]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/ext4/mballoc.c
Merge branch 'drm-next' of git://people.freedesktop.org/~airlied/linux
[mirror_ubuntu-bionic-kernel.git] / fs / ext4 / mballoc.c
1 /*
2 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3 * Written by Alex Tomas <alex@clusterfs.com>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public Licens
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
17 */
18
19
20 /*
21 * mballoc.c contains the multiblocks allocation routines
22 */
23
24 #include "ext4_jbd2.h"
25 #include "mballoc.h"
26 #include <linux/debugfs.h>
27 #include <linux/slab.h>
28 #include <trace/events/ext4.h>
29
30 /*
31 * MUSTDO:
32 * - test ext4_ext_search_left() and ext4_ext_search_right()
33 * - search for metadata in few groups
34 *
35 * TODO v4:
36 * - normalization should take into account whether file is still open
37 * - discard preallocations if no free space left (policy?)
38 * - don't normalize tails
39 * - quota
40 * - reservation for superuser
41 *
42 * TODO v3:
43 * - bitmap read-ahead (proposed by Oleg Drokin aka green)
44 * - track min/max extents in each group for better group selection
45 * - mb_mark_used() may allocate chunk right after splitting buddy
46 * - tree of groups sorted by number of free blocks
47 * - error handling
48 */
49
50 /*
51 * The allocation request involve request for multiple number of blocks
52 * near to the goal(block) value specified.
53 *
54 * During initialization phase of the allocator we decide to use the
55 * group preallocation or inode preallocation depending on the size of
56 * the file. The size of the file could be the resulting file size we
57 * would have after allocation, or the current file size, which ever
58 * is larger. If the size is less than sbi->s_mb_stream_request we
59 * select to use the group preallocation. The default value of
60 * s_mb_stream_request is 16 blocks. This can also be tuned via
61 * /sys/fs/ext4/<partition>/mb_stream_req. The value is represented in
62 * terms of number of blocks.
63 *
64 * The main motivation for having small file use group preallocation is to
65 * ensure that we have small files closer together on the disk.
66 *
67 * First stage the allocator looks at the inode prealloc list,
68 * ext4_inode_info->i_prealloc_list, which contains list of prealloc
69 * spaces for this particular inode. The inode prealloc space is
70 * represented as:
71 *
72 * pa_lstart -> the logical start block for this prealloc space
73 * pa_pstart -> the physical start block for this prealloc space
74 * pa_len -> length for this prealloc space (in clusters)
75 * pa_free -> free space available in this prealloc space (in clusters)
76 *
77 * The inode preallocation space is used looking at the _logical_ start
78 * block. If only the logical file block falls within the range of prealloc
79 * space we will consume the particular prealloc space. This makes sure that
80 * we have contiguous physical blocks representing the file blocks
81 *
82 * The important thing to be noted in case of inode prealloc space is that
83 * we don't modify the values associated to inode prealloc space except
84 * pa_free.
85 *
86 * If we are not able to find blocks in the inode prealloc space and if we
87 * have the group allocation flag set then we look at the locality group
88 * prealloc space. These are per CPU prealloc list represented as
89 *
90 * ext4_sb_info.s_locality_groups[smp_processor_id()]
91 *
92 * The reason for having a per cpu locality group is to reduce the contention
93 * between CPUs. It is possible to get scheduled at this point.
94 *
95 * The locality group prealloc space is used looking at whether we have
96 * enough free space (pa_free) within the prealloc space.
97 *
98 * If we can't allocate blocks via inode prealloc or/and locality group
99 * prealloc then we look at the buddy cache. The buddy cache is represented
100 * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets
101 * mapped to the buddy and bitmap information regarding different
102 * groups. The buddy information is attached to buddy cache inode so that
103 * we can access them through the page cache. The information regarding
104 * each group is loaded via ext4_mb_load_buddy. The information involve
105 * block bitmap and buddy information. The information are stored in the
106 * inode as:
107 *
108 * { page }
109 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
110 *
111 *
112 * one block each for bitmap and buddy information. So for each group we
113 * take up 2 blocks. A page can contain blocks_per_page (PAGE_CACHE_SIZE /
114 * blocksize) blocks. So it can have information regarding groups_per_page
115 * which is blocks_per_page/2
116 *
117 * The buddy cache inode is not stored on disk. The inode is thrown
118 * away when the filesystem is unmounted.
119 *
120 * We look for count number of blocks in the buddy cache. If we were able
121 * to locate that many free blocks we return with additional information
122 * regarding rest of the contiguous physical block available
123 *
124 * Before allocating blocks via buddy cache we normalize the request
125 * blocks. This ensure we ask for more blocks that we needed. The extra
126 * blocks that we get after allocation is added to the respective prealloc
127 * list. In case of inode preallocation we follow a list of heuristics
128 * based on file size. This can be found in ext4_mb_normalize_request. If
129 * we are doing a group prealloc we try to normalize the request to
130 * sbi->s_mb_group_prealloc. The default value of s_mb_group_prealloc is
131 * dependent on the cluster size; for non-bigalloc file systems, it is
132 * 512 blocks. This can be tuned via
133 * /sys/fs/ext4/<partition>/mb_group_prealloc. The value is represented in
134 * terms of number of blocks. If we have mounted the file system with -O
135 * stripe=<value> option the group prealloc request is normalized to the
136 * the smallest multiple of the stripe value (sbi->s_stripe) which is
137 * greater than the default mb_group_prealloc.
138 *
139 * The regular allocator (using the buddy cache) supports a few tunables.
140 *
141 * /sys/fs/ext4/<partition>/mb_min_to_scan
142 * /sys/fs/ext4/<partition>/mb_max_to_scan
143 * /sys/fs/ext4/<partition>/mb_order2_req
144 *
145 * The regular allocator uses buddy scan only if the request len is power of
146 * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The
147 * value of s_mb_order2_reqs can be tuned via
148 * /sys/fs/ext4/<partition>/mb_order2_req. If the request len is equal to
149 * stripe size (sbi->s_stripe), we try to search for contiguous block in
150 * stripe size. This should result in better allocation on RAID setups. If
151 * not, we search in the specific group using bitmap for best extents. The
152 * tunable min_to_scan and max_to_scan control the behaviour here.
153 * min_to_scan indicate how long the mballoc __must__ look for a best
154 * extent and max_to_scan indicates how long the mballoc __can__ look for a
155 * best extent in the found extents. Searching for the blocks starts with
156 * the group specified as the goal value in allocation context via
157 * ac_g_ex. Each group is first checked based on the criteria whether it
158 * can be used for allocation. ext4_mb_good_group explains how the groups are
159 * checked.
160 *
161 * Both the prealloc space are getting populated as above. So for the first
162 * request we will hit the buddy cache which will result in this prealloc
163 * space getting filled. The prealloc space is then later used for the
164 * subsequent request.
165 */
166
167 /*
168 * mballoc operates on the following data:
169 * - on-disk bitmap
170 * - in-core buddy (actually includes buddy and bitmap)
171 * - preallocation descriptors (PAs)
172 *
173 * there are two types of preallocations:
174 * - inode
175 * assiged to specific inode and can be used for this inode only.
176 * it describes part of inode's space preallocated to specific
177 * physical blocks. any block from that preallocated can be used
178 * independent. the descriptor just tracks number of blocks left
179 * unused. so, before taking some block from descriptor, one must
180 * make sure corresponded logical block isn't allocated yet. this
181 * also means that freeing any block within descriptor's range
182 * must discard all preallocated blocks.
183 * - locality group
184 * assigned to specific locality group which does not translate to
185 * permanent set of inodes: inode can join and leave group. space
186 * from this type of preallocation can be used for any inode. thus
187 * it's consumed from the beginning to the end.
188 *
189 * relation between them can be expressed as:
190 * in-core buddy = on-disk bitmap + preallocation descriptors
191 *
192 * this mean blocks mballoc considers used are:
193 * - allocated blocks (persistent)
194 * - preallocated blocks (non-persistent)
195 *
196 * consistency in mballoc world means that at any time a block is either
197 * free or used in ALL structures. notice: "any time" should not be read
198 * literally -- time is discrete and delimited by locks.
199 *
200 * to keep it simple, we don't use block numbers, instead we count number of
201 * blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA.
202 *
203 * all operations can be expressed as:
204 * - init buddy: buddy = on-disk + PAs
205 * - new PA: buddy += N; PA = N
206 * - use inode PA: on-disk += N; PA -= N
207 * - discard inode PA buddy -= on-disk - PA; PA = 0
208 * - use locality group PA on-disk += N; PA -= N
209 * - discard locality group PA buddy -= PA; PA = 0
210 * note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap
211 * is used in real operation because we can't know actual used
212 * bits from PA, only from on-disk bitmap
213 *
214 * if we follow this strict logic, then all operations above should be atomic.
215 * given some of them can block, we'd have to use something like semaphores
216 * killing performance on high-end SMP hardware. let's try to relax it using
217 * the following knowledge:
218 * 1) if buddy is referenced, it's already initialized
219 * 2) while block is used in buddy and the buddy is referenced,
220 * nobody can re-allocate that block
221 * 3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has
222 * bit set and PA claims same block, it's OK. IOW, one can set bit in
223 * on-disk bitmap if buddy has same bit set or/and PA covers corresponded
224 * block
225 *
226 * so, now we're building a concurrency table:
227 * - init buddy vs.
228 * - new PA
229 * blocks for PA are allocated in the buddy, buddy must be referenced
230 * until PA is linked to allocation group to avoid concurrent buddy init
231 * - use inode PA
232 * we need to make sure that either on-disk bitmap or PA has uptodate data
233 * given (3) we care that PA-=N operation doesn't interfere with init
234 * - discard inode PA
235 * the simplest way would be to have buddy initialized by the discard
236 * - use locality group PA
237 * again PA-=N must be serialized with init
238 * - discard locality group PA
239 * the simplest way would be to have buddy initialized by the discard
240 * - new PA vs.
241 * - use inode PA
242 * i_data_sem serializes them
243 * - discard inode PA
244 * discard process must wait until PA isn't used by another process
245 * - use locality group PA
246 * some mutex should serialize them
247 * - discard locality group PA
248 * discard process must wait until PA isn't used by another process
249 * - use inode PA
250 * - use inode PA
251 * i_data_sem or another mutex should serializes them
252 * - discard inode PA
253 * discard process must wait until PA isn't used by another process
254 * - use locality group PA
255 * nothing wrong here -- they're different PAs covering different blocks
256 * - discard locality group PA
257 * discard process must wait until PA isn't used by another process
258 *
259 * now we're ready to make few consequences:
260 * - PA is referenced and while it is no discard is possible
261 * - PA is referenced until block isn't marked in on-disk bitmap
262 * - PA changes only after on-disk bitmap
263 * - discard must not compete with init. either init is done before
264 * any discard or they're serialized somehow
265 * - buddy init as sum of on-disk bitmap and PAs is done atomically
266 *
267 * a special case when we've used PA to emptiness. no need to modify buddy
268 * in this case, but we should care about concurrent init
269 *
270 */
271
272 /*
273 * Logic in few words:
274 *
275 * - allocation:
276 * load group
277 * find blocks
278 * mark bits in on-disk bitmap
279 * release group
280 *
281 * - use preallocation:
282 * find proper PA (per-inode or group)
283 * load group
284 * mark bits in on-disk bitmap
285 * release group
286 * release PA
287 *
288 * - free:
289 * load group
290 * mark bits in on-disk bitmap
291 * release group
292 *
293 * - discard preallocations in group:
294 * mark PAs deleted
295 * move them onto local list
296 * load on-disk bitmap
297 * load group
298 * remove PA from object (inode or locality group)
299 * mark free blocks in-core
300 *
301 * - discard inode's preallocations:
302 */
303
304 /*
305 * Locking rules
306 *
307 * Locks:
308 * - bitlock on a group (group)
309 * - object (inode/locality) (object)
310 * - per-pa lock (pa)
311 *
312 * Paths:
313 * - new pa
314 * object
315 * group
316 *
317 * - find and use pa:
318 * pa
319 *
320 * - release consumed pa:
321 * pa
322 * group
323 * object
324 *
325 * - generate in-core bitmap:
326 * group
327 * pa
328 *
329 * - discard all for given object (inode, locality group):
330 * object
331 * pa
332 * group
333 *
334 * - discard all for given group:
335 * group
336 * pa
337 * group
338 * object
339 *
340 */
341 static struct kmem_cache *ext4_pspace_cachep;
342 static struct kmem_cache *ext4_ac_cachep;
343 static struct kmem_cache *ext4_free_data_cachep;
344
345 /* We create slab caches for groupinfo data structures based on the
346 * superblock block size. There will be one per mounted filesystem for
347 * each unique s_blocksize_bits */
348 #define NR_GRPINFO_CACHES 8
349 static struct kmem_cache *ext4_groupinfo_caches[NR_GRPINFO_CACHES];
350
351 static const char *ext4_groupinfo_slab_names[NR_GRPINFO_CACHES] = {
352 "ext4_groupinfo_1k", "ext4_groupinfo_2k", "ext4_groupinfo_4k",
353 "ext4_groupinfo_8k", "ext4_groupinfo_16k", "ext4_groupinfo_32k",
354 "ext4_groupinfo_64k", "ext4_groupinfo_128k"
355 };
356
357 static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
358 ext4_group_t group);
359 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
360 ext4_group_t group);
361 static void ext4_free_data_callback(struct super_block *sb,
362 struct ext4_journal_cb_entry *jce, int rc);
363
364 static inline void *mb_correct_addr_and_bit(int *bit, void *addr)
365 {
366 #if BITS_PER_LONG == 64
367 *bit += ((unsigned long) addr & 7UL) << 3;
368 addr = (void *) ((unsigned long) addr & ~7UL);
369 #elif BITS_PER_LONG == 32
370 *bit += ((unsigned long) addr & 3UL) << 3;
371 addr = (void *) ((unsigned long) addr & ~3UL);
372 #else
373 #error "how many bits you are?!"
374 #endif
375 return addr;
376 }
377
378 static inline int mb_test_bit(int bit, void *addr)
379 {
380 /*
381 * ext4_test_bit on architecture like powerpc
382 * needs unsigned long aligned address
383 */
384 addr = mb_correct_addr_and_bit(&bit, addr);
385 return ext4_test_bit(bit, addr);
386 }
387
388 static inline void mb_set_bit(int bit, void *addr)
389 {
390 addr = mb_correct_addr_and_bit(&bit, addr);
391 ext4_set_bit(bit, addr);
392 }
393
394 static inline void mb_clear_bit(int bit, void *addr)
395 {
396 addr = mb_correct_addr_and_bit(&bit, addr);
397 ext4_clear_bit(bit, addr);
398 }
399
400 static inline int mb_find_next_zero_bit(void *addr, int max, int start)
401 {
402 int fix = 0, ret, tmpmax;
403 addr = mb_correct_addr_and_bit(&fix, addr);
404 tmpmax = max + fix;
405 start += fix;
406
407 ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix;
408 if (ret > max)
409 return max;
410 return ret;
411 }
412
413 static inline int mb_find_next_bit(void *addr, int max, int start)
414 {
415 int fix = 0, ret, tmpmax;
416 addr = mb_correct_addr_and_bit(&fix, addr);
417 tmpmax = max + fix;
418 start += fix;
419
420 ret = ext4_find_next_bit(addr, tmpmax, start) - fix;
421 if (ret > max)
422 return max;
423 return ret;
424 }
425
426 static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max)
427 {
428 char *bb;
429
430 BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
431 BUG_ON(max == NULL);
432
433 if (order > e4b->bd_blkbits + 1) {
434 *max = 0;
435 return NULL;
436 }
437
438 /* at order 0 we see each particular block */
439 if (order == 0) {
440 *max = 1 << (e4b->bd_blkbits + 3);
441 return e4b->bd_bitmap;
442 }
443
444 bb = e4b->bd_buddy + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order];
445 *max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order];
446
447 return bb;
448 }
449
450 #ifdef DOUBLE_CHECK
451 static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b,
452 int first, int count)
453 {
454 int i;
455 struct super_block *sb = e4b->bd_sb;
456
457 if (unlikely(e4b->bd_info->bb_bitmap == NULL))
458 return;
459 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
460 for (i = 0; i < count; i++) {
461 if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) {
462 ext4_fsblk_t blocknr;
463
464 blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
465 blocknr += EXT4_C2B(EXT4_SB(sb), first + i);
466 ext4_grp_locked_error(sb, e4b->bd_group,
467 inode ? inode->i_ino : 0,
468 blocknr,
469 "freeing block already freed "
470 "(bit %u)",
471 first + i);
472 }
473 mb_clear_bit(first + i, e4b->bd_info->bb_bitmap);
474 }
475 }
476
477 static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count)
478 {
479 int i;
480
481 if (unlikely(e4b->bd_info->bb_bitmap == NULL))
482 return;
483 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
484 for (i = 0; i < count; i++) {
485 BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap));
486 mb_set_bit(first + i, e4b->bd_info->bb_bitmap);
487 }
488 }
489
490 static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
491 {
492 if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) {
493 unsigned char *b1, *b2;
494 int i;
495 b1 = (unsigned char *) e4b->bd_info->bb_bitmap;
496 b2 = (unsigned char *) bitmap;
497 for (i = 0; i < e4b->bd_sb->s_blocksize; i++) {
498 if (b1[i] != b2[i]) {
499 ext4_msg(e4b->bd_sb, KERN_ERR,
500 "corruption in group %u "
501 "at byte %u(%u): %x in copy != %x "
502 "on disk/prealloc",
503 e4b->bd_group, i, i * 8, b1[i], b2[i]);
504 BUG();
505 }
506 }
507 }
508 }
509
510 #else
511 static inline void mb_free_blocks_double(struct inode *inode,
512 struct ext4_buddy *e4b, int first, int count)
513 {
514 return;
515 }
516 static inline void mb_mark_used_double(struct ext4_buddy *e4b,
517 int first, int count)
518 {
519 return;
520 }
521 static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
522 {
523 return;
524 }
525 #endif
526
527 #ifdef AGGRESSIVE_CHECK
528
529 #define MB_CHECK_ASSERT(assert) \
530 do { \
531 if (!(assert)) { \
532 printk(KERN_EMERG \
533 "Assertion failure in %s() at %s:%d: \"%s\"\n", \
534 function, file, line, # assert); \
535 BUG(); \
536 } \
537 } while (0)
538
539 static int __mb_check_buddy(struct ext4_buddy *e4b, char *file,
540 const char *function, int line)
541 {
542 struct super_block *sb = e4b->bd_sb;
543 int order = e4b->bd_blkbits + 1;
544 int max;
545 int max2;
546 int i;
547 int j;
548 int k;
549 int count;
550 struct ext4_group_info *grp;
551 int fragments = 0;
552 int fstart;
553 struct list_head *cur;
554 void *buddy;
555 void *buddy2;
556
557 {
558 static int mb_check_counter;
559 if (mb_check_counter++ % 100 != 0)
560 return 0;
561 }
562
563 while (order > 1) {
564 buddy = mb_find_buddy(e4b, order, &max);
565 MB_CHECK_ASSERT(buddy);
566 buddy2 = mb_find_buddy(e4b, order - 1, &max2);
567 MB_CHECK_ASSERT(buddy2);
568 MB_CHECK_ASSERT(buddy != buddy2);
569 MB_CHECK_ASSERT(max * 2 == max2);
570
571 count = 0;
572 for (i = 0; i < max; i++) {
573
574 if (mb_test_bit(i, buddy)) {
575 /* only single bit in buddy2 may be 1 */
576 if (!mb_test_bit(i << 1, buddy2)) {
577 MB_CHECK_ASSERT(
578 mb_test_bit((i<<1)+1, buddy2));
579 } else if (!mb_test_bit((i << 1) + 1, buddy2)) {
580 MB_CHECK_ASSERT(
581 mb_test_bit(i << 1, buddy2));
582 }
583 continue;
584 }
585
586 /* both bits in buddy2 must be 1 */
587 MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2));
588 MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2));
589
590 for (j = 0; j < (1 << order); j++) {
591 k = (i * (1 << order)) + j;
592 MB_CHECK_ASSERT(
593 !mb_test_bit(k, e4b->bd_bitmap));
594 }
595 count++;
596 }
597 MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count);
598 order--;
599 }
600
601 fstart = -1;
602 buddy = mb_find_buddy(e4b, 0, &max);
603 for (i = 0; i < max; i++) {
604 if (!mb_test_bit(i, buddy)) {
605 MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free);
606 if (fstart == -1) {
607 fragments++;
608 fstart = i;
609 }
610 continue;
611 }
612 fstart = -1;
613 /* check used bits only */
614 for (j = 0; j < e4b->bd_blkbits + 1; j++) {
615 buddy2 = mb_find_buddy(e4b, j, &max2);
616 k = i >> j;
617 MB_CHECK_ASSERT(k < max2);
618 MB_CHECK_ASSERT(mb_test_bit(k, buddy2));
619 }
620 }
621 MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info));
622 MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments);
623
624 grp = ext4_get_group_info(sb, e4b->bd_group);
625 list_for_each(cur, &grp->bb_prealloc_list) {
626 ext4_group_t groupnr;
627 struct ext4_prealloc_space *pa;
628 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
629 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k);
630 MB_CHECK_ASSERT(groupnr == e4b->bd_group);
631 for (i = 0; i < pa->pa_len; i++)
632 MB_CHECK_ASSERT(mb_test_bit(k + i, buddy));
633 }
634 return 0;
635 }
636 #undef MB_CHECK_ASSERT
637 #define mb_check_buddy(e4b) __mb_check_buddy(e4b, \
638 __FILE__, __func__, __LINE__)
639 #else
640 #define mb_check_buddy(e4b)
641 #endif
642
643 /*
644 * Divide blocks started from @first with length @len into
645 * smaller chunks with power of 2 blocks.
646 * Clear the bits in bitmap which the blocks of the chunk(s) covered,
647 * then increase bb_counters[] for corresponded chunk size.
648 */
649 static void ext4_mb_mark_free_simple(struct super_block *sb,
650 void *buddy, ext4_grpblk_t first, ext4_grpblk_t len,
651 struct ext4_group_info *grp)
652 {
653 struct ext4_sb_info *sbi = EXT4_SB(sb);
654 ext4_grpblk_t min;
655 ext4_grpblk_t max;
656 ext4_grpblk_t chunk;
657 unsigned short border;
658
659 BUG_ON(len > EXT4_CLUSTERS_PER_GROUP(sb));
660
661 border = 2 << sb->s_blocksize_bits;
662
663 while (len > 0) {
664 /* find how many blocks can be covered since this position */
665 max = ffs(first | border) - 1;
666
667 /* find how many blocks of power 2 we need to mark */
668 min = fls(len) - 1;
669
670 if (max < min)
671 min = max;
672 chunk = 1 << min;
673
674 /* mark multiblock chunks only */
675 grp->bb_counters[min]++;
676 if (min > 0)
677 mb_clear_bit(first >> min,
678 buddy + sbi->s_mb_offsets[min]);
679
680 len -= chunk;
681 first += chunk;
682 }
683 }
684
685 /*
686 * Cache the order of the largest free extent we have available in this block
687 * group.
