]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/ext4/mballoc.c
ext4: replace open coded nofail allocation in ext4_free_blocks()
[mirror_ubuntu-bionic-kernel.git] / fs / ext4 / mballoc.c
1 /*
2 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3 * Written by Alex Tomas <alex@clusterfs.com>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public Licens
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
17 */
18
19
20 /*
21 * mballoc.c contains the multiblocks allocation routines
22 */
23
24 #include "ext4_jbd2.h"
25 #include "mballoc.h"
26 #include <linux/log2.h>
27 #include <linux/module.h>
28 #include <linux/slab.h>
29 #include <trace/events/ext4.h>
30
31 #ifdef CONFIG_EXT4_DEBUG
32 ushort ext4_mballoc_debug __read_mostly;
33
34 module_param_named(mballoc_debug, ext4_mballoc_debug, ushort, 0644);
35 MODULE_PARM_DESC(mballoc_debug, "Debugging level for ext4's mballoc");
36 #endif
37
38 /*
39 * MUSTDO:
40 * - test ext4_ext_search_left() and ext4_ext_search_right()
41 * - search for metadata in few groups
42 *
43 * TODO v4:
44 * - normalization should take into account whether file is still open
45 * - discard preallocations if no free space left (policy?)
46 * - don't normalize tails
47 * - quota
48 * - reservation for superuser
49 *
50 * TODO v3:
51 * - bitmap read-ahead (proposed by Oleg Drokin aka green)
52 * - track min/max extents in each group for better group selection
53 * - mb_mark_used() may allocate chunk right after splitting buddy
54 * - tree of groups sorted by number of free blocks
55 * - error handling
56 */
57
58 /*
59 * The allocation request involve request for multiple number of blocks
60 * near to the goal(block) value specified.
61 *
62 * During initialization phase of the allocator we decide to use the
63 * group preallocation or inode preallocation depending on the size of
64 * the file. The size of the file could be the resulting file size we
65 * would have after allocation, or the current file size, which ever
66 * is larger. If the size is less than sbi->s_mb_stream_request we
67 * select to use the group preallocation. The default value of
68 * s_mb_stream_request is 16 blocks. This can also be tuned via
69 * /sys/fs/ext4/<partition>/mb_stream_req. The value is represented in
70 * terms of number of blocks.
71 *
72 * The main motivation for having small file use group preallocation is to
73 * ensure that we have small files closer together on the disk.
74 *
75 * First stage the allocator looks at the inode prealloc list,
76 * ext4_inode_info->i_prealloc_list, which contains list of prealloc
77 * spaces for this particular inode. The inode prealloc space is
78 * represented as:
79 *
80 * pa_lstart -> the logical start block for this prealloc space
81 * pa_pstart -> the physical start block for this prealloc space
82 * pa_len -> length for this prealloc space (in clusters)
83 * pa_free -> free space available in this prealloc space (in clusters)
84 *
85 * The inode preallocation space is used looking at the _logical_ start
86 * block. If only the logical file block falls within the range of prealloc
87 * space we will consume the particular prealloc space. This makes sure that
88 * we have contiguous physical blocks representing the file blocks
89 *
90 * The important thing to be noted in case of inode prealloc space is that
91 * we don't modify the values associated to inode prealloc space except
92 * pa_free.
93 *
94 * If we are not able to find blocks in the inode prealloc space and if we
95 * have the group allocation flag set then we look at the locality group
96 * prealloc space. These are per CPU prealloc list represented as
97 *
98 * ext4_sb_info.s_locality_groups[smp_processor_id()]
99 *
100 * The reason for having a per cpu locality group is to reduce the contention
101 * between CPUs. It is possible to get scheduled at this point.
102 *
103 * The locality group prealloc space is used looking at whether we have
104 * enough free space (pa_free) within the prealloc space.
105 *
106 * If we can't allocate blocks via inode prealloc or/and locality group
107 * prealloc then we look at the buddy cache. The buddy cache is represented
108 * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets
109 * mapped to the buddy and bitmap information regarding different
110 * groups. The buddy information is attached to buddy cache inode so that
111 * we can access them through the page cache. The information regarding
112 * each group is loaded via ext4_mb_load_buddy. The information involve
113 * block bitmap and buddy information. The information are stored in the
114 * inode as:
115 *
116 * { page }
117 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
118 *
119 *
120 * one block each for bitmap and buddy information. So for each group we
121 * take up 2 blocks. A page can contain blocks_per_page (PAGE_CACHE_SIZE /
122 * blocksize) blocks. So it can have information regarding groups_per_page
123 * which is blocks_per_page/2
124 *
125 * The buddy cache inode is not stored on disk. The inode is thrown
126 * away when the filesystem is unmounted.
127 *
128 * We look for count number of blocks in the buddy cache. If we were able
129 * to locate that many free blocks we return with additional information
130 * regarding rest of the contiguous physical block available
131 *
132 * Before allocating blocks via buddy cache we normalize the request
133 * blocks. This ensure we ask for more blocks that we needed. The extra
134 * blocks that we get after allocation is added to the respective prealloc
135 * list. In case of inode preallocation we follow a list of heuristics
136 * based on file size. This can be found in ext4_mb_normalize_request. If
137 * we are doing a group prealloc we try to normalize the request to
138 * sbi->s_mb_group_prealloc. The default value of s_mb_group_prealloc is
139 * dependent on the cluster size; for non-bigalloc file systems, it is
140 * 512 blocks. This can be tuned via
141 * /sys/fs/ext4/<partition>/mb_group_prealloc. The value is represented in
142 * terms of number of blocks. If we have mounted the file system with -O
143 * stripe=<value> option the group prealloc request is normalized to the
144 * the smallest multiple of the stripe value (sbi->s_stripe) which is
145 * greater than the default mb_group_prealloc.
146 *
147 * The regular allocator (using the buddy cache) supports a few tunables.
148 *
149 * /sys/fs/ext4/<partition>/mb_min_to_scan
150 * /sys/fs/ext4/<partition>/mb_max_to_scan
151 * /sys/fs/ext4/<partition>/mb_order2_req
152 *
153 * The regular allocator uses buddy scan only if the request len is power of
154 * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The
155 * value of s_mb_order2_reqs can be tuned via
156 * /sys/fs/ext4/<partition>/mb_order2_req. If the request len is equal to
157 * stripe size (sbi->s_stripe), we try to search for contiguous block in
158 * stripe size. This should result in better allocation on RAID setups. If
159 * not, we search in the specific group using bitmap for best extents. The
160 * tunable min_to_scan and max_to_scan control the behaviour here.
161 * min_to_scan indicate how long the mballoc __must__ look for a best
162 * extent and max_to_scan indicates how long the mballoc __can__ look for a
163 * best extent in the found extents. Searching for the blocks starts with
164 * the group specified as the goal value in allocation context via
165 * ac_g_ex. Each group is first checked based on the criteria whether it
166 * can be used for allocation. ext4_mb_good_group explains how the groups are
167 * checked.
168 *
169 * Both the prealloc space are getting populated as above. So for the first
170 * request we will hit the buddy cache which will result in this prealloc
171 * space getting filled. The prealloc space is then later used for the
172 * subsequent request.
173 */
174
175 /*
176 * mballoc operates on the following data:
177 * - on-disk bitmap
178 * - in-core buddy (actually includes buddy and bitmap)
179 * - preallocation descriptors (PAs)
180 *
181 * there are two types of preallocations:
182 * - inode
183 * assiged to specific inode and can be used for this inode only.
184 * it describes part of inode's space preallocated to specific
185 * physical blocks. any block from that preallocated can be used
186 * independent. the descriptor just tracks number of blocks left
187 * unused. so, before taking some block from descriptor, one must
188 * make sure corresponded logical block isn't allocated yet. this
189 * also means that freeing any block within descriptor's range
190 * must discard all preallocated blocks.
191 * - locality group
192 * assigned to specific locality group which does not translate to
193 * permanent set of inodes: inode can join and leave group. space
194 * from this type of preallocation can be used for any inode. thus
195 * it's consumed from the beginning to the end.
196 *
197 * relation between them can be expressed as:
198 * in-core buddy = on-disk bitmap + preallocation descriptors
199 *
200 * this mean blocks mballoc considers used are:
201 * - allocated blocks (persistent)
202 * - preallocated blocks (non-persistent)
203 *
204 * consistency in mballoc world means that at any time a block is either
205 * free or used in ALL structures. notice: "any time" should not be read
206 * literally -- time is discrete and delimited by locks.
207 *
208 * to keep it simple, we don't use block numbers, instead we count number of
209 * blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA.
210 *
211 * all operations can be expressed as:
212 * - init buddy: buddy = on-disk + PAs
213 * - new PA: buddy += N; PA = N
214 * - use inode PA: on-disk += N; PA -= N
215 * - discard inode PA buddy -= on-disk - PA; PA = 0
216 * - use locality group PA on-disk += N; PA -= N
217 * - discard locality group PA buddy -= PA; PA = 0
218 * note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap
219 * is used in real operation because we can't know actual used
220 * bits from PA, only from on-disk bitmap
221 *
222 * if we follow this strict logic, then all operations above should be atomic.
223 * given some of them can block, we'd have to use something like semaphores
224 * killing performance on high-end SMP hardware. let's try to relax it using
225 * the following knowledge:
226 * 1) if buddy is referenced, it's already initialized
227 * 2) while block is used in buddy and the buddy is referenced,
228 * nobody can re-allocate that block
229 * 3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has
230 * bit set and PA claims same block, it's OK. IOW, one can set bit in
231 * on-disk bitmap if buddy has same bit set or/and PA covers corresponded
232 * block
233 *
234 * so, now we're building a concurrency table:
235 * - init buddy vs.
236 * - new PA
237 * blocks for PA are allocated in the buddy, buddy must be referenced
238 * until PA is linked to allocation group to avoid concurrent buddy init
239 * - use inode PA
240 * we need to make sure that either on-disk bitmap or PA has uptodate data
241 * given (3) we care that PA-=N operation doesn't interfere with init
242 * - discard inode PA
243 * the simplest way would be to have buddy initialized by the discard
244 * - use locality group PA
245 * again PA-=N must be serialized with init
246 * - discard locality group PA
247 * the simplest way would be to have buddy initialized by the discard
248 * - new PA vs.
249 * - use inode PA
250 * i_data_sem serializes them
251 * - discard inode PA
252 * discard process must wait until PA isn't used by another process
253 * - use locality group PA
254 * some mutex should serialize them
255 * - discard locality group PA
256 * discard process must wait until PA isn't used by another process
257 * - use inode PA
258 * - use inode PA
259 * i_data_sem or another mutex should serializes them
260 * - discard inode PA
261 * discard process must wait until PA isn't used by another process
262 * - use locality group PA
263 * nothing wrong here -- they're different PAs covering different blocks
264 * - discard locality group PA
265 * discard process must wait until PA isn't used by another process
266 *
267 * now we're ready to make few consequences:
268 * - PA is referenced and while it is no discard is possible
269 * - PA is referenced until block isn't marked in on-disk bitmap
270 * - PA changes only after on-disk bitmap
271 * - discard must not compete with init. either init is done before
272 * any discard or they're serialized somehow
273 * - buddy init as sum of on-disk bitmap and PAs is done atomically
274 *
275 * a special case when we've used PA to emptiness. no need to modify buddy
276 * in this case, but we should care about concurrent init
277 *
278 */
279
280 /*
281 * Logic in few words:
282 *
283 * - allocation:
284 * load group
285 * find blocks
286 * mark bits in on-disk bitmap
287 * release group
288 *
289 * - use preallocation:
290 * find proper PA (per-inode or group)
291 * load group
292 * mark bits in on-disk bitmap
293 * release group
294 * release PA
295 *
296 * - free:
297 * load group
298 * mark bits in on-disk bitmap
299 * release group
300 *
301 * - discard preallocations in group:
302 * mark PAs deleted
303 * move them onto local list
304 * load on-disk bitmap
305 * load group
306 * remove PA from object (inode or locality group)
307 * mark free blocks in-core
308 *
309 * - discard inode's preallocations:
310 */
311
312 /*
313 * Locking rules
314 *
315 * Locks:
316 * - bitlock on a group (group)
317 * - object (inode/locality) (object)
318 * - per-pa lock (pa)
319 *
320 * Paths:
321 * - new pa
322 * object
323 * group
324 *
325 * - find and use pa:
326 * pa
327 *
328 * - release consumed pa:
329 * pa
330 * group
331 * object
332 *
333 * - generate in-core bitmap:
334 * group
335 * pa
336 *
337 * - discard all for given object (inode, locality group):
338 * object
339 * pa
340 * group
341 *
342 * - discard all for given group:
343 * group
344 * pa
345 * group
346 * object
347 *
348 */
349 static struct kmem_cache *ext4_pspace_cachep;
350 static struct kmem_cache *ext4_ac_cachep;
351 static struct kmem_cache *ext4_free_data_cachep;
352
353 /* We create slab caches for groupinfo data structures based on the
354 * superblock block size. There will be one per mounted filesystem for
355 * each unique s_blocksize_bits */
356 #define NR_GRPINFO_CACHES 8
357 static struct kmem_cache *ext4_groupinfo_caches[NR_GRPINFO_CACHES];
358
359 static const char *ext4_groupinfo_slab_names[NR_GRPINFO_CACHES] = {
360 "ext4_groupinfo_1k", "ext4_groupinfo_2k", "ext4_groupinfo_4k",
361 "ext4_groupinfo_8k", "ext4_groupinfo_16k", "ext4_groupinfo_32k",
362 "ext4_groupinfo_64k", "ext4_groupinfo_128k"
363 };
364
365 static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
366 ext4_group_t group);
367 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
368 ext4_group_t group);
369 static void ext4_free_data_callback(struct super_block *sb,
370 struct ext4_journal_cb_entry *jce, int rc);
371
372 static inline void *mb_correct_addr_and_bit(int *bit, void *addr)
373 {
374 #if BITS_PER_LONG == 64
375 *bit += ((unsigned long) addr & 7UL) << 3;
376 addr = (void *) ((unsigned long) addr & ~7UL);
377 #elif BITS_PER_LONG == 32
378 *bit += ((unsigned long) addr & 3UL) << 3;
379 addr = (void *) ((unsigned long) addr & ~3UL);
380 #else
381 #error "how many bits you are?!"
382 #endif
383 return addr;
384 }
385
386 static inline int mb_test_bit(int bit, void *addr)
387 {
388 /*
389 * ext4_test_bit on architecture like powerpc
390 * needs unsigned long aligned address
391 */
392 addr = mb_correct_addr_and_bit(&bit, addr);
393 return ext4_test_bit(bit, addr);
394 }
395
396 static inline void mb_set_bit(int bit, void *addr)
397 {
398 addr = mb_correct_addr_and_bit(&bit, addr);
399 ext4_set_bit(bit, addr);
400 }
401
402 static inline void mb_clear_bit(int bit, void *addr)
403 {
404 addr = mb_correct_addr_and_bit(&bit, addr);
405 ext4_clear_bit(bit, addr);
406 }
407
408 static inline int mb_test_and_clear_bit(int bit, void *addr)
409 {
410 addr = mb_correct_addr_and_bit(&bit, addr);
411 return ext4_test_and_clear_bit(bit, addr);
412 }
413
414 static inline int mb_find_next_zero_bit(void *addr, int max, int start)
415 {
416 int fix = 0, ret, tmpmax;
417 addr = mb_correct_addr_and_bit(&fix, addr);
418 tmpmax = max + fix;
419 start += fix;
420
421 ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix;
422 if (ret > max)
423 return max;
424 return ret;
425 }
426
427 static inline int mb_find_next_bit(void *addr, int max, int start)
428 {
429 int fix = 0, ret, tmpmax;
430 addr = mb_correct_addr_and_bit(&fix, addr);
431 tmpmax = max + fix;
432 start += fix;
433
434 ret = ext4_find_next_bit(addr, tmpmax, start) - fix;
435 if (ret > max)
436 return max;
437 return ret;
438 }
439
440 static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max)
441 {
442 char *bb;
443
444 BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
445 BUG_ON(max == NULL);
446
447 if (order > e4b->bd_blkbits + 1) {
448 *max = 0;
449 return NULL;
450 }
451
452 /* at order 0 we see each particular block */
453 if (order == 0) {
454 *max = 1 << (e4b->bd_blkbits + 3);
455 return e4b->bd_bitmap;
456 }
457
458 bb = e4b->bd_buddy + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order];
459 *max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order];
460
461 return bb;
462 }
463
464 #ifdef DOUBLE_CHECK
465 static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b,
466 int first, int count)
467 {
468 int i;
469 struct super_block *sb = e4b->bd_sb;
470
471 if (unlikely(e4b->bd_info->bb_bitmap == NULL))
472 return;
473 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
474 for (i = 0; i < count; i++) {
475 if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) {
476 ext4_fsblk_t blocknr;
477
478 blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
479 blocknr += EXT4_C2B(EXT4_SB(sb), first + i);
480 ext4_grp_locked_error(sb, e4b->bd_group,
481 inode ? inode->i_ino : 0,
482 blocknr,
483 "freeing block already freed "
484 "(bit %u)",
485 first + i);
486 }
487 mb_clear_bit(first + i, e4b->bd_info->bb_bitmap);
488 }
489 }
490
491 static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count)
492 {
493 int i;
494
495 if (unlikely(e4b->bd_info->bb_bitmap == NULL))
496 return;
497 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
498 for (i = 0; i < count; i++) {
499 BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap));
500 mb_set_bit(first + i, e4b->bd_info->bb_bitmap);
501 }
502 }
503
504 static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
505 {
506 if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) {
507 unsigned char *b1, *b2;
508 int i;
509 b1 = (unsigned char *) e4b->bd_info->bb_bitmap;
510 b2 = (unsigned char *) bitmap;
511 for (i = 0; i < e4b->bd_sb->s_blocksize; i++) {
512 if (b1[i] != b2[i]) {
513 ext4_msg(e4b->bd_sb, KERN_ERR,
514 "corruption in group %u "
515 "at byte %u(%u): %x in copy != %x "
516 "on disk/prealloc",
517 e4b->bd_group, i, i * 8, b1[i], b2[i]);
518 BUG();
519 }
520 }
521 }
522 }
523
524 #else
525 static inline void mb_free_blocks_double(struct inode *inode,
526 struct ext4_buddy *e4b, int first, int count)
527 {
528 return;
529 }
530 static inline void mb_mark_used_double(struct ext4_buddy *e4b,
531 int first, int count)
532 {
533 return;
534 }
535 static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
536 {
537 return;
538 }
539 #endif
540
541 #ifdef AGGRESSIVE_CHECK
542
543 #define MB_CHECK_ASSERT(assert) \
544 do { \
545 if (!(assert)) { \
546 printk(KERN_EMERG \
547 "Assertion failure in %s() at %s:%d: \"%s\"\n", \
548 function, file, line, # assert); \
549 BUG(); \
550 } \
551 } while (0)
552
553 static int __mb_check_buddy(struct ext4_buddy *e4b, char *file,
554 const char *function, int line)
555 {
556 struct super_block *sb = e4b->bd_sb;
557 int order = e4b->bd_blkbits + 1;
558 int max;
559 int max2;
560 int i;
561 int j;
562 int k;
563 int count;
564 struct ext4_group_info *grp;
565 int fragments = 0;
566 int fstart;
567 struct list_head *cur;
568 void *buddy;
569 void *buddy2;
570
571 {
572 static int mb_check_counter;
573 if (mb_check_counter++ % 100 != 0)
574 return 0;
575 }
576
577 while (order > 1) {
578 buddy = mb_find_buddy(e4b, order, &max);
579 MB_CHECK_ASSERT(buddy);
580 buddy2 = mb_find_buddy(e4b, order - 1, &max2);
581 MB_CHECK_ASSERT(buddy2);
582 MB_CHECK_ASSERT(buddy != buddy2);
583 MB_CHECK_ASSERT(max * 2 == max2);
584
585 count = 0;
586 for (i = 0; i < max; i++) {
587
588 if (mb_test_bit(i, buddy)) {
589 /* only single bit in buddy2 may be 1 */
590 if (!mb_test_bit(i << 1, buddy2)) {
591 MB_CHECK_ASSERT(
592 mb_test_bit((i<<1)+1, buddy2));
593 } else if (!mb_test_bit((i << 1) + 1, buddy2)) {
594 MB_CHECK_ASSERT(
595 mb_test_bit(i << 1, buddy2));
596 }
597 continue;
598 }
599
600 /* both bits in buddy2 must be 1 */
601 MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2));
602 MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2));
603
604 for (j = 0; j < (1 << order); j++) {
605 k = (i * (1 << order)) + j;
606 MB_CHECK_ASSERT(
607 !mb_test_bit(k, e4b->bd_bitmap));
608 }
609 count++;
610 }
611 MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count);
612 order--;
613 }
614
615 fstart = -1;
616 buddy = mb_find_buddy(e4b, 0, &max);
617 for (i = 0; i < max; i++) {
618 if (!mb_test_bit(i, buddy)) {
619 MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free);
620 if (fstart == -1) {
621 fragments++;
622 fstart = i;
623 }
624 continue;
625 }
626 fstart = -1;
627 /* check used bits only */
628 for (j = 0; j < e4b->bd_blkbits + 1; j++) {
629 buddy2 = mb_find_buddy(e4b, j, &max2);
630 k = i >> j;
631 MB_CHECK_ASSERT(k < max2);
632 MB_CHECK_ASSERT(mb_test_bit(k, buddy2));
633 }
634 }
635 MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info));
636 MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments);
637
638 grp = ext4_get_group_info(sb, e4b->bd_group);
639 list_for_each(cur, &grp->bb_prealloc_list) {
640 ext4_group_t groupnr;
641 struct ext4_prealloc_space *pa;
642 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
643 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k);
644 MB_CHECK_ASSERT(groupnr == e4b->bd_group);
645 for (i = 0; i < pa->pa_len; i++)
646 MB_CHECK_ASSERT(mb_test_bit(k + i, buddy));
647 }
648 return 0;
649 }
650 #undef MB_CHECK_ASSERT
651 #define mb_check_buddy(e4b) __mb_check_buddy(e4b, \
652 __FILE__, __func__, __LINE__)
653 #else
654 #define mb_check_buddy(e4b)
655 #endif
656
657 /*
658 * Divide blocks started from @first with length @len into
659 * smaller chunks with power of 2 blocks.
660 * Clear the bits in bitmap which the blocks of the chunk(s) covered,
661 * then increase bb_counters[] for corresponded chunk size.
662 */
663 static void ext4_mb_mark_free_simple(struct super_block *sb,
664 void *buddy, ext4_grpblk_t first, ext4_grpblk_t len,
665 struct ext4_group_info *grp)
666 {
667 struct ext4_sb_info *sbi = EXT4_SB(sb);
668 ext4_grpblk_t min;
669 ext4_grpblk_t max;
670 ext4_grpblk_t chunk;
671 unsigned short border;
672
673 BUG_ON(len > EXT4_CLUSTERS_PER_GROUP(sb));
674
675 border = 2 << sb->s_blocksize_bits;
676
677 while (len > 0) {
678 /* find how many blocks can be covered since this position */
679 max = ffs(first | border) - 1;
680
681 /* find how many blocks of power 2 we need to mark */
682 min = fls(len) - 1;
683
684 if (max < min)
685 min = max;
686 chunk = 1 << min;
687
688 /* mark multiblock chunks only */
689 grp->bb_counters[min]++;
690 if (min > 0)
691 mb_clear_bit(first >> min,
692 buddy + sbi->s_mb_offsets[min]);
693
694 len -= chunk;
695 first += chunk;
696 }
697 }
698
699 /*
700 * Cache the order of the largest free extent we have available in this block
701 * group.
