]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/ext4/mballoc.c
Merge branch 'core-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-bionic-kernel.git] / fs / ext4 / mballoc.c
1 /*
2 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3 * Written by Alex Tomas <alex@clusterfs.com>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public Licens
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
17 */
18
19
20 /*
21 * mballoc.c contains the multiblocks allocation routines
22 */
23
24 #include "ext4_jbd2.h"
25 #include "mballoc.h"
26 #include <linux/debugfs.h>
27 #include <linux/log2.h>
28 #include <linux/slab.h>
29 #include <trace/events/ext4.h>
30
31 /*
32 * MUSTDO:
33 * - test ext4_ext_search_left() and ext4_ext_search_right()
34 * - search for metadata in few groups
35 *
36 * TODO v4:
37 * - normalization should take into account whether file is still open
38 * - discard preallocations if no free space left (policy?)
39 * - don't normalize tails
40 * - quota
41 * - reservation for superuser
42 *
43 * TODO v3:
44 * - bitmap read-ahead (proposed by Oleg Drokin aka green)
45 * - track min/max extents in each group for better group selection
46 * - mb_mark_used() may allocate chunk right after splitting buddy
47 * - tree of groups sorted by number of free blocks
48 * - error handling
49 */
50
51 /*
52 * The allocation request involve request for multiple number of blocks
53 * near to the goal(block) value specified.
54 *
55 * During initialization phase of the allocator we decide to use the
56 * group preallocation or inode preallocation depending on the size of
57 * the file. The size of the file could be the resulting file size we
58 * would have after allocation, or the current file size, which ever
59 * is larger. If the size is less than sbi->s_mb_stream_request we
60 * select to use the group preallocation. The default value of
61 * s_mb_stream_request is 16 blocks. This can also be tuned via
62 * /sys/fs/ext4/<partition>/mb_stream_req. The value is represented in
63 * terms of number of blocks.
64 *
65 * The main motivation for having small file use group preallocation is to
66 * ensure that we have small files closer together on the disk.
67 *
68 * First stage the allocator looks at the inode prealloc list,
69 * ext4_inode_info->i_prealloc_list, which contains list of prealloc
70 * spaces for this particular inode. The inode prealloc space is
71 * represented as:
72 *
73 * pa_lstart -> the logical start block for this prealloc space
74 * pa_pstart -> the physical start block for this prealloc space
75 * pa_len -> length for this prealloc space (in clusters)
76 * pa_free -> free space available in this prealloc space (in clusters)
77 *
78 * The inode preallocation space is used looking at the _logical_ start
79 * block. If only the logical file block falls within the range of prealloc
80 * space we will consume the particular prealloc space. This makes sure that
81 * we have contiguous physical blocks representing the file blocks
82 *
83 * The important thing to be noted in case of inode prealloc space is that
84 * we don't modify the values associated to inode prealloc space except
85 * pa_free.
86 *
87 * If we are not able to find blocks in the inode prealloc space and if we
88 * have the group allocation flag set then we look at the locality group
89 * prealloc space. These are per CPU prealloc list represented as
90 *
91 * ext4_sb_info.s_locality_groups[smp_processor_id()]
92 *
93 * The reason for having a per cpu locality group is to reduce the contention
94 * between CPUs. It is possible to get scheduled at this point.
95 *
96 * The locality group prealloc space is used looking at whether we have
97 * enough free space (pa_free) within the prealloc space.
98 *
99 * If we can't allocate blocks via inode prealloc or/and locality group
100 * prealloc then we look at the buddy cache. The buddy cache is represented
101 * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets
102 * mapped to the buddy and bitmap information regarding different
103 * groups. The buddy information is attached to buddy cache inode so that
104 * we can access them through the page cache. The information regarding
105 * each group is loaded via ext4_mb_load_buddy. The information involve
106 * block bitmap and buddy information. The information are stored in the
107 * inode as:
108 *
109 * { page }
110 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
111 *
112 *
113 * one block each for bitmap and buddy information. So for each group we
114 * take up 2 blocks. A page can contain blocks_per_page (PAGE_CACHE_SIZE /
115 * blocksize) blocks. So it can have information regarding groups_per_page
116 * which is blocks_per_page/2
117 *
118 * The buddy cache inode is not stored on disk. The inode is thrown
119 * away when the filesystem is unmounted.
120 *
121 * We look for count number of blocks in the buddy cache. If we were able
122 * to locate that many free blocks we return with additional information
123 * regarding rest of the contiguous physical block available
124 *
125 * Before allocating blocks via buddy cache we normalize the request
126 * blocks. This ensure we ask for more blocks that we needed. The extra
127 * blocks that we get after allocation is added to the respective prealloc
128 * list. In case of inode preallocation we follow a list of heuristics
129 * based on file size. This can be found in ext4_mb_normalize_request. If
130 * we are doing a group prealloc we try to normalize the request to
131 * sbi->s_mb_group_prealloc. The default value of s_mb_group_prealloc is
132 * dependent on the cluster size; for non-bigalloc file systems, it is
133 * 512 blocks. This can be tuned via
134 * /sys/fs/ext4/<partition>/mb_group_prealloc. The value is represented in
135 * terms of number of blocks. If we have mounted the file system with -O
136 * stripe=<value> option the group prealloc request is normalized to the
137 * the smallest multiple of the stripe value (sbi->s_stripe) which is
138 * greater than the default mb_group_prealloc.
139 *
140 * The regular allocator (using the buddy cache) supports a few tunables.
141 *
142 * /sys/fs/ext4/<partition>/mb_min_to_scan
143 * /sys/fs/ext4/<partition>/mb_max_to_scan
144 * /sys/fs/ext4/<partition>/mb_order2_req
145 *
146 * The regular allocator uses buddy scan only if the request len is power of
147 * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The
148 * value of s_mb_order2_reqs can be tuned via
149 * /sys/fs/ext4/<partition>/mb_order2_req. If the request len is equal to
150 * stripe size (sbi->s_stripe), we try to search for contiguous block in
151 * stripe size. This should result in better allocation on RAID setups. If
152 * not, we search in the specific group using bitmap for best extents. The
153 * tunable min_to_scan and max_to_scan control the behaviour here.
154 * min_to_scan indicate how long the mballoc __must__ look for a best
155 * extent and max_to_scan indicates how long the mballoc __can__ look for a
156 * best extent in the found extents. Searching for the blocks starts with
157 * the group specified as the goal value in allocation context via
158 * ac_g_ex. Each group is first checked based on the criteria whether it
159 * can be used for allocation. ext4_mb_good_group explains how the groups are
160 * checked.
161 *
162 * Both the prealloc space are getting populated as above. So for the first
163 * request we will hit the buddy cache which will result in this prealloc
164 * space getting filled. The prealloc space is then later used for the
165 * subsequent request.
166 */
167
168 /*
169 * mballoc operates on the following data:
170 * - on-disk bitmap
171 * - in-core buddy (actually includes buddy and bitmap)
172 * - preallocation descriptors (PAs)
173 *
174 * there are two types of preallocations:
175 * - inode
176 * assiged to specific inode and can be used for this inode only.
177 * it describes part of inode's space preallocated to specific
178 * physical blocks. any block from that preallocated can be used
179 * independent. the descriptor just tracks number of blocks left
180 * unused. so, before taking some block from descriptor, one must
181 * make sure corresponded logical block isn't allocated yet. this
182 * also means that freeing any block within descriptor's range
183 * must discard all preallocated blocks.
184 * - locality group
185 * assigned to specific locality group which does not translate to
186 * permanent set of inodes: inode can join and leave group. space
187 * from this type of preallocation can be used for any inode. thus
188 * it's consumed from the beginning to the end.
189 *
190 * relation between them can be expressed as:
191 * in-core buddy = on-disk bitmap + preallocation descriptors
192 *
193 * this mean blocks mballoc considers used are:
194 * - allocated blocks (persistent)
195 * - preallocated blocks (non-persistent)
196 *
197 * consistency in mballoc world means that at any time a block is either
198 * free or used in ALL structures. notice: "any time" should not be read
199 * literally -- time is discrete and delimited by locks.
200 *
201 * to keep it simple, we don't use block numbers, instead we count number of
202 * blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA.
203 *
204 * all operations can be expressed as:
205 * - init buddy: buddy = on-disk + PAs
206 * - new PA: buddy += N; PA = N
207 * - use inode PA: on-disk += N; PA -= N
208 * - discard inode PA buddy -= on-disk - PA; PA = 0
209 * - use locality group PA on-disk += N; PA -= N
210 * - discard locality group PA buddy -= PA; PA = 0
211 * note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap
212 * is used in real operation because we can't know actual used
213 * bits from PA, only from on-disk bitmap
214 *
215 * if we follow this strict logic, then all operations above should be atomic.
216 * given some of them can block, we'd have to use something like semaphores
217 * killing performance on high-end SMP hardware. let's try to relax it using
218 * the following knowledge:
219 * 1) if buddy is referenced, it's already initialized
220 * 2) while block is used in buddy and the buddy is referenced,
221 * nobody can re-allocate that block
222 * 3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has
223 * bit set and PA claims same block, it's OK. IOW, one can set bit in
224 * on-disk bitmap if buddy has same bit set or/and PA covers corresponded
225 * block
226 *
227 * so, now we're building a concurrency table:
228 * - init buddy vs.
229 * - new PA
230 * blocks for PA are allocated in the buddy, buddy must be referenced
231 * until PA is linked to allocation group to avoid concurrent buddy init
232 * - use inode PA
233 * we need to make sure that either on-disk bitmap or PA has uptodate data
234 * given (3) we care that PA-=N operation doesn't interfere with init
235 * - discard inode PA
236 * the simplest way would be to have buddy initialized by the discard
237 * - use locality group PA
238 * again PA-=N must be serialized with init
239 * - discard locality group PA
240 * the simplest way would be to have buddy initialized by the discard
241 * - new PA vs.
242 * - use inode PA
243 * i_data_sem serializes them
244 * - discard inode PA
245 * discard process must wait until PA isn't used by another process
246 * - use locality group PA
247 * some mutex should serialize them
248 * - discard locality group PA
249 * discard process must wait until PA isn't used by another process
250 * - use inode PA
251 * - use inode PA
252 * i_data_sem or another mutex should serializes them
253 * - discard inode PA
254 * discard process must wait until PA isn't used by another process
255 * - use locality group PA
256 * nothing wrong here -- they're different PAs covering different blocks
257 * - discard locality group PA
258 * discard process must wait until PA isn't used by another process
259 *
260 * now we're ready to make few consequences:
261 * - PA is referenced and while it is no discard is possible
262 * - PA is referenced until block isn't marked in on-disk bitmap
263 * - PA changes only after on-disk bitmap
264 * - discard must not compete with init. either init is done before
265 * any discard or they're serialized somehow
266 * - buddy init as sum of on-disk bitmap and PAs is done atomically
267 *
268 * a special case when we've used PA to emptiness. no need to modify buddy
269 * in this case, but we should care about concurrent init
270 *
271 */
272
273 /*
274 * Logic in few words:
275 *
276 * - allocation:
277 * load group
278 * find blocks
279 * mark bits in on-disk bitmap
280 * release group
281 *
282 * - use preallocation:
283 * find proper PA (per-inode or group)
284 * load group
285 * mark bits in on-disk bitmap
286 * release group
287 * release PA
288 *
289 * - free:
290 * load group
291 * mark bits in on-disk bitmap
292 * release group
293 *
294 * - discard preallocations in group:
295 * mark PAs deleted
296 * move them onto local list
297 * load on-disk bitmap
298 * load group
299 * remove PA from object (inode or locality group)
300 * mark free blocks in-core
301 *
302 * - discard inode's preallocations:
303 */
304
305 /*
306 * Locking rules
307 *
308 * Locks:
309 * - bitlock on a group (group)
310 * - object (inode/locality) (object)
311 * - per-pa lock (pa)
312 *
313 * Paths:
314 * - new pa
315 * object
316 * group
317 *
318 * - find and use pa:
319 * pa
320 *
321 * - release consumed pa:
322 * pa
323 * group
324 * object
325 *
326 * - generate in-core bitmap:
327 * group
328 * pa
329 *
330 * - discard all for given object (inode, locality group):
331 * object
332 * pa
333 * group
334 *
335 * - discard all for given group:
336 * group
337 * pa
338 * group
339 * object
340 *
341 */
342 static struct kmem_cache *ext4_pspace_cachep;
343 static struct kmem_cache *ext4_ac_cachep;
344 static struct kmem_cache *ext4_free_data_cachep;
345
346 /* We create slab caches for groupinfo data structures based on the
347 * superblock block size. There will be one per mounted filesystem for
348 * each unique s_blocksize_bits */
349 #define NR_GRPINFO_CACHES 8
350 static struct kmem_cache *ext4_groupinfo_caches[NR_GRPINFO_CACHES];
351
352 static const char *ext4_groupinfo_slab_names[NR_GRPINFO_CACHES] = {
353 "ext4_groupinfo_1k", "ext4_groupinfo_2k", "ext4_groupinfo_4k",
354 "ext4_groupinfo_8k", "ext4_groupinfo_16k", "ext4_groupinfo_32k",
355 "ext4_groupinfo_64k", "ext4_groupinfo_128k"
356 };
357
358 static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
359 ext4_group_t group);
360 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
361 ext4_group_t group);
362 static void ext4_free_data_callback(struct super_block *sb,
363 struct ext4_journal_cb_entry *jce, int rc);
364
365 static inline void *mb_correct_addr_and_bit(int *bit, void *addr)
366 {
367 #if BITS_PER_LONG == 64
368 *bit += ((unsigned long) addr & 7UL) << 3;
369 addr = (void *) ((unsigned long) addr & ~7UL);
370 #elif BITS_PER_LONG == 32
371 *bit += ((unsigned long) addr & 3UL) << 3;
372 addr = (void *) ((unsigned long) addr & ~3UL);
373 #else
374 #error "how many bits you are?!"
375 #endif
376 return addr;
377 }
378
379 static inline int mb_test_bit(int bit, void *addr)
380 {
381 /*
382 * ext4_test_bit on architecture like powerpc
383 * needs unsigned long aligned address
384 */
385 addr = mb_correct_addr_and_bit(&bit, addr);
386 return ext4_test_bit(bit, addr);
387 }
388
389 static inline void mb_set_bit(int bit, void *addr)
390 {
391 addr = mb_correct_addr_and_bit(&bit, addr);
392 ext4_set_bit(bit, addr);
393 }
394
395 static inline void mb_clear_bit(int bit, void *addr)
396 {
397 addr = mb_correct_addr_and_bit(&bit, addr);
398 ext4_clear_bit(bit, addr);
399 }
400
401 static inline int mb_find_next_zero_bit(void *addr, int max, int start)
402 {
403 int fix = 0, ret, tmpmax;
404 addr = mb_correct_addr_and_bit(&fix, addr);
405 tmpmax = max + fix;
406 start += fix;
407
408 ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix;
409 if (ret > max)
410 return max;
411 return ret;
412 }
413
414 static inline int mb_find_next_bit(void *addr, int max, int start)
415 {
416 int fix = 0, ret, tmpmax;
417 addr = mb_correct_addr_and_bit(&fix, addr);
418 tmpmax = max + fix;
419 start += fix;
420
421 ret = ext4_find_next_bit(addr, tmpmax, start) - fix;
422 if (ret > max)
423 return max;
424 return ret;
425 }
426
427 static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max)
428 {
429 char *bb;
430
431 BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
432 BUG_ON(max == NULL);
433
434 if (order > e4b->bd_blkbits + 1) {
435 *max = 0;
436 return NULL;
437 }
438
439 /* at order 0 we see each particular block */
440 if (order == 0) {
441 *max = 1 << (e4b->bd_blkbits + 3);
442 return e4b->bd_bitmap;
443 }
444
445 bb = e4b->bd_buddy + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order];
446 *max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order];
447
448 return bb;
449 }
450
451 #ifdef DOUBLE_CHECK
452 static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b,
453 int first, int count)
454 {
455 int i;
456 struct super_block *sb = e4b->bd_sb;
457
458 if (unlikely(e4b->bd_info->bb_bitmap == NULL))
459 return;
460 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
461 for (i = 0; i < count; i++) {
462 if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) {
463 ext4_fsblk_t blocknr;
464
465 blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
466 blocknr += EXT4_C2B(EXT4_SB(sb), first + i);
467 ext4_grp_locked_error(sb, e4b->bd_group,
468 inode ? inode->i_ino : 0,
469 blocknr,
470 "freeing block already freed "
471 "(bit %u)",
472 first + i);
473 }
474 mb_clear_bit(first + i, e4b->bd_info->bb_bitmap);
475 }
476 }
477
478 static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count)
479 {
480 int i;
481
482 if (unlikely(e4b->bd_info->bb_bitmap == NULL))
483 return;
484 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
485 for (i = 0; i < count; i++) {
486 BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap));
487 mb_set_bit(first + i, e4b->bd_info->bb_bitmap);
488 }
489 }
490
491 static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
492 {
493 if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) {
494 unsigned char *b1, *b2;
495 int i;
496 b1 = (unsigned char *) e4b->bd_info->bb_bitmap;
497 b2 = (unsigned char *) bitmap;
498 for (i = 0; i < e4b->bd_sb->s_blocksize; i++) {
499 if (b1[i] != b2[i]) {
500 ext4_msg(e4b->bd_sb, KERN_ERR,
501 "corruption in group %u "
502 "at byte %u(%u): %x in copy != %x "
503 "on disk/prealloc",
504 e4b->bd_group, i, i * 8, b1[i], b2[i]);
505 BUG();
506 }
507 }
508 }
509 }
510
511 #else
512 static inline void mb_free_blocks_double(struct inode *inode,
513 struct ext4_buddy *e4b, int first, int count)
514 {
515 return;
516 }
517 static inline void mb_mark_used_double(struct ext4_buddy *e4b,
518 int first, int count)
519 {
520 return;
521 }
522 static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
523 {
524 return;
525 }
526 #endif
527
528 #ifdef AGGRESSIVE_CHECK
529
530 #define MB_CHECK_ASSERT(assert) \
531 do { \
532 if (!(assert)) { \
533 printk(KERN_EMERG \
534 "Assertion failure in %s() at %s:%d: \"%s\"\n", \
535 function, file, line, # assert); \
536 BUG(); \
537 } \
538 } while (0)
539
540 static int __mb_check_buddy(struct ext4_buddy *e4b, char *file,
541 const char *function, int line)
542 {
543 struct super_block *sb = e4b->bd_sb;
544 int order = e4b->bd_blkbits + 1;
545 int max;
546 int max2;
547 int i;
548 int j;
549 int k;
550 int count;
551 struct ext4_group_info *grp;
552 int fragments = 0;
553 int fstart;
554 struct list_head *cur;
555 void *buddy;
556 void *buddy2;
557
558 {
559 static int mb_check_counter;
560 if (mb_check_counter++ % 100 != 0)
561 return 0;
562 }
563
564 while (order > 1) {
565 buddy = mb_find_buddy(e4b, order, &max);
566 MB_CHECK_ASSERT(buddy);
567 buddy2 = mb_find_buddy(e4b, order - 1, &max2);
568 MB_CHECK_ASSERT(buddy2);
569 MB_CHECK_ASSERT(buddy != buddy2);
570 MB_CHECK_ASSERT(max * 2 == max2);
571
572 count = 0;
573 for (i = 0; i < max; i++) {
574
575 if (mb_test_bit(i, buddy)) {
576 /* only single bit in buddy2 may be 1 */
577 if (!mb_test_bit(i << 1, buddy2)) {
578 MB_CHECK_ASSERT(
579 mb_test_bit((i<<1)+1, buddy2));
580 } else if (!mb_test_bit((i << 1) + 1, buddy2)) {
581 MB_CHECK_ASSERT(
582 mb_test_bit(i << 1, buddy2));
583 }
584 continue;
585 }
586
587 /* both bits in buddy2 must be 1 */
588 MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2));
589 MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2));
590
591 for (j = 0; j < (1 << order); j++) {
592 k = (i * (1 << order)) + j;
593 MB_CHECK_ASSERT(
594 !mb_test_bit(k, e4b->bd_bitmap));
595 }
596 count++;
597 }
598 MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count);
599 order--;
600 }
601
602 fstart = -1;
603 buddy = mb_find_buddy(e4b, 0, &max);
604 for (i = 0; i < max; i++) {
605 if (!mb_test_bit(i, buddy)) {
606 MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free);
607 if (fstart == -1) {
608 fragments++;
609 fstart = i;
610 }
611 continue;
612 }
613 fstart = -1;
614 /* check used bits only */
615 for (j = 0; j < e4b->bd_blkbits + 1; j++) {
616 buddy2 = mb_find_buddy(e4b, j, &max2);
617 k = i >> j;
618 MB_CHECK_ASSERT(k < max2);
619 MB_CHECK_ASSERT(mb_test_bit(k, buddy2));
620 }
621 }
622 MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info));
623 MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments);
624
625 grp = ext4_get_group_info(sb, e4b->bd_group);
626 list_for_each(cur, &grp->bb_prealloc_list) {
627 ext4_group_t groupnr;
628 struct ext4_prealloc_space *pa;
629 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
630 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k);
631 MB_CHECK_ASSERT(groupnr == e4b->bd_group);
632 for (i = 0; i < pa->pa_len; i++)
633 MB_CHECK_ASSERT(mb_test_bit(k + i, buddy));
634 }
635 return 0;
636 }
637 #undef MB_CHECK_ASSERT
638 #define mb_check_buddy(e4b) __mb_check_buddy(e4b, \
639 __FILE__, __func__, __LINE__)
640 #else
641 #define mb_check_buddy(e4b)
642 #endif
643
644 /*
645 * Divide blocks started from @first with length @len into
646 * smaller chunks with power of 2 blocks.
647 * Clear the bits in bitmap which the blocks of the chunk(s) covered,
648 * then increase bb_counters[] for corresponded chunk size.
649 */
650 static void ext4_mb_mark_free_simple(struct super_block *sb,
651 void *buddy, ext4_grpblk_t first, ext4_grpblk_t len,
652 struct ext4_group_info *grp)
653 {
654 struct ext4_sb_info *sbi = EXT4_SB(sb);
655 ext4_grpblk_t min;
656 ext4_grpblk_t max;
657 ext4_grpblk_t chunk;
658 unsigned short border;
659
660 BUG_ON(len > EXT4_CLUSTERS_PER_GROUP(sb));
661
662 border = 2 << sb->s_blocksize_bits;
663
664 while (len > 0) {
665 /* find how many blocks can be covered since this position */
666 max = ffs(first | border) - 1;
667
668 /* find how many blocks of power 2 we need to mark */
669 min = fls(len) - 1;
670
671 if (max < min)
672 min = max;
673 chunk = 1 << min;
674
675 /* mark multiblock chunks only */
676 grp->bb_counters[min]++;
677 if (min > 0)
678 mb_clear_bit(first >> min,
679 buddy + sbi->s_mb_offsets[min]);
680
681 len -= chunk;
682 first += chunk;
683 }
684 }
685
686 /*
687 * Cache the order of the largest free extent we have available in this block
688 * group.
