]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/ext4/mballoc.c
ext4: add no_printk argument validation, fix fallout
[mirror_ubuntu-bionic-kernel.git] / fs / ext4 / mballoc.c
1 /*
2 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3 * Written by Alex Tomas <alex@clusterfs.com>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public Licens
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
17 */
18
19
20 /*
21 * mballoc.c contains the multiblocks allocation routines
22 */
23
24 #include "ext4_jbd2.h"
25 #include "mballoc.h"
26 #include <linux/debugfs.h>
27 #include <linux/slab.h>
28 #include <trace/events/ext4.h>
29
30 /*
31 * MUSTDO:
32 * - test ext4_ext_search_left() and ext4_ext_search_right()
33 * - search for metadata in few groups
34 *
35 * TODO v4:
36 * - normalization should take into account whether file is still open
37 * - discard preallocations if no free space left (policy?)
38 * - don't normalize tails
39 * - quota
40 * - reservation for superuser
41 *
42 * TODO v3:
43 * - bitmap read-ahead (proposed by Oleg Drokin aka green)
44 * - track min/max extents in each group for better group selection
45 * - mb_mark_used() may allocate chunk right after splitting buddy
46 * - tree of groups sorted by number of free blocks
47 * - error handling
48 */
49
50 /*
51 * The allocation request involve request for multiple number of blocks
52 * near to the goal(block) value specified.
53 *
54 * During initialization phase of the allocator we decide to use the
55 * group preallocation or inode preallocation depending on the size of
56 * the file. The size of the file could be the resulting file size we
57 * would have after allocation, or the current file size, which ever
58 * is larger. If the size is less than sbi->s_mb_stream_request we
59 * select to use the group preallocation. The default value of
60 * s_mb_stream_request is 16 blocks. This can also be tuned via
61 * /sys/fs/ext4/<partition>/mb_stream_req. The value is represented in
62 * terms of number of blocks.
63 *
64 * The main motivation for having small file use group preallocation is to
65 * ensure that we have small files closer together on the disk.
66 *
67 * First stage the allocator looks at the inode prealloc list,
68 * ext4_inode_info->i_prealloc_list, which contains list of prealloc
69 * spaces for this particular inode. The inode prealloc space is
70 * represented as:
71 *
72 * pa_lstart -> the logical start block for this prealloc space
73 * pa_pstart -> the physical start block for this prealloc space
74 * pa_len -> length for this prealloc space (in clusters)
75 * pa_free -> free space available in this prealloc space (in clusters)
76 *
77 * The inode preallocation space is used looking at the _logical_ start
78 * block. If only the logical file block falls within the range of prealloc
79 * space we will consume the particular prealloc space. This makes sure that
80 * we have contiguous physical blocks representing the file blocks
81 *
82 * The important thing to be noted in case of inode prealloc space is that
83 * we don't modify the values associated to inode prealloc space except
84 * pa_free.
85 *
86 * If we are not able to find blocks in the inode prealloc space and if we
87 * have the group allocation flag set then we look at the locality group
88 * prealloc space. These are per CPU prealloc list represented as
89 *
90 * ext4_sb_info.s_locality_groups[smp_processor_id()]
91 *
92 * The reason for having a per cpu locality group is to reduce the contention
93 * between CPUs. It is possible to get scheduled at this point.
94 *
95 * The locality group prealloc space is used looking at whether we have
96 * enough free space (pa_free) within the prealloc space.
97 *
98 * If we can't allocate blocks via inode prealloc or/and locality group
99 * prealloc then we look at the buddy cache. The buddy cache is represented
100 * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets
101 * mapped to the buddy and bitmap information regarding different
102 * groups. The buddy information is attached to buddy cache inode so that
103 * we can access them through the page cache. The information regarding
104 * each group is loaded via ext4_mb_load_buddy. The information involve
105 * block bitmap and buddy information. The information are stored in the
106 * inode as:
107 *
108 * { page }
109 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
110 *
111 *
112 * one block each for bitmap and buddy information. So for each group we
113 * take up 2 blocks. A page can contain blocks_per_page (PAGE_CACHE_SIZE /
114 * blocksize) blocks. So it can have information regarding groups_per_page
115 * which is blocks_per_page/2
116 *
117 * The buddy cache inode is not stored on disk. The inode is thrown
118 * away when the filesystem is unmounted.
119 *
120 * We look for count number of blocks in the buddy cache. If we were able
121 * to locate that many free blocks we return with additional information
122 * regarding rest of the contiguous physical block available
123 *
124 * Before allocating blocks via buddy cache we normalize the request
125 * blocks. This ensure we ask for more blocks that we needed. The extra
126 * blocks that we get after allocation is added to the respective prealloc
127 * list. In case of inode preallocation we follow a list of heuristics
128 * based on file size. This can be found in ext4_mb_normalize_request. If
129 * we are doing a group prealloc we try to normalize the request to
130 * sbi->s_mb_group_prealloc. The default value of s_mb_group_prealloc is
131 * dependent on the cluster size; for non-bigalloc file systems, it is
132 * 512 blocks. This can be tuned via
133 * /sys/fs/ext4/<partition>/mb_group_prealloc. The value is represented in
134 * terms of number of blocks. If we have mounted the file system with -O
135 * stripe=<value> option the group prealloc request is normalized to the
136 * the smallest multiple of the stripe value (sbi->s_stripe) which is
137 * greater than the default mb_group_prealloc.
138 *
139 * The regular allocator (using the buddy cache) supports a few tunables.
140 *
141 * /sys/fs/ext4/<partition>/mb_min_to_scan
142 * /sys/fs/ext4/<partition>/mb_max_to_scan
143 * /sys/fs/ext4/<partition>/mb_order2_req
144 *
145 * The regular allocator uses buddy scan only if the request len is power of
146 * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The
147 * value of s_mb_order2_reqs can be tuned via
148 * /sys/fs/ext4/<partition>/mb_order2_req. If the request len is equal to
149 * stripe size (sbi->s_stripe), we try to search for contiguous block in
150 * stripe size. This should result in better allocation on RAID setups. If
151 * not, we search in the specific group using bitmap for best extents. The
152 * tunable min_to_scan and max_to_scan control the behaviour here.
153 * min_to_scan indicate how long the mballoc __must__ look for a best
154 * extent and max_to_scan indicates how long the mballoc __can__ look for a
155 * best extent in the found extents. Searching for the blocks starts with
156 * the group specified as the goal value in allocation context via
157 * ac_g_ex. Each group is first checked based on the criteria whether it
158 * can be used for allocation. ext4_mb_good_group explains how the groups are
159 * checked.
160 *
161 * Both the prealloc space are getting populated as above. So for the first
162 * request we will hit the buddy cache which will result in this prealloc
163 * space getting filled. The prealloc space is then later used for the
164 * subsequent request.
165 */
166
167 /*
168 * mballoc operates on the following data:
169 * - on-disk bitmap
170 * - in-core buddy (actually includes buddy and bitmap)
171 * - preallocation descriptors (PAs)
172 *
173 * there are two types of preallocations:
174 * - inode
175 * assiged to specific inode and can be used for this inode only.
176 * it describes part of inode's space preallocated to specific
177 * physical blocks. any block from that preallocated can be used
178 * independent. the descriptor just tracks number of blocks left
179 * unused. so, before taking some block from descriptor, one must
180 * make sure corresponded logical block isn't allocated yet. this
181 * also means that freeing any block within descriptor's range
182 * must discard all preallocated blocks.
183 * - locality group
184 * assigned to specific locality group which does not translate to
185 * permanent set of inodes: inode can join and leave group. space
186 * from this type of preallocation can be used for any inode. thus
187 * it's consumed from the beginning to the end.
188 *
189 * relation between them can be expressed as:
190 * in-core buddy = on-disk bitmap + preallocation descriptors
191 *
192 * this mean blocks mballoc considers used are:
193 * - allocated blocks (persistent)
194 * - preallocated blocks (non-persistent)
195 *
196 * consistency in mballoc world means that at any time a block is either
197 * free or used in ALL structures. notice: "any time" should not be read
198 * literally -- time is discrete and delimited by locks.
199 *
200 * to keep it simple, we don't use block numbers, instead we count number of
201 * blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA.
202 *
203 * all operations can be expressed as:
204 * - init buddy: buddy = on-disk + PAs
205 * - new PA: buddy += N; PA = N
206 * - use inode PA: on-disk += N; PA -= N
207 * - discard inode PA buddy -= on-disk - PA; PA = 0
208 * - use locality group PA on-disk += N; PA -= N
209 * - discard locality group PA buddy -= PA; PA = 0
210 * note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap
211 * is used in real operation because we can't know actual used
212 * bits from PA, only from on-disk bitmap
213 *
214 * if we follow this strict logic, then all operations above should be atomic.
215 * given some of them can block, we'd have to use something like semaphores
216 * killing performance on high-end SMP hardware. let's try to relax it using
217 * the following knowledge:
218 * 1) if buddy is referenced, it's already initialized
219 * 2) while block is used in buddy and the buddy is referenced,
220 * nobody can re-allocate that block
221 * 3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has
222 * bit set and PA claims same block, it's OK. IOW, one can set bit in
223 * on-disk bitmap if buddy has same bit set or/and PA covers corresponded
224 * block
225 *
226 * so, now we're building a concurrency table:
227 * - init buddy vs.
228 * - new PA
229 * blocks for PA are allocated in the buddy, buddy must be referenced
230 * until PA is linked to allocation group to avoid concurrent buddy init
231 * - use inode PA
232 * we need to make sure that either on-disk bitmap or PA has uptodate data
233 * given (3) we care that PA-=N operation doesn't interfere with init
234 * - discard inode PA
235 * the simplest way would be to have buddy initialized by the discard
236 * - use locality group PA
237 * again PA-=N must be serialized with init
238 * - discard locality group PA
239 * the simplest way would be to have buddy initialized by the discard
240 * - new PA vs.
241 * - use inode PA
242 * i_data_sem serializes them
243 * - discard inode PA
244 * discard process must wait until PA isn't used by another process
245 * - use locality group PA
246 * some mutex should serialize them
247 * - discard locality group PA
248 * discard process must wait until PA isn't used by another process
249 * - use inode PA
250 * - use inode PA
251 * i_data_sem or another mutex should serializes them
252 * - discard inode PA
253 * discard process must wait until PA isn't used by another process
254 * - use locality group PA
255 * nothing wrong here -- they're different PAs covering different blocks
256 * - discard locality group PA
257 * discard process must wait until PA isn't used by another process
258 *
259 * now we're ready to make few consequences:
260 * - PA is referenced and while it is no discard is possible
261 * - PA is referenced until block isn't marked in on-disk bitmap
262 * - PA changes only after on-disk bitmap
263 * - discard must not compete with init. either init is done before
264 * any discard or they're serialized somehow
265 * - buddy init as sum of on-disk bitmap and PAs is done atomically
266 *
267 * a special case when we've used PA to emptiness. no need to modify buddy
268 * in this case, but we should care about concurrent init
269 *
270 */
271
272 /*
273 * Logic in few words:
274 *
275 * - allocation:
276 * load group
277 * find blocks
278 * mark bits in on-disk bitmap
279 * release group
280 *
281 * - use preallocation:
282 * find proper PA (per-inode or group)
283 * load group
284 * mark bits in on-disk bitmap
285 * release group
286 * release PA
287 *
288 * - free:
289 * load group
290 * mark bits in on-disk bitmap
291 * release group
292 *
293 * - discard preallocations in group:
294 * mark PAs deleted
295 * move them onto local list
296 * load on-disk bitmap
297 * load group
298 * remove PA from object (inode or locality group)
299 * mark free blocks in-core
300 *
301 * - discard inode's preallocations:
302 */
303
304 /*
305 * Locking rules
306 *
307 * Locks:
308 * - bitlock on a group (group)
309 * - object (inode/locality) (object)
310 * - per-pa lock (pa)
311 *
312 * Paths:
313 * - new pa
314 * object
315 * group
316 *
317 * - find and use pa:
318 * pa
319 *
320 * - release consumed pa:
321 * pa
322 * group
323 * object
324 *
325 * - generate in-core bitmap:
326 * group
327 * pa
328 *
329 * - discard all for given object (inode, locality group):
330 * object
331 * pa
332 * group
333 *
334 * - discard all for given group:
335 * group
336 * pa
337 * group
338 * object
339 *
340 */
341 static struct kmem_cache *ext4_pspace_cachep;
342 static struct kmem_cache *ext4_ac_cachep;
343 static struct kmem_cache *ext4_free_data_cachep;
344
345 /* We create slab caches for groupinfo data structures based on the
346 * superblock block size. There will be one per mounted filesystem for
347 * each unique s_blocksize_bits */
348 #define NR_GRPINFO_CACHES 8
349 static struct kmem_cache *ext4_groupinfo_caches[NR_GRPINFO_CACHES];
350
351 static const char *ext4_groupinfo_slab_names[NR_GRPINFO_CACHES] = {
352 "ext4_groupinfo_1k", "ext4_groupinfo_2k", "ext4_groupinfo_4k",
353 "ext4_groupinfo_8k", "ext4_groupinfo_16k", "ext4_groupinfo_32k",
354 "ext4_groupinfo_64k", "ext4_groupinfo_128k"
355 };
356
357 static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
358 ext4_group_t group);
359 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
360 ext4_group_t group);
361 static void ext4_free_data_callback(struct super_block *sb,
362 struct ext4_journal_cb_entry *jce, int rc);
363
364 static inline void *mb_correct_addr_and_bit(int *bit, void *addr)
365 {
366 #if BITS_PER_LONG == 64
367 *bit += ((unsigned long) addr & 7UL) << 3;
368 addr = (void *) ((unsigned long) addr & ~7UL);
369 #elif BITS_PER_LONG == 32
370 *bit += ((unsigned long) addr & 3UL) << 3;
371 addr = (void *) ((unsigned long) addr & ~3UL);
372 #else
373 #error "how many bits you are?!"
374 #endif
375 return addr;
376 }
377
378 static inline int mb_test_bit(int bit, void *addr)
379 {
380 /*
381 * ext4_test_bit on architecture like powerpc
382 * needs unsigned long aligned address
383 */
384 addr = mb_correct_addr_and_bit(&bit, addr);
385 return ext4_test_bit(bit, addr);
386 }
387
388 static inline void mb_set_bit(int bit, void *addr)
389 {
390 addr = mb_correct_addr_and_bit(&bit, addr);
391 ext4_set_bit(bit, addr);
392 }
393
394 static inline void mb_clear_bit(int bit, void *addr)
395 {
396 addr = mb_correct_addr_and_bit(&bit, addr);
397 ext4_clear_bit(bit, addr);
398 }
399
400 static inline int mb_find_next_zero_bit(void *addr, int max, int start)
401 {
402 int fix = 0, ret, tmpmax;
403 addr = mb_correct_addr_and_bit(&fix, addr);
404 tmpmax = max + fix;
405 start += fix;
406
407 ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix;
408 if (ret > max)
409 return max;
410 return ret;
411 }
412
413 static inline int mb_find_next_bit(void *addr, int max, int start)
414 {
415 int fix = 0, ret, tmpmax;
416 addr = mb_correct_addr_and_bit(&fix, addr);
417 tmpmax = max + fix;
418 start += fix;
419
420 ret = ext4_find_next_bit(addr, tmpmax, start) - fix;
421 if (ret > max)
422 return max;
423 return ret;
424 }
425
426 static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max)
427 {
428 char *bb;
429
430 BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
431 BUG_ON(max == NULL);
432
433 if (order > e4b->bd_blkbits + 1) {
434 *max = 0;
435 return NULL;
436 }
437
438 /* at order 0 we see each particular block */
439 if (order == 0) {
440 *max = 1 << (e4b->bd_blkbits + 3);
441 return e4b->bd_bitmap;
442 }
443
444 bb = e4b->bd_buddy + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order];
445 *max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order];
446
447 return bb;
448 }
449
450 #ifdef DOUBLE_CHECK
451 static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b,
452 int first, int count)
453 {
454 int i;
455 struct super_block *sb = e4b->bd_sb;
456
457 if (unlikely(e4b->bd_info->bb_bitmap == NULL))
458 return;
459 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
460 for (i = 0; i < count; i++) {
461 if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) {
462 ext4_fsblk_t blocknr;
463
464 blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
465 blocknr += EXT4_C2B(EXT4_SB(sb), first + i);
466 ext4_grp_locked_error(sb, e4b->bd_group,
467 inode ? inode->i_ino : 0,
468 blocknr,
469 "freeing block already freed "
470 "(bit %u)",
471 first + i);
472 }
473 mb_clear_bit(first + i, e4b->bd_info->bb_bitmap);
474 }
475 }
476
477 static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count)
478 {
479 int i;
480
481 if (unlikely(e4b->bd_info->bb_bitmap == NULL))
482 return;
483 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
484 for (i = 0; i < count; i++) {
485 BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap));
486 mb_set_bit(first + i, e4b->bd_info->bb_bitmap);
487 }
488 }
489
490 static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
491 {
492 if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) {
493 unsigned char *b1, *b2;
494 int i;
495 b1 = (unsigned char *) e4b->bd_info->bb_bitmap;
496 b2 = (unsigned char *) bitmap;
497 for (i = 0; i < e4b->bd_sb->s_blocksize; i++) {
498 if (b1[i] != b2[i]) {
499 ext4_msg(e4b->bd_sb, KERN_ERR,
500 "corruption in group %u "
501 "at byte %u(%u): %x in copy != %x "
502 "on disk/prealloc",
503 e4b->bd_group, i, i * 8, b1[i], b2[i]);
504 BUG();
505 }
506 }
507 }
508 }
509
510 #else
511 static inline void mb_free_blocks_double(struct inode *inode,
512 struct ext4_buddy *e4b, int first, int count)
513 {
514 return;
515 }
516 static inline void mb_mark_used_double(struct ext4_buddy *e4b,
517 int first, int count)
518 {
519 return;
520 }
521 static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
522 {
523 return;
524 }
525 #endif
526
527 #ifdef AGGRESSIVE_CHECK
528
529 #define MB_CHECK_ASSERT(assert) \
530 do { \
531 if (!(assert)) { \
532 printk(KERN_EMERG \
533 "Assertion failure in %s() at %s:%d: \"%s\"\n", \
534 function, file, line, # assert); \
535 BUG(); \
536 } \
537 } while (0)
538
539 static int __mb_check_buddy(struct ext4_buddy *e4b, char *file,
540 const char *function, int line)
541 {
542 struct super_block *sb = e4b->bd_sb;
543 int order = e4b->bd_blkbits + 1;
544 int max;
545 int max2;
546 int i;
547 int j;
548 int k;
549 int count;
550 struct ext4_group_info *grp;
551 int fragments = 0;
552 int fstart;
553 struct list_head *cur;
554 void *buddy;
555 void *buddy2;
556
557 {
558 static int mb_check_counter;
559 if (mb_check_counter++ % 100 != 0)
560 return 0;
561 }
562
563 while (order > 1) {
564 buddy = mb_find_buddy(e4b, order, &max);
565 MB_CHECK_ASSERT(buddy);
566 buddy2 = mb_find_buddy(e4b, order - 1, &max2);
567 MB_CHECK_ASSERT(buddy2);
568 MB_CHECK_ASSERT(buddy != buddy2);
569 MB_CHECK_ASSERT(max * 2 == max2);
570
571 count = 0;
572 for (i = 0; i < max; i++) {
573
574 if (mb_test_bit(i, buddy)) {
575 /* only single bit in buddy2 may be 1 */
576 if (!mb_test_bit(i << 1, buddy2)) {
577 MB_CHECK_ASSERT(
578 mb_test_bit((i<<1)+1, buddy2));
579 } else if (!mb_test_bit((i << 1) + 1, buddy2)) {
580 MB_CHECK_ASSERT(
581 mb_test_bit(i << 1, buddy2));
582 }
583 continue;
584 }
585
586 /* both bits in buddy2 must be 1 */
587 MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2));
588 MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2));
589
590 for (j = 0; j < (1 << order); j++) {
591 k = (i * (1 << order)) + j;
592 MB_CHECK_ASSERT(
593 !mb_test_bit(k, e4b->bd_bitmap));
594 }
595 count++;
596 }
597 MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count);
598 order--;
599 }
600
601 fstart = -1;
602 buddy = mb_find_buddy(e4b, 0, &max);
603 for (i = 0; i < max; i++) {
604 if (!mb_test_bit(i, buddy)) {
605 MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free);
606 if (fstart == -1) {
607 fragments++;
608 fstart = i;
609 }
610 continue;
611 }
612 fstart = -1;
613 /* check used bits only */
614 for (j = 0; j < e4b->bd_blkbits + 1; j++) {
615 buddy2 = mb_find_buddy(e4b, j, &max2);
616 k = i >> j;
617 MB_CHECK_ASSERT(k < max2);
618 MB_CHECK_ASSERT(mb_test_bit(k, buddy2));
619 }
620 }
621 MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info));
622 MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments);
623
624 grp = ext4_get_group_info(sb, e4b->bd_group);
625 list_for_each(cur, &grp->bb_prealloc_list) {
626 ext4_group_t groupnr;
627 struct ext4_prealloc_space *pa;
628 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
629 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k);
630 MB_CHECK_ASSERT(groupnr == e4b->bd_group);
631 for (i = 0; i < pa->pa_len; i++)
632 MB_CHECK_ASSERT(mb_test_bit(k + i, buddy));
633 }
634 return 0;
635 }
636 #undef MB_CHECK_ASSERT
637 #define mb_check_buddy(e4b) __mb_check_buddy(e4b, \
638 __FILE__, __func__, __LINE__)
639 #else
640 #define mb_check_buddy(e4b)
641 #endif
642
643 /*
644 * Divide blocks started from @first with length @len into
645 * smaller chunks with power of 2 blocks.
646 * Clear the bits in bitmap which the blocks of the chunk(s) covered,
647 * then increase bb_counters[] for corresponded chunk size.
648 */
649 static void ext4_mb_mark_free_simple(struct super_block *sb,
650 void *buddy, ext4_grpblk_t first, ext4_grpblk_t len,
651 struct ext4_group_info *grp)
652 {
653 struct ext4_sb_info *sbi = EXT4_SB(sb);
654 ext4_grpblk_t min;
655 ext4_grpblk_t max;
656 ext4_grpblk_t chunk;
657 unsigned short border;
658
659 BUG_ON(len > EXT4_CLUSTERS_PER_GROUP(sb));
660
661 border = 2 << sb->s_blocksize_bits;
662
663 while (len > 0) {
664 /* find how many blocks can be covered since this position */
665 max = ffs(first | border) - 1;
666
667 /* find how many blocks of power 2 we need to mark */
668 min = fls(len) - 1;
669
670 if (max < min)
671 min = max;
672 chunk = 1 << min;
673
674 /* mark multiblock chunks only */
675 grp->bb_counters[min]++;
676 if (min > 0)
677 mb_clear_bit(first >> min,
678 buddy + sbi->s_mb_offsets[min]);
679
680 len -= chunk;
681 first += chunk;
682 }
683 }
684
685 /*
686 * Cache the order of the largest free extent we have available in this block
687 * group.
