]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/ext4/mballoc.c
Merge tag 'iommu-fixes-v4.13-rc4' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-artful-kernel.git] / fs / ext4 / mballoc.c
1 /*
2 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3 * Written by Alex Tomas <alex@clusterfs.com>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
17 */
18
19
20 /*
21 * mballoc.c contains the multiblocks allocation routines
22 */
23
24 #include "ext4_jbd2.h"
25 #include "mballoc.h"
26 #include <linux/log2.h>
27 #include <linux/module.h>
28 #include <linux/slab.h>
29 #include <linux/backing-dev.h>
30 #include <trace/events/ext4.h>
31
32 #ifdef CONFIG_EXT4_DEBUG
33 ushort ext4_mballoc_debug __read_mostly;
34
35 module_param_named(mballoc_debug, ext4_mballoc_debug, ushort, 0644);
36 MODULE_PARM_DESC(mballoc_debug, "Debugging level for ext4's mballoc");
37 #endif
38
39 /*
40 * MUSTDO:
41 * - test ext4_ext_search_left() and ext4_ext_search_right()
42 * - search for metadata in few groups
43 *
44 * TODO v4:
45 * - normalization should take into account whether file is still open
46 * - discard preallocations if no free space left (policy?)
47 * - don't normalize tails
48 * - quota
49 * - reservation for superuser
50 *
51 * TODO v3:
52 * - bitmap read-ahead (proposed by Oleg Drokin aka green)
53 * - track min/max extents in each group for better group selection
54 * - mb_mark_used() may allocate chunk right after splitting buddy
55 * - tree of groups sorted by number of free blocks
56 * - error handling
57 */
58
59 /*
60 * The allocation request involve request for multiple number of blocks
61 * near to the goal(block) value specified.
62 *
63 * During initialization phase of the allocator we decide to use the
64 * group preallocation or inode preallocation depending on the size of
65 * the file. The size of the file could be the resulting file size we
66 * would have after allocation, or the current file size, which ever
67 * is larger. If the size is less than sbi->s_mb_stream_request we
68 * select to use the group preallocation. The default value of
69 * s_mb_stream_request is 16 blocks. This can also be tuned via
70 * /sys/fs/ext4/<partition>/mb_stream_req. The value is represented in
71 * terms of number of blocks.
72 *
73 * The main motivation for having small file use group preallocation is to
74 * ensure that we have small files closer together on the disk.
75 *
76 * First stage the allocator looks at the inode prealloc list,
77 * ext4_inode_info->i_prealloc_list, which contains list of prealloc
78 * spaces for this particular inode. The inode prealloc space is
79 * represented as:
80 *
81 * pa_lstart -> the logical start block for this prealloc space
82 * pa_pstart -> the physical start block for this prealloc space
83 * pa_len -> length for this prealloc space (in clusters)
84 * pa_free -> free space available in this prealloc space (in clusters)
85 *
86 * The inode preallocation space is used looking at the _logical_ start
87 * block. If only the logical file block falls within the range of prealloc
88 * space we will consume the particular prealloc space. This makes sure that
89 * we have contiguous physical blocks representing the file blocks
90 *
91 * The important thing to be noted in case of inode prealloc space is that
92 * we don't modify the values associated to inode prealloc space except
93 * pa_free.
94 *
95 * If we are not able to find blocks in the inode prealloc space and if we
96 * have the group allocation flag set then we look at the locality group
97 * prealloc space. These are per CPU prealloc list represented as
98 *
99 * ext4_sb_info.s_locality_groups[smp_processor_id()]
100 *
101 * The reason for having a per cpu locality group is to reduce the contention
102 * between CPUs. It is possible to get scheduled at this point.
103 *
104 * The locality group prealloc space is used looking at whether we have
105 * enough free space (pa_free) within the prealloc space.
106 *
107 * If we can't allocate blocks via inode prealloc or/and locality group
108 * prealloc then we look at the buddy cache. The buddy cache is represented
109 * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets
110 * mapped to the buddy and bitmap information regarding different
111 * groups. The buddy information is attached to buddy cache inode so that
112 * we can access them through the page cache. The information regarding
113 * each group is loaded via ext4_mb_load_buddy. The information involve
114 * block bitmap and buddy information. The information are stored in the
115 * inode as:
116 *
117 * { page }
118 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
119 *
120 *
121 * one block each for bitmap and buddy information. So for each group we
122 * take up 2 blocks. A page can contain blocks_per_page (PAGE_SIZE /
123 * blocksize) blocks. So it can have information regarding groups_per_page
124 * which is blocks_per_page/2
125 *
126 * The buddy cache inode is not stored on disk. The inode is thrown
127 * away when the filesystem is unmounted.
128 *
129 * We look for count number of blocks in the buddy cache. If we were able
130 * to locate that many free blocks we return with additional information
131 * regarding rest of the contiguous physical block available
132 *
133 * Before allocating blocks via buddy cache we normalize the request
134 * blocks. This ensure we ask for more blocks that we needed. The extra
135 * blocks that we get after allocation is added to the respective prealloc
136 * list. In case of inode preallocation we follow a list of heuristics
137 * based on file size. This can be found in ext4_mb_normalize_request. If
138 * we are doing a group prealloc we try to normalize the request to
139 * sbi->s_mb_group_prealloc. The default value of s_mb_group_prealloc is
140 * dependent on the cluster size; for non-bigalloc file systems, it is
141 * 512 blocks. This can be tuned via
142 * /sys/fs/ext4/<partition>/mb_group_prealloc. The value is represented in
143 * terms of number of blocks. If we have mounted the file system with -O
144 * stripe=<value> option the group prealloc request is normalized to the
145 * the smallest multiple of the stripe value (sbi->s_stripe) which is
146 * greater than the default mb_group_prealloc.
147 *
148 * The regular allocator (using the buddy cache) supports a few tunables.
149 *
150 * /sys/fs/ext4/<partition>/mb_min_to_scan
151 * /sys/fs/ext4/<partition>/mb_max_to_scan
152 * /sys/fs/ext4/<partition>/mb_order2_req
153 *
154 * The regular allocator uses buddy scan only if the request len is power of
155 * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The
156 * value of s_mb_order2_reqs can be tuned via
157 * /sys/fs/ext4/<partition>/mb_order2_req. If the request len is equal to
158 * stripe size (sbi->s_stripe), we try to search for contiguous block in
159 * stripe size. This should result in better allocation on RAID setups. If
160 * not, we search in the specific group using bitmap for best extents. The
161 * tunable min_to_scan and max_to_scan control the behaviour here.
162 * min_to_scan indicate how long the mballoc __must__ look for a best
163 * extent and max_to_scan indicates how long the mballoc __can__ look for a
164 * best extent in the found extents. Searching for the blocks starts with
165 * the group specified as the goal value in allocation context via
166 * ac_g_ex. Each group is first checked based on the criteria whether it
167 * can be used for allocation. ext4_mb_good_group explains how the groups are
168 * checked.
169 *
170 * Both the prealloc space are getting populated as above. So for the first
171 * request we will hit the buddy cache which will result in this prealloc
172 * space getting filled. The prealloc space is then later used for the
173 * subsequent request.
174 */
175
176 /*
177 * mballoc operates on the following data:
178 * - on-disk bitmap
179 * - in-core buddy (actually includes buddy and bitmap)
180 * - preallocation descriptors (PAs)
181 *
182 * there are two types of preallocations:
183 * - inode
184 * assiged to specific inode and can be used for this inode only.
185 * it describes part of inode's space preallocated to specific
186 * physical blocks. any block from that preallocated can be used
187 * independent. the descriptor just tracks number of blocks left
188 * unused. so, before taking some block from descriptor, one must
189 * make sure corresponded logical block isn't allocated yet. this
190 * also means that freeing any block within descriptor's range
191 * must discard all preallocated blocks.
192 * - locality group
193 * assigned to specific locality group which does not translate to
194 * permanent set of inodes: inode can join and leave group. space
195 * from this type of preallocation can be used for any inode. thus
196 * it's consumed from the beginning to the end.
197 *
198 * relation between them can be expressed as:
199 * in-core buddy = on-disk bitmap + preallocation descriptors
200 *
201 * this mean blocks mballoc considers used are:
202 * - allocated blocks (persistent)
203 * - preallocated blocks (non-persistent)
204 *
205 * consistency in mballoc world means that at any time a block is either
206 * free or used in ALL structures. notice: "any time" should not be read
207 * literally -- time is discrete and delimited by locks.
208 *
209 * to keep it simple, we don't use block numbers, instead we count number of
210 * blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA.
211 *
212 * all operations can be expressed as:
213 * - init buddy: buddy = on-disk + PAs
214 * - new PA: buddy += N; PA = N
215 * - use inode PA: on-disk += N; PA -= N
216 * - discard inode PA buddy -= on-disk - PA; PA = 0
217 * - use locality group PA on-disk += N; PA -= N
218 * - discard locality group PA buddy -= PA; PA = 0
219 * note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap
220 * is used in real operation because we can't know actual used
221 * bits from PA, only from on-disk bitmap
222 *
223 * if we follow this strict logic, then all operations above should be atomic.
224 * given some of them can block, we'd have to use something like semaphores
225 * killing performance on high-end SMP hardware. let's try to relax it using
226 * the following knowledge:
227 * 1) if buddy is referenced, it's already initialized
228 * 2) while block is used in buddy and the buddy is referenced,
229 * nobody can re-allocate that block
230 * 3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has
231 * bit set and PA claims same block, it's OK. IOW, one can set bit in
232 * on-disk bitmap if buddy has same bit set or/and PA covers corresponded
233 * block
234 *
235 * so, now we're building a concurrency table:
236 * - init buddy vs.
237 * - new PA
238 * blocks for PA are allocated in the buddy, buddy must be referenced
239 * until PA is linked to allocation group to avoid concurrent buddy init
240 * - use inode PA
241 * we need to make sure that either on-disk bitmap or PA has uptodate data
242 * given (3) we care that PA-=N operation doesn't interfere with init
243 * - discard inode PA
244 * the simplest way would be to have buddy initialized by the discard
245 * - use locality group PA
246 * again PA-=N must be serialized with init
247 * - discard locality group PA
248 * the simplest way would be to have buddy initialized by the discard
249 * - new PA vs.
250 * - use inode PA
251 * i_data_sem serializes them
252 * - discard inode PA
253 * discard process must wait until PA isn't used by another process
254 * - use locality group PA
255 * some mutex should serialize them
256 * - discard locality group PA
257 * discard process must wait until PA isn't used by another process
258 * - use inode PA
259 * - use inode PA
260 * i_data_sem or another mutex should serializes them
261 * - discard inode PA
262 * discard process must wait until PA isn't used by another process
263 * - use locality group PA
264 * nothing wrong here -- they're different PAs covering different blocks
265 * - discard locality group PA
266 * discard process must wait until PA isn't used by another process
267 *
268 * now we're ready to make few consequences:
269 * - PA is referenced and while it is no discard is possible
270 * - PA is referenced until block isn't marked in on-disk bitmap
271 * - PA changes only after on-disk bitmap
272 * - discard must not compete with init. either init is done before
273 * any discard or they're serialized somehow
274 * - buddy init as sum of on-disk bitmap and PAs is done atomically
275 *
276 * a special case when we've used PA to emptiness. no need to modify buddy
277 * in this case, but we should care about concurrent init
278 *
279 */
280
281 /*
282 * Logic in few words:
283 *
284 * - allocation:
285 * load group
286 * find blocks
287 * mark bits in on-disk bitmap
288 * release group
289 *
290 * - use preallocation:
291 * find proper PA (per-inode or group)
292 * load group
293 * mark bits in on-disk bitmap
294 * release group
295 * release PA
296 *
297 * - free:
298 * load group
299 * mark bits in on-disk bitmap
300 * release group
301 *
302 * - discard preallocations in group:
303 * mark PAs deleted
304 * move them onto local list
305 * load on-disk bitmap
306 * load group
307 * remove PA from object (inode or locality group)
308 * mark free blocks in-core
309 *
310 * - discard inode's preallocations:
311 */
312
313 /*
314 * Locking rules
315 *
316 * Locks:
317 * - bitlock on a group (group)
318 * - object (inode/locality) (object)
319 * - per-pa lock (pa)
320 *
321 * Paths:
322 * - new pa
323 * object
324 * group
325 *
326 * - find and use pa:
327 * pa
328 *
329 * - release consumed pa:
330 * pa
331 * group
332 * object
333 *
334 * - generate in-core bitmap:
335 * group
336 * pa
337 *
338 * - discard all for given object (inode, locality group):
339 * object
340 * pa
341 * group
342 *
343 * - discard all for given group:
344 * group
345 * pa
346 * group
347 * object
348 *
349 */
350 static struct kmem_cache *ext4_pspace_cachep;
351 static struct kmem_cache *ext4_ac_cachep;
352 static struct kmem_cache *ext4_free_data_cachep;
353
354 /* We create slab caches for groupinfo data structures based on the
355 * superblock block size. There will be one per mounted filesystem for
356 * each unique s_blocksize_bits */
357 #define NR_GRPINFO_CACHES 8
358 static struct kmem_cache *ext4_groupinfo_caches[NR_GRPINFO_CACHES];
359
360 static const char * const ext4_groupinfo_slab_names[NR_GRPINFO_CACHES] = {
361 "ext4_groupinfo_1k", "ext4_groupinfo_2k", "ext4_groupinfo_4k",
362 "ext4_groupinfo_8k", "ext4_groupinfo_16k", "ext4_groupinfo_32k",
363 "ext4_groupinfo_64k", "ext4_groupinfo_128k"
364 };
365
366 static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
367 ext4_group_t group);
368 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
369 ext4_group_t group);
370
371 static inline void *mb_correct_addr_and_bit(int *bit, void *addr)
372 {
373 #if BITS_PER_LONG == 64
374 *bit += ((unsigned long) addr & 7UL) << 3;
375 addr = (void *) ((unsigned long) addr & ~7UL);
376 #elif BITS_PER_LONG == 32
377 *bit += ((unsigned long) addr & 3UL) << 3;
378 addr = (void *) ((unsigned long) addr & ~3UL);
379 #else
380 #error "how many bits you are?!"
381 #endif
382 return addr;
383 }
384
385 static inline int mb_test_bit(int bit, void *addr)
386 {
387 /*
388 * ext4_test_bit on architecture like powerpc
389 * needs unsigned long aligned address
390 */
391 addr = mb_correct_addr_and_bit(&bit, addr);
392 return ext4_test_bit(bit, addr);
393 }
394
395 static inline void mb_set_bit(int bit, void *addr)
396 {
397 addr = mb_correct_addr_and_bit(&bit, addr);
398 ext4_set_bit(bit, addr);
399 }
400
401 static inline void mb_clear_bit(int bit, void *addr)
402 {
403 addr = mb_correct_addr_and_bit(&bit, addr);
404 ext4_clear_bit(bit, addr);
405 }
406
407 static inline int mb_test_and_clear_bit(int bit, void *addr)
408 {
409 addr = mb_correct_addr_and_bit(&bit, addr);
410 return ext4_test_and_clear_bit(bit, addr);
411 }
412
413 static inline int mb_find_next_zero_bit(void *addr, int max, int start)
414 {
415 int fix = 0, ret, tmpmax;
416 addr = mb_correct_addr_and_bit(&fix, addr);
417 tmpmax = max + fix;
418 start += fix;
419
420 ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix;
421 if (ret > max)
422 return max;
423 return ret;
424 }
425
426 static inline int mb_find_next_bit(void *addr, int max, int start)
427 {
428 int fix = 0, ret, tmpmax;
429 addr = mb_correct_addr_and_bit(&fix, addr);
430 tmpmax = max + fix;
431 start += fix;
432
433 ret = ext4_find_next_bit(addr, tmpmax, start) - fix;
434 if (ret > max)
435 return max;
436 return ret;
437 }
438
439 static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max)
440 {
441 char *bb;
442
443 BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
444 BUG_ON(max == NULL);
445
446 if (order > e4b->bd_blkbits + 1) {
447 *max = 0;
448 return NULL;
449 }
450
451 /* at order 0 we see each particular block */
452 if (order == 0) {
453 *max = 1 << (e4b->bd_blkbits + 3);
454 return e4b->bd_bitmap;
455 }
456
457 bb = e4b->bd_buddy + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order];
458 *max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order];
459
460 return bb;
461 }
462
463 #ifdef DOUBLE_CHECK
464 static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b,
465 int first, int count)
466 {
467 int i;
468 struct super_block *sb = e4b->bd_sb;
469
470 if (unlikely(e4b->bd_info->bb_bitmap == NULL))
471 return;
472 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
473 for (i = 0; i < count; i++) {
474 if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) {
475 ext4_fsblk_t blocknr;
476
477 blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
478 blocknr += EXT4_C2B(EXT4_SB(sb), first + i);
479 ext4_grp_locked_error(sb, e4b->bd_group,
480 inode ? inode->i_ino : 0,
481 blocknr,
482 "freeing block already freed "
483 "(bit %u)",
484 first + i);
485 }
486 mb_clear_bit(first + i, e4b->bd_info->bb_bitmap);
487 }
488 }
489
490 static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count)
491 {
492 int i;
493
494 if (unlikely(e4b->bd_info->bb_bitmap == NULL))
495 return;
496 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
497 for (i = 0; i < count; i++) {
498 BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap));
499 mb_set_bit(first + i, e4b->bd_info->bb_bitmap);
500 }
501 }
502
503 static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
504 {
505 if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) {
506 unsigned char *b1, *b2;
507 int i;
508 b1 = (unsigned char *) e4b->bd_info->bb_bitmap;
509 b2 = (unsigned char *) bitmap;
510 for (i = 0; i < e4b->bd_sb->s_blocksize; i++) {
511 if (b1[i] != b2[i]) {
512 ext4_msg(e4b->bd_sb, KERN_ERR,
513 "corruption in group %u "
514 "at byte %u(%u): %x in copy != %x "
515 "on disk/prealloc",
516 e4b->bd_group, i, i * 8, b1[i], b2[i]);
517 BUG();
518 }
519 }
520 }
521 }
522
523 #else
524 static inline void mb_free_blocks_double(struct inode *inode,
525 struct ext4_buddy *e4b, int first, int count)
526 {
527 return;
528 }
529 static inline void mb_mark_used_double(struct ext4_buddy *e4b,
530 int first, int count)
531 {
532 return;
533 }
534 static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
535 {
536 return;
537 }
538 #endif
539
540 #ifdef AGGRESSIVE_CHECK
541
542 #define MB_CHECK_ASSERT(assert) \
543 do { \
544 if (!(assert)) { \
545 printk(KERN_EMERG \
546 "Assertion failure in %s() at %s:%d: \"%s\"\n", \
547 function, file, line, # assert); \
548 BUG(); \
549 } \
550 } while (0)
551
552 static int __mb_check_buddy(struct ext4_buddy *e4b, char *file,
553 const char *function, int line)
554 {
555 struct super_block *sb = e4b->bd_sb;
556 int order = e4b->bd_blkbits + 1;
557 int max;
558 int max2;
559 int i;
560 int j;
561 int k;
562 int count;
563 struct ext4_group_info *grp;
564 int fragments = 0;
565 int fstart;
566 struct list_head *cur;
567 void *buddy;
568 void *buddy2;
569
570 {
571 static int mb_check_counter;
572 if (mb_check_counter++ % 100 != 0)
573 return 0;
574 }
575
576 while (order > 1) {
577 buddy = mb_find_buddy(e4b, order, &max);
578 MB_CHECK_ASSERT(buddy);
579 buddy2 = mb_find_buddy(e4b, order - 1, &max2);
580 MB_CHECK_ASSERT(buddy2);
581 MB_CHECK_ASSERT(buddy != buddy2);
582 MB_CHECK_ASSERT(max * 2 == max2);
583
584 count = 0;
585 for (i = 0; i < max; i++) {
586
587 if (mb_test_bit(i, buddy)) {
588 /* only single bit in buddy2 may be 1 */
589 if (!mb_test_bit(i << 1, buddy2)) {
590 MB_CHECK_ASSERT(
591 mb_test_bit((i<<1)+1, buddy2));
592 } else if (!mb_test_bit((i << 1) + 1, buddy2)) {
593 MB_CHECK_ASSERT(
594 mb_test_bit(i << 1, buddy2));
595 }
596 continue;
597 }
598
599 /* both bits in buddy2 must be 1 */
600 MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2));
601 MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2));
602
603 for (j = 0; j < (1 << order); j++) {
604 k = (i * (1 << order)) + j;
605 MB_CHECK_ASSERT(
606 !mb_test_bit(k, e4b->bd_bitmap));
607 }
608 count++;
609 }
610 MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count);
611 order--;
612 }
613
614 fstart = -1;
615 buddy = mb_find_buddy(e4b, 0, &max);
616 for (i = 0; i < max; i++) {
617 if (!mb_test_bit(i, buddy)) {
618 MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free);
619 if (fstart == -1) {
620 fragments++;
621 fstart = i;
622 }
623 continue;
624 }
625 fstart = -1;
626 /* check used bits only */
627 for (j = 0; j < e4b->bd_blkbits + 1; j++) {
628 buddy2 = mb_find_buddy(e4b, j, &max2);
629 k = i >> j;
630 MB_CHECK_ASSERT(k < max2);
631 MB_CHECK_ASSERT(mb_test_bit(k, buddy2));
632 }
633 }
634 MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info));
635 MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments);
636
637 grp = ext4_get_group_info(sb, e4b->bd_group);
638 list_for_each(cur, &grp->bb_prealloc_list) {
639 ext4_group_t groupnr;
640 struct ext4_prealloc_space *pa;
641 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
642 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k);
643 MB_CHECK_ASSERT(groupnr == e4b->bd_group);
644 for (i = 0; i < pa->pa_len; i++)
645 MB_CHECK_ASSERT(mb_test_bit(k + i, buddy));
646 }
647 return 0;
648 }
649 #undef MB_CHECK_ASSERT
650 #define mb_check_buddy(e4b) __mb_check_buddy(e4b, \
651 __FILE__, __func__, __LINE__)
652 #else
653 #define mb_check_buddy(e4b)
654 #endif
655
656 /*
657 * Divide blocks started from @first with length @len into
658 * smaller chunks with power of 2 blocks.
659 * Clear the bits in bitmap which the blocks of the chunk(s) covered,
660 * then increase bb_counters[] for corresponded chunk size.
661 */
662 static void ext4_mb_mark_free_simple(struct super_block *sb,
663 void *buddy, ext4_grpblk_t first, ext4_grpblk_t len,
664 struct ext4_group_info *grp)
665 {
666 struct ext4_sb_info *sbi = EXT4_SB(sb);
667 ext4_grpblk_t min;
668 ext4_grpblk_t max;
669 ext4_grpblk_t chunk;
670 unsigned int border;
671
672 BUG_ON(len > EXT4_CLUSTERS_PER_GROUP(sb));
673
674 border = 2 << sb->s_blocksize_bits;
675
676 while (len > 0) {
677 /* find how many blocks can be covered since this position */
678 max = ffs(first | border) - 1;
679
680 /* find how many blocks of power 2 we need to mark */
681 min = fls(len) - 1;
682
683 if (max < min)
684 min = max;
685 chunk = 1 << min;
686
687 /* mark multiblock chunks only */
688 grp->bb_counters[min]++;
689 if (min > 0)
690 mb_clear_bit(first >> min,
691 buddy + sbi->s_mb_offsets[min]);
692
693 len -= chunk;
694 first += chunk;
695 }
696 }
697
698 /*
699 * Cache the order of the largest free extent we have available in this block
700 * group.