702 */
703 static void
704 mb_set_largest_free_order(struct super_block *sb, struct ext4_group_info *grp)
705 {
706 int i;
707 int bits;
708
709 grp->bb_largest_free_order = -1; /* uninit */
710
711 bits = sb->s_blocksize_bits + 1;
712 for (i = bits; i >= 0; i--) {
713 if (grp->bb_counters[i] > 0) {
714 grp->bb_largest_free_order = i;
715 break;
716 }
717 }
718 }
719
720 static noinline_for_stack
721 void ext4_mb_generate_buddy(struct super_block *sb,
722 void *buddy, void *bitmap, ext4_group_t group)
723 {
724 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
725 struct ext4_sb_info *sbi = EXT4_SB(sb);
726 ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb);
727 ext4_grpblk_t i = 0;
728 ext4_grpblk_t first;
729 ext4_grpblk_t len;
730 unsigned free = 0;
731 unsigned fragments = 0;
732 unsigned long long period = get_cycles();
733
734 /* initialize buddy from bitmap which is aggregation
735 * of on-disk bitmap and preallocations */
736 i = mb_find_next_zero_bit(bitmap, max, 0);
737 grp->bb_first_free = i;
738 while (i < max) {
739 fragments++;
740 first = i;
741 i = mb_find_next_bit(bitmap, max, i);
742 len = i - first;
743 free += len;
744 if (len > 1)
745 ext4_mb_mark_free_simple(sb, buddy, first, len, grp);
746 else
747 grp->bb_counters[0]++;
748 if (i < max)
749 i = mb_find_next_zero_bit(bitmap, max, i);
750 }
751 grp->bb_fragments = fragments;
752
753 if (free != grp->bb_free) {
754 ext4_grp_locked_error(sb, group, 0, 0,
755 "block bitmap and bg descriptor "
756 "inconsistent: %u vs %u free clusters",
757 free, grp->bb_free);
758 /*
759 * If we intend to continue, we consider group descriptor
760 * corrupt and update bb_free using bitmap value
761 */
762 grp->bb_free = free;
763 if (!EXT4_MB_GRP_BBITMAP_CORRUPT(grp))
764 percpu_counter_sub(&sbi->s_freeclusters_counter,
765 grp->bb_free);
766 set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT, &grp->bb_state);
767 }
768 mb_set_largest_free_order(sb, grp);
769
770 clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state));
771
772 period = get_cycles() - period;
773 spin_lock(&EXT4_SB(sb)->s_bal_lock);
774 EXT4_SB(sb)->s_mb_buddies_generated++;
775 EXT4_SB(sb)->s_mb_generation_time += period;
776 spin_unlock(&EXT4_SB(sb)->s_bal_lock);
777 }
778
779 static void mb_regenerate_buddy(struct ext4_buddy *e4b)
780 {
781 int count;
782 int order = 1;
783 void *buddy;
784
785 while ((buddy = mb_find_buddy(e4b, order++, &count))) {
786 ext4_set_bits(buddy, 0, count);
787 }
788 e4b->bd_info->bb_fragments = 0;
789 memset(e4b->bd_info->bb_counters, 0,
790 sizeof(*e4b->bd_info->bb_counters) *
791 (e4b->bd_sb->s_blocksize_bits + 2));
792
793 ext4_mb_generate_buddy(e4b->bd_sb, e4b->bd_buddy,
794 e4b->bd_bitmap, e4b->bd_group);
795 }
796
797 /* The buddy information is attached the buddy cache inode
798 * for convenience. The information regarding each group
799 * is loaded via ext4_mb_load_buddy. The information involve
800 * block bitmap and buddy information. The information are
801 * stored in the inode as
802 *
803 * { page }
804 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
805 *
806 *
807 * one block each for bitmap and buddy information.
808 * So for each group we take up 2 blocks. A page can
809 * contain blocks_per_page (PAGE_CACHE_SIZE / blocksize) blocks.
810 * So it can have information regarding groups_per_page which
811 * is blocks_per_page/2
812 *
813 * Locking note: This routine takes the block group lock of all groups
814 * for this page; do not hold this lock when calling this routine!
815 */
816
817 static int ext4_mb_init_cache(struct page *page, char *incore)
818 {
819 ext4_group_t ngroups;
820 int blocksize;
821 int blocks_per_page;
822 int groups_per_page;
823 int err = 0;
824 int i;
825 ext4_group_t first_group, group;
826 int first_block;
827 struct super_block *sb;
828 struct buffer_head *bhs;
829 struct buffer_head **bh = NULL;
830 struct inode *inode;
831 char *data;
832 char *bitmap;
833 struct ext4_group_info *grinfo;
834
835 mb_debug(1, "init page %lu\n", page->index);
836
837 inode = page->mapping->host;
838 sb = inode->i_sb;
839 ngroups = ext4_get_groups_count(sb);
840 blocksize = 1 << inode->i_blkbits;
841 blocks_per_page = PAGE_CACHE_SIZE / blocksize;
842
843 groups_per_page = blocks_per_page >> 1;
844 if (groups_per_page == 0)
845 groups_per_page = 1;
846
847 /* allocate buffer_heads to read bitmaps */
848 if (groups_per_page > 1) {
849 i = sizeof(struct buffer_head *) * groups_per_page;
850 bh = kzalloc(i, GFP_NOFS);
851 if (bh == NULL) {
852 err = -ENOMEM;
853 goto out;
854 }
855 } else
856 bh = &bhs;
857
858 first_group = page->index * blocks_per_page / 2;
859
860 /* read all groups the page covers into the cache */
861 for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
862 if (group >= ngroups)
863 break;
864
865 grinfo = ext4_get_group_info(sb, group);
866 /*
867 * If page is uptodate then we came here after online resize
868 * which added some new uninitialized group info structs, so
869 * we must skip all initialized uptodate buddies on the page,
870 * which may be currently in use by an allocating task.
871 */
872 if (PageUptodate(page) && !EXT4_MB_GRP_NEED_INIT(grinfo)) {
873 bh[i] = NULL;
874 continue;
875 }
876 if (!(bh[i] = ext4_read_block_bitmap_nowait(sb, group))) {
877 err = -ENOMEM;
878 goto out;
879 }
880 mb_debug(1, "read bitmap for group %u\n", group);
881 }
882
883 /* wait for I/O completion */
884 for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
885 if (bh[i] && ext4_wait_block_bitmap(sb, group, bh[i]))
886 err = -EIO;
887 }
888
889 first_block = page->index * blocks_per_page;
890 for (i = 0; i < blocks_per_page; i++) {
891 group = (first_block + i) >> 1;
892 if (group >= ngroups)
893 break;
894
895 if (!bh[group - first_group])
896 /* skip initialized uptodate buddy */
897 continue;
898
899 if (!buffer_verified(bh[group - first_group]))
900 /* Skip faulty bitmaps */
901 continue;
902 err = 0;
903
904 /*
905 * data carry information regarding this
906 * particular group in the format specified
907 * above
908 *
909 */
910 data = page_address(page) + (i * blocksize);
911 bitmap = bh[group - first_group]->b_data;
912
913 /*
914 * We place the buddy block and bitmap block
915 * close together
916 */
917 if ((first_block + i) & 1) {
918 /* this is block of buddy */
919 BUG_ON(incore == NULL);
920 mb_debug(1, "put buddy for group %u in page %lu/%x\n",
921 group, page->index, i * blocksize);
922 trace_ext4_mb_buddy_bitmap_load(sb, group);
923 grinfo = ext4_get_group_info(sb, group);
924 grinfo->bb_fragments = 0;
925 memset(grinfo->bb_counters, 0,
926 sizeof(*grinfo->bb_counters) *
927 (sb->s_blocksize_bits+2));
928 /*
929 * incore got set to the group block bitmap below
930 */
931 ext4_lock_group(sb, group);
932 /* init the buddy */
933 memset(data, 0xff, blocksize);
934 ext4_mb_generate_buddy(sb, data, incore, group);
935 ext4_unlock_group(sb, group);
936 incore = NULL;
937 } else {
938 /* this is block of bitmap */
939 BUG_ON(incore != NULL);
940 mb_debug(1, "put bitmap for group %u in page %lu/%x\n",
941 group, page->index, i * blocksize);
942 trace_ext4_mb_bitmap_load(sb, group);
943
944 /* see comments in ext4_mb_put_pa() */
945 ext4_lock_group(sb, group);
946 memcpy(data, bitmap, blocksize);
947
948 /* mark all preallocated blks used in in-core bitmap */
949 ext4_mb_generate_from_pa(sb, data, group);
950 ext4_mb_generate_from_freelist(sb, data, group);
951 ext4_unlock_group(sb, group);
952
953 /* set incore so that the buddy information can be
954 * generated using this
955 */
956 incore = data;
957 }
958 }
959 SetPageUptodate(page);
960
961 out:
962 if (bh) {
963 for (i = 0; i < groups_per_page; i++)
964 brelse(bh[i]);
965 if (bh != &bhs)
966 kfree(bh);
967 }
968 return err;
969 }
970
971 /*
972 * Lock the buddy and bitmap pages. This make sure other parallel init_group
973 * on the same buddy page doesn't happen whild holding the buddy page lock.
974 * Return locked buddy and bitmap pages on e4b struct. If buddy and bitmap
975 * are on the same page e4b->bd_buddy_page is NULL and return value is 0.
976 */
977 static int ext4_mb_get_buddy_page_lock(struct super_block *sb,
978 ext4_group_t group, struct ext4_buddy *e4b)
979 {
980 struct inode *inode = EXT4_SB(sb)->s_buddy_cache;
981 int block, pnum, poff;
982 int blocks_per_page;
983 struct page *page;
984
985 e4b->bd_buddy_page = NULL;
986 e4b->bd_bitmap_page = NULL;
987
988 blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize;
989 /*
990 * the buddy cache inode stores the block bitmap
991 * and buddy information in consecutive blocks.
992 * So for each group we need two blocks.
993 */
994 block = group * 2;
995 pnum = block / blocks_per_page;
996 poff = block % blocks_per_page;
997 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
998 if (!page)
999 return -ENOMEM;
1000 BUG_ON(page->mapping != inode->i_mapping);
1001 e4b->bd_bitmap_page = page;
1002 e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
1003
1004 if (blocks_per_page >= 2) {
1005 /* buddy and bitmap are on the same page */
1006 return 0;
1007 }
1008
1009 block++;
1010 pnum = block / blocks_per_page;
1011 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
1012 if (!page)
1013 return -ENOMEM;
1014 BUG_ON(page->mapping != inode->i_mapping);
1015 e4b->bd_buddy_page = page;
1016 return 0;
1017 }
1018
1019 static void ext4_mb_put_buddy_page_lock(struct ext4_buddy *e4b)
1020 {
1021 if (e4b->bd_bitmap_page) {
1022 unlock_page(e4b->bd_bitmap_page);
1023 page_cache_release(e4b->bd_bitmap_page);
1024 }
1025 if (e4b->bd_buddy_page) {
1026 unlock_page(e4b->bd_buddy_page);
1027 page_cache_release(e4b->bd_buddy_page);
1028 }
1029 }
1030
1031 /*
1032 * Locking note: This routine calls ext4_mb_init_cache(), which takes the
1033 * block group lock of all groups for this page; do not hold the BG lock when
1034 * calling this routine!
1035 */
1036 static noinline_for_stack
1037 int ext4_mb_init_group(struct super_block *sb, ext4_group_t group)
1038 {
1039
1040 struct ext4_group_info *this_grp;
1041 struct ext4_buddy e4b;
1042 struct page *page;
1043 int ret = 0;
1044
1045 might_sleep();
1046 mb_debug(1, "init group %u\n", group);
1047 this_grp = ext4_get_group_info(sb, group);
1048 /*
1049 * This ensures that we don't reinit the buddy cache
1050 * page which map to the group from which we are already
1051 * allocating. If we are looking at the buddy cache we would
1052 * have taken a reference using ext4_mb_load_buddy and that
1053 * would have pinned buddy page to page cache.
1054 * The call to ext4_mb_get_buddy_page_lock will mark the
1055 * page accessed.
1056 */
1057 ret = ext4_mb_get_buddy_page_lock(sb, group, &e4b);
1058 if (ret || !EXT4_MB_GRP_NEED_INIT(this_grp)) {
1059 /*
1060 * somebody initialized the group
1061 * return without doing anything
1062 */
1063 goto err;
1064 }
1065
1066 page = e4b.bd_bitmap_page;
1067 ret = ext4_mb_init_cache(page, NULL);
1068 if (ret)
1069 goto err;
1070 if (!PageUptodate(page)) {
1071 ret = -EIO;
1072 goto err;
1073 }
1074
1075 if (e4b.bd_buddy_page == NULL) {
1076 /*
1077 * If both the bitmap and buddy are in
1078 * the same page we don't need to force
1079 * init the buddy
1080 */
1081 ret = 0;
1082 goto err;
1083 }
1084 /* init buddy cache */
1085 page = e4b.bd_buddy_page;
1086 ret = ext4_mb_init_cache(page, e4b.bd_bitmap);
1087 if (ret)
1088 goto err;
1089 if (!PageUptodate(page)) {
1090 ret = -EIO;
1091 goto err;
1092 }
1093 err:
1094 ext4_mb_put_buddy_page_lock(&e4b);
1095 return ret;
1096 }
1097
1098 /*
1099 * Locking note: This routine calls ext4_mb_init_cache(), which takes the
1100 * block group lock of all groups for this page; do not hold the BG lock when
1101 * calling this routine!
1102 */
1103 static noinline_for_stack int
1104 ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group,
1105 struct ext4_buddy *e4b)
1106 {
1107 int blocks_per_page;
1108 int block;
1109 int pnum;
1110 int poff;
1111 struct page *page;
1112 int ret;
1113 struct ext4_group_info *grp;
1114 struct ext4_sb_info *sbi = EXT4_SB(sb);
1115 struct inode *inode = sbi->s_buddy_cache;
1116
1117 might_sleep();
1118 mb_debug(1, "load group %u\n", group);
1119
1120 blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize;
1121 grp = ext4_get_group_info(sb, group);
1122
1123 e4b->bd_blkbits = sb->s_blocksize_bits;
1124 e4b->bd_info = grp;
1125 e4b->bd_sb = sb;
1126 e4b->bd_group = group;
1127 e4b->bd_buddy_page = NULL;
1128 e4b->bd_bitmap_page = NULL;
1129
1130 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
1131 /*
1132 * we need full data about the group
1133 * to make a good selection
1134 */
1135 ret = ext4_mb_init_group(sb, group);
1136 if (ret)
1137 return ret;
1138 }
1139
1140 /*
1141 * the buddy cache inode stores the block bitmap
1142 * and buddy information in consecutive blocks.
1143 * So for each group we need two blocks.
1144 */
1145 block = group * 2;
1146 pnum = block / blocks_per_page;
1147 poff = block % blocks_per_page;
1148
1149 /* we could use find_or_create_page(), but it locks page
1150 * what we'd like to avoid in fast path ... */
1151 page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED);
1152 if (page == NULL || !PageUptodate(page)) {
1153 if (page)
1154 /*
1155 * drop the page reference and try
1156 * to get the page with lock. If we
1157 * are not uptodate that implies
1158 * somebody just created the page but
1159 * is yet to initialize the same. So
1160 * wait for it to initialize.
1161 */
1162 page_cache_release(page);
1163 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
1164 if (page) {
1165 BUG_ON(page->mapping != inode->i_mapping);
1166 if (!PageUptodate(page)) {
1167 ret = ext4_mb_init_cache(page, NULL);
1168 if (ret) {
1169 unlock_page(page);
1170 goto err;
1171 }
1172 mb_cmp_bitmaps(e4b, page_address(page) +
1173 (poff * sb->s_blocksize));
1174 }
1175 unlock_page(page);
1176 }
1177 }
1178 if (page == NULL) {
1179 ret = -ENOMEM;
1180 goto err;
1181 }
1182 if (!PageUptodate(page)) {
1183 ret = -EIO;
1184 goto err;
1185 }
1186
1187 /* Pages marked accessed already */
1188 e4b->bd_bitmap_page = page;
1189 e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
1190
1191 block++;
1192 pnum = block / blocks_per_page;
1193 poff = block % blocks_per_page;
1194
1195 page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED);
1196 if (page == NULL || !PageUptodate(page)) {
1197 if (page)
1198 page_cache_release(page);
1199 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
1200 if (page) {
1201 BUG_ON(page->mapping != inode->i_mapping);
1202 if (!PageUptodate(page)) {
1203 ret = ext4_mb_init_cache(page, e4b->bd_bitmap);
1204 if (ret) {
1205 unlock_page(page);
1206 goto err;
1207 }
1208 }
1209 unlock_page(page);
1210 }
1211 }
1212 if (page == NULL) {
1213 ret = -ENOMEM;
1214 goto err;
1215 }
1216 if (!PageUptodate(page)) {
1217 ret = -EIO;
1218 goto err;
1219 }
1220
1221 /* Pages marked accessed already */
1222 e4b->bd_buddy_page = page;
1223 e4b->bd_buddy = page_address(page) + (poff * sb->s_blocksize);
1224
1225 BUG_ON(e4b->bd_bitmap_page == NULL);
1226 BUG_ON(e4b->bd_buddy_page == NULL);
1227
1228 return 0;
1229
1230 err:
1231 if (page)
1232 page_cache_release(page);
1233 if (e4b->bd_bitmap_page)
1234 page_cache_release(e4b->bd_bitmap_page);
1235 if (e4b->bd_buddy_page)
1236 page_cache_release(e4b->bd_buddy_page);
1237 e4b->bd_buddy = NULL;
1238 e4b->bd_bitmap = NULL;
1239 return ret;
1240 }
1241
1242 static void ext4_mb_unload_buddy(struct ext4_buddy *e4b)
1243 {
1244 if (e4b->bd_bitmap_page)
1245 page_cache_release(e4b->bd_bitmap_page);
1246 if (e4b->bd_buddy_page)
1247 page_cache_release(e4b->bd_buddy_page);
1248 }
1249
1250
1251 static int mb_find_order_for_block(struct ext4_buddy *e4b, int block)
1252 {
1253 int order = 1;
1254 void *bb;
1255
1256 BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
1257 BUG_ON(block >= (1 << (e4b->bd_blkbits + 3)));
1258
1259 bb = e4b->bd_buddy;
1260 while (order <= e4b->bd_blkbits + 1) {
1261 block = block >> 1;
1262 if (!mb_test_bit(block, bb)) {
1263 /* this block is part of buddy of order 'order' */
1264 return order;
1265 }
1266 bb += 1 << (e4b->bd_blkbits - order);
1267 order++;
1268 }
1269 return 0;
1270 }
1271
1272 static void mb_clear_bits(void *bm, int cur, int len)
1273 {
1274 __u32 *addr;
1275
1276 len = cur + len;
1277 while (cur < len) {
1278 if ((cur & 31) == 0 && (len - cur) >= 32) {
1279 /* fast path: clear whole word at once */
1280 addr = bm + (cur >> 3);
1281 *addr = 0;
1282 cur += 32;
1283 continue;
1284 }
1285 mb_clear_bit(cur, bm);
1286 cur++;
1287 }
1288 }
1289
1290 /* clear bits in given range
1291 * will return first found zero bit if any, -1 otherwise
1292 */
1293 static int mb_test_and_clear_bits(void *bm, int cur, int len)
1294 {
1295 __u32 *addr;
1296 int zero_bit = -1;
1297
1298 len = cur + len;
1299 while (cur < len) {
1300 if ((cur & 31) == 0 && (len - cur) >= 32) {
1301 /* fast path: clear whole word at once */
1302 addr = bm + (cur >> 3);
1303 if (*addr != (__u32)(-1) && zero_bit == -1)
1304 zero_bit = cur + mb_find_next_zero_bit(addr, 32, 0);
1305 *addr = 0;
1306 cur += 32;
1307 continue;
1308 }
1309 if (!mb_test_and_clear_bit(cur, bm) && zero_bit == -1)
1310 zero_bit = cur;
1311 cur++;
1312 }
1313
1314 return zero_bit;
1315 }
1316
1317 void ext4_set_bits(void *bm, int cur, int len)
1318 {
1319 __u32 *addr;
1320
1321 len = cur + len;
1322 while (cur < len) {
1323 if ((cur & 31) == 0 && (len - cur) >= 32) {
1324 /* fast path: set whole word at once */
1325 addr = bm + (cur >> 3);
1326 *addr = 0xffffffff;
1327 cur += 32;
1328 continue;
1329 }
1330 mb_set_bit(cur, bm);
1331 cur++;
1332 }
1333 }
1334
1335 /*
1336 * _________________________________________________________________ */
1337
1338 static inline int mb_buddy_adjust_border(int* bit, void* bitmap, int side)
1339 {
1340 if (mb_test_bit(*bit + side, bitmap)) {
1341 mb_clear_bit(*bit, bitmap);
1342 (*bit) -= side;
1343 return 1;
1344 }
1345 else {
1346 (*bit) += side;
1347 mb_set_bit(*bit, bitmap);
1348 return -1;
1349 }
1350 }
1351
1352 static void mb_buddy_mark_free(struct ext4_buddy *e4b, int first, int last)
1353 {
1354 int max;
1355 int order = 1;
1356 void *buddy = mb_find_buddy(e4b, order, &max);
1357
1358 while (buddy) {
1359 void *buddy2;
1360
1361 /* Bits in range [first; last] are known to be set since
1362 * corresponding blocks were allocated. Bits in range
1363 * (first; last) will stay set because they form buddies on
1364 * upper layer. We just deal with borders if they don't
1365 * align with upper layer and then go up.
1366 * Releasing entire group is all about clearing
1367 * single bit of highest order buddy.
1368 */
1369
1370 /* Example:
1371 * ---------------------------------
1372 * | 1 | 1 | 1 | 1 |
1373 * ---------------------------------
1374 * | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
1375 * ---------------------------------
1376 * 0 1 2 3 4 5 6 7
1377 * \_____________________/
1378 *
1379 * Neither [1] nor [6] is aligned to above layer.
1380 * Left neighbour [0] is free, so mark it busy,
1381 * decrease bb_counters and extend range to
1382 * [0; 6]
1383 * Right neighbour [7] is busy. It can't be coaleasced with [6], so
1384 * mark [6] free, increase bb_counters and shrink range to
1385 * [0; 5].
1386 * Then shift range to [0; 2], go up and do the same.