688 */
689 static void
690 mb_set_largest_free_order(struct super_block *sb, struct ext4_group_info *grp)
691 {
692 int i;
693 int bits;
694
695 grp->bb_largest_free_order = -1; /* uninit */
696
697 bits = sb->s_blocksize_bits + 1;
698 for (i = bits; i >= 0; i--) {
699 if (grp->bb_counters[i] > 0) {
700 grp->bb_largest_free_order = i;
701 break;
702 }
703 }
704 }
705
706 static noinline_for_stack
707 void ext4_mb_generate_buddy(struct super_block *sb,
708 void *buddy, void *bitmap, ext4_group_t group)
709 {
710 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
711 ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb);
712 ext4_grpblk_t i = 0;
713 ext4_grpblk_t first;
714 ext4_grpblk_t len;
715 unsigned free = 0;
716 unsigned fragments = 0;
717 unsigned long long period = get_cycles();
718
719 /* initialize buddy from bitmap which is aggregation
720 * of on-disk bitmap and preallocations */
721 i = mb_find_next_zero_bit(bitmap, max, 0);
722 grp->bb_first_free = i;
723 while (i < max) {
724 fragments++;
725 first = i;
726 i = mb_find_next_bit(bitmap, max, i);
727 len = i - first;
728 free += len;
729 if (len > 1)
730 ext4_mb_mark_free_simple(sb, buddy, first, len, grp);
731 else
732 grp->bb_counters[0]++;
733 if (i < max)
734 i = mb_find_next_zero_bit(bitmap, max, i);
735 }
736 grp->bb_fragments = fragments;
737
738 if (free != grp->bb_free) {
739 ext4_grp_locked_error(sb, group, 0, 0,
740 "%u clusters in bitmap, %u in gd",
741 free, grp->bb_free);
742 /*
743 * If we intent to continue, we consider group descritor
744 * corrupt and update bb_free using bitmap value
745 */
746 grp->bb_free = free;
747 }
748 mb_set_largest_free_order(sb, grp);
749
750 clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state));
751
752 period = get_cycles() - period;
753 spin_lock(&EXT4_SB(sb)->s_bal_lock);
754 EXT4_SB(sb)->s_mb_buddies_generated++;
755 EXT4_SB(sb)->s_mb_generation_time += period;
756 spin_unlock(&EXT4_SB(sb)->s_bal_lock);
757 }
758
759 /* The buddy information is attached the buddy cache inode
760 * for convenience. The information regarding each group
761 * is loaded via ext4_mb_load_buddy. The information involve
762 * block bitmap and buddy information. The information are
763 * stored in the inode as
764 *
765 * { page }
766 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
767 *
768 *
769 * one block each for bitmap and buddy information.
770 * So for each group we take up 2 blocks. A page can
771 * contain blocks_per_page (PAGE_CACHE_SIZE / blocksize) blocks.
772 * So it can have information regarding groups_per_page which
773 * is blocks_per_page/2
774 *
775 * Locking note: This routine takes the block group lock of all groups
776 * for this page; do not hold this lock when calling this routine!
777 */
778
779 static int ext4_mb_init_cache(struct page *page, char *incore)
780 {
781 ext4_group_t ngroups;
782 int blocksize;
783 int blocks_per_page;
784 int groups_per_page;
785 int err = 0;
786 int i;
787 ext4_group_t first_group, group;
788 int first_block;
789 struct super_block *sb;
790 struct buffer_head *bhs;
791 struct buffer_head **bh;
792 struct inode *inode;
793 char *data;
794 char *bitmap;
795 struct ext4_group_info *grinfo;
796
797 mb_debug(1, "init page %lu\n", page->index);
798
799 inode = page->mapping->host;
800 sb = inode->i_sb;
801 ngroups = ext4_get_groups_count(sb);
802 blocksize = 1 << inode->i_blkbits;
803 blocks_per_page = PAGE_CACHE_SIZE / blocksize;
804
805 groups_per_page = blocks_per_page >> 1;
806 if (groups_per_page == 0)
807 groups_per_page = 1;
808
809 /* allocate buffer_heads to read bitmaps */
810 if (groups_per_page > 1) {
811 i = sizeof(struct buffer_head *) * groups_per_page;
812 bh = kzalloc(i, GFP_NOFS);
813 if (bh == NULL) {
814 err = -ENOMEM;
815 goto out;
816 }
817 } else
818 bh = &bhs;
819
820 first_group = page->index * blocks_per_page / 2;
821
822 /* read all groups the page covers into the cache */
823 for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
824 if (group >= ngroups)
825 break;
826
827 grinfo = ext4_get_group_info(sb, group);
828 /*
829 * If page is uptodate then we came here after online resize
830 * which added some new uninitialized group info structs, so
831 * we must skip all initialized uptodate buddies on the page,
832 * which may be currently in use by an allocating task.
833 */
834 if (PageUptodate(page) && !EXT4_MB_GRP_NEED_INIT(grinfo)) {
835 bh[i] = NULL;
836 continue;
837 }
838 if (!(bh[i] = ext4_read_block_bitmap_nowait(sb, group))) {
839 err = -ENOMEM;
840 goto out;
841 }
842 mb_debug(1, "read bitmap for group %u\n", group);
843 }
844
845 /* wait for I/O completion */
846 for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
847 if (bh[i] && ext4_wait_block_bitmap(sb, group, bh[i])) {
848 err = -EIO;
849 goto out;
850 }
851 }
852
853 first_block = page->index * blocks_per_page;
854 for (i = 0; i < blocks_per_page; i++) {
855 int group;
856
857 group = (first_block + i) >> 1;
858 if (group >= ngroups)
859 break;
860
861 if (!bh[group - first_group])
862 /* skip initialized uptodate buddy */
863 continue;
864
865 /*
866 * data carry information regarding this
867 * particular group in the format specified
868 * above
869 *
870 */
871 data = page_address(page) + (i * blocksize);
872 bitmap = bh[group - first_group]->b_data;
873
874 /*
875 * We place the buddy block and bitmap block
876 * close together
877 */
878 if ((first_block + i) & 1) {
879 /* this is block of buddy */
880 BUG_ON(incore == NULL);
881 mb_debug(1, "put buddy for group %u in page %lu/%x\n",
882 group, page->index, i * blocksize);
883 trace_ext4_mb_buddy_bitmap_load(sb, group);
884 grinfo = ext4_get_group_info(sb, group);
885 grinfo->bb_fragments = 0;
886 memset(grinfo->bb_counters, 0,
887 sizeof(*grinfo->bb_counters) *
888 (sb->s_blocksize_bits+2));
889 /*
890 * incore got set to the group block bitmap below
891 */
892 ext4_lock_group(sb, group);
893 /* init the buddy */
894 memset(data, 0xff, blocksize);
895 ext4_mb_generate_buddy(sb, data, incore, group);
896 ext4_unlock_group(sb, group);
897 incore = NULL;
898 } else {
899 /* this is block of bitmap */
900 BUG_ON(incore != NULL);
901 mb_debug(1, "put bitmap for group %u in page %lu/%x\n",
902 group, page->index, i * blocksize);
903 trace_ext4_mb_bitmap_load(sb, group);
904
905 /* see comments in ext4_mb_put_pa() */
906 ext4_lock_group(sb, group);
907 memcpy(data, bitmap, blocksize);
908
909 /* mark all preallocated blks used in in-core bitmap */
910 ext4_mb_generate_from_pa(sb, data, group);
911 ext4_mb_generate_from_freelist(sb, data, group);
912 ext4_unlock_group(sb, group);
913
914 /* set incore so that the buddy information can be
915 * generated using this
916 */
917 incore = data;
918 }
919 }
920 SetPageUptodate(page);
921
922 out:
923 if (bh) {
924 for (i = 0; i < groups_per_page; i++)
925 brelse(bh[i]);
926 if (bh != &bhs)
927 kfree(bh);
928 }
929 return err;
930 }
931
932 /*
933 * Lock the buddy and bitmap pages. This make sure other parallel init_group
934 * on the same buddy page doesn't happen whild holding the buddy page lock.
935 * Return locked buddy and bitmap pages on e4b struct. If buddy and bitmap
936 * are on the same page e4b->bd_buddy_page is NULL and return value is 0.
937 */
938 static int ext4_mb_get_buddy_page_lock(struct super_block *sb,
939 ext4_group_t group, struct ext4_buddy *e4b)
940 {
941 struct inode *inode = EXT4_SB(sb)->s_buddy_cache;
942 int block, pnum, poff;
943 int blocks_per_page;
944 struct page *page;
945
946 e4b->bd_buddy_page = NULL;
947 e4b->bd_bitmap_page = NULL;
948
949 blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize;
950 /*
951 * the buddy cache inode stores the block bitmap
952 * and buddy information in consecutive blocks.
953 * So for each group we need two blocks.
954 */
955 block = group * 2;
956 pnum = block / blocks_per_page;
957 poff = block % blocks_per_page;
958 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
959 if (!page)
960 return -EIO;
961 BUG_ON(page->mapping != inode->i_mapping);
962 e4b->bd_bitmap_page = page;
963 e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
964
965 if (blocks_per_page >= 2) {
966 /* buddy and bitmap are on the same page */
967 return 0;
968 }
969
970 block++;
971 pnum = block / blocks_per_page;
972 poff = block % blocks_per_page;
973 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
974 if (!page)
975 return -EIO;
976 BUG_ON(page->mapping != inode->i_mapping);
977 e4b->bd_buddy_page = page;
978 return 0;
979 }
980
981 static void ext4_mb_put_buddy_page_lock(struct ext4_buddy *e4b)
982 {
983 if (e4b->bd_bitmap_page) {
984 unlock_page(e4b->bd_bitmap_page);
985 page_cache_release(e4b->bd_bitmap_page);
986 }
987 if (e4b->bd_buddy_page) {
988 unlock_page(e4b->bd_buddy_page);
989 page_cache_release(e4b->bd_buddy_page);
990 }
991 }
992
993 /*
994 * Locking note: This routine calls ext4_mb_init_cache(), which takes the
995 * block group lock of all groups for this page; do not hold the BG lock when
996 * calling this routine!
997 */
998 static noinline_for_stack
999 int ext4_mb_init_group(struct super_block *sb, ext4_group_t group)
1000 {
1001
1002 struct ext4_group_info *this_grp;
1003 struct ext4_buddy e4b;
1004 struct page *page;
1005 int ret = 0;
1006
1007 mb_debug(1, "init group %u\n", group);
1008 this_grp = ext4_get_group_info(sb, group);
1009 /*
1010 * This ensures that we don't reinit the buddy cache
1011 * page which map to the group from which we are already
1012 * allocating. If we are looking at the buddy cache we would
1013 * have taken a reference using ext4_mb_load_buddy and that
1014 * would have pinned buddy page to page cache.
1015 */
1016 ret = ext4_mb_get_buddy_page_lock(sb, group, &e4b);
1017 if (ret || !EXT4_MB_GRP_NEED_INIT(this_grp)) {
1018 /*
1019 * somebody initialized the group
1020 * return without doing anything
1021 */
1022 goto err;
1023 }
1024
1025 page = e4b.bd_bitmap_page;
1026 ret = ext4_mb_init_cache(page, NULL);
1027 if (ret)
1028 goto err;
1029 if (!PageUptodate(page)) {
1030 ret = -EIO;
1031 goto err;
1032 }
1033 mark_page_accessed(page);
1034
1035 if (e4b.bd_buddy_page == NULL) {
1036 /*
1037 * If both the bitmap and buddy are in
1038 * the same page we don't need to force
1039 * init the buddy
1040 */
1041 ret = 0;
1042 goto err;
1043 }
1044 /* init buddy cache */
1045 page = e4b.bd_buddy_page;
1046 ret = ext4_mb_init_cache(page, e4b.bd_bitmap);
1047 if (ret)
1048 goto err;
1049 if (!PageUptodate(page)) {
1050 ret = -EIO;
1051 goto err;
1052 }
1053 mark_page_accessed(page);
1054 err:
1055 ext4_mb_put_buddy_page_lock(&e4b);
1056 return ret;
1057 }
1058
1059 /*
1060 * Locking note: This routine calls ext4_mb_init_cache(), which takes the
1061 * block group lock of all groups for this page; do not hold the BG lock when
1062 * calling this routine!
1063 */
1064 static noinline_for_stack int
1065 ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group,
1066 struct ext4_buddy *e4b)
1067 {
1068 int blocks_per_page;
1069 int block;
1070 int pnum;
1071 int poff;
1072 struct page *page;
1073 int ret;
1074 struct ext4_group_info *grp;
1075 struct ext4_sb_info *sbi = EXT4_SB(sb);
1076 struct inode *inode = sbi->s_buddy_cache;
1077
1078 mb_debug(1, "load group %u\n", group);
1079
1080 blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize;
1081 grp = ext4_get_group_info(sb, group);
1082
1083 e4b->bd_blkbits = sb->s_blocksize_bits;
1084 e4b->bd_info = grp;
1085 e4b->bd_sb = sb;
1086 e4b->bd_group = group;
1087 e4b->bd_buddy_page = NULL;
1088 e4b->bd_bitmap_page = NULL;
1089
1090 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
1091 /*
1092 * we need full data about the group
1093 * to make a good selection
1094 */
1095 ret = ext4_mb_init_group(sb, group);
1096 if (ret)
1097 return ret;
1098 }
1099
1100 /*
1101 * the buddy cache inode stores the block bitmap
1102 * and buddy information in consecutive blocks.
1103 * So for each group we need two blocks.
1104 */
1105 block = group * 2;
1106 pnum = block / blocks_per_page;
1107 poff = block % blocks_per_page;
1108
1109 /* we could use find_or_create_page(), but it locks page
1110 * what we'd like to avoid in fast path ... */
1111 page = find_get_page(inode->i_mapping, pnum);
1112 if (page == NULL || !PageUptodate(page)) {
1113 if (page)
1114 /*
1115 * drop the page reference and try
1116 * to get the page with lock. If we
1117 * are not uptodate that implies
1118 * somebody just created the page but
1119 * is yet to initialize the same. So
1120 * wait for it to initialize.
1121 */
1122 page_cache_release(page);
1123 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
1124 if (page) {
1125 BUG_ON(page->mapping != inode->i_mapping);
1126 if (!PageUptodate(page)) {
1127 ret = ext4_mb_init_cache(page, NULL);
1128 if (ret) {
1129 unlock_page(page);
1130 goto err;
1131 }
1132 mb_cmp_bitmaps(e4b, page_address(page) +
1133 (poff * sb->s_blocksize));
1134 }
1135 unlock_page(page);
1136 }
1137 }
1138 if (page == NULL || !PageUptodate(page)) {
1139 ret = -EIO;
1140 goto err;
1141 }
1142 e4b->bd_bitmap_page = page;
1143 e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
1144 mark_page_accessed(page);
1145
1146 block++;
1147 pnum = block / blocks_per_page;
1148 poff = block % blocks_per_page;
1149
1150 page = find_get_page(inode->i_mapping, pnum);
1151 if (page == NULL || !PageUptodate(page)) {
1152 if (page)
1153 page_cache_release(page);
1154 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
1155 if (page) {
1156 BUG_ON(page->mapping != inode->i_mapping);
1157 if (!PageUptodate(page)) {
1158 ret = ext4_mb_init_cache(page, e4b->bd_bitmap);
1159 if (ret) {
1160 unlock_page(page);
1161 goto err;
1162 }
1163 }
1164 unlock_page(page);
1165 }
1166 }
1167 if (page == NULL || !PageUptodate(page)) {
1168 ret = -EIO;
1169 goto err;
1170 }
1171 e4b->bd_buddy_page = page;
1172 e4b->bd_buddy = page_address(page) + (poff * sb->s_blocksize);
1173 mark_page_accessed(page);
1174
1175 BUG_ON(e4b->bd_bitmap_page == NULL);
1176 BUG_ON(e4b->bd_buddy_page == NULL);
1177
1178 return 0;
1179
1180 err:
1181 if (page)
1182 page_cache_release(page);
1183 if (e4b->bd_bitmap_page)
1184 page_cache_release(e4b->bd_bitmap_page);
1185 if (e4b->bd_buddy_page)
1186 page_cache_release(e4b->bd_buddy_page);
1187 e4b->bd_buddy = NULL;
1188 e4b->bd_bitmap = NULL;
1189 return ret;
1190 }
1191
1192 static void ext4_mb_unload_buddy(struct ext4_buddy *e4b)
1193 {
1194 if (e4b->bd_bitmap_page)
1195 page_cache_release(e4b->bd_bitmap_page);
1196 if (e4b->bd_buddy_page)
1197 page_cache_release(e4b->bd_buddy_page);
1198 }
1199
1200
1201 static int mb_find_order_for_block(struct ext4_buddy *e4b, int block)
1202 {
1203 int order = 1;
1204 void *bb;
1205
1206 BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
1207 BUG_ON(block >= (1 << (e4b->bd_blkbits + 3)));
1208
1209 bb = e4b->bd_buddy;
1210 while (order <= e4b->bd_blkbits + 1) {
1211 block = block >> 1;
1212 if (!mb_test_bit(block, bb)) {
1213 /* this block is part of buddy of order 'order' */
1214 return order;
1215 }
1216 bb += 1 << (e4b->bd_blkbits - order);
1217 order++;
1218 }
1219 return 0;
1220 }
1221
1222 static void mb_clear_bits(void *bm, int cur, int len)
1223 {
1224 __u32 *addr;
1225
1226 len = cur + len;
1227 while (cur < len) {
1228 if ((cur & 31) == 0 && (len - cur) >= 32) {
1229 /* fast path: clear whole word at once */
1230 addr = bm + (cur >> 3);
1231 *addr = 0;
1232 cur += 32;
1233 continue;
1234 }
1235 mb_clear_bit(cur, bm);
1236 cur++;
1237 }
1238 }
1239
1240 void ext4_set_bits(void *bm, int cur, int len)
1241 {
1242 __u32 *addr;
1243
1244 len = cur + len;
1245 while (cur < len) {
1246 if ((cur & 31) == 0 && (len - cur) >= 32) {
1247 /* fast path: set whole word at once */
1248 addr = bm + (cur >> 3);
1249 *addr = 0xffffffff;
1250 cur += 32;
1251 continue;
1252 }
1253 mb_set_bit(cur, bm);
1254 cur++;
1255 }
1256 }
1257
1258 static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b,
1259 int first, int count)
1260 {
1261 int block = 0;
1262 int max = 0;
1263 int order;
1264 void *buddy;
1265 void *buddy2;
1266 struct super_block *sb = e4b->bd_sb;
1267
1268 BUG_ON(first + count > (sb->s_blocksize << 3));
1269 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
1270 mb_check_buddy(e4b);
1271 mb_free_blocks_double(inode, e4b, first, count);
1272
1273 e4b->bd_info->bb_free += count;
1274 if (first < e4b->bd_info->bb_first_free)
1275 e4b->bd_info->bb_first_free = first;
1276
1277 /* let's maintain fragments counter */
1278 if (first != 0)
1279 block = !mb_test_bit(first - 1, e4b->bd_bitmap);
1280 if (first + count < EXT4_SB(sb)->s_mb_maxs[0])
1281 max = !mb_test_bit(first + count, e4b->bd_bitmap);
1282 if (block && max)
1283 e4b->bd_info->bb_fragments--;
1284 else if (!block && !max)
1285 e4b->bd_info->bb_fragments++;
1286
1287 /* let's maintain buddy itself */
1288 while (count-- > 0) {
1289 block = first++;
1290 order = 0;
1291
1292 if (!mb_test_bit(block, e4b->bd_bitmap)) {
1293 ext4_fsblk_t blocknr;
1294
1295 blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
1296 blocknr += EXT4_C2B(EXT4_SB(sb), block);
1297 ext4_grp_locked_error(sb, e4b->bd_group,
1298 inode ? inode->i_ino : 0,
1299 blocknr,
1300 "freeing already freed block "
1301 "(bit %u)", block);
1302 }
1303 mb_clear_bit(block, e4b->bd_bitmap);
1304 e4b->bd_info->bb_counters[order]++;
1305
1306 /* start of the buddy */
1307 buddy = mb_find_buddy(e4b, order, &max);
1308
1309 do {
1310 block &= ~1UL;
1311 if (mb_test_bit(block, buddy) ||
1312 mb_test_bit(block + 1, buddy))
1313 break;
1314
1315 /* both the buddies are free, try to coalesce them */
1316 buddy2 = mb_find_buddy(e4b, order + 1, &max);
1317
1318 if (!buddy2)
1319 break;
1320
1321 if (order > 0) {
1322 /* for special purposes, we don't set
1323 * free bits in bitmap */
1324 mb_set_bit(block, buddy);
1325 mb_set_bit(block + 1, buddy);
1326 }
1327 e4b->bd_info->bb_counters[order]--;
1328 e4b->bd_info->bb_counters[order]--;
1329
1330 block = block >> 1;
1331 order++;
1332 e4b->bd_info->bb_counters[order]++;
1333
1334 mb_clear_bit(block, buddy2);
1335 buddy = buddy2;
1336 } while (1);
1337 }
1338 mb_set_largest_free_order(sb, e4b->bd_info);
1339 mb_check_buddy(e4b);
1340 }
1341
1342 static int mb_find_extent(struct ext4_buddy *e4b, int order, int block,
1343 int needed, struct ext4_free_extent *ex)
1344 {
1345 int next = block;
1346 int max;
1347 void *buddy;
1348
1349 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1350 BUG_ON(ex == NULL);
1351
1352 buddy = mb_find_buddy(e4b, order, &max);
1353 BUG_ON(buddy == NULL);
1354 BUG_ON(block >= max);
1355 if (mb_test_bit(block, buddy)) {
1356 ex->fe_len = 0;
1357 ex->fe_start = 0;
1358 ex->fe_group = 0;
1359 return 0;
1360 }
1361
1362 /* FIXME dorp order completely ? */
1363 if (likely(order == 0)) {
1364 /* find actual order */
1365 order = mb_find_order_for_block(e4b, block);
1366 block = block >> order;
1367 }
1368
1369 ex->fe_len = 1 << order;
1370 ex->fe_start = block << order;
1371 ex->fe_group = e4b->bd_group;
1372
1373 /* calc difference from given start */
1374 next = next - ex->fe_start;
1375 ex->fe_len -= next;
1376 ex->fe_start += next;
1377
1378 while (needed > ex->fe_len &&
1379 (buddy = mb_find_buddy(e4b, order, &max))) {
1380
1381 if (block + 1 >= max)
1382 break;
1383
1384 next = (block + 1) * (1 << order);
1385 if (mb_test_bit(next, e4b->bd_bitmap))
1386 break;
1387
1388 order = mb_find_order_for_block(e4b, next);
1389
1390 block = next >> order;
1391 ex->fe_len += 1 << order;
1392 }
1393
1394 BUG_ON(ex->fe_start + ex->fe_len > (1 << (e4b->bd_blkbits + 3)));
1395 return ex->fe_len;
1396 }
1397
1398 static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex)
1399 {
1400 int ord;
1401 int mlen = 0;
1402 int max = 0;
1403 int cur;
1404 int start = ex->fe_start;
1405 int len = ex->fe_len;
1406 unsigned ret = 0;
1407 int len0 = len;
1408 void *buddy;
1409
1410 BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3));
1411 BUG_ON(e4b->bd_group != ex->fe_group);
1412 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1413 mb_check_buddy(e4b);
1414 mb_mark_used_double(e4b, start, len);
1415
1416 e4b->bd_info->bb_free -= len;
1417 if (e4b->bd_info->bb_first_free == start)
1418 e4b->bd_info->bb_first_free += len;
1419
1420 /* let's maintain fragments counter */
1421 if (start != 0)
1422 mlen = !mb_test_bit(start - 1, e4b->bd_bitmap);
1423 if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0])
1424 max = !mb_test_bit(start + len, e4b->bd_bitmap);
1425 if (mlen && max)
1426 e4b->bd_info->bb_fragments++;
1427 else if (!mlen && !max)
1428 e4b->bd_info->bb_fragments--;
1429
1430 /* let's maintain buddy itself */
1431 while (len) {
1432 ord = mb_find_order_for_block(e4b, start);
1433
1434 if (((start >> ord) << ord) == start && len >= (1 << ord)) {
1435 /* the whole chunk may be allocated at once! */
1436 mlen = 1 << ord;
1437 buddy = mb_find_buddy(e4b, ord, &max);
1438 BUG_ON((start >> ord) >= max);
1439 mb_set_bit(start >> ord, buddy);
1440 e4b->bd_info->bb_counters[ord]--;
1441 start += mlen;
1442 len -= mlen;
1443 BUG_ON(len < 0);
1444 continue;
1445 }
1446
1447 /* store for history */
1448 if (ret == 0)
1449 ret = len | (ord << 16);
1450
1451 /* we have to split large buddy */
1452 BUG_ON(ord <= 0);
1453 buddy = mb_find_buddy(e4b, ord, &max);
1454 mb_set_bit(start >> ord, buddy);
1455 e4b->bd_info->bb_counters[ord]--;
1456
1457 ord--;
1458 cur = (start >> ord) & ~1U;
1459 buddy = mb_find_buddy(e4b, ord, &max);
1460 mb_clear_bit(cur, buddy);
1461 mb_clear_bit(cur + 1, buddy);
1462 e4b->bd_info->bb_counters[ord]++;
1463 e4b->bd_info->bb_counters[ord]++;
1464 }
1465 mb_set_largest_free_order(e4b->bd_sb, e4b->bd_info);
1466
1467 ext4_set_bits(e4b->bd_bitmap, ex->fe_start, len0);
1468 mb_check_buddy(e4b);
1469
1470 return ret;
1471 }
1472
1473 /*
1474 * Must be called under group lock!
