]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - fs/ext4/mballoc.c
UBUNTU: Ubuntu-5.11.0-22.23
[mirror_ubuntu-hirsute-kernel.git] / fs / ext4 / mballoc.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
4 * Written by Alex Tomas <alex@clusterfs.com>
5 */
6
7
8 /*
9 * mballoc.c contains the multiblocks allocation routines
10 */
11
12 #include "ext4_jbd2.h"
13 #include "mballoc.h"
14 #include <linux/log2.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/nospec.h>
18 #include <linux/backing-dev.h>
19 #include <trace/events/ext4.h>
20
21 /*
22 * MUSTDO:
23 * - test ext4_ext_search_left() and ext4_ext_search_right()
24 * - search for metadata in few groups
25 *
26 * TODO v4:
27 * - normalization should take into account whether file is still open
28 * - discard preallocations if no free space left (policy?)
29 * - don't normalize tails
30 * - quota
31 * - reservation for superuser
32 *
33 * TODO v3:
34 * - bitmap read-ahead (proposed by Oleg Drokin aka green)
35 * - track min/max extents in each group for better group selection
36 * - mb_mark_used() may allocate chunk right after splitting buddy
37 * - tree of groups sorted by number of free blocks
38 * - error handling
39 */
40
41 /*
42 * The allocation request involve request for multiple number of blocks
43 * near to the goal(block) value specified.
44 *
45 * During initialization phase of the allocator we decide to use the
46 * group preallocation or inode preallocation depending on the size of
47 * the file. The size of the file could be the resulting file size we
48 * would have after allocation, or the current file size, which ever
49 * is larger. If the size is less than sbi->s_mb_stream_request we
50 * select to use the group preallocation. The default value of
51 * s_mb_stream_request is 16 blocks. This can also be tuned via
52 * /sys/fs/ext4/<partition>/mb_stream_req. The value is represented in
53 * terms of number of blocks.
54 *
55 * The main motivation for having small file use group preallocation is to
56 * ensure that we have small files closer together on the disk.
57 *
58 * First stage the allocator looks at the inode prealloc list,
59 * ext4_inode_info->i_prealloc_list, which contains list of prealloc
60 * spaces for this particular inode. The inode prealloc space is
61 * represented as:
62 *
63 * pa_lstart -> the logical start block for this prealloc space
64 * pa_pstart -> the physical start block for this prealloc space
65 * pa_len -> length for this prealloc space (in clusters)
66 * pa_free -> free space available in this prealloc space (in clusters)
67 *
68 * The inode preallocation space is used looking at the _logical_ start
69 * block. If only the logical file block falls within the range of prealloc
70 * space we will consume the particular prealloc space. This makes sure that
71 * we have contiguous physical blocks representing the file blocks
72 *
73 * The important thing to be noted in case of inode prealloc space is that
74 * we don't modify the values associated to inode prealloc space except
75 * pa_free.
76 *
77 * If we are not able to find blocks in the inode prealloc space and if we
78 * have the group allocation flag set then we look at the locality group
79 * prealloc space. These are per CPU prealloc list represented as
80 *
81 * ext4_sb_info.s_locality_groups[smp_processor_id()]
82 *
83 * The reason for having a per cpu locality group is to reduce the contention
84 * between CPUs. It is possible to get scheduled at this point.
85 *
86 * The locality group prealloc space is used looking at whether we have
87 * enough free space (pa_free) within the prealloc space.
88 *
89 * If we can't allocate blocks via inode prealloc or/and locality group
90 * prealloc then we look at the buddy cache. The buddy cache is represented
91 * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets
92 * mapped to the buddy and bitmap information regarding different
93 * groups. The buddy information is attached to buddy cache inode so that
94 * we can access them through the page cache. The information regarding
95 * each group is loaded via ext4_mb_load_buddy. The information involve
96 * block bitmap and buddy information. The information are stored in the
97 * inode as:
98 *
99 * { page }
100 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
101 *
102 *
103 * one block each for bitmap and buddy information. So for each group we
104 * take up 2 blocks. A page can contain blocks_per_page (PAGE_SIZE /
105 * blocksize) blocks. So it can have information regarding groups_per_page
106 * which is blocks_per_page/2
107 *
108 * The buddy cache inode is not stored on disk. The inode is thrown
109 * away when the filesystem is unmounted.
110 *
111 * We look for count number of blocks in the buddy cache. If we were able
112 * to locate that many free blocks we return with additional information
113 * regarding rest of the contiguous physical block available
114 *
115 * Before allocating blocks via buddy cache we normalize the request
116 * blocks. This ensure we ask for more blocks that we needed. The extra
117 * blocks that we get after allocation is added to the respective prealloc
118 * list. In case of inode preallocation we follow a list of heuristics
119 * based on file size. This can be found in ext4_mb_normalize_request. If
120 * we are doing a group prealloc we try to normalize the request to
121 * sbi->s_mb_group_prealloc. The default value of s_mb_group_prealloc is
122 * dependent on the cluster size; for non-bigalloc file systems, it is
123 * 512 blocks. This can be tuned via
124 * /sys/fs/ext4/<partition>/mb_group_prealloc. The value is represented in
125 * terms of number of blocks. If we have mounted the file system with -O
126 * stripe=<value> option the group prealloc request is normalized to the
127 * smallest multiple of the stripe value (sbi->s_stripe) which is
128 * greater than the default mb_group_prealloc.
129 *
130 * The regular allocator (using the buddy cache) supports a few tunables.
131 *
132 * /sys/fs/ext4/<partition>/mb_min_to_scan
133 * /sys/fs/ext4/<partition>/mb_max_to_scan
134 * /sys/fs/ext4/<partition>/mb_order2_req
135 *
136 * The regular allocator uses buddy scan only if the request len is power of
137 * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The
138 * value of s_mb_order2_reqs can be tuned via
139 * /sys/fs/ext4/<partition>/mb_order2_req. If the request len is equal to
140 * stripe size (sbi->s_stripe), we try to search for contiguous block in
141 * stripe size. This should result in better allocation on RAID setups. If
142 * not, we search in the specific group using bitmap for best extents. The
143 * tunable min_to_scan and max_to_scan control the behaviour here.
144 * min_to_scan indicate how long the mballoc __must__ look for a best
145 * extent and max_to_scan indicates how long the mballoc __can__ look for a
146 * best extent in the found extents. Searching for the blocks starts with
147 * the group specified as the goal value in allocation context via
148 * ac_g_ex. Each group is first checked based on the criteria whether it
149 * can be used for allocation. ext4_mb_good_group explains how the groups are
150 * checked.
151 *
152 * Both the prealloc space are getting populated as above. So for the first
153 * request we will hit the buddy cache which will result in this prealloc
154 * space getting filled. The prealloc space is then later used for the
155 * subsequent request.
156 */
157
158 /*
159 * mballoc operates on the following data:
160 * - on-disk bitmap
161 * - in-core buddy (actually includes buddy and bitmap)
162 * - preallocation descriptors (PAs)
163 *
164 * there are two types of preallocations:
165 * - inode
166 * assiged to specific inode and can be used for this inode only.
167 * it describes part of inode's space preallocated to specific
168 * physical blocks. any block from that preallocated can be used
169 * independent. the descriptor just tracks number of blocks left
170 * unused. so, before taking some block from descriptor, one must
171 * make sure corresponded logical block isn't allocated yet. this
172 * also means that freeing any block within descriptor's range
173 * must discard all preallocated blocks.
174 * - locality group
175 * assigned to specific locality group which does not translate to
176 * permanent set of inodes: inode can join and leave group. space
177 * from this type of preallocation can be used for any inode. thus
178 * it's consumed from the beginning to the end.
179 *
180 * relation between them can be expressed as:
181 * in-core buddy = on-disk bitmap + preallocation descriptors
182 *
183 * this mean blocks mballoc considers used are:
184 * - allocated blocks (persistent)
185 * - preallocated blocks (non-persistent)
186 *
187 * consistency in mballoc world means that at any time a block is either
188 * free or used in ALL structures. notice: "any time" should not be read
189 * literally -- time is discrete and delimited by locks.
190 *
191 * to keep it simple, we don't use block numbers, instead we count number of
192 * blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA.
193 *
194 * all operations can be expressed as:
195 * - init buddy: buddy = on-disk + PAs
196 * - new PA: buddy += N; PA = N
197 * - use inode PA: on-disk += N; PA -= N
198 * - discard inode PA buddy -= on-disk - PA; PA = 0
199 * - use locality group PA on-disk += N; PA -= N
200 * - discard locality group PA buddy -= PA; PA = 0
201 * note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap
202 * is used in real operation because we can't know actual used
203 * bits from PA, only from on-disk bitmap
204 *
205 * if we follow this strict logic, then all operations above should be atomic.
206 * given some of them can block, we'd have to use something like semaphores
207 * killing performance on high-end SMP hardware. let's try to relax it using
208 * the following knowledge:
209 * 1) if buddy is referenced, it's already initialized
210 * 2) while block is used in buddy and the buddy is referenced,
211 * nobody can re-allocate that block
212 * 3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has
213 * bit set and PA claims same block, it's OK. IOW, one can set bit in
214 * on-disk bitmap if buddy has same bit set or/and PA covers corresponded
215 * block
216 *
217 * so, now we're building a concurrency table:
218 * - init buddy vs.
219 * - new PA
220 * blocks for PA are allocated in the buddy, buddy must be referenced
221 * until PA is linked to allocation group to avoid concurrent buddy init
222 * - use inode PA
223 * we need to make sure that either on-disk bitmap or PA has uptodate data
224 * given (3) we care that PA-=N operation doesn't interfere with init
225 * - discard inode PA
226 * the simplest way would be to have buddy initialized by the discard
227 * - use locality group PA
228 * again PA-=N must be serialized with init
229 * - discard locality group PA
230 * the simplest way would be to have buddy initialized by the discard
231 * - new PA vs.
232 * - use inode PA
233 * i_data_sem serializes them
234 * - discard inode PA
235 * discard process must wait until PA isn't used by another process
236 * - use locality group PA
237 * some mutex should serialize them
238 * - discard locality group PA
239 * discard process must wait until PA isn't used by another process
240 * - use inode PA
241 * - use inode PA
242 * i_data_sem or another mutex should serializes them
243 * - discard inode PA
244 * discard process must wait until PA isn't used by another process
245 * - use locality group PA
246 * nothing wrong here -- they're different PAs covering different blocks
247 * - discard locality group PA
248 * discard process must wait until PA isn't used by another process
249 *
250 * now we're ready to make few consequences:
251 * - PA is referenced and while it is no discard is possible
252 * - PA is referenced until block isn't marked in on-disk bitmap
253 * - PA changes only after on-disk bitmap
254 * - discard must not compete with init. either init is done before
255 * any discard or they're serialized somehow
256 * - buddy init as sum of on-disk bitmap and PAs is done atomically
257 *
258 * a special case when we've used PA to emptiness. no need to modify buddy
259 * in this case, but we should care about concurrent init
260 *
261 */
262
263 /*
264 * Logic in few words:
265 *
266 * - allocation:
267 * load group
268 * find blocks
269 * mark bits in on-disk bitmap
270 * release group
271 *
272 * - use preallocation:
273 * find proper PA (per-inode or group)
274 * load group
275 * mark bits in on-disk bitmap
276 * release group
277 * release PA
278 *
279 * - free:
280 * load group
281 * mark bits in on-disk bitmap
282 * release group
283 *
284 * - discard preallocations in group:
285 * mark PAs deleted
286 * move them onto local list
287 * load on-disk bitmap
288 * load group
289 * remove PA from object (inode or locality group)
290 * mark free blocks in-core
291 *
292 * - discard inode's preallocations:
293 */
294
295 /*
296 * Locking rules
297 *
298 * Locks:
299 * - bitlock on a group (group)
300 * - object (inode/locality) (object)
301 * - per-pa lock (pa)
302 *
303 * Paths:
304 * - new pa
305 * object
306 * group
307 *
308 * - find and use pa:
309 * pa
310 *
311 * - release consumed pa:
312 * pa
313 * group
314 * object
315 *
316 * - generate in-core bitmap:
317 * group
318 * pa
319 *
320 * - discard all for given object (inode, locality group):
321 * object
322 * pa
323 * group
324 *
325 * - discard all for given group:
326 * group
327 * pa
328 * group
329 * object
330 *
331 */
332 static struct kmem_cache *ext4_pspace_cachep;
333 static struct kmem_cache *ext4_ac_cachep;
334 static struct kmem_cache *ext4_free_data_cachep;
335
336 /* We create slab caches for groupinfo data structures based on the
337 * superblock block size. There will be one per mounted filesystem for
338 * each unique s_blocksize_bits */
339 #define NR_GRPINFO_CACHES 8
340 static struct kmem_cache *ext4_groupinfo_caches[NR_GRPINFO_CACHES];
341
342 static const char * const ext4_groupinfo_slab_names[NR_GRPINFO_CACHES] = {
343 "ext4_groupinfo_1k", "ext4_groupinfo_2k", "ext4_groupinfo_4k",
344 "ext4_groupinfo_8k", "ext4_groupinfo_16k", "ext4_groupinfo_32k",
345 "ext4_groupinfo_64k", "ext4_groupinfo_128k"
346 };
347
348 static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
349 ext4_group_t group);
350 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
351 ext4_group_t group);
352 static void ext4_mb_new_preallocation(struct ext4_allocation_context *ac);
353
354 /*
355 * The algorithm using this percpu seq counter goes below:
356 * 1. We sample the percpu discard_pa_seq counter before trying for block
357 * allocation in ext4_mb_new_blocks().
358 * 2. We increment this percpu discard_pa_seq counter when we either allocate
359 * or free these blocks i.e. while marking those blocks as used/free in
360 * mb_mark_used()/mb_free_blocks().
361 * 3. We also increment this percpu seq counter when we successfully identify
362 * that the bb_prealloc_list is not empty and hence proceed for discarding
363 * of those PAs inside ext4_mb_discard_group_preallocations().
364 *
365 * Now to make sure that the regular fast path of block allocation is not
366 * affected, as a small optimization we only sample the percpu seq counter
367 * on that cpu. Only when the block allocation fails and when freed blocks
368 * found were 0, that is when we sample percpu seq counter for all cpus using
369 * below function ext4_get_discard_pa_seq_sum(). This happens after making
370 * sure that all the PAs on grp->bb_prealloc_list got freed or if it's empty.
371 */
372 static DEFINE_PER_CPU(u64, discard_pa_seq);
373 static inline u64 ext4_get_discard_pa_seq_sum(void)
374 {
375 int __cpu;
376 u64 __seq = 0;
377
378 for_each_possible_cpu(__cpu)
379 __seq += per_cpu(discard_pa_seq, __cpu);
380 return __seq;
381 }
382
383 static inline void *mb_correct_addr_and_bit(int *bit, void *addr)
384 {
385 #if BITS_PER_LONG == 64
386 *bit += ((unsigned long) addr & 7UL) << 3;
387 addr = (void *) ((unsigned long) addr & ~7UL);
388 #elif BITS_PER_LONG == 32
389 *bit += ((unsigned long) addr & 3UL) << 3;
390 addr = (void *) ((unsigned long) addr & ~3UL);
391 #else
392 #error "how many bits you are?!"
393 #endif
394 return addr;
395 }
396
397 static inline int mb_test_bit(int bit, void *addr)
398 {
399 /*
400 * ext4_test_bit on architecture like powerpc
401 * needs unsigned long aligned address
402 */
403 addr = mb_correct_addr_and_bit(&bit, addr);
404 return ext4_test_bit(bit, addr);
405 }
406
407 static inline void mb_set_bit(int bit, void *addr)
408 {
409 addr = mb_correct_addr_and_bit(&bit, addr);
410 ext4_set_bit(bit, addr);
411 }
412
413 static inline void mb_clear_bit(int bit, void *addr)
414 {
415 addr = mb_correct_addr_and_bit(&bit, addr);
416 ext4_clear_bit(bit, addr);
417 }
418
419 static inline int mb_test_and_clear_bit(int bit, void *addr)
420 {
421 addr = mb_correct_addr_and_bit(&bit, addr);
422 return ext4_test_and_clear_bit(bit, addr);
423 }
424
425 static inline int mb_find_next_zero_bit(void *addr, int max, int start)
426 {
427 int fix = 0, ret, tmpmax;
428 addr = mb_correct_addr_and_bit(&fix, addr);
429 tmpmax = max + fix;
430 start += fix;
431
432 ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix;
433 if (ret > max)
434 return max;
435 return ret;
436 }
437
438 static inline int mb_find_next_bit(void *addr, int max, int start)
439 {
440 int fix = 0, ret, tmpmax;
441 addr = mb_correct_addr_and_bit(&fix, addr);
442 tmpmax = max + fix;
443 start += fix;
444
445 ret = ext4_find_next_bit(addr, tmpmax, start) - fix;
446 if (ret > max)
447 return max;
448 return ret;
449 }
450
451 static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max)
452 {
453 char *bb;
454
455 BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
456 BUG_ON(max == NULL);
457
458 if (order > e4b->bd_blkbits + 1) {
459 *max = 0;
460 return NULL;
461 }
462
463 /* at order 0 we see each particular block */
464 if (order == 0) {
465 *max = 1 << (e4b->bd_blkbits + 3);
466 return e4b->bd_bitmap;
467 }
468
469 bb = e4b->bd_buddy + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order];
470 *max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order];
471
472 return bb;
473 }
474
475 #ifdef DOUBLE_CHECK
476 static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b,
477 int first, int count)
478 {
479 int i;
480 struct super_block *sb = e4b->bd_sb;
481
482 if (unlikely(e4b->bd_info->bb_bitmap == NULL))
483 return;
484 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
485 for (i = 0; i < count; i++) {
486 if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) {
487 ext4_fsblk_t blocknr;
488
489 blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
490 blocknr += EXT4_C2B(EXT4_SB(sb), first + i);
491 ext4_grp_locked_error(sb, e4b->bd_group,
492 inode ? inode->i_ino : 0,
493 blocknr,
494 "freeing block already freed "
495 "(bit %u)",
496 first + i);
497 ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
498 EXT4_GROUP_INFO_BBITMAP_CORRUPT);
499 }
500 mb_clear_bit(first + i, e4b->bd_info->bb_bitmap);
501 }
502 }
503
504 static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count)
505 {
506 int i;
507
508 if (unlikely(e4b->bd_info->bb_bitmap == NULL))
509 return;
510 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
511 for (i = 0; i < count; i++) {
512 BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap));
513 mb_set_bit(first + i, e4b->bd_info->bb_bitmap);
514 }
515 }
516
517 static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
518 {
519 if (unlikely(e4b->bd_info->bb_bitmap == NULL))
520 return;
521 if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) {
522 unsigned char *b1, *b2;
523 int i;
524 b1 = (unsigned char *) e4b->bd_info->bb_bitmap;
525 b2 = (unsigned char *) bitmap;
526 for (i = 0; i < e4b->bd_sb->s_blocksize; i++) {
527 if (b1[i] != b2[i]) {
528 ext4_msg(e4b->bd_sb, KERN_ERR,
529 "corruption in group %u "
530 "at byte %u(%u): %x in copy != %x "
531 "on disk/prealloc",
532 e4b->bd_group, i, i * 8, b1[i], b2[i]);
533 BUG();
534 }
535 }
536 }
537 }
538
539 static void mb_group_bb_bitmap_alloc(struct super_block *sb,
540 struct ext4_group_info *grp, ext4_group_t group)
541 {
542 struct buffer_head *bh;
543
544 grp->bb_bitmap = kmalloc(sb->s_blocksize, GFP_NOFS);
545 if (!grp->bb_bitmap)
546 return;
547
548 bh = ext4_read_block_bitmap(sb, group);
549 if (IS_ERR_OR_NULL(bh)) {
550 kfree(grp->bb_bitmap);
551 grp->bb_bitmap = NULL;
552 return;
553 }
554
555 memcpy(grp->bb_bitmap, bh->b_data, sb->s_blocksize);
556 put_bh(bh);
557 }
558
559 static void mb_group_bb_bitmap_free(struct ext4_group_info *grp)
560 {
561 kfree(grp->bb_bitmap);
562 }
563
564 #else
565 static inline void mb_free_blocks_double(struct inode *inode,
566 struct ext4_buddy *e4b, int first, int count)
567 {
568 return;
569 }
570 static inline void mb_mark_used_double(struct ext4_buddy *e4b,
571 int first, int count)
572 {
573 return;
574 }
575 static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
576 {
577 return;
578 }
579
580 static inline void mb_group_bb_bitmap_alloc(struct super_block *sb,
581 struct ext4_group_info *grp, ext4_group_t group)
582 {
583 return;
584 }
585
586 static inline void mb_group_bb_bitmap_free(struct ext4_group_info *grp)
587 {
588 return;
589 }
590 #endif
591
592 #ifdef AGGRESSIVE_CHECK
593
594 #define MB_CHECK_ASSERT(assert) \
595 do { \
596 if (!(assert)) { \
597 printk(KERN_EMERG \
598 "Assertion failure in %s() at %s:%d: \"%s\"\n", \
599 function, file, line, # assert); \
600 BUG(); \
601 } \
602 } while (0)
603
604 static int __mb_check_buddy(struct ext4_buddy *e4b, char *file,
605 const char *function, int line)
606 {
607 struct super_block *sb = e4b->bd_sb;
608 int order = e4b->bd_blkbits + 1;
609 int max;
610 int max2;
611 int i;
612 int j;
613 int k;
614 int count;
615 struct ext4_group_info *grp;
616 int fragments = 0;
617 int fstart;
618 struct list_head *cur;
619 void *buddy;
620 void *buddy2;
621
622 if (e4b->bd_info->bb_check_counter++ % 10)
623 return 0;
624
625 while (order > 1) {
626 buddy = mb_find_buddy(e4b, order, &max);
627 MB_CHECK_ASSERT(buddy);
628 buddy2 = mb_find_buddy(e4b, order - 1, &max2);
629 MB_CHECK_ASSERT(buddy2);
630 MB_CHECK_ASSERT(buddy != buddy2);
631 MB_CHECK_ASSERT(max * 2 == max2);
632
633 count = 0;
634 for (i = 0; i < max; i++) {
635
636 if (mb_test_bit(i, buddy)) {
637 /* only single bit in buddy2 may be 1 */
638 if (!mb_test_bit(i << 1, buddy2)) {
639 MB_CHECK_ASSERT(
640 mb_test_bit((i<<1)+1, buddy2));
641 } else if (!mb_test_bit((i << 1) + 1, buddy2)) {
642 MB_CHECK_ASSERT(
643 mb_test_bit(i << 1, buddy2));
644 }
645 continue;
646 }
647
648 /* both bits in buddy2 must be 1 */
649 MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2));
650 MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2));
651
652 for (j = 0; j < (1 << order); j++) {
653 k = (i * (1 << order)) + j;
654 MB_CHECK_ASSERT(
655 !mb_test_bit(k, e4b->bd_bitmap));
656 }
657 count++;
658 }
659 MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count);
660 order--;
661 }
662
663 fstart = -1;
664 buddy = mb_find_buddy(e4b, 0, &max);
665 for (i = 0; i < max; i++) {
666 if (!mb_test_bit(i, buddy)) {
667 MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free);
668 if (fstart == -1) {
669 fragments++;
670 fstart = i;
671 }
672 continue;
673 }
674 fstart = -1;
675 /* check used bits only */
676 for (j = 0; j < e4b->bd_blkbits + 1; j++) {
677 buddy2 = mb_find_buddy(e4b, j, &max2);
678 k = i >> j;
679 MB_CHECK_ASSERT(k < max2);
680 MB_CHECK_ASSERT(mb_test_bit(k, buddy2));
681 }
682 }
683 MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info));
684 MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments);
685
686 grp = ext4_get_group_info(sb, e4b->bd_group);
687 list_for_each(cur, &grp->bb_prealloc_list) {
688 ext4_group_t groupnr;
689 struct ext4_prealloc_space *pa;
690 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
691 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k);
692 MB_CHECK_ASSERT(groupnr == e4b->bd_group);
693 for (i = 0; i < pa->pa_len; i++)
694 MB_CHECK_ASSERT(mb_test_bit(k + i, buddy));
695 }
696 return 0;
697 }
698 #undef MB_CHECK_ASSERT
699 #define mb_check_buddy(e4b) __mb_check_buddy(e4b, \
700 __FILE__, __func__, __LINE__)
701 #else
702 #define mb_check_buddy(e4b)
703 #endif
704
705 /*
706 * Divide blocks started from @first with length @len into
707 * smaller chunks with power of 2 blocks.
708 * Clear the bits in bitmap which the blocks of the chunk(s) covered,
709 * then increase bb_counters[] for corresponded chunk size.
710 */
711 static void ext4_mb_mark_free_simple(struct super_block *sb,
712 void *buddy, ext4_grpblk_t first, ext4_grpblk_t len,
713 struct ext4_group_info *grp)
714 {
715 struct ext4_sb_info *sbi = EXT4_SB(sb);
716 ext4_grpblk_t min;
717 ext4_grpblk_t max;
718 ext4_grpblk_t chunk;
719 unsigned int border;
720
721 BUG_ON(len > EXT4_CLUSTERS_PER_GROUP(sb));
722
723 border = 2 << sb->s_blocksize_bits;
724
725 while (len > 0) {
726 /* find how many blocks can be covered since this position */
727 max = ffs(first | border) - 1;
728
729 /* find how many blocks of power 2 we need to mark */
730 min = fls(len) - 1;
731
732 if (max < min)
733 min = max;
734 chunk = 1 << min;
735
736 /* mark multiblock chunks only */
737 grp->bb_counters[min]++;
738 if (min > 0)
739 mb_clear_bit(first >> min,
740 buddy + sbi->s_mb_offsets[min]);
741
742 len -= chunk;
743 first += chunk;
744 }
745 }
746
747 /*
748 * Cache the order of the largest free extent we have available in this block
749 * group.