688 */
689 static void
690 mb_set_largest_free_order(struct super_block *sb, struct ext4_group_info *grp)
691 {
692 int i;
693 int bits;
694
695 grp->bb_largest_free_order = -1; /* uninit */
696
697 bits = sb->s_blocksize_bits + 1;
698 for (i = bits; i >= 0; i--) {
699 if (grp->bb_counters[i] > 0) {
700 grp->bb_largest_free_order = i;
701 break;
702 }
703 }
704 }
705
706 static noinline_for_stack
707 void ext4_mb_generate_buddy(struct super_block *sb,
708 void *buddy, void *bitmap, ext4_group_t group)
709 {
710 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
711 ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb);
712 ext4_grpblk_t i = 0;
713 ext4_grpblk_t first;
714 ext4_grpblk_t len;
715 unsigned free = 0;
716 unsigned fragments = 0;
717 unsigned long long period = get_cycles();
718
719 /* initialize buddy from bitmap which is aggregation
720 * of on-disk bitmap and preallocations */
721 i = mb_find_next_zero_bit(bitmap, max, 0);
722 grp->bb_first_free = i;
723 while (i < max) {
724 fragments++;
725 first = i;
726 i = mb_find_next_bit(bitmap, max, i);
727 len = i - first;
728 free += len;
729 if (len > 1)
730 ext4_mb_mark_free_simple(sb, buddy, first, len, grp);
731 else
732 grp->bb_counters[0]++;
733 if (i < max)
734 i = mb_find_next_zero_bit(bitmap, max, i);
735 }
736 grp->bb_fragments = fragments;
737
738 if (free != grp->bb_free) {
739 ext4_grp_locked_error(sb, group, 0, 0,
740 "%u clusters in bitmap, %u in gd",
741 free, grp->bb_free);
742 /*
743 * If we intent to continue, we consider group descritor
744 * corrupt and update bb_free using bitmap value
745 */
746 grp->bb_free = free;
747 }
748 mb_set_largest_free_order(sb, grp);
749
750 clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state));
751
752 period = get_cycles() - period;
753 spin_lock(&EXT4_SB(sb)->s_bal_lock);
754 EXT4_SB(sb)->s_mb_buddies_generated++;
755 EXT4_SB(sb)->s_mb_generation_time += period;
756 spin_unlock(&EXT4_SB(sb)->s_bal_lock);
757 }
758
759 /* The buddy information is attached the buddy cache inode
760 * for convenience. The information regarding each group
761 * is loaded via ext4_mb_load_buddy. The information involve
762 * block bitmap and buddy information. The information are
763 * stored in the inode as
764 *
765 * { page }
766 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
767 *
768 *
769 * one block each for bitmap and buddy information.
770 * So for each group we take up 2 blocks. A page can
771 * contain blocks_per_page (PAGE_CACHE_SIZE / blocksize) blocks.
772 * So it can have information regarding groups_per_page which
773 * is blocks_per_page/2
774 *
775 * Locking note: This routine takes the block group lock of all groups
776 * for this page; do not hold this lock when calling this routine!
777 */
778
779 static int ext4_mb_init_cache(struct page *page, char *incore)
780 {
781 ext4_group_t ngroups;
782 int blocksize;
783 int blocks_per_page;
784 int groups_per_page;
785 int err = 0;
786 int i;
787 ext4_group_t first_group, group;
788 int first_block;
789 struct super_block *sb;
790 struct buffer_head *bhs;
791 struct buffer_head **bh = NULL;
792 struct inode *inode;
793 char *data;
794 char *bitmap;
795 struct ext4_group_info *grinfo;
796
797 mb_debug(1, "init page %lu\n", page->index);
798
799 inode = page->mapping->host;
800 sb = inode->i_sb;
801 ngroups = ext4_get_groups_count(sb);
802 blocksize = 1 << inode->i_blkbits;
803 blocks_per_page = PAGE_CACHE_SIZE / blocksize;
804
805 groups_per_page = blocks_per_page >> 1;
806 if (groups_per_page == 0)
807 groups_per_page = 1;
808
809 /* allocate buffer_heads to read bitmaps */
810 if (groups_per_page > 1) {
811 i = sizeof(struct buffer_head *) * groups_per_page;
812 bh = kzalloc(i, GFP_NOFS);
813 if (bh == NULL) {
814 err = -ENOMEM;
815 goto out;
816 }
817 } else
818 bh = &bhs;
819
820 first_group = page->index * blocks_per_page / 2;
821
822 /* read all groups the page covers into the cache */
823 for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
824 if (group >= ngroups)
825 break;
826
827 grinfo = ext4_get_group_info(sb, group);
828 /*
829 * If page is uptodate then we came here after online resize
830 * which added some new uninitialized group info structs, so
831 * we must skip all initialized uptodate buddies on the page,
832 * which may be currently in use by an allocating task.
833 */
834 if (PageUptodate(page) && !EXT4_MB_GRP_NEED_INIT(grinfo)) {
835 bh[i] = NULL;
836 continue;
837 }
838 if (!(bh[i] = ext4_read_block_bitmap_nowait(sb, group))) {
839 err = -ENOMEM;
840 goto out;
841 }
842 mb_debug(1, "read bitmap for group %u\n", group);
843 }
844
845 /* wait for I/O completion */
846 for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
847 if (bh[i] && ext4_wait_block_bitmap(sb, group, bh[i])) {
848 err = -EIO;
849 goto out;
850 }
851 }
852
853 first_block = page->index * blocks_per_page;
854 for (i = 0; i < blocks_per_page; i++) {
855 int group;
856
857 group = (first_block + i) >> 1;
858 if (group >= ngroups)
859 break;
860
861 if (!bh[group - first_group])
862 /* skip initialized uptodate buddy */
863 continue;
864
865 /*
866 * data carry information regarding this
867 * particular group in the format specified
868 * above
869 *
870 */
871 data = page_address(page) + (i * blocksize);
872 bitmap = bh[group - first_group]->b_data;
873
874 /*
875 * We place the buddy block and bitmap block
876 * close together
877 */
878 if ((first_block + i) & 1) {
879 /* this is block of buddy */
880 BUG_ON(incore == NULL);
881 mb_debug(1, "put buddy for group %u in page %lu/%x\n",
882 group, page->index, i * blocksize);
883 trace_ext4_mb_buddy_bitmap_load(sb, group);
884 grinfo = ext4_get_group_info(sb, group);
885 grinfo->bb_fragments = 0;
886 memset(grinfo->bb_counters, 0,
887 sizeof(*grinfo->bb_counters) *
888 (sb->s_blocksize_bits+2));
889 /*
890 * incore got set to the group block bitmap below
891 */
892 ext4_lock_group(sb, group);
893 /* init the buddy */
894 memset(data, 0xff, blocksize);
895 ext4_mb_generate_buddy(sb, data, incore, group);
896 ext4_unlock_group(sb, group);
897 incore = NULL;
898 } else {
899 /* this is block of bitmap */
900 BUG_ON(incore != NULL);
901 mb_debug(1, "put bitmap for group %u in page %lu/%x\n",
902 group, page->index, i * blocksize);
903 trace_ext4_mb_bitmap_load(sb, group);
904
905 /* see comments in ext4_mb_put_pa() */
906 ext4_lock_group(sb, group);
907 memcpy(data, bitmap, blocksize);
908
909 /* mark all preallocated blks used in in-core bitmap */
910 ext4_mb_generate_from_pa(sb, data, group);
911 ext4_mb_generate_from_freelist(sb, data, group);
912 ext4_unlock_group(sb, group);
913
914 /* set incore so that the buddy information can be
915 * generated using this
916 */
917 incore = data;
918 }
919 }
920 SetPageUptodate(page);
921
922 out:
923 if (bh) {
924 for (i = 0; i < groups_per_page; i++)
925 brelse(bh[i]);
926 if (bh != &bhs)
927 kfree(bh);
928 }
929 return err;
930 }
931
932 /*
933 * Lock the buddy and bitmap pages. This make sure other parallel init_group
934 * on the same buddy page doesn't happen whild holding the buddy page lock.
935 * Return locked buddy and bitmap pages on e4b struct. If buddy and bitmap
936 * are on the same page e4b->bd_buddy_page is NULL and return value is 0.
937 */
938 static int ext4_mb_get_buddy_page_lock(struct super_block *sb,
939 ext4_group_t group, struct ext4_buddy *e4b)
940 {
941 struct inode *inode = EXT4_SB(sb)->s_buddy_cache;
942 int block, pnum, poff;
943 int blocks_per_page;
944 struct page *page;
945
946 e4b->bd_buddy_page = NULL;
947 e4b->bd_bitmap_page = NULL;
948
949 blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize;
950 /*
951 * the buddy cache inode stores the block bitmap
952 * and buddy information in consecutive blocks.
953 * So for each group we need two blocks.
954 */
955 block = group * 2;
956 pnum = block / blocks_per_page;
957 poff = block % blocks_per_page;
958 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
959 if (!page)
960 return -EIO;
961 BUG_ON(page->mapping != inode->i_mapping);
962 e4b->bd_bitmap_page = page;
963 e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
964
965 if (blocks_per_page >= 2) {
966 /* buddy and bitmap are on the same page */
967 return 0;
968 }
969
970 block++;
971 pnum = block / blocks_per_page;
972 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
973 if (!page)
974 return -EIO;
975 BUG_ON(page->mapping != inode->i_mapping);
976 e4b->bd_buddy_page = page;
977 return 0;
978 }
979
980 static void ext4_mb_put_buddy_page_lock(struct ext4_buddy *e4b)
981 {
982 if (e4b->bd_bitmap_page) {
983 unlock_page(e4b->bd_bitmap_page);
984 page_cache_release(e4b->bd_bitmap_page);
985 }
986 if (e4b->bd_buddy_page) {
987 unlock_page(e4b->bd_buddy_page);
988 page_cache_release(e4b->bd_buddy_page);
989 }
990 }
991
992 /*
993 * Locking note: This routine calls ext4_mb_init_cache(), which takes the
994 * block group lock of all groups for this page; do not hold the BG lock when
995 * calling this routine!
996 */
997 static noinline_for_stack
998 int ext4_mb_init_group(struct super_block *sb, ext4_group_t group)
999 {
1000
1001 struct ext4_group_info *this_grp;
1002 struct ext4_buddy e4b;
1003 struct page *page;
1004 int ret = 0;
1005
1006 mb_debug(1, "init group %u\n", group);
1007 this_grp = ext4_get_group_info(sb, group);
1008 /*
1009 * This ensures that we don't reinit the buddy cache
1010 * page which map to the group from which we are already
1011 * allocating. If we are looking at the buddy cache we would
1012 * have taken a reference using ext4_mb_load_buddy and that
1013 * would have pinned buddy page to page cache.
1014 */
1015 ret = ext4_mb_get_buddy_page_lock(sb, group, &e4b);
1016 if (ret || !EXT4_MB_GRP_NEED_INIT(this_grp)) {
1017 /*
1018 * somebody initialized the group
1019 * return without doing anything
1020 */
1021 goto err;
1022 }
1023
1024 page = e4b.bd_bitmap_page;
1025 ret = ext4_mb_init_cache(page, NULL);
1026 if (ret)
1027 goto err;
1028 if (!PageUptodate(page)) {
1029 ret = -EIO;
1030 goto err;
1031 }
1032 mark_page_accessed(page);
1033
1034 if (e4b.bd_buddy_page == NULL) {
1035 /*
1036 * If both the bitmap and buddy are in
1037 * the same page we don't need to force
1038 * init the buddy
1039 */
1040 ret = 0;
1041 goto err;
1042 }
1043 /* init buddy cache */
1044 page = e4b.bd_buddy_page;
1045 ret = ext4_mb_init_cache(page, e4b.bd_bitmap);
1046 if (ret)
1047 goto err;
1048 if (!PageUptodate(page)) {
1049 ret = -EIO;
1050 goto err;
1051 }
1052 mark_page_accessed(page);
1053 err:
1054 ext4_mb_put_buddy_page_lock(&e4b);
1055 return ret;
1056 }
1057
1058 /*
1059 * Locking note: This routine calls ext4_mb_init_cache(), which takes the
1060 * block group lock of all groups for this page; do not hold the BG lock when
1061 * calling this routine!
1062 */
1063 static noinline_for_stack int
1064 ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group,
1065 struct ext4_buddy *e4b)
1066 {
1067 int blocks_per_page;
1068 int block;
1069 int pnum;
1070 int poff;
1071 struct page *page;
1072 int ret;
1073 struct ext4_group_info *grp;
1074 struct ext4_sb_info *sbi = EXT4_SB(sb);
1075 struct inode *inode = sbi->s_buddy_cache;
1076
1077 mb_debug(1, "load group %u\n", group);
1078
1079 blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize;
1080 grp = ext4_get_group_info(sb, group);
1081
1082 e4b->bd_blkbits = sb->s_blocksize_bits;
1083 e4b->bd_info = grp;
1084 e4b->bd_sb = sb;
1085 e4b->bd_group = group;
1086 e4b->bd_buddy_page = NULL;
1087 e4b->bd_bitmap_page = NULL;
1088
1089 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
1090 /*
1091 * we need full data about the group
1092 * to make a good selection
1093 */
1094 ret = ext4_mb_init_group(sb, group);
1095 if (ret)
1096 return ret;
1097 }
1098
1099 /*
1100 * the buddy cache inode stores the block bitmap
1101 * and buddy information in consecutive blocks.
1102 * So for each group we need two blocks.
1103 */
1104 block = group * 2;
1105 pnum = block / blocks_per_page;
1106 poff = block % blocks_per_page;
1107
1108 /* we could use find_or_create_page(), but it locks page
1109 * what we'd like to avoid in fast path ... */
1110 page = find_get_page(inode->i_mapping, pnum);
1111 if (page == NULL || !PageUptodate(page)) {
1112 if (page)
1113 /*
1114 * drop the page reference and try
1115 * to get the page with lock. If we
1116 * are not uptodate that implies
1117 * somebody just created the page but
1118 * is yet to initialize the same. So
1119 * wait for it to initialize.
1120 */
1121 page_cache_release(page);
1122 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
1123 if (page) {
1124 BUG_ON(page->mapping != inode->i_mapping);
1125 if (!PageUptodate(page)) {
1126 ret = ext4_mb_init_cache(page, NULL);
1127 if (ret) {
1128 unlock_page(page);
1129 goto err;
1130 }
1131 mb_cmp_bitmaps(e4b, page_address(page) +
1132 (poff * sb->s_blocksize));
1133 }
1134 unlock_page(page);
1135 }
1136 }
1137 if (page == NULL || !PageUptodate(page)) {
1138 ret = -EIO;
1139 goto err;
1140 }
1141 e4b->bd_bitmap_page = page;
1142 e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
1143 mark_page_accessed(page);
1144
1145 block++;
1146 pnum = block / blocks_per_page;
1147 poff = block % blocks_per_page;
1148
1149 page = find_get_page(inode->i_mapping, pnum);
1150 if (page == NULL || !PageUptodate(page)) {
1151 if (page)
1152 page_cache_release(page);
1153 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
1154 if (page) {
1155 BUG_ON(page->mapping != inode->i_mapping);
1156 if (!PageUptodate(page)) {
1157 ret = ext4_mb_init_cache(page, e4b->bd_bitmap);
1158 if (ret) {
1159 unlock_page(page);
1160 goto err;
1161 }
1162 }
1163 unlock_page(page);
1164 }
1165 }
1166 if (page == NULL || !PageUptodate(page)) {
1167 ret = -EIO;
1168 goto err;
1169 }
1170 e4b->bd_buddy_page = page;
1171 e4b->bd_buddy = page_address(page) + (poff * sb->s_blocksize);
1172 mark_page_accessed(page);
1173
1174 BUG_ON(e4b->bd_bitmap_page == NULL);
1175 BUG_ON(e4b->bd_buddy_page == NULL);
1176
1177 return 0;
1178
1179 err:
1180 if (page)
1181 page_cache_release(page);
1182 if (e4b->bd_bitmap_page)
1183 page_cache_release(e4b->bd_bitmap_page);
1184 if (e4b->bd_buddy_page)
1185 page_cache_release(e4b->bd_buddy_page);
1186 e4b->bd_buddy = NULL;
1187 e4b->bd_bitmap = NULL;
1188 return ret;
1189 }
1190
1191 static void ext4_mb_unload_buddy(struct ext4_buddy *e4b)
1192 {
1193 if (e4b->bd_bitmap_page)
1194 page_cache_release(e4b->bd_bitmap_page);
1195 if (e4b->bd_buddy_page)
1196 page_cache_release(e4b->bd_buddy_page);
1197 }
1198
1199
1200 static int mb_find_order_for_block(struct ext4_buddy *e4b, int block)
1201 {
1202 int order = 1;
1203 void *bb;
1204
1205 BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
1206 BUG_ON(block >= (1 << (e4b->bd_blkbits + 3)));
1207
1208 bb = e4b->bd_buddy;
1209 while (order <= e4b->bd_blkbits + 1) {
1210 block = block >> 1;
1211 if (!mb_test_bit(block, bb)) {
1212 /* this block is part of buddy of order 'order' */
1213 return order;
1214 }
1215 bb += 1 << (e4b->bd_blkbits - order);
1216 order++;
1217 }
1218 return 0;
1219 }
1220
1221 static void mb_clear_bits(void *bm, int cur, int len)
1222 {
1223 __u32 *addr;
1224
1225 len = cur + len;
1226 while (cur < len) {
1227 if ((cur & 31) == 0 && (len - cur) >= 32) {
1228 /* fast path: clear whole word at once */
1229 addr = bm + (cur >> 3);
1230 *addr = 0;
1231 cur += 32;
1232 continue;
1233 }
1234 mb_clear_bit(cur, bm);
1235 cur++;
1236 }
1237 }
1238
1239 void ext4_set_bits(void *bm, int cur, int len)
1240 {
1241 __u32 *addr;
1242
1243 len = cur + len;
1244 while (cur < len) {
1245 if ((cur & 31) == 0 && (len - cur) >= 32) {
1246 /* fast path: set whole word at once */
1247 addr = bm + (cur >> 3);
1248 *addr = 0xffffffff;
1249 cur += 32;
1250 continue;
1251 }
1252 mb_set_bit(cur, bm);
1253 cur++;
1254 }
1255 }
1256
1257 static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b,
1258 int first, int count)
1259 {
1260 int block = 0;
1261 int max = 0;
1262 int order;
1263 void *buddy;
1264 void *buddy2;
1265 struct super_block *sb = e4b->bd_sb;
1266
1267 BUG_ON(first + count > (sb->s_blocksize << 3));
1268 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
1269 mb_check_buddy(e4b);
1270 mb_free_blocks_double(inode, e4b, first, count);
1271
1272 e4b->bd_info->bb_free += count;
1273 if (first < e4b->bd_info->bb_first_free)
1274 e4b->bd_info->bb_first_free = first;
1275
1276 /* let's maintain fragments counter */
1277 if (first != 0)
1278 block = !mb_test_bit(first - 1, e4b->bd_bitmap);
1279 if (first + count < EXT4_SB(sb)->s_mb_maxs[0])
1280 max = !mb_test_bit(first + count, e4b->bd_bitmap);
1281 if (block && max)
1282 e4b->bd_info->bb_fragments--;
1283 else if (!block && !max)
1284 e4b->bd_info->bb_fragments++;
1285
1286 /* let's maintain buddy itself */
1287 while (count-- > 0) {
1288 block = first++;
1289 order = 0;
1290
1291 if (!mb_test_bit(block, e4b->bd_bitmap)) {
1292 ext4_fsblk_t blocknr;
1293
1294 blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
1295 blocknr += EXT4_C2B(EXT4_SB(sb), block);
1296 ext4_grp_locked_error(sb, e4b->bd_group,
1297 inode ? inode->i_ino : 0,
1298 blocknr,
1299 "freeing already freed block "
1300 "(bit %u)", block);
1301 }
1302 mb_clear_bit(block, e4b->bd_bitmap);
1303 e4b->bd_info->bb_counters[order]++;
1304
1305 /* start of the buddy */
1306 buddy = mb_find_buddy(e4b, order, &max);
1307
1308 do {
1309 block &= ~1UL;
1310 if (mb_test_bit(block, buddy) ||
1311 mb_test_bit(block + 1, buddy))
1312 break;
1313
1314 /* both the buddies are free, try to coalesce them */
1315 buddy2 = mb_find_buddy(e4b, order + 1, &max);
1316
1317 if (!buddy2)
1318 break;
1319
1320 if (order > 0) {
1321 /* for special purposes, we don't set
1322 * free bits in bitmap */
1323 mb_set_bit(block, buddy);
1324 mb_set_bit(block + 1, buddy);
1325 }
1326 e4b->bd_info->bb_counters[order]--;
1327 e4b->bd_info->bb_counters[order]--;
1328
1329 block = block >> 1;
1330 order++;
1331 e4b->bd_info->bb_counters[order]++;
1332
1333 mb_clear_bit(block, buddy2);
1334 buddy = buddy2;
1335 } while (1);
1336 }
1337 mb_set_largest_free_order(sb, e4b->bd_info);
1338 mb_check_buddy(e4b);
1339 }
1340
1341 static int mb_find_extent(struct ext4_buddy *e4b, int order, int block,
1342 int needed, struct ext4_free_extent *ex)
1343 {
1344 int next = block;
1345 int max;
1346 void *buddy;
1347
1348 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1349 BUG_ON(ex == NULL);
1350
1351 buddy = mb_find_buddy(e4b, order, &max);
1352 BUG_ON(buddy == NULL);
1353 BUG_ON(block >= max);
1354 if (mb_test_bit(block, buddy)) {
1355 ex->fe_len = 0;
1356 ex->fe_start = 0;
1357 ex->fe_group = 0;
1358 return 0;
1359 }
1360
1361 /* FIXME dorp order completely ? */
1362 if (likely(order == 0)) {
1363 /* find actual order */
1364 order = mb_find_order_for_block(e4b, block);
1365 block = block >> order;
1366 }
1367
1368 ex->fe_len = 1 << order;
1369 ex->fe_start = block << order;
1370 ex->fe_group = e4b->bd_group;
1371
1372 /* calc difference from given start */
1373 next = next - ex->fe_start;
1374 ex->fe_len -= next;
1375 ex->fe_start += next;
1376
1377 while (needed > ex->fe_len &&
1378 (buddy = mb_find_buddy(e4b, order, &max))) {
1379
1380 if (block + 1 >= max)
1381 break;
1382
1383 next = (block + 1) * (1 << order);
1384 if (mb_test_bit(next, e4b->bd_bitmap))
1385 break;
1386
1387 order = mb_find_order_for_block(e4b, next);
1388
1389 block = next >> order;
1390 ex->fe_len += 1 << order;
1391 }
1392
1393 BUG_ON(ex->fe_start + ex->fe_len > (1 << (e4b->bd_blkbits + 3)));
1394 return ex->fe_len;
1395 }
1396
1397 static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex)
1398 {
1399 int ord;
1400 int mlen = 0;
1401 int max = 0;
1402 int cur;
1403 int start = ex->fe_start;
1404 int len = ex->fe_len;
1405 unsigned ret = 0;
1406 int len0 = len;
1407 void *buddy;
1408
1409 BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3));
1410 BUG_ON(e4b->bd_group != ex->fe_group);
1411 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1412 mb_check_buddy(e4b);
1413 mb_mark_used_double(e4b, start, len);
1414
1415 e4b->bd_info->bb_free -= len;
1416 if (e4b->bd_info->bb_first_free == start)
1417 e4b->bd_info->bb_first_free += len;
1418
1419 /* let's maintain fragments counter */
1420 if (start != 0)
1421 mlen = !mb_test_bit(start - 1, e4b->bd_bitmap);
1422 if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0])
1423 max = !mb_test_bit(start + len, e4b->bd_bitmap);
1424 if (mlen && max)
1425 e4b->bd_info->bb_fragments++;
1426 else if (!mlen && !max)
1427 e4b->bd_info->bb_fragments--;
1428
1429 /* let's maintain buddy itself */
1430 while (len) {
1431 ord = mb_find_order_for_block(e4b, start);
1432
1433 if (((start >> ord) << ord) == start && len >= (1 << ord)) {
1434 /* the whole chunk may be allocated at once! */
1435 mlen = 1 << ord;
1436 buddy = mb_find_buddy(e4b, ord, &max);
1437 BUG_ON((start >> ord) >= max);
1438 mb_set_bit(start >> ord, buddy);
1439 e4b->bd_info->bb_counters[ord]--;
1440 start += mlen;
1441 len -= mlen;
1442 BUG_ON(len < 0);
1443 continue;
1444 }
1445
1446 /* store for history */
1447 if (ret == 0)
1448 ret = len | (ord << 16);
1449
1450 /* we have to split large buddy */
1451 BUG_ON(ord <= 0);
1452 buddy = mb_find_buddy(e4b, ord, &max);
1453 mb_set_bit(start >> ord, buddy);
1454 e4b->bd_info->bb_counters[ord]--;
1455
1456 ord--;
1457 cur = (start >> ord) & ~1U;
1458 buddy = mb_find_buddy(e4b, ord, &max);
1459 mb_clear_bit(cur, buddy);
1460 mb_clear_bit(cur + 1, buddy);
1461 e4b->bd_info->bb_counters[ord]++;
1462 e4b->bd_info->bb_counters[ord]++;
1463 }
1464 mb_set_largest_free_order(e4b->bd_sb, e4b->bd_info);
1465
1466 ext4_set_bits(e4b->bd_bitmap, ex->fe_start, len0);
1467 mb_check_buddy(e4b);
1468
1469 return ret;
1470 }
1471
1472 /*
1473 * Must be called under group lock!