689 */
690 static void
691 mb_set_largest_free_order(struct super_block *sb, struct ext4_group_info *grp)
692 {
693 int i;
694 int bits;
695
696 grp->bb_largest_free_order = -1; /* uninit */
697
698 bits = sb->s_blocksize_bits + 1;
699 for (i = bits; i >= 0; i--) {
700 if (grp->bb_counters[i] > 0) {
701 grp->bb_largest_free_order = i;
702 break;
703 }
704 }
705 }
706
707 static noinline_for_stack
708 void ext4_mb_generate_buddy(struct super_block *sb,
709 void *buddy, void *bitmap, ext4_group_t group)
710 {
711 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
712 ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb);
713 ext4_grpblk_t i = 0;
714 ext4_grpblk_t first;
715 ext4_grpblk_t len;
716 unsigned free = 0;
717 unsigned fragments = 0;
718 unsigned long long period = get_cycles();
719
720 /* initialize buddy from bitmap which is aggregation
721 * of on-disk bitmap and preallocations */
722 i = mb_find_next_zero_bit(bitmap, max, 0);
723 grp->bb_first_free = i;
724 while (i < max) {
725 fragments++;
726 first = i;
727 i = mb_find_next_bit(bitmap, max, i);
728 len = i - first;
729 free += len;
730 if (len > 1)
731 ext4_mb_mark_free_simple(sb, buddy, first, len, grp);
732 else
733 grp->bb_counters[0]++;
734 if (i < max)
735 i = mb_find_next_zero_bit(bitmap, max, i);
736 }
737 grp->bb_fragments = fragments;
738
739 if (free != grp->bb_free) {
740 ext4_grp_locked_error(sb, group, 0, 0,
741 "%u clusters in bitmap, %u in gd",
742 free, grp->bb_free);
743 /*
744 * If we intent to continue, we consider group descritor
745 * corrupt and update bb_free using bitmap value
746 */
747 grp->bb_free = free;
748 }
749 mb_set_largest_free_order(sb, grp);
750
751 clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state));
752
753 period = get_cycles() - period;
754 spin_lock(&EXT4_SB(sb)->s_bal_lock);
755 EXT4_SB(sb)->s_mb_buddies_generated++;
756 EXT4_SB(sb)->s_mb_generation_time += period;
757 spin_unlock(&EXT4_SB(sb)->s_bal_lock);
758 }
759
760 /* The buddy information is attached the buddy cache inode
761 * for convenience. The information regarding each group
762 * is loaded via ext4_mb_load_buddy. The information involve
763 * block bitmap and buddy information. The information are
764 * stored in the inode as
765 *
766 * { page }
767 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
768 *
769 *
770 * one block each for bitmap and buddy information.
771 * So for each group we take up 2 blocks. A page can
772 * contain blocks_per_page (PAGE_CACHE_SIZE / blocksize) blocks.
773 * So it can have information regarding groups_per_page which
774 * is blocks_per_page/2
775 *
776 * Locking note: This routine takes the block group lock of all groups
777 * for this page; do not hold this lock when calling this routine!
778 */
779
780 static int ext4_mb_init_cache(struct page *page, char *incore)
781 {
782 ext4_group_t ngroups;
783 int blocksize;
784 int blocks_per_page;
785 int groups_per_page;
786 int err = 0;
787 int i;
788 ext4_group_t first_group, group;
789 int first_block;
790 struct super_block *sb;
791 struct buffer_head *bhs;
792 struct buffer_head **bh = NULL;
793 struct inode *inode;
794 char *data;
795 char *bitmap;
796 struct ext4_group_info *grinfo;
797
798 mb_debug(1, "init page %lu\n", page->index);
799
800 inode = page->mapping->host;
801 sb = inode->i_sb;
802 ngroups = ext4_get_groups_count(sb);
803 blocksize = 1 << inode->i_blkbits;
804 blocks_per_page = PAGE_CACHE_SIZE / blocksize;
805
806 groups_per_page = blocks_per_page >> 1;
807 if (groups_per_page == 0)
808 groups_per_page = 1;
809
810 /* allocate buffer_heads to read bitmaps */
811 if (groups_per_page > 1) {
812 i = sizeof(struct buffer_head *) * groups_per_page;
813 bh = kzalloc(i, GFP_NOFS);
814 if (bh == NULL) {
815 err = -ENOMEM;
816 goto out;
817 }
818 } else
819 bh = &bhs;
820
821 first_group = page->index * blocks_per_page / 2;
822
823 /* read all groups the page covers into the cache */
824 for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
825 if (group >= ngroups)
826 break;
827
828 grinfo = ext4_get_group_info(sb, group);
829 /*
830 * If page is uptodate then we came here after online resize
831 * which added some new uninitialized group info structs, so
832 * we must skip all initialized uptodate buddies on the page,
833 * which may be currently in use by an allocating task.
834 */
835 if (PageUptodate(page) && !EXT4_MB_GRP_NEED_INIT(grinfo)) {
836 bh[i] = NULL;
837 continue;
838 }
839 if (!(bh[i] = ext4_read_block_bitmap_nowait(sb, group))) {
840 err = -ENOMEM;
841 goto out;
842 }
843 mb_debug(1, "read bitmap for group %u\n", group);
844 }
845
846 /* wait for I/O completion */
847 for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
848 if (bh[i] && ext4_wait_block_bitmap(sb, group, bh[i])) {
849 err = -EIO;
850 goto out;
851 }
852 }
853
854 first_block = page->index * blocks_per_page;
855 for (i = 0; i < blocks_per_page; i++) {
856 int group;
857
858 group = (first_block + i) >> 1;
859 if (group >= ngroups)
860 break;
861
862 if (!bh[group - first_group])
863 /* skip initialized uptodate buddy */
864 continue;
865
866 /*
867 * data carry information regarding this
868 * particular group in the format specified
869 * above
870 *
871 */
872 data = page_address(page) + (i * blocksize);
873 bitmap = bh[group - first_group]->b_data;
874
875 /*
876 * We place the buddy block and bitmap block
877 * close together
878 */
879 if ((first_block + i) & 1) {
880 /* this is block of buddy */
881 BUG_ON(incore == NULL);
882 mb_debug(1, "put buddy for group %u in page %lu/%x\n",
883 group, page->index, i * blocksize);
884 trace_ext4_mb_buddy_bitmap_load(sb, group);
885 grinfo = ext4_get_group_info(sb, group);
886 grinfo->bb_fragments = 0;
887 memset(grinfo->bb_counters, 0,
888 sizeof(*grinfo->bb_counters) *
889 (sb->s_blocksize_bits+2));
890 /*
891 * incore got set to the group block bitmap below
892 */
893 ext4_lock_group(sb, group);
894 /* init the buddy */
895 memset(data, 0xff, blocksize);
896 ext4_mb_generate_buddy(sb, data, incore, group);
897 ext4_unlock_group(sb, group);
898 incore = NULL;
899 } else {
900 /* this is block of bitmap */
901 BUG_ON(incore != NULL);
902 mb_debug(1, "put bitmap for group %u in page %lu/%x\n",
903 group, page->index, i * blocksize);
904 trace_ext4_mb_bitmap_load(sb, group);
905
906 /* see comments in ext4_mb_put_pa() */
907 ext4_lock_group(sb, group);
908 memcpy(data, bitmap, blocksize);
909
910 /* mark all preallocated blks used in in-core bitmap */
911 ext4_mb_generate_from_pa(sb, data, group);
912 ext4_mb_generate_from_freelist(sb, data, group);
913 ext4_unlock_group(sb, group);
914
915 /* set incore so that the buddy information can be
916 * generated using this
917 */
918 incore = data;
919 }
920 }
921 SetPageUptodate(page);
922
923 out:
924 if (bh) {
925 for (i = 0; i < groups_per_page; i++)
926 brelse(bh[i]);
927 if (bh != &bhs)
928 kfree(bh);
929 }
930 return err;
931 }
932
933 /*
934 * Lock the buddy and bitmap pages. This make sure other parallel init_group
935 * on the same buddy page doesn't happen whild holding the buddy page lock.
936 * Return locked buddy and bitmap pages on e4b struct. If buddy and bitmap
937 * are on the same page e4b->bd_buddy_page is NULL and return value is 0.
938 */
939 static int ext4_mb_get_buddy_page_lock(struct super_block *sb,
940 ext4_group_t group, struct ext4_buddy *e4b)
941 {
942 struct inode *inode = EXT4_SB(sb)->s_buddy_cache;
943 int block, pnum, poff;
944 int blocks_per_page;
945 struct page *page;
946
947 e4b->bd_buddy_page = NULL;
948 e4b->bd_bitmap_page = NULL;
949
950 blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize;
951 /*
952 * the buddy cache inode stores the block bitmap
953 * and buddy information in consecutive blocks.
954 * So for each group we need two blocks.
955 */
956 block = group * 2;
957 pnum = block / blocks_per_page;
958 poff = block % blocks_per_page;
959 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
960 if (!page)
961 return -EIO;
962 BUG_ON(page->mapping != inode->i_mapping);
963 e4b->bd_bitmap_page = page;
964 e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
965
966 if (blocks_per_page >= 2) {
967 /* buddy and bitmap are on the same page */
968 return 0;
969 }
970
971 block++;
972 pnum = block / blocks_per_page;
973 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
974 if (!page)
975 return -EIO;
976 BUG_ON(page->mapping != inode->i_mapping);
977 e4b->bd_buddy_page = page;
978 return 0;
979 }
980
981 static void ext4_mb_put_buddy_page_lock(struct ext4_buddy *e4b)
982 {
983 if (e4b->bd_bitmap_page) {
984 unlock_page(e4b->bd_bitmap_page);
985 page_cache_release(e4b->bd_bitmap_page);
986 }
987 if (e4b->bd_buddy_page) {
988 unlock_page(e4b->bd_buddy_page);
989 page_cache_release(e4b->bd_buddy_page);
990 }
991 }
992
993 /*
994 * Locking note: This routine calls ext4_mb_init_cache(), which takes the
995 * block group lock of all groups for this page; do not hold the BG lock when
996 * calling this routine!
997 */
998 static noinline_for_stack
999 int ext4_mb_init_group(struct super_block *sb, ext4_group_t group)
1000 {
1001
1002 struct ext4_group_info *this_grp;
1003 struct ext4_buddy e4b;
1004 struct page *page;
1005 int ret = 0;
1006
1007 mb_debug(1, "init group %u\n", group);
1008 this_grp = ext4_get_group_info(sb, group);
1009 /*
1010 * This ensures that we don't reinit the buddy cache
1011 * page which map to the group from which we are already
1012 * allocating. If we are looking at the buddy cache we would
1013 * have taken a reference using ext4_mb_load_buddy and that
1014 * would have pinned buddy page to page cache.
1015 */
1016 ret = ext4_mb_get_buddy_page_lock(sb, group, &e4b);
1017 if (ret || !EXT4_MB_GRP_NEED_INIT(this_grp)) {
1018 /*
1019 * somebody initialized the group
1020 * return without doing anything
1021 */
1022 goto err;
1023 }
1024
1025 page = e4b.bd_bitmap_page;
1026 ret = ext4_mb_init_cache(page, NULL);
1027 if (ret)
1028 goto err;
1029 if (!PageUptodate(page)) {
1030 ret = -EIO;
1031 goto err;
1032 }
1033 mark_page_accessed(page);
1034
1035 if (e4b.bd_buddy_page == NULL) {
1036 /*
1037 * If both the bitmap and buddy are in
1038 * the same page we don't need to force
1039 * init the buddy
1040 */
1041 ret = 0;
1042 goto err;
1043 }
1044 /* init buddy cache */
1045 page = e4b.bd_buddy_page;
1046 ret = ext4_mb_init_cache(page, e4b.bd_bitmap);
1047 if (ret)
1048 goto err;
1049 if (!PageUptodate(page)) {
1050 ret = -EIO;
1051 goto err;
1052 }
1053 mark_page_accessed(page);
1054 err:
1055 ext4_mb_put_buddy_page_lock(&e4b);
1056 return ret;
1057 }
1058
1059 /*
1060 * Locking note: This routine calls ext4_mb_init_cache(), which takes the
1061 * block group lock of all groups for this page; do not hold the BG lock when
1062 * calling this routine!
1063 */
1064 static noinline_for_stack int
1065 ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group,
1066 struct ext4_buddy *e4b)
1067 {
1068 int blocks_per_page;
1069 int block;
1070 int pnum;
1071 int poff;
1072 struct page *page;
1073 int ret;
1074 struct ext4_group_info *grp;
1075 struct ext4_sb_info *sbi = EXT4_SB(sb);
1076 struct inode *inode = sbi->s_buddy_cache;
1077
1078 mb_debug(1, "load group %u\n", group);
1079
1080 blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize;
1081 grp = ext4_get_group_info(sb, group);
1082
1083 e4b->bd_blkbits = sb->s_blocksize_bits;
1084 e4b->bd_info = grp;
1085 e4b->bd_sb = sb;
1086 e4b->bd_group = group;
1087 e4b->bd_buddy_page = NULL;
1088 e4b->bd_bitmap_page = NULL;
1089
1090 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
1091 /*
1092 * we need full data about the group
1093 * to make a good selection
1094 */
1095 ret = ext4_mb_init_group(sb, group);
1096 if (ret)
1097 return ret;
1098 }
1099
1100 /*
1101 * the buddy cache inode stores the block bitmap
1102 * and buddy information in consecutive blocks.
1103 * So for each group we need two blocks.
1104 */
1105 block = group * 2;
1106 pnum = block / blocks_per_page;
1107 poff = block % blocks_per_page;
1108
1109 /* we could use find_or_create_page(), but it locks page
1110 * what we'd like to avoid in fast path ... */
1111 page = find_get_page(inode->i_mapping, pnum);
1112 if (page == NULL || !PageUptodate(page)) {
1113 if (page)
1114 /*
1115 * drop the page reference and try
1116 * to get the page with lock. If we
1117 * are not uptodate that implies
1118 * somebody just created the page but
1119 * is yet to initialize the same. So
1120 * wait for it to initialize.
1121 */
1122 page_cache_release(page);
1123 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
1124 if (page) {
1125 BUG_ON(page->mapping != inode->i_mapping);
1126 if (!PageUptodate(page)) {
1127 ret = ext4_mb_init_cache(page, NULL);
1128 if (ret) {
1129 unlock_page(page);
1130 goto err;
1131 }
1132 mb_cmp_bitmaps(e4b, page_address(page) +
1133 (poff * sb->s_blocksize));
1134 }
1135 unlock_page(page);
1136 }
1137 }
1138 if (page == NULL || !PageUptodate(page)) {
1139 ret = -EIO;
1140 goto err;
1141 }
1142 e4b->bd_bitmap_page = page;
1143 e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
1144 mark_page_accessed(page);
1145
1146 block++;
1147 pnum = block / blocks_per_page;
1148 poff = block % blocks_per_page;
1149
1150 page = find_get_page(inode->i_mapping, pnum);
1151 if (page == NULL || !PageUptodate(page)) {
1152 if (page)
1153 page_cache_release(page);
1154 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
1155 if (page) {
1156 BUG_ON(page->mapping != inode->i_mapping);
1157 if (!PageUptodate(page)) {
1158 ret = ext4_mb_init_cache(page, e4b->bd_bitmap);
1159 if (ret) {
1160 unlock_page(page);
1161 goto err;
1162 }
1163 }
1164 unlock_page(page);
1165 }
1166 }
1167 if (page == NULL || !PageUptodate(page)) {
1168 ret = -EIO;
1169 goto err;
1170 }
1171 e4b->bd_buddy_page = page;
1172 e4b->bd_buddy = page_address(page) + (poff * sb->s_blocksize);
1173 mark_page_accessed(page);
1174
1175 BUG_ON(e4b->bd_bitmap_page == NULL);
1176 BUG_ON(e4b->bd_buddy_page == NULL);
1177
1178 return 0;
1179
1180 err:
1181 if (page)
1182 page_cache_release(page);
1183 if (e4b->bd_bitmap_page)
1184 page_cache_release(e4b->bd_bitmap_page);
1185 if (e4b->bd_buddy_page)
1186 page_cache_release(e4b->bd_buddy_page);
1187 e4b->bd_buddy = NULL;
1188 e4b->bd_bitmap = NULL;
1189 return ret;
1190 }
1191
1192 static void ext4_mb_unload_buddy(struct ext4_buddy *e4b)
1193 {
1194 if (e4b->bd_bitmap_page)
1195 page_cache_release(e4b->bd_bitmap_page);
1196 if (e4b->bd_buddy_page)
1197 page_cache_release(e4b->bd_buddy_page);
1198 }
1199
1200
1201 static int mb_find_order_for_block(struct ext4_buddy *e4b, int block)
1202 {
1203 int order = 1;
1204 void *bb;
1205
1206 BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
1207 BUG_ON(block >= (1 << (e4b->bd_blkbits + 3)));
1208
1209 bb = e4b->bd_buddy;
1210 while (order <= e4b->bd_blkbits + 1) {
1211 block = block >> 1;
1212 if (!mb_test_bit(block, bb)) {
1213 /* this block is part of buddy of order 'order' */
1214 return order;
1215 }
1216 bb += 1 << (e4b->bd_blkbits - order);
1217 order++;
1218 }
1219 return 0;
1220 }
1221
1222 static void mb_clear_bits(void *bm, int cur, int len)
1223 {
1224 __u32 *addr;
1225
1226 len = cur + len;
1227 while (cur < len) {
1228 if ((cur & 31) == 0 && (len - cur) >= 32) {
1229 /* fast path: clear whole word at once */
1230 addr = bm + (cur >> 3);
1231 *addr = 0;
1232 cur += 32;
1233 continue;
1234 }
1235 mb_clear_bit(cur, bm);
1236 cur++;
1237 }
1238 }
1239
1240 void ext4_set_bits(void *bm, int cur, int len)
1241 {
1242 __u32 *addr;
1243
1244 len = cur + len;
1245 while (cur < len) {
1246 if ((cur & 31) == 0 && (len - cur) >= 32) {
1247 /* fast path: set whole word at once */
1248 addr = bm + (cur >> 3);
1249 *addr = 0xffffffff;
1250 cur += 32;
1251 continue;
1252 }
1253 mb_set_bit(cur, bm);
1254 cur++;
1255 }
1256 }
1257
1258 static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b,
1259 int first, int count)
1260 {
1261 int block = 0;
1262 int max = 0;
1263 int order;
1264 void *buddy;
1265 void *buddy2;
1266 struct super_block *sb = e4b->bd_sb;
1267
1268 BUG_ON(first + count > (sb->s_blocksize << 3));
1269 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
1270 mb_check_buddy(e4b);
1271 mb_free_blocks_double(inode, e4b, first, count);
1272
1273 e4b->bd_info->bb_free += count;
1274 if (first < e4b->bd_info->bb_first_free)
1275 e4b->bd_info->bb_first_free = first;
1276
1277 /* let's maintain fragments counter */
1278 if (first != 0)
1279 block = !mb_test_bit(first - 1, e4b->bd_bitmap);
1280 if (first + count < EXT4_SB(sb)->s_mb_maxs[0])
1281 max = !mb_test_bit(first + count, e4b->bd_bitmap);
1282 if (block && max)
1283 e4b->bd_info->bb_fragments--;
1284 else if (!block && !max)
1285 e4b->bd_info->bb_fragments++;
1286
1287 /* let's maintain buddy itself */
1288 while (count-- > 0) {
1289 block = first++;
1290 order = 0;
1291
1292 if (!mb_test_bit(block, e4b->bd_bitmap)) {
1293 ext4_fsblk_t blocknr;
1294
1295 blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
1296 blocknr += EXT4_C2B(EXT4_SB(sb), block);
1297 ext4_grp_locked_error(sb, e4b->bd_group,
1298 inode ? inode->i_ino : 0,
1299 blocknr,
1300 "freeing already freed block "
1301 "(bit %u)", block);
1302 }
1303 mb_clear_bit(block, e4b->bd_bitmap);
1304 e4b->bd_info->bb_counters[order]++;
1305
1306 /* start of the buddy */
1307 buddy = mb_find_buddy(e4b, order, &max);
1308
1309 do {
1310 block &= ~1UL;
1311 if (mb_test_bit(block, buddy) ||
1312 mb_test_bit(block + 1, buddy))
1313 break;
1314
1315 /* both the buddies are free, try to coalesce them */
1316 buddy2 = mb_find_buddy(e4b, order + 1, &max);
1317
1318 if (!buddy2)
1319 break;
1320
1321 if (order > 0) {
1322 /* for special purposes, we don't set
1323 * free bits in bitmap */
1324 mb_set_bit(block, buddy);
1325 mb_set_bit(block + 1, buddy);
1326 }
1327 e4b->bd_info->bb_counters[order]--;
1328 e4b->bd_info->bb_counters[order]--;
1329
1330 block = block >> 1;
1331 order++;
1332 e4b->bd_info->bb_counters[order]++;
1333
1334 mb_clear_bit(block, buddy2);
1335 buddy = buddy2;
1336 } while (1);
1337 }
1338 mb_set_largest_free_order(sb, e4b->bd_info);
1339 mb_check_buddy(e4b);
1340 }
1341
1342 static int mb_find_extent(struct ext4_buddy *e4b, int block,
1343 int needed, struct ext4_free_extent *ex)
1344 {
1345 int next = block;
1346 int max, order;
1347 void *buddy;
1348
1349 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1350 BUG_ON(ex == NULL);
1351
1352 buddy = mb_find_buddy(e4b, 0, &max);
1353 BUG_ON(buddy == NULL);
1354 BUG_ON(block >= max);
1355 if (mb_test_bit(block, buddy)) {
1356 ex->fe_len = 0;
1357 ex->fe_start = 0;
1358 ex->fe_group = 0;
1359 return 0;
1360 }
1361
1362 /* find actual order */
1363 order = mb_find_order_for_block(e4b, block);
1364 block = block >> order;
1365
1366 ex->fe_len = 1 << order;
1367 ex->fe_start = block << order;
1368 ex->fe_group = e4b->bd_group;
1369
1370 /* calc difference from given start */
1371 next = next - ex->fe_start;
1372 ex->fe_len -= next;
1373 ex->fe_start += next;
1374
1375 while (needed > ex->fe_len &&
1376 (buddy = mb_find_buddy(e4b, order, &max))) {
1377
1378 if (block + 1 >= max)
1379 break;
1380
1381 next = (block + 1) * (1 << order);
1382 if (mb_test_bit(next, e4b->bd_bitmap))
1383 break;
1384
1385 order = mb_find_order_for_block(e4b, next);
1386
1387 block = next >> order;
1388 ex->fe_len += 1 << order;
1389 }
1390
1391 BUG_ON(ex->fe_start + ex->fe_len > (1 << (e4b->bd_blkbits + 3)));
1392 return ex->fe_len;
1393 }
1394
1395 static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex)
1396 {
1397 int ord;
1398 int mlen = 0;
1399 int max = 0;
1400 int cur;
1401 int start = ex->fe_start;
1402 int len = ex->fe_len;
1403 unsigned ret = 0;
1404 int len0 = len;
1405 void *buddy;
1406
1407 BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3));
1408 BUG_ON(e4b->bd_group != ex->fe_group);
1409 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1410 mb_check_buddy(e4b);
1411 mb_mark_used_double(e4b, start, len);
1412
1413 e4b->bd_info->bb_free -= len;
1414 if (e4b->bd_info->bb_first_free == start)
1415 e4b->bd_info->bb_first_free += len;
1416
1417 /* let's maintain fragments counter */
1418 if (start != 0)
1419 mlen = !mb_test_bit(start - 1, e4b->bd_bitmap);
1420 if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0])
1421 max = !mb_test_bit(start + len, e4b->bd_bitmap);
1422 if (mlen && max)
1423 e4b->bd_info->bb_fragments++;
1424 else if (!mlen && !max)
1425 e4b->bd_info->bb_fragments--;
1426
1427 /* let's maintain buddy itself */
1428 while (len) {
1429 ord = mb_find_order_for_block(e4b, start);
1430
1431 if (((start >> ord) << ord) == start && len >= (1 << ord)) {
1432 /* the whole chunk may be allocated at once! */
1433 mlen = 1 << ord;
1434 buddy = mb_find_buddy(e4b, ord, &max);
1435 BUG_ON((start >> ord) >= max);
1436 mb_set_bit(start >> ord, buddy);
1437 e4b->bd_info->bb_counters[ord]--;
1438 start += mlen;
1439 len -= mlen;
1440 BUG_ON(len < 0);
1441 continue;
1442 }
1443
1444 /* store for history */
1445 if (ret == 0)
1446 ret = len | (ord << 16);
1447
1448 /* we have to split large buddy */
1449 BUG_ON(ord <= 0);
1450 buddy = mb_find_buddy(e4b, ord, &max);
1451 mb_set_bit(start >> ord, buddy);
1452 e4b->bd_info->bb_counters[ord]--;
1453
1454 ord--;
1455 cur = (start >> ord) & ~1U;
1456 buddy = mb_find_buddy(e4b, ord, &max);
1457 mb_clear_bit(cur, buddy);
1458 mb_clear_bit(cur + 1, buddy);
1459 e4b->bd_info->bb_counters[ord]++;
1460 e4b->bd_info->bb_counters[ord]++;
1461 }
1462 mb_set_largest_free_order(e4b->bd_sb, e4b->bd_info);
1463
1464 ext4_set_bits(e4b->bd_bitmap, ex->fe_start, len0);
1465 mb_check_buddy(e4b);
1466
1467 return ret;
1468 }
1469
1470 /*
1471 * Must be called under group lock!
