]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/ext4/mballoc.c
ext4: delayed allocation ENOSPC handling
[mirror_ubuntu-bionic-kernel.git] / fs / ext4 / mballoc.c
1 /*
2 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3 * Written by Alex Tomas <alex@clusterfs.com>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public Licens
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
17 */
18
19
20 /*
21 * mballoc.c contains the multiblocks allocation routines
22 */
23
24 #include "mballoc.h"
25 /*
26 * MUSTDO:
27 * - test ext4_ext_search_left() and ext4_ext_search_right()
28 * - search for metadata in few groups
29 *
30 * TODO v4:
31 * - normalization should take into account whether file is still open
32 * - discard preallocations if no free space left (policy?)
33 * - don't normalize tails
34 * - quota
35 * - reservation for superuser
36 *
37 * TODO v3:
38 * - bitmap read-ahead (proposed by Oleg Drokin aka green)
39 * - track min/max extents in each group for better group selection
40 * - mb_mark_used() may allocate chunk right after splitting buddy
41 * - tree of groups sorted by number of free blocks
42 * - error handling
43 */
44
45 /*
46 * The allocation request involve request for multiple number of blocks
47 * near to the goal(block) value specified.
48 *
49 * During initialization phase of the allocator we decide to use the group
50 * preallocation or inode preallocation depending on the size file. The
51 * size of the file could be the resulting file size we would have after
52 * allocation or the current file size which ever is larger. If the size is
53 * less that sbi->s_mb_stream_request we select the group
54 * preallocation. The default value of s_mb_stream_request is 16
55 * blocks. This can also be tuned via
56 * /proc/fs/ext4/<partition>/stream_req. The value is represented in terms
57 * of number of blocks.
58 *
59 * The main motivation for having small file use group preallocation is to
60 * ensure that we have small file closer in the disk.
61 *
62 * First stage the allocator looks at the inode prealloc list
63 * ext4_inode_info->i_prealloc_list contain list of prealloc spaces for
64 * this particular inode. The inode prealloc space is represented as:
65 *
66 * pa_lstart -> the logical start block for this prealloc space
67 * pa_pstart -> the physical start block for this prealloc space
68 * pa_len -> lenght for this prealloc space
69 * pa_free -> free space available in this prealloc space
70 *
71 * The inode preallocation space is used looking at the _logical_ start
72 * block. If only the logical file block falls within the range of prealloc
73 * space we will consume the particular prealloc space. This make sure that
74 * that the we have contiguous physical blocks representing the file blocks
75 *
76 * The important thing to be noted in case of inode prealloc space is that
77 * we don't modify the values associated to inode prealloc space except
78 * pa_free.
79 *
80 * If we are not able to find blocks in the inode prealloc space and if we
81 * have the group allocation flag set then we look at the locality group
82 * prealloc space. These are per CPU prealloc list repreasented as
83 *
84 * ext4_sb_info.s_locality_groups[smp_processor_id()]
85 *
86 * The reason for having a per cpu locality group is to reduce the contention
87 * between CPUs. It is possible to get scheduled at this point.
88 *
89 * The locality group prealloc space is used looking at whether we have
90 * enough free space (pa_free) withing the prealloc space.
91 *
92 * If we can't allocate blocks via inode prealloc or/and locality group
93 * prealloc then we look at the buddy cache. The buddy cache is represented
94 * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets
95 * mapped to the buddy and bitmap information regarding different
96 * groups. The buddy information is attached to buddy cache inode so that
97 * we can access them through the page cache. The information regarding
98 * each group is loaded via ext4_mb_load_buddy. The information involve
99 * block bitmap and buddy information. The information are stored in the
100 * inode as:
101 *
102 * { page }
103 * [ group 0 buddy][ group 0 bitmap] [group 1][ group 1]...
104 *
105 *
106 * one block each for bitmap and buddy information. So for each group we
107 * take up 2 blocks. A page can contain blocks_per_page (PAGE_CACHE_SIZE /
108 * blocksize) blocks. So it can have information regarding groups_per_page
109 * which is blocks_per_page/2
110 *
111 * The buddy cache inode is not stored on disk. The inode is thrown
112 * away when the filesystem is unmounted.
113 *
114 * We look for count number of blocks in the buddy cache. If we were able
115 * to locate that many free blocks we return with additional information
116 * regarding rest of the contiguous physical block available
117 *
118 * Before allocating blocks via buddy cache we normalize the request
119 * blocks. This ensure we ask for more blocks that we needed. The extra
120 * blocks that we get after allocation is added to the respective prealloc
121 * list. In case of inode preallocation we follow a list of heuristics
122 * based on file size. This can be found in ext4_mb_normalize_request. If
123 * we are doing a group prealloc we try to normalize the request to
124 * sbi->s_mb_group_prealloc. Default value of s_mb_group_prealloc is set to
125 * 512 blocks. This can be tuned via
126 * /proc/fs/ext4/<partition/group_prealloc. The value is represented in
127 * terms of number of blocks. If we have mounted the file system with -O
128 * stripe=<value> option the group prealloc request is normalized to the
129 * stripe value (sbi->s_stripe)
130 *
131 * The regular allocator(using the buddy cache) support few tunables.
132 *
133 * /proc/fs/ext4/<partition>/min_to_scan
134 * /proc/fs/ext4/<partition>/max_to_scan
135 * /proc/fs/ext4/<partition>/order2_req
136 *
137 * The regular allocator use buddy scan only if the request len is power of
138 * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The
139 * value of s_mb_order2_reqs can be tuned via
140 * /proc/fs/ext4/<partition>/order2_req. If the request len is equal to
141 * stripe size (sbi->s_stripe), we try to search for contigous block in
142 * stripe size. This should result in better allocation on RAID setup. If
143 * not we search in the specific group using bitmap for best extents. The
144 * tunable min_to_scan and max_to_scan controll the behaviour here.
145 * min_to_scan indicate how long the mballoc __must__ look for a best
146 * extent and max_to_scanindicate how long the mballoc __can__ look for a
147 * best extent in the found extents. Searching for the blocks starts with
148 * the group specified as the goal value in allocation context via
149 * ac_g_ex. Each group is first checked based on the criteria whether it
150 * can used for allocation. ext4_mb_good_group explains how the groups are
151 * checked.
152 *
153 * Both the prealloc space are getting populated as above. So for the first
154 * request we will hit the buddy cache which will result in this prealloc
155 * space getting filled. The prealloc space is then later used for the
156 * subsequent request.
157 */
158
159 /*
160 * mballoc operates on the following data:
161 * - on-disk bitmap
162 * - in-core buddy (actually includes buddy and bitmap)
163 * - preallocation descriptors (PAs)
164 *
165 * there are two types of preallocations:
166 * - inode
167 * assiged to specific inode and can be used for this inode only.
168 * it describes part of inode's space preallocated to specific
169 * physical blocks. any block from that preallocated can be used
170 * independent. the descriptor just tracks number of blocks left
171 * unused. so, before taking some block from descriptor, one must
172 * make sure corresponded logical block isn't allocated yet. this
173 * also means that freeing any block within descriptor's range
174 * must discard all preallocated blocks.
175 * - locality group
176 * assigned to specific locality group which does not translate to
177 * permanent set of inodes: inode can join and leave group. space
178 * from this type of preallocation can be used for any inode. thus
179 * it's consumed from the beginning to the end.
180 *
181 * relation between them can be expressed as:
182 * in-core buddy = on-disk bitmap + preallocation descriptors
183 *
184 * this mean blocks mballoc considers used are:
185 * - allocated blocks (persistent)
186 * - preallocated blocks (non-persistent)
187 *
188 * consistency in mballoc world means that at any time a block is either
189 * free or used in ALL structures. notice: "any time" should not be read
190 * literally -- time is discrete and delimited by locks.
191 *
192 * to keep it simple, we don't use block numbers, instead we count number of
193 * blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA.
194 *
195 * all operations can be expressed as:
196 * - init buddy: buddy = on-disk + PAs
197 * - new PA: buddy += N; PA = N
198 * - use inode PA: on-disk += N; PA -= N
199 * - discard inode PA buddy -= on-disk - PA; PA = 0
200 * - use locality group PA on-disk += N; PA -= N
201 * - discard locality group PA buddy -= PA; PA = 0
202 * note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap
203 * is used in real operation because we can't know actual used
204 * bits from PA, only from on-disk bitmap
205 *
206 * if we follow this strict logic, then all operations above should be atomic.
207 * given some of them can block, we'd have to use something like semaphores
208 * killing performance on high-end SMP hardware. let's try to relax it using
209 * the following knowledge:
210 * 1) if buddy is referenced, it's already initialized
211 * 2) while block is used in buddy and the buddy is referenced,
212 * nobody can re-allocate that block
213 * 3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has
214 * bit set and PA claims same block, it's OK. IOW, one can set bit in
215 * on-disk bitmap if buddy has same bit set or/and PA covers corresponded
216 * block
217 *
218 * so, now we're building a concurrency table:
219 * - init buddy vs.
220 * - new PA
221 * blocks for PA are allocated in the buddy, buddy must be referenced
222 * until PA is linked to allocation group to avoid concurrent buddy init
223 * - use inode PA
224 * we need to make sure that either on-disk bitmap or PA has uptodate data
225 * given (3) we care that PA-=N operation doesn't interfere with init
226 * - discard inode PA
227 * the simplest way would be to have buddy initialized by the discard
228 * - use locality group PA
229 * again PA-=N must be serialized with init
230 * - discard locality group PA
231 * the simplest way would be to have buddy initialized by the discard
232 * - new PA vs.
233 * - use inode PA
234 * i_data_sem serializes them
235 * - discard inode PA
236 * discard process must wait until PA isn't used by another process
237 * - use locality group PA
238 * some mutex should serialize them
239 * - discard locality group PA
240 * discard process must wait until PA isn't used by another process
241 * - use inode PA
242 * - use inode PA
243 * i_data_sem or another mutex should serializes them
244 * - discard inode PA
245 * discard process must wait until PA isn't used by another process
246 * - use locality group PA
247 * nothing wrong here -- they're different PAs covering different blocks
248 * - discard locality group PA
249 * discard process must wait until PA isn't used by another process
250 *
251 * now we're ready to make few consequences:
252 * - PA is referenced and while it is no discard is possible
253 * - PA is referenced until block isn't marked in on-disk bitmap
254 * - PA changes only after on-disk bitmap
255 * - discard must not compete with init. either init is done before
256 * any discard or they're serialized somehow
257 * - buddy init as sum of on-disk bitmap and PAs is done atomically
258 *
259 * a special case when we've used PA to emptiness. no need to modify buddy
260 * in this case, but we should care about concurrent init
261 *
262 */
263
264 /*
265 * Logic in few words:
266 *
267 * - allocation:
268 * load group
269 * find blocks
270 * mark bits in on-disk bitmap
271 * release group
272 *
273 * - use preallocation:
274 * find proper PA (per-inode or group)
275 * load group
276 * mark bits in on-disk bitmap
277 * release group
278 * release PA
279 *
280 * - free:
281 * load group
282 * mark bits in on-disk bitmap
283 * release group
284 *
285 * - discard preallocations in group:
286 * mark PAs deleted
287 * move them onto local list
288 * load on-disk bitmap
289 * load group
290 * remove PA from object (inode or locality group)
291 * mark free blocks in-core
292 *
293 * - discard inode's preallocations:
294 */
295
296 /*
297 * Locking rules
298 *
299 * Locks:
300 * - bitlock on a group (group)
301 * - object (inode/locality) (object)
302 * - per-pa lock (pa)
303 *
304 * Paths:
305 * - new pa
306 * object
307 * group
308 *
309 * - find and use pa:
310 * pa
311 *
312 * - release consumed pa:
313 * pa
314 * group
315 * object
316 *
317 * - generate in-core bitmap:
318 * group
319 * pa
320 *
321 * - discard all for given object (inode, locality group):
322 * object
323 * pa
324 * group
325 *
326 * - discard all for given group:
327 * group
328 * pa
329 * group
330 * object
331 *
332 */
333
334 static inline void *mb_correct_addr_and_bit(int *bit, void *addr)
335 {
336 #if BITS_PER_LONG == 64
337 *bit += ((unsigned long) addr & 7UL) << 3;
338 addr = (void *) ((unsigned long) addr & ~7UL);
339 #elif BITS_PER_LONG == 32
340 *bit += ((unsigned long) addr & 3UL) << 3;
341 addr = (void *) ((unsigned long) addr & ~3UL);
342 #else
343 #error "how many bits you are?!"
344 #endif
345 return addr;
346 }
347
348 static inline int mb_test_bit(int bit, void *addr)
349 {
350 /*
351 * ext4_test_bit on architecture like powerpc
352 * needs unsigned long aligned address
353 */
354 addr = mb_correct_addr_and_bit(&bit, addr);
355 return ext4_test_bit(bit, addr);
356 }
357
358 static inline void mb_set_bit(int bit, void *addr)
359 {
360 addr = mb_correct_addr_and_bit(&bit, addr);
361 ext4_set_bit(bit, addr);
362 }
363
364 static inline void mb_set_bit_atomic(spinlock_t *lock, int bit, void *addr)
365 {
366 addr = mb_correct_addr_and_bit(&bit, addr);
367 ext4_set_bit_atomic(lock, bit, addr);
368 }
369
370 static inline void mb_clear_bit(int bit, void *addr)
371 {
372 addr = mb_correct_addr_and_bit(&bit, addr);
373 ext4_clear_bit(bit, addr);
374 }
375
376 static inline void mb_clear_bit_atomic(spinlock_t *lock, int bit, void *addr)
377 {
378 addr = mb_correct_addr_and_bit(&bit, addr);
379 ext4_clear_bit_atomic(lock, bit, addr);
380 }
381
382 static inline int mb_find_next_zero_bit(void *addr, int max, int start)
383 {
384 int fix = 0, ret, tmpmax;
385 addr = mb_correct_addr_and_bit(&fix, addr);
386 tmpmax = max + fix;
387 start += fix;
388
389 ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix;
390 if (ret > max)
391 return max;
392 return ret;
393 }
394
395 static inline int mb_find_next_bit(void *addr, int max, int start)
396 {
397 int fix = 0, ret, tmpmax;
398 addr = mb_correct_addr_and_bit(&fix, addr);
399 tmpmax = max + fix;
400 start += fix;
401
402 ret = ext4_find_next_bit(addr, tmpmax, start) - fix;
403 if (ret > max)
404 return max;
405 return ret;
406 }
407
408 static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max)
409 {
410 char *bb;
411
412 BUG_ON(EXT4_MB_BITMAP(e4b) == EXT4_MB_BUDDY(e4b));
413 BUG_ON(max == NULL);
414
415 if (order > e4b->bd_blkbits + 1) {
416 *max = 0;
417 return NULL;
418 }
419
420 /* at order 0 we see each particular block */
421 *max = 1 << (e4b->bd_blkbits + 3);
422 if (order == 0)
423 return EXT4_MB_BITMAP(e4b);
424
425 bb = EXT4_MB_BUDDY(e4b) + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order];
426 *max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order];
427
428 return bb;
429 }
430
431 #ifdef DOUBLE_CHECK
432 static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b,
433 int first, int count)
434 {
435 int i;
436 struct super_block *sb = e4b->bd_sb;
437
438 if (unlikely(e4b->bd_info->bb_bitmap == NULL))
439 return;
440 BUG_ON(!ext4_is_group_locked(sb, e4b->bd_group));
441 for (i = 0; i < count; i++) {
442 if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) {
443 ext4_fsblk_t blocknr;
444 blocknr = e4b->bd_group * EXT4_BLOCKS_PER_GROUP(sb);
445 blocknr += first + i;
446 blocknr +=
447 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block);
448
449 ext4_error(sb, __func__, "double-free of inode"
450 " %lu's block %llu(bit %u in group %lu)\n",
451 inode ? inode->i_ino : 0, blocknr,
452 first + i, e4b->bd_group);
453 }
454 mb_clear_bit(first + i, e4b->bd_info->bb_bitmap);
455 }
456 }
457
458 static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count)
459 {
460 int i;
461
462 if (unlikely(e4b->bd_info->bb_bitmap == NULL))
463 return;
464 BUG_ON(!ext4_is_group_locked(e4b->bd_sb, e4b->bd_group));
465 for (i = 0; i < count; i++) {
466 BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap));
467 mb_set_bit(first + i, e4b->bd_info->bb_bitmap);
468 }
469 }
470
471 static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
472 {
473 if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) {
474 unsigned char *b1, *b2;
475 int i;
476 b1 = (unsigned char *) e4b->bd_info->bb_bitmap;
477 b2 = (unsigned char *) bitmap;
478 for (i = 0; i < e4b->bd_sb->s_blocksize; i++) {
479 if (b1[i] != b2[i]) {
480 printk("corruption in group %lu at byte %u(%u):"
481 " %x in copy != %x on disk/prealloc\n",
482 e4b->bd_group, i, i * 8, b1[i], b2[i]);
483 BUG();
484 }
485 }
486 }
487 }
488
489 #else
490 static inline void mb_free_blocks_double(struct inode *inode,
491 struct ext4_buddy *e4b, int first, int count)
492 {
493 return;
494 }
495 static inline void mb_mark_used_double(struct ext4_buddy *e4b,
496 int first, int count)
497 {
498 return;
499 }
500 static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
501 {
502 return;
503 }
504 #endif
505
506 #ifdef AGGRESSIVE_CHECK
507
508 #define MB_CHECK_ASSERT(assert) \
509 do { \
510 if (!(assert)) { \
511 printk(KERN_EMERG \
512 "Assertion failure in %s() at %s:%d: \"%s\"\n", \
513 function, file, line, # assert); \
514 BUG(); \
515 } \
516 } while (0)
517
518 static int __mb_check_buddy(struct ext4_buddy *e4b, char *file,
519 const char *function, int line)
520 {
521 struct super_block *sb = e4b->bd_sb;
522 int order = e4b->bd_blkbits + 1;
523 int max;
524 int max2;
525 int i;
526 int j;
527 int k;
528 int count;
529 struct ext4_group_info *grp;
530 int fragments = 0;
531 int fstart;
532 struct list_head *cur;
533 void *buddy;
534 void *buddy2;
535
536 if (!test_opt(sb, MBALLOC))
537 return 0;
538
539 {
540 static int mb_check_counter;
541 if (mb_check_counter++ % 100 != 0)
542 return 0;
543 }
544
545 while (order > 1) {
546 buddy = mb_find_buddy(e4b, order, &max);
547 MB_CHECK_ASSERT(buddy);
548 buddy2 = mb_find_buddy(e4b, order - 1, &max2);
549 MB_CHECK_ASSERT(buddy2);
550 MB_CHECK_ASSERT(buddy != buddy2);
551 MB_CHECK_ASSERT(max * 2 == max2);
552
553 count = 0;
554 for (i = 0; i < max; i++) {
555
556 if (mb_test_bit(i, buddy)) {
557 /* only single bit in buddy2 may be 1 */
558 if (!mb_test_bit(i << 1, buddy2)) {
559 MB_CHECK_ASSERT(
560 mb_test_bit((i<<1)+1, buddy2));
561 } else if (!mb_test_bit((i << 1) + 1, buddy2)) {
562 MB_CHECK_ASSERT(
563 mb_test_bit(i << 1, buddy2));
564 }
565 continue;
566 }
567
568 /* both bits in buddy2 must be 0 */
569 MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2));
570 MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2));
571
572 for (j = 0; j < (1 << order); j++) {
573 k = (i * (1 << order)) + j;
574 MB_CHECK_ASSERT(
575 !mb_test_bit(k, EXT4_MB_BITMAP(e4b)));
576 }
577 count++;
578 }
579 MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count);
580 order--;
581 }
582
583 fstart = -1;
584 buddy = mb_find_buddy(e4b, 0, &max);
585 for (i = 0; i < max; i++) {
586 if (!mb_test_bit(i, buddy)) {
587 MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free);
588 if (fstart == -1) {
589 fragments++;
590 fstart = i;
591 }
592 continue;
593 }
594 fstart = -1;
595 /* check used bits only */
596 for (j = 0; j < e4b->bd_blkbits + 1; j++) {
597 buddy2 = mb_find_buddy(e4b, j, &max2);
598 k = i >> j;
599 MB_CHECK_ASSERT(k < max2);
600 MB_CHECK_ASSERT(mb_test_bit(k, buddy2));
601 }
602 }
603 MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info));
604 MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments);
605
606 grp = ext4_get_group_info(sb, e4b->bd_group);
607 buddy = mb_find_buddy(e4b, 0, &max);
608 list_for_each(cur, &grp->bb_prealloc_list) {
609 ext4_group_t groupnr;
610 struct ext4_prealloc_space *pa;
611 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
612 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k);
613 MB_CHECK_ASSERT(groupnr == e4b->bd_group);
614 for (i = 0; i < pa->pa_len; i++)
615 MB_CHECK_ASSERT(mb_test_bit(k + i, buddy));
616 }
617 return 0;
618 }
619 #undef MB_CHECK_ASSERT
620 #define mb_check_buddy(e4b) __mb_check_buddy(e4b, \
621 __FILE__, __func__, __LINE__)
622 #else
623 #define mb_check_buddy(e4b)
624 #endif
625
626 /* FIXME!! need more doc */
627 static void ext4_mb_mark_free_simple(struct super_block *sb,
628 void *buddy, unsigned first, int len,
629 struct ext4_group_info *grp)
630 {
631 struct ext4_sb_info *sbi = EXT4_SB(sb);
632 unsigned short min;
633 unsigned short max;
634 unsigned short chunk;
635 unsigned short border;
636
637 BUG_ON(len > EXT4_BLOCKS_PER_GROUP(sb));
638
639 border = 2 << sb->s_blocksize_bits;
640
641 while (len > 0) {
642 /* find how many blocks can be covered since this position */
643 max = ffs(first | border) - 1;
644
645 /* find how many blocks of power 2 we need to mark */
646 min = fls(len) - 1;
647
648 if (max < min)
649 min = max;
650 chunk = 1 << min;
651
652 /* mark multiblock chunks only */
653 grp->bb_counters[min]++;
654 if (min > 0)
655 mb_clear_bit(first >> min,
656 buddy + sbi->s_mb_offsets[min]);
657
658 len -= chunk;
659 first += chunk;
660 }
661 }
662
663 static void ext4_mb_generate_buddy(struct super_block *sb,
664 void *buddy, void *bitmap, ext4_group_t group)
665 {
666 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
667 unsigned short max = EXT4_BLOCKS_PER_GROUP(sb);
668 unsigned short i = 0;
669 unsigned short first;
670 unsigned short len;
671 unsigned free = 0;
672 unsigned fragments = 0;
673 unsigned long long period = get_cycles();
674
675 /* initialize buddy from bitmap which is aggregation
676 * of on-disk bitmap and preallocations */
677 i = mb_find_next_zero_bit(bitmap, max, 0);
678 grp->bb_first_free = i;
679 while (i < max) {
680 fragments++;
681 first = i;
682 i = mb_find_next_bit(bitmap, max, i);
683 len = i - first;
684 free += len;
685 if (len > 1)
686 ext4_mb_mark_free_simple(sb, buddy, first, len, grp);
687 else
688 grp->bb_counters[0]++;
689 if (i < max)
690 i = mb_find_next_zero_bit(bitmap, max, i);
691 }
692 grp->bb_fragments = fragments;
693
694 if (free != grp->bb_free) {
695 ext4_error(sb, __func__,
696 "EXT4-fs: group %lu: %u blocks in bitmap, %u in gd\n",
697 group, free, grp->bb_free);
698 /*
699 * If we intent to continue, we consider group descritor
700 * corrupt and update bb_free using bitmap value
701 */
702 grp->bb_free = free;
703 }
704
705 clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state));
706
707 period = get_cycles() - period;
708 spin_lock(&EXT4_SB(sb)->s_bal_lock);
709 EXT4_SB(sb)->s_mb_buddies_generated++;
710 EXT4_SB(sb)->s_mb_generation_time += period;
711 spin_unlock(&EXT4_SB(sb)->s_bal_lock);
712 }
713
714 /* The buddy information is attached the buddy cache inode
715 * for convenience. The information regarding each group
716 * is loaded via ext4_mb_load_buddy. The information involve
717 * block bitmap and buddy information. The information are
718 * stored in the inode as
719 *
720 * { page }
721 * [ group 0 buddy][ group 0 bitmap] [group 1][ group 1]...
