]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/ext4/mballoc.c
Merge branch 'core-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-artful-kernel.git] / fs / ext4 / mballoc.c
1 /*
2 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3 * Written by Alex Tomas <alex@clusterfs.com>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public Licens
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
17 */
18
19
20 /*
21 * mballoc.c contains the multiblocks allocation routines
22 */
23
24 #include "ext4_jbd2.h"
25 #include "mballoc.h"
26 #include <linux/log2.h>
27 #include <linux/module.h>
28 #include <linux/slab.h>
29 #include <trace/events/ext4.h>
30
31 #ifdef CONFIG_EXT4_DEBUG
32 ushort ext4_mballoc_debug __read_mostly;
33
34 module_param_named(mballoc_debug, ext4_mballoc_debug, ushort, 0644);
35 MODULE_PARM_DESC(mballoc_debug, "Debugging level for ext4's mballoc");
36 #endif
37
38 /*
39 * MUSTDO:
40 * - test ext4_ext_search_left() and ext4_ext_search_right()
41 * - search for metadata in few groups
42 *
43 * TODO v4:
44 * - normalization should take into account whether file is still open
45 * - discard preallocations if no free space left (policy?)
46 * - don't normalize tails
47 * - quota
48 * - reservation for superuser
49 *
50 * TODO v3:
51 * - bitmap read-ahead (proposed by Oleg Drokin aka green)
52 * - track min/max extents in each group for better group selection
53 * - mb_mark_used() may allocate chunk right after splitting buddy
54 * - tree of groups sorted by number of free blocks
55 * - error handling
56 */
57
58 /*
59 * The allocation request involve request for multiple number of blocks
60 * near to the goal(block) value specified.
61 *
62 * During initialization phase of the allocator we decide to use the
63 * group preallocation or inode preallocation depending on the size of
64 * the file. The size of the file could be the resulting file size we
65 * would have after allocation, or the current file size, which ever
66 * is larger. If the size is less than sbi->s_mb_stream_request we
67 * select to use the group preallocation. The default value of
68 * s_mb_stream_request is 16 blocks. This can also be tuned via
69 * /sys/fs/ext4/<partition>/mb_stream_req. The value is represented in
70 * terms of number of blocks.
71 *
72 * The main motivation for having small file use group preallocation is to
73 * ensure that we have small files closer together on the disk.
74 *
75 * First stage the allocator looks at the inode prealloc list,
76 * ext4_inode_info->i_prealloc_list, which contains list of prealloc
77 * spaces for this particular inode. The inode prealloc space is
78 * represented as:
79 *
80 * pa_lstart -> the logical start block for this prealloc space
81 * pa_pstart -> the physical start block for this prealloc space
82 * pa_len -> length for this prealloc space (in clusters)
83 * pa_free -> free space available in this prealloc space (in clusters)
84 *
85 * The inode preallocation space is used looking at the _logical_ start
86 * block. If only the logical file block falls within the range of prealloc
87 * space we will consume the particular prealloc space. This makes sure that
88 * we have contiguous physical blocks representing the file blocks
89 *
90 * The important thing to be noted in case of inode prealloc space is that
91 * we don't modify the values associated to inode prealloc space except
92 * pa_free.
93 *
94 * If we are not able to find blocks in the inode prealloc space and if we
95 * have the group allocation flag set then we look at the locality group
96 * prealloc space. These are per CPU prealloc list represented as
97 *
98 * ext4_sb_info.s_locality_groups[smp_processor_id()]
99 *
100 * The reason for having a per cpu locality group is to reduce the contention
101 * between CPUs. It is possible to get scheduled at this point.
102 *
103 * The locality group prealloc space is used looking at whether we have
104 * enough free space (pa_free) within the prealloc space.
105 *
106 * If we can't allocate blocks via inode prealloc or/and locality group
107 * prealloc then we look at the buddy cache. The buddy cache is represented
108 * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets
109 * mapped to the buddy and bitmap information regarding different
110 * groups. The buddy information is attached to buddy cache inode so that
111 * we can access them through the page cache. The information regarding
112 * each group is loaded via ext4_mb_load_buddy. The information involve
113 * block bitmap and buddy information. The information are stored in the
114 * inode as:
115 *
116 * { page }
117 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
118 *
119 *
120 * one block each for bitmap and buddy information. So for each group we
121 * take up 2 blocks. A page can contain blocks_per_page (PAGE_CACHE_SIZE /
122 * blocksize) blocks. So it can have information regarding groups_per_page
123 * which is blocks_per_page/2
124 *
125 * The buddy cache inode is not stored on disk. The inode is thrown
126 * away when the filesystem is unmounted.
127 *
128 * We look for count number of blocks in the buddy cache. If we were able
129 * to locate that many free blocks we return with additional information
130 * regarding rest of the contiguous physical block available
131 *
132 * Before allocating blocks via buddy cache we normalize the request
133 * blocks. This ensure we ask for more blocks that we needed. The extra
134 * blocks that we get after allocation is added to the respective prealloc
135 * list. In case of inode preallocation we follow a list of heuristics
136 * based on file size. This can be found in ext4_mb_normalize_request. If
137 * we are doing a group prealloc we try to normalize the request to
138 * sbi->s_mb_group_prealloc. The default value of s_mb_group_prealloc is
139 * dependent on the cluster size; for non-bigalloc file systems, it is
140 * 512 blocks. This can be tuned via
141 * /sys/fs/ext4/<partition>/mb_group_prealloc. The value is represented in
142 * terms of number of blocks. If we have mounted the file system with -O
143 * stripe=<value> option the group prealloc request is normalized to the
144 * the smallest multiple of the stripe value (sbi->s_stripe) which is
145 * greater than the default mb_group_prealloc.
146 *
147 * The regular allocator (using the buddy cache) supports a few tunables.
148 *
149 * /sys/fs/ext4/<partition>/mb_min_to_scan
150 * /sys/fs/ext4/<partition>/mb_max_to_scan
151 * /sys/fs/ext4/<partition>/mb_order2_req
152 *
153 * The regular allocator uses buddy scan only if the request len is power of
154 * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The
155 * value of s_mb_order2_reqs can be tuned via
156 * /sys/fs/ext4/<partition>/mb_order2_req. If the request len is equal to
157 * stripe size (sbi->s_stripe), we try to search for contiguous block in
158 * stripe size. This should result in better allocation on RAID setups. If
159 * not, we search in the specific group using bitmap for best extents. The
160 * tunable min_to_scan and max_to_scan control the behaviour here.
161 * min_to_scan indicate how long the mballoc __must__ look for a best
162 * extent and max_to_scan indicates how long the mballoc __can__ look for a
163 * best extent in the found extents. Searching for the blocks starts with
164 * the group specified as the goal value in allocation context via
165 * ac_g_ex. Each group is first checked based on the criteria whether it
166 * can be used for allocation. ext4_mb_good_group explains how the groups are
167 * checked.
168 *
169 * Both the prealloc space are getting populated as above. So for the first
170 * request we will hit the buddy cache which will result in this prealloc
171 * space getting filled. The prealloc space is then later used for the
172 * subsequent request.
173 */
174
175 /*
176 * mballoc operates on the following data:
177 * - on-disk bitmap
178 * - in-core buddy (actually includes buddy and bitmap)
179 * - preallocation descriptors (PAs)
180 *
181 * there are two types of preallocations:
182 * - inode
183 * assiged to specific inode and can be used for this inode only.
184 * it describes part of inode's space preallocated to specific
185 * physical blocks. any block from that preallocated can be used
186 * independent. the descriptor just tracks number of blocks left
187 * unused. so, before taking some block from descriptor, one must
188 * make sure corresponded logical block isn't allocated yet. this
189 * also means that freeing any block within descriptor's range
190 * must discard all preallocated blocks.
191 * - locality group
192 * assigned to specific locality group which does not translate to
193 * permanent set of inodes: inode can join and leave group. space
194 * from this type of preallocation can be used for any inode. thus
195 * it's consumed from the beginning to the end.
196 *
197 * relation between them can be expressed as:
198 * in-core buddy = on-disk bitmap + preallocation descriptors
199 *
200 * this mean blocks mballoc considers used are:
201 * - allocated blocks (persistent)
202 * - preallocated blocks (non-persistent)
203 *
204 * consistency in mballoc world means that at any time a block is either
205 * free or used in ALL structures. notice: "any time" should not be read
206 * literally -- time is discrete and delimited by locks.
207 *
208 * to keep it simple, we don't use block numbers, instead we count number of
209 * blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA.
210 *
211 * all operations can be expressed as:
212 * - init buddy: buddy = on-disk + PAs
213 * - new PA: buddy += N; PA = N
214 * - use inode PA: on-disk += N; PA -= N
215 * - discard inode PA buddy -= on-disk - PA; PA = 0
216 * - use locality group PA on-disk += N; PA -= N
217 * - discard locality group PA buddy -= PA; PA = 0
218 * note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap
219 * is used in real operation because we can't know actual used
220 * bits from PA, only from on-disk bitmap
221 *
222 * if we follow this strict logic, then all operations above should be atomic.
223 * given some of them can block, we'd have to use something like semaphores
224 * killing performance on high-end SMP hardware. let's try to relax it using
225 * the following knowledge:
226 * 1) if buddy is referenced, it's already initialized
227 * 2) while block is used in buddy and the buddy is referenced,
228 * nobody can re-allocate that block
229 * 3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has
230 * bit set and PA claims same block, it's OK. IOW, one can set bit in
231 * on-disk bitmap if buddy has same bit set or/and PA covers corresponded
232 * block
233 *
234 * so, now we're building a concurrency table:
235 * - init buddy vs.
236 * - new PA
237 * blocks for PA are allocated in the buddy, buddy must be referenced
238 * until PA is linked to allocation group to avoid concurrent buddy init
239 * - use inode PA
240 * we need to make sure that either on-disk bitmap or PA has uptodate data
241 * given (3) we care that PA-=N operation doesn't interfere with init
242 * - discard inode PA
243 * the simplest way would be to have buddy initialized by the discard
244 * - use locality group PA
245 * again PA-=N must be serialized with init
246 * - discard locality group PA
247 * the simplest way would be to have buddy initialized by the discard
248 * - new PA vs.
249 * - use inode PA
250 * i_data_sem serializes them
251 * - discard inode PA
252 * discard process must wait until PA isn't used by another process
253 * - use locality group PA
254 * some mutex should serialize them
255 * - discard locality group PA
256 * discard process must wait until PA isn't used by another process
257 * - use inode PA
258 * - use inode PA
259 * i_data_sem or another mutex should serializes them
260 * - discard inode PA
261 * discard process must wait until PA isn't used by another process
262 * - use locality group PA
263 * nothing wrong here -- they're different PAs covering different blocks
264 * - discard locality group PA
265 * discard process must wait until PA isn't used by another process
266 *
267 * now we're ready to make few consequences:
268 * - PA is referenced and while it is no discard is possible
269 * - PA is referenced until block isn't marked in on-disk bitmap
270 * - PA changes only after on-disk bitmap
271 * - discard must not compete with init. either init is done before
272 * any discard or they're serialized somehow
273 * - buddy init as sum of on-disk bitmap and PAs is done atomically
274 *
275 * a special case when we've used PA to emptiness. no need to modify buddy
276 * in this case, but we should care about concurrent init
277 *
278 */
279
280 /*
281 * Logic in few words:
282 *
283 * - allocation:
284 * load group
285 * find blocks
286 * mark bits in on-disk bitmap
287 * release group
288 *
289 * - use preallocation:
290 * find proper PA (per-inode or group)
291 * load group
292 * mark bits in on-disk bitmap
293 * release group
294 * release PA
295 *
296 * - free:
297 * load group
298 * mark bits in on-disk bitmap
299 * release group
300 *
301 * - discard preallocations in group:
302 * mark PAs deleted
303 * move them onto local list
304 * load on-disk bitmap
305 * load group
306 * remove PA from object (inode or locality group)
307 * mark free blocks in-core
308 *
309 * - discard inode's preallocations:
310 */
311
312 /*
313 * Locking rules
314 *
315 * Locks:
316 * - bitlock on a group (group)
317 * - object (inode/locality) (object)
318 * - per-pa lock (pa)
319 *
320 * Paths:
321 * - new pa
322 * object
323 * group
324 *
325 * - find and use pa:
326 * pa
327 *
328 * - release consumed pa:
329 * pa
330 * group
331 * object
332 *
333 * - generate in-core bitmap:
334 * group
335 * pa
336 *
337 * - discard all for given object (inode, locality group):
338 * object
339 * pa
340 * group
341 *
342 * - discard all for given group:
343 * group
344 * pa
345 * group
346 * object
347 *
348 */
349 static struct kmem_cache *ext4_pspace_cachep;
350 static struct kmem_cache *ext4_ac_cachep;
351 static struct kmem_cache *ext4_free_data_cachep;
352
353 /* We create slab caches for groupinfo data structures based on the
354 * superblock block size. There will be one per mounted filesystem for
355 * each unique s_blocksize_bits */
356 #define NR_GRPINFO_CACHES 8
357 static struct kmem_cache *ext4_groupinfo_caches[NR_GRPINFO_CACHES];
358
359 static const char *ext4_groupinfo_slab_names[NR_GRPINFO_CACHES] = {
360 "ext4_groupinfo_1k", "ext4_groupinfo_2k", "ext4_groupinfo_4k",
361 "ext4_groupinfo_8k", "ext4_groupinfo_16k", "ext4_groupinfo_32k",
362 "ext4_groupinfo_64k", "ext4_groupinfo_128k"
363 };
364
365 static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
366 ext4_group_t group);
367 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
368 ext4_group_t group);
369 static void ext4_free_data_callback(struct super_block *sb,
370 struct ext4_journal_cb_entry *jce, int rc);
371
372 static inline void *mb_correct_addr_and_bit(int *bit, void *addr)
373 {
374 #if BITS_PER_LONG == 64
375 *bit += ((unsigned long) addr & 7UL) << 3;
376 addr = (void *) ((unsigned long) addr & ~7UL);
377 #elif BITS_PER_LONG == 32
378 *bit += ((unsigned long) addr & 3UL) << 3;
379 addr = (void *) ((unsigned long) addr & ~3UL);
380 #else
381 #error "how many bits you are?!"
382 #endif
383 return addr;
384 }
385
386 static inline int mb_test_bit(int bit, void *addr)
387 {
388 /*
389 * ext4_test_bit on architecture like powerpc
390 * needs unsigned long aligned address
391 */
392 addr = mb_correct_addr_and_bit(&bit, addr);
393 return ext4_test_bit(bit, addr);
394 }
395
396 static inline void mb_set_bit(int bit, void *addr)
397 {
398 addr = mb_correct_addr_and_bit(&bit, addr);
399 ext4_set_bit(bit, addr);
400 }
401
402 static inline void mb_clear_bit(int bit, void *addr)
403 {
404 addr = mb_correct_addr_and_bit(&bit, addr);
405 ext4_clear_bit(bit, addr);
406 }
407
408 static inline int mb_test_and_clear_bit(int bit, void *addr)
409 {
410 addr = mb_correct_addr_and_bit(&bit, addr);
411 return ext4_test_and_clear_bit(bit, addr);
412 }
413
414 static inline int mb_find_next_zero_bit(void *addr, int max, int start)
415 {
416 int fix = 0, ret, tmpmax;
417 addr = mb_correct_addr_and_bit(&fix, addr);
418 tmpmax = max + fix;
419 start += fix;
420
421 ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix;
422 if (ret > max)
423 return max;
424 return ret;
425 }
426
427 static inline int mb_find_next_bit(void *addr, int max, int start)
428 {
429 int fix = 0, ret, tmpmax;
430 addr = mb_correct_addr_and_bit(&fix, addr);
431 tmpmax = max + fix;
432 start += fix;
433
434 ret = ext4_find_next_bit(addr, tmpmax, start) - fix;
435 if (ret > max)
436 return max;
437 return ret;
438 }
439
440 static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max)
441 {
442 char *bb;
443
444 BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
445 BUG_ON(max == NULL);
446
447 if (order > e4b->bd_blkbits + 1) {
448 *max = 0;
449 return NULL;
450 }
451
452 /* at order 0 we see each particular block */
453 if (order == 0) {
454 *max = 1 << (e4b->bd_blkbits + 3);
455 return e4b->bd_bitmap;
456 }
457
458 bb = e4b->bd_buddy + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order];
459 *max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order];
460
461 return bb;
462 }
463
464 #ifdef DOUBLE_CHECK
465 static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b,
466 int first, int count)
467 {
468 int i;
469 struct super_block *sb = e4b->bd_sb;
470
471 if (unlikely(e4b->bd_info->bb_bitmap == NULL))
472 return;
473 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
474 for (i = 0; i < count; i++) {
475 if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) {
476 ext4_fsblk_t blocknr;
477
478 blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
479 blocknr += EXT4_C2B(EXT4_SB(sb), first + i);
480 ext4_grp_locked_error(sb, e4b->bd_group,
481 inode ? inode->i_ino : 0,
482 blocknr,
483 "freeing block already freed "
484 "(bit %u)",
485 first + i);
486 }
487 mb_clear_bit(first + i, e4b->bd_info->bb_bitmap);
488 }
489 }
490
491 static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count)
492 {
493 int i;
494
495 if (unlikely(e4b->bd_info->bb_bitmap == NULL))
496 return;
497 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
498 for (i = 0; i < count; i++) {
499 BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap));
500 mb_set_bit(first + i, e4b->bd_info->bb_bitmap);
501 }
502 }
503
504 static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
505 {
506 if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) {
507 unsigned char *b1, *b2;
508 int i;
509 b1 = (unsigned char *) e4b->bd_info->bb_bitmap;
510 b2 = (unsigned char *) bitmap;
511 for (i = 0; i < e4b->bd_sb->s_blocksize; i++) {
512 if (b1[i] != b2[i]) {
513 ext4_msg(e4b->bd_sb, KERN_ERR,
514 "corruption in group %u "
515 "at byte %u(%u): %x in copy != %x "
516 "on disk/prealloc",
517 e4b->bd_group, i, i * 8, b1[i], b2[i]);
518 BUG();
519 }
520 }
521 }
522 }
523
524 #else
525 static inline void mb_free_blocks_double(struct inode *inode,
526 struct ext4_buddy *e4b, int first, int count)
527 {
528 return;
529 }
530 static inline void mb_mark_used_double(struct ext4_buddy *e4b,
531 int first, int count)
532 {
533 return;
534 }
535 static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
536 {
537 return;
538 }
539 #endif
540
541 #ifdef AGGRESSIVE_CHECK
542
543 #define MB_CHECK_ASSERT(assert) \
544 do { \
545 if (!(assert)) { \
546 printk(KERN_EMERG \
547 "Assertion failure in %s() at %s:%d: \"%s\"\n", \
548 function, file, line, # assert); \
549 BUG(); \
550 } \
551 } while (0)
552
553 static int __mb_check_buddy(struct ext4_buddy *e4b, char *file,
554 const char *function, int line)
555 {
556 struct super_block *sb = e4b->bd_sb;
557 int order = e4b->bd_blkbits + 1;
558 int max;
559 int max2;
560 int i;
561 int j;
562 int k;
563 int count;
564 struct ext4_group_info *grp;
565 int fragments = 0;
566 int fstart;
567 struct list_head *cur;
568 void *buddy;
569 void *buddy2;
570
571 {
572 static int mb_check_counter;
573 if (mb_check_counter++ % 100 != 0)
574 return 0;
575 }
576
577 while (order > 1) {
578 buddy = mb_find_buddy(e4b, order, &max);
579 MB_CHECK_ASSERT(buddy);
580 buddy2 = mb_find_buddy(e4b, order - 1, &max2);
581 MB_CHECK_ASSERT(buddy2);
582 MB_CHECK_ASSERT(buddy != buddy2);
583 MB_CHECK_ASSERT(max * 2 == max2);
584
585 count = 0;
586 for (i = 0; i < max; i++) {
587
588 if (mb_test_bit(i, buddy)) {
589 /* only single bit in buddy2 may be 1 */
590 if (!mb_test_bit(i << 1, buddy2)) {
591 MB_CHECK_ASSERT(
592 mb_test_bit((i<<1)+1, buddy2));
593 } else if (!mb_test_bit((i << 1) + 1, buddy2)) {
594 MB_CHECK_ASSERT(
595 mb_test_bit(i << 1, buddy2));
596 }
597 continue;
598 }
599
600 /* both bits in buddy2 must be 1 */
601 MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2));
602 MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2));
603
604 for (j = 0; j < (1 << order); j++) {
605 k = (i * (1 << order)) + j;
606 MB_CHECK_ASSERT(
607 !mb_test_bit(k, e4b->bd_bitmap));
608 }
609 count++;
610 }
611 MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count);
612 order--;
613 }
614
615 fstart = -1;
616 buddy = mb_find_buddy(e4b, 0, &max);
617 for (i = 0; i < max; i++) {
618 if (!mb_test_bit(i, buddy)) {
619 MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free);
620 if (fstart == -1) {
621 fragments++;
622 fstart = i;
623 }
624 continue;
625 }
626 fstart = -1;
627 /* check used bits only */
628 for (j = 0; j < e4b->bd_blkbits + 1; j++) {
629 buddy2 = mb_find_buddy(e4b, j, &max2);
630 k = i >> j;
631 MB_CHECK_ASSERT(k < max2);
632 MB_CHECK_ASSERT(mb_test_bit(k, buddy2));
633 }
634 }
635 MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info));
636 MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments);
637
638 grp = ext4_get_group_info(sb, e4b->bd_group);
639 list_for_each(cur, &grp->bb_prealloc_list) {
640 ext4_group_t groupnr;
641 struct ext4_prealloc_space *pa;
642 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
643 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k);
644 MB_CHECK_ASSERT(groupnr == e4b->bd_group);
645 for (i = 0; i < pa->pa_len; i++)
646 MB_CHECK_ASSERT(mb_test_bit(k + i, buddy));
647 }
648 return 0;
649 }
650 #undef MB_CHECK_ASSERT
651 #define mb_check_buddy(e4b) __mb_check_buddy(e4b, \
652 __FILE__, __func__, __LINE__)
653 #else
654 #define mb_check_buddy(e4b)
655 #endif
656
657 /*
658 * Divide blocks started from @first with length @len into
659 * smaller chunks with power of 2 blocks.
660 * Clear the bits in bitmap which the blocks of the chunk(s) covered,
661 * then increase bb_counters[] for corresponded chunk size.
662 */
663 static void ext4_mb_mark_free_simple(struct super_block *sb,
664 void *buddy, ext4_grpblk_t first, ext4_grpblk_t len,
665 struct ext4_group_info *grp)
666 {
667 struct ext4_sb_info *sbi = EXT4_SB(sb);
668 ext4_grpblk_t min;
669 ext4_grpblk_t max;
670 ext4_grpblk_t chunk;
671 unsigned short border;
672
673 BUG_ON(len > EXT4_CLUSTERS_PER_GROUP(sb));
674
675 border = 2 << sb->s_blocksize_bits;
676
677 while (len > 0) {
678 /* find how many blocks can be covered since this position */
679 max = ffs(first | border) - 1;
680
681 /* find how many blocks of power 2 we need to mark */
682 min = fls(len) - 1;
683
684 if (max < min)
685 min = max;
686 chunk = 1 << min;
687
688 /* mark multiblock chunks only */
689 grp->bb_counters[min]++;
690 if (min > 0)
691 mb_clear_bit(first >> min,
692 buddy + sbi->s_mb_offsets[min]);
693
694 len -= chunk;
695 first += chunk;
696 }
697 }
698
699 /*
700 * Cache the order of the largest free extent we have available in this block
701 * group.
