]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/ext4/mballoc.c
Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/jesse/openvswitch
[mirror_ubuntu-bionic-kernel.git] / fs / ext4 / mballoc.c
1 /*
2 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3 * Written by Alex Tomas <alex@clusterfs.com>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public Licens
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
17 */
18
19
20 /*
21 * mballoc.c contains the multiblocks allocation routines
22 */
23
24 #include "ext4_jbd2.h"
25 #include "mballoc.h"
26 #include <linux/debugfs.h>
27 #include <linux/slab.h>
28 #include <trace/events/ext4.h>
29
30 /*
31 * MUSTDO:
32 * - test ext4_ext_search_left() and ext4_ext_search_right()
33 * - search for metadata in few groups
34 *
35 * TODO v4:
36 * - normalization should take into account whether file is still open
37 * - discard preallocations if no free space left (policy?)
38 * - don't normalize tails
39 * - quota
40 * - reservation for superuser
41 *
42 * TODO v3:
43 * - bitmap read-ahead (proposed by Oleg Drokin aka green)
44 * - track min/max extents in each group for better group selection
45 * - mb_mark_used() may allocate chunk right after splitting buddy
46 * - tree of groups sorted by number of free blocks
47 * - error handling
48 */
49
50 /*
51 * The allocation request involve request for multiple number of blocks
52 * near to the goal(block) value specified.
53 *
54 * During initialization phase of the allocator we decide to use the
55 * group preallocation or inode preallocation depending on the size of
56 * the file. The size of the file could be the resulting file size we
57 * would have after allocation, or the current file size, which ever
58 * is larger. If the size is less than sbi->s_mb_stream_request we
59 * select to use the group preallocation. The default value of
60 * s_mb_stream_request is 16 blocks. This can also be tuned via
61 * /sys/fs/ext4/<partition>/mb_stream_req. The value is represented in
62 * terms of number of blocks.
63 *
64 * The main motivation for having small file use group preallocation is to
65 * ensure that we have small files closer together on the disk.
66 *
67 * First stage the allocator looks at the inode prealloc list,
68 * ext4_inode_info->i_prealloc_list, which contains list of prealloc
69 * spaces for this particular inode. The inode prealloc space is
70 * represented as:
71 *
72 * pa_lstart -> the logical start block for this prealloc space
73 * pa_pstart -> the physical start block for this prealloc space
74 * pa_len -> length for this prealloc space (in clusters)
75 * pa_free -> free space available in this prealloc space (in clusters)
76 *
77 * The inode preallocation space is used looking at the _logical_ start
78 * block. If only the logical file block falls within the range of prealloc
79 * space we will consume the particular prealloc space. This makes sure that
80 * we have contiguous physical blocks representing the file blocks
81 *
82 * The important thing to be noted in case of inode prealloc space is that
83 * we don't modify the values associated to inode prealloc space except
84 * pa_free.
85 *
86 * If we are not able to find blocks in the inode prealloc space and if we
87 * have the group allocation flag set then we look at the locality group
88 * prealloc space. These are per CPU prealloc list represented as
89 *
90 * ext4_sb_info.s_locality_groups[smp_processor_id()]
91 *
92 * The reason for having a per cpu locality group is to reduce the contention
93 * between CPUs. It is possible to get scheduled at this point.
94 *
95 * The locality group prealloc space is used looking at whether we have
96 * enough free space (pa_free) within the prealloc space.
97 *
98 * If we can't allocate blocks via inode prealloc or/and locality group
99 * prealloc then we look at the buddy cache. The buddy cache is represented
100 * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets
101 * mapped to the buddy and bitmap information regarding different
102 * groups. The buddy information is attached to buddy cache inode so that
103 * we can access them through the page cache. The information regarding
104 * each group is loaded via ext4_mb_load_buddy. The information involve
105 * block bitmap and buddy information. The information are stored in the
106 * inode as:
107 *
108 * { page }
109 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
110 *
111 *
112 * one block each for bitmap and buddy information. So for each group we
113 * take up 2 blocks. A page can contain blocks_per_page (PAGE_CACHE_SIZE /
114 * blocksize) blocks. So it can have information regarding groups_per_page
115 * which is blocks_per_page/2
116 *
117 * The buddy cache inode is not stored on disk. The inode is thrown
118 * away when the filesystem is unmounted.
119 *
120 * We look for count number of blocks in the buddy cache. If we were able
121 * to locate that many free blocks we return with additional information
122 * regarding rest of the contiguous physical block available
123 *
124 * Before allocating blocks via buddy cache we normalize the request
125 * blocks. This ensure we ask for more blocks that we needed. The extra
126 * blocks that we get after allocation is added to the respective prealloc
127 * list. In case of inode preallocation we follow a list of heuristics
128 * based on file size. This can be found in ext4_mb_normalize_request. If
129 * we are doing a group prealloc we try to normalize the request to
130 * sbi->s_mb_group_prealloc. The default value of s_mb_group_prealloc is
131 * dependent on the cluster size; for non-bigalloc file systems, it is
132 * 512 blocks. This can be tuned via
133 * /sys/fs/ext4/<partition>/mb_group_prealloc. The value is represented in
134 * terms of number of blocks. If we have mounted the file system with -O
135 * stripe=<value> option the group prealloc request is normalized to the
136 * the smallest multiple of the stripe value (sbi->s_stripe) which is
137 * greater than the default mb_group_prealloc.
138 *
139 * The regular allocator (using the buddy cache) supports a few tunables.
140 *
141 * /sys/fs/ext4/<partition>/mb_min_to_scan
142 * /sys/fs/ext4/<partition>/mb_max_to_scan
143 * /sys/fs/ext4/<partition>/mb_order2_req
144 *
145 * The regular allocator uses buddy scan only if the request len is power of
146 * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The
147 * value of s_mb_order2_reqs can be tuned via
148 * /sys/fs/ext4/<partition>/mb_order2_req. If the request len is equal to
149 * stripe size (sbi->s_stripe), we try to search for contiguous block in
150 * stripe size. This should result in better allocation on RAID setups. If
151 * not, we search in the specific group using bitmap for best extents. The
152 * tunable min_to_scan and max_to_scan control the behaviour here.
153 * min_to_scan indicate how long the mballoc __must__ look for a best
154 * extent and max_to_scan indicates how long the mballoc __can__ look for a
155 * best extent in the found extents. Searching for the blocks starts with
156 * the group specified as the goal value in allocation context via
157 * ac_g_ex. Each group is first checked based on the criteria whether it
158 * can be used for allocation. ext4_mb_good_group explains how the groups are
159 * checked.
160 *
161 * Both the prealloc space are getting populated as above. So for the first
162 * request we will hit the buddy cache which will result in this prealloc
163 * space getting filled. The prealloc space is then later used for the
164 * subsequent request.
165 */
166
167 /*
168 * mballoc operates on the following data:
169 * - on-disk bitmap
170 * - in-core buddy (actually includes buddy and bitmap)
171 * - preallocation descriptors (PAs)
172 *
173 * there are two types of preallocations:
174 * - inode
175 * assiged to specific inode and can be used for this inode only.
176 * it describes part of inode's space preallocated to specific
177 * physical blocks. any block from that preallocated can be used
178 * independent. the descriptor just tracks number of blocks left
179 * unused. so, before taking some block from descriptor, one must
180 * make sure corresponded logical block isn't allocated yet. this
181 * also means that freeing any block within descriptor's range
182 * must discard all preallocated blocks.
183 * - locality group
184 * assigned to specific locality group which does not translate to
185 * permanent set of inodes: inode can join and leave group. space
186 * from this type of preallocation can be used for any inode. thus
187 * it's consumed from the beginning to the end.
188 *
189 * relation between them can be expressed as:
190 * in-core buddy = on-disk bitmap + preallocation descriptors
191 *
192 * this mean blocks mballoc considers used are:
193 * - allocated blocks (persistent)
194 * - preallocated blocks (non-persistent)
195 *
196 * consistency in mballoc world means that at any time a block is either
197 * free or used in ALL structures. notice: "any time" should not be read
198 * literally -- time is discrete and delimited by locks.
199 *
200 * to keep it simple, we don't use block numbers, instead we count number of
201 * blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA.
202 *
203 * all operations can be expressed as:
204 * - init buddy: buddy = on-disk + PAs
205 * - new PA: buddy += N; PA = N
206 * - use inode PA: on-disk += N; PA -= N
207 * - discard inode PA buddy -= on-disk - PA; PA = 0
208 * - use locality group PA on-disk += N; PA -= N
209 * - discard locality group PA buddy -= PA; PA = 0
210 * note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap
211 * is used in real operation because we can't know actual used
212 * bits from PA, only from on-disk bitmap
213 *
214 * if we follow this strict logic, then all operations above should be atomic.
215 * given some of them can block, we'd have to use something like semaphores
216 * killing performance on high-end SMP hardware. let's try to relax it using
217 * the following knowledge:
218 * 1) if buddy is referenced, it's already initialized
219 * 2) while block is used in buddy and the buddy is referenced,
220 * nobody can re-allocate that block
221 * 3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has
222 * bit set and PA claims same block, it's OK. IOW, one can set bit in
223 * on-disk bitmap if buddy has same bit set or/and PA covers corresponded
224 * block
225 *
226 * so, now we're building a concurrency table:
227 * - init buddy vs.
228 * - new PA
229 * blocks for PA are allocated in the buddy, buddy must be referenced
230 * until PA is linked to allocation group to avoid concurrent buddy init
231 * - use inode PA
232 * we need to make sure that either on-disk bitmap or PA has uptodate data
233 * given (3) we care that PA-=N operation doesn't interfere with init
234 * - discard inode PA
235 * the simplest way would be to have buddy initialized by the discard
236 * - use locality group PA
237 * again PA-=N must be serialized with init
238 * - discard locality group PA
239 * the simplest way would be to have buddy initialized by the discard
240 * - new PA vs.
241 * - use inode PA
242 * i_data_sem serializes them
243 * - discard inode PA
244 * discard process must wait until PA isn't used by another process
245 * - use locality group PA
246 * some mutex should serialize them
247 * - discard locality group PA
248 * discard process must wait until PA isn't used by another process
249 * - use inode PA
250 * - use inode PA
251 * i_data_sem or another mutex should serializes them
252 * - discard inode PA
253 * discard process must wait until PA isn't used by another process
254 * - use locality group PA
255 * nothing wrong here -- they're different PAs covering different blocks
256 * - discard locality group PA
257 * discard process must wait until PA isn't used by another process
258 *
259 * now we're ready to make few consequences:
260 * - PA is referenced and while it is no discard is possible
261 * - PA is referenced until block isn't marked in on-disk bitmap
262 * - PA changes only after on-disk bitmap
263 * - discard must not compete with init. either init is done before
264 * any discard or they're serialized somehow
265 * - buddy init as sum of on-disk bitmap and PAs is done atomically
266 *
267 * a special case when we've used PA to emptiness. no need to modify buddy
268 * in this case, but we should care about concurrent init
269 *
270 */
271
272 /*
273 * Logic in few words:
274 *
275 * - allocation:
276 * load group
277 * find blocks
278 * mark bits in on-disk bitmap
279 * release group
280 *
281 * - use preallocation:
282 * find proper PA (per-inode or group)
283 * load group
284 * mark bits in on-disk bitmap
285 * release group
286 * release PA
287 *
288 * - free:
289 * load group
290 * mark bits in on-disk bitmap
291 * release group
292 *
293 * - discard preallocations in group:
294 * mark PAs deleted
295 * move them onto local list
296 * load on-disk bitmap
297 * load group
298 * remove PA from object (inode or locality group)
299 * mark free blocks in-core
300 *
301 * - discard inode's preallocations:
302 */
303
304 /*
305 * Locking rules
306 *
307 * Locks:
308 * - bitlock on a group (group)
309 * - object (inode/locality) (object)
310 * - per-pa lock (pa)
311 *
312 * Paths:
313 * - new pa
314 * object
315 * group
316 *
317 * - find and use pa:
318 * pa
319 *
320 * - release consumed pa:
321 * pa
322 * group
323 * object
324 *
325 * - generate in-core bitmap:
326 * group
327 * pa
328 *
329 * - discard all for given object (inode, locality group):
330 * object
331 * pa
332 * group
333 *
334 * - discard all for given group:
335 * group
336 * pa
337 * group
338 * object
339 *
340 */
341 static struct kmem_cache *ext4_pspace_cachep;
342 static struct kmem_cache *ext4_ac_cachep;
343 static struct kmem_cache *ext4_free_data_cachep;
344
345 /* We create slab caches for groupinfo data structures based on the
346 * superblock block size. There will be one per mounted filesystem for
347 * each unique s_blocksize_bits */
348 #define NR_GRPINFO_CACHES 8
349 static struct kmem_cache *ext4_groupinfo_caches[NR_GRPINFO_CACHES];
350
351 static const char *ext4_groupinfo_slab_names[NR_GRPINFO_CACHES] = {
352 "ext4_groupinfo_1k", "ext4_groupinfo_2k", "ext4_groupinfo_4k",
353 "ext4_groupinfo_8k", "ext4_groupinfo_16k", "ext4_groupinfo_32k",
354 "ext4_groupinfo_64k", "ext4_groupinfo_128k"
355 };
356
357 static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
358 ext4_group_t group);
359 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
360 ext4_group_t group);
361 static void ext4_free_data_callback(struct super_block *sb,
362 struct ext4_journal_cb_entry *jce, int rc);
363
364 static inline void *mb_correct_addr_and_bit(int *bit, void *addr)
365 {
366 #if BITS_PER_LONG == 64
367 *bit += ((unsigned long) addr & 7UL) << 3;
368 addr = (void *) ((unsigned long) addr & ~7UL);
369 #elif BITS_PER_LONG == 32
370 *bit += ((unsigned long) addr & 3UL) << 3;
371 addr = (void *) ((unsigned long) addr & ~3UL);
372 #else
373 #error "how many bits you are?!"
374 #endif
375 return addr;
376 }
377
378 static inline int mb_test_bit(int bit, void *addr)
379 {
380 /*
381 * ext4_test_bit on architecture like powerpc
382 * needs unsigned long aligned address
383 */
384 addr = mb_correct_addr_and_bit(&bit, addr);
385 return ext4_test_bit(bit, addr);
386 }
387
388 static inline void mb_set_bit(int bit, void *addr)
389 {
390 addr = mb_correct_addr_and_bit(&bit, addr);
391 ext4_set_bit(bit, addr);
392 }
393
394 static inline void mb_clear_bit(int bit, void *addr)
395 {
396 addr = mb_correct_addr_and_bit(&bit, addr);
397 ext4_clear_bit(bit, addr);
398 }
399
400 static inline int mb_find_next_zero_bit(void *addr, int max, int start)
401 {
402 int fix = 0, ret, tmpmax;
403 addr = mb_correct_addr_and_bit(&fix, addr);
404 tmpmax = max + fix;
405 start += fix;
406
407 ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix;
408 if (ret > max)
409 return max;
410 return ret;
411 }
412
413 static inline int mb_find_next_bit(void *addr, int max, int start)
414 {
415 int fix = 0, ret, tmpmax;
416 addr = mb_correct_addr_and_bit(&fix, addr);
417 tmpmax = max + fix;
418 start += fix;
419
420 ret = ext4_find_next_bit(addr, tmpmax, start) - fix;
421 if (ret > max)
422 return max;
423 return ret;
424 }
425
426 static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max)
427 {
428 char *bb;
429
430 BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
431 BUG_ON(max == NULL);
432
433 if (order > e4b->bd_blkbits + 1) {
434 *max = 0;
435 return NULL;
436 }
437
438 /* at order 0 we see each particular block */
439 if (order == 0) {
440 *max = 1 << (e4b->bd_blkbits + 3);
441 return e4b->bd_bitmap;
442 }
443
444 bb = e4b->bd_buddy + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order];
445 *max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order];
446
447 return bb;
448 }
449
450 #ifdef DOUBLE_CHECK
451 static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b,
452 int first, int count)
453 {
454 int i;
455 struct super_block *sb = e4b->bd_sb;
456
457 if (unlikely(e4b->bd_info->bb_bitmap == NULL))
458 return;
459 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
460 for (i = 0; i < count; i++) {
461 if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) {
462 ext4_fsblk_t blocknr;
463
464 blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
465 blocknr += EXT4_C2B(EXT4_SB(sb), first + i);
466 ext4_grp_locked_error(sb, e4b->bd_group,
467 inode ? inode->i_ino : 0,
468 blocknr,
469 "freeing block already freed "
470 "(bit %u)",
471 first + i);
472 }
473 mb_clear_bit(first + i, e4b->bd_info->bb_bitmap);
474 }
475 }
476
477 static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count)
478 {
479 int i;
480
481 if (unlikely(e4b->bd_info->bb_bitmap == NULL))
482 return;
483 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
484 for (i = 0; i < count; i++) {
485 BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap));
486 mb_set_bit(first + i, e4b->bd_info->bb_bitmap);
487 }
488 }
489
490 static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
491 {
492 if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) {
493 unsigned char *b1, *b2;
494 int i;
495 b1 = (unsigned char *) e4b->bd_info->bb_bitmap;
496 b2 = (unsigned char *) bitmap;
497 for (i = 0; i < e4b->bd_sb->s_blocksize; i++) {
498 if (b1[i] != b2[i]) {
499 ext4_msg(e4b->bd_sb, KERN_ERR,
500 "corruption in group %u "
501 "at byte %u(%u): %x in copy != %x "
502 "on disk/prealloc",
503 e4b->bd_group, i, i * 8, b1[i], b2[i]);
504 BUG();
505 }
506 }
507 }
508 }
509
510 #else
511 static inline void mb_free_blocks_double(struct inode *inode,
512 struct ext4_buddy *e4b, int first, int count)
513 {
514 return;
515 }
516 static inline void mb_mark_used_double(struct ext4_buddy *e4b,
517 int first, int count)
518 {
519 return;
520 }
521 static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
522 {
523 return;
524 }
525 #endif
526
527 #ifdef AGGRESSIVE_CHECK
528
529 #define MB_CHECK_ASSERT(assert) \
530 do { \
531 if (!(assert)) { \
532 printk(KERN_EMERG \
533 "Assertion failure in %s() at %s:%d: \"%s\"\n", \
534 function, file, line, # assert); \
535 BUG(); \
536 } \
537 } while (0)
538
539 static int __mb_check_buddy(struct ext4_buddy *e4b, char *file,
540 const char *function, int line)
541 {
542 struct super_block *sb = e4b->bd_sb;
543 int order = e4b->bd_blkbits + 1;
544 int max;
545 int max2;
546 int i;
547 int j;
548 int k;
549 int count;
550 struct ext4_group_info *grp;
551 int fragments = 0;
552 int fstart;
553 struct list_head *cur;
554 void *buddy;
555 void *buddy2;
556
557 {
558 static int mb_check_counter;
559 if (mb_check_counter++ % 100 != 0)
560 return 0;
561 }
562
563 while (order > 1) {
564 buddy = mb_find_buddy(e4b, order, &max);
565 MB_CHECK_ASSERT(buddy);
566 buddy2 = mb_find_buddy(e4b, order - 1, &max2);
567 MB_CHECK_ASSERT(buddy2);
568 MB_CHECK_ASSERT(buddy != buddy2);
569 MB_CHECK_ASSERT(max * 2 == max2);
570
571 count = 0;
572 for (i = 0; i < max; i++) {
573
574 if (mb_test_bit(i, buddy)) {
575 /* only single bit in buddy2 may be 1 */
576 if (!mb_test_bit(i << 1, buddy2)) {
577 MB_CHECK_ASSERT(
578 mb_test_bit((i<<1)+1, buddy2));
579 } else if (!mb_test_bit((i << 1) + 1, buddy2)) {
580 MB_CHECK_ASSERT(
581 mb_test_bit(i << 1, buddy2));
582 }
583 continue;
584 }
585
586 /* both bits in buddy2 must be 1 */
587 MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2));
588 MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2));
589
590 for (j = 0; j < (1 << order); j++) {
591 k = (i * (1 << order)) + j;
592 MB_CHECK_ASSERT(
593 !mb_test_bit(k, e4b->bd_bitmap));
594 }
595 count++;
596 }
597 MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count);
598 order--;
599 }
600
601 fstart = -1;
602 buddy = mb_find_buddy(e4b, 0, &max);
603 for (i = 0; i < max; i++) {
604 if (!mb_test_bit(i, buddy)) {
605 MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free);
606 if (fstart == -1) {
607 fragments++;
608 fstart = i;
609 }
610 continue;
611 }
612 fstart = -1;
613 /* check used bits only */
614 for (j = 0; j < e4b->bd_blkbits + 1; j++) {
615 buddy2 = mb_find_buddy(e4b, j, &max2);
616 k = i >> j;
617 MB_CHECK_ASSERT(k < max2);
618 MB_CHECK_ASSERT(mb_test_bit(k, buddy2));
619 }
620 }
621 MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info));
622 MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments);
623
624 grp = ext4_get_group_info(sb, e4b->bd_group);
625 list_for_each(cur, &grp->bb_prealloc_list) {
626 ext4_group_t groupnr;
627 struct ext4_prealloc_space *pa;
628 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
629 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k);
630 MB_CHECK_ASSERT(groupnr == e4b->bd_group);
631 for (i = 0; i < pa->pa_len; i++)
632 MB_CHECK_ASSERT(mb_test_bit(k + i, buddy));
633 }
634 return 0;
635 }
636 #undef MB_CHECK_ASSERT
637 #define mb_check_buddy(e4b) __mb_check_buddy(e4b, \
638 __FILE__, __func__, __LINE__)
639 #else
640 #define mb_check_buddy(e4b)
641 #endif
642
643 /*
644 * Divide blocks started from @first with length @len into
645 * smaller chunks with power of 2 blocks.
646 * Clear the bits in bitmap which the blocks of the chunk(s) covered,
647 * then increase bb_counters[] for corresponded chunk size.
648 */
649 static void ext4_mb_mark_free_simple(struct super_block *sb,
650 void *buddy, ext4_grpblk_t first, ext4_grpblk_t len,
651 struct ext4_group_info *grp)
652 {
653 struct ext4_sb_info *sbi = EXT4_SB(sb);
654 ext4_grpblk_t min;
655 ext4_grpblk_t max;
656 ext4_grpblk_t chunk;
657 unsigned short border;
658
659 BUG_ON(len > EXT4_CLUSTERS_PER_GROUP(sb));
660
661 border = 2 << sb->s_blocksize_bits;
662
663 while (len > 0) {
664 /* find how many blocks can be covered since this position */
665 max = ffs(first | border) - 1;
666
667 /* find how many blocks of power 2 we need to mark */
668 min = fls(len) - 1;
669
670 if (max < min)
671 min = max;
672 chunk = 1 << min;
673
674 /* mark multiblock chunks only */
675 grp->bb_counters[min]++;
676 if (min > 0)
677 mb_clear_bit(first >> min,
678 buddy + sbi->s_mb_offsets[min]);
679
680 len -= chunk;
681 first += chunk;
682 }
683 }
684
685 /*
686 * Cache the order of the largest free extent we have available in this block
687 * group.
