]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/ext4/mballoc.c
ext4: try to initialize all groups we can in case of failure on ppc64
[mirror_ubuntu-bionic-kernel.git] / fs / ext4 / mballoc.c
1 /*
2 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3 * Written by Alex Tomas <alex@clusterfs.com>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public Licens
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
17 */
18
19
20 /*
21 * mballoc.c contains the multiblocks allocation routines
22 */
23
24 #include "ext4_jbd2.h"
25 #include "mballoc.h"
26 #include <linux/log2.h>
27 #include <linux/module.h>
28 #include <linux/slab.h>
29 #include <trace/events/ext4.h>
30
31 #ifdef CONFIG_EXT4_DEBUG
32 ushort ext4_mballoc_debug __read_mostly;
33
34 module_param_named(mballoc_debug, ext4_mballoc_debug, ushort, 0644);
35 MODULE_PARM_DESC(mballoc_debug, "Debugging level for ext4's mballoc");
36 #endif
37
38 /*
39 * MUSTDO:
40 * - test ext4_ext_search_left() and ext4_ext_search_right()
41 * - search for metadata in few groups
42 *
43 * TODO v4:
44 * - normalization should take into account whether file is still open
45 * - discard preallocations if no free space left (policy?)
46 * - don't normalize tails
47 * - quota
48 * - reservation for superuser
49 *
50 * TODO v3:
51 * - bitmap read-ahead (proposed by Oleg Drokin aka green)
52 * - track min/max extents in each group for better group selection
53 * - mb_mark_used() may allocate chunk right after splitting buddy
54 * - tree of groups sorted by number of free blocks
55 * - error handling
56 */
57
58 /*
59 * The allocation request involve request for multiple number of blocks
60 * near to the goal(block) value specified.
61 *
62 * During initialization phase of the allocator we decide to use the
63 * group preallocation or inode preallocation depending on the size of
64 * the file. The size of the file could be the resulting file size we
65 * would have after allocation, or the current file size, which ever
66 * is larger. If the size is less than sbi->s_mb_stream_request we
67 * select to use the group preallocation. The default value of
68 * s_mb_stream_request is 16 blocks. This can also be tuned via
69 * /sys/fs/ext4/<partition>/mb_stream_req. The value is represented in
70 * terms of number of blocks.
71 *
72 * The main motivation for having small file use group preallocation is to
73 * ensure that we have small files closer together on the disk.
74 *
75 * First stage the allocator looks at the inode prealloc list,
76 * ext4_inode_info->i_prealloc_list, which contains list of prealloc
77 * spaces for this particular inode. The inode prealloc space is
78 * represented as:
79 *
80 * pa_lstart -> the logical start block for this prealloc space
81 * pa_pstart -> the physical start block for this prealloc space
82 * pa_len -> length for this prealloc space (in clusters)
83 * pa_free -> free space available in this prealloc space (in clusters)
84 *
85 * The inode preallocation space is used looking at the _logical_ start
86 * block. If only the logical file block falls within the range of prealloc
87 * space we will consume the particular prealloc space. This makes sure that
88 * we have contiguous physical blocks representing the file blocks
89 *
90 * The important thing to be noted in case of inode prealloc space is that
91 * we don't modify the values associated to inode prealloc space except
92 * pa_free.
93 *
94 * If we are not able to find blocks in the inode prealloc space and if we
95 * have the group allocation flag set then we look at the locality group
96 * prealloc space. These are per CPU prealloc list represented as
97 *
98 * ext4_sb_info.s_locality_groups[smp_processor_id()]
99 *
100 * The reason for having a per cpu locality group is to reduce the contention
101 * between CPUs. It is possible to get scheduled at this point.
102 *
103 * The locality group prealloc space is used looking at whether we have
104 * enough free space (pa_free) within the prealloc space.
105 *
106 * If we can't allocate blocks via inode prealloc or/and locality group
107 * prealloc then we look at the buddy cache. The buddy cache is represented
108 * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets
109 * mapped to the buddy and bitmap information regarding different
110 * groups. The buddy information is attached to buddy cache inode so that
111 * we can access them through the page cache. The information regarding
112 * each group is loaded via ext4_mb_load_buddy. The information involve
113 * block bitmap and buddy information. The information are stored in the
114 * inode as:
115 *
116 * { page }
117 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
118 *
119 *
120 * one block each for bitmap and buddy information. So for each group we
121 * take up 2 blocks. A page can contain blocks_per_page (PAGE_CACHE_SIZE /
122 * blocksize) blocks. So it can have information regarding groups_per_page
123 * which is blocks_per_page/2
124 *
125 * The buddy cache inode is not stored on disk. The inode is thrown
126 * away when the filesystem is unmounted.
127 *
128 * We look for count number of blocks in the buddy cache. If we were able
129 * to locate that many free blocks we return with additional information
130 * regarding rest of the contiguous physical block available
131 *
132 * Before allocating blocks via buddy cache we normalize the request
133 * blocks. This ensure we ask for more blocks that we needed. The extra
134 * blocks that we get after allocation is added to the respective prealloc
135 * list. In case of inode preallocation we follow a list of heuristics
136 * based on file size. This can be found in ext4_mb_normalize_request. If
137 * we are doing a group prealloc we try to normalize the request to
138 * sbi->s_mb_group_prealloc. The default value of s_mb_group_prealloc is
139 * dependent on the cluster size; for non-bigalloc file systems, it is
140 * 512 blocks. This can be tuned via
141 * /sys/fs/ext4/<partition>/mb_group_prealloc. The value is represented in
142 * terms of number of blocks. If we have mounted the file system with -O
143 * stripe=<value> option the group prealloc request is normalized to the
144 * the smallest multiple of the stripe value (sbi->s_stripe) which is
145 * greater than the default mb_group_prealloc.
146 *
147 * The regular allocator (using the buddy cache) supports a few tunables.
148 *
149 * /sys/fs/ext4/<partition>/mb_min_to_scan
150 * /sys/fs/ext4/<partition>/mb_max_to_scan
151 * /sys/fs/ext4/<partition>/mb_order2_req
152 *
153 * The regular allocator uses buddy scan only if the request len is power of
154 * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The
155 * value of s_mb_order2_reqs can be tuned via
156 * /sys/fs/ext4/<partition>/mb_order2_req. If the request len is equal to
157 * stripe size (sbi->s_stripe), we try to search for contiguous block in
158 * stripe size. This should result in better allocation on RAID setups. If
159 * not, we search in the specific group using bitmap for best extents. The
160 * tunable min_to_scan and max_to_scan control the behaviour here.
161 * min_to_scan indicate how long the mballoc __must__ look for a best
162 * extent and max_to_scan indicates how long the mballoc __can__ look for a
163 * best extent in the found extents. Searching for the blocks starts with
164 * the group specified as the goal value in allocation context via
165 * ac_g_ex. Each group is first checked based on the criteria whether it
166 * can be used for allocation. ext4_mb_good_group explains how the groups are
167 * checked.
168 *
169 * Both the prealloc space are getting populated as above. So for the first
170 * request we will hit the buddy cache which will result in this prealloc
171 * space getting filled. The prealloc space is then later used for the
172 * subsequent request.
173 */
174
175 /*
176 * mballoc operates on the following data:
177 * - on-disk bitmap
178 * - in-core buddy (actually includes buddy and bitmap)
179 * - preallocation descriptors (PAs)
180 *
181 * there are two types of preallocations:
182 * - inode
183 * assiged to specific inode and can be used for this inode only.
184 * it describes part of inode's space preallocated to specific
185 * physical blocks. any block from that preallocated can be used
186 * independent. the descriptor just tracks number of blocks left
187 * unused. so, before taking some block from descriptor, one must
188 * make sure corresponded logical block isn't allocated yet. this
189 * also means that freeing any block within descriptor's range
190 * must discard all preallocated blocks.
191 * - locality group
192 * assigned to specific locality group which does not translate to
193 * permanent set of inodes: inode can join and leave group. space
194 * from this type of preallocation can be used for any inode. thus
195 * it's consumed from the beginning to the end.
196 *
197 * relation between them can be expressed as:
198 * in-core buddy = on-disk bitmap + preallocation descriptors
199 *
200 * this mean blocks mballoc considers used are:
201 * - allocated blocks (persistent)
202 * - preallocated blocks (non-persistent)
203 *
204 * consistency in mballoc world means that at any time a block is either
205 * free or used in ALL structures. notice: "any time" should not be read
206 * literally -- time is discrete and delimited by locks.
207 *
208 * to keep it simple, we don't use block numbers, instead we count number of
209 * blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA.
210 *
211 * all operations can be expressed as:
212 * - init buddy: buddy = on-disk + PAs
213 * - new PA: buddy += N; PA = N
214 * - use inode PA: on-disk += N; PA -= N
215 * - discard inode PA buddy -= on-disk - PA; PA = 0
216 * - use locality group PA on-disk += N; PA -= N
217 * - discard locality group PA buddy -= PA; PA = 0
218 * note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap
219 * is used in real operation because we can't know actual used
220 * bits from PA, only from on-disk bitmap
221 *
222 * if we follow this strict logic, then all operations above should be atomic.
223 * given some of them can block, we'd have to use something like semaphores
224 * killing performance on high-end SMP hardware. let's try to relax it using
225 * the following knowledge:
226 * 1) if buddy is referenced, it's already initialized
227 * 2) while block is used in buddy and the buddy is referenced,
228 * nobody can re-allocate that block
229 * 3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has
230 * bit set and PA claims same block, it's OK. IOW, one can set bit in
231 * on-disk bitmap if buddy has same bit set or/and PA covers corresponded
232 * block
233 *
234 * so, now we're building a concurrency table:
235 * - init buddy vs.
236 * - new PA
237 * blocks for PA are allocated in the buddy, buddy must be referenced
238 * until PA is linked to allocation group to avoid concurrent buddy init
239 * - use inode PA
240 * we need to make sure that either on-disk bitmap or PA has uptodate data
241 * given (3) we care that PA-=N operation doesn't interfere with init
242 * - discard inode PA
243 * the simplest way would be to have buddy initialized by the discard
244 * - use locality group PA
245 * again PA-=N must be serialized with init
246 * - discard locality group PA
247 * the simplest way would be to have buddy initialized by the discard
248 * - new PA vs.
249 * - use inode PA
250 * i_data_sem serializes them
251 * - discard inode PA
252 * discard process must wait until PA isn't used by another process
253 * - use locality group PA
254 * some mutex should serialize them
255 * - discard locality group PA
256 * discard process must wait until PA isn't used by another process
257 * - use inode PA
258 * - use inode PA
259 * i_data_sem or another mutex should serializes them
260 * - discard inode PA
261 * discard process must wait until PA isn't used by another process
262 * - use locality group PA
263 * nothing wrong here -- they're different PAs covering different blocks
264 * - discard locality group PA
265 * discard process must wait until PA isn't used by another process
266 *
267 * now we're ready to make few consequences:
268 * - PA is referenced and while it is no discard is possible
269 * - PA is referenced until block isn't marked in on-disk bitmap
270 * - PA changes only after on-disk bitmap
271 * - discard must not compete with init. either init is done before
272 * any discard or they're serialized somehow
273 * - buddy init as sum of on-disk bitmap and PAs is done atomically
274 *
275 * a special case when we've used PA to emptiness. no need to modify buddy
276 * in this case, but we should care about concurrent init
277 *
278 */
279
280 /*
281 * Logic in few words:
282 *
283 * - allocation:
284 * load group
285 * find blocks
286 * mark bits in on-disk bitmap
287 * release group
288 *
289 * - use preallocation:
290 * find proper PA (per-inode or group)
291 * load group
292 * mark bits in on-disk bitmap
293 * release group
294 * release PA
295 *
296 * - free:
297 * load group
298 * mark bits in on-disk bitmap
299 * release group
300 *
301 * - discard preallocations in group:
302 * mark PAs deleted
303 * move them onto local list
304 * load on-disk bitmap
305 * load group
306 * remove PA from object (inode or locality group)
307 * mark free blocks in-core
308 *
309 * - discard inode's preallocations:
310 */
311
312 /*
313 * Locking rules
314 *
315 * Locks:
316 * - bitlock on a group (group)
317 * - object (inode/locality) (object)
318 * - per-pa lock (pa)
319 *
320 * Paths:
321 * - new pa
322 * object
323 * group
324 *
325 * - find and use pa:
326 * pa
327 *
328 * - release consumed pa:
329 * pa
330 * group
331 * object
332 *
333 * - generate in-core bitmap:
334 * group
335 * pa
336 *
337 * - discard all for given object (inode, locality group):
338 * object
339 * pa
340 * group
341 *
342 * - discard all for given group:
343 * group
344 * pa
345 * group
346 * object
347 *
348 */
349 static struct kmem_cache *ext4_pspace_cachep;
350 static struct kmem_cache *ext4_ac_cachep;
351 static struct kmem_cache *ext4_free_data_cachep;
352
353 /* We create slab caches for groupinfo data structures based on the
354 * superblock block size. There will be one per mounted filesystem for
355 * each unique s_blocksize_bits */
356 #define NR_GRPINFO_CACHES 8
357 static struct kmem_cache *ext4_groupinfo_caches[NR_GRPINFO_CACHES];
358
359 static const char *ext4_groupinfo_slab_names[NR_GRPINFO_CACHES] = {
360 "ext4_groupinfo_1k", "ext4_groupinfo_2k", "ext4_groupinfo_4k",
361 "ext4_groupinfo_8k", "ext4_groupinfo_16k", "ext4_groupinfo_32k",
362 "ext4_groupinfo_64k", "ext4_groupinfo_128k"
363 };
364
365 static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
366 ext4_group_t group);
367 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
368 ext4_group_t group);
369 static void ext4_free_data_callback(struct super_block *sb,
370 struct ext4_journal_cb_entry *jce, int rc);
371
372 static inline void *mb_correct_addr_and_bit(int *bit, void *addr)
373 {
374 #if BITS_PER_LONG == 64
375 *bit += ((unsigned long) addr & 7UL) << 3;
376 addr = (void *) ((unsigned long) addr & ~7UL);
377 #elif BITS_PER_LONG == 32
378 *bit += ((unsigned long) addr & 3UL) << 3;
379 addr = (void *) ((unsigned long) addr & ~3UL);
380 #else
381 #error "how many bits you are?!"
382 #endif
383 return addr;
384 }
385
386 static inline int mb_test_bit(int bit, void *addr)
387 {
388 /*
389 * ext4_test_bit on architecture like powerpc
390 * needs unsigned long aligned address
391 */
392 addr = mb_correct_addr_and_bit(&bit, addr);
393 return ext4_test_bit(bit, addr);
394 }
395
396 static inline void mb_set_bit(int bit, void *addr)
397 {
398 addr = mb_correct_addr_and_bit(&bit, addr);
399 ext4_set_bit(bit, addr);
400 }
401
402 static inline void mb_clear_bit(int bit, void *addr)
403 {
404 addr = mb_correct_addr_and_bit(&bit, addr);
405 ext4_clear_bit(bit, addr);
406 }
407
408 static inline int mb_test_and_clear_bit(int bit, void *addr)
409 {
410 addr = mb_correct_addr_and_bit(&bit, addr);
411 return ext4_test_and_clear_bit(bit, addr);
412 }
413
414 static inline int mb_find_next_zero_bit(void *addr, int max, int start)
415 {
416 int fix = 0, ret, tmpmax;
417 addr = mb_correct_addr_and_bit(&fix, addr);
418 tmpmax = max + fix;
419 start += fix;
420
421 ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix;
422 if (ret > max)
423 return max;
424 return ret;
425 }
426
427 static inline int mb_find_next_bit(void *addr, int max, int start)
428 {
429 int fix = 0, ret, tmpmax;
430 addr = mb_correct_addr_and_bit(&fix, addr);
431 tmpmax = max + fix;
432 start += fix;
433
434 ret = ext4_find_next_bit(addr, tmpmax, start) - fix;
435 if (ret > max)
436 return max;
437 return ret;
438 }
439
440 static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max)
441 {
442 char *bb;
443
444 BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
445 BUG_ON(max == NULL);
446
447 if (order > e4b->bd_blkbits + 1) {
448 *max = 0;
449 return NULL;
450 }
451
452 /* at order 0 we see each particular block */
453 if (order == 0) {
454 *max = 1 << (e4b->bd_blkbits + 3);
455 return e4b->bd_bitmap;
456 }
457
458 bb = e4b->bd_buddy + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order];
459 *max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order];
460
461 return bb;
462 }
463
464 #ifdef DOUBLE_CHECK
465 static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b,
466 int first, int count)
467 {
468 int i;
469 struct super_block *sb = e4b->bd_sb;
470
471 if (unlikely(e4b->bd_info->bb_bitmap == NULL))
472 return;
473 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
474 for (i = 0; i < count; i++) {
475 if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) {
476 ext4_fsblk_t blocknr;
477
478 blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
479 blocknr += EXT4_C2B(EXT4_SB(sb), first + i);
480 ext4_grp_locked_error(sb, e4b->bd_group,
481 inode ? inode->i_ino : 0,
482 blocknr,
483 "freeing block already freed "
484 "(bit %u)",
485 first + i);
486 }
487 mb_clear_bit(first + i, e4b->bd_info->bb_bitmap);
488 }
489 }
490
491 static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count)
492 {
493 int i;
494
495 if (unlikely(e4b->bd_info->bb_bitmap == NULL))
496 return;
497 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
498 for (i = 0; i < count; i++) {
499 BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap));
500 mb_set_bit(first + i, e4b->bd_info->bb_bitmap);
501 }
502 }
503
504 static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
505 {
506 if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) {
507 unsigned char *b1, *b2;
508 int i;
509 b1 = (unsigned char *) e4b->bd_info->bb_bitmap;
510 b2 = (unsigned char *) bitmap;
511 for (i = 0; i < e4b->bd_sb->s_blocksize; i++) {
512 if (b1[i] != b2[i]) {
513 ext4_msg(e4b->bd_sb, KERN_ERR,
514 "corruption in group %u "
515 "at byte %u(%u): %x in copy != %x "
516 "on disk/prealloc",
517 e4b->bd_group, i, i * 8, b1[i], b2[i]);
518 BUG();
519 }
520 }
521 }
522 }
523
524 #else
525 static inline void mb_free_blocks_double(struct inode *inode,
526 struct ext4_buddy *e4b, int first, int count)
527 {
528 return;
529 }
530 static inline void mb_mark_used_double(struct ext4_buddy *e4b,
531 int first, int count)
532 {
533 return;
534 }
535 static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
536 {
537 return;
538 }
539 #endif
540
541 #ifdef AGGRESSIVE_CHECK
542
543 #define MB_CHECK_ASSERT(assert) \
544 do { \
545 if (!(assert)) { \
546 printk(KERN_EMERG \
547 "Assertion failure in %s() at %s:%d: \"%s\"\n", \
548 function, file, line, # assert); \
549 BUG(); \
550 } \
551 } while (0)
552
553 static int __mb_check_buddy(struct ext4_buddy *e4b, char *file,
554 const char *function, int line)
555 {
556 struct super_block *sb = e4b->bd_sb;
557 int order = e4b->bd_blkbits + 1;
558 int max;
559 int max2;
560 int i;
561 int j;
562 int k;
563 int count;
564 struct ext4_group_info *grp;
565 int fragments = 0;
566 int fstart;
567 struct list_head *cur;
568 void *buddy;
569 void *buddy2;
570
571 {
572 static int mb_check_counter;
573 if (mb_check_counter++ % 100 != 0)
574 return 0;
575 }
576
577 while (order > 1) {
578 buddy = mb_find_buddy(e4b, order, &max);
579 MB_CHECK_ASSERT(buddy);
580 buddy2 = mb_find_buddy(e4b, order - 1, &max2);
581 MB_CHECK_ASSERT(buddy2);
582 MB_CHECK_ASSERT(buddy != buddy2);
583 MB_CHECK_ASSERT(max * 2 == max2);
584
585 count = 0;
586 for (i = 0; i < max; i++) {
587
588 if (mb_test_bit(i, buddy)) {
589 /* only single bit in buddy2 may be 1 */
590 if (!mb_test_bit(i << 1, buddy2)) {
591 MB_CHECK_ASSERT(
592 mb_test_bit((i<<1)+1, buddy2));
593 } else if (!mb_test_bit((i << 1) + 1, buddy2)) {
594 MB_CHECK_ASSERT(
595 mb_test_bit(i << 1, buddy2));
596 }
597 continue;
598 }
599
600 /* both bits in buddy2 must be 1 */
601 MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2));
602 MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2));
603
604 for (j = 0; j < (1 << order); j++) {
605 k = (i * (1 << order)) + j;
606 MB_CHECK_ASSERT(
607 !mb_test_bit(k, e4b->bd_bitmap));
608 }
609 count++;
610 }
611 MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count);
612 order--;
613 }
614
615 fstart = -1;
616 buddy = mb_find_buddy(e4b, 0, &max);
617 for (i = 0; i < max; i++) {
618 if (!mb_test_bit(i, buddy)) {
619 MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free);
620 if (fstart == -1) {
621 fragments++;
622 fstart = i;
623 }
624 continue;
625 }
626 fstart = -1;
627 /* check used bits only */
628 for (j = 0; j < e4b->bd_blkbits + 1; j++) {
629 buddy2 = mb_find_buddy(e4b, j, &max2);
630 k = i >> j;
631 MB_CHECK_ASSERT(k < max2);
632 MB_CHECK_ASSERT(mb_test_bit(k, buddy2));
633 }
634 }
635 MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info));
636 MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments);
637
638 grp = ext4_get_group_info(sb, e4b->bd_group);
639 list_for_each(cur, &grp->bb_prealloc_list) {
640 ext4_group_t groupnr;
641 struct ext4_prealloc_space *pa;
642 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
643 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k);
644 MB_CHECK_ASSERT(groupnr == e4b->bd_group);
645 for (i = 0; i < pa->pa_len; i++)
646 MB_CHECK_ASSERT(mb_test_bit(k + i, buddy));
647 }
648 return 0;
649 }
650 #undef MB_CHECK_ASSERT
651 #define mb_check_buddy(e4b) __mb_check_buddy(e4b, \
652 __FILE__, __func__, __LINE__)
653 #else
654 #define mb_check_buddy(e4b)
655 #endif
656
657 /*
658 * Divide blocks started from @first with length @len into
659 * smaller chunks with power of 2 blocks.
660 * Clear the bits in bitmap which the blocks of the chunk(s) covered,
661 * then increase bb_counters[] for corresponded chunk size.
662 */
663 static void ext4_mb_mark_free_simple(struct super_block *sb,
664 void *buddy, ext4_grpblk_t first, ext4_grpblk_t len,
665 struct ext4_group_info *grp)
666 {
667 struct ext4_sb_info *sbi = EXT4_SB(sb);
668 ext4_grpblk_t min;
669 ext4_grpblk_t max;
670 ext4_grpblk_t chunk;
671 unsigned short border;
672
673 BUG_ON(len > EXT4_CLUSTERS_PER_GROUP(sb));
674
675 border = 2 << sb->s_blocksize_bits;
676
677 while (len > 0) {
678 /* find how many blocks can be covered since this position */
679 max = ffs(first | border) - 1;
680
681 /* find how many blocks of power 2 we need to mark */
682 min = fls(len) - 1;
683
684 if (max < min)
685 min = max;
686 chunk = 1 << min;
687
688 /* mark multiblock chunks only */
689 grp->bb_counters[min]++;
690 if (min > 0)
691 mb_clear_bit(first >> min,
692 buddy + sbi->s_mb_offsets[min]);
693
694 len -= chunk;
695 first += chunk;
696 }
697 }
698
699 /*
700 * Cache the order of the largest free extent we have available in this block
701 * group.