702 */
703 static void
704 mb_set_largest_free_order(struct super_block *sb, struct ext4_group_info *grp)
705 {
706 int i;
707 int bits;
708
709 grp->bb_largest_free_order = -1; /* uninit */
710
711 bits = sb->s_blocksize_bits + 1;
712 for (i = bits; i >= 0; i--) {
713 if (grp->bb_counters[i] > 0) {
714 grp->bb_largest_free_order = i;
715 break;
716 }
717 }
718 }
719
720 static noinline_for_stack
721 void ext4_mb_generate_buddy(struct super_block *sb,
722 void *buddy, void *bitmap, ext4_group_t group)
723 {
724 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
725 ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb);
726 ext4_grpblk_t i = 0;
727 ext4_grpblk_t first;
728 ext4_grpblk_t len;
729 unsigned free = 0;
730 unsigned fragments = 0;
731 unsigned long long period = get_cycles();
732
733 /* initialize buddy from bitmap which is aggregation
734 * of on-disk bitmap and preallocations */
735 i = mb_find_next_zero_bit(bitmap, max, 0);
736 grp->bb_first_free = i;
737 while (i < max) {
738 fragments++;
739 first = i;
740 i = mb_find_next_bit(bitmap, max, i);
741 len = i - first;
742 free += len;
743 if (len > 1)
744 ext4_mb_mark_free_simple(sb, buddy, first, len, grp);
745 else
746 grp->bb_counters[0]++;
747 if (i < max)
748 i = mb_find_next_zero_bit(bitmap, max, i);
749 }
750 grp->bb_fragments = fragments;
751
752 if (free != grp->bb_free) {
753 ext4_grp_locked_error(sb, group, 0, 0,
754 "%u clusters in bitmap, %u in gd; "
755 "block bitmap corrupt.",
756 free, grp->bb_free);
757 /*
758 * If we intend to continue, we consider group descriptor
759 * corrupt and update bb_free using bitmap value
760 */
761 grp->bb_free = free;
762 set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT, &grp->bb_state);
763 }
764 mb_set_largest_free_order(sb, grp);
765
766 clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state));
767
768 period = get_cycles() - period;
769 spin_lock(&EXT4_SB(sb)->s_bal_lock);
770 EXT4_SB(sb)->s_mb_buddies_generated++;
771 EXT4_SB(sb)->s_mb_generation_time += period;
772 spin_unlock(&EXT4_SB(sb)->s_bal_lock);
773 }
774
775 static void mb_regenerate_buddy(struct ext4_buddy *e4b)
776 {
777 int count;
778 int order = 1;
779 void *buddy;
780
781 while ((buddy = mb_find_buddy(e4b, order++, &count))) {
782 ext4_set_bits(buddy, 0, count);
783 }
784 e4b->bd_info->bb_fragments = 0;
785 memset(e4b->bd_info->bb_counters, 0,
786 sizeof(*e4b->bd_info->bb_counters) *
787 (e4b->bd_sb->s_blocksize_bits + 2));
788
789 ext4_mb_generate_buddy(e4b->bd_sb, e4b->bd_buddy,
790 e4b->bd_bitmap, e4b->bd_group);
791 }
792
793 /* The buddy information is attached the buddy cache inode
794 * for convenience. The information regarding each group
795 * is loaded via ext4_mb_load_buddy. The information involve
796 * block bitmap and buddy information. The information are
797 * stored in the inode as
798 *
799 * { page }
800 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
801 *
802 *
803 * one block each for bitmap and buddy information.
804 * So for each group we take up 2 blocks. A page can
805 * contain blocks_per_page (PAGE_CACHE_SIZE / blocksize) blocks.
806 * So it can have information regarding groups_per_page which
807 * is blocks_per_page/2
808 *
809 * Locking note: This routine takes the block group lock of all groups
810 * for this page; do not hold this lock when calling this routine!
811 */
812
813 static int ext4_mb_init_cache(struct page *page, char *incore)
814 {
815 ext4_group_t ngroups;
816 int blocksize;
817 int blocks_per_page;
818 int groups_per_page;
819 int err = 0;
820 int i;
821 ext4_group_t first_group, group;
822 int first_block;
823 struct super_block *sb;
824 struct buffer_head *bhs;
825 struct buffer_head **bh = NULL;
826 struct inode *inode;
827 char *data;
828 char *bitmap;
829 struct ext4_group_info *grinfo;
830
831 mb_debug(1, "init page %lu\n", page->index);
832
833 inode = page->mapping->host;
834 sb = inode->i_sb;
835 ngroups = ext4_get_groups_count(sb);
836 blocksize = 1 << inode->i_blkbits;
837 blocks_per_page = PAGE_CACHE_SIZE / blocksize;
838
839 groups_per_page = blocks_per_page >> 1;
840 if (groups_per_page == 0)
841 groups_per_page = 1;
842
843 /* allocate buffer_heads to read bitmaps */
844 if (groups_per_page > 1) {
845 i = sizeof(struct buffer_head *) * groups_per_page;
846 bh = kzalloc(i, GFP_NOFS);
847 if (bh == NULL) {
848 err = -ENOMEM;
849 goto out;
850 }
851 } else
852 bh = &bhs;
853
854 first_group = page->index * blocks_per_page / 2;
855
856 /* read all groups the page covers into the cache */
857 for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
858 if (group >= ngroups)
859 break;
860
861 grinfo = ext4_get_group_info(sb, group);
862 /*
863 * If page is uptodate then we came here after online resize
864 * which added some new uninitialized group info structs, so
865 * we must skip all initialized uptodate buddies on the page,
866 * which may be currently in use by an allocating task.
867 */
868 if (PageUptodate(page) && !EXT4_MB_GRP_NEED_INIT(grinfo)) {
869 bh[i] = NULL;
870 continue;
871 }
872 if (!(bh[i] = ext4_read_block_bitmap_nowait(sb, group))) {
873 err = -ENOMEM;
874 goto out;
875 }
876 mb_debug(1, "read bitmap for group %u\n", group);
877 }
878
879 /* wait for I/O completion */
880 for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
881 if (bh[i] && ext4_wait_block_bitmap(sb, group, bh[i])) {
882 err = -EIO;
883 goto out;
884 }
885 }
886
887 first_block = page->index * blocks_per_page;
888 for (i = 0; i < blocks_per_page; i++) {
889 group = (first_block + i) >> 1;
890 if (group >= ngroups)
891 break;
892
893 if (!bh[group - first_group])
894 /* skip initialized uptodate buddy */
895 continue;
896
897 /*
898 * data carry information regarding this
899 * particular group in the format specified
900 * above
901 *
902 */
903 data = page_address(page) + (i * blocksize);
904 bitmap = bh[group - first_group]->b_data;
905
906 /*
907 * We place the buddy block and bitmap block
908 * close together
909 */
910 if ((first_block + i) & 1) {
911 /* this is block of buddy */
912 BUG_ON(incore == NULL);
913 mb_debug(1, "put buddy for group %u in page %lu/%x\n",
914 group, page->index, i * blocksize);
915 trace_ext4_mb_buddy_bitmap_load(sb, group);
916 grinfo = ext4_get_group_info(sb, group);
917 grinfo->bb_fragments = 0;
918 memset(grinfo->bb_counters, 0,
919 sizeof(*grinfo->bb_counters) *
920 (sb->s_blocksize_bits+2));
921 /*
922 * incore got set to the group block bitmap below
923 */
924 ext4_lock_group(sb, group);
925 /* init the buddy */
926 memset(data, 0xff, blocksize);
927 ext4_mb_generate_buddy(sb, data, incore, group);
928 ext4_unlock_group(sb, group);
929 incore = NULL;
930 } else {
931 /* this is block of bitmap */
932 BUG_ON(incore != NULL);
933 mb_debug(1, "put bitmap for group %u in page %lu/%x\n",
934 group, page->index, i * blocksize);
935 trace_ext4_mb_bitmap_load(sb, group);
936
937 /* see comments in ext4_mb_put_pa() */
938 ext4_lock_group(sb, group);
939 memcpy(data, bitmap, blocksize);
940
941 /* mark all preallocated blks used in in-core bitmap */
942 ext4_mb_generate_from_pa(sb, data, group);
943 ext4_mb_generate_from_freelist(sb, data, group);
944 ext4_unlock_group(sb, group);
945
946 /* set incore so that the buddy information can be
947 * generated using this
948 */
949 incore = data;
950 }
951 }
952 SetPageUptodate(page);
953
954 out:
955 if (bh) {
956 for (i = 0; i < groups_per_page; i++)
957 brelse(bh[i]);
958 if (bh != &bhs)
959 kfree(bh);
960 }
961 return err;
962 }
963
964 /*
965 * Lock the buddy and bitmap pages. This make sure other parallel init_group
966 * on the same buddy page doesn't happen whild holding the buddy page lock.
967 * Return locked buddy and bitmap pages on e4b struct. If buddy and bitmap
968 * are on the same page e4b->bd_buddy_page is NULL and return value is 0.
969 */
970 static int ext4_mb_get_buddy_page_lock(struct super_block *sb,
971 ext4_group_t group, struct ext4_buddy *e4b)
972 {
973 struct inode *inode = EXT4_SB(sb)->s_buddy_cache;
974 int block, pnum, poff;
975 int blocks_per_page;
976 struct page *page;
977
978 e4b->bd_buddy_page = NULL;
979 e4b->bd_bitmap_page = NULL;
980
981 blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize;
982 /*
983 * the buddy cache inode stores the block bitmap
984 * and buddy information in consecutive blocks.
985 * So for each group we need two blocks.
986 */
987 block = group * 2;
988 pnum = block / blocks_per_page;
989 poff = block % blocks_per_page;
990 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
991 if (!page)
992 return -EIO;
993 BUG_ON(page->mapping != inode->i_mapping);
994 e4b->bd_bitmap_page = page;
995 e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
996
997 if (blocks_per_page >= 2) {
998 /* buddy and bitmap are on the same page */
999 return 0;
1000 }
1001
1002 block++;
1003 pnum = block / blocks_per_page;
1004 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
1005 if (!page)
1006 return -EIO;
1007 BUG_ON(page->mapping != inode->i_mapping);
1008 e4b->bd_buddy_page = page;
1009 return 0;
1010 }
1011
1012 static void ext4_mb_put_buddy_page_lock(struct ext4_buddy *e4b)
1013 {
1014 if (e4b->bd_bitmap_page) {
1015 unlock_page(e4b->bd_bitmap_page);
1016 page_cache_release(e4b->bd_bitmap_page);
1017 }
1018 if (e4b->bd_buddy_page) {
1019 unlock_page(e4b->bd_buddy_page);
1020 page_cache_release(e4b->bd_buddy_page);
1021 }
1022 }
1023
1024 /*
1025 * Locking note: This routine calls ext4_mb_init_cache(), which takes the
1026 * block group lock of all groups for this page; do not hold the BG lock when
1027 * calling this routine!
1028 */
1029 static noinline_for_stack
1030 int ext4_mb_init_group(struct super_block *sb, ext4_group_t group)
1031 {
1032
1033 struct ext4_group_info *this_grp;
1034 struct ext4_buddy e4b;
1035 struct page *page;
1036 int ret = 0;
1037
1038 might_sleep();
1039 mb_debug(1, "init group %u\n", group);
1040 this_grp = ext4_get_group_info(sb, group);
1041 /*
1042 * This ensures that we don't reinit the buddy cache
1043 * page which map to the group from which we are already
1044 * allocating. If we are looking at the buddy cache we would
1045 * have taken a reference using ext4_mb_load_buddy and that
1046 * would have pinned buddy page to page cache.
1047 */
1048 ret = ext4_mb_get_buddy_page_lock(sb, group, &e4b);
1049 if (ret || !EXT4_MB_GRP_NEED_INIT(this_grp)) {
1050 /*
1051 * somebody initialized the group
1052 * return without doing anything
1053 */
1054 goto err;
1055 }
1056
1057 page = e4b.bd_bitmap_page;
1058 ret = ext4_mb_init_cache(page, NULL);
1059 if (ret)
1060 goto err;
1061 if (!PageUptodate(page)) {
1062 ret = -EIO;
1063 goto err;
1064 }
1065 mark_page_accessed(page);
1066
1067 if (e4b.bd_buddy_page == NULL) {
1068 /*
1069 * If both the bitmap and buddy are in
1070 * the same page we don't need to force
1071 * init the buddy
1072 */
1073 ret = 0;
1074 goto err;
1075 }
1076 /* init buddy cache */
1077 page = e4b.bd_buddy_page;
1078 ret = ext4_mb_init_cache(page, e4b.bd_bitmap);
1079 if (ret)
1080 goto err;
1081 if (!PageUptodate(page)) {
1082 ret = -EIO;
1083 goto err;
1084 }
1085 mark_page_accessed(page);
1086 err:
1087 ext4_mb_put_buddy_page_lock(&e4b);
1088 return ret;
1089 }
1090
1091 /*
1092 * Locking note: This routine calls ext4_mb_init_cache(), which takes the
1093 * block group lock of all groups for this page; do not hold the BG lock when
1094 * calling this routine!
1095 */
1096 static noinline_for_stack int
1097 ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group,
1098 struct ext4_buddy *e4b)
1099 {
1100 int blocks_per_page;
1101 int block;
1102 int pnum;
1103 int poff;
1104 struct page *page;
1105 int ret;
1106 struct ext4_group_info *grp;
1107 struct ext4_sb_info *sbi = EXT4_SB(sb);
1108 struct inode *inode = sbi->s_buddy_cache;
1109
1110 might_sleep();
1111 mb_debug(1, "load group %u\n", group);
1112
1113 blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize;
1114 grp = ext4_get_group_info(sb, group);
1115
1116 e4b->bd_blkbits = sb->s_blocksize_bits;
1117 e4b->bd_info = grp;
1118 e4b->bd_sb = sb;
1119 e4b->bd_group = group;
1120 e4b->bd_buddy_page = NULL;
1121 e4b->bd_bitmap_page = NULL;
1122
1123 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
1124 /*
1125 * we need full data about the group
1126 * to make a good selection
1127 */
1128 ret = ext4_mb_init_group(sb, group);
1129 if (ret)
1130 return ret;
1131 }
1132
1133 /*
1134 * the buddy cache inode stores the block bitmap
1135 * and buddy information in consecutive blocks.
1136 * So for each group we need two blocks.
1137 */
1138 block = group * 2;
1139 pnum = block / blocks_per_page;
1140 poff = block % blocks_per_page;
1141
1142 /* we could use find_or_create_page(), but it locks page
1143 * what we'd like to avoid in fast path ... */
1144 page = find_get_page(inode->i_mapping, pnum);
1145 if (page == NULL || !PageUptodate(page)) {
1146 if (page)
1147 /*
1148 * drop the page reference and try
1149 * to get the page with lock. If we
1150 * are not uptodate that implies
1151 * somebody just created the page but
1152 * is yet to initialize the same. So
1153 * wait for it to initialize.
1154 */
1155 page_cache_release(page);
1156 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
1157 if (page) {
1158 BUG_ON(page->mapping != inode->i_mapping);
1159 if (!PageUptodate(page)) {
1160 ret = ext4_mb_init_cache(page, NULL);
1161 if (ret) {
1162 unlock_page(page);
1163 goto err;
1164 }
1165 mb_cmp_bitmaps(e4b, page_address(page) +
1166 (poff * sb->s_blocksize));
1167 }
1168 unlock_page(page);
1169 }
1170 }
1171 if (page == NULL || !PageUptodate(page)) {
1172 ret = -EIO;
1173 goto err;
1174 }
1175 e4b->bd_bitmap_page = page;
1176 e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
1177 mark_page_accessed(page);
1178
1179 block++;
1180 pnum = block / blocks_per_page;
1181 poff = block % blocks_per_page;
1182
1183 page = find_get_page(inode->i_mapping, pnum);
1184 if (page == NULL || !PageUptodate(page)) {
1185 if (page)
1186 page_cache_release(page);
1187 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
1188 if (page) {
1189 BUG_ON(page->mapping != inode->i_mapping);
1190 if (!PageUptodate(page)) {
1191 ret = ext4_mb_init_cache(page, e4b->bd_bitmap);
1192 if (ret) {
1193 unlock_page(page);
1194 goto err;
1195 }
1196 }
1197 unlock_page(page);
1198 }
1199 }
1200 if (page == NULL || !PageUptodate(page)) {
1201 ret = -EIO;
1202 goto err;
1203 }
1204 e4b->bd_buddy_page = page;
1205 e4b->bd_buddy = page_address(page) + (poff * sb->s_blocksize);
1206 mark_page_accessed(page);
1207
1208 BUG_ON(e4b->bd_bitmap_page == NULL);
1209 BUG_ON(e4b->bd_buddy_page == NULL);
1210
1211 return 0;
1212
1213 err:
1214 if (page)
1215 page_cache_release(page);
1216 if (e4b->bd_bitmap_page)
1217 page_cache_release(e4b->bd_bitmap_page);
1218 if (e4b->bd_buddy_page)
1219 page_cache_release(e4b->bd_buddy_page);
1220 e4b->bd_buddy = NULL;
1221 e4b->bd_bitmap = NULL;
1222 return ret;
1223 }
1224
1225 static void ext4_mb_unload_buddy(struct ext4_buddy *e4b)
1226 {
1227 if (e4b->bd_bitmap_page)
1228 page_cache_release(e4b->bd_bitmap_page);
1229 if (e4b->bd_buddy_page)
1230 page_cache_release(e4b->bd_buddy_page);
1231 }
1232
1233
1234 static int mb_find_order_for_block(struct ext4_buddy *e4b, int block)
1235 {
1236 int order = 1;
1237 void *bb;
1238
1239 BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
1240 BUG_ON(block >= (1 << (e4b->bd_blkbits + 3)));
1241
1242 bb = e4b->bd_buddy;
1243 while (order <= e4b->bd_blkbits + 1) {
1244 block = block >> 1;
1245 if (!mb_test_bit(block, bb)) {
1246 /* this block is part of buddy of order 'order' */
1247 return order;
1248 }
1249 bb += 1 << (e4b->bd_blkbits - order);
1250 order++;
1251 }
1252 return 0;
1253 }
1254
1255 static void mb_clear_bits(void *bm, int cur, int len)
1256 {
1257 __u32 *addr;
1258
1259 len = cur + len;
1260 while (cur < len) {
1261 if ((cur & 31) == 0 && (len - cur) >= 32) {
1262 /* fast path: clear whole word at once */
1263 addr = bm + (cur >> 3);
1264 *addr = 0;
1265 cur += 32;
1266 continue;
1267 }
1268 mb_clear_bit(cur, bm);
1269 cur++;
1270 }
1271 }
1272
1273 /* clear bits in given range
1274 * will return first found zero bit if any, -1 otherwise
1275 */
1276 static int mb_test_and_clear_bits(void *bm, int cur, int len)
1277 {
1278 __u32 *addr;
1279 int zero_bit = -1;
1280
1281 len = cur + len;
1282 while (cur < len) {
1283 if ((cur & 31) == 0 && (len - cur) >= 32) {
1284 /* fast path: clear whole word at once */
1285 addr = bm + (cur >> 3);
1286 if (*addr != (__u32)(-1) && zero_bit == -1)
1287 zero_bit = cur + mb_find_next_zero_bit(addr, 32, 0);
1288 *addr = 0;
1289 cur += 32;
1290 continue;
1291 }
1292 if (!mb_test_and_clear_bit(cur, bm) && zero_bit == -1)
1293 zero_bit = cur;
1294 cur++;
1295 }
1296
1297 return zero_bit;
1298 }
1299
1300 void ext4_set_bits(void *bm, int cur, int len)
1301 {
1302 __u32 *addr;
1303
1304 len = cur + len;
1305 while (cur < len) {
1306 if ((cur & 31) == 0 && (len - cur) >= 32) {
1307 /* fast path: set whole word at once */
1308 addr = bm + (cur >> 3);
1309 *addr = 0xffffffff;
1310 cur += 32;
1311 continue;
1312 }
1313 mb_set_bit(cur, bm);
1314 cur++;
1315 }
1316 }
1317
1318 /*
1319 * _________________________________________________________________ */
1320
1321 static inline int mb_buddy_adjust_border(int* bit, void* bitmap, int side)
1322 {
1323 if (mb_test_bit(*bit + side, bitmap)) {
1324 mb_clear_bit(*bit, bitmap);
1325 (*bit) -= side;
1326 return 1;
1327 }
1328 else {
1329 (*bit) += side;
1330 mb_set_bit(*bit, bitmap);
1331 return -1;
1332 }
1333 }
1334
1335 static void mb_buddy_mark_free(struct ext4_buddy *e4b, int first, int last)
1336 {
1337 int max;
1338 int order = 1;
1339 void *buddy = mb_find_buddy(e4b, order, &max);
1340
1341 while (buddy) {
1342 void *buddy2;
1343
1344 /* Bits in range [first; last] are known to be set since
1345 * corresponding blocks were allocated. Bits in range
1346 * (first; last) will stay set because they form buddies on
1347 * upper layer. We just deal with borders if they don't
1348 * align with upper layer and then go up.
1349 * Releasing entire group is all about clearing
1350 * single bit of highest order buddy.
1351 */
1352
1353 /* Example:
1354 * ---------------------------------
1355 * | 1 | 1 | 1 | 1 |
1356 * ---------------------------------
1357 * | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
1358 * ---------------------------------
1359 * 0 1 2 3 4 5 6 7
1360 * \_____________________/
1361 *
1362 * Neither [1] nor [6] is aligned to above layer.
1363 * Left neighbour [0] is free, so mark it busy,
1364 * decrease bb_counters and extend range to
1365 * [0; 6]
1366 * Right neighbour [7] is busy. It can't be coaleasced with [6], so
1367 * mark [6] free, increase bb_counters and shrink range to
1368 * [0; 5].
1369 * Then shift range to [0; 2], go up and do the same.
1370 */
1371
1372
1373 if (first & 1)
1374 e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&first, buddy, -1);
1375 if (!(last & 1))
1376 e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&last, buddy, 1);
1377 if (first > last)
1378 break;
1379 order++;
1380
1381 if (first == last || !(buddy2 = mb_find_buddy(e4b, order, &max))) {
1382 mb_clear_bits(buddy, first, last - first + 1);
1383 e4b->bd_info->bb_counters[order - 1] += last - first + 1;
1384 break;
1385 }
1386 first >>= 1;
1387 last >>= 1;
1388 buddy = buddy2;
1389 }
1390 }
1391
1392 static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b,
1393 int first, int count)
1394 {
1395 int left_is_free = 0;
1396 int right_is_free = 0;
1397 int block;
1398 int last = first + count - 1;
1399 struct super_block *sb = e4b->bd_sb;
1400
1401 BUG_ON(last >= (sb->s_blocksize << 3));
1402 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
1403 /* Don't bother if the block group is corrupt. */
1404 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info)))
1405 return;
1406
1407 mb_check_buddy(e4b);
1408 mb_free_blocks_double(inode, e4b, first, count);
1409
1410 e4b->bd_info->bb_free += count;
1411 if (first < e4b->bd_info->bb_first_free)
1412 e4b->bd_info->bb_first_free = first;
1413
1414 /* access memory sequentially: check left neighbour,
1415 * clear range and then check right neighbour
1416 */
1417 if (first != 0)
1418 left_is_free = !mb_test_bit(first - 1, e4b->bd_bitmap);
1419 block = mb_test_and_clear_bits(e4b->bd_bitmap, first, count);
1420 if (last + 1 < EXT4_SB(sb)->s_mb_maxs[0])
1421 right_is_free = !mb_test_bit(last + 1, e4b->bd_bitmap);
1422
1423 if (unlikely(block != -1)) {
1424 ext4_fsblk_t blocknr;
1425
1426 blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
1427 blocknr += EXT4_C2B(EXT4_SB(sb), block);
1428 ext4_grp_locked_error(sb, e4b->bd_group,
1429 inode ? inode->i_ino : 0,
1430 blocknr,
1431 "freeing already freed block "
1432 "(bit %u); block bitmap corrupt.",
1433 block);
1434 /* Mark the block group as corrupt. */
1435 set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT,
1436 &e4b->bd_info->bb_state);
1437 mb_regenerate_buddy(e4b);
1438 goto done;
1439 }
1440
1441 /* let's maintain fragments counter */
1442 if (left_is_free && right_is_free)
1443 e4b->bd_info->bb_fragments--;
1444 else if (!left_is_free && !right_is_free)
1445 e4b->bd_info->bb_fragments++;
1446
1447 /* buddy[0] == bd_bitmap is a special case, so handle
1448 * it right away and let mb_buddy_mark_free stay free of
1449 * zero order checks.
