]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - fs/ext4/mballoc.c
Merge tag 'fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/arm...
[mirror_ubuntu-zesty-kernel.git] / fs / ext4 / mballoc.c
1 /*
2 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3 * Written by Alex Tomas <alex@clusterfs.com>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
17 */
18
19
20 /*
21 * mballoc.c contains the multiblocks allocation routines
22 */
23
24 #include "ext4_jbd2.h"
25 #include "mballoc.h"
26 #include <linux/log2.h>
27 #include <linux/module.h>
28 #include <linux/slab.h>
29 #include <linux/backing-dev.h>
30 #include <trace/events/ext4.h>
31
32 #ifdef CONFIG_EXT4_DEBUG
33 ushort ext4_mballoc_debug __read_mostly;
34
35 module_param_named(mballoc_debug, ext4_mballoc_debug, ushort, 0644);
36 MODULE_PARM_DESC(mballoc_debug, "Debugging level for ext4's mballoc");
37 #endif
38
39 /*
40 * MUSTDO:
41 * - test ext4_ext_search_left() and ext4_ext_search_right()
42 * - search for metadata in few groups
43 *
44 * TODO v4:
45 * - normalization should take into account whether file is still open
46 * - discard preallocations if no free space left (policy?)
47 * - don't normalize tails
48 * - quota
49 * - reservation for superuser
50 *
51 * TODO v3:
52 * - bitmap read-ahead (proposed by Oleg Drokin aka green)
53 * - track min/max extents in each group for better group selection
54 * - mb_mark_used() may allocate chunk right after splitting buddy
55 * - tree of groups sorted by number of free blocks
56 * - error handling
57 */
58
59 /*
60 * The allocation request involve request for multiple number of blocks
61 * near to the goal(block) value specified.
62 *
63 * During initialization phase of the allocator we decide to use the
64 * group preallocation or inode preallocation depending on the size of
65 * the file. The size of the file could be the resulting file size we
66 * would have after allocation, or the current file size, which ever
67 * is larger. If the size is less than sbi->s_mb_stream_request we
68 * select to use the group preallocation. The default value of
69 * s_mb_stream_request is 16 blocks. This can also be tuned via
70 * /sys/fs/ext4/<partition>/mb_stream_req. The value is represented in
71 * terms of number of blocks.
72 *
73 * The main motivation for having small file use group preallocation is to
74 * ensure that we have small files closer together on the disk.
75 *
76 * First stage the allocator looks at the inode prealloc list,
77 * ext4_inode_info->i_prealloc_list, which contains list of prealloc
78 * spaces for this particular inode. The inode prealloc space is
79 * represented as:
80 *
81 * pa_lstart -> the logical start block for this prealloc space
82 * pa_pstart -> the physical start block for this prealloc space
83 * pa_len -> length for this prealloc space (in clusters)
84 * pa_free -> free space available in this prealloc space (in clusters)
85 *
86 * The inode preallocation space is used looking at the _logical_ start
87 * block. If only the logical file block falls within the range of prealloc
88 * space we will consume the particular prealloc space. This makes sure that
89 * we have contiguous physical blocks representing the file blocks
90 *
91 * The important thing to be noted in case of inode prealloc space is that
92 * we don't modify the values associated to inode prealloc space except
93 * pa_free.
94 *
95 * If we are not able to find blocks in the inode prealloc space and if we
96 * have the group allocation flag set then we look at the locality group
97 * prealloc space. These are per CPU prealloc list represented as
98 *
99 * ext4_sb_info.s_locality_groups[smp_processor_id()]
100 *
101 * The reason for having a per cpu locality group is to reduce the contention
102 * between CPUs. It is possible to get scheduled at this point.
103 *
104 * The locality group prealloc space is used looking at whether we have
105 * enough free space (pa_free) within the prealloc space.
106 *
107 * If we can't allocate blocks via inode prealloc or/and locality group
108 * prealloc then we look at the buddy cache. The buddy cache is represented
109 * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets
110 * mapped to the buddy and bitmap information regarding different
111 * groups. The buddy information is attached to buddy cache inode so that
112 * we can access them through the page cache. The information regarding
113 * each group is loaded via ext4_mb_load_buddy. The information involve
114 * block bitmap and buddy information. The information are stored in the
115 * inode as:
116 *
117 * { page }
118 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
119 *
120 *
121 * one block each for bitmap and buddy information. So for each group we
122 * take up 2 blocks. A page can contain blocks_per_page (PAGE_SIZE /
123 * blocksize) blocks. So it can have information regarding groups_per_page
124 * which is blocks_per_page/2
125 *
126 * The buddy cache inode is not stored on disk. The inode is thrown
127 * away when the filesystem is unmounted.
128 *
129 * We look for count number of blocks in the buddy cache. If we were able
130 * to locate that many free blocks we return with additional information
131 * regarding rest of the contiguous physical block available
132 *
133 * Before allocating blocks via buddy cache we normalize the request
134 * blocks. This ensure we ask for more blocks that we needed. The extra
135 * blocks that we get after allocation is added to the respective prealloc
136 * list. In case of inode preallocation we follow a list of heuristics
137 * based on file size. This can be found in ext4_mb_normalize_request. If
138 * we are doing a group prealloc we try to normalize the request to
139 * sbi->s_mb_group_prealloc. The default value of s_mb_group_prealloc is
140 * dependent on the cluster size; for non-bigalloc file systems, it is
141 * 512 blocks. This can be tuned via
142 * /sys/fs/ext4/<partition>/mb_group_prealloc. The value is represented in
143 * terms of number of blocks. If we have mounted the file system with -O
144 * stripe=<value> option the group prealloc request is normalized to the
145 * the smallest multiple of the stripe value (sbi->s_stripe) which is
146 * greater than the default mb_group_prealloc.
147 *
148 * The regular allocator (using the buddy cache) supports a few tunables.
149 *
150 * /sys/fs/ext4/<partition>/mb_min_to_scan
151 * /sys/fs/ext4/<partition>/mb_max_to_scan
152 * /sys/fs/ext4/<partition>/mb_order2_req
153 *
154 * The regular allocator uses buddy scan only if the request len is power of
155 * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The
156 * value of s_mb_order2_reqs can be tuned via
157 * /sys/fs/ext4/<partition>/mb_order2_req. If the request len is equal to
158 * stripe size (sbi->s_stripe), we try to search for contiguous block in
159 * stripe size. This should result in better allocation on RAID setups. If
160 * not, we search in the specific group using bitmap for best extents. The
161 * tunable min_to_scan and max_to_scan control the behaviour here.
162 * min_to_scan indicate how long the mballoc __must__ look for a best
163 * extent and max_to_scan indicates how long the mballoc __can__ look for a
164 * best extent in the found extents. Searching for the blocks starts with
165 * the group specified as the goal value in allocation context via
166 * ac_g_ex. Each group is first checked based on the criteria whether it
167 * can be used for allocation. ext4_mb_good_group explains how the groups are
168 * checked.
169 *
170 * Both the prealloc space are getting populated as above. So for the first
171 * request we will hit the buddy cache which will result in this prealloc
172 * space getting filled. The prealloc space is then later used for the
173 * subsequent request.
174 */
175
176 /*
177 * mballoc operates on the following data:
178 * - on-disk bitmap
179 * - in-core buddy (actually includes buddy and bitmap)
180 * - preallocation descriptors (PAs)
181 *
182 * there are two types of preallocations:
183 * - inode
184 * assiged to specific inode and can be used for this inode only.
185 * it describes part of inode's space preallocated to specific
186 * physical blocks. any block from that preallocated can be used
187 * independent. the descriptor just tracks number of blocks left
188 * unused. so, before taking some block from descriptor, one must
189 * make sure corresponded logical block isn't allocated yet. this
190 * also means that freeing any block within descriptor's range
191 * must discard all preallocated blocks.
192 * - locality group
193 * assigned to specific locality group which does not translate to
194 * permanent set of inodes: inode can join and leave group. space
195 * from this type of preallocation can be used for any inode. thus
196 * it's consumed from the beginning to the end.
197 *
198 * relation between them can be expressed as:
199 * in-core buddy = on-disk bitmap + preallocation descriptors
200 *
201 * this mean blocks mballoc considers used are:
202 * - allocated blocks (persistent)
203 * - preallocated blocks (non-persistent)
204 *
205 * consistency in mballoc world means that at any time a block is either
206 * free or used in ALL structures. notice: "any time" should not be read
207 * literally -- time is discrete and delimited by locks.
208 *
209 * to keep it simple, we don't use block numbers, instead we count number of
210 * blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA.
211 *
212 * all operations can be expressed as:
213 * - init buddy: buddy = on-disk + PAs
214 * - new PA: buddy += N; PA = N
215 * - use inode PA: on-disk += N; PA -= N
216 * - discard inode PA buddy -= on-disk - PA; PA = 0
217 * - use locality group PA on-disk += N; PA -= N
218 * - discard locality group PA buddy -= PA; PA = 0
219 * note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap
220 * is used in real operation because we can't know actual used
221 * bits from PA, only from on-disk bitmap
222 *
223 * if we follow this strict logic, then all operations above should be atomic.
224 * given some of them can block, we'd have to use something like semaphores
225 * killing performance on high-end SMP hardware. let's try to relax it using
226 * the following knowledge:
227 * 1) if buddy is referenced, it's already initialized
228 * 2) while block is used in buddy and the buddy is referenced,
229 * nobody can re-allocate that block
230 * 3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has
231 * bit set and PA claims same block, it's OK. IOW, one can set bit in
232 * on-disk bitmap if buddy has same bit set or/and PA covers corresponded
233 * block
234 *
235 * so, now we're building a concurrency table:
236 * - init buddy vs.
237 * - new PA
238 * blocks for PA are allocated in the buddy, buddy must be referenced
239 * until PA is linked to allocation group to avoid concurrent buddy init
240 * - use inode PA
241 * we need to make sure that either on-disk bitmap or PA has uptodate data
242 * given (3) we care that PA-=N operation doesn't interfere with init
243 * - discard inode PA
244 * the simplest way would be to have buddy initialized by the discard
245 * - use locality group PA
246 * again PA-=N must be serialized with init
247 * - discard locality group PA
248 * the simplest way would be to have buddy initialized by the discard
249 * - new PA vs.
250 * - use inode PA
251 * i_data_sem serializes them
252 * - discard inode PA
253 * discard process must wait until PA isn't used by another process
254 * - use locality group PA
255 * some mutex should serialize them
256 * - discard locality group PA
257 * discard process must wait until PA isn't used by another process
258 * - use inode PA
259 * - use inode PA
260 * i_data_sem or another mutex should serializes them
261 * - discard inode PA
262 * discard process must wait until PA isn't used by another process
263 * - use locality group PA
264 * nothing wrong here -- they're different PAs covering different blocks
265 * - discard locality group PA
266 * discard process must wait until PA isn't used by another process
267 *
268 * now we're ready to make few consequences:
269 * - PA is referenced and while it is no discard is possible
270 * - PA is referenced until block isn't marked in on-disk bitmap
271 * - PA changes only after on-disk bitmap
272 * - discard must not compete with init. either init is done before
273 * any discard or they're serialized somehow
274 * - buddy init as sum of on-disk bitmap and PAs is done atomically
275 *
276 * a special case when we've used PA to emptiness. no need to modify buddy
277 * in this case, but we should care about concurrent init
278 *
279 */
280
281 /*
282 * Logic in few words:
283 *
284 * - allocation:
285 * load group
286 * find blocks
287 * mark bits in on-disk bitmap
288 * release group
289 *
290 * - use preallocation:
291 * find proper PA (per-inode or group)
292 * load group
293 * mark bits in on-disk bitmap
294 * release group
295 * release PA
296 *
297 * - free:
298 * load group
299 * mark bits in on-disk bitmap
300 * release group
301 *
302 * - discard preallocations in group:
303 * mark PAs deleted
304 * move them onto local list
305 * load on-disk bitmap
306 * load group
307 * remove PA from object (inode or locality group)
308 * mark free blocks in-core
309 *
310 * - discard inode's preallocations:
311 */
312
313 /*
314 * Locking rules
315 *
316 * Locks:
317 * - bitlock on a group (group)
318 * - object (inode/locality) (object)
319 * - per-pa lock (pa)
320 *
321 * Paths:
322 * - new pa
323 * object
324 * group
325 *
326 * - find and use pa:
327 * pa
328 *
329 * - release consumed pa:
330 * pa
331 * group
332 * object
333 *
334 * - generate in-core bitmap:
335 * group
336 * pa
337 *
338 * - discard all for given object (inode, locality group):
339 * object
340 * pa
341 * group
342 *
343 * - discard all for given group:
344 * group
345 * pa
346 * group
347 * object
348 *
349 */
350 static struct kmem_cache *ext4_pspace_cachep;
351 static struct kmem_cache *ext4_ac_cachep;
352 static struct kmem_cache *ext4_free_data_cachep;
353
354 /* We create slab caches for groupinfo data structures based on the
355 * superblock block size. There will be one per mounted filesystem for
356 * each unique s_blocksize_bits */
357 #define NR_GRPINFO_CACHES 8
358 static struct kmem_cache *ext4_groupinfo_caches[NR_GRPINFO_CACHES];
359
360 static const char *ext4_groupinfo_slab_names[NR_GRPINFO_CACHES] = {
361 "ext4_groupinfo_1k", "ext4_groupinfo_2k", "ext4_groupinfo_4k",
362 "ext4_groupinfo_8k", "ext4_groupinfo_16k", "ext4_groupinfo_32k",
363 "ext4_groupinfo_64k", "ext4_groupinfo_128k"
364 };
365
366 static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
367 ext4_group_t group);
368 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
369 ext4_group_t group);
370 static void ext4_free_data_callback(struct super_block *sb,
371 struct ext4_journal_cb_entry *jce, int rc);
372
373 static inline void *mb_correct_addr_and_bit(int *bit, void *addr)
374 {
375 #if BITS_PER_LONG == 64
376 *bit += ((unsigned long) addr & 7UL) << 3;
377 addr = (void *) ((unsigned long) addr & ~7UL);
378 #elif BITS_PER_LONG == 32
379 *bit += ((unsigned long) addr & 3UL) << 3;
380 addr = (void *) ((unsigned long) addr & ~3UL);
381 #else
382 #error "how many bits you are?!"
383 #endif
384 return addr;
385 }
386
387 static inline int mb_test_bit(int bit, void *addr)
388 {
389 /*
390 * ext4_test_bit on architecture like powerpc
391 * needs unsigned long aligned address
392 */
393 addr = mb_correct_addr_and_bit(&bit, addr);
394 return ext4_test_bit(bit, addr);
395 }
396
397 static inline void mb_set_bit(int bit, void *addr)
398 {
399 addr = mb_correct_addr_and_bit(&bit, addr);
400 ext4_set_bit(bit, addr);
401 }
402
403 static inline void mb_clear_bit(int bit, void *addr)
404 {
405 addr = mb_correct_addr_and_bit(&bit, addr);
406 ext4_clear_bit(bit, addr);
407 }
408
409 static inline int mb_test_and_clear_bit(int bit, void *addr)
410 {
411 addr = mb_correct_addr_and_bit(&bit, addr);
412 return ext4_test_and_clear_bit(bit, addr);
413 }
414
415 static inline int mb_find_next_zero_bit(void *addr, int max, int start)
416 {
417 int fix = 0, ret, tmpmax;
418 addr = mb_correct_addr_and_bit(&fix, addr);
419 tmpmax = max + fix;
420 start += fix;
421
422 ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix;
423 if (ret > max)
424 return max;
425 return ret;
426 }
427
428 static inline int mb_find_next_bit(void *addr, int max, int start)
429 {
430 int fix = 0, ret, tmpmax;
431 addr = mb_correct_addr_and_bit(&fix, addr);
432 tmpmax = max + fix;
433 start += fix;
434
435 ret = ext4_find_next_bit(addr, tmpmax, start) - fix;
436 if (ret > max)
437 return max;
438 return ret;
439 }
440
441 static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max)
442 {
443 char *bb;
444
445 BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
446 BUG_ON(max == NULL);
447
448 if (order > e4b->bd_blkbits + 1) {
449 *max = 0;
450 return NULL;
451 }
452
453 /* at order 0 we see each particular block */
454 if (order == 0) {
455 *max = 1 << (e4b->bd_blkbits + 3);
456 return e4b->bd_bitmap;
457 }
458
459 bb = e4b->bd_buddy + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order];
460 *max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order];
461
462 return bb;
463 }
464
465 #ifdef DOUBLE_CHECK
466 static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b,
467 int first, int count)
468 {
469 int i;
470 struct super_block *sb = e4b->bd_sb;
471
472 if (unlikely(e4b->bd_info->bb_bitmap == NULL))
473 return;
474 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
475 for (i = 0; i < count; i++) {
476 if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) {
477 ext4_fsblk_t blocknr;
478
479 blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
480 blocknr += EXT4_C2B(EXT4_SB(sb), first + i);
481 ext4_grp_locked_error(sb, e4b->bd_group,
482 inode ? inode->i_ino : 0,
483 blocknr,
484 "freeing block already freed "
485 "(bit %u)",
486 first + i);
487 }
488 mb_clear_bit(first + i, e4b->bd_info->bb_bitmap);
489 }
490 }
491
492 static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count)
493 {
494 int i;
495
496 if (unlikely(e4b->bd_info->bb_bitmap == NULL))
497 return;
498 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
499 for (i = 0; i < count; i++) {
500 BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap));
501 mb_set_bit(first + i, e4b->bd_info->bb_bitmap);
502 }
503 }
504
505 static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
506 {
507 if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) {
508 unsigned char *b1, *b2;
509 int i;
510 b1 = (unsigned char *) e4b->bd_info->bb_bitmap;
511 b2 = (unsigned char *) bitmap;
512 for (i = 0; i < e4b->bd_sb->s_blocksize; i++) {
513 if (b1[i] != b2[i]) {
514 ext4_msg(e4b->bd_sb, KERN_ERR,
515 "corruption in group %u "
516 "at byte %u(%u): %x in copy != %x "
517 "on disk/prealloc",
518 e4b->bd_group, i, i * 8, b1[i], b2[i]);
519 BUG();
520 }
521 }
522 }
523 }
524
525 #else
526 static inline void mb_free_blocks_double(struct inode *inode,
527 struct ext4_buddy *e4b, int first, int count)
528 {
529 return;
530 }
531 static inline void mb_mark_used_double(struct ext4_buddy *e4b,
532 int first, int count)
533 {
534 return;
535 }
536 static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
537 {
538 return;
539 }
540 #endif
541
542 #ifdef AGGRESSIVE_CHECK
543
544 #define MB_CHECK_ASSERT(assert) \
545 do { \
546 if (!(assert)) { \
547 printk(KERN_EMERG \
548 "Assertion failure in %s() at %s:%d: \"%s\"\n", \
549 function, file, line, # assert); \
550 BUG(); \
551 } \
552 } while (0)
553
554 static int __mb_check_buddy(struct ext4_buddy *e4b, char *file,
555 const char *function, int line)
556 {
557 struct super_block *sb = e4b->bd_sb;
558 int order = e4b->bd_blkbits + 1;
559 int max;
560 int max2;
561 int i;
562 int j;
563 int k;
564 int count;
565 struct ext4_group_info *grp;
566 int fragments = 0;
567 int fstart;
568 struct list_head *cur;
569 void *buddy;
570 void *buddy2;
571
572 {
573 static int mb_check_counter;
574 if (mb_check_counter++ % 100 != 0)
575 return 0;
576 }
577
578 while (order > 1) {
579 buddy = mb_find_buddy(e4b, order, &max);
580 MB_CHECK_ASSERT(buddy);
581 buddy2 = mb_find_buddy(e4b, order - 1, &max2);
582 MB_CHECK_ASSERT(buddy2);
583 MB_CHECK_ASSERT(buddy != buddy2);
584 MB_CHECK_ASSERT(max * 2 == max2);
585
586 count = 0;
587 for (i = 0; i < max; i++) {
588
589 if (mb_test_bit(i, buddy)) {
590 /* only single bit in buddy2 may be 1 */
591 if (!mb_test_bit(i << 1, buddy2)) {
592 MB_CHECK_ASSERT(
593 mb_test_bit((i<<1)+1, buddy2));
594 } else if (!mb_test_bit((i << 1) + 1, buddy2)) {
595 MB_CHECK_ASSERT(
596 mb_test_bit(i << 1, buddy2));
597 }
598 continue;
599 }
600
601 /* both bits in buddy2 must be 1 */
602 MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2));
603 MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2));
604
605 for (j = 0; j < (1 << order); j++) {
606 k = (i * (1 << order)) + j;
607 MB_CHECK_ASSERT(
608 !mb_test_bit(k, e4b->bd_bitmap));
609 }
610 count++;
611 }
612 MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count);
613 order--;
614 }
615
616 fstart = -1;
617 buddy = mb_find_buddy(e4b, 0, &max);
618 for (i = 0; i < max; i++) {
619 if (!mb_test_bit(i, buddy)) {
620 MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free);
621 if (fstart == -1) {
622 fragments++;
623 fstart = i;
624 }
625 continue;
626 }
627 fstart = -1;
628 /* check used bits only */
629 for (j = 0; j < e4b->bd_blkbits + 1; j++) {
630 buddy2 = mb_find_buddy(e4b, j, &max2);
631 k = i >> j;
632 MB_CHECK_ASSERT(k < max2);
633 MB_CHECK_ASSERT(mb_test_bit(k, buddy2));
634 }
635 }
636 MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info));
637 MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments);
638
639 grp = ext4_get_group_info(sb, e4b->bd_group);
640 list_for_each(cur, &grp->bb_prealloc_list) {
641 ext4_group_t groupnr;
642 struct ext4_prealloc_space *pa;
643 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
644 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k);
645 MB_CHECK_ASSERT(groupnr == e4b->bd_group);
646 for (i = 0; i < pa->pa_len; i++)
647 MB_CHECK_ASSERT(mb_test_bit(k + i, buddy));
648 }
649 return 0;
650 }
651 #undef MB_CHECK_ASSERT
652 #define mb_check_buddy(e4b) __mb_check_buddy(e4b, \
653 __FILE__, __func__, __LINE__)
654 #else
655 #define mb_check_buddy(e4b)
656 #endif
657
658 /*
659 * Divide blocks started from @first with length @len into
660 * smaller chunks with power of 2 blocks.
661 * Clear the bits in bitmap which the blocks of the chunk(s) covered,
662 * then increase bb_counters[] for corresponded chunk size.
663 */
664 static void ext4_mb_mark_free_simple(struct super_block *sb,
665 void *buddy, ext4_grpblk_t first, ext4_grpblk_t len,
666 struct ext4_group_info *grp)
667 {
668 struct ext4_sb_info *sbi = EXT4_SB(sb);
669 ext4_grpblk_t min;
670 ext4_grpblk_t max;
671 ext4_grpblk_t chunk;
672 unsigned int border;
673
674 BUG_ON(len > EXT4_CLUSTERS_PER_GROUP(sb));
675
676 border = 2 << sb->s_blocksize_bits;
677
678 while (len > 0) {
679 /* find how many blocks can be covered since this position */
680 max = ffs(first | border) - 1;
681
682 /* find how many blocks of power 2 we need to mark */
683 min = fls(len) - 1;
684
685 if (max < min)
686 min = max;
687 chunk = 1 << min;
688
689 /* mark multiblock chunks only */
690 grp->bb_counters[min]++;
691 if (min > 0)
692 mb_clear_bit(first >> min,
693 buddy + sbi->s_mb_offsets[min]);
694
695 len -= chunk;
696 first += chunk;
697 }
698 }
699
700 /*
701 * Cache the order of the largest free extent we have available in this block
702 * group.
