]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/ext4/mballoc.c
Merge tag 'ext4_for_linus_stable' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-bionic-kernel.git] / fs / ext4 / mballoc.c
1 /*
2 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3 * Written by Alex Tomas <alex@clusterfs.com>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public Licens
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
17 */
18
19
20 /*
21 * mballoc.c contains the multiblocks allocation routines
22 */
23
24 #include "ext4_jbd2.h"
25 #include "mballoc.h"
26 #include <linux/log2.h>
27 #include <linux/module.h>
28 #include <linux/slab.h>
29 #include <trace/events/ext4.h>
30
31 #ifdef CONFIG_EXT4_DEBUG
32 ushort ext4_mballoc_debug __read_mostly;
33
34 module_param_named(mballoc_debug, ext4_mballoc_debug, ushort, 0644);
35 MODULE_PARM_DESC(mballoc_debug, "Debugging level for ext4's mballoc");
36 #endif
37
38 /*
39 * MUSTDO:
40 * - test ext4_ext_search_left() and ext4_ext_search_right()
41 * - search for metadata in few groups
42 *
43 * TODO v4:
44 * - normalization should take into account whether file is still open
45 * - discard preallocations if no free space left (policy?)
46 * - don't normalize tails
47 * - quota
48 * - reservation for superuser
49 *
50 * TODO v3:
51 * - bitmap read-ahead (proposed by Oleg Drokin aka green)
52 * - track min/max extents in each group for better group selection
53 * - mb_mark_used() may allocate chunk right after splitting buddy
54 * - tree of groups sorted by number of free blocks
55 * - error handling
56 */
57
58 /*
59 * The allocation request involve request for multiple number of blocks
60 * near to the goal(block) value specified.
61 *
62 * During initialization phase of the allocator we decide to use the
63 * group preallocation or inode preallocation depending on the size of
64 * the file. The size of the file could be the resulting file size we
65 * would have after allocation, or the current file size, which ever
66 * is larger. If the size is less than sbi->s_mb_stream_request we
67 * select to use the group preallocation. The default value of
68 * s_mb_stream_request is 16 blocks. This can also be tuned via
69 * /sys/fs/ext4/<partition>/mb_stream_req. The value is represented in
70 * terms of number of blocks.
71 *
72 * The main motivation for having small file use group preallocation is to
73 * ensure that we have small files closer together on the disk.
74 *
75 * First stage the allocator looks at the inode prealloc list,
76 * ext4_inode_info->i_prealloc_list, which contains list of prealloc
77 * spaces for this particular inode. The inode prealloc space is
78 * represented as:
79 *
80 * pa_lstart -> the logical start block for this prealloc space
81 * pa_pstart -> the physical start block for this prealloc space
82 * pa_len -> length for this prealloc space (in clusters)
83 * pa_free -> free space available in this prealloc space (in clusters)
84 *
85 * The inode preallocation space is used looking at the _logical_ start
86 * block. If only the logical file block falls within the range of prealloc
87 * space we will consume the particular prealloc space. This makes sure that
88 * we have contiguous physical blocks representing the file blocks
89 *
90 * The important thing to be noted in case of inode prealloc space is that
91 * we don't modify the values associated to inode prealloc space except
92 * pa_free.
93 *
94 * If we are not able to find blocks in the inode prealloc space and if we
95 * have the group allocation flag set then we look at the locality group
96 * prealloc space. These are per CPU prealloc list represented as
97 *
98 * ext4_sb_info.s_locality_groups[smp_processor_id()]
99 *
100 * The reason for having a per cpu locality group is to reduce the contention
101 * between CPUs. It is possible to get scheduled at this point.
102 *
103 * The locality group prealloc space is used looking at whether we have
104 * enough free space (pa_free) within the prealloc space.
105 *
106 * If we can't allocate blocks via inode prealloc or/and locality group
107 * prealloc then we look at the buddy cache. The buddy cache is represented
108 * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets
109 * mapped to the buddy and bitmap information regarding different
110 * groups. The buddy information is attached to buddy cache inode so that
111 * we can access them through the page cache. The information regarding
112 * each group is loaded via ext4_mb_load_buddy. The information involve
113 * block bitmap and buddy information. The information are stored in the
114 * inode as:
115 *
116 * { page }
117 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
118 *
119 *
120 * one block each for bitmap and buddy information. So for each group we
121 * take up 2 blocks. A page can contain blocks_per_page (PAGE_CACHE_SIZE /
122 * blocksize) blocks. So it can have information regarding groups_per_page
123 * which is blocks_per_page/2
124 *
125 * The buddy cache inode is not stored on disk. The inode is thrown
126 * away when the filesystem is unmounted.
127 *
128 * We look for count number of blocks in the buddy cache. If we were able
129 * to locate that many free blocks we return with additional information
130 * regarding rest of the contiguous physical block available
131 *
132 * Before allocating blocks via buddy cache we normalize the request
133 * blocks. This ensure we ask for more blocks that we needed. The extra
134 * blocks that we get after allocation is added to the respective prealloc
135 * list. In case of inode preallocation we follow a list of heuristics
136 * based on file size. This can be found in ext4_mb_normalize_request. If
137 * we are doing a group prealloc we try to normalize the request to
138 * sbi->s_mb_group_prealloc. The default value of s_mb_group_prealloc is
139 * dependent on the cluster size; for non-bigalloc file systems, it is
140 * 512 blocks. This can be tuned via
141 * /sys/fs/ext4/<partition>/mb_group_prealloc. The value is represented in
142 * terms of number of blocks. If we have mounted the file system with -O
143 * stripe=<value> option the group prealloc request is normalized to the
144 * the smallest multiple of the stripe value (sbi->s_stripe) which is
145 * greater than the default mb_group_prealloc.
146 *
147 * The regular allocator (using the buddy cache) supports a few tunables.
148 *
149 * /sys/fs/ext4/<partition>/mb_min_to_scan
150 * /sys/fs/ext4/<partition>/mb_max_to_scan
151 * /sys/fs/ext4/<partition>/mb_order2_req
152 *
153 * The regular allocator uses buddy scan only if the request len is power of
154 * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The
155 * value of s_mb_order2_reqs can be tuned via
156 * /sys/fs/ext4/<partition>/mb_order2_req. If the request len is equal to
157 * stripe size (sbi->s_stripe), we try to search for contiguous block in
158 * stripe size. This should result in better allocation on RAID setups. If
159 * not, we search in the specific group using bitmap for best extents. The
160 * tunable min_to_scan and max_to_scan control the behaviour here.
161 * min_to_scan indicate how long the mballoc __must__ look for a best
162 * extent and max_to_scan indicates how long the mballoc __can__ look for a
163 * best extent in the found extents. Searching for the blocks starts with
164 * the group specified as the goal value in allocation context via
165 * ac_g_ex. Each group is first checked based on the criteria whether it
166 * can be used for allocation. ext4_mb_good_group explains how the groups are
167 * checked.
168 *
169 * Both the prealloc space are getting populated as above. So for the first
170 * request we will hit the buddy cache which will result in this prealloc
171 * space getting filled. The prealloc space is then later used for the
172 * subsequent request.
173 */
174
175 /*
176 * mballoc operates on the following data:
177 * - on-disk bitmap
178 * - in-core buddy (actually includes buddy and bitmap)
179 * - preallocation descriptors (PAs)
180 *
181 * there are two types of preallocations:
182 * - inode
183 * assiged to specific inode and can be used for this inode only.
184 * it describes part of inode's space preallocated to specific
185 * physical blocks. any block from that preallocated can be used
186 * independent. the descriptor just tracks number of blocks left
187 * unused. so, before taking some block from descriptor, one must
188 * make sure corresponded logical block isn't allocated yet. this
189 * also means that freeing any block within descriptor's range
190 * must discard all preallocated blocks.
191 * - locality group
192 * assigned to specific locality group which does not translate to
193 * permanent set of inodes: inode can join and leave group. space
194 * from this type of preallocation can be used for any inode. thus
195 * it's consumed from the beginning to the end.
196 *
197 * relation between them can be expressed as:
198 * in-core buddy = on-disk bitmap + preallocation descriptors
199 *
200 * this mean blocks mballoc considers used are:
201 * - allocated blocks (persistent)
202 * - preallocated blocks (non-persistent)
203 *
204 * consistency in mballoc world means that at any time a block is either
205 * free or used in ALL structures. notice: "any time" should not be read
206 * literally -- time is discrete and delimited by locks.
207 *
208 * to keep it simple, we don't use block numbers, instead we count number of
209 * blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA.
210 *
211 * all operations can be expressed as:
212 * - init buddy: buddy = on-disk + PAs
213 * - new PA: buddy += N; PA = N
214 * - use inode PA: on-disk += N; PA -= N
215 * - discard inode PA buddy -= on-disk - PA; PA = 0
216 * - use locality group PA on-disk += N; PA -= N
217 * - discard locality group PA buddy -= PA; PA = 0
218 * note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap
219 * is used in real operation because we can't know actual used
220 * bits from PA, only from on-disk bitmap
221 *
222 * if we follow this strict logic, then all operations above should be atomic.
223 * given some of them can block, we'd have to use something like semaphores
224 * killing performance on high-end SMP hardware. let's try to relax it using
225 * the following knowledge:
226 * 1) if buddy is referenced, it's already initialized
227 * 2) while block is used in buddy and the buddy is referenced,
228 * nobody can re-allocate that block
229 * 3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has
230 * bit set and PA claims same block, it's OK. IOW, one can set bit in
231 * on-disk bitmap if buddy has same bit set or/and PA covers corresponded
232 * block
233 *
234 * so, now we're building a concurrency table:
235 * - init buddy vs.
236 * - new PA
237 * blocks for PA are allocated in the buddy, buddy must be referenced
238 * until PA is linked to allocation group to avoid concurrent buddy init
239 * - use inode PA
240 * we need to make sure that either on-disk bitmap or PA has uptodate data
241 * given (3) we care that PA-=N operation doesn't interfere with init
242 * - discard inode PA
243 * the simplest way would be to have buddy initialized by the discard
244 * - use locality group PA
245 * again PA-=N must be serialized with init
246 * - discard locality group PA
247 * the simplest way would be to have buddy initialized by the discard
248 * - new PA vs.
249 * - use inode PA
250 * i_data_sem serializes them
251 * - discard inode PA
252 * discard process must wait until PA isn't used by another process
253 * - use locality group PA
254 * some mutex should serialize them
255 * - discard locality group PA
256 * discard process must wait until PA isn't used by another process
257 * - use inode PA
258 * - use inode PA
259 * i_data_sem or another mutex should serializes them
260 * - discard inode PA
261 * discard process must wait until PA isn't used by another process
262 * - use locality group PA
263 * nothing wrong here -- they're different PAs covering different blocks
264 * - discard locality group PA
265 * discard process must wait until PA isn't used by another process
266 *
267 * now we're ready to make few consequences:
268 * - PA is referenced and while it is no discard is possible
269 * - PA is referenced until block isn't marked in on-disk bitmap
270 * - PA changes only after on-disk bitmap
271 * - discard must not compete with init. either init is done before
272 * any discard or they're serialized somehow
273 * - buddy init as sum of on-disk bitmap and PAs is done atomically
274 *
275 * a special case when we've used PA to emptiness. no need to modify buddy
276 * in this case, but we should care about concurrent init
277 *
278 */
279
280 /*
281 * Logic in few words:
282 *
283 * - allocation:
284 * load group
285 * find blocks
286 * mark bits in on-disk bitmap
287 * release group
288 *
289 * - use preallocation:
290 * find proper PA (per-inode or group)
291 * load group
292 * mark bits in on-disk bitmap
293 * release group
294 * release PA
295 *
296 * - free:
297 * load group
298 * mark bits in on-disk bitmap
299 * release group
300 *
301 * - discard preallocations in group:
302 * mark PAs deleted
303 * move them onto local list
304 * load on-disk bitmap
305 * load group
306 * remove PA from object (inode or locality group)
307 * mark free blocks in-core
308 *
309 * - discard inode's preallocations:
310 */
311
312 /*
313 * Locking rules
314 *
315 * Locks:
316 * - bitlock on a group (group)
317 * - object (inode/locality) (object)
318 * - per-pa lock (pa)
319 *
320 * Paths:
321 * - new pa
322 * object
323 * group
324 *
325 * - find and use pa:
326 * pa
327 *
328 * - release consumed pa:
329 * pa
330 * group
331 * object
332 *
333 * - generate in-core bitmap:
334 * group
335 * pa
336 *
337 * - discard all for given object (inode, locality group):
338 * object
339 * pa
340 * group
341 *
342 * - discard all for given group:
343 * group
344 * pa
345 * group
346 * object
347 *
348 */
349 static struct kmem_cache *ext4_pspace_cachep;
350 static struct kmem_cache *ext4_ac_cachep;
351 static struct kmem_cache *ext4_free_data_cachep;
352
353 /* We create slab caches for groupinfo data structures based on the
354 * superblock block size. There will be one per mounted filesystem for
355 * each unique s_blocksize_bits */
356 #define NR_GRPINFO_CACHES 8
357 static struct kmem_cache *ext4_groupinfo_caches[NR_GRPINFO_CACHES];
358
359 static const char *ext4_groupinfo_slab_names[NR_GRPINFO_CACHES] = {
360 "ext4_groupinfo_1k", "ext4_groupinfo_2k", "ext4_groupinfo_4k",
361 "ext4_groupinfo_8k", "ext4_groupinfo_16k", "ext4_groupinfo_32k",
362 "ext4_groupinfo_64k", "ext4_groupinfo_128k"
363 };
364
365 static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
366 ext4_group_t group);
367 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
368 ext4_group_t group);
369 static void ext4_free_data_callback(struct super_block *sb,
370 struct ext4_journal_cb_entry *jce, int rc);
371
372 static inline void *mb_correct_addr_and_bit(int *bit, void *addr)
373 {
374 #if BITS_PER_LONG == 64
375 *bit += ((unsigned long) addr & 7UL) << 3;
376 addr = (void *) ((unsigned long) addr & ~7UL);
377 #elif BITS_PER_LONG == 32
378 *bit += ((unsigned long) addr & 3UL) << 3;
379 addr = (void *) ((unsigned long) addr & ~3UL);
380 #else
381 #error "how many bits you are?!"
382 #endif
383 return addr;
384 }
385
386 static inline int mb_test_bit(int bit, void *addr)
387 {
388 /*
389 * ext4_test_bit on architecture like powerpc
390 * needs unsigned long aligned address
391 */
392 addr = mb_correct_addr_and_bit(&bit, addr);
393 return ext4_test_bit(bit, addr);
394 }
395
396 static inline void mb_set_bit(int bit, void *addr)
397 {
398 addr = mb_correct_addr_and_bit(&bit, addr);
399 ext4_set_bit(bit, addr);
400 }
401
402 static inline void mb_clear_bit(int bit, void *addr)
403 {
404 addr = mb_correct_addr_and_bit(&bit, addr);
405 ext4_clear_bit(bit, addr);
406 }
407
408 static inline int mb_test_and_clear_bit(int bit, void *addr)
409 {
410 addr = mb_correct_addr_and_bit(&bit, addr);
411 return ext4_test_and_clear_bit(bit, addr);
412 }
413
414 static inline int mb_find_next_zero_bit(void *addr, int max, int start)
415 {
416 int fix = 0, ret, tmpmax;
417 addr = mb_correct_addr_and_bit(&fix, addr);
418 tmpmax = max + fix;
419 start += fix;
420
421 ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix;
422 if (ret > max)
423 return max;
424 return ret;
425 }
426
427 static inline int mb_find_next_bit(void *addr, int max, int start)
428 {
429 int fix = 0, ret, tmpmax;
430 addr = mb_correct_addr_and_bit(&fix, addr);
431 tmpmax = max + fix;
432 start += fix;
433
434 ret = ext4_find_next_bit(addr, tmpmax, start) - fix;
435 if (ret > max)
436 return max;
437 return ret;
438 }
439
440 static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max)
441 {
442 char *bb;
443
444 BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
445 BUG_ON(max == NULL);
446
447 if (order > e4b->bd_blkbits + 1) {
448 *max = 0;
449 return NULL;
450 }
451
452 /* at order 0 we see each particular block */
453 if (order == 0) {
454 *max = 1 << (e4b->bd_blkbits + 3);
455 return e4b->bd_bitmap;
456 }
457
458 bb = e4b->bd_buddy + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order];
459 *max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order];
460
461 return bb;
462 }
463
464 #ifdef DOUBLE_CHECK
465 static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b,
466 int first, int count)
467 {
468 int i;
469 struct super_block *sb = e4b->bd_sb;
470
471 if (unlikely(e4b->bd_info->bb_bitmap == NULL))
472 return;
473 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
474 for (i = 0; i < count; i++) {
475 if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) {
476 ext4_fsblk_t blocknr;
477
478 blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
479 blocknr += EXT4_C2B(EXT4_SB(sb), first + i);
480 ext4_grp_locked_error(sb, e4b->bd_group,
481 inode ? inode->i_ino : 0,
482 blocknr,
483 "freeing block already freed "
484 "(bit %u)",
485 first + i);
486 }
487 mb_clear_bit(first + i, e4b->bd_info->bb_bitmap);
488 }
489 }
490
491 static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count)
492 {
493 int i;
494
495 if (unlikely(e4b->bd_info->bb_bitmap == NULL))
496 return;
497 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
498 for (i = 0; i < count; i++) {
499 BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap));
500 mb_set_bit(first + i, e4b->bd_info->bb_bitmap);
501 }
502 }
503
504 static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
505 {
506 if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) {
507 unsigned char *b1, *b2;
508 int i;
509 b1 = (unsigned char *) e4b->bd_info->bb_bitmap;
510 b2 = (unsigned char *) bitmap;
511 for (i = 0; i < e4b->bd_sb->s_blocksize; i++) {
512 if (b1[i] != b2[i]) {
513 ext4_msg(e4b->bd_sb, KERN_ERR,
514 "corruption in group %u "
515 "at byte %u(%u): %x in copy != %x "
516 "on disk/prealloc",
517 e4b->bd_group, i, i * 8, b1[i], b2[i]);
518 BUG();
519 }
520 }
521 }
522 }
523
524 #else
525 static inline void mb_free_blocks_double(struct inode *inode,
526 struct ext4_buddy *e4b, int first, int count)
527 {
528 return;
529 }
530 static inline void mb_mark_used_double(struct ext4_buddy *e4b,
531 int first, int count)
532 {
533 return;
534 }
535 static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
536 {
537 return;
538 }
539 #endif
540
541 #ifdef AGGRESSIVE_CHECK
542
543 #define MB_CHECK_ASSERT(assert) \
544 do { \
545 if (!(assert)) { \
546 printk(KERN_EMERG \
547 "Assertion failure in %s() at %s:%d: \"%s\"\n", \
548 function, file, line, # assert); \
549 BUG(); \
550 } \
551 } while (0)
552
553 static int __mb_check_buddy(struct ext4_buddy *e4b, char *file,
554 const char *function, int line)
555 {
556 struct super_block *sb = e4b->bd_sb;
557 int order = e4b->bd_blkbits + 1;
558 int max;
559 int max2;
560 int i;
561 int j;
562 int k;
563 int count;
564 struct ext4_group_info *grp;
565 int fragments = 0;
566 int fstart;
567 struct list_head *cur;
568 void *buddy;
569 void *buddy2;
570
571 {
572 static int mb_check_counter;
573 if (mb_check_counter++ % 100 != 0)
574 return 0;
575 }
576
577 while (order > 1) {
578 buddy = mb_find_buddy(e4b, order, &max);
579 MB_CHECK_ASSERT(buddy);
580 buddy2 = mb_find_buddy(e4b, order - 1, &max2);
581 MB_CHECK_ASSERT(buddy2);
582 MB_CHECK_ASSERT(buddy != buddy2);
583 MB_CHECK_ASSERT(max * 2 == max2);
584
585 count = 0;
586 for (i = 0; i < max; i++) {
587
588 if (mb_test_bit(i, buddy)) {
589 /* only single bit in buddy2 may be 1 */
590 if (!mb_test_bit(i << 1, buddy2)) {
591 MB_CHECK_ASSERT(
592 mb_test_bit((i<<1)+1, buddy2));
593 } else if (!mb_test_bit((i << 1) + 1, buddy2)) {
594 MB_CHECK_ASSERT(
595 mb_test_bit(i << 1, buddy2));
596 }
597 continue;
598 }
599
600 /* both bits in buddy2 must be 1 */
601 MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2));
602 MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2));
603
604 for (j = 0; j < (1 << order); j++) {
605 k = (i * (1 << order)) + j;
606 MB_CHECK_ASSERT(
607 !mb_test_bit(k, e4b->bd_bitmap));
608 }
609 count++;
610 }
611 MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count);
612 order--;
613 }
614
615 fstart = -1;
616 buddy = mb_find_buddy(e4b, 0, &max);
617 for (i = 0; i < max; i++) {
618 if (!mb_test_bit(i, buddy)) {
619 MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free);
620 if (fstart == -1) {
621 fragments++;
622 fstart = i;
623 }
624 continue;
625 }
626 fstart = -1;
627 /* check used bits only */
628 for (j = 0; j < e4b->bd_blkbits + 1; j++) {
629 buddy2 = mb_find_buddy(e4b, j, &max2);
630 k = i >> j;
631 MB_CHECK_ASSERT(k < max2);
632 MB_CHECK_ASSERT(mb_test_bit(k, buddy2));
633 }
634 }
635 MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info));
636 MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments);
637
638 grp = ext4_get_group_info(sb, e4b->bd_group);
639 list_for_each(cur, &grp->bb_prealloc_list) {
640 ext4_group_t groupnr;
641 struct ext4_prealloc_space *pa;
642 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
643 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k);
644 MB_CHECK_ASSERT(groupnr == e4b->bd_group);
645 for (i = 0; i < pa->pa_len; i++)
646 MB_CHECK_ASSERT(mb_test_bit(k + i, buddy));
647 }
648 return 0;
649 }
650 #undef MB_CHECK_ASSERT
651 #define mb_check_buddy(e4b) __mb_check_buddy(e4b, \
652 __FILE__, __func__, __LINE__)
653 #else
654 #define mb_check_buddy(e4b)
655 #endif
656
657 /*
658 * Divide blocks started from @first with length @len into
659 * smaller chunks with power of 2 blocks.
660 * Clear the bits in bitmap which the blocks of the chunk(s) covered,
661 * then increase bb_counters[] for corresponded chunk size.
662 */
663 static void ext4_mb_mark_free_simple(struct super_block *sb,
664 void *buddy, ext4_grpblk_t first, ext4_grpblk_t len,
665 struct ext4_group_info *grp)
666 {
667 struct ext4_sb_info *sbi = EXT4_SB(sb);
668 ext4_grpblk_t min;
669 ext4_grpblk_t max;
670 ext4_grpblk_t chunk;
671 unsigned short border;
672
673 BUG_ON(len > EXT4_CLUSTERS_PER_GROUP(sb));
674
675 border = 2 << sb->s_blocksize_bits;
676
677 while (len > 0) {
678 /* find how many blocks can be covered since this position */
679 max = ffs(first | border) - 1;
680
681 /* find how many blocks of power 2 we need to mark */
682 min = fls(len) - 1;
683
684 if (max < min)
685 min = max;
686 chunk = 1 << min;
687
688 /* mark multiblock chunks only */
689 grp->bb_counters[min]++;
690 if (min > 0)
691 mb_clear_bit(first >> min,
692 buddy + sbi->s_mb_offsets[min]);
693
694 len -= chunk;
695 first += chunk;
696 }
697 }
698
699 /*
700 * Cache the order of the largest free extent we have available in this block
701 * group.