1450 * Check if neighbours are to be coaleasced,
1451 * adjust bitmap bb_counters and borders appropriately.
1452 */
1453 if (first & 1) {
1454 first += !left_is_free;
1455 e4b->bd_info->bb_counters[0] += left_is_free ? -1 : 1;
1456 }
1457 if (!(last & 1)) {
1458 last -= !right_is_free;
1459 e4b->bd_info->bb_counters[0] += right_is_free ? -1 : 1;
1460 }
1461
1462 if (first <= last)
1463 mb_buddy_mark_free(e4b, first >> 1, last >> 1);
1464
1465 done:
1466 mb_set_largest_free_order(sb, e4b->bd_info);
1467 mb_check_buddy(e4b);
1468 }
1469
1470 static int mb_find_extent(struct ext4_buddy *e4b, int block,
1471 int needed, struct ext4_free_extent *ex)
1472 {
1473 int next = block;
1474 int max, order;
1475 void *buddy;
1476
1477 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1478 BUG_ON(ex == NULL);
1479
1480 buddy = mb_find_buddy(e4b, 0, &max);
1481 BUG_ON(buddy == NULL);
1482 BUG_ON(block >= max);
1483 if (mb_test_bit(block, buddy)) {
1484 ex->fe_len = 0;
1485 ex->fe_start = 0;
1486 ex->fe_group = 0;
1487 return 0;
1488 }
1489
1490 /* find actual order */
1491 order = mb_find_order_for_block(e4b, block);
1492 block = block >> order;
1493
1494 ex->fe_len = 1 << order;
1495 ex->fe_start = block << order;
1496 ex->fe_group = e4b->bd_group;
1497
1498 /* calc difference from given start */
1499 next = next - ex->fe_start;
1500 ex->fe_len -= next;
1501 ex->fe_start += next;
1502
1503 while (needed > ex->fe_len &&
1504 mb_find_buddy(e4b, order, &max)) {
1505
1506 if (block + 1 >= max)
1507 break;
1508
1509 next = (block + 1) * (1 << order);
1510 if (mb_test_bit(next, e4b->bd_bitmap))
1511 break;
1512
1513 order = mb_find_order_for_block(e4b, next);
1514
1515 block = next >> order;
1516 ex->fe_len += 1 << order;
1517 }
1518
1519 BUG_ON(ex->fe_start + ex->fe_len > (1 << (e4b->bd_blkbits + 3)));
1520 return ex->fe_len;
1521 }
1522
1523 static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex)
1524 {
1525 int ord;
1526 int mlen = 0;
1527 int max = 0;
1528 int cur;
1529 int start = ex->fe_start;
1530 int len = ex->fe_len;
1531 unsigned ret = 0;
1532 int len0 = len;
1533 void *buddy;
1534
1535 BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3));
1536 BUG_ON(e4b->bd_group != ex->fe_group);
1537 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1538 mb_check_buddy(e4b);
1539 mb_mark_used_double(e4b, start, len);
1540
1541 e4b->bd_info->bb_free -= len;
1542 if (e4b->bd_info->bb_first_free == start)
1543 e4b->bd_info->bb_first_free += len;
1544
1545 /* let's maintain fragments counter */
1546 if (start != 0)
1547 mlen = !mb_test_bit(start - 1, e4b->bd_bitmap);
1548 if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0])
1549 max = !mb_test_bit(start + len, e4b->bd_bitmap);
1550 if (mlen && max)
1551 e4b->bd_info->bb_fragments++;
1552 else if (!mlen && !max)
1553 e4b->bd_info->bb_fragments--;
1554
1555 /* let's maintain buddy itself */
1556 while (len) {
1557 ord = mb_find_order_for_block(e4b, start);
1558
1559 if (((start >> ord) << ord) == start && len >= (1 << ord)) {
1560 /* the whole chunk may be allocated at once! */
1561 mlen = 1 << ord;
1562 buddy = mb_find_buddy(e4b, ord, &max);
1563 BUG_ON((start >> ord) >= max);
1564 mb_set_bit(start >> ord, buddy);
1565 e4b->bd_info->bb_counters[ord]--;
1566 start += mlen;
1567 len -= mlen;
1568 BUG_ON(len < 0);
1569 continue;
1570 }
1571
1572 /* store for history */
1573 if (ret == 0)
1574 ret = len | (ord << 16);
1575
1576 /* we have to split large buddy */
1577 BUG_ON(ord <= 0);
1578 buddy = mb_find_buddy(e4b, ord, &max);
1579 mb_set_bit(start >> ord, buddy);
1580 e4b->bd_info->bb_counters[ord]--;
1581
1582 ord--;
1583 cur = (start >> ord) & ~1U;
1584 buddy = mb_find_buddy(e4b, ord, &max);
1585 mb_clear_bit(cur, buddy);
1586 mb_clear_bit(cur + 1, buddy);
1587 e4b->bd_info->bb_counters[ord]++;
1588 e4b->bd_info->bb_counters[ord]++;
1589 }
1590 mb_set_largest_free_order(e4b->bd_sb, e4b->bd_info);
1591
1592 ext4_set_bits(e4b->bd_bitmap, ex->fe_start, len0);
1593 mb_check_buddy(e4b);
1594
1595 return ret;
1596 }
1597
1598 /*
1599 * Must be called under group lock!
1600 */
1601 static void ext4_mb_use_best_found(struct ext4_allocation_context *ac,
1602 struct ext4_buddy *e4b)
1603 {
1604 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1605 int ret;
1606
1607 BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group);
1608 BUG_ON(ac->ac_status == AC_STATUS_FOUND);
1609
1610 ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len);
1611 ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical;
1612 ret = mb_mark_used(e4b, &ac->ac_b_ex);
1613
1614 /* preallocation can change ac_b_ex, thus we store actually
1615 * allocated blocks for history */
1616 ac->ac_f_ex = ac->ac_b_ex;
1617
1618 ac->ac_status = AC_STATUS_FOUND;
1619 ac->ac_tail = ret & 0xffff;
1620 ac->ac_buddy = ret >> 16;
1621
1622 /*
1623 * take the page reference. We want the page to be pinned
1624 * so that we don't get a ext4_mb_init_cache_call for this
1625 * group until we update the bitmap. That would mean we
1626 * double allocate blocks. The reference is dropped
1627 * in ext4_mb_release_context
1628 */
1629 ac->ac_bitmap_page = e4b->bd_bitmap_page;
1630 get_page(ac->ac_bitmap_page);
1631 ac->ac_buddy_page = e4b->bd_buddy_page;
1632 get_page(ac->ac_buddy_page);
1633 /* store last allocated for subsequent stream allocation */
1634 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
1635 spin_lock(&sbi->s_md_lock);
1636 sbi->s_mb_last_group = ac->ac_f_ex.fe_group;
1637 sbi->s_mb_last_start = ac->ac_f_ex.fe_start;
1638 spin_unlock(&sbi->s_md_lock);
1639 }
1640 }
1641
1642 /*
1643 * regular allocator, for general purposes allocation
1644 */
1645
1646 static void ext4_mb_check_limits(struct ext4_allocation_context *ac,
1647 struct ext4_buddy *e4b,
1648 int finish_group)
1649 {
1650 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1651 struct ext4_free_extent *bex = &ac->ac_b_ex;
1652 struct ext4_free_extent *gex = &ac->ac_g_ex;
1653 struct ext4_free_extent ex;
1654 int max;
1655
1656 if (ac->ac_status == AC_STATUS_FOUND)
1657 return;
1658 /*
1659 * We don't want to scan for a whole year
1660 */
1661 if (ac->ac_found > sbi->s_mb_max_to_scan &&
1662 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1663 ac->ac_status = AC_STATUS_BREAK;
1664 return;
1665 }
1666
1667 /*
1668 * Haven't found good chunk so far, let's continue
1669 */
1670 if (bex->fe_len < gex->fe_len)
1671 return;
1672
1673 if ((finish_group || ac->ac_found > sbi->s_mb_min_to_scan)
1674 && bex->fe_group == e4b->bd_group) {
1675 /* recheck chunk's availability - we don't know
1676 * when it was found (within this lock-unlock
1677 * period or not) */
1678 max = mb_find_extent(e4b, bex->fe_start, gex->fe_len, &ex);
1679 if (max >= gex->fe_len) {
1680 ext4_mb_use_best_found(ac, e4b);
1681 return;
1682 }
1683 }
1684 }
1685
1686 /*
1687 * The routine checks whether found extent is good enough. If it is,
1688 * then the extent gets marked used and flag is set to the context
1689 * to stop scanning. Otherwise, the extent is compared with the
1690 * previous found extent and if new one is better, then it's stored
1691 * in the context. Later, the best found extent will be used, if
1692 * mballoc can't find good enough extent.
1693 *
1694 * FIXME: real allocation policy is to be designed yet!
1695 */
1696 static void ext4_mb_measure_extent(struct ext4_allocation_context *ac,
1697 struct ext4_free_extent *ex,
1698 struct ext4_buddy *e4b)
1699 {
1700 struct ext4_free_extent *bex = &ac->ac_b_ex;
1701 struct ext4_free_extent *gex = &ac->ac_g_ex;
1702
1703 BUG_ON(ex->fe_len <= 0);
1704 BUG_ON(ex->fe_len > EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
1705 BUG_ON(ex->fe_start >= EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
1706 BUG_ON(ac->ac_status != AC_STATUS_CONTINUE);
1707
1708 ac->ac_found++;
1709
1710 /*
1711 * The special case - take what you catch first
1712 */
1713 if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1714 *bex = *ex;
1715 ext4_mb_use_best_found(ac, e4b);
1716 return;
1717 }
1718
1719 /*
1720 * Let's check whether the chuck is good enough
1721 */
1722 if (ex->fe_len == gex->fe_len) {
1723 *bex = *ex;
1724 ext4_mb_use_best_found(ac, e4b);
1725 return;
1726 }
1727
1728 /*
1729 * If this is first found extent, just store it in the context
1730 */
1731 if (bex->fe_len == 0) {
1732 *bex = *ex;
1733 return;
1734 }
1735
1736 /*
1737 * If new found extent is better, store it in the context
1738 */
1739 if (bex->fe_len < gex->fe_len) {
1740 /* if the request isn't satisfied, any found extent
1741 * larger than previous best one is better */
1742 if (ex->fe_len > bex->fe_len)
1743 *bex = *ex;
1744 } else if (ex->fe_len > gex->fe_len) {
1745 /* if the request is satisfied, then we try to find
1746 * an extent that still satisfy the request, but is
1747 * smaller than previous one */
1748 if (ex->fe_len < bex->fe_len)
1749 *bex = *ex;
1750 }
1751
1752 ext4_mb_check_limits(ac, e4b, 0);
1753 }
1754
1755 static noinline_for_stack
1756 int ext4_mb_try_best_found(struct ext4_allocation_context *ac,
1757 struct ext4_buddy *e4b)
1758 {
1759 struct ext4_free_extent ex = ac->ac_b_ex;
1760 ext4_group_t group = ex.fe_group;
1761 int max;
1762 int err;
1763
1764 BUG_ON(ex.fe_len <= 0);
1765 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1766 if (err)
1767 return err;
1768
1769 ext4_lock_group(ac->ac_sb, group);
1770 max = mb_find_extent(e4b, ex.fe_start, ex.fe_len, &ex);
1771
1772 if (max > 0) {
1773 ac->ac_b_ex = ex;
1774 ext4_mb_use_best_found(ac, e4b);
1775 }
1776
1777 ext4_unlock_group(ac->ac_sb, group);
1778 ext4_mb_unload_buddy(e4b);
1779
1780 return 0;
1781 }
1782
1783 static noinline_for_stack
1784 int ext4_mb_find_by_goal(struct ext4_allocation_context *ac,
1785 struct ext4_buddy *e4b)
1786 {
1787 ext4_group_t group = ac->ac_g_ex.fe_group;
1788 int max;
1789 int err;
1790 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1791 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
1792 struct ext4_free_extent ex;
1793
1794 if (!(ac->ac_flags & EXT4_MB_HINT_TRY_GOAL))
1795 return 0;
1796 if (grp->bb_free == 0)
1797 return 0;
1798
1799 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1800 if (err)
1801 return err;
1802
1803 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info))) {
1804 ext4_mb_unload_buddy(e4b);
1805 return 0;
1806 }
1807
1808 ext4_lock_group(ac->ac_sb, group);
1809 max = mb_find_extent(e4b, ac->ac_g_ex.fe_start,
1810 ac->ac_g_ex.fe_len, &ex);
1811 ex.fe_logical = 0xDEADFA11; /* debug value */
1812
1813 if (max >= ac->ac_g_ex.fe_len && ac->ac_g_ex.fe_len == sbi->s_stripe) {
1814 ext4_fsblk_t start;
1815
1816 start = ext4_group_first_block_no(ac->ac_sb, e4b->bd_group) +
1817 ex.fe_start;
1818 /* use do_div to get remainder (would be 64-bit modulo) */
1819 if (do_div(start, sbi->s_stripe) == 0) {
1820 ac->ac_found++;
1821 ac->ac_b_ex = ex;
1822 ext4_mb_use_best_found(ac, e4b);
1823 }
1824 } else if (max >= ac->ac_g_ex.fe_len) {
1825 BUG_ON(ex.fe_len <= 0);
1826 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1827 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1828 ac->ac_found++;
1829 ac->ac_b_ex = ex;
1830 ext4_mb_use_best_found(ac, e4b);
1831 } else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) {
1832 /* Sometimes, caller may want to merge even small
1833 * number of blocks to an existing extent */
1834 BUG_ON(ex.fe_len <= 0);
1835 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1836 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1837 ac->ac_found++;
1838 ac->ac_b_ex = ex;
1839 ext4_mb_use_best_found(ac, e4b);
1840 }
1841 ext4_unlock_group(ac->ac_sb, group);
1842 ext4_mb_unload_buddy(e4b);
1843
1844 return 0;
1845 }
1846
1847 /*
1848 * The routine scans buddy structures (not bitmap!) from given order
1849 * to max order and tries to find big enough chunk to satisfy the req
1850 */
1851 static noinline_for_stack
1852 void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac,
1853 struct ext4_buddy *e4b)
1854 {
1855 struct super_block *sb = ac->ac_sb;
1856 struct ext4_group_info *grp = e4b->bd_info;
1857 void *buddy;
1858 int i;
1859 int k;
1860 int max;
1861
1862 BUG_ON(ac->ac_2order <= 0);
1863 for (i = ac->ac_2order; i <= sb->s_blocksize_bits + 1; i++) {
1864 if (grp->bb_counters[i] == 0)
1865 continue;
1866
1867 buddy = mb_find_buddy(e4b, i, &max);
1868 BUG_ON(buddy == NULL);
1869
1870 k = mb_find_next_zero_bit(buddy, max, 0);
1871 BUG_ON(k >= max);
1872
1873 ac->ac_found++;
1874
1875 ac->ac_b_ex.fe_len = 1 << i;
1876 ac->ac_b_ex.fe_start = k << i;
1877 ac->ac_b_ex.fe_group = e4b->bd_group;
1878
1879 ext4_mb_use_best_found(ac, e4b);
1880
1881 BUG_ON(ac->ac_b_ex.fe_len != ac->ac_g_ex.fe_len);
1882
1883 if (EXT4_SB(sb)->s_mb_stats)
1884 atomic_inc(&EXT4_SB(sb)->s_bal_2orders);
1885
1886 break;
1887 }
1888 }
1889
1890 /*
1891 * The routine scans the group and measures all found extents.
1892 * In order to optimize scanning, caller must pass number of
1893 * free blocks in the group, so the routine can know upper limit.
1894 */
1895 static noinline_for_stack
1896 void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac,
1897 struct ext4_buddy *e4b)
1898 {
1899 struct super_block *sb = ac->ac_sb;
1900 void *bitmap = e4b->bd_bitmap;
1901 struct ext4_free_extent ex;
1902 int i;
1903 int free;
1904
1905 free = e4b->bd_info->bb_free;
1906 BUG_ON(free <= 0);
1907
1908 i = e4b->bd_info->bb_first_free;
1909
1910 while (free && ac->ac_status == AC_STATUS_CONTINUE) {
1911 i = mb_find_next_zero_bit(bitmap,
1912 EXT4_CLUSTERS_PER_GROUP(sb), i);
1913 if (i >= EXT4_CLUSTERS_PER_GROUP(sb)) {
1914 /*
1915 * IF we have corrupt bitmap, we won't find any
1916 * free blocks even though group info says we
1917 * we have free blocks
1918 */
1919 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
1920 "%d free clusters as per "
1921 "group info. But bitmap says 0",
1922 free);
1923 break;
1924 }
1925
1926 mb_find_extent(e4b, i, ac->ac_g_ex.fe_len, &ex);
1927 BUG_ON(ex.fe_len <= 0);
1928 if (free < ex.fe_len) {
1929 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
1930 "%d free clusters as per "
1931 "group info. But got %d blocks",
1932 free, ex.fe_len);
1933 /*
1934 * The number of free blocks differs. This mostly
1935 * indicate that the bitmap is corrupt. So exit
1936 * without claiming the space.
1937 */
1938 break;
1939 }
1940 ex.fe_logical = 0xDEADC0DE; /* debug value */
1941 ext4_mb_measure_extent(ac, &ex, e4b);
1942
1943 i += ex.fe_len;
1944 free -= ex.fe_len;
1945 }
1946
1947 ext4_mb_check_limits(ac, e4b, 1);
1948 }
1949
1950 /*
1951 * This is a special case for storages like raid5
1952 * we try to find stripe-aligned chunks for stripe-size-multiple requests
1953 */
1954 static noinline_for_stack
1955 void ext4_mb_scan_aligned(struct ext4_allocation_context *ac,
1956 struct ext4_buddy *e4b)
1957 {
1958 struct super_block *sb = ac->ac_sb;
1959 struct ext4_sb_info *sbi = EXT4_SB(sb);
1960 void *bitmap = e4b->bd_bitmap;
1961 struct ext4_free_extent ex;
1962 ext4_fsblk_t first_group_block;
1963 ext4_fsblk_t a;
1964 ext4_grpblk_t i;
1965 int max;
1966
1967 BUG_ON(sbi->s_stripe == 0);
1968
1969 /* find first stripe-aligned block in group */
1970 first_group_block = ext4_group_first_block_no(sb, e4b->bd_group);
1971
1972 a = first_group_block + sbi->s_stripe - 1;
1973 do_div(a, sbi->s_stripe);
1974 i = (a * sbi->s_stripe) - first_group_block;
1975
1976 while (i < EXT4_CLUSTERS_PER_GROUP(sb)) {
1977 if (!mb_test_bit(i, bitmap)) {
1978 max = mb_find_extent(e4b, i, sbi->s_stripe, &ex);
1979 if (max >= sbi->s_stripe) {
1980 ac->ac_found++;
1981 ex.fe_logical = 0xDEADF00D; /* debug value */
1982 ac->ac_b_ex = ex;
1983 ext4_mb_use_best_found(ac, e4b);
1984 break;
1985 }
1986 }
1987 i += sbi->s_stripe;
1988 }
1989 }
1990
1991 /* This is now called BEFORE we load the buddy bitmap. */
1992 static int ext4_mb_good_group(struct ext4_allocation_context *ac,
1993 ext4_group_t group, int cr)
1994 {
1995 unsigned free, fragments;
1996 int flex_size = ext4_flex_bg_size(EXT4_SB(ac->ac_sb));
1997 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
1998
1999 BUG_ON(cr < 0 || cr >= 4);
2000
2001 free = grp->bb_free;
2002 if (free == 0)
2003 return 0;
2004 if (cr <= 2 && free < ac->ac_g_ex.fe_len)
2005 return 0;
2006
2007 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(grp)))
2008 return 0;
2009
2010 /* We only do this if the grp has never been initialized */
2011 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
2012 int ret = ext4_mb_init_group(ac->ac_sb, group);
2013 if (ret)
2014 return 0;
2015 }
2016
2017 fragments = grp->bb_fragments;
2018 if (fragments == 0)
2019 return 0;
2020
2021 switch (cr) {
2022 case 0:
2023 BUG_ON(ac->ac_2order == 0);
2024
2025 /* Avoid using the first bg of a flexgroup for data files */
2026 if ((ac->ac_flags & EXT4_MB_HINT_DATA) &&
2027 (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) &&
2028 ((group % flex_size) == 0))
2029 return 0;
2030
2031 if ((ac->ac_2order > ac->ac_sb->s_blocksize_bits+1) ||
2032 (free / fragments) >= ac->ac_g_ex.fe_len)
2033 return 1;
2034
2035 if (grp->bb_largest_free_order < ac->ac_2order)
2036 return 0;
2037
2038 return 1;
2039 case 1:
2040 if ((free / fragments) >= ac->ac_g_ex.fe_len)
2041 return 1;
2042 break;
2043 case 2:
2044 if (free >= ac->ac_g_ex.fe_len)
2045 return 1;
2046 break;
2047 case 3:
2048 return 1;
2049 default:
2050 BUG();
2051 }
2052
2053 return 0;
2054 }
2055
2056 static noinline_for_stack int
2057 ext4_mb_regular_allocator(struct ext4_allocation_context *ac)
2058 {
2059 ext4_group_t ngroups, group, i;
2060 int cr;
2061 int err = 0;
2062 struct ext4_sb_info *sbi;
2063 struct super_block *sb;
2064 struct ext4_buddy e4b;
2065
2066 sb = ac->ac_sb;
2067 sbi = EXT4_SB(sb);
2068 ngroups = ext4_get_groups_count(sb);
2069 /* non-extent files are limited to low blocks/groups */
2070 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)))
2071 ngroups = sbi->s_blockfile_groups;
2072
2073 BUG_ON(ac->ac_status == AC_STATUS_FOUND);
2074
2075 /* first, try the goal */
2076 err = ext4_mb_find_by_goal(ac, &e4b);
2077 if (err || ac->ac_status == AC_STATUS_FOUND)
2078 goto out;
2079
2080 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
2081 goto out;
2082
2083 /*
2084 * ac->ac2_order is set only if the fe_len is a power of 2
2085 * if ac2_order is set we also set criteria to 0 so that we
2086 * try exact allocation using buddy.