722 *
723 *
724 * one block each for bitmap and buddy information.
725 * So for each group we take up 2 blocks. A page can
726 * contain blocks_per_page (PAGE_CACHE_SIZE / blocksize) blocks.
727 * So it can have information regarding groups_per_page which
728 * is blocks_per_page/2
729 */
730
731 static int ext4_mb_init_cache(struct page *page, char *incore)
732 {
733 int blocksize;
734 int blocks_per_page;
735 int groups_per_page;
736 int err = 0;
737 int i;
738 ext4_group_t first_group;
739 int first_block;
740 struct super_block *sb;
741 struct buffer_head *bhs;
742 struct buffer_head **bh;
743 struct inode *inode;
744 char *data;
745 char *bitmap;
746
747 mb_debug("init page %lu\n", page->index);
748
749 inode = page->mapping->host;
750 sb = inode->i_sb;
751 blocksize = 1 << inode->i_blkbits;
752 blocks_per_page = PAGE_CACHE_SIZE / blocksize;
753
754 groups_per_page = blocks_per_page >> 1;
755 if (groups_per_page == 0)
756 groups_per_page = 1;
757
758 /* allocate buffer_heads to read bitmaps */
759 if (groups_per_page > 1) {
760 err = -ENOMEM;
761 i = sizeof(struct buffer_head *) * groups_per_page;
762 bh = kzalloc(i, GFP_NOFS);
763 if (bh == NULL)
764 goto out;
765 } else
766 bh = &bhs;
767
768 first_group = page->index * blocks_per_page / 2;
769
770 /* read all groups the page covers into the cache */
771 for (i = 0; i < groups_per_page; i++) {
772 struct ext4_group_desc *desc;
773
774 if (first_group + i >= EXT4_SB(sb)->s_groups_count)
775 break;
776
777 err = -EIO;
778 desc = ext4_get_group_desc(sb, first_group + i, NULL);
779 if (desc == NULL)
780 goto out;
781
782 err = -ENOMEM;
783 bh[i] = sb_getblk(sb, ext4_block_bitmap(sb, desc));
784 if (bh[i] == NULL)
785 goto out;
786
787 if (bh_uptodate_or_lock(bh[i]))
788 continue;
789
790 if (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
791 ext4_init_block_bitmap(sb, bh[i],
792 first_group + i, desc);
793 set_buffer_uptodate(bh[i]);
794 unlock_buffer(bh[i]);
795 continue;
796 }
797 get_bh(bh[i]);
798 bh[i]->b_end_io = end_buffer_read_sync;
799 submit_bh(READ, bh[i]);
800 mb_debug("read bitmap for group %lu\n", first_group + i);
801 }
802
803 /* wait for I/O completion */
804 for (i = 0; i < groups_per_page && bh[i]; i++)
805 wait_on_buffer(bh[i]);
806
807 err = -EIO;
808 for (i = 0; i < groups_per_page && bh[i]; i++)
809 if (!buffer_uptodate(bh[i]))
810 goto out;
811
812 err = 0;
813 first_block = page->index * blocks_per_page;
814 for (i = 0; i < blocks_per_page; i++) {
815 int group;
816 struct ext4_group_info *grinfo;
817
818 group = (first_block + i) >> 1;
819 if (group >= EXT4_SB(sb)->s_groups_count)
820 break;
821
822 /*
823 * data carry information regarding this
824 * particular group in the format specified
825 * above
826 *
827 */
828 data = page_address(page) + (i * blocksize);
829 bitmap = bh[group - first_group]->b_data;
830
831 /*
832 * We place the buddy block and bitmap block
833 * close together
834 */
835 if ((first_block + i) & 1) {
836 /* this is block of buddy */
837 BUG_ON(incore == NULL);
838 mb_debug("put buddy for group %u in page %lu/%x\n",
839 group, page->index, i * blocksize);
840 memset(data, 0xff, blocksize);
841 grinfo = ext4_get_group_info(sb, group);
842 grinfo->bb_fragments = 0;
843 memset(grinfo->bb_counters, 0,
844 sizeof(unsigned short)*(sb->s_blocksize_bits+2));
845 /*
846 * incore got set to the group block bitmap below
847 */
848 ext4_mb_generate_buddy(sb, data, incore, group);
849 incore = NULL;
850 } else {
851 /* this is block of bitmap */
852 BUG_ON(incore != NULL);
853 mb_debug("put bitmap for group %u in page %lu/%x\n",
854 group, page->index, i * blocksize);
855
856 /* see comments in ext4_mb_put_pa() */
857 ext4_lock_group(sb, group);
858 memcpy(data, bitmap, blocksize);
859
860 /* mark all preallocated blks used in in-core bitmap */
861 ext4_mb_generate_from_pa(sb, data, group);
862 ext4_unlock_group(sb, group);
863
864 /* set incore so that the buddy information can be
865 * generated using this
866 */
867 incore = data;
868 }
869 }
870 SetPageUptodate(page);
871
872 out:
873 if (bh) {
874 for (i = 0; i < groups_per_page && bh[i]; i++)
875 brelse(bh[i]);
876 if (bh != &bhs)
877 kfree(bh);
878 }
879 return err;
880 }
881
882 static noinline_for_stack int
883 ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group,
884 struct ext4_buddy *e4b)
885 {
886 struct ext4_sb_info *sbi = EXT4_SB(sb);
887 struct inode *inode = sbi->s_buddy_cache;
888 int blocks_per_page;
889 int block;
890 int pnum;
891 int poff;
892 struct page *page;
893 int ret;
894
895 mb_debug("load group %lu\n", group);
896
897 blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize;
898
899 e4b->bd_blkbits = sb->s_blocksize_bits;
900 e4b->bd_info = ext4_get_group_info(sb, group);
901 e4b->bd_sb = sb;
902 e4b->bd_group = group;
903 e4b->bd_buddy_page = NULL;
904 e4b->bd_bitmap_page = NULL;
905
906 /*
907 * the buddy cache inode stores the block bitmap
908 * and buddy information in consecutive blocks.
909 * So for each group we need two blocks.
910 */
911 block = group * 2;
912 pnum = block / blocks_per_page;
913 poff = block % blocks_per_page;
914
915 /* we could use find_or_create_page(), but it locks page
916 * what we'd like to avoid in fast path ... */
917 page = find_get_page(inode->i_mapping, pnum);
918 if (page == NULL || !PageUptodate(page)) {
919 if (page)
920 page_cache_release(page);
921 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
922 if (page) {
923 BUG_ON(page->mapping != inode->i_mapping);
924 if (!PageUptodate(page)) {
925 ret = ext4_mb_init_cache(page, NULL);
926 if (ret) {
927 unlock_page(page);
928 goto err;
929 }
930 mb_cmp_bitmaps(e4b, page_address(page) +
931 (poff * sb->s_blocksize));
932 }
933 unlock_page(page);
934 }
935 }
936 if (page == NULL || !PageUptodate(page)) {
937 ret = -EIO;
938 goto err;
939 }
940 e4b->bd_bitmap_page = page;
941 e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
942 mark_page_accessed(page);
943
944 block++;
945 pnum = block / blocks_per_page;
946 poff = block % blocks_per_page;
947
948 page = find_get_page(inode->i_mapping, pnum);
949 if (page == NULL || !PageUptodate(page)) {
950 if (page)
951 page_cache_release(page);
952 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
953 if (page) {
954 BUG_ON(page->mapping != inode->i_mapping);
955 if (!PageUptodate(page)) {
956 ret = ext4_mb_init_cache(page, e4b->bd_bitmap);
957 if (ret) {
958 unlock_page(page);
959 goto err;
960 }
961 }
962 unlock_page(page);
963 }
964 }
965 if (page == NULL || !PageUptodate(page)) {
966 ret = -EIO;
967 goto err;
968 }
969 e4b->bd_buddy_page = page;
970 e4b->bd_buddy = page_address(page) + (poff * sb->s_blocksize);
971 mark_page_accessed(page);
972
973 BUG_ON(e4b->bd_bitmap_page == NULL);
974 BUG_ON(e4b->bd_buddy_page == NULL);
975
976 return 0;
977
978 err:
979 if (e4b->bd_bitmap_page)
980 page_cache_release(e4b->bd_bitmap_page);
981 if (e4b->bd_buddy_page)
982 page_cache_release(e4b->bd_buddy_page);
983 e4b->bd_buddy = NULL;
984 e4b->bd_bitmap = NULL;
985 return ret;
986 }
987
988 static void ext4_mb_release_desc(struct ext4_buddy *e4b)
989 {
990 if (e4b->bd_bitmap_page)
991 page_cache_release(e4b->bd_bitmap_page);
992 if (e4b->bd_buddy_page)
993 page_cache_release(e4b->bd_buddy_page);
994 }
995
996
997 static int mb_find_order_for_block(struct ext4_buddy *e4b, int block)
998 {
999 int order = 1;
1000 void *bb;
1001
1002 BUG_ON(EXT4_MB_BITMAP(e4b) == EXT4_MB_BUDDY(e4b));
1003 BUG_ON(block >= (1 << (e4b->bd_blkbits + 3)));
1004
1005 bb = EXT4_MB_BUDDY(e4b);
1006 while (order <= e4b->bd_blkbits + 1) {
1007 block = block >> 1;
1008 if (!mb_test_bit(block, bb)) {
1009 /* this block is part of buddy of order 'order' */
1010 return order;
1011 }
1012 bb += 1 << (e4b->bd_blkbits - order);
1013 order++;
1014 }
1015 return 0;
1016 }
1017
1018 static void mb_clear_bits(spinlock_t *lock, void *bm, int cur, int len)
1019 {
1020 __u32 *addr;
1021
1022 len = cur + len;
1023 while (cur < len) {
1024 if ((cur & 31) == 0 && (len - cur) >= 32) {
1025 /* fast path: clear whole word at once */
1026 addr = bm + (cur >> 3);
1027 *addr = 0;
1028 cur += 32;
1029 continue;
1030 }
1031 mb_clear_bit_atomic(lock, cur, bm);
1032 cur++;
1033 }
1034 }
1035
1036 static void mb_set_bits(spinlock_t *lock, void *bm, int cur, int len)
1037 {
1038 __u32 *addr;
1039
1040 len = cur + len;
1041 while (cur < len) {
1042 if ((cur & 31) == 0 && (len - cur) >= 32) {
1043 /* fast path: set whole word at once */
1044 addr = bm + (cur >> 3);
1045 *addr = 0xffffffff;
1046 cur += 32;
1047 continue;
1048 }
1049 mb_set_bit_atomic(lock, cur, bm);
1050 cur++;
1051 }
1052 }
1053
1054 static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b,
1055 int first, int count)
1056 {
1057 int block = 0;
1058 int max = 0;
1059 int order;
1060 void *buddy;
1061 void *buddy2;
1062 struct super_block *sb = e4b->bd_sb;
1063
1064 BUG_ON(first + count > (sb->s_blocksize << 3));
1065 BUG_ON(!ext4_is_group_locked(sb, e4b->bd_group));
1066 mb_check_buddy(e4b);
1067 mb_free_blocks_double(inode, e4b, first, count);
1068
1069 e4b->bd_info->bb_free += count;
1070 if (first < e4b->bd_info->bb_first_free)
1071 e4b->bd_info->bb_first_free = first;
1072
1073 /* let's maintain fragments counter */
1074 if (first != 0)
1075 block = !mb_test_bit(first - 1, EXT4_MB_BITMAP(e4b));
1076 if (first + count < EXT4_SB(sb)->s_mb_maxs[0])
1077 max = !mb_test_bit(first + count, EXT4_MB_BITMAP(e4b));
1078 if (block && max)
1079 e4b->bd_info->bb_fragments--;
1080 else if (!block && !max)
1081 e4b->bd_info->bb_fragments++;
1082
1083 /* let's maintain buddy itself */
1084 while (count-- > 0) {
1085 block = first++;
1086 order = 0;
1087
1088 if (!mb_test_bit(block, EXT4_MB_BITMAP(e4b))) {
1089 ext4_fsblk_t blocknr;
1090 blocknr = e4b->bd_group * EXT4_BLOCKS_PER_GROUP(sb);
1091 blocknr += block;
1092 blocknr +=
1093 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block);
1094 ext4_unlock_group(sb, e4b->bd_group);
1095 ext4_error(sb, __func__, "double-free of inode"
1096 " %lu's block %llu(bit %u in group %lu)\n",
1097 inode ? inode->i_ino : 0, blocknr, block,
1098 e4b->bd_group);
1099 ext4_lock_group(sb, e4b->bd_group);
1100 }
1101 mb_clear_bit(block, EXT4_MB_BITMAP(e4b));
1102 e4b->bd_info->bb_counters[order]++;
1103
1104 /* start of the buddy */
1105 buddy = mb_find_buddy(e4b, order, &max);
1106
1107 do {
1108 block &= ~1UL;
1109 if (mb_test_bit(block, buddy) ||
1110 mb_test_bit(block + 1, buddy))
1111 break;
1112
1113 /* both the buddies are free, try to coalesce them */
1114 buddy2 = mb_find_buddy(e4b, order + 1, &max);
1115
1116 if (!buddy2)
1117 break;
1118
1119 if (order > 0) {
1120 /* for special purposes, we don't set
1121 * free bits in bitmap */
1122 mb_set_bit(block, buddy);
1123 mb_set_bit(block + 1, buddy);
1124 }
1125 e4b->bd_info->bb_counters[order]--;
1126 e4b->bd_info->bb_counters[order]--;
1127
1128 block = block >> 1;
1129 order++;
1130 e4b->bd_info->bb_counters[order]++;
1131
1132 mb_clear_bit(block, buddy2);
1133 buddy = buddy2;
1134 } while (1);
1135 }
1136 mb_check_buddy(e4b);
1137 }
1138
1139 static int mb_find_extent(struct ext4_buddy *e4b, int order, int block,
1140 int needed, struct ext4_free_extent *ex)
1141 {
1142 int next = block;
1143 int max;
1144 int ord;
1145 void *buddy;
1146
1147 BUG_ON(!ext4_is_group_locked(e4b->bd_sb, e4b->bd_group));
1148 BUG_ON(ex == NULL);
1149
1150 buddy = mb_find_buddy(e4b, order, &max);
1151 BUG_ON(buddy == NULL);
1152 BUG_ON(block >= max);
1153 if (mb_test_bit(block, buddy)) {
1154 ex->fe_len = 0;
1155 ex->fe_start = 0;
1156 ex->fe_group = 0;
1157 return 0;
1158 }
1159
1160 /* FIXME dorp order completely ? */
1161 if (likely(order == 0)) {
1162 /* find actual order */
1163 order = mb_find_order_for_block(e4b, block);
1164 block = block >> order;
1165 }
1166
1167 ex->fe_len = 1 << order;
1168 ex->fe_start = block << order;
1169 ex->fe_group = e4b->bd_group;
1170
1171 /* calc difference from given start */
1172 next = next - ex->fe_start;
1173 ex->fe_len -= next;
1174 ex->fe_start += next;
1175
1176 while (needed > ex->fe_len &&
1177 (buddy = mb_find_buddy(e4b, order, &max))) {
1178
1179 if (block + 1 >= max)
1180 break;
1181
1182 next = (block + 1) * (1 << order);
1183 if (mb_test_bit(next, EXT4_MB_BITMAP(e4b)))
1184 break;
1185
1186 ord = mb_find_order_for_block(e4b, next);
1187
1188 order = ord;
1189 block = next >> order;
1190 ex->fe_len += 1 << order;
1191 }
1192
1193 BUG_ON(ex->fe_start + ex->fe_len > (1 << (e4b->bd_blkbits + 3)));
1194 return ex->fe_len;
1195 }
1196
1197 static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex)
1198 {
1199 int ord;
1200 int mlen = 0;
1201 int max = 0;
1202 int cur;
1203 int start = ex->fe_start;
1204 int len = ex->fe_len;
1205 unsigned ret = 0;
1206 int len0 = len;
1207 void *buddy;
1208
1209 BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3));
1210 BUG_ON(e4b->bd_group != ex->fe_group);
1211 BUG_ON(!ext4_is_group_locked(e4b->bd_sb, e4b->bd_group));
1212 mb_check_buddy(e4b);
1213 mb_mark_used_double(e4b, start, len);
1214
1215 e4b->bd_info->bb_free -= len;
1216 if (e4b->bd_info->bb_first_free == start)
1217 e4b->bd_info->bb_first_free += len;
1218
1219 /* let's maintain fragments counter */
1220 if (start != 0)
1221 mlen = !mb_test_bit(start - 1, EXT4_MB_BITMAP(e4b));
1222 if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0])
1223 max = !mb_test_bit(start + len, EXT4_MB_BITMAP(e4b));
1224 if (mlen && max)
1225 e4b->bd_info->bb_fragments++;
1226 else if (!mlen && !max)
1227 e4b->bd_info->bb_fragments--;
1228
1229 /* let's maintain buddy itself */
1230 while (len) {
1231 ord = mb_find_order_for_block(e4b, start);
1232
1233 if (((start >> ord) << ord) == start && len >= (1 << ord)) {
1234 /* the whole chunk may be allocated at once! */
1235 mlen = 1 << ord;
1236 buddy = mb_find_buddy(e4b, ord, &max);
1237 BUG_ON((start >> ord) >= max);
1238 mb_set_bit(start >> ord, buddy);
1239 e4b->bd_info->bb_counters[ord]--;
1240 start += mlen;
1241 len -= mlen;
1242 BUG_ON(len < 0);
1243 continue;
1244 }
1245
1246 /* store for history */
1247 if (ret == 0)
1248 ret = len | (ord << 16);
1249
1250 /* we have to split large buddy */
1251 BUG_ON(ord <= 0);
1252 buddy = mb_find_buddy(e4b, ord, &max);
1253 mb_set_bit(start >> ord, buddy);
1254 e4b->bd_info->bb_counters[ord]--;
1255
1256 ord--;
1257 cur = (start >> ord) & ~1U;
1258 buddy = mb_find_buddy(e4b, ord, &max);
1259 mb_clear_bit(cur, buddy);
1260 mb_clear_bit(cur + 1, buddy);
1261 e4b->bd_info->bb_counters[ord]++;
1262 e4b->bd_info->bb_counters[ord]++;
1263 }
1264
1265 mb_set_bits(sb_bgl_lock(EXT4_SB(e4b->bd_sb), ex->fe_group),
1266 EXT4_MB_BITMAP(e4b), ex->fe_start, len0);
1267 mb_check_buddy(e4b);
1268
1269 return ret;
1270 }
1271
1272 /*
1273 * Must be called under group lock!