1387 */
1388
1389
1390 if (first & 1)
1391 e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&first, buddy, -1);
1392 if (!(last & 1))
1393 e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&last, buddy, 1);
1394 if (first > last)
1395 break;
1396 order++;
1397
1398 if (first == last || !(buddy2 = mb_find_buddy(e4b, order, &max))) {
1399 mb_clear_bits(buddy, first, last - first + 1);
1400 e4b->bd_info->bb_counters[order - 1] += last - first + 1;
1401 break;
1402 }
1403 first >>= 1;
1404 last >>= 1;
1405 buddy = buddy2;
1406 }
1407 }
1408
1409 static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b,
1410 int first, int count)
1411 {
1412 int left_is_free = 0;
1413 int right_is_free = 0;
1414 int block;
1415 int last = first + count - 1;
1416 struct super_block *sb = e4b->bd_sb;
1417
1418 if (WARN_ON(count == 0))
1419 return;
1420 BUG_ON(last >= (sb->s_blocksize << 3));
1421 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
1422 /* Don't bother if the block group is corrupt. */
1423 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info)))
1424 return;
1425
1426 mb_check_buddy(e4b);
1427 mb_free_blocks_double(inode, e4b, first, count);
1428
1429 e4b->bd_info->bb_free += count;
1430 if (first < e4b->bd_info->bb_first_free)
1431 e4b->bd_info->bb_first_free = first;
1432
1433 /* access memory sequentially: check left neighbour,
1434 * clear range and then check right neighbour
1435 */
1436 if (first != 0)
1437 left_is_free = !mb_test_bit(first - 1, e4b->bd_bitmap);
1438 block = mb_test_and_clear_bits(e4b->bd_bitmap, first, count);
1439 if (last + 1 < EXT4_SB(sb)->s_mb_maxs[0])
1440 right_is_free = !mb_test_bit(last + 1, e4b->bd_bitmap);
1441
1442 if (unlikely(block != -1)) {
1443 struct ext4_sb_info *sbi = EXT4_SB(sb);
1444 ext4_fsblk_t blocknr;
1445
1446 blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
1447 blocknr += EXT4_C2B(EXT4_SB(sb), block);
1448 ext4_grp_locked_error(sb, e4b->bd_group,
1449 inode ? inode->i_ino : 0,
1450 blocknr,
1451 "freeing already freed block "
1452 "(bit %u); block bitmap corrupt.",
1453 block);
1454 if (!EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info))
1455 percpu_counter_sub(&sbi->s_freeclusters_counter,
1456 e4b->bd_info->bb_free);
1457 /* Mark the block group as corrupt. */
1458 set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT,
1459 &e4b->bd_info->bb_state);
1460 mb_regenerate_buddy(e4b);
1461 goto done;
1462 }
1463
1464 /* let's maintain fragments counter */
1465 if (left_is_free && right_is_free)
1466 e4b->bd_info->bb_fragments--;
1467 else if (!left_is_free && !right_is_free)
1468 e4b->bd_info->bb_fragments++;
1469
1470 /* buddy[0] == bd_bitmap is a special case, so handle
1471 * it right away and let mb_buddy_mark_free stay free of
1472 * zero order checks.
1473 * Check if neighbours are to be coaleasced,
1474 * adjust bitmap bb_counters and borders appropriately.
1475 */
1476 if (first & 1) {
1477 first += !left_is_free;
1478 e4b->bd_info->bb_counters[0] += left_is_free ? -1 : 1;
1479 }
1480 if (!(last & 1)) {
1481 last -= !right_is_free;
1482 e4b->bd_info->bb_counters[0] += right_is_free ? -1 : 1;
1483 }
1484
1485 if (first <= last)
1486 mb_buddy_mark_free(e4b, first >> 1, last >> 1);
1487
1488 done:
1489 mb_set_largest_free_order(sb, e4b->bd_info);
1490 mb_check_buddy(e4b);
1491 }
1492
1493 static int mb_find_extent(struct ext4_buddy *e4b, int block,
1494 int needed, struct ext4_free_extent *ex)
1495 {
1496 int next = block;
1497 int max, order;
1498 void *buddy;
1499
1500 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1501 BUG_ON(ex == NULL);
1502
1503 buddy = mb_find_buddy(e4b, 0, &max);
1504 BUG_ON(buddy == NULL);
1505 BUG_ON(block >= max);
1506 if (mb_test_bit(block, buddy)) {
1507 ex->fe_len = 0;
1508 ex->fe_start = 0;
1509 ex->fe_group = 0;
1510 return 0;
1511 }
1512
1513 /* find actual order */
1514 order = mb_find_order_for_block(e4b, block);
1515 block = block >> order;
1516
1517 ex->fe_len = 1 << order;
1518 ex->fe_start = block << order;
1519 ex->fe_group = e4b->bd_group;
1520
1521 /* calc difference from given start */
1522 next = next - ex->fe_start;
1523 ex->fe_len -= next;
1524 ex->fe_start += next;
1525
1526 while (needed > ex->fe_len &&
1527 mb_find_buddy(e4b, order, &max)) {
1528
1529 if (block + 1 >= max)
1530 break;
1531
1532 next = (block + 1) * (1 << order);
1533 if (mb_test_bit(next, e4b->bd_bitmap))
1534 break;
1535
1536 order = mb_find_order_for_block(e4b, next);
1537
1538 block = next >> order;
1539 ex->fe_len += 1 << order;
1540 }
1541
1542 BUG_ON(ex->fe_start + ex->fe_len > (1 << (e4b->bd_blkbits + 3)));
1543 return ex->fe_len;
1544 }
1545
1546 static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex)
1547 {
1548 int ord;
1549 int mlen = 0;
1550 int max = 0;
1551 int cur;
1552 int start = ex->fe_start;
1553 int len = ex->fe_len;
1554 unsigned ret = 0;
1555 int len0 = len;
1556 void *buddy;
1557
1558 BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3));
1559 BUG_ON(e4b->bd_group != ex->fe_group);
1560 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1561 mb_check_buddy(e4b);
1562 mb_mark_used_double(e4b, start, len);
1563
1564 e4b->bd_info->bb_free -= len;
1565 if (e4b->bd_info->bb_first_free == start)
1566 e4b->bd_info->bb_first_free += len;
1567
1568 /* let's maintain fragments counter */
1569 if (start != 0)
1570 mlen = !mb_test_bit(start - 1, e4b->bd_bitmap);
1571 if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0])
1572 max = !mb_test_bit(start + len, e4b->bd_bitmap);
1573 if (mlen && max)
1574 e4b->bd_info->bb_fragments++;
1575 else if (!mlen && !max)
1576 e4b->bd_info->bb_fragments--;
1577
1578 /* let's maintain buddy itself */
1579 while (len) {
1580 ord = mb_find_order_for_block(e4b, start);
1581
1582 if (((start >> ord) << ord) == start && len >= (1 << ord)) {
1583 /* the whole chunk may be allocated at once! */
1584 mlen = 1 << ord;
1585 buddy = mb_find_buddy(e4b, ord, &max);
1586 BUG_ON((start >> ord) >= max);
1587 mb_set_bit(start >> ord, buddy);
1588 e4b->bd_info->bb_counters[ord]--;
1589 start += mlen;
1590 len -= mlen;
1591 BUG_ON(len < 0);
1592 continue;
1593 }
1594
1595 /* store for history */
1596 if (ret == 0)
1597 ret = len | (ord << 16);
1598
1599 /* we have to split large buddy */
1600 BUG_ON(ord <= 0);
1601 buddy = mb_find_buddy(e4b, ord, &max);
1602 mb_set_bit(start >> ord, buddy);
1603 e4b->bd_info->bb_counters[ord]--;
1604
1605 ord--;
1606 cur = (start >> ord) & ~1U;
1607 buddy = mb_find_buddy(e4b, ord, &max);
1608 mb_clear_bit(cur, buddy);
1609 mb_clear_bit(cur + 1, buddy);
1610 e4b->bd_info->bb_counters[ord]++;
1611 e4b->bd_info->bb_counters[ord]++;
1612 }
1613 mb_set_largest_free_order(e4b->bd_sb, e4b->bd_info);
1614
1615 ext4_set_bits(e4b->bd_bitmap, ex->fe_start, len0);
1616 mb_check_buddy(e4b);
1617
1618 return ret;
1619 }
1620
1621 /*
1622 * Must be called under group lock!
1623 */
1624 static void ext4_mb_use_best_found(struct ext4_allocation_context *ac,
1625 struct ext4_buddy *e4b)
1626 {
1627 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1628 int ret;
1629
1630 BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group);
1631 BUG_ON(ac->ac_status == AC_STATUS_FOUND);
1632
1633 ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len);
1634 ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical;
1635 ret = mb_mark_used(e4b, &ac->ac_b_ex);
1636
1637 /* preallocation can change ac_b_ex, thus we store actually
1638 * allocated blocks for history */
1639 ac->ac_f_ex = ac->ac_b_ex;
1640
1641 ac->ac_status = AC_STATUS_FOUND;
1642 ac->ac_tail = ret & 0xffff;
1643 ac->ac_buddy = ret >> 16;
1644
1645 /*
1646 * take the page reference. We want the page to be pinned
1647 * so that we don't get a ext4_mb_init_cache_call for this
1648 * group until we update the bitmap. That would mean we
1649 * double allocate blocks. The reference is dropped
1650 * in ext4_mb_release_context
1651 */
1652 ac->ac_bitmap_page = e4b->bd_bitmap_page;
1653 get_page(ac->ac_bitmap_page);
1654 ac->ac_buddy_page = e4b->bd_buddy_page;
1655 get_page(ac->ac_buddy_page);
1656 /* store last allocated for subsequent stream allocation */
1657 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
1658 spin_lock(&sbi->s_md_lock);
1659 sbi->s_mb_last_group = ac->ac_f_ex.fe_group;
1660 sbi->s_mb_last_start = ac->ac_f_ex.fe_start;
1661 spin_unlock(&sbi->s_md_lock);
1662 }
1663 }
1664
1665 /*
1666 * regular allocator, for general purposes allocation
1667 */
1668
1669 static void ext4_mb_check_limits(struct ext4_allocation_context *ac,
1670 struct ext4_buddy *e4b,
1671 int finish_group)
1672 {
1673 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1674 struct ext4_free_extent *bex = &ac->ac_b_ex;
1675 struct ext4_free_extent *gex = &ac->ac_g_ex;
1676 struct ext4_free_extent ex;
1677 int max;
1678
1679 if (ac->ac_status == AC_STATUS_FOUND)
1680 return;
1681 /*
1682 * We don't want to scan for a whole year
1683 */
1684 if (ac->ac_found > sbi->s_mb_max_to_scan &&
1685 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1686 ac->ac_status = AC_STATUS_BREAK;
1687 return;
1688 }
1689
1690 /*
1691 * Haven't found good chunk so far, let's continue
1692 */
1693 if (bex->fe_len < gex->fe_len)
1694 return;
1695
1696 if ((finish_group || ac->ac_found > sbi->s_mb_min_to_scan)
1697 && bex->fe_group == e4b->bd_group) {
1698 /* recheck chunk's availability - we don't know
1699 * when it was found (within this lock-unlock
1700 * period or not) */
1701 max = mb_find_extent(e4b, bex->fe_start, gex->fe_len, &ex);
1702 if (max >= gex->fe_len) {
1703 ext4_mb_use_best_found(ac, e4b);
1704 return;
1705 }
1706 }
1707 }
1708
1709 /*
1710 * The routine checks whether found extent is good enough. If it is,
1711 * then the extent gets marked used and flag is set to the context
1712 * to stop scanning. Otherwise, the extent is compared with the
1713 * previous found extent and if new one is better, then it's stored
1714 * in the context. Later, the best found extent will be used, if
1715 * mballoc can't find good enough extent.
1716 *
1717 * FIXME: real allocation policy is to be designed yet!
1718 */
1719 static void ext4_mb_measure_extent(struct ext4_allocation_context *ac,
1720 struct ext4_free_extent *ex,
1721 struct ext4_buddy *e4b)
1722 {
1723 struct ext4_free_extent *bex = &ac->ac_b_ex;
1724 struct ext4_free_extent *gex = &ac->ac_g_ex;
1725
1726 BUG_ON(ex->fe_len <= 0);
1727 BUG_ON(ex->fe_len > EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
1728 BUG_ON(ex->fe_start >= EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
1729 BUG_ON(ac->ac_status != AC_STATUS_CONTINUE);
1730
1731 ac->ac_found++;
1732
1733 /*
1734 * The special case - take what you catch first
1735 */
1736 if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1737 *bex = *ex;
1738 ext4_mb_use_best_found(ac, e4b);
1739 return;
1740 }
1741
1742 /*
1743 * Let's check whether the chuck is good enough
1744 */
1745 if (ex->fe_len == gex->fe_len) {
1746 *bex = *ex;
1747 ext4_mb_use_best_found(ac, e4b);
1748 return;
1749 }
1750
1751 /*
1752 * If this is first found extent, just store it in the context
1753 */
1754 if (bex->fe_len == 0) {
1755 *bex = *ex;
1756 return;
1757 }
1758
1759 /*
1760 * If new found extent is better, store it in the context
1761 */
1762 if (bex->fe_len < gex->fe_len) {
1763 /* if the request isn't satisfied, any found extent
1764 * larger than previous best one is better */
1765 if (ex->fe_len > bex->fe_len)
1766 *bex = *ex;
1767 } else if (ex->fe_len > gex->fe_len) {
1768 /* if the request is satisfied, then we try to find
1769 * an extent that still satisfy the request, but is
1770 * smaller than previous one */
1771 if (ex->fe_len < bex->fe_len)
1772 *bex = *ex;
1773 }
1774
1775 ext4_mb_check_limits(ac, e4b, 0);
1776 }
1777
1778 static noinline_for_stack
1779 int ext4_mb_try_best_found(struct ext4_allocation_context *ac,
1780 struct ext4_buddy *e4b)
1781 {
1782 struct ext4_free_extent ex = ac->ac_b_ex;
1783 ext4_group_t group = ex.fe_group;
1784 int max;
1785 int err;
1786
1787 BUG_ON(ex.fe_len <= 0);
1788 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1789 if (err)
1790 return err;
1791
1792 ext4_lock_group(ac->ac_sb, group);
1793 max = mb_find_extent(e4b, ex.fe_start, ex.fe_len, &ex);
1794
1795 if (max > 0) {
1796 ac->ac_b_ex = ex;
1797 ext4_mb_use_best_found(ac, e4b);
1798 }
1799
1800 ext4_unlock_group(ac->ac_sb, group);
1801 ext4_mb_unload_buddy(e4b);
1802
1803 return 0;
1804 }
1805
1806 static noinline_for_stack
1807 int ext4_mb_find_by_goal(struct ext4_allocation_context *ac,
1808 struct ext4_buddy *e4b)
1809 {
1810 ext4_group_t group = ac->ac_g_ex.fe_group;
1811 int max;
1812 int err;
1813 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1814 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
1815 struct ext4_free_extent ex;
1816
1817 if (!(ac->ac_flags & EXT4_MB_HINT_TRY_GOAL))
1818 return 0;
1819 if (grp->bb_free == 0)
1820 return 0;
1821
1822 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1823 if (err)
1824 return err;
1825
1826 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info))) {
1827 ext4_mb_unload_buddy(e4b);
1828 return 0;
1829 }
1830
1831 ext4_lock_group(ac->ac_sb, group);
1832 max = mb_find_extent(e4b, ac->ac_g_ex.fe_start,
1833 ac->ac_g_ex.fe_len, &ex);
1834 ex.fe_logical = 0xDEADFA11; /* debug value */
1835
1836 if (max >= ac->ac_g_ex.fe_len && ac->ac_g_ex.fe_len == sbi->s_stripe) {
1837 ext4_fsblk_t start;
1838
1839 start = ext4_group_first_block_no(ac->ac_sb, e4b->bd_group) +
1840 ex.fe_start;
1841 /* use do_div to get remainder (would be 64-bit modulo) */
1842 if (do_div(start, sbi->s_stripe) == 0) {
1843 ac->ac_found++;
1844 ac->ac_b_ex = ex;
1845 ext4_mb_use_best_found(ac, e4b);
1846 }
1847 } else if (max >= ac->ac_g_ex.fe_len) {
1848 BUG_ON(ex.fe_len <= 0);
1849 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1850 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1851 ac->ac_found++;
1852 ac->ac_b_ex = ex;
1853 ext4_mb_use_best_found(ac, e4b);
1854 } else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) {
1855 /* Sometimes, caller may want to merge even small
1856 * number of blocks to an existing extent */
1857 BUG_ON(ex.fe_len <= 0);
1858 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1859 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1860 ac->ac_found++;
1861 ac->ac_b_ex = ex;
1862 ext4_mb_use_best_found(ac, e4b);
1863 }
1864 ext4_unlock_group(ac->ac_sb, group);
1865 ext4_mb_unload_buddy(e4b);
1866
1867 return 0;
1868 }
1869
1870 /*
1871 * The routine scans buddy structures (not bitmap!) from given order
1872 * to max order and tries to find big enough chunk to satisfy the req
1873 */
1874 static noinline_for_stack
1875 void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac,
1876 struct ext4_buddy *e4b)
1877 {
1878 struct super_block *sb = ac->ac_sb;
1879 struct ext4_group_info *grp = e4b->bd_info;
1880 void *buddy;
1881 int i;
1882 int k;
1883 int max;
1884
1885 BUG_ON(ac->ac_2order <= 0);
1886 for (i = ac->ac_2order; i <= sb->s_blocksize_bits + 1; i++) {
1887 if (grp->bb_counters[i] == 0)
1888 continue;
1889
1890 buddy = mb_find_buddy(e4b, i, &max);
1891 BUG_ON(buddy == NULL);
1892
1893 k = mb_find_next_zero_bit(buddy, max, 0);
1894 BUG_ON(k >= max);
1895
1896 ac->ac_found++;
1897
1898 ac->ac_b_ex.fe_len = 1 << i;
1899 ac->ac_b_ex.fe_start = k << i;
1900 ac->ac_b_ex.fe_group = e4b->bd_group;
1901
1902 ext4_mb_use_best_found(ac, e4b);
1903
1904 BUG_ON(ac->ac_b_ex.fe_len != ac->ac_g_ex.fe_len);
1905
1906 if (EXT4_SB(sb)->s_mb_stats)
1907 atomic_inc(&EXT4_SB(sb)->s_bal_2orders);
1908
1909 break;
1910 }
1911 }
1912
1913 /*
1914 * The routine scans the group and measures all found extents.
1915 * In order to optimize scanning, caller must pass number of
1916 * free blocks in the group, so the routine can know upper limit.
1917 */
1918 static noinline_for_stack
1919 void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac,
1920 struct ext4_buddy *e4b)
1921 {
1922 struct super_block *sb = ac->ac_sb;
1923 void *bitmap = e4b->bd_bitmap;
1924 struct ext4_free_extent ex;
1925 int i;
1926 int free;
1927
1928 free = e4b->bd_info->bb_free;
1929 BUG_ON(free <= 0);
1930
1931 i = e4b->bd_info->bb_first_free;
1932
1933 while (free && ac->ac_status == AC_STATUS_CONTINUE) {
1934 i = mb_find_next_zero_bit(bitmap,
1935 EXT4_CLUSTERS_PER_GROUP(sb), i);
1936 if (i >= EXT4_CLUSTERS_PER_GROUP(sb)) {
1937 /*
1938 * IF we have corrupt bitmap, we won't find any
1939 * free blocks even though group info says we
1940 * we have free blocks
1941 */
1942 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
1943 "%d free clusters as per "
1944 "group info. But bitmap says 0",
1945 free);
1946 break;
1947 }
1948
1949 mb_find_extent(e4b, i, ac->ac_g_ex.fe_len, &ex);
1950 BUG_ON(ex.fe_len <= 0);
1951 if (free < ex.fe_len) {
1952 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
1953 "%d free clusters as per "
1954 "group info. But got %d blocks",
1955 free, ex.fe_len);
1956 /*
1957 * The number of free blocks differs. This mostly
1958 * indicate that the bitmap is corrupt. So exit
1959 * without claiming the space.
1960 */
1961 break;
1962 }
1963 ex.fe_logical = 0xDEADC0DE; /* debug value */
1964 ext4_mb_measure_extent(ac, &ex, e4b);
1965
1966 i += ex.fe_len;
1967 free -= ex.fe_len;
1968 }
1969
1970 ext4_mb_check_limits(ac, e4b, 1);
1971 }
1972
1973 /*
1974 * This is a special case for storages like raid5
1975 * we try to find stripe-aligned chunks for stripe-size-multiple requests
1976 */
1977 static noinline_for_stack
1978 void ext4_mb_scan_aligned(struct ext4_allocation_context *ac,
1979 struct ext4_buddy *e4b)
1980 {
1981 struct super_block *sb = ac->ac_sb;
1982 struct ext4_sb_info *sbi = EXT4_SB(sb);
1983 void *bitmap = e4b->bd_bitmap;
1984 struct ext4_free_extent ex;
1985 ext4_fsblk_t first_group_block;
1986 ext4_fsblk_t a;
1987 ext4_grpblk_t i;
1988 int max;
1989
1990 BUG_ON(sbi->s_stripe == 0);
1991
1992 /* find first stripe-aligned block in group */
1993 first_group_block = ext4_group_first_block_no(sb, e4b->bd_group);
1994
1995 a = first_group_block + sbi->s_stripe - 1;
1996 do_div(a, sbi->s_stripe);
1997 i = (a * sbi->s_stripe) - first_group_block;
1998
1999 while (i < EXT4_CLUSTERS_PER_GROUP(sb)) {
2000 if (!mb_test_bit(i, bitmap)) {
2001 max = mb_find_extent(e4b, i, sbi->s_stripe, &ex);
2002 if (max >= sbi->s_stripe) {
2003 ac->ac_found++;
2004 ex.fe_logical = 0xDEADF00D; /* debug value */
2005 ac->ac_b_ex = ex;
2006 ext4_mb_use_best_found(ac, e4b);
2007 break;
2008 }
2009 }
2010 i += sbi->s_stripe;
2011 }
2012 }
2013
2014 /*
2015 * This is now called BEFORE we load the buddy bitmap.
2016 * Returns either 1 or 0 indicating that the group is either suitable
2017 * for the allocation or not. In addition it can also return negative
2018 * error code when something goes wrong.
2019 */
2020 static int ext4_mb_good_group(struct ext4_allocation_context *ac,
2021 ext4_group_t group, int cr)
2022 {
2023 unsigned free, fragments;
2024 int flex_size = ext4_flex_bg_size(EXT4_SB(ac->ac_sb));
2025 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
2026
2027 BUG_ON(cr < 0 || cr >= 4);
2028
2029 free = grp->bb_free;
2030 if (free == 0)
2031 return 0;
2032 if (cr <= 2 && free < ac->ac_g_ex.fe_len)
2033 return 0;
2034
2035 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(grp)))
2036 return 0;
2037
2038 /* We only do this if the grp has never been initialized */
2039 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
2040 int ret = ext4_mb_init_group(ac->ac_sb, group);
2041 if (ret)
2042 return ret;
2043 }
2044
2045 fragments = grp->bb_fragments;
2046 if (fragments == 0)
2047 return 0;
2048
2049 switch (cr) {
2050 case 0:
2051 BUG_ON(ac->ac_2order == 0);
2052
2053 /* Avoid using the first bg of a flexgroup for data files */
2054 if ((ac->ac_flags & EXT4_MB_HINT_DATA) &&
2055 (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) &&
2056 ((group % flex_size) == 0))
2057 return 0;
2058
2059 if ((ac->ac_2order > ac->ac_sb->s_blocksize_bits+1) ||
2060 (free / fragments) >= ac->ac_g_ex.fe_len)
2061 return 1;
2062
2063 if (grp->bb_largest_free_order < ac->ac_2order)
2064 return 0;
2065
2066 return 1;
2067 case 1:
2068 if ((free / fragments) >= ac->ac_g_ex.fe_len)
2069 return 1;
2070 break;
2071 case 2:
2072 if (free >= ac->ac_g_ex.fe_len)
2073 return 1;
2074 break;
2075 case 3:
2076 return 1;
2077 default:
2078 BUG();
2079 }
2080
2081 return 0;
2082 }
2083
2084 static noinline_for_stack int
2085 ext4_mb_regular_allocator(struct ext4_allocation_context *ac)
2086 {
2087 ext4_group_t ngroups, group, i;
2088 int cr;
2089 int err = 0, first_err = 0;
2090 struct ext4_sb_info *sbi;
2091 struct super_block *sb;
2092 struct ext4_buddy e4b;
2093
2094 sb = ac->ac_sb;
2095 sbi = EXT4_SB(sb);
2096 ngroups = ext4_get_groups_count(sb);
2097 /* non-extent files are limited to low blocks/groups */
2098 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)))
2099 ngroups = sbi->s_blockfile_groups;
2100
2101 BUG_ON(ac->ac_status == AC_STATUS_FOUND);
2102
2103 /* first, try the goal */
2104 err = ext4_mb_find_by_goal(ac, &e4b);
2105 if (err || ac->ac_status == AC_STATUS_FOUND)
2106 goto out;
2107
2108 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
2109 goto out;
2110
2111 /*
2112 * ac->ac2_order is set only if the fe_len is a power of 2
2113 * if ac2_order is set we also set criteria to 0 so that we
2114 * try exact allocation using buddy.