688 */
689 static void
690 mb_set_largest_free_order(struct super_block *sb, struct ext4_group_info *grp)
691 {
692 int i;
693 int bits;
694
695 grp->bb_largest_free_order = -1; /* uninit */
696
697 bits = sb->s_blocksize_bits + 1;
698 for (i = bits; i >= 0; i--) {
699 if (grp->bb_counters[i] > 0) {
700 grp->bb_largest_free_order = i;
701 break;
702 }
703 }
704 }
705
706 static noinline_for_stack
707 void ext4_mb_generate_buddy(struct super_block *sb,
708 void *buddy, void *bitmap, ext4_group_t group)
709 {
710 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
711 ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb);
712 ext4_grpblk_t i = 0;
713 ext4_grpblk_t first;
714 ext4_grpblk_t len;
715 unsigned free = 0;
716 unsigned fragments = 0;
717 unsigned long long period = get_cycles();
718
719 /* initialize buddy from bitmap which is aggregation
720 * of on-disk bitmap and preallocations */
721 i = mb_find_next_zero_bit(bitmap, max, 0);
722 grp->bb_first_free = i;
723 while (i < max) {
724 fragments++;
725 first = i;
726 i = mb_find_next_bit(bitmap, max, i);
727 len = i - first;
728 free += len;
729 if (len > 1)
730 ext4_mb_mark_free_simple(sb, buddy, first, len, grp);
731 else
732 grp->bb_counters[0]++;
733 if (i < max)
734 i = mb_find_next_zero_bit(bitmap, max, i);
735 }
736 grp->bb_fragments = fragments;
737
738 if (free != grp->bb_free) {
739 ext4_grp_locked_error(sb, group, 0, 0,
740 "%u clusters in bitmap, %u in gd",
741 free, grp->bb_free);
742 /*
743 * If we intent to continue, we consider group descritor
744 * corrupt and update bb_free using bitmap value
745 */
746 grp->bb_free = free;
747 }
748 mb_set_largest_free_order(sb, grp);
749
750 clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state));
751
752 period = get_cycles() - period;
753 spin_lock(&EXT4_SB(sb)->s_bal_lock);
754 EXT4_SB(sb)->s_mb_buddies_generated++;
755 EXT4_SB(sb)->s_mb_generation_time += period;
756 spin_unlock(&EXT4_SB(sb)->s_bal_lock);
757 }
758
759 /* The buddy information is attached the buddy cache inode
760 * for convenience. The information regarding each group
761 * is loaded via ext4_mb_load_buddy. The information involve
762 * block bitmap and buddy information. The information are
763 * stored in the inode as
764 *
765 * { page }
766 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
767 *
768 *
769 * one block each for bitmap and buddy information.
770 * So for each group we take up 2 blocks. A page can
771 * contain blocks_per_page (PAGE_CACHE_SIZE / blocksize) blocks.
772 * So it can have information regarding groups_per_page which
773 * is blocks_per_page/2
774 *
775 * Locking note: This routine takes the block group lock of all groups
776 * for this page; do not hold this lock when calling this routine!
777 */
778
779 static int ext4_mb_init_cache(struct page *page, char *incore)
780 {
781 ext4_group_t ngroups;
782 int blocksize;
783 int blocks_per_page;
784 int groups_per_page;
785 int err = 0;
786 int i;
787 ext4_group_t first_group, group;
788 int first_block;
789 struct super_block *sb;
790 struct buffer_head *bhs;
791 struct buffer_head **bh = NULL;
792 struct inode *inode;
793 char *data;
794 char *bitmap;
795 struct ext4_group_info *grinfo;
796
797 mb_debug(1, "init page %lu\n", page->index);
798
799 inode = page->mapping->host;
800 sb = inode->i_sb;
801 ngroups = ext4_get_groups_count(sb);
802 blocksize = 1 << inode->i_blkbits;
803 blocks_per_page = PAGE_CACHE_SIZE / blocksize;
804
805 groups_per_page = blocks_per_page >> 1;
806 if (groups_per_page == 0)
807 groups_per_page = 1;
808
809 /* allocate buffer_heads to read bitmaps */
810 if (groups_per_page > 1) {
811 i = sizeof(struct buffer_head *) * groups_per_page;
812 bh = kzalloc(i, GFP_NOFS);
813 if (bh == NULL) {
814 err = -ENOMEM;
815 goto out;
816 }
817 } else
818 bh = &bhs;
819
820 first_group = page->index * blocks_per_page / 2;
821
822 /* read all groups the page covers into the cache */
823 for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
824 if (group >= ngroups)
825 break;
826
827 grinfo = ext4_get_group_info(sb, group);
828 /*
829 * If page is uptodate then we came here after online resize
830 * which added some new uninitialized group info structs, so
831 * we must skip all initialized uptodate buddies on the page,
832 * which may be currently in use by an allocating task.
833 */
834 if (PageUptodate(page) && !EXT4_MB_GRP_NEED_INIT(grinfo)) {
835 bh[i] = NULL;
836 continue;
837 }
838 if (!(bh[i] = ext4_read_block_bitmap_nowait(sb, group))) {
839 err = -ENOMEM;
840 goto out;
841 }
842 mb_debug(1, "read bitmap for group %u\n", group);
843 }
844
845 /* wait for I/O completion */
846 for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
847 if (bh[i] && ext4_wait_block_bitmap(sb, group, bh[i])) {
848 err = -EIO;
849 goto out;
850 }
851 }
852
853 first_block = page->index * blocks_per_page;
854 for (i = 0; i < blocks_per_page; i++) {
855 int group;
856
857 group = (first_block + i) >> 1;
858 if (group >= ngroups)
859 break;
860
861 if (!bh[group - first_group])
862 /* skip initialized uptodate buddy */
863 continue;
864
865 /*
866 * data carry information regarding this
867 * particular group in the format specified
868 * above
869 *
870 */
871 data = page_address(page) + (i * blocksize);
872 bitmap = bh[group - first_group]->b_data;
873
874 /*
875 * We place the buddy block and bitmap block
876 * close together
877 */
878 if ((first_block + i) & 1) {
879 /* this is block of buddy */
880 BUG_ON(incore == NULL);
881 mb_debug(1, "put buddy for group %u in page %lu/%x\n",
882 group, page->index, i * blocksize);
883 trace_ext4_mb_buddy_bitmap_load(sb, group);
884 grinfo = ext4_get_group_info(sb, group);
885 grinfo->bb_fragments = 0;
886 memset(grinfo->bb_counters, 0,
887 sizeof(*grinfo->bb_counters) *
888 (sb->s_blocksize_bits+2));
889 /*
890 * incore got set to the group block bitmap below
891 */
892 ext4_lock_group(sb, group);
893 /* init the buddy */
894 memset(data, 0xff, blocksize);
895 ext4_mb_generate_buddy(sb, data, incore, group);
896 ext4_unlock_group(sb, group);
897 incore = NULL;
898 } else {
899 /* this is block of bitmap */
900 BUG_ON(incore != NULL);
901 mb_debug(1, "put bitmap for group %u in page %lu/%x\n",
902 group, page->index, i * blocksize);
903 trace_ext4_mb_bitmap_load(sb, group);
904
905 /* see comments in ext4_mb_put_pa() */
906 ext4_lock_group(sb, group);
907 memcpy(data, bitmap, blocksize);
908
909 /* mark all preallocated blks used in in-core bitmap */
910 ext4_mb_generate_from_pa(sb, data, group);
911 ext4_mb_generate_from_freelist(sb, data, group);
912 ext4_unlock_group(sb, group);
913
914 /* set incore so that the buddy information can be
915 * generated using this
916 */
917 incore = data;
918 }
919 }
920 SetPageUptodate(page);
921
922 out:
923 if (bh) {
924 for (i = 0; i < groups_per_page; i++)
925 brelse(bh[i]);
926 if (bh != &bhs)
927 kfree(bh);
928 }
929 return err;
930 }
931
932 /*
933 * Lock the buddy and bitmap pages. This make sure other parallel init_group
934 * on the same buddy page doesn't happen whild holding the buddy page lock.
935 * Return locked buddy and bitmap pages on e4b struct. If buddy and bitmap
936 * are on the same page e4b->bd_buddy_page is NULL and return value is 0.
937 */
938 static int ext4_mb_get_buddy_page_lock(struct super_block *sb,
939 ext4_group_t group, struct ext4_buddy *e4b)
940 {
941 struct inode *inode = EXT4_SB(sb)->s_buddy_cache;
942 int block, pnum, poff;
943 int blocks_per_page;
944 struct page *page;
945
946 e4b->bd_buddy_page = NULL;
947 e4b->bd_bitmap_page = NULL;
948
949 blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize;
950 /*
951 * the buddy cache inode stores the block bitmap
952 * and buddy information in consecutive blocks.
953 * So for each group we need two blocks.
954 */
955 block = group * 2;
956 pnum = block / blocks_per_page;
957 poff = block % blocks_per_page;
958 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
959 if (!page)
960 return -EIO;
961 BUG_ON(page->mapping != inode->i_mapping);
962 e4b->bd_bitmap_page = page;
963 e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
964
965 if (blocks_per_page >= 2) {
966 /* buddy and bitmap are on the same page */
967 return 0;
968 }
969
970 block++;
971 pnum = block / blocks_per_page;
972 poff = block % blocks_per_page;
973 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
974 if (!page)
975 return -EIO;
976 BUG_ON(page->mapping != inode->i_mapping);
977 e4b->bd_buddy_page = page;
978 return 0;
979 }
980
981 static void ext4_mb_put_buddy_page_lock(struct ext4_buddy *e4b)
982 {
983 if (e4b->bd_bitmap_page) {
984 unlock_page(e4b->bd_bitmap_page);
985 page_cache_release(e4b->bd_bitmap_page);
986 }
987 if (e4b->bd_buddy_page) {
988 unlock_page(e4b->bd_buddy_page);
989 page_cache_release(e4b->bd_buddy_page);
990 }
991 }
992
993 /*
994 * Locking note: This routine calls ext4_mb_init_cache(), which takes the
995 * block group lock of all groups for this page; do not hold the BG lock when
996 * calling this routine!
997 */
998 static noinline_for_stack
999 int ext4_mb_init_group(struct super_block *sb, ext4_group_t group)
1000 {
1001
1002 struct ext4_group_info *this_grp;
1003 struct ext4_buddy e4b;
1004 struct page *page;
1005 int ret = 0;
1006
1007 mb_debug(1, "init group %u\n", group);
1008 this_grp = ext4_get_group_info(sb, group);
1009 /*
1010 * This ensures that we don't reinit the buddy cache
1011 * page which map to the group from which we are already
1012 * allocating. If we are looking at the buddy cache we would
1013 * have taken a reference using ext4_mb_load_buddy and that
1014 * would have pinned buddy page to page cache.
1015 */
1016 ret = ext4_mb_get_buddy_page_lock(sb, group, &e4b);
1017 if (ret || !EXT4_MB_GRP_NEED_INIT(this_grp)) {
1018 /*
1019 * somebody initialized the group
1020 * return without doing anything
1021 */
1022 goto err;
1023 }
1024
1025 page = e4b.bd_bitmap_page;
1026 ret = ext4_mb_init_cache(page, NULL);
1027 if (ret)
1028 goto err;
1029 if (!PageUptodate(page)) {
1030 ret = -EIO;
1031 goto err;
1032 }
1033 mark_page_accessed(page);
1034
1035 if (e4b.bd_buddy_page == NULL) {
1036 /*
1037 * If both the bitmap and buddy are in
1038 * the same page we don't need to force
1039 * init the buddy
1040 */
1041 ret = 0;
1042 goto err;
1043 }
1044 /* init buddy cache */
1045 page = e4b.bd_buddy_page;
1046 ret = ext4_mb_init_cache(page, e4b.bd_bitmap);
1047 if (ret)
1048 goto err;
1049 if (!PageUptodate(page)) {
1050 ret = -EIO;
1051 goto err;
1052 }
1053 mark_page_accessed(page);
1054 err:
1055 ext4_mb_put_buddy_page_lock(&e4b);
1056 return ret;
1057 }
1058
1059 /*
1060 * Locking note: This routine calls ext4_mb_init_cache(), which takes the
1061 * block group lock of all groups for this page; do not hold the BG lock when
1062 * calling this routine!
1063 */
1064 static noinline_for_stack int
1065 ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group,
1066 struct ext4_buddy *e4b)
1067 {
1068 int blocks_per_page;
1069 int block;
1070 int pnum;
1071 int poff;
1072 struct page *page;
1073 int ret;
1074 struct ext4_group_info *grp;
1075 struct ext4_sb_info *sbi = EXT4_SB(sb);
1076 struct inode *inode = sbi->s_buddy_cache;
1077
1078 mb_debug(1, "load group %u\n", group);
1079
1080 blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize;
1081 grp = ext4_get_group_info(sb, group);
1082
1083 e4b->bd_blkbits = sb->s_blocksize_bits;
1084 e4b->bd_info = grp;
1085 e4b->bd_sb = sb;
1086 e4b->bd_group = group;
1087 e4b->bd_buddy_page = NULL;
1088 e4b->bd_bitmap_page = NULL;
1089
1090 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
1091 /*
1092 * we need full data about the group
1093 * to make a good selection
1094 */
1095 ret = ext4_mb_init_group(sb, group);
1096 if (ret)
1097 return ret;
1098 }
1099
1100 /*
1101 * the buddy cache inode stores the block bitmap
1102 * and buddy information in consecutive blocks.
1103 * So for each group we need two blocks.
1104 */
1105 block = group * 2;
1106 pnum = block / blocks_per_page;
1107 poff = block % blocks_per_page;
1108
1109 /* we could use find_or_create_page(), but it locks page
1110 * what we'd like to avoid in fast path ... */
1111 page = find_get_page(inode->i_mapping, pnum);
1112 if (page == NULL || !PageUptodate(page)) {
1113 if (page)
1114 /*
1115 * drop the page reference and try
1116 * to get the page with lock. If we
1117 * are not uptodate that implies
1118 * somebody just created the page but
1119 * is yet to initialize the same. So
1120 * wait for it to initialize.
1121 */
1122 page_cache_release(page);
1123 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
1124 if (page) {
1125 BUG_ON(page->mapping != inode->i_mapping);
1126 if (!PageUptodate(page)) {
1127 ret = ext4_mb_init_cache(page, NULL);
1128 if (ret) {
1129 unlock_page(page);
1130 goto err;
1131 }
1132 mb_cmp_bitmaps(e4b, page_address(page) +
1133 (poff * sb->s_blocksize));
1134 }
1135 unlock_page(page);
1136 }
1137 }
1138 if (page == NULL || !PageUptodate(page)) {
1139 ret = -EIO;
1140 goto err;
1141 }
1142 e4b->bd_bitmap_page = page;
1143 e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
1144 mark_page_accessed(page);
1145
1146 block++;
1147 pnum = block / blocks_per_page;
1148 poff = block % blocks_per_page;
1149
1150 page = find_get_page(inode->i_mapping, pnum);
1151 if (page == NULL || !PageUptodate(page)) {
1152 if (page)
1153 page_cache_release(page);
1154 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
1155 if (page) {
1156 BUG_ON(page->mapping != inode->i_mapping);
1157 if (!PageUptodate(page)) {
1158 ret = ext4_mb_init_cache(page, e4b->bd_bitmap);
1159 if (ret) {
1160 unlock_page(page);
1161 goto err;
1162 }
1163 }
1164 unlock_page(page);
1165 }
1166 }
1167 if (page == NULL || !PageUptodate(page)) {
1168 ret = -EIO;
1169 goto err;
1170 }
1171 e4b->bd_buddy_page = page;
1172 e4b->bd_buddy = page_address(page) + (poff * sb->s_blocksize);
1173 mark_page_accessed(page);
1174
1175 BUG_ON(e4b->bd_bitmap_page == NULL);
1176 BUG_ON(e4b->bd_buddy_page == NULL);
1177
1178 return 0;
1179
1180 err:
1181 if (page)
1182 page_cache_release(page);
1183 if (e4b->bd_bitmap_page)
1184 page_cache_release(e4b->bd_bitmap_page);
1185 if (e4b->bd_buddy_page)
1186 page_cache_release(e4b->bd_buddy_page);
1187 e4b->bd_buddy = NULL;
1188 e4b->bd_bitmap = NULL;
1189 return ret;
1190 }
1191
1192 static void ext4_mb_unload_buddy(struct ext4_buddy *e4b)
1193 {
1194 if (e4b->bd_bitmap_page)
1195 page_cache_release(e4b->bd_bitmap_page);
1196 if (e4b->bd_buddy_page)
1197 page_cache_release(e4b->bd_buddy_page);
1198 }
1199
1200
1201 static int mb_find_order_for_block(struct ext4_buddy *e4b, int block)
1202 {
1203 int order = 1;
1204 void *bb;
1205
1206 BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
1207 BUG_ON(block >= (1 << (e4b->bd_blkbits + 3)));
1208
1209 bb = e4b->bd_buddy;
1210 while (order <= e4b->bd_blkbits + 1) {
1211 block = block >> 1;
1212 if (!mb_test_bit(block, bb)) {
1213 /* this block is part of buddy of order 'order' */
1214 return order;
1215 }
1216 bb += 1 << (e4b->bd_blkbits - order);
1217 order++;
1218 }
1219 return 0;
1220 }
1221
1222 static void mb_clear_bits(void *bm, int cur, int len)
1223 {
1224 __u32 *addr;
1225
1226 len = cur + len;
1227 while (cur < len) {
1228 if ((cur & 31) == 0 && (len - cur) >= 32) {
1229 /* fast path: clear whole word at once */
1230 addr = bm + (cur >> 3);
1231 *addr = 0;
1232 cur += 32;
1233 continue;
1234 }
1235 mb_clear_bit(cur, bm);
1236 cur++;
1237 }
1238 }
1239
1240 void ext4_set_bits(void *bm, int cur, int len)
1241 {
1242 __u32 *addr;
1243
1244 len = cur + len;
1245 while (cur < len) {
1246 if ((cur & 31) == 0 && (len - cur) >= 32) {
1247 /* fast path: set whole word at once */
1248 addr = bm + (cur >> 3);
1249 *addr = 0xffffffff;
1250 cur += 32;
1251 continue;
1252 }
1253 mb_set_bit(cur, bm);
1254 cur++;
1255 }
1256 }
1257
1258 static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b,
1259 int first, int count)
1260 {
1261 int block = 0;
1262 int max = 0;
1263 int order;
1264 void *buddy;
1265 void *buddy2;
1266 struct super_block *sb = e4b->bd_sb;
1267
1268 BUG_ON(first + count > (sb->s_blocksize << 3));
1269 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
1270 mb_check_buddy(e4b);
1271 mb_free_blocks_double(inode, e4b, first, count);
1272
1273 e4b->bd_info->bb_free += count;
1274 if (first < e4b->bd_info->bb_first_free)
1275 e4b->bd_info->bb_first_free = first;
1276
1277 /* let's maintain fragments counter */
1278 if (first != 0)
1279 block = !mb_test_bit(first - 1, e4b->bd_bitmap);
1280 if (first + count < EXT4_SB(sb)->s_mb_maxs[0])
1281 max = !mb_test_bit(first + count, e4b->bd_bitmap);
1282 if (block && max)
1283 e4b->bd_info->bb_fragments--;
1284 else if (!block && !max)
1285 e4b->bd_info->bb_fragments++;
1286
1287 /* let's maintain buddy itself */
1288 while (count-- > 0) {
1289 block = first++;
1290 order = 0;
1291
1292 if (!mb_test_bit(block, e4b->bd_bitmap)) {
1293 ext4_fsblk_t blocknr;
1294
1295 blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
1296 blocknr += EXT4_C2B(EXT4_SB(sb), block);
1297 ext4_grp_locked_error(sb, e4b->bd_group,
1298 inode ? inode->i_ino : 0,
1299 blocknr,
1300 "freeing already freed block "
1301 "(bit %u)", block);
1302 }
1303 mb_clear_bit(block, e4b->bd_bitmap);
1304 e4b->bd_info->bb_counters[order]++;
1305
1306 /* start of the buddy */
1307 buddy = mb_find_buddy(e4b, order, &max);
1308
1309 do {
1310 block &= ~1UL;
1311 if (mb_test_bit(block, buddy) ||
1312 mb_test_bit(block + 1, buddy))
1313 break;
1314
1315 /* both the buddies are free, try to coalesce them */
1316 buddy2 = mb_find_buddy(e4b, order + 1, &max);
1317
1318 if (!buddy2)
1319 break;
1320
1321 if (order > 0) {
1322 /* for special purposes, we don't set
1323 * free bits in bitmap */
1324 mb_set_bit(block, buddy);
1325 mb_set_bit(block + 1, buddy);
1326 }
1327 e4b->bd_info->bb_counters[order]--;
1328 e4b->bd_info->bb_counters[order]--;
1329
1330 block = block >> 1;
1331 order++;
1332 e4b->bd_info->bb_counters[order]++;
1333
1334 mb_clear_bit(block, buddy2);
1335 buddy = buddy2;
1336 } while (1);
1337 }
1338 mb_set_largest_free_order(sb, e4b->bd_info);
1339 mb_check_buddy(e4b);
1340 }
1341
1342 static int mb_find_extent(struct ext4_buddy *e4b, int order, int block,
1343 int needed, struct ext4_free_extent *ex)
1344 {
1345 int next = block;
1346 int max;
1347 void *buddy;
1348
1349 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1350 BUG_ON(ex == NULL);
1351
1352 buddy = mb_find_buddy(e4b, order, &max);
1353 BUG_ON(buddy == NULL);
1354 BUG_ON(block >= max);
1355 if (mb_test_bit(block, buddy)) {
1356 ex->fe_len = 0;
1357 ex->fe_start = 0;
1358 ex->fe_group = 0;
1359 return 0;
1360 }
1361
1362 /* FIXME dorp order completely ? */
1363 if (likely(order == 0)) {
1364 /* find actual order */
1365 order = mb_find_order_for_block(e4b, block);
1366 block = block >> order;
1367 }
1368
1369 ex->fe_len = 1 << order;
1370 ex->fe_start = block << order;
1371 ex->fe_group = e4b->bd_group;
1372
1373 /* calc difference from given start */
1374 next = next - ex->fe_start;
1375 ex->fe_len -= next;
1376 ex->fe_start += next;
1377
1378 while (needed > ex->fe_len &&
1379 (buddy = mb_find_buddy(e4b, order, &max))) {
1380
1381 if (block + 1 >= max)
1382 break;
1383
1384 next = (block + 1) * (1 << order);
1385 if (mb_test_bit(next, e4b->bd_bitmap))
1386 break;
1387
1388 order = mb_find_order_for_block(e4b, next);
1389
1390 block = next >> order;
1391 ex->fe_len += 1 << order;
1392 }
1393
1394 BUG_ON(ex->fe_start + ex->fe_len > (1 << (e4b->bd_blkbits + 3)));
1395 return ex->fe_len;
1396 }
1397
1398 static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex)
1399 {
1400 int ord;
1401 int mlen = 0;
1402 int max = 0;
1403 int cur;
1404 int start = ex->fe_start;
1405 int len = ex->fe_len;
1406 unsigned ret = 0;
1407 int len0 = len;
1408 void *buddy;
1409
1410 BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3));
1411 BUG_ON(e4b->bd_group != ex->fe_group);
1412 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1413 mb_check_buddy(e4b);
1414 mb_mark_used_double(e4b, start, len);
1415
1416 e4b->bd_info->bb_free -= len;
1417 if (e4b->bd_info->bb_first_free == start)
1418 e4b->bd_info->bb_first_free += len;
1419
1420 /* let's maintain fragments counter */
1421 if (start != 0)
1422 mlen = !mb_test_bit(start - 1, e4b->bd_bitmap);
1423 if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0])
1424 max = !mb_test_bit(start + len, e4b->bd_bitmap);
1425 if (mlen && max)
1426 e4b->bd_info->bb_fragments++;
1427 else if (!mlen && !max)
1428 e4b->bd_info->bb_fragments--;
1429
1430 /* let's maintain buddy itself */
1431 while (len) {
1432 ord = mb_find_order_for_block(e4b, start);
1433
1434 if (((start >> ord) << ord) == start && len >= (1 << ord)) {
1435 /* the whole chunk may be allocated at once! */
1436 mlen = 1 << ord;
1437 buddy = mb_find_buddy(e4b, ord, &max);
1438 BUG_ON((start >> ord) >= max);
1439 mb_set_bit(start >> ord, buddy);
1440 e4b->bd_info->bb_counters[ord]--;
1441 start += mlen;
1442 len -= mlen;
1443 BUG_ON(len < 0);
1444 continue;
1445 }
1446
1447 /* store for history */
1448 if (ret == 0)
1449 ret = len | (ord << 16);
1450
1451 /* we have to split large buddy */
1452 BUG_ON(ord <= 0);
1453 buddy = mb_find_buddy(e4b, ord, &max);
1454 mb_set_bit(start >> ord, buddy);
1455 e4b->bd_info->bb_counters[ord]--;
1456
1457 ord--;
1458 cur = (start >> ord) & ~1U;
1459 buddy = mb_find_buddy(e4b, ord, &max);
1460 mb_clear_bit(cur, buddy);
1461 mb_clear_bit(cur + 1, buddy);
1462 e4b->bd_info->bb_counters[ord]++;
1463 e4b->bd_info->bb_counters[ord]++;
1464 }
1465 mb_set_largest_free_order(e4b->bd_sb, e4b->bd_info);
1466
1467 ext4_set_bits(e4b->bd_bitmap, ex->fe_start, len0);
1468 mb_check_buddy(e4b);
1469
1470 return ret;
1471 }
1472
1473 /*
1474 * Must be called under group lock!