1274 */
1275 static void ext4_mb_use_best_found(struct ext4_allocation_context *ac,
1276 struct ext4_buddy *e4b)
1277 {
1278 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1279 int ret;
1280
1281 BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group);
1282 BUG_ON(ac->ac_status == AC_STATUS_FOUND);
1283
1284 ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len);
1285 ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical;
1286 ret = mb_mark_used(e4b, &ac->ac_b_ex);
1287
1288 /* preallocation can change ac_b_ex, thus we store actually
1289 * allocated blocks for history */
1290 ac->ac_f_ex = ac->ac_b_ex;
1291
1292 ac->ac_status = AC_STATUS_FOUND;
1293 ac->ac_tail = ret & 0xffff;
1294 ac->ac_buddy = ret >> 16;
1295
1296 /* XXXXXXX: SUCH A HORRIBLE **CK */
1297 /*FIXME!! Why ? */
1298 ac->ac_bitmap_page = e4b->bd_bitmap_page;
1299 get_page(ac->ac_bitmap_page);
1300 ac->ac_buddy_page = e4b->bd_buddy_page;
1301 get_page(ac->ac_buddy_page);
1302
1303 /* store last allocated for subsequent stream allocation */
1304 if ((ac->ac_flags & EXT4_MB_HINT_DATA)) {
1305 spin_lock(&sbi->s_md_lock);
1306 sbi->s_mb_last_group = ac->ac_f_ex.fe_group;
1307 sbi->s_mb_last_start = ac->ac_f_ex.fe_start;
1308 spin_unlock(&sbi->s_md_lock);
1309 }
1310 }
1311
1312 /*
1313 * regular allocator, for general purposes allocation
1314 */
1315
1316 static void ext4_mb_check_limits(struct ext4_allocation_context *ac,
1317 struct ext4_buddy *e4b,
1318 int finish_group)
1319 {
1320 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1321 struct ext4_free_extent *bex = &ac->ac_b_ex;
1322 struct ext4_free_extent *gex = &ac->ac_g_ex;
1323 struct ext4_free_extent ex;
1324 int max;
1325
1326 /*
1327 * We don't want to scan for a whole year
1328 */
1329 if (ac->ac_found > sbi->s_mb_max_to_scan &&
1330 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1331 ac->ac_status = AC_STATUS_BREAK;
1332 return;
1333 }
1334
1335 /*
1336 * Haven't found good chunk so far, let's continue
1337 */
1338 if (bex->fe_len < gex->fe_len)
1339 return;
1340
1341 if ((finish_group || ac->ac_found > sbi->s_mb_min_to_scan)
1342 && bex->fe_group == e4b->bd_group) {
1343 /* recheck chunk's availability - we don't know
1344 * when it was found (within this lock-unlock
1345 * period or not) */
1346 max = mb_find_extent(e4b, 0, bex->fe_start, gex->fe_len, &ex);
1347 if (max >= gex->fe_len) {
1348 ext4_mb_use_best_found(ac, e4b);
1349 return;
1350 }
1351 }
1352 }
1353
1354 /*
1355 * The routine checks whether found extent is good enough. If it is,
1356 * then the extent gets marked used and flag is set to the context
1357 * to stop scanning. Otherwise, the extent is compared with the
1358 * previous found extent and if new one is better, then it's stored
1359 * in the context. Later, the best found extent will be used, if
1360 * mballoc can't find good enough extent.
1361 *
1362 * FIXME: real allocation policy is to be designed yet!
1363 */
1364 static void ext4_mb_measure_extent(struct ext4_allocation_context *ac,
1365 struct ext4_free_extent *ex,
1366 struct ext4_buddy *e4b)
1367 {
1368 struct ext4_free_extent *bex = &ac->ac_b_ex;
1369 struct ext4_free_extent *gex = &ac->ac_g_ex;
1370
1371 BUG_ON(ex->fe_len <= 0);
1372 BUG_ON(ex->fe_len >= EXT4_BLOCKS_PER_GROUP(ac->ac_sb));
1373 BUG_ON(ex->fe_start >= EXT4_BLOCKS_PER_GROUP(ac->ac_sb));
1374 BUG_ON(ac->ac_status != AC_STATUS_CONTINUE);
1375
1376 ac->ac_found++;
1377
1378 /*
1379 * The special case - take what you catch first
1380 */
1381 if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1382 *bex = *ex;
1383 ext4_mb_use_best_found(ac, e4b);
1384 return;
1385 }
1386
1387 /*
1388 * Let's check whether the chuck is good enough
1389 */
1390 if (ex->fe_len == gex->fe_len) {
1391 *bex = *ex;
1392 ext4_mb_use_best_found(ac, e4b);
1393 return;
1394 }
1395
1396 /*
1397 * If this is first found extent, just store it in the context
1398 */
1399 if (bex->fe_len == 0) {
1400 *bex = *ex;
1401 return;
1402 }
1403
1404 /*
1405 * If new found extent is better, store it in the context
1406 */
1407 if (bex->fe_len < gex->fe_len) {
1408 /* if the request isn't satisfied, any found extent
1409 * larger than previous best one is better */
1410 if (ex->fe_len > bex->fe_len)
1411 *bex = *ex;
1412 } else if (ex->fe_len > gex->fe_len) {
1413 /* if the request is satisfied, then we try to find
1414 * an extent that still satisfy the request, but is
1415 * smaller than previous one */
1416 if (ex->fe_len < bex->fe_len)
1417 *bex = *ex;
1418 }
1419
1420 ext4_mb_check_limits(ac, e4b, 0);
1421 }
1422
1423 static int ext4_mb_try_best_found(struct ext4_allocation_context *ac,
1424 struct ext4_buddy *e4b)
1425 {
1426 struct ext4_free_extent ex = ac->ac_b_ex;
1427 ext4_group_t group = ex.fe_group;
1428 int max;
1429 int err;
1430
1431 BUG_ON(ex.fe_len <= 0);
1432 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1433 if (err)
1434 return err;
1435
1436 ext4_lock_group(ac->ac_sb, group);
1437 max = mb_find_extent(e4b, 0, ex.fe_start, ex.fe_len, &ex);
1438
1439 if (max > 0) {
1440 ac->ac_b_ex = ex;
1441 ext4_mb_use_best_found(ac, e4b);
1442 }
1443
1444 ext4_unlock_group(ac->ac_sb, group);
1445 ext4_mb_release_desc(e4b);
1446
1447 return 0;
1448 }
1449
1450 static int ext4_mb_find_by_goal(struct ext4_allocation_context *ac,
1451 struct ext4_buddy *e4b)
1452 {
1453 ext4_group_t group = ac->ac_g_ex.fe_group;
1454 int max;
1455 int err;
1456 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1457 struct ext4_super_block *es = sbi->s_es;
1458 struct ext4_free_extent ex;
1459
1460 if (!(ac->ac_flags & EXT4_MB_HINT_TRY_GOAL))
1461 return 0;
1462
1463 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1464 if (err)
1465 return err;
1466
1467 ext4_lock_group(ac->ac_sb, group);
1468 max = mb_find_extent(e4b, 0, ac->ac_g_ex.fe_start,
1469 ac->ac_g_ex.fe_len, &ex);
1470
1471 if (max >= ac->ac_g_ex.fe_len && ac->ac_g_ex.fe_len == sbi->s_stripe) {
1472 ext4_fsblk_t start;
1473
1474 start = (e4b->bd_group * EXT4_BLOCKS_PER_GROUP(ac->ac_sb)) +
1475 ex.fe_start + le32_to_cpu(es->s_first_data_block);
1476 /* use do_div to get remainder (would be 64-bit modulo) */
1477 if (do_div(start, sbi->s_stripe) == 0) {
1478 ac->ac_found++;
1479 ac->ac_b_ex = ex;
1480 ext4_mb_use_best_found(ac, e4b);
1481 }
1482 } else if (max >= ac->ac_g_ex.fe_len) {
1483 BUG_ON(ex.fe_len <= 0);
1484 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1485 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1486 ac->ac_found++;
1487 ac->ac_b_ex = ex;
1488 ext4_mb_use_best_found(ac, e4b);
1489 } else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) {
1490 /* Sometimes, caller may want to merge even small
1491 * number of blocks to an existing extent */
1492 BUG_ON(ex.fe_len <= 0);
1493 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1494 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1495 ac->ac_found++;
1496 ac->ac_b_ex = ex;
1497 ext4_mb_use_best_found(ac, e4b);
1498 }
1499 ext4_unlock_group(ac->ac_sb, group);
1500 ext4_mb_release_desc(e4b);
1501
1502 return 0;
1503 }
1504
1505 /*
1506 * The routine scans buddy structures (not bitmap!) from given order
1507 * to max order and tries to find big enough chunk to satisfy the req
1508 */
1509 static void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac,
1510 struct ext4_buddy *e4b)
1511 {
1512 struct super_block *sb = ac->ac_sb;
1513 struct ext4_group_info *grp = e4b->bd_info;
1514 void *buddy;
1515 int i;
1516 int k;
1517 int max;
1518
1519 BUG_ON(ac->ac_2order <= 0);
1520 for (i = ac->ac_2order; i <= sb->s_blocksize_bits + 1; i++) {
1521 if (grp->bb_counters[i] == 0)
1522 continue;
1523
1524 buddy = mb_find_buddy(e4b, i, &max);
1525 BUG_ON(buddy == NULL);
1526
1527 k = mb_find_next_zero_bit(buddy, max, 0);
1528 BUG_ON(k >= max);
1529
1530 ac->ac_found++;
1531
1532 ac->ac_b_ex.fe_len = 1 << i;
1533 ac->ac_b_ex.fe_start = k << i;
1534 ac->ac_b_ex.fe_group = e4b->bd_group;
1535
1536 ext4_mb_use_best_found(ac, e4b);
1537
1538 BUG_ON(ac->ac_b_ex.fe_len != ac->ac_g_ex.fe_len);
1539
1540 if (EXT4_SB(sb)->s_mb_stats)
1541 atomic_inc(&EXT4_SB(sb)->s_bal_2orders);
1542
1543 break;
1544 }
1545 }
1546
1547 /*
1548 * The routine scans the group and measures all found extents.
1549 * In order to optimize scanning, caller must pass number of
1550 * free blocks in the group, so the routine can know upper limit.
1551 */
1552 static void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac,
1553 struct ext4_buddy *e4b)
1554 {
1555 struct super_block *sb = ac->ac_sb;
1556 void *bitmap = EXT4_MB_BITMAP(e4b);
1557 struct ext4_free_extent ex;
1558 int i;
1559 int free;
1560
1561 free = e4b->bd_info->bb_free;
1562 BUG_ON(free <= 0);
1563
1564 i = e4b->bd_info->bb_first_free;
1565
1566 while (free && ac->ac_status == AC_STATUS_CONTINUE) {
1567 i = mb_find_next_zero_bit(bitmap,
1568 EXT4_BLOCKS_PER_GROUP(sb), i);
1569 if (i >= EXT4_BLOCKS_PER_GROUP(sb)) {
1570 /*
1571 * IF we have corrupt bitmap, we won't find any
1572 * free blocks even though group info says we
1573 * we have free blocks
1574 */
1575 ext4_error(sb, __func__, "%d free blocks as per "
1576 "group info. But bitmap says 0\n",
1577 free);
1578 break;
1579 }
1580
1581 mb_find_extent(e4b, 0, i, ac->ac_g_ex.fe_len, &ex);
1582 BUG_ON(ex.fe_len <= 0);
1583 if (free < ex.fe_len) {
1584 ext4_error(sb, __func__, "%d free blocks as per "
1585 "group info. But got %d blocks\n",
1586 free, ex.fe_len);
1587 /*
1588 * The number of free blocks differs. This mostly
1589 * indicate that the bitmap is corrupt. So exit
1590 * without claiming the space.
1591 */
1592 break;
1593 }
1594
1595 ext4_mb_measure_extent(ac, &ex, e4b);
1596
1597 i += ex.fe_len;
1598 free -= ex.fe_len;
1599 }
1600
1601 ext4_mb_check_limits(ac, e4b, 1);
1602 }
1603
1604 /*
1605 * This is a special case for storages like raid5
1606 * we try to find stripe-aligned chunks for stripe-size requests
1607 * XXX should do so at least for multiples of stripe size as well
1608 */
1609 static void ext4_mb_scan_aligned(struct ext4_allocation_context *ac,
1610 struct ext4_buddy *e4b)
1611 {
1612 struct super_block *sb = ac->ac_sb;
1613 struct ext4_sb_info *sbi = EXT4_SB(sb);
1614 void *bitmap = EXT4_MB_BITMAP(e4b);
1615 struct ext4_free_extent ex;
1616 ext4_fsblk_t first_group_block;
1617 ext4_fsblk_t a;
1618 ext4_grpblk_t i;
1619 int max;
1620
1621 BUG_ON(sbi->s_stripe == 0);
1622
1623 /* find first stripe-aligned block in group */
1624 first_group_block = e4b->bd_group * EXT4_BLOCKS_PER_GROUP(sb)
1625 + le32_to_cpu(sbi->s_es->s_first_data_block);
1626 a = first_group_block + sbi->s_stripe - 1;
1627 do_div(a, sbi->s_stripe);
1628 i = (a * sbi->s_stripe) - first_group_block;
1629
1630 while (i < EXT4_BLOCKS_PER_GROUP(sb)) {
1631 if (!mb_test_bit(i, bitmap)) {
1632 max = mb_find_extent(e4b, 0, i, sbi->s_stripe, &ex);
1633 if (max >= sbi->s_stripe) {
1634 ac->ac_found++;
1635 ac->ac_b_ex = ex;
1636 ext4_mb_use_best_found(ac, e4b);
1637 break;
1638 }
1639 }
1640 i += sbi->s_stripe;
1641 }
1642 }
1643
1644 static int ext4_mb_good_group(struct ext4_allocation_context *ac,
1645 ext4_group_t group, int cr)
1646 {
1647 unsigned free, fragments;
1648 unsigned i, bits;
1649 struct ext4_group_desc *desc;
1650 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
1651
1652 BUG_ON(cr < 0 || cr >= 4);
1653 BUG_ON(EXT4_MB_GRP_NEED_INIT(grp));
1654
1655 free = grp->bb_free;
1656 fragments = grp->bb_fragments;
1657 if (free == 0)
1658 return 0;
1659 if (fragments == 0)
1660 return 0;
1661
1662 switch (cr) {
1663 case 0:
1664 BUG_ON(ac->ac_2order == 0);
1665 /* If this group is uninitialized, skip it initially */
1666 desc = ext4_get_group_desc(ac->ac_sb, group, NULL);
1667 if (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))
1668 return 0;
1669
1670 bits = ac->ac_sb->s_blocksize_bits + 1;
1671 for (i = ac->ac_2order; i <= bits; i++)
1672 if (grp->bb_counters[i] > 0)
1673 return 1;
1674 break;
1675 case 1:
1676 if ((free / fragments) >= ac->ac_g_ex.fe_len)
1677 return 1;
1678 break;
1679 case 2:
1680 if (free >= ac->ac_g_ex.fe_len)
1681 return 1;
1682 break;
1683 case 3:
1684 return 1;
1685 default:
1686 BUG();
1687 }
1688
1689 return 0;
1690 }
1691
1692 static noinline_for_stack int
1693 ext4_mb_regular_allocator(struct ext4_allocation_context *ac)
1694 {
1695 ext4_group_t group;
1696 ext4_group_t i;
1697 int cr;
1698 int err = 0;
1699 int bsbits;
1700 struct ext4_sb_info *sbi;
1701 struct super_block *sb;
1702 struct ext4_buddy e4b;
1703 loff_t size, isize;
1704
1705 sb = ac->ac_sb;
1706 sbi = EXT4_SB(sb);
1707 BUG_ON(ac->ac_status == AC_STATUS_FOUND);
1708
1709 /* first, try the goal */
1710 err = ext4_mb_find_by_goal(ac, &e4b);
1711 if (err || ac->ac_status == AC_STATUS_FOUND)
1712 goto out;
1713
1714 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
1715 goto out;
1716
1717 /*
1718 * ac->ac2_order is set only if the fe_len is a power of 2
1719 * if ac2_order is set we also set criteria to 0 so that we
1720 * try exact allocation using buddy.
1721 */
1722 i = fls(ac->ac_g_ex.fe_len);
1723 ac->ac_2order = 0;
1724 /*
1725 * We search using buddy data only if the order of the request
1726 * is greater than equal to the sbi_s_mb_order2_reqs
1727 * You can tune it via /proc/fs/ext4/<partition>/order2_req
1728 */
1729 if (i >= sbi->s_mb_order2_reqs) {
1730 /*
1731 * This should tell if fe_len is exactly power of 2
1732 */
1733 if ((ac->ac_g_ex.fe_len & (~(1 << (i - 1)))) == 0)
1734 ac->ac_2order = i - 1;
1735 }
1736
1737 bsbits = ac->ac_sb->s_blocksize_bits;
1738 /* if stream allocation is enabled, use global goal */
1739 size = ac->ac_o_ex.fe_logical + ac->ac_o_ex.fe_len;
1740 isize = i_size_read(ac->ac_inode) >> bsbits;
1741 if (size < isize)
1742 size = isize;
1743
1744 if (size < sbi->s_mb_stream_request &&
1745 (ac->ac_flags & EXT4_MB_HINT_DATA)) {
1746 /* TBD: may be hot point */
1747 spin_lock(&sbi->s_md_lock);
1748 ac->ac_g_ex.fe_group = sbi->s_mb_last_group;
1749 ac->ac_g_ex.fe_start = sbi->s_mb_last_start;
1750 spin_unlock(&sbi->s_md_lock);
1751 }
1752 /* Let's just scan groups to find more-less suitable blocks */
1753 cr = ac->ac_2order ? 0 : 1;
1754 /*
1755 * cr == 0 try to get exact allocation,
1756 * cr == 3 try to get anything
1757 */
1758 repeat:
1759 for (; cr < 4 && ac->ac_status == AC_STATUS_CONTINUE; cr++) {
1760 ac->ac_criteria = cr;
1761 /*
1762 * searching for the right group start
1763 * from the goal value specified
1764 */
1765 group = ac->ac_g_ex.fe_group;
1766
1767 for (i = 0; i < EXT4_SB(sb)->s_groups_count; group++, i++) {
1768 struct ext4_group_info *grp;
1769 struct ext4_group_desc *desc;
1770
1771 if (group == EXT4_SB(sb)->s_groups_count)
1772 group = 0;
1773
1774 /* quick check to skip empty groups */
1775 grp = ext4_get_group_info(ac->ac_sb, group);
1776 if (grp->bb_free == 0)
1777 continue;
1778
1779 /*
1780 * if the group is already init we check whether it is
1781 * a good group and if not we don't load the buddy
1782 */
1783 if (EXT4_MB_GRP_NEED_INIT(grp)) {
1784 /*
1785 * we need full data about the group
1786 * to make a good selection
1787 */
1788 err = ext4_mb_load_buddy(sb, group, &e4b);
1789 if (err)
1790 goto out;
1791 ext4_mb_release_desc(&e4b);
1792 }
1793
1794 /*
1795 * If the particular group doesn't satisfy our
1796 * criteria we continue with the next group
1797 */
1798 if (!ext4_mb_good_group(ac, group, cr))
1799 continue;
1800
1801 err = ext4_mb_load_buddy(sb, group, &e4b);
1802 if (err)
1803 goto out;
1804
1805 ext4_lock_group(sb, group);
1806 if (!ext4_mb_good_group(ac, group, cr)) {
1807 /* someone did allocation from this group */
1808 ext4_unlock_group(sb, group);
1809 ext4_mb_release_desc(&e4b);
1810 continue;
1811 }
1812
1813 ac->ac_groups_scanned++;
1814 desc = ext4_get_group_desc(sb, group, NULL);
1815 if (cr == 0 || (desc->bg_flags &
1816 cpu_to_le16(EXT4_BG_BLOCK_UNINIT) &&
1817 ac->ac_2order != 0))
1818 ext4_mb_simple_scan_group(ac, &e4b);
1819 else if (cr == 1 &&
1820 ac->ac_g_ex.fe_len == sbi->s_stripe)
1821 ext4_mb_scan_aligned(ac, &e4b);
1822 else
1823 ext4_mb_complex_scan_group(ac, &e4b);
1824
1825 ext4_unlock_group(sb, group);
1826 ext4_mb_release_desc(&e4b);
1827
1828 if (ac->ac_status != AC_STATUS_CONTINUE)
1829 break;
1830 }
1831 }
1832
1833 if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND &&
1834 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1835 /*
1836 * We've been searching too long. Let's try to allocate
1837 * the best chunk we've found so far
1838 */
1839
1840 ext4_mb_try_best_found(ac, &e4b);
1841 if (ac->ac_status != AC_STATUS_FOUND) {
1842 /*
1843 * Someone more lucky has already allocated it.