1475 */
1476 static void ext4_mb_use_best_found(struct ext4_allocation_context *ac,
1477 struct ext4_buddy *e4b)
1478 {
1479 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1480 int ret;
1481
1482 BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group);
1483 BUG_ON(ac->ac_status == AC_STATUS_FOUND);
1484
1485 ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len);
1486 ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical;
1487 ret = mb_mark_used(e4b, &ac->ac_b_ex);
1488
1489 /* preallocation can change ac_b_ex, thus we store actually
1490 * allocated blocks for history */
1491 ac->ac_f_ex = ac->ac_b_ex;
1492
1493 ac->ac_status = AC_STATUS_FOUND;
1494 ac->ac_tail = ret & 0xffff;
1495 ac->ac_buddy = ret >> 16;
1496
1497 /*
1498 * take the page reference. We want the page to be pinned
1499 * so that we don't get a ext4_mb_init_cache_call for this
1500 * group until we update the bitmap. That would mean we
1501 * double allocate blocks. The reference is dropped
1502 * in ext4_mb_release_context
1503 */
1504 ac->ac_bitmap_page = e4b->bd_bitmap_page;
1505 get_page(ac->ac_bitmap_page);
1506 ac->ac_buddy_page = e4b->bd_buddy_page;
1507 get_page(ac->ac_buddy_page);
1508 /* store last allocated for subsequent stream allocation */
1509 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
1510 spin_lock(&sbi->s_md_lock);
1511 sbi->s_mb_last_group = ac->ac_f_ex.fe_group;
1512 sbi->s_mb_last_start = ac->ac_f_ex.fe_start;
1513 spin_unlock(&sbi->s_md_lock);
1514 }
1515 }
1516
1517 /*
1518 * regular allocator, for general purposes allocation
1519 */
1520
1521 static void ext4_mb_check_limits(struct ext4_allocation_context *ac,
1522 struct ext4_buddy *e4b,
1523 int finish_group)
1524 {
1525 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1526 struct ext4_free_extent *bex = &ac->ac_b_ex;
1527 struct ext4_free_extent *gex = &ac->ac_g_ex;
1528 struct ext4_free_extent ex;
1529 int max;
1530
1531 if (ac->ac_status == AC_STATUS_FOUND)
1532 return;
1533 /*
1534 * We don't want to scan for a whole year
1535 */
1536 if (ac->ac_found > sbi->s_mb_max_to_scan &&
1537 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1538 ac->ac_status = AC_STATUS_BREAK;
1539 return;
1540 }
1541
1542 /*
1543 * Haven't found good chunk so far, let's continue
1544 */
1545 if (bex->fe_len < gex->fe_len)
1546 return;
1547
1548 if ((finish_group || ac->ac_found > sbi->s_mb_min_to_scan)
1549 && bex->fe_group == e4b->bd_group) {
1550 /* recheck chunk's availability - we don't know
1551 * when it was found (within this lock-unlock
1552 * period or not) */
1553 max = mb_find_extent(e4b, 0, bex->fe_start, gex->fe_len, &ex);
1554 if (max >= gex->fe_len) {
1555 ext4_mb_use_best_found(ac, e4b);
1556 return;
1557 }
1558 }
1559 }
1560
1561 /*
1562 * The routine checks whether found extent is good enough. If it is,
1563 * then the extent gets marked used and flag is set to the context
1564 * to stop scanning. Otherwise, the extent is compared with the
1565 * previous found extent and if new one is better, then it's stored
1566 * in the context. Later, the best found extent will be used, if
1567 * mballoc can't find good enough extent.
1568 *
1569 * FIXME: real allocation policy is to be designed yet!
1570 */
1571 static void ext4_mb_measure_extent(struct ext4_allocation_context *ac,
1572 struct ext4_free_extent *ex,
1573 struct ext4_buddy *e4b)
1574 {
1575 struct ext4_free_extent *bex = &ac->ac_b_ex;
1576 struct ext4_free_extent *gex = &ac->ac_g_ex;
1577
1578 BUG_ON(ex->fe_len <= 0);
1579 BUG_ON(ex->fe_len > EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
1580 BUG_ON(ex->fe_start >= EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
1581 BUG_ON(ac->ac_status != AC_STATUS_CONTINUE);
1582
1583 ac->ac_found++;
1584
1585 /*
1586 * The special case - take what you catch first
1587 */
1588 if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1589 *bex = *ex;
1590 ext4_mb_use_best_found(ac, e4b);
1591 return;
1592 }
1593
1594 /*
1595 * Let's check whether the chuck is good enough
1596 */
1597 if (ex->fe_len == gex->fe_len) {
1598 *bex = *ex;
1599 ext4_mb_use_best_found(ac, e4b);
1600 return;
1601 }
1602
1603 /*
1604 * If this is first found extent, just store it in the context
1605 */
1606 if (bex->fe_len == 0) {
1607 *bex = *ex;
1608 return;
1609 }
1610
1611 /*
1612 * If new found extent is better, store it in the context
1613 */
1614 if (bex->fe_len < gex->fe_len) {
1615 /* if the request isn't satisfied, any found extent
1616 * larger than previous best one is better */
1617 if (ex->fe_len > bex->fe_len)
1618 *bex = *ex;
1619 } else if (ex->fe_len > gex->fe_len) {
1620 /* if the request is satisfied, then we try to find
1621 * an extent that still satisfy the request, but is
1622 * smaller than previous one */
1623 if (ex->fe_len < bex->fe_len)
1624 *bex = *ex;
1625 }
1626
1627 ext4_mb_check_limits(ac, e4b, 0);
1628 }
1629
1630 static noinline_for_stack
1631 int ext4_mb_try_best_found(struct ext4_allocation_context *ac,
1632 struct ext4_buddy *e4b)
1633 {
1634 struct ext4_free_extent ex = ac->ac_b_ex;
1635 ext4_group_t group = ex.fe_group;
1636 int max;
1637 int err;
1638
1639 BUG_ON(ex.fe_len <= 0);
1640 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1641 if (err)
1642 return err;
1643
1644 ext4_lock_group(ac->ac_sb, group);
1645 max = mb_find_extent(e4b, 0, ex.fe_start, ex.fe_len, &ex);
1646
1647 if (max > 0) {
1648 ac->ac_b_ex = ex;
1649 ext4_mb_use_best_found(ac, e4b);
1650 }
1651
1652 ext4_unlock_group(ac->ac_sb, group);
1653 ext4_mb_unload_buddy(e4b);
1654
1655 return 0;
1656 }
1657
1658 static noinline_for_stack
1659 int ext4_mb_find_by_goal(struct ext4_allocation_context *ac,
1660 struct ext4_buddy *e4b)
1661 {
1662 ext4_group_t group = ac->ac_g_ex.fe_group;
1663 int max;
1664 int err;
1665 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1666 struct ext4_free_extent ex;
1667
1668 if (!(ac->ac_flags & EXT4_MB_HINT_TRY_GOAL))
1669 return 0;
1670
1671 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1672 if (err)
1673 return err;
1674
1675 ext4_lock_group(ac->ac_sb, group);
1676 max = mb_find_extent(e4b, 0, ac->ac_g_ex.fe_start,
1677 ac->ac_g_ex.fe_len, &ex);
1678
1679 if (max >= ac->ac_g_ex.fe_len && ac->ac_g_ex.fe_len == sbi->s_stripe) {
1680 ext4_fsblk_t start;
1681
1682 start = ext4_group_first_block_no(ac->ac_sb, e4b->bd_group) +
1683 ex.fe_start;
1684 /* use do_div to get remainder (would be 64-bit modulo) */
1685 if (do_div(start, sbi->s_stripe) == 0) {
1686 ac->ac_found++;
1687 ac->ac_b_ex = ex;
1688 ext4_mb_use_best_found(ac, e4b);
1689 }
1690 } else if (max >= ac->ac_g_ex.fe_len) {
1691 BUG_ON(ex.fe_len <= 0);
1692 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1693 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1694 ac->ac_found++;
1695 ac->ac_b_ex = ex;
1696 ext4_mb_use_best_found(ac, e4b);
1697 } else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) {
1698 /* Sometimes, caller may want to merge even small
1699 * number of blocks to an existing extent */
1700 BUG_ON(ex.fe_len <= 0);
1701 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1702 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1703 ac->ac_found++;
1704 ac->ac_b_ex = ex;
1705 ext4_mb_use_best_found(ac, e4b);
1706 }
1707 ext4_unlock_group(ac->ac_sb, group);
1708 ext4_mb_unload_buddy(e4b);
1709
1710 return 0;
1711 }
1712
1713 /*
1714 * The routine scans buddy structures (not bitmap!) from given order
1715 * to max order and tries to find big enough chunk to satisfy the req
1716 */
1717 static noinline_for_stack
1718 void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac,
1719 struct ext4_buddy *e4b)
1720 {
1721 struct super_block *sb = ac->ac_sb;
1722 struct ext4_group_info *grp = e4b->bd_info;
1723 void *buddy;
1724 int i;
1725 int k;
1726 int max;
1727
1728 BUG_ON(ac->ac_2order <= 0);
1729 for (i = ac->ac_2order; i <= sb->s_blocksize_bits + 1; i++) {
1730 if (grp->bb_counters[i] == 0)
1731 continue;
1732
1733 buddy = mb_find_buddy(e4b, i, &max);
1734 BUG_ON(buddy == NULL);
1735
1736 k = mb_find_next_zero_bit(buddy, max, 0);
1737 BUG_ON(k >= max);
1738
1739 ac->ac_found++;
1740
1741 ac->ac_b_ex.fe_len = 1 << i;
1742 ac->ac_b_ex.fe_start = k << i;
1743 ac->ac_b_ex.fe_group = e4b->bd_group;
1744
1745 ext4_mb_use_best_found(ac, e4b);
1746
1747 BUG_ON(ac->ac_b_ex.fe_len != ac->ac_g_ex.fe_len);
1748
1749 if (EXT4_SB(sb)->s_mb_stats)
1750 atomic_inc(&EXT4_SB(sb)->s_bal_2orders);
1751
1752 break;
1753 }
1754 }
1755
1756 /*
1757 * The routine scans the group and measures all found extents.
1758 * In order to optimize scanning, caller must pass number of
1759 * free blocks in the group, so the routine can know upper limit.
1760 */
1761 static noinline_for_stack
1762 void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac,
1763 struct ext4_buddy *e4b)
1764 {
1765 struct super_block *sb = ac->ac_sb;
1766 void *bitmap = e4b->bd_bitmap;
1767 struct ext4_free_extent ex;
1768 int i;
1769 int free;
1770
1771 free = e4b->bd_info->bb_free;
1772 BUG_ON(free <= 0);
1773
1774 i = e4b->bd_info->bb_first_free;
1775
1776 while (free && ac->ac_status == AC_STATUS_CONTINUE) {
1777 i = mb_find_next_zero_bit(bitmap,
1778 EXT4_CLUSTERS_PER_GROUP(sb), i);
1779 if (i >= EXT4_CLUSTERS_PER_GROUP(sb)) {
1780 /*
1781 * IF we have corrupt bitmap, we won't find any
1782 * free blocks even though group info says we
1783 * we have free blocks
1784 */
1785 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
1786 "%d free clusters as per "
1787 "group info. But bitmap says 0",
1788 free);
1789 break;
1790 }
1791
1792 mb_find_extent(e4b, 0, i, ac->ac_g_ex.fe_len, &ex);
1793 BUG_ON(ex.fe_len <= 0);
1794 if (free < ex.fe_len) {
1795 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
1796 "%d free clusters as per "
1797 "group info. But got %d blocks",
1798 free, ex.fe_len);
1799 /*
1800 * The number of free blocks differs. This mostly
1801 * indicate that the bitmap is corrupt. So exit
1802 * without claiming the space.
1803 */
1804 break;
1805 }
1806
1807 ext4_mb_measure_extent(ac, &ex, e4b);
1808
1809 i += ex.fe_len;
1810 free -= ex.fe_len;
1811 }
1812
1813 ext4_mb_check_limits(ac, e4b, 1);
1814 }
1815
1816 /*
1817 * This is a special case for storages like raid5
1818 * we try to find stripe-aligned chunks for stripe-size-multiple requests
1819 */
1820 static noinline_for_stack
1821 void ext4_mb_scan_aligned(struct ext4_allocation_context *ac,
1822 struct ext4_buddy *e4b)
1823 {
1824 struct super_block *sb = ac->ac_sb;
1825 struct ext4_sb_info *sbi = EXT4_SB(sb);
1826 void *bitmap = e4b->bd_bitmap;
1827 struct ext4_free_extent ex;
1828 ext4_fsblk_t first_group_block;
1829 ext4_fsblk_t a;
1830 ext4_grpblk_t i;
1831 int max;
1832
1833 BUG_ON(sbi->s_stripe == 0);
1834
1835 /* find first stripe-aligned block in group */
1836 first_group_block = ext4_group_first_block_no(sb, e4b->bd_group);
1837
1838 a = first_group_block + sbi->s_stripe - 1;
1839 do_div(a, sbi->s_stripe);
1840 i = (a * sbi->s_stripe) - first_group_block;
1841
1842 while (i < EXT4_CLUSTERS_PER_GROUP(sb)) {
1843 if (!mb_test_bit(i, bitmap)) {
1844 max = mb_find_extent(e4b, 0, i, sbi->s_stripe, &ex);
1845 if (max >= sbi->s_stripe) {
1846 ac->ac_found++;
1847 ac->ac_b_ex = ex;
1848 ext4_mb_use_best_found(ac, e4b);
1849 break;
1850 }
1851 }
1852 i += sbi->s_stripe;
1853 }
1854 }
1855
1856 /* This is now called BEFORE we load the buddy bitmap. */
1857 static int ext4_mb_good_group(struct ext4_allocation_context *ac,
1858 ext4_group_t group, int cr)
1859 {
1860 unsigned free, fragments;
1861 int flex_size = ext4_flex_bg_size(EXT4_SB(ac->ac_sb));
1862 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
1863
1864 BUG_ON(cr < 0 || cr >= 4);
1865
1866 /* We only do this if the grp has never been initialized */
1867 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
1868 int ret = ext4_mb_init_group(ac->ac_sb, group);
1869 if (ret)
1870 return 0;
1871 }
1872
1873 free = grp->bb_free;
1874 fragments = grp->bb_fragments;
1875 if (free == 0)
1876 return 0;
1877 if (fragments == 0)
1878 return 0;
1879
1880 switch (cr) {
1881 case 0:
1882 BUG_ON(ac->ac_2order == 0);
1883
1884 if (grp->bb_largest_free_order < ac->ac_2order)
1885 return 0;
1886
1887 /* Avoid using the first bg of a flexgroup for data files */
1888 if ((ac->ac_flags & EXT4_MB_HINT_DATA) &&
1889 (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) &&
1890 ((group % flex_size) == 0))
1891 return 0;
1892
1893 return 1;
1894 case 1:
1895 if ((free / fragments) >= ac->ac_g_ex.fe_len)
1896 return 1;
1897 break;
1898 case 2:
1899 if (free >= ac->ac_g_ex.fe_len)
1900 return 1;
1901 break;
1902 case 3:
1903 return 1;
1904 default:
1905 BUG();
1906 }
1907
1908 return 0;
1909 }
1910
1911 static noinline_for_stack int
1912 ext4_mb_regular_allocator(struct ext4_allocation_context *ac)
1913 {
1914 ext4_group_t ngroups, group, i;
1915 int cr;
1916 int err = 0;
1917 struct ext4_sb_info *sbi;
1918 struct super_block *sb;
1919 struct ext4_buddy e4b;
1920
1921 sb = ac->ac_sb;
1922 sbi = EXT4_SB(sb);
1923 ngroups = ext4_get_groups_count(sb);
1924 /* non-extent files are limited to low blocks/groups */
1925 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)))
1926 ngroups = sbi->s_blockfile_groups;
1927
1928 BUG_ON(ac->ac_status == AC_STATUS_FOUND);
1929
1930 /* first, try the goal */
1931 err = ext4_mb_find_by_goal(ac, &e4b);
1932 if (err || ac->ac_status == AC_STATUS_FOUND)
1933 goto out;
1934
1935 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
1936 goto out;
1937
1938 /*
1939 * ac->ac2_order is set only if the fe_len is a power of 2
1940 * if ac2_order is set we also set criteria to 0 so that we
1941 * try exact allocation using buddy.
1942 */
1943 i = fls(ac->ac_g_ex.fe_len);
1944 ac->ac_2order = 0;
1945 /*
1946 * We search using buddy data only if the order of the request
1947 * is greater than equal to the sbi_s_mb_order2_reqs
1948 * You can tune it via /sys/fs/ext4/<partition>/mb_order2_req
1949 */
1950 if (i >= sbi->s_mb_order2_reqs) {
1951 /*
1952 * This should tell if fe_len is exactly power of 2
1953 */
1954 if ((ac->ac_g_ex.fe_len & (~(1 << (i - 1)))) == 0)
1955 ac->ac_2order = i - 1;
1956 }
1957
1958 /* if stream allocation is enabled, use global goal */
1959 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
1960 /* TBD: may be hot point */
1961 spin_lock(&sbi->s_md_lock);
1962 ac->ac_g_ex.fe_group = sbi->s_mb_last_group;
1963 ac->ac_g_ex.fe_start = sbi->s_mb_last_start;
1964 spin_unlock(&sbi->s_md_lock);
1965 }
1966
1967 /* Let's just scan groups to find more-less suitable blocks */
1968 cr = ac->ac_2order ? 0 : 1;
1969 /*
1970 * cr == 0 try to get exact allocation,
1971 * cr == 3 try to get anything
1972 */
1973 repeat:
1974 for (; cr < 4 && ac->ac_status == AC_STATUS_CONTINUE; cr++) {
1975 ac->ac_criteria = cr;
1976 /*
1977 * searching for the right group start
1978 * from the goal value specified
1979 */
1980 group = ac->ac_g_ex.fe_group;
1981
1982 for (i = 0; i < ngroups; group++, i++) {
1983 if (group == ngroups)
1984 group = 0;
1985
1986 /* This now checks without needing the buddy page */
1987 if (!ext4_mb_good_group(ac, group, cr))
1988 continue;
1989
1990 err = ext4_mb_load_buddy(sb, group, &e4b);
1991 if (err)
1992 goto out;
1993
1994 ext4_lock_group(sb, group);
1995
1996 /*
1997 * We need to check again after locking the
1998 * block group
1999 */
2000 if (!ext4_mb_good_group(ac, group, cr)) {
2001 ext4_unlock_group(sb, group);
2002 ext4_mb_unload_buddy(&e4b);
2003 continue;
2004 }
2005
2006 ac->ac_groups_scanned++;
2007 if (cr == 0)
2008 ext4_mb_simple_scan_group(ac, &e4b);
2009 else if (cr == 1 && sbi->s_stripe &&
2010 !(ac->ac_g_ex.fe_len % sbi->s_stripe))
2011 ext4_mb_scan_aligned(ac, &e4b);
2012 else
2013 ext4_mb_complex_scan_group(ac, &e4b);
2014
2015 ext4_unlock_group(sb, group);
2016 ext4_mb_unload_buddy(&e4b);
2017
2018 if (ac->ac_status != AC_STATUS_CONTINUE)
2019 break;
2020 }
2021 }
2022
2023 if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND &&
2024 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2025 /*
2026 * We've been searching too long. Let's try to allocate
2027 * the best chunk we've found so far
2028 */
2029
2030 ext4_mb_try_best_found(ac, &e4b);
2031 if (ac->ac_status != AC_STATUS_FOUND) {
2032 /*
2033 * Someone more lucky has already allocated it.