702 */
703 static void
704 mb_set_largest_free_order(struct super_block *sb, struct ext4_group_info *grp)
705 {
706 int i;
707 int bits;
708
709 grp->bb_largest_free_order = -1; /* uninit */
710
711 bits = sb->s_blocksize_bits + 1;
712 for (i = bits; i >= 0; i--) {
713 if (grp->bb_counters[i] > 0) {
714 grp->bb_largest_free_order = i;
715 break;
716 }
717 }
718 }
719
720 static noinline_for_stack
721 void ext4_mb_generate_buddy(struct super_block *sb,
722 void *buddy, void *bitmap, ext4_group_t group)
723 {
724 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
725 struct ext4_sb_info *sbi = EXT4_SB(sb);
726 ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb);
727 ext4_grpblk_t i = 0;
728 ext4_grpblk_t first;
729 ext4_grpblk_t len;
730 unsigned free = 0;
731 unsigned fragments = 0;
732 unsigned long long period = get_cycles();
733
734 /* initialize buddy from bitmap which is aggregation
735 * of on-disk bitmap and preallocations */
736 i = mb_find_next_zero_bit(bitmap, max, 0);
737 grp->bb_first_free = i;
738 while (i < max) {
739 fragments++;
740 first = i;
741 i = mb_find_next_bit(bitmap, max, i);
742 len = i - first;
743 free += len;
744 if (len > 1)
745 ext4_mb_mark_free_simple(sb, buddy, first, len, grp);
746 else
747 grp->bb_counters[0]++;
748 if (i < max)
749 i = mb_find_next_zero_bit(bitmap, max, i);
750 }
751 grp->bb_fragments = fragments;
752
753 if (free != grp->bb_free) {
754 ext4_grp_locked_error(sb, group, 0, 0,
755 "block bitmap and bg descriptor "
756 "inconsistent: %u vs %u free clusters",
757 free, grp->bb_free);
758 /*
759 * If we intend to continue, we consider group descriptor
760 * corrupt and update bb_free using bitmap value
761 */
762 grp->bb_free = free;
763 if (!EXT4_MB_GRP_BBITMAP_CORRUPT(grp))
764 percpu_counter_sub(&sbi->s_freeclusters_counter,
765 grp->bb_free);
766 set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT, &grp->bb_state);
767 }
768 mb_set_largest_free_order(sb, grp);
769
770 clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state));
771
772 period = get_cycles() - period;
773 spin_lock(&EXT4_SB(sb)->s_bal_lock);
774 EXT4_SB(sb)->s_mb_buddies_generated++;
775 EXT4_SB(sb)->s_mb_generation_time += period;
776 spin_unlock(&EXT4_SB(sb)->s_bal_lock);
777 }
778
779 static void mb_regenerate_buddy(struct ext4_buddy *e4b)
780 {
781 int count;
782 int order = 1;
783 void *buddy;
784
785 while ((buddy = mb_find_buddy(e4b, order++, &count))) {
786 ext4_set_bits(buddy, 0, count);
787 }
788 e4b->bd_info->bb_fragments = 0;
789 memset(e4b->bd_info->bb_counters, 0,
790 sizeof(*e4b->bd_info->bb_counters) *
791 (e4b->bd_sb->s_blocksize_bits + 2));
792
793 ext4_mb_generate_buddy(e4b->bd_sb, e4b->bd_buddy,
794 e4b->bd_bitmap, e4b->bd_group);
795 }
796
797 /* The buddy information is attached the buddy cache inode
798 * for convenience. The information regarding each group
799 * is loaded via ext4_mb_load_buddy. The information involve
800 * block bitmap and buddy information. The information are
801 * stored in the inode as
802 *
803 * { page }
804 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
805 *
806 *
807 * one block each for bitmap and buddy information.
808 * So for each group we take up 2 blocks. A page can
809 * contain blocks_per_page (PAGE_CACHE_SIZE / blocksize) blocks.
810 * So it can have information regarding groups_per_page which
811 * is blocks_per_page/2
812 *
813 * Locking note: This routine takes the block group lock of all groups
814 * for this page; do not hold this lock when calling this routine!
815 */
816
817 static int ext4_mb_init_cache(struct page *page, char *incore)
818 {
819 ext4_group_t ngroups;
820 int blocksize;
821 int blocks_per_page;
822 int groups_per_page;
823 int err = 0;
824 int i;
825 ext4_group_t first_group, group;
826 int first_block;
827 struct super_block *sb;
828 struct buffer_head *bhs;
829 struct buffer_head **bh = NULL;
830 struct inode *inode;
831 char *data;
832 char *bitmap;
833 struct ext4_group_info *grinfo;
834
835 mb_debug(1, "init page %lu\n", page->index);
836
837 inode = page->mapping->host;
838 sb = inode->i_sb;
839 ngroups = ext4_get_groups_count(sb);
840 blocksize = 1 << inode->i_blkbits;
841 blocks_per_page = PAGE_CACHE_SIZE / blocksize;
842
843 groups_per_page = blocks_per_page >> 1;
844 if (groups_per_page == 0)
845 groups_per_page = 1;
846
847 /* allocate buffer_heads to read bitmaps */
848 if (groups_per_page > 1) {
849 i = sizeof(struct buffer_head *) * groups_per_page;
850 bh = kzalloc(i, GFP_NOFS);
851 if (bh == NULL) {
852 err = -ENOMEM;
853 goto out;
854 }
855 } else
856 bh = &bhs;
857
858 first_group = page->index * blocks_per_page / 2;
859
860 /* read all groups the page covers into the cache */
861 for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
862 if (group >= ngroups)
863 break;
864
865 grinfo = ext4_get_group_info(sb, group);
866 /*
867 * If page is uptodate then we came here after online resize
868 * which added some new uninitialized group info structs, so
869 * we must skip all initialized uptodate buddies on the page,
870 * which may be currently in use by an allocating task.
871 */
872 if (PageUptodate(page) && !EXT4_MB_GRP_NEED_INIT(grinfo)) {
873 bh[i] = NULL;
874 continue;
875 }
876 if (!(bh[i] = ext4_read_block_bitmap_nowait(sb, group))) {
877 err = -ENOMEM;
878 goto out;
879 }
880 mb_debug(1, "read bitmap for group %u\n", group);
881 }
882
883 /* wait for I/O completion */
884 for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
885 if (bh[i] && ext4_wait_block_bitmap(sb, group, bh[i]))
886 err = -EIO;
887 }
888
889 first_block = page->index * blocks_per_page;
890 for (i = 0; i < blocks_per_page; i++) {
891 group = (first_block + i) >> 1;
892 if (group >= ngroups)
893 break;
894
895 if (!bh[group - first_group])
896 /* skip initialized uptodate buddy */
897 continue;
898
899 if (!buffer_verified(bh[group - first_group]))
900 /* Skip faulty bitmaps */
901 continue;
902 err = 0;
903
904 /*
905 * data carry information regarding this
906 * particular group in the format specified
907 * above
908 *
909 */
910 data = page_address(page) + (i * blocksize);
911 bitmap = bh[group - first_group]->b_data;
912
913 /*
914 * We place the buddy block and bitmap block
915 * close together
916 */
917 if ((first_block + i) & 1) {
918 /* this is block of buddy */
919 BUG_ON(incore == NULL);
920 mb_debug(1, "put buddy for group %u in page %lu/%x\n",
921 group, page->index, i * blocksize);
922 trace_ext4_mb_buddy_bitmap_load(sb, group);
923 grinfo = ext4_get_group_info(sb, group);
924 grinfo->bb_fragments = 0;
925 memset(grinfo->bb_counters, 0,
926 sizeof(*grinfo->bb_counters) *
927 (sb->s_blocksize_bits+2));
928 /*
929 * incore got set to the group block bitmap below
930 */
931 ext4_lock_group(sb, group);
932 /* init the buddy */
933 memset(data, 0xff, blocksize);
934 ext4_mb_generate_buddy(sb, data, incore, group);
935 ext4_unlock_group(sb, group);
936 incore = NULL;
937 } else {
938 /* this is block of bitmap */
939 BUG_ON(incore != NULL);
940 mb_debug(1, "put bitmap for group %u in page %lu/%x\n",
941 group, page->index, i * blocksize);
942 trace_ext4_mb_bitmap_load(sb, group);
943
944 /* see comments in ext4_mb_put_pa() */
945 ext4_lock_group(sb, group);
946 memcpy(data, bitmap, blocksize);
947
948 /* mark all preallocated blks used in in-core bitmap */
949 ext4_mb_generate_from_pa(sb, data, group);
950 ext4_mb_generate_from_freelist(sb, data, group);
951 ext4_unlock_group(sb, group);
952
953 /* set incore so that the buddy information can be
954 * generated using this
955 */
956 incore = data;
957 }
958 }
959 SetPageUptodate(page);
960
961 out:
962 if (bh) {
963 for (i = 0; i < groups_per_page; i++)
964 brelse(bh[i]);
965 if (bh != &bhs)
966 kfree(bh);
967 }
968 return err;
969 }
970
971 /*
972 * Lock the buddy and bitmap pages. This make sure other parallel init_group
973 * on the same buddy page doesn't happen whild holding the buddy page lock.
974 * Return locked buddy and bitmap pages on e4b struct. If buddy and bitmap
975 * are on the same page e4b->bd_buddy_page is NULL and return value is 0.
976 */
977 static int ext4_mb_get_buddy_page_lock(struct super_block *sb,
978 ext4_group_t group, struct ext4_buddy *e4b)
979 {
980 struct inode *inode = EXT4_SB(sb)->s_buddy_cache;
981 int block, pnum, poff;
982 int blocks_per_page;
983 struct page *page;
984
985 e4b->bd_buddy_page = NULL;
986 e4b->bd_bitmap_page = NULL;
987
988 blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize;
989 /*
990 * the buddy cache inode stores the block bitmap
991 * and buddy information in consecutive blocks.
992 * So for each group we need two blocks.
993 */
994 block = group * 2;
995 pnum = block / blocks_per_page;
996 poff = block % blocks_per_page;
997 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
998 if (!page)
999 return -ENOMEM;
1000 BUG_ON(page->mapping != inode->i_mapping);
1001 e4b->bd_bitmap_page = page;
1002 e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
1003
1004 if (blocks_per_page >= 2) {
1005 /* buddy and bitmap are on the same page */
1006 return 0;
1007 }
1008
1009 block++;
1010 pnum = block / blocks_per_page;
1011 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
1012 if (!page)
1013 return -ENOMEM;
1014 BUG_ON(page->mapping != inode->i_mapping);
1015 e4b->bd_buddy_page = page;
1016 return 0;
1017 }
1018
1019 static void ext4_mb_put_buddy_page_lock(struct ext4_buddy *e4b)
1020 {
1021 if (e4b->bd_bitmap_page) {
1022 unlock_page(e4b->bd_bitmap_page);
1023 page_cache_release(e4b->bd_bitmap_page);
1024 }
1025 if (e4b->bd_buddy_page) {
1026 unlock_page(e4b->bd_buddy_page);
1027 page_cache_release(e4b->bd_buddy_page);
1028 }
1029 }
1030
1031 /*
1032 * Locking note: This routine calls ext4_mb_init_cache(), which takes the
1033 * block group lock of all groups for this page; do not hold the BG lock when
1034 * calling this routine!
1035 */
1036 static noinline_for_stack
1037 int ext4_mb_init_group(struct super_block *sb, ext4_group_t group)
1038 {
1039
1040 struct ext4_group_info *this_grp;
1041 struct ext4_buddy e4b;
1042 struct page *page;
1043 int ret = 0;
1044
1045 might_sleep();
1046 mb_debug(1, "init group %u\n", group);
1047 this_grp = ext4_get_group_info(sb, group);
1048 /*
1049 * This ensures that we don't reinit the buddy cache
1050 * page which map to the group from which we are already
1051 * allocating. If we are looking at the buddy cache we would
1052 * have taken a reference using ext4_mb_load_buddy and that
1053 * would have pinned buddy page to page cache.
1054 * The call to ext4_mb_get_buddy_page_lock will mark the
1055 * page accessed.
1056 */
1057 ret = ext4_mb_get_buddy_page_lock(sb, group, &e4b);
1058 if (ret || !EXT4_MB_GRP_NEED_INIT(this_grp)) {
1059 /*
1060 * somebody initialized the group
1061 * return without doing anything
1062 */
1063 goto err;
1064 }
1065
1066 page = e4b.bd_bitmap_page;
1067 ret = ext4_mb_init_cache(page, NULL);
1068 if (ret)
1069 goto err;
1070 if (!PageUptodate(page)) {
1071 ret = -EIO;
1072 goto err;
1073 }
1074
1075 if (e4b.bd_buddy_page == NULL) {
1076 /*
1077 * If both the bitmap and buddy are in
1078 * the same page we don't need to force
1079 * init the buddy
1080 */
1081 ret = 0;
1082 goto err;
1083 }
1084 /* init buddy cache */
1085 page = e4b.bd_buddy_page;
1086 ret = ext4_mb_init_cache(page, e4b.bd_bitmap);
1087 if (ret)
1088 goto err;
1089 if (!PageUptodate(page)) {
1090 ret = -EIO;
1091 goto err;
1092 }
1093 err:
1094 ext4_mb_put_buddy_page_lock(&e4b);
1095 return ret;
1096 }
1097
1098 /*
1099 * Locking note: This routine calls ext4_mb_init_cache(), which takes the
1100 * block group lock of all groups for this page; do not hold the BG lock when
1101 * calling this routine!
1102 */
1103 static noinline_for_stack int
1104 ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group,
1105 struct ext4_buddy *e4b)
1106 {
1107 int blocks_per_page;
1108 int block;
1109 int pnum;
1110 int poff;
1111 struct page *page;
1112 int ret;
1113 struct ext4_group_info *grp;
1114 struct ext4_sb_info *sbi = EXT4_SB(sb);
1115 struct inode *inode = sbi->s_buddy_cache;
1116
1117 might_sleep();
1118 mb_debug(1, "load group %u\n", group);
1119
1120 blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize;
1121 grp = ext4_get_group_info(sb, group);
1122
1123 e4b->bd_blkbits = sb->s_blocksize_bits;
1124 e4b->bd_info = grp;
1125 e4b->bd_sb = sb;
1126 e4b->bd_group = group;
1127 e4b->bd_buddy_page = NULL;
1128 e4b->bd_bitmap_page = NULL;
1129
1130 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
1131 /*
1132 * we need full data about the group
1133 * to make a good selection
1134 */
1135 ret = ext4_mb_init_group(sb, group);
1136 if (ret)
1137 return ret;
1138 }
1139
1140 /*
1141 * the buddy cache inode stores the block bitmap
1142 * and buddy information in consecutive blocks.
1143 * So for each group we need two blocks.
1144 */
1145 block = group * 2;
1146 pnum = block / blocks_per_page;
1147 poff = block % blocks_per_page;
1148
1149 /* we could use find_or_create_page(), but it locks page
1150 * what we'd like to avoid in fast path ... */
1151 page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED);
1152 if (page == NULL || !PageUptodate(page)) {
1153 if (page)
1154 /*
1155 * drop the page reference and try
1156 * to get the page with lock. If we
1157 * are not uptodate that implies
1158 * somebody just created the page but
1159 * is yet to initialize the same. So
1160 * wait for it to initialize.
1161 */
1162 page_cache_release(page);
1163 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
1164 if (page) {
1165 BUG_ON(page->mapping != inode->i_mapping);
1166 if (!PageUptodate(page)) {
1167 ret = ext4_mb_init_cache(page, NULL);
1168 if (ret) {
1169 unlock_page(page);
1170 goto err;
1171 }
1172 mb_cmp_bitmaps(e4b, page_address(page) +
1173 (poff * sb->s_blocksize));
1174 }
1175 unlock_page(page);
1176 }
1177 }
1178 if (page == NULL) {
1179 ret = -ENOMEM;
1180 goto err;
1181 }
1182 if (!PageUptodate(page)) {
1183 ret = -EIO;
1184 goto err;
1185 }
1186
1187 /* Pages marked accessed already */
1188 e4b->bd_bitmap_page = page;
1189 e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
1190
1191 block++;
1192 pnum = block / blocks_per_page;
1193 poff = block % blocks_per_page;
1194
1195 page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED);
1196 if (page == NULL || !PageUptodate(page)) {
1197 if (page)
1198 page_cache_release(page);
1199 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
1200 if (page) {
1201 BUG_ON(page->mapping != inode->i_mapping);
1202 if (!PageUptodate(page)) {
1203 ret = ext4_mb_init_cache(page, e4b->bd_bitmap);
1204 if (ret) {
1205 unlock_page(page);
1206 goto err;
1207 }
1208 }
1209 unlock_page(page);
1210 }
1211 }
1212 if (page == NULL) {
1213 ret = -ENOMEM;
1214 goto err;
1215 }
1216 if (!PageUptodate(page)) {
1217 ret = -EIO;
1218 goto err;
1219 }
1220
1221 /* Pages marked accessed already */
1222 e4b->bd_buddy_page = page;
1223 e4b->bd_buddy = page_address(page) + (poff * sb->s_blocksize);
1224
1225 BUG_ON(e4b->bd_bitmap_page == NULL);
1226 BUG_ON(e4b->bd_buddy_page == NULL);
1227
1228 return 0;
1229
1230 err:
1231 if (page)
1232 page_cache_release(page);
1233 if (e4b->bd_bitmap_page)
1234 page_cache_release(e4b->bd_bitmap_page);
1235 if (e4b->bd_buddy_page)
1236 page_cache_release(e4b->bd_buddy_page);
1237 e4b->bd_buddy = NULL;
1238 e4b->bd_bitmap = NULL;
1239 return ret;
1240 }
1241
1242 static void ext4_mb_unload_buddy(struct ext4_buddy *e4b)
1243 {
1244 if (e4b->bd_bitmap_page)
1245 page_cache_release(e4b->bd_bitmap_page);
1246 if (e4b->bd_buddy_page)
1247 page_cache_release(e4b->bd_buddy_page);
1248 }
1249
1250
1251 static int mb_find_order_for_block(struct ext4_buddy *e4b, int block)
1252 {
1253 int order = 1;
1254 void *bb;
1255
1256 BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
1257 BUG_ON(block >= (1 << (e4b->bd_blkbits + 3)));
1258
1259 bb = e4b->bd_buddy;
1260 while (order <= e4b->bd_blkbits + 1) {
1261 block = block >> 1;
1262 if (!mb_test_bit(block, bb)) {
1263 /* this block is part of buddy of order 'order' */
1264 return order;
1265 }
1266 bb += 1 << (e4b->bd_blkbits - order);
1267 order++;
1268 }
1269 return 0;
1270 }
1271
1272 static void mb_clear_bits(void *bm, int cur, int len)
1273 {
1274 __u32 *addr;
1275
1276 len = cur + len;
1277 while (cur < len) {
1278 if ((cur & 31) == 0 && (len - cur) >= 32) {
1279 /* fast path: clear whole word at once */
1280 addr = bm + (cur >> 3);
1281 *addr = 0;
1282 cur += 32;
1283 continue;
1284 }
1285 mb_clear_bit(cur, bm);
1286 cur++;
1287 }
1288 }
1289
1290 /* clear bits in given range
1291 * will return first found zero bit if any, -1 otherwise
1292 */
1293 static int mb_test_and_clear_bits(void *bm, int cur, int len)
1294 {
1295 __u32 *addr;
1296 int zero_bit = -1;
1297
1298 len = cur + len;
1299 while (cur < len) {
1300 if ((cur & 31) == 0 && (len - cur) >= 32) {
1301 /* fast path: clear whole word at once */
1302 addr = bm + (cur >> 3);
1303 if (*addr != (__u32)(-1) && zero_bit == -1)
1304 zero_bit = cur + mb_find_next_zero_bit(addr, 32, 0);
1305 *addr = 0;
1306 cur += 32;
1307 continue;
1308 }
1309 if (!mb_test_and_clear_bit(cur, bm) && zero_bit == -1)
1310 zero_bit = cur;
1311 cur++;
1312 }
1313
1314 return zero_bit;
1315 }
1316
1317 void ext4_set_bits(void *bm, int cur, int len)
1318 {
1319 __u32 *addr;
1320
1321 len = cur + len;
1322 while (cur < len) {
1323 if ((cur & 31) == 0 && (len - cur) >= 32) {
1324 /* fast path: set whole word at once */
1325 addr = bm + (cur >> 3);
1326 *addr = 0xffffffff;
1327 cur += 32;
1328 continue;
1329 }
1330 mb_set_bit(cur, bm);
1331 cur++;
1332 }
1333 }
1334
1335 /*
1336 * _________________________________________________________________ */
1337
1338 static inline int mb_buddy_adjust_border(int* bit, void* bitmap, int side)
1339 {
1340 if (mb_test_bit(*bit + side, bitmap)) {
1341 mb_clear_bit(*bit, bitmap);
1342 (*bit) -= side;
1343 return 1;
1344 }
1345 else {
1346 (*bit) += side;
1347 mb_set_bit(*bit, bitmap);
1348 return -1;
1349 }
1350 }
1351
1352 static void mb_buddy_mark_free(struct ext4_buddy *e4b, int first, int last)
1353 {
1354 int max;
1355 int order = 1;
1356 void *buddy = mb_find_buddy(e4b, order, &max);
1357
1358 while (buddy) {
1359 void *buddy2;
1360
1361 /* Bits in range [first; last] are known to be set since
1362 * corresponding blocks were allocated. Bits in range
1363 * (first; last) will stay set because they form buddies on
1364 * upper layer. We just deal with borders if they don't
1365 * align with upper layer and then go up.
1366 * Releasing entire group is all about clearing
1367 * single bit of highest order buddy.
1368 */
1369
1370 /* Example:
1371 * ---------------------------------
1372 * | 1 | 1 | 1 | 1 |
1373 * ---------------------------------
1374 * | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
1375 * ---------------------------------
1376 * 0 1 2 3 4 5 6 7
1377 * \_____________________/
1378 *
1379 * Neither [1] nor [6] is aligned to above layer.
1380 * Left neighbour [0] is free, so mark it busy,
1381 * decrease bb_counters and extend range to
1382 * [0; 6]
1383 * Right neighbour [7] is busy. It can't be coaleasced with [6], so
1384 * mark [6] free, increase bb_counters and shrink range to
1385 * [0; 5].
1386 * Then shift range to [0; 2], go up and do the same.