1475 */
1476 static void ext4_mb_use_best_found(struct ext4_allocation_context *ac,
1477 struct ext4_buddy *e4b)
1478 {
1479 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1480 int ret;
1481
1482 BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group);
1483 BUG_ON(ac->ac_status == AC_STATUS_FOUND);
1484
1485 ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len);
1486 ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical;
1487 ret = mb_mark_used(e4b, &ac->ac_b_ex);
1488
1489 /* preallocation can change ac_b_ex, thus we store actually
1490 * allocated blocks for history */
1491 ac->ac_f_ex = ac->ac_b_ex;
1492
1493 ac->ac_status = AC_STATUS_FOUND;
1494 ac->ac_tail = ret & 0xffff;
1495 ac->ac_buddy = ret >> 16;
1496
1497 /*
1498 * take the page reference. We want the page to be pinned
1499 * so that we don't get a ext4_mb_init_cache_call for this
1500 * group until we update the bitmap. That would mean we
1501 * double allocate blocks. The reference is dropped
1502 * in ext4_mb_release_context
1503 */
1504 ac->ac_bitmap_page = e4b->bd_bitmap_page;
1505 get_page(ac->ac_bitmap_page);
1506 ac->ac_buddy_page = e4b->bd_buddy_page;
1507 get_page(ac->ac_buddy_page);
1508 /* store last allocated for subsequent stream allocation */
1509 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
1510 spin_lock(&sbi->s_md_lock);
1511 sbi->s_mb_last_group = ac->ac_f_ex.fe_group;
1512 sbi->s_mb_last_start = ac->ac_f_ex.fe_start;
1513 spin_unlock(&sbi->s_md_lock);
1514 }
1515 }
1516
1517 /*
1518 * regular allocator, for general purposes allocation
1519 */
1520
1521 static void ext4_mb_check_limits(struct ext4_allocation_context *ac,
1522 struct ext4_buddy *e4b,
1523 int finish_group)
1524 {
1525 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1526 struct ext4_free_extent *bex = &ac->ac_b_ex;
1527 struct ext4_free_extent *gex = &ac->ac_g_ex;
1528 struct ext4_free_extent ex;
1529 int max;
1530
1531 if (ac->ac_status == AC_STATUS_FOUND)
1532 return;
1533 /*
1534 * We don't want to scan for a whole year
1535 */
1536 if (ac->ac_found > sbi->s_mb_max_to_scan &&
1537 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1538 ac->ac_status = AC_STATUS_BREAK;
1539 return;
1540 }
1541
1542 /*
1543 * Haven't found good chunk so far, let's continue
1544 */
1545 if (bex->fe_len < gex->fe_len)
1546 return;
1547
1548 if ((finish_group || ac->ac_found > sbi->s_mb_min_to_scan)
1549 && bex->fe_group == e4b->bd_group) {
1550 /* recheck chunk's availability - we don't know
1551 * when it was found (within this lock-unlock
1552 * period or not) */
1553 max = mb_find_extent(e4b, 0, bex->fe_start, gex->fe_len, &ex);
1554 if (max >= gex->fe_len) {
1555 ext4_mb_use_best_found(ac, e4b);
1556 return;
1557 }
1558 }
1559 }
1560
1561 /*
1562 * The routine checks whether found extent is good enough. If it is,
1563 * then the extent gets marked used and flag is set to the context
1564 * to stop scanning. Otherwise, the extent is compared with the
1565 * previous found extent and if new one is better, then it's stored
1566 * in the context. Later, the best found extent will be used, if
1567 * mballoc can't find good enough extent.
1568 *
1569 * FIXME: real allocation policy is to be designed yet!
1570 */
1571 static void ext4_mb_measure_extent(struct ext4_allocation_context *ac,
1572 struct ext4_free_extent *ex,
1573 struct ext4_buddy *e4b)
1574 {
1575 struct ext4_free_extent *bex = &ac->ac_b_ex;
1576 struct ext4_free_extent *gex = &ac->ac_g_ex;
1577
1578 BUG_ON(ex->fe_len <= 0);
1579 BUG_ON(ex->fe_len > EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
1580 BUG_ON(ex->fe_start >= EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
1581 BUG_ON(ac->ac_status != AC_STATUS_CONTINUE);
1582
1583 ac->ac_found++;
1584
1585 /*
1586 * The special case - take what you catch first
1587 */
1588 if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1589 *bex = *ex;
1590 ext4_mb_use_best_found(ac, e4b);
1591 return;
1592 }
1593
1594 /*
1595 * Let's check whether the chuck is good enough
1596 */
1597 if (ex->fe_len == gex->fe_len) {
1598 *bex = *ex;
1599 ext4_mb_use_best_found(ac, e4b);
1600 return;
1601 }
1602
1603 /*
1604 * If this is first found extent, just store it in the context
1605 */
1606 if (bex->fe_len == 0) {
1607 *bex = *ex;
1608 return;
1609 }
1610
1611 /*
1612 * If new found extent is better, store it in the context
1613 */
1614 if (bex->fe_len < gex->fe_len) {
1615 /* if the request isn't satisfied, any found extent
1616 * larger than previous best one is better */
1617 if (ex->fe_len > bex->fe_len)
1618 *bex = *ex;
1619 } else if (ex->fe_len > gex->fe_len) {
1620 /* if the request is satisfied, then we try to find
1621 * an extent that still satisfy the request, but is
1622 * smaller than previous one */
1623 if (ex->fe_len < bex->fe_len)
1624 *bex = *ex;
1625 }
1626
1627 ext4_mb_check_limits(ac, e4b, 0);
1628 }
1629
1630 static noinline_for_stack
1631 int ext4_mb_try_best_found(struct ext4_allocation_context *ac,
1632 struct ext4_buddy *e4b)
1633 {
1634 struct ext4_free_extent ex = ac->ac_b_ex;
1635 ext4_group_t group = ex.fe_group;
1636 int max;
1637 int err;
1638
1639 BUG_ON(ex.fe_len <= 0);
1640 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1641 if (err)
1642 return err;
1643
1644 ext4_lock_group(ac->ac_sb, group);
1645 max = mb_find_extent(e4b, 0, ex.fe_start, ex.fe_len, &ex);
1646
1647 if (max > 0) {
1648 ac->ac_b_ex = ex;
1649 ext4_mb_use_best_found(ac, e4b);
1650 }
1651
1652 ext4_unlock_group(ac->ac_sb, group);
1653 ext4_mb_unload_buddy(e4b);
1654
1655 return 0;
1656 }
1657
1658 static noinline_for_stack
1659 int ext4_mb_find_by_goal(struct ext4_allocation_context *ac,
1660 struct ext4_buddy *e4b)
1661 {
1662 ext4_group_t group = ac->ac_g_ex.fe_group;
1663 int max;
1664 int err;
1665 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1666 struct ext4_free_extent ex;
1667
1668 if (!(ac->ac_flags & EXT4_MB_HINT_TRY_GOAL))
1669 return 0;
1670
1671 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1672 if (err)
1673 return err;
1674
1675 ext4_lock_group(ac->ac_sb, group);
1676 max = mb_find_extent(e4b, 0, ac->ac_g_ex.fe_start,
1677 ac->ac_g_ex.fe_len, &ex);
1678
1679 if (max >= ac->ac_g_ex.fe_len && ac->ac_g_ex.fe_len == sbi->s_stripe) {
1680 ext4_fsblk_t start;
1681
1682 start = ext4_group_first_block_no(ac->ac_sb, e4b->bd_group) +
1683 ex.fe_start;
1684 /* use do_div to get remainder (would be 64-bit modulo) */
1685 if (do_div(start, sbi->s_stripe) == 0) {
1686 ac->ac_found++;
1687 ac->ac_b_ex = ex;
1688 ext4_mb_use_best_found(ac, e4b);
1689 }
1690 } else if (max >= ac->ac_g_ex.fe_len) {
1691 BUG_ON(ex.fe_len <= 0);
1692 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1693 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1694 ac->ac_found++;
1695 ac->ac_b_ex = ex;
1696 ext4_mb_use_best_found(ac, e4b);
1697 } else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) {
1698 /* Sometimes, caller may want to merge even small
1699 * number of blocks to an existing extent */
1700 BUG_ON(ex.fe_len <= 0);
1701 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1702 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1703 ac->ac_found++;
1704 ac->ac_b_ex = ex;
1705 ext4_mb_use_best_found(ac, e4b);
1706 }
1707 ext4_unlock_group(ac->ac_sb, group);
1708 ext4_mb_unload_buddy(e4b);
1709
1710 return 0;
1711 }
1712
1713 /*
1714 * The routine scans buddy structures (not bitmap!) from given order
1715 * to max order and tries to find big enough chunk to satisfy the req
1716 */
1717 static noinline_for_stack
1718 void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac,
1719 struct ext4_buddy *e4b)
1720 {
1721 struct super_block *sb = ac->ac_sb;
1722 struct ext4_group_info *grp = e4b->bd_info;
1723 void *buddy;
1724 int i;
1725 int k;
1726 int max;
1727
1728 BUG_ON(ac->ac_2order <= 0);
1729 for (i = ac->ac_2order; i <= sb->s_blocksize_bits + 1; i++) {
1730 if (grp->bb_counters[i] == 0)
1731 continue;
1732
1733 buddy = mb_find_buddy(e4b, i, &max);
1734 BUG_ON(buddy == NULL);
1735
1736 k = mb_find_next_zero_bit(buddy, max, 0);
1737 BUG_ON(k >= max);
1738
1739 ac->ac_found++;
1740
1741 ac->ac_b_ex.fe_len = 1 << i;
1742 ac->ac_b_ex.fe_start = k << i;
1743 ac->ac_b_ex.fe_group = e4b->bd_group;
1744
1745 ext4_mb_use_best_found(ac, e4b);
1746
1747 BUG_ON(ac->ac_b_ex.fe_len != ac->ac_g_ex.fe_len);
1748
1749 if (EXT4_SB(sb)->s_mb_stats)
1750 atomic_inc(&EXT4_SB(sb)->s_bal_2orders);
1751
1752 break;
1753 }
1754 }
1755
1756 /*
1757 * The routine scans the group and measures all found extents.
1758 * In order to optimize scanning, caller must pass number of
1759 * free blocks in the group, so the routine can know upper limit.
1760 */
1761 static noinline_for_stack
1762 void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac,
1763 struct ext4_buddy *e4b)
1764 {
1765 struct super_block *sb = ac->ac_sb;
1766 void *bitmap = e4b->bd_bitmap;
1767 struct ext4_free_extent ex;
1768 int i;
1769 int free;
1770
1771 free = e4b->bd_info->bb_free;
1772 BUG_ON(free <= 0);
1773
1774 i = e4b->bd_info->bb_first_free;
1775
1776 while (free && ac->ac_status == AC_STATUS_CONTINUE) {
1777 i = mb_find_next_zero_bit(bitmap,
1778 EXT4_CLUSTERS_PER_GROUP(sb), i);
1779 if (i >= EXT4_CLUSTERS_PER_GROUP(sb)) {
1780 /*
1781 * IF we have corrupt bitmap, we won't find any
1782 * free blocks even though group info says we
1783 * we have free blocks
1784 */
1785 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
1786 "%d free clusters as per "
1787 "group info. But bitmap says 0",
1788 free);
1789 break;
1790 }
1791
1792 mb_find_extent(e4b, 0, i, ac->ac_g_ex.fe_len, &ex);
1793 BUG_ON(ex.fe_len <= 0);
1794 if (free < ex.fe_len) {
1795 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
1796 "%d free clusters as per "
1797 "group info. But got %d blocks",
1798 free, ex.fe_len);
1799 /*
1800 * The number of free blocks differs. This mostly
1801 * indicate that the bitmap is corrupt. So exit
1802 * without claiming the space.
1803 */
1804 break;
1805 }
1806
1807 ext4_mb_measure_extent(ac, &ex, e4b);
1808
1809 i += ex.fe_len;
1810 free -= ex.fe_len;
1811 }
1812
1813 ext4_mb_check_limits(ac, e4b, 1);
1814 }
1815
1816 /*
1817 * This is a special case for storages like raid5
1818 * we try to find stripe-aligned chunks for stripe-size-multiple requests
1819 */
1820 static noinline_for_stack
1821 void ext4_mb_scan_aligned(struct ext4_allocation_context *ac,
1822 struct ext4_buddy *e4b)
1823 {
1824 struct super_block *sb = ac->ac_sb;
1825 struct ext4_sb_info *sbi = EXT4_SB(sb);
1826 void *bitmap = e4b->bd_bitmap;
1827 struct ext4_free_extent ex;
1828 ext4_fsblk_t first_group_block;
1829 ext4_fsblk_t a;
1830 ext4_grpblk_t i;
1831 int max;
1832
1833 BUG_ON(sbi->s_stripe == 0);
1834
1835 /* find first stripe-aligned block in group */
1836 first_group_block = ext4_group_first_block_no(sb, e4b->bd_group);
1837
1838 a = first_group_block + sbi->s_stripe - 1;
1839 do_div(a, sbi->s_stripe);
1840 i = (a * sbi->s_stripe) - first_group_block;
1841
1842 while (i < EXT4_CLUSTERS_PER_GROUP(sb)) {
1843 if (!mb_test_bit(i, bitmap)) {
1844 max = mb_find_extent(e4b, 0, i, sbi->s_stripe, &ex);
1845 if (max >= sbi->s_stripe) {
1846 ac->ac_found++;
1847 ac->ac_b_ex = ex;
1848 ext4_mb_use_best_found(ac, e4b);
1849 break;
1850 }
1851 }
1852 i += sbi->s_stripe;
1853 }
1854 }
1855
1856 /* This is now called BEFORE we load the buddy bitmap. */
1857 static int ext4_mb_good_group(struct ext4_allocation_context *ac,
1858 ext4_group_t group, int cr)
1859 {
1860 unsigned free, fragments;
1861 int flex_size = ext4_flex_bg_size(EXT4_SB(ac->ac_sb));
1862 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
1863
1864 BUG_ON(cr < 0 || cr >= 4);
1865
1866 /* We only do this if the grp has never been initialized */
1867 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
1868 int ret = ext4_mb_init_group(ac->ac_sb, group);
1869 if (ret)
1870 return 0;
1871 }
1872
1873 free = grp->bb_free;
1874 fragments = grp->bb_fragments;
1875 if (free == 0)
1876 return 0;
1877 if (fragments == 0)
1878 return 0;
1879
1880 switch (cr) {
1881 case 0:
1882 BUG_ON(ac->ac_2order == 0);
1883
1884 if (grp->bb_largest_free_order < ac->ac_2order)
1885 return 0;
1886
1887 /* Avoid using the first bg of a flexgroup for data files */
1888 if ((ac->ac_flags & EXT4_MB_HINT_DATA) &&
1889 (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) &&
1890 ((group % flex_size) == 0))
1891 return 0;
1892
1893 return 1;
1894 case 1:
1895 if ((free / fragments) >= ac->ac_g_ex.fe_len)
1896 return 1;
1897 break;
1898 case 2:
1899 if (free >= ac->ac_g_ex.fe_len)
1900 return 1;
1901 break;
1902 case 3:
1903 return 1;
1904 default:
1905 BUG();
1906 }
1907
1908 return 0;
1909 }
1910
1911 static noinline_for_stack int
1912 ext4_mb_regular_allocator(struct ext4_allocation_context *ac)
1913 {
1914 ext4_group_t ngroups, group, i;
1915 int cr;
1916 int err = 0;
1917 struct ext4_sb_info *sbi;
1918 struct super_block *sb;
1919 struct ext4_buddy e4b;
1920
1921 sb = ac->ac_sb;
1922 sbi = EXT4_SB(sb);
1923 ngroups = ext4_get_groups_count(sb);
1924 /* non-extent files are limited to low blocks/groups */
1925 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)))
1926 ngroups = sbi->s_blockfile_groups;
1927
1928 BUG_ON(ac->ac_status == AC_STATUS_FOUND);
1929
1930 /* first, try the goal */
1931 err = ext4_mb_find_by_goal(ac, &e4b);
1932 if (err || ac->ac_status == AC_STATUS_FOUND)
1933 goto out;
1934
1935 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
1936 goto out;
1937
1938 /*
1939 * ac->ac2_order is set only if the fe_len is a power of 2
1940 * if ac2_order is set we also set criteria to 0 so that we
1941 * try exact allocation using buddy.
1942 */
1943 i = fls(ac->ac_g_ex.fe_len);
1944 ac->ac_2order = 0;
1945 /*
1946 * We search using buddy data only if the order of the request
1947 * is greater than equal to the sbi_s_mb_order2_reqs
1948 * You can tune it via /sys/fs/ext4/<partition>/mb_order2_req
1949 */
1950 if (i >= sbi->s_mb_order2_reqs) {
1951 /*
1952 * This should tell if fe_len is exactly power of 2
1953 */
1954 if ((ac->ac_g_ex.fe_len & (~(1 << (i - 1)))) == 0)
1955 ac->ac_2order = i - 1;
1956 }
1957
1958 /* if stream allocation is enabled, use global goal */
1959 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
1960 /* TBD: may be hot point */
1961 spin_lock(&sbi->s_md_lock);
1962 ac->ac_g_ex.fe_group = sbi->s_mb_last_group;
1963 ac->ac_g_ex.fe_start = sbi->s_mb_last_start;
1964 spin_unlock(&sbi->s_md_lock);
1965 }
1966
1967 /* Let's just scan groups to find more-less suitable blocks */
1968 cr = ac->ac_2order ? 0 : 1;
1969 /*
1970 * cr == 0 try to get exact allocation,
1971 * cr == 3 try to get anything
1972 */
1973 repeat:
1974 for (; cr < 4 && ac->ac_status == AC_STATUS_CONTINUE; cr++) {
1975 ac->ac_criteria = cr;
1976 /*
1977 * searching for the right group start
1978 * from the goal value specified
1979 */
1980 group = ac->ac_g_ex.fe_group;
1981
1982 for (i = 0; i < ngroups; group++, i++) {
1983 if (group == ngroups)
1984 group = 0;
1985
1986 /* This now checks without needing the buddy page */
1987 if (!ext4_mb_good_group(ac, group, cr))
1988 continue;
1989
1990 err = ext4_mb_load_buddy(sb, group, &e4b);
1991 if (err)
1992 goto out;
1993
1994 ext4_lock_group(sb, group);
1995
1996 /*
1997 * We need to check again after locking the
1998 * block group
1999 */
2000 if (!ext4_mb_good_group(ac, group, cr)) {
2001 ext4_unlock_group(sb, group);
2002 ext4_mb_unload_buddy(&e4b);
2003 continue;
2004 }
2005
2006 ac->ac_groups_scanned++;
2007 if (cr == 0)
2008 ext4_mb_simple_scan_group(ac, &e4b);
2009 else if (cr == 1 && sbi->s_stripe &&
2010 !(ac->ac_g_ex.fe_len % sbi->s_stripe))
2011 ext4_mb_scan_aligned(ac, &e4b);
2012 else
2013 ext4_mb_complex_scan_group(ac, &e4b);
2014
2015 ext4_unlock_group(sb, group);
2016 ext4_mb_unload_buddy(&e4b);
2017
2018 if (ac->ac_status != AC_STATUS_CONTINUE)
2019 break;
2020 }
2021 }
2022
2023 if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND &&
2024 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2025 /*
2026 * We've been searching too long. Let's try to allocate
2027 * the best chunk we've found so far
2028 */
2029
2030 ext4_mb_try_best_found(ac, &e4b);
2031 if (ac->ac_status != AC_STATUS_FOUND) {
2032 /*
2033 * Someone more lucky has already allocated it.