1844 * The only thing we can do is just take first
1845 * found block(s)
1846 printk(KERN_DEBUG "EXT4-fs: someone won our chunk\n");
1847 */
1848 ac->ac_b_ex.fe_group = 0;
1849 ac->ac_b_ex.fe_start = 0;
1850 ac->ac_b_ex.fe_len = 0;
1851 ac->ac_status = AC_STATUS_CONTINUE;
1852 ac->ac_flags |= EXT4_MB_HINT_FIRST;
1853 cr = 3;
1854 atomic_inc(&sbi->s_mb_lost_chunks);
1855 goto repeat;
1856 }
1857 }
1858 out:
1859 return err;
1860 }
1861
1862 #ifdef EXT4_MB_HISTORY
1863 struct ext4_mb_proc_session {
1864 struct ext4_mb_history *history;
1865 struct super_block *sb;
1866 int start;
1867 int max;
1868 };
1869
1870 static void *ext4_mb_history_skip_empty(struct ext4_mb_proc_session *s,
1871 struct ext4_mb_history *hs,
1872 int first)
1873 {
1874 if (hs == s->history + s->max)
1875 hs = s->history;
1876 if (!first && hs == s->history + s->start)
1877 return NULL;
1878 while (hs->orig.fe_len == 0) {
1879 hs++;
1880 if (hs == s->history + s->max)
1881 hs = s->history;
1882 if (hs == s->history + s->start)
1883 return NULL;
1884 }
1885 return hs;
1886 }
1887
1888 static void *ext4_mb_seq_history_start(struct seq_file *seq, loff_t *pos)
1889 {
1890 struct ext4_mb_proc_session *s = seq->private;
1891 struct ext4_mb_history *hs;
1892 int l = *pos;
1893
1894 if (l == 0)
1895 return SEQ_START_TOKEN;
1896 hs = ext4_mb_history_skip_empty(s, s->history + s->start, 1);
1897 if (!hs)
1898 return NULL;
1899 while (--l && (hs = ext4_mb_history_skip_empty(s, ++hs, 0)) != NULL);
1900 return hs;
1901 }
1902
1903 static void *ext4_mb_seq_history_next(struct seq_file *seq, void *v,
1904 loff_t *pos)
1905 {
1906 struct ext4_mb_proc_session *s = seq->private;
1907 struct ext4_mb_history *hs = v;
1908
1909 ++*pos;
1910 if (v == SEQ_START_TOKEN)
1911 return ext4_mb_history_skip_empty(s, s->history + s->start, 1);
1912 else
1913 return ext4_mb_history_skip_empty(s, ++hs, 0);
1914 }
1915
1916 static int ext4_mb_seq_history_show(struct seq_file *seq, void *v)
1917 {
1918 char buf[25], buf2[25], buf3[25], *fmt;
1919 struct ext4_mb_history *hs = v;
1920
1921 if (v == SEQ_START_TOKEN) {
1922 seq_printf(seq, "%-5s %-8s %-23s %-23s %-23s %-5s "
1923 "%-5s %-2s %-5s %-5s %-5s %-6s\n",
1924 "pid", "inode", "original", "goal", "result", "found",
1925 "grps", "cr", "flags", "merge", "tail", "broken");
1926 return 0;
1927 }
1928
1929 if (hs->op == EXT4_MB_HISTORY_ALLOC) {
1930 fmt = "%-5u %-8u %-23s %-23s %-23s %-5u %-5u %-2u "
1931 "%-5u %-5s %-5u %-6u\n";
1932 sprintf(buf2, "%lu/%d/%u@%u", hs->result.fe_group,
1933 hs->result.fe_start, hs->result.fe_len,
1934 hs->result.fe_logical);
1935 sprintf(buf, "%lu/%d/%u@%u", hs->orig.fe_group,
1936 hs->orig.fe_start, hs->orig.fe_len,
1937 hs->orig.fe_logical);
1938 sprintf(buf3, "%lu/%d/%u@%u", hs->goal.fe_group,
1939 hs->goal.fe_start, hs->goal.fe_len,
1940 hs->goal.fe_logical);
1941 seq_printf(seq, fmt, hs->pid, hs->ino, buf, buf3, buf2,
1942 hs->found, hs->groups, hs->cr, hs->flags,
1943 hs->merged ? "M" : "", hs->tail,
1944 hs->buddy ? 1 << hs->buddy : 0);
1945 } else if (hs->op == EXT4_MB_HISTORY_PREALLOC) {
1946 fmt = "%-5u %-8u %-23s %-23s %-23s\n";
1947 sprintf(buf2, "%lu/%d/%u@%u", hs->result.fe_group,
1948 hs->result.fe_start, hs->result.fe_len,
1949 hs->result.fe_logical);
1950 sprintf(buf, "%lu/%d/%u@%u", hs->orig.fe_group,
1951 hs->orig.fe_start, hs->orig.fe_len,
1952 hs->orig.fe_logical);
1953 seq_printf(seq, fmt, hs->pid, hs->ino, buf, "", buf2);
1954 } else if (hs->op == EXT4_MB_HISTORY_DISCARD) {
1955 sprintf(buf2, "%lu/%d/%u", hs->result.fe_group,
1956 hs->result.fe_start, hs->result.fe_len);
1957 seq_printf(seq, "%-5u %-8u %-23s discard\n",
1958 hs->pid, hs->ino, buf2);
1959 } else if (hs->op == EXT4_MB_HISTORY_FREE) {
1960 sprintf(buf2, "%lu/%d/%u", hs->result.fe_group,
1961 hs->result.fe_start, hs->result.fe_len);
1962 seq_printf(seq, "%-5u %-8u %-23s free\n",
1963 hs->pid, hs->ino, buf2);
1964 }
1965 return 0;
1966 }
1967
1968 static void ext4_mb_seq_history_stop(struct seq_file *seq, void *v)
1969 {
1970 }
1971
1972 static struct seq_operations ext4_mb_seq_history_ops = {
1973 .start = ext4_mb_seq_history_start,
1974 .next = ext4_mb_seq_history_next,
1975 .stop = ext4_mb_seq_history_stop,
1976 .show = ext4_mb_seq_history_show,
1977 };
1978
1979 static int ext4_mb_seq_history_open(struct inode *inode, struct file *file)
1980 {
1981 struct super_block *sb = PDE(inode)->data;
1982 struct ext4_sb_info *sbi = EXT4_SB(sb);
1983 struct ext4_mb_proc_session *s;
1984 int rc;
1985 int size;
1986
1987 if (unlikely(sbi->s_mb_history == NULL))
1988 return -ENOMEM;
1989 s = kmalloc(sizeof(*s), GFP_KERNEL);
1990 if (s == NULL)
1991 return -ENOMEM;
1992 s->sb = sb;
1993 size = sizeof(struct ext4_mb_history) * sbi->s_mb_history_max;
1994 s->history = kmalloc(size, GFP_KERNEL);
1995 if (s->history == NULL) {
1996 kfree(s);
1997 return -ENOMEM;
1998 }
1999
2000 spin_lock(&sbi->s_mb_history_lock);
2001 memcpy(s->history, sbi->s_mb_history, size);
2002 s->max = sbi->s_mb_history_max;
2003 s->start = sbi->s_mb_history_cur % s->max;
2004 spin_unlock(&sbi->s_mb_history_lock);
2005
2006 rc = seq_open(file, &ext4_mb_seq_history_ops);
2007 if (rc == 0) {
2008 struct seq_file *m = (struct seq_file *)file->private_data;
2009 m->private = s;
2010 } else {
2011 kfree(s->history);
2012 kfree(s);
2013 }
2014 return rc;
2015
2016 }
2017
2018 static int ext4_mb_seq_history_release(struct inode *inode, struct file *file)
2019 {
2020 struct seq_file *seq = (struct seq_file *)file->private_data;
2021 struct ext4_mb_proc_session *s = seq->private;
2022 kfree(s->history);
2023 kfree(s);
2024 return seq_release(inode, file);
2025 }
2026
2027 static ssize_t ext4_mb_seq_history_write(struct file *file,
2028 const char __user *buffer,
2029 size_t count, loff_t *ppos)
2030 {
2031 struct seq_file *seq = (struct seq_file *)file->private_data;
2032 struct ext4_mb_proc_session *s = seq->private;
2033 struct super_block *sb = s->sb;
2034 char str[32];
2035 int value;
2036
2037 if (count >= sizeof(str)) {
2038 printk(KERN_ERR "EXT4-fs: %s string too long, max %u bytes\n",
2039 "mb_history", (int)sizeof(str));
2040 return -EOVERFLOW;
2041 }
2042
2043 if (copy_from_user(str, buffer, count))
2044 return -EFAULT;
2045
2046 value = simple_strtol(str, NULL, 0);
2047 if (value < 0)
2048 return -ERANGE;
2049 EXT4_SB(sb)->s_mb_history_filter = value;
2050
2051 return count;
2052 }
2053
2054 static struct file_operations ext4_mb_seq_history_fops = {
2055 .owner = THIS_MODULE,
2056 .open = ext4_mb_seq_history_open,
2057 .read = seq_read,
2058 .write = ext4_mb_seq_history_write,
2059 .llseek = seq_lseek,
2060 .release = ext4_mb_seq_history_release,
2061 };
2062
2063 static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos)
2064 {
2065 struct super_block *sb = seq->private;
2066 struct ext4_sb_info *sbi = EXT4_SB(sb);
2067 ext4_group_t group;
2068
2069 if (*pos < 0 || *pos >= sbi->s_groups_count)
2070 return NULL;
2071
2072 group = *pos + 1;
2073 return (void *) group;
2074 }
2075
2076 static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos)
2077 {
2078 struct super_block *sb = seq->private;
2079 struct ext4_sb_info *sbi = EXT4_SB(sb);
2080 ext4_group_t group;
2081
2082 ++*pos;
2083 if (*pos < 0 || *pos >= sbi->s_groups_count)
2084 return NULL;
2085 group = *pos + 1;
2086 return (void *) group;;
2087 }
2088
2089 static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v)
2090 {
2091 struct super_block *sb = seq->private;
2092 long group = (long) v;
2093 int i;
2094 int err;
2095 struct ext4_buddy e4b;
2096 struct sg {
2097 struct ext4_group_info info;
2098 unsigned short counters[16];
2099 } sg;
2100
2101 group--;
2102 if (group == 0)
2103 seq_printf(seq, "#%-5s: %-5s %-5s %-5s "
2104 "[ %-5s %-5s %-5s %-5s %-5s %-5s %-5s "
2105 "%-5s %-5s %-5s %-5s %-5s %-5s %-5s ]\n",
2106 "group", "free", "frags", "first",
2107 "2^0", "2^1", "2^2", "2^3", "2^4", "2^5", "2^6",
2108 "2^7", "2^8", "2^9", "2^10", "2^11", "2^12", "2^13");
2109
2110 i = (sb->s_blocksize_bits + 2) * sizeof(sg.info.bb_counters[0]) +
2111 sizeof(struct ext4_group_info);
2112 err = ext4_mb_load_buddy(sb, group, &e4b);
2113 if (err) {
2114 seq_printf(seq, "#%-5lu: I/O error\n", group);
2115 return 0;
2116 }
2117 ext4_lock_group(sb, group);
2118 memcpy(&sg, ext4_get_group_info(sb, group), i);
2119 ext4_unlock_group(sb, group);
2120 ext4_mb_release_desc(&e4b);
2121
2122 seq_printf(seq, "#%-5lu: %-5u %-5u %-5u [", group, sg.info.bb_free,
2123 sg.info.bb_fragments, sg.info.bb_first_free);
2124 for (i = 0; i <= 13; i++)
2125 seq_printf(seq, " %-5u", i <= sb->s_blocksize_bits + 1 ?
2126 sg.info.bb_counters[i] : 0);
2127 seq_printf(seq, " ]\n");
2128
2129 return 0;
2130 }
2131
2132 static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v)
2133 {
2134 }
2135
2136 static struct seq_operations ext4_mb_seq_groups_ops = {
2137 .start = ext4_mb_seq_groups_start,
2138 .next = ext4_mb_seq_groups_next,
2139 .stop = ext4_mb_seq_groups_stop,
2140 .show = ext4_mb_seq_groups_show,
2141 };
2142
2143 static int ext4_mb_seq_groups_open(struct inode *inode, struct file *file)
2144 {
2145 struct super_block *sb = PDE(inode)->data;
2146 int rc;
2147
2148 rc = seq_open(file, &ext4_mb_seq_groups_ops);
2149 if (rc == 0) {
2150 struct seq_file *m = (struct seq_file *)file->private_data;
2151 m->private = sb;
2152 }
2153 return rc;
2154
2155 }
2156
2157 static struct file_operations ext4_mb_seq_groups_fops = {
2158 .owner = THIS_MODULE,
2159 .open = ext4_mb_seq_groups_open,
2160 .read = seq_read,
2161 .llseek = seq_lseek,
2162 .release = seq_release,
2163 };
2164
2165 static void ext4_mb_history_release(struct super_block *sb)
2166 {
2167 struct ext4_sb_info *sbi = EXT4_SB(sb);
2168
2169 remove_proc_entry("mb_groups", sbi->s_mb_proc);
2170 remove_proc_entry("mb_history", sbi->s_mb_proc);
2171
2172 kfree(sbi->s_mb_history);
2173 }
2174
2175 static void ext4_mb_history_init(struct super_block *sb)
2176 {
2177 struct ext4_sb_info *sbi = EXT4_SB(sb);
2178 int i;
2179
2180 if (sbi->s_mb_proc != NULL) {
2181 proc_create_data("mb_history", S_IRUGO, sbi->s_mb_proc,
2182 &ext4_mb_seq_history_fops, sb);
2183 proc_create_data("mb_groups", S_IRUGO, sbi->s_mb_proc,
2184 &ext4_mb_seq_groups_fops, sb);
2185 }
2186
2187 sbi->s_mb_history_max = 1000;
2188 sbi->s_mb_history_cur = 0;
2189 spin_lock_init(&sbi->s_mb_history_lock);
2190 i = sbi->s_mb_history_max * sizeof(struct ext4_mb_history);
2191 sbi->s_mb_history = kzalloc(i, GFP_KERNEL);
2192 /* if we can't allocate history, then we simple won't use it */
2193 }
2194
2195 static noinline_for_stack void
2196 ext4_mb_store_history(struct ext4_allocation_context *ac)
2197 {
2198 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
2199 struct ext4_mb_history h;
2200
2201 if (unlikely(sbi->s_mb_history == NULL))
2202 return;
2203
2204 if (!(ac->ac_op & sbi->s_mb_history_filter))
2205 return;
2206
2207 h.op = ac->ac_op;
2208 h.pid = current->pid;
2209 h.ino = ac->ac_inode ? ac->ac_inode->i_ino : 0;
2210 h.orig = ac->ac_o_ex;
2211 h.result = ac->ac_b_ex;
2212 h.flags = ac->ac_flags;
2213 h.found = ac->ac_found;
2214 h.groups = ac->ac_groups_scanned;
2215 h.cr = ac->ac_criteria;
2216 h.tail = ac->ac_tail;
2217 h.buddy = ac->ac_buddy;
2218 h.merged = 0;
2219 if (ac->ac_op == EXT4_MB_HISTORY_ALLOC) {
2220 if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start &&
2221 ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group)
2222 h.merged = 1;
2223 h.goal = ac->ac_g_ex;
2224 h.result = ac->ac_f_ex;
2225 }
2226
2227 spin_lock(&sbi->s_mb_history_lock);
2228 memcpy(sbi->s_mb_history + sbi->s_mb_history_cur, &h, sizeof(h));
2229 if (++sbi->s_mb_history_cur >= sbi->s_mb_history_max)
2230 sbi->s_mb_history_cur = 0;
2231 spin_unlock(&sbi->s_mb_history_lock);
2232 }
2233
2234 #else
2235 #define ext4_mb_history_release(sb)
2236 #define ext4_mb_history_init(sb)
2237 #endif
2238
2239
2240 /* Create and initialize ext4_group_info data for the given group. */
2241 int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group,
2242 struct ext4_group_desc *desc)
2243 {
2244 int i, len;
2245 int metalen = 0;
2246 struct ext4_sb_info *sbi = EXT4_SB(sb);
2247 struct ext4_group_info **meta_group_info;
2248
2249 /*
2250 * First check if this group is the first of a reserved block.
2251 * If it's true, we have to allocate a new table of pointers
2252 * to ext4_group_info structures
2253 */
2254 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
2255 metalen = sizeof(*meta_group_info) <<
2256 EXT4_DESC_PER_BLOCK_BITS(sb);
2257 meta_group_info = kmalloc(metalen, GFP_KERNEL);
2258 if (meta_group_info == NULL) {
2259 printk(KERN_ERR "EXT4-fs: can't allocate mem for a "
2260 "buddy group\n");
2261 goto exit_meta_group_info;
2262 }
2263 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)] =
2264 meta_group_info;
2265 }
2266
2267 /*
2268 * calculate needed size. if change bb_counters size,
2269 * don't forget about ext4_mb_generate_buddy()
2270 */
2271 len = offsetof(typeof(**meta_group_info),
2272 bb_counters[sb->s_blocksize_bits + 2]);
2273
2274 meta_group_info =
2275 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)];
2276 i = group & (EXT4_DESC_PER_BLOCK(sb) - 1);
2277
2278 meta_group_info[i] = kzalloc(len, GFP_KERNEL);
2279 if (meta_group_info[i] == NULL) {
2280 printk(KERN_ERR "EXT4-fs: can't allocate buddy mem\n");
2281 goto exit_group_info;
2282 }
2283 set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT,
2284 &(meta_group_info[i]->bb_state));
2285
2286 /*
2287 * initialize bb_free to be able to skip
2288 * empty groups without initialization
2289 */
2290 if (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
2291 meta_group_info[i]->bb_free =
2292 ext4_free_blocks_after_init(sb, group, desc);
2293 } else {
2294 meta_group_info[i]->bb_free =
2295 le16_to_cpu(desc->bg_free_blocks_count);
2296 }
2297
2298 INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list);
2299
2300 #ifdef DOUBLE_CHECK
2301 {
2302 struct buffer_head *bh;
2303 meta_group_info[i]->bb_bitmap =
2304 kmalloc(sb->s_blocksize, GFP_KERNEL);
2305 BUG_ON(meta_group_info[i]->bb_bitmap == NULL);
2306 bh = ext4_read_block_bitmap(sb, group);
2307 BUG_ON(bh == NULL);
2308 memcpy(meta_group_info[i]->bb_bitmap, bh->b_data,
2309 sb->s_blocksize);
2310 put_bh(bh);
2311 }
2312 #endif
2313
2314 return 0;
2315
2316 exit_group_info:
2317 /* If a meta_group_info table has been allocated, release it now */
2318 if (group % EXT4_DESC_PER_BLOCK(sb) == 0)
2319 kfree(sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)]);
2320 exit_meta_group_info:
2321 return -ENOMEM;
2322 } /* ext4_mb_add_groupinfo */
2323
2324 /*
2325 * Add a group to the existing groups.
2326 * This function is used for online resize
2327 */
2328 int ext4_mb_add_more_groupinfo(struct super_block *sb, ext4_group_t group,
2329 struct ext4_group_desc *desc)
2330 {
2331 struct ext4_sb_info *sbi = EXT4_SB(sb);
2332 struct inode *inode = sbi->s_buddy_cache;
2333 int blocks_per_page;
2334 int block;
2335 int pnum;
2336 struct page *page;
2337 int err;
2338
2339 /* Add group based on group descriptor*/
2340 err = ext4_mb_add_groupinfo(sb, group, desc);
2341 if (err)
2342 return err;
2343
2344 /*
2345 * Cache pages containing dynamic mb_alloc datas (buddy and bitmap
2346 * datas) are set not up to date so that they will be re-initilaized
2347 * during the next call to ext4_mb_load_buddy
2348 */
2349
2350 /* Set buddy page as not up to date */
2351 blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize;
2352 block = group * 2;
2353 pnum = block / blocks_per_page;
2354 page = find_get_page(inode->i_mapping, pnum);
2355 if (page != NULL) {
2356 ClearPageUptodate(page);
2357 page_cache_release(page);
2358 }
2359
2360 /* Set bitmap page as not up to date */
2361 block++;
2362 pnum = block / blocks_per_page;
2363 page = find_get_page(inode->i_mapping, pnum);
2364 if (page != NULL) {
2365 ClearPageUptodate(page);
2366 page_cache_release(page);
2367 }
2368
2369 return 0;
2370 }
2371
2372 /*
2373 * Update an existing group.