1387 */
1388
1389
1390 if (first & 1)
1391 e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&first, buddy, -1);
1392 if (!(last & 1))
1393 e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&last, buddy, 1);
1394 if (first > last)
1395 break;
1396 order++;
1397
1398 if (first == last || !(buddy2 = mb_find_buddy(e4b, order, &max))) {
1399 mb_clear_bits(buddy, first, last - first + 1);
1400 e4b->bd_info->bb_counters[order - 1] += last - first + 1;
1401 break;
1402 }
1403 first >>= 1;
1404 last >>= 1;
1405 buddy = buddy2;
1406 }
1407 }
1408
1409 static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b,
1410 int first, int count)
1411 {
1412 int left_is_free = 0;
1413 int right_is_free = 0;
1414 int block;
1415 int last = first + count - 1;
1416 struct super_block *sb = e4b->bd_sb;
1417
1418 if (WARN_ON(count == 0))
1419 return;
1420 BUG_ON(last >= (sb->s_blocksize << 3));
1421 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
1422 /* Don't bother if the block group is corrupt. */
1423 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info)))
1424 return;
1425
1426 mb_check_buddy(e4b);
1427 mb_free_blocks_double(inode, e4b, first, count);
1428
1429 e4b->bd_info->bb_free += count;
1430 if (first < e4b->bd_info->bb_first_free)
1431 e4b->bd_info->bb_first_free = first;
1432
1433 /* access memory sequentially: check left neighbour,
1434 * clear range and then check right neighbour
1435 */
1436 if (first != 0)
1437 left_is_free = !mb_test_bit(first - 1, e4b->bd_bitmap);
1438 block = mb_test_and_clear_bits(e4b->bd_bitmap, first, count);
1439 if (last + 1 < EXT4_SB(sb)->s_mb_maxs[0])
1440 right_is_free = !mb_test_bit(last + 1, e4b->bd_bitmap);
1441
1442 if (unlikely(block != -1)) {
1443 struct ext4_sb_info *sbi = EXT4_SB(sb);
1444 ext4_fsblk_t blocknr;
1445
1446 blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
1447 blocknr += EXT4_C2B(EXT4_SB(sb), block);
1448 ext4_grp_locked_error(sb, e4b->bd_group,
1449 inode ? inode->i_ino : 0,
1450 blocknr,
1451 "freeing already freed block "
1452 "(bit %u); block bitmap corrupt.",
1453 block);
1454 if (!EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info))
1455 percpu_counter_sub(&sbi->s_freeclusters_counter,
1456 e4b->bd_info->bb_free);
1457 /* Mark the block group as corrupt. */
1458 set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT,
1459 &e4b->bd_info->bb_state);
1460 mb_regenerate_buddy(e4b);
1461 goto done;
1462 }
1463
1464 /* let's maintain fragments counter */
1465 if (left_is_free && right_is_free)
1466 e4b->bd_info->bb_fragments--;
1467 else if (!left_is_free && !right_is_free)
1468 e4b->bd_info->bb_fragments++;
1469
1470 /* buddy[0] == bd_bitmap is a special case, so handle
1471 * it right away and let mb_buddy_mark_free stay free of
1472 * zero order checks.
1473 * Check if neighbours are to be coaleasced,
1474 * adjust bitmap bb_counters and borders appropriately.
1475 */
1476 if (first & 1) {
1477 first += !left_is_free;
1478 e4b->bd_info->bb_counters[0] += left_is_free ? -1 : 1;
1479 }
1480 if (!(last & 1)) {
1481 last -= !right_is_free;
1482 e4b->bd_info->bb_counters[0] += right_is_free ? -1 : 1;
1483 }
1484
1485 if (first <= last)
1486 mb_buddy_mark_free(e4b, first >> 1, last >> 1);
1487
1488 done:
1489 mb_set_largest_free_order(sb, e4b->bd_info);
1490 mb_check_buddy(e4b);
1491 }
1492
1493 static int mb_find_extent(struct ext4_buddy *e4b, int block,
1494 int needed, struct ext4_free_extent *ex)
1495 {
1496 int next = block;
1497 int max, order;
1498 void *buddy;
1499
1500 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1501 BUG_ON(ex == NULL);
1502
1503 buddy = mb_find_buddy(e4b, 0, &max);
1504 BUG_ON(buddy == NULL);
1505 BUG_ON(block >= max);
1506 if (mb_test_bit(block, buddy)) {
1507 ex->fe_len = 0;
1508 ex->fe_start = 0;
1509 ex->fe_group = 0;
1510 return 0;
1511 }
1512
1513 /* find actual order */
1514 order = mb_find_order_for_block(e4b, block);
1515 block = block >> order;
1516
1517 ex->fe_len = 1 << order;
1518 ex->fe_start = block << order;
1519 ex->fe_group = e4b->bd_group;
1520
1521 /* calc difference from given start */
1522 next = next - ex->fe_start;
1523 ex->fe_len -= next;
1524 ex->fe_start += next;
1525
1526 while (needed > ex->fe_len &&
1527 mb_find_buddy(e4b, order, &max)) {
1528
1529 if (block + 1 >= max)
1530 break;
1531
1532 next = (block + 1) * (1 << order);
1533 if (mb_test_bit(next, e4b->bd_bitmap))
1534 break;
1535
1536 order = mb_find_order_for_block(e4b, next);
1537
1538 block = next >> order;
1539 ex->fe_len += 1 << order;
1540 }
1541
1542 BUG_ON(ex->fe_start + ex->fe_len > (1 << (e4b->bd_blkbits + 3)));
1543 return ex->fe_len;
1544 }
1545
1546 static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex)
1547 {
1548 int ord;
1549 int mlen = 0;
1550 int max = 0;
1551 int cur;
1552 int start = ex->fe_start;
1553 int len = ex->fe_len;
1554 unsigned ret = 0;
1555 int len0 = len;
1556 void *buddy;
1557
1558 BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3));
1559 BUG_ON(e4b->bd_group != ex->fe_group);
1560 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1561 mb_check_buddy(e4b);
1562 mb_mark_used_double(e4b, start, len);
1563
1564 e4b->bd_info->bb_free -= len;
1565 if (e4b->bd_info->bb_first_free == start)
1566 e4b->bd_info->bb_first_free += len;
1567
1568 /* let's maintain fragments counter */
1569 if (start != 0)
1570 mlen = !mb_test_bit(start - 1, e4b->bd_bitmap);
1571 if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0])
1572 max = !mb_test_bit(start + len, e4b->bd_bitmap);
1573 if (mlen && max)
1574 e4b->bd_info->bb_fragments++;
1575 else if (!mlen && !max)
1576 e4b->bd_info->bb_fragments--;
1577
1578 /* let's maintain buddy itself */
1579 while (len) {
1580 ord = mb_find_order_for_block(e4b, start);
1581
1582 if (((start >> ord) << ord) == start && len >= (1 << ord)) {
1583 /* the whole chunk may be allocated at once! */
1584 mlen = 1 << ord;
1585 buddy = mb_find_buddy(e4b, ord, &max);
1586 BUG_ON((start >> ord) >= max);
1587 mb_set_bit(start >> ord, buddy);
1588 e4b->bd_info->bb_counters[ord]--;
1589 start += mlen;
1590 len -= mlen;
1591 BUG_ON(len < 0);
1592 continue;
1593 }
1594
1595 /* store for history */
1596 if (ret == 0)
1597 ret = len | (ord << 16);
1598
1599 /* we have to split large buddy */
1600 BUG_ON(ord <= 0);
1601 buddy = mb_find_buddy(e4b, ord, &max);
1602 mb_set_bit(start >> ord, buddy);
1603 e4b->bd_info->bb_counters[ord]--;
1604
1605 ord--;
1606 cur = (start >> ord) & ~1U;
1607 buddy = mb_find_buddy(e4b, ord, &max);
1608 mb_clear_bit(cur, buddy);
1609 mb_clear_bit(cur + 1, buddy);
1610 e4b->bd_info->bb_counters[ord]++;
1611 e4b->bd_info->bb_counters[ord]++;
1612 }
1613 mb_set_largest_free_order(e4b->bd_sb, e4b->bd_info);
1614
1615 ext4_set_bits(e4b->bd_bitmap, ex->fe_start, len0);
1616 mb_check_buddy(e4b);
1617
1618 return ret;
1619 }
1620
1621 /*
1622 * Must be called under group lock!
1623 */
1624 static void ext4_mb_use_best_found(struct ext4_allocation_context *ac,
1625 struct ext4_buddy *e4b)
1626 {
1627 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1628 int ret;
1629
1630 BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group);
1631 BUG_ON(ac->ac_status == AC_STATUS_FOUND);
1632
1633 ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len);
1634 ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical;
1635 ret = mb_mark_used(e4b, &ac->ac_b_ex);
1636
1637 /* preallocation can change ac_b_ex, thus we store actually
1638 * allocated blocks for history */
1639 ac->ac_f_ex = ac->ac_b_ex;
1640
1641 ac->ac_status = AC_STATUS_FOUND;
1642 ac->ac_tail = ret & 0xffff;
1643 ac->ac_buddy = ret >> 16;
1644
1645 /*
1646 * take the page reference. We want the page to be pinned
1647 * so that we don't get a ext4_mb_init_cache_call for this
1648 * group until we update the bitmap. That would mean we
1649 * double allocate blocks. The reference is dropped
1650 * in ext4_mb_release_context
1651 */
1652 ac->ac_bitmap_page = e4b->bd_bitmap_page;
1653 get_page(ac->ac_bitmap_page);
1654 ac->ac_buddy_page = e4b->bd_buddy_page;
1655 get_page(ac->ac_buddy_page);
1656 /* store last allocated for subsequent stream allocation */
1657 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
1658 spin_lock(&sbi->s_md_lock);
1659 sbi->s_mb_last_group = ac->ac_f_ex.fe_group;
1660 sbi->s_mb_last_start = ac->ac_f_ex.fe_start;
1661 spin_unlock(&sbi->s_md_lock);
1662 }
1663 }
1664
1665 /*
1666 * regular allocator, for general purposes allocation
1667 */
1668
1669 static void ext4_mb_check_limits(struct ext4_allocation_context *ac,
1670 struct ext4_buddy *e4b,
1671 int finish_group)
1672 {
1673 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1674 struct ext4_free_extent *bex = &ac->ac_b_ex;
1675 struct ext4_free_extent *gex = &ac->ac_g_ex;
1676 struct ext4_free_extent ex;
1677 int max;
1678
1679 if (ac->ac_status == AC_STATUS_FOUND)
1680 return;
1681 /*
1682 * We don't want to scan for a whole year
1683 */
1684 if (ac->ac_found > sbi->s_mb_max_to_scan &&
1685 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1686 ac->ac_status = AC_STATUS_BREAK;
1687 return;
1688 }
1689
1690 /*
1691 * Haven't found good chunk so far, let's continue
1692 */
1693 if (bex->fe_len < gex->fe_len)
1694 return;
1695
1696 if ((finish_group || ac->ac_found > sbi->s_mb_min_to_scan)
1697 && bex->fe_group == e4b->bd_group) {
1698 /* recheck chunk's availability - we don't know
1699 * when it was found (within this lock-unlock
1700 * period or not) */
1701 max = mb_find_extent(e4b, bex->fe_start, gex->fe_len, &ex);
1702 if (max >= gex->fe_len) {
1703 ext4_mb_use_best_found(ac, e4b);
1704 return;
1705 }
1706 }
1707 }
1708
1709 /*
1710 * The routine checks whether found extent is good enough. If it is,
1711 * then the extent gets marked used and flag is set to the context
1712 * to stop scanning. Otherwise, the extent is compared with the
1713 * previous found extent and if new one is better, then it's stored
1714 * in the context. Later, the best found extent will be used, if
1715 * mballoc can't find good enough extent.
1716 *
1717 * FIXME: real allocation policy is to be designed yet!
1718 */
1719 static void ext4_mb_measure_extent(struct ext4_allocation_context *ac,
1720 struct ext4_free_extent *ex,
1721 struct ext4_buddy *e4b)
1722 {
1723 struct ext4_free_extent *bex = &ac->ac_b_ex;
1724 struct ext4_free_extent *gex = &ac->ac_g_ex;
1725
1726 BUG_ON(ex->fe_len <= 0);
1727 BUG_ON(ex->fe_len > EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
1728 BUG_ON(ex->fe_start >= EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
1729 BUG_ON(ac->ac_status != AC_STATUS_CONTINUE);
1730
1731 ac->ac_found++;
1732
1733 /*
1734 * The special case - take what you catch first
1735 */
1736 if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1737 *bex = *ex;
1738 ext4_mb_use_best_found(ac, e4b);
1739 return;
1740 }
1741
1742 /*
1743 * Let's check whether the chuck is good enough
1744 */
1745 if (ex->fe_len == gex->fe_len) {
1746 *bex = *ex;
1747 ext4_mb_use_best_found(ac, e4b);
1748 return;
1749 }
1750
1751 /*
1752 * If this is first found extent, just store it in the context
1753 */
1754 if (bex->fe_len == 0) {
1755 *bex = *ex;
1756 return;
1757 }
1758
1759 /*
1760 * If new found extent is better, store it in the context
1761 */
1762 if (bex->fe_len < gex->fe_len) {
1763 /* if the request isn't satisfied, any found extent
1764 * larger than previous best one is better */
1765 if (ex->fe_len > bex->fe_len)
1766 *bex = *ex;
1767 } else if (ex->fe_len > gex->fe_len) {
1768 /* if the request is satisfied, then we try to find
1769 * an extent that still satisfy the request, but is
1770 * smaller than previous one */
1771 if (ex->fe_len < bex->fe_len)
1772 *bex = *ex;
1773 }
1774
1775 ext4_mb_check_limits(ac, e4b, 0);
1776 }
1777
1778 static noinline_for_stack
1779 int ext4_mb_try_best_found(struct ext4_allocation_context *ac,
1780 struct ext4_buddy *e4b)
1781 {
1782 struct ext4_free_extent ex = ac->ac_b_ex;
1783 ext4_group_t group = ex.fe_group;
1784 int max;
1785 int err;
1786
1787 BUG_ON(ex.fe_len <= 0);
1788 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1789 if (err)
1790 return err;
1791
1792 ext4_lock_group(ac->ac_sb, group);
1793 max = mb_find_extent(e4b, ex.fe_start, ex.fe_len, &ex);
1794
1795 if (max > 0) {
1796 ac->ac_b_ex = ex;
1797 ext4_mb_use_best_found(ac, e4b);
1798 }
1799
1800 ext4_unlock_group(ac->ac_sb, group);
1801 ext4_mb_unload_buddy(e4b);
1802
1803 return 0;
1804 }
1805
1806 static noinline_for_stack
1807 int ext4_mb_find_by_goal(struct ext4_allocation_context *ac,
1808 struct ext4_buddy *e4b)
1809 {
1810 ext4_group_t group = ac->ac_g_ex.fe_group;
1811 int max;
1812 int err;
1813 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1814 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
1815 struct ext4_free_extent ex;
1816
1817 if (!(ac->ac_flags & EXT4_MB_HINT_TRY_GOAL))
1818 return 0;
1819 if (grp->bb_free == 0)
1820 return 0;
1821
1822 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1823 if (err)
1824 return err;
1825
1826 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info))) {
1827 ext4_mb_unload_buddy(e4b);
1828 return 0;
1829 }
1830
1831 ext4_lock_group(ac->ac_sb, group);
1832 max = mb_find_extent(e4b, ac->ac_g_ex.fe_start,
1833 ac->ac_g_ex.fe_len, &ex);
1834 ex.fe_logical = 0xDEADFA11; /* debug value */
1835
1836 if (max >= ac->ac_g_ex.fe_len && ac->ac_g_ex.fe_len == sbi->s_stripe) {
1837 ext4_fsblk_t start;
1838
1839 start = ext4_group_first_block_no(ac->ac_sb, e4b->bd_group) +
1840 ex.fe_start;
1841 /* use do_div to get remainder (would be 64-bit modulo) */
1842 if (do_div(start, sbi->s_stripe) == 0) {
1843 ac->ac_found++;
1844 ac->ac_b_ex = ex;
1845 ext4_mb_use_best_found(ac, e4b);
1846 }
1847 } else if (max >= ac->ac_g_ex.fe_len) {
1848 BUG_ON(ex.fe_len <= 0);
1849 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1850 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1851 ac->ac_found++;
1852 ac->ac_b_ex = ex;
1853 ext4_mb_use_best_found(ac, e4b);
1854 } else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) {
1855 /* Sometimes, caller may want to merge even small
1856 * number of blocks to an existing extent */
1857 BUG_ON(ex.fe_len <= 0);
1858 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1859 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1860 ac->ac_found++;
1861 ac->ac_b_ex = ex;
1862 ext4_mb_use_best_found(ac, e4b);
1863 }
1864 ext4_unlock_group(ac->ac_sb, group);
1865 ext4_mb_unload_buddy(e4b);
1866
1867 return 0;
1868 }
1869
1870 /*
1871 * The routine scans buddy structures (not bitmap!) from given order
1872 * to max order and tries to find big enough chunk to satisfy the req
1873 */
1874 static noinline_for_stack
1875 void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac,
1876 struct ext4_buddy *e4b)
1877 {
1878 struct super_block *sb = ac->ac_sb;
1879 struct ext4_group_info *grp = e4b->bd_info;
1880 void *buddy;
1881 int i;
1882 int k;
1883 int max;
1884
1885 BUG_ON(ac->ac_2order <= 0);
1886 for (i = ac->ac_2order; i <= sb->s_blocksize_bits + 1; i++) {
1887 if (grp->bb_counters[i] == 0)
1888 continue;
1889
1890 buddy = mb_find_buddy(e4b, i, &max);
1891 BUG_ON(buddy == NULL);
1892
1893 k = mb_find_next_zero_bit(buddy, max, 0);
1894 BUG_ON(k >= max);
1895
1896 ac->ac_found++;
1897
1898 ac->ac_b_ex.fe_len = 1 << i;
1899 ac->ac_b_ex.fe_start = k << i;
1900 ac->ac_b_ex.fe_group = e4b->bd_group;
1901
1902 ext4_mb_use_best_found(ac, e4b);
1903
1904 BUG_ON(ac->ac_b_ex.fe_len != ac->ac_g_ex.fe_len);
1905
1906 if (EXT4_SB(sb)->s_mb_stats)
1907 atomic_inc(&EXT4_SB(sb)->s_bal_2orders);
1908
1909 break;
1910 }
1911 }
1912
1913 /*
1914 * The routine scans the group and measures all found extents.
1915 * In order to optimize scanning, caller must pass number of
1916 * free blocks in the group, so the routine can know upper limit.
1917 */
1918 static noinline_for_stack
1919 void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac,
1920 struct ext4_buddy *e4b)
1921 {
1922 struct super_block *sb = ac->ac_sb;
1923 void *bitmap = e4b->bd_bitmap;
1924 struct ext4_free_extent ex;
1925 int i;
1926 int free;
1927
1928 free = e4b->bd_info->bb_free;
1929 BUG_ON(free <= 0);
1930
1931 i = e4b->bd_info->bb_first_free;
1932
1933 while (free && ac->ac_status == AC_STATUS_CONTINUE) {
1934 i = mb_find_next_zero_bit(bitmap,
1935 EXT4_CLUSTERS_PER_GROUP(sb), i);
1936 if (i >= EXT4_CLUSTERS_PER_GROUP(sb)) {
1937 /*
1938 * IF we have corrupt bitmap, we won't find any
1939 * free blocks even though group info says we
1940 * we have free blocks
1941 */
1942 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
1943 "%d free clusters as per "
1944 "group info. But bitmap says 0",
1945 free);
1946 break;
1947 }
1948
1949 mb_find_extent(e4b, i, ac->ac_g_ex.fe_len, &ex);
1950 BUG_ON(ex.fe_len <= 0);
1951 if (free < ex.fe_len) {
1952 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
1953 "%d free clusters as per "
1954 "group info. But got %d blocks",
1955 free, ex.fe_len);
1956 /*
1957 * The number of free blocks differs. This mostly
1958 * indicate that the bitmap is corrupt. So exit
1959 * without claiming the space.
1960 */
1961 break;
1962 }
1963 ex.fe_logical = 0xDEADC0DE; /* debug value */
1964 ext4_mb_measure_extent(ac, &ex, e4b);
1965
1966 i += ex.fe_len;
1967 free -= ex.fe_len;
1968 }
1969
1970 ext4_mb_check_limits(ac, e4b, 1);
1971 }
1972
1973 /*
1974 * This is a special case for storages like raid5
1975 * we try to find stripe-aligned chunks for stripe-size-multiple requests
1976 */
1977 static noinline_for_stack
1978 void ext4_mb_scan_aligned(struct ext4_allocation_context *ac,
1979 struct ext4_buddy *e4b)
1980 {
1981 struct super_block *sb = ac->ac_sb;
1982 struct ext4_sb_info *sbi = EXT4_SB(sb);
1983 void *bitmap = e4b->bd_bitmap;
1984 struct ext4_free_extent ex;
1985 ext4_fsblk_t first_group_block;
1986 ext4_fsblk_t a;
1987 ext4_grpblk_t i;
1988 int max;
1989
1990 BUG_ON(sbi->s_stripe == 0);
1991
1992 /* find first stripe-aligned block in group */
1993 first_group_block = ext4_group_first_block_no(sb, e4b->bd_group);
1994
1995 a = first_group_block + sbi->s_stripe - 1;
1996 do_div(a, sbi->s_stripe);
1997 i = (a * sbi->s_stripe) - first_group_block;
1998
1999 while (i < EXT4_CLUSTERS_PER_GROUP(sb)) {
2000 if (!mb_test_bit(i, bitmap)) {
2001 max = mb_find_extent(e4b, i, sbi->s_stripe, &ex);
2002 if (max >= sbi->s_stripe) {
2003 ac->ac_found++;
2004 ex.fe_logical = 0xDEADF00D; /* debug value */
2005 ac->ac_b_ex = ex;
2006 ext4_mb_use_best_found(ac, e4b);
2007 break;
2008 }
2009 }
2010 i += sbi->s_stripe;
2011 }
2012 }
2013
2014 /* This is now called BEFORE we load the buddy bitmap. */
2015 static int ext4_mb_good_group(struct ext4_allocation_context *ac,
2016 ext4_group_t group, int cr)
2017 {
2018 unsigned free, fragments;
2019 int flex_size = ext4_flex_bg_size(EXT4_SB(ac->ac_sb));
2020 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
2021
2022 BUG_ON(cr < 0 || cr >= 4);
2023
2024 free = grp->bb_free;
2025 if (free == 0)
2026 return 0;
2027 if (cr <= 2 && free < ac->ac_g_ex.fe_len)
2028 return 0;
2029
2030 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(grp)))
2031 return 0;
2032
2033 /* We only do this if the grp has never been initialized */
2034 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
2035 int ret = ext4_mb_init_group(ac->ac_sb, group);
2036 if (ret)
2037 return 0;
2038 }
2039
2040 fragments = grp->bb_fragments;
2041 if (fragments == 0)
2042 return 0;
2043
2044 switch (cr) {
2045 case 0:
2046 BUG_ON(ac->ac_2order == 0);
2047
2048 /* Avoid using the first bg of a flexgroup for data files */
2049 if ((ac->ac_flags & EXT4_MB_HINT_DATA) &&
2050 (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) &&
2051 ((group % flex_size) == 0))
2052 return 0;
2053
2054 if ((ac->ac_2order > ac->ac_sb->s_blocksize_bits+1) ||
2055 (free / fragments) >= ac->ac_g_ex.fe_len)
2056 return 1;
2057
2058 if (grp->bb_largest_free_order < ac->ac_2order)
2059 return 0;
2060
2061 return 1;
2062 case 1:
2063 if ((free / fragments) >= ac->ac_g_ex.fe_len)
2064 return 1;
2065 break;
2066 case 2:
2067 if (free >= ac->ac_g_ex.fe_len)
2068 return 1;
2069 break;
2070 case 3:
2071 return 1;
2072 default:
2073 BUG();
2074 }
2075
2076 return 0;
2077 }
2078
2079 static noinline_for_stack int
2080 ext4_mb_regular_allocator(struct ext4_allocation_context *ac)
2081 {
2082 ext4_group_t ngroups, group, i;
2083 int cr;
2084 int err = 0;
2085 struct ext4_sb_info *sbi;
2086 struct super_block *sb;
2087 struct ext4_buddy e4b;
2088
2089 sb = ac->ac_sb;
2090 sbi = EXT4_SB(sb);
2091 ngroups = ext4_get_groups_count(sb);
2092 /* non-extent files are limited to low blocks/groups */
2093 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)))
2094 ngroups = sbi->s_blockfile_groups;
2095
2096 BUG_ON(ac->ac_status == AC_STATUS_FOUND);
2097
2098 /* first, try the goal */
2099 err = ext4_mb_find_by_goal(ac, &e4b);
2100 if (err || ac->ac_status == AC_STATUS_FOUND)
2101 goto out;
2102
2103 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
2104 goto out;
2105
2106 /*
2107 * ac->ac2_order is set only if the fe_len is a power of 2
2108 * if ac2_order is set we also set criteria to 0 so that we
2109 * try exact allocation using buddy.