2034 * The only thing we can do is just take first
2035 * found block(s)
2036 printk(KERN_DEBUG "EXT4-fs: someone won our chunk\n");
2037 */
2038 ac->ac_b_ex.fe_group = 0;
2039 ac->ac_b_ex.fe_start = 0;
2040 ac->ac_b_ex.fe_len = 0;
2041 ac->ac_status = AC_STATUS_CONTINUE;
2042 ac->ac_flags |= EXT4_MB_HINT_FIRST;
2043 cr = 3;
2044 atomic_inc(&sbi->s_mb_lost_chunks);
2045 goto repeat;
2046 }
2047 }
2048 out:
2049 return err;
2050 }
2051
2052 static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos)
2053 {
2054 struct super_block *sb = seq->private;
2055 ext4_group_t group;
2056
2057 if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2058 return NULL;
2059 group = *pos + 1;
2060 return (void *) ((unsigned long) group);
2061 }
2062
2063 static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos)
2064 {
2065 struct super_block *sb = seq->private;
2066 ext4_group_t group;
2067
2068 ++*pos;
2069 if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2070 return NULL;
2071 group = *pos + 1;
2072 return (void *) ((unsigned long) group);
2073 }
2074
2075 static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v)
2076 {
2077 struct super_block *sb = seq->private;
2078 ext4_group_t group = (ext4_group_t) ((unsigned long) v);
2079 int i;
2080 int err;
2081 struct ext4_buddy e4b;
2082 struct sg {
2083 struct ext4_group_info info;
2084 ext4_grpblk_t counters[16];
2085 } sg;
2086
2087 group--;
2088 if (group == 0)
2089 seq_printf(seq, "#%-5s: %-5s %-5s %-5s "
2090 "[ %-5s %-5s %-5s %-5s %-5s %-5s %-5s "
2091 "%-5s %-5s %-5s %-5s %-5s %-5s %-5s ]\n",
2092 "group", "free", "frags", "first",
2093 "2^0", "2^1", "2^2", "2^3", "2^4", "2^5", "2^6",
2094 "2^7", "2^8", "2^9", "2^10", "2^11", "2^12", "2^13");
2095
2096 i = (sb->s_blocksize_bits + 2) * sizeof(sg.info.bb_counters[0]) +
2097 sizeof(struct ext4_group_info);
2098 err = ext4_mb_load_buddy(sb, group, &e4b);
2099 if (err) {
2100 seq_printf(seq, "#%-5u: I/O error\n", group);
2101 return 0;
2102 }
2103 ext4_lock_group(sb, group);
2104 memcpy(&sg, ext4_get_group_info(sb, group), i);
2105 ext4_unlock_group(sb, group);
2106 ext4_mb_unload_buddy(&e4b);
2107
2108 seq_printf(seq, "#%-5u: %-5u %-5u %-5u [", group, sg.info.bb_free,
2109 sg.info.bb_fragments, sg.info.bb_first_free);
2110 for (i = 0; i <= 13; i++)
2111 seq_printf(seq, " %-5u", i <= sb->s_blocksize_bits + 1 ?
2112 sg.info.bb_counters[i] : 0);
2113 seq_printf(seq, " ]\n");
2114
2115 return 0;
2116 }
2117
2118 static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v)
2119 {
2120 }
2121
2122 static const struct seq_operations ext4_mb_seq_groups_ops = {
2123 .start = ext4_mb_seq_groups_start,
2124 .next = ext4_mb_seq_groups_next,
2125 .stop = ext4_mb_seq_groups_stop,
2126 .show = ext4_mb_seq_groups_show,
2127 };
2128
2129 static int ext4_mb_seq_groups_open(struct inode *inode, struct file *file)
2130 {
2131 struct super_block *sb = PDE(inode)->data;
2132 int rc;
2133
2134 rc = seq_open(file, &ext4_mb_seq_groups_ops);
2135 if (rc == 0) {
2136 struct seq_file *m = file->private_data;
2137 m->private = sb;
2138 }
2139 return rc;
2140
2141 }
2142
2143 static const struct file_operations ext4_mb_seq_groups_fops = {
2144 .owner = THIS_MODULE,
2145 .open = ext4_mb_seq_groups_open,
2146 .read = seq_read,
2147 .llseek = seq_lseek,
2148 .release = seq_release,
2149 };
2150
2151 static struct kmem_cache *get_groupinfo_cache(int blocksize_bits)
2152 {
2153 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
2154 struct kmem_cache *cachep = ext4_groupinfo_caches[cache_index];
2155
2156 BUG_ON(!cachep);
2157 return cachep;
2158 }
2159
2160 /* Create and initialize ext4_group_info data for the given group. */
2161 int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group,
2162 struct ext4_group_desc *desc)
2163 {
2164 int i;
2165 int metalen = 0;
2166 struct ext4_sb_info *sbi = EXT4_SB(sb);
2167 struct ext4_group_info **meta_group_info;
2168 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2169
2170 /*
2171 * First check if this group is the first of a reserved block.
2172 * If it's true, we have to allocate a new table of pointers
2173 * to ext4_group_info structures
2174 */
2175 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
2176 metalen = sizeof(*meta_group_info) <<
2177 EXT4_DESC_PER_BLOCK_BITS(sb);
2178 meta_group_info = kmalloc(metalen, GFP_KERNEL);
2179 if (meta_group_info == NULL) {
2180 ext4_msg(sb, KERN_ERR, "can't allocate mem "
2181 "for a buddy group");
2182 goto exit_meta_group_info;
2183 }
2184 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)] =
2185 meta_group_info;
2186 }
2187
2188 meta_group_info =
2189 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)];
2190 i = group & (EXT4_DESC_PER_BLOCK(sb) - 1);
2191
2192 meta_group_info[i] = kmem_cache_alloc(cachep, GFP_KERNEL);
2193 if (meta_group_info[i] == NULL) {
2194 ext4_msg(sb, KERN_ERR, "can't allocate buddy mem");
2195 goto exit_group_info;
2196 }
2197 memset(meta_group_info[i], 0, kmem_cache_size(cachep));
2198 set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT,
2199 &(meta_group_info[i]->bb_state));
2200
2201 /*
2202 * initialize bb_free to be able to skip
2203 * empty groups without initialization
2204 */
2205 if (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
2206 meta_group_info[i]->bb_free =
2207 ext4_free_clusters_after_init(sb, group, desc);
2208 } else {
2209 meta_group_info[i]->bb_free =
2210 ext4_free_group_clusters(sb, desc);
2211 }
2212
2213 INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list);
2214 init_rwsem(&meta_group_info[i]->alloc_sem);
2215 meta_group_info[i]->bb_free_root = RB_ROOT;
2216 meta_group_info[i]->bb_largest_free_order = -1; /* uninit */
2217
2218 #ifdef DOUBLE_CHECK
2219 {
2220 struct buffer_head *bh;
2221 meta_group_info[i]->bb_bitmap =
2222 kmalloc(sb->s_blocksize, GFP_KERNEL);
2223 BUG_ON(meta_group_info[i]->bb_bitmap == NULL);
2224 bh = ext4_read_block_bitmap(sb, group);
2225 BUG_ON(bh == NULL);
2226 memcpy(meta_group_info[i]->bb_bitmap, bh->b_data,
2227 sb->s_blocksize);
2228 put_bh(bh);
2229 }
2230 #endif
2231
2232 return 0;
2233
2234 exit_group_info:
2235 /* If a meta_group_info table has been allocated, release it now */
2236 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
2237 kfree(sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)]);
2238 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)] = NULL;
2239 }
2240 exit_meta_group_info:
2241 return -ENOMEM;
2242 } /* ext4_mb_add_groupinfo */
2243
2244 static int ext4_mb_init_backend(struct super_block *sb)
2245 {
2246 ext4_group_t ngroups = ext4_get_groups_count(sb);
2247 ext4_group_t i;
2248 struct ext4_sb_info *sbi = EXT4_SB(sb);
2249 struct ext4_super_block *es = sbi->s_es;
2250 int num_meta_group_infos;
2251 int num_meta_group_infos_max;
2252 int array_size;
2253 struct ext4_group_desc *desc;
2254 struct kmem_cache *cachep;
2255
2256 /* This is the number of blocks used by GDT */
2257 num_meta_group_infos = (ngroups + EXT4_DESC_PER_BLOCK(sb) -
2258 1) >> EXT4_DESC_PER_BLOCK_BITS(sb);
2259
2260 /*
2261 * This is the total number of blocks used by GDT including
2262 * the number of reserved blocks for GDT.
2263 * The s_group_info array is allocated with this value
2264 * to allow a clean online resize without a complex
2265 * manipulation of pointer.
2266 * The drawback is the unused memory when no resize
2267 * occurs but it's very low in terms of pages
2268 * (see comments below)
2269 * Need to handle this properly when META_BG resizing is allowed
2270 */
2271 num_meta_group_infos_max = num_meta_group_infos +
2272 le16_to_cpu(es->s_reserved_gdt_blocks);
2273
2274 /*
2275 * array_size is the size of s_group_info array. We round it
2276 * to the next power of two because this approximation is done
2277 * internally by kmalloc so we can have some more memory
2278 * for free here (e.g. may be used for META_BG resize).
2279 */
2280 array_size = 1;
2281 while (array_size < sizeof(*sbi->s_group_info) *
2282 num_meta_group_infos_max)
2283 array_size = array_size << 1;
2284 /* An 8TB filesystem with 64-bit pointers requires a 4096 byte
2285 * kmalloc. A 128kb malloc should suffice for a 256TB filesystem.
2286 * So a two level scheme suffices for now. */
2287 sbi->s_group_info = ext4_kvzalloc(array_size, GFP_KERNEL);
2288 if (sbi->s_group_info == NULL) {
2289 ext4_msg(sb, KERN_ERR, "can't allocate buddy meta group");
2290 return -ENOMEM;
2291 }
2292 sbi->s_buddy_cache = new_inode(sb);
2293 if (sbi->s_buddy_cache == NULL) {
2294 ext4_msg(sb, KERN_ERR, "can't get new inode");
2295 goto err_freesgi;
2296 }
2297 /* To avoid potentially colliding with an valid on-disk inode number,
2298 * use EXT4_BAD_INO for the buddy cache inode number. This inode is
2299 * not in the inode hash, so it should never be found by iget(), but
2300 * this will avoid confusion if it ever shows up during debugging. */
2301 sbi->s_buddy_cache->i_ino = EXT4_BAD_INO;
2302 EXT4_I(sbi->s_buddy_cache)->i_disksize = 0;
2303 for (i = 0; i < ngroups; i++) {
2304 desc = ext4_get_group_desc(sb, i, NULL);
2305 if (desc == NULL) {
2306 ext4_msg(sb, KERN_ERR, "can't read descriptor %u", i);
2307 goto err_freebuddy;
2308 }
2309 if (ext4_mb_add_groupinfo(sb, i, desc) != 0)
2310 goto err_freebuddy;
2311 }
2312
2313 return 0;
2314
2315 err_freebuddy:
2316 cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2317 while (i-- > 0)
2318 kmem_cache_free(cachep, ext4_get_group_info(sb, i));
2319 i = num_meta_group_infos;
2320 while (i-- > 0)
2321 kfree(sbi->s_group_info[i]);
2322 iput(sbi->s_buddy_cache);
2323 err_freesgi:
2324 ext4_kvfree(sbi->s_group_info);
2325 return -ENOMEM;
2326 }
2327
2328 static void ext4_groupinfo_destroy_slabs(void)
2329 {
2330 int i;
2331
2332 for (i = 0; i < NR_GRPINFO_CACHES; i++) {
2333 if (ext4_groupinfo_caches[i])
2334 kmem_cache_destroy(ext4_groupinfo_caches[i]);
2335 ext4_groupinfo_caches[i] = NULL;
2336 }
2337 }
2338
2339 static int ext4_groupinfo_create_slab(size_t size)
2340 {
2341 static DEFINE_MUTEX(ext4_grpinfo_slab_create_mutex);
2342 int slab_size;
2343 int blocksize_bits = order_base_2(size);
2344 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
2345 struct kmem_cache *cachep;
2346
2347 if (cache_index >= NR_GRPINFO_CACHES)
2348 return -EINVAL;
2349
2350 if (unlikely(cache_index < 0))
2351 cache_index = 0;
2352
2353 mutex_lock(&ext4_grpinfo_slab_create_mutex);
2354 if (ext4_groupinfo_caches[cache_index]) {
2355 mutex_unlock(&ext4_grpinfo_slab_create_mutex);
2356 return 0; /* Already created */
2357 }
2358
2359 slab_size = offsetof(struct ext4_group_info,
2360 bb_counters[blocksize_bits + 2]);
2361
2362 cachep = kmem_cache_create(ext4_groupinfo_slab_names[cache_index],
2363 slab_size, 0, SLAB_RECLAIM_ACCOUNT,
2364 NULL);
2365
2366 ext4_groupinfo_caches[cache_index] = cachep;
2367
2368 mutex_unlock(&ext4_grpinfo_slab_create_mutex);
2369 if (!cachep) {
2370 printk(KERN_EMERG
2371 "EXT4-fs: no memory for groupinfo slab cache\n");
2372 return -ENOMEM;
2373 }
2374
2375 return 0;
2376 }
2377
2378 int ext4_mb_init(struct super_block *sb, int needs_recovery)
2379 {
2380 struct ext4_sb_info *sbi = EXT4_SB(sb);
2381 unsigned i, j;
2382 unsigned offset;
2383 unsigned max;
2384 int ret;
2385
2386 i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_offsets);
2387
2388 sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL);
2389 if (sbi->s_mb_offsets == NULL) {
2390 ret = -ENOMEM;
2391 goto out;
2392 }
2393
2394 i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_maxs);
2395 sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL);
2396 if (sbi->s_mb_maxs == NULL) {
2397 ret = -ENOMEM;
2398 goto out;
2399 }
2400
2401 ret = ext4_groupinfo_create_slab(sb->s_blocksize);
2402 if (ret < 0)
2403 goto out;
2404
2405 /* order 0 is regular bitmap */
2406 sbi->s_mb_maxs[0] = sb->s_blocksize << 3;
2407 sbi->s_mb_offsets[0] = 0;
2408
2409 i = 1;
2410 offset = 0;
2411 max = sb->s_blocksize << 2;
2412 do {
2413 sbi->s_mb_offsets[i] = offset;
2414 sbi->s_mb_maxs[i] = max;
2415 offset += 1 << (sb->s_blocksize_bits - i);
2416 max = max >> 1;
2417 i++;
2418 } while (i <= sb->s_blocksize_bits + 1);
2419
2420 spin_lock_init(&sbi->s_md_lock);
2421 spin_lock_init(&sbi->s_bal_lock);
2422
2423 sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN;
2424 sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN;
2425 sbi->s_mb_stats = MB_DEFAULT_STATS;
2426 sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD;
2427 sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS;
2428 /*
2429 * The default group preallocation is 512, which for 4k block
2430 * sizes translates to 2 megabytes. However for bigalloc file
2431 * systems, this is probably too big (i.e, if the cluster size
2432 * is 1 megabyte, then group preallocation size becomes half a
2433 * gigabyte!). As a default, we will keep a two megabyte
2434 * group pralloc size for cluster sizes up to 64k, and after
2435 * that, we will force a minimum group preallocation size of
2436 * 32 clusters. This translates to 8 megs when the cluster
2437 * size is 256k, and 32 megs when the cluster size is 1 meg,
2438 * which seems reasonable as a default.
2439 */
2440 sbi->s_mb_group_prealloc = max(MB_DEFAULT_GROUP_PREALLOC >>
2441 sbi->s_cluster_bits, 32);
2442 /*
2443 * If there is a s_stripe > 1, then we set the s_mb_group_prealloc
2444 * to the lowest multiple of s_stripe which is bigger than
2445 * the s_mb_group_prealloc as determined above. We want
2446 * the preallocation size to be an exact multiple of the
2447 * RAID stripe size so that preallocations don't fragment
2448 * the stripes.
2449 */
2450 if (sbi->s_stripe > 1) {
2451 sbi->s_mb_group_prealloc = roundup(
2452 sbi->s_mb_group_prealloc, sbi->s_stripe);
2453 }
2454
2455 sbi->s_locality_groups = alloc_percpu(struct ext4_locality_group);
2456 if (sbi->s_locality_groups == NULL) {
2457 ret = -ENOMEM;
2458 goto out_free_groupinfo_slab;
2459 }
2460 for_each_possible_cpu(i) {
2461 struct ext4_locality_group *lg;
2462 lg = per_cpu_ptr(sbi->s_locality_groups, i);
2463 mutex_init(&lg->lg_mutex);
2464 for (j = 0; j < PREALLOC_TB_SIZE; j++)
2465 INIT_LIST_HEAD(&lg->lg_prealloc_list[j]);
2466 spin_lock_init(&lg->lg_prealloc_lock);
2467 }
2468
2469 /* init file for buddy data */
2470 ret = ext4_mb_init_backend(sb);
2471 if (ret != 0)
2472 goto out_free_locality_groups;
2473
2474 if (sbi->s_proc)
2475 proc_create_data("mb_groups", S_IRUGO, sbi->s_proc,
2476 &ext4_mb_seq_groups_fops, sb);
2477
2478 return 0;
2479
2480 out_free_locality_groups:
2481 free_percpu(sbi->s_locality_groups);
2482 sbi->s_locality_groups = NULL;
2483 out_free_groupinfo_slab:
2484 ext4_groupinfo_destroy_slabs();
2485 out:
2486 kfree(sbi->s_mb_offsets);
2487 sbi->s_mb_offsets = NULL;
2488 kfree(sbi->s_mb_maxs);
2489 sbi->s_mb_maxs = NULL;
2490 return ret;
2491 }
2492
2493 /* need to called with the ext4 group lock held */
2494 static void ext4_mb_cleanup_pa(struct ext4_group_info *grp)
2495 {
2496 struct ext4_prealloc_space *pa;
2497 struct list_head *cur, *tmp;
2498 int count = 0;
2499
2500 list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) {
2501 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
2502 list_del(&pa->pa_group_list);
2503 count++;
2504 kmem_cache_free(ext4_pspace_cachep, pa);
2505 }
2506 if (count)
2507 mb_debug(1, "mballoc: %u PAs left\n", count);
2508
2509 }
2510
2511 int ext4_mb_release(struct super_block *sb)
2512 {
2513 ext4_group_t ngroups = ext4_get_groups_count(sb);
2514 ext4_group_t i;
2515 int num_meta_group_infos;
2516 struct ext4_group_info *grinfo;
2517 struct ext4_sb_info *sbi = EXT4_SB(sb);
2518 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2519
2520 if (sbi->s_group_info) {
2521 for (i = 0; i < ngroups; i++) {
2522 grinfo = ext4_get_group_info(sb, i);
2523 #ifdef DOUBLE_CHECK
2524 kfree(grinfo->bb_bitmap);
2525 #endif
2526 ext4_lock_group(sb, i);
2527 ext4_mb_cleanup_pa(grinfo);
2528 ext4_unlock_group(sb, i);
2529 kmem_cache_free(cachep, grinfo);
2530 }
2531 num_meta_group_infos = (ngroups +
2532 EXT4_DESC_PER_BLOCK(sb) - 1) >>
2533 EXT4_DESC_PER_BLOCK_BITS(sb);
2534 for (i = 0; i < num_meta_group_infos; i++)
2535 kfree(sbi->s_group_info[i]);
2536 ext4_kvfree(sbi->s_group_info);
2537 }
2538 kfree(sbi->s_mb_offsets);
2539 kfree(sbi->s_mb_maxs);
2540 if (sbi->s_buddy_cache)
2541 iput(sbi->s_buddy_cache);
2542 if (sbi->s_mb_stats) {
2543 ext4_msg(sb, KERN_INFO,
2544 "mballoc: %u blocks %u reqs (%u success)",
2545 atomic_read(&sbi->s_bal_allocated),
2546 atomic_read(&sbi->s_bal_reqs),
2547 atomic_read(&sbi->s_bal_success));
2548 ext4_msg(sb, KERN_INFO,
2549 "mballoc: %u extents scanned, %u goal hits, "
2550 "%u 2^N hits, %u breaks, %u lost",
2551 atomic_read(&sbi->s_bal_ex_scanned),
2552 atomic_read(&sbi->s_bal_goals),
2553 atomic_read(&sbi->s_bal_2orders),
2554 atomic_read(&sbi->s_bal_breaks),
2555 atomic_read(&sbi->s_mb_lost_chunks));
2556 ext4_msg(sb, KERN_INFO,
2557 "mballoc: %lu generated and it took %Lu",
2558 sbi->s_mb_buddies_generated,
2559 sbi->s_mb_generation_time);
2560 ext4_msg(sb, KERN_INFO,
2561 "mballoc: %u preallocated, %u discarded",
2562 atomic_read(&sbi->s_mb_preallocated),
2563 atomic_read(&sbi->s_mb_discarded));
2564 }
2565
2566 free_percpu(sbi->s_locality_groups);
2567 if (sbi->s_proc)
2568 remove_proc_entry("mb_groups", sbi->s_proc);
2569
2570 return 0;
2571 }
2572
2573 static inline int ext4_issue_discard(struct super_block *sb,
2574 ext4_group_t block_group, ext4_grpblk_t cluster, int count)
2575 {
2576 ext4_fsblk_t discard_block;
2577
2578 discard_block = (EXT4_C2B(EXT4_SB(sb), cluster) +
2579 ext4_group_first_block_no(sb, block_group));
2580 count = EXT4_C2B(EXT4_SB(sb), count);
2581 trace_ext4_discard_blocks(sb,
2582 (unsigned long long) discard_block, count);
2583 return sb_issue_discard(sb, discard_block, count, GFP_NOFS, 0);
2584 }
2585
2586 /*
2587 * This function is called by the jbd2 layer once the commit has finished,
2588 * so we know we can free the blocks that were released with that commit.