2115 */
2116 i = fls(ac->ac_g_ex.fe_len);
2117 ac->ac_2order = 0;
2118 /*
2119 * We search using buddy data only if the order of the request
2120 * is greater than equal to the sbi_s_mb_order2_reqs
2121 * You can tune it via /sys/fs/ext4/<partition>/mb_order2_req
2122 */
2123 if (i >= sbi->s_mb_order2_reqs) {
2124 /*
2125 * This should tell if fe_len is exactly power of 2
2126 */
2127 if ((ac->ac_g_ex.fe_len & (~(1 << (i - 1)))) == 0)
2128 ac->ac_2order = i - 1;
2129 }
2130
2131 /* if stream allocation is enabled, use global goal */
2132 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
2133 /* TBD: may be hot point */
2134 spin_lock(&sbi->s_md_lock);
2135 ac->ac_g_ex.fe_group = sbi->s_mb_last_group;
2136 ac->ac_g_ex.fe_start = sbi->s_mb_last_start;
2137 spin_unlock(&sbi->s_md_lock);
2138 }
2139
2140 /* Let's just scan groups to find more-less suitable blocks */
2141 cr = ac->ac_2order ? 0 : 1;
2142 /*
2143 * cr == 0 try to get exact allocation,
2144 * cr == 3 try to get anything
2145 */
2146 repeat:
2147 for (; cr < 4 && ac->ac_status == AC_STATUS_CONTINUE; cr++) {
2148 ac->ac_criteria = cr;
2149 /*
2150 * searching for the right group start
2151 * from the goal value specified
2152 */
2153 group = ac->ac_g_ex.fe_group;
2154
2155 for (i = 0; i < ngroups; group++, i++) {
2156 int ret = 0;
2157 cond_resched();
2158 /*
2159 * Artificially restricted ngroups for non-extent
2160 * files makes group > ngroups possible on first loop.
2161 */
2162 if (group >= ngroups)
2163 group = 0;
2164
2165 /* This now checks without needing the buddy page */
2166 ret = ext4_mb_good_group(ac, group, cr);
2167 if (ret <= 0) {
2168 if (!first_err)
2169 first_err = ret;
2170 continue;
2171 }
2172
2173 err = ext4_mb_load_buddy(sb, group, &e4b);
2174 if (err)
2175 goto out;
2176
2177 ext4_lock_group(sb, group);
2178
2179 /*
2180 * We need to check again after locking the
2181 * block group
2182 */
2183 ret = ext4_mb_good_group(ac, group, cr);
2184 if (ret <= 0) {
2185 ext4_unlock_group(sb, group);
2186 ext4_mb_unload_buddy(&e4b);
2187 if (!first_err)
2188 first_err = ret;
2189 continue;
2190 }
2191
2192 ac->ac_groups_scanned++;
2193 if (cr == 0 && ac->ac_2order < sb->s_blocksize_bits+2)
2194 ext4_mb_simple_scan_group(ac, &e4b);
2195 else if (cr == 1 && sbi->s_stripe &&
2196 !(ac->ac_g_ex.fe_len % sbi->s_stripe))
2197 ext4_mb_scan_aligned(ac, &e4b);
2198 else
2199 ext4_mb_complex_scan_group(ac, &e4b);
2200
2201 ext4_unlock_group(sb, group);
2202 ext4_mb_unload_buddy(&e4b);
2203
2204 if (ac->ac_status != AC_STATUS_CONTINUE)
2205 break;
2206 }
2207 }
2208
2209 if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND &&
2210 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2211 /*
2212 * We've been searching too long. Let's try to allocate
2213 * the best chunk we've found so far
2214 */
2215
2216 ext4_mb_try_best_found(ac, &e4b);
2217 if (ac->ac_status != AC_STATUS_FOUND) {
2218 /*
2219 * Someone more lucky has already allocated it.
2220 * The only thing we can do is just take first
2221 * found block(s)
2222 printk(KERN_DEBUG "EXT4-fs: someone won our chunk\n");
2223 */
2224 ac->ac_b_ex.fe_group = 0;
2225 ac->ac_b_ex.fe_start = 0;
2226 ac->ac_b_ex.fe_len = 0;
2227 ac->ac_status = AC_STATUS_CONTINUE;
2228 ac->ac_flags |= EXT4_MB_HINT_FIRST;
2229 cr = 3;
2230 atomic_inc(&sbi->s_mb_lost_chunks);
2231 goto repeat;
2232 }
2233 }
2234 out:
2235 if (!err && ac->ac_status != AC_STATUS_FOUND && first_err)
2236 err = first_err;
2237 return err;
2238 }
2239
2240 static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos)
2241 {
2242 struct super_block *sb = seq->private;
2243 ext4_group_t group;
2244
2245 if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2246 return NULL;
2247 group = *pos + 1;
2248 return (void *) ((unsigned long) group);
2249 }
2250
2251 static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos)
2252 {
2253 struct super_block *sb = seq->private;
2254 ext4_group_t group;
2255
2256 ++*pos;
2257 if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2258 return NULL;
2259 group = *pos + 1;
2260 return (void *) ((unsigned long) group);
2261 }
2262
2263 static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v)
2264 {
2265 struct super_block *sb = seq->private;
2266 ext4_group_t group = (ext4_group_t) ((unsigned long) v);
2267 int i;
2268 int err, buddy_loaded = 0;
2269 struct ext4_buddy e4b;
2270 struct ext4_group_info *grinfo;
2271 struct sg {
2272 struct ext4_group_info info;
2273 ext4_grpblk_t counters[16];
2274 } sg;
2275
2276 group--;
2277 if (group == 0)
2278 seq_puts(seq, "#group: free frags first ["
2279 " 2^0 2^1 2^2 2^3 2^4 2^5 2^6 "
2280 " 2^7 2^8 2^9 2^10 2^11 2^12 2^13 ]");
2281
2282 i = (sb->s_blocksize_bits + 2) * sizeof(sg.info.bb_counters[0]) +
2283 sizeof(struct ext4_group_info);
2284 grinfo = ext4_get_group_info(sb, group);
2285 /* Load the group info in memory only if not already loaded. */
2286 if (unlikely(EXT4_MB_GRP_NEED_INIT(grinfo))) {
2287 err = ext4_mb_load_buddy(sb, group, &e4b);
2288 if (err) {
2289 seq_printf(seq, "#%-5u: I/O error\n", group);
2290 return 0;
2291 }
2292 buddy_loaded = 1;
2293 }
2294
2295 memcpy(&sg, ext4_get_group_info(sb, group), i);
2296
2297 if (buddy_loaded)
2298 ext4_mb_unload_buddy(&e4b);
2299
2300 seq_printf(seq, "#%-5u: %-5u %-5u %-5u [", group, sg.info.bb_free,
2301 sg.info.bb_fragments, sg.info.bb_first_free);
2302 for (i = 0; i <= 13; i++)
2303 seq_printf(seq, " %-5u", i <= sb->s_blocksize_bits + 1 ?
2304 sg.info.bb_counters[i] : 0);
2305 seq_printf(seq, " ]\n");
2306
2307 return 0;
2308 }
2309
2310 static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v)
2311 {
2312 }
2313
2314 static const struct seq_operations ext4_mb_seq_groups_ops = {
2315 .start = ext4_mb_seq_groups_start,
2316 .next = ext4_mb_seq_groups_next,
2317 .stop = ext4_mb_seq_groups_stop,
2318 .show = ext4_mb_seq_groups_show,
2319 };
2320
2321 static int ext4_mb_seq_groups_open(struct inode *inode, struct file *file)
2322 {
2323 struct super_block *sb = PDE_DATA(inode);
2324 int rc;
2325
2326 rc = seq_open(file, &ext4_mb_seq_groups_ops);
2327 if (rc == 0) {
2328 struct seq_file *m = file->private_data;
2329 m->private = sb;
2330 }
2331 return rc;
2332
2333 }
2334
2335 static const struct file_operations ext4_mb_seq_groups_fops = {
2336 .owner = THIS_MODULE,
2337 .open = ext4_mb_seq_groups_open,
2338 .read = seq_read,
2339 .llseek = seq_lseek,
2340 .release = seq_release,
2341 };
2342
2343 static struct kmem_cache *get_groupinfo_cache(int blocksize_bits)
2344 {
2345 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
2346 struct kmem_cache *cachep = ext4_groupinfo_caches[cache_index];
2347
2348 BUG_ON(!cachep);
2349 return cachep;
2350 }
2351
2352 /*
2353 * Allocate the top-level s_group_info array for the specified number
2354 * of groups
2355 */
2356 int ext4_mb_alloc_groupinfo(struct super_block *sb, ext4_group_t ngroups)
2357 {
2358 struct ext4_sb_info *sbi = EXT4_SB(sb);
2359 unsigned size;
2360 struct ext4_group_info ***new_groupinfo;
2361
2362 size = (ngroups + EXT4_DESC_PER_BLOCK(sb) - 1) >>
2363 EXT4_DESC_PER_BLOCK_BITS(sb);
2364 if (size <= sbi->s_group_info_size)
2365 return 0;
2366
2367 size = roundup_pow_of_two(sizeof(*sbi->s_group_info) * size);
2368 new_groupinfo = ext4_kvzalloc(size, GFP_KERNEL);
2369 if (!new_groupinfo) {
2370 ext4_msg(sb, KERN_ERR, "can't allocate buddy meta group");
2371 return -ENOMEM;
2372 }
2373 if (sbi->s_group_info) {
2374 memcpy(new_groupinfo, sbi->s_group_info,
2375 sbi->s_group_info_size * sizeof(*sbi->s_group_info));
2376 kvfree(sbi->s_group_info);
2377 }
2378 sbi->s_group_info = new_groupinfo;
2379 sbi->s_group_info_size = size / sizeof(*sbi->s_group_info);
2380 ext4_debug("allocated s_groupinfo array for %d meta_bg's\n",
2381 sbi->s_group_info_size);
2382 return 0;
2383 }
2384
2385 /* Create and initialize ext4_group_info data for the given group. */
2386 int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group,
2387 struct ext4_group_desc *desc)
2388 {
2389 int i;
2390 int metalen = 0;
2391 struct ext4_sb_info *sbi = EXT4_SB(sb);
2392 struct ext4_group_info **meta_group_info;
2393 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2394
2395 /*
2396 * First check if this group is the first of a reserved block.
2397 * If it's true, we have to allocate a new table of pointers
2398 * to ext4_group_info structures
2399 */
2400 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
2401 metalen = sizeof(*meta_group_info) <<
2402 EXT4_DESC_PER_BLOCK_BITS(sb);
2403 meta_group_info = kmalloc(metalen, GFP_NOFS);
2404 if (meta_group_info == NULL) {
2405 ext4_msg(sb, KERN_ERR, "can't allocate mem "
2406 "for a buddy group");
2407 goto exit_meta_group_info;
2408 }
2409 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)] =
2410 meta_group_info;
2411 }
2412
2413 meta_group_info =
2414 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)];
2415 i = group & (EXT4_DESC_PER_BLOCK(sb) - 1);
2416
2417 meta_group_info[i] = kmem_cache_zalloc(cachep, GFP_NOFS);
2418 if (meta_group_info[i] == NULL) {
2419 ext4_msg(sb, KERN_ERR, "can't allocate buddy mem");
2420 goto exit_group_info;
2421 }
2422 set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT,
2423 &(meta_group_info[i]->bb_state));
2424
2425 /*
2426 * initialize bb_free to be able to skip
2427 * empty groups without initialization
2428 */
2429 if (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
2430 meta_group_info[i]->bb_free =
2431 ext4_free_clusters_after_init(sb, group, desc);
2432 } else {
2433 meta_group_info[i]->bb_free =
2434 ext4_free_group_clusters(sb, desc);
2435 }
2436
2437 INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list);
2438 init_rwsem(&meta_group_info[i]->alloc_sem);
2439 meta_group_info[i]->bb_free_root = RB_ROOT;
2440 meta_group_info[i]->bb_largest_free_order = -1; /* uninit */
2441
2442 #ifdef DOUBLE_CHECK
2443 {
2444 struct buffer_head *bh;
2445 meta_group_info[i]->bb_bitmap =
2446 kmalloc(sb->s_blocksize, GFP_NOFS);
2447 BUG_ON(meta_group_info[i]->bb_bitmap == NULL);
2448 bh = ext4_read_block_bitmap(sb, group);
2449 BUG_ON(bh == NULL);
2450 memcpy(meta_group_info[i]->bb_bitmap, bh->b_data,
2451 sb->s_blocksize);
2452 put_bh(bh);
2453 }
2454 #endif
2455
2456 return 0;
2457
2458 exit_group_info:
2459 /* If a meta_group_info table has been allocated, release it now */
2460 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
2461 kfree(sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)]);
2462 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)] = NULL;
2463 }
2464 exit_meta_group_info:
2465 return -ENOMEM;
2466 } /* ext4_mb_add_groupinfo */
2467
2468 static int ext4_mb_init_backend(struct super_block *sb)
2469 {
2470 ext4_group_t ngroups = ext4_get_groups_count(sb);
2471 ext4_group_t i;
2472 struct ext4_sb_info *sbi = EXT4_SB(sb);
2473 int err;
2474 struct ext4_group_desc *desc;
2475 struct kmem_cache *cachep;
2476
2477 err = ext4_mb_alloc_groupinfo(sb, ngroups);
2478 if (err)
2479 return err;
2480
2481 sbi->s_buddy_cache = new_inode(sb);
2482 if (sbi->s_buddy_cache == NULL) {
2483 ext4_msg(sb, KERN_ERR, "can't get new inode");
2484 goto err_freesgi;
2485 }
2486 /* To avoid potentially colliding with an valid on-disk inode number,
2487 * use EXT4_BAD_INO for the buddy cache inode number. This inode is
2488 * not in the inode hash, so it should never be found by iget(), but
2489 * this will avoid confusion if it ever shows up during debugging. */
2490 sbi->s_buddy_cache->i_ino = EXT4_BAD_INO;
2491 EXT4_I(sbi->s_buddy_cache)->i_disksize = 0;
2492 for (i = 0; i < ngroups; i++) {
2493 desc = ext4_get_group_desc(sb, i, NULL);
2494 if (desc == NULL) {
2495 ext4_msg(sb, KERN_ERR, "can't read descriptor %u", i);
2496 goto err_freebuddy;
2497 }
2498 if (ext4_mb_add_groupinfo(sb, i, desc) != 0)
2499 goto err_freebuddy;
2500 }
2501
2502 return 0;
2503
2504 err_freebuddy:
2505 cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2506 while (i-- > 0)
2507 kmem_cache_free(cachep, ext4_get_group_info(sb, i));
2508 i = sbi->s_group_info_size;
2509 while (i-- > 0)
2510 kfree(sbi->s_group_info[i]);
2511 iput(sbi->s_buddy_cache);
2512 err_freesgi:
2513 kvfree(sbi->s_group_info);
2514 return -ENOMEM;
2515 }
2516
2517 static void ext4_groupinfo_destroy_slabs(void)
2518 {
2519 int i;
2520
2521 for (i = 0; i < NR_GRPINFO_CACHES; i++) {
2522 if (ext4_groupinfo_caches[i])
2523 kmem_cache_destroy(ext4_groupinfo_caches[i]);
2524 ext4_groupinfo_caches[i] = NULL;
2525 }
2526 }
2527
2528 static int ext4_groupinfo_create_slab(size_t size)
2529 {
2530 static DEFINE_MUTEX(ext4_grpinfo_slab_create_mutex);
2531 int slab_size;
2532 int blocksize_bits = order_base_2(size);
2533 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
2534 struct kmem_cache *cachep;
2535
2536 if (cache_index >= NR_GRPINFO_CACHES)
2537 return -EINVAL;
2538
2539 if (unlikely(cache_index < 0))
2540 cache_index = 0;
2541
2542 mutex_lock(&ext4_grpinfo_slab_create_mutex);
2543 if (ext4_groupinfo_caches[cache_index]) {
2544 mutex_unlock(&ext4_grpinfo_slab_create_mutex);
2545 return 0; /* Already created */
2546 }
2547
2548 slab_size = offsetof(struct ext4_group_info,
2549 bb_counters[blocksize_bits + 2]);
2550
2551 cachep = kmem_cache_create(ext4_groupinfo_slab_names[cache_index],
2552 slab_size, 0, SLAB_RECLAIM_ACCOUNT,
2553 NULL);
2554
2555 ext4_groupinfo_caches[cache_index] = cachep;
2556
2557 mutex_unlock(&ext4_grpinfo_slab_create_mutex);
2558 if (!cachep) {
2559 printk(KERN_EMERG
2560 "EXT4-fs: no memory for groupinfo slab cache\n");
2561 return -ENOMEM;
2562 }
2563
2564 return 0;
2565 }
2566
2567 int ext4_mb_init(struct super_block *sb)
2568 {
2569 struct ext4_sb_info *sbi = EXT4_SB(sb);
2570 unsigned i, j;
2571 unsigned offset;
2572 unsigned max;
2573 int ret;
2574
2575 i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_offsets);
2576
2577 sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL);
2578 if (sbi->s_mb_offsets == NULL) {
2579 ret = -ENOMEM;
2580 goto out;
2581 }
2582
2583 i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_maxs);
2584 sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL);
2585 if (sbi->s_mb_maxs == NULL) {
2586 ret = -ENOMEM;
2587 goto out;
2588 }
2589
2590 ret = ext4_groupinfo_create_slab(sb->s_blocksize);
2591 if (ret < 0)
2592 goto out;
2593
2594 /* order 0 is regular bitmap */
2595 sbi->s_mb_maxs[0] = sb->s_blocksize << 3;
2596 sbi->s_mb_offsets[0] = 0;
2597
2598 i = 1;
2599 offset = 0;
2600 max = sb->s_blocksize << 2;
2601 do {
2602 sbi->s_mb_offsets[i] = offset;
2603 sbi->s_mb_maxs[i] = max;
2604 offset += 1 << (sb->s_blocksize_bits - i);
2605 max = max >> 1;
2606 i++;
2607 } while (i <= sb->s_blocksize_bits + 1);
2608
2609 spin_lock_init(&sbi->s_md_lock);
2610 spin_lock_init(&sbi->s_bal_lock);
2611
2612 sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN;
2613 sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN;
2614 sbi->s_mb_stats = MB_DEFAULT_STATS;
2615 sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD;
2616 sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS;
2617 /*
2618 * The default group preallocation is 512, which for 4k block
2619 * sizes translates to 2 megabytes. However for bigalloc file
2620 * systems, this is probably too big (i.e, if the cluster size
2621 * is 1 megabyte, then group preallocation size becomes half a
2622 * gigabyte!). As a default, we will keep a two megabyte
2623 * group pralloc size for cluster sizes up to 64k, and after
2624 * that, we will force a minimum group preallocation size of
2625 * 32 clusters. This translates to 8 megs when the cluster
2626 * size is 256k, and 32 megs when the cluster size is 1 meg,
2627 * which seems reasonable as a default.
2628 */
2629 sbi->s_mb_group_prealloc = max(MB_DEFAULT_GROUP_PREALLOC >>
2630 sbi->s_cluster_bits, 32);
2631 /*
2632 * If there is a s_stripe > 1, then we set the s_mb_group_prealloc
2633 * to the lowest multiple of s_stripe which is bigger than
2634 * the s_mb_group_prealloc as determined above. We want
2635 * the preallocation size to be an exact multiple of the
2636 * RAID stripe size so that preallocations don't fragment
2637 * the stripes.
2638 */
2639 if (sbi->s_stripe > 1) {
2640 sbi->s_mb_group_prealloc = roundup(
2641 sbi->s_mb_group_prealloc, sbi->s_stripe);
2642 }
2643
2644 sbi->s_locality_groups = alloc_percpu(struct ext4_locality_group);
2645 if (sbi->s_locality_groups == NULL) {
2646 ret = -ENOMEM;
2647 goto out;
2648 }
2649 for_each_possible_cpu(i) {
2650 struct ext4_locality_group *lg;
2651 lg = per_cpu_ptr(sbi->s_locality_groups, i);
2652 mutex_init(&lg->lg_mutex);
2653 for (j = 0; j < PREALLOC_TB_SIZE; j++)
2654 INIT_LIST_HEAD(&lg->lg_prealloc_list[j]);
2655 spin_lock_init(&lg->lg_prealloc_lock);
2656 }
2657
2658 /* init file for buddy data */
2659 ret = ext4_mb_init_backend(sb);
2660 if (ret != 0)
2661 goto out_free_locality_groups;
2662
2663 if (sbi->s_proc)
2664 proc_create_data("mb_groups", S_IRUGO, sbi->s_proc,
2665 &ext4_mb_seq_groups_fops, sb);
2666
2667 return 0;
2668
2669 out_free_locality_groups:
2670 free_percpu(sbi->s_locality_groups);
2671 sbi->s_locality_groups = NULL;
2672 out:
2673 kfree(sbi->s_mb_offsets);
2674 sbi->s_mb_offsets = NULL;
2675 kfree(sbi->s_mb_maxs);
2676 sbi->s_mb_maxs = NULL;
2677 return ret;
2678 }
2679
2680 /* need to called with the ext4 group lock held */
2681 static void ext4_mb_cleanup_pa(struct ext4_group_info *grp)
2682 {
2683 struct ext4_prealloc_space *pa;
2684 struct list_head *cur, *tmp;
2685 int count = 0;
2686
2687 list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) {
2688 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
2689 list_del(&pa->pa_group_list);
2690 count++;
2691 kmem_cache_free(ext4_pspace_cachep, pa);
2692 }
2693 if (count)
2694 mb_debug(1, "mballoc: %u PAs left\n", count);
2695
2696 }
2697
2698 int ext4_mb_release(struct super_block *sb)
2699 {
2700 ext4_group_t ngroups = ext4_get_groups_count(sb);
2701 ext4_group_t i;
2702 int num_meta_group_infos;
2703 struct ext4_group_info *grinfo;
2704 struct ext4_sb_info *sbi = EXT4_SB(sb);
2705 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2706
2707 if (sbi->s_proc)
2708 remove_proc_entry("mb_groups", sbi->s_proc);
2709
2710 if (sbi->s_group_info) {
2711 for (i = 0; i < ngroups; i++) {
2712 grinfo = ext4_get_group_info(sb, i);
2713 #ifdef DOUBLE_CHECK
2714 kfree(grinfo->bb_bitmap);
2715 #endif
2716 ext4_lock_group(sb, i);
2717 ext4_mb_cleanup_pa(grinfo);
2718 ext4_unlock_group(sb, i);
2719 kmem_cache_free(cachep, grinfo);
2720 }
2721 num_meta_group_infos = (ngroups +
2722 EXT4_DESC_PER_BLOCK(sb) - 1) >>
2723 EXT4_DESC_PER_BLOCK_BITS(sb);
2724 for (i = 0; i < num_meta_group_infos; i++)
2725 kfree(sbi->s_group_info[i]);
2726 kvfree(sbi->s_group_info);
2727 }
2728 kfree(sbi->s_mb_offsets);
2729 kfree(sbi->s_mb_maxs);
2730 iput(sbi->s_buddy_cache);
2731 if (sbi->s_mb_stats) {
2732 ext4_msg(sb, KERN_INFO,
2733 "mballoc: %u blocks %u reqs (%u success)",
2734 atomic_read(&sbi->s_bal_allocated),
2735 atomic_read(&sbi->s_bal_reqs),
2736 atomic_read(&sbi->s_bal_success));
2737 ext4_msg(sb, KERN_INFO,
2738 "mballoc: %u extents scanned, %u goal hits, "
2739 "%u 2^N hits, %u breaks, %u lost",
2740 atomic_read(&sbi->s_bal_ex_scanned),
2741 atomic_read(&sbi->s_bal_goals),
2742 atomic_read(&sbi->s_bal_2orders),
2743 atomic_read(&sbi->s_bal_breaks),
2744 atomic_read(&sbi->s_mb_lost_chunks));
2745 ext4_msg(sb, KERN_INFO,
2746 "mballoc: %lu generated and it took %Lu",
2747 sbi->s_mb_buddies_generated,
2748 sbi->s_mb_generation_time);
2749 ext4_msg(sb, KERN_INFO,
2750 "mballoc: %u preallocated, %u discarded",
2751 atomic_read(&sbi->s_mb_preallocated),
2752 atomic_read(&sbi->s_mb_discarded));
2753 }
2754
2755 free_percpu(sbi->s_locality_groups);
2756
2757 return 0;
2758 }
2759
2760 static inline int ext4_issue_discard(struct super_block *sb,
2761 ext4_group_t block_group, ext4_grpblk_t cluster, int count)
2762 {
2763 ext4_fsblk_t discard_block;
2764
2765 discard_block = (EXT4_C2B(EXT4_SB(sb), cluster) +
2766 ext4_group_first_block_no(sb, block_group));
2767 count = EXT4_C2B(EXT4_SB(sb), count);
2768 trace_ext4_discard_blocks(sb,
2769 (unsigned long long) discard_block, count);
2770 return sb_issue_discard(sb, discard_block, count, GFP_NOFS, 0);
2771 }
2772
2773 /*
2774 * This function is called by the jbd2 layer once the commit has finished,
2775 * so we know we can free the blocks that were released with that commit.