701 */
702 static void
703 mb_set_largest_free_order(struct super_block *sb, struct ext4_group_info *grp)
704 {
705 int i;
706 int bits;
707
708 grp->bb_largest_free_order = -1; /* uninit */
709
710 bits = sb->s_blocksize_bits + 1;
711 for (i = bits; i >= 0; i--) {
712 if (grp->bb_counters[i] > 0) {
713 grp->bb_largest_free_order = i;
714 break;
715 }
716 }
717 }
718
719 static noinline_for_stack
720 void ext4_mb_generate_buddy(struct super_block *sb,
721 void *buddy, void *bitmap, ext4_group_t group)
722 {
723 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
724 struct ext4_sb_info *sbi = EXT4_SB(sb);
725 ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb);
726 ext4_grpblk_t i = 0;
727 ext4_grpblk_t first;
728 ext4_grpblk_t len;
729 unsigned free = 0;
730 unsigned fragments = 0;
731 unsigned long long period = get_cycles();
732
733 /* initialize buddy from bitmap which is aggregation
734 * of on-disk bitmap and preallocations */
735 i = mb_find_next_zero_bit(bitmap, max, 0);
736 grp->bb_first_free = i;
737 while (i < max) {
738 fragments++;
739 first = i;
740 i = mb_find_next_bit(bitmap, max, i);
741 len = i - first;
742 free += len;
743 if (len > 1)
744 ext4_mb_mark_free_simple(sb, buddy, first, len, grp);
745 else
746 grp->bb_counters[0]++;
747 if (i < max)
748 i = mb_find_next_zero_bit(bitmap, max, i);
749 }
750 grp->bb_fragments = fragments;
751
752 if (free != grp->bb_free) {
753 ext4_grp_locked_error(sb, group, 0, 0,
754 "block bitmap and bg descriptor "
755 "inconsistent: %u vs %u free clusters",
756 free, grp->bb_free);
757 /*
758 * If we intend to continue, we consider group descriptor
759 * corrupt and update bb_free using bitmap value
760 */
761 grp->bb_free = free;
762 if (!EXT4_MB_GRP_BBITMAP_CORRUPT(grp))
763 percpu_counter_sub(&sbi->s_freeclusters_counter,
764 grp->bb_free);
765 set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT, &grp->bb_state);
766 }
767 mb_set_largest_free_order(sb, grp);
768
769 clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state));
770
771 period = get_cycles() - period;
772 spin_lock(&EXT4_SB(sb)->s_bal_lock);
773 EXT4_SB(sb)->s_mb_buddies_generated++;
774 EXT4_SB(sb)->s_mb_generation_time += period;
775 spin_unlock(&EXT4_SB(sb)->s_bal_lock);
776 }
777
778 static void mb_regenerate_buddy(struct ext4_buddy *e4b)
779 {
780 int count;
781 int order = 1;
782 void *buddy;
783
784 while ((buddy = mb_find_buddy(e4b, order++, &count))) {
785 ext4_set_bits(buddy, 0, count);
786 }
787 e4b->bd_info->bb_fragments = 0;
788 memset(e4b->bd_info->bb_counters, 0,
789 sizeof(*e4b->bd_info->bb_counters) *
790 (e4b->bd_sb->s_blocksize_bits + 2));
791
792 ext4_mb_generate_buddy(e4b->bd_sb, e4b->bd_buddy,
793 e4b->bd_bitmap, e4b->bd_group);
794 }
795
796 /* The buddy information is attached the buddy cache inode
797 * for convenience. The information regarding each group
798 * is loaded via ext4_mb_load_buddy. The information involve
799 * block bitmap and buddy information. The information are
800 * stored in the inode as
801 *
802 * { page }
803 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
804 *
805 *
806 * one block each for bitmap and buddy information.
807 * So for each group we take up 2 blocks. A page can
808 * contain blocks_per_page (PAGE_SIZE / blocksize) blocks.
809 * So it can have information regarding groups_per_page which
810 * is blocks_per_page/2
811 *
812 * Locking note: This routine takes the block group lock of all groups
813 * for this page; do not hold this lock when calling this routine!
814 */
815
816 static int ext4_mb_init_cache(struct page *page, char *incore, gfp_t gfp)
817 {
818 ext4_group_t ngroups;
819 int blocksize;
820 int blocks_per_page;
821 int groups_per_page;
822 int err = 0;
823 int i;
824 ext4_group_t first_group, group;
825 int first_block;
826 struct super_block *sb;
827 struct buffer_head *bhs;
828 struct buffer_head **bh = NULL;
829 struct inode *inode;
830 char *data;
831 char *bitmap;
832 struct ext4_group_info *grinfo;
833
834 mb_debug(1, "init page %lu\n", page->index);
835
836 inode = page->mapping->host;
837 sb = inode->i_sb;
838 ngroups = ext4_get_groups_count(sb);
839 blocksize = i_blocksize(inode);
840 blocks_per_page = PAGE_SIZE / blocksize;
841
842 groups_per_page = blocks_per_page >> 1;
843 if (groups_per_page == 0)
844 groups_per_page = 1;
845
846 /* allocate buffer_heads to read bitmaps */
847 if (groups_per_page > 1) {
848 i = sizeof(struct buffer_head *) * groups_per_page;
849 bh = kzalloc(i, gfp);
850 if (bh == NULL) {
851 err = -ENOMEM;
852 goto out;
853 }
854 } else
855 bh = &bhs;
856
857 first_group = page->index * blocks_per_page / 2;
858
859 /* read all groups the page covers into the cache */
860 for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
861 if (group >= ngroups)
862 break;
863
864 grinfo = ext4_get_group_info(sb, group);
865 /*
866 * If page is uptodate then we came here after online resize
867 * which added some new uninitialized group info structs, so
868 * we must skip all initialized uptodate buddies on the page,
869 * which may be currently in use by an allocating task.
870 */
871 if (PageUptodate(page) && !EXT4_MB_GRP_NEED_INIT(grinfo)) {
872 bh[i] = NULL;
873 continue;
874 }
875 bh[i] = ext4_read_block_bitmap_nowait(sb, group);
876 if (IS_ERR(bh[i])) {
877 err = PTR_ERR(bh[i]);
878 bh[i] = NULL;
879 goto out;
880 }
881 mb_debug(1, "read bitmap for group %u\n", group);
882 }
883
884 /* wait for I/O completion */
885 for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
886 int err2;
887
888 if (!bh[i])
889 continue;
890 err2 = ext4_wait_block_bitmap(sb, group, bh[i]);
891 if (!err)
892 err = err2;
893 }
894
895 first_block = page->index * blocks_per_page;
896 for (i = 0; i < blocks_per_page; i++) {
897 group = (first_block + i) >> 1;
898 if (group >= ngroups)
899 break;
900
901 if (!bh[group - first_group])
902 /* skip initialized uptodate buddy */
903 continue;
904
905 if (!buffer_verified(bh[group - first_group]))
906 /* Skip faulty bitmaps */
907 continue;
908 err = 0;
909
910 /*
911 * data carry information regarding this
912 * particular group in the format specified
913 * above
914 *
915 */
916 data = page_address(page) + (i * blocksize);
917 bitmap = bh[group - first_group]->b_data;
918
919 /*
920 * We place the buddy block and bitmap block
921 * close together
922 */
923 if ((first_block + i) & 1) {
924 /* this is block of buddy */
925 BUG_ON(incore == NULL);
926 mb_debug(1, "put buddy for group %u in page %lu/%x\n",
927 group, page->index, i * blocksize);
928 trace_ext4_mb_buddy_bitmap_load(sb, group);
929 grinfo = ext4_get_group_info(sb, group);
930 grinfo->bb_fragments = 0;
931 memset(grinfo->bb_counters, 0,
932 sizeof(*grinfo->bb_counters) *
933 (sb->s_blocksize_bits+2));
934 /*
935 * incore got set to the group block bitmap below
936 */
937 ext4_lock_group(sb, group);
938 /* init the buddy */
939 memset(data, 0xff, blocksize);
940 ext4_mb_generate_buddy(sb, data, incore, group);
941 ext4_unlock_group(sb, group);
942 incore = NULL;
943 } else {
944 /* this is block of bitmap */
945 BUG_ON(incore != NULL);
946 mb_debug(1, "put bitmap for group %u in page %lu/%x\n",
947 group, page->index, i * blocksize);
948 trace_ext4_mb_bitmap_load(sb, group);
949
950 /* see comments in ext4_mb_put_pa() */
951 ext4_lock_group(sb, group);
952 memcpy(data, bitmap, blocksize);
953
954 /* mark all preallocated blks used in in-core bitmap */
955 ext4_mb_generate_from_pa(sb, data, group);
956 ext4_mb_generate_from_freelist(sb, data, group);
957 ext4_unlock_group(sb, group);
958
959 /* set incore so that the buddy information can be
960 * generated using this
961 */
962 incore = data;
963 }
964 }
965 SetPageUptodate(page);
966
967 out:
968 if (bh) {
969 for (i = 0; i < groups_per_page; i++)
970 brelse(bh[i]);
971 if (bh != &bhs)
972 kfree(bh);
973 }
974 return err;
975 }
976
977 /*
978 * Lock the buddy and bitmap pages. This make sure other parallel init_group
979 * on the same buddy page doesn't happen whild holding the buddy page lock.
980 * Return locked buddy and bitmap pages on e4b struct. If buddy and bitmap
981 * are on the same page e4b->bd_buddy_page is NULL and return value is 0.
982 */
983 static int ext4_mb_get_buddy_page_lock(struct super_block *sb,
984 ext4_group_t group, struct ext4_buddy *e4b, gfp_t gfp)
985 {
986 struct inode *inode = EXT4_SB(sb)->s_buddy_cache;
987 int block, pnum, poff;
988 int blocks_per_page;
989 struct page *page;
990
991 e4b->bd_buddy_page = NULL;
992 e4b->bd_bitmap_page = NULL;
993
994 blocks_per_page = PAGE_SIZE / sb->s_blocksize;
995 /*
996 * the buddy cache inode stores the block bitmap
997 * and buddy information in consecutive blocks.
998 * So for each group we need two blocks.
999 */
1000 block = group * 2;
1001 pnum = block / blocks_per_page;
1002 poff = block % blocks_per_page;
1003 page = find_or_create_page(inode->i_mapping, pnum, gfp);
1004 if (!page)
1005 return -ENOMEM;
1006 BUG_ON(page->mapping != inode->i_mapping);
1007 e4b->bd_bitmap_page = page;
1008 e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
1009
1010 if (blocks_per_page >= 2) {
1011 /* buddy and bitmap are on the same page */
1012 return 0;
1013 }
1014
1015 block++;
1016 pnum = block / blocks_per_page;
1017 page = find_or_create_page(inode->i_mapping, pnum, gfp);
1018 if (!page)
1019 return -ENOMEM;
1020 BUG_ON(page->mapping != inode->i_mapping);
1021 e4b->bd_buddy_page = page;
1022 return 0;
1023 }
1024
1025 static void ext4_mb_put_buddy_page_lock(struct ext4_buddy *e4b)
1026 {
1027 if (e4b->bd_bitmap_page) {
1028 unlock_page(e4b->bd_bitmap_page);
1029 put_page(e4b->bd_bitmap_page);
1030 }
1031 if (e4b->bd_buddy_page) {
1032 unlock_page(e4b->bd_buddy_page);
1033 put_page(e4b->bd_buddy_page);
1034 }
1035 }
1036
1037 /*
1038 * Locking note: This routine calls ext4_mb_init_cache(), which takes the
1039 * block group lock of all groups for this page; do not hold the BG lock when
1040 * calling this routine!
1041 */
1042 static noinline_for_stack
1043 int ext4_mb_init_group(struct super_block *sb, ext4_group_t group, gfp_t gfp)
1044 {
1045
1046 struct ext4_group_info *this_grp;
1047 struct ext4_buddy e4b;
1048 struct page *page;
1049 int ret = 0;
1050
1051 might_sleep();
1052 mb_debug(1, "init group %u\n", group);
1053 this_grp = ext4_get_group_info(sb, group);
1054 /*
1055 * This ensures that we don't reinit the buddy cache
1056 * page which map to the group from which we are already
1057 * allocating. If we are looking at the buddy cache we would
1058 * have taken a reference using ext4_mb_load_buddy and that
1059 * would have pinned buddy page to page cache.
1060 * The call to ext4_mb_get_buddy_page_lock will mark the
1061 * page accessed.
1062 */
1063 ret = ext4_mb_get_buddy_page_lock(sb, group, &e4b, gfp);
1064 if (ret || !EXT4_MB_GRP_NEED_INIT(this_grp)) {
1065 /*
1066 * somebody initialized the group
1067 * return without doing anything
1068 */
1069 goto err;
1070 }
1071
1072 page = e4b.bd_bitmap_page;
1073 ret = ext4_mb_init_cache(page, NULL, gfp);
1074 if (ret)
1075 goto err;
1076 if (!PageUptodate(page)) {
1077 ret = -EIO;
1078 goto err;
1079 }
1080
1081 if (e4b.bd_buddy_page == NULL) {
1082 /*
1083 * If both the bitmap and buddy are in
1084 * the same page we don't need to force
1085 * init the buddy
1086 */
1087 ret = 0;
1088 goto err;
1089 }
1090 /* init buddy cache */
1091 page = e4b.bd_buddy_page;
1092 ret = ext4_mb_init_cache(page, e4b.bd_bitmap, gfp);
1093 if (ret)
1094 goto err;
1095 if (!PageUptodate(page)) {
1096 ret = -EIO;
1097 goto err;
1098 }
1099 err:
1100 ext4_mb_put_buddy_page_lock(&e4b);
1101 return ret;
1102 }
1103
1104 /*
1105 * Locking note: This routine calls ext4_mb_init_cache(), which takes the
1106 * block group lock of all groups for this page; do not hold the BG lock when
1107 * calling this routine!
1108 */
1109 static noinline_for_stack int
1110 ext4_mb_load_buddy_gfp(struct super_block *sb, ext4_group_t group,
1111 struct ext4_buddy *e4b, gfp_t gfp)
1112 {
1113 int blocks_per_page;
1114 int block;
1115 int pnum;
1116 int poff;
1117 struct page *page;
1118 int ret;
1119 struct ext4_group_info *grp;
1120 struct ext4_sb_info *sbi = EXT4_SB(sb);
1121 struct inode *inode = sbi->s_buddy_cache;
1122
1123 might_sleep();
1124 mb_debug(1, "load group %u\n", group);
1125
1126 blocks_per_page = PAGE_SIZE / sb->s_blocksize;
1127 grp = ext4_get_group_info(sb, group);
1128
1129 e4b->bd_blkbits = sb->s_blocksize_bits;
1130 e4b->bd_info = grp;
1131 e4b->bd_sb = sb;
1132 e4b->bd_group = group;
1133 e4b->bd_buddy_page = NULL;
1134 e4b->bd_bitmap_page = NULL;
1135
1136 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
1137 /*
1138 * we need full data about the group
1139 * to make a good selection
1140 */
1141 ret = ext4_mb_init_group(sb, group, gfp);
1142 if (ret)
1143 return ret;
1144 }
1145
1146 /*
1147 * the buddy cache inode stores the block bitmap
1148 * and buddy information in consecutive blocks.
1149 * So for each group we need two blocks.
1150 */
1151 block = group * 2;
1152 pnum = block / blocks_per_page;
1153 poff = block % blocks_per_page;
1154
1155 /* we could use find_or_create_page(), but it locks page
1156 * what we'd like to avoid in fast path ... */
1157 page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED);
1158 if (page == NULL || !PageUptodate(page)) {
1159 if (page)
1160 /*
1161 * drop the page reference and try
1162 * to get the page with lock. If we
1163 * are not uptodate that implies
1164 * somebody just created the page but
1165 * is yet to initialize the same. So
1166 * wait for it to initialize.
1167 */
1168 put_page(page);
1169 page = find_or_create_page(inode->i_mapping, pnum, gfp);
1170 if (page) {
1171 BUG_ON(page->mapping != inode->i_mapping);
1172 if (!PageUptodate(page)) {
1173 ret = ext4_mb_init_cache(page, NULL, gfp);
1174 if (ret) {
1175 unlock_page(page);
1176 goto err;
1177 }
1178 mb_cmp_bitmaps(e4b, page_address(page) +
1179 (poff * sb->s_blocksize));
1180 }
1181 unlock_page(page);
1182 }
1183 }
1184 if (page == NULL) {
1185 ret = -ENOMEM;
1186 goto err;
1187 }
1188 if (!PageUptodate(page)) {
1189 ret = -EIO;
1190 goto err;
1191 }
1192
1193 /* Pages marked accessed already */
1194 e4b->bd_bitmap_page = page;
1195 e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
1196
1197 block++;
1198 pnum = block / blocks_per_page;
1199 poff = block % blocks_per_page;
1200
1201 page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED);
1202 if (page == NULL || !PageUptodate(page)) {
1203 if (page)
1204 put_page(page);
1205 page = find_or_create_page(inode->i_mapping, pnum, gfp);
1206 if (page) {
1207 BUG_ON(page->mapping != inode->i_mapping);
1208 if (!PageUptodate(page)) {
1209 ret = ext4_mb_init_cache(page, e4b->bd_bitmap,
1210 gfp);
1211 if (ret) {
1212 unlock_page(page);
1213 goto err;
1214 }
1215 }
1216 unlock_page(page);
1217 }
1218 }
1219 if (page == NULL) {
1220 ret = -ENOMEM;
1221 goto err;
1222 }
1223 if (!PageUptodate(page)) {
1224 ret = -EIO;
1225 goto err;
1226 }
1227
1228 /* Pages marked accessed already */
1229 e4b->bd_buddy_page = page;
1230 e4b->bd_buddy = page_address(page) + (poff * sb->s_blocksize);
1231
1232 BUG_ON(e4b->bd_bitmap_page == NULL);
1233 BUG_ON(e4b->bd_buddy_page == NULL);
1234
1235 return 0;
1236
1237 err:
1238 if (page)
1239 put_page(page);
1240 if (e4b->bd_bitmap_page)
1241 put_page(e4b->bd_bitmap_page);
1242 if (e4b->bd_buddy_page)
1243 put_page(e4b->bd_buddy_page);
1244 e4b->bd_buddy = NULL;
1245 e4b->bd_bitmap = NULL;
1246 return ret;
1247 }
1248
1249 static int ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group,
1250 struct ext4_buddy *e4b)
1251 {
1252 return ext4_mb_load_buddy_gfp(sb, group, e4b, GFP_NOFS);
1253 }
1254
1255 static void ext4_mb_unload_buddy(struct ext4_buddy *e4b)
1256 {
1257 if (e4b->bd_bitmap_page)
1258 put_page(e4b->bd_bitmap_page);
1259 if (e4b->bd_buddy_page)
1260 put_page(e4b->bd_buddy_page);
1261 }
1262
1263
1264 static int mb_find_order_for_block(struct ext4_buddy *e4b, int block)
1265 {
1266 int order = 1;
1267 int bb_incr = 1 << (e4b->bd_blkbits - 1);
1268 void *bb;
1269
1270 BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
1271 BUG_ON(block >= (1 << (e4b->bd_blkbits + 3)));
1272
1273 bb = e4b->bd_buddy;
1274 while (order <= e4b->bd_blkbits + 1) {
1275 block = block >> 1;
1276 if (!mb_test_bit(block, bb)) {
1277 /* this block is part of buddy of order 'order' */
1278 return order;
1279 }
1280 bb += bb_incr;
1281 bb_incr >>= 1;
1282 order++;
1283 }
1284 return 0;
1285 }
1286
1287 static void mb_clear_bits(void *bm, int cur, int len)
1288 {
1289 __u32 *addr;
1290
1291 len = cur + len;
1292 while (cur < len) {
1293 if ((cur & 31) == 0 && (len - cur) >= 32) {
1294 /* fast path: clear whole word at once */
1295 addr = bm + (cur >> 3);
1296 *addr = 0;
1297 cur += 32;
1298 continue;
1299 }
1300 mb_clear_bit(cur, bm);
1301 cur++;
1302 }
1303 }
1304
1305 /* clear bits in given range
1306 * will return first found zero bit if any, -1 otherwise
1307 */
1308 static int mb_test_and_clear_bits(void *bm, int cur, int len)
1309 {
1310 __u32 *addr;
1311 int zero_bit = -1;
1312
1313 len = cur + len;
1314 while (cur < len) {
1315 if ((cur & 31) == 0 && (len - cur) >= 32) {
1316 /* fast path: clear whole word at once */
1317 addr = bm + (cur >> 3);
1318 if (*addr != (__u32)(-1) && zero_bit == -1)
1319 zero_bit = cur + mb_find_next_zero_bit(addr, 32, 0);
1320 *addr = 0;
1321 cur += 32;
1322 continue;
1323 }
1324 if (!mb_test_and_clear_bit(cur, bm) && zero_bit == -1)
1325 zero_bit = cur;
1326 cur++;
1327 }
1328
1329 return zero_bit;
1330 }
1331
1332 void ext4_set_bits(void *bm, int cur, int len)
1333 {
1334 __u32 *addr;
1335
1336 len = cur + len;
1337 while (cur < len) {
1338 if ((cur & 31) == 0 && (len - cur) >= 32) {
1339 /* fast path: set whole word at once */
1340 addr = bm + (cur >> 3);
1341 *addr = 0xffffffff;
1342 cur += 32;
1343 continue;
1344 }
1345 mb_set_bit(cur, bm);
1346 cur++;
1347 }
1348 }
1349
1350 /*
1351 * _________________________________________________________________ */
1352
1353 static inline int mb_buddy_adjust_border(int* bit, void* bitmap, int side)
1354 {
1355 if (mb_test_bit(*bit + side, bitmap)) {
1356 mb_clear_bit(*bit, bitmap);
1357 (*bit) -= side;
1358 return 1;
1359 }
1360 else {
1361 (*bit) += side;
1362 mb_set_bit(*bit, bitmap);
1363 return -1;
1364 }
1365 }
1366
1367 static void mb_buddy_mark_free(struct ext4_buddy *e4b, int first, int last)
1368 {
1369 int max;
1370 int order = 1;
1371 void *buddy = mb_find_buddy(e4b, order, &max);
1372
1373 while (buddy) {
1374 void *buddy2;
1375
1376 /* Bits in range [first; last] are known to be set since
1377 * corresponding blocks were allocated. Bits in range
1378 * (first; last) will stay set because they form buddies on
1379 * upper layer. We just deal with borders if they don't
1380 * align with upper layer and then go up.
1381 * Releasing entire group is all about clearing
1382 * single bit of highest order buddy.
1383 */
1384
1385 /* Example:
1386 * ---------------------------------
1387 * | 1 | 1 | 1 | 1 |
1388 * ---------------------------------
1389 * | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
1390 * ---------------------------------
1391 * 0 1 2 3 4 5 6 7
1392 * \_____________________/
1393 *
1394 * Neither [1] nor [6] is aligned to above layer.
1395 * Left neighbour [0] is free, so mark it busy,
1396 * decrease bb_counters and extend range to
1397 * [0; 6]
1398 * Right neighbour [7] is busy. It can't be coaleasced with [6], so
1399 * mark [6] free, increase bb_counters and shrink range to
1400 * [0; 5].
1401 * Then shift range to [0; 2], go up and do the same.
1402 */
1403
1404
1405 if (first & 1)
1406 e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&first, buddy, -1);
1407 if (!(last & 1))
1408 e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&last, buddy, 1);
1409 if (first > last)
1410 break;
1411 order++;
1412
1413 if (first == last || !(buddy2 = mb_find_buddy(e4b, order, &max))) {
1414 mb_clear_bits(buddy, first, last - first + 1);
1415 e4b->bd_info->bb_counters[order - 1] += last - first + 1;
1416 break;
1417 }
1418 first >>= 1;
1419 last >>= 1;
1420 buddy = buddy2;
1421 }
1422 }
1423
1424 static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b,
1425 int first, int count)
1426 {
1427 int left_is_free = 0;
1428 int right_is_free = 0;
1429 int block;
1430 int last = first + count - 1;
1431 struct super_block *sb = e4b->bd_sb;
1432
1433 if (WARN_ON(count == 0))
1434 return;
1435 BUG_ON(last >= (sb->s_blocksize << 3));
1436 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
1437 /* Don't bother if the block group is corrupt. */
1438 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info)))
1439 return;
1440
1441 mb_check_buddy(e4b);
1442 mb_free_blocks_double(inode, e4b, first, count);
1443
1444 e4b->bd_info->bb_free += count;
1445 if (first < e4b->bd_info->bb_first_free)
1446 e4b->bd_info->bb_first_free = first;
1447
1448 /* access memory sequentially: check left neighbour,
1449 * clear range and then check right neighbour
1450 */
1451 if (first != 0)
1452 left_is_free = !mb_test_bit(first - 1, e4b->bd_bitmap);
1453 block = mb_test_and_clear_bits(e4b->bd_bitmap, first, count);
1454 if (last + 1 < EXT4_SB(sb)->s_mb_maxs[0])
1455 right_is_free = !mb_test_bit(last + 1, e4b->bd_bitmap);
1456
1457 if (unlikely(block != -1)) {
1458 struct ext4_sb_info *sbi = EXT4_SB(sb);
1459 ext4_fsblk_t blocknr;
1460
1461 blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
1462 blocknr += EXT4_C2B(EXT4_SB(sb), block);
1463 ext4_grp_locked_error(sb, e4b->bd_group,
1464 inode ? inode->i_ino : 0,
1465 blocknr,
1466 "freeing already freed block "
1467 "(bit %u); block bitmap corrupt.",
1468 block);
1469 if (!EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info))
1470 percpu_counter_sub(&sbi->s_freeclusters_counter,
1471 e4b->bd_info->bb_free);
1472 /* Mark the block group as corrupt. */
1473 set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT,
1474 &e4b->bd_info->bb_state);
1475 mb_regenerate_buddy(e4b);
1476 goto done;
1477 }
1478
1479 /* let's maintain fragments counter */
1480 if (left_is_free && right_is_free)
1481 e4b->bd_info->bb_fragments--;
1482 else if (!left_is_free && !right_is_free)
1483 e4b->bd_info->bb_fragments++;
1484
1485 /* buddy[0] == bd_bitmap is a special case, so handle
1486 * it right away and let mb_buddy_mark_free stay free of
1487 * zero order checks.