1472 */
1473 static void ext4_mb_use_best_found(struct ext4_allocation_context *ac,
1474 struct ext4_buddy *e4b)
1475 {
1476 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1477 int ret;
1478
1479 BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group);
1480 BUG_ON(ac->ac_status == AC_STATUS_FOUND);
1481
1482 ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len);
1483 ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical;
1484 ret = mb_mark_used(e4b, &ac->ac_b_ex);
1485
1486 /* preallocation can change ac_b_ex, thus we store actually
1487 * allocated blocks for history */
1488 ac->ac_f_ex = ac->ac_b_ex;
1489
1490 ac->ac_status = AC_STATUS_FOUND;
1491 ac->ac_tail = ret & 0xffff;
1492 ac->ac_buddy = ret >> 16;
1493
1494 /*
1495 * take the page reference. We want the page to be pinned
1496 * so that we don't get a ext4_mb_init_cache_call for this
1497 * group until we update the bitmap. That would mean we
1498 * double allocate blocks. The reference is dropped
1499 * in ext4_mb_release_context
1500 */
1501 ac->ac_bitmap_page = e4b->bd_bitmap_page;
1502 get_page(ac->ac_bitmap_page);
1503 ac->ac_buddy_page = e4b->bd_buddy_page;
1504 get_page(ac->ac_buddy_page);
1505 /* store last allocated for subsequent stream allocation */
1506 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
1507 spin_lock(&sbi->s_md_lock);
1508 sbi->s_mb_last_group = ac->ac_f_ex.fe_group;
1509 sbi->s_mb_last_start = ac->ac_f_ex.fe_start;
1510 spin_unlock(&sbi->s_md_lock);
1511 }
1512 }
1513
1514 /*
1515 * regular allocator, for general purposes allocation
1516 */
1517
1518 static void ext4_mb_check_limits(struct ext4_allocation_context *ac,
1519 struct ext4_buddy *e4b,
1520 int finish_group)
1521 {
1522 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1523 struct ext4_free_extent *bex = &ac->ac_b_ex;
1524 struct ext4_free_extent *gex = &ac->ac_g_ex;
1525 struct ext4_free_extent ex;
1526 int max;
1527
1528 if (ac->ac_status == AC_STATUS_FOUND)
1529 return;
1530 /*
1531 * We don't want to scan for a whole year
1532 */
1533 if (ac->ac_found > sbi->s_mb_max_to_scan &&
1534 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1535 ac->ac_status = AC_STATUS_BREAK;
1536 return;
1537 }
1538
1539 /*
1540 * Haven't found good chunk so far, let's continue
1541 */
1542 if (bex->fe_len < gex->fe_len)
1543 return;
1544
1545 if ((finish_group || ac->ac_found > sbi->s_mb_min_to_scan)
1546 && bex->fe_group == e4b->bd_group) {
1547 /* recheck chunk's availability - we don't know
1548 * when it was found (within this lock-unlock
1549 * period or not) */
1550 max = mb_find_extent(e4b, bex->fe_start, gex->fe_len, &ex);
1551 if (max >= gex->fe_len) {
1552 ext4_mb_use_best_found(ac, e4b);
1553 return;
1554 }
1555 }
1556 }
1557
1558 /*
1559 * The routine checks whether found extent is good enough. If it is,
1560 * then the extent gets marked used and flag is set to the context
1561 * to stop scanning. Otherwise, the extent is compared with the
1562 * previous found extent and if new one is better, then it's stored
1563 * in the context. Later, the best found extent will be used, if
1564 * mballoc can't find good enough extent.
1565 *
1566 * FIXME: real allocation policy is to be designed yet!
1567 */
1568 static void ext4_mb_measure_extent(struct ext4_allocation_context *ac,
1569 struct ext4_free_extent *ex,
1570 struct ext4_buddy *e4b)
1571 {
1572 struct ext4_free_extent *bex = &ac->ac_b_ex;
1573 struct ext4_free_extent *gex = &ac->ac_g_ex;
1574
1575 BUG_ON(ex->fe_len <= 0);
1576 BUG_ON(ex->fe_len > EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
1577 BUG_ON(ex->fe_start >= EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
1578 BUG_ON(ac->ac_status != AC_STATUS_CONTINUE);
1579
1580 ac->ac_found++;
1581
1582 /*
1583 * The special case - take what you catch first
1584 */
1585 if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1586 *bex = *ex;
1587 ext4_mb_use_best_found(ac, e4b);
1588 return;
1589 }
1590
1591 /*
1592 * Let's check whether the chuck is good enough
1593 */
1594 if (ex->fe_len == gex->fe_len) {
1595 *bex = *ex;
1596 ext4_mb_use_best_found(ac, e4b);
1597 return;
1598 }
1599
1600 /*
1601 * If this is first found extent, just store it in the context
1602 */
1603 if (bex->fe_len == 0) {
1604 *bex = *ex;
1605 return;
1606 }
1607
1608 /*
1609 * If new found extent is better, store it in the context
1610 */
1611 if (bex->fe_len < gex->fe_len) {
1612 /* if the request isn't satisfied, any found extent
1613 * larger than previous best one is better */
1614 if (ex->fe_len > bex->fe_len)
1615 *bex = *ex;
1616 } else if (ex->fe_len > gex->fe_len) {
1617 /* if the request is satisfied, then we try to find
1618 * an extent that still satisfy the request, but is
1619 * smaller than previous one */
1620 if (ex->fe_len < bex->fe_len)
1621 *bex = *ex;
1622 }
1623
1624 ext4_mb_check_limits(ac, e4b, 0);
1625 }
1626
1627 static noinline_for_stack
1628 int ext4_mb_try_best_found(struct ext4_allocation_context *ac,
1629 struct ext4_buddy *e4b)
1630 {
1631 struct ext4_free_extent ex = ac->ac_b_ex;
1632 ext4_group_t group = ex.fe_group;
1633 int max;
1634 int err;
1635
1636 BUG_ON(ex.fe_len <= 0);
1637 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1638 if (err)
1639 return err;
1640
1641 ext4_lock_group(ac->ac_sb, group);
1642 max = mb_find_extent(e4b, ex.fe_start, ex.fe_len, &ex);
1643
1644 if (max > 0) {
1645 ac->ac_b_ex = ex;
1646 ext4_mb_use_best_found(ac, e4b);
1647 }
1648
1649 ext4_unlock_group(ac->ac_sb, group);
1650 ext4_mb_unload_buddy(e4b);
1651
1652 return 0;
1653 }
1654
1655 static noinline_for_stack
1656 int ext4_mb_find_by_goal(struct ext4_allocation_context *ac,
1657 struct ext4_buddy *e4b)
1658 {
1659 ext4_group_t group = ac->ac_g_ex.fe_group;
1660 int max;
1661 int err;
1662 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1663 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
1664 struct ext4_free_extent ex;
1665
1666 if (!(ac->ac_flags & EXT4_MB_HINT_TRY_GOAL))
1667 return 0;
1668 if (grp->bb_free == 0)
1669 return 0;
1670
1671 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1672 if (err)
1673 return err;
1674
1675 ext4_lock_group(ac->ac_sb, group);
1676 max = mb_find_extent(e4b, ac->ac_g_ex.fe_start,
1677 ac->ac_g_ex.fe_len, &ex);
1678
1679 if (max >= ac->ac_g_ex.fe_len && ac->ac_g_ex.fe_len == sbi->s_stripe) {
1680 ext4_fsblk_t start;
1681
1682 start = ext4_group_first_block_no(ac->ac_sb, e4b->bd_group) +
1683 ex.fe_start;
1684 /* use do_div to get remainder (would be 64-bit modulo) */
1685 if (do_div(start, sbi->s_stripe) == 0) {
1686 ac->ac_found++;
1687 ac->ac_b_ex = ex;
1688 ext4_mb_use_best_found(ac, e4b);
1689 }
1690 } else if (max >= ac->ac_g_ex.fe_len) {
1691 BUG_ON(ex.fe_len <= 0);
1692 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1693 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1694 ac->ac_found++;
1695 ac->ac_b_ex = ex;
1696 ext4_mb_use_best_found(ac, e4b);
1697 } else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) {
1698 /* Sometimes, caller may want to merge even small
1699 * number of blocks to an existing extent */
1700 BUG_ON(ex.fe_len <= 0);
1701 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1702 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1703 ac->ac_found++;
1704 ac->ac_b_ex = ex;
1705 ext4_mb_use_best_found(ac, e4b);
1706 }
1707 ext4_unlock_group(ac->ac_sb, group);
1708 ext4_mb_unload_buddy(e4b);
1709
1710 return 0;
1711 }
1712
1713 /*
1714 * The routine scans buddy structures (not bitmap!) from given order
1715 * to max order and tries to find big enough chunk to satisfy the req
1716 */
1717 static noinline_for_stack
1718 void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac,
1719 struct ext4_buddy *e4b)
1720 {
1721 struct super_block *sb = ac->ac_sb;
1722 struct ext4_group_info *grp = e4b->bd_info;
1723 void *buddy;
1724 int i;
1725 int k;
1726 int max;
1727
1728 BUG_ON(ac->ac_2order <= 0);
1729 for (i = ac->ac_2order; i <= sb->s_blocksize_bits + 1; i++) {
1730 if (grp->bb_counters[i] == 0)
1731 continue;
1732
1733 buddy = mb_find_buddy(e4b, i, &max);
1734 BUG_ON(buddy == NULL);
1735
1736 k = mb_find_next_zero_bit(buddy, max, 0);
1737 BUG_ON(k >= max);
1738
1739 ac->ac_found++;
1740
1741 ac->ac_b_ex.fe_len = 1 << i;
1742 ac->ac_b_ex.fe_start = k << i;
1743 ac->ac_b_ex.fe_group = e4b->bd_group;
1744
1745 ext4_mb_use_best_found(ac, e4b);
1746
1747 BUG_ON(ac->ac_b_ex.fe_len != ac->ac_g_ex.fe_len);
1748
1749 if (EXT4_SB(sb)->s_mb_stats)
1750 atomic_inc(&EXT4_SB(sb)->s_bal_2orders);
1751
1752 break;
1753 }
1754 }
1755
1756 /*
1757 * The routine scans the group and measures all found extents.
1758 * In order to optimize scanning, caller must pass number of
1759 * free blocks in the group, so the routine can know upper limit.
1760 */
1761 static noinline_for_stack
1762 void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac,
1763 struct ext4_buddy *e4b)
1764 {
1765 struct super_block *sb = ac->ac_sb;
1766 void *bitmap = e4b->bd_bitmap;
1767 struct ext4_free_extent ex;
1768 int i;
1769 int free;
1770
1771 free = e4b->bd_info->bb_free;
1772 BUG_ON(free <= 0);
1773
1774 i = e4b->bd_info->bb_first_free;
1775
1776 while (free && ac->ac_status == AC_STATUS_CONTINUE) {
1777 i = mb_find_next_zero_bit(bitmap,
1778 EXT4_CLUSTERS_PER_GROUP(sb), i);
1779 if (i >= EXT4_CLUSTERS_PER_GROUP(sb)) {
1780 /*
1781 * IF we have corrupt bitmap, we won't find any
1782 * free blocks even though group info says we
1783 * we have free blocks
1784 */
1785 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
1786 "%d free clusters as per "
1787 "group info. But bitmap says 0",
1788 free);
1789 break;
1790 }
1791
1792 mb_find_extent(e4b, i, ac->ac_g_ex.fe_len, &ex);
1793 BUG_ON(ex.fe_len <= 0);
1794 if (free < ex.fe_len) {
1795 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
1796 "%d free clusters as per "
1797 "group info. But got %d blocks",
1798 free, ex.fe_len);
1799 /*
1800 * The number of free blocks differs. This mostly
1801 * indicate that the bitmap is corrupt. So exit
1802 * without claiming the space.
1803 */
1804 break;
1805 }
1806
1807 ext4_mb_measure_extent(ac, &ex, e4b);
1808
1809 i += ex.fe_len;
1810 free -= ex.fe_len;
1811 }
1812
1813 ext4_mb_check_limits(ac, e4b, 1);
1814 }
1815
1816 /*
1817 * This is a special case for storages like raid5
1818 * we try to find stripe-aligned chunks for stripe-size-multiple requests
1819 */
1820 static noinline_for_stack
1821 void ext4_mb_scan_aligned(struct ext4_allocation_context *ac,
1822 struct ext4_buddy *e4b)
1823 {
1824 struct super_block *sb = ac->ac_sb;
1825 struct ext4_sb_info *sbi = EXT4_SB(sb);
1826 void *bitmap = e4b->bd_bitmap;
1827 struct ext4_free_extent ex;
1828 ext4_fsblk_t first_group_block;
1829 ext4_fsblk_t a;
1830 ext4_grpblk_t i;
1831 int max;
1832
1833 BUG_ON(sbi->s_stripe == 0);
1834
1835 /* find first stripe-aligned block in group */
1836 first_group_block = ext4_group_first_block_no(sb, e4b->bd_group);
1837
1838 a = first_group_block + sbi->s_stripe - 1;
1839 do_div(a, sbi->s_stripe);
1840 i = (a * sbi->s_stripe) - first_group_block;
1841
1842 while (i < EXT4_CLUSTERS_PER_GROUP(sb)) {
1843 if (!mb_test_bit(i, bitmap)) {
1844 max = mb_find_extent(e4b, i, sbi->s_stripe, &ex);
1845 if (max >= sbi->s_stripe) {
1846 ac->ac_found++;
1847 ac->ac_b_ex = ex;
1848 ext4_mb_use_best_found(ac, e4b);
1849 break;
1850 }
1851 }
1852 i += sbi->s_stripe;
1853 }
1854 }
1855
1856 /* This is now called BEFORE we load the buddy bitmap. */
1857 static int ext4_mb_good_group(struct ext4_allocation_context *ac,
1858 ext4_group_t group, int cr)
1859 {
1860 unsigned free, fragments;
1861 int flex_size = ext4_flex_bg_size(EXT4_SB(ac->ac_sb));
1862 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
1863
1864 BUG_ON(cr < 0 || cr >= 4);
1865
1866 free = grp->bb_free;
1867 if (free == 0)
1868 return 0;
1869 if (cr <= 2 && free < ac->ac_g_ex.fe_len)
1870 return 0;
1871
1872 /* We only do this if the grp has never been initialized */
1873 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
1874 int ret = ext4_mb_init_group(ac->ac_sb, group);
1875 if (ret)
1876 return 0;
1877 }
1878
1879 fragments = grp->bb_fragments;
1880 if (fragments == 0)
1881 return 0;
1882
1883 switch (cr) {
1884 case 0:
1885 BUG_ON(ac->ac_2order == 0);
1886
1887 if (grp->bb_largest_free_order < ac->ac_2order)
1888 return 0;
1889
1890 /* Avoid using the first bg of a flexgroup for data files */
1891 if ((ac->ac_flags & EXT4_MB_HINT_DATA) &&
1892 (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) &&
1893 ((group % flex_size) == 0))
1894 return 0;
1895
1896 return 1;
1897 case 1:
1898 if ((free / fragments) >= ac->ac_g_ex.fe_len)
1899 return 1;
1900 break;
1901 case 2:
1902 if (free >= ac->ac_g_ex.fe_len)
1903 return 1;
1904 break;
1905 case 3:
1906 return 1;
1907 default:
1908 BUG();
1909 }
1910
1911 return 0;
1912 }
1913
1914 static noinline_for_stack int
1915 ext4_mb_regular_allocator(struct ext4_allocation_context *ac)
1916 {
1917 ext4_group_t ngroups, group, i;
1918 int cr;
1919 int err = 0;
1920 struct ext4_sb_info *sbi;
1921 struct super_block *sb;
1922 struct ext4_buddy e4b;
1923
1924 sb = ac->ac_sb;
1925 sbi = EXT4_SB(sb);
1926 ngroups = ext4_get_groups_count(sb);
1927 /* non-extent files are limited to low blocks/groups */
1928 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)))
1929 ngroups = sbi->s_blockfile_groups;
1930
1931 BUG_ON(ac->ac_status == AC_STATUS_FOUND);
1932
1933 /* first, try the goal */
1934 err = ext4_mb_find_by_goal(ac, &e4b);
1935 if (err || ac->ac_status == AC_STATUS_FOUND)
1936 goto out;
1937
1938 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
1939 goto out;
1940
1941 /*
1942 * ac->ac2_order is set only if the fe_len is a power of 2
1943 * if ac2_order is set we also set criteria to 0 so that we
1944 * try exact allocation using buddy.
1945 */
1946 i = fls(ac->ac_g_ex.fe_len);
1947 ac->ac_2order = 0;
1948 /*
1949 * We search using buddy data only if the order of the request
1950 * is greater than equal to the sbi_s_mb_order2_reqs
1951 * You can tune it via /sys/fs/ext4/<partition>/mb_order2_req
1952 */
1953 if (i >= sbi->s_mb_order2_reqs) {
1954 /*
1955 * This should tell if fe_len is exactly power of 2
1956 */
1957 if ((ac->ac_g_ex.fe_len & (~(1 << (i - 1)))) == 0)
1958 ac->ac_2order = i - 1;
1959 }
1960
1961 /* if stream allocation is enabled, use global goal */
1962 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
1963 /* TBD: may be hot point */
1964 spin_lock(&sbi->s_md_lock);
1965 ac->ac_g_ex.fe_group = sbi->s_mb_last_group;
1966 ac->ac_g_ex.fe_start = sbi->s_mb_last_start;
1967 spin_unlock(&sbi->s_md_lock);
1968 }
1969
1970 /* Let's just scan groups to find more-less suitable blocks */
1971 cr = ac->ac_2order ? 0 : 1;
1972 /*
1973 * cr == 0 try to get exact allocation,
1974 * cr == 3 try to get anything
1975 */
1976 repeat:
1977 for (; cr < 4 && ac->ac_status == AC_STATUS_CONTINUE; cr++) {
1978 ac->ac_criteria = cr;
1979 /*
1980 * searching for the right group start
1981 * from the goal value specified
1982 */
1983 group = ac->ac_g_ex.fe_group;
1984
1985 for (i = 0; i < ngroups; group++, i++) {
1986 if (group == ngroups)
1987 group = 0;
1988
1989 /* This now checks without needing the buddy page */
1990 if (!ext4_mb_good_group(ac, group, cr))
1991 continue;
1992
1993 err = ext4_mb_load_buddy(sb, group, &e4b);
1994 if (err)
1995 goto out;
1996
1997 ext4_lock_group(sb, group);
1998
1999 /*
2000 * We need to check again after locking the
2001 * block group
2002 */
2003 if (!ext4_mb_good_group(ac, group, cr)) {
2004 ext4_unlock_group(sb, group);
2005 ext4_mb_unload_buddy(&e4b);
2006 continue;
2007 }
2008
2009 ac->ac_groups_scanned++;
2010 if (cr == 0)
2011 ext4_mb_simple_scan_group(ac, &e4b);
2012 else if (cr == 1 && sbi->s_stripe &&
2013 !(ac->ac_g_ex.fe_len % sbi->s_stripe))
2014 ext4_mb_scan_aligned(ac, &e4b);
2015 else
2016 ext4_mb_complex_scan_group(ac, &e4b);
2017
2018 ext4_unlock_group(sb, group);
2019 ext4_mb_unload_buddy(&e4b);
2020
2021 if (ac->ac_status != AC_STATUS_CONTINUE)
2022 break;
2023 }
2024 }
2025
2026 if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND &&
2027 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2028 /*
2029 * We've been searching too long. Let's try to allocate
2030 * the best chunk we've found so far
2031 */
2032
2033 ext4_mb_try_best_found(ac, &e4b);
2034 if (ac->ac_status != AC_STATUS_FOUND) {
2035 /*
2036 * Someone more lucky has already allocated it.