2110 */
2111 i = fls(ac->ac_g_ex.fe_len);
2112 ac->ac_2order = 0;
2113 /*
2114 * We search using buddy data only if the order of the request
2115 * is greater than equal to the sbi_s_mb_order2_reqs
2116 * You can tune it via /sys/fs/ext4/<partition>/mb_order2_req
2117 */
2118 if (i >= sbi->s_mb_order2_reqs) {
2119 /*
2120 * This should tell if fe_len is exactly power of 2
2121 */
2122 if ((ac->ac_g_ex.fe_len & (~(1 << (i - 1)))) == 0)
2123 ac->ac_2order = i - 1;
2124 }
2125
2126 /* if stream allocation is enabled, use global goal */
2127 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
2128 /* TBD: may be hot point */
2129 spin_lock(&sbi->s_md_lock);
2130 ac->ac_g_ex.fe_group = sbi->s_mb_last_group;
2131 ac->ac_g_ex.fe_start = sbi->s_mb_last_start;
2132 spin_unlock(&sbi->s_md_lock);
2133 }
2134
2135 /* Let's just scan groups to find more-less suitable blocks */
2136 cr = ac->ac_2order ? 0 : 1;
2137 /*
2138 * cr == 0 try to get exact allocation,
2139 * cr == 3 try to get anything
2140 */
2141 repeat:
2142 for (; cr < 4 && ac->ac_status == AC_STATUS_CONTINUE; cr++) {
2143 ac->ac_criteria = cr;
2144 /*
2145 * searching for the right group start
2146 * from the goal value specified
2147 */
2148 group = ac->ac_g_ex.fe_group;
2149
2150 for (i = 0; i < ngroups; group++, i++) {
2151 cond_resched();
2152 /*
2153 * Artificially restricted ngroups for non-extent
2154 * files makes group > ngroups possible on first loop.
2155 */
2156 if (group >= ngroups)
2157 group = 0;
2158
2159 /* This now checks without needing the buddy page */
2160 if (!ext4_mb_good_group(ac, group, cr))
2161 continue;
2162
2163 err = ext4_mb_load_buddy(sb, group, &e4b);
2164 if (err)
2165 goto out;
2166
2167 ext4_lock_group(sb, group);
2168
2169 /*
2170 * We need to check again after locking the
2171 * block group
2172 */
2173 if (!ext4_mb_good_group(ac, group, cr)) {
2174 ext4_unlock_group(sb, group);
2175 ext4_mb_unload_buddy(&e4b);
2176 continue;
2177 }
2178
2179 ac->ac_groups_scanned++;
2180 if (cr == 0 && ac->ac_2order < sb->s_blocksize_bits+2)
2181 ext4_mb_simple_scan_group(ac, &e4b);
2182 else if (cr == 1 && sbi->s_stripe &&
2183 !(ac->ac_g_ex.fe_len % sbi->s_stripe))
2184 ext4_mb_scan_aligned(ac, &e4b);
2185 else
2186 ext4_mb_complex_scan_group(ac, &e4b);
2187
2188 ext4_unlock_group(sb, group);
2189 ext4_mb_unload_buddy(&e4b);
2190
2191 if (ac->ac_status != AC_STATUS_CONTINUE)
2192 break;
2193 }
2194 }
2195
2196 if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND &&
2197 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2198 /*
2199 * We've been searching too long. Let's try to allocate
2200 * the best chunk we've found so far
2201 */
2202
2203 ext4_mb_try_best_found(ac, &e4b);
2204 if (ac->ac_status != AC_STATUS_FOUND) {
2205 /*
2206 * Someone more lucky has already allocated it.
2207 * The only thing we can do is just take first
2208 * found block(s)
2209 printk(KERN_DEBUG "EXT4-fs: someone won our chunk\n");
2210 */
2211 ac->ac_b_ex.fe_group = 0;
2212 ac->ac_b_ex.fe_start = 0;
2213 ac->ac_b_ex.fe_len = 0;
2214 ac->ac_status = AC_STATUS_CONTINUE;
2215 ac->ac_flags |= EXT4_MB_HINT_FIRST;
2216 cr = 3;
2217 atomic_inc(&sbi->s_mb_lost_chunks);
2218 goto repeat;
2219 }
2220 }
2221 out:
2222 return err;
2223 }
2224
2225 static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos)
2226 {
2227 struct super_block *sb = seq->private;
2228 ext4_group_t group;
2229
2230 if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2231 return NULL;
2232 group = *pos + 1;
2233 return (void *) ((unsigned long) group);
2234 }
2235
2236 static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos)
2237 {
2238 struct super_block *sb = seq->private;
2239 ext4_group_t group;
2240
2241 ++*pos;
2242 if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2243 return NULL;
2244 group = *pos + 1;
2245 return (void *) ((unsigned long) group);
2246 }
2247
2248 static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v)
2249 {
2250 struct super_block *sb = seq->private;
2251 ext4_group_t group = (ext4_group_t) ((unsigned long) v);
2252 int i;
2253 int err, buddy_loaded = 0;
2254 struct ext4_buddy e4b;
2255 struct ext4_group_info *grinfo;
2256 struct sg {
2257 struct ext4_group_info info;
2258 ext4_grpblk_t counters[16];
2259 } sg;
2260
2261 group--;
2262 if (group == 0)
2263 seq_printf(seq, "#%-5s: %-5s %-5s %-5s "
2264 "[ %-5s %-5s %-5s %-5s %-5s %-5s %-5s "
2265 "%-5s %-5s %-5s %-5s %-5s %-5s %-5s ]\n",
2266 "group", "free", "frags", "first",
2267 "2^0", "2^1", "2^2", "2^3", "2^4", "2^5", "2^6",
2268 "2^7", "2^8", "2^9", "2^10", "2^11", "2^12", "2^13");
2269
2270 i = (sb->s_blocksize_bits + 2) * sizeof(sg.info.bb_counters[0]) +
2271 sizeof(struct ext4_group_info);
2272 grinfo = ext4_get_group_info(sb, group);
2273 /* Load the group info in memory only if not already loaded. */
2274 if (unlikely(EXT4_MB_GRP_NEED_INIT(grinfo))) {
2275 err = ext4_mb_load_buddy(sb, group, &e4b);
2276 if (err) {
2277 seq_printf(seq, "#%-5u: I/O error\n", group);
2278 return 0;
2279 }
2280 buddy_loaded = 1;
2281 }
2282
2283 memcpy(&sg, ext4_get_group_info(sb, group), i);
2284
2285 if (buddy_loaded)
2286 ext4_mb_unload_buddy(&e4b);
2287
2288 seq_printf(seq, "#%-5u: %-5u %-5u %-5u [", group, sg.info.bb_free,
2289 sg.info.bb_fragments, sg.info.bb_first_free);
2290 for (i = 0; i <= 13; i++)
2291 seq_printf(seq, " %-5u", i <= sb->s_blocksize_bits + 1 ?
2292 sg.info.bb_counters[i] : 0);
2293 seq_printf(seq, " ]\n");
2294
2295 return 0;
2296 }
2297
2298 static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v)
2299 {
2300 }
2301
2302 static const struct seq_operations ext4_mb_seq_groups_ops = {
2303 .start = ext4_mb_seq_groups_start,
2304 .next = ext4_mb_seq_groups_next,
2305 .stop = ext4_mb_seq_groups_stop,
2306 .show = ext4_mb_seq_groups_show,
2307 };
2308
2309 static int ext4_mb_seq_groups_open(struct inode *inode, struct file *file)
2310 {
2311 struct super_block *sb = PDE_DATA(inode);
2312 int rc;
2313
2314 rc = seq_open(file, &ext4_mb_seq_groups_ops);
2315 if (rc == 0) {
2316 struct seq_file *m = file->private_data;
2317 m->private = sb;
2318 }
2319 return rc;
2320
2321 }
2322
2323 static const struct file_operations ext4_mb_seq_groups_fops = {
2324 .owner = THIS_MODULE,
2325 .open = ext4_mb_seq_groups_open,
2326 .read = seq_read,
2327 .llseek = seq_lseek,
2328 .release = seq_release,
2329 };
2330
2331 static struct kmem_cache *get_groupinfo_cache(int blocksize_bits)
2332 {
2333 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
2334 struct kmem_cache *cachep = ext4_groupinfo_caches[cache_index];
2335
2336 BUG_ON(!cachep);
2337 return cachep;
2338 }
2339
2340 /*
2341 * Allocate the top-level s_group_info array for the specified number
2342 * of groups
2343 */
2344 int ext4_mb_alloc_groupinfo(struct super_block *sb, ext4_group_t ngroups)
2345 {
2346 struct ext4_sb_info *sbi = EXT4_SB(sb);
2347 unsigned size;
2348 struct ext4_group_info ***new_groupinfo;
2349
2350 size = (ngroups + EXT4_DESC_PER_BLOCK(sb) - 1) >>
2351 EXT4_DESC_PER_BLOCK_BITS(sb);
2352 if (size <= sbi->s_group_info_size)
2353 return 0;
2354
2355 size = roundup_pow_of_two(sizeof(*sbi->s_group_info) * size);
2356 new_groupinfo = ext4_kvzalloc(size, GFP_KERNEL);
2357 if (!new_groupinfo) {
2358 ext4_msg(sb, KERN_ERR, "can't allocate buddy meta group");
2359 return -ENOMEM;
2360 }
2361 if (sbi->s_group_info) {
2362 memcpy(new_groupinfo, sbi->s_group_info,
2363 sbi->s_group_info_size * sizeof(*sbi->s_group_info));
2364 kvfree(sbi->s_group_info);
2365 }
2366 sbi->s_group_info = new_groupinfo;
2367 sbi->s_group_info_size = size / sizeof(*sbi->s_group_info);
2368 ext4_debug("allocated s_groupinfo array for %d meta_bg's\n",
2369 sbi->s_group_info_size);
2370 return 0;
2371 }
2372
2373 /* Create and initialize ext4_group_info data for the given group. */
2374 int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group,
2375 struct ext4_group_desc *desc)
2376 {
2377 int i;
2378 int metalen = 0;
2379 struct ext4_sb_info *sbi = EXT4_SB(sb);
2380 struct ext4_group_info **meta_group_info;
2381 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2382
2383 /*
2384 * First check if this group is the first of a reserved block.
2385 * If it's true, we have to allocate a new table of pointers
2386 * to ext4_group_info structures
2387 */
2388 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
2389 metalen = sizeof(*meta_group_info) <<
2390 EXT4_DESC_PER_BLOCK_BITS(sb);
2391 meta_group_info = kmalloc(metalen, GFP_NOFS);
2392 if (meta_group_info == NULL) {
2393 ext4_msg(sb, KERN_ERR, "can't allocate mem "
2394 "for a buddy group");
2395 goto exit_meta_group_info;
2396 }
2397 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)] =
2398 meta_group_info;
2399 }
2400
2401 meta_group_info =
2402 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)];
2403 i = group & (EXT4_DESC_PER_BLOCK(sb) - 1);
2404
2405 meta_group_info[i] = kmem_cache_zalloc(cachep, GFP_NOFS);
2406 if (meta_group_info[i] == NULL) {
2407 ext4_msg(sb, KERN_ERR, "can't allocate buddy mem");
2408 goto exit_group_info;
2409 }
2410 set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT,
2411 &(meta_group_info[i]->bb_state));
2412
2413 /*
2414 * initialize bb_free to be able to skip
2415 * empty groups without initialization
2416 */
2417 if (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
2418 meta_group_info[i]->bb_free =
2419 ext4_free_clusters_after_init(sb, group, desc);
2420 } else {
2421 meta_group_info[i]->bb_free =
2422 ext4_free_group_clusters(sb, desc);
2423 }
2424
2425 INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list);
2426 init_rwsem(&meta_group_info[i]->alloc_sem);
2427 meta_group_info[i]->bb_free_root = RB_ROOT;
2428 meta_group_info[i]->bb_largest_free_order = -1; /* uninit */
2429
2430 #ifdef DOUBLE_CHECK
2431 {
2432 struct buffer_head *bh;
2433 meta_group_info[i]->bb_bitmap =
2434 kmalloc(sb->s_blocksize, GFP_NOFS);
2435 BUG_ON(meta_group_info[i]->bb_bitmap == NULL);
2436 bh = ext4_read_block_bitmap(sb, group);
2437 BUG_ON(bh == NULL);
2438 memcpy(meta_group_info[i]->bb_bitmap, bh->b_data,
2439 sb->s_blocksize);
2440 put_bh(bh);
2441 }
2442 #endif
2443
2444 return 0;
2445
2446 exit_group_info:
2447 /* If a meta_group_info table has been allocated, release it now */
2448 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
2449 kfree(sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)]);
2450 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)] = NULL;
2451 }
2452 exit_meta_group_info:
2453 return -ENOMEM;
2454 } /* ext4_mb_add_groupinfo */
2455
2456 static int ext4_mb_init_backend(struct super_block *sb)
2457 {
2458 ext4_group_t ngroups = ext4_get_groups_count(sb);
2459 ext4_group_t i;
2460 struct ext4_sb_info *sbi = EXT4_SB(sb);
2461 int err;
2462 struct ext4_group_desc *desc;
2463 struct kmem_cache *cachep;
2464
2465 err = ext4_mb_alloc_groupinfo(sb, ngroups);
2466 if (err)
2467 return err;
2468
2469 sbi->s_buddy_cache = new_inode(sb);
2470 if (sbi->s_buddy_cache == NULL) {
2471 ext4_msg(sb, KERN_ERR, "can't get new inode");
2472 goto err_freesgi;
2473 }
2474 /* To avoid potentially colliding with an valid on-disk inode number,
2475 * use EXT4_BAD_INO for the buddy cache inode number. This inode is
2476 * not in the inode hash, so it should never be found by iget(), but
2477 * this will avoid confusion if it ever shows up during debugging. */
2478 sbi->s_buddy_cache->i_ino = EXT4_BAD_INO;
2479 EXT4_I(sbi->s_buddy_cache)->i_disksize = 0;
2480 for (i = 0; i < ngroups; i++) {
2481 desc = ext4_get_group_desc(sb, i, NULL);
2482 if (desc == NULL) {
2483 ext4_msg(sb, KERN_ERR, "can't read descriptor %u", i);
2484 goto err_freebuddy;
2485 }
2486 if (ext4_mb_add_groupinfo(sb, i, desc) != 0)
2487 goto err_freebuddy;
2488 }
2489
2490 return 0;
2491
2492 err_freebuddy:
2493 cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2494 while (i-- > 0)
2495 kmem_cache_free(cachep, ext4_get_group_info(sb, i));
2496 i = sbi->s_group_info_size;
2497 while (i-- > 0)
2498 kfree(sbi->s_group_info[i]);
2499 iput(sbi->s_buddy_cache);
2500 err_freesgi:
2501 kvfree(sbi->s_group_info);
2502 return -ENOMEM;
2503 }
2504
2505 static void ext4_groupinfo_destroy_slabs(void)
2506 {
2507 int i;
2508
2509 for (i = 0; i < NR_GRPINFO_CACHES; i++) {
2510 if (ext4_groupinfo_caches[i])
2511 kmem_cache_destroy(ext4_groupinfo_caches[i]);
2512 ext4_groupinfo_caches[i] = NULL;
2513 }
2514 }
2515
2516 static int ext4_groupinfo_create_slab(size_t size)
2517 {
2518 static DEFINE_MUTEX(ext4_grpinfo_slab_create_mutex);
2519 int slab_size;
2520 int blocksize_bits = order_base_2(size);
2521 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
2522 struct kmem_cache *cachep;
2523
2524 if (cache_index >= NR_GRPINFO_CACHES)
2525 return -EINVAL;
2526
2527 if (unlikely(cache_index < 0))
2528 cache_index = 0;
2529
2530 mutex_lock(&ext4_grpinfo_slab_create_mutex);
2531 if (ext4_groupinfo_caches[cache_index]) {
2532 mutex_unlock(&ext4_grpinfo_slab_create_mutex);
2533 return 0; /* Already created */
2534 }
2535
2536 slab_size = offsetof(struct ext4_group_info,
2537 bb_counters[blocksize_bits + 2]);
2538
2539 cachep = kmem_cache_create(ext4_groupinfo_slab_names[cache_index],
2540 slab_size, 0, SLAB_RECLAIM_ACCOUNT,
2541 NULL);
2542
2543 ext4_groupinfo_caches[cache_index] = cachep;
2544
2545 mutex_unlock(&ext4_grpinfo_slab_create_mutex);
2546 if (!cachep) {
2547 printk(KERN_EMERG
2548 "EXT4-fs: no memory for groupinfo slab cache\n");
2549 return -ENOMEM;
2550 }
2551
2552 return 0;
2553 }
2554
2555 int ext4_mb_init(struct super_block *sb)
2556 {
2557 struct ext4_sb_info *sbi = EXT4_SB(sb);
2558 unsigned i, j;
2559 unsigned offset;
2560 unsigned max;
2561 int ret;
2562
2563 i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_offsets);
2564
2565 sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL);
2566 if (sbi->s_mb_offsets == NULL) {
2567 ret = -ENOMEM;
2568 goto out;
2569 }
2570
2571 i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_maxs);
2572 sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL);
2573 if (sbi->s_mb_maxs == NULL) {
2574 ret = -ENOMEM;
2575 goto out;
2576 }
2577
2578 ret = ext4_groupinfo_create_slab(sb->s_blocksize);
2579 if (ret < 0)
2580 goto out;
2581
2582 /* order 0 is regular bitmap */
2583 sbi->s_mb_maxs[0] = sb->s_blocksize << 3;
2584 sbi->s_mb_offsets[0] = 0;
2585
2586 i = 1;
2587 offset = 0;
2588 max = sb->s_blocksize << 2;
2589 do {
2590 sbi->s_mb_offsets[i] = offset;
2591 sbi->s_mb_maxs[i] = max;
2592 offset += 1 << (sb->s_blocksize_bits - i);
2593 max = max >> 1;
2594 i++;
2595 } while (i <= sb->s_blocksize_bits + 1);
2596
2597 spin_lock_init(&sbi->s_md_lock);
2598 spin_lock_init(&sbi->s_bal_lock);
2599
2600 sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN;
2601 sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN;
2602 sbi->s_mb_stats = MB_DEFAULT_STATS;
2603 sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD;
2604 sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS;
2605 /*
2606 * The default group preallocation is 512, which for 4k block
2607 * sizes translates to 2 megabytes. However for bigalloc file
2608 * systems, this is probably too big (i.e, if the cluster size
2609 * is 1 megabyte, then group preallocation size becomes half a
2610 * gigabyte!). As a default, we will keep a two megabyte
2611 * group pralloc size for cluster sizes up to 64k, and after
2612 * that, we will force a minimum group preallocation size of
2613 * 32 clusters. This translates to 8 megs when the cluster
2614 * size is 256k, and 32 megs when the cluster size is 1 meg,
2615 * which seems reasonable as a default.
2616 */
2617 sbi->s_mb_group_prealloc = max(MB_DEFAULT_GROUP_PREALLOC >>
2618 sbi->s_cluster_bits, 32);
2619 /*
2620 * If there is a s_stripe > 1, then we set the s_mb_group_prealloc
2621 * to the lowest multiple of s_stripe which is bigger than
2622 * the s_mb_group_prealloc as determined above. We want
2623 * the preallocation size to be an exact multiple of the
2624 * RAID stripe size so that preallocations don't fragment
2625 * the stripes.
2626 */
2627 if (sbi->s_stripe > 1) {
2628 sbi->s_mb_group_prealloc = roundup(
2629 sbi->s_mb_group_prealloc, sbi->s_stripe);
2630 }
2631
2632 sbi->s_locality_groups = alloc_percpu(struct ext4_locality_group);
2633 if (sbi->s_locality_groups == NULL) {
2634 ret = -ENOMEM;
2635 goto out;
2636 }
2637 for_each_possible_cpu(i) {
2638 struct ext4_locality_group *lg;
2639 lg = per_cpu_ptr(sbi->s_locality_groups, i);
2640 mutex_init(&lg->lg_mutex);
2641 for (j = 0; j < PREALLOC_TB_SIZE; j++)
2642 INIT_LIST_HEAD(&lg->lg_prealloc_list[j]);
2643 spin_lock_init(&lg->lg_prealloc_lock);
2644 }
2645
2646 /* init file for buddy data */
2647 ret = ext4_mb_init_backend(sb);
2648 if (ret != 0)
2649 goto out_free_locality_groups;
2650
2651 if (sbi->s_proc)
2652 proc_create_data("mb_groups", S_IRUGO, sbi->s_proc,
2653 &ext4_mb_seq_groups_fops, sb);
2654
2655 return 0;
2656
2657 out_free_locality_groups:
2658 free_percpu(sbi->s_locality_groups);
2659 sbi->s_locality_groups = NULL;
2660 out:
2661 kfree(sbi->s_mb_offsets);
2662 sbi->s_mb_offsets = NULL;
2663 kfree(sbi->s_mb_maxs);
2664 sbi->s_mb_maxs = NULL;
2665 return ret;
2666 }
2667
2668 /* need to called with the ext4 group lock held */
2669 static void ext4_mb_cleanup_pa(struct ext4_group_info *grp)
2670 {
2671 struct ext4_prealloc_space *pa;
2672 struct list_head *cur, *tmp;
2673 int count = 0;
2674
2675 list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) {
2676 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
2677 list_del(&pa->pa_group_list);
2678 count++;
2679 kmem_cache_free(ext4_pspace_cachep, pa);
2680 }
2681 if (count)
2682 mb_debug(1, "mballoc: %u PAs left\n", count);
2683
2684 }
2685
2686 int ext4_mb_release(struct super_block *sb)
2687 {
2688 ext4_group_t ngroups = ext4_get_groups_count(sb);
2689 ext4_group_t i;
2690 int num_meta_group_infos;
2691 struct ext4_group_info *grinfo;
2692 struct ext4_sb_info *sbi = EXT4_SB(sb);
2693 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2694
2695 if (sbi->s_proc)
2696 remove_proc_entry("mb_groups", sbi->s_proc);
2697
2698 if (sbi->s_group_info) {
2699 for (i = 0; i < ngroups; i++) {
2700 grinfo = ext4_get_group_info(sb, i);
2701 #ifdef DOUBLE_CHECK
2702 kfree(grinfo->bb_bitmap);
2703 #endif
2704 ext4_lock_group(sb, i);
2705 ext4_mb_cleanup_pa(grinfo);
2706 ext4_unlock_group(sb, i);
2707 kmem_cache_free(cachep, grinfo);
2708 }
2709 num_meta_group_infos = (ngroups +
2710 EXT4_DESC_PER_BLOCK(sb) - 1) >>
2711 EXT4_DESC_PER_BLOCK_BITS(sb);
2712 for (i = 0; i < num_meta_group_infos; i++)
2713 kfree(sbi->s_group_info[i]);
2714 kvfree(sbi->s_group_info);
2715 }
2716 kfree(sbi->s_mb_offsets);
2717 kfree(sbi->s_mb_maxs);
2718 iput(sbi->s_buddy_cache);
2719 if (sbi->s_mb_stats) {
2720 ext4_msg(sb, KERN_INFO,
2721 "mballoc: %u blocks %u reqs (%u success)",
2722 atomic_read(&sbi->s_bal_allocated),
2723 atomic_read(&sbi->s_bal_reqs),
2724 atomic_read(&sbi->s_bal_success));
2725 ext4_msg(sb, KERN_INFO,
2726 "mballoc: %u extents scanned, %u goal hits, "
2727 "%u 2^N hits, %u breaks, %u lost",
2728 atomic_read(&sbi->s_bal_ex_scanned),
2729 atomic_read(&sbi->s_bal_goals),
2730 atomic_read(&sbi->s_bal_2orders),
2731 atomic_read(&sbi->s_bal_breaks),
2732 atomic_read(&sbi->s_mb_lost_chunks));
2733 ext4_msg(sb, KERN_INFO,
2734 "mballoc: %lu generated and it took %Lu",
2735 sbi->s_mb_buddies_generated,
2736 sbi->s_mb_generation_time);
2737 ext4_msg(sb, KERN_INFO,
2738 "mballoc: %u preallocated, %u discarded",
2739 atomic_read(&sbi->s_mb_preallocated),
2740 atomic_read(&sbi->s_mb_discarded));
2741 }
2742
2743 free_percpu(sbi->s_locality_groups);
2744
2745 return 0;
2746 }
2747
2748 static inline int ext4_issue_discard(struct super_block *sb,
2749 ext4_group_t block_group, ext4_grpblk_t cluster, int count)
2750 {
2751 ext4_fsblk_t discard_block;
2752
2753 discard_block = (EXT4_C2B(EXT4_SB(sb), cluster) +
2754 ext4_group_first_block_no(sb, block_group));
2755 count = EXT4_C2B(EXT4_SB(sb), count);
2756 trace_ext4_discard_blocks(sb,
2757 (unsigned long long) discard_block, count);
2758 return sb_issue_discard(sb, discard_block, count, GFP_NOFS, 0);
2759 }
2760
2761 /*
2762 * This function is called by the jbd2 layer once the commit has finished,
2763 * so we know we can free the blocks that were released with that commit.
