]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/ext4/mballoc.c
ext4: use kmem_cache_zalloc instead of kmem_cache_alloc/memset
[mirror_ubuntu-bionic-kernel.git] / fs / ext4 / mballoc.c
1 /*
2 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3 * Written by Alex Tomas <alex@clusterfs.com>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public Licens
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
17 */
18
19
20 /*
21 * mballoc.c contains the multiblocks allocation routines
22 */
23
24 #include "ext4_jbd2.h"
25 #include "mballoc.h"
26 #include <linux/debugfs.h>
27 #include <linux/log2.h>
28 #include <linux/slab.h>
29 #include <trace/events/ext4.h>
30
31 /*
32 * MUSTDO:
33 * - test ext4_ext_search_left() and ext4_ext_search_right()
34 * - search for metadata in few groups
35 *
36 * TODO v4:
37 * - normalization should take into account whether file is still open
38 * - discard preallocations if no free space left (policy?)
39 * - don't normalize tails
40 * - quota
41 * - reservation for superuser
42 *
43 * TODO v3:
44 * - bitmap read-ahead (proposed by Oleg Drokin aka green)
45 * - track min/max extents in each group for better group selection
46 * - mb_mark_used() may allocate chunk right after splitting buddy
47 * - tree of groups sorted by number of free blocks
48 * - error handling
49 */
50
51 /*
52 * The allocation request involve request for multiple number of blocks
53 * near to the goal(block) value specified.
54 *
55 * During initialization phase of the allocator we decide to use the
56 * group preallocation or inode preallocation depending on the size of
57 * the file. The size of the file could be the resulting file size we
58 * would have after allocation, or the current file size, which ever
59 * is larger. If the size is less than sbi->s_mb_stream_request we
60 * select to use the group preallocation. The default value of
61 * s_mb_stream_request is 16 blocks. This can also be tuned via
62 * /sys/fs/ext4/<partition>/mb_stream_req. The value is represented in
63 * terms of number of blocks.
64 *
65 * The main motivation for having small file use group preallocation is to
66 * ensure that we have small files closer together on the disk.
67 *
68 * First stage the allocator looks at the inode prealloc list,
69 * ext4_inode_info->i_prealloc_list, which contains list of prealloc
70 * spaces for this particular inode. The inode prealloc space is
71 * represented as:
72 *
73 * pa_lstart -> the logical start block for this prealloc space
74 * pa_pstart -> the physical start block for this prealloc space
75 * pa_len -> length for this prealloc space (in clusters)
76 * pa_free -> free space available in this prealloc space (in clusters)
77 *
78 * The inode preallocation space is used looking at the _logical_ start
79 * block. If only the logical file block falls within the range of prealloc
80 * space we will consume the particular prealloc space. This makes sure that
81 * we have contiguous physical blocks representing the file blocks
82 *
83 * The important thing to be noted in case of inode prealloc space is that
84 * we don't modify the values associated to inode prealloc space except
85 * pa_free.
86 *
87 * If we are not able to find blocks in the inode prealloc space and if we
88 * have the group allocation flag set then we look at the locality group
89 * prealloc space. These are per CPU prealloc list represented as
90 *
91 * ext4_sb_info.s_locality_groups[smp_processor_id()]
92 *
93 * The reason for having a per cpu locality group is to reduce the contention
94 * between CPUs. It is possible to get scheduled at this point.
95 *
96 * The locality group prealloc space is used looking at whether we have
97 * enough free space (pa_free) within the prealloc space.
98 *
99 * If we can't allocate blocks via inode prealloc or/and locality group
100 * prealloc then we look at the buddy cache. The buddy cache is represented
101 * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets
102 * mapped to the buddy and bitmap information regarding different
103 * groups. The buddy information is attached to buddy cache inode so that
104 * we can access them through the page cache. The information regarding
105 * each group is loaded via ext4_mb_load_buddy. The information involve
106 * block bitmap and buddy information. The information are stored in the
107 * inode as:
108 *
109 * { page }
110 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
111 *
112 *
113 * one block each for bitmap and buddy information. So for each group we
114 * take up 2 blocks. A page can contain blocks_per_page (PAGE_CACHE_SIZE /
115 * blocksize) blocks. So it can have information regarding groups_per_page
116 * which is blocks_per_page/2
117 *
118 * The buddy cache inode is not stored on disk. The inode is thrown
119 * away when the filesystem is unmounted.
120 *
121 * We look for count number of blocks in the buddy cache. If we were able
122 * to locate that many free blocks we return with additional information
123 * regarding rest of the contiguous physical block available
124 *
125 * Before allocating blocks via buddy cache we normalize the request
126 * blocks. This ensure we ask for more blocks that we needed. The extra
127 * blocks that we get after allocation is added to the respective prealloc
128 * list. In case of inode preallocation we follow a list of heuristics
129 * based on file size. This can be found in ext4_mb_normalize_request. If
130 * we are doing a group prealloc we try to normalize the request to
131 * sbi->s_mb_group_prealloc. The default value of s_mb_group_prealloc is
132 * dependent on the cluster size; for non-bigalloc file systems, it is
133 * 512 blocks. This can be tuned via
134 * /sys/fs/ext4/<partition>/mb_group_prealloc. The value is represented in
135 * terms of number of blocks. If we have mounted the file system with -O
136 * stripe=<value> option the group prealloc request is normalized to the
137 * the smallest multiple of the stripe value (sbi->s_stripe) which is
138 * greater than the default mb_group_prealloc.
139 *
140 * The regular allocator (using the buddy cache) supports a few tunables.
141 *
142 * /sys/fs/ext4/<partition>/mb_min_to_scan
143 * /sys/fs/ext4/<partition>/mb_max_to_scan
144 * /sys/fs/ext4/<partition>/mb_order2_req
145 *
146 * The regular allocator uses buddy scan only if the request len is power of
147 * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The
148 * value of s_mb_order2_reqs can be tuned via
149 * /sys/fs/ext4/<partition>/mb_order2_req. If the request len is equal to
150 * stripe size (sbi->s_stripe), we try to search for contiguous block in
151 * stripe size. This should result in better allocation on RAID setups. If
152 * not, we search in the specific group using bitmap for best extents. The
153 * tunable min_to_scan and max_to_scan control the behaviour here.
154 * min_to_scan indicate how long the mballoc __must__ look for a best
155 * extent and max_to_scan indicates how long the mballoc __can__ look for a
156 * best extent in the found extents. Searching for the blocks starts with
157 * the group specified as the goal value in allocation context via
158 * ac_g_ex. Each group is first checked based on the criteria whether it
159 * can be used for allocation. ext4_mb_good_group explains how the groups are
160 * checked.
161 *
162 * Both the prealloc space are getting populated as above. So for the first
163 * request we will hit the buddy cache which will result in this prealloc
164 * space getting filled. The prealloc space is then later used for the
165 * subsequent request.
166 */
167
168 /*
169 * mballoc operates on the following data:
170 * - on-disk bitmap
171 * - in-core buddy (actually includes buddy and bitmap)
172 * - preallocation descriptors (PAs)
173 *
174 * there are two types of preallocations:
175 * - inode
176 * assiged to specific inode and can be used for this inode only.
177 * it describes part of inode's space preallocated to specific
178 * physical blocks. any block from that preallocated can be used
179 * independent. the descriptor just tracks number of blocks left
180 * unused. so, before taking some block from descriptor, one must
181 * make sure corresponded logical block isn't allocated yet. this
182 * also means that freeing any block within descriptor's range
183 * must discard all preallocated blocks.
184 * - locality group
185 * assigned to specific locality group which does not translate to
186 * permanent set of inodes: inode can join and leave group. space
187 * from this type of preallocation can be used for any inode. thus
188 * it's consumed from the beginning to the end.
189 *
190 * relation between them can be expressed as:
191 * in-core buddy = on-disk bitmap + preallocation descriptors
192 *
193 * this mean blocks mballoc considers used are:
194 * - allocated blocks (persistent)
195 * - preallocated blocks (non-persistent)
196 *
197 * consistency in mballoc world means that at any time a block is either
198 * free or used in ALL structures. notice: "any time" should not be read
199 * literally -- time is discrete and delimited by locks.
200 *
201 * to keep it simple, we don't use block numbers, instead we count number of
202 * blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA.
203 *
204 * all operations can be expressed as:
205 * - init buddy: buddy = on-disk + PAs
206 * - new PA: buddy += N; PA = N
207 * - use inode PA: on-disk += N; PA -= N
208 * - discard inode PA buddy -= on-disk - PA; PA = 0
209 * - use locality group PA on-disk += N; PA -= N
210 * - discard locality group PA buddy -= PA; PA = 0
211 * note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap
212 * is used in real operation because we can't know actual used
213 * bits from PA, only from on-disk bitmap
214 *
215 * if we follow this strict logic, then all operations above should be atomic.
216 * given some of them can block, we'd have to use something like semaphores
217 * killing performance on high-end SMP hardware. let's try to relax it using
218 * the following knowledge:
219 * 1) if buddy is referenced, it's already initialized
220 * 2) while block is used in buddy and the buddy is referenced,
221 * nobody can re-allocate that block
222 * 3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has
223 * bit set and PA claims same block, it's OK. IOW, one can set bit in
224 * on-disk bitmap if buddy has same bit set or/and PA covers corresponded
225 * block
226 *
227 * so, now we're building a concurrency table:
228 * - init buddy vs.
229 * - new PA
230 * blocks for PA are allocated in the buddy, buddy must be referenced
231 * until PA is linked to allocation group to avoid concurrent buddy init
232 * - use inode PA
233 * we need to make sure that either on-disk bitmap or PA has uptodate data
234 * given (3) we care that PA-=N operation doesn't interfere with init
235 * - discard inode PA
236 * the simplest way would be to have buddy initialized by the discard
237 * - use locality group PA
238 * again PA-=N must be serialized with init
239 * - discard locality group PA
240 * the simplest way would be to have buddy initialized by the discard
241 * - new PA vs.
242 * - use inode PA
243 * i_data_sem serializes them
244 * - discard inode PA
245 * discard process must wait until PA isn't used by another process
246 * - use locality group PA
247 * some mutex should serialize them
248 * - discard locality group PA
249 * discard process must wait until PA isn't used by another process
250 * - use inode PA
251 * - use inode PA
252 * i_data_sem or another mutex should serializes them
253 * - discard inode PA
254 * discard process must wait until PA isn't used by another process
255 * - use locality group PA
256 * nothing wrong here -- they're different PAs covering different blocks
257 * - discard locality group PA
258 * discard process must wait until PA isn't used by another process
259 *
260 * now we're ready to make few consequences:
261 * - PA is referenced and while it is no discard is possible
262 * - PA is referenced until block isn't marked in on-disk bitmap
263 * - PA changes only after on-disk bitmap
264 * - discard must not compete with init. either init is done before
265 * any discard or they're serialized somehow
266 * - buddy init as sum of on-disk bitmap and PAs is done atomically
267 *
268 * a special case when we've used PA to emptiness. no need to modify buddy
269 * in this case, but we should care about concurrent init
270 *
271 */
272
273 /*
274 * Logic in few words:
275 *
276 * - allocation:
277 * load group
278 * find blocks
279 * mark bits in on-disk bitmap
280 * release group
281 *
282 * - use preallocation:
283 * find proper PA (per-inode or group)
284 * load group
285 * mark bits in on-disk bitmap
286 * release group
287 * release PA
288 *
289 * - free:
290 * load group
291 * mark bits in on-disk bitmap
292 * release group
293 *
294 * - discard preallocations in group:
295 * mark PAs deleted
296 * move them onto local list
297 * load on-disk bitmap
298 * load group
299 * remove PA from object (inode or locality group)
300 * mark free blocks in-core
301 *
302 * - discard inode's preallocations:
303 */
304
305 /*
306 * Locking rules
307 *
308 * Locks:
309 * - bitlock on a group (group)
310 * - object (inode/locality) (object)
311 * - per-pa lock (pa)
312 *
313 * Paths:
314 * - new pa
315 * object
316 * group
317 *
318 * - find and use pa:
319 * pa
320 *
321 * - release consumed pa:
322 * pa
323 * group
324 * object
325 *
326 * - generate in-core bitmap:
327 * group
328 * pa
329 *
330 * - discard all for given object (inode, locality group):
331 * object
332 * pa
333 * group
334 *
335 * - discard all for given group:
336 * group
337 * pa
338 * group
339 * object
340 *
341 */
342 static struct kmem_cache *ext4_pspace_cachep;
343 static struct kmem_cache *ext4_ac_cachep;
344 static struct kmem_cache *ext4_free_data_cachep;
345
346 /* We create slab caches for groupinfo data structures based on the
347 * superblock block size. There will be one per mounted filesystem for
348 * each unique s_blocksize_bits */
349 #define NR_GRPINFO_CACHES 8
350 static struct kmem_cache *ext4_groupinfo_caches[NR_GRPINFO_CACHES];
351
352 static const char *ext4_groupinfo_slab_names[NR_GRPINFO_CACHES] = {
353 "ext4_groupinfo_1k", "ext4_groupinfo_2k", "ext4_groupinfo_4k",
354 "ext4_groupinfo_8k", "ext4_groupinfo_16k", "ext4_groupinfo_32k",
355 "ext4_groupinfo_64k", "ext4_groupinfo_128k"
356 };
357
358 static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
359 ext4_group_t group);
360 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
361 ext4_group_t group);
362 static void ext4_free_data_callback(struct super_block *sb,
363 struct ext4_journal_cb_entry *jce, int rc);
364
365 static inline void *mb_correct_addr_and_bit(int *bit, void *addr)
366 {
367 #if BITS_PER_LONG == 64
368 *bit += ((unsigned long) addr & 7UL) << 3;
369 addr = (void *) ((unsigned long) addr & ~7UL);
370 #elif BITS_PER_LONG == 32
371 *bit += ((unsigned long) addr & 3UL) << 3;
372 addr = (void *) ((unsigned long) addr & ~3UL);
373 #else
374 #error "how many bits you are?!"
375 #endif
376 return addr;
377 }
378
379 static inline int mb_test_bit(int bit, void *addr)
380 {
381 /*
382 * ext4_test_bit on architecture like powerpc
383 * needs unsigned long aligned address
384 */
385 addr = mb_correct_addr_and_bit(&bit, addr);
386 return ext4_test_bit(bit, addr);
387 }
388
389 static inline void mb_set_bit(int bit, void *addr)
390 {
391 addr = mb_correct_addr_and_bit(&bit, addr);
392 ext4_set_bit(bit, addr);
393 }
394
395 static inline void mb_clear_bit(int bit, void *addr)
396 {
397 addr = mb_correct_addr_and_bit(&bit, addr);
398 ext4_clear_bit(bit, addr);
399 }
400
401 static inline int mb_find_next_zero_bit(void *addr, int max, int start)
402 {
403 int fix = 0, ret, tmpmax;
404 addr = mb_correct_addr_and_bit(&fix, addr);
405 tmpmax = max + fix;
406 start += fix;
407
408 ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix;
409 if (ret > max)
410 return max;
411 return ret;
412 }
413
414 static inline int mb_find_next_bit(void *addr, int max, int start)
415 {
416 int fix = 0, ret, tmpmax;
417 addr = mb_correct_addr_and_bit(&fix, addr);
418 tmpmax = max + fix;
419 start += fix;
420
421 ret = ext4_find_next_bit(addr, tmpmax, start) - fix;
422 if (ret > max)
423 return max;
424 return ret;
425 }
426
427 static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max)
428 {
429 char *bb;
430
431 BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
432 BUG_ON(max == NULL);
433
434 if (order > e4b->bd_blkbits + 1) {
435 *max = 0;
436 return NULL;
437 }
438
439 /* at order 0 we see each particular block */
440 if (order == 0) {
441 *max = 1 << (e4b->bd_blkbits + 3);
442 return e4b->bd_bitmap;
443 }
444
445 bb = e4b->bd_buddy + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order];
446 *max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order];
447
448 return bb;
449 }
450
451 #ifdef DOUBLE_CHECK
452 static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b,
453 int first, int count)
454 {
455 int i;
456 struct super_block *sb = e4b->bd_sb;
457
458 if (unlikely(e4b->bd_info->bb_bitmap == NULL))
459 return;
460 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
461 for (i = 0; i < count; i++) {
462 if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) {
463 ext4_fsblk_t blocknr;
464
465 blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
466 blocknr += EXT4_C2B(EXT4_SB(sb), first + i);
467 ext4_grp_locked_error(sb, e4b->bd_group,
468 inode ? inode->i_ino : 0,
469 blocknr,
470 "freeing block already freed "
471 "(bit %u)",
472 first + i);
473 }
474 mb_clear_bit(first + i, e4b->bd_info->bb_bitmap);
475 }
476 }
477
478 static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count)
479 {
480 int i;
481
482 if (unlikely(e4b->bd_info->bb_bitmap == NULL))
483 return;
484 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
485 for (i = 0; i < count; i++) {
486 BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap));
487 mb_set_bit(first + i, e4b->bd_info->bb_bitmap);
488 }
489 }
490
491 static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
492 {
493 if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) {
494 unsigned char *b1, *b2;
495 int i;
496 b1 = (unsigned char *) e4b->bd_info->bb_bitmap;
497 b2 = (unsigned char *) bitmap;
498 for (i = 0; i < e4b->bd_sb->s_blocksize; i++) {
499 if (b1[i] != b2[i]) {
500 ext4_msg(e4b->bd_sb, KERN_ERR,
501 "corruption in group %u "
502 "at byte %u(%u): %x in copy != %x "
503 "on disk/prealloc",
504 e4b->bd_group, i, i * 8, b1[i], b2[i]);
505 BUG();
506 }
507 }
508 }
509 }
510
511 #else
512 static inline void mb_free_blocks_double(struct inode *inode,
513 struct ext4_buddy *e4b, int first, int count)
514 {
515 return;
516 }
517 static inline void mb_mark_used_double(struct ext4_buddy *e4b,
518 int first, int count)
519 {
520 return;
521 }
522 static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
523 {
524 return;
525 }
526 #endif
527
528 #ifdef AGGRESSIVE_CHECK
529
530 #define MB_CHECK_ASSERT(assert) \
531 do { \
532 if (!(assert)) { \
533 printk(KERN_EMERG \
534 "Assertion failure in %s() at %s:%d: \"%s\"\n", \
535 function, file, line, # assert); \
536 BUG(); \
537 } \
538 } while (0)
539
540 static int __mb_check_buddy(struct ext4_buddy *e4b, char *file,
541 const char *function, int line)
542 {
543 struct super_block *sb = e4b->bd_sb;
544 int order = e4b->bd_blkbits + 1;
545 int max;
546 int max2;
547 int i;
548 int j;
549 int k;
550 int count;
551 struct ext4_group_info *grp;
552 int fragments = 0;
553 int fstart;
554 struct list_head *cur;
555 void *buddy;
556 void *buddy2;
557
558 {
559 static int mb_check_counter;
560 if (mb_check_counter++ % 100 != 0)
561 return 0;
562 }
563
564 while (order > 1) {
565 buddy = mb_find_buddy(e4b, order, &max);
566 MB_CHECK_ASSERT(buddy);
567 buddy2 = mb_find_buddy(e4b, order - 1, &max2);
568 MB_CHECK_ASSERT(buddy2);
569 MB_CHECK_ASSERT(buddy != buddy2);
570 MB_CHECK_ASSERT(max * 2 == max2);
571
572 count = 0;
573 for (i = 0; i < max; i++) {
574
575 if (mb_test_bit(i, buddy)) {
576 /* only single bit in buddy2 may be 1 */
577 if (!mb_test_bit(i << 1, buddy2)) {
578 MB_CHECK_ASSERT(
579 mb_test_bit((i<<1)+1, buddy2));
580 } else if (!mb_test_bit((i << 1) + 1, buddy2)) {
581 MB_CHECK_ASSERT(
582 mb_test_bit(i << 1, buddy2));
583 }
584 continue;
585 }
586
587 /* both bits in buddy2 must be 1 */
588 MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2));
589 MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2));
590
591 for (j = 0; j < (1 << order); j++) {
592 k = (i * (1 << order)) + j;
593 MB_CHECK_ASSERT(
594 !mb_test_bit(k, e4b->bd_bitmap));
595 }
596 count++;
597 }
598 MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count);
599 order--;
600 }
601
602 fstart = -1;
603 buddy = mb_find_buddy(e4b, 0, &max);
604 for (i = 0; i < max; i++) {
605 if (!mb_test_bit(i, buddy)) {
606 MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free);
607 if (fstart == -1) {
608 fragments++;
609 fstart = i;
610 }
611 continue;
612 }
613 fstart = -1;
614 /* check used bits only */
615 for (j = 0; j < e4b->bd_blkbits + 1; j++) {
616 buddy2 = mb_find_buddy(e4b, j, &max2);
617 k = i >> j;
618 MB_CHECK_ASSERT(k < max2);
619 MB_CHECK_ASSERT(mb_test_bit(k, buddy2));
620 }
621 }
622 MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info));
623 MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments);
624
625 grp = ext4_get_group_info(sb, e4b->bd_group);
626 list_for_each(cur, &grp->bb_prealloc_list) {
627 ext4_group_t groupnr;
628 struct ext4_prealloc_space *pa;
629 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
630 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k);
631 MB_CHECK_ASSERT(groupnr == e4b->bd_group);
632 for (i = 0; i < pa->pa_len; i++)
633 MB_CHECK_ASSERT(mb_test_bit(k + i, buddy));
634 }
635 return 0;
636 }
637 #undef MB_CHECK_ASSERT
638 #define mb_check_buddy(e4b) __mb_check_buddy(e4b, \
639 __FILE__, __func__, __LINE__)
640 #else
641 #define mb_check_buddy(e4b)
642 #endif
643
644 /*
645 * Divide blocks started from @first with length @len into
646 * smaller chunks with power of 2 blocks.
647 * Clear the bits in bitmap which the blocks of the chunk(s) covered,
648 * then increase bb_counters[] for corresponded chunk size.
649 */
650 static void ext4_mb_mark_free_simple(struct super_block *sb,
651 void *buddy, ext4_grpblk_t first, ext4_grpblk_t len,
652 struct ext4_group_info *grp)
653 {
654 struct ext4_sb_info *sbi = EXT4_SB(sb);
655 ext4_grpblk_t min;
656 ext4_grpblk_t max;
657 ext4_grpblk_t chunk;
658 unsigned short border;
659
660 BUG_ON(len > EXT4_CLUSTERS_PER_GROUP(sb));
661
662 border = 2 << sb->s_blocksize_bits;
663
664 while (len > 0) {
665 /* find how many blocks can be covered since this position */
666 max = ffs(first | border) - 1;
667
668 /* find how many blocks of power 2 we need to mark */
669 min = fls(len) - 1;
670
671 if (max < min)
672 min = max;
673 chunk = 1 << min;
674
675 /* mark multiblock chunks only */
676 grp->bb_counters[min]++;
677 if (min > 0)
678 mb_clear_bit(first >> min,
679 buddy + sbi->s_mb_offsets[min]);
680
681 len -= chunk;
682 first += chunk;
683 }
684 }
685
686 /*
687 * Cache the order of the largest free extent we have available in this block
688 * group.