2037 * The only thing we can do is just take first
2038 * found block(s)
2039 printk(KERN_DEBUG "EXT4-fs: someone won our chunk\n");
2040 */
2041 ac->ac_b_ex.fe_group = 0;
2042 ac->ac_b_ex.fe_start = 0;
2043 ac->ac_b_ex.fe_len = 0;
2044 ac->ac_status = AC_STATUS_CONTINUE;
2045 ac->ac_flags |= EXT4_MB_HINT_FIRST;
2046 cr = 3;
2047 atomic_inc(&sbi->s_mb_lost_chunks);
2048 goto repeat;
2049 }
2050 }
2051 out:
2052 return err;
2053 }
2054
2055 static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos)
2056 {
2057 struct super_block *sb = seq->private;
2058 ext4_group_t group;
2059
2060 if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2061 return NULL;
2062 group = *pos + 1;
2063 return (void *) ((unsigned long) group);
2064 }
2065
2066 static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos)
2067 {
2068 struct super_block *sb = seq->private;
2069 ext4_group_t group;
2070
2071 ++*pos;
2072 if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2073 return NULL;
2074 group = *pos + 1;
2075 return (void *) ((unsigned long) group);
2076 }
2077
2078 static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v)
2079 {
2080 struct super_block *sb = seq->private;
2081 ext4_group_t group = (ext4_group_t) ((unsigned long) v);
2082 int i;
2083 int err, buddy_loaded = 0;
2084 struct ext4_buddy e4b;
2085 struct ext4_group_info *grinfo;
2086 struct sg {
2087 struct ext4_group_info info;
2088 ext4_grpblk_t counters[16];
2089 } sg;
2090
2091 group--;
2092 if (group == 0)
2093 seq_printf(seq, "#%-5s: %-5s %-5s %-5s "
2094 "[ %-5s %-5s %-5s %-5s %-5s %-5s %-5s "
2095 "%-5s %-5s %-5s %-5s %-5s %-5s %-5s ]\n",
2096 "group", "free", "frags", "first",
2097 "2^0", "2^1", "2^2", "2^3", "2^4", "2^5", "2^6",
2098 "2^7", "2^8", "2^9", "2^10", "2^11", "2^12", "2^13");
2099
2100 i = (sb->s_blocksize_bits + 2) * sizeof(sg.info.bb_counters[0]) +
2101 sizeof(struct ext4_group_info);
2102 grinfo = ext4_get_group_info(sb, group);
2103 /* Load the group info in memory only if not already loaded. */
2104 if (unlikely(EXT4_MB_GRP_NEED_INIT(grinfo))) {
2105 err = ext4_mb_load_buddy(sb, group, &e4b);
2106 if (err) {
2107 seq_printf(seq, "#%-5u: I/O error\n", group);
2108 return 0;
2109 }
2110 buddy_loaded = 1;
2111 }
2112
2113 memcpy(&sg, ext4_get_group_info(sb, group), i);
2114
2115 if (buddy_loaded)
2116 ext4_mb_unload_buddy(&e4b);
2117
2118 seq_printf(seq, "#%-5u: %-5u %-5u %-5u [", group, sg.info.bb_free,
2119 sg.info.bb_fragments, sg.info.bb_first_free);
2120 for (i = 0; i <= 13; i++)
2121 seq_printf(seq, " %-5u", i <= sb->s_blocksize_bits + 1 ?
2122 sg.info.bb_counters[i] : 0);
2123 seq_printf(seq, " ]\n");
2124
2125 return 0;
2126 }
2127
2128 static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v)
2129 {
2130 }
2131
2132 static const struct seq_operations ext4_mb_seq_groups_ops = {
2133 .start = ext4_mb_seq_groups_start,
2134 .next = ext4_mb_seq_groups_next,
2135 .stop = ext4_mb_seq_groups_stop,
2136 .show = ext4_mb_seq_groups_show,
2137 };
2138
2139 static int ext4_mb_seq_groups_open(struct inode *inode, struct file *file)
2140 {
2141 struct super_block *sb = PDE(inode)->data;
2142 int rc;
2143
2144 rc = seq_open(file, &ext4_mb_seq_groups_ops);
2145 if (rc == 0) {
2146 struct seq_file *m = file->private_data;
2147 m->private = sb;
2148 }
2149 return rc;
2150
2151 }
2152
2153 static const struct file_operations ext4_mb_seq_groups_fops = {
2154 .owner = THIS_MODULE,
2155 .open = ext4_mb_seq_groups_open,
2156 .read = seq_read,
2157 .llseek = seq_lseek,
2158 .release = seq_release,
2159 };
2160
2161 static struct kmem_cache *get_groupinfo_cache(int blocksize_bits)
2162 {
2163 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
2164 struct kmem_cache *cachep = ext4_groupinfo_caches[cache_index];
2165
2166 BUG_ON(!cachep);
2167 return cachep;
2168 }
2169
2170 /*
2171 * Allocate the top-level s_group_info array for the specified number
2172 * of groups
2173 */
2174 int ext4_mb_alloc_groupinfo(struct super_block *sb, ext4_group_t ngroups)
2175 {
2176 struct ext4_sb_info *sbi = EXT4_SB(sb);
2177 unsigned size;
2178 struct ext4_group_info ***new_groupinfo;
2179
2180 size = (ngroups + EXT4_DESC_PER_BLOCK(sb) - 1) >>
2181 EXT4_DESC_PER_BLOCK_BITS(sb);
2182 if (size <= sbi->s_group_info_size)
2183 return 0;
2184
2185 size = roundup_pow_of_two(sizeof(*sbi->s_group_info) * size);
2186 new_groupinfo = ext4_kvzalloc(size, GFP_KERNEL);
2187 if (!new_groupinfo) {
2188 ext4_msg(sb, KERN_ERR, "can't allocate buddy meta group");
2189 return -ENOMEM;
2190 }
2191 if (sbi->s_group_info) {
2192 memcpy(new_groupinfo, sbi->s_group_info,
2193 sbi->s_group_info_size * sizeof(*sbi->s_group_info));
2194 ext4_kvfree(sbi->s_group_info);
2195 }
2196 sbi->s_group_info = new_groupinfo;
2197 sbi->s_group_info_size = size / sizeof(*sbi->s_group_info);
2198 ext4_debug("allocated s_groupinfo array for %d meta_bg's\n",
2199 sbi->s_group_info_size);
2200 return 0;
2201 }
2202
2203 /* Create and initialize ext4_group_info data for the given group. */
2204 int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group,
2205 struct ext4_group_desc *desc)
2206 {
2207 int i;
2208 int metalen = 0;
2209 struct ext4_sb_info *sbi = EXT4_SB(sb);
2210 struct ext4_group_info **meta_group_info;
2211 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2212
2213 /*
2214 * First check if this group is the first of a reserved block.
2215 * If it's true, we have to allocate a new table of pointers
2216 * to ext4_group_info structures
2217 */
2218 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
2219 metalen = sizeof(*meta_group_info) <<
2220 EXT4_DESC_PER_BLOCK_BITS(sb);
2221 meta_group_info = kmalloc(metalen, GFP_KERNEL);
2222 if (meta_group_info == NULL) {
2223 ext4_msg(sb, KERN_ERR, "can't allocate mem "
2224 "for a buddy group");
2225 goto exit_meta_group_info;
2226 }
2227 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)] =
2228 meta_group_info;
2229 }
2230
2231 meta_group_info =
2232 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)];
2233 i = group & (EXT4_DESC_PER_BLOCK(sb) - 1);
2234
2235 meta_group_info[i] = kmem_cache_zalloc(cachep, GFP_KERNEL);
2236 if (meta_group_info[i] == NULL) {
2237 ext4_msg(sb, KERN_ERR, "can't allocate buddy mem");
2238 goto exit_group_info;
2239 }
2240 set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT,
2241 &(meta_group_info[i]->bb_state));
2242
2243 /*
2244 * initialize bb_free to be able to skip
2245 * empty groups without initialization
2246 */
2247 if (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
2248 meta_group_info[i]->bb_free =
2249 ext4_free_clusters_after_init(sb, group, desc);
2250 } else {
2251 meta_group_info[i]->bb_free =
2252 ext4_free_group_clusters(sb, desc);
2253 }
2254
2255 INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list);
2256 init_rwsem(&meta_group_info[i]->alloc_sem);
2257 meta_group_info[i]->bb_free_root = RB_ROOT;
2258 meta_group_info[i]->bb_largest_free_order = -1; /* uninit */
2259
2260 #ifdef DOUBLE_CHECK
2261 {
2262 struct buffer_head *bh;
2263 meta_group_info[i]->bb_bitmap =
2264 kmalloc(sb->s_blocksize, GFP_KERNEL);
2265 BUG_ON(meta_group_info[i]->bb_bitmap == NULL);
2266 bh = ext4_read_block_bitmap(sb, group);
2267 BUG_ON(bh == NULL);
2268 memcpy(meta_group_info[i]->bb_bitmap, bh->b_data,
2269 sb->s_blocksize);
2270 put_bh(bh);
2271 }
2272 #endif
2273
2274 return 0;
2275
2276 exit_group_info:
2277 /* If a meta_group_info table has been allocated, release it now */
2278 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
2279 kfree(sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)]);
2280 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)] = NULL;
2281 }
2282 exit_meta_group_info:
2283 return -ENOMEM;
2284 } /* ext4_mb_add_groupinfo */
2285
2286 static int ext4_mb_init_backend(struct super_block *sb)
2287 {
2288 ext4_group_t ngroups = ext4_get_groups_count(sb);
2289 ext4_group_t i;
2290 struct ext4_sb_info *sbi = EXT4_SB(sb);
2291 int err;
2292 struct ext4_group_desc *desc;
2293 struct kmem_cache *cachep;
2294
2295 err = ext4_mb_alloc_groupinfo(sb, ngroups);
2296 if (err)
2297 return err;
2298
2299 sbi->s_buddy_cache = new_inode(sb);
2300 if (sbi->s_buddy_cache == NULL) {
2301 ext4_msg(sb, KERN_ERR, "can't get new inode");
2302 goto err_freesgi;
2303 }
2304 /* To avoid potentially colliding with an valid on-disk inode number,
2305 * use EXT4_BAD_INO for the buddy cache inode number. This inode is
2306 * not in the inode hash, so it should never be found by iget(), but
2307 * this will avoid confusion if it ever shows up during debugging. */
2308 sbi->s_buddy_cache->i_ino = EXT4_BAD_INO;
2309 EXT4_I(sbi->s_buddy_cache)->i_disksize = 0;
2310 for (i = 0; i < ngroups; i++) {
2311 desc = ext4_get_group_desc(sb, i, NULL);
2312 if (desc == NULL) {
2313 ext4_msg(sb, KERN_ERR, "can't read descriptor %u", i);
2314 goto err_freebuddy;
2315 }
2316 if (ext4_mb_add_groupinfo(sb, i, desc) != 0)
2317 goto err_freebuddy;
2318 }
2319
2320 return 0;
2321
2322 err_freebuddy:
2323 cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2324 while (i-- > 0)
2325 kmem_cache_free(cachep, ext4_get_group_info(sb, i));
2326 i = sbi->s_group_info_size;
2327 while (i-- > 0)
2328 kfree(sbi->s_group_info[i]);
2329 iput(sbi->s_buddy_cache);
2330 err_freesgi:
2331 ext4_kvfree(sbi->s_group_info);
2332 return -ENOMEM;
2333 }
2334
2335 static void ext4_groupinfo_destroy_slabs(void)
2336 {
2337 int i;
2338
2339 for (i = 0; i < NR_GRPINFO_CACHES; i++) {
2340 if (ext4_groupinfo_caches[i])
2341 kmem_cache_destroy(ext4_groupinfo_caches[i]);
2342 ext4_groupinfo_caches[i] = NULL;
2343 }
2344 }
2345
2346 static int ext4_groupinfo_create_slab(size_t size)
2347 {
2348 static DEFINE_MUTEX(ext4_grpinfo_slab_create_mutex);
2349 int slab_size;
2350 int blocksize_bits = order_base_2(size);
2351 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
2352 struct kmem_cache *cachep;
2353
2354 if (cache_index >= NR_GRPINFO_CACHES)
2355 return -EINVAL;
2356
2357 if (unlikely(cache_index < 0))
2358 cache_index = 0;
2359
2360 mutex_lock(&ext4_grpinfo_slab_create_mutex);
2361 if (ext4_groupinfo_caches[cache_index]) {
2362 mutex_unlock(&ext4_grpinfo_slab_create_mutex);
2363 return 0; /* Already created */
2364 }
2365
2366 slab_size = offsetof(struct ext4_group_info,
2367 bb_counters[blocksize_bits + 2]);
2368
2369 cachep = kmem_cache_create(ext4_groupinfo_slab_names[cache_index],
2370 slab_size, 0, SLAB_RECLAIM_ACCOUNT,
2371 NULL);
2372
2373 ext4_groupinfo_caches[cache_index] = cachep;
2374
2375 mutex_unlock(&ext4_grpinfo_slab_create_mutex);
2376 if (!cachep) {
2377 printk(KERN_EMERG
2378 "EXT4-fs: no memory for groupinfo slab cache\n");
2379 return -ENOMEM;
2380 }
2381
2382 return 0;
2383 }
2384
2385 int ext4_mb_init(struct super_block *sb)
2386 {
2387 struct ext4_sb_info *sbi = EXT4_SB(sb);
2388 unsigned i, j;
2389 unsigned offset;
2390 unsigned max;
2391 int ret;
2392
2393 i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_offsets);
2394
2395 sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL);
2396 if (sbi->s_mb_offsets == NULL) {
2397 ret = -ENOMEM;
2398 goto out;
2399 }
2400
2401 i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_maxs);
2402 sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL);
2403 if (sbi->s_mb_maxs == NULL) {
2404 ret = -ENOMEM;
2405 goto out;
2406 }
2407
2408 ret = ext4_groupinfo_create_slab(sb->s_blocksize);
2409 if (ret < 0)
2410 goto out;
2411
2412 /* order 0 is regular bitmap */
2413 sbi->s_mb_maxs[0] = sb->s_blocksize << 3;
2414 sbi->s_mb_offsets[0] = 0;
2415
2416 i = 1;
2417 offset = 0;
2418 max = sb->s_blocksize << 2;
2419 do {
2420 sbi->s_mb_offsets[i] = offset;
2421 sbi->s_mb_maxs[i] = max;
2422 offset += 1 << (sb->s_blocksize_bits - i);
2423 max = max >> 1;
2424 i++;
2425 } while (i <= sb->s_blocksize_bits + 1);
2426
2427 spin_lock_init(&sbi->s_md_lock);
2428 spin_lock_init(&sbi->s_bal_lock);
2429
2430 sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN;
2431 sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN;
2432 sbi->s_mb_stats = MB_DEFAULT_STATS;
2433 sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD;
2434 sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS;
2435 /*
2436 * The default group preallocation is 512, which for 4k block
2437 * sizes translates to 2 megabytes. However for bigalloc file
2438 * systems, this is probably too big (i.e, if the cluster size
2439 * is 1 megabyte, then group preallocation size becomes half a
2440 * gigabyte!). As a default, we will keep a two megabyte
2441 * group pralloc size for cluster sizes up to 64k, and after
2442 * that, we will force a minimum group preallocation size of
2443 * 32 clusters. This translates to 8 megs when the cluster
2444 * size is 256k, and 32 megs when the cluster size is 1 meg,
2445 * which seems reasonable as a default.
2446 */
2447 sbi->s_mb_group_prealloc = max(MB_DEFAULT_GROUP_PREALLOC >>
2448 sbi->s_cluster_bits, 32);
2449 /*
2450 * If there is a s_stripe > 1, then we set the s_mb_group_prealloc
2451 * to the lowest multiple of s_stripe which is bigger than
2452 * the s_mb_group_prealloc as determined above. We want
2453 * the preallocation size to be an exact multiple of the
2454 * RAID stripe size so that preallocations don't fragment
2455 * the stripes.
2456 */
2457 if (sbi->s_stripe > 1) {
2458 sbi->s_mb_group_prealloc = roundup(
2459 sbi->s_mb_group_prealloc, sbi->s_stripe);
2460 }
2461
2462 sbi->s_locality_groups = alloc_percpu(struct ext4_locality_group);
2463 if (sbi->s_locality_groups == NULL) {
2464 ret = -ENOMEM;
2465 goto out_free_groupinfo_slab;
2466 }
2467 for_each_possible_cpu(i) {
2468 struct ext4_locality_group *lg;
2469 lg = per_cpu_ptr(sbi->s_locality_groups, i);
2470 mutex_init(&lg->lg_mutex);
2471 for (j = 0; j < PREALLOC_TB_SIZE; j++)
2472 INIT_LIST_HEAD(&lg->lg_prealloc_list[j]);
2473 spin_lock_init(&lg->lg_prealloc_lock);
2474 }
2475
2476 /* init file for buddy data */
2477 ret = ext4_mb_init_backend(sb);
2478 if (ret != 0)
2479 goto out_free_locality_groups;
2480
2481 if (sbi->s_proc)
2482 proc_create_data("mb_groups", S_IRUGO, sbi->s_proc,
2483 &ext4_mb_seq_groups_fops, sb);
2484
2485 return 0;
2486
2487 out_free_locality_groups:
2488 free_percpu(sbi->s_locality_groups);
2489 sbi->s_locality_groups = NULL;
2490 out_free_groupinfo_slab:
2491 ext4_groupinfo_destroy_slabs();
2492 out:
2493 kfree(sbi->s_mb_offsets);
2494 sbi->s_mb_offsets = NULL;
2495 kfree(sbi->s_mb_maxs);
2496 sbi->s_mb_maxs = NULL;
2497 return ret;
2498 }
2499
2500 /* need to called with the ext4 group lock held */
2501 static void ext4_mb_cleanup_pa(struct ext4_group_info *grp)
2502 {
2503 struct ext4_prealloc_space *pa;
2504 struct list_head *cur, *tmp;
2505 int count = 0;
2506
2507 list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) {
2508 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
2509 list_del(&pa->pa_group_list);
2510 count++;
2511 kmem_cache_free(ext4_pspace_cachep, pa);
2512 }
2513 if (count)
2514 mb_debug(1, "mballoc: %u PAs left\n", count);
2515
2516 }
2517
2518 int ext4_mb_release(struct super_block *sb)
2519 {
2520 ext4_group_t ngroups = ext4_get_groups_count(sb);
2521 ext4_group_t i;
2522 int num_meta_group_infos;
2523 struct ext4_group_info *grinfo;
2524 struct ext4_sb_info *sbi = EXT4_SB(sb);
2525 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2526
2527 if (sbi->s_proc)
2528 remove_proc_entry("mb_groups", sbi->s_proc);
2529
2530 if (sbi->s_group_info) {
2531 for (i = 0; i < ngroups; i++) {
2532 grinfo = ext4_get_group_info(sb, i);
2533 #ifdef DOUBLE_CHECK
2534 kfree(grinfo->bb_bitmap);
2535 #endif
2536 ext4_lock_group(sb, i);
2537 ext4_mb_cleanup_pa(grinfo);
2538 ext4_unlock_group(sb, i);
2539 kmem_cache_free(cachep, grinfo);
2540 }
2541 num_meta_group_infos = (ngroups +
2542 EXT4_DESC_PER_BLOCK(sb) - 1) >>
2543 EXT4_DESC_PER_BLOCK_BITS(sb);
2544 for (i = 0; i < num_meta_group_infos; i++)
2545 kfree(sbi->s_group_info[i]);
2546 ext4_kvfree(sbi->s_group_info);
2547 }
2548 kfree(sbi->s_mb_offsets);
2549 kfree(sbi->s_mb_maxs);
2550 if (sbi->s_buddy_cache)
2551 iput(sbi->s_buddy_cache);
2552 if (sbi->s_mb_stats) {
2553 ext4_msg(sb, KERN_INFO,
2554 "mballoc: %u blocks %u reqs (%u success)",
2555 atomic_read(&sbi->s_bal_allocated),
2556 atomic_read(&sbi->s_bal_reqs),
2557 atomic_read(&sbi->s_bal_success));
2558 ext4_msg(sb, KERN_INFO,
2559 "mballoc: %u extents scanned, %u goal hits, "
2560 "%u 2^N hits, %u breaks, %u lost",
2561 atomic_read(&sbi->s_bal_ex_scanned),
2562 atomic_read(&sbi->s_bal_goals),
2563 atomic_read(&sbi->s_bal_2orders),
2564 atomic_read(&sbi->s_bal_breaks),
2565 atomic_read(&sbi->s_mb_lost_chunks));
2566 ext4_msg(sb, KERN_INFO,
2567 "mballoc: %lu generated and it took %Lu",
2568 sbi->s_mb_buddies_generated,
2569 sbi->s_mb_generation_time);
2570 ext4_msg(sb, KERN_INFO,
2571 "mballoc: %u preallocated, %u discarded",
2572 atomic_read(&sbi->s_mb_preallocated),
2573 atomic_read(&sbi->s_mb_discarded));
2574 }
2575
2576 free_percpu(sbi->s_locality_groups);
2577
2578 return 0;
2579 }
2580
2581 static inline int ext4_issue_discard(struct super_block *sb,
2582 ext4_group_t block_group, ext4_grpblk_t cluster, int count)
2583 {
2584 ext4_fsblk_t discard_block;
2585
2586 discard_block = (EXT4_C2B(EXT4_SB(sb), cluster) +
2587 ext4_group_first_block_no(sb, block_group));
2588 count = EXT4_C2B(EXT4_SB(sb), count);
2589 trace_ext4_discard_blocks(sb,
2590 (unsigned long long) discard_block, count);
2591 return sb_issue_discard(sb, discard_block, count, GFP_NOFS, 0);
2592 }
2593
2594 /*
2595 * This function is called by the jbd2 layer once the commit has finished,
2596 * so we know we can free the blocks that were released with that commit.