2764 */
2765 static void ext4_free_data_callback(struct super_block *sb,
2766 struct ext4_journal_cb_entry *jce,
2767 int rc)
2768 {
2769 struct ext4_free_data *entry = (struct ext4_free_data *)jce;
2770 struct ext4_buddy e4b;
2771 struct ext4_group_info *db;
2772 int err, count = 0, count2 = 0;
2773
2774 mb_debug(1, "gonna free %u blocks in group %u (0x%p):",
2775 entry->efd_count, entry->efd_group, entry);
2776
2777 if (test_opt(sb, DISCARD)) {
2778 err = ext4_issue_discard(sb, entry->efd_group,
2779 entry->efd_start_cluster,
2780 entry->efd_count);
2781 if (err && err != -EOPNOTSUPP)
2782 ext4_msg(sb, KERN_WARNING, "discard request in"
2783 " group:%d block:%d count:%d failed"
2784 " with %d", entry->efd_group,
2785 entry->efd_start_cluster,
2786 entry->efd_count, err);
2787 }
2788
2789 err = ext4_mb_load_buddy(sb, entry->efd_group, &e4b);
2790 /* we expect to find existing buddy because it's pinned */
2791 BUG_ON(err != 0);
2792
2793
2794 db = e4b.bd_info;
2795 /* there are blocks to put in buddy to make them really free */
2796 count += entry->efd_count;
2797 count2++;
2798 ext4_lock_group(sb, entry->efd_group);
2799 /* Take it out of per group rb tree */
2800 rb_erase(&entry->efd_node, &(db->bb_free_root));
2801 mb_free_blocks(NULL, &e4b, entry->efd_start_cluster, entry->efd_count);
2802
2803 /*
2804 * Clear the trimmed flag for the group so that the next
2805 * ext4_trim_fs can trim it.
2806 * If the volume is mounted with -o discard, online discard
2807 * is supported and the free blocks will be trimmed online.
2808 */
2809 if (!test_opt(sb, DISCARD))
2810 EXT4_MB_GRP_CLEAR_TRIMMED(db);
2811
2812 if (!db->bb_free_root.rb_node) {
2813 /* No more items in the per group rb tree
2814 * balance refcounts from ext4_mb_free_metadata()
2815 */
2816 page_cache_release(e4b.bd_buddy_page);
2817 page_cache_release(e4b.bd_bitmap_page);
2818 }
2819 ext4_unlock_group(sb, entry->efd_group);
2820 kmem_cache_free(ext4_free_data_cachep, entry);
2821 ext4_mb_unload_buddy(&e4b);
2822
2823 mb_debug(1, "freed %u blocks in %u structures\n", count, count2);
2824 }
2825
2826 int __init ext4_init_mballoc(void)
2827 {
2828 ext4_pspace_cachep = KMEM_CACHE(ext4_prealloc_space,
2829 SLAB_RECLAIM_ACCOUNT);
2830 if (ext4_pspace_cachep == NULL)
2831 return -ENOMEM;
2832
2833 ext4_ac_cachep = KMEM_CACHE(ext4_allocation_context,
2834 SLAB_RECLAIM_ACCOUNT);
2835 if (ext4_ac_cachep == NULL) {
2836 kmem_cache_destroy(ext4_pspace_cachep);
2837 return -ENOMEM;
2838 }
2839
2840 ext4_free_data_cachep = KMEM_CACHE(ext4_free_data,
2841 SLAB_RECLAIM_ACCOUNT);
2842 if (ext4_free_data_cachep == NULL) {
2843 kmem_cache_destroy(ext4_pspace_cachep);
2844 kmem_cache_destroy(ext4_ac_cachep);
2845 return -ENOMEM;
2846 }
2847 return 0;
2848 }
2849
2850 void ext4_exit_mballoc(void)
2851 {
2852 /*
2853 * Wait for completion of call_rcu()'s on ext4_pspace_cachep
2854 * before destroying the slab cache.
2855 */
2856 rcu_barrier();
2857 kmem_cache_destroy(ext4_pspace_cachep);
2858 kmem_cache_destroy(ext4_ac_cachep);
2859 kmem_cache_destroy(ext4_free_data_cachep);
2860 ext4_groupinfo_destroy_slabs();
2861 }
2862
2863
2864 /*
2865 * Check quota and mark chosen space (ac->ac_b_ex) non-free in bitmaps
2866 * Returns 0 if success or error code
2867 */
2868 static noinline_for_stack int
2869 ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac,
2870 handle_t *handle, unsigned int reserv_clstrs)
2871 {
2872 struct buffer_head *bitmap_bh = NULL;
2873 struct ext4_group_desc *gdp;
2874 struct buffer_head *gdp_bh;
2875 struct ext4_sb_info *sbi;
2876 struct super_block *sb;
2877 ext4_fsblk_t block;
2878 int err, len;
2879
2880 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
2881 BUG_ON(ac->ac_b_ex.fe_len <= 0);
2882
2883 sb = ac->ac_sb;
2884 sbi = EXT4_SB(sb);
2885
2886 err = -EIO;
2887 bitmap_bh = ext4_read_block_bitmap(sb, ac->ac_b_ex.fe_group);
2888 if (!bitmap_bh)
2889 goto out_err;
2890
2891 BUFFER_TRACE(bitmap_bh, "getting write access");
2892 err = ext4_journal_get_write_access(handle, bitmap_bh);
2893 if (err)
2894 goto out_err;
2895
2896 err = -EIO;
2897 gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, &gdp_bh);
2898 if (!gdp)
2899 goto out_err;
2900
2901 ext4_debug("using block group %u(%d)\n", ac->ac_b_ex.fe_group,
2902 ext4_free_group_clusters(sb, gdp));
2903
2904 BUFFER_TRACE(gdp_bh, "get_write_access");
2905 err = ext4_journal_get_write_access(handle, gdp_bh);
2906 if (err)
2907 goto out_err;
2908
2909 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
2910
2911 len = EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
2912 if (!ext4_data_block_valid(sbi, block, len)) {
2913 ext4_error(sb, "Allocating blocks %llu-%llu which overlap "
2914 "fs metadata", block, block+len);
2915 /* File system mounted not to panic on error
2916 * Fix the bitmap and repeat the block allocation
2917 * We leak some of the blocks here.
2918 */
2919 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
2920 ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
2921 ac->ac_b_ex.fe_len);
2922 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
2923 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
2924 if (!err)
2925 err = -EAGAIN;
2926 goto out_err;
2927 }
2928
2929 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
2930 #ifdef AGGRESSIVE_CHECK
2931 {
2932 int i;
2933 for (i = 0; i < ac->ac_b_ex.fe_len; i++) {
2934 BUG_ON(mb_test_bit(ac->ac_b_ex.fe_start + i,
2935 bitmap_bh->b_data));
2936 }
2937 }
2938 #endif
2939 ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
2940 ac->ac_b_ex.fe_len);
2941 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
2942 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
2943 ext4_free_group_clusters_set(sb, gdp,
2944 ext4_free_clusters_after_init(sb,
2945 ac->ac_b_ex.fe_group, gdp));
2946 }
2947 len = ext4_free_group_clusters(sb, gdp) - ac->ac_b_ex.fe_len;
2948 ext4_free_group_clusters_set(sb, gdp, len);
2949 ext4_block_bitmap_csum_set(sb, ac->ac_b_ex.fe_group, gdp, bitmap_bh);
2950 ext4_group_desc_csum_set(sb, ac->ac_b_ex.fe_group, gdp);
2951
2952 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
2953 percpu_counter_sub(&sbi->s_freeclusters_counter, ac->ac_b_ex.fe_len);
2954 /*
2955 * Now reduce the dirty block count also. Should not go negative
2956 */
2957 if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED))
2958 /* release all the reserved blocks if non delalloc */
2959 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
2960 reserv_clstrs);
2961
2962 if (sbi->s_log_groups_per_flex) {
2963 ext4_group_t flex_group = ext4_flex_group(sbi,
2964 ac->ac_b_ex.fe_group);
2965 atomic64_sub(ac->ac_b_ex.fe_len,
2966 &sbi->s_flex_groups[flex_group].free_clusters);
2967 }
2968
2969 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
2970 if (err)
2971 goto out_err;
2972 err = ext4_handle_dirty_metadata(handle, NULL, gdp_bh);
2973
2974 out_err:
2975 brelse(bitmap_bh);
2976 return err;
2977 }
2978
2979 /*
2980 * here we normalize request for locality group
2981 * Group request are normalized to s_mb_group_prealloc, which goes to
2982 * s_strip if we set the same via mount option.
2983 * s_mb_group_prealloc can be configured via
2984 * /sys/fs/ext4/<partition>/mb_group_prealloc
2985 *
2986 * XXX: should we try to preallocate more than the group has now?
2987 */
2988 static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac)
2989 {
2990 struct super_block *sb = ac->ac_sb;
2991 struct ext4_locality_group *lg = ac->ac_lg;
2992
2993 BUG_ON(lg == NULL);
2994 ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc;
2995 mb_debug(1, "#%u: goal %u blocks for locality group\n",
2996 current->pid, ac->ac_g_ex.fe_len);
2997 }
2998
2999 /*
3000 * Normalization means making request better in terms of
3001 * size and alignment
3002 */
3003 static noinline_for_stack void
3004 ext4_mb_normalize_request(struct ext4_allocation_context *ac,
3005 struct ext4_allocation_request *ar)
3006 {
3007 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3008 int bsbits, max;
3009 ext4_lblk_t end;
3010 loff_t size, start_off;
3011 loff_t orig_size __maybe_unused;
3012 ext4_lblk_t start;
3013 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
3014 struct ext4_prealloc_space *pa;
3015
3016 /* do normalize only data requests, metadata requests
3017 do not need preallocation */
3018 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3019 return;
3020
3021 /* sometime caller may want exact blocks */
3022 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
3023 return;
3024
3025 /* caller may indicate that preallocation isn't
3026 * required (it's a tail, for example) */
3027 if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC)
3028 return;
3029
3030 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) {
3031 ext4_mb_normalize_group_request(ac);
3032 return ;
3033 }
3034
3035 bsbits = ac->ac_sb->s_blocksize_bits;
3036
3037 /* first, let's learn actual file size
3038 * given current request is allocated */
3039 size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len);
3040 size = size << bsbits;
3041 if (size < i_size_read(ac->ac_inode))
3042 size = i_size_read(ac->ac_inode);
3043 orig_size = size;
3044
3045 /* max size of free chunks */
3046 max = 2 << bsbits;
3047
3048 #define NRL_CHECK_SIZE(req, size, max, chunk_size) \
3049 (req <= (size) || max <= (chunk_size))
3050
3051 /* first, try to predict filesize */
3052 /* XXX: should this table be tunable? */
3053 start_off = 0;
3054 if (size <= 16 * 1024) {
3055 size = 16 * 1024;
3056 } else if (size <= 32 * 1024) {
3057 size = 32 * 1024;
3058 } else if (size <= 64 * 1024) {
3059 size = 64 * 1024;
3060 } else if (size <= 128 * 1024) {
3061 size = 128 * 1024;
3062 } else if (size <= 256 * 1024) {
3063 size = 256 * 1024;
3064 } else if (size <= 512 * 1024) {
3065 size = 512 * 1024;
3066 } else if (size <= 1024 * 1024) {
3067 size = 1024 * 1024;
3068 } else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) {
3069 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3070 (21 - bsbits)) << 21;
3071 size = 2 * 1024 * 1024;
3072 } else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) {
3073 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3074 (22 - bsbits)) << 22;
3075 size = 4 * 1024 * 1024;
3076 } else if (NRL_CHECK_SIZE(ac->ac_o_ex.fe_len,
3077 (8<<20)>>bsbits, max, 8 * 1024)) {
3078 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3079 (23 - bsbits)) << 23;
3080 size = 8 * 1024 * 1024;
3081 } else {
3082 start_off = (loff_t) ac->ac_o_ex.fe_logical << bsbits;
3083 size = (loff_t) EXT4_C2B(EXT4_SB(ac->ac_sb),
3084 ac->ac_o_ex.fe_len) << bsbits;
3085 }
3086 size = size >> bsbits;
3087 start = start_off >> bsbits;
3088
3089 /* don't cover already allocated blocks in selected range */
3090 if (ar->pleft && start <= ar->lleft) {
3091 size -= ar->lleft + 1 - start;
3092 start = ar->lleft + 1;
3093 }
3094 if (ar->pright && start + size - 1 >= ar->lright)
3095 size -= start + size - ar->lright;
3096
3097 end = start + size;
3098
3099 /* check we don't cross already preallocated blocks */
3100 rcu_read_lock();
3101 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3102 ext4_lblk_t pa_end;
3103
3104 if (pa->pa_deleted)
3105 continue;
3106 spin_lock(&pa->pa_lock);
3107 if (pa->pa_deleted) {
3108 spin_unlock(&pa->pa_lock);
3109 continue;
3110 }
3111
3112 pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb),
3113 pa->pa_len);
3114
3115 /* PA must not overlap original request */
3116 BUG_ON(!(ac->ac_o_ex.fe_logical >= pa_end ||
3117 ac->ac_o_ex.fe_logical < pa->pa_lstart));
3118
3119 /* skip PAs this normalized request doesn't overlap with */
3120 if (pa->pa_lstart >= end || pa_end <= start) {
3121 spin_unlock(&pa->pa_lock);
3122 continue;
3123 }
3124 BUG_ON(pa->pa_lstart <= start && pa_end >= end);
3125
3126 /* adjust start or end to be adjacent to this pa */
3127 if (pa_end <= ac->ac_o_ex.fe_logical) {
3128 BUG_ON(pa_end < start);
3129 start = pa_end;
3130 } else if (pa->pa_lstart > ac->ac_o_ex.fe_logical) {
3131 BUG_ON(pa->pa_lstart > end);
3132 end = pa->pa_lstart;
3133 }
3134 spin_unlock(&pa->pa_lock);
3135 }
3136 rcu_read_unlock();
3137 size = end - start;
3138
3139 /* XXX: extra loop to check we really don't overlap preallocations */
3140 rcu_read_lock();
3141 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3142 ext4_lblk_t pa_end;
3143
3144 spin_lock(&pa->pa_lock);
3145 if (pa->pa_deleted == 0) {
3146 pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb),
3147 pa->pa_len);
3148 BUG_ON(!(start >= pa_end || end <= pa->pa_lstart));
3149 }
3150 spin_unlock(&pa->pa_lock);
3151 }
3152 rcu_read_unlock();
3153
3154 if (start + size <= ac->ac_o_ex.fe_logical &&
3155 start > ac->ac_o_ex.fe_logical) {
3156 ext4_msg(ac->ac_sb, KERN_ERR,
3157 "start %lu, size %lu, fe_logical %lu",
3158 (unsigned long) start, (unsigned long) size,
3159 (unsigned long) ac->ac_o_ex.fe_logical);
3160 BUG();
3161 }
3162 BUG_ON(size <= 0 || size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb));
3163
3164 /* now prepare goal request */
3165
3166 /* XXX: is it better to align blocks WRT to logical
3167 * placement or satisfy big request as is */
3168 ac->ac_g_ex.fe_logical = start;
3169 ac->ac_g_ex.fe_len = EXT4_NUM_B2C(sbi, size);
3170
3171 /* define goal start in order to merge */
3172 if (ar->pright && (ar->lright == (start + size))) {
3173 /* merge to the right */
3174 ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size,
3175 &ac->ac_f_ex.fe_group,
3176 &ac->ac_f_ex.fe_start);
3177 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3178 }
3179 if (ar->pleft && (ar->lleft + 1 == start)) {
3180 /* merge to the left */
3181 ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1,
3182 &ac->ac_f_ex.fe_group,
3183 &ac->ac_f_ex.fe_start);
3184 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3185 }
3186
3187 mb_debug(1, "goal: %u(was %u) blocks at %u\n", (unsigned) size,
3188 (unsigned) orig_size, (unsigned) start);
3189 }
3190
3191 static void ext4_mb_collect_stats(struct ext4_allocation_context *ac)
3192 {
3193 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3194
3195 if (sbi->s_mb_stats && ac->ac_g_ex.fe_len > 1) {
3196 atomic_inc(&sbi->s_bal_reqs);
3197 atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated);
3198 if (ac->ac_b_ex.fe_len >= ac->ac_o_ex.fe_len)
3199 atomic_inc(&sbi->s_bal_success);
3200 atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned);
3201 if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start &&
3202 ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group)
3203 atomic_inc(&sbi->s_bal_goals);
3204 if (ac->ac_found > sbi->s_mb_max_to_scan)
3205 atomic_inc(&sbi->s_bal_breaks);
3206 }
3207
3208 if (ac->ac_op == EXT4_MB_HISTORY_ALLOC)
3209 trace_ext4_mballoc_alloc(ac);
3210 else
3211 trace_ext4_mballoc_prealloc(ac);
3212 }
3213
3214 /*
3215 * Called on failure; free up any blocks from the inode PA for this
3216 * context. We don't need this for MB_GROUP_PA because we only change
3217 * pa_free in ext4_mb_release_context(), but on failure, we've already
3218 * zeroed out ac->ac_b_ex.fe_len, so group_pa->pa_free is not changed.
3219 */
3220 static void ext4_discard_allocated_blocks(struct ext4_allocation_context *ac)
3221 {
3222 struct ext4_prealloc_space *pa = ac->ac_pa;
3223 struct ext4_buddy e4b;
3224 int err;
3225
3226 if (pa == NULL) {
3227 if (ac->ac_f_ex.fe_len == 0)
3228 return;
3229 err = ext4_mb_load_buddy(ac->ac_sb, ac->ac_f_ex.fe_group, &e4b);
3230 if (err) {
3231 /*
3232 * This should never happen since we pin the
3233 * pages in the ext4_allocation_context so
3234 * ext4_mb_load_buddy() should never fail.
3235 */
3236 WARN(1, "mb_load_buddy failed (%d)", err);
3237 return;
3238 }
3239 ext4_lock_group(ac->ac_sb, ac->ac_f_ex.fe_group);
3240 mb_free_blocks(ac->ac_inode, &e4b, ac->ac_f_ex.fe_start,
3241 ac->ac_f_ex.fe_len);
3242 ext4_unlock_group(ac->ac_sb, ac->ac_f_ex.fe_group);
3243 ext4_mb_unload_buddy(&e4b);
3244 return;
3245 }
3246 if (pa->pa_type == MB_INODE_PA)
3247 pa->pa_free += ac->ac_b_ex.fe_len;
3248 }
3249
3250 /*
3251 * use blocks preallocated to inode
3252 */
3253 static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac,
3254 struct ext4_prealloc_space *pa)
3255 {
3256 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3257 ext4_fsblk_t start;
3258 ext4_fsblk_t end;
3259 int len;
3260
3261 /* found preallocated blocks, use them */
3262 start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart);
3263 end = min(pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len),
3264 start + EXT4_C2B(sbi, ac->ac_o_ex.fe_len));
3265 len = EXT4_NUM_B2C(sbi, end - start);
3266 ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group,
3267 &ac->ac_b_ex.fe_start);
3268 ac->ac_b_ex.fe_len = len;
3269 ac->ac_status = AC_STATUS_FOUND;
3270 ac->ac_pa = pa;
3271
3272 BUG_ON(start < pa->pa_pstart);
3273 BUG_ON(end > pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len));
3274 BUG_ON(pa->pa_free < len);
3275 pa->pa_free -= len;
3276
3277 mb_debug(1, "use %llu/%u from inode pa %p\n", start, len, pa);
3278 }
3279
3280 /*
3281 * use blocks preallocated to locality group
3282 */
3283 static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac,
3284 struct ext4_prealloc_space *pa)
3285 {
3286 unsigned int len = ac->ac_o_ex.fe_len;
3287
3288 ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart,
3289 &ac->ac_b_ex.fe_group,
3290 &ac->ac_b_ex.fe_start);
3291 ac->ac_b_ex.fe_len = len;
3292 ac->ac_status = AC_STATUS_FOUND;
3293 ac->ac_pa = pa;
3294
3295 /* we don't correct pa_pstart or pa_plen here to avoid
3296 * possible race when the group is being loaded concurrently
3297 * instead we correct pa later, after blocks are marked
3298 * in on-disk bitmap -- see ext4_mb_release_context()
3299 * Other CPUs are prevented from allocating from this pa by lg_mutex
3300 */
3301 mb_debug(1, "use %u/%u from group pa %p\n", pa->pa_lstart-len, len, pa);
3302 }
3303
3304 /*
3305 * Return the prealloc space that have minimal distance
3306 * from the goal block. @cpa is the prealloc
3307 * space that is having currently known minimal distance
3308 * from the goal block.