1488 * Check if neighbours are to be coaleasced,
1489 * adjust bitmap bb_counters and borders appropriately.
1490 */
1491 if (first & 1) {
1492 first += !left_is_free;
1493 e4b->bd_info->bb_counters[0] += left_is_free ? -1 : 1;
1494 }
1495 if (!(last & 1)) {
1496 last -= !right_is_free;
1497 e4b->bd_info->bb_counters[0] += right_is_free ? -1 : 1;
1498 }
1499
1500 if (first <= last)
1501 mb_buddy_mark_free(e4b, first >> 1, last >> 1);
1502
1503 done:
1504 mb_set_largest_free_order(sb, e4b->bd_info);
1505 mb_check_buddy(e4b);
1506 }
1507
1508 static int mb_find_extent(struct ext4_buddy *e4b, int block,
1509 int needed, struct ext4_free_extent *ex)
1510 {
1511 int next = block;
1512 int max, order;
1513 void *buddy;
1514
1515 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1516 BUG_ON(ex == NULL);
1517
1518 buddy = mb_find_buddy(e4b, 0, &max);
1519 BUG_ON(buddy == NULL);
1520 BUG_ON(block >= max);
1521 if (mb_test_bit(block, buddy)) {
1522 ex->fe_len = 0;
1523 ex->fe_start = 0;
1524 ex->fe_group = 0;
1525 return 0;
1526 }
1527
1528 /* find actual order */
1529 order = mb_find_order_for_block(e4b, block);
1530 block = block >> order;
1531
1532 ex->fe_len = 1 << order;
1533 ex->fe_start = block << order;
1534 ex->fe_group = e4b->bd_group;
1535
1536 /* calc difference from given start */
1537 next = next - ex->fe_start;
1538 ex->fe_len -= next;
1539 ex->fe_start += next;
1540
1541 while (needed > ex->fe_len &&
1542 mb_find_buddy(e4b, order, &max)) {
1543
1544 if (block + 1 >= max)
1545 break;
1546
1547 next = (block + 1) * (1 << order);
1548 if (mb_test_bit(next, e4b->bd_bitmap))
1549 break;
1550
1551 order = mb_find_order_for_block(e4b, next);
1552
1553 block = next >> order;
1554 ex->fe_len += 1 << order;
1555 }
1556
1557 if (ex->fe_start + ex->fe_len > (1 << (e4b->bd_blkbits + 3))) {
1558 /* Should never happen! (but apparently sometimes does?!?) */
1559 WARN_ON(1);
1560 ext4_error(e4b->bd_sb, "corruption or bug in mb_find_extent "
1561 "block=%d, order=%d needed=%d ex=%u/%d/%d@%u",
1562 block, order, needed, ex->fe_group, ex->fe_start,
1563 ex->fe_len, ex->fe_logical);
1564 ex->fe_len = 0;
1565 ex->fe_start = 0;
1566 ex->fe_group = 0;
1567 }
1568 return ex->fe_len;
1569 }
1570
1571 static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex)
1572 {
1573 int ord;
1574 int mlen = 0;
1575 int max = 0;
1576 int cur;
1577 int start = ex->fe_start;
1578 int len = ex->fe_len;
1579 unsigned ret = 0;
1580 int len0 = len;
1581 void *buddy;
1582
1583 BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3));
1584 BUG_ON(e4b->bd_group != ex->fe_group);
1585 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1586 mb_check_buddy(e4b);
1587 mb_mark_used_double(e4b, start, len);
1588
1589 e4b->bd_info->bb_free -= len;
1590 if (e4b->bd_info->bb_first_free == start)
1591 e4b->bd_info->bb_first_free += len;
1592
1593 /* let's maintain fragments counter */
1594 if (start != 0)
1595 mlen = !mb_test_bit(start - 1, e4b->bd_bitmap);
1596 if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0])
1597 max = !mb_test_bit(start + len, e4b->bd_bitmap);
1598 if (mlen && max)
1599 e4b->bd_info->bb_fragments++;
1600 else if (!mlen && !max)
1601 e4b->bd_info->bb_fragments--;
1602
1603 /* let's maintain buddy itself */
1604 while (len) {
1605 ord = mb_find_order_for_block(e4b, start);
1606
1607 if (((start >> ord) << ord) == start && len >= (1 << ord)) {
1608 /* the whole chunk may be allocated at once! */
1609 mlen = 1 << ord;
1610 buddy = mb_find_buddy(e4b, ord, &max);
1611 BUG_ON((start >> ord) >= max);
1612 mb_set_bit(start >> ord, buddy);
1613 e4b->bd_info->bb_counters[ord]--;
1614 start += mlen;
1615 len -= mlen;
1616 BUG_ON(len < 0);
1617 continue;
1618 }
1619
1620 /* store for history */
1621 if (ret == 0)
1622 ret = len | (ord << 16);
1623
1624 /* we have to split large buddy */
1625 BUG_ON(ord <= 0);
1626 buddy = mb_find_buddy(e4b, ord, &max);
1627 mb_set_bit(start >> ord, buddy);
1628 e4b->bd_info->bb_counters[ord]--;
1629
1630 ord--;
1631 cur = (start >> ord) & ~1U;
1632 buddy = mb_find_buddy(e4b, ord, &max);
1633 mb_clear_bit(cur, buddy);
1634 mb_clear_bit(cur + 1, buddy);
1635 e4b->bd_info->bb_counters[ord]++;
1636 e4b->bd_info->bb_counters[ord]++;
1637 }
1638 mb_set_largest_free_order(e4b->bd_sb, e4b->bd_info);
1639
1640 ext4_set_bits(e4b->bd_bitmap, ex->fe_start, len0);
1641 mb_check_buddy(e4b);
1642
1643 return ret;
1644 }
1645
1646 /*
1647 * Must be called under group lock!
1648 */
1649 static void ext4_mb_use_best_found(struct ext4_allocation_context *ac,
1650 struct ext4_buddy *e4b)
1651 {
1652 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1653 int ret;
1654
1655 BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group);
1656 BUG_ON(ac->ac_status == AC_STATUS_FOUND);
1657
1658 ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len);
1659 ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical;
1660 ret = mb_mark_used(e4b, &ac->ac_b_ex);
1661
1662 /* preallocation can change ac_b_ex, thus we store actually
1663 * allocated blocks for history */
1664 ac->ac_f_ex = ac->ac_b_ex;
1665
1666 ac->ac_status = AC_STATUS_FOUND;
1667 ac->ac_tail = ret & 0xffff;
1668 ac->ac_buddy = ret >> 16;
1669
1670 /*
1671 * take the page reference. We want the page to be pinned
1672 * so that we don't get a ext4_mb_init_cache_call for this
1673 * group until we update the bitmap. That would mean we
1674 * double allocate blocks. The reference is dropped
1675 * in ext4_mb_release_context
1676 */
1677 ac->ac_bitmap_page = e4b->bd_bitmap_page;
1678 get_page(ac->ac_bitmap_page);
1679 ac->ac_buddy_page = e4b->bd_buddy_page;
1680 get_page(ac->ac_buddy_page);
1681 /* store last allocated for subsequent stream allocation */
1682 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
1683 spin_lock(&sbi->s_md_lock);
1684 sbi->s_mb_last_group = ac->ac_f_ex.fe_group;
1685 sbi->s_mb_last_start = ac->ac_f_ex.fe_start;
1686 spin_unlock(&sbi->s_md_lock);
1687 }
1688 }
1689
1690 /*
1691 * regular allocator, for general purposes allocation
1692 */
1693
1694 static void ext4_mb_check_limits(struct ext4_allocation_context *ac,
1695 struct ext4_buddy *e4b,
1696 int finish_group)
1697 {
1698 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1699 struct ext4_free_extent *bex = &ac->ac_b_ex;
1700 struct ext4_free_extent *gex = &ac->ac_g_ex;
1701 struct ext4_free_extent ex;
1702 int max;
1703
1704 if (ac->ac_status == AC_STATUS_FOUND)
1705 return;
1706 /*
1707 * We don't want to scan for a whole year
1708 */
1709 if (ac->ac_found > sbi->s_mb_max_to_scan &&
1710 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1711 ac->ac_status = AC_STATUS_BREAK;
1712 return;
1713 }
1714
1715 /*
1716 * Haven't found good chunk so far, let's continue
1717 */
1718 if (bex->fe_len < gex->fe_len)
1719 return;
1720
1721 if ((finish_group || ac->ac_found > sbi->s_mb_min_to_scan)
1722 && bex->fe_group == e4b->bd_group) {
1723 /* recheck chunk's availability - we don't know
1724 * when it was found (within this lock-unlock
1725 * period or not) */
1726 max = mb_find_extent(e4b, bex->fe_start, gex->fe_len, &ex);
1727 if (max >= gex->fe_len) {
1728 ext4_mb_use_best_found(ac, e4b);
1729 return;
1730 }
1731 }
1732 }
1733
1734 /*
1735 * The routine checks whether found extent is good enough. If it is,
1736 * then the extent gets marked used and flag is set to the context
1737 * to stop scanning. Otherwise, the extent is compared with the
1738 * previous found extent and if new one is better, then it's stored
1739 * in the context. Later, the best found extent will be used, if
1740 * mballoc can't find good enough extent.
1741 *
1742 * FIXME: real allocation policy is to be designed yet!
1743 */
1744 static void ext4_mb_measure_extent(struct ext4_allocation_context *ac,
1745 struct ext4_free_extent *ex,
1746 struct ext4_buddy *e4b)
1747 {
1748 struct ext4_free_extent *bex = &ac->ac_b_ex;
1749 struct ext4_free_extent *gex = &ac->ac_g_ex;
1750
1751 BUG_ON(ex->fe_len <= 0);
1752 BUG_ON(ex->fe_len > EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
1753 BUG_ON(ex->fe_start >= EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
1754 BUG_ON(ac->ac_status != AC_STATUS_CONTINUE);
1755
1756 ac->ac_found++;
1757
1758 /*
1759 * The special case - take what you catch first
1760 */
1761 if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1762 *bex = *ex;
1763 ext4_mb_use_best_found(ac, e4b);
1764 return;
1765 }
1766
1767 /*
1768 * Let's check whether the chuck is good enough
1769 */
1770 if (ex->fe_len == gex->fe_len) {
1771 *bex = *ex;
1772 ext4_mb_use_best_found(ac, e4b);
1773 return;
1774 }
1775
1776 /*
1777 * If this is first found extent, just store it in the context
1778 */
1779 if (bex->fe_len == 0) {
1780 *bex = *ex;
1781 return;
1782 }
1783
1784 /*
1785 * If new found extent is better, store it in the context
1786 */
1787 if (bex->fe_len < gex->fe_len) {
1788 /* if the request isn't satisfied, any found extent
1789 * larger than previous best one is better */
1790 if (ex->fe_len > bex->fe_len)
1791 *bex = *ex;
1792 } else if (ex->fe_len > gex->fe_len) {
1793 /* if the request is satisfied, then we try to find
1794 * an extent that still satisfy the request, but is
1795 * smaller than previous one */
1796 if (ex->fe_len < bex->fe_len)
1797 *bex = *ex;
1798 }
1799
1800 ext4_mb_check_limits(ac, e4b, 0);
1801 }
1802
1803 static noinline_for_stack
1804 int ext4_mb_try_best_found(struct ext4_allocation_context *ac,
1805 struct ext4_buddy *e4b)
1806 {
1807 struct ext4_free_extent ex = ac->ac_b_ex;
1808 ext4_group_t group = ex.fe_group;
1809 int max;
1810 int err;
1811
1812 BUG_ON(ex.fe_len <= 0);
1813 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1814 if (err)
1815 return err;
1816
1817 ext4_lock_group(ac->ac_sb, group);
1818 max = mb_find_extent(e4b, ex.fe_start, ex.fe_len, &ex);
1819
1820 if (max > 0) {
1821 ac->ac_b_ex = ex;
1822 ext4_mb_use_best_found(ac, e4b);
1823 }
1824
1825 ext4_unlock_group(ac->ac_sb, group);
1826 ext4_mb_unload_buddy(e4b);
1827
1828 return 0;
1829 }
1830
1831 static noinline_for_stack
1832 int ext4_mb_find_by_goal(struct ext4_allocation_context *ac,
1833 struct ext4_buddy *e4b)
1834 {
1835 ext4_group_t group = ac->ac_g_ex.fe_group;
1836 int max;
1837 int err;
1838 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1839 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
1840 struct ext4_free_extent ex;
1841
1842 if (!(ac->ac_flags & EXT4_MB_HINT_TRY_GOAL))
1843 return 0;
1844 if (grp->bb_free == 0)
1845 return 0;
1846
1847 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1848 if (err)
1849 return err;
1850
1851 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info))) {
1852 ext4_mb_unload_buddy(e4b);
1853 return 0;
1854 }
1855
1856 ext4_lock_group(ac->ac_sb, group);
1857 max = mb_find_extent(e4b, ac->ac_g_ex.fe_start,
1858 ac->ac_g_ex.fe_len, &ex);
1859 ex.fe_logical = 0xDEADFA11; /* debug value */
1860
1861 if (max >= ac->ac_g_ex.fe_len && ac->ac_g_ex.fe_len == sbi->s_stripe) {
1862 ext4_fsblk_t start;
1863
1864 start = ext4_group_first_block_no(ac->ac_sb, e4b->bd_group) +
1865 ex.fe_start;
1866 /* use do_div to get remainder (would be 64-bit modulo) */
1867 if (do_div(start, sbi->s_stripe) == 0) {
1868 ac->ac_found++;
1869 ac->ac_b_ex = ex;
1870 ext4_mb_use_best_found(ac, e4b);
1871 }
1872 } else if (max >= ac->ac_g_ex.fe_len) {
1873 BUG_ON(ex.fe_len <= 0);
1874 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1875 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1876 ac->ac_found++;
1877 ac->ac_b_ex = ex;
1878 ext4_mb_use_best_found(ac, e4b);
1879 } else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) {
1880 /* Sometimes, caller may want to merge even small
1881 * number of blocks to an existing extent */
1882 BUG_ON(ex.fe_len <= 0);
1883 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1884 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1885 ac->ac_found++;
1886 ac->ac_b_ex = ex;
1887 ext4_mb_use_best_found(ac, e4b);
1888 }
1889 ext4_unlock_group(ac->ac_sb, group);
1890 ext4_mb_unload_buddy(e4b);
1891
1892 return 0;
1893 }
1894
1895 /*
1896 * The routine scans buddy structures (not bitmap!) from given order
1897 * to max order and tries to find big enough chunk to satisfy the req
1898 */
1899 static noinline_for_stack
1900 void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac,
1901 struct ext4_buddy *e4b)
1902 {
1903 struct super_block *sb = ac->ac_sb;
1904 struct ext4_group_info *grp = e4b->bd_info;
1905 void *buddy;
1906 int i;
1907 int k;
1908 int max;
1909
1910 BUG_ON(ac->ac_2order <= 0);
1911 for (i = ac->ac_2order; i <= sb->s_blocksize_bits + 1; i++) {
1912 if (grp->bb_counters[i] == 0)
1913 continue;
1914
1915 buddy = mb_find_buddy(e4b, i, &max);
1916 BUG_ON(buddy == NULL);
1917
1918 k = mb_find_next_zero_bit(buddy, max, 0);
1919 BUG_ON(k >= max);
1920
1921 ac->ac_found++;
1922
1923 ac->ac_b_ex.fe_len = 1 << i;
1924 ac->ac_b_ex.fe_start = k << i;
1925 ac->ac_b_ex.fe_group = e4b->bd_group;
1926
1927 ext4_mb_use_best_found(ac, e4b);
1928
1929 BUG_ON(ac->ac_b_ex.fe_len != ac->ac_g_ex.fe_len);
1930
1931 if (EXT4_SB(sb)->s_mb_stats)
1932 atomic_inc(&EXT4_SB(sb)->s_bal_2orders);
1933
1934 break;
1935 }
1936 }
1937
1938 /*
1939 * The routine scans the group and measures all found extents.
1940 * In order to optimize scanning, caller must pass number of
1941 * free blocks in the group, so the routine can know upper limit.
1942 */
1943 static noinline_for_stack
1944 void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac,
1945 struct ext4_buddy *e4b)
1946 {
1947 struct super_block *sb = ac->ac_sb;
1948 void *bitmap = e4b->bd_bitmap;
1949 struct ext4_free_extent ex;
1950 int i;
1951 int free;
1952
1953 free = e4b->bd_info->bb_free;
1954 BUG_ON(free <= 0);
1955
1956 i = e4b->bd_info->bb_first_free;
1957
1958 while (free && ac->ac_status == AC_STATUS_CONTINUE) {
1959 i = mb_find_next_zero_bit(bitmap,
1960 EXT4_CLUSTERS_PER_GROUP(sb), i);
1961 if (i >= EXT4_CLUSTERS_PER_GROUP(sb)) {
1962 /*
1963 * IF we have corrupt bitmap, we won't find any
1964 * free blocks even though group info says we
1965 * we have free blocks
1966 */
1967 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
1968 "%d free clusters as per "
1969 "group info. But bitmap says 0",
1970 free);
1971 break;
1972 }
1973
1974 mb_find_extent(e4b, i, ac->ac_g_ex.fe_len, &ex);
1975 BUG_ON(ex.fe_len <= 0);
1976 if (free < ex.fe_len) {
1977 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
1978 "%d free clusters as per "
1979 "group info. But got %d blocks",
1980 free, ex.fe_len);
1981 /*
1982 * The number of free blocks differs. This mostly
1983 * indicate that the bitmap is corrupt. So exit
1984 * without claiming the space.
1985 */
1986 break;
1987 }
1988 ex.fe_logical = 0xDEADC0DE; /* debug value */
1989 ext4_mb_measure_extent(ac, &ex, e4b);
1990
1991 i += ex.fe_len;
1992 free -= ex.fe_len;
1993 }
1994
1995 ext4_mb_check_limits(ac, e4b, 1);
1996 }
1997
1998 /*
1999 * This is a special case for storages like raid5
2000 * we try to find stripe-aligned chunks for stripe-size-multiple requests
2001 */
2002 static noinline_for_stack
2003 void ext4_mb_scan_aligned(struct ext4_allocation_context *ac,
2004 struct ext4_buddy *e4b)
2005 {
2006 struct super_block *sb = ac->ac_sb;
2007 struct ext4_sb_info *sbi = EXT4_SB(sb);
2008 void *bitmap = e4b->bd_bitmap;
2009 struct ext4_free_extent ex;
2010 ext4_fsblk_t first_group_block;
2011 ext4_fsblk_t a;
2012 ext4_grpblk_t i;
2013 int max;
2014
2015 BUG_ON(sbi->s_stripe == 0);
2016
2017 /* find first stripe-aligned block in group */
2018 first_group_block = ext4_group_first_block_no(sb, e4b->bd_group);
2019
2020 a = first_group_block + sbi->s_stripe - 1;
2021 do_div(a, sbi->s_stripe);
2022 i = (a * sbi->s_stripe) - first_group_block;
2023
2024 while (i < EXT4_CLUSTERS_PER_GROUP(sb)) {
2025 if (!mb_test_bit(i, bitmap)) {
2026 max = mb_find_extent(e4b, i, sbi->s_stripe, &ex);
2027 if (max >= sbi->s_stripe) {
2028 ac->ac_found++;
2029 ex.fe_logical = 0xDEADF00D; /* debug value */
2030 ac->ac_b_ex = ex;
2031 ext4_mb_use_best_found(ac, e4b);
2032 break;
2033 }
2034 }
2035 i += sbi->s_stripe;
2036 }
2037 }
2038
2039 /*
2040 * This is now called BEFORE we load the buddy bitmap.
2041 * Returns either 1 or 0 indicating that the group is either suitable
2042 * for the allocation or not. In addition it can also return negative
2043 * error code when something goes wrong.
2044 */
2045 static int ext4_mb_good_group(struct ext4_allocation_context *ac,
2046 ext4_group_t group, int cr)
2047 {
2048 unsigned free, fragments;
2049 int flex_size = ext4_flex_bg_size(EXT4_SB(ac->ac_sb));
2050 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
2051
2052 BUG_ON(cr < 0 || cr >= 4);
2053
2054 free = grp->bb_free;
2055 if (free == 0)
2056 return 0;
2057 if (cr <= 2 && free < ac->ac_g_ex.fe_len)
2058 return 0;
2059
2060 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(grp)))
2061 return 0;
2062
2063 /* We only do this if the grp has never been initialized */
2064 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
2065 int ret = ext4_mb_init_group(ac->ac_sb, group, GFP_NOFS);
2066 if (ret)
2067 return ret;
2068 }
2069
2070 fragments = grp->bb_fragments;
2071 if (fragments == 0)
2072 return 0;
2073
2074 switch (cr) {
2075 case 0:
2076 BUG_ON(ac->ac_2order == 0);
2077
2078 /* Avoid using the first bg of a flexgroup for data files */
2079 if ((ac->ac_flags & EXT4_MB_HINT_DATA) &&
2080 (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) &&
2081 ((group % flex_size) == 0))
2082 return 0;
2083
2084 if ((ac->ac_2order > ac->ac_sb->s_blocksize_bits+1) ||
2085 (free / fragments) >= ac->ac_g_ex.fe_len)
2086 return 1;
2087
2088 if (grp->bb_largest_free_order < ac->ac_2order)
2089 return 0;
2090
2091 return 1;
2092 case 1:
2093 if ((free / fragments) >= ac->ac_g_ex.fe_len)
2094 return 1;
2095 break;
2096 case 2:
2097 if (free >= ac->ac_g_ex.fe_len)
2098 return 1;
2099 break;
2100 case 3:
2101 return 1;
2102 default:
2103 BUG();
2104 }
2105
2106 return 0;
2107 }
2108
2109 static noinline_for_stack int
2110 ext4_mb_regular_allocator(struct ext4_allocation_context *ac)
2111 {
2112 ext4_group_t ngroups, group, i;
2113 int cr;
2114 int err = 0, first_err = 0;
2115 struct ext4_sb_info *sbi;
2116 struct super_block *sb;
2117 struct ext4_buddy e4b;
2118
2119 sb = ac->ac_sb;
2120 sbi = EXT4_SB(sb);
2121 ngroups = ext4_get_groups_count(sb);
2122 /* non-extent files are limited to low blocks/groups */
2123 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)))
2124 ngroups = sbi->s_blockfile_groups;
2125
2126 BUG_ON(ac->ac_status == AC_STATUS_FOUND);
2127
2128 /* first, try the goal */
2129 err = ext4_mb_find_by_goal(ac, &e4b);
2130 if (err || ac->ac_status == AC_STATUS_FOUND)
2131 goto out;
2132
2133 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
2134 goto out;
2135
2136 /*
2137 * ac->ac2_order is set only if the fe_len is a power of 2
2138 * if ac2_order is set we also set criteria to 0 so that we
2139 * try exact allocation using buddy.