702 */
703 static void
704 mb_set_largest_free_order(struct super_block *sb, struct ext4_group_info *grp)
705 {
706 int i;
707 int bits;
708
709 grp->bb_largest_free_order = -1; /* uninit */
710
711 bits = sb->s_blocksize_bits + 1;
712 for (i = bits; i >= 0; i--) {
713 if (grp->bb_counters[i] > 0) {
714 grp->bb_largest_free_order = i;
715 break;
716 }
717 }
718 }
719
720 static noinline_for_stack
721 void ext4_mb_generate_buddy(struct super_block *sb,
722 void *buddy, void *bitmap, ext4_group_t group)
723 {
724 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
725 struct ext4_sb_info *sbi = EXT4_SB(sb);
726 ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb);
727 ext4_grpblk_t i = 0;
728 ext4_grpblk_t first;
729 ext4_grpblk_t len;
730 unsigned free = 0;
731 unsigned fragments = 0;
732 unsigned long long period = get_cycles();
733
734 /* initialize buddy from bitmap which is aggregation
735 * of on-disk bitmap and preallocations */
736 i = mb_find_next_zero_bit(bitmap, max, 0);
737 grp->bb_first_free = i;
738 while (i < max) {
739 fragments++;
740 first = i;
741 i = mb_find_next_bit(bitmap, max, i);
742 len = i - first;
743 free += len;
744 if (len > 1)
745 ext4_mb_mark_free_simple(sb, buddy, first, len, grp);
746 else
747 grp->bb_counters[0]++;
748 if (i < max)
749 i = mb_find_next_zero_bit(bitmap, max, i);
750 }
751 grp->bb_fragments = fragments;
752
753 if (free != grp->bb_free) {
754 ext4_grp_locked_error(sb, group, 0, 0,
755 "%u clusters in bitmap, %u in gd; "
756 "block bitmap corrupt.",
757 free, grp->bb_free);
758 /*
759 * If we intend to continue, we consider group descriptor
760 * corrupt and update bb_free using bitmap value
761 */
762 grp->bb_free = free;
763 if (!EXT4_MB_GRP_BBITMAP_CORRUPT(grp))
764 percpu_counter_sub(&sbi->s_freeclusters_counter,
765 grp->bb_free);
766 set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT, &grp->bb_state);
767 }
768 mb_set_largest_free_order(sb, grp);
769
770 clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state));
771
772 period = get_cycles() - period;
773 spin_lock(&EXT4_SB(sb)->s_bal_lock);
774 EXT4_SB(sb)->s_mb_buddies_generated++;
775 EXT4_SB(sb)->s_mb_generation_time += period;
776 spin_unlock(&EXT4_SB(sb)->s_bal_lock);
777 }
778
779 static void mb_regenerate_buddy(struct ext4_buddy *e4b)
780 {
781 int count;
782 int order = 1;
783 void *buddy;
784
785 while ((buddy = mb_find_buddy(e4b, order++, &count))) {
786 ext4_set_bits(buddy, 0, count);
787 }
788 e4b->bd_info->bb_fragments = 0;
789 memset(e4b->bd_info->bb_counters, 0,
790 sizeof(*e4b->bd_info->bb_counters) *
791 (e4b->bd_sb->s_blocksize_bits + 2));
792
793 ext4_mb_generate_buddy(e4b->bd_sb, e4b->bd_buddy,
794 e4b->bd_bitmap, e4b->bd_group);
795 }
796
797 /* The buddy information is attached the buddy cache inode
798 * for convenience. The information regarding each group
799 * is loaded via ext4_mb_load_buddy. The information involve
800 * block bitmap and buddy information. The information are
801 * stored in the inode as
802 *
803 * { page }
804 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
805 *
806 *
807 * one block each for bitmap and buddy information.
808 * So for each group we take up 2 blocks. A page can
809 * contain blocks_per_page (PAGE_CACHE_SIZE / blocksize) blocks.
810 * So it can have information regarding groups_per_page which
811 * is blocks_per_page/2
812 *
813 * Locking note: This routine takes the block group lock of all groups
814 * for this page; do not hold this lock when calling this routine!
815 */
816
817 static int ext4_mb_init_cache(struct page *page, char *incore)
818 {
819 ext4_group_t ngroups;
820 int blocksize;
821 int blocks_per_page;
822 int groups_per_page;
823 int err = 0;
824 int i;
825 ext4_group_t first_group, group;
826 int first_block;
827 struct super_block *sb;
828 struct buffer_head *bhs;
829 struct buffer_head **bh = NULL;
830 struct inode *inode;
831 char *data;
832 char *bitmap;
833 struct ext4_group_info *grinfo;
834
835 mb_debug(1, "init page %lu\n", page->index);
836
837 inode = page->mapping->host;
838 sb = inode->i_sb;
839 ngroups = ext4_get_groups_count(sb);
840 blocksize = 1 << inode->i_blkbits;
841 blocks_per_page = PAGE_CACHE_SIZE / blocksize;
842
843 groups_per_page = blocks_per_page >> 1;
844 if (groups_per_page == 0)
845 groups_per_page = 1;
846
847 /* allocate buffer_heads to read bitmaps */
848 if (groups_per_page > 1) {
849 i = sizeof(struct buffer_head *) * groups_per_page;
850 bh = kzalloc(i, GFP_NOFS);
851 if (bh == NULL) {
852 err = -ENOMEM;
853 goto out;
854 }
855 } else
856 bh = &bhs;
857
858 first_group = page->index * blocks_per_page / 2;
859
860 /* read all groups the page covers into the cache */
861 for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
862 if (group >= ngroups)
863 break;
864
865 grinfo = ext4_get_group_info(sb, group);
866 /*
867 * If page is uptodate then we came here after online resize
868 * which added some new uninitialized group info structs, so
869 * we must skip all initialized uptodate buddies on the page,
870 * which may be currently in use by an allocating task.
871 */
872 if (PageUptodate(page) && !EXT4_MB_GRP_NEED_INIT(grinfo)) {
873 bh[i] = NULL;
874 continue;
875 }
876 if (!(bh[i] = ext4_read_block_bitmap_nowait(sb, group))) {
877 err = -ENOMEM;
878 goto out;
879 }
880 mb_debug(1, "read bitmap for group %u\n", group);
881 }
882
883 /* wait for I/O completion */
884 for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
885 if (bh[i] && ext4_wait_block_bitmap(sb, group, bh[i])) {
886 err = -EIO;
887 goto out;
888 }
889 }
890
891 first_block = page->index * blocks_per_page;
892 for (i = 0; i < blocks_per_page; i++) {
893 group = (first_block + i) >> 1;
894 if (group >= ngroups)
895 break;
896
897 if (!bh[group - first_group])
898 /* skip initialized uptodate buddy */
899 continue;
900
901 /*
902 * data carry information regarding this
903 * particular group in the format specified
904 * above
905 *
906 */
907 data = page_address(page) + (i * blocksize);
908 bitmap = bh[group - first_group]->b_data;
909
910 /*
911 * We place the buddy block and bitmap block
912 * close together
913 */
914 if ((first_block + i) & 1) {
915 /* this is block of buddy */
916 BUG_ON(incore == NULL);
917 mb_debug(1, "put buddy for group %u in page %lu/%x\n",
918 group, page->index, i * blocksize);
919 trace_ext4_mb_buddy_bitmap_load(sb, group);
920 grinfo = ext4_get_group_info(sb, group);
921 grinfo->bb_fragments = 0;
922 memset(grinfo->bb_counters, 0,
923 sizeof(*grinfo->bb_counters) *
924 (sb->s_blocksize_bits+2));
925 /*
926 * incore got set to the group block bitmap below
927 */
928 ext4_lock_group(sb, group);
929 /* init the buddy */
930 memset(data, 0xff, blocksize);
931 ext4_mb_generate_buddy(sb, data, incore, group);
932 ext4_unlock_group(sb, group);
933 incore = NULL;
934 } else {
935 /* this is block of bitmap */
936 BUG_ON(incore != NULL);
937 mb_debug(1, "put bitmap for group %u in page %lu/%x\n",
938 group, page->index, i * blocksize);
939 trace_ext4_mb_bitmap_load(sb, group);
940
941 /* see comments in ext4_mb_put_pa() */
942 ext4_lock_group(sb, group);
943 memcpy(data, bitmap, blocksize);
944
945 /* mark all preallocated blks used in in-core bitmap */
946 ext4_mb_generate_from_pa(sb, data, group);
947 ext4_mb_generate_from_freelist(sb, data, group);
948 ext4_unlock_group(sb, group);
949
950 /* set incore so that the buddy information can be
951 * generated using this
952 */
953 incore = data;
954 }
955 }
956 SetPageUptodate(page);
957
958 out:
959 if (bh) {
960 for (i = 0; i < groups_per_page; i++)
961 brelse(bh[i]);
962 if (bh != &bhs)
963 kfree(bh);
964 }
965 return err;
966 }
967
968 /*
969 * Lock the buddy and bitmap pages. This make sure other parallel init_group
970 * on the same buddy page doesn't happen whild holding the buddy page lock.
971 * Return locked buddy and bitmap pages on e4b struct. If buddy and bitmap
972 * are on the same page e4b->bd_buddy_page is NULL and return value is 0.
973 */
974 static int ext4_mb_get_buddy_page_lock(struct super_block *sb,
975 ext4_group_t group, struct ext4_buddy *e4b)
976 {
977 struct inode *inode = EXT4_SB(sb)->s_buddy_cache;
978 int block, pnum, poff;
979 int blocks_per_page;
980 struct page *page;
981
982 e4b->bd_buddy_page = NULL;
983 e4b->bd_bitmap_page = NULL;
984
985 blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize;
986 /*
987 * the buddy cache inode stores the block bitmap
988 * and buddy information in consecutive blocks.
989 * So for each group we need two blocks.
990 */
991 block = group * 2;
992 pnum = block / blocks_per_page;
993 poff = block % blocks_per_page;
994 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
995 if (!page)
996 return -ENOMEM;
997 BUG_ON(page->mapping != inode->i_mapping);
998 e4b->bd_bitmap_page = page;
999 e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
1000
1001 if (blocks_per_page >= 2) {
1002 /* buddy and bitmap are on the same page */
1003 return 0;
1004 }
1005
1006 block++;
1007 pnum = block / blocks_per_page;
1008 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
1009 if (!page)
1010 return -ENOMEM;
1011 BUG_ON(page->mapping != inode->i_mapping);
1012 e4b->bd_buddy_page = page;
1013 return 0;
1014 }
1015
1016 static void ext4_mb_put_buddy_page_lock(struct ext4_buddy *e4b)
1017 {
1018 if (e4b->bd_bitmap_page) {
1019 unlock_page(e4b->bd_bitmap_page);
1020 page_cache_release(e4b->bd_bitmap_page);
1021 }
1022 if (e4b->bd_buddy_page) {
1023 unlock_page(e4b->bd_buddy_page);
1024 page_cache_release(e4b->bd_buddy_page);
1025 }
1026 }
1027
1028 /*
1029 * Locking note: This routine calls ext4_mb_init_cache(), which takes the
1030 * block group lock of all groups for this page; do not hold the BG lock when
1031 * calling this routine!
1032 */
1033 static noinline_for_stack
1034 int ext4_mb_init_group(struct super_block *sb, ext4_group_t group)
1035 {
1036
1037 struct ext4_group_info *this_grp;
1038 struct ext4_buddy e4b;
1039 struct page *page;
1040 int ret = 0;
1041
1042 might_sleep();
1043 mb_debug(1, "init group %u\n", group);
1044 this_grp = ext4_get_group_info(sb, group);
1045 /*
1046 * This ensures that we don't reinit the buddy cache
1047 * page which map to the group from which we are already
1048 * allocating. If we are looking at the buddy cache we would
1049 * have taken a reference using ext4_mb_load_buddy and that
1050 * would have pinned buddy page to page cache.
1051 * The call to ext4_mb_get_buddy_page_lock will mark the
1052 * page accessed.
1053 */
1054 ret = ext4_mb_get_buddy_page_lock(sb, group, &e4b);
1055 if (ret || !EXT4_MB_GRP_NEED_INIT(this_grp)) {
1056 /*
1057 * somebody initialized the group
1058 * return without doing anything
1059 */
1060 goto err;
1061 }
1062
1063 page = e4b.bd_bitmap_page;
1064 ret = ext4_mb_init_cache(page, NULL);
1065 if (ret)
1066 goto err;
1067 if (!PageUptodate(page)) {
1068 ret = -EIO;
1069 goto err;
1070 }
1071
1072 if (e4b.bd_buddy_page == NULL) {
1073 /*
1074 * If both the bitmap and buddy are in
1075 * the same page we don't need to force
1076 * init the buddy
1077 */
1078 ret = 0;
1079 goto err;
1080 }
1081 /* init buddy cache */
1082 page = e4b.bd_buddy_page;
1083 ret = ext4_mb_init_cache(page, e4b.bd_bitmap);
1084 if (ret)
1085 goto err;
1086 if (!PageUptodate(page)) {
1087 ret = -EIO;
1088 goto err;
1089 }
1090 err:
1091 ext4_mb_put_buddy_page_lock(&e4b);
1092 return ret;
1093 }
1094
1095 /*
1096 * Locking note: This routine calls ext4_mb_init_cache(), which takes the
1097 * block group lock of all groups for this page; do not hold the BG lock when
1098 * calling this routine!
1099 */
1100 static noinline_for_stack int
1101 ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group,
1102 struct ext4_buddy *e4b)
1103 {
1104 int blocks_per_page;
1105 int block;
1106 int pnum;
1107 int poff;
1108 struct page *page;
1109 int ret;
1110 struct ext4_group_info *grp;
1111 struct ext4_sb_info *sbi = EXT4_SB(sb);
1112 struct inode *inode = sbi->s_buddy_cache;
1113
1114 might_sleep();
1115 mb_debug(1, "load group %u\n", group);
1116
1117 blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize;
1118 grp = ext4_get_group_info(sb, group);
1119
1120 e4b->bd_blkbits = sb->s_blocksize_bits;
1121 e4b->bd_info = grp;
1122 e4b->bd_sb = sb;
1123 e4b->bd_group = group;
1124 e4b->bd_buddy_page = NULL;
1125 e4b->bd_bitmap_page = NULL;
1126
1127 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
1128 /*
1129 * we need full data about the group
1130 * to make a good selection
1131 */
1132 ret = ext4_mb_init_group(sb, group);
1133 if (ret)
1134 return ret;
1135 }
1136
1137 /*
1138 * the buddy cache inode stores the block bitmap
1139 * and buddy information in consecutive blocks.
1140 * So for each group we need two blocks.
1141 */
1142 block = group * 2;
1143 pnum = block / blocks_per_page;
1144 poff = block % blocks_per_page;
1145
1146 /* we could use find_or_create_page(), but it locks page
1147 * what we'd like to avoid in fast path ... */
1148 page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED);
1149 if (page == NULL || !PageUptodate(page)) {
1150 if (page)
1151 /*
1152 * drop the page reference and try
1153 * to get the page with lock. If we
1154 * are not uptodate that implies
1155 * somebody just created the page but
1156 * is yet to initialize the same. So
1157 * wait for it to initialize.
1158 */
1159 page_cache_release(page);
1160 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
1161 if (page) {
1162 BUG_ON(page->mapping != inode->i_mapping);
1163 if (!PageUptodate(page)) {
1164 ret = ext4_mb_init_cache(page, NULL);
1165 if (ret) {
1166 unlock_page(page);
1167 goto err;
1168 }
1169 mb_cmp_bitmaps(e4b, page_address(page) +
1170 (poff * sb->s_blocksize));
1171 }
1172 unlock_page(page);
1173 }
1174 }
1175 if (page == NULL) {
1176 ret = -ENOMEM;
1177 goto err;
1178 }
1179 if (!PageUptodate(page)) {
1180 ret = -EIO;
1181 goto err;
1182 }
1183
1184 /* Pages marked accessed already */
1185 e4b->bd_bitmap_page = page;
1186 e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
1187
1188 block++;
1189 pnum = block / blocks_per_page;
1190 poff = block % blocks_per_page;
1191
1192 page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED);
1193 if (page == NULL || !PageUptodate(page)) {
1194 if (page)
1195 page_cache_release(page);
1196 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
1197 if (page) {
1198 BUG_ON(page->mapping != inode->i_mapping);
1199 if (!PageUptodate(page)) {
1200 ret = ext4_mb_init_cache(page, e4b->bd_bitmap);
1201 if (ret) {
1202 unlock_page(page);
1203 goto err;
1204 }
1205 }
1206 unlock_page(page);
1207 }
1208 }
1209 if (page == NULL) {
1210 ret = -ENOMEM;
1211 goto err;
1212 }
1213 if (!PageUptodate(page)) {
1214 ret = -EIO;
1215 goto err;
1216 }
1217
1218 /* Pages marked accessed already */
1219 e4b->bd_buddy_page = page;
1220 e4b->bd_buddy = page_address(page) + (poff * sb->s_blocksize);
1221
1222 BUG_ON(e4b->bd_bitmap_page == NULL);
1223 BUG_ON(e4b->bd_buddy_page == NULL);
1224
1225 return 0;
1226
1227 err:
1228 if (page)
1229 page_cache_release(page);
1230 if (e4b->bd_bitmap_page)
1231 page_cache_release(e4b->bd_bitmap_page);
1232 if (e4b->bd_buddy_page)
1233 page_cache_release(e4b->bd_buddy_page);
1234 e4b->bd_buddy = NULL;
1235 e4b->bd_bitmap = NULL;
1236 return ret;
1237 }
1238
1239 static void ext4_mb_unload_buddy(struct ext4_buddy *e4b)
1240 {
1241 if (e4b->bd_bitmap_page)
1242 page_cache_release(e4b->bd_bitmap_page);
1243 if (e4b->bd_buddy_page)
1244 page_cache_release(e4b->bd_buddy_page);
1245 }
1246
1247
1248 static int mb_find_order_for_block(struct ext4_buddy *e4b, int block)
1249 {
1250 int order = 1;
1251 void *bb;
1252
1253 BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
1254 BUG_ON(block >= (1 << (e4b->bd_blkbits + 3)));
1255
1256 bb = e4b->bd_buddy;
1257 while (order <= e4b->bd_blkbits + 1) {
1258 block = block >> 1;
1259 if (!mb_test_bit(block, bb)) {
1260 /* this block is part of buddy of order 'order' */
1261 return order;
1262 }
1263 bb += 1 << (e4b->bd_blkbits - order);
1264 order++;
1265 }
1266 return 0;
1267 }
1268
1269 static void mb_clear_bits(void *bm, int cur, int len)
1270 {
1271 __u32 *addr;
1272
1273 len = cur + len;
1274 while (cur < len) {
1275 if ((cur & 31) == 0 && (len - cur) >= 32) {
1276 /* fast path: clear whole word at once */
1277 addr = bm + (cur >> 3);
1278 *addr = 0;
1279 cur += 32;
1280 continue;
1281 }
1282 mb_clear_bit(cur, bm);
1283 cur++;
1284 }
1285 }
1286
1287 /* clear bits in given range
1288 * will return first found zero bit if any, -1 otherwise
1289 */
1290 static int mb_test_and_clear_bits(void *bm, int cur, int len)
1291 {
1292 __u32 *addr;
1293 int zero_bit = -1;
1294
1295 len = cur + len;
1296 while (cur < len) {
1297 if ((cur & 31) == 0 && (len - cur) >= 32) {
1298 /* fast path: clear whole word at once */
1299 addr = bm + (cur >> 3);
1300 if (*addr != (__u32)(-1) && zero_bit == -1)
1301 zero_bit = cur + mb_find_next_zero_bit(addr, 32, 0);
1302 *addr = 0;
1303 cur += 32;
1304 continue;
1305 }
1306 if (!mb_test_and_clear_bit(cur, bm) && zero_bit == -1)
1307 zero_bit = cur;
1308 cur++;
1309 }
1310
1311 return zero_bit;
1312 }
1313
1314 void ext4_set_bits(void *bm, int cur, int len)
1315 {
1316 __u32 *addr;
1317
1318 len = cur + len;
1319 while (cur < len) {
1320 if ((cur & 31) == 0 && (len - cur) >= 32) {
1321 /* fast path: set whole word at once */
1322 addr = bm + (cur >> 3);
1323 *addr = 0xffffffff;
1324 cur += 32;
1325 continue;
1326 }
1327 mb_set_bit(cur, bm);
1328 cur++;
1329 }
1330 }
1331
1332 /*
1333 * _________________________________________________________________ */
1334
1335 static inline int mb_buddy_adjust_border(int* bit, void* bitmap, int side)
1336 {
1337 if (mb_test_bit(*bit + side, bitmap)) {
1338 mb_clear_bit(*bit, bitmap);
1339 (*bit) -= side;
1340 return 1;
1341 }
1342 else {
1343 (*bit) += side;
1344 mb_set_bit(*bit, bitmap);
1345 return -1;
1346 }
1347 }
1348
1349 static void mb_buddy_mark_free(struct ext4_buddy *e4b, int first, int last)
1350 {
1351 int max;
1352 int order = 1;
1353 void *buddy = mb_find_buddy(e4b, order, &max);
1354
1355 while (buddy) {
1356 void *buddy2;
1357
1358 /* Bits in range [first; last] are known to be set since
1359 * corresponding blocks were allocated. Bits in range
1360 * (first; last) will stay set because they form buddies on
1361 * upper layer. We just deal with borders if they don't
1362 * align with upper layer and then go up.
1363 * Releasing entire group is all about clearing
1364 * single bit of highest order buddy.
1365 */
1366
1367 /* Example:
1368 * ---------------------------------
1369 * | 1 | 1 | 1 | 1 |
1370 * ---------------------------------
1371 * | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
1372 * ---------------------------------
1373 * 0 1 2 3 4 5 6 7
1374 * \_____________________/
1375 *
1376 * Neither [1] nor [6] is aligned to above layer.
1377 * Left neighbour [0] is free, so mark it busy,
1378 * decrease bb_counters and extend range to
1379 * [0; 6]
1380 * Right neighbour [7] is busy. It can't be coaleasced with [6], so
1381 * mark [6] free, increase bb_counters and shrink range to
1382 * [0; 5].
1383 * Then shift range to [0; 2], go up and do the same.