1474 */
1475 static void ext4_mb_use_best_found(struct ext4_allocation_context *ac,
1476 struct ext4_buddy *e4b)
1477 {
1478 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1479 int ret;
1480
1481 BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group);
1482 BUG_ON(ac->ac_status == AC_STATUS_FOUND);
1483
1484 ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len);
1485 ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical;
1486 ret = mb_mark_used(e4b, &ac->ac_b_ex);
1487
1488 /* preallocation can change ac_b_ex, thus we store actually
1489 * allocated blocks for history */
1490 ac->ac_f_ex = ac->ac_b_ex;
1491
1492 ac->ac_status = AC_STATUS_FOUND;
1493 ac->ac_tail = ret & 0xffff;
1494 ac->ac_buddy = ret >> 16;
1495
1496 /*
1497 * take the page reference. We want the page to be pinned
1498 * so that we don't get a ext4_mb_init_cache_call for this
1499 * group until we update the bitmap. That would mean we
1500 * double allocate blocks. The reference is dropped
1501 * in ext4_mb_release_context
1502 */
1503 ac->ac_bitmap_page = e4b->bd_bitmap_page;
1504 get_page(ac->ac_bitmap_page);
1505 ac->ac_buddy_page = e4b->bd_buddy_page;
1506 get_page(ac->ac_buddy_page);
1507 /* store last allocated for subsequent stream allocation */
1508 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
1509 spin_lock(&sbi->s_md_lock);
1510 sbi->s_mb_last_group = ac->ac_f_ex.fe_group;
1511 sbi->s_mb_last_start = ac->ac_f_ex.fe_start;
1512 spin_unlock(&sbi->s_md_lock);
1513 }
1514 }
1515
1516 /*
1517 * regular allocator, for general purposes allocation
1518 */
1519
1520 static void ext4_mb_check_limits(struct ext4_allocation_context *ac,
1521 struct ext4_buddy *e4b,
1522 int finish_group)
1523 {
1524 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1525 struct ext4_free_extent *bex = &ac->ac_b_ex;
1526 struct ext4_free_extent *gex = &ac->ac_g_ex;
1527 struct ext4_free_extent ex;
1528 int max;
1529
1530 if (ac->ac_status == AC_STATUS_FOUND)
1531 return;
1532 /*
1533 * We don't want to scan for a whole year
1534 */
1535 if (ac->ac_found > sbi->s_mb_max_to_scan &&
1536 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1537 ac->ac_status = AC_STATUS_BREAK;
1538 return;
1539 }
1540
1541 /*
1542 * Haven't found good chunk so far, let's continue
1543 */
1544 if (bex->fe_len < gex->fe_len)
1545 return;
1546
1547 if ((finish_group || ac->ac_found > sbi->s_mb_min_to_scan)
1548 && bex->fe_group == e4b->bd_group) {
1549 /* recheck chunk's availability - we don't know
1550 * when it was found (within this lock-unlock
1551 * period or not) */
1552 max = mb_find_extent(e4b, 0, bex->fe_start, gex->fe_len, &ex);
1553 if (max >= gex->fe_len) {
1554 ext4_mb_use_best_found(ac, e4b);
1555 return;
1556 }
1557 }
1558 }
1559
1560 /*
1561 * The routine checks whether found extent is good enough. If it is,
1562 * then the extent gets marked used and flag is set to the context
1563 * to stop scanning. Otherwise, the extent is compared with the
1564 * previous found extent and if new one is better, then it's stored
1565 * in the context. Later, the best found extent will be used, if
1566 * mballoc can't find good enough extent.
1567 *
1568 * FIXME: real allocation policy is to be designed yet!
1569 */
1570 static void ext4_mb_measure_extent(struct ext4_allocation_context *ac,
1571 struct ext4_free_extent *ex,
1572 struct ext4_buddy *e4b)
1573 {
1574 struct ext4_free_extent *bex = &ac->ac_b_ex;
1575 struct ext4_free_extent *gex = &ac->ac_g_ex;
1576
1577 BUG_ON(ex->fe_len <= 0);
1578 BUG_ON(ex->fe_len > EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
1579 BUG_ON(ex->fe_start >= EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
1580 BUG_ON(ac->ac_status != AC_STATUS_CONTINUE);
1581
1582 ac->ac_found++;
1583
1584 /*
1585 * The special case - take what you catch first
1586 */
1587 if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1588 *bex = *ex;
1589 ext4_mb_use_best_found(ac, e4b);
1590 return;
1591 }
1592
1593 /*
1594 * Let's check whether the chuck is good enough
1595 */
1596 if (ex->fe_len == gex->fe_len) {
1597 *bex = *ex;
1598 ext4_mb_use_best_found(ac, e4b);
1599 return;
1600 }
1601
1602 /*
1603 * If this is first found extent, just store it in the context
1604 */
1605 if (bex->fe_len == 0) {
1606 *bex = *ex;
1607 return;
1608 }
1609
1610 /*
1611 * If new found extent is better, store it in the context
1612 */
1613 if (bex->fe_len < gex->fe_len) {
1614 /* if the request isn't satisfied, any found extent
1615 * larger than previous best one is better */
1616 if (ex->fe_len > bex->fe_len)
1617 *bex = *ex;
1618 } else if (ex->fe_len > gex->fe_len) {
1619 /* if the request is satisfied, then we try to find
1620 * an extent that still satisfy the request, but is
1621 * smaller than previous one */
1622 if (ex->fe_len < bex->fe_len)
1623 *bex = *ex;
1624 }
1625
1626 ext4_mb_check_limits(ac, e4b, 0);
1627 }
1628
1629 static noinline_for_stack
1630 int ext4_mb_try_best_found(struct ext4_allocation_context *ac,
1631 struct ext4_buddy *e4b)
1632 {
1633 struct ext4_free_extent ex = ac->ac_b_ex;
1634 ext4_group_t group = ex.fe_group;
1635 int max;
1636 int err;
1637
1638 BUG_ON(ex.fe_len <= 0);
1639 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1640 if (err)
1641 return err;
1642
1643 ext4_lock_group(ac->ac_sb, group);
1644 max = mb_find_extent(e4b, 0, ex.fe_start, ex.fe_len, &ex);
1645
1646 if (max > 0) {
1647 ac->ac_b_ex = ex;
1648 ext4_mb_use_best_found(ac, e4b);
1649 }
1650
1651 ext4_unlock_group(ac->ac_sb, group);
1652 ext4_mb_unload_buddy(e4b);
1653
1654 return 0;
1655 }
1656
1657 static noinline_for_stack
1658 int ext4_mb_find_by_goal(struct ext4_allocation_context *ac,
1659 struct ext4_buddy *e4b)
1660 {
1661 ext4_group_t group = ac->ac_g_ex.fe_group;
1662 int max;
1663 int err;
1664 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1665 struct ext4_free_extent ex;
1666
1667 if (!(ac->ac_flags & EXT4_MB_HINT_TRY_GOAL))
1668 return 0;
1669
1670 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1671 if (err)
1672 return err;
1673
1674 ext4_lock_group(ac->ac_sb, group);
1675 max = mb_find_extent(e4b, 0, ac->ac_g_ex.fe_start,
1676 ac->ac_g_ex.fe_len, &ex);
1677
1678 if (max >= ac->ac_g_ex.fe_len && ac->ac_g_ex.fe_len == sbi->s_stripe) {
1679 ext4_fsblk_t start;
1680
1681 start = ext4_group_first_block_no(ac->ac_sb, e4b->bd_group) +
1682 ex.fe_start;
1683 /* use do_div to get remainder (would be 64-bit modulo) */
1684 if (do_div(start, sbi->s_stripe) == 0) {
1685 ac->ac_found++;
1686 ac->ac_b_ex = ex;
1687 ext4_mb_use_best_found(ac, e4b);
1688 }
1689 } else if (max >= ac->ac_g_ex.fe_len) {
1690 BUG_ON(ex.fe_len <= 0);
1691 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1692 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1693 ac->ac_found++;
1694 ac->ac_b_ex = ex;
1695 ext4_mb_use_best_found(ac, e4b);
1696 } else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) {
1697 /* Sometimes, caller may want to merge even small
1698 * number of blocks to an existing extent */
1699 BUG_ON(ex.fe_len <= 0);
1700 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1701 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1702 ac->ac_found++;
1703 ac->ac_b_ex = ex;
1704 ext4_mb_use_best_found(ac, e4b);
1705 }
1706 ext4_unlock_group(ac->ac_sb, group);
1707 ext4_mb_unload_buddy(e4b);
1708
1709 return 0;
1710 }
1711
1712 /*
1713 * The routine scans buddy structures (not bitmap!) from given order
1714 * to max order and tries to find big enough chunk to satisfy the req
1715 */
1716 static noinline_for_stack
1717 void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac,
1718 struct ext4_buddy *e4b)
1719 {
1720 struct super_block *sb = ac->ac_sb;
1721 struct ext4_group_info *grp = e4b->bd_info;
1722 void *buddy;
1723 int i;
1724 int k;
1725 int max;
1726
1727 BUG_ON(ac->ac_2order <= 0);
1728 for (i = ac->ac_2order; i <= sb->s_blocksize_bits + 1; i++) {
1729 if (grp->bb_counters[i] == 0)
1730 continue;
1731
1732 buddy = mb_find_buddy(e4b, i, &max);
1733 BUG_ON(buddy == NULL);
1734
1735 k = mb_find_next_zero_bit(buddy, max, 0);
1736 BUG_ON(k >= max);
1737
1738 ac->ac_found++;
1739
1740 ac->ac_b_ex.fe_len = 1 << i;
1741 ac->ac_b_ex.fe_start = k << i;
1742 ac->ac_b_ex.fe_group = e4b->bd_group;
1743
1744 ext4_mb_use_best_found(ac, e4b);
1745
1746 BUG_ON(ac->ac_b_ex.fe_len != ac->ac_g_ex.fe_len);
1747
1748 if (EXT4_SB(sb)->s_mb_stats)
1749 atomic_inc(&EXT4_SB(sb)->s_bal_2orders);
1750
1751 break;
1752 }
1753 }
1754
1755 /*
1756 * The routine scans the group and measures all found extents.
1757 * In order to optimize scanning, caller must pass number of
1758 * free blocks in the group, so the routine can know upper limit.
1759 */
1760 static noinline_for_stack
1761 void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac,
1762 struct ext4_buddy *e4b)
1763 {
1764 struct super_block *sb = ac->ac_sb;
1765 void *bitmap = e4b->bd_bitmap;
1766 struct ext4_free_extent ex;
1767 int i;
1768 int free;
1769
1770 free = e4b->bd_info->bb_free;
1771 BUG_ON(free <= 0);
1772
1773 i = e4b->bd_info->bb_first_free;
1774
1775 while (free && ac->ac_status == AC_STATUS_CONTINUE) {
1776 i = mb_find_next_zero_bit(bitmap,
1777 EXT4_CLUSTERS_PER_GROUP(sb), i);
1778 if (i >= EXT4_CLUSTERS_PER_GROUP(sb)) {
1779 /*
1780 * IF we have corrupt bitmap, we won't find any
1781 * free blocks even though group info says we
1782 * we have free blocks
1783 */
1784 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
1785 "%d free clusters as per "
1786 "group info. But bitmap says 0",
1787 free);
1788 break;
1789 }
1790
1791 mb_find_extent(e4b, 0, i, ac->ac_g_ex.fe_len, &ex);
1792 BUG_ON(ex.fe_len <= 0);
1793 if (free < ex.fe_len) {
1794 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
1795 "%d free clusters as per "
1796 "group info. But got %d blocks",
1797 free, ex.fe_len);
1798 /*
1799 * The number of free blocks differs. This mostly
1800 * indicate that the bitmap is corrupt. So exit
1801 * without claiming the space.
1802 */
1803 break;
1804 }
1805
1806 ext4_mb_measure_extent(ac, &ex, e4b);
1807
1808 i += ex.fe_len;
1809 free -= ex.fe_len;
1810 }
1811
1812 ext4_mb_check_limits(ac, e4b, 1);
1813 }
1814
1815 /*
1816 * This is a special case for storages like raid5
1817 * we try to find stripe-aligned chunks for stripe-size-multiple requests
1818 */
1819 static noinline_for_stack
1820 void ext4_mb_scan_aligned(struct ext4_allocation_context *ac,
1821 struct ext4_buddy *e4b)
1822 {
1823 struct super_block *sb = ac->ac_sb;
1824 struct ext4_sb_info *sbi = EXT4_SB(sb);
1825 void *bitmap = e4b->bd_bitmap;
1826 struct ext4_free_extent ex;
1827 ext4_fsblk_t first_group_block;
1828 ext4_fsblk_t a;
1829 ext4_grpblk_t i;
1830 int max;
1831
1832 BUG_ON(sbi->s_stripe == 0);
1833
1834 /* find first stripe-aligned block in group */
1835 first_group_block = ext4_group_first_block_no(sb, e4b->bd_group);
1836
1837 a = first_group_block + sbi->s_stripe - 1;
1838 do_div(a, sbi->s_stripe);
1839 i = (a * sbi->s_stripe) - first_group_block;
1840
1841 while (i < EXT4_CLUSTERS_PER_GROUP(sb)) {
1842 if (!mb_test_bit(i, bitmap)) {
1843 max = mb_find_extent(e4b, 0, i, sbi->s_stripe, &ex);
1844 if (max >= sbi->s_stripe) {
1845 ac->ac_found++;
1846 ac->ac_b_ex = ex;
1847 ext4_mb_use_best_found(ac, e4b);
1848 break;
1849 }
1850 }
1851 i += sbi->s_stripe;
1852 }
1853 }
1854
1855 /* This is now called BEFORE we load the buddy bitmap. */
1856 static int ext4_mb_good_group(struct ext4_allocation_context *ac,
1857 ext4_group_t group, int cr)
1858 {
1859 unsigned free, fragments;
1860 int flex_size = ext4_flex_bg_size(EXT4_SB(ac->ac_sb));
1861 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
1862
1863 BUG_ON(cr < 0 || cr >= 4);
1864
1865 /* We only do this if the grp has never been initialized */
1866 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
1867 int ret = ext4_mb_init_group(ac->ac_sb, group);
1868 if (ret)
1869 return 0;
1870 }
1871
1872 free = grp->bb_free;
1873 fragments = grp->bb_fragments;
1874 if (free == 0)
1875 return 0;
1876 if (fragments == 0)
1877 return 0;
1878
1879 switch (cr) {
1880 case 0:
1881 BUG_ON(ac->ac_2order == 0);
1882
1883 if (grp->bb_largest_free_order < ac->ac_2order)
1884 return 0;
1885
1886 /* Avoid using the first bg of a flexgroup for data files */
1887 if ((ac->ac_flags & EXT4_MB_HINT_DATA) &&
1888 (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) &&
1889 ((group % flex_size) == 0))
1890 return 0;
1891
1892 return 1;
1893 case 1:
1894 if ((free / fragments) >= ac->ac_g_ex.fe_len)
1895 return 1;
1896 break;
1897 case 2:
1898 if (free >= ac->ac_g_ex.fe_len)
1899 return 1;
1900 break;
1901 case 3:
1902 return 1;
1903 default:
1904 BUG();
1905 }
1906
1907 return 0;
1908 }
1909
1910 static noinline_for_stack int
1911 ext4_mb_regular_allocator(struct ext4_allocation_context *ac)
1912 {
1913 ext4_group_t ngroups, group, i;
1914 int cr;
1915 int err = 0;
1916 struct ext4_sb_info *sbi;
1917 struct super_block *sb;
1918 struct ext4_buddy e4b;
1919
1920 sb = ac->ac_sb;
1921 sbi = EXT4_SB(sb);
1922 ngroups = ext4_get_groups_count(sb);
1923 /* non-extent files are limited to low blocks/groups */
1924 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)))
1925 ngroups = sbi->s_blockfile_groups;
1926
1927 BUG_ON(ac->ac_status == AC_STATUS_FOUND);
1928
1929 /* first, try the goal */
1930 err = ext4_mb_find_by_goal(ac, &e4b);
1931 if (err || ac->ac_status == AC_STATUS_FOUND)
1932 goto out;
1933
1934 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
1935 goto out;
1936
1937 /*
1938 * ac->ac2_order is set only if the fe_len is a power of 2
1939 * if ac2_order is set we also set criteria to 0 so that we
1940 * try exact allocation using buddy.
1941 */
1942 i = fls(ac->ac_g_ex.fe_len);
1943 ac->ac_2order = 0;
1944 /*
1945 * We search using buddy data only if the order of the request
1946 * is greater than equal to the sbi_s_mb_order2_reqs
1947 * You can tune it via /sys/fs/ext4/<partition>/mb_order2_req
1948 */
1949 if (i >= sbi->s_mb_order2_reqs) {
1950 /*
1951 * This should tell if fe_len is exactly power of 2
1952 */
1953 if ((ac->ac_g_ex.fe_len & (~(1 << (i - 1)))) == 0)
1954 ac->ac_2order = i - 1;
1955 }
1956
1957 /* if stream allocation is enabled, use global goal */
1958 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
1959 /* TBD: may be hot point */
1960 spin_lock(&sbi->s_md_lock);
1961 ac->ac_g_ex.fe_group = sbi->s_mb_last_group;
1962 ac->ac_g_ex.fe_start = sbi->s_mb_last_start;
1963 spin_unlock(&sbi->s_md_lock);
1964 }
1965
1966 /* Let's just scan groups to find more-less suitable blocks */
1967 cr = ac->ac_2order ? 0 : 1;
1968 /*
1969 * cr == 0 try to get exact allocation,
1970 * cr == 3 try to get anything
1971 */
1972 repeat:
1973 for (; cr < 4 && ac->ac_status == AC_STATUS_CONTINUE; cr++) {
1974 ac->ac_criteria = cr;
1975 /*
1976 * searching for the right group start
1977 * from the goal value specified
1978 */
1979 group = ac->ac_g_ex.fe_group;
1980
1981 for (i = 0; i < ngroups; group++, i++) {
1982 if (group == ngroups)
1983 group = 0;
1984
1985 /* This now checks without needing the buddy page */
1986 if (!ext4_mb_good_group(ac, group, cr))
1987 continue;
1988
1989 err = ext4_mb_load_buddy(sb, group, &e4b);
1990 if (err)
1991 goto out;
1992
1993 ext4_lock_group(sb, group);
1994
1995 /*
1996 * We need to check again after locking the
1997 * block group
1998 */
1999 if (!ext4_mb_good_group(ac, group, cr)) {
2000 ext4_unlock_group(sb, group);
2001 ext4_mb_unload_buddy(&e4b);
2002 continue;
2003 }
2004
2005 ac->ac_groups_scanned++;
2006 if (cr == 0)
2007 ext4_mb_simple_scan_group(ac, &e4b);
2008 else if (cr == 1 && sbi->s_stripe &&
2009 !(ac->ac_g_ex.fe_len % sbi->s_stripe))
2010 ext4_mb_scan_aligned(ac, &e4b);
2011 else
2012 ext4_mb_complex_scan_group(ac, &e4b);
2013
2014 ext4_unlock_group(sb, group);
2015 ext4_mb_unload_buddy(&e4b);
2016
2017 if (ac->ac_status != AC_STATUS_CONTINUE)
2018 break;
2019 }
2020 }
2021
2022 if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND &&
2023 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2024 /*
2025 * We've been searching too long. Let's try to allocate
2026 * the best chunk we've found so far
2027 */
2028
2029 ext4_mb_try_best_found(ac, &e4b);
2030 if (ac->ac_status != AC_STATUS_FOUND) {
2031 /*
2032 * Someone more lucky has already allocated it.