2140 */
2141 i = fls(ac->ac_g_ex.fe_len);
2142 ac->ac_2order = 0;
2143 /*
2144 * We search using buddy data only if the order of the request
2145 * is greater than equal to the sbi_s_mb_order2_reqs
2146 * You can tune it via /sys/fs/ext4/<partition>/mb_order2_req
2147 * We also support searching for power-of-two requests only for
2148 * requests upto maximum buddy size we have constructed.
2149 */
2150 if (i >= sbi->s_mb_order2_reqs && i <= sb->s_blocksize_bits + 2) {
2151 /*
2152 * This should tell if fe_len is exactly power of 2
2153 */
2154 if ((ac->ac_g_ex.fe_len & (~(1 << (i - 1)))) == 0)
2155 ac->ac_2order = i - 1;
2156 }
2157
2158 /* if stream allocation is enabled, use global goal */
2159 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
2160 /* TBD: may be hot point */
2161 spin_lock(&sbi->s_md_lock);
2162 ac->ac_g_ex.fe_group = sbi->s_mb_last_group;
2163 ac->ac_g_ex.fe_start = sbi->s_mb_last_start;
2164 spin_unlock(&sbi->s_md_lock);
2165 }
2166
2167 /* Let's just scan groups to find more-less suitable blocks */
2168 cr = ac->ac_2order ? 0 : 1;
2169 /*
2170 * cr == 0 try to get exact allocation,
2171 * cr == 3 try to get anything
2172 */
2173 repeat:
2174 for (; cr < 4 && ac->ac_status == AC_STATUS_CONTINUE; cr++) {
2175 ac->ac_criteria = cr;
2176 /*
2177 * searching for the right group start
2178 * from the goal value specified
2179 */
2180 group = ac->ac_g_ex.fe_group;
2181
2182 for (i = 0; i < ngroups; group++, i++) {
2183 int ret = 0;
2184 cond_resched();
2185 /*
2186 * Artificially restricted ngroups for non-extent
2187 * files makes group > ngroups possible on first loop.
2188 */
2189 if (group >= ngroups)
2190 group = 0;
2191
2192 /* This now checks without needing the buddy page */
2193 ret = ext4_mb_good_group(ac, group, cr);
2194 if (ret <= 0) {
2195 if (!first_err)
2196 first_err = ret;
2197 continue;
2198 }
2199
2200 err = ext4_mb_load_buddy(sb, group, &e4b);
2201 if (err)
2202 goto out;
2203
2204 ext4_lock_group(sb, group);
2205
2206 /*
2207 * We need to check again after locking the
2208 * block group
2209 */
2210 ret = ext4_mb_good_group(ac, group, cr);
2211 if (ret <= 0) {
2212 ext4_unlock_group(sb, group);
2213 ext4_mb_unload_buddy(&e4b);
2214 if (!first_err)
2215 first_err = ret;
2216 continue;
2217 }
2218
2219 ac->ac_groups_scanned++;
2220 if (cr == 0)
2221 ext4_mb_simple_scan_group(ac, &e4b);
2222 else if (cr == 1 && sbi->s_stripe &&
2223 !(ac->ac_g_ex.fe_len % sbi->s_stripe))
2224 ext4_mb_scan_aligned(ac, &e4b);
2225 else
2226 ext4_mb_complex_scan_group(ac, &e4b);
2227
2228 ext4_unlock_group(sb, group);
2229 ext4_mb_unload_buddy(&e4b);
2230
2231 if (ac->ac_status != AC_STATUS_CONTINUE)
2232 break;
2233 }
2234 }
2235
2236 if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND &&
2237 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2238 /*
2239 * We've been searching too long. Let's try to allocate
2240 * the best chunk we've found so far
2241 */
2242
2243 ext4_mb_try_best_found(ac, &e4b);
2244 if (ac->ac_status != AC_STATUS_FOUND) {
2245 /*
2246 * Someone more lucky has already allocated it.
2247 * The only thing we can do is just take first
2248 * found block(s)
2249 printk(KERN_DEBUG "EXT4-fs: someone won our chunk\n");
2250 */
2251 ac->ac_b_ex.fe_group = 0;
2252 ac->ac_b_ex.fe_start = 0;
2253 ac->ac_b_ex.fe_len = 0;
2254 ac->ac_status = AC_STATUS_CONTINUE;
2255 ac->ac_flags |= EXT4_MB_HINT_FIRST;
2256 cr = 3;
2257 atomic_inc(&sbi->s_mb_lost_chunks);
2258 goto repeat;
2259 }
2260 }
2261 out:
2262 if (!err && ac->ac_status != AC_STATUS_FOUND && first_err)
2263 err = first_err;
2264 return err;
2265 }
2266
2267 static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos)
2268 {
2269 struct super_block *sb = seq->private;
2270 ext4_group_t group;
2271
2272 if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2273 return NULL;
2274 group = *pos + 1;
2275 return (void *) ((unsigned long) group);
2276 }
2277
2278 static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos)
2279 {
2280 struct super_block *sb = seq->private;
2281 ext4_group_t group;
2282
2283 ++*pos;
2284 if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2285 return NULL;
2286 group = *pos + 1;
2287 return (void *) ((unsigned long) group);
2288 }
2289
2290 static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v)
2291 {
2292 struct super_block *sb = seq->private;
2293 ext4_group_t group = (ext4_group_t) ((unsigned long) v);
2294 int i;
2295 int err, buddy_loaded = 0;
2296 struct ext4_buddy e4b;
2297 struct ext4_group_info *grinfo;
2298 unsigned char blocksize_bits = min_t(unsigned char,
2299 sb->s_blocksize_bits,
2300 EXT4_MAX_BLOCK_LOG_SIZE);
2301 struct sg {
2302 struct ext4_group_info info;
2303 ext4_grpblk_t counters[blocksize_bits + 2];
2304 } sg;
2305
2306 group--;
2307 if (group == 0)
2308 seq_puts(seq, "#group: free frags first ["
2309 " 2^0 2^1 2^2 2^3 2^4 2^5 2^6 "
2310 " 2^7 2^8 2^9 2^10 2^11 2^12 2^13 ]\n");
2311
2312 grinfo = ext4_get_group_info(sb, group);
2313 /* Load the group info in memory only if not already loaded. */
2314 if (unlikely(EXT4_MB_GRP_NEED_INIT(grinfo))) {
2315 err = ext4_mb_load_buddy(sb, group, &e4b);
2316 if (err) {
2317 seq_printf(seq, "#%-5u: I/O error\n", group);
2318 return 0;
2319 }
2320 buddy_loaded = 1;
2321 }
2322
2323 memcpy(&sg, ext4_get_group_info(sb, group), sizeof(sg));
2324
2325 if (buddy_loaded)
2326 ext4_mb_unload_buddy(&e4b);
2327
2328 seq_printf(seq, "#%-5u: %-5u %-5u %-5u [", group, sg.info.bb_free,
2329 sg.info.bb_fragments, sg.info.bb_first_free);
2330 for (i = 0; i <= 13; i++)
2331 seq_printf(seq, " %-5u", i <= blocksize_bits + 1 ?
2332 sg.info.bb_counters[i] : 0);
2333 seq_printf(seq, " ]\n");
2334
2335 return 0;
2336 }
2337
2338 static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v)
2339 {
2340 }
2341
2342 static const struct seq_operations ext4_mb_seq_groups_ops = {
2343 .start = ext4_mb_seq_groups_start,
2344 .next = ext4_mb_seq_groups_next,
2345 .stop = ext4_mb_seq_groups_stop,
2346 .show = ext4_mb_seq_groups_show,
2347 };
2348
2349 static int ext4_mb_seq_groups_open(struct inode *inode, struct file *file)
2350 {
2351 struct super_block *sb = PDE_DATA(inode);
2352 int rc;
2353
2354 rc = seq_open(file, &ext4_mb_seq_groups_ops);
2355 if (rc == 0) {
2356 struct seq_file *m = file->private_data;
2357 m->private = sb;
2358 }
2359 return rc;
2360
2361 }
2362
2363 const struct file_operations ext4_seq_mb_groups_fops = {
2364 .open = ext4_mb_seq_groups_open,
2365 .read = seq_read,
2366 .llseek = seq_lseek,
2367 .release = seq_release,
2368 };
2369
2370 static struct kmem_cache *get_groupinfo_cache(int blocksize_bits)
2371 {
2372 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
2373 struct kmem_cache *cachep = ext4_groupinfo_caches[cache_index];
2374
2375 BUG_ON(!cachep);
2376 return cachep;
2377 }
2378
2379 /*
2380 * Allocate the top-level s_group_info array for the specified number
2381 * of groups
2382 */
2383 int ext4_mb_alloc_groupinfo(struct super_block *sb, ext4_group_t ngroups)
2384 {
2385 struct ext4_sb_info *sbi = EXT4_SB(sb);
2386 unsigned size;
2387 struct ext4_group_info ***new_groupinfo;
2388
2389 size = (ngroups + EXT4_DESC_PER_BLOCK(sb) - 1) >>
2390 EXT4_DESC_PER_BLOCK_BITS(sb);
2391 if (size <= sbi->s_group_info_size)
2392 return 0;
2393
2394 size = roundup_pow_of_two(sizeof(*sbi->s_group_info) * size);
2395 new_groupinfo = kvzalloc(size, GFP_KERNEL);
2396 if (!new_groupinfo) {
2397 ext4_msg(sb, KERN_ERR, "can't allocate buddy meta group");
2398 return -ENOMEM;
2399 }
2400 if (sbi->s_group_info) {
2401 memcpy(new_groupinfo, sbi->s_group_info,
2402 sbi->s_group_info_size * sizeof(*sbi->s_group_info));
2403 kvfree(sbi->s_group_info);
2404 }
2405 sbi->s_group_info = new_groupinfo;
2406 sbi->s_group_info_size = size / sizeof(*sbi->s_group_info);
2407 ext4_debug("allocated s_groupinfo array for %d meta_bg's\n",
2408 sbi->s_group_info_size);
2409 return 0;
2410 }
2411
2412 /* Create and initialize ext4_group_info data for the given group. */
2413 int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group,
2414 struct ext4_group_desc *desc)
2415 {
2416 int i;
2417 int metalen = 0;
2418 struct ext4_sb_info *sbi = EXT4_SB(sb);
2419 struct ext4_group_info **meta_group_info;
2420 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2421
2422 /*
2423 * First check if this group is the first of a reserved block.
2424 * If it's true, we have to allocate a new table of pointers
2425 * to ext4_group_info structures
2426 */
2427 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
2428 metalen = sizeof(*meta_group_info) <<
2429 EXT4_DESC_PER_BLOCK_BITS(sb);
2430 meta_group_info = kmalloc(metalen, GFP_NOFS);
2431 if (meta_group_info == NULL) {
2432 ext4_msg(sb, KERN_ERR, "can't allocate mem "
2433 "for a buddy group");
2434 goto exit_meta_group_info;
2435 }
2436 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)] =
2437 meta_group_info;
2438 }
2439
2440 meta_group_info =
2441 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)];
2442 i = group & (EXT4_DESC_PER_BLOCK(sb) - 1);
2443
2444 meta_group_info[i] = kmem_cache_zalloc(cachep, GFP_NOFS);
2445 if (meta_group_info[i] == NULL) {
2446 ext4_msg(sb, KERN_ERR, "can't allocate buddy mem");
2447 goto exit_group_info;
2448 }
2449 set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT,
2450 &(meta_group_info[i]->bb_state));
2451
2452 /*
2453 * initialize bb_free to be able to skip
2454 * empty groups without initialization
2455 */
2456 if (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
2457 meta_group_info[i]->bb_free =
2458 ext4_free_clusters_after_init(sb, group, desc);
2459 } else {
2460 meta_group_info[i]->bb_free =
2461 ext4_free_group_clusters(sb, desc);
2462 }
2463
2464 INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list);
2465 init_rwsem(&meta_group_info[i]->alloc_sem);
2466 meta_group_info[i]->bb_free_root = RB_ROOT;
2467 meta_group_info[i]->bb_largest_free_order = -1; /* uninit */
2468
2469 #ifdef DOUBLE_CHECK
2470 {
2471 struct buffer_head *bh;
2472 meta_group_info[i]->bb_bitmap =
2473 kmalloc(sb->s_blocksize, GFP_NOFS);
2474 BUG_ON(meta_group_info[i]->bb_bitmap == NULL);
2475 bh = ext4_read_block_bitmap(sb, group);
2476 BUG_ON(IS_ERR_OR_NULL(bh));
2477 memcpy(meta_group_info[i]->bb_bitmap, bh->b_data,
2478 sb->s_blocksize);
2479 put_bh(bh);
2480 }
2481 #endif
2482
2483 return 0;
2484
2485 exit_group_info:
2486 /* If a meta_group_info table has been allocated, release it now */
2487 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
2488 kfree(sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)]);
2489 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)] = NULL;
2490 }
2491 exit_meta_group_info:
2492 return -ENOMEM;
2493 } /* ext4_mb_add_groupinfo */
2494
2495 static int ext4_mb_init_backend(struct super_block *sb)
2496 {
2497 ext4_group_t ngroups = ext4_get_groups_count(sb);
2498 ext4_group_t i;
2499 struct ext4_sb_info *sbi = EXT4_SB(sb);
2500 int err;
2501 struct ext4_group_desc *desc;
2502 struct kmem_cache *cachep;
2503
2504 err = ext4_mb_alloc_groupinfo(sb, ngroups);
2505 if (err)
2506 return err;
2507
2508 sbi->s_buddy_cache = new_inode(sb);
2509 if (sbi->s_buddy_cache == NULL) {
2510 ext4_msg(sb, KERN_ERR, "can't get new inode");
2511 goto err_freesgi;
2512 }
2513 /* To avoid potentially colliding with an valid on-disk inode number,
2514 * use EXT4_BAD_INO for the buddy cache inode number. This inode is
2515 * not in the inode hash, so it should never be found by iget(), but
2516 * this will avoid confusion if it ever shows up during debugging. */
2517 sbi->s_buddy_cache->i_ino = EXT4_BAD_INO;
2518 EXT4_I(sbi->s_buddy_cache)->i_disksize = 0;
2519 for (i = 0; i < ngroups; i++) {
2520 desc = ext4_get_group_desc(sb, i, NULL);
2521 if (desc == NULL) {
2522 ext4_msg(sb, KERN_ERR, "can't read descriptor %u", i);
2523 goto err_freebuddy;
2524 }
2525 if (ext4_mb_add_groupinfo(sb, i, desc) != 0)
2526 goto err_freebuddy;
2527 }
2528
2529 return 0;
2530
2531 err_freebuddy:
2532 cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2533 while (i-- > 0)
2534 kmem_cache_free(cachep, ext4_get_group_info(sb, i));
2535 i = sbi->s_group_info_size;
2536 while (i-- > 0)
2537 kfree(sbi->s_group_info[i]);
2538 iput(sbi->s_buddy_cache);
2539 err_freesgi:
2540 kvfree(sbi->s_group_info);
2541 return -ENOMEM;
2542 }
2543
2544 static void ext4_groupinfo_destroy_slabs(void)
2545 {
2546 int i;
2547
2548 for (i = 0; i < NR_GRPINFO_CACHES; i++) {
2549 if (ext4_groupinfo_caches[i])
2550 kmem_cache_destroy(ext4_groupinfo_caches[i]);
2551 ext4_groupinfo_caches[i] = NULL;
2552 }
2553 }
2554
2555 static int ext4_groupinfo_create_slab(size_t size)
2556 {
2557 static DEFINE_MUTEX(ext4_grpinfo_slab_create_mutex);
2558 int slab_size;
2559 int blocksize_bits = order_base_2(size);
2560 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
2561 struct kmem_cache *cachep;
2562
2563 if (cache_index >= NR_GRPINFO_CACHES)
2564 return -EINVAL;
2565
2566 if (unlikely(cache_index < 0))
2567 cache_index = 0;
2568
2569 mutex_lock(&ext4_grpinfo_slab_create_mutex);
2570 if (ext4_groupinfo_caches[cache_index]) {
2571 mutex_unlock(&ext4_grpinfo_slab_create_mutex);
2572 return 0; /* Already created */
2573 }
2574
2575 slab_size = offsetof(struct ext4_group_info,
2576 bb_counters[blocksize_bits + 2]);
2577
2578 cachep = kmem_cache_create(ext4_groupinfo_slab_names[cache_index],
2579 slab_size, 0, SLAB_RECLAIM_ACCOUNT,
2580 NULL);
2581
2582 ext4_groupinfo_caches[cache_index] = cachep;
2583
2584 mutex_unlock(&ext4_grpinfo_slab_create_mutex);
2585 if (!cachep) {
2586 printk(KERN_EMERG
2587 "EXT4-fs: no memory for groupinfo slab cache\n");
2588 return -ENOMEM;
2589 }
2590
2591 return 0;
2592 }
2593
2594 int ext4_mb_init(struct super_block *sb)
2595 {
2596 struct ext4_sb_info *sbi = EXT4_SB(sb);
2597 unsigned i, j;
2598 unsigned offset, offset_incr;
2599 unsigned max;
2600 int ret;
2601
2602 i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_offsets);
2603
2604 sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL);
2605 if (sbi->s_mb_offsets == NULL) {
2606 ret = -ENOMEM;
2607 goto out;
2608 }
2609
2610 i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_maxs);
2611 sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL);
2612 if (sbi->s_mb_maxs == NULL) {
2613 ret = -ENOMEM;
2614 goto out;
2615 }
2616
2617 ret = ext4_groupinfo_create_slab(sb->s_blocksize);
2618 if (ret < 0)
2619 goto out;
2620
2621 /* order 0 is regular bitmap */
2622 sbi->s_mb_maxs[0] = sb->s_blocksize << 3;
2623 sbi->s_mb_offsets[0] = 0;
2624
2625 i = 1;
2626 offset = 0;
2627 offset_incr = 1 << (sb->s_blocksize_bits - 1);
2628 max = sb->s_blocksize << 2;
2629 do {
2630 sbi->s_mb_offsets[i] = offset;
2631 sbi->s_mb_maxs[i] = max;
2632 offset += offset_incr;
2633 offset_incr = offset_incr >> 1;
2634 max = max >> 1;
2635 i++;
2636 } while (i <= sb->s_blocksize_bits + 1);
2637
2638 spin_lock_init(&sbi->s_md_lock);
2639 spin_lock_init(&sbi->s_bal_lock);
2640 sbi->s_mb_free_pending = 0;
2641 INIT_LIST_HEAD(&sbi->s_freed_data_list);
2642
2643 sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN;
2644 sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN;
2645 sbi->s_mb_stats = MB_DEFAULT_STATS;
2646 sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD;
2647 sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS;
2648 /*
2649 * The default group preallocation is 512, which for 4k block
2650 * sizes translates to 2 megabytes. However for bigalloc file
2651 * systems, this is probably too big (i.e, if the cluster size
2652 * is 1 megabyte, then group preallocation size becomes half a
2653 * gigabyte!). As a default, we will keep a two megabyte
2654 * group pralloc size for cluster sizes up to 64k, and after
2655 * that, we will force a minimum group preallocation size of
2656 * 32 clusters. This translates to 8 megs when the cluster
2657 * size is 256k, and 32 megs when the cluster size is 1 meg,
2658 * which seems reasonable as a default.
2659 */
2660 sbi->s_mb_group_prealloc = max(MB_DEFAULT_GROUP_PREALLOC >>
2661 sbi->s_cluster_bits, 32);
2662 /*
2663 * If there is a s_stripe > 1, then we set the s_mb_group_prealloc
2664 * to the lowest multiple of s_stripe which is bigger than
2665 * the s_mb_group_prealloc as determined above. We want
2666 * the preallocation size to be an exact multiple of the
2667 * RAID stripe size so that preallocations don't fragment
2668 * the stripes.
2669 */
2670 if (sbi->s_stripe > 1) {
2671 sbi->s_mb_group_prealloc = roundup(
2672 sbi->s_mb_group_prealloc, sbi->s_stripe);
2673 }
2674
2675 sbi->s_locality_groups = alloc_percpu(struct ext4_locality_group);
2676 if (sbi->s_locality_groups == NULL) {
2677 ret = -ENOMEM;
2678 goto out;
2679 }
2680 for_each_possible_cpu(i) {
2681 struct ext4_locality_group *lg;
2682 lg = per_cpu_ptr(sbi->s_locality_groups, i);
2683 mutex_init(&lg->lg_mutex);
2684 for (j = 0; j < PREALLOC_TB_SIZE; j++)
2685 INIT_LIST_HEAD(&lg->lg_prealloc_list[j]);
2686 spin_lock_init(&lg->lg_prealloc_lock);
2687 }
2688
2689 /* init file for buddy data */
2690 ret = ext4_mb_init_backend(sb);
2691 if (ret != 0)
2692 goto out_free_locality_groups;
2693
2694 return 0;
2695
2696 out_free_locality_groups:
2697 free_percpu(sbi->s_locality_groups);
2698 sbi->s_locality_groups = NULL;
2699 out:
2700 kfree(sbi->s_mb_offsets);
2701 sbi->s_mb_offsets = NULL;
2702 kfree(sbi->s_mb_maxs);
2703 sbi->s_mb_maxs = NULL;
2704 return ret;
2705 }
2706
2707 /* need to called with the ext4 group lock held */
2708 static void ext4_mb_cleanup_pa(struct ext4_group_info *grp)
2709 {
2710 struct ext4_prealloc_space *pa;
2711 struct list_head *cur, *tmp;
2712 int count = 0;
2713
2714 list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) {
2715 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
2716 list_del(&pa->pa_group_list);
2717 count++;
2718 kmem_cache_free(ext4_pspace_cachep, pa);
2719 }
2720 if (count)
2721 mb_debug(1, "mballoc: %u PAs left\n", count);
2722
2723 }
2724
2725 int ext4_mb_release(struct super_block *sb)
2726 {
2727 ext4_group_t ngroups = ext4_get_groups_count(sb);
2728 ext4_group_t i;
2729 int num_meta_group_infos;
2730 struct ext4_group_info *grinfo;
2731 struct ext4_sb_info *sbi = EXT4_SB(sb);
2732 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2733
2734 if (sbi->s_group_info) {
2735 for (i = 0; i < ngroups; i++) {
2736 grinfo = ext4_get_group_info(sb, i);
2737 #ifdef DOUBLE_CHECK
2738 kfree(grinfo->bb_bitmap);
2739 #endif
2740 ext4_lock_group(sb, i);
2741 ext4_mb_cleanup_pa(grinfo);
2742 ext4_unlock_group(sb, i);
2743 kmem_cache_free(cachep, grinfo);
2744 }
2745 num_meta_group_infos = (ngroups +
2746 EXT4_DESC_PER_BLOCK(sb) - 1) >>
2747 EXT4_DESC_PER_BLOCK_BITS(sb);
2748 for (i = 0; i < num_meta_group_infos; i++)
2749 kfree(sbi->s_group_info[i]);
2750 kvfree(sbi->s_group_info);
2751 }
2752 kfree(sbi->s_mb_offsets);
2753 kfree(sbi->s_mb_maxs);
2754 iput(sbi->s_buddy_cache);
2755 if (sbi->s_mb_stats) {
2756 ext4_msg(sb, KERN_INFO,
2757 "mballoc: %u blocks %u reqs (%u success)",
2758 atomic_read(&sbi->s_bal_allocated),
2759 atomic_read(&sbi->s_bal_reqs),
2760 atomic_read(&sbi->s_bal_success));
2761 ext4_msg(sb, KERN_INFO,
2762 "mballoc: %u extents scanned, %u goal hits, "
2763 "%u 2^N hits, %u breaks, %u lost",
2764 atomic_read(&sbi->s_bal_ex_scanned),
2765 atomic_read(&sbi->s_bal_goals),
2766 atomic_read(&sbi->s_bal_2orders),
2767 atomic_read(&sbi->s_bal_breaks),
2768 atomic_read(&sbi->s_mb_lost_chunks));
2769 ext4_msg(sb, KERN_INFO,
2770 "mballoc: %lu generated and it took %Lu",
2771 sbi->s_mb_buddies_generated,
2772 sbi->s_mb_generation_time);
2773 ext4_msg(sb, KERN_INFO,
2774 "mballoc: %u preallocated, %u discarded",
2775 atomic_read(&sbi->s_mb_preallocated),
2776 atomic_read(&sbi->s_mb_discarded));
2777 }
2778
2779 free_percpu(sbi->s_locality_groups);
2780
2781 return 0;
2782 }
2783
2784 static inline int ext4_issue_discard(struct super_block *sb,
2785 ext4_group_t block_group, ext4_grpblk_t cluster, int count,
2786 struct bio **biop)
2787 {
2788 ext4_fsblk_t discard_block;
2789
2790 discard_block = (EXT4_C2B(EXT4_SB(sb), cluster) +
2791 ext4_group_first_block_no(sb, block_group));
2792 count = EXT4_C2B(EXT4_SB(sb), count);
2793 trace_ext4_discard_blocks(sb,
2794 (unsigned long long) discard_block, count);
2795 if (biop) {
2796 return __blkdev_issue_discard(sb->s_bdev,
2797 (sector_t)discard_block << (sb->s_blocksize_bits - 9),
2798 (sector_t)count << (sb->s_blocksize_bits - 9),
2799 GFP_NOFS, 0, biop);
2800 } else
2801 return sb_issue_discard(sb, discard_block, count, GFP_NOFS, 0);
2802 }
2803
2804 static void ext4_free_data_in_buddy(struct super_block *sb,
2805 struct ext4_free_data *entry)
2806 {
2807 struct ext4_buddy e4b;
2808 struct ext4_group_info *db;
2809 int err, count = 0, count2 = 0;
2810
2811 mb_debug(1, "gonna free %u blocks in group %u (0x%p):",
2812 entry->efd_count, entry->efd_group, entry);
2813
2814 err = ext4_mb_load_buddy(sb, entry->efd_group, &e4b);
2815 /* we expect to find existing buddy because it's pinned */
2816 BUG_ON(err != 0);
2817
2818 spin_lock(&EXT4_SB(sb)->s_md_lock);
2819 EXT4_SB(sb)->s_mb_free_pending -= entry->efd_count;
2820 spin_unlock(&EXT4_SB(sb)->s_md_lock);
2821
2822 db = e4b.bd_info;
2823 /* there are blocks to put in buddy to make them really free */
2824 count += entry->efd_count;
2825 count2++;
2826 ext4_lock_group(sb, entry->efd_group);
2827 /* Take it out of per group rb tree */
2828 rb_erase(&entry->efd_node, &(db->bb_free_root));
2829 mb_free_blocks(NULL, &e4b, entry->efd_start_cluster, entry->efd_count);
2830
2831 /*
2832 * Clear the trimmed flag for the group so that the next
2833 * ext4_trim_fs can trim it.