750 */
751 static void
752 mb_set_largest_free_order(struct super_block *sb, struct ext4_group_info *grp)
753 {
754 int i;
755 int bits;
756
757 grp->bb_largest_free_order = -1; /* uninit */
758
759 bits = sb->s_blocksize_bits + 1;
760 for (i = bits; i >= 0; i--) {
761 if (grp->bb_counters[i] > 0) {
762 grp->bb_largest_free_order = i;
763 break;
764 }
765 }
766 }
767
768 static noinline_for_stack
769 void ext4_mb_generate_buddy(struct super_block *sb,
770 void *buddy, void *bitmap, ext4_group_t group)
771 {
772 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
773 struct ext4_sb_info *sbi = EXT4_SB(sb);
774 ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb);
775 ext4_grpblk_t i = 0;
776 ext4_grpblk_t first;
777 ext4_grpblk_t len;
778 unsigned free = 0;
779 unsigned fragments = 0;
780 unsigned long long period = get_cycles();
781
782 /* initialize buddy from bitmap which is aggregation
783 * of on-disk bitmap and preallocations */
784 i = mb_find_next_zero_bit(bitmap, max, 0);
785 grp->bb_first_free = i;
786 while (i < max) {
787 fragments++;
788 first = i;
789 i = mb_find_next_bit(bitmap, max, i);
790 len = i - first;
791 free += len;
792 if (len > 1)
793 ext4_mb_mark_free_simple(sb, buddy, first, len, grp);
794 else
795 grp->bb_counters[0]++;
796 if (i < max)
797 i = mb_find_next_zero_bit(bitmap, max, i);
798 }
799 grp->bb_fragments = fragments;
800
801 if (free != grp->bb_free) {
802 ext4_grp_locked_error(sb, group, 0, 0,
803 "block bitmap and bg descriptor "
804 "inconsistent: %u vs %u free clusters",
805 free, grp->bb_free);
806 /*
807 * If we intend to continue, we consider group descriptor
808 * corrupt and update bb_free using bitmap value
809 */
810 grp->bb_free = free;
811 ext4_mark_group_bitmap_corrupted(sb, group,
812 EXT4_GROUP_INFO_BBITMAP_CORRUPT);
813 }
814 mb_set_largest_free_order(sb, grp);
815
816 clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state));
817
818 period = get_cycles() - period;
819 spin_lock(&sbi->s_bal_lock);
820 sbi->s_mb_buddies_generated++;
821 sbi->s_mb_generation_time += period;
822 spin_unlock(&sbi->s_bal_lock);
823 }
824
825 /* The buddy information is attached the buddy cache inode
826 * for convenience. The information regarding each group
827 * is loaded via ext4_mb_load_buddy. The information involve
828 * block bitmap and buddy information. The information are
829 * stored in the inode as
830 *
831 * { page }
832 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
833 *
834 *
835 * one block each for bitmap and buddy information.
836 * So for each group we take up 2 blocks. A page can
837 * contain blocks_per_page (PAGE_SIZE / blocksize) blocks.
838 * So it can have information regarding groups_per_page which
839 * is blocks_per_page/2
840 *
841 * Locking note: This routine takes the block group lock of all groups
842 * for this page; do not hold this lock when calling this routine!
843 */
844
845 static int ext4_mb_init_cache(struct page *page, char *incore, gfp_t gfp)
846 {
847 ext4_group_t ngroups;
848 int blocksize;
849 int blocks_per_page;
850 int groups_per_page;
851 int err = 0;
852 int i;
853 ext4_group_t first_group, group;
854 int first_block;
855 struct super_block *sb;
856 struct buffer_head *bhs;
857 struct buffer_head **bh = NULL;
858 struct inode *inode;
859 char *data;
860 char *bitmap;
861 struct ext4_group_info *grinfo;
862
863 inode = page->mapping->host;
864 sb = inode->i_sb;
865 ngroups = ext4_get_groups_count(sb);
866 blocksize = i_blocksize(inode);
867 blocks_per_page = PAGE_SIZE / blocksize;
868
869 mb_debug(sb, "init page %lu\n", page->index);
870
871 groups_per_page = blocks_per_page >> 1;
872 if (groups_per_page == 0)
873 groups_per_page = 1;
874
875 /* allocate buffer_heads to read bitmaps */
876 if (groups_per_page > 1) {
877 i = sizeof(struct buffer_head *) * groups_per_page;
878 bh = kzalloc(i, gfp);
879 if (bh == NULL) {
880 err = -ENOMEM;
881 goto out;
882 }
883 } else
884 bh = &bhs;
885
886 first_group = page->index * blocks_per_page / 2;
887
888 /* read all groups the page covers into the cache */
889 for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
890 if (group >= ngroups)
891 break;
892
893 grinfo = ext4_get_group_info(sb, group);
894 /*
895 * If page is uptodate then we came here after online resize
896 * which added some new uninitialized group info structs, so
897 * we must skip all initialized uptodate buddies on the page,
898 * which may be currently in use by an allocating task.
899 */
900 if (PageUptodate(page) && !EXT4_MB_GRP_NEED_INIT(grinfo)) {
901 bh[i] = NULL;
902 continue;
903 }
904 bh[i] = ext4_read_block_bitmap_nowait(sb, group, false);
905 if (IS_ERR(bh[i])) {
906 err = PTR_ERR(bh[i]);
907 bh[i] = NULL;
908 goto out;
909 }
910 mb_debug(sb, "read bitmap for group %u\n", group);
911 }
912
913 /* wait for I/O completion */
914 for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
915 int err2;
916
917 if (!bh[i])
918 continue;
919 err2 = ext4_wait_block_bitmap(sb, group, bh[i]);
920 if (!err)
921 err = err2;
922 }
923
924 first_block = page->index * blocks_per_page;
925 for (i = 0; i < blocks_per_page; i++) {
926 group = (first_block + i) >> 1;
927 if (group >= ngroups)
928 break;
929
930 if (!bh[group - first_group])
931 /* skip initialized uptodate buddy */
932 continue;
933
934 if (!buffer_verified(bh[group - first_group]))
935 /* Skip faulty bitmaps */
936 continue;
937 err = 0;
938
939 /*
940 * data carry information regarding this
941 * particular group in the format specified
942 * above
943 *
944 */
945 data = page_address(page) + (i * blocksize);
946 bitmap = bh[group - first_group]->b_data;
947
948 /*
949 * We place the buddy block and bitmap block
950 * close together
951 */
952 if ((first_block + i) & 1) {
953 /* this is block of buddy */
954 BUG_ON(incore == NULL);
955 mb_debug(sb, "put buddy for group %u in page %lu/%x\n",
956 group, page->index, i * blocksize);
957 trace_ext4_mb_buddy_bitmap_load(sb, group);
958 grinfo = ext4_get_group_info(sb, group);
959 grinfo->bb_fragments = 0;
960 memset(grinfo->bb_counters, 0,
961 sizeof(*grinfo->bb_counters) *
962 (sb->s_blocksize_bits+2));
963 /*
964 * incore got set to the group block bitmap below
965 */
966 ext4_lock_group(sb, group);
967 /* init the buddy */
968 memset(data, 0xff, blocksize);
969 ext4_mb_generate_buddy(sb, data, incore, group);
970 ext4_unlock_group(sb, group);
971 incore = NULL;
972 } else {
973 /* this is block of bitmap */
974 BUG_ON(incore != NULL);
975 mb_debug(sb, "put bitmap for group %u in page %lu/%x\n",
976 group, page->index, i * blocksize);
977 trace_ext4_mb_bitmap_load(sb, group);
978
979 /* see comments in ext4_mb_put_pa() */
980 ext4_lock_group(sb, group);
981 memcpy(data, bitmap, blocksize);
982
983 /* mark all preallocated blks used in in-core bitmap */
984 ext4_mb_generate_from_pa(sb, data, group);
985 ext4_mb_generate_from_freelist(sb, data, group);
986 ext4_unlock_group(sb, group);
987
988 /* set incore so that the buddy information can be
989 * generated using this
990 */
991 incore = data;
992 }
993 }
994 SetPageUptodate(page);
995
996 out:
997 if (bh) {
998 for (i = 0; i < groups_per_page; i++)
999 brelse(bh[i]);
1000 if (bh != &bhs)
1001 kfree(bh);
1002 }
1003 return err;
1004 }
1005
1006 /*
1007 * Lock the buddy and bitmap pages. This make sure other parallel init_group
1008 * on the same buddy page doesn't happen whild holding the buddy page lock.
1009 * Return locked buddy and bitmap pages on e4b struct. If buddy and bitmap
1010 * are on the same page e4b->bd_buddy_page is NULL and return value is 0.
1011 */
1012 static int ext4_mb_get_buddy_page_lock(struct super_block *sb,
1013 ext4_group_t group, struct ext4_buddy *e4b, gfp_t gfp)
1014 {
1015 struct inode *inode = EXT4_SB(sb)->s_buddy_cache;
1016 int block, pnum, poff;
1017 int blocks_per_page;
1018 struct page *page;
1019
1020 e4b->bd_buddy_page = NULL;
1021 e4b->bd_bitmap_page = NULL;
1022
1023 blocks_per_page = PAGE_SIZE / sb->s_blocksize;
1024 /*
1025 * the buddy cache inode stores the block bitmap
1026 * and buddy information in consecutive blocks.
1027 * So for each group we need two blocks.
1028 */
1029 block = group * 2;
1030 pnum = block / blocks_per_page;
1031 poff = block % blocks_per_page;
1032 page = find_or_create_page(inode->i_mapping, pnum, gfp);
1033 if (!page)
1034 return -ENOMEM;
1035 BUG_ON(page->mapping != inode->i_mapping);
1036 e4b->bd_bitmap_page = page;
1037 e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
1038
1039 if (blocks_per_page >= 2) {
1040 /* buddy and bitmap are on the same page */
1041 return 0;
1042 }
1043
1044 block++;
1045 pnum = block / blocks_per_page;
1046 page = find_or_create_page(inode->i_mapping, pnum, gfp);
1047 if (!page)
1048 return -ENOMEM;
1049 BUG_ON(page->mapping != inode->i_mapping);
1050 e4b->bd_buddy_page = page;
1051 return 0;
1052 }
1053
1054 static void ext4_mb_put_buddy_page_lock(struct ext4_buddy *e4b)
1055 {
1056 if (e4b->bd_bitmap_page) {
1057 unlock_page(e4b->bd_bitmap_page);
1058 put_page(e4b->bd_bitmap_page);
1059 }
1060 if (e4b->bd_buddy_page) {
1061 unlock_page(e4b->bd_buddy_page);
1062 put_page(e4b->bd_buddy_page);
1063 }
1064 }
1065
1066 /*
1067 * Locking note: This routine calls ext4_mb_init_cache(), which takes the
1068 * block group lock of all groups for this page; do not hold the BG lock when
1069 * calling this routine!
1070 */
1071 static noinline_for_stack
1072 int ext4_mb_init_group(struct super_block *sb, ext4_group_t group, gfp_t gfp)
1073 {
1074
1075 struct ext4_group_info *this_grp;
1076 struct ext4_buddy e4b;
1077 struct page *page;
1078 int ret = 0;
1079
1080 might_sleep();
1081 mb_debug(sb, "init group %u\n", group);
1082 this_grp = ext4_get_group_info(sb, group);
1083 /*
1084 * This ensures that we don't reinit the buddy cache
1085 * page which map to the group from which we are already
1086 * allocating. If we are looking at the buddy cache we would
1087 * have taken a reference using ext4_mb_load_buddy and that
1088 * would have pinned buddy page to page cache.
1089 * The call to ext4_mb_get_buddy_page_lock will mark the
1090 * page accessed.
1091 */
1092 ret = ext4_mb_get_buddy_page_lock(sb, group, &e4b, gfp);
1093 if (ret || !EXT4_MB_GRP_NEED_INIT(this_grp)) {
1094 /*
1095 * somebody initialized the group
1096 * return without doing anything
1097 */
1098 goto err;
1099 }
1100
1101 page = e4b.bd_bitmap_page;
1102 ret = ext4_mb_init_cache(page, NULL, gfp);
1103 if (ret)
1104 goto err;
1105 if (!PageUptodate(page)) {
1106 ret = -EIO;
1107 goto err;
1108 }
1109
1110 if (e4b.bd_buddy_page == NULL) {
1111 /*
1112 * If both the bitmap and buddy are in
1113 * the same page we don't need to force
1114 * init the buddy
1115 */
1116 ret = 0;
1117 goto err;
1118 }
1119 /* init buddy cache */
1120 page = e4b.bd_buddy_page;
1121 ret = ext4_mb_init_cache(page, e4b.bd_bitmap, gfp);
1122 if (ret)
1123 goto err;
1124 if (!PageUptodate(page)) {
1125 ret = -EIO;
1126 goto err;
1127 }
1128 err:
1129 ext4_mb_put_buddy_page_lock(&e4b);
1130 return ret;
1131 }
1132
1133 /*
1134 * Locking note: This routine calls ext4_mb_init_cache(), which takes the
1135 * block group lock of all groups for this page; do not hold the BG lock when
1136 * calling this routine!
1137 */
1138 static noinline_for_stack int
1139 ext4_mb_load_buddy_gfp(struct super_block *sb, ext4_group_t group,
1140 struct ext4_buddy *e4b, gfp_t gfp)
1141 {
1142 int blocks_per_page;
1143 int block;
1144 int pnum;
1145 int poff;
1146 struct page *page;
1147 int ret;
1148 struct ext4_group_info *grp;
1149 struct ext4_sb_info *sbi = EXT4_SB(sb);
1150 struct inode *inode = sbi->s_buddy_cache;
1151
1152 might_sleep();
1153 mb_debug(sb, "load group %u\n", group);
1154
1155 blocks_per_page = PAGE_SIZE / sb->s_blocksize;
1156 grp = ext4_get_group_info(sb, group);
1157
1158 e4b->bd_blkbits = sb->s_blocksize_bits;
1159 e4b->bd_info = grp;
1160 e4b->bd_sb = sb;
1161 e4b->bd_group = group;
1162 e4b->bd_buddy_page = NULL;
1163 e4b->bd_bitmap_page = NULL;
1164
1165 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
1166 /*
1167 * we need full data about the group
1168 * to make a good selection
1169 */
1170 ret = ext4_mb_init_group(sb, group, gfp);
1171 if (ret)
1172 return ret;
1173 }
1174
1175 /*
1176 * the buddy cache inode stores the block bitmap
1177 * and buddy information in consecutive blocks.
1178 * So for each group we need two blocks.
1179 */
1180 block = group * 2;
1181 pnum = block / blocks_per_page;
1182 poff = block % blocks_per_page;
1183
1184 /* we could use find_or_create_page(), but it locks page
1185 * what we'd like to avoid in fast path ... */
1186 page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED);
1187 if (page == NULL || !PageUptodate(page)) {
1188 if (page)
1189 /*
1190 * drop the page reference and try
1191 * to get the page with lock. If we
1192 * are not uptodate that implies
1193 * somebody just created the page but
1194 * is yet to initialize the same. So
1195 * wait for it to initialize.
1196 */
1197 put_page(page);
1198 page = find_or_create_page(inode->i_mapping, pnum, gfp);
1199 if (page) {
1200 BUG_ON(page->mapping != inode->i_mapping);
1201 if (!PageUptodate(page)) {
1202 ret = ext4_mb_init_cache(page, NULL, gfp);
1203 if (ret) {
1204 unlock_page(page);
1205 goto err;
1206 }
1207 mb_cmp_bitmaps(e4b, page_address(page) +
1208 (poff * sb->s_blocksize));
1209 }
1210 unlock_page(page);
1211 }
1212 }
1213 if (page == NULL) {
1214 ret = -ENOMEM;
1215 goto err;
1216 }
1217 if (!PageUptodate(page)) {
1218 ret = -EIO;
1219 goto err;
1220 }
1221
1222 /* Pages marked accessed already */
1223 e4b->bd_bitmap_page = page;
1224 e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
1225
1226 block++;
1227 pnum = block / blocks_per_page;
1228 poff = block % blocks_per_page;
1229
1230 page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED);
1231 if (page == NULL || !PageUptodate(page)) {
1232 if (page)
1233 put_page(page);
1234 page = find_or_create_page(inode->i_mapping, pnum, gfp);
1235 if (page) {
1236 BUG_ON(page->mapping != inode->i_mapping);
1237 if (!PageUptodate(page)) {
1238 ret = ext4_mb_init_cache(page, e4b->bd_bitmap,
1239 gfp);
1240 if (ret) {
1241 unlock_page(page);
1242 goto err;
1243 }
1244 }
1245 unlock_page(page);
1246 }
1247 }
1248 if (page == NULL) {
1249 ret = -ENOMEM;
1250 goto err;
1251 }
1252 if (!PageUptodate(page)) {
1253 ret = -EIO;
1254 goto err;
1255 }
1256
1257 /* Pages marked accessed already */
1258 e4b->bd_buddy_page = page;
1259 e4b->bd_buddy = page_address(page) + (poff * sb->s_blocksize);
1260
1261 return 0;
1262
1263 err:
1264 if (page)
1265 put_page(page);
1266 if (e4b->bd_bitmap_page)
1267 put_page(e4b->bd_bitmap_page);
1268 if (e4b->bd_buddy_page)
1269 put_page(e4b->bd_buddy_page);
1270 e4b->bd_buddy = NULL;
1271 e4b->bd_bitmap = NULL;
1272 return ret;
1273 }
1274
1275 static int ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group,
1276 struct ext4_buddy *e4b)
1277 {
1278 return ext4_mb_load_buddy_gfp(sb, group, e4b, GFP_NOFS);
1279 }
1280
1281 static void ext4_mb_unload_buddy(struct ext4_buddy *e4b)
1282 {
1283 if (e4b->bd_bitmap_page)
1284 put_page(e4b->bd_bitmap_page);
1285 if (e4b->bd_buddy_page)
1286 put_page(e4b->bd_buddy_page);
1287 }
1288
1289
1290 static int mb_find_order_for_block(struct ext4_buddy *e4b, int block)
1291 {
1292 int order = 1, max;
1293 void *bb;
1294
1295 BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
1296 BUG_ON(block >= (1 << (e4b->bd_blkbits + 3)));
1297
1298 while (order <= e4b->bd_blkbits + 1) {
1299 bb = mb_find_buddy(e4b, order, &max);
1300 if (!mb_test_bit(block >> order, bb)) {
1301 /* this block is part of buddy of order 'order' */
1302 return order;
1303 }
1304 order++;
1305 }
1306 return 0;
1307 }
1308
1309 static void mb_clear_bits(void *bm, int cur, int len)
1310 {
1311 __u32 *addr;
1312
1313 len = cur + len;
1314 while (cur < len) {
1315 if ((cur & 31) == 0 && (len - cur) >= 32) {
1316 /* fast path: clear whole word at once */
1317 addr = bm + (cur >> 3);
1318 *addr = 0;
1319 cur += 32;
1320 continue;
1321 }
1322 mb_clear_bit(cur, bm);
1323 cur++;
1324 }
1325 }
1326
1327 /* clear bits in given range
1328 * will return first found zero bit if any, -1 otherwise
1329 */
1330 static int mb_test_and_clear_bits(void *bm, int cur, int len)
1331 {
1332 __u32 *addr;
1333 int zero_bit = -1;
1334
1335 len = cur + len;
1336 while (cur < len) {
1337 if ((cur & 31) == 0 && (len - cur) >= 32) {
1338 /* fast path: clear whole word at once */
1339 addr = bm + (cur >> 3);
1340 if (*addr != (__u32)(-1) && zero_bit == -1)
1341 zero_bit = cur + mb_find_next_zero_bit(addr, 32, 0);
1342 *addr = 0;
1343 cur += 32;
1344 continue;
1345 }
1346 if (!mb_test_and_clear_bit(cur, bm) && zero_bit == -1)
1347 zero_bit = cur;
1348 cur++;
1349 }
1350
1351 return zero_bit;
1352 }
1353
1354 void ext4_set_bits(void *bm, int cur, int len)
1355 {
1356 __u32 *addr;
1357
1358 len = cur + len;
1359 while (cur < len) {
1360 if ((cur & 31) == 0 && (len - cur) >= 32) {
1361 /* fast path: set whole word at once */
1362 addr = bm + (cur >> 3);
1363 *addr = 0xffffffff;
1364 cur += 32;
1365 continue;
1366 }
1367 mb_set_bit(cur, bm);
1368 cur++;
1369 }
1370 }
1371
1372 static inline int mb_buddy_adjust_border(int* bit, void* bitmap, int side)
1373 {
1374 if (mb_test_bit(*bit + side, bitmap)) {
1375 mb_clear_bit(*bit, bitmap);
1376 (*bit) -= side;
1377 return 1;
1378 }
1379 else {
1380 (*bit) += side;
1381 mb_set_bit(*bit, bitmap);
1382 return -1;
1383 }
1384 }
1385
1386 static void mb_buddy_mark_free(struct ext4_buddy *e4b, int first, int last)
1387 {
1388 int max;
1389 int order = 1;
1390 void *buddy = mb_find_buddy(e4b, order, &max);
1391
1392 while (buddy) {
1393 void *buddy2;
1394
1395 /* Bits in range [first; last] are known to be set since
1396 * corresponding blocks were allocated. Bits in range
1397 * (first; last) will stay set because they form buddies on
1398 * upper layer. We just deal with borders if they don't
1399 * align with upper layer and then go up.
1400 * Releasing entire group is all about clearing
1401 * single bit of highest order buddy.
1402 */
1403
1404 /* Example:
1405 * ---------------------------------
1406 * | 1 | 1 | 1 | 1 |
1407 * ---------------------------------
1408 * | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
1409 * ---------------------------------
1410 * 0 1 2 3 4 5 6 7
1411 * \_____________________/
1412 *
1413 * Neither [1] nor [6] is aligned to above layer.
1414 * Left neighbour [0] is free, so mark it busy,
1415 * decrease bb_counters and extend range to
1416 * [0; 6]
1417 * Right neighbour [7] is busy. It can't be coaleasced with [6], so
1418 * mark [6] free, increase bb_counters and shrink range to
1419 * [0; 5].
1420 * Then shift range to [0; 2], go up and do the same.
1421 */
1422
1423
1424 if (first & 1)
1425 e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&first, buddy, -1);
1426 if (!(last & 1))
1427 e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&last, buddy, 1);
1428 if (first > last)
1429 break;
1430 order++;
1431
1432 if (first == last || !(buddy2 = mb_find_buddy(e4b, order, &max))) {
1433 mb_clear_bits(buddy, first, last - first + 1);
1434 e4b->bd_info->bb_counters[order - 1] += last - first + 1;
1435 break;
1436 }
1437 first >>= 1;
1438 last >>= 1;
1439 buddy = buddy2;
1440 }
1441 }
1442
1443 static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b,
1444 int first, int count)
1445 {
1446 int left_is_free = 0;
1447 int right_is_free = 0;
1448 int block;
1449 int last = first + count - 1;
1450 struct super_block *sb = e4b->bd_sb;
1451
1452 if (WARN_ON(count == 0))
1453 return;
1454 BUG_ON(last >= (sb->s_blocksize << 3));
1455 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
1456 /* Don't bother if the block group is corrupt. */
1457 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info)))
1458 return;
1459
1460 mb_check_buddy(e4b);
1461 mb_free_blocks_double(inode, e4b, first, count);
1462
1463 this_cpu_inc(discard_pa_seq);
1464 e4b->bd_info->bb_free += count;
1465 if (first < e4b->bd_info->bb_first_free)
1466 e4b->bd_info->bb_first_free = first;
1467
1468 /* access memory sequentially: check left neighbour,
1469 * clear range and then check right neighbour
1470 */
1471 if (first != 0)
1472 left_is_free = !mb_test_bit(first - 1, e4b->bd_bitmap);
1473 block = mb_test_and_clear_bits(e4b->bd_bitmap, first, count);
1474 if (last + 1 < EXT4_SB(sb)->s_mb_maxs[0])
1475 right_is_free = !mb_test_bit(last + 1, e4b->bd_bitmap);
1476
1477 if (unlikely(block != -1)) {
1478 struct ext4_sb_info *sbi = EXT4_SB(sb);
1479 ext4_fsblk_t blocknr;
1480
1481 blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
1482 blocknr += EXT4_C2B(sbi, block);
1483 if (!(sbi->s_mount_state & EXT4_FC_REPLAY)) {
1484 ext4_grp_locked_error(sb, e4b->bd_group,
1485 inode ? inode->i_ino : 0,
1486 blocknr,
1487 "freeing already freed block (bit %u); block bitmap corrupt.",
1488 block);
1489 ext4_mark_group_bitmap_corrupted(
1490 sb, e4b->bd_group,
1491 EXT4_GROUP_INFO_BBITMAP_CORRUPT);
1492 }
1493 goto done;
1494 }
1495
1496 /* let's maintain fragments counter */
1497 if (left_is_free && right_is_free)
1498 e4b->bd_info->bb_fragments--;
1499 else if (!left_is_free && !right_is_free)
1500 e4b->bd_info->bb_fragments++;
1501
1502 /* buddy[0] == bd_bitmap is a special case, so handle
1503 * it right away and let mb_buddy_mark_free stay free of
1504 * zero order checks.
1505 * Check if neighbours are to be coaleasced,
1506 * adjust bitmap bb_counters and borders appropriately.
1507 */
1508 if (first & 1) {
1509 first += !left_is_free;
1510 e4b->bd_info->bb_counters[0] += left_is_free ? -1 : 1;
1511 }
1512 if (!(last & 1)) {
1513 last -= !right_is_free;
1514 e4b->bd_info->bb_counters[0] += right_is_free ? -1 : 1;
1515 }
1516
1517 if (first <= last)
1518 mb_buddy_mark_free(e4b, first >> 1, last >> 1);
1519
1520 done:
1521 mb_set_largest_free_order(sb, e4b->bd_info);
1522 mb_check_buddy(e4b);
1523 }
1524
1525 static int mb_find_extent(struct ext4_buddy *e4b, int block,
1526 int needed, struct ext4_free_extent *ex)
1527 {
1528 int next = block;
1529 int max, order;
1530 void *buddy;
1531
1532 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1533 BUG_ON(ex == NULL);
1534
1535 buddy = mb_find_buddy(e4b, 0, &max);
1536 BUG_ON(buddy == NULL);
1537 BUG_ON(block >= max);
1538 if (mb_test_bit(block, buddy)) {
1539 ex->fe_len = 0;
1540 ex->fe_start = 0;
1541 ex->fe_group = 0;
1542 return 0;
1543 }
1544
1545 /* find actual order */
1546 order = mb_find_order_for_block(e4b, block);
1547 block = block >> order;
1548
1549 ex->fe_len = 1 << order;
1550 ex->fe_start = block << order;
1551 ex->fe_group = e4b->bd_group;
1552
1553 /* calc difference from given start */
1554 next = next - ex->fe_start;
1555 ex->fe_len -= next;
1556 ex->fe_start += next;
1557
1558 while (needed > ex->fe_len &&
1559 mb_find_buddy(e4b, order, &max)) {
1560
1561 if (block + 1 >= max)
1562 break;
1563
1564 next = (block + 1) * (1 << order);
1565 if (mb_test_bit(next, e4b->bd_bitmap))
1566 break;
1567
1568 order = mb_find_order_for_block(e4b, next);
1569
1570 block = next >> order;
1571 ex->fe_len += 1 << order;
1572 }
1573
1574 if (ex->fe_start + ex->fe_len > EXT4_CLUSTERS_PER_GROUP(e4b->bd_sb)) {
1575 /* Should never happen! (but apparently sometimes does?!?) */
1576 WARN_ON(1);
1577 ext4_error(e4b->bd_sb, "corruption or bug in mb_find_extent "
1578 "block=%d, order=%d needed=%d ex=%u/%d/%d@%u",
1579 block, order, needed, ex->fe_group, ex->fe_start,
1580 ex->fe_len, ex->fe_logical);
1581 ex->fe_len = 0;
1582 ex->fe_start = 0;
1583 ex->fe_group = 0;
1584 }
1585 return ex->fe_len;
1586 }
1587
1588 static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex)
1589 {
1590 int ord;
1591 int mlen = 0;
1592 int max = 0;
1593 int cur;
1594 int start = ex->fe_start;
1595 int len = ex->fe_len;
1596 unsigned ret = 0;
1597 int len0 = len;
1598 void *buddy;
1599
1600 BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3));
1601 BUG_ON(e4b->bd_group != ex->fe_group);
1602 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1603 mb_check_buddy(e4b);
1604 mb_mark_used_double(e4b, start, len);
1605
1606 this_cpu_inc(discard_pa_seq);
1607 e4b->bd_info->bb_free -= len;
1608 if (e4b->bd_info->bb_first_free == start)
1609 e4b->bd_info->bb_first_free += len;
1610
1611 /* let's maintain fragments counter */
1612 if (start != 0)
1613 mlen = !mb_test_bit(start - 1, e4b->bd_bitmap);
1614 if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0])
1615 max = !mb_test_bit(start + len, e4b->bd_bitmap);
1616 if (mlen && max)
1617 e4b->bd_info->bb_fragments++;
1618 else if (!mlen && !max)
1619 e4b->bd_info->bb_fragments--;
1620
1621 /* let's maintain buddy itself */
1622 while (len) {
1623 ord = mb_find_order_for_block(e4b, start);
1624
1625 if (((start >> ord) << ord) == start && len >= (1 << ord)) {
1626 /* the whole chunk may be allocated at once! */
1627 mlen = 1 << ord;
1628 buddy = mb_find_buddy(e4b, ord, &max);
1629 BUG_ON((start >> ord) >= max);
1630 mb_set_bit(start >> ord, buddy);
1631 e4b->bd_info->bb_counters[ord]--;
1632 start += mlen;
1633 len -= mlen;
1634 BUG_ON(len < 0);
1635 continue;
1636 }
1637
1638 /* store for history */
1639 if (ret == 0)
1640 ret = len | (ord << 16);
1641
1642 /* we have to split large buddy */
1643 BUG_ON(ord <= 0);
1644 buddy = mb_find_buddy(e4b, ord, &max);
1645 mb_set_bit(start >> ord, buddy);
1646 e4b->bd_info->bb_counters[ord]--;
1647
1648 ord--;
1649 cur = (start >> ord) & ~1U;
1650 buddy = mb_find_buddy(e4b, ord, &max);
1651 mb_clear_bit(cur, buddy);
1652 mb_clear_bit(cur + 1, buddy);
1653 e4b->bd_info->bb_counters[ord]++;
1654 e4b->bd_info->bb_counters[ord]++;
1655 }
1656 mb_set_largest_free_order(e4b->bd_sb, e4b->bd_info);
1657
1658 ext4_set_bits(e4b->bd_bitmap, ex->fe_start, len0);
1659 mb_check_buddy(e4b);
1660
1661 return ret;
1662 }
1663
1664 /*
1665 * Must be called under group lock!