1384 */
1385
1386
1387 if (first & 1)
1388 e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&first, buddy, -1);
1389 if (!(last & 1))
1390 e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&last, buddy, 1);
1391 if (first > last)
1392 break;
1393 order++;
1394
1395 if (first == last || !(buddy2 = mb_find_buddy(e4b, order, &max))) {
1396 mb_clear_bits(buddy, first, last - first + 1);
1397 e4b->bd_info->bb_counters[order - 1] += last - first + 1;
1398 break;
1399 }
1400 first >>= 1;
1401 last >>= 1;
1402 buddy = buddy2;
1403 }
1404 }
1405
1406 static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b,
1407 int first, int count)
1408 {
1409 int left_is_free = 0;
1410 int right_is_free = 0;
1411 int block;
1412 int last = first + count - 1;
1413 struct super_block *sb = e4b->bd_sb;
1414
1415 BUG_ON(last >= (sb->s_blocksize << 3));
1416 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
1417 /* Don't bother if the block group is corrupt. */
1418 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info)))
1419 return;
1420
1421 mb_check_buddy(e4b);
1422 mb_free_blocks_double(inode, e4b, first, count);
1423
1424 e4b->bd_info->bb_free += count;
1425 if (first < e4b->bd_info->bb_first_free)
1426 e4b->bd_info->bb_first_free = first;
1427
1428 /* access memory sequentially: check left neighbour,
1429 * clear range and then check right neighbour
1430 */
1431 if (first != 0)
1432 left_is_free = !mb_test_bit(first - 1, e4b->bd_bitmap);
1433 block = mb_test_and_clear_bits(e4b->bd_bitmap, first, count);
1434 if (last + 1 < EXT4_SB(sb)->s_mb_maxs[0])
1435 right_is_free = !mb_test_bit(last + 1, e4b->bd_bitmap);
1436
1437 if (unlikely(block != -1)) {
1438 struct ext4_sb_info *sbi = EXT4_SB(sb);
1439 ext4_fsblk_t blocknr;
1440
1441 blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
1442 blocknr += EXT4_C2B(EXT4_SB(sb), block);
1443 ext4_grp_locked_error(sb, e4b->bd_group,
1444 inode ? inode->i_ino : 0,
1445 blocknr,
1446 "freeing already freed block "
1447 "(bit %u); block bitmap corrupt.",
1448 block);
1449 if (!EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info))
1450 percpu_counter_sub(&sbi->s_freeclusters_counter,
1451 e4b->bd_info->bb_free);
1452 /* Mark the block group as corrupt. */
1453 set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT,
1454 &e4b->bd_info->bb_state);
1455 mb_regenerate_buddy(e4b);
1456 goto done;
1457 }
1458
1459 /* let's maintain fragments counter */
1460 if (left_is_free && right_is_free)
1461 e4b->bd_info->bb_fragments--;
1462 else if (!left_is_free && !right_is_free)
1463 e4b->bd_info->bb_fragments++;
1464
1465 /* buddy[0] == bd_bitmap is a special case, so handle
1466 * it right away and let mb_buddy_mark_free stay free of
1467 * zero order checks.
1468 * Check if neighbours are to be coaleasced,
1469 * adjust bitmap bb_counters and borders appropriately.
1470 */
1471 if (first & 1) {
1472 first += !left_is_free;
1473 e4b->bd_info->bb_counters[0] += left_is_free ? -1 : 1;
1474 }
1475 if (!(last & 1)) {
1476 last -= !right_is_free;
1477 e4b->bd_info->bb_counters[0] += right_is_free ? -1 : 1;
1478 }
1479
1480 if (first <= last)
1481 mb_buddy_mark_free(e4b, first >> 1, last >> 1);
1482
1483 done:
1484 mb_set_largest_free_order(sb, e4b->bd_info);
1485 mb_check_buddy(e4b);
1486 }
1487
1488 static int mb_find_extent(struct ext4_buddy *e4b, int block,
1489 int needed, struct ext4_free_extent *ex)
1490 {
1491 int next = block;
1492 int max, order;
1493 void *buddy;
1494
1495 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1496 BUG_ON(ex == NULL);
1497
1498 buddy = mb_find_buddy(e4b, 0, &max);
1499 BUG_ON(buddy == NULL);
1500 BUG_ON(block >= max);
1501 if (mb_test_bit(block, buddy)) {
1502 ex->fe_len = 0;
1503 ex->fe_start = 0;
1504 ex->fe_group = 0;
1505 return 0;
1506 }
1507
1508 /* find actual order */
1509 order = mb_find_order_for_block(e4b, block);
1510 block = block >> order;
1511
1512 ex->fe_len = 1 << order;
1513 ex->fe_start = block << order;
1514 ex->fe_group = e4b->bd_group;
1515
1516 /* calc difference from given start */
1517 next = next - ex->fe_start;
1518 ex->fe_len -= next;
1519 ex->fe_start += next;
1520
1521 while (needed > ex->fe_len &&
1522 mb_find_buddy(e4b, order, &max)) {
1523
1524 if (block + 1 >= max)
1525 break;
1526
1527 next = (block + 1) * (1 << order);
1528 if (mb_test_bit(next, e4b->bd_bitmap))
1529 break;
1530
1531 order = mb_find_order_for_block(e4b, next);
1532
1533 block = next >> order;
1534 ex->fe_len += 1 << order;
1535 }
1536
1537 BUG_ON(ex->fe_start + ex->fe_len > (1 << (e4b->bd_blkbits + 3)));
1538 return ex->fe_len;
1539 }
1540
1541 static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex)
1542 {
1543 int ord;
1544 int mlen = 0;
1545 int max = 0;
1546 int cur;
1547 int start = ex->fe_start;
1548 int len = ex->fe_len;
1549 unsigned ret = 0;
1550 int len0 = len;
1551 void *buddy;
1552
1553 BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3));
1554 BUG_ON(e4b->bd_group != ex->fe_group);
1555 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1556 mb_check_buddy(e4b);
1557 mb_mark_used_double(e4b, start, len);
1558
1559 e4b->bd_info->bb_free -= len;
1560 if (e4b->bd_info->bb_first_free == start)
1561 e4b->bd_info->bb_first_free += len;
1562
1563 /* let's maintain fragments counter */
1564 if (start != 0)
1565 mlen = !mb_test_bit(start - 1, e4b->bd_bitmap);
1566 if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0])
1567 max = !mb_test_bit(start + len, e4b->bd_bitmap);
1568 if (mlen && max)
1569 e4b->bd_info->bb_fragments++;
1570 else if (!mlen && !max)
1571 e4b->bd_info->bb_fragments--;
1572
1573 /* let's maintain buddy itself */
1574 while (len) {
1575 ord = mb_find_order_for_block(e4b, start);
1576
1577 if (((start >> ord) << ord) == start && len >= (1 << ord)) {
1578 /* the whole chunk may be allocated at once! */
1579 mlen = 1 << ord;
1580 buddy = mb_find_buddy(e4b, ord, &max);
1581 BUG_ON((start >> ord) >= max);
1582 mb_set_bit(start >> ord, buddy);
1583 e4b->bd_info->bb_counters[ord]--;
1584 start += mlen;
1585 len -= mlen;
1586 BUG_ON(len < 0);
1587 continue;
1588 }
1589
1590 /* store for history */
1591 if (ret == 0)
1592 ret = len | (ord << 16);
1593
1594 /* we have to split large buddy */
1595 BUG_ON(ord <= 0);
1596 buddy = mb_find_buddy(e4b, ord, &max);
1597 mb_set_bit(start >> ord, buddy);
1598 e4b->bd_info->bb_counters[ord]--;
1599
1600 ord--;
1601 cur = (start >> ord) & ~1U;
1602 buddy = mb_find_buddy(e4b, ord, &max);
1603 mb_clear_bit(cur, buddy);
1604 mb_clear_bit(cur + 1, buddy);
1605 e4b->bd_info->bb_counters[ord]++;
1606 e4b->bd_info->bb_counters[ord]++;
1607 }
1608 mb_set_largest_free_order(e4b->bd_sb, e4b->bd_info);
1609
1610 ext4_set_bits(e4b->bd_bitmap, ex->fe_start, len0);
1611 mb_check_buddy(e4b);
1612
1613 return ret;
1614 }
1615
1616 /*
1617 * Must be called under group lock!
1618 */
1619 static void ext4_mb_use_best_found(struct ext4_allocation_context *ac,
1620 struct ext4_buddy *e4b)
1621 {
1622 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1623 int ret;
1624
1625 BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group);
1626 BUG_ON(ac->ac_status == AC_STATUS_FOUND);
1627
1628 ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len);
1629 ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical;
1630 ret = mb_mark_used(e4b, &ac->ac_b_ex);
1631
1632 /* preallocation can change ac_b_ex, thus we store actually
1633 * allocated blocks for history */
1634 ac->ac_f_ex = ac->ac_b_ex;
1635
1636 ac->ac_status = AC_STATUS_FOUND;
1637 ac->ac_tail = ret & 0xffff;
1638 ac->ac_buddy = ret >> 16;
1639
1640 /*
1641 * take the page reference. We want the page to be pinned
1642 * so that we don't get a ext4_mb_init_cache_call for this
1643 * group until we update the bitmap. That would mean we
1644 * double allocate blocks. The reference is dropped
1645 * in ext4_mb_release_context
1646 */
1647 ac->ac_bitmap_page = e4b->bd_bitmap_page;
1648 get_page(ac->ac_bitmap_page);
1649 ac->ac_buddy_page = e4b->bd_buddy_page;
1650 get_page(ac->ac_buddy_page);
1651 /* store last allocated for subsequent stream allocation */
1652 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
1653 spin_lock(&sbi->s_md_lock);
1654 sbi->s_mb_last_group = ac->ac_f_ex.fe_group;
1655 sbi->s_mb_last_start = ac->ac_f_ex.fe_start;
1656 spin_unlock(&sbi->s_md_lock);
1657 }
1658 }
1659
1660 /*
1661 * regular allocator, for general purposes allocation
1662 */
1663
1664 static void ext4_mb_check_limits(struct ext4_allocation_context *ac,
1665 struct ext4_buddy *e4b,
1666 int finish_group)
1667 {
1668 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1669 struct ext4_free_extent *bex = &ac->ac_b_ex;
1670 struct ext4_free_extent *gex = &ac->ac_g_ex;
1671 struct ext4_free_extent ex;
1672 int max;
1673
1674 if (ac->ac_status == AC_STATUS_FOUND)
1675 return;
1676 /*
1677 * We don't want to scan for a whole year
1678 */
1679 if (ac->ac_found > sbi->s_mb_max_to_scan &&
1680 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1681 ac->ac_status = AC_STATUS_BREAK;
1682 return;
1683 }
1684
1685 /*
1686 * Haven't found good chunk so far, let's continue
1687 */
1688 if (bex->fe_len < gex->fe_len)
1689 return;
1690
1691 if ((finish_group || ac->ac_found > sbi->s_mb_min_to_scan)
1692 && bex->fe_group == e4b->bd_group) {
1693 /* recheck chunk's availability - we don't know
1694 * when it was found (within this lock-unlock
1695 * period or not) */
1696 max = mb_find_extent(e4b, bex->fe_start, gex->fe_len, &ex);
1697 if (max >= gex->fe_len) {
1698 ext4_mb_use_best_found(ac, e4b);
1699 return;
1700 }
1701 }
1702 }
1703
1704 /*
1705 * The routine checks whether found extent is good enough. If it is,
1706 * then the extent gets marked used and flag is set to the context
1707 * to stop scanning. Otherwise, the extent is compared with the
1708 * previous found extent and if new one is better, then it's stored
1709 * in the context. Later, the best found extent will be used, if
1710 * mballoc can't find good enough extent.
1711 *
1712 * FIXME: real allocation policy is to be designed yet!
1713 */
1714 static void ext4_mb_measure_extent(struct ext4_allocation_context *ac,
1715 struct ext4_free_extent *ex,
1716 struct ext4_buddy *e4b)
1717 {
1718 struct ext4_free_extent *bex = &ac->ac_b_ex;
1719 struct ext4_free_extent *gex = &ac->ac_g_ex;
1720
1721 BUG_ON(ex->fe_len <= 0);
1722 BUG_ON(ex->fe_len > EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
1723 BUG_ON(ex->fe_start >= EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
1724 BUG_ON(ac->ac_status != AC_STATUS_CONTINUE);
1725
1726 ac->ac_found++;
1727
1728 /*
1729 * The special case - take what you catch first
1730 */
1731 if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1732 *bex = *ex;
1733 ext4_mb_use_best_found(ac, e4b);
1734 return;
1735 }
1736
1737 /*
1738 * Let's check whether the chuck is good enough
1739 */
1740 if (ex->fe_len == gex->fe_len) {
1741 *bex = *ex;
1742 ext4_mb_use_best_found(ac, e4b);
1743 return;
1744 }
1745
1746 /*
1747 * If this is first found extent, just store it in the context
1748 */
1749 if (bex->fe_len == 0) {
1750 *bex = *ex;
1751 return;
1752 }
1753
1754 /*
1755 * If new found extent is better, store it in the context
1756 */
1757 if (bex->fe_len < gex->fe_len) {
1758 /* if the request isn't satisfied, any found extent
1759 * larger than previous best one is better */
1760 if (ex->fe_len > bex->fe_len)
1761 *bex = *ex;
1762 } else if (ex->fe_len > gex->fe_len) {
1763 /* if the request is satisfied, then we try to find
1764 * an extent that still satisfy the request, but is
1765 * smaller than previous one */
1766 if (ex->fe_len < bex->fe_len)
1767 *bex = *ex;
1768 }
1769
1770 ext4_mb_check_limits(ac, e4b, 0);
1771 }
1772
1773 static noinline_for_stack
1774 int ext4_mb_try_best_found(struct ext4_allocation_context *ac,
1775 struct ext4_buddy *e4b)
1776 {
1777 struct ext4_free_extent ex = ac->ac_b_ex;
1778 ext4_group_t group = ex.fe_group;
1779 int max;
1780 int err;
1781
1782 BUG_ON(ex.fe_len <= 0);
1783 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1784 if (err)
1785 return err;
1786
1787 ext4_lock_group(ac->ac_sb, group);
1788 max = mb_find_extent(e4b, ex.fe_start, ex.fe_len, &ex);
1789
1790 if (max > 0) {
1791 ac->ac_b_ex = ex;
1792 ext4_mb_use_best_found(ac, e4b);
1793 }
1794
1795 ext4_unlock_group(ac->ac_sb, group);
1796 ext4_mb_unload_buddy(e4b);
1797
1798 return 0;
1799 }
1800
1801 static noinline_for_stack
1802 int ext4_mb_find_by_goal(struct ext4_allocation_context *ac,
1803 struct ext4_buddy *e4b)
1804 {
1805 ext4_group_t group = ac->ac_g_ex.fe_group;
1806 int max;
1807 int err;
1808 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1809 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
1810 struct ext4_free_extent ex;
1811
1812 if (!(ac->ac_flags & EXT4_MB_HINT_TRY_GOAL))
1813 return 0;
1814 if (grp->bb_free == 0)
1815 return 0;
1816
1817 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1818 if (err)
1819 return err;
1820
1821 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info))) {
1822 ext4_mb_unload_buddy(e4b);
1823 return 0;
1824 }
1825
1826 ext4_lock_group(ac->ac_sb, group);
1827 max = mb_find_extent(e4b, ac->ac_g_ex.fe_start,
1828 ac->ac_g_ex.fe_len, &ex);
1829 ex.fe_logical = 0xDEADFA11; /* debug value */
1830
1831 if (max >= ac->ac_g_ex.fe_len && ac->ac_g_ex.fe_len == sbi->s_stripe) {
1832 ext4_fsblk_t start;
1833
1834 start = ext4_group_first_block_no(ac->ac_sb, e4b->bd_group) +
1835 ex.fe_start;
1836 /* use do_div to get remainder (would be 64-bit modulo) */
1837 if (do_div(start, sbi->s_stripe) == 0) {
1838 ac->ac_found++;
1839 ac->ac_b_ex = ex;
1840 ext4_mb_use_best_found(ac, e4b);
1841 }
1842 } else if (max >= ac->ac_g_ex.fe_len) {
1843 BUG_ON(ex.fe_len <= 0);
1844 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1845 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1846 ac->ac_found++;
1847 ac->ac_b_ex = ex;
1848 ext4_mb_use_best_found(ac, e4b);
1849 } else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) {
1850 /* Sometimes, caller may want to merge even small
1851 * number of blocks to an existing extent */
1852 BUG_ON(ex.fe_len <= 0);
1853 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1854 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1855 ac->ac_found++;
1856 ac->ac_b_ex = ex;
1857 ext4_mb_use_best_found(ac, e4b);
1858 }
1859 ext4_unlock_group(ac->ac_sb, group);
1860 ext4_mb_unload_buddy(e4b);
1861
1862 return 0;
1863 }
1864
1865 /*
1866 * The routine scans buddy structures (not bitmap!) from given order
1867 * to max order and tries to find big enough chunk to satisfy the req
1868 */
1869 static noinline_for_stack
1870 void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac,
1871 struct ext4_buddy *e4b)
1872 {
1873 struct super_block *sb = ac->ac_sb;
1874 struct ext4_group_info *grp = e4b->bd_info;
1875 void *buddy;
1876 int i;
1877 int k;
1878 int max;
1879
1880 BUG_ON(ac->ac_2order <= 0);
1881 for (i = ac->ac_2order; i <= sb->s_blocksize_bits + 1; i++) {
1882 if (grp->bb_counters[i] == 0)
1883 continue;
1884
1885 buddy = mb_find_buddy(e4b, i, &max);
1886 BUG_ON(buddy == NULL);
1887
1888 k = mb_find_next_zero_bit(buddy, max, 0);
1889 BUG_ON(k >= max);
1890
1891 ac->ac_found++;
1892
1893 ac->ac_b_ex.fe_len = 1 << i;
1894 ac->ac_b_ex.fe_start = k << i;
1895 ac->ac_b_ex.fe_group = e4b->bd_group;
1896
1897 ext4_mb_use_best_found(ac, e4b);
1898
1899 BUG_ON(ac->ac_b_ex.fe_len != ac->ac_g_ex.fe_len);
1900
1901 if (EXT4_SB(sb)->s_mb_stats)
1902 atomic_inc(&EXT4_SB(sb)->s_bal_2orders);
1903
1904 break;
1905 }
1906 }
1907
1908 /*
1909 * The routine scans the group and measures all found extents.
1910 * In order to optimize scanning, caller must pass number of
1911 * free blocks in the group, so the routine can know upper limit.
1912 */
1913 static noinline_for_stack
1914 void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac,
1915 struct ext4_buddy *e4b)
1916 {
1917 struct super_block *sb = ac->ac_sb;
1918 void *bitmap = e4b->bd_bitmap;
1919 struct ext4_free_extent ex;
1920 int i;
1921 int free;
1922
1923 free = e4b->bd_info->bb_free;
1924 BUG_ON(free <= 0);
1925
1926 i = e4b->bd_info->bb_first_free;
1927
1928 while (free && ac->ac_status == AC_STATUS_CONTINUE) {
1929 i = mb_find_next_zero_bit(bitmap,
1930 EXT4_CLUSTERS_PER_GROUP(sb), i);
1931 if (i >= EXT4_CLUSTERS_PER_GROUP(sb)) {
1932 /*
1933 * IF we have corrupt bitmap, we won't find any
1934 * free blocks even though group info says we
1935 * we have free blocks
1936 */
1937 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
1938 "%d free clusters as per "
1939 "group info. But bitmap says 0",
1940 free);
1941 break;
1942 }
1943
1944 mb_find_extent(e4b, i, ac->ac_g_ex.fe_len, &ex);
1945 BUG_ON(ex.fe_len <= 0);
1946 if (free < ex.fe_len) {
1947 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
1948 "%d free clusters as per "
1949 "group info. But got %d blocks",
1950 free, ex.fe_len);
1951 /*
1952 * The number of free blocks differs. This mostly
1953 * indicate that the bitmap is corrupt. So exit
1954 * without claiming the space.
1955 */
1956 break;
1957 }
1958 ex.fe_logical = 0xDEADC0DE; /* debug value */
1959 ext4_mb_measure_extent(ac, &ex, e4b);
1960
1961 i += ex.fe_len;
1962 free -= ex.fe_len;
1963 }
1964
1965 ext4_mb_check_limits(ac, e4b, 1);
1966 }
1967
1968 /*
1969 * This is a special case for storages like raid5
1970 * we try to find stripe-aligned chunks for stripe-size-multiple requests
1971 */
1972 static noinline_for_stack
1973 void ext4_mb_scan_aligned(struct ext4_allocation_context *ac,
1974 struct ext4_buddy *e4b)
1975 {
1976 struct super_block *sb = ac->ac_sb;
1977 struct ext4_sb_info *sbi = EXT4_SB(sb);
1978 void *bitmap = e4b->bd_bitmap;
1979 struct ext4_free_extent ex;
1980 ext4_fsblk_t first_group_block;
1981 ext4_fsblk_t a;
1982 ext4_grpblk_t i;
1983 int max;
1984
1985 BUG_ON(sbi->s_stripe == 0);
1986
1987 /* find first stripe-aligned block in group */
1988 first_group_block = ext4_group_first_block_no(sb, e4b->bd_group);
1989
1990 a = first_group_block + sbi->s_stripe - 1;
1991 do_div(a, sbi->s_stripe);
1992 i = (a * sbi->s_stripe) - first_group_block;
1993
1994 while (i < EXT4_CLUSTERS_PER_GROUP(sb)) {
1995 if (!mb_test_bit(i, bitmap)) {
1996 max = mb_find_extent(e4b, i, sbi->s_stripe, &ex);
1997 if (max >= sbi->s_stripe) {
1998 ac->ac_found++;
1999 ex.fe_logical = 0xDEADF00D; /* debug value */
2000 ac->ac_b_ex = ex;
2001 ext4_mb_use_best_found(ac, e4b);
2002 break;
2003 }
2004 }
2005 i += sbi->s_stripe;
2006 }
2007 }
2008
2009 /* This is now called BEFORE we load the buddy bitmap. */
2010 static int ext4_mb_good_group(struct ext4_allocation_context *ac,
2011 ext4_group_t group, int cr)
2012 {
2013 unsigned free, fragments;
2014 int flex_size = ext4_flex_bg_size(EXT4_SB(ac->ac_sb));
2015 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
2016
2017 BUG_ON(cr < 0 || cr >= 4);
2018
2019 free = grp->bb_free;
2020 if (free == 0)
2021 return 0;
2022 if (cr <= 2 && free < ac->ac_g_ex.fe_len)
2023 return 0;
2024
2025 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(grp)))
2026 return 0;
2027
2028 /* We only do this if the grp has never been initialized */
2029 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
2030 int ret = ext4_mb_init_group(ac->ac_sb, group);
2031 if (ret)
2032 return 0;
2033 }
2034
2035 fragments = grp->bb_fragments;
2036 if (fragments == 0)
2037 return 0;
2038
2039 switch (cr) {
2040 case 0:
2041 BUG_ON(ac->ac_2order == 0);
2042
2043 /* Avoid using the first bg of a flexgroup for data files */
2044 if ((ac->ac_flags & EXT4_MB_HINT_DATA) &&
2045 (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) &&
2046 ((group % flex_size) == 0))
2047 return 0;
2048
2049 if ((ac->ac_2order > ac->ac_sb->s_blocksize_bits+1) ||
2050 (free / fragments) >= ac->ac_g_ex.fe_len)
2051 return 1;
2052
2053 if (grp->bb_largest_free_order < ac->ac_2order)
2054 return 0;
2055
2056 return 1;
2057 case 1:
2058 if ((free / fragments) >= ac->ac_g_ex.fe_len)
2059 return 1;
2060 break;
2061 case 2:
2062 if (free >= ac->ac_g_ex.fe_len)
2063 return 1;
2064 break;
2065 case 3:
2066 return 1;
2067 default:
2068 BUG();
2069 }
2070
2071 return 0;
2072 }
2073
2074 static noinline_for_stack int
2075 ext4_mb_regular_allocator(struct ext4_allocation_context *ac)
2076 {
2077 ext4_group_t ngroups, group, i;
2078 int cr;
2079 int err = 0;
2080 struct ext4_sb_info *sbi;
2081 struct super_block *sb;
2082 struct ext4_buddy e4b;
2083
2084 sb = ac->ac_sb;
2085 sbi = EXT4_SB(sb);
2086 ngroups = ext4_get_groups_count(sb);
2087 /* non-extent files are limited to low blocks/groups */
2088 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)))
2089 ngroups = sbi->s_blockfile_groups;
2090
2091 BUG_ON(ac->ac_status == AC_STATUS_FOUND);
2092
2093 /* first, try the goal */
2094 err = ext4_mb_find_by_goal(ac, &e4b);
2095 if (err || ac->ac_status == AC_STATUS_FOUND)
2096 goto out;
2097
2098 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
2099 goto out;
2100
2101 /*
2102 * ac->ac2_order is set only if the fe_len is a power of 2
2103 * if ac2_order is set we also set criteria to 0 so that we
2104 * try exact allocation using buddy.