2776 */
2777 static void ext4_free_data_callback(struct super_block *sb,
2778 struct ext4_journal_cb_entry *jce,
2779 int rc)
2780 {
2781 struct ext4_free_data *entry = (struct ext4_free_data *)jce;
2782 struct ext4_buddy e4b;
2783 struct ext4_group_info *db;
2784 int err, count = 0, count2 = 0;
2785
2786 mb_debug(1, "gonna free %u blocks in group %u (0x%p):",
2787 entry->efd_count, entry->efd_group, entry);
2788
2789 if (test_opt(sb, DISCARD)) {
2790 err = ext4_issue_discard(sb, entry->efd_group,
2791 entry->efd_start_cluster,
2792 entry->efd_count);
2793 if (err && err != -EOPNOTSUPP)
2794 ext4_msg(sb, KERN_WARNING, "discard request in"
2795 " group:%d block:%d count:%d failed"
2796 " with %d", entry->efd_group,
2797 entry->efd_start_cluster,
2798 entry->efd_count, err);
2799 }
2800
2801 err = ext4_mb_load_buddy(sb, entry->efd_group, &e4b);
2802 /* we expect to find existing buddy because it's pinned */
2803 BUG_ON(err != 0);
2804
2805
2806 db = e4b.bd_info;
2807 /* there are blocks to put in buddy to make them really free */
2808 count += entry->efd_count;
2809 count2++;
2810 ext4_lock_group(sb, entry->efd_group);
2811 /* Take it out of per group rb tree */
2812 rb_erase(&entry->efd_node, &(db->bb_free_root));
2813 mb_free_blocks(NULL, &e4b, entry->efd_start_cluster, entry->efd_count);
2814
2815 /*
2816 * Clear the trimmed flag for the group so that the next
2817 * ext4_trim_fs can trim it.
2818 * If the volume is mounted with -o discard, online discard
2819 * is supported and the free blocks will be trimmed online.
2820 */
2821 if (!test_opt(sb, DISCARD))
2822 EXT4_MB_GRP_CLEAR_TRIMMED(db);
2823
2824 if (!db->bb_free_root.rb_node) {
2825 /* No more items in the per group rb tree
2826 * balance refcounts from ext4_mb_free_metadata()
2827 */
2828 page_cache_release(e4b.bd_buddy_page);
2829 page_cache_release(e4b.bd_bitmap_page);
2830 }
2831 ext4_unlock_group(sb, entry->efd_group);
2832 kmem_cache_free(ext4_free_data_cachep, entry);
2833 ext4_mb_unload_buddy(&e4b);
2834
2835 mb_debug(1, "freed %u blocks in %u structures\n", count, count2);
2836 }
2837
2838 int __init ext4_init_mballoc(void)
2839 {
2840 ext4_pspace_cachep = KMEM_CACHE(ext4_prealloc_space,
2841 SLAB_RECLAIM_ACCOUNT);
2842 if (ext4_pspace_cachep == NULL)
2843 return -ENOMEM;
2844
2845 ext4_ac_cachep = KMEM_CACHE(ext4_allocation_context,
2846 SLAB_RECLAIM_ACCOUNT);
2847 if (ext4_ac_cachep == NULL) {
2848 kmem_cache_destroy(ext4_pspace_cachep);
2849 return -ENOMEM;
2850 }
2851
2852 ext4_free_data_cachep = KMEM_CACHE(ext4_free_data,
2853 SLAB_RECLAIM_ACCOUNT);
2854 if (ext4_free_data_cachep == NULL) {
2855 kmem_cache_destroy(ext4_pspace_cachep);
2856 kmem_cache_destroy(ext4_ac_cachep);
2857 return -ENOMEM;
2858 }
2859 return 0;
2860 }
2861
2862 void ext4_exit_mballoc(void)
2863 {
2864 /*
2865 * Wait for completion of call_rcu()'s on ext4_pspace_cachep
2866 * before destroying the slab cache.
2867 */
2868 rcu_barrier();
2869 kmem_cache_destroy(ext4_pspace_cachep);
2870 kmem_cache_destroy(ext4_ac_cachep);
2871 kmem_cache_destroy(ext4_free_data_cachep);
2872 ext4_groupinfo_destroy_slabs();
2873 }
2874
2875
2876 /*
2877 * Check quota and mark chosen space (ac->ac_b_ex) non-free in bitmaps
2878 * Returns 0 if success or error code
2879 */
2880 static noinline_for_stack int
2881 ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac,
2882 handle_t *handle, unsigned int reserv_clstrs)
2883 {
2884 struct buffer_head *bitmap_bh = NULL;
2885 struct ext4_group_desc *gdp;
2886 struct buffer_head *gdp_bh;
2887 struct ext4_sb_info *sbi;
2888 struct super_block *sb;
2889 ext4_fsblk_t block;
2890 int err, len;
2891
2892 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
2893 BUG_ON(ac->ac_b_ex.fe_len <= 0);
2894
2895 sb = ac->ac_sb;
2896 sbi = EXT4_SB(sb);
2897
2898 err = -EIO;
2899 bitmap_bh = ext4_read_block_bitmap(sb, ac->ac_b_ex.fe_group);
2900 if (!bitmap_bh)
2901 goto out_err;
2902
2903 BUFFER_TRACE(bitmap_bh, "getting write access");
2904 err = ext4_journal_get_write_access(handle, bitmap_bh);
2905 if (err)
2906 goto out_err;
2907
2908 err = -EIO;
2909 gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, &gdp_bh);
2910 if (!gdp)
2911 goto out_err;
2912
2913 ext4_debug("using block group %u(%d)\n", ac->ac_b_ex.fe_group,
2914 ext4_free_group_clusters(sb, gdp));
2915
2916 BUFFER_TRACE(gdp_bh, "get_write_access");
2917 err = ext4_journal_get_write_access(handle, gdp_bh);
2918 if (err)
2919 goto out_err;
2920
2921 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
2922
2923 len = EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
2924 if (!ext4_data_block_valid(sbi, block, len)) {
2925 ext4_error(sb, "Allocating blocks %llu-%llu which overlap "
2926 "fs metadata", block, block+len);
2927 /* File system mounted not to panic on error
2928 * Fix the bitmap and repeat the block allocation
2929 * We leak some of the blocks here.
2930 */
2931 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
2932 ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
2933 ac->ac_b_ex.fe_len);
2934 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
2935 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
2936 if (!err)
2937 err = -EAGAIN;
2938 goto out_err;
2939 }
2940
2941 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
2942 #ifdef AGGRESSIVE_CHECK
2943 {
2944 int i;
2945 for (i = 0; i < ac->ac_b_ex.fe_len; i++) {
2946 BUG_ON(mb_test_bit(ac->ac_b_ex.fe_start + i,
2947 bitmap_bh->b_data));
2948 }
2949 }
2950 #endif
2951 ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
2952 ac->ac_b_ex.fe_len);
2953 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
2954 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
2955 ext4_free_group_clusters_set(sb, gdp,
2956 ext4_free_clusters_after_init(sb,
2957 ac->ac_b_ex.fe_group, gdp));
2958 }
2959 len = ext4_free_group_clusters(sb, gdp) - ac->ac_b_ex.fe_len;
2960 ext4_free_group_clusters_set(sb, gdp, len);
2961 ext4_block_bitmap_csum_set(sb, ac->ac_b_ex.fe_group, gdp, bitmap_bh);
2962 ext4_group_desc_csum_set(sb, ac->ac_b_ex.fe_group, gdp);
2963
2964 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
2965 percpu_counter_sub(&sbi->s_freeclusters_counter, ac->ac_b_ex.fe_len);
2966 /*
2967 * Now reduce the dirty block count also. Should not go negative
2968 */
2969 if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED))
2970 /* release all the reserved blocks if non delalloc */
2971 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
2972 reserv_clstrs);
2973
2974 if (sbi->s_log_groups_per_flex) {
2975 ext4_group_t flex_group = ext4_flex_group(sbi,
2976 ac->ac_b_ex.fe_group);
2977 atomic64_sub(ac->ac_b_ex.fe_len,
2978 &sbi->s_flex_groups[flex_group].free_clusters);
2979 }
2980
2981 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
2982 if (err)
2983 goto out_err;
2984 err = ext4_handle_dirty_metadata(handle, NULL, gdp_bh);
2985
2986 out_err:
2987 brelse(bitmap_bh);
2988 return err;
2989 }
2990
2991 /*
2992 * here we normalize request for locality group
2993 * Group request are normalized to s_mb_group_prealloc, which goes to
2994 * s_strip if we set the same via mount option.
2995 * s_mb_group_prealloc can be configured via
2996 * /sys/fs/ext4/<partition>/mb_group_prealloc
2997 *
2998 * XXX: should we try to preallocate more than the group has now?
2999 */
3000 static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac)
3001 {
3002 struct super_block *sb = ac->ac_sb;
3003 struct ext4_locality_group *lg = ac->ac_lg;
3004
3005 BUG_ON(lg == NULL);
3006 ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc;
3007 mb_debug(1, "#%u: goal %u blocks for locality group\n",
3008 current->pid, ac->ac_g_ex.fe_len);
3009 }
3010
3011 /*
3012 * Normalization means making request better in terms of
3013 * size and alignment
3014 */
3015 static noinline_for_stack void
3016 ext4_mb_normalize_request(struct ext4_allocation_context *ac,
3017 struct ext4_allocation_request *ar)
3018 {
3019 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3020 int bsbits, max;
3021 ext4_lblk_t end;
3022 loff_t size, start_off;
3023 loff_t orig_size __maybe_unused;
3024 ext4_lblk_t start;
3025 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
3026 struct ext4_prealloc_space *pa;
3027
3028 /* do normalize only data requests, metadata requests
3029 do not need preallocation */
3030 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3031 return;
3032
3033 /* sometime caller may want exact blocks */
3034 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
3035 return;
3036
3037 /* caller may indicate that preallocation isn't
3038 * required (it's a tail, for example) */
3039 if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC)
3040 return;
3041
3042 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) {
3043 ext4_mb_normalize_group_request(ac);
3044 return ;
3045 }
3046
3047 bsbits = ac->ac_sb->s_blocksize_bits;
3048
3049 /* first, let's learn actual file size
3050 * given current request is allocated */
3051 size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len);
3052 size = size << bsbits;
3053 if (size < i_size_read(ac->ac_inode))
3054 size = i_size_read(ac->ac_inode);
3055 orig_size = size;
3056
3057 /* max size of free chunks */
3058 max = 2 << bsbits;
3059
3060 #define NRL_CHECK_SIZE(req, size, max, chunk_size) \
3061 (req <= (size) || max <= (chunk_size))
3062
3063 /* first, try to predict filesize */
3064 /* XXX: should this table be tunable? */
3065 start_off = 0;
3066 if (size <= 16 * 1024) {
3067 size = 16 * 1024;
3068 } else if (size <= 32 * 1024) {
3069 size = 32 * 1024;
3070 } else if (size <= 64 * 1024) {
3071 size = 64 * 1024;
3072 } else if (size <= 128 * 1024) {
3073 size = 128 * 1024;
3074 } else if (size <= 256 * 1024) {
3075 size = 256 * 1024;
3076 } else if (size <= 512 * 1024) {
3077 size = 512 * 1024;
3078 } else if (size <= 1024 * 1024) {
3079 size = 1024 * 1024;
3080 } else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) {
3081 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3082 (21 - bsbits)) << 21;
3083 size = 2 * 1024 * 1024;
3084 } else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) {
3085 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3086 (22 - bsbits)) << 22;
3087 size = 4 * 1024 * 1024;
3088 } else if (NRL_CHECK_SIZE(ac->ac_o_ex.fe_len,
3089 (8<<20)>>bsbits, max, 8 * 1024)) {
3090 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3091 (23 - bsbits)) << 23;
3092 size = 8 * 1024 * 1024;
3093 } else {
3094 start_off = (loff_t) ac->ac_o_ex.fe_logical << bsbits;
3095 size = (loff_t) EXT4_C2B(EXT4_SB(ac->ac_sb),
3096 ac->ac_o_ex.fe_len) << bsbits;
3097 }
3098 size = size >> bsbits;
3099 start = start_off >> bsbits;
3100
3101 /* don't cover already allocated blocks in selected range */
3102 if (ar->pleft && start <= ar->lleft) {
3103 size -= ar->lleft + 1 - start;
3104 start = ar->lleft + 1;
3105 }
3106 if (ar->pright && start + size - 1 >= ar->lright)
3107 size -= start + size - ar->lright;
3108
3109 end = start + size;
3110
3111 /* check we don't cross already preallocated blocks */
3112 rcu_read_lock();
3113 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3114 ext4_lblk_t pa_end;
3115
3116 if (pa->pa_deleted)
3117 continue;
3118 spin_lock(&pa->pa_lock);
3119 if (pa->pa_deleted) {
3120 spin_unlock(&pa->pa_lock);
3121 continue;
3122 }
3123
3124 pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb),
3125 pa->pa_len);
3126
3127 /* PA must not overlap original request */
3128 BUG_ON(!(ac->ac_o_ex.fe_logical >= pa_end ||
3129 ac->ac_o_ex.fe_logical < pa->pa_lstart));
3130
3131 /* skip PAs this normalized request doesn't overlap with */
3132 if (pa->pa_lstart >= end || pa_end <= start) {
3133 spin_unlock(&pa->pa_lock);
3134 continue;
3135 }
3136 BUG_ON(pa->pa_lstart <= start && pa_end >= end);
3137
3138 /* adjust start or end to be adjacent to this pa */
3139 if (pa_end <= ac->ac_o_ex.fe_logical) {
3140 BUG_ON(pa_end < start);
3141 start = pa_end;
3142 } else if (pa->pa_lstart > ac->ac_o_ex.fe_logical) {
3143 BUG_ON(pa->pa_lstart > end);
3144 end = pa->pa_lstart;
3145 }
3146 spin_unlock(&pa->pa_lock);
3147 }
3148 rcu_read_unlock();
3149 size = end - start;
3150
3151 /* XXX: extra loop to check we really don't overlap preallocations */
3152 rcu_read_lock();
3153 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3154 ext4_lblk_t pa_end;
3155
3156 spin_lock(&pa->pa_lock);
3157 if (pa->pa_deleted == 0) {
3158 pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb),
3159 pa->pa_len);
3160 BUG_ON(!(start >= pa_end || end <= pa->pa_lstart));
3161 }
3162 spin_unlock(&pa->pa_lock);
3163 }
3164 rcu_read_unlock();
3165
3166 if (start + size <= ac->ac_o_ex.fe_logical &&
3167 start > ac->ac_o_ex.fe_logical) {
3168 ext4_msg(ac->ac_sb, KERN_ERR,
3169 "start %lu, size %lu, fe_logical %lu",
3170 (unsigned long) start, (unsigned long) size,
3171 (unsigned long) ac->ac_o_ex.fe_logical);
3172 BUG();
3173 }
3174 BUG_ON(size <= 0 || size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb));
3175
3176 /* now prepare goal request */
3177
3178 /* XXX: is it better to align blocks WRT to logical
3179 * placement or satisfy big request as is */
3180 ac->ac_g_ex.fe_logical = start;
3181 ac->ac_g_ex.fe_len = EXT4_NUM_B2C(sbi, size);
3182
3183 /* define goal start in order to merge */
3184 if (ar->pright && (ar->lright == (start + size))) {
3185 /* merge to the right */
3186 ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size,
3187 &ac->ac_f_ex.fe_group,
3188 &ac->ac_f_ex.fe_start);
3189 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3190 }
3191 if (ar->pleft && (ar->lleft + 1 == start)) {
3192 /* merge to the left */
3193 ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1,
3194 &ac->ac_f_ex.fe_group,
3195 &ac->ac_f_ex.fe_start);
3196 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3197 }
3198
3199 mb_debug(1, "goal: %u(was %u) blocks at %u\n", (unsigned) size,
3200 (unsigned) orig_size, (unsigned) start);
3201 }
3202
3203 static void ext4_mb_collect_stats(struct ext4_allocation_context *ac)
3204 {
3205 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3206
3207 if (sbi->s_mb_stats && ac->ac_g_ex.fe_len > 1) {
3208 atomic_inc(&sbi->s_bal_reqs);
3209 atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated);
3210 if (ac->ac_b_ex.fe_len >= ac->ac_o_ex.fe_len)
3211 atomic_inc(&sbi->s_bal_success);
3212 atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned);
3213 if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start &&
3214 ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group)
3215 atomic_inc(&sbi->s_bal_goals);
3216 if (ac->ac_found > sbi->s_mb_max_to_scan)
3217 atomic_inc(&sbi->s_bal_breaks);
3218 }
3219
3220 if (ac->ac_op == EXT4_MB_HISTORY_ALLOC)
3221 trace_ext4_mballoc_alloc(ac);
3222 else
3223 trace_ext4_mballoc_prealloc(ac);
3224 }
3225
3226 /*
3227 * Called on failure; free up any blocks from the inode PA for this
3228 * context. We don't need this for MB_GROUP_PA because we only change
3229 * pa_free in ext4_mb_release_context(), but on failure, we've already
3230 * zeroed out ac->ac_b_ex.fe_len, so group_pa->pa_free is not changed.
3231 */
3232 static void ext4_discard_allocated_blocks(struct ext4_allocation_context *ac)
3233 {
3234 struct ext4_prealloc_space *pa = ac->ac_pa;
3235 struct ext4_buddy e4b;
3236 int err;
3237
3238 if (pa == NULL) {
3239 if (ac->ac_f_ex.fe_len == 0)
3240 return;
3241 err = ext4_mb_load_buddy(ac->ac_sb, ac->ac_f_ex.fe_group, &e4b);
3242 if (err) {
3243 /*
3244 * This should never happen since we pin the
3245 * pages in the ext4_allocation_context so
3246 * ext4_mb_load_buddy() should never fail.
3247 */
3248 WARN(1, "mb_load_buddy failed (%d)", err);
3249 return;
3250 }
3251 ext4_lock_group(ac->ac_sb, ac->ac_f_ex.fe_group);
3252 mb_free_blocks(ac->ac_inode, &e4b, ac->ac_f_ex.fe_start,
3253 ac->ac_f_ex.fe_len);
3254 ext4_unlock_group(ac->ac_sb, ac->ac_f_ex.fe_group);
3255 ext4_mb_unload_buddy(&e4b);
3256 return;
3257 }
3258 if (pa->pa_type == MB_INODE_PA)
3259 pa->pa_free += ac->ac_b_ex.fe_len;
3260 }
3261
3262 /*
3263 * use blocks preallocated to inode
3264 */
3265 static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac,
3266 struct ext4_prealloc_space *pa)
3267 {
3268 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3269 ext4_fsblk_t start;
3270 ext4_fsblk_t end;
3271 int len;
3272
3273 /* found preallocated blocks, use them */
3274 start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart);
3275 end = min(pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len),
3276 start + EXT4_C2B(sbi, ac->ac_o_ex.fe_len));
3277 len = EXT4_NUM_B2C(sbi, end - start);
3278 ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group,
3279 &ac->ac_b_ex.fe_start);
3280 ac->ac_b_ex.fe_len = len;
3281 ac->ac_status = AC_STATUS_FOUND;
3282 ac->ac_pa = pa;
3283
3284 BUG_ON(start < pa->pa_pstart);
3285 BUG_ON(end > pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len));
3286 BUG_ON(pa->pa_free < len);
3287 pa->pa_free -= len;
3288
3289 mb_debug(1, "use %llu/%u from inode pa %p\n", start, len, pa);
3290 }
3291
3292 /*
3293 * use blocks preallocated to locality group
3294 */
3295 static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac,
3296 struct ext4_prealloc_space *pa)
3297 {
3298 unsigned int len = ac->ac_o_ex.fe_len;
3299
3300 ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart,
3301 &ac->ac_b_ex.fe_group,
3302 &ac->ac_b_ex.fe_start);
3303 ac->ac_b_ex.fe_len = len;
3304 ac->ac_status = AC_STATUS_FOUND;
3305 ac->ac_pa = pa;
3306
3307 /* we don't correct pa_pstart or pa_plen here to avoid
3308 * possible race when the group is being loaded concurrently
3309 * instead we correct pa later, after blocks are marked
3310 * in on-disk bitmap -- see ext4_mb_release_context()
3311 * Other CPUs are prevented from allocating from this pa by lg_mutex
3312 */
3313 mb_debug(1, "use %u/%u from group pa %p\n", pa->pa_lstart-len, len, pa);
3314 }
3315
3316 /*
3317 * Return the prealloc space that have minimal distance
3318 * from the goal block. @cpa is the prealloc
3319 * space that is having currently known minimal distance
3320 * from the goal block.