1666 */
1667 static void ext4_mb_use_best_found(struct ext4_allocation_context *ac,
1668 struct ext4_buddy *e4b)
1669 {
1670 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1671 int ret;
1672
1673 BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group);
1674 BUG_ON(ac->ac_status == AC_STATUS_FOUND);
1675
1676 ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len);
1677 ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical;
1678 ret = mb_mark_used(e4b, &ac->ac_b_ex);
1679
1680 /* preallocation can change ac_b_ex, thus we store actually
1681 * allocated blocks for history */
1682 ac->ac_f_ex = ac->ac_b_ex;
1683
1684 ac->ac_status = AC_STATUS_FOUND;
1685 ac->ac_tail = ret & 0xffff;
1686 ac->ac_buddy = ret >> 16;
1687
1688 /*
1689 * take the page reference. We want the page to be pinned
1690 * so that we don't get a ext4_mb_init_cache_call for this
1691 * group until we update the bitmap. That would mean we
1692 * double allocate blocks. The reference is dropped
1693 * in ext4_mb_release_context
1694 */
1695 ac->ac_bitmap_page = e4b->bd_bitmap_page;
1696 get_page(ac->ac_bitmap_page);
1697 ac->ac_buddy_page = e4b->bd_buddy_page;
1698 get_page(ac->ac_buddy_page);
1699 /* store last allocated for subsequent stream allocation */
1700 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
1701 spin_lock(&sbi->s_md_lock);
1702 sbi->s_mb_last_group = ac->ac_f_ex.fe_group;
1703 sbi->s_mb_last_start = ac->ac_f_ex.fe_start;
1704 spin_unlock(&sbi->s_md_lock);
1705 }
1706 /*
1707 * As we've just preallocated more space than
1708 * user requested originally, we store allocated
1709 * space in a special descriptor.
1710 */
1711 if (ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len)
1712 ext4_mb_new_preallocation(ac);
1713
1714 }
1715
1716 static void ext4_mb_check_limits(struct ext4_allocation_context *ac,
1717 struct ext4_buddy *e4b,
1718 int finish_group)
1719 {
1720 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1721 struct ext4_free_extent *bex = &ac->ac_b_ex;
1722 struct ext4_free_extent *gex = &ac->ac_g_ex;
1723 struct ext4_free_extent ex;
1724 int max;
1725
1726 if (ac->ac_status == AC_STATUS_FOUND)
1727 return;
1728 /*
1729 * We don't want to scan for a whole year
1730 */
1731 if (ac->ac_found > sbi->s_mb_max_to_scan &&
1732 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1733 ac->ac_status = AC_STATUS_BREAK;
1734 return;
1735 }
1736
1737 /*
1738 * Haven't found good chunk so far, let's continue
1739 */
1740 if (bex->fe_len < gex->fe_len)
1741 return;
1742
1743 if ((finish_group || ac->ac_found > sbi->s_mb_min_to_scan)
1744 && bex->fe_group == e4b->bd_group) {
1745 /* recheck chunk's availability - we don't know
1746 * when it was found (within this lock-unlock
1747 * period or not) */
1748 max = mb_find_extent(e4b, bex->fe_start, gex->fe_len, &ex);
1749 if (max >= gex->fe_len) {
1750 ext4_mb_use_best_found(ac, e4b);
1751 return;
1752 }
1753 }
1754 }
1755
1756 /*
1757 * The routine checks whether found extent is good enough. If it is,
1758 * then the extent gets marked used and flag is set to the context
1759 * to stop scanning. Otherwise, the extent is compared with the
1760 * previous found extent and if new one is better, then it's stored
1761 * in the context. Later, the best found extent will be used, if
1762 * mballoc can't find good enough extent.
1763 *
1764 * FIXME: real allocation policy is to be designed yet!
1765 */
1766 static void ext4_mb_measure_extent(struct ext4_allocation_context *ac,
1767 struct ext4_free_extent *ex,
1768 struct ext4_buddy *e4b)
1769 {
1770 struct ext4_free_extent *bex = &ac->ac_b_ex;
1771 struct ext4_free_extent *gex = &ac->ac_g_ex;
1772
1773 BUG_ON(ex->fe_len <= 0);
1774 BUG_ON(ex->fe_len > EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
1775 BUG_ON(ex->fe_start >= EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
1776 BUG_ON(ac->ac_status != AC_STATUS_CONTINUE);
1777
1778 ac->ac_found++;
1779
1780 /*
1781 * The special case - take what you catch first
1782 */
1783 if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1784 *bex = *ex;
1785 ext4_mb_use_best_found(ac, e4b);
1786 return;
1787 }
1788
1789 /*
1790 * Let's check whether the chuck is good enough
1791 */
1792 if (ex->fe_len == gex->fe_len) {
1793 *bex = *ex;
1794 ext4_mb_use_best_found(ac, e4b);
1795 return;
1796 }
1797
1798 /*
1799 * If this is first found extent, just store it in the context
1800 */
1801 if (bex->fe_len == 0) {
1802 *bex = *ex;
1803 return;
1804 }
1805
1806 /*
1807 * If new found extent is better, store it in the context
1808 */
1809 if (bex->fe_len < gex->fe_len) {
1810 /* if the request isn't satisfied, any found extent
1811 * larger than previous best one is better */
1812 if (ex->fe_len > bex->fe_len)
1813 *bex = *ex;
1814 } else if (ex->fe_len > gex->fe_len) {
1815 /* if the request is satisfied, then we try to find
1816 * an extent that still satisfy the request, but is
1817 * smaller than previous one */
1818 if (ex->fe_len < bex->fe_len)
1819 *bex = *ex;
1820 }
1821
1822 ext4_mb_check_limits(ac, e4b, 0);
1823 }
1824
1825 static noinline_for_stack
1826 int ext4_mb_try_best_found(struct ext4_allocation_context *ac,
1827 struct ext4_buddy *e4b)
1828 {
1829 struct ext4_free_extent ex = ac->ac_b_ex;
1830 ext4_group_t group = ex.fe_group;
1831 int max;
1832 int err;
1833
1834 BUG_ON(ex.fe_len <= 0);
1835 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1836 if (err)
1837 return err;
1838
1839 ext4_lock_group(ac->ac_sb, group);
1840 max = mb_find_extent(e4b, ex.fe_start, ex.fe_len, &ex);
1841
1842 if (max > 0) {
1843 ac->ac_b_ex = ex;
1844 ext4_mb_use_best_found(ac, e4b);
1845 }
1846
1847 ext4_unlock_group(ac->ac_sb, group);
1848 ext4_mb_unload_buddy(e4b);
1849
1850 return 0;
1851 }
1852
1853 static noinline_for_stack
1854 int ext4_mb_find_by_goal(struct ext4_allocation_context *ac,
1855 struct ext4_buddy *e4b)
1856 {
1857 ext4_group_t group = ac->ac_g_ex.fe_group;
1858 int max;
1859 int err;
1860 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1861 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
1862 struct ext4_free_extent ex;
1863
1864 if (!(ac->ac_flags & EXT4_MB_HINT_TRY_GOAL))
1865 return 0;
1866 if (grp->bb_free == 0)
1867 return 0;
1868
1869 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1870 if (err)
1871 return err;
1872
1873 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info))) {
1874 ext4_mb_unload_buddy(e4b);
1875 return 0;
1876 }
1877
1878 ext4_lock_group(ac->ac_sb, group);
1879 max = mb_find_extent(e4b, ac->ac_g_ex.fe_start,
1880 ac->ac_g_ex.fe_len, &ex);
1881 ex.fe_logical = 0xDEADFA11; /* debug value */
1882
1883 if (max >= ac->ac_g_ex.fe_len && ac->ac_g_ex.fe_len == sbi->s_stripe) {
1884 ext4_fsblk_t start;
1885
1886 start = ext4_group_first_block_no(ac->ac_sb, e4b->bd_group) +
1887 ex.fe_start;
1888 /* use do_div to get remainder (would be 64-bit modulo) */
1889 if (do_div(start, sbi->s_stripe) == 0) {
1890 ac->ac_found++;
1891 ac->ac_b_ex = ex;
1892 ext4_mb_use_best_found(ac, e4b);
1893 }
1894 } else if (max >= ac->ac_g_ex.fe_len) {
1895 BUG_ON(ex.fe_len <= 0);
1896 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1897 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1898 ac->ac_found++;
1899 ac->ac_b_ex = ex;
1900 ext4_mb_use_best_found(ac, e4b);
1901 } else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) {
1902 /* Sometimes, caller may want to merge even small
1903 * number of blocks to an existing extent */
1904 BUG_ON(ex.fe_len <= 0);
1905 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1906 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1907 ac->ac_found++;
1908 ac->ac_b_ex = ex;
1909 ext4_mb_use_best_found(ac, e4b);
1910 }
1911 ext4_unlock_group(ac->ac_sb, group);
1912 ext4_mb_unload_buddy(e4b);
1913
1914 return 0;
1915 }
1916
1917 /*
1918 * The routine scans buddy structures (not bitmap!) from given order
1919 * to max order and tries to find big enough chunk to satisfy the req
1920 */
1921 static noinline_for_stack
1922 void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac,
1923 struct ext4_buddy *e4b)
1924 {
1925 struct super_block *sb = ac->ac_sb;
1926 struct ext4_group_info *grp = e4b->bd_info;
1927 void *buddy;
1928 int i;
1929 int k;
1930 int max;
1931
1932 BUG_ON(ac->ac_2order <= 0);
1933 for (i = ac->ac_2order; i <= sb->s_blocksize_bits + 1; i++) {
1934 if (grp->bb_counters[i] == 0)
1935 continue;
1936
1937 buddy = mb_find_buddy(e4b, i, &max);
1938 BUG_ON(buddy == NULL);
1939
1940 k = mb_find_next_zero_bit(buddy, max, 0);
1941 if (k >= max) {
1942 ext4_grp_locked_error(ac->ac_sb, e4b->bd_group, 0, 0,
1943 "%d free clusters of order %d. But found 0",
1944 grp->bb_counters[i], i);
1945 ext4_mark_group_bitmap_corrupted(ac->ac_sb,
1946 e4b->bd_group,
1947 EXT4_GROUP_INFO_BBITMAP_CORRUPT);
1948 break;
1949 }
1950 ac->ac_found++;
1951
1952 ac->ac_b_ex.fe_len = 1 << i;
1953 ac->ac_b_ex.fe_start = k << i;
1954 ac->ac_b_ex.fe_group = e4b->bd_group;
1955
1956 ext4_mb_use_best_found(ac, e4b);
1957
1958 BUG_ON(ac->ac_f_ex.fe_len != ac->ac_g_ex.fe_len);
1959
1960 if (EXT4_SB(sb)->s_mb_stats)
1961 atomic_inc(&EXT4_SB(sb)->s_bal_2orders);
1962
1963 break;
1964 }
1965 }
1966
1967 /*
1968 * The routine scans the group and measures all found extents.
1969 * In order to optimize scanning, caller must pass number of
1970 * free blocks in the group, so the routine can know upper limit.
1971 */
1972 static noinline_for_stack
1973 void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac,
1974 struct ext4_buddy *e4b)
1975 {
1976 struct super_block *sb = ac->ac_sb;
1977 void *bitmap = e4b->bd_bitmap;
1978 struct ext4_free_extent ex;
1979 int i;
1980 int free;
1981
1982 free = e4b->bd_info->bb_free;
1983 if (WARN_ON(free <= 0))
1984 return;
1985
1986 i = e4b->bd_info->bb_first_free;
1987
1988 while (free && ac->ac_status == AC_STATUS_CONTINUE) {
1989 i = mb_find_next_zero_bit(bitmap,
1990 EXT4_CLUSTERS_PER_GROUP(sb), i);
1991 if (i >= EXT4_CLUSTERS_PER_GROUP(sb)) {
1992 /*
1993 * IF we have corrupt bitmap, we won't find any
1994 * free blocks even though group info says we
1995 * have free blocks
1996 */
1997 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
1998 "%d free clusters as per "
1999 "group info. But bitmap says 0",
2000 free);
2001 ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
2002 EXT4_GROUP_INFO_BBITMAP_CORRUPT);
2003 break;
2004 }
2005
2006 mb_find_extent(e4b, i, ac->ac_g_ex.fe_len, &ex);
2007 if (WARN_ON(ex.fe_len <= 0))
2008 break;
2009 if (free < ex.fe_len) {
2010 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
2011 "%d free clusters as per "
2012 "group info. But got %d blocks",
2013 free, ex.fe_len);
2014 ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
2015 EXT4_GROUP_INFO_BBITMAP_CORRUPT);
2016 /*
2017 * The number of free blocks differs. This mostly
2018 * indicate that the bitmap is corrupt. So exit
2019 * without claiming the space.
2020 */
2021 break;
2022 }
2023 ex.fe_logical = 0xDEADC0DE; /* debug value */
2024 ext4_mb_measure_extent(ac, &ex, e4b);
2025
2026 i += ex.fe_len;
2027 free -= ex.fe_len;
2028 }
2029
2030 ext4_mb_check_limits(ac, e4b, 1);
2031 }
2032
2033 /*
2034 * This is a special case for storages like raid5
2035 * we try to find stripe-aligned chunks for stripe-size-multiple requests
2036 */
2037 static noinline_for_stack
2038 void ext4_mb_scan_aligned(struct ext4_allocation_context *ac,
2039 struct ext4_buddy *e4b)
2040 {
2041 struct super_block *sb = ac->ac_sb;
2042 struct ext4_sb_info *sbi = EXT4_SB(sb);
2043 void *bitmap = e4b->bd_bitmap;
2044 struct ext4_free_extent ex;
2045 ext4_fsblk_t first_group_block;
2046 ext4_fsblk_t a;
2047 ext4_grpblk_t i;
2048 int max;
2049
2050 BUG_ON(sbi->s_stripe == 0);
2051
2052 /* find first stripe-aligned block in group */
2053 first_group_block = ext4_group_first_block_no(sb, e4b->bd_group);
2054
2055 a = first_group_block + sbi->s_stripe - 1;
2056 do_div(a, sbi->s_stripe);
2057 i = (a * sbi->s_stripe) - first_group_block;
2058
2059 while (i < EXT4_CLUSTERS_PER_GROUP(sb)) {
2060 if (!mb_test_bit(i, bitmap)) {
2061 max = mb_find_extent(e4b, i, sbi->s_stripe, &ex);
2062 if (max >= sbi->s_stripe) {
2063 ac->ac_found++;
2064 ex.fe_logical = 0xDEADF00D; /* debug value */
2065 ac->ac_b_ex = ex;
2066 ext4_mb_use_best_found(ac, e4b);
2067 break;
2068 }
2069 }
2070 i += sbi->s_stripe;
2071 }
2072 }
2073
2074 /*
2075 * This is also called BEFORE we load the buddy bitmap.
2076 * Returns either 1 or 0 indicating that the group is either suitable
2077 * for the allocation or not.
2078 */
2079 static bool ext4_mb_good_group(struct ext4_allocation_context *ac,
2080 ext4_group_t group, int cr)
2081 {
2082 ext4_grpblk_t free, fragments;
2083 int flex_size = ext4_flex_bg_size(EXT4_SB(ac->ac_sb));
2084 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
2085
2086 BUG_ON(cr < 0 || cr >= 4);
2087
2088 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(grp)))
2089 return false;
2090
2091 free = grp->bb_free;
2092 if (free == 0)
2093 return false;
2094
2095 fragments = grp->bb_fragments;
2096 if (fragments == 0)
2097 return false;
2098
2099 switch (cr) {
2100 case 0:
2101 BUG_ON(ac->ac_2order == 0);
2102
2103 /* Avoid using the first bg of a flexgroup for data files */
2104 if ((ac->ac_flags & EXT4_MB_HINT_DATA) &&
2105 (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) &&
2106 ((group % flex_size) == 0))
2107 return false;
2108
2109 if (free < ac->ac_g_ex.fe_len)
2110 return false;
2111
2112 if (ac->ac_2order > ac->ac_sb->s_blocksize_bits+1)
2113 return true;
2114
2115 if (grp->bb_largest_free_order < ac->ac_2order)
2116 return false;
2117
2118 return true;
2119 case 1:
2120 if ((free / fragments) >= ac->ac_g_ex.fe_len)
2121 return true;
2122 break;
2123 case 2:
2124 if (free >= ac->ac_g_ex.fe_len)
2125 return true;
2126 break;
2127 case 3:
2128 return true;
2129 default:
2130 BUG();
2131 }
2132
2133 return false;
2134 }
2135
2136 /*
2137 * This could return negative error code if something goes wrong
2138 * during ext4_mb_init_group(). This should not be called with
2139 * ext4_lock_group() held.
2140 */
2141 static int ext4_mb_good_group_nolock(struct ext4_allocation_context *ac,
2142 ext4_group_t group, int cr)
2143 {
2144 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
2145 struct super_block *sb = ac->ac_sb;
2146 struct ext4_sb_info *sbi = EXT4_SB(sb);
2147 bool should_lock = ac->ac_flags & EXT4_MB_STRICT_CHECK;
2148 ext4_grpblk_t free;
2149 int ret = 0;
2150
2151 if (should_lock)
2152 ext4_lock_group(sb, group);
2153 free = grp->bb_free;
2154 if (free == 0)
2155 goto out;
2156 if (cr <= 2 && free < ac->ac_g_ex.fe_len)
2157 goto out;
2158 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(grp)))
2159 goto out;
2160 if (should_lock)
2161 ext4_unlock_group(sb, group);
2162
2163 /* We only do this if the grp has never been initialized */
2164 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
2165 struct ext4_group_desc *gdp =
2166 ext4_get_group_desc(sb, group, NULL);
2167 int ret;
2168
2169 /* cr=0/1 is a very optimistic search to find large
2170 * good chunks almost for free. If buddy data is not
2171 * ready, then this optimization makes no sense. But
2172 * we never skip the first block group in a flex_bg,
2173 * since this gets used for metadata block allocation,
2174 * and we want to make sure we locate metadata blocks
2175 * in the first block group in the flex_bg if possible.
2176 */
2177 if (cr < 2 &&
2178 (!sbi->s_log_groups_per_flex ||
2179 ((group & ((1 << sbi->s_log_groups_per_flex) - 1)) != 0)) &&
2180 !(ext4_has_group_desc_csum(sb) &&
2181 (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))))
2182 return 0;
2183 ret = ext4_mb_init_group(sb, group, GFP_NOFS);
2184 if (ret)
2185 return ret;
2186 }
2187
2188 if (should_lock)
2189 ext4_lock_group(sb, group);
2190 ret = ext4_mb_good_group(ac, group, cr);
2191 out:
2192 if (should_lock)
2193 ext4_unlock_group(sb, group);
2194 return ret;
2195 }
2196
2197 /*
2198 * Start prefetching @nr block bitmaps starting at @group.
2199 * Return the next group which needs to be prefetched.
2200 */
2201 ext4_group_t ext4_mb_prefetch(struct super_block *sb, ext4_group_t group,
2202 unsigned int nr, int *cnt)
2203 {
2204 ext4_group_t ngroups = ext4_get_groups_count(sb);
2205 struct buffer_head *bh;
2206 struct blk_plug plug;
2207
2208 blk_start_plug(&plug);
2209 while (nr-- > 0) {
2210 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group,
2211 NULL);
2212 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
2213
2214 /*
2215 * Prefetch block groups with free blocks; but don't
2216 * bother if it is marked uninitialized on disk, since
2217 * it won't require I/O to read. Also only try to
2218 * prefetch once, so we avoid getblk() call, which can
2219 * be expensive.
2220 */
2221 if (!EXT4_MB_GRP_TEST_AND_SET_READ(grp) &&
2222 EXT4_MB_GRP_NEED_INIT(grp) &&
2223 ext4_free_group_clusters(sb, gdp) > 0 &&
2224 !(ext4_has_group_desc_csum(sb) &&
2225 (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)))) {
2226 bh = ext4_read_block_bitmap_nowait(sb, group, true);
2227 if (bh && !IS_ERR(bh)) {
2228 if (!buffer_uptodate(bh) && cnt)
2229 (*cnt)++;
2230 brelse(bh);
2231 }
2232 }
2233 if (++group >= ngroups)
2234 group = 0;
2235 }
2236 blk_finish_plug(&plug);
2237 return group;
2238 }
2239
2240 /*
2241 * Prefetching reads the block bitmap into the buffer cache; but we
2242 * need to make sure that the buddy bitmap in the page cache has been
2243 * initialized. Note that ext4_mb_init_group() will block if the I/O
2244 * is not yet completed, or indeed if it was not initiated by
2245 * ext4_mb_prefetch did not start the I/O.
2246 *
2247 * TODO: We should actually kick off the buddy bitmap setup in a work
2248 * queue when the buffer I/O is completed, so that we don't block
2249 * waiting for the block allocation bitmap read to finish when
2250 * ext4_mb_prefetch_fini is called from ext4_mb_regular_allocator().
2251 */
2252 void ext4_mb_prefetch_fini(struct super_block *sb, ext4_group_t group,
2253 unsigned int nr)
2254 {
2255 while (nr-- > 0) {
2256 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group,
2257 NULL);
2258 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
2259
2260 if (!group)
2261 group = ext4_get_groups_count(sb);
2262 group--;
2263 grp = ext4_get_group_info(sb, group);
2264
2265 if (EXT4_MB_GRP_NEED_INIT(grp) &&
2266 ext4_free_group_clusters(sb, gdp) > 0 &&
2267 !(ext4_has_group_desc_csum(sb) &&
2268 (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)))) {
2269 if (ext4_mb_init_group(sb, group, GFP_NOFS))
2270 break;
2271 }
2272 }
2273 }
2274
2275 static noinline_for_stack int
2276 ext4_mb_regular_allocator(struct ext4_allocation_context *ac)
2277 {
2278 ext4_group_t prefetch_grp = 0, ngroups, group, i;
2279 int cr = -1;
2280 int err = 0, first_err = 0;
2281 unsigned int nr = 0, prefetch_ios = 0;
2282 struct ext4_sb_info *sbi;
2283 struct super_block *sb;
2284 struct ext4_buddy e4b;
2285 int lost;
2286
2287 sb = ac->ac_sb;
2288 sbi = EXT4_SB(sb);
2289 ngroups = ext4_get_groups_count(sb);
2290 /* non-extent files are limited to low blocks/groups */
2291 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)))
2292 ngroups = sbi->s_blockfile_groups;
2293
2294 BUG_ON(ac->ac_status == AC_STATUS_FOUND);
2295
2296 /* first, try the goal */
2297 err = ext4_mb_find_by_goal(ac, &e4b);
2298 if (err || ac->ac_status == AC_STATUS_FOUND)
2299 goto out;
2300
2301 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
2302 goto out;
2303
2304 /*
2305 * ac->ac_2order is set only if the fe_len is a power of 2
2306 * if ac->ac_2order is set we also set criteria to 0 so that we
2307 * try exact allocation using buddy.
2308 */
2309 i = fls(ac->ac_g_ex.fe_len);
2310 ac->ac_2order = 0;
2311 /*
2312 * We search using buddy data only if the order of the request
2313 * is greater than equal to the sbi_s_mb_order2_reqs
2314 * You can tune it via /sys/fs/ext4/<partition>/mb_order2_req
2315 * We also support searching for power-of-two requests only for
2316 * requests upto maximum buddy size we have constructed.
2317 */
2318 if (i >= sbi->s_mb_order2_reqs && i <= sb->s_blocksize_bits + 2) {
2319 /*
2320 * This should tell if fe_len is exactly power of 2
2321 */
2322 if ((ac->ac_g_ex.fe_len & (~(1 << (i - 1)))) == 0)
2323 ac->ac_2order = array_index_nospec(i - 1,
2324 sb->s_blocksize_bits + 2);
2325 }
2326
2327 /* if stream allocation is enabled, use global goal */
2328 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
2329 /* TBD: may be hot point */
2330 spin_lock(&sbi->s_md_lock);
2331 ac->ac_g_ex.fe_group = sbi->s_mb_last_group;
2332 ac->ac_g_ex.fe_start = sbi->s_mb_last_start;
2333 spin_unlock(&sbi->s_md_lock);
2334 }
2335
2336 /* Let's just scan groups to find more-less suitable blocks */
2337 cr = ac->ac_2order ? 0 : 1;
2338 /*
2339 * cr == 0 try to get exact allocation,
2340 * cr == 3 try to get anything
2341 */
2342 repeat:
2343 for (; cr < 4 && ac->ac_status == AC_STATUS_CONTINUE; cr++) {
2344 ac->ac_criteria = cr;
2345 /*
2346 * searching for the right group start
2347 * from the goal value specified
2348 */
2349 group = ac->ac_g_ex.fe_group;
2350 prefetch_grp = group;
2351
2352 for (i = 0; i < ngroups; group++, i++) {
2353 int ret = 0;
2354 cond_resched();
2355 /*
2356 * Artificially restricted ngroups for non-extent
2357 * files makes group > ngroups possible on first loop.