2105 */
2106 i = fls(ac->ac_g_ex.fe_len);
2107 ac->ac_2order = 0;
2108 /*
2109 * We search using buddy data only if the order of the request
2110 * is greater than equal to the sbi_s_mb_order2_reqs
2111 * You can tune it via /sys/fs/ext4/<partition>/mb_order2_req
2112 */
2113 if (i >= sbi->s_mb_order2_reqs) {
2114 /*
2115 * This should tell if fe_len is exactly power of 2
2116 */
2117 if ((ac->ac_g_ex.fe_len & (~(1 << (i - 1)))) == 0)
2118 ac->ac_2order = i - 1;
2119 }
2120
2121 /* if stream allocation is enabled, use global goal */
2122 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
2123 /* TBD: may be hot point */
2124 spin_lock(&sbi->s_md_lock);
2125 ac->ac_g_ex.fe_group = sbi->s_mb_last_group;
2126 ac->ac_g_ex.fe_start = sbi->s_mb_last_start;
2127 spin_unlock(&sbi->s_md_lock);
2128 }
2129
2130 /* Let's just scan groups to find more-less suitable blocks */
2131 cr = ac->ac_2order ? 0 : 1;
2132 /*
2133 * cr == 0 try to get exact allocation,
2134 * cr == 3 try to get anything
2135 */
2136 repeat:
2137 for (; cr < 4 && ac->ac_status == AC_STATUS_CONTINUE; cr++) {
2138 ac->ac_criteria = cr;
2139 /*
2140 * searching for the right group start
2141 * from the goal value specified
2142 */
2143 group = ac->ac_g_ex.fe_group;
2144
2145 for (i = 0; i < ngroups; group++, i++) {
2146 cond_resched();
2147 /*
2148 * Artificially restricted ngroups for non-extent
2149 * files makes group > ngroups possible on first loop.
2150 */
2151 if (group >= ngroups)
2152 group = 0;
2153
2154 /* This now checks without needing the buddy page */
2155 if (!ext4_mb_good_group(ac, group, cr))
2156 continue;
2157
2158 err = ext4_mb_load_buddy(sb, group, &e4b);
2159 if (err)
2160 goto out;
2161
2162 ext4_lock_group(sb, group);
2163
2164 /*
2165 * We need to check again after locking the
2166 * block group
2167 */
2168 if (!ext4_mb_good_group(ac, group, cr)) {
2169 ext4_unlock_group(sb, group);
2170 ext4_mb_unload_buddy(&e4b);
2171 continue;
2172 }
2173
2174 ac->ac_groups_scanned++;
2175 if (cr == 0 && ac->ac_2order < sb->s_blocksize_bits+2)
2176 ext4_mb_simple_scan_group(ac, &e4b);
2177 else if (cr == 1 && sbi->s_stripe &&
2178 !(ac->ac_g_ex.fe_len % sbi->s_stripe))
2179 ext4_mb_scan_aligned(ac, &e4b);
2180 else
2181 ext4_mb_complex_scan_group(ac, &e4b);
2182
2183 ext4_unlock_group(sb, group);
2184 ext4_mb_unload_buddy(&e4b);
2185
2186 if (ac->ac_status != AC_STATUS_CONTINUE)
2187 break;
2188 }
2189 }
2190
2191 if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND &&
2192 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2193 /*
2194 * We've been searching too long. Let's try to allocate
2195 * the best chunk we've found so far
2196 */
2197
2198 ext4_mb_try_best_found(ac, &e4b);
2199 if (ac->ac_status != AC_STATUS_FOUND) {
2200 /*
2201 * Someone more lucky has already allocated it.
2202 * The only thing we can do is just take first
2203 * found block(s)
2204 printk(KERN_DEBUG "EXT4-fs: someone won our chunk\n");
2205 */
2206 ac->ac_b_ex.fe_group = 0;
2207 ac->ac_b_ex.fe_start = 0;
2208 ac->ac_b_ex.fe_len = 0;
2209 ac->ac_status = AC_STATUS_CONTINUE;
2210 ac->ac_flags |= EXT4_MB_HINT_FIRST;
2211 cr = 3;
2212 atomic_inc(&sbi->s_mb_lost_chunks);
2213 goto repeat;
2214 }
2215 }
2216 out:
2217 return err;
2218 }
2219
2220 static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos)
2221 {
2222 struct super_block *sb = seq->private;
2223 ext4_group_t group;
2224
2225 if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2226 return NULL;
2227 group = *pos + 1;
2228 return (void *) ((unsigned long) group);
2229 }
2230
2231 static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos)
2232 {
2233 struct super_block *sb = seq->private;
2234 ext4_group_t group;
2235
2236 ++*pos;
2237 if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2238 return NULL;
2239 group = *pos + 1;
2240 return (void *) ((unsigned long) group);
2241 }
2242
2243 static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v)
2244 {
2245 struct super_block *sb = seq->private;
2246 ext4_group_t group = (ext4_group_t) ((unsigned long) v);
2247 int i;
2248 int err, buddy_loaded = 0;
2249 struct ext4_buddy e4b;
2250 struct ext4_group_info *grinfo;
2251 struct sg {
2252 struct ext4_group_info info;
2253 ext4_grpblk_t counters[16];
2254 } sg;
2255
2256 group--;
2257 if (group == 0)
2258 seq_printf(seq, "#%-5s: %-5s %-5s %-5s "
2259 "[ %-5s %-5s %-5s %-5s %-5s %-5s %-5s "
2260 "%-5s %-5s %-5s %-5s %-5s %-5s %-5s ]\n",
2261 "group", "free", "frags", "first",
2262 "2^0", "2^1", "2^2", "2^3", "2^4", "2^5", "2^6",
2263 "2^7", "2^8", "2^9", "2^10", "2^11", "2^12", "2^13");
2264
2265 i = (sb->s_blocksize_bits + 2) * sizeof(sg.info.bb_counters[0]) +
2266 sizeof(struct ext4_group_info);
2267 grinfo = ext4_get_group_info(sb, group);
2268 /* Load the group info in memory only if not already loaded. */
2269 if (unlikely(EXT4_MB_GRP_NEED_INIT(grinfo))) {
2270 err = ext4_mb_load_buddy(sb, group, &e4b);
2271 if (err) {
2272 seq_printf(seq, "#%-5u: I/O error\n", group);
2273 return 0;
2274 }
2275 buddy_loaded = 1;
2276 }
2277
2278 memcpy(&sg, ext4_get_group_info(sb, group), i);
2279
2280 if (buddy_loaded)
2281 ext4_mb_unload_buddy(&e4b);
2282
2283 seq_printf(seq, "#%-5u: %-5u %-5u %-5u [", group, sg.info.bb_free,
2284 sg.info.bb_fragments, sg.info.bb_first_free);
2285 for (i = 0; i <= 13; i++)
2286 seq_printf(seq, " %-5u", i <= sb->s_blocksize_bits + 1 ?
2287 sg.info.bb_counters[i] : 0);
2288 seq_printf(seq, " ]\n");
2289
2290 return 0;
2291 }
2292
2293 static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v)
2294 {
2295 }
2296
2297 static const struct seq_operations ext4_mb_seq_groups_ops = {
2298 .start = ext4_mb_seq_groups_start,
2299 .next = ext4_mb_seq_groups_next,
2300 .stop = ext4_mb_seq_groups_stop,
2301 .show = ext4_mb_seq_groups_show,
2302 };
2303
2304 static int ext4_mb_seq_groups_open(struct inode *inode, struct file *file)
2305 {
2306 struct super_block *sb = PDE_DATA(inode);
2307 int rc;
2308
2309 rc = seq_open(file, &ext4_mb_seq_groups_ops);
2310 if (rc == 0) {
2311 struct seq_file *m = file->private_data;
2312 m->private = sb;
2313 }
2314 return rc;
2315
2316 }
2317
2318 static const struct file_operations ext4_mb_seq_groups_fops = {
2319 .owner = THIS_MODULE,
2320 .open = ext4_mb_seq_groups_open,
2321 .read = seq_read,
2322 .llseek = seq_lseek,
2323 .release = seq_release,
2324 };
2325
2326 static struct kmem_cache *get_groupinfo_cache(int blocksize_bits)
2327 {
2328 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
2329 struct kmem_cache *cachep = ext4_groupinfo_caches[cache_index];
2330
2331 BUG_ON(!cachep);
2332 return cachep;
2333 }
2334
2335 /*
2336 * Allocate the top-level s_group_info array for the specified number
2337 * of groups
2338 */
2339 int ext4_mb_alloc_groupinfo(struct super_block *sb, ext4_group_t ngroups)
2340 {
2341 struct ext4_sb_info *sbi = EXT4_SB(sb);
2342 unsigned size;
2343 struct ext4_group_info ***new_groupinfo;
2344
2345 size = (ngroups + EXT4_DESC_PER_BLOCK(sb) - 1) >>
2346 EXT4_DESC_PER_BLOCK_BITS(sb);
2347 if (size <= sbi->s_group_info_size)
2348 return 0;
2349
2350 size = roundup_pow_of_two(sizeof(*sbi->s_group_info) * size);
2351 new_groupinfo = ext4_kvzalloc(size, GFP_KERNEL);
2352 if (!new_groupinfo) {
2353 ext4_msg(sb, KERN_ERR, "can't allocate buddy meta group");
2354 return -ENOMEM;
2355 }
2356 if (sbi->s_group_info) {
2357 memcpy(new_groupinfo, sbi->s_group_info,
2358 sbi->s_group_info_size * sizeof(*sbi->s_group_info));
2359 ext4_kvfree(sbi->s_group_info);
2360 }
2361 sbi->s_group_info = new_groupinfo;
2362 sbi->s_group_info_size = size / sizeof(*sbi->s_group_info);
2363 ext4_debug("allocated s_groupinfo array for %d meta_bg's\n",
2364 sbi->s_group_info_size);
2365 return 0;
2366 }
2367
2368 /* Create and initialize ext4_group_info data for the given group. */
2369 int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group,
2370 struct ext4_group_desc *desc)
2371 {
2372 int i;
2373 int metalen = 0;
2374 struct ext4_sb_info *sbi = EXT4_SB(sb);
2375 struct ext4_group_info **meta_group_info;
2376 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2377
2378 /*
2379 * First check if this group is the first of a reserved block.
2380 * If it's true, we have to allocate a new table of pointers
2381 * to ext4_group_info structures
2382 */
2383 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
2384 metalen = sizeof(*meta_group_info) <<
2385 EXT4_DESC_PER_BLOCK_BITS(sb);
2386 meta_group_info = kmalloc(metalen, GFP_KERNEL);
2387 if (meta_group_info == NULL) {
2388 ext4_msg(sb, KERN_ERR, "can't allocate mem "
2389 "for a buddy group");
2390 goto exit_meta_group_info;
2391 }
2392 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)] =
2393 meta_group_info;
2394 }
2395
2396 meta_group_info =
2397 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)];
2398 i = group & (EXT4_DESC_PER_BLOCK(sb) - 1);
2399
2400 meta_group_info[i] = kmem_cache_zalloc(cachep, GFP_KERNEL);
2401 if (meta_group_info[i] == NULL) {
2402 ext4_msg(sb, KERN_ERR, "can't allocate buddy mem");
2403 goto exit_group_info;
2404 }
2405 set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT,
2406 &(meta_group_info[i]->bb_state));
2407
2408 /*
2409 * initialize bb_free to be able to skip
2410 * empty groups without initialization
2411 */
2412 if (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
2413 meta_group_info[i]->bb_free =
2414 ext4_free_clusters_after_init(sb, group, desc);
2415 } else {
2416 meta_group_info[i]->bb_free =
2417 ext4_free_group_clusters(sb, desc);
2418 }
2419
2420 INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list);
2421 init_rwsem(&meta_group_info[i]->alloc_sem);
2422 meta_group_info[i]->bb_free_root = RB_ROOT;
2423 meta_group_info[i]->bb_largest_free_order = -1; /* uninit */
2424
2425 #ifdef DOUBLE_CHECK
2426 {
2427 struct buffer_head *bh;
2428 meta_group_info[i]->bb_bitmap =
2429 kmalloc(sb->s_blocksize, GFP_KERNEL);
2430 BUG_ON(meta_group_info[i]->bb_bitmap == NULL);
2431 bh = ext4_read_block_bitmap(sb, group);
2432 BUG_ON(bh == NULL);
2433 memcpy(meta_group_info[i]->bb_bitmap, bh->b_data,
2434 sb->s_blocksize);
2435 put_bh(bh);
2436 }
2437 #endif
2438
2439 return 0;
2440
2441 exit_group_info:
2442 /* If a meta_group_info table has been allocated, release it now */
2443 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
2444 kfree(sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)]);
2445 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)] = NULL;
2446 }
2447 exit_meta_group_info:
2448 return -ENOMEM;
2449 } /* ext4_mb_add_groupinfo */
2450
2451 static int ext4_mb_init_backend(struct super_block *sb)
2452 {
2453 ext4_group_t ngroups = ext4_get_groups_count(sb);
2454 ext4_group_t i;
2455 struct ext4_sb_info *sbi = EXT4_SB(sb);
2456 int err;
2457 struct ext4_group_desc *desc;
2458 struct kmem_cache *cachep;
2459
2460 err = ext4_mb_alloc_groupinfo(sb, ngroups);
2461 if (err)
2462 return err;
2463
2464 sbi->s_buddy_cache = new_inode(sb);
2465 if (sbi->s_buddy_cache == NULL) {
2466 ext4_msg(sb, KERN_ERR, "can't get new inode");
2467 goto err_freesgi;
2468 }
2469 /* To avoid potentially colliding with an valid on-disk inode number,
2470 * use EXT4_BAD_INO for the buddy cache inode number. This inode is
2471 * not in the inode hash, so it should never be found by iget(), but
2472 * this will avoid confusion if it ever shows up during debugging. */
2473 sbi->s_buddy_cache->i_ino = EXT4_BAD_INO;
2474 EXT4_I(sbi->s_buddy_cache)->i_disksize = 0;
2475 for (i = 0; i < ngroups; i++) {
2476 desc = ext4_get_group_desc(sb, i, NULL);
2477 if (desc == NULL) {
2478 ext4_msg(sb, KERN_ERR, "can't read descriptor %u", i);
2479 goto err_freebuddy;
2480 }
2481 if (ext4_mb_add_groupinfo(sb, i, desc) != 0)
2482 goto err_freebuddy;
2483 }
2484
2485 return 0;
2486
2487 err_freebuddy:
2488 cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2489 while (i-- > 0)
2490 kmem_cache_free(cachep, ext4_get_group_info(sb, i));
2491 i = sbi->s_group_info_size;
2492 while (i-- > 0)
2493 kfree(sbi->s_group_info[i]);
2494 iput(sbi->s_buddy_cache);
2495 err_freesgi:
2496 ext4_kvfree(sbi->s_group_info);
2497 return -ENOMEM;
2498 }
2499
2500 static void ext4_groupinfo_destroy_slabs(void)
2501 {
2502 int i;
2503
2504 for (i = 0; i < NR_GRPINFO_CACHES; i++) {
2505 if (ext4_groupinfo_caches[i])
2506 kmem_cache_destroy(ext4_groupinfo_caches[i]);
2507 ext4_groupinfo_caches[i] = NULL;
2508 }
2509 }
2510
2511 static int ext4_groupinfo_create_slab(size_t size)
2512 {
2513 static DEFINE_MUTEX(ext4_grpinfo_slab_create_mutex);
2514 int slab_size;
2515 int blocksize_bits = order_base_2(size);
2516 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
2517 struct kmem_cache *cachep;
2518
2519 if (cache_index >= NR_GRPINFO_CACHES)
2520 return -EINVAL;
2521
2522 if (unlikely(cache_index < 0))
2523 cache_index = 0;
2524
2525 mutex_lock(&ext4_grpinfo_slab_create_mutex);
2526 if (ext4_groupinfo_caches[cache_index]) {
2527 mutex_unlock(&ext4_grpinfo_slab_create_mutex);
2528 return 0; /* Already created */
2529 }
2530
2531 slab_size = offsetof(struct ext4_group_info,
2532 bb_counters[blocksize_bits + 2]);
2533
2534 cachep = kmem_cache_create(ext4_groupinfo_slab_names[cache_index],
2535 slab_size, 0, SLAB_RECLAIM_ACCOUNT,
2536 NULL);
2537
2538 ext4_groupinfo_caches[cache_index] = cachep;
2539
2540 mutex_unlock(&ext4_grpinfo_slab_create_mutex);
2541 if (!cachep) {
2542 printk(KERN_EMERG
2543 "EXT4-fs: no memory for groupinfo slab cache\n");
2544 return -ENOMEM;
2545 }
2546
2547 return 0;
2548 }
2549
2550 int ext4_mb_init(struct super_block *sb)
2551 {
2552 struct ext4_sb_info *sbi = EXT4_SB(sb);
2553 unsigned i, j;
2554 unsigned offset;
2555 unsigned max;
2556 int ret;
2557
2558 i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_offsets);
2559
2560 sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL);
2561 if (sbi->s_mb_offsets == NULL) {
2562 ret = -ENOMEM;
2563 goto out;
2564 }
2565
2566 i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_maxs);
2567 sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL);
2568 if (sbi->s_mb_maxs == NULL) {
2569 ret = -ENOMEM;
2570 goto out;
2571 }
2572
2573 ret = ext4_groupinfo_create_slab(sb->s_blocksize);
2574 if (ret < 0)
2575 goto out;
2576
2577 /* order 0 is regular bitmap */
2578 sbi->s_mb_maxs[0] = sb->s_blocksize << 3;
2579 sbi->s_mb_offsets[0] = 0;
2580
2581 i = 1;
2582 offset = 0;
2583 max = sb->s_blocksize << 2;
2584 do {
2585 sbi->s_mb_offsets[i] = offset;
2586 sbi->s_mb_maxs[i] = max;
2587 offset += 1 << (sb->s_blocksize_bits - i);
2588 max = max >> 1;
2589 i++;
2590 } while (i <= sb->s_blocksize_bits + 1);
2591
2592 spin_lock_init(&sbi->s_md_lock);
2593 spin_lock_init(&sbi->s_bal_lock);
2594
2595 sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN;
2596 sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN;
2597 sbi->s_mb_stats = MB_DEFAULT_STATS;
2598 sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD;
2599 sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS;
2600 /*
2601 * The default group preallocation is 512, which for 4k block
2602 * sizes translates to 2 megabytes. However for bigalloc file
2603 * systems, this is probably too big (i.e, if the cluster size
2604 * is 1 megabyte, then group preallocation size becomes half a
2605 * gigabyte!). As a default, we will keep a two megabyte
2606 * group pralloc size for cluster sizes up to 64k, and after
2607 * that, we will force a minimum group preallocation size of
2608 * 32 clusters. This translates to 8 megs when the cluster
2609 * size is 256k, and 32 megs when the cluster size is 1 meg,
2610 * which seems reasonable as a default.
2611 */
2612 sbi->s_mb_group_prealloc = max(MB_DEFAULT_GROUP_PREALLOC >>
2613 sbi->s_cluster_bits, 32);
2614 /*
2615 * If there is a s_stripe > 1, then we set the s_mb_group_prealloc
2616 * to the lowest multiple of s_stripe which is bigger than
2617 * the s_mb_group_prealloc as determined above. We want
2618 * the preallocation size to be an exact multiple of the
2619 * RAID stripe size so that preallocations don't fragment
2620 * the stripes.
2621 */
2622 if (sbi->s_stripe > 1) {
2623 sbi->s_mb_group_prealloc = roundup(
2624 sbi->s_mb_group_prealloc, sbi->s_stripe);
2625 }
2626
2627 sbi->s_locality_groups = alloc_percpu(struct ext4_locality_group);
2628 if (sbi->s_locality_groups == NULL) {
2629 ret = -ENOMEM;
2630 goto out;
2631 }
2632 for_each_possible_cpu(i) {
2633 struct ext4_locality_group *lg;
2634 lg = per_cpu_ptr(sbi->s_locality_groups, i);
2635 mutex_init(&lg->lg_mutex);
2636 for (j = 0; j < PREALLOC_TB_SIZE; j++)
2637 INIT_LIST_HEAD(&lg->lg_prealloc_list[j]);
2638 spin_lock_init(&lg->lg_prealloc_lock);
2639 }
2640
2641 /* init file for buddy data */
2642 ret = ext4_mb_init_backend(sb);
2643 if (ret != 0)
2644 goto out_free_locality_groups;
2645
2646 if (sbi->s_proc)
2647 proc_create_data("mb_groups", S_IRUGO, sbi->s_proc,
2648 &ext4_mb_seq_groups_fops, sb);
2649
2650 return 0;
2651
2652 out_free_locality_groups:
2653 free_percpu(sbi->s_locality_groups);
2654 sbi->s_locality_groups = NULL;
2655 out:
2656 kfree(sbi->s_mb_offsets);
2657 sbi->s_mb_offsets = NULL;
2658 kfree(sbi->s_mb_maxs);
2659 sbi->s_mb_maxs = NULL;
2660 return ret;
2661 }
2662
2663 /* need to called with the ext4 group lock held */
2664 static void ext4_mb_cleanup_pa(struct ext4_group_info *grp)
2665 {
2666 struct ext4_prealloc_space *pa;
2667 struct list_head *cur, *tmp;
2668 int count = 0;
2669
2670 list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) {
2671 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
2672 list_del(&pa->pa_group_list);
2673 count++;
2674 kmem_cache_free(ext4_pspace_cachep, pa);
2675 }
2676 if (count)
2677 mb_debug(1, "mballoc: %u PAs left\n", count);
2678
2679 }
2680
2681 int ext4_mb_release(struct super_block *sb)
2682 {
2683 ext4_group_t ngroups = ext4_get_groups_count(sb);
2684 ext4_group_t i;
2685 int num_meta_group_infos;
2686 struct ext4_group_info *grinfo;
2687 struct ext4_sb_info *sbi = EXT4_SB(sb);
2688 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2689
2690 if (sbi->s_proc)
2691 remove_proc_entry("mb_groups", sbi->s_proc);
2692
2693 if (sbi->s_group_info) {
2694 for (i = 0; i < ngroups; i++) {
2695 grinfo = ext4_get_group_info(sb, i);
2696 #ifdef DOUBLE_CHECK
2697 kfree(grinfo->bb_bitmap);
2698 #endif
2699 ext4_lock_group(sb, i);
2700 ext4_mb_cleanup_pa(grinfo);
2701 ext4_unlock_group(sb, i);
2702 kmem_cache_free(cachep, grinfo);
2703 }
2704 num_meta_group_infos = (ngroups +
2705 EXT4_DESC_PER_BLOCK(sb) - 1) >>
2706 EXT4_DESC_PER_BLOCK_BITS(sb);
2707 for (i = 0; i < num_meta_group_infos; i++)
2708 kfree(sbi->s_group_info[i]);
2709 ext4_kvfree(sbi->s_group_info);
2710 }
2711 kfree(sbi->s_mb_offsets);
2712 kfree(sbi->s_mb_maxs);
2713 if (sbi->s_buddy_cache)
2714 iput(sbi->s_buddy_cache);
2715 if (sbi->s_mb_stats) {
2716 ext4_msg(sb, KERN_INFO,
2717 "mballoc: %u blocks %u reqs (%u success)",
2718 atomic_read(&sbi->s_bal_allocated),
2719 atomic_read(&sbi->s_bal_reqs),
2720 atomic_read(&sbi->s_bal_success));
2721 ext4_msg(sb, KERN_INFO,
2722 "mballoc: %u extents scanned, %u goal hits, "
2723 "%u 2^N hits, %u breaks, %u lost",
2724 atomic_read(&sbi->s_bal_ex_scanned),
2725 atomic_read(&sbi->s_bal_goals),
2726 atomic_read(&sbi->s_bal_2orders),
2727 atomic_read(&sbi->s_bal_breaks),
2728 atomic_read(&sbi->s_mb_lost_chunks));
2729 ext4_msg(sb, KERN_INFO,
2730 "mballoc: %lu generated and it took %Lu",
2731 sbi->s_mb_buddies_generated,
2732 sbi->s_mb_generation_time);
2733 ext4_msg(sb, KERN_INFO,
2734 "mballoc: %u preallocated, %u discarded",
2735 atomic_read(&sbi->s_mb_preallocated),
2736 atomic_read(&sbi->s_mb_discarded));
2737 }
2738
2739 free_percpu(sbi->s_locality_groups);
2740
2741 return 0;
2742 }
2743
2744 static inline int ext4_issue_discard(struct super_block *sb,
2745 ext4_group_t block_group, ext4_grpblk_t cluster, int count)
2746 {
2747 ext4_fsblk_t discard_block;
2748
2749 discard_block = (EXT4_C2B(EXT4_SB(sb), cluster) +
2750 ext4_group_first_block_no(sb, block_group));
2751 count = EXT4_C2B(EXT4_SB(sb), count);
2752 trace_ext4_discard_blocks(sb,
2753 (unsigned long long) discard_block, count);
2754 return sb_issue_discard(sb, discard_block, count, GFP_NOFS, 0);
2755 }
2756
2757 /*
2758 * This function is called by the jbd2 layer once the commit has finished,
2759 * so we know we can free the blocks that were released with that commit.