2033 * The only thing we can do is just take first
2034 * found block(s)
2035 printk(KERN_DEBUG "EXT4-fs: someone won our chunk\n");
2036 */
2037 ac->ac_b_ex.fe_group = 0;
2038 ac->ac_b_ex.fe_start = 0;
2039 ac->ac_b_ex.fe_len = 0;
2040 ac->ac_status = AC_STATUS_CONTINUE;
2041 ac->ac_flags |= EXT4_MB_HINT_FIRST;
2042 cr = 3;
2043 atomic_inc(&sbi->s_mb_lost_chunks);
2044 goto repeat;
2045 }
2046 }
2047 out:
2048 return err;
2049 }
2050
2051 static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos)
2052 {
2053 struct super_block *sb = seq->private;
2054 ext4_group_t group;
2055
2056 if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2057 return NULL;
2058 group = *pos + 1;
2059 return (void *) ((unsigned long) group);
2060 }
2061
2062 static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos)
2063 {
2064 struct super_block *sb = seq->private;
2065 ext4_group_t group;
2066
2067 ++*pos;
2068 if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2069 return NULL;
2070 group = *pos + 1;
2071 return (void *) ((unsigned long) group);
2072 }
2073
2074 static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v)
2075 {
2076 struct super_block *sb = seq->private;
2077 ext4_group_t group = (ext4_group_t) ((unsigned long) v);
2078 int i;
2079 int err, buddy_loaded = 0;
2080 struct ext4_buddy e4b;
2081 struct ext4_group_info *grinfo;
2082 struct sg {
2083 struct ext4_group_info info;
2084 ext4_grpblk_t counters[16];
2085 } sg;
2086
2087 group--;
2088 if (group == 0)
2089 seq_printf(seq, "#%-5s: %-5s %-5s %-5s "
2090 "[ %-5s %-5s %-5s %-5s %-5s %-5s %-5s "
2091 "%-5s %-5s %-5s %-5s %-5s %-5s %-5s ]\n",
2092 "group", "free", "frags", "first",
2093 "2^0", "2^1", "2^2", "2^3", "2^4", "2^5", "2^6",
2094 "2^7", "2^8", "2^9", "2^10", "2^11", "2^12", "2^13");
2095
2096 i = (sb->s_blocksize_bits + 2) * sizeof(sg.info.bb_counters[0]) +
2097 sizeof(struct ext4_group_info);
2098 grinfo = ext4_get_group_info(sb, group);
2099 /* Load the group info in memory only if not already loaded. */
2100 if (unlikely(EXT4_MB_GRP_NEED_INIT(grinfo))) {
2101 err = ext4_mb_load_buddy(sb, group, &e4b);
2102 if (err) {
2103 seq_printf(seq, "#%-5u: I/O error\n", group);
2104 return 0;
2105 }
2106 buddy_loaded = 1;
2107 }
2108
2109 memcpy(&sg, ext4_get_group_info(sb, group), i);
2110
2111 if (buddy_loaded)
2112 ext4_mb_unload_buddy(&e4b);
2113
2114 seq_printf(seq, "#%-5u: %-5u %-5u %-5u [", group, sg.info.bb_free,
2115 sg.info.bb_fragments, sg.info.bb_first_free);
2116 for (i = 0; i <= 13; i++)
2117 seq_printf(seq, " %-5u", i <= sb->s_blocksize_bits + 1 ?
2118 sg.info.bb_counters[i] : 0);
2119 seq_printf(seq, " ]\n");
2120
2121 return 0;
2122 }
2123
2124 static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v)
2125 {
2126 }
2127
2128 static const struct seq_operations ext4_mb_seq_groups_ops = {
2129 .start = ext4_mb_seq_groups_start,
2130 .next = ext4_mb_seq_groups_next,
2131 .stop = ext4_mb_seq_groups_stop,
2132 .show = ext4_mb_seq_groups_show,
2133 };
2134
2135 static int ext4_mb_seq_groups_open(struct inode *inode, struct file *file)
2136 {
2137 struct super_block *sb = PDE(inode)->data;
2138 int rc;
2139
2140 rc = seq_open(file, &ext4_mb_seq_groups_ops);
2141 if (rc == 0) {
2142 struct seq_file *m = file->private_data;
2143 m->private = sb;
2144 }
2145 return rc;
2146
2147 }
2148
2149 static const struct file_operations ext4_mb_seq_groups_fops = {
2150 .owner = THIS_MODULE,
2151 .open = ext4_mb_seq_groups_open,
2152 .read = seq_read,
2153 .llseek = seq_lseek,
2154 .release = seq_release,
2155 };
2156
2157 static struct kmem_cache *get_groupinfo_cache(int blocksize_bits)
2158 {
2159 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
2160 struct kmem_cache *cachep = ext4_groupinfo_caches[cache_index];
2161
2162 BUG_ON(!cachep);
2163 return cachep;
2164 }
2165
2166 /* Create and initialize ext4_group_info data for the given group. */
2167 int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group,
2168 struct ext4_group_desc *desc)
2169 {
2170 int i;
2171 int metalen = 0;
2172 struct ext4_sb_info *sbi = EXT4_SB(sb);
2173 struct ext4_group_info **meta_group_info;
2174 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2175
2176 /*
2177 * First check if this group is the first of a reserved block.
2178 * If it's true, we have to allocate a new table of pointers
2179 * to ext4_group_info structures
2180 */
2181 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
2182 metalen = sizeof(*meta_group_info) <<
2183 EXT4_DESC_PER_BLOCK_BITS(sb);
2184 meta_group_info = kmalloc(metalen, GFP_KERNEL);
2185 if (meta_group_info == NULL) {
2186 ext4_msg(sb, KERN_ERR, "can't allocate mem "
2187 "for a buddy group");
2188 goto exit_meta_group_info;
2189 }
2190 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)] =
2191 meta_group_info;
2192 }
2193
2194 meta_group_info =
2195 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)];
2196 i = group & (EXT4_DESC_PER_BLOCK(sb) - 1);
2197
2198 meta_group_info[i] = kmem_cache_alloc(cachep, GFP_KERNEL);
2199 if (meta_group_info[i] == NULL) {
2200 ext4_msg(sb, KERN_ERR, "can't allocate buddy mem");
2201 goto exit_group_info;
2202 }
2203 memset(meta_group_info[i], 0, kmem_cache_size(cachep));
2204 set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT,
2205 &(meta_group_info[i]->bb_state));
2206
2207 /*
2208 * initialize bb_free to be able to skip
2209 * empty groups without initialization
2210 */
2211 if (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
2212 meta_group_info[i]->bb_free =
2213 ext4_free_clusters_after_init(sb, group, desc);
2214 } else {
2215 meta_group_info[i]->bb_free =
2216 ext4_free_group_clusters(sb, desc);
2217 }
2218
2219 INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list);
2220 init_rwsem(&meta_group_info[i]->alloc_sem);
2221 meta_group_info[i]->bb_free_root = RB_ROOT;
2222 meta_group_info[i]->bb_largest_free_order = -1; /* uninit */
2223
2224 #ifdef DOUBLE_CHECK
2225 {
2226 struct buffer_head *bh;
2227 meta_group_info[i]->bb_bitmap =
2228 kmalloc(sb->s_blocksize, GFP_KERNEL);
2229 BUG_ON(meta_group_info[i]->bb_bitmap == NULL);
2230 bh = ext4_read_block_bitmap(sb, group);
2231 BUG_ON(bh == NULL);
2232 memcpy(meta_group_info[i]->bb_bitmap, bh->b_data,
2233 sb->s_blocksize);
2234 put_bh(bh);
2235 }
2236 #endif
2237
2238 return 0;
2239
2240 exit_group_info:
2241 /* If a meta_group_info table has been allocated, release it now */
2242 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
2243 kfree(sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)]);
2244 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)] = NULL;
2245 }
2246 exit_meta_group_info:
2247 return -ENOMEM;
2248 } /* ext4_mb_add_groupinfo */
2249
2250 static int ext4_mb_init_backend(struct super_block *sb)
2251 {
2252 ext4_group_t ngroups = ext4_get_groups_count(sb);
2253 ext4_group_t i;
2254 struct ext4_sb_info *sbi = EXT4_SB(sb);
2255 struct ext4_super_block *es = sbi->s_es;
2256 int num_meta_group_infos;
2257 int num_meta_group_infos_max;
2258 int array_size;
2259 struct ext4_group_desc *desc;
2260 struct kmem_cache *cachep;
2261
2262 /* This is the number of blocks used by GDT */
2263 num_meta_group_infos = (ngroups + EXT4_DESC_PER_BLOCK(sb) -
2264 1) >> EXT4_DESC_PER_BLOCK_BITS(sb);
2265
2266 /*
2267 * This is the total number of blocks used by GDT including
2268 * the number of reserved blocks for GDT.
2269 * The s_group_info array is allocated with this value
2270 * to allow a clean online resize without a complex
2271 * manipulation of pointer.
2272 * The drawback is the unused memory when no resize
2273 * occurs but it's very low in terms of pages
2274 * (see comments below)
2275 * Need to handle this properly when META_BG resizing is allowed
2276 */
2277 num_meta_group_infos_max = num_meta_group_infos +
2278 le16_to_cpu(es->s_reserved_gdt_blocks);
2279
2280 /*
2281 * array_size is the size of s_group_info array. We round it
2282 * to the next power of two because this approximation is done
2283 * internally by kmalloc so we can have some more memory
2284 * for free here (e.g. may be used for META_BG resize).
2285 */
2286 array_size = 1;
2287 while (array_size < sizeof(*sbi->s_group_info) *
2288 num_meta_group_infos_max)
2289 array_size = array_size << 1;
2290 /* An 8TB filesystem with 64-bit pointers requires a 4096 byte
2291 * kmalloc. A 128kb malloc should suffice for a 256TB filesystem.
2292 * So a two level scheme suffices for now. */
2293 sbi->s_group_info = ext4_kvzalloc(array_size, GFP_KERNEL);
2294 if (sbi->s_group_info == NULL) {
2295 ext4_msg(sb, KERN_ERR, "can't allocate buddy meta group");
2296 return -ENOMEM;
2297 }
2298 sbi->s_buddy_cache = new_inode(sb);
2299 if (sbi->s_buddy_cache == NULL) {
2300 ext4_msg(sb, KERN_ERR, "can't get new inode");
2301 goto err_freesgi;
2302 }
2303 /* To avoid potentially colliding with an valid on-disk inode number,
2304 * use EXT4_BAD_INO for the buddy cache inode number. This inode is
2305 * not in the inode hash, so it should never be found by iget(), but
2306 * this will avoid confusion if it ever shows up during debugging. */
2307 sbi->s_buddy_cache->i_ino = EXT4_BAD_INO;
2308 EXT4_I(sbi->s_buddy_cache)->i_disksize = 0;
2309 for (i = 0; i < ngroups; i++) {
2310 desc = ext4_get_group_desc(sb, i, NULL);
2311 if (desc == NULL) {
2312 ext4_msg(sb, KERN_ERR, "can't read descriptor %u", i);
2313 goto err_freebuddy;
2314 }
2315 if (ext4_mb_add_groupinfo(sb, i, desc) != 0)
2316 goto err_freebuddy;
2317 }
2318
2319 return 0;
2320
2321 err_freebuddy:
2322 cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2323 while (i-- > 0)
2324 kmem_cache_free(cachep, ext4_get_group_info(sb, i));
2325 i = num_meta_group_infos;
2326 while (i-- > 0)
2327 kfree(sbi->s_group_info[i]);
2328 iput(sbi->s_buddy_cache);
2329 err_freesgi:
2330 ext4_kvfree(sbi->s_group_info);
2331 return -ENOMEM;
2332 }
2333
2334 static void ext4_groupinfo_destroy_slabs(void)
2335 {
2336 int i;
2337
2338 for (i = 0; i < NR_GRPINFO_CACHES; i++) {
2339 if (ext4_groupinfo_caches[i])
2340 kmem_cache_destroy(ext4_groupinfo_caches[i]);
2341 ext4_groupinfo_caches[i] = NULL;
2342 }
2343 }
2344
2345 static int ext4_groupinfo_create_slab(size_t size)
2346 {
2347 static DEFINE_MUTEX(ext4_grpinfo_slab_create_mutex);
2348 int slab_size;
2349 int blocksize_bits = order_base_2(size);
2350 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
2351 struct kmem_cache *cachep;
2352
2353 if (cache_index >= NR_GRPINFO_CACHES)
2354 return -EINVAL;
2355
2356 if (unlikely(cache_index < 0))
2357 cache_index = 0;
2358
2359 mutex_lock(&ext4_grpinfo_slab_create_mutex);
2360 if (ext4_groupinfo_caches[cache_index]) {
2361 mutex_unlock(&ext4_grpinfo_slab_create_mutex);
2362 return 0; /* Already created */
2363 }
2364
2365 slab_size = offsetof(struct ext4_group_info,
2366 bb_counters[blocksize_bits + 2]);
2367
2368 cachep = kmem_cache_create(ext4_groupinfo_slab_names[cache_index],
2369 slab_size, 0, SLAB_RECLAIM_ACCOUNT,
2370 NULL);
2371
2372 ext4_groupinfo_caches[cache_index] = cachep;
2373
2374 mutex_unlock(&ext4_grpinfo_slab_create_mutex);
2375 if (!cachep) {
2376 printk(KERN_EMERG
2377 "EXT4-fs: no memory for groupinfo slab cache\n");
2378 return -ENOMEM;
2379 }
2380
2381 return 0;
2382 }
2383
2384 int ext4_mb_init(struct super_block *sb)
2385 {
2386 struct ext4_sb_info *sbi = EXT4_SB(sb);
2387 unsigned i, j;
2388 unsigned offset;
2389 unsigned max;
2390 int ret;
2391
2392 i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_offsets);
2393
2394 sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL);
2395 if (sbi->s_mb_offsets == NULL) {
2396 ret = -ENOMEM;
2397 goto out;
2398 }
2399
2400 i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_maxs);
2401 sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL);
2402 if (sbi->s_mb_maxs == NULL) {
2403 ret = -ENOMEM;
2404 goto out;
2405 }
2406
2407 ret = ext4_groupinfo_create_slab(sb->s_blocksize);
2408 if (ret < 0)
2409 goto out;
2410
2411 /* order 0 is regular bitmap */
2412 sbi->s_mb_maxs[0] = sb->s_blocksize << 3;
2413 sbi->s_mb_offsets[0] = 0;
2414
2415 i = 1;
2416 offset = 0;
2417 max = sb->s_blocksize << 2;
2418 do {
2419 sbi->s_mb_offsets[i] = offset;
2420 sbi->s_mb_maxs[i] = max;
2421 offset += 1 << (sb->s_blocksize_bits - i);
2422 max = max >> 1;
2423 i++;
2424 } while (i <= sb->s_blocksize_bits + 1);
2425
2426 spin_lock_init(&sbi->s_md_lock);
2427 spin_lock_init(&sbi->s_bal_lock);
2428
2429 sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN;
2430 sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN;
2431 sbi->s_mb_stats = MB_DEFAULT_STATS;
2432 sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD;
2433 sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS;
2434 /*
2435 * The default group preallocation is 512, which for 4k block
2436 * sizes translates to 2 megabytes. However for bigalloc file
2437 * systems, this is probably too big (i.e, if the cluster size
2438 * is 1 megabyte, then group preallocation size becomes half a
2439 * gigabyte!). As a default, we will keep a two megabyte
2440 * group pralloc size for cluster sizes up to 64k, and after
2441 * that, we will force a minimum group preallocation size of
2442 * 32 clusters. This translates to 8 megs when the cluster
2443 * size is 256k, and 32 megs when the cluster size is 1 meg,
2444 * which seems reasonable as a default.
2445 */
2446 sbi->s_mb_group_prealloc = max(MB_DEFAULT_GROUP_PREALLOC >>
2447 sbi->s_cluster_bits, 32);
2448 /*
2449 * If there is a s_stripe > 1, then we set the s_mb_group_prealloc
2450 * to the lowest multiple of s_stripe which is bigger than
2451 * the s_mb_group_prealloc as determined above. We want
2452 * the preallocation size to be an exact multiple of the
2453 * RAID stripe size so that preallocations don't fragment
2454 * the stripes.
2455 */
2456 if (sbi->s_stripe > 1) {
2457 sbi->s_mb_group_prealloc = roundup(
2458 sbi->s_mb_group_prealloc, sbi->s_stripe);
2459 }
2460
2461 sbi->s_locality_groups = alloc_percpu(struct ext4_locality_group);
2462 if (sbi->s_locality_groups == NULL) {
2463 ret = -ENOMEM;
2464 goto out_free_groupinfo_slab;
2465 }
2466 for_each_possible_cpu(i) {
2467 struct ext4_locality_group *lg;
2468 lg = per_cpu_ptr(sbi->s_locality_groups, i);
2469 mutex_init(&lg->lg_mutex);
2470 for (j = 0; j < PREALLOC_TB_SIZE; j++)
2471 INIT_LIST_HEAD(&lg->lg_prealloc_list[j]);
2472 spin_lock_init(&lg->lg_prealloc_lock);
2473 }
2474
2475 /* init file for buddy data */
2476 ret = ext4_mb_init_backend(sb);
2477 if (ret != 0)
2478 goto out_free_locality_groups;
2479
2480 if (sbi->s_proc)
2481 proc_create_data("mb_groups", S_IRUGO, sbi->s_proc,
2482 &ext4_mb_seq_groups_fops, sb);
2483
2484 return 0;
2485
2486 out_free_locality_groups:
2487 free_percpu(sbi->s_locality_groups);
2488 sbi->s_locality_groups = NULL;
2489 out_free_groupinfo_slab:
2490 ext4_groupinfo_destroy_slabs();
2491 out:
2492 kfree(sbi->s_mb_offsets);
2493 sbi->s_mb_offsets = NULL;
2494 kfree(sbi->s_mb_maxs);
2495 sbi->s_mb_maxs = NULL;
2496 return ret;
2497 }
2498
2499 /* need to called with the ext4 group lock held */
2500 static void ext4_mb_cleanup_pa(struct ext4_group_info *grp)
2501 {
2502 struct ext4_prealloc_space *pa;
2503 struct list_head *cur, *tmp;
2504 int count = 0;
2505
2506 list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) {
2507 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
2508 list_del(&pa->pa_group_list);
2509 count++;
2510 kmem_cache_free(ext4_pspace_cachep, pa);
2511 }
2512 if (count)
2513 mb_debug(1, "mballoc: %u PAs left\n", count);
2514
2515 }
2516
2517 int ext4_mb_release(struct super_block *sb)
2518 {
2519 ext4_group_t ngroups = ext4_get_groups_count(sb);
2520 ext4_group_t i;
2521 int num_meta_group_infos;
2522 struct ext4_group_info *grinfo;
2523 struct ext4_sb_info *sbi = EXT4_SB(sb);
2524 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2525
2526 if (sbi->s_proc)
2527 remove_proc_entry("mb_groups", sbi->s_proc);
2528
2529 if (sbi->s_group_info) {
2530 for (i = 0; i < ngroups; i++) {
2531 grinfo = ext4_get_group_info(sb, i);
2532 #ifdef DOUBLE_CHECK
2533 kfree(grinfo->bb_bitmap);
2534 #endif
2535 ext4_lock_group(sb, i);
2536 ext4_mb_cleanup_pa(grinfo);
2537 ext4_unlock_group(sb, i);
2538 kmem_cache_free(cachep, grinfo);
2539 }
2540 num_meta_group_infos = (ngroups +
2541 EXT4_DESC_PER_BLOCK(sb) - 1) >>
2542 EXT4_DESC_PER_BLOCK_BITS(sb);
2543 for (i = 0; i < num_meta_group_infos; i++)
2544 kfree(sbi->s_group_info[i]);
2545 ext4_kvfree(sbi->s_group_info);
2546 }
2547 kfree(sbi->s_mb_offsets);
2548 kfree(sbi->s_mb_maxs);
2549 if (sbi->s_buddy_cache)
2550 iput(sbi->s_buddy_cache);
2551 if (sbi->s_mb_stats) {
2552 ext4_msg(sb, KERN_INFO,
2553 "mballoc: %u blocks %u reqs (%u success)",
2554 atomic_read(&sbi->s_bal_allocated),
2555 atomic_read(&sbi->s_bal_reqs),
2556 atomic_read(&sbi->s_bal_success));
2557 ext4_msg(sb, KERN_INFO,
2558 "mballoc: %u extents scanned, %u goal hits, "
2559 "%u 2^N hits, %u breaks, %u lost",
2560 atomic_read(&sbi->s_bal_ex_scanned),
2561 atomic_read(&sbi->s_bal_goals),
2562 atomic_read(&sbi->s_bal_2orders),
2563 atomic_read(&sbi->s_bal_breaks),
2564 atomic_read(&sbi->s_mb_lost_chunks));
2565 ext4_msg(sb, KERN_INFO,
2566 "mballoc: %lu generated and it took %Lu",
2567 sbi->s_mb_buddies_generated,
2568 sbi->s_mb_generation_time);
2569 ext4_msg(sb, KERN_INFO,
2570 "mballoc: %u preallocated, %u discarded",
2571 atomic_read(&sbi->s_mb_preallocated),
2572 atomic_read(&sbi->s_mb_discarded));
2573 }
2574
2575 free_percpu(sbi->s_locality_groups);
2576
2577 return 0;
2578 }
2579
2580 static inline int ext4_issue_discard(struct super_block *sb,
2581 ext4_group_t block_group, ext4_grpblk_t cluster, int count)
2582 {
2583 ext4_fsblk_t discard_block;
2584
2585 discard_block = (EXT4_C2B(EXT4_SB(sb), cluster) +
2586 ext4_group_first_block_no(sb, block_group));
2587 count = EXT4_C2B(EXT4_SB(sb), count);
2588 trace_ext4_discard_blocks(sb,
2589 (unsigned long long) discard_block, count);
2590 return sb_issue_discard(sb, discard_block, count, GFP_NOFS, 0);
2591 }
2592
2593 /*
2594 * This function is called by the jbd2 layer once the commit has finished,
2595 * so we know we can free the blocks that were released with that commit.
