 0; i < nr_pages; i++) {
2663 struct page *page = pvec.pages[i];
2664
2665 /*
2666 * Accumulated enough dirty pages? This doesn't apply
2667 * to WB_SYNC_ALL mode. For integrity sync we have to
2668 * keep going because someone may be concurrently
2669 * dirtying pages, and we might have synced a lot of
2670 * newly appeared dirty pages, but have not synced all
2671 * of the old dirty pages.
2672 */
2673 if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2674 goto out;
2675
2676 /* If we can't merge this page, we are done. */
2677 if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2678 goto out;
2679
2680 lock_page(page);
2681 /*
2682 * If the page is no longer dirty, or its mapping no
2683 * longer corresponds to inode we are writing (which
2684 * means it has been truncated or invalidated), or the
2685 * page is already under writeback and we are not doing
2686 * a data integrity writeback, skip the page
2687 */
2688 if (!PageDirty(page) ||
2689 (PageWriteback(page) &&
2690 (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2691 unlikely(page->mapping != mapping)) {
2692 unlock_page(page);
2693 continue;
2694 }
2695
2696 wait_on_page_writeback(page);
2697 BUG_ON(PageWriteback(page));
2698
2699 if (mpd->map.m_len == 0)
2700 mpd->first_page = page->index;
2701 mpd->next_page = page->index + 1;
2702 /* Add all dirty buffers to mpd */
2703 lblk = ((ext4_lblk_t)page->index) <<
2704 (PAGE_SHIFT - blkbits);
2705 head = page_buffers(page);
2706 err = mpage_process_page_bufs(mpd, head, head, lblk);
2707 if (err <= 0)
2708 goto out;
2709 err = 0;
2710 left--;
2711 }
2712 pagevec_release(&pvec);
2713 cond_resched();
2714 }
2715 return 0;
2716 out:
2717 pagevec_release(&pvec);
2718 return err;
2719 }
2720
2721 static int ext4_writepages(struct address_space *mapping,
2722 struct writeback_control *wbc)
2723 {
2724 pgoff_t writeback_index = 0;
2725 long nr_to_write = wbc->nr_to_write;
2726 int range_whole = 0;
2727 int cycled = 1;
2728 handle_t *handle = NULL;
2729 struct mpage_da_data mpd;
2730 struct inode *inode = mapping->host;
2731 int needed_blocks, rsv_blocks = 0, ret = 0;
2732 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2733 bool done;
2734 struct blk_plug plug;
2735 bool give_up_on_write = false;
2736
2737 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2738 return -EIO;
2739
2740 percpu_down_read(&sbi->s_journal_flag_rwsem);
2741 trace_ext4_writepages(inode, wbc);
2742
2743 /*
2744 * No pages to write? This is mainly a kludge to avoid starting
2745 * a transaction for special inodes like journal inode on last iput()
2746 * because that could violate lock ordering on umount
2747 */
2748 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2749 goto out_writepages;
2750
2751 if (ext4_should_journal_data(inode)) {
2752 ret = generic_writepages(mapping, wbc);
2753 goto out_writepages;
2754 }
2755
2756 /*
2757 * If the filesystem has aborted, it is read-only, so return
2758 * right away instead of dumping stack traces later on that
2759 * will obscure the real source of the problem. We test
2760 * EXT4_MF_FS_ABORTED instead of sb->s_flag's SB_RDONLY because
2761 * the latter could be true if the filesystem is mounted
2762 * read-only, and in that case, ext4_writepages should
2763 * *never* be called, so if that ever happens, we would want
2764 * the stack trace.
2765 */
2766 if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) ||
2767 sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2768 ret = -EROFS;
2769 goto out_writepages;
2770 }
2771
2772 if (ext4_should_dioread_nolock(inode)) {
2773 /*
2774 * We may need to convert up to one extent per block in
2775 * the page and we may dirty the inode.
2776 */
2777 rsv_blocks = 1 + ext4_chunk_trans_blocks(inode,
2778 PAGE_SIZE >> inode->i_blkbits);
2779 }
2780
2781 /*
2782 * If we have inline data and arrive here, it means that
2783 * we will soon create the block for the 1st page, so
2784 * we'd better clear the inline data here.
2785 */
2786 if (ext4_has_inline_data(inode)) {
2787 /* Just inode will be modified... */
2788 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2789 if (IS_ERR(handle)) {
2790 ret = PTR_ERR(handle);
2791 goto out_writepages;
2792 }
2793 BUG_ON(ext4_test_inode_state(inode,
2794 EXT4_STATE_MAY_INLINE_DATA));
2795 ext4_destroy_inline_data(handle, inode);
2796 ext4_journal_stop(handle);
2797 }
2798
2799 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2800 range_whole = 1;
2801
2802 if (wbc->range_cyclic) {
2803 writeback_index = mapping->writeback_index;
2804 if (writeback_index)
2805 cycled = 0;
2806 mpd.first_page = writeback_index;
2807 mpd.last_page = -1;
2808 } else {
2809 mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2810 mpd.last_page = wbc->range_end >> PAGE_SHIFT;
2811 }
2812
2813 mpd.inode = inode;
2814 mpd.wbc = wbc;
2815 ext4_io_submit_init(&mpd.io_submit, wbc);
2816 retry:
2817 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2818 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2819 done = false;
2820 blk_start_plug(&plug);
2821
2822 /*
2823 * First writeback pages that don't need mapping - we can avoid
2824 * starting a transaction unnecessarily and also avoid being blocked
2825 * in the block layer on device congestion while having transaction
2826 * started.
2827 */
2828 mpd.do_map = 0;
2829 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2830 if (!mpd.io_submit.io_end) {
2831 ret = -ENOMEM;
2832 goto unplug;
2833 }
2834 ret = mpage_prepare_extent_to_map(&mpd);
2835 /* Unlock pages we didn't use */
2836 mpage_release_unused_pages(&mpd, false);
2837 /* Submit prepared bio */
2838 ext4_io_submit(&mpd.io_submit);
2839 ext4_put_io_end_defer(mpd.io_submit.io_end);
2840 mpd.io_submit.io_end = NULL;
2841 if (ret < 0)
2842 goto unplug;
2843
2844 while (!done && mpd.first_page <= mpd.last_page) {
2845 /* For each extent of pages we use new io_end */
2846 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2847 if (!mpd.io_submit.io_end) {
2848 ret = -ENOMEM;
2849 break;
2850 }
2851
2852 /*
2853 * We have two constraints: We find one extent to map and we
2854 * must always write out whole page (makes a difference when
2855 * blocksize < pagesize) so that we don't block on IO when we
2856 * try to write out the rest of the page. Journalled mode is
2857 * not supported by delalloc.
2858 */
2859 BUG_ON(ext4_should_journal_data(inode));
2860 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2861
2862 /* start a new transaction */
2863 handle = ext4_journal_start_with_reserve(inode,
2864 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2865 if (IS_ERR(handle)) {
2866 ret = PTR_ERR(handle);
2867 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2868 "%ld pages, ino %lu; err %d", __func__,
2869 wbc->nr_to_write, inode->i_ino, ret);
2870 /* Release allocated io_end */
2871 ext4_put_io_end(mpd.io_submit.io_end);
2872 mpd.io_submit.io_end = NULL;
2873 break;
2874 }
2875 mpd.do_map = 1;
2876
2877 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2878 ret = mpage_prepare_extent_to_map(&mpd);
2879 if (!ret) {
2880 if (mpd.map.m_len)
2881 ret = mpage_map_and_submit_extent(handle, &mpd,
2882 &give_up_on_write);
2883 else {
2884 /*
2885 * We scanned the whole range (or exhausted
2886 * nr_to_write), submitted what was mapped and
2887 * didn't find anything needing mapping. We are
2888 * done.
2889 */
2890 done = true;
2891 }
2892 }
2893 /*
2894 * Caution: If the handle is synchronous,
2895 * ext4_journal_stop() can wait for transaction commit
2896 * to finish which may depend on writeback of pages to
2897 * complete or on page lock to be released. In that
2898 * case, we have to wait until after after we have
2899 * submitted all the IO, released page locks we hold,
2900 * and dropped io_end reference (for extent conversion
2901 * to be able to complete) before stopping the handle.
2902 */
2903 if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2904 ext4_journal_stop(handle);
2905 handle = NULL;
2906 mpd.do_map = 0;
2907 }
2908 /* Unlock pages we didn't use */
2909 mpage_release_unused_pages(&mpd, give_up_on_write);
2910 /* Submit prepared bio */
2911 ext4_io_submit(&mpd.io_submit);
2912
2913 /*
2914 * Drop our io_end reference we got from init. We have
2915 * to be careful and use deferred io_end finishing if
2916 * we are still holding the transaction as we can
2917 * release the last reference to io_end which may end
2918 * up doing unwritten extent conversion.
2919 */
2920 if (handle) {
2921 ext4_put_io_end_defer(mpd.io_submit.io_end);
2922 ext4_journal_stop(handle);
2923 } else
2924 ext4_put_io_end(mpd.io_submit.io_end);
2925 mpd.io_submit.io_end = NULL;
2926
2927 if (ret == -ENOSPC && sbi->s_journal) {
2928 /*
2929 * Commit the transaction which would
2930 * free blocks released in the transaction
2931 * and try again
2932 */
2933 jbd2_journal_force_commit_nested(sbi->s_journal);
2934 ret = 0;
2935 continue;
2936 }
2937 /* Fatal error - ENOMEM, EIO... */
2938 if (ret)
2939 break;
2940 }
2941 unplug:
2942 blk_finish_plug(&plug);
2943 if (!ret && !cycled && wbc->nr_to_write > 0) {
2944 cycled = 1;
2945 mpd.last_page = writeback_index - 1;
2946 mpd.first_page = 0;
2947 goto retry;
2948 }
2949
2950 /* Update index */
2951 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2952 /*
2953 * Set the writeback_index so that range_cyclic
2954 * mode will write it back later
2955 */
2956 mapping->writeback_index = mpd.first_page;
2957
2958 out_writepages:
2959 trace_ext4_writepages_result(inode, wbc, ret,
2960 nr_to_write - wbc->nr_to_write);
2961 percpu_up_read(&sbi->s_journal_flag_rwsem);
2962 return ret;
2963 }
2964
2965 static int ext4_dax_writepages(struct address_space *mapping,
2966 struct writeback_control *wbc)
2967 {
2968 int ret;
2969 long nr_to_write = wbc->nr_to_write;
2970 struct inode *inode = mapping->host;
2971 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2972
2973 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2974 return -EIO;
2975
2976 percpu_down_read(&sbi->s_journal_flag_rwsem);
2977 trace_ext4_writepages(inode, wbc);
2978
2979 ret = dax_writeback_mapping_range(mapping, inode->i_sb->s_bdev, wbc);
2980 trace_ext4_writepages_result(inode, wbc, ret,
2981 nr_to_write - wbc->nr_to_write);
2982 percpu_up_read(&sbi->s_journal_flag_rwsem);
2983 return ret;
2984 }
2985
2986 static int ext4_nonda_switch(struct super_block *sb)
2987 {
2988 s64 free_clusters, dirty_clusters;
2989 struct ext4_sb_info *sbi = EXT4_SB(sb);
2990
2991 /*
2992 * switch to non delalloc mode if we are running low
2993 * on free block. The free block accounting via percpu
2994 * counters can get slightly wrong with percpu_counter_batch getting
2995 * accumulated on each CPU without updating global counters
2996 * Delalloc need an accurate free block accounting. So switch
2997 * to non delalloc when we are near to error range.
2998 */
2999 free_clusters =
3000 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
3001 dirty_clusters =
3002 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
3003 /*
3004 * Start pushing delalloc when 1/2 of free blocks are dirty.
3005 */
3006 if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
3007 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
3008
3009 if (2 * free_clusters < 3 * dirty_clusters ||
3010 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
3011 /*
3012 * free block count is less than 150% of dirty blocks
3013 * or free blocks is less than watermark
3014 */
3015 return 1;
3016 }
3017 return 0;
3018 }
3019
3020 /* We always reserve for an inode update; the superblock could be there too */
3021 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
3022 {
3023 if (likely(ext4_has_feature_large_file(inode->i_sb)))
3024 return 1;
3025
3026 if (pos + len <= 0x7fffffffULL)
3027 return 1;
3028
3029 /* We might need to update the superblock to set LARGE_FILE */
3030 return 2;
3031 }
3032
3033 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
3034 loff_t pos, unsigned len, unsigned flags,
3035 struct page **pagep, void **fsdata)
3036 {
3037 int ret, retries = 0;
3038 struct page *page;
3039 pgoff_t index;
3040 struct inode *inode = mapping->host;
3041 handle_t *handle;
3042
3043 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
3044 return -EIO;
3045
3046 index = pos >> PAGE_SHIFT;
3047
3048 if (ext4_nonda_switch(inode->i_sb) ||
3049 S_ISLNK(inode->i_mode)) {
3050 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
3051 return ext4_write_begin(file, mapping, pos,
3052 len, flags, pagep, fsdata);
3053 }
3054 *fsdata = (void *)0;
3055 trace_ext4_da_write_begin(inode, pos, len, flags);
3056
3057 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
3058 ret = ext4_da_write_inline_data_begin(mapping, inode,
3059 pos, len, flags,
3060 pagep, fsdata);
3061 if (ret < 0)
3062 return ret;
3063 if (ret == 1)
3064 return 0;
3065 }
3066
3067 /*
3068 * grab_cache_page_write_begin() can take a long time if the
3069 * system is thrashing due to memory pressure, or if the page
3070 * is being written back. So grab it first before we start
3071 * the transaction handle. This also allows us to allocate
3072 * the page (if needed) without using GFP_NOFS.
3073 */
3074 retry_grab:
3075 page = grab_cache_page_write_begin(mapping, index, flags);
3076 if (!page)
3077 return -ENOMEM;
3078 unlock_page(page);
3079
3080 /*
3081 * With delayed allocation, we don't log the i_disksize update
3082 * if there is delayed block allocation. But we still need
3083 * to journalling the i_disksize update if writes to the end
3084 * of file which has an already mapped buffer.
3085 */
3086 retry_journal:
3087 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
3088 ext4_da_write_credits(inode, pos, len));
3089 if (IS_ERR(handle)) {
3090 put_page(page);
3091 return PTR_ERR(handle);
3092 }
3093
3094 lock_page(page);
3095 if (page->mapping != mapping) {
3096 /* The page got truncated from under us */
3097 unlock_page(page);
3098 put_page(page);
3099 ext4_journal_stop(handle);
3100 goto retry_grab;
3101 }
3102 /* In case writeback began while the page was unlocked */
3103 wait_for_stable_page(page);
3104
3105 #ifdef CONFIG_FS_ENCRYPTION
3106 ret = ext4_block_write_begin(page, pos, len,
3107 ext4_da_get_block_prep);
3108 #else
3109 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
3110 #endif
3111 if (ret < 0) {
3112 unlock_page(page);
3113 ext4_journal_stop(handle);
3114 /*
3115 * block_write_begin may have instantiated a few blocks
3116 * outside i_size. Trim these off again. Don't need
3117 * i_size_read because we hold i_mutex.