703 */
704 static void
705 mb_set_largest_free_order(struct super_block *sb, struct ext4_group_info *grp)
706 {
707 int i;
708 int bits;
709
710 grp->bb_largest_free_order = -1; /* uninit */
711
712 bits = sb->s_blocksize_bits + 1;
713 for (i = bits; i >= 0; i--) {
714 if (grp->bb_counters[i] > 0) {
715 grp->bb_largest_free_order = i;
716 break;
717 }
718 }
719 }
720
721 static noinline_for_stack
722 void ext4_mb_generate_buddy(struct super_block *sb,
723 void *buddy, void *bitmap, ext4_group_t group)
724 {
725 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
726 struct ext4_sb_info *sbi = EXT4_SB(sb);
727 ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb);
728 ext4_grpblk_t i = 0;
729 ext4_grpblk_t first;
730 ext4_grpblk_t len;
731 unsigned free = 0;
732 unsigned fragments = 0;
733 unsigned long long period = get_cycles();
734
735 /* initialize buddy from bitmap which is aggregation
736 * of on-disk bitmap and preallocations */
737 i = mb_find_next_zero_bit(bitmap, max, 0);
738 grp->bb_first_free = i;
739 while (i < max) {
740 fragments++;
741 first = i;
742 i = mb_find_next_bit(bitmap, max, i);
743 len = i - first;
744 free += len;
745 if (len > 1)
746 ext4_mb_mark_free_simple(sb, buddy, first, len, grp);
747 else
748 grp->bb_counters[0]++;
749 if (i < max)
750 i = mb_find_next_zero_bit(bitmap, max, i);
751 }
752 grp->bb_fragments = fragments;
753
754 if (free != grp->bb_free) {
755 ext4_grp_locked_error(sb, group, 0, 0,
756 "block bitmap and bg descriptor "
757 "inconsistent: %u vs %u free clusters",
758 free, grp->bb_free);
759 /*
760 * If we intend to continue, we consider group descriptor
761 * corrupt and update bb_free using bitmap value
762 */
763 grp->bb_free = free;
764 if (!EXT4_MB_GRP_BBITMAP_CORRUPT(grp))
765 percpu_counter_sub(&sbi->s_freeclusters_counter,
766 grp->bb_free);
767 set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT, &grp->bb_state);
768 }
769 mb_set_largest_free_order(sb, grp);
770
771 clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state));
772
773 period = get_cycles() - period;
774 spin_lock(&EXT4_SB(sb)->s_bal_lock);
775 EXT4_SB(sb)->s_mb_buddies_generated++;
776 EXT4_SB(sb)->s_mb_generation_time += period;
777 spin_unlock(&EXT4_SB(sb)->s_bal_lock);
778 }
779
780 static void mb_regenerate_buddy(struct ext4_buddy *e4b)
781 {
782 int count;
783 int order = 1;
784 void *buddy;
785
786 while ((buddy = mb_find_buddy(e4b, order++, &count))) {
787 ext4_set_bits(buddy, 0, count);
788 }
789 e4b->bd_info->bb_fragments = 0;
790 memset(e4b->bd_info->bb_counters, 0,
791 sizeof(*e4b->bd_info->bb_counters) *
792 (e4b->bd_sb->s_blocksize_bits + 2));
793
794 ext4_mb_generate_buddy(e4b->bd_sb, e4b->bd_buddy,
795 e4b->bd_bitmap, e4b->bd_group);
796 }
797
798 /* The buddy information is attached the buddy cache inode
799 * for convenience. The information regarding each group
800 * is loaded via ext4_mb_load_buddy. The information involve
801 * block bitmap and buddy information. The information are
802 * stored in the inode as
803 *
804 * { page }
805 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
806 *
807 *
808 * one block each for bitmap and buddy information.
809 * So for each group we take up 2 blocks. A page can
810 * contain blocks_per_page (PAGE_SIZE / blocksize) blocks.
811 * So it can have information regarding groups_per_page which
812 * is blocks_per_page/2
813 *
814 * Locking note: This routine takes the block group lock of all groups
815 * for this page; do not hold this lock when calling this routine!
816 */
817
818 static int ext4_mb_init_cache(struct page *page, char *incore, gfp_t gfp)
819 {
820 ext4_group_t ngroups;
821 int blocksize;
822 int blocks_per_page;
823 int groups_per_page;
824 int err = 0;
825 int i;
826 ext4_group_t first_group, group;
827 int first_block;
828 struct super_block *sb;
829 struct buffer_head *bhs;
830 struct buffer_head **bh = NULL;
831 struct inode *inode;
832 char *data;
833 char *bitmap;
834 struct ext4_group_info *grinfo;
835
836 mb_debug(1, "init page %lu\n", page->index);
837
838 inode = page->mapping->host;
839 sb = inode->i_sb;
840 ngroups = ext4_get_groups_count(sb);
841 blocksize = 1 << inode->i_blkbits;
842 blocks_per_page = PAGE_SIZE / blocksize;
843
844 groups_per_page = blocks_per_page >> 1;
845 if (groups_per_page == 0)
846 groups_per_page = 1;
847
848 /* allocate buffer_heads to read bitmaps */
849 if (groups_per_page > 1) {
850 i = sizeof(struct buffer_head *) * groups_per_page;
851 bh = kzalloc(i, gfp);
852 if (bh == NULL) {
853 err = -ENOMEM;
854 goto out;
855 }
856 } else
857 bh = &bhs;
858
859 first_group = page->index * blocks_per_page / 2;
860
861 /* read all groups the page covers into the cache */
862 for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
863 if (group >= ngroups)
864 break;
865
866 grinfo = ext4_get_group_info(sb, group);
867 /*
868 * If page is uptodate then we came here after online resize
869 * which added some new uninitialized group info structs, so
870 * we must skip all initialized uptodate buddies on the page,
871 * which may be currently in use by an allocating task.
872 */
873 if (PageUptodate(page) && !EXT4_MB_GRP_NEED_INIT(grinfo)) {
874 bh[i] = NULL;
875 continue;
876 }
877 bh[i] = ext4_read_block_bitmap_nowait(sb, group);
878 if (IS_ERR(bh[i])) {
879 err = PTR_ERR(bh[i]);
880 bh[i] = NULL;
881 goto out;
882 }
883 mb_debug(1, "read bitmap for group %u\n", group);
884 }
885
886 /* wait for I/O completion */
887 for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
888 int err2;
889
890 if (!bh[i])
891 continue;
892 err2 = ext4_wait_block_bitmap(sb, group, bh[i]);
893 if (!err)
894 err = err2;
895 }
896
897 first_block = page->index * blocks_per_page;
898 for (i = 0; i < blocks_per_page; i++) {
899 group = (first_block + i) >> 1;
900 if (group >= ngroups)
901 break;
902
903 if (!bh[group - first_group])
904 /* skip initialized uptodate buddy */
905 continue;
906
907 if (!buffer_verified(bh[group - first_group]))
908 /* Skip faulty bitmaps */
909 continue;
910 err = 0;
911
912 /*
913 * data carry information regarding this
914 * particular group in the format specified
915 * above
916 *
917 */
918 data = page_address(page) + (i * blocksize);
919 bitmap = bh[group - first_group]->b_data;
920
921 /*
922 * We place the buddy block and bitmap block
923 * close together
924 */
925 if ((first_block + i) & 1) {
926 /* this is block of buddy */
927 BUG_ON(incore == NULL);
928 mb_debug(1, "put buddy for group %u in page %lu/%x\n",
929 group, page->index, i * blocksize);
930 trace_ext4_mb_buddy_bitmap_load(sb, group);
931 grinfo = ext4_get_group_info(sb, group);
932 grinfo->bb_fragments = 0;
933 memset(grinfo->bb_counters, 0,
934 sizeof(*grinfo->bb_counters) *
935 (sb->s_blocksize_bits+2));
936 /*
937 * incore got set to the group block bitmap below
938 */
939 ext4_lock_group(sb, group);
940 /* init the buddy */
941 memset(data, 0xff, blocksize);
942 ext4_mb_generate_buddy(sb, data, incore, group);
943 ext4_unlock_group(sb, group);
944 incore = NULL;
945 } else {
946 /* this is block of bitmap */
947 BUG_ON(incore != NULL);
948 mb_debug(1, "put bitmap for group %u in page %lu/%x\n",
949 group, page->index, i * blocksize);
950 trace_ext4_mb_bitmap_load(sb, group);
951
952 /* see comments in ext4_mb_put_pa() */
953 ext4_lock_group(sb, group);
954 memcpy(data, bitmap, blocksize);
955
956 /* mark all preallocated blks used in in-core bitmap */
957 ext4_mb_generate_from_pa(sb, data, group);
958 ext4_mb_generate_from_freelist(sb, data, group);
959 ext4_unlock_group(sb, group);
960
961 /* set incore so that the buddy information can be
962 * generated using this
963 */
964 incore = data;
965 }
966 }
967 SetPageUptodate(page);
968
969 out:
970 if (bh) {
971 for (i = 0; i < groups_per_page; i++)
972 brelse(bh[i]);
973 if (bh != &bhs)
974 kfree(bh);
975 }
976 return err;
977 }
978
979 /*
980 * Lock the buddy and bitmap pages. This make sure other parallel init_group
981 * on the same buddy page doesn't happen whild holding the buddy page lock.
982 * Return locked buddy and bitmap pages on e4b struct. If buddy and bitmap
983 * are on the same page e4b->bd_buddy_page is NULL and return value is 0.
984 */
985 static int ext4_mb_get_buddy_page_lock(struct super_block *sb,
986 ext4_group_t group, struct ext4_buddy *e4b, gfp_t gfp)
987 {
988 struct inode *inode = EXT4_SB(sb)->s_buddy_cache;
989 int block, pnum, poff;
990 int blocks_per_page;
991 struct page *page;
992
993 e4b->bd_buddy_page = NULL;
994 e4b->bd_bitmap_page = NULL;
995
996 blocks_per_page = PAGE_SIZE / sb->s_blocksize;
997 /*
998 * the buddy cache inode stores the block bitmap
999 * and buddy information in consecutive blocks.
1000 * So for each group we need two blocks.
1001 */
1002 block = group * 2;
1003 pnum = block / blocks_per_page;
1004 poff = block % blocks_per_page;
1005 page = find_or_create_page(inode->i_mapping, pnum, gfp);
1006 if (!page)
1007 return -ENOMEM;
1008 BUG_ON(page->mapping != inode->i_mapping);
1009 e4b->bd_bitmap_page = page;
1010 e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
1011
1012 if (blocks_per_page >= 2) {
1013 /* buddy and bitmap are on the same page */
1014 return 0;
1015 }
1016
1017 block++;
1018 pnum = block / blocks_per_page;
1019 page = find_or_create_page(inode->i_mapping, pnum, gfp);
1020 if (!page)
1021 return -ENOMEM;
1022 BUG_ON(page->mapping != inode->i_mapping);
1023 e4b->bd_buddy_page = page;
1024 return 0;
1025 }
1026
1027 static void ext4_mb_put_buddy_page_lock(struct ext4_buddy *e4b)
1028 {
1029 if (e4b->bd_bitmap_page) {
1030 unlock_page(e4b->bd_bitmap_page);
1031 put_page(e4b->bd_bitmap_page);
1032 }
1033 if (e4b->bd_buddy_page) {
1034 unlock_page(e4b->bd_buddy_page);
1035 put_page(e4b->bd_buddy_page);
1036 }
1037 }
1038
1039 /*
1040 * Locking note: This routine calls ext4_mb_init_cache(), which takes the
1041 * block group lock of all groups for this page; do not hold the BG lock when
1042 * calling this routine!
1043 */
1044 static noinline_for_stack
1045 int ext4_mb_init_group(struct super_block *sb, ext4_group_t group, gfp_t gfp)
1046 {
1047
1048 struct ext4_group_info *this_grp;
1049 struct ext4_buddy e4b;
1050 struct page *page;
1051 int ret = 0;
1052
1053 might_sleep();
1054 mb_debug(1, "init group %u\n", group);
1055 this_grp = ext4_get_group_info(sb, group);
1056 /*
1057 * This ensures that we don't reinit the buddy cache
1058 * page which map to the group from which we are already
1059 * allocating. If we are looking at the buddy cache we would
1060 * have taken a reference using ext4_mb_load_buddy and that
1061 * would have pinned buddy page to page cache.
1062 * The call to ext4_mb_get_buddy_page_lock will mark the
1063 * page accessed.
1064 */
1065 ret = ext4_mb_get_buddy_page_lock(sb, group, &e4b, gfp);
1066 if (ret || !EXT4_MB_GRP_NEED_INIT(this_grp)) {
1067 /*
1068 * somebody initialized the group
1069 * return without doing anything
1070 */
1071 goto err;
1072 }
1073
1074 page = e4b.bd_bitmap_page;
1075 ret = ext4_mb_init_cache(page, NULL, gfp);
1076 if (ret)
1077 goto err;
1078 if (!PageUptodate(page)) {
1079 ret = -EIO;
1080 goto err;
1081 }
1082
1083 if (e4b.bd_buddy_page == NULL) {
1084 /*
1085 * If both the bitmap and buddy are in
1086 * the same page we don't need to force
1087 * init the buddy
1088 */
1089 ret = 0;
1090 goto err;
1091 }
1092 /* init buddy cache */
1093 page = e4b.bd_buddy_page;
1094 ret = ext4_mb_init_cache(page, e4b.bd_bitmap, gfp);
1095 if (ret)
1096 goto err;
1097 if (!PageUptodate(page)) {
1098 ret = -EIO;
1099 goto err;
1100 }
1101 err:
1102 ext4_mb_put_buddy_page_lock(&e4b);
1103 return ret;
1104 }
1105
1106 /*
1107 * Locking note: This routine calls ext4_mb_init_cache(), which takes the
1108 * block group lock of all groups for this page; do not hold the BG lock when
1109 * calling this routine!
1110 */
1111 static noinline_for_stack int
1112 ext4_mb_load_buddy_gfp(struct super_block *sb, ext4_group_t group,
1113 struct ext4_buddy *e4b, gfp_t gfp)
1114 {
1115 int blocks_per_page;
1116 int block;
1117 int pnum;
1118 int poff;
1119 struct page *page;
1120 int ret;
1121 struct ext4_group_info *grp;
1122 struct ext4_sb_info *sbi = EXT4_SB(sb);
1123 struct inode *inode = sbi->s_buddy_cache;
1124
1125 might_sleep();
1126 mb_debug(1, "load group %u\n", group);
1127
1128 blocks_per_page = PAGE_SIZE / sb->s_blocksize;
1129 grp = ext4_get_group_info(sb, group);
1130
1131 e4b->bd_blkbits = sb->s_blocksize_bits;
1132 e4b->bd_info = grp;
1133 e4b->bd_sb = sb;
1134 e4b->bd_group = group;
1135 e4b->bd_buddy_page = NULL;
1136 e4b->bd_bitmap_page = NULL;
1137
1138 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
1139 /*
1140 * we need full data about the group
1141 * to make a good selection
1142 */
1143 ret = ext4_mb_init_group(sb, group, gfp);
1144 if (ret)
1145 return ret;
1146 }
1147
1148 /*
1149 * the buddy cache inode stores the block bitmap
1150 * and buddy information in consecutive blocks.
1151 * So for each group we need two blocks.
1152 */
1153 block = group * 2;
1154 pnum = block / blocks_per_page;
1155 poff = block % blocks_per_page;
1156
1157 /* we could use find_or_create_page(), but it locks page
1158 * what we'd like to avoid in fast path ... */
1159 page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED);
1160 if (page == NULL || !PageUptodate(page)) {
1161 if (page)
1162 /*
1163 * drop the page reference and try
1164 * to get the page with lock. If we
1165 * are not uptodate that implies
1166 * somebody just created the page but
1167 * is yet to initialize the same. So
1168 * wait for it to initialize.
1169 */
1170 put_page(page);
1171 page = find_or_create_page(inode->i_mapping, pnum, gfp);
1172 if (page) {
1173 BUG_ON(page->mapping != inode->i_mapping);
1174 if (!PageUptodate(page)) {
1175 ret = ext4_mb_init_cache(page, NULL, gfp);
1176 if (ret) {
1177 unlock_page(page);
1178 goto err;
1179 }
1180 mb_cmp_bitmaps(e4b, page_address(page) +
1181 (poff * sb->s_blocksize));
1182 }
1183 unlock_page(page);
1184 }
1185 }
1186 if (page == NULL) {
1187 ret = -ENOMEM;
1188 goto err;
1189 }
1190 if (!PageUptodate(page)) {
1191 ret = -EIO;
1192 goto err;
1193 }
1194
1195 /* Pages marked accessed already */
1196 e4b->bd_bitmap_page = page;
1197 e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
1198
1199 block++;
1200 pnum = block / blocks_per_page;
1201 poff = block % blocks_per_page;
1202
1203 page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED);
1204 if (page == NULL || !PageUptodate(page)) {
1205 if (page)
1206 put_page(page);
1207 page = find_or_create_page(inode->i_mapping, pnum, gfp);
1208 if (page) {
1209 BUG_ON(page->mapping != inode->i_mapping);
1210 if (!PageUptodate(page)) {
1211 ret = ext4_mb_init_cache(page, e4b->bd_bitmap,
1212 gfp);
1213 if (ret) {
1214 unlock_page(page);
1215 goto err;
1216 }
1217 }
1218 unlock_page(page);
1219 }
1220 }
1221 if (page == NULL) {
1222 ret = -ENOMEM;
1223 goto err;
1224 }
1225 if (!PageUptodate(page)) {
1226 ret = -EIO;
1227 goto err;
1228 }
1229
1230 /* Pages marked accessed already */
1231 e4b->bd_buddy_page = page;
1232 e4b->bd_buddy = page_address(page) + (poff * sb->s_blocksize);
1233
1234 BUG_ON(e4b->bd_bitmap_page == NULL);
1235 BUG_ON(e4b->bd_buddy_page == NULL);
1236
1237 return 0;
1238
1239 err:
1240 if (page)
1241 put_page(page);
1242 if (e4b->bd_bitmap_page)
1243 put_page(e4b->bd_bitmap_page);
1244 if (e4b->bd_buddy_page)
1245 put_page(e4b->bd_buddy_page);
1246 e4b->bd_buddy = NULL;
1247 e4b->bd_bitmap = NULL;
1248 return ret;
1249 }
1250
1251 static int ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group,
1252 struct ext4_buddy *e4b)
1253 {
1254 return ext4_mb_load_buddy_gfp(sb, group, e4b, GFP_NOFS);
1255 }
1256
1257 static void ext4_mb_unload_buddy(struct ext4_buddy *e4b)
1258 {
1259 if (e4b->bd_bitmap_page)
1260 put_page(e4b->bd_bitmap_page);
1261 if (e4b->bd_buddy_page)
1262 put_page(e4b->bd_buddy_page);
1263 }
1264
1265
1266 static int mb_find_order_for_block(struct ext4_buddy *e4b, int block)
1267 {
1268 int order = 1;
1269 int bb_incr = 1 << (e4b->bd_blkbits - 1);
1270 void *bb;
1271
1272 BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
1273 BUG_ON(block >= (1 << (e4b->bd_blkbits + 3)));
1274
1275 bb = e4b->bd_buddy;
1276 while (order <= e4b->bd_blkbits + 1) {
1277 block = block >> 1;
1278 if (!mb_test_bit(block, bb)) {
1279 /* this block is part of buddy of order 'order' */
1280 return order;
1281 }
1282 bb += bb_incr;
1283 bb_incr >>= 1;
1284 order++;
1285 }
1286 return 0;
1287 }
1288
1289 static void mb_clear_bits(void *bm, int cur, int len)
1290 {
1291 __u32 *addr;
1292
1293 len = cur + len;
1294 while (cur < len) {
1295 if ((cur & 31) == 0 && (len - cur) >= 32) {
1296 /* fast path: clear whole word at once */
1297 addr = bm + (cur >> 3);
1298 *addr = 0;
1299 cur += 32;
1300 continue;
1301 }
1302 mb_clear_bit(cur, bm);
1303 cur++;
1304 }
1305 }
1306
1307 /* clear bits in given range
1308 * will return first found zero bit if any, -1 otherwise
1309 */
1310 static int mb_test_and_clear_bits(void *bm, int cur, int len)
1311 {
1312 __u32 *addr;
1313 int zero_bit = -1;
1314
1315 len = cur + len;
1316 while (cur < len) {
1317 if ((cur & 31) == 0 && (len - cur) >= 32) {
1318 /* fast path: clear whole word at once */
1319 addr = bm + (cur >> 3);
1320 if (*addr != (__u32)(-1) && zero_bit == -1)
1321 zero_bit = cur + mb_find_next_zero_bit(addr, 32, 0);
1322 *addr = 0;
1323 cur += 32;
1324 continue;
1325 }
1326 if (!mb_test_and_clear_bit(cur, bm) && zero_bit == -1)
1327 zero_bit = cur;
1328 cur++;
1329 }
1330
1331 return zero_bit;
1332 }
1333
1334 void ext4_set_bits(void *bm, int cur, int len)
1335 {
1336 __u32 *addr;
1337
1338 len = cur + len;
1339 while (cur < len) {
1340 if ((cur & 31) == 0 && (len - cur) >= 32) {
1341 /* fast path: set whole word at once */
1342 addr = bm + (cur >> 3);
1343 *addr = 0xffffffff;
1344 cur += 32;
1345 continue;
1346 }
1347 mb_set_bit(cur, bm);
1348 cur++;
1349 }
1350 }
1351
1352 /*
1353 * _________________________________________________________________ */
1354
1355 static inline int mb_buddy_adjust_border(int* bit, void* bitmap, int side)
1356 {
1357 if (mb_test_bit(*bit + side, bitmap)) {
1358 mb_clear_bit(*bit, bitmap);
1359 (*bit) -= side;
1360 return 1;
1361 }
1362 else {
1363 (*bit) += side;
1364 mb_set_bit(*bit, bitmap);
1365 return -1;
1366 }
1367 }
1368
1369 static void mb_buddy_mark_free(struct ext4_buddy *e4b, int first, int last)
1370 {
1371 int max;
1372 int order = 1;
1373 void *buddy = mb_find_buddy(e4b, order, &max);
1374
1375 while (buddy) {
1376 void *buddy2;
1377
1378 /* Bits in range [first; last] are known to be set since
1379 * corresponding blocks were allocated. Bits in range
1380 * (first; last) will stay set because they form buddies on
1381 * upper layer. We just deal with borders if they don't
1382 * align with upper layer and then go up.
1383 * Releasing entire group is all about clearing
1384 * single bit of highest order buddy.
1385 */
1386
1387 /* Example:
1388 * ---------------------------------
1389 * | 1 | 1 | 1 | 1 |
1390 * ---------------------------------
1391 * | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
1392 * ---------------------------------
1393 * 0 1 2 3 4 5 6 7
1394 * \_____________________/
1395 *
1396 * Neither [1] nor [6] is aligned to above layer.
1397 * Left neighbour [0] is free, so mark it busy,
1398 * decrease bb_counters and extend range to
1399 * [0; 6]
1400 * Right neighbour [7] is busy. It can't be coaleasced with [6], so
1401 * mark [6] free, increase bb_counters and shrink range to
1402 * [0; 5].
1403 * Then shift range to [0; 2], go up and do the same.