2087 */
2088 i = fls(ac->ac_g_ex.fe_len);
2089 ac->ac_2order = 0;
2090 /*
2091 * We search using buddy data only if the order of the request
2092 * is greater than equal to the sbi_s_mb_order2_reqs
2093 * You can tune it via /sys/fs/ext4/<partition>/mb_order2_req
2094 */
2095 if (i >= sbi->s_mb_order2_reqs) {
2096 /*
2097 * This should tell if fe_len is exactly power of 2
2098 */
2099 if ((ac->ac_g_ex.fe_len & (~(1 << (i - 1)))) == 0)
2100 ac->ac_2order = i - 1;
2101 }
2102
2103 /* if stream allocation is enabled, use global goal */
2104 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
2105 /* TBD: may be hot point */
2106 spin_lock(&sbi->s_md_lock);
2107 ac->ac_g_ex.fe_group = sbi->s_mb_last_group;
2108 ac->ac_g_ex.fe_start = sbi->s_mb_last_start;
2109 spin_unlock(&sbi->s_md_lock);
2110 }
2111
2112 /* Let's just scan groups to find more-less suitable blocks */
2113 cr = ac->ac_2order ? 0 : 1;
2114 /*
2115 * cr == 0 try to get exact allocation,
2116 * cr == 3 try to get anything
2117 */
2118 repeat:
2119 for (; cr < 4 && ac->ac_status == AC_STATUS_CONTINUE; cr++) {
2120 ac->ac_criteria = cr;
2121 /*
2122 * searching for the right group start
2123 * from the goal value specified
2124 */
2125 group = ac->ac_g_ex.fe_group;
2126
2127 for (i = 0; i < ngroups; group++, i++) {
2128 cond_resched();
2129 /*
2130 * Artificially restricted ngroups for non-extent
2131 * files makes group > ngroups possible on first loop.
2132 */
2133 if (group >= ngroups)
2134 group = 0;
2135
2136 /* This now checks without needing the buddy page */
2137 if (!ext4_mb_good_group(ac, group, cr))
2138 continue;
2139
2140 err = ext4_mb_load_buddy(sb, group, &e4b);
2141 if (err)
2142 goto out;
2143
2144 ext4_lock_group(sb, group);
2145
2146 /*
2147 * We need to check again after locking the
2148 * block group
2149 */
2150 if (!ext4_mb_good_group(ac, group, cr)) {
2151 ext4_unlock_group(sb, group);
2152 ext4_mb_unload_buddy(&e4b);
2153 continue;
2154 }
2155
2156 ac->ac_groups_scanned++;
2157 if (cr == 0 && ac->ac_2order < sb->s_blocksize_bits+2)
2158 ext4_mb_simple_scan_group(ac, &e4b);
2159 else if (cr == 1 && sbi->s_stripe &&
2160 !(ac->ac_g_ex.fe_len % sbi->s_stripe))
2161 ext4_mb_scan_aligned(ac, &e4b);
2162 else
2163 ext4_mb_complex_scan_group(ac, &e4b);
2164
2165 ext4_unlock_group(sb, group);
2166 ext4_mb_unload_buddy(&e4b);
2167
2168 if (ac->ac_status != AC_STATUS_CONTINUE)
2169 break;
2170 }
2171 }
2172
2173 if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND &&
2174 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2175 /*
2176 * We've been searching too long. Let's try to allocate
2177 * the best chunk we've found so far
2178 */
2179
2180 ext4_mb_try_best_found(ac, &e4b);
2181 if (ac->ac_status != AC_STATUS_FOUND) {
2182 /*
2183 * Someone more lucky has already allocated it.
2184 * The only thing we can do is just take first
2185 * found block(s)
2186 printk(KERN_DEBUG "EXT4-fs: someone won our chunk\n");
2187 */
2188 ac->ac_b_ex.fe_group = 0;
2189 ac->ac_b_ex.fe_start = 0;
2190 ac->ac_b_ex.fe_len = 0;
2191 ac->ac_status = AC_STATUS_CONTINUE;
2192 ac->ac_flags |= EXT4_MB_HINT_FIRST;
2193 cr = 3;
2194 atomic_inc(&sbi->s_mb_lost_chunks);
2195 goto repeat;
2196 }
2197 }
2198 out:
2199 return err;
2200 }
2201
2202 static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos)
2203 {
2204 struct super_block *sb = seq->private;
2205 ext4_group_t group;
2206
2207 if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2208 return NULL;
2209 group = *pos + 1;
2210 return (void *) ((unsigned long) group);
2211 }
2212
2213 static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos)
2214 {
2215 struct super_block *sb = seq->private;
2216 ext4_group_t group;
2217
2218 ++*pos;
2219 if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2220 return NULL;
2221 group = *pos + 1;
2222 return (void *) ((unsigned long) group);
2223 }
2224
2225 static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v)
2226 {
2227 struct super_block *sb = seq->private;
2228 ext4_group_t group = (ext4_group_t) ((unsigned long) v);
2229 int i;
2230 int err, buddy_loaded = 0;
2231 struct ext4_buddy e4b;
2232 struct ext4_group_info *grinfo;
2233 struct sg {
2234 struct ext4_group_info info;
2235 ext4_grpblk_t counters[16];
2236 } sg;
2237
2238 group--;
2239 if (group == 0)
2240 seq_printf(seq, "#%-5s: %-5s %-5s %-5s "
2241 "[ %-5s %-5s %-5s %-5s %-5s %-5s %-5s "
2242 "%-5s %-5s %-5s %-5s %-5s %-5s %-5s ]\n",
2243 "group", "free", "frags", "first",
2244 "2^0", "2^1", "2^2", "2^3", "2^4", "2^5", "2^6",
2245 "2^7", "2^8", "2^9", "2^10", "2^11", "2^12", "2^13");
2246
2247 i = (sb->s_blocksize_bits + 2) * sizeof(sg.info.bb_counters[0]) +
2248 sizeof(struct ext4_group_info);
2249 grinfo = ext4_get_group_info(sb, group);
2250 /* Load the group info in memory only if not already loaded. */
2251 if (unlikely(EXT4_MB_GRP_NEED_INIT(grinfo))) {
2252 err = ext4_mb_load_buddy(sb, group, &e4b);
2253 if (err) {
2254 seq_printf(seq, "#%-5u: I/O error\n", group);
2255 return 0;
2256 }
2257 buddy_loaded = 1;
2258 }
2259
2260 memcpy(&sg, ext4_get_group_info(sb, group), i);
2261
2262 if (buddy_loaded)
2263 ext4_mb_unload_buddy(&e4b);
2264
2265 seq_printf(seq, "#%-5u: %-5u %-5u %-5u [", group, sg.info.bb_free,
2266 sg.info.bb_fragments, sg.info.bb_first_free);
2267 for (i = 0; i <= 13; i++)
2268 seq_printf(seq, " %-5u", i <= sb->s_blocksize_bits + 1 ?
2269 sg.info.bb_counters[i] : 0);
2270 seq_printf(seq, " ]\n");
2271
2272 return 0;
2273 }
2274
2275 static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v)
2276 {
2277 }
2278
2279 static const struct seq_operations ext4_mb_seq_groups_ops = {
2280 .start = ext4_mb_seq_groups_start,
2281 .next = ext4_mb_seq_groups_next,
2282 .stop = ext4_mb_seq_groups_stop,
2283 .show = ext4_mb_seq_groups_show,
2284 };
2285
2286 static int ext4_mb_seq_groups_open(struct inode *inode, struct file *file)
2287 {
2288 struct super_block *sb = PDE_DATA(inode);
2289 int rc;
2290
2291 rc = seq_open(file, &ext4_mb_seq_groups_ops);
2292 if (rc == 0) {
2293 struct seq_file *m = file->private_data;
2294 m->private = sb;
2295 }
2296 return rc;
2297
2298 }
2299
2300 static const struct file_operations ext4_mb_seq_groups_fops = {
2301 .owner = THIS_MODULE,
2302 .open = ext4_mb_seq_groups_open,
2303 .read = seq_read,
2304 .llseek = seq_lseek,
2305 .release = seq_release,
2306 };
2307
2308 static struct kmem_cache *get_groupinfo_cache(int blocksize_bits)
2309 {
2310 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
2311 struct kmem_cache *cachep = ext4_groupinfo_caches[cache_index];
2312
2313 BUG_ON(!cachep);
2314 return cachep;
2315 }
2316
2317 /*
2318 * Allocate the top-level s_group_info array for the specified number
2319 * of groups
2320 */
2321 int ext4_mb_alloc_groupinfo(struct super_block *sb, ext4_group_t ngroups)
2322 {
2323 struct ext4_sb_info *sbi = EXT4_SB(sb);
2324 unsigned size;
2325 struct ext4_group_info ***new_groupinfo;
2326
2327 size = (ngroups + EXT4_DESC_PER_BLOCK(sb) - 1) >>
2328 EXT4_DESC_PER_BLOCK_BITS(sb);
2329 if (size <= sbi->s_group_info_size)
2330 return 0;
2331
2332 size = roundup_pow_of_two(sizeof(*sbi->s_group_info) * size);
2333 new_groupinfo = ext4_kvzalloc(size, GFP_KERNEL);
2334 if (!new_groupinfo) {
2335 ext4_msg(sb, KERN_ERR, "can't allocate buddy meta group");
2336 return -ENOMEM;
2337 }
2338 if (sbi->s_group_info) {
2339 memcpy(new_groupinfo, sbi->s_group_info,
2340 sbi->s_group_info_size * sizeof(*sbi->s_group_info));
2341 ext4_kvfree(sbi->s_group_info);
2342 }
2343 sbi->s_group_info = new_groupinfo;
2344 sbi->s_group_info_size = size / sizeof(*sbi->s_group_info);
2345 ext4_debug("allocated s_groupinfo array for %d meta_bg's\n",
2346 sbi->s_group_info_size);
2347 return 0;
2348 }
2349
2350 /* Create and initialize ext4_group_info data for the given group. */
2351 int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group,
2352 struct ext4_group_desc *desc)
2353 {
2354 int i;
2355 int metalen = 0;
2356 struct ext4_sb_info *sbi = EXT4_SB(sb);
2357 struct ext4_group_info **meta_group_info;
2358 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2359
2360 /*
2361 * First check if this group is the first of a reserved block.
2362 * If it's true, we have to allocate a new table of pointers
2363 * to ext4_group_info structures
2364 */
2365 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
2366 metalen = sizeof(*meta_group_info) <<
2367 EXT4_DESC_PER_BLOCK_BITS(sb);
2368 meta_group_info = kmalloc(metalen, GFP_KERNEL);
2369 if (meta_group_info == NULL) {
2370 ext4_msg(sb, KERN_ERR, "can't allocate mem "
2371 "for a buddy group");
2372 goto exit_meta_group_info;
2373 }
2374 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)] =
2375 meta_group_info;
2376 }
2377
2378 meta_group_info =
2379 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)];
2380 i = group & (EXT4_DESC_PER_BLOCK(sb) - 1);
2381
2382 meta_group_info[i] = kmem_cache_zalloc(cachep, GFP_KERNEL);
2383 if (meta_group_info[i] == NULL) {
2384 ext4_msg(sb, KERN_ERR, "can't allocate buddy mem");
2385 goto exit_group_info;
2386 }
2387 set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT,
2388 &(meta_group_info[i]->bb_state));
2389
2390 /*
2391 * initialize bb_free to be able to skip
2392 * empty groups without initialization
2393 */
2394 if (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
2395 meta_group_info[i]->bb_free =
2396 ext4_free_clusters_after_init(sb, group, desc);
2397 } else {
2398 meta_group_info[i]->bb_free =
2399 ext4_free_group_clusters(sb, desc);
2400 }
2401
2402 INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list);
2403 init_rwsem(&meta_group_info[i]->alloc_sem);
2404 meta_group_info[i]->bb_free_root = RB_ROOT;
2405 meta_group_info[i]->bb_largest_free_order = -1; /* uninit */
2406
2407 #ifdef DOUBLE_CHECK
2408 {
2409 struct buffer_head *bh;
2410 meta_group_info[i]->bb_bitmap =
2411 kmalloc(sb->s_blocksize, GFP_KERNEL);
2412 BUG_ON(meta_group_info[i]->bb_bitmap == NULL);
2413 bh = ext4_read_block_bitmap(sb, group);
2414 BUG_ON(bh == NULL);
2415 memcpy(meta_group_info[i]->bb_bitmap, bh->b_data,
2416 sb->s_blocksize);
2417 put_bh(bh);
2418 }
2419 #endif
2420
2421 return 0;
2422
2423 exit_group_info:
2424 /* If a meta_group_info table has been allocated, release it now */
2425 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
2426 kfree(sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)]);
2427 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)] = NULL;
2428 }
2429 exit_meta_group_info:
2430 return -ENOMEM;
2431 } /* ext4_mb_add_groupinfo */
2432
2433 static int ext4_mb_init_backend(struct super_block *sb)
2434 {
2435 ext4_group_t ngroups = ext4_get_groups_count(sb);
2436 ext4_group_t i;
2437 struct ext4_sb_info *sbi = EXT4_SB(sb);
2438 int err;
2439 struct ext4_group_desc *desc;
2440 struct kmem_cache *cachep;
2441
2442 err = ext4_mb_alloc_groupinfo(sb, ngroups);
2443 if (err)
2444 return err;
2445
2446 sbi->s_buddy_cache = new_inode(sb);
2447 if (sbi->s_buddy_cache == NULL) {
2448 ext4_msg(sb, KERN_ERR, "can't get new inode");
2449 goto err_freesgi;
2450 }
2451 /* To avoid potentially colliding with an valid on-disk inode number,
2452 * use EXT4_BAD_INO for the buddy cache inode number. This inode is
2453 * not in the inode hash, so it should never be found by iget(), but
2454 * this will avoid confusion if it ever shows up during debugging. */
2455 sbi->s_buddy_cache->i_ino = EXT4_BAD_INO;
2456 EXT4_I(sbi->s_buddy_cache)->i_disksize = 0;
2457 for (i = 0; i < ngroups; i++) {
2458 desc = ext4_get_group_desc(sb, i, NULL);
2459 if (desc == NULL) {
2460 ext4_msg(sb, KERN_ERR, "can't read descriptor %u", i);
2461 goto err_freebuddy;
2462 }
2463 if (ext4_mb_add_groupinfo(sb, i, desc) != 0)
2464 goto err_freebuddy;
2465 }
2466
2467 return 0;
2468
2469 err_freebuddy:
2470 cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2471 while (i-- > 0)
2472 kmem_cache_free(cachep, ext4_get_group_info(sb, i));
2473 i = sbi->s_group_info_size;
2474 while (i-- > 0)
2475 kfree(sbi->s_group_info[i]);
2476 iput(sbi->s_buddy_cache);
2477 err_freesgi:
2478 ext4_kvfree(sbi->s_group_info);
2479 return -ENOMEM;
2480 }
2481
2482 static void ext4_groupinfo_destroy_slabs(void)
2483 {
2484 int i;
2485
2486 for (i = 0; i < NR_GRPINFO_CACHES; i++) {
2487 if (ext4_groupinfo_caches[i])
2488 kmem_cache_destroy(ext4_groupinfo_caches[i]);
2489 ext4_groupinfo_caches[i] = NULL;
2490 }
2491 }
2492
2493 static int ext4_groupinfo_create_slab(size_t size)
2494 {
2495 static DEFINE_MUTEX(ext4_grpinfo_slab_create_mutex);
2496 int slab_size;
2497 int blocksize_bits = order_base_2(size);
2498 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
2499 struct kmem_cache *cachep;
2500
2501 if (cache_index >= NR_GRPINFO_CACHES)
2502 return -EINVAL;
2503
2504 if (unlikely(cache_index < 0))
2505 cache_index = 0;
2506
2507 mutex_lock(&ext4_grpinfo_slab_create_mutex);
2508 if (ext4_groupinfo_caches[cache_index]) {
2509 mutex_unlock(&ext4_grpinfo_slab_create_mutex);
2510 return 0; /* Already created */
2511 }
2512
2513 slab_size = offsetof(struct ext4_group_info,
2514 bb_counters[blocksize_bits + 2]);
2515
2516 cachep = kmem_cache_create(ext4_groupinfo_slab_names[cache_index],
2517 slab_size, 0, SLAB_RECLAIM_ACCOUNT,
2518 NULL);
2519
2520 ext4_groupinfo_caches[cache_index] = cachep;
2521
2522 mutex_unlock(&ext4_grpinfo_slab_create_mutex);
2523 if (!cachep) {
2524 printk(KERN_EMERG
2525 "EXT4-fs: no memory for groupinfo slab cache\n");
2526 return -ENOMEM;
2527 }
2528
2529 return 0;
2530 }
2531
2532 int ext4_mb_init(struct super_block *sb)
2533 {
2534 struct ext4_sb_info *sbi = EXT4_SB(sb);
2535 unsigned i, j;
2536 unsigned offset;
2537 unsigned max;
2538 int ret;
2539
2540 i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_offsets);
2541
2542 sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL);
2543 if (sbi->s_mb_offsets == NULL) {
2544 ret = -ENOMEM;
2545 goto out;
2546 }
2547
2548 i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_maxs);
2549 sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL);
2550 if (sbi->s_mb_maxs == NULL) {
2551 ret = -ENOMEM;
2552 goto out;
2553 }
2554
2555 ret = ext4_groupinfo_create_slab(sb->s_blocksize);
2556 if (ret < 0)
2557 goto out;
2558
2559 /* order 0 is regular bitmap */
2560 sbi->s_mb_maxs[0] = sb->s_blocksize << 3;
2561 sbi->s_mb_offsets[0] = 0;
2562
2563 i = 1;
2564 offset = 0;
2565 max = sb->s_blocksize << 2;
2566 do {
2567 sbi->s_mb_offsets[i] = offset;
2568 sbi->s_mb_maxs[i] = max;
2569 offset += 1 << (sb->s_blocksize_bits - i);
2570 max = max >> 1;
2571 i++;
2572 } while (i <= sb->s_blocksize_bits + 1);
2573
2574 spin_lock_init(&sbi->s_md_lock);
2575 spin_lock_init(&sbi->s_bal_lock);
2576
2577 sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN;
2578 sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN;
2579 sbi->s_mb_stats = MB_DEFAULT_STATS;
2580 sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD;
2581 sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS;
2582 /*
2583 * The default group preallocation is 512, which for 4k block
2584 * sizes translates to 2 megabytes. However for bigalloc file
2585 * systems, this is probably too big (i.e, if the cluster size
2586 * is 1 megabyte, then group preallocation size becomes half a
2587 * gigabyte!). As a default, we will keep a two megabyte
2588 * group pralloc size for cluster sizes up to 64k, and after
2589 * that, we will force a minimum group preallocation size of
2590 * 32 clusters. This translates to 8 megs when the cluster
2591 * size is 256k, and 32 megs when the cluster size is 1 meg,
2592 * which seems reasonable as a default.
2593 */
2594 sbi->s_mb_group_prealloc = max(MB_DEFAULT_GROUP_PREALLOC >>
2595 sbi->s_cluster_bits, 32);
2596 /*
2597 * If there is a s_stripe > 1, then we set the s_mb_group_prealloc
2598 * to the lowest multiple of s_stripe which is bigger than
2599 * the s_mb_group_prealloc as determined above. We want
2600 * the preallocation size to be an exact multiple of the
2601 * RAID stripe size so that preallocations don't fragment
2602 * the stripes.
2603 */
2604 if (sbi->s_stripe > 1) {
2605 sbi->s_mb_group_prealloc = roundup(
2606 sbi->s_mb_group_prealloc, sbi->s_stripe);
2607 }
2608
2609 sbi->s_locality_groups = alloc_percpu(struct ext4_locality_group);
2610 if (sbi->s_locality_groups == NULL) {
2611 ret = -ENOMEM;
2612 goto out_free_groupinfo_slab;
2613 }
2614 for_each_possible_cpu(i) {
2615 struct ext4_locality_group *lg;
2616 lg = per_cpu_ptr(sbi->s_locality_groups, i);
2617 mutex_init(&lg->lg_mutex);
2618 for (j = 0; j < PREALLOC_TB_SIZE; j++)
2619 INIT_LIST_HEAD(&lg->lg_prealloc_list[j]);
2620 spin_lock_init(&lg->lg_prealloc_lock);
2621 }
2622
2623 /* init file for buddy data */
2624 ret = ext4_mb_init_backend(sb);
2625 if (ret != 0)
2626 goto out_free_locality_groups;
2627
2628 if (sbi->s_proc)
2629 proc_create_data("mb_groups", S_IRUGO, sbi->s_proc,
2630 &ext4_mb_seq_groups_fops, sb);
2631
2632 return 0;
2633
2634 out_free_locality_groups:
2635 free_percpu(sbi->s_locality_groups);
2636 sbi->s_locality_groups = NULL;
2637 out_free_groupinfo_slab:
2638 ext4_groupinfo_destroy_slabs();
2639 out:
2640 kfree(sbi->s_mb_offsets);
2641 sbi->s_mb_offsets = NULL;
2642 kfree(sbi->s_mb_maxs);
2643 sbi->s_mb_maxs = NULL;
2644 return ret;
2645 }
2646
2647 /* need to called with the ext4 group lock held */
2648 static void ext4_mb_cleanup_pa(struct ext4_group_info *grp)
2649 {
2650 struct ext4_prealloc_space *pa;
2651 struct list_head *cur, *tmp;
2652 int count = 0;
2653
2654 list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) {
2655 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
2656 list_del(&pa->pa_group_list);
2657 count++;
2658 kmem_cache_free(ext4_pspace_cachep, pa);
2659 }
2660 if (count)
2661 mb_debug(1, "mballoc: %u PAs left\n", count);
2662
2663 }
2664
2665 int ext4_mb_release(struct super_block *sb)
2666 {
2667 ext4_group_t ngroups = ext4_get_groups_count(sb);
2668 ext4_group_t i;
2669 int num_meta_group_infos;
2670 struct ext4_group_info *grinfo;
2671 struct ext4_sb_info *sbi = EXT4_SB(sb);
2672 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2673
2674 if (sbi->s_proc)
2675 remove_proc_entry("mb_groups", sbi->s_proc);
2676
2677 if (sbi->s_group_info) {
2678 for (i = 0; i < ngroups; i++) {
2679 grinfo = ext4_get_group_info(sb, i);
2680 #ifdef DOUBLE_CHECK
2681 kfree(grinfo->bb_bitmap);
2682 #endif
2683 ext4_lock_group(sb, i);
2684 ext4_mb_cleanup_pa(grinfo);
2685 ext4_unlock_group(sb, i);
2686 kmem_cache_free(cachep, grinfo);
2687 }
2688 num_meta_group_infos = (ngroups +
2689 EXT4_DESC_PER_BLOCK(sb) - 1) >>
2690 EXT4_DESC_PER_BLOCK_BITS(sb);
2691 for (i = 0; i < num_meta_group_infos; i++)
2692 kfree(sbi->s_group_info[i]);
2693 ext4_kvfree(sbi->s_group_info);
2694 }
2695 kfree(sbi->s_mb_offsets);
2696 kfree(sbi->s_mb_maxs);
2697 if (sbi->s_buddy_cache)
2698 iput(sbi->s_buddy_cache);
2699 if (sbi->s_mb_stats) {
2700 ext4_msg(sb, KERN_INFO,
2701 "mballoc: %u blocks %u reqs (%u success)",
2702 atomic_read(&sbi->s_bal_allocated),
2703 atomic_read(&sbi->s_bal_reqs),
2704 atomic_read(&sbi->s_bal_success));
2705 ext4_msg(sb, KERN_INFO,
2706 "mballoc: %u extents scanned, %u goal hits, "
2707 "%u 2^N hits, %u breaks, %u lost",
2708 atomic_read(&sbi->s_bal_ex_scanned),
2709 atomic_read(&sbi->s_bal_goals),
2710 atomic_read(&sbi->s_bal_2orders),
2711 atomic_read(&sbi->s_bal_breaks),
2712 atomic_read(&sbi->s_mb_lost_chunks));
2713 ext4_msg(sb, KERN_INFO,
2714 "mballoc: %lu generated and it took %Lu",
2715 sbi->s_mb_buddies_generated,
2716 sbi->s_mb_generation_time);
2717 ext4_msg(sb, KERN_INFO,
2718 "mballoc: %u preallocated, %u discarded",
2719 atomic_read(&sbi->s_mb_preallocated),
2720 atomic_read(&sbi->s_mb_discarded));
2721 }
2722
2723 free_percpu(sbi->s_locality_groups);
2724
2725 return 0;
2726 }
2727
2728 static inline int ext4_issue_discard(struct super_block *sb,
2729 ext4_group_t block_group, ext4_grpblk_t cluster, int count)
2730 {
2731 ext4_fsblk_t discard_block;
2732
2733 discard_block = (EXT4_C2B(EXT4_SB(sb), cluster) +
2734 ext4_group_first_block_no(sb, block_group));
2735 count = EXT4_C2B(EXT4_SB(sb), count);
2736 trace_ext4_discard_blocks(sb,
2737 (unsigned long long) discard_block, count);
2738 return sb_issue_discard(sb, discard_block, count, GFP_NOFS, 0);
2739 }
2740
2741 /*
2742 * This function is called by the jbd2 layer once the commit has finished,
2743 * so we know we can free the blocks that were released with that commit.