689 */
690 static void
691 mb_set_largest_free_order(struct super_block *sb, struct ext4_group_info *grp)
692 {
693 int i;
694 int bits;
695
696 grp->bb_largest_free_order = -1; /* uninit */
697
698 bits = sb->s_blocksize_bits + 1;
699 for (i = bits; i >= 0; i--) {
700 if (grp->bb_counters[i] > 0) {
701 grp->bb_largest_free_order = i;
702 break;
703 }
704 }
705 }
706
707 static noinline_for_stack
708 void ext4_mb_generate_buddy(struct super_block *sb,
709 void *buddy, void *bitmap, ext4_group_t group)
710 {
711 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
712 ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb);
713 ext4_grpblk_t i = 0;
714 ext4_grpblk_t first;
715 ext4_grpblk_t len;
716 unsigned free = 0;
717 unsigned fragments = 0;
718 unsigned long long period = get_cycles();
719
720 /* initialize buddy from bitmap which is aggregation
721 * of on-disk bitmap and preallocations */
722 i = mb_find_next_zero_bit(bitmap, max, 0);
723 grp->bb_first_free = i;
724 while (i < max) {
725 fragments++;
726 first = i;
727 i = mb_find_next_bit(bitmap, max, i);
728 len = i - first;
729 free += len;
730 if (len > 1)
731 ext4_mb_mark_free_simple(sb, buddy, first, len, grp);
732 else
733 grp->bb_counters[0]++;
734 if (i < max)
735 i = mb_find_next_zero_bit(bitmap, max, i);
736 }
737 grp->bb_fragments = fragments;
738
739 if (free != grp->bb_free) {
740 ext4_grp_locked_error(sb, group, 0, 0,
741 "%u clusters in bitmap, %u in gd",
742 free, grp->bb_free);
743 /*
744 * If we intent to continue, we consider group descritor
745 * corrupt and update bb_free using bitmap value
746 */
747 grp->bb_free = free;
748 }
749 mb_set_largest_free_order(sb, grp);
750
751 clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state));
752
753 period = get_cycles() - period;
754 spin_lock(&EXT4_SB(sb)->s_bal_lock);
755 EXT4_SB(sb)->s_mb_buddies_generated++;
756 EXT4_SB(sb)->s_mb_generation_time += period;
757 spin_unlock(&EXT4_SB(sb)->s_bal_lock);
758 }
759
760 /* The buddy information is attached the buddy cache inode
761 * for convenience. The information regarding each group
762 * is loaded via ext4_mb_load_buddy. The information involve
763 * block bitmap and buddy information. The information are
764 * stored in the inode as
765 *
766 * { page }
767 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
768 *
769 *
770 * one block each for bitmap and buddy information.
771 * So for each group we take up 2 blocks. A page can
772 * contain blocks_per_page (PAGE_CACHE_SIZE / blocksize) blocks.
773 * So it can have information regarding groups_per_page which
774 * is blocks_per_page/2
775 *
776 * Locking note: This routine takes the block group lock of all groups
777 * for this page; do not hold this lock when calling this routine!
778 */
779
780 static int ext4_mb_init_cache(struct page *page, char *incore)
781 {
782 ext4_group_t ngroups;
783 int blocksize;
784 int blocks_per_page;
785 int groups_per_page;
786 int err = 0;
787 int i;
788 ext4_group_t first_group, group;
789 int first_block;
790 struct super_block *sb;
791 struct buffer_head *bhs;
792 struct buffer_head **bh = NULL;
793 struct inode *inode;
794 char *data;
795 char *bitmap;
796 struct ext4_group_info *grinfo;
797
798 mb_debug(1, "init page %lu\n", page->index);
799
800 inode = page->mapping->host;
801 sb = inode->i_sb;
802 ngroups = ext4_get_groups_count(sb);
803 blocksize = 1 << inode->i_blkbits;
804 blocks_per_page = PAGE_CACHE_SIZE / blocksize;
805
806 groups_per_page = blocks_per_page >> 1;
807 if (groups_per_page == 0)
808 groups_per_page = 1;
809
810 /* allocate buffer_heads to read bitmaps */
811 if (groups_per_page > 1) {
812 i = sizeof(struct buffer_head *) * groups_per_page;
813 bh = kzalloc(i, GFP_NOFS);
814 if (bh == NULL) {
815 err = -ENOMEM;
816 goto out;
817 }
818 } else
819 bh = &bhs;
820
821 first_group = page->index * blocks_per_page / 2;
822
823 /* read all groups the page covers into the cache */
824 for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
825 if (group >= ngroups)
826 break;
827
828 grinfo = ext4_get_group_info(sb, group);
829 /*
830 * If page is uptodate then we came here after online resize
831 * which added some new uninitialized group info structs, so
832 * we must skip all initialized uptodate buddies on the page,
833 * which may be currently in use by an allocating task.
834 */
835 if (PageUptodate(page) && !EXT4_MB_GRP_NEED_INIT(grinfo)) {
836 bh[i] = NULL;
837 continue;
838 }
839 if (!(bh[i] = ext4_read_block_bitmap_nowait(sb, group))) {
840 err = -ENOMEM;
841 goto out;
842 }
843 mb_debug(1, "read bitmap for group %u\n", group);
844 }
845
846 /* wait for I/O completion */
847 for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
848 if (bh[i] && ext4_wait_block_bitmap(sb, group, bh[i])) {
849 err = -EIO;
850 goto out;
851 }
852 }
853
854 first_block = page->index * blocks_per_page;
855 for (i = 0; i < blocks_per_page; i++) {
856 int group;
857
858 group = (first_block + i) >> 1;
859 if (group >= ngroups)
860 break;
861
862 if (!bh[group - first_group])
863 /* skip initialized uptodate buddy */
864 continue;
865
866 /*
867 * data carry information regarding this
868 * particular group in the format specified
869 * above
870 *
871 */
872 data = page_address(page) + (i * blocksize);
873 bitmap = bh[group - first_group]->b_data;
874
875 /*
876 * We place the buddy block and bitmap block
877 * close together
878 */
879 if ((first_block + i) & 1) {
880 /* this is block of buddy */
881 BUG_ON(incore == NULL);
882 mb_debug(1, "put buddy for group %u in page %lu/%x\n",
883 group, page->index, i * blocksize);
884 trace_ext4_mb_buddy_bitmap_load(sb, group);
885 grinfo = ext4_get_group_info(sb, group);
886 grinfo->bb_fragments = 0;
887 memset(grinfo->bb_counters, 0,
888 sizeof(*grinfo->bb_counters) *
889 (sb->s_blocksize_bits+2));
890 /*
891 * incore got set to the group block bitmap below
892 */
893 ext4_lock_group(sb, group);
894 /* init the buddy */
895 memset(data, 0xff, blocksize);
896 ext4_mb_generate_buddy(sb, data, incore, group);
897 ext4_unlock_group(sb, group);
898 incore = NULL;
899 } else {
900 /* this is block of bitmap */
901 BUG_ON(incore != NULL);
902 mb_debug(1, "put bitmap for group %u in page %lu/%x\n",
903 group, page->index, i * blocksize);
904 trace_ext4_mb_bitmap_load(sb, group);
905
906 /* see comments in ext4_mb_put_pa() */
907 ext4_lock_group(sb, group);
908 memcpy(data, bitmap, blocksize);
909
910 /* mark all preallocated blks used in in-core bitmap */
911 ext4_mb_generate_from_pa(sb, data, group);
912 ext4_mb_generate_from_freelist(sb, data, group);
913 ext4_unlock_group(sb, group);
914
915 /* set incore so that the buddy information can be
916 * generated using this
917 */
918 incore = data;
919 }
920 }
921 SetPageUptodate(page);
922
923 out:
924 if (bh) {
925 for (i = 0; i < groups_per_page; i++)
926 brelse(bh[i]);
927 if (bh != &bhs)
928 kfree(bh);
929 }
930 return err;
931 }
932
933 /*
934 * Lock the buddy and bitmap pages. This make sure other parallel init_group
935 * on the same buddy page doesn't happen whild holding the buddy page lock.
936 * Return locked buddy and bitmap pages on e4b struct. If buddy and bitmap
937 * are on the same page e4b->bd_buddy_page is NULL and return value is 0.
938 */
939 static int ext4_mb_get_buddy_page_lock(struct super_block *sb,
940 ext4_group_t group, struct ext4_buddy *e4b)
941 {
942 struct inode *inode = EXT4_SB(sb)->s_buddy_cache;
943 int block, pnum, poff;
944 int blocks_per_page;
945 struct page *page;
946
947 e4b->bd_buddy_page = NULL;
948 e4b->bd_bitmap_page = NULL;
949
950 blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize;
951 /*
952 * the buddy cache inode stores the block bitmap
953 * and buddy information in consecutive blocks.
954 * So for each group we need two blocks.
955 */
956 block = group * 2;
957 pnum = block / blocks_per_page;
958 poff = block % blocks_per_page;
959 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
960 if (!page)
961 return -EIO;
962 BUG_ON(page->mapping != inode->i_mapping);
963 e4b->bd_bitmap_page = page;
964 e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
965
966 if (blocks_per_page >= 2) {
967 /* buddy and bitmap are on the same page */
968 return 0;
969 }
970
971 block++;
972 pnum = block / blocks_per_page;
973 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
974 if (!page)
975 return -EIO;
976 BUG_ON(page->mapping != inode->i_mapping);
977 e4b->bd_buddy_page = page;
978 return 0;
979 }
980
981 static void ext4_mb_put_buddy_page_lock(struct ext4_buddy *e4b)
982 {
983 if (e4b->bd_bitmap_page) {
984 unlock_page(e4b->bd_bitmap_page);
985 page_cache_release(e4b->bd_bitmap_page);
986 }
987 if (e4b->bd_buddy_page) {
988 unlock_page(e4b->bd_buddy_page);
989 page_cache_release(e4b->bd_buddy_page);
990 }
991 }
992
993 /*
994 * Locking note: This routine calls ext4_mb_init_cache(), which takes the
995 * block group lock of all groups for this page; do not hold the BG lock when
996 * calling this routine!
997 */
998 static noinline_for_stack
999 int ext4_mb_init_group(struct super_block *sb, ext4_group_t group)
1000 {
1001
1002 struct ext4_group_info *this_grp;
1003 struct ext4_buddy e4b;
1004 struct page *page;
1005 int ret = 0;
1006
1007 mb_debug(1, "init group %u\n", group);
1008 this_grp = ext4_get_group_info(sb, group);
1009 /*
1010 * This ensures that we don't reinit the buddy cache
1011 * page which map to the group from which we are already
1012 * allocating. If we are looking at the buddy cache we would
1013 * have taken a reference using ext4_mb_load_buddy and that
1014 * would have pinned buddy page to page cache.
1015 */
1016 ret = ext4_mb_get_buddy_page_lock(sb, group, &e4b);
1017 if (ret || !EXT4_MB_GRP_NEED_INIT(this_grp)) {
1018 /*
1019 * somebody initialized the group
1020 * return without doing anything
1021 */
1022 goto err;
1023 }
1024
1025 page = e4b.bd_bitmap_page;
1026 ret = ext4_mb_init_cache(page, NULL);
1027 if (ret)
1028 goto err;
1029 if (!PageUptodate(page)) {
1030 ret = -EIO;
1031 goto err;
1032 }
1033 mark_page_accessed(page);
1034
1035 if (e4b.bd_buddy_page == NULL) {
1036 /*
1037 * If both the bitmap and buddy are in
1038 * the same page we don't need to force
1039 * init the buddy
1040 */
1041 ret = 0;
1042 goto err;
1043 }
1044 /* init buddy cache */
1045 page = e4b.bd_buddy_page;
1046 ret = ext4_mb_init_cache(page, e4b.bd_bitmap);
1047 if (ret)
1048 goto err;
1049 if (!PageUptodate(page)) {
1050 ret = -EIO;
1051 goto err;
1052 }
1053 mark_page_accessed(page);
1054 err:
1055 ext4_mb_put_buddy_page_lock(&e4b);
1056 return ret;
1057 }
1058
1059 /*
1060 * Locking note: This routine calls ext4_mb_init_cache(), which takes the
1061 * block group lock of all groups for this page; do not hold the BG lock when
1062 * calling this routine!
1063 */
1064 static noinline_for_stack int
1065 ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group,
1066 struct ext4_buddy *e4b)
1067 {
1068 int blocks_per_page;
1069 int block;
1070 int pnum;
1071 int poff;
1072 struct page *page;
1073 int ret;
1074 struct ext4_group_info *grp;
1075 struct ext4_sb_info *sbi = EXT4_SB(sb);
1076 struct inode *inode = sbi->s_buddy_cache;
1077
1078 mb_debug(1, "load group %u\n", group);
1079
1080 blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize;
1081 grp = ext4_get_group_info(sb, group);
1082
1083 e4b->bd_blkbits = sb->s_blocksize_bits;
1084 e4b->bd_info = grp;
1085 e4b->bd_sb = sb;
1086 e4b->bd_group = group;
1087 e4b->bd_buddy_page = NULL;
1088 e4b->bd_bitmap_page = NULL;
1089
1090 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
1091 /*
1092 * we need full data about the group
1093 * to make a good selection
1094 */
1095 ret = ext4_mb_init_group(sb, group);
1096 if (ret)
1097 return ret;
1098 }
1099
1100 /*
1101 * the buddy cache inode stores the block bitmap
1102 * and buddy information in consecutive blocks.
1103 * So for each group we need two blocks.
1104 */
1105 block = group * 2;
1106 pnum = block / blocks_per_page;
1107 poff = block % blocks_per_page;
1108
1109 /* we could use find_or_create_page(), but it locks page
1110 * what we'd like to avoid in fast path ... */
1111 page = find_get_page(inode->i_mapping, pnum);
1112 if (page == NULL || !PageUptodate(page)) {
1113 if (page)
1114 /*
1115 * drop the page reference and try
1116 * to get the page with lock. If we
1117 * are not uptodate that implies
1118 * somebody just created the page but
1119 * is yet to initialize the same. So
1120 * wait for it to initialize.
1121 */
1122 page_cache_release(page);
1123 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
1124 if (page) {
1125 BUG_ON(page->mapping != inode->i_mapping);
1126 if (!PageUptodate(page)) {
1127 ret = ext4_mb_init_cache(page, NULL);
1128 if (ret) {
1129 unlock_page(page);
1130 goto err;
1131 }
1132 mb_cmp_bitmaps(e4b, page_address(page) +
1133 (poff * sb->s_blocksize));
1134 }
1135 unlock_page(page);
1136 }
1137 }
1138 if (page == NULL || !PageUptodate(page)) {
1139 ret = -EIO;
1140 goto err;
1141 }
1142 e4b->bd_bitmap_page = page;
1143 e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
1144 mark_page_accessed(page);
1145
1146 block++;
1147 pnum = block / blocks_per_page;
1148 poff = block % blocks_per_page;
1149
1150 page = find_get_page(inode->i_mapping, pnum);
1151 if (page == NULL || !PageUptodate(page)) {
1152 if (page)
1153 page_cache_release(page);
1154 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
1155 if (page) {
1156 BUG_ON(page->mapping != inode->i_mapping);
1157 if (!PageUptodate(page)) {
1158 ret = ext4_mb_init_cache(page, e4b->bd_bitmap);
1159 if (ret) {
1160 unlock_page(page);
1161 goto err;
1162 }
1163 }
1164 unlock_page(page);
1165 }
1166 }
1167 if (page == NULL || !PageUptodate(page)) {
1168 ret = -EIO;
1169 goto err;
1170 }
1171 e4b->bd_buddy_page = page;
1172 e4b->bd_buddy = page_address(page) + (poff * sb->s_blocksize);
1173 mark_page_accessed(page);
1174
1175 BUG_ON(e4b->bd_bitmap_page == NULL);
1176 BUG_ON(e4b->bd_buddy_page == NULL);
1177
1178 return 0;
1179
1180 err:
1181 if (page)
1182 page_cache_release(page);
1183 if (e4b->bd_bitmap_page)
1184 page_cache_release(e4b->bd_bitmap_page);
1185 if (e4b->bd_buddy_page)
1186 page_cache_release(e4b->bd_buddy_page);
1187 e4b->bd_buddy = NULL;
1188 e4b->bd_bitmap = NULL;
1189 return ret;
1190 }
1191
1192 static void ext4_mb_unload_buddy(struct ext4_buddy *e4b)
1193 {
1194 if (e4b->bd_bitmap_page)
1195 page_cache_release(e4b->bd_bitmap_page);
1196 if (e4b->bd_buddy_page)
1197 page_cache_release(e4b->bd_buddy_page);
1198 }
1199
1200
1201 static int mb_find_order_for_block(struct ext4_buddy *e4b, int block)
1202 {
1203 int order = 1;
1204 void *bb;
1205
1206 BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
1207 BUG_ON(block >= (1 << (e4b->bd_blkbits + 3)));
1208
1209 bb = e4b->bd_buddy;
1210 while (order <= e4b->bd_blkbits + 1) {
1211 block = block >> 1;
1212 if (!mb_test_bit(block, bb)) {
1213 /* this block is part of buddy of order 'order' */
1214 return order;
1215 }
1216 bb += 1 << (e4b->bd_blkbits - order);
1217 order++;
1218 }
1219 return 0;
1220 }
1221
1222 static void mb_clear_bits(void *bm, int cur, int len)
1223 {
1224 __u32 *addr;
1225
1226 len = cur + len;
1227 while (cur < len) {
1228 if ((cur & 31) == 0 && (len - cur) >= 32) {
1229 /* fast path: clear whole word at once */
1230 addr = bm + (cur >> 3);
1231 *addr = 0;
1232 cur += 32;
1233 continue;
1234 }
1235 mb_clear_bit(cur, bm);
1236 cur++;
1237 }
1238 }
1239
1240 void ext4_set_bits(void *bm, int cur, int len)
1241 {
1242 __u32 *addr;
1243
1244 len = cur + len;
1245 while (cur < len) {
1246 if ((cur & 31) == 0 && (len - cur) >= 32) {
1247 /* fast path: set whole word at once */
1248 addr = bm + (cur >> 3);
1249 *addr = 0xffffffff;
1250 cur += 32;
1251 continue;
1252 }
1253 mb_set_bit(cur, bm);
1254 cur++;
1255 }
1256 }
1257
1258 static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b,
1259 int first, int count)
1260 {
1261 int block = 0;
1262 int max = 0;
1263 int order;
1264 void *buddy;
1265 void *buddy2;
1266 struct super_block *sb = e4b->bd_sb;
1267
1268 BUG_ON(first + count > (sb->s_blocksize << 3));
1269 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
1270 mb_check_buddy(e4b);
1271 mb_free_blocks_double(inode, e4b, first, count);
1272
1273 e4b->bd_info->bb_free += count;
1274 if (first < e4b->bd_info->bb_first_free)
1275 e4b->bd_info->bb_first_free = first;
1276
1277 /* let's maintain fragments counter */
1278 if (first != 0)
1279 block = !mb_test_bit(first - 1, e4b->bd_bitmap);
1280 if (first + count < EXT4_SB(sb)->s_mb_maxs[0])
1281 max = !mb_test_bit(first + count, e4b->bd_bitmap);
1282 if (block && max)
1283 e4b->bd_info->bb_fragments--;
1284 else if (!block && !max)
1285 e4b->bd_info->bb_fragments++;
1286
1287 /* let's maintain buddy itself */
1288 while (count-- > 0) {
1289 block = first++;
1290 order = 0;
1291
1292 if (!mb_test_bit(block, e4b->bd_bitmap)) {
1293 ext4_fsblk_t blocknr;
1294
1295 blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
1296 blocknr += EXT4_C2B(EXT4_SB(sb), block);
1297 ext4_grp_locked_error(sb, e4b->bd_group,
1298 inode ? inode->i_ino : 0,
1299 blocknr,
1300 "freeing already freed block "
1301 "(bit %u)", block);
1302 }
1303 mb_clear_bit(block, e4b->bd_bitmap);
1304 e4b->bd_info->bb_counters[order]++;
1305
1306 /* start of the buddy */
1307 buddy = mb_find_buddy(e4b, order, &max);
1308
1309 do {
1310 block &= ~1UL;
1311 if (mb_test_bit(block, buddy) ||
1312 mb_test_bit(block + 1, buddy))
1313 break;
1314
1315 /* both the buddies are free, try to coalesce them */
1316 buddy2 = mb_find_buddy(e4b, order + 1, &max);
1317
1318 if (!buddy2)
1319 break;
1320
1321 if (order > 0) {
1322 /* for special purposes, we don't set
1323 * free bits in bitmap */
1324 mb_set_bit(block, buddy);
1325 mb_set_bit(block + 1, buddy);
1326 }
1327 e4b->bd_info->bb_counters[order]--;
1328 e4b->bd_info->bb_counters[order]--;
1329
1330 block = block >> 1;
1331 order++;
1332 e4b->bd_info->bb_counters[order]++;
1333
1334 mb_clear_bit(block, buddy2);
1335 buddy = buddy2;
1336 } while (1);
1337 }
1338 mb_set_largest_free_order(sb, e4b->bd_info);
1339 mb_check_buddy(e4b);
1340 }
1341
1342 static int mb_find_extent(struct ext4_buddy *e4b, int block,
1343 int needed, struct ext4_free_extent *ex)
1344 {
1345 int next = block;
1346 int max, order;
1347 void *buddy;
1348
1349 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1350 BUG_ON(ex == NULL);
1351
1352 buddy = mb_find_buddy(e4b, 0, &max);
1353 BUG_ON(buddy == NULL);
1354 BUG_ON(block >= max);
1355 if (mb_test_bit(block, buddy)) {
1356 ex->fe_len = 0;
1357 ex->fe_start = 0;
1358 ex->fe_group = 0;
1359 return 0;
1360 }
1361
1362 /* find actual order */
1363 order = mb_find_order_for_block(e4b, block);
1364 block = block >> order;
1365
1366 ex->fe_len = 1 << order;
1367 ex->fe_start = block << order;
1368 ex->fe_group = e4b->bd_group;
1369
1370 /* calc difference from given start */
1371 next = next - ex->fe_start;
1372 ex->fe_len -= next;
1373 ex->fe_start += next;
1374
1375 while (needed > ex->fe_len &&
1376 (buddy = mb_find_buddy(e4b, order, &max))) {
1377
1378 if (block + 1 >= max)
1379 break;
1380
1381 next = (block + 1) * (1 << order);
1382 if (mb_test_bit(next, e4b->bd_bitmap))
1383 break;
1384
1385 order = mb_find_order_for_block(e4b, next);
1386
1387 block = next >> order;
1388 ex->fe_len += 1 << order;
1389 }
1390
1391 BUG_ON(ex->fe_start + ex->fe_len > (1 << (e4b->bd_blkbits + 3)));
1392 return ex->fe_len;
1393 }
1394
1395 static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex)
1396 {
1397 int ord;
1398 int mlen = 0;
1399 int max = 0;
1400 int cur;
1401 int start = ex->fe_start;
1402 int len = ex->fe_len;
1403 unsigned ret = 0;
1404 int len0 = len;
1405 void *buddy;
1406
1407 BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3));
1408 BUG_ON(e4b->bd_group != ex->fe_group);
1409 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1410 mb_check_buddy(e4b);
1411 mb_mark_used_double(e4b, start, len);
1412
1413 e4b->bd_info->bb_free -= len;
1414 if (e4b->bd_info->bb_first_free == start)
1415 e4b->bd_info->bb_first_free += len;
1416
1417 /* let's maintain fragments counter */
1418 if (start != 0)
1419 mlen = !mb_test_bit(start - 1, e4b->bd_bitmap);
1420 if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0])
1421 max = !mb_test_bit(start + len, e4b->bd_bitmap);
1422 if (mlen && max)
1423 e4b->bd_info->bb_fragments++;
1424 else if (!mlen && !max)
1425 e4b->bd_info->bb_fragments--;
1426
1427 /* let's maintain buddy itself */
1428 while (len) {
1429 ord = mb_find_order_for_block(e4b, start);
1430
1431 if (((start >> ord) << ord) == start && len >= (1 << ord)) {
1432 /* the whole chunk may be allocated at once! */
1433 mlen = 1 << ord;
1434 buddy = mb_find_buddy(e4b, ord, &max);
1435 BUG_ON((start >> ord) >= max);
1436 mb_set_bit(start >> ord, buddy);
1437 e4b->bd_info->bb_counters[ord]--;
1438 start += mlen;
1439 len -= mlen;
1440 BUG_ON(len < 0);
1441 continue;
1442 }
1443
1444 /* store for history */
1445 if (ret == 0)
1446 ret = len | (ord << 16);
1447
1448 /* we have to split large buddy */
1449 BUG_ON(ord <= 0);
1450 buddy = mb_find_buddy(e4b, ord, &max);
1451 mb_set_bit(start >> ord, buddy);
1452 e4b->bd_info->bb_counters[ord]--;
1453
1454 ord--;
1455 cur = (start >> ord) & ~1U;
1456 buddy = mb_find_buddy(e4b, ord, &max);
1457 mb_clear_bit(cur, buddy);
1458 mb_clear_bit(cur + 1, buddy);
1459 e4b->bd_info->bb_counters[ord]++;
1460 e4b->bd_info->bb_counters[ord]++;
1461 }
1462 mb_set_largest_free_order(e4b->bd_sb, e4b->bd_info);
1463
1464 ext4_set_bits(e4b->bd_bitmap, ex->fe_start, len0);
1465 mb_check_buddy(e4b);
1466
1467 return ret;
1468 }
1469
1470 /*
1471 * Must be called under group lock!