2374 * This function is used for online resize
2375 */
2376 void ext4_mb_update_group_info(struct ext4_group_info *grp, ext4_grpblk_t add)
2377 {
2378 grp->bb_free += add;
2379 }
2380
2381 static int ext4_mb_init_backend(struct super_block *sb)
2382 {
2383 ext4_group_t i;
2384 int metalen;
2385 struct ext4_sb_info *sbi = EXT4_SB(sb);
2386 struct ext4_super_block *es = sbi->s_es;
2387 int num_meta_group_infos;
2388 int num_meta_group_infos_max;
2389 int array_size;
2390 struct ext4_group_info **meta_group_info;
2391 struct ext4_group_desc *desc;
2392
2393 /* This is the number of blocks used by GDT */
2394 num_meta_group_infos = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) -
2395 1) >> EXT4_DESC_PER_BLOCK_BITS(sb);
2396
2397 /*
2398 * This is the total number of blocks used by GDT including
2399 * the number of reserved blocks for GDT.
2400 * The s_group_info array is allocated with this value
2401 * to allow a clean online resize without a complex
2402 * manipulation of pointer.
2403 * The drawback is the unused memory when no resize
2404 * occurs but it's very low in terms of pages
2405 * (see comments below)
2406 * Need to handle this properly when META_BG resizing is allowed
2407 */
2408 num_meta_group_infos_max = num_meta_group_infos +
2409 le16_to_cpu(es->s_reserved_gdt_blocks);
2410
2411 /*
2412 * array_size is the size of s_group_info array. We round it
2413 * to the next power of two because this approximation is done
2414 * internally by kmalloc so we can have some more memory
2415 * for free here (e.g. may be used for META_BG resize).
2416 */
2417 array_size = 1;
2418 while (array_size < sizeof(*sbi->s_group_info) *
2419 num_meta_group_infos_max)
2420 array_size = array_size << 1;
2421 /* An 8TB filesystem with 64-bit pointers requires a 4096 byte
2422 * kmalloc. A 128kb malloc should suffice for a 256TB filesystem.
2423 * So a two level scheme suffices for now. */
2424 sbi->s_group_info = kmalloc(array_size, GFP_KERNEL);
2425 if (sbi->s_group_info == NULL) {
2426 printk(KERN_ERR "EXT4-fs: can't allocate buddy meta group\n");
2427 return -ENOMEM;
2428 }
2429 sbi->s_buddy_cache = new_inode(sb);
2430 if (sbi->s_buddy_cache == NULL) {
2431 printk(KERN_ERR "EXT4-fs: can't get new inode\n");
2432 goto err_freesgi;
2433 }
2434 EXT4_I(sbi->s_buddy_cache)->i_disksize = 0;
2435
2436 metalen = sizeof(*meta_group_info) << EXT4_DESC_PER_BLOCK_BITS(sb);
2437 for (i = 0; i < num_meta_group_infos; i++) {
2438 if ((i + 1) == num_meta_group_infos)
2439 metalen = sizeof(*meta_group_info) *
2440 (sbi->s_groups_count -
2441 (i << EXT4_DESC_PER_BLOCK_BITS(sb)));
2442 meta_group_info = kmalloc(metalen, GFP_KERNEL);
2443 if (meta_group_info == NULL) {
2444 printk(KERN_ERR "EXT4-fs: can't allocate mem for a "
2445 "buddy group\n");
2446 goto err_freemeta;
2447 }
2448 sbi->s_group_info[i] = meta_group_info;
2449 }
2450
2451 for (i = 0; i < sbi->s_groups_count; i++) {
2452 desc = ext4_get_group_desc(sb, i, NULL);
2453 if (desc == NULL) {
2454 printk(KERN_ERR
2455 "EXT4-fs: can't read descriptor %lu\n", i);
2456 goto err_freebuddy;
2457 }
2458 if (ext4_mb_add_groupinfo(sb, i, desc) != 0)
2459 goto err_freebuddy;
2460 }
2461
2462 return 0;
2463
2464 err_freebuddy:
2465 while (i-- > 0)
2466 kfree(ext4_get_group_info(sb, i));
2467 i = num_meta_group_infos;
2468 err_freemeta:
2469 while (i-- > 0)
2470 kfree(sbi->s_group_info[i]);
2471 iput(sbi->s_buddy_cache);
2472 err_freesgi:
2473 kfree(sbi->s_group_info);
2474 return -ENOMEM;
2475 }
2476
2477 int ext4_mb_init(struct super_block *sb, int needs_recovery)
2478 {
2479 struct ext4_sb_info *sbi = EXT4_SB(sb);
2480 unsigned i;
2481 unsigned offset;
2482 unsigned max;
2483 int ret;
2484
2485 if (!test_opt(sb, MBALLOC))
2486 return 0;
2487
2488 i = (sb->s_blocksize_bits + 2) * sizeof(unsigned short);
2489
2490 sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL);
2491 if (sbi->s_mb_offsets == NULL) {
2492 clear_opt(sbi->s_mount_opt, MBALLOC);
2493 return -ENOMEM;
2494 }
2495 sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL);
2496 if (sbi->s_mb_maxs == NULL) {
2497 clear_opt(sbi->s_mount_opt, MBALLOC);
2498 kfree(sbi->s_mb_maxs);
2499 return -ENOMEM;
2500 }
2501
2502 /* order 0 is regular bitmap */
2503 sbi->s_mb_maxs[0] = sb->s_blocksize << 3;
2504 sbi->s_mb_offsets[0] = 0;
2505
2506 i = 1;
2507 offset = 0;
2508 max = sb->s_blocksize << 2;
2509 do {
2510 sbi->s_mb_offsets[i] = offset;
2511 sbi->s_mb_maxs[i] = max;
2512 offset += 1 << (sb->s_blocksize_bits - i);
2513 max = max >> 1;
2514 i++;
2515 } while (i <= sb->s_blocksize_bits + 1);
2516
2517 /* init file for buddy data */
2518 ret = ext4_mb_init_backend(sb);
2519 if (ret != 0) {
2520 clear_opt(sbi->s_mount_opt, MBALLOC);
2521 kfree(sbi->s_mb_offsets);
2522 kfree(sbi->s_mb_maxs);
2523 return ret;
2524 }
2525
2526 spin_lock_init(&sbi->s_md_lock);
2527 INIT_LIST_HEAD(&sbi->s_active_transaction);
2528 INIT_LIST_HEAD(&sbi->s_closed_transaction);
2529 INIT_LIST_HEAD(&sbi->s_committed_transaction);
2530 spin_lock_init(&sbi->s_bal_lock);
2531
2532 sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN;
2533 sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN;
2534 sbi->s_mb_stats = MB_DEFAULT_STATS;
2535 sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD;
2536 sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS;
2537 sbi->s_mb_history_filter = EXT4_MB_HISTORY_DEFAULT;
2538 sbi->s_mb_group_prealloc = MB_DEFAULT_GROUP_PREALLOC;
2539
2540 i = sizeof(struct ext4_locality_group) * NR_CPUS;
2541 sbi->s_locality_groups = kmalloc(i, GFP_KERNEL);
2542 if (sbi->s_locality_groups == NULL) {
2543 clear_opt(sbi->s_mount_opt, MBALLOC);
2544 kfree(sbi->s_mb_offsets);
2545 kfree(sbi->s_mb_maxs);
2546 return -ENOMEM;
2547 }
2548 for (i = 0; i < NR_CPUS; i++) {
2549 struct ext4_locality_group *lg;
2550 lg = &sbi->s_locality_groups[i];
2551 mutex_init(&lg->lg_mutex);
2552 INIT_LIST_HEAD(&lg->lg_prealloc_list);
2553 spin_lock_init(&lg->lg_prealloc_lock);
2554 }
2555
2556 ext4_mb_init_per_dev_proc(sb);
2557 ext4_mb_history_init(sb);
2558
2559 printk("EXT4-fs: mballoc enabled\n");
2560 return 0;
2561 }
2562
2563 /* need to called with ext4 group lock (ext4_lock_group) */
2564 static void ext4_mb_cleanup_pa(struct ext4_group_info *grp)
2565 {
2566 struct ext4_prealloc_space *pa;
2567 struct list_head *cur, *tmp;
2568 int count = 0;
2569
2570 list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) {
2571 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
2572 list_del(&pa->pa_group_list);
2573 count++;
2574 kfree(pa);
2575 }
2576 if (count)
2577 mb_debug("mballoc: %u PAs left\n", count);
2578
2579 }
2580
2581 int ext4_mb_release(struct super_block *sb)
2582 {
2583 ext4_group_t i;
2584 int num_meta_group_infos;
2585 struct ext4_group_info *grinfo;
2586 struct ext4_sb_info *sbi = EXT4_SB(sb);
2587
2588 if (!test_opt(sb, MBALLOC))
2589 return 0;
2590
2591 /* release freed, non-committed blocks */
2592 spin_lock(&sbi->s_md_lock);
2593 list_splice_init(&sbi->s_closed_transaction,
2594 &sbi->s_committed_transaction);
2595 list_splice_init(&sbi->s_active_transaction,
2596 &sbi->s_committed_transaction);
2597 spin_unlock(&sbi->s_md_lock);
2598 ext4_mb_free_committed_blocks(sb);
2599
2600 if (sbi->s_group_info) {
2601 for (i = 0; i < sbi->s_groups_count; i++) {
2602 grinfo = ext4_get_group_info(sb, i);
2603 #ifdef DOUBLE_CHECK
2604 kfree(grinfo->bb_bitmap);
2605 #endif
2606 ext4_lock_group(sb, i);
2607 ext4_mb_cleanup_pa(grinfo);
2608 ext4_unlock_group(sb, i);
2609 kfree(grinfo);
2610 }
2611 num_meta_group_infos = (sbi->s_groups_count +
2612 EXT4_DESC_PER_BLOCK(sb) - 1) >>
2613 EXT4_DESC_PER_BLOCK_BITS(sb);
2614 for (i = 0; i < num_meta_group_infos; i++)
2615 kfree(sbi->s_group_info[i]);
2616 kfree(sbi->s_group_info);
2617 }
2618 kfree(sbi->s_mb_offsets);
2619 kfree(sbi->s_mb_maxs);
2620 if (sbi->s_buddy_cache)
2621 iput(sbi->s_buddy_cache);
2622 if (sbi->s_mb_stats) {
2623 printk(KERN_INFO
2624 "EXT4-fs: mballoc: %u blocks %u reqs (%u success)\n",
2625 atomic_read(&sbi->s_bal_allocated),
2626 atomic_read(&sbi->s_bal_reqs),
2627 atomic_read(&sbi->s_bal_success));
2628 printk(KERN_INFO
2629 "EXT4-fs: mballoc: %u extents scanned, %u goal hits, "
2630 "%u 2^N hits, %u breaks, %u lost\n",
2631 atomic_read(&sbi->s_bal_ex_scanned),
2632 atomic_read(&sbi->s_bal_goals),
2633 atomic_read(&sbi->s_bal_2orders),
2634 atomic_read(&sbi->s_bal_breaks),
2635 atomic_read(&sbi->s_mb_lost_chunks));
2636 printk(KERN_INFO
2637 "EXT4-fs: mballoc: %lu generated and it took %Lu\n",
2638 sbi->s_mb_buddies_generated++,
2639 sbi->s_mb_generation_time);
2640 printk(KERN_INFO
2641 "EXT4-fs: mballoc: %u preallocated, %u discarded\n",
2642 atomic_read(&sbi->s_mb_preallocated),
2643 atomic_read(&sbi->s_mb_discarded));
2644 }
2645
2646 kfree(sbi->s_locality_groups);
2647
2648 ext4_mb_history_release(sb);
2649 ext4_mb_destroy_per_dev_proc(sb);
2650
2651 return 0;
2652 }
2653
2654 static noinline_for_stack void
2655 ext4_mb_free_committed_blocks(struct super_block *sb)
2656 {
2657 struct ext4_sb_info *sbi = EXT4_SB(sb);
2658 int err;
2659 int i;
2660 int count = 0;
2661 int count2 = 0;
2662 struct ext4_free_metadata *md;
2663 struct ext4_buddy e4b;
2664
2665 if (list_empty(&sbi->s_committed_transaction))
2666 return;
2667
2668 /* there is committed blocks to be freed yet */
2669 do {
2670 /* get next array of blocks */
2671 md = NULL;
2672 spin_lock(&sbi->s_md_lock);
2673 if (!list_empty(&sbi->s_committed_transaction)) {
2674 md = list_entry(sbi->s_committed_transaction.next,
2675 struct ext4_free_metadata, list);
2676 list_del(&md->list);
2677 }
2678 spin_unlock(&sbi->s_md_lock);
2679
2680 if (md == NULL)
2681 break;
2682
2683 mb_debug("gonna free %u blocks in group %lu (0x%p):",
2684 md->num, md->group, md);
2685
2686 err = ext4_mb_load_buddy(sb, md->group, &e4b);
2687 /* we expect to find existing buddy because it's pinned */
2688 BUG_ON(err != 0);
2689
2690 /* there are blocks to put in buddy to make them really free */
2691 count += md->num;
2692 count2++;
2693 ext4_lock_group(sb, md->group);
2694 for (i = 0; i < md->num; i++) {
2695 mb_debug(" %u", md->blocks[i]);
2696 mb_free_blocks(NULL, &e4b, md->blocks[i], 1);
2697 }
2698 mb_debug("\n");
2699 ext4_unlock_group(sb, md->group);
2700
2701 /* balance refcounts from ext4_mb_free_metadata() */
2702 page_cache_release(e4b.bd_buddy_page);
2703 page_cache_release(e4b.bd_bitmap_page);
2704
2705 kfree(md);
2706 ext4_mb_release_desc(&e4b);
2707
2708 } while (md);
2709
2710 mb_debug("freed %u blocks in %u structures\n", count, count2);
2711 }
2712
2713 #define EXT4_MB_STATS_NAME "stats"
2714 #define EXT4_MB_MAX_TO_SCAN_NAME "max_to_scan"
2715 #define EXT4_MB_MIN_TO_SCAN_NAME "min_to_scan"
2716 #define EXT4_MB_ORDER2_REQ "order2_req"
2717 #define EXT4_MB_STREAM_REQ "stream_req"
2718 #define EXT4_MB_GROUP_PREALLOC "group_prealloc"
2719
2720
2721
2722 #define MB_PROC_FOPS(name) \
2723 static int ext4_mb_##name##_proc_show(struct seq_file *m, void *v) \
2724 { \
2725 struct ext4_sb_info *sbi = m->private; \
2726 \
2727 seq_printf(m, "%ld\n", sbi->s_mb_##name); \
2728 return 0; \
2729 } \
2730 \
2731 static int ext4_mb_##name##_proc_open(struct inode *inode, struct file *file)\
2732 { \
2733 return single_open(file, ext4_mb_##name##_proc_show, PDE(inode)->data);\
2734 } \
2735 \
2736 static ssize_t ext4_mb_##name##_proc_write(struct file *file, \
2737 const char __user *buf, size_t cnt, loff_t *ppos) \
2738 { \
2739 struct ext4_sb_info *sbi = PDE(file->f_path.dentry->d_inode)->data;\
2740 char str[32]; \
2741 long value; \
2742 if (cnt >= sizeof(str)) \
2743 return -EINVAL; \
2744 if (copy_from_user(str, buf, cnt)) \
2745 return -EFAULT; \
2746 value = simple_strtol(str, NULL, 0); \
2747 if (value <= 0) \
2748 return -ERANGE; \
2749 sbi->s_mb_##name = value; \
2750 return cnt; \
2751 } \
2752 \
2753 static const struct file_operations ext4_mb_##name##_proc_fops = { \
2754 .owner = THIS_MODULE, \
2755 .open = ext4_mb_##name##_proc_open, \
2756 .read = seq_read, \
2757 .llseek = seq_lseek, \
2758 .release = single_release, \
2759 .write = ext4_mb_##name##_proc_write, \
2760 };
2761
2762 MB_PROC_FOPS(stats);
2763 MB_PROC_FOPS(max_to_scan);
2764 MB_PROC_FOPS(min_to_scan);
2765 MB_PROC_FOPS(order2_reqs);
2766 MB_PROC_FOPS(stream_request);
2767 MB_PROC_FOPS(group_prealloc);
2768
2769 #define MB_PROC_HANDLER(name, var) \
2770 do { \
2771 proc = proc_create_data(name, mode, sbi->s_mb_proc, \
2772 &ext4_mb_##var##_proc_fops, sbi); \
2773 if (proc == NULL) { \
2774 printk(KERN_ERR "EXT4-fs: can't to create %s\n", name); \
2775 goto err_out; \
2776 } \
2777 } while (0)
2778
2779 static int ext4_mb_init_per_dev_proc(struct super_block *sb)
2780 {
2781 mode_t mode = S_IFREG | S_IRUGO | S_IWUSR;
2782 struct ext4_sb_info *sbi = EXT4_SB(sb);
2783 struct proc_dir_entry *proc;
2784 char devname[64];
2785
2786 if (proc_root_ext4 == NULL) {
2787 sbi->s_mb_proc = NULL;
2788 return -EINVAL;
2789 }
2790 bdevname(sb->s_bdev, devname);
2791 sbi->s_mb_proc = proc_mkdir(devname, proc_root_ext4);
2792
2793 MB_PROC_HANDLER(EXT4_MB_STATS_NAME, stats);
2794 MB_PROC_HANDLER(EXT4_MB_MAX_TO_SCAN_NAME, max_to_scan);
2795 MB_PROC_HANDLER(EXT4_MB_MIN_TO_SCAN_NAME, min_to_scan);
2796 MB_PROC_HANDLER(EXT4_MB_ORDER2_REQ, order2_reqs);
2797 MB_PROC_HANDLER(EXT4_MB_STREAM_REQ, stream_request);
2798 MB_PROC_HANDLER(EXT4_MB_GROUP_PREALLOC, group_prealloc);
2799
2800 return 0;
2801
2802 err_out:
2803 printk(KERN_ERR "EXT4-fs: Unable to create %s\n", devname);
2804 remove_proc_entry(EXT4_MB_GROUP_PREALLOC, sbi->s_mb_proc);
2805 remove_proc_entry(EXT4_MB_STREAM_REQ, sbi->s_mb_proc);
2806 remove_proc_entry(EXT4_MB_ORDER2_REQ, sbi->s_mb_proc);
2807 remove_proc_entry(EXT4_MB_MIN_TO_SCAN_NAME, sbi->s_mb_proc);
2808 remove_proc_entry(EXT4_MB_MAX_TO_SCAN_NAME, sbi->s_mb_proc);
2809 remove_proc_entry(EXT4_MB_STATS_NAME, sbi->s_mb_proc);
2810 remove_proc_entry(devname, proc_root_ext4);
2811 sbi->s_mb_proc = NULL;
2812
2813 return -ENOMEM;
2814 }
2815
2816 static int ext4_mb_destroy_per_dev_proc(struct super_block *sb)
2817 {
2818 struct ext4_sb_info *sbi = EXT4_SB(sb);
2819 char devname[64];
2820
2821 if (sbi->s_mb_proc == NULL)
2822 return -EINVAL;
2823
2824 bdevname(sb->s_bdev, devname);
2825 remove_proc_entry(EXT4_MB_GROUP_PREALLOC, sbi->s_mb_proc);
2826 remove_proc_entry(EXT4_MB_STREAM_REQ, sbi->s_mb_proc);
2827 remove_proc_entry(EXT4_MB_ORDER2_REQ, sbi->s_mb_proc);
2828 remove_proc_entry(EXT4_MB_MIN_TO_SCAN_NAME, sbi->s_mb_proc);
2829 remove_proc_entry(EXT4_MB_MAX_TO_SCAN_NAME, sbi->s_mb_proc);
2830 remove_proc_entry(EXT4_MB_STATS_NAME, sbi->s_mb_proc);
2831 remove_proc_entry(devname, proc_root_ext4);
2832
2833 return 0;
2834 }
2835
2836 int __init init_ext4_mballoc(void)
2837 {
2838 ext4_pspace_cachep =
2839 kmem_cache_create("ext4_prealloc_space",
2840 sizeof(struct ext4_prealloc_space),
2841 0, SLAB_RECLAIM_ACCOUNT, NULL);
2842 if (ext4_pspace_cachep == NULL)
2843 return -ENOMEM;
2844
2845 ext4_ac_cachep =
2846 kmem_cache_create("ext4_alloc_context",
2847 sizeof(struct ext4_allocation_context),
2848 0, SLAB_RECLAIM_ACCOUNT, NULL);
2849 if (ext4_ac_cachep == NULL) {
2850 kmem_cache_destroy(ext4_pspace_cachep);
2851 return -ENOMEM;
2852 }
2853 #ifdef CONFIG_PROC_FS
2854 proc_root_ext4 = proc_mkdir("fs/ext4", NULL);
2855 if (proc_root_ext4 == NULL)
2856 printk(KERN_ERR "EXT4-fs: Unable to create fs/ext4\n");
2857 #endif
2858 return 0;
2859 }
2860
2861 void exit_ext4_mballoc(void)
2862 {
2863 /* XXX: synchronize_rcu(); */
2864 kmem_cache_destroy(ext4_pspace_cachep);
2865 kmem_cache_destroy(ext4_ac_cachep);
2866 #ifdef CONFIG_PROC_FS
2867 remove_proc_entry("fs/ext4", NULL);
2868 #endif
2869 }
2870
2871
2872 /*
2873 * Check quota and mark choosed space (ac->ac_b_ex) non-free in bitmaps
2874 * Returns 0 if success or error code
2875 */
2876 static noinline_for_stack int
2877 ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac,
2878 handle_t *handle)
2879 {
2880 struct buffer_head *bitmap_bh = NULL;
2881 struct ext4_super_block *es;
2882 struct ext4_group_desc *gdp;
2883 struct buffer_head *gdp_bh;
2884 struct ext4_sb_info *sbi;
2885 struct super_block *sb;
2886 ext4_fsblk_t block;
2887 int err, len;
2888
2889 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
2890 BUG_ON(ac->ac_b_ex.fe_len <= 0);
2891
2892 sb = ac->ac_sb;
2893 sbi = EXT4_SB(sb);
2894 es = sbi->s_es;
2895
2896
2897 err = -EIO;
2898 bitmap_bh = ext4_read_block_bitmap(sb, ac->ac_b_ex.fe_group);
2899 if (!bitmap_bh)
2900 goto out_err;
2901
2902 err = ext4_journal_get_write_access(handle, bitmap_bh);
2903 if (err)
2904 goto out_err;
2905
2906 err = -EIO;
2907 gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, &gdp_bh);
2908 if (!gdp)
2909 goto out_err;
2910
2911 ext4_debug("using block group %lu(%d)\n", ac->ac_b_ex.fe_group,
2912 gdp->bg_free_blocks_count);
2913
2914 err = ext4_journal_get_write_access(handle, gdp_bh);
2915 if (err)
2916 goto out_err;
2917
2918 block = ac->ac_b_ex.fe_group * EXT4_BLOCKS_PER_GROUP(sb)
2919 + ac->ac_b_ex.fe_start
2920 + le32_to_cpu(es->s_first_data_block);
2921
2922 len = ac->ac_b_ex.fe_len;
2923 if (in_range(ext4_block_bitmap(sb, gdp), block, len) ||
2924 in_range(ext4_inode_bitmap(sb, gdp), block, len) ||
2925 in_range(block, ext4_inode_table(sb, gdp),
2926 EXT4_SB(sb)->s_itb_per_group) ||
2927 in_range(block + len - 1, ext4_inode_table(sb, gdp),
2928 EXT4_SB(sb)->s_itb_per_group)) {
2929 ext4_error(sb, __func__,
2930 "Allocating block in system zone - block = %llu",
2931 block);
2932 /* File system mounted not to panic on error
2933 * Fix the bitmap and repeat the block allocation
2934 * We leak some of the blocks here.