2760 */
2761 static void ext4_free_data_callback(struct super_block *sb,
2762 struct ext4_journal_cb_entry *jce,
2763 int rc)
2764 {
2765 struct ext4_free_data *entry = (struct ext4_free_data *)jce;
2766 struct ext4_buddy e4b;
2767 struct ext4_group_info *db;
2768 int err, count = 0, count2 = 0;
2769
2770 mb_debug(1, "gonna free %u blocks in group %u (0x%p):",
2771 entry->efd_count, entry->efd_group, entry);
2772
2773 if (test_opt(sb, DISCARD)) {
2774 err = ext4_issue_discard(sb, entry->efd_group,
2775 entry->efd_start_cluster,
2776 entry->efd_count);
2777 if (err && err != -EOPNOTSUPP)
2778 ext4_msg(sb, KERN_WARNING, "discard request in"
2779 " group:%d block:%d count:%d failed"
2780 " with %d", entry->efd_group,
2781 entry->efd_start_cluster,
2782 entry->efd_count, err);
2783 }
2784
2785 err = ext4_mb_load_buddy(sb, entry->efd_group, &e4b);
2786 /* we expect to find existing buddy because it's pinned */
2787 BUG_ON(err != 0);
2788
2789
2790 db = e4b.bd_info;
2791 /* there are blocks to put in buddy to make them really free */
2792 count += entry->efd_count;
2793 count2++;
2794 ext4_lock_group(sb, entry->efd_group);
2795 /* Take it out of per group rb tree */
2796 rb_erase(&entry->efd_node, &(db->bb_free_root));
2797 mb_free_blocks(NULL, &e4b, entry->efd_start_cluster, entry->efd_count);
2798
2799 /*
2800 * Clear the trimmed flag for the group so that the next
2801 * ext4_trim_fs can trim it.
2802 * If the volume is mounted with -o discard, online discard
2803 * is supported and the free blocks will be trimmed online.
2804 */
2805 if (!test_opt(sb, DISCARD))
2806 EXT4_MB_GRP_CLEAR_TRIMMED(db);
2807
2808 if (!db->bb_free_root.rb_node) {
2809 /* No more items in the per group rb tree
2810 * balance refcounts from ext4_mb_free_metadata()
2811 */
2812 page_cache_release(e4b.bd_buddy_page);
2813 page_cache_release(e4b.bd_bitmap_page);
2814 }
2815 ext4_unlock_group(sb, entry->efd_group);
2816 kmem_cache_free(ext4_free_data_cachep, entry);
2817 ext4_mb_unload_buddy(&e4b);
2818
2819 mb_debug(1, "freed %u blocks in %u structures\n", count, count2);
2820 }
2821
2822 int __init ext4_init_mballoc(void)
2823 {
2824 ext4_pspace_cachep = KMEM_CACHE(ext4_prealloc_space,
2825 SLAB_RECLAIM_ACCOUNT);
2826 if (ext4_pspace_cachep == NULL)
2827 return -ENOMEM;
2828
2829 ext4_ac_cachep = KMEM_CACHE(ext4_allocation_context,
2830 SLAB_RECLAIM_ACCOUNT);
2831 if (ext4_ac_cachep == NULL) {
2832 kmem_cache_destroy(ext4_pspace_cachep);
2833 return -ENOMEM;
2834 }
2835
2836 ext4_free_data_cachep = KMEM_CACHE(ext4_free_data,
2837 SLAB_RECLAIM_ACCOUNT);
2838 if (ext4_free_data_cachep == NULL) {
2839 kmem_cache_destroy(ext4_pspace_cachep);
2840 kmem_cache_destroy(ext4_ac_cachep);
2841 return -ENOMEM;
2842 }
2843 return 0;
2844 }
2845
2846 void ext4_exit_mballoc(void)
2847 {
2848 /*
2849 * Wait for completion of call_rcu()'s on ext4_pspace_cachep
2850 * before destroying the slab cache.
2851 */
2852 rcu_barrier();
2853 kmem_cache_destroy(ext4_pspace_cachep);
2854 kmem_cache_destroy(ext4_ac_cachep);
2855 kmem_cache_destroy(ext4_free_data_cachep);
2856 ext4_groupinfo_destroy_slabs();
2857 }
2858
2859
2860 /*
2861 * Check quota and mark chosen space (ac->ac_b_ex) non-free in bitmaps
2862 * Returns 0 if success or error code
2863 */
2864 static noinline_for_stack int
2865 ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac,
2866 handle_t *handle, unsigned int reserv_clstrs)
2867 {
2868 struct buffer_head *bitmap_bh = NULL;
2869 struct ext4_group_desc *gdp;
2870 struct buffer_head *gdp_bh;
2871 struct ext4_sb_info *sbi;
2872 struct super_block *sb;
2873 ext4_fsblk_t block;
2874 int err, len;
2875
2876 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
2877 BUG_ON(ac->ac_b_ex.fe_len <= 0);
2878
2879 sb = ac->ac_sb;
2880 sbi = EXT4_SB(sb);
2881
2882 err = -EIO;
2883 bitmap_bh = ext4_read_block_bitmap(sb, ac->ac_b_ex.fe_group);
2884 if (!bitmap_bh)
2885 goto out_err;
2886
2887 BUFFER_TRACE(bitmap_bh, "getting write access");
2888 err = ext4_journal_get_write_access(handle, bitmap_bh);
2889 if (err)
2890 goto out_err;
2891
2892 err = -EIO;
2893 gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, &gdp_bh);
2894 if (!gdp)
2895 goto out_err;
2896
2897 ext4_debug("using block group %u(%d)\n", ac->ac_b_ex.fe_group,
2898 ext4_free_group_clusters(sb, gdp));
2899
2900 BUFFER_TRACE(gdp_bh, "get_write_access");
2901 err = ext4_journal_get_write_access(handle, gdp_bh);
2902 if (err)
2903 goto out_err;
2904
2905 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
2906
2907 len = EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
2908 if (!ext4_data_block_valid(sbi, block, len)) {
2909 ext4_error(sb, "Allocating blocks %llu-%llu which overlap "
2910 "fs metadata", block, block+len);
2911 /* File system mounted not to panic on error
2912 * Fix the bitmap and repeat the block allocation
2913 * We leak some of the blocks here.
2914 */
2915 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
2916 ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
2917 ac->ac_b_ex.fe_len);
2918 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
2919 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
2920 if (!err)
2921 err = -EAGAIN;
2922 goto out_err;
2923 }
2924
2925 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
2926 #ifdef AGGRESSIVE_CHECK
2927 {
2928 int i;
2929 for (i = 0; i < ac->ac_b_ex.fe_len; i++) {
2930 BUG_ON(mb_test_bit(ac->ac_b_ex.fe_start + i,
2931 bitmap_bh->b_data));
2932 }
2933 }
2934 #endif
2935 ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
2936 ac->ac_b_ex.fe_len);
2937 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
2938 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
2939 ext4_free_group_clusters_set(sb, gdp,
2940 ext4_free_clusters_after_init(sb,
2941 ac->ac_b_ex.fe_group, gdp));
2942 }
2943 len = ext4_free_group_clusters(sb, gdp) - ac->ac_b_ex.fe_len;
2944 ext4_free_group_clusters_set(sb, gdp, len);
2945 ext4_block_bitmap_csum_set(sb, ac->ac_b_ex.fe_group, gdp, bitmap_bh);
2946 ext4_group_desc_csum_set(sb, ac->ac_b_ex.fe_group, gdp);
2947
2948 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
2949 percpu_counter_sub(&sbi->s_freeclusters_counter, ac->ac_b_ex.fe_len);
2950 /*
2951 * Now reduce the dirty block count also. Should not go negative
2952 */
2953 if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED))
2954 /* release all the reserved blocks if non delalloc */
2955 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
2956 reserv_clstrs);
2957
2958 if (sbi->s_log_groups_per_flex) {
2959 ext4_group_t flex_group = ext4_flex_group(sbi,
2960 ac->ac_b_ex.fe_group);
2961 atomic64_sub(ac->ac_b_ex.fe_len,
2962 &sbi->s_flex_groups[flex_group].free_clusters);
2963 }
2964
2965 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
2966 if (err)
2967 goto out_err;
2968 err = ext4_handle_dirty_metadata(handle, NULL, gdp_bh);
2969
2970 out_err:
2971 brelse(bitmap_bh);
2972 return err;
2973 }
2974
2975 /*
2976 * here we normalize request for locality group
2977 * Group request are normalized to s_mb_group_prealloc, which goes to
2978 * s_strip if we set the same via mount option.
2979 * s_mb_group_prealloc can be configured via
2980 * /sys/fs/ext4/<partition>/mb_group_prealloc
2981 *
2982 * XXX: should we try to preallocate more than the group has now?
2983 */
2984 static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac)
2985 {
2986 struct super_block *sb = ac->ac_sb;
2987 struct ext4_locality_group *lg = ac->ac_lg;
2988
2989 BUG_ON(lg == NULL);
2990 ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc;
2991 mb_debug(1, "#%u: goal %u blocks for locality group\n",
2992 current->pid, ac->ac_g_ex.fe_len);
2993 }
2994
2995 /*
2996 * Normalization means making request better in terms of
2997 * size and alignment
2998 */
2999 static noinline_for_stack void
3000 ext4_mb_normalize_request(struct ext4_allocation_context *ac,
3001 struct ext4_allocation_request *ar)
3002 {
3003 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3004 int bsbits, max;
3005 ext4_lblk_t end;
3006 loff_t size, start_off;
3007 loff_t orig_size __maybe_unused;
3008 ext4_lblk_t start;
3009 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
3010 struct ext4_prealloc_space *pa;
3011
3012 /* do normalize only data requests, metadata requests
3013 do not need preallocation */
3014 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3015 return;
3016
3017 /* sometime caller may want exact blocks */
3018 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
3019 return;
3020
3021 /* caller may indicate that preallocation isn't
3022 * required (it's a tail, for example) */
3023 if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC)
3024 return;
3025
3026 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) {
3027 ext4_mb_normalize_group_request(ac);
3028 return ;
3029 }
3030
3031 bsbits = ac->ac_sb->s_blocksize_bits;
3032
3033 /* first, let's learn actual file size
3034 * given current request is allocated */
3035 size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len);
3036 size = size << bsbits;
3037 if (size < i_size_read(ac->ac_inode))
3038 size = i_size_read(ac->ac_inode);
3039 orig_size = size;
3040
3041 /* max size of free chunks */
3042 max = 2 << bsbits;
3043
3044 #define NRL_CHECK_SIZE(req, size, max, chunk_size) \
3045 (req <= (size) || max <= (chunk_size))
3046
3047 /* first, try to predict filesize */
3048 /* XXX: should this table be tunable? */
3049 start_off = 0;
3050 if (size <= 16 * 1024) {
3051 size = 16 * 1024;
3052 } else if (size <= 32 * 1024) {
3053 size = 32 * 1024;
3054 } else if (size <= 64 * 1024) {
3055 size = 64 * 1024;
3056 } else if (size <= 128 * 1024) {
3057 size = 128 * 1024;
3058 } else if (size <= 256 * 1024) {
3059 size = 256 * 1024;
3060 } else if (size <= 512 * 1024) {
3061 size = 512 * 1024;
3062 } else if (size <= 1024 * 1024) {
3063 size = 1024 * 1024;
3064 } else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) {
3065 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3066 (21 - bsbits)) << 21;
3067 size = 2 * 1024 * 1024;
3068 } else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) {
3069 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3070 (22 - bsbits)) << 22;
3071 size = 4 * 1024 * 1024;
3072 } else if (NRL_CHECK_SIZE(ac->ac_o_ex.fe_len,
3073 (8<<20)>>bsbits, max, 8 * 1024)) {
3074 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3075 (23 - bsbits)) << 23;
3076 size = 8 * 1024 * 1024;
3077 } else {
3078 start_off = (loff_t)ac->ac_o_ex.fe_logical << bsbits;
3079 size = ac->ac_o_ex.fe_len << bsbits;
3080 }
3081 size = size >> bsbits;
3082 start = start_off >> bsbits;
3083
3084 /* don't cover already allocated blocks in selected range */
3085 if (ar->pleft && start <= ar->lleft) {
3086 size -= ar->lleft + 1 - start;
3087 start = ar->lleft + 1;
3088 }
3089 if (ar->pright && start + size - 1 >= ar->lright)
3090 size -= start + size - ar->lright;
3091
3092 end = start + size;
3093
3094 /* check we don't cross already preallocated blocks */
3095 rcu_read_lock();
3096 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3097 ext4_lblk_t pa_end;
3098
3099 if (pa->pa_deleted)
3100 continue;
3101 spin_lock(&pa->pa_lock);
3102 if (pa->pa_deleted) {
3103 spin_unlock(&pa->pa_lock);
3104 continue;
3105 }
3106
3107 pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb),
3108 pa->pa_len);
3109
3110 /* PA must not overlap original request */
3111 BUG_ON(!(ac->ac_o_ex.fe_logical >= pa_end ||
3112 ac->ac_o_ex.fe_logical < pa->pa_lstart));
3113
3114 /* skip PAs this normalized request doesn't overlap with */
3115 if (pa->pa_lstart >= end || pa_end <= start) {
3116 spin_unlock(&pa->pa_lock);
3117 continue;
3118 }
3119 BUG_ON(pa->pa_lstart <= start && pa_end >= end);
3120
3121 /* adjust start or end to be adjacent to this pa */
3122 if (pa_end <= ac->ac_o_ex.fe_logical) {
3123 BUG_ON(pa_end < start);
3124 start = pa_end;
3125 } else if (pa->pa_lstart > ac->ac_o_ex.fe_logical) {
3126 BUG_ON(pa->pa_lstart > end);
3127 end = pa->pa_lstart;
3128 }
3129 spin_unlock(&pa->pa_lock);
3130 }
3131 rcu_read_unlock();
3132 size = end - start;
3133
3134 /* XXX: extra loop to check we really don't overlap preallocations */
3135 rcu_read_lock();
3136 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3137 ext4_lblk_t pa_end;
3138
3139 spin_lock(&pa->pa_lock);
3140 if (pa->pa_deleted == 0) {
3141 pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb),
3142 pa->pa_len);
3143 BUG_ON(!(start >= pa_end || end <= pa->pa_lstart));
3144 }
3145 spin_unlock(&pa->pa_lock);
3146 }
3147 rcu_read_unlock();
3148
3149 if (start + size <= ac->ac_o_ex.fe_logical &&
3150 start > ac->ac_o_ex.fe_logical) {
3151 ext4_msg(ac->ac_sb, KERN_ERR,
3152 "start %lu, size %lu, fe_logical %lu",
3153 (unsigned long) start, (unsigned long) size,
3154 (unsigned long) ac->ac_o_ex.fe_logical);
3155 }
3156 BUG_ON(start + size <= ac->ac_o_ex.fe_logical &&
3157 start > ac->ac_o_ex.fe_logical);
3158 BUG_ON(size <= 0 || size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb));
3159
3160 /* now prepare goal request */
3161
3162 /* XXX: is it better to align blocks WRT to logical
3163 * placement or satisfy big request as is */
3164 ac->ac_g_ex.fe_logical = start;
3165 ac->ac_g_ex.fe_len = EXT4_NUM_B2C(sbi, size);
3166
3167 /* define goal start in order to merge */
3168 if (ar->pright && (ar->lright == (start + size))) {
3169 /* merge to the right */
3170 ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size,
3171 &ac->ac_f_ex.fe_group,
3172 &ac->ac_f_ex.fe_start);
3173 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3174 }
3175 if (ar->pleft && (ar->lleft + 1 == start)) {
3176 /* merge to the left */
3177 ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1,
3178 &ac->ac_f_ex.fe_group,
3179 &ac->ac_f_ex.fe_start);
3180 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3181 }
3182
3183 mb_debug(1, "goal: %u(was %u) blocks at %u\n", (unsigned) size,
3184 (unsigned) orig_size, (unsigned) start);
3185 }
3186
3187 static void ext4_mb_collect_stats(struct ext4_allocation_context *ac)
3188 {
3189 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3190
3191 if (sbi->s_mb_stats && ac->ac_g_ex.fe_len > 1) {
3192 atomic_inc(&sbi->s_bal_reqs);
3193 atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated);
3194 if (ac->ac_b_ex.fe_len >= ac->ac_o_ex.fe_len)
3195 atomic_inc(&sbi->s_bal_success);
3196 atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned);
3197 if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start &&
3198 ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group)
3199 atomic_inc(&sbi->s_bal_goals);
3200 if (ac->ac_found > sbi->s_mb_max_to_scan)
3201 atomic_inc(&sbi->s_bal_breaks);
3202 }
3203
3204 if (ac->ac_op == EXT4_MB_HISTORY_ALLOC)
3205 trace_ext4_mballoc_alloc(ac);
3206 else
3207 trace_ext4_mballoc_prealloc(ac);
3208 }
3209
3210 /*
3211 * Called on failure; free up any blocks from the inode PA for this
3212 * context. We don't need this for MB_GROUP_PA because we only change
3213 * pa_free in ext4_mb_release_context(), but on failure, we've already
3214 * zeroed out ac->ac_b_ex.fe_len, so group_pa->pa_free is not changed.
3215 */
3216 static void ext4_discard_allocated_blocks(struct ext4_allocation_context *ac)
3217 {
3218 struct ext4_prealloc_space *pa = ac->ac_pa;
3219
3220 if (pa && pa->pa_type == MB_INODE_PA)
3221 pa->pa_free += ac->ac_b_ex.fe_len;
3222 }
3223
3224 /*
3225 * use blocks preallocated to inode
3226 */
3227 static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac,
3228 struct ext4_prealloc_space *pa)
3229 {
3230 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3231 ext4_fsblk_t start;
3232 ext4_fsblk_t end;
3233 int len;
3234
3235 /* found preallocated blocks, use them */
3236 start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart);
3237 end = min(pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len),
3238 start + EXT4_C2B(sbi, ac->ac_o_ex.fe_len));
3239 len = EXT4_NUM_B2C(sbi, end - start);
3240 ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group,
3241 &ac->ac_b_ex.fe_start);
3242 ac->ac_b_ex.fe_len = len;
3243 ac->ac_status = AC_STATUS_FOUND;
3244 ac->ac_pa = pa;
3245
3246 BUG_ON(start < pa->pa_pstart);
3247 BUG_ON(end > pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len));
3248 BUG_ON(pa->pa_free < len);
3249 pa->pa_free -= len;
3250
3251 mb_debug(1, "use %llu/%u from inode pa %p\n", start, len, pa);
3252 }
3253
3254 /*
3255 * use blocks preallocated to locality group
3256 */
3257 static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac,
3258 struct ext4_prealloc_space *pa)
3259 {
3260 unsigned int len = ac->ac_o_ex.fe_len;
3261
3262 ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart,
3263 &ac->ac_b_ex.fe_group,
3264 &ac->ac_b_ex.fe_start);
3265 ac->ac_b_ex.fe_len = len;
3266 ac->ac_status = AC_STATUS_FOUND;
3267 ac->ac_pa = pa;
3268
3269 /* we don't correct pa_pstart or pa_plen here to avoid
3270 * possible race when the group is being loaded concurrently
3271 * instead we correct pa later, after blocks are marked
3272 * in on-disk bitmap -- see ext4_mb_release_context()
3273 * Other CPUs are prevented from allocating from this pa by lg_mutex
3274 */
3275 mb_debug(1, "use %u/%u from group pa %p\n", pa->pa_lstart-len, len, pa);
3276 }
3277
3278 /*
3279 * Return the prealloc space that have minimal distance
3280 * from the goal block. @cpa is the prealloc
3281 * space that is having currently known minimal distance
3282 * from the goal block.
3283 */
3284 static struct ext4_prealloc_space *
3285 ext4_mb_check_group_pa(ext4_fsblk_t goal_block,
3286 struct ext4_prealloc_space *pa,
3287 struct ext4_prealloc_space *cpa)
3288 {
3289 ext4_fsblk_t cur_distance, new_distance;
3290
3291 if (cpa == NULL) {
3292 atomic_inc(&pa->pa_count);
3293 return pa;
3294 }
3295 cur_distance = abs(goal_block - cpa->pa_pstart);
3296 new_distance = abs(goal_block - pa->pa_pstart);
3297
3298 if (cur_distance <= new_distance)
3299 return cpa;
3300
3301 /* drop the previous reference */
3302 atomic_dec(&cpa->pa_count);
3303 atomic_inc(&pa->pa_count);
3304 return pa;
3305 }
3306
3307 /*
3308 * search goal blocks in preallocated space
3309 */
3310 static noinline_for_stack int
3311 ext4_mb_use_preallocated(struct ext4_allocation_context *ac)
3312 {
3313 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3314 int order, i;
3315 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
3316 struct ext4_locality_group *lg;
3317 struct ext4_prealloc_space *pa, *cpa = NULL;
3318 ext4_fsblk_t goal_block;
3319
3320 /* only data can be preallocated */
3321 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3322 return 0;
3323
3324 /* first, try per-file preallocation */
3325 rcu_read_lock();
3326 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3327
3328 /* all fields in this condition don't change,
3329 * so we can skip locking for them */
3330 if (ac->ac_o_ex.fe_logical < pa->pa_lstart ||
3331 ac->ac_o_ex.fe_logical >= (pa->pa_lstart +
3332 EXT4_C2B(sbi, pa->pa_len)))
3333 continue;
3334
3335 /* non-extent files can't have physical blocks past 2^32 */
3336 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)) &&
3337 (pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len) >
3338 EXT4_MAX_BLOCK_FILE_PHYS))
3339 continue;
3340
3341 /* found preallocated blocks, use them */
3342 spin_lock(&pa->pa_lock);
3343 if (pa->pa_deleted == 0 && pa->pa_free) {
3344 atomic_inc(&pa->pa_count);
3345 ext4_mb_use_inode_pa(ac, pa);
3346 spin_unlock(&pa->pa_lock);
3347 ac->ac_criteria = 10;
3348 rcu_read_unlock();
3349 return 1;
3350 }
3351 spin_unlock(&pa->pa_lock);
3352 }
3353 rcu_read_unlock();
3354
3355 /* can we use group allocation? */
3356 if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC))
3357 return 0;
3358
3359 /* inode may have no locality group for some reason */
3360 lg = ac->ac_lg;
3361 if (lg == NULL)
3362 return 0;
3363 order = fls(ac->ac_o_ex.fe_len) - 1;
3364 if (order > PREALLOC_TB_SIZE - 1)
3365 /* The max size of hash table is PREALLOC_TB_SIZE */
3366 order = PREALLOC_TB_SIZE - 1;
3367
3368 goal_block = ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex);
3369 /*
3370 * search for the prealloc space that is having
3371 * minimal distance from the goal block.