3118 */
3119 if (pos + len > inode->i_size)
3120 ext4_truncate_failed_write(inode);
3121
3122 if (ret == -ENOSPC &&
3123 ext4_should_retry_alloc(inode->i_sb, &retries))
3124 goto retry_journal;
3125
3126 put_page(page);
3127 return ret;
3128 }
3129
3130 *pagep = page;
3131 return ret;
3132 }
3133
3134 /*
3135 * Check if we should update i_disksize
3136 * when write to the end of file but not require block allocation
3137 */
3138 static int ext4_da_should_update_i_disksize(struct page *page,
3139 unsigned long offset)
3140 {
3141 struct buffer_head *bh;
3142 struct inode *inode = page->mapping->host;
3143 unsigned int idx;
3144 int i;
3145
3146 bh = page_buffers(page);
3147 idx = offset >> inode->i_blkbits;
3148
3149 for (i = 0; i < idx; i++)
3150 bh = bh->b_this_page;
3151
3152 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3153 return 0;
3154 return 1;
3155 }
3156
3157 static int ext4_da_write_end(struct file *file,
3158 struct address_space *mapping,
3159 loff_t pos, unsigned len, unsigned copied,
3160 struct page *page, void *fsdata)
3161 {
3162 struct inode *inode = mapping->host;
3163 int ret = 0, ret2;
3164 handle_t *handle = ext4_journal_current_handle();
3165 loff_t new_i_size;
3166 unsigned long start, end;
3167 int write_mode = (int)(unsigned long)fsdata;
3168
3169 if (write_mode == FALL_BACK_TO_NONDELALLOC)
3170 return ext4_write_end(file, mapping, pos,
3171 len, copied, page, fsdata);
3172
3173 trace_ext4_da_write_end(inode, pos, len, copied);
3174 start = pos & (PAGE_SIZE - 1);
3175 end = start + copied - 1;
3176
3177 /*
3178 * generic_write_end() will run mark_inode_dirty() if i_size
3179 * changes. So let's piggyback the i_disksize mark_inode_dirty
3180 * into that.
3181 */
3182 new_i_size = pos + copied;
3183 if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
3184 if (ext4_has_inline_data(inode) ||
3185 ext4_da_should_update_i_disksize(page, end)) {
3186 ext4_update_i_disksize(inode, new_i_size);
3187 /* We need to mark inode dirty even if
3188 * new_i_size is less that inode->i_size
3189 * bu greater than i_disksize.(hint delalloc)
3190 */
3191 ext4_mark_inode_dirty(handle, inode);
3192 }
3193 }
3194
3195 if (write_mode != CONVERT_INLINE_DATA &&
3196 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3197 ext4_has_inline_data(inode))
3198 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
3199 page);
3200 else
3201 ret2 = generic_write_end(file, mapping, pos, len, copied,
3202 page, fsdata);
3203
3204 copied = ret2;
3205 if (ret2 < 0)
3206 ret = ret2;
3207 ret2 = ext4_journal_stop(handle);
3208 if (!ret)
3209 ret = ret2;
3210
3211 return ret ? ret : copied;
3212 }
3213
3214 static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
3215 unsigned int length)
3216 {
3217 /*
3218 * Drop reserved blocks
3219 */
3220 BUG_ON(!PageLocked(page));
3221 if (!page_has_buffers(page))
3222 goto out;
3223
3224 ext4_da_page_release_reservation(page, offset, length);
3225
3226 out:
3227 ext4_invalidatepage(page, offset, length);
3228
3229 return;
3230 }
3231
3232 /*
3233 * Force all delayed allocation blocks to be allocated for a given inode.
3234 */
3235 int ext4_alloc_da_blocks(struct inode *inode)
3236 {
3237 trace_ext4_alloc_da_blocks(inode);
3238
3239 if (!EXT4_I(inode)->i_reserved_data_blocks)
3240 return 0;
3241
3242 /*
3243 * We do something simple for now. The filemap_flush() will
3244 * also start triggering a write of the data blocks, which is
3245 * not strictly speaking necessary (and for users of
3246 * laptop_mode, not even desirable). However, to do otherwise
3247 * would require replicating code paths in:
3248 *
3249 * ext4_writepages() ->
3250 * write_cache_pages() ---> (via passed in callback function)
3251 * __mpage_da_writepage() -->
3252 * mpage_add_bh_to_extent()
3253 * mpage_da_map_blocks()
3254 *
3255 * The problem is that write_cache_pages(), located in
3256 * mm/page-writeback.c, marks pages clean in preparation for
3257 * doing I/O, which is not desirable if we're not planning on
3258 * doing I/O at all.
3259 *
3260 * We could call write_cache_pages(), and then redirty all of
3261 * the pages by calling redirty_page_for_writepage() but that
3262 * would be ugly in the extreme. So instead we would need to
3263 * replicate parts of the code in the above functions,
3264 * simplifying them because we wouldn't actually intend to
3265 * write out the pages, but rather only collect contiguous
3266 * logical block extents, call the multi-block allocator, and
3267 * then update the buffer heads with the block allocations.
3268 *
3269 * For now, though, we'll cheat by calling filemap_flush(),
3270 * which will map the blocks, and start the I/O, but not
3271 * actually wait for the I/O to complete.
3272 */
3273 return filemap_flush(inode->i_mapping);
3274 }
3275
3276 /*
3277 * bmap() is special. It gets used by applications such as lilo and by
3278 * the swapper to find the on-disk block of a specific piece of data.
3279 *
3280 * Naturally, this is dangerous if the block concerned is still in the
3281 * journal. If somebody makes a swapfile on an ext4 data-journaling
3282 * filesystem and enables swap, then they may get a nasty shock when the
3283 * data getting swapped to that swapfile suddenly gets overwritten by
3284 * the original zero's written out previously to the journal and
3285 * awaiting writeback in the kernel's buffer cache.
3286 *
3287 * So, if we see any bmap calls here on a modified, data-journaled file,
3288 * take extra steps to flush any blocks which might be in the cache.
3289 */
3290 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3291 {
3292 struct inode *inode = mapping->host;
3293 journal_t *journal;
3294 int err;
3295
3296 /*
3297 * We can get here for an inline file via the FIBMAP ioctl
3298 */
3299 if (ext4_has_inline_data(inode))
3300 return 0;
3301
3302 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3303 test_opt(inode->i_sb, DELALLOC)) {
3304 /*
3305 * With delalloc we want to sync the file
3306 * so that we can make sure we allocate
3307 * blocks for file
3308 */
3309 filemap_write_and_wait(mapping);
3310 }
3311
3312 if (EXT4_JOURNAL(inode) &&
3313 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3314 /*
3315 * This is a REALLY heavyweight approach, but the use of
3316 * bmap on dirty files is expected to be extremely rare:
3317 * only if we run lilo or swapon on a freshly made file
3318 * do we expect this to happen.
3319 *
3320 * (bmap requires CAP_SYS_RAWIO so this does not
3321 * represent an unprivileged user DOS attack --- we'd be
3322 * in trouble if mortal users could trigger this path at
3323 * will.)
3324 *
3325 * NB. EXT4_STATE_JDATA is not set on files other than
3326 * regular files. If somebody wants to bmap a directory
3327 * or symlink and gets confused because the buffer
3328 * hasn't yet been flushed to disk, they deserve
3329 * everything they get.
3330 */
3331
3332 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3333 journal = EXT4_JOURNAL(inode);
3334 jbd2_journal_lock_updates(journal);
3335 err = jbd2_journal_flush(journal);
3336 jbd2_journal_unlock_updates(journal);
3337
3338 if (err)
3339 return 0;
3340 }
3341
3342 return generic_block_bmap(mapping, block, ext4_get_block);
3343 }
3344
3345 static int ext4_readpage(struct file *file, struct page *page)
3346 {
3347 int ret = -EAGAIN;
3348 struct inode *inode = page->mapping->host;
3349
3350 trace_ext4_readpage(page);
3351
3352 if (ext4_has_inline_data(inode))
3353 ret = ext4_readpage_inline(inode, page);
3354
3355 if (ret == -EAGAIN)
3356 return ext4_mpage_readpages(page->mapping, NULL, page, 1,
3357 false);
3358
3359 return ret;
3360 }
3361
3362 static int
3363 ext4_readpages(struct file *file, struct address_space *mapping,
3364 struct list_head *pages, unsigned nr_pages)
3365 {
3366 struct inode *inode = mapping->host;
3367
3368 /* If the file has inline data, no need to do readpages. */
3369 if (ext4_has_inline_data(inode))
3370 return 0;
3371
3372 return ext4_mpage_readpages(mapping, pages, NULL, nr_pages, true);
3373 }
3374
3375 static void ext4_invalidatepage(struct page *page, unsigned int offset,
3376 unsigned int length)
3377 {
3378 trace_ext4_invalidatepage(page, offset, length);
3379
3380 /* No journalling happens on data buffers when this function is used */
3381 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3382
3383 block_invalidatepage(page, offset, length);
3384 }
3385
3386 static int __ext4_journalled_invalidatepage(struct page *page,
3387 unsigned int offset,
3388 unsigned int length)
3389 {
3390 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3391
3392 trace_ext4_journalled_invalidatepage(page, offset, length);
3393
3394 /*
3395 * If it's a full truncate we just forget about the pending dirtying
3396 */
3397 if (offset == 0 && length == PAGE_SIZE)
3398 ClearPageChecked(page);
3399
3400 return jbd2_journal_invalidatepage(journal, page, offset, length);
3401 }
3402
3403 /* Wrapper for aops... */
3404 static void ext4_journalled_invalidatepage(struct page *page,
3405 unsigned int offset,
3406 unsigned int length)
3407 {
3408 WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3409 }
3410
3411 static int ext4_releasepage(struct page *page, gfp_t wait)
3412 {
3413 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3414
3415 trace_ext4_releasepage(page);
3416
3417 /* Page has dirty journalled data -> cannot release */
3418 if (PageChecked(page))
3419 return 0;
3420 if (journal)
3421 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3422 else
3423 return try_to_free_buffers(page);
3424 }
3425
3426 static bool ext4_inode_datasync_dirty(struct inode *inode)
3427 {
3428 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
3429
3430 if (journal)
3431 return !jbd2_transaction_committed(journal,
3432 EXT4_I(inode)->i_datasync_tid);
3433 /* Any metadata buffers to write? */
3434 if (!list_empty(&inode->i_mapping->private_list))
3435 return true;
3436 return inode->i_state & I_DIRTY_DATASYNC;
3437 }
3438
3439 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3440 unsigned flags, struct iomap *iomap)
3441 {
3442 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3443 unsigned int blkbits = inode->i_blkbits;
3444 unsigned long first_block, last_block;
3445 struct ext4_map_blocks map;
3446 bool delalloc = false;
3447 int ret;
3448
3449 if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3450 return -EINVAL;
3451 first_block = offset >> blkbits;
3452 last_block = min_t(loff_t, (offset + length - 1) >> blkbits,
3453 EXT4_MAX_LOGICAL_BLOCK);
3454
3455 if (flags & IOMAP_REPORT) {
3456 if (ext4_has_inline_data(inode)) {
3457 ret = ext4_inline_data_iomap(inode, iomap);
3458 if (ret != -EAGAIN) {
3459 if (ret == 0 && offset >= iomap->length)
3460 ret = -ENOENT;
3461 return ret;
3462 }
3463 }
3464 } else {
3465 if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3466 return -ERANGE;
3467 }
3468
3469 map.m_lblk = first_block;
3470 map.m_len = last_block - first_block + 1;
3471
3472 if (flags & IOMAP_REPORT) {
3473 ret = ext4_map_blocks(NULL, inode, &map, 0);
3474 if (ret < 0)
3475 return ret;
3476
3477 if (ret == 0) {
3478 ext4_lblk_t end = map.m_lblk + map.m_len - 1;
3479 struct extent_status es;
3480
3481 ext4_es_find_extent_range(inode, &ext4_es_is_delayed,
3482 map.m_lblk, end, &es);
3483
3484 if (!es.es_len || es.es_lblk > end) {
3485 /* entire range is a hole */
3486 } else if (es.es_lblk > map.m_lblk) {
3487 /* range starts with a hole */
3488 map.m_len = es.es_lblk - map.m_lblk;
3489 } else {
3490 ext4_lblk_t offs = 0;
3491
3492 if (es.es_lblk < map.m_lblk)
3493 offs = map.m_lblk - es.es_lblk;
3494 map.m_lblk = es.es_lblk + offs;
3495 map.m_len = es.es_len - offs;
3496 delalloc = true;
3497 }
3498 }
3499 } else if (flags & IOMAP_WRITE) {
3500 int dio_credits;
3501 handle_t *handle;
3502 int retries = 0;
3503
3504 /* Trim mapping request to maximum we can map at once for DIO */
3505 if (map.m_len > DIO_MAX_BLOCKS)
3506 map.m_len = DIO_MAX_BLOCKS;
3507 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
3508 retry:
3509 /*
3510 * Either we allocate blocks and then we don't get unwritten
3511 * extent so we have reserved enough credits, or the blocks
3512 * are already allocated and unwritten and in that case
3513 * extent conversion fits in the credits as well.
3514 */
3515 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
3516 dio_credits);
3517 if (IS_ERR(handle))
3518 return PTR_ERR(handle);
3519
3520 ret = ext4_map_blocks(handle, inode, &map,
3521 EXT4_GET_BLOCKS_CREATE_ZERO);
3522 if (ret < 0) {
3523 ext4_journal_stop(handle);
3524 if (ret == -ENOSPC &&
3525 ext4_should_retry_alloc(inode->i_sb, &retries))
3526 goto retry;
3527 return ret;
3528 }
3529
3530 /*
3531 * If we added blocks beyond i_size, we need to make sure they
3532 * will get truncated if we crash before updating i_size in
3533 * ext4_iomap_end(). For faults we don't need to do that (and
3534 * even cannot because for orphan list operations inode_lock is
3535 * required) - if we happen to instantiate block beyond i_size,
3536 * it is because we race with truncate which has already added
3537 * the inode to the orphan list.
3538 */
3539 if (!(flags & IOMAP_FAULT) && first_block + map.m_len >
3540 (i_size_read(inode) + (1 << blkbits) - 1) >> blkbits) {
3541 int err;
3542
3543 err = ext4_orphan_add(handle, inode);
3544 if (err < 0) {
3545 ext4_journal_stop(handle);
3546 return err;
3547 }
3548 }
3549 ext4_journal_stop(handle);
3550 } else {
3551 ret = ext4_map_blocks(NULL, inode, &map, 0);
3552 if (ret < 0)
3553 return ret;
3554 }
3555
3556 iomap->flags = 0;
3557 if (ext4_inode_datasync_dirty(inode))
3558 iomap->flags |= IOMAP_F_DIRTY;
3559 iomap->bdev = inode->i_sb->s_bdev;
3560 iomap->dax_dev = sbi->s_daxdev;
3561 iomap->offset = (u64)first_block << blkbits;
3562 iomap->length = (u64)map.m_len << blkbits;
3563
3564 if (ret == 0) {
3565 iomap->type = delalloc ? IOMAP_DELALLOC : IOMAP_HOLE;
3566 iomap->addr = IOMAP_NULL_ADDR;
3567 } else {
3568 if (map.m_flags & EXT4_MAP_MAPPED) {
3569 iomap->type = IOMAP_MAPPED;
3570 } else if (map.m_flags & EXT4_MAP_UNWRITTEN) {
3571 iomap->type = IOMAP_UNWRITTEN;
3572 } else {
3573 WARN_ON_ONCE(1);
3574 return -EIO;
3575 }
3576 iomap->addr = (u64)map.m_pblk << blkbits;
3577 }
3578
3579 if (map.m_flags & EXT4_MAP_NEW)
3580 iomap->flags |= IOMAP_F_NEW;
3581
3582 return 0;
3583 }
3584
3585 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3586 ssize_t written, unsigned flags, struct iomap *iomap)
3587 {
3588 int ret = 0;
3589 handle_t *handle;
3590 int blkbits = inode->i_blkbits;
3591 bool truncate = false;
3592
3593 if (!(flags & IOMAP_WRITE) || (flags & IOMAP_FAULT))
3594 return 0;
3595
3596 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3597 if (IS_ERR(handle)) {
3598 ret = PTR_ERR(handle);
3599 goto orphan_del;
3600 }
3601 if (ext4_update_inode_size(inode, offset + written))
3602 ext4_mark_inode_dirty(handle, inode);
3603 /*
3604 * We may need to truncate allocated but not written blocks beyond EOF.