1472 */
1473 static void ext4_mb_use_best_found(struct ext4_allocation_context *ac,
1474 struct ext4_buddy *e4b)
1475 {
1476 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1477 int ret;
1478
1479 BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group);
1480 BUG_ON(ac->ac_status == AC_STATUS_FOUND);
1481
1482 ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len);
1483 ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical;
1484 ret = mb_mark_used(e4b, &ac->ac_b_ex);
1485
1486 /* preallocation can change ac_b_ex, thus we store actually
1487 * allocated blocks for history */
1488 ac->ac_f_ex = ac->ac_b_ex;
1489
1490 ac->ac_status = AC_STATUS_FOUND;
1491 ac->ac_tail = ret & 0xffff;
1492 ac->ac_buddy = ret >> 16;
1493
1494 /*
1495 * take the page reference. We want the page to be pinned
1496 * so that we don't get a ext4_mb_init_cache_call for this
1497 * group until we update the bitmap. That would mean we
1498 * double allocate blocks. The reference is dropped
1499 * in ext4_mb_release_context
1500 */
1501 ac->ac_bitmap_page = e4b->bd_bitmap_page;
1502 get_page(ac->ac_bitmap_page);
1503 ac->ac_buddy_page = e4b->bd_buddy_page;
1504 get_page(ac->ac_buddy_page);
1505 /* store last allocated for subsequent stream allocation */
1506 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
1507 spin_lock(&sbi->s_md_lock);
1508 sbi->s_mb_last_group = ac->ac_f_ex.fe_group;
1509 sbi->s_mb_last_start = ac->ac_f_ex.fe_start;
1510 spin_unlock(&sbi->s_md_lock);
1511 }
1512 }
1513
1514 /*
1515 * regular allocator, for general purposes allocation
1516 */
1517
1518 static void ext4_mb_check_limits(struct ext4_allocation_context *ac,
1519 struct ext4_buddy *e4b,
1520 int finish_group)
1521 {
1522 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1523 struct ext4_free_extent *bex = &ac->ac_b_ex;
1524 struct ext4_free_extent *gex = &ac->ac_g_ex;
1525 struct ext4_free_extent ex;
1526 int max;
1527
1528 if (ac->ac_status == AC_STATUS_FOUND)
1529 return;
1530 /*
1531 * We don't want to scan for a whole year
1532 */
1533 if (ac->ac_found > sbi->s_mb_max_to_scan &&
1534 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1535 ac->ac_status = AC_STATUS_BREAK;
1536 return;
1537 }
1538
1539 /*
1540 * Haven't found good chunk so far, let's continue
1541 */
1542 if (bex->fe_len < gex->fe_len)
1543 return;
1544
1545 if ((finish_group || ac->ac_found > sbi->s_mb_min_to_scan)
1546 && bex->fe_group == e4b->bd_group) {
1547 /* recheck chunk's availability - we don't know
1548 * when it was found (within this lock-unlock
1549 * period or not) */
1550 max = mb_find_extent(e4b, bex->fe_start, gex->fe_len, &ex);
1551 if (max >= gex->fe_len) {
1552 ext4_mb_use_best_found(ac, e4b);
1553 return;
1554 }
1555 }
1556 }
1557
1558 /*
1559 * The routine checks whether found extent is good enough. If it is,
1560 * then the extent gets marked used and flag is set to the context
1561 * to stop scanning. Otherwise, the extent is compared with the
1562 * previous found extent and if new one is better, then it's stored
1563 * in the context. Later, the best found extent will be used, if
1564 * mballoc can't find good enough extent.
1565 *
1566 * FIXME: real allocation policy is to be designed yet!
1567 */
1568 static void ext4_mb_measure_extent(struct ext4_allocation_context *ac,
1569 struct ext4_free_extent *ex,
1570 struct ext4_buddy *e4b)
1571 {
1572 struct ext4_free_extent *bex = &ac->ac_b_ex;
1573 struct ext4_free_extent *gex = &ac->ac_g_ex;
1574
1575 BUG_ON(ex->fe_len <= 0);
1576 BUG_ON(ex->fe_len > EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
1577 BUG_ON(ex->fe_start >= EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
1578 BUG_ON(ac->ac_status != AC_STATUS_CONTINUE);
1579
1580 ac->ac_found++;
1581
1582 /*
1583 * The special case - take what you catch first
1584 */
1585 if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1586 *bex = *ex;
1587 ext4_mb_use_best_found(ac, e4b);
1588 return;
1589 }
1590
1591 /*
1592 * Let's check whether the chuck is good enough
1593 */
1594 if (ex->fe_len == gex->fe_len) {
1595 *bex = *ex;
1596 ext4_mb_use_best_found(ac, e4b);
1597 return;
1598 }
1599
1600 /*
1601 * If this is first found extent, just store it in the context
1602 */
1603 if (bex->fe_len == 0) {
1604 *bex = *ex;
1605 return;
1606 }
1607
1608 /*
1609 * If new found extent is better, store it in the context
1610 */
1611 if (bex->fe_len < gex->fe_len) {
1612 /* if the request isn't satisfied, any found extent
1613 * larger than previous best one is better */
1614 if (ex->fe_len > bex->fe_len)
1615 *bex = *ex;
1616 } else if (ex->fe_len > gex->fe_len) {
1617 /* if the request is satisfied, then we try to find
1618 * an extent that still satisfy the request, but is
1619 * smaller than previous one */
1620 if (ex->fe_len < bex->fe_len)
1621 *bex = *ex;
1622 }
1623
1624 ext4_mb_check_limits(ac, e4b, 0);
1625 }
1626
1627 static noinline_for_stack
1628 int ext4_mb_try_best_found(struct ext4_allocation_context *ac,
1629 struct ext4_buddy *e4b)
1630 {
1631 struct ext4_free_extent ex = ac->ac_b_ex;
1632 ext4_group_t group = ex.fe_group;
1633 int max;
1634 int err;
1635
1636 BUG_ON(ex.fe_len <= 0);
1637 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1638 if (err)
1639 return err;
1640
1641 ext4_lock_group(ac->ac_sb, group);
1642 max = mb_find_extent(e4b, ex.fe_start, ex.fe_len, &ex);
1643
1644 if (max > 0) {
1645 ac->ac_b_ex = ex;
1646 ext4_mb_use_best_found(ac, e4b);
1647 }
1648
1649 ext4_unlock_group(ac->ac_sb, group);
1650 ext4_mb_unload_buddy(e4b);
1651
1652 return 0;
1653 }
1654
1655 static noinline_for_stack
1656 int ext4_mb_find_by_goal(struct ext4_allocation_context *ac,
1657 struct ext4_buddy *e4b)
1658 {
1659 ext4_group_t group = ac->ac_g_ex.fe_group;
1660 int max;
1661 int err;
1662 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1663 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
1664 struct ext4_free_extent ex;
1665
1666 if (!(ac->ac_flags & EXT4_MB_HINT_TRY_GOAL))
1667 return 0;
1668 if (grp->bb_free == 0)
1669 return 0;
1670
1671 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1672 if (err)
1673 return err;
1674
1675 ext4_lock_group(ac->ac_sb, group);
1676 max = mb_find_extent(e4b, ac->ac_g_ex.fe_start,
1677 ac->ac_g_ex.fe_len, &ex);
1678
1679 if (max >= ac->ac_g_ex.fe_len && ac->ac_g_ex.fe_len == sbi->s_stripe) {
1680 ext4_fsblk_t start;
1681
1682 start = ext4_group_first_block_no(ac->ac_sb, e4b->bd_group) +
1683 ex.fe_start;
1684 /* use do_div to get remainder (would be 64-bit modulo) */
1685 if (do_div(start, sbi->s_stripe) == 0) {
1686 ac->ac_found++;
1687 ac->ac_b_ex = ex;
1688 ext4_mb_use_best_found(ac, e4b);
1689 }
1690 } else if (max >= ac->ac_g_ex.fe_len) {
1691 BUG_ON(ex.fe_len <= 0);
1692 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1693 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1694 ac->ac_found++;
1695 ac->ac_b_ex = ex;
1696 ext4_mb_use_best_found(ac, e4b);
1697 } else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) {
1698 /* Sometimes, caller may want to merge even small
1699 * number of blocks to an existing extent */
1700 BUG_ON(ex.fe_len <= 0);
1701 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1702 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1703 ac->ac_found++;
1704 ac->ac_b_ex = ex;
1705 ext4_mb_use_best_found(ac, e4b);
1706 }
1707 ext4_unlock_group(ac->ac_sb, group);
1708 ext4_mb_unload_buddy(e4b);
1709
1710 return 0;
1711 }
1712
1713 /*
1714 * The routine scans buddy structures (not bitmap!) from given order
1715 * to max order and tries to find big enough chunk to satisfy the req
1716 */
1717 static noinline_for_stack
1718 void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac,
1719 struct ext4_buddy *e4b)
1720 {
1721 struct super_block *sb = ac->ac_sb;
1722 struct ext4_group_info *grp = e4b->bd_info;
1723 void *buddy;
1724 int i;
1725 int k;
1726 int max;
1727
1728 BUG_ON(ac->ac_2order <= 0);
1729 for (i = ac->ac_2order; i <= sb->s_blocksize_bits + 1; i++) {
1730 if (grp->bb_counters[i] == 0)
1731 continue;
1732
1733 buddy = mb_find_buddy(e4b, i, &max);
1734 BUG_ON(buddy == NULL);
1735
1736 k = mb_find_next_zero_bit(buddy, max, 0);
1737 BUG_ON(k >= max);
1738
1739 ac->ac_found++;
1740
1741 ac->ac_b_ex.fe_len = 1 << i;
1742 ac->ac_b_ex.fe_start = k << i;
1743 ac->ac_b_ex.fe_group = e4b->bd_group;
1744
1745 ext4_mb_use_best_found(ac, e4b);
1746
1747 BUG_ON(ac->ac_b_ex.fe_len != ac->ac_g_ex.fe_len);
1748
1749 if (EXT4_SB(sb)->s_mb_stats)
1750 atomic_inc(&EXT4_SB(sb)->s_bal_2orders);
1751
1752 break;
1753 }
1754 }
1755
1756 /*
1757 * The routine scans the group and measures all found extents.
1758 * In order to optimize scanning, caller must pass number of
1759 * free blocks in the group, so the routine can know upper limit.
1760 */
1761 static noinline_for_stack
1762 void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac,
1763 struct ext4_buddy *e4b)
1764 {
1765 struct super_block *sb = ac->ac_sb;
1766 void *bitmap = e4b->bd_bitmap;
1767 struct ext4_free_extent ex;
1768 int i;
1769 int free;
1770
1771 free = e4b->bd_info->bb_free;
1772 BUG_ON(free <= 0);
1773
1774 i = e4b->bd_info->bb_first_free;
1775
1776 while (free && ac->ac_status == AC_STATUS_CONTINUE) {
1777 i = mb_find_next_zero_bit(bitmap,
1778 EXT4_CLUSTERS_PER_GROUP(sb), i);
1779 if (i >= EXT4_CLUSTERS_PER_GROUP(sb)) {
1780 /*
1781 * IF we have corrupt bitmap, we won't find any
1782 * free blocks even though group info says we
1783 * we have free blocks
1784 */
1785 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
1786 "%d free clusters as per "
1787 "group info. But bitmap says 0",
1788 free);
1789 break;
1790 }
1791
1792 mb_find_extent(e4b, i, ac->ac_g_ex.fe_len, &ex);
1793 BUG_ON(ex.fe_len <= 0);
1794 if (free < ex.fe_len) {
1795 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
1796 "%d free clusters as per "
1797 "group info. But got %d blocks",
1798 free, ex.fe_len);
1799 /*
1800 * The number of free blocks differs. This mostly
1801 * indicate that the bitmap is corrupt. So exit
1802 * without claiming the space.
1803 */
1804 break;
1805 }
1806
1807 ext4_mb_measure_extent(ac, &ex, e4b);
1808
1809 i += ex.fe_len;
1810 free -= ex.fe_len;
1811 }
1812
1813 ext4_mb_check_limits(ac, e4b, 1);
1814 }
1815
1816 /*
1817 * This is a special case for storages like raid5
1818 * we try to find stripe-aligned chunks for stripe-size-multiple requests
1819 */
1820 static noinline_for_stack
1821 void ext4_mb_scan_aligned(struct ext4_allocation_context *ac,
1822 struct ext4_buddy *e4b)
1823 {
1824 struct super_block *sb = ac->ac_sb;
1825 struct ext4_sb_info *sbi = EXT4_SB(sb);
1826 void *bitmap = e4b->bd_bitmap;
1827 struct ext4_free_extent ex;
1828 ext4_fsblk_t first_group_block;
1829 ext4_fsblk_t a;
1830 ext4_grpblk_t i;
1831 int max;
1832
1833 BUG_ON(sbi->s_stripe == 0);
1834
1835 /* find first stripe-aligned block in group */
1836 first_group_block = ext4_group_first_block_no(sb, e4b->bd_group);
1837
1838 a = first_group_block + sbi->s_stripe - 1;
1839 do_div(a, sbi->s_stripe);
1840 i = (a * sbi->s_stripe) - first_group_block;
1841
1842 while (i < EXT4_CLUSTERS_PER_GROUP(sb)) {
1843 if (!mb_test_bit(i, bitmap)) {
1844 max = mb_find_extent(e4b, i, sbi->s_stripe, &ex);
1845 if (max >= sbi->s_stripe) {
1846 ac->ac_found++;
1847 ac->ac_b_ex = ex;
1848 ext4_mb_use_best_found(ac, e4b);
1849 break;
1850 }
1851 }
1852 i += sbi->s_stripe;
1853 }
1854 }
1855
1856 /* This is now called BEFORE we load the buddy bitmap. */
1857 static int ext4_mb_good_group(struct ext4_allocation_context *ac,
1858 ext4_group_t group, int cr)
1859 {
1860 unsigned free, fragments;
1861 int flex_size = ext4_flex_bg_size(EXT4_SB(ac->ac_sb));
1862 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
1863
1864 BUG_ON(cr < 0 || cr >= 4);
1865
1866 free = grp->bb_free;
1867 if (free == 0)
1868 return 0;
1869 if (cr <= 2 && free < ac->ac_g_ex.fe_len)
1870 return 0;
1871
1872 /* We only do this if the grp has never been initialized */
1873 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
1874 int ret = ext4_mb_init_group(ac->ac_sb, group);
1875 if (ret)
1876 return 0;
1877 }
1878
1879 fragments = grp->bb_fragments;
1880 if (fragments == 0)
1881 return 0;
1882
1883 switch (cr) {
1884 case 0:
1885 BUG_ON(ac->ac_2order == 0);
1886
1887 if (grp->bb_largest_free_order < ac->ac_2order)
1888 return 0;
1889
1890 /* Avoid using the first bg of a flexgroup for data files */
1891 if ((ac->ac_flags & EXT4_MB_HINT_DATA) &&
1892 (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) &&
1893 ((group % flex_size) == 0))
1894 return 0;
1895
1896 return 1;
1897 case 1:
1898 if ((free / fragments) >= ac->ac_g_ex.fe_len)
1899 return 1;
1900 break;
1901 case 2:
1902 if (free >= ac->ac_g_ex.fe_len)
1903 return 1;
1904 break;
1905 case 3:
1906 return 1;
1907 default:
1908 BUG();
1909 }
1910
1911 return 0;
1912 }
1913
1914 static noinline_for_stack int
1915 ext4_mb_regular_allocator(struct ext4_allocation_context *ac)
1916 {
1917 ext4_group_t ngroups, group, i;
1918 int cr;
1919 int err = 0;
1920 struct ext4_sb_info *sbi;
1921 struct super_block *sb;
1922 struct ext4_buddy e4b;
1923
1924 sb = ac->ac_sb;
1925 sbi = EXT4_SB(sb);
1926 ngroups = ext4_get_groups_count(sb);
1927 /* non-extent files are limited to low blocks/groups */
1928 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)))
1929 ngroups = sbi->s_blockfile_groups;
1930
1931 BUG_ON(ac->ac_status == AC_STATUS_FOUND);
1932
1933 /* first, try the goal */
1934 err = ext4_mb_find_by_goal(ac, &e4b);
1935 if (err || ac->ac_status == AC_STATUS_FOUND)
1936 goto out;
1937
1938 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
1939 goto out;
1940
1941 /*
1942 * ac->ac2_order is set only if the fe_len is a power of 2
1943 * if ac2_order is set we also set criteria to 0 so that we
1944 * try exact allocation using buddy.
1945 */
1946 i = fls(ac->ac_g_ex.fe_len);
1947 ac->ac_2order = 0;
1948 /*
1949 * We search using buddy data only if the order of the request
1950 * is greater than equal to the sbi_s_mb_order2_reqs
1951 * You can tune it via /sys/fs/ext4/<partition>/mb_order2_req
1952 */
1953 if (i >= sbi->s_mb_order2_reqs) {
1954 /*
1955 * This should tell if fe_len is exactly power of 2
1956 */
1957 if ((ac->ac_g_ex.fe_len & (~(1 << (i - 1)))) == 0)
1958 ac->ac_2order = i - 1;
1959 }
1960
1961 /* if stream allocation is enabled, use global goal */
1962 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
1963 /* TBD: may be hot point */
1964 spin_lock(&sbi->s_md_lock);
1965 ac->ac_g_ex.fe_group = sbi->s_mb_last_group;
1966 ac->ac_g_ex.fe_start = sbi->s_mb_last_start;
1967 spin_unlock(&sbi->s_md_lock);
1968 }
1969
1970 /* Let's just scan groups to find more-less suitable blocks */
1971 cr = ac->ac_2order ? 0 : 1;
1972 /*
1973 * cr == 0 try to get exact allocation,
1974 * cr == 3 try to get anything
1975 */
1976 repeat:
1977 for (; cr < 4 && ac->ac_status == AC_STATUS_CONTINUE; cr++) {
1978 ac->ac_criteria = cr;
1979 /*
1980 * searching for the right group start
1981 * from the goal value specified
1982 */
1983 group = ac->ac_g_ex.fe_group;
1984
1985 for (i = 0; i < ngroups; group++, i++) {
1986 if (group == ngroups)
1987 group = 0;
1988
1989 /* This now checks without needing the buddy page */
1990 if (!ext4_mb_good_group(ac, group, cr))
1991 continue;
1992
1993 err = ext4_mb_load_buddy(sb, group, &e4b);
1994 if (err)
1995 goto out;
1996
1997 ext4_lock_group(sb, group);
1998
1999 /*
2000 * We need to check again after locking the
2001 * block group
2002 */
2003 if (!ext4_mb_good_group(ac, group, cr)) {
2004 ext4_unlock_group(sb, group);
2005 ext4_mb_unload_buddy(&e4b);
2006 continue;
2007 }
2008
2009 ac->ac_groups_scanned++;
2010 if (cr == 0)
2011 ext4_mb_simple_scan_group(ac, &e4b);
2012 else if (cr == 1 && sbi->s_stripe &&
2013 !(ac->ac_g_ex.fe_len % sbi->s_stripe))
2014 ext4_mb_scan_aligned(ac, &e4b);
2015 else
2016 ext4_mb_complex_scan_group(ac, &e4b);
2017
2018 ext4_unlock_group(sb, group);
2019 ext4_mb_unload_buddy(&e4b);
2020
2021 if (ac->ac_status != AC_STATUS_CONTINUE)
2022 break;
2023 }
2024 }
2025
2026 if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND &&
2027 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2028 /*
2029 * We've been searching too long. Let's try to allocate
2030 * the best chunk we've found so far
2031 */
2032
2033 ext4_mb_try_best_found(ac, &e4b);
2034 if (ac->ac_status != AC_STATUS_FOUND) {
2035 /*
2036 * Someone more lucky has already allocated it.