2358 */
2359 if (group >= ngroups)
2360 group = 0;
2361
2362 /*
2363 * Batch reads of the block allocation bitmaps
2364 * to get multiple READs in flight; limit
2365 * prefetching at cr=0/1, otherwise mballoc can
2366 * spend a lot of time loading imperfect groups
2367 */
2368 if ((prefetch_grp == group) &&
2369 (cr > 1 ||
2370 prefetch_ios < sbi->s_mb_prefetch_limit)) {
2371 unsigned int curr_ios = prefetch_ios;
2372
2373 nr = sbi->s_mb_prefetch;
2374 if (ext4_has_feature_flex_bg(sb)) {
2375 nr = 1 << sbi->s_log_groups_per_flex;
2376 nr -= group & (nr - 1);
2377 nr = min(nr, sbi->s_mb_prefetch);
2378 }
2379 prefetch_grp = ext4_mb_prefetch(sb, group,
2380 nr, &prefetch_ios);
2381 if (prefetch_ios == curr_ios)
2382 nr = 0;
2383 }
2384
2385 /* This now checks without needing the buddy page */
2386 ret = ext4_mb_good_group_nolock(ac, group, cr);
2387 if (ret <= 0) {
2388 if (!first_err)
2389 first_err = ret;
2390 continue;
2391 }
2392
2393 err = ext4_mb_load_buddy(sb, group, &e4b);
2394 if (err)
2395 goto out;
2396
2397 ext4_lock_group(sb, group);
2398
2399 /*
2400 * We need to check again after locking the
2401 * block group
2402 */
2403 ret = ext4_mb_good_group(ac, group, cr);
2404 if (ret == 0) {
2405 ext4_unlock_group(sb, group);
2406 ext4_mb_unload_buddy(&e4b);
2407 continue;
2408 }
2409
2410 ac->ac_groups_scanned++;
2411 if (cr == 0)
2412 ext4_mb_simple_scan_group(ac, &e4b);
2413 else if (cr == 1 && sbi->s_stripe &&
2414 !(ac->ac_g_ex.fe_len % sbi->s_stripe))
2415 ext4_mb_scan_aligned(ac, &e4b);
2416 else
2417 ext4_mb_complex_scan_group(ac, &e4b);
2418
2419 ext4_unlock_group(sb, group);
2420 ext4_mb_unload_buddy(&e4b);
2421
2422 if (ac->ac_status != AC_STATUS_CONTINUE)
2423 break;
2424 }
2425 }
2426
2427 if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND &&
2428 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2429 /*
2430 * We've been searching too long. Let's try to allocate
2431 * the best chunk we've found so far
2432 */
2433 ext4_mb_try_best_found(ac, &e4b);
2434 if (ac->ac_status != AC_STATUS_FOUND) {
2435 /*
2436 * Someone more lucky has already allocated it.
2437 * The only thing we can do is just take first
2438 * found block(s)
2439 */
2440 lost = atomic_inc_return(&sbi->s_mb_lost_chunks);
2441 mb_debug(sb, "lost chunk, group: %u, start: %d, len: %d, lost: %d\n",
2442 ac->ac_b_ex.fe_group, ac->ac_b_ex.fe_start,
2443 ac->ac_b_ex.fe_len, lost);
2444
2445 ac->ac_b_ex.fe_group = 0;
2446 ac->ac_b_ex.fe_start = 0;
2447 ac->ac_b_ex.fe_len = 0;
2448 ac->ac_status = AC_STATUS_CONTINUE;
2449 ac->ac_flags |= EXT4_MB_HINT_FIRST;
2450 cr = 3;
2451 goto repeat;
2452 }
2453 }
2454 out:
2455 if (!err && ac->ac_status != AC_STATUS_FOUND && first_err)
2456 err = first_err;
2457
2458 mb_debug(sb, "Best len %d, origin len %d, ac_status %u, ac_flags 0x%x, cr %d ret %d\n",
2459 ac->ac_b_ex.fe_len, ac->ac_o_ex.fe_len, ac->ac_status,
2460 ac->ac_flags, cr, err);
2461
2462 if (nr)
2463 ext4_mb_prefetch_fini(sb, prefetch_grp, nr);
2464
2465 return err;
2466 }
2467
2468 static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos)
2469 {
2470 struct super_block *sb = PDE_DATA(file_inode(seq->file));
2471 ext4_group_t group;
2472
2473 if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2474 return NULL;
2475 group = *pos + 1;
2476 return (void *) ((unsigned long) group);
2477 }
2478
2479 static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos)
2480 {
2481 struct super_block *sb = PDE_DATA(file_inode(seq->file));
2482 ext4_group_t group;
2483
2484 ++*pos;
2485 if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2486 return NULL;
2487 group = *pos + 1;
2488 return (void *) ((unsigned long) group);
2489 }
2490
2491 static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v)
2492 {
2493 struct super_block *sb = PDE_DATA(file_inode(seq->file));
2494 ext4_group_t group = (ext4_group_t) ((unsigned long) v);
2495 int i;
2496 int err, buddy_loaded = 0;
2497 struct ext4_buddy e4b;
2498 struct ext4_group_info *grinfo;
2499 unsigned char blocksize_bits = min_t(unsigned char,
2500 sb->s_blocksize_bits,
2501 EXT4_MAX_BLOCK_LOG_SIZE);
2502 struct sg {
2503 struct ext4_group_info info;
2504 ext4_grpblk_t counters[EXT4_MAX_BLOCK_LOG_SIZE + 2];
2505 } sg;
2506
2507 group--;
2508 if (group == 0)
2509 seq_puts(seq, "#group: free frags first ["
2510 " 2^0 2^1 2^2 2^3 2^4 2^5 2^6 "
2511 " 2^7 2^8 2^9 2^10 2^11 2^12 2^13 ]\n");
2512
2513 i = (blocksize_bits + 2) * sizeof(sg.info.bb_counters[0]) +
2514 sizeof(struct ext4_group_info);
2515
2516 grinfo = ext4_get_group_info(sb, group);
2517 /* Load the group info in memory only if not already loaded. */
2518 if (unlikely(EXT4_MB_GRP_NEED_INIT(grinfo))) {
2519 err = ext4_mb_load_buddy(sb, group, &e4b);
2520 if (err) {
2521 seq_printf(seq, "#%-5u: I/O error\n", group);
2522 return 0;
2523 }
2524 buddy_loaded = 1;
2525 }
2526
2527 memcpy(&sg, ext4_get_group_info(sb, group), i);
2528
2529 if (buddy_loaded)
2530 ext4_mb_unload_buddy(&e4b);
2531
2532 seq_printf(seq, "#%-5u: %-5u %-5u %-5u [", group, sg.info.bb_free,
2533 sg.info.bb_fragments, sg.info.bb_first_free);
2534 for (i = 0; i <= 13; i++)
2535 seq_printf(seq, " %-5u", i <= blocksize_bits + 1 ?
2536 sg.info.bb_counters[i] : 0);
2537 seq_puts(seq, " ]\n");
2538
2539 return 0;
2540 }
2541
2542 static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v)
2543 {
2544 }
2545
2546 const struct seq_operations ext4_mb_seq_groups_ops = {
2547 .start = ext4_mb_seq_groups_start,
2548 .next = ext4_mb_seq_groups_next,
2549 .stop = ext4_mb_seq_groups_stop,
2550 .show = ext4_mb_seq_groups_show,
2551 };
2552
2553 static struct kmem_cache *get_groupinfo_cache(int blocksize_bits)
2554 {
2555 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
2556 struct kmem_cache *cachep = ext4_groupinfo_caches[cache_index];
2557
2558 BUG_ON(!cachep);
2559 return cachep;
2560 }
2561
2562 /*
2563 * Allocate the top-level s_group_info array for the specified number
2564 * of groups
2565 */
2566 int ext4_mb_alloc_groupinfo(struct super_block *sb, ext4_group_t ngroups)
2567 {
2568 struct ext4_sb_info *sbi = EXT4_SB(sb);
2569 unsigned size;
2570 struct ext4_group_info ***old_groupinfo, ***new_groupinfo;
2571
2572 size = (ngroups + EXT4_DESC_PER_BLOCK(sb) - 1) >>
2573 EXT4_DESC_PER_BLOCK_BITS(sb);
2574 if (size <= sbi->s_group_info_size)
2575 return 0;
2576
2577 size = roundup_pow_of_two(sizeof(*sbi->s_group_info) * size);
2578 new_groupinfo = kvzalloc(size, GFP_KERNEL);
2579 if (!new_groupinfo) {
2580 ext4_msg(sb, KERN_ERR, "can't allocate buddy meta group");
2581 return -ENOMEM;
2582 }
2583 rcu_read_lock();
2584 old_groupinfo = rcu_dereference(sbi->s_group_info);
2585 if (old_groupinfo)
2586 memcpy(new_groupinfo, old_groupinfo,
2587 sbi->s_group_info_size * sizeof(*sbi->s_group_info));
2588 rcu_read_unlock();
2589 rcu_assign_pointer(sbi->s_group_info, new_groupinfo);
2590 sbi->s_group_info_size = size / sizeof(*sbi->s_group_info);
2591 if (old_groupinfo)
2592 ext4_kvfree_array_rcu(old_groupinfo);
2593 ext4_debug("allocated s_groupinfo array for %d meta_bg's\n",
2594 sbi->s_group_info_size);
2595 return 0;
2596 }
2597
2598 /* Create and initialize ext4_group_info data for the given group. */
2599 int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group,
2600 struct ext4_group_desc *desc)
2601 {
2602 int i;
2603 int metalen = 0;
2604 int idx = group >> EXT4_DESC_PER_BLOCK_BITS(sb);
2605 struct ext4_sb_info *sbi = EXT4_SB(sb);
2606 struct ext4_group_info **meta_group_info;
2607 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2608
2609 /*
2610 * First check if this group is the first of a reserved block.
2611 * If it's true, we have to allocate a new table of pointers
2612 * to ext4_group_info structures
2613 */
2614 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
2615 metalen = sizeof(*meta_group_info) <<
2616 EXT4_DESC_PER_BLOCK_BITS(sb);
2617 meta_group_info = kmalloc(metalen, GFP_NOFS);
2618 if (meta_group_info == NULL) {
2619 ext4_msg(sb, KERN_ERR, "can't allocate mem "
2620 "for a buddy group");
2621 goto exit_meta_group_info;
2622 }
2623 rcu_read_lock();
2624 rcu_dereference(sbi->s_group_info)[idx] = meta_group_info;
2625 rcu_read_unlock();
2626 }
2627
2628 meta_group_info = sbi_array_rcu_deref(sbi, s_group_info, idx);
2629 i = group & (EXT4_DESC_PER_BLOCK(sb) - 1);
2630
2631 meta_group_info[i] = kmem_cache_zalloc(cachep, GFP_NOFS);
2632 if (meta_group_info[i] == NULL) {
2633 ext4_msg(sb, KERN_ERR, "can't allocate buddy mem");
2634 goto exit_group_info;
2635 }
2636 set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT,
2637 &(meta_group_info[i]->bb_state));
2638
2639 /*
2640 * initialize bb_free to be able to skip
2641 * empty groups without initialization
2642 */
2643 if (ext4_has_group_desc_csum(sb) &&
2644 (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) {
2645 meta_group_info[i]->bb_free =
2646 ext4_free_clusters_after_init(sb, group, desc);
2647 } else {
2648 meta_group_info[i]->bb_free =
2649 ext4_free_group_clusters(sb, desc);
2650 }
2651
2652 INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list);
2653 init_rwsem(&meta_group_info[i]->alloc_sem);
2654 meta_group_info[i]->bb_free_root = RB_ROOT;
2655 meta_group_info[i]->bb_largest_free_order = -1; /* uninit */
2656
2657 mb_group_bb_bitmap_alloc(sb, meta_group_info[i], group);
2658 return 0;
2659
2660 exit_group_info:
2661 /* If a meta_group_info table has been allocated, release it now */
2662 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
2663 struct ext4_group_info ***group_info;
2664
2665 rcu_read_lock();
2666 group_info = rcu_dereference(sbi->s_group_info);
2667 kfree(group_info[idx]);
2668 group_info[idx] = NULL;
2669 rcu_read_unlock();
2670 }
2671 exit_meta_group_info:
2672 return -ENOMEM;
2673 } /* ext4_mb_add_groupinfo */
2674
2675 static int ext4_mb_init_backend(struct super_block *sb)
2676 {
2677 ext4_group_t ngroups = ext4_get_groups_count(sb);
2678 ext4_group_t i;
2679 struct ext4_sb_info *sbi = EXT4_SB(sb);
2680 int err;
2681 struct ext4_group_desc *desc;
2682 struct ext4_group_info ***group_info;
2683 struct kmem_cache *cachep;
2684
2685 err = ext4_mb_alloc_groupinfo(sb, ngroups);
2686 if (err)
2687 return err;
2688
2689 sbi->s_buddy_cache = new_inode(sb);
2690 if (sbi->s_buddy_cache == NULL) {
2691 ext4_msg(sb, KERN_ERR, "can't get new inode");
2692 goto err_freesgi;
2693 }
2694 /* To avoid potentially colliding with an valid on-disk inode number,
2695 * use EXT4_BAD_INO for the buddy cache inode number. This inode is
2696 * not in the inode hash, so it should never be found by iget(), but
2697 * this will avoid confusion if it ever shows up during debugging. */
2698 sbi->s_buddy_cache->i_ino = EXT4_BAD_INO;
2699 EXT4_I(sbi->s_buddy_cache)->i_disksize = 0;
2700 for (i = 0; i < ngroups; i++) {
2701 cond_resched();
2702 desc = ext4_get_group_desc(sb, i, NULL);
2703 if (desc == NULL) {
2704 ext4_msg(sb, KERN_ERR, "can't read descriptor %u", i);
2705 goto err_freebuddy;
2706 }
2707 if (ext4_mb_add_groupinfo(sb, i, desc) != 0)
2708 goto err_freebuddy;
2709 }
2710
2711 if (ext4_has_feature_flex_bg(sb)) {
2712 /* a single flex group is supposed to be read by a single IO.
2713 * 2 ^ s_log_groups_per_flex != UINT_MAX as s_mb_prefetch is
2714 * unsigned integer, so the maximum shift is 32.
2715 */
2716 if (sbi->s_es->s_log_groups_per_flex >= 32) {
2717 ext4_msg(sb, KERN_ERR, "too many log groups per flexible block group");
2718 goto err_freesgi;
2719 }
2720 sbi->s_mb_prefetch = min_t(uint, 1 << sbi->s_es->s_log_groups_per_flex,
2721 BLK_MAX_SEGMENT_SIZE >> (sb->s_blocksize_bits - 9));
2722 sbi->s_mb_prefetch *= 8; /* 8 prefetch IOs in flight at most */
2723 } else {
2724 sbi->s_mb_prefetch = 32;
2725 }
2726 if (sbi->s_mb_prefetch > ext4_get_groups_count(sb))
2727 sbi->s_mb_prefetch = ext4_get_groups_count(sb);
2728 /* now many real IOs to prefetch within a single allocation at cr=0
2729 * given cr=0 is an CPU-related optimization we shouldn't try to
2730 * load too many groups, at some point we should start to use what
2731 * we've got in memory.
2732 * with an average random access time 5ms, it'd take a second to get
2733 * 200 groups (* N with flex_bg), so let's make this limit 4
2734 */
2735 sbi->s_mb_prefetch_limit = sbi->s_mb_prefetch * 4;
2736 if (sbi->s_mb_prefetch_limit > ext4_get_groups_count(sb))
2737 sbi->s_mb_prefetch_limit = ext4_get_groups_count(sb);
2738
2739 return 0;
2740
2741 err_freebuddy:
2742 cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2743 while (i-- > 0)
2744 kmem_cache_free(cachep, ext4_get_group_info(sb, i));
2745 i = sbi->s_group_info_size;
2746 rcu_read_lock();
2747 group_info = rcu_dereference(sbi->s_group_info);
2748 while (i-- > 0)
2749 kfree(group_info[i]);
2750 rcu_read_unlock();
2751 iput(sbi->s_buddy_cache);
2752 err_freesgi:
2753 rcu_read_lock();
2754 kvfree(rcu_dereference(sbi->s_group_info));
2755 rcu_read_unlock();
2756 return -ENOMEM;
2757 }
2758
2759 static void ext4_groupinfo_destroy_slabs(void)
2760 {
2761 int i;
2762
2763 for (i = 0; i < NR_GRPINFO_CACHES; i++) {
2764 kmem_cache_destroy(ext4_groupinfo_caches[i]);
2765 ext4_groupinfo_caches[i] = NULL;
2766 }
2767 }
2768
2769 static int ext4_groupinfo_create_slab(size_t size)
2770 {
2771 static DEFINE_MUTEX(ext4_grpinfo_slab_create_mutex);
2772 int slab_size;
2773 int blocksize_bits = order_base_2(size);
2774 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
2775 struct kmem_cache *cachep;
2776
2777 if (cache_index >= NR_GRPINFO_CACHES)
2778 return -EINVAL;
2779
2780 if (unlikely(cache_index < 0))
2781 cache_index = 0;
2782
2783 mutex_lock(&ext4_grpinfo_slab_create_mutex);
2784 if (ext4_groupinfo_caches[cache_index]) {
2785 mutex_unlock(&ext4_grpinfo_slab_create_mutex);
2786 return 0; /* Already created */
2787 }
2788
2789 slab_size = offsetof(struct ext4_group_info,
2790 bb_counters[blocksize_bits + 2]);
2791
2792 cachep = kmem_cache_create(ext4_groupinfo_slab_names[cache_index],
2793 slab_size, 0, SLAB_RECLAIM_ACCOUNT,
2794 NULL);
2795
2796 ext4_groupinfo_caches[cache_index] = cachep;
2797
2798 mutex_unlock(&ext4_grpinfo_slab_create_mutex);
2799 if (!cachep) {
2800 printk(KERN_EMERG
2801 "EXT4-fs: no memory for groupinfo slab cache\n");
2802 return -ENOMEM;
2803 }
2804
2805 return 0;
2806 }
2807
2808 int ext4_mb_init(struct super_block *sb)
2809 {
2810 struct ext4_sb_info *sbi = EXT4_SB(sb);
2811 unsigned i, j;
2812 unsigned offset, offset_incr;
2813 unsigned max;
2814 int ret;
2815
2816 i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_offsets);
2817
2818 sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL);
2819 if (sbi->s_mb_offsets == NULL) {
2820 ret = -ENOMEM;
2821 goto out;
2822 }
2823
2824 i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_maxs);
2825 sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL);
2826 if (sbi->s_mb_maxs == NULL) {
2827 ret = -ENOMEM;
2828 goto out;
2829 }
2830
2831 ret = ext4_groupinfo_create_slab(sb->s_blocksize);
2832 if (ret < 0)
2833 goto out;
2834
2835 /* order 0 is regular bitmap */
2836 sbi->s_mb_maxs[0] = sb->s_blocksize << 3;
2837 sbi->s_mb_offsets[0] = 0;
2838
2839 i = 1;
2840 offset = 0;
2841 offset_incr = 1 << (sb->s_blocksize_bits - 1);
2842 max = sb->s_blocksize << 2;
2843 do {
2844 sbi->s_mb_offsets[i] = offset;
2845 sbi->s_mb_maxs[i] = max;
2846 offset += offset_incr;
2847 offset_incr = offset_incr >> 1;
2848 max = max >> 1;
2849 i++;
2850 } while (i <= sb->s_blocksize_bits + 1);
2851
2852 spin_lock_init(&sbi->s_md_lock);
2853 spin_lock_init(&sbi->s_bal_lock);
2854 sbi->s_mb_free_pending = 0;
2855 INIT_LIST_HEAD(&sbi->s_freed_data_list);
2856
2857 sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN;
2858 sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN;
2859 sbi->s_mb_stats = MB_DEFAULT_STATS;
2860 sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD;
2861 sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS;
2862 sbi->s_mb_max_inode_prealloc = MB_DEFAULT_MAX_INODE_PREALLOC;
2863 /*
2864 * The default group preallocation is 512, which for 4k block
2865 * sizes translates to 2 megabytes. However for bigalloc file
2866 * systems, this is probably too big (i.e, if the cluster size
2867 * is 1 megabyte, then group preallocation size becomes half a
2868 * gigabyte!). As a default, we will keep a two megabyte
2869 * group pralloc size for cluster sizes up to 64k, and after
2870 * that, we will force a minimum group preallocation size of
2871 * 32 clusters. This translates to 8 megs when the cluster
2872 * size is 256k, and 32 megs when the cluster size is 1 meg,
2873 * which seems reasonable as a default.
2874 */
2875 sbi->s_mb_group_prealloc = max(MB_DEFAULT_GROUP_PREALLOC >>
2876 sbi->s_cluster_bits, 32);
2877 /*
2878 * If there is a s_stripe > 1, then we set the s_mb_group_prealloc
2879 * to the lowest multiple of s_stripe which is bigger than
2880 * the s_mb_group_prealloc as determined above. We want
2881 * the preallocation size to be an exact multiple of the
2882 * RAID stripe size so that preallocations don't fragment
2883 * the stripes.
2884 */
2885 if (sbi->s_stripe > 1) {
2886 sbi->s_mb_group_prealloc = roundup(
2887 sbi->s_mb_group_prealloc, sbi->s_stripe);
2888 }
2889
2890 sbi->s_locality_groups = alloc_percpu(struct ext4_locality_group);
2891 if (sbi->s_locality_groups == NULL) {
2892 ret = -ENOMEM;
2893 goto out;
2894 }
2895 for_each_possible_cpu(i) {
2896 struct ext4_locality_group *lg;
2897 lg = per_cpu_ptr(sbi->s_locality_groups, i);
2898 mutex_init(&lg->lg_mutex);
2899 for (j = 0; j < PREALLOC_TB_SIZE; j++)
2900 INIT_LIST_HEAD(&lg->lg_prealloc_list[j]);
2901 spin_lock_init(&lg->lg_prealloc_lock);
2902 }
2903
2904 /* init file for buddy data */
2905 ret = ext4_mb_init_backend(sb);
2906 if (ret != 0)
2907 goto out_free_locality_groups;
2908
2909 return 0;
2910
2911 out_free_locality_groups:
2912 free_percpu(sbi->s_locality_groups);
2913 sbi->s_locality_groups = NULL;
2914 out:
2915 kfree(sbi->s_mb_offsets);
2916 sbi->s_mb_offsets = NULL;
2917 kfree(sbi->s_mb_maxs);
2918 sbi->s_mb_maxs = NULL;
2919 return ret;
2920 }
2921
2922 /* need to called with the ext4 group lock held */
2923 static int ext4_mb_cleanup_pa(struct ext4_group_info *grp)
2924 {
2925 struct ext4_prealloc_space *pa;
2926 struct list_head *cur, *tmp;
2927 int count = 0;
2928
2929 list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) {
2930 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
2931 list_del(&pa->pa_group_list);
2932 count++;
2933 kmem_cache_free(ext4_pspace_cachep, pa);
2934 }
2935 return count;
2936 }
2937
2938 int ext4_mb_release(struct super_block *sb)
2939 {
2940 ext4_group_t ngroups = ext4_get_groups_count(sb);
2941 ext4_group_t i;
2942 int num_meta_group_infos;
2943 struct ext4_group_info *grinfo, ***group_info;
2944 struct ext4_sb_info *sbi = EXT4_SB(sb);
2945 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2946 int count;
2947
2948 if (sbi->s_group_info) {
2949 for (i = 0; i < ngroups; i++) {
2950 cond_resched();
2951 grinfo = ext4_get_group_info(sb, i);
2952 mb_group_bb_bitmap_free(grinfo);
2953 ext4_lock_group(sb, i);
2954 count = ext4_mb_cleanup_pa(grinfo);
2955 if (count)
2956 mb_debug(sb, "mballoc: %d PAs left\n",
2957 count);
2958 ext4_unlock_group(sb, i);
2959 kmem_cache_free(cachep, grinfo);
2960 }
2961 num_meta_group_infos = (ngroups +
2962 EXT4_DESC_PER_BLOCK(sb) - 1) >>
2963 EXT4_DESC_PER_BLOCK_BITS(sb);
2964 rcu_read_lock();
2965 group_info = rcu_dereference(sbi->s_group_info);
2966 for (i = 0; i < num_meta_group_infos; i++)
2967 kfree(group_info[i]);
2968 kvfree(group_info);
2969 rcu_read_unlock();
2970 }
2971 kfree(sbi->s_mb_offsets);
2972 kfree(sbi->s_mb_maxs);
2973 iput(sbi->s_buddy_cache);
2974 if (sbi->s_mb_stats) {
2975 ext4_msg(sb, KERN_INFO,
2976 "mballoc: %u blocks %u reqs (%u success)",
2977 atomic_read(&sbi->s_bal_allocated),
2978 atomic_read(&sbi->s_bal_reqs),
2979 atomic_read(&sbi->s_bal_success));
2980 ext4_msg(sb, KERN_INFO,
2981 "mballoc: %u extents scanned, %u goal hits, "
2982 "%u 2^N hits, %u breaks, %u lost",
2983 atomic_read(&sbi->s_bal_ex_scanned),
2984 atomic_read(&sbi->s_bal_goals),
2985 atomic_read(&sbi->s_bal_2orders),
2986 atomic_read(&sbi->s_bal_breaks),
2987 atomic_read(&sbi->s_mb_lost_chunks));
2988 ext4_msg(sb, KERN_INFO,
2989 "mballoc: %lu generated and it took %Lu",
2990 sbi->s_mb_buddies_generated,
2991 sbi->s_mb_generation_time);
2992 ext4_msg(sb, KERN_INFO,
2993 "mballoc: %u preallocated, %u discarded",
2994 atomic_read(&sbi->s_mb_preallocated),
2995 atomic_read(&sbi->s_mb_discarded));
2996 }
2997
2998 free_percpu(sbi->s_locality_groups);
2999
3000 return 0;
3001 }
3002
3003 static inline int ext4_issue_discard(struct super_block *sb,
3004 ext4_group_t block_group, ext4_grpblk_t cluster, int count,
3005 struct bio **biop)
3006 {
3007 ext4_fsblk_t discard_block;
3008
3009 discard_block = (EXT4_C2B(EXT4_SB(sb), cluster) +
3010 ext4_group_first_block_no(sb, block_group));
3011 count = EXT4_C2B(EXT4_SB(sb), count);
3012 trace_ext4_discard_blocks(sb,
3013 (unsigned long long) discard_block, count);
3014 if (biop) {
3015 return __blkdev_issue_discard(sb->s_bdev,
3016 (sector_t)discard_block << (sb->s_blocksize_bits - 9),
3017 (sector_t)count << (sb->s_blocksize_bits - 9),
3018 GFP_NOFS, 0, biop);
3019 } else
3020 return sb_issue_discard(sb, discard_block, count, GFP_NOFS, 0);
3021 }
3022
3023 static void ext4_free_data_in_buddy(struct super_block *sb,
3024 struct ext4_free_data *entry)
3025 {
3026 struct ext4_buddy e4b;
3027 struct ext4_group_info *db;
3028 int err, count = 0, count2 = 0;
3029
3030 mb_debug(sb, "gonna free %u blocks in group %u (0x%p):",
3031 entry->efd_count, entry->efd_group, entry);
3032
3033 err = ext4_mb_load_buddy(sb, entry->efd_group, &e4b);
3034 /* we expect to find existing buddy because it's pinned */
3035 BUG_ON(err != 0);
3036
3037 spin_lock(&EXT4_SB(sb)->s_md_lock);
3038 EXT4_SB(sb)->s_mb_free_pending -= entry->efd_count;
3039 spin_unlock(&EXT4_SB(sb)->s_md_lock);
3040
3041 db = e4b.bd_info;
3042 /* there are blocks to put in buddy to make them really free */
3043 count += entry->efd_count;
3044 count2++;
3045 ext4_lock_group(sb, entry->efd_group);
3046 /* Take it out of per group rb tree */
3047 rb_erase(&entry->efd_node, &(db->bb_free_root));
3048 mb_free_blocks(NULL, &e4b, entry->efd_start_cluster, entry->efd_count);
3049
3050 /*
3051 * Clear the trimmed flag for the group so that the next
3052 * ext4_trim_fs can trim it.