1404 */
1405
1406
1407 if (first & 1)
1408 e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&first, buddy, -1);
1409 if (!(last & 1))
1410 e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&last, buddy, 1);
1411 if (first > last)
1412 break;
1413 order++;
1414
1415 if (first == last || !(buddy2 = mb_find_buddy(e4b, order, &max))) {
1416 mb_clear_bits(buddy, first, last - first + 1);
1417 e4b->bd_info->bb_counters[order - 1] += last - first + 1;
1418 break;
1419 }
1420 first >>= 1;
1421 last >>= 1;
1422 buddy = buddy2;
1423 }
1424 }
1425
1426 static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b,
1427 int first, int count)
1428 {
1429 int left_is_free = 0;
1430 int right_is_free = 0;
1431 int block;
1432 int last = first + count - 1;
1433 struct super_block *sb = e4b->bd_sb;
1434
1435 if (WARN_ON(count == 0))
1436 return;
1437 BUG_ON(last >= (sb->s_blocksize << 3));
1438 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
1439 /* Don't bother if the block group is corrupt. */
1440 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info)))
1441 return;
1442
1443 mb_check_buddy(e4b);
1444 mb_free_blocks_double(inode, e4b, first, count);
1445
1446 e4b->bd_info->bb_free += count;
1447 if (first < e4b->bd_info->bb_first_free)
1448 e4b->bd_info->bb_first_free = first;
1449
1450 /* access memory sequentially: check left neighbour,
1451 * clear range and then check right neighbour
1452 */
1453 if (first != 0)
1454 left_is_free = !mb_test_bit(first - 1, e4b->bd_bitmap);
1455 block = mb_test_and_clear_bits(e4b->bd_bitmap, first, count);
1456 if (last + 1 < EXT4_SB(sb)->s_mb_maxs[0])
1457 right_is_free = !mb_test_bit(last + 1, e4b->bd_bitmap);
1458
1459 if (unlikely(block != -1)) {
1460 struct ext4_sb_info *sbi = EXT4_SB(sb);
1461 ext4_fsblk_t blocknr;
1462
1463 blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
1464 blocknr += EXT4_C2B(EXT4_SB(sb), block);
1465 ext4_grp_locked_error(sb, e4b->bd_group,
1466 inode ? inode->i_ino : 0,
1467 blocknr,
1468 "freeing already freed block "
1469 "(bit %u); block bitmap corrupt.",
1470 block);
1471 if (!EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info))
1472 percpu_counter_sub(&sbi->s_freeclusters_counter,
1473 e4b->bd_info->bb_free);
1474 /* Mark the block group as corrupt. */
1475 set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT,
1476 &e4b->bd_info->bb_state);
1477 mb_regenerate_buddy(e4b);
1478 goto done;
1479 }
1480
1481 /* let's maintain fragments counter */
1482 if (left_is_free && right_is_free)
1483 e4b->bd_info->bb_fragments--;
1484 else if (!left_is_free && !right_is_free)
1485 e4b->bd_info->bb_fragments++;
1486
1487 /* buddy[0] == bd_bitmap is a special case, so handle
1488 * it right away and let mb_buddy_mark_free stay free of
1489 * zero order checks.
1490 * Check if neighbours are to be coaleasced,
1491 * adjust bitmap bb_counters and borders appropriately.
1492 */
1493 if (first & 1) {
1494 first += !left_is_free;
1495 e4b->bd_info->bb_counters[0] += left_is_free ? -1 : 1;
1496 }
1497 if (!(last & 1)) {
1498 last -= !right_is_free;
1499 e4b->bd_info->bb_counters[0] += right_is_free ? -1 : 1;
1500 }
1501
1502 if (first <= last)
1503 mb_buddy_mark_free(e4b, first >> 1, last >> 1);
1504
1505 done:
1506 mb_set_largest_free_order(sb, e4b->bd_info);
1507 mb_check_buddy(e4b);
1508 }
1509
1510 static int mb_find_extent(struct ext4_buddy *e4b, int block,
1511 int needed, struct ext4_free_extent *ex)
1512 {
1513 int next = block;
1514 int max, order;
1515 void *buddy;
1516
1517 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1518 BUG_ON(ex == NULL);
1519
1520 buddy = mb_find_buddy(e4b, 0, &max);
1521 BUG_ON(buddy == NULL);
1522 BUG_ON(block >= max);
1523 if (mb_test_bit(block, buddy)) {
1524 ex->fe_len = 0;
1525 ex->fe_start = 0;
1526 ex->fe_group = 0;
1527 return 0;
1528 }
1529
1530 /* find actual order */
1531 order = mb_find_order_for_block(e4b, block);
1532 block = block >> order;
1533
1534 ex->fe_len = 1 << order;
1535 ex->fe_start = block << order;
1536 ex->fe_group = e4b->bd_group;
1537
1538 /* calc difference from given start */
1539 next = next - ex->fe_start;
1540 ex->fe_len -= next;
1541 ex->fe_start += next;
1542
1543 while (needed > ex->fe_len &&
1544 mb_find_buddy(e4b, order, &max)) {
1545
1546 if (block + 1 >= max)
1547 break;
1548
1549 next = (block + 1) * (1 << order);
1550 if (mb_test_bit(next, e4b->bd_bitmap))
1551 break;
1552
1553 order = mb_find_order_for_block(e4b, next);
1554
1555 block = next >> order;
1556 ex->fe_len += 1 << order;
1557 }
1558
1559 BUG_ON(ex->fe_start + ex->fe_len > (1 << (e4b->bd_blkbits + 3)));
1560 return ex->fe_len;
1561 }
1562
1563 static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex)
1564 {
1565 int ord;
1566 int mlen = 0;
1567 int max = 0;
1568 int cur;
1569 int start = ex->fe_start;
1570 int len = ex->fe_len;
1571 unsigned ret = 0;
1572 int len0 = len;
1573 void *buddy;
1574
1575 BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3));
1576 BUG_ON(e4b->bd_group != ex->fe_group);
1577 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1578 mb_check_buddy(e4b);
1579 mb_mark_used_double(e4b, start, len);
1580
1581 e4b->bd_info->bb_free -= len;
1582 if (e4b->bd_info->bb_first_free == start)
1583 e4b->bd_info->bb_first_free += len;
1584
1585 /* let's maintain fragments counter */
1586 if (start != 0)
1587 mlen = !mb_test_bit(start - 1, e4b->bd_bitmap);
1588 if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0])
1589 max = !mb_test_bit(start + len, e4b->bd_bitmap);
1590 if (mlen && max)
1591 e4b->bd_info->bb_fragments++;
1592 else if (!mlen && !max)
1593 e4b->bd_info->bb_fragments--;
1594
1595 /* let's maintain buddy itself */
1596 while (len) {
1597 ord = mb_find_order_for_block(e4b, start);
1598
1599 if (((start >> ord) << ord) == start && len >= (1 << ord)) {
1600 /* the whole chunk may be allocated at once! */
1601 mlen = 1 << ord;
1602 buddy = mb_find_buddy(e4b, ord, &max);
1603 BUG_ON((start >> ord) >= max);
1604 mb_set_bit(start >> ord, buddy);
1605 e4b->bd_info->bb_counters[ord]--;
1606 start += mlen;
1607 len -= mlen;
1608 BUG_ON(len < 0);
1609 continue;
1610 }
1611
1612 /* store for history */
1613 if (ret == 0)
1614 ret = len | (ord << 16);
1615
1616 /* we have to split large buddy */
1617 BUG_ON(ord <= 0);
1618 buddy = mb_find_buddy(e4b, ord, &max);
1619 mb_set_bit(start >> ord, buddy);
1620 e4b->bd_info->bb_counters[ord]--;
1621
1622 ord--;
1623 cur = (start >> ord) & ~1U;
1624 buddy = mb_find_buddy(e4b, ord, &max);
1625 mb_clear_bit(cur, buddy);
1626 mb_clear_bit(cur + 1, buddy);
1627 e4b->bd_info->bb_counters[ord]++;
1628 e4b->bd_info->bb_counters[ord]++;
1629 }
1630 mb_set_largest_free_order(e4b->bd_sb, e4b->bd_info);
1631
1632 ext4_set_bits(e4b->bd_bitmap, ex->fe_start, len0);
1633 mb_check_buddy(e4b);
1634
1635 return ret;
1636 }
1637
1638 /*
1639 * Must be called under group lock!
1640 */
1641 static void ext4_mb_use_best_found(struct ext4_allocation_context *ac,
1642 struct ext4_buddy *e4b)
1643 {
1644 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1645 int ret;
1646
1647 BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group);
1648 BUG_ON(ac->ac_status == AC_STATUS_FOUND);
1649
1650 ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len);
1651 ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical;
1652 ret = mb_mark_used(e4b, &ac->ac_b_ex);
1653
1654 /* preallocation can change ac_b_ex, thus we store actually
1655 * allocated blocks for history */
1656 ac->ac_f_ex = ac->ac_b_ex;
1657
1658 ac->ac_status = AC_STATUS_FOUND;
1659 ac->ac_tail = ret & 0xffff;
1660 ac->ac_buddy = ret >> 16;
1661
1662 /*
1663 * take the page reference. We want the page to be pinned
1664 * so that we don't get a ext4_mb_init_cache_call for this
1665 * group until we update the bitmap. That would mean we
1666 * double allocate blocks. The reference is dropped
1667 * in ext4_mb_release_context
1668 */
1669 ac->ac_bitmap_page = e4b->bd_bitmap_page;
1670 get_page(ac->ac_bitmap_page);
1671 ac->ac_buddy_page = e4b->bd_buddy_page;
1672 get_page(ac->ac_buddy_page);
1673 /* store last allocated for subsequent stream allocation */
1674 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
1675 spin_lock(&sbi->s_md_lock);
1676 sbi->s_mb_last_group = ac->ac_f_ex.fe_group;
1677 sbi->s_mb_last_start = ac->ac_f_ex.fe_start;
1678 spin_unlock(&sbi->s_md_lock);
1679 }
1680 }
1681
1682 /*
1683 * regular allocator, for general purposes allocation
1684 */
1685
1686 static void ext4_mb_check_limits(struct ext4_allocation_context *ac,
1687 struct ext4_buddy *e4b,
1688 int finish_group)
1689 {
1690 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1691 struct ext4_free_extent *bex = &ac->ac_b_ex;
1692 struct ext4_free_extent *gex = &ac->ac_g_ex;
1693 struct ext4_free_extent ex;
1694 int max;
1695
1696 if (ac->ac_status == AC_STATUS_FOUND)
1697 return;
1698 /*
1699 * We don't want to scan for a whole year
1700 */
1701 if (ac->ac_found > sbi->s_mb_max_to_scan &&
1702 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1703 ac->ac_status = AC_STATUS_BREAK;
1704 return;
1705 }
1706
1707 /*
1708 * Haven't found good chunk so far, let's continue
1709 */
1710 if (bex->fe_len < gex->fe_len)
1711 return;
1712
1713 if ((finish_group || ac->ac_found > sbi->s_mb_min_to_scan)
1714 && bex->fe_group == e4b->bd_group) {
1715 /* recheck chunk's availability - we don't know
1716 * when it was found (within this lock-unlock
1717 * period or not) */
1718 max = mb_find_extent(e4b, bex->fe_start, gex->fe_len, &ex);
1719 if (max >= gex->fe_len) {
1720 ext4_mb_use_best_found(ac, e4b);
1721 return;
1722 }
1723 }
1724 }
1725
1726 /*
1727 * The routine checks whether found extent is good enough. If it is,
1728 * then the extent gets marked used and flag is set to the context
1729 * to stop scanning. Otherwise, the extent is compared with the
1730 * previous found extent and if new one is better, then it's stored
1731 * in the context. Later, the best found extent will be used, if
1732 * mballoc can't find good enough extent.
1733 *
1734 * FIXME: real allocation policy is to be designed yet!
1735 */
1736 static void ext4_mb_measure_extent(struct ext4_allocation_context *ac,
1737 struct ext4_free_extent *ex,
1738 struct ext4_buddy *e4b)
1739 {
1740 struct ext4_free_extent *bex = &ac->ac_b_ex;
1741 struct ext4_free_extent *gex = &ac->ac_g_ex;
1742
1743 BUG_ON(ex->fe_len <= 0);
1744 BUG_ON(ex->fe_len > EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
1745 BUG_ON(ex->fe_start >= EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
1746 BUG_ON(ac->ac_status != AC_STATUS_CONTINUE);
1747
1748 ac->ac_found++;
1749
1750 /*
1751 * The special case - take what you catch first
1752 */
1753 if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1754 *bex = *ex;
1755 ext4_mb_use_best_found(ac, e4b);
1756 return;
1757 }
1758
1759 /*
1760 * Let's check whether the chuck is good enough
1761 */
1762 if (ex->fe_len == gex->fe_len) {
1763 *bex = *ex;
1764 ext4_mb_use_best_found(ac, e4b);
1765 return;
1766 }
1767
1768 /*
1769 * If this is first found extent, just store it in the context
1770 */
1771 if (bex->fe_len == 0) {
1772 *bex = *ex;
1773 return;
1774 }
1775
1776 /*
1777 * If new found extent is better, store it in the context
1778 */
1779 if (bex->fe_len < gex->fe_len) {
1780 /* if the request isn't satisfied, any found extent
1781 * larger than previous best one is better */
1782 if (ex->fe_len > bex->fe_len)
1783 *bex = *ex;
1784 } else if (ex->fe_len > gex->fe_len) {
1785 /* if the request is satisfied, then we try to find
1786 * an extent that still satisfy the request, but is
1787 * smaller than previous one */
1788 if (ex->fe_len < bex->fe_len)
1789 *bex = *ex;
1790 }
1791
1792 ext4_mb_check_limits(ac, e4b, 0);
1793 }
1794
1795 static noinline_for_stack
1796 int ext4_mb_try_best_found(struct ext4_allocation_context *ac,
1797 struct ext4_buddy *e4b)
1798 {
1799 struct ext4_free_extent ex = ac->ac_b_ex;
1800 ext4_group_t group = ex.fe_group;
1801 int max;
1802 int err;
1803
1804 BUG_ON(ex.fe_len <= 0);
1805 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1806 if (err)
1807 return err;
1808
1809 ext4_lock_group(ac->ac_sb, group);
1810 max = mb_find_extent(e4b, ex.fe_start, ex.fe_len, &ex);
1811
1812 if (max > 0) {
1813 ac->ac_b_ex = ex;
1814 ext4_mb_use_best_found(ac, e4b);
1815 }
1816
1817 ext4_unlock_group(ac->ac_sb, group);
1818 ext4_mb_unload_buddy(e4b);
1819
1820 return 0;
1821 }
1822
1823 static noinline_for_stack
1824 int ext4_mb_find_by_goal(struct ext4_allocation_context *ac,
1825 struct ext4_buddy *e4b)
1826 {
1827 ext4_group_t group = ac->ac_g_ex.fe_group;
1828 int max;
1829 int err;
1830 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1831 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
1832 struct ext4_free_extent ex;
1833
1834 if (!(ac->ac_flags & EXT4_MB_HINT_TRY_GOAL))
1835 return 0;
1836 if (grp->bb_free == 0)
1837 return 0;
1838
1839 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1840 if (err)
1841 return err;
1842
1843 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info))) {
1844 ext4_mb_unload_buddy(e4b);
1845 return 0;
1846 }
1847
1848 ext4_lock_group(ac->ac_sb, group);
1849 max = mb_find_extent(e4b, ac->ac_g_ex.fe_start,
1850 ac->ac_g_ex.fe_len, &ex);
1851 ex.fe_logical = 0xDEADFA11; /* debug value */
1852
1853 if (max >= ac->ac_g_ex.fe_len && ac->ac_g_ex.fe_len == sbi->s_stripe) {
1854 ext4_fsblk_t start;
1855
1856 start = ext4_group_first_block_no(ac->ac_sb, e4b->bd_group) +
1857 ex.fe_start;
1858 /* use do_div to get remainder (would be 64-bit modulo) */
1859 if (do_div(start, sbi->s_stripe) == 0) {
1860 ac->ac_found++;
1861 ac->ac_b_ex = ex;
1862 ext4_mb_use_best_found(ac, e4b);
1863 }
1864 } else if (max >= ac->ac_g_ex.fe_len) {
1865 BUG_ON(ex.fe_len <= 0);
1866 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1867 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1868 ac->ac_found++;
1869 ac->ac_b_ex = ex;
1870 ext4_mb_use_best_found(ac, e4b);
1871 } else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) {
1872 /* Sometimes, caller may want to merge even small
1873 * number of blocks to an existing extent */
1874 BUG_ON(ex.fe_len <= 0);
1875 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1876 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1877 ac->ac_found++;
1878 ac->ac_b_ex = ex;
1879 ext4_mb_use_best_found(ac, e4b);
1880 }
1881 ext4_unlock_group(ac->ac_sb, group);
1882 ext4_mb_unload_buddy(e4b);
1883
1884 return 0;
1885 }
1886
1887 /*
1888 * The routine scans buddy structures (not bitmap!) from given order
1889 * to max order and tries to find big enough chunk to satisfy the req
1890 */
1891 static noinline_for_stack
1892 void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac,
1893 struct ext4_buddy *e4b)
1894 {
1895 struct super_block *sb = ac->ac_sb;
1896 struct ext4_group_info *grp = e4b->bd_info;
1897 void *buddy;
1898 int i;
1899 int k;
1900 int max;
1901
1902 BUG_ON(ac->ac_2order <= 0);
1903 for (i = ac->ac_2order; i <= sb->s_blocksize_bits + 1; i++) {
1904 if (grp->bb_counters[i] == 0)
1905 continue;
1906
1907 buddy = mb_find_buddy(e4b, i, &max);
1908 BUG_ON(buddy == NULL);
1909
1910 k = mb_find_next_zero_bit(buddy, max, 0);
1911 BUG_ON(k >= max);
1912
1913 ac->ac_found++;
1914
1915 ac->ac_b_ex.fe_len = 1 << i;
1916 ac->ac_b_ex.fe_start = k << i;
1917 ac->ac_b_ex.fe_group = e4b->bd_group;
1918
1919 ext4_mb_use_best_found(ac, e4b);
1920
1921 BUG_ON(ac->ac_b_ex.fe_len != ac->ac_g_ex.fe_len);
1922
1923 if (EXT4_SB(sb)->s_mb_stats)
1924 atomic_inc(&EXT4_SB(sb)->s_bal_2orders);
1925
1926 break;
1927 }
1928 }
1929
1930 /*
1931 * The routine scans the group and measures all found extents.
1932 * In order to optimize scanning, caller must pass number of
1933 * free blocks in the group, so the routine can know upper limit.
1934 */
1935 static noinline_for_stack
1936 void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac,
1937 struct ext4_buddy *e4b)
1938 {
1939 struct super_block *sb = ac->ac_sb;
1940 void *bitmap = e4b->bd_bitmap;
1941 struct ext4_free_extent ex;
1942 int i;
1943 int free;
1944
1945 free = e4b->bd_info->bb_free;
1946 BUG_ON(free <= 0);
1947
1948 i = e4b->bd_info->bb_first_free;
1949
1950 while (free && ac->ac_status == AC_STATUS_CONTINUE) {
1951 i = mb_find_next_zero_bit(bitmap,
1952 EXT4_CLUSTERS_PER_GROUP(sb), i);
1953 if (i >= EXT4_CLUSTERS_PER_GROUP(sb)) {
1954 /*
1955 * IF we have corrupt bitmap, we won't find any
1956 * free blocks even though group info says we
1957 * we have free blocks
1958 */
1959 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
1960 "%d free clusters as per "
1961 "group info. But bitmap says 0",
1962 free);
1963 break;
1964 }
1965
1966 mb_find_extent(e4b, i, ac->ac_g_ex.fe_len, &ex);
1967 BUG_ON(ex.fe_len <= 0);
1968 if (free < ex.fe_len) {
1969 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
1970 "%d free clusters as per "
1971 "group info. But got %d blocks",
1972 free, ex.fe_len);
1973 /*
1974 * The number of free blocks differs. This mostly
1975 * indicate that the bitmap is corrupt. So exit
1976 * without claiming the space.
1977 */
1978 break;
1979 }
1980 ex.fe_logical = 0xDEADC0DE; /* debug value */
1981 ext4_mb_measure_extent(ac, &ex, e4b);
1982
1983 i += ex.fe_len;
1984 free -= ex.fe_len;
1985 }
1986
1987 ext4_mb_check_limits(ac, e4b, 1);
1988 }
1989
1990 /*
1991 * This is a special case for storages like raid5
1992 * we try to find stripe-aligned chunks for stripe-size-multiple requests
1993 */
1994 static noinline_for_stack
1995 void ext4_mb_scan_aligned(struct ext4_allocation_context *ac,
1996 struct ext4_buddy *e4b)
1997 {
1998 struct super_block *sb = ac->ac_sb;
1999 struct ext4_sb_info *sbi = EXT4_SB(sb);
2000 void *bitmap = e4b->bd_bitmap;
2001 struct ext4_free_extent ex;
2002 ext4_fsblk_t first_group_block;
2003 ext4_fsblk_t a;
2004 ext4_grpblk_t i;
2005 int max;
2006
2007 BUG_ON(sbi->s_stripe == 0);
2008
2009 /* find first stripe-aligned block in group */
2010 first_group_block = ext4_group_first_block_no(sb, e4b->bd_group);
2011
2012 a = first_group_block + sbi->s_stripe - 1;
2013 do_div(a, sbi->s_stripe);
2014 i = (a * sbi->s_stripe) - first_group_block;
2015
2016 while (i < EXT4_CLUSTERS_PER_GROUP(sb)) {
2017 if (!mb_test_bit(i, bitmap)) {
2018 max = mb_find_extent(e4b, i, sbi->s_stripe, &ex);
2019 if (max >= sbi->s_stripe) {
2020 ac->ac_found++;
2021 ex.fe_logical = 0xDEADF00D; /* debug value */
2022 ac->ac_b_ex = ex;
2023 ext4_mb_use_best_found(ac, e4b);
2024 break;
2025 }
2026 }
2027 i += sbi->s_stripe;
2028 }
2029 }
2030
2031 /*
2032 * This is now called BEFORE we load the buddy bitmap.
2033 * Returns either 1 or 0 indicating that the group is either suitable
2034 * for the allocation or not. In addition it can also return negative
2035 * error code when something goes wrong.
2036 */
2037 static int ext4_mb_good_group(struct ext4_allocation_context *ac,
2038 ext4_group_t group, int cr)
2039 {
2040 unsigned free, fragments;
2041 int flex_size = ext4_flex_bg_size(EXT4_SB(ac->ac_sb));
2042 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
2043
2044 BUG_ON(cr < 0 || cr >= 4);
2045
2046 free = grp->bb_free;
2047 if (free == 0)
2048 return 0;
2049 if (cr <= 2 && free < ac->ac_g_ex.fe_len)
2050 return 0;
2051
2052 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(grp)))
2053 return 0;
2054
2055 /* We only do this if the grp has never been initialized */
2056 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
2057 int ret = ext4_mb_init_group(ac->ac_sb, group, GFP_NOFS);
2058 if (ret)
2059 return ret;
2060 }
2061
2062 fragments = grp->bb_fragments;
2063 if (fragments == 0)
2064 return 0;
2065
2066 switch (cr) {
2067 case 0:
2068 BUG_ON(ac->ac_2order == 0);
2069
2070 /* Avoid using the first bg of a flexgroup for data files */
2071 if ((ac->ac_flags & EXT4_MB_HINT_DATA) &&
2072 (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) &&
2073 ((group % flex_size) == 0))
2074 return 0;
2075
2076 if ((ac->ac_2order > ac->ac_sb->s_blocksize_bits+1) ||
2077 (free / fragments) >= ac->ac_g_ex.fe_len)
2078 return 1;
2079
2080 if (grp->bb_largest_free_order < ac->ac_2order)
2081 return 0;
2082
2083 return 1;
2084 case 1:
2085 if ((free / fragments) >= ac->ac_g_ex.fe_len)
2086 return 1;
2087 break;
2088 case 2:
2089 if (free >= ac->ac_g_ex.fe_len)
2090 return 1;
2091 break;
2092 case 3:
2093 return 1;
2094 default:
2095 BUG();
2096 }
2097
2098 return 0;
2099 }
2100
2101 static noinline_for_stack int
2102 ext4_mb_regular_allocator(struct ext4_allocation_context *ac)
2103 {
2104 ext4_group_t ngroups, group, i;
2105 int cr;
2106 int err = 0, first_err = 0;
2107 struct ext4_sb_info *sbi;
2108 struct super_block *sb;
2109 struct ext4_buddy e4b;
2110
2111 sb = ac->ac_sb;
2112 sbi = EXT4_SB(sb);
2113 ngroups = ext4_get_groups_count(sb);
2114 /* non-extent files are limited to low blocks/groups */
2115 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)))
2116 ngroups = sbi->s_blockfile_groups;
2117
2118 BUG_ON(ac->ac_status == AC_STATUS_FOUND);
2119
2120 /* first, try the goal */
2121 err = ext4_mb_find_by_goal(ac, &e4b);
2122 if (err || ac->ac_status == AC_STATUS_FOUND)
2123 goto out;
2124
2125 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
2126 goto out;
2127
2128 /*
2129 * ac->ac2_order is set only if the fe_len is a power of 2
2130 * if ac2_order is set we also set criteria to 0 so that we
2131 * try exact allocation using buddy.