2834 * If the volume is mounted with -o discard, online discard
2835 * is supported and the free blocks will be trimmed online.
2836 */
2837 if (!test_opt(sb, DISCARD))
2838 EXT4_MB_GRP_CLEAR_TRIMMED(db);
2839
2840 if (!db->bb_free_root.rb_node) {
2841 /* No more items in the per group rb tree
2842 * balance refcounts from ext4_mb_free_metadata()
2843 */
2844 put_page(e4b.bd_buddy_page);
2845 put_page(e4b.bd_bitmap_page);
2846 }
2847 ext4_unlock_group(sb, entry->efd_group);
2848 kmem_cache_free(ext4_free_data_cachep, entry);
2849 ext4_mb_unload_buddy(&e4b);
2850
2851 mb_debug(1, "freed %u blocks in %u structures\n", count, count2);
2852 }
2853
2854 /*
2855 * This function is called by the jbd2 layer once the commit has finished,
2856 * so we know we can free the blocks that were released with that commit.
2857 */
2858 void ext4_process_freed_data(struct super_block *sb, tid_t commit_tid)
2859 {
2860 struct ext4_sb_info *sbi = EXT4_SB(sb);
2861 struct ext4_free_data *entry, *tmp;
2862 struct bio *discard_bio = NULL;
2863 struct list_head freed_data_list;
2864 struct list_head *cut_pos = NULL;
2865 int err;
2866
2867 INIT_LIST_HEAD(&freed_data_list);
2868
2869 spin_lock(&sbi->s_md_lock);
2870 list_for_each_entry(entry, &sbi->s_freed_data_list, efd_list) {
2871 if (entry->efd_tid != commit_tid)
2872 break;
2873 cut_pos = &entry->efd_list;
2874 }
2875 if (cut_pos)
2876 list_cut_position(&freed_data_list, &sbi->s_freed_data_list,
2877 cut_pos);
2878 spin_unlock(&sbi->s_md_lock);
2879
2880 if (test_opt(sb, DISCARD)) {
2881 list_for_each_entry(entry, &freed_data_list, efd_list) {
2882 err = ext4_issue_discard(sb, entry->efd_group,
2883 entry->efd_start_cluster,
2884 entry->efd_count,
2885 &discard_bio);
2886 if (err && err != -EOPNOTSUPP) {
2887 ext4_msg(sb, KERN_WARNING, "discard request in"
2888 " group:%d block:%d count:%d failed"
2889 " with %d", entry->efd_group,
2890 entry->efd_start_cluster,
2891 entry->efd_count, err);
2892 } else if (err == -EOPNOTSUPP)
2893 break;
2894 }
2895
2896 if (discard_bio) {
2897 submit_bio_wait(discard_bio);
2898 bio_put(discard_bio);
2899 }
2900 }
2901
2902 list_for_each_entry_safe(entry, tmp, &freed_data_list, efd_list)
2903 ext4_free_data_in_buddy(sb, entry);
2904 }
2905
2906 int __init ext4_init_mballoc(void)
2907 {
2908 ext4_pspace_cachep = KMEM_CACHE(ext4_prealloc_space,
2909 SLAB_RECLAIM_ACCOUNT);
2910 if (ext4_pspace_cachep == NULL)
2911 return -ENOMEM;
2912
2913 ext4_ac_cachep = KMEM_CACHE(ext4_allocation_context,
2914 SLAB_RECLAIM_ACCOUNT);
2915 if (ext4_ac_cachep == NULL) {
2916 kmem_cache_destroy(ext4_pspace_cachep);
2917 return -ENOMEM;
2918 }
2919
2920 ext4_free_data_cachep = KMEM_CACHE(ext4_free_data,
2921 SLAB_RECLAIM_ACCOUNT);
2922 if (ext4_free_data_cachep == NULL) {
2923 kmem_cache_destroy(ext4_pspace_cachep);
2924 kmem_cache_destroy(ext4_ac_cachep);
2925 return -ENOMEM;
2926 }
2927 return 0;
2928 }
2929
2930 void ext4_exit_mballoc(void)
2931 {
2932 /*
2933 * Wait for completion of call_rcu()'s on ext4_pspace_cachep
2934 * before destroying the slab cache.
2935 */
2936 rcu_barrier();
2937 kmem_cache_destroy(ext4_pspace_cachep);
2938 kmem_cache_destroy(ext4_ac_cachep);
2939 kmem_cache_destroy(ext4_free_data_cachep);
2940 ext4_groupinfo_destroy_slabs();
2941 }
2942
2943
2944 /*
2945 * Check quota and mark chosen space (ac->ac_b_ex) non-free in bitmaps
2946 * Returns 0 if success or error code
2947 */
2948 static noinline_for_stack int
2949 ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac,
2950 handle_t *handle, unsigned int reserv_clstrs)
2951 {
2952 struct buffer_head *bitmap_bh = NULL;
2953 struct ext4_group_desc *gdp;
2954 struct buffer_head *gdp_bh;
2955 struct ext4_sb_info *sbi;
2956 struct super_block *sb;
2957 ext4_fsblk_t block;
2958 int err, len;
2959
2960 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
2961 BUG_ON(ac->ac_b_ex.fe_len <= 0);
2962
2963 sb = ac->ac_sb;
2964 sbi = EXT4_SB(sb);
2965
2966 bitmap_bh = ext4_read_block_bitmap(sb, ac->ac_b_ex.fe_group);
2967 if (IS_ERR(bitmap_bh)) {
2968 err = PTR_ERR(bitmap_bh);
2969 bitmap_bh = NULL;
2970 goto out_err;
2971 }
2972
2973 BUFFER_TRACE(bitmap_bh, "getting write access");
2974 err = ext4_journal_get_write_access(handle, bitmap_bh);
2975 if (err)
2976 goto out_err;
2977
2978 err = -EIO;
2979 gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, &gdp_bh);
2980 if (!gdp)
2981 goto out_err;
2982
2983 ext4_debug("using block group %u(%d)\n", ac->ac_b_ex.fe_group,
2984 ext4_free_group_clusters(sb, gdp));
2985
2986 BUFFER_TRACE(gdp_bh, "get_write_access");
2987 err = ext4_journal_get_write_access(handle, gdp_bh);
2988 if (err)
2989 goto out_err;
2990
2991 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
2992
2993 len = EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
2994 if (!ext4_data_block_valid(sbi, block, len)) {
2995 ext4_error(sb, "Allocating blocks %llu-%llu which overlap "
2996 "fs metadata", block, block+len);
2997 /* File system mounted not to panic on error
2998 * Fix the bitmap and return EFSCORRUPTED
2999 * We leak some of the blocks here.
3000 */
3001 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3002 ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
3003 ac->ac_b_ex.fe_len);
3004 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3005 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
3006 if (!err)
3007 err = -EFSCORRUPTED;
3008 goto out_err;
3009 }
3010
3011 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3012 #ifdef AGGRESSIVE_CHECK
3013 {
3014 int i;
3015 for (i = 0; i < ac->ac_b_ex.fe_len; i++) {
3016 BUG_ON(mb_test_bit(ac->ac_b_ex.fe_start + i,
3017 bitmap_bh->b_data));
3018 }
3019 }
3020 #endif
3021 ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
3022 ac->ac_b_ex.fe_len);
3023 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
3024 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
3025 ext4_free_group_clusters_set(sb, gdp,
3026 ext4_free_clusters_after_init(sb,
3027 ac->ac_b_ex.fe_group, gdp));
3028 }
3029 len = ext4_free_group_clusters(sb, gdp) - ac->ac_b_ex.fe_len;
3030 ext4_free_group_clusters_set(sb, gdp, len);
3031 ext4_block_bitmap_csum_set(sb, ac->ac_b_ex.fe_group, gdp, bitmap_bh);
3032 ext4_group_desc_csum_set(sb, ac->ac_b_ex.fe_group, gdp);
3033
3034 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3035 percpu_counter_sub(&sbi->s_freeclusters_counter, ac->ac_b_ex.fe_len);
3036 /*
3037 * Now reduce the dirty block count also. Should not go negative
3038 */
3039 if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED))
3040 /* release all the reserved blocks if non delalloc */
3041 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
3042 reserv_clstrs);
3043
3044 if (sbi->s_log_groups_per_flex) {
3045 ext4_group_t flex_group = ext4_flex_group(sbi,
3046 ac->ac_b_ex.fe_group);
3047 atomic64_sub(ac->ac_b_ex.fe_len,
3048 &sbi->s_flex_groups[flex_group].free_clusters);
3049 }
3050
3051 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
3052 if (err)
3053 goto out_err;
3054 err = ext4_handle_dirty_metadata(handle, NULL, gdp_bh);
3055
3056 out_err:
3057 brelse(bitmap_bh);
3058 return err;
3059 }
3060
3061 /*
3062 * here we normalize request for locality group
3063 * Group request are normalized to s_mb_group_prealloc, which goes to
3064 * s_strip if we set the same via mount option.
3065 * s_mb_group_prealloc can be configured via
3066 * /sys/fs/ext4/<partition>/mb_group_prealloc
3067 *
3068 * XXX: should we try to preallocate more than the group has now?
3069 */
3070 static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac)
3071 {
3072 struct super_block *sb = ac->ac_sb;
3073 struct ext4_locality_group *lg = ac->ac_lg;
3074
3075 BUG_ON(lg == NULL);
3076 ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc;
3077 mb_debug(1, "#%u: goal %u blocks for locality group\n",
3078 current->pid, ac->ac_g_ex.fe_len);
3079 }
3080
3081 /*
3082 * Normalization means making request better in terms of
3083 * size and alignment
3084 */
3085 static noinline_for_stack void
3086 ext4_mb_normalize_request(struct ext4_allocation_context *ac,
3087 struct ext4_allocation_request *ar)
3088 {
3089 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3090 int bsbits, max;
3091 ext4_lblk_t end;
3092 loff_t size, start_off;
3093 loff_t orig_size __maybe_unused;
3094 ext4_lblk_t start;
3095 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
3096 struct ext4_prealloc_space *pa;
3097
3098 /* do normalize only data requests, metadata requests
3099 do not need preallocation */
3100 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3101 return;
3102
3103 /* sometime caller may want exact blocks */
3104 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
3105 return;
3106
3107 /* caller may indicate that preallocation isn't
3108 * required (it's a tail, for example) */
3109 if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC)
3110 return;
3111
3112 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) {
3113 ext4_mb_normalize_group_request(ac);
3114 return ;
3115 }
3116
3117 bsbits = ac->ac_sb->s_blocksize_bits;
3118
3119 /* first, let's learn actual file size
3120 * given current request is allocated */
3121 size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len);
3122 size = size << bsbits;
3123 if (size < i_size_read(ac->ac_inode))
3124 size = i_size_read(ac->ac_inode);
3125 orig_size = size;
3126
3127 /* max size of free chunks */
3128 max = 2 << bsbits;
3129
3130 #define NRL_CHECK_SIZE(req, size, max, chunk_size) \
3131 (req <= (size) || max <= (chunk_size))
3132
3133 /* first, try to predict filesize */
3134 /* XXX: should this table be tunable? */
3135 start_off = 0;
3136 if (size <= 16 * 1024) {
3137 size = 16 * 1024;
3138 } else if (size <= 32 * 1024) {
3139 size = 32 * 1024;
3140 } else if (size <= 64 * 1024) {
3141 size = 64 * 1024;
3142 } else if (size <= 128 * 1024) {
3143 size = 128 * 1024;
3144 } else if (size <= 256 * 1024) {
3145 size = 256 * 1024;
3146 } else if (size <= 512 * 1024) {
3147 size = 512 * 1024;
3148 } else if (size <= 1024 * 1024) {
3149 size = 1024 * 1024;
3150 } else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) {
3151 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3152 (21 - bsbits)) << 21;
3153 size = 2 * 1024 * 1024;
3154 } else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) {
3155 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3156 (22 - bsbits)) << 22;
3157 size = 4 * 1024 * 1024;
3158 } else if (NRL_CHECK_SIZE(ac->ac_o_ex.fe_len,
3159 (8<<20)>>bsbits, max, 8 * 1024)) {
3160 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3161 (23 - bsbits)) << 23;
3162 size = 8 * 1024 * 1024;
3163 } else {
3164 start_off = (loff_t) ac->ac_o_ex.fe_logical << bsbits;
3165 size = (loff_t) EXT4_C2B(EXT4_SB(ac->ac_sb),
3166 ac->ac_o_ex.fe_len) << bsbits;
3167 }
3168 size = size >> bsbits;
3169 start = start_off >> bsbits;
3170
3171 /* don't cover already allocated blocks in selected range */
3172 if (ar->pleft && start <= ar->lleft) {
3173 size -= ar->lleft + 1 - start;
3174 start = ar->lleft + 1;
3175 }
3176 if (ar->pright && start + size - 1 >= ar->lright)
3177 size -= start + size - ar->lright;
3178
3179 /*
3180 * Trim allocation request for filesystems with artificially small
3181 * groups.
3182 */
3183 if (size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb))
3184 size = EXT4_BLOCKS_PER_GROUP(ac->ac_sb);
3185
3186 end = start + size;
3187
3188 /* check we don't cross already preallocated blocks */
3189 rcu_read_lock();
3190 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3191 ext4_lblk_t pa_end;
3192
3193 if (pa->pa_deleted)
3194 continue;
3195 spin_lock(&pa->pa_lock);
3196 if (pa->pa_deleted) {
3197 spin_unlock(&pa->pa_lock);
3198 continue;
3199 }
3200
3201 pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb),
3202 pa->pa_len);
3203
3204 /* PA must not overlap original request */
3205 BUG_ON(!(ac->ac_o_ex.fe_logical >= pa_end ||
3206 ac->ac_o_ex.fe_logical < pa->pa_lstart));
3207
3208 /* skip PAs this normalized request doesn't overlap with */
3209 if (pa->pa_lstart >= end || pa_end <= start) {
3210 spin_unlock(&pa->pa_lock);
3211 continue;
3212 }
3213 BUG_ON(pa->pa_lstart <= start && pa_end >= end);
3214
3215 /* adjust start or end to be adjacent to this pa */
3216 if (pa_end <= ac->ac_o_ex.fe_logical) {
3217 BUG_ON(pa_end < start);
3218 start = pa_end;
3219 } else if (pa->pa_lstart > ac->ac_o_ex.fe_logical) {
3220 BUG_ON(pa->pa_lstart > end);
3221 end = pa->pa_lstart;
3222 }
3223 spin_unlock(&pa->pa_lock);
3224 }
3225 rcu_read_unlock();
3226 size = end - start;
3227
3228 /* XXX: extra loop to check we really don't overlap preallocations */
3229 rcu_read_lock();
3230 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3231 ext4_lblk_t pa_end;
3232
3233 spin_lock(&pa->pa_lock);
3234 if (pa->pa_deleted == 0) {
3235 pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb),
3236 pa->pa_len);
3237 BUG_ON(!(start >= pa_end || end <= pa->pa_lstart));
3238 }
3239 spin_unlock(&pa->pa_lock);
3240 }
3241 rcu_read_unlock();
3242
3243 if (start + size <= ac->ac_o_ex.fe_logical &&
3244 start > ac->ac_o_ex.fe_logical) {
3245 ext4_msg(ac->ac_sb, KERN_ERR,
3246 "start %lu, size %lu, fe_logical %lu",
3247 (unsigned long) start, (unsigned long) size,
3248 (unsigned long) ac->ac_o_ex.fe_logical);
3249 BUG();
3250 }
3251 BUG_ON(size <= 0 || size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb));
3252
3253 /* now prepare goal request */
3254
3255 /* XXX: is it better to align blocks WRT to logical
3256 * placement or satisfy big request as is */
3257 ac->ac_g_ex.fe_logical = start;
3258 ac->ac_g_ex.fe_len = EXT4_NUM_B2C(sbi, size);
3259
3260 /* define goal start in order to merge */
3261 if (ar->pright && (ar->lright == (start + size))) {
3262 /* merge to the right */
3263 ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size,
3264 &ac->ac_f_ex.fe_group,
3265 &ac->ac_f_ex.fe_start);
3266 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3267 }
3268 if (ar->pleft && (ar->lleft + 1 == start)) {
3269 /* merge to the left */
3270 ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1,
3271 &ac->ac_f_ex.fe_group,
3272 &ac->ac_f_ex.fe_start);
3273 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3274 }
3275
3276 mb_debug(1, "goal: %u(was %u) blocks at %u\n", (unsigned) size,
3277 (unsigned) orig_size, (unsigned) start);
3278 }
3279
3280 static void ext4_mb_collect_stats(struct ext4_allocation_context *ac)
3281 {
3282 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3283
3284 if (sbi->s_mb_stats && ac->ac_g_ex.fe_len > 1) {
3285 atomic_inc(&sbi->s_bal_reqs);
3286 atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated);
3287 if (ac->ac_b_ex.fe_len >= ac->ac_o_ex.fe_len)
3288 atomic_inc(&sbi->s_bal_success);
3289 atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned);
3290 if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start &&
3291 ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group)
3292 atomic_inc(&sbi->s_bal_goals);
3293 if (ac->ac_found > sbi->s_mb_max_to_scan)
3294 atomic_inc(&sbi->s_bal_breaks);
3295 }
3296
3297 if (ac->ac_op == EXT4_MB_HISTORY_ALLOC)
3298 trace_ext4_mballoc_alloc(ac);
3299 else
3300 trace_ext4_mballoc_prealloc(ac);
3301 }
3302
3303 /*
3304 * Called on failure; free up any blocks from the inode PA for this
3305 * context. We don't need this for MB_GROUP_PA because we only change
3306 * pa_free in ext4_mb_release_context(), but on failure, we've already
3307 * zeroed out ac->ac_b_ex.fe_len, so group_pa->pa_free is not changed.
3308 */
3309 static void ext4_discard_allocated_blocks(struct ext4_allocation_context *ac)
3310 {
3311 struct ext4_prealloc_space *pa = ac->ac_pa;
3312 struct ext4_buddy e4b;
3313 int err;
3314
3315 if (pa == NULL) {
3316 if (ac->ac_f_ex.fe_len == 0)
3317 return;
3318 err = ext4_mb_load_buddy(ac->ac_sb, ac->ac_f_ex.fe_group, &e4b);
3319 if (err) {
3320 /*
3321 * This should never happen since we pin the
3322 * pages in the ext4_allocation_context so
3323 * ext4_mb_load_buddy() should never fail.
3324 */
3325 WARN(1, "mb_load_buddy failed (%d)", err);
3326 return;
3327 }
3328 ext4_lock_group(ac->ac_sb, ac->ac_f_ex.fe_group);
3329 mb_free_blocks(ac->ac_inode, &e4b, ac->ac_f_ex.fe_start,
3330 ac->ac_f_ex.fe_len);
3331 ext4_unlock_group(ac->ac_sb, ac->ac_f_ex.fe_group);
3332 ext4_mb_unload_buddy(&e4b);
3333 return;
3334 }
3335 if (pa->pa_type == MB_INODE_PA)
3336 pa->pa_free += ac->ac_b_ex.fe_len;
3337 }
3338
3339 /*
3340 * use blocks preallocated to inode
3341 */
3342 static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac,
3343 struct ext4_prealloc_space *pa)
3344 {
3345 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3346 ext4_fsblk_t start;
3347 ext4_fsblk_t end;
3348 int len;
3349
3350 /* found preallocated blocks, use them */
3351 start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart);
3352 end = min(pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len),
3353 start + EXT4_C2B(sbi, ac->ac_o_ex.fe_len));
3354 len = EXT4_NUM_B2C(sbi, end - start);
3355 ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group,
3356 &ac->ac_b_ex.fe_start);
3357 ac->ac_b_ex.fe_len = len;
3358 ac->ac_status = AC_STATUS_FOUND;
3359 ac->ac_pa = pa;
3360
3361 BUG_ON(start < pa->pa_pstart);
3362 BUG_ON(end > pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len));
3363 BUG_ON(pa->pa_free < len);
3364 pa->pa_free -= len;
3365
3366 mb_debug(1, "use %llu/%u from inode pa %p\n", start, len, pa);
3367 }
3368
3369 /*
3370 * use blocks preallocated to locality group
3371 */
3372 static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac,
3373 struct ext4_prealloc_space *pa)
3374 {
3375 unsigned int len = ac->ac_o_ex.fe_len;
3376
3377 ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart,
3378 &ac->ac_b_ex.fe_group,
3379 &ac->ac_b_ex.fe_start);
3380 ac->ac_b_ex.fe_len = len;
3381 ac->ac_status = AC_STATUS_FOUND;
3382 ac->ac_pa = pa;
3383
3384 /* we don't correct pa_pstart or pa_plen here to avoid
3385 * possible race when the group is being loaded concurrently
3386 * instead we correct pa later, after blocks are marked
3387 * in on-disk bitmap -- see ext4_mb_release_context()
3388 * Other CPUs are prevented from allocating from this pa by lg_mutex
3389 */
3390 mb_debug(1, "use %u/%u from group pa %p\n", pa->pa_lstart-len, len, pa);
3391 }
3392
3393 /*
3394 * Return the prealloc space that have minimal distance
3395 * from the goal block. @cpa is the prealloc
3396 * space that is having currently known minimal distance
3397 * from the goal block.