3605 */
3606 if (iomap->offset + iomap->length >
3607 ALIGN(inode->i_size, 1 << blkbits)) {
3608 ext4_lblk_t written_blk, end_blk;
3609
3610 written_blk = (offset + written) >> blkbits;
3611 end_blk = (offset + length) >> blkbits;
3612 if (written_blk < end_blk && ext4_can_truncate(inode))
3613 truncate = true;
3614 }
3615 /*
3616 * Remove inode from orphan list if we were extending a inode and
3617 * everything went fine.
3618 */
3619 if (!truncate && inode->i_nlink &&
3620 !list_empty(&EXT4_I(inode)->i_orphan))
3621 ext4_orphan_del(handle, inode);
3622 ext4_journal_stop(handle);
3623 if (truncate) {
3624 ext4_truncate_failed_write(inode);
3625 orphan_del:
3626 /*
3627 * If truncate failed early the inode might still be on the
3628 * orphan list; we need to make sure the inode is removed from
3629 * the orphan list in that case.
3630 */
3631 if (inode->i_nlink)
3632 ext4_orphan_del(NULL, inode);
3633 }
3634 return ret;
3635 }
3636
3637 const struct iomap_ops ext4_iomap_ops = {
3638 .iomap_begin = ext4_iomap_begin,
3639 .iomap_end = ext4_iomap_end,
3640 };
3641
3642 static int ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3643 ssize_t size, void *private)
3644 {
3645 ext4_io_end_t *io_end = private;
3646
3647 /* if not async direct IO just return */
3648 if (!io_end)
3649 return 0;
3650
3651 ext_debug("ext4_end_io_dio(): io_end 0x%p "
3652 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3653 io_end, io_end->inode->i_ino, iocb, offset, size);
3654
3655 /*
3656 * Error during AIO DIO. We cannot convert unwritten extents as the
3657 * data was not written. Just clear the unwritten flag and drop io_end.
3658 */
3659 if (size <= 0) {
3660 ext4_clear_io_unwritten_flag(io_end);
3661 size = 0;
3662 }
3663 io_end->offset = offset;
3664 io_end->size = size;
3665 ext4_put_io_end(io_end);
3666
3667 return 0;
3668 }
3669
3670 /*
3671 * Handling of direct IO writes.
3672 *
3673 * For ext4 extent files, ext4 will do direct-io write even to holes,
3674 * preallocated extents, and those write extend the file, no need to
3675 * fall back to buffered IO.
3676 *
3677 * For holes, we fallocate those blocks, mark them as unwritten
3678 * If those blocks were preallocated, we mark sure they are split, but
3679 * still keep the range to write as unwritten.
3680 *
3681 * The unwritten extents will be converted to written when DIO is completed.
3682 * For async direct IO, since the IO may still pending when return, we
3683 * set up an end_io call back function, which will do the conversion
3684 * when async direct IO completed.
3685 *
3686 * If the O_DIRECT write will extend the file then add this inode to the
3687 * orphan list. So recovery will truncate it back to the original size
3688 * if the machine crashes during the write.
3689 *
3690 */
3691 static ssize_t ext4_direct_IO_write(struct kiocb *iocb, struct iov_iter *iter)
3692 {
3693 struct file *file = iocb->ki_filp;
3694 struct inode *inode = file->f_mapping->host;
3695 struct ext4_inode_info *ei = EXT4_I(inode);
3696 ssize_t ret;
3697 loff_t offset = iocb->ki_pos;
3698 size_t count = iov_iter_count(iter);
3699 int overwrite = 0;
3700 get_block_t *get_block_func = NULL;
3701 int dio_flags = 0;
3702 loff_t final_size = offset + count;
3703 int orphan = 0;
3704 handle_t *handle;
3705
3706 if (final_size > inode->i_size || final_size > ei->i_disksize) {
3707 /* Credits for sb + inode write */
3708 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3709 if (IS_ERR(handle)) {
3710 ret = PTR_ERR(handle);
3711 goto out;
3712 }
3713 ret = ext4_orphan_add(handle, inode);
3714 if (ret) {
3715 ext4_journal_stop(handle);
3716 goto out;
3717 }
3718 orphan = 1;
3719 ext4_update_i_disksize(inode, inode->i_size);
3720 ext4_journal_stop(handle);
3721 }
3722
3723 BUG_ON(iocb->private == NULL);
3724
3725 /*
3726 * Make all waiters for direct IO properly wait also for extent
3727 * conversion. This also disallows race between truncate() and
3728 * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3729 */
3730 inode_dio_begin(inode);
3731
3732 /* If we do a overwrite dio, i_mutex locking can be released */
3733 overwrite = *((int *)iocb->private);
3734
3735 if (overwrite)
3736 inode_unlock(inode);
3737
3738 /*
3739 * For extent mapped files we could direct write to holes and fallocate.
3740 *
3741 * Allocated blocks to fill the hole are marked as unwritten to prevent
3742 * parallel buffered read to expose the stale data before DIO complete
3743 * the data IO.
3744 *
3745 * As to previously fallocated extents, ext4 get_block will just simply
3746 * mark the buffer mapped but still keep the extents unwritten.
3747 *
3748 * For non AIO case, we will convert those unwritten extents to written
3749 * after return back from blockdev_direct_IO. That way we save us from
3750 * allocating io_end structure and also the overhead of offloading
3751 * the extent convertion to a workqueue.
3752 *
3753 * For async DIO, the conversion needs to be deferred when the
3754 * IO is completed. The ext4 end_io callback function will be
3755 * called to take care of the conversion work. Here for async
3756 * case, we allocate an io_end structure to hook to the iocb.
3757 */
3758 iocb->private = NULL;
3759 if (overwrite)
3760 get_block_func = ext4_dio_get_block_overwrite;
3761 else if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS) ||
3762 round_down(offset, i_blocksize(inode)) >= inode->i_size) {
3763 get_block_func = ext4_dio_get_block;
3764 dio_flags = DIO_LOCKING | DIO_SKIP_HOLES;
3765 } else if (is_sync_kiocb(iocb)) {
3766 get_block_func = ext4_dio_get_block_unwritten_sync;
3767 dio_flags = DIO_LOCKING;
3768 } else {
3769 get_block_func = ext4_dio_get_block_unwritten_async;
3770 dio_flags = DIO_LOCKING;
3771 }
3772 ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter,
3773 get_block_func, ext4_end_io_dio, NULL,
3774 dio_flags);
3775
3776 if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3777 EXT4_STATE_DIO_UNWRITTEN)) {
3778 int err;
3779 /*
3780 * for non AIO case, since the IO is already
3781 * completed, we could do the conversion right here
3782 */
3783 err = ext4_convert_unwritten_extents(NULL, inode,
3784 offset, ret);
3785 if (err < 0)
3786 ret = err;
3787 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3788 }
3789
3790 inode_dio_end(inode);
3791 /* take i_mutex locking again if we do a ovewrite dio */
3792 if (overwrite)
3793 inode_lock(inode);
3794
3795 if (ret < 0 && final_size > inode->i_size)
3796 ext4_truncate_failed_write(inode);
3797
3798 /* Handle extending of i_size after direct IO write */
3799 if (orphan) {
3800 int err;
3801
3802 /* Credits for sb + inode write */
3803 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3804 if (IS_ERR(handle)) {
3805 /*
3806 * We wrote the data but cannot extend
3807 * i_size. Bail out. In async io case, we do
3808 * not return error here because we have
3809 * already submmitted the corresponding
3810 * bio. Returning error here makes the caller
3811 * think that this IO is done and failed
3812 * resulting in race with bio's completion
3813 * handler.
3814 */
3815 if (!ret)
3816 ret = PTR_ERR(handle);
3817 if (inode->i_nlink)
3818 ext4_orphan_del(NULL, inode);
3819
3820 goto out;
3821 }
3822 if (inode->i_nlink)
3823 ext4_orphan_del(handle, inode);
3824 if (ret > 0) {
3825 loff_t end = offset + ret;
3826 if (end > inode->i_size || end > ei->i_disksize) {
3827 ext4_update_i_disksize(inode, end);
3828 if (end > inode->i_size)
3829 i_size_write(inode, end);
3830 /*
3831 * We're going to return a positive `ret'
3832 * here due to non-zero-length I/O, so there's
3833 * no way of reporting error returns from
3834 * ext4_mark_inode_dirty() to userspace. So
3835 * ignore it.
3836 */
3837 ext4_mark_inode_dirty(handle, inode);
3838 }
3839 }
3840 err = ext4_journal_stop(handle);
3841 if (ret == 0)
3842 ret = err;
3843 }
3844 out:
3845 return ret;
3846 }
3847
3848 static ssize_t ext4_direct_IO_read(struct kiocb *iocb, struct iov_iter *iter)
3849 {
3850 struct address_space *mapping = iocb->ki_filp->f_mapping;
3851 struct inode *inode = mapping->host;
3852 size_t count = iov_iter_count(iter);
3853 ssize_t ret;
3854
3855 /*
3856 * Shared inode_lock is enough for us - it protects against concurrent
3857 * writes & truncates and since we take care of writing back page cache,
3858 * we are protected against page writeback as well.
3859 */
3860 inode_lock_shared(inode);
3861 ret = filemap_write_and_wait_range(mapping, iocb->ki_pos,
3862 iocb->ki_pos + count - 1);
3863 if (ret)
3864 goto out_unlock;
3865 ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
3866 iter, ext4_dio_get_block, NULL, NULL, 0);
3867 out_unlock:
3868 inode_unlock_shared(inode);
3869 return ret;
3870 }
3871
3872 static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
3873 {
3874 struct file *file = iocb->ki_filp;
3875 struct inode *inode = file->f_mapping->host;
3876 size_t count = iov_iter_count(iter);
3877 loff_t offset = iocb->ki_pos;
3878 ssize_t ret;
3879
3880 #ifdef CONFIG_FS_ENCRYPTION
3881 if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode))
3882 return 0;
3883 #endif
3884
3885 /*
3886 * If we are doing data journalling we don't support O_DIRECT
3887 */
3888 if (ext4_should_journal_data(inode))
3889 return 0;
3890
3891 /* Let buffer I/O handle the inline data case. */
3892 if (ext4_has_inline_data(inode))
3893 return 0;
3894
3895 trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
3896 if (iov_iter_rw(iter) == READ)
3897 ret = ext4_direct_IO_read(iocb, iter);
3898 else
3899 ret = ext4_direct_IO_write(iocb, iter);
3900 trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret);
3901 return ret;
3902 }
3903
3904 /*
3905 * Pages can be marked dirty completely asynchronously from ext4's journalling
3906 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3907 * much here because ->set_page_dirty is called under VFS locks. The page is
3908 * not necessarily locked.
3909 *
3910 * We cannot just dirty the page and leave attached buffers clean, because the
3911 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3912 * or jbddirty because all the journalling code will explode.
3913 *
3914 * So what we do is to mark the page "pending dirty" and next time writepage
3915 * is called, propagate that into the buffers appropriately.