2744 */
2745 static void ext4_free_data_callback(struct super_block *sb,
2746 struct ext4_journal_cb_entry *jce,
2747 int rc)
2748 {
2749 struct ext4_free_data *entry = (struct ext4_free_data *)jce;
2750 struct ext4_buddy e4b;
2751 struct ext4_group_info *db;
2752 int err, count = 0, count2 = 0;
2753
2754 mb_debug(1, "gonna free %u blocks in group %u (0x%p):",
2755 entry->efd_count, entry->efd_group, entry);
2756
2757 if (test_opt(sb, DISCARD)) {
2758 err = ext4_issue_discard(sb, entry->efd_group,
2759 entry->efd_start_cluster,
2760 entry->efd_count);
2761 if (err && err != -EOPNOTSUPP)
2762 ext4_msg(sb, KERN_WARNING, "discard request in"
2763 " group:%d block:%d count:%d failed"
2764 " with %d", entry->efd_group,
2765 entry->efd_start_cluster,
2766 entry->efd_count, err);
2767 }
2768
2769 err = ext4_mb_load_buddy(sb, entry->efd_group, &e4b);
2770 /* we expect to find existing buddy because it's pinned */
2771 BUG_ON(err != 0);
2772
2773
2774 db = e4b.bd_info;
2775 /* there are blocks to put in buddy to make them really free */
2776 count += entry->efd_count;
2777 count2++;
2778 ext4_lock_group(sb, entry->efd_group);
2779 /* Take it out of per group rb tree */
2780 rb_erase(&entry->efd_node, &(db->bb_free_root));
2781 mb_free_blocks(NULL, &e4b, entry->efd_start_cluster, entry->efd_count);
2782
2783 /*
2784 * Clear the trimmed flag for the group so that the next
2785 * ext4_trim_fs can trim it.
2786 * If the volume is mounted with -o discard, online discard
2787 * is supported and the free blocks will be trimmed online.
2788 */
2789 if (!test_opt(sb, DISCARD))
2790 EXT4_MB_GRP_CLEAR_TRIMMED(db);
2791
2792 if (!db->bb_free_root.rb_node) {
2793 /* No more items in the per group rb tree
2794 * balance refcounts from ext4_mb_free_metadata()
2795 */
2796 page_cache_release(e4b.bd_buddy_page);
2797 page_cache_release(e4b.bd_bitmap_page);
2798 }
2799 ext4_unlock_group(sb, entry->efd_group);
2800 kmem_cache_free(ext4_free_data_cachep, entry);
2801 ext4_mb_unload_buddy(&e4b);
2802
2803 mb_debug(1, "freed %u blocks in %u structures\n", count, count2);
2804 }
2805
2806 int __init ext4_init_mballoc(void)
2807 {
2808 ext4_pspace_cachep = KMEM_CACHE(ext4_prealloc_space,
2809 SLAB_RECLAIM_ACCOUNT);
2810 if (ext4_pspace_cachep == NULL)
2811 return -ENOMEM;
2812
2813 ext4_ac_cachep = KMEM_CACHE(ext4_allocation_context,
2814 SLAB_RECLAIM_ACCOUNT);
2815 if (ext4_ac_cachep == NULL) {
2816 kmem_cache_destroy(ext4_pspace_cachep);
2817 return -ENOMEM;
2818 }
2819
2820 ext4_free_data_cachep = KMEM_CACHE(ext4_free_data,
2821 SLAB_RECLAIM_ACCOUNT);
2822 if (ext4_free_data_cachep == NULL) {
2823 kmem_cache_destroy(ext4_pspace_cachep);
2824 kmem_cache_destroy(ext4_ac_cachep);
2825 return -ENOMEM;
2826 }
2827 return 0;
2828 }
2829
2830 void ext4_exit_mballoc(void)
2831 {
2832 /*
2833 * Wait for completion of call_rcu()'s on ext4_pspace_cachep
2834 * before destroying the slab cache.
2835 */
2836 rcu_barrier();
2837 kmem_cache_destroy(ext4_pspace_cachep);
2838 kmem_cache_destroy(ext4_ac_cachep);
2839 kmem_cache_destroy(ext4_free_data_cachep);
2840 ext4_groupinfo_destroy_slabs();
2841 }
2842
2843
2844 /*
2845 * Check quota and mark chosen space (ac->ac_b_ex) non-free in bitmaps
2846 * Returns 0 if success or error code
2847 */
2848 static noinline_for_stack int
2849 ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac,
2850 handle_t *handle, unsigned int reserv_clstrs)
2851 {
2852 struct buffer_head *bitmap_bh = NULL;
2853 struct ext4_group_desc *gdp;
2854 struct buffer_head *gdp_bh;
2855 struct ext4_sb_info *sbi;
2856 struct super_block *sb;
2857 ext4_fsblk_t block;
2858 int err, len;
2859
2860 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
2861 BUG_ON(ac->ac_b_ex.fe_len <= 0);
2862
2863 sb = ac->ac_sb;
2864 sbi = EXT4_SB(sb);
2865
2866 err = -EIO;
2867 bitmap_bh = ext4_read_block_bitmap(sb, ac->ac_b_ex.fe_group);
2868 if (!bitmap_bh)
2869 goto out_err;
2870
2871 err = ext4_journal_get_write_access(handle, bitmap_bh);
2872 if (err)
2873 goto out_err;
2874
2875 err = -EIO;
2876 gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, &gdp_bh);
2877 if (!gdp)
2878 goto out_err;
2879
2880 ext4_debug("using block group %u(%d)\n", ac->ac_b_ex.fe_group,
2881 ext4_free_group_clusters(sb, gdp));
2882
2883 err = ext4_journal_get_write_access(handle, gdp_bh);
2884 if (err)
2885 goto out_err;
2886
2887 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
2888
2889 len = EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
2890 if (!ext4_data_block_valid(sbi, block, len)) {
2891 ext4_error(sb, "Allocating blocks %llu-%llu which overlap "
2892 "fs metadata", block, block+len);
2893 /* File system mounted not to panic on error
2894 * Fix the bitmap and repeat the block allocation
2895 * We leak some of the blocks here.
2896 */
2897 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
2898 ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
2899 ac->ac_b_ex.fe_len);
2900 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
2901 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
2902 if (!err)
2903 err = -EAGAIN;
2904 goto out_err;
2905 }
2906
2907 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
2908 #ifdef AGGRESSIVE_CHECK
2909 {
2910 int i;
2911 for (i = 0; i < ac->ac_b_ex.fe_len; i++) {
2912 BUG_ON(mb_test_bit(ac->ac_b_ex.fe_start + i,
2913 bitmap_bh->b_data));
2914 }
2915 }
2916 #endif
2917 ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
2918 ac->ac_b_ex.fe_len);
2919 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
2920 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
2921 ext4_free_group_clusters_set(sb, gdp,
2922 ext4_free_clusters_after_init(sb,
2923 ac->ac_b_ex.fe_group, gdp));
2924 }
2925 len = ext4_free_group_clusters(sb, gdp) - ac->ac_b_ex.fe_len;
2926 ext4_free_group_clusters_set(sb, gdp, len);
2927 ext4_block_bitmap_csum_set(sb, ac->ac_b_ex.fe_group, gdp, bitmap_bh);
2928 ext4_group_desc_csum_set(sb, ac->ac_b_ex.fe_group, gdp);
2929
2930 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
2931 percpu_counter_sub(&sbi->s_freeclusters_counter, ac->ac_b_ex.fe_len);
2932 /*
2933 * Now reduce the dirty block count also. Should not go negative
2934 */
2935 if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED))
2936 /* release all the reserved blocks if non delalloc */
2937 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
2938 reserv_clstrs);
2939
2940 if (sbi->s_log_groups_per_flex) {
2941 ext4_group_t flex_group = ext4_flex_group(sbi,
2942 ac->ac_b_ex.fe_group);
2943 atomic64_sub(ac->ac_b_ex.fe_len,
2944 &sbi->s_flex_groups[flex_group].free_clusters);
2945 }
2946
2947 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
2948 if (err)
2949 goto out_err;
2950 err = ext4_handle_dirty_metadata(handle, NULL, gdp_bh);
2951
2952 out_err:
2953 brelse(bitmap_bh);
2954 return err;
2955 }
2956
2957 /*
2958 * here we normalize request for locality group
2959 * Group request are normalized to s_mb_group_prealloc, which goes to
2960 * s_strip if we set the same via mount option.
2961 * s_mb_group_prealloc can be configured via
2962 * /sys/fs/ext4/<partition>/mb_group_prealloc
2963 *
2964 * XXX: should we try to preallocate more than the group has now?
2965 */
2966 static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac)
2967 {
2968 struct super_block *sb = ac->ac_sb;
2969 struct ext4_locality_group *lg = ac->ac_lg;
2970
2971 BUG_ON(lg == NULL);
2972 ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc;
2973 mb_debug(1, "#%u: goal %u blocks for locality group\n",
2974 current->pid, ac->ac_g_ex.fe_len);
2975 }
2976
2977 /*
2978 * Normalization means making request better in terms of
2979 * size and alignment
2980 */
2981 static noinline_for_stack void
2982 ext4_mb_normalize_request(struct ext4_allocation_context *ac,
2983 struct ext4_allocation_request *ar)
2984 {
2985 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
2986 int bsbits, max;
2987 ext4_lblk_t end;
2988 loff_t size, start_off;
2989 loff_t orig_size __maybe_unused;
2990 ext4_lblk_t start;
2991 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
2992 struct ext4_prealloc_space *pa;
2993
2994 /* do normalize only data requests, metadata requests
2995 do not need preallocation */
2996 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
2997 return;
2998
2999 /* sometime caller may want exact blocks */
3000 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
3001 return;
3002
3003 /* caller may indicate that preallocation isn't
3004 * required (it's a tail, for example) */
3005 if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC)
3006 return;
3007
3008 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) {
3009 ext4_mb_normalize_group_request(ac);
3010 return ;
3011 }
3012
3013 bsbits = ac->ac_sb->s_blocksize_bits;
3014
3015 /* first, let's learn actual file size
3016 * given current request is allocated */
3017 size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len);
3018 size = size << bsbits;
3019 if (size < i_size_read(ac->ac_inode))
3020 size = i_size_read(ac->ac_inode);
3021 orig_size = size;
3022
3023 /* max size of free chunks */
3024 max = 2 << bsbits;
3025
3026 #define NRL_CHECK_SIZE(req, size, max, chunk_size) \
3027 (req <= (size) || max <= (chunk_size))
3028
3029 /* first, try to predict filesize */
3030 /* XXX: should this table be tunable? */
3031 start_off = 0;
3032 if (size <= 16 * 1024) {
3033 size = 16 * 1024;
3034 } else if (size <= 32 * 1024) {
3035 size = 32 * 1024;
3036 } else if (size <= 64 * 1024) {
3037 size = 64 * 1024;
3038 } else if (size <= 128 * 1024) {
3039 size = 128 * 1024;
3040 } else if (size <= 256 * 1024) {
3041 size = 256 * 1024;
3042 } else if (size <= 512 * 1024) {
3043 size = 512 * 1024;
3044 } else if (size <= 1024 * 1024) {
3045 size = 1024 * 1024;
3046 } else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) {
3047 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3048 (21 - bsbits)) << 21;
3049 size = 2 * 1024 * 1024;
3050 } else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) {
3051 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3052 (22 - bsbits)) << 22;
3053 size = 4 * 1024 * 1024;
3054 } else if (NRL_CHECK_SIZE(ac->ac_o_ex.fe_len,
3055 (8<<20)>>bsbits, max, 8 * 1024)) {
3056 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3057 (23 - bsbits)) << 23;
3058 size = 8 * 1024 * 1024;
3059 } else {
3060 start_off = (loff_t)ac->ac_o_ex.fe_logical << bsbits;
3061 size = ac->ac_o_ex.fe_len << bsbits;
3062 }
3063 size = size >> bsbits;
3064 start = start_off >> bsbits;
3065
3066 /* don't cover already allocated blocks in selected range */
3067 if (ar->pleft && start <= ar->lleft) {
3068 size -= ar->lleft + 1 - start;
3069 start = ar->lleft + 1;
3070 }
3071 if (ar->pright && start + size - 1 >= ar->lright)
3072 size -= start + size - ar->lright;
3073
3074 end = start + size;
3075
3076 /* check we don't cross already preallocated blocks */
3077 rcu_read_lock();
3078 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3079 ext4_lblk_t pa_end;
3080
3081 if (pa->pa_deleted)
3082 continue;
3083 spin_lock(&pa->pa_lock);
3084 if (pa->pa_deleted) {
3085 spin_unlock(&pa->pa_lock);
3086 continue;
3087 }
3088
3089 pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb),
3090 pa->pa_len);
3091
3092 /* PA must not overlap original request */
3093 BUG_ON(!(ac->ac_o_ex.fe_logical >= pa_end ||
3094 ac->ac_o_ex.fe_logical < pa->pa_lstart));
3095
3096 /* skip PAs this normalized request doesn't overlap with */
3097 if (pa->pa_lstart >= end || pa_end <= start) {
3098 spin_unlock(&pa->pa_lock);
3099 continue;
3100 }
3101 BUG_ON(pa->pa_lstart <= start && pa_end >= end);
3102
3103 /* adjust start or end to be adjacent to this pa */
3104 if (pa_end <= ac->ac_o_ex.fe_logical) {
3105 BUG_ON(pa_end < start);
3106 start = pa_end;
3107 } else if (pa->pa_lstart > ac->ac_o_ex.fe_logical) {
3108 BUG_ON(pa->pa_lstart > end);
3109 end = pa->pa_lstart;
3110 }
3111 spin_unlock(&pa->pa_lock);
3112 }
3113 rcu_read_unlock();
3114 size = end - start;
3115
3116 /* XXX: extra loop to check we really don't overlap preallocations */
3117 rcu_read_lock();
3118 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3119 ext4_lblk_t pa_end;
3120
3121 spin_lock(&pa->pa_lock);
3122 if (pa->pa_deleted == 0) {
3123 pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb),
3124 pa->pa_len);
3125 BUG_ON(!(start >= pa_end || end <= pa->pa_lstart));
3126 }
3127 spin_unlock(&pa->pa_lock);
3128 }
3129 rcu_read_unlock();
3130
3131 if (start + size <= ac->ac_o_ex.fe_logical &&
3132 start > ac->ac_o_ex.fe_logical) {
3133 ext4_msg(ac->ac_sb, KERN_ERR,
3134 "start %lu, size %lu, fe_logical %lu",
3135 (unsigned long) start, (unsigned long) size,
3136 (unsigned long) ac->ac_o_ex.fe_logical);
3137 }
3138 BUG_ON(start + size <= ac->ac_o_ex.fe_logical &&
3139 start > ac->ac_o_ex.fe_logical);
3140 BUG_ON(size <= 0 || size > EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
3141
3142 /* now prepare goal request */
3143
3144 /* XXX: is it better to align blocks WRT to logical
3145 * placement or satisfy big request as is */
3146 ac->ac_g_ex.fe_logical = start;
3147 ac->ac_g_ex.fe_len = EXT4_NUM_B2C(sbi, size);
3148
3149 /* define goal start in order to merge */
3150 if (ar->pright && (ar->lright == (start + size))) {
3151 /* merge to the right */
3152 ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size,
3153 &ac->ac_f_ex.fe_group,
3154 &ac->ac_f_ex.fe_start);
3155 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3156 }
3157 if (ar->pleft && (ar->lleft + 1 == start)) {
3158 /* merge to the left */
3159 ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1,
3160 &ac->ac_f_ex.fe_group,
3161 &ac->ac_f_ex.fe_start);
3162 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3163 }
3164
3165 mb_debug(1, "goal: %u(was %u) blocks at %u\n", (unsigned) size,
3166 (unsigned) orig_size, (unsigned) start);
3167 }
3168
3169 static void ext4_mb_collect_stats(struct ext4_allocation_context *ac)
3170 {
3171 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3172
3173 if (sbi->s_mb_stats && ac->ac_g_ex.fe_len > 1) {
3174 atomic_inc(&sbi->s_bal_reqs);
3175 atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated);
3176 if (ac->ac_b_ex.fe_len >= ac->ac_o_ex.fe_len)
3177 atomic_inc(&sbi->s_bal_success);
3178 atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned);
3179 if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start &&
3180 ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group)
3181 atomic_inc(&sbi->s_bal_goals);
3182 if (ac->ac_found > sbi->s_mb_max_to_scan)
3183 atomic_inc(&sbi->s_bal_breaks);
3184 }
3185
3186 if (ac->ac_op == EXT4_MB_HISTORY_ALLOC)
3187 trace_ext4_mballoc_alloc(ac);
3188 else
3189 trace_ext4_mballoc_prealloc(ac);
3190 }
3191
3192 /*
3193 * Called on failure; free up any blocks from the inode PA for this
3194 * context. We don't need this for MB_GROUP_PA because we only change
3195 * pa_free in ext4_mb_release_context(), but on failure, we've already
3196 * zeroed out ac->ac_b_ex.fe_len, so group_pa->pa_free is not changed.
3197 */
3198 static void ext4_discard_allocated_blocks(struct ext4_allocation_context *ac)
3199 {
3200 struct ext4_prealloc_space *pa = ac->ac_pa;
3201
3202 if (pa && pa->pa_type == MB_INODE_PA)
3203 pa->pa_free += ac->ac_b_ex.fe_len;
3204 }
3205
3206 /*
3207 * use blocks preallocated to inode
3208 */
3209 static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac,
3210 struct ext4_prealloc_space *pa)
3211 {
3212 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3213 ext4_fsblk_t start;
3214 ext4_fsblk_t end;
3215 int len;
3216
3217 /* found preallocated blocks, use them */
3218 start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart);
3219 end = min(pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len),
3220 start + EXT4_C2B(sbi, ac->ac_o_ex.fe_len));
3221 len = EXT4_NUM_B2C(sbi, end - start);
3222 ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group,
3223 &ac->ac_b_ex.fe_start);
3224 ac->ac_b_ex.fe_len = len;
3225 ac->ac_status = AC_STATUS_FOUND;
3226 ac->ac_pa = pa;
3227
3228 BUG_ON(start < pa->pa_pstart);
3229 BUG_ON(end > pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len));
3230 BUG_ON(pa->pa_free < len);
3231 pa->pa_free -= len;
3232
3233 mb_debug(1, "use %llu/%u from inode pa %p\n", start, len, pa);
3234 }
3235
3236 /*
3237 * use blocks preallocated to locality group
3238 */
3239 static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac,
3240 struct ext4_prealloc_space *pa)
3241 {
3242 unsigned int len = ac->ac_o_ex.fe_len;
3243
3244 ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart,
3245 &ac->ac_b_ex.fe_group,
3246 &ac->ac_b_ex.fe_start);
3247 ac->ac_b_ex.fe_len = len;
3248 ac->ac_status = AC_STATUS_FOUND;
3249 ac->ac_pa = pa;
3250
3251 /* we don't correct pa_pstart or pa_plen here to avoid
3252 * possible race when the group is being loaded concurrently
3253 * instead we correct pa later, after blocks are marked
3254 * in on-disk bitmap -- see ext4_mb_release_context()
3255 * Other CPUs are prevented from allocating from this pa by lg_mutex
3256 */
3257 mb_debug(1, "use %u/%u from group pa %p\n", pa->pa_lstart-len, len, pa);
3258 }
3259
3260 /*
3261 * Return the prealloc space that have minimal distance
3262 * from the goal block. @cpa is the prealloc
3263 * space that is having currently known minimal distance
3264 * from the goal block.
3265 */
3266 static struct ext4_prealloc_space *
3267 ext4_mb_check_group_pa(ext4_fsblk_t goal_block,
3268 struct ext4_prealloc_space *pa,
3269 struct ext4_prealloc_space *cpa)
3270 {
3271 ext4_fsblk_t cur_distance, new_distance;
3272
3273 if (cpa == NULL) {
3274 atomic_inc(&pa->pa_count);
3275 return pa;
3276 }
3277 cur_distance = abs(goal_block - cpa->pa_pstart);
3278 new_distance = abs(goal_block - pa->pa_pstart);
3279
3280 if (cur_distance <= new_distance)
3281 return cpa;
3282
3283 /* drop the previous reference */
3284 atomic_dec(&cpa->pa_count);
3285 atomic_inc(&pa->pa_count);
3286 return pa;
3287 }
3288
3289 /*
3290 * search goal blocks in preallocated space
3291 */
3292 static noinline_for_stack int
3293 ext4_mb_use_preallocated(struct ext4_allocation_context *ac)
3294 {
3295 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3296 int order, i;
3297 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
3298 struct ext4_locality_group *lg;
3299 struct ext4_prealloc_space *pa, *cpa = NULL;
3300 ext4_fsblk_t goal_block;
3301
3302 /* only data can be preallocated */
3303 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3304 return 0;
3305
3306 /* first, try per-file preallocation */
3307 rcu_read_lock();
3308 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3309
3310 /* all fields in this condition don't change,
3311 * so we can skip locking for them */
3312 if (ac->ac_o_ex.fe_logical < pa->pa_lstart ||
3313 ac->ac_o_ex.fe_logical >= (pa->pa_lstart +
3314 EXT4_C2B(sbi, pa->pa_len)))
3315 continue;
3316
3317 /* non-extent files can't have physical blocks past 2^32 */
3318 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)) &&
3319 (pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len) >
3320 EXT4_MAX_BLOCK_FILE_PHYS))
3321 continue;
3322
3323 /* found preallocated blocks, use them */
3324 spin_lock(&pa->pa_lock);
3325 if (pa->pa_deleted == 0 && pa->pa_free) {
3326 atomic_inc(&pa->pa_count);
3327 ext4_mb_use_inode_pa(ac, pa);
3328 spin_unlock(&pa->pa_lock);
3329 ac->ac_criteria = 10;
3330 rcu_read_unlock();
3331 return 1;
3332 }
3333 spin_unlock(&pa->pa_lock);
3334 }
3335 rcu_read_unlock();
3336
3337 /* can we use group allocation? */
3338 if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC))
3339 return 0;
3340
3341 /* inode may have no locality group for some reason */
3342 lg = ac->ac_lg;
3343 if (lg == NULL)
3344 return 0;
3345 order = fls(ac->ac_o_ex.fe_len) - 1;
3346 if (order > PREALLOC_TB_SIZE - 1)
3347 /* The max size of hash table is PREALLOC_TB_SIZE */
3348 order = PREALLOC_TB_SIZE - 1;
3349
3350 goal_block = ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex);
3351 /*
3352 * search for the prealloc space that is having
3353 * minimal distance from the goal block.