2037 * The only thing we can do is just take first
2038 * found block(s)
2039 printk(KERN_DEBUG "EXT4-fs: someone won our chunk\n");
2040 */
2041 ac->ac_b_ex.fe_group = 0;
2042 ac->ac_b_ex.fe_start = 0;
2043 ac->ac_b_ex.fe_len = 0;
2044 ac->ac_status = AC_STATUS_CONTINUE;
2045 ac->ac_flags |= EXT4_MB_HINT_FIRST;
2046 cr = 3;
2047 atomic_inc(&sbi->s_mb_lost_chunks);
2048 goto repeat;
2049 }
2050 }
2051 out:
2052 return err;
2053 }
2054
2055 static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos)
2056 {
2057 struct super_block *sb = seq->private;
2058 ext4_group_t group;
2059
2060 if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2061 return NULL;
2062 group = *pos + 1;
2063 return (void *) ((unsigned long) group);
2064 }
2065
2066 static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos)
2067 {
2068 struct super_block *sb = seq->private;
2069 ext4_group_t group;
2070
2071 ++*pos;
2072 if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2073 return NULL;
2074 group = *pos + 1;
2075 return (void *) ((unsigned long) group);
2076 }
2077
2078 static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v)
2079 {
2080 struct super_block *sb = seq->private;
2081 ext4_group_t group = (ext4_group_t) ((unsigned long) v);
2082 int i;
2083 int err, buddy_loaded = 0;
2084 struct ext4_buddy e4b;
2085 struct ext4_group_info *grinfo;
2086 struct sg {
2087 struct ext4_group_info info;
2088 ext4_grpblk_t counters[16];
2089 } sg;
2090
2091 group--;
2092 if (group == 0)
2093 seq_printf(seq, "#%-5s: %-5s %-5s %-5s "
2094 "[ %-5s %-5s %-5s %-5s %-5s %-5s %-5s "
2095 "%-5s %-5s %-5s %-5s %-5s %-5s %-5s ]\n",
2096 "group", "free", "frags", "first",
2097 "2^0", "2^1", "2^2", "2^3", "2^4", "2^5", "2^6",
2098 "2^7", "2^8", "2^9", "2^10", "2^11", "2^12", "2^13");
2099
2100 i = (sb->s_blocksize_bits + 2) * sizeof(sg.info.bb_counters[0]) +
2101 sizeof(struct ext4_group_info);
2102 grinfo = ext4_get_group_info(sb, group);
2103 /* Load the group info in memory only if not already loaded. */
2104 if (unlikely(EXT4_MB_GRP_NEED_INIT(grinfo))) {
2105 err = ext4_mb_load_buddy(sb, group, &e4b);
2106 if (err) {
2107 seq_printf(seq, "#%-5u: I/O error\n", group);
2108 return 0;
2109 }
2110 buddy_loaded = 1;
2111 }
2112
2113 memcpy(&sg, ext4_get_group_info(sb, group), i);
2114
2115 if (buddy_loaded)
2116 ext4_mb_unload_buddy(&e4b);
2117
2118 seq_printf(seq, "#%-5u: %-5u %-5u %-5u [", group, sg.info.bb_free,
2119 sg.info.bb_fragments, sg.info.bb_first_free);
2120 for (i = 0; i <= 13; i++)
2121 seq_printf(seq, " %-5u", i <= sb->s_blocksize_bits + 1 ?
2122 sg.info.bb_counters[i] : 0);
2123 seq_printf(seq, " ]\n");
2124
2125 return 0;
2126 }
2127
2128 static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v)
2129 {
2130 }
2131
2132 static const struct seq_operations ext4_mb_seq_groups_ops = {
2133 .start = ext4_mb_seq_groups_start,
2134 .next = ext4_mb_seq_groups_next,
2135 .stop = ext4_mb_seq_groups_stop,
2136 .show = ext4_mb_seq_groups_show,
2137 };
2138
2139 static int ext4_mb_seq_groups_open(struct inode *inode, struct file *file)
2140 {
2141 struct super_block *sb = PDE(inode)->data;
2142 int rc;
2143
2144 rc = seq_open(file, &ext4_mb_seq_groups_ops);
2145 if (rc == 0) {
2146 struct seq_file *m = file->private_data;
2147 m->private = sb;
2148 }
2149 return rc;
2150
2151 }
2152
2153 static const struct file_operations ext4_mb_seq_groups_fops = {
2154 .owner = THIS_MODULE,
2155 .open = ext4_mb_seq_groups_open,
2156 .read = seq_read,
2157 .llseek = seq_lseek,
2158 .release = seq_release,
2159 };
2160
2161 static struct kmem_cache *get_groupinfo_cache(int blocksize_bits)
2162 {
2163 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
2164 struct kmem_cache *cachep = ext4_groupinfo_caches[cache_index];
2165
2166 BUG_ON(!cachep);
2167 return cachep;
2168 }
2169
2170 /*
2171 * Allocate the top-level s_group_info array for the specified number
2172 * of groups
2173 */
2174 int ext4_mb_alloc_groupinfo(struct super_block *sb, ext4_group_t ngroups)
2175 {
2176 struct ext4_sb_info *sbi = EXT4_SB(sb);
2177 unsigned size;
2178 struct ext4_group_info ***new_groupinfo;
2179
2180 size = (ngroups + EXT4_DESC_PER_BLOCK(sb) - 1) >>
2181 EXT4_DESC_PER_BLOCK_BITS(sb);
2182 if (size <= sbi->s_group_info_size)
2183 return 0;
2184
2185 size = roundup_pow_of_two(sizeof(*sbi->s_group_info) * size);
2186 new_groupinfo = ext4_kvzalloc(size, GFP_KERNEL);
2187 if (!new_groupinfo) {
2188 ext4_msg(sb, KERN_ERR, "can't allocate buddy meta group");
2189 return -ENOMEM;
2190 }
2191 if (sbi->s_group_info) {
2192 memcpy(new_groupinfo, sbi->s_group_info,
2193 sbi->s_group_info_size * sizeof(*sbi->s_group_info));
2194 ext4_kvfree(sbi->s_group_info);
2195 }
2196 sbi->s_group_info = new_groupinfo;
2197 sbi->s_group_info_size = size / sizeof(*sbi->s_group_info);
2198 ext4_debug("allocated s_groupinfo array for %d meta_bg's\n",
2199 sbi->s_group_info_size);
2200 return 0;
2201 }
2202
2203 /* Create and initialize ext4_group_info data for the given group. */
2204 int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group,
2205 struct ext4_group_desc *desc)
2206 {
2207 int i;
2208 int metalen = 0;
2209 struct ext4_sb_info *sbi = EXT4_SB(sb);
2210 struct ext4_group_info **meta_group_info;
2211 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2212
2213 /*
2214 * First check if this group is the first of a reserved block.
2215 * If it's true, we have to allocate a new table of pointers
2216 * to ext4_group_info structures
2217 */
2218 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
2219 metalen = sizeof(*meta_group_info) <<
2220 EXT4_DESC_PER_BLOCK_BITS(sb);
2221 meta_group_info = kmalloc(metalen, GFP_KERNEL);
2222 if (meta_group_info == NULL) {
2223 ext4_msg(sb, KERN_ERR, "can't allocate mem "
2224 "for a buddy group");
2225 goto exit_meta_group_info;
2226 }
2227 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)] =
2228 meta_group_info;
2229 }
2230
2231 meta_group_info =
2232 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)];
2233 i = group & (EXT4_DESC_PER_BLOCK(sb) - 1);
2234
2235 meta_group_info[i] = kmem_cache_zalloc(cachep, GFP_KERNEL);
2236 if (meta_group_info[i] == NULL) {
2237 ext4_msg(sb, KERN_ERR, "can't allocate buddy mem");
2238 goto exit_group_info;
2239 }
2240 set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT,
2241 &(meta_group_info[i]->bb_state));
2242
2243 /*
2244 * initialize bb_free to be able to skip
2245 * empty groups without initialization
2246 */
2247 if (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
2248 meta_group_info[i]->bb_free =
2249 ext4_free_clusters_after_init(sb, group, desc);
2250 } else {
2251 meta_group_info[i]->bb_free =
2252 ext4_free_group_clusters(sb, desc);
2253 }
2254
2255 INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list);
2256 init_rwsem(&meta_group_info[i]->alloc_sem);
2257 meta_group_info[i]->bb_free_root = RB_ROOT;
2258 meta_group_info[i]->bb_largest_free_order = -1; /* uninit */
2259
2260 #ifdef DOUBLE_CHECK
2261 {
2262 struct buffer_head *bh;
2263 meta_group_info[i]->bb_bitmap =
2264 kmalloc(sb->s_blocksize, GFP_KERNEL);
2265 BUG_ON(meta_group_info[i]->bb_bitmap == NULL);
2266 bh = ext4_read_block_bitmap(sb, group);
2267 BUG_ON(bh == NULL);
2268 memcpy(meta_group_info[i]->bb_bitmap, bh->b_data,
2269 sb->s_blocksize);
2270 put_bh(bh);
2271 }
2272 #endif
2273
2274 return 0;
2275
2276 exit_group_info:
2277 /* If a meta_group_info table has been allocated, release it now */
2278 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
2279 kfree(sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)]);
2280 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)] = NULL;
2281 }
2282 exit_meta_group_info:
2283 return -ENOMEM;
2284 } /* ext4_mb_add_groupinfo */
2285
2286 static int ext4_mb_init_backend(struct super_block *sb)
2287 {
2288 ext4_group_t ngroups = ext4_get_groups_count(sb);
2289 ext4_group_t i;
2290 struct ext4_sb_info *sbi = EXT4_SB(sb);
2291 int err;
2292 struct ext4_group_desc *desc;
2293 struct kmem_cache *cachep;
2294
2295 err = ext4_mb_alloc_groupinfo(sb, ngroups);
2296 if (err)
2297 return err;
2298
2299 sbi->s_buddy_cache = new_inode(sb);
2300 if (sbi->s_buddy_cache == NULL) {
2301 ext4_msg(sb, KERN_ERR, "can't get new inode");
2302 goto err_freesgi;
2303 }
2304 /* To avoid potentially colliding with an valid on-disk inode number,
2305 * use EXT4_BAD_INO for the buddy cache inode number. This inode is
2306 * not in the inode hash, so it should never be found by iget(), but
2307 * this will avoid confusion if it ever shows up during debugging. */
2308 sbi->s_buddy_cache->i_ino = EXT4_BAD_INO;
2309 EXT4_I(sbi->s_buddy_cache)->i_disksize = 0;
2310 for (i = 0; i < ngroups; i++) {
2311 desc = ext4_get_group_desc(sb, i, NULL);
2312 if (desc == NULL) {
2313 ext4_msg(sb, KERN_ERR, "can't read descriptor %u", i);
2314 goto err_freebuddy;
2315 }
2316 if (ext4_mb_add_groupinfo(sb, i, desc) != 0)
2317 goto err_freebuddy;
2318 }
2319
2320 return 0;
2321
2322 err_freebuddy:
2323 cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2324 while (i-- > 0)
2325 kmem_cache_free(cachep, ext4_get_group_info(sb, i));
2326 i = sbi->s_group_info_size;
2327 while (i-- > 0)
2328 kfree(sbi->s_group_info[i]);
2329 iput(sbi->s_buddy_cache);
2330 err_freesgi:
2331 ext4_kvfree(sbi->s_group_info);
2332 return -ENOMEM;
2333 }
2334
2335 static void ext4_groupinfo_destroy_slabs(void)
2336 {
2337 int i;
2338
2339 for (i = 0; i < NR_GRPINFO_CACHES; i++) {
2340 if (ext4_groupinfo_caches[i])
2341 kmem_cache_destroy(ext4_groupinfo_caches[i]);
2342 ext4_groupinfo_caches[i] = NULL;
2343 }
2344 }
2345
2346 static int ext4_groupinfo_create_slab(size_t size)
2347 {
2348 static DEFINE_MUTEX(ext4_grpinfo_slab_create_mutex);
2349 int slab_size;
2350 int blocksize_bits = order_base_2(size);
2351 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
2352 struct kmem_cache *cachep;
2353
2354 if (cache_index >= NR_GRPINFO_CACHES)
2355 return -EINVAL;
2356
2357 if (unlikely(cache_index < 0))
2358 cache_index = 0;
2359
2360 mutex_lock(&ext4_grpinfo_slab_create_mutex);
2361 if (ext4_groupinfo_caches[cache_index]) {
2362 mutex_unlock(&ext4_grpinfo_slab_create_mutex);
2363 return 0; /* Already created */
2364 }
2365
2366 slab_size = offsetof(struct ext4_group_info,
2367 bb_counters[blocksize_bits + 2]);
2368
2369 cachep = kmem_cache_create(ext4_groupinfo_slab_names[cache_index],
2370 slab_size, 0, SLAB_RECLAIM_ACCOUNT,
2371 NULL);
2372
2373 ext4_groupinfo_caches[cache_index] = cachep;
2374
2375 mutex_unlock(&ext4_grpinfo_slab_create_mutex);
2376 if (!cachep) {
2377 printk(KERN_EMERG
2378 "EXT4-fs: no memory for groupinfo slab cache\n");
2379 return -ENOMEM;
2380 }
2381
2382 return 0;
2383 }
2384
2385 int ext4_mb_init(struct super_block *sb)
2386 {
2387 struct ext4_sb_info *sbi = EXT4_SB(sb);
2388 unsigned i, j;
2389 unsigned offset;
2390 unsigned max;
2391 int ret;
2392
2393 i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_offsets);
2394
2395 sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL);
2396 if (sbi->s_mb_offsets == NULL) {
2397 ret = -ENOMEM;
2398 goto out;
2399 }
2400
2401 i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_maxs);
2402 sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL);
2403 if (sbi->s_mb_maxs == NULL) {
2404 ret = -ENOMEM;
2405 goto out;
2406 }
2407
2408 ret = ext4_groupinfo_create_slab(sb->s_blocksize);
2409 if (ret < 0)
2410 goto out;
2411
2412 /* order 0 is regular bitmap */
2413 sbi->s_mb_maxs[0] = sb->s_blocksize << 3;
2414 sbi->s_mb_offsets[0] = 0;
2415
2416 i = 1;
2417 offset = 0;
2418 max = sb->s_blocksize << 2;
2419 do {
2420 sbi->s_mb_offsets[i] = offset;
2421 sbi->s_mb_maxs[i] = max;
2422 offset += 1 << (sb->s_blocksize_bits - i);
2423 max = max >> 1;
2424 i++;
2425 } while (i <= sb->s_blocksize_bits + 1);
2426
2427 spin_lock_init(&sbi->s_md_lock);
2428 spin_lock_init(&sbi->s_bal_lock);
2429
2430 sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN;
2431 sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN;
2432 sbi->s_mb_stats = MB_DEFAULT_STATS;
2433 sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD;
2434 sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS;
2435 /*
2436 * The default group preallocation is 512, which for 4k block
2437 * sizes translates to 2 megabytes. However for bigalloc file
2438 * systems, this is probably too big (i.e, if the cluster size
2439 * is 1 megabyte, then group preallocation size becomes half a
2440 * gigabyte!). As a default, we will keep a two megabyte
2441 * group pralloc size for cluster sizes up to 64k, and after
2442 * that, we will force a minimum group preallocation size of
2443 * 32 clusters. This translates to 8 megs when the cluster
2444 * size is 256k, and 32 megs when the cluster size is 1 meg,
2445 * which seems reasonable as a default.
2446 */
2447 sbi->s_mb_group_prealloc = max(MB_DEFAULT_GROUP_PREALLOC >>
2448 sbi->s_cluster_bits, 32);
2449 /*
2450 * If there is a s_stripe > 1, then we set the s_mb_group_prealloc
2451 * to the lowest multiple of s_stripe which is bigger than
2452 * the s_mb_group_prealloc as determined above. We want
2453 * the preallocation size to be an exact multiple of the
2454 * RAID stripe size so that preallocations don't fragment
2455 * the stripes.
2456 */
2457 if (sbi->s_stripe > 1) {
2458 sbi->s_mb_group_prealloc = roundup(
2459 sbi->s_mb_group_prealloc, sbi->s_stripe);
2460 }
2461
2462 sbi->s_locality_groups = alloc_percpu(struct ext4_locality_group);
2463 if (sbi->s_locality_groups == NULL) {
2464 ret = -ENOMEM;
2465 goto out_free_groupinfo_slab;
2466 }
2467 for_each_possible_cpu(i) {
2468 struct ext4_locality_group *lg;
2469 lg = per_cpu_ptr(sbi->s_locality_groups, i);
2470 mutex_init(&lg->lg_mutex);
2471 for (j = 0; j < PREALLOC_TB_SIZE; j++)
2472 INIT_LIST_HEAD(&lg->lg_prealloc_list[j]);
2473 spin_lock_init(&lg->lg_prealloc_lock);
2474 }
2475
2476 /* init file for buddy data */
2477 ret = ext4_mb_init_backend(sb);
2478 if (ret != 0)
2479 goto out_free_locality_groups;
2480
2481 if (sbi->s_proc)
2482 proc_create_data("mb_groups", S_IRUGO, sbi->s_proc,
2483 &ext4_mb_seq_groups_fops, sb);
2484
2485 return 0;
2486
2487 out_free_locality_groups:
2488 free_percpu(sbi->s_locality_groups);
2489 sbi->s_locality_groups = NULL;
2490 out_free_groupinfo_slab:
2491 ext4_groupinfo_destroy_slabs();
2492 out:
2493 kfree(sbi->s_mb_offsets);
2494 sbi->s_mb_offsets = NULL;
2495 kfree(sbi->s_mb_maxs);
2496 sbi->s_mb_maxs = NULL;
2497 return ret;
2498 }
2499
2500 /* need to called with the ext4 group lock held */
2501 static void ext4_mb_cleanup_pa(struct ext4_group_info *grp)
2502 {
2503 struct ext4_prealloc_space *pa;
2504 struct list_head *cur, *tmp;
2505 int count = 0;
2506
2507 list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) {
2508 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
2509 list_del(&pa->pa_group_list);
2510 count++;
2511 kmem_cache_free(ext4_pspace_cachep, pa);
2512 }
2513 if (count)
2514 mb_debug(1, "mballoc: %u PAs left\n", count);
2515
2516 }
2517
2518 int ext4_mb_release(struct super_block *sb)
2519 {
2520 ext4_group_t ngroups = ext4_get_groups_count(sb);
2521 ext4_group_t i;
2522 int num_meta_group_infos;
2523 struct ext4_group_info *grinfo;
2524 struct ext4_sb_info *sbi = EXT4_SB(sb);
2525 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2526
2527 if (sbi->s_proc)
2528 remove_proc_entry("mb_groups", sbi->s_proc);
2529
2530 if (sbi->s_group_info) {
2531 for (i = 0; i < ngroups; i++) {
2532 grinfo = ext4_get_group_info(sb, i);
2533 #ifdef DOUBLE_CHECK
2534 kfree(grinfo->bb_bitmap);
2535 #endif
2536 ext4_lock_group(sb, i);
2537 ext4_mb_cleanup_pa(grinfo);
2538 ext4_unlock_group(sb, i);
2539 kmem_cache_free(cachep, grinfo);
2540 }
2541 num_meta_group_infos = (ngroups +
2542 EXT4_DESC_PER_BLOCK(sb) - 1) >>
2543 EXT4_DESC_PER_BLOCK_BITS(sb);
2544 for (i = 0; i < num_meta_group_infos; i++)
2545 kfree(sbi->s_group_info[i]);
2546 ext4_kvfree(sbi->s_group_info);
2547 }
2548 kfree(sbi->s_mb_offsets);
2549 kfree(sbi->s_mb_maxs);
2550 if (sbi->s_buddy_cache)
2551 iput(sbi->s_buddy_cache);
2552 if (sbi->s_mb_stats) {
2553 ext4_msg(sb, KERN_INFO,
2554 "mballoc: %u blocks %u reqs (%u success)",
2555 atomic_read(&sbi->s_bal_allocated),
2556 atomic_read(&sbi->s_bal_reqs),
2557 atomic_read(&sbi->s_bal_success));
2558 ext4_msg(sb, KERN_INFO,
2559 "mballoc: %u extents scanned, %u goal hits, "
2560 "%u 2^N hits, %u breaks, %u lost",
2561 atomic_read(&sbi->s_bal_ex_scanned),
2562 atomic_read(&sbi->s_bal_goals),
2563 atomic_read(&sbi->s_bal_2orders),
2564 atomic_read(&sbi->s_bal_breaks),
2565 atomic_read(&sbi->s_mb_lost_chunks));
2566 ext4_msg(sb, KERN_INFO,
2567 "mballoc: %lu generated and it took %Lu",
2568 sbi->s_mb_buddies_generated,
2569 sbi->s_mb_generation_time);
2570 ext4_msg(sb, KERN_INFO,
2571 "mballoc: %u preallocated, %u discarded",
2572 atomic_read(&sbi->s_mb_preallocated),
2573 atomic_read(&sbi->s_mb_discarded));
2574 }
2575
2576 free_percpu(sbi->s_locality_groups);
2577
2578 return 0;
2579 }
2580
2581 static inline int ext4_issue_discard(struct super_block *sb,
2582 ext4_group_t block_group, ext4_grpblk_t cluster, int count)
2583 {
2584 ext4_fsblk_t discard_block;
2585
2586 discard_block = (EXT4_C2B(EXT4_SB(sb), cluster) +
2587 ext4_group_first_block_no(sb, block_group));
2588 count = EXT4_C2B(EXT4_SB(sb), count);
2589 trace_ext4_discard_blocks(sb,
2590 (unsigned long long) discard_block, count);
2591 return sb_issue_discard(sb, discard_block, count, GFP_NOFS, 0);
2592 }
2593
2594 /*
2595 * This function is called by the jbd2 layer once the commit has finished,
2596 * so we know we can free the blocks that were released with that commit.