2596 */
2597 static void ext4_free_data_callback(struct super_block *sb,
2598 struct ext4_journal_cb_entry *jce,
2599 int rc)
2600 {
2601 struct ext4_free_data *entry = (struct ext4_free_data *)jce;
2602 struct ext4_buddy e4b;
2603 struct ext4_group_info *db;
2604 int err, count = 0, count2 = 0;
2605
2606 mb_debug(1, "gonna free %u blocks in group %u (0x%p):",
2607 entry->efd_count, entry->efd_group, entry);
2608
2609 if (test_opt(sb, DISCARD))
2610 ext4_issue_discard(sb, entry->efd_group,
2611 entry->efd_start_cluster, entry->efd_count);
2612
2613 err = ext4_mb_load_buddy(sb, entry->efd_group, &e4b);
2614 /* we expect to find existing buddy because it's pinned */
2615 BUG_ON(err != 0);
2616
2617
2618 db = e4b.bd_info;
2619 /* there are blocks to put in buddy to make them really free */
2620 count += entry->efd_count;
2621 count2++;
2622 ext4_lock_group(sb, entry->efd_group);
2623 /* Take it out of per group rb tree */
2624 rb_erase(&entry->efd_node, &(db->bb_free_root));
2625 mb_free_blocks(NULL, &e4b, entry->efd_start_cluster, entry->efd_count);
2626
2627 /*
2628 * Clear the trimmed flag for the group so that the next
2629 * ext4_trim_fs can trim it.
2630 * If the volume is mounted with -o discard, online discard
2631 * is supported and the free blocks will be trimmed online.
2632 */
2633 if (!test_opt(sb, DISCARD))
2634 EXT4_MB_GRP_CLEAR_TRIMMED(db);
2635
2636 if (!db->bb_free_root.rb_node) {
2637 /* No more items in the per group rb tree
2638 * balance refcounts from ext4_mb_free_metadata()
2639 */
2640 page_cache_release(e4b.bd_buddy_page);
2641 page_cache_release(e4b.bd_bitmap_page);
2642 }
2643 ext4_unlock_group(sb, entry->efd_group);
2644 kmem_cache_free(ext4_free_data_cachep, entry);
2645 ext4_mb_unload_buddy(&e4b);
2646
2647 mb_debug(1, "freed %u blocks in %u structures\n", count, count2);
2648 }
2649
2650 #ifdef CONFIG_EXT4_DEBUG
2651 u8 mb_enable_debug __read_mostly;
2652
2653 static struct dentry *debugfs_dir;
2654 static struct dentry *debugfs_debug;
2655
2656 static void __init ext4_create_debugfs_entry(void)
2657 {
2658 debugfs_dir = debugfs_create_dir("ext4", NULL);
2659 if (debugfs_dir)
2660 debugfs_debug = debugfs_create_u8("mballoc-debug",
2661 S_IRUGO | S_IWUSR,
2662 debugfs_dir,
2663 &mb_enable_debug);
2664 }
2665
2666 static void ext4_remove_debugfs_entry(void)
2667 {
2668 debugfs_remove(debugfs_debug);
2669 debugfs_remove(debugfs_dir);
2670 }
2671
2672 #else
2673
2674 static void __init ext4_create_debugfs_entry(void)
2675 {
2676 }
2677
2678 static void ext4_remove_debugfs_entry(void)
2679 {
2680 }
2681
2682 #endif
2683
2684 int __init ext4_init_mballoc(void)
2685 {
2686 ext4_pspace_cachep = KMEM_CACHE(ext4_prealloc_space,
2687 SLAB_RECLAIM_ACCOUNT);
2688 if (ext4_pspace_cachep == NULL)
2689 return -ENOMEM;
2690
2691 ext4_ac_cachep = KMEM_CACHE(ext4_allocation_context,
2692 SLAB_RECLAIM_ACCOUNT);
2693 if (ext4_ac_cachep == NULL) {
2694 kmem_cache_destroy(ext4_pspace_cachep);
2695 return -ENOMEM;
2696 }
2697
2698 ext4_free_data_cachep = KMEM_CACHE(ext4_free_data,
2699 SLAB_RECLAIM_ACCOUNT);
2700 if (ext4_free_data_cachep == NULL) {
2701 kmem_cache_destroy(ext4_pspace_cachep);
2702 kmem_cache_destroy(ext4_ac_cachep);
2703 return -ENOMEM;
2704 }
2705 ext4_create_debugfs_entry();
2706 return 0;
2707 }
2708
2709 void ext4_exit_mballoc(void)
2710 {
2711 /*
2712 * Wait for completion of call_rcu()'s on ext4_pspace_cachep
2713 * before destroying the slab cache.
2714 */
2715 rcu_barrier();
2716 kmem_cache_destroy(ext4_pspace_cachep);
2717 kmem_cache_destroy(ext4_ac_cachep);
2718 kmem_cache_destroy(ext4_free_data_cachep);
2719 ext4_groupinfo_destroy_slabs();
2720 ext4_remove_debugfs_entry();
2721 }
2722
2723
2724 /*
2725 * Check quota and mark chosen space (ac->ac_b_ex) non-free in bitmaps
2726 * Returns 0 if success or error code
2727 */
2728 static noinline_for_stack int
2729 ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac,
2730 handle_t *handle, unsigned int reserv_clstrs)
2731 {
2732 struct buffer_head *bitmap_bh = NULL;
2733 struct ext4_group_desc *gdp;
2734 struct buffer_head *gdp_bh;
2735 struct ext4_sb_info *sbi;
2736 struct super_block *sb;
2737 ext4_fsblk_t block;
2738 int err, len;
2739
2740 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
2741 BUG_ON(ac->ac_b_ex.fe_len <= 0);
2742
2743 sb = ac->ac_sb;
2744 sbi = EXT4_SB(sb);
2745
2746 err = -EIO;
2747 bitmap_bh = ext4_read_block_bitmap(sb, ac->ac_b_ex.fe_group);
2748 if (!bitmap_bh)
2749 goto out_err;
2750
2751 err = ext4_journal_get_write_access(handle, bitmap_bh);
2752 if (err)
2753 goto out_err;
2754
2755 err = -EIO;
2756 gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, &gdp_bh);
2757 if (!gdp)
2758 goto out_err;
2759
2760 ext4_debug("using block group %u(%d)\n", ac->ac_b_ex.fe_group,
2761 ext4_free_group_clusters(sb, gdp));
2762
2763 err = ext4_journal_get_write_access(handle, gdp_bh);
2764 if (err)
2765 goto out_err;
2766
2767 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
2768
2769 len = EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
2770 if (!ext4_data_block_valid(sbi, block, len)) {
2771 ext4_error(sb, "Allocating blocks %llu-%llu which overlap "
2772 "fs metadata", block, block+len);
2773 /* File system mounted not to panic on error
2774 * Fix the bitmap and repeat the block allocation
2775 * We leak some of the blocks here.
2776 */
2777 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
2778 ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
2779 ac->ac_b_ex.fe_len);
2780 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
2781 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
2782 if (!err)
2783 err = -EAGAIN;
2784 goto out_err;
2785 }
2786
2787 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
2788 #ifdef AGGRESSIVE_CHECK
2789 {
2790 int i;
2791 for (i = 0; i < ac->ac_b_ex.fe_len; i++) {
2792 BUG_ON(mb_test_bit(ac->ac_b_ex.fe_start + i,
2793 bitmap_bh->b_data));
2794 }
2795 }
2796 #endif
2797 ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
2798 ac->ac_b_ex.fe_len);
2799 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
2800 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
2801 ext4_free_group_clusters_set(sb, gdp,
2802 ext4_free_clusters_after_init(sb,
2803 ac->ac_b_ex.fe_group, gdp));
2804 }
2805 len = ext4_free_group_clusters(sb, gdp) - ac->ac_b_ex.fe_len;
2806 ext4_free_group_clusters_set(sb, gdp, len);
2807 ext4_block_bitmap_csum_set(sb, ac->ac_b_ex.fe_group, gdp, bitmap_bh,
2808 EXT4_BLOCKS_PER_GROUP(sb) / 8);
2809 ext4_group_desc_csum_set(sb, ac->ac_b_ex.fe_group, gdp);
2810
2811 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
2812 percpu_counter_sub(&sbi->s_freeclusters_counter, ac->ac_b_ex.fe_len);
2813 /*
2814 * Now reduce the dirty block count also. Should not go negative
2815 */
2816 if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED))
2817 /* release all the reserved blocks if non delalloc */
2818 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
2819 reserv_clstrs);
2820
2821 if (sbi->s_log_groups_per_flex) {
2822 ext4_group_t flex_group = ext4_flex_group(sbi,
2823 ac->ac_b_ex.fe_group);
2824 atomic_sub(ac->ac_b_ex.fe_len,
2825 &sbi->s_flex_groups[flex_group].free_clusters);
2826 }
2827
2828 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
2829 if (err)
2830 goto out_err;
2831 err = ext4_handle_dirty_metadata(handle, NULL, gdp_bh);
2832
2833 out_err:
2834 brelse(bitmap_bh);
2835 return err;
2836 }
2837
2838 /*
2839 * here we normalize request for locality group
2840 * Group request are normalized to s_mb_group_prealloc, which goes to
2841 * s_strip if we set the same via mount option.
2842 * s_mb_group_prealloc can be configured via
2843 * /sys/fs/ext4/<partition>/mb_group_prealloc
2844 *
2845 * XXX: should we try to preallocate more than the group has now?
2846 */
2847 static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac)
2848 {
2849 struct super_block *sb = ac->ac_sb;
2850 struct ext4_locality_group *lg = ac->ac_lg;
2851
2852 BUG_ON(lg == NULL);
2853 ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc;
2854 mb_debug(1, "#%u: goal %u blocks for locality group\n",
2855 current->pid, ac->ac_g_ex.fe_len);
2856 }
2857
2858 /*
2859 * Normalization means making request better in terms of
2860 * size and alignment
2861 */
2862 static noinline_for_stack void
2863 ext4_mb_normalize_request(struct ext4_allocation_context *ac,
2864 struct ext4_allocation_request *ar)
2865 {
2866 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
2867 int bsbits, max;
2868 ext4_lblk_t end;
2869 loff_t size, start_off;
2870 loff_t orig_size __maybe_unused;
2871 ext4_lblk_t start;
2872 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
2873 struct ext4_prealloc_space *pa;
2874
2875 /* do normalize only data requests, metadata requests
2876 do not need preallocation */
2877 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
2878 return;
2879
2880 /* sometime caller may want exact blocks */
2881 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
2882 return;
2883
2884 /* caller may indicate that preallocation isn't
2885 * required (it's a tail, for example) */
2886 if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC)
2887 return;
2888
2889 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) {
2890 ext4_mb_normalize_group_request(ac);
2891 return ;
2892 }
2893
2894 bsbits = ac->ac_sb->s_blocksize_bits;
2895
2896 /* first, let's learn actual file size
2897 * given current request is allocated */
2898 size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len);
2899 size = size << bsbits;
2900 if (size < i_size_read(ac->ac_inode))
2901 size = i_size_read(ac->ac_inode);
2902 orig_size = size;
2903
2904 /* max size of free chunks */
2905 max = 2 << bsbits;
2906
2907 #define NRL_CHECK_SIZE(req, size, max, chunk_size) \
2908 (req <= (size) || max <= (chunk_size))
2909
2910 /* first, try to predict filesize */
2911 /* XXX: should this table be tunable? */
2912 start_off = 0;
2913 if (size <= 16 * 1024) {
2914 size = 16 * 1024;
2915 } else if (size <= 32 * 1024) {
2916 size = 32 * 1024;
2917 } else if (size <= 64 * 1024) {
2918 size = 64 * 1024;
2919 } else if (size <= 128 * 1024) {
2920 size = 128 * 1024;
2921 } else if (size <= 256 * 1024) {
2922 size = 256 * 1024;
2923 } else if (size <= 512 * 1024) {
2924 size = 512 * 1024;
2925 } else if (size <= 1024 * 1024) {
2926 size = 1024 * 1024;
2927 } else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) {
2928 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
2929 (21 - bsbits)) << 21;
2930 size = 2 * 1024 * 1024;
2931 } else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) {
2932 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
2933 (22 - bsbits)) << 22;
2934 size = 4 * 1024 * 1024;
2935 } else if (NRL_CHECK_SIZE(ac->ac_o_ex.fe_len,
2936 (8<<20)>>bsbits, max, 8 * 1024)) {
2937 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
2938 (23 - bsbits)) << 23;
2939 size = 8 * 1024 * 1024;
2940 } else {
2941 start_off = (loff_t)ac->ac_o_ex.fe_logical << bsbits;
2942 size = ac->ac_o_ex.fe_len << bsbits;
2943 }
2944 size = size >> bsbits;
2945 start = start_off >> bsbits;
2946
2947 /* don't cover already allocated blocks in selected range */
2948 if (ar->pleft && start <= ar->lleft) {
2949 size -= ar->lleft + 1 - start;
2950 start = ar->lleft + 1;
2951 }
2952 if (ar->pright && start + size - 1 >= ar->lright)
2953 size -= start + size - ar->lright;
2954
2955 end = start + size;
2956
2957 /* check we don't cross already preallocated blocks */
2958 rcu_read_lock();
2959 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
2960 ext4_lblk_t pa_end;
2961
2962 if (pa->pa_deleted)
2963 continue;
2964 spin_lock(&pa->pa_lock);
2965 if (pa->pa_deleted) {
2966 spin_unlock(&pa->pa_lock);
2967 continue;
2968 }
2969
2970 pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb),
2971 pa->pa_len);
2972
2973 /* PA must not overlap original request */
2974 BUG_ON(!(ac->ac_o_ex.fe_logical >= pa_end ||
2975 ac->ac_o_ex.fe_logical < pa->pa_lstart));
2976
2977 /* skip PAs this normalized request doesn't overlap with */
2978 if (pa->pa_lstart >= end || pa_end <= start) {
2979 spin_unlock(&pa->pa_lock);
2980 continue;
2981 }
2982 BUG_ON(pa->pa_lstart <= start && pa_end >= end);
2983
2984 /* adjust start or end to be adjacent to this pa */
2985 if (pa_end <= ac->ac_o_ex.fe_logical) {
2986 BUG_ON(pa_end < start);
2987 start = pa_end;
2988 } else if (pa->pa_lstart > ac->ac_o_ex.fe_logical) {
2989 BUG_ON(pa->pa_lstart > end);
2990 end = pa->pa_lstart;
2991 }
2992 spin_unlock(&pa->pa_lock);
2993 }
2994 rcu_read_unlock();
2995 size = end - start;
2996
2997 /* XXX: extra loop to check we really don't overlap preallocations */
2998 rcu_read_lock();
2999 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3000 ext4_lblk_t pa_end;
3001
3002 spin_lock(&pa->pa_lock);
3003 if (pa->pa_deleted == 0) {
3004 pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb),
3005 pa->pa_len);
3006 BUG_ON(!(start >= pa_end || end <= pa->pa_lstart));
3007 }
3008 spin_unlock(&pa->pa_lock);
3009 }
3010 rcu_read_unlock();
3011
3012 if (start + size <= ac->ac_o_ex.fe_logical &&
3013 start > ac->ac_o_ex.fe_logical) {
3014 ext4_msg(ac->ac_sb, KERN_ERR,
3015 "start %lu, size %lu, fe_logical %lu",
3016 (unsigned long) start, (unsigned long) size,
3017 (unsigned long) ac->ac_o_ex.fe_logical);
3018 }
3019 BUG_ON(start + size <= ac->ac_o_ex.fe_logical &&
3020 start > ac->ac_o_ex.fe_logical);
3021 BUG_ON(size <= 0 || size > EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
3022
3023 /* now prepare goal request */
3024
3025 /* XXX: is it better to align blocks WRT to logical
3026 * placement or satisfy big request as is */
3027 ac->ac_g_ex.fe_logical = start;
3028 ac->ac_g_ex.fe_len = EXT4_NUM_B2C(sbi, size);
3029
3030 /* define goal start in order to merge */
3031 if (ar->pright && (ar->lright == (start + size))) {
3032 /* merge to the right */
3033 ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size,
3034 &ac->ac_f_ex.fe_group,
3035 &ac->ac_f_ex.fe_start);
3036 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3037 }
3038 if (ar->pleft && (ar->lleft + 1 == start)) {
3039 /* merge to the left */
3040 ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1,
3041 &ac->ac_f_ex.fe_group,
3042 &ac->ac_f_ex.fe_start);
3043 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3044 }
3045
3046 mb_debug(1, "goal: %u(was %u) blocks at %u\n", (unsigned) size,
3047 (unsigned) orig_size, (unsigned) start);
3048 }
3049
3050 static void ext4_mb_collect_stats(struct ext4_allocation_context *ac)
3051 {
3052 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3053
3054 if (sbi->s_mb_stats && ac->ac_g_ex.fe_len > 1) {
3055 atomic_inc(&sbi->s_bal_reqs);
3056 atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated);
3057 if (ac->ac_b_ex.fe_len >= ac->ac_o_ex.fe_len)
3058 atomic_inc(&sbi->s_bal_success);
3059 atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned);
3060 if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start &&
3061 ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group)
3062 atomic_inc(&sbi->s_bal_goals);
3063 if (ac->ac_found > sbi->s_mb_max_to_scan)
3064 atomic_inc(&sbi->s_bal_breaks);
3065 }
3066
3067 if (ac->ac_op == EXT4_MB_HISTORY_ALLOC)
3068 trace_ext4_mballoc_alloc(ac);
3069 else
3070 trace_ext4_mballoc_prealloc(ac);
3071 }
3072
3073 /*
3074 * Called on failure; free up any blocks from the inode PA for this
3075 * context. We don't need this for MB_GROUP_PA because we only change
3076 * pa_free in ext4_mb_release_context(), but on failure, we've already
3077 * zeroed out ac->ac_b_ex.fe_len, so group_pa->pa_free is not changed.
3078 */
3079 static void ext4_discard_allocated_blocks(struct ext4_allocation_context *ac)
3080 {
3081 struct ext4_prealloc_space *pa = ac->ac_pa;
3082
3083 if (pa && pa->pa_type == MB_INODE_PA)
3084 pa->pa_free += ac->ac_b_ex.fe_len;
3085 }
3086
3087 /*
3088 * use blocks preallocated to inode
3089 */
3090 static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac,
3091 struct ext4_prealloc_space *pa)
3092 {
3093 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3094 ext4_fsblk_t start;
3095 ext4_fsblk_t end;
3096 int len;
3097
3098 /* found preallocated blocks, use them */
3099 start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart);
3100 end = min(pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len),
3101 start + EXT4_C2B(sbi, ac->ac_o_ex.fe_len));
3102 len = EXT4_NUM_B2C(sbi, end - start);
3103 ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group,
3104 &ac->ac_b_ex.fe_start);
3105 ac->ac_b_ex.fe_len = len;
3106 ac->ac_status = AC_STATUS_FOUND;
3107 ac->ac_pa = pa;
3108
3109 BUG_ON(start < pa->pa_pstart);
3110 BUG_ON(end > pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len));
3111 BUG_ON(pa->pa_free < len);
3112 pa->pa_free -= len;
3113
3114 mb_debug(1, "use %llu/%u from inode pa %p\n", start, len, pa);
3115 }
3116
3117 /*
3118 * use blocks preallocated to locality group
3119 */
3120 static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac,
3121 struct ext4_prealloc_space *pa)
3122 {
3123 unsigned int len = ac->ac_o_ex.fe_len;
3124
3125 ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart,
3126 &ac->ac_b_ex.fe_group,
3127 &ac->ac_b_ex.fe_start);
3128 ac->ac_b_ex.fe_len = len;
3129 ac->ac_status = AC_STATUS_FOUND;
3130 ac->ac_pa = pa;
3131
3132 /* we don't correct pa_pstart or pa_plen here to avoid
3133 * possible race when the group is being loaded concurrently
3134 * instead we correct pa later, after blocks are marked
3135 * in on-disk bitmap -- see ext4_mb_release_context()
3136 * Other CPUs are prevented from allocating from this pa by lg_mutex
3137 */
3138 mb_debug(1, "use %u/%u from group pa %p\n", pa->pa_lstart-len, len, pa);
3139 }
3140
3141 /*
3142 * Return the prealloc space that have minimal distance
3143 * from the goal block. @cpa is the prealloc
3144 * space that is having currently known minimal distance
3145 * from the goal block.
3146 */
3147 static struct ext4_prealloc_space *
3148 ext4_mb_check_group_pa(ext4_fsblk_t goal_block,
3149 struct ext4_prealloc_space *pa,
3150 struct ext4_prealloc_space *cpa)
3151 {
3152 ext4_fsblk_t cur_distance, new_distance;
3153
3154 if (cpa == NULL) {
3155 atomic_inc(&pa->pa_count);
3156 return pa;
3157 }
3158 cur_distance = abs(goal_block - cpa->pa_pstart);
3159 new_distance = abs(goal_block - pa->pa_pstart);
3160
3161 if (cur_distance <= new_distance)
3162 return cpa;
3163
3164 /* drop the previous reference */
3165 atomic_dec(&cpa->pa_count);
3166 atomic_inc(&pa->pa_count);
3167 return pa;
3168 }
3169
3170 /*
3171 * search goal blocks in preallocated space
3172 */
3173 static noinline_for_stack int
3174 ext4_mb_use_preallocated(struct ext4_allocation_context *ac)
3175 {
3176 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3177 int order, i;
3178 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
3179 struct ext4_locality_group *lg;
3180 struct ext4_prealloc_space *pa, *cpa = NULL;
3181 ext4_fsblk_t goal_block;
3182
3183 /* only data can be preallocated */
3184 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3185 return 0;
3186
3187 /* first, try per-file preallocation */
3188 rcu_read_lock();
3189 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3190
3191 /* all fields in this condition don't change,
3192 * so we can skip locking for them */
3193 if (ac->ac_o_ex.fe_logical < pa->pa_lstart ||
3194 ac->ac_o_ex.fe_logical >= (pa->pa_lstart +
3195 EXT4_C2B(sbi, pa->pa_len)))
3196 continue;
3197
3198 /* non-extent files can't have physical blocks past 2^32 */
3199 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)) &&
3200 (pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len) >
3201 EXT4_MAX_BLOCK_FILE_PHYS))
3202 continue;
3203
3204 /* found preallocated blocks, use them */
3205 spin_lock(&pa->pa_lock);
3206 if (pa->pa_deleted == 0 && pa->pa_free) {
3207 atomic_inc(&pa->pa_count);
3208 ext4_mb_use_inode_pa(ac, pa);
3209 spin_unlock(&pa->pa_lock);
3210 ac->ac_criteria = 10;
3211 rcu_read_unlock();
3212 return 1;
3213 }
3214 spin_unlock(&pa->pa_lock);
3215 }
3216 rcu_read_unlock();
3217
3218 /* can we use group allocation? */
3219 if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC))
3220 return 0;
3221
3222 /* inode may have no locality group for some reason */
3223 lg = ac->ac_lg;
3224 if (lg == NULL)
3225 return 0;
3226 order = fls(ac->ac_o_ex.fe_len) - 1;
3227 if (order > PREALLOC_TB_SIZE - 1)
3228 /* The max size of hash table is PREALLOC_TB_SIZE */
3229 order = PREALLOC_TB_SIZE - 1;
3230
3231 goal_block = ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex);
3232 /*
3233 * search for the prealloc space that is having
3234 * minimal distance from the goal block.