2589 */
2590 static void ext4_free_data_callback(struct super_block *sb,
2591 struct ext4_journal_cb_entry *jce,
2592 int rc)
2593 {
2594 struct ext4_free_data *entry = (struct ext4_free_data *)jce;
2595 struct ext4_buddy e4b;
2596 struct ext4_group_info *db;
2597 int err, count = 0, count2 = 0;
2598
2599 mb_debug(1, "gonna free %u blocks in group %u (0x%p):",
2600 entry->efd_count, entry->efd_group, entry);
2601
2602 if (test_opt(sb, DISCARD))
2603 ext4_issue_discard(sb, entry->efd_group,
2604 entry->efd_start_cluster, entry->efd_count);
2605
2606 err = ext4_mb_load_buddy(sb, entry->efd_group, &e4b);
2607 /* we expect to find existing buddy because it's pinned */
2608 BUG_ON(err != 0);
2609
2610
2611 db = e4b.bd_info;
2612 /* there are blocks to put in buddy to make them really free */
2613 count += entry->efd_count;
2614 count2++;
2615 ext4_lock_group(sb, entry->efd_group);
2616 /* Take it out of per group rb tree */
2617 rb_erase(&entry->efd_node, &(db->bb_free_root));
2618 mb_free_blocks(NULL, &e4b, entry->efd_start_cluster, entry->efd_count);
2619
2620 /*
2621 * Clear the trimmed flag for the group so that the next
2622 * ext4_trim_fs can trim it.
2623 * If the volume is mounted with -o discard, online discard
2624 * is supported and the free blocks will be trimmed online.
2625 */
2626 if (!test_opt(sb, DISCARD))
2627 EXT4_MB_GRP_CLEAR_TRIMMED(db);
2628
2629 if (!db->bb_free_root.rb_node) {
2630 /* No more items in the per group rb tree
2631 * balance refcounts from ext4_mb_free_metadata()
2632 */
2633 page_cache_release(e4b.bd_buddy_page);
2634 page_cache_release(e4b.bd_bitmap_page);
2635 }
2636 ext4_unlock_group(sb, entry->efd_group);
2637 kmem_cache_free(ext4_free_data_cachep, entry);
2638 ext4_mb_unload_buddy(&e4b);
2639
2640 mb_debug(1, "freed %u blocks in %u structures\n", count, count2);
2641 }
2642
2643 #ifdef CONFIG_EXT4_DEBUG
2644 u8 mb_enable_debug __read_mostly;
2645
2646 static struct dentry *debugfs_dir;
2647 static struct dentry *debugfs_debug;
2648
2649 static void __init ext4_create_debugfs_entry(void)
2650 {
2651 debugfs_dir = debugfs_create_dir("ext4", NULL);
2652 if (debugfs_dir)
2653 debugfs_debug = debugfs_create_u8("mballoc-debug",
2654 S_IRUGO | S_IWUSR,
2655 debugfs_dir,
2656 &mb_enable_debug);
2657 }
2658
2659 static void ext4_remove_debugfs_entry(void)
2660 {
2661 debugfs_remove(debugfs_debug);
2662 debugfs_remove(debugfs_dir);
2663 }
2664
2665 #else
2666
2667 static void __init ext4_create_debugfs_entry(void)
2668 {
2669 }
2670
2671 static void ext4_remove_debugfs_entry(void)
2672 {
2673 }
2674
2675 #endif
2676
2677 int __init ext4_init_mballoc(void)
2678 {
2679 ext4_pspace_cachep = KMEM_CACHE(ext4_prealloc_space,
2680 SLAB_RECLAIM_ACCOUNT);
2681 if (ext4_pspace_cachep == NULL)
2682 return -ENOMEM;
2683
2684 ext4_ac_cachep = KMEM_CACHE(ext4_allocation_context,
2685 SLAB_RECLAIM_ACCOUNT);
2686 if (ext4_ac_cachep == NULL) {
2687 kmem_cache_destroy(ext4_pspace_cachep);
2688 return -ENOMEM;
2689 }
2690
2691 ext4_free_data_cachep = KMEM_CACHE(ext4_free_data,
2692 SLAB_RECLAIM_ACCOUNT);
2693 if (ext4_free_data_cachep == NULL) {
2694 kmem_cache_destroy(ext4_pspace_cachep);
2695 kmem_cache_destroy(ext4_ac_cachep);
2696 return -ENOMEM;
2697 }
2698 ext4_create_debugfs_entry();
2699 return 0;
2700 }
2701
2702 void ext4_exit_mballoc(void)
2703 {
2704 /*
2705 * Wait for completion of call_rcu()'s on ext4_pspace_cachep
2706 * before destroying the slab cache.
2707 */
2708 rcu_barrier();
2709 kmem_cache_destroy(ext4_pspace_cachep);
2710 kmem_cache_destroy(ext4_ac_cachep);
2711 kmem_cache_destroy(ext4_free_data_cachep);
2712 ext4_groupinfo_destroy_slabs();
2713 ext4_remove_debugfs_entry();
2714 }
2715
2716
2717 /*
2718 * Check quota and mark chosen space (ac->ac_b_ex) non-free in bitmaps
2719 * Returns 0 if success or error code
2720 */
2721 static noinline_for_stack int
2722 ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac,
2723 handle_t *handle, unsigned int reserv_clstrs)
2724 {
2725 struct buffer_head *bitmap_bh = NULL;
2726 struct ext4_group_desc *gdp;
2727 struct buffer_head *gdp_bh;
2728 struct ext4_sb_info *sbi;
2729 struct super_block *sb;
2730 ext4_fsblk_t block;
2731 int err, len;
2732
2733 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
2734 BUG_ON(ac->ac_b_ex.fe_len <= 0);
2735
2736 sb = ac->ac_sb;
2737 sbi = EXT4_SB(sb);
2738
2739 err = -EIO;
2740 bitmap_bh = ext4_read_block_bitmap(sb, ac->ac_b_ex.fe_group);
2741 if (!bitmap_bh)
2742 goto out_err;
2743
2744 err = ext4_journal_get_write_access(handle, bitmap_bh);
2745 if (err)
2746 goto out_err;
2747
2748 err = -EIO;
2749 gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, &gdp_bh);
2750 if (!gdp)
2751 goto out_err;
2752
2753 ext4_debug("using block group %u(%d)\n", ac->ac_b_ex.fe_group,
2754 ext4_free_group_clusters(sb, gdp));
2755
2756 err = ext4_journal_get_write_access(handle, gdp_bh);
2757 if (err)
2758 goto out_err;
2759
2760 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
2761
2762 len = EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
2763 if (!ext4_data_block_valid(sbi, block, len)) {
2764 ext4_error(sb, "Allocating blocks %llu-%llu which overlap "
2765 "fs metadata\n", block, block+len);
2766 /* File system mounted not to panic on error
2767 * Fix the bitmap and repeat the block allocation
2768 * We leak some of the blocks here.
2769 */
2770 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
2771 ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
2772 ac->ac_b_ex.fe_len);
2773 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
2774 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
2775 if (!err)
2776 err = -EAGAIN;
2777 goto out_err;
2778 }
2779
2780 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
2781 #ifdef AGGRESSIVE_CHECK
2782 {
2783 int i;
2784 for (i = 0; i < ac->ac_b_ex.fe_len; i++) {
2785 BUG_ON(mb_test_bit(ac->ac_b_ex.fe_start + i,
2786 bitmap_bh->b_data));
2787 }
2788 }
2789 #endif
2790 ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
2791 ac->ac_b_ex.fe_len);
2792 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
2793 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
2794 ext4_free_group_clusters_set(sb, gdp,
2795 ext4_free_clusters_after_init(sb,
2796 ac->ac_b_ex.fe_group, gdp));
2797 }
2798 len = ext4_free_group_clusters(sb, gdp) - ac->ac_b_ex.fe_len;
2799 ext4_free_group_clusters_set(sb, gdp, len);
2800 gdp->bg_checksum = ext4_group_desc_csum(sbi, ac->ac_b_ex.fe_group, gdp);
2801
2802 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
2803 percpu_counter_sub(&sbi->s_freeclusters_counter, ac->ac_b_ex.fe_len);
2804 /*
2805 * Now reduce the dirty block count also. Should not go negative
2806 */
2807 if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED))
2808 /* release all the reserved blocks if non delalloc */
2809 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
2810 reserv_clstrs);
2811
2812 if (sbi->s_log_groups_per_flex) {
2813 ext4_group_t flex_group = ext4_flex_group(sbi,
2814 ac->ac_b_ex.fe_group);
2815 atomic_sub(ac->ac_b_ex.fe_len,
2816 &sbi->s_flex_groups[flex_group].free_clusters);
2817 }
2818
2819 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
2820 if (err)
2821 goto out_err;
2822 err = ext4_handle_dirty_metadata(handle, NULL, gdp_bh);
2823
2824 out_err:
2825 ext4_mark_super_dirty(sb);
2826 brelse(bitmap_bh);
2827 return err;
2828 }
2829
2830 /*
2831 * here we normalize request for locality group
2832 * Group request are normalized to s_mb_group_prealloc, which goes to
2833 * s_strip if we set the same via mount option.
2834 * s_mb_group_prealloc can be configured via
2835 * /sys/fs/ext4/<partition>/mb_group_prealloc
2836 *
2837 * XXX: should we try to preallocate more than the group has now?
2838 */
2839 static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac)
2840 {
2841 struct super_block *sb = ac->ac_sb;
2842 struct ext4_locality_group *lg = ac->ac_lg;
2843
2844 BUG_ON(lg == NULL);
2845 ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc;
2846 mb_debug(1, "#%u: goal %u blocks for locality group\n",
2847 current->pid, ac->ac_g_ex.fe_len);
2848 }
2849
2850 /*
2851 * Normalization means making request better in terms of
2852 * size and alignment
2853 */
2854 static noinline_for_stack void
2855 ext4_mb_normalize_request(struct ext4_allocation_context *ac,
2856 struct ext4_allocation_request *ar)
2857 {
2858 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
2859 int bsbits, max;
2860 ext4_lblk_t end;
2861 loff_t size, start_off;
2862 loff_t orig_size __maybe_unused;
2863 ext4_lblk_t start;
2864 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
2865 struct ext4_prealloc_space *pa;
2866
2867 /* do normalize only data requests, metadata requests
2868 do not need preallocation */
2869 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
2870 return;
2871
2872 /* sometime caller may want exact blocks */
2873 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
2874 return;
2875
2876 /* caller may indicate that preallocation isn't
2877 * required (it's a tail, for example) */
2878 if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC)
2879 return;
2880
2881 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) {
2882 ext4_mb_normalize_group_request(ac);
2883 return ;
2884 }
2885
2886 bsbits = ac->ac_sb->s_blocksize_bits;
2887
2888 /* first, let's learn actual file size
2889 * given current request is allocated */
2890 size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len);
2891 size = size << bsbits;
2892 if (size < i_size_read(ac->ac_inode))
2893 size = i_size_read(ac->ac_inode);
2894 orig_size = size;
2895
2896 /* max size of free chunks */
2897 max = 2 << bsbits;
2898
2899 #define NRL_CHECK_SIZE(req, size, max, chunk_size) \
2900 (req <= (size) || max <= (chunk_size))
2901
2902 /* first, try to predict filesize */
2903 /* XXX: should this table be tunable? */
2904 start_off = 0;
2905 if (size <= 16 * 1024) {
2906 size = 16 * 1024;
2907 } else if (size <= 32 * 1024) {
2908 size = 32 * 1024;
2909 } else if (size <= 64 * 1024) {
2910 size = 64 * 1024;
2911 } else if (size <= 128 * 1024) {
2912 size = 128 * 1024;
2913 } else if (size <= 256 * 1024) {
2914 size = 256 * 1024;
2915 } else if (size <= 512 * 1024) {
2916 size = 512 * 1024;
2917 } else if (size <= 1024 * 1024) {
2918 size = 1024 * 1024;
2919 } else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) {
2920 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
2921 (21 - bsbits)) << 21;
2922 size = 2 * 1024 * 1024;
2923 } else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) {
2924 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
2925 (22 - bsbits)) << 22;
2926 size = 4 * 1024 * 1024;
2927 } else if (NRL_CHECK_SIZE(ac->ac_o_ex.fe_len,
2928 (8<<20)>>bsbits, max, 8 * 1024)) {
2929 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
2930 (23 - bsbits)) << 23;
2931 size = 8 * 1024 * 1024;
2932 } else {
2933 start_off = (loff_t)ac->ac_o_ex.fe_logical << bsbits;
2934 size = ac->ac_o_ex.fe_len << bsbits;
2935 }
2936 size = size >> bsbits;
2937 start = start_off >> bsbits;
2938
2939 /* don't cover already allocated blocks in selected range */
2940 if (ar->pleft && start <= ar->lleft) {
2941 size -= ar->lleft + 1 - start;
2942 start = ar->lleft + 1;
2943 }
2944 if (ar->pright && start + size - 1 >= ar->lright)
2945 size -= start + size - ar->lright;
2946
2947 end = start + size;
2948
2949 /* check we don't cross already preallocated blocks */
2950 rcu_read_lock();
2951 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
2952 ext4_lblk_t pa_end;
2953
2954 if (pa->pa_deleted)
2955 continue;
2956 spin_lock(&pa->pa_lock);
2957 if (pa->pa_deleted) {
2958 spin_unlock(&pa->pa_lock);
2959 continue;
2960 }
2961
2962 pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb),
2963 pa->pa_len);
2964
2965 /* PA must not overlap original request */
2966 BUG_ON(!(ac->ac_o_ex.fe_logical >= pa_end ||
2967 ac->ac_o_ex.fe_logical < pa->pa_lstart));
2968
2969 /* skip PAs this normalized request doesn't overlap with */
2970 if (pa->pa_lstart >= end || pa_end <= start) {
2971 spin_unlock(&pa->pa_lock);
2972 continue;
2973 }
2974 BUG_ON(pa->pa_lstart <= start && pa_end >= end);
2975
2976 /* adjust start or end to be adjacent to this pa */
2977 if (pa_end <= ac->ac_o_ex.fe_logical) {
2978 BUG_ON(pa_end < start);
2979 start = pa_end;
2980 } else if (pa->pa_lstart > ac->ac_o_ex.fe_logical) {
2981 BUG_ON(pa->pa_lstart > end);
2982 end = pa->pa_lstart;
2983 }
2984 spin_unlock(&pa->pa_lock);
2985 }
2986 rcu_read_unlock();
2987 size = end - start;
2988
2989 /* XXX: extra loop to check we really don't overlap preallocations */
2990 rcu_read_lock();
2991 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
2992 ext4_lblk_t pa_end;
2993
2994 spin_lock(&pa->pa_lock);
2995 if (pa->pa_deleted == 0) {
2996 pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb),
2997 pa->pa_len);
2998 BUG_ON(!(start >= pa_end || end <= pa->pa_lstart));
2999 }
3000 spin_unlock(&pa->pa_lock);
3001 }
3002 rcu_read_unlock();
3003
3004 if (start + size <= ac->ac_o_ex.fe_logical &&
3005 start > ac->ac_o_ex.fe_logical) {
3006 ext4_msg(ac->ac_sb, KERN_ERR,
3007 "start %lu, size %lu, fe_logical %lu",
3008 (unsigned long) start, (unsigned long) size,
3009 (unsigned long) ac->ac_o_ex.fe_logical);
3010 }
3011 BUG_ON(start + size <= ac->ac_o_ex.fe_logical &&
3012 start > ac->ac_o_ex.fe_logical);
3013 BUG_ON(size <= 0 || size > EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
3014
3015 /* now prepare goal request */
3016
3017 /* XXX: is it better to align blocks WRT to logical
3018 * placement or satisfy big request as is */
3019 ac->ac_g_ex.fe_logical = start;
3020 ac->ac_g_ex.fe_len = EXT4_NUM_B2C(sbi, size);
3021
3022 /* define goal start in order to merge */
3023 if (ar->pright && (ar->lright == (start + size))) {
3024 /* merge to the right */
3025 ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size,
3026 &ac->ac_f_ex.fe_group,
3027 &ac->ac_f_ex.fe_start);
3028 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3029 }
3030 if (ar->pleft && (ar->lleft + 1 == start)) {
3031 /* merge to the left */
3032 ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1,
3033 &ac->ac_f_ex.fe_group,
3034 &ac->ac_f_ex.fe_start);
3035 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3036 }
3037
3038 mb_debug(1, "goal: %u(was %u) blocks at %u\n", (unsigned) size,
3039 (unsigned) orig_size, (unsigned) start);
3040 }
3041
3042 static void ext4_mb_collect_stats(struct ext4_allocation_context *ac)
3043 {
3044 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3045
3046 if (sbi->s_mb_stats && ac->ac_g_ex.fe_len > 1) {
3047 atomic_inc(&sbi->s_bal_reqs);
3048 atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated);
3049 if (ac->ac_b_ex.fe_len >= ac->ac_o_ex.fe_len)
3050 atomic_inc(&sbi->s_bal_success);
3051 atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned);
3052 if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start &&
3053 ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group)
3054 atomic_inc(&sbi->s_bal_goals);
3055 if (ac->ac_found > sbi->s_mb_max_to_scan)
3056 atomic_inc(&sbi->s_bal_breaks);
3057 }
3058
3059 if (ac->ac_op == EXT4_MB_HISTORY_ALLOC)
3060 trace_ext4_mballoc_alloc(ac);
3061 else
3062 trace_ext4_mballoc_prealloc(ac);
3063 }
3064
3065 /*
3066 * Called on failure; free up any blocks from the inode PA for this
3067 * context. We don't need this for MB_GROUP_PA because we only change
3068 * pa_free in ext4_mb_release_context(), but on failure, we've already
3069 * zeroed out ac->ac_b_ex.fe_len, so group_pa->pa_free is not changed.
3070 */
3071 static void ext4_discard_allocated_blocks(struct ext4_allocation_context *ac)
3072 {
3073 struct ext4_prealloc_space *pa = ac->ac_pa;
3074 int len;
3075
3076 if (pa && pa->pa_type == MB_INODE_PA) {
3077 len = ac->ac_b_ex.fe_len;
3078 pa->pa_free += len;
3079 }
3080
3081 }
3082
3083 /*
3084 * use blocks preallocated to inode
3085 */
3086 static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac,
3087 struct ext4_prealloc_space *pa)
3088 {
3089 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3090 ext4_fsblk_t start;
3091 ext4_fsblk_t end;
3092 int len;
3093
3094 /* found preallocated blocks, use them */
3095 start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart);
3096 end = min(pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len),
3097 start + EXT4_C2B(sbi, ac->ac_o_ex.fe_len));
3098 len = EXT4_NUM_B2C(sbi, end - start);
3099 ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group,
3100 &ac->ac_b_ex.fe_start);
3101 ac->ac_b_ex.fe_len = len;
3102 ac->ac_status = AC_STATUS_FOUND;
3103 ac->ac_pa = pa;
3104
3105 BUG_ON(start < pa->pa_pstart);
3106 BUG_ON(end > pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len));
3107 BUG_ON(pa->pa_free < len);
3108 pa->pa_free -= len;
3109
3110 mb_debug(1, "use %llu/%u from inode pa %p\n", start, len, pa);
3111 }
3112
3113 /*
3114 * use blocks preallocated to locality group
3115 */
3116 static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac,
3117 struct ext4_prealloc_space *pa)
3118 {
3119 unsigned int len = ac->ac_o_ex.fe_len;
3120
3121 ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart,
3122 &ac->ac_b_ex.fe_group,
3123 &ac->ac_b_ex.fe_start);
3124 ac->ac_b_ex.fe_len = len;
3125 ac->ac_status = AC_STATUS_FOUND;
3126 ac->ac_pa = pa;
3127
3128 /* we don't correct pa_pstart or pa_plen here to avoid
3129 * possible race when the group is being loaded concurrently
3130 * instead we correct pa later, after blocks are marked
3131 * in on-disk bitmap -- see ext4_mb_release_context()
3132 * Other CPUs are prevented from allocating from this pa by lg_mutex
3133 */
3134 mb_debug(1, "use %u/%u from group pa %p\n", pa->pa_lstart-len, len, pa);
3135 }
3136
3137 /*
3138 * Return the prealloc space that have minimal distance
3139 * from the goal block. @cpa is the prealloc
3140 * space that is having currently known minimal distance
3141 * from the goal block.
3142 */
3143 static struct ext4_prealloc_space *
3144 ext4_mb_check_group_pa(ext4_fsblk_t goal_block,
3145 struct ext4_prealloc_space *pa,
3146 struct ext4_prealloc_space *cpa)
3147 {
3148 ext4_fsblk_t cur_distance, new_distance;
3149
3150 if (cpa == NULL) {
3151 atomic_inc(&pa->pa_count);
3152 return pa;
3153 }
3154 cur_distance = abs(goal_block - cpa->pa_pstart);
3155 new_distance = abs(goal_block - pa->pa_pstart);
3156
3157 if (cur_distance <= new_distance)
3158 return cpa;
3159
3160 /* drop the previous reference */
3161 atomic_dec(&cpa->pa_count);
3162 atomic_inc(&pa->pa_count);
3163 return pa;
3164 }
3165
3166 /*
3167 * search goal blocks in preallocated space
3168 */
3169 static noinline_for_stack int
3170 ext4_mb_use_preallocated(struct ext4_allocation_context *ac)
3171 {
3172 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3173 int order, i;
3174 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
3175 struct ext4_locality_group *lg;
3176 struct ext4_prealloc_space *pa, *cpa = NULL;
3177 ext4_fsblk_t goal_block;
3178
3179 /* only data can be preallocated */
3180 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3181 return 0;
3182
3183 /* first, try per-file preallocation */
3184 rcu_read_lock();
3185 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3186
3187 /* all fields in this condition don't change,
3188 * so we can skip locking for them */
3189 if (ac->ac_o_ex.fe_logical < pa->pa_lstart ||
3190 ac->ac_o_ex.fe_logical >= (pa->pa_lstart +
3191 EXT4_C2B(sbi, pa->pa_len)))
3192 continue;
3193
3194 /* non-extent files can't have physical blocks past 2^32 */
3195 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)) &&
3196 (pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len) >
3197 EXT4_MAX_BLOCK_FILE_PHYS))
3198 continue;
3199
3200 /* found preallocated blocks, use them */
3201 spin_lock(&pa->pa_lock);
3202 if (pa->pa_deleted == 0 && pa->pa_free) {
3203 atomic_inc(&pa->pa_count);
3204 ext4_mb_use_inode_pa(ac, pa);
3205 spin_unlock(&pa->pa_lock);
3206 ac->ac_criteria = 10;
3207 rcu_read_unlock();
3208 return 1;
3209 }
3210 spin_unlock(&pa->pa_lock);
3211 }
3212 rcu_read_unlock();
3213
3214 /* can we use group allocation? */
3215 if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC))
3216 return 0;
3217
3218 /* inode may have no locality group for some reason */
3219 lg = ac->ac_lg;
3220 if (lg == NULL)
3221 return 0;
3222 order = fls(ac->ac_o_ex.fe_len) - 1;
3223 if (order > PREALLOC_TB_SIZE - 1)
3224 /* The max size of hash table is PREALLOC_TB_SIZE */
3225 order = PREALLOC_TB_SIZE - 1;
3226
3227 goal_block = ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex);
3228 /*
3229 * search for the prealloc space that is having
3230 * minimal distance from the goal block.