2597 */
2598 static void ext4_free_data_callback(struct super_block *sb,
2599 struct ext4_journal_cb_entry *jce,
2600 int rc)
2601 {
2602 struct ext4_free_data *entry = (struct ext4_free_data *)jce;
2603 struct ext4_buddy e4b;
2604 struct ext4_group_info *db;
2605 int err, count = 0, count2 = 0;
2606
2607 mb_debug(1, "gonna free %u blocks in group %u (0x%p):",
2608 entry->efd_count, entry->efd_group, entry);
2609
2610 if (test_opt(sb, DISCARD))
2611 ext4_issue_discard(sb, entry->efd_group,
2612 entry->efd_start_cluster, entry->efd_count);
2613
2614 err = ext4_mb_load_buddy(sb, entry->efd_group, &e4b);
2615 /* we expect to find existing buddy because it's pinned */
2616 BUG_ON(err != 0);
2617
2618
2619 db = e4b.bd_info;
2620 /* there are blocks to put in buddy to make them really free */
2621 count += entry->efd_count;
2622 count2++;
2623 ext4_lock_group(sb, entry->efd_group);
2624 /* Take it out of per group rb tree */
2625 rb_erase(&entry->efd_node, &(db->bb_free_root));
2626 mb_free_blocks(NULL, &e4b, entry->efd_start_cluster, entry->efd_count);
2627
2628 /*
2629 * Clear the trimmed flag for the group so that the next
2630 * ext4_trim_fs can trim it.
2631 * If the volume is mounted with -o discard, online discard
2632 * is supported and the free blocks will be trimmed online.
2633 */
2634 if (!test_opt(sb, DISCARD))
2635 EXT4_MB_GRP_CLEAR_TRIMMED(db);
2636
2637 if (!db->bb_free_root.rb_node) {
2638 /* No more items in the per group rb tree
2639 * balance refcounts from ext4_mb_free_metadata()
2640 */
2641 page_cache_release(e4b.bd_buddy_page);
2642 page_cache_release(e4b.bd_bitmap_page);
2643 }
2644 ext4_unlock_group(sb, entry->efd_group);
2645 kmem_cache_free(ext4_free_data_cachep, entry);
2646 ext4_mb_unload_buddy(&e4b);
2647
2648 mb_debug(1, "freed %u blocks in %u structures\n", count, count2);
2649 }
2650
2651 #ifdef CONFIG_EXT4_DEBUG
2652 u8 mb_enable_debug __read_mostly;
2653
2654 static struct dentry *debugfs_dir;
2655 static struct dentry *debugfs_debug;
2656
2657 static void __init ext4_create_debugfs_entry(void)
2658 {
2659 debugfs_dir = debugfs_create_dir("ext4", NULL);
2660 if (debugfs_dir)
2661 debugfs_debug = debugfs_create_u8("mballoc-debug",
2662 S_IRUGO | S_IWUSR,
2663 debugfs_dir,
2664 &mb_enable_debug);
2665 }
2666
2667 static void ext4_remove_debugfs_entry(void)
2668 {
2669 debugfs_remove(debugfs_debug);
2670 debugfs_remove(debugfs_dir);
2671 }
2672
2673 #else
2674
2675 static void __init ext4_create_debugfs_entry(void)
2676 {
2677 }
2678
2679 static void ext4_remove_debugfs_entry(void)
2680 {
2681 }
2682
2683 #endif
2684
2685 int __init ext4_init_mballoc(void)
2686 {
2687 ext4_pspace_cachep = KMEM_CACHE(ext4_prealloc_space,
2688 SLAB_RECLAIM_ACCOUNT);
2689 if (ext4_pspace_cachep == NULL)
2690 return -ENOMEM;
2691
2692 ext4_ac_cachep = KMEM_CACHE(ext4_allocation_context,
2693 SLAB_RECLAIM_ACCOUNT);
2694 if (ext4_ac_cachep == NULL) {
2695 kmem_cache_destroy(ext4_pspace_cachep);
2696 return -ENOMEM;
2697 }
2698
2699 ext4_free_data_cachep = KMEM_CACHE(ext4_free_data,
2700 SLAB_RECLAIM_ACCOUNT);
2701 if (ext4_free_data_cachep == NULL) {
2702 kmem_cache_destroy(ext4_pspace_cachep);
2703 kmem_cache_destroy(ext4_ac_cachep);
2704 return -ENOMEM;
2705 }
2706 ext4_create_debugfs_entry();
2707 return 0;
2708 }
2709
2710 void ext4_exit_mballoc(void)
2711 {
2712 /*
2713 * Wait for completion of call_rcu()'s on ext4_pspace_cachep
2714 * before destroying the slab cache.
2715 */
2716 rcu_barrier();
2717 kmem_cache_destroy(ext4_pspace_cachep);
2718 kmem_cache_destroy(ext4_ac_cachep);
2719 kmem_cache_destroy(ext4_free_data_cachep);
2720 ext4_groupinfo_destroy_slabs();
2721 ext4_remove_debugfs_entry();
2722 }
2723
2724
2725 /*
2726 * Check quota and mark chosen space (ac->ac_b_ex) non-free in bitmaps
2727 * Returns 0 if success or error code
2728 */
2729 static noinline_for_stack int
2730 ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac,
2731 handle_t *handle, unsigned int reserv_clstrs)
2732 {
2733 struct buffer_head *bitmap_bh = NULL;
2734 struct ext4_group_desc *gdp;
2735 struct buffer_head *gdp_bh;
2736 struct ext4_sb_info *sbi;
2737 struct super_block *sb;
2738 ext4_fsblk_t block;
2739 int err, len;
2740
2741 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
2742 BUG_ON(ac->ac_b_ex.fe_len <= 0);
2743
2744 sb = ac->ac_sb;
2745 sbi = EXT4_SB(sb);
2746
2747 err = -EIO;
2748 bitmap_bh = ext4_read_block_bitmap(sb, ac->ac_b_ex.fe_group);
2749 if (!bitmap_bh)
2750 goto out_err;
2751
2752 err = ext4_journal_get_write_access(handle, bitmap_bh);
2753 if (err)
2754 goto out_err;
2755
2756 err = -EIO;
2757 gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, &gdp_bh);
2758 if (!gdp)
2759 goto out_err;
2760
2761 ext4_debug("using block group %u(%d)\n", ac->ac_b_ex.fe_group,
2762 ext4_free_group_clusters(sb, gdp));
2763
2764 err = ext4_journal_get_write_access(handle, gdp_bh);
2765 if (err)
2766 goto out_err;
2767
2768 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
2769
2770 len = EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
2771 if (!ext4_data_block_valid(sbi, block, len)) {
2772 ext4_error(sb, "Allocating blocks %llu-%llu which overlap "
2773 "fs metadata", block, block+len);
2774 /* File system mounted not to panic on error
2775 * Fix the bitmap and repeat the block allocation
2776 * We leak some of the blocks here.
2777 */
2778 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
2779 ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
2780 ac->ac_b_ex.fe_len);
2781 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
2782 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
2783 if (!err)
2784 err = -EAGAIN;
2785 goto out_err;
2786 }
2787
2788 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
2789 #ifdef AGGRESSIVE_CHECK
2790 {
2791 int i;
2792 for (i = 0; i < ac->ac_b_ex.fe_len; i++) {
2793 BUG_ON(mb_test_bit(ac->ac_b_ex.fe_start + i,
2794 bitmap_bh->b_data));
2795 }
2796 }
2797 #endif
2798 ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
2799 ac->ac_b_ex.fe_len);
2800 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
2801 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
2802 ext4_free_group_clusters_set(sb, gdp,
2803 ext4_free_clusters_after_init(sb,
2804 ac->ac_b_ex.fe_group, gdp));
2805 }
2806 len = ext4_free_group_clusters(sb, gdp) - ac->ac_b_ex.fe_len;
2807 ext4_free_group_clusters_set(sb, gdp, len);
2808 ext4_block_bitmap_csum_set(sb, ac->ac_b_ex.fe_group, gdp, bitmap_bh,
2809 EXT4_BLOCKS_PER_GROUP(sb) / 8);
2810 ext4_group_desc_csum_set(sb, ac->ac_b_ex.fe_group, gdp);
2811
2812 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
2813 percpu_counter_sub(&sbi->s_freeclusters_counter, ac->ac_b_ex.fe_len);
2814 /*
2815 * Now reduce the dirty block count also. Should not go negative
2816 */
2817 if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED))
2818 /* release all the reserved blocks if non delalloc */
2819 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
2820 reserv_clstrs);
2821
2822 if (sbi->s_log_groups_per_flex) {
2823 ext4_group_t flex_group = ext4_flex_group(sbi,
2824 ac->ac_b_ex.fe_group);
2825 atomic_sub(ac->ac_b_ex.fe_len,
2826 &sbi->s_flex_groups[flex_group].free_clusters);
2827 }
2828
2829 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
2830 if (err)
2831 goto out_err;
2832 err = ext4_handle_dirty_metadata(handle, NULL, gdp_bh);
2833
2834 out_err:
2835 brelse(bitmap_bh);
2836 return err;
2837 }
2838
2839 /*
2840 * here we normalize request for locality group
2841 * Group request are normalized to s_mb_group_prealloc, which goes to
2842 * s_strip if we set the same via mount option.
2843 * s_mb_group_prealloc can be configured via
2844 * /sys/fs/ext4/<partition>/mb_group_prealloc
2845 *
2846 * XXX: should we try to preallocate more than the group has now?
2847 */
2848 static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac)
2849 {
2850 struct super_block *sb = ac->ac_sb;
2851 struct ext4_locality_group *lg = ac->ac_lg;
2852
2853 BUG_ON(lg == NULL);
2854 ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc;
2855 mb_debug(1, "#%u: goal %u blocks for locality group\n",
2856 current->pid, ac->ac_g_ex.fe_len);
2857 }
2858
2859 /*
2860 * Normalization means making request better in terms of
2861 * size and alignment
2862 */
2863 static noinline_for_stack void
2864 ext4_mb_normalize_request(struct ext4_allocation_context *ac,
2865 struct ext4_allocation_request *ar)
2866 {
2867 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
2868 int bsbits, max;
2869 ext4_lblk_t end;
2870 loff_t size, start_off;
2871 loff_t orig_size __maybe_unused;
2872 ext4_lblk_t start;
2873 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
2874 struct ext4_prealloc_space *pa;
2875
2876 /* do normalize only data requests, metadata requests
2877 do not need preallocation */
2878 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
2879 return;
2880
2881 /* sometime caller may want exact blocks */
2882 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
2883 return;
2884
2885 /* caller may indicate that preallocation isn't
2886 * required (it's a tail, for example) */
2887 if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC)
2888 return;
2889
2890 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) {
2891 ext4_mb_normalize_group_request(ac);
2892 return ;
2893 }
2894
2895 bsbits = ac->ac_sb->s_blocksize_bits;
2896
2897 /* first, let's learn actual file size
2898 * given current request is allocated */
2899 size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len);
2900 size = size << bsbits;
2901 if (size < i_size_read(ac->ac_inode))
2902 size = i_size_read(ac->ac_inode);
2903 orig_size = size;
2904
2905 /* max size of free chunks */
2906 max = 2 << bsbits;
2907
2908 #define NRL_CHECK_SIZE(req, size, max, chunk_size) \
2909 (req <= (size) || max <= (chunk_size))
2910
2911 /* first, try to predict filesize */
2912 /* XXX: should this table be tunable? */
2913 start_off = 0;
2914 if (size <= 16 * 1024) {
2915 size = 16 * 1024;
2916 } else if (size <= 32 * 1024) {
2917 size = 32 * 1024;
2918 } else if (size <= 64 * 1024) {
2919 size = 64 * 1024;
2920 } else if (size <= 128 * 1024) {
2921 size = 128 * 1024;
2922 } else if (size <= 256 * 1024) {
2923 size = 256 * 1024;
2924 } else if (size <= 512 * 1024) {
2925 size = 512 * 1024;
2926 } else if (size <= 1024 * 1024) {
2927 size = 1024 * 1024;
2928 } else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) {
2929 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
2930 (21 - bsbits)) << 21;
2931 size = 2 * 1024 * 1024;
2932 } else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) {
2933 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
2934 (22 - bsbits)) << 22;
2935 size = 4 * 1024 * 1024;
2936 } else if (NRL_CHECK_SIZE(ac->ac_o_ex.fe_len,
2937 (8<<20)>>bsbits, max, 8 * 1024)) {
2938 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
2939 (23 - bsbits)) << 23;
2940 size = 8 * 1024 * 1024;
2941 } else {
2942 start_off = (loff_t)ac->ac_o_ex.fe_logical << bsbits;
2943 size = ac->ac_o_ex.fe_len << bsbits;
2944 }
2945 size = size >> bsbits;
2946 start = start_off >> bsbits;
2947
2948 /* don't cover already allocated blocks in selected range */
2949 if (ar->pleft && start <= ar->lleft) {
2950 size -= ar->lleft + 1 - start;
2951 start = ar->lleft + 1;
2952 }
2953 if (ar->pright && start + size - 1 >= ar->lright)
2954 size -= start + size - ar->lright;
2955
2956 end = start + size;
2957
2958 /* check we don't cross already preallocated blocks */
2959 rcu_read_lock();
2960 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
2961 ext4_lblk_t pa_end;
2962
2963 if (pa->pa_deleted)
2964 continue;
2965 spin_lock(&pa->pa_lock);
2966 if (pa->pa_deleted) {
2967 spin_unlock(&pa->pa_lock);
2968 continue;
2969 }
2970
2971 pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb),
2972 pa->pa_len);
2973
2974 /* PA must not overlap original request */
2975 BUG_ON(!(ac->ac_o_ex.fe_logical >= pa_end ||
2976 ac->ac_o_ex.fe_logical < pa->pa_lstart));
2977
2978 /* skip PAs this normalized request doesn't overlap with */
2979 if (pa->pa_lstart >= end || pa_end <= start) {
2980 spin_unlock(&pa->pa_lock);
2981 continue;
2982 }
2983 BUG_ON(pa->pa_lstart <= start && pa_end >= end);
2984
2985 /* adjust start or end to be adjacent to this pa */
2986 if (pa_end <= ac->ac_o_ex.fe_logical) {
2987 BUG_ON(pa_end < start);
2988 start = pa_end;
2989 } else if (pa->pa_lstart > ac->ac_o_ex.fe_logical) {
2990 BUG_ON(pa->pa_lstart > end);
2991 end = pa->pa_lstart;
2992 }
2993 spin_unlock(&pa->pa_lock);
2994 }
2995 rcu_read_unlock();
2996 size = end - start;
2997
2998 /* XXX: extra loop to check we really don't overlap preallocations */
2999 rcu_read_lock();
3000 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3001 ext4_lblk_t pa_end;
3002
3003 spin_lock(&pa->pa_lock);
3004 if (pa->pa_deleted == 0) {
3005 pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb),
3006 pa->pa_len);
3007 BUG_ON(!(start >= pa_end || end <= pa->pa_lstart));
3008 }
3009 spin_unlock(&pa->pa_lock);
3010 }
3011 rcu_read_unlock();
3012
3013 if (start + size <= ac->ac_o_ex.fe_logical &&
3014 start > ac->ac_o_ex.fe_logical) {
3015 ext4_msg(ac->ac_sb, KERN_ERR,
3016 "start %lu, size %lu, fe_logical %lu",
3017 (unsigned long) start, (unsigned long) size,
3018 (unsigned long) ac->ac_o_ex.fe_logical);
3019 }
3020 BUG_ON(start + size <= ac->ac_o_ex.fe_logical &&
3021 start > ac->ac_o_ex.fe_logical);
3022 BUG_ON(size <= 0 || size > EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
3023
3024 /* now prepare goal request */
3025
3026 /* XXX: is it better to align blocks WRT to logical
3027 * placement or satisfy big request as is */
3028 ac->ac_g_ex.fe_logical = start;
3029 ac->ac_g_ex.fe_len = EXT4_NUM_B2C(sbi, size);
3030
3031 /* define goal start in order to merge */
3032 if (ar->pright && (ar->lright == (start + size))) {
3033 /* merge to the right */
3034 ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size,
3035 &ac->ac_f_ex.fe_group,
3036 &ac->ac_f_ex.fe_start);
3037 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3038 }
3039 if (ar->pleft && (ar->lleft + 1 == start)) {
3040 /* merge to the left */
3041 ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1,
3042 &ac->ac_f_ex.fe_group,
3043 &ac->ac_f_ex.fe_start);
3044 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3045 }
3046
3047 mb_debug(1, "goal: %u(was %u) blocks at %u\n", (unsigned) size,
3048 (unsigned) orig_size, (unsigned) start);
3049 }
3050
3051 static void ext4_mb_collect_stats(struct ext4_allocation_context *ac)
3052 {
3053 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3054
3055 if (sbi->s_mb_stats && ac->ac_g_ex.fe_len > 1) {
3056 atomic_inc(&sbi->s_bal_reqs);
3057 atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated);
3058 if (ac->ac_b_ex.fe_len >= ac->ac_o_ex.fe_len)
3059 atomic_inc(&sbi->s_bal_success);
3060 atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned);
3061 if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start &&
3062 ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group)
3063 atomic_inc(&sbi->s_bal_goals);
3064 if (ac->ac_found > sbi->s_mb_max_to_scan)
3065 atomic_inc(&sbi->s_bal_breaks);
3066 }
3067
3068 if (ac->ac_op == EXT4_MB_HISTORY_ALLOC)
3069 trace_ext4_mballoc_alloc(ac);
3070 else
3071 trace_ext4_mballoc_prealloc(ac);
3072 }
3073
3074 /*
3075 * Called on failure; free up any blocks from the inode PA for this
3076 * context. We don't need this for MB_GROUP_PA because we only change
3077 * pa_free in ext4_mb_release_context(), but on failure, we've already
3078 * zeroed out ac->ac_b_ex.fe_len, so group_pa->pa_free is not changed.
3079 */
3080 static void ext4_discard_allocated_blocks(struct ext4_allocation_context *ac)
3081 {
3082 struct ext4_prealloc_space *pa = ac->ac_pa;
3083
3084 if (pa && pa->pa_type == MB_INODE_PA)
3085 pa->pa_free += ac->ac_b_ex.fe_len;
3086 }
3087
3088 /*
3089 * use blocks preallocated to inode
3090 */
3091 static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac,
3092 struct ext4_prealloc_space *pa)
3093 {
3094 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3095 ext4_fsblk_t start;
3096 ext4_fsblk_t end;
3097 int len;
3098
3099 /* found preallocated blocks, use them */
3100 start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart);
3101 end = min(pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len),
3102 start + EXT4_C2B(sbi, ac->ac_o_ex.fe_len));
3103 len = EXT4_NUM_B2C(sbi, end - start);
3104 ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group,
3105 &ac->ac_b_ex.fe_start);
3106 ac->ac_b_ex.fe_len = len;
3107 ac->ac_status = AC_STATUS_FOUND;
3108 ac->ac_pa = pa;
3109
3110 BUG_ON(start < pa->pa_pstart);
3111 BUG_ON(end > pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len));
3112 BUG_ON(pa->pa_free < len);
3113 pa->pa_free -= len;
3114
3115 mb_debug(1, "use %llu/%u from inode pa %p\n", start, len, pa);
3116 }
3117
3118 /*
3119 * use blocks preallocated to locality group
3120 */
3121 static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac,
3122 struct ext4_prealloc_space *pa)
3123 {
3124 unsigned int len = ac->ac_o_ex.fe_len;
3125
3126 ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart,
3127 &ac->ac_b_ex.fe_group,
3128 &ac->ac_b_ex.fe_start);
3129 ac->ac_b_ex.fe_len = len;
3130 ac->ac_status = AC_STATUS_FOUND;
3131 ac->ac_pa = pa;
3132
3133 /* we don't correct pa_pstart or pa_plen here to avoid
3134 * possible race when the group is being loaded concurrently
3135 * instead we correct pa later, after blocks are marked
3136 * in on-disk bitmap -- see ext4_mb_release_context()
3137 * Other CPUs are prevented from allocating from this pa by lg_mutex
3138 */
3139 mb_debug(1, "use %u/%u from group pa %p\n", pa->pa_lstart-len, len, pa);
3140 }
3141
3142 /*
3143 * Return the prealloc space that have minimal distance
3144 * from the goal block. @cpa is the prealloc
3145 * space that is having currently known minimal distance
3146 * from the goal block.
3147 */
3148 static struct ext4_prealloc_space *
3149 ext4_mb_check_group_pa(ext4_fsblk_t goal_block,
3150 struct ext4_prealloc_space *pa,
3151 struct ext4_prealloc_space *cpa)
3152 {
3153 ext4_fsblk_t cur_distance, new_distance;
3154
3155 if (cpa == NULL) {
3156 atomic_inc(&pa->pa_count);
3157 return pa;
3158 }
3159 cur_distance = abs(goal_block - cpa->pa_pstart);
3160 new_distance = abs(goal_block - pa->pa_pstart);
3161
3162 if (cur_distance <= new_distance)
3163 return cpa;
3164
3165 /* drop the previous reference */
3166 atomic_dec(&cpa->pa_count);
3167 atomic_inc(&pa->pa_count);
3168 return pa;
3169 }
3170
3171 /*
3172 * search goal blocks in preallocated space
3173 */
3174 static noinline_for_stack int
3175 ext4_mb_use_preallocated(struct ext4_allocation_context *ac)
3176 {
3177 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3178 int order, i;
3179 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
3180 struct ext4_locality_group *lg;
3181 struct ext4_prealloc_space *pa, *cpa = NULL;
3182 ext4_fsblk_t goal_block;
3183
3184 /* only data can be preallocated */
3185 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3186 return 0;
3187
3188 /* first, try per-file preallocation */
3189 rcu_read_lock();
3190 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3191
3192 /* all fields in this condition don't change,
3193 * so we can skip locking for them */
3194 if (ac->ac_o_ex.fe_logical < pa->pa_lstart ||
3195 ac->ac_o_ex.fe_logical >= (pa->pa_lstart +
3196 EXT4_C2B(sbi, pa->pa_len)))
3197 continue;
3198
3199 /* non-extent files can't have physical blocks past 2^32 */
3200 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)) &&
3201 (pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len) >
3202 EXT4_MAX_BLOCK_FILE_PHYS))
3203 continue;
3204
3205 /* found preallocated blocks, use them */
3206 spin_lock(&pa->pa_lock);
3207 if (pa->pa_deleted == 0 && pa->pa_free) {
3208 atomic_inc(&pa->pa_count);
3209 ext4_mb_use_inode_pa(ac, pa);
3210 spin_unlock(&pa->pa_lock);
3211 ac->ac_criteria = 10;
3212 rcu_read_unlock();
3213 return 1;
3214 }
3215 spin_unlock(&pa->pa_lock);
3216 }
3217 rcu_read_unlock();
3218
3219 /* can we use group allocation? */
3220 if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC))
3221 return 0;
3222
3223 /* inode may have no locality group for some reason */
3224 lg = ac->ac_lg;
3225 if (lg == NULL)
3226 return 0;
3227 order = fls(ac->ac_o_ex.fe_len) - 1;
3228 if (order > PREALLOC_TB_SIZE - 1)
3229 /* The max size of hash table is PREALLOC_TB_SIZE */
3230 order = PREALLOC_TB_SIZE - 1;
3231
3232 goal_block = ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex);
3233 /*
3234 * search for the prealloc space that is having
3235 * minimal distance from the goal block.