3321 */
3322 static struct ext4_prealloc_space *
3323 ext4_mb_check_group_pa(ext4_fsblk_t goal_block,
3324 struct ext4_prealloc_space *pa,
3325 struct ext4_prealloc_space *cpa)
3326 {
3327 ext4_fsblk_t cur_distance, new_distance;
3328
3329 if (cpa == NULL) {
3330 atomic_inc(&pa->pa_count);
3331 return pa;
3332 }
3333 cur_distance = abs(goal_block - cpa->pa_pstart);
3334 new_distance = abs(goal_block - pa->pa_pstart);
3335
3336 if (cur_distance <= new_distance)
3337 return cpa;
3338
3339 /* drop the previous reference */
3340 atomic_dec(&cpa->pa_count);
3341 atomic_inc(&pa->pa_count);
3342 return pa;
3343 }
3344
3345 /*
3346 * search goal blocks in preallocated space
3347 */
3348 static noinline_for_stack int
3349 ext4_mb_use_preallocated(struct ext4_allocation_context *ac)
3350 {
3351 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3352 int order, i;
3353 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
3354 struct ext4_locality_group *lg;
3355 struct ext4_prealloc_space *pa, *cpa = NULL;
3356 ext4_fsblk_t goal_block;
3357
3358 /* only data can be preallocated */
3359 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3360 return 0;
3361
3362 /* first, try per-file preallocation */
3363 rcu_read_lock();
3364 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3365
3366 /* all fields in this condition don't change,
3367 * so we can skip locking for them */
3368 if (ac->ac_o_ex.fe_logical < pa->pa_lstart ||
3369 ac->ac_o_ex.fe_logical >= (pa->pa_lstart +
3370 EXT4_C2B(sbi, pa->pa_len)))
3371 continue;
3372
3373 /* non-extent files can't have physical blocks past 2^32 */
3374 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)) &&
3375 (pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len) >
3376 EXT4_MAX_BLOCK_FILE_PHYS))
3377 continue;
3378
3379 /* found preallocated blocks, use them */
3380 spin_lock(&pa->pa_lock);
3381 if (pa->pa_deleted == 0 && pa->pa_free) {
3382 atomic_inc(&pa->pa_count);
3383 ext4_mb_use_inode_pa(ac, pa);
3384 spin_unlock(&pa->pa_lock);
3385 ac->ac_criteria = 10;
3386 rcu_read_unlock();
3387 return 1;
3388 }
3389 spin_unlock(&pa->pa_lock);
3390 }
3391 rcu_read_unlock();
3392
3393 /* can we use group allocation? */
3394 if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC))
3395 return 0;
3396
3397 /* inode may have no locality group for some reason */
3398 lg = ac->ac_lg;
3399 if (lg == NULL)
3400 return 0;
3401 order = fls(ac->ac_o_ex.fe_len) - 1;
3402 if (order > PREALLOC_TB_SIZE - 1)
3403 /* The max size of hash table is PREALLOC_TB_SIZE */
3404 order = PREALLOC_TB_SIZE - 1;
3405
3406 goal_block = ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex);
3407 /*
3408 * search for the prealloc space that is having
3409 * minimal distance from the goal block.
3410 */
3411 for (i = order; i < PREALLOC_TB_SIZE; i++) {
3412 rcu_read_lock();
3413 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[i],
3414 pa_inode_list) {
3415 spin_lock(&pa->pa_lock);
3416 if (pa->pa_deleted == 0 &&
3417 pa->pa_free >= ac->ac_o_ex.fe_len) {
3418
3419 cpa = ext4_mb_check_group_pa(goal_block,
3420 pa, cpa);
3421 }
3422 spin_unlock(&pa->pa_lock);
3423 }
3424 rcu_read_unlock();
3425 }
3426 if (cpa) {
3427 ext4_mb_use_group_pa(ac, cpa);
3428 ac->ac_criteria = 20;
3429 return 1;
3430 }
3431 return 0;
3432 }
3433
3434 /*
3435 * the function goes through all block freed in the group
3436 * but not yet committed and marks them used in in-core bitmap.
3437 * buddy must be generated from this bitmap
3438 * Need to be called with the ext4 group lock held
3439 */
3440 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
3441 ext4_group_t group)
3442 {
3443 struct rb_node *n;
3444 struct ext4_group_info *grp;
3445 struct ext4_free_data *entry;
3446
3447 grp = ext4_get_group_info(sb, group);
3448 n = rb_first(&(grp->bb_free_root));
3449
3450 while (n) {
3451 entry = rb_entry(n, struct ext4_free_data, efd_node);
3452 ext4_set_bits(bitmap, entry->efd_start_cluster, entry->efd_count);
3453 n = rb_next(n);
3454 }
3455 return;
3456 }
3457
3458 /*
3459 * the function goes through all preallocation in this group and marks them
3460 * used in in-core bitmap. buddy must be generated from this bitmap
3461 * Need to be called with ext4 group lock held
3462 */
3463 static noinline_for_stack
3464 void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
3465 ext4_group_t group)
3466 {
3467 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
3468 struct ext4_prealloc_space *pa;
3469 struct list_head *cur;
3470 ext4_group_t groupnr;
3471 ext4_grpblk_t start;
3472 int preallocated = 0;
3473 int len;
3474
3475 /* all form of preallocation discards first load group,
3476 * so the only competing code is preallocation use.
3477 * we don't need any locking here
3478 * notice we do NOT ignore preallocations with pa_deleted
3479 * otherwise we could leave used blocks available for
3480 * allocation in buddy when concurrent ext4_mb_put_pa()
3481 * is dropping preallocation
3482 */
3483 list_for_each(cur, &grp->bb_prealloc_list) {
3484 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
3485 spin_lock(&pa->pa_lock);
3486 ext4_get_group_no_and_offset(sb, pa->pa_pstart,
3487 &groupnr, &start);
3488 len = pa->pa_len;
3489 spin_unlock(&pa->pa_lock);
3490 if (unlikely(len == 0))
3491 continue;
3492 BUG_ON(groupnr != group);
3493 ext4_set_bits(bitmap, start, len);
3494 preallocated += len;
3495 }
3496 mb_debug(1, "prellocated %u for group %u\n", preallocated, group);
3497 }
3498
3499 static void ext4_mb_pa_callback(struct rcu_head *head)
3500 {
3501 struct ext4_prealloc_space *pa;
3502 pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu);
3503
3504 BUG_ON(atomic_read(&pa->pa_count));
3505 BUG_ON(pa->pa_deleted == 0);
3506 kmem_cache_free(ext4_pspace_cachep, pa);
3507 }
3508
3509 /*
3510 * drops a reference to preallocated space descriptor
3511 * if this was the last reference and the space is consumed
3512 */
3513 static void ext4_mb_put_pa(struct ext4_allocation_context *ac,
3514 struct super_block *sb, struct ext4_prealloc_space *pa)
3515 {
3516 ext4_group_t grp;
3517 ext4_fsblk_t grp_blk;
3518
3519 /* in this short window concurrent discard can set pa_deleted */
3520 spin_lock(&pa->pa_lock);
3521 if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0) {
3522 spin_unlock(&pa->pa_lock);
3523 return;
3524 }
3525
3526 if (pa->pa_deleted == 1) {
3527 spin_unlock(&pa->pa_lock);
3528 return;
3529 }
3530
3531 pa->pa_deleted = 1;
3532 spin_unlock(&pa->pa_lock);
3533
3534 grp_blk = pa->pa_pstart;
3535 /*
3536 * If doing group-based preallocation, pa_pstart may be in the
3537 * next group when pa is used up
3538 */
3539 if (pa->pa_type == MB_GROUP_PA)
3540 grp_blk--;
3541
3542 grp = ext4_get_group_number(sb, grp_blk);
3543
3544 /*
3545 * possible race:
3546 *
3547 * P1 (buddy init) P2 (regular allocation)
3548 * find block B in PA
3549 * copy on-disk bitmap to buddy
3550 * mark B in on-disk bitmap
3551 * drop PA from group
3552 * mark all PAs in buddy
3553 *
3554 * thus, P1 initializes buddy with B available. to prevent this
3555 * we make "copy" and "mark all PAs" atomic and serialize "drop PA"
3556 * against that pair
3557 */
3558 ext4_lock_group(sb, grp);
3559 list_del(&pa->pa_group_list);
3560 ext4_unlock_group(sb, grp);
3561
3562 spin_lock(pa->pa_obj_lock);
3563 list_del_rcu(&pa->pa_inode_list);
3564 spin_unlock(pa->pa_obj_lock);
3565
3566 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3567 }
3568
3569 /*
3570 * creates new preallocated space for given inode
3571 */
3572 static noinline_for_stack int
3573 ext4_mb_new_inode_pa(struct ext4_allocation_context *ac)
3574 {
3575 struct super_block *sb = ac->ac_sb;
3576 struct ext4_sb_info *sbi = EXT4_SB(sb);
3577 struct ext4_prealloc_space *pa;
3578 struct ext4_group_info *grp;
3579 struct ext4_inode_info *ei;
3580
3581 /* preallocate only when found space is larger then requested */
3582 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
3583 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3584 BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
3585
3586 pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
3587 if (pa == NULL)
3588 return -ENOMEM;
3589
3590 if (ac->ac_b_ex.fe_len < ac->ac_g_ex.fe_len) {
3591 int winl;
3592 int wins;
3593 int win;
3594 int offs;
3595
3596 /* we can't allocate as much as normalizer wants.
3597 * so, found space must get proper lstart
3598 * to cover original request */
3599 BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical);
3600 BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len);
3601
3602 /* we're limited by original request in that
3603 * logical block must be covered any way
3604 * winl is window we can move our chunk within */
3605 winl = ac->ac_o_ex.fe_logical - ac->ac_g_ex.fe_logical;
3606
3607 /* also, we should cover whole original request */
3608 wins = EXT4_C2B(sbi, ac->ac_b_ex.fe_len - ac->ac_o_ex.fe_len);
3609
3610 /* the smallest one defines real window */
3611 win = min(winl, wins);
3612
3613 offs = ac->ac_o_ex.fe_logical %
3614 EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
3615 if (offs && offs < win)
3616 win = offs;
3617
3618 ac->ac_b_ex.fe_logical = ac->ac_o_ex.fe_logical -
3619 EXT4_NUM_B2C(sbi, win);
3620 BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical);
3621 BUG_ON(ac->ac_o_ex.fe_len > ac->ac_b_ex.fe_len);
3622 }
3623
3624 /* preallocation can change ac_b_ex, thus we store actually
3625 * allocated blocks for history */
3626 ac->ac_f_ex = ac->ac_b_ex;
3627
3628 pa->pa_lstart = ac->ac_b_ex.fe_logical;
3629 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3630 pa->pa_len = ac->ac_b_ex.fe_len;
3631 pa->pa_free = pa->pa_len;
3632 atomic_set(&pa->pa_count, 1);
3633 spin_lock_init(&pa->pa_lock);
3634 INIT_LIST_HEAD(&pa->pa_inode_list);
3635 INIT_LIST_HEAD(&pa->pa_group_list);
3636 pa->pa_deleted = 0;
3637 pa->pa_type = MB_INODE_PA;
3638
3639 mb_debug(1, "new inode pa %p: %llu/%u for %u\n", pa,
3640 pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3641 trace_ext4_mb_new_inode_pa(ac, pa);
3642
3643 ext4_mb_use_inode_pa(ac, pa);
3644 atomic_add(pa->pa_free, &sbi->s_mb_preallocated);
3645
3646 ei = EXT4_I(ac->ac_inode);
3647 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
3648
3649 pa->pa_obj_lock = &ei->i_prealloc_lock;
3650 pa->pa_inode = ac->ac_inode;
3651
3652 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3653 list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
3654 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3655
3656 spin_lock(pa->pa_obj_lock);
3657 list_add_rcu(&pa->pa_inode_list, &ei->i_prealloc_list);
3658 spin_unlock(pa->pa_obj_lock);
3659
3660 return 0;
3661 }
3662
3663 /*
3664 * creates new preallocated space for locality group inodes belongs to
3665 */
3666 static noinline_for_stack int
3667 ext4_mb_new_group_pa(struct ext4_allocation_context *ac)
3668 {
3669 struct super_block *sb = ac->ac_sb;
3670 struct ext4_locality_group *lg;
3671 struct ext4_prealloc_space *pa;
3672 struct ext4_group_info *grp;
3673
3674 /* preallocate only when found space is larger then requested */
3675 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
3676 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3677 BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
3678
3679 BUG_ON(ext4_pspace_cachep == NULL);
3680 pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
3681 if (pa == NULL)
3682 return -ENOMEM;
3683
3684 /* preallocation can change ac_b_ex, thus we store actually
3685 * allocated blocks for history */
3686 ac->ac_f_ex = ac->ac_b_ex;
3687
3688 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3689 pa->pa_lstart = pa->pa_pstart;
3690 pa->pa_len = ac->ac_b_ex.fe_len;
3691 pa->pa_free = pa->pa_len;
3692 atomic_set(&pa->pa_count, 1);
3693 spin_lock_init(&pa->pa_lock);
3694 INIT_LIST_HEAD(&pa->pa_inode_list);
3695 INIT_LIST_HEAD(&pa->pa_group_list);
3696 pa->pa_deleted = 0;
3697 pa->pa_type = MB_GROUP_PA;
3698
3699 mb_debug(1, "new group pa %p: %llu/%u for %u\n", pa,
3700 pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3701 trace_ext4_mb_new_group_pa(ac, pa);
3702
3703 ext4_mb_use_group_pa(ac, pa);
3704 atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated);
3705
3706 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
3707 lg = ac->ac_lg;
3708 BUG_ON(lg == NULL);
3709
3710 pa->pa_obj_lock = &lg->lg_prealloc_lock;
3711 pa->pa_inode = NULL;
3712
3713 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3714 list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
3715 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3716
3717 /*
3718 * We will later add the new pa to the right bucket
3719 * after updating the pa_free in ext4_mb_release_context
3720 */
3721 return 0;
3722 }
3723
3724 static int ext4_mb_new_preallocation(struct ext4_allocation_context *ac)
3725 {
3726 int err;
3727
3728 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
3729 err = ext4_mb_new_group_pa(ac);
3730 else
3731 err = ext4_mb_new_inode_pa(ac);
3732 return err;
3733 }
3734
3735 /*
3736 * finds all unused blocks in on-disk bitmap, frees them in
3737 * in-core bitmap and buddy.
3738 * @pa must be unlinked from inode and group lists, so that
3739 * nobody else can find/use it.
3740 * the caller MUST hold group/inode locks.
3741 * TODO: optimize the case when there are no in-core structures yet
3742 */
3743 static noinline_for_stack int
3744 ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh,
3745 struct ext4_prealloc_space *pa)
3746 {
3747 struct super_block *sb = e4b->bd_sb;
3748 struct ext4_sb_info *sbi = EXT4_SB(sb);
3749 unsigned int end;
3750 unsigned int next;
3751 ext4_group_t group;
3752 ext4_grpblk_t bit;
3753 unsigned long long grp_blk_start;
3754 int err = 0;
3755 int free = 0;
3756
3757 BUG_ON(pa->pa_deleted == 0);
3758 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3759 grp_blk_start = pa->pa_pstart - EXT4_C2B(sbi, bit);
3760 BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
3761 end = bit + pa->pa_len;
3762
3763 while (bit < end) {
3764 bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit);
3765 if (bit >= end)
3766 break;
3767 next = mb_find_next_bit(bitmap_bh->b_data, end, bit);
3768 mb_debug(1, " free preallocated %u/%u in group %u\n",
3769 (unsigned) ext4_group_first_block_no(sb, group) + bit,
3770 (unsigned) next - bit, (unsigned) group);
3771 free += next - bit;
3772
3773 trace_ext4_mballoc_discard(sb, NULL, group, bit, next - bit);
3774 trace_ext4_mb_release_inode_pa(pa, (grp_blk_start +
3775 EXT4_C2B(sbi, bit)),
3776 next - bit);
3777 mb_free_blocks(pa->pa_inode, e4b, bit, next - bit);
3778 bit = next + 1;
3779 }
3780 if (free != pa->pa_free) {
3781 ext4_msg(e4b->bd_sb, KERN_CRIT,
3782 "pa %p: logic %lu, phys. %lu, len %lu",
3783 pa, (unsigned long) pa->pa_lstart,
3784 (unsigned long) pa->pa_pstart,
3785 (unsigned long) pa->pa_len);
3786 ext4_grp_locked_error(sb, group, 0, 0, "free %u, pa_free %u",
3787 free, pa->pa_free);
3788 /*
3789 * pa is already deleted so we use the value obtained
3790 * from the bitmap and continue.
3791 */
3792 }
3793 atomic_add(free, &sbi->s_mb_discarded);
3794
3795 return err;
3796 }
3797
3798 static noinline_for_stack int
3799 ext4_mb_release_group_pa(struct ext4_buddy *e4b,
3800 struct ext4_prealloc_space *pa)
3801 {
3802 struct super_block *sb = e4b->bd_sb;
3803 ext4_group_t group;
3804 ext4_grpblk_t bit;
3805
3806 trace_ext4_mb_release_group_pa(sb, pa);
3807 BUG_ON(pa->pa_deleted == 0);
3808 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3809 BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
3810 mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len);
3811 atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded);
3812 trace_ext4_mballoc_discard(sb, NULL, group, bit, pa->pa_len);
3813
3814 return 0;
3815 }
3816
3817 /*
3818 * releases all preallocations in given group
3819 *
3820 * first, we need to decide discard policy:
3821 * - when do we discard
3822 * 1) ENOSPC
3823 * - how many do we discard
3824 * 1) how many requested
3825 */
3826 static noinline_for_stack int
3827 ext4_mb_discard_group_preallocations(struct super_block *sb,
3828 ext4_group_t group, int needed)
3829 {
3830 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
3831 struct buffer_head *bitmap_bh = NULL;
3832 struct ext4_prealloc_space *pa, *tmp;
3833 struct list_head list;
3834 struct ext4_buddy e4b;
3835 int err;
3836 int busy = 0;
3837 int free = 0;
3838
3839 mb_debug(1, "discard preallocation for group %u\n", group);
3840
3841 if (list_empty(&grp->bb_prealloc_list))
3842 return 0;
3843
3844 bitmap_bh = ext4_read_block_bitmap(sb, group);
3845 if (bitmap_bh == NULL) {
3846 ext4_error(sb, "Error reading block bitmap for %u", group);
3847 return 0;
3848 }
3849
3850 err = ext4_mb_load_buddy(sb, group, &e4b);
3851 if (err) {
3852 ext4_error(sb, "Error loading buddy information for %u", group);
3853 put_bh(bitmap_bh);
3854 return 0;
3855 }
3856
3857 if (needed == 0)
3858 needed = EXT4_CLUSTERS_PER_GROUP(sb) + 1;
3859
3860 INIT_LIST_HEAD(&list);
3861 repeat:
3862 ext4_lock_group(sb, group);
3863 list_for_each_entry_safe(pa, tmp,
3864 &grp->bb_prealloc_list, pa_group_list) {
3865 spin_lock(&pa->pa_lock);
3866 if (atomic_read(&pa->pa_count)) {
3867 spin_unlock(&pa->pa_lock);
3868 busy = 1;
3869 continue;
3870 }
3871 if (pa->pa_deleted) {
3872 spin_unlock(&pa->pa_lock);
3873 continue;
3874 }
3875
3876 /* seems this one can be freed ... */
3877 pa->pa_deleted = 1;
3878
3879 /* we can trust pa_free ... */
3880 free += pa->pa_free;
3881
3882 spin_unlock(&pa->pa_lock);
3883
3884 list_del(&pa->pa_group_list);
3885 list_add(&pa->u.pa_tmp_list, &list);
3886 }
3887
3888 /* if we still need more blocks and some PAs were used, try again */
3889 if (free < needed && busy) {
3890 busy = 0;
3891 ext4_unlock_group(sb, group);
3892 cond_resched();
3893 goto repeat;
3894 }
3895
3896 /* found anything to free? */
3897 if (list_empty(&list)) {
3898 BUG_ON(free != 0);
3899 goto out;
3900 }
3901
3902 /* now free all selected PAs */
3903 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
3904
3905 /* remove from object (inode or locality group) */
3906 spin_lock(pa->pa_obj_lock);
3907 list_del_rcu(&pa->pa_inode_list);
3908 spin_unlock(pa->pa_obj_lock);
3909
3910 if (pa->pa_type == MB_GROUP_PA)
3911 ext4_mb_release_group_pa(&e4b, pa);
3912 else
3913 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
3914
3915 list_del(&pa->u.pa_tmp_list);
3916 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3917 }
3918
3919 out:
3920 ext4_unlock_group(sb, group);
3921 ext4_mb_unload_buddy(&e4b);
3922 put_bh(bitmap_bh);
3923 return free;
3924 }
3925
3926 /*
3927 * releases all non-used preallocated blocks for given inode
3928 *
3929 * It's important to discard preallocations under i_data_sem
3930 * We don't want another block to be served from the prealloc
3931 * space when we are discarding the inode prealloc space.