3231 */
3232 for (i = order; i < PREALLOC_TB_SIZE; i++) {
3233 rcu_read_lock();
3234 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[i],
3235 pa_inode_list) {
3236 spin_lock(&pa->pa_lock);
3237 if (pa->pa_deleted == 0 &&
3238 pa->pa_free >= ac->ac_o_ex.fe_len) {
3239
3240 cpa = ext4_mb_check_group_pa(goal_block,
3241 pa, cpa);
3242 }
3243 spin_unlock(&pa->pa_lock);
3244 }
3245 rcu_read_unlock();
3246 }
3247 if (cpa) {
3248 ext4_mb_use_group_pa(ac, cpa);
3249 ac->ac_criteria = 20;
3250 return 1;
3251 }
3252 return 0;
3253 }
3254
3255 /*
3256 * the function goes through all block freed in the group
3257 * but not yet committed and marks them used in in-core bitmap.
3258 * buddy must be generated from this bitmap
3259 * Need to be called with the ext4 group lock held
3260 */
3261 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
3262 ext4_group_t group)
3263 {
3264 struct rb_node *n;
3265 struct ext4_group_info *grp;
3266 struct ext4_free_data *entry;
3267
3268 grp = ext4_get_group_info(sb, group);
3269 n = rb_first(&(grp->bb_free_root));
3270
3271 while (n) {
3272 entry = rb_entry(n, struct ext4_free_data, efd_node);
3273 ext4_set_bits(bitmap, entry->efd_start_cluster, entry->efd_count);
3274 n = rb_next(n);
3275 }
3276 return;
3277 }
3278
3279 /*
3280 * the function goes through all preallocation in this group and marks them
3281 * used in in-core bitmap. buddy must be generated from this bitmap
3282 * Need to be called with ext4 group lock held
3283 */
3284 static noinline_for_stack
3285 void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
3286 ext4_group_t group)
3287 {
3288 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
3289 struct ext4_prealloc_space *pa;
3290 struct list_head *cur;
3291 ext4_group_t groupnr;
3292 ext4_grpblk_t start;
3293 int preallocated = 0;
3294 int len;
3295
3296 /* all form of preallocation discards first load group,
3297 * so the only competing code is preallocation use.
3298 * we don't need any locking here
3299 * notice we do NOT ignore preallocations with pa_deleted
3300 * otherwise we could leave used blocks available for
3301 * allocation in buddy when concurrent ext4_mb_put_pa()
3302 * is dropping preallocation
3303 */
3304 list_for_each(cur, &grp->bb_prealloc_list) {
3305 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
3306 spin_lock(&pa->pa_lock);
3307 ext4_get_group_no_and_offset(sb, pa->pa_pstart,
3308 &groupnr, &start);
3309 len = pa->pa_len;
3310 spin_unlock(&pa->pa_lock);
3311 if (unlikely(len == 0))
3312 continue;
3313 BUG_ON(groupnr != group);
3314 ext4_set_bits(bitmap, start, len);
3315 preallocated += len;
3316 }
3317 mb_debug(1, "prellocated %u for group %u\n", preallocated, group);
3318 }
3319
3320 static void ext4_mb_pa_callback(struct rcu_head *head)
3321 {
3322 struct ext4_prealloc_space *pa;
3323 pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu);
3324 kmem_cache_free(ext4_pspace_cachep, pa);
3325 }
3326
3327 /*
3328 * drops a reference to preallocated space descriptor
3329 * if this was the last reference and the space is consumed
3330 */
3331 static void ext4_mb_put_pa(struct ext4_allocation_context *ac,
3332 struct super_block *sb, struct ext4_prealloc_space *pa)
3333 {
3334 ext4_group_t grp;
3335 ext4_fsblk_t grp_blk;
3336
3337 if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0)
3338 return;
3339
3340 /* in this short window concurrent discard can set pa_deleted */
3341 spin_lock(&pa->pa_lock);
3342 if (pa->pa_deleted == 1) {
3343 spin_unlock(&pa->pa_lock);
3344 return;
3345 }
3346
3347 pa->pa_deleted = 1;
3348 spin_unlock(&pa->pa_lock);
3349
3350 grp_blk = pa->pa_pstart;
3351 /*
3352 * If doing group-based preallocation, pa_pstart may be in the
3353 * next group when pa is used up
3354 */
3355 if (pa->pa_type == MB_GROUP_PA)
3356 grp_blk--;
3357
3358 ext4_get_group_no_and_offset(sb, grp_blk, &grp, NULL);
3359
3360 /*
3361 * possible race:
3362 *
3363 * P1 (buddy init) P2 (regular allocation)
3364 * find block B in PA
3365 * copy on-disk bitmap to buddy
3366 * mark B in on-disk bitmap
3367 * drop PA from group
3368 * mark all PAs in buddy
3369 *
3370 * thus, P1 initializes buddy with B available. to prevent this
3371 * we make "copy" and "mark all PAs" atomic and serialize "drop PA"
3372 * against that pair
3373 */
3374 ext4_lock_group(sb, grp);
3375 list_del(&pa->pa_group_list);
3376 ext4_unlock_group(sb, grp);
3377
3378 spin_lock(pa->pa_obj_lock);
3379 list_del_rcu(&pa->pa_inode_list);
3380 spin_unlock(pa->pa_obj_lock);
3381
3382 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3383 }
3384
3385 /*
3386 * creates new preallocated space for given inode
3387 */
3388 static noinline_for_stack int
3389 ext4_mb_new_inode_pa(struct ext4_allocation_context *ac)
3390 {
3391 struct super_block *sb = ac->ac_sb;
3392 struct ext4_sb_info *sbi = EXT4_SB(sb);
3393 struct ext4_prealloc_space *pa;
3394 struct ext4_group_info *grp;
3395 struct ext4_inode_info *ei;
3396
3397 /* preallocate only when found space is larger then requested */
3398 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
3399 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3400 BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
3401
3402 pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
3403 if (pa == NULL)
3404 return -ENOMEM;
3405
3406 if (ac->ac_b_ex.fe_len < ac->ac_g_ex.fe_len) {
3407 int winl;
3408 int wins;
3409 int win;
3410 int offs;
3411
3412 /* we can't allocate as much as normalizer wants.
3413 * so, found space must get proper lstart
3414 * to cover original request */
3415 BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical);
3416 BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len);
3417
3418 /* we're limited by original request in that
3419 * logical block must be covered any way
3420 * winl is window we can move our chunk within */
3421 winl = ac->ac_o_ex.fe_logical - ac->ac_g_ex.fe_logical;
3422
3423 /* also, we should cover whole original request */
3424 wins = EXT4_C2B(sbi, ac->ac_b_ex.fe_len - ac->ac_o_ex.fe_len);
3425
3426 /* the smallest one defines real window */
3427 win = min(winl, wins);
3428
3429 offs = ac->ac_o_ex.fe_logical %
3430 EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
3431 if (offs && offs < win)
3432 win = offs;
3433
3434 ac->ac_b_ex.fe_logical = ac->ac_o_ex.fe_logical -
3435 EXT4_B2C(sbi, win);
3436 BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical);
3437 BUG_ON(ac->ac_o_ex.fe_len > ac->ac_b_ex.fe_len);
3438 }
3439
3440 /* preallocation can change ac_b_ex, thus we store actually
3441 * allocated blocks for history */
3442 ac->ac_f_ex = ac->ac_b_ex;
3443
3444 pa->pa_lstart = ac->ac_b_ex.fe_logical;
3445 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3446 pa->pa_len = ac->ac_b_ex.fe_len;
3447 pa->pa_free = pa->pa_len;
3448 atomic_set(&pa->pa_count, 1);
3449 spin_lock_init(&pa->pa_lock);
3450 INIT_LIST_HEAD(&pa->pa_inode_list);
3451 INIT_LIST_HEAD(&pa->pa_group_list);
3452 pa->pa_deleted = 0;
3453 pa->pa_type = MB_INODE_PA;
3454
3455 mb_debug(1, "new inode pa %p: %llu/%u for %u\n", pa,
3456 pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3457 trace_ext4_mb_new_inode_pa(ac, pa);
3458
3459 ext4_mb_use_inode_pa(ac, pa);
3460 atomic_add(pa->pa_free, &sbi->s_mb_preallocated);
3461
3462 ei = EXT4_I(ac->ac_inode);
3463 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
3464
3465 pa->pa_obj_lock = &ei->i_prealloc_lock;
3466 pa->pa_inode = ac->ac_inode;
3467
3468 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3469 list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
3470 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3471
3472 spin_lock(pa->pa_obj_lock);
3473 list_add_rcu(&pa->pa_inode_list, &ei->i_prealloc_list);
3474 spin_unlock(pa->pa_obj_lock);
3475
3476 return 0;
3477 }
3478
3479 /*
3480 * creates new preallocated space for locality group inodes belongs to
3481 */
3482 static noinline_for_stack int
3483 ext4_mb_new_group_pa(struct ext4_allocation_context *ac)
3484 {
3485 struct super_block *sb = ac->ac_sb;
3486 struct ext4_locality_group *lg;
3487 struct ext4_prealloc_space *pa;
3488 struct ext4_group_info *grp;
3489
3490 /* preallocate only when found space is larger then requested */
3491 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
3492 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3493 BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
3494
3495 BUG_ON(ext4_pspace_cachep == NULL);
3496 pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
3497 if (pa == NULL)
3498 return -ENOMEM;
3499
3500 /* preallocation can change ac_b_ex, thus we store actually
3501 * allocated blocks for history */
3502 ac->ac_f_ex = ac->ac_b_ex;
3503
3504 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3505 pa->pa_lstart = pa->pa_pstart;
3506 pa->pa_len = ac->ac_b_ex.fe_len;
3507 pa->pa_free = pa->pa_len;
3508 atomic_set(&pa->pa_count, 1);
3509 spin_lock_init(&pa->pa_lock);
3510 INIT_LIST_HEAD(&pa->pa_inode_list);
3511 INIT_LIST_HEAD(&pa->pa_group_list);
3512 pa->pa_deleted = 0;
3513 pa->pa_type = MB_GROUP_PA;
3514
3515 mb_debug(1, "new group pa %p: %llu/%u for %u\n", pa,
3516 pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3517 trace_ext4_mb_new_group_pa(ac, pa);
3518
3519 ext4_mb_use_group_pa(ac, pa);
3520 atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated);
3521
3522 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
3523 lg = ac->ac_lg;
3524 BUG_ON(lg == NULL);
3525
3526 pa->pa_obj_lock = &lg->lg_prealloc_lock;
3527 pa->pa_inode = NULL;
3528
3529 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3530 list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
3531 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3532
3533 /*
3534 * We will later add the new pa to the right bucket
3535 * after updating the pa_free in ext4_mb_release_context
3536 */
3537 return 0;
3538 }
3539
3540 static int ext4_mb_new_preallocation(struct ext4_allocation_context *ac)
3541 {
3542 int err;
3543
3544 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
3545 err = ext4_mb_new_group_pa(ac);
3546 else
3547 err = ext4_mb_new_inode_pa(ac);
3548 return err;
3549 }
3550
3551 /*
3552 * finds all unused blocks in on-disk bitmap, frees them in
3553 * in-core bitmap and buddy.
3554 * @pa must be unlinked from inode and group lists, so that
3555 * nobody else can find/use it.
3556 * the caller MUST hold group/inode locks.
3557 * TODO: optimize the case when there are no in-core structures yet
3558 */
3559 static noinline_for_stack int
3560 ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh,
3561 struct ext4_prealloc_space *pa)
3562 {
3563 struct super_block *sb = e4b->bd_sb;
3564 struct ext4_sb_info *sbi = EXT4_SB(sb);
3565 unsigned int end;
3566 unsigned int next;
3567 ext4_group_t group;
3568 ext4_grpblk_t bit;
3569 unsigned long long grp_blk_start;
3570 int err = 0;
3571 int free = 0;
3572
3573 BUG_ON(pa->pa_deleted == 0);
3574 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3575 grp_blk_start = pa->pa_pstart - EXT4_C2B(sbi, bit);
3576 BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
3577 end = bit + pa->pa_len;
3578
3579 while (bit < end) {
3580 bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit);
3581 if (bit >= end)
3582 break;
3583 next = mb_find_next_bit(bitmap_bh->b_data, end, bit);
3584 mb_debug(1, " free preallocated %u/%u in group %u\n",
3585 (unsigned) ext4_group_first_block_no(sb, group) + bit,
3586 (unsigned) next - bit, (unsigned) group);
3587 free += next - bit;
3588
3589 trace_ext4_mballoc_discard(sb, NULL, group, bit, next - bit);
3590 trace_ext4_mb_release_inode_pa(pa, (grp_blk_start +
3591 EXT4_C2B(sbi, bit)),
3592 next - bit);
3593 mb_free_blocks(pa->pa_inode, e4b, bit, next - bit);
3594 bit = next + 1;
3595 }
3596 if (free != pa->pa_free) {
3597 ext4_msg(e4b->bd_sb, KERN_CRIT,
3598 "pa %p: logic %lu, phys. %lu, len %lu",
3599 pa, (unsigned long) pa->pa_lstart,
3600 (unsigned long) pa->pa_pstart,
3601 (unsigned long) pa->pa_len);
3602 ext4_grp_locked_error(sb, group, 0, 0, "free %u, pa_free %u",
3603 free, pa->pa_free);
3604 /*
3605 * pa is already deleted so we use the value obtained
3606 * from the bitmap and continue.
3607 */
3608 }
3609 atomic_add(free, &sbi->s_mb_discarded);
3610
3611 return err;
3612 }
3613
3614 static noinline_for_stack int
3615 ext4_mb_release_group_pa(struct ext4_buddy *e4b,
3616 struct ext4_prealloc_space *pa)
3617 {
3618 struct super_block *sb = e4b->bd_sb;
3619 ext4_group_t group;
3620 ext4_grpblk_t bit;
3621
3622 trace_ext4_mb_release_group_pa(sb, pa);
3623 BUG_ON(pa->pa_deleted == 0);
3624 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3625 BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
3626 mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len);
3627 atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded);
3628 trace_ext4_mballoc_discard(sb, NULL, group, bit, pa->pa_len);
3629
3630 return 0;
3631 }
3632
3633 /*
3634 * releases all preallocations in given group
3635 *
3636 * first, we need to decide discard policy:
3637 * - when do we discard
3638 * 1) ENOSPC
3639 * - how many do we discard
3640 * 1) how many requested
3641 */
3642 static noinline_for_stack int
3643 ext4_mb_discard_group_preallocations(struct super_block *sb,
3644 ext4_group_t group, int needed)
3645 {
3646 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
3647 struct buffer_head *bitmap_bh = NULL;
3648 struct ext4_prealloc_space *pa, *tmp;
3649 struct list_head list;
3650 struct ext4_buddy e4b;
3651 int err;
3652 int busy = 0;
3653 int free = 0;
3654
3655 mb_debug(1, "discard preallocation for group %u\n", group);
3656
3657 if (list_empty(&grp->bb_prealloc_list))
3658 return 0;
3659
3660 bitmap_bh = ext4_read_block_bitmap(sb, group);
3661 if (bitmap_bh == NULL) {
3662 ext4_error(sb, "Error reading block bitmap for %u", group);
3663 return 0;
3664 }
3665
3666 err = ext4_mb_load_buddy(sb, group, &e4b);
3667 if (err) {
3668 ext4_error(sb, "Error loading buddy information for %u", group);
3669 put_bh(bitmap_bh);
3670 return 0;
3671 }
3672
3673 if (needed == 0)
3674 needed = EXT4_CLUSTERS_PER_GROUP(sb) + 1;
3675
3676 INIT_LIST_HEAD(&list);
3677 repeat:
3678 ext4_lock_group(sb, group);
3679 list_for_each_entry_safe(pa, tmp,
3680 &grp->bb_prealloc_list, pa_group_list) {
3681 spin_lock(&pa->pa_lock);
3682 if (atomic_read(&pa->pa_count)) {
3683 spin_unlock(&pa->pa_lock);
3684 busy = 1;
3685 continue;
3686 }
3687 if (pa->pa_deleted) {
3688 spin_unlock(&pa->pa_lock);
3689 continue;
3690 }
3691
3692 /* seems this one can be freed ... */
3693 pa->pa_deleted = 1;
3694
3695 /* we can trust pa_free ... */
3696 free += pa->pa_free;
3697
3698 spin_unlock(&pa->pa_lock);
3699
3700 list_del(&pa->pa_group_list);
3701 list_add(&pa->u.pa_tmp_list, &list);
3702 }
3703
3704 /* if we still need more blocks and some PAs were used, try again */
3705 if (free < needed && busy) {
3706 busy = 0;
3707 ext4_unlock_group(sb, group);
3708 /*
3709 * Yield the CPU here so that we don't get soft lockup
3710 * in non preempt case.
3711 */
3712 yield();
3713 goto repeat;
3714 }
3715
3716 /* found anything to free? */
3717 if (list_empty(&list)) {
3718 BUG_ON(free != 0);
3719 goto out;
3720 }
3721
3722 /* now free all selected PAs */
3723 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
3724
3725 /* remove from object (inode or locality group) */
3726 spin_lock(pa->pa_obj_lock);
3727 list_del_rcu(&pa->pa_inode_list);
3728 spin_unlock(pa->pa_obj_lock);
3729
3730 if (pa->pa_type == MB_GROUP_PA)
3731 ext4_mb_release_group_pa(&e4b, pa);
3732 else
3733 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
3734
3735 list_del(&pa->u.pa_tmp_list);
3736 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3737 }
3738
3739 out:
3740 ext4_unlock_group(sb, group);
3741 ext4_mb_unload_buddy(&e4b);
3742 put_bh(bitmap_bh);
3743 return free;
3744 }
3745
3746 /*
3747 * releases all non-used preallocated blocks for given inode
3748 *
3749 * It's important to discard preallocations under i_data_sem
3750 * We don't want another block to be served from the prealloc
3751 * space when we are discarding the inode prealloc space.