2034 * The only thing we can do is just take first
2035 * found block(s)
2036 printk(KERN_DEBUG "EXT4-fs: someone won our chunk\n");
2037 */
2038 ac->ac_b_ex.fe_group = 0;
2039 ac->ac_b_ex.fe_start = 0;
2040 ac->ac_b_ex.fe_len = 0;
2041 ac->ac_status = AC_STATUS_CONTINUE;
2042 ac->ac_flags |= EXT4_MB_HINT_FIRST;
2043 cr = 3;
2044 atomic_inc(&sbi->s_mb_lost_chunks);
2045 goto repeat;
2046 }
2047 }
2048 out:
2049 return err;
2050 }
2051
2052 static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos)
2053 {
2054 struct super_block *sb = seq->private;
2055 ext4_group_t group;
2056
2057 if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2058 return NULL;
2059 group = *pos + 1;
2060 return (void *) ((unsigned long) group);
2061 }
2062
2063 static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos)
2064 {
2065 struct super_block *sb = seq->private;
2066 ext4_group_t group;
2067
2068 ++*pos;
2069 if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2070 return NULL;
2071 group = *pos + 1;
2072 return (void *) ((unsigned long) group);
2073 }
2074
2075 static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v)
2076 {
2077 struct super_block *sb = seq->private;
2078 ext4_group_t group = (ext4_group_t) ((unsigned long) v);
2079 int i;
2080 int err;
2081 struct ext4_buddy e4b;
2082 struct sg {
2083 struct ext4_group_info info;
2084 ext4_grpblk_t counters[16];
2085 } sg;
2086
2087 group--;
2088 if (group == 0)
2089 seq_printf(seq, "#%-5s: %-5s %-5s %-5s "
2090 "[ %-5s %-5s %-5s %-5s %-5s %-5s %-5s "
2091 "%-5s %-5s %-5s %-5s %-5s %-5s %-5s ]\n",
2092 "group", "free", "frags", "first",
2093 "2^0", "2^1", "2^2", "2^3", "2^4", "2^5", "2^6",
2094 "2^7", "2^8", "2^9", "2^10", "2^11", "2^12", "2^13");
2095
2096 i = (sb->s_blocksize_bits + 2) * sizeof(sg.info.bb_counters[0]) +
2097 sizeof(struct ext4_group_info);
2098 err = ext4_mb_load_buddy(sb, group, &e4b);
2099 if (err) {
2100 seq_printf(seq, "#%-5u: I/O error\n", group);
2101 return 0;
2102 }
2103 ext4_lock_group(sb, group);
2104 memcpy(&sg, ext4_get_group_info(sb, group), i);
2105 ext4_unlock_group(sb, group);
2106 ext4_mb_unload_buddy(&e4b);
2107
2108 seq_printf(seq, "#%-5u: %-5u %-5u %-5u [", group, sg.info.bb_free,
2109 sg.info.bb_fragments, sg.info.bb_first_free);
2110 for (i = 0; i <= 13; i++)
2111 seq_printf(seq, " %-5u", i <= sb->s_blocksize_bits + 1 ?
2112 sg.info.bb_counters[i] : 0);
2113 seq_printf(seq, " ]\n");
2114
2115 return 0;
2116 }
2117
2118 static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v)
2119 {
2120 }
2121
2122 static const struct seq_operations ext4_mb_seq_groups_ops = {
2123 .start = ext4_mb_seq_groups_start,
2124 .next = ext4_mb_seq_groups_next,
2125 .stop = ext4_mb_seq_groups_stop,
2126 .show = ext4_mb_seq_groups_show,
2127 };
2128
2129 static int ext4_mb_seq_groups_open(struct inode *inode, struct file *file)
2130 {
2131 struct super_block *sb = PDE(inode)->data;
2132 int rc;
2133
2134 rc = seq_open(file, &ext4_mb_seq_groups_ops);
2135 if (rc == 0) {
2136 struct seq_file *m = file->private_data;
2137 m->private = sb;
2138 }
2139 return rc;
2140
2141 }
2142
2143 static const struct file_operations ext4_mb_seq_groups_fops = {
2144 .owner = THIS_MODULE,
2145 .open = ext4_mb_seq_groups_open,
2146 .read = seq_read,
2147 .llseek = seq_lseek,
2148 .release = seq_release,
2149 };
2150
2151 static struct kmem_cache *get_groupinfo_cache(int blocksize_bits)
2152 {
2153 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
2154 struct kmem_cache *cachep = ext4_groupinfo_caches[cache_index];
2155
2156 BUG_ON(!cachep);
2157 return cachep;
2158 }
2159
2160 /* Create and initialize ext4_group_info data for the given group. */
2161 int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group,
2162 struct ext4_group_desc *desc)
2163 {
2164 int i;
2165 int metalen = 0;
2166 struct ext4_sb_info *sbi = EXT4_SB(sb);
2167 struct ext4_group_info **meta_group_info;
2168 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2169
2170 /*
2171 * First check if this group is the first of a reserved block.
2172 * If it's true, we have to allocate a new table of pointers
2173 * to ext4_group_info structures
2174 */
2175 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
2176 metalen = sizeof(*meta_group_info) <<
2177 EXT4_DESC_PER_BLOCK_BITS(sb);
2178 meta_group_info = kmalloc(metalen, GFP_KERNEL);
2179 if (meta_group_info == NULL) {
2180 ext4_msg(sb, KERN_ERR, "can't allocate mem "
2181 "for a buddy group");
2182 goto exit_meta_group_info;
2183 }
2184 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)] =
2185 meta_group_info;
2186 }
2187
2188 meta_group_info =
2189 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)];
2190 i = group & (EXT4_DESC_PER_BLOCK(sb) - 1);
2191
2192 meta_group_info[i] = kmem_cache_alloc(cachep, GFP_KERNEL);
2193 if (meta_group_info[i] == NULL) {
2194 ext4_msg(sb, KERN_ERR, "can't allocate buddy mem");
2195 goto exit_group_info;
2196 }
2197 memset(meta_group_info[i], 0, kmem_cache_size(cachep));
2198 set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT,
2199 &(meta_group_info[i]->bb_state));
2200
2201 /*
2202 * initialize bb_free to be able to skip
2203 * empty groups without initialization
2204 */
2205 if (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
2206 meta_group_info[i]->bb_free =
2207 ext4_free_clusters_after_init(sb, group, desc);
2208 } else {
2209 meta_group_info[i]->bb_free =
2210 ext4_free_group_clusters(sb, desc);
2211 }
2212
2213 INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list);
2214 init_rwsem(&meta_group_info[i]->alloc_sem);
2215 meta_group_info[i]->bb_free_root = RB_ROOT;
2216 meta_group_info[i]->bb_largest_free_order = -1; /* uninit */
2217
2218 #ifdef DOUBLE_CHECK
2219 {
2220 struct buffer_head *bh;
2221 meta_group_info[i]->bb_bitmap =
2222 kmalloc(sb->s_blocksize, GFP_KERNEL);
2223 BUG_ON(meta_group_info[i]->bb_bitmap == NULL);
2224 bh = ext4_read_block_bitmap(sb, group);
2225 BUG_ON(bh == NULL);
2226 memcpy(meta_group_info[i]->bb_bitmap, bh->b_data,
2227 sb->s_blocksize);
2228 put_bh(bh);
2229 }
2230 #endif
2231
2232 return 0;
2233
2234 exit_group_info:
2235 /* If a meta_group_info table has been allocated, release it now */
2236 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
2237 kfree(sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)]);
2238 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)] = NULL;
2239 }
2240 exit_meta_group_info:
2241 return -ENOMEM;
2242 } /* ext4_mb_add_groupinfo */
2243
2244 static int ext4_mb_init_backend(struct super_block *sb)
2245 {
2246 ext4_group_t ngroups = ext4_get_groups_count(sb);
2247 ext4_group_t i;
2248 struct ext4_sb_info *sbi = EXT4_SB(sb);
2249 struct ext4_super_block *es = sbi->s_es;
2250 int num_meta_group_infos;
2251 int num_meta_group_infos_max;
2252 int array_size;
2253 struct ext4_group_desc *desc;
2254 struct kmem_cache *cachep;
2255
2256 /* This is the number of blocks used by GDT */
2257 num_meta_group_infos = (ngroups + EXT4_DESC_PER_BLOCK(sb) -
2258 1) >> EXT4_DESC_PER_BLOCK_BITS(sb);
2259
2260 /*
2261 * This is the total number of blocks used by GDT including
2262 * the number of reserved blocks for GDT.
2263 * The s_group_info array is allocated with this value
2264 * to allow a clean online resize without a complex
2265 * manipulation of pointer.
2266 * The drawback is the unused memory when no resize
2267 * occurs but it's very low in terms of pages
2268 * (see comments below)
2269 * Need to handle this properly when META_BG resizing is allowed
2270 */
2271 num_meta_group_infos_max = num_meta_group_infos +
2272 le16_to_cpu(es->s_reserved_gdt_blocks);
2273
2274 /*
2275 * array_size is the size of s_group_info array. We round it
2276 * to the next power of two because this approximation is done
2277 * internally by kmalloc so we can have some more memory
2278 * for free here (e.g. may be used for META_BG resize).
2279 */
2280 array_size = 1;
2281 while (array_size < sizeof(*sbi->s_group_info) *
2282 num_meta_group_infos_max)
2283 array_size = array_size << 1;
2284 /* An 8TB filesystem with 64-bit pointers requires a 4096 byte
2285 * kmalloc. A 128kb malloc should suffice for a 256TB filesystem.
2286 * So a two level scheme suffices for now. */
2287 sbi->s_group_info = ext4_kvzalloc(array_size, GFP_KERNEL);
2288 if (sbi->s_group_info == NULL) {
2289 ext4_msg(sb, KERN_ERR, "can't allocate buddy meta group");
2290 return -ENOMEM;
2291 }
2292 sbi->s_buddy_cache = new_inode(sb);
2293 if (sbi->s_buddy_cache == NULL) {
2294 ext4_msg(sb, KERN_ERR, "can't get new inode");
2295 goto err_freesgi;
2296 }
2297 /* To avoid potentially colliding with an valid on-disk inode number,
2298 * use EXT4_BAD_INO for the buddy cache inode number. This inode is
2299 * not in the inode hash, so it should never be found by iget(), but
2300 * this will avoid confusion if it ever shows up during debugging. */
2301 sbi->s_buddy_cache->i_ino = EXT4_BAD_INO;
2302 EXT4_I(sbi->s_buddy_cache)->i_disksize = 0;
2303 for (i = 0; i < ngroups; i++) {
2304 desc = ext4_get_group_desc(sb, i, NULL);
2305 if (desc == NULL) {
2306 ext4_msg(sb, KERN_ERR, "can't read descriptor %u", i);
2307 goto err_freebuddy;
2308 }
2309 if (ext4_mb_add_groupinfo(sb, i, desc) != 0)
2310 goto err_freebuddy;
2311 }
2312
2313 return 0;
2314
2315 err_freebuddy:
2316 cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2317 while (i-- > 0)
2318 kmem_cache_free(cachep, ext4_get_group_info(sb, i));
2319 i = num_meta_group_infos;
2320 while (i-- > 0)
2321 kfree(sbi->s_group_info[i]);
2322 iput(sbi->s_buddy_cache);
2323 err_freesgi:
2324 ext4_kvfree(sbi->s_group_info);
2325 return -ENOMEM;
2326 }
2327
2328 static void ext4_groupinfo_destroy_slabs(void)
2329 {
2330 int i;
2331
2332 for (i = 0; i < NR_GRPINFO_CACHES; i++) {
2333 if (ext4_groupinfo_caches[i])
2334 kmem_cache_destroy(ext4_groupinfo_caches[i]);
2335 ext4_groupinfo_caches[i] = NULL;
2336 }
2337 }
2338
2339 static int ext4_groupinfo_create_slab(size_t size)
2340 {
2341 static DEFINE_MUTEX(ext4_grpinfo_slab_create_mutex);
2342 int slab_size;
2343 int blocksize_bits = order_base_2(size);
2344 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
2345 struct kmem_cache *cachep;
2346
2347 if (cache_index >= NR_GRPINFO_CACHES)
2348 return -EINVAL;
2349
2350 if (unlikely(cache_index < 0))
2351 cache_index = 0;
2352
2353 mutex_lock(&ext4_grpinfo_slab_create_mutex);
2354 if (ext4_groupinfo_caches[cache_index]) {
2355 mutex_unlock(&ext4_grpinfo_slab_create_mutex);
2356 return 0; /* Already created */
2357 }
2358
2359 slab_size = offsetof(struct ext4_group_info,
2360 bb_counters[blocksize_bits + 2]);
2361
2362 cachep = kmem_cache_create(ext4_groupinfo_slab_names[cache_index],
2363 slab_size, 0, SLAB_RECLAIM_ACCOUNT,
2364 NULL);
2365
2366 ext4_groupinfo_caches[cache_index] = cachep;
2367
2368 mutex_unlock(&ext4_grpinfo_slab_create_mutex);
2369 if (!cachep) {
2370 printk(KERN_EMERG
2371 "EXT4-fs: no memory for groupinfo slab cache\n");
2372 return -ENOMEM;
2373 }
2374
2375 return 0;
2376 }
2377
2378 int ext4_mb_init(struct super_block *sb)
2379 {
2380 struct ext4_sb_info *sbi = EXT4_SB(sb);
2381 unsigned i, j;
2382 unsigned offset;
2383 unsigned max;
2384 int ret;
2385
2386 i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_offsets);
2387
2388 sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL);
2389 if (sbi->s_mb_offsets == NULL) {
2390 ret = -ENOMEM;
2391 goto out;
2392 }
2393
2394 i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_maxs);
2395 sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL);
2396 if (sbi->s_mb_maxs == NULL) {
2397 ret = -ENOMEM;
2398 goto out;
2399 }
2400
2401 ret = ext4_groupinfo_create_slab(sb->s_blocksize);
2402 if (ret < 0)
2403 goto out;
2404
2405 /* order 0 is regular bitmap */
2406 sbi->s_mb_maxs[0] = sb->s_blocksize << 3;
2407 sbi->s_mb_offsets[0] = 0;
2408
2409 i = 1;
2410 offset = 0;
2411 max = sb->s_blocksize << 2;
2412 do {
2413 sbi->s_mb_offsets[i] = offset;
2414 sbi->s_mb_maxs[i] = max;
2415 offset += 1 << (sb->s_blocksize_bits - i);
2416 max = max >> 1;
2417 i++;
2418 } while (i <= sb->s_blocksize_bits + 1);
2419
2420 spin_lock_init(&sbi->s_md_lock);
2421 spin_lock_init(&sbi->s_bal_lock);
2422
2423 sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN;
2424 sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN;
2425 sbi->s_mb_stats = MB_DEFAULT_STATS;
2426 sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD;
2427 sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS;
2428 /*
2429 * The default group preallocation is 512, which for 4k block
2430 * sizes translates to 2 megabytes. However for bigalloc file
2431 * systems, this is probably too big (i.e, if the cluster size
2432 * is 1 megabyte, then group preallocation size becomes half a
2433 * gigabyte!). As a default, we will keep a two megabyte
2434 * group pralloc size for cluster sizes up to 64k, and after
2435 * that, we will force a minimum group preallocation size of
2436 * 32 clusters. This translates to 8 megs when the cluster
2437 * size is 256k, and 32 megs when the cluster size is 1 meg,
2438 * which seems reasonable as a default.
2439 */
2440 sbi->s_mb_group_prealloc = max(MB_DEFAULT_GROUP_PREALLOC >>
2441 sbi->s_cluster_bits, 32);
2442 /*
2443 * If there is a s_stripe > 1, then we set the s_mb_group_prealloc
2444 * to the lowest multiple of s_stripe which is bigger than
2445 * the s_mb_group_prealloc as determined above. We want
2446 * the preallocation size to be an exact multiple of the
2447 * RAID stripe size so that preallocations don't fragment
2448 * the stripes.
2449 */
2450 if (sbi->s_stripe > 1) {
2451 sbi->s_mb_group_prealloc = roundup(
2452 sbi->s_mb_group_prealloc, sbi->s_stripe);
2453 }
2454
2455 sbi->s_locality_groups = alloc_percpu(struct ext4_locality_group);
2456 if (sbi->s_locality_groups == NULL) {
2457 ret = -ENOMEM;
2458 goto out_free_groupinfo_slab;
2459 }
2460 for_each_possible_cpu(i) {
2461 struct ext4_locality_group *lg;
2462 lg = per_cpu_ptr(sbi->s_locality_groups, i);
2463 mutex_init(&lg->lg_mutex);
2464 for (j = 0; j < PREALLOC_TB_SIZE; j++)
2465 INIT_LIST_HEAD(&lg->lg_prealloc_list[j]);
2466 spin_lock_init(&lg->lg_prealloc_lock);
2467 }
2468
2469 /* init file for buddy data */
2470 ret = ext4_mb_init_backend(sb);
2471 if (ret != 0)
2472 goto out_free_locality_groups;
2473
2474 if (sbi->s_proc)
2475 proc_create_data("mb_groups", S_IRUGO, sbi->s_proc,
2476 &ext4_mb_seq_groups_fops, sb);
2477
2478 return 0;
2479
2480 out_free_locality_groups:
2481 free_percpu(sbi->s_locality_groups);
2482 sbi->s_locality_groups = NULL;
2483 out_free_groupinfo_slab:
2484 ext4_groupinfo_destroy_slabs();
2485 out:
2486 kfree(sbi->s_mb_offsets);
2487 sbi->s_mb_offsets = NULL;
2488 kfree(sbi->s_mb_maxs);
2489 sbi->s_mb_maxs = NULL;
2490 return ret;
2491 }
2492
2493 /* need to called with the ext4 group lock held */
2494 static void ext4_mb_cleanup_pa(struct ext4_group_info *grp)
2495 {
2496 struct ext4_prealloc_space *pa;
2497 struct list_head *cur, *tmp;
2498 int count = 0;
2499
2500 list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) {
2501 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
2502 list_del(&pa->pa_group_list);
2503 count++;
2504 kmem_cache_free(ext4_pspace_cachep, pa);
2505 }
2506 if (count)
2507 mb_debug(1, "mballoc: %u PAs left\n", count);
2508
2509 }
2510
2511 int ext4_mb_release(struct super_block *sb)
2512 {
2513 ext4_group_t ngroups = ext4_get_groups_count(sb);
2514 ext4_group_t i;
2515 int num_meta_group_infos;
2516 struct ext4_group_info *grinfo;
2517 struct ext4_sb_info *sbi = EXT4_SB(sb);
2518 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2519
2520 if (sbi->s_proc)
2521 remove_proc_entry("mb_groups", sbi->s_proc);
2522
2523 if (sbi->s_group_info) {
2524 for (i = 0; i < ngroups; i++) {
2525 grinfo = ext4_get_group_info(sb, i);
2526 #ifdef DOUBLE_CHECK
2527 kfree(grinfo->bb_bitmap);
2528 #endif
2529 ext4_lock_group(sb, i);
2530 ext4_mb_cleanup_pa(grinfo);
2531 ext4_unlock_group(sb, i);
2532 kmem_cache_free(cachep, grinfo);
2533 }
2534 num_meta_group_infos = (ngroups +
2535 EXT4_DESC_PER_BLOCK(sb) - 1) >>
2536 EXT4_DESC_PER_BLOCK_BITS(sb);
2537 for (i = 0; i < num_meta_group_infos; i++)
2538 kfree(sbi->s_group_info[i]);
2539 ext4_kvfree(sbi->s_group_info);
2540 }
2541 kfree(sbi->s_mb_offsets);
2542 kfree(sbi->s_mb_maxs);
2543 if (sbi->s_buddy_cache)
2544 iput(sbi->s_buddy_cache);
2545 if (sbi->s_mb_stats) {
2546 ext4_msg(sb, KERN_INFO,
2547 "mballoc: %u blocks %u reqs (%u success)",
2548 atomic_read(&sbi->s_bal_allocated),
2549 atomic_read(&sbi->s_bal_reqs),
2550 atomic_read(&sbi->s_bal_success));
2551 ext4_msg(sb, KERN_INFO,
2552 "mballoc: %u extents scanned, %u goal hits, "
2553 "%u 2^N hits, %u breaks, %u lost",
2554 atomic_read(&sbi->s_bal_ex_scanned),
2555 atomic_read(&sbi->s_bal_goals),
2556 atomic_read(&sbi->s_bal_2orders),
2557 atomic_read(&sbi->s_bal_breaks),
2558 atomic_read(&sbi->s_mb_lost_chunks));
2559 ext4_msg(sb, KERN_INFO,
2560 "mballoc: %lu generated and it took %Lu",
2561 sbi->s_mb_buddies_generated,
2562 sbi->s_mb_generation_time);
2563 ext4_msg(sb, KERN_INFO,
2564 "mballoc: %u preallocated, %u discarded",
2565 atomic_read(&sbi->s_mb_preallocated),
2566 atomic_read(&sbi->s_mb_discarded));
2567 }
2568
2569 free_percpu(sbi->s_locality_groups);
2570
2571 return 0;
2572 }
2573
2574 static inline int ext4_issue_discard(struct super_block *sb,
2575 ext4_group_t block_group, ext4_grpblk_t cluster, int count)
2576 {
2577 ext4_fsblk_t discard_block;
2578
2579 discard_block = (EXT4_C2B(EXT4_SB(sb), cluster) +
2580 ext4_group_first_block_no(sb, block_group));
2581 count = EXT4_C2B(EXT4_SB(sb), count);
2582 trace_ext4_discard_blocks(sb,
2583 (unsigned long long) discard_block, count);
2584 return sb_issue_discard(sb, discard_block, count, GFP_NOFS, 0);
2585 }
2586
2587 /*
2588 * This function is called by the jbd2 layer once the commit has finished,
2589 * so we know we can free the blocks that were released with that commit.