2597 */
2598 static void ext4_free_data_callback(struct super_block *sb,
2599 struct ext4_journal_cb_entry *jce,
2600 int rc)
2601 {
2602 struct ext4_free_data *entry = (struct ext4_free_data *)jce;
2603 struct ext4_buddy e4b;
2604 struct ext4_group_info *db;
2605 int err, count = 0, count2 = 0;
2606
2607 mb_debug(1, "gonna free %u blocks in group %u (0x%p):",
2608 entry->efd_count, entry->efd_group, entry);
2609
2610 if (test_opt(sb, DISCARD))
2611 ext4_issue_discard(sb, entry->efd_group,
2612 entry->efd_start_cluster, entry->efd_count);
2613
2614 err = ext4_mb_load_buddy(sb, entry->efd_group, &e4b);
2615 /* we expect to find existing buddy because it's pinned */
2616 BUG_ON(err != 0);
2617
2618
2619 db = e4b.bd_info;
2620 /* there are blocks to put in buddy to make them really free */
2621 count += entry->efd_count;
2622 count2++;
2623 ext4_lock_group(sb, entry->efd_group);
2624 /* Take it out of per group rb tree */
2625 rb_erase(&entry->efd_node, &(db->bb_free_root));
2626 mb_free_blocks(NULL, &e4b, entry->efd_start_cluster, entry->efd_count);
2627
2628 /*
2629 * Clear the trimmed flag for the group so that the next
2630 * ext4_trim_fs can trim it.
2631 * If the volume is mounted with -o discard, online discard
2632 * is supported and the free blocks will be trimmed online.
2633 */
2634 if (!test_opt(sb, DISCARD))
2635 EXT4_MB_GRP_CLEAR_TRIMMED(db);
2636
2637 if (!db->bb_free_root.rb_node) {
2638 /* No more items in the per group rb tree
2639 * balance refcounts from ext4_mb_free_metadata()
2640 */
2641 page_cache_release(e4b.bd_buddy_page);
2642 page_cache_release(e4b.bd_bitmap_page);
2643 }
2644 ext4_unlock_group(sb, entry->efd_group);
2645 kmem_cache_free(ext4_free_data_cachep, entry);
2646 ext4_mb_unload_buddy(&e4b);
2647
2648 mb_debug(1, "freed %u blocks in %u structures\n", count, count2);
2649 }
2650
2651 #ifdef CONFIG_EXT4_DEBUG
2652 u8 mb_enable_debug __read_mostly;
2653
2654 static struct dentry *debugfs_dir;
2655 static struct dentry *debugfs_debug;
2656
2657 static void __init ext4_create_debugfs_entry(void)
2658 {
2659 debugfs_dir = debugfs_create_dir("ext4", NULL);
2660 if (debugfs_dir)
2661 debugfs_debug = debugfs_create_u8("mballoc-debug",
2662 S_IRUGO | S_IWUSR,
2663 debugfs_dir,
2664 &mb_enable_debug);
2665 }
2666
2667 static void ext4_remove_debugfs_entry(void)
2668 {
2669 debugfs_remove(debugfs_debug);
2670 debugfs_remove(debugfs_dir);
2671 }
2672
2673 #else
2674
2675 static void __init ext4_create_debugfs_entry(void)
2676 {
2677 }
2678
2679 static void ext4_remove_debugfs_entry(void)
2680 {
2681 }
2682
2683 #endif
2684
2685 int __init ext4_init_mballoc(void)
2686 {
2687 ext4_pspace_cachep = KMEM_CACHE(ext4_prealloc_space,
2688 SLAB_RECLAIM_ACCOUNT);
2689 if (ext4_pspace_cachep == NULL)
2690 return -ENOMEM;
2691
2692 ext4_ac_cachep = KMEM_CACHE(ext4_allocation_context,
2693 SLAB_RECLAIM_ACCOUNT);
2694 if (ext4_ac_cachep == NULL) {
2695 kmem_cache_destroy(ext4_pspace_cachep);
2696 return -ENOMEM;
2697 }
2698
2699 ext4_free_data_cachep = KMEM_CACHE(ext4_free_data,
2700 SLAB_RECLAIM_ACCOUNT);
2701 if (ext4_free_data_cachep == NULL) {
2702 kmem_cache_destroy(ext4_pspace_cachep);
2703 kmem_cache_destroy(ext4_ac_cachep);
2704 return -ENOMEM;
2705 }
2706 ext4_create_debugfs_entry();
2707 return 0;
2708 }
2709
2710 void ext4_exit_mballoc(void)
2711 {
2712 /*
2713 * Wait for completion of call_rcu()'s on ext4_pspace_cachep
2714 * before destroying the slab cache.
2715 */
2716 rcu_barrier();
2717 kmem_cache_destroy(ext4_pspace_cachep);
2718 kmem_cache_destroy(ext4_ac_cachep);
2719 kmem_cache_destroy(ext4_free_data_cachep);
2720 ext4_groupinfo_destroy_slabs();
2721 ext4_remove_debugfs_entry();
2722 }
2723
2724
2725 /*
2726 * Check quota and mark chosen space (ac->ac_b_ex) non-free in bitmaps
2727 * Returns 0 if success or error code
2728 */
2729 static noinline_for_stack int
2730 ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac,
2731 handle_t *handle, unsigned int reserv_clstrs)
2732 {
2733 struct buffer_head *bitmap_bh = NULL;
2734 struct ext4_group_desc *gdp;
2735 struct buffer_head *gdp_bh;
2736 struct ext4_sb_info *sbi;
2737 struct super_block *sb;
2738 ext4_fsblk_t block;
2739 int err, len;
2740
2741 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
2742 BUG_ON(ac->ac_b_ex.fe_len <= 0);
2743
2744 sb = ac->ac_sb;
2745 sbi = EXT4_SB(sb);
2746
2747 err = -EIO;
2748 bitmap_bh = ext4_read_block_bitmap(sb, ac->ac_b_ex.fe_group);
2749 if (!bitmap_bh)
2750 goto out_err;
2751
2752 err = ext4_journal_get_write_access(handle, bitmap_bh);
2753 if (err)
2754 goto out_err;
2755
2756 err = -EIO;
2757 gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, &gdp_bh);
2758 if (!gdp)
2759 goto out_err;
2760
2761 ext4_debug("using block group %u(%d)\n", ac->ac_b_ex.fe_group,
2762 ext4_free_group_clusters(sb, gdp));
2763
2764 err = ext4_journal_get_write_access(handle, gdp_bh);
2765 if (err)
2766 goto out_err;
2767
2768 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
2769
2770 len = EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
2771 if (!ext4_data_block_valid(sbi, block, len)) {
2772 ext4_error(sb, "Allocating blocks %llu-%llu which overlap "
2773 "fs metadata", block, block+len);
2774 /* File system mounted not to panic on error
2775 * Fix the bitmap and repeat the block allocation
2776 * We leak some of the blocks here.
2777 */
2778 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
2779 ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
2780 ac->ac_b_ex.fe_len);
2781 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
2782 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
2783 if (!err)
2784 err = -EAGAIN;
2785 goto out_err;
2786 }
2787
2788 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
2789 #ifdef AGGRESSIVE_CHECK
2790 {
2791 int i;
2792 for (i = 0; i < ac->ac_b_ex.fe_len; i++) {
2793 BUG_ON(mb_test_bit(ac->ac_b_ex.fe_start + i,
2794 bitmap_bh->b_data));
2795 }
2796 }
2797 #endif
2798 ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
2799 ac->ac_b_ex.fe_len);
2800 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
2801 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
2802 ext4_free_group_clusters_set(sb, gdp,
2803 ext4_free_clusters_after_init(sb,
2804 ac->ac_b_ex.fe_group, gdp));
2805 }
2806 len = ext4_free_group_clusters(sb, gdp) - ac->ac_b_ex.fe_len;
2807 ext4_free_group_clusters_set(sb, gdp, len);
2808 ext4_block_bitmap_csum_set(sb, ac->ac_b_ex.fe_group, gdp, bitmap_bh);
2809 ext4_group_desc_csum_set(sb, ac->ac_b_ex.fe_group, gdp);
2810
2811 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
2812 percpu_counter_sub(&sbi->s_freeclusters_counter, ac->ac_b_ex.fe_len);
2813 /*
2814 * Now reduce the dirty block count also. Should not go negative
2815 */
2816 if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED))
2817 /* release all the reserved blocks if non delalloc */
2818 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
2819 reserv_clstrs);
2820
2821 if (sbi->s_log_groups_per_flex) {
2822 ext4_group_t flex_group = ext4_flex_group(sbi,
2823 ac->ac_b_ex.fe_group);
2824 atomic_sub(ac->ac_b_ex.fe_len,
2825 &sbi->s_flex_groups[flex_group].free_clusters);
2826 }
2827
2828 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
2829 if (err)
2830 goto out_err;
2831 err = ext4_handle_dirty_metadata(handle, NULL, gdp_bh);
2832
2833 out_err:
2834 brelse(bitmap_bh);
2835 return err;
2836 }
2837
2838 /*
2839 * here we normalize request for locality group
2840 * Group request are normalized to s_mb_group_prealloc, which goes to
2841 * s_strip if we set the same via mount option.
2842 * s_mb_group_prealloc can be configured via
2843 * /sys/fs/ext4/<partition>/mb_group_prealloc
2844 *
2845 * XXX: should we try to preallocate more than the group has now?
2846 */
2847 static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac)
2848 {
2849 struct super_block *sb = ac->ac_sb;
2850 struct ext4_locality_group *lg = ac->ac_lg;
2851
2852 BUG_ON(lg == NULL);
2853 ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc;
2854 mb_debug(1, "#%u: goal %u blocks for locality group\n",
2855 current->pid, ac->ac_g_ex.fe_len);
2856 }
2857
2858 /*
2859 * Normalization means making request better in terms of
2860 * size and alignment
2861 */
2862 static noinline_for_stack void
2863 ext4_mb_normalize_request(struct ext4_allocation_context *ac,
2864 struct ext4_allocation_request *ar)
2865 {
2866 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
2867 int bsbits, max;
2868 ext4_lblk_t end;
2869 loff_t size, start_off;
2870 loff_t orig_size __maybe_unused;
2871 ext4_lblk_t start;
2872 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
2873 struct ext4_prealloc_space *pa;
2874
2875 /* do normalize only data requests, metadata requests
2876 do not need preallocation */
2877 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
2878 return;
2879
2880 /* sometime caller may want exact blocks */
2881 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
2882 return;
2883
2884 /* caller may indicate that preallocation isn't
2885 * required (it's a tail, for example) */
2886 if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC)
2887 return;
2888
2889 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) {
2890 ext4_mb_normalize_group_request(ac);
2891 return ;
2892 }
2893
2894 bsbits = ac->ac_sb->s_blocksize_bits;
2895
2896 /* first, let's learn actual file size
2897 * given current request is allocated */
2898 size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len);
2899 size = size << bsbits;
2900 if (size < i_size_read(ac->ac_inode))
2901 size = i_size_read(ac->ac_inode);
2902 orig_size = size;
2903
2904 /* max size of free chunks */
2905 max = 2 << bsbits;
2906
2907 #define NRL_CHECK_SIZE(req, size, max, chunk_size) \
2908 (req <= (size) || max <= (chunk_size))
2909
2910 /* first, try to predict filesize */
2911 /* XXX: should this table be tunable? */
2912 start_off = 0;
2913 if (size <= 16 * 1024) {
2914 size = 16 * 1024;
2915 } else if (size <= 32 * 1024) {
2916 size = 32 * 1024;
2917 } else if (size <= 64 * 1024) {
2918 size = 64 * 1024;
2919 } else if (size <= 128 * 1024) {
2920 size = 128 * 1024;
2921 } else if (size <= 256 * 1024) {
2922 size = 256 * 1024;
2923 } else if (size <= 512 * 1024) {
2924 size = 512 * 1024;
2925 } else if (size <= 1024 * 1024) {
2926 size = 1024 * 1024;
2927 } else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) {
2928 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
2929 (21 - bsbits)) << 21;
2930 size = 2 * 1024 * 1024;
2931 } else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) {
2932 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
2933 (22 - bsbits)) << 22;
2934 size = 4 * 1024 * 1024;
2935 } else if (NRL_CHECK_SIZE(ac->ac_o_ex.fe_len,
2936 (8<<20)>>bsbits, max, 8 * 1024)) {
2937 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
2938 (23 - bsbits)) << 23;
2939 size = 8 * 1024 * 1024;
2940 } else {
2941 start_off = (loff_t)ac->ac_o_ex.fe_logical << bsbits;
2942 size = ac->ac_o_ex.fe_len << bsbits;
2943 }
2944 size = size >> bsbits;
2945 start = start_off >> bsbits;
2946
2947 /* don't cover already allocated blocks in selected range */
2948 if (ar->pleft && start <= ar->lleft) {
2949 size -= ar->lleft + 1 - start;
2950 start = ar->lleft + 1;
2951 }
2952 if (ar->pright && start + size - 1 >= ar->lright)
2953 size -= start + size - ar->lright;
2954
2955 end = start + size;
2956
2957 /* check we don't cross already preallocated blocks */
2958 rcu_read_lock();
2959 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
2960 ext4_lblk_t pa_end;
2961
2962 if (pa->pa_deleted)
2963 continue;
2964 spin_lock(&pa->pa_lock);
2965 if (pa->pa_deleted) {
2966 spin_unlock(&pa->pa_lock);
2967 continue;
2968 }
2969
2970 pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb),
2971 pa->pa_len);
2972
2973 /* PA must not overlap original request */
2974 BUG_ON(!(ac->ac_o_ex.fe_logical >= pa_end ||
2975 ac->ac_o_ex.fe_logical < pa->pa_lstart));
2976
2977 /* skip PAs this normalized request doesn't overlap with */
2978 if (pa->pa_lstart >= end || pa_end <= start) {
2979 spin_unlock(&pa->pa_lock);
2980 continue;
2981 }
2982 BUG_ON(pa->pa_lstart <= start && pa_end >= end);
2983
2984 /* adjust start or end to be adjacent to this pa */
2985 if (pa_end <= ac->ac_o_ex.fe_logical) {
2986 BUG_ON(pa_end < start);
2987 start = pa_end;
2988 } else if (pa->pa_lstart > ac->ac_o_ex.fe_logical) {
2989 BUG_ON(pa->pa_lstart > end);
2990 end = pa->pa_lstart;
2991 }
2992 spin_unlock(&pa->pa_lock);
2993 }
2994 rcu_read_unlock();
2995 size = end - start;
2996
2997 /* XXX: extra loop to check we really don't overlap preallocations */
2998 rcu_read_lock();
2999 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3000 ext4_lblk_t pa_end;
3001
3002 spin_lock(&pa->pa_lock);
3003 if (pa->pa_deleted == 0) {
3004 pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb),
3005 pa->pa_len);
3006 BUG_ON(!(start >= pa_end || end <= pa->pa_lstart));
3007 }
3008 spin_unlock(&pa->pa_lock);
3009 }
3010 rcu_read_unlock();
3011
3012 if (start + size <= ac->ac_o_ex.fe_logical &&
3013 start > ac->ac_o_ex.fe_logical) {
3014 ext4_msg(ac->ac_sb, KERN_ERR,
3015 "start %lu, size %lu, fe_logical %lu",
3016 (unsigned long) start, (unsigned long) size,
3017 (unsigned long) ac->ac_o_ex.fe_logical);
3018 }
3019 BUG_ON(start + size <= ac->ac_o_ex.fe_logical &&
3020 start > ac->ac_o_ex.fe_logical);
3021 BUG_ON(size <= 0 || size > EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
3022
3023 /* now prepare goal request */
3024
3025 /* XXX: is it better to align blocks WRT to logical
3026 * placement or satisfy big request as is */
3027 ac->ac_g_ex.fe_logical = start;
3028 ac->ac_g_ex.fe_len = EXT4_NUM_B2C(sbi, size);
3029
3030 /* define goal start in order to merge */
3031 if (ar->pright && (ar->lright == (start + size))) {
3032 /* merge to the right */
3033 ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size,
3034 &ac->ac_f_ex.fe_group,
3035 &ac->ac_f_ex.fe_start);
3036 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3037 }
3038 if (ar->pleft && (ar->lleft + 1 == start)) {
3039 /* merge to the left */
3040 ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1,
3041 &ac->ac_f_ex.fe_group,
3042 &ac->ac_f_ex.fe_start);
3043 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3044 }
3045
3046 mb_debug(1, "goal: %u(was %u) blocks at %u\n", (unsigned) size,
3047 (unsigned) orig_size, (unsigned) start);
3048 }
3049
3050 static void ext4_mb_collect_stats(struct ext4_allocation_context *ac)
3051 {
3052 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3053
3054 if (sbi->s_mb_stats && ac->ac_g_ex.fe_len > 1) {
3055 atomic_inc(&sbi->s_bal_reqs);
3056 atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated);
3057 if (ac->ac_b_ex.fe_len >= ac->ac_o_ex.fe_len)
3058 atomic_inc(&sbi->s_bal_success);
3059 atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned);
3060 if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start &&
3061 ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group)
3062 atomic_inc(&sbi->s_bal_goals);
3063 if (ac->ac_found > sbi->s_mb_max_to_scan)
3064 atomic_inc(&sbi->s_bal_breaks);
3065 }
3066
3067 if (ac->ac_op == EXT4_MB_HISTORY_ALLOC)
3068 trace_ext4_mballoc_alloc(ac);
3069 else
3070 trace_ext4_mballoc_prealloc(ac);
3071 }
3072
3073 /*
3074 * Called on failure; free up any blocks from the inode PA for this
3075 * context. We don't need this for MB_GROUP_PA because we only change
3076 * pa_free in ext4_mb_release_context(), but on failure, we've already
3077 * zeroed out ac->ac_b_ex.fe_len, so group_pa->pa_free is not changed.
3078 */
3079 static void ext4_discard_allocated_blocks(struct ext4_allocation_context *ac)
3080 {
3081 struct ext4_prealloc_space *pa = ac->ac_pa;
3082
3083 if (pa && pa->pa_type == MB_INODE_PA)
3084 pa->pa_free += ac->ac_b_ex.fe_len;
3085 }
3086
3087 /*
3088 * use blocks preallocated to inode
3089 */
3090 static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac,
3091 struct ext4_prealloc_space *pa)
3092 {
3093 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3094 ext4_fsblk_t start;
3095 ext4_fsblk_t end;
3096 int len;
3097
3098 /* found preallocated blocks, use them */
3099 start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart);
3100 end = min(pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len),
3101 start + EXT4_C2B(sbi, ac->ac_o_ex.fe_len));
3102 len = EXT4_NUM_B2C(sbi, end - start);
3103 ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group,
3104 &ac->ac_b_ex.fe_start);
3105 ac->ac_b_ex.fe_len = len;
3106 ac->ac_status = AC_STATUS_FOUND;
3107 ac->ac_pa = pa;
3108
3109 BUG_ON(start < pa->pa_pstart);
3110 BUG_ON(end > pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len));
3111 BUG_ON(pa->pa_free < len);
3112 pa->pa_free -= len;
3113
3114 mb_debug(1, "use %llu/%u from inode pa %p\n", start, len, pa);
3115 }
3116
3117 /*
3118 * use blocks preallocated to locality group
3119 */
3120 static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac,
3121 struct ext4_prealloc_space *pa)
3122 {
3123 unsigned int len = ac->ac_o_ex.fe_len;
3124
3125 ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart,
3126 &ac->ac_b_ex.fe_group,
3127 &ac->ac_b_ex.fe_start);
3128 ac->ac_b_ex.fe_len = len;
3129 ac->ac_status = AC_STATUS_FOUND;
3130 ac->ac_pa = pa;
3131
3132 /* we don't correct pa_pstart or pa_plen here to avoid
3133 * possible race when the group is being loaded concurrently
3134 * instead we correct pa later, after blocks are marked
3135 * in on-disk bitmap -- see ext4_mb_release_context()
3136 * Other CPUs are prevented from allocating from this pa by lg_mutex
3137 */
3138 mb_debug(1, "use %u/%u from group pa %p\n", pa->pa_lstart-len, len, pa);
3139 }
3140
3141 /*
3142 * Return the prealloc space that have minimal distance
3143 * from the goal block. @cpa is the prealloc
3144 * space that is having currently known minimal distance
3145 * from the goal block.
3146 */
3147 static struct ext4_prealloc_space *
3148 ext4_mb_check_group_pa(ext4_fsblk_t goal_block,
3149 struct ext4_prealloc_space *pa,
3150 struct ext4_prealloc_space *cpa)
3151 {
3152 ext4_fsblk_t cur_distance, new_distance;
3153
3154 if (cpa == NULL) {
3155 atomic_inc(&pa->pa_count);
3156 return pa;
3157 }
3158 cur_distance = abs(goal_block - cpa->pa_pstart);
3159 new_distance = abs(goal_block - pa->pa_pstart);
3160
3161 if (cur_distance <= new_distance)
3162 return cpa;
3163
3164 /* drop the previous reference */
3165 atomic_dec(&cpa->pa_count);
3166 atomic_inc(&pa->pa_count);
3167 return pa;
3168 }
3169
3170 /*
3171 * search goal blocks in preallocated space
3172 */
3173 static noinline_for_stack int
3174 ext4_mb_use_preallocated(struct ext4_allocation_context *ac)
3175 {
3176 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3177 int order, i;
3178 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
3179 struct ext4_locality_group *lg;
3180 struct ext4_prealloc_space *pa, *cpa = NULL;
3181 ext4_fsblk_t goal_block;
3182
3183 /* only data can be preallocated */
3184 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3185 return 0;
3186
3187 /* first, try per-file preallocation */
3188 rcu_read_lock();
3189 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3190
3191 /* all fields in this condition don't change,
3192 * so we can skip locking for them */
3193 if (ac->ac_o_ex.fe_logical < pa->pa_lstart ||
3194 ac->ac_o_ex.fe_logical >= (pa->pa_lstart +
3195 EXT4_C2B(sbi, pa->pa_len)))
3196 continue;
3197
3198 /* non-extent files can't have physical blocks past 2^32 */
3199 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)) &&
3200 (pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len) >
3201 EXT4_MAX_BLOCK_FILE_PHYS))
3202 continue;
3203
3204 /* found preallocated blocks, use them */
3205 spin_lock(&pa->pa_lock);
3206 if (pa->pa_deleted == 0 && pa->pa_free) {
3207 atomic_inc(&pa->pa_count);
3208 ext4_mb_use_inode_pa(ac, pa);
3209 spin_unlock(&pa->pa_lock);
3210 ac->ac_criteria = 10;
3211 rcu_read_unlock();
3212 return 1;
3213 }
3214 spin_unlock(&pa->pa_lock);
3215 }
3216 rcu_read_unlock();
3217
3218 /* can we use group allocation? */
3219 if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC))
3220 return 0;
3221
3222 /* inode may have no locality group for some reason */
3223 lg = ac->ac_lg;
3224 if (lg == NULL)
3225 return 0;
3226 order = fls(ac->ac_o_ex.fe_len) - 1;
3227 if (order > PREALLOC_TB_SIZE - 1)
3228 /* The max size of hash table is PREALLOC_TB_SIZE */
3229 order = PREALLOC_TB_SIZE - 1;
3230
3231 goal_block = ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex);
3232 /*
3233 * search for the prealloc space that is having
3234 * minimal distance from the goal block.