3235 */
3236 for (i = order; i < PREALLOC_TB_SIZE; i++) {
3237 rcu_read_lock();
3238 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[i],
3239 pa_inode_list) {
3240 spin_lock(&pa->pa_lock);
3241 if (pa->pa_deleted == 0 &&
3242 pa->pa_free >= ac->ac_o_ex.fe_len) {
3243
3244 cpa = ext4_mb_check_group_pa(goal_block,
3245 pa, cpa);
3246 }
3247 spin_unlock(&pa->pa_lock);
3248 }
3249 rcu_read_unlock();
3250 }
3251 if (cpa) {
3252 ext4_mb_use_group_pa(ac, cpa);
3253 ac->ac_criteria = 20;
3254 return 1;
3255 }
3256 return 0;
3257 }
3258
3259 /*
3260 * the function goes through all block freed in the group
3261 * but not yet committed and marks them used in in-core bitmap.
3262 * buddy must be generated from this bitmap
3263 * Need to be called with the ext4 group lock held
3264 */
3265 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
3266 ext4_group_t group)
3267 {
3268 struct rb_node *n;
3269 struct ext4_group_info *grp;
3270 struct ext4_free_data *entry;
3271
3272 grp = ext4_get_group_info(sb, group);
3273 n = rb_first(&(grp->bb_free_root));
3274
3275 while (n) {
3276 entry = rb_entry(n, struct ext4_free_data, efd_node);
3277 ext4_set_bits(bitmap, entry->efd_start_cluster, entry->efd_count);
3278 n = rb_next(n);
3279 }
3280 return;
3281 }
3282
3283 /*
3284 * the function goes through all preallocation in this group and marks them
3285 * used in in-core bitmap. buddy must be generated from this bitmap
3286 * Need to be called with ext4 group lock held
3287 */
3288 static noinline_for_stack
3289 void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
3290 ext4_group_t group)
3291 {
3292 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
3293 struct ext4_prealloc_space *pa;
3294 struct list_head *cur;
3295 ext4_group_t groupnr;
3296 ext4_grpblk_t start;
3297 int preallocated = 0;
3298 int len;
3299
3300 /* all form of preallocation discards first load group,
3301 * so the only competing code is preallocation use.
3302 * we don't need any locking here
3303 * notice we do NOT ignore preallocations with pa_deleted
3304 * otherwise we could leave used blocks available for
3305 * allocation in buddy when concurrent ext4_mb_put_pa()
3306 * is dropping preallocation
3307 */
3308 list_for_each(cur, &grp->bb_prealloc_list) {
3309 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
3310 spin_lock(&pa->pa_lock);
3311 ext4_get_group_no_and_offset(sb, pa->pa_pstart,
3312 &groupnr, &start);
3313 len = pa->pa_len;
3314 spin_unlock(&pa->pa_lock);
3315 if (unlikely(len == 0))
3316 continue;
3317 BUG_ON(groupnr != group);
3318 ext4_set_bits(bitmap, start, len);
3319 preallocated += len;
3320 }
3321 mb_debug(1, "prellocated %u for group %u\n", preallocated, group);
3322 }
3323
3324 static void ext4_mb_pa_callback(struct rcu_head *head)
3325 {
3326 struct ext4_prealloc_space *pa;
3327 pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu);
3328 kmem_cache_free(ext4_pspace_cachep, pa);
3329 }
3330
3331 /*
3332 * drops a reference to preallocated space descriptor
3333 * if this was the last reference and the space is consumed
3334 */
3335 static void ext4_mb_put_pa(struct ext4_allocation_context *ac,
3336 struct super_block *sb, struct ext4_prealloc_space *pa)
3337 {
3338 ext4_group_t grp;
3339 ext4_fsblk_t grp_blk;
3340
3341 if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0)
3342 return;
3343
3344 /* in this short window concurrent discard can set pa_deleted */
3345 spin_lock(&pa->pa_lock);
3346 if (pa->pa_deleted == 1) {
3347 spin_unlock(&pa->pa_lock);
3348 return;
3349 }
3350
3351 pa->pa_deleted = 1;
3352 spin_unlock(&pa->pa_lock);
3353
3354 grp_blk = pa->pa_pstart;
3355 /*
3356 * If doing group-based preallocation, pa_pstart may be in the
3357 * next group when pa is used up
3358 */
3359 if (pa->pa_type == MB_GROUP_PA)
3360 grp_blk--;
3361
3362 ext4_get_group_no_and_offset(sb, grp_blk, &grp, NULL);
3363
3364 /*
3365 * possible race:
3366 *
3367 * P1 (buddy init) P2 (regular allocation)
3368 * find block B in PA
3369 * copy on-disk bitmap to buddy
3370 * mark B in on-disk bitmap
3371 * drop PA from group
3372 * mark all PAs in buddy
3373 *
3374 * thus, P1 initializes buddy with B available. to prevent this
3375 * we make "copy" and "mark all PAs" atomic and serialize "drop PA"
3376 * against that pair
3377 */
3378 ext4_lock_group(sb, grp);
3379 list_del(&pa->pa_group_list);
3380 ext4_unlock_group(sb, grp);
3381
3382 spin_lock(pa->pa_obj_lock);
3383 list_del_rcu(&pa->pa_inode_list);
3384 spin_unlock(pa->pa_obj_lock);
3385
3386 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3387 }
3388
3389 /*
3390 * creates new preallocated space for given inode
3391 */
3392 static noinline_for_stack int
3393 ext4_mb_new_inode_pa(struct ext4_allocation_context *ac)
3394 {
3395 struct super_block *sb = ac->ac_sb;
3396 struct ext4_sb_info *sbi = EXT4_SB(sb);
3397 struct ext4_prealloc_space *pa;
3398 struct ext4_group_info *grp;
3399 struct ext4_inode_info *ei;
3400
3401 /* preallocate only when found space is larger then requested */
3402 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
3403 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3404 BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
3405
3406 pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
3407 if (pa == NULL)
3408 return -ENOMEM;
3409
3410 if (ac->ac_b_ex.fe_len < ac->ac_g_ex.fe_len) {
3411 int winl;
3412 int wins;
3413 int win;
3414 int offs;
3415
3416 /* we can't allocate as much as normalizer wants.
3417 * so, found space must get proper lstart
3418 * to cover original request */
3419 BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical);
3420 BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len);
3421
3422 /* we're limited by original request in that
3423 * logical block must be covered any way
3424 * winl is window we can move our chunk within */
3425 winl = ac->ac_o_ex.fe_logical - ac->ac_g_ex.fe_logical;
3426
3427 /* also, we should cover whole original request */
3428 wins = EXT4_C2B(sbi, ac->ac_b_ex.fe_len - ac->ac_o_ex.fe_len);
3429
3430 /* the smallest one defines real window */
3431 win = min(winl, wins);
3432
3433 offs = ac->ac_o_ex.fe_logical %
3434 EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
3435 if (offs && offs < win)
3436 win = offs;
3437
3438 ac->ac_b_ex.fe_logical = ac->ac_o_ex.fe_logical -
3439 EXT4_B2C(sbi, win);
3440 BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical);
3441 BUG_ON(ac->ac_o_ex.fe_len > ac->ac_b_ex.fe_len);
3442 }
3443
3444 /* preallocation can change ac_b_ex, thus we store actually
3445 * allocated blocks for history */
3446 ac->ac_f_ex = ac->ac_b_ex;
3447
3448 pa->pa_lstart = ac->ac_b_ex.fe_logical;
3449 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3450 pa->pa_len = ac->ac_b_ex.fe_len;
3451 pa->pa_free = pa->pa_len;
3452 atomic_set(&pa->pa_count, 1);
3453 spin_lock_init(&pa->pa_lock);
3454 INIT_LIST_HEAD(&pa->pa_inode_list);
3455 INIT_LIST_HEAD(&pa->pa_group_list);
3456 pa->pa_deleted = 0;
3457 pa->pa_type = MB_INODE_PA;
3458
3459 mb_debug(1, "new inode pa %p: %llu/%u for %u\n", pa,
3460 pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3461 trace_ext4_mb_new_inode_pa(ac, pa);
3462
3463 ext4_mb_use_inode_pa(ac, pa);
3464 atomic_add(pa->pa_free, &sbi->s_mb_preallocated);
3465
3466 ei = EXT4_I(ac->ac_inode);
3467 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
3468
3469 pa->pa_obj_lock = &ei->i_prealloc_lock;
3470 pa->pa_inode = ac->ac_inode;
3471
3472 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3473 list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
3474 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3475
3476 spin_lock(pa->pa_obj_lock);
3477 list_add_rcu(&pa->pa_inode_list, &ei->i_prealloc_list);
3478 spin_unlock(pa->pa_obj_lock);
3479
3480 return 0;
3481 }
3482
3483 /*
3484 * creates new preallocated space for locality group inodes belongs to
3485 */
3486 static noinline_for_stack int
3487 ext4_mb_new_group_pa(struct ext4_allocation_context *ac)
3488 {
3489 struct super_block *sb = ac->ac_sb;
3490 struct ext4_locality_group *lg;
3491 struct ext4_prealloc_space *pa;
3492 struct ext4_group_info *grp;
3493
3494 /* preallocate only when found space is larger then requested */
3495 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
3496 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3497 BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
3498
3499 BUG_ON(ext4_pspace_cachep == NULL);
3500 pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
3501 if (pa == NULL)
3502 return -ENOMEM;
3503
3504 /* preallocation can change ac_b_ex, thus we store actually
3505 * allocated blocks for history */
3506 ac->ac_f_ex = ac->ac_b_ex;
3507
3508 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3509 pa->pa_lstart = pa->pa_pstart;
3510 pa->pa_len = ac->ac_b_ex.fe_len;
3511 pa->pa_free = pa->pa_len;
3512 atomic_set(&pa->pa_count, 1);
3513 spin_lock_init(&pa->pa_lock);
3514 INIT_LIST_HEAD(&pa->pa_inode_list);
3515 INIT_LIST_HEAD(&pa->pa_group_list);
3516 pa->pa_deleted = 0;
3517 pa->pa_type = MB_GROUP_PA;
3518
3519 mb_debug(1, "new group pa %p: %llu/%u for %u\n", pa,
3520 pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3521 trace_ext4_mb_new_group_pa(ac, pa);
3522
3523 ext4_mb_use_group_pa(ac, pa);
3524 atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated);
3525
3526 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
3527 lg = ac->ac_lg;
3528 BUG_ON(lg == NULL);
3529
3530 pa->pa_obj_lock = &lg->lg_prealloc_lock;
3531 pa->pa_inode = NULL;
3532
3533 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3534 list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
3535 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3536
3537 /*
3538 * We will later add the new pa to the right bucket
3539 * after updating the pa_free in ext4_mb_release_context
3540 */
3541 return 0;
3542 }
3543
3544 static int ext4_mb_new_preallocation(struct ext4_allocation_context *ac)
3545 {
3546 int err;
3547
3548 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
3549 err = ext4_mb_new_group_pa(ac);
3550 else
3551 err = ext4_mb_new_inode_pa(ac);
3552 return err;
3553 }
3554
3555 /*
3556 * finds all unused blocks in on-disk bitmap, frees them in
3557 * in-core bitmap and buddy.
3558 * @pa must be unlinked from inode and group lists, so that
3559 * nobody else can find/use it.
3560 * the caller MUST hold group/inode locks.
3561 * TODO: optimize the case when there are no in-core structures yet
3562 */
3563 static noinline_for_stack int
3564 ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh,
3565 struct ext4_prealloc_space *pa)
3566 {
3567 struct super_block *sb = e4b->bd_sb;
3568 struct ext4_sb_info *sbi = EXT4_SB(sb);
3569 unsigned int end;
3570 unsigned int next;
3571 ext4_group_t group;
3572 ext4_grpblk_t bit;
3573 unsigned long long grp_blk_start;
3574 int err = 0;
3575 int free = 0;
3576
3577 BUG_ON(pa->pa_deleted == 0);
3578 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3579 grp_blk_start = pa->pa_pstart - EXT4_C2B(sbi, bit);
3580 BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
3581 end = bit + pa->pa_len;
3582
3583 while (bit < end) {
3584 bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit);
3585 if (bit >= end)
3586 break;
3587 next = mb_find_next_bit(bitmap_bh->b_data, end, bit);
3588 mb_debug(1, " free preallocated %u/%u in group %u\n",
3589 (unsigned) ext4_group_first_block_no(sb, group) + bit,
3590 (unsigned) next - bit, (unsigned) group);
3591 free += next - bit;
3592
3593 trace_ext4_mballoc_discard(sb, NULL, group, bit, next - bit);
3594 trace_ext4_mb_release_inode_pa(pa, (grp_blk_start +
3595 EXT4_C2B(sbi, bit)),
3596 next - bit);
3597 mb_free_blocks(pa->pa_inode, e4b, bit, next - bit);
3598 bit = next + 1;
3599 }
3600 if (free != pa->pa_free) {
3601 ext4_msg(e4b->bd_sb, KERN_CRIT,
3602 "pa %p: logic %lu, phys. %lu, len %lu",
3603 pa, (unsigned long) pa->pa_lstart,
3604 (unsigned long) pa->pa_pstart,
3605 (unsigned long) pa->pa_len);
3606 ext4_grp_locked_error(sb, group, 0, 0, "free %u, pa_free %u",
3607 free, pa->pa_free);
3608 /*
3609 * pa is already deleted so we use the value obtained
3610 * from the bitmap and continue.
3611 */
3612 }
3613 atomic_add(free, &sbi->s_mb_discarded);
3614
3615 return err;
3616 }
3617
3618 static noinline_for_stack int
3619 ext4_mb_release_group_pa(struct ext4_buddy *e4b,
3620 struct ext4_prealloc_space *pa)
3621 {
3622 struct super_block *sb = e4b->bd_sb;
3623 ext4_group_t group;
3624 ext4_grpblk_t bit;
3625
3626 trace_ext4_mb_release_group_pa(sb, pa);
3627 BUG_ON(pa->pa_deleted == 0);
3628 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3629 BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
3630 mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len);
3631 atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded);
3632 trace_ext4_mballoc_discard(sb, NULL, group, bit, pa->pa_len);
3633
3634 return 0;
3635 }
3636
3637 /*
3638 * releases all preallocations in given group
3639 *
3640 * first, we need to decide discard policy:
3641 * - when do we discard
3642 * 1) ENOSPC
3643 * - how many do we discard
3644 * 1) how many requested
3645 */
3646 static noinline_for_stack int
3647 ext4_mb_discard_group_preallocations(struct super_block *sb,
3648 ext4_group_t group, int needed)
3649 {
3650 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
3651 struct buffer_head *bitmap_bh = NULL;
3652 struct ext4_prealloc_space *pa, *tmp;
3653 struct list_head list;
3654 struct ext4_buddy e4b;
3655 int err;
3656 int busy = 0;
3657 int free = 0;
3658
3659 mb_debug(1, "discard preallocation for group %u\n", group);
3660
3661 if (list_empty(&grp->bb_prealloc_list))
3662 return 0;
3663
3664 bitmap_bh = ext4_read_block_bitmap(sb, group);
3665 if (bitmap_bh == NULL) {
3666 ext4_error(sb, "Error reading block bitmap for %u", group);
3667 return 0;
3668 }
3669
3670 err = ext4_mb_load_buddy(sb, group, &e4b);
3671 if (err) {
3672 ext4_error(sb, "Error loading buddy information for %u", group);
3673 put_bh(bitmap_bh);
3674 return 0;
3675 }
3676
3677 if (needed == 0)
3678 needed = EXT4_CLUSTERS_PER_GROUP(sb) + 1;
3679
3680 INIT_LIST_HEAD(&list);
3681 repeat:
3682 ext4_lock_group(sb, group);
3683 list_for_each_entry_safe(pa, tmp,
3684 &grp->bb_prealloc_list, pa_group_list) {
3685 spin_lock(&pa->pa_lock);
3686 if (atomic_read(&pa->pa_count)) {
3687 spin_unlock(&pa->pa_lock);
3688 busy = 1;
3689 continue;
3690 }
3691 if (pa->pa_deleted) {
3692 spin_unlock(&pa->pa_lock);
3693 continue;
3694 }
3695
3696 /* seems this one can be freed ... */
3697 pa->pa_deleted = 1;
3698
3699 /* we can trust pa_free ... */
3700 free += pa->pa_free;
3701
3702 spin_unlock(&pa->pa_lock);
3703
3704 list_del(&pa->pa_group_list);
3705 list_add(&pa->u.pa_tmp_list, &list);
3706 }
3707
3708 /* if we still need more blocks and some PAs were used, try again */
3709 if (free < needed && busy) {
3710 busy = 0;
3711 ext4_unlock_group(sb, group);
3712 /*
3713 * Yield the CPU here so that we don't get soft lockup
3714 * in non preempt case.
3715 */
3716 yield();
3717 goto repeat;
3718 }
3719
3720 /* found anything to free? */
3721 if (list_empty(&list)) {
3722 BUG_ON(free != 0);
3723 goto out;
3724 }
3725
3726 /* now free all selected PAs */
3727 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
3728
3729 /* remove from object (inode or locality group) */
3730 spin_lock(pa->pa_obj_lock);
3731 list_del_rcu(&pa->pa_inode_list);
3732 spin_unlock(pa->pa_obj_lock);
3733
3734 if (pa->pa_type == MB_GROUP_PA)
3735 ext4_mb_release_group_pa(&e4b, pa);
3736 else
3737 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
3738
3739 list_del(&pa->u.pa_tmp_list);
3740 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3741 }
3742
3743 out:
3744 ext4_unlock_group(sb, group);
3745 ext4_mb_unload_buddy(&e4b);
3746 put_bh(bitmap_bh);
3747 return free;
3748 }
3749
3750 /*
3751 * releases all non-used preallocated blocks for given inode
3752 *
3753 * It's important to discard preallocations under i_data_sem
3754 * We don't want another block to be served from the prealloc
3755 * space when we are discarding the inode prealloc space.