3916 */
3917 static int ext4_journalled_set_page_dirty(struct page *page)
3918 {
3919 SetPageChecked(page);
3920 return __set_page_dirty_nobuffers(page);
3921 }
3922
3923 static int ext4_set_page_dirty(struct page *page)
3924 {
3925 WARN_ON_ONCE(!PageLocked(page) && !PageDirty(page));
3926 WARN_ON_ONCE(!page_has_buffers(page));
3927 return __set_page_dirty_buffers(page);
3928 }
3929
3930 static const struct address_space_operations ext4_aops = {
3931 .readpage = ext4_readpage,
3932 .readpages = ext4_readpages,
3933 .writepage = ext4_writepage,
3934 .writepages = ext4_writepages,
3935 .write_begin = ext4_write_begin,
3936 .write_end = ext4_write_end,
3937 .set_page_dirty = ext4_set_page_dirty,
3938 .bmap = ext4_bmap,
3939 .invalidatepage = ext4_invalidatepage,
3940 .releasepage = ext4_releasepage,
3941 .direct_IO = ext4_direct_IO,
3942 .migratepage = buffer_migrate_page,
3943 .is_partially_uptodate = block_is_partially_uptodate,
3944 .error_remove_page = generic_error_remove_page,
3945 };
3946
3947 static const struct address_space_operations ext4_journalled_aops = {
3948 .readpage = ext4_readpage,
3949 .readpages = ext4_readpages,
3950 .writepage = ext4_writepage,
3951 .writepages = ext4_writepages,
3952 .write_begin = ext4_write_begin,
3953 .write_end = ext4_journalled_write_end,
3954 .set_page_dirty = ext4_journalled_set_page_dirty,
3955 .bmap = ext4_bmap,
3956 .invalidatepage = ext4_journalled_invalidatepage,
3957 .releasepage = ext4_releasepage,
3958 .direct_IO = ext4_direct_IO,
3959 .is_partially_uptodate = block_is_partially_uptodate,
3960 .error_remove_page = generic_error_remove_page,
3961 };
3962
3963 static const struct address_space_operations ext4_da_aops = {
3964 .readpage = ext4_readpage,
3965 .readpages = ext4_readpages,
3966 .writepage = ext4_writepage,
3967 .writepages = ext4_writepages,
3968 .write_begin = ext4_da_write_begin,
3969 .write_end = ext4_da_write_end,
3970 .set_page_dirty = ext4_set_page_dirty,
3971 .bmap = ext4_bmap,
3972 .invalidatepage = ext4_da_invalidatepage,
3973 .releasepage = ext4_releasepage,
3974 .direct_IO = ext4_direct_IO,
3975 .migratepage = buffer_migrate_page,
3976 .is_partially_uptodate = block_is_partially_uptodate,
3977 .error_remove_page = generic_error_remove_page,
3978 };
3979
3980 static const struct address_space_operations ext4_dax_aops = {
3981 .writepages = ext4_dax_writepages,
3982 .direct_IO = noop_direct_IO,
3983 .set_page_dirty = noop_set_page_dirty,
3984 .bmap = ext4_bmap,
3985 .invalidatepage = noop_invalidatepage,
3986 };
3987
3988 void ext4_set_aops(struct inode *inode)
3989 {
3990 switch (ext4_inode_journal_mode(inode)) {
3991 case EXT4_INODE_ORDERED_DATA_MODE:
3992 case EXT4_INODE_WRITEBACK_DATA_MODE:
3993 break;
3994 case EXT4_INODE_JOURNAL_DATA_MODE:
3995 inode->i_mapping->a_ops = &ext4_journalled_aops;
3996 return;
3997 default:
3998 BUG();
3999 }
4000 if (IS_DAX(inode))
4001 inode->i_mapping->a_ops = &ext4_dax_aops;
4002 else if (test_opt(inode->i_sb, DELALLOC))
4003 inode->i_mapping->a_ops = &ext4_da_aops;
4004 else
4005 inode->i_mapping->a_ops = &ext4_aops;
4006 }
4007
4008 static int __ext4_block_zero_page_range(handle_t *handle,
4009 struct address_space *mapping, loff_t from, loff_t length)
4010 {
4011 ext4_fsblk_t index = from >> PAGE_SHIFT;
4012 unsigned offset = from & (PAGE_SIZE-1);
4013 unsigned blocksize, pos;
4014 ext4_lblk_t iblock;
4015 struct inode *inode = mapping->host;
4016 struct buffer_head *bh;
4017 struct page *page;
4018 int err = 0;
4019
4020 page = find_or_create_page(mapping, from >> PAGE_SHIFT,
4021 mapping_gfp_constraint(mapping, ~__GFP_FS));
4022 if (!page)
4023 return -ENOMEM;
4024
4025 blocksize = inode->i_sb->s_blocksize;
4026
4027 iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
4028
4029 if (!page_has_buffers(page))
4030 create_empty_buffers(page, blocksize, 0);
4031
4032 /* Find the buffer that contains "offset" */
4033 bh = page_buffers(page);
4034 pos = blocksize;
4035 while (offset >= pos) {
4036 bh = bh->b_this_page;
4037 iblock++;
4038 pos += blocksize;
4039 }
4040 if (buffer_freed(bh)) {
4041 BUFFER_TRACE(bh, "freed: skip");
4042 goto unlock;
4043 }
4044 if (!buffer_mapped(bh)) {
4045 BUFFER_TRACE(bh, "unmapped");
4046 ext4_get_block(inode, iblock, bh, 0);
4047 /* unmapped? It's a hole - nothing to do */
4048 if (!buffer_mapped(bh)) {
4049 BUFFER_TRACE(bh, "still unmapped");
4050 goto unlock;
4051 }
4052 }
4053
4054 /* Ok, it's mapped. Make sure it's up-to-date */
4055 if (PageUptodate(page))
4056 set_buffer_uptodate(bh);
4057
4058 if (!buffer_uptodate(bh)) {
4059 err = -EIO;
4060 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
4061 wait_on_buffer(bh);
4062 /* Uhhuh. Read error. Complain and punt. */
4063 if (!buffer_uptodate(bh))
4064 goto unlock;
4065 if (S_ISREG(inode->i_mode) && IS_ENCRYPTED(inode)) {
4066 /* We expect the key to be set. */
4067 BUG_ON(!fscrypt_has_encryption_key(inode));
4068 BUG_ON(blocksize != PAGE_SIZE);
4069 WARN_ON_ONCE(fscrypt_decrypt_page(page->mapping->host,
4070 page, PAGE_SIZE, 0, page->index));
4071 }
4072 }
4073 if (ext4_should_journal_data(inode)) {
4074 BUFFER_TRACE(bh, "get write access");
4075 err = ext4_journal_get_write_access(handle, bh);
4076 if (err)
4077 goto unlock;
4078 }
4079 zero_user(page, offset, length);
4080 BUFFER_TRACE(bh, "zeroed end of block");
4081
4082 if (ext4_should_journal_data(inode)) {
4083 err = ext4_handle_dirty_metadata(handle, inode, bh);
4084 } else {
4085 err = 0;
4086 mark_buffer_dirty(bh);
4087 if (ext4_should_order_data(inode))
4088 err = ext4_jbd2_inode_add_write(handle, inode);
4089 }
4090
4091 unlock:
4092 unlock_page(page);
4093 put_page(page);
4094 return err;
4095 }
4096
4097 /*
4098 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
4099 * starting from file offset 'from'. The range to be zero'd must
4100 * be contained with in one block. If the specified range exceeds
4101 * the end of the block it will be shortened to end of the block
4102 * that cooresponds to 'from'
4103 */
4104 static int ext4_block_zero_page_range(handle_t *handle,
4105 struct address_space *mapping, loff_t from, loff_t length)
4106 {
4107 struct inode *inode = mapping->host;
4108 unsigned offset = from & (PAGE_SIZE-1);
4109 unsigned blocksize = inode->i_sb->s_blocksize;
4110 unsigned max = blocksize - (offset & (blocksize - 1));
4111
4112 /*
4113 * correct length if it does not fall between
4114 * 'from' and the end of the block
4115 */
4116 if (length > max || length < 0)
4117 length = max;
4118
4119 if (IS_DAX(inode)) {
4120 return iomap_zero_range(inode, from, length, NULL,
4121 &ext4_iomap_ops);
4122 }
4123 return __ext4_block_zero_page_range(handle, mapping, from, length);
4124 }
4125
4126 /*
4127 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
4128 * up to the end of the block which corresponds to `from'.
4129 * This required during truncate. We need to physically zero the tail end
4130 * of that block so it doesn't yield old data if the file is later grown.
4131 */
4132 static int ext4_block_truncate_page(handle_t *handle,
4133 struct address_space *mapping, loff_t from)
4134 {
4135 unsigned offset = from & (PAGE_SIZE-1);
4136 unsigned length;
4137 unsigned blocksize;
4138 struct inode *inode = mapping->host;
4139
4140 /* If we are processing an encrypted inode during orphan list handling */
4141 if (IS_ENCRYPTED(inode) && !fscrypt_has_encryption_key(inode))
4142 return 0;
4143
4144 blocksize = inode->i_sb->s_blocksize;
4145 length = blocksize - (offset & (blocksize - 1));
4146
4147 return ext4_block_zero_page_range(handle, mapping, from, length);
4148 }
4149
4150 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
4151 loff_t lstart, loff_t length)
4152 {
4153 struct super_block *sb = inode->i_sb;
4154 struct address_space *mapping = inode->i_mapping;
4155 unsigned partial_start, partial_end;
4156 ext4_fsblk_t start, end;
4157 loff_t byte_end = (lstart + length - 1);
4158 int err = 0;
4159
4160 partial_start = lstart & (sb->s_blocksize - 1);
4161 partial_end = byte_end & (sb->s_blocksize - 1);
4162
4163 start = lstart >> sb->s_blocksize_bits;
4164 end = byte_end >> sb->s_blocksize_bits;
4165
4166 /* Handle partial zero within the single block */
4167 if (start == end &&
4168 (partial_start || (partial_end != sb->s_blocksize - 1))) {
4169 err = ext4_block_zero_page_range(handle, mapping,
4170 lstart, length);
4171 return err;
4172 }
4173 /* Handle partial zero out on the start of the range */
4174 if (partial_start) {
4175 err = ext4_block_zero_page_range(handle, mapping,
4176 lstart, sb->s_blocksize);
4177 if (err)
4178 return err;
4179 }
4180 /* Handle partial zero out on the end of the range */
4181 if (partial_end != sb->s_blocksize - 1)
4182 err = ext4_block_zero_page_range(handle, mapping,
4183 byte_end - partial_end,
4184 partial_end + 1);
4185 return err;
4186 }
4187
4188 int ext4_can_truncate(struct inode *inode)
4189 {
4190 if (S_ISREG(inode->i_mode))
4191 return 1;
4192 if (S_ISDIR(inode->i_mode))
4193 return 1;
4194 if (S_ISLNK(inode->i_mode))
4195 return !ext4_inode_is_fast_symlink(inode);
4196 return 0;
4197 }
4198
4199 /*
4200 * We have to make sure i_disksize gets properly updated before we truncate
4201 * page cache due to hole punching or zero range. Otherwise i_disksize update
4202 * can get lost as it may have been postponed to submission of writeback but
4203 * that will never happen after we truncate page cache.
4204 */
4205 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
4206 loff_t len)
4207 {
4208 handle_t *handle;
4209 loff_t size = i_size_read(inode);
4210
4211 WARN_ON(!inode_is_locked(inode));
4212 if (offset > size || offset + len < size)
4213 return 0;
4214
4215 if (EXT4_I(inode)->i_disksize >= size)
4216 return 0;
4217
4218 handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
4219 if (IS_ERR(handle))
4220 return PTR_ERR(handle);
4221 ext4_update_i_disksize(inode, size);
4222 ext4_mark_inode_dirty(handle, inode);
4223 ext4_journal_stop(handle);
4224
4225 return 0;
4226 }
4227
4228 static void ext4_wait_dax_page(struct ext4_inode_info *ei)
4229 {
4230 up_write(&ei->i_mmap_sem);
4231 schedule();
4232 down_write(&ei->i_mmap_sem);
4233 }
4234
4235 int ext4_break_layouts(struct inode *inode)
4236 {
4237 struct ext4_inode_info *ei = EXT4_I(inode);
4238 struct page *page;
4239 int error;
4240
4241 if (WARN_ON_ONCE(!rwsem_is_locked(&ei->i_mmap_sem)))
4242 return -EINVAL;
4243
4244 do {
4245 page = dax_layout_busy_page(inode->i_mapping);
4246 if (!page)
4247 return 0;
4248
4249 error = ___wait_var_event(&page->_refcount,
4250 atomic_read(&page->_refcount) == 1,
4251 TASK_INTERRUPTIBLE, 0, 0,
4252 ext4_wait_dax_page(ei));
4253 } while (error == 0);
4254
4255 return error;
4256 }
4257
4258 /*
4259 * ext4_punch_hole: punches a hole in a file by releasing the blocks
4260 * associated with the given offset and length
4261 *
4262 * @inode: File inode
4263 * @offset: The offset where the hole will begin
4264 * @len: The length of the hole
4265 *
4266 * Returns: 0 on success or negative on failure
4267 */
4268
4269 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
4270 {
4271 struct super_block *sb = inode->i_sb;
4272 ext4_lblk_t first_block, stop_block;
4273 struct address_space *mapping = inode->i_mapping;
4274 loff_t first_block_offset, last_block_offset;
4275 handle_t *handle;
4276 unsigned int credits;
4277 int ret = 0;
4278
4279 if (!S_ISREG(inode->i_mode))
4280 return -EOPNOTSUPP;
4281
4282 trace_ext4_punch_hole(inode, offset, length, 0);
4283
4284 /*
4285 * Write out all dirty pages to avoid race conditions
4286 * Then release them.
4287 */
4288 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
4289 ret = filemap_write_and_wait_range(mapping, offset,
4290 offset + length - 1);
4291 if (ret)
4292 return ret;
4293 }
4294
4295 inode_lock(inode);
4296
4297 /* No need to punch hole beyond i_size */
4298 if (offset >= inode->i_size)
4299 goto out_mutex;
4300
4301 /*
4302 * If the hole extends beyond i_size, set the hole
4303 * to end after the page that contains i_size
4304 */
4305 if (offset + length > inode->i_size) {
4306 length = inode->i_size +
4307 PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
4308 offset;
4309 }
4310
4311 if (offset & (sb->s_blocksize - 1) ||
4312 (offset + length) & (sb->s_blocksize - 1)) {
4313 /*
4314 * Attach jinode to inode for jbd2 if we do any zeroing of
4315 * partial block
4316 */
4317 ret = ext4_inode_attach_jinode(inode);
4318 if (ret < 0)
4319 goto out_mutex;
4320
4321 }
4322
4323 /* Wait all existing dio workers, newcomers will block on i_mutex */
4324 inode_dio_wait(inode);
4325
4326 /*
4327 * Prevent page faults from reinstantiating pages we have released from
4328 * page cache.
4329 */
4330 down_write(&EXT4_I(inode)->i_mmap_sem);
4331
4332 ret = ext4_break_layouts(inode);
4333 if (ret)
4334 goto out_dio;
4335
4336 first_block_offset = round_up(offset, sb->s_blocksize);
4337 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
4338
4339 /* Now release the pages and zero block aligned part of pages*/
4340 if (last_block_offset > first_block_offset) {
4341 ret = ext4_update_disksize_before_punch(inode, offset, length);
4342 if (ret)
4343 goto out_dio;
4344 truncate_pagecache_range(inode, first_block_offset,
4345 last_block_offset);
4346 }
4347
4348 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4349 credits = ext4_writepage_trans_blocks(inode);
4350 else
4351 credits = ext4_blocks_for_truncate(inode);
4352 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4353 if (IS_ERR(handle)) {
4354 ret = PTR_ERR(handle);
4355 ext4_std_error(sb, ret);
4356 goto out_dio;
4357 }
4358
4359 ret = ext4_zero_partial_blocks(handle, inode, offset,
4360 length);
4361 if (ret)
4362 goto out_stop;
4363
4364 first_block = (offset + sb->s_blocksize - 1) >>
4365 EXT4_BLOCK_SIZE_BITS(sb);
4366 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4367
4368 /* If there are blocks to remove, do it */
4369 if (stop_block > first_block) {
4370
4371 down_write(&EXT4_I(inode)->i_data_sem);
4372 ext4_discard_preallocations(inode);
4373
4374 ret = ext4_es_remove_extent(inode, first_block,
4375 stop_block - first_block);
4376 if (ret) {
4377 up_write(&EXT4_I(inode)->i_data_sem);
4378 goto out_stop;
4379 }
4380
4381 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4382 ret = ext4_ext_remove_space(inode, first_block,
4383 stop_block - 1);
4384 else
4385 ret = ext4_ind_remove_space(handle, inode, first_block,
4386 stop_block);
4387
4388 up_write(&EXT4_I(inode)->i_data_sem);
4389 }
4390 if (IS_SYNC(inode))
4391 ext4_handle_sync(handle);
4392
4393 inode->i_mtime = inode->i_ctime = current_time(inode);
4394 ext4_mark_inode_dirty(handle, inode);
4395 if (ret >= 0)
4396 ext4_update_inode_fsync_trans(handle, inode, 1);
4397 out_stop:
4398 ext4_journal_stop(handle);
4399 out_dio:
4400 up_write(&EXT4_I(inode)->i_mmap_sem);
4401 out_mutex:
4402 inode_unlock(inode);
4403 return ret;
4404 }
4405
4406 int ext4_inode_attach_jinode(struct inode *inode)
4407 {
4408 struct ext4_inode_info *ei = EXT4_I(inode);
4409 struct jbd2_inode *jinode;
4410
4411 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4412 return 0;
4413
4414 jinode = jbd2_alloc_inode(GFP_KERNEL);
4415 spin_lock(&inode->i_lock);
4416 if (!ei->jinode) {
4417 if (!jinode) {
4418 spin_unlock(&inode->i_lock);
4419 return -ENOMEM;
4420 }
4421 ei->jinode = jinode;
4422 jbd2_journal_init_jbd_inode(ei->jinode, inode);
4423 jinode = NULL;
4424 }
4425 spin_unlock(&inode->i_lock);
4426 if (unlikely(jinode != NULL))
4427 jbd2_free_inode(jinode);
4428 return 0;
4429 }
4430
4431 /*
4432 * ext4_truncate()
4433 *
4434 * We block out ext4_get_block() block instantiations across the entire
4435 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4436 * simultaneously on behalf of the same inode.
4437 *
4438 * As we work through the truncate and commit bits of it to the journal there
4439 * is one core, guiding principle: the file's tree must always be consistent on
4440 * disk. We must be able to restart the truncate after a crash.