3372 */
3373 for (i = order; i < PREALLOC_TB_SIZE; i++) {
3374 rcu_read_lock();
3375 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[i],
3376 pa_inode_list) {
3377 spin_lock(&pa->pa_lock);
3378 if (pa->pa_deleted == 0 &&
3379 pa->pa_free >= ac->ac_o_ex.fe_len) {
3380
3381 cpa = ext4_mb_check_group_pa(goal_block,
3382 pa, cpa);
3383 }
3384 spin_unlock(&pa->pa_lock);
3385 }
3386 rcu_read_unlock();
3387 }
3388 if (cpa) {
3389 ext4_mb_use_group_pa(ac, cpa);
3390 ac->ac_criteria = 20;
3391 return 1;
3392 }
3393 return 0;
3394 }
3395
3396 /*
3397 * the function goes through all block freed in the group
3398 * but not yet committed and marks them used in in-core bitmap.
3399 * buddy must be generated from this bitmap
3400 * Need to be called with the ext4 group lock held
3401 */
3402 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
3403 ext4_group_t group)
3404 {
3405 struct rb_node *n;
3406 struct ext4_group_info *grp;
3407 struct ext4_free_data *entry;
3408
3409 grp = ext4_get_group_info(sb, group);
3410 n = rb_first(&(grp->bb_free_root));
3411
3412 while (n) {
3413 entry = rb_entry(n, struct ext4_free_data, efd_node);
3414 ext4_set_bits(bitmap, entry->efd_start_cluster, entry->efd_count);
3415 n = rb_next(n);
3416 }
3417 return;
3418 }
3419
3420 /*
3421 * the function goes through all preallocation in this group and marks them
3422 * used in in-core bitmap. buddy must be generated from this bitmap
3423 * Need to be called with ext4 group lock held
3424 */
3425 static noinline_for_stack
3426 void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
3427 ext4_group_t group)
3428 {
3429 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
3430 struct ext4_prealloc_space *pa;
3431 struct list_head *cur;
3432 ext4_group_t groupnr;
3433 ext4_grpblk_t start;
3434 int preallocated = 0;
3435 int len;
3436
3437 /* all form of preallocation discards first load group,
3438 * so the only competing code is preallocation use.
3439 * we don't need any locking here
3440 * notice we do NOT ignore preallocations with pa_deleted
3441 * otherwise we could leave used blocks available for
3442 * allocation in buddy when concurrent ext4_mb_put_pa()
3443 * is dropping preallocation
3444 */
3445 list_for_each(cur, &grp->bb_prealloc_list) {
3446 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
3447 spin_lock(&pa->pa_lock);
3448 ext4_get_group_no_and_offset(sb, pa->pa_pstart,
3449 &groupnr, &start);
3450 len = pa->pa_len;
3451 spin_unlock(&pa->pa_lock);
3452 if (unlikely(len == 0))
3453 continue;
3454 BUG_ON(groupnr != group);
3455 ext4_set_bits(bitmap, start, len);
3456 preallocated += len;
3457 }
3458 mb_debug(1, "prellocated %u for group %u\n", preallocated, group);
3459 }
3460
3461 static void ext4_mb_pa_callback(struct rcu_head *head)
3462 {
3463 struct ext4_prealloc_space *pa;
3464 pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu);
3465
3466 BUG_ON(atomic_read(&pa->pa_count));
3467 BUG_ON(pa->pa_deleted == 0);
3468 kmem_cache_free(ext4_pspace_cachep, pa);
3469 }
3470
3471 /*
3472 * drops a reference to preallocated space descriptor
3473 * if this was the last reference and the space is consumed
3474 */
3475 static void ext4_mb_put_pa(struct ext4_allocation_context *ac,
3476 struct super_block *sb, struct ext4_prealloc_space *pa)
3477 {
3478 ext4_group_t grp;
3479 ext4_fsblk_t grp_blk;
3480
3481 /* in this short window concurrent discard can set pa_deleted */
3482 spin_lock(&pa->pa_lock);
3483 if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0) {
3484 spin_unlock(&pa->pa_lock);
3485 return;
3486 }
3487
3488 if (pa->pa_deleted == 1) {
3489 spin_unlock(&pa->pa_lock);
3490 return;
3491 }
3492
3493 pa->pa_deleted = 1;
3494 spin_unlock(&pa->pa_lock);
3495
3496 grp_blk = pa->pa_pstart;
3497 /*
3498 * If doing group-based preallocation, pa_pstart may be in the
3499 * next group when pa is used up
3500 */
3501 if (pa->pa_type == MB_GROUP_PA)
3502 grp_blk--;
3503
3504 grp = ext4_get_group_number(sb, grp_blk);
3505
3506 /*
3507 * possible race:
3508 *
3509 * P1 (buddy init) P2 (regular allocation)
3510 * find block B in PA
3511 * copy on-disk bitmap to buddy
3512 * mark B in on-disk bitmap
3513 * drop PA from group
3514 * mark all PAs in buddy
3515 *
3516 * thus, P1 initializes buddy with B available. to prevent this
3517 * we make "copy" and "mark all PAs" atomic and serialize "drop PA"
3518 * against that pair
3519 */
3520 ext4_lock_group(sb, grp);
3521 list_del(&pa->pa_group_list);
3522 ext4_unlock_group(sb, grp);
3523
3524 spin_lock(pa->pa_obj_lock);
3525 list_del_rcu(&pa->pa_inode_list);
3526 spin_unlock(pa->pa_obj_lock);
3527
3528 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3529 }
3530
3531 /*
3532 * creates new preallocated space for given inode
3533 */
3534 static noinline_for_stack int
3535 ext4_mb_new_inode_pa(struct ext4_allocation_context *ac)
3536 {
3537 struct super_block *sb = ac->ac_sb;
3538 struct ext4_sb_info *sbi = EXT4_SB(sb);
3539 struct ext4_prealloc_space *pa;
3540 struct ext4_group_info *grp;
3541 struct ext4_inode_info *ei;
3542
3543 /* preallocate only when found space is larger then requested */
3544 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
3545 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3546 BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
3547
3548 pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
3549 if (pa == NULL)
3550 return -ENOMEM;
3551
3552 if (ac->ac_b_ex.fe_len < ac->ac_g_ex.fe_len) {
3553 int winl;
3554 int wins;
3555 int win;
3556 int offs;
3557
3558 /* we can't allocate as much as normalizer wants.
3559 * so, found space must get proper lstart
3560 * to cover original request */
3561 BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical);
3562 BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len);
3563
3564 /* we're limited by original request in that
3565 * logical block must be covered any way
3566 * winl is window we can move our chunk within */
3567 winl = ac->ac_o_ex.fe_logical - ac->ac_g_ex.fe_logical;
3568
3569 /* also, we should cover whole original request */
3570 wins = EXT4_C2B(sbi, ac->ac_b_ex.fe_len - ac->ac_o_ex.fe_len);
3571
3572 /* the smallest one defines real window */
3573 win = min(winl, wins);
3574
3575 offs = ac->ac_o_ex.fe_logical %
3576 EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
3577 if (offs && offs < win)
3578 win = offs;
3579
3580 ac->ac_b_ex.fe_logical = ac->ac_o_ex.fe_logical -
3581 EXT4_NUM_B2C(sbi, win);
3582 BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical);
3583 BUG_ON(ac->ac_o_ex.fe_len > ac->ac_b_ex.fe_len);
3584 }
3585
3586 /* preallocation can change ac_b_ex, thus we store actually
3587 * allocated blocks for history */
3588 ac->ac_f_ex = ac->ac_b_ex;
3589
3590 pa->pa_lstart = ac->ac_b_ex.fe_logical;
3591 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3592 pa->pa_len = ac->ac_b_ex.fe_len;
3593 pa->pa_free = pa->pa_len;
3594 atomic_set(&pa->pa_count, 1);
3595 spin_lock_init(&pa->pa_lock);
3596 INIT_LIST_HEAD(&pa->pa_inode_list);
3597 INIT_LIST_HEAD(&pa->pa_group_list);
3598 pa->pa_deleted = 0;
3599 pa->pa_type = MB_INODE_PA;
3600
3601 mb_debug(1, "new inode pa %p: %llu/%u for %u\n", pa,
3602 pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3603 trace_ext4_mb_new_inode_pa(ac, pa);
3604
3605 ext4_mb_use_inode_pa(ac, pa);
3606 atomic_add(pa->pa_free, &sbi->s_mb_preallocated);
3607
3608 ei = EXT4_I(ac->ac_inode);
3609 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
3610
3611 pa->pa_obj_lock = &ei->i_prealloc_lock;
3612 pa->pa_inode = ac->ac_inode;
3613
3614 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3615 list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
3616 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3617
3618 spin_lock(pa->pa_obj_lock);
3619 list_add_rcu(&pa->pa_inode_list, &ei->i_prealloc_list);
3620 spin_unlock(pa->pa_obj_lock);
3621
3622 return 0;
3623 }
3624
3625 /*
3626 * creates new preallocated space for locality group inodes belongs to
3627 */
3628 static noinline_for_stack int
3629 ext4_mb_new_group_pa(struct ext4_allocation_context *ac)
3630 {
3631 struct super_block *sb = ac->ac_sb;
3632 struct ext4_locality_group *lg;
3633 struct ext4_prealloc_space *pa;
3634 struct ext4_group_info *grp;
3635
3636 /* preallocate only when found space is larger then requested */
3637 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
3638 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3639 BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
3640
3641 BUG_ON(ext4_pspace_cachep == NULL);
3642 pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
3643 if (pa == NULL)
3644 return -ENOMEM;
3645
3646 /* preallocation can change ac_b_ex, thus we store actually
3647 * allocated blocks for history */
3648 ac->ac_f_ex = ac->ac_b_ex;
3649
3650 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3651 pa->pa_lstart = pa->pa_pstart;
3652 pa->pa_len = ac->ac_b_ex.fe_len;
3653 pa->pa_free = pa->pa_len;
3654 atomic_set(&pa->pa_count, 1);
3655 spin_lock_init(&pa->pa_lock);
3656 INIT_LIST_HEAD(&pa->pa_inode_list);
3657 INIT_LIST_HEAD(&pa->pa_group_list);
3658 pa->pa_deleted = 0;
3659 pa->pa_type = MB_GROUP_PA;
3660
3661 mb_debug(1, "new group pa %p: %llu/%u for %u\n", pa,
3662 pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3663 trace_ext4_mb_new_group_pa(ac, pa);
3664
3665 ext4_mb_use_group_pa(ac, pa);
3666 atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated);
3667
3668 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
3669 lg = ac->ac_lg;
3670 BUG_ON(lg == NULL);
3671
3672 pa->pa_obj_lock = &lg->lg_prealloc_lock;
3673 pa->pa_inode = NULL;
3674
3675 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3676 list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
3677 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3678
3679 /*
3680 * We will later add the new pa to the right bucket
3681 * after updating the pa_free in ext4_mb_release_context
3682 */
3683 return 0;
3684 }
3685
3686 static int ext4_mb_new_preallocation(struct ext4_allocation_context *ac)
3687 {
3688 int err;
3689
3690 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
3691 err = ext4_mb_new_group_pa(ac);
3692 else
3693 err = ext4_mb_new_inode_pa(ac);
3694 return err;
3695 }
3696
3697 /*
3698 * finds all unused blocks in on-disk bitmap, frees them in
3699 * in-core bitmap and buddy.
3700 * @pa must be unlinked from inode and group lists, so that
3701 * nobody else can find/use it.
3702 * the caller MUST hold group/inode locks.
3703 * TODO: optimize the case when there are no in-core structures yet
3704 */
3705 static noinline_for_stack int
3706 ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh,
3707 struct ext4_prealloc_space *pa)
3708 {
3709 struct super_block *sb = e4b->bd_sb;
3710 struct ext4_sb_info *sbi = EXT4_SB(sb);
3711 unsigned int end;
3712 unsigned int next;
3713 ext4_group_t group;
3714 ext4_grpblk_t bit;
3715 unsigned long long grp_blk_start;
3716 int err = 0;
3717 int free = 0;
3718
3719 BUG_ON(pa->pa_deleted == 0);
3720 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3721 grp_blk_start = pa->pa_pstart - EXT4_C2B(sbi, bit);
3722 BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
3723 end = bit + pa->pa_len;
3724
3725 while (bit < end) {
3726 bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit);
3727 if (bit >= end)
3728 break;
3729 next = mb_find_next_bit(bitmap_bh->b_data, end, bit);
3730 mb_debug(1, " free preallocated %u/%u in group %u\n",
3731 (unsigned) ext4_group_first_block_no(sb, group) + bit,
3732 (unsigned) next - bit, (unsigned) group);
3733 free += next - bit;
3734
3735 trace_ext4_mballoc_discard(sb, NULL, group, bit, next - bit);
3736 trace_ext4_mb_release_inode_pa(pa, (grp_blk_start +
3737 EXT4_C2B(sbi, bit)),
3738 next - bit);
3739 mb_free_blocks(pa->pa_inode, e4b, bit, next - bit);
3740 bit = next + 1;
3741 }
3742 if (free != pa->pa_free) {
3743 ext4_msg(e4b->bd_sb, KERN_CRIT,
3744 "pa %p: logic %lu, phys. %lu, len %lu",
3745 pa, (unsigned long) pa->pa_lstart,
3746 (unsigned long) pa->pa_pstart,
3747 (unsigned long) pa->pa_len);
3748 ext4_grp_locked_error(sb, group, 0, 0, "free %u, pa_free %u",
3749 free, pa->pa_free);
3750 /*
3751 * pa is already deleted so we use the value obtained
3752 * from the bitmap and continue.
3753 */
3754 }
3755 atomic_add(free, &sbi->s_mb_discarded);
3756
3757 return err;
3758 }
3759
3760 static noinline_for_stack int
3761 ext4_mb_release_group_pa(struct ext4_buddy *e4b,
3762 struct ext4_prealloc_space *pa)
3763 {
3764 struct super_block *sb = e4b->bd_sb;
3765 ext4_group_t group;
3766 ext4_grpblk_t bit;
3767
3768 trace_ext4_mb_release_group_pa(sb, pa);
3769 BUG_ON(pa->pa_deleted == 0);
3770 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3771 BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
3772 mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len);
3773 atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded);
3774 trace_ext4_mballoc_discard(sb, NULL, group, bit, pa->pa_len);
3775
3776 return 0;
3777 }
3778
3779 /*
3780 * releases all preallocations in given group
3781 *
3782 * first, we need to decide discard policy:
3783 * - when do we discard
3784 * 1) ENOSPC
3785 * - how many do we discard
3786 * 1) how many requested
3787 */
3788 static noinline_for_stack int
3789 ext4_mb_discard_group_preallocations(struct super_block *sb,
3790 ext4_group_t group, int needed)
3791 {
3792 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
3793 struct buffer_head *bitmap_bh = NULL;
3794 struct ext4_prealloc_space *pa, *tmp;
3795 struct list_head list;
3796 struct ext4_buddy e4b;
3797 int err;
3798 int busy = 0;
3799 int free = 0;
3800
3801 mb_debug(1, "discard preallocation for group %u\n", group);
3802
3803 if (list_empty(&grp->bb_prealloc_list))
3804 return 0;
3805
3806 bitmap_bh = ext4_read_block_bitmap(sb, group);
3807 if (bitmap_bh == NULL) {
3808 ext4_error(sb, "Error reading block bitmap for %u", group);
3809 return 0;
3810 }
3811
3812 err = ext4_mb_load_buddy(sb, group, &e4b);
3813 if (err) {
3814 ext4_error(sb, "Error loading buddy information for %u", group);
3815 put_bh(bitmap_bh);
3816 return 0;
3817 }
3818
3819 if (needed == 0)
3820 needed = EXT4_CLUSTERS_PER_GROUP(sb) + 1;
3821
3822 INIT_LIST_HEAD(&list);
3823 repeat:
3824 ext4_lock_group(sb, group);
3825 list_for_each_entry_safe(pa, tmp,
3826 &grp->bb_prealloc_list, pa_group_list) {
3827 spin_lock(&pa->pa_lock);
3828 if (atomic_read(&pa->pa_count)) {
3829 spin_unlock(&pa->pa_lock);
3830 busy = 1;
3831 continue;
3832 }
3833 if (pa->pa_deleted) {
3834 spin_unlock(&pa->pa_lock);
3835 continue;
3836 }
3837
3838 /* seems this one can be freed ... */
3839 pa->pa_deleted = 1;
3840
3841 /* we can trust pa_free ... */
3842 free += pa->pa_free;
3843
3844 spin_unlock(&pa->pa_lock);
3845
3846 list_del(&pa->pa_group_list);
3847 list_add(&pa->u.pa_tmp_list, &list);
3848 }
3849
3850 /* if we still need more blocks and some PAs were used, try again */
3851 if (free < needed && busy) {
3852 busy = 0;
3853 ext4_unlock_group(sb, group);
3854 cond_resched();
3855 goto repeat;
3856 }
3857
3858 /* found anything to free? */
3859 if (list_empty(&list)) {
3860 BUG_ON(free != 0);
3861 goto out;
3862 }
3863
3864 /* now free all selected PAs */
3865 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
3866
3867 /* remove from object (inode or locality group) */
3868 spin_lock(pa->pa_obj_lock);
3869 list_del_rcu(&pa->pa_inode_list);
3870 spin_unlock(pa->pa_obj_lock);
3871
3872 if (pa->pa_type == MB_GROUP_PA)
3873 ext4_mb_release_group_pa(&e4b, pa);
3874 else
3875 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
3876
3877 list_del(&pa->u.pa_tmp_list);
3878 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3879 }
3880
3881 out:
3882 ext4_unlock_group(sb, group);
3883 ext4_mb_unload_buddy(&e4b);
3884 put_bh(bitmap_bh);
3885 return free;
3886 }
3887
3888 /*
3889 * releases all non-used preallocated blocks for given inode
3890 *
3891 * It's important to discard preallocations under i_data_sem
3892 * We don't want another block to be served from the prealloc
3893 * space when we are discarding the inode prealloc space.