2935 */
2936 mb_set_bits(sb_bgl_lock(sbi, ac->ac_b_ex.fe_group),
2937 bitmap_bh->b_data, ac->ac_b_ex.fe_start,
2938 ac->ac_b_ex.fe_len);
2939 err = ext4_journal_dirty_metadata(handle, bitmap_bh);
2940 if (!err)
2941 err = -EAGAIN;
2942 goto out_err;
2943 }
2944 #ifdef AGGRESSIVE_CHECK
2945 {
2946 int i;
2947 for (i = 0; i < ac->ac_b_ex.fe_len; i++) {
2948 BUG_ON(mb_test_bit(ac->ac_b_ex.fe_start + i,
2949 bitmap_bh->b_data));
2950 }
2951 }
2952 #endif
2953 mb_set_bits(sb_bgl_lock(sbi, ac->ac_b_ex.fe_group), bitmap_bh->b_data,
2954 ac->ac_b_ex.fe_start, ac->ac_b_ex.fe_len);
2955
2956 spin_lock(sb_bgl_lock(sbi, ac->ac_b_ex.fe_group));
2957 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
2958 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
2959 gdp->bg_free_blocks_count =
2960 cpu_to_le16(ext4_free_blocks_after_init(sb,
2961 ac->ac_b_ex.fe_group,
2962 gdp));
2963 }
2964 le16_add_cpu(&gdp->bg_free_blocks_count, -ac->ac_b_ex.fe_len);
2965 gdp->bg_checksum = ext4_group_desc_csum(sbi, ac->ac_b_ex.fe_group, gdp);
2966 spin_unlock(sb_bgl_lock(sbi, ac->ac_b_ex.fe_group));
2967
2968 /*
2969 * free blocks account has already be reduced/reserved
2970 * at write_begin() time for delayed allocation
2971 * do not double accounting
2972 */
2973 if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED))
2974 percpu_counter_sub(&sbi->s_freeblocks_counter,
2975 ac->ac_b_ex.fe_len);
2976
2977 if (sbi->s_log_groups_per_flex) {
2978 ext4_group_t flex_group = ext4_flex_group(sbi,
2979 ac->ac_b_ex.fe_group);
2980 spin_lock(sb_bgl_lock(sbi, flex_group));
2981 sbi->s_flex_groups[flex_group].free_blocks -= ac->ac_b_ex.fe_len;
2982 spin_unlock(sb_bgl_lock(sbi, flex_group));
2983 }
2984
2985 err = ext4_journal_dirty_metadata(handle, bitmap_bh);
2986 if (err)
2987 goto out_err;
2988 err = ext4_journal_dirty_metadata(handle, gdp_bh);
2989
2990 out_err:
2991 sb->s_dirt = 1;
2992 brelse(bitmap_bh);
2993 return err;
2994 }
2995
2996 /*
2997 * here we normalize request for locality group
2998 * Group request are normalized to s_strip size if we set the same via mount
2999 * option. If not we set it to s_mb_group_prealloc which can be configured via
3000 * /proc/fs/ext4/<partition>/group_prealloc
3001 *
3002 * XXX: should we try to preallocate more than the group has now?
3003 */
3004 static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac)
3005 {
3006 struct super_block *sb = ac->ac_sb;
3007 struct ext4_locality_group *lg = ac->ac_lg;
3008
3009 BUG_ON(lg == NULL);
3010 if (EXT4_SB(sb)->s_stripe)
3011 ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_stripe;
3012 else
3013 ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc;
3014 mb_debug("#%u: goal %u blocks for locality group\n",
3015 current->pid, ac->ac_g_ex.fe_len);
3016 }
3017
3018 /*
3019 * Normalization means making request better in terms of
3020 * size and alignment
3021 */
3022 static noinline_for_stack void
3023 ext4_mb_normalize_request(struct ext4_allocation_context *ac,
3024 struct ext4_allocation_request *ar)
3025 {
3026 int bsbits, max;
3027 ext4_lblk_t end;
3028 loff_t size, orig_size, start_off;
3029 ext4_lblk_t start, orig_start;
3030 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
3031 struct ext4_prealloc_space *pa;
3032
3033 /* do normalize only data requests, metadata requests
3034 do not need preallocation */
3035 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3036 return;
3037
3038 /* sometime caller may want exact blocks */
3039 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
3040 return;
3041
3042 /* caller may indicate that preallocation isn't
3043 * required (it's a tail, for example) */
3044 if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC)
3045 return;
3046
3047 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) {
3048 ext4_mb_normalize_group_request(ac);
3049 return ;
3050 }
3051
3052 bsbits = ac->ac_sb->s_blocksize_bits;
3053
3054 /* first, let's learn actual file size
3055 * given current request is allocated */
3056 size = ac->ac_o_ex.fe_logical + ac->ac_o_ex.fe_len;
3057 size = size << bsbits;
3058 if (size < i_size_read(ac->ac_inode))
3059 size = i_size_read(ac->ac_inode);
3060
3061 /* max size of free chunks */
3062 max = 2 << bsbits;
3063
3064 #define NRL_CHECK_SIZE(req, size, max, chunk_size) \
3065 (req <= (size) || max <= (chunk_size))
3066
3067 /* first, try to predict filesize */
3068 /* XXX: should this table be tunable? */
3069 start_off = 0;
3070 if (size <= 16 * 1024) {
3071 size = 16 * 1024;
3072 } else if (size <= 32 * 1024) {
3073 size = 32 * 1024;
3074 } else if (size <= 64 * 1024) {
3075 size = 64 * 1024;
3076 } else if (size <= 128 * 1024) {
3077 size = 128 * 1024;
3078 } else if (size <= 256 * 1024) {
3079 size = 256 * 1024;
3080 } else if (size <= 512 * 1024) {
3081 size = 512 * 1024;
3082 } else if (size <= 1024 * 1024) {
3083 size = 1024 * 1024;
3084 } else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) {
3085 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3086 (21 - bsbits)) << 21;
3087 size = 2 * 1024 * 1024;
3088 } else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) {
3089 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3090 (22 - bsbits)) << 22;
3091 size = 4 * 1024 * 1024;
3092 } else if (NRL_CHECK_SIZE(ac->ac_o_ex.fe_len,
3093 (8<<20)>>bsbits, max, 8 * 1024)) {
3094 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3095 (23 - bsbits)) << 23;
3096 size = 8 * 1024 * 1024;
3097 } else {
3098 start_off = (loff_t)ac->ac_o_ex.fe_logical << bsbits;
3099 size = ac->ac_o_ex.fe_len << bsbits;
3100 }
3101 orig_size = size = size >> bsbits;
3102 orig_start = start = start_off >> bsbits;
3103
3104 /* don't cover already allocated blocks in selected range */
3105 if (ar->pleft && start <= ar->lleft) {
3106 size -= ar->lleft + 1 - start;
3107 start = ar->lleft + 1;
3108 }
3109 if (ar->pright && start + size - 1 >= ar->lright)
3110 size -= start + size - ar->lright;
3111
3112 end = start + size;
3113
3114 /* check we don't cross already preallocated blocks */
3115 rcu_read_lock();
3116 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3117 unsigned long pa_end;
3118
3119 if (pa->pa_deleted)
3120 continue;
3121 spin_lock(&pa->pa_lock);
3122 if (pa->pa_deleted) {
3123 spin_unlock(&pa->pa_lock);
3124 continue;
3125 }
3126
3127 pa_end = pa->pa_lstart + pa->pa_len;
3128
3129 /* PA must not overlap original request */
3130 BUG_ON(!(ac->ac_o_ex.fe_logical >= pa_end ||
3131 ac->ac_o_ex.fe_logical < pa->pa_lstart));
3132
3133 /* skip PA normalized request doesn't overlap with */
3134 if (pa->pa_lstart >= end) {
3135 spin_unlock(&pa->pa_lock);
3136 continue;
3137 }
3138 if (pa_end <= start) {
3139 spin_unlock(&pa->pa_lock);
3140 continue;
3141 }
3142 BUG_ON(pa->pa_lstart <= start && pa_end >= end);
3143
3144 if (pa_end <= ac->ac_o_ex.fe_logical) {
3145 BUG_ON(pa_end < start);
3146 start = pa_end;
3147 }
3148
3149 if (pa->pa_lstart > ac->ac_o_ex.fe_logical) {
3150 BUG_ON(pa->pa_lstart > end);
3151 end = pa->pa_lstart;
3152 }
3153 spin_unlock(&pa->pa_lock);
3154 }
3155 rcu_read_unlock();
3156 size = end - start;
3157
3158 /* XXX: extra loop to check we really don't overlap preallocations */
3159 rcu_read_lock();
3160 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3161 unsigned long pa_end;
3162 spin_lock(&pa->pa_lock);
3163 if (pa->pa_deleted == 0) {
3164 pa_end = pa->pa_lstart + pa->pa_len;
3165 BUG_ON(!(start >= pa_end || end <= pa->pa_lstart));
3166 }
3167 spin_unlock(&pa->pa_lock);
3168 }
3169 rcu_read_unlock();
3170
3171 if (start + size <= ac->ac_o_ex.fe_logical &&
3172 start > ac->ac_o_ex.fe_logical) {
3173 printk(KERN_ERR "start %lu, size %lu, fe_logical %lu\n",
3174 (unsigned long) start, (unsigned long) size,
3175 (unsigned long) ac->ac_o_ex.fe_logical);
3176 }
3177 BUG_ON(start + size <= ac->ac_o_ex.fe_logical &&
3178 start > ac->ac_o_ex.fe_logical);
3179 BUG_ON(size <= 0 || size >= EXT4_BLOCKS_PER_GROUP(ac->ac_sb));
3180
3181 /* now prepare goal request */
3182
3183 /* XXX: is it better to align blocks WRT to logical
3184 * placement or satisfy big request as is */
3185 ac->ac_g_ex.fe_logical = start;
3186 ac->ac_g_ex.fe_len = size;
3187
3188 /* define goal start in order to merge */
3189 if (ar->pright && (ar->lright == (start + size))) {
3190 /* merge to the right */
3191 ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size,
3192 &ac->ac_f_ex.fe_group,
3193 &ac->ac_f_ex.fe_start);
3194 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3195 }
3196 if (ar->pleft && (ar->lleft + 1 == start)) {
3197 /* merge to the left */
3198 ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1,
3199 &ac->ac_f_ex.fe_group,
3200 &ac->ac_f_ex.fe_start);
3201 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3202 }
3203
3204 mb_debug("goal: %u(was %u) blocks at %u\n", (unsigned) size,
3205 (unsigned) orig_size, (unsigned) start);
3206 }
3207
3208 static void ext4_mb_collect_stats(struct ext4_allocation_context *ac)
3209 {
3210 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3211
3212 if (sbi->s_mb_stats && ac->ac_g_ex.fe_len > 1) {
3213 atomic_inc(&sbi->s_bal_reqs);
3214 atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated);
3215 if (ac->ac_o_ex.fe_len >= ac->ac_g_ex.fe_len)
3216 atomic_inc(&sbi->s_bal_success);
3217 atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned);
3218 if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start &&
3219 ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group)
3220 atomic_inc(&sbi->s_bal_goals);
3221 if (ac->ac_found > sbi->s_mb_max_to_scan)
3222 atomic_inc(&sbi->s_bal_breaks);
3223 }
3224
3225 ext4_mb_store_history(ac);
3226 }
3227
3228 /*
3229 * use blocks preallocated to inode
3230 */
3231 static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac,
3232 struct ext4_prealloc_space *pa)
3233 {
3234 ext4_fsblk_t start;
3235 ext4_fsblk_t end;
3236 int len;
3237
3238 /* found preallocated blocks, use them */
3239 start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart);
3240 end = min(pa->pa_pstart + pa->pa_len, start + ac->ac_o_ex.fe_len);
3241 len = end - start;
3242 ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group,
3243 &ac->ac_b_ex.fe_start);
3244 ac->ac_b_ex.fe_len = len;
3245 ac->ac_status = AC_STATUS_FOUND;
3246 ac->ac_pa = pa;
3247
3248 BUG_ON(start < pa->pa_pstart);
3249 BUG_ON(start + len > pa->pa_pstart + pa->pa_len);
3250 BUG_ON(pa->pa_free < len);
3251 pa->pa_free -= len;
3252
3253 mb_debug("use %llu/%u from inode pa %p\n", start, len, pa);
3254 }
3255
3256 /*
3257 * use blocks preallocated to locality group
3258 */
3259 static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac,
3260 struct ext4_prealloc_space *pa)
3261 {
3262 unsigned int len = ac->ac_o_ex.fe_len;
3263 ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart,
3264 &ac->ac_b_ex.fe_group,
3265 &ac->ac_b_ex.fe_start);
3266 ac->ac_b_ex.fe_len = len;
3267 ac->ac_status = AC_STATUS_FOUND;
3268 ac->ac_pa = pa;
3269
3270 /* we don't correct pa_pstart or pa_plen here to avoid
3271 * possible race when the group is being loaded concurrently
3272 * instead we correct pa later, after blocks are marked
3273 * in on-disk bitmap -- see ext4_mb_release_context()
3274 * Other CPUs are prevented from allocating from this pa by lg_mutex
3275 */
3276 mb_debug("use %u/%u from group pa %p\n", pa->pa_lstart-len, len, pa);
3277 }
3278
3279 /*
3280 * search goal blocks in preallocated space
3281 */
3282 static noinline_for_stack int
3283 ext4_mb_use_preallocated(struct ext4_allocation_context *ac)
3284 {
3285 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
3286 struct ext4_locality_group *lg;
3287 struct ext4_prealloc_space *pa;
3288
3289 /* only data can be preallocated */
3290 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3291 return 0;
3292
3293 /* first, try per-file preallocation */
3294 rcu_read_lock();
3295 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3296
3297 /* all fields in this condition don't change,
3298 * so we can skip locking for them */
3299 if (ac->ac_o_ex.fe_logical < pa->pa_lstart ||
3300 ac->ac_o_ex.fe_logical >= pa->pa_lstart + pa->pa_len)
3301 continue;
3302
3303 /* found preallocated blocks, use them */
3304 spin_lock(&pa->pa_lock);
3305 if (pa->pa_deleted == 0 && pa->pa_free) {
3306 atomic_inc(&pa->pa_count);
3307 ext4_mb_use_inode_pa(ac, pa);
3308 spin_unlock(&pa->pa_lock);
3309 ac->ac_criteria = 10;
3310 rcu_read_unlock();
3311 return 1;
3312 }
3313 spin_unlock(&pa->pa_lock);
3314 }
3315 rcu_read_unlock();
3316
3317 /* can we use group allocation? */
3318 if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC))
3319 return 0;
3320
3321 /* inode may have no locality group for some reason */
3322 lg = ac->ac_lg;
3323 if (lg == NULL)
3324 return 0;
3325
3326 rcu_read_lock();
3327 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list, pa_inode_list) {
3328 spin_lock(&pa->pa_lock);
3329 if (pa->pa_deleted == 0 && pa->pa_free >= ac->ac_o_ex.fe_len) {
3330 atomic_inc(&pa->pa_count);
3331 ext4_mb_use_group_pa(ac, pa);
3332 spin_unlock(&pa->pa_lock);
3333 ac->ac_criteria = 20;
3334 rcu_read_unlock();
3335 return 1;
3336 }
3337 spin_unlock(&pa->pa_lock);
3338 }
3339 rcu_read_unlock();
3340
3341 return 0;
3342 }
3343
3344 /*
3345 * the function goes through all preallocation in this group and marks them
3346 * used in in-core bitmap. buddy must be generated from this bitmap
3347 * Need to be called with ext4 group lock (ext4_lock_group)
3348 */
3349 static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
3350 ext4_group_t group)
3351 {
3352 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
3353 struct ext4_prealloc_space *pa;
3354 struct list_head *cur;
3355 ext4_group_t groupnr;
3356 ext4_grpblk_t start;
3357 int preallocated = 0;
3358 int count = 0;
3359 int len;
3360
3361 /* all form of preallocation discards first load group,
3362 * so the only competing code is preallocation use.
3363 * we don't need any locking here
3364 * notice we do NOT ignore preallocations with pa_deleted
3365 * otherwise we could leave used blocks available for
3366 * allocation in buddy when concurrent ext4_mb_put_pa()
3367 * is dropping preallocation
3368 */
3369 list_for_each(cur, &grp->bb_prealloc_list) {
3370 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
3371 spin_lock(&pa->pa_lock);
3372 ext4_get_group_no_and_offset(sb, pa->pa_pstart,
3373 &groupnr, &start);
3374 len = pa->pa_len;
3375 spin_unlock(&pa->pa_lock);
3376 if (unlikely(len == 0))
3377 continue;
3378 BUG_ON(groupnr != group);
3379 mb_set_bits(sb_bgl_lock(EXT4_SB(sb), group),
3380 bitmap, start, len);
3381 preallocated += len;
3382 count++;
3383 }
3384 mb_debug("prellocated %u for group %lu\n", preallocated, group);
3385 }
3386
3387 static void ext4_mb_pa_callback(struct rcu_head *head)
3388 {
3389 struct ext4_prealloc_space *pa;
3390 pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu);
3391 kmem_cache_free(ext4_pspace_cachep, pa);
3392 }
3393
3394 /*
3395 * drops a reference to preallocated space descriptor
3396 * if this was the last reference and the space is consumed
3397 */
3398 static void ext4_mb_put_pa(struct ext4_allocation_context *ac,
3399 struct super_block *sb, struct ext4_prealloc_space *pa)
3400 {
3401 unsigned long grp;
3402
3403 if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0)
3404 return;
3405
3406 /* in this short window concurrent discard can set pa_deleted */
3407 spin_lock(&pa->pa_lock);
3408 if (pa->pa_deleted == 1) {
3409 spin_unlock(&pa->pa_lock);
3410 return;
3411 }
3412
3413 pa->pa_deleted = 1;
3414 spin_unlock(&pa->pa_lock);
3415
3416 /* -1 is to protect from crossing allocation group */
3417 ext4_get_group_no_and_offset(sb, pa->pa_pstart - 1, &grp, NULL);
3418
3419 /*
3420 * possible race:
3421 *
3422 * P1 (buddy init) P2 (regular allocation)
3423 * find block B in PA
3424 * copy on-disk bitmap to buddy
3425 * mark B in on-disk bitmap
3426 * drop PA from group
3427 * mark all PAs in buddy
3428 *
3429 * thus, P1 initializes buddy with B available. to prevent this
3430 * we make "copy" and "mark all PAs" atomic and serialize "drop PA"
3431 * against that pair
3432 */
3433 ext4_lock_group(sb, grp);
3434 list_del(&pa->pa_group_list);
3435 ext4_unlock_group(sb, grp);
3436
3437 spin_lock(pa->pa_obj_lock);
3438 list_del_rcu(&pa->pa_inode_list);
3439 spin_unlock(pa->pa_obj_lock);
3440
3441 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3442 }
3443
3444 /*
3445 * creates new preallocated space for given inode
3446 */
3447 static noinline_for_stack int
3448 ext4_mb_new_inode_pa(struct ext4_allocation_context *ac)
3449 {
3450 struct super_block *sb = ac->ac_sb;
3451 struct ext4_prealloc_space *pa;
3452 struct ext4_group_info *grp;
3453 struct ext4_inode_info *ei;
3454
3455 /* preallocate only when found space is larger then requested */
3456 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
3457 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3458 BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
3459
3460 pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
3461 if (pa == NULL)
3462 return -ENOMEM;
3463
3464 if (ac->ac_b_ex.fe_len < ac->ac_g_ex.fe_len) {
3465 int winl;
3466 int wins;
3467 int win;
3468 int offs;
3469
3470 /* we can't allocate as much as normalizer wants.