4441 *
4442 * The file's tree may be transiently inconsistent in memory (although it
4443 * probably isn't), but whenever we close off and commit a journal transaction,
4444 * the contents of (the filesystem + the journal) must be consistent and
4445 * restartable. It's pretty simple, really: bottom up, right to left (although
4446 * left-to-right works OK too).
4447 *
4448 * Note that at recovery time, journal replay occurs *before* the restart of
4449 * truncate against the orphan inode list.
4450 *
4451 * The committed inode has the new, desired i_size (which is the same as
4452 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
4453 * that this inode's truncate did not complete and it will again call
4454 * ext4_truncate() to have another go. So there will be instantiated blocks
4455 * to the right of the truncation point in a crashed ext4 filesystem. But
4456 * that's fine - as long as they are linked from the inode, the post-crash
4457 * ext4_truncate() run will find them and release them.
4458 */
4459 int ext4_truncate(struct inode *inode)
4460 {
4461 struct ext4_inode_info *ei = EXT4_I(inode);
4462 unsigned int credits;
4463 int err = 0;
4464 handle_t *handle;
4465 struct address_space *mapping = inode->i_mapping;
4466
4467 /*
4468 * There is a possibility that we're either freeing the inode
4469 * or it's a completely new inode. In those cases we might not
4470 * have i_mutex locked because it's not necessary.
4471 */
4472 if (!(inode->i_state & (I_NEW|I_FREEING)))
4473 WARN_ON(!inode_is_locked(inode));
4474 trace_ext4_truncate_enter(inode);
4475
4476 if (!ext4_can_truncate(inode))
4477 return 0;
4478
4479 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4480
4481 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4482 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4483
4484 if (ext4_has_inline_data(inode)) {
4485 int has_inline = 1;
4486
4487 err = ext4_inline_data_truncate(inode, &has_inline);
4488 if (err)
4489 return err;
4490 if (has_inline)
4491 return 0;
4492 }
4493
4494 /* If we zero-out tail of the page, we have to create jinode for jbd2 */
4495 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4496 if (ext4_inode_attach_jinode(inode) < 0)
4497 return 0;
4498 }
4499
4500 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4501 credits = ext4_writepage_trans_blocks(inode);
4502 else
4503 credits = ext4_blocks_for_truncate(inode);
4504
4505 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4506 if (IS_ERR(handle))
4507 return PTR_ERR(handle);
4508
4509 if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4510 ext4_block_truncate_page(handle, mapping, inode->i_size);
4511
4512 /*
4513 * We add the inode to the orphan list, so that if this
4514 * truncate spans multiple transactions, and we crash, we will
4515 * resume the truncate when the filesystem recovers. It also
4516 * marks the inode dirty, to catch the new size.
4517 *
4518 * Implication: the file must always be in a sane, consistent
4519 * truncatable state while each transaction commits.
4520 */
4521 err = ext4_orphan_add(handle, inode);
4522 if (err)
4523 goto out_stop;
4524
4525 down_write(&EXT4_I(inode)->i_data_sem);
4526
4527 ext4_discard_preallocations(inode);
4528
4529 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4530 err = ext4_ext_truncate(handle, inode);
4531 else
4532 ext4_ind_truncate(handle, inode);
4533
4534 up_write(&ei->i_data_sem);
4535 if (err)
4536 goto out_stop;
4537
4538 if (IS_SYNC(inode))
4539 ext4_handle_sync(handle);
4540
4541 out_stop:
4542 /*
4543 * If this was a simple ftruncate() and the file will remain alive,
4544 * then we need to clear up the orphan record which we created above.
4545 * However, if this was a real unlink then we were called by
4546 * ext4_evict_inode(), and we allow that function to clean up the
4547 * orphan info for us.
4548 */
4549 if (inode->i_nlink)
4550 ext4_orphan_del(handle, inode);
4551
4552 inode->i_mtime = inode->i_ctime = current_time(inode);
4553 ext4_mark_inode_dirty(handle, inode);
4554 ext4_journal_stop(handle);
4555
4556 trace_ext4_truncate_exit(inode);
4557 return err;
4558 }
4559
4560 /*
4561 * ext4_get_inode_loc returns with an extra refcount against the inode's
4562 * underlying buffer_head on success. If 'in_mem' is true, we have all
4563 * data in memory that is needed to recreate the on-disk version of this
4564 * inode.
4565 */
4566 static int __ext4_get_inode_loc(struct inode *inode,
4567 struct ext4_iloc *iloc, int in_mem)
4568 {
4569 struct ext4_group_desc *gdp;
4570 struct buffer_head *bh;
4571 struct super_block *sb = inode->i_sb;
4572 ext4_fsblk_t block;
4573 int inodes_per_block, inode_offset;
4574
4575 iloc->bh = NULL;
4576 if (inode->i_ino < EXT4_ROOT_INO ||
4577 inode->i_ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
4578 return -EFSCORRUPTED;
4579
4580 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4581 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4582 if (!gdp)
4583 return -EIO;
4584
4585 /*
4586 * Figure out the offset within the block group inode table
4587 */
4588 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4589 inode_offset = ((inode->i_ino - 1) %
4590 EXT4_INODES_PER_GROUP(sb));
4591 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4592 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4593
4594 bh = sb_getblk(sb, block);
4595 if (unlikely(!bh))
4596 return -ENOMEM;
4597 if (!buffer_uptodate(bh)) {
4598 lock_buffer(bh);
4599
4600 /*
4601 * If the buffer has the write error flag, we have failed
4602 * to write out another inode in the same block. In this
4603 * case, we don't have to read the block because we may
4604 * read the old inode data successfully.
4605 */
4606 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4607 set_buffer_uptodate(bh);
4608
4609 if (buffer_uptodate(bh)) {
4610 /* someone brought it uptodate while we waited */
4611 unlock_buffer(bh);
4612 goto has_buffer;
4613 }
4614
4615 /*
4616 * If we have all information of the inode in memory and this
4617 * is the only valid inode in the block, we need not read the
4618 * block.
4619 */
4620 if (in_mem) {
4621 struct buffer_head *bitmap_bh;
4622 int i, start;
4623
4624 start = inode_offset & ~(inodes_per_block - 1);
4625
4626 /* Is the inode bitmap in cache? */
4627 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4628 if (unlikely(!bitmap_bh))
4629 goto make_io;
4630
4631 /*
4632 * If the inode bitmap isn't in cache then the
4633 * optimisation may end up performing two reads instead
4634 * of one, so skip it.
4635 */
4636 if (!buffer_uptodate(bitmap_bh)) {
4637 brelse(bitmap_bh);
4638 goto make_io;
4639 }
4640 for (i = start; i < start + inodes_per_block; i++) {
4641 if (i == inode_offset)
4642 continue;
4643 if (ext4_test_bit(i, bitmap_bh->b_data))
4644 break;
4645 }
4646 brelse(bitmap_bh);
4647 if (i == start + inodes_per_block) {
4648 /* all other inodes are free, so skip I/O */
4649 memset(bh->b_data, 0, bh->b_size);
4650 set_buffer_uptodate(bh);
4651 unlock_buffer(bh);
4652 goto has_buffer;
4653 }
4654 }
4655
4656 make_io:
4657 /*
4658 * If we need to do any I/O, try to pre-readahead extra
4659 * blocks from the inode table.
4660 */
4661 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4662 ext4_fsblk_t b, end, table;
4663 unsigned num;
4664 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4665
4666 table = ext4_inode_table(sb, gdp);
4667 /* s_inode_readahead_blks is always a power of 2 */
4668 b = block & ~((ext4_fsblk_t) ra_blks - 1);
4669 if (table > b)
4670 b = table;
4671 end = b + ra_blks;
4672 num = EXT4_INODES_PER_GROUP(sb);
4673 if (ext4_has_group_desc_csum(sb))
4674 num -= ext4_itable_unused_count(sb, gdp);
4675 table += num / inodes_per_block;
4676 if (end > table)
4677 end = table;
4678 while (b <= end)
4679 sb_breadahead(sb, b++);
4680 }
4681
4682 /*
4683 * There are other valid inodes in the buffer, this inode
4684 * has in-inode xattrs, or we don't have this inode in memory.
4685 * Read the block from disk.
4686 */
4687 trace_ext4_load_inode(inode);
4688 get_bh(bh);
4689 bh->b_end_io = end_buffer_read_sync;
4690 submit_bh(REQ_OP_READ, REQ_META | REQ_PRIO, bh);
4691 wait_on_buffer(bh);
4692 if (!buffer_uptodate(bh)) {
4693 EXT4_ERROR_INODE_BLOCK(inode, block,
4694 "unable to read itable block");
4695 brelse(bh);
4696 return -EIO;
4697 }
4698 }
4699 has_buffer:
4700 iloc->bh = bh;
4701 return 0;
4702 }
4703
4704 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4705 {
4706 /* We have all inode data except xattrs in memory here. */
4707 return __ext4_get_inode_loc(inode, iloc,
4708 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4709 }
4710
4711 static bool ext4_should_use_dax(struct inode *inode)
4712 {
4713 if (!test_opt(inode->i_sb, DAX))
4714 return false;
4715 if (!S_ISREG(inode->i_mode))
4716 return false;
4717 if (ext4_should_journal_data(inode))
4718 return false;
4719 if (ext4_has_inline_data(inode))
4720 return false;
4721 if (ext4_test_inode_flag(inode, EXT4_INODE_ENCRYPT))
4722 return false;
4723 return true;
4724 }
4725
4726 void ext4_set_inode_flags(struct inode *inode)
4727 {
4728 unsigned int flags = EXT4_I(inode)->i_flags;
4729 unsigned int new_fl = 0;
4730
4731 if (flags & EXT4_SYNC_FL)
4732 new_fl |= S_SYNC;
4733 if (flags & EXT4_APPEND_FL)
4734 new_fl |= S_APPEND;
4735 if (flags & EXT4_IMMUTABLE_FL)
4736 new_fl |= S_IMMUTABLE;
4737 if (flags & EXT4_NOATIME_FL)
4738 new_fl |= S_NOATIME;
4739 if (flags & EXT4_DIRSYNC_FL)
4740 new_fl |= S_DIRSYNC;
4741 if (ext4_should_use_dax(inode))
4742 new_fl |= S_DAX;
4743 if (flags & EXT4_ENCRYPT_FL)
4744 new_fl |= S_ENCRYPTED;
4745 if (flags & EXT4_CASEFOLD_FL)
4746 new_fl |= S_CASEFOLD;
4747 inode_set_flags(inode, new_fl,
4748 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX|
4749 S_ENCRYPTED|S_CASEFOLD);
4750 }
4751
4752 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4753 struct ext4_inode_info *ei)
4754 {
4755 blkcnt_t i_blocks ;
4756 struct inode *inode = &(ei->vfs_inode);
4757 struct super_block *sb = inode->i_sb;
4758
4759 if (ext4_has_feature_huge_file(sb)) {
4760 /* we are using combined 48 bit field */
4761 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4762 le32_to_cpu(raw_inode->i_blocks_lo);
4763 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4764 /* i_blocks represent file system block size */
4765 return i_blocks << (inode->i_blkbits - 9);
4766 } else {
4767 return i_blocks;
4768 }
4769 } else {
4770 return le32_to_cpu(raw_inode->i_blocks_lo);
4771 }
4772 }
4773
4774 static inline int ext4_iget_extra_inode(struct inode *inode,
4775 struct ext4_inode *raw_inode,
4776 struct ext4_inode_info *ei)
4777 {
4778 __le32 *magic = (void *)raw_inode +
4779 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4780
4781 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize + sizeof(__le32) <=
4782 EXT4_INODE_SIZE(inode->i_sb) &&
4783 *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4784 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4785 return ext4_find_inline_data_nolock(inode);
4786 } else
4787 EXT4_I(inode)->i_inline_off = 0;
4788 return 0;
4789 }
4790
4791 int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4792 {
4793 if (!ext4_has_feature_project(inode->i_sb))
4794 return -EOPNOTSUPP;
4795 *projid = EXT4_I(inode)->i_projid;
4796 return 0;
4797 }
4798
4799 /*
4800 * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of
4801 * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag
4802 * set.
4803 */
4804 static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val)
4805 {
4806 if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4807 inode_set_iversion_raw(inode, val);
4808 else
4809 inode_set_iversion_queried(inode, val);
4810 }
4811 static inline u64 ext4_inode_peek_iversion(const struct inode *inode)
4812 {
4813 if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4814 return inode_peek_iversion_raw(inode);
4815 else
4816 return inode_peek_iversion(inode);
4817 }
4818
4819 struct inode *__ext4_iget(struct super_block *sb, unsigned long ino,
4820 ext4_iget_flags flags, const char *function,
4821 unsigned int line)
4822 {
4823 struct ext4_iloc iloc;
4824 struct ext4_inode *raw_inode;
4825 struct ext4_inode_info *ei;
4826 struct inode *inode;
4827 journal_t *journal = EXT4_SB(sb)->s_journal;
4828 long ret;
4829 loff_t size;
4830 int block;
4831 uid_t i_uid;
4832 gid_t i_gid;
4833 projid_t i_projid;
4834
4835 if ((!(flags & EXT4_IGET_SPECIAL) &&
4836 (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)) ||
4837 (ino < EXT4_ROOT_INO) ||
4838 (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))) {
4839 if (flags & EXT4_IGET_HANDLE)
4840 return ERR_PTR(-ESTALE);
4841 __ext4_error(sb, function, line,
4842 "inode #%lu: comm %s: iget: illegal inode #",
4843 ino, current->comm);
4844 return ERR_PTR(-EFSCORRUPTED);
4845 }
4846
4847 inode = iget_locked(sb, ino);
4848 if (!inode)
4849 return ERR_PTR(-ENOMEM);
4850 if (!(inode->i_state & I_NEW))
4851 return inode;
4852
4853 ei = EXT4_I(inode);
4854 iloc.bh = NULL;
4855
4856 ret = __ext4_get_inode_loc(inode, &iloc, 0);
4857 if (ret < 0)
4858 goto bad_inode;
4859 raw_inode = ext4_raw_inode(&iloc);
4860
4861 if ((ino == EXT4_ROOT_INO) && (raw_inode->i_links_count == 0)) {
4862 ext4_error_inode(inode, function, line, 0,
4863 "iget: root inode unallocated");
4864 ret = -EFSCORRUPTED;
4865 goto bad_inode;
4866 }
4867
4868 if ((flags & EXT4_IGET_HANDLE) &&
4869 (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) {
4870 ret = -ESTALE;
4871 goto bad_inode;
4872 }
4873
4874 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4875 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4876 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4877 EXT4_INODE_SIZE(inode->i_sb) ||
4878 (ei->i_extra_isize & 3)) {
4879 ext4_error_inode(inode, function, line, 0,
4880 "iget: bad extra_isize %u "
4881 "(inode size %u)",
4882 ei->i_extra_isize,
4883 EXT4_INODE_SIZE(inode->i_sb));
4884 ret = -EFSCORRUPTED;
4885 goto bad_inode;
4886 }
4887 } else
4888 ei->i_extra_isize = 0;
4889
4890 /* Precompute checksum seed for inode metadata */
4891 if (ext4_has_metadata_csum(sb)) {
4892 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4893 __u32 csum;
4894 __le32 inum = cpu_to_le32(inode->i_ino);
4895 __le32 gen = raw_inode->i_generation;
4896 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4897 sizeof(inum));
4898 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4899 sizeof(gen));
4900 }
4901
4902 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4903 ext4_error_inode(inode, function, line, 0,
4904 "iget: checksum invalid");
4905 ret = -EFSBADCRC;
4906 goto bad_inode;
4907 }
4908
4909 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4910 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4911 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4912 if (ext4_has_feature_project(sb) &&
4913 EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4914 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4915 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4916 else
4917 i_projid = EXT4_DEF_PROJID;
4918
4919 if (!(test_opt(inode->i_sb, NO_UID32))) {
4920 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4921 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4922 }
4923 i_uid_write(inode, i_uid);
4924 i_gid_write(inode, i_gid);
4925 ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4926 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4927
4928 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
4929 ei->i_inline_off = 0;
4930 ei->i_dir_start_lookup = 0;
4931 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4932 /* We now have enough fields to check if the inode was active or not.