3398 */
3399 static struct ext4_prealloc_space *
3400 ext4_mb_check_group_pa(ext4_fsblk_t goal_block,
3401 struct ext4_prealloc_space *pa,
3402 struct ext4_prealloc_space *cpa)
3403 {
3404 ext4_fsblk_t cur_distance, new_distance;
3405
3406 if (cpa == NULL) {
3407 atomic_inc(&pa->pa_count);
3408 return pa;
3409 }
3410 cur_distance = abs(goal_block - cpa->pa_pstart);
3411 new_distance = abs(goal_block - pa->pa_pstart);
3412
3413 if (cur_distance <= new_distance)
3414 return cpa;
3415
3416 /* drop the previous reference */
3417 atomic_dec(&cpa->pa_count);
3418 atomic_inc(&pa->pa_count);
3419 return pa;
3420 }
3421
3422 /*
3423 * search goal blocks in preallocated space
3424 */
3425 static noinline_for_stack int
3426 ext4_mb_use_preallocated(struct ext4_allocation_context *ac)
3427 {
3428 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3429 int order, i;
3430 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
3431 struct ext4_locality_group *lg;
3432 struct ext4_prealloc_space *pa, *cpa = NULL;
3433 ext4_fsblk_t goal_block;
3434
3435 /* only data can be preallocated */
3436 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3437 return 0;
3438
3439 /* first, try per-file preallocation */
3440 rcu_read_lock();
3441 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3442
3443 /* all fields in this condition don't change,
3444 * so we can skip locking for them */
3445 if (ac->ac_o_ex.fe_logical < pa->pa_lstart ||
3446 ac->ac_o_ex.fe_logical >= (pa->pa_lstart +
3447 EXT4_C2B(sbi, pa->pa_len)))
3448 continue;
3449
3450 /* non-extent files can't have physical blocks past 2^32 */
3451 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)) &&
3452 (pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len) >
3453 EXT4_MAX_BLOCK_FILE_PHYS))
3454 continue;
3455
3456 /* found preallocated blocks, use them */
3457 spin_lock(&pa->pa_lock);
3458 if (pa->pa_deleted == 0 && pa->pa_free) {
3459 atomic_inc(&pa->pa_count);
3460 ext4_mb_use_inode_pa(ac, pa);
3461 spin_unlock(&pa->pa_lock);
3462 ac->ac_criteria = 10;
3463 rcu_read_unlock();
3464 return 1;
3465 }
3466 spin_unlock(&pa->pa_lock);
3467 }
3468 rcu_read_unlock();
3469
3470 /* can we use group allocation? */
3471 if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC))
3472 return 0;
3473
3474 /* inode may have no locality group for some reason */
3475 lg = ac->ac_lg;
3476 if (lg == NULL)
3477 return 0;
3478 order = fls(ac->ac_o_ex.fe_len) - 1;
3479 if (order > PREALLOC_TB_SIZE - 1)
3480 /* The max size of hash table is PREALLOC_TB_SIZE */
3481 order = PREALLOC_TB_SIZE - 1;
3482
3483 goal_block = ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex);
3484 /*
3485 * search for the prealloc space that is having
3486 * minimal distance from the goal block.
3487 */
3488 for (i = order; i < PREALLOC_TB_SIZE; i++) {
3489 rcu_read_lock();
3490 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[i],
3491 pa_inode_list) {
3492 spin_lock(&pa->pa_lock);
3493 if (pa->pa_deleted == 0 &&
3494 pa->pa_free >= ac->ac_o_ex.fe_len) {
3495
3496 cpa = ext4_mb_check_group_pa(goal_block,
3497 pa, cpa);
3498 }
3499 spin_unlock(&pa->pa_lock);
3500 }
3501 rcu_read_unlock();
3502 }
3503 if (cpa) {
3504 ext4_mb_use_group_pa(ac, cpa);
3505 ac->ac_criteria = 20;
3506 return 1;
3507 }
3508 return 0;
3509 }
3510
3511 /*
3512 * the function goes through all block freed in the group
3513 * but not yet committed and marks them used in in-core bitmap.
3514 * buddy must be generated from this bitmap
3515 * Need to be called with the ext4 group lock held
3516 */
3517 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
3518 ext4_group_t group)
3519 {
3520 struct rb_node *n;
3521 struct ext4_group_info *grp;
3522 struct ext4_free_data *entry;
3523
3524 grp = ext4_get_group_info(sb, group);
3525 n = rb_first(&(grp->bb_free_root));
3526
3527 while (n) {
3528 entry = rb_entry(n, struct ext4_free_data, efd_node);
3529 ext4_set_bits(bitmap, entry->efd_start_cluster, entry->efd_count);
3530 n = rb_next(n);
3531 }
3532 return;
3533 }
3534
3535 /*
3536 * the function goes through all preallocation in this group and marks them
3537 * used in in-core bitmap. buddy must be generated from this bitmap
3538 * Need to be called with ext4 group lock held
3539 */
3540 static noinline_for_stack
3541 void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
3542 ext4_group_t group)
3543 {
3544 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
3545 struct ext4_prealloc_space *pa;
3546 struct list_head *cur;
3547 ext4_group_t groupnr;
3548 ext4_grpblk_t start;
3549 int preallocated = 0;
3550 int len;
3551
3552 /* all form of preallocation discards first load group,
3553 * so the only competing code is preallocation use.
3554 * we don't need any locking here
3555 * notice we do NOT ignore preallocations with pa_deleted
3556 * otherwise we could leave used blocks available for
3557 * allocation in buddy when concurrent ext4_mb_put_pa()
3558 * is dropping preallocation
3559 */
3560 list_for_each(cur, &grp->bb_prealloc_list) {
3561 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
3562 spin_lock(&pa->pa_lock);
3563 ext4_get_group_no_and_offset(sb, pa->pa_pstart,
3564 &groupnr, &start);
3565 len = pa->pa_len;
3566 spin_unlock(&pa->pa_lock);
3567 if (unlikely(len == 0))
3568 continue;
3569 BUG_ON(groupnr != group);
3570 ext4_set_bits(bitmap, start, len);
3571 preallocated += len;
3572 }
3573 mb_debug(1, "preallocated %u for group %u\n", preallocated, group);
3574 }
3575
3576 static void ext4_mb_pa_callback(struct rcu_head *head)
3577 {
3578 struct ext4_prealloc_space *pa;
3579 pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu);
3580
3581 BUG_ON(atomic_read(&pa->pa_count));
3582 BUG_ON(pa->pa_deleted == 0);
3583 kmem_cache_free(ext4_pspace_cachep, pa);
3584 }
3585
3586 /*
3587 * drops a reference to preallocated space descriptor
3588 * if this was the last reference and the space is consumed
3589 */
3590 static void ext4_mb_put_pa(struct ext4_allocation_context *ac,
3591 struct super_block *sb, struct ext4_prealloc_space *pa)
3592 {
3593 ext4_group_t grp;
3594 ext4_fsblk_t grp_blk;
3595
3596 /* in this short window concurrent discard can set pa_deleted */
3597 spin_lock(&pa->pa_lock);
3598 if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0) {
3599 spin_unlock(&pa->pa_lock);
3600 return;
3601 }
3602
3603 if (pa->pa_deleted == 1) {
3604 spin_unlock(&pa->pa_lock);
3605 return;
3606 }
3607
3608 pa->pa_deleted = 1;
3609 spin_unlock(&pa->pa_lock);
3610
3611 grp_blk = pa->pa_pstart;
3612 /*
3613 * If doing group-based preallocation, pa_pstart may be in the
3614 * next group when pa is used up
3615 */
3616 if (pa->pa_type == MB_GROUP_PA)
3617 grp_blk--;
3618
3619 grp = ext4_get_group_number(sb, grp_blk);
3620
3621 /*
3622 * possible race:
3623 *
3624 * P1 (buddy init) P2 (regular allocation)
3625 * find block B in PA
3626 * copy on-disk bitmap to buddy
3627 * mark B in on-disk bitmap
3628 * drop PA from group
3629 * mark all PAs in buddy
3630 *
3631 * thus, P1 initializes buddy with B available. to prevent this
3632 * we make "copy" and "mark all PAs" atomic and serialize "drop PA"
3633 * against that pair
3634 */
3635 ext4_lock_group(sb, grp);
3636 list_del(&pa->pa_group_list);
3637 ext4_unlock_group(sb, grp);
3638
3639 spin_lock(pa->pa_obj_lock);
3640 list_del_rcu(&pa->pa_inode_list);
3641 spin_unlock(pa->pa_obj_lock);
3642
3643 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3644 }
3645
3646 /*
3647 * creates new preallocated space for given inode
3648 */
3649 static noinline_for_stack int
3650 ext4_mb_new_inode_pa(struct ext4_allocation_context *ac)
3651 {
3652 struct super_block *sb = ac->ac_sb;
3653 struct ext4_sb_info *sbi = EXT4_SB(sb);
3654 struct ext4_prealloc_space *pa;
3655 struct ext4_group_info *grp;
3656 struct ext4_inode_info *ei;
3657
3658 /* preallocate only when found space is larger then requested */
3659 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
3660 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3661 BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
3662
3663 pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
3664 if (pa == NULL)
3665 return -ENOMEM;
3666
3667 if (ac->ac_b_ex.fe_len < ac->ac_g_ex.fe_len) {
3668 int winl;
3669 int wins;
3670 int win;
3671 int offs;
3672
3673 /* we can't allocate as much as normalizer wants.
3674 * so, found space must get proper lstart
3675 * to cover original request */
3676 BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical);
3677 BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len);
3678
3679 /* we're limited by original request in that
3680 * logical block must be covered any way
3681 * winl is window we can move our chunk within */
3682 winl = ac->ac_o_ex.fe_logical - ac->ac_g_ex.fe_logical;
3683
3684 /* also, we should cover whole original request */
3685 wins = EXT4_C2B(sbi, ac->ac_b_ex.fe_len - ac->ac_o_ex.fe_len);
3686
3687 /* the smallest one defines real window */
3688 win = min(winl, wins);
3689
3690 offs = ac->ac_o_ex.fe_logical %
3691 EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
3692 if (offs && offs < win)
3693 win = offs;
3694
3695 ac->ac_b_ex.fe_logical = ac->ac_o_ex.fe_logical -
3696 EXT4_NUM_B2C(sbi, win);
3697 BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical);
3698 BUG_ON(ac->ac_o_ex.fe_len > ac->ac_b_ex.fe_len);
3699 }
3700
3701 /* preallocation can change ac_b_ex, thus we store actually
3702 * allocated blocks for history */
3703 ac->ac_f_ex = ac->ac_b_ex;
3704
3705 pa->pa_lstart = ac->ac_b_ex.fe_logical;
3706 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3707 pa->pa_len = ac->ac_b_ex.fe_len;
3708 pa->pa_free = pa->pa_len;
3709 atomic_set(&pa->pa_count, 1);
3710 spin_lock_init(&pa->pa_lock);
3711 INIT_LIST_HEAD(&pa->pa_inode_list);
3712 INIT_LIST_HEAD(&pa->pa_group_list);
3713 pa->pa_deleted = 0;
3714 pa->pa_type = MB_INODE_PA;
3715
3716 mb_debug(1, "new inode pa %p: %llu/%u for %u\n", pa,
3717 pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3718 trace_ext4_mb_new_inode_pa(ac, pa);
3719
3720 ext4_mb_use_inode_pa(ac, pa);
3721 atomic_add(pa->pa_free, &sbi->s_mb_preallocated);
3722
3723 ei = EXT4_I(ac->ac_inode);
3724 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
3725
3726 pa->pa_obj_lock = &ei->i_prealloc_lock;
3727 pa->pa_inode = ac->ac_inode;
3728
3729 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3730 list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
3731 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3732
3733 spin_lock(pa->pa_obj_lock);
3734 list_add_rcu(&pa->pa_inode_list, &ei->i_prealloc_list);
3735 spin_unlock(pa->pa_obj_lock);
3736
3737 return 0;
3738 }
3739
3740 /*
3741 * creates new preallocated space for locality group inodes belongs to
3742 */
3743 static noinline_for_stack int
3744 ext4_mb_new_group_pa(struct ext4_allocation_context *ac)
3745 {
3746 struct super_block *sb = ac->ac_sb;
3747 struct ext4_locality_group *lg;
3748 struct ext4_prealloc_space *pa;
3749 struct ext4_group_info *grp;
3750
3751 /* preallocate only when found space is larger then requested */
3752 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
3753 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3754 BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
3755
3756 BUG_ON(ext4_pspace_cachep == NULL);
3757 pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
3758 if (pa == NULL)
3759 return -ENOMEM;
3760
3761 /* preallocation can change ac_b_ex, thus we store actually
3762 * allocated blocks for history */
3763 ac->ac_f_ex = ac->ac_b_ex;
3764
3765 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3766 pa->pa_lstart = pa->pa_pstart;
3767 pa->pa_len = ac->ac_b_ex.fe_len;
3768 pa->pa_free = pa->pa_len;
3769 atomic_set(&pa->pa_count, 1);
3770 spin_lock_init(&pa->pa_lock);
3771 INIT_LIST_HEAD(&pa->pa_inode_list);
3772 INIT_LIST_HEAD(&pa->pa_group_list);
3773 pa->pa_deleted = 0;
3774 pa->pa_type = MB_GROUP_PA;
3775
3776 mb_debug(1, "new group pa %p: %llu/%u for %u\n", pa,
3777 pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3778 trace_ext4_mb_new_group_pa(ac, pa);
3779
3780 ext4_mb_use_group_pa(ac, pa);
3781 atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated);
3782
3783 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
3784 lg = ac->ac_lg;
3785 BUG_ON(lg == NULL);
3786
3787 pa->pa_obj_lock = &lg->lg_prealloc_lock;
3788 pa->pa_inode = NULL;
3789
3790 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3791 list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
3792 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3793
3794 /*
3795 * We will later add the new pa to the right bucket
3796 * after updating the pa_free in ext4_mb_release_context
3797 */
3798 return 0;
3799 }
3800
3801 static int ext4_mb_new_preallocation(struct ext4_allocation_context *ac)
3802 {
3803 int err;
3804
3805 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
3806 err = ext4_mb_new_group_pa(ac);
3807 else
3808 err = ext4_mb_new_inode_pa(ac);
3809 return err;
3810 }
3811
3812 /*
3813 * finds all unused blocks in on-disk bitmap, frees them in
3814 * in-core bitmap and buddy.
3815 * @pa must be unlinked from inode and group lists, so that
3816 * nobody else can find/use it.
3817 * the caller MUST hold group/inode locks.
3818 * TODO: optimize the case when there are no in-core structures yet
3819 */
3820 static noinline_for_stack int
3821 ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh,
3822 struct ext4_prealloc_space *pa)
3823 {
3824 struct super_block *sb = e4b->bd_sb;
3825 struct ext4_sb_info *sbi = EXT4_SB(sb);
3826 unsigned int end;
3827 unsigned int next;
3828 ext4_group_t group;
3829 ext4_grpblk_t bit;
3830 unsigned long long grp_blk_start;
3831 int err = 0;
3832 int free = 0;
3833
3834 BUG_ON(pa->pa_deleted == 0);
3835 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3836 grp_blk_start = pa->pa_pstart - EXT4_C2B(sbi, bit);
3837 BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
3838 end = bit + pa->pa_len;
3839
3840 while (bit < end) {
3841 bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit);
3842 if (bit >= end)
3843 break;
3844 next = mb_find_next_bit(bitmap_bh->b_data, end, bit);
3845 mb_debug(1, " free preallocated %u/%u in group %u\n",
3846 (unsigned) ext4_group_first_block_no(sb, group) + bit,
3847 (unsigned) next - bit, (unsigned) group);
3848 free += next - bit;
3849
3850 trace_ext4_mballoc_discard(sb, NULL, group, bit, next - bit);
3851 trace_ext4_mb_release_inode_pa(pa, (grp_blk_start +
3852 EXT4_C2B(sbi, bit)),
3853 next - bit);
3854 mb_free_blocks(pa->pa_inode, e4b, bit, next - bit);
3855 bit = next + 1;
3856 }
3857 if (free != pa->pa_free) {
3858 ext4_msg(e4b->bd_sb, KERN_CRIT,
3859 "pa %p: logic %lu, phys. %lu, len %lu",
3860 pa, (unsigned long) pa->pa_lstart,
3861 (unsigned long) pa->pa_pstart,
3862 (unsigned long) pa->pa_len);
3863 ext4_grp_locked_error(sb, group, 0, 0, "free %u, pa_free %u",
3864 free, pa->pa_free);
3865 /*
3866 * pa is already deleted so we use the value obtained
3867 * from the bitmap and continue.
3868 */
3869 }
3870 atomic_add(free, &sbi->s_mb_discarded);
3871
3872 return err;
3873 }
3874
3875 static noinline_for_stack int
3876 ext4_mb_release_group_pa(struct ext4_buddy *e4b,
3877 struct ext4_prealloc_space *pa)
3878 {
3879 struct super_block *sb = e4b->bd_sb;
3880 ext4_group_t group;
3881 ext4_grpblk_t bit;
3882
3883 trace_ext4_mb_release_group_pa(sb, pa);
3884 BUG_ON(pa->pa_deleted == 0);
3885 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3886 BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
3887 mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len);
3888 atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded);
3889 trace_ext4_mballoc_discard(sb, NULL, group, bit, pa->pa_len);
3890
3891 return 0;
3892 }
3893
3894 /*
3895 * releases all preallocations in given group
3896 *
3897 * first, we need to decide discard policy:
3898 * - when do we discard
3899 * 1) ENOSPC
3900 * - how many do we discard
3901 * 1) how many requested
3902 */
3903 static noinline_for_stack int
3904 ext4_mb_discard_group_preallocations(struct super_block *sb,
3905 ext4_group_t group, int needed)
3906 {
3907 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
3908 struct buffer_head *bitmap_bh = NULL;
3909 struct ext4_prealloc_space *pa, *tmp;
3910 struct list_head list;
3911 struct ext4_buddy e4b;
3912 int err;
3913 int busy = 0;
3914 int free = 0;
3915
3916 mb_debug(1, "discard preallocation for group %u\n", group);
3917
3918 if (list_empty(&grp->bb_prealloc_list))
3919 return 0;
3920
3921 bitmap_bh = ext4_read_block_bitmap(sb, group);
3922 if (IS_ERR(bitmap_bh)) {
3923 err = PTR_ERR(bitmap_bh);
3924 ext4_error(sb, "Error %d reading block bitmap for %u",
3925 err, group);
3926 return 0;
3927 }
3928
3929 err = ext4_mb_load_buddy(sb, group, &e4b);
3930 if (err) {
3931 ext4_warning(sb, "Error %d loading buddy information for %u",
3932 err, group);
3933 put_bh(bitmap_bh);
3934 return 0;
3935 }
3936
3937 if (needed == 0)
3938 needed = EXT4_CLUSTERS_PER_GROUP(sb) + 1;
3939
3940 INIT_LIST_HEAD(&list);
3941 repeat:
3942 ext4_lock_group(sb, group);
3943 list_for_each_entry_safe(pa, tmp,
3944 &grp->bb_prealloc_list, pa_group_list) {
3945 spin_lock(&pa->pa_lock);
3946 if (atomic_read(&pa->pa_count)) {
3947 spin_unlock(&pa->pa_lock);
3948 busy = 1;
3949 continue;
3950 }
3951 if (pa->pa_deleted) {
3952 spin_unlock(&pa->pa_lock);
3953 continue;
3954 }
3955
3956 /* seems this one can be freed ... */
3957 pa->pa_deleted = 1;
3958
3959 /* we can trust pa_free ... */
3960 free += pa->pa_free;
3961
3962 spin_unlock(&pa->pa_lock);
3963
3964 list_del(&pa->pa_group_list);
3965 list_add(&pa->u.pa_tmp_list, &list);
3966 }
3967
3968 /* if we still need more blocks and some PAs were used, try again */
3969 if (free < needed && busy) {
3970 busy = 0;
3971 ext4_unlock_group(sb, group);
3972 cond_resched();
3973 goto repeat;
3974 }
3975
3976 /* found anything to free? */
3977 if (list_empty(&list)) {
3978 BUG_ON(free != 0);
3979 goto out;
3980 }
3981
3982 /* now free all selected PAs */
3983 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
3984
3985 /* remove from object (inode or locality group) */
3986 spin_lock(pa->pa_obj_lock);
3987 list_del_rcu(&pa->pa_inode_list);
3988 spin_unlock(pa->pa_obj_lock);
3989
3990 if (pa->pa_type == MB_GROUP_PA)
3991 ext4_mb_release_group_pa(&e4b, pa);
3992 else
3993 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
3994
3995 list_del(&pa->u.pa_tmp_list);
3996 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3997 }
3998
3999 out:
4000 ext4_unlock_group(sb, group);
4001 ext4_mb_unload_buddy(&e4b);
4002 put_bh(bitmap_bh);
4003 return free;
4004 }
4005
4006 /*
4007 * releases all non-used preallocated blocks for given inode
4008 *
4009 * It's important to discard preallocations under i_data_sem
4010 * We don't want another block to be served from the prealloc
4011 * space when we are discarding the inode prealloc space.