3756 *
3757 * FIXME!! Make sure it is valid at all the call sites
3758 */
3759 void ext4_discard_preallocations(struct inode *inode)
3760 {
3761 struct ext4_inode_info *ei = EXT4_I(inode);
3762 struct super_block *sb = inode->i_sb;
3763 struct buffer_head *bitmap_bh = NULL;
3764 struct ext4_prealloc_space *pa, *tmp;
3765 ext4_group_t group = 0;
3766 struct list_head list;
3767 struct ext4_buddy e4b;
3768 int err;
3769
3770 if (!S_ISREG(inode->i_mode)) {
3771 /*BUG_ON(!list_empty(&ei->i_prealloc_list));*/
3772 return;
3773 }
3774
3775 mb_debug(1, "discard preallocation for inode %lu\n", inode->i_ino);
3776 trace_ext4_discard_preallocations(inode);
3777
3778 INIT_LIST_HEAD(&list);
3779
3780 repeat:
3781 /* first, collect all pa's in the inode */
3782 spin_lock(&ei->i_prealloc_lock);
3783 while (!list_empty(&ei->i_prealloc_list)) {
3784 pa = list_entry(ei->i_prealloc_list.next,
3785 struct ext4_prealloc_space, pa_inode_list);
3786 BUG_ON(pa->pa_obj_lock != &ei->i_prealloc_lock);
3787 spin_lock(&pa->pa_lock);
3788 if (atomic_read(&pa->pa_count)) {
3789 /* this shouldn't happen often - nobody should
3790 * use preallocation while we're discarding it */
3791 spin_unlock(&pa->pa_lock);
3792 spin_unlock(&ei->i_prealloc_lock);
3793 ext4_msg(sb, KERN_ERR,
3794 "uh-oh! used pa while discarding");
3795 WARN_ON(1);
3796 schedule_timeout_uninterruptible(HZ);
3797 goto repeat;
3798
3799 }
3800 if (pa->pa_deleted == 0) {
3801 pa->pa_deleted = 1;
3802 spin_unlock(&pa->pa_lock);
3803 list_del_rcu(&pa->pa_inode_list);
3804 list_add(&pa->u.pa_tmp_list, &list);
3805 continue;
3806 }
3807
3808 /* someone is deleting pa right now */
3809 spin_unlock(&pa->pa_lock);
3810 spin_unlock(&ei->i_prealloc_lock);
3811
3812 /* we have to wait here because pa_deleted
3813 * doesn't mean pa is already unlinked from
3814 * the list. as we might be called from
3815 * ->clear_inode() the inode will get freed
3816 * and concurrent thread which is unlinking
3817 * pa from inode's list may access already
3818 * freed memory, bad-bad-bad */
3819
3820 /* XXX: if this happens too often, we can
3821 * add a flag to force wait only in case
3822 * of ->clear_inode(), but not in case of
3823 * regular truncate */
3824 schedule_timeout_uninterruptible(HZ);
3825 goto repeat;
3826 }
3827 spin_unlock(&ei->i_prealloc_lock);
3828
3829 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
3830 BUG_ON(pa->pa_type != MB_INODE_PA);
3831 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, NULL);
3832
3833 err = ext4_mb_load_buddy(sb, group, &e4b);
3834 if (err) {
3835 ext4_error(sb, "Error loading buddy information for %u",
3836 group);
3837 continue;
3838 }
3839
3840 bitmap_bh = ext4_read_block_bitmap(sb, group);
3841 if (bitmap_bh == NULL) {
3842 ext4_error(sb, "Error reading block bitmap for %u",
3843 group);
3844 ext4_mb_unload_buddy(&e4b);
3845 continue;
3846 }
3847
3848 ext4_lock_group(sb, group);
3849 list_del(&pa->pa_group_list);
3850 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
3851 ext4_unlock_group(sb, group);
3852
3853 ext4_mb_unload_buddy(&e4b);
3854 put_bh(bitmap_bh);
3855
3856 list_del(&pa->u.pa_tmp_list);
3857 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3858 }
3859 }
3860
3861 #ifdef CONFIG_EXT4_DEBUG
3862 static void ext4_mb_show_ac(struct ext4_allocation_context *ac)
3863 {
3864 struct super_block *sb = ac->ac_sb;
3865 ext4_group_t ngroups, i;
3866
3867 if (!mb_enable_debug ||
3868 (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED))
3869 return;
3870
3871 ext4_msg(ac->ac_sb, KERN_ERR, "Can't allocate:"
3872 " Allocation context details:");
3873 ext4_msg(ac->ac_sb, KERN_ERR, "status %d flags %d",
3874 ac->ac_status, ac->ac_flags);
3875 ext4_msg(ac->ac_sb, KERN_ERR, "orig %lu/%lu/%lu@%lu, "
3876 "goal %lu/%lu/%lu@%lu, "
3877 "best %lu/%lu/%lu@%lu cr %d",
3878 (unsigned long)ac->ac_o_ex.fe_group,
3879 (unsigned long)ac->ac_o_ex.fe_start,
3880 (unsigned long)ac->ac_o_ex.fe_len,
3881 (unsigned long)ac->ac_o_ex.fe_logical,
3882 (unsigned long)ac->ac_g_ex.fe_group,
3883 (unsigned long)ac->ac_g_ex.fe_start,
3884 (unsigned long)ac->ac_g_ex.fe_len,
3885 (unsigned long)ac->ac_g_ex.fe_logical,
3886 (unsigned long)ac->ac_b_ex.fe_group,
3887 (unsigned long)ac->ac_b_ex.fe_start,
3888 (unsigned long)ac->ac_b_ex.fe_len,
3889 (unsigned long)ac->ac_b_ex.fe_logical,
3890 (int)ac->ac_criteria);
3891 ext4_msg(ac->ac_sb, KERN_ERR, "%lu scanned, %d found",
3892 ac->ac_ex_scanned, ac->ac_found);
3893 ext4_msg(ac->ac_sb, KERN_ERR, "groups: ");
3894 ngroups = ext4_get_groups_count(sb);
3895 for (i = 0; i < ngroups; i++) {
3896 struct ext4_group_info *grp = ext4_get_group_info(sb, i);
3897 struct ext4_prealloc_space *pa;
3898 ext4_grpblk_t start;
3899 struct list_head *cur;
3900 ext4_lock_group(sb, i);
3901 list_for_each(cur, &grp->bb_prealloc_list) {
3902 pa = list_entry(cur, struct ext4_prealloc_space,
3903 pa_group_list);
3904 spin_lock(&pa->pa_lock);
3905 ext4_get_group_no_and_offset(sb, pa->pa_pstart,
3906 NULL, &start);
3907 spin_unlock(&pa->pa_lock);
3908 printk(KERN_ERR "PA:%u:%d:%u \n", i,
3909 start, pa->pa_len);
3910 }
3911 ext4_unlock_group(sb, i);
3912
3913 if (grp->bb_free == 0)
3914 continue;
3915 printk(KERN_ERR "%u: %d/%d \n",
3916 i, grp->bb_free, grp->bb_fragments);
3917 }
3918 printk(KERN_ERR "\n");
3919 }
3920 #else
3921 static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac)
3922 {
3923 return;
3924 }
3925 #endif
3926
3927 /*
3928 * We use locality group preallocation for small size file. The size of the
3929 * file is determined by the current size or the resulting size after
3930 * allocation which ever is larger
3931 *
3932 * One can tune this size via /sys/fs/ext4/<partition>/mb_stream_req
3933 */
3934 static void ext4_mb_group_or_file(struct ext4_allocation_context *ac)
3935 {
3936 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3937 int bsbits = ac->ac_sb->s_blocksize_bits;
3938 loff_t size, isize;
3939
3940 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3941 return;
3942
3943 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
3944 return;
3945
3946 size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len);
3947 isize = (i_size_read(ac->ac_inode) + ac->ac_sb->s_blocksize - 1)
3948 >> bsbits;
3949
3950 if ((size == isize) &&
3951 !ext4_fs_is_busy(sbi) &&
3952 (atomic_read(&ac->ac_inode->i_writecount) == 0)) {
3953 ac->ac_flags |= EXT4_MB_HINT_NOPREALLOC;
3954 return;
3955 }
3956
3957 if (sbi->s_mb_group_prealloc <= 0) {
3958 ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
3959 return;
3960 }
3961
3962 /* don't use group allocation for large files */
3963 size = max(size, isize);
3964 if (size > sbi->s_mb_stream_request) {
3965 ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
3966 return;
3967 }
3968
3969 BUG_ON(ac->ac_lg != NULL);
3970 /*
3971 * locality group prealloc space are per cpu. The reason for having
3972 * per cpu locality group is to reduce the contention between block
3973 * request from multiple CPUs.
3974 */
3975 ac->ac_lg = __this_cpu_ptr(sbi->s_locality_groups);
3976
3977 /* we're going to use group allocation */
3978 ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC;
3979
3980 /* serialize all allocations in the group */
3981 mutex_lock(&ac->ac_lg->lg_mutex);
3982 }
3983
3984 static noinline_for_stack int
3985 ext4_mb_initialize_context(struct ext4_allocation_context *ac,
3986 struct ext4_allocation_request *ar)
3987 {
3988 struct super_block *sb = ar->inode->i_sb;
3989 struct ext4_sb_info *sbi = EXT4_SB(sb);
3990 struct ext4_super_block *es = sbi->s_es;
3991 ext4_group_t group;
3992 unsigned int len;
3993 ext4_fsblk_t goal;
3994 ext4_grpblk_t block;
3995
3996 /* we can't allocate > group size */
3997 len = ar->len;
3998
3999 /* just a dirty hack to filter too big requests */
4000 if (len >= EXT4_CLUSTERS_PER_GROUP(sb) - 10)
4001 len = EXT4_CLUSTERS_PER_GROUP(sb) - 10;
4002
4003 /* start searching from the goal */
4004 goal = ar->goal;
4005 if (goal < le32_to_cpu(es->s_first_data_block) ||
4006 goal >= ext4_blocks_count(es))
4007 goal = le32_to_cpu(es->s_first_data_block);
4008 ext4_get_group_no_and_offset(sb, goal, &group, &block);
4009
4010 /* set up allocation goals */
4011 memset(ac, 0, sizeof(struct ext4_allocation_context));
4012 ac->ac_b_ex.fe_logical = ar->logical & ~(sbi->s_cluster_ratio - 1);
4013 ac->ac_status = AC_STATUS_CONTINUE;
4014 ac->ac_sb = sb;
4015 ac->ac_inode = ar->inode;
4016 ac->ac_o_ex.fe_logical = ac->ac_b_ex.fe_logical;
4017 ac->ac_o_ex.fe_group = group;
4018 ac->ac_o_ex.fe_start = block;
4019 ac->ac_o_ex.fe_len = len;
4020 ac->ac_g_ex = ac->ac_o_ex;
4021 ac->ac_flags = ar->flags;
4022
4023 /* we have to define context: we'll we work with a file or
4024 * locality group. this is a policy, actually */
4025 ext4_mb_group_or_file(ac);
4026
4027 mb_debug(1, "init ac: %u blocks @ %u, goal %u, flags %x, 2^%d, "
4028 "left: %u/%u, right %u/%u to %swritable\n",
4029 (unsigned) ar->len, (unsigned) ar->logical,
4030 (unsigned) ar->goal, ac->ac_flags, ac->ac_2order,
4031 (unsigned) ar->lleft, (unsigned) ar->pleft,
4032 (unsigned) ar->lright, (unsigned) ar->pright,
4033 atomic_read(&ar->inode->i_writecount) ? "" : "non-");
4034 return 0;
4035
4036 }
4037
4038 static noinline_for_stack void
4039 ext4_mb_discard_lg_preallocations(struct super_block *sb,
4040 struct ext4_locality_group *lg,
4041 int order, int total_entries)
4042 {
4043 ext4_group_t group = 0;
4044 struct ext4_buddy e4b;
4045 struct list_head discard_list;
4046 struct ext4_prealloc_space *pa, *tmp;
4047
4048 mb_debug(1, "discard locality group preallocation\n");
4049
4050 INIT_LIST_HEAD(&discard_list);
4051
4052 spin_lock(&lg->lg_prealloc_lock);
4053 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[order],
4054 pa_inode_list) {
4055 spin_lock(&pa->pa_lock);
4056 if (atomic_read(&pa->pa_count)) {
4057 /*
4058 * This is the pa that we just used
4059 * for block allocation. So don't
4060 * free that
4061 */
4062 spin_unlock(&pa->pa_lock);
4063 continue;
4064 }
4065 if (pa->pa_deleted) {
4066 spin_unlock(&pa->pa_lock);
4067 continue;
4068 }
4069 /* only lg prealloc space */
4070 BUG_ON(pa->pa_type != MB_GROUP_PA);
4071
4072 /* seems this one can be freed ... */
4073 pa->pa_deleted = 1;
4074 spin_unlock(&pa->pa_lock);
4075
4076 list_del_rcu(&pa->pa_inode_list);
4077 list_add(&pa->u.pa_tmp_list, &discard_list);
4078
4079 total_entries--;
4080 if (total_entries <= 5) {
4081 /*
4082 * we want to keep only 5 entries
4083 * allowing it to grow to 8. This
4084 * mak sure we don't call discard
4085 * soon for this list.
4086 */
4087 break;
4088 }
4089 }
4090 spin_unlock(&lg->lg_prealloc_lock);
4091
4092 list_for_each_entry_safe(pa, tmp, &discard_list, u.pa_tmp_list) {
4093
4094 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, NULL);
4095 if (ext4_mb_load_buddy(sb, group, &e4b)) {
4096 ext4_error(sb, "Error loading buddy information for %u",
4097 group);
4098 continue;
4099 }
4100 ext4_lock_group(sb, group);
4101 list_del(&pa->pa_group_list);
4102 ext4_mb_release_group_pa(&e4b, pa);
4103 ext4_unlock_group(sb, group);
4104
4105 ext4_mb_unload_buddy(&e4b);
4106 list_del(&pa->u.pa_tmp_list);
4107 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4108 }
4109 }
4110
4111 /*
4112 * We have incremented pa_count. So it cannot be freed at this
4113 * point. Also we hold lg_mutex. So no parallel allocation is
4114 * possible from this lg. That means pa_free cannot be updated.
4115 *
4116 * A parallel ext4_mb_discard_group_preallocations is possible.
4117 * which can cause the lg_prealloc_list to be updated.
4118 */
4119
4120 static void ext4_mb_add_n_trim(struct ext4_allocation_context *ac)
4121 {
4122 int order, added = 0, lg_prealloc_count = 1;
4123 struct super_block *sb = ac->ac_sb;
4124 struct ext4_locality_group *lg = ac->ac_lg;
4125 struct ext4_prealloc_space *tmp_pa, *pa = ac->ac_pa;
4126
4127 order = fls(pa->pa_free) - 1;
4128 if (order > PREALLOC_TB_SIZE - 1)
4129 /* The max size of hash table is PREALLOC_TB_SIZE */
4130 order = PREALLOC_TB_SIZE - 1;
4131 /* Add the prealloc space to lg */
4132 rcu_read_lock();
4133 list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[order],
4134 pa_inode_list) {
4135 spin_lock(&tmp_pa->pa_lock);
4136 if (tmp_pa->pa_deleted) {
4137 spin_unlock(&tmp_pa->pa_lock);
4138 continue;
4139 }
4140 if (!added && pa->pa_free < tmp_pa->pa_free) {
4141 /* Add to the tail of the previous entry */
4142 list_add_tail_rcu(&pa->pa_inode_list,
4143 &tmp_pa->pa_inode_list);
4144 added = 1;
4145 /*
4146 * we want to count the total
4147 * number of entries in the list
4148 */
4149 }
4150 spin_unlock(&tmp_pa->pa_lock);
4151 lg_prealloc_count++;
4152 }
4153 if (!added)
4154 list_add_tail_rcu(&pa->pa_inode_list,
4155 &lg->lg_prealloc_list[order]);
4156 rcu_read_unlock();
4157
4158 /* Now trim the list to be not more than 8 elements */
4159 if (lg_prealloc_count > 8) {
4160 ext4_mb_discard_lg_preallocations(sb, lg,
4161 order, lg_prealloc_count);
4162 return;
4163 }
4164 return ;
4165 }
4166
4167 /*
4168 * release all resource we used in allocation
4169 */
4170 static int ext4_mb_release_context(struct ext4_allocation_context *ac)
4171 {
4172 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4173 struct ext4_prealloc_space *pa = ac->ac_pa;
4174 if (pa) {
4175 if (pa->pa_type == MB_GROUP_PA) {
4176 /* see comment in ext4_mb_use_group_pa() */
4177 spin_lock(&pa->pa_lock);
4178 pa->pa_pstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
4179 pa->pa_lstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
4180 pa->pa_free -= ac->ac_b_ex.fe_len;
4181 pa->pa_len -= ac->ac_b_ex.fe_len;
4182 spin_unlock(&pa->pa_lock);
4183 }
4184 }
4185 if (pa) {
4186 /*
4187 * We want to add the pa to the right bucket.
4188 * Remove it from the list and while adding
4189 * make sure the list to which we are adding
4190 * doesn't grow big.
4191 */
4192 if ((pa->pa_type == MB_GROUP_PA) && likely(pa->pa_free)) {
4193 spin_lock(pa->pa_obj_lock);
4194 list_del_rcu(&pa->pa_inode_list);
4195 spin_unlock(pa->pa_obj_lock);
4196 ext4_mb_add_n_trim(ac);
4197 }
4198 ext4_mb_put_pa(ac, ac->ac_sb, pa);
4199 }
4200 if (ac->ac_bitmap_page)
4201 page_cache_release(ac->ac_bitmap_page);
4202 if (ac->ac_buddy_page)
4203 page_cache_release(ac->ac_buddy_page);
4204 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
4205 mutex_unlock(&ac->ac_lg->lg_mutex);
4206 ext4_mb_collect_stats(ac);
4207 return 0;
4208 }
4209
4210 static int ext4_mb_discard_preallocations(struct super_block *sb, int needed)
4211 {
4212 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
4213 int ret;
4214 int freed = 0;
4215
4216 trace_ext4_mb_discard_preallocations(sb, needed);
4217 for (i = 0; i < ngroups && needed > 0; i++) {
4218 ret = ext4_mb_discard_group_preallocations(sb, i, needed);
4219 freed += ret;
4220 needed -= ret;
4221 }
4222
4223 return freed;
4224 }
4225
4226 /*
4227 * Main entry point into mballoc to allocate blocks
4228 * it tries to use preallocation first, then falls back
4229 * to usual allocation
4230 */
4231 ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle,
4232 struct ext4_allocation_request *ar, int *errp)
4233 {
4234 int freed;
4235 struct ext4_allocation_context *ac = NULL;
4236 struct ext4_sb_info *sbi;
4237 struct super_block *sb;
4238 ext4_fsblk_t block = 0;
4239 unsigned int inquota = 0;
4240 unsigned int reserv_clstrs = 0;
4241
4242 sb = ar->inode->i_sb;
4243 sbi = EXT4_SB(sb);
4244
4245 trace_ext4_request_blocks(ar);
4246
4247 /* Allow to use superuser reservation for quota file */
4248 if (IS_NOQUOTA(ar->inode))
4249 ar->flags |= EXT4_MB_USE_ROOT_BLOCKS;
4250
4251 /*
4252 * For delayed allocation, we could skip the ENOSPC and
4253 * EDQUOT check, as blocks and quotas have been already
4254 * reserved when data being copied into pagecache.
4255 */
4256 if (ext4_test_inode_state(ar->inode, EXT4_STATE_DELALLOC_RESERVED))
4257 ar->flags |= EXT4_MB_DELALLOC_RESERVED;
4258 else {
4259 /* Without delayed allocation we need to verify
4260 * there is enough free blocks to do block allocation
4261 * and verify allocation doesn't exceed the quota limits.
4262 */
4263 while (ar->len &&
4264 ext4_claim_free_clusters(sbi, ar->len, ar->flags)) {
4265
4266 /* let others to free the space */
4267 yield();
4268 ar->len = ar->len >> 1;
4269 }
4270 if (!ar->len) {
4271 *errp = -ENOSPC;
4272 return 0;
4273 }
4274 reserv_clstrs = ar->len;
4275 if (ar->flags & EXT4_MB_USE_ROOT_BLOCKS) {
4276 dquot_alloc_block_nofail(ar->inode,
4277 EXT4_C2B(sbi, ar->len));
4278 } else {
4279 while (ar->len &&
4280 dquot_alloc_block(ar->inode,
4281 EXT4_C2B(sbi, ar->len))) {
4282
4283 ar->flags |= EXT4_MB_HINT_NOPREALLOC;
4284 ar->len--;
4285 }
4286 }
4287 inquota = ar->len;
4288 if (ar->len == 0) {
4289 *errp = -EDQUOT;
4290 goto out;
4291 }
4292 }
4293
4294 ac = kmem_cache_alloc(ext4_ac_cachep, GFP_NOFS);
4295 if (!ac) {
4296 ar->len = 0;
4297 *errp = -ENOMEM;
4298 goto out;
4299 }
4300
4301 *errp = ext4_mb_initialize_context(ac, ar);
4302 if (*errp) {
4303 ar->len = 0;
4304 goto out;
4305 }
4306
4307 ac->ac_op = EXT4_MB_HISTORY_PREALLOC;
4308 if (!ext4_mb_use_preallocated(ac)) {
4309 ac->ac_op = EXT4_MB_HISTORY_ALLOC;
4310 ext4_mb_normalize_request(ac, ar);
4311 repeat:
4312 /* allocate space in core */
4313 *errp = ext4_mb_regular_allocator(ac);
4314 if (*errp)
4315 goto errout;
4316
4317 /* as we've just preallocated more space than
4318 * user requested orinally, we store allocated
4319 * space in a special descriptor */
4320 if (ac->ac_status == AC_STATUS_FOUND &&
4321 ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len)
4322 ext4_mb_new_preallocation(ac);
4323 }
4324 if (likely(ac->ac_status == AC_STATUS_FOUND)) {
4325 *errp = ext4_mb_mark_diskspace_used(ac, handle, reserv_clstrs);
4326 if (*errp == -EAGAIN) {
4327 /*
4328 * drop the reference that we took
4329 * in ext4_mb_use_best_found
4330 */
4331 ext4_mb_release_context(ac);
4332 ac->ac_b_ex.fe_group = 0;
4333 ac->ac_b_ex.fe_start = 0;
4334 ac->ac_b_ex.fe_len = 0;
4335 ac->ac_status = AC_STATUS_CONTINUE;
4336 goto repeat;
4337 } else if (*errp)
4338 errout:
4339 ext4_discard_allocated_blocks(ac);
4340 else {
4341 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
4342 ar->len = ac->ac_b_ex.fe_len;
4343 }
4344 } else {
4345 freed = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len);
4346 if (freed)
4347 goto repeat;
4348 *errp = -ENOSPC;
4349 }
4350
4351 if (*errp) {
4352 ac->ac_b_ex.fe_len = 0;
4353 ar->len = 0;
4354 ext4_mb_show_ac(ac);
4355 }
4356 ext4_mb_release_context(ac);
4357 out:
4358 if (ac)
4359 kmem_cache_free(ext4_ac_cachep, ac);
4360 if (inquota && ar->len < inquota)
4361 dquot_free_block(ar->inode, EXT4_C2B(sbi, inquota - ar->len));
4362 if (!ar->len) {
4363 if (!ext4_test_inode_state(ar->inode,
4364 EXT4_STATE_DELALLOC_RESERVED))
4365 /* release all the reserved blocks if non delalloc */
4366 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
4367 reserv_clstrs);
4368 }
4369
4370 trace_ext4_allocate_blocks(ar, (unsigned long long)block);
4371
4372 return block;
4373 }
4374
4375 /*
4376 * We can merge two free data extents only if the physical blocks
4377 * are contiguous, AND the extents were freed by the same transaction,
4378 * AND the blocks are associated with the same group.