2132 */
2133 i = fls(ac->ac_g_ex.fe_len);
2134 ac->ac_2order = 0;
2135 /*
2136 * We search using buddy data only if the order of the request
2137 * is greater than equal to the sbi_s_mb_order2_reqs
2138 * You can tune it via /sys/fs/ext4/<partition>/mb_order2_req
2139 */
2140 if (i >= sbi->s_mb_order2_reqs) {
2141 /*
2142 * This should tell if fe_len is exactly power of 2
2143 */
2144 if ((ac->ac_g_ex.fe_len & (~(1 << (i - 1)))) == 0)
2145 ac->ac_2order = i - 1;
2146 }
2147
2148 /* if stream allocation is enabled, use global goal */
2149 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
2150 /* TBD: may be hot point */
2151 spin_lock(&sbi->s_md_lock);
2152 ac->ac_g_ex.fe_group = sbi->s_mb_last_group;
2153 ac->ac_g_ex.fe_start = sbi->s_mb_last_start;
2154 spin_unlock(&sbi->s_md_lock);
2155 }
2156
2157 /* Let's just scan groups to find more-less suitable blocks */
2158 cr = ac->ac_2order ? 0 : 1;
2159 /*
2160 * cr == 0 try to get exact allocation,
2161 * cr == 3 try to get anything
2162 */
2163 repeat:
2164 for (; cr < 4 && ac->ac_status == AC_STATUS_CONTINUE; cr++) {
2165 ac->ac_criteria = cr;
2166 /*
2167 * searching for the right group start
2168 * from the goal value specified
2169 */
2170 group = ac->ac_g_ex.fe_group;
2171
2172 for (i = 0; i < ngroups; group++, i++) {
2173 int ret = 0;
2174 cond_resched();
2175 /*
2176 * Artificially restricted ngroups for non-extent
2177 * files makes group > ngroups possible on first loop.
2178 */
2179 if (group >= ngroups)
2180 group = 0;
2181
2182 /* This now checks without needing the buddy page */
2183 ret = ext4_mb_good_group(ac, group, cr);
2184 if (ret <= 0) {
2185 if (!first_err)
2186 first_err = ret;
2187 continue;
2188 }
2189
2190 err = ext4_mb_load_buddy(sb, group, &e4b);
2191 if (err)
2192 goto out;
2193
2194 ext4_lock_group(sb, group);
2195
2196 /*
2197 * We need to check again after locking the
2198 * block group
2199 */
2200 ret = ext4_mb_good_group(ac, group, cr);
2201 if (ret <= 0) {
2202 ext4_unlock_group(sb, group);
2203 ext4_mb_unload_buddy(&e4b);
2204 if (!first_err)
2205 first_err = ret;
2206 continue;
2207 }
2208
2209 ac->ac_groups_scanned++;
2210 if (cr == 0 && ac->ac_2order < sb->s_blocksize_bits+2)
2211 ext4_mb_simple_scan_group(ac, &e4b);
2212 else if (cr == 1 && sbi->s_stripe &&
2213 !(ac->ac_g_ex.fe_len % sbi->s_stripe))
2214 ext4_mb_scan_aligned(ac, &e4b);
2215 else
2216 ext4_mb_complex_scan_group(ac, &e4b);
2217
2218 ext4_unlock_group(sb, group);
2219 ext4_mb_unload_buddy(&e4b);
2220
2221 if (ac->ac_status != AC_STATUS_CONTINUE)
2222 break;
2223 }
2224 }
2225
2226 if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND &&
2227 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2228 /*
2229 * We've been searching too long. Let's try to allocate
2230 * the best chunk we've found so far
2231 */
2232
2233 ext4_mb_try_best_found(ac, &e4b);
2234 if (ac->ac_status != AC_STATUS_FOUND) {
2235 /*
2236 * Someone more lucky has already allocated it.
2237 * The only thing we can do is just take first
2238 * found block(s)
2239 printk(KERN_DEBUG "EXT4-fs: someone won our chunk\n");
2240 */
2241 ac->ac_b_ex.fe_group = 0;
2242 ac->ac_b_ex.fe_start = 0;
2243 ac->ac_b_ex.fe_len = 0;
2244 ac->ac_status = AC_STATUS_CONTINUE;
2245 ac->ac_flags |= EXT4_MB_HINT_FIRST;
2246 cr = 3;
2247 atomic_inc(&sbi->s_mb_lost_chunks);
2248 goto repeat;
2249 }
2250 }
2251 out:
2252 if (!err && ac->ac_status != AC_STATUS_FOUND && first_err)
2253 err = first_err;
2254 return err;
2255 }
2256
2257 static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos)
2258 {
2259 struct super_block *sb = seq->private;
2260 ext4_group_t group;
2261
2262 if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2263 return NULL;
2264 group = *pos + 1;
2265 return (void *) ((unsigned long) group);
2266 }
2267
2268 static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos)
2269 {
2270 struct super_block *sb = seq->private;
2271 ext4_group_t group;
2272
2273 ++*pos;
2274 if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2275 return NULL;
2276 group = *pos + 1;
2277 return (void *) ((unsigned long) group);
2278 }
2279
2280 static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v)
2281 {
2282 struct super_block *sb = seq->private;
2283 ext4_group_t group = (ext4_group_t) ((unsigned long) v);
2284 int i;
2285 int err, buddy_loaded = 0;
2286 struct ext4_buddy e4b;
2287 struct ext4_group_info *grinfo;
2288 struct sg {
2289 struct ext4_group_info info;
2290 ext4_grpblk_t counters[EXT4_MAX_BLOCK_LOG_SIZE + 2];
2291 } sg;
2292
2293 group--;
2294 if (group == 0)
2295 seq_puts(seq, "#group: free frags first ["
2296 " 2^0 2^1 2^2 2^3 2^4 2^5 2^6 "
2297 " 2^7 2^8 2^9 2^10 2^11 2^12 2^13 ]\n");
2298
2299 i = (sb->s_blocksize_bits + 2) * sizeof(sg.info.bb_counters[0]) +
2300 sizeof(struct ext4_group_info);
2301 grinfo = ext4_get_group_info(sb, group);
2302 /* Load the group info in memory only if not already loaded. */
2303 if (unlikely(EXT4_MB_GRP_NEED_INIT(grinfo))) {
2304 err = ext4_mb_load_buddy(sb, group, &e4b);
2305 if (err) {
2306 seq_printf(seq, "#%-5u: I/O error\n", group);
2307 return 0;
2308 }
2309 buddy_loaded = 1;
2310 }
2311
2312 memcpy(&sg, ext4_get_group_info(sb, group), i);
2313
2314 if (buddy_loaded)
2315 ext4_mb_unload_buddy(&e4b);
2316
2317 seq_printf(seq, "#%-5u: %-5u %-5u %-5u [", group, sg.info.bb_free,
2318 sg.info.bb_fragments, sg.info.bb_first_free);
2319 for (i = 0; i <= 13; i++)
2320 seq_printf(seq, " %-5u", i <= sb->s_blocksize_bits + 1 ?
2321 sg.info.bb_counters[i] : 0);
2322 seq_printf(seq, " ]\n");
2323
2324 return 0;
2325 }
2326
2327 static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v)
2328 {
2329 }
2330
2331 static const struct seq_operations ext4_mb_seq_groups_ops = {
2332 .start = ext4_mb_seq_groups_start,
2333 .next = ext4_mb_seq_groups_next,
2334 .stop = ext4_mb_seq_groups_stop,
2335 .show = ext4_mb_seq_groups_show,
2336 };
2337
2338 static int ext4_mb_seq_groups_open(struct inode *inode, struct file *file)
2339 {
2340 struct super_block *sb = PDE_DATA(inode);
2341 int rc;
2342
2343 rc = seq_open(file, &ext4_mb_seq_groups_ops);
2344 if (rc == 0) {
2345 struct seq_file *m = file->private_data;
2346 m->private = sb;
2347 }
2348 return rc;
2349
2350 }
2351
2352 const struct file_operations ext4_seq_mb_groups_fops = {
2353 .open = ext4_mb_seq_groups_open,
2354 .read = seq_read,
2355 .llseek = seq_lseek,
2356 .release = seq_release,
2357 };
2358
2359 static struct kmem_cache *get_groupinfo_cache(int blocksize_bits)
2360 {
2361 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
2362 struct kmem_cache *cachep = ext4_groupinfo_caches[cache_index];
2363
2364 BUG_ON(!cachep);
2365 return cachep;
2366 }
2367
2368 /*
2369 * Allocate the top-level s_group_info array for the specified number
2370 * of groups
2371 */
2372 int ext4_mb_alloc_groupinfo(struct super_block *sb, ext4_group_t ngroups)
2373 {
2374 struct ext4_sb_info *sbi = EXT4_SB(sb);
2375 unsigned size;
2376 struct ext4_group_info ***new_groupinfo;
2377
2378 size = (ngroups + EXT4_DESC_PER_BLOCK(sb) - 1) >>
2379 EXT4_DESC_PER_BLOCK_BITS(sb);
2380 if (size <= sbi->s_group_info_size)
2381 return 0;
2382
2383 size = roundup_pow_of_two(sizeof(*sbi->s_group_info) * size);
2384 new_groupinfo = ext4_kvzalloc(size, GFP_KERNEL);
2385 if (!new_groupinfo) {
2386 ext4_msg(sb, KERN_ERR, "can't allocate buddy meta group");
2387 return -ENOMEM;
2388 }
2389 if (sbi->s_group_info) {
2390 memcpy(new_groupinfo, sbi->s_group_info,
2391 sbi->s_group_info_size * sizeof(*sbi->s_group_info));
2392 kvfree(sbi->s_group_info);
2393 }
2394 sbi->s_group_info = new_groupinfo;
2395 sbi->s_group_info_size = size / sizeof(*sbi->s_group_info);
2396 ext4_debug("allocated s_groupinfo array for %d meta_bg's\n",
2397 sbi->s_group_info_size);
2398 return 0;
2399 }
2400
2401 /* Create and initialize ext4_group_info data for the given group. */
2402 int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group,
2403 struct ext4_group_desc *desc)
2404 {
2405 int i;
2406 int metalen = 0;
2407 struct ext4_sb_info *sbi = EXT4_SB(sb);
2408 struct ext4_group_info **meta_group_info;
2409 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2410
2411 /*
2412 * First check if this group is the first of a reserved block.
2413 * If it's true, we have to allocate a new table of pointers
2414 * to ext4_group_info structures
2415 */
2416 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
2417 metalen = sizeof(*meta_group_info) <<
2418 EXT4_DESC_PER_BLOCK_BITS(sb);
2419 meta_group_info = kmalloc(metalen, GFP_NOFS);
2420 if (meta_group_info == NULL) {
2421 ext4_msg(sb, KERN_ERR, "can't allocate mem "
2422 "for a buddy group");
2423 goto exit_meta_group_info;
2424 }
2425 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)] =
2426 meta_group_info;
2427 }
2428
2429 meta_group_info =
2430 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)];
2431 i = group & (EXT4_DESC_PER_BLOCK(sb) - 1);
2432
2433 meta_group_info[i] = kmem_cache_zalloc(cachep, GFP_NOFS);
2434 if (meta_group_info[i] == NULL) {
2435 ext4_msg(sb, KERN_ERR, "can't allocate buddy mem");
2436 goto exit_group_info;
2437 }
2438 set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT,
2439 &(meta_group_info[i]->bb_state));
2440
2441 /*
2442 * initialize bb_free to be able to skip
2443 * empty groups without initialization
2444 */
2445 if (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
2446 meta_group_info[i]->bb_free =
2447 ext4_free_clusters_after_init(sb, group, desc);
2448 } else {
2449 meta_group_info[i]->bb_free =
2450 ext4_free_group_clusters(sb, desc);
2451 }
2452
2453 INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list);
2454 init_rwsem(&meta_group_info[i]->alloc_sem);
2455 meta_group_info[i]->bb_free_root = RB_ROOT;
2456 meta_group_info[i]->bb_largest_free_order = -1; /* uninit */
2457
2458 #ifdef DOUBLE_CHECK
2459 {
2460 struct buffer_head *bh;
2461 meta_group_info[i]->bb_bitmap =
2462 kmalloc(sb->s_blocksize, GFP_NOFS);
2463 BUG_ON(meta_group_info[i]->bb_bitmap == NULL);
2464 bh = ext4_read_block_bitmap(sb, group);
2465 BUG_ON(IS_ERR_OR_NULL(bh));
2466 memcpy(meta_group_info[i]->bb_bitmap, bh->b_data,
2467 sb->s_blocksize);
2468 put_bh(bh);
2469 }
2470 #endif
2471
2472 return 0;
2473
2474 exit_group_info:
2475 /* If a meta_group_info table has been allocated, release it now */
2476 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
2477 kfree(sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)]);
2478 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)] = NULL;
2479 }
2480 exit_meta_group_info:
2481 return -ENOMEM;
2482 } /* ext4_mb_add_groupinfo */
2483
2484 static int ext4_mb_init_backend(struct super_block *sb)
2485 {
2486 ext4_group_t ngroups = ext4_get_groups_count(sb);
2487 ext4_group_t i;
2488 struct ext4_sb_info *sbi = EXT4_SB(sb);
2489 int err;
2490 struct ext4_group_desc *desc;
2491 struct kmem_cache *cachep;
2492
2493 err = ext4_mb_alloc_groupinfo(sb, ngroups);
2494 if (err)
2495 return err;
2496
2497 sbi->s_buddy_cache = new_inode(sb);
2498 if (sbi->s_buddy_cache == NULL) {
2499 ext4_msg(sb, KERN_ERR, "can't get new inode");
2500 goto err_freesgi;
2501 }
2502 /* To avoid potentially colliding with an valid on-disk inode number,
2503 * use EXT4_BAD_INO for the buddy cache inode number. This inode is
2504 * not in the inode hash, so it should never be found by iget(), but
2505 * this will avoid confusion if it ever shows up during debugging. */
2506 sbi->s_buddy_cache->i_ino = EXT4_BAD_INO;
2507 EXT4_I(sbi->s_buddy_cache)->i_disksize = 0;
2508 for (i = 0; i < ngroups; i++) {
2509 desc = ext4_get_group_desc(sb, i, NULL);
2510 if (desc == NULL) {
2511 ext4_msg(sb, KERN_ERR, "can't read descriptor %u", i);
2512 goto err_freebuddy;
2513 }
2514 if (ext4_mb_add_groupinfo(sb, i, desc) != 0)
2515 goto err_freebuddy;
2516 }
2517
2518 return 0;
2519
2520 err_freebuddy:
2521 cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2522 while (i-- > 0)
2523 kmem_cache_free(cachep, ext4_get_group_info(sb, i));
2524 i = sbi->s_group_info_size;
2525 while (i-- > 0)
2526 kfree(sbi->s_group_info[i]);
2527 iput(sbi->s_buddy_cache);
2528 err_freesgi:
2529 kvfree(sbi->s_group_info);
2530 return -ENOMEM;
2531 }
2532
2533 static void ext4_groupinfo_destroy_slabs(void)
2534 {
2535 int i;
2536
2537 for (i = 0; i < NR_GRPINFO_CACHES; i++) {
2538 if (ext4_groupinfo_caches[i])
2539 kmem_cache_destroy(ext4_groupinfo_caches[i]);
2540 ext4_groupinfo_caches[i] = NULL;
2541 }
2542 }
2543
2544 static int ext4_groupinfo_create_slab(size_t size)
2545 {
2546 static DEFINE_MUTEX(ext4_grpinfo_slab_create_mutex);
2547 int slab_size;
2548 int blocksize_bits = order_base_2(size);
2549 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
2550 struct kmem_cache *cachep;
2551
2552 if (cache_index >= NR_GRPINFO_CACHES)
2553 return -EINVAL;
2554
2555 if (unlikely(cache_index < 0))
2556 cache_index = 0;
2557
2558 mutex_lock(&ext4_grpinfo_slab_create_mutex);
2559 if (ext4_groupinfo_caches[cache_index]) {
2560 mutex_unlock(&ext4_grpinfo_slab_create_mutex);
2561 return 0; /* Already created */
2562 }
2563
2564 slab_size = offsetof(struct ext4_group_info,
2565 bb_counters[blocksize_bits + 2]);
2566
2567 cachep = kmem_cache_create(ext4_groupinfo_slab_names[cache_index],
2568 slab_size, 0, SLAB_RECLAIM_ACCOUNT,
2569 NULL);
2570
2571 ext4_groupinfo_caches[cache_index] = cachep;
2572
2573 mutex_unlock(&ext4_grpinfo_slab_create_mutex);
2574 if (!cachep) {
2575 printk(KERN_EMERG
2576 "EXT4-fs: no memory for groupinfo slab cache\n");
2577 return -ENOMEM;
2578 }
2579
2580 return 0;
2581 }
2582
2583 int ext4_mb_init(struct super_block *sb)
2584 {
2585 struct ext4_sb_info *sbi = EXT4_SB(sb);
2586 unsigned i, j;
2587 unsigned offset, offset_incr;
2588 unsigned max;
2589 int ret;
2590
2591 i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_offsets);
2592
2593 sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL);
2594 if (sbi->s_mb_offsets == NULL) {
2595 ret = -ENOMEM;
2596 goto out;
2597 }
2598
2599 i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_maxs);
2600 sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL);
2601 if (sbi->s_mb_maxs == NULL) {
2602 ret = -ENOMEM;
2603 goto out;
2604 }
2605
2606 ret = ext4_groupinfo_create_slab(sb->s_blocksize);
2607 if (ret < 0)
2608 goto out;
2609
2610 /* order 0 is regular bitmap */
2611 sbi->s_mb_maxs[0] = sb->s_blocksize << 3;
2612 sbi->s_mb_offsets[0] = 0;
2613
2614 i = 1;
2615 offset = 0;
2616 offset_incr = 1 << (sb->s_blocksize_bits - 1);
2617 max = sb->s_blocksize << 2;
2618 do {
2619 sbi->s_mb_offsets[i] = offset;
2620 sbi->s_mb_maxs[i] = max;
2621 offset += offset_incr;
2622 offset_incr = offset_incr >> 1;
2623 max = max >> 1;
2624 i++;
2625 } while (i <= sb->s_blocksize_bits + 1);
2626
2627 spin_lock_init(&sbi->s_md_lock);
2628 spin_lock_init(&sbi->s_bal_lock);
2629 sbi->s_mb_free_pending = 0;
2630
2631 sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN;
2632 sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN;
2633 sbi->s_mb_stats = MB_DEFAULT_STATS;
2634 sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD;
2635 sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS;
2636 /*
2637 * The default group preallocation is 512, which for 4k block
2638 * sizes translates to 2 megabytes. However for bigalloc file
2639 * systems, this is probably too big (i.e, if the cluster size
2640 * is 1 megabyte, then group preallocation size becomes half a
2641 * gigabyte!). As a default, we will keep a two megabyte
2642 * group pralloc size for cluster sizes up to 64k, and after
2643 * that, we will force a minimum group preallocation size of
2644 * 32 clusters. This translates to 8 megs when the cluster
2645 * size is 256k, and 32 megs when the cluster size is 1 meg,
2646 * which seems reasonable as a default.
2647 */
2648 sbi->s_mb_group_prealloc = max(MB_DEFAULT_GROUP_PREALLOC >>
2649 sbi->s_cluster_bits, 32);
2650 /*
2651 * If there is a s_stripe > 1, then we set the s_mb_group_prealloc
2652 * to the lowest multiple of s_stripe which is bigger than
2653 * the s_mb_group_prealloc as determined above. We want
2654 * the preallocation size to be an exact multiple of the
2655 * RAID stripe size so that preallocations don't fragment
2656 * the stripes.
2657 */
2658 if (sbi->s_stripe > 1) {
2659 sbi->s_mb_group_prealloc = roundup(
2660 sbi->s_mb_group_prealloc, sbi->s_stripe);
2661 }
2662
2663 sbi->s_locality_groups = alloc_percpu(struct ext4_locality_group);
2664 if (sbi->s_locality_groups == NULL) {
2665 ret = -ENOMEM;
2666 goto out;
2667 }
2668 for_each_possible_cpu(i) {
2669 struct ext4_locality_group *lg;
2670 lg = per_cpu_ptr(sbi->s_locality_groups, i);
2671 mutex_init(&lg->lg_mutex);
2672 for (j = 0; j < PREALLOC_TB_SIZE; j++)
2673 INIT_LIST_HEAD(&lg->lg_prealloc_list[j]);
2674 spin_lock_init(&lg->lg_prealloc_lock);
2675 }
2676
2677 /* init file for buddy data */
2678 ret = ext4_mb_init_backend(sb);
2679 if (ret != 0)
2680 goto out_free_locality_groups;
2681
2682 return 0;
2683
2684 out_free_locality_groups:
2685 free_percpu(sbi->s_locality_groups);
2686 sbi->s_locality_groups = NULL;
2687 out:
2688 kfree(sbi->s_mb_offsets);
2689 sbi->s_mb_offsets = NULL;
2690 kfree(sbi->s_mb_maxs);
2691 sbi->s_mb_maxs = NULL;
2692 return ret;
2693 }
2694
2695 /* need to called with the ext4 group lock held */
2696 static void ext4_mb_cleanup_pa(struct ext4_group_info *grp)
2697 {
2698 struct ext4_prealloc_space *pa;
2699 struct list_head *cur, *tmp;
2700 int count = 0;
2701
2702 list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) {
2703 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
2704 list_del(&pa->pa_group_list);
2705 count++;
2706 kmem_cache_free(ext4_pspace_cachep, pa);
2707 }
2708 if (count)
2709 mb_debug(1, "mballoc: %u PAs left\n", count);
2710
2711 }
2712
2713 int ext4_mb_release(struct super_block *sb)
2714 {
2715 ext4_group_t ngroups = ext4_get_groups_count(sb);
2716 ext4_group_t i;
2717 int num_meta_group_infos;
2718 struct ext4_group_info *grinfo;
2719 struct ext4_sb_info *sbi = EXT4_SB(sb);
2720 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2721
2722 if (sbi->s_group_info) {
2723 for (i = 0; i < ngroups; i++) {
2724 grinfo = ext4_get_group_info(sb, i);
2725 #ifdef DOUBLE_CHECK
2726 kfree(grinfo->bb_bitmap);
2727 #endif
2728 ext4_lock_group(sb, i);
2729 ext4_mb_cleanup_pa(grinfo);
2730 ext4_unlock_group(sb, i);
2731 kmem_cache_free(cachep, grinfo);
2732 }
2733 num_meta_group_infos = (ngroups +
2734 EXT4_DESC_PER_BLOCK(sb) - 1) >>
2735 EXT4_DESC_PER_BLOCK_BITS(sb);
2736 for (i = 0; i < num_meta_group_infos; i++)
2737 kfree(sbi->s_group_info[i]);
2738 kvfree(sbi->s_group_info);
2739 }
2740 kfree(sbi->s_mb_offsets);
2741 kfree(sbi->s_mb_maxs);
2742 iput(sbi->s_buddy_cache);
2743 if (sbi->s_mb_stats) {
2744 ext4_msg(sb, KERN_INFO,
2745 "mballoc: %u blocks %u reqs (%u success)",
2746 atomic_read(&sbi->s_bal_allocated),
2747 atomic_read(&sbi->s_bal_reqs),
2748 atomic_read(&sbi->s_bal_success));
2749 ext4_msg(sb, KERN_INFO,
2750 "mballoc: %u extents scanned, %u goal hits, "
2751 "%u 2^N hits, %u breaks, %u lost",
2752 atomic_read(&sbi->s_bal_ex_scanned),
2753 atomic_read(&sbi->s_bal_goals),
2754 atomic_read(&sbi->s_bal_2orders),
2755 atomic_read(&sbi->s_bal_breaks),
2756 atomic_read(&sbi->s_mb_lost_chunks));
2757 ext4_msg(sb, KERN_INFO,
2758 "mballoc: %lu generated and it took %Lu",
2759 sbi->s_mb_buddies_generated,
2760 sbi->s_mb_generation_time);
2761 ext4_msg(sb, KERN_INFO,
2762 "mballoc: %u preallocated, %u discarded",
2763 atomic_read(&sbi->s_mb_preallocated),
2764 atomic_read(&sbi->s_mb_discarded));
2765 }
2766
2767 free_percpu(sbi->s_locality_groups);
2768
2769 return 0;
2770 }
2771
2772 static inline int ext4_issue_discard(struct super_block *sb,
2773 ext4_group_t block_group, ext4_grpblk_t cluster, int count)
2774 {
2775 ext4_fsblk_t discard_block;
2776
2777 discard_block = (EXT4_C2B(EXT4_SB(sb), cluster) +
2778 ext4_group_first_block_no(sb, block_group));
2779 count = EXT4_C2B(EXT4_SB(sb), count);
2780 trace_ext4_discard_blocks(sb,
2781 (unsigned long long) discard_block, count);
2782 return sb_issue_discard(sb, discard_block, count, GFP_NOFS, 0);
2783 }
2784
2785 /*
2786 * This function is called by the jbd2 layer once the commit has finished,
2787 * so we know we can free the blocks that were released with that commit.