3932 *
3933 * FIXME!! Make sure it is valid at all the call sites
3934 */
3935 void ext4_discard_preallocations(struct inode *inode)
3936 {
3937 struct ext4_inode_info *ei = EXT4_I(inode);
3938 struct super_block *sb = inode->i_sb;
3939 struct buffer_head *bitmap_bh = NULL;
3940 struct ext4_prealloc_space *pa, *tmp;
3941 ext4_group_t group = 0;
3942 struct list_head list;
3943 struct ext4_buddy e4b;
3944 int err;
3945
3946 if (!S_ISREG(inode->i_mode)) {
3947 /*BUG_ON(!list_empty(&ei->i_prealloc_list));*/
3948 return;
3949 }
3950
3951 mb_debug(1, "discard preallocation for inode %lu\n", inode->i_ino);
3952 trace_ext4_discard_preallocations(inode);
3953
3954 INIT_LIST_HEAD(&list);
3955
3956 repeat:
3957 /* first, collect all pa's in the inode */
3958 spin_lock(&ei->i_prealloc_lock);
3959 while (!list_empty(&ei->i_prealloc_list)) {
3960 pa = list_entry(ei->i_prealloc_list.next,
3961 struct ext4_prealloc_space, pa_inode_list);
3962 BUG_ON(pa->pa_obj_lock != &ei->i_prealloc_lock);
3963 spin_lock(&pa->pa_lock);
3964 if (atomic_read(&pa->pa_count)) {
3965 /* this shouldn't happen often - nobody should
3966 * use preallocation while we're discarding it */
3967 spin_unlock(&pa->pa_lock);
3968 spin_unlock(&ei->i_prealloc_lock);
3969 ext4_msg(sb, KERN_ERR,
3970 "uh-oh! used pa while discarding");
3971 WARN_ON(1);
3972 schedule_timeout_uninterruptible(HZ);
3973 goto repeat;
3974
3975 }
3976 if (pa->pa_deleted == 0) {
3977 pa->pa_deleted = 1;
3978 spin_unlock(&pa->pa_lock);
3979 list_del_rcu(&pa->pa_inode_list);
3980 list_add(&pa->u.pa_tmp_list, &list);
3981 continue;
3982 }
3983
3984 /* someone is deleting pa right now */
3985 spin_unlock(&pa->pa_lock);
3986 spin_unlock(&ei->i_prealloc_lock);
3987
3988 /* we have to wait here because pa_deleted
3989 * doesn't mean pa is already unlinked from
3990 * the list. as we might be called from
3991 * ->clear_inode() the inode will get freed
3992 * and concurrent thread which is unlinking
3993 * pa from inode's list may access already
3994 * freed memory, bad-bad-bad */
3995
3996 /* XXX: if this happens too often, we can
3997 * add a flag to force wait only in case
3998 * of ->clear_inode(), but not in case of
3999 * regular truncate */
4000 schedule_timeout_uninterruptible(HZ);
4001 goto repeat;
4002 }
4003 spin_unlock(&ei->i_prealloc_lock);
4004
4005 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
4006 BUG_ON(pa->pa_type != MB_INODE_PA);
4007 group = ext4_get_group_number(sb, pa->pa_pstart);
4008
4009 err = ext4_mb_load_buddy(sb, group, &e4b);
4010 if (err) {
4011 ext4_error(sb, "Error loading buddy information for %u",
4012 group);
4013 continue;
4014 }
4015
4016 bitmap_bh = ext4_read_block_bitmap(sb, group);
4017 if (bitmap_bh == NULL) {
4018 ext4_error(sb, "Error reading block bitmap for %u",
4019 group);
4020 ext4_mb_unload_buddy(&e4b);
4021 continue;
4022 }
4023
4024 ext4_lock_group(sb, group);
4025 list_del(&pa->pa_group_list);
4026 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
4027 ext4_unlock_group(sb, group);
4028
4029 ext4_mb_unload_buddy(&e4b);
4030 put_bh(bitmap_bh);
4031
4032 list_del(&pa->u.pa_tmp_list);
4033 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4034 }
4035 }
4036
4037 #ifdef CONFIG_EXT4_DEBUG
4038 static void ext4_mb_show_ac(struct ext4_allocation_context *ac)
4039 {
4040 struct super_block *sb = ac->ac_sb;
4041 ext4_group_t ngroups, i;
4042
4043 if (!ext4_mballoc_debug ||
4044 (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED))
4045 return;
4046
4047 ext4_msg(ac->ac_sb, KERN_ERR, "Can't allocate:"
4048 " Allocation context details:");
4049 ext4_msg(ac->ac_sb, KERN_ERR, "status %d flags %d",
4050 ac->ac_status, ac->ac_flags);
4051 ext4_msg(ac->ac_sb, KERN_ERR, "orig %lu/%lu/%lu@%lu, "
4052 "goal %lu/%lu/%lu@%lu, "
4053 "best %lu/%lu/%lu@%lu cr %d",
4054 (unsigned long)ac->ac_o_ex.fe_group,
4055 (unsigned long)ac->ac_o_ex.fe_start,
4056 (unsigned long)ac->ac_o_ex.fe_len,
4057 (unsigned long)ac->ac_o_ex.fe_logical,
4058 (unsigned long)ac->ac_g_ex.fe_group,
4059 (unsigned long)ac->ac_g_ex.fe_start,
4060 (unsigned long)ac->ac_g_ex.fe_len,
4061 (unsigned long)ac->ac_g_ex.fe_logical,
4062 (unsigned long)ac->ac_b_ex.fe_group,
4063 (unsigned long)ac->ac_b_ex.fe_start,
4064 (unsigned long)ac->ac_b_ex.fe_len,
4065 (unsigned long)ac->ac_b_ex.fe_logical,
4066 (int)ac->ac_criteria);
4067 ext4_msg(ac->ac_sb, KERN_ERR, "%d found", ac->ac_found);
4068 ext4_msg(ac->ac_sb, KERN_ERR, "groups: ");
4069 ngroups = ext4_get_groups_count(sb);
4070 for (i = 0; i < ngroups; i++) {
4071 struct ext4_group_info *grp = ext4_get_group_info(sb, i);
4072 struct ext4_prealloc_space *pa;
4073 ext4_grpblk_t start;
4074 struct list_head *cur;
4075 ext4_lock_group(sb, i);
4076 list_for_each(cur, &grp->bb_prealloc_list) {
4077 pa = list_entry(cur, struct ext4_prealloc_space,
4078 pa_group_list);
4079 spin_lock(&pa->pa_lock);
4080 ext4_get_group_no_and_offset(sb, pa->pa_pstart,
4081 NULL, &start);
4082 spin_unlock(&pa->pa_lock);
4083 printk(KERN_ERR "PA:%u:%d:%u \n", i,
4084 start, pa->pa_len);
4085 }
4086 ext4_unlock_group(sb, i);
4087
4088 if (grp->bb_free == 0)
4089 continue;
4090 printk(KERN_ERR "%u: %d/%d \n",
4091 i, grp->bb_free, grp->bb_fragments);
4092 }
4093 printk(KERN_ERR "\n");
4094 }
4095 #else
4096 static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac)
4097 {
4098 return;
4099 }
4100 #endif
4101
4102 /*
4103 * We use locality group preallocation for small size file. The size of the
4104 * file is determined by the current size or the resulting size after
4105 * allocation which ever is larger
4106 *
4107 * One can tune this size via /sys/fs/ext4/<partition>/mb_stream_req
4108 */
4109 static void ext4_mb_group_or_file(struct ext4_allocation_context *ac)
4110 {
4111 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4112 int bsbits = ac->ac_sb->s_blocksize_bits;
4113 loff_t size, isize;
4114
4115 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
4116 return;
4117
4118 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
4119 return;
4120
4121 size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len);
4122 isize = (i_size_read(ac->ac_inode) + ac->ac_sb->s_blocksize - 1)
4123 >> bsbits;
4124
4125 if ((size == isize) &&
4126 !ext4_fs_is_busy(sbi) &&
4127 (atomic_read(&ac->ac_inode->i_writecount) == 0)) {
4128 ac->ac_flags |= EXT4_MB_HINT_NOPREALLOC;
4129 return;
4130 }
4131
4132 if (sbi->s_mb_group_prealloc <= 0) {
4133 ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
4134 return;
4135 }
4136
4137 /* don't use group allocation for large files */
4138 size = max(size, isize);
4139 if (size > sbi->s_mb_stream_request) {
4140 ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
4141 return;
4142 }
4143
4144 BUG_ON(ac->ac_lg != NULL);
4145 /*
4146 * locality group prealloc space are per cpu. The reason for having
4147 * per cpu locality group is to reduce the contention between block
4148 * request from multiple CPUs.
4149 */
4150 ac->ac_lg = raw_cpu_ptr(sbi->s_locality_groups);
4151
4152 /* we're going to use group allocation */
4153 ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC;
4154
4155 /* serialize all allocations in the group */
4156 mutex_lock(&ac->ac_lg->lg_mutex);
4157 }
4158
4159 static noinline_for_stack int
4160 ext4_mb_initialize_context(struct ext4_allocation_context *ac,
4161 struct ext4_allocation_request *ar)
4162 {
4163 struct super_block *sb = ar->inode->i_sb;
4164 struct ext4_sb_info *sbi = EXT4_SB(sb);
4165 struct ext4_super_block *es = sbi->s_es;
4166 ext4_group_t group;
4167 unsigned int len;
4168 ext4_fsblk_t goal;
4169 ext4_grpblk_t block;
4170
4171 /* we can't allocate > group size */
4172 len = ar->len;
4173
4174 /* just a dirty hack to filter too big requests */
4175 if (len >= EXT4_CLUSTERS_PER_GROUP(sb))
4176 len = EXT4_CLUSTERS_PER_GROUP(sb);
4177
4178 /* start searching from the goal */
4179 goal = ar->goal;
4180 if (goal < le32_to_cpu(es->s_first_data_block) ||
4181 goal >= ext4_blocks_count(es))
4182 goal = le32_to_cpu(es->s_first_data_block);
4183 ext4_get_group_no_and_offset(sb, goal, &group, &block);
4184
4185 /* set up allocation goals */
4186 ac->ac_b_ex.fe_logical = EXT4_LBLK_CMASK(sbi, ar->logical);
4187 ac->ac_status = AC_STATUS_CONTINUE;
4188 ac->ac_sb = sb;
4189 ac->ac_inode = ar->inode;
4190 ac->ac_o_ex.fe_logical = ac->ac_b_ex.fe_logical;
4191 ac->ac_o_ex.fe_group = group;
4192 ac->ac_o_ex.fe_start = block;
4193 ac->ac_o_ex.fe_len = len;
4194 ac->ac_g_ex = ac->ac_o_ex;
4195 ac->ac_flags = ar->flags;
4196
4197 /* we have to define context: we'll we work with a file or
4198 * locality group. this is a policy, actually */
4199 ext4_mb_group_or_file(ac);
4200
4201 mb_debug(1, "init ac: %u blocks @ %u, goal %u, flags %x, 2^%d, "
4202 "left: %u/%u, right %u/%u to %swritable\n",
4203 (unsigned) ar->len, (unsigned) ar->logical,
4204 (unsigned) ar->goal, ac->ac_flags, ac->ac_2order,
4205 (unsigned) ar->lleft, (unsigned) ar->pleft,
4206 (unsigned) ar->lright, (unsigned) ar->pright,
4207 atomic_read(&ar->inode->i_writecount) ? "" : "non-");
4208 return 0;
4209
4210 }
4211
4212 static noinline_for_stack void
4213 ext4_mb_discard_lg_preallocations(struct super_block *sb,
4214 struct ext4_locality_group *lg,
4215 int order, int total_entries)
4216 {
4217 ext4_group_t group = 0;
4218 struct ext4_buddy e4b;
4219 struct list_head discard_list;
4220 struct ext4_prealloc_space *pa, *tmp;
4221
4222 mb_debug(1, "discard locality group preallocation\n");
4223
4224 INIT_LIST_HEAD(&discard_list);
4225
4226 spin_lock(&lg->lg_prealloc_lock);
4227 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[order],
4228 pa_inode_list) {
4229 spin_lock(&pa->pa_lock);
4230 if (atomic_read(&pa->pa_count)) {
4231 /*
4232 * This is the pa that we just used
4233 * for block allocation. So don't
4234 * free that
4235 */
4236 spin_unlock(&pa->pa_lock);
4237 continue;
4238 }
4239 if (pa->pa_deleted) {
4240 spin_unlock(&pa->pa_lock);
4241 continue;
4242 }
4243 /* only lg prealloc space */
4244 BUG_ON(pa->pa_type != MB_GROUP_PA);
4245
4246 /* seems this one can be freed ... */
4247 pa->pa_deleted = 1;
4248 spin_unlock(&pa->pa_lock);
4249
4250 list_del_rcu(&pa->pa_inode_list);
4251 list_add(&pa->u.pa_tmp_list, &discard_list);
4252
4253 total_entries--;
4254 if (total_entries <= 5) {
4255 /*
4256 * we want to keep only 5 entries
4257 * allowing it to grow to 8. This
4258 * mak sure we don't call discard
4259 * soon for this list.
4260 */
4261 break;
4262 }
4263 }
4264 spin_unlock(&lg->lg_prealloc_lock);
4265
4266 list_for_each_entry_safe(pa, tmp, &discard_list, u.pa_tmp_list) {
4267
4268 group = ext4_get_group_number(sb, pa->pa_pstart);
4269 if (ext4_mb_load_buddy(sb, group, &e4b)) {
4270 ext4_error(sb, "Error loading buddy information for %u",
4271 group);
4272 continue;
4273 }
4274 ext4_lock_group(sb, group);
4275 list_del(&pa->pa_group_list);
4276 ext4_mb_release_group_pa(&e4b, pa);
4277 ext4_unlock_group(sb, group);
4278
4279 ext4_mb_unload_buddy(&e4b);
4280 list_del(&pa->u.pa_tmp_list);
4281 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4282 }
4283 }
4284
4285 /*
4286 * We have incremented pa_count. So it cannot be freed at this
4287 * point. Also we hold lg_mutex. So no parallel allocation is
4288 * possible from this lg. That means pa_free cannot be updated.
4289 *
4290 * A parallel ext4_mb_discard_group_preallocations is possible.
4291 * which can cause the lg_prealloc_list to be updated.
4292 */
4293
4294 static void ext4_mb_add_n_trim(struct ext4_allocation_context *ac)
4295 {
4296 int order, added = 0, lg_prealloc_count = 1;
4297 struct super_block *sb = ac->ac_sb;
4298 struct ext4_locality_group *lg = ac->ac_lg;
4299 struct ext4_prealloc_space *tmp_pa, *pa = ac->ac_pa;
4300
4301 order = fls(pa->pa_free) - 1;
4302 if (order > PREALLOC_TB_SIZE - 1)
4303 /* The max size of hash table is PREALLOC_TB_SIZE */
4304 order = PREALLOC_TB_SIZE - 1;
4305 /* Add the prealloc space to lg */
4306 spin_lock(&lg->lg_prealloc_lock);
4307 list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[order],
4308 pa_inode_list) {
4309 spin_lock(&tmp_pa->pa_lock);
4310 if (tmp_pa->pa_deleted) {
4311 spin_unlock(&tmp_pa->pa_lock);
4312 continue;
4313 }
4314 if (!added && pa->pa_free < tmp_pa->pa_free) {
4315 /* Add to the tail of the previous entry */
4316 list_add_tail_rcu(&pa->pa_inode_list,
4317 &tmp_pa->pa_inode_list);
4318 added = 1;
4319 /*
4320 * we want to count the total
4321 * number of entries in the list
4322 */
4323 }
4324 spin_unlock(&tmp_pa->pa_lock);
4325 lg_prealloc_count++;
4326 }
4327 if (!added)
4328 list_add_tail_rcu(&pa->pa_inode_list,
4329 &lg->lg_prealloc_list[order]);
4330 spin_unlock(&lg->lg_prealloc_lock);
4331
4332 /* Now trim the list to be not more than 8 elements */
4333 if (lg_prealloc_count > 8) {
4334 ext4_mb_discard_lg_preallocations(sb, lg,
4335 order, lg_prealloc_count);
4336 return;
4337 }
4338 return ;
4339 }
4340
4341 /*
4342 * release all resource we used in allocation
4343 */
4344 static int ext4_mb_release_context(struct ext4_allocation_context *ac)
4345 {
4346 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4347 struct ext4_prealloc_space *pa = ac->ac_pa;
4348 if (pa) {
4349 if (pa->pa_type == MB_GROUP_PA) {
4350 /* see comment in ext4_mb_use_group_pa() */
4351 spin_lock(&pa->pa_lock);
4352 pa->pa_pstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
4353 pa->pa_lstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
4354 pa->pa_free -= ac->ac_b_ex.fe_len;
4355 pa->pa_len -= ac->ac_b_ex.fe_len;
4356 spin_unlock(&pa->pa_lock);
4357 }
4358 }
4359 if (pa) {
4360 /*
4361 * We want to add the pa to the right bucket.
4362 * Remove it from the list and while adding
4363 * make sure the list to which we are adding
4364 * doesn't grow big.
4365 */
4366 if ((pa->pa_type == MB_GROUP_PA) && likely(pa->pa_free)) {
4367 spin_lock(pa->pa_obj_lock);
4368 list_del_rcu(&pa->pa_inode_list);
4369 spin_unlock(pa->pa_obj_lock);
4370 ext4_mb_add_n_trim(ac);
4371 }
4372 ext4_mb_put_pa(ac, ac->ac_sb, pa);
4373 }
4374 if (ac->ac_bitmap_page)
4375 page_cache_release(ac->ac_bitmap_page);
4376 if (ac->ac_buddy_page)
4377 page_cache_release(ac->ac_buddy_page);
4378 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
4379 mutex_unlock(&ac->ac_lg->lg_mutex);
4380 ext4_mb_collect_stats(ac);
4381 return 0;
4382 }
4383
4384 static int ext4_mb_discard_preallocations(struct super_block *sb, int needed)
4385 {
4386 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
4387 int ret;
4388 int freed = 0;
4389
4390 trace_ext4_mb_discard_preallocations(sb, needed);
4391 for (i = 0; i < ngroups && needed > 0; i++) {
4392 ret = ext4_mb_discard_group_preallocations(sb, i, needed);
4393 freed += ret;
4394 needed -= ret;
4395 }
4396
4397 return freed;
4398 }
4399
4400 /*
4401 * Main entry point into mballoc to allocate blocks
4402 * it tries to use preallocation first, then falls back
4403 * to usual allocation
4404 */
4405 ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle,
4406 struct ext4_allocation_request *ar, int *errp)
4407 {
4408 int freed;
4409 struct ext4_allocation_context *ac = NULL;
4410 struct ext4_sb_info *sbi;
4411 struct super_block *sb;
4412 ext4_fsblk_t block = 0;
4413 unsigned int inquota = 0;
4414 unsigned int reserv_clstrs = 0;
4415
4416 might_sleep();
4417 sb = ar->inode->i_sb;
4418 sbi = EXT4_SB(sb);
4419
4420 trace_ext4_request_blocks(ar);
4421
4422 /* Allow to use superuser reservation for quota file */
4423 if (IS_NOQUOTA(ar->inode))
4424 ar->flags |= EXT4_MB_USE_ROOT_BLOCKS;
4425
4426 if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0) {
4427 /* Without delayed allocation we need to verify
4428 * there is enough free blocks to do block allocation
4429 * and verify allocation doesn't exceed the quota limits.
4430 */
4431 while (ar->len &&
4432 ext4_claim_free_clusters(sbi, ar->len, ar->flags)) {
4433
4434 /* let others to free the space */
4435 cond_resched();
4436 ar->len = ar->len >> 1;
4437 }
4438 if (!ar->len) {
4439 *errp = -ENOSPC;
4440 return 0;
4441 }
4442 reserv_clstrs = ar->len;
4443 if (ar->flags & EXT4_MB_USE_ROOT_BLOCKS) {
4444 dquot_alloc_block_nofail(ar->inode,
4445 EXT4_C2B(sbi, ar->len));
4446 } else {
4447 while (ar->len &&
4448 dquot_alloc_block(ar->inode,
4449 EXT4_C2B(sbi, ar->len))) {
4450
4451 ar->flags |= EXT4_MB_HINT_NOPREALLOC;
4452 ar->len--;
4453 }
4454 }
4455 inquota = ar->len;
4456 if (ar->len == 0) {
4457 *errp = -EDQUOT;
4458 goto out;
4459 }
4460 }
4461
4462 ac = kmem_cache_zalloc(ext4_ac_cachep, GFP_NOFS);
4463 if (!ac) {
4464 ar->len = 0;
4465 *errp = -ENOMEM;
4466 goto out;
4467 }
4468
4469 *errp = ext4_mb_initialize_context(ac, ar);
4470 if (*errp) {
4471 ar->len = 0;
4472 goto out;
4473 }
4474
4475 ac->ac_op = EXT4_MB_HISTORY_PREALLOC;
4476 if (!ext4_mb_use_preallocated(ac)) {
4477 ac->ac_op = EXT4_MB_HISTORY_ALLOC;
4478 ext4_mb_normalize_request(ac, ar);
4479 repeat:
4480 /* allocate space in core */
4481 *errp = ext4_mb_regular_allocator(ac);
4482 if (*errp)
4483 goto discard_and_exit;
4484
4485 /* as we've just preallocated more space than
4486 * user requested originally, we store allocated
4487 * space in a special descriptor */
4488 if (ac->ac_status == AC_STATUS_FOUND &&
4489 ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len)
4490 *errp = ext4_mb_new_preallocation(ac);
4491 if (*errp) {
4492 discard_and_exit:
4493 ext4_discard_allocated_blocks(ac);
4494 goto errout;
4495 }
4496 }
4497 if (likely(ac->ac_status == AC_STATUS_FOUND)) {
4498 *errp = ext4_mb_mark_diskspace_used(ac, handle, reserv_clstrs);
4499 if (*errp == -EAGAIN) {
4500 /*
4501 * drop the reference that we took
4502 * in ext4_mb_use_best_found
4503 */
4504 ext4_mb_release_context(ac);
4505 ac->ac_b_ex.fe_group = 0;
4506 ac->ac_b_ex.fe_start = 0;
4507 ac->ac_b_ex.fe_len = 0;
4508 ac->ac_status = AC_STATUS_CONTINUE;
4509 goto repeat;
4510 } else if (*errp) {
4511 ext4_discard_allocated_blocks(ac);
4512 goto errout;
4513 } else {
4514 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
4515 ar->len = ac->ac_b_ex.fe_len;
4516 }
4517 } else {
4518 freed = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len);
4519 if (freed)
4520 goto repeat;
4521 *errp = -ENOSPC;
4522 }
4523
4524 errout:
4525 if (*errp) {
4526 ac->ac_b_ex.fe_len = 0;
4527 ar->len = 0;
4528 ext4_mb_show_ac(ac);
4529 }
4530 ext4_mb_release_context(ac);
4531 out:
4532 if (ac)
4533 kmem_cache_free(ext4_ac_cachep, ac);
4534 if (inquota && ar->len < inquota)
4535 dquot_free_block(ar->inode, EXT4_C2B(sbi, inquota - ar->len));
4536 if (!ar->len) {
4537 if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0)
4538 /* release all the reserved blocks if non delalloc */
4539 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
4540 reserv_clstrs);
4541 }
4542
4543 trace_ext4_allocate_blocks(ar, (unsigned long long)block);
4544
4545 return block;
4546 }
4547
4548 /*
4549 * We can merge two free data extents only if the physical blocks
4550 * are contiguous, AND the extents were freed by the same transaction,
4551 * AND the blocks are associated with the same group.