3471 * so, found space must get proper lstart
3472 * to cover original request */
3473 BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical);
3474 BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len);
3475
3476 /* we're limited by original request in that
3477 * logical block must be covered any way
3478 * winl is window we can move our chunk within */
3479 winl = ac->ac_o_ex.fe_logical - ac->ac_g_ex.fe_logical;
3480
3481 /* also, we should cover whole original request */
3482 wins = ac->ac_b_ex.fe_len - ac->ac_o_ex.fe_len;
3483
3484 /* the smallest one defines real window */
3485 win = min(winl, wins);
3486
3487 offs = ac->ac_o_ex.fe_logical % ac->ac_b_ex.fe_len;
3488 if (offs && offs < win)
3489 win = offs;
3490
3491 ac->ac_b_ex.fe_logical = ac->ac_o_ex.fe_logical - win;
3492 BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical);
3493 BUG_ON(ac->ac_o_ex.fe_len > ac->ac_b_ex.fe_len);
3494 }
3495
3496 /* preallocation can change ac_b_ex, thus we store actually
3497 * allocated blocks for history */
3498 ac->ac_f_ex = ac->ac_b_ex;
3499
3500 pa->pa_lstart = ac->ac_b_ex.fe_logical;
3501 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3502 pa->pa_len = ac->ac_b_ex.fe_len;
3503 pa->pa_free = pa->pa_len;
3504 atomic_set(&pa->pa_count, 1);
3505 spin_lock_init(&pa->pa_lock);
3506 pa->pa_deleted = 0;
3507 pa->pa_linear = 0;
3508
3509 mb_debug("new inode pa %p: %llu/%u for %u\n", pa,
3510 pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3511
3512 ext4_mb_use_inode_pa(ac, pa);
3513 atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated);
3514
3515 ei = EXT4_I(ac->ac_inode);
3516 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
3517
3518 pa->pa_obj_lock = &ei->i_prealloc_lock;
3519 pa->pa_inode = ac->ac_inode;
3520
3521 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3522 list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
3523 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3524
3525 spin_lock(pa->pa_obj_lock);
3526 list_add_rcu(&pa->pa_inode_list, &ei->i_prealloc_list);
3527 spin_unlock(pa->pa_obj_lock);
3528
3529 return 0;
3530 }
3531
3532 /*
3533 * creates new preallocated space for locality group inodes belongs to
3534 */
3535 static noinline_for_stack int
3536 ext4_mb_new_group_pa(struct ext4_allocation_context *ac)
3537 {
3538 struct super_block *sb = ac->ac_sb;
3539 struct ext4_locality_group *lg;
3540 struct ext4_prealloc_space *pa;
3541 struct ext4_group_info *grp;
3542
3543 /* preallocate only when found space is larger then requested */
3544 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
3545 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3546 BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
3547
3548 BUG_ON(ext4_pspace_cachep == NULL);
3549 pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
3550 if (pa == NULL)
3551 return -ENOMEM;
3552
3553 /* preallocation can change ac_b_ex, thus we store actually
3554 * allocated blocks for history */
3555 ac->ac_f_ex = ac->ac_b_ex;
3556
3557 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3558 pa->pa_lstart = pa->pa_pstart;
3559 pa->pa_len = ac->ac_b_ex.fe_len;
3560 pa->pa_free = pa->pa_len;
3561 atomic_set(&pa->pa_count, 1);
3562 spin_lock_init(&pa->pa_lock);
3563 pa->pa_deleted = 0;
3564 pa->pa_linear = 1;
3565
3566 mb_debug("new group pa %p: %llu/%u for %u\n", pa,
3567 pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3568
3569 ext4_mb_use_group_pa(ac, pa);
3570 atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated);
3571
3572 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
3573 lg = ac->ac_lg;
3574 BUG_ON(lg == NULL);
3575
3576 pa->pa_obj_lock = &lg->lg_prealloc_lock;
3577 pa->pa_inode = NULL;
3578
3579 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3580 list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
3581 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3582
3583 spin_lock(pa->pa_obj_lock);
3584 list_add_tail_rcu(&pa->pa_inode_list, &lg->lg_prealloc_list);
3585 spin_unlock(pa->pa_obj_lock);
3586
3587 return 0;
3588 }
3589
3590 static int ext4_mb_new_preallocation(struct ext4_allocation_context *ac)
3591 {
3592 int err;
3593
3594 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
3595 err = ext4_mb_new_group_pa(ac);
3596 else
3597 err = ext4_mb_new_inode_pa(ac);
3598 return err;
3599 }
3600
3601 /*
3602 * finds all unused blocks in on-disk bitmap, frees them in
3603 * in-core bitmap and buddy.
3604 * @pa must be unlinked from inode and group lists, so that
3605 * nobody else can find/use it.
3606 * the caller MUST hold group/inode locks.
3607 * TODO: optimize the case when there are no in-core structures yet
3608 */
3609 static noinline_for_stack int
3610 ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh,
3611 struct ext4_prealloc_space *pa,
3612 struct ext4_allocation_context *ac)
3613 {
3614 struct super_block *sb = e4b->bd_sb;
3615 struct ext4_sb_info *sbi = EXT4_SB(sb);
3616 unsigned long end;
3617 unsigned long next;
3618 ext4_group_t group;
3619 ext4_grpblk_t bit;
3620 sector_t start;
3621 int err = 0;
3622 int free = 0;
3623
3624 BUG_ON(pa->pa_deleted == 0);
3625 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3626 BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
3627 end = bit + pa->pa_len;
3628
3629 if (ac) {
3630 ac->ac_sb = sb;
3631 ac->ac_inode = pa->pa_inode;
3632 ac->ac_op = EXT4_MB_HISTORY_DISCARD;
3633 }
3634
3635 while (bit < end) {
3636 bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit);
3637 if (bit >= end)
3638 break;
3639 next = mb_find_next_bit(bitmap_bh->b_data, end, bit);
3640 start = group * EXT4_BLOCKS_PER_GROUP(sb) + bit +
3641 le32_to_cpu(sbi->s_es->s_first_data_block);
3642 mb_debug(" free preallocated %u/%u in group %u\n",
3643 (unsigned) start, (unsigned) next - bit,
3644 (unsigned) group);
3645 free += next - bit;
3646
3647 if (ac) {
3648 ac->ac_b_ex.fe_group = group;
3649 ac->ac_b_ex.fe_start = bit;
3650 ac->ac_b_ex.fe_len = next - bit;
3651 ac->ac_b_ex.fe_logical = 0;
3652 ext4_mb_store_history(ac);
3653 }
3654
3655 mb_free_blocks(pa->pa_inode, e4b, bit, next - bit);
3656 bit = next + 1;
3657 }
3658 if (free != pa->pa_free) {
3659 printk(KERN_CRIT "pa %p: logic %lu, phys. %lu, len %lu\n",
3660 pa, (unsigned long) pa->pa_lstart,
3661 (unsigned long) pa->pa_pstart,
3662 (unsigned long) pa->pa_len);
3663 ext4_error(sb, __func__, "free %u, pa_free %u\n",
3664 free, pa->pa_free);
3665 /*
3666 * pa is already deleted so we use the value obtained
3667 * from the bitmap and continue.
3668 */
3669 }
3670 atomic_add(free, &sbi->s_mb_discarded);
3671
3672 return err;
3673 }
3674
3675 static noinline_for_stack int
3676 ext4_mb_release_group_pa(struct ext4_buddy *e4b,
3677 struct ext4_prealloc_space *pa,
3678 struct ext4_allocation_context *ac)
3679 {
3680 struct super_block *sb = e4b->bd_sb;
3681 ext4_group_t group;
3682 ext4_grpblk_t bit;
3683
3684 if (ac)
3685 ac->ac_op = EXT4_MB_HISTORY_DISCARD;
3686
3687 BUG_ON(pa->pa_deleted == 0);
3688 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3689 BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
3690 mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len);
3691 atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded);
3692
3693 if (ac) {
3694 ac->ac_sb = sb;
3695 ac->ac_inode = NULL;
3696 ac->ac_b_ex.fe_group = group;
3697 ac->ac_b_ex.fe_start = bit;
3698 ac->ac_b_ex.fe_len = pa->pa_len;
3699 ac->ac_b_ex.fe_logical = 0;
3700 ext4_mb_store_history(ac);
3701 }
3702
3703 return 0;
3704 }
3705
3706 /*
3707 * releases all preallocations in given group
3708 *
3709 * first, we need to decide discard policy:
3710 * - when do we discard
3711 * 1) ENOSPC
3712 * - how many do we discard
3713 * 1) how many requested
3714 */
3715 static noinline_for_stack int
3716 ext4_mb_discard_group_preallocations(struct super_block *sb,
3717 ext4_group_t group, int needed)
3718 {
3719 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
3720 struct buffer_head *bitmap_bh = NULL;
3721 struct ext4_prealloc_space *pa, *tmp;
3722 struct ext4_allocation_context *ac;
3723 struct list_head list;
3724 struct ext4_buddy e4b;
3725 int err;
3726 int busy = 0;
3727 int free = 0;
3728
3729 mb_debug("discard preallocation for group %lu\n", group);
3730
3731 if (list_empty(&grp->bb_prealloc_list))
3732 return 0;
3733
3734 bitmap_bh = ext4_read_block_bitmap(sb, group);
3735 if (bitmap_bh == NULL) {
3736 /* error handling here */
3737 ext4_mb_release_desc(&e4b);
3738 BUG_ON(bitmap_bh == NULL);
3739 }
3740
3741 err = ext4_mb_load_buddy(sb, group, &e4b);
3742 BUG_ON(err != 0); /* error handling here */
3743
3744 if (needed == 0)
3745 needed = EXT4_BLOCKS_PER_GROUP(sb) + 1;
3746
3747 grp = ext4_get_group_info(sb, group);
3748 INIT_LIST_HEAD(&list);
3749
3750 ac = kmem_cache_alloc(ext4_ac_cachep, GFP_NOFS);
3751 repeat:
3752 ext4_lock_group(sb, group);
3753 list_for_each_entry_safe(pa, tmp,
3754 &grp->bb_prealloc_list, pa_group_list) {
3755 spin_lock(&pa->pa_lock);
3756 if (atomic_read(&pa->pa_count)) {
3757 spin_unlock(&pa->pa_lock);
3758 busy = 1;
3759 continue;
3760 }
3761 if (pa->pa_deleted) {
3762 spin_unlock(&pa->pa_lock);
3763 continue;
3764 }
3765
3766 /* seems this one can be freed ... */
3767 pa->pa_deleted = 1;
3768
3769 /* we can trust pa_free ... */
3770 free += pa->pa_free;
3771
3772 spin_unlock(&pa->pa_lock);
3773
3774 list_del(&pa->pa_group_list);
3775 list_add(&pa->u.pa_tmp_list, &list);
3776 }
3777
3778 /* if we still need more blocks and some PAs were used, try again */
3779 if (free < needed && busy) {
3780 busy = 0;
3781 ext4_unlock_group(sb, group);
3782 /*
3783 * Yield the CPU here so that we don't get soft lockup
3784 * in non preempt case.
3785 */
3786 yield();
3787 goto repeat;
3788 }
3789
3790 /* found anything to free? */
3791 if (list_empty(&list)) {
3792 BUG_ON(free != 0);
3793 goto out;
3794 }
3795
3796 /* now free all selected PAs */
3797 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
3798
3799 /* remove from object (inode or locality group) */
3800 spin_lock(pa->pa_obj_lock);
3801 list_del_rcu(&pa->pa_inode_list);
3802 spin_unlock(pa->pa_obj_lock);
3803
3804 if (pa->pa_linear)
3805 ext4_mb_release_group_pa(&e4b, pa, ac);
3806 else
3807 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa, ac);
3808
3809 list_del(&pa->u.pa_tmp_list);
3810 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3811 }
3812
3813 out:
3814 ext4_unlock_group(sb, group);
3815 if (ac)
3816 kmem_cache_free(ext4_ac_cachep, ac);
3817 ext4_mb_release_desc(&e4b);
3818 put_bh(bitmap_bh);
3819 return free;
3820 }
3821
3822 /*
3823 * releases all non-used preallocated blocks for given inode
3824 *
3825 * It's important to discard preallocations under i_data_sem
3826 * We don't want another block to be served from the prealloc
3827 * space when we are discarding the inode prealloc space.
3828 *
3829 * FIXME!! Make sure it is valid at all the call sites
3830 */
3831 void ext4_mb_discard_inode_preallocations(struct inode *inode)
3832 {
3833 struct ext4_inode_info *ei = EXT4_I(inode);
3834 struct super_block *sb = inode->i_sb;
3835 struct buffer_head *bitmap_bh = NULL;
3836 struct ext4_prealloc_space *pa, *tmp;
3837 struct ext4_allocation_context *ac;
3838 ext4_group_t group = 0;
3839 struct list_head list;
3840 struct ext4_buddy e4b;
3841 int err;
3842
3843 if (!test_opt(sb, MBALLOC) || !S_ISREG(inode->i_mode)) {
3844 /*BUG_ON(!list_empty(&ei->i_prealloc_list));*/
3845 return;
3846 }
3847
3848 mb_debug("discard preallocation for inode %lu\n", inode->i_ino);
3849
3850 INIT_LIST_HEAD(&list);
3851
3852 ac = kmem_cache_alloc(ext4_ac_cachep, GFP_NOFS);
3853 repeat:
3854 /* first, collect all pa's in the inode */
3855 spin_lock(&ei->i_prealloc_lock);
3856 while (!list_empty(&ei->i_prealloc_list)) {
3857 pa = list_entry(ei->i_prealloc_list.next,
3858 struct ext4_prealloc_space, pa_inode_list);
3859 BUG_ON(pa->pa_obj_lock != &ei->i_prealloc_lock);
3860 spin_lock(&pa->pa_lock);
3861 if (atomic_read(&pa->pa_count)) {
3862 /* this shouldn't happen often - nobody should
3863 * use preallocation while we're discarding it */
3864 spin_unlock(&pa->pa_lock);
3865 spin_unlock(&ei->i_prealloc_lock);
3866 printk(KERN_ERR "uh-oh! used pa while discarding\n");
3867 WARN_ON(1);
3868 schedule_timeout_uninterruptible(HZ);
3869 goto repeat;
3870
3871 }
3872 if (pa->pa_deleted == 0) {
3873 pa->pa_deleted = 1;
3874 spin_unlock(&pa->pa_lock);
3875 list_del_rcu(&pa->pa_inode_list);
3876 list_add(&pa->u.pa_tmp_list, &list);
3877 continue;
3878 }
3879
3880 /* someone is deleting pa right now */
3881 spin_unlock(&pa->pa_lock);
3882 spin_unlock(&ei->i_prealloc_lock);
3883
3884 /* we have to wait here because pa_deleted
3885 * doesn't mean pa is already unlinked from
3886 * the list. as we might be called from
3887 * ->clear_inode() the inode will get freed
3888 * and concurrent thread which is unlinking
3889 * pa from inode's list may access already
3890 * freed memory, bad-bad-bad */
3891
3892 /* XXX: if this happens too often, we can
3893 * add a flag to force wait only in case
3894 * of ->clear_inode(), but not in case of
3895 * regular truncate */
3896 schedule_timeout_uninterruptible(HZ);
3897 goto repeat;
3898 }
3899 spin_unlock(&ei->i_prealloc_lock);
3900
3901 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
3902 BUG_ON(pa->pa_linear != 0);
3903 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, NULL);
3904
3905 err = ext4_mb_load_buddy(sb, group, &e4b);
3906 BUG_ON(err != 0); /* error handling here */
3907
3908 bitmap_bh = ext4_read_block_bitmap(sb, group);
3909 if (bitmap_bh == NULL) {
3910 /* error handling here */
3911 ext4_mb_release_desc(&e4b);
3912 BUG_ON(bitmap_bh == NULL);
3913 }
3914
3915 ext4_lock_group(sb, group);
3916 list_del(&pa->pa_group_list);
3917 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa, ac);
3918 ext4_unlock_group(sb, group);
3919
3920 ext4_mb_release_desc(&e4b);
3921 put_bh(bitmap_bh);
3922
3923 list_del(&pa->u.pa_tmp_list);
3924 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3925 }
3926 if (ac)
3927 kmem_cache_free(ext4_ac_cachep, ac);
3928 }
3929
3930 /*
3931 * finds all preallocated spaces and return blocks being freed to them
3932 * if preallocated space becomes full (no block is used from the space)
3933 * then the function frees space in buddy
3934 * XXX: at the moment, truncate (which is the only way to free blocks)
3935 * discards all preallocations
3936 */
3937 static void ext4_mb_return_to_preallocation(struct inode *inode,
3938 struct ext4_buddy *e4b,
3939 sector_t block, int count)
3940 {
3941 BUG_ON(!list_empty(&EXT4_I(inode)->i_prealloc_list));
3942 }
3943 #ifdef MB_DEBUG
3944 static void ext4_mb_show_ac(struct ext4_allocation_context *ac)
3945 {
3946 struct super_block *sb = ac->ac_sb;
3947 ext4_group_t i;
3948
3949 printk(KERN_ERR "EXT4-fs: Can't allocate:"
3950 " Allocation context details:\n");
3951 printk(KERN_ERR "EXT4-fs: status %d flags %d\n",
3952 ac->ac_status, ac->ac_flags);
3953 printk(KERN_ERR "EXT4-fs: orig %lu/%lu/%lu@%lu, goal %lu/%lu/%lu@%lu, "
3954 "best %lu/%lu/%lu@%lu cr %d\n",
3955 (unsigned long)ac->ac_o_ex.fe_group,
3956 (unsigned long)ac->ac_o_ex.fe_start,
3957 (unsigned long)ac->ac_o_ex.fe_len,
3958 (unsigned long)ac->ac_o_ex.fe_logical,
3959 (unsigned long)ac->ac_g_ex.fe_group,
3960 (unsigned long)ac->ac_g_ex.fe_start,
3961 (unsigned long)ac->ac_g_ex.fe_len,
3962 (unsigned long)ac->ac_g_ex.fe_logical,
3963 (unsigned long)ac->ac_b_ex.fe_group,
3964 (unsigned long)ac->ac_b_ex.fe_start,
3965 (unsigned long)ac->ac_b_ex.fe_len,
3966 (unsigned long)ac->ac_b_ex.fe_logical,
3967 (int)ac->ac_criteria);
3968 printk(KERN_ERR "EXT4-fs: %lu scanned, %d found\n", ac->ac_ex_scanned,
3969 ac->ac_found);
3970 printk(KERN_ERR "EXT4-fs: groups: \n");
3971 for (i = 0; i < EXT4_SB(sb)->s_groups_count; i++) {
3972 struct ext4_group_info *grp = ext4_get_group_info(sb, i);
3973 struct ext4_prealloc_space *pa;
3974 ext4_grpblk_t start;
3975 struct list_head *cur;
3976 ext4_lock_group(sb, i);
3977 list_for_each(cur, &grp->bb_prealloc_list) {
3978 pa = list_entry(cur, struct ext4_prealloc_space,
3979 pa_group_list);
3980 spin_lock(&pa->pa_lock);
3981 ext4_get_group_no_and_offset(sb, pa->pa_pstart,
3982 NULL, &start);
3983 spin_unlock(&pa->pa_lock);
3984 printk(KERN_ERR "PA:%lu:%d:%u \n", i,
3985 start, pa->pa_len);
3986 }
3987 ext4_unlock_group(sb, i);
3988
3989 if (grp->bb_free == 0)
3990 continue;
3991 printk(KERN_ERR "%lu: %d/%d \n",
3992 i, grp->bb_free, grp->bb_fragments);
3993 }
3994 printk(KERN_ERR "\n");
3995 }
3996 #else
3997 static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac)
3998 {
3999 return;
4000 }
4001 #endif
4002
4003 /*
4004 * We use locality group preallocation for small size file. The size of the
4005 * file is determined by the current size or the resulting size after
4006 * allocation which ever is larger
4007 *
4008 * One can tune this size via /proc/fs/ext4/<partition>/stream_req
4009 */
4010 static void ext4_mb_group_or_file(struct ext4_allocation_context *ac)
4011 {
4012 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4013 int bsbits = ac->ac_sb->s_blocksize_bits;
4014 loff_t size, isize;
4015
4016 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
4017 return;
4018
4019 size = ac->ac_o_ex.fe_logical + ac->ac_o_ex.fe_len;
4020 isize = i_size_read(ac->ac_inode) >> bsbits;
4021 size = max(size, isize);
4022
4023 /* don't use group allocation for large files */
4024 if (size >= sbi->s_mb_stream_request)
4025 return;
4026
4027 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
4028 return;
4029
4030 BUG_ON(ac->ac_lg != NULL);
4031 /*
4032 * locality group prealloc space are per cpu. The reason for having
4033 * per cpu locality group is to reduce the contention between block
4034 * request from multiple CPUs.