4012 *
4013 * FIXME!! Make sure it is valid at all the call sites
4014 */
4015 void ext4_discard_preallocations(struct inode *inode)
4016 {
4017 struct ext4_inode_info *ei = EXT4_I(inode);
4018 struct super_block *sb = inode->i_sb;
4019 struct buffer_head *bitmap_bh = NULL;
4020 struct ext4_prealloc_space *pa, *tmp;
4021 ext4_group_t group = 0;
4022 struct list_head list;
4023 struct ext4_buddy e4b;
4024 int err;
4025
4026 if (!S_ISREG(inode->i_mode)) {
4027 /*BUG_ON(!list_empty(&ei->i_prealloc_list));*/
4028 return;
4029 }
4030
4031 mb_debug(1, "discard preallocation for inode %lu\n", inode->i_ino);
4032 trace_ext4_discard_preallocations(inode);
4033
4034 INIT_LIST_HEAD(&list);
4035
4036 repeat:
4037 /* first, collect all pa's in the inode */
4038 spin_lock(&ei->i_prealloc_lock);
4039 while (!list_empty(&ei->i_prealloc_list)) {
4040 pa = list_entry(ei->i_prealloc_list.next,
4041 struct ext4_prealloc_space, pa_inode_list);
4042 BUG_ON(pa->pa_obj_lock != &ei->i_prealloc_lock);
4043 spin_lock(&pa->pa_lock);
4044 if (atomic_read(&pa->pa_count)) {
4045 /* this shouldn't happen often - nobody should
4046 * use preallocation while we're discarding it */
4047 spin_unlock(&pa->pa_lock);
4048 spin_unlock(&ei->i_prealloc_lock);
4049 ext4_msg(sb, KERN_ERR,
4050 "uh-oh! used pa while discarding");
4051 WARN_ON(1);
4052 schedule_timeout_uninterruptible(HZ);
4053 goto repeat;
4054
4055 }
4056 if (pa->pa_deleted == 0) {
4057 pa->pa_deleted = 1;
4058 spin_unlock(&pa->pa_lock);
4059 list_del_rcu(&pa->pa_inode_list);
4060 list_add(&pa->u.pa_tmp_list, &list);
4061 continue;
4062 }
4063
4064 /* someone is deleting pa right now */
4065 spin_unlock(&pa->pa_lock);
4066 spin_unlock(&ei->i_prealloc_lock);
4067
4068 /* we have to wait here because pa_deleted
4069 * doesn't mean pa is already unlinked from
4070 * the list. as we might be called from
4071 * ->clear_inode() the inode will get freed
4072 * and concurrent thread which is unlinking
4073 * pa from inode's list may access already
4074 * freed memory, bad-bad-bad */
4075
4076 /* XXX: if this happens too often, we can
4077 * add a flag to force wait only in case
4078 * of ->clear_inode(), but not in case of
4079 * regular truncate */
4080 schedule_timeout_uninterruptible(HZ);
4081 goto repeat;
4082 }
4083 spin_unlock(&ei->i_prealloc_lock);
4084
4085 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
4086 BUG_ON(pa->pa_type != MB_INODE_PA);
4087 group = ext4_get_group_number(sb, pa->pa_pstart);
4088
4089 err = ext4_mb_load_buddy_gfp(sb, group, &e4b,
4090 GFP_NOFS|__GFP_NOFAIL);
4091 if (err) {
4092 ext4_error(sb, "Error %d loading buddy information for %u",
4093 err, group);
4094 continue;
4095 }
4096
4097 bitmap_bh = ext4_read_block_bitmap(sb, group);
4098 if (IS_ERR(bitmap_bh)) {
4099 err = PTR_ERR(bitmap_bh);
4100 ext4_error(sb, "Error %d reading block bitmap for %u",
4101 err, group);
4102 ext4_mb_unload_buddy(&e4b);
4103 continue;
4104 }
4105
4106 ext4_lock_group(sb, group);
4107 list_del(&pa->pa_group_list);
4108 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
4109 ext4_unlock_group(sb, group);
4110
4111 ext4_mb_unload_buddy(&e4b);
4112 put_bh(bitmap_bh);
4113
4114 list_del(&pa->u.pa_tmp_list);
4115 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4116 }
4117 }
4118
4119 #ifdef CONFIG_EXT4_DEBUG
4120 static void ext4_mb_show_ac(struct ext4_allocation_context *ac)
4121 {
4122 struct super_block *sb = ac->ac_sb;
4123 ext4_group_t ngroups, i;
4124
4125 if (!ext4_mballoc_debug ||
4126 (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED))
4127 return;
4128
4129 ext4_msg(ac->ac_sb, KERN_ERR, "Can't allocate:"
4130 " Allocation context details:");
4131 ext4_msg(ac->ac_sb, KERN_ERR, "status %d flags %d",
4132 ac->ac_status, ac->ac_flags);
4133 ext4_msg(ac->ac_sb, KERN_ERR, "orig %lu/%lu/%lu@%lu, "
4134 "goal %lu/%lu/%lu@%lu, "
4135 "best %lu/%lu/%lu@%lu cr %d",
4136 (unsigned long)ac->ac_o_ex.fe_group,
4137 (unsigned long)ac->ac_o_ex.fe_start,
4138 (unsigned long)ac->ac_o_ex.fe_len,
4139 (unsigned long)ac->ac_o_ex.fe_logical,
4140 (unsigned long)ac->ac_g_ex.fe_group,
4141 (unsigned long)ac->ac_g_ex.fe_start,
4142 (unsigned long)ac->ac_g_ex.fe_len,
4143 (unsigned long)ac->ac_g_ex.fe_logical,
4144 (unsigned long)ac->ac_b_ex.fe_group,
4145 (unsigned long)ac->ac_b_ex.fe_start,
4146 (unsigned long)ac->ac_b_ex.fe_len,
4147 (unsigned long)ac->ac_b_ex.fe_logical,
4148 (int)ac->ac_criteria);
4149 ext4_msg(ac->ac_sb, KERN_ERR, "%d found", ac->ac_found);
4150 ext4_msg(ac->ac_sb, KERN_ERR, "groups: ");
4151 ngroups = ext4_get_groups_count(sb);
4152 for (i = 0; i < ngroups; i++) {
4153 struct ext4_group_info *grp = ext4_get_group_info(sb, i);
4154 struct ext4_prealloc_space *pa;
4155 ext4_grpblk_t start;
4156 struct list_head *cur;
4157 ext4_lock_group(sb, i);
4158 list_for_each(cur, &grp->bb_prealloc_list) {
4159 pa = list_entry(cur, struct ext4_prealloc_space,
4160 pa_group_list);
4161 spin_lock(&pa->pa_lock);
4162 ext4_get_group_no_and_offset(sb, pa->pa_pstart,
4163 NULL, &start);
4164 spin_unlock(&pa->pa_lock);
4165 printk(KERN_ERR "PA:%u:%d:%u \n", i,
4166 start, pa->pa_len);
4167 }
4168 ext4_unlock_group(sb, i);
4169
4170 if (grp->bb_free == 0)
4171 continue;
4172 printk(KERN_ERR "%u: %d/%d \n",
4173 i, grp->bb_free, grp->bb_fragments);
4174 }
4175 printk(KERN_ERR "\n");
4176 }
4177 #else
4178 static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac)
4179 {
4180 return;
4181 }
4182 #endif
4183
4184 /*
4185 * We use locality group preallocation for small size file. The size of the
4186 * file is determined by the current size or the resulting size after
4187 * allocation which ever is larger
4188 *
4189 * One can tune this size via /sys/fs/ext4/<partition>/mb_stream_req
4190 */
4191 static void ext4_mb_group_or_file(struct ext4_allocation_context *ac)
4192 {
4193 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4194 int bsbits = ac->ac_sb->s_blocksize_bits;
4195 loff_t size, isize;
4196
4197 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
4198 return;
4199
4200 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
4201 return;
4202
4203 size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len);
4204 isize = (i_size_read(ac->ac_inode) + ac->ac_sb->s_blocksize - 1)
4205 >> bsbits;
4206
4207 if ((size == isize) &&
4208 !ext4_fs_is_busy(sbi) &&
4209 (atomic_read(&ac->ac_inode->i_writecount) == 0)) {
4210 ac->ac_flags |= EXT4_MB_HINT_NOPREALLOC;
4211 return;
4212 }
4213
4214 if (sbi->s_mb_group_prealloc <= 0) {
4215 ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
4216 return;
4217 }
4218
4219 /* don't use group allocation for large files */
4220 size = max(size, isize);
4221 if (size > sbi->s_mb_stream_request) {
4222 ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
4223 return;
4224 }
4225
4226 BUG_ON(ac->ac_lg != NULL);
4227 /*
4228 * locality group prealloc space are per cpu. The reason for having
4229 * per cpu locality group is to reduce the contention between block
4230 * request from multiple CPUs.
4231 */
4232 ac->ac_lg = raw_cpu_ptr(sbi->s_locality_groups);
4233
4234 /* we're going to use group allocation */
4235 ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC;
4236
4237 /* serialize all allocations in the group */
4238 mutex_lock(&ac->ac_lg->lg_mutex);
4239 }
4240
4241 static noinline_for_stack int
4242 ext4_mb_initialize_context(struct ext4_allocation_context *ac,
4243 struct ext4_allocation_request *ar)
4244 {
4245 struct super_block *sb = ar->inode->i_sb;
4246 struct ext4_sb_info *sbi = EXT4_SB(sb);
4247 struct ext4_super_block *es = sbi->s_es;
4248 ext4_group_t group;
4249 unsigned int len;
4250 ext4_fsblk_t goal;
4251 ext4_grpblk_t block;
4252
4253 /* we can't allocate > group size */
4254 len = ar->len;
4255
4256 /* just a dirty hack to filter too big requests */
4257 if (len >= EXT4_CLUSTERS_PER_GROUP(sb))
4258 len = EXT4_CLUSTERS_PER_GROUP(sb);
4259
4260 /* start searching from the goal */
4261 goal = ar->goal;
4262 if (goal < le32_to_cpu(es->s_first_data_block) ||
4263 goal >= ext4_blocks_count(es))
4264 goal = le32_to_cpu(es->s_first_data_block);
4265 ext4_get_group_no_and_offset(sb, goal, &group, &block);
4266
4267 /* set up allocation goals */
4268 ac->ac_b_ex.fe_logical = EXT4_LBLK_CMASK(sbi, ar->logical);
4269 ac->ac_status = AC_STATUS_CONTINUE;
4270 ac->ac_sb = sb;
4271 ac->ac_inode = ar->inode;
4272 ac->ac_o_ex.fe_logical = ac->ac_b_ex.fe_logical;
4273 ac->ac_o_ex.fe_group = group;
4274 ac->ac_o_ex.fe_start = block;
4275 ac->ac_o_ex.fe_len = len;
4276 ac->ac_g_ex = ac->ac_o_ex;
4277 ac->ac_flags = ar->flags;
4278
4279 /* we have to define context: we'll we work with a file or
4280 * locality group. this is a policy, actually */
4281 ext4_mb_group_or_file(ac);
4282
4283 mb_debug(1, "init ac: %u blocks @ %u, goal %u, flags %x, 2^%d, "
4284 "left: %u/%u, right %u/%u to %swritable\n",
4285 (unsigned) ar->len, (unsigned) ar->logical,
4286 (unsigned) ar->goal, ac->ac_flags, ac->ac_2order,
4287 (unsigned) ar->lleft, (unsigned) ar->pleft,
4288 (unsigned) ar->lright, (unsigned) ar->pright,
4289 atomic_read(&ar->inode->i_writecount) ? "" : "non-");
4290 return 0;
4291
4292 }
4293
4294 static noinline_for_stack void
4295 ext4_mb_discard_lg_preallocations(struct super_block *sb,
4296 struct ext4_locality_group *lg,
4297 int order, int total_entries)
4298 {
4299 ext4_group_t group = 0;
4300 struct ext4_buddy e4b;
4301 struct list_head discard_list;
4302 struct ext4_prealloc_space *pa, *tmp;
4303
4304 mb_debug(1, "discard locality group preallocation\n");
4305
4306 INIT_LIST_HEAD(&discard_list);
4307
4308 spin_lock(&lg->lg_prealloc_lock);
4309 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[order],
4310 pa_inode_list) {
4311 spin_lock(&pa->pa_lock);
4312 if (atomic_read(&pa->pa_count)) {
4313 /*
4314 * This is the pa that we just used
4315 * for block allocation. So don't
4316 * free that
4317 */
4318 spin_unlock(&pa->pa_lock);
4319 continue;
4320 }
4321 if (pa->pa_deleted) {
4322 spin_unlock(&pa->pa_lock);
4323 continue;
4324 }
4325 /* only lg prealloc space */
4326 BUG_ON(pa->pa_type != MB_GROUP_PA);
4327
4328 /* seems this one can be freed ... */
4329 pa->pa_deleted = 1;
4330 spin_unlock(&pa->pa_lock);
4331
4332 list_del_rcu(&pa->pa_inode_list);
4333 list_add(&pa->u.pa_tmp_list, &discard_list);
4334
4335 total_entries--;
4336 if (total_entries <= 5) {
4337 /*
4338 * we want to keep only 5 entries
4339 * allowing it to grow to 8. This
4340 * mak sure we don't call discard
4341 * soon for this list.
4342 */
4343 break;
4344 }
4345 }
4346 spin_unlock(&lg->lg_prealloc_lock);
4347
4348 list_for_each_entry_safe(pa, tmp, &discard_list, u.pa_tmp_list) {
4349 int err;
4350
4351 group = ext4_get_group_number(sb, pa->pa_pstart);
4352 err = ext4_mb_load_buddy_gfp(sb, group, &e4b,
4353 GFP_NOFS|__GFP_NOFAIL);
4354 if (err) {
4355 ext4_error(sb, "Error %d loading buddy information for %u",
4356 err, group);
4357 continue;
4358 }
4359 ext4_lock_group(sb, group);
4360 list_del(&pa->pa_group_list);
4361 ext4_mb_release_group_pa(&e4b, pa);
4362 ext4_unlock_group(sb, group);
4363
4364 ext4_mb_unload_buddy(&e4b);
4365 list_del(&pa->u.pa_tmp_list);
4366 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4367 }
4368 }
4369
4370 /*
4371 * We have incremented pa_count. So it cannot be freed at this
4372 * point. Also we hold lg_mutex. So no parallel allocation is
4373 * possible from this lg. That means pa_free cannot be updated.
4374 *
4375 * A parallel ext4_mb_discard_group_preallocations is possible.
4376 * which can cause the lg_prealloc_list to be updated.
4377 */
4378
4379 static void ext4_mb_add_n_trim(struct ext4_allocation_context *ac)
4380 {
4381 int order, added = 0, lg_prealloc_count = 1;
4382 struct super_block *sb = ac->ac_sb;
4383 struct ext4_locality_group *lg = ac->ac_lg;
4384 struct ext4_prealloc_space *tmp_pa, *pa = ac->ac_pa;
4385
4386 order = fls(pa->pa_free) - 1;
4387 if (order > PREALLOC_TB_SIZE - 1)
4388 /* The max size of hash table is PREALLOC_TB_SIZE */
4389 order = PREALLOC_TB_SIZE - 1;
4390 /* Add the prealloc space to lg */
4391 spin_lock(&lg->lg_prealloc_lock);
4392 list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[order],
4393 pa_inode_list) {
4394 spin_lock(&tmp_pa->pa_lock);
4395 if (tmp_pa->pa_deleted) {
4396 spin_unlock(&tmp_pa->pa_lock);
4397 continue;
4398 }
4399 if (!added && pa->pa_free < tmp_pa->pa_free) {
4400 /* Add to the tail of the previous entry */
4401 list_add_tail_rcu(&pa->pa_inode_list,
4402 &tmp_pa->pa_inode_list);
4403 added = 1;
4404 /*
4405 * we want to count the total
4406 * number of entries in the list
4407 */
4408 }
4409 spin_unlock(&tmp_pa->pa_lock);
4410 lg_prealloc_count++;
4411 }
4412 if (!added)
4413 list_add_tail_rcu(&pa->pa_inode_list,
4414 &lg->lg_prealloc_list[order]);
4415 spin_unlock(&lg->lg_prealloc_lock);
4416
4417 /* Now trim the list to be not more than 8 elements */
4418 if (lg_prealloc_count > 8) {
4419 ext4_mb_discard_lg_preallocations(sb, lg,
4420 order, lg_prealloc_count);
4421 return;
4422 }
4423 return ;
4424 }
4425
4426 /*
4427 * release all resource we used in allocation
4428 */
4429 static int ext4_mb_release_context(struct ext4_allocation_context *ac)
4430 {
4431 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4432 struct ext4_prealloc_space *pa = ac->ac_pa;
4433 if (pa) {
4434 if (pa->pa_type == MB_GROUP_PA) {
4435 /* see comment in ext4_mb_use_group_pa() */
4436 spin_lock(&pa->pa_lock);
4437 pa->pa_pstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
4438 pa->pa_lstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
4439 pa->pa_free -= ac->ac_b_ex.fe_len;
4440 pa->pa_len -= ac->ac_b_ex.fe_len;
4441 spin_unlock(&pa->pa_lock);
4442 }
4443 }
4444 if (pa) {
4445 /*
4446 * We want to add the pa to the right bucket.
4447 * Remove it from the list and while adding
4448 * make sure the list to which we are adding
4449 * doesn't grow big.
4450 */
4451 if ((pa->pa_type == MB_GROUP_PA) && likely(pa->pa_free)) {
4452 spin_lock(pa->pa_obj_lock);
4453 list_del_rcu(&pa->pa_inode_list);
4454 spin_unlock(pa->pa_obj_lock);
4455 ext4_mb_add_n_trim(ac);
4456 }
4457 ext4_mb_put_pa(ac, ac->ac_sb, pa);
4458 }
4459 if (ac->ac_bitmap_page)
4460 put_page(ac->ac_bitmap_page);
4461 if (ac->ac_buddy_page)
4462 put_page(ac->ac_buddy_page);
4463 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
4464 mutex_unlock(&ac->ac_lg->lg_mutex);
4465 ext4_mb_collect_stats(ac);
4466 return 0;
4467 }
4468
4469 static int ext4_mb_discard_preallocations(struct super_block *sb, int needed)
4470 {
4471 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
4472 int ret;
4473 int freed = 0;
4474
4475 trace_ext4_mb_discard_preallocations(sb, needed);
4476 for (i = 0; i < ngroups && needed > 0; i++) {
4477 ret = ext4_mb_discard_group_preallocations(sb, i, needed);
4478 freed += ret;
4479 needed -= ret;
4480 }
4481
4482 return freed;
4483 }
4484
4485 /*
4486 * Main entry point into mballoc to allocate blocks
4487 * it tries to use preallocation first, then falls back
4488 * to usual allocation
4489 */
4490 ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle,
4491 struct ext4_allocation_request *ar, int *errp)
4492 {
4493 int freed;
4494 struct ext4_allocation_context *ac = NULL;
4495 struct ext4_sb_info *sbi;
4496 struct super_block *sb;
4497 ext4_fsblk_t block = 0;
4498 unsigned int inquota = 0;
4499 unsigned int reserv_clstrs = 0;
4500
4501 might_sleep();
4502 sb = ar->inode->i_sb;
4503 sbi = EXT4_SB(sb);
4504
4505 trace_ext4_request_blocks(ar);
4506
4507 /* Allow to use superuser reservation for quota file */
4508 if (ext4_is_quota_file(ar->inode))
4509 ar->flags |= EXT4_MB_USE_ROOT_BLOCKS;
4510
4511 if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0) {
4512 /* Without delayed allocation we need to verify
4513 * there is enough free blocks to do block allocation
4514 * and verify allocation doesn't exceed the quota limits.
4515 */
4516 while (ar->len &&
4517 ext4_claim_free_clusters(sbi, ar->len, ar->flags)) {
4518
4519 /* let others to free the space */
4520 cond_resched();
4521 ar->len = ar->len >> 1;
4522 }
4523 if (!ar->len) {
4524 *errp = -ENOSPC;
4525 return 0;
4526 }
4527 reserv_clstrs = ar->len;
4528 if (ar->flags & EXT4_MB_USE_ROOT_BLOCKS) {
4529 dquot_alloc_block_nofail(ar->inode,
4530 EXT4_C2B(sbi, ar->len));
4531 } else {
4532 while (ar->len &&
4533 dquot_alloc_block(ar->inode,
4534 EXT4_C2B(sbi, ar->len))) {
4535
4536 ar->flags |= EXT4_MB_HINT_NOPREALLOC;
4537 ar->len--;
4538 }
4539 }
4540 inquota = ar->len;
4541 if (ar->len == 0) {
4542 *errp = -EDQUOT;
4543 goto out;
4544 }
4545 }
4546
4547 ac = kmem_cache_zalloc(ext4_ac_cachep, GFP_NOFS);
4548 if (!ac) {
4549 ar->len = 0;
4550 *errp = -ENOMEM;
4551 goto out;
4552 }
4553
4554 *errp = ext4_mb_initialize_context(ac, ar);
4555 if (*errp) {
4556 ar->len = 0;
4557 goto out;
4558 }
4559
4560 ac->ac_op = EXT4_MB_HISTORY_PREALLOC;
4561 if (!ext4_mb_use_preallocated(ac)) {
4562 ac->ac_op = EXT4_MB_HISTORY_ALLOC;
4563 ext4_mb_normalize_request(ac, ar);
4564 repeat:
4565 /* allocate space in core */
4566 *errp = ext4_mb_regular_allocator(ac);
4567 if (*errp)
4568 goto discard_and_exit;
4569
4570 /* as we've just preallocated more space than
4571 * user requested originally, we store allocated
4572 * space in a special descriptor */
4573 if (ac->ac_status == AC_STATUS_FOUND &&
4574 ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len)
4575 *errp = ext4_mb_new_preallocation(ac);
4576 if (*errp) {
4577 discard_and_exit:
4578 ext4_discard_allocated_blocks(ac);
4579 goto errout;
4580 }
4581 }
4582 if (likely(ac->ac_status == AC_STATUS_FOUND)) {
4583 *errp = ext4_mb_mark_diskspace_used(ac, handle, reserv_clstrs);
4584 if (*errp) {
4585 ext4_discard_allocated_blocks(ac);
4586 goto errout;
4587 } else {
4588 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
4589 ar->len = ac->ac_b_ex.fe_len;
4590 }
4591 } else {
4592 freed = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len);
4593 if (freed)
4594 goto repeat;
4595 *errp = -ENOSPC;
4596 }
4597
4598 errout:
4599 if (*errp) {
4600 ac->ac_b_ex.fe_len = 0;
4601 ar->len = 0;
4602 ext4_mb_show_ac(ac);
4603 }
4604 ext4_mb_release_context(ac);
4605 out:
4606 if (ac)
4607 kmem_cache_free(ext4_ac_cachep, ac);
4608 if (inquota && ar->len < inquota)
4609 dquot_free_block(ar->inode, EXT4_C2B(sbi, inquota - ar->len));
4610 if (!ar->len) {
4611 if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0)
4612 /* release all the reserved blocks if non delalloc */
4613 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
4614 reserv_clstrs);
4615 }
4616
4617 trace_ext4_allocate_blocks(ar, (unsigned long long)block);
4618
4619 return block;
4620 }
4621
4622 /*
4623 * We can merge two free data extents only if the physical blocks
4624 * are contiguous, AND the extents were freed by the same transaction,
4625 * AND the blocks are associated with the same group.
4626 */
4627 static void ext4_try_merge_freed_extent(struct ext4_sb_info *sbi,
4628 struct ext4_free_data *entry,
4629 struct ext4_free_data *new_entry,
4630 struct rb_root *entry_rb_root)
4631 {
4632 if ((entry->efd_tid != new_entry->efd_tid) ||
4633 (entry->efd_group != new_entry->efd_group))
4634 return;
4635 if (entry->efd_start_cluster + entry->efd_count ==
4636 new_entry->efd_start_cluster) {
4637 new_entry->efd_start_cluster = entry->efd_start_cluster;
4638 new_entry->efd_count += entry->efd_count;
4639 } else if (new_entry->efd_start_cluster + new_entry->efd_count ==
4640 entry->efd_start_cluster) {
4641 new_entry->efd_count += entry->efd_count;
4642 } else
4643 return;
4644 spin_lock(&sbi->s_md_lock);
4645 list_del(&entry->efd_list);
4646 spin_unlock(&sbi->s_md_lock);
4647 rb_erase(&entry->efd_node, entry_rb_root);
4648 kmem_cache_free(ext4_free_data_cachep, entry);
4649 }
4650
4651 static noinline_for_stack int
4652 ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b,
4653 struct ext4_free_data *new_entry)
4654 {
4655 ext4_group_t group = e4b->bd_group;
4656 ext4_grpblk_t cluster;
4657 ext4_grpblk_t clusters = new_entry->efd_count;
4658 struct ext4_free_data *entry;
4659 struct ext4_group_info *db = e4b->bd_info;
4660 struct super_block *sb = e4b->bd_sb;
4661 struct ext4_sb_info *sbi = EXT4_SB(sb);
4662 struct rb_node **n = &db->bb_free_root.rb_node, *node;
4663 struct rb_node *parent = NULL, *new_node;
4664
4665 BUG_ON(!ext4_handle_valid(handle));
4666 BUG_ON(e4b->bd_bitmap_page == NULL);
4667 BUG_ON(e4b->bd_buddy_page == NULL);
4668
4669 new_node = &new_entry->efd_node;
4670 cluster = new_entry->efd_start_cluster;
4671
4672 if (!*n) {
4673 /* first free block exent. We need to
4674 protect buddy cache from being freed,
4675 * otherwise we'll refresh it from
4676 * on-disk bitmap and lose not-yet-available
4677 * blocks */
4678 get_page(e4b->bd_buddy_page);
4679 get_page(e4b->bd_bitmap_page);
4680 }
4681 while (*n) {
4682 parent = *n;
4683 entry = rb_entry(parent, struct ext4_free_data, efd_node);
4684 if (cluster < entry->efd_start_cluster)
4685 n = &(*n)->rb_left;
4686 else if (cluster >= (entry->efd_start_cluster + entry->efd_count))
4687 n = &(*n)->rb_right;
4688 else {
4689 ext4_grp_locked_error(sb, group, 0,
4690 ext4_group_first_block_no(sb, group) +
4691 EXT4_C2B(sbi, cluster),
4692 "Block already on to-be-freed list");
4693 return 0;
4694 }
4695 }
4696
4697 rb_link_node(new_node, parent, n);
4698 rb_insert_color(new_node, &db->bb_free_root);
4699
4700 /* Now try to see the extent can be merged to left and right */
4701 node = rb_prev(new_node);
4702 if (node) {
4703 entry = rb_entry(node, struct ext4_free_data, efd_node);
4704 ext4_try_merge_freed_extent(sbi, entry, new_entry,
4705 &(db->bb_free_root));
4706 }
4707
4708 node = rb_next(new_node);
4709 if (node) {
4710 entry = rb_entry(node, struct ext4_free_data, efd_node);
4711 ext4_try_merge_freed_extent(sbi, entry, new_entry,
4712 &(db->bb_free_root));
4713 }
4714
4715 spin_lock(&sbi->s_md_lock);
4716 list_add_tail(&new_entry->efd_list, &sbi->s_freed_data_list);
4717 sbi->s_mb_free_pending += clusters;
4718 spin_unlock(&sbi->s_md_lock);
4719 return 0;
4720 }
4721
4722 /**
4723 * ext4_free_blocks() -- Free given blocks and update quota
4724 * @handle: handle for this transaction
4725 * @inode: inode
4726 * @block: start physical block to free
4727 * @count: number of blocks to count
4728 * @flags: flags used by ext4_free_blocks
4729 */
4730 void ext4_free_blocks(handle_t *handle, struct inode *inode,
4731 struct buffer_head *bh, ext4_fsblk_t block,
4732 unsigned long count, int flags)
4733 {
4734 struct buffer_head *bitmap_bh = NULL;
4735 struct super_block *sb = inode->i_sb;
4736 struct ext4_group_desc *gdp;
4737 unsigned int overflow;
4738 ext4_grpblk_t bit;
4739 struct buffer_head *gd_bh;
4740 ext4_group_t block_group;
4741 struct ext4_sb_info *sbi;
4742 struct ext4_buddy e4b;
4743 unsigned int count_clusters;
4744 int err = 0;
4745 int ret;
4746
4747 might_sleep();
4748 if (bh) {
4749 if (block)
4750 BUG_ON(block != bh->b_blocknr);
4751 else
4752 block = bh->b_blocknr;
4753 }
4754
4755 sbi = EXT4_SB(sb);
4756 if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) &&
4757 !ext4_data_block_valid(sbi, block, count)) {
4758 ext4_error(sb, "Freeing blocks not in datazone - "
4759 "block = %llu, count = %lu", block, count);
4760 goto error_return;
4761 }
4762
4763 ext4_debug("freeing block %llu\n", block);
4764 trace_ext4_free_blocks(inode, block, count, flags);
4765
4766 if (bh && (flags & EXT4_FREE_BLOCKS_FORGET)) {
4767 BUG_ON(count > 1);
4768
4769 ext4_forget(handle, flags & EXT4_FREE_BLOCKS_METADATA,
4770 inode, bh, block);
4771 }
4772
4773 /*
4774 * If the extent to be freed does not begin on a cluster
4775 * boundary, we need to deal with partial clusters at the
4776 * beginning and end of the extent. Normally we will free
4777 * blocks at the beginning or the end unless we are explicitly
4778 * requested to avoid doing so.