2590 */
2591 static void ext4_free_data_callback(struct super_block *sb,
2592 struct ext4_journal_cb_entry *jce,
2593 int rc)
2594 {
2595 struct ext4_free_data *entry = (struct ext4_free_data *)jce;
2596 struct ext4_buddy e4b;
2597 struct ext4_group_info *db;
2598 int err, count = 0, count2 = 0;
2599
2600 mb_debug(1, "gonna free %u blocks in group %u (0x%p):",
2601 entry->efd_count, entry->efd_group, entry);
2602
2603 if (test_opt(sb, DISCARD))
2604 ext4_issue_discard(sb, entry->efd_group,
2605 entry->efd_start_cluster, entry->efd_count);
2606
2607 err = ext4_mb_load_buddy(sb, entry->efd_group, &e4b);
2608 /* we expect to find existing buddy because it's pinned */
2609 BUG_ON(err != 0);
2610
2611
2612 db = e4b.bd_info;
2613 /* there are blocks to put in buddy to make them really free */
2614 count += entry->efd_count;
2615 count2++;
2616 ext4_lock_group(sb, entry->efd_group);
2617 /* Take it out of per group rb tree */
2618 rb_erase(&entry->efd_node, &(db->bb_free_root));
2619 mb_free_blocks(NULL, &e4b, entry->efd_start_cluster, entry->efd_count);
2620
2621 /*
2622 * Clear the trimmed flag for the group so that the next
2623 * ext4_trim_fs can trim it.
2624 * If the volume is mounted with -o discard, online discard
2625 * is supported and the free blocks will be trimmed online.
2626 */
2627 if (!test_opt(sb, DISCARD))
2628 EXT4_MB_GRP_CLEAR_TRIMMED(db);
2629
2630 if (!db->bb_free_root.rb_node) {
2631 /* No more items in the per group rb tree
2632 * balance refcounts from ext4_mb_free_metadata()
2633 */
2634 page_cache_release(e4b.bd_buddy_page);
2635 page_cache_release(e4b.bd_bitmap_page);
2636 }
2637 ext4_unlock_group(sb, entry->efd_group);
2638 kmem_cache_free(ext4_free_data_cachep, entry);
2639 ext4_mb_unload_buddy(&e4b);
2640
2641 mb_debug(1, "freed %u blocks in %u structures\n", count, count2);
2642 }
2643
2644 #ifdef CONFIG_EXT4_DEBUG
2645 u8 mb_enable_debug __read_mostly;
2646
2647 static struct dentry *debugfs_dir;
2648 static struct dentry *debugfs_debug;
2649
2650 static void __init ext4_create_debugfs_entry(void)
2651 {
2652 debugfs_dir = debugfs_create_dir("ext4", NULL);
2653 if (debugfs_dir)
2654 debugfs_debug = debugfs_create_u8("mballoc-debug",
2655 S_IRUGO | S_IWUSR,
2656 debugfs_dir,
2657 &mb_enable_debug);
2658 }
2659
2660 static void ext4_remove_debugfs_entry(void)
2661 {
2662 debugfs_remove(debugfs_debug);
2663 debugfs_remove(debugfs_dir);
2664 }
2665
2666 #else
2667
2668 static void __init ext4_create_debugfs_entry(void)
2669 {
2670 }
2671
2672 static void ext4_remove_debugfs_entry(void)
2673 {
2674 }
2675
2676 #endif
2677
2678 int __init ext4_init_mballoc(void)
2679 {
2680 ext4_pspace_cachep = KMEM_CACHE(ext4_prealloc_space,
2681 SLAB_RECLAIM_ACCOUNT);
2682 if (ext4_pspace_cachep == NULL)
2683 return -ENOMEM;
2684
2685 ext4_ac_cachep = KMEM_CACHE(ext4_allocation_context,
2686 SLAB_RECLAIM_ACCOUNT);
2687 if (ext4_ac_cachep == NULL) {
2688 kmem_cache_destroy(ext4_pspace_cachep);
2689 return -ENOMEM;
2690 }
2691
2692 ext4_free_data_cachep = KMEM_CACHE(ext4_free_data,
2693 SLAB_RECLAIM_ACCOUNT);
2694 if (ext4_free_data_cachep == NULL) {
2695 kmem_cache_destroy(ext4_pspace_cachep);
2696 kmem_cache_destroy(ext4_ac_cachep);
2697 return -ENOMEM;
2698 }
2699 ext4_create_debugfs_entry();
2700 return 0;
2701 }
2702
2703 void ext4_exit_mballoc(void)
2704 {
2705 /*
2706 * Wait for completion of call_rcu()'s on ext4_pspace_cachep
2707 * before destroying the slab cache.
2708 */
2709 rcu_barrier();
2710 kmem_cache_destroy(ext4_pspace_cachep);
2711 kmem_cache_destroy(ext4_ac_cachep);
2712 kmem_cache_destroy(ext4_free_data_cachep);
2713 ext4_groupinfo_destroy_slabs();
2714 ext4_remove_debugfs_entry();
2715 }
2716
2717
2718 /*
2719 * Check quota and mark chosen space (ac->ac_b_ex) non-free in bitmaps
2720 * Returns 0 if success or error code
2721 */
2722 static noinline_for_stack int
2723 ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac,
2724 handle_t *handle, unsigned int reserv_clstrs)
2725 {
2726 struct buffer_head *bitmap_bh = NULL;
2727 struct ext4_group_desc *gdp;
2728 struct buffer_head *gdp_bh;
2729 struct ext4_sb_info *sbi;
2730 struct super_block *sb;
2731 ext4_fsblk_t block;
2732 int err, len;
2733
2734 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
2735 BUG_ON(ac->ac_b_ex.fe_len <= 0);
2736
2737 sb = ac->ac_sb;
2738 sbi = EXT4_SB(sb);
2739
2740 err = -EIO;
2741 bitmap_bh = ext4_read_block_bitmap(sb, ac->ac_b_ex.fe_group);
2742 if (!bitmap_bh)
2743 goto out_err;
2744
2745 err = ext4_journal_get_write_access(handle, bitmap_bh);
2746 if (err)
2747 goto out_err;
2748
2749 err = -EIO;
2750 gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, &gdp_bh);
2751 if (!gdp)
2752 goto out_err;
2753
2754 ext4_debug("using block group %u(%d)\n", ac->ac_b_ex.fe_group,
2755 ext4_free_group_clusters(sb, gdp));
2756
2757 err = ext4_journal_get_write_access(handle, gdp_bh);
2758 if (err)
2759 goto out_err;
2760
2761 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
2762
2763 len = EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
2764 if (!ext4_data_block_valid(sbi, block, len)) {
2765 ext4_error(sb, "Allocating blocks %llu-%llu which overlap "
2766 "fs metadata", block, block+len);
2767 /* File system mounted not to panic on error
2768 * Fix the bitmap and repeat the block allocation
2769 * We leak some of the blocks here.
2770 */
2771 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
2772 ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
2773 ac->ac_b_ex.fe_len);
2774 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
2775 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
2776 if (!err)
2777 err = -EAGAIN;
2778 goto out_err;
2779 }
2780
2781 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
2782 #ifdef AGGRESSIVE_CHECK
2783 {
2784 int i;
2785 for (i = 0; i < ac->ac_b_ex.fe_len; i++) {
2786 BUG_ON(mb_test_bit(ac->ac_b_ex.fe_start + i,
2787 bitmap_bh->b_data));
2788 }
2789 }
2790 #endif
2791 ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
2792 ac->ac_b_ex.fe_len);
2793 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
2794 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
2795 ext4_free_group_clusters_set(sb, gdp,
2796 ext4_free_clusters_after_init(sb,
2797 ac->ac_b_ex.fe_group, gdp));
2798 }
2799 len = ext4_free_group_clusters(sb, gdp) - ac->ac_b_ex.fe_len;
2800 ext4_free_group_clusters_set(sb, gdp, len);
2801 ext4_block_bitmap_csum_set(sb, ac->ac_b_ex.fe_group, gdp, bitmap_bh,
2802 EXT4_BLOCKS_PER_GROUP(sb) / 8);
2803 ext4_group_desc_csum_set(sb, ac->ac_b_ex.fe_group, gdp);
2804
2805 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
2806 percpu_counter_sub(&sbi->s_freeclusters_counter, ac->ac_b_ex.fe_len);
2807 /*
2808 * Now reduce the dirty block count also. Should not go negative
2809 */
2810 if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED))
2811 /* release all the reserved blocks if non delalloc */
2812 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
2813 reserv_clstrs);
2814
2815 if (sbi->s_log_groups_per_flex) {
2816 ext4_group_t flex_group = ext4_flex_group(sbi,
2817 ac->ac_b_ex.fe_group);
2818 atomic_sub(ac->ac_b_ex.fe_len,
2819 &sbi->s_flex_groups[flex_group].free_clusters);
2820 }
2821
2822 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
2823 if (err)
2824 goto out_err;
2825 err = ext4_handle_dirty_metadata(handle, NULL, gdp_bh);
2826
2827 out_err:
2828 ext4_mark_super_dirty(sb);
2829 brelse(bitmap_bh);
2830 return err;
2831 }
2832
2833 /*
2834 * here we normalize request for locality group
2835 * Group request are normalized to s_mb_group_prealloc, which goes to
2836 * s_strip if we set the same via mount option.
2837 * s_mb_group_prealloc can be configured via
2838 * /sys/fs/ext4/<partition>/mb_group_prealloc
2839 *
2840 * XXX: should we try to preallocate more than the group has now?
2841 */
2842 static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac)
2843 {
2844 struct super_block *sb = ac->ac_sb;
2845 struct ext4_locality_group *lg = ac->ac_lg;
2846
2847 BUG_ON(lg == NULL);
2848 ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc;
2849 mb_debug(1, "#%u: goal %u blocks for locality group\n",
2850 current->pid, ac->ac_g_ex.fe_len);
2851 }
2852
2853 /*
2854 * Normalization means making request better in terms of
2855 * size and alignment
2856 */
2857 static noinline_for_stack void
2858 ext4_mb_normalize_request(struct ext4_allocation_context *ac,
2859 struct ext4_allocation_request *ar)
2860 {
2861 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
2862 int bsbits, max;
2863 ext4_lblk_t end;
2864 loff_t size, start_off;
2865 loff_t orig_size __maybe_unused;
2866 ext4_lblk_t start;
2867 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
2868 struct ext4_prealloc_space *pa;
2869
2870 /* do normalize only data requests, metadata requests
2871 do not need preallocation */
2872 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
2873 return;
2874
2875 /* sometime caller may want exact blocks */
2876 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
2877 return;
2878
2879 /* caller may indicate that preallocation isn't
2880 * required (it's a tail, for example) */
2881 if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC)
2882 return;
2883
2884 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) {
2885 ext4_mb_normalize_group_request(ac);
2886 return ;
2887 }
2888
2889 bsbits = ac->ac_sb->s_blocksize_bits;
2890
2891 /* first, let's learn actual file size
2892 * given current request is allocated */
2893 size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len);
2894 size = size << bsbits;
2895 if (size < i_size_read(ac->ac_inode))
2896 size = i_size_read(ac->ac_inode);
2897 orig_size = size;
2898
2899 /* max size of free chunks */
2900 max = 2 << bsbits;
2901
2902 #define NRL_CHECK_SIZE(req, size, max, chunk_size) \
2903 (req <= (size) || max <= (chunk_size))
2904
2905 /* first, try to predict filesize */
2906 /* XXX: should this table be tunable? */
2907 start_off = 0;
2908 if (size <= 16 * 1024) {
2909 size = 16 * 1024;
2910 } else if (size <= 32 * 1024) {
2911 size = 32 * 1024;
2912 } else if (size <= 64 * 1024) {
2913 size = 64 * 1024;
2914 } else if (size <= 128 * 1024) {
2915 size = 128 * 1024;
2916 } else if (size <= 256 * 1024) {
2917 size = 256 * 1024;
2918 } else if (size <= 512 * 1024) {
2919 size = 512 * 1024;
2920 } else if (size <= 1024 * 1024) {
2921 size = 1024 * 1024;
2922 } else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) {
2923 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
2924 (21 - bsbits)) << 21;
2925 size = 2 * 1024 * 1024;
2926 } else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) {
2927 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
2928 (22 - bsbits)) << 22;
2929 size = 4 * 1024 * 1024;
2930 } else if (NRL_CHECK_SIZE(ac->ac_o_ex.fe_len,
2931 (8<<20)>>bsbits, max, 8 * 1024)) {
2932 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
2933 (23 - bsbits)) << 23;
2934 size = 8 * 1024 * 1024;
2935 } else {
2936 start_off = (loff_t)ac->ac_o_ex.fe_logical << bsbits;
2937 size = ac->ac_o_ex.fe_len << bsbits;
2938 }
2939 size = size >> bsbits;
2940 start = start_off >> bsbits;
2941
2942 /* don't cover already allocated blocks in selected range */
2943 if (ar->pleft && start <= ar->lleft) {
2944 size -= ar->lleft + 1 - start;
2945 start = ar->lleft + 1;
2946 }
2947 if (ar->pright && start + size - 1 >= ar->lright)
2948 size -= start + size - ar->lright;
2949
2950 end = start + size;
2951
2952 /* check we don't cross already preallocated blocks */
2953 rcu_read_lock();
2954 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
2955 ext4_lblk_t pa_end;
2956
2957 if (pa->pa_deleted)
2958 continue;
2959 spin_lock(&pa->pa_lock);
2960 if (pa->pa_deleted) {
2961 spin_unlock(&pa->pa_lock);
2962 continue;
2963 }
2964
2965 pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb),
2966 pa->pa_len);
2967
2968 /* PA must not overlap original request */
2969 BUG_ON(!(ac->ac_o_ex.fe_logical >= pa_end ||
2970 ac->ac_o_ex.fe_logical < pa->pa_lstart));
2971
2972 /* skip PAs this normalized request doesn't overlap with */
2973 if (pa->pa_lstart >= end || pa_end <= start) {
2974 spin_unlock(&pa->pa_lock);
2975 continue;
2976 }
2977 BUG_ON(pa->pa_lstart <= start && pa_end >= end);
2978
2979 /* adjust start or end to be adjacent to this pa */
2980 if (pa_end <= ac->ac_o_ex.fe_logical) {
2981 BUG_ON(pa_end < start);
2982 start = pa_end;
2983 } else if (pa->pa_lstart > ac->ac_o_ex.fe_logical) {
2984 BUG_ON(pa->pa_lstart > end);
2985 end = pa->pa_lstart;
2986 }
2987 spin_unlock(&pa->pa_lock);
2988 }
2989 rcu_read_unlock();
2990 size = end - start;
2991
2992 /* XXX: extra loop to check we really don't overlap preallocations */
2993 rcu_read_lock();
2994 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
2995 ext4_lblk_t pa_end;
2996
2997 spin_lock(&pa->pa_lock);
2998 if (pa->pa_deleted == 0) {
2999 pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb),
3000 pa->pa_len);
3001 BUG_ON(!(start >= pa_end || end <= pa->pa_lstart));
3002 }
3003 spin_unlock(&pa->pa_lock);
3004 }
3005 rcu_read_unlock();
3006
3007 if (start + size <= ac->ac_o_ex.fe_logical &&
3008 start > ac->ac_o_ex.fe_logical) {
3009 ext4_msg(ac->ac_sb, KERN_ERR,
3010 "start %lu, size %lu, fe_logical %lu",
3011 (unsigned long) start, (unsigned long) size,
3012 (unsigned long) ac->ac_o_ex.fe_logical);
3013 }
3014 BUG_ON(start + size <= ac->ac_o_ex.fe_logical &&
3015 start > ac->ac_o_ex.fe_logical);
3016 BUG_ON(size <= 0 || size > EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
3017
3018 /* now prepare goal request */
3019
3020 /* XXX: is it better to align blocks WRT to logical
3021 * placement or satisfy big request as is */
3022 ac->ac_g_ex.fe_logical = start;
3023 ac->ac_g_ex.fe_len = EXT4_NUM_B2C(sbi, size);
3024
3025 /* define goal start in order to merge */
3026 if (ar->pright && (ar->lright == (start + size))) {
3027 /* merge to the right */
3028 ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size,
3029 &ac->ac_f_ex.fe_group,
3030 &ac->ac_f_ex.fe_start);
3031 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3032 }
3033 if (ar->pleft && (ar->lleft + 1 == start)) {
3034 /* merge to the left */
3035 ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1,
3036 &ac->ac_f_ex.fe_group,
3037 &ac->ac_f_ex.fe_start);
3038 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3039 }
3040
3041 mb_debug(1, "goal: %u(was %u) blocks at %u\n", (unsigned) size,
3042 (unsigned) orig_size, (unsigned) start);
3043 }
3044
3045 static void ext4_mb_collect_stats(struct ext4_allocation_context *ac)
3046 {
3047 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3048
3049 if (sbi->s_mb_stats && ac->ac_g_ex.fe_len > 1) {
3050 atomic_inc(&sbi->s_bal_reqs);
3051 atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated);
3052 if (ac->ac_b_ex.fe_len >= ac->ac_o_ex.fe_len)
3053 atomic_inc(&sbi->s_bal_success);
3054 atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned);
3055 if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start &&
3056 ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group)
3057 atomic_inc(&sbi->s_bal_goals);
3058 if (ac->ac_found > sbi->s_mb_max_to_scan)
3059 atomic_inc(&sbi->s_bal_breaks);
3060 }
3061
3062 if (ac->ac_op == EXT4_MB_HISTORY_ALLOC)
3063 trace_ext4_mballoc_alloc(ac);
3064 else
3065 trace_ext4_mballoc_prealloc(ac);
3066 }
3067
3068 /*
3069 * Called on failure; free up any blocks from the inode PA for this
3070 * context. We don't need this for MB_GROUP_PA because we only change
3071 * pa_free in ext4_mb_release_context(), but on failure, we've already
3072 * zeroed out ac->ac_b_ex.fe_len, so group_pa->pa_free is not changed.
3073 */
3074 static void ext4_discard_allocated_blocks(struct ext4_allocation_context *ac)
3075 {
3076 struct ext4_prealloc_space *pa = ac->ac_pa;
3077
3078 if (pa && pa->pa_type == MB_INODE_PA)
3079 pa->pa_free += ac->ac_b_ex.fe_len;
3080 }
3081
3082 /*
3083 * use blocks preallocated to inode
3084 */
3085 static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac,
3086 struct ext4_prealloc_space *pa)
3087 {
3088 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3089 ext4_fsblk_t start;
3090 ext4_fsblk_t end;
3091 int len;
3092
3093 /* found preallocated blocks, use them */
3094 start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart);
3095 end = min(pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len),
3096 start + EXT4_C2B(sbi, ac->ac_o_ex.fe_len));
3097 len = EXT4_NUM_B2C(sbi, end - start);
3098 ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group,
3099 &ac->ac_b_ex.fe_start);
3100 ac->ac_b_ex.fe_len = len;
3101 ac->ac_status = AC_STATUS_FOUND;
3102 ac->ac_pa = pa;
3103
3104 BUG_ON(start < pa->pa_pstart);
3105 BUG_ON(end > pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len));
3106 BUG_ON(pa->pa_free < len);
3107 pa->pa_free -= len;
3108
3109 mb_debug(1, "use %llu/%u from inode pa %p\n", start, len, pa);
3110 }
3111
3112 /*
3113 * use blocks preallocated to locality group
3114 */
3115 static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac,
3116 struct ext4_prealloc_space *pa)
3117 {
3118 unsigned int len = ac->ac_o_ex.fe_len;
3119
3120 ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart,
3121 &ac->ac_b_ex.fe_group,
3122 &ac->ac_b_ex.fe_start);
3123 ac->ac_b_ex.fe_len = len;
3124 ac->ac_status = AC_STATUS_FOUND;
3125 ac->ac_pa = pa;
3126
3127 /* we don't correct pa_pstart or pa_plen here to avoid
3128 * possible race when the group is being loaded concurrently
3129 * instead we correct pa later, after blocks are marked
3130 * in on-disk bitmap -- see ext4_mb_release_context()
3131 * Other CPUs are prevented from allocating from this pa by lg_mutex
3132 */
3133 mb_debug(1, "use %u/%u from group pa %p\n", pa->pa_lstart-len, len, pa);
3134 }
3135
3136 /*
3137 * Return the prealloc space that have minimal distance
3138 * from the goal block. @cpa is the prealloc
3139 * space that is having currently known minimal distance
3140 * from the goal block.
3141 */
3142 static struct ext4_prealloc_space *
3143 ext4_mb_check_group_pa(ext4_fsblk_t goal_block,
3144 struct ext4_prealloc_space *pa,
3145 struct ext4_prealloc_space *cpa)
3146 {
3147 ext4_fsblk_t cur_distance, new_distance;
3148
3149 if (cpa == NULL) {
3150 atomic_inc(&pa->pa_count);
3151 return pa;
3152 }
3153 cur_distance = abs(goal_block - cpa->pa_pstart);
3154 new_distance = abs(goal_block - pa->pa_pstart);
3155
3156 if (cur_distance <= new_distance)
3157 return cpa;
3158
3159 /* drop the previous reference */
3160 atomic_dec(&cpa->pa_count);
3161 atomic_inc(&pa->pa_count);
3162 return pa;
3163 }
3164
3165 /*
3166 * search goal blocks in preallocated space
3167 */
3168 static noinline_for_stack int
3169 ext4_mb_use_preallocated(struct ext4_allocation_context *ac)
3170 {
3171 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3172 int order, i;
3173 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
3174 struct ext4_locality_group *lg;
3175 struct ext4_prealloc_space *pa, *cpa = NULL;
3176 ext4_fsblk_t goal_block;
3177
3178 /* only data can be preallocated */
3179 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3180 return 0;
3181
3182 /* first, try per-file preallocation */
3183 rcu_read_lock();
3184 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3185
3186 /* all fields in this condition don't change,
3187 * so we can skip locking for them */
3188 if (ac->ac_o_ex.fe_logical < pa->pa_lstart ||
3189 ac->ac_o_ex.fe_logical >= (pa->pa_lstart +
3190 EXT4_C2B(sbi, pa->pa_len)))
3191 continue;
3192
3193 /* non-extent files can't have physical blocks past 2^32 */
3194 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)) &&
3195 (pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len) >
3196 EXT4_MAX_BLOCK_FILE_PHYS))
3197 continue;
3198
3199 /* found preallocated blocks, use them */
3200 spin_lock(&pa->pa_lock);
3201 if (pa->pa_deleted == 0 && pa->pa_free) {
3202 atomic_inc(&pa->pa_count);
3203 ext4_mb_use_inode_pa(ac, pa);
3204 spin_unlock(&pa->pa_lock);
3205 ac->ac_criteria = 10;
3206 rcu_read_unlock();
3207 return 1;
3208 }
3209 spin_unlock(&pa->pa_lock);
3210 }
3211 rcu_read_unlock();
3212
3213 /* can we use group allocation? */
3214 if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC))
3215 return 0;
3216
3217 /* inode may have no locality group for some reason */
3218 lg = ac->ac_lg;
3219 if (lg == NULL)
3220 return 0;
3221 order = fls(ac->ac_o_ex.fe_len) - 1;
3222 if (order > PREALLOC_TB_SIZE - 1)
3223 /* The max size of hash table is PREALLOC_TB_SIZE */
3224 order = PREALLOC_TB_SIZE - 1;
3225
3226 goal_block = ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex);
3227 /*
3228 * search for the prealloc space that is having
3229 * minimal distance from the goal block.