3752 *
3753 * FIXME!! Make sure it is valid at all the call sites
3754 */
3755 void ext4_discard_preallocations(struct inode *inode)
3756 {
3757 struct ext4_inode_info *ei = EXT4_I(inode);
3758 struct super_block *sb = inode->i_sb;
3759 struct buffer_head *bitmap_bh = NULL;
3760 struct ext4_prealloc_space *pa, *tmp;
3761 ext4_group_t group = 0;
3762 struct list_head list;
3763 struct ext4_buddy e4b;
3764 int err;
3765
3766 if (!S_ISREG(inode->i_mode)) {
3767 /*BUG_ON(!list_empty(&ei->i_prealloc_list));*/
3768 return;
3769 }
3770
3771 mb_debug(1, "discard preallocation for inode %lu\n", inode->i_ino);
3772 trace_ext4_discard_preallocations(inode);
3773
3774 INIT_LIST_HEAD(&list);
3775
3776 repeat:
3777 /* first, collect all pa's in the inode */
3778 spin_lock(&ei->i_prealloc_lock);
3779 while (!list_empty(&ei->i_prealloc_list)) {
3780 pa = list_entry(ei->i_prealloc_list.next,
3781 struct ext4_prealloc_space, pa_inode_list);
3782 BUG_ON(pa->pa_obj_lock != &ei->i_prealloc_lock);
3783 spin_lock(&pa->pa_lock);
3784 if (atomic_read(&pa->pa_count)) {
3785 /* this shouldn't happen often - nobody should
3786 * use preallocation while we're discarding it */
3787 spin_unlock(&pa->pa_lock);
3788 spin_unlock(&ei->i_prealloc_lock);
3789 ext4_msg(sb, KERN_ERR,
3790 "uh-oh! used pa while discarding");
3791 WARN_ON(1);
3792 schedule_timeout_uninterruptible(HZ);
3793 goto repeat;
3794
3795 }
3796 if (pa->pa_deleted == 0) {
3797 pa->pa_deleted = 1;
3798 spin_unlock(&pa->pa_lock);
3799 list_del_rcu(&pa->pa_inode_list);
3800 list_add(&pa->u.pa_tmp_list, &list);
3801 continue;
3802 }
3803
3804 /* someone is deleting pa right now */
3805 spin_unlock(&pa->pa_lock);
3806 spin_unlock(&ei->i_prealloc_lock);
3807
3808 /* we have to wait here because pa_deleted
3809 * doesn't mean pa is already unlinked from
3810 * the list. as we might be called from
3811 * ->clear_inode() the inode will get freed
3812 * and concurrent thread which is unlinking
3813 * pa from inode's list may access already
3814 * freed memory, bad-bad-bad */
3815
3816 /* XXX: if this happens too often, we can
3817 * add a flag to force wait only in case
3818 * of ->clear_inode(), but not in case of
3819 * regular truncate */
3820 schedule_timeout_uninterruptible(HZ);
3821 goto repeat;
3822 }
3823 spin_unlock(&ei->i_prealloc_lock);
3824
3825 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
3826 BUG_ON(pa->pa_type != MB_INODE_PA);
3827 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, NULL);
3828
3829 err = ext4_mb_load_buddy(sb, group, &e4b);
3830 if (err) {
3831 ext4_error(sb, "Error loading buddy information for %u",
3832 group);
3833 continue;
3834 }
3835
3836 bitmap_bh = ext4_read_block_bitmap(sb, group);
3837 if (bitmap_bh == NULL) {
3838 ext4_error(sb, "Error reading block bitmap for %u",
3839 group);
3840 ext4_mb_unload_buddy(&e4b);
3841 continue;
3842 }
3843
3844 ext4_lock_group(sb, group);
3845 list_del(&pa->pa_group_list);
3846 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
3847 ext4_unlock_group(sb, group);
3848
3849 ext4_mb_unload_buddy(&e4b);
3850 put_bh(bitmap_bh);
3851
3852 list_del(&pa->u.pa_tmp_list);
3853 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3854 }
3855 }
3856
3857 #ifdef CONFIG_EXT4_DEBUG
3858 static void ext4_mb_show_ac(struct ext4_allocation_context *ac)
3859 {
3860 struct super_block *sb = ac->ac_sb;
3861 ext4_group_t ngroups, i;
3862
3863 if (!mb_enable_debug ||
3864 (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED))
3865 return;
3866
3867 ext4_msg(ac->ac_sb, KERN_ERR, "Can't allocate:"
3868 " Allocation context details:");
3869 ext4_msg(ac->ac_sb, KERN_ERR, "status %d flags %d",
3870 ac->ac_status, ac->ac_flags);
3871 ext4_msg(ac->ac_sb, KERN_ERR, "orig %lu/%lu/%lu@%lu, "
3872 "goal %lu/%lu/%lu@%lu, "
3873 "best %lu/%lu/%lu@%lu cr %d",
3874 (unsigned long)ac->ac_o_ex.fe_group,
3875 (unsigned long)ac->ac_o_ex.fe_start,
3876 (unsigned long)ac->ac_o_ex.fe_len,
3877 (unsigned long)ac->ac_o_ex.fe_logical,
3878 (unsigned long)ac->ac_g_ex.fe_group,
3879 (unsigned long)ac->ac_g_ex.fe_start,
3880 (unsigned long)ac->ac_g_ex.fe_len,
3881 (unsigned long)ac->ac_g_ex.fe_logical,
3882 (unsigned long)ac->ac_b_ex.fe_group,
3883 (unsigned long)ac->ac_b_ex.fe_start,
3884 (unsigned long)ac->ac_b_ex.fe_len,
3885 (unsigned long)ac->ac_b_ex.fe_logical,
3886 (int)ac->ac_criteria);
3887 ext4_msg(ac->ac_sb, KERN_ERR, "%lu scanned, %d found",
3888 ac->ac_ex_scanned, ac->ac_found);
3889 ext4_msg(ac->ac_sb, KERN_ERR, "groups: ");
3890 ngroups = ext4_get_groups_count(sb);
3891 for (i = 0; i < ngroups; i++) {
3892 struct ext4_group_info *grp = ext4_get_group_info(sb, i);
3893 struct ext4_prealloc_space *pa;
3894 ext4_grpblk_t start;
3895 struct list_head *cur;
3896 ext4_lock_group(sb, i);
3897 list_for_each(cur, &grp->bb_prealloc_list) {
3898 pa = list_entry(cur, struct ext4_prealloc_space,
3899 pa_group_list);
3900 spin_lock(&pa->pa_lock);
3901 ext4_get_group_no_and_offset(sb, pa->pa_pstart,
3902 NULL, &start);
3903 spin_unlock(&pa->pa_lock);
3904 printk(KERN_ERR "PA:%u:%d:%u \n", i,
3905 start, pa->pa_len);
3906 }
3907 ext4_unlock_group(sb, i);
3908
3909 if (grp->bb_free == 0)
3910 continue;
3911 printk(KERN_ERR "%u: %d/%d \n",
3912 i, grp->bb_free, grp->bb_fragments);
3913 }
3914 printk(KERN_ERR "\n");
3915 }
3916 #else
3917 static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac)
3918 {
3919 return;
3920 }
3921 #endif
3922
3923 /*
3924 * We use locality group preallocation for small size file. The size of the
3925 * file is determined by the current size or the resulting size after
3926 * allocation which ever is larger
3927 *
3928 * One can tune this size via /sys/fs/ext4/<partition>/mb_stream_req
3929 */
3930 static void ext4_mb_group_or_file(struct ext4_allocation_context *ac)
3931 {
3932 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3933 int bsbits = ac->ac_sb->s_blocksize_bits;
3934 loff_t size, isize;
3935
3936 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3937 return;
3938
3939 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
3940 return;
3941
3942 size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len);
3943 isize = (i_size_read(ac->ac_inode) + ac->ac_sb->s_blocksize - 1)
3944 >> bsbits;
3945
3946 if ((size == isize) &&
3947 !ext4_fs_is_busy(sbi) &&
3948 (atomic_read(&ac->ac_inode->i_writecount) == 0)) {
3949 ac->ac_flags |= EXT4_MB_HINT_NOPREALLOC;
3950 return;
3951 }
3952
3953 if (sbi->s_mb_group_prealloc <= 0) {
3954 ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
3955 return;
3956 }
3957
3958 /* don't use group allocation for large files */
3959 size = max(size, isize);
3960 if (size > sbi->s_mb_stream_request) {
3961 ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
3962 return;
3963 }
3964
3965 BUG_ON(ac->ac_lg != NULL);
3966 /*
3967 * locality group prealloc space are per cpu. The reason for having
3968 * per cpu locality group is to reduce the contention between block
3969 * request from multiple CPUs.
3970 */
3971 ac->ac_lg = __this_cpu_ptr(sbi->s_locality_groups);
3972
3973 /* we're going to use group allocation */
3974 ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC;
3975
3976 /* serialize all allocations in the group */
3977 mutex_lock(&ac->ac_lg->lg_mutex);
3978 }
3979
3980 static noinline_for_stack int
3981 ext4_mb_initialize_context(struct ext4_allocation_context *ac,
3982 struct ext4_allocation_request *ar)
3983 {
3984 struct super_block *sb = ar->inode->i_sb;
3985 struct ext4_sb_info *sbi = EXT4_SB(sb);
3986 struct ext4_super_block *es = sbi->s_es;
3987 ext4_group_t group;
3988 unsigned int len;
3989 ext4_fsblk_t goal;
3990 ext4_grpblk_t block;
3991
3992 /* we can't allocate > group size */
3993 len = ar->len;
3994
3995 /* just a dirty hack to filter too big requests */
3996 if (len >= EXT4_CLUSTERS_PER_GROUP(sb) - 10)
3997 len = EXT4_CLUSTERS_PER_GROUP(sb) - 10;
3998
3999 /* start searching from the goal */
4000 goal = ar->goal;
4001 if (goal < le32_to_cpu(es->s_first_data_block) ||
4002 goal >= ext4_blocks_count(es))
4003 goal = le32_to_cpu(es->s_first_data_block);
4004 ext4_get_group_no_and_offset(sb, goal, &group, &block);
4005
4006 /* set up allocation goals */
4007 memset(ac, 0, sizeof(struct ext4_allocation_context));
4008 ac->ac_b_ex.fe_logical = ar->logical & ~(sbi->s_cluster_ratio - 1);
4009 ac->ac_status = AC_STATUS_CONTINUE;
4010 ac->ac_sb = sb;
4011 ac->ac_inode = ar->inode;
4012 ac->ac_o_ex.fe_logical = ac->ac_b_ex.fe_logical;
4013 ac->ac_o_ex.fe_group = group;
4014 ac->ac_o_ex.fe_start = block;
4015 ac->ac_o_ex.fe_len = len;
4016 ac->ac_g_ex = ac->ac_o_ex;
4017 ac->ac_flags = ar->flags;
4018
4019 /* we have to define context: we'll we work with a file or
4020 * locality group. this is a policy, actually */
4021 ext4_mb_group_or_file(ac);
4022
4023 mb_debug(1, "init ac: %u blocks @ %u, goal %u, flags %x, 2^%d, "
4024 "left: %u/%u, right %u/%u to %swritable\n",
4025 (unsigned) ar->len, (unsigned) ar->logical,
4026 (unsigned) ar->goal, ac->ac_flags, ac->ac_2order,
4027 (unsigned) ar->lleft, (unsigned) ar->pleft,
4028 (unsigned) ar->lright, (unsigned) ar->pright,
4029 atomic_read(&ar->inode->i_writecount) ? "" : "non-");
4030 return 0;
4031
4032 }
4033
4034 static noinline_for_stack void
4035 ext4_mb_discard_lg_preallocations(struct super_block *sb,
4036 struct ext4_locality_group *lg,
4037 int order, int total_entries)
4038 {
4039 ext4_group_t group = 0;
4040 struct ext4_buddy e4b;
4041 struct list_head discard_list;
4042 struct ext4_prealloc_space *pa, *tmp;
4043
4044 mb_debug(1, "discard locality group preallocation\n");
4045
4046 INIT_LIST_HEAD(&discard_list);
4047
4048 spin_lock(&lg->lg_prealloc_lock);
4049 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[order],
4050 pa_inode_list) {
4051 spin_lock(&pa->pa_lock);
4052 if (atomic_read(&pa->pa_count)) {
4053 /*
4054 * This is the pa that we just used
4055 * for block allocation. So don't
4056 * free that
4057 */
4058 spin_unlock(&pa->pa_lock);
4059 continue;
4060 }
4061 if (pa->pa_deleted) {
4062 spin_unlock(&pa->pa_lock);
4063 continue;
4064 }
4065 /* only lg prealloc space */
4066 BUG_ON(pa->pa_type != MB_GROUP_PA);
4067
4068 /* seems this one can be freed ... */
4069 pa->pa_deleted = 1;
4070 spin_unlock(&pa->pa_lock);
4071
4072 list_del_rcu(&pa->pa_inode_list);
4073 list_add(&pa->u.pa_tmp_list, &discard_list);
4074
4075 total_entries--;
4076 if (total_entries <= 5) {
4077 /*
4078 * we want to keep only 5 entries
4079 * allowing it to grow to 8. This
4080 * mak sure we don't call discard
4081 * soon for this list.
4082 */
4083 break;
4084 }
4085 }
4086 spin_unlock(&lg->lg_prealloc_lock);
4087
4088 list_for_each_entry_safe(pa, tmp, &discard_list, u.pa_tmp_list) {
4089
4090 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, NULL);
4091 if (ext4_mb_load_buddy(sb, group, &e4b)) {
4092 ext4_error(sb, "Error loading buddy information for %u",
4093 group);
4094 continue;
4095 }
4096 ext4_lock_group(sb, group);
4097 list_del(&pa->pa_group_list);
4098 ext4_mb_release_group_pa(&e4b, pa);
4099 ext4_unlock_group(sb, group);
4100
4101 ext4_mb_unload_buddy(&e4b);
4102 list_del(&pa->u.pa_tmp_list);
4103 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4104 }
4105 }
4106
4107 /*
4108 * We have incremented pa_count. So it cannot be freed at this
4109 * point. Also we hold lg_mutex. So no parallel allocation is
4110 * possible from this lg. That means pa_free cannot be updated.
4111 *
4112 * A parallel ext4_mb_discard_group_preallocations is possible.
4113 * which can cause the lg_prealloc_list to be updated.
4114 */
4115
4116 static void ext4_mb_add_n_trim(struct ext4_allocation_context *ac)
4117 {
4118 int order, added = 0, lg_prealloc_count = 1;
4119 struct super_block *sb = ac->ac_sb;
4120 struct ext4_locality_group *lg = ac->ac_lg;
4121 struct ext4_prealloc_space *tmp_pa, *pa = ac->ac_pa;
4122
4123 order = fls(pa->pa_free) - 1;
4124 if (order > PREALLOC_TB_SIZE - 1)
4125 /* The max size of hash table is PREALLOC_TB_SIZE */
4126 order = PREALLOC_TB_SIZE - 1;
4127 /* Add the prealloc space to lg */
4128 rcu_read_lock();
4129 list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[order],
4130 pa_inode_list) {
4131 spin_lock(&tmp_pa->pa_lock);
4132 if (tmp_pa->pa_deleted) {
4133 spin_unlock(&tmp_pa->pa_lock);
4134 continue;
4135 }
4136 if (!added && pa->pa_free < tmp_pa->pa_free) {
4137 /* Add to the tail of the previous entry */
4138 list_add_tail_rcu(&pa->pa_inode_list,
4139 &tmp_pa->pa_inode_list);
4140 added = 1;
4141 /*
4142 * we want to count the total
4143 * number of entries in the list
4144 */
4145 }
4146 spin_unlock(&tmp_pa->pa_lock);
4147 lg_prealloc_count++;
4148 }
4149 if (!added)
4150 list_add_tail_rcu(&pa->pa_inode_list,
4151 &lg->lg_prealloc_list[order]);
4152 rcu_read_unlock();
4153
4154 /* Now trim the list to be not more than 8 elements */
4155 if (lg_prealloc_count > 8) {
4156 ext4_mb_discard_lg_preallocations(sb, lg,
4157 order, lg_prealloc_count);
4158 return;
4159 }
4160 return ;
4161 }
4162
4163 /*
4164 * release all resource we used in allocation
4165 */
4166 static int ext4_mb_release_context(struct ext4_allocation_context *ac)
4167 {
4168 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4169 struct ext4_prealloc_space *pa = ac->ac_pa;
4170 if (pa) {
4171 if (pa->pa_type == MB_GROUP_PA) {
4172 /* see comment in ext4_mb_use_group_pa() */
4173 spin_lock(&pa->pa_lock);
4174 pa->pa_pstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
4175 pa->pa_lstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
4176 pa->pa_free -= ac->ac_b_ex.fe_len;
4177 pa->pa_len -= ac->ac_b_ex.fe_len;
4178 spin_unlock(&pa->pa_lock);
4179 }
4180 }
4181 if (pa) {
4182 /*
4183 * We want to add the pa to the right bucket.
4184 * Remove it from the list and while adding
4185 * make sure the list to which we are adding
4186 * doesn't grow big.
4187 */
4188 if ((pa->pa_type == MB_GROUP_PA) && likely(pa->pa_free)) {
4189 spin_lock(pa->pa_obj_lock);
4190 list_del_rcu(&pa->pa_inode_list);
4191 spin_unlock(pa->pa_obj_lock);
4192 ext4_mb_add_n_trim(ac);
4193 }
4194 ext4_mb_put_pa(ac, ac->ac_sb, pa);
4195 }
4196 if (ac->ac_bitmap_page)
4197 page_cache_release(ac->ac_bitmap_page);
4198 if (ac->ac_buddy_page)
4199 page_cache_release(ac->ac_buddy_page);
4200 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
4201 mutex_unlock(&ac->ac_lg->lg_mutex);
4202 ext4_mb_collect_stats(ac);
4203 return 0;
4204 }
4205
4206 static int ext4_mb_discard_preallocations(struct super_block *sb, int needed)
4207 {
4208 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
4209 int ret;
4210 int freed = 0;
4211
4212 trace_ext4_mb_discard_preallocations(sb, needed);
4213 for (i = 0; i < ngroups && needed > 0; i++) {
4214 ret = ext4_mb_discard_group_preallocations(sb, i, needed);
4215 freed += ret;
4216 needed -= ret;
4217 }
4218
4219 return freed;
4220 }
4221
4222 /*
4223 * Main entry point into mballoc to allocate blocks
4224 * it tries to use preallocation first, then falls back
4225 * to usual allocation
4226 */
4227 ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle,
4228 struct ext4_allocation_request *ar, int *errp)
4229 {
4230 int freed;
4231 struct ext4_allocation_context *ac = NULL;
4232 struct ext4_sb_info *sbi;
4233 struct super_block *sb;
4234 ext4_fsblk_t block = 0;
4235 unsigned int inquota = 0;
4236 unsigned int reserv_clstrs = 0;
4237
4238 sb = ar->inode->i_sb;
4239 sbi = EXT4_SB(sb);
4240
4241 trace_ext4_request_blocks(ar);
4242
4243 /* Allow to use superuser reservation for quota file */
4244 if (IS_NOQUOTA(ar->inode))
4245 ar->flags |= EXT4_MB_USE_ROOT_BLOCKS;
4246
4247 /*
4248 * For delayed allocation, we could skip the ENOSPC and
4249 * EDQUOT check, as blocks and quotas have been already
4250 * reserved when data being copied into pagecache.
4251 */
4252 if (ext4_test_inode_state(ar->inode, EXT4_STATE_DELALLOC_RESERVED))
4253 ar->flags |= EXT4_MB_DELALLOC_RESERVED;
4254 else {
4255 /* Without delayed allocation we need to verify
4256 * there is enough free blocks to do block allocation
4257 * and verify allocation doesn't exceed the quota limits.
4258 */
4259 while (ar->len &&
4260 ext4_claim_free_clusters(sbi, ar->len, ar->flags)) {
4261
4262 /* let others to free the space */
4263 yield();
4264 ar->len = ar->len >> 1;
4265 }
4266 if (!ar->len) {
4267 *errp = -ENOSPC;
4268 return 0;
4269 }
4270 reserv_clstrs = ar->len;
4271 if (ar->flags & EXT4_MB_USE_ROOT_BLOCKS) {
4272 dquot_alloc_block_nofail(ar->inode,
4273 EXT4_C2B(sbi, ar->len));
4274 } else {
4275 while (ar->len &&
4276 dquot_alloc_block(ar->inode,
4277 EXT4_C2B(sbi, ar->len))) {
4278
4279 ar->flags |= EXT4_MB_HINT_NOPREALLOC;
4280 ar->len--;
4281 }
4282 }
4283 inquota = ar->len;
4284 if (ar->len == 0) {
4285 *errp = -EDQUOT;
4286 goto out;
4287 }
4288 }
4289
4290 ac = kmem_cache_alloc(ext4_ac_cachep, GFP_NOFS);
4291 if (!ac) {
4292 ar->len = 0;
4293 *errp = -ENOMEM;
4294 goto out;
4295 }
4296
4297 *errp = ext4_mb_initialize_context(ac, ar);
4298 if (*errp) {
4299 ar->len = 0;
4300 goto out;
4301 }
4302
4303 ac->ac_op = EXT4_MB_HISTORY_PREALLOC;
4304 if (!ext4_mb_use_preallocated(ac)) {
4305 ac->ac_op = EXT4_MB_HISTORY_ALLOC;
4306 ext4_mb_normalize_request(ac, ar);
4307 repeat:
4308 /* allocate space in core */
4309 *errp = ext4_mb_regular_allocator(ac);
4310 if (*errp)
4311 goto errout;
4312
4313 /* as we've just preallocated more space than
4314 * user requested orinally, we store allocated
4315 * space in a special descriptor */
4316 if (ac->ac_status == AC_STATUS_FOUND &&
4317 ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len)
4318 ext4_mb_new_preallocation(ac);
4319 }
4320 if (likely(ac->ac_status == AC_STATUS_FOUND)) {
4321 *errp = ext4_mb_mark_diskspace_used(ac, handle, reserv_clstrs);
4322 if (*errp == -EAGAIN) {
4323 /*
4324 * drop the reference that we took
4325 * in ext4_mb_use_best_found
4326 */
4327 ext4_mb_release_context(ac);
4328 ac->ac_b_ex.fe_group = 0;
4329 ac->ac_b_ex.fe_start = 0;
4330 ac->ac_b_ex.fe_len = 0;
4331 ac->ac_status = AC_STATUS_CONTINUE;
4332 goto repeat;
4333 } else if (*errp)
4334 errout:
4335 ext4_discard_allocated_blocks(ac);
4336 else {
4337 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
4338 ar->len = ac->ac_b_ex.fe_len;
4339 }
4340 } else {
4341 freed = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len);
4342 if (freed)
4343 goto repeat;
4344 *errp = -ENOSPC;
4345 }
4346
4347 if (*errp) {
4348 ac->ac_b_ex.fe_len = 0;
4349 ar->len = 0;
4350 ext4_mb_show_ac(ac);
4351 }
4352 ext4_mb_release_context(ac);
4353 out:
4354 if (ac)
4355 kmem_cache_free(ext4_ac_cachep, ac);
4356 if (inquota && ar->len < inquota)
4357 dquot_free_block(ar->inode, EXT4_C2B(sbi, inquota - ar->len));
4358 if (!ar->len) {
4359 if (!ext4_test_inode_state(ar->inode,
4360 EXT4_STATE_DELALLOC_RESERVED))
4361 /* release all the reserved blocks if non delalloc */
4362 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
4363 reserv_clstrs);
4364 }
4365
4366 trace_ext4_allocate_blocks(ar, (unsigned long long)block);
4367
4368 return block;
4369 }
4370
4371 /*
4372 * We can merge two free data extents only if the physical blocks
4373 * are contiguous, AND the extents were freed by the same transaction,
4374 * AND the blocks are associated with the same group.