3309 */
3310 static struct ext4_prealloc_space *
3311 ext4_mb_check_group_pa(ext4_fsblk_t goal_block,
3312 struct ext4_prealloc_space *pa,
3313 struct ext4_prealloc_space *cpa)
3314 {
3315 ext4_fsblk_t cur_distance, new_distance;
3316
3317 if (cpa == NULL) {
3318 atomic_inc(&pa->pa_count);
3319 return pa;
3320 }
3321 cur_distance = abs(goal_block - cpa->pa_pstart);
3322 new_distance = abs(goal_block - pa->pa_pstart);
3323
3324 if (cur_distance <= new_distance)
3325 return cpa;
3326
3327 /* drop the previous reference */
3328 atomic_dec(&cpa->pa_count);
3329 atomic_inc(&pa->pa_count);
3330 return pa;
3331 }
3332
3333 /*
3334 * search goal blocks in preallocated space
3335 */
3336 static noinline_for_stack int
3337 ext4_mb_use_preallocated(struct ext4_allocation_context *ac)
3338 {
3339 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3340 int order, i;
3341 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
3342 struct ext4_locality_group *lg;
3343 struct ext4_prealloc_space *pa, *cpa = NULL;
3344 ext4_fsblk_t goal_block;
3345
3346 /* only data can be preallocated */
3347 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3348 return 0;
3349
3350 /* first, try per-file preallocation */
3351 rcu_read_lock();
3352 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3353
3354 /* all fields in this condition don't change,
3355 * so we can skip locking for them */
3356 if (ac->ac_o_ex.fe_logical < pa->pa_lstart ||
3357 ac->ac_o_ex.fe_logical >= (pa->pa_lstart +
3358 EXT4_C2B(sbi, pa->pa_len)))
3359 continue;
3360
3361 /* non-extent files can't have physical blocks past 2^32 */
3362 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)) &&
3363 (pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len) >
3364 EXT4_MAX_BLOCK_FILE_PHYS))
3365 continue;
3366
3367 /* found preallocated blocks, use them */
3368 spin_lock(&pa->pa_lock);
3369 if (pa->pa_deleted == 0 && pa->pa_free) {
3370 atomic_inc(&pa->pa_count);
3371 ext4_mb_use_inode_pa(ac, pa);
3372 spin_unlock(&pa->pa_lock);
3373 ac->ac_criteria = 10;
3374 rcu_read_unlock();
3375 return 1;
3376 }
3377 spin_unlock(&pa->pa_lock);
3378 }
3379 rcu_read_unlock();
3380
3381 /* can we use group allocation? */
3382 if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC))
3383 return 0;
3384
3385 /* inode may have no locality group for some reason */
3386 lg = ac->ac_lg;
3387 if (lg == NULL)
3388 return 0;
3389 order = fls(ac->ac_o_ex.fe_len) - 1;
3390 if (order > PREALLOC_TB_SIZE - 1)
3391 /* The max size of hash table is PREALLOC_TB_SIZE */
3392 order = PREALLOC_TB_SIZE - 1;
3393
3394 goal_block = ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex);
3395 /*
3396 * search for the prealloc space that is having
3397 * minimal distance from the goal block.
3398 */
3399 for (i = order; i < PREALLOC_TB_SIZE; i++) {
3400 rcu_read_lock();
3401 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[i],
3402 pa_inode_list) {
3403 spin_lock(&pa->pa_lock);
3404 if (pa->pa_deleted == 0 &&
3405 pa->pa_free >= ac->ac_o_ex.fe_len) {
3406
3407 cpa = ext4_mb_check_group_pa(goal_block,
3408 pa, cpa);
3409 }
3410 spin_unlock(&pa->pa_lock);
3411 }
3412 rcu_read_unlock();
3413 }
3414 if (cpa) {
3415 ext4_mb_use_group_pa(ac, cpa);
3416 ac->ac_criteria = 20;
3417 return 1;
3418 }
3419 return 0;
3420 }
3421
3422 /*
3423 * the function goes through all block freed in the group
3424 * but not yet committed and marks them used in in-core bitmap.
3425 * buddy must be generated from this bitmap
3426 * Need to be called with the ext4 group lock held
3427 */
3428 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
3429 ext4_group_t group)
3430 {
3431 struct rb_node *n;
3432 struct ext4_group_info *grp;
3433 struct ext4_free_data *entry;
3434
3435 grp = ext4_get_group_info(sb, group);
3436 n = rb_first(&(grp->bb_free_root));
3437
3438 while (n) {
3439 entry = rb_entry(n, struct ext4_free_data, efd_node);
3440 ext4_set_bits(bitmap, entry->efd_start_cluster, entry->efd_count);
3441 n = rb_next(n);
3442 }
3443 return;
3444 }
3445
3446 /*
3447 * the function goes through all preallocation in this group and marks them
3448 * used in in-core bitmap. buddy must be generated from this bitmap
3449 * Need to be called with ext4 group lock held
3450 */
3451 static noinline_for_stack
3452 void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
3453 ext4_group_t group)
3454 {
3455 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
3456 struct ext4_prealloc_space *pa;
3457 struct list_head *cur;
3458 ext4_group_t groupnr;
3459 ext4_grpblk_t start;
3460 int preallocated = 0;
3461 int len;
3462
3463 /* all form of preallocation discards first load group,
3464 * so the only competing code is preallocation use.
3465 * we don't need any locking here
3466 * notice we do NOT ignore preallocations with pa_deleted
3467 * otherwise we could leave used blocks available for
3468 * allocation in buddy when concurrent ext4_mb_put_pa()
3469 * is dropping preallocation
3470 */
3471 list_for_each(cur, &grp->bb_prealloc_list) {
3472 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
3473 spin_lock(&pa->pa_lock);
3474 ext4_get_group_no_and_offset(sb, pa->pa_pstart,
3475 &groupnr, &start);
3476 len = pa->pa_len;
3477 spin_unlock(&pa->pa_lock);
3478 if (unlikely(len == 0))
3479 continue;
3480 BUG_ON(groupnr != group);
3481 ext4_set_bits(bitmap, start, len);
3482 preallocated += len;
3483 }
3484 mb_debug(1, "prellocated %u for group %u\n", preallocated, group);
3485 }
3486
3487 static void ext4_mb_pa_callback(struct rcu_head *head)
3488 {
3489 struct ext4_prealloc_space *pa;
3490 pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu);
3491
3492 BUG_ON(atomic_read(&pa->pa_count));
3493 BUG_ON(pa->pa_deleted == 0);
3494 kmem_cache_free(ext4_pspace_cachep, pa);
3495 }
3496
3497 /*
3498 * drops a reference to preallocated space descriptor
3499 * if this was the last reference and the space is consumed
3500 */
3501 static void ext4_mb_put_pa(struct ext4_allocation_context *ac,
3502 struct super_block *sb, struct ext4_prealloc_space *pa)
3503 {
3504 ext4_group_t grp;
3505 ext4_fsblk_t grp_blk;
3506
3507 /* in this short window concurrent discard can set pa_deleted */
3508 spin_lock(&pa->pa_lock);
3509 if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0) {
3510 spin_unlock(&pa->pa_lock);
3511 return;
3512 }
3513
3514 if (pa->pa_deleted == 1) {
3515 spin_unlock(&pa->pa_lock);
3516 return;
3517 }
3518
3519 pa->pa_deleted = 1;
3520 spin_unlock(&pa->pa_lock);
3521
3522 grp_blk = pa->pa_pstart;
3523 /*
3524 * If doing group-based preallocation, pa_pstart may be in the
3525 * next group when pa is used up
3526 */
3527 if (pa->pa_type == MB_GROUP_PA)
3528 grp_blk--;
3529
3530 grp = ext4_get_group_number(sb, grp_blk);
3531
3532 /*
3533 * possible race:
3534 *
3535 * P1 (buddy init) P2 (regular allocation)
3536 * find block B in PA
3537 * copy on-disk bitmap to buddy
3538 * mark B in on-disk bitmap
3539 * drop PA from group
3540 * mark all PAs in buddy
3541 *
3542 * thus, P1 initializes buddy with B available. to prevent this
3543 * we make "copy" and "mark all PAs" atomic and serialize "drop PA"
3544 * against that pair
3545 */
3546 ext4_lock_group(sb, grp);
3547 list_del(&pa->pa_group_list);
3548 ext4_unlock_group(sb, grp);
3549
3550 spin_lock(pa->pa_obj_lock);
3551 list_del_rcu(&pa->pa_inode_list);
3552 spin_unlock(pa->pa_obj_lock);
3553
3554 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3555 }
3556
3557 /*
3558 * creates new preallocated space for given inode
3559 */
3560 static noinline_for_stack int
3561 ext4_mb_new_inode_pa(struct ext4_allocation_context *ac)
3562 {
3563 struct super_block *sb = ac->ac_sb;
3564 struct ext4_sb_info *sbi = EXT4_SB(sb);
3565 struct ext4_prealloc_space *pa;
3566 struct ext4_group_info *grp;
3567 struct ext4_inode_info *ei;
3568
3569 /* preallocate only when found space is larger then requested */
3570 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
3571 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3572 BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
3573
3574 pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
3575 if (pa == NULL)
3576 return -ENOMEM;
3577
3578 if (ac->ac_b_ex.fe_len < ac->ac_g_ex.fe_len) {
3579 int winl;
3580 int wins;
3581 int win;
3582 int offs;
3583
3584 /* we can't allocate as much as normalizer wants.
3585 * so, found space must get proper lstart
3586 * to cover original request */
3587 BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical);
3588 BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len);
3589
3590 /* we're limited by original request in that
3591 * logical block must be covered any way
3592 * winl is window we can move our chunk within */
3593 winl = ac->ac_o_ex.fe_logical - ac->ac_g_ex.fe_logical;
3594
3595 /* also, we should cover whole original request */
3596 wins = EXT4_C2B(sbi, ac->ac_b_ex.fe_len - ac->ac_o_ex.fe_len);
3597
3598 /* the smallest one defines real window */
3599 win = min(winl, wins);
3600
3601 offs = ac->ac_o_ex.fe_logical %
3602 EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
3603 if (offs && offs < win)
3604 win = offs;
3605
3606 ac->ac_b_ex.fe_logical = ac->ac_o_ex.fe_logical -
3607 EXT4_NUM_B2C(sbi, win);
3608 BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical);
3609 BUG_ON(ac->ac_o_ex.fe_len > ac->ac_b_ex.fe_len);
3610 }
3611
3612 /* preallocation can change ac_b_ex, thus we store actually
3613 * allocated blocks for history */
3614 ac->ac_f_ex = ac->ac_b_ex;
3615
3616 pa->pa_lstart = ac->ac_b_ex.fe_logical;
3617 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3618 pa->pa_len = ac->ac_b_ex.fe_len;
3619 pa->pa_free = pa->pa_len;
3620 atomic_set(&pa->pa_count, 1);
3621 spin_lock_init(&pa->pa_lock);
3622 INIT_LIST_HEAD(&pa->pa_inode_list);
3623 INIT_LIST_HEAD(&pa->pa_group_list);
3624 pa->pa_deleted = 0;
3625 pa->pa_type = MB_INODE_PA;
3626
3627 mb_debug(1, "new inode pa %p: %llu/%u for %u\n", pa,
3628 pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3629 trace_ext4_mb_new_inode_pa(ac, pa);
3630
3631 ext4_mb_use_inode_pa(ac, pa);
3632 atomic_add(pa->pa_free, &sbi->s_mb_preallocated);
3633
3634 ei = EXT4_I(ac->ac_inode);
3635 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
3636
3637 pa->pa_obj_lock = &ei->i_prealloc_lock;
3638 pa->pa_inode = ac->ac_inode;
3639
3640 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3641 list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
3642 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3643
3644 spin_lock(pa->pa_obj_lock);
3645 list_add_rcu(&pa->pa_inode_list, &ei->i_prealloc_list);
3646 spin_unlock(pa->pa_obj_lock);
3647
3648 return 0;
3649 }
3650
3651 /*
3652 * creates new preallocated space for locality group inodes belongs to
3653 */
3654 static noinline_for_stack int
3655 ext4_mb_new_group_pa(struct ext4_allocation_context *ac)
3656 {
3657 struct super_block *sb = ac->ac_sb;
3658 struct ext4_locality_group *lg;
3659 struct ext4_prealloc_space *pa;
3660 struct ext4_group_info *grp;
3661
3662 /* preallocate only when found space is larger then requested */
3663 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
3664 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3665 BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
3666
3667 BUG_ON(ext4_pspace_cachep == NULL);
3668 pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
3669 if (pa == NULL)
3670 return -ENOMEM;
3671
3672 /* preallocation can change ac_b_ex, thus we store actually
3673 * allocated blocks for history */
3674 ac->ac_f_ex = ac->ac_b_ex;
3675
3676 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3677 pa->pa_lstart = pa->pa_pstart;
3678 pa->pa_len = ac->ac_b_ex.fe_len;
3679 pa->pa_free = pa->pa_len;
3680 atomic_set(&pa->pa_count, 1);
3681 spin_lock_init(&pa->pa_lock);
3682 INIT_LIST_HEAD(&pa->pa_inode_list);
3683 INIT_LIST_HEAD(&pa->pa_group_list);
3684 pa->pa_deleted = 0;
3685 pa->pa_type = MB_GROUP_PA;
3686
3687 mb_debug(1, "new group pa %p: %llu/%u for %u\n", pa,
3688 pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3689 trace_ext4_mb_new_group_pa(ac, pa);
3690
3691 ext4_mb_use_group_pa(ac, pa);
3692 atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated);
3693
3694 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
3695 lg = ac->ac_lg;
3696 BUG_ON(lg == NULL);
3697
3698 pa->pa_obj_lock = &lg->lg_prealloc_lock;
3699 pa->pa_inode = NULL;
3700
3701 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3702 list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
3703 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3704
3705 /*
3706 * We will later add the new pa to the right bucket
3707 * after updating the pa_free in ext4_mb_release_context
3708 */
3709 return 0;
3710 }
3711
3712 static int ext4_mb_new_preallocation(struct ext4_allocation_context *ac)
3713 {
3714 int err;
3715
3716 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
3717 err = ext4_mb_new_group_pa(ac);
3718 else
3719 err = ext4_mb_new_inode_pa(ac);
3720 return err;
3721 }
3722
3723 /*
3724 * finds all unused blocks in on-disk bitmap, frees them in
3725 * in-core bitmap and buddy.
3726 * @pa must be unlinked from inode and group lists, so that
3727 * nobody else can find/use it.
3728 * the caller MUST hold group/inode locks.
3729 * TODO: optimize the case when there are no in-core structures yet
3730 */
3731 static noinline_for_stack int
3732 ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh,
3733 struct ext4_prealloc_space *pa)
3734 {
3735 struct super_block *sb = e4b->bd_sb;
3736 struct ext4_sb_info *sbi = EXT4_SB(sb);
3737 unsigned int end;
3738 unsigned int next;
3739 ext4_group_t group;
3740 ext4_grpblk_t bit;
3741 unsigned long long grp_blk_start;
3742 int err = 0;
3743 int free = 0;
3744
3745 BUG_ON(pa->pa_deleted == 0);
3746 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3747 grp_blk_start = pa->pa_pstart - EXT4_C2B(sbi, bit);
3748 BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
3749 end = bit + pa->pa_len;
3750
3751 while (bit < end) {
3752 bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit);
3753 if (bit >= end)
3754 break;
3755 next = mb_find_next_bit(bitmap_bh->b_data, end, bit);
3756 mb_debug(1, " free preallocated %u/%u in group %u\n",
3757 (unsigned) ext4_group_first_block_no(sb, group) + bit,
3758 (unsigned) next - bit, (unsigned) group);
3759 free += next - bit;
3760
3761 trace_ext4_mballoc_discard(sb, NULL, group, bit, next - bit);
3762 trace_ext4_mb_release_inode_pa(pa, (grp_blk_start +
3763 EXT4_C2B(sbi, bit)),
3764 next - bit);
3765 mb_free_blocks(pa->pa_inode, e4b, bit, next - bit);
3766 bit = next + 1;
3767 }
3768 if (free != pa->pa_free) {
3769 ext4_msg(e4b->bd_sb, KERN_CRIT,
3770 "pa %p: logic %lu, phys. %lu, len %lu",
3771 pa, (unsigned long) pa->pa_lstart,
3772 (unsigned long) pa->pa_pstart,
3773 (unsigned long) pa->pa_len);
3774 ext4_grp_locked_error(sb, group, 0, 0, "free %u, pa_free %u",
3775 free, pa->pa_free);
3776 /*
3777 * pa is already deleted so we use the value obtained
3778 * from the bitmap and continue.
3779 */
3780 }
3781 atomic_add(free, &sbi->s_mb_discarded);
3782
3783 return err;
3784 }
3785
3786 static noinline_for_stack int
3787 ext4_mb_release_group_pa(struct ext4_buddy *e4b,
3788 struct ext4_prealloc_space *pa)
3789 {
3790 struct super_block *sb = e4b->bd_sb;
3791 ext4_group_t group;
3792 ext4_grpblk_t bit;
3793
3794 trace_ext4_mb_release_group_pa(sb, pa);
3795 BUG_ON(pa->pa_deleted == 0);
3796 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3797 BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
3798 mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len);
3799 atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded);
3800 trace_ext4_mballoc_discard(sb, NULL, group, bit, pa->pa_len);
3801
3802 return 0;
3803 }
3804
3805 /*
3806 * releases all preallocations in given group
3807 *
3808 * first, we need to decide discard policy:
3809 * - when do we discard
3810 * 1) ENOSPC
3811 * - how many do we discard
3812 * 1) how many requested
3813 */
3814 static noinline_for_stack int
3815 ext4_mb_discard_group_preallocations(struct super_block *sb,
3816 ext4_group_t group, int needed)
3817 {
3818 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
3819 struct buffer_head *bitmap_bh = NULL;
3820 struct ext4_prealloc_space *pa, *tmp;
3821 struct list_head list;
3822 struct ext4_buddy e4b;
3823 int err;
3824 int busy = 0;
3825 int free = 0;
3826
3827 mb_debug(1, "discard preallocation for group %u\n", group);
3828
3829 if (list_empty(&grp->bb_prealloc_list))
3830 return 0;
3831
3832 bitmap_bh = ext4_read_block_bitmap(sb, group);
3833 if (bitmap_bh == NULL) {
3834 ext4_error(sb, "Error reading block bitmap for %u", group);
3835 return 0;
3836 }
3837
3838 err = ext4_mb_load_buddy(sb, group, &e4b);
3839 if (err) {
3840 ext4_error(sb, "Error loading buddy information for %u", group);
3841 put_bh(bitmap_bh);
3842 return 0;
3843 }
3844
3845 if (needed == 0)
3846 needed = EXT4_CLUSTERS_PER_GROUP(sb) + 1;
3847
3848 INIT_LIST_HEAD(&list);
3849 repeat:
3850 ext4_lock_group(sb, group);
3851 list_for_each_entry_safe(pa, tmp,
3852 &grp->bb_prealloc_list, pa_group_list) {
3853 spin_lock(&pa->pa_lock);
3854 if (atomic_read(&pa->pa_count)) {
3855 spin_unlock(&pa->pa_lock);
3856 busy = 1;
3857 continue;
3858 }
3859 if (pa->pa_deleted) {
3860 spin_unlock(&pa->pa_lock);
3861 continue;
3862 }
3863
3864 /* seems this one can be freed ... */
3865 pa->pa_deleted = 1;
3866
3867 /* we can trust pa_free ... */
3868 free += pa->pa_free;
3869
3870 spin_unlock(&pa->pa_lock);
3871
3872 list_del(&pa->pa_group_list);
3873 list_add(&pa->u.pa_tmp_list, &list);
3874 }
3875
3876 /* if we still need more blocks and some PAs were used, try again */
3877 if (free < needed && busy) {
3878 busy = 0;
3879 ext4_unlock_group(sb, group);
3880 cond_resched();
3881 goto repeat;
3882 }
3883
3884 /* found anything to free? */
3885 if (list_empty(&list)) {
3886 BUG_ON(free != 0);
3887 goto out;
3888 }
3889
3890 /* now free all selected PAs */
3891 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
3892
3893 /* remove from object (inode or locality group) */
3894 spin_lock(pa->pa_obj_lock);
3895 list_del_rcu(&pa->pa_inode_list);
3896 spin_unlock(pa->pa_obj_lock);
3897
3898 if (pa->pa_type == MB_GROUP_PA)
3899 ext4_mb_release_group_pa(&e4b, pa);
3900 else
3901 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
3902
3903 list_del(&pa->u.pa_tmp_list);
3904 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3905 }
3906
3907 out:
3908 ext4_unlock_group(sb, group);
3909 ext4_mb_unload_buddy(&e4b);
3910 put_bh(bitmap_bh);
3911 return free;
3912 }
3913
3914 /*
3915 * releases all non-used preallocated blocks for given inode
3916 *
3917 * It's important to discard preallocations under i_data_sem
3918 * We don't want another block to be served from the prealloc
3919 * space when we are discarding the inode prealloc space.