4933 * This is needed because nfsd might try to access dead inodes
4934 * the test is that same one that e2fsck uses
4935 * NeilBrown 1999oct15
4936 */
4937 if (inode->i_nlink == 0) {
4938 if ((inode->i_mode == 0 ||
4939 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4940 ino != EXT4_BOOT_LOADER_INO) {
4941 /* this inode is deleted */
4942 ret = -ESTALE;
4943 goto bad_inode;
4944 }
4945 /* The only unlinked inodes we let through here have
4946 * valid i_mode and are being read by the orphan
4947 * recovery code: that's fine, we're about to complete
4948 * the process of deleting those.
4949 * OR it is the EXT4_BOOT_LOADER_INO which is
4950 * not initialized on a new filesystem. */
4951 }
4952 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4953 ext4_set_inode_flags(inode);
4954 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4955 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4956 if (ext4_has_feature_64bit(sb))
4957 ei->i_file_acl |=
4958 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4959 inode->i_size = ext4_isize(sb, raw_inode);
4960 if ((size = i_size_read(inode)) < 0) {
4961 ext4_error_inode(inode, function, line, 0,
4962 "iget: bad i_size value: %lld", size);
4963 ret = -EFSCORRUPTED;
4964 goto bad_inode;
4965 }
4966 ei->i_disksize = inode->i_size;
4967 #ifdef CONFIG_QUOTA
4968 ei->i_reserved_quota = 0;
4969 #endif
4970 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4971 ei->i_block_group = iloc.block_group;
4972 ei->i_last_alloc_group = ~0;
4973 /*
4974 * NOTE! The in-memory inode i_data array is in little-endian order
4975 * even on big-endian machines: we do NOT byteswap the block numbers!
4976 */
4977 for (block = 0; block < EXT4_N_BLOCKS; block++)
4978 ei->i_data[block] = raw_inode->i_block[block];
4979 INIT_LIST_HEAD(&ei->i_orphan);
4980
4981 /*
4982 * Set transaction id's of transactions that have to be committed
4983 * to finish f[data]sync. We set them to currently running transaction
4984 * as we cannot be sure that the inode or some of its metadata isn't
4985 * part of the transaction - the inode could have been reclaimed and
4986 * now it is reread from disk.
4987 */
4988 if (journal) {
4989 transaction_t *transaction;
4990 tid_t tid;
4991
4992 read_lock(&journal->j_state_lock);
4993 if (journal->j_running_transaction)
4994 transaction = journal->j_running_transaction;
4995 else
4996 transaction = journal->j_committing_transaction;
4997 if (transaction)
4998 tid = transaction->t_tid;
4999 else
5000 tid = journal->j_commit_sequence;
5001 read_unlock(&journal->j_state_lock);
5002 ei->i_sync_tid = tid;
5003 ei->i_datasync_tid = tid;
5004 }
5005
5006 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
5007 if (ei->i_extra_isize == 0) {
5008 /* The extra space is currently unused. Use it. */
5009 BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
5010 ei->i_extra_isize = sizeof(struct ext4_inode) -
5011 EXT4_GOOD_OLD_INODE_SIZE;
5012 } else {
5013 ret = ext4_iget_extra_inode(inode, raw_inode, ei);
5014 if (ret)
5015 goto bad_inode;
5016 }
5017 }
5018
5019 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
5020 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
5021 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
5022 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
5023
5024 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
5025 u64 ivers = le32_to_cpu(raw_inode->i_disk_version);
5026
5027 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
5028 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5029 ivers |=
5030 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
5031 }
5032 ext4_inode_set_iversion_queried(inode, ivers);
5033 }
5034
5035 ret = 0;
5036 if (ei->i_file_acl &&
5037 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
5038 ext4_error_inode(inode, function, line, 0,
5039 "iget: bad extended attribute block %llu",
5040 ei->i_file_acl);
5041 ret = -EFSCORRUPTED;
5042 goto bad_inode;
5043 } else if (!ext4_has_inline_data(inode)) {
5044 /* validate the block references in the inode */
5045 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
5046 (S_ISLNK(inode->i_mode) &&
5047 !ext4_inode_is_fast_symlink(inode))) {
5048 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
5049 ret = ext4_ext_check_inode(inode);
5050 else
5051 ret = ext4_ind_check_inode(inode);
5052 }
5053 }
5054 if (ret)
5055 goto bad_inode;
5056
5057 if (S_ISREG(inode->i_mode)) {
5058 inode->i_op = &ext4_file_inode_operations;
5059 inode->i_fop = &ext4_file_operations;
5060 ext4_set_aops(inode);
5061 } else if (S_ISDIR(inode->i_mode)) {
5062 inode->i_op = &ext4_dir_inode_operations;
5063 inode->i_fop = &ext4_dir_operations;
5064 } else if (S_ISLNK(inode->i_mode)) {
5065 /* VFS does not allow setting these so must be corruption */
5066 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
5067 ext4_error_inode(inode, function, line, 0,
5068 "iget: immutable or append flags "
5069 "not allowed on symlinks");
5070 ret = -EFSCORRUPTED;
5071 goto bad_inode;
5072 }
5073 if (IS_ENCRYPTED(inode)) {
5074 inode->i_op = &ext4_encrypted_symlink_inode_operations;
5075 ext4_set_aops(inode);
5076 } else if (ext4_inode_is_fast_symlink(inode)) {
5077 inode->i_link = (char *)ei->i_data;
5078 inode->i_op = &ext4_fast_symlink_inode_operations;
5079 nd_terminate_link(ei->i_data, inode->i_size,
5080 sizeof(ei->i_data) - 1);
5081 } else {
5082 inode->i_op = &ext4_symlink_inode_operations;
5083 ext4_set_aops(inode);
5084 }
5085 inode_nohighmem(inode);
5086 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
5087 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
5088 inode->i_op = &ext4_special_inode_operations;
5089 if (raw_inode->i_block[0])
5090 init_special_inode(inode, inode->i_mode,
5091 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
5092 else
5093 init_special_inode(inode, inode->i_mode,
5094 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
5095 } else if (ino == EXT4_BOOT_LOADER_INO) {
5096 make_bad_inode(inode);
5097 } else {
5098 ret = -EFSCORRUPTED;
5099 ext4_error_inode(inode, function, line, 0,
5100 "iget: bogus i_mode (%o)", inode->i_mode);
5101 goto bad_inode;
5102 }
5103 brelse(iloc.bh);
5104
5105 unlock_new_inode(inode);
5106 return inode;
5107
5108 bad_inode:
5109 brelse(iloc.bh);
5110 iget_failed(inode);
5111 return ERR_PTR(ret);
5112 }
5113
5114 static int ext4_inode_blocks_set(handle_t *handle,
5115 struct ext4_inode *raw_inode,
5116 struct ext4_inode_info *ei)
5117 {
5118 struct inode *inode = &(ei->vfs_inode);
5119 u64 i_blocks = inode->i_blocks;
5120 struct super_block *sb = inode->i_sb;
5121
5122 if (i_blocks <= ~0U) {
5123 /*
5124 * i_blocks can be represented in a 32 bit variable
5125 * as multiple of 512 bytes
5126 */
5127 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
5128 raw_inode->i_blocks_high = 0;
5129 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5130 return 0;
5131 }
5132 if (!ext4_has_feature_huge_file(sb))
5133 return -EFBIG;
5134
5135 if (i_blocks <= 0xffffffffffffULL) {
5136 /*
5137 * i_blocks can be represented in a 48 bit variable
5138 * as multiple of 512 bytes
5139 */
5140 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
5141 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5142 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5143 } else {
5144 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5145 /* i_block is stored in file system block size */
5146 i_blocks = i_blocks >> (inode->i_blkbits - 9);
5147 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
5148 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5149 }
5150 return 0;
5151 }
5152
5153 struct other_inode {
5154 unsigned long orig_ino;
5155 struct ext4_inode *raw_inode;
5156 };
5157
5158 static int other_inode_match(struct inode * inode, unsigned long ino,
5159 void *data)
5160 {
5161 struct other_inode *oi = (struct other_inode *) data;
5162
5163 if ((inode->i_ino != ino) ||
5164 (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
5165 I_DIRTY_INODE)) ||
5166 ((inode->i_state & I_DIRTY_TIME) == 0))
5167 return 0;
5168 spin_lock(&inode->i_lock);
5169 if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
5170 I_DIRTY_INODE)) == 0) &&
5171 (inode->i_state & I_DIRTY_TIME)) {
5172 struct ext4_inode_info *ei = EXT4_I(inode);
5173
5174 inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED);
5175 spin_unlock(&inode->i_lock);
5176
5177 spin_lock(&ei->i_raw_lock);
5178 EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode);
5179 EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode);
5180 EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode);
5181 ext4_inode_csum_set(inode, oi->raw_inode, ei);
5182 spin_unlock(&ei->i_raw_lock);
5183 trace_ext4_other_inode_update_time(inode, oi->orig_ino);
5184 return -1;
5185 }
5186 spin_unlock(&inode->i_lock);
5187 return -1;
5188 }
5189
5190 /*
5191 * Opportunistically update the other time fields for other inodes in
5192 * the same inode table block.
5193 */
5194 static void ext4_update_other_inodes_time(struct super_block *sb,
5195 unsigned long orig_ino, char *buf)
5196 {
5197 struct other_inode oi;
5198 unsigned long ino;
5199 int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
5200 int inode_size = EXT4_INODE_SIZE(sb);
5201
5202 oi.orig_ino = orig_ino;
5203 /*
5204 * Calculate the first inode in the inode table block. Inode
5205 * numbers are one-based. That is, the first inode in a block
5206 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
5207 */
5208 ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
5209 for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
5210 if (ino == orig_ino)
5211 continue;
5212 oi.raw_inode = (struct ext4_inode *) buf;
5213 (void) find_inode_nowait(sb, ino, other_inode_match, &oi);
5214 }
5215 }
5216
5217 /*
5218 * Post the struct inode info into an on-disk inode location in the
5219 * buffer-cache. This gobbles the caller's reference to the
5220 * buffer_head in the inode location struct.
5221 *
5222 * The caller must have write access to iloc->bh.
5223 */
5224 static int ext4_do_update_inode(handle_t *handle,
5225 struct inode *inode,
5226 struct ext4_iloc *iloc)
5227 {
5228 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5229 struct ext4_inode_info *ei = EXT4_I(inode);
5230 struct buffer_head *bh = iloc->bh;
5231 struct super_block *sb = inode->i_sb;
5232 int err = 0, rc, block;
5233 int need_datasync = 0, set_large_file = 0;
5234 uid_t i_uid;
5235 gid_t i_gid;
5236 projid_t i_projid;
5237
5238 spin_lock(&ei->i_raw_lock);
5239
5240 /* For fields not tracked in the in-memory inode,
5241 * initialise them to zero for new inodes. */
5242 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5243 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5244
5245 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
5246 i_uid = i_uid_read(inode);
5247 i_gid = i_gid_read(inode);
5248 i_projid = from_kprojid(&init_user_ns, ei->i_projid);
5249 if (!(test_opt(inode->i_sb, NO_UID32))) {
5250 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
5251 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
5252 /*
5253 * Fix up interoperability with old kernels. Otherwise, old inodes get
5254 * re-used with the upper 16 bits of the uid/gid intact
5255 */
5256 if (ei->i_dtime && list_empty(&ei->i_orphan)) {
5257 raw_inode->i_uid_high = 0;
5258 raw_inode->i_gid_high = 0;
5259 } else {
5260 raw_inode->i_uid_high =
5261 cpu_to_le16(high_16_bits(i_uid));
5262 raw_inode->i_gid_high =
5263 cpu_to_le16(high_16_bits(i_gid));
5264 }
5265 } else {
5266 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
5267 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
5268 raw_inode->i_uid_high = 0;
5269 raw_inode->i_gid_high = 0;
5270 }
5271 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
5272
5273 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5274 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5275 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5276 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
5277
5278 err = ext4_inode_blocks_set(handle, raw_inode, ei);
5279 if (err) {
5280 spin_unlock(&ei->i_raw_lock);
5281 goto out_brelse;
5282 }
5283 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
5284 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
5285 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
5286 raw_inode->i_file_acl_high =
5287 cpu_to_le16(ei->i_file_acl >> 32);
5288 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
5289 if (ei->i_disksize != ext4_isize(inode->i_sb, raw_inode)) {
5290 ext4_isize_set(raw_inode, ei->i_disksize);
5291 need_datasync = 1;
5292 }
5293 if (ei->i_disksize > 0x7fffffffULL) {
5294 if (!ext4_has_feature_large_file(sb) ||
5295 EXT4_SB(sb)->s_es->s_rev_level ==
5296 cpu_to_le32(EXT4_GOOD_OLD_REV))
5297 set_large_file = 1;
5298 }
5299 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5300 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5301 if (old_valid_dev(inode->i_rdev)) {
5302 raw_inode->i_block[0] =
5303 cpu_to_le32(old_encode_dev(inode->i_rdev));
5304 raw_inode->i_block[1] = 0;
5305 } else {
5306 raw_inode->i_block[0] = 0;
5307 raw_inode->i_block[1] =
5308 cpu_to_le32(new_encode_dev(inode->i_rdev));
5309 raw_inode->i_block[2] = 0;
5310 }
5311 } else if (!ext4_has_inline_data(inode)) {
5312 for (block = 0; block < EXT4_N_BLOCKS; block++)
5313 raw_inode->i_block[block] = ei->i_data[block];
5314 }
5315
5316 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
5317 u64 ivers = ext4_inode_peek_iversion(inode);
5318
5319 raw_inode->i_disk_version = cpu_to_le32(ivers);
5320 if (ei->i_extra_isize) {
5321 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5322 raw_inode->i_version_hi =
5323 cpu_to_le32(ivers >> 32);
5324 raw_inode->i_extra_isize =
5325 cpu_to_le16(ei->i_extra_isize);
5326 }
5327 }
5328
5329 BUG_ON(!ext4_has_feature_project(inode->i_sb) &&
5330 i_projid != EXT4_DEF_PROJID);
5331
5332 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
5333 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
5334 raw_inode->i_projid = cpu_to_le32(i_projid);
5335
5336 ext4_inode_csum_set(inode, raw_inode, ei);
5337 spin_unlock(&ei->i_raw_lock);
5338 if (inode->i_sb->s_flags & SB_LAZYTIME)
5339 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5340 bh->b_data);
5341
5342 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5343 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
5344 if (!err)
5345 err = rc;
5346 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5347 if (set_large_file) {
5348 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5349 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
5350 if (err)
5351 goto out_brelse;
5352 ext4_set_feature_large_file(sb);
5353 ext4_handle_sync(handle);
5354 err = ext4_handle_dirty_super(handle, sb);
5355 }
5356 ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5357 out_brelse:
5358 brelse(bh);
5359 ext4_std_error(inode->i_sb, err);
5360 return err;
5361 }
5362
5363 /*
5364 * ext4_write_inode()
5365 *
5366 * We are called from a few places:
5367 *
5368 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5369 * Here, there will be no transaction running. We wait for any running
5370 * transaction to commit.