2788 */
2789 static void ext4_free_data_callback(struct super_block *sb,
2790 struct ext4_journal_cb_entry *jce,
2791 int rc)
2792 {
2793 struct ext4_free_data *entry = (struct ext4_free_data *)jce;
2794 struct ext4_buddy e4b;
2795 struct ext4_group_info *db;
2796 int err, count = 0, count2 = 0;
2797
2798 mb_debug(1, "gonna free %u blocks in group %u (0x%p):",
2799 entry->efd_count, entry->efd_group, entry);
2800
2801 if (test_opt(sb, DISCARD)) {
2802 err = ext4_issue_discard(sb, entry->efd_group,
2803 entry->efd_start_cluster,
2804 entry->efd_count);
2805 if (err && err != -EOPNOTSUPP)
2806 ext4_msg(sb, KERN_WARNING, "discard request in"
2807 " group:%d block:%d count:%d failed"
2808 " with %d", entry->efd_group,
2809 entry->efd_start_cluster,
2810 entry->efd_count, err);
2811 }
2812
2813 err = ext4_mb_load_buddy(sb, entry->efd_group, &e4b);
2814 /* we expect to find existing buddy because it's pinned */
2815 BUG_ON(err != 0);
2816
2817 spin_lock(&EXT4_SB(sb)->s_md_lock);
2818 EXT4_SB(sb)->s_mb_free_pending -= entry->efd_count;
2819 spin_unlock(&EXT4_SB(sb)->s_md_lock);
2820
2821 db = e4b.bd_info;
2822 /* there are blocks to put in buddy to make them really free */
2823 count += entry->efd_count;
2824 count2++;
2825 ext4_lock_group(sb, entry->efd_group);
2826 /* Take it out of per group rb tree */
2827 rb_erase(&entry->efd_node, &(db->bb_free_root));
2828 mb_free_blocks(NULL, &e4b, entry->efd_start_cluster, entry->efd_count);
2829
2830 /*
2831 * Clear the trimmed flag for the group so that the next
2832 * ext4_trim_fs can trim it.
2833 * If the volume is mounted with -o discard, online discard
2834 * is supported and the free blocks will be trimmed online.
2835 */
2836 if (!test_opt(sb, DISCARD))
2837 EXT4_MB_GRP_CLEAR_TRIMMED(db);
2838
2839 if (!db->bb_free_root.rb_node) {
2840 /* No more items in the per group rb tree
2841 * balance refcounts from ext4_mb_free_metadata()
2842 */
2843 put_page(e4b.bd_buddy_page);
2844 put_page(e4b.bd_bitmap_page);
2845 }
2846 ext4_unlock_group(sb, entry->efd_group);
2847 kmem_cache_free(ext4_free_data_cachep, entry);
2848 ext4_mb_unload_buddy(&e4b);
2849
2850 mb_debug(1, "freed %u blocks in %u structures\n", count, count2);
2851 }
2852
2853 int __init ext4_init_mballoc(void)
2854 {
2855 ext4_pspace_cachep = KMEM_CACHE(ext4_prealloc_space,
2856 SLAB_RECLAIM_ACCOUNT);
2857 if (ext4_pspace_cachep == NULL)
2858 return -ENOMEM;
2859
2860 ext4_ac_cachep = KMEM_CACHE(ext4_allocation_context,
2861 SLAB_RECLAIM_ACCOUNT);
2862 if (ext4_ac_cachep == NULL) {
2863 kmem_cache_destroy(ext4_pspace_cachep);
2864 return -ENOMEM;
2865 }
2866
2867 ext4_free_data_cachep = KMEM_CACHE(ext4_free_data,
2868 SLAB_RECLAIM_ACCOUNT);
2869 if (ext4_free_data_cachep == NULL) {
2870 kmem_cache_destroy(ext4_pspace_cachep);
2871 kmem_cache_destroy(ext4_ac_cachep);
2872 return -ENOMEM;
2873 }
2874 return 0;
2875 }
2876
2877 void ext4_exit_mballoc(void)
2878 {
2879 /*
2880 * Wait for completion of call_rcu()'s on ext4_pspace_cachep
2881 * before destroying the slab cache.
2882 */
2883 rcu_barrier();
2884 kmem_cache_destroy(ext4_pspace_cachep);
2885 kmem_cache_destroy(ext4_ac_cachep);
2886 kmem_cache_destroy(ext4_free_data_cachep);
2887 ext4_groupinfo_destroy_slabs();
2888 }
2889
2890
2891 /*
2892 * Check quota and mark chosen space (ac->ac_b_ex) non-free in bitmaps
2893 * Returns 0 if success or error code
2894 */
2895 static noinline_for_stack int
2896 ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac,
2897 handle_t *handle, unsigned int reserv_clstrs)
2898 {
2899 struct buffer_head *bitmap_bh = NULL;
2900 struct ext4_group_desc *gdp;
2901 struct buffer_head *gdp_bh;
2902 struct ext4_sb_info *sbi;
2903 struct super_block *sb;
2904 ext4_fsblk_t block;
2905 int err, len;
2906
2907 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
2908 BUG_ON(ac->ac_b_ex.fe_len <= 0);
2909
2910 sb = ac->ac_sb;
2911 sbi = EXT4_SB(sb);
2912
2913 bitmap_bh = ext4_read_block_bitmap(sb, ac->ac_b_ex.fe_group);
2914 if (IS_ERR(bitmap_bh)) {
2915 err = PTR_ERR(bitmap_bh);
2916 bitmap_bh = NULL;
2917 goto out_err;
2918 }
2919
2920 BUFFER_TRACE(bitmap_bh, "getting write access");
2921 err = ext4_journal_get_write_access(handle, bitmap_bh);
2922 if (err)
2923 goto out_err;
2924
2925 err = -EIO;
2926 gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, &gdp_bh);
2927 if (!gdp)
2928 goto out_err;
2929
2930 ext4_debug("using block group %u(%d)\n", ac->ac_b_ex.fe_group,
2931 ext4_free_group_clusters(sb, gdp));
2932
2933 BUFFER_TRACE(gdp_bh, "get_write_access");
2934 err = ext4_journal_get_write_access(handle, gdp_bh);
2935 if (err)
2936 goto out_err;
2937
2938 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
2939
2940 len = EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
2941 if (!ext4_data_block_valid(sbi, block, len)) {
2942 ext4_error(sb, "Allocating blocks %llu-%llu which overlap "
2943 "fs metadata", block, block+len);
2944 /* File system mounted not to panic on error
2945 * Fix the bitmap and return EFSCORRUPTED
2946 * We leak some of the blocks here.
2947 */
2948 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
2949 ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
2950 ac->ac_b_ex.fe_len);
2951 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
2952 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
2953 if (!err)
2954 err = -EFSCORRUPTED;
2955 goto out_err;
2956 }
2957
2958 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
2959 #ifdef AGGRESSIVE_CHECK
2960 {
2961 int i;
2962 for (i = 0; i < ac->ac_b_ex.fe_len; i++) {
2963 BUG_ON(mb_test_bit(ac->ac_b_ex.fe_start + i,
2964 bitmap_bh->b_data));
2965 }
2966 }
2967 #endif
2968 ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
2969 ac->ac_b_ex.fe_len);
2970 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
2971 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
2972 ext4_free_group_clusters_set(sb, gdp,
2973 ext4_free_clusters_after_init(sb,
2974 ac->ac_b_ex.fe_group, gdp));
2975 }
2976 len = ext4_free_group_clusters(sb, gdp) - ac->ac_b_ex.fe_len;
2977 ext4_free_group_clusters_set(sb, gdp, len);
2978 ext4_block_bitmap_csum_set(sb, ac->ac_b_ex.fe_group, gdp, bitmap_bh);
2979 ext4_group_desc_csum_set(sb, ac->ac_b_ex.fe_group, gdp);
2980
2981 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
2982 percpu_counter_sub(&sbi->s_freeclusters_counter, ac->ac_b_ex.fe_len);
2983 /*
2984 * Now reduce the dirty block count also. Should not go negative
2985 */
2986 if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED))
2987 /* release all the reserved blocks if non delalloc */
2988 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
2989 reserv_clstrs);
2990
2991 if (sbi->s_log_groups_per_flex) {
2992 ext4_group_t flex_group = ext4_flex_group(sbi,
2993 ac->ac_b_ex.fe_group);
2994 atomic64_sub(ac->ac_b_ex.fe_len,
2995 &sbi->s_flex_groups[flex_group].free_clusters);
2996 }
2997
2998 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
2999 if (err)
3000 goto out_err;
3001 err = ext4_handle_dirty_metadata(handle, NULL, gdp_bh);
3002
3003 out_err:
3004 brelse(bitmap_bh);
3005 return err;
3006 }
3007
3008 /*
3009 * here we normalize request for locality group
3010 * Group request are normalized to s_mb_group_prealloc, which goes to
3011 * s_strip if we set the same via mount option.
3012 * s_mb_group_prealloc can be configured via
3013 * /sys/fs/ext4/<partition>/mb_group_prealloc
3014 *
3015 * XXX: should we try to preallocate more than the group has now?
3016 */
3017 static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac)
3018 {
3019 struct super_block *sb = ac->ac_sb;
3020 struct ext4_locality_group *lg = ac->ac_lg;
3021
3022 BUG_ON(lg == NULL);
3023 ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc;
3024 mb_debug(1, "#%u: goal %u blocks for locality group\n",
3025 current->pid, ac->ac_g_ex.fe_len);
3026 }
3027
3028 /*
3029 * Normalization means making request better in terms of
3030 * size and alignment
3031 */
3032 static noinline_for_stack void
3033 ext4_mb_normalize_request(struct ext4_allocation_context *ac,
3034 struct ext4_allocation_request *ar)
3035 {
3036 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3037 int bsbits, max;
3038 ext4_lblk_t end;
3039 loff_t size, start_off;
3040 loff_t orig_size __maybe_unused;
3041 ext4_lblk_t start;
3042 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
3043 struct ext4_prealloc_space *pa;
3044
3045 /* do normalize only data requests, metadata requests
3046 do not need preallocation */
3047 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3048 return;
3049
3050 /* sometime caller may want exact blocks */
3051 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
3052 return;
3053
3054 /* caller may indicate that preallocation isn't
3055 * required (it's a tail, for example) */
3056 if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC)
3057 return;
3058
3059 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) {
3060 ext4_mb_normalize_group_request(ac);
3061 return ;
3062 }
3063
3064 bsbits = ac->ac_sb->s_blocksize_bits;
3065
3066 /* first, let's learn actual file size
3067 * given current request is allocated */
3068 size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len);
3069 size = size << bsbits;
3070 if (size < i_size_read(ac->ac_inode))
3071 size = i_size_read(ac->ac_inode);
3072 orig_size = size;
3073
3074 /* max size of free chunks */
3075 max = 2 << bsbits;
3076
3077 #define NRL_CHECK_SIZE(req, size, max, chunk_size) \
3078 (req <= (size) || max <= (chunk_size))
3079
3080 /* first, try to predict filesize */
3081 /* XXX: should this table be tunable? */
3082 start_off = 0;
3083 if (size <= 16 * 1024) {
3084 size = 16 * 1024;
3085 } else if (size <= 32 * 1024) {
3086 size = 32 * 1024;
3087 } else if (size <= 64 * 1024) {
3088 size = 64 * 1024;
3089 } else if (size <= 128 * 1024) {
3090 size = 128 * 1024;
3091 } else if (size <= 256 * 1024) {
3092 size = 256 * 1024;
3093 } else if (size <= 512 * 1024) {
3094 size = 512 * 1024;
3095 } else if (size <= 1024 * 1024) {
3096 size = 1024 * 1024;
3097 } else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) {
3098 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3099 (21 - bsbits)) << 21;
3100 size = 2 * 1024 * 1024;
3101 } else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) {
3102 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3103 (22 - bsbits)) << 22;
3104 size = 4 * 1024 * 1024;
3105 } else if (NRL_CHECK_SIZE(ac->ac_o_ex.fe_len,
3106 (8<<20)>>bsbits, max, 8 * 1024)) {
3107 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3108 (23 - bsbits)) << 23;
3109 size = 8 * 1024 * 1024;
3110 } else {
3111 start_off = (loff_t) ac->ac_o_ex.fe_logical << bsbits;
3112 size = (loff_t) EXT4_C2B(EXT4_SB(ac->ac_sb),
3113 ac->ac_o_ex.fe_len) << bsbits;
3114 }
3115 size = size >> bsbits;
3116 start = start_off >> bsbits;
3117
3118 /* don't cover already allocated blocks in selected range */
3119 if (ar->pleft && start <= ar->lleft) {
3120 size -= ar->lleft + 1 - start;
3121 start = ar->lleft + 1;
3122 }
3123 if (ar->pright && start + size - 1 >= ar->lright)
3124 size -= start + size - ar->lright;
3125
3126 end = start + size;
3127
3128 /* check we don't cross already preallocated blocks */
3129 rcu_read_lock();
3130 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3131 ext4_lblk_t pa_end;
3132
3133 if (pa->pa_deleted)
3134 continue;
3135 spin_lock(&pa->pa_lock);
3136 if (pa->pa_deleted) {
3137 spin_unlock(&pa->pa_lock);
3138 continue;
3139 }
3140
3141 pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb),
3142 pa->pa_len);
3143
3144 /* PA must not overlap original request */
3145 BUG_ON(!(ac->ac_o_ex.fe_logical >= pa_end ||
3146 ac->ac_o_ex.fe_logical < pa->pa_lstart));
3147
3148 /* skip PAs this normalized request doesn't overlap with */
3149 if (pa->pa_lstart >= end || pa_end <= start) {
3150 spin_unlock(&pa->pa_lock);
3151 continue;
3152 }
3153 BUG_ON(pa->pa_lstart <= start && pa_end >= end);
3154
3155 /* adjust start or end to be adjacent to this pa */
3156 if (pa_end <= ac->ac_o_ex.fe_logical) {
3157 BUG_ON(pa_end < start);
3158 start = pa_end;
3159 } else if (pa->pa_lstart > ac->ac_o_ex.fe_logical) {
3160 BUG_ON(pa->pa_lstart > end);
3161 end = pa->pa_lstart;
3162 }
3163 spin_unlock(&pa->pa_lock);
3164 }
3165 rcu_read_unlock();
3166 size = end - start;
3167
3168 /* XXX: extra loop to check we really don't overlap preallocations */
3169 rcu_read_lock();
3170 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3171 ext4_lblk_t pa_end;
3172
3173 spin_lock(&pa->pa_lock);
3174 if (pa->pa_deleted == 0) {
3175 pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb),
3176 pa->pa_len);
3177 BUG_ON(!(start >= pa_end || end <= pa->pa_lstart));
3178 }
3179 spin_unlock(&pa->pa_lock);
3180 }
3181 rcu_read_unlock();
3182
3183 if (start + size <= ac->ac_o_ex.fe_logical &&
3184 start > ac->ac_o_ex.fe_logical) {
3185 ext4_msg(ac->ac_sb, KERN_ERR,
3186 "start %lu, size %lu, fe_logical %lu",
3187 (unsigned long) start, (unsigned long) size,
3188 (unsigned long) ac->ac_o_ex.fe_logical);
3189 BUG();
3190 }
3191 BUG_ON(size <= 0 || size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb));
3192
3193 /* now prepare goal request */
3194
3195 /* XXX: is it better to align blocks WRT to logical
3196 * placement or satisfy big request as is */
3197 ac->ac_g_ex.fe_logical = start;
3198 ac->ac_g_ex.fe_len = EXT4_NUM_B2C(sbi, size);
3199
3200 /* define goal start in order to merge */
3201 if (ar->pright && (ar->lright == (start + size))) {
3202 /* merge to the right */
3203 ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size,
3204 &ac->ac_f_ex.fe_group,
3205 &ac->ac_f_ex.fe_start);
3206 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3207 }
3208 if (ar->pleft && (ar->lleft + 1 == start)) {
3209 /* merge to the left */
3210 ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1,
3211 &ac->ac_f_ex.fe_group,
3212 &ac->ac_f_ex.fe_start);
3213 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3214 }
3215
3216 mb_debug(1, "goal: %u(was %u) blocks at %u\n", (unsigned) size,
3217 (unsigned) orig_size, (unsigned) start);
3218 }
3219
3220 static void ext4_mb_collect_stats(struct ext4_allocation_context *ac)
3221 {
3222 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3223
3224 if (sbi->s_mb_stats && ac->ac_g_ex.fe_len > 1) {
3225 atomic_inc(&sbi->s_bal_reqs);
3226 atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated);
3227 if (ac->ac_b_ex.fe_len >= ac->ac_o_ex.fe_len)
3228 atomic_inc(&sbi->s_bal_success);
3229 atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned);
3230 if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start &&
3231 ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group)
3232 atomic_inc(&sbi->s_bal_goals);
3233 if (ac->ac_found > sbi->s_mb_max_to_scan)
3234 atomic_inc(&sbi->s_bal_breaks);
3235 }
3236
3237 if (ac->ac_op == EXT4_MB_HISTORY_ALLOC)
3238 trace_ext4_mballoc_alloc(ac);
3239 else
3240 trace_ext4_mballoc_prealloc(ac);
3241 }
3242
3243 /*
3244 * Called on failure; free up any blocks from the inode PA for this
3245 * context. We don't need this for MB_GROUP_PA because we only change
3246 * pa_free in ext4_mb_release_context(), but on failure, we've already
3247 * zeroed out ac->ac_b_ex.fe_len, so group_pa->pa_free is not changed.
3248 */
3249 static void ext4_discard_allocated_blocks(struct ext4_allocation_context *ac)
3250 {
3251 struct ext4_prealloc_space *pa = ac->ac_pa;
3252 struct ext4_buddy e4b;
3253 int err;
3254
3255 if (pa == NULL) {
3256 if (ac->ac_f_ex.fe_len == 0)
3257 return;
3258 err = ext4_mb_load_buddy(ac->ac_sb, ac->ac_f_ex.fe_group, &e4b);
3259 if (err) {
3260 /*
3261 * This should never happen since we pin the
3262 * pages in the ext4_allocation_context so
3263 * ext4_mb_load_buddy() should never fail.
3264 */
3265 WARN(1, "mb_load_buddy failed (%d)", err);
3266 return;
3267 }
3268 ext4_lock_group(ac->ac_sb, ac->ac_f_ex.fe_group);
3269 mb_free_blocks(ac->ac_inode, &e4b, ac->ac_f_ex.fe_start,
3270 ac->ac_f_ex.fe_len);
3271 ext4_unlock_group(ac->ac_sb, ac->ac_f_ex.fe_group);
3272 ext4_mb_unload_buddy(&e4b);
3273 return;
3274 }
3275 if (pa->pa_type == MB_INODE_PA)
3276 pa->pa_free += ac->ac_b_ex.fe_len;
3277 }
3278
3279 /*
3280 * use blocks preallocated to inode
3281 */
3282 static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac,
3283 struct ext4_prealloc_space *pa)
3284 {
3285 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3286 ext4_fsblk_t start;
3287 ext4_fsblk_t end;
3288 int len;
3289
3290 /* found preallocated blocks, use them */
3291 start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart);
3292 end = min(pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len),
3293 start + EXT4_C2B(sbi, ac->ac_o_ex.fe_len));
3294 len = EXT4_NUM_B2C(sbi, end - start);
3295 ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group,
3296 &ac->ac_b_ex.fe_start);
3297 ac->ac_b_ex.fe_len = len;
3298 ac->ac_status = AC_STATUS_FOUND;
3299 ac->ac_pa = pa;
3300
3301 BUG_ON(start < pa->pa_pstart);
3302 BUG_ON(end > pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len));
3303 BUG_ON(pa->pa_free < len);
3304 pa->pa_free -= len;
3305
3306 mb_debug(1, "use %llu/%u from inode pa %p\n", start, len, pa);
3307 }
3308
3309 /*
3310 * use blocks preallocated to locality group
3311 */
3312 static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac,
3313 struct ext4_prealloc_space *pa)
3314 {
3315 unsigned int len = ac->ac_o_ex.fe_len;
3316
3317 ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart,
3318 &ac->ac_b_ex.fe_group,
3319 &ac->ac_b_ex.fe_start);
3320 ac->ac_b_ex.fe_len = len;
3321 ac->ac_status = AC_STATUS_FOUND;
3322 ac->ac_pa = pa;
3323
3324 /* we don't correct pa_pstart or pa_plen here to avoid
3325 * possible race when the group is being loaded concurrently
3326 * instead we correct pa later, after blocks are marked
3327 * in on-disk bitmap -- see ext4_mb_release_context()
3328 * Other CPUs are prevented from allocating from this pa by lg_mutex
3329 */
3330 mb_debug(1, "use %u/%u from group pa %p\n", pa->pa_lstart-len, len, pa);
3331 }
3332
3333 /*
3334 * Return the prealloc space that have minimal distance
3335 * from the goal block. @cpa is the prealloc
3336 * space that is having currently known minimal distance
3337 * from the goal block.