3920 *
3921 * FIXME!! Make sure it is valid at all the call sites
3922 */
3923 void ext4_discard_preallocations(struct inode *inode)
3924 {
3925 struct ext4_inode_info *ei = EXT4_I(inode);
3926 struct super_block *sb = inode->i_sb;
3927 struct buffer_head *bitmap_bh = NULL;
3928 struct ext4_prealloc_space *pa, *tmp;
3929 ext4_group_t group = 0;
3930 struct list_head list;
3931 struct ext4_buddy e4b;
3932 int err;
3933
3934 if (!S_ISREG(inode->i_mode)) {
3935 /*BUG_ON(!list_empty(&ei->i_prealloc_list));*/
3936 return;
3937 }
3938
3939 mb_debug(1, "discard preallocation for inode %lu\n", inode->i_ino);
3940 trace_ext4_discard_preallocations(inode);
3941
3942 INIT_LIST_HEAD(&list);
3943
3944 repeat:
3945 /* first, collect all pa's in the inode */
3946 spin_lock(&ei->i_prealloc_lock);
3947 while (!list_empty(&ei->i_prealloc_list)) {
3948 pa = list_entry(ei->i_prealloc_list.next,
3949 struct ext4_prealloc_space, pa_inode_list);
3950 BUG_ON(pa->pa_obj_lock != &ei->i_prealloc_lock);
3951 spin_lock(&pa->pa_lock);
3952 if (atomic_read(&pa->pa_count)) {
3953 /* this shouldn't happen often - nobody should
3954 * use preallocation while we're discarding it */
3955 spin_unlock(&pa->pa_lock);
3956 spin_unlock(&ei->i_prealloc_lock);
3957 ext4_msg(sb, KERN_ERR,
3958 "uh-oh! used pa while discarding");
3959 WARN_ON(1);
3960 schedule_timeout_uninterruptible(HZ);
3961 goto repeat;
3962
3963 }
3964 if (pa->pa_deleted == 0) {
3965 pa->pa_deleted = 1;
3966 spin_unlock(&pa->pa_lock);
3967 list_del_rcu(&pa->pa_inode_list);
3968 list_add(&pa->u.pa_tmp_list, &list);
3969 continue;
3970 }
3971
3972 /* someone is deleting pa right now */
3973 spin_unlock(&pa->pa_lock);
3974 spin_unlock(&ei->i_prealloc_lock);
3975
3976 /* we have to wait here because pa_deleted
3977 * doesn't mean pa is already unlinked from
3978 * the list. as we might be called from
3979 * ->clear_inode() the inode will get freed
3980 * and concurrent thread which is unlinking
3981 * pa from inode's list may access already
3982 * freed memory, bad-bad-bad */
3983
3984 /* XXX: if this happens too often, we can
3985 * add a flag to force wait only in case
3986 * of ->clear_inode(), but not in case of
3987 * regular truncate */
3988 schedule_timeout_uninterruptible(HZ);
3989 goto repeat;
3990 }
3991 spin_unlock(&ei->i_prealloc_lock);
3992
3993 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
3994 BUG_ON(pa->pa_type != MB_INODE_PA);
3995 group = ext4_get_group_number(sb, pa->pa_pstart);
3996
3997 err = ext4_mb_load_buddy(sb, group, &e4b);
3998 if (err) {
3999 ext4_error(sb, "Error loading buddy information for %u",
4000 group);
4001 continue;
4002 }
4003
4004 bitmap_bh = ext4_read_block_bitmap(sb, group);
4005 if (bitmap_bh == NULL) {
4006 ext4_error(sb, "Error reading block bitmap for %u",
4007 group);
4008 ext4_mb_unload_buddy(&e4b);
4009 continue;
4010 }
4011
4012 ext4_lock_group(sb, group);
4013 list_del(&pa->pa_group_list);
4014 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
4015 ext4_unlock_group(sb, group);
4016
4017 ext4_mb_unload_buddy(&e4b);
4018 put_bh(bitmap_bh);
4019
4020 list_del(&pa->u.pa_tmp_list);
4021 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4022 }
4023 }
4024
4025 #ifdef CONFIG_EXT4_DEBUG
4026 static void ext4_mb_show_ac(struct ext4_allocation_context *ac)
4027 {
4028 struct super_block *sb = ac->ac_sb;
4029 ext4_group_t ngroups, i;
4030
4031 if (!ext4_mballoc_debug ||
4032 (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED))
4033 return;
4034
4035 ext4_msg(ac->ac_sb, KERN_ERR, "Can't allocate:"
4036 " Allocation context details:");
4037 ext4_msg(ac->ac_sb, KERN_ERR, "status %d flags %d",
4038 ac->ac_status, ac->ac_flags);
4039 ext4_msg(ac->ac_sb, KERN_ERR, "orig %lu/%lu/%lu@%lu, "
4040 "goal %lu/%lu/%lu@%lu, "
4041 "best %lu/%lu/%lu@%lu cr %d",
4042 (unsigned long)ac->ac_o_ex.fe_group,
4043 (unsigned long)ac->ac_o_ex.fe_start,
4044 (unsigned long)ac->ac_o_ex.fe_len,
4045 (unsigned long)ac->ac_o_ex.fe_logical,
4046 (unsigned long)ac->ac_g_ex.fe_group,
4047 (unsigned long)ac->ac_g_ex.fe_start,
4048 (unsigned long)ac->ac_g_ex.fe_len,
4049 (unsigned long)ac->ac_g_ex.fe_logical,
4050 (unsigned long)ac->ac_b_ex.fe_group,
4051 (unsigned long)ac->ac_b_ex.fe_start,
4052 (unsigned long)ac->ac_b_ex.fe_len,
4053 (unsigned long)ac->ac_b_ex.fe_logical,
4054 (int)ac->ac_criteria);
4055 ext4_msg(ac->ac_sb, KERN_ERR, "%d found", ac->ac_found);
4056 ext4_msg(ac->ac_sb, KERN_ERR, "groups: ");
4057 ngroups = ext4_get_groups_count(sb);
4058 for (i = 0; i < ngroups; i++) {
4059 struct ext4_group_info *grp = ext4_get_group_info(sb, i);
4060 struct ext4_prealloc_space *pa;
4061 ext4_grpblk_t start;
4062 struct list_head *cur;
4063 ext4_lock_group(sb, i);
4064 list_for_each(cur, &grp->bb_prealloc_list) {
4065 pa = list_entry(cur, struct ext4_prealloc_space,
4066 pa_group_list);
4067 spin_lock(&pa->pa_lock);
4068 ext4_get_group_no_and_offset(sb, pa->pa_pstart,
4069 NULL, &start);
4070 spin_unlock(&pa->pa_lock);
4071 printk(KERN_ERR "PA:%u:%d:%u \n", i,
4072 start, pa->pa_len);
4073 }
4074 ext4_unlock_group(sb, i);
4075
4076 if (grp->bb_free == 0)
4077 continue;
4078 printk(KERN_ERR "%u: %d/%d \n",
4079 i, grp->bb_free, grp->bb_fragments);
4080 }
4081 printk(KERN_ERR "\n");
4082 }
4083 #else
4084 static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac)
4085 {
4086 return;
4087 }
4088 #endif
4089
4090 /*
4091 * We use locality group preallocation for small size file. The size of the
4092 * file is determined by the current size or the resulting size after
4093 * allocation which ever is larger
4094 *
4095 * One can tune this size via /sys/fs/ext4/<partition>/mb_stream_req
4096 */
4097 static void ext4_mb_group_or_file(struct ext4_allocation_context *ac)
4098 {
4099 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4100 int bsbits = ac->ac_sb->s_blocksize_bits;
4101 loff_t size, isize;
4102
4103 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
4104 return;
4105
4106 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
4107 return;
4108
4109 size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len);
4110 isize = (i_size_read(ac->ac_inode) + ac->ac_sb->s_blocksize - 1)
4111 >> bsbits;
4112
4113 if ((size == isize) &&
4114 !ext4_fs_is_busy(sbi) &&
4115 (atomic_read(&ac->ac_inode->i_writecount) == 0)) {
4116 ac->ac_flags |= EXT4_MB_HINT_NOPREALLOC;
4117 return;
4118 }
4119
4120 if (sbi->s_mb_group_prealloc <= 0) {
4121 ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
4122 return;
4123 }
4124
4125 /* don't use group allocation for large files */
4126 size = max(size, isize);
4127 if (size > sbi->s_mb_stream_request) {
4128 ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
4129 return;
4130 }
4131
4132 BUG_ON(ac->ac_lg != NULL);
4133 /*
4134 * locality group prealloc space are per cpu. The reason for having
4135 * per cpu locality group is to reduce the contention between block
4136 * request from multiple CPUs.
4137 */
4138 ac->ac_lg = raw_cpu_ptr(sbi->s_locality_groups);
4139
4140 /* we're going to use group allocation */
4141 ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC;
4142
4143 /* serialize all allocations in the group */
4144 mutex_lock(&ac->ac_lg->lg_mutex);
4145 }
4146
4147 static noinline_for_stack int
4148 ext4_mb_initialize_context(struct ext4_allocation_context *ac,
4149 struct ext4_allocation_request *ar)
4150 {
4151 struct super_block *sb = ar->inode->i_sb;
4152 struct ext4_sb_info *sbi = EXT4_SB(sb);
4153 struct ext4_super_block *es = sbi->s_es;
4154 ext4_group_t group;
4155 unsigned int len;
4156 ext4_fsblk_t goal;
4157 ext4_grpblk_t block;
4158
4159 /* we can't allocate > group size */
4160 len = ar->len;
4161
4162 /* just a dirty hack to filter too big requests */
4163 if (len >= EXT4_CLUSTERS_PER_GROUP(sb))
4164 len = EXT4_CLUSTERS_PER_GROUP(sb);
4165
4166 /* start searching from the goal */
4167 goal = ar->goal;
4168 if (goal < le32_to_cpu(es->s_first_data_block) ||
4169 goal >= ext4_blocks_count(es))
4170 goal = le32_to_cpu(es->s_first_data_block);
4171 ext4_get_group_no_and_offset(sb, goal, &group, &block);
4172
4173 /* set up allocation goals */
4174 ac->ac_b_ex.fe_logical = EXT4_LBLK_CMASK(sbi, ar->logical);
4175 ac->ac_status = AC_STATUS_CONTINUE;
4176 ac->ac_sb = sb;
4177 ac->ac_inode = ar->inode;
4178 ac->ac_o_ex.fe_logical = ac->ac_b_ex.fe_logical;
4179 ac->ac_o_ex.fe_group = group;
4180 ac->ac_o_ex.fe_start = block;
4181 ac->ac_o_ex.fe_len = len;
4182 ac->ac_g_ex = ac->ac_o_ex;
4183 ac->ac_flags = ar->flags;
4184
4185 /* we have to define context: we'll we work with a file or
4186 * locality group. this is a policy, actually */
4187 ext4_mb_group_or_file(ac);
4188
4189 mb_debug(1, "init ac: %u blocks @ %u, goal %u, flags %x, 2^%d, "
4190 "left: %u/%u, right %u/%u to %swritable\n",
4191 (unsigned) ar->len, (unsigned) ar->logical,
4192 (unsigned) ar->goal, ac->ac_flags, ac->ac_2order,
4193 (unsigned) ar->lleft, (unsigned) ar->pleft,
4194 (unsigned) ar->lright, (unsigned) ar->pright,
4195 atomic_read(&ar->inode->i_writecount) ? "" : "non-");
4196 return 0;
4197
4198 }
4199
4200 static noinline_for_stack void
4201 ext4_mb_discard_lg_preallocations(struct super_block *sb,
4202 struct ext4_locality_group *lg,
4203 int order, int total_entries)
4204 {
4205 ext4_group_t group = 0;
4206 struct ext4_buddy e4b;
4207 struct list_head discard_list;
4208 struct ext4_prealloc_space *pa, *tmp;
4209
4210 mb_debug(1, "discard locality group preallocation\n");
4211
4212 INIT_LIST_HEAD(&discard_list);
4213
4214 spin_lock(&lg->lg_prealloc_lock);
4215 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[order],
4216 pa_inode_list) {
4217 spin_lock(&pa->pa_lock);
4218 if (atomic_read(&pa->pa_count)) {
4219 /*
4220 * This is the pa that we just used
4221 * for block allocation. So don't
4222 * free that
4223 */
4224 spin_unlock(&pa->pa_lock);
4225 continue;
4226 }
4227 if (pa->pa_deleted) {
4228 spin_unlock(&pa->pa_lock);
4229 continue;
4230 }
4231 /* only lg prealloc space */
4232 BUG_ON(pa->pa_type != MB_GROUP_PA);
4233
4234 /* seems this one can be freed ... */
4235 pa->pa_deleted = 1;
4236 spin_unlock(&pa->pa_lock);
4237
4238 list_del_rcu(&pa->pa_inode_list);
4239 list_add(&pa->u.pa_tmp_list, &discard_list);
4240
4241 total_entries--;
4242 if (total_entries <= 5) {
4243 /*
4244 * we want to keep only 5 entries
4245 * allowing it to grow to 8. This
4246 * mak sure we don't call discard
4247 * soon for this list.
4248 */
4249 break;
4250 }
4251 }
4252 spin_unlock(&lg->lg_prealloc_lock);
4253
4254 list_for_each_entry_safe(pa, tmp, &discard_list, u.pa_tmp_list) {
4255
4256 group = ext4_get_group_number(sb, pa->pa_pstart);
4257 if (ext4_mb_load_buddy(sb, group, &e4b)) {
4258 ext4_error(sb, "Error loading buddy information for %u",
4259 group);
4260 continue;
4261 }
4262 ext4_lock_group(sb, group);
4263 list_del(&pa->pa_group_list);
4264 ext4_mb_release_group_pa(&e4b, pa);
4265 ext4_unlock_group(sb, group);
4266
4267 ext4_mb_unload_buddy(&e4b);
4268 list_del(&pa->u.pa_tmp_list);
4269 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4270 }
4271 }
4272
4273 /*
4274 * We have incremented pa_count. So it cannot be freed at this
4275 * point. Also we hold lg_mutex. So no parallel allocation is
4276 * possible from this lg. That means pa_free cannot be updated.
4277 *
4278 * A parallel ext4_mb_discard_group_preallocations is possible.
4279 * which can cause the lg_prealloc_list to be updated.
4280 */
4281
4282 static void ext4_mb_add_n_trim(struct ext4_allocation_context *ac)
4283 {
4284 int order, added = 0, lg_prealloc_count = 1;
4285 struct super_block *sb = ac->ac_sb;
4286 struct ext4_locality_group *lg = ac->ac_lg;
4287 struct ext4_prealloc_space *tmp_pa, *pa = ac->ac_pa;
4288
4289 order = fls(pa->pa_free) - 1;
4290 if (order > PREALLOC_TB_SIZE - 1)
4291 /* The max size of hash table is PREALLOC_TB_SIZE */
4292 order = PREALLOC_TB_SIZE - 1;
4293 /* Add the prealloc space to lg */
4294 spin_lock(&lg->lg_prealloc_lock);
4295 list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[order],
4296 pa_inode_list) {
4297 spin_lock(&tmp_pa->pa_lock);
4298 if (tmp_pa->pa_deleted) {
4299 spin_unlock(&tmp_pa->pa_lock);
4300 continue;
4301 }
4302 if (!added && pa->pa_free < tmp_pa->pa_free) {
4303 /* Add to the tail of the previous entry */
4304 list_add_tail_rcu(&pa->pa_inode_list,
4305 &tmp_pa->pa_inode_list);
4306 added = 1;
4307 /*
4308 * we want to count the total
4309 * number of entries in the list
4310 */
4311 }
4312 spin_unlock(&tmp_pa->pa_lock);
4313 lg_prealloc_count++;
4314 }
4315 if (!added)
4316 list_add_tail_rcu(&pa->pa_inode_list,
4317 &lg->lg_prealloc_list[order]);
4318 spin_unlock(&lg->lg_prealloc_lock);
4319
4320 /* Now trim the list to be not more than 8 elements */
4321 if (lg_prealloc_count > 8) {
4322 ext4_mb_discard_lg_preallocations(sb, lg,
4323 order, lg_prealloc_count);
4324 return;
4325 }
4326 return ;
4327 }
4328
4329 /*
4330 * release all resource we used in allocation
4331 */
4332 static int ext4_mb_release_context(struct ext4_allocation_context *ac)
4333 {
4334 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4335 struct ext4_prealloc_space *pa = ac->ac_pa;
4336 if (pa) {
4337 if (pa->pa_type == MB_GROUP_PA) {
4338 /* see comment in ext4_mb_use_group_pa() */
4339 spin_lock(&pa->pa_lock);
4340 pa->pa_pstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
4341 pa->pa_lstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
4342 pa->pa_free -= ac->ac_b_ex.fe_len;
4343 pa->pa_len -= ac->ac_b_ex.fe_len;
4344 spin_unlock(&pa->pa_lock);
4345 }
4346 }
4347 if (pa) {
4348 /*
4349 * We want to add the pa to the right bucket.
4350 * Remove it from the list and while adding
4351 * make sure the list to which we are adding
4352 * doesn't grow big.
4353 */
4354 if ((pa->pa_type == MB_GROUP_PA) && likely(pa->pa_free)) {
4355 spin_lock(pa->pa_obj_lock);
4356 list_del_rcu(&pa->pa_inode_list);
4357 spin_unlock(pa->pa_obj_lock);
4358 ext4_mb_add_n_trim(ac);
4359 }
4360 ext4_mb_put_pa(ac, ac->ac_sb, pa);
4361 }
4362 if (ac->ac_bitmap_page)
4363 page_cache_release(ac->ac_bitmap_page);
4364 if (ac->ac_buddy_page)
4365 page_cache_release(ac->ac_buddy_page);
4366 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
4367 mutex_unlock(&ac->ac_lg->lg_mutex);
4368 ext4_mb_collect_stats(ac);
4369 return 0;
4370 }
4371
4372 static int ext4_mb_discard_preallocations(struct super_block *sb, int needed)
4373 {
4374 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
4375 int ret;
4376 int freed = 0;
4377
4378 trace_ext4_mb_discard_preallocations(sb, needed);
4379 for (i = 0; i < ngroups && needed > 0; i++) {
4380 ret = ext4_mb_discard_group_preallocations(sb, i, needed);
4381 freed += ret;
4382 needed -= ret;
4383 }
4384
4385 return freed;
4386 }
4387
4388 /*
4389 * Main entry point into mballoc to allocate blocks
4390 * it tries to use preallocation first, then falls back
4391 * to usual allocation
4392 */
4393 ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle,
4394 struct ext4_allocation_request *ar, int *errp)
4395 {
4396 int freed;
4397 struct ext4_allocation_context *ac = NULL;
4398 struct ext4_sb_info *sbi;
4399 struct super_block *sb;
4400 ext4_fsblk_t block = 0;
4401 unsigned int inquota = 0;
4402 unsigned int reserv_clstrs = 0;
4403
4404 might_sleep();
4405 sb = ar->inode->i_sb;
4406 sbi = EXT4_SB(sb);
4407
4408 trace_ext4_request_blocks(ar);
4409
4410 /* Allow to use superuser reservation for quota file */
4411 if (IS_NOQUOTA(ar->inode))
4412 ar->flags |= EXT4_MB_USE_ROOT_BLOCKS;
4413
4414 if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0) {
4415 /* Without delayed allocation we need to verify
4416 * there is enough free blocks to do block allocation
4417 * and verify allocation doesn't exceed the quota limits.
4418 */
4419 while (ar->len &&
4420 ext4_claim_free_clusters(sbi, ar->len, ar->flags)) {
4421
4422 /* let others to free the space */
4423 cond_resched();
4424 ar->len = ar->len >> 1;
4425 }
4426 if (!ar->len) {
4427 *errp = -ENOSPC;
4428 return 0;
4429 }
4430 reserv_clstrs = ar->len;
4431 if (ar->flags & EXT4_MB_USE_ROOT_BLOCKS) {
4432 dquot_alloc_block_nofail(ar->inode,
4433 EXT4_C2B(sbi, ar->len));
4434 } else {
4435 while (ar->len &&
4436 dquot_alloc_block(ar->inode,
4437 EXT4_C2B(sbi, ar->len))) {
4438
4439 ar->flags |= EXT4_MB_HINT_NOPREALLOC;
4440 ar->len--;
4441 }
4442 }
4443 inquota = ar->len;
4444 if (ar->len == 0) {
4445 *errp = -EDQUOT;
4446 goto out;
4447 }
4448 }
4449
4450 ac = kmem_cache_zalloc(ext4_ac_cachep, GFP_NOFS);
4451 if (!ac) {
4452 ar->len = 0;
4453 *errp = -ENOMEM;
4454 goto out;
4455 }
4456
4457 *errp = ext4_mb_initialize_context(ac, ar);
4458 if (*errp) {
4459 ar->len = 0;
4460 goto out;
4461 }
4462
4463 ac->ac_op = EXT4_MB_HISTORY_PREALLOC;
4464 if (!ext4_mb_use_preallocated(ac)) {
4465 ac->ac_op = EXT4_MB_HISTORY_ALLOC;
4466 ext4_mb_normalize_request(ac, ar);
4467 repeat:
4468 /* allocate space in core */
4469 *errp = ext4_mb_regular_allocator(ac);
4470 if (*errp)
4471 goto discard_and_exit;
4472
4473 /* as we've just preallocated more space than
4474 * user requested originally, we store allocated
4475 * space in a special descriptor */
4476 if (ac->ac_status == AC_STATUS_FOUND &&
4477 ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len)
4478 *errp = ext4_mb_new_preallocation(ac);
4479 if (*errp) {
4480 discard_and_exit:
4481 ext4_discard_allocated_blocks(ac);
4482 goto errout;
4483 }
4484 }
4485 if (likely(ac->ac_status == AC_STATUS_FOUND)) {
4486 *errp = ext4_mb_mark_diskspace_used(ac, handle, reserv_clstrs);
4487 if (*errp == -EAGAIN) {
4488 /*
4489 * drop the reference that we took
4490 * in ext4_mb_use_best_found
4491 */
4492 ext4_mb_release_context(ac);
4493 ac->ac_b_ex.fe_group = 0;
4494 ac->ac_b_ex.fe_start = 0;
4495 ac->ac_b_ex.fe_len = 0;
4496 ac->ac_status = AC_STATUS_CONTINUE;
4497 goto repeat;
4498 } else if (*errp) {
4499 ext4_discard_allocated_blocks(ac);
4500 goto errout;
4501 } else {
4502 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
4503 ar->len = ac->ac_b_ex.fe_len;
4504 }
4505 } else {
4506 freed = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len);
4507 if (freed)
4508 goto repeat;
4509 *errp = -ENOSPC;
4510 }
4511
4512 errout:
4513 if (*errp) {
4514 ac->ac_b_ex.fe_len = 0;
4515 ar->len = 0;
4516 ext4_mb_show_ac(ac);
4517 }
4518 ext4_mb_release_context(ac);
4519 out:
4520 if (ac)
4521 kmem_cache_free(ext4_ac_cachep, ac);
4522 if (inquota && ar->len < inquota)
4523 dquot_free_block(ar->inode, EXT4_C2B(sbi, inquota - ar->len));
4524 if (!ar->len) {
4525 if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0)
4526 /* release all the reserved blocks if non delalloc */
4527 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
4528 reserv_clstrs);
4529 }
4530
4531 trace_ext4_allocate_blocks(ar, (unsigned long long)block);
4532
4533 return block;
4534 }
4535
4536 /*
4537 * We can merge two free data extents only if the physical blocks
4538 * are contiguous, AND the extents were freed by the same transaction,
4539 * AND the blocks are associated with the same group.