3894 *
3895 * FIXME!! Make sure it is valid at all the call sites
3896 */
3897 void ext4_discard_preallocations(struct inode *inode)
3898 {
3899 struct ext4_inode_info *ei = EXT4_I(inode);
3900 struct super_block *sb = inode->i_sb;
3901 struct buffer_head *bitmap_bh = NULL;
3902 struct ext4_prealloc_space *pa, *tmp;
3903 ext4_group_t group = 0;
3904 struct list_head list;
3905 struct ext4_buddy e4b;
3906 int err;
3907
3908 if (!S_ISREG(inode->i_mode)) {
3909 /*BUG_ON(!list_empty(&ei->i_prealloc_list));*/
3910 return;
3911 }
3912
3913 mb_debug(1, "discard preallocation for inode %lu\n", inode->i_ino);
3914 trace_ext4_discard_preallocations(inode);
3915
3916 INIT_LIST_HEAD(&list);
3917
3918 repeat:
3919 /* first, collect all pa's in the inode */
3920 spin_lock(&ei->i_prealloc_lock);
3921 while (!list_empty(&ei->i_prealloc_list)) {
3922 pa = list_entry(ei->i_prealloc_list.next,
3923 struct ext4_prealloc_space, pa_inode_list);
3924 BUG_ON(pa->pa_obj_lock != &ei->i_prealloc_lock);
3925 spin_lock(&pa->pa_lock);
3926 if (atomic_read(&pa->pa_count)) {
3927 /* this shouldn't happen often - nobody should
3928 * use preallocation while we're discarding it */
3929 spin_unlock(&pa->pa_lock);
3930 spin_unlock(&ei->i_prealloc_lock);
3931 ext4_msg(sb, KERN_ERR,
3932 "uh-oh! used pa while discarding");
3933 WARN_ON(1);
3934 schedule_timeout_uninterruptible(HZ);
3935 goto repeat;
3936
3937 }
3938 if (pa->pa_deleted == 0) {
3939 pa->pa_deleted = 1;
3940 spin_unlock(&pa->pa_lock);
3941 list_del_rcu(&pa->pa_inode_list);
3942 list_add(&pa->u.pa_tmp_list, &list);
3943 continue;
3944 }
3945
3946 /* someone is deleting pa right now */
3947 spin_unlock(&pa->pa_lock);
3948 spin_unlock(&ei->i_prealloc_lock);
3949
3950 /* we have to wait here because pa_deleted
3951 * doesn't mean pa is already unlinked from
3952 * the list. as we might be called from
3953 * ->clear_inode() the inode will get freed
3954 * and concurrent thread which is unlinking
3955 * pa from inode's list may access already
3956 * freed memory, bad-bad-bad */
3957
3958 /* XXX: if this happens too often, we can
3959 * add a flag to force wait only in case
3960 * of ->clear_inode(), but not in case of
3961 * regular truncate */
3962 schedule_timeout_uninterruptible(HZ);
3963 goto repeat;
3964 }
3965 spin_unlock(&ei->i_prealloc_lock);
3966
3967 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
3968 BUG_ON(pa->pa_type != MB_INODE_PA);
3969 group = ext4_get_group_number(sb, pa->pa_pstart);
3970
3971 err = ext4_mb_load_buddy(sb, group, &e4b);
3972 if (err) {
3973 ext4_error(sb, "Error loading buddy information for %u",
3974 group);
3975 continue;
3976 }
3977
3978 bitmap_bh = ext4_read_block_bitmap(sb, group);
3979 if (bitmap_bh == NULL) {
3980 ext4_error(sb, "Error reading block bitmap for %u",
3981 group);
3982 ext4_mb_unload_buddy(&e4b);
3983 continue;
3984 }
3985
3986 ext4_lock_group(sb, group);
3987 list_del(&pa->pa_group_list);
3988 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
3989 ext4_unlock_group(sb, group);
3990
3991 ext4_mb_unload_buddy(&e4b);
3992 put_bh(bitmap_bh);
3993
3994 list_del(&pa->u.pa_tmp_list);
3995 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3996 }
3997 }
3998
3999 #ifdef CONFIG_EXT4_DEBUG
4000 static void ext4_mb_show_ac(struct ext4_allocation_context *ac)
4001 {
4002 struct super_block *sb = ac->ac_sb;
4003 ext4_group_t ngroups, i;
4004
4005 if (!ext4_mballoc_debug ||
4006 (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED))
4007 return;
4008
4009 ext4_msg(ac->ac_sb, KERN_ERR, "Can't allocate:"
4010 " Allocation context details:");
4011 ext4_msg(ac->ac_sb, KERN_ERR, "status %d flags %d",
4012 ac->ac_status, ac->ac_flags);
4013 ext4_msg(ac->ac_sb, KERN_ERR, "orig %lu/%lu/%lu@%lu, "
4014 "goal %lu/%lu/%lu@%lu, "
4015 "best %lu/%lu/%lu@%lu cr %d",
4016 (unsigned long)ac->ac_o_ex.fe_group,
4017 (unsigned long)ac->ac_o_ex.fe_start,
4018 (unsigned long)ac->ac_o_ex.fe_len,
4019 (unsigned long)ac->ac_o_ex.fe_logical,
4020 (unsigned long)ac->ac_g_ex.fe_group,
4021 (unsigned long)ac->ac_g_ex.fe_start,
4022 (unsigned long)ac->ac_g_ex.fe_len,
4023 (unsigned long)ac->ac_g_ex.fe_logical,
4024 (unsigned long)ac->ac_b_ex.fe_group,
4025 (unsigned long)ac->ac_b_ex.fe_start,
4026 (unsigned long)ac->ac_b_ex.fe_len,
4027 (unsigned long)ac->ac_b_ex.fe_logical,
4028 (int)ac->ac_criteria);
4029 ext4_msg(ac->ac_sb, KERN_ERR, "%d found", ac->ac_found);
4030 ext4_msg(ac->ac_sb, KERN_ERR, "groups: ");
4031 ngroups = ext4_get_groups_count(sb);
4032 for (i = 0; i < ngroups; i++) {
4033 struct ext4_group_info *grp = ext4_get_group_info(sb, i);
4034 struct ext4_prealloc_space *pa;
4035 ext4_grpblk_t start;
4036 struct list_head *cur;
4037 ext4_lock_group(sb, i);
4038 list_for_each(cur, &grp->bb_prealloc_list) {
4039 pa = list_entry(cur, struct ext4_prealloc_space,
4040 pa_group_list);
4041 spin_lock(&pa->pa_lock);
4042 ext4_get_group_no_and_offset(sb, pa->pa_pstart,
4043 NULL, &start);
4044 spin_unlock(&pa->pa_lock);
4045 printk(KERN_ERR "PA:%u:%d:%u \n", i,
4046 start, pa->pa_len);
4047 }
4048 ext4_unlock_group(sb, i);
4049
4050 if (grp->bb_free == 0)
4051 continue;
4052 printk(KERN_ERR "%u: %d/%d \n",
4053 i, grp->bb_free, grp->bb_fragments);
4054 }
4055 printk(KERN_ERR "\n");
4056 }
4057 #else
4058 static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac)
4059 {
4060 return;
4061 }
4062 #endif
4063
4064 /*
4065 * We use locality group preallocation for small size file. The size of the
4066 * file is determined by the current size or the resulting size after
4067 * allocation which ever is larger
4068 *
4069 * One can tune this size via /sys/fs/ext4/<partition>/mb_stream_req
4070 */
4071 static void ext4_mb_group_or_file(struct ext4_allocation_context *ac)
4072 {
4073 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4074 int bsbits = ac->ac_sb->s_blocksize_bits;
4075 loff_t size, isize;
4076
4077 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
4078 return;
4079
4080 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
4081 return;
4082
4083 size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len);
4084 isize = (i_size_read(ac->ac_inode) + ac->ac_sb->s_blocksize - 1)
4085 >> bsbits;
4086
4087 if ((size == isize) &&
4088 !ext4_fs_is_busy(sbi) &&
4089 (atomic_read(&ac->ac_inode->i_writecount) == 0)) {
4090 ac->ac_flags |= EXT4_MB_HINT_NOPREALLOC;
4091 return;
4092 }
4093
4094 if (sbi->s_mb_group_prealloc <= 0) {
4095 ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
4096 return;
4097 }
4098
4099 /* don't use group allocation for large files */
4100 size = max(size, isize);
4101 if (size > sbi->s_mb_stream_request) {
4102 ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
4103 return;
4104 }
4105
4106 BUG_ON(ac->ac_lg != NULL);
4107 /*
4108 * locality group prealloc space are per cpu. The reason for having
4109 * per cpu locality group is to reduce the contention between block
4110 * request from multiple CPUs.
4111 */
4112 ac->ac_lg = __this_cpu_ptr(sbi->s_locality_groups);
4113
4114 /* we're going to use group allocation */
4115 ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC;
4116
4117 /* serialize all allocations in the group */
4118 mutex_lock(&ac->ac_lg->lg_mutex);
4119 }
4120
4121 static noinline_for_stack int
4122 ext4_mb_initialize_context(struct ext4_allocation_context *ac,
4123 struct ext4_allocation_request *ar)
4124 {
4125 struct super_block *sb = ar->inode->i_sb;
4126 struct ext4_sb_info *sbi = EXT4_SB(sb);
4127 struct ext4_super_block *es = sbi->s_es;
4128 ext4_group_t group;
4129 unsigned int len;
4130 ext4_fsblk_t goal;
4131 ext4_grpblk_t block;
4132
4133 /* we can't allocate > group size */
4134 len = ar->len;
4135
4136 /* just a dirty hack to filter too big requests */
4137 if (len >= EXT4_CLUSTERS_PER_GROUP(sb))
4138 len = EXT4_CLUSTERS_PER_GROUP(sb);
4139
4140 /* start searching from the goal */
4141 goal = ar->goal;
4142 if (goal < le32_to_cpu(es->s_first_data_block) ||
4143 goal >= ext4_blocks_count(es))
4144 goal = le32_to_cpu(es->s_first_data_block);
4145 ext4_get_group_no_and_offset(sb, goal, &group, &block);
4146
4147 /* set up allocation goals */
4148 ac->ac_b_ex.fe_logical = EXT4_LBLK_CMASK(sbi, ar->logical);
4149 ac->ac_status = AC_STATUS_CONTINUE;
4150 ac->ac_sb = sb;
4151 ac->ac_inode = ar->inode;
4152 ac->ac_o_ex.fe_logical = ac->ac_b_ex.fe_logical;
4153 ac->ac_o_ex.fe_group = group;
4154 ac->ac_o_ex.fe_start = block;
4155 ac->ac_o_ex.fe_len = len;
4156 ac->ac_g_ex = ac->ac_o_ex;
4157 ac->ac_flags = ar->flags;
4158
4159 /* we have to define context: we'll we work with a file or
4160 * locality group. this is a policy, actually */
4161 ext4_mb_group_or_file(ac);
4162
4163 mb_debug(1, "init ac: %u blocks @ %u, goal %u, flags %x, 2^%d, "
4164 "left: %u/%u, right %u/%u to %swritable\n",
4165 (unsigned) ar->len, (unsigned) ar->logical,
4166 (unsigned) ar->goal, ac->ac_flags, ac->ac_2order,
4167 (unsigned) ar->lleft, (unsigned) ar->pleft,
4168 (unsigned) ar->lright, (unsigned) ar->pright,
4169 atomic_read(&ar->inode->i_writecount) ? "" : "non-");
4170 return 0;
4171
4172 }
4173
4174 static noinline_for_stack void
4175 ext4_mb_discard_lg_preallocations(struct super_block *sb,
4176 struct ext4_locality_group *lg,
4177 int order, int total_entries)
4178 {
4179 ext4_group_t group = 0;
4180 struct ext4_buddy e4b;
4181 struct list_head discard_list;
4182 struct ext4_prealloc_space *pa, *tmp;
4183
4184 mb_debug(1, "discard locality group preallocation\n");
4185
4186 INIT_LIST_HEAD(&discard_list);
4187
4188 spin_lock(&lg->lg_prealloc_lock);
4189 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[order],
4190 pa_inode_list) {
4191 spin_lock(&pa->pa_lock);
4192 if (atomic_read(&pa->pa_count)) {
4193 /*
4194 * This is the pa that we just used
4195 * for block allocation. So don't
4196 * free that
4197 */
4198 spin_unlock(&pa->pa_lock);
4199 continue;
4200 }
4201 if (pa->pa_deleted) {
4202 spin_unlock(&pa->pa_lock);
4203 continue;
4204 }
4205 /* only lg prealloc space */
4206 BUG_ON(pa->pa_type != MB_GROUP_PA);
4207
4208 /* seems this one can be freed ... */
4209 pa->pa_deleted = 1;
4210 spin_unlock(&pa->pa_lock);
4211
4212 list_del_rcu(&pa->pa_inode_list);
4213 list_add(&pa->u.pa_tmp_list, &discard_list);
4214
4215 total_entries--;
4216 if (total_entries <= 5) {
4217 /*
4218 * we want to keep only 5 entries
4219 * allowing it to grow to 8. This
4220 * mak sure we don't call discard
4221 * soon for this list.
4222 */
4223 break;
4224 }
4225 }
4226 spin_unlock(&lg->lg_prealloc_lock);
4227
4228 list_for_each_entry_safe(pa, tmp, &discard_list, u.pa_tmp_list) {
4229
4230 group = ext4_get_group_number(sb, pa->pa_pstart);
4231 if (ext4_mb_load_buddy(sb, group, &e4b)) {
4232 ext4_error(sb, "Error loading buddy information for %u",
4233 group);
4234 continue;
4235 }
4236 ext4_lock_group(sb, group);
4237 list_del(&pa->pa_group_list);
4238 ext4_mb_release_group_pa(&e4b, pa);
4239 ext4_unlock_group(sb, group);
4240
4241 ext4_mb_unload_buddy(&e4b);
4242 list_del(&pa->u.pa_tmp_list);
4243 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4244 }
4245 }
4246
4247 /*
4248 * We have incremented pa_count. So it cannot be freed at this
4249 * point. Also we hold lg_mutex. So no parallel allocation is
4250 * possible from this lg. That means pa_free cannot be updated.
4251 *
4252 * A parallel ext4_mb_discard_group_preallocations is possible.
4253 * which can cause the lg_prealloc_list to be updated.
4254 */
4255
4256 static void ext4_mb_add_n_trim(struct ext4_allocation_context *ac)
4257 {
4258 int order, added = 0, lg_prealloc_count = 1;
4259 struct super_block *sb = ac->ac_sb;
4260 struct ext4_locality_group *lg = ac->ac_lg;
4261 struct ext4_prealloc_space *tmp_pa, *pa = ac->ac_pa;
4262
4263 order = fls(pa->pa_free) - 1;
4264 if (order > PREALLOC_TB_SIZE - 1)
4265 /* The max size of hash table is PREALLOC_TB_SIZE */
4266 order = PREALLOC_TB_SIZE - 1;
4267 /* Add the prealloc space to lg */
4268 spin_lock(&lg->lg_prealloc_lock);
4269 list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[order],
4270 pa_inode_list) {
4271 spin_lock(&tmp_pa->pa_lock);
4272 if (tmp_pa->pa_deleted) {
4273 spin_unlock(&tmp_pa->pa_lock);
4274 continue;
4275 }
4276 if (!added && pa->pa_free < tmp_pa->pa_free) {
4277 /* Add to the tail of the previous entry */
4278 list_add_tail_rcu(&pa->pa_inode_list,
4279 &tmp_pa->pa_inode_list);
4280 added = 1;
4281 /*
4282 * we want to count the total
4283 * number of entries in the list
4284 */
4285 }
4286 spin_unlock(&tmp_pa->pa_lock);
4287 lg_prealloc_count++;
4288 }
4289 if (!added)
4290 list_add_tail_rcu(&pa->pa_inode_list,
4291 &lg->lg_prealloc_list[order]);
4292 spin_unlock(&lg->lg_prealloc_lock);
4293
4294 /* Now trim the list to be not more than 8 elements */
4295 if (lg_prealloc_count > 8) {
4296 ext4_mb_discard_lg_preallocations(sb, lg,
4297 order, lg_prealloc_count);
4298 return;
4299 }
4300 return ;
4301 }
4302
4303 /*
4304 * release all resource we used in allocation
4305 */
4306 static int ext4_mb_release_context(struct ext4_allocation_context *ac)
4307 {
4308 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4309 struct ext4_prealloc_space *pa = ac->ac_pa;
4310 if (pa) {
4311 if (pa->pa_type == MB_GROUP_PA) {
4312 /* see comment in ext4_mb_use_group_pa() */
4313 spin_lock(&pa->pa_lock);
4314 pa->pa_pstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
4315 pa->pa_lstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
4316 pa->pa_free -= ac->ac_b_ex.fe_len;
4317 pa->pa_len -= ac->ac_b_ex.fe_len;
4318 spin_unlock(&pa->pa_lock);
4319 }
4320 }
4321 if (pa) {
4322 /*
4323 * We want to add the pa to the right bucket.
4324 * Remove it from the list and while adding
4325 * make sure the list to which we are adding
4326 * doesn't grow big.
4327 */
4328 if ((pa->pa_type == MB_GROUP_PA) && likely(pa->pa_free)) {
4329 spin_lock(pa->pa_obj_lock);
4330 list_del_rcu(&pa->pa_inode_list);
4331 spin_unlock(pa->pa_obj_lock);
4332 ext4_mb_add_n_trim(ac);
4333 }
4334 ext4_mb_put_pa(ac, ac->ac_sb, pa);
4335 }
4336 if (ac->ac_bitmap_page)
4337 page_cache_release(ac->ac_bitmap_page);
4338 if (ac->ac_buddy_page)
4339 page_cache_release(ac->ac_buddy_page);
4340 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
4341 mutex_unlock(&ac->ac_lg->lg_mutex);
4342 ext4_mb_collect_stats(ac);
4343 return 0;
4344 }
4345
4346 static int ext4_mb_discard_preallocations(struct super_block *sb, int needed)
4347 {
4348 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
4349 int ret;
4350 int freed = 0;
4351
4352 trace_ext4_mb_discard_preallocations(sb, needed);
4353 for (i = 0; i < ngroups && needed > 0; i++) {
4354 ret = ext4_mb_discard_group_preallocations(sb, i, needed);
4355 freed += ret;
4356 needed -= ret;
4357 }
4358
4359 return freed;
4360 }
4361
4362 /*
4363 * Main entry point into mballoc to allocate blocks
4364 * it tries to use preallocation first, then falls back
4365 * to usual allocation
4366 */
4367 ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle,
4368 struct ext4_allocation_request *ar, int *errp)
4369 {
4370 int freed;
4371 struct ext4_allocation_context *ac = NULL;
4372 struct ext4_sb_info *sbi;
4373 struct super_block *sb;
4374 ext4_fsblk_t block = 0;
4375 unsigned int inquota = 0;
4376 unsigned int reserv_clstrs = 0;
4377
4378 might_sleep();
4379 sb = ar->inode->i_sb;
4380 sbi = EXT4_SB(sb);
4381
4382 trace_ext4_request_blocks(ar);
4383
4384 /* Allow to use superuser reservation for quota file */
4385 if (IS_NOQUOTA(ar->inode))
4386 ar->flags |= EXT4_MB_USE_ROOT_BLOCKS;
4387
4388 /*
4389 * For delayed allocation, we could skip the ENOSPC and
4390 * EDQUOT check, as blocks and quotas have been already
4391 * reserved when data being copied into pagecache.
4392 */
4393 if (ext4_test_inode_state(ar->inode, EXT4_STATE_DELALLOC_RESERVED))
4394 ar->flags |= EXT4_MB_DELALLOC_RESERVED;
4395 else {
4396 /* Without delayed allocation we need to verify
4397 * there is enough free blocks to do block allocation
4398 * and verify allocation doesn't exceed the quota limits.
4399 */
4400 while (ar->len &&
4401 ext4_claim_free_clusters(sbi, ar->len, ar->flags)) {
4402
4403 /* let others to free the space */
4404 cond_resched();
4405 ar->len = ar->len >> 1;
4406 }
4407 if (!ar->len) {
4408 *errp = -ENOSPC;
4409 return 0;
4410 }
4411 reserv_clstrs = ar->len;
4412 if (ar->flags & EXT4_MB_USE_ROOT_BLOCKS) {
4413 dquot_alloc_block_nofail(ar->inode,
4414 EXT4_C2B(sbi, ar->len));
4415 } else {
4416 while (ar->len &&
4417 dquot_alloc_block(ar->inode,
4418 EXT4_C2B(sbi, ar->len))) {
4419
4420 ar->flags |= EXT4_MB_HINT_NOPREALLOC;
4421 ar->len--;
4422 }
4423 }
4424 inquota = ar->len;
4425 if (ar->len == 0) {
4426 *errp = -EDQUOT;
4427 goto out;
4428 }
4429 }
4430
4431 ac = kmem_cache_zalloc(ext4_ac_cachep, GFP_NOFS);
4432 if (!ac) {
4433 ar->len = 0;
4434 *errp = -ENOMEM;
4435 goto out;
4436 }
4437
4438 *errp = ext4_mb_initialize_context(ac, ar);
4439 if (*errp) {
4440 ar->len = 0;
4441 goto out;
4442 }
4443
4444 ac->ac_op = EXT4_MB_HISTORY_PREALLOC;
4445 if (!ext4_mb_use_preallocated(ac)) {
4446 ac->ac_op = EXT4_MB_HISTORY_ALLOC;
4447 ext4_mb_normalize_request(ac, ar);
4448 repeat:
4449 /* allocate space in core */
4450 *errp = ext4_mb_regular_allocator(ac);
4451 if (*errp)
4452 goto discard_and_exit;
4453
4454 /* as we've just preallocated more space than
4455 * user requested originally, we store allocated
4456 * space in a special descriptor */
4457 if (ac->ac_status == AC_STATUS_FOUND &&
4458 ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len)
4459 *errp = ext4_mb_new_preallocation(ac);
4460 if (*errp) {
4461 discard_and_exit:
4462 ext4_discard_allocated_blocks(ac);
4463 goto errout;
4464 }
4465 }
4466 if (likely(ac->ac_status == AC_STATUS_FOUND)) {
4467 *errp = ext4_mb_mark_diskspace_used(ac, handle, reserv_clstrs);
4468 if (*errp == -EAGAIN) {
4469 /*
4470 * drop the reference that we took
4471 * in ext4_mb_use_best_found
4472 */
4473 ext4_mb_release_context(ac);
4474 ac->ac_b_ex.fe_group = 0;
4475 ac->ac_b_ex.fe_start = 0;
4476 ac->ac_b_ex.fe_len = 0;
4477 ac->ac_status = AC_STATUS_CONTINUE;
4478 goto repeat;
4479 } else if (*errp) {
4480 ext4_discard_allocated_blocks(ac);
4481 goto errout;
4482 } else {
4483 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
4484 ar->len = ac->ac_b_ex.fe_len;
4485 }
4486 } else {
4487 freed = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len);
4488 if (freed)
4489 goto repeat;
4490 *errp = -ENOSPC;
4491 }
4492
4493 errout:
4494 if (*errp) {
4495 ac->ac_b_ex.fe_len = 0;
4496 ar->len = 0;
4497 ext4_mb_show_ac(ac);
4498 }
4499 ext4_mb_release_context(ac);
4500 out:
4501 if (ac)
4502 kmem_cache_free(ext4_ac_cachep, ac);
4503 if (inquota && ar->len < inquota)
4504 dquot_free_block(ar->inode, EXT4_C2B(sbi, inquota - ar->len));
4505 if (!ar->len) {
4506 if (!ext4_test_inode_state(ar->inode,
4507 EXT4_STATE_DELALLOC_RESERVED))
4508 /* release all the reserved blocks if non delalloc */
4509 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
4510 reserv_clstrs);
4511 }
4512
4513 trace_ext4_allocate_blocks(ar, (unsigned long long)block);
4514
4515 return block;
4516 }
4517
4518 /*
4519 * We can merge two free data extents only if the physical blocks
4520 * are contiguous, AND the extents were freed by the same transaction,
4521 * AND the blocks are associated with the same group.
4522 */
4523 static int can_merge(struct ext4_free_data *entry1,
4524 struct ext4_free_data *entry2)
4525 {
4526 if ((entry1->efd_tid == entry2->efd_tid) &&
4527 (entry1->efd_group == entry2->efd_group) &&
4528 ((entry1->efd_start_cluster + entry1->efd_count) == entry2->efd_start_cluster))
4529 return 1;
4530 return 0;
4531 }
4532
4533 static noinline_for_stack int
4534 ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b,
4535 struct ext4_free_data *new_entry)
4536 {
4537 ext4_group_t group = e4b->bd_group;
4538 ext4_grpblk_t cluster;
4539 struct ext4_free_data *entry;
4540 struct ext4_group_info *db = e4b->bd_info;
4541 struct super_block *sb = e4b->bd_sb;
4542 struct ext4_sb_info *sbi = EXT4_SB(sb);
4543 struct rb_node **n = &db->bb_free_root.rb_node, *node;
4544 struct rb_node *parent = NULL, *new_node;
4545
4546 BUG_ON(!ext4_handle_valid(handle));
4547 BUG_ON(e4b->bd_bitmap_page == NULL);
4548 BUG_ON(e4b->bd_buddy_page == NULL);
4549
4550 new_node = &new_entry->efd_node;
4551 cluster = new_entry->efd_start_cluster;
4552
4553 if (!*n) {
4554 /* first free block exent. We need to
4555 protect buddy cache from being freed,
4556 * otherwise we'll refresh it from
4557 * on-disk bitmap and lose not-yet-available
4558 * blocks */
4559 page_cache_get(e4b->bd_buddy_page);
4560 page_cache_get(e4b->bd_bitmap_page);
4561 }
4562 while (*n) {
4563 parent = *n;
4564 entry = rb_entry(parent, struct ext4_free_data, efd_node);
4565 if (cluster < entry->efd_start_cluster)
4566 n = &(*n)->rb_left;
4567 else if (cluster >= (entry->efd_start_cluster + entry->efd_count))
4568 n = &(*n)->rb_right;
4569 else {
4570 ext4_grp_locked_error(sb, group, 0,
4571 ext4_group_first_block_no(sb, group) +
4572 EXT4_C2B(sbi, cluster),
4573 "Block already on to-be-freed list");
4574 return 0;
4575 }
4576 }
4577
4578 rb_link_node(new_node, parent, n);
4579 rb_insert_color(new_node, &db->bb_free_root);
4580
4581 /* Now try to see the extent can be merged to left and right */
4582 node = rb_prev(new_node);
4583 if (node) {
4584 entry = rb_entry(node, struct ext4_free_data, efd_node);
4585 if (can_merge(entry, new_entry) &&
4586 ext4_journal_callback_try_del(handle, &entry->efd_jce)) {
4587 new_entry->efd_start_cluster = entry->efd_start_cluster;
4588 new_entry->efd_count += entry->efd_count;
4589 rb_erase(node, &(db->bb_free_root));
4590 kmem_cache_free(ext4_free_data_cachep, entry);
4591 }
4592 }
4593
4594 node = rb_next(new_node);
4595 if (node) {
4596 entry = rb_entry(node, struct ext4_free_data, efd_node);
4597 if (can_merge(new_entry, entry) &&
4598 ext4_journal_callback_try_del(handle, &entry->efd_jce)) {
4599 new_entry->efd_count += entry->efd_count;
4600 rb_erase(node, &(db->bb_free_root));
4601 kmem_cache_free(ext4_free_data_cachep, entry);
4602 }
4603 }
4604 /* Add the extent to transaction's private list */
4605 ext4_journal_callback_add(handle, ext4_free_data_callback,
4606 &new_entry->efd_jce);
4607 return 0;
4608 }
4609
4610 /**
4611 * ext4_free_blocks() -- Free given blocks and update quota
4612 * @handle: handle for this transaction
4613 * @inode: inode
4614 * @block: start physical block to free
4615 * @count: number of blocks to count
4616 * @flags: flags used by ext4_free_blocks
4617 */
4618 void ext4_free_blocks(handle_t *handle, struct inode *inode,
4619 struct buffer_head *bh, ext4_fsblk_t block,
4620 unsigned long count, int flags)
4621 {
4622 struct buffer_head *bitmap_bh = NULL;
4623 struct super_block *sb = inode->i_sb;
4624 struct ext4_group_desc *gdp;
4625 unsigned int overflow;
4626 ext4_grpblk_t bit;
4627 struct buffer_head *gd_bh;
4628 ext4_group_t block_group;
4629 struct ext4_sb_info *sbi;
4630 struct ext4_inode_info *ei = EXT4_I(inode);
4631 struct ext4_buddy e4b;
4632 unsigned int count_clusters;
4633 int err = 0;
4634 int ret;
4635
4636 might_sleep();
4637 if (bh) {
4638 if (block)
4639 BUG_ON(block != bh->b_blocknr);
4640 else
4641 block = bh->b_blocknr;
4642 }
4643
4644 sbi = EXT4_SB(sb);
4645 if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) &&
4646 !ext4_data_block_valid(sbi, block, count)) {
4647 ext4_error(sb, "Freeing blocks not in datazone - "
4648 "block = %llu, count = %lu", block, count);
4649 goto error_return;
4650 }
4651
4652 ext4_debug("freeing block %llu\n", block);
4653 trace_ext4_free_blocks(inode, block, count, flags);
4654
4655 if (flags & EXT4_FREE_BLOCKS_FORGET) {
4656 struct buffer_head *tbh = bh;
4657 int i;
4658
4659 BUG_ON(bh && (count > 1));
4660
4661 for (i = 0; i < count; i++) {
4662 cond_resched();
4663 if (!bh)
4664 tbh = sb_find_get_block(inode->i_sb,
4665 block + i);
4666 if (!tbh)
4667 continue;
4668 ext4_forget(handle, flags & EXT4_FREE_BLOCKS_METADATA,
4669 inode, tbh, block + i);
4670 }
4671 }
4672
4673 /*
4674 * We need to make sure we don't reuse the freed block until
4675 * after the transaction is committed, which we can do by
4676 * treating the block as metadata, below. We make an
4677 * exception if the inode is to be written in writeback mode
4678 * since writeback mode has weak data consistency guarantees.