3338 */
3339 static struct ext4_prealloc_space *
3340 ext4_mb_check_group_pa(ext4_fsblk_t goal_block,
3341 struct ext4_prealloc_space *pa,
3342 struct ext4_prealloc_space *cpa)
3343 {
3344 ext4_fsblk_t cur_distance, new_distance;
3345
3346 if (cpa == NULL) {
3347 atomic_inc(&pa->pa_count);
3348 return pa;
3349 }
3350 cur_distance = abs(goal_block - cpa->pa_pstart);
3351 new_distance = abs(goal_block - pa->pa_pstart);
3352
3353 if (cur_distance <= new_distance)
3354 return cpa;
3355
3356 /* drop the previous reference */
3357 atomic_dec(&cpa->pa_count);
3358 atomic_inc(&pa->pa_count);
3359 return pa;
3360 }
3361
3362 /*
3363 * search goal blocks in preallocated space
3364 */
3365 static noinline_for_stack int
3366 ext4_mb_use_preallocated(struct ext4_allocation_context *ac)
3367 {
3368 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3369 int order, i;
3370 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
3371 struct ext4_locality_group *lg;
3372 struct ext4_prealloc_space *pa, *cpa = NULL;
3373 ext4_fsblk_t goal_block;
3374
3375 /* only data can be preallocated */
3376 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3377 return 0;
3378
3379 /* first, try per-file preallocation */
3380 rcu_read_lock();
3381 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3382
3383 /* all fields in this condition don't change,
3384 * so we can skip locking for them */
3385 if (ac->ac_o_ex.fe_logical < pa->pa_lstart ||
3386 ac->ac_o_ex.fe_logical >= (pa->pa_lstart +
3387 EXT4_C2B(sbi, pa->pa_len)))
3388 continue;
3389
3390 /* non-extent files can't have physical blocks past 2^32 */
3391 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)) &&
3392 (pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len) >
3393 EXT4_MAX_BLOCK_FILE_PHYS))
3394 continue;
3395
3396 /* found preallocated blocks, use them */
3397 spin_lock(&pa->pa_lock);
3398 if (pa->pa_deleted == 0 && pa->pa_free) {
3399 atomic_inc(&pa->pa_count);
3400 ext4_mb_use_inode_pa(ac, pa);
3401 spin_unlock(&pa->pa_lock);
3402 ac->ac_criteria = 10;
3403 rcu_read_unlock();
3404 return 1;
3405 }
3406 spin_unlock(&pa->pa_lock);
3407 }
3408 rcu_read_unlock();
3409
3410 /* can we use group allocation? */
3411 if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC))
3412 return 0;
3413
3414 /* inode may have no locality group for some reason */
3415 lg = ac->ac_lg;
3416 if (lg == NULL)
3417 return 0;
3418 order = fls(ac->ac_o_ex.fe_len) - 1;
3419 if (order > PREALLOC_TB_SIZE - 1)
3420 /* The max size of hash table is PREALLOC_TB_SIZE */
3421 order = PREALLOC_TB_SIZE - 1;
3422
3423 goal_block = ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex);
3424 /*
3425 * search for the prealloc space that is having
3426 * minimal distance from the goal block.
3427 */
3428 for (i = order; i < PREALLOC_TB_SIZE; i++) {
3429 rcu_read_lock();
3430 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[i],
3431 pa_inode_list) {
3432 spin_lock(&pa->pa_lock);
3433 if (pa->pa_deleted == 0 &&
3434 pa->pa_free >= ac->ac_o_ex.fe_len) {
3435
3436 cpa = ext4_mb_check_group_pa(goal_block,
3437 pa, cpa);
3438 }
3439 spin_unlock(&pa->pa_lock);
3440 }
3441 rcu_read_unlock();
3442 }
3443 if (cpa) {
3444 ext4_mb_use_group_pa(ac, cpa);
3445 ac->ac_criteria = 20;
3446 return 1;
3447 }
3448 return 0;
3449 }
3450
3451 /*
3452 * the function goes through all block freed in the group
3453 * but not yet committed and marks them used in in-core bitmap.
3454 * buddy must be generated from this bitmap
3455 * Need to be called with the ext4 group lock held
3456 */
3457 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
3458 ext4_group_t group)
3459 {
3460 struct rb_node *n;
3461 struct ext4_group_info *grp;
3462 struct ext4_free_data *entry;
3463
3464 grp = ext4_get_group_info(sb, group);
3465 n = rb_first(&(grp->bb_free_root));
3466
3467 while (n) {
3468 entry = rb_entry(n, struct ext4_free_data, efd_node);
3469 ext4_set_bits(bitmap, entry->efd_start_cluster, entry->efd_count);
3470 n = rb_next(n);
3471 }
3472 return;
3473 }
3474
3475 /*
3476 * the function goes through all preallocation in this group and marks them
3477 * used in in-core bitmap. buddy must be generated from this bitmap
3478 * Need to be called with ext4 group lock held
3479 */
3480 static noinline_for_stack
3481 void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
3482 ext4_group_t group)
3483 {
3484 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
3485 struct ext4_prealloc_space *pa;
3486 struct list_head *cur;
3487 ext4_group_t groupnr;
3488 ext4_grpblk_t start;
3489 int preallocated = 0;
3490 int len;
3491
3492 /* all form of preallocation discards first load group,
3493 * so the only competing code is preallocation use.
3494 * we don't need any locking here
3495 * notice we do NOT ignore preallocations with pa_deleted
3496 * otherwise we could leave used blocks available for
3497 * allocation in buddy when concurrent ext4_mb_put_pa()
3498 * is dropping preallocation
3499 */
3500 list_for_each(cur, &grp->bb_prealloc_list) {
3501 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
3502 spin_lock(&pa->pa_lock);
3503 ext4_get_group_no_and_offset(sb, pa->pa_pstart,
3504 &groupnr, &start);
3505 len = pa->pa_len;
3506 spin_unlock(&pa->pa_lock);
3507 if (unlikely(len == 0))
3508 continue;
3509 BUG_ON(groupnr != group);
3510 ext4_set_bits(bitmap, start, len);
3511 preallocated += len;
3512 }
3513 mb_debug(1, "prellocated %u for group %u\n", preallocated, group);
3514 }
3515
3516 static void ext4_mb_pa_callback(struct rcu_head *head)
3517 {
3518 struct ext4_prealloc_space *pa;
3519 pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu);
3520
3521 BUG_ON(atomic_read(&pa->pa_count));
3522 BUG_ON(pa->pa_deleted == 0);
3523 kmem_cache_free(ext4_pspace_cachep, pa);
3524 }
3525
3526 /*
3527 * drops a reference to preallocated space descriptor
3528 * if this was the last reference and the space is consumed
3529 */
3530 static void ext4_mb_put_pa(struct ext4_allocation_context *ac,
3531 struct super_block *sb, struct ext4_prealloc_space *pa)
3532 {
3533 ext4_group_t grp;
3534 ext4_fsblk_t grp_blk;
3535
3536 /* in this short window concurrent discard can set pa_deleted */
3537 spin_lock(&pa->pa_lock);
3538 if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0) {
3539 spin_unlock(&pa->pa_lock);
3540 return;
3541 }
3542
3543 if (pa->pa_deleted == 1) {
3544 spin_unlock(&pa->pa_lock);
3545 return;
3546 }
3547
3548 pa->pa_deleted = 1;
3549 spin_unlock(&pa->pa_lock);
3550
3551 grp_blk = pa->pa_pstart;
3552 /*
3553 * If doing group-based preallocation, pa_pstart may be in the
3554 * next group when pa is used up
3555 */
3556 if (pa->pa_type == MB_GROUP_PA)
3557 grp_blk--;
3558
3559 grp = ext4_get_group_number(sb, grp_blk);
3560
3561 /*
3562 * possible race:
3563 *
3564 * P1 (buddy init) P2 (regular allocation)
3565 * find block B in PA
3566 * copy on-disk bitmap to buddy
3567 * mark B in on-disk bitmap
3568 * drop PA from group
3569 * mark all PAs in buddy
3570 *
3571 * thus, P1 initializes buddy with B available. to prevent this
3572 * we make "copy" and "mark all PAs" atomic and serialize "drop PA"
3573 * against that pair
3574 */
3575 ext4_lock_group(sb, grp);
3576 list_del(&pa->pa_group_list);
3577 ext4_unlock_group(sb, grp);
3578
3579 spin_lock(pa->pa_obj_lock);
3580 list_del_rcu(&pa->pa_inode_list);
3581 spin_unlock(pa->pa_obj_lock);
3582
3583 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3584 }
3585
3586 /*
3587 * creates new preallocated space for given inode
3588 */
3589 static noinline_for_stack int
3590 ext4_mb_new_inode_pa(struct ext4_allocation_context *ac)
3591 {
3592 struct super_block *sb = ac->ac_sb;
3593 struct ext4_sb_info *sbi = EXT4_SB(sb);
3594 struct ext4_prealloc_space *pa;
3595 struct ext4_group_info *grp;
3596 struct ext4_inode_info *ei;
3597
3598 /* preallocate only when found space is larger then requested */
3599 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
3600 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3601 BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
3602
3603 pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
3604 if (pa == NULL)
3605 return -ENOMEM;
3606
3607 if (ac->ac_b_ex.fe_len < ac->ac_g_ex.fe_len) {
3608 int winl;
3609 int wins;
3610 int win;
3611 int offs;
3612
3613 /* we can't allocate as much as normalizer wants.
3614 * so, found space must get proper lstart
3615 * to cover original request */
3616 BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical);
3617 BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len);
3618
3619 /* we're limited by original request in that
3620 * logical block must be covered any way
3621 * winl is window we can move our chunk within */
3622 winl = ac->ac_o_ex.fe_logical - ac->ac_g_ex.fe_logical;
3623
3624 /* also, we should cover whole original request */
3625 wins = EXT4_C2B(sbi, ac->ac_b_ex.fe_len - ac->ac_o_ex.fe_len);
3626
3627 /* the smallest one defines real window */
3628 win = min(winl, wins);
3629
3630 offs = ac->ac_o_ex.fe_logical %
3631 EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
3632 if (offs && offs < win)
3633 win = offs;
3634
3635 ac->ac_b_ex.fe_logical = ac->ac_o_ex.fe_logical -
3636 EXT4_NUM_B2C(sbi, win);
3637 BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical);
3638 BUG_ON(ac->ac_o_ex.fe_len > ac->ac_b_ex.fe_len);
3639 }
3640
3641 /* preallocation can change ac_b_ex, thus we store actually
3642 * allocated blocks for history */
3643 ac->ac_f_ex = ac->ac_b_ex;
3644
3645 pa->pa_lstart = ac->ac_b_ex.fe_logical;
3646 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3647 pa->pa_len = ac->ac_b_ex.fe_len;
3648 pa->pa_free = pa->pa_len;
3649 atomic_set(&pa->pa_count, 1);
3650 spin_lock_init(&pa->pa_lock);
3651 INIT_LIST_HEAD(&pa->pa_inode_list);
3652 INIT_LIST_HEAD(&pa->pa_group_list);
3653 pa->pa_deleted = 0;
3654 pa->pa_type = MB_INODE_PA;
3655
3656 mb_debug(1, "new inode pa %p: %llu/%u for %u\n", pa,
3657 pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3658 trace_ext4_mb_new_inode_pa(ac, pa);
3659
3660 ext4_mb_use_inode_pa(ac, pa);
3661 atomic_add(pa->pa_free, &sbi->s_mb_preallocated);
3662
3663 ei = EXT4_I(ac->ac_inode);
3664 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
3665
3666 pa->pa_obj_lock = &ei->i_prealloc_lock;
3667 pa->pa_inode = ac->ac_inode;
3668
3669 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3670 list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
3671 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3672
3673 spin_lock(pa->pa_obj_lock);
3674 list_add_rcu(&pa->pa_inode_list, &ei->i_prealloc_list);
3675 spin_unlock(pa->pa_obj_lock);
3676
3677 return 0;
3678 }
3679
3680 /*
3681 * creates new preallocated space for locality group inodes belongs to
3682 */
3683 static noinline_for_stack int
3684 ext4_mb_new_group_pa(struct ext4_allocation_context *ac)
3685 {
3686 struct super_block *sb = ac->ac_sb;
3687 struct ext4_locality_group *lg;
3688 struct ext4_prealloc_space *pa;
3689 struct ext4_group_info *grp;
3690
3691 /* preallocate only when found space is larger then requested */
3692 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
3693 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3694 BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
3695
3696 BUG_ON(ext4_pspace_cachep == NULL);
3697 pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
3698 if (pa == NULL)
3699 return -ENOMEM;
3700
3701 /* preallocation can change ac_b_ex, thus we store actually
3702 * allocated blocks for history */
3703 ac->ac_f_ex = ac->ac_b_ex;
3704
3705 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3706 pa->pa_lstart = pa->pa_pstart;
3707 pa->pa_len = ac->ac_b_ex.fe_len;
3708 pa->pa_free = pa->pa_len;
3709 atomic_set(&pa->pa_count, 1);
3710 spin_lock_init(&pa->pa_lock);
3711 INIT_LIST_HEAD(&pa->pa_inode_list);
3712 INIT_LIST_HEAD(&pa->pa_group_list);
3713 pa->pa_deleted = 0;
3714 pa->pa_type = MB_GROUP_PA;
3715
3716 mb_debug(1, "new group pa %p: %llu/%u for %u\n", pa,
3717 pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3718 trace_ext4_mb_new_group_pa(ac, pa);
3719
3720 ext4_mb_use_group_pa(ac, pa);
3721 atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated);
3722
3723 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
3724 lg = ac->ac_lg;
3725 BUG_ON(lg == NULL);
3726
3727 pa->pa_obj_lock = &lg->lg_prealloc_lock;
3728 pa->pa_inode = NULL;
3729
3730 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3731 list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
3732 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3733
3734 /*
3735 * We will later add the new pa to the right bucket
3736 * after updating the pa_free in ext4_mb_release_context
3737 */
3738 return 0;
3739 }
3740
3741 static int ext4_mb_new_preallocation(struct ext4_allocation_context *ac)
3742 {
3743 int err;
3744
3745 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
3746 err = ext4_mb_new_group_pa(ac);
3747 else
3748 err = ext4_mb_new_inode_pa(ac);
3749 return err;
3750 }
3751
3752 /*
3753 * finds all unused blocks in on-disk bitmap, frees them in
3754 * in-core bitmap and buddy.
3755 * @pa must be unlinked from inode and group lists, so that
3756 * nobody else can find/use it.
3757 * the caller MUST hold group/inode locks.
3758 * TODO: optimize the case when there are no in-core structures yet
3759 */
3760 static noinline_for_stack int
3761 ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh,
3762 struct ext4_prealloc_space *pa)
3763 {
3764 struct super_block *sb = e4b->bd_sb;
3765 struct ext4_sb_info *sbi = EXT4_SB(sb);
3766 unsigned int end;
3767 unsigned int next;
3768 ext4_group_t group;
3769 ext4_grpblk_t bit;
3770 unsigned long long grp_blk_start;
3771 int err = 0;
3772 int free = 0;
3773
3774 BUG_ON(pa->pa_deleted == 0);
3775 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3776 grp_blk_start = pa->pa_pstart - EXT4_C2B(sbi, bit);
3777 BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
3778 end = bit + pa->pa_len;
3779
3780 while (bit < end) {
3781 bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit);
3782 if (bit >= end)
3783 break;
3784 next = mb_find_next_bit(bitmap_bh->b_data, end, bit);
3785 mb_debug(1, " free preallocated %u/%u in group %u\n",
3786 (unsigned) ext4_group_first_block_no(sb, group) + bit,
3787 (unsigned) next - bit, (unsigned) group);
3788 free += next - bit;
3789
3790 trace_ext4_mballoc_discard(sb, NULL, group, bit, next - bit);
3791 trace_ext4_mb_release_inode_pa(pa, (grp_blk_start +
3792 EXT4_C2B(sbi, bit)),
3793 next - bit);
3794 mb_free_blocks(pa->pa_inode, e4b, bit, next - bit);
3795 bit = next + 1;
3796 }
3797 if (free != pa->pa_free) {
3798 ext4_msg(e4b->bd_sb, KERN_CRIT,
3799 "pa %p: logic %lu, phys. %lu, len %lu",
3800 pa, (unsigned long) pa->pa_lstart,
3801 (unsigned long) pa->pa_pstart,
3802 (unsigned long) pa->pa_len);
3803 ext4_grp_locked_error(sb, group, 0, 0, "free %u, pa_free %u",
3804 free, pa->pa_free);
3805 /*
3806 * pa is already deleted so we use the value obtained
3807 * from the bitmap and continue.
3808 */
3809 }
3810 atomic_add(free, &sbi->s_mb_discarded);
3811
3812 return err;
3813 }
3814
3815 static noinline_for_stack int
3816 ext4_mb_release_group_pa(struct ext4_buddy *e4b,
3817 struct ext4_prealloc_space *pa)
3818 {
3819 struct super_block *sb = e4b->bd_sb;
3820 ext4_group_t group;
3821 ext4_grpblk_t bit;
3822
3823 trace_ext4_mb_release_group_pa(sb, pa);
3824 BUG_ON(pa->pa_deleted == 0);
3825 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3826 BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
3827 mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len);
3828 atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded);
3829 trace_ext4_mballoc_discard(sb, NULL, group, bit, pa->pa_len);
3830
3831 return 0;
3832 }
3833
3834 /*
3835 * releases all preallocations in given group
3836 *
3837 * first, we need to decide discard policy:
3838 * - when do we discard
3839 * 1) ENOSPC
3840 * - how many do we discard
3841 * 1) how many requested
3842 */
3843 static noinline_for_stack int
3844 ext4_mb_discard_group_preallocations(struct super_block *sb,
3845 ext4_group_t group, int needed)
3846 {
3847 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
3848 struct buffer_head *bitmap_bh = NULL;
3849 struct ext4_prealloc_space *pa, *tmp;
3850 struct list_head list;
3851 struct ext4_buddy e4b;
3852 int err;
3853 int busy = 0;
3854 int free = 0;
3855
3856 mb_debug(1, "discard preallocation for group %u\n", group);
3857
3858 if (list_empty(&grp->bb_prealloc_list))
3859 return 0;
3860
3861 bitmap_bh = ext4_read_block_bitmap(sb, group);
3862 if (IS_ERR(bitmap_bh)) {
3863 err = PTR_ERR(bitmap_bh);
3864 ext4_error(sb, "Error %d reading block bitmap for %u",
3865 err, group);
3866 return 0;
3867 }
3868
3869 err = ext4_mb_load_buddy(sb, group, &e4b);
3870 if (err) {
3871 ext4_error(sb, "Error loading buddy information for %u", group);
3872 put_bh(bitmap_bh);
3873 return 0;
3874 }
3875
3876 if (needed == 0)
3877 needed = EXT4_CLUSTERS_PER_GROUP(sb) + 1;
3878
3879 INIT_LIST_HEAD(&list);
3880 repeat:
3881 ext4_lock_group(sb, group);
3882 list_for_each_entry_safe(pa, tmp,
3883 &grp->bb_prealloc_list, pa_group_list) {
3884 spin_lock(&pa->pa_lock);
3885 if (atomic_read(&pa->pa_count)) {
3886 spin_unlock(&pa->pa_lock);
3887 busy = 1;
3888 continue;
3889 }
3890 if (pa->pa_deleted) {
3891 spin_unlock(&pa->pa_lock);
3892 continue;
3893 }
3894
3895 /* seems this one can be freed ... */
3896 pa->pa_deleted = 1;
3897
3898 /* we can trust pa_free ... */
3899 free += pa->pa_free;
3900
3901 spin_unlock(&pa->pa_lock);
3902
3903 list_del(&pa->pa_group_list);
3904 list_add(&pa->u.pa_tmp_list, &list);
3905 }
3906
3907 /* if we still need more blocks and some PAs were used, try again */
3908 if (free < needed && busy) {
3909 busy = 0;
3910 ext4_unlock_group(sb, group);
3911 cond_resched();
3912 goto repeat;
3913 }
3914
3915 /* found anything to free? */
3916 if (list_empty(&list)) {
3917 BUG_ON(free != 0);
3918 goto out;
3919 }
3920
3921 /* now free all selected PAs */
3922 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
3923
3924 /* remove from object (inode or locality group) */
3925 spin_lock(pa->pa_obj_lock);
3926 list_del_rcu(&pa->pa_inode_list);
3927 spin_unlock(pa->pa_obj_lock);
3928
3929 if (pa->pa_type == MB_GROUP_PA)
3930 ext4_mb_release_group_pa(&e4b, pa);
3931 else
3932 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
3933
3934 list_del(&pa->u.pa_tmp_list);
3935 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3936 }
3937
3938 out:
3939 ext4_unlock_group(sb, group);
3940 ext4_mb_unload_buddy(&e4b);
3941 put_bh(bitmap_bh);
3942 return free;
3943 }
3944
3945 /*
3946 * releases all non-used preallocated blocks for given inode
3947 *
3948 * It's important to discard preallocations under i_data_sem
3949 * We don't want another block to be served from the prealloc
3950 * space when we are discarding the inode prealloc space.