3235 */
3236 for (i = order; i < PREALLOC_TB_SIZE; i++) {
3237 rcu_read_lock();
3238 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[i],
3239 pa_inode_list) {
3240 spin_lock(&pa->pa_lock);
3241 if (pa->pa_deleted == 0 &&
3242 pa->pa_free >= ac->ac_o_ex.fe_len) {
3243
3244 cpa = ext4_mb_check_group_pa(goal_block,
3245 pa, cpa);
3246 }
3247 spin_unlock(&pa->pa_lock);
3248 }
3249 rcu_read_unlock();
3250 }
3251 if (cpa) {
3252 ext4_mb_use_group_pa(ac, cpa);
3253 ac->ac_criteria = 20;
3254 return 1;
3255 }
3256 return 0;
3257 }
3258
3259 /*
3260 * the function goes through all block freed in the group
3261 * but not yet committed and marks them used in in-core bitmap.
3262 * buddy must be generated from this bitmap
3263 * Need to be called with the ext4 group lock held
3264 */
3265 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
3266 ext4_group_t group)
3267 {
3268 struct rb_node *n;
3269 struct ext4_group_info *grp;
3270 struct ext4_free_data *entry;
3271
3272 grp = ext4_get_group_info(sb, group);
3273 n = rb_first(&(grp->bb_free_root));
3274
3275 while (n) {
3276 entry = rb_entry(n, struct ext4_free_data, efd_node);
3277 ext4_set_bits(bitmap, entry->efd_start_cluster, entry->efd_count);
3278 n = rb_next(n);
3279 }
3280 return;
3281 }
3282
3283 /*
3284 * the function goes through all preallocation in this group and marks them
3285 * used in in-core bitmap. buddy must be generated from this bitmap
3286 * Need to be called with ext4 group lock held
3287 */
3288 static noinline_for_stack
3289 void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
3290 ext4_group_t group)
3291 {
3292 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
3293 struct ext4_prealloc_space *pa;
3294 struct list_head *cur;
3295 ext4_group_t groupnr;
3296 ext4_grpblk_t start;
3297 int preallocated = 0;
3298 int len;
3299
3300 /* all form of preallocation discards first load group,
3301 * so the only competing code is preallocation use.
3302 * we don't need any locking here
3303 * notice we do NOT ignore preallocations with pa_deleted
3304 * otherwise we could leave used blocks available for
3305 * allocation in buddy when concurrent ext4_mb_put_pa()
3306 * is dropping preallocation
3307 */
3308 list_for_each(cur, &grp->bb_prealloc_list) {
3309 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
3310 spin_lock(&pa->pa_lock);
3311 ext4_get_group_no_and_offset(sb, pa->pa_pstart,
3312 &groupnr, &start);
3313 len = pa->pa_len;
3314 spin_unlock(&pa->pa_lock);
3315 if (unlikely(len == 0))
3316 continue;
3317 BUG_ON(groupnr != group);
3318 ext4_set_bits(bitmap, start, len);
3319 preallocated += len;
3320 }
3321 mb_debug(1, "prellocated %u for group %u\n", preallocated, group);
3322 }
3323
3324 static void ext4_mb_pa_callback(struct rcu_head *head)
3325 {
3326 struct ext4_prealloc_space *pa;
3327 pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu);
3328 kmem_cache_free(ext4_pspace_cachep, pa);
3329 }
3330
3331 /*
3332 * drops a reference to preallocated space descriptor
3333 * if this was the last reference and the space is consumed
3334 */
3335 static void ext4_mb_put_pa(struct ext4_allocation_context *ac,
3336 struct super_block *sb, struct ext4_prealloc_space *pa)
3337 {
3338 ext4_group_t grp;
3339 ext4_fsblk_t grp_blk;
3340
3341 if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0)
3342 return;
3343
3344 /* in this short window concurrent discard can set pa_deleted */
3345 spin_lock(&pa->pa_lock);
3346 if (pa->pa_deleted == 1) {
3347 spin_unlock(&pa->pa_lock);
3348 return;
3349 }
3350
3351 pa->pa_deleted = 1;
3352 spin_unlock(&pa->pa_lock);
3353
3354 grp_blk = pa->pa_pstart;
3355 /*
3356 * If doing group-based preallocation, pa_pstart may be in the
3357 * next group when pa is used up
3358 */
3359 if (pa->pa_type == MB_GROUP_PA)
3360 grp_blk--;
3361
3362 ext4_get_group_no_and_offset(sb, grp_blk, &grp, NULL);
3363
3364 /*
3365 * possible race:
3366 *
3367 * P1 (buddy init) P2 (regular allocation)
3368 * find block B in PA
3369 * copy on-disk bitmap to buddy
3370 * mark B in on-disk bitmap
3371 * drop PA from group
3372 * mark all PAs in buddy
3373 *
3374 * thus, P1 initializes buddy with B available. to prevent this
3375 * we make "copy" and "mark all PAs" atomic and serialize "drop PA"
3376 * against that pair
3377 */
3378 ext4_lock_group(sb, grp);
3379 list_del(&pa->pa_group_list);
3380 ext4_unlock_group(sb, grp);
3381
3382 spin_lock(pa->pa_obj_lock);
3383 list_del_rcu(&pa->pa_inode_list);
3384 spin_unlock(pa->pa_obj_lock);
3385
3386 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3387 }
3388
3389 /*
3390 * creates new preallocated space for given inode
3391 */
3392 static noinline_for_stack int
3393 ext4_mb_new_inode_pa(struct ext4_allocation_context *ac)
3394 {
3395 struct super_block *sb = ac->ac_sb;
3396 struct ext4_sb_info *sbi = EXT4_SB(sb);
3397 struct ext4_prealloc_space *pa;
3398 struct ext4_group_info *grp;
3399 struct ext4_inode_info *ei;
3400
3401 /* preallocate only when found space is larger then requested */
3402 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
3403 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3404 BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
3405
3406 pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
3407 if (pa == NULL)
3408 return -ENOMEM;
3409
3410 if (ac->ac_b_ex.fe_len < ac->ac_g_ex.fe_len) {
3411 int winl;
3412 int wins;
3413 int win;
3414 int offs;
3415
3416 /* we can't allocate as much as normalizer wants.
3417 * so, found space must get proper lstart
3418 * to cover original request */
3419 BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical);
3420 BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len);
3421
3422 /* we're limited by original request in that
3423 * logical block must be covered any way
3424 * winl is window we can move our chunk within */
3425 winl = ac->ac_o_ex.fe_logical - ac->ac_g_ex.fe_logical;
3426
3427 /* also, we should cover whole original request */
3428 wins = EXT4_C2B(sbi, ac->ac_b_ex.fe_len - ac->ac_o_ex.fe_len);
3429
3430 /* the smallest one defines real window */
3431 win = min(winl, wins);
3432
3433 offs = ac->ac_o_ex.fe_logical %
3434 EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
3435 if (offs && offs < win)
3436 win = offs;
3437
3438 ac->ac_b_ex.fe_logical = ac->ac_o_ex.fe_logical -
3439 EXT4_B2C(sbi, win);
3440 BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical);
3441 BUG_ON(ac->ac_o_ex.fe_len > ac->ac_b_ex.fe_len);
3442 }
3443
3444 /* preallocation can change ac_b_ex, thus we store actually
3445 * allocated blocks for history */
3446 ac->ac_f_ex = ac->ac_b_ex;
3447
3448 pa->pa_lstart = ac->ac_b_ex.fe_logical;
3449 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3450 pa->pa_len = ac->ac_b_ex.fe_len;
3451 pa->pa_free = pa->pa_len;
3452 atomic_set(&pa->pa_count, 1);
3453 spin_lock_init(&pa->pa_lock);
3454 INIT_LIST_HEAD(&pa->pa_inode_list);
3455 INIT_LIST_HEAD(&pa->pa_group_list);
3456 pa->pa_deleted = 0;
3457 pa->pa_type = MB_INODE_PA;
3458
3459 mb_debug(1, "new inode pa %p: %llu/%u for %u\n", pa,
3460 pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3461 trace_ext4_mb_new_inode_pa(ac, pa);
3462
3463 ext4_mb_use_inode_pa(ac, pa);
3464 atomic_add(pa->pa_free, &sbi->s_mb_preallocated);
3465
3466 ei = EXT4_I(ac->ac_inode);
3467 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
3468
3469 pa->pa_obj_lock = &ei->i_prealloc_lock;
3470 pa->pa_inode = ac->ac_inode;
3471
3472 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3473 list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
3474 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3475
3476 spin_lock(pa->pa_obj_lock);
3477 list_add_rcu(&pa->pa_inode_list, &ei->i_prealloc_list);
3478 spin_unlock(pa->pa_obj_lock);
3479
3480 return 0;
3481 }
3482
3483 /*
3484 * creates new preallocated space for locality group inodes belongs to
3485 */
3486 static noinline_for_stack int
3487 ext4_mb_new_group_pa(struct ext4_allocation_context *ac)
3488 {
3489 struct super_block *sb = ac->ac_sb;
3490 struct ext4_locality_group *lg;
3491 struct ext4_prealloc_space *pa;
3492 struct ext4_group_info *grp;
3493
3494 /* preallocate only when found space is larger then requested */
3495 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
3496 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3497 BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
3498
3499 BUG_ON(ext4_pspace_cachep == NULL);
3500 pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
3501 if (pa == NULL)
3502 return -ENOMEM;
3503
3504 /* preallocation can change ac_b_ex, thus we store actually
3505 * allocated blocks for history */
3506 ac->ac_f_ex = ac->ac_b_ex;
3507
3508 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3509 pa->pa_lstart = pa->pa_pstart;
3510 pa->pa_len = ac->ac_b_ex.fe_len;
3511 pa->pa_free = pa->pa_len;
3512 atomic_set(&pa->pa_count, 1);
3513 spin_lock_init(&pa->pa_lock);
3514 INIT_LIST_HEAD(&pa->pa_inode_list);
3515 INIT_LIST_HEAD(&pa->pa_group_list);
3516 pa->pa_deleted = 0;
3517 pa->pa_type = MB_GROUP_PA;
3518
3519 mb_debug(1, "new group pa %p: %llu/%u for %u\n", pa,
3520 pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3521 trace_ext4_mb_new_group_pa(ac, pa);
3522
3523 ext4_mb_use_group_pa(ac, pa);
3524 atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated);
3525
3526 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
3527 lg = ac->ac_lg;
3528 BUG_ON(lg == NULL);
3529
3530 pa->pa_obj_lock = &lg->lg_prealloc_lock;
3531 pa->pa_inode = NULL;
3532
3533 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3534 list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
3535 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3536
3537 /*
3538 * We will later add the new pa to the right bucket
3539 * after updating the pa_free in ext4_mb_release_context
3540 */
3541 return 0;
3542 }
3543
3544 static int ext4_mb_new_preallocation(struct ext4_allocation_context *ac)
3545 {
3546 int err;
3547
3548 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
3549 err = ext4_mb_new_group_pa(ac);
3550 else
3551 err = ext4_mb_new_inode_pa(ac);
3552 return err;
3553 }
3554
3555 /*
3556 * finds all unused blocks in on-disk bitmap, frees them in
3557 * in-core bitmap and buddy.
3558 * @pa must be unlinked from inode and group lists, so that
3559 * nobody else can find/use it.
3560 * the caller MUST hold group/inode locks.
3561 * TODO: optimize the case when there are no in-core structures yet
3562 */
3563 static noinline_for_stack int
3564 ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh,
3565 struct ext4_prealloc_space *pa)
3566 {
3567 struct super_block *sb = e4b->bd_sb;
3568 struct ext4_sb_info *sbi = EXT4_SB(sb);
3569 unsigned int end;
3570 unsigned int next;
3571 ext4_group_t group;
3572 ext4_grpblk_t bit;
3573 unsigned long long grp_blk_start;
3574 int err = 0;
3575 int free = 0;
3576
3577 BUG_ON(pa->pa_deleted == 0);
3578 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3579 grp_blk_start = pa->pa_pstart - EXT4_C2B(sbi, bit);
3580 BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
3581 end = bit + pa->pa_len;
3582
3583 while (bit < end) {
3584 bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit);
3585 if (bit >= end)
3586 break;
3587 next = mb_find_next_bit(bitmap_bh->b_data, end, bit);
3588 mb_debug(1, " free preallocated %u/%u in group %u\n",
3589 (unsigned) ext4_group_first_block_no(sb, group) + bit,
3590 (unsigned) next - bit, (unsigned) group);
3591 free += next - bit;
3592
3593 trace_ext4_mballoc_discard(sb, NULL, group, bit, next - bit);
3594 trace_ext4_mb_release_inode_pa(pa, (grp_blk_start +
3595 EXT4_C2B(sbi, bit)),
3596 next - bit);
3597 mb_free_blocks(pa->pa_inode, e4b, bit, next - bit);
3598 bit = next + 1;
3599 }
3600 if (free != pa->pa_free) {
3601 ext4_msg(e4b->bd_sb, KERN_CRIT,
3602 "pa %p: logic %lu, phys. %lu, len %lu",
3603 pa, (unsigned long) pa->pa_lstart,
3604 (unsigned long) pa->pa_pstart,
3605 (unsigned long) pa->pa_len);
3606 ext4_grp_locked_error(sb, group, 0, 0, "free %u, pa_free %u",
3607 free, pa->pa_free);
3608 /*
3609 * pa is already deleted so we use the value obtained
3610 * from the bitmap and continue.
3611 */
3612 }
3613 atomic_add(free, &sbi->s_mb_discarded);
3614
3615 return err;
3616 }
3617
3618 static noinline_for_stack int
3619 ext4_mb_release_group_pa(struct ext4_buddy *e4b,
3620 struct ext4_prealloc_space *pa)
3621 {
3622 struct super_block *sb = e4b->bd_sb;
3623 ext4_group_t group;
3624 ext4_grpblk_t bit;
3625
3626 trace_ext4_mb_release_group_pa(sb, pa);
3627 BUG_ON(pa->pa_deleted == 0);
3628 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3629 BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
3630 mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len);
3631 atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded);
3632 trace_ext4_mballoc_discard(sb, NULL, group, bit, pa->pa_len);
3633
3634 return 0;
3635 }
3636
3637 /*
3638 * releases all preallocations in given group
3639 *
3640 * first, we need to decide discard policy:
3641 * - when do we discard
3642 * 1) ENOSPC
3643 * - how many do we discard
3644 * 1) how many requested
3645 */
3646 static noinline_for_stack int
3647 ext4_mb_discard_group_preallocations(struct super_block *sb,
3648 ext4_group_t group, int needed)
3649 {
3650 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
3651 struct buffer_head *bitmap_bh = NULL;
3652 struct ext4_prealloc_space *pa, *tmp;
3653 struct list_head list;
3654 struct ext4_buddy e4b;
3655 int err;
3656 int busy = 0;
3657 int free = 0;
3658
3659 mb_debug(1, "discard preallocation for group %u\n", group);
3660
3661 if (list_empty(&grp->bb_prealloc_list))
3662 return 0;
3663
3664 bitmap_bh = ext4_read_block_bitmap(sb, group);
3665 if (bitmap_bh == NULL) {
3666 ext4_error(sb, "Error reading block bitmap for %u", group);
3667 return 0;
3668 }
3669
3670 err = ext4_mb_load_buddy(sb, group, &e4b);
3671 if (err) {
3672 ext4_error(sb, "Error loading buddy information for %u", group);
3673 put_bh(bitmap_bh);
3674 return 0;
3675 }
3676
3677 if (needed == 0)
3678 needed = EXT4_CLUSTERS_PER_GROUP(sb) + 1;
3679
3680 INIT_LIST_HEAD(&list);
3681 repeat:
3682 ext4_lock_group(sb, group);
3683 list_for_each_entry_safe(pa, tmp,
3684 &grp->bb_prealloc_list, pa_group_list) {
3685 spin_lock(&pa->pa_lock);
3686 if (atomic_read(&pa->pa_count)) {
3687 spin_unlock(&pa->pa_lock);
3688 busy = 1;
3689 continue;
3690 }
3691 if (pa->pa_deleted) {
3692 spin_unlock(&pa->pa_lock);
3693 continue;
3694 }
3695
3696 /* seems this one can be freed ... */
3697 pa->pa_deleted = 1;
3698
3699 /* we can trust pa_free ... */
3700 free += pa->pa_free;
3701
3702 spin_unlock(&pa->pa_lock);
3703
3704 list_del(&pa->pa_group_list);
3705 list_add(&pa->u.pa_tmp_list, &list);
3706 }
3707
3708 /* if we still need more blocks and some PAs were used, try again */
3709 if (free < needed && busy) {
3710 busy = 0;
3711 ext4_unlock_group(sb, group);
3712 /*
3713 * Yield the CPU here so that we don't get soft lockup
3714 * in non preempt case.
3715 */
3716 yield();
3717 goto repeat;
3718 }
3719
3720 /* found anything to free? */
3721 if (list_empty(&list)) {
3722 BUG_ON(free != 0);
3723 goto out;
3724 }
3725
3726 /* now free all selected PAs */
3727 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
3728
3729 /* remove from object (inode or locality group) */
3730 spin_lock(pa->pa_obj_lock);
3731 list_del_rcu(&pa->pa_inode_list);
3732 spin_unlock(pa->pa_obj_lock);
3733
3734 if (pa->pa_type == MB_GROUP_PA)
3735 ext4_mb_release_group_pa(&e4b, pa);
3736 else
3737 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
3738
3739 list_del(&pa->u.pa_tmp_list);
3740 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3741 }
3742
3743 out:
3744 ext4_unlock_group(sb, group);
3745 ext4_mb_unload_buddy(&e4b);
3746 put_bh(bitmap_bh);
3747 return free;
3748 }
3749
3750 /*
3751 * releases all non-used preallocated blocks for given inode
3752 *
3753 * It's important to discard preallocations under i_data_sem
3754 * We don't want another block to be served from the prealloc
3755 * space when we are discarding the inode prealloc space.