4035 */
4036 ac->ac_lg = &sbi->s_locality_groups[get_cpu()];
4037 put_cpu();
4038
4039 /* we're going to use group allocation */
4040 ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC;
4041
4042 /* serialize all allocations in the group */
4043 mutex_lock(&ac->ac_lg->lg_mutex);
4044 }
4045
4046 static noinline_for_stack int
4047 ext4_mb_initialize_context(struct ext4_allocation_context *ac,
4048 struct ext4_allocation_request *ar)
4049 {
4050 struct super_block *sb = ar->inode->i_sb;
4051 struct ext4_sb_info *sbi = EXT4_SB(sb);
4052 struct ext4_super_block *es = sbi->s_es;
4053 ext4_group_t group;
4054 unsigned long len;
4055 unsigned long goal;
4056 ext4_grpblk_t block;
4057
4058 /* we can't allocate > group size */
4059 len = ar->len;
4060
4061 /* just a dirty hack to filter too big requests */
4062 if (len >= EXT4_BLOCKS_PER_GROUP(sb) - 10)
4063 len = EXT4_BLOCKS_PER_GROUP(sb) - 10;
4064
4065 /* start searching from the goal */
4066 goal = ar->goal;
4067 if (goal < le32_to_cpu(es->s_first_data_block) ||
4068 goal >= ext4_blocks_count(es))
4069 goal = le32_to_cpu(es->s_first_data_block);
4070 ext4_get_group_no_and_offset(sb, goal, &group, &block);
4071
4072 /* set up allocation goals */
4073 ac->ac_b_ex.fe_logical = ar->logical;
4074 ac->ac_b_ex.fe_group = 0;
4075 ac->ac_b_ex.fe_start = 0;
4076 ac->ac_b_ex.fe_len = 0;
4077 ac->ac_status = AC_STATUS_CONTINUE;
4078 ac->ac_groups_scanned = 0;
4079 ac->ac_ex_scanned = 0;
4080 ac->ac_found = 0;
4081 ac->ac_sb = sb;
4082 ac->ac_inode = ar->inode;
4083 ac->ac_o_ex.fe_logical = ar->logical;
4084 ac->ac_o_ex.fe_group = group;
4085 ac->ac_o_ex.fe_start = block;
4086 ac->ac_o_ex.fe_len = len;
4087 ac->ac_g_ex.fe_logical = ar->logical;
4088 ac->ac_g_ex.fe_group = group;
4089 ac->ac_g_ex.fe_start = block;
4090 ac->ac_g_ex.fe_len = len;
4091 ac->ac_f_ex.fe_len = 0;
4092 ac->ac_flags = ar->flags;
4093 ac->ac_2order = 0;
4094 ac->ac_criteria = 0;
4095 ac->ac_pa = NULL;
4096 ac->ac_bitmap_page = NULL;
4097 ac->ac_buddy_page = NULL;
4098 ac->ac_lg = NULL;
4099
4100 /* we have to define context: we'll we work with a file or
4101 * locality group. this is a policy, actually */
4102 ext4_mb_group_or_file(ac);
4103
4104 mb_debug("init ac: %u blocks @ %u, goal %u, flags %x, 2^%d, "
4105 "left: %u/%u, right %u/%u to %swritable\n",
4106 (unsigned) ar->len, (unsigned) ar->logical,
4107 (unsigned) ar->goal, ac->ac_flags, ac->ac_2order,
4108 (unsigned) ar->lleft, (unsigned) ar->pleft,
4109 (unsigned) ar->lright, (unsigned) ar->pright,
4110 atomic_read(&ar->inode->i_writecount) ? "" : "non-");
4111 return 0;
4112
4113 }
4114
4115 /*
4116 * release all resource we used in allocation
4117 */
4118 static int ext4_mb_release_context(struct ext4_allocation_context *ac)
4119 {
4120 if (ac->ac_pa) {
4121 if (ac->ac_pa->pa_linear) {
4122 /* see comment in ext4_mb_use_group_pa() */
4123 spin_lock(&ac->ac_pa->pa_lock);
4124 ac->ac_pa->pa_pstart += ac->ac_b_ex.fe_len;
4125 ac->ac_pa->pa_lstart += ac->ac_b_ex.fe_len;
4126 ac->ac_pa->pa_free -= ac->ac_b_ex.fe_len;
4127 ac->ac_pa->pa_len -= ac->ac_b_ex.fe_len;
4128 spin_unlock(&ac->ac_pa->pa_lock);
4129 }
4130 ext4_mb_put_pa(ac, ac->ac_sb, ac->ac_pa);
4131 }
4132 if (ac->ac_bitmap_page)
4133 page_cache_release(ac->ac_bitmap_page);
4134 if (ac->ac_buddy_page)
4135 page_cache_release(ac->ac_buddy_page);
4136 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
4137 mutex_unlock(&ac->ac_lg->lg_mutex);
4138 ext4_mb_collect_stats(ac);
4139 return 0;
4140 }
4141
4142 static int ext4_mb_discard_preallocations(struct super_block *sb, int needed)
4143 {
4144 ext4_group_t i;
4145 int ret;
4146 int freed = 0;
4147
4148 for (i = 0; i < EXT4_SB(sb)->s_groups_count && needed > 0; i++) {
4149 ret = ext4_mb_discard_group_preallocations(sb, i, needed);
4150 freed += ret;
4151 needed -= ret;
4152 }
4153
4154 return freed;
4155 }
4156
4157 /*
4158 * Main entry point into mballoc to allocate blocks
4159 * it tries to use preallocation first, then falls back
4160 * to usual allocation
4161 */
4162 ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle,
4163 struct ext4_allocation_request *ar, int *errp)
4164 {
4165 struct ext4_allocation_context *ac = NULL;
4166 struct ext4_sb_info *sbi;
4167 struct super_block *sb;
4168 ext4_fsblk_t block = 0;
4169 int freed;
4170 int inquota;
4171
4172 sb = ar->inode->i_sb;
4173 sbi = EXT4_SB(sb);
4174
4175 if (!test_opt(sb, MBALLOC)) {
4176 block = ext4_old_new_blocks(handle, ar->inode, ar->goal,
4177 &(ar->len), errp);
4178 return block;
4179 }
4180 if (!EXT4_I(ar->inode)->i_delalloc_reserved_flag) {
4181 /*
4182 * With delalloc we already reserved the blocks
4183 */
4184 ar->len = ext4_has_free_blocks(sbi, ar->len);
4185 }
4186
4187 if (ar->len == 0) {
4188 *errp = -ENOSPC;
4189 return 0;
4190 }
4191
4192 while (ar->len && DQUOT_ALLOC_BLOCK(ar->inode, ar->len)) {
4193 ar->flags |= EXT4_MB_HINT_NOPREALLOC;
4194 ar->len--;
4195 }
4196 if (ar->len == 0) {
4197 *errp = -EDQUOT;
4198 return 0;
4199 }
4200 inquota = ar->len;
4201
4202 if (EXT4_I(ar->inode)->i_delalloc_reserved_flag)
4203 ar->flags |= EXT4_MB_DELALLOC_RESERVED;
4204
4205 ac = kmem_cache_alloc(ext4_ac_cachep, GFP_NOFS);
4206 if (!ac) {
4207 ar->len = 0;
4208 *errp = -ENOMEM;
4209 goto out1;
4210 }
4211
4212 ext4_mb_poll_new_transaction(sb, handle);
4213
4214 *errp = ext4_mb_initialize_context(ac, ar);
4215 if (*errp) {
4216 ar->len = 0;
4217 goto out2;
4218 }
4219
4220 ac->ac_op = EXT4_MB_HISTORY_PREALLOC;
4221 if (!ext4_mb_use_preallocated(ac)) {
4222 ac->ac_op = EXT4_MB_HISTORY_ALLOC;
4223 ext4_mb_normalize_request(ac, ar);
4224 repeat:
4225 /* allocate space in core */
4226 ext4_mb_regular_allocator(ac);
4227
4228 /* as we've just preallocated more space than
4229 * user requested orinally, we store allocated
4230 * space in a special descriptor */
4231 if (ac->ac_status == AC_STATUS_FOUND &&
4232 ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len)
4233 ext4_mb_new_preallocation(ac);
4234 }
4235
4236 if (likely(ac->ac_status == AC_STATUS_FOUND)) {
4237 *errp = ext4_mb_mark_diskspace_used(ac, handle);
4238 if (*errp == -EAGAIN) {
4239 ac->ac_b_ex.fe_group = 0;
4240 ac->ac_b_ex.fe_start = 0;
4241 ac->ac_b_ex.fe_len = 0;
4242 ac->ac_status = AC_STATUS_CONTINUE;
4243 goto repeat;
4244 } else if (*errp) {
4245 ac->ac_b_ex.fe_len = 0;
4246 ar->len = 0;
4247 ext4_mb_show_ac(ac);
4248 } else {
4249 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
4250 ar->len = ac->ac_b_ex.fe_len;
4251 }
4252 } else {
4253 freed = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len);
4254 if (freed)
4255 goto repeat;
4256 *errp = -ENOSPC;
4257 ac->ac_b_ex.fe_len = 0;
4258 ar->len = 0;
4259 ext4_mb_show_ac(ac);
4260 }
4261
4262 ext4_mb_release_context(ac);
4263
4264 out2:
4265 kmem_cache_free(ext4_ac_cachep, ac);
4266 out1:
4267 if (ar->len < inquota)
4268 DQUOT_FREE_BLOCK(ar->inode, inquota - ar->len);
4269
4270 return block;
4271 }
4272 static void ext4_mb_poll_new_transaction(struct super_block *sb,
4273 handle_t *handle)
4274 {
4275 struct ext4_sb_info *sbi = EXT4_SB(sb);
4276
4277 if (sbi->s_last_transaction == handle->h_transaction->t_tid)
4278 return;
4279
4280 /* new transaction! time to close last one and free blocks for
4281 * committed transaction. we know that only transaction can be
4282 * active, so previos transaction can be being logged and we
4283 * know that transaction before previous is known to be already
4284 * logged. this means that now we may free blocks freed in all
4285 * transactions before previous one. hope I'm clear enough ... */
4286
4287 spin_lock(&sbi->s_md_lock);
4288 if (sbi->s_last_transaction != handle->h_transaction->t_tid) {
4289 mb_debug("new transaction %lu, old %lu\n",
4290 (unsigned long) handle->h_transaction->t_tid,
4291 (unsigned long) sbi->s_last_transaction);
4292 list_splice_init(&sbi->s_closed_transaction,
4293 &sbi->s_committed_transaction);
4294 list_splice_init(&sbi->s_active_transaction,
4295 &sbi->s_closed_transaction);
4296 sbi->s_last_transaction = handle->h_transaction->t_tid;
4297 }
4298 spin_unlock(&sbi->s_md_lock);
4299
4300 ext4_mb_free_committed_blocks(sb);
4301 }
4302
4303 static noinline_for_stack int
4304 ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b,
4305 ext4_group_t group, ext4_grpblk_t block, int count)
4306 {
4307 struct ext4_group_info *db = e4b->bd_info;
4308 struct super_block *sb = e4b->bd_sb;
4309 struct ext4_sb_info *sbi = EXT4_SB(sb);
4310 struct ext4_free_metadata *md;
4311 int i;
4312
4313 BUG_ON(e4b->bd_bitmap_page == NULL);
4314 BUG_ON(e4b->bd_buddy_page == NULL);
4315
4316 ext4_lock_group(sb, group);
4317 for (i = 0; i < count; i++) {
4318 md = db->bb_md_cur;
4319 if (md && db->bb_tid != handle->h_transaction->t_tid) {
4320 db->bb_md_cur = NULL;
4321 md = NULL;
4322 }
4323
4324 if (md == NULL) {
4325 ext4_unlock_group(sb, group);
4326 md = kmalloc(sizeof(*md), GFP_NOFS);
4327 if (md == NULL)
4328 return -ENOMEM;
4329 md->num = 0;
4330 md->group = group;
4331
4332 ext4_lock_group(sb, group);
4333 if (db->bb_md_cur == NULL) {
4334 spin_lock(&sbi->s_md_lock);
4335 list_add(&md->list, &sbi->s_active_transaction);
4336 spin_unlock(&sbi->s_md_lock);
4337 /* protect buddy cache from being freed,
4338 * otherwise we'll refresh it from
4339 * on-disk bitmap and lose not-yet-available
4340 * blocks */
4341 page_cache_get(e4b->bd_buddy_page);
4342 page_cache_get(e4b->bd_bitmap_page);
4343 db->bb_md_cur = md;
4344 db->bb_tid = handle->h_transaction->t_tid;
4345 mb_debug("new md 0x%p for group %lu\n",
4346 md, md->group);
4347 } else {
4348 kfree(md);
4349 md = db->bb_md_cur;
4350 }
4351 }
4352
4353 BUG_ON(md->num >= EXT4_BB_MAX_BLOCKS);
4354 md->blocks[md->num] = block + i;
4355 md->num++;
4356 if (md->num == EXT4_BB_MAX_BLOCKS) {
4357 /* no more space, put full container on a sb's list */
4358 db->bb_md_cur = NULL;
4359 }
4360 }
4361 ext4_unlock_group(sb, group);
4362 return 0;
4363 }
4364
4365 /*
4366 * Main entry point into mballoc to free blocks
4367 */
4368 void ext4_mb_free_blocks(handle_t *handle, struct inode *inode,
4369 unsigned long block, unsigned long count,
4370 int metadata, unsigned long *freed)
4371 {
4372 struct buffer_head *bitmap_bh = NULL;
4373 struct super_block *sb = inode->i_sb;
4374 struct ext4_allocation_context *ac = NULL;
4375 struct ext4_group_desc *gdp;
4376 struct ext4_super_block *es;
4377 unsigned long overflow;
4378 ext4_grpblk_t bit;
4379 struct buffer_head *gd_bh;
4380 ext4_group_t block_group;
4381 struct ext4_sb_info *sbi;
4382 struct ext4_buddy e4b;
4383 int err = 0;
4384 int ret;
4385
4386 *freed = 0;
4387
4388 ext4_mb_poll_new_transaction(sb, handle);
4389
4390 sbi = EXT4_SB(sb);
4391 es = EXT4_SB(sb)->s_es;
4392 if (block < le32_to_cpu(es->s_first_data_block) ||
4393 block + count < block ||
4394 block + count > ext4_blocks_count(es)) {
4395 ext4_error(sb, __func__,
4396 "Freeing blocks not in datazone - "
4397 "block = %lu, count = %lu", block, count);
4398 goto error_return;
4399 }
4400
4401 ext4_debug("freeing block %lu\n", block);
4402
4403 ac = kmem_cache_alloc(ext4_ac_cachep, GFP_NOFS);
4404 if (ac) {
4405 ac->ac_op = EXT4_MB_HISTORY_FREE;
4406 ac->ac_inode = inode;
4407 ac->ac_sb = sb;
4408 }
4409
4410 do_more:
4411 overflow = 0;
4412 ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
4413
4414 /*
4415 * Check to see if we are freeing blocks across a group
4416 * boundary.
4417 */
4418 if (bit + count > EXT4_BLOCKS_PER_GROUP(sb)) {
4419 overflow = bit + count - EXT4_BLOCKS_PER_GROUP(sb);
4420 count -= overflow;
4421 }
4422 bitmap_bh = ext4_read_block_bitmap(sb, block_group);
4423 if (!bitmap_bh)
4424 goto error_return;
4425 gdp = ext4_get_group_desc(sb, block_group, &gd_bh);
4426 if (!gdp)
4427 goto error_return;
4428
4429 if (in_range(ext4_block_bitmap(sb, gdp), block, count) ||
4430 in_range(ext4_inode_bitmap(sb, gdp), block, count) ||
4431 in_range(block, ext4_inode_table(sb, gdp),
4432 EXT4_SB(sb)->s_itb_per_group) ||
4433 in_range(block + count - 1, ext4_inode_table(sb, gdp),
4434 EXT4_SB(sb)->s_itb_per_group)) {
4435
4436 ext4_error(sb, __func__,
4437 "Freeing blocks in system zone - "
4438 "Block = %lu, count = %lu", block, count);
4439 /* err = 0. ext4_std_error should be a no op */
4440 goto error_return;
4441 }
4442
4443 BUFFER_TRACE(bitmap_bh, "getting write access");
4444 err = ext4_journal_get_write_access(handle, bitmap_bh);
4445 if (err)
4446 goto error_return;
4447
4448 /*
4449 * We are about to modify some metadata. Call the journal APIs
4450 * to unshare ->b_data if a currently-committing transaction is
4451 * using it
4452 */
4453 BUFFER_TRACE(gd_bh, "get_write_access");
4454 err = ext4_journal_get_write_access(handle, gd_bh);
4455 if (err)
4456 goto error_return;
4457
4458 err = ext4_mb_load_buddy(sb, block_group, &e4b);
4459 if (err)
4460 goto error_return;
4461
4462 #ifdef AGGRESSIVE_CHECK
4463 {
4464 int i;
4465 for (i = 0; i < count; i++)
4466 BUG_ON(!mb_test_bit(bit + i, bitmap_bh->b_data));
4467 }
4468 #endif
4469 mb_clear_bits(sb_bgl_lock(sbi, block_group), bitmap_bh->b_data,
4470 bit, count);
4471
4472 /* We dirtied the bitmap block */
4473 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
4474 err = ext4_journal_dirty_metadata(handle, bitmap_bh);
4475
4476 if (ac) {
4477 ac->ac_b_ex.fe_group = block_group;
4478 ac->ac_b_ex.fe_start = bit;
4479 ac->ac_b_ex.fe_len = count;
4480 ext4_mb_store_history(ac);
4481 }
4482
4483 if (metadata) {
4484 /* blocks being freed are metadata. these blocks shouldn't
4485 * be used until this transaction is committed */
4486 ext4_mb_free_metadata(handle, &e4b, block_group, bit, count);
4487 } else {
4488 ext4_lock_group(sb, block_group);
4489 mb_free_blocks(inode, &e4b, bit, count);
4490 ext4_mb_return_to_preallocation(inode, &e4b, block, count);
4491 ext4_unlock_group(sb, block_group);
4492 }
4493
4494 spin_lock(sb_bgl_lock(sbi, block_group));
4495 le16_add_cpu(&gdp->bg_free_blocks_count, count);
4496 gdp->bg_checksum = ext4_group_desc_csum(sbi, block_group, gdp);
4497 spin_unlock(sb_bgl_lock(sbi, block_group));
4498 percpu_counter_add(&sbi->s_freeblocks_counter, count);
4499
4500 if (sbi->s_log_groups_per_flex) {
4501 ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
4502 spin_lock(sb_bgl_lock(sbi, flex_group));
4503 sbi->s_flex_groups[flex_group].free_blocks += count;
4504 spin_unlock(sb_bgl_lock(sbi, flex_group));
4505 }
4506
4507 ext4_mb_release_desc(&e4b);
4508
4509 *freed += count;
4510
4511 /* And the group descriptor block */
4512 BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
4513 ret = ext4_journal_dirty_metadata(handle, gd_bh);
4514 if (!err)
4515 err = ret;
4516
4517 if (overflow && !err) {
4518 block += count;
4519 count = overflow;
4520 put_bh(bitmap_bh);
4521 goto do_more;
4522 }
4523 sb->s_dirt = 1;
4524 error_return:
4525 brelse(bitmap_bh);
4526 ext4_std_error(sb, err);
4527 if (ac)
4528 kmem_cache_free(ext4_ac_cachep, ac);
4529 return;
4530 }