4679 */
4680 if (!ext4_should_writeback_data(inode))
4681 flags |= EXT4_FREE_BLOCKS_METADATA;
4682
4683 /*
4684 * If the extent to be freed does not begin on a cluster
4685 * boundary, we need to deal with partial clusters at the
4686 * beginning and end of the extent. Normally we will free
4687 * blocks at the beginning or the end unless we are explicitly
4688 * requested to avoid doing so.
4689 */
4690 overflow = EXT4_PBLK_COFF(sbi, block);
4691 if (overflow) {
4692 if (flags & EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER) {
4693 overflow = sbi->s_cluster_ratio - overflow;
4694 block += overflow;
4695 if (count > overflow)
4696 count -= overflow;
4697 else
4698 return;
4699 } else {
4700 block -= overflow;
4701 count += overflow;
4702 }
4703 }
4704 overflow = EXT4_LBLK_COFF(sbi, count);
4705 if (overflow) {
4706 if (flags & EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER) {
4707 if (count > overflow)
4708 count -= overflow;
4709 else
4710 return;
4711 } else
4712 count += sbi->s_cluster_ratio - overflow;
4713 }
4714
4715 do_more:
4716 overflow = 0;
4717 ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
4718
4719 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(
4720 ext4_get_group_info(sb, block_group))))
4721 return;
4722
4723 /*
4724 * Check to see if we are freeing blocks across a group
4725 * boundary.
4726 */
4727 if (EXT4_C2B(sbi, bit) + count > EXT4_BLOCKS_PER_GROUP(sb)) {
4728 overflow = EXT4_C2B(sbi, bit) + count -
4729 EXT4_BLOCKS_PER_GROUP(sb);
4730 count -= overflow;
4731 }
4732 count_clusters = EXT4_NUM_B2C(sbi, count);
4733 bitmap_bh = ext4_read_block_bitmap(sb, block_group);
4734 if (!bitmap_bh) {
4735 err = -EIO;
4736 goto error_return;
4737 }
4738 gdp = ext4_get_group_desc(sb, block_group, &gd_bh);
4739 if (!gdp) {
4740 err = -EIO;
4741 goto error_return;
4742 }
4743
4744 if (in_range(ext4_block_bitmap(sb, gdp), block, count) ||
4745 in_range(ext4_inode_bitmap(sb, gdp), block, count) ||
4746 in_range(block, ext4_inode_table(sb, gdp),
4747 EXT4_SB(sb)->s_itb_per_group) ||
4748 in_range(block + count - 1, ext4_inode_table(sb, gdp),
4749 EXT4_SB(sb)->s_itb_per_group)) {
4750
4751 ext4_error(sb, "Freeing blocks in system zone - "
4752 "Block = %llu, count = %lu", block, count);
4753 /* err = 0. ext4_std_error should be a no op */
4754 goto error_return;
4755 }
4756
4757 BUFFER_TRACE(bitmap_bh, "getting write access");
4758 err = ext4_journal_get_write_access(handle, bitmap_bh);
4759 if (err)
4760 goto error_return;
4761
4762 /*
4763 * We are about to modify some metadata. Call the journal APIs
4764 * to unshare ->b_data if a currently-committing transaction is
4765 * using it
4766 */
4767 BUFFER_TRACE(gd_bh, "get_write_access");
4768 err = ext4_journal_get_write_access(handle, gd_bh);
4769 if (err)
4770 goto error_return;
4771 #ifdef AGGRESSIVE_CHECK
4772 {
4773 int i;
4774 for (i = 0; i < count_clusters; i++)
4775 BUG_ON(!mb_test_bit(bit + i, bitmap_bh->b_data));
4776 }
4777 #endif
4778 trace_ext4_mballoc_free(sb, inode, block_group, bit, count_clusters);
4779
4780 err = ext4_mb_load_buddy(sb, block_group, &e4b);
4781 if (err)
4782 goto error_return;
4783
4784 if ((flags & EXT4_FREE_BLOCKS_METADATA) && ext4_handle_valid(handle)) {
4785 struct ext4_free_data *new_entry;
4786 /*
4787 * blocks being freed are metadata. these blocks shouldn't
4788 * be used until this transaction is committed
4789 */
4790 retry:
4791 new_entry = kmem_cache_alloc(ext4_free_data_cachep, GFP_NOFS);
4792 if (!new_entry) {
4793 /*
4794 * We use a retry loop because
4795 * ext4_free_blocks() is not allowed to fail.
4796 */
4797 cond_resched();
4798 congestion_wait(BLK_RW_ASYNC, HZ/50);
4799 goto retry;
4800 }
4801 new_entry->efd_start_cluster = bit;
4802 new_entry->efd_group = block_group;
4803 new_entry->efd_count = count_clusters;
4804 new_entry->efd_tid = handle->h_transaction->t_tid;
4805
4806 ext4_lock_group(sb, block_group);
4807 mb_clear_bits(bitmap_bh->b_data, bit, count_clusters);
4808 ext4_mb_free_metadata(handle, &e4b, new_entry);
4809 } else {
4810 /* need to update group_info->bb_free and bitmap
4811 * with group lock held. generate_buddy look at
4812 * them with group lock_held
4813 */
4814 if (test_opt(sb, DISCARD)) {
4815 err = ext4_issue_discard(sb, block_group, bit, count);
4816 if (err && err != -EOPNOTSUPP)
4817 ext4_msg(sb, KERN_WARNING, "discard request in"
4818 " group:%d block:%d count:%lu failed"
4819 " with %d", block_group, bit, count,
4820 err);
4821 } else
4822 EXT4_MB_GRP_CLEAR_TRIMMED(e4b.bd_info);
4823
4824 ext4_lock_group(sb, block_group);
4825 mb_clear_bits(bitmap_bh->b_data, bit, count_clusters);
4826 mb_free_blocks(inode, &e4b, bit, count_clusters);
4827 }
4828
4829 ret = ext4_free_group_clusters(sb, gdp) + count_clusters;
4830 ext4_free_group_clusters_set(sb, gdp, ret);
4831 ext4_block_bitmap_csum_set(sb, block_group, gdp, bitmap_bh);
4832 ext4_group_desc_csum_set(sb, block_group, gdp);
4833 ext4_unlock_group(sb, block_group);
4834
4835 if (sbi->s_log_groups_per_flex) {
4836 ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
4837 atomic64_add(count_clusters,
4838 &sbi->s_flex_groups[flex_group].free_clusters);
4839 }
4840
4841 if (flags & EXT4_FREE_BLOCKS_RESERVE && ei->i_reserved_data_blocks) {
4842 percpu_counter_add(&sbi->s_dirtyclusters_counter,
4843 count_clusters);
4844 spin_lock(&ei->i_block_reservation_lock);
4845 if (flags & EXT4_FREE_BLOCKS_METADATA)
4846 ei->i_reserved_meta_blocks += count_clusters;
4847 else
4848 ei->i_reserved_data_blocks += count_clusters;
4849 spin_unlock(&ei->i_block_reservation_lock);
4850 if (!(flags & EXT4_FREE_BLOCKS_NO_QUOT_UPDATE))
4851 dquot_reclaim_block(inode,
4852 EXT4_C2B(sbi, count_clusters));
4853 } else if (!(flags & EXT4_FREE_BLOCKS_NO_QUOT_UPDATE))
4854 dquot_free_block(inode, EXT4_C2B(sbi, count_clusters));
4855 percpu_counter_add(&sbi->s_freeclusters_counter, count_clusters);
4856
4857 ext4_mb_unload_buddy(&e4b);
4858
4859 /* We dirtied the bitmap block */
4860 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
4861 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
4862
4863 /* And the group descriptor block */
4864 BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
4865 ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
4866 if (!err)
4867 err = ret;
4868
4869 if (overflow && !err) {
4870 block += count;
4871 count = overflow;
4872 put_bh(bitmap_bh);
4873 goto do_more;
4874 }
4875 error_return:
4876 brelse(bitmap_bh);
4877 ext4_std_error(sb, err);
4878 return;
4879 }
4880
4881 /**
4882 * ext4_group_add_blocks() -- Add given blocks to an existing group
4883 * @handle: handle to this transaction
4884 * @sb: super block
4885 * @block: start physical block to add to the block group
4886 * @count: number of blocks to free
4887 *
4888 * This marks the blocks as free in the bitmap and buddy.
4889 */
4890 int ext4_group_add_blocks(handle_t *handle, struct super_block *sb,
4891 ext4_fsblk_t block, unsigned long count)
4892 {
4893 struct buffer_head *bitmap_bh = NULL;
4894 struct buffer_head *gd_bh;
4895 ext4_group_t block_group;
4896 ext4_grpblk_t bit;
4897 unsigned int i;
4898 struct ext4_group_desc *desc;
4899 struct ext4_sb_info *sbi = EXT4_SB(sb);
4900 struct ext4_buddy e4b;
4901 int err = 0, ret, blk_free_count;
4902 ext4_grpblk_t blocks_freed;
4903
4904 ext4_debug("Adding block(s) %llu-%llu\n", block, block + count - 1);
4905
4906 if (count == 0)
4907 return 0;
4908
4909 ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
4910 /*
4911 * Check to see if we are freeing blocks across a group
4912 * boundary.
4913 */
4914 if (bit + count > EXT4_BLOCKS_PER_GROUP(sb)) {
4915 ext4_warning(sb, "too much blocks added to group %u\n",
4916 block_group);
4917 err = -EINVAL;
4918 goto error_return;
4919 }
4920
4921 bitmap_bh = ext4_read_block_bitmap(sb, block_group);
4922 if (!bitmap_bh) {
4923 err = -EIO;
4924 goto error_return;
4925 }
4926
4927 desc = ext4_get_group_desc(sb, block_group, &gd_bh);
4928 if (!desc) {
4929 err = -EIO;
4930 goto error_return;
4931 }
4932
4933 if (in_range(ext4_block_bitmap(sb, desc), block, count) ||
4934 in_range(ext4_inode_bitmap(sb, desc), block, count) ||
4935 in_range(block, ext4_inode_table(sb, desc), sbi->s_itb_per_group) ||
4936 in_range(block + count - 1, ext4_inode_table(sb, desc),
4937 sbi->s_itb_per_group)) {
4938 ext4_error(sb, "Adding blocks in system zones - "
4939 "Block = %llu, count = %lu",
4940 block, count);
4941 err = -EINVAL;
4942 goto error_return;
4943 }
4944
4945 BUFFER_TRACE(bitmap_bh, "getting write access");
4946 err = ext4_journal_get_write_access(handle, bitmap_bh);
4947 if (err)
4948 goto error_return;
4949
4950 /*
4951 * We are about to modify some metadata. Call the journal APIs
4952 * to unshare ->b_data if a currently-committing transaction is
4953 * using it
4954 */
4955 BUFFER_TRACE(gd_bh, "get_write_access");
4956 err = ext4_journal_get_write_access(handle, gd_bh);
4957 if (err)
4958 goto error_return;
4959
4960 for (i = 0, blocks_freed = 0; i < count; i++) {
4961 BUFFER_TRACE(bitmap_bh, "clear bit");
4962 if (!mb_test_bit(bit + i, bitmap_bh->b_data)) {
4963 ext4_error(sb, "bit already cleared for block %llu",
4964 (ext4_fsblk_t)(block + i));
4965 BUFFER_TRACE(bitmap_bh, "bit already cleared");
4966 } else {
4967 blocks_freed++;
4968 }
4969 }
4970
4971 err = ext4_mb_load_buddy(sb, block_group, &e4b);
4972 if (err)
4973 goto error_return;
4974
4975 /*
4976 * need to update group_info->bb_free and bitmap
4977 * with group lock held. generate_buddy look at
4978 * them with group lock_held
4979 */
4980 ext4_lock_group(sb, block_group);
4981 mb_clear_bits(bitmap_bh->b_data, bit, count);
4982 mb_free_blocks(NULL, &e4b, bit, count);
4983 blk_free_count = blocks_freed + ext4_free_group_clusters(sb, desc);
4984 ext4_free_group_clusters_set(sb, desc, blk_free_count);
4985 ext4_block_bitmap_csum_set(sb, block_group, desc, bitmap_bh);
4986 ext4_group_desc_csum_set(sb, block_group, desc);
4987 ext4_unlock_group(sb, block_group);
4988 percpu_counter_add(&sbi->s_freeclusters_counter,
4989 EXT4_NUM_B2C(sbi, blocks_freed));
4990
4991 if (sbi->s_log_groups_per_flex) {
4992 ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
4993 atomic64_add(EXT4_NUM_B2C(sbi, blocks_freed),
4994 &sbi->s_flex_groups[flex_group].free_clusters);
4995 }
4996
4997 ext4_mb_unload_buddy(&e4b);
4998
4999 /* We dirtied the bitmap block */
5000 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
5001 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
5002
5003 /* And the group descriptor block */
5004 BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
5005 ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
5006 if (!err)
5007 err = ret;
5008
5009 error_return:
5010 brelse(bitmap_bh);
5011 ext4_std_error(sb, err);
5012 return err;
5013 }
5014
5015 /**
5016 * ext4_trim_extent -- function to TRIM one single free extent in the group
5017 * @sb: super block for the file system
5018 * @start: starting block of the free extent in the alloc. group
5019 * @count: number of blocks to TRIM
5020 * @group: alloc. group we are working with
5021 * @e4b: ext4 buddy for the group
5022 *
5023 * Trim "count" blocks starting at "start" in the "group". To assure that no
5024 * one will allocate those blocks, mark it as used in buddy bitmap. This must
5025 * be called with under the group lock.
5026 */
5027 static int ext4_trim_extent(struct super_block *sb, int start, int count,
5028 ext4_group_t group, struct ext4_buddy *e4b)
5029 __releases(bitlock)
5030 __acquires(bitlock)
5031 {
5032 struct ext4_free_extent ex;
5033 int ret = 0;
5034
5035 trace_ext4_trim_extent(sb, group, start, count);
5036
5037 assert_spin_locked(ext4_group_lock_ptr(sb, group));
5038
5039 ex.fe_start = start;
5040 ex.fe_group = group;
5041 ex.fe_len = count;
5042
5043 /*
5044 * Mark blocks used, so no one can reuse them while
5045 * being trimmed.
5046 */
5047 mb_mark_used(e4b, &ex);
5048 ext4_unlock_group(sb, group);
5049 ret = ext4_issue_discard(sb, group, start, count);
5050 ext4_lock_group(sb, group);
5051 mb_free_blocks(NULL, e4b, start, ex.fe_len);
5052 return ret;
5053 }
5054
5055 /**
5056 * ext4_trim_all_free -- function to trim all free space in alloc. group
5057 * @sb: super block for file system
5058 * @group: group to be trimmed
5059 * @start: first group block to examine
5060 * @max: last group block to examine
5061 * @minblocks: minimum extent block count
5062 *
5063 * ext4_trim_all_free walks through group's buddy bitmap searching for free
5064 * extents. When the free block is found, ext4_trim_extent is called to TRIM
5065 * the extent.
5066 *
5067 *
5068 * ext4_trim_all_free walks through group's block bitmap searching for free
5069 * extents. When the free extent is found, mark it as used in group buddy
5070 * bitmap. Then issue a TRIM command on this extent and free the extent in
5071 * the group buddy bitmap. This is done until whole group is scanned.
5072 */
5073 static ext4_grpblk_t
5074 ext4_trim_all_free(struct super_block *sb, ext4_group_t group,
5075 ext4_grpblk_t start, ext4_grpblk_t max,
5076 ext4_grpblk_t minblocks)
5077 {
5078 void *bitmap;
5079 ext4_grpblk_t next, count = 0, free_count = 0;
5080 struct ext4_buddy e4b;
5081 int ret = 0;
5082
5083 trace_ext4_trim_all_free(sb, group, start, max);
5084
5085 ret = ext4_mb_load_buddy(sb, group, &e4b);
5086 if (ret) {
5087 ext4_error(sb, "Error in loading buddy "
5088 "information for %u", group);
5089 return ret;
5090 }
5091 bitmap = e4b.bd_bitmap;
5092
5093 ext4_lock_group(sb, group);
5094 if (EXT4_MB_GRP_WAS_TRIMMED(e4b.bd_info) &&
5095 minblocks >= atomic_read(&EXT4_SB(sb)->s_last_trim_minblks))
5096 goto out;
5097
5098 start = (e4b.bd_info->bb_first_free > start) ?
5099 e4b.bd_info->bb_first_free : start;
5100
5101 while (start <= max) {
5102 start = mb_find_next_zero_bit(bitmap, max + 1, start);
5103 if (start > max)
5104 break;
5105 next = mb_find_next_bit(bitmap, max + 1, start);
5106
5107 if ((next - start) >= minblocks) {
5108 ret = ext4_trim_extent(sb, start,
5109 next - start, group, &e4b);
5110 if (ret && ret != -EOPNOTSUPP)
5111 break;
5112 ret = 0;
5113 count += next - start;
5114 }
5115 free_count += next - start;
5116 start = next + 1;
5117
5118 if (fatal_signal_pending(current)) {
5119 count = -ERESTARTSYS;
5120 break;
5121 }
5122
5123 if (need_resched()) {
5124 ext4_unlock_group(sb, group);
5125 cond_resched();
5126 ext4_lock_group(sb, group);
5127 }
5128
5129 if ((e4b.bd_info->bb_free - free_count) < minblocks)
5130 break;
5131 }
5132
5133 if (!ret) {
5134 ret = count;
5135 EXT4_MB_GRP_SET_TRIMMED(e4b.bd_info);
5136 }
5137 out:
5138 ext4_unlock_group(sb, group);
5139 ext4_mb_unload_buddy(&e4b);
5140
5141 ext4_debug("trimmed %d blocks in the group %d\n",
5142 count, group);
5143
5144 return ret;
5145 }
5146
5147 /**
5148 * ext4_trim_fs() -- trim ioctl handle function
5149 * @sb: superblock for filesystem
5150 * @range: fstrim_range structure
5151 *
5152 * start: First Byte to trim
5153 * len: number of Bytes to trim from start
5154 * minlen: minimum extent length in Bytes
5155 * ext4_trim_fs goes through all allocation groups containing Bytes from
5156 * start to start+len. For each such a group ext4_trim_all_free function
5157 * is invoked to trim all free space.
5158 */
5159 int ext4_trim_fs(struct super_block *sb, struct fstrim_range *range)
5160 {
5161 struct ext4_group_info *grp;
5162 ext4_group_t group, first_group, last_group;
5163 ext4_grpblk_t cnt = 0, first_cluster, last_cluster;
5164 uint64_t start, end, minlen, trimmed = 0;
5165 ext4_fsblk_t first_data_blk =
5166 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block);
5167 ext4_fsblk_t max_blks = ext4_blocks_count(EXT4_SB(sb)->s_es);
5168 int ret = 0;
5169
5170 start = range->start >> sb->s_blocksize_bits;
5171 end = start + (range->len >> sb->s_blocksize_bits) - 1;
5172 minlen = EXT4_NUM_B2C(EXT4_SB(sb),
5173 range->minlen >> sb->s_blocksize_bits);
5174
5175 if (minlen > EXT4_CLUSTERS_PER_GROUP(sb) ||
5176 start >= max_blks ||
5177 range->len < sb->s_blocksize)
5178 return -EINVAL;
5179 if (end >= max_blks)
5180 end = max_blks - 1;
5181 if (end <= first_data_blk)
5182 goto out;
5183 if (start < first_data_blk)
5184 start = first_data_blk;
5185
5186 /* Determine first and last group to examine based on start and end */
5187 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) start,
5188 &first_group, &first_cluster);
5189 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) end,
5190 &last_group, &last_cluster);
5191
5192 /* end now represents the last cluster to discard in this group */
5193 end = EXT4_CLUSTERS_PER_GROUP(sb) - 1;
5194
5195 for (group = first_group; group <= last_group; group++) {
5196 grp = ext4_get_group_info(sb, group);
5197 /* We only do this if the grp has never been initialized */
5198 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
5199 ret = ext4_mb_init_group(sb, group);
5200 if (ret)
5201 break;
5202 }
5203
5204 /*
5205 * For all the groups except the last one, last cluster will
5206 * always be EXT4_CLUSTERS_PER_GROUP(sb)-1, so we only need to
5207 * change it for the last group, note that last_cluster is
5208 * already computed earlier by ext4_get_group_no_and_offset()
5209 */
5210 if (group == last_group)
5211 end = last_cluster;
5212
5213 if (grp->bb_free >= minlen) {
5214 cnt = ext4_trim_all_free(sb, group, first_cluster,
5215 end, minlen);
5216 if (cnt < 0) {
5217 ret = cnt;
5218 break;
5219 }
5220 trimmed += cnt;
5221 }
5222
5223 /*
5224 * For every group except the first one, we are sure
5225 * that the first cluster to discard will be cluster #0.
5226 */
5227 first_cluster = 0;
5228 }
5229
5230 if (!ret)
5231 atomic_set(&EXT4_SB(sb)->s_last_trim_minblks, minlen);
5232
5233 out:
5234 range->len = EXT4_C2B(EXT4_SB(sb), trimmed) << sb->s_blocksize_bits;
5235 return ret;
5236 }