4779 */
4780 overflow = EXT4_PBLK_COFF(sbi, block);
4781 if (overflow) {
4782 if (flags & EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER) {
4783 overflow = sbi->s_cluster_ratio - overflow;
4784 block += overflow;
4785 if (count > overflow)
4786 count -= overflow;
4787 else
4788 return;
4789 } else {
4790 block -= overflow;
4791 count += overflow;
4792 }
4793 }
4794 overflow = EXT4_LBLK_COFF(sbi, count);
4795 if (overflow) {
4796 if (flags & EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER) {
4797 if (count > overflow)
4798 count -= overflow;
4799 else
4800 return;
4801 } else
4802 count += sbi->s_cluster_ratio - overflow;
4803 }
4804
4805 if (!bh && (flags & EXT4_FREE_BLOCKS_FORGET)) {
4806 int i;
4807 int is_metadata = flags & EXT4_FREE_BLOCKS_METADATA;
4808
4809 for (i = 0; i < count; i++) {
4810 cond_resched();
4811 if (is_metadata)
4812 bh = sb_find_get_block(inode->i_sb, block + i);
4813 ext4_forget(handle, is_metadata, inode, bh, block + i);
4814 }
4815 }
4816
4817 do_more:
4818 overflow = 0;
4819 ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
4820
4821 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(
4822 ext4_get_group_info(sb, block_group))))
4823 return;
4824
4825 /*
4826 * Check to see if we are freeing blocks across a group
4827 * boundary.
4828 */
4829 if (EXT4_C2B(sbi, bit) + count > EXT4_BLOCKS_PER_GROUP(sb)) {
4830 overflow = EXT4_C2B(sbi, bit) + count -
4831 EXT4_BLOCKS_PER_GROUP(sb);
4832 count -= overflow;
4833 }
4834 count_clusters = EXT4_NUM_B2C(sbi, count);
4835 bitmap_bh = ext4_read_block_bitmap(sb, block_group);
4836 if (IS_ERR(bitmap_bh)) {
4837 err = PTR_ERR(bitmap_bh);
4838 bitmap_bh = NULL;
4839 goto error_return;
4840 }
4841 gdp = ext4_get_group_desc(sb, block_group, &gd_bh);
4842 if (!gdp) {
4843 err = -EIO;
4844 goto error_return;
4845 }
4846
4847 if (in_range(ext4_block_bitmap(sb, gdp), block, count) ||
4848 in_range(ext4_inode_bitmap(sb, gdp), block, count) ||
4849 in_range(block, ext4_inode_table(sb, gdp),
4850 EXT4_SB(sb)->s_itb_per_group) ||
4851 in_range(block + count - 1, ext4_inode_table(sb, gdp),
4852 EXT4_SB(sb)->s_itb_per_group)) {
4853
4854 ext4_error(sb, "Freeing blocks in system zone - "
4855 "Block = %llu, count = %lu", block, count);
4856 /* err = 0. ext4_std_error should be a no op */
4857 goto error_return;
4858 }
4859
4860 BUFFER_TRACE(bitmap_bh, "getting write access");
4861 err = ext4_journal_get_write_access(handle, bitmap_bh);
4862 if (err)
4863 goto error_return;
4864
4865 /*
4866 * We are about to modify some metadata. Call the journal APIs
4867 * to unshare ->b_data if a currently-committing transaction is
4868 * using it
4869 */
4870 BUFFER_TRACE(gd_bh, "get_write_access");
4871 err = ext4_journal_get_write_access(handle, gd_bh);
4872 if (err)
4873 goto error_return;
4874 #ifdef AGGRESSIVE_CHECK
4875 {
4876 int i;
4877 for (i = 0; i < count_clusters; i++)
4878 BUG_ON(!mb_test_bit(bit + i, bitmap_bh->b_data));
4879 }
4880 #endif
4881 trace_ext4_mballoc_free(sb, inode, block_group, bit, count_clusters);
4882
4883 /* __GFP_NOFAIL: retry infinitely, ignore TIF_MEMDIE and memcg limit. */
4884 err = ext4_mb_load_buddy_gfp(sb, block_group, &e4b,
4885 GFP_NOFS|__GFP_NOFAIL);
4886 if (err)
4887 goto error_return;
4888
4889 /*
4890 * We need to make sure we don't reuse the freed block until after the
4891 * transaction is committed. We make an exception if the inode is to be
4892 * written in writeback mode since writeback mode has weak data
4893 * consistency guarantees.
4894 */
4895 if (ext4_handle_valid(handle) &&
4896 ((flags & EXT4_FREE_BLOCKS_METADATA) ||
4897 !ext4_should_writeback_data(inode))) {
4898 struct ext4_free_data *new_entry;
4899 /*
4900 * We use __GFP_NOFAIL because ext4_free_blocks() is not allowed
4901 * to fail.
4902 */
4903 new_entry = kmem_cache_alloc(ext4_free_data_cachep,
4904 GFP_NOFS|__GFP_NOFAIL);
4905 new_entry->efd_start_cluster = bit;
4906 new_entry->efd_group = block_group;
4907 new_entry->efd_count = count_clusters;
4908 new_entry->efd_tid = handle->h_transaction->t_tid;
4909
4910 ext4_lock_group(sb, block_group);
4911 mb_clear_bits(bitmap_bh->b_data, bit, count_clusters);
4912 ext4_mb_free_metadata(handle, &e4b, new_entry);
4913 } else {
4914 /* need to update group_info->bb_free and bitmap
4915 * with group lock held. generate_buddy look at
4916 * them with group lock_held
4917 */
4918 if (test_opt(sb, DISCARD)) {
4919 err = ext4_issue_discard(sb, block_group, bit, count,
4920 NULL);
4921 if (err && err != -EOPNOTSUPP)
4922 ext4_msg(sb, KERN_WARNING, "discard request in"
4923 " group:%d block:%d count:%lu failed"
4924 " with %d", block_group, bit, count,
4925 err);
4926 } else
4927 EXT4_MB_GRP_CLEAR_TRIMMED(e4b.bd_info);
4928
4929 ext4_lock_group(sb, block_group);
4930 mb_clear_bits(bitmap_bh->b_data, bit, count_clusters);
4931 mb_free_blocks(inode, &e4b, bit, count_clusters);
4932 }
4933
4934 ret = ext4_free_group_clusters(sb, gdp) + count_clusters;
4935 ext4_free_group_clusters_set(sb, gdp, ret);
4936 ext4_block_bitmap_csum_set(sb, block_group, gdp, bitmap_bh);
4937 ext4_group_desc_csum_set(sb, block_group, gdp);
4938 ext4_unlock_group(sb, block_group);
4939
4940 if (sbi->s_log_groups_per_flex) {
4941 ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
4942 atomic64_add(count_clusters,
4943 &sbi->s_flex_groups[flex_group].free_clusters);
4944 }
4945
4946 if (!(flags & EXT4_FREE_BLOCKS_NO_QUOT_UPDATE))
4947 dquot_free_block(inode, EXT4_C2B(sbi, count_clusters));
4948 percpu_counter_add(&sbi->s_freeclusters_counter, count_clusters);
4949
4950 ext4_mb_unload_buddy(&e4b);
4951
4952 /* We dirtied the bitmap block */
4953 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
4954 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
4955
4956 /* And the group descriptor block */
4957 BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
4958 ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
4959 if (!err)
4960 err = ret;
4961
4962 if (overflow && !err) {
4963 block += count;
4964 count = overflow;
4965 put_bh(bitmap_bh);
4966 goto do_more;
4967 }
4968 error_return:
4969 brelse(bitmap_bh);
4970 ext4_std_error(sb, err);
4971 return;
4972 }
4973
4974 /**
4975 * ext4_group_add_blocks() -- Add given blocks to an existing group
4976 * @handle: handle to this transaction
4977 * @sb: super block
4978 * @block: start physical block to add to the block group
4979 * @count: number of blocks to free
4980 *
4981 * This marks the blocks as free in the bitmap and buddy.
4982 */
4983 int ext4_group_add_blocks(handle_t *handle, struct super_block *sb,
4984 ext4_fsblk_t block, unsigned long count)
4985 {
4986 struct buffer_head *bitmap_bh = NULL;
4987 struct buffer_head *gd_bh;
4988 ext4_group_t block_group;
4989 ext4_grpblk_t bit;
4990 unsigned int i;
4991 struct ext4_group_desc *desc;
4992 struct ext4_sb_info *sbi = EXT4_SB(sb);
4993 struct ext4_buddy e4b;
4994 int err = 0, ret, blk_free_count;
4995 ext4_grpblk_t blocks_freed;
4996
4997 ext4_debug("Adding block(s) %llu-%llu\n", block, block + count - 1);
4998
4999 if (count == 0)
5000 return 0;
5001
5002 ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
5003 /*
5004 * Check to see if we are freeing blocks across a group
5005 * boundary.
5006 */
5007 if (bit + count > EXT4_BLOCKS_PER_GROUP(sb)) {
5008 ext4_warning(sb, "too much blocks added to group %u",
5009 block_group);
5010 err = -EINVAL;
5011 goto error_return;
5012 }
5013
5014 bitmap_bh = ext4_read_block_bitmap(sb, block_group);
5015 if (IS_ERR(bitmap_bh)) {
5016 err = PTR_ERR(bitmap_bh);
5017 bitmap_bh = NULL;
5018 goto error_return;
5019 }
5020
5021 desc = ext4_get_group_desc(sb, block_group, &gd_bh);
5022 if (!desc) {
5023 err = -EIO;
5024 goto error_return;
5025 }
5026
5027 if (in_range(ext4_block_bitmap(sb, desc), block, count) ||
5028 in_range(ext4_inode_bitmap(sb, desc), block, count) ||
5029 in_range(block, ext4_inode_table(sb, desc), sbi->s_itb_per_group) ||
5030 in_range(block + count - 1, ext4_inode_table(sb, desc),
5031 sbi->s_itb_per_group)) {
5032 ext4_error(sb, "Adding blocks in system zones - "
5033 "Block = %llu, count = %lu",
5034 block, count);
5035 err = -EINVAL;
5036 goto error_return;
5037 }
5038
5039 BUFFER_TRACE(bitmap_bh, "getting write access");
5040 err = ext4_journal_get_write_access(handle, bitmap_bh);
5041 if (err)
5042 goto error_return;
5043
5044 /*
5045 * We are about to modify some metadata. Call the journal APIs
5046 * to unshare ->b_data if a currently-committing transaction is
5047 * using it
5048 */
5049 BUFFER_TRACE(gd_bh, "get_write_access");
5050 err = ext4_journal_get_write_access(handle, gd_bh);
5051 if (err)
5052 goto error_return;
5053
5054 for (i = 0, blocks_freed = 0; i < count; i++) {
5055 BUFFER_TRACE(bitmap_bh, "clear bit");
5056 if (!mb_test_bit(bit + i, bitmap_bh->b_data)) {
5057 ext4_error(sb, "bit already cleared for block %llu",
5058 (ext4_fsblk_t)(block + i));
5059 BUFFER_TRACE(bitmap_bh, "bit already cleared");
5060 } else {
5061 blocks_freed++;
5062 }
5063 }
5064
5065 err = ext4_mb_load_buddy(sb, block_group, &e4b);
5066 if (err)
5067 goto error_return;
5068
5069 /*
5070 * need to update group_info->bb_free and bitmap
5071 * with group lock held. generate_buddy look at
5072 * them with group lock_held
5073 */
5074 ext4_lock_group(sb, block_group);
5075 mb_clear_bits(bitmap_bh->b_data, bit, count);
5076 mb_free_blocks(NULL, &e4b, bit, count);
5077 blk_free_count = blocks_freed + ext4_free_group_clusters(sb, desc);
5078 ext4_free_group_clusters_set(sb, desc, blk_free_count);
5079 ext4_block_bitmap_csum_set(sb, block_group, desc, bitmap_bh);
5080 ext4_group_desc_csum_set(sb, block_group, desc);
5081 ext4_unlock_group(sb, block_group);
5082 percpu_counter_add(&sbi->s_freeclusters_counter,
5083 EXT4_NUM_B2C(sbi, blocks_freed));
5084
5085 if (sbi->s_log_groups_per_flex) {
5086 ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
5087 atomic64_add(EXT4_NUM_B2C(sbi, blocks_freed),
5088 &sbi->s_flex_groups[flex_group].free_clusters);
5089 }
5090
5091 ext4_mb_unload_buddy(&e4b);
5092
5093 /* We dirtied the bitmap block */
5094 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
5095 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
5096
5097 /* And the group descriptor block */
5098 BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
5099 ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
5100 if (!err)
5101 err = ret;
5102
5103 error_return:
5104 brelse(bitmap_bh);
5105 ext4_std_error(sb, err);
5106 return err;
5107 }
5108
5109 /**
5110 * ext4_trim_extent -- function to TRIM one single free extent in the group
5111 * @sb: super block for the file system
5112 * @start: starting block of the free extent in the alloc. group
5113 * @count: number of blocks to TRIM
5114 * @group: alloc. group we are working with
5115 * @e4b: ext4 buddy for the group
5116 *
5117 * Trim "count" blocks starting at "start" in the "group". To assure that no
5118 * one will allocate those blocks, mark it as used in buddy bitmap. This must
5119 * be called with under the group lock.
5120 */
5121 static int ext4_trim_extent(struct super_block *sb, int start, int count,
5122 ext4_group_t group, struct ext4_buddy *e4b)
5123 __releases(bitlock)
5124 __acquires(bitlock)
5125 {
5126 struct ext4_free_extent ex;
5127 int ret = 0;
5128
5129 trace_ext4_trim_extent(sb, group, start, count);
5130
5131 assert_spin_locked(ext4_group_lock_ptr(sb, group));
5132
5133 ex.fe_start = start;
5134 ex.fe_group = group;
5135 ex.fe_len = count;
5136
5137 /*
5138 * Mark blocks used, so no one can reuse them while
5139 * being trimmed.
5140 */
5141 mb_mark_used(e4b, &ex);
5142 ext4_unlock_group(sb, group);
5143 ret = ext4_issue_discard(sb, group, start, count, NULL);
5144 ext4_lock_group(sb, group);
5145 mb_free_blocks(NULL, e4b, start, ex.fe_len);
5146 return ret;
5147 }
5148
5149 /**
5150 * ext4_trim_all_free -- function to trim all free space in alloc. group
5151 * @sb: super block for file system
5152 * @group: group to be trimmed
5153 * @start: first group block to examine
5154 * @max: last group block to examine
5155 * @minblocks: minimum extent block count
5156 *
5157 * ext4_trim_all_free walks through group's buddy bitmap searching for free
5158 * extents. When the free block is found, ext4_trim_extent is called to TRIM
5159 * the extent.
5160 *
5161 *
5162 * ext4_trim_all_free walks through group's block bitmap searching for free
5163 * extents. When the free extent is found, mark it as used in group buddy
5164 * bitmap. Then issue a TRIM command on this extent and free the extent in
5165 * the group buddy bitmap. This is done until whole group is scanned.
5166 */
5167 static ext4_grpblk_t
5168 ext4_trim_all_free(struct super_block *sb, ext4_group_t group,
5169 ext4_grpblk_t start, ext4_grpblk_t max,
5170 ext4_grpblk_t minblocks)
5171 {
5172 void *bitmap;
5173 ext4_grpblk_t next, count = 0, free_count = 0;
5174 struct ext4_buddy e4b;
5175 int ret = 0;
5176
5177 trace_ext4_trim_all_free(sb, group, start, max);
5178
5179 ret = ext4_mb_load_buddy(sb, group, &e4b);
5180 if (ret) {
5181 ext4_warning(sb, "Error %d loading buddy information for %u",
5182 ret, group);
5183 return ret;
5184 }
5185 bitmap = e4b.bd_bitmap;
5186
5187 ext4_lock_group(sb, group);
5188 if (EXT4_MB_GRP_WAS_TRIMMED(e4b.bd_info) &&
5189 minblocks >= atomic_read(&EXT4_SB(sb)->s_last_trim_minblks))
5190 goto out;
5191
5192 start = (e4b.bd_info->bb_first_free > start) ?
5193 e4b.bd_info->bb_first_free : start;
5194
5195 while (start <= max) {
5196 start = mb_find_next_zero_bit(bitmap, max + 1, start);
5197 if (start > max)
5198 break;
5199 next = mb_find_next_bit(bitmap, max + 1, start);
5200
5201 if ((next - start) >= minblocks) {
5202 ret = ext4_trim_extent(sb, start,
5203 next - start, group, &e4b);
5204 if (ret && ret != -EOPNOTSUPP)
5205 break;
5206 ret = 0;
5207 count += next - start;
5208 }
5209 free_count += next - start;
5210 start = next + 1;
5211
5212 if (fatal_signal_pending(current)) {
5213 count = -ERESTARTSYS;
5214 break;
5215 }
5216
5217 if (need_resched()) {
5218 ext4_unlock_group(sb, group);
5219 cond_resched();
5220 ext4_lock_group(sb, group);
5221 }
5222
5223 if ((e4b.bd_info->bb_free - free_count) < minblocks)
5224 break;
5225 }
5226
5227 if (!ret) {
5228 ret = count;
5229 EXT4_MB_GRP_SET_TRIMMED(e4b.bd_info);
5230 }
5231 out:
5232 ext4_unlock_group(sb, group);
5233 ext4_mb_unload_buddy(&e4b);
5234
5235 ext4_debug("trimmed %d blocks in the group %d\n",
5236 count, group);
5237
5238 return ret;
5239 }
5240
5241 /**
5242 * ext4_trim_fs() -- trim ioctl handle function
5243 * @sb: superblock for filesystem
5244 * @range: fstrim_range structure
5245 *
5246 * start: First Byte to trim
5247 * len: number of Bytes to trim from start
5248 * minlen: minimum extent length in Bytes
5249 * ext4_trim_fs goes through all allocation groups containing Bytes from
5250 * start to start+len. For each such a group ext4_trim_all_free function
5251 * is invoked to trim all free space.
5252 */
5253 int ext4_trim_fs(struct super_block *sb, struct fstrim_range *range)
5254 {
5255 struct ext4_group_info *grp;
5256 ext4_group_t group, first_group, last_group;
5257 ext4_grpblk_t cnt = 0, first_cluster, last_cluster;
5258 uint64_t start, end, minlen, trimmed = 0;
5259 ext4_fsblk_t first_data_blk =
5260 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block);
5261 ext4_fsblk_t max_blks = ext4_blocks_count(EXT4_SB(sb)->s_es);
5262 int ret = 0;
5263
5264 start = range->start >> sb->s_blocksize_bits;
5265 end = start + (range->len >> sb->s_blocksize_bits) - 1;
5266 minlen = EXT4_NUM_B2C(EXT4_SB(sb),
5267 range->minlen >> sb->s_blocksize_bits);
5268
5269 if (minlen > EXT4_CLUSTERS_PER_GROUP(sb) ||
5270 start >= max_blks ||
5271 range->len < sb->s_blocksize)
5272 return -EINVAL;
5273 if (end >= max_blks)
5274 end = max_blks - 1;
5275 if (end <= first_data_blk)
5276 goto out;
5277 if (start < first_data_blk)
5278 start = first_data_blk;
5279
5280 /* Determine first and last group to examine based on start and end */
5281 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) start,
5282 &first_group, &first_cluster);
5283 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) end,
5284 &last_group, &last_cluster);
5285
5286 /* end now represents the last cluster to discard in this group */
5287 end = EXT4_CLUSTERS_PER_GROUP(sb) - 1;
5288
5289 for (group = first_group; group <= last_group; group++) {
5290 grp = ext4_get_group_info(sb, group);
5291 /* We only do this if the grp has never been initialized */
5292 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
5293 ret = ext4_mb_init_group(sb, group, GFP_NOFS);
5294 if (ret)
5295 break;
5296 }
5297
5298 /*
5299 * For all the groups except the last one, last cluster will
5300 * always be EXT4_CLUSTERS_PER_GROUP(sb)-1, so we only need to
5301 * change it for the last group, note that last_cluster is
5302 * already computed earlier by ext4_get_group_no_and_offset()
5303 */
5304 if (group == last_group)
5305 end = last_cluster;
5306
5307 if (grp->bb_free >= minlen) {
5308 cnt = ext4_trim_all_free(sb, group, first_cluster,
5309 end, minlen);
5310 if (cnt < 0) {
5311 ret = cnt;
5312 break;
5313 }
5314 trimmed += cnt;
5315 }
5316
5317 /*
5318 * For every group except the first one, we are sure
5319 * that the first cluster to discard will be cluster #0.
5320 */
5321 first_cluster = 0;
5322 }
5323
5324 if (!ret)
5325 atomic_set(&EXT4_SB(sb)->s_last_trim_minblks, minlen);
5326
5327 out:
5328 range->len = EXT4_C2B(EXT4_SB(sb), trimmed) << sb->s_blocksize_bits;
5329 return ret;
5330 }
5331
5332 /* Iterate all the free extents in the group. */
5333 int
5334 ext4_mballoc_query_range(
5335 struct super_block *sb,
5336 ext4_group_t group,
5337 ext4_grpblk_t start,
5338 ext4_grpblk_t end,
5339 ext4_mballoc_query_range_fn formatter,
5340 void *priv)
5341 {
5342 void *bitmap;
5343 ext4_grpblk_t next;
5344 struct ext4_buddy e4b;
5345 int error;
5346
5347 error = ext4_mb_load_buddy(sb, group, &e4b);
5348 if (error)
5349 return error;
5350 bitmap = e4b.bd_bitmap;
5351
5352 ext4_lock_group(sb, group);
5353
5354 start = (e4b.bd_info->bb_first_free > start) ?
5355 e4b.bd_info->bb_first_free : start;
5356 if (end >= EXT4_CLUSTERS_PER_GROUP(sb))
5357 end = EXT4_CLUSTERS_PER_GROUP(sb) - 1;
5358
5359 while (start <= end) {
5360 start = mb_find_next_zero_bit(bitmap, end + 1, start);
5361 if (start > end)
5362 break;
5363 next = mb_find_next_bit(bitmap, end + 1, start);
5364
5365 ext4_unlock_group(sb, group);
5366 error = formatter(sb, group, start, next - start, priv);
5367 if (error)
5368 goto out_unload;
5369 ext4_lock_group(sb, group);
5370
5371 start = next + 1;
5372 }
5373
5374 ext4_unlock_group(sb, group);
5375 out_unload:
5376 ext4_mb_unload_buddy(&e4b);
5377
5378 return error;
5379 }