4552 */
4553 static int can_merge(struct ext4_free_data *entry1,
4554 struct ext4_free_data *entry2)
4555 {
4556 if ((entry1->efd_tid == entry2->efd_tid) &&
4557 (entry1->efd_group == entry2->efd_group) &&
4558 ((entry1->efd_start_cluster + entry1->efd_count) == entry2->efd_start_cluster))
4559 return 1;
4560 return 0;
4561 }
4562
4563 static noinline_for_stack int
4564 ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b,
4565 struct ext4_free_data *new_entry)
4566 {
4567 ext4_group_t group = e4b->bd_group;
4568 ext4_grpblk_t cluster;
4569 struct ext4_free_data *entry;
4570 struct ext4_group_info *db = e4b->bd_info;
4571 struct super_block *sb = e4b->bd_sb;
4572 struct ext4_sb_info *sbi = EXT4_SB(sb);
4573 struct rb_node **n = &db->bb_free_root.rb_node, *node;
4574 struct rb_node *parent = NULL, *new_node;
4575
4576 BUG_ON(!ext4_handle_valid(handle));
4577 BUG_ON(e4b->bd_bitmap_page == NULL);
4578 BUG_ON(e4b->bd_buddy_page == NULL);
4579
4580 new_node = &new_entry->efd_node;
4581 cluster = new_entry->efd_start_cluster;
4582
4583 if (!*n) {
4584 /* first free block exent. We need to
4585 protect buddy cache from being freed,
4586 * otherwise we'll refresh it from
4587 * on-disk bitmap and lose not-yet-available
4588 * blocks */
4589 page_cache_get(e4b->bd_buddy_page);
4590 page_cache_get(e4b->bd_bitmap_page);
4591 }
4592 while (*n) {
4593 parent = *n;
4594 entry = rb_entry(parent, struct ext4_free_data, efd_node);
4595 if (cluster < entry->efd_start_cluster)
4596 n = &(*n)->rb_left;
4597 else if (cluster >= (entry->efd_start_cluster + entry->efd_count))
4598 n = &(*n)->rb_right;
4599 else {
4600 ext4_grp_locked_error(sb, group, 0,
4601 ext4_group_first_block_no(sb, group) +
4602 EXT4_C2B(sbi, cluster),
4603 "Block already on to-be-freed list");
4604 return 0;
4605 }
4606 }
4607
4608 rb_link_node(new_node, parent, n);
4609 rb_insert_color(new_node, &db->bb_free_root);
4610
4611 /* Now try to see the extent can be merged to left and right */
4612 node = rb_prev(new_node);
4613 if (node) {
4614 entry = rb_entry(node, struct ext4_free_data, efd_node);
4615 if (can_merge(entry, new_entry) &&
4616 ext4_journal_callback_try_del(handle, &entry->efd_jce)) {
4617 new_entry->efd_start_cluster = entry->efd_start_cluster;
4618 new_entry->efd_count += entry->efd_count;
4619 rb_erase(node, &(db->bb_free_root));
4620 kmem_cache_free(ext4_free_data_cachep, entry);
4621 }
4622 }
4623
4624 node = rb_next(new_node);
4625 if (node) {
4626 entry = rb_entry(node, struct ext4_free_data, efd_node);
4627 if (can_merge(new_entry, entry) &&
4628 ext4_journal_callback_try_del(handle, &entry->efd_jce)) {
4629 new_entry->efd_count += entry->efd_count;
4630 rb_erase(node, &(db->bb_free_root));
4631 kmem_cache_free(ext4_free_data_cachep, entry);
4632 }
4633 }
4634 /* Add the extent to transaction's private list */
4635 ext4_journal_callback_add(handle, ext4_free_data_callback,
4636 &new_entry->efd_jce);
4637 return 0;
4638 }
4639
4640 /**
4641 * ext4_free_blocks() -- Free given blocks and update quota
4642 * @handle: handle for this transaction
4643 * @inode: inode
4644 * @block: start physical block to free
4645 * @count: number of blocks to count
4646 * @flags: flags used by ext4_free_blocks
4647 */
4648 void ext4_free_blocks(handle_t *handle, struct inode *inode,
4649 struct buffer_head *bh, ext4_fsblk_t block,
4650 unsigned long count, int flags)
4651 {
4652 struct buffer_head *bitmap_bh = NULL;
4653 struct super_block *sb = inode->i_sb;
4654 struct ext4_group_desc *gdp;
4655 unsigned int overflow;
4656 ext4_grpblk_t bit;
4657 struct buffer_head *gd_bh;
4658 ext4_group_t block_group;
4659 struct ext4_sb_info *sbi;
4660 struct ext4_buddy e4b;
4661 unsigned int count_clusters;
4662 int err = 0;
4663 int ret;
4664
4665 might_sleep();
4666 if (bh) {
4667 if (block)
4668 BUG_ON(block != bh->b_blocknr);
4669 else
4670 block = bh->b_blocknr;
4671 }
4672
4673 sbi = EXT4_SB(sb);
4674 if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) &&
4675 !ext4_data_block_valid(sbi, block, count)) {
4676 ext4_error(sb, "Freeing blocks not in datazone - "
4677 "block = %llu, count = %lu", block, count);
4678 goto error_return;
4679 }
4680
4681 ext4_debug("freeing block %llu\n", block);
4682 trace_ext4_free_blocks(inode, block, count, flags);
4683
4684 if (flags & EXT4_FREE_BLOCKS_FORGET) {
4685 struct buffer_head *tbh = bh;
4686 int i;
4687
4688 BUG_ON(bh && (count > 1));
4689
4690 for (i = 0; i < count; i++) {
4691 cond_resched();
4692 if (!bh)
4693 tbh = sb_find_get_block(inode->i_sb,
4694 block + i);
4695 if (!tbh)
4696 continue;
4697 ext4_forget(handle, flags & EXT4_FREE_BLOCKS_METADATA,
4698 inode, tbh, block + i);
4699 }
4700 }
4701
4702 /*
4703 * We need to make sure we don't reuse the freed block until
4704 * after the transaction is committed, which we can do by
4705 * treating the block as metadata, below. We make an
4706 * exception if the inode is to be written in writeback mode
4707 * since writeback mode has weak data consistency guarantees.
4708 */
4709 if (!ext4_should_writeback_data(inode))
4710 flags |= EXT4_FREE_BLOCKS_METADATA;
4711
4712 /*
4713 * If the extent to be freed does not begin on a cluster
4714 * boundary, we need to deal with partial clusters at the
4715 * beginning and end of the extent. Normally we will free
4716 * blocks at the beginning or the end unless we are explicitly
4717 * requested to avoid doing so.
4718 */
4719 overflow = EXT4_PBLK_COFF(sbi, block);
4720 if (overflow) {
4721 if (flags & EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER) {
4722 overflow = sbi->s_cluster_ratio - overflow;
4723 block += overflow;
4724 if (count > overflow)
4725 count -= overflow;
4726 else
4727 return;
4728 } else {
4729 block -= overflow;
4730 count += overflow;
4731 }
4732 }
4733 overflow = EXT4_LBLK_COFF(sbi, count);
4734 if (overflow) {
4735 if (flags & EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER) {
4736 if (count > overflow)
4737 count -= overflow;
4738 else
4739 return;
4740 } else
4741 count += sbi->s_cluster_ratio - overflow;
4742 }
4743
4744 do_more:
4745 overflow = 0;
4746 ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
4747
4748 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(
4749 ext4_get_group_info(sb, block_group))))
4750 return;
4751
4752 /*
4753 * Check to see if we are freeing blocks across a group
4754 * boundary.
4755 */
4756 if (EXT4_C2B(sbi, bit) + count > EXT4_BLOCKS_PER_GROUP(sb)) {
4757 overflow = EXT4_C2B(sbi, bit) + count -
4758 EXT4_BLOCKS_PER_GROUP(sb);
4759 count -= overflow;
4760 }
4761 count_clusters = EXT4_NUM_B2C(sbi, count);
4762 bitmap_bh = ext4_read_block_bitmap(sb, block_group);
4763 if (!bitmap_bh) {
4764 err = -EIO;
4765 goto error_return;
4766 }
4767 gdp = ext4_get_group_desc(sb, block_group, &gd_bh);
4768 if (!gdp) {
4769 err = -EIO;
4770 goto error_return;
4771 }
4772
4773 if (in_range(ext4_block_bitmap(sb, gdp), block, count) ||
4774 in_range(ext4_inode_bitmap(sb, gdp), block, count) ||
4775 in_range(block, ext4_inode_table(sb, gdp),
4776 EXT4_SB(sb)->s_itb_per_group) ||
4777 in_range(block + count - 1, ext4_inode_table(sb, gdp),
4778 EXT4_SB(sb)->s_itb_per_group)) {
4779
4780 ext4_error(sb, "Freeing blocks in system zone - "
4781 "Block = %llu, count = %lu", block, count);
4782 /* err = 0. ext4_std_error should be a no op */
4783 goto error_return;
4784 }
4785
4786 BUFFER_TRACE(bitmap_bh, "getting write access");
4787 err = ext4_journal_get_write_access(handle, bitmap_bh);
4788 if (err)
4789 goto error_return;
4790
4791 /*
4792 * We are about to modify some metadata. Call the journal APIs
4793 * to unshare ->b_data if a currently-committing transaction is
4794 * using it
4795 */
4796 BUFFER_TRACE(gd_bh, "get_write_access");
4797 err = ext4_journal_get_write_access(handle, gd_bh);
4798 if (err)
4799 goto error_return;
4800 #ifdef AGGRESSIVE_CHECK
4801 {
4802 int i;
4803 for (i = 0; i < count_clusters; i++)
4804 BUG_ON(!mb_test_bit(bit + i, bitmap_bh->b_data));
4805 }
4806 #endif
4807 trace_ext4_mballoc_free(sb, inode, block_group, bit, count_clusters);
4808
4809 err = ext4_mb_load_buddy(sb, block_group, &e4b);
4810 if (err)
4811 goto error_return;
4812
4813 if ((flags & EXT4_FREE_BLOCKS_METADATA) && ext4_handle_valid(handle)) {
4814 struct ext4_free_data *new_entry;
4815 /*
4816 * blocks being freed are metadata. these blocks shouldn't
4817 * be used until this transaction is committed
4818 *
4819 * We use __GFP_NOFAIL because ext4_free_blocks() is not allowed
4820 * to fail.
4821 */
4822 new_entry = kmem_cache_alloc(ext4_free_data_cachep,
4823 GFP_NOFS|__GFP_NOFAIL);
4824 new_entry->efd_start_cluster = bit;
4825 new_entry->efd_group = block_group;
4826 new_entry->efd_count = count_clusters;
4827 new_entry->efd_tid = handle->h_transaction->t_tid;
4828
4829 ext4_lock_group(sb, block_group);
4830 mb_clear_bits(bitmap_bh->b_data, bit, count_clusters);
4831 ext4_mb_free_metadata(handle, &e4b, new_entry);
4832 } else {
4833 /* need to update group_info->bb_free and bitmap
4834 * with group lock held. generate_buddy look at
4835 * them with group lock_held
4836 */
4837 if (test_opt(sb, DISCARD)) {
4838 err = ext4_issue_discard(sb, block_group, bit, count);
4839 if (err && err != -EOPNOTSUPP)
4840 ext4_msg(sb, KERN_WARNING, "discard request in"
4841 " group:%d block:%d count:%lu failed"
4842 " with %d", block_group, bit, count,
4843 err);
4844 } else
4845 EXT4_MB_GRP_CLEAR_TRIMMED(e4b.bd_info);
4846
4847 ext4_lock_group(sb, block_group);
4848 mb_clear_bits(bitmap_bh->b_data, bit, count_clusters);
4849 mb_free_blocks(inode, &e4b, bit, count_clusters);
4850 }
4851
4852 ret = ext4_free_group_clusters(sb, gdp) + count_clusters;
4853 ext4_free_group_clusters_set(sb, gdp, ret);
4854 ext4_block_bitmap_csum_set(sb, block_group, gdp, bitmap_bh);
4855 ext4_group_desc_csum_set(sb, block_group, gdp);
4856 ext4_unlock_group(sb, block_group);
4857
4858 if (sbi->s_log_groups_per_flex) {
4859 ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
4860 atomic64_add(count_clusters,
4861 &sbi->s_flex_groups[flex_group].free_clusters);
4862 }
4863
4864 if (!(flags & EXT4_FREE_BLOCKS_NO_QUOT_UPDATE))
4865 dquot_free_block(inode, EXT4_C2B(sbi, count_clusters));
4866 percpu_counter_add(&sbi->s_freeclusters_counter, count_clusters);
4867
4868 ext4_mb_unload_buddy(&e4b);
4869
4870 /* We dirtied the bitmap block */
4871 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
4872 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
4873
4874 /* And the group descriptor block */
4875 BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
4876 ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
4877 if (!err)
4878 err = ret;
4879
4880 if (overflow && !err) {
4881 block += count;
4882 count = overflow;
4883 put_bh(bitmap_bh);
4884 goto do_more;
4885 }
4886 error_return:
4887 brelse(bitmap_bh);
4888 ext4_std_error(sb, err);
4889 return;
4890 }
4891
4892 /**
4893 * ext4_group_add_blocks() -- Add given blocks to an existing group
4894 * @handle: handle to this transaction
4895 * @sb: super block
4896 * @block: start physical block to add to the block group
4897 * @count: number of blocks to free
4898 *
4899 * This marks the blocks as free in the bitmap and buddy.
4900 */
4901 int ext4_group_add_blocks(handle_t *handle, struct super_block *sb,
4902 ext4_fsblk_t block, unsigned long count)
4903 {
4904 struct buffer_head *bitmap_bh = NULL;
4905 struct buffer_head *gd_bh;
4906 ext4_group_t block_group;
4907 ext4_grpblk_t bit;
4908 unsigned int i;
4909 struct ext4_group_desc *desc;
4910 struct ext4_sb_info *sbi = EXT4_SB(sb);
4911 struct ext4_buddy e4b;
4912 int err = 0, ret, blk_free_count;
4913 ext4_grpblk_t blocks_freed;
4914
4915 ext4_debug("Adding block(s) %llu-%llu\n", block, block + count - 1);
4916
4917 if (count == 0)
4918 return 0;
4919
4920 ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
4921 /*
4922 * Check to see if we are freeing blocks across a group
4923 * boundary.
4924 */
4925 if (bit + count > EXT4_BLOCKS_PER_GROUP(sb)) {
4926 ext4_warning(sb, "too much blocks added to group %u\n",
4927 block_group);
4928 err = -EINVAL;
4929 goto error_return;
4930 }
4931
4932 bitmap_bh = ext4_read_block_bitmap(sb, block_group);
4933 if (!bitmap_bh) {
4934 err = -EIO;
4935 goto error_return;
4936 }
4937
4938 desc = ext4_get_group_desc(sb, block_group, &gd_bh);
4939 if (!desc) {
4940 err = -EIO;
4941 goto error_return;
4942 }
4943
4944 if (in_range(ext4_block_bitmap(sb, desc), block, count) ||
4945 in_range(ext4_inode_bitmap(sb, desc), block, count) ||
4946 in_range(block, ext4_inode_table(sb, desc), sbi->s_itb_per_group) ||
4947 in_range(block + count - 1, ext4_inode_table(sb, desc),
4948 sbi->s_itb_per_group)) {
4949 ext4_error(sb, "Adding blocks in system zones - "
4950 "Block = %llu, count = %lu",
4951 block, count);
4952 err = -EINVAL;
4953 goto error_return;
4954 }
4955
4956 BUFFER_TRACE(bitmap_bh, "getting write access");
4957 err = ext4_journal_get_write_access(handle, bitmap_bh);
4958 if (err)
4959 goto error_return;
4960
4961 /*
4962 * We are about to modify some metadata. Call the journal APIs
4963 * to unshare ->b_data if a currently-committing transaction is
4964 * using it
4965 */
4966 BUFFER_TRACE(gd_bh, "get_write_access");
4967 err = ext4_journal_get_write_access(handle, gd_bh);
4968 if (err)
4969 goto error_return;
4970
4971 for (i = 0, blocks_freed = 0; i < count; i++) {
4972 BUFFER_TRACE(bitmap_bh, "clear bit");
4973 if (!mb_test_bit(bit + i, bitmap_bh->b_data)) {
4974 ext4_error(sb, "bit already cleared for block %llu",
4975 (ext4_fsblk_t)(block + i));
4976 BUFFER_TRACE(bitmap_bh, "bit already cleared");
4977 } else {
4978 blocks_freed++;
4979 }
4980 }
4981
4982 err = ext4_mb_load_buddy(sb, block_group, &e4b);
4983 if (err)
4984 goto error_return;
4985
4986 /*
4987 * need to update group_info->bb_free and bitmap
4988 * with group lock held. generate_buddy look at
4989 * them with group lock_held
4990 */
4991 ext4_lock_group(sb, block_group);
4992 mb_clear_bits(bitmap_bh->b_data, bit, count);
4993 mb_free_blocks(NULL, &e4b, bit, count);
4994 blk_free_count = blocks_freed + ext4_free_group_clusters(sb, desc);
4995 ext4_free_group_clusters_set(sb, desc, blk_free_count);
4996 ext4_block_bitmap_csum_set(sb, block_group, desc, bitmap_bh);
4997 ext4_group_desc_csum_set(sb, block_group, desc);
4998 ext4_unlock_group(sb, block_group);
4999 percpu_counter_add(&sbi->s_freeclusters_counter,
5000 EXT4_NUM_B2C(sbi, blocks_freed));
5001
5002 if (sbi->s_log_groups_per_flex) {
5003 ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
5004 atomic64_add(EXT4_NUM_B2C(sbi, blocks_freed),
5005 &sbi->s_flex_groups[flex_group].free_clusters);
5006 }
5007
5008 ext4_mb_unload_buddy(&e4b);
5009
5010 /* We dirtied the bitmap block */
5011 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
5012 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
5013
5014 /* And the group descriptor block */
5015 BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
5016 ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
5017 if (!err)
5018 err = ret;
5019
5020 error_return:
5021 brelse(bitmap_bh);
5022 ext4_std_error(sb, err);
5023 return err;
5024 }
5025
5026 /**
5027 * ext4_trim_extent -- function to TRIM one single free extent in the group
5028 * @sb: super block for the file system
5029 * @start: starting block of the free extent in the alloc. group
5030 * @count: number of blocks to TRIM
5031 * @group: alloc. group we are working with
5032 * @e4b: ext4 buddy for the group
5033 *
5034 * Trim "count" blocks starting at "start" in the "group". To assure that no
5035 * one will allocate those blocks, mark it as used in buddy bitmap. This must
5036 * be called with under the group lock.
5037 */
5038 static int ext4_trim_extent(struct super_block *sb, int start, int count,
5039 ext4_group_t group, struct ext4_buddy *e4b)
5040 __releases(bitlock)
5041 __acquires(bitlock)
5042 {
5043 struct ext4_free_extent ex;
5044 int ret = 0;
5045
5046 trace_ext4_trim_extent(sb, group, start, count);
5047
5048 assert_spin_locked(ext4_group_lock_ptr(sb, group));
5049
5050 ex.fe_start = start;
5051 ex.fe_group = group;
5052 ex.fe_len = count;
5053
5054 /*
5055 * Mark blocks used, so no one can reuse them while
5056 * being trimmed.
5057 */
5058 mb_mark_used(e4b, &ex);
5059 ext4_unlock_group(sb, group);
5060 ret = ext4_issue_discard(sb, group, start, count);
5061 ext4_lock_group(sb, group);
5062 mb_free_blocks(NULL, e4b, start, ex.fe_len);
5063 return ret;
5064 }
5065
5066 /**
5067 * ext4_trim_all_free -- function to trim all free space in alloc. group
5068 * @sb: super block for file system
5069 * @group: group to be trimmed
5070 * @start: first group block to examine
5071 * @max: last group block to examine
5072 * @minblocks: minimum extent block count
5073 *
5074 * ext4_trim_all_free walks through group's buddy bitmap searching for free
5075 * extents. When the free block is found, ext4_trim_extent is called to TRIM
5076 * the extent.
5077 *
5078 *
5079 * ext4_trim_all_free walks through group's block bitmap searching for free
5080 * extents. When the free extent is found, mark it as used in group buddy
5081 * bitmap. Then issue a TRIM command on this extent and free the extent in
5082 * the group buddy bitmap. This is done until whole group is scanned.
5083 */
5084 static ext4_grpblk_t
5085 ext4_trim_all_free(struct super_block *sb, ext4_group_t group,
5086 ext4_grpblk_t start, ext4_grpblk_t max,
5087 ext4_grpblk_t minblocks)
5088 {
5089 void *bitmap;
5090 ext4_grpblk_t next, count = 0, free_count = 0;
5091 struct ext4_buddy e4b;
5092 int ret = 0;
5093
5094 trace_ext4_trim_all_free(sb, group, start, max);
5095
5096 ret = ext4_mb_load_buddy(sb, group, &e4b);
5097 if (ret) {
5098 ext4_error(sb, "Error in loading buddy "
5099 "information for %u", group);
5100 return ret;
5101 }
5102 bitmap = e4b.bd_bitmap;
5103
5104 ext4_lock_group(sb, group);
5105 if (EXT4_MB_GRP_WAS_TRIMMED(e4b.bd_info) &&
5106 minblocks >= atomic_read(&EXT4_SB(sb)->s_last_trim_minblks))
5107 goto out;
5108
5109 start = (e4b.bd_info->bb_first_free > start) ?
5110 e4b.bd_info->bb_first_free : start;
5111
5112 while (start <= max) {
5113 start = mb_find_next_zero_bit(bitmap, max + 1, start);
5114 if (start > max)
5115 break;
5116 next = mb_find_next_bit(bitmap, max + 1, start);
5117
5118 if ((next - start) >= minblocks) {
5119 ret = ext4_trim_extent(sb, start,
5120 next - start, group, &e4b);
5121 if (ret && ret != -EOPNOTSUPP)
5122 break;
5123 ret = 0;
5124 count += next - start;
5125 }
5126 free_count += next - start;
5127 start = next + 1;
5128
5129 if (fatal_signal_pending(current)) {
5130 count = -ERESTARTSYS;
5131 break;
5132 }
5133
5134 if (need_resched()) {
5135 ext4_unlock_group(sb, group);
5136 cond_resched();
5137 ext4_lock_group(sb, group);
5138 }
5139
5140 if ((e4b.bd_info->bb_free - free_count) < minblocks)
5141 break;
5142 }
5143
5144 if (!ret) {
5145 ret = count;
5146 EXT4_MB_GRP_SET_TRIMMED(e4b.bd_info);
5147 }
5148 out:
5149 ext4_unlock_group(sb, group);
5150 ext4_mb_unload_buddy(&e4b);
5151
5152 ext4_debug("trimmed %d blocks in the group %d\n",
5153 count, group);
5154
5155 return ret;
5156 }
5157
5158 /**
5159 * ext4_trim_fs() -- trim ioctl handle function
5160 * @sb: superblock for filesystem
5161 * @range: fstrim_range structure
5162 *
5163 * start: First Byte to trim
5164 * len: number of Bytes to trim from start
5165 * minlen: minimum extent length in Bytes
5166 * ext4_trim_fs goes through all allocation groups containing Bytes from
5167 * start to start+len. For each such a group ext4_trim_all_free function
5168 * is invoked to trim all free space.
5169 */
5170 int ext4_trim_fs(struct super_block *sb, struct fstrim_range *range)
5171 {
5172 struct ext4_group_info *grp;
5173 ext4_group_t group, first_group, last_group;
5174 ext4_grpblk_t cnt = 0, first_cluster, last_cluster;
5175 uint64_t start, end, minlen, trimmed = 0;
5176 ext4_fsblk_t first_data_blk =
5177 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block);
5178 ext4_fsblk_t max_blks = ext4_blocks_count(EXT4_SB(sb)->s_es);
5179 int ret = 0;
5180
5181 start = range->start >> sb->s_blocksize_bits;
5182 end = start + (range->len >> sb->s_blocksize_bits) - 1;
5183 minlen = EXT4_NUM_B2C(EXT4_SB(sb),
5184 range->minlen >> sb->s_blocksize_bits);
5185
5186 if (minlen > EXT4_CLUSTERS_PER_GROUP(sb) ||
5187 start >= max_blks ||
5188 range->len < sb->s_blocksize)
5189 return -EINVAL;
5190 if (end >= max_blks)
5191 end = max_blks - 1;
5192 if (end <= first_data_blk)
5193 goto out;
5194 if (start < first_data_blk)
5195 start = first_data_blk;
5196
5197 /* Determine first and last group to examine based on start and end */
5198 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) start,
5199 &first_group, &first_cluster);
5200 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) end,
5201 &last_group, &last_cluster);
5202
5203 /* end now represents the last cluster to discard in this group */
5204 end = EXT4_CLUSTERS_PER_GROUP(sb) - 1;
5205
5206 for (group = first_group; group <= last_group; group++) {
5207 grp = ext4_get_group_info(sb, group);
5208 /* We only do this if the grp has never been initialized */
5209 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
5210 ret = ext4_mb_init_group(sb, group);
5211 if (ret)
5212 break;
5213 }
5214
5215 /*
5216 * For all the groups except the last one, last cluster will
5217 * always be EXT4_CLUSTERS_PER_GROUP(sb)-1, so we only need to
5218 * change it for the last group, note that last_cluster is
5219 * already computed earlier by ext4_get_group_no_and_offset()
5220 */
5221 if (group == last_group)
5222 end = last_cluster;
5223
5224 if (grp->bb_free >= minlen) {
5225 cnt = ext4_trim_all_free(sb, group, first_cluster,
5226 end, minlen);
5227 if (cnt < 0) {
5228 ret = cnt;
5229 break;
5230 }
5231 trimmed += cnt;
5232 }
5233
5234 /*
5235 * For every group except the first one, we are sure
5236 * that the first cluster to discard will be cluster #0.
5237 */
5238 first_cluster = 0;
5239 }
5240
5241 if (!ret)
5242 atomic_set(&EXT4_SB(sb)->s_last_trim_minblks, minlen);
5243
5244 out:
5245 range->len = EXT4_C2B(EXT4_SB(sb), trimmed) << sb->s_blocksize_bits;
5246 return ret;
5247 }