3053 * If the volume is mounted with -o discard, online discard
3054 * is supported and the free blocks will be trimmed online.
3055 */
3056 if (!test_opt(sb, DISCARD))
3057 EXT4_MB_GRP_CLEAR_TRIMMED(db);
3058
3059 if (!db->bb_free_root.rb_node) {
3060 /* No more items in the per group rb tree
3061 * balance refcounts from ext4_mb_free_metadata()
3062 */
3063 put_page(e4b.bd_buddy_page);
3064 put_page(e4b.bd_bitmap_page);
3065 }
3066 ext4_unlock_group(sb, entry->efd_group);
3067 kmem_cache_free(ext4_free_data_cachep, entry);
3068 ext4_mb_unload_buddy(&e4b);
3069
3070 mb_debug(sb, "freed %d blocks in %d structures\n", count,
3071 count2);
3072 }
3073
3074 /*
3075 * This function is called by the jbd2 layer once the commit has finished,
3076 * so we know we can free the blocks that were released with that commit.
3077 */
3078 void ext4_process_freed_data(struct super_block *sb, tid_t commit_tid)
3079 {
3080 struct ext4_sb_info *sbi = EXT4_SB(sb);
3081 struct ext4_free_data *entry, *tmp;
3082 struct bio *discard_bio = NULL;
3083 struct list_head freed_data_list;
3084 struct list_head *cut_pos = NULL;
3085 int err;
3086
3087 INIT_LIST_HEAD(&freed_data_list);
3088
3089 spin_lock(&sbi->s_md_lock);
3090 list_for_each_entry(entry, &sbi->s_freed_data_list, efd_list) {
3091 if (entry->efd_tid != commit_tid)
3092 break;
3093 cut_pos = &entry->efd_list;
3094 }
3095 if (cut_pos)
3096 list_cut_position(&freed_data_list, &sbi->s_freed_data_list,
3097 cut_pos);
3098 spin_unlock(&sbi->s_md_lock);
3099
3100 if (test_opt(sb, DISCARD)) {
3101 list_for_each_entry(entry, &freed_data_list, efd_list) {
3102 err = ext4_issue_discard(sb, entry->efd_group,
3103 entry->efd_start_cluster,
3104 entry->efd_count,
3105 &discard_bio);
3106 if (err && err != -EOPNOTSUPP) {
3107 ext4_msg(sb, KERN_WARNING, "discard request in"
3108 " group:%d block:%d count:%d failed"
3109 " with %d", entry->efd_group,
3110 entry->efd_start_cluster,
3111 entry->efd_count, err);
3112 } else if (err == -EOPNOTSUPP)
3113 break;
3114 }
3115
3116 if (discard_bio) {
3117 submit_bio_wait(discard_bio);
3118 bio_put(discard_bio);
3119 }
3120 }
3121
3122 list_for_each_entry_safe(entry, tmp, &freed_data_list, efd_list)
3123 ext4_free_data_in_buddy(sb, entry);
3124 }
3125
3126 int __init ext4_init_mballoc(void)
3127 {
3128 ext4_pspace_cachep = KMEM_CACHE(ext4_prealloc_space,
3129 SLAB_RECLAIM_ACCOUNT);
3130 if (ext4_pspace_cachep == NULL)
3131 goto out;
3132
3133 ext4_ac_cachep = KMEM_CACHE(ext4_allocation_context,
3134 SLAB_RECLAIM_ACCOUNT);
3135 if (ext4_ac_cachep == NULL)
3136 goto out_pa_free;
3137
3138 ext4_free_data_cachep = KMEM_CACHE(ext4_free_data,
3139 SLAB_RECLAIM_ACCOUNT);
3140 if (ext4_free_data_cachep == NULL)
3141 goto out_ac_free;
3142
3143 return 0;
3144
3145 out_ac_free:
3146 kmem_cache_destroy(ext4_ac_cachep);
3147 out_pa_free:
3148 kmem_cache_destroy(ext4_pspace_cachep);
3149 out:
3150 return -ENOMEM;
3151 }
3152
3153 void ext4_exit_mballoc(void)
3154 {
3155 /*
3156 * Wait for completion of call_rcu()'s on ext4_pspace_cachep
3157 * before destroying the slab cache.
3158 */
3159 rcu_barrier();
3160 kmem_cache_destroy(ext4_pspace_cachep);
3161 kmem_cache_destroy(ext4_ac_cachep);
3162 kmem_cache_destroy(ext4_free_data_cachep);
3163 ext4_groupinfo_destroy_slabs();
3164 }
3165
3166
3167 /*
3168 * Check quota and mark chosen space (ac->ac_b_ex) non-free in bitmaps
3169 * Returns 0 if success or error code
3170 */
3171 static noinline_for_stack int
3172 ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac,
3173 handle_t *handle, unsigned int reserv_clstrs)
3174 {
3175 struct buffer_head *bitmap_bh = NULL;
3176 struct ext4_group_desc *gdp;
3177 struct buffer_head *gdp_bh;
3178 struct ext4_sb_info *sbi;
3179 struct super_block *sb;
3180 ext4_fsblk_t block;
3181 int err, len;
3182
3183 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3184 BUG_ON(ac->ac_b_ex.fe_len <= 0);
3185
3186 sb = ac->ac_sb;
3187 sbi = EXT4_SB(sb);
3188
3189 bitmap_bh = ext4_read_block_bitmap(sb, ac->ac_b_ex.fe_group);
3190 if (IS_ERR(bitmap_bh)) {
3191 err = PTR_ERR(bitmap_bh);
3192 bitmap_bh = NULL;
3193 goto out_err;
3194 }
3195
3196 BUFFER_TRACE(bitmap_bh, "getting write access");
3197 err = ext4_journal_get_write_access(handle, bitmap_bh);
3198 if (err)
3199 goto out_err;
3200
3201 err = -EIO;
3202 gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, &gdp_bh);
3203 if (!gdp)
3204 goto out_err;
3205
3206 ext4_debug("using block group %u(%d)\n", ac->ac_b_ex.fe_group,
3207 ext4_free_group_clusters(sb, gdp));
3208
3209 BUFFER_TRACE(gdp_bh, "get_write_access");
3210 err = ext4_journal_get_write_access(handle, gdp_bh);
3211 if (err)
3212 goto out_err;
3213
3214 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3215
3216 len = EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
3217 if (!ext4_inode_block_valid(ac->ac_inode, block, len)) {
3218 ext4_error(sb, "Allocating blocks %llu-%llu which overlap "
3219 "fs metadata", block, block+len);
3220 /* File system mounted not to panic on error
3221 * Fix the bitmap and return EFSCORRUPTED
3222 * We leak some of the blocks here.
3223 */
3224 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3225 ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
3226 ac->ac_b_ex.fe_len);
3227 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3228 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
3229 if (!err)
3230 err = -EFSCORRUPTED;
3231 goto out_err;
3232 }
3233
3234 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3235 #ifdef AGGRESSIVE_CHECK
3236 {
3237 int i;
3238 for (i = 0; i < ac->ac_b_ex.fe_len; i++) {
3239 BUG_ON(mb_test_bit(ac->ac_b_ex.fe_start + i,
3240 bitmap_bh->b_data));
3241 }
3242 }
3243 #endif
3244 ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
3245 ac->ac_b_ex.fe_len);
3246 if (ext4_has_group_desc_csum(sb) &&
3247 (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) {
3248 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
3249 ext4_free_group_clusters_set(sb, gdp,
3250 ext4_free_clusters_after_init(sb,
3251 ac->ac_b_ex.fe_group, gdp));
3252 }
3253 len = ext4_free_group_clusters(sb, gdp) - ac->ac_b_ex.fe_len;
3254 ext4_free_group_clusters_set(sb, gdp, len);
3255 ext4_block_bitmap_csum_set(sb, ac->ac_b_ex.fe_group, gdp, bitmap_bh);
3256 ext4_group_desc_csum_set(sb, ac->ac_b_ex.fe_group, gdp);
3257
3258 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3259 percpu_counter_sub(&sbi->s_freeclusters_counter, ac->ac_b_ex.fe_len);
3260 /*
3261 * Now reduce the dirty block count also. Should not go negative
3262 */
3263 if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED))
3264 /* release all the reserved blocks if non delalloc */
3265 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
3266 reserv_clstrs);
3267
3268 if (sbi->s_log_groups_per_flex) {
3269 ext4_group_t flex_group = ext4_flex_group(sbi,
3270 ac->ac_b_ex.fe_group);
3271 atomic64_sub(ac->ac_b_ex.fe_len,
3272 &sbi_array_rcu_deref(sbi, s_flex_groups,
3273 flex_group)->free_clusters);
3274 }
3275
3276 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
3277 if (err)
3278 goto out_err;
3279 err = ext4_handle_dirty_metadata(handle, NULL, gdp_bh);
3280
3281 out_err:
3282 brelse(bitmap_bh);
3283 return err;
3284 }
3285
3286 /*
3287 * Idempotent helper for Ext4 fast commit replay path to set the state of
3288 * blocks in bitmaps and update counters.
3289 */
3290 void ext4_mb_mark_bb(struct super_block *sb, ext4_fsblk_t block,
3291 int len, int state)
3292 {
3293 struct buffer_head *bitmap_bh = NULL;
3294 struct ext4_group_desc *gdp;
3295 struct buffer_head *gdp_bh;
3296 struct ext4_sb_info *sbi = EXT4_SB(sb);
3297 ext4_group_t group;
3298 ext4_grpblk_t blkoff;
3299 int i, clen, err;
3300 int already;
3301
3302 clen = EXT4_B2C(sbi, len);
3303
3304 ext4_get_group_no_and_offset(sb, block, &group, &blkoff);
3305 bitmap_bh = ext4_read_block_bitmap(sb, group);
3306 if (IS_ERR(bitmap_bh)) {
3307 err = PTR_ERR(bitmap_bh);
3308 bitmap_bh = NULL;
3309 goto out_err;
3310 }
3311
3312 err = -EIO;
3313 gdp = ext4_get_group_desc(sb, group, &gdp_bh);
3314 if (!gdp)
3315 goto out_err;
3316
3317 ext4_lock_group(sb, group);
3318 already = 0;
3319 for (i = 0; i < clen; i++)
3320 if (!mb_test_bit(blkoff + i, bitmap_bh->b_data) == !state)
3321 already++;
3322
3323 if (state)
3324 ext4_set_bits(bitmap_bh->b_data, blkoff, clen);
3325 else
3326 mb_test_and_clear_bits(bitmap_bh->b_data, blkoff, clen);
3327 if (ext4_has_group_desc_csum(sb) &&
3328 (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) {
3329 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
3330 ext4_free_group_clusters_set(sb, gdp,
3331 ext4_free_clusters_after_init(sb,
3332 group, gdp));
3333 }
3334 if (state)
3335 clen = ext4_free_group_clusters(sb, gdp) - clen + already;
3336 else
3337 clen = ext4_free_group_clusters(sb, gdp) + clen - already;
3338
3339 ext4_free_group_clusters_set(sb, gdp, clen);
3340 ext4_block_bitmap_csum_set(sb, group, gdp, bitmap_bh);
3341 ext4_group_desc_csum_set(sb, group, gdp);
3342
3343 ext4_unlock_group(sb, group);
3344
3345 if (sbi->s_log_groups_per_flex) {
3346 ext4_group_t flex_group = ext4_flex_group(sbi, group);
3347
3348 atomic64_sub(len,
3349 &sbi_array_rcu_deref(sbi, s_flex_groups,
3350 flex_group)->free_clusters);
3351 }
3352
3353 err = ext4_handle_dirty_metadata(NULL, NULL, bitmap_bh);
3354 if (err)
3355 goto out_err;
3356 sync_dirty_buffer(bitmap_bh);
3357 err = ext4_handle_dirty_metadata(NULL, NULL, gdp_bh);
3358 sync_dirty_buffer(gdp_bh);
3359
3360 out_err:
3361 brelse(bitmap_bh);
3362 }
3363
3364 /*
3365 * here we normalize request for locality group
3366 * Group request are normalized to s_mb_group_prealloc, which goes to
3367 * s_strip if we set the same via mount option.
3368 * s_mb_group_prealloc can be configured via
3369 * /sys/fs/ext4/<partition>/mb_group_prealloc
3370 *
3371 * XXX: should we try to preallocate more than the group has now?
3372 */
3373 static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac)
3374 {
3375 struct super_block *sb = ac->ac_sb;
3376 struct ext4_locality_group *lg = ac->ac_lg;
3377
3378 BUG_ON(lg == NULL);
3379 ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc;
3380 mb_debug(sb, "goal %u blocks for locality group\n", ac->ac_g_ex.fe_len);
3381 }
3382
3383 /*
3384 * Normalization means making request better in terms of
3385 * size and alignment
3386 */
3387 static noinline_for_stack void
3388 ext4_mb_normalize_request(struct ext4_allocation_context *ac,
3389 struct ext4_allocation_request *ar)
3390 {
3391 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3392 int bsbits, max;
3393 ext4_lblk_t end;
3394 loff_t size, start_off;
3395 loff_t orig_size __maybe_unused;
3396 ext4_lblk_t start;
3397 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
3398 struct ext4_prealloc_space *pa;
3399
3400 /* do normalize only data requests, metadata requests
3401 do not need preallocation */
3402 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3403 return;
3404
3405 /* sometime caller may want exact blocks */
3406 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
3407 return;
3408
3409 /* caller may indicate that preallocation isn't
3410 * required (it's a tail, for example) */
3411 if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC)
3412 return;
3413
3414 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) {
3415 ext4_mb_normalize_group_request(ac);
3416 return ;
3417 }
3418
3419 bsbits = ac->ac_sb->s_blocksize_bits;
3420
3421 /* first, let's learn actual file size
3422 * given current request is allocated */
3423 size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len);
3424 size = size << bsbits;
3425 if (size < i_size_read(ac->ac_inode))
3426 size = i_size_read(ac->ac_inode);
3427 orig_size = size;
3428
3429 /* max size of free chunks */
3430 max = 2 << bsbits;
3431
3432 #define NRL_CHECK_SIZE(req, size, max, chunk_size) \
3433 (req <= (size) || max <= (chunk_size))
3434
3435 /* first, try to predict filesize */
3436 /* XXX: should this table be tunable? */
3437 start_off = 0;
3438 if (size <= 16 * 1024) {
3439 size = 16 * 1024;
3440 } else if (size <= 32 * 1024) {
3441 size = 32 * 1024;
3442 } else if (size <= 64 * 1024) {
3443 size = 64 * 1024;
3444 } else if (size <= 128 * 1024) {
3445 size = 128 * 1024;
3446 } else if (size <= 256 * 1024) {
3447 size = 256 * 1024;
3448 } else if (size <= 512 * 1024) {
3449 size = 512 * 1024;
3450 } else if (size <= 1024 * 1024) {
3451 size = 1024 * 1024;
3452 } else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) {
3453 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3454 (21 - bsbits)) << 21;
3455 size = 2 * 1024 * 1024;
3456 } else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) {
3457 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3458 (22 - bsbits)) << 22;
3459 size = 4 * 1024 * 1024;
3460 } else if (NRL_CHECK_SIZE(ac->ac_o_ex.fe_len,
3461 (8<<20)>>bsbits, max, 8 * 1024)) {
3462 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3463 (23 - bsbits)) << 23;
3464 size = 8 * 1024 * 1024;
3465 } else {
3466 start_off = (loff_t) ac->ac_o_ex.fe_logical << bsbits;
3467 size = (loff_t) EXT4_C2B(EXT4_SB(ac->ac_sb),
3468 ac->ac_o_ex.fe_len) << bsbits;
3469 }
3470 size = size >> bsbits;
3471 start = start_off >> bsbits;
3472
3473 /* don't cover already allocated blocks in selected range */
3474 if (ar->pleft && start <= ar->lleft) {
3475 size -= ar->lleft + 1 - start;
3476 start = ar->lleft + 1;
3477 }
3478 if (ar->pright && start + size - 1 >= ar->lright)
3479 size -= start + size - ar->lright;
3480
3481 /*
3482 * Trim allocation request for filesystems with artificially small
3483 * groups.
3484 */
3485 if (size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb))
3486 size = EXT4_BLOCKS_PER_GROUP(ac->ac_sb);
3487
3488 end = start + size;
3489
3490 /* check we don't cross already preallocated blocks */
3491 rcu_read_lock();
3492 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3493 ext4_lblk_t pa_end;
3494
3495 if (pa->pa_deleted)
3496 continue;
3497 spin_lock(&pa->pa_lock);
3498 if (pa->pa_deleted) {
3499 spin_unlock(&pa->pa_lock);
3500 continue;
3501 }
3502
3503 pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb),
3504 pa->pa_len);
3505
3506 /* PA must not overlap original request */
3507 BUG_ON(!(ac->ac_o_ex.fe_logical >= pa_end ||
3508 ac->ac_o_ex.fe_logical < pa->pa_lstart));
3509
3510 /* skip PAs this normalized request doesn't overlap with */
3511 if (pa->pa_lstart >= end || pa_end <= start) {
3512 spin_unlock(&pa->pa_lock);
3513 continue;
3514 }
3515 BUG_ON(pa->pa_lstart <= start && pa_end >= end);
3516
3517 /* adjust start or end to be adjacent to this pa */
3518 if (pa_end <= ac->ac_o_ex.fe_logical) {
3519 BUG_ON(pa_end < start);
3520 start = pa_end;
3521 } else if (pa->pa_lstart > ac->ac_o_ex.fe_logical) {
3522 BUG_ON(pa->pa_lstart > end);
3523 end = pa->pa_lstart;
3524 }
3525 spin_unlock(&pa->pa_lock);
3526 }
3527 rcu_read_unlock();
3528 size = end - start;
3529
3530 /* XXX: extra loop to check we really don't overlap preallocations */
3531 rcu_read_lock();
3532 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3533 ext4_lblk_t pa_end;
3534
3535 spin_lock(&pa->pa_lock);
3536 if (pa->pa_deleted == 0) {
3537 pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb),
3538 pa->pa_len);
3539 BUG_ON(!(start >= pa_end || end <= pa->pa_lstart));
3540 }
3541 spin_unlock(&pa->pa_lock);
3542 }
3543 rcu_read_unlock();
3544
3545 if (start + size <= ac->ac_o_ex.fe_logical &&
3546 start > ac->ac_o_ex.fe_logical) {
3547 ext4_msg(ac->ac_sb, KERN_ERR,
3548 "start %lu, size %lu, fe_logical %lu",
3549 (unsigned long) start, (unsigned long) size,
3550 (unsigned long) ac->ac_o_ex.fe_logical);
3551 BUG();
3552 }
3553 BUG_ON(size <= 0 || size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb));
3554
3555 /* now prepare goal request */
3556
3557 /* XXX: is it better to align blocks WRT to logical
3558 * placement or satisfy big request as is */
3559 ac->ac_g_ex.fe_logical = start;
3560 ac->ac_g_ex.fe_len = EXT4_NUM_B2C(sbi, size);
3561
3562 /* define goal start in order to merge */
3563 if (ar->pright && (ar->lright == (start + size))) {
3564 /* merge to the right */
3565 ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size,
3566 &ac->ac_f_ex.fe_group,
3567 &ac->ac_f_ex.fe_start);
3568 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3569 }
3570 if (ar->pleft && (ar->lleft + 1 == start)) {
3571 /* merge to the left */
3572 ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1,
3573 &ac->ac_f_ex.fe_group,
3574 &ac->ac_f_ex.fe_start);
3575 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3576 }
3577
3578 mb_debug(ac->ac_sb, "goal: %lld(was %lld) blocks at %u\n", size,
3579 orig_size, start);
3580 }
3581
3582 static void ext4_mb_collect_stats(struct ext4_allocation_context *ac)
3583 {
3584 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3585
3586 if (sbi->s_mb_stats && ac->ac_g_ex.fe_len > 1) {
3587 atomic_inc(&sbi->s_bal_reqs);
3588 atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated);
3589 if (ac->ac_b_ex.fe_len >= ac->ac_o_ex.fe_len)
3590 atomic_inc(&sbi->s_bal_success);
3591 atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned);
3592 if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start &&
3593 ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group)
3594 atomic_inc(&sbi->s_bal_goals);
3595 if (ac->ac_found > sbi->s_mb_max_to_scan)
3596 atomic_inc(&sbi->s_bal_breaks);
3597 }
3598
3599 if (ac->ac_op == EXT4_MB_HISTORY_ALLOC)
3600 trace_ext4_mballoc_alloc(ac);
3601 else
3602 trace_ext4_mballoc_prealloc(ac);
3603 }
3604
3605 /*
3606 * Called on failure; free up any blocks from the inode PA for this
3607 * context. We don't need this for MB_GROUP_PA because we only change
3608 * pa_free in ext4_mb_release_context(), but on failure, we've already
3609 * zeroed out ac->ac_b_ex.fe_len, so group_pa->pa_free is not changed.
3610 */
3611 static void ext4_discard_allocated_blocks(struct ext4_allocation_context *ac)
3612 {
3613 struct ext4_prealloc_space *pa = ac->ac_pa;
3614 struct ext4_buddy e4b;
3615 int err;
3616
3617 if (pa == NULL) {
3618 if (ac->ac_f_ex.fe_len == 0)
3619 return;
3620 err = ext4_mb_load_buddy(ac->ac_sb, ac->ac_f_ex.fe_group, &e4b);
3621 if (err) {
3622 /*
3623 * This should never happen since we pin the
3624 * pages in the ext4_allocation_context so
3625 * ext4_mb_load_buddy() should never fail.
3626 */
3627 WARN(1, "mb_load_buddy failed (%d)", err);
3628 return;
3629 }
3630 ext4_lock_group(ac->ac_sb, ac->ac_f_ex.fe_group);
3631 mb_free_blocks(ac->ac_inode, &e4b, ac->ac_f_ex.fe_start,
3632 ac->ac_f_ex.fe_len);
3633 ext4_unlock_group(ac->ac_sb, ac->ac_f_ex.fe_group);
3634 ext4_mb_unload_buddy(&e4b);
3635 return;
3636 }
3637 if (pa->pa_type == MB_INODE_PA)
3638 pa->pa_free += ac->ac_b_ex.fe_len;
3639 }
3640
3641 /*
3642 * use blocks preallocated to inode
3643 */
3644 static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac,
3645 struct ext4_prealloc_space *pa)
3646 {
3647 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3648 ext4_fsblk_t start;
3649 ext4_fsblk_t end;
3650 int len;
3651
3652 /* found preallocated blocks, use them */
3653 start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart);
3654 end = min(pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len),
3655 start + EXT4_C2B(sbi, ac->ac_o_ex.fe_len));
3656 len = EXT4_NUM_B2C(sbi, end - start);
3657 ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group,
3658 &ac->ac_b_ex.fe_start);
3659 ac->ac_b_ex.fe_len = len;
3660 ac->ac_status = AC_STATUS_FOUND;
3661 ac->ac_pa = pa;
3662
3663 BUG_ON(start < pa->pa_pstart);
3664 BUG_ON(end > pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len));
3665 BUG_ON(pa->pa_free < len);
3666 pa->pa_free -= len;
3667
3668 mb_debug(ac->ac_sb, "use %llu/%d from inode pa %p\n", start, len, pa);
3669 }
3670
3671 /*
3672 * use blocks preallocated to locality group
3673 */
3674 static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac,
3675 struct ext4_prealloc_space *pa)
3676 {
3677 unsigned int len = ac->ac_o_ex.fe_len;
3678
3679 ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart,
3680 &ac->ac_b_ex.fe_group,
3681 &ac->ac_b_ex.fe_start);
3682 ac->ac_b_ex.fe_len = len;
3683 ac->ac_status = AC_STATUS_FOUND;
3684 ac->ac_pa = pa;
3685
3686 /* we don't correct pa_pstart or pa_plen here to avoid
3687 * possible race when the group is being loaded concurrently
3688 * instead we correct pa later, after blocks are marked
3689 * in on-disk bitmap -- see ext4_mb_release_context()
3690 * Other CPUs are prevented from allocating from this pa by lg_mutex
3691 */
3692 mb_debug(ac->ac_sb, "use %u/%u from group pa %p\n",
3693 pa->pa_lstart-len, len, pa);
3694 }
3695
3696 /*
3697 * Return the prealloc space that have minimal distance
3698 * from the goal block. @cpa is the prealloc
3699 * space that is having currently known minimal distance
3700 * from the goal block.
3701 */
3702 static struct ext4_prealloc_space *
3703 ext4_mb_check_group_pa(ext4_fsblk_t goal_block,
3704 struct ext4_prealloc_space *pa,
3705 struct ext4_prealloc_space *cpa)
3706 {
3707 ext4_fsblk_t cur_distance, new_distance;
3708
3709 if (cpa == NULL) {
3710 atomic_inc(&pa->pa_count);
3711 return pa;
3712 }
3713 cur_distance = abs(goal_block - cpa->pa_pstart);
3714 new_distance = abs(goal_block - pa->pa_pstart);
3715
3716 if (cur_distance <= new_distance)
3717 return cpa;
3718
3719 /* drop the previous reference */
3720 atomic_dec(&cpa->pa_count);
3721 atomic_inc(&pa->pa_count);
3722 return pa;
3723 }
3724
3725 /*
3726 * search goal blocks in preallocated space
3727 */
3728 static noinline_for_stack bool
3729 ext4_mb_use_preallocated(struct ext4_allocation_context *ac)
3730 {
3731 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3732 int order, i;
3733 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
3734 struct ext4_locality_group *lg;
3735 struct ext4_prealloc_space *pa, *cpa = NULL;
3736 ext4_fsblk_t goal_block;
3737
3738 /* only data can be preallocated */
3739 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3740 return false;
3741
3742 /* first, try per-file preallocation */
3743 rcu_read_lock();
3744 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3745
3746 /* all fields in this condition don't change,
3747 * so we can skip locking for them */
3748 if (ac->ac_o_ex.fe_logical < pa->pa_lstart ||
3749 ac->ac_o_ex.fe_logical >= (pa->pa_lstart +
3750 EXT4_C2B(sbi, pa->pa_len)))
3751 continue;
3752
3753 /* non-extent files can't have physical blocks past 2^32 */
3754 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)) &&
3755 (pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len) >
3756 EXT4_MAX_BLOCK_FILE_PHYS))
3757 continue;
3758
3759 /* found preallocated blocks, use them */
3760 spin_lock(&pa->pa_lock);
3761 if (pa->pa_deleted == 0 && pa->pa_free) {
3762 atomic_inc(&pa->pa_count);
3763 ext4_mb_use_inode_pa(ac, pa);
3764 spin_unlock(&pa->pa_lock);
3765 ac->ac_criteria = 10;
3766 rcu_read_unlock();
3767 return true;
3768 }
3769 spin_unlock(&pa->pa_lock);
3770 }
3771 rcu_read_unlock();
3772
3773 /* can we use group allocation? */
3774 if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC))
3775 return false;
3776
3777 /* inode may have no locality group for some reason */
3778 lg = ac->ac_lg;
3779 if (lg == NULL)
3780 return false;
3781 order = fls(ac->ac_o_ex.fe_len) - 1;
3782 if (order > PREALLOC_TB_SIZE - 1)
3783 /* The max size of hash table is PREALLOC_TB_SIZE */
3784 order = PREALLOC_TB_SIZE - 1;
3785
3786 goal_block = ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex);
3787 /*
3788 * search for the prealloc space that is having
3789 * minimal distance from the goal block.