3354 */
3355 for (i = order; i < PREALLOC_TB_SIZE; i++) {
3356 rcu_read_lock();
3357 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[i],
3358 pa_inode_list) {
3359 spin_lock(&pa->pa_lock);
3360 if (pa->pa_deleted == 0 &&
3361 pa->pa_free >= ac->ac_o_ex.fe_len) {
3362
3363 cpa = ext4_mb_check_group_pa(goal_block,
3364 pa, cpa);
3365 }
3366 spin_unlock(&pa->pa_lock);
3367 }
3368 rcu_read_unlock();
3369 }
3370 if (cpa) {
3371 ext4_mb_use_group_pa(ac, cpa);
3372 ac->ac_criteria = 20;
3373 return 1;
3374 }
3375 return 0;
3376 }
3377
3378 /*
3379 * the function goes through all block freed in the group
3380 * but not yet committed and marks them used in in-core bitmap.
3381 * buddy must be generated from this bitmap
3382 * Need to be called with the ext4 group lock held
3383 */
3384 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
3385 ext4_group_t group)
3386 {
3387 struct rb_node *n;
3388 struct ext4_group_info *grp;
3389 struct ext4_free_data *entry;
3390
3391 grp = ext4_get_group_info(sb, group);
3392 n = rb_first(&(grp->bb_free_root));
3393
3394 while (n) {
3395 entry = rb_entry(n, struct ext4_free_data, efd_node);
3396 ext4_set_bits(bitmap, entry->efd_start_cluster, entry->efd_count);
3397 n = rb_next(n);
3398 }
3399 return;
3400 }
3401
3402 /*
3403 * the function goes through all preallocation in this group and marks them
3404 * used in in-core bitmap. buddy must be generated from this bitmap
3405 * Need to be called with ext4 group lock held
3406 */
3407 static noinline_for_stack
3408 void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
3409 ext4_group_t group)
3410 {
3411 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
3412 struct ext4_prealloc_space *pa;
3413 struct list_head *cur;
3414 ext4_group_t groupnr;
3415 ext4_grpblk_t start;
3416 int preallocated = 0;
3417 int len;
3418
3419 /* all form of preallocation discards first load group,
3420 * so the only competing code is preallocation use.
3421 * we don't need any locking here
3422 * notice we do NOT ignore preallocations with pa_deleted
3423 * otherwise we could leave used blocks available for
3424 * allocation in buddy when concurrent ext4_mb_put_pa()
3425 * is dropping preallocation
3426 */
3427 list_for_each(cur, &grp->bb_prealloc_list) {
3428 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
3429 spin_lock(&pa->pa_lock);
3430 ext4_get_group_no_and_offset(sb, pa->pa_pstart,
3431 &groupnr, &start);
3432 len = pa->pa_len;
3433 spin_unlock(&pa->pa_lock);
3434 if (unlikely(len == 0))
3435 continue;
3436 BUG_ON(groupnr != group);
3437 ext4_set_bits(bitmap, start, len);
3438 preallocated += len;
3439 }
3440 mb_debug(1, "prellocated %u for group %u\n", preallocated, group);
3441 }
3442
3443 static void ext4_mb_pa_callback(struct rcu_head *head)
3444 {
3445 struct ext4_prealloc_space *pa;
3446 pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu);
3447
3448 BUG_ON(atomic_read(&pa->pa_count));
3449 BUG_ON(pa->pa_deleted == 0);
3450 kmem_cache_free(ext4_pspace_cachep, pa);
3451 }
3452
3453 /*
3454 * drops a reference to preallocated space descriptor
3455 * if this was the last reference and the space is consumed
3456 */
3457 static void ext4_mb_put_pa(struct ext4_allocation_context *ac,
3458 struct super_block *sb, struct ext4_prealloc_space *pa)
3459 {
3460 ext4_group_t grp;
3461 ext4_fsblk_t grp_blk;
3462
3463 /* in this short window concurrent discard can set pa_deleted */
3464 spin_lock(&pa->pa_lock);
3465 if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0) {
3466 spin_unlock(&pa->pa_lock);
3467 return;
3468 }
3469
3470 if (pa->pa_deleted == 1) {
3471 spin_unlock(&pa->pa_lock);
3472 return;
3473 }
3474
3475 pa->pa_deleted = 1;
3476 spin_unlock(&pa->pa_lock);
3477
3478 grp_blk = pa->pa_pstart;
3479 /*
3480 * If doing group-based preallocation, pa_pstart may be in the
3481 * next group when pa is used up
3482 */
3483 if (pa->pa_type == MB_GROUP_PA)
3484 grp_blk--;
3485
3486 grp = ext4_get_group_number(sb, grp_blk);
3487
3488 /*
3489 * possible race:
3490 *
3491 * P1 (buddy init) P2 (regular allocation)
3492 * find block B in PA
3493 * copy on-disk bitmap to buddy
3494 * mark B in on-disk bitmap
3495 * drop PA from group
3496 * mark all PAs in buddy
3497 *
3498 * thus, P1 initializes buddy with B available. to prevent this
3499 * we make "copy" and "mark all PAs" atomic and serialize "drop PA"
3500 * against that pair
3501 */
3502 ext4_lock_group(sb, grp);
3503 list_del(&pa->pa_group_list);
3504 ext4_unlock_group(sb, grp);
3505
3506 spin_lock(pa->pa_obj_lock);
3507 list_del_rcu(&pa->pa_inode_list);
3508 spin_unlock(pa->pa_obj_lock);
3509
3510 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3511 }
3512
3513 /*
3514 * creates new preallocated space for given inode
3515 */
3516 static noinline_for_stack int
3517 ext4_mb_new_inode_pa(struct ext4_allocation_context *ac)
3518 {
3519 struct super_block *sb = ac->ac_sb;
3520 struct ext4_sb_info *sbi = EXT4_SB(sb);
3521 struct ext4_prealloc_space *pa;
3522 struct ext4_group_info *grp;
3523 struct ext4_inode_info *ei;
3524
3525 /* preallocate only when found space is larger then requested */
3526 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
3527 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3528 BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
3529
3530 pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
3531 if (pa == NULL)
3532 return -ENOMEM;
3533
3534 if (ac->ac_b_ex.fe_len < ac->ac_g_ex.fe_len) {
3535 int winl;
3536 int wins;
3537 int win;
3538 int offs;
3539
3540 /* we can't allocate as much as normalizer wants.
3541 * so, found space must get proper lstart
3542 * to cover original request */
3543 BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical);
3544 BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len);
3545
3546 /* we're limited by original request in that
3547 * logical block must be covered any way
3548 * winl is window we can move our chunk within */
3549 winl = ac->ac_o_ex.fe_logical - ac->ac_g_ex.fe_logical;
3550
3551 /* also, we should cover whole original request */
3552 wins = EXT4_C2B(sbi, ac->ac_b_ex.fe_len - ac->ac_o_ex.fe_len);
3553
3554 /* the smallest one defines real window */
3555 win = min(winl, wins);
3556
3557 offs = ac->ac_o_ex.fe_logical %
3558 EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
3559 if (offs && offs < win)
3560 win = offs;
3561
3562 ac->ac_b_ex.fe_logical = ac->ac_o_ex.fe_logical -
3563 EXT4_NUM_B2C(sbi, win);
3564 BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical);
3565 BUG_ON(ac->ac_o_ex.fe_len > ac->ac_b_ex.fe_len);
3566 }
3567
3568 /* preallocation can change ac_b_ex, thus we store actually
3569 * allocated blocks for history */
3570 ac->ac_f_ex = ac->ac_b_ex;
3571
3572 pa->pa_lstart = ac->ac_b_ex.fe_logical;
3573 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3574 pa->pa_len = ac->ac_b_ex.fe_len;
3575 pa->pa_free = pa->pa_len;
3576 atomic_set(&pa->pa_count, 1);
3577 spin_lock_init(&pa->pa_lock);
3578 INIT_LIST_HEAD(&pa->pa_inode_list);
3579 INIT_LIST_HEAD(&pa->pa_group_list);
3580 pa->pa_deleted = 0;
3581 pa->pa_type = MB_INODE_PA;
3582
3583 mb_debug(1, "new inode pa %p: %llu/%u for %u\n", pa,
3584 pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3585 trace_ext4_mb_new_inode_pa(ac, pa);
3586
3587 ext4_mb_use_inode_pa(ac, pa);
3588 atomic_add(pa->pa_free, &sbi->s_mb_preallocated);
3589
3590 ei = EXT4_I(ac->ac_inode);
3591 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
3592
3593 pa->pa_obj_lock = &ei->i_prealloc_lock;
3594 pa->pa_inode = ac->ac_inode;
3595
3596 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3597 list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
3598 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3599
3600 spin_lock(pa->pa_obj_lock);
3601 list_add_rcu(&pa->pa_inode_list, &ei->i_prealloc_list);
3602 spin_unlock(pa->pa_obj_lock);
3603
3604 return 0;
3605 }
3606
3607 /*
3608 * creates new preallocated space for locality group inodes belongs to
3609 */
3610 static noinline_for_stack int
3611 ext4_mb_new_group_pa(struct ext4_allocation_context *ac)
3612 {
3613 struct super_block *sb = ac->ac_sb;
3614 struct ext4_locality_group *lg;
3615 struct ext4_prealloc_space *pa;
3616 struct ext4_group_info *grp;
3617
3618 /* preallocate only when found space is larger then requested */
3619 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
3620 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3621 BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
3622
3623 BUG_ON(ext4_pspace_cachep == NULL);
3624 pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
3625 if (pa == NULL)
3626 return -ENOMEM;
3627
3628 /* preallocation can change ac_b_ex, thus we store actually
3629 * allocated blocks for history */
3630 ac->ac_f_ex = ac->ac_b_ex;
3631
3632 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3633 pa->pa_lstart = pa->pa_pstart;
3634 pa->pa_len = ac->ac_b_ex.fe_len;
3635 pa->pa_free = pa->pa_len;
3636 atomic_set(&pa->pa_count, 1);
3637 spin_lock_init(&pa->pa_lock);
3638 INIT_LIST_HEAD(&pa->pa_inode_list);
3639 INIT_LIST_HEAD(&pa->pa_group_list);
3640 pa->pa_deleted = 0;
3641 pa->pa_type = MB_GROUP_PA;
3642
3643 mb_debug(1, "new group pa %p: %llu/%u for %u\n", pa,
3644 pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3645 trace_ext4_mb_new_group_pa(ac, pa);
3646
3647 ext4_mb_use_group_pa(ac, pa);
3648 atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated);
3649
3650 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
3651 lg = ac->ac_lg;
3652 BUG_ON(lg == NULL);
3653
3654 pa->pa_obj_lock = &lg->lg_prealloc_lock;
3655 pa->pa_inode = NULL;
3656
3657 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3658 list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
3659 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3660
3661 /*
3662 * We will later add the new pa to the right bucket
3663 * after updating the pa_free in ext4_mb_release_context
3664 */
3665 return 0;
3666 }
3667
3668 static int ext4_mb_new_preallocation(struct ext4_allocation_context *ac)
3669 {
3670 int err;
3671
3672 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
3673 err = ext4_mb_new_group_pa(ac);
3674 else
3675 err = ext4_mb_new_inode_pa(ac);
3676 return err;
3677 }
3678
3679 /*
3680 * finds all unused blocks in on-disk bitmap, frees them in
3681 * in-core bitmap and buddy.
3682 * @pa must be unlinked from inode and group lists, so that
3683 * nobody else can find/use it.
3684 * the caller MUST hold group/inode locks.
3685 * TODO: optimize the case when there are no in-core structures yet
3686 */
3687 static noinline_for_stack int
3688 ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh,
3689 struct ext4_prealloc_space *pa)
3690 {
3691 struct super_block *sb = e4b->bd_sb;
3692 struct ext4_sb_info *sbi = EXT4_SB(sb);
3693 unsigned int end;
3694 unsigned int next;
3695 ext4_group_t group;
3696 ext4_grpblk_t bit;
3697 unsigned long long grp_blk_start;
3698 int err = 0;
3699 int free = 0;
3700
3701 BUG_ON(pa->pa_deleted == 0);
3702 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3703 grp_blk_start = pa->pa_pstart - EXT4_C2B(sbi, bit);
3704 BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
3705 end = bit + pa->pa_len;
3706
3707 while (bit < end) {
3708 bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit);
3709 if (bit >= end)
3710 break;
3711 next = mb_find_next_bit(bitmap_bh->b_data, end, bit);
3712 mb_debug(1, " free preallocated %u/%u in group %u\n",
3713 (unsigned) ext4_group_first_block_no(sb, group) + bit,
3714 (unsigned) next - bit, (unsigned) group);
3715 free += next - bit;
3716
3717 trace_ext4_mballoc_discard(sb, NULL, group, bit, next - bit);
3718 trace_ext4_mb_release_inode_pa(pa, (grp_blk_start +
3719 EXT4_C2B(sbi, bit)),
3720 next - bit);
3721 mb_free_blocks(pa->pa_inode, e4b, bit, next - bit);
3722 bit = next + 1;
3723 }
3724 if (free != pa->pa_free) {
3725 ext4_msg(e4b->bd_sb, KERN_CRIT,
3726 "pa %p: logic %lu, phys. %lu, len %lu",
3727 pa, (unsigned long) pa->pa_lstart,
3728 (unsigned long) pa->pa_pstart,
3729 (unsigned long) pa->pa_len);
3730 ext4_grp_locked_error(sb, group, 0, 0, "free %u, pa_free %u",
3731 free, pa->pa_free);
3732 /*
3733 * pa is already deleted so we use the value obtained
3734 * from the bitmap and continue.
3735 */
3736 }
3737 atomic_add(free, &sbi->s_mb_discarded);
3738
3739 return err;
3740 }
3741
3742 static noinline_for_stack int
3743 ext4_mb_release_group_pa(struct ext4_buddy *e4b,
3744 struct ext4_prealloc_space *pa)
3745 {
3746 struct super_block *sb = e4b->bd_sb;
3747 ext4_group_t group;
3748 ext4_grpblk_t bit;
3749
3750 trace_ext4_mb_release_group_pa(sb, pa);
3751 BUG_ON(pa->pa_deleted == 0);
3752 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3753 BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
3754 mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len);
3755 atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded);
3756 trace_ext4_mballoc_discard(sb, NULL, group, bit, pa->pa_len);
3757
3758 return 0;
3759 }
3760
3761 /*
3762 * releases all preallocations in given group
3763 *
3764 * first, we need to decide discard policy:
3765 * - when do we discard
3766 * 1) ENOSPC
3767 * - how many do we discard
3768 * 1) how many requested
3769 */
3770 static noinline_for_stack int
3771 ext4_mb_discard_group_preallocations(struct super_block *sb,
3772 ext4_group_t group, int needed)
3773 {
3774 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
3775 struct buffer_head *bitmap_bh = NULL;
3776 struct ext4_prealloc_space *pa, *tmp;
3777 struct list_head list;
3778 struct ext4_buddy e4b;
3779 int err;
3780 int busy = 0;
3781 int free = 0;
3782
3783 mb_debug(1, "discard preallocation for group %u\n", group);
3784
3785 if (list_empty(&grp->bb_prealloc_list))
3786 return 0;
3787
3788 bitmap_bh = ext4_read_block_bitmap(sb, group);
3789 if (bitmap_bh == NULL) {
3790 ext4_error(sb, "Error reading block bitmap for %u", group);
3791 return 0;
3792 }
3793
3794 err = ext4_mb_load_buddy(sb, group, &e4b);
3795 if (err) {
3796 ext4_error(sb, "Error loading buddy information for %u", group);
3797 put_bh(bitmap_bh);
3798 return 0;
3799 }
3800
3801 if (needed == 0)
3802 needed = EXT4_CLUSTERS_PER_GROUP(sb) + 1;
3803
3804 INIT_LIST_HEAD(&list);
3805 repeat:
3806 ext4_lock_group(sb, group);
3807 list_for_each_entry_safe(pa, tmp,
3808 &grp->bb_prealloc_list, pa_group_list) {
3809 spin_lock(&pa->pa_lock);
3810 if (atomic_read(&pa->pa_count)) {
3811 spin_unlock(&pa->pa_lock);
3812 busy = 1;
3813 continue;
3814 }
3815 if (pa->pa_deleted) {
3816 spin_unlock(&pa->pa_lock);
3817 continue;
3818 }
3819
3820 /* seems this one can be freed ... */
3821 pa->pa_deleted = 1;
3822
3823 /* we can trust pa_free ... */
3824 free += pa->pa_free;
3825
3826 spin_unlock(&pa->pa_lock);
3827
3828 list_del(&pa->pa_group_list);
3829 list_add(&pa->u.pa_tmp_list, &list);
3830 }
3831
3832 /* if we still need more blocks and some PAs were used, try again */
3833 if (free < needed && busy) {
3834 busy = 0;
3835 ext4_unlock_group(sb, group);
3836 cond_resched();
3837 goto repeat;
3838 }
3839
3840 /* found anything to free? */
3841 if (list_empty(&list)) {
3842 BUG_ON(free != 0);
3843 goto out;
3844 }
3845
3846 /* now free all selected PAs */
3847 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
3848
3849 /* remove from object (inode or locality group) */
3850 spin_lock(pa->pa_obj_lock);
3851 list_del_rcu(&pa->pa_inode_list);
3852 spin_unlock(pa->pa_obj_lock);
3853
3854 if (pa->pa_type == MB_GROUP_PA)
3855 ext4_mb_release_group_pa(&e4b, pa);
3856 else
3857 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
3858
3859 list_del(&pa->u.pa_tmp_list);
3860 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3861 }
3862
3863 out:
3864 ext4_unlock_group(sb, group);
3865 ext4_mb_unload_buddy(&e4b);
3866 put_bh(bitmap_bh);
3867 return free;
3868 }
3869
3870 /*
3871 * releases all non-used preallocated blocks for given inode
3872 *
3873 * It's important to discard preallocations under i_data_sem
3874 * We don't want another block to be served from the prealloc
3875 * space when we are discarding the inode prealloc space.
3876 *
3877 * FIXME!! Make sure it is valid at all the call sites
3878 */
3879 void ext4_discard_preallocations(struct inode *inode)
3880 {
3881 struct ext4_inode_info *ei = EXT4_I(inode);
3882 struct super_block *sb = inode->i_sb;
3883 struct buffer_head *bitmap_bh = NULL;
3884 struct ext4_prealloc_space *pa, *tmp;
3885 ext4_group_t group = 0;
3886 struct list_head list;
3887 struct ext4_buddy e4b;
3888 int err;
3889
3890 if (!S_ISREG(inode->i_mode)) {
3891 /*BUG_ON(!list_empty(&ei->i_prealloc_list));*/
3892 return;
3893 }
3894
3895 mb_debug(1, "discard preallocation for inode %lu\n", inode->i_ino);
3896 trace_ext4_discard_preallocations(inode);
3897
3898 INIT_LIST_HEAD(&list);
3899
3900 repeat:
3901 /* first, collect all pa's in the inode */
3902 spin_lock(&ei->i_prealloc_lock);
3903 while (!list_empty(&ei->i_prealloc_list)) {
3904 pa = list_entry(ei->i_prealloc_list.next,
3905 struct ext4_prealloc_space, pa_inode_list);
3906 BUG_ON(pa->pa_obj_lock != &ei->i_prealloc_lock);
3907 spin_lock(&pa->pa_lock);
3908 if (atomic_read(&pa->pa_count)) {
3909 /* this shouldn't happen often - nobody should
3910 * use preallocation while we're discarding it */
3911 spin_unlock(&pa->pa_lock);
3912 spin_unlock(&ei->i_prealloc_lock);
3913 ext4_msg(sb, KERN_ERR,
3914 "uh-oh! used pa while discarding");
3915 WARN_ON(1);
3916 schedule_timeout_uninterruptible(HZ);
3917 goto repeat;
3918
3919 }
3920 if (pa->pa_deleted == 0) {
3921 pa->pa_deleted = 1;
3922 spin_unlock(&pa->pa_lock);
3923 list_del_rcu(&pa->pa_inode_list);
3924 list_add(&pa->u.pa_tmp_list, &list);
3925 continue;
3926 }
3927
3928 /* someone is deleting pa right now */
3929 spin_unlock(&pa->pa_lock);
3930 spin_unlock(&ei->i_prealloc_lock);
3931
3932 /* we have to wait here because pa_deleted
3933 * doesn't mean pa is already unlinked from
3934 * the list. as we might be called from
3935 * ->clear_inode() the inode will get freed
3936 * and concurrent thread which is unlinking
3937 * pa from inode's list may access already
3938 * freed memory, bad-bad-bad */
3939
3940 /* XXX: if this happens too often, we can
3941 * add a flag to force wait only in case
3942 * of ->clear_inode(), but not in case of
3943 * regular truncate */
3944 schedule_timeout_uninterruptible(HZ);
3945 goto repeat;
3946 }
3947 spin_unlock(&ei->i_prealloc_lock);
3948
3949 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
3950 BUG_ON(pa->pa_type != MB_INODE_PA);
3951 group = ext4_get_group_number(sb, pa->pa_pstart);
3952
3953 err = ext4_mb_load_buddy(sb, group, &e4b);
3954 if (err) {
3955 ext4_error(sb, "Error loading buddy information for %u",
3956 group);
3957 continue;
3958 }
3959
3960 bitmap_bh = ext4_read_block_bitmap(sb, group);
3961 if (bitmap_bh == NULL) {
3962 ext4_error(sb, "Error reading block bitmap for %u",
3963 group);
3964 ext4_mb_unload_buddy(&e4b);
3965 continue;
3966 }
3967
3968 ext4_lock_group(sb, group);
3969 list_del(&pa->pa_group_list);
3970 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
3971 ext4_unlock_group(sb, group);
3972
3973 ext4_mb_unload_buddy(&e4b);
3974 put_bh(bitmap_bh);
3975
3976 list_del(&pa->u.pa_tmp_list);
3977 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3978 }
3979 }
3980
3981 #ifdef CONFIG_EXT4_DEBUG
3982 static void ext4_mb_show_ac(struct ext4_allocation_context *ac)
3983 {
3984 struct super_block *sb = ac->ac_sb;
3985 ext4_group_t ngroups, i;
3986
3987 if (!ext4_mballoc_debug ||
3988 (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED))
3989 return;
3990
3991 ext4_msg(ac->ac_sb, KERN_ERR, "Can't allocate:"
3992 " Allocation context details:");
3993 ext4_msg(ac->ac_sb, KERN_ERR, "status %d flags %d",
3994 ac->ac_status, ac->ac_flags);
3995 ext4_msg(ac->ac_sb, KERN_ERR, "orig %lu/%lu/%lu@%lu, "
3996 "goal %lu/%lu/%lu@%lu, "
3997 "best %lu/%lu/%lu@%lu cr %d",
3998 (unsigned long)ac->ac_o_ex.fe_group,
3999 (unsigned long)ac->ac_o_ex.fe_start,
4000 (unsigned long)ac->ac_o_ex.fe_len,
4001 (unsigned long)ac->ac_o_ex.fe_logical,
4002 (unsigned long)ac->ac_g_ex.fe_group,
4003 (unsigned long)ac->ac_g_ex.fe_start,
4004 (unsigned long)ac->ac_g_ex.fe_len,
4005 (unsigned long)ac->ac_g_ex.fe_logical,
4006 (unsigned long)ac->ac_b_ex.fe_group,
4007 (unsigned long)ac->ac_b_ex.fe_start,
4008 (unsigned long)ac->ac_b_ex.fe_len,
4009 (unsigned long)ac->ac_b_ex.fe_logical,
4010 (int)ac->ac_criteria);
4011 ext4_msg(ac->ac_sb, KERN_ERR, "%d found", ac->ac_found);
4012 ext4_msg(ac->ac_sb, KERN_ERR, "groups: ");
4013 ngroups = ext4_get_groups_count(sb);
4014 for (i = 0; i < ngroups; i++) {
4015 struct ext4_group_info *grp = ext4_get_group_info(sb, i);
4016 struct ext4_prealloc_space *pa;
4017 ext4_grpblk_t start;
4018 struct list_head *cur;
4019 ext4_lock_group(sb, i);
4020 list_for_each(cur, &grp->bb_prealloc_list) {
4021 pa = list_entry(cur, struct ext4_prealloc_space,
4022 pa_group_list);
4023 spin_lock(&pa->pa_lock);
4024 ext4_get_group_no_and_offset(sb, pa->pa_pstart,
4025 NULL, &start);
4026 spin_unlock(&pa->pa_lock);
4027 printk(KERN_ERR "PA:%u:%d:%u \n", i,
4028 start, pa->pa_len);
4029 }
4030 ext4_unlock_group(sb, i);
4031
4032 if (grp->bb_free == 0)
4033 continue;
4034 printk(KERN_ERR "%u: %d/%d \n",
4035 i, grp->bb_free, grp->bb_fragments);
4036 }
4037 printk(KERN_ERR "\n");
4038 }
4039 #else
4040 static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac)
4041 {
4042 return;
4043 }
4044 #endif
4045
4046 /*
4047 * We use locality group preallocation for small size file. The size of the
4048 * file is determined by the current size or the resulting size after
4049 * allocation which ever is larger
4050 *
4051 * One can tune this size via /sys/fs/ext4/<partition>/mb_stream_req
4052 */
4053 static void ext4_mb_group_or_file(struct ext4_allocation_context *ac)
4054 {
4055 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4056 int bsbits = ac->ac_sb->s_blocksize_bits;
4057 loff_t size, isize;
4058
4059 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
4060 return;
4061
4062 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
4063 return;
4064
4065 size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len);
4066 isize = (i_size_read(ac->ac_inode) + ac->ac_sb->s_blocksize - 1)
4067 >> bsbits;
4068
4069 if ((size == isize) &&
4070 !ext4_fs_is_busy(sbi) &&
4071 (atomic_read(&ac->ac_inode->i_writecount) == 0)) {
4072 ac->ac_flags |= EXT4_MB_HINT_NOPREALLOC;
4073 return;
4074 }
4075
4076 if (sbi->s_mb_group_prealloc <= 0) {
4077 ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
4078 return;
4079 }
4080
4081 /* don't use group allocation for large files */
4082 size = max(size, isize);
4083 if (size > sbi->s_mb_stream_request) {
4084 ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
4085 return;
4086 }
4087
4088 BUG_ON(ac->ac_lg != NULL);
4089 /*
4090 * locality group prealloc space are per cpu. The reason for having
4091 * per cpu locality group is to reduce the contention between block
4092 * request from multiple CPUs.