3951 *
3952 * FIXME!! Make sure it is valid at all the call sites
3953 */
3954 void ext4_discard_preallocations(struct inode *inode)
3955 {
3956 struct ext4_inode_info *ei = EXT4_I(inode);
3957 struct super_block *sb = inode->i_sb;
3958 struct buffer_head *bitmap_bh = NULL;
3959 struct ext4_prealloc_space *pa, *tmp;
3960 ext4_group_t group = 0;
3961 struct list_head list;
3962 struct ext4_buddy e4b;
3963 int err;
3964
3965 if (!S_ISREG(inode->i_mode)) {
3966 /*BUG_ON(!list_empty(&ei->i_prealloc_list));*/
3967 return;
3968 }
3969
3970 mb_debug(1, "discard preallocation for inode %lu\n", inode->i_ino);
3971 trace_ext4_discard_preallocations(inode);
3972
3973 INIT_LIST_HEAD(&list);
3974
3975 repeat:
3976 /* first, collect all pa's in the inode */
3977 spin_lock(&ei->i_prealloc_lock);
3978 while (!list_empty(&ei->i_prealloc_list)) {
3979 pa = list_entry(ei->i_prealloc_list.next,
3980 struct ext4_prealloc_space, pa_inode_list);
3981 BUG_ON(pa->pa_obj_lock != &ei->i_prealloc_lock);
3982 spin_lock(&pa->pa_lock);
3983 if (atomic_read(&pa->pa_count)) {
3984 /* this shouldn't happen often - nobody should
3985 * use preallocation while we're discarding it */
3986 spin_unlock(&pa->pa_lock);
3987 spin_unlock(&ei->i_prealloc_lock);
3988 ext4_msg(sb, KERN_ERR,
3989 "uh-oh! used pa while discarding");
3990 WARN_ON(1);
3991 schedule_timeout_uninterruptible(HZ);
3992 goto repeat;
3993
3994 }
3995 if (pa->pa_deleted == 0) {
3996 pa->pa_deleted = 1;
3997 spin_unlock(&pa->pa_lock);
3998 list_del_rcu(&pa->pa_inode_list);
3999 list_add(&pa->u.pa_tmp_list, &list);
4000 continue;
4001 }
4002
4003 /* someone is deleting pa right now */
4004 spin_unlock(&pa->pa_lock);
4005 spin_unlock(&ei->i_prealloc_lock);
4006
4007 /* we have to wait here because pa_deleted
4008 * doesn't mean pa is already unlinked from
4009 * the list. as we might be called from
4010 * ->clear_inode() the inode will get freed
4011 * and concurrent thread which is unlinking
4012 * pa from inode's list may access already
4013 * freed memory, bad-bad-bad */
4014
4015 /* XXX: if this happens too often, we can
4016 * add a flag to force wait only in case
4017 * of ->clear_inode(), but not in case of
4018 * regular truncate */
4019 schedule_timeout_uninterruptible(HZ);
4020 goto repeat;
4021 }
4022 spin_unlock(&ei->i_prealloc_lock);
4023
4024 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
4025 BUG_ON(pa->pa_type != MB_INODE_PA);
4026 group = ext4_get_group_number(sb, pa->pa_pstart);
4027
4028 err = ext4_mb_load_buddy(sb, group, &e4b);
4029 if (err) {
4030 ext4_error(sb, "Error loading buddy information for %u",
4031 group);
4032 continue;
4033 }
4034
4035 bitmap_bh = ext4_read_block_bitmap(sb, group);
4036 if (IS_ERR(bitmap_bh)) {
4037 err = PTR_ERR(bitmap_bh);
4038 ext4_error(sb, "Error %d reading block bitmap for %u",
4039 err, group);
4040 ext4_mb_unload_buddy(&e4b);
4041 continue;
4042 }
4043
4044 ext4_lock_group(sb, group);
4045 list_del(&pa->pa_group_list);
4046 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
4047 ext4_unlock_group(sb, group);
4048
4049 ext4_mb_unload_buddy(&e4b);
4050 put_bh(bitmap_bh);
4051
4052 list_del(&pa->u.pa_tmp_list);
4053 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4054 }
4055 }
4056
4057 #ifdef CONFIG_EXT4_DEBUG
4058 static void ext4_mb_show_ac(struct ext4_allocation_context *ac)
4059 {
4060 struct super_block *sb = ac->ac_sb;
4061 ext4_group_t ngroups, i;
4062
4063 if (!ext4_mballoc_debug ||
4064 (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED))
4065 return;
4066
4067 ext4_msg(ac->ac_sb, KERN_ERR, "Can't allocate:"
4068 " Allocation context details:");
4069 ext4_msg(ac->ac_sb, KERN_ERR, "status %d flags %d",
4070 ac->ac_status, ac->ac_flags);
4071 ext4_msg(ac->ac_sb, KERN_ERR, "orig %lu/%lu/%lu@%lu, "
4072 "goal %lu/%lu/%lu@%lu, "
4073 "best %lu/%lu/%lu@%lu cr %d",
4074 (unsigned long)ac->ac_o_ex.fe_group,
4075 (unsigned long)ac->ac_o_ex.fe_start,
4076 (unsigned long)ac->ac_o_ex.fe_len,
4077 (unsigned long)ac->ac_o_ex.fe_logical,
4078 (unsigned long)ac->ac_g_ex.fe_group,
4079 (unsigned long)ac->ac_g_ex.fe_start,
4080 (unsigned long)ac->ac_g_ex.fe_len,
4081 (unsigned long)ac->ac_g_ex.fe_logical,
4082 (unsigned long)ac->ac_b_ex.fe_group,
4083 (unsigned long)ac->ac_b_ex.fe_start,
4084 (unsigned long)ac->ac_b_ex.fe_len,
4085 (unsigned long)ac->ac_b_ex.fe_logical,
4086 (int)ac->ac_criteria);
4087 ext4_msg(ac->ac_sb, KERN_ERR, "%d found", ac->ac_found);
4088 ext4_msg(ac->ac_sb, KERN_ERR, "groups: ");
4089 ngroups = ext4_get_groups_count(sb);
4090 for (i = 0; i < ngroups; i++) {
4091 struct ext4_group_info *grp = ext4_get_group_info(sb, i);
4092 struct ext4_prealloc_space *pa;
4093 ext4_grpblk_t start;
4094 struct list_head *cur;
4095 ext4_lock_group(sb, i);
4096 list_for_each(cur, &grp->bb_prealloc_list) {
4097 pa = list_entry(cur, struct ext4_prealloc_space,
4098 pa_group_list);
4099 spin_lock(&pa->pa_lock);
4100 ext4_get_group_no_and_offset(sb, pa->pa_pstart,
4101 NULL, &start);
4102 spin_unlock(&pa->pa_lock);
4103 printk(KERN_ERR "PA:%u:%d:%u \n", i,
4104 start, pa->pa_len);
4105 }
4106 ext4_unlock_group(sb, i);
4107
4108 if (grp->bb_free == 0)
4109 continue;
4110 printk(KERN_ERR "%u: %d/%d \n",
4111 i, grp->bb_free, grp->bb_fragments);
4112 }
4113 printk(KERN_ERR "\n");
4114 }
4115 #else
4116 static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac)
4117 {
4118 return;
4119 }
4120 #endif
4121
4122 /*
4123 * We use locality group preallocation for small size file. The size of the
4124 * file is determined by the current size or the resulting size after
4125 * allocation which ever is larger
4126 *
4127 * One can tune this size via /sys/fs/ext4/<partition>/mb_stream_req
4128 */
4129 static void ext4_mb_group_or_file(struct ext4_allocation_context *ac)
4130 {
4131 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4132 int bsbits = ac->ac_sb->s_blocksize_bits;
4133 loff_t size, isize;
4134
4135 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
4136 return;
4137
4138 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
4139 return;
4140
4141 size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len);
4142 isize = (i_size_read(ac->ac_inode) + ac->ac_sb->s_blocksize - 1)
4143 >> bsbits;
4144
4145 if ((size == isize) &&
4146 !ext4_fs_is_busy(sbi) &&
4147 (atomic_read(&ac->ac_inode->i_writecount) == 0)) {
4148 ac->ac_flags |= EXT4_MB_HINT_NOPREALLOC;
4149 return;
4150 }
4151
4152 if (sbi->s_mb_group_prealloc <= 0) {
4153 ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
4154 return;
4155 }
4156
4157 /* don't use group allocation for large files */
4158 size = max(size, isize);
4159 if (size > sbi->s_mb_stream_request) {
4160 ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
4161 return;
4162 }
4163
4164 BUG_ON(ac->ac_lg != NULL);
4165 /*
4166 * locality group prealloc space are per cpu. The reason for having
4167 * per cpu locality group is to reduce the contention between block
4168 * request from multiple CPUs.
4169 */
4170 ac->ac_lg = raw_cpu_ptr(sbi->s_locality_groups);
4171
4172 /* we're going to use group allocation */
4173 ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC;
4174
4175 /* serialize all allocations in the group */
4176 mutex_lock(&ac->ac_lg->lg_mutex);
4177 }
4178
4179 static noinline_for_stack int
4180 ext4_mb_initialize_context(struct ext4_allocation_context *ac,
4181 struct ext4_allocation_request *ar)
4182 {
4183 struct super_block *sb = ar->inode->i_sb;
4184 struct ext4_sb_info *sbi = EXT4_SB(sb);
4185 struct ext4_super_block *es = sbi->s_es;
4186 ext4_group_t group;
4187 unsigned int len;
4188 ext4_fsblk_t goal;
4189 ext4_grpblk_t block;
4190
4191 /* we can't allocate > group size */
4192 len = ar->len;
4193
4194 /* just a dirty hack to filter too big requests */
4195 if (len >= EXT4_CLUSTERS_PER_GROUP(sb))
4196 len = EXT4_CLUSTERS_PER_GROUP(sb);
4197
4198 /* start searching from the goal */
4199 goal = ar->goal;
4200 if (goal < le32_to_cpu(es->s_first_data_block) ||
4201 goal >= ext4_blocks_count(es))
4202 goal = le32_to_cpu(es->s_first_data_block);
4203 ext4_get_group_no_and_offset(sb, goal, &group, &block);
4204
4205 /* set up allocation goals */
4206 ac->ac_b_ex.fe_logical = EXT4_LBLK_CMASK(sbi, ar->logical);
4207 ac->ac_status = AC_STATUS_CONTINUE;
4208 ac->ac_sb = sb;
4209 ac->ac_inode = ar->inode;
4210 ac->ac_o_ex.fe_logical = ac->ac_b_ex.fe_logical;
4211 ac->ac_o_ex.fe_group = group;
4212 ac->ac_o_ex.fe_start = block;
4213 ac->ac_o_ex.fe_len = len;
4214 ac->ac_g_ex = ac->ac_o_ex;
4215 ac->ac_flags = ar->flags;
4216
4217 /* we have to define context: we'll we work with a file or
4218 * locality group. this is a policy, actually */
4219 ext4_mb_group_or_file(ac);
4220
4221 mb_debug(1, "init ac: %u blocks @ %u, goal %u, flags %x, 2^%d, "
4222 "left: %u/%u, right %u/%u to %swritable\n",
4223 (unsigned) ar->len, (unsigned) ar->logical,
4224 (unsigned) ar->goal, ac->ac_flags, ac->ac_2order,
4225 (unsigned) ar->lleft, (unsigned) ar->pleft,
4226 (unsigned) ar->lright, (unsigned) ar->pright,
4227 atomic_read(&ar->inode->i_writecount) ? "" : "non-");
4228 return 0;
4229
4230 }
4231
4232 static noinline_for_stack void
4233 ext4_mb_discard_lg_preallocations(struct super_block *sb,
4234 struct ext4_locality_group *lg,
4235 int order, int total_entries)
4236 {
4237 ext4_group_t group = 0;
4238 struct ext4_buddy e4b;
4239 struct list_head discard_list;
4240 struct ext4_prealloc_space *pa, *tmp;
4241
4242 mb_debug(1, "discard locality group preallocation\n");
4243
4244 INIT_LIST_HEAD(&discard_list);
4245
4246 spin_lock(&lg->lg_prealloc_lock);
4247 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[order],
4248 pa_inode_list) {
4249 spin_lock(&pa->pa_lock);
4250 if (atomic_read(&pa->pa_count)) {
4251 /*
4252 * This is the pa that we just used
4253 * for block allocation. So don't
4254 * free that
4255 */
4256 spin_unlock(&pa->pa_lock);
4257 continue;
4258 }
4259 if (pa->pa_deleted) {
4260 spin_unlock(&pa->pa_lock);
4261 continue;
4262 }
4263 /* only lg prealloc space */
4264 BUG_ON(pa->pa_type != MB_GROUP_PA);
4265
4266 /* seems this one can be freed ... */
4267 pa->pa_deleted = 1;
4268 spin_unlock(&pa->pa_lock);
4269
4270 list_del_rcu(&pa->pa_inode_list);
4271 list_add(&pa->u.pa_tmp_list, &discard_list);
4272
4273 total_entries--;
4274 if (total_entries <= 5) {
4275 /*
4276 * we want to keep only 5 entries
4277 * allowing it to grow to 8. This
4278 * mak sure we don't call discard
4279 * soon for this list.
4280 */
4281 break;
4282 }
4283 }
4284 spin_unlock(&lg->lg_prealloc_lock);
4285
4286 list_for_each_entry_safe(pa, tmp, &discard_list, u.pa_tmp_list) {
4287
4288 group = ext4_get_group_number(sb, pa->pa_pstart);
4289 if (ext4_mb_load_buddy(sb, group, &e4b)) {
4290 ext4_error(sb, "Error loading buddy information for %u",
4291 group);
4292 continue;
4293 }
4294 ext4_lock_group(sb, group);
4295 list_del(&pa->pa_group_list);
4296 ext4_mb_release_group_pa(&e4b, pa);
4297 ext4_unlock_group(sb, group);
4298
4299 ext4_mb_unload_buddy(&e4b);
4300 list_del(&pa->u.pa_tmp_list);
4301 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4302 }
4303 }
4304
4305 /*
4306 * We have incremented pa_count. So it cannot be freed at this
4307 * point. Also we hold lg_mutex. So no parallel allocation is
4308 * possible from this lg. That means pa_free cannot be updated.
4309 *
4310 * A parallel ext4_mb_discard_group_preallocations is possible.
4311 * which can cause the lg_prealloc_list to be updated.
4312 */
4313
4314 static void ext4_mb_add_n_trim(struct ext4_allocation_context *ac)
4315 {
4316 int order, added = 0, lg_prealloc_count = 1;
4317 struct super_block *sb = ac->ac_sb;
4318 struct ext4_locality_group *lg = ac->ac_lg;
4319 struct ext4_prealloc_space *tmp_pa, *pa = ac->ac_pa;
4320
4321 order = fls(pa->pa_free) - 1;
4322 if (order > PREALLOC_TB_SIZE - 1)
4323 /* The max size of hash table is PREALLOC_TB_SIZE */
4324 order = PREALLOC_TB_SIZE - 1;
4325 /* Add the prealloc space to lg */
4326 spin_lock(&lg->lg_prealloc_lock);
4327 list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[order],
4328 pa_inode_list) {
4329 spin_lock(&tmp_pa->pa_lock);
4330 if (tmp_pa->pa_deleted) {
4331 spin_unlock(&tmp_pa->pa_lock);
4332 continue;
4333 }
4334 if (!added && pa->pa_free < tmp_pa->pa_free) {
4335 /* Add to the tail of the previous entry */
4336 list_add_tail_rcu(&pa->pa_inode_list,
4337 &tmp_pa->pa_inode_list);
4338 added = 1;
4339 /*
4340 * we want to count the total
4341 * number of entries in the list
4342 */
4343 }
4344 spin_unlock(&tmp_pa->pa_lock);
4345 lg_prealloc_count++;
4346 }
4347 if (!added)
4348 list_add_tail_rcu(&pa->pa_inode_list,
4349 &lg->lg_prealloc_list[order]);
4350 spin_unlock(&lg->lg_prealloc_lock);
4351
4352 /* Now trim the list to be not more than 8 elements */
4353 if (lg_prealloc_count > 8) {
4354 ext4_mb_discard_lg_preallocations(sb, lg,
4355 order, lg_prealloc_count);
4356 return;
4357 }
4358 return ;
4359 }
4360
4361 /*
4362 * release all resource we used in allocation
4363 */
4364 static int ext4_mb_release_context(struct ext4_allocation_context *ac)
4365 {
4366 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4367 struct ext4_prealloc_space *pa = ac->ac_pa;
4368 if (pa) {
4369 if (pa->pa_type == MB_GROUP_PA) {
4370 /* see comment in ext4_mb_use_group_pa() */
4371 spin_lock(&pa->pa_lock);
4372 pa->pa_pstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
4373 pa->pa_lstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
4374 pa->pa_free -= ac->ac_b_ex.fe_len;
4375 pa->pa_len -= ac->ac_b_ex.fe_len;
4376 spin_unlock(&pa->pa_lock);
4377 }
4378 }
4379 if (pa) {
4380 /*
4381 * We want to add the pa to the right bucket.
4382 * Remove it from the list and while adding
4383 * make sure the list to which we are adding
4384 * doesn't grow big.
4385 */
4386 if ((pa->pa_type == MB_GROUP_PA) && likely(pa->pa_free)) {
4387 spin_lock(pa->pa_obj_lock);
4388 list_del_rcu(&pa->pa_inode_list);
4389 spin_unlock(pa->pa_obj_lock);
4390 ext4_mb_add_n_trim(ac);
4391 }
4392 ext4_mb_put_pa(ac, ac->ac_sb, pa);
4393 }
4394 if (ac->ac_bitmap_page)
4395 put_page(ac->ac_bitmap_page);
4396 if (ac->ac_buddy_page)
4397 put_page(ac->ac_buddy_page);
4398 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
4399 mutex_unlock(&ac->ac_lg->lg_mutex);
4400 ext4_mb_collect_stats(ac);
4401 return 0;
4402 }
4403
4404 static int ext4_mb_discard_preallocations(struct super_block *sb, int needed)
4405 {
4406 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
4407 int ret;
4408 int freed = 0;
4409
4410 trace_ext4_mb_discard_preallocations(sb, needed);
4411 for (i = 0; i < ngroups && needed > 0; i++) {
4412 ret = ext4_mb_discard_group_preallocations(sb, i, needed);
4413 freed += ret;
4414 needed -= ret;
4415 }
4416
4417 return freed;
4418 }
4419
4420 /*
4421 * Main entry point into mballoc to allocate blocks
4422 * it tries to use preallocation first, then falls back
4423 * to usual allocation
4424 */
4425 ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle,
4426 struct ext4_allocation_request *ar, int *errp)
4427 {
4428 int freed;
4429 struct ext4_allocation_context *ac = NULL;
4430 struct ext4_sb_info *sbi;
4431 struct super_block *sb;
4432 ext4_fsblk_t block = 0;
4433 unsigned int inquota = 0;
4434 unsigned int reserv_clstrs = 0;
4435
4436 might_sleep();
4437 sb = ar->inode->i_sb;
4438 sbi = EXT4_SB(sb);
4439
4440 trace_ext4_request_blocks(ar);
4441
4442 /* Allow to use superuser reservation for quota file */
4443 if (IS_NOQUOTA(ar->inode))
4444 ar->flags |= EXT4_MB_USE_ROOT_BLOCKS;
4445
4446 if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0) {
4447 /* Without delayed allocation we need to verify
4448 * there is enough free blocks to do block allocation
4449 * and verify allocation doesn't exceed the quota limits.
4450 */
4451 while (ar->len &&
4452 ext4_claim_free_clusters(sbi, ar->len, ar->flags)) {
4453
4454 /* let others to free the space */
4455 cond_resched();
4456 ar->len = ar->len >> 1;
4457 }
4458 if (!ar->len) {
4459 *errp = -ENOSPC;
4460 return 0;
4461 }
4462 reserv_clstrs = ar->len;
4463 if (ar->flags & EXT4_MB_USE_ROOT_BLOCKS) {
4464 dquot_alloc_block_nofail(ar->inode,
4465 EXT4_C2B(sbi, ar->len));
4466 } else {
4467 while (ar->len &&
4468 dquot_alloc_block(ar->inode,
4469 EXT4_C2B(sbi, ar->len))) {
4470
4471 ar->flags |= EXT4_MB_HINT_NOPREALLOC;
4472 ar->len--;
4473 }
4474 }
4475 inquota = ar->len;
4476 if (ar->len == 0) {
4477 *errp = -EDQUOT;
4478 goto out;
4479 }
4480 }
4481
4482 ac = kmem_cache_zalloc(ext4_ac_cachep, GFP_NOFS);
4483 if (!ac) {
4484 ar->len = 0;
4485 *errp = -ENOMEM;
4486 goto out;
4487 }
4488
4489 *errp = ext4_mb_initialize_context(ac, ar);
4490 if (*errp) {
4491 ar->len = 0;
4492 goto out;
4493 }
4494
4495 ac->ac_op = EXT4_MB_HISTORY_PREALLOC;
4496 if (!ext4_mb_use_preallocated(ac)) {
4497 ac->ac_op = EXT4_MB_HISTORY_ALLOC;
4498 ext4_mb_normalize_request(ac, ar);
4499 repeat:
4500 /* allocate space in core */
4501 *errp = ext4_mb_regular_allocator(ac);
4502 if (*errp)
4503 goto discard_and_exit;
4504
4505 /* as we've just preallocated more space than
4506 * user requested originally, we store allocated
4507 * space in a special descriptor */
4508 if (ac->ac_status == AC_STATUS_FOUND &&
4509 ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len)
4510 *errp = ext4_mb_new_preallocation(ac);
4511 if (*errp) {
4512 discard_and_exit:
4513 ext4_discard_allocated_blocks(ac);
4514 goto errout;
4515 }
4516 }
4517 if (likely(ac->ac_status == AC_STATUS_FOUND)) {
4518 *errp = ext4_mb_mark_diskspace_used(ac, handle, reserv_clstrs);
4519 if (*errp) {
4520 ext4_discard_allocated_blocks(ac);
4521 goto errout;
4522 } else {
4523 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
4524 ar->len = ac->ac_b_ex.fe_len;
4525 }
4526 } else {
4527 freed = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len);
4528 if (freed)
4529 goto repeat;
4530 *errp = -ENOSPC;
4531 }
4532
4533 errout:
4534 if (*errp) {
4535 ac->ac_b_ex.fe_len = 0;
4536 ar->len = 0;
4537 ext4_mb_show_ac(ac);
4538 }
4539 ext4_mb_release_context(ac);
4540 out:
4541 if (ac)
4542 kmem_cache_free(ext4_ac_cachep, ac);
4543 if (inquota && ar->len < inquota)
4544 dquot_free_block(ar->inode, EXT4_C2B(sbi, inquota - ar->len));
4545 if (!ar->len) {
4546 if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0)
4547 /* release all the reserved blocks if non delalloc */
4548 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
4549 reserv_clstrs);
4550 }
4551
4552 trace_ext4_allocate_blocks(ar, (unsigned long long)block);
4553
4554 return block;
4555 }
4556
4557 /*
4558 * We can merge two free data extents only if the physical blocks
4559 * are contiguous, AND the extents were freed by the same transaction,
4560 * AND the blocks are associated with the same group.
4561 */
4562 static int can_merge(struct ext4_free_data *entry1,
4563 struct ext4_free_data *entry2)
4564 {
4565 if ((entry1->efd_tid == entry2->efd_tid) &&
4566 (entry1->efd_group == entry2->efd_group) &&
4567 ((entry1->efd_start_cluster + entry1->efd_count) == entry2->efd_start_cluster))
4568 return 1;
4569 return 0;
4570 }
4571
4572 static noinline_for_stack int
4573 ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b,
4574 struct ext4_free_data *new_entry)
4575 {
4576 ext4_group_t group = e4b->bd_group;
4577 ext4_grpblk_t cluster;
4578 ext4_grpblk_t clusters = new_entry->efd_count;
4579 struct ext4_free_data *entry;
4580 struct ext4_group_info *db = e4b->bd_info;
4581 struct super_block *sb = e4b->bd_sb;
4582 struct ext4_sb_info *sbi = EXT4_SB(sb);
4583 struct rb_node **n = &db->bb_free_root.rb_node, *node;
4584 struct rb_node *parent = NULL, *new_node;
4585
4586 BUG_ON(!ext4_handle_valid(handle));
4587 BUG_ON(e4b->bd_bitmap_page == NULL);
4588 BUG_ON(e4b->bd_buddy_page == NULL);
4589
4590 new_node = &new_entry->efd_node;
4591 cluster = new_entry->efd_start_cluster;
4592
4593 if (!*n) {
4594 /* first free block exent. We need to
4595 protect buddy cache from being freed,
4596 * otherwise we'll refresh it from
4597 * on-disk bitmap and lose not-yet-available
4598 * blocks */
4599 get_page(e4b->bd_buddy_page);
4600 get_page(e4b->bd_bitmap_page);
4601 }
4602 while (*n) {
4603 parent = *n;
4604 entry = rb_entry(parent, struct ext4_free_data, efd_node);
4605 if (cluster < entry->efd_start_cluster)
4606 n = &(*n)->rb_left;
4607 else if (cluster >= (entry->efd_start_cluster + entry->efd_count))
4608 n = &(*n)->rb_right;
4609 else {
4610 ext4_grp_locked_error(sb, group, 0,
4611 ext4_group_first_block_no(sb, group) +
4612 EXT4_C2B(sbi, cluster),
4613 "Block already on to-be-freed list");
4614 return 0;
4615 }
4616 }
4617
4618 rb_link_node(new_node, parent, n);
4619 rb_insert_color(new_node, &db->bb_free_root);
4620
4621 /* Now try to see the extent can be merged to left and right */
4622 node = rb_prev(new_node);
4623 if (node) {
4624 entry = rb_entry(node, struct ext4_free_data, efd_node);
4625 if (can_merge(entry, new_entry) &&
4626 ext4_journal_callback_try_del(handle, &entry->efd_jce)) {
4627 new_entry->efd_start_cluster = entry->efd_start_cluster;
4628 new_entry->efd_count += entry->efd_count;
4629 rb_erase(node, &(db->bb_free_root));
4630 kmem_cache_free(ext4_free_data_cachep, entry);
4631 }
4632 }
4633
4634 node = rb_next(new_node);
4635 if (node) {
4636 entry = rb_entry(node, struct ext4_free_data, efd_node);
4637 if (can_merge(new_entry, entry) &&
4638 ext4_journal_callback_try_del(handle, &entry->efd_jce)) {
4639 new_entry->efd_count += entry->efd_count;
4640 rb_erase(node, &(db->bb_free_root));
4641 kmem_cache_free(ext4_free_data_cachep, entry);
4642 }
4643 }
4644 /* Add the extent to transaction's private list */
4645 new_entry->efd_jce.jce_func = ext4_free_data_callback;
4646 spin_lock(&sbi->s_md_lock);
4647 _ext4_journal_callback_add(handle, &new_entry->efd_jce);
4648 sbi->s_mb_free_pending += clusters;
4649 spin_unlock(&sbi->s_md_lock);
4650 return 0;
4651 }
4652
4653 /**
4654 * ext4_free_blocks() -- Free given blocks and update quota
4655 * @handle: handle for this transaction
4656 * @inode: inode
4657 * @block: start physical block to free
4658 * @count: number of blocks to count
4659 * @flags: flags used by ext4_free_blocks
4660 */
4661 void ext4_free_blocks(handle_t *handle, struct inode *inode,
4662 struct buffer_head *bh, ext4_fsblk_t block,
4663 unsigned long count, int flags)
4664 {
4665 struct buffer_head *bitmap_bh = NULL;
4666 struct super_block *sb = inode->i_sb;
4667 struct ext4_group_desc *gdp;
4668 unsigned int overflow;
4669 ext4_grpblk_t bit;
4670 struct buffer_head *gd_bh;
4671 ext4_group_t block_group;
4672 struct ext4_sb_info *sbi;
4673 struct ext4_buddy e4b;
4674 unsigned int count_clusters;
4675 int err = 0;
4676 int ret;
4677
4678 might_sleep();
4679 if (bh) {
4680 if (block)
4681 BUG_ON(block != bh->b_blocknr);
4682 else
4683 block = bh->b_blocknr;
4684 }
4685
4686 sbi = EXT4_SB(sb);
4687 if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) &&
4688 !ext4_data_block_valid(sbi, block, count)) {
4689 ext4_error(sb, "Freeing blocks not in datazone - "
4690 "block = %llu, count = %lu", block, count);
4691 goto error_return;
4692 }
4693
4694 ext4_debug("freeing block %llu\n", block);
4695 trace_ext4_free_blocks(inode, block, count, flags);
4696
4697 if (bh && (flags & EXT4_FREE_BLOCKS_FORGET)) {
4698 BUG_ON(count > 1);
4699
4700 ext4_forget(handle, flags & EXT4_FREE_BLOCKS_METADATA,
4701 inode, bh, block);
4702 }
4703
4704 /*
4705 * If the extent to be freed does not begin on a cluster
4706 * boundary, we need to deal with partial clusters at the
4707 * beginning and end of the extent. Normally we will free
4708 * blocks at the beginning or the end unless we are explicitly
4709 * requested to avoid doing so.