4375 */
4376 static int can_merge(struct ext4_free_data *entry1,
4377 struct ext4_free_data *entry2)
4378 {
4379 if ((entry1->efd_tid == entry2->efd_tid) &&
4380 (entry1->efd_group == entry2->efd_group) &&
4381 ((entry1->efd_start_cluster + entry1->efd_count) == entry2->efd_start_cluster))
4382 return 1;
4383 return 0;
4384 }
4385
4386 static noinline_for_stack int
4387 ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b,
4388 struct ext4_free_data *new_entry)
4389 {
4390 ext4_group_t group = e4b->bd_group;
4391 ext4_grpblk_t cluster;
4392 struct ext4_free_data *entry;
4393 struct ext4_group_info *db = e4b->bd_info;
4394 struct super_block *sb = e4b->bd_sb;
4395 struct ext4_sb_info *sbi = EXT4_SB(sb);
4396 struct rb_node **n = &db->bb_free_root.rb_node, *node;
4397 struct rb_node *parent = NULL, *new_node;
4398
4399 BUG_ON(!ext4_handle_valid(handle));
4400 BUG_ON(e4b->bd_bitmap_page == NULL);
4401 BUG_ON(e4b->bd_buddy_page == NULL);
4402
4403 new_node = &new_entry->efd_node;
4404 cluster = new_entry->efd_start_cluster;
4405
4406 if (!*n) {
4407 /* first free block exent. We need to
4408 protect buddy cache from being freed,
4409 * otherwise we'll refresh it from
4410 * on-disk bitmap and lose not-yet-available
4411 * blocks */
4412 page_cache_get(e4b->bd_buddy_page);
4413 page_cache_get(e4b->bd_bitmap_page);
4414 }
4415 while (*n) {
4416 parent = *n;
4417 entry = rb_entry(parent, struct ext4_free_data, efd_node);
4418 if (cluster < entry->efd_start_cluster)
4419 n = &(*n)->rb_left;
4420 else if (cluster >= (entry->efd_start_cluster + entry->efd_count))
4421 n = &(*n)->rb_right;
4422 else {
4423 ext4_grp_locked_error(sb, group, 0,
4424 ext4_group_first_block_no(sb, group) +
4425 EXT4_C2B(sbi, cluster),
4426 "Block already on to-be-freed list");
4427 return 0;
4428 }
4429 }
4430
4431 rb_link_node(new_node, parent, n);
4432 rb_insert_color(new_node, &db->bb_free_root);
4433
4434 /* Now try to see the extent can be merged to left and right */
4435 node = rb_prev(new_node);
4436 if (node) {
4437 entry = rb_entry(node, struct ext4_free_data, efd_node);
4438 if (can_merge(entry, new_entry)) {
4439 new_entry->efd_start_cluster = entry->efd_start_cluster;
4440 new_entry->efd_count += entry->efd_count;
4441 rb_erase(node, &(db->bb_free_root));
4442 ext4_journal_callback_del(handle, &entry->efd_jce);
4443 kmem_cache_free(ext4_free_data_cachep, entry);
4444 }
4445 }
4446
4447 node = rb_next(new_node);
4448 if (node) {
4449 entry = rb_entry(node, struct ext4_free_data, efd_node);
4450 if (can_merge(new_entry, entry)) {
4451 new_entry->efd_count += entry->efd_count;
4452 rb_erase(node, &(db->bb_free_root));
4453 ext4_journal_callback_del(handle, &entry->efd_jce);
4454 kmem_cache_free(ext4_free_data_cachep, entry);
4455 }
4456 }
4457 /* Add the extent to transaction's private list */
4458 ext4_journal_callback_add(handle, ext4_free_data_callback,
4459 &new_entry->efd_jce);
4460 return 0;
4461 }
4462
4463 /**
4464 * ext4_free_blocks() -- Free given blocks and update quota
4465 * @handle: handle for this transaction
4466 * @inode: inode
4467 * @block: start physical block to free
4468 * @count: number of blocks to count
4469 * @flags: flags used by ext4_free_blocks
4470 */
4471 void ext4_free_blocks(handle_t *handle, struct inode *inode,
4472 struct buffer_head *bh, ext4_fsblk_t block,
4473 unsigned long count, int flags)
4474 {
4475 struct buffer_head *bitmap_bh = NULL;
4476 struct super_block *sb = inode->i_sb;
4477 struct ext4_group_desc *gdp;
4478 unsigned long freed = 0;
4479 unsigned int overflow;
4480 ext4_grpblk_t bit;
4481 struct buffer_head *gd_bh;
4482 ext4_group_t block_group;
4483 struct ext4_sb_info *sbi;
4484 struct ext4_buddy e4b;
4485 unsigned int count_clusters;
4486 int err = 0;
4487 int ret;
4488
4489 if (bh) {
4490 if (block)
4491 BUG_ON(block != bh->b_blocknr);
4492 else
4493 block = bh->b_blocknr;
4494 }
4495
4496 sbi = EXT4_SB(sb);
4497 if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) &&
4498 !ext4_data_block_valid(sbi, block, count)) {
4499 ext4_error(sb, "Freeing blocks not in datazone - "
4500 "block = %llu, count = %lu", block, count);
4501 goto error_return;
4502 }
4503
4504 ext4_debug("freeing block %llu\n", block);
4505 trace_ext4_free_blocks(inode, block, count, flags);
4506
4507 if (flags & EXT4_FREE_BLOCKS_FORGET) {
4508 struct buffer_head *tbh = bh;
4509 int i;
4510
4511 BUG_ON(bh && (count > 1));
4512
4513 for (i = 0; i < count; i++) {
4514 if (!bh)
4515 tbh = sb_find_get_block(inode->i_sb,
4516 block + i);
4517 if (unlikely(!tbh))
4518 continue;
4519 ext4_forget(handle, flags & EXT4_FREE_BLOCKS_METADATA,
4520 inode, tbh, block + i);
4521 }
4522 }
4523
4524 /*
4525 * We need to make sure we don't reuse the freed block until
4526 * after the transaction is committed, which we can do by
4527 * treating the block as metadata, below. We make an
4528 * exception if the inode is to be written in writeback mode
4529 * since writeback mode has weak data consistency guarantees.
4530 */
4531 if (!ext4_should_writeback_data(inode))
4532 flags |= EXT4_FREE_BLOCKS_METADATA;
4533
4534 /*
4535 * If the extent to be freed does not begin on a cluster
4536 * boundary, we need to deal with partial clusters at the
4537 * beginning and end of the extent. Normally we will free
4538 * blocks at the beginning or the end unless we are explicitly
4539 * requested to avoid doing so.
4540 */
4541 overflow = block & (sbi->s_cluster_ratio - 1);
4542 if (overflow) {
4543 if (flags & EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER) {
4544 overflow = sbi->s_cluster_ratio - overflow;
4545 block += overflow;
4546 if (count > overflow)
4547 count -= overflow;
4548 else
4549 return;
4550 } else {
4551 block -= overflow;
4552 count += overflow;
4553 }
4554 }
4555 overflow = count & (sbi->s_cluster_ratio - 1);
4556 if (overflow) {
4557 if (flags & EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER) {
4558 if (count > overflow)
4559 count -= overflow;
4560 else
4561 return;
4562 } else
4563 count += sbi->s_cluster_ratio - overflow;
4564 }
4565
4566 do_more:
4567 overflow = 0;
4568 ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
4569
4570 /*
4571 * Check to see if we are freeing blocks across a group
4572 * boundary.
4573 */
4574 if (EXT4_C2B(sbi, bit) + count > EXT4_BLOCKS_PER_GROUP(sb)) {
4575 overflow = EXT4_C2B(sbi, bit) + count -
4576 EXT4_BLOCKS_PER_GROUP(sb);
4577 count -= overflow;
4578 }
4579 count_clusters = EXT4_B2C(sbi, count);
4580 bitmap_bh = ext4_read_block_bitmap(sb, block_group);
4581 if (!bitmap_bh) {
4582 err = -EIO;
4583 goto error_return;
4584 }
4585 gdp = ext4_get_group_desc(sb, block_group, &gd_bh);
4586 if (!gdp) {
4587 err = -EIO;
4588 goto error_return;
4589 }
4590
4591 if (in_range(ext4_block_bitmap(sb, gdp), block, count) ||
4592 in_range(ext4_inode_bitmap(sb, gdp), block, count) ||
4593 in_range(block, ext4_inode_table(sb, gdp),
4594 EXT4_SB(sb)->s_itb_per_group) ||
4595 in_range(block + count - 1, ext4_inode_table(sb, gdp),
4596 EXT4_SB(sb)->s_itb_per_group)) {
4597
4598 ext4_error(sb, "Freeing blocks in system zone - "
4599 "Block = %llu, count = %lu", block, count);
4600 /* err = 0. ext4_std_error should be a no op */
4601 goto error_return;
4602 }
4603
4604 BUFFER_TRACE(bitmap_bh, "getting write access");
4605 err = ext4_journal_get_write_access(handle, bitmap_bh);
4606 if (err)
4607 goto error_return;
4608
4609 /*
4610 * We are about to modify some metadata. Call the journal APIs
4611 * to unshare ->b_data if a currently-committing transaction is
4612 * using it
4613 */
4614 BUFFER_TRACE(gd_bh, "get_write_access");
4615 err = ext4_journal_get_write_access(handle, gd_bh);
4616 if (err)
4617 goto error_return;
4618 #ifdef AGGRESSIVE_CHECK
4619 {
4620 int i;
4621 for (i = 0; i < count_clusters; i++)
4622 BUG_ON(!mb_test_bit(bit + i, bitmap_bh->b_data));
4623 }
4624 #endif
4625 trace_ext4_mballoc_free(sb, inode, block_group, bit, count_clusters);
4626
4627 err = ext4_mb_load_buddy(sb, block_group, &e4b);
4628 if (err)
4629 goto error_return;
4630
4631 if ((flags & EXT4_FREE_BLOCKS_METADATA) && ext4_handle_valid(handle)) {
4632 struct ext4_free_data *new_entry;
4633 /*
4634 * blocks being freed are metadata. these blocks shouldn't
4635 * be used until this transaction is committed
4636 */
4637 new_entry = kmem_cache_alloc(ext4_free_data_cachep, GFP_NOFS);
4638 if (!new_entry) {
4639 err = -ENOMEM;
4640 goto error_return;
4641 }
4642 new_entry->efd_start_cluster = bit;
4643 new_entry->efd_group = block_group;
4644 new_entry->efd_count = count_clusters;
4645 new_entry->efd_tid = handle->h_transaction->t_tid;
4646
4647 ext4_lock_group(sb, block_group);
4648 mb_clear_bits(bitmap_bh->b_data, bit, count_clusters);
4649 ext4_mb_free_metadata(handle, &e4b, new_entry);
4650 } else {
4651 /* need to update group_info->bb_free and bitmap
4652 * with group lock held. generate_buddy look at
4653 * them with group lock_held
4654 */
4655 ext4_lock_group(sb, block_group);
4656 mb_clear_bits(bitmap_bh->b_data, bit, count_clusters);
4657 mb_free_blocks(inode, &e4b, bit, count_clusters);
4658 }
4659
4660 ret = ext4_free_group_clusters(sb, gdp) + count_clusters;
4661 ext4_free_group_clusters_set(sb, gdp, ret);
4662 gdp->bg_checksum = ext4_group_desc_csum(sbi, block_group, gdp);
4663 ext4_unlock_group(sb, block_group);
4664 percpu_counter_add(&sbi->s_freeclusters_counter, count_clusters);
4665
4666 if (sbi->s_log_groups_per_flex) {
4667 ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
4668 atomic_add(count_clusters,
4669 &sbi->s_flex_groups[flex_group].free_clusters);
4670 }
4671
4672 ext4_mb_unload_buddy(&e4b);
4673
4674 freed += count;
4675
4676 if (!(flags & EXT4_FREE_BLOCKS_NO_QUOT_UPDATE))
4677 dquot_free_block(inode, EXT4_C2B(sbi, count_clusters));
4678
4679 /* We dirtied the bitmap block */
4680 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
4681 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
4682
4683 /* And the group descriptor block */
4684 BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
4685 ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
4686 if (!err)
4687 err = ret;
4688
4689 if (overflow && !err) {
4690 block += count;
4691 count = overflow;
4692 put_bh(bitmap_bh);
4693 goto do_more;
4694 }
4695 ext4_mark_super_dirty(sb);
4696 error_return:
4697 brelse(bitmap_bh);
4698 ext4_std_error(sb, err);
4699 return;
4700 }
4701
4702 /**
4703 * ext4_group_add_blocks() -- Add given blocks to an existing group
4704 * @handle: handle to this transaction
4705 * @sb: super block
4706 * @block: start physcial block to add to the block group
4707 * @count: number of blocks to free
4708 *
4709 * This marks the blocks as free in the bitmap and buddy.
4710 */
4711 int ext4_group_add_blocks(handle_t *handle, struct super_block *sb,
4712 ext4_fsblk_t block, unsigned long count)
4713 {
4714 struct buffer_head *bitmap_bh = NULL;
4715 struct buffer_head *gd_bh;
4716 ext4_group_t block_group;
4717 ext4_grpblk_t bit;
4718 unsigned int i;
4719 struct ext4_group_desc *desc;
4720 struct ext4_sb_info *sbi = EXT4_SB(sb);
4721 struct ext4_buddy e4b;
4722 int err = 0, ret, blk_free_count;
4723 ext4_grpblk_t blocks_freed;
4724
4725 ext4_debug("Adding block(s) %llu-%llu\n", block, block + count - 1);
4726
4727 if (count == 0)
4728 return 0;
4729
4730 ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
4731 /*
4732 * Check to see if we are freeing blocks across a group
4733 * boundary.
4734 */
4735 if (bit + count > EXT4_BLOCKS_PER_GROUP(sb)) {
4736 ext4_warning(sb, "too much blocks added to group %u\n",
4737 block_group);
4738 err = -EINVAL;
4739 goto error_return;
4740 }
4741
4742 bitmap_bh = ext4_read_block_bitmap(sb, block_group);
4743 if (!bitmap_bh) {
4744 err = -EIO;
4745 goto error_return;
4746 }
4747
4748 desc = ext4_get_group_desc(sb, block_group, &gd_bh);
4749 if (!desc) {
4750 err = -EIO;
4751 goto error_return;
4752 }
4753
4754 if (in_range(ext4_block_bitmap(sb, desc), block, count) ||
4755 in_range(ext4_inode_bitmap(sb, desc), block, count) ||
4756 in_range(block, ext4_inode_table(sb, desc), sbi->s_itb_per_group) ||
4757 in_range(block + count - 1, ext4_inode_table(sb, desc),
4758 sbi->s_itb_per_group)) {
4759 ext4_error(sb, "Adding blocks in system zones - "
4760 "Block = %llu, count = %lu",
4761 block, count);
4762 err = -EINVAL;
4763 goto error_return;
4764 }
4765
4766 BUFFER_TRACE(bitmap_bh, "getting write access");
4767 err = ext4_journal_get_write_access(handle, bitmap_bh);
4768 if (err)
4769 goto error_return;
4770
4771 /*
4772 * We are about to modify some metadata. Call the journal APIs
4773 * to unshare ->b_data if a currently-committing transaction is
4774 * using it
4775 */
4776 BUFFER_TRACE(gd_bh, "get_write_access");
4777 err = ext4_journal_get_write_access(handle, gd_bh);
4778 if (err)
4779 goto error_return;
4780
4781 for (i = 0, blocks_freed = 0; i < count; i++) {
4782 BUFFER_TRACE(bitmap_bh, "clear bit");
4783 if (!mb_test_bit(bit + i, bitmap_bh->b_data)) {
4784 ext4_error(sb, "bit already cleared for block %llu",
4785 (ext4_fsblk_t)(block + i));
4786 BUFFER_TRACE(bitmap_bh, "bit already cleared");
4787 } else {
4788 blocks_freed++;
4789 }
4790 }
4791
4792 err = ext4_mb_load_buddy(sb, block_group, &e4b);
4793 if (err)
4794 goto error_return;
4795
4796 /*
4797 * need to update group_info->bb_free and bitmap
4798 * with group lock held. generate_buddy look at
4799 * them with group lock_held
4800 */
4801 ext4_lock_group(sb, block_group);
4802 mb_clear_bits(bitmap_bh->b_data, bit, count);
4803 mb_free_blocks(NULL, &e4b, bit, count);
4804 blk_free_count = blocks_freed + ext4_free_group_clusters(sb, desc);
4805 ext4_free_group_clusters_set(sb, desc, blk_free_count);
4806 desc->bg_checksum = ext4_group_desc_csum(sbi, block_group, desc);
4807 ext4_unlock_group(sb, block_group);
4808 percpu_counter_add(&sbi->s_freeclusters_counter,
4809 EXT4_B2C(sbi, blocks_freed));
4810
4811 if (sbi->s_log_groups_per_flex) {
4812 ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
4813 atomic_add(EXT4_B2C(sbi, blocks_freed),
4814 &sbi->s_flex_groups[flex_group].free_clusters);
4815 }
4816
4817 ext4_mb_unload_buddy(&e4b);
4818
4819 /* We dirtied the bitmap block */
4820 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
4821 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
4822
4823 /* And the group descriptor block */
4824 BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
4825 ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
4826 if (!err)
4827 err = ret;
4828
4829 error_return:
4830 brelse(bitmap_bh);
4831 ext4_std_error(sb, err);
4832 return err;
4833 }
4834
4835 /**
4836 * ext4_trim_extent -- function to TRIM one single free extent in the group
4837 * @sb: super block for the file system
4838 * @start: starting block of the free extent in the alloc. group
4839 * @count: number of blocks to TRIM
4840 * @group: alloc. group we are working with
4841 * @e4b: ext4 buddy for the group
4842 *
4843 * Trim "count" blocks starting at "start" in the "group". To assure that no
4844 * one will allocate those blocks, mark it as used in buddy bitmap. This must
4845 * be called with under the group lock.
4846 */
4847 static void ext4_trim_extent(struct super_block *sb, int start, int count,
4848 ext4_group_t group, struct ext4_buddy *e4b)
4849 {
4850 struct ext4_free_extent ex;
4851
4852 trace_ext4_trim_extent(sb, group, start, count);
4853
4854 assert_spin_locked(ext4_group_lock_ptr(sb, group));
4855
4856 ex.fe_start = start;
4857 ex.fe_group = group;
4858 ex.fe_len = count;
4859
4860 /*
4861 * Mark blocks used, so no one can reuse them while
4862 * being trimmed.
4863 */
4864 mb_mark_used(e4b, &ex);
4865 ext4_unlock_group(sb, group);
4866 ext4_issue_discard(sb, group, start, count);
4867 ext4_lock_group(sb, group);
4868 mb_free_blocks(NULL, e4b, start, ex.fe_len);
4869 }
4870
4871 /**
4872 * ext4_trim_all_free -- function to trim all free space in alloc. group
4873 * @sb: super block for file system
4874 * @group: group to be trimmed
4875 * @start: first group block to examine
4876 * @max: last group block to examine
4877 * @minblocks: minimum extent block count
4878 *
4879 * ext4_trim_all_free walks through group's buddy bitmap searching for free
4880 * extents. When the free block is found, ext4_trim_extent is called to TRIM
4881 * the extent.
4882 *
4883 *
4884 * ext4_trim_all_free walks through group's block bitmap searching for free
4885 * extents. When the free extent is found, mark it as used in group buddy
4886 * bitmap. Then issue a TRIM command on this extent and free the extent in
4887 * the group buddy bitmap. This is done until whole group is scanned.
4888 */
4889 static ext4_grpblk_t
4890 ext4_trim_all_free(struct super_block *sb, ext4_group_t group,
4891 ext4_grpblk_t start, ext4_grpblk_t max,
4892 ext4_grpblk_t minblocks)
4893 {
4894 void *bitmap;
4895 ext4_grpblk_t next, count = 0, free_count = 0;
4896 struct ext4_buddy e4b;
4897 int ret;
4898
4899 trace_ext4_trim_all_free(sb, group, start, max);
4900
4901 ret = ext4_mb_load_buddy(sb, group, &e4b);
4902 if (ret) {
4903 ext4_error(sb, "Error in loading buddy "
4904 "information for %u", group);
4905 return ret;
4906 }
4907 bitmap = e4b.bd_bitmap;
4908
4909 ext4_lock_group(sb, group);
4910 if (EXT4_MB_GRP_WAS_TRIMMED(e4b.bd_info) &&
4911 minblocks >= atomic_read(&EXT4_SB(sb)->s_last_trim_minblks))
4912 goto out;
4913
4914 start = (e4b.bd_info->bb_first_free > start) ?
4915 e4b.bd_info->bb_first_free : start;
4916
4917 while (start < max) {
4918 start = mb_find_next_zero_bit(bitmap, max, start);
4919 if (start >= max)
4920 break;
4921 next = mb_find_next_bit(bitmap, max, start);
4922
4923 if ((next - start) >= minblocks) {
4924 ext4_trim_extent(sb, start,
4925 next - start, group, &e4b);
4926 count += next - start;
4927 }
4928 free_count += next - start;
4929 start = next + 1;
4930
4931 if (fatal_signal_pending(current)) {
4932 count = -ERESTARTSYS;
4933 break;
4934 }
4935
4936 if (need_resched()) {
4937 ext4_unlock_group(sb, group);
4938 cond_resched();
4939 ext4_lock_group(sb, group);
4940 }
4941
4942 if ((e4b.bd_info->bb_free - free_count) < minblocks)
4943 break;
4944 }
4945
4946 if (!ret)
4947 EXT4_MB_GRP_SET_TRIMMED(e4b.bd_info);
4948 out:
4949 ext4_unlock_group(sb, group);
4950 ext4_mb_unload_buddy(&e4b);
4951
4952 ext4_debug("trimmed %d blocks in the group %d\n",
4953 count, group);
4954
4955 return count;
4956 }
4957
4958 /**
4959 * ext4_trim_fs() -- trim ioctl handle function
4960 * @sb: superblock for filesystem
4961 * @range: fstrim_range structure
4962 *
4963 * start: First Byte to trim
4964 * len: number of Bytes to trim from start
4965 * minlen: minimum extent length in Bytes
4966 * ext4_trim_fs goes through all allocation groups containing Bytes from
4967 * start to start+len. For each such a group ext4_trim_all_free function
4968 * is invoked to trim all free space.
4969 */
4970 int ext4_trim_fs(struct super_block *sb, struct fstrim_range *range)
4971 {
4972 struct ext4_group_info *grp;
4973 ext4_group_t first_group, last_group;
4974 ext4_group_t group, ngroups = ext4_get_groups_count(sb);
4975 ext4_grpblk_t cnt = 0, first_cluster, last_cluster;
4976 uint64_t start, len, minlen, trimmed = 0;
4977 ext4_fsblk_t first_data_blk =
4978 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block);
4979 int ret = 0;
4980
4981 start = range->start >> sb->s_blocksize_bits;
4982 len = range->len >> sb->s_blocksize_bits;
4983 minlen = range->minlen >> sb->s_blocksize_bits;
4984
4985 if (unlikely(minlen > EXT4_CLUSTERS_PER_GROUP(sb)))
4986 return -EINVAL;
4987 if (start + len <= first_data_blk)
4988 goto out;
4989 if (start < first_data_blk) {
4990 len -= first_data_blk - start;
4991 start = first_data_blk;
4992 }
4993
4994 /* Determine first and last group to examine based on start and len */
4995 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) start,
4996 &first_group, &first_cluster);
4997 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) (start + len),
4998 &last_group, &last_cluster);
4999 last_group = (last_group > ngroups - 1) ? ngroups - 1 : last_group;
5000 last_cluster = EXT4_CLUSTERS_PER_GROUP(sb);
5001
5002 if (first_group > last_group)
5003 return -EINVAL;
5004
5005 for (group = first_group; group <= last_group; group++) {
5006 grp = ext4_get_group_info(sb, group);
5007 /* We only do this if the grp has never been initialized */
5008 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
5009 ret = ext4_mb_init_group(sb, group);
5010 if (ret)
5011 break;
5012 }
5013
5014 /*
5015 * For all the groups except the last one, last block will
5016 * always be EXT4_BLOCKS_PER_GROUP(sb), so we only need to
5017 * change it for the last group in which case start +
5018 * len < EXT4_BLOCKS_PER_GROUP(sb).
5019 */
5020 if (first_cluster + len < EXT4_CLUSTERS_PER_GROUP(sb))
5021 last_cluster = first_cluster + len;
5022 len -= last_cluster - first_cluster;
5023
5024 if (grp->bb_free >= minlen) {
5025 cnt = ext4_trim_all_free(sb, group, first_cluster,
5026 last_cluster, minlen);
5027 if (cnt < 0) {
5028 ret = cnt;
5029 break;
5030 }
5031 }
5032 trimmed += cnt;
5033 first_cluster = 0;
5034 }
5035 range->len = trimmed * sb->s_blocksize;
5036
5037 if (!ret)
5038 atomic_set(&EXT4_SB(sb)->s_last_trim_minblks, minlen);
5039
5040 out:
5041 return ret;
5042 }