3230 */
3231 for (i = order; i < PREALLOC_TB_SIZE; i++) {
3232 rcu_read_lock();
3233 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[i],
3234 pa_inode_list) {
3235 spin_lock(&pa->pa_lock);
3236 if (pa->pa_deleted == 0 &&
3237 pa->pa_free >= ac->ac_o_ex.fe_len) {
3238
3239 cpa = ext4_mb_check_group_pa(goal_block,
3240 pa, cpa);
3241 }
3242 spin_unlock(&pa->pa_lock);
3243 }
3244 rcu_read_unlock();
3245 }
3246 if (cpa) {
3247 ext4_mb_use_group_pa(ac, cpa);
3248 ac->ac_criteria = 20;
3249 return 1;
3250 }
3251 return 0;
3252 }
3253
3254 /*
3255 * the function goes through all block freed in the group
3256 * but not yet committed and marks them used in in-core bitmap.
3257 * buddy must be generated from this bitmap
3258 * Need to be called with the ext4 group lock held
3259 */
3260 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
3261 ext4_group_t group)
3262 {
3263 struct rb_node *n;
3264 struct ext4_group_info *grp;
3265 struct ext4_free_data *entry;
3266
3267 grp = ext4_get_group_info(sb, group);
3268 n = rb_first(&(grp->bb_free_root));
3269
3270 while (n) {
3271 entry = rb_entry(n, struct ext4_free_data, efd_node);
3272 ext4_set_bits(bitmap, entry->efd_start_cluster, entry->efd_count);
3273 n = rb_next(n);
3274 }
3275 return;
3276 }
3277
3278 /*
3279 * the function goes through all preallocation in this group and marks them
3280 * used in in-core bitmap. buddy must be generated from this bitmap
3281 * Need to be called with ext4 group lock held
3282 */
3283 static noinline_for_stack
3284 void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
3285 ext4_group_t group)
3286 {
3287 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
3288 struct ext4_prealloc_space *pa;
3289 struct list_head *cur;
3290 ext4_group_t groupnr;
3291 ext4_grpblk_t start;
3292 int preallocated = 0;
3293 int len;
3294
3295 /* all form of preallocation discards first load group,
3296 * so the only competing code is preallocation use.
3297 * we don't need any locking here
3298 * notice we do NOT ignore preallocations with pa_deleted
3299 * otherwise we could leave used blocks available for
3300 * allocation in buddy when concurrent ext4_mb_put_pa()
3301 * is dropping preallocation
3302 */
3303 list_for_each(cur, &grp->bb_prealloc_list) {
3304 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
3305 spin_lock(&pa->pa_lock);
3306 ext4_get_group_no_and_offset(sb, pa->pa_pstart,
3307 &groupnr, &start);
3308 len = pa->pa_len;
3309 spin_unlock(&pa->pa_lock);
3310 if (unlikely(len == 0))
3311 continue;
3312 BUG_ON(groupnr != group);
3313 ext4_set_bits(bitmap, start, len);
3314 preallocated += len;
3315 }
3316 mb_debug(1, "prellocated %u for group %u\n", preallocated, group);
3317 }
3318
3319 static void ext4_mb_pa_callback(struct rcu_head *head)
3320 {
3321 struct ext4_prealloc_space *pa;
3322 pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu);
3323 kmem_cache_free(ext4_pspace_cachep, pa);
3324 }
3325
3326 /*
3327 * drops a reference to preallocated space descriptor
3328 * if this was the last reference and the space is consumed
3329 */
3330 static void ext4_mb_put_pa(struct ext4_allocation_context *ac,
3331 struct super_block *sb, struct ext4_prealloc_space *pa)
3332 {
3333 ext4_group_t grp;
3334 ext4_fsblk_t grp_blk;
3335
3336 if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0)
3337 return;
3338
3339 /* in this short window concurrent discard can set pa_deleted */
3340 spin_lock(&pa->pa_lock);
3341 if (pa->pa_deleted == 1) {
3342 spin_unlock(&pa->pa_lock);
3343 return;
3344 }
3345
3346 pa->pa_deleted = 1;
3347 spin_unlock(&pa->pa_lock);
3348
3349 grp_blk = pa->pa_pstart;
3350 /*
3351 * If doing group-based preallocation, pa_pstart may be in the
3352 * next group when pa is used up
3353 */
3354 if (pa->pa_type == MB_GROUP_PA)
3355 grp_blk--;
3356
3357 ext4_get_group_no_and_offset(sb, grp_blk, &grp, NULL);
3358
3359 /*
3360 * possible race:
3361 *
3362 * P1 (buddy init) P2 (regular allocation)
3363 * find block B in PA
3364 * copy on-disk bitmap to buddy
3365 * mark B in on-disk bitmap
3366 * drop PA from group
3367 * mark all PAs in buddy
3368 *
3369 * thus, P1 initializes buddy with B available. to prevent this
3370 * we make "copy" and "mark all PAs" atomic and serialize "drop PA"
3371 * against that pair
3372 */
3373 ext4_lock_group(sb, grp);
3374 list_del(&pa->pa_group_list);
3375 ext4_unlock_group(sb, grp);
3376
3377 spin_lock(pa->pa_obj_lock);
3378 list_del_rcu(&pa->pa_inode_list);
3379 spin_unlock(pa->pa_obj_lock);
3380
3381 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3382 }
3383
3384 /*
3385 * creates new preallocated space for given inode
3386 */
3387 static noinline_for_stack int
3388 ext4_mb_new_inode_pa(struct ext4_allocation_context *ac)
3389 {
3390 struct super_block *sb = ac->ac_sb;
3391 struct ext4_sb_info *sbi = EXT4_SB(sb);
3392 struct ext4_prealloc_space *pa;
3393 struct ext4_group_info *grp;
3394 struct ext4_inode_info *ei;
3395
3396 /* preallocate only when found space is larger then requested */
3397 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
3398 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3399 BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
3400
3401 pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
3402 if (pa == NULL)
3403 return -ENOMEM;
3404
3405 if (ac->ac_b_ex.fe_len < ac->ac_g_ex.fe_len) {
3406 int winl;
3407 int wins;
3408 int win;
3409 int offs;
3410
3411 /* we can't allocate as much as normalizer wants.
3412 * so, found space must get proper lstart
3413 * to cover original request */
3414 BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical);
3415 BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len);
3416
3417 /* we're limited by original request in that
3418 * logical block must be covered any way
3419 * winl is window we can move our chunk within */
3420 winl = ac->ac_o_ex.fe_logical - ac->ac_g_ex.fe_logical;
3421
3422 /* also, we should cover whole original request */
3423 wins = EXT4_C2B(sbi, ac->ac_b_ex.fe_len - ac->ac_o_ex.fe_len);
3424
3425 /* the smallest one defines real window */
3426 win = min(winl, wins);
3427
3428 offs = ac->ac_o_ex.fe_logical %
3429 EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
3430 if (offs && offs < win)
3431 win = offs;
3432
3433 ac->ac_b_ex.fe_logical = ac->ac_o_ex.fe_logical -
3434 EXT4_B2C(sbi, win);
3435 BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical);
3436 BUG_ON(ac->ac_o_ex.fe_len > ac->ac_b_ex.fe_len);
3437 }
3438
3439 /* preallocation can change ac_b_ex, thus we store actually
3440 * allocated blocks for history */
3441 ac->ac_f_ex = ac->ac_b_ex;
3442
3443 pa->pa_lstart = ac->ac_b_ex.fe_logical;
3444 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3445 pa->pa_len = ac->ac_b_ex.fe_len;
3446 pa->pa_free = pa->pa_len;
3447 atomic_set(&pa->pa_count, 1);
3448 spin_lock_init(&pa->pa_lock);
3449 INIT_LIST_HEAD(&pa->pa_inode_list);
3450 INIT_LIST_HEAD(&pa->pa_group_list);
3451 pa->pa_deleted = 0;
3452 pa->pa_type = MB_INODE_PA;
3453
3454 mb_debug(1, "new inode pa %p: %llu/%u for %u\n", pa,
3455 pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3456 trace_ext4_mb_new_inode_pa(ac, pa);
3457
3458 ext4_mb_use_inode_pa(ac, pa);
3459 atomic_add(pa->pa_free, &sbi->s_mb_preallocated);
3460
3461 ei = EXT4_I(ac->ac_inode);
3462 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
3463
3464 pa->pa_obj_lock = &ei->i_prealloc_lock;
3465 pa->pa_inode = ac->ac_inode;
3466
3467 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3468 list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
3469 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3470
3471 spin_lock(pa->pa_obj_lock);
3472 list_add_rcu(&pa->pa_inode_list, &ei->i_prealloc_list);
3473 spin_unlock(pa->pa_obj_lock);
3474
3475 return 0;
3476 }
3477
3478 /*
3479 * creates new preallocated space for locality group inodes belongs to
3480 */
3481 static noinline_for_stack int
3482 ext4_mb_new_group_pa(struct ext4_allocation_context *ac)
3483 {
3484 struct super_block *sb = ac->ac_sb;
3485 struct ext4_locality_group *lg;
3486 struct ext4_prealloc_space *pa;
3487 struct ext4_group_info *grp;
3488
3489 /* preallocate only when found space is larger then requested */
3490 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
3491 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3492 BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
3493
3494 BUG_ON(ext4_pspace_cachep == NULL);
3495 pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
3496 if (pa == NULL)
3497 return -ENOMEM;
3498
3499 /* preallocation can change ac_b_ex, thus we store actually
3500 * allocated blocks for history */
3501 ac->ac_f_ex = ac->ac_b_ex;
3502
3503 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3504 pa->pa_lstart = pa->pa_pstart;
3505 pa->pa_len = ac->ac_b_ex.fe_len;
3506 pa->pa_free = pa->pa_len;
3507 atomic_set(&pa->pa_count, 1);
3508 spin_lock_init(&pa->pa_lock);
3509 INIT_LIST_HEAD(&pa->pa_inode_list);
3510 INIT_LIST_HEAD(&pa->pa_group_list);
3511 pa->pa_deleted = 0;
3512 pa->pa_type = MB_GROUP_PA;
3513
3514 mb_debug(1, "new group pa %p: %llu/%u for %u\n", pa,
3515 pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3516 trace_ext4_mb_new_group_pa(ac, pa);
3517
3518 ext4_mb_use_group_pa(ac, pa);
3519 atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated);
3520
3521 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
3522 lg = ac->ac_lg;
3523 BUG_ON(lg == NULL);
3524
3525 pa->pa_obj_lock = &lg->lg_prealloc_lock;
3526 pa->pa_inode = NULL;
3527
3528 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3529 list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
3530 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3531
3532 /*
3533 * We will later add the new pa to the right bucket
3534 * after updating the pa_free in ext4_mb_release_context
3535 */
3536 return 0;
3537 }
3538
3539 static int ext4_mb_new_preallocation(struct ext4_allocation_context *ac)
3540 {
3541 int err;
3542
3543 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
3544 err = ext4_mb_new_group_pa(ac);
3545 else
3546 err = ext4_mb_new_inode_pa(ac);
3547 return err;
3548 }
3549
3550 /*
3551 * finds all unused blocks in on-disk bitmap, frees them in
3552 * in-core bitmap and buddy.
3553 * @pa must be unlinked from inode and group lists, so that
3554 * nobody else can find/use it.
3555 * the caller MUST hold group/inode locks.
3556 * TODO: optimize the case when there are no in-core structures yet
3557 */
3558 static noinline_for_stack int
3559 ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh,
3560 struct ext4_prealloc_space *pa)
3561 {
3562 struct super_block *sb = e4b->bd_sb;
3563 struct ext4_sb_info *sbi = EXT4_SB(sb);
3564 unsigned int end;
3565 unsigned int next;
3566 ext4_group_t group;
3567 ext4_grpblk_t bit;
3568 unsigned long long grp_blk_start;
3569 int err = 0;
3570 int free = 0;
3571
3572 BUG_ON(pa->pa_deleted == 0);
3573 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3574 grp_blk_start = pa->pa_pstart - EXT4_C2B(sbi, bit);
3575 BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
3576 end = bit + pa->pa_len;
3577
3578 while (bit < end) {
3579 bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit);
3580 if (bit >= end)
3581 break;
3582 next = mb_find_next_bit(bitmap_bh->b_data, end, bit);
3583 mb_debug(1, " free preallocated %u/%u in group %u\n",
3584 (unsigned) ext4_group_first_block_no(sb, group) + bit,
3585 (unsigned) next - bit, (unsigned) group);
3586 free += next - bit;
3587
3588 trace_ext4_mballoc_discard(sb, NULL, group, bit, next - bit);
3589 trace_ext4_mb_release_inode_pa(pa, (grp_blk_start +
3590 EXT4_C2B(sbi, bit)),
3591 next - bit);
3592 mb_free_blocks(pa->pa_inode, e4b, bit, next - bit);
3593 bit = next + 1;
3594 }
3595 if (free != pa->pa_free) {
3596 ext4_msg(e4b->bd_sb, KERN_CRIT,
3597 "pa %p: logic %lu, phys. %lu, len %lu",
3598 pa, (unsigned long) pa->pa_lstart,
3599 (unsigned long) pa->pa_pstart,
3600 (unsigned long) pa->pa_len);
3601 ext4_grp_locked_error(sb, group, 0, 0, "free %u, pa_free %u",
3602 free, pa->pa_free);
3603 /*
3604 * pa is already deleted so we use the value obtained
3605 * from the bitmap and continue.
3606 */
3607 }
3608 atomic_add(free, &sbi->s_mb_discarded);
3609
3610 return err;
3611 }
3612
3613 static noinline_for_stack int
3614 ext4_mb_release_group_pa(struct ext4_buddy *e4b,
3615 struct ext4_prealloc_space *pa)
3616 {
3617 struct super_block *sb = e4b->bd_sb;
3618 ext4_group_t group;
3619 ext4_grpblk_t bit;
3620
3621 trace_ext4_mb_release_group_pa(sb, pa);
3622 BUG_ON(pa->pa_deleted == 0);
3623 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3624 BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
3625 mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len);
3626 atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded);
3627 trace_ext4_mballoc_discard(sb, NULL, group, bit, pa->pa_len);
3628
3629 return 0;
3630 }
3631
3632 /*
3633 * releases all preallocations in given group
3634 *
3635 * first, we need to decide discard policy:
3636 * - when do we discard
3637 * 1) ENOSPC
3638 * - how many do we discard
3639 * 1) how many requested
3640 */
3641 static noinline_for_stack int
3642 ext4_mb_discard_group_preallocations(struct super_block *sb,
3643 ext4_group_t group, int needed)
3644 {
3645 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
3646 struct buffer_head *bitmap_bh = NULL;
3647 struct ext4_prealloc_space *pa, *tmp;
3648 struct list_head list;
3649 struct ext4_buddy e4b;
3650 int err;
3651 int busy = 0;
3652 int free = 0;
3653
3654 mb_debug(1, "discard preallocation for group %u\n", group);
3655
3656 if (list_empty(&grp->bb_prealloc_list))
3657 return 0;
3658
3659 bitmap_bh = ext4_read_block_bitmap(sb, group);
3660 if (bitmap_bh == NULL) {
3661 ext4_error(sb, "Error reading block bitmap for %u", group);
3662 return 0;
3663 }
3664
3665 err = ext4_mb_load_buddy(sb, group, &e4b);
3666 if (err) {
3667 ext4_error(sb, "Error loading buddy information for %u", group);
3668 put_bh(bitmap_bh);
3669 return 0;
3670 }
3671
3672 if (needed == 0)
3673 needed = EXT4_CLUSTERS_PER_GROUP(sb) + 1;
3674
3675 INIT_LIST_HEAD(&list);
3676 repeat:
3677 ext4_lock_group(sb, group);
3678 list_for_each_entry_safe(pa, tmp,
3679 &grp->bb_prealloc_list, pa_group_list) {
3680 spin_lock(&pa->pa_lock);
3681 if (atomic_read(&pa->pa_count)) {
3682 spin_unlock(&pa->pa_lock);
3683 busy = 1;
3684 continue;
3685 }
3686 if (pa->pa_deleted) {
3687 spin_unlock(&pa->pa_lock);
3688 continue;
3689 }
3690
3691 /* seems this one can be freed ... */
3692 pa->pa_deleted = 1;
3693
3694 /* we can trust pa_free ... */
3695 free += pa->pa_free;
3696
3697 spin_unlock(&pa->pa_lock);
3698
3699 list_del(&pa->pa_group_list);
3700 list_add(&pa->u.pa_tmp_list, &list);
3701 }
3702
3703 /* if we still need more blocks and some PAs were used, try again */
3704 if (free < needed && busy) {
3705 busy = 0;
3706 ext4_unlock_group(sb, group);
3707 /*
3708 * Yield the CPU here so that we don't get soft lockup
3709 * in non preempt case.
3710 */
3711 yield();
3712 goto repeat;
3713 }
3714
3715 /* found anything to free? */
3716 if (list_empty(&list)) {
3717 BUG_ON(free != 0);
3718 goto out;
3719 }
3720
3721 /* now free all selected PAs */
3722 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
3723
3724 /* remove from object (inode or locality group) */
3725 spin_lock(pa->pa_obj_lock);
3726 list_del_rcu(&pa->pa_inode_list);
3727 spin_unlock(pa->pa_obj_lock);
3728
3729 if (pa->pa_type == MB_GROUP_PA)
3730 ext4_mb_release_group_pa(&e4b, pa);
3731 else
3732 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
3733
3734 list_del(&pa->u.pa_tmp_list);
3735 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3736 }
3737
3738 out:
3739 ext4_unlock_group(sb, group);
3740 ext4_mb_unload_buddy(&e4b);
3741 put_bh(bitmap_bh);
3742 return free;
3743 }
3744
3745 /*
3746 * releases all non-used preallocated blocks for given inode
3747 *
3748 * It's important to discard preallocations under i_data_sem
3749 * We don't want another block to be served from the prealloc
3750 * space when we are discarding the inode prealloc space.