4093 */
4094 ac->ac_lg = __this_cpu_ptr(sbi->s_locality_groups);
4095
4096 /* we're going to use group allocation */
4097 ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC;
4098
4099 /* serialize all allocations in the group */
4100 mutex_lock(&ac->ac_lg->lg_mutex);
4101 }
4102
4103 static noinline_for_stack int
4104 ext4_mb_initialize_context(struct ext4_allocation_context *ac,
4105 struct ext4_allocation_request *ar)
4106 {
4107 struct super_block *sb = ar->inode->i_sb;
4108 struct ext4_sb_info *sbi = EXT4_SB(sb);
4109 struct ext4_super_block *es = sbi->s_es;
4110 ext4_group_t group;
4111 unsigned int len;
4112 ext4_fsblk_t goal;
4113 ext4_grpblk_t block;
4114
4115 /* we can't allocate > group size */
4116 len = ar->len;
4117
4118 /* just a dirty hack to filter too big requests */
4119 if (len >= EXT4_CLUSTERS_PER_GROUP(sb))
4120 len = EXT4_CLUSTERS_PER_GROUP(sb);
4121
4122 /* start searching from the goal */
4123 goal = ar->goal;
4124 if (goal < le32_to_cpu(es->s_first_data_block) ||
4125 goal >= ext4_blocks_count(es))
4126 goal = le32_to_cpu(es->s_first_data_block);
4127 ext4_get_group_no_and_offset(sb, goal, &group, &block);
4128
4129 /* set up allocation goals */
4130 ac->ac_b_ex.fe_logical = EXT4_LBLK_CMASK(sbi, ar->logical);
4131 ac->ac_status = AC_STATUS_CONTINUE;
4132 ac->ac_sb = sb;
4133 ac->ac_inode = ar->inode;
4134 ac->ac_o_ex.fe_logical = ac->ac_b_ex.fe_logical;
4135 ac->ac_o_ex.fe_group = group;
4136 ac->ac_o_ex.fe_start = block;
4137 ac->ac_o_ex.fe_len = len;
4138 ac->ac_g_ex = ac->ac_o_ex;
4139 ac->ac_flags = ar->flags;
4140
4141 /* we have to define context: we'll we work with a file or
4142 * locality group. this is a policy, actually */
4143 ext4_mb_group_or_file(ac);
4144
4145 mb_debug(1, "init ac: %u blocks @ %u, goal %u, flags %x, 2^%d, "
4146 "left: %u/%u, right %u/%u to %swritable\n",
4147 (unsigned) ar->len, (unsigned) ar->logical,
4148 (unsigned) ar->goal, ac->ac_flags, ac->ac_2order,
4149 (unsigned) ar->lleft, (unsigned) ar->pleft,
4150 (unsigned) ar->lright, (unsigned) ar->pright,
4151 atomic_read(&ar->inode->i_writecount) ? "" : "non-");
4152 return 0;
4153
4154 }
4155
4156 static noinline_for_stack void
4157 ext4_mb_discard_lg_preallocations(struct super_block *sb,
4158 struct ext4_locality_group *lg,
4159 int order, int total_entries)
4160 {
4161 ext4_group_t group = 0;
4162 struct ext4_buddy e4b;
4163 struct list_head discard_list;
4164 struct ext4_prealloc_space *pa, *tmp;
4165
4166 mb_debug(1, "discard locality group preallocation\n");
4167
4168 INIT_LIST_HEAD(&discard_list);
4169
4170 spin_lock(&lg->lg_prealloc_lock);
4171 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[order],
4172 pa_inode_list) {
4173 spin_lock(&pa->pa_lock);
4174 if (atomic_read(&pa->pa_count)) {
4175 /*
4176 * This is the pa that we just used
4177 * for block allocation. So don't
4178 * free that
4179 */
4180 spin_unlock(&pa->pa_lock);
4181 continue;
4182 }
4183 if (pa->pa_deleted) {
4184 spin_unlock(&pa->pa_lock);
4185 continue;
4186 }
4187 /* only lg prealloc space */
4188 BUG_ON(pa->pa_type != MB_GROUP_PA);
4189
4190 /* seems this one can be freed ... */
4191 pa->pa_deleted = 1;
4192 spin_unlock(&pa->pa_lock);
4193
4194 list_del_rcu(&pa->pa_inode_list);
4195 list_add(&pa->u.pa_tmp_list, &discard_list);
4196
4197 total_entries--;
4198 if (total_entries <= 5) {
4199 /*
4200 * we want to keep only 5 entries
4201 * allowing it to grow to 8. This
4202 * mak sure we don't call discard
4203 * soon for this list.
4204 */
4205 break;
4206 }
4207 }
4208 spin_unlock(&lg->lg_prealloc_lock);
4209
4210 list_for_each_entry_safe(pa, tmp, &discard_list, u.pa_tmp_list) {
4211
4212 group = ext4_get_group_number(sb, pa->pa_pstart);
4213 if (ext4_mb_load_buddy(sb, group, &e4b)) {
4214 ext4_error(sb, "Error loading buddy information for %u",
4215 group);
4216 continue;
4217 }
4218 ext4_lock_group(sb, group);
4219 list_del(&pa->pa_group_list);
4220 ext4_mb_release_group_pa(&e4b, pa);
4221 ext4_unlock_group(sb, group);
4222
4223 ext4_mb_unload_buddy(&e4b);
4224 list_del(&pa->u.pa_tmp_list);
4225 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4226 }
4227 }
4228
4229 /*
4230 * We have incremented pa_count. So it cannot be freed at this
4231 * point. Also we hold lg_mutex. So no parallel allocation is
4232 * possible from this lg. That means pa_free cannot be updated.
4233 *
4234 * A parallel ext4_mb_discard_group_preallocations is possible.
4235 * which can cause the lg_prealloc_list to be updated.
4236 */
4237
4238 static void ext4_mb_add_n_trim(struct ext4_allocation_context *ac)
4239 {
4240 int order, added = 0, lg_prealloc_count = 1;
4241 struct super_block *sb = ac->ac_sb;
4242 struct ext4_locality_group *lg = ac->ac_lg;
4243 struct ext4_prealloc_space *tmp_pa, *pa = ac->ac_pa;
4244
4245 order = fls(pa->pa_free) - 1;
4246 if (order > PREALLOC_TB_SIZE - 1)
4247 /* The max size of hash table is PREALLOC_TB_SIZE */
4248 order = PREALLOC_TB_SIZE - 1;
4249 /* Add the prealloc space to lg */
4250 spin_lock(&lg->lg_prealloc_lock);
4251 list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[order],
4252 pa_inode_list) {
4253 spin_lock(&tmp_pa->pa_lock);
4254 if (tmp_pa->pa_deleted) {
4255 spin_unlock(&tmp_pa->pa_lock);
4256 continue;
4257 }
4258 if (!added && pa->pa_free < tmp_pa->pa_free) {
4259 /* Add to the tail of the previous entry */
4260 list_add_tail_rcu(&pa->pa_inode_list,
4261 &tmp_pa->pa_inode_list);
4262 added = 1;
4263 /*
4264 * we want to count the total
4265 * number of entries in the list
4266 */
4267 }
4268 spin_unlock(&tmp_pa->pa_lock);
4269 lg_prealloc_count++;
4270 }
4271 if (!added)
4272 list_add_tail_rcu(&pa->pa_inode_list,
4273 &lg->lg_prealloc_list[order]);
4274 spin_unlock(&lg->lg_prealloc_lock);
4275
4276 /* Now trim the list to be not more than 8 elements */
4277 if (lg_prealloc_count > 8) {
4278 ext4_mb_discard_lg_preallocations(sb, lg,
4279 order, lg_prealloc_count);
4280 return;
4281 }
4282 return ;
4283 }
4284
4285 /*
4286 * release all resource we used in allocation
4287 */
4288 static int ext4_mb_release_context(struct ext4_allocation_context *ac)
4289 {
4290 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4291 struct ext4_prealloc_space *pa = ac->ac_pa;
4292 if (pa) {
4293 if (pa->pa_type == MB_GROUP_PA) {
4294 /* see comment in ext4_mb_use_group_pa() */
4295 spin_lock(&pa->pa_lock);
4296 pa->pa_pstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
4297 pa->pa_lstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
4298 pa->pa_free -= ac->ac_b_ex.fe_len;
4299 pa->pa_len -= ac->ac_b_ex.fe_len;
4300 spin_unlock(&pa->pa_lock);
4301 }
4302 }
4303 if (pa) {
4304 /*
4305 * We want to add the pa to the right bucket.
4306 * Remove it from the list and while adding
4307 * make sure the list to which we are adding
4308 * doesn't grow big.
4309 */
4310 if ((pa->pa_type == MB_GROUP_PA) && likely(pa->pa_free)) {
4311 spin_lock(pa->pa_obj_lock);
4312 list_del_rcu(&pa->pa_inode_list);
4313 spin_unlock(pa->pa_obj_lock);
4314 ext4_mb_add_n_trim(ac);
4315 }
4316 ext4_mb_put_pa(ac, ac->ac_sb, pa);
4317 }
4318 if (ac->ac_bitmap_page)
4319 page_cache_release(ac->ac_bitmap_page);
4320 if (ac->ac_buddy_page)
4321 page_cache_release(ac->ac_buddy_page);
4322 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
4323 mutex_unlock(&ac->ac_lg->lg_mutex);
4324 ext4_mb_collect_stats(ac);
4325 return 0;
4326 }
4327
4328 static int ext4_mb_discard_preallocations(struct super_block *sb, int needed)
4329 {
4330 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
4331 int ret;
4332 int freed = 0;
4333
4334 trace_ext4_mb_discard_preallocations(sb, needed);
4335 for (i = 0; i < ngroups && needed > 0; i++) {
4336 ret = ext4_mb_discard_group_preallocations(sb, i, needed);
4337 freed += ret;
4338 needed -= ret;
4339 }
4340
4341 return freed;
4342 }
4343
4344 /*
4345 * Main entry point into mballoc to allocate blocks
4346 * it tries to use preallocation first, then falls back
4347 * to usual allocation
4348 */
4349 ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle,
4350 struct ext4_allocation_request *ar, int *errp)
4351 {
4352 int freed;
4353 struct ext4_allocation_context *ac = NULL;
4354 struct ext4_sb_info *sbi;
4355 struct super_block *sb;
4356 ext4_fsblk_t block = 0;
4357 unsigned int inquota = 0;
4358 unsigned int reserv_clstrs = 0;
4359
4360 might_sleep();
4361 sb = ar->inode->i_sb;
4362 sbi = EXT4_SB(sb);
4363
4364 trace_ext4_request_blocks(ar);
4365
4366 /* Allow to use superuser reservation for quota file */
4367 if (IS_NOQUOTA(ar->inode))
4368 ar->flags |= EXT4_MB_USE_ROOT_BLOCKS;
4369
4370 /*
4371 * For delayed allocation, we could skip the ENOSPC and
4372 * EDQUOT check, as blocks and quotas have been already
4373 * reserved when data being copied into pagecache.
4374 */
4375 if (ext4_test_inode_state(ar->inode, EXT4_STATE_DELALLOC_RESERVED))
4376 ar->flags |= EXT4_MB_DELALLOC_RESERVED;
4377 else {
4378 /* Without delayed allocation we need to verify
4379 * there is enough free blocks to do block allocation
4380 * and verify allocation doesn't exceed the quota limits.
4381 */
4382 while (ar->len &&
4383 ext4_claim_free_clusters(sbi, ar->len, ar->flags)) {
4384
4385 /* let others to free the space */
4386 cond_resched();
4387 ar->len = ar->len >> 1;
4388 }
4389 if (!ar->len) {
4390 *errp = -ENOSPC;
4391 return 0;
4392 }
4393 reserv_clstrs = ar->len;
4394 if (ar->flags & EXT4_MB_USE_ROOT_BLOCKS) {
4395 dquot_alloc_block_nofail(ar->inode,
4396 EXT4_C2B(sbi, ar->len));
4397 } else {
4398 while (ar->len &&
4399 dquot_alloc_block(ar->inode,
4400 EXT4_C2B(sbi, ar->len))) {
4401
4402 ar->flags |= EXT4_MB_HINT_NOPREALLOC;
4403 ar->len--;
4404 }
4405 }
4406 inquota = ar->len;
4407 if (ar->len == 0) {
4408 *errp = -EDQUOT;
4409 goto out;
4410 }
4411 }
4412
4413 ac = kmem_cache_zalloc(ext4_ac_cachep, GFP_NOFS);
4414 if (!ac) {
4415 ar->len = 0;
4416 *errp = -ENOMEM;
4417 goto out;
4418 }
4419
4420 *errp = ext4_mb_initialize_context(ac, ar);
4421 if (*errp) {
4422 ar->len = 0;
4423 goto out;
4424 }
4425
4426 ac->ac_op = EXT4_MB_HISTORY_PREALLOC;
4427 if (!ext4_mb_use_preallocated(ac)) {
4428 ac->ac_op = EXT4_MB_HISTORY_ALLOC;
4429 ext4_mb_normalize_request(ac, ar);
4430 repeat:
4431 /* allocate space in core */
4432 *errp = ext4_mb_regular_allocator(ac);
4433 if (*errp)
4434 goto discard_and_exit;
4435
4436 /* as we've just preallocated more space than
4437 * user requested originally, we store allocated
4438 * space in a special descriptor */
4439 if (ac->ac_status == AC_STATUS_FOUND &&
4440 ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len)
4441 *errp = ext4_mb_new_preallocation(ac);
4442 if (*errp) {
4443 discard_and_exit:
4444 ext4_discard_allocated_blocks(ac);
4445 goto errout;
4446 }
4447 }
4448 if (likely(ac->ac_status == AC_STATUS_FOUND)) {
4449 *errp = ext4_mb_mark_diskspace_used(ac, handle, reserv_clstrs);
4450 if (*errp == -EAGAIN) {
4451 /*
4452 * drop the reference that we took
4453 * in ext4_mb_use_best_found
4454 */
4455 ext4_mb_release_context(ac);
4456 ac->ac_b_ex.fe_group = 0;
4457 ac->ac_b_ex.fe_start = 0;
4458 ac->ac_b_ex.fe_len = 0;
4459 ac->ac_status = AC_STATUS_CONTINUE;
4460 goto repeat;
4461 } else if (*errp) {
4462 ext4_discard_allocated_blocks(ac);
4463 goto errout;
4464 } else {
4465 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
4466 ar->len = ac->ac_b_ex.fe_len;
4467 }
4468 } else {
4469 freed = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len);
4470 if (freed)
4471 goto repeat;
4472 *errp = -ENOSPC;
4473 }
4474
4475 errout:
4476 if (*errp) {
4477 ac->ac_b_ex.fe_len = 0;
4478 ar->len = 0;
4479 ext4_mb_show_ac(ac);
4480 }
4481 ext4_mb_release_context(ac);
4482 out:
4483 if (ac)
4484 kmem_cache_free(ext4_ac_cachep, ac);
4485 if (inquota && ar->len < inquota)
4486 dquot_free_block(ar->inode, EXT4_C2B(sbi, inquota - ar->len));
4487 if (!ar->len) {
4488 if (!ext4_test_inode_state(ar->inode,
4489 EXT4_STATE_DELALLOC_RESERVED))
4490 /* release all the reserved blocks if non delalloc */
4491 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
4492 reserv_clstrs);
4493 }
4494
4495 trace_ext4_allocate_blocks(ar, (unsigned long long)block);
4496
4497 return block;
4498 }
4499
4500 /*
4501 * We can merge two free data extents only if the physical blocks
4502 * are contiguous, AND the extents were freed by the same transaction,
4503 * AND the blocks are associated with the same group.
4504 */
4505 static int can_merge(struct ext4_free_data *entry1,
4506 struct ext4_free_data *entry2)
4507 {
4508 if ((entry1->efd_tid == entry2->efd_tid) &&
4509 (entry1->efd_group == entry2->efd_group) &&
4510 ((entry1->efd_start_cluster + entry1->efd_count) == entry2->efd_start_cluster))
4511 return 1;
4512 return 0;
4513 }
4514
4515 static noinline_for_stack int
4516 ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b,
4517 struct ext4_free_data *new_entry)
4518 {
4519 ext4_group_t group = e4b->bd_group;
4520 ext4_grpblk_t cluster;
4521 struct ext4_free_data *entry;
4522 struct ext4_group_info *db = e4b->bd_info;
4523 struct super_block *sb = e4b->bd_sb;
4524 struct ext4_sb_info *sbi = EXT4_SB(sb);
4525 struct rb_node **n = &db->bb_free_root.rb_node, *node;
4526 struct rb_node *parent = NULL, *new_node;
4527
4528 BUG_ON(!ext4_handle_valid(handle));
4529 BUG_ON(e4b->bd_bitmap_page == NULL);
4530 BUG_ON(e4b->bd_buddy_page == NULL);
4531
4532 new_node = &new_entry->efd_node;
4533 cluster = new_entry->efd_start_cluster;
4534
4535 if (!*n) {
4536 /* first free block exent. We need to
4537 protect buddy cache from being freed,
4538 * otherwise we'll refresh it from
4539 * on-disk bitmap and lose not-yet-available
4540 * blocks */
4541 page_cache_get(e4b->bd_buddy_page);
4542 page_cache_get(e4b->bd_bitmap_page);
4543 }
4544 while (*n) {
4545 parent = *n;
4546 entry = rb_entry(parent, struct ext4_free_data, efd_node);
4547 if (cluster < entry->efd_start_cluster)
4548 n = &(*n)->rb_left;
4549 else if (cluster >= (entry->efd_start_cluster + entry->efd_count))
4550 n = &(*n)->rb_right;
4551 else {
4552 ext4_grp_locked_error(sb, group, 0,
4553 ext4_group_first_block_no(sb, group) +
4554 EXT4_C2B(sbi, cluster),
4555 "Block already on to-be-freed list");
4556 return 0;
4557 }
4558 }
4559
4560 rb_link_node(new_node, parent, n);
4561 rb_insert_color(new_node, &db->bb_free_root);
4562
4563 /* Now try to see the extent can be merged to left and right */
4564 node = rb_prev(new_node);
4565 if (node) {
4566 entry = rb_entry(node, struct ext4_free_data, efd_node);
4567 if (can_merge(entry, new_entry) &&
4568 ext4_journal_callback_try_del(handle, &entry->efd_jce)) {
4569 new_entry->efd_start_cluster = entry->efd_start_cluster;
4570 new_entry->efd_count += entry->efd_count;
4571 rb_erase(node, &(db->bb_free_root));
4572 kmem_cache_free(ext4_free_data_cachep, entry);
4573 }
4574 }
4575
4576 node = rb_next(new_node);
4577 if (node) {
4578 entry = rb_entry(node, struct ext4_free_data, efd_node);
4579 if (can_merge(new_entry, entry) &&
4580 ext4_journal_callback_try_del(handle, &entry->efd_jce)) {
4581 new_entry->efd_count += entry->efd_count;
4582 rb_erase(node, &(db->bb_free_root));
4583 kmem_cache_free(ext4_free_data_cachep, entry);
4584 }
4585 }
4586 /* Add the extent to transaction's private list */
4587 ext4_journal_callback_add(handle, ext4_free_data_callback,
4588 &new_entry->efd_jce);
4589 return 0;
4590 }
4591
4592 /**
4593 * ext4_free_blocks() -- Free given blocks and update quota
4594 * @handle: handle for this transaction
4595 * @inode: inode
4596 * @block: start physical block to free
4597 * @count: number of blocks to count
4598 * @flags: flags used by ext4_free_blocks
4599 */
4600 void ext4_free_blocks(handle_t *handle, struct inode *inode,
4601 struct buffer_head *bh, ext4_fsblk_t block,
4602 unsigned long count, int flags)
4603 {
4604 struct buffer_head *bitmap_bh = NULL;
4605 struct super_block *sb = inode->i_sb;
4606 struct ext4_group_desc *gdp;
4607 unsigned int overflow;
4608 ext4_grpblk_t bit;
4609 struct buffer_head *gd_bh;
4610 ext4_group_t block_group;
4611 struct ext4_sb_info *sbi;
4612 struct ext4_inode_info *ei = EXT4_I(inode);
4613 struct ext4_buddy e4b;
4614 unsigned int count_clusters;
4615 int err = 0;
4616 int ret;
4617
4618 might_sleep();
4619 if (bh) {
4620 if (block)
4621 BUG_ON(block != bh->b_blocknr);
4622 else
4623 block = bh->b_blocknr;
4624 }
4625
4626 sbi = EXT4_SB(sb);
4627 if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) &&
4628 !ext4_data_block_valid(sbi, block, count)) {
4629 ext4_error(sb, "Freeing blocks not in datazone - "
4630 "block = %llu, count = %lu", block, count);
4631 goto error_return;
4632 }
4633
4634 ext4_debug("freeing block %llu\n", block);
4635 trace_ext4_free_blocks(inode, block, count, flags);
4636
4637 if (flags & EXT4_FREE_BLOCKS_FORGET) {
4638 struct buffer_head *tbh = bh;
4639 int i;
4640
4641 BUG_ON(bh && (count > 1));
4642
4643 for (i = 0; i < count; i++) {
4644 cond_resched();
4645 if (!bh)
4646 tbh = sb_find_get_block(inode->i_sb,
4647 block + i);
4648 if (!tbh)
4649 continue;
4650 ext4_forget(handle, flags & EXT4_FREE_BLOCKS_METADATA,
4651 inode, tbh, block + i);
4652 }
4653 }
4654
4655 /*
4656 * We need to make sure we don't reuse the freed block until
4657 * after the transaction is committed, which we can do by
4658 * treating the block as metadata, below. We make an
4659 * exception if the inode is to be written in writeback mode
4660 * since writeback mode has weak data consistency guarantees.