4710 */
4711 overflow = EXT4_PBLK_COFF(sbi, block);
4712 if (overflow) {
4713 if (flags & EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER) {
4714 overflow = sbi->s_cluster_ratio - overflow;
4715 block += overflow;
4716 if (count > overflow)
4717 count -= overflow;
4718 else
4719 return;
4720 } else {
4721 block -= overflow;
4722 count += overflow;
4723 }
4724 }
4725 overflow = EXT4_LBLK_COFF(sbi, count);
4726 if (overflow) {
4727 if (flags & EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER) {
4728 if (count > overflow)
4729 count -= overflow;
4730 else
4731 return;
4732 } else
4733 count += sbi->s_cluster_ratio - overflow;
4734 }
4735
4736 if (!bh && (flags & EXT4_FREE_BLOCKS_FORGET)) {
4737 int i;
4738 int is_metadata = flags & EXT4_FREE_BLOCKS_METADATA;
4739
4740 for (i = 0; i < count; i++) {
4741 cond_resched();
4742 if (is_metadata)
4743 bh = sb_find_get_block(inode->i_sb, block + i);
4744 ext4_forget(handle, is_metadata, inode, bh, block + i);
4745 }
4746 }
4747
4748 do_more:
4749 overflow = 0;
4750 ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
4751
4752 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(
4753 ext4_get_group_info(sb, block_group))))
4754 return;
4755
4756 /*
4757 * Check to see if we are freeing blocks across a group
4758 * boundary.
4759 */
4760 if (EXT4_C2B(sbi, bit) + count > EXT4_BLOCKS_PER_GROUP(sb)) {
4761 overflow = EXT4_C2B(sbi, bit) + count -
4762 EXT4_BLOCKS_PER_GROUP(sb);
4763 count -= overflow;
4764 }
4765 count_clusters = EXT4_NUM_B2C(sbi, count);
4766 bitmap_bh = ext4_read_block_bitmap(sb, block_group);
4767 if (IS_ERR(bitmap_bh)) {
4768 err = PTR_ERR(bitmap_bh);
4769 bitmap_bh = NULL;
4770 goto error_return;
4771 }
4772 gdp = ext4_get_group_desc(sb, block_group, &gd_bh);
4773 if (!gdp) {
4774 err = -EIO;
4775 goto error_return;
4776 }
4777
4778 if (in_range(ext4_block_bitmap(sb, gdp), block, count) ||
4779 in_range(ext4_inode_bitmap(sb, gdp), block, count) ||
4780 in_range(block, ext4_inode_table(sb, gdp),
4781 EXT4_SB(sb)->s_itb_per_group) ||
4782 in_range(block + count - 1, ext4_inode_table(sb, gdp),
4783 EXT4_SB(sb)->s_itb_per_group)) {
4784
4785 ext4_error(sb, "Freeing blocks in system zone - "
4786 "Block = %llu, count = %lu", block, count);
4787 /* err = 0. ext4_std_error should be a no op */
4788 goto error_return;
4789 }
4790
4791 BUFFER_TRACE(bitmap_bh, "getting write access");
4792 err = ext4_journal_get_write_access(handle, bitmap_bh);
4793 if (err)
4794 goto error_return;
4795
4796 /*
4797 * We are about to modify some metadata. Call the journal APIs
4798 * to unshare ->b_data if a currently-committing transaction is
4799 * using it
4800 */
4801 BUFFER_TRACE(gd_bh, "get_write_access");
4802 err = ext4_journal_get_write_access(handle, gd_bh);
4803 if (err)
4804 goto error_return;
4805 #ifdef AGGRESSIVE_CHECK
4806 {
4807 int i;
4808 for (i = 0; i < count_clusters; i++)
4809 BUG_ON(!mb_test_bit(bit + i, bitmap_bh->b_data));
4810 }
4811 #endif
4812 trace_ext4_mballoc_free(sb, inode, block_group, bit, count_clusters);
4813
4814 /* __GFP_NOFAIL: retry infinitely, ignore TIF_MEMDIE and memcg limit. */
4815 err = ext4_mb_load_buddy_gfp(sb, block_group, &e4b,
4816 GFP_NOFS|__GFP_NOFAIL);
4817 if (err)
4818 goto error_return;
4819
4820 /*
4821 * We need to make sure we don't reuse the freed block until after the
4822 * transaction is committed. We make an exception if the inode is to be
4823 * written in writeback mode since writeback mode has weak data
4824 * consistency guarantees.
4825 */
4826 if (ext4_handle_valid(handle) &&
4827 ((flags & EXT4_FREE_BLOCKS_METADATA) ||
4828 !ext4_should_writeback_data(inode))) {
4829 struct ext4_free_data *new_entry;
4830 /*
4831 * We use __GFP_NOFAIL because ext4_free_blocks() is not allowed
4832 * to fail.
4833 */
4834 new_entry = kmem_cache_alloc(ext4_free_data_cachep,
4835 GFP_NOFS|__GFP_NOFAIL);
4836 new_entry->efd_start_cluster = bit;
4837 new_entry->efd_group = block_group;
4838 new_entry->efd_count = count_clusters;
4839 new_entry->efd_tid = handle->h_transaction->t_tid;
4840
4841 ext4_lock_group(sb, block_group);
4842 mb_clear_bits(bitmap_bh->b_data, bit, count_clusters);
4843 ext4_mb_free_metadata(handle, &e4b, new_entry);
4844 } else {
4845 /* need to update group_info->bb_free and bitmap
4846 * with group lock held. generate_buddy look at
4847 * them with group lock_held
4848 */
4849 if (test_opt(sb, DISCARD)) {
4850 err = ext4_issue_discard(sb, block_group, bit, count);
4851 if (err && err != -EOPNOTSUPP)
4852 ext4_msg(sb, KERN_WARNING, "discard request in"
4853 " group:%d block:%d count:%lu failed"
4854 " with %d", block_group, bit, count,
4855 err);
4856 } else
4857 EXT4_MB_GRP_CLEAR_TRIMMED(e4b.bd_info);
4858
4859 ext4_lock_group(sb, block_group);
4860 mb_clear_bits(bitmap_bh->b_data, bit, count_clusters);
4861 mb_free_blocks(inode, &e4b, bit, count_clusters);
4862 }
4863
4864 ret = ext4_free_group_clusters(sb, gdp) + count_clusters;
4865 ext4_free_group_clusters_set(sb, gdp, ret);
4866 ext4_block_bitmap_csum_set(sb, block_group, gdp, bitmap_bh);
4867 ext4_group_desc_csum_set(sb, block_group, gdp);
4868 ext4_unlock_group(sb, block_group);
4869
4870 if (sbi->s_log_groups_per_flex) {
4871 ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
4872 atomic64_add(count_clusters,
4873 &sbi->s_flex_groups[flex_group].free_clusters);
4874 }
4875
4876 if (!(flags & EXT4_FREE_BLOCKS_NO_QUOT_UPDATE))
4877 dquot_free_block(inode, EXT4_C2B(sbi, count_clusters));
4878 percpu_counter_add(&sbi->s_freeclusters_counter, count_clusters);
4879
4880 ext4_mb_unload_buddy(&e4b);
4881
4882 /* We dirtied the bitmap block */
4883 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
4884 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
4885
4886 /* And the group descriptor block */
4887 BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
4888 ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
4889 if (!err)
4890 err = ret;
4891
4892 if (overflow && !err) {
4893 block += count;
4894 count = overflow;
4895 put_bh(bitmap_bh);
4896 goto do_more;
4897 }
4898 error_return:
4899 brelse(bitmap_bh);
4900 ext4_std_error(sb, err);
4901 return;
4902 }
4903
4904 /**
4905 * ext4_group_add_blocks() -- Add given blocks to an existing group
4906 * @handle: handle to this transaction
4907 * @sb: super block
4908 * @block: start physical block to add to the block group
4909 * @count: number of blocks to free
4910 *
4911 * This marks the blocks as free in the bitmap and buddy.
4912 */
4913 int ext4_group_add_blocks(handle_t *handle, struct super_block *sb,
4914 ext4_fsblk_t block, unsigned long count)
4915 {
4916 struct buffer_head *bitmap_bh = NULL;
4917 struct buffer_head *gd_bh;
4918 ext4_group_t block_group;
4919 ext4_grpblk_t bit;
4920 unsigned int i;
4921 struct ext4_group_desc *desc;
4922 struct ext4_sb_info *sbi = EXT4_SB(sb);
4923 struct ext4_buddy e4b;
4924 int err = 0, ret, blk_free_count;
4925 ext4_grpblk_t blocks_freed;
4926
4927 ext4_debug("Adding block(s) %llu-%llu\n", block, block + count - 1);
4928
4929 if (count == 0)
4930 return 0;
4931
4932 ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
4933 /*
4934 * Check to see if we are freeing blocks across a group
4935 * boundary.
4936 */
4937 if (bit + count > EXT4_BLOCKS_PER_GROUP(sb)) {
4938 ext4_warning(sb, "too much blocks added to group %u",
4939 block_group);
4940 err = -EINVAL;
4941 goto error_return;
4942 }
4943
4944 bitmap_bh = ext4_read_block_bitmap(sb, block_group);
4945 if (IS_ERR(bitmap_bh)) {
4946 err = PTR_ERR(bitmap_bh);
4947 bitmap_bh = NULL;
4948 goto error_return;
4949 }
4950
4951 desc = ext4_get_group_desc(sb, block_group, &gd_bh);
4952 if (!desc) {
4953 err = -EIO;
4954 goto error_return;
4955 }
4956
4957 if (in_range(ext4_block_bitmap(sb, desc), block, count) ||
4958 in_range(ext4_inode_bitmap(sb, desc), block, count) ||
4959 in_range(block, ext4_inode_table(sb, desc), sbi->s_itb_per_group) ||
4960 in_range(block + count - 1, ext4_inode_table(sb, desc),
4961 sbi->s_itb_per_group)) {
4962 ext4_error(sb, "Adding blocks in system zones - "
4963 "Block = %llu, count = %lu",
4964 block, count);
4965 err = -EINVAL;
4966 goto error_return;
4967 }
4968
4969 BUFFER_TRACE(bitmap_bh, "getting write access");
4970 err = ext4_journal_get_write_access(handle, bitmap_bh);
4971 if (err)
4972 goto error_return;
4973
4974 /*
4975 * We are about to modify some metadata. Call the journal APIs
4976 * to unshare ->b_data if a currently-committing transaction is
4977 * using it
4978 */
4979 BUFFER_TRACE(gd_bh, "get_write_access");
4980 err = ext4_journal_get_write_access(handle, gd_bh);
4981 if (err)
4982 goto error_return;
4983
4984 for (i = 0, blocks_freed = 0; i < count; i++) {
4985 BUFFER_TRACE(bitmap_bh, "clear bit");
4986 if (!mb_test_bit(bit + i, bitmap_bh->b_data)) {
4987 ext4_error(sb, "bit already cleared for block %llu",
4988 (ext4_fsblk_t)(block + i));
4989 BUFFER_TRACE(bitmap_bh, "bit already cleared");
4990 } else {
4991 blocks_freed++;
4992 }
4993 }
4994
4995 err = ext4_mb_load_buddy(sb, block_group, &e4b);
4996 if (err)
4997 goto error_return;
4998
4999 /*
5000 * need to update group_info->bb_free and bitmap
5001 * with group lock held. generate_buddy look at
5002 * them with group lock_held
5003 */
5004 ext4_lock_group(sb, block_group);
5005 mb_clear_bits(bitmap_bh->b_data, bit, count);
5006 mb_free_blocks(NULL, &e4b, bit, count);
5007 blk_free_count = blocks_freed + ext4_free_group_clusters(sb, desc);
5008 ext4_free_group_clusters_set(sb, desc, blk_free_count);
5009 ext4_block_bitmap_csum_set(sb, block_group, desc, bitmap_bh);
5010 ext4_group_desc_csum_set(sb, block_group, desc);
5011 ext4_unlock_group(sb, block_group);
5012 percpu_counter_add(&sbi->s_freeclusters_counter,
5013 EXT4_NUM_B2C(sbi, blocks_freed));
5014
5015 if (sbi->s_log_groups_per_flex) {
5016 ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
5017 atomic64_add(EXT4_NUM_B2C(sbi, blocks_freed),
5018 &sbi->s_flex_groups[flex_group].free_clusters);
5019 }
5020
5021 ext4_mb_unload_buddy(&e4b);
5022
5023 /* We dirtied the bitmap block */
5024 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
5025 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
5026
5027 /* And the group descriptor block */
5028 BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
5029 ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
5030 if (!err)
5031 err = ret;
5032
5033 error_return:
5034 brelse(bitmap_bh);
5035 ext4_std_error(sb, err);
5036 return err;
5037 }
5038
5039 /**
5040 * ext4_trim_extent -- function to TRIM one single free extent in the group
5041 * @sb: super block for the file system
5042 * @start: starting block of the free extent in the alloc. group
5043 * @count: number of blocks to TRIM
5044 * @group: alloc. group we are working with
5045 * @e4b: ext4 buddy for the group
5046 *
5047 * Trim "count" blocks starting at "start" in the "group". To assure that no
5048 * one will allocate those blocks, mark it as used in buddy bitmap. This must
5049 * be called with under the group lock.
5050 */
5051 static int ext4_trim_extent(struct super_block *sb, int start, int count,
5052 ext4_group_t group, struct ext4_buddy *e4b)
5053 __releases(bitlock)
5054 __acquires(bitlock)
5055 {
5056 struct ext4_free_extent ex;
5057 int ret = 0;
5058
5059 trace_ext4_trim_extent(sb, group, start, count);
5060
5061 assert_spin_locked(ext4_group_lock_ptr(sb, group));
5062
5063 ex.fe_start = start;
5064 ex.fe_group = group;
5065 ex.fe_len = count;
5066
5067 /*
5068 * Mark blocks used, so no one can reuse them while
5069 * being trimmed.
5070 */
5071 mb_mark_used(e4b, &ex);
5072 ext4_unlock_group(sb, group);
5073 ret = ext4_issue_discard(sb, group, start, count);
5074 ext4_lock_group(sb, group);
5075 mb_free_blocks(NULL, e4b, start, ex.fe_len);
5076 return ret;
5077 }
5078
5079 /**
5080 * ext4_trim_all_free -- function to trim all free space in alloc. group
5081 * @sb: super block for file system
5082 * @group: group to be trimmed
5083 * @start: first group block to examine
5084 * @max: last group block to examine
5085 * @minblocks: minimum extent block count
5086 *
5087 * ext4_trim_all_free walks through group's buddy bitmap searching for free
5088 * extents. When the free block is found, ext4_trim_extent is called to TRIM
5089 * the extent.
5090 *
5091 *
5092 * ext4_trim_all_free walks through group's block bitmap searching for free
5093 * extents. When the free extent is found, mark it as used in group buddy
5094 * bitmap. Then issue a TRIM command on this extent and free the extent in
5095 * the group buddy bitmap. This is done until whole group is scanned.
5096 */
5097 static ext4_grpblk_t
5098 ext4_trim_all_free(struct super_block *sb, ext4_group_t group,
5099 ext4_grpblk_t start, ext4_grpblk_t max,
5100 ext4_grpblk_t minblocks)
5101 {
5102 void *bitmap;
5103 ext4_grpblk_t next, count = 0, free_count = 0;
5104 struct ext4_buddy e4b;
5105 int ret = 0;
5106
5107 trace_ext4_trim_all_free(sb, group, start, max);
5108
5109 ret = ext4_mb_load_buddy(sb, group, &e4b);
5110 if (ret) {
5111 ext4_error(sb, "Error in loading buddy "
5112 "information for %u", group);
5113 return ret;
5114 }
5115 bitmap = e4b.bd_bitmap;
5116
5117 ext4_lock_group(sb, group);
5118 if (EXT4_MB_GRP_WAS_TRIMMED(e4b.bd_info) &&
5119 minblocks >= atomic_read(&EXT4_SB(sb)->s_last_trim_minblks))
5120 goto out;
5121
5122 start = (e4b.bd_info->bb_first_free > start) ?
5123 e4b.bd_info->bb_first_free : start;
5124
5125 while (start <= max) {
5126 start = mb_find_next_zero_bit(bitmap, max + 1, start);
5127 if (start > max)
5128 break;
5129 next = mb_find_next_bit(bitmap, max + 1, start);
5130
5131 if ((next - start) >= minblocks) {
5132 ret = ext4_trim_extent(sb, start,
5133 next - start, group, &e4b);
5134 if (ret && ret != -EOPNOTSUPP)
5135 break;
5136 ret = 0;
5137 count += next - start;
5138 }
5139 free_count += next - start;
5140 start = next + 1;
5141
5142 if (fatal_signal_pending(current)) {
5143 count = -ERESTARTSYS;
5144 break;
5145 }
5146
5147 if (need_resched()) {
5148 ext4_unlock_group(sb, group);
5149 cond_resched();
5150 ext4_lock_group(sb, group);
5151 }
5152
5153 if ((e4b.bd_info->bb_free - free_count) < minblocks)
5154 break;
5155 }
5156
5157 if (!ret) {
5158 ret = count;
5159 EXT4_MB_GRP_SET_TRIMMED(e4b.bd_info);
5160 }
5161 out:
5162 ext4_unlock_group(sb, group);
5163 ext4_mb_unload_buddy(&e4b);
5164
5165 ext4_debug("trimmed %d blocks in the group %d\n",
5166 count, group);
5167
5168 return ret;
5169 }
5170
5171 /**
5172 * ext4_trim_fs() -- trim ioctl handle function
5173 * @sb: superblock for filesystem
5174 * @range: fstrim_range structure
5175 *
5176 * start: First Byte to trim
5177 * len: number of Bytes to trim from start
5178 * minlen: minimum extent length in Bytes
5179 * ext4_trim_fs goes through all allocation groups containing Bytes from
5180 * start to start+len. For each such a group ext4_trim_all_free function
5181 * is invoked to trim all free space.
5182 */
5183 int ext4_trim_fs(struct super_block *sb, struct fstrim_range *range)
5184 {
5185 struct ext4_group_info *grp;
5186 ext4_group_t group, first_group, last_group;
5187 ext4_grpblk_t cnt = 0, first_cluster, last_cluster;
5188 uint64_t start, end, minlen, trimmed = 0;
5189 ext4_fsblk_t first_data_blk =
5190 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block);
5191 ext4_fsblk_t max_blks = ext4_blocks_count(EXT4_SB(sb)->s_es);
5192 int ret = 0;
5193
5194 start = range->start >> sb->s_blocksize_bits;
5195 end = start + (range->len >> sb->s_blocksize_bits) - 1;
5196 minlen = EXT4_NUM_B2C(EXT4_SB(sb),
5197 range->minlen >> sb->s_blocksize_bits);
5198
5199 if (minlen > EXT4_CLUSTERS_PER_GROUP(sb) ||
5200 start >= max_blks ||
5201 range->len < sb->s_blocksize)
5202 return -EINVAL;
5203 if (end >= max_blks)
5204 end = max_blks - 1;
5205 if (end <= first_data_blk)
5206 goto out;
5207 if (start < first_data_blk)
5208 start = first_data_blk;
5209
5210 /* Determine first and last group to examine based on start and end */
5211 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) start,
5212 &first_group, &first_cluster);
5213 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) end,
5214 &last_group, &last_cluster);
5215
5216 /* end now represents the last cluster to discard in this group */
5217 end = EXT4_CLUSTERS_PER_GROUP(sb) - 1;
5218
5219 for (group = first_group; group <= last_group; group++) {
5220 grp = ext4_get_group_info(sb, group);
5221 /* We only do this if the grp has never been initialized */
5222 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
5223 ret = ext4_mb_init_group(sb, group, GFP_NOFS);
5224 if (ret)
5225 break;
5226 }
5227
5228 /*
5229 * For all the groups except the last one, last cluster will
5230 * always be EXT4_CLUSTERS_PER_GROUP(sb)-1, so we only need to
5231 * change it for the last group, note that last_cluster is
5232 * already computed earlier by ext4_get_group_no_and_offset()
5233 */
5234 if (group == last_group)
5235 end = last_cluster;
5236
5237 if (grp->bb_free >= minlen) {
5238 cnt = ext4_trim_all_free(sb, group, first_cluster,
5239 end, minlen);
5240 if (cnt < 0) {
5241 ret = cnt;
5242 break;
5243 }
5244 trimmed += cnt;
5245 }
5246
5247 /*
5248 * For every group except the first one, we are sure
5249 * that the first cluster to discard will be cluster #0.
5250 */
5251 first_cluster = 0;
5252 }
5253
5254 if (!ret)
5255 atomic_set(&EXT4_SB(sb)->s_last_trim_minblks, minlen);
5256
5257 out:
5258 range->len = EXT4_C2B(EXT4_SB(sb), trimmed) << sb->s_blocksize_bits;
5259 return ret;
5260 }