3236 */
3237 for (i = order; i < PREALLOC_TB_SIZE; i++) {
3238 rcu_read_lock();
3239 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[i],
3240 pa_inode_list) {
3241 spin_lock(&pa->pa_lock);
3242 if (pa->pa_deleted == 0 &&
3243 pa->pa_free >= ac->ac_o_ex.fe_len) {
3244
3245 cpa = ext4_mb_check_group_pa(goal_block,
3246 pa, cpa);
3247 }
3248 spin_unlock(&pa->pa_lock);
3249 }
3250 rcu_read_unlock();
3251 }
3252 if (cpa) {
3253 ext4_mb_use_group_pa(ac, cpa);
3254 ac->ac_criteria = 20;
3255 return 1;
3256 }
3257 return 0;
3258 }
3259
3260 /*
3261 * the function goes through all block freed in the group
3262 * but not yet committed and marks them used in in-core bitmap.
3263 * buddy must be generated from this bitmap
3264 * Need to be called with the ext4 group lock held
3265 */
3266 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
3267 ext4_group_t group)
3268 {
3269 struct rb_node *n;
3270 struct ext4_group_info *grp;
3271 struct ext4_free_data *entry;
3272
3273 grp = ext4_get_group_info(sb, group);
3274 n = rb_first(&(grp->bb_free_root));
3275
3276 while (n) {
3277 entry = rb_entry(n, struct ext4_free_data, efd_node);
3278 ext4_set_bits(bitmap, entry->efd_start_cluster, entry->efd_count);
3279 n = rb_next(n);
3280 }
3281 return;
3282 }
3283
3284 /*
3285 * the function goes through all preallocation in this group and marks them
3286 * used in in-core bitmap. buddy must be generated from this bitmap
3287 * Need to be called with ext4 group lock held
3288 */
3289 static noinline_for_stack
3290 void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
3291 ext4_group_t group)
3292 {
3293 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
3294 struct ext4_prealloc_space *pa;
3295 struct list_head *cur;
3296 ext4_group_t groupnr;
3297 ext4_grpblk_t start;
3298 int preallocated = 0;
3299 int len;
3300
3301 /* all form of preallocation discards first load group,
3302 * so the only competing code is preallocation use.
3303 * we don't need any locking here
3304 * notice we do NOT ignore preallocations with pa_deleted
3305 * otherwise we could leave used blocks available for
3306 * allocation in buddy when concurrent ext4_mb_put_pa()
3307 * is dropping preallocation
3308 */
3309 list_for_each(cur, &grp->bb_prealloc_list) {
3310 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
3311 spin_lock(&pa->pa_lock);
3312 ext4_get_group_no_and_offset(sb, pa->pa_pstart,
3313 &groupnr, &start);
3314 len = pa->pa_len;
3315 spin_unlock(&pa->pa_lock);
3316 if (unlikely(len == 0))
3317 continue;
3318 BUG_ON(groupnr != group);
3319 ext4_set_bits(bitmap, start, len);
3320 preallocated += len;
3321 }
3322 mb_debug(1, "prellocated %u for group %u\n", preallocated, group);
3323 }
3324
3325 static void ext4_mb_pa_callback(struct rcu_head *head)
3326 {
3327 struct ext4_prealloc_space *pa;
3328 pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu);
3329 kmem_cache_free(ext4_pspace_cachep, pa);
3330 }
3331
3332 /*
3333 * drops a reference to preallocated space descriptor
3334 * if this was the last reference and the space is consumed
3335 */
3336 static void ext4_mb_put_pa(struct ext4_allocation_context *ac,
3337 struct super_block *sb, struct ext4_prealloc_space *pa)
3338 {
3339 ext4_group_t grp;
3340 ext4_fsblk_t grp_blk;
3341
3342 if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0)
3343 return;
3344
3345 /* in this short window concurrent discard can set pa_deleted */
3346 spin_lock(&pa->pa_lock);
3347 if (pa->pa_deleted == 1) {
3348 spin_unlock(&pa->pa_lock);
3349 return;
3350 }
3351
3352 pa->pa_deleted = 1;
3353 spin_unlock(&pa->pa_lock);
3354
3355 grp_blk = pa->pa_pstart;
3356 /*
3357 * If doing group-based preallocation, pa_pstart may be in the
3358 * next group when pa is used up
3359 */
3360 if (pa->pa_type == MB_GROUP_PA)
3361 grp_blk--;
3362
3363 ext4_get_group_no_and_offset(sb, grp_blk, &grp, NULL);
3364
3365 /*
3366 * possible race:
3367 *
3368 * P1 (buddy init) P2 (regular allocation)
3369 * find block B in PA
3370 * copy on-disk bitmap to buddy
3371 * mark B in on-disk bitmap
3372 * drop PA from group
3373 * mark all PAs in buddy
3374 *
3375 * thus, P1 initializes buddy with B available. to prevent this
3376 * we make "copy" and "mark all PAs" atomic and serialize "drop PA"
3377 * against that pair
3378 */
3379 ext4_lock_group(sb, grp);
3380 list_del(&pa->pa_group_list);
3381 ext4_unlock_group(sb, grp);
3382
3383 spin_lock(pa->pa_obj_lock);
3384 list_del_rcu(&pa->pa_inode_list);
3385 spin_unlock(pa->pa_obj_lock);
3386
3387 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3388 }
3389
3390 /*
3391 * creates new preallocated space for given inode
3392 */
3393 static noinline_for_stack int
3394 ext4_mb_new_inode_pa(struct ext4_allocation_context *ac)
3395 {
3396 struct super_block *sb = ac->ac_sb;
3397 struct ext4_sb_info *sbi = EXT4_SB(sb);
3398 struct ext4_prealloc_space *pa;
3399 struct ext4_group_info *grp;
3400 struct ext4_inode_info *ei;
3401
3402 /* preallocate only when found space is larger then requested */
3403 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
3404 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3405 BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
3406
3407 pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
3408 if (pa == NULL)
3409 return -ENOMEM;
3410
3411 if (ac->ac_b_ex.fe_len < ac->ac_g_ex.fe_len) {
3412 int winl;
3413 int wins;
3414 int win;
3415 int offs;
3416
3417 /* we can't allocate as much as normalizer wants.
3418 * so, found space must get proper lstart
3419 * to cover original request */
3420 BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical);
3421 BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len);
3422
3423 /* we're limited by original request in that
3424 * logical block must be covered any way
3425 * winl is window we can move our chunk within */
3426 winl = ac->ac_o_ex.fe_logical - ac->ac_g_ex.fe_logical;
3427
3428 /* also, we should cover whole original request */
3429 wins = EXT4_C2B(sbi, ac->ac_b_ex.fe_len - ac->ac_o_ex.fe_len);
3430
3431 /* the smallest one defines real window */
3432 win = min(winl, wins);
3433
3434 offs = ac->ac_o_ex.fe_logical %
3435 EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
3436 if (offs && offs < win)
3437 win = offs;
3438
3439 ac->ac_b_ex.fe_logical = ac->ac_o_ex.fe_logical -
3440 EXT4_B2C(sbi, win);
3441 BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical);
3442 BUG_ON(ac->ac_o_ex.fe_len > ac->ac_b_ex.fe_len);
3443 }
3444
3445 /* preallocation can change ac_b_ex, thus we store actually
3446 * allocated blocks for history */
3447 ac->ac_f_ex = ac->ac_b_ex;
3448
3449 pa->pa_lstart = ac->ac_b_ex.fe_logical;
3450 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3451 pa->pa_len = ac->ac_b_ex.fe_len;
3452 pa->pa_free = pa->pa_len;
3453 atomic_set(&pa->pa_count, 1);
3454 spin_lock_init(&pa->pa_lock);
3455 INIT_LIST_HEAD(&pa->pa_inode_list);
3456 INIT_LIST_HEAD(&pa->pa_group_list);
3457 pa->pa_deleted = 0;
3458 pa->pa_type = MB_INODE_PA;
3459
3460 mb_debug(1, "new inode pa %p: %llu/%u for %u\n", pa,
3461 pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3462 trace_ext4_mb_new_inode_pa(ac, pa);
3463
3464 ext4_mb_use_inode_pa(ac, pa);
3465 atomic_add(pa->pa_free, &sbi->s_mb_preallocated);
3466
3467 ei = EXT4_I(ac->ac_inode);
3468 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
3469
3470 pa->pa_obj_lock = &ei->i_prealloc_lock;
3471 pa->pa_inode = ac->ac_inode;
3472
3473 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3474 list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
3475 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3476
3477 spin_lock(pa->pa_obj_lock);
3478 list_add_rcu(&pa->pa_inode_list, &ei->i_prealloc_list);
3479 spin_unlock(pa->pa_obj_lock);
3480
3481 return 0;
3482 }
3483
3484 /*
3485 * creates new preallocated space for locality group inodes belongs to
3486 */
3487 static noinline_for_stack int
3488 ext4_mb_new_group_pa(struct ext4_allocation_context *ac)
3489 {
3490 struct super_block *sb = ac->ac_sb;
3491 struct ext4_locality_group *lg;
3492 struct ext4_prealloc_space *pa;
3493 struct ext4_group_info *grp;
3494
3495 /* preallocate only when found space is larger then requested */
3496 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
3497 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3498 BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
3499
3500 BUG_ON(ext4_pspace_cachep == NULL);
3501 pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
3502 if (pa == NULL)
3503 return -ENOMEM;
3504
3505 /* preallocation can change ac_b_ex, thus we store actually
3506 * allocated blocks for history */
3507 ac->ac_f_ex = ac->ac_b_ex;
3508
3509 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3510 pa->pa_lstart = pa->pa_pstart;
3511 pa->pa_len = ac->ac_b_ex.fe_len;
3512 pa->pa_free = pa->pa_len;
3513 atomic_set(&pa->pa_count, 1);
3514 spin_lock_init(&pa->pa_lock);
3515 INIT_LIST_HEAD(&pa->pa_inode_list);
3516 INIT_LIST_HEAD(&pa->pa_group_list);
3517 pa->pa_deleted = 0;
3518 pa->pa_type = MB_GROUP_PA;
3519
3520 mb_debug(1, "new group pa %p: %llu/%u for %u\n", pa,
3521 pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3522 trace_ext4_mb_new_group_pa(ac, pa);
3523
3524 ext4_mb_use_group_pa(ac, pa);
3525 atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated);
3526
3527 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
3528 lg = ac->ac_lg;
3529 BUG_ON(lg == NULL);
3530
3531 pa->pa_obj_lock = &lg->lg_prealloc_lock;
3532 pa->pa_inode = NULL;
3533
3534 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3535 list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
3536 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3537
3538 /*
3539 * We will later add the new pa to the right bucket
3540 * after updating the pa_free in ext4_mb_release_context
3541 */
3542 return 0;
3543 }
3544
3545 static int ext4_mb_new_preallocation(struct ext4_allocation_context *ac)
3546 {
3547 int err;
3548
3549 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
3550 err = ext4_mb_new_group_pa(ac);
3551 else
3552 err = ext4_mb_new_inode_pa(ac);
3553 return err;
3554 }
3555
3556 /*
3557 * finds all unused blocks in on-disk bitmap, frees them in
3558 * in-core bitmap and buddy.
3559 * @pa must be unlinked from inode and group lists, so that
3560 * nobody else can find/use it.
3561 * the caller MUST hold group/inode locks.
3562 * TODO: optimize the case when there are no in-core structures yet
3563 */
3564 static noinline_for_stack int
3565 ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh,
3566 struct ext4_prealloc_space *pa)
3567 {
3568 struct super_block *sb = e4b->bd_sb;
3569 struct ext4_sb_info *sbi = EXT4_SB(sb);
3570 unsigned int end;
3571 unsigned int next;
3572 ext4_group_t group;
3573 ext4_grpblk_t bit;
3574 unsigned long long grp_blk_start;
3575 int err = 0;
3576 int free = 0;
3577
3578 BUG_ON(pa->pa_deleted == 0);
3579 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3580 grp_blk_start = pa->pa_pstart - EXT4_C2B(sbi, bit);
3581 BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
3582 end = bit + pa->pa_len;
3583
3584 while (bit < end) {
3585 bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit);
3586 if (bit >= end)
3587 break;
3588 next = mb_find_next_bit(bitmap_bh->b_data, end, bit);
3589 mb_debug(1, " free preallocated %u/%u in group %u\n",
3590 (unsigned) ext4_group_first_block_no(sb, group) + bit,
3591 (unsigned) next - bit, (unsigned) group);
3592 free += next - bit;
3593
3594 trace_ext4_mballoc_discard(sb, NULL, group, bit, next - bit);
3595 trace_ext4_mb_release_inode_pa(pa, (grp_blk_start +
3596 EXT4_C2B(sbi, bit)),
3597 next - bit);
3598 mb_free_blocks(pa->pa_inode, e4b, bit, next - bit);
3599 bit = next + 1;
3600 }
3601 if (free != pa->pa_free) {
3602 ext4_msg(e4b->bd_sb, KERN_CRIT,
3603 "pa %p: logic %lu, phys. %lu, len %lu",
3604 pa, (unsigned long) pa->pa_lstart,
3605 (unsigned long) pa->pa_pstart,
3606 (unsigned long) pa->pa_len);
3607 ext4_grp_locked_error(sb, group, 0, 0, "free %u, pa_free %u",
3608 free, pa->pa_free);
3609 /*
3610 * pa is already deleted so we use the value obtained
3611 * from the bitmap and continue.
3612 */
3613 }
3614 atomic_add(free, &sbi->s_mb_discarded);
3615
3616 return err;
3617 }
3618
3619 static noinline_for_stack int
3620 ext4_mb_release_group_pa(struct ext4_buddy *e4b,
3621 struct ext4_prealloc_space *pa)
3622 {
3623 struct super_block *sb = e4b->bd_sb;
3624 ext4_group_t group;
3625 ext4_grpblk_t bit;
3626
3627 trace_ext4_mb_release_group_pa(sb, pa);
3628 BUG_ON(pa->pa_deleted == 0);
3629 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3630 BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
3631 mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len);
3632 atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded);
3633 trace_ext4_mballoc_discard(sb, NULL, group, bit, pa->pa_len);
3634
3635 return 0;
3636 }
3637
3638 /*
3639 * releases all preallocations in given group
3640 *
3641 * first, we need to decide discard policy:
3642 * - when do we discard
3643 * 1) ENOSPC
3644 * - how many do we discard
3645 * 1) how many requested
3646 */
3647 static noinline_for_stack int
3648 ext4_mb_discard_group_preallocations(struct super_block *sb,
3649 ext4_group_t group, int needed)
3650 {
3651 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
3652 struct buffer_head *bitmap_bh = NULL;
3653 struct ext4_prealloc_space *pa, *tmp;
3654 struct list_head list;
3655 struct ext4_buddy e4b;
3656 int err;
3657 int busy = 0;
3658 int free = 0;
3659
3660 mb_debug(1, "discard preallocation for group %u\n", group);
3661
3662 if (list_empty(&grp->bb_prealloc_list))
3663 return 0;
3664
3665 bitmap_bh = ext4_read_block_bitmap(sb, group);
3666 if (bitmap_bh == NULL) {
3667 ext4_error(sb, "Error reading block bitmap for %u", group);
3668 return 0;
3669 }
3670
3671 err = ext4_mb_load_buddy(sb, group, &e4b);
3672 if (err) {
3673 ext4_error(sb, "Error loading buddy information for %u", group);
3674 put_bh(bitmap_bh);
3675 return 0;
3676 }
3677
3678 if (needed == 0)
3679 needed = EXT4_CLUSTERS_PER_GROUP(sb) + 1;
3680
3681 INIT_LIST_HEAD(&list);
3682 repeat:
3683 ext4_lock_group(sb, group);
3684 list_for_each_entry_safe(pa, tmp,
3685 &grp->bb_prealloc_list, pa_group_list) {
3686 spin_lock(&pa->pa_lock);
3687 if (atomic_read(&pa->pa_count)) {
3688 spin_unlock(&pa->pa_lock);
3689 busy = 1;
3690 continue;
3691 }
3692 if (pa->pa_deleted) {
3693 spin_unlock(&pa->pa_lock);
3694 continue;
3695 }
3696
3697 /* seems this one can be freed ... */
3698 pa->pa_deleted = 1;
3699
3700 /* we can trust pa_free ... */
3701 free += pa->pa_free;
3702
3703 spin_unlock(&pa->pa_lock);
3704
3705 list_del(&pa->pa_group_list);
3706 list_add(&pa->u.pa_tmp_list, &list);
3707 }
3708
3709 /* if we still need more blocks and some PAs were used, try again */
3710 if (free < needed && busy) {
3711 busy = 0;
3712 ext4_unlock_group(sb, group);
3713 /*
3714 * Yield the CPU here so that we don't get soft lockup
3715 * in non preempt case.
3716 */
3717 yield();
3718 goto repeat;
3719 }
3720
3721 /* found anything to free? */
3722 if (list_empty(&list)) {
3723 BUG_ON(free != 0);
3724 goto out;
3725 }
3726
3727 /* now free all selected PAs */
3728 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
3729
3730 /* remove from object (inode or locality group) */
3731 spin_lock(pa->pa_obj_lock);
3732 list_del_rcu(&pa->pa_inode_list);
3733 spin_unlock(pa->pa_obj_lock);
3734
3735 if (pa->pa_type == MB_GROUP_PA)
3736 ext4_mb_release_group_pa(&e4b, pa);
3737 else
3738 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
3739
3740 list_del(&pa->u.pa_tmp_list);
3741 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3742 }
3743
3744 out:
3745 ext4_unlock_group(sb, group);
3746 ext4_mb_unload_buddy(&e4b);
3747 put_bh(bitmap_bh);
3748 return free;
3749 }
3750
3751 /*
3752 * releases all non-used preallocated blocks for given inode
3753 *
3754 * It's important to discard preallocations under i_data_sem
3755 * We don't want another block to be served from the prealloc
3756 * space when we are discarding the inode prealloc space.