3751 *
3752 * FIXME!! Make sure it is valid at all the call sites
3753 */
3754 void ext4_discard_preallocations(struct inode *inode)
3755 {
3756 struct ext4_inode_info *ei = EXT4_I(inode);
3757 struct super_block *sb = inode->i_sb;
3758 struct buffer_head *bitmap_bh = NULL;
3759 struct ext4_prealloc_space *pa, *tmp;
3760 ext4_group_t group = 0;
3761 struct list_head list;
3762 struct ext4_buddy e4b;
3763 int err;
3764
3765 if (!S_ISREG(inode->i_mode)) {
3766 /*BUG_ON(!list_empty(&ei->i_prealloc_list));*/
3767 return;
3768 }
3769
3770 mb_debug(1, "discard preallocation for inode %lu\n", inode->i_ino);
3771 trace_ext4_discard_preallocations(inode);
3772
3773 INIT_LIST_HEAD(&list);
3774
3775 repeat:
3776 /* first, collect all pa's in the inode */
3777 spin_lock(&ei->i_prealloc_lock);
3778 while (!list_empty(&ei->i_prealloc_list)) {
3779 pa = list_entry(ei->i_prealloc_list.next,
3780 struct ext4_prealloc_space, pa_inode_list);
3781 BUG_ON(pa->pa_obj_lock != &ei->i_prealloc_lock);
3782 spin_lock(&pa->pa_lock);
3783 if (atomic_read(&pa->pa_count)) {
3784 /* this shouldn't happen often - nobody should
3785 * use preallocation while we're discarding it */
3786 spin_unlock(&pa->pa_lock);
3787 spin_unlock(&ei->i_prealloc_lock);
3788 ext4_msg(sb, KERN_ERR,
3789 "uh-oh! used pa while discarding");
3790 WARN_ON(1);
3791 schedule_timeout_uninterruptible(HZ);
3792 goto repeat;
3793
3794 }
3795 if (pa->pa_deleted == 0) {
3796 pa->pa_deleted = 1;
3797 spin_unlock(&pa->pa_lock);
3798 list_del_rcu(&pa->pa_inode_list);
3799 list_add(&pa->u.pa_tmp_list, &list);
3800 continue;
3801 }
3802
3803 /* someone is deleting pa right now */
3804 spin_unlock(&pa->pa_lock);
3805 spin_unlock(&ei->i_prealloc_lock);
3806
3807 /* we have to wait here because pa_deleted
3808 * doesn't mean pa is already unlinked from
3809 * the list. as we might be called from
3810 * ->clear_inode() the inode will get freed
3811 * and concurrent thread which is unlinking
3812 * pa from inode's list may access already
3813 * freed memory, bad-bad-bad */
3814
3815 /* XXX: if this happens too often, we can
3816 * add a flag to force wait only in case
3817 * of ->clear_inode(), but not in case of
3818 * regular truncate */
3819 schedule_timeout_uninterruptible(HZ);
3820 goto repeat;
3821 }
3822 spin_unlock(&ei->i_prealloc_lock);
3823
3824 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
3825 BUG_ON(pa->pa_type != MB_INODE_PA);
3826 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, NULL);
3827
3828 err = ext4_mb_load_buddy(sb, group, &e4b);
3829 if (err) {
3830 ext4_error(sb, "Error loading buddy information for %u",
3831 group);
3832 continue;
3833 }
3834
3835 bitmap_bh = ext4_read_block_bitmap(sb, group);
3836 if (bitmap_bh == NULL) {
3837 ext4_error(sb, "Error reading block bitmap for %u",
3838 group);
3839 ext4_mb_unload_buddy(&e4b);
3840 continue;
3841 }
3842
3843 ext4_lock_group(sb, group);
3844 list_del(&pa->pa_group_list);
3845 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
3846 ext4_unlock_group(sb, group);
3847
3848 ext4_mb_unload_buddy(&e4b);
3849 put_bh(bitmap_bh);
3850
3851 list_del(&pa->u.pa_tmp_list);
3852 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3853 }
3854 }
3855
3856 #ifdef CONFIG_EXT4_DEBUG
3857 static void ext4_mb_show_ac(struct ext4_allocation_context *ac)
3858 {
3859 struct super_block *sb = ac->ac_sb;
3860 ext4_group_t ngroups, i;
3861
3862 if (!mb_enable_debug ||
3863 (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED))
3864 return;
3865
3866 ext4_msg(ac->ac_sb, KERN_ERR, "Can't allocate:"
3867 " Allocation context details:");
3868 ext4_msg(ac->ac_sb, KERN_ERR, "status %d flags %d",
3869 ac->ac_status, ac->ac_flags);
3870 ext4_msg(ac->ac_sb, KERN_ERR, "orig %lu/%lu/%lu@%lu, "
3871 "goal %lu/%lu/%lu@%lu, "
3872 "best %lu/%lu/%lu@%lu cr %d",
3873 (unsigned long)ac->ac_o_ex.fe_group,
3874 (unsigned long)ac->ac_o_ex.fe_start,
3875 (unsigned long)ac->ac_o_ex.fe_len,
3876 (unsigned long)ac->ac_o_ex.fe_logical,
3877 (unsigned long)ac->ac_g_ex.fe_group,
3878 (unsigned long)ac->ac_g_ex.fe_start,
3879 (unsigned long)ac->ac_g_ex.fe_len,
3880 (unsigned long)ac->ac_g_ex.fe_logical,
3881 (unsigned long)ac->ac_b_ex.fe_group,
3882 (unsigned long)ac->ac_b_ex.fe_start,
3883 (unsigned long)ac->ac_b_ex.fe_len,
3884 (unsigned long)ac->ac_b_ex.fe_logical,
3885 (int)ac->ac_criteria);
3886 ext4_msg(ac->ac_sb, KERN_ERR, "%lu scanned, %d found",
3887 ac->ac_ex_scanned, ac->ac_found);
3888 ext4_msg(ac->ac_sb, KERN_ERR, "groups: ");
3889 ngroups = ext4_get_groups_count(sb);
3890 for (i = 0; i < ngroups; i++) {
3891 struct ext4_group_info *grp = ext4_get_group_info(sb, i);
3892 struct ext4_prealloc_space *pa;
3893 ext4_grpblk_t start;
3894 struct list_head *cur;
3895 ext4_lock_group(sb, i);
3896 list_for_each(cur, &grp->bb_prealloc_list) {
3897 pa = list_entry(cur, struct ext4_prealloc_space,
3898 pa_group_list);
3899 spin_lock(&pa->pa_lock);
3900 ext4_get_group_no_and_offset(sb, pa->pa_pstart,
3901 NULL, &start);
3902 spin_unlock(&pa->pa_lock);
3903 printk(KERN_ERR "PA:%u:%d:%u \n", i,
3904 start, pa->pa_len);
3905 }
3906 ext4_unlock_group(sb, i);
3907
3908 if (grp->bb_free == 0)
3909 continue;
3910 printk(KERN_ERR "%u: %d/%d \n",
3911 i, grp->bb_free, grp->bb_fragments);
3912 }
3913 printk(KERN_ERR "\n");
3914 }
3915 #else
3916 static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac)
3917 {
3918 return;
3919 }
3920 #endif
3921
3922 /*
3923 * We use locality group preallocation for small size file. The size of the
3924 * file is determined by the current size or the resulting size after
3925 * allocation which ever is larger
3926 *
3927 * One can tune this size via /sys/fs/ext4/<partition>/mb_stream_req
3928 */
3929 static void ext4_mb_group_or_file(struct ext4_allocation_context *ac)
3930 {
3931 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3932 int bsbits = ac->ac_sb->s_blocksize_bits;
3933 loff_t size, isize;
3934
3935 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3936 return;
3937
3938 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
3939 return;
3940
3941 size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len);
3942 isize = (i_size_read(ac->ac_inode) + ac->ac_sb->s_blocksize - 1)
3943 >> bsbits;
3944
3945 if ((size == isize) &&
3946 !ext4_fs_is_busy(sbi) &&
3947 (atomic_read(&ac->ac_inode->i_writecount) == 0)) {
3948 ac->ac_flags |= EXT4_MB_HINT_NOPREALLOC;
3949 return;
3950 }
3951
3952 if (sbi->s_mb_group_prealloc <= 0) {
3953 ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
3954 return;
3955 }
3956
3957 /* don't use group allocation for large files */
3958 size = max(size, isize);
3959 if (size > sbi->s_mb_stream_request) {
3960 ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
3961 return;
3962 }
3963
3964 BUG_ON(ac->ac_lg != NULL);
3965 /*
3966 * locality group prealloc space are per cpu. The reason for having
3967 * per cpu locality group is to reduce the contention between block
3968 * request from multiple CPUs.
3969 */
3970 ac->ac_lg = __this_cpu_ptr(sbi->s_locality_groups);
3971
3972 /* we're going to use group allocation */
3973 ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC;
3974
3975 /* serialize all allocations in the group */
3976 mutex_lock(&ac->ac_lg->lg_mutex);
3977 }
3978
3979 static noinline_for_stack int
3980 ext4_mb_initialize_context(struct ext4_allocation_context *ac,
3981 struct ext4_allocation_request *ar)
3982 {
3983 struct super_block *sb = ar->inode->i_sb;
3984 struct ext4_sb_info *sbi = EXT4_SB(sb);
3985 struct ext4_super_block *es = sbi->s_es;
3986 ext4_group_t group;
3987 unsigned int len;
3988 ext4_fsblk_t goal;
3989 ext4_grpblk_t block;
3990
3991 /* we can't allocate > group size */
3992 len = ar->len;
3993
3994 /* just a dirty hack to filter too big requests */
3995 if (len >= EXT4_CLUSTERS_PER_GROUP(sb) - 10)
3996 len = EXT4_CLUSTERS_PER_GROUP(sb) - 10;
3997
3998 /* start searching from the goal */
3999 goal = ar->goal;
4000 if (goal < le32_to_cpu(es->s_first_data_block) ||
4001 goal >= ext4_blocks_count(es))
4002 goal = le32_to_cpu(es->s_first_data_block);
4003 ext4_get_group_no_and_offset(sb, goal, &group, &block);
4004
4005 /* set up allocation goals */
4006 memset(ac, 0, sizeof(struct ext4_allocation_context));
4007 ac->ac_b_ex.fe_logical = ar->logical & ~(sbi->s_cluster_ratio - 1);
4008 ac->ac_status = AC_STATUS_CONTINUE;
4009 ac->ac_sb = sb;
4010 ac->ac_inode = ar->inode;
4011 ac->ac_o_ex.fe_logical = ac->ac_b_ex.fe_logical;
4012 ac->ac_o_ex.fe_group = group;
4013 ac->ac_o_ex.fe_start = block;
4014 ac->ac_o_ex.fe_len = len;
4015 ac->ac_g_ex = ac->ac_o_ex;
4016 ac->ac_flags = ar->flags;
4017
4018 /* we have to define context: we'll we work with a file or
4019 * locality group. this is a policy, actually */
4020 ext4_mb_group_or_file(ac);
4021
4022 mb_debug(1, "init ac: %u blocks @ %u, goal %u, flags %x, 2^%d, "
4023 "left: %u/%u, right %u/%u to %swritable\n",
4024 (unsigned) ar->len, (unsigned) ar->logical,
4025 (unsigned) ar->goal, ac->ac_flags, ac->ac_2order,
4026 (unsigned) ar->lleft, (unsigned) ar->pleft,
4027 (unsigned) ar->lright, (unsigned) ar->pright,
4028 atomic_read(&ar->inode->i_writecount) ? "" : "non-");
4029 return 0;
4030
4031 }
4032
4033 static noinline_for_stack void
4034 ext4_mb_discard_lg_preallocations(struct super_block *sb,
4035 struct ext4_locality_group *lg,
4036 int order, int total_entries)
4037 {
4038 ext4_group_t group = 0;
4039 struct ext4_buddy e4b;
4040 struct list_head discard_list;
4041 struct ext4_prealloc_space *pa, *tmp;
4042
4043 mb_debug(1, "discard locality group preallocation\n");
4044
4045 INIT_LIST_HEAD(&discard_list);
4046
4047 spin_lock(&lg->lg_prealloc_lock);
4048 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[order],
4049 pa_inode_list) {
4050 spin_lock(&pa->pa_lock);
4051 if (atomic_read(&pa->pa_count)) {
4052 /*
4053 * This is the pa that we just used
4054 * for block allocation. So don't
4055 * free that
4056 */
4057 spin_unlock(&pa->pa_lock);
4058 continue;
4059 }
4060 if (pa->pa_deleted) {
4061 spin_unlock(&pa->pa_lock);
4062 continue;
4063 }
4064 /* only lg prealloc space */
4065 BUG_ON(pa->pa_type != MB_GROUP_PA);
4066
4067 /* seems this one can be freed ... */
4068 pa->pa_deleted = 1;
4069 spin_unlock(&pa->pa_lock);
4070
4071 list_del_rcu(&pa->pa_inode_list);
4072 list_add(&pa->u.pa_tmp_list, &discard_list);
4073
4074 total_entries--;
4075 if (total_entries <= 5) {
4076 /*
4077 * we want to keep only 5 entries
4078 * allowing it to grow to 8. This
4079 * mak sure we don't call discard
4080 * soon for this list.
4081 */
4082 break;
4083 }
4084 }
4085 spin_unlock(&lg->lg_prealloc_lock);
4086
4087 list_for_each_entry_safe(pa, tmp, &discard_list, u.pa_tmp_list) {
4088
4089 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, NULL);
4090 if (ext4_mb_load_buddy(sb, group, &e4b)) {
4091 ext4_error(sb, "Error loading buddy information for %u",
4092 group);
4093 continue;
4094 }
4095 ext4_lock_group(sb, group);
4096 list_del(&pa->pa_group_list);
4097 ext4_mb_release_group_pa(&e4b, pa);
4098 ext4_unlock_group(sb, group);
4099
4100 ext4_mb_unload_buddy(&e4b);
4101 list_del(&pa->u.pa_tmp_list);
4102 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4103 }
4104 }
4105
4106 /*
4107 * We have incremented pa_count. So it cannot be freed at this
4108 * point. Also we hold lg_mutex. So no parallel allocation is
4109 * possible from this lg. That means pa_free cannot be updated.
4110 *
4111 * A parallel ext4_mb_discard_group_preallocations is possible.
4112 * which can cause the lg_prealloc_list to be updated.
4113 */
4114
4115 static void ext4_mb_add_n_trim(struct ext4_allocation_context *ac)
4116 {
4117 int order, added = 0, lg_prealloc_count = 1;
4118 struct super_block *sb = ac->ac_sb;
4119 struct ext4_locality_group *lg = ac->ac_lg;
4120 struct ext4_prealloc_space *tmp_pa, *pa = ac->ac_pa;
4121
4122 order = fls(pa->pa_free) - 1;
4123 if (order > PREALLOC_TB_SIZE - 1)
4124 /* The max size of hash table is PREALLOC_TB_SIZE */
4125 order = PREALLOC_TB_SIZE - 1;
4126 /* Add the prealloc space to lg */
4127 rcu_read_lock();
4128 list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[order],
4129 pa_inode_list) {
4130 spin_lock(&tmp_pa->pa_lock);
4131 if (tmp_pa->pa_deleted) {
4132 spin_unlock(&tmp_pa->pa_lock);
4133 continue;
4134 }
4135 if (!added && pa->pa_free < tmp_pa->pa_free) {
4136 /* Add to the tail of the previous entry */
4137 list_add_tail_rcu(&pa->pa_inode_list,
4138 &tmp_pa->pa_inode_list);
4139 added = 1;
4140 /*
4141 * we want to count the total
4142 * number of entries in the list
4143 */
4144 }
4145 spin_unlock(&tmp_pa->pa_lock);
4146 lg_prealloc_count++;
4147 }
4148 if (!added)
4149 list_add_tail_rcu(&pa->pa_inode_list,
4150 &lg->lg_prealloc_list[order]);
4151 rcu_read_unlock();
4152
4153 /* Now trim the list to be not more than 8 elements */
4154 if (lg_prealloc_count > 8) {
4155 ext4_mb_discard_lg_preallocations(sb, lg,
4156 order, lg_prealloc_count);
4157 return;
4158 }
4159 return ;
4160 }
4161
4162 /*
4163 * release all resource we used in allocation
4164 */
4165 static int ext4_mb_release_context(struct ext4_allocation_context *ac)
4166 {
4167 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4168 struct ext4_prealloc_space *pa = ac->ac_pa;
4169 if (pa) {
4170 if (pa->pa_type == MB_GROUP_PA) {
4171 /* see comment in ext4_mb_use_group_pa() */
4172 spin_lock(&pa->pa_lock);
4173 pa->pa_pstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
4174 pa->pa_lstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
4175 pa->pa_free -= ac->ac_b_ex.fe_len;
4176 pa->pa_len -= ac->ac_b_ex.fe_len;
4177 spin_unlock(&pa->pa_lock);
4178 }
4179 }
4180 if (pa) {
4181 /*
4182 * We want to add the pa to the right bucket.
4183 * Remove it from the list and while adding
4184 * make sure the list to which we are adding
4185 * doesn't grow big.
4186 */
4187 if ((pa->pa_type == MB_GROUP_PA) && likely(pa->pa_free)) {
4188 spin_lock(pa->pa_obj_lock);
4189 list_del_rcu(&pa->pa_inode_list);
4190 spin_unlock(pa->pa_obj_lock);
4191 ext4_mb_add_n_trim(ac);
4192 }
4193 ext4_mb_put_pa(ac, ac->ac_sb, pa);
4194 }
4195 if (ac->ac_bitmap_page)
4196 page_cache_release(ac->ac_bitmap_page);
4197 if (ac->ac_buddy_page)
4198 page_cache_release(ac->ac_buddy_page);
4199 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
4200 mutex_unlock(&ac->ac_lg->lg_mutex);
4201 ext4_mb_collect_stats(ac);
4202 return 0;
4203 }
4204
4205 static int ext4_mb_discard_preallocations(struct super_block *sb, int needed)
4206 {
4207 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
4208 int ret;
4209 int freed = 0;
4210
4211 trace_ext4_mb_discard_preallocations(sb, needed);
4212 for (i = 0; i < ngroups && needed > 0; i++) {
4213 ret = ext4_mb_discard_group_preallocations(sb, i, needed);
4214 freed += ret;
4215 needed -= ret;
4216 }
4217
4218 return freed;
4219 }
4220
4221 /*
4222 * Main entry point into mballoc to allocate blocks
4223 * it tries to use preallocation first, then falls back
4224 * to usual allocation
4225 */
4226 ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle,
4227 struct ext4_allocation_request *ar, int *errp)
4228 {
4229 int freed;
4230 struct ext4_allocation_context *ac = NULL;
4231 struct ext4_sb_info *sbi;
4232 struct super_block *sb;
4233 ext4_fsblk_t block = 0;
4234 unsigned int inquota = 0;
4235 unsigned int reserv_clstrs = 0;
4236
4237 sb = ar->inode->i_sb;
4238 sbi = EXT4_SB(sb);
4239
4240 trace_ext4_request_blocks(ar);
4241
4242 /* Allow to use superuser reservation for quota file */
4243 if (IS_NOQUOTA(ar->inode))
4244 ar->flags |= EXT4_MB_USE_ROOT_BLOCKS;
4245
4246 /*
4247 * For delayed allocation, we could skip the ENOSPC and
4248 * EDQUOT check, as blocks and quotas have been already
4249 * reserved when data being copied into pagecache.
4250 */
4251 if (ext4_test_inode_state(ar->inode, EXT4_STATE_DELALLOC_RESERVED))
4252 ar->flags |= EXT4_MB_DELALLOC_RESERVED;
4253 else {
4254 /* Without delayed allocation we need to verify
4255 * there is enough free blocks to do block allocation
4256 * and verify allocation doesn't exceed the quota limits.
4257 */
4258 while (ar->len &&
4259 ext4_claim_free_clusters(sbi, ar->len, ar->flags)) {
4260
4261 /* let others to free the space */
4262 yield();
4263 ar->len = ar->len >> 1;
4264 }
4265 if (!ar->len) {
4266 *errp = -ENOSPC;
4267 return 0;
4268 }
4269 reserv_clstrs = ar->len;
4270 if (ar->flags & EXT4_MB_USE_ROOT_BLOCKS) {
4271 dquot_alloc_block_nofail(ar->inode,
4272 EXT4_C2B(sbi, ar->len));
4273 } else {
4274 while (ar->len &&
4275 dquot_alloc_block(ar->inode,
4276 EXT4_C2B(sbi, ar->len))) {
4277
4278 ar->flags |= EXT4_MB_HINT_NOPREALLOC;
4279 ar->len--;
4280 }
4281 }
4282 inquota = ar->len;
4283 if (ar->len == 0) {
4284 *errp = -EDQUOT;
4285 goto out;
4286 }
4287 }
4288
4289 ac = kmem_cache_alloc(ext4_ac_cachep, GFP_NOFS);
4290 if (!ac) {
4291 ar->len = 0;
4292 *errp = -ENOMEM;
4293 goto out;
4294 }
4295
4296 *errp = ext4_mb_initialize_context(ac, ar);
4297 if (*errp) {
4298 ar->len = 0;
4299 goto out;
4300 }
4301
4302 ac->ac_op = EXT4_MB_HISTORY_PREALLOC;
4303 if (!ext4_mb_use_preallocated(ac)) {
4304 ac->ac_op = EXT4_MB_HISTORY_ALLOC;
4305 ext4_mb_normalize_request(ac, ar);
4306 repeat:
4307 /* allocate space in core */
4308 *errp = ext4_mb_regular_allocator(ac);
4309 if (*errp)
4310 goto errout;
4311
4312 /* as we've just preallocated more space than
4313 * user requested orinally, we store allocated
4314 * space in a special descriptor */
4315 if (ac->ac_status == AC_STATUS_FOUND &&
4316 ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len)
4317 ext4_mb_new_preallocation(ac);
4318 }
4319 if (likely(ac->ac_status == AC_STATUS_FOUND)) {
4320 *errp = ext4_mb_mark_diskspace_used(ac, handle, reserv_clstrs);
4321 if (*errp == -EAGAIN) {
4322 /*
4323 * drop the reference that we took
4324 * in ext4_mb_use_best_found
4325 */
4326 ext4_mb_release_context(ac);
4327 ac->ac_b_ex.fe_group = 0;
4328 ac->ac_b_ex.fe_start = 0;
4329 ac->ac_b_ex.fe_len = 0;
4330 ac->ac_status = AC_STATUS_CONTINUE;
4331 goto repeat;
4332 } else if (*errp)
4333 errout:
4334 ext4_discard_allocated_blocks(ac);
4335 else {
4336 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
4337 ar->len = ac->ac_b_ex.fe_len;
4338 }
4339 } else {
4340 freed = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len);
4341 if (freed)
4342 goto repeat;
4343 *errp = -ENOSPC;
4344 }
4345
4346 if (*errp) {
4347 ac->ac_b_ex.fe_len = 0;
4348 ar->len = 0;
4349 ext4_mb_show_ac(ac);
4350 }
4351 ext4_mb_release_context(ac);
4352 out:
4353 if (ac)
4354 kmem_cache_free(ext4_ac_cachep, ac);
4355 if (inquota && ar->len < inquota)
4356 dquot_free_block(ar->inode, EXT4_C2B(sbi, inquota - ar->len));
4357 if (!ar->len) {
4358 if (!ext4_test_inode_state(ar->inode,
4359 EXT4_STATE_DELALLOC_RESERVED))
4360 /* release all the reserved blocks if non delalloc */
4361 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
4362 reserv_clstrs);
4363 }
4364
4365 trace_ext4_allocate_blocks(ar, (unsigned long long)block);
4366
4367 return block;
4368 }
4369
4370 /*
4371 * We can merge two free data extents only if the physical blocks
4372 * are contiguous, AND the extents were freed by the same transaction,
4373 * AND the blocks are associated with the same group.