4540 */
4541 static int can_merge(struct ext4_free_data *entry1,
4542 struct ext4_free_data *entry2)
4543 {
4544 if ((entry1->efd_tid == entry2->efd_tid) &&
4545 (entry1->efd_group == entry2->efd_group) &&
4546 ((entry1->efd_start_cluster + entry1->efd_count) == entry2->efd_start_cluster))
4547 return 1;
4548 return 0;
4549 }
4550
4551 static noinline_for_stack int
4552 ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b,
4553 struct ext4_free_data *new_entry)
4554 {
4555 ext4_group_t group = e4b->bd_group;
4556 ext4_grpblk_t cluster;
4557 struct ext4_free_data *entry;
4558 struct ext4_group_info *db = e4b->bd_info;
4559 struct super_block *sb = e4b->bd_sb;
4560 struct ext4_sb_info *sbi = EXT4_SB(sb);
4561 struct rb_node **n = &db->bb_free_root.rb_node, *node;
4562 struct rb_node *parent = NULL, *new_node;
4563
4564 BUG_ON(!ext4_handle_valid(handle));
4565 BUG_ON(e4b->bd_bitmap_page == NULL);
4566 BUG_ON(e4b->bd_buddy_page == NULL);
4567
4568 new_node = &new_entry->efd_node;
4569 cluster = new_entry->efd_start_cluster;
4570
4571 if (!*n) {
4572 /* first free block exent. We need to
4573 protect buddy cache from being freed,
4574 * otherwise we'll refresh it from
4575 * on-disk bitmap and lose not-yet-available
4576 * blocks */
4577 page_cache_get(e4b->bd_buddy_page);
4578 page_cache_get(e4b->bd_bitmap_page);
4579 }
4580 while (*n) {
4581 parent = *n;
4582 entry = rb_entry(parent, struct ext4_free_data, efd_node);
4583 if (cluster < entry->efd_start_cluster)
4584 n = &(*n)->rb_left;
4585 else if (cluster >= (entry->efd_start_cluster + entry->efd_count))
4586 n = &(*n)->rb_right;
4587 else {
4588 ext4_grp_locked_error(sb, group, 0,
4589 ext4_group_first_block_no(sb, group) +
4590 EXT4_C2B(sbi, cluster),
4591 "Block already on to-be-freed list");
4592 return 0;
4593 }
4594 }
4595
4596 rb_link_node(new_node, parent, n);
4597 rb_insert_color(new_node, &db->bb_free_root);
4598
4599 /* Now try to see the extent can be merged to left and right */
4600 node = rb_prev(new_node);
4601 if (node) {
4602 entry = rb_entry(node, struct ext4_free_data, efd_node);
4603 if (can_merge(entry, new_entry) &&
4604 ext4_journal_callback_try_del(handle, &entry->efd_jce)) {
4605 new_entry->efd_start_cluster = entry->efd_start_cluster;
4606 new_entry->efd_count += entry->efd_count;
4607 rb_erase(node, &(db->bb_free_root));
4608 kmem_cache_free(ext4_free_data_cachep, entry);
4609 }
4610 }
4611
4612 node = rb_next(new_node);
4613 if (node) {
4614 entry = rb_entry(node, struct ext4_free_data, efd_node);
4615 if (can_merge(new_entry, entry) &&
4616 ext4_journal_callback_try_del(handle, &entry->efd_jce)) {
4617 new_entry->efd_count += entry->efd_count;
4618 rb_erase(node, &(db->bb_free_root));
4619 kmem_cache_free(ext4_free_data_cachep, entry);
4620 }
4621 }
4622 /* Add the extent to transaction's private list */
4623 ext4_journal_callback_add(handle, ext4_free_data_callback,
4624 &new_entry->efd_jce);
4625 return 0;
4626 }
4627
4628 /**
4629 * ext4_free_blocks() -- Free given blocks and update quota
4630 * @handle: handle for this transaction
4631 * @inode: inode
4632 * @block: start physical block to free
4633 * @count: number of blocks to count
4634 * @flags: flags used by ext4_free_blocks
4635 */
4636 void ext4_free_blocks(handle_t *handle, struct inode *inode,
4637 struct buffer_head *bh, ext4_fsblk_t block,
4638 unsigned long count, int flags)
4639 {
4640 struct buffer_head *bitmap_bh = NULL;
4641 struct super_block *sb = inode->i_sb;
4642 struct ext4_group_desc *gdp;
4643 unsigned int overflow;
4644 ext4_grpblk_t bit;
4645 struct buffer_head *gd_bh;
4646 ext4_group_t block_group;
4647 struct ext4_sb_info *sbi;
4648 struct ext4_buddy e4b;
4649 unsigned int count_clusters;
4650 int err = 0;
4651 int ret;
4652
4653 might_sleep();
4654 if (bh) {
4655 if (block)
4656 BUG_ON(block != bh->b_blocknr);
4657 else
4658 block = bh->b_blocknr;
4659 }
4660
4661 sbi = EXT4_SB(sb);
4662 if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) &&
4663 !ext4_data_block_valid(sbi, block, count)) {
4664 ext4_error(sb, "Freeing blocks not in datazone - "
4665 "block = %llu, count = %lu", block, count);
4666 goto error_return;
4667 }
4668
4669 ext4_debug("freeing block %llu\n", block);
4670 trace_ext4_free_blocks(inode, block, count, flags);
4671
4672 if (flags & EXT4_FREE_BLOCKS_FORGET) {
4673 struct buffer_head *tbh = bh;
4674 int i;
4675
4676 BUG_ON(bh && (count > 1));
4677
4678 for (i = 0; i < count; i++) {
4679 cond_resched();
4680 if (!bh)
4681 tbh = sb_find_get_block(inode->i_sb,
4682 block + i);
4683 if (!tbh)
4684 continue;
4685 ext4_forget(handle, flags & EXT4_FREE_BLOCKS_METADATA,
4686 inode, tbh, block + i);
4687 }
4688 }
4689
4690 /*
4691 * We need to make sure we don't reuse the freed block until
4692 * after the transaction is committed, which we can do by
4693 * treating the block as metadata, below. We make an
4694 * exception if the inode is to be written in writeback mode
4695 * since writeback mode has weak data consistency guarantees.
4696 */
4697 if (!ext4_should_writeback_data(inode))
4698 flags |= EXT4_FREE_BLOCKS_METADATA;
4699
4700 /*
4701 * If the extent to be freed does not begin on a cluster
4702 * boundary, we need to deal with partial clusters at the
4703 * beginning and end of the extent. Normally we will free
4704 * blocks at the beginning or the end unless we are explicitly
4705 * requested to avoid doing so.
4706 */
4707 overflow = EXT4_PBLK_COFF(sbi, block);
4708 if (overflow) {
4709 if (flags & EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER) {
4710 overflow = sbi->s_cluster_ratio - overflow;
4711 block += overflow;
4712 if (count > overflow)
4713 count -= overflow;
4714 else
4715 return;
4716 } else {
4717 block -= overflow;
4718 count += overflow;
4719 }
4720 }
4721 overflow = EXT4_LBLK_COFF(sbi, count);
4722 if (overflow) {
4723 if (flags & EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER) {
4724 if (count > overflow)
4725 count -= overflow;
4726 else
4727 return;
4728 } else
4729 count += sbi->s_cluster_ratio - overflow;
4730 }
4731
4732 do_more:
4733 overflow = 0;
4734 ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
4735
4736 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(
4737 ext4_get_group_info(sb, block_group))))
4738 return;
4739
4740 /*
4741 * Check to see if we are freeing blocks across a group
4742 * boundary.
4743 */
4744 if (EXT4_C2B(sbi, bit) + count > EXT4_BLOCKS_PER_GROUP(sb)) {
4745 overflow = EXT4_C2B(sbi, bit) + count -
4746 EXT4_BLOCKS_PER_GROUP(sb);
4747 count -= overflow;
4748 }
4749 count_clusters = EXT4_NUM_B2C(sbi, count);
4750 bitmap_bh = ext4_read_block_bitmap(sb, block_group);
4751 if (!bitmap_bh) {
4752 err = -EIO;
4753 goto error_return;
4754 }
4755 gdp = ext4_get_group_desc(sb, block_group, &gd_bh);
4756 if (!gdp) {
4757 err = -EIO;
4758 goto error_return;
4759 }
4760
4761 if (in_range(ext4_block_bitmap(sb, gdp), block, count) ||
4762 in_range(ext4_inode_bitmap(sb, gdp), block, count) ||
4763 in_range(block, ext4_inode_table(sb, gdp),
4764 EXT4_SB(sb)->s_itb_per_group) ||
4765 in_range(block + count - 1, ext4_inode_table(sb, gdp),
4766 EXT4_SB(sb)->s_itb_per_group)) {
4767
4768 ext4_error(sb, "Freeing blocks in system zone - "
4769 "Block = %llu, count = %lu", block, count);
4770 /* err = 0. ext4_std_error should be a no op */
4771 goto error_return;
4772 }
4773
4774 BUFFER_TRACE(bitmap_bh, "getting write access");
4775 err = ext4_journal_get_write_access(handle, bitmap_bh);
4776 if (err)
4777 goto error_return;
4778
4779 /*
4780 * We are about to modify some metadata. Call the journal APIs
4781 * to unshare ->b_data if a currently-committing transaction is
4782 * using it
4783 */
4784 BUFFER_TRACE(gd_bh, "get_write_access");
4785 err = ext4_journal_get_write_access(handle, gd_bh);
4786 if (err)
4787 goto error_return;
4788 #ifdef AGGRESSIVE_CHECK
4789 {
4790 int i;
4791 for (i = 0; i < count_clusters; i++)
4792 BUG_ON(!mb_test_bit(bit + i, bitmap_bh->b_data));
4793 }
4794 #endif
4795 trace_ext4_mballoc_free(sb, inode, block_group, bit, count_clusters);
4796
4797 err = ext4_mb_load_buddy(sb, block_group, &e4b);
4798 if (err)
4799 goto error_return;
4800
4801 if ((flags & EXT4_FREE_BLOCKS_METADATA) && ext4_handle_valid(handle)) {
4802 struct ext4_free_data *new_entry;
4803 /*
4804 * blocks being freed are metadata. these blocks shouldn't
4805 * be used until this transaction is committed
4806 */
4807 retry:
4808 new_entry = kmem_cache_alloc(ext4_free_data_cachep, GFP_NOFS);
4809 if (!new_entry) {
4810 /*
4811 * We use a retry loop because
4812 * ext4_free_blocks() is not allowed to fail.
4813 */
4814 cond_resched();
4815 congestion_wait(BLK_RW_ASYNC, HZ/50);
4816 goto retry;
4817 }
4818 new_entry->efd_start_cluster = bit;
4819 new_entry->efd_group = block_group;
4820 new_entry->efd_count = count_clusters;
4821 new_entry->efd_tid = handle->h_transaction->t_tid;
4822
4823 ext4_lock_group(sb, block_group);
4824 mb_clear_bits(bitmap_bh->b_data, bit, count_clusters);
4825 ext4_mb_free_metadata(handle, &e4b, new_entry);
4826 } else {
4827 /* need to update group_info->bb_free and bitmap
4828 * with group lock held. generate_buddy look at
4829 * them with group lock_held
4830 */
4831 if (test_opt(sb, DISCARD)) {
4832 err = ext4_issue_discard(sb, block_group, bit, count);
4833 if (err && err != -EOPNOTSUPP)
4834 ext4_msg(sb, KERN_WARNING, "discard request in"
4835 " group:%d block:%d count:%lu failed"
4836 " with %d", block_group, bit, count,
4837 err);
4838 } else
4839 EXT4_MB_GRP_CLEAR_TRIMMED(e4b.bd_info);
4840
4841 ext4_lock_group(sb, block_group);
4842 mb_clear_bits(bitmap_bh->b_data, bit, count_clusters);
4843 mb_free_blocks(inode, &e4b, bit, count_clusters);
4844 }
4845
4846 ret = ext4_free_group_clusters(sb, gdp) + count_clusters;
4847 ext4_free_group_clusters_set(sb, gdp, ret);
4848 ext4_block_bitmap_csum_set(sb, block_group, gdp, bitmap_bh);
4849 ext4_group_desc_csum_set(sb, block_group, gdp);
4850 ext4_unlock_group(sb, block_group);
4851
4852 if (sbi->s_log_groups_per_flex) {
4853 ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
4854 atomic64_add(count_clusters,
4855 &sbi->s_flex_groups[flex_group].free_clusters);
4856 }
4857
4858 if (!(flags & EXT4_FREE_BLOCKS_NO_QUOT_UPDATE))
4859 dquot_free_block(inode, EXT4_C2B(sbi, count_clusters));
4860 percpu_counter_add(&sbi->s_freeclusters_counter, count_clusters);
4861
4862 ext4_mb_unload_buddy(&e4b);
4863
4864 /* We dirtied the bitmap block */
4865 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
4866 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
4867
4868 /* And the group descriptor block */
4869 BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
4870 ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
4871 if (!err)
4872 err = ret;
4873
4874 if (overflow && !err) {
4875 block += count;
4876 count = overflow;
4877 put_bh(bitmap_bh);
4878 goto do_more;
4879 }
4880 error_return:
4881 brelse(bitmap_bh);
4882 ext4_std_error(sb, err);
4883 return;
4884 }
4885
4886 /**
4887 * ext4_group_add_blocks() -- Add given blocks to an existing group
4888 * @handle: handle to this transaction
4889 * @sb: super block
4890 * @block: start physical block to add to the block group
4891 * @count: number of blocks to free
4892 *
4893 * This marks the blocks as free in the bitmap and buddy.
4894 */
4895 int ext4_group_add_blocks(handle_t *handle, struct super_block *sb,
4896 ext4_fsblk_t block, unsigned long count)
4897 {
4898 struct buffer_head *bitmap_bh = NULL;
4899 struct buffer_head *gd_bh;
4900 ext4_group_t block_group;
4901 ext4_grpblk_t bit;
4902 unsigned int i;
4903 struct ext4_group_desc *desc;
4904 struct ext4_sb_info *sbi = EXT4_SB(sb);
4905 struct ext4_buddy e4b;
4906 int err = 0, ret, blk_free_count;
4907 ext4_grpblk_t blocks_freed;
4908
4909 ext4_debug("Adding block(s) %llu-%llu\n", block, block + count - 1);
4910
4911 if (count == 0)
4912 return 0;
4913
4914 ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
4915 /*
4916 * Check to see if we are freeing blocks across a group
4917 * boundary.
4918 */
4919 if (bit + count > EXT4_BLOCKS_PER_GROUP(sb)) {
4920 ext4_warning(sb, "too much blocks added to group %u\n",
4921 block_group);
4922 err = -EINVAL;
4923 goto error_return;
4924 }
4925
4926 bitmap_bh = ext4_read_block_bitmap(sb, block_group);
4927 if (!bitmap_bh) {
4928 err = -EIO;
4929 goto error_return;
4930 }
4931
4932 desc = ext4_get_group_desc(sb, block_group, &gd_bh);
4933 if (!desc) {
4934 err = -EIO;
4935 goto error_return;
4936 }
4937
4938 if (in_range(ext4_block_bitmap(sb, desc), block, count) ||
4939 in_range(ext4_inode_bitmap(sb, desc), block, count) ||
4940 in_range(block, ext4_inode_table(sb, desc), sbi->s_itb_per_group) ||
4941 in_range(block + count - 1, ext4_inode_table(sb, desc),
4942 sbi->s_itb_per_group)) {
4943 ext4_error(sb, "Adding blocks in system zones - "
4944 "Block = %llu, count = %lu",
4945 block, count);
4946 err = -EINVAL;
4947 goto error_return;
4948 }
4949
4950 BUFFER_TRACE(bitmap_bh, "getting write access");
4951 err = ext4_journal_get_write_access(handle, bitmap_bh);
4952 if (err)
4953 goto error_return;
4954
4955 /*
4956 * We are about to modify some metadata. Call the journal APIs
4957 * to unshare ->b_data if a currently-committing transaction is
4958 * using it
4959 */
4960 BUFFER_TRACE(gd_bh, "get_write_access");
4961 err = ext4_journal_get_write_access(handle, gd_bh);
4962 if (err)
4963 goto error_return;
4964
4965 for (i = 0, blocks_freed = 0; i < count; i++) {
4966 BUFFER_TRACE(bitmap_bh, "clear bit");
4967 if (!mb_test_bit(bit + i, bitmap_bh->b_data)) {
4968 ext4_error(sb, "bit already cleared for block %llu",
4969 (ext4_fsblk_t)(block + i));
4970 BUFFER_TRACE(bitmap_bh, "bit already cleared");
4971 } else {
4972 blocks_freed++;
4973 }
4974 }
4975
4976 err = ext4_mb_load_buddy(sb, block_group, &e4b);
4977 if (err)
4978 goto error_return;
4979
4980 /*
4981 * need to update group_info->bb_free and bitmap
4982 * with group lock held. generate_buddy look at
4983 * them with group lock_held
4984 */
4985 ext4_lock_group(sb, block_group);
4986 mb_clear_bits(bitmap_bh->b_data, bit, count);
4987 mb_free_blocks(NULL, &e4b, bit, count);
4988 blk_free_count = blocks_freed + ext4_free_group_clusters(sb, desc);
4989 ext4_free_group_clusters_set(sb, desc, blk_free_count);
4990 ext4_block_bitmap_csum_set(sb, block_group, desc, bitmap_bh);
4991 ext4_group_desc_csum_set(sb, block_group, desc);
4992 ext4_unlock_group(sb, block_group);
4993 percpu_counter_add(&sbi->s_freeclusters_counter,
4994 EXT4_NUM_B2C(sbi, blocks_freed));
4995
4996 if (sbi->s_log_groups_per_flex) {
4997 ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
4998 atomic64_add(EXT4_NUM_B2C(sbi, blocks_freed),
4999 &sbi->s_flex_groups[flex_group].free_clusters);
5000 }
5001
5002 ext4_mb_unload_buddy(&e4b);
5003
5004 /* We dirtied the bitmap block */
5005 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
5006 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
5007
5008 /* And the group descriptor block */
5009 BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
5010 ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
5011 if (!err)
5012 err = ret;
5013
5014 error_return:
5015 brelse(bitmap_bh);
5016 ext4_std_error(sb, err);
5017 return err;
5018 }
5019
5020 /**
5021 * ext4_trim_extent -- function to TRIM one single free extent in the group
5022 * @sb: super block for the file system
5023 * @start: starting block of the free extent in the alloc. group
5024 * @count: number of blocks to TRIM
5025 * @group: alloc. group we are working with
5026 * @e4b: ext4 buddy for the group
5027 *
5028 * Trim "count" blocks starting at "start" in the "group". To assure that no
5029 * one will allocate those blocks, mark it as used in buddy bitmap. This must
5030 * be called with under the group lock.
5031 */
5032 static int ext4_trim_extent(struct super_block *sb, int start, int count,
5033 ext4_group_t group, struct ext4_buddy *e4b)
5034 __releases(bitlock)
5035 __acquires(bitlock)
5036 {
5037 struct ext4_free_extent ex;
5038 int ret = 0;
5039
5040 trace_ext4_trim_extent(sb, group, start, count);
5041
5042 assert_spin_locked(ext4_group_lock_ptr(sb, group));
5043
5044 ex.fe_start = start;
5045 ex.fe_group = group;
5046 ex.fe_len = count;
5047
5048 /*
5049 * Mark blocks used, so no one can reuse them while
5050 * being trimmed.
5051 */
5052 mb_mark_used(e4b, &ex);
5053 ext4_unlock_group(sb, group);
5054 ret = ext4_issue_discard(sb, group, start, count);
5055 ext4_lock_group(sb, group);
5056 mb_free_blocks(NULL, e4b, start, ex.fe_len);
5057 return ret;
5058 }
5059
5060 /**
5061 * ext4_trim_all_free -- function to trim all free space in alloc. group
5062 * @sb: super block for file system
5063 * @group: group to be trimmed
5064 * @start: first group block to examine
5065 * @max: last group block to examine
5066 * @minblocks: minimum extent block count
5067 *
5068 * ext4_trim_all_free walks through group's buddy bitmap searching for free
5069 * extents. When the free block is found, ext4_trim_extent is called to TRIM
5070 * the extent.
5071 *
5072 *
5073 * ext4_trim_all_free walks through group's block bitmap searching for free
5074 * extents. When the free extent is found, mark it as used in group buddy
5075 * bitmap. Then issue a TRIM command on this extent and free the extent in
5076 * the group buddy bitmap. This is done until whole group is scanned.
5077 */
5078 static ext4_grpblk_t
5079 ext4_trim_all_free(struct super_block *sb, ext4_group_t group,
5080 ext4_grpblk_t start, ext4_grpblk_t max,
5081 ext4_grpblk_t minblocks)
5082 {
5083 void *bitmap;
5084 ext4_grpblk_t next, count = 0, free_count = 0;
5085 struct ext4_buddy e4b;
5086 int ret = 0;
5087
5088 trace_ext4_trim_all_free(sb, group, start, max);
5089
5090 ret = ext4_mb_load_buddy(sb, group, &e4b);
5091 if (ret) {
5092 ext4_error(sb, "Error in loading buddy "
5093 "information for %u", group);
5094 return ret;
5095 }
5096 bitmap = e4b.bd_bitmap;
5097
5098 ext4_lock_group(sb, group);
5099 if (EXT4_MB_GRP_WAS_TRIMMED(e4b.bd_info) &&
5100 minblocks >= atomic_read(&EXT4_SB(sb)->s_last_trim_minblks))
5101 goto out;
5102
5103 start = (e4b.bd_info->bb_first_free > start) ?
5104 e4b.bd_info->bb_first_free : start;
5105
5106 while (start <= max) {
5107 start = mb_find_next_zero_bit(bitmap, max + 1, start);
5108 if (start > max)
5109 break;
5110 next = mb_find_next_bit(bitmap, max + 1, start);
5111
5112 if ((next - start) >= minblocks) {
5113 ret = ext4_trim_extent(sb, start,
5114 next - start, group, &e4b);
5115 if (ret && ret != -EOPNOTSUPP)
5116 break;
5117 ret = 0;
5118 count += next - start;
5119 }
5120 free_count += next - start;
5121 start = next + 1;
5122
5123 if (fatal_signal_pending(current)) {
5124 count = -ERESTARTSYS;
5125 break;
5126 }
5127
5128 if (need_resched()) {
5129 ext4_unlock_group(sb, group);
5130 cond_resched();
5131 ext4_lock_group(sb, group);
5132 }
5133
5134 if ((e4b.bd_info->bb_free - free_count) < minblocks)
5135 break;
5136 }
5137
5138 if (!ret) {
5139 ret = count;
5140 EXT4_MB_GRP_SET_TRIMMED(e4b.bd_info);
5141 }
5142 out:
5143 ext4_unlock_group(sb, group);
5144 ext4_mb_unload_buddy(&e4b);
5145
5146 ext4_debug("trimmed %d blocks in the group %d\n",
5147 count, group);
5148
5149 return ret;
5150 }
5151
5152 /**
5153 * ext4_trim_fs() -- trim ioctl handle function
5154 * @sb: superblock for filesystem
5155 * @range: fstrim_range structure
5156 *
5157 * start: First Byte to trim
5158 * len: number of Bytes to trim from start
5159 * minlen: minimum extent length in Bytes
5160 * ext4_trim_fs goes through all allocation groups containing Bytes from
5161 * start to start+len. For each such a group ext4_trim_all_free function
5162 * is invoked to trim all free space.
5163 */
5164 int ext4_trim_fs(struct super_block *sb, struct fstrim_range *range)
5165 {
5166 struct ext4_group_info *grp;
5167 ext4_group_t group, first_group, last_group;
5168 ext4_grpblk_t cnt = 0, first_cluster, last_cluster;
5169 uint64_t start, end, minlen, trimmed = 0;
5170 ext4_fsblk_t first_data_blk =
5171 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block);
5172 ext4_fsblk_t max_blks = ext4_blocks_count(EXT4_SB(sb)->s_es);
5173 int ret = 0;
5174
5175 start = range->start >> sb->s_blocksize_bits;
5176 end = start + (range->len >> sb->s_blocksize_bits) - 1;
5177 minlen = EXT4_NUM_B2C(EXT4_SB(sb),
5178 range->minlen >> sb->s_blocksize_bits);
5179
5180 if (minlen > EXT4_CLUSTERS_PER_GROUP(sb) ||
5181 start >= max_blks ||
5182 range->len < sb->s_blocksize)
5183 return -EINVAL;
5184 if (end >= max_blks)
5185 end = max_blks - 1;
5186 if (end <= first_data_blk)
5187 goto out;
5188 if (start < first_data_blk)
5189 start = first_data_blk;
5190
5191 /* Determine first and last group to examine based on start and end */
5192 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) start,
5193 &first_group, &first_cluster);
5194 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) end,
5195 &last_group, &last_cluster);
5196
5197 /* end now represents the last cluster to discard in this group */
5198 end = EXT4_CLUSTERS_PER_GROUP(sb) - 1;
5199
5200 for (group = first_group; group <= last_group; group++) {
5201 grp = ext4_get_group_info(sb, group);
5202 /* We only do this if the grp has never been initialized */
5203 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
5204 ret = ext4_mb_init_group(sb, group);
5205 if (ret)
5206 break;
5207 }
5208
5209 /*
5210 * For all the groups except the last one, last cluster will
5211 * always be EXT4_CLUSTERS_PER_GROUP(sb)-1, so we only need to
5212 * change it for the last group, note that last_cluster is
5213 * already computed earlier by ext4_get_group_no_and_offset()
5214 */
5215 if (group == last_group)
5216 end = last_cluster;
5217
5218 if (grp->bb_free >= minlen) {
5219 cnt = ext4_trim_all_free(sb, group, first_cluster,
5220 end, minlen);
5221 if (cnt < 0) {
5222 ret = cnt;
5223 break;
5224 }
5225 trimmed += cnt;
5226 }
5227
5228 /*
5229 * For every group except the first one, we are sure
5230 * that the first cluster to discard will be cluster #0.
5231 */
5232 first_cluster = 0;
5233 }
5234
5235 if (!ret)
5236 atomic_set(&EXT4_SB(sb)->s_last_trim_minblks, minlen);
5237
5238 out:
5239 range->len = EXT4_C2B(EXT4_SB(sb), trimmed) << sb->s_blocksize_bits;
5240 return ret;
5241 }