3790 */
3791 for (i = order; i < PREALLOC_TB_SIZE; i++) {
3792 rcu_read_lock();
3793 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[i],
3794 pa_inode_list) {
3795 spin_lock(&pa->pa_lock);
3796 if (pa->pa_deleted == 0 &&
3797 pa->pa_free >= ac->ac_o_ex.fe_len) {
3798
3799 cpa = ext4_mb_check_group_pa(goal_block,
3800 pa, cpa);
3801 }
3802 spin_unlock(&pa->pa_lock);
3803 }
3804 rcu_read_unlock();
3805 }
3806 if (cpa) {
3807 ext4_mb_use_group_pa(ac, cpa);
3808 ac->ac_criteria = 20;
3809 return true;
3810 }
3811 return false;
3812 }
3813
3814 /*
3815 * the function goes through all block freed in the group
3816 * but not yet committed and marks them used in in-core bitmap.
3817 * buddy must be generated from this bitmap
3818 * Need to be called with the ext4 group lock held
3819 */
3820 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
3821 ext4_group_t group)
3822 {
3823 struct rb_node *n;
3824 struct ext4_group_info *grp;
3825 struct ext4_free_data *entry;
3826
3827 grp = ext4_get_group_info(sb, group);
3828 n = rb_first(&(grp->bb_free_root));
3829
3830 while (n) {
3831 entry = rb_entry(n, struct ext4_free_data, efd_node);
3832 ext4_set_bits(bitmap, entry->efd_start_cluster, entry->efd_count);
3833 n = rb_next(n);
3834 }
3835 return;
3836 }
3837
3838 /*
3839 * the function goes through all preallocation in this group and marks them
3840 * used in in-core bitmap. buddy must be generated from this bitmap
3841 * Need to be called with ext4 group lock held
3842 */
3843 static noinline_for_stack
3844 void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
3845 ext4_group_t group)
3846 {
3847 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
3848 struct ext4_prealloc_space *pa;
3849 struct list_head *cur;
3850 ext4_group_t groupnr;
3851 ext4_grpblk_t start;
3852 int preallocated = 0;
3853 int len;
3854
3855 /* all form of preallocation discards first load group,
3856 * so the only competing code is preallocation use.
3857 * we don't need any locking here
3858 * notice we do NOT ignore preallocations with pa_deleted
3859 * otherwise we could leave used blocks available for
3860 * allocation in buddy when concurrent ext4_mb_put_pa()
3861 * is dropping preallocation
3862 */
3863 list_for_each(cur, &grp->bb_prealloc_list) {
3864 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
3865 spin_lock(&pa->pa_lock);
3866 ext4_get_group_no_and_offset(sb, pa->pa_pstart,
3867 &groupnr, &start);
3868 len = pa->pa_len;
3869 spin_unlock(&pa->pa_lock);
3870 if (unlikely(len == 0))
3871 continue;
3872 BUG_ON(groupnr != group);
3873 ext4_set_bits(bitmap, start, len);
3874 preallocated += len;
3875 }
3876 mb_debug(sb, "preallocated %d for group %u\n", preallocated, group);
3877 }
3878
3879 static void ext4_mb_mark_pa_deleted(struct super_block *sb,
3880 struct ext4_prealloc_space *pa)
3881 {
3882 struct ext4_inode_info *ei;
3883
3884 if (pa->pa_deleted) {
3885 ext4_warning(sb, "deleted pa, type:%d, pblk:%llu, lblk:%u, len:%d\n",
3886 pa->pa_type, pa->pa_pstart, pa->pa_lstart,
3887 pa->pa_len);
3888 return;
3889 }
3890
3891 pa->pa_deleted = 1;
3892
3893 if (pa->pa_type == MB_INODE_PA) {
3894 ei = EXT4_I(pa->pa_inode);
3895 atomic_dec(&ei->i_prealloc_active);
3896 }
3897 }
3898
3899 static void ext4_mb_pa_callback(struct rcu_head *head)
3900 {
3901 struct ext4_prealloc_space *pa;
3902 pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu);
3903
3904 BUG_ON(atomic_read(&pa->pa_count));
3905 BUG_ON(pa->pa_deleted == 0);
3906 kmem_cache_free(ext4_pspace_cachep, pa);
3907 }
3908
3909 /*
3910 * drops a reference to preallocated space descriptor
3911 * if this was the last reference and the space is consumed
3912 */
3913 static void ext4_mb_put_pa(struct ext4_allocation_context *ac,
3914 struct super_block *sb, struct ext4_prealloc_space *pa)
3915 {
3916 ext4_group_t grp;
3917 ext4_fsblk_t grp_blk;
3918
3919 /* in this short window concurrent discard can set pa_deleted */
3920 spin_lock(&pa->pa_lock);
3921 if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0) {
3922 spin_unlock(&pa->pa_lock);
3923 return;
3924 }
3925
3926 if (pa->pa_deleted == 1) {
3927 spin_unlock(&pa->pa_lock);
3928 return;
3929 }
3930
3931 ext4_mb_mark_pa_deleted(sb, pa);
3932 spin_unlock(&pa->pa_lock);
3933
3934 grp_blk = pa->pa_pstart;
3935 /*
3936 * If doing group-based preallocation, pa_pstart may be in the
3937 * next group when pa is used up
3938 */
3939 if (pa->pa_type == MB_GROUP_PA)
3940 grp_blk--;
3941
3942 grp = ext4_get_group_number(sb, grp_blk);
3943
3944 /*
3945 * possible race:
3946 *
3947 * P1 (buddy init) P2 (regular allocation)
3948 * find block B in PA
3949 * copy on-disk bitmap to buddy
3950 * mark B in on-disk bitmap
3951 * drop PA from group
3952 * mark all PAs in buddy
3953 *
3954 * thus, P1 initializes buddy with B available. to prevent this
3955 * we make "copy" and "mark all PAs" atomic and serialize "drop PA"
3956 * against that pair
3957 */
3958 ext4_lock_group(sb, grp);
3959 list_del(&pa->pa_group_list);
3960 ext4_unlock_group(sb, grp);
3961
3962 spin_lock(pa->pa_obj_lock);
3963 list_del_rcu(&pa->pa_inode_list);
3964 spin_unlock(pa->pa_obj_lock);
3965
3966 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3967 }
3968
3969 /*
3970 * creates new preallocated space for given inode
3971 */
3972 static noinline_for_stack void
3973 ext4_mb_new_inode_pa(struct ext4_allocation_context *ac)
3974 {
3975 struct super_block *sb = ac->ac_sb;
3976 struct ext4_sb_info *sbi = EXT4_SB(sb);
3977 struct ext4_prealloc_space *pa;
3978 struct ext4_group_info *grp;
3979 struct ext4_inode_info *ei;
3980
3981 /* preallocate only when found space is larger then requested */
3982 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
3983 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3984 BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
3985 BUG_ON(ac->ac_pa == NULL);
3986
3987 pa = ac->ac_pa;
3988
3989 if (ac->ac_b_ex.fe_len < ac->ac_g_ex.fe_len) {
3990 int winl;
3991 int wins;
3992 int win;
3993 int offs;
3994
3995 /* we can't allocate as much as normalizer wants.
3996 * so, found space must get proper lstart
3997 * to cover original request */
3998 BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical);
3999 BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len);
4000
4001 /* we're limited by original request in that
4002 * logical block must be covered any way
4003 * winl is window we can move our chunk within */
4004 winl = ac->ac_o_ex.fe_logical - ac->ac_g_ex.fe_logical;
4005
4006 /* also, we should cover whole original request */
4007 wins = EXT4_C2B(sbi, ac->ac_b_ex.fe_len - ac->ac_o_ex.fe_len);
4008
4009 /* the smallest one defines real window */
4010 win = min(winl, wins);
4011
4012 offs = ac->ac_o_ex.fe_logical %
4013 EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
4014 if (offs && offs < win)
4015 win = offs;
4016
4017 ac->ac_b_ex.fe_logical = ac->ac_o_ex.fe_logical -
4018 EXT4_NUM_B2C(sbi, win);
4019 BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical);
4020 BUG_ON(ac->ac_o_ex.fe_len > ac->ac_b_ex.fe_len);
4021 }
4022
4023 /* preallocation can change ac_b_ex, thus we store actually
4024 * allocated blocks for history */
4025 ac->ac_f_ex = ac->ac_b_ex;
4026
4027 pa->pa_lstart = ac->ac_b_ex.fe_logical;
4028 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
4029 pa->pa_len = ac->ac_b_ex.fe_len;
4030 pa->pa_free = pa->pa_len;
4031 spin_lock_init(&pa->pa_lock);
4032 INIT_LIST_HEAD(&pa->pa_inode_list);
4033 INIT_LIST_HEAD(&pa->pa_group_list);
4034 pa->pa_deleted = 0;
4035 pa->pa_type = MB_INODE_PA;
4036
4037 mb_debug(sb, "new inode pa %p: %llu/%d for %u\n", pa, pa->pa_pstart,
4038 pa->pa_len, pa->pa_lstart);
4039 trace_ext4_mb_new_inode_pa(ac, pa);
4040
4041 ext4_mb_use_inode_pa(ac, pa);
4042 atomic_add(pa->pa_free, &sbi->s_mb_preallocated);
4043
4044 ei = EXT4_I(ac->ac_inode);
4045 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
4046
4047 pa->pa_obj_lock = &ei->i_prealloc_lock;
4048 pa->pa_inode = ac->ac_inode;
4049
4050 list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
4051
4052 spin_lock(pa->pa_obj_lock);
4053 list_add_rcu(&pa->pa_inode_list, &ei->i_prealloc_list);
4054 spin_unlock(pa->pa_obj_lock);
4055 atomic_inc(&ei->i_prealloc_active);
4056 }
4057
4058 /*
4059 * creates new preallocated space for locality group inodes belongs to
4060 */
4061 static noinline_for_stack void
4062 ext4_mb_new_group_pa(struct ext4_allocation_context *ac)
4063 {
4064 struct super_block *sb = ac->ac_sb;
4065 struct ext4_locality_group *lg;
4066 struct ext4_prealloc_space *pa;
4067 struct ext4_group_info *grp;
4068
4069 /* preallocate only when found space is larger then requested */
4070 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
4071 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
4072 BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
4073 BUG_ON(ac->ac_pa == NULL);
4074
4075 pa = ac->ac_pa;
4076
4077 /* preallocation can change ac_b_ex, thus we store actually
4078 * allocated blocks for history */
4079 ac->ac_f_ex = ac->ac_b_ex;
4080
4081 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
4082 pa->pa_lstart = pa->pa_pstart;
4083 pa->pa_len = ac->ac_b_ex.fe_len;
4084 pa->pa_free = pa->pa_len;
4085 spin_lock_init(&pa->pa_lock);
4086 INIT_LIST_HEAD(&pa->pa_inode_list);
4087 INIT_LIST_HEAD(&pa->pa_group_list);
4088 pa->pa_deleted = 0;
4089 pa->pa_type = MB_GROUP_PA;
4090
4091 mb_debug(sb, "new group pa %p: %llu/%d for %u\n", pa, pa->pa_pstart,
4092 pa->pa_len, pa->pa_lstart);
4093 trace_ext4_mb_new_group_pa(ac, pa);
4094
4095 ext4_mb_use_group_pa(ac, pa);
4096 atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated);
4097
4098 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
4099 lg = ac->ac_lg;
4100 BUG_ON(lg == NULL);
4101
4102 pa->pa_obj_lock = &lg->lg_prealloc_lock;
4103 pa->pa_inode = NULL;
4104
4105 list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
4106
4107 /*
4108 * We will later add the new pa to the right bucket
4109 * after updating the pa_free in ext4_mb_release_context
4110 */
4111 }
4112
4113 static void ext4_mb_new_preallocation(struct ext4_allocation_context *ac)
4114 {
4115 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
4116 ext4_mb_new_group_pa(ac);
4117 else
4118 ext4_mb_new_inode_pa(ac);
4119 }
4120
4121 /*
4122 * finds all unused blocks in on-disk bitmap, frees them in
4123 * in-core bitmap and buddy.
4124 * @pa must be unlinked from inode and group lists, so that
4125 * nobody else can find/use it.
4126 * the caller MUST hold group/inode locks.
4127 * TODO: optimize the case when there are no in-core structures yet
4128 */
4129 static noinline_for_stack int
4130 ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh,
4131 struct ext4_prealloc_space *pa)
4132 {
4133 struct super_block *sb = e4b->bd_sb;
4134 struct ext4_sb_info *sbi = EXT4_SB(sb);
4135 unsigned int end;
4136 unsigned int next;
4137 ext4_group_t group;
4138 ext4_grpblk_t bit;
4139 unsigned long long grp_blk_start;
4140 int free = 0;
4141
4142 BUG_ON(pa->pa_deleted == 0);
4143 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
4144 grp_blk_start = pa->pa_pstart - EXT4_C2B(sbi, bit);
4145 BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
4146 end = bit + pa->pa_len;
4147
4148 while (bit < end) {
4149 bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit);
4150 if (bit >= end)
4151 break;
4152 next = mb_find_next_bit(bitmap_bh->b_data, end, bit);
4153 mb_debug(sb, "free preallocated %u/%u in group %u\n",
4154 (unsigned) ext4_group_first_block_no(sb, group) + bit,
4155 (unsigned) next - bit, (unsigned) group);
4156 free += next - bit;
4157
4158 trace_ext4_mballoc_discard(sb, NULL, group, bit, next - bit);
4159 trace_ext4_mb_release_inode_pa(pa, (grp_blk_start +
4160 EXT4_C2B(sbi, bit)),
4161 next - bit);
4162 mb_free_blocks(pa->pa_inode, e4b, bit, next - bit);
4163 bit = next + 1;
4164 }
4165 if (free != pa->pa_free) {
4166 ext4_msg(e4b->bd_sb, KERN_CRIT,
4167 "pa %p: logic %lu, phys. %lu, len %d",
4168 pa, (unsigned long) pa->pa_lstart,
4169 (unsigned long) pa->pa_pstart,
4170 pa->pa_len);
4171 ext4_grp_locked_error(sb, group, 0, 0, "free %u, pa_free %u",
4172 free, pa->pa_free);
4173 /*
4174 * pa is already deleted so we use the value obtained
4175 * from the bitmap and continue.
4176 */
4177 }
4178 atomic_add(free, &sbi->s_mb_discarded);
4179
4180 return 0;
4181 }
4182
4183 static noinline_for_stack int
4184 ext4_mb_release_group_pa(struct ext4_buddy *e4b,
4185 struct ext4_prealloc_space *pa)
4186 {
4187 struct super_block *sb = e4b->bd_sb;
4188 ext4_group_t group;
4189 ext4_grpblk_t bit;
4190
4191 trace_ext4_mb_release_group_pa(sb, pa);
4192 BUG_ON(pa->pa_deleted == 0);
4193 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
4194 BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
4195 mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len);
4196 atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded);
4197 trace_ext4_mballoc_discard(sb, NULL, group, bit, pa->pa_len);
4198
4199 return 0;
4200 }
4201
4202 /*
4203 * releases all preallocations in given group
4204 *
4205 * first, we need to decide discard policy:
4206 * - when do we discard
4207 * 1) ENOSPC
4208 * - how many do we discard
4209 * 1) how many requested
4210 */
4211 static noinline_for_stack int
4212 ext4_mb_discard_group_preallocations(struct super_block *sb,
4213 ext4_group_t group, int needed)
4214 {
4215 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
4216 struct buffer_head *bitmap_bh = NULL;
4217 struct ext4_prealloc_space *pa, *tmp;
4218 struct list_head list;
4219 struct ext4_buddy e4b;
4220 int err;
4221 int busy = 0;
4222 int free, free_total = 0;
4223
4224 mb_debug(sb, "discard preallocation for group %u\n", group);
4225 if (list_empty(&grp->bb_prealloc_list))
4226 goto out_dbg;
4227
4228 bitmap_bh = ext4_read_block_bitmap(sb, group);
4229 if (IS_ERR(bitmap_bh)) {
4230 err = PTR_ERR(bitmap_bh);
4231 ext4_error_err(sb, -err,
4232 "Error %d reading block bitmap for %u",
4233 err, group);
4234 goto out_dbg;
4235 }
4236
4237 err = ext4_mb_load_buddy(sb, group, &e4b);
4238 if (err) {
4239 ext4_warning(sb, "Error %d loading buddy information for %u",
4240 err, group);
4241 put_bh(bitmap_bh);
4242 goto out_dbg;
4243 }
4244
4245 if (needed == 0)
4246 needed = EXT4_CLUSTERS_PER_GROUP(sb) + 1;
4247
4248 INIT_LIST_HEAD(&list);
4249 repeat:
4250 free = 0;
4251 ext4_lock_group(sb, group);
4252 list_for_each_entry_safe(pa, tmp,
4253 &grp->bb_prealloc_list, pa_group_list) {
4254 spin_lock(&pa->pa_lock);
4255 if (atomic_read(&pa->pa_count)) {
4256 spin_unlock(&pa->pa_lock);
4257 busy = 1;
4258 continue;
4259 }
4260 if (pa->pa_deleted) {
4261 spin_unlock(&pa->pa_lock);
4262 continue;
4263 }
4264
4265 /* seems this one can be freed ... */
4266 ext4_mb_mark_pa_deleted(sb, pa);
4267
4268 if (!free)
4269 this_cpu_inc(discard_pa_seq);
4270
4271 /* we can trust pa_free ... */
4272 free += pa->pa_free;
4273
4274 spin_unlock(&pa->pa_lock);
4275
4276 list_del(&pa->pa_group_list);
4277 list_add(&pa->u.pa_tmp_list, &list);
4278 }
4279
4280 /* now free all selected PAs */
4281 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
4282
4283 /* remove from object (inode or locality group) */
4284 spin_lock(pa->pa_obj_lock);
4285 list_del_rcu(&pa->pa_inode_list);
4286 spin_unlock(pa->pa_obj_lock);
4287
4288 if (pa->pa_type == MB_GROUP_PA)
4289 ext4_mb_release_group_pa(&e4b, pa);
4290 else
4291 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
4292
4293 list_del(&pa->u.pa_tmp_list);
4294 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4295 }
4296
4297 free_total += free;
4298
4299 /* if we still need more blocks and some PAs were used, try again */
4300 if (free_total < needed && busy) {
4301 ext4_unlock_group(sb, group);
4302 cond_resched();
4303 busy = 0;
4304 goto repeat;
4305 }
4306 ext4_unlock_group(sb, group);
4307 ext4_mb_unload_buddy(&e4b);
4308 put_bh(bitmap_bh);
4309 out_dbg:
4310 mb_debug(sb, "discarded (%d) blocks preallocated for group %u bb_free (%d)\n",
4311 free_total, group, grp->bb_free);
4312 return free_total;
4313 }
4314
4315 /*
4316 * releases all non-used preallocated blocks for given inode
4317 *
4318 * It's important to discard preallocations under i_data_sem
4319 * We don't want another block to be served from the prealloc
4320 * space when we are discarding the inode prealloc space.
4321 *
4322 * FIXME!! Make sure it is valid at all the call sites
4323 */
4324 void ext4_discard_preallocations(struct inode *inode, unsigned int needed)
4325 {
4326 struct ext4_inode_info *ei = EXT4_I(inode);
4327 struct super_block *sb = inode->i_sb;
4328 struct buffer_head *bitmap_bh = NULL;
4329 struct ext4_prealloc_space *pa, *tmp;
4330 ext4_group_t group = 0;
4331 struct list_head list;
4332 struct ext4_buddy e4b;
4333 int err;
4334
4335 if (!S_ISREG(inode->i_mode)) {
4336 /*BUG_ON(!list_empty(&ei->i_prealloc_list));*/
4337 return;
4338 }
4339
4340 if (EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY)
4341 return;
4342
4343 mb_debug(sb, "discard preallocation for inode %lu\n",
4344 inode->i_ino);
4345 trace_ext4_discard_preallocations(inode,
4346 atomic_read(&ei->i_prealloc_active), needed);
4347
4348 INIT_LIST_HEAD(&list);
4349
4350 if (needed == 0)
4351 needed = UINT_MAX;
4352
4353 repeat:
4354 /* first, collect all pa's in the inode */
4355 spin_lock(&ei->i_prealloc_lock);
4356 while (!list_empty(&ei->i_prealloc_list) && needed) {
4357 pa = list_entry(ei->i_prealloc_list.prev,
4358 struct ext4_prealloc_space, pa_inode_list);
4359 BUG_ON(pa->pa_obj_lock != &ei->i_prealloc_lock);
4360 spin_lock(&pa->pa_lock);
4361 if (atomic_read(&pa->pa_count)) {
4362 /* this shouldn't happen often - nobody should
4363 * use preallocation while we're discarding it */
4364 spin_unlock(&pa->pa_lock);
4365 spin_unlock(&ei->i_prealloc_lock);
4366 ext4_msg(sb, KERN_ERR,
4367 "uh-oh! used pa while discarding");
4368 WARN_ON(1);
4369 schedule_timeout_uninterruptible(HZ);
4370 goto repeat;
4371
4372 }
4373 if (pa->pa_deleted == 0) {
4374 ext4_mb_mark_pa_deleted(sb, pa);
4375 spin_unlock(&pa->pa_lock);
4376 list_del_rcu(&pa->pa_inode_list);
4377 list_add(&pa->u.pa_tmp_list, &list);
4378 needed--;
4379 continue;
4380 }
4381
4382 /* someone is deleting pa right now */
4383 spin_unlock(&pa->pa_lock);
4384 spin_unlock(&ei->i_prealloc_lock);
4385
4386 /* we have to wait here because pa_deleted
4387 * doesn't mean pa is already unlinked from
4388 * the list. as we might be called from
4389 * ->clear_inode() the inode will get freed
4390 * and concurrent thread which is unlinking
4391 * pa from inode's list may access already
4392 * freed memory, bad-bad-bad */
4393
4394 /* XXX: if this happens too often, we can
4395 * add a flag to force wait only in case
4396 * of ->clear_inode(), but not in case of
4397 * regular truncate */
4398 schedule_timeout_uninterruptible(HZ);
4399 goto repeat;
4400 }
4401 spin_unlock(&ei->i_prealloc_lock);
4402
4403 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
4404 BUG_ON(pa->pa_type != MB_INODE_PA);
4405 group = ext4_get_group_number(sb, pa->pa_pstart);
4406
4407 err = ext4_mb_load_buddy_gfp(sb, group, &e4b,
4408 GFP_NOFS|__GFP_NOFAIL);
4409 if (err) {
4410 ext4_error_err(sb, -err, "Error %d loading buddy information for %u",
4411 err, group);
4412 continue;
4413 }
4414
4415 bitmap_bh = ext4_read_block_bitmap(sb, group);
4416 if (IS_ERR(bitmap_bh)) {
4417 err = PTR_ERR(bitmap_bh);
4418 ext4_error_err(sb, -err, "Error %d reading block bitmap for %u",
4419 err, group);
4420 ext4_mb_unload_buddy(&e4b);
4421 continue;
4422 }
4423
4424 ext4_lock_group(sb, group);
4425 list_del(&pa->pa_group_list);
4426 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
4427 ext4_unlock_group(sb, group);
4428
4429 ext4_mb_unload_buddy(&e4b);
4430 put_bh(bitmap_bh);
4431
4432 list_del(&pa->u.pa_tmp_list);
4433 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4434 }
4435 }
4436
4437 static int ext4_mb_pa_alloc(struct ext4_allocation_context *ac)
4438 {
4439 struct ext4_prealloc_space *pa;
4440
4441 BUG_ON(ext4_pspace_cachep == NULL);
4442 pa = kmem_cache_zalloc(ext4_pspace_cachep, GFP_NOFS);
4443 if (!pa)
4444 return -ENOMEM;
4445 atomic_set(&pa->pa_count, 1);
4446 ac->ac_pa = pa;
4447 return 0;
4448 }
4449
4450 static void ext4_mb_pa_free(struct ext4_allocation_context *ac)
4451 {
4452 struct ext4_prealloc_space *pa = ac->ac_pa;
4453
4454 BUG_ON(!pa);
4455 ac->ac_pa = NULL;
4456 WARN_ON(!atomic_dec_and_test(&pa->pa_count));
4457 kmem_cache_free(ext4_pspace_cachep, pa);
4458 }
4459
4460 #ifdef CONFIG_EXT4_DEBUG
4461 static inline void ext4_mb_show_pa(struct super_block *sb)
4462 {
4463 ext4_group_t i, ngroups;
4464
4465 if (ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED))
4466 return;
4467
4468 ngroups = ext4_get_groups_count(sb);
4469 mb_debug(sb, "groups: ");
4470 for (i = 0; i < ngroups; i++) {
4471 struct ext4_group_info *grp = ext4_get_group_info(sb, i);
4472 struct ext4_prealloc_space *pa;
4473 ext4_grpblk_t start;
4474 struct list_head *cur;
4475 ext4_lock_group(sb, i);
4476 list_for_each(cur, &grp->bb_prealloc_list) {
4477 pa = list_entry(cur, struct ext4_prealloc_space,
4478 pa_group_list);
4479 spin_lock(&pa->pa_lock);
4480 ext4_get_group_no_and_offset(sb, pa->pa_pstart,
4481 NULL, &start);
4482 spin_unlock(&pa->pa_lock);
4483 mb_debug(sb, "PA:%u:%d:%d\n", i, start,
4484 pa->pa_len);
4485 }
4486 ext4_unlock_group(sb, i);
4487 mb_debug(sb, "%u: %d/%d\n", i, grp->bb_free,
4488 grp->bb_fragments);
4489 }
4490 }
4491
4492 static void ext4_mb_show_ac(struct ext4_allocation_context *ac)
4493 {
4494 struct super_block *sb = ac->ac_sb;
4495
4496 if (ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED))
4497 return;
4498
4499 mb_debug(sb, "Can't allocate:"
4500 " Allocation context details:");
4501 mb_debug(sb, "status %u flags 0x%x",
4502 ac->ac_status, ac->ac_flags);
4503 mb_debug(sb, "orig %lu/%lu/%lu@%lu, "
4504 "goal %lu/%lu/%lu@%lu, "
4505 "best %lu/%lu/%lu@%lu cr %d",
4506 (unsigned long)ac->ac_o_ex.fe_group,
4507 (unsigned long)ac->ac_o_ex.fe_start,
4508 (unsigned long)ac->ac_o_ex.fe_len,
4509 (unsigned long)ac->ac_o_ex.fe_logical,
4510 (unsigned long)ac->ac_g_ex.fe_group,
4511 (unsigned long)ac->ac_g_ex.fe_start,
4512 (unsigned long)ac->ac_g_ex.fe_len,
4513 (unsigned long)ac->ac_g_ex.fe_logical,
4514 (unsigned long)ac->ac_b_ex.fe_group,
4515 (unsigned long)ac->ac_b_ex.fe_start,
4516 (unsigned long)ac->ac_b_ex.fe_len,
4517 (unsigned long)ac->ac_b_ex.fe_logical,
4518 (int)ac->ac_criteria);
4519 mb_debug(sb, "%u found", ac->ac_found);
4520 ext4_mb_show_pa(sb);
4521 }
4522 #else
4523 static inline void ext4_mb_show_pa(struct super_block *sb)
4524 {
4525 return;
4526 }
4527 static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac)
4528 {
4529 ext4_mb_show_pa(ac->ac_sb);
4530 return;
4531 }
4532 #endif
4533
4534 /*
4535 * We use locality group preallocation for small size file. The size of the
4536 * file is determined by the current size or the resulting size after
4537 * allocation which ever is larger
4538 *
4539 * One can tune this size via /sys/fs/ext4/<partition>/mb_stream_req
4540 */
4541 static void ext4_mb_group_or_file(struct ext4_allocation_context *ac)
4542 {
4543 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4544 int bsbits = ac->ac_sb->s_blocksize_bits;
4545 loff_t size, isize;
4546
4547 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
4548 return;
4549
4550 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
4551 return;
4552
4553 size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len);
4554 isize = (i_size_read(ac->ac_inode) + ac->ac_sb->s_blocksize - 1)
4555 >> bsbits;
4556
4557 if ((size == isize) && !ext4_fs_is_busy(sbi) &&
4558 !inode_is_open_for_write(ac->ac_inode)) {
4559 ac->ac_flags |= EXT4_MB_HINT_NOPREALLOC;
4560 return;
4561 }
4562
4563 if (sbi->s_mb_group_prealloc <= 0) {
4564 ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
4565 return;
4566 }
4567
4568 /* don't use group allocation for large files */
4569 size = max(size, isize);
4570 if (size > sbi->s_mb_stream_request) {
4571 ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
4572 return;
4573 }
4574
4575 BUG_ON(ac->ac_lg != NULL);
4576 /*
4577 * locality group prealloc space are per cpu. The reason for having
4578 * per cpu locality group is to reduce the contention between block
4579 * request from multiple CPUs.