4661 */
4662 if (!ext4_should_writeback_data(inode))
4663 flags |= EXT4_FREE_BLOCKS_METADATA;
4664
4665 /*
4666 * If the extent to be freed does not begin on a cluster
4667 * boundary, we need to deal with partial clusters at the
4668 * beginning and end of the extent. Normally we will free
4669 * blocks at the beginning or the end unless we are explicitly
4670 * requested to avoid doing so.
4671 */
4672 overflow = EXT4_PBLK_COFF(sbi, block);
4673 if (overflow) {
4674 if (flags & EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER) {
4675 overflow = sbi->s_cluster_ratio - overflow;
4676 block += overflow;
4677 if (count > overflow)
4678 count -= overflow;
4679 else
4680 return;
4681 } else {
4682 block -= overflow;
4683 count += overflow;
4684 }
4685 }
4686 overflow = EXT4_LBLK_COFF(sbi, count);
4687 if (overflow) {
4688 if (flags & EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER) {
4689 if (count > overflow)
4690 count -= overflow;
4691 else
4692 return;
4693 } else
4694 count += sbi->s_cluster_ratio - overflow;
4695 }
4696
4697 do_more:
4698 overflow = 0;
4699 ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
4700
4701 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(
4702 ext4_get_group_info(sb, block_group))))
4703 return;
4704
4705 /*
4706 * Check to see if we are freeing blocks across a group
4707 * boundary.
4708 */
4709 if (EXT4_C2B(sbi, bit) + count > EXT4_BLOCKS_PER_GROUP(sb)) {
4710 overflow = EXT4_C2B(sbi, bit) + count -
4711 EXT4_BLOCKS_PER_GROUP(sb);
4712 count -= overflow;
4713 }
4714 count_clusters = EXT4_NUM_B2C(sbi, count);
4715 bitmap_bh = ext4_read_block_bitmap(sb, block_group);
4716 if (!bitmap_bh) {
4717 err = -EIO;
4718 goto error_return;
4719 }
4720 gdp = ext4_get_group_desc(sb, block_group, &gd_bh);
4721 if (!gdp) {
4722 err = -EIO;
4723 goto error_return;
4724 }
4725
4726 if (in_range(ext4_block_bitmap(sb, gdp), block, count) ||
4727 in_range(ext4_inode_bitmap(sb, gdp), block, count) ||
4728 in_range(block, ext4_inode_table(sb, gdp),
4729 EXT4_SB(sb)->s_itb_per_group) ||
4730 in_range(block + count - 1, ext4_inode_table(sb, gdp),
4731 EXT4_SB(sb)->s_itb_per_group)) {
4732
4733 ext4_error(sb, "Freeing blocks in system zone - "
4734 "Block = %llu, count = %lu", block, count);
4735 /* err = 0. ext4_std_error should be a no op */
4736 goto error_return;
4737 }
4738
4739 BUFFER_TRACE(bitmap_bh, "getting write access");
4740 err = ext4_journal_get_write_access(handle, bitmap_bh);
4741 if (err)
4742 goto error_return;
4743
4744 /*
4745 * We are about to modify some metadata. Call the journal APIs
4746 * to unshare ->b_data if a currently-committing transaction is
4747 * using it
4748 */
4749 BUFFER_TRACE(gd_bh, "get_write_access");
4750 err = ext4_journal_get_write_access(handle, gd_bh);
4751 if (err)
4752 goto error_return;
4753 #ifdef AGGRESSIVE_CHECK
4754 {
4755 int i;
4756 for (i = 0; i < count_clusters; i++)
4757 BUG_ON(!mb_test_bit(bit + i, bitmap_bh->b_data));
4758 }
4759 #endif
4760 trace_ext4_mballoc_free(sb, inode, block_group, bit, count_clusters);
4761
4762 err = ext4_mb_load_buddy(sb, block_group, &e4b);
4763 if (err)
4764 goto error_return;
4765
4766 if ((flags & EXT4_FREE_BLOCKS_METADATA) && ext4_handle_valid(handle)) {
4767 struct ext4_free_data *new_entry;
4768 /*
4769 * blocks being freed are metadata. these blocks shouldn't
4770 * be used until this transaction is committed
4771 */
4772 retry:
4773 new_entry = kmem_cache_alloc(ext4_free_data_cachep, GFP_NOFS);
4774 if (!new_entry) {
4775 /*
4776 * We use a retry loop because
4777 * ext4_free_blocks() is not allowed to fail.
4778 */
4779 cond_resched();
4780 congestion_wait(BLK_RW_ASYNC, HZ/50);
4781 goto retry;
4782 }
4783 new_entry->efd_start_cluster = bit;
4784 new_entry->efd_group = block_group;
4785 new_entry->efd_count = count_clusters;
4786 new_entry->efd_tid = handle->h_transaction->t_tid;
4787
4788 ext4_lock_group(sb, block_group);
4789 mb_clear_bits(bitmap_bh->b_data, bit, count_clusters);
4790 ext4_mb_free_metadata(handle, &e4b, new_entry);
4791 } else {
4792 /* need to update group_info->bb_free and bitmap
4793 * with group lock held. generate_buddy look at
4794 * them with group lock_held
4795 */
4796 if (test_opt(sb, DISCARD)) {
4797 err = ext4_issue_discard(sb, block_group, bit, count);
4798 if (err && err != -EOPNOTSUPP)
4799 ext4_msg(sb, KERN_WARNING, "discard request in"
4800 " group:%d block:%d count:%lu failed"
4801 " with %d", block_group, bit, count,
4802 err);
4803 } else
4804 EXT4_MB_GRP_CLEAR_TRIMMED(e4b.bd_info);
4805
4806 ext4_lock_group(sb, block_group);
4807 mb_clear_bits(bitmap_bh->b_data, bit, count_clusters);
4808 mb_free_blocks(inode, &e4b, bit, count_clusters);
4809 }
4810
4811 ret = ext4_free_group_clusters(sb, gdp) + count_clusters;
4812 ext4_free_group_clusters_set(sb, gdp, ret);
4813 ext4_block_bitmap_csum_set(sb, block_group, gdp, bitmap_bh);
4814 ext4_group_desc_csum_set(sb, block_group, gdp);
4815 ext4_unlock_group(sb, block_group);
4816
4817 if (sbi->s_log_groups_per_flex) {
4818 ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
4819 atomic64_add(count_clusters,
4820 &sbi->s_flex_groups[flex_group].free_clusters);
4821 }
4822
4823 if (flags & EXT4_FREE_BLOCKS_RESERVE && ei->i_reserved_data_blocks) {
4824 percpu_counter_add(&sbi->s_dirtyclusters_counter,
4825 count_clusters);
4826 spin_lock(&ei->i_block_reservation_lock);
4827 if (flags & EXT4_FREE_BLOCKS_METADATA)
4828 ei->i_reserved_meta_blocks += count_clusters;
4829 else
4830 ei->i_reserved_data_blocks += count_clusters;
4831 spin_unlock(&ei->i_block_reservation_lock);
4832 if (!(flags & EXT4_FREE_BLOCKS_NO_QUOT_UPDATE))
4833 dquot_reclaim_block(inode,
4834 EXT4_C2B(sbi, count_clusters));
4835 } else if (!(flags & EXT4_FREE_BLOCKS_NO_QUOT_UPDATE))
4836 dquot_free_block(inode, EXT4_C2B(sbi, count_clusters));
4837 percpu_counter_add(&sbi->s_freeclusters_counter, count_clusters);
4838
4839 ext4_mb_unload_buddy(&e4b);
4840
4841 /* We dirtied the bitmap block */
4842 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
4843 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
4844
4845 /* And the group descriptor block */
4846 BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
4847 ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
4848 if (!err)
4849 err = ret;
4850
4851 if (overflow && !err) {
4852 block += count;
4853 count = overflow;
4854 put_bh(bitmap_bh);
4855 goto do_more;
4856 }
4857 error_return:
4858 brelse(bitmap_bh);
4859 ext4_std_error(sb, err);
4860 return;
4861 }
4862
4863 /**
4864 * ext4_group_add_blocks() -- Add given blocks to an existing group
4865 * @handle: handle to this transaction
4866 * @sb: super block
4867 * @block: start physical block to add to the block group
4868 * @count: number of blocks to free
4869 *
4870 * This marks the blocks as free in the bitmap and buddy.
4871 */
4872 int ext4_group_add_blocks(handle_t *handle, struct super_block *sb,
4873 ext4_fsblk_t block, unsigned long count)
4874 {
4875 struct buffer_head *bitmap_bh = NULL;
4876 struct buffer_head *gd_bh;
4877 ext4_group_t block_group;
4878 ext4_grpblk_t bit;
4879 unsigned int i;
4880 struct ext4_group_desc *desc;
4881 struct ext4_sb_info *sbi = EXT4_SB(sb);
4882 struct ext4_buddy e4b;
4883 int err = 0, ret, blk_free_count;
4884 ext4_grpblk_t blocks_freed;
4885
4886 ext4_debug("Adding block(s) %llu-%llu\n", block, block + count - 1);
4887
4888 if (count == 0)
4889 return 0;
4890
4891 ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
4892 /*
4893 * Check to see if we are freeing blocks across a group
4894 * boundary.
4895 */
4896 if (bit + count > EXT4_BLOCKS_PER_GROUP(sb)) {
4897 ext4_warning(sb, "too much blocks added to group %u\n",
4898 block_group);
4899 err = -EINVAL;
4900 goto error_return;
4901 }
4902
4903 bitmap_bh = ext4_read_block_bitmap(sb, block_group);
4904 if (!bitmap_bh) {
4905 err = -EIO;
4906 goto error_return;
4907 }
4908
4909 desc = ext4_get_group_desc(sb, block_group, &gd_bh);
4910 if (!desc) {
4911 err = -EIO;
4912 goto error_return;
4913 }
4914
4915 if (in_range(ext4_block_bitmap(sb, desc), block, count) ||
4916 in_range(ext4_inode_bitmap(sb, desc), block, count) ||
4917 in_range(block, ext4_inode_table(sb, desc), sbi->s_itb_per_group) ||
4918 in_range(block + count - 1, ext4_inode_table(sb, desc),
4919 sbi->s_itb_per_group)) {
4920 ext4_error(sb, "Adding blocks in system zones - "
4921 "Block = %llu, count = %lu",
4922 block, count);
4923 err = -EINVAL;
4924 goto error_return;
4925 }
4926
4927 BUFFER_TRACE(bitmap_bh, "getting write access");
4928 err = ext4_journal_get_write_access(handle, bitmap_bh);
4929 if (err)
4930 goto error_return;
4931
4932 /*
4933 * We are about to modify some metadata. Call the journal APIs
4934 * to unshare ->b_data if a currently-committing transaction is
4935 * using it
4936 */
4937 BUFFER_TRACE(gd_bh, "get_write_access");
4938 err = ext4_journal_get_write_access(handle, gd_bh);
4939 if (err)
4940 goto error_return;
4941
4942 for (i = 0, blocks_freed = 0; i < count; i++) {
4943 BUFFER_TRACE(bitmap_bh, "clear bit");
4944 if (!mb_test_bit(bit + i, bitmap_bh->b_data)) {
4945 ext4_error(sb, "bit already cleared for block %llu",
4946 (ext4_fsblk_t)(block + i));
4947 BUFFER_TRACE(bitmap_bh, "bit already cleared");
4948 } else {
4949 blocks_freed++;
4950 }
4951 }
4952
4953 err = ext4_mb_load_buddy(sb, block_group, &e4b);
4954 if (err)
4955 goto error_return;
4956
4957 /*
4958 * need to update group_info->bb_free and bitmap
4959 * with group lock held. generate_buddy look at
4960 * them with group lock_held
4961 */
4962 ext4_lock_group(sb, block_group);
4963 mb_clear_bits(bitmap_bh->b_data, bit, count);
4964 mb_free_blocks(NULL, &e4b, bit, count);
4965 blk_free_count = blocks_freed + ext4_free_group_clusters(sb, desc);
4966 ext4_free_group_clusters_set(sb, desc, blk_free_count);
4967 ext4_block_bitmap_csum_set(sb, block_group, desc, bitmap_bh);
4968 ext4_group_desc_csum_set(sb, block_group, desc);
4969 ext4_unlock_group(sb, block_group);
4970 percpu_counter_add(&sbi->s_freeclusters_counter,
4971 EXT4_NUM_B2C(sbi, blocks_freed));
4972
4973 if (sbi->s_log_groups_per_flex) {
4974 ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
4975 atomic64_add(EXT4_NUM_B2C(sbi, blocks_freed),
4976 &sbi->s_flex_groups[flex_group].free_clusters);
4977 }
4978
4979 ext4_mb_unload_buddy(&e4b);
4980
4981 /* We dirtied the bitmap block */
4982 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
4983 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
4984
4985 /* And the group descriptor block */
4986 BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
4987 ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
4988 if (!err)
4989 err = ret;
4990
4991 error_return:
4992 brelse(bitmap_bh);
4993 ext4_std_error(sb, err);
4994 return err;
4995 }
4996
4997 /**
4998 * ext4_trim_extent -- function to TRIM one single free extent in the group
4999 * @sb: super block for the file system
5000 * @start: starting block of the free extent in the alloc. group
5001 * @count: number of blocks to TRIM
5002 * @group: alloc. group we are working with
5003 * @e4b: ext4 buddy for the group
5004 *
5005 * Trim "count" blocks starting at "start" in the "group". To assure that no
5006 * one will allocate those blocks, mark it as used in buddy bitmap. This must
5007 * be called with under the group lock.
5008 */
5009 static int ext4_trim_extent(struct super_block *sb, int start, int count,
5010 ext4_group_t group, struct ext4_buddy *e4b)
5011 {
5012 struct ext4_free_extent ex;
5013 int ret = 0;
5014
5015 trace_ext4_trim_extent(sb, group, start, count);
5016
5017 assert_spin_locked(ext4_group_lock_ptr(sb, group));
5018
5019 ex.fe_start = start;
5020 ex.fe_group = group;
5021 ex.fe_len = count;
5022
5023 /*
5024 * Mark blocks used, so no one can reuse them while
5025 * being trimmed.
5026 */
5027 mb_mark_used(e4b, &ex);
5028 ext4_unlock_group(sb, group);
5029 ret = ext4_issue_discard(sb, group, start, count);
5030 ext4_lock_group(sb, group);
5031 mb_free_blocks(NULL, e4b, start, ex.fe_len);
5032 return ret;
5033 }
5034
5035 /**
5036 * ext4_trim_all_free -- function to trim all free space in alloc. group
5037 * @sb: super block for file system
5038 * @group: group to be trimmed
5039 * @start: first group block to examine
5040 * @max: last group block to examine
5041 * @minblocks: minimum extent block count
5042 *
5043 * ext4_trim_all_free walks through group's buddy bitmap searching for free
5044 * extents. When the free block is found, ext4_trim_extent is called to TRIM
5045 * the extent.
5046 *
5047 *
5048 * ext4_trim_all_free walks through group's block bitmap searching for free
5049 * extents. When the free extent is found, mark it as used in group buddy
5050 * bitmap. Then issue a TRIM command on this extent and free the extent in
5051 * the group buddy bitmap. This is done until whole group is scanned.
5052 */
5053 static ext4_grpblk_t
5054 ext4_trim_all_free(struct super_block *sb, ext4_group_t group,
5055 ext4_grpblk_t start, ext4_grpblk_t max,
5056 ext4_grpblk_t minblocks)
5057 {
5058 void *bitmap;
5059 ext4_grpblk_t next, count = 0, free_count = 0;
5060 struct ext4_buddy e4b;
5061 int ret = 0;
5062
5063 trace_ext4_trim_all_free(sb, group, start, max);
5064
5065 ret = ext4_mb_load_buddy(sb, group, &e4b);
5066 if (ret) {
5067 ext4_error(sb, "Error in loading buddy "
5068 "information for %u", group);
5069 return ret;
5070 }
5071 bitmap = e4b.bd_bitmap;
5072
5073 ext4_lock_group(sb, group);
5074 if (EXT4_MB_GRP_WAS_TRIMMED(e4b.bd_info) &&
5075 minblocks >= atomic_read(&EXT4_SB(sb)->s_last_trim_minblks))
5076 goto out;
5077
5078 start = (e4b.bd_info->bb_first_free > start) ?
5079 e4b.bd_info->bb_first_free : start;
5080
5081 while (start <= max) {
5082 start = mb_find_next_zero_bit(bitmap, max + 1, start);
5083 if (start > max)
5084 break;
5085 next = mb_find_next_bit(bitmap, max + 1, start);
5086
5087 if ((next - start) >= minblocks) {
5088 ret = ext4_trim_extent(sb, start,
5089 next - start, group, &e4b);
5090 if (ret && ret != -EOPNOTSUPP)
5091 break;
5092 ret = 0;
5093 count += next - start;
5094 }
5095 free_count += next - start;
5096 start = next + 1;
5097
5098 if (fatal_signal_pending(current)) {
5099 count = -ERESTARTSYS;
5100 break;
5101 }
5102
5103 if (need_resched()) {
5104 ext4_unlock_group(sb, group);
5105 cond_resched();
5106 ext4_lock_group(sb, group);
5107 }
5108
5109 if ((e4b.bd_info->bb_free - free_count) < minblocks)
5110 break;
5111 }
5112
5113 if (!ret) {
5114 ret = count;
5115 EXT4_MB_GRP_SET_TRIMMED(e4b.bd_info);
5116 }
5117 out:
5118 ext4_unlock_group(sb, group);
5119 ext4_mb_unload_buddy(&e4b);
5120
5121 ext4_debug("trimmed %d blocks in the group %d\n",
5122 count, group);
5123
5124 return ret;
5125 }
5126
5127 /**
5128 * ext4_trim_fs() -- trim ioctl handle function
5129 * @sb: superblock for filesystem
5130 * @range: fstrim_range structure
5131 *
5132 * start: First Byte to trim
5133 * len: number of Bytes to trim from start
5134 * minlen: minimum extent length in Bytes
5135 * ext4_trim_fs goes through all allocation groups containing Bytes from
5136 * start to start+len. For each such a group ext4_trim_all_free function
5137 * is invoked to trim all free space.
5138 */
5139 int ext4_trim_fs(struct super_block *sb, struct fstrim_range *range)
5140 {
5141 struct ext4_group_info *grp;
5142 ext4_group_t group, first_group, last_group;
5143 ext4_grpblk_t cnt = 0, first_cluster, last_cluster;
5144 uint64_t start, end, minlen, trimmed = 0;
5145 ext4_fsblk_t first_data_blk =
5146 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block);
5147 ext4_fsblk_t max_blks = ext4_blocks_count(EXT4_SB(sb)->s_es);
5148 int ret = 0;
5149
5150 start = range->start >> sb->s_blocksize_bits;
5151 end = start + (range->len >> sb->s_blocksize_bits) - 1;
5152 minlen = EXT4_NUM_B2C(EXT4_SB(sb),
5153 range->minlen >> sb->s_blocksize_bits);
5154
5155 if (minlen > EXT4_CLUSTERS_PER_GROUP(sb) ||
5156 start >= max_blks ||
5157 range->len < sb->s_blocksize)
5158 return -EINVAL;
5159 if (end >= max_blks)
5160 end = max_blks - 1;
5161 if (end <= first_data_blk)
5162 goto out;
5163 if (start < first_data_blk)
5164 start = first_data_blk;
5165
5166 /* Determine first and last group to examine based on start and end */
5167 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) start,
5168 &first_group, &first_cluster);
5169 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) end,
5170 &last_group, &last_cluster);
5171
5172 /* end now represents the last cluster to discard in this group */
5173 end = EXT4_CLUSTERS_PER_GROUP(sb) - 1;
5174
5175 for (group = first_group; group <= last_group; group++) {
5176 grp = ext4_get_group_info(sb, group);
5177 /* We only do this if the grp has never been initialized */
5178 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
5179 ret = ext4_mb_init_group(sb, group);
5180 if (ret)
5181 break;
5182 }
5183
5184 /*
5185 * For all the groups except the last one, last cluster will
5186 * always be EXT4_CLUSTERS_PER_GROUP(sb)-1, so we only need to
5187 * change it for the last group, note that last_cluster is
5188 * already computed earlier by ext4_get_group_no_and_offset()
5189 */
5190 if (group == last_group)
5191 end = last_cluster;
5192
5193 if (grp->bb_free >= minlen) {
5194 cnt = ext4_trim_all_free(sb, group, first_cluster,
5195 end, minlen);
5196 if (cnt < 0) {
5197 ret = cnt;
5198 break;
5199 }
5200 trimmed += cnt;
5201 }
5202
5203 /*
5204 * For every group except the first one, we are sure
5205 * that the first cluster to discard will be cluster #0.
5206 */
5207 first_cluster = 0;
5208 }
5209
5210 if (!ret)
5211 atomic_set(&EXT4_SB(sb)->s_last_trim_minblks, minlen);
5212
5213 out:
5214 range->len = EXT4_C2B(EXT4_SB(sb), trimmed) << sb->s_blocksize_bits;
5215 return ret;
5216 }