3757 *
3758 * FIXME!! Make sure it is valid at all the call sites
3759 */
3760 void ext4_discard_preallocations(struct inode *inode)
3761 {
3762 struct ext4_inode_info *ei = EXT4_I(inode);
3763 struct super_block *sb = inode->i_sb;
3764 struct buffer_head *bitmap_bh = NULL;
3765 struct ext4_prealloc_space *pa, *tmp;
3766 ext4_group_t group = 0;
3767 struct list_head list;
3768 struct ext4_buddy e4b;
3769 int err;
3770
3771 if (!S_ISREG(inode->i_mode)) {
3772 /*BUG_ON(!list_empty(&ei->i_prealloc_list));*/
3773 return;
3774 }
3775
3776 mb_debug(1, "discard preallocation for inode %lu\n", inode->i_ino);
3777 trace_ext4_discard_preallocations(inode);
3778
3779 INIT_LIST_HEAD(&list);
3780
3781 repeat:
3782 /* first, collect all pa's in the inode */
3783 spin_lock(&ei->i_prealloc_lock);
3784 while (!list_empty(&ei->i_prealloc_list)) {
3785 pa = list_entry(ei->i_prealloc_list.next,
3786 struct ext4_prealloc_space, pa_inode_list);
3787 BUG_ON(pa->pa_obj_lock != &ei->i_prealloc_lock);
3788 spin_lock(&pa->pa_lock);
3789 if (atomic_read(&pa->pa_count)) {
3790 /* this shouldn't happen often - nobody should
3791 * use preallocation while we're discarding it */
3792 spin_unlock(&pa->pa_lock);
3793 spin_unlock(&ei->i_prealloc_lock);
3794 ext4_msg(sb, KERN_ERR,
3795 "uh-oh! used pa while discarding");
3796 WARN_ON(1);
3797 schedule_timeout_uninterruptible(HZ);
3798 goto repeat;
3799
3800 }
3801 if (pa->pa_deleted == 0) {
3802 pa->pa_deleted = 1;
3803 spin_unlock(&pa->pa_lock);
3804 list_del_rcu(&pa->pa_inode_list);
3805 list_add(&pa->u.pa_tmp_list, &list);
3806 continue;
3807 }
3808
3809 /* someone is deleting pa right now */
3810 spin_unlock(&pa->pa_lock);
3811 spin_unlock(&ei->i_prealloc_lock);
3812
3813 /* we have to wait here because pa_deleted
3814 * doesn't mean pa is already unlinked from
3815 * the list. as we might be called from
3816 * ->clear_inode() the inode will get freed
3817 * and concurrent thread which is unlinking
3818 * pa from inode's list may access already
3819 * freed memory, bad-bad-bad */
3820
3821 /* XXX: if this happens too often, we can
3822 * add a flag to force wait only in case
3823 * of ->clear_inode(), but not in case of
3824 * regular truncate */
3825 schedule_timeout_uninterruptible(HZ);
3826 goto repeat;
3827 }
3828 spin_unlock(&ei->i_prealloc_lock);
3829
3830 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
3831 BUG_ON(pa->pa_type != MB_INODE_PA);
3832 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, NULL);
3833
3834 err = ext4_mb_load_buddy(sb, group, &e4b);
3835 if (err) {
3836 ext4_error(sb, "Error loading buddy information for %u",
3837 group);
3838 continue;
3839 }
3840
3841 bitmap_bh = ext4_read_block_bitmap(sb, group);
3842 if (bitmap_bh == NULL) {
3843 ext4_error(sb, "Error reading block bitmap for %u",
3844 group);
3845 ext4_mb_unload_buddy(&e4b);
3846 continue;
3847 }
3848
3849 ext4_lock_group(sb, group);
3850 list_del(&pa->pa_group_list);
3851 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
3852 ext4_unlock_group(sb, group);
3853
3854 ext4_mb_unload_buddy(&e4b);
3855 put_bh(bitmap_bh);
3856
3857 list_del(&pa->u.pa_tmp_list);
3858 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3859 }
3860 }
3861
3862 #ifdef CONFIG_EXT4_DEBUG
3863 static void ext4_mb_show_ac(struct ext4_allocation_context *ac)
3864 {
3865 struct super_block *sb = ac->ac_sb;
3866 ext4_group_t ngroups, i;
3867
3868 if (!mb_enable_debug ||
3869 (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED))
3870 return;
3871
3872 ext4_msg(ac->ac_sb, KERN_ERR, "Can't allocate:"
3873 " Allocation context details:");
3874 ext4_msg(ac->ac_sb, KERN_ERR, "status %d flags %d",
3875 ac->ac_status, ac->ac_flags);
3876 ext4_msg(ac->ac_sb, KERN_ERR, "orig %lu/%lu/%lu@%lu, "
3877 "goal %lu/%lu/%lu@%lu, "
3878 "best %lu/%lu/%lu@%lu cr %d",
3879 (unsigned long)ac->ac_o_ex.fe_group,
3880 (unsigned long)ac->ac_o_ex.fe_start,
3881 (unsigned long)ac->ac_o_ex.fe_len,
3882 (unsigned long)ac->ac_o_ex.fe_logical,
3883 (unsigned long)ac->ac_g_ex.fe_group,
3884 (unsigned long)ac->ac_g_ex.fe_start,
3885 (unsigned long)ac->ac_g_ex.fe_len,
3886 (unsigned long)ac->ac_g_ex.fe_logical,
3887 (unsigned long)ac->ac_b_ex.fe_group,
3888 (unsigned long)ac->ac_b_ex.fe_start,
3889 (unsigned long)ac->ac_b_ex.fe_len,
3890 (unsigned long)ac->ac_b_ex.fe_logical,
3891 (int)ac->ac_criteria);
3892 ext4_msg(ac->ac_sb, KERN_ERR, "%lu scanned, %d found",
3893 ac->ac_ex_scanned, ac->ac_found);
3894 ext4_msg(ac->ac_sb, KERN_ERR, "groups: ");
3895 ngroups = ext4_get_groups_count(sb);
3896 for (i = 0; i < ngroups; i++) {
3897 struct ext4_group_info *grp = ext4_get_group_info(sb, i);
3898 struct ext4_prealloc_space *pa;
3899 ext4_grpblk_t start;
3900 struct list_head *cur;
3901 ext4_lock_group(sb, i);
3902 list_for_each(cur, &grp->bb_prealloc_list) {
3903 pa = list_entry(cur, struct ext4_prealloc_space,
3904 pa_group_list);
3905 spin_lock(&pa->pa_lock);
3906 ext4_get_group_no_and_offset(sb, pa->pa_pstart,
3907 NULL, &start);
3908 spin_unlock(&pa->pa_lock);
3909 printk(KERN_ERR "PA:%u:%d:%u \n", i,
3910 start, pa->pa_len);
3911 }
3912 ext4_unlock_group(sb, i);
3913
3914 if (grp->bb_free == 0)
3915 continue;
3916 printk(KERN_ERR "%u: %d/%d \n",
3917 i, grp->bb_free, grp->bb_fragments);
3918 }
3919 printk(KERN_ERR "\n");
3920 }
3921 #else
3922 static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac)
3923 {
3924 return;
3925 }
3926 #endif
3927
3928 /*
3929 * We use locality group preallocation for small size file. The size of the
3930 * file is determined by the current size or the resulting size after
3931 * allocation which ever is larger
3932 *
3933 * One can tune this size via /sys/fs/ext4/<partition>/mb_stream_req
3934 */
3935 static void ext4_mb_group_or_file(struct ext4_allocation_context *ac)
3936 {
3937 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3938 int bsbits = ac->ac_sb->s_blocksize_bits;
3939 loff_t size, isize;
3940
3941 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3942 return;
3943
3944 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
3945 return;
3946
3947 size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len);
3948 isize = (i_size_read(ac->ac_inode) + ac->ac_sb->s_blocksize - 1)
3949 >> bsbits;
3950
3951 if ((size == isize) &&
3952 !ext4_fs_is_busy(sbi) &&
3953 (atomic_read(&ac->ac_inode->i_writecount) == 0)) {
3954 ac->ac_flags |= EXT4_MB_HINT_NOPREALLOC;
3955 return;
3956 }
3957
3958 if (sbi->s_mb_group_prealloc <= 0) {
3959 ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
3960 return;
3961 }
3962
3963 /* don't use group allocation for large files */
3964 size = max(size, isize);
3965 if (size > sbi->s_mb_stream_request) {
3966 ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
3967 return;
3968 }
3969
3970 BUG_ON(ac->ac_lg != NULL);
3971 /*
3972 * locality group prealloc space are per cpu. The reason for having
3973 * per cpu locality group is to reduce the contention between block
3974 * request from multiple CPUs.
3975 */
3976 ac->ac_lg = __this_cpu_ptr(sbi->s_locality_groups);
3977
3978 /* we're going to use group allocation */
3979 ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC;
3980
3981 /* serialize all allocations in the group */
3982 mutex_lock(&ac->ac_lg->lg_mutex);
3983 }
3984
3985 static noinline_for_stack int
3986 ext4_mb_initialize_context(struct ext4_allocation_context *ac,
3987 struct ext4_allocation_request *ar)
3988 {
3989 struct super_block *sb = ar->inode->i_sb;
3990 struct ext4_sb_info *sbi = EXT4_SB(sb);
3991 struct ext4_super_block *es = sbi->s_es;
3992 ext4_group_t group;
3993 unsigned int len;
3994 ext4_fsblk_t goal;
3995 ext4_grpblk_t block;
3996
3997 /* we can't allocate > group size */
3998 len = ar->len;
3999
4000 /* just a dirty hack to filter too big requests */
4001 if (len >= EXT4_CLUSTERS_PER_GROUP(sb) - 10)
4002 len = EXT4_CLUSTERS_PER_GROUP(sb) - 10;
4003
4004 /* start searching from the goal */
4005 goal = ar->goal;
4006 if (goal < le32_to_cpu(es->s_first_data_block) ||
4007 goal >= ext4_blocks_count(es))
4008 goal = le32_to_cpu(es->s_first_data_block);
4009 ext4_get_group_no_and_offset(sb, goal, &group, &block);
4010
4011 /* set up allocation goals */
4012 ac->ac_b_ex.fe_logical = ar->logical & ~(sbi->s_cluster_ratio - 1);
4013 ac->ac_status = AC_STATUS_CONTINUE;
4014 ac->ac_sb = sb;
4015 ac->ac_inode = ar->inode;
4016 ac->ac_o_ex.fe_logical = ac->ac_b_ex.fe_logical;
4017 ac->ac_o_ex.fe_group = group;
4018 ac->ac_o_ex.fe_start = block;
4019 ac->ac_o_ex.fe_len = len;
4020 ac->ac_g_ex = ac->ac_o_ex;
4021 ac->ac_flags = ar->flags;
4022
4023 /* we have to define context: we'll we work with a file or
4024 * locality group. this is a policy, actually */
4025 ext4_mb_group_or_file(ac);
4026
4027 mb_debug(1, "init ac: %u blocks @ %u, goal %u, flags %x, 2^%d, "
4028 "left: %u/%u, right %u/%u to %swritable\n",
4029 (unsigned) ar->len, (unsigned) ar->logical,
4030 (unsigned) ar->goal, ac->ac_flags, ac->ac_2order,
4031 (unsigned) ar->lleft, (unsigned) ar->pleft,
4032 (unsigned) ar->lright, (unsigned) ar->pright,
4033 atomic_read(&ar->inode->i_writecount) ? "" : "non-");
4034 return 0;
4035
4036 }
4037
4038 static noinline_for_stack void
4039 ext4_mb_discard_lg_preallocations(struct super_block *sb,
4040 struct ext4_locality_group *lg,
4041 int order, int total_entries)
4042 {
4043 ext4_group_t group = 0;
4044 struct ext4_buddy e4b;
4045 struct list_head discard_list;
4046 struct ext4_prealloc_space *pa, *tmp;
4047
4048 mb_debug(1, "discard locality group preallocation\n");
4049
4050 INIT_LIST_HEAD(&discard_list);
4051
4052 spin_lock(&lg->lg_prealloc_lock);
4053 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[order],
4054 pa_inode_list) {
4055 spin_lock(&pa->pa_lock);
4056 if (atomic_read(&pa->pa_count)) {
4057 /*
4058 * This is the pa that we just used
4059 * for block allocation. So don't
4060 * free that
4061 */
4062 spin_unlock(&pa->pa_lock);
4063 continue;
4064 }
4065 if (pa->pa_deleted) {
4066 spin_unlock(&pa->pa_lock);
4067 continue;
4068 }
4069 /* only lg prealloc space */
4070 BUG_ON(pa->pa_type != MB_GROUP_PA);
4071
4072 /* seems this one can be freed ... */
4073 pa->pa_deleted = 1;
4074 spin_unlock(&pa->pa_lock);
4075
4076 list_del_rcu(&pa->pa_inode_list);
4077 list_add(&pa->u.pa_tmp_list, &discard_list);
4078
4079 total_entries--;
4080 if (total_entries <= 5) {
4081 /*
4082 * we want to keep only 5 entries
4083 * allowing it to grow to 8. This
4084 * mak sure we don't call discard
4085 * soon for this list.
4086 */
4087 break;
4088 }
4089 }
4090 spin_unlock(&lg->lg_prealloc_lock);
4091
4092 list_for_each_entry_safe(pa, tmp, &discard_list, u.pa_tmp_list) {
4093
4094 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, NULL);
4095 if (ext4_mb_load_buddy(sb, group, &e4b)) {
4096 ext4_error(sb, "Error loading buddy information for %u",
4097 group);
4098 continue;
4099 }
4100 ext4_lock_group(sb, group);
4101 list_del(&pa->pa_group_list);
4102 ext4_mb_release_group_pa(&e4b, pa);
4103 ext4_unlock_group(sb, group);
4104
4105 ext4_mb_unload_buddy(&e4b);
4106 list_del(&pa->u.pa_tmp_list);
4107 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4108 }
4109 }
4110
4111 /*
4112 * We have incremented pa_count. So it cannot be freed at this
4113 * point. Also we hold lg_mutex. So no parallel allocation is
4114 * possible from this lg. That means pa_free cannot be updated.
4115 *
4116 * A parallel ext4_mb_discard_group_preallocations is possible.
4117 * which can cause the lg_prealloc_list to be updated.
4118 */
4119
4120 static void ext4_mb_add_n_trim(struct ext4_allocation_context *ac)
4121 {
4122 int order, added = 0, lg_prealloc_count = 1;
4123 struct super_block *sb = ac->ac_sb;
4124 struct ext4_locality_group *lg = ac->ac_lg;
4125 struct ext4_prealloc_space *tmp_pa, *pa = ac->ac_pa;
4126
4127 order = fls(pa->pa_free) - 1;
4128 if (order > PREALLOC_TB_SIZE - 1)
4129 /* The max size of hash table is PREALLOC_TB_SIZE */
4130 order = PREALLOC_TB_SIZE - 1;
4131 /* Add the prealloc space to lg */
4132 rcu_read_lock();
4133 list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[order],
4134 pa_inode_list) {
4135 spin_lock(&tmp_pa->pa_lock);
4136 if (tmp_pa->pa_deleted) {
4137 spin_unlock(&tmp_pa->pa_lock);
4138 continue;
4139 }
4140 if (!added && pa->pa_free < tmp_pa->pa_free) {
4141 /* Add to the tail of the previous entry */
4142 list_add_tail_rcu(&pa->pa_inode_list,
4143 &tmp_pa->pa_inode_list);
4144 added = 1;
4145 /*
4146 * we want to count the total
4147 * number of entries in the list
4148 */
4149 }
4150 spin_unlock(&tmp_pa->pa_lock);
4151 lg_prealloc_count++;
4152 }
4153 if (!added)
4154 list_add_tail_rcu(&pa->pa_inode_list,
4155 &lg->lg_prealloc_list[order]);
4156 rcu_read_unlock();
4157
4158 /* Now trim the list to be not more than 8 elements */
4159 if (lg_prealloc_count > 8) {
4160 ext4_mb_discard_lg_preallocations(sb, lg,
4161 order, lg_prealloc_count);
4162 return;
4163 }
4164 return ;
4165 }
4166
4167 /*
4168 * release all resource we used in allocation
4169 */
4170 static int ext4_mb_release_context(struct ext4_allocation_context *ac)
4171 {
4172 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4173 struct ext4_prealloc_space *pa = ac->ac_pa;
4174 if (pa) {
4175 if (pa->pa_type == MB_GROUP_PA) {
4176 /* see comment in ext4_mb_use_group_pa() */
4177 spin_lock(&pa->pa_lock);
4178 pa->pa_pstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
4179 pa->pa_lstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
4180 pa->pa_free -= ac->ac_b_ex.fe_len;
4181 pa->pa_len -= ac->ac_b_ex.fe_len;
4182 spin_unlock(&pa->pa_lock);
4183 }
4184 }
4185 if (pa) {
4186 /*
4187 * We want to add the pa to the right bucket.
4188 * Remove it from the list and while adding
4189 * make sure the list to which we are adding
4190 * doesn't grow big.
4191 */
4192 if ((pa->pa_type == MB_GROUP_PA) && likely(pa->pa_free)) {
4193 spin_lock(pa->pa_obj_lock);
4194 list_del_rcu(&pa->pa_inode_list);
4195 spin_unlock(pa->pa_obj_lock);
4196 ext4_mb_add_n_trim(ac);
4197 }
4198 ext4_mb_put_pa(ac, ac->ac_sb, pa);
4199 }
4200 if (ac->ac_bitmap_page)
4201 page_cache_release(ac->ac_bitmap_page);
4202 if (ac->ac_buddy_page)
4203 page_cache_release(ac->ac_buddy_page);
4204 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
4205 mutex_unlock(&ac->ac_lg->lg_mutex);
4206 ext4_mb_collect_stats(ac);
4207 return 0;
4208 }
4209
4210 static int ext4_mb_discard_preallocations(struct super_block *sb, int needed)
4211 {
4212 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
4213 int ret;
4214 int freed = 0;
4215
4216 trace_ext4_mb_discard_preallocations(sb, needed);
4217 for (i = 0; i < ngroups && needed > 0; i++) {
4218 ret = ext4_mb_discard_group_preallocations(sb, i, needed);
4219 freed += ret;
4220 needed -= ret;
4221 }
4222
4223 return freed;
4224 }
4225
4226 /*
4227 * Main entry point into mballoc to allocate blocks
4228 * it tries to use preallocation first, then falls back
4229 * to usual allocation
4230 */
4231 ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle,
4232 struct ext4_allocation_request *ar, int *errp)
4233 {
4234 int freed;
4235 struct ext4_allocation_context *ac = NULL;
4236 struct ext4_sb_info *sbi;
4237 struct super_block *sb;
4238 ext4_fsblk_t block = 0;
4239 unsigned int inquota = 0;
4240 unsigned int reserv_clstrs = 0;
4241
4242 sb = ar->inode->i_sb;
4243 sbi = EXT4_SB(sb);
4244
4245 trace_ext4_request_blocks(ar);
4246
4247 /* Allow to use superuser reservation for quota file */
4248 if (IS_NOQUOTA(ar->inode))
4249 ar->flags |= EXT4_MB_USE_ROOT_BLOCKS;
4250
4251 /*
4252 * For delayed allocation, we could skip the ENOSPC and
4253 * EDQUOT check, as blocks and quotas have been already
4254 * reserved when data being copied into pagecache.
4255 */
4256 if (ext4_test_inode_state(ar->inode, EXT4_STATE_DELALLOC_RESERVED))
4257 ar->flags |= EXT4_MB_DELALLOC_RESERVED;
4258 else {
4259 /* Without delayed allocation we need to verify
4260 * there is enough free blocks to do block allocation
4261 * and verify allocation doesn't exceed the quota limits.
4262 */
4263 while (ar->len &&
4264 ext4_claim_free_clusters(sbi, ar->len, ar->flags)) {
4265
4266 /* let others to free the space */
4267 yield();
4268 ar->len = ar->len >> 1;
4269 }
4270 if (!ar->len) {
4271 *errp = -ENOSPC;
4272 return 0;
4273 }
4274 reserv_clstrs = ar->len;
4275 if (ar->flags & EXT4_MB_USE_ROOT_BLOCKS) {
4276 dquot_alloc_block_nofail(ar->inode,
4277 EXT4_C2B(sbi, ar->len));
4278 } else {
4279 while (ar->len &&
4280 dquot_alloc_block(ar->inode,
4281 EXT4_C2B(sbi, ar->len))) {
4282
4283 ar->flags |= EXT4_MB_HINT_NOPREALLOC;
4284 ar->len--;
4285 }
4286 }
4287 inquota = ar->len;
4288 if (ar->len == 0) {
4289 *errp = -EDQUOT;
4290 goto out;
4291 }
4292 }
4293
4294 ac = kmem_cache_zalloc(ext4_ac_cachep, GFP_NOFS);
4295 if (!ac) {
4296 ar->len = 0;
4297 *errp = -ENOMEM;
4298 goto out;
4299 }
4300
4301 *errp = ext4_mb_initialize_context(ac, ar);
4302 if (*errp) {
4303 ar->len = 0;
4304 goto out;
4305 }
4306
4307 ac->ac_op = EXT4_MB_HISTORY_PREALLOC;
4308 if (!ext4_mb_use_preallocated(ac)) {
4309 ac->ac_op = EXT4_MB_HISTORY_ALLOC;
4310 ext4_mb_normalize_request(ac, ar);
4311 repeat:
4312 /* allocate space in core */
4313 *errp = ext4_mb_regular_allocator(ac);
4314 if (*errp)
4315 goto errout;
4316
4317 /* as we've just preallocated more space than
4318 * user requested orinally, we store allocated
4319 * space in a special descriptor */
4320 if (ac->ac_status == AC_STATUS_FOUND &&
4321 ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len)
4322 ext4_mb_new_preallocation(ac);
4323 }
4324 if (likely(ac->ac_status == AC_STATUS_FOUND)) {
4325 *errp = ext4_mb_mark_diskspace_used(ac, handle, reserv_clstrs);
4326 if (*errp == -EAGAIN) {
4327 /*
4328 * drop the reference that we took
4329 * in ext4_mb_use_best_found
4330 */
4331 ext4_mb_release_context(ac);
4332 ac->ac_b_ex.fe_group = 0;
4333 ac->ac_b_ex.fe_start = 0;
4334 ac->ac_b_ex.fe_len = 0;
4335 ac->ac_status = AC_STATUS_CONTINUE;
4336 goto repeat;
4337 } else if (*errp)
4338 errout:
4339 ext4_discard_allocated_blocks(ac);
4340 else {
4341 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
4342 ar->len = ac->ac_b_ex.fe_len;
4343 }
4344 } else {
4345 freed = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len);
4346 if (freed)
4347 goto repeat;
4348 *errp = -ENOSPC;
4349 }
4350
4351 if (*errp) {
4352 ac->ac_b_ex.fe_len = 0;
4353 ar->len = 0;
4354 ext4_mb_show_ac(ac);
4355 }
4356 ext4_mb_release_context(ac);
4357 out:
4358 if (ac)
4359 kmem_cache_free(ext4_ac_cachep, ac);
4360 if (inquota && ar->len < inquota)
4361 dquot_free_block(ar->inode, EXT4_C2B(sbi, inquota - ar->len));
4362 if (!ar->len) {
4363 if (!ext4_test_inode_state(ar->inode,
4364 EXT4_STATE_DELALLOC_RESERVED))
4365 /* release all the reserved blocks if non delalloc */
4366 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
4367 reserv_clstrs);
4368 }
4369
4370 trace_ext4_allocate_blocks(ar, (unsigned long long)block);
4371
4372 return block;
4373 }
4374
4375 /*
4376 * We can merge two free data extents only if the physical blocks
4377 * are contiguous, AND the extents were freed by the same transaction,
4378 * AND the blocks are associated with the same group.