5371 *
5372 * - Within flush work (sys_sync(), kupdate and such).
5373 * We wait on commit, if told to.
5374 *
5375 * - Within iput_final() -> write_inode_now()
5376 * We wait on commit, if told to.
5377 *
5378 * In all cases it is actually safe for us to return without doing anything,
5379 * because the inode has been copied into a raw inode buffer in
5380 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL
5381 * writeback.
5382 *
5383 * Note that we are absolutely dependent upon all inode dirtiers doing the
5384 * right thing: they *must* call mark_inode_dirty() after dirtying info in
5385 * which we are interested.
5386 *
5387 * It would be a bug for them to not do this. The code:
5388 *
5389 * mark_inode_dirty(inode)
5390 * stuff();
5391 * inode->i_size = expr;
5392 *
5393 * is in error because write_inode() could occur while `stuff()' is running,
5394 * and the new i_size will be lost. Plus the inode will no longer be on the
5395 * superblock's dirty inode list.
5396 */
5397 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5398 {
5399 int err;
5400
5401 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC) ||
5402 sb_rdonly(inode->i_sb))
5403 return 0;
5404
5405 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5406 return -EIO;
5407
5408 if (EXT4_SB(inode->i_sb)->s_journal) {
5409 if (ext4_journal_current_handle()) {
5410 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5411 dump_stack();
5412 return -EIO;
5413 }
5414
5415 /*
5416 * No need to force transaction in WB_SYNC_NONE mode. Also
5417 * ext4_sync_fs() will force the commit after everything is
5418 * written.
5419 */
5420 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5421 return 0;
5422
5423 err = jbd2_complete_transaction(EXT4_SB(inode->i_sb)->s_journal,
5424 EXT4_I(inode)->i_sync_tid);
5425 } else {
5426 struct ext4_iloc iloc;
5427
5428 err = __ext4_get_inode_loc(inode, &iloc, 0);
5429 if (err)
5430 return err;
5431 /*
5432 * sync(2) will flush the whole buffer cache. No need to do
5433 * it here separately for each inode.
5434 */
5435 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5436 sync_dirty_buffer(iloc.bh);
5437 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5438 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
5439 "IO error syncing inode");
5440 err = -EIO;
5441 }
5442 brelse(iloc.bh);
5443 }
5444 return err;
5445 }
5446
5447 /*
5448 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
5449 * buffers that are attached to a page stradding i_size and are undergoing
5450 * commit. In that case we have to wait for commit to finish and try again.
5451 */
5452 static void ext4_wait_for_tail_page_commit(struct inode *inode)
5453 {
5454 struct page *page;
5455 unsigned offset;
5456 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5457 tid_t commit_tid = 0;
5458 int ret;
5459
5460 offset = inode->i_size & (PAGE_SIZE - 1);
5461 /*
5462 * All buffers in the last page remain valid? Then there's nothing to
5463 * do. We do the check mainly to optimize the common PAGE_SIZE ==
5464 * blocksize case
5465 */
5466 if (offset > PAGE_SIZE - i_blocksize(inode))
5467 return;
5468 while (1) {
5469 page = find_lock_page(inode->i_mapping,
5470 inode->i_size >> PAGE_SHIFT);
5471 if (!page)
5472 return;
5473 ret = __ext4_journalled_invalidatepage(page, offset,
5474 PAGE_SIZE - offset);
5475 unlock_page(page);
5476 put_page(page);
5477 if (ret != -EBUSY)
5478 return;
5479 commit_tid = 0;
5480 read_lock(&journal->j_state_lock);
5481 if (journal->j_committing_transaction)
5482 commit_tid = journal->j_committing_transaction->t_tid;
5483 read_unlock(&journal->j_state_lock);
5484 if (commit_tid)
5485 jbd2_log_wait_commit(journal, commit_tid);
5486 }
5487 }
5488
5489 /*
5490 * ext4_setattr()
5491 *
5492 * Called from notify_change.
5493 *
5494 * We want to trap VFS attempts to truncate the file as soon as
5495 * possible. In particular, we want to make sure that when the VFS
5496 * shrinks i_size, we put the inode on the orphan list and modify
5497 * i_disksize immediately, so that during the subsequent flushing of
5498 * dirty pages and freeing of disk blocks, we can guarantee that any
5499 * commit will leave the blocks being flushed in an unused state on
5500 * disk. (On recovery, the inode will get truncated and the blocks will
5501 * be freed, so we have a strong guarantee that no future commit will
5502 * leave these blocks visible to the user.)
5503 *
5504 * Another thing we have to assure is that if we are in ordered mode
5505 * and inode is still attached to the committing transaction, we must
5506 * we start writeout of all the dirty pages which are being truncated.
5507 * This way we are sure that all the data written in the previous
5508 * transaction are already on disk (truncate waits for pages under
5509 * writeback).
5510 *
5511 * Called with inode->i_mutex down.
5512 */
5513 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5514 {
5515 struct inode *inode = d_inode(dentry);
5516 int error, rc = 0;
5517 int orphan = 0;
5518 const unsigned int ia_valid = attr->ia_valid;
5519
5520 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5521 return -EIO;
5522
5523 error = setattr_prepare(dentry, attr);
5524 if (error)
5525 return error;
5526
5527 error = fscrypt_prepare_setattr(dentry, attr);
5528 if (error)
5529 return error;
5530
5531 if (is_quota_modification(inode, attr)) {
5532 error = dquot_initialize(inode);
5533 if (error)
5534 return error;
5535 }
5536 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
5537 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
5538 handle_t *handle;
5539
5540 /* (user+group)*(old+new) structure, inode write (sb,
5541 * inode block, ? - but truncate inode update has it) */
5542 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5543 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5544 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5545 if (IS_ERR(handle)) {
5546 error = PTR_ERR(handle);
5547 goto err_out;
5548 }
5549
5550 /* dquot_transfer() calls back ext4_get_inode_usage() which
5551 * counts xattr inode references.
5552 */
5553 down_read(&EXT4_I(inode)->xattr_sem);
5554 error = dquot_transfer(inode, attr);
5555 up_read(&EXT4_I(inode)->xattr_sem);
5556
5557 if (error) {
5558 ext4_journal_stop(handle);
5559 return error;
5560 }
5561 /* Update corresponding info in inode so that everything is in
5562 * one transaction */
5563 if (attr->ia_valid & ATTR_UID)
5564 inode->i_uid = attr->ia_uid;
5565 if (attr->ia_valid & ATTR_GID)
5566 inode->i_gid = attr->ia_gid;
5567 error = ext4_mark_inode_dirty(handle, inode);
5568 ext4_journal_stop(handle);
5569 }
5570
5571 if (attr->ia_valid & ATTR_SIZE) {
5572 handle_t *handle;
5573 loff_t oldsize = inode->i_size;
5574 int shrink = (attr->ia_size <= inode->i_size);
5575
5576 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5577 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5578
5579 if (attr->ia_size > sbi->s_bitmap_maxbytes)
5580 return -EFBIG;
5581 }
5582 if (!S_ISREG(inode->i_mode))
5583 return -EINVAL;
5584
5585 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
5586 inode_inc_iversion(inode);
5587
5588 if (ext4_should_order_data(inode) &&
5589 (attr->ia_size < inode->i_size)) {
5590 error = ext4_begin_ordered_truncate(inode,
5591 attr->ia_size);
5592 if (error)
5593 goto err_out;
5594 }
5595 if (attr->ia_size != inode->i_size) {
5596 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5597 if (IS_ERR(handle)) {
5598 error = PTR_ERR(handle);
5599 goto err_out;
5600 }
5601 if (ext4_handle_valid(handle) && shrink) {
5602 error = ext4_orphan_add(handle, inode);
5603 orphan = 1;
5604 }
5605 /*
5606 * Update c/mtime on truncate up, ext4_truncate() will
5607 * update c/mtime in shrink case below
5608 */
5609 if (!shrink) {
5610 inode->i_mtime = current_time(inode);
5611 inode->i_ctime = inode->i_mtime;
5612 }
5613 down_write(&EXT4_I(inode)->i_data_sem);
5614 EXT4_I(inode)->i_disksize = attr->ia_size;
5615 rc = ext4_mark_inode_dirty(handle, inode);
5616 if (!error)
5617 error = rc;
5618 /*
5619 * We have to update i_size under i_data_sem together
5620 * with i_disksize to avoid races with writeback code
5621 * running ext4_wb_update_i_disksize().
5622 */
5623 if (!error)
5624 i_size_write(inode, attr->ia_size);
5625 up_write(&EXT4_I(inode)->i_data_sem);
5626 ext4_journal_stop(handle);
5627 if (error) {
5628 if (orphan)
5629 ext4_orphan_del(NULL, inode);
5630 goto err_out;
5631 }
5632 }
5633 if (!shrink)
5634 pagecache_isize_extended(inode, oldsize, inode->i_size);
5635
5636 /*
5637 * Blocks are going to be removed from the inode. Wait
5638 * for dio in flight. Temporarily disable
5639 * dioread_nolock to prevent livelock.
5640 */
5641 if (orphan) {
5642 if (!ext4_should_journal_data(inode)) {
5643 inode_dio_wait(inode);
5644 } else
5645 ext4_wait_for_tail_page_commit(inode);
5646 }
5647 down_write(&EXT4_I(inode)->i_mmap_sem);
5648
5649 rc = ext4_break_layouts(inode);
5650 if (rc) {
5651 up_write(&EXT4_I(inode)->i_mmap_sem);
5652 error = rc;
5653 goto err_out;
5654 }
5655
5656 /*
5657 * Truncate pagecache after we've waited for commit
5658 * in data=journal mode to make pages freeable.
5659 */
5660 truncate_pagecache(inode, inode->i_size);
5661 if (shrink) {
5662 rc = ext4_truncate(inode);
5663 if (rc)
5664 error = rc;
5665 }
5666 up_write(&EXT4_I(inode)->i_mmap_sem);
5667 }
5668
5669 if (!error) {
5670 setattr_copy(inode, attr);
5671 mark_inode_dirty(inode);
5672 }
5673
5674 /*
5675 * If the call to ext4_truncate failed to get a transaction handle at
5676 * all, we need to clean up the in-core orphan list manually.
5677 */
5678 if (orphan && inode->i_nlink)
5679 ext4_orphan_del(NULL, inode);
5680
5681 if (!error && (ia_valid & ATTR_MODE))
5682 rc = posix_acl_chmod(inode, inode->i_mode);
5683
5684 err_out:
5685 ext4_std_error(inode->i_sb, error);
5686 if (!error)
5687 error = rc;
5688 return error;
5689 }
5690
5691 int ext4_getattr(const struct path *path, struct kstat *stat,
5692 u32 request_mask, unsigned int query_flags)
5693 {
5694 struct inode *inode = d_inode(path->dentry);
5695 struct ext4_inode *raw_inode;
5696 struct ext4_inode_info *ei = EXT4_I(inode);
5697 unsigned int flags;
5698
5699 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
5700 stat->result_mask |= STATX_BTIME;
5701 stat->btime.tv_sec = ei->i_crtime.tv_sec;
5702 stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5703 }
5704
5705 flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5706 if (flags & EXT4_APPEND_FL)
5707 stat->attributes |= STATX_ATTR_APPEND;
5708 if (flags & EXT4_COMPR_FL)
5709 stat->attributes |= STATX_ATTR_COMPRESSED;
5710 if (flags & EXT4_ENCRYPT_FL)
5711 stat->attributes |= STATX_ATTR_ENCRYPTED;
5712 if (flags & EXT4_IMMUTABLE_FL)
5713 stat->attributes |= STATX_ATTR_IMMUTABLE;
5714 if (flags & EXT4_NODUMP_FL)
5715 stat->attributes |= STATX_ATTR_NODUMP;
5716
5717 stat->attributes_mask |= (STATX_ATTR_APPEND |
5718 STATX_ATTR_COMPRESSED |
5719 STATX_ATTR_ENCRYPTED |
5720 STATX_ATTR_IMMUTABLE |
5721 STATX_ATTR_NODUMP);
5722
5723 generic_fillattr(inode, stat);
5724 return 0;
5725 }
5726
5727 int ext4_file_getattr(const struct path *path, struct kstat *stat,
5728 u32 request_mask, unsigned int query_flags)
5729 {
5730 struct inode *inode = d_inode(path->dentry);
5731 u64 delalloc_blocks;
5732
5733 ext4_getattr(path, stat, request_mask, query_flags);
5734
5735 /*
5736 * If there is inline data in the inode, the inode will normally not
5737 * have data blocks allocated (it may have an external xattr block).
5738 * Report at least one sector for such files, so tools like tar, rsync,
5739 * others don't incorrectly think the file is completely sparse.
5740 */
5741 if (unlikely(ext4_has_inline_data(inode)))
5742 stat->blocks += (stat->size + 511) >> 9;
5743
5744 /*
5745 * We can't update i_blocks if the block allocation is delayed
5746 * otherwise in the case of system crash before the real block
5747 * allocation is done, we will have i_blocks inconsistent with
5748 * on-disk file blocks.
5749 * We always keep i_blocks updated together with real
5750 * allocation. But to not confuse with user, stat
5751 * will return the blocks that include the delayed allocation
5752 * blocks for this file.
5753 */
5754 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5755 EXT4_I(inode)->i_reserved_data_blocks);
5756 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5757 return 0;
5758 }
5759
5760 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5761 int pextents)
5762 {
5763 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5764 return ext4_ind_trans_blocks(inode, lblocks);
5765 return ext4_ext_index_trans_blocks(inode, pextents);
5766 }
5767
5768 /*
5769 * Account for index blocks, block groups bitmaps and block group
5770 * descriptor blocks if modify datablocks and index blocks
5771 * worse case, the indexs blocks spread over different block groups
5772 *
5773 * If datablocks are discontiguous, they are possible to spread over
5774 * different block groups too. If they are contiguous, with flexbg,
5775 * they could still across block group boundary.
5776 *
5777 * Also account for superblock, inode, quota and xattr blocks
5778 */
5779 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5780 int pextents)
5781 {
5782 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5783 int gdpblocks;
5784 int idxblocks;
5785 int ret = 0;
5786
5787 /*
5788 * How many index blocks need to touch to map @lblocks logical blocks
5789 * to @pextents physical extents?
5790 */
5791 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5792
5793 ret = idxblocks;
5794
5795 /*
5796 * Now let's see how many group bitmaps and group descriptors need
5797 * to account
5798 */
5799 groups = idxblocks + pextents;
5800 gdpblocks = groups;
5801 if (groups > ngroups)
5802 groups = ngroups;
5803 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5804 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5805
5806 /* bitmaps and block group descriptor blocks */
5807 ret += groups + gdpblocks;
5808
5809 /* Blocks for super block, inode, quota and xattr blocks */
5810 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5811
5812 return ret;
5813 }
5814
5815 /*
5816 * Calculate the total number of credits to reserve to fit
5817 * the modification of a single pages into a single transaction,
5818 * which may include multiple chunks of block allocations.