4374 */
4375 static int can_merge(struct ext4_free_data *entry1,
4376 struct ext4_free_data *entry2)
4377 {
4378 if ((entry1->efd_tid == entry2->efd_tid) &&
4379 (entry1->efd_group == entry2->efd_group) &&
4380 ((entry1->efd_start_cluster + entry1->efd_count) == entry2->efd_start_cluster))
4381 return 1;
4382 return 0;
4383 }
4384
4385 static noinline_for_stack int
4386 ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b,
4387 struct ext4_free_data *new_entry)
4388 {
4389 ext4_group_t group = e4b->bd_group;
4390 ext4_grpblk_t cluster;
4391 struct ext4_free_data *entry;
4392 struct ext4_group_info *db = e4b->bd_info;
4393 struct super_block *sb = e4b->bd_sb;
4394 struct ext4_sb_info *sbi = EXT4_SB(sb);
4395 struct rb_node **n = &db->bb_free_root.rb_node, *node;
4396 struct rb_node *parent = NULL, *new_node;
4397
4398 BUG_ON(!ext4_handle_valid(handle));
4399 BUG_ON(e4b->bd_bitmap_page == NULL);
4400 BUG_ON(e4b->bd_buddy_page == NULL);
4401
4402 new_node = &new_entry->efd_node;
4403 cluster = new_entry->efd_start_cluster;
4404
4405 if (!*n) {
4406 /* first free block exent. We need to
4407 protect buddy cache from being freed,
4408 * otherwise we'll refresh it from
4409 * on-disk bitmap and lose not-yet-available
4410 * blocks */
4411 page_cache_get(e4b->bd_buddy_page);
4412 page_cache_get(e4b->bd_bitmap_page);
4413 }
4414 while (*n) {
4415 parent = *n;
4416 entry = rb_entry(parent, struct ext4_free_data, efd_node);
4417 if (cluster < entry->efd_start_cluster)
4418 n = &(*n)->rb_left;
4419 else if (cluster >= (entry->efd_start_cluster + entry->efd_count))
4420 n = &(*n)->rb_right;
4421 else {
4422 ext4_grp_locked_error(sb, group, 0,
4423 ext4_group_first_block_no(sb, group) +
4424 EXT4_C2B(sbi, cluster),
4425 "Block already on to-be-freed list");
4426 return 0;
4427 }
4428 }
4429
4430 rb_link_node(new_node, parent, n);
4431 rb_insert_color(new_node, &db->bb_free_root);
4432
4433 /* Now try to see the extent can be merged to left and right */
4434 node = rb_prev(new_node);
4435 if (node) {
4436 entry = rb_entry(node, struct ext4_free_data, efd_node);
4437 if (can_merge(entry, new_entry)) {
4438 new_entry->efd_start_cluster = entry->efd_start_cluster;
4439 new_entry->efd_count += entry->efd_count;
4440 rb_erase(node, &(db->bb_free_root));
4441 ext4_journal_callback_del(handle, &entry->efd_jce);
4442 kmem_cache_free(ext4_free_data_cachep, entry);
4443 }
4444 }
4445
4446 node = rb_next(new_node);
4447 if (node) {
4448 entry = rb_entry(node, struct ext4_free_data, efd_node);
4449 if (can_merge(new_entry, entry)) {
4450 new_entry->efd_count += entry->efd_count;
4451 rb_erase(node, &(db->bb_free_root));
4452 ext4_journal_callback_del(handle, &entry->efd_jce);
4453 kmem_cache_free(ext4_free_data_cachep, entry);
4454 }
4455 }
4456 /* Add the extent to transaction's private list */
4457 ext4_journal_callback_add(handle, ext4_free_data_callback,
4458 &new_entry->efd_jce);
4459 return 0;
4460 }
4461
4462 /**
4463 * ext4_free_blocks() -- Free given blocks and update quota
4464 * @handle: handle for this transaction
4465 * @inode: inode
4466 * @block: start physical block to free
4467 * @count: number of blocks to count
4468 * @flags: flags used by ext4_free_blocks
4469 */
4470 void ext4_free_blocks(handle_t *handle, struct inode *inode,
4471 struct buffer_head *bh, ext4_fsblk_t block,
4472 unsigned long count, int flags)
4473 {
4474 struct buffer_head *bitmap_bh = NULL;
4475 struct super_block *sb = inode->i_sb;
4476 struct ext4_group_desc *gdp;
4477 unsigned long freed = 0;
4478 unsigned int overflow;
4479 ext4_grpblk_t bit;
4480 struct buffer_head *gd_bh;
4481 ext4_group_t block_group;
4482 struct ext4_sb_info *sbi;
4483 struct ext4_buddy e4b;
4484 unsigned int count_clusters;
4485 int err = 0;
4486 int ret;
4487
4488 if (bh) {
4489 if (block)
4490 BUG_ON(block != bh->b_blocknr);
4491 else
4492 block = bh->b_blocknr;
4493 }
4494
4495 sbi = EXT4_SB(sb);
4496 if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) &&
4497 !ext4_data_block_valid(sbi, block, count)) {
4498 ext4_error(sb, "Freeing blocks not in datazone - "
4499 "block = %llu, count = %lu", block, count);
4500 goto error_return;
4501 }
4502
4503 ext4_debug("freeing block %llu\n", block);
4504 trace_ext4_free_blocks(inode, block, count, flags);
4505
4506 if (flags & EXT4_FREE_BLOCKS_FORGET) {
4507 struct buffer_head *tbh = bh;
4508 int i;
4509
4510 BUG_ON(bh && (count > 1));
4511
4512 for (i = 0; i < count; i++) {
4513 if (!bh)
4514 tbh = sb_find_get_block(inode->i_sb,
4515 block + i);
4516 if (unlikely(!tbh))
4517 continue;
4518 ext4_forget(handle, flags & EXT4_FREE_BLOCKS_METADATA,
4519 inode, tbh, block + i);
4520 }
4521 }
4522
4523 /*
4524 * We need to make sure we don't reuse the freed block until
4525 * after the transaction is committed, which we can do by
4526 * treating the block as metadata, below. We make an
4527 * exception if the inode is to be written in writeback mode
4528 * since writeback mode has weak data consistency guarantees.
4529 */
4530 if (!ext4_should_writeback_data(inode))
4531 flags |= EXT4_FREE_BLOCKS_METADATA;
4532
4533 /*
4534 * If the extent to be freed does not begin on a cluster
4535 * boundary, we need to deal with partial clusters at the
4536 * beginning and end of the extent. Normally we will free
4537 * blocks at the beginning or the end unless we are explicitly
4538 * requested to avoid doing so.
4539 */
4540 overflow = block & (sbi->s_cluster_ratio - 1);
4541 if (overflow) {
4542 if (flags & EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER) {
4543 overflow = sbi->s_cluster_ratio - overflow;
4544 block += overflow;
4545 if (count > overflow)
4546 count -= overflow;
4547 else
4548 return;
4549 } else {
4550 block -= overflow;
4551 count += overflow;
4552 }
4553 }
4554 overflow = count & (sbi->s_cluster_ratio - 1);
4555 if (overflow) {
4556 if (flags & EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER) {
4557 if (count > overflow)
4558 count -= overflow;
4559 else
4560 return;
4561 } else
4562 count += sbi->s_cluster_ratio - overflow;
4563 }
4564
4565 do_more:
4566 overflow = 0;
4567 ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
4568
4569 /*
4570 * Check to see if we are freeing blocks across a group
4571 * boundary.
4572 */
4573 if (EXT4_C2B(sbi, bit) + count > EXT4_BLOCKS_PER_GROUP(sb)) {
4574 overflow = EXT4_C2B(sbi, bit) + count -
4575 EXT4_BLOCKS_PER_GROUP(sb);
4576 count -= overflow;
4577 }
4578 count_clusters = EXT4_B2C(sbi, count);
4579 bitmap_bh = ext4_read_block_bitmap(sb, block_group);
4580 if (!bitmap_bh) {
4581 err = -EIO;
4582 goto error_return;
4583 }
4584 gdp = ext4_get_group_desc(sb, block_group, &gd_bh);
4585 if (!gdp) {
4586 err = -EIO;
4587 goto error_return;
4588 }
4589
4590 if (in_range(ext4_block_bitmap(sb, gdp), block, count) ||
4591 in_range(ext4_inode_bitmap(sb, gdp), block, count) ||
4592 in_range(block, ext4_inode_table(sb, gdp),
4593 EXT4_SB(sb)->s_itb_per_group) ||
4594 in_range(block + count - 1, ext4_inode_table(sb, gdp),
4595 EXT4_SB(sb)->s_itb_per_group)) {
4596
4597 ext4_error(sb, "Freeing blocks in system zone - "
4598 "Block = %llu, count = %lu", block, count);
4599 /* err = 0. ext4_std_error should be a no op */
4600 goto error_return;
4601 }
4602
4603 BUFFER_TRACE(bitmap_bh, "getting write access");
4604 err = ext4_journal_get_write_access(handle, bitmap_bh);
4605 if (err)
4606 goto error_return;
4607
4608 /*
4609 * We are about to modify some metadata. Call the journal APIs
4610 * to unshare ->b_data if a currently-committing transaction is
4611 * using it
4612 */
4613 BUFFER_TRACE(gd_bh, "get_write_access");
4614 err = ext4_journal_get_write_access(handle, gd_bh);
4615 if (err)
4616 goto error_return;
4617 #ifdef AGGRESSIVE_CHECK
4618 {
4619 int i;
4620 for (i = 0; i < count_clusters; i++)
4621 BUG_ON(!mb_test_bit(bit + i, bitmap_bh->b_data));
4622 }
4623 #endif
4624 trace_ext4_mballoc_free(sb, inode, block_group, bit, count_clusters);
4625
4626 err = ext4_mb_load_buddy(sb, block_group, &e4b);
4627 if (err)
4628 goto error_return;
4629
4630 if ((flags & EXT4_FREE_BLOCKS_METADATA) && ext4_handle_valid(handle)) {
4631 struct ext4_free_data *new_entry;
4632 /*
4633 * blocks being freed are metadata. these blocks shouldn't
4634 * be used until this transaction is committed
4635 */
4636 new_entry = kmem_cache_alloc(ext4_free_data_cachep, GFP_NOFS);
4637 if (!new_entry) {
4638 ext4_mb_unload_buddy(&e4b);
4639 err = -ENOMEM;
4640 goto error_return;
4641 }
4642 new_entry->efd_start_cluster = bit;
4643 new_entry->efd_group = block_group;
4644 new_entry->efd_count = count_clusters;
4645 new_entry->efd_tid = handle->h_transaction->t_tid;
4646
4647 ext4_lock_group(sb, block_group);
4648 mb_clear_bits(bitmap_bh->b_data, bit, count_clusters);
4649 ext4_mb_free_metadata(handle, &e4b, new_entry);
4650 } else {
4651 /* need to update group_info->bb_free and bitmap
4652 * with group lock held. generate_buddy look at
4653 * them with group lock_held
4654 */
4655 ext4_lock_group(sb, block_group);
4656 mb_clear_bits(bitmap_bh->b_data, bit, count_clusters);
4657 mb_free_blocks(inode, &e4b, bit, count_clusters);
4658 }
4659
4660 ret = ext4_free_group_clusters(sb, gdp) + count_clusters;
4661 ext4_free_group_clusters_set(sb, gdp, ret);
4662 ext4_block_bitmap_csum_set(sb, block_group, gdp, bitmap_bh,
4663 EXT4_BLOCKS_PER_GROUP(sb) / 8);
4664 ext4_group_desc_csum_set(sb, block_group, gdp);
4665 ext4_unlock_group(sb, block_group);
4666 percpu_counter_add(&sbi->s_freeclusters_counter, count_clusters);
4667
4668 if (sbi->s_log_groups_per_flex) {
4669 ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
4670 atomic_add(count_clusters,
4671 &sbi->s_flex_groups[flex_group].free_clusters);
4672 }
4673
4674 ext4_mb_unload_buddy(&e4b);
4675
4676 freed += count;
4677
4678 if (!(flags & EXT4_FREE_BLOCKS_NO_QUOT_UPDATE))
4679 dquot_free_block(inode, EXT4_C2B(sbi, count_clusters));
4680
4681 /* We dirtied the bitmap block */
4682 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
4683 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
4684
4685 /* And the group descriptor block */
4686 BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
4687 ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
4688 if (!err)
4689 err = ret;
4690
4691 if (overflow && !err) {
4692 block += count;
4693 count = overflow;
4694 put_bh(bitmap_bh);
4695 goto do_more;
4696 }
4697 ext4_mark_super_dirty(sb);
4698 error_return:
4699 brelse(bitmap_bh);
4700 ext4_std_error(sb, err);
4701 return;
4702 }
4703
4704 /**
4705 * ext4_group_add_blocks() -- Add given blocks to an existing group
4706 * @handle: handle to this transaction
4707 * @sb: super block
4708 * @block: start physcial block to add to the block group
4709 * @count: number of blocks to free
4710 *
4711 * This marks the blocks as free in the bitmap and buddy.
4712 */
4713 int ext4_group_add_blocks(handle_t *handle, struct super_block *sb,
4714 ext4_fsblk_t block, unsigned long count)
4715 {
4716 struct buffer_head *bitmap_bh = NULL;
4717 struct buffer_head *gd_bh;
4718 ext4_group_t block_group;
4719 ext4_grpblk_t bit;
4720 unsigned int i;
4721 struct ext4_group_desc *desc;
4722 struct ext4_sb_info *sbi = EXT4_SB(sb);
4723 struct ext4_buddy e4b;
4724 int err = 0, ret, blk_free_count;
4725 ext4_grpblk_t blocks_freed;
4726
4727 ext4_debug("Adding block(s) %llu-%llu\n", block, block + count - 1);
4728
4729 if (count == 0)
4730 return 0;
4731
4732 ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
4733 /*
4734 * Check to see if we are freeing blocks across a group
4735 * boundary.
4736 */
4737 if (bit + count > EXT4_BLOCKS_PER_GROUP(sb)) {
4738 ext4_warning(sb, "too much blocks added to group %u\n",
4739 block_group);
4740 err = -EINVAL;
4741 goto error_return;
4742 }
4743
4744 bitmap_bh = ext4_read_block_bitmap(sb, block_group);
4745 if (!bitmap_bh) {
4746 err = -EIO;
4747 goto error_return;
4748 }
4749
4750 desc = ext4_get_group_desc(sb, block_group, &gd_bh);
4751 if (!desc) {
4752 err = -EIO;
4753 goto error_return;
4754 }
4755
4756 if (in_range(ext4_block_bitmap(sb, desc), block, count) ||
4757 in_range(ext4_inode_bitmap(sb, desc), block, count) ||
4758 in_range(block, ext4_inode_table(sb, desc), sbi->s_itb_per_group) ||
4759 in_range(block + count - 1, ext4_inode_table(sb, desc),
4760 sbi->s_itb_per_group)) {
4761 ext4_error(sb, "Adding blocks in system zones - "
4762 "Block = %llu, count = %lu",
4763 block, count);
4764 err = -EINVAL;
4765 goto error_return;
4766 }
4767
4768 BUFFER_TRACE(bitmap_bh, "getting write access");
4769 err = ext4_journal_get_write_access(handle, bitmap_bh);
4770 if (err)
4771 goto error_return;
4772
4773 /*
4774 * We are about to modify some metadata. Call the journal APIs
4775 * to unshare ->b_data if a currently-committing transaction is
4776 * using it
4777 */
4778 BUFFER_TRACE(gd_bh, "get_write_access");
4779 err = ext4_journal_get_write_access(handle, gd_bh);
4780 if (err)
4781 goto error_return;
4782
4783 for (i = 0, blocks_freed = 0; i < count; i++) {
4784 BUFFER_TRACE(bitmap_bh, "clear bit");
4785 if (!mb_test_bit(bit + i, bitmap_bh->b_data)) {
4786 ext4_error(sb, "bit already cleared for block %llu",
4787 (ext4_fsblk_t)(block + i));
4788 BUFFER_TRACE(bitmap_bh, "bit already cleared");
4789 } else {
4790 blocks_freed++;
4791 }
4792 }
4793
4794 err = ext4_mb_load_buddy(sb, block_group, &e4b);
4795 if (err)
4796 goto error_return;
4797
4798 /*
4799 * need to update group_info->bb_free and bitmap
4800 * with group lock held. generate_buddy look at
4801 * them with group lock_held
4802 */
4803 ext4_lock_group(sb, block_group);
4804 mb_clear_bits(bitmap_bh->b_data, bit, count);
4805 mb_free_blocks(NULL, &e4b, bit, count);
4806 blk_free_count = blocks_freed + ext4_free_group_clusters(sb, desc);
4807 ext4_free_group_clusters_set(sb, desc, blk_free_count);
4808 ext4_block_bitmap_csum_set(sb, block_group, desc, bitmap_bh,
4809 EXT4_BLOCKS_PER_GROUP(sb) / 8);
4810 ext4_group_desc_csum_set(sb, block_group, desc);
4811 ext4_unlock_group(sb, block_group);
4812 percpu_counter_add(&sbi->s_freeclusters_counter,
4813 EXT4_B2C(sbi, blocks_freed));
4814
4815 if (sbi->s_log_groups_per_flex) {
4816 ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
4817 atomic_add(EXT4_B2C(sbi, blocks_freed),
4818 &sbi->s_flex_groups[flex_group].free_clusters);
4819 }
4820
4821 ext4_mb_unload_buddy(&e4b);
4822
4823 /* We dirtied the bitmap block */
4824 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
4825 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
4826
4827 /* And the group descriptor block */
4828 BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
4829 ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
4830 if (!err)
4831 err = ret;
4832
4833 error_return:
4834 brelse(bitmap_bh);
4835 ext4_std_error(sb, err);
4836 return err;
4837 }
4838
4839 /**
4840 * ext4_trim_extent -- function to TRIM one single free extent in the group
4841 * @sb: super block for the file system
4842 * @start: starting block of the free extent in the alloc. group
4843 * @count: number of blocks to TRIM
4844 * @group: alloc. group we are working with
4845 * @e4b: ext4 buddy for the group
4846 *
4847 * Trim "count" blocks starting at "start" in the "group". To assure that no
4848 * one will allocate those blocks, mark it as used in buddy bitmap. This must
4849 * be called with under the group lock.
4850 */
4851 static void ext4_trim_extent(struct super_block *sb, int start, int count,
4852 ext4_group_t group, struct ext4_buddy *e4b)
4853 {
4854 struct ext4_free_extent ex;
4855
4856 trace_ext4_trim_extent(sb, group, start, count);
4857
4858 assert_spin_locked(ext4_group_lock_ptr(sb, group));
4859
4860 ex.fe_start = start;
4861 ex.fe_group = group;
4862 ex.fe_len = count;
4863
4864 /*
4865 * Mark blocks used, so no one can reuse them while
4866 * being trimmed.
4867 */
4868 mb_mark_used(e4b, &ex);
4869 ext4_unlock_group(sb, group);
4870 ext4_issue_discard(sb, group, start, count);
4871 ext4_lock_group(sb, group);
4872 mb_free_blocks(NULL, e4b, start, ex.fe_len);
4873 }
4874
4875 /**
4876 * ext4_trim_all_free -- function to trim all free space in alloc. group
4877 * @sb: super block for file system
4878 * @group: group to be trimmed
4879 * @start: first group block to examine
4880 * @max: last group block to examine
4881 * @minblocks: minimum extent block count
4882 *
4883 * ext4_trim_all_free walks through group's buddy bitmap searching for free
4884 * extents. When the free block is found, ext4_trim_extent is called to TRIM
4885 * the extent.
4886 *
4887 *
4888 * ext4_trim_all_free walks through group's block bitmap searching for free
4889 * extents. When the free extent is found, mark it as used in group buddy
4890 * bitmap. Then issue a TRIM command on this extent and free the extent in
4891 * the group buddy bitmap. This is done until whole group is scanned.
4892 */
4893 static ext4_grpblk_t
4894 ext4_trim_all_free(struct super_block *sb, ext4_group_t group,
4895 ext4_grpblk_t start, ext4_grpblk_t max,
4896 ext4_grpblk_t minblocks)
4897 {
4898 void *bitmap;
4899 ext4_grpblk_t next, count = 0, free_count = 0;
4900 struct ext4_buddy e4b;
4901 int ret;
4902
4903 trace_ext4_trim_all_free(sb, group, start, max);
4904
4905 ret = ext4_mb_load_buddy(sb, group, &e4b);
4906 if (ret) {
4907 ext4_error(sb, "Error in loading buddy "
4908 "information for %u", group);
4909 return ret;
4910 }
4911 bitmap = e4b.bd_bitmap;
4912
4913 ext4_lock_group(sb, group);
4914 if (EXT4_MB_GRP_WAS_TRIMMED(e4b.bd_info) &&
4915 minblocks >= atomic_read(&EXT4_SB(sb)->s_last_trim_minblks))
4916 goto out;
4917
4918 start = (e4b.bd_info->bb_first_free > start) ?
4919 e4b.bd_info->bb_first_free : start;
4920
4921 while (start <= max) {
4922 start = mb_find_next_zero_bit(bitmap, max + 1, start);
4923 if (start > max)
4924 break;
4925 next = mb_find_next_bit(bitmap, max + 1, start);
4926
4927 if ((next - start) >= minblocks) {
4928 ext4_trim_extent(sb, start,
4929 next - start, group, &e4b);
4930 count += next - start;
4931 }
4932 free_count += next - start;
4933 start = next + 1;
4934
4935 if (fatal_signal_pending(current)) {
4936 count = -ERESTARTSYS;
4937 break;
4938 }
4939
4940 if (need_resched()) {
4941 ext4_unlock_group(sb, group);
4942 cond_resched();
4943 ext4_lock_group(sb, group);
4944 }
4945
4946 if ((e4b.bd_info->bb_free - free_count) < minblocks)
4947 break;
4948 }
4949
4950 if (!ret)
4951 EXT4_MB_GRP_SET_TRIMMED(e4b.bd_info);
4952 out:
4953 ext4_unlock_group(sb, group);
4954 ext4_mb_unload_buddy(&e4b);
4955
4956 ext4_debug("trimmed %d blocks in the group %d\n",
4957 count, group);
4958
4959 return count;
4960 }
4961
4962 /**
4963 * ext4_trim_fs() -- trim ioctl handle function
4964 * @sb: superblock for filesystem
4965 * @range: fstrim_range structure
4966 *
4967 * start: First Byte to trim
4968 * len: number of Bytes to trim from start
4969 * minlen: minimum extent length in Bytes
4970 * ext4_trim_fs goes through all allocation groups containing Bytes from
4971 * start to start+len. For each such a group ext4_trim_all_free function
4972 * is invoked to trim all free space.
4973 */
4974 int ext4_trim_fs(struct super_block *sb, struct fstrim_range *range)
4975 {
4976 struct ext4_group_info *grp;
4977 ext4_group_t group, first_group, last_group;
4978 ext4_grpblk_t cnt = 0, first_cluster, last_cluster;
4979 uint64_t start, end, minlen, trimmed = 0;
4980 ext4_fsblk_t first_data_blk =
4981 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block);
4982 ext4_fsblk_t max_blks = ext4_blocks_count(EXT4_SB(sb)->s_es);
4983 int ret = 0;
4984
4985 start = range->start >> sb->s_blocksize_bits;
4986 end = start + (range->len >> sb->s_blocksize_bits) - 1;
4987 minlen = range->minlen >> sb->s_blocksize_bits;
4988
4989 if (unlikely(minlen > EXT4_CLUSTERS_PER_GROUP(sb)) ||
4990 unlikely(start >= max_blks))
4991 return -EINVAL;
4992 if (end >= max_blks)
4993 end = max_blks - 1;
4994 if (end <= first_data_blk)
4995 goto out;
4996 if (start < first_data_blk)
4997 start = first_data_blk;
4998
4999 /* Determine first and last group to examine based on start and end */
5000 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) start,
5001 &first_group, &first_cluster);
5002 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) end,
5003 &last_group, &last_cluster);
5004
5005 /* end now represents the last cluster to discard in this group */
5006 end = EXT4_CLUSTERS_PER_GROUP(sb) - 1;
5007
5008 for (group = first_group; group <= last_group; group++) {
5009 grp = ext4_get_group_info(sb, group);
5010 /* We only do this if the grp has never been initialized */
5011 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
5012 ret = ext4_mb_init_group(sb, group);
5013 if (ret)
5014 break;
5015 }
5016
5017 /*
5018 * For all the groups except the last one, last cluster will
5019 * always be EXT4_CLUSTERS_PER_GROUP(sb)-1, so we only need to
5020 * change it for the last group, note that last_cluster is
5021 * already computed earlier by ext4_get_group_no_and_offset()
5022 */
5023 if (group == last_group)
5024 end = last_cluster;
5025
5026 if (grp->bb_free >= minlen) {
5027 cnt = ext4_trim_all_free(sb, group, first_cluster,
5028 end, minlen);
5029 if (cnt < 0) {
5030 ret = cnt;
5031 break;
5032 }
5033 trimmed += cnt;
5034 }
5035
5036 /*
5037 * For every group except the first one, we are sure
5038 * that the first cluster to discard will be cluster #0.
5039 */
5040 first_cluster = 0;
5041 }
5042
5043 if (!ret)
5044 atomic_set(&EXT4_SB(sb)->s_last_trim_minblks, minlen);
5045
5046 out:
5047 range->len = trimmed * sb->s_blocksize;
5048 return ret;
5049 }