4379 */
4380 static int can_merge(struct ext4_free_data *entry1,
4381 struct ext4_free_data *entry2)
4382 {
4383 if ((entry1->efd_tid == entry2->efd_tid) &&
4384 (entry1->efd_group == entry2->efd_group) &&
4385 ((entry1->efd_start_cluster + entry1->efd_count) == entry2->efd_start_cluster))
4386 return 1;
4387 return 0;
4388 }
4389
4390 static noinline_for_stack int
4391 ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b,
4392 struct ext4_free_data *new_entry)
4393 {
4394 ext4_group_t group = e4b->bd_group;
4395 ext4_grpblk_t cluster;
4396 struct ext4_free_data *entry;
4397 struct ext4_group_info *db = e4b->bd_info;
4398 struct super_block *sb = e4b->bd_sb;
4399 struct ext4_sb_info *sbi = EXT4_SB(sb);
4400 struct rb_node **n = &db->bb_free_root.rb_node, *node;
4401 struct rb_node *parent = NULL, *new_node;
4402
4403 BUG_ON(!ext4_handle_valid(handle));
4404 BUG_ON(e4b->bd_bitmap_page == NULL);
4405 BUG_ON(e4b->bd_buddy_page == NULL);
4406
4407 new_node = &new_entry->efd_node;
4408 cluster = new_entry->efd_start_cluster;
4409
4410 if (!*n) {
4411 /* first free block exent. We need to
4412 protect buddy cache from being freed,
4413 * otherwise we'll refresh it from
4414 * on-disk bitmap and lose not-yet-available
4415 * blocks */
4416 page_cache_get(e4b->bd_buddy_page);
4417 page_cache_get(e4b->bd_bitmap_page);
4418 }
4419 while (*n) {
4420 parent = *n;
4421 entry = rb_entry(parent, struct ext4_free_data, efd_node);
4422 if (cluster < entry->efd_start_cluster)
4423 n = &(*n)->rb_left;
4424 else if (cluster >= (entry->efd_start_cluster + entry->efd_count))
4425 n = &(*n)->rb_right;
4426 else {
4427 ext4_grp_locked_error(sb, group, 0,
4428 ext4_group_first_block_no(sb, group) +
4429 EXT4_C2B(sbi, cluster),
4430 "Block already on to-be-freed list");
4431 return 0;
4432 }
4433 }
4434
4435 rb_link_node(new_node, parent, n);
4436 rb_insert_color(new_node, &db->bb_free_root);
4437
4438 /* Now try to see the extent can be merged to left and right */
4439 node = rb_prev(new_node);
4440 if (node) {
4441 entry = rb_entry(node, struct ext4_free_data, efd_node);
4442 if (can_merge(entry, new_entry)) {
4443 new_entry->efd_start_cluster = entry->efd_start_cluster;
4444 new_entry->efd_count += entry->efd_count;
4445 rb_erase(node, &(db->bb_free_root));
4446 ext4_journal_callback_del(handle, &entry->efd_jce);
4447 kmem_cache_free(ext4_free_data_cachep, entry);
4448 }
4449 }
4450
4451 node = rb_next(new_node);
4452 if (node) {
4453 entry = rb_entry(node, struct ext4_free_data, efd_node);
4454 if (can_merge(new_entry, entry)) {
4455 new_entry->efd_count += entry->efd_count;
4456 rb_erase(node, &(db->bb_free_root));
4457 ext4_journal_callback_del(handle, &entry->efd_jce);
4458 kmem_cache_free(ext4_free_data_cachep, entry);
4459 }
4460 }
4461 /* Add the extent to transaction's private list */
4462 ext4_journal_callback_add(handle, ext4_free_data_callback,
4463 &new_entry->efd_jce);
4464 return 0;
4465 }
4466
4467 /**
4468 * ext4_free_blocks() -- Free given blocks and update quota
4469 * @handle: handle for this transaction
4470 * @inode: inode
4471 * @block: start physical block to free
4472 * @count: number of blocks to count
4473 * @flags: flags used by ext4_free_blocks
4474 */
4475 void ext4_free_blocks(handle_t *handle, struct inode *inode,
4476 struct buffer_head *bh, ext4_fsblk_t block,
4477 unsigned long count, int flags)
4478 {
4479 struct buffer_head *bitmap_bh = NULL;
4480 struct super_block *sb = inode->i_sb;
4481 struct ext4_group_desc *gdp;
4482 unsigned long freed = 0;
4483 unsigned int overflow;
4484 ext4_grpblk_t bit;
4485 struct buffer_head *gd_bh;
4486 ext4_group_t block_group;
4487 struct ext4_sb_info *sbi;
4488 struct ext4_buddy e4b;
4489 unsigned int count_clusters;
4490 int err = 0;
4491 int ret;
4492
4493 if (bh) {
4494 if (block)
4495 BUG_ON(block != bh->b_blocknr);
4496 else
4497 block = bh->b_blocknr;
4498 }
4499
4500 sbi = EXT4_SB(sb);
4501 if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) &&
4502 !ext4_data_block_valid(sbi, block, count)) {
4503 ext4_error(sb, "Freeing blocks not in datazone - "
4504 "block = %llu, count = %lu", block, count);
4505 goto error_return;
4506 }
4507
4508 ext4_debug("freeing block %llu\n", block);
4509 trace_ext4_free_blocks(inode, block, count, flags);
4510
4511 if (flags & EXT4_FREE_BLOCKS_FORGET) {
4512 struct buffer_head *tbh = bh;
4513 int i;
4514
4515 BUG_ON(bh && (count > 1));
4516
4517 for (i = 0; i < count; i++) {
4518 if (!bh)
4519 tbh = sb_find_get_block(inode->i_sb,
4520 block + i);
4521 if (unlikely(!tbh))
4522 continue;
4523 ext4_forget(handle, flags & EXT4_FREE_BLOCKS_METADATA,
4524 inode, tbh, block + i);
4525 }
4526 }
4527
4528 /*
4529 * We need to make sure we don't reuse the freed block until
4530 * after the transaction is committed, which we can do by
4531 * treating the block as metadata, below. We make an
4532 * exception if the inode is to be written in writeback mode
4533 * since writeback mode has weak data consistency guarantees.
4534 */
4535 if (!ext4_should_writeback_data(inode))
4536 flags |= EXT4_FREE_BLOCKS_METADATA;
4537
4538 /*
4539 * If the extent to be freed does not begin on a cluster
4540 * boundary, we need to deal with partial clusters at the
4541 * beginning and end of the extent. Normally we will free
4542 * blocks at the beginning or the end unless we are explicitly
4543 * requested to avoid doing so.
4544 */
4545 overflow = block & (sbi->s_cluster_ratio - 1);
4546 if (overflow) {
4547 if (flags & EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER) {
4548 overflow = sbi->s_cluster_ratio - overflow;
4549 block += overflow;
4550 if (count > overflow)
4551 count -= overflow;
4552 else
4553 return;
4554 } else {
4555 block -= overflow;
4556 count += overflow;
4557 }
4558 }
4559 overflow = count & (sbi->s_cluster_ratio - 1);
4560 if (overflow) {
4561 if (flags & EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER) {
4562 if (count > overflow)
4563 count -= overflow;
4564 else
4565 return;
4566 } else
4567 count += sbi->s_cluster_ratio - overflow;
4568 }
4569
4570 do_more:
4571 overflow = 0;
4572 ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
4573
4574 /*
4575 * Check to see if we are freeing blocks across a group
4576 * boundary.
4577 */
4578 if (EXT4_C2B(sbi, bit) + count > EXT4_BLOCKS_PER_GROUP(sb)) {
4579 overflow = EXT4_C2B(sbi, bit) + count -
4580 EXT4_BLOCKS_PER_GROUP(sb);
4581 count -= overflow;
4582 }
4583 count_clusters = EXT4_B2C(sbi, count);
4584 bitmap_bh = ext4_read_block_bitmap(sb, block_group);
4585 if (!bitmap_bh) {
4586 err = -EIO;
4587 goto error_return;
4588 }
4589 gdp = ext4_get_group_desc(sb, block_group, &gd_bh);
4590 if (!gdp) {
4591 err = -EIO;
4592 goto error_return;
4593 }
4594
4595 if (in_range(ext4_block_bitmap(sb, gdp), block, count) ||
4596 in_range(ext4_inode_bitmap(sb, gdp), block, count) ||
4597 in_range(block, ext4_inode_table(sb, gdp),
4598 EXT4_SB(sb)->s_itb_per_group) ||
4599 in_range(block + count - 1, ext4_inode_table(sb, gdp),
4600 EXT4_SB(sb)->s_itb_per_group)) {
4601
4602 ext4_error(sb, "Freeing blocks in system zone - "
4603 "Block = %llu, count = %lu", block, count);
4604 /* err = 0. ext4_std_error should be a no op */
4605 goto error_return;
4606 }
4607
4608 BUFFER_TRACE(bitmap_bh, "getting write access");
4609 err = ext4_journal_get_write_access(handle, bitmap_bh);
4610 if (err)
4611 goto error_return;
4612
4613 /*
4614 * We are about to modify some metadata. Call the journal APIs
4615 * to unshare ->b_data if a currently-committing transaction is
4616 * using it
4617 */
4618 BUFFER_TRACE(gd_bh, "get_write_access");
4619 err = ext4_journal_get_write_access(handle, gd_bh);
4620 if (err)
4621 goto error_return;
4622 #ifdef AGGRESSIVE_CHECK
4623 {
4624 int i;
4625 for (i = 0; i < count_clusters; i++)
4626 BUG_ON(!mb_test_bit(bit + i, bitmap_bh->b_data));
4627 }
4628 #endif
4629 trace_ext4_mballoc_free(sb, inode, block_group, bit, count_clusters);
4630
4631 err = ext4_mb_load_buddy(sb, block_group, &e4b);
4632 if (err)
4633 goto error_return;
4634
4635 if ((flags & EXT4_FREE_BLOCKS_METADATA) && ext4_handle_valid(handle)) {
4636 struct ext4_free_data *new_entry;
4637 /*
4638 * blocks being freed are metadata. these blocks shouldn't
4639 * be used until this transaction is committed
4640 */
4641 new_entry = kmem_cache_alloc(ext4_free_data_cachep, GFP_NOFS);
4642 if (!new_entry) {
4643 ext4_mb_unload_buddy(&e4b);
4644 err = -ENOMEM;
4645 goto error_return;
4646 }
4647 new_entry->efd_start_cluster = bit;
4648 new_entry->efd_group = block_group;
4649 new_entry->efd_count = count_clusters;
4650 new_entry->efd_tid = handle->h_transaction->t_tid;
4651
4652 ext4_lock_group(sb, block_group);
4653 mb_clear_bits(bitmap_bh->b_data, bit, count_clusters);
4654 ext4_mb_free_metadata(handle, &e4b, new_entry);
4655 } else {
4656 /* need to update group_info->bb_free and bitmap
4657 * with group lock held. generate_buddy look at
4658 * them with group lock_held
4659 */
4660 if (test_opt(sb, DISCARD))
4661 ext4_issue_discard(sb, block_group, bit, count);
4662 ext4_lock_group(sb, block_group);
4663 mb_clear_bits(bitmap_bh->b_data, bit, count_clusters);
4664 mb_free_blocks(inode, &e4b, bit, count_clusters);
4665 }
4666
4667 ret = ext4_free_group_clusters(sb, gdp) + count_clusters;
4668 ext4_free_group_clusters_set(sb, gdp, ret);
4669 ext4_block_bitmap_csum_set(sb, block_group, gdp, bitmap_bh,
4670 EXT4_BLOCKS_PER_GROUP(sb) / 8);
4671 ext4_group_desc_csum_set(sb, block_group, gdp);
4672 ext4_unlock_group(sb, block_group);
4673 percpu_counter_add(&sbi->s_freeclusters_counter, count_clusters);
4674
4675 if (sbi->s_log_groups_per_flex) {
4676 ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
4677 atomic_add(count_clusters,
4678 &sbi->s_flex_groups[flex_group].free_clusters);
4679 }
4680
4681 ext4_mb_unload_buddy(&e4b);
4682
4683 freed += count;
4684
4685 if (!(flags & EXT4_FREE_BLOCKS_NO_QUOT_UPDATE))
4686 dquot_free_block(inode, EXT4_C2B(sbi, count_clusters));
4687
4688 /* We dirtied the bitmap block */
4689 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
4690 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
4691
4692 /* And the group descriptor block */
4693 BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
4694 ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
4695 if (!err)
4696 err = ret;
4697
4698 if (overflow && !err) {
4699 block += count;
4700 count = overflow;
4701 put_bh(bitmap_bh);
4702 goto do_more;
4703 }
4704 error_return:
4705 brelse(bitmap_bh);
4706 ext4_std_error(sb, err);
4707 return;
4708 }
4709
4710 /**
4711 * ext4_group_add_blocks() -- Add given blocks to an existing group
4712 * @handle: handle to this transaction
4713 * @sb: super block
4714 * @block: start physcial block to add to the block group
4715 * @count: number of blocks to free
4716 *
4717 * This marks the blocks as free in the bitmap and buddy.
4718 */
4719 int ext4_group_add_blocks(handle_t *handle, struct super_block *sb,
4720 ext4_fsblk_t block, unsigned long count)
4721 {
4722 struct buffer_head *bitmap_bh = NULL;
4723 struct buffer_head *gd_bh;
4724 ext4_group_t block_group;
4725 ext4_grpblk_t bit;
4726 unsigned int i;
4727 struct ext4_group_desc *desc;
4728 struct ext4_sb_info *sbi = EXT4_SB(sb);
4729 struct ext4_buddy e4b;
4730 int err = 0, ret, blk_free_count;
4731 ext4_grpblk_t blocks_freed;
4732
4733 ext4_debug("Adding block(s) %llu-%llu\n", block, block + count - 1);
4734
4735 if (count == 0)
4736 return 0;
4737
4738 ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
4739 /*
4740 * Check to see if we are freeing blocks across a group
4741 * boundary.
4742 */
4743 if (bit + count > EXT4_BLOCKS_PER_GROUP(sb)) {
4744 ext4_warning(sb, "too much blocks added to group %u\n",
4745 block_group);
4746 err = -EINVAL;
4747 goto error_return;
4748 }
4749
4750 bitmap_bh = ext4_read_block_bitmap(sb, block_group);
4751 if (!bitmap_bh) {
4752 err = -EIO;
4753 goto error_return;
4754 }
4755
4756 desc = ext4_get_group_desc(sb, block_group, &gd_bh);
4757 if (!desc) {
4758 err = -EIO;
4759 goto error_return;
4760 }
4761
4762 if (in_range(ext4_block_bitmap(sb, desc), block, count) ||
4763 in_range(ext4_inode_bitmap(sb, desc), block, count) ||
4764 in_range(block, ext4_inode_table(sb, desc), sbi->s_itb_per_group) ||
4765 in_range(block + count - 1, ext4_inode_table(sb, desc),
4766 sbi->s_itb_per_group)) {
4767 ext4_error(sb, "Adding blocks in system zones - "
4768 "Block = %llu, count = %lu",
4769 block, count);
4770 err = -EINVAL;
4771 goto error_return;
4772 }
4773
4774 BUFFER_TRACE(bitmap_bh, "getting write access");
4775 err = ext4_journal_get_write_access(handle, bitmap_bh);
4776 if (err)
4777 goto error_return;
4778
4779 /*
4780 * We are about to modify some metadata. Call the journal APIs
4781 * to unshare ->b_data if a currently-committing transaction is
4782 * using it
4783 */
4784 BUFFER_TRACE(gd_bh, "get_write_access");
4785 err = ext4_journal_get_write_access(handle, gd_bh);
4786 if (err)
4787 goto error_return;
4788
4789 for (i = 0, blocks_freed = 0; i < count; i++) {
4790 BUFFER_TRACE(bitmap_bh, "clear bit");
4791 if (!mb_test_bit(bit + i, bitmap_bh->b_data)) {
4792 ext4_error(sb, "bit already cleared for block %llu",
4793 (ext4_fsblk_t)(block + i));
4794 BUFFER_TRACE(bitmap_bh, "bit already cleared");
4795 } else {
4796 blocks_freed++;
4797 }
4798 }
4799
4800 err = ext4_mb_load_buddy(sb, block_group, &e4b);
4801 if (err)
4802 goto error_return;
4803
4804 /*
4805 * need to update group_info->bb_free and bitmap
4806 * with group lock held. generate_buddy look at
4807 * them with group lock_held
4808 */
4809 ext4_lock_group(sb, block_group);
4810 mb_clear_bits(bitmap_bh->b_data, bit, count);
4811 mb_free_blocks(NULL, &e4b, bit, count);
4812 blk_free_count = blocks_freed + ext4_free_group_clusters(sb, desc);
4813 ext4_free_group_clusters_set(sb, desc, blk_free_count);
4814 ext4_block_bitmap_csum_set(sb, block_group, desc, bitmap_bh,
4815 EXT4_BLOCKS_PER_GROUP(sb) / 8);
4816 ext4_group_desc_csum_set(sb, block_group, desc);
4817 ext4_unlock_group(sb, block_group);
4818 percpu_counter_add(&sbi->s_freeclusters_counter,
4819 EXT4_B2C(sbi, blocks_freed));
4820
4821 if (sbi->s_log_groups_per_flex) {
4822 ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
4823 atomic_add(EXT4_B2C(sbi, blocks_freed),
4824 &sbi->s_flex_groups[flex_group].free_clusters);
4825 }
4826
4827 ext4_mb_unload_buddy(&e4b);
4828
4829 /* We dirtied the bitmap block */
4830 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
4831 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
4832
4833 /* And the group descriptor block */
4834 BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
4835 ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
4836 if (!err)
4837 err = ret;
4838
4839 error_return:
4840 brelse(bitmap_bh);
4841 ext4_std_error(sb, err);
4842 return err;
4843 }
4844
4845 /**
4846 * ext4_trim_extent -- function to TRIM one single free extent in the group
4847 * @sb: super block for the file system
4848 * @start: starting block of the free extent in the alloc. group
4849 * @count: number of blocks to TRIM
4850 * @group: alloc. group we are working with
4851 * @e4b: ext4 buddy for the group
4852 *
4853 * Trim "count" blocks starting at "start" in the "group". To assure that no
4854 * one will allocate those blocks, mark it as used in buddy bitmap. This must
4855 * be called with under the group lock.
4856 */
4857 static void ext4_trim_extent(struct super_block *sb, int start, int count,
4858 ext4_group_t group, struct ext4_buddy *e4b)
4859 {
4860 struct ext4_free_extent ex;
4861
4862 trace_ext4_trim_extent(sb, group, start, count);
4863
4864 assert_spin_locked(ext4_group_lock_ptr(sb, group));
4865
4866 ex.fe_start = start;
4867 ex.fe_group = group;
4868 ex.fe_len = count;
4869
4870 /*
4871 * Mark blocks used, so no one can reuse them while
4872 * being trimmed.
4873 */
4874 mb_mark_used(e4b, &ex);
4875 ext4_unlock_group(sb, group);
4876 ext4_issue_discard(sb, group, start, count);
4877 ext4_lock_group(sb, group);
4878 mb_free_blocks(NULL, e4b, start, ex.fe_len);
4879 }
4880
4881 /**
4882 * ext4_trim_all_free -- function to trim all free space in alloc. group
4883 * @sb: super block for file system
4884 * @group: group to be trimmed
4885 * @start: first group block to examine
4886 * @max: last group block to examine
4887 * @minblocks: minimum extent block count
4888 *
4889 * ext4_trim_all_free walks through group's buddy bitmap searching for free
4890 * extents. When the free block is found, ext4_trim_extent is called to TRIM
4891 * the extent.
4892 *
4893 *
4894 * ext4_trim_all_free walks through group's block bitmap searching for free
4895 * extents. When the free extent is found, mark it as used in group buddy
4896 * bitmap. Then issue a TRIM command on this extent and free the extent in
4897 * the group buddy bitmap. This is done until whole group is scanned.
4898 */
4899 static ext4_grpblk_t
4900 ext4_trim_all_free(struct super_block *sb, ext4_group_t group,
4901 ext4_grpblk_t start, ext4_grpblk_t max,
4902 ext4_grpblk_t minblocks)
4903 {
4904 void *bitmap;
4905 ext4_grpblk_t next, count = 0, free_count = 0;
4906 struct ext4_buddy e4b;
4907 int ret;
4908
4909 trace_ext4_trim_all_free(sb, group, start, max);
4910
4911 ret = ext4_mb_load_buddy(sb, group, &e4b);
4912 if (ret) {
4913 ext4_error(sb, "Error in loading buddy "
4914 "information for %u", group);
4915 return ret;
4916 }
4917 bitmap = e4b.bd_bitmap;
4918
4919 ext4_lock_group(sb, group);
4920 if (EXT4_MB_GRP_WAS_TRIMMED(e4b.bd_info) &&
4921 minblocks >= atomic_read(&EXT4_SB(sb)->s_last_trim_minblks))
4922 goto out;
4923
4924 start = (e4b.bd_info->bb_first_free > start) ?
4925 e4b.bd_info->bb_first_free : start;
4926
4927 while (start <= max) {
4928 start = mb_find_next_zero_bit(bitmap, max + 1, start);
4929 if (start > max)
4930 break;
4931 next = mb_find_next_bit(bitmap, max + 1, start);
4932
4933 if ((next - start) >= minblocks) {
4934 ext4_trim_extent(sb, start,
4935 next - start, group, &e4b);
4936 count += next - start;
4937 }
4938 free_count += next - start;
4939 start = next + 1;
4940
4941 if (fatal_signal_pending(current)) {
4942 count = -ERESTARTSYS;
4943 break;
4944 }
4945
4946 if (need_resched()) {
4947 ext4_unlock_group(sb, group);
4948 cond_resched();
4949 ext4_lock_group(sb, group);
4950 }
4951
4952 if ((e4b.bd_info->bb_free - free_count) < minblocks)
4953 break;
4954 }
4955
4956 if (!ret)
4957 EXT4_MB_GRP_SET_TRIMMED(e4b.bd_info);
4958 out:
4959 ext4_unlock_group(sb, group);
4960 ext4_mb_unload_buddy(&e4b);
4961
4962 ext4_debug("trimmed %d blocks in the group %d\n",
4963 count, group);
4964
4965 return count;
4966 }
4967
4968 /**
4969 * ext4_trim_fs() -- trim ioctl handle function
4970 * @sb: superblock for filesystem
4971 * @range: fstrim_range structure
4972 *
4973 * start: First Byte to trim
4974 * len: number of Bytes to trim from start
4975 * minlen: minimum extent length in Bytes
4976 * ext4_trim_fs goes through all allocation groups containing Bytes from
4977 * start to start+len. For each such a group ext4_trim_all_free function
4978 * is invoked to trim all free space.
4979 */
4980 int ext4_trim_fs(struct super_block *sb, struct fstrim_range *range)
4981 {
4982 struct ext4_group_info *grp;
4983 ext4_group_t group, first_group, last_group;
4984 ext4_grpblk_t cnt = 0, first_cluster, last_cluster;
4985 uint64_t start, end, minlen, trimmed = 0;
4986 ext4_fsblk_t first_data_blk =
4987 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block);
4988 ext4_fsblk_t max_blks = ext4_blocks_count(EXT4_SB(sb)->s_es);
4989 int ret = 0;
4990
4991 start = range->start >> sb->s_blocksize_bits;
4992 end = start + (range->len >> sb->s_blocksize_bits) - 1;
4993 minlen = range->minlen >> sb->s_blocksize_bits;
4994
4995 if (unlikely(minlen > EXT4_CLUSTERS_PER_GROUP(sb)) ||
4996 unlikely(start >= max_blks))
4997 return -EINVAL;
4998 if (end >= max_blks)
4999 end = max_blks - 1;
5000 if (end <= first_data_blk)
5001 goto out;
5002 if (start < first_data_blk)
5003 start = first_data_blk;
5004
5005 /* Determine first and last group to examine based on start and end */
5006 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) start,
5007 &first_group, &first_cluster);
5008 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) end,
5009 &last_group, &last_cluster);
5010
5011 /* end now represents the last cluster to discard in this group */
5012 end = EXT4_CLUSTERS_PER_GROUP(sb) - 1;
5013
5014 for (group = first_group; group <= last_group; group++) {
5015 grp = ext4_get_group_info(sb, group);
5016 /* We only do this if the grp has never been initialized */
5017 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
5018 ret = ext4_mb_init_group(sb, group);
5019 if (ret)
5020 break;
5021 }
5022
5023 /*
5024 * For all the groups except the last one, last cluster will
5025 * always be EXT4_CLUSTERS_PER_GROUP(sb)-1, so we only need to
5026 * change it for the last group, note that last_cluster is
5027 * already computed earlier by ext4_get_group_no_and_offset()
5028 */
5029 if (group == last_group)
5030 end = last_cluster;
5031
5032 if (grp->bb_free >= minlen) {
5033 cnt = ext4_trim_all_free(sb, group, first_cluster,
5034 end, minlen);
5035 if (cnt < 0) {
5036 ret = cnt;
5037 break;
5038 }
5039 trimmed += cnt;
5040 }
5041
5042 /*
5043 * For every group except the first one, we are sure
5044 * that the first cluster to discard will be cluster #0.
5045 */
5046 first_cluster = 0;
5047 }
5048
5049 if (!ret)
5050 atomic_set(&EXT4_SB(sb)->s_last_trim_minblks, minlen);
5051
5052 out:
5053 range->len = trimmed * sb->s_blocksize;
5054 return ret;
5055 }