4580 */
4581 ac->ac_lg = raw_cpu_ptr(sbi->s_locality_groups);
4582
4583 /* we're going to use group allocation */
4584 ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC;
4585
4586 /* serialize all allocations in the group */
4587 mutex_lock(&ac->ac_lg->lg_mutex);
4588 }
4589
4590 static noinline_for_stack int
4591 ext4_mb_initialize_context(struct ext4_allocation_context *ac,
4592 struct ext4_allocation_request *ar)
4593 {
4594 struct super_block *sb = ar->inode->i_sb;
4595 struct ext4_sb_info *sbi = EXT4_SB(sb);
4596 struct ext4_super_block *es = sbi->s_es;
4597 ext4_group_t group;
4598 unsigned int len;
4599 ext4_fsblk_t goal;
4600 ext4_grpblk_t block;
4601
4602 /* we can't allocate > group size */
4603 len = ar->len;
4604
4605 /* just a dirty hack to filter too big requests */
4606 if (len >= EXT4_CLUSTERS_PER_GROUP(sb))
4607 len = EXT4_CLUSTERS_PER_GROUP(sb);
4608
4609 /* start searching from the goal */
4610 goal = ar->goal;
4611 if (goal < le32_to_cpu(es->s_first_data_block) ||
4612 goal >= ext4_blocks_count(es))
4613 goal = le32_to_cpu(es->s_first_data_block);
4614 ext4_get_group_no_and_offset(sb, goal, &group, &block);
4615
4616 /* set up allocation goals */
4617 ac->ac_b_ex.fe_logical = EXT4_LBLK_CMASK(sbi, ar->logical);
4618 ac->ac_status = AC_STATUS_CONTINUE;
4619 ac->ac_sb = sb;
4620 ac->ac_inode = ar->inode;
4621 ac->ac_o_ex.fe_logical = ac->ac_b_ex.fe_logical;
4622 ac->ac_o_ex.fe_group = group;
4623 ac->ac_o_ex.fe_start = block;
4624 ac->ac_o_ex.fe_len = len;
4625 ac->ac_g_ex = ac->ac_o_ex;
4626 ac->ac_flags = ar->flags;
4627
4628 /* we have to define context: we'll work with a file or
4629 * locality group. this is a policy, actually */
4630 ext4_mb_group_or_file(ac);
4631
4632 mb_debug(sb, "init ac: %u blocks @ %u, goal %u, flags 0x%x, 2^%d, "
4633 "left: %u/%u, right %u/%u to %swritable\n",
4634 (unsigned) ar->len, (unsigned) ar->logical,
4635 (unsigned) ar->goal, ac->ac_flags, ac->ac_2order,
4636 (unsigned) ar->lleft, (unsigned) ar->pleft,
4637 (unsigned) ar->lright, (unsigned) ar->pright,
4638 inode_is_open_for_write(ar->inode) ? "" : "non-");
4639 return 0;
4640
4641 }
4642
4643 static noinline_for_stack void
4644 ext4_mb_discard_lg_preallocations(struct super_block *sb,
4645 struct ext4_locality_group *lg,
4646 int order, int total_entries)
4647 {
4648 ext4_group_t group = 0;
4649 struct ext4_buddy e4b;
4650 struct list_head discard_list;
4651 struct ext4_prealloc_space *pa, *tmp;
4652
4653 mb_debug(sb, "discard locality group preallocation\n");
4654
4655 INIT_LIST_HEAD(&discard_list);
4656
4657 spin_lock(&lg->lg_prealloc_lock);
4658 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[order],
4659 pa_inode_list,
4660 lockdep_is_held(&lg->lg_prealloc_lock)) {
4661 spin_lock(&pa->pa_lock);
4662 if (atomic_read(&pa->pa_count)) {
4663 /*
4664 * This is the pa that we just used
4665 * for block allocation. So don't
4666 * free that
4667 */
4668 spin_unlock(&pa->pa_lock);
4669 continue;
4670 }
4671 if (pa->pa_deleted) {
4672 spin_unlock(&pa->pa_lock);
4673 continue;
4674 }
4675 /* only lg prealloc space */
4676 BUG_ON(pa->pa_type != MB_GROUP_PA);
4677
4678 /* seems this one can be freed ... */
4679 ext4_mb_mark_pa_deleted(sb, pa);
4680 spin_unlock(&pa->pa_lock);
4681
4682 list_del_rcu(&pa->pa_inode_list);
4683 list_add(&pa->u.pa_tmp_list, &discard_list);
4684
4685 total_entries--;
4686 if (total_entries <= 5) {
4687 /*
4688 * we want to keep only 5 entries
4689 * allowing it to grow to 8. This
4690 * mak sure we don't call discard
4691 * soon for this list.
4692 */
4693 break;
4694 }
4695 }
4696 spin_unlock(&lg->lg_prealloc_lock);
4697
4698 list_for_each_entry_safe(pa, tmp, &discard_list, u.pa_tmp_list) {
4699 int err;
4700
4701 group = ext4_get_group_number(sb, pa->pa_pstart);
4702 err = ext4_mb_load_buddy_gfp(sb, group, &e4b,
4703 GFP_NOFS|__GFP_NOFAIL);
4704 if (err) {
4705 ext4_error_err(sb, -err, "Error %d loading buddy information for %u",
4706 err, group);
4707 continue;
4708 }
4709 ext4_lock_group(sb, group);
4710 list_del(&pa->pa_group_list);
4711 ext4_mb_release_group_pa(&e4b, pa);
4712 ext4_unlock_group(sb, group);
4713
4714 ext4_mb_unload_buddy(&e4b);
4715 list_del(&pa->u.pa_tmp_list);
4716 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4717 }
4718 }
4719
4720 /*
4721 * We have incremented pa_count. So it cannot be freed at this
4722 * point. Also we hold lg_mutex. So no parallel allocation is
4723 * possible from this lg. That means pa_free cannot be updated.
4724 *
4725 * A parallel ext4_mb_discard_group_preallocations is possible.
4726 * which can cause the lg_prealloc_list to be updated.
4727 */
4728
4729 static void ext4_mb_add_n_trim(struct ext4_allocation_context *ac)
4730 {
4731 int order, added = 0, lg_prealloc_count = 1;
4732 struct super_block *sb = ac->ac_sb;
4733 struct ext4_locality_group *lg = ac->ac_lg;
4734 struct ext4_prealloc_space *tmp_pa, *pa = ac->ac_pa;
4735
4736 order = fls(pa->pa_free) - 1;
4737 if (order > PREALLOC_TB_SIZE - 1)
4738 /* The max size of hash table is PREALLOC_TB_SIZE */
4739 order = PREALLOC_TB_SIZE - 1;
4740 /* Add the prealloc space to lg */
4741 spin_lock(&lg->lg_prealloc_lock);
4742 list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[order],
4743 pa_inode_list,
4744 lockdep_is_held(&lg->lg_prealloc_lock)) {
4745 spin_lock(&tmp_pa->pa_lock);
4746 if (tmp_pa->pa_deleted) {
4747 spin_unlock(&tmp_pa->pa_lock);
4748 continue;
4749 }
4750 if (!added && pa->pa_free < tmp_pa->pa_free) {
4751 /* Add to the tail of the previous entry */
4752 list_add_tail_rcu(&pa->pa_inode_list,
4753 &tmp_pa->pa_inode_list);
4754 added = 1;
4755 /*
4756 * we want to count the total
4757 * number of entries in the list
4758 */
4759 }
4760 spin_unlock(&tmp_pa->pa_lock);
4761 lg_prealloc_count++;
4762 }
4763 if (!added)
4764 list_add_tail_rcu(&pa->pa_inode_list,
4765 &lg->lg_prealloc_list[order]);
4766 spin_unlock(&lg->lg_prealloc_lock);
4767
4768 /* Now trim the list to be not more than 8 elements */
4769 if (lg_prealloc_count > 8) {
4770 ext4_mb_discard_lg_preallocations(sb, lg,
4771 order, lg_prealloc_count);
4772 return;
4773 }
4774 return ;
4775 }
4776
4777 /*
4778 * if per-inode prealloc list is too long, trim some PA
4779 */
4780 static void ext4_mb_trim_inode_pa(struct inode *inode)
4781 {
4782 struct ext4_inode_info *ei = EXT4_I(inode);
4783 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4784 int count, delta;
4785
4786 count = atomic_read(&ei->i_prealloc_active);
4787 delta = (sbi->s_mb_max_inode_prealloc >> 2) + 1;
4788 if (count > sbi->s_mb_max_inode_prealloc + delta) {
4789 count -= sbi->s_mb_max_inode_prealloc;
4790 ext4_discard_preallocations(inode, count);
4791 }
4792 }
4793
4794 /*
4795 * release all resource we used in allocation
4796 */
4797 static int ext4_mb_release_context(struct ext4_allocation_context *ac)
4798 {
4799 struct inode *inode = ac->ac_inode;
4800 struct ext4_inode_info *ei = EXT4_I(inode);
4801 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4802 struct ext4_prealloc_space *pa = ac->ac_pa;
4803 if (pa) {
4804 if (pa->pa_type == MB_GROUP_PA) {
4805 /* see comment in ext4_mb_use_group_pa() */
4806 spin_lock(&pa->pa_lock);
4807 pa->pa_pstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
4808 pa->pa_lstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
4809 pa->pa_free -= ac->ac_b_ex.fe_len;
4810 pa->pa_len -= ac->ac_b_ex.fe_len;
4811 spin_unlock(&pa->pa_lock);
4812
4813 /*
4814 * We want to add the pa to the right bucket.
4815 * Remove it from the list and while adding
4816 * make sure the list to which we are adding
4817 * doesn't grow big.
4818 */
4819 if (likely(pa->pa_free)) {
4820 spin_lock(pa->pa_obj_lock);
4821 list_del_rcu(&pa->pa_inode_list);
4822 spin_unlock(pa->pa_obj_lock);
4823 ext4_mb_add_n_trim(ac);
4824 }
4825 }
4826
4827 if (pa->pa_type == MB_INODE_PA) {
4828 /*
4829 * treat per-inode prealloc list as a lru list, then try
4830 * to trim the least recently used PA.
4831 */
4832 spin_lock(pa->pa_obj_lock);
4833 list_move(&pa->pa_inode_list, &ei->i_prealloc_list);
4834 spin_unlock(pa->pa_obj_lock);
4835 }
4836
4837 ext4_mb_put_pa(ac, ac->ac_sb, pa);
4838 }
4839 if (ac->ac_bitmap_page)
4840 put_page(ac->ac_bitmap_page);
4841 if (ac->ac_buddy_page)
4842 put_page(ac->ac_buddy_page);
4843 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
4844 mutex_unlock(&ac->ac_lg->lg_mutex);
4845 ext4_mb_collect_stats(ac);
4846 ext4_mb_trim_inode_pa(inode);
4847 return 0;
4848 }
4849
4850 static int ext4_mb_discard_preallocations(struct super_block *sb, int needed)
4851 {
4852 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
4853 int ret;
4854 int freed = 0;
4855
4856 trace_ext4_mb_discard_preallocations(sb, needed);
4857 for (i = 0; i < ngroups && needed > 0; i++) {
4858 ret = ext4_mb_discard_group_preallocations(sb, i, needed);
4859 freed += ret;
4860 needed -= ret;
4861 }
4862
4863 return freed;
4864 }
4865
4866 static bool ext4_mb_discard_preallocations_should_retry(struct super_block *sb,
4867 struct ext4_allocation_context *ac, u64 *seq)
4868 {
4869 int freed;
4870 u64 seq_retry = 0;
4871 bool ret = false;
4872
4873 freed = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len);
4874 if (freed) {
4875 ret = true;
4876 goto out_dbg;
4877 }
4878 seq_retry = ext4_get_discard_pa_seq_sum();
4879 if (!(ac->ac_flags & EXT4_MB_STRICT_CHECK) || seq_retry != *seq) {
4880 ac->ac_flags |= EXT4_MB_STRICT_CHECK;
4881 *seq = seq_retry;
4882 ret = true;
4883 }
4884
4885 out_dbg:
4886 mb_debug(sb, "freed %d, retry ? %s\n", freed, ret ? "yes" : "no");
4887 return ret;
4888 }
4889
4890 static ext4_fsblk_t ext4_mb_new_blocks_simple(handle_t *handle,
4891 struct ext4_allocation_request *ar, int *errp);
4892
4893 /*
4894 * Main entry point into mballoc to allocate blocks
4895 * it tries to use preallocation first, then falls back
4896 * to usual allocation
4897 */
4898 ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle,
4899 struct ext4_allocation_request *ar, int *errp)
4900 {
4901 struct ext4_allocation_context *ac = NULL;
4902 struct ext4_sb_info *sbi;
4903 struct super_block *sb;
4904 ext4_fsblk_t block = 0;
4905 unsigned int inquota = 0;
4906 unsigned int reserv_clstrs = 0;
4907 u64 seq;
4908
4909 might_sleep();
4910 sb = ar->inode->i_sb;
4911 sbi = EXT4_SB(sb);
4912
4913 trace_ext4_request_blocks(ar);
4914 if (sbi->s_mount_state & EXT4_FC_REPLAY)
4915 return ext4_mb_new_blocks_simple(handle, ar, errp);
4916
4917 /* Allow to use superuser reservation for quota file */
4918 if (ext4_is_quota_file(ar->inode))
4919 ar->flags |= EXT4_MB_USE_ROOT_BLOCKS;
4920
4921 if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0) {
4922 /* Without delayed allocation we need to verify
4923 * there is enough free blocks to do block allocation
4924 * and verify allocation doesn't exceed the quota limits.
4925 */
4926 while (ar->len &&
4927 ext4_claim_free_clusters(sbi, ar->len, ar->flags)) {
4928
4929 /* let others to free the space */
4930 cond_resched();
4931 ar->len = ar->len >> 1;
4932 }
4933 if (!ar->len) {
4934 ext4_mb_show_pa(sb);
4935 *errp = -ENOSPC;
4936 return 0;
4937 }
4938 reserv_clstrs = ar->len;
4939 if (ar->flags & EXT4_MB_USE_ROOT_BLOCKS) {
4940 dquot_alloc_block_nofail(ar->inode,
4941 EXT4_C2B(sbi, ar->len));
4942 } else {
4943 while (ar->len &&
4944 dquot_alloc_block(ar->inode,
4945 EXT4_C2B(sbi, ar->len))) {
4946
4947 ar->flags |= EXT4_MB_HINT_NOPREALLOC;
4948 ar->len--;
4949 }
4950 }
4951 inquota = ar->len;
4952 if (ar->len == 0) {
4953 *errp = -EDQUOT;
4954 goto out;
4955 }
4956 }
4957
4958 ac = kmem_cache_zalloc(ext4_ac_cachep, GFP_NOFS);
4959 if (!ac) {
4960 ar->len = 0;
4961 *errp = -ENOMEM;
4962 goto out;
4963 }
4964
4965 *errp = ext4_mb_initialize_context(ac, ar);
4966 if (*errp) {
4967 ar->len = 0;
4968 goto out;
4969 }
4970
4971 ac->ac_op = EXT4_MB_HISTORY_PREALLOC;
4972 seq = this_cpu_read(discard_pa_seq);
4973 if (!ext4_mb_use_preallocated(ac)) {
4974 ac->ac_op = EXT4_MB_HISTORY_ALLOC;
4975 ext4_mb_normalize_request(ac, ar);
4976
4977 *errp = ext4_mb_pa_alloc(ac);
4978 if (*errp)
4979 goto errout;
4980 repeat:
4981 /* allocate space in core */
4982 *errp = ext4_mb_regular_allocator(ac);
4983 /*
4984 * pa allocated above is added to grp->bb_prealloc_list only
4985 * when we were able to allocate some block i.e. when
4986 * ac->ac_status == AC_STATUS_FOUND.
4987 * And error from above mean ac->ac_status != AC_STATUS_FOUND
4988 * So we have to free this pa here itself.
4989 */
4990 if (*errp) {
4991 ext4_mb_pa_free(ac);
4992 ext4_discard_allocated_blocks(ac);
4993 goto errout;
4994 }
4995 if (ac->ac_status == AC_STATUS_FOUND &&
4996 ac->ac_o_ex.fe_len >= ac->ac_f_ex.fe_len)
4997 ext4_mb_pa_free(ac);
4998 }
4999 if (likely(ac->ac_status == AC_STATUS_FOUND)) {
5000 *errp = ext4_mb_mark_diskspace_used(ac, handle, reserv_clstrs);
5001 if (*errp) {
5002 ext4_discard_allocated_blocks(ac);
5003 goto errout;
5004 } else {
5005 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
5006 ar->len = ac->ac_b_ex.fe_len;
5007 }
5008 } else {
5009 if (ext4_mb_discard_preallocations_should_retry(sb, ac, &seq))
5010 goto repeat;
5011 /*
5012 * If block allocation fails then the pa allocated above
5013 * needs to be freed here itself.
5014 */
5015 ext4_mb_pa_free(ac);
5016 *errp = -ENOSPC;
5017 }
5018
5019 errout:
5020 if (*errp) {
5021 ac->ac_b_ex.fe_len = 0;
5022 ar->len = 0;
5023 ext4_mb_show_ac(ac);
5024 }
5025 ext4_mb_release_context(ac);
5026 out:
5027 if (ac)
5028 kmem_cache_free(ext4_ac_cachep, ac);
5029 if (inquota && ar->len < inquota)
5030 dquot_free_block(ar->inode, EXT4_C2B(sbi, inquota - ar->len));
5031 if (!ar->len) {
5032 if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0)
5033 /* release all the reserved blocks if non delalloc */
5034 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
5035 reserv_clstrs);
5036 }
5037
5038 trace_ext4_allocate_blocks(ar, (unsigned long long)block);
5039
5040 return block;
5041 }
5042
5043 /*
5044 * We can merge two free data extents only if the physical blocks
5045 * are contiguous, AND the extents were freed by the same transaction,
5046 * AND the blocks are associated with the same group.
5047 */
5048 static void ext4_try_merge_freed_extent(struct ext4_sb_info *sbi,
5049 struct ext4_free_data *entry,
5050 struct ext4_free_data *new_entry,
5051 struct rb_root *entry_rb_root)
5052 {
5053 if ((entry->efd_tid != new_entry->efd_tid) ||
5054 (entry->efd_group != new_entry->efd_group))
5055 return;
5056 if (entry->efd_start_cluster + entry->efd_count ==
5057 new_entry->efd_start_cluster) {
5058 new_entry->efd_start_cluster = entry->efd_start_cluster;
5059 new_entry->efd_count += entry->efd_count;
5060 } else if (new_entry->efd_start_cluster + new_entry->efd_count ==
5061 entry->efd_start_cluster) {
5062 new_entry->efd_count += entry->efd_count;
5063 } else
5064 return;
5065 spin_lock(&sbi->s_md_lock);
5066 list_del(&entry->efd_list);
5067 spin_unlock(&sbi->s_md_lock);
5068 rb_erase(&entry->efd_node, entry_rb_root);
5069 kmem_cache_free(ext4_free_data_cachep, entry);
5070 }
5071
5072 static noinline_for_stack int
5073 ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b,
5074 struct ext4_free_data *new_entry)
5075 {
5076 ext4_group_t group = e4b->bd_group;
5077 ext4_grpblk_t cluster;
5078 ext4_grpblk_t clusters = new_entry->efd_count;
5079 struct ext4_free_data *entry;
5080 struct ext4_group_info *db = e4b->bd_info;
5081 struct super_block *sb = e4b->bd_sb;
5082 struct ext4_sb_info *sbi = EXT4_SB(sb);
5083 struct rb_node **n = &db->bb_free_root.rb_node, *node;
5084 struct rb_node *parent = NULL, *new_node;
5085
5086 BUG_ON(!ext4_handle_valid(handle));
5087 BUG_ON(e4b->bd_bitmap_page == NULL);
5088 BUG_ON(e4b->bd_buddy_page == NULL);
5089
5090 new_node = &new_entry->efd_node;
5091 cluster = new_entry->efd_start_cluster;
5092
5093 if (!*n) {
5094 /* first free block exent. We need to
5095 protect buddy cache from being freed,
5096 * otherwise we'll refresh it from
5097 * on-disk bitmap and lose not-yet-available
5098 * blocks */
5099 get_page(e4b->bd_buddy_page);
5100 get_page(e4b->bd_bitmap_page);
5101 }
5102 while (*n) {
5103 parent = *n;
5104 entry = rb_entry(parent, struct ext4_free_data, efd_node);
5105 if (cluster < entry->efd_start_cluster)
5106 n = &(*n)->rb_left;
5107 else if (cluster >= (entry->efd_start_cluster + entry->efd_count))
5108 n = &(*n)->rb_right;
5109 else {
5110 ext4_grp_locked_error(sb, group, 0,
5111 ext4_group_first_block_no(sb, group) +
5112 EXT4_C2B(sbi, cluster),
5113 "Block already on to-be-freed list");
5114 kmem_cache_free(ext4_free_data_cachep, new_entry);
5115 return 0;
5116 }
5117 }
5118
5119 rb_link_node(new_node, parent, n);
5120 rb_insert_color(new_node, &db->bb_free_root);
5121
5122 /* Now try to see the extent can be merged to left and right */
5123 node = rb_prev(new_node);
5124 if (node) {
5125 entry = rb_entry(node, struct ext4_free_data, efd_node);
5126 ext4_try_merge_freed_extent(sbi, entry, new_entry,
5127 &(db->bb_free_root));
5128 }
5129
5130 node = rb_next(new_node);
5131 if (node) {
5132 entry = rb_entry(node, struct ext4_free_data, efd_node);
5133 ext4_try_merge_freed_extent(sbi, entry, new_entry,
5134 &(db->bb_free_root));
5135 }
5136
5137 spin_lock(&sbi->s_md_lock);
5138 list_add_tail(&new_entry->efd_list, &sbi->s_freed_data_list);
5139 sbi->s_mb_free_pending += clusters;
5140 spin_unlock(&sbi->s_md_lock);
5141 return 0;
5142 }
5143
5144 /*
5145 * Simple allocator for Ext4 fast commit replay path. It searches for blocks
5146 * linearly starting at the goal block and also excludes the blocks which
5147 * are going to be in use after fast commit replay.