3756 *
3757 * FIXME!! Make sure it is valid at all the call sites
3758 */
3759 void ext4_discard_preallocations(struct inode *inode)
3760 {
3761 struct ext4_inode_info *ei = EXT4_I(inode);
3762 struct super_block *sb = inode->i_sb;
3763 struct buffer_head *bitmap_bh = NULL;
3764 struct ext4_prealloc_space *pa, *tmp;
3765 ext4_group_t group = 0;
3766 struct list_head list;
3767 struct ext4_buddy e4b;
3768 int err;
3769
3770 if (!S_ISREG(inode->i_mode)) {
3771 /*BUG_ON(!list_empty(&ei->i_prealloc_list));*/
3772 return;
3773 }
3774
3775 mb_debug(1, "discard preallocation for inode %lu\n", inode->i_ino);
3776 trace_ext4_discard_preallocations(inode);
3777
3778 INIT_LIST_HEAD(&list);
3779
3780 repeat:
3781 /* first, collect all pa's in the inode */
3782 spin_lock(&ei->i_prealloc_lock);
3783 while (!list_empty(&ei->i_prealloc_list)) {
3784 pa = list_entry(ei->i_prealloc_list.next,
3785 struct ext4_prealloc_space, pa_inode_list);
3786 BUG_ON(pa->pa_obj_lock != &ei->i_prealloc_lock);
3787 spin_lock(&pa->pa_lock);
3788 if (atomic_read(&pa->pa_count)) {
3789 /* this shouldn't happen often - nobody should
3790 * use preallocation while we're discarding it */
3791 spin_unlock(&pa->pa_lock);
3792 spin_unlock(&ei->i_prealloc_lock);
3793 ext4_msg(sb, KERN_ERR,
3794 "uh-oh! used pa while discarding");
3795 WARN_ON(1);
3796 schedule_timeout_uninterruptible(HZ);
3797 goto repeat;
3798
3799 }
3800 if (pa->pa_deleted == 0) {
3801 pa->pa_deleted = 1;
3802 spin_unlock(&pa->pa_lock);
3803 list_del_rcu(&pa->pa_inode_list);
3804 list_add(&pa->u.pa_tmp_list, &list);
3805 continue;
3806 }
3807
3808 /* someone is deleting pa right now */
3809 spin_unlock(&pa->pa_lock);
3810 spin_unlock(&ei->i_prealloc_lock);
3811
3812 /* we have to wait here because pa_deleted
3813 * doesn't mean pa is already unlinked from
3814 * the list. as we might be called from
3815 * ->clear_inode() the inode will get freed
3816 * and concurrent thread which is unlinking
3817 * pa from inode's list may access already
3818 * freed memory, bad-bad-bad */
3819
3820 /* XXX: if this happens too often, we can
3821 * add a flag to force wait only in case
3822 * of ->clear_inode(), but not in case of
3823 * regular truncate */
3824 schedule_timeout_uninterruptible(HZ);
3825 goto repeat;
3826 }
3827 spin_unlock(&ei->i_prealloc_lock);
3828
3829 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
3830 BUG_ON(pa->pa_type != MB_INODE_PA);
3831 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, NULL);
3832
3833 err = ext4_mb_load_buddy(sb, group, &e4b);
3834 if (err) {
3835 ext4_error(sb, "Error loading buddy information for %u",
3836 group);
3837 continue;
3838 }
3839
3840 bitmap_bh = ext4_read_block_bitmap(sb, group);
3841 if (bitmap_bh == NULL) {
3842 ext4_error(sb, "Error reading block bitmap for %u",
3843 group);
3844 ext4_mb_unload_buddy(&e4b);
3845 continue;
3846 }
3847
3848 ext4_lock_group(sb, group);
3849 list_del(&pa->pa_group_list);
3850 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
3851 ext4_unlock_group(sb, group);
3852
3853 ext4_mb_unload_buddy(&e4b);
3854 put_bh(bitmap_bh);
3855
3856 list_del(&pa->u.pa_tmp_list);
3857 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3858 }
3859 }
3860
3861 #ifdef CONFIG_EXT4_DEBUG
3862 static void ext4_mb_show_ac(struct ext4_allocation_context *ac)
3863 {
3864 struct super_block *sb = ac->ac_sb;
3865 ext4_group_t ngroups, i;
3866
3867 if (!mb_enable_debug ||
3868 (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED))
3869 return;
3870
3871 ext4_msg(ac->ac_sb, KERN_ERR, "Can't allocate:"
3872 " Allocation context details:");
3873 ext4_msg(ac->ac_sb, KERN_ERR, "status %d flags %d",
3874 ac->ac_status, ac->ac_flags);
3875 ext4_msg(ac->ac_sb, KERN_ERR, "orig %lu/%lu/%lu@%lu, "
3876 "goal %lu/%lu/%lu@%lu, "
3877 "best %lu/%lu/%lu@%lu cr %d",
3878 (unsigned long)ac->ac_o_ex.fe_group,
3879 (unsigned long)ac->ac_o_ex.fe_start,
3880 (unsigned long)ac->ac_o_ex.fe_len,
3881 (unsigned long)ac->ac_o_ex.fe_logical,
3882 (unsigned long)ac->ac_g_ex.fe_group,
3883 (unsigned long)ac->ac_g_ex.fe_start,
3884 (unsigned long)ac->ac_g_ex.fe_len,
3885 (unsigned long)ac->ac_g_ex.fe_logical,
3886 (unsigned long)ac->ac_b_ex.fe_group,
3887 (unsigned long)ac->ac_b_ex.fe_start,
3888 (unsigned long)ac->ac_b_ex.fe_len,
3889 (unsigned long)ac->ac_b_ex.fe_logical,
3890 (int)ac->ac_criteria);
3891 ext4_msg(ac->ac_sb, KERN_ERR, "%lu scanned, %d found",
3892 ac->ac_ex_scanned, ac->ac_found);
3893 ext4_msg(ac->ac_sb, KERN_ERR, "groups: ");
3894 ngroups = ext4_get_groups_count(sb);
3895 for (i = 0; i < ngroups; i++) {
3896 struct ext4_group_info *grp = ext4_get_group_info(sb, i);
3897 struct ext4_prealloc_space *pa;
3898 ext4_grpblk_t start;
3899 struct list_head *cur;
3900 ext4_lock_group(sb, i);
3901 list_for_each(cur, &grp->bb_prealloc_list) {
3902 pa = list_entry(cur, struct ext4_prealloc_space,
3903 pa_group_list);
3904 spin_lock(&pa->pa_lock);
3905 ext4_get_group_no_and_offset(sb, pa->pa_pstart,
3906 NULL, &start);
3907 spin_unlock(&pa->pa_lock);
3908 printk(KERN_ERR "PA:%u:%d:%u \n", i,
3909 start, pa->pa_len);
3910 }
3911 ext4_unlock_group(sb, i);
3912
3913 if (grp->bb_free == 0)
3914 continue;
3915 printk(KERN_ERR "%u: %d/%d \n",
3916 i, grp->bb_free, grp->bb_fragments);
3917 }
3918 printk(KERN_ERR "\n");
3919 }
3920 #else
3921 static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac)
3922 {
3923 return;
3924 }
3925 #endif
3926
3927 /*
3928 * We use locality group preallocation for small size file. The size of the
3929 * file is determined by the current size or the resulting size after
3930 * allocation which ever is larger
3931 *
3932 * One can tune this size via /sys/fs/ext4/<partition>/mb_stream_req
3933 */
3934 static void ext4_mb_group_or_file(struct ext4_allocation_context *ac)
3935 {
3936 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3937 int bsbits = ac->ac_sb->s_blocksize_bits;
3938 loff_t size, isize;
3939
3940 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3941 return;
3942
3943 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
3944 return;
3945
3946 size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len);
3947 isize = (i_size_read(ac->ac_inode) + ac->ac_sb->s_blocksize - 1)
3948 >> bsbits;
3949
3950 if ((size == isize) &&
3951 !ext4_fs_is_busy(sbi) &&
3952 (atomic_read(&ac->ac_inode->i_writecount) == 0)) {
3953 ac->ac_flags |= EXT4_MB_HINT_NOPREALLOC;
3954 return;
3955 }
3956
3957 if (sbi->s_mb_group_prealloc <= 0) {
3958 ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
3959 return;
3960 }
3961
3962 /* don't use group allocation for large files */
3963 size = max(size, isize);
3964 if (size > sbi->s_mb_stream_request) {
3965 ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
3966 return;
3967 }
3968
3969 BUG_ON(ac->ac_lg != NULL);
3970 /*
3971 * locality group prealloc space are per cpu. The reason for having
3972 * per cpu locality group is to reduce the contention between block
3973 * request from multiple CPUs.
3974 */
3975 ac->ac_lg = __this_cpu_ptr(sbi->s_locality_groups);
3976
3977 /* we're going to use group allocation */
3978 ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC;
3979
3980 /* serialize all allocations in the group */
3981 mutex_lock(&ac->ac_lg->lg_mutex);
3982 }
3983
3984 static noinline_for_stack int
3985 ext4_mb_initialize_context(struct ext4_allocation_context *ac,
3986 struct ext4_allocation_request *ar)
3987 {
3988 struct super_block *sb = ar->inode->i_sb;
3989 struct ext4_sb_info *sbi = EXT4_SB(sb);
3990 struct ext4_super_block *es = sbi->s_es;
3991 ext4_group_t group;
3992 unsigned int len;
3993 ext4_fsblk_t goal;
3994 ext4_grpblk_t block;
3995
3996 /* we can't allocate > group size */
3997 len = ar->len;
3998
3999 /* just a dirty hack to filter too big requests */
4000 if (len >= EXT4_CLUSTERS_PER_GROUP(sb) - 10)
4001 len = EXT4_CLUSTERS_PER_GROUP(sb) - 10;
4002
4003 /* start searching from the goal */
4004 goal = ar->goal;
4005 if (goal < le32_to_cpu(es->s_first_data_block) ||
4006 goal >= ext4_blocks_count(es))
4007 goal = le32_to_cpu(es->s_first_data_block);
4008 ext4_get_group_no_and_offset(sb, goal, &group, &block);
4009
4010 /* set up allocation goals */
4011 ac->ac_b_ex.fe_logical = ar->logical & ~(sbi->s_cluster_ratio - 1);
4012 ac->ac_status = AC_STATUS_CONTINUE;
4013 ac->ac_sb = sb;
4014 ac->ac_inode = ar->inode;
4015 ac->ac_o_ex.fe_logical = ac->ac_b_ex.fe_logical;
4016 ac->ac_o_ex.fe_group = group;
4017 ac->ac_o_ex.fe_start = block;
4018 ac->ac_o_ex.fe_len = len;
4019 ac->ac_g_ex = ac->ac_o_ex;
4020 ac->ac_flags = ar->flags;
4021
4022 /* we have to define context: we'll we work with a file or
4023 * locality group. this is a policy, actually */
4024 ext4_mb_group_or_file(ac);
4025
4026 mb_debug(1, "init ac: %u blocks @ %u, goal %u, flags %x, 2^%d, "
4027 "left: %u/%u, right %u/%u to %swritable\n",
4028 (unsigned) ar->len, (unsigned) ar->logical,
4029 (unsigned) ar->goal, ac->ac_flags, ac->ac_2order,
4030 (unsigned) ar->lleft, (unsigned) ar->pleft,
4031 (unsigned) ar->lright, (unsigned) ar->pright,
4032 atomic_read(&ar->inode->i_writecount) ? "" : "non-");
4033 return 0;
4034
4035 }
4036
4037 static noinline_for_stack void
4038 ext4_mb_discard_lg_preallocations(struct super_block *sb,
4039 struct ext4_locality_group *lg,
4040 int order, int total_entries)
4041 {
4042 ext4_group_t group = 0;
4043 struct ext4_buddy e4b;
4044 struct list_head discard_list;
4045 struct ext4_prealloc_space *pa, *tmp;
4046
4047 mb_debug(1, "discard locality group preallocation\n");
4048
4049 INIT_LIST_HEAD(&discard_list);
4050
4051 spin_lock(&lg->lg_prealloc_lock);
4052 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[order],
4053 pa_inode_list) {
4054 spin_lock(&pa->pa_lock);
4055 if (atomic_read(&pa->pa_count)) {
4056 /*
4057 * This is the pa that we just used
4058 * for block allocation. So don't
4059 * free that
4060 */
4061 spin_unlock(&pa->pa_lock);
4062 continue;
4063 }
4064 if (pa->pa_deleted) {
4065 spin_unlock(&pa->pa_lock);
4066 continue;
4067 }
4068 /* only lg prealloc space */
4069 BUG_ON(pa->pa_type != MB_GROUP_PA);
4070
4071 /* seems this one can be freed ... */
4072 pa->pa_deleted = 1;
4073 spin_unlock(&pa->pa_lock);
4074
4075 list_del_rcu(&pa->pa_inode_list);
4076 list_add(&pa->u.pa_tmp_list, &discard_list);
4077
4078 total_entries--;
4079 if (total_entries <= 5) {
4080 /*
4081 * we want to keep only 5 entries
4082 * allowing it to grow to 8. This
4083 * mak sure we don't call discard
4084 * soon for this list.
4085 */
4086 break;
4087 }
4088 }
4089 spin_unlock(&lg->lg_prealloc_lock);
4090
4091 list_for_each_entry_safe(pa, tmp, &discard_list, u.pa_tmp_list) {
4092
4093 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, NULL);
4094 if (ext4_mb_load_buddy(sb, group, &e4b)) {
4095 ext4_error(sb, "Error loading buddy information for %u",
4096 group);
4097 continue;
4098 }
4099 ext4_lock_group(sb, group);
4100 list_del(&pa->pa_group_list);
4101 ext4_mb_release_group_pa(&e4b, pa);
4102 ext4_unlock_group(sb, group);
4103
4104 ext4_mb_unload_buddy(&e4b);
4105 list_del(&pa->u.pa_tmp_list);
4106 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4107 }
4108 }
4109
4110 /*
4111 * We have incremented pa_count. So it cannot be freed at this
4112 * point. Also we hold lg_mutex. So no parallel allocation is
4113 * possible from this lg. That means pa_free cannot be updated.
4114 *
4115 * A parallel ext4_mb_discard_group_preallocations is possible.
4116 * which can cause the lg_prealloc_list to be updated.
4117 */
4118
4119 static void ext4_mb_add_n_trim(struct ext4_allocation_context *ac)
4120 {
4121 int order, added = 0, lg_prealloc_count = 1;
4122 struct super_block *sb = ac->ac_sb;
4123 struct ext4_locality_group *lg = ac->ac_lg;
4124 struct ext4_prealloc_space *tmp_pa, *pa = ac->ac_pa;
4125
4126 order = fls(pa->pa_free) - 1;
4127 if (order > PREALLOC_TB_SIZE - 1)
4128 /* The max size of hash table is PREALLOC_TB_SIZE */
4129 order = PREALLOC_TB_SIZE - 1;
4130 /* Add the prealloc space to lg */
4131 rcu_read_lock();
4132 list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[order],
4133 pa_inode_list) {
4134 spin_lock(&tmp_pa->pa_lock);
4135 if (tmp_pa->pa_deleted) {
4136 spin_unlock(&tmp_pa->pa_lock);
4137 continue;
4138 }
4139 if (!added && pa->pa_free < tmp_pa->pa_free) {
4140 /* Add to the tail of the previous entry */
4141 list_add_tail_rcu(&pa->pa_inode_list,
4142 &tmp_pa->pa_inode_list);
4143 added = 1;
4144 /*
4145 * we want to count the total
4146 * number of entries in the list
4147 */
4148 }
4149 spin_unlock(&tmp_pa->pa_lock);
4150 lg_prealloc_count++;
4151 }
4152 if (!added)
4153 list_add_tail_rcu(&pa->pa_inode_list,
4154 &lg->lg_prealloc_list[order]);
4155 rcu_read_unlock();
4156
4157 /* Now trim the list to be not more than 8 elements */
4158 if (lg_prealloc_count > 8) {
4159 ext4_mb_discard_lg_preallocations(sb, lg,
4160 order, lg_prealloc_count);
4161 return;
4162 }
4163 return ;
4164 }
4165
4166 /*
4167 * release all resource we used in allocation
4168 */
4169 static int ext4_mb_release_context(struct ext4_allocation_context *ac)
4170 {
4171 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4172 struct ext4_prealloc_space *pa = ac->ac_pa;
4173 if (pa) {
4174 if (pa->pa_type == MB_GROUP_PA) {
4175 /* see comment in ext4_mb_use_group_pa() */
4176 spin_lock(&pa->pa_lock);
4177 pa->pa_pstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
4178 pa->pa_lstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
4179 pa->pa_free -= ac->ac_b_ex.fe_len;
4180 pa->pa_len -= ac->ac_b_ex.fe_len;
4181 spin_unlock(&pa->pa_lock);
4182 }
4183 }
4184 if (pa) {
4185 /*
4186 * We want to add the pa to the right bucket.
4187 * Remove it from the list and while adding
4188 * make sure the list to which we are adding
4189 * doesn't grow big.
4190 */
4191 if ((pa->pa_type == MB_GROUP_PA) && likely(pa->pa_free)) {
4192 spin_lock(pa->pa_obj_lock);
4193 list_del_rcu(&pa->pa_inode_list);
4194 spin_unlock(pa->pa_obj_lock);
4195 ext4_mb_add_n_trim(ac);
4196 }
4197 ext4_mb_put_pa(ac, ac->ac_sb, pa);
4198 }
4199 if (ac->ac_bitmap_page)
4200 page_cache_release(ac->ac_bitmap_page);
4201 if (ac->ac_buddy_page)
4202 page_cache_release(ac->ac_buddy_page);
4203 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
4204 mutex_unlock(&ac->ac_lg->lg_mutex);
4205 ext4_mb_collect_stats(ac);
4206 return 0;
4207 }
4208
4209 static int ext4_mb_discard_preallocations(struct super_block *sb, int needed)
4210 {
4211 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
4212 int ret;
4213 int freed = 0;
4214
4215 trace_ext4_mb_discard_preallocations(sb, needed);
4216 for (i = 0; i < ngroups && needed > 0; i++) {
4217 ret = ext4_mb_discard_group_preallocations(sb, i, needed);
4218 freed += ret;
4219 needed -= ret;
4220 }
4221
4222 return freed;
4223 }
4224
4225 /*
4226 * Main entry point into mballoc to allocate blocks
4227 * it tries to use preallocation first, then falls back
4228 * to usual allocation
4229 */
4230 ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle,
4231 struct ext4_allocation_request *ar, int *errp)
4232 {
4233 int freed;
4234 struct ext4_allocation_context *ac = NULL;
4235 struct ext4_sb_info *sbi;
4236 struct super_block *sb;
4237 ext4_fsblk_t block = 0;
4238 unsigned int inquota = 0;
4239 unsigned int reserv_clstrs = 0;
4240
4241 sb = ar->inode->i_sb;
4242 sbi = EXT4_SB(sb);
4243
4244 trace_ext4_request_blocks(ar);
4245
4246 /* Allow to use superuser reservation for quota file */
4247 if (IS_NOQUOTA(ar->inode))
4248 ar->flags |= EXT4_MB_USE_ROOT_BLOCKS;
4249
4250 /*
4251 * For delayed allocation, we could skip the ENOSPC and
4252 * EDQUOT check, as blocks and quotas have been already
4253 * reserved when data being copied into pagecache.
4254 */
4255 if (ext4_test_inode_state(ar->inode, EXT4_STATE_DELALLOC_RESERVED))
4256 ar->flags |= EXT4_MB_DELALLOC_RESERVED;
4257 else {
4258 /* Without delayed allocation we need to verify
4259 * there is enough free blocks to do block allocation
4260 * and verify allocation doesn't exceed the quota limits.
4261 */
4262 while (ar->len &&
4263 ext4_claim_free_clusters(sbi, ar->len, ar->flags)) {
4264
4265 /* let others to free the space */
4266 yield();
4267 ar->len = ar->len >> 1;
4268 }
4269 if (!ar->len) {
4270 *errp = -ENOSPC;
4271 return 0;
4272 }
4273 reserv_clstrs = ar->len;
4274 if (ar->flags & EXT4_MB_USE_ROOT_BLOCKS) {
4275 dquot_alloc_block_nofail(ar->inode,
4276 EXT4_C2B(sbi, ar->len));
4277 } else {
4278 while (ar->len &&
4279 dquot_alloc_block(ar->inode,
4280 EXT4_C2B(sbi, ar->len))) {
4281
4282 ar->flags |= EXT4_MB_HINT_NOPREALLOC;
4283 ar->len--;
4284 }
4285 }
4286 inquota = ar->len;
4287 if (ar->len == 0) {
4288 *errp = -EDQUOT;
4289 goto out;
4290 }
4291 }
4292
4293 ac = kmem_cache_zalloc(ext4_ac_cachep, GFP_NOFS);
4294 if (!ac) {
4295 ar->len = 0;
4296 *errp = -ENOMEM;
4297 goto out;
4298 }
4299
4300 *errp = ext4_mb_initialize_context(ac, ar);
4301 if (*errp) {
4302 ar->len = 0;
4303 goto out;
4304 }
4305
4306 ac->ac_op = EXT4_MB_HISTORY_PREALLOC;
4307 if (!ext4_mb_use_preallocated(ac)) {
4308 ac->ac_op = EXT4_MB_HISTORY_ALLOC;
4309 ext4_mb_normalize_request(ac, ar);
4310 repeat:
4311 /* allocate space in core */
4312 *errp = ext4_mb_regular_allocator(ac);
4313 if (*errp)
4314 goto errout;
4315
4316 /* as we've just preallocated more space than
4317 * user requested orinally, we store allocated
4318 * space in a special descriptor */
4319 if (ac->ac_status == AC_STATUS_FOUND &&
4320 ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len)
4321 ext4_mb_new_preallocation(ac);
4322 }
4323 if (likely(ac->ac_status == AC_STATUS_FOUND)) {
4324 *errp = ext4_mb_mark_diskspace_used(ac, handle, reserv_clstrs);
4325 if (*errp == -EAGAIN) {
4326 /*
4327 * drop the reference that we took
4328 * in ext4_mb_use_best_found
4329 */
4330 ext4_mb_release_context(ac);
4331 ac->ac_b_ex.fe_group = 0;
4332 ac->ac_b_ex.fe_start = 0;
4333 ac->ac_b_ex.fe_len = 0;
4334 ac->ac_status = AC_STATUS_CONTINUE;
4335 goto repeat;
4336 } else if (*errp)
4337 errout:
4338 ext4_discard_allocated_blocks(ac);
4339 else {
4340 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
4341 ar->len = ac->ac_b_ex.fe_len;
4342 }
4343 } else {
4344 freed = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len);
4345 if (freed)
4346 goto repeat;
4347 *errp = -ENOSPC;
4348 }
4349
4350 if (*errp) {
4351 ac->ac_b_ex.fe_len = 0;
4352 ar->len = 0;
4353 ext4_mb_show_ac(ac);
4354 }
4355 ext4_mb_release_context(ac);
4356 out:
4357 if (ac)
4358 kmem_cache_free(ext4_ac_cachep, ac);
4359 if (inquota && ar->len < inquota)
4360 dquot_free_block(ar->inode, EXT4_C2B(sbi, inquota - ar->len));
4361 if (!ar->len) {
4362 if (!ext4_test_inode_state(ar->inode,
4363 EXT4_STATE_DELALLOC_RESERVED))
4364 /* release all the reserved blocks if non delalloc */
4365 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
4366 reserv_clstrs);
4367 }
4368
4369 trace_ext4_allocate_blocks(ar, (unsigned long long)block);
4370
4371 return block;
4372 }
4373
4374 /*
4375 * We can merge two free data extents only if the physical blocks
4376 * are contiguous, AND the extents were freed by the same transaction,
4377 * AND the blocks are associated with the same group.