5819 *
5820 * This could be called via ext4_write_begin()
5821 *
5822 * We need to consider the worse case, when
5823 * one new block per extent.
5824 */
5825 int ext4_writepage_trans_blocks(struct inode *inode)
5826 {
5827 int bpp = ext4_journal_blocks_per_page(inode);
5828 int ret;
5829
5830 ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5831
5832 /* Account for data blocks for journalled mode */
5833 if (ext4_should_journal_data(inode))
5834 ret += bpp;
5835 return ret;
5836 }
5837
5838 /*
5839 * Calculate the journal credits for a chunk of data modification.
5840 *
5841 * This is called from DIO, fallocate or whoever calling
5842 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5843 *
5844 * journal buffers for data blocks are not included here, as DIO
5845 * and fallocate do no need to journal data buffers.
5846 */
5847 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5848 {
5849 return ext4_meta_trans_blocks(inode, nrblocks, 1);
5850 }
5851
5852 /*
5853 * The caller must have previously called ext4_reserve_inode_write().
5854 * Give this, we know that the caller already has write access to iloc->bh.
5855 */
5856 int ext4_mark_iloc_dirty(handle_t *handle,
5857 struct inode *inode, struct ext4_iloc *iloc)
5858 {
5859 int err = 0;
5860
5861 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
5862 put_bh(iloc->bh);
5863 return -EIO;
5864 }
5865 if (IS_I_VERSION(inode))
5866 inode_inc_iversion(inode);
5867
5868 /* the do_update_inode consumes one bh->b_count */
5869 get_bh(iloc->bh);
5870
5871 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5872 err = ext4_do_update_inode(handle, inode, iloc);
5873 put_bh(iloc->bh);
5874 return err;
5875 }
5876
5877 /*
5878 * On success, We end up with an outstanding reference count against
5879 * iloc->bh. This _must_ be cleaned up later.
5880 */
5881
5882 int
5883 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5884 struct ext4_iloc *iloc)
5885 {
5886 int err;
5887
5888 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5889 return -EIO;
5890
5891 err = ext4_get_inode_loc(inode, iloc);
5892 if (!err) {
5893 BUFFER_TRACE(iloc->bh, "get_write_access");
5894 err = ext4_journal_get_write_access(handle, iloc->bh);
5895 if (err) {
5896 brelse(iloc->bh);
5897 iloc->bh = NULL;
5898 }
5899 }
5900 ext4_std_error(inode->i_sb, err);
5901 return err;
5902 }
5903
5904 static int __ext4_expand_extra_isize(struct inode *inode,
5905 unsigned int new_extra_isize,
5906 struct ext4_iloc *iloc,
5907 handle_t *handle, int *no_expand)
5908 {
5909 struct ext4_inode *raw_inode;
5910 struct ext4_xattr_ibody_header *header;
5911 int error;
5912
5913 raw_inode = ext4_raw_inode(iloc);
5914
5915 header = IHDR(inode, raw_inode);
5916
5917 /* No extended attributes present */
5918 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5919 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5920 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
5921 EXT4_I(inode)->i_extra_isize, 0,
5922 new_extra_isize - EXT4_I(inode)->i_extra_isize);
5923 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5924 return 0;
5925 }
5926
5927 /* try to expand with EAs present */
5928 error = ext4_expand_extra_isize_ea(inode, new_extra_isize,
5929 raw_inode, handle);
5930 if (error) {
5931 /*
5932 * Inode size expansion failed; don't try again
5933 */
5934 *no_expand = 1;
5935 }
5936
5937 return error;
5938 }
5939
5940 /*
5941 * Expand an inode by new_extra_isize bytes.
5942 * Returns 0 on success or negative error number on failure.
5943 */
5944 static int ext4_try_to_expand_extra_isize(struct inode *inode,
5945 unsigned int new_extra_isize,
5946 struct ext4_iloc iloc,
5947 handle_t *handle)
5948 {
5949 int no_expand;
5950 int error;
5951
5952 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND))
5953 return -EOVERFLOW;
5954
5955 /*
5956 * In nojournal mode, we can immediately attempt to expand
5957 * the inode. When journaled, we first need to obtain extra
5958 * buffer credits since we may write into the EA block
5959 * with this same handle. If journal_extend fails, then it will
5960 * only result in a minor loss of functionality for that inode.
5961 * If this is felt to be critical, then e2fsck should be run to
5962 * force a large enough s_min_extra_isize.
5963 */
5964 if (ext4_handle_valid(handle) &&
5965 jbd2_journal_extend(handle,
5966 EXT4_DATA_TRANS_BLOCKS(inode->i_sb)) != 0)
5967 return -ENOSPC;
5968
5969 if (ext4_write_trylock_xattr(inode, &no_expand) == 0)
5970 return -EBUSY;
5971
5972 error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc,
5973 handle, &no_expand);
5974 ext4_write_unlock_xattr(inode, &no_expand);
5975
5976 return error;
5977 }
5978
5979 int ext4_expand_extra_isize(struct inode *inode,
5980 unsigned int new_extra_isize,
5981 struct ext4_iloc *iloc)
5982 {
5983 handle_t *handle;
5984 int no_expand;
5985 int error, rc;
5986
5987 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5988 brelse(iloc->bh);
5989 return -EOVERFLOW;
5990 }
5991
5992 handle = ext4_journal_start(inode, EXT4_HT_INODE,
5993 EXT4_DATA_TRANS_BLOCKS(inode->i_sb));
5994 if (IS_ERR(handle)) {
5995 error = PTR_ERR(handle);
5996 brelse(iloc->bh);
5997 return error;
5998 }
5999
6000 ext4_write_lock_xattr(inode, &no_expand);
6001
6002 BUFFER_TRACE(iloc->bh, "get_write_access");
6003 error = ext4_journal_get_write_access(handle, iloc->bh);
6004 if (error) {
6005 brelse(iloc->bh);
6006 goto out_stop;
6007 }
6008
6009 error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc,
6010 handle, &no_expand);
6011
6012 rc = ext4_mark_iloc_dirty(handle, inode, iloc);
6013 if (!error)
6014 error = rc;
6015
6016 ext4_write_unlock_xattr(inode, &no_expand);
6017 out_stop:
6018 ext4_journal_stop(handle);
6019 return error;
6020 }
6021
6022 /*
6023 * What we do here is to mark the in-core inode as clean with respect to inode
6024 * dirtiness (it may still be data-dirty).
6025 * This means that the in-core inode may be reaped by prune_icache
6026 * without having to perform any I/O. This is a very good thing,
6027 * because *any* task may call prune_icache - even ones which
6028 * have a transaction open against a different journal.
6029 *
6030 * Is this cheating? Not really. Sure, we haven't written the
6031 * inode out, but prune_icache isn't a user-visible syncing function.
6032 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
6033 * we start and wait on commits.
6034 */
6035 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
6036 {
6037 struct ext4_iloc iloc;
6038 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
6039 int err;
6040
6041 might_sleep();
6042 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
6043 err = ext4_reserve_inode_write(handle, inode, &iloc);
6044 if (err)
6045 return err;
6046
6047 if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize)
6048 ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize,
6049 iloc, handle);
6050
6051 return ext4_mark_iloc_dirty(handle, inode, &iloc);
6052 }
6053
6054 /*
6055 * ext4_dirty_inode() is called from __mark_inode_dirty()
6056 *
6057 * We're really interested in the case where a file is being extended.
6058 * i_size has been changed by generic_commit_write() and we thus need
6059 * to include the updated inode in the current transaction.
6060 *
6061 * Also, dquot_alloc_block() will always dirty the inode when blocks
6062 * are allocated to the file.
6063 *
6064 * If the inode is marked synchronous, we don't honour that here - doing
6065 * so would cause a commit on atime updates, which we don't bother doing.
6066 * We handle synchronous inodes at the highest possible level.
6067 *
6068 * If only the I_DIRTY_TIME flag is set, we can skip everything. If
6069 * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
6070 * to copy into the on-disk inode structure are the timestamp files.
6071 */
6072 void ext4_dirty_inode(struct inode *inode, int flags)
6073 {
6074 handle_t *handle;
6075
6076 if (flags == I_DIRTY_TIME)
6077 return;
6078 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
6079 if (IS_ERR(handle))
6080 goto out;
6081
6082 ext4_mark_inode_dirty(handle, inode);
6083
6084 ext4_journal_stop(handle);
6085 out:
6086 return;
6087 }
6088
6089 int ext4_change_inode_journal_flag(struct inode *inode, int val)
6090 {
6091 journal_t *journal;
6092 handle_t *handle;
6093 int err;
6094 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
6095
6096 /*
6097 * We have to be very careful here: changing a data block's
6098 * journaling status dynamically is dangerous. If we write a
6099 * data block to the journal, change the status and then delete
6100 * that block, we risk forgetting to revoke the old log record
6101 * from the journal and so a subsequent replay can corrupt data.
6102 * So, first we make sure that the journal is empty and that
6103 * nobody is changing anything.
6104 */
6105
6106 journal = EXT4_JOURNAL(inode);
6107 if (!journal)
6108 return 0;
6109 if (is_journal_aborted(journal))
6110 return -EROFS;
6111
6112 /* Wait for all existing dio workers */
6113 inode_dio_wait(inode);
6114
6115 /*
6116 * Before flushing the journal and switching inode's aops, we have
6117 * to flush all dirty data the inode has. There can be outstanding
6118 * delayed allocations, there can be unwritten extents created by
6119 * fallocate or buffered writes in dioread_nolock mode covered by
6120 * dirty data which can be converted only after flushing the dirty
6121 * data (and journalled aops don't know how to handle these cases).
6122 */
6123 if (val) {
6124 down_write(&EXT4_I(inode)->i_mmap_sem);
6125 err = filemap_write_and_wait(inode->i_mapping);
6126 if (err < 0) {
6127 up_write(&EXT4_I(inode)->i_mmap_sem);
6128 return err;
6129 }
6130 }
6131
6132 percpu_down_write(&sbi->s_journal_flag_rwsem);
6133 jbd2_journal_lock_updates(journal);
6134
6135 /*
6136 * OK, there are no updates running now, and all cached data is
6137 * synced to disk. We are now in a completely consistent state
6138 * which doesn't have anything in the journal, and we know that
6139 * no filesystem updates are running, so it is safe to modify
6140 * the inode's in-core data-journaling state flag now.
6141 */
6142
6143 if (val)
6144 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6145 else {
6146 err = jbd2_journal_flush(journal);
6147 if (err < 0) {
6148 jbd2_journal_unlock_updates(journal);
6149 percpu_up_write(&sbi->s_journal_flag_rwsem);
6150 return err;
6151 }
6152 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6153 }
6154 ext4_set_aops(inode);
6155
6156 jbd2_journal_unlock_updates(journal);
6157 percpu_up_write(&sbi->s_journal_flag_rwsem);
6158
6159 if (val)
6160 up_write(&EXT4_I(inode)->i_mmap_sem);
6161
6162 /* Finally we can mark the inode as dirty. */
6163
6164 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
6165 if (IS_ERR(handle))
6166 return PTR_ERR(handle);
6167
6168 err = ext4_mark_inode_dirty(handle, inode);
6169 ext4_handle_sync(handle);
6170 ext4_journal_stop(handle);
6171 ext4_std_error(inode->i_sb, err);
6172
6173 return err;
6174 }
6175
6176 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
6177 {
6178 return !buffer_mapped(bh);
6179 }
6180
6181 vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf)
6182 {
6183 struct vm_area_struct *vma = vmf->vma;
6184 struct page *page = vmf->page;
6185 loff_t size;
6186 unsigned long len;
6187 int err;
6188 vm_fault_t ret;
6189 struct file *file = vma->vm_file;
6190 struct inode *inode = file_inode(file);
6191 struct address_space *mapping = inode->i_mapping;
6192 handle_t *handle;
6193 get_block_t *get_block;
6194 int retries = 0;
6195
6196 sb_start_pagefault(inode->i_sb);
6197 file_update_time(vma->vm_file);
6198
6199 down_read(&EXT4_I(inode)->i_mmap_sem);
6200
6201 err = ext4_convert_inline_data(inode);
6202 if (err)
6203 goto out_ret;
6204
6205 /* Delalloc case is easy... */
6206 if (test_opt(inode->i_sb, DELALLOC) &&
6207 !ext4_should_journal_data(inode) &&
6208 !ext4_nonda_switch(inode->i_sb)) {
6209 do {
6210 err = block_page_mkwrite(vma, vmf,
6211 ext4_da_get_block_prep);
6212 } while (err == -ENOSPC &&
6213 ext4_should_retry_alloc(inode->i_sb, &retries));
6214 goto out_ret;
6215 }
6216
6217 lock_page(page);
6218 size = i_size_read(inode);
6219 /* Page got truncated from under us? */
6220 if (page->mapping != mapping || page_offset(page) > size) {
6221 unlock_page(page);
6222 ret = VM_FAULT_NOPAGE;
6223 goto out;
6224 }
6225
6226 if (page->index == size >> PAGE_SHIFT)
6227 len = size & ~PAGE_MASK;
6228 else
6229 len = PAGE_SIZE;
6230 /*
6231 * Return if we have all the buffers mapped. This avoids the need to do
6232 * journal_start/journal_stop which can block and take a long time
6233 */
6234 if (page_has_buffers(page)) {
6235 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
6236 0, len, NULL,
6237 ext4_bh_unmapped)) {
6238 /* Wait so that we don't change page under IO */
6239 wait_for_stable_page(page);
6240 ret = VM_FAULT_LOCKED;
6241 goto out;
6242 }
6243 }
6244 unlock_page(page);
6245 /* OK, we need to fill the hole... */
6246 if (ext4_should_dioread_nolock(inode))
6247 get_block = ext4_get_block_unwritten;
6248 else
6249 get_block = ext4_get_block;
6250 retry_alloc:
6251 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
6252 ext4_writepage_trans_blocks(inode));
6253 if (IS_ERR(handle)) {
6254 ret = VM_FAULT_SIGBUS;
6255 goto out;
6256 }
6257 err = block_page_mkwrite(vma, vmf, get_block);
6258 if (!err && ext4_should_journal_data(inode)) {
6259 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
6260 PAGE_SIZE, NULL, do_journal_get_write_access)) {
6261 unlock_page(page);
6262 ret = VM_FAULT_SIGBUS;
6263 ext4_journal_stop(handle);
6264 goto out;
6265 }
6266 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
6267 }
6268 ext4_journal_stop(handle);
6269 if (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
6270 goto retry_alloc;
6271 out_ret:
6272 ret = block_page_mkwrite_return(err);
6273 out:
6274 up_read(&EXT4_I(inode)->i_mmap_sem);
6275 sb_end_pagefault(inode->i_sb);
6276 return ret;
6277 }
6278
6279 vm_fault_t ext4_filemap_fault(struct vm_fault *vmf)
6280 {
6281 struct inode *inode = file_inode(vmf->vma->vm_file);
6282 vm_fault_t ret;
6283
6284 down_read(&EXT4_I(inode)->i_mmap_sem);
6285 ret = filemap_fault(vmf);
6286 up_read(&EXT4_I(inode)->i_mmap_sem);
6287
6288 return ret;
6289 }