4379 */
4380 static int can_merge(struct ext4_free_data *entry1,
4381 struct ext4_free_data *entry2)
4382 {
4383 if ((entry1->efd_tid == entry2->efd_tid) &&
4384 (entry1->efd_group == entry2->efd_group) &&
4385 ((entry1->efd_start_cluster + entry1->efd_count) == entry2->efd_start_cluster))
4386 return 1;
4387 return 0;
4388 }
4389
4390 static noinline_for_stack int
4391 ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b,
4392 struct ext4_free_data *new_entry)
4393 {
4394 ext4_group_t group = e4b->bd_group;
4395 ext4_grpblk_t cluster;
4396 struct ext4_free_data *entry;
4397 struct ext4_group_info *db = e4b->bd_info;
4398 struct super_block *sb = e4b->bd_sb;
4399 struct ext4_sb_info *sbi = EXT4_SB(sb);
4400 struct rb_node **n = &db->bb_free_root.rb_node, *node;
4401 struct rb_node *parent = NULL, *new_node;
4402
4403 BUG_ON(!ext4_handle_valid(handle));
4404 BUG_ON(e4b->bd_bitmap_page == NULL);
4405 BUG_ON(e4b->bd_buddy_page == NULL);
4406
4407 new_node = &new_entry->efd_node;
4408 cluster = new_entry->efd_start_cluster;
4409
4410 if (!*n) {
4411 /* first free block exent. We need to
4412 protect buddy cache from being freed,
4413 * otherwise we'll refresh it from
4414 * on-disk bitmap and lose not-yet-available
4415 * blocks */
4416 page_cache_get(e4b->bd_buddy_page);
4417 page_cache_get(e4b->bd_bitmap_page);
4418 }
4419 while (*n) {
4420 parent = *n;
4421 entry = rb_entry(parent, struct ext4_free_data, efd_node);
4422 if (cluster < entry->efd_start_cluster)
4423 n = &(*n)->rb_left;
4424 else if (cluster >= (entry->efd_start_cluster + entry->efd_count))
4425 n = &(*n)->rb_right;
4426 else {
4427 ext4_grp_locked_error(sb, group, 0,
4428 ext4_group_first_block_no(sb, group) +
4429 EXT4_C2B(sbi, cluster),
4430 "Block already on to-be-freed list");
4431 return 0;
4432 }
4433 }
4434
4435 rb_link_node(new_node, parent, n);
4436 rb_insert_color(new_node, &db->bb_free_root);
4437
4438 /* Now try to see the extent can be merged to left and right */
4439 node = rb_prev(new_node);
4440 if (node) {
4441 entry = rb_entry(node, struct ext4_free_data, efd_node);
4442 if (can_merge(entry, new_entry)) {
4443 new_entry->efd_start_cluster = entry->efd_start_cluster;
4444 new_entry->efd_count += entry->efd_count;
4445 rb_erase(node, &(db->bb_free_root));
4446 ext4_journal_callback_del(handle, &entry->efd_jce);
4447 kmem_cache_free(ext4_free_data_cachep, entry);
4448 }
4449 }
4450
4451 node = rb_next(new_node);
4452 if (node) {
4453 entry = rb_entry(node, struct ext4_free_data, efd_node);
4454 if (can_merge(new_entry, entry)) {
4455 new_entry->efd_count += entry->efd_count;
4456 rb_erase(node, &(db->bb_free_root));
4457 ext4_journal_callback_del(handle, &entry->efd_jce);
4458 kmem_cache_free(ext4_free_data_cachep, entry);
4459 }
4460 }
4461 /* Add the extent to transaction's private list */
4462 ext4_journal_callback_add(handle, ext4_free_data_callback,
4463 &new_entry->efd_jce);
4464 return 0;
4465 }
4466
4467 /**
4468 * ext4_free_blocks() -- Free given blocks and update quota
4469 * @handle: handle for this transaction
4470 * @inode: inode
4471 * @block: start physical block to free
4472 * @count: number of blocks to count
4473 * @flags: flags used by ext4_free_blocks
4474 */
4475 void ext4_free_blocks(handle_t *handle, struct inode *inode,
4476 struct buffer_head *bh, ext4_fsblk_t block,
4477 unsigned long count, int flags)
4478 {
4479 struct buffer_head *bitmap_bh = NULL;
4480 struct super_block *sb = inode->i_sb;
4481 struct ext4_group_desc *gdp;
4482 unsigned long freed = 0;
4483 unsigned int overflow;
4484 ext4_grpblk_t bit;
4485 struct buffer_head *gd_bh;
4486 ext4_group_t block_group;
4487 struct ext4_sb_info *sbi;
4488 struct ext4_buddy e4b;
4489 unsigned int count_clusters;
4490 int err = 0;
4491 int ret;
4492
4493 if (bh) {
4494 if (block)
4495 BUG_ON(block != bh->b_blocknr);
4496 else
4497 block = bh->b_blocknr;
4498 }
4499
4500 sbi = EXT4_SB(sb);
4501 if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) &&
4502 !ext4_data_block_valid(sbi, block, count)) {
4503 ext4_error(sb, "Freeing blocks not in datazone - "
4504 "block = %llu, count = %lu", block, count);
4505 goto error_return;
4506 }
4507
4508 ext4_debug("freeing block %llu\n", block);
4509 trace_ext4_free_blocks(inode, block, count, flags);
4510
4511 if (flags & EXT4_FREE_BLOCKS_FORGET) {
4512 struct buffer_head *tbh = bh;
4513 int i;
4514
4515 BUG_ON(bh && (count > 1));
4516
4517 for (i = 0; i < count; i++) {
4518 if (!bh)
4519 tbh = sb_find_get_block(inode->i_sb,
4520 block + i);
4521 if (unlikely(!tbh))
4522 continue;
4523 ext4_forget(handle, flags & EXT4_FREE_BLOCKS_METADATA,
4524 inode, tbh, block + i);
4525 }
4526 }
4527
4528 /*
4529 * We need to make sure we don't reuse the freed block until
4530 * after the transaction is committed, which we can do by
4531 * treating the block as metadata, below. We make an
4532 * exception if the inode is to be written in writeback mode
4533 * since writeback mode has weak data consistency guarantees.
4534 */
4535 if (!ext4_should_writeback_data(inode))
4536 flags |= EXT4_FREE_BLOCKS_METADATA;
4537
4538 /*
4539 * If the extent to be freed does not begin on a cluster
4540 * boundary, we need to deal with partial clusters at the
4541 * beginning and end of the extent. Normally we will free
4542 * blocks at the beginning or the end unless we are explicitly
4543 * requested to avoid doing so.
4544 */
4545 overflow = block & (sbi->s_cluster_ratio - 1);
4546 if (overflow) {
4547 if (flags & EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER) {
4548 overflow = sbi->s_cluster_ratio - overflow;
4549 block += overflow;
4550 if (count > overflow)
4551 count -= overflow;
4552 else
4553 return;
4554 } else {
4555 block -= overflow;
4556 count += overflow;
4557 }
4558 }
4559 overflow = count & (sbi->s_cluster_ratio - 1);
4560 if (overflow) {
4561 if (flags & EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER) {
4562 if (count > overflow)
4563 count -= overflow;
4564 else
4565 return;
4566 } else
4567 count += sbi->s_cluster_ratio - overflow;
4568 }
4569
4570 do_more:
4571 overflow = 0;
4572 ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
4573
4574 /*
4575 * Check to see if we are freeing blocks across a group
4576 * boundary.
4577 */
4578 if (EXT4_C2B(sbi, bit) + count > EXT4_BLOCKS_PER_GROUP(sb)) {
4579 overflow = EXT4_C2B(sbi, bit) + count -
4580 EXT4_BLOCKS_PER_GROUP(sb);
4581 count -= overflow;
4582 }
4583 count_clusters = EXT4_B2C(sbi, count);
4584 bitmap_bh = ext4_read_block_bitmap(sb, block_group);
4585 if (!bitmap_bh) {
4586 err = -EIO;
4587 goto error_return;
4588 }
4589 gdp = ext4_get_group_desc(sb, block_group, &gd_bh);
4590 if (!gdp) {
4591 err = -EIO;
4592 goto error_return;
4593 }
4594
4595 if (in_range(ext4_block_bitmap(sb, gdp), block, count) ||
4596 in_range(ext4_inode_bitmap(sb, gdp), block, count) ||
4597 in_range(block, ext4_inode_table(sb, gdp),
4598 EXT4_SB(sb)->s_itb_per_group) ||
4599 in_range(block + count - 1, ext4_inode_table(sb, gdp),
4600 EXT4_SB(sb)->s_itb_per_group)) {
4601
4602 ext4_error(sb, "Freeing blocks in system zone - "
4603 "Block = %llu, count = %lu", block, count);
4604 /* err = 0. ext4_std_error should be a no op */
4605 goto error_return;
4606 }
4607
4608 BUFFER_TRACE(bitmap_bh, "getting write access");
4609 err = ext4_journal_get_write_access(handle, bitmap_bh);
4610 if (err)
4611 goto error_return;
4612
4613 /*
4614 * We are about to modify some metadata. Call the journal APIs
4615 * to unshare ->b_data if a currently-committing transaction is
4616 * using it
4617 */
4618 BUFFER_TRACE(gd_bh, "get_write_access");
4619 err = ext4_journal_get_write_access(handle, gd_bh);
4620 if (err)
4621 goto error_return;
4622 #ifdef AGGRESSIVE_CHECK
4623 {
4624 int i;
4625 for (i = 0; i < count_clusters; i++)
4626 BUG_ON(!mb_test_bit(bit + i, bitmap_bh->b_data));
4627 }
4628 #endif
4629 trace_ext4_mballoc_free(sb, inode, block_group, bit, count_clusters);
4630
4631 err = ext4_mb_load_buddy(sb, block_group, &e4b);
4632 if (err)
4633 goto error_return;
4634
4635 if ((flags & EXT4_FREE_BLOCKS_METADATA) && ext4_handle_valid(handle)) {
4636 struct ext4_free_data *new_entry;
4637 /*
4638 * blocks being freed are metadata. these blocks shouldn't
4639 * be used until this transaction is committed
4640 */
4641 new_entry = kmem_cache_alloc(ext4_free_data_cachep, GFP_NOFS);
4642 if (!new_entry) {
4643 ext4_mb_unload_buddy(&e4b);
4644 err = -ENOMEM;
4645 goto error_return;
4646 }
4647 new_entry->efd_start_cluster = bit;
4648 new_entry->efd_group = block_group;
4649 new_entry->efd_count = count_clusters;
4650 new_entry->efd_tid = handle->h_transaction->t_tid;
4651
4652 ext4_lock_group(sb, block_group);
4653 mb_clear_bits(bitmap_bh->b_data, bit, count_clusters);
4654 ext4_mb_free_metadata(handle, &e4b, new_entry);
4655 } else {
4656 /* need to update group_info->bb_free and bitmap
4657 * with group lock held. generate_buddy look at
4658 * them with group lock_held
4659 */
4660 ext4_lock_group(sb, block_group);
4661 mb_clear_bits(bitmap_bh->b_data, bit, count_clusters);
4662 mb_free_blocks(inode, &e4b, bit, count_clusters);
4663 }
4664
4665 ret = ext4_free_group_clusters(sb, gdp) + count_clusters;
4666 ext4_free_group_clusters_set(sb, gdp, ret);
4667 ext4_block_bitmap_csum_set(sb, block_group, gdp, bitmap_bh,
4668 EXT4_BLOCKS_PER_GROUP(sb) / 8);
4669 ext4_group_desc_csum_set(sb, block_group, gdp);
4670 ext4_unlock_group(sb, block_group);
4671 percpu_counter_add(&sbi->s_freeclusters_counter, count_clusters);
4672
4673 if (sbi->s_log_groups_per_flex) {
4674 ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
4675 atomic_add(count_clusters,
4676 &sbi->s_flex_groups[flex_group].free_clusters);
4677 }
4678
4679 ext4_mb_unload_buddy(&e4b);
4680
4681 freed += count;
4682
4683 if (!(flags & EXT4_FREE_BLOCKS_NO_QUOT_UPDATE))
4684 dquot_free_block(inode, EXT4_C2B(sbi, count_clusters));
4685
4686 /* We dirtied the bitmap block */
4687 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
4688 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
4689
4690 /* And the group descriptor block */
4691 BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
4692 ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
4693 if (!err)
4694 err = ret;
4695
4696 if (overflow && !err) {
4697 block += count;
4698 count = overflow;
4699 put_bh(bitmap_bh);
4700 goto do_more;
4701 }
4702 error_return:
4703 brelse(bitmap_bh);
4704 ext4_std_error(sb, err);
4705 return;
4706 }
4707
4708 /**
4709 * ext4_group_add_blocks() -- Add given blocks to an existing group
4710 * @handle: handle to this transaction
4711 * @sb: super block
4712 * @block: start physcial block to add to the block group
4713 * @count: number of blocks to free
4714 *
4715 * This marks the blocks as free in the bitmap and buddy.
4716 */
4717 int ext4_group_add_blocks(handle_t *handle, struct super_block *sb,
4718 ext4_fsblk_t block, unsigned long count)
4719 {
4720 struct buffer_head *bitmap_bh = NULL;
4721 struct buffer_head *gd_bh;
4722 ext4_group_t block_group;
4723 ext4_grpblk_t bit;
4724 unsigned int i;
4725 struct ext4_group_desc *desc;
4726 struct ext4_sb_info *sbi = EXT4_SB(sb);
4727 struct ext4_buddy e4b;
4728 int err = 0, ret, blk_free_count;
4729 ext4_grpblk_t blocks_freed;
4730
4731 ext4_debug("Adding block(s) %llu-%llu\n", block, block + count - 1);
4732
4733 if (count == 0)
4734 return 0;
4735
4736 ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
4737 /*
4738 * Check to see if we are freeing blocks across a group
4739 * boundary.
4740 */
4741 if (bit + count > EXT4_BLOCKS_PER_GROUP(sb)) {
4742 ext4_warning(sb, "too much blocks added to group %u\n",
4743 block_group);
4744 err = -EINVAL;
4745 goto error_return;
4746 }
4747
4748 bitmap_bh = ext4_read_block_bitmap(sb, block_group);
4749 if (!bitmap_bh) {
4750 err = -EIO;
4751 goto error_return;
4752 }
4753
4754 desc = ext4_get_group_desc(sb, block_group, &gd_bh);
4755 if (!desc) {
4756 err = -EIO;
4757 goto error_return;
4758 }
4759
4760 if (in_range(ext4_block_bitmap(sb, desc), block, count) ||
4761 in_range(ext4_inode_bitmap(sb, desc), block, count) ||
4762 in_range(block, ext4_inode_table(sb, desc), sbi->s_itb_per_group) ||
4763 in_range(block + count - 1, ext4_inode_table(sb, desc),
4764 sbi->s_itb_per_group)) {
4765 ext4_error(sb, "Adding blocks in system zones - "
4766 "Block = %llu, count = %lu",
4767 block, count);
4768 err = -EINVAL;
4769 goto error_return;
4770 }
4771
4772 BUFFER_TRACE(bitmap_bh, "getting write access");
4773 err = ext4_journal_get_write_access(handle, bitmap_bh);
4774 if (err)
4775 goto error_return;
4776
4777 /*
4778 * We are about to modify some metadata. Call the journal APIs
4779 * to unshare ->b_data if a currently-committing transaction is
4780 * using it
4781 */
4782 BUFFER_TRACE(gd_bh, "get_write_access");
4783 err = ext4_journal_get_write_access(handle, gd_bh);
4784 if (err)
4785 goto error_return;
4786
4787 for (i = 0, blocks_freed = 0; i < count; i++) {
4788 BUFFER_TRACE(bitmap_bh, "clear bit");
4789 if (!mb_test_bit(bit + i, bitmap_bh->b_data)) {
4790 ext4_error(sb, "bit already cleared for block %llu",
4791 (ext4_fsblk_t)(block + i));
4792 BUFFER_TRACE(bitmap_bh, "bit already cleared");
4793 } else {
4794 blocks_freed++;
4795 }
4796 }
4797
4798 err = ext4_mb_load_buddy(sb, block_group, &e4b);
4799 if (err)
4800 goto error_return;
4801
4802 /*
4803 * need to update group_info->bb_free and bitmap
4804 * with group lock held. generate_buddy look at
4805 * them with group lock_held
4806 */
4807 ext4_lock_group(sb, block_group);
4808 mb_clear_bits(bitmap_bh->b_data, bit, count);
4809 mb_free_blocks(NULL, &e4b, bit, count);
4810 blk_free_count = blocks_freed + ext4_free_group_clusters(sb, desc);
4811 ext4_free_group_clusters_set(sb, desc, blk_free_count);
4812 ext4_block_bitmap_csum_set(sb, block_group, desc, bitmap_bh,
4813 EXT4_BLOCKS_PER_GROUP(sb) / 8);
4814 ext4_group_desc_csum_set(sb, block_group, desc);
4815 ext4_unlock_group(sb, block_group);
4816 percpu_counter_add(&sbi->s_freeclusters_counter,
4817 EXT4_B2C(sbi, blocks_freed));
4818
4819 if (sbi->s_log_groups_per_flex) {
4820 ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
4821 atomic_add(EXT4_B2C(sbi, blocks_freed),
4822 &sbi->s_flex_groups[flex_group].free_clusters);
4823 }
4824
4825 ext4_mb_unload_buddy(&e4b);
4826
4827 /* We dirtied the bitmap block */
4828 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
4829 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
4830
4831 /* And the group descriptor block */
4832 BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
4833 ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
4834 if (!err)
4835 err = ret;
4836
4837 error_return:
4838 brelse(bitmap_bh);
4839 ext4_std_error(sb, err);
4840 return err;
4841 }
4842
4843 /**
4844 * ext4_trim_extent -- function to TRIM one single free extent in the group
4845 * @sb: super block for the file system
4846 * @start: starting block of the free extent in the alloc. group
4847 * @count: number of blocks to TRIM
4848 * @group: alloc. group we are working with
4849 * @e4b: ext4 buddy for the group
4850 *
4851 * Trim "count" blocks starting at "start" in the "group". To assure that no
4852 * one will allocate those blocks, mark it as used in buddy bitmap. This must
4853 * be called with under the group lock.
4854 */
4855 static void ext4_trim_extent(struct super_block *sb, int start, int count,
4856 ext4_group_t group, struct ext4_buddy *e4b)
4857 {
4858 struct ext4_free_extent ex;
4859
4860 trace_ext4_trim_extent(sb, group, start, count);
4861
4862 assert_spin_locked(ext4_group_lock_ptr(sb, group));
4863
4864 ex.fe_start = start;
4865 ex.fe_group = group;
4866 ex.fe_len = count;
4867
4868 /*
4869 * Mark blocks used, so no one can reuse them while
4870 * being trimmed.
4871 */
4872 mb_mark_used(e4b, &ex);
4873 ext4_unlock_group(sb, group);
4874 ext4_issue_discard(sb, group, start, count);
4875 ext4_lock_group(sb, group);
4876 mb_free_blocks(NULL, e4b, start, ex.fe_len);
4877 }
4878
4879 /**
4880 * ext4_trim_all_free -- function to trim all free space in alloc. group
4881 * @sb: super block for file system
4882 * @group: group to be trimmed
4883 * @start: first group block to examine
4884 * @max: last group block to examine
4885 * @minblocks: minimum extent block count
4886 *
4887 * ext4_trim_all_free walks through group's buddy bitmap searching for free
4888 * extents. When the free block is found, ext4_trim_extent is called to TRIM
4889 * the extent.
4890 *
4891 *
4892 * ext4_trim_all_free walks through group's block bitmap searching for free
4893 * extents. When the free extent is found, mark it as used in group buddy
4894 * bitmap. Then issue a TRIM command on this extent and free the extent in
4895 * the group buddy bitmap. This is done until whole group is scanned.
4896 */
4897 static ext4_grpblk_t
4898 ext4_trim_all_free(struct super_block *sb, ext4_group_t group,
4899 ext4_grpblk_t start, ext4_grpblk_t max,
4900 ext4_grpblk_t minblocks)
4901 {
4902 void *bitmap;
4903 ext4_grpblk_t next, count = 0, free_count = 0;
4904 struct ext4_buddy e4b;
4905 int ret;
4906
4907 trace_ext4_trim_all_free(sb, group, start, max);
4908
4909 ret = ext4_mb_load_buddy(sb, group, &e4b);
4910 if (ret) {
4911 ext4_error(sb, "Error in loading buddy "
4912 "information for %u", group);
4913 return ret;
4914 }
4915 bitmap = e4b.bd_bitmap;
4916
4917 ext4_lock_group(sb, group);
4918 if (EXT4_MB_GRP_WAS_TRIMMED(e4b.bd_info) &&
4919 minblocks >= atomic_read(&EXT4_SB(sb)->s_last_trim_minblks))
4920 goto out;
4921
4922 start = (e4b.bd_info->bb_first_free > start) ?
4923 e4b.bd_info->bb_first_free : start;
4924
4925 while (start <= max) {
4926 start = mb_find_next_zero_bit(bitmap, max + 1, start);
4927 if (start > max)
4928 break;
4929 next = mb_find_next_bit(bitmap, max + 1, start);
4930
4931 if ((next - start) >= minblocks) {
4932 ext4_trim_extent(sb, start,
4933 next - start, group, &e4b);
4934 count += next - start;
4935 }
4936 free_count += next - start;
4937 start = next + 1;
4938
4939 if (fatal_signal_pending(current)) {
4940 count = -ERESTARTSYS;
4941 break;
4942 }
4943
4944 if (need_resched()) {
4945 ext4_unlock_group(sb, group);
4946 cond_resched();
4947 ext4_lock_group(sb, group);
4948 }
4949
4950 if ((e4b.bd_info->bb_free - free_count) < minblocks)
4951 break;
4952 }
4953
4954 if (!ret)
4955 EXT4_MB_GRP_SET_TRIMMED(e4b.bd_info);
4956 out:
4957 ext4_unlock_group(sb, group);
4958 ext4_mb_unload_buddy(&e4b);
4959
4960 ext4_debug("trimmed %d blocks in the group %d\n",
4961 count, group);
4962
4963 return count;
4964 }
4965
4966 /**
4967 * ext4_trim_fs() -- trim ioctl handle function
4968 * @sb: superblock for filesystem
4969 * @range: fstrim_range structure
4970 *
4971 * start: First Byte to trim
4972 * len: number of Bytes to trim from start
4973 * minlen: minimum extent length in Bytes
4974 * ext4_trim_fs goes through all allocation groups containing Bytes from
4975 * start to start+len. For each such a group ext4_trim_all_free function
4976 * is invoked to trim all free space.
4977 */
4978 int ext4_trim_fs(struct super_block *sb, struct fstrim_range *range)
4979 {
4980 struct ext4_group_info *grp;
4981 ext4_group_t group, first_group, last_group;
4982 ext4_grpblk_t cnt = 0, first_cluster, last_cluster;
4983 uint64_t start, end, minlen, trimmed = 0;
4984 ext4_fsblk_t first_data_blk =
4985 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block);
4986 ext4_fsblk_t max_blks = ext4_blocks_count(EXT4_SB(sb)->s_es);
4987 int ret = 0;
4988
4989 start = range->start >> sb->s_blocksize_bits;
4990 end = start + (range->len >> sb->s_blocksize_bits) - 1;
4991 minlen = range->minlen >> sb->s_blocksize_bits;
4992
4993 if (unlikely(minlen > EXT4_CLUSTERS_PER_GROUP(sb)) ||
4994 unlikely(start >= max_blks))
4995 return -EINVAL;
4996 if (end >= max_blks)
4997 end = max_blks - 1;
4998 if (end <= first_data_blk)
4999 goto out;
5000 if (start < first_data_blk)
5001 start = first_data_blk;
5002
5003 /* Determine first and last group to examine based on start and end */
5004 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) start,
5005 &first_group, &first_cluster);
5006 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) end,
5007 &last_group, &last_cluster);
5008
5009 /* end now represents the last cluster to discard in this group */
5010 end = EXT4_CLUSTERS_PER_GROUP(sb) - 1;
5011
5012 for (group = first_group; group <= last_group; group++) {
5013 grp = ext4_get_group_info(sb, group);
5014 /* We only do this if the grp has never been initialized */
5015 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
5016 ret = ext4_mb_init_group(sb, group);
5017 if (ret)
5018 break;
5019 }
5020
5021 /*
5022 * For all the groups except the last one, last cluster will
5023 * always be EXT4_CLUSTERS_PER_GROUP(sb)-1, so we only need to
5024 * change it for the last group, note that last_cluster is
5025 * already computed earlier by ext4_get_group_no_and_offset()
5026 */
5027 if (group == last_group)
5028 end = last_cluster;
5029
5030 if (grp->bb_free >= minlen) {
5031 cnt = ext4_trim_all_free(sb, group, first_cluster,
5032 end, minlen);
5033 if (cnt < 0) {
5034 ret = cnt;
5035 break;
5036 }
5037 trimmed += cnt;
5038 }
5039
5040 /*
5041 * For every group except the first one, we are sure
5042 * that the first cluster to discard will be cluster #0.
5043 */
5044 first_cluster = 0;
5045 }
5046
5047 if (!ret)
5048 atomic_set(&EXT4_SB(sb)->s_last_trim_minblks, minlen);
5049
5050 out:
5051 range->len = trimmed * sb->s_blocksize;
5052 return ret;
5053 }