4378 */
4379 static int can_merge(struct ext4_free_data *entry1,
4380 struct ext4_free_data *entry2)
4381 {
4382 if ((entry1->efd_tid == entry2->efd_tid) &&
4383 (entry1->efd_group == entry2->efd_group) &&
4384 ((entry1->efd_start_cluster + entry1->efd_count) == entry2->efd_start_cluster))
4385 return 1;
4386 return 0;
4387 }
4388
4389 static noinline_for_stack int
4390 ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b,
4391 struct ext4_free_data *new_entry)
4392 {
4393 ext4_group_t group = e4b->bd_group;
4394 ext4_grpblk_t cluster;
4395 struct ext4_free_data *entry;
4396 struct ext4_group_info *db = e4b->bd_info;
4397 struct super_block *sb = e4b->bd_sb;
4398 struct ext4_sb_info *sbi = EXT4_SB(sb);
4399 struct rb_node **n = &db->bb_free_root.rb_node, *node;
4400 struct rb_node *parent = NULL, *new_node;
4401
4402 BUG_ON(!ext4_handle_valid(handle));
4403 BUG_ON(e4b->bd_bitmap_page == NULL);
4404 BUG_ON(e4b->bd_buddy_page == NULL);
4405
4406 new_node = &new_entry->efd_node;
4407 cluster = new_entry->efd_start_cluster;
4408
4409 if (!*n) {
4410 /* first free block exent. We need to
4411 protect buddy cache from being freed,
4412 * otherwise we'll refresh it from
4413 * on-disk bitmap and lose not-yet-available
4414 * blocks */
4415 page_cache_get(e4b->bd_buddy_page);
4416 page_cache_get(e4b->bd_bitmap_page);
4417 }
4418 while (*n) {
4419 parent = *n;
4420 entry = rb_entry(parent, struct ext4_free_data, efd_node);
4421 if (cluster < entry->efd_start_cluster)
4422 n = &(*n)->rb_left;
4423 else if (cluster >= (entry->efd_start_cluster + entry->efd_count))
4424 n = &(*n)->rb_right;
4425 else {
4426 ext4_grp_locked_error(sb, group, 0,
4427 ext4_group_first_block_no(sb, group) +
4428 EXT4_C2B(sbi, cluster),
4429 "Block already on to-be-freed list");
4430 return 0;
4431 }
4432 }
4433
4434 rb_link_node(new_node, parent, n);
4435 rb_insert_color(new_node, &db->bb_free_root);
4436
4437 /* Now try to see the extent can be merged to left and right */
4438 node = rb_prev(new_node);
4439 if (node) {
4440 entry = rb_entry(node, struct ext4_free_data, efd_node);
4441 if (can_merge(entry, new_entry)) {
4442 new_entry->efd_start_cluster = entry->efd_start_cluster;
4443 new_entry->efd_count += entry->efd_count;
4444 rb_erase(node, &(db->bb_free_root));
4445 ext4_journal_callback_del(handle, &entry->efd_jce);
4446 kmem_cache_free(ext4_free_data_cachep, entry);
4447 }
4448 }
4449
4450 node = rb_next(new_node);
4451 if (node) {
4452 entry = rb_entry(node, struct ext4_free_data, efd_node);
4453 if (can_merge(new_entry, entry)) {
4454 new_entry->efd_count += entry->efd_count;
4455 rb_erase(node, &(db->bb_free_root));
4456 ext4_journal_callback_del(handle, &entry->efd_jce);
4457 kmem_cache_free(ext4_free_data_cachep, entry);
4458 }
4459 }
4460 /* Add the extent to transaction's private list */
4461 ext4_journal_callback_add(handle, ext4_free_data_callback,
4462 &new_entry->efd_jce);
4463 return 0;
4464 }
4465
4466 /**
4467 * ext4_free_blocks() -- Free given blocks and update quota
4468 * @handle: handle for this transaction
4469 * @inode: inode
4470 * @block: start physical block to free
4471 * @count: number of blocks to count
4472 * @flags: flags used by ext4_free_blocks
4473 */
4474 void ext4_free_blocks(handle_t *handle, struct inode *inode,
4475 struct buffer_head *bh, ext4_fsblk_t block,
4476 unsigned long count, int flags)
4477 {
4478 struct buffer_head *bitmap_bh = NULL;
4479 struct super_block *sb = inode->i_sb;
4480 struct ext4_group_desc *gdp;
4481 unsigned long freed = 0;
4482 unsigned int overflow;
4483 ext4_grpblk_t bit;
4484 struct buffer_head *gd_bh;
4485 ext4_group_t block_group;
4486 struct ext4_sb_info *sbi;
4487 struct ext4_buddy e4b;
4488 unsigned int count_clusters;
4489 int err = 0;
4490 int ret;
4491
4492 if (bh) {
4493 if (block)
4494 BUG_ON(block != bh->b_blocknr);
4495 else
4496 block = bh->b_blocknr;
4497 }
4498
4499 sbi = EXT4_SB(sb);
4500 if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) &&
4501 !ext4_data_block_valid(sbi, block, count)) {
4502 ext4_error(sb, "Freeing blocks not in datazone - "
4503 "block = %llu, count = %lu", block, count);
4504 goto error_return;
4505 }
4506
4507 ext4_debug("freeing block %llu\n", block);
4508 trace_ext4_free_blocks(inode, block, count, flags);
4509
4510 if (flags & EXT4_FREE_BLOCKS_FORGET) {
4511 struct buffer_head *tbh = bh;
4512 int i;
4513
4514 BUG_ON(bh && (count > 1));
4515
4516 for (i = 0; i < count; i++) {
4517 if (!bh)
4518 tbh = sb_find_get_block(inode->i_sb,
4519 block + i);
4520 if (unlikely(!tbh))
4521 continue;
4522 ext4_forget(handle, flags & EXT4_FREE_BLOCKS_METADATA,
4523 inode, tbh, block + i);
4524 }
4525 }
4526
4527 /*
4528 * We need to make sure we don't reuse the freed block until
4529 * after the transaction is committed, which we can do by
4530 * treating the block as metadata, below. We make an
4531 * exception if the inode is to be written in writeback mode
4532 * since writeback mode has weak data consistency guarantees.
4533 */
4534 if (!ext4_should_writeback_data(inode))
4535 flags |= EXT4_FREE_BLOCKS_METADATA;
4536
4537 /*
4538 * If the extent to be freed does not begin on a cluster
4539 * boundary, we need to deal with partial clusters at the
4540 * beginning and end of the extent. Normally we will free
4541 * blocks at the beginning or the end unless we are explicitly
4542 * requested to avoid doing so.
4543 */
4544 overflow = block & (sbi->s_cluster_ratio - 1);
4545 if (overflow) {
4546 if (flags & EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER) {
4547 overflow = sbi->s_cluster_ratio - overflow;
4548 block += overflow;
4549 if (count > overflow)
4550 count -= overflow;
4551 else
4552 return;
4553 } else {
4554 block -= overflow;
4555 count += overflow;
4556 }
4557 }
4558 overflow = count & (sbi->s_cluster_ratio - 1);
4559 if (overflow) {
4560 if (flags & EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER) {
4561 if (count > overflow)
4562 count -= overflow;
4563 else
4564 return;
4565 } else
4566 count += sbi->s_cluster_ratio - overflow;
4567 }
4568
4569 do_more:
4570 overflow = 0;
4571 ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
4572
4573 /*
4574 * Check to see if we are freeing blocks across a group
4575 * boundary.
4576 */
4577 if (EXT4_C2B(sbi, bit) + count > EXT4_BLOCKS_PER_GROUP(sb)) {
4578 overflow = EXT4_C2B(sbi, bit) + count -
4579 EXT4_BLOCKS_PER_GROUP(sb);
4580 count -= overflow;
4581 }
4582 count_clusters = EXT4_B2C(sbi, count);
4583 bitmap_bh = ext4_read_block_bitmap(sb, block_group);
4584 if (!bitmap_bh) {
4585 err = -EIO;
4586 goto error_return;
4587 }
4588 gdp = ext4_get_group_desc(sb, block_group, &gd_bh);
4589 if (!gdp) {
4590 err = -EIO;
4591 goto error_return;
4592 }
4593
4594 if (in_range(ext4_block_bitmap(sb, gdp), block, count) ||
4595 in_range(ext4_inode_bitmap(sb, gdp), block, count) ||
4596 in_range(block, ext4_inode_table(sb, gdp),
4597 EXT4_SB(sb)->s_itb_per_group) ||
4598 in_range(block + count - 1, ext4_inode_table(sb, gdp),
4599 EXT4_SB(sb)->s_itb_per_group)) {
4600
4601 ext4_error(sb, "Freeing blocks in system zone - "
4602 "Block = %llu, count = %lu", block, count);
4603 /* err = 0. ext4_std_error should be a no op */
4604 goto error_return;
4605 }
4606
4607 BUFFER_TRACE(bitmap_bh, "getting write access");
4608 err = ext4_journal_get_write_access(handle, bitmap_bh);
4609 if (err)
4610 goto error_return;
4611
4612 /*
4613 * We are about to modify some metadata. Call the journal APIs
4614 * to unshare ->b_data if a currently-committing transaction is
4615 * using it
4616 */
4617 BUFFER_TRACE(gd_bh, "get_write_access");
4618 err = ext4_journal_get_write_access(handle, gd_bh);
4619 if (err)
4620 goto error_return;
4621 #ifdef AGGRESSIVE_CHECK
4622 {
4623 int i;
4624 for (i = 0; i < count_clusters; i++)
4625 BUG_ON(!mb_test_bit(bit + i, bitmap_bh->b_data));
4626 }
4627 #endif
4628 trace_ext4_mballoc_free(sb, inode, block_group, bit, count_clusters);
4629
4630 err = ext4_mb_load_buddy(sb, block_group, &e4b);
4631 if (err)
4632 goto error_return;
4633
4634 if ((flags & EXT4_FREE_BLOCKS_METADATA) && ext4_handle_valid(handle)) {
4635 struct ext4_free_data *new_entry;
4636 /*
4637 * blocks being freed are metadata. these blocks shouldn't
4638 * be used until this transaction is committed
4639 */
4640 new_entry = kmem_cache_alloc(ext4_free_data_cachep, GFP_NOFS);
4641 if (!new_entry) {
4642 ext4_mb_unload_buddy(&e4b);
4643 err = -ENOMEM;
4644 goto error_return;
4645 }
4646 new_entry->efd_start_cluster = bit;
4647 new_entry->efd_group = block_group;
4648 new_entry->efd_count = count_clusters;
4649 new_entry->efd_tid = handle->h_transaction->t_tid;
4650
4651 ext4_lock_group(sb, block_group);
4652 mb_clear_bits(bitmap_bh->b_data, bit, count_clusters);
4653 ext4_mb_free_metadata(handle, &e4b, new_entry);
4654 } else {
4655 /* need to update group_info->bb_free and bitmap
4656 * with group lock held. generate_buddy look at
4657 * them with group lock_held
4658 */
4659 if (test_opt(sb, DISCARD))
4660 ext4_issue_discard(sb, block_group, bit, count);
4661 ext4_lock_group(sb, block_group);
4662 mb_clear_bits(bitmap_bh->b_data, bit, count_clusters);
4663 mb_free_blocks(inode, &e4b, bit, count_clusters);
4664 }
4665
4666 ret = ext4_free_group_clusters(sb, gdp) + count_clusters;
4667 ext4_free_group_clusters_set(sb, gdp, ret);
4668 ext4_block_bitmap_csum_set(sb, block_group, gdp, bitmap_bh);
4669 ext4_group_desc_csum_set(sb, block_group, gdp);
4670 ext4_unlock_group(sb, block_group);
4671 percpu_counter_add(&sbi->s_freeclusters_counter, count_clusters);
4672
4673 if (sbi->s_log_groups_per_flex) {
4674 ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
4675 atomic_add(count_clusters,
4676 &sbi->s_flex_groups[flex_group].free_clusters);
4677 }
4678
4679 ext4_mb_unload_buddy(&e4b);
4680
4681 freed += count;
4682
4683 if (!(flags & EXT4_FREE_BLOCKS_NO_QUOT_UPDATE))
4684 dquot_free_block(inode, EXT4_C2B(sbi, count_clusters));
4685
4686 /* We dirtied the bitmap block */
4687 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
4688 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
4689
4690 /* And the group descriptor block */
4691 BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
4692 ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
4693 if (!err)
4694 err = ret;
4695
4696 if (overflow && !err) {
4697 block += count;
4698 count = overflow;
4699 put_bh(bitmap_bh);
4700 goto do_more;
4701 }
4702 error_return:
4703 brelse(bitmap_bh);
4704 ext4_std_error(sb, err);
4705 return;
4706 }
4707
4708 /**
4709 * ext4_group_add_blocks() -- Add given blocks to an existing group
4710 * @handle: handle to this transaction
4711 * @sb: super block
4712 * @block: start physical block to add to the block group
4713 * @count: number of blocks to free
4714 *
4715 * This marks the blocks as free in the bitmap and buddy.
4716 */
4717 int ext4_group_add_blocks(handle_t *handle, struct super_block *sb,
4718 ext4_fsblk_t block, unsigned long count)
4719 {
4720 struct buffer_head *bitmap_bh = NULL;
4721 struct buffer_head *gd_bh;
4722 ext4_group_t block_group;
4723 ext4_grpblk_t bit;
4724 unsigned int i;
4725 struct ext4_group_desc *desc;
4726 struct ext4_sb_info *sbi = EXT4_SB(sb);
4727 struct ext4_buddy e4b;
4728 int err = 0, ret, blk_free_count;
4729 ext4_grpblk_t blocks_freed;
4730
4731 ext4_debug("Adding block(s) %llu-%llu\n", block, block + count - 1);
4732
4733 if (count == 0)
4734 return 0;
4735
4736 ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
4737 /*
4738 * Check to see if we are freeing blocks across a group
4739 * boundary.
4740 */
4741 if (bit + count > EXT4_BLOCKS_PER_GROUP(sb)) {
4742 ext4_warning(sb, "too much blocks added to group %u\n",
4743 block_group);
4744 err = -EINVAL;
4745 goto error_return;
4746 }
4747
4748 bitmap_bh = ext4_read_block_bitmap(sb, block_group);
4749 if (!bitmap_bh) {
4750 err = -EIO;
4751 goto error_return;
4752 }
4753
4754 desc = ext4_get_group_desc(sb, block_group, &gd_bh);
4755 if (!desc) {
4756 err = -EIO;
4757 goto error_return;
4758 }
4759
4760 if (in_range(ext4_block_bitmap(sb, desc), block, count) ||
4761 in_range(ext4_inode_bitmap(sb, desc), block, count) ||
4762 in_range(block, ext4_inode_table(sb, desc), sbi->s_itb_per_group) ||
4763 in_range(block + count - 1, ext4_inode_table(sb, desc),
4764 sbi->s_itb_per_group)) {
4765 ext4_error(sb, "Adding blocks in system zones - "
4766 "Block = %llu, count = %lu",
4767 block, count);
4768 err = -EINVAL;
4769 goto error_return;
4770 }
4771
4772 BUFFER_TRACE(bitmap_bh, "getting write access");
4773 err = ext4_journal_get_write_access(handle, bitmap_bh);
4774 if (err)
4775 goto error_return;
4776
4777 /*
4778 * We are about to modify some metadata. Call the journal APIs
4779 * to unshare ->b_data if a currently-committing transaction is
4780 * using it
4781 */
4782 BUFFER_TRACE(gd_bh, "get_write_access");
4783 err = ext4_journal_get_write_access(handle, gd_bh);
4784 if (err)
4785 goto error_return;
4786
4787 for (i = 0, blocks_freed = 0; i < count; i++) {
4788 BUFFER_TRACE(bitmap_bh, "clear bit");
4789 if (!mb_test_bit(bit + i, bitmap_bh->b_data)) {
4790 ext4_error(sb, "bit already cleared for block %llu",
4791 (ext4_fsblk_t)(block + i));
4792 BUFFER_TRACE(bitmap_bh, "bit already cleared");
4793 } else {
4794 blocks_freed++;
4795 }
4796 }
4797
4798 err = ext4_mb_load_buddy(sb, block_group, &e4b);
4799 if (err)
4800 goto error_return;
4801
4802 /*
4803 * need to update group_info->bb_free and bitmap
4804 * with group lock held. generate_buddy look at
4805 * them with group lock_held
4806 */
4807 ext4_lock_group(sb, block_group);
4808 mb_clear_bits(bitmap_bh->b_data, bit, count);
4809 mb_free_blocks(NULL, &e4b, bit, count);
4810 blk_free_count = blocks_freed + ext4_free_group_clusters(sb, desc);
4811 ext4_free_group_clusters_set(sb, desc, blk_free_count);
4812 ext4_block_bitmap_csum_set(sb, block_group, desc, bitmap_bh);
4813 ext4_group_desc_csum_set(sb, block_group, desc);
4814 ext4_unlock_group(sb, block_group);
4815 percpu_counter_add(&sbi->s_freeclusters_counter,
4816 EXT4_B2C(sbi, blocks_freed));
4817
4818 if (sbi->s_log_groups_per_flex) {
4819 ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
4820 atomic_add(EXT4_B2C(sbi, blocks_freed),
4821 &sbi->s_flex_groups[flex_group].free_clusters);
4822 }
4823
4824 ext4_mb_unload_buddy(&e4b);
4825
4826 /* We dirtied the bitmap block */
4827 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
4828 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
4829
4830 /* And the group descriptor block */
4831 BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
4832 ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
4833 if (!err)
4834 err = ret;
4835
4836 error_return:
4837 brelse(bitmap_bh);
4838 ext4_std_error(sb, err);
4839 return err;
4840 }
4841
4842 /**
4843 * ext4_trim_extent -- function to TRIM one single free extent in the group
4844 * @sb: super block for the file system
4845 * @start: starting block of the free extent in the alloc. group
4846 * @count: number of blocks to TRIM
4847 * @group: alloc. group we are working with
4848 * @e4b: ext4 buddy for the group
4849 *
4850 * Trim "count" blocks starting at "start" in the "group". To assure that no
4851 * one will allocate those blocks, mark it as used in buddy bitmap. This must
4852 * be called with under the group lock.
4853 */
4854 static void ext4_trim_extent(struct super_block *sb, int start, int count,
4855 ext4_group_t group, struct ext4_buddy *e4b)
4856 {
4857 struct ext4_free_extent ex;
4858
4859 trace_ext4_trim_extent(sb, group, start, count);
4860
4861 assert_spin_locked(ext4_group_lock_ptr(sb, group));
4862
4863 ex.fe_start = start;
4864 ex.fe_group = group;
4865 ex.fe_len = count;
4866
4867 /*
4868 * Mark blocks used, so no one can reuse them while
4869 * being trimmed.
4870 */
4871 mb_mark_used(e4b, &ex);
4872 ext4_unlock_group(sb, group);
4873 ext4_issue_discard(sb, group, start, count);
4874 ext4_lock_group(sb, group);
4875 mb_free_blocks(NULL, e4b, start, ex.fe_len);
4876 }
4877
4878 /**
4879 * ext4_trim_all_free -- function to trim all free space in alloc. group
4880 * @sb: super block for file system
4881 * @group: group to be trimmed
4882 * @start: first group block to examine
4883 * @max: last group block to examine
4884 * @minblocks: minimum extent block count
4885 *
4886 * ext4_trim_all_free walks through group's buddy bitmap searching for free
4887 * extents. When the free block is found, ext4_trim_extent is called to TRIM
4888 * the extent.
4889 *
4890 *
4891 * ext4_trim_all_free walks through group's block bitmap searching for free
4892 * extents. When the free extent is found, mark it as used in group buddy
4893 * bitmap. Then issue a TRIM command on this extent and free the extent in
4894 * the group buddy bitmap. This is done until whole group is scanned.
4895 */
4896 static ext4_grpblk_t
4897 ext4_trim_all_free(struct super_block *sb, ext4_group_t group,
4898 ext4_grpblk_t start, ext4_grpblk_t max,
4899 ext4_grpblk_t minblocks)
4900 {
4901 void *bitmap;
4902 ext4_grpblk_t next, count = 0, free_count = 0;
4903 struct ext4_buddy e4b;
4904 int ret;
4905
4906 trace_ext4_trim_all_free(sb, group, start, max);
4907
4908 ret = ext4_mb_load_buddy(sb, group, &e4b);
4909 if (ret) {
4910 ext4_error(sb, "Error in loading buddy "
4911 "information for %u", group);
4912 return ret;
4913 }
4914 bitmap = e4b.bd_bitmap;
4915
4916 ext4_lock_group(sb, group);
4917 if (EXT4_MB_GRP_WAS_TRIMMED(e4b.bd_info) &&
4918 minblocks >= atomic_read(&EXT4_SB(sb)->s_last_trim_minblks))
4919 goto out;
4920
4921 start = (e4b.bd_info->bb_first_free > start) ?
4922 e4b.bd_info->bb_first_free : start;
4923
4924 while (start <= max) {
4925 start = mb_find_next_zero_bit(bitmap, max + 1, start);
4926 if (start > max)
4927 break;
4928 next = mb_find_next_bit(bitmap, max + 1, start);
4929
4930 if ((next - start) >= minblocks) {
4931 ext4_trim_extent(sb, start,
4932 next - start, group, &e4b);
4933 count += next - start;
4934 }
4935 free_count += next - start;
4936 start = next + 1;
4937
4938 if (fatal_signal_pending(current)) {
4939 count = -ERESTARTSYS;
4940 break;
4941 }
4942
4943 if (need_resched()) {
4944 ext4_unlock_group(sb, group);
4945 cond_resched();
4946 ext4_lock_group(sb, group);
4947 }
4948
4949 if ((e4b.bd_info->bb_free - free_count) < minblocks)
4950 break;
4951 }
4952
4953 if (!ret)
4954 EXT4_MB_GRP_SET_TRIMMED(e4b.bd_info);
4955 out:
4956 ext4_unlock_group(sb, group);
4957 ext4_mb_unload_buddy(&e4b);
4958
4959 ext4_debug("trimmed %d blocks in the group %d\n",
4960 count, group);
4961
4962 return count;
4963 }
4964
4965 /**
4966 * ext4_trim_fs() -- trim ioctl handle function
4967 * @sb: superblock for filesystem
4968 * @range: fstrim_range structure
4969 *
4970 * start: First Byte to trim
4971 * len: number of Bytes to trim from start
4972 * minlen: minimum extent length in Bytes
4973 * ext4_trim_fs goes through all allocation groups containing Bytes from
4974 * start to start+len. For each such a group ext4_trim_all_free function
4975 * is invoked to trim all free space.
4976 */
4977 int ext4_trim_fs(struct super_block *sb, struct fstrim_range *range)
4978 {
4979 struct ext4_group_info *grp;
4980 ext4_group_t group, first_group, last_group;
4981 ext4_grpblk_t cnt = 0, first_cluster, last_cluster;
4982 uint64_t start, end, minlen, trimmed = 0;
4983 ext4_fsblk_t first_data_blk =
4984 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block);
4985 ext4_fsblk_t max_blks = ext4_blocks_count(EXT4_SB(sb)->s_es);
4986 int ret = 0;
4987
4988 start = range->start >> sb->s_blocksize_bits;
4989 end = start + (range->len >> sb->s_blocksize_bits) - 1;
4990 minlen = EXT4_NUM_B2C(EXT4_SB(sb),
4991 range->minlen >> sb->s_blocksize_bits);
4992
4993 if (minlen > EXT4_CLUSTERS_PER_GROUP(sb) ||
4994 start >= max_blks ||
4995 range->len < sb->s_blocksize)
4996 return -EINVAL;
4997 if (end >= max_blks)
4998 end = max_blks - 1;
4999 if (end <= first_data_blk)
5000 goto out;
5001 if (start < first_data_blk)
5002 start = first_data_blk;
5003
5004 /* Determine first and last group to examine based on start and end */
5005 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) start,
5006 &first_group, &first_cluster);
5007 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) end,
5008 &last_group, &last_cluster);
5009
5010 /* end now represents the last cluster to discard in this group */
5011 end = EXT4_CLUSTERS_PER_GROUP(sb) - 1;
5012
5013 for (group = first_group; group <= last_group; group++) {
5014 grp = ext4_get_group_info(sb, group);
5015 /* We only do this if the grp has never been initialized */
5016 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
5017 ret = ext4_mb_init_group(sb, group);
5018 if (ret)
5019 break;
5020 }
5021
5022 /*
5023 * For all the groups except the last one, last cluster will
5024 * always be EXT4_CLUSTERS_PER_GROUP(sb)-1, so we only need to
5025 * change it for the last group, note that last_cluster is
5026 * already computed earlier by ext4_get_group_no_and_offset()
5027 */
5028 if (group == last_group)
5029 end = last_cluster;
5030
5031 if (grp->bb_free >= minlen) {
5032 cnt = ext4_trim_all_free(sb, group, first_cluster,
5033 end, minlen);
5034 if (cnt < 0) {
5035 ret = cnt;
5036 break;
5037 }
5038 trimmed += cnt;
5039 }
5040
5041 /*
5042 * For every group except the first one, we are sure
5043 * that the first cluster to discard will be cluster #0.
5044 */
5045 first_cluster = 0;
5046 }
5047
5048 if (!ret)
5049 atomic_set(&EXT4_SB(sb)->s_last_trim_minblks, minlen);
5050
5051 out:
5052 range->len = EXT4_C2B(EXT4_SB(sb), trimmed) << sb->s_blocksize_bits;
5053 return ret;
5054 }