5148 */
5149 static ext4_fsblk_t ext4_mb_new_blocks_simple(handle_t *handle,
5150 struct ext4_allocation_request *ar, int *errp)
5151 {
5152 struct buffer_head *bitmap_bh;
5153 struct super_block *sb = ar->inode->i_sb;
5154 ext4_group_t group;
5155 ext4_grpblk_t blkoff;
5156 int i = sb->s_blocksize;
5157 ext4_fsblk_t goal, block;
5158 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
5159
5160 goal = ar->goal;
5161 if (goal < le32_to_cpu(es->s_first_data_block) ||
5162 goal >= ext4_blocks_count(es))
5163 goal = le32_to_cpu(es->s_first_data_block);
5164
5165 ar->len = 0;
5166 ext4_get_group_no_and_offset(sb, goal, &group, &blkoff);
5167 for (; group < ext4_get_groups_count(sb); group++) {
5168 bitmap_bh = ext4_read_block_bitmap(sb, group);
5169 if (IS_ERR(bitmap_bh)) {
5170 *errp = PTR_ERR(bitmap_bh);
5171 pr_warn("Failed to read block bitmap\n");
5172 return 0;
5173 }
5174
5175 ext4_get_group_no_and_offset(sb,
5176 max(ext4_group_first_block_no(sb, group), goal),
5177 NULL, &blkoff);
5178 i = mb_find_next_zero_bit(bitmap_bh->b_data, sb->s_blocksize,
5179 blkoff);
5180 brelse(bitmap_bh);
5181 if (i >= sb->s_blocksize)
5182 continue;
5183 if (ext4_fc_replay_check_excluded(sb,
5184 ext4_group_first_block_no(sb, group) + i))
5185 continue;
5186 break;
5187 }
5188
5189 if (group >= ext4_get_groups_count(sb) && i >= sb->s_blocksize)
5190 return 0;
5191
5192 block = ext4_group_first_block_no(sb, group) + i;
5193 ext4_mb_mark_bb(sb, block, 1, 1);
5194 ar->len = 1;
5195
5196 return block;
5197 }
5198
5199 static void ext4_free_blocks_simple(struct inode *inode, ext4_fsblk_t block,
5200 unsigned long count)
5201 {
5202 struct buffer_head *bitmap_bh;
5203 struct super_block *sb = inode->i_sb;
5204 struct ext4_group_desc *gdp;
5205 struct buffer_head *gdp_bh;
5206 ext4_group_t group;
5207 ext4_grpblk_t blkoff;
5208 int already_freed = 0, err, i;
5209
5210 ext4_get_group_no_and_offset(sb, block, &group, &blkoff);
5211 bitmap_bh = ext4_read_block_bitmap(sb, group);
5212 if (IS_ERR(bitmap_bh)) {
5213 err = PTR_ERR(bitmap_bh);
5214 pr_warn("Failed to read block bitmap\n");
5215 return;
5216 }
5217 gdp = ext4_get_group_desc(sb, group, &gdp_bh);
5218 if (!gdp)
5219 return;
5220
5221 for (i = 0; i < count; i++) {
5222 if (!mb_test_bit(blkoff + i, bitmap_bh->b_data))
5223 already_freed++;
5224 }
5225 mb_clear_bits(bitmap_bh->b_data, blkoff, count);
5226 err = ext4_handle_dirty_metadata(NULL, NULL, bitmap_bh);
5227 if (err)
5228 return;
5229 ext4_free_group_clusters_set(
5230 sb, gdp, ext4_free_group_clusters(sb, gdp) +
5231 count - already_freed);
5232 ext4_block_bitmap_csum_set(sb, group, gdp, bitmap_bh);
5233 ext4_group_desc_csum_set(sb, group, gdp);
5234 ext4_handle_dirty_metadata(NULL, NULL, gdp_bh);
5235 sync_dirty_buffer(bitmap_bh);
5236 sync_dirty_buffer(gdp_bh);
5237 brelse(bitmap_bh);
5238 }
5239
5240 /**
5241 * ext4_free_blocks() -- Free given blocks and update quota
5242 * @handle: handle for this transaction
5243 * @inode: inode
5244 * @bh: optional buffer of the block to be freed
5245 * @block: starting physical block to be freed
5246 * @count: number of blocks to be freed
5247 * @flags: flags used by ext4_free_blocks
5248 */
5249 void ext4_free_blocks(handle_t *handle, struct inode *inode,
5250 struct buffer_head *bh, ext4_fsblk_t block,
5251 unsigned long count, int flags)
5252 {
5253 struct buffer_head *bitmap_bh = NULL;
5254 struct super_block *sb = inode->i_sb;
5255 struct ext4_group_desc *gdp;
5256 unsigned int overflow;
5257 ext4_grpblk_t bit;
5258 struct buffer_head *gd_bh;
5259 ext4_group_t block_group;
5260 struct ext4_sb_info *sbi;
5261 struct ext4_buddy e4b;
5262 unsigned int count_clusters;
5263 int err = 0;
5264 int ret;
5265
5266 sbi = EXT4_SB(sb);
5267
5268 if (sbi->s_mount_state & EXT4_FC_REPLAY) {
5269 ext4_free_blocks_simple(inode, block, count);
5270 return;
5271 }
5272
5273 might_sleep();
5274 if (bh) {
5275 if (block)
5276 BUG_ON(block != bh->b_blocknr);
5277 else
5278 block = bh->b_blocknr;
5279 }
5280
5281 if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) &&
5282 !ext4_inode_block_valid(inode, block, count)) {
5283 ext4_error(sb, "Freeing blocks not in datazone - "
5284 "block = %llu, count = %lu", block, count);
5285 goto error_return;
5286 }
5287
5288 ext4_debug("freeing block %llu\n", block);
5289 trace_ext4_free_blocks(inode, block, count, flags);
5290
5291 if (bh && (flags & EXT4_FREE_BLOCKS_FORGET)) {
5292 BUG_ON(count > 1);
5293
5294 ext4_forget(handle, flags & EXT4_FREE_BLOCKS_METADATA,
5295 inode, bh, block);
5296 }
5297
5298 /*
5299 * If the extent to be freed does not begin on a cluster
5300 * boundary, we need to deal with partial clusters at the
5301 * beginning and end of the extent. Normally we will free
5302 * blocks at the beginning or the end unless we are explicitly
5303 * requested to avoid doing so.
5304 */
5305 overflow = EXT4_PBLK_COFF(sbi, block);
5306 if (overflow) {
5307 if (flags & EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER) {
5308 overflow = sbi->s_cluster_ratio - overflow;
5309 block += overflow;
5310 if (count > overflow)
5311 count -= overflow;
5312 else
5313 return;
5314 } else {
5315 block -= overflow;
5316 count += overflow;
5317 }
5318 }
5319 overflow = EXT4_LBLK_COFF(sbi, count);
5320 if (overflow) {
5321 if (flags & EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER) {
5322 if (count > overflow)
5323 count -= overflow;
5324 else
5325 return;
5326 } else
5327 count += sbi->s_cluster_ratio - overflow;
5328 }
5329
5330 if (!bh && (flags & EXT4_FREE_BLOCKS_FORGET)) {
5331 int i;
5332 int is_metadata = flags & EXT4_FREE_BLOCKS_METADATA;
5333
5334 for (i = 0; i < count; i++) {
5335 cond_resched();
5336 if (is_metadata)
5337 bh = sb_find_get_block(inode->i_sb, block + i);
5338 ext4_forget(handle, is_metadata, inode, bh, block + i);
5339 }
5340 }
5341
5342 do_more:
5343 overflow = 0;
5344 ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
5345
5346 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(
5347 ext4_get_group_info(sb, block_group))))
5348 return;
5349
5350 /*
5351 * Check to see if we are freeing blocks across a group
5352 * boundary.
5353 */
5354 if (EXT4_C2B(sbi, bit) + count > EXT4_BLOCKS_PER_GROUP(sb)) {
5355 overflow = EXT4_C2B(sbi, bit) + count -
5356 EXT4_BLOCKS_PER_GROUP(sb);
5357 count -= overflow;
5358 }
5359 count_clusters = EXT4_NUM_B2C(sbi, count);
5360 bitmap_bh = ext4_read_block_bitmap(sb, block_group);
5361 if (IS_ERR(bitmap_bh)) {
5362 err = PTR_ERR(bitmap_bh);
5363 bitmap_bh = NULL;
5364 goto error_return;
5365 }
5366 gdp = ext4_get_group_desc(sb, block_group, &gd_bh);
5367 if (!gdp) {
5368 err = -EIO;
5369 goto error_return;
5370 }
5371
5372 if (in_range(ext4_block_bitmap(sb, gdp), block, count) ||
5373 in_range(ext4_inode_bitmap(sb, gdp), block, count) ||
5374 in_range(block, ext4_inode_table(sb, gdp),
5375 sbi->s_itb_per_group) ||
5376 in_range(block + count - 1, ext4_inode_table(sb, gdp),
5377 sbi->s_itb_per_group)) {
5378
5379 ext4_error(sb, "Freeing blocks in system zone - "
5380 "Block = %llu, count = %lu", block, count);
5381 /* err = 0. ext4_std_error should be a no op */
5382 goto error_return;
5383 }
5384
5385 BUFFER_TRACE(bitmap_bh, "getting write access");
5386 err = ext4_journal_get_write_access(handle, bitmap_bh);
5387 if (err)
5388 goto error_return;
5389
5390 /*
5391 * We are about to modify some metadata. Call the journal APIs
5392 * to unshare ->b_data if a currently-committing transaction is
5393 * using it
5394 */
5395 BUFFER_TRACE(gd_bh, "get_write_access");
5396 err = ext4_journal_get_write_access(handle, gd_bh);
5397 if (err)
5398 goto error_return;
5399 #ifdef AGGRESSIVE_CHECK
5400 {
5401 int i;
5402 for (i = 0; i < count_clusters; i++)
5403 BUG_ON(!mb_test_bit(bit + i, bitmap_bh->b_data));
5404 }
5405 #endif
5406 trace_ext4_mballoc_free(sb, inode, block_group, bit, count_clusters);
5407
5408 /* __GFP_NOFAIL: retry infinitely, ignore TIF_MEMDIE and memcg limit. */
5409 err = ext4_mb_load_buddy_gfp(sb, block_group, &e4b,
5410 GFP_NOFS|__GFP_NOFAIL);
5411 if (err)
5412 goto error_return;
5413
5414 /*
5415 * We need to make sure we don't reuse the freed block until after the
5416 * transaction is committed. We make an exception if the inode is to be
5417 * written in writeback mode since writeback mode has weak data
5418 * consistency guarantees.
5419 */
5420 if (ext4_handle_valid(handle) &&
5421 ((flags & EXT4_FREE_BLOCKS_METADATA) ||
5422 !ext4_should_writeback_data(inode))) {
5423 struct ext4_free_data *new_entry;
5424 /*
5425 * We use __GFP_NOFAIL because ext4_free_blocks() is not allowed
5426 * to fail.
5427 */
5428 new_entry = kmem_cache_alloc(ext4_free_data_cachep,
5429 GFP_NOFS|__GFP_NOFAIL);
5430 new_entry->efd_start_cluster = bit;
5431 new_entry->efd_group = block_group;
5432 new_entry->efd_count = count_clusters;
5433 new_entry->efd_tid = handle->h_transaction->t_tid;
5434
5435 ext4_lock_group(sb, block_group);
5436 mb_clear_bits(bitmap_bh->b_data, bit, count_clusters);
5437 ext4_mb_free_metadata(handle, &e4b, new_entry);
5438 } else {
5439 /* need to update group_info->bb_free and bitmap
5440 * with group lock held. generate_buddy look at
5441 * them with group lock_held
5442 */
5443 if (test_opt(sb, DISCARD)) {
5444 err = ext4_issue_discard(sb, block_group, bit, count,
5445 NULL);
5446 if (err && err != -EOPNOTSUPP)
5447 ext4_msg(sb, KERN_WARNING, "discard request in"
5448 " group:%d block:%d count:%lu failed"
5449 " with %d", block_group, bit, count,
5450 err);
5451 } else
5452 EXT4_MB_GRP_CLEAR_TRIMMED(e4b.bd_info);
5453
5454 ext4_lock_group(sb, block_group);
5455 mb_clear_bits(bitmap_bh->b_data, bit, count_clusters);
5456 mb_free_blocks(inode, &e4b, bit, count_clusters);
5457 }
5458
5459 ret = ext4_free_group_clusters(sb, gdp) + count_clusters;
5460 ext4_free_group_clusters_set(sb, gdp, ret);
5461 ext4_block_bitmap_csum_set(sb, block_group, gdp, bitmap_bh);
5462 ext4_group_desc_csum_set(sb, block_group, gdp);
5463 ext4_unlock_group(sb, block_group);
5464
5465 if (sbi->s_log_groups_per_flex) {
5466 ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
5467 atomic64_add(count_clusters,
5468 &sbi_array_rcu_deref(sbi, s_flex_groups,
5469 flex_group)->free_clusters);
5470 }
5471
5472 /*
5473 * on a bigalloc file system, defer the s_freeclusters_counter
5474 * update to the caller (ext4_remove_space and friends) so they
5475 * can determine if a cluster freed here should be rereserved
5476 */
5477 if (!(flags & EXT4_FREE_BLOCKS_RERESERVE_CLUSTER)) {
5478 if (!(flags & EXT4_FREE_BLOCKS_NO_QUOT_UPDATE))
5479 dquot_free_block(inode, EXT4_C2B(sbi, count_clusters));
5480 percpu_counter_add(&sbi->s_freeclusters_counter,
5481 count_clusters);
5482 }
5483
5484 ext4_mb_unload_buddy(&e4b);
5485
5486 /* We dirtied the bitmap block */
5487 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
5488 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
5489
5490 /* And the group descriptor block */
5491 BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
5492 ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
5493 if (!err)
5494 err = ret;
5495
5496 if (overflow && !err) {
5497 block += count;
5498 count = overflow;
5499 put_bh(bitmap_bh);
5500 goto do_more;
5501 }
5502 error_return:
5503 brelse(bitmap_bh);
5504 ext4_std_error(sb, err);
5505 return;
5506 }
5507
5508 /**
5509 * ext4_group_add_blocks() -- Add given blocks to an existing group
5510 * @handle: handle to this transaction
5511 * @sb: super block
5512 * @block: start physical block to add to the block group
5513 * @count: number of blocks to free
5514 *
5515 * This marks the blocks as free in the bitmap and buddy.
5516 */
5517 int ext4_group_add_blocks(handle_t *handle, struct super_block *sb,
5518 ext4_fsblk_t block, unsigned long count)
5519 {
5520 struct buffer_head *bitmap_bh = NULL;
5521 struct buffer_head *gd_bh;
5522 ext4_group_t block_group;
5523 ext4_grpblk_t bit;
5524 unsigned int i;
5525 struct ext4_group_desc *desc;
5526 struct ext4_sb_info *sbi = EXT4_SB(sb);
5527 struct ext4_buddy e4b;
5528 int err = 0, ret, free_clusters_count;
5529 ext4_grpblk_t clusters_freed;
5530 ext4_fsblk_t first_cluster = EXT4_B2C(sbi, block);
5531 ext4_fsblk_t last_cluster = EXT4_B2C(sbi, block + count - 1);
5532 unsigned long cluster_count = last_cluster - first_cluster + 1;
5533
5534 ext4_debug("Adding block(s) %llu-%llu\n", block, block + count - 1);
5535
5536 if (count == 0)
5537 return 0;
5538
5539 ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
5540 /*
5541 * Check to see if we are freeing blocks across a group
5542 * boundary.
5543 */
5544 if (bit + cluster_count > EXT4_CLUSTERS_PER_GROUP(sb)) {
5545 ext4_warning(sb, "too many blocks added to group %u",
5546 block_group);
5547 err = -EINVAL;
5548 goto error_return;
5549 }
5550
5551 bitmap_bh = ext4_read_block_bitmap(sb, block_group);
5552 if (IS_ERR(bitmap_bh)) {
5553 err = PTR_ERR(bitmap_bh);
5554 bitmap_bh = NULL;
5555 goto error_return;
5556 }
5557
5558 desc = ext4_get_group_desc(sb, block_group, &gd_bh);
5559 if (!desc) {
5560 err = -EIO;
5561 goto error_return;
5562 }
5563
5564 if (in_range(ext4_block_bitmap(sb, desc), block, count) ||
5565 in_range(ext4_inode_bitmap(sb, desc), block, count) ||
5566 in_range(block, ext4_inode_table(sb, desc), sbi->s_itb_per_group) ||
5567 in_range(block + count - 1, ext4_inode_table(sb, desc),
5568 sbi->s_itb_per_group)) {
5569 ext4_error(sb, "Adding blocks in system zones - "
5570 "Block = %llu, count = %lu",
5571 block, count);
5572 err = -EINVAL;
5573 goto error_return;
5574 }
5575
5576 BUFFER_TRACE(bitmap_bh, "getting write access");
5577 err = ext4_journal_get_write_access(handle, bitmap_bh);
5578 if (err)
5579 goto error_return;
5580
5581 /*
5582 * We are about to modify some metadata. Call the journal APIs
5583 * to unshare ->b_data if a currently-committing transaction is
5584 * using it
5585 */
5586 BUFFER_TRACE(gd_bh, "get_write_access");
5587 err = ext4_journal_get_write_access(handle, gd_bh);
5588 if (err)
5589 goto error_return;
5590
5591 for (i = 0, clusters_freed = 0; i < cluster_count; i++) {
5592 BUFFER_TRACE(bitmap_bh, "clear bit");
5593 if (!mb_test_bit(bit + i, bitmap_bh->b_data)) {
5594 ext4_error(sb, "bit already cleared for block %llu",
5595 (ext4_fsblk_t)(block + i));
5596 BUFFER_TRACE(bitmap_bh, "bit already cleared");
5597 } else {
5598 clusters_freed++;
5599 }
5600 }
5601
5602 err = ext4_mb_load_buddy(sb, block_group, &e4b);
5603 if (err)
5604 goto error_return;
5605
5606 /*
5607 * need to update group_info->bb_free and bitmap
5608 * with group lock held. generate_buddy look at
5609 * them with group lock_held
5610 */
5611 ext4_lock_group(sb, block_group);
5612 mb_clear_bits(bitmap_bh->b_data, bit, cluster_count);
5613 mb_free_blocks(NULL, &e4b, bit, cluster_count);
5614 free_clusters_count = clusters_freed +
5615 ext4_free_group_clusters(sb, desc);
5616 ext4_free_group_clusters_set(sb, desc, free_clusters_count);
5617 ext4_block_bitmap_csum_set(sb, block_group, desc, bitmap_bh);
5618 ext4_group_desc_csum_set(sb, block_group, desc);
5619 ext4_unlock_group(sb, block_group);
5620 percpu_counter_add(&sbi->s_freeclusters_counter,
5621 clusters_freed);
5622
5623 if (sbi->s_log_groups_per_flex) {
5624 ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
5625 atomic64_add(clusters_freed,
5626 &sbi_array_rcu_deref(sbi, s_flex_groups,
5627 flex_group)->free_clusters);
5628 }
5629
5630 ext4_mb_unload_buddy(&e4b);
5631
5632 /* We dirtied the bitmap block */
5633 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
5634 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
5635
5636 /* And the group descriptor block */
5637 BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
5638 ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
5639 if (!err)
5640 err = ret;
5641
5642 error_return:
5643 brelse(bitmap_bh);
5644 ext4_std_error(sb, err);
5645 return err;
5646 }
5647
5648 /**
5649 * ext4_trim_extent -- function to TRIM one single free extent in the group
5650 * @sb: super block for the file system
5651 * @start: starting block of the free extent in the alloc. group
5652 * @count: number of blocks to TRIM
5653 * @group: alloc. group we are working with
5654 * @e4b: ext4 buddy for the group
5655 *
5656 * Trim "count" blocks starting at "start" in the "group". To assure that no
5657 * one will allocate those blocks, mark it as used in buddy bitmap. This must
5658 * be called with under the group lock.
5659 */
5660 static int ext4_trim_extent(struct super_block *sb, int start, int count,
5661 ext4_group_t group, struct ext4_buddy *e4b)
5662 __releases(bitlock)
5663 __acquires(bitlock)
5664 {
5665 struct ext4_free_extent ex;
5666 int ret = 0;
5667
5668 trace_ext4_trim_extent(sb, group, start, count);
5669
5670 assert_spin_locked(ext4_group_lock_ptr(sb, group));
5671
5672 ex.fe_start = start;
5673 ex.fe_group = group;
5674 ex.fe_len = count;
5675
5676 /*
5677 * Mark blocks used, so no one can reuse them while
5678 * being trimmed.
5679 */
5680 mb_mark_used(e4b, &ex);
5681 ext4_unlock_group(sb, group);
5682 ret = ext4_issue_discard(sb, group, start, count, NULL);
5683 ext4_lock_group(sb, group);
5684 mb_free_blocks(NULL, e4b, start, ex.fe_len);
5685 return ret;
5686 }
5687
5688 /**
5689 * ext4_trim_all_free -- function to trim all free space in alloc. group
5690 * @sb: super block for file system
5691 * @group: group to be trimmed
5692 * @start: first group block to examine
5693 * @max: last group block to examine
5694 * @minblocks: minimum extent block count
5695 *
5696 * ext4_trim_all_free walks through group's buddy bitmap searching for free
5697 * extents. When the free block is found, ext4_trim_extent is called to TRIM
5698 * the extent.
5699 *
5700 *
5701 * ext4_trim_all_free walks through group's block bitmap searching for free
5702 * extents. When the free extent is found, mark it as used in group buddy
5703 * bitmap. Then issue a TRIM command on this extent and free the extent in
5704 * the group buddy bitmap. This is done until whole group is scanned.
5705 */
5706 static ext4_grpblk_t
5707 ext4_trim_all_free(struct super_block *sb, ext4_group_t group,
5708 ext4_grpblk_t start, ext4_grpblk_t max,
5709 ext4_grpblk_t minblocks)
5710 {
5711 void *bitmap;
5712 ext4_grpblk_t next, count = 0, free_count = 0;
5713 struct ext4_buddy e4b;
5714 int ret = 0;
5715
5716 trace_ext4_trim_all_free(sb, group, start, max);
5717
5718 ret = ext4_mb_load_buddy(sb, group, &e4b);
5719 if (ret) {
5720 ext4_warning(sb, "Error %d loading buddy information for %u",
5721 ret, group);
5722 return ret;
5723 }
5724 bitmap = e4b.bd_bitmap;
5725
5726 ext4_lock_group(sb, group);
5727 if (EXT4_MB_GRP_WAS_TRIMMED(e4b.bd_info) &&
5728 minblocks >= atomic_read(&EXT4_SB(sb)->s_last_trim_minblks))
5729 goto out;
5730
5731 start = (e4b.bd_info->bb_first_free > start) ?
5732 e4b.bd_info->bb_first_free : start;
5733
5734 while (start <= max) {
5735 start = mb_find_next_zero_bit(bitmap, max + 1, start);
5736 if (start > max)
5737 break;
5738 next = mb_find_next_bit(bitmap, max + 1, start);
5739
5740 if ((next - start) >= minblocks) {
5741 ret = ext4_trim_extent(sb, start,
5742 next - start, group, &e4b);
5743 if (ret && ret != -EOPNOTSUPP)
5744 break;
5745 ret = 0;
5746 count += next - start;
5747 }
5748 free_count += next - start;
5749 start = next + 1;
5750
5751 if (fatal_signal_pending(current)) {
5752 count = -ERESTARTSYS;
5753 break;
5754 }
5755
5756 if (need_resched()) {
5757 ext4_unlock_group(sb, group);
5758 cond_resched();
5759 ext4_lock_group(sb, group);
5760 }
5761
5762 if ((e4b.bd_info->bb_free - free_count) < minblocks)
5763 break;
5764 }
5765
5766 if (!ret) {
5767 ret = count;
5768 EXT4_MB_GRP_SET_TRIMMED(e4b.bd_info);
5769 }
5770 out:
5771 ext4_unlock_group(sb, group);
5772 ext4_mb_unload_buddy(&e4b);
5773
5774 ext4_debug("trimmed %d blocks in the group %d\n",
5775 count, group);
5776
5777 return ret;
5778 }
5779
5780 /**
5781 * ext4_trim_fs() -- trim ioctl handle function
5782 * @sb: superblock for filesystem
5783 * @range: fstrim_range structure
5784 *
5785 * start: First Byte to trim
5786 * len: number of Bytes to trim from start
5787 * minlen: minimum extent length in Bytes
5788 * ext4_trim_fs goes through all allocation groups containing Bytes from
5789 * start to start+len. For each such a group ext4_trim_all_free function
5790 * is invoked to trim all free space.
5791 */
5792 int ext4_trim_fs(struct super_block *sb, struct fstrim_range *range)
5793 {
5794 struct ext4_group_info *grp;
5795 ext4_group_t group, first_group, last_group;
5796 ext4_grpblk_t cnt = 0, first_cluster, last_cluster;
5797 uint64_t start, end, minlen, trimmed = 0;
5798 ext4_fsblk_t first_data_blk =
5799 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block);
5800 ext4_fsblk_t max_blks = ext4_blocks_count(EXT4_SB(sb)->s_es);
5801 int ret = 0;
5802
5803 start = range->start >> sb->s_blocksize_bits;
5804 end = start + (range->len >> sb->s_blocksize_bits) - 1;
5805 minlen = EXT4_NUM_B2C(EXT4_SB(sb),
5806 range->minlen >> sb->s_blocksize_bits);
5807
5808 if (minlen > EXT4_CLUSTERS_PER_GROUP(sb) ||
5809 start >= max_blks ||
5810 range->len < sb->s_blocksize)
5811 return -EINVAL;
5812 if (end >= max_blks)
5813 end = max_blks - 1;
5814 if (end <= first_data_blk)
5815 goto out;
5816 if (start < first_data_blk)
5817 start = first_data_blk;
5818
5819 /* Determine first and last group to examine based on start and end */
5820 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) start,
5821 &first_group, &first_cluster);
5822 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) end,
5823 &last_group, &last_cluster);
5824
5825 /* end now represents the last cluster to discard in this group */
5826 end = EXT4_CLUSTERS_PER_GROUP(sb) - 1;
5827
5828 for (group = first_group; group <= last_group; group++) {
5829 grp = ext4_get_group_info(sb, group);
5830 /* We only do this if the grp has never been initialized */
5831 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
5832 ret = ext4_mb_init_group(sb, group, GFP_NOFS);
5833 if (ret)
5834 break;
5835 }
5836
5837 /*
5838 * For all the groups except the last one, last cluster will
5839 * always be EXT4_CLUSTERS_PER_GROUP(sb)-1, so we only need to
5840 * change it for the last group, note that last_cluster is
5841 * already computed earlier by ext4_get_group_no_and_offset()
5842 */
5843 if (group == last_group)
5844 end = last_cluster;
5845
5846 if (grp->bb_free >= minlen) {
5847 cnt = ext4_trim_all_free(sb, group, first_cluster,
5848 end, minlen);
5849 if (cnt < 0) {
5850 ret = cnt;
5851 break;
5852 }
5853 trimmed += cnt;
5854 }
5855
5856 /*
5857 * For every group except the first one, we are sure
5858 * that the first cluster to discard will be cluster #0.
5859 */
5860 first_cluster = 0;
5861 }
5862
5863 if (!ret)
5864 atomic_set(&EXT4_SB(sb)->s_last_trim_minblks, minlen);
5865
5866 out:
5867 range->len = EXT4_C2B(EXT4_SB(sb), trimmed) << sb->s_blocksize_bits;
5868 return ret;
5869 }
5870
5871 /* Iterate all the free extents in the group. */
5872 int
5873 ext4_mballoc_query_range(
5874 struct super_block *sb,
5875 ext4_group_t group,
5876 ext4_grpblk_t start,
5877 ext4_grpblk_t end,
5878 ext4_mballoc_query_range_fn formatter,
5879 void *priv)
5880 {
5881 void *bitmap;
5882 ext4_grpblk_t next;
5883 struct ext4_buddy e4b;
5884 int error;
5885
5886 error = ext4_mb_load_buddy(sb, group, &e4b);
5887 if (error)
5888 return error;
5889 bitmap = e4b.bd_bitmap;
5890
5891 ext4_lock_group(sb, group);
5892
5893 start = (e4b.bd_info->bb_first_free > start) ?
5894 e4b.bd_info->bb_first_free : start;
5895 if (end >= EXT4_CLUSTERS_PER_GROUP(sb))
5896 end = EXT4_CLUSTERS_PER_GROUP(sb) - 1;
5897
5898 while (start <= end) {
5899 start = mb_find_next_zero_bit(bitmap, end + 1, start);
5900 if (start > end)
5901 break;
5902 next = mb_find_next_bit(bitmap, end + 1, start);
5903
5904 ext4_unlock_group(sb, group);
5905 error = formatter(sb, group, start, next - start, priv);
5906 if (error)
5907 goto out_unload;
5908 ext4_lock_group(sb, group);
5909
5910 start = next + 1;
5911 }
5912
5913 ext4_unlock_group(sb, group);
5914 out_unload:
5915 ext4_mb_unload_buddy(&e4b);
5916
5917 return error;
5918 }