]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/ext4/mballoc.c
Merge tag 'upstream-3.16-rc1-v2' of git://git.infradead.org/linux-ubifs
[mirror_ubuntu-bionic-kernel.git] / fs / ext4 / mballoc.c
1 /*
2 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3 * Written by Alex Tomas <alex@clusterfs.com>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public Licens
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
17 */
18
19
20 /*
21 * mballoc.c contains the multiblocks allocation routines
22 */
23
24 #include "ext4_jbd2.h"
25 #include "mballoc.h"
26 #include <linux/log2.h>
27 #include <linux/module.h>
28 #include <linux/slab.h>
29 #include <trace/events/ext4.h>
30
31 #ifdef CONFIG_EXT4_DEBUG
32 ushort ext4_mballoc_debug __read_mostly;
33
34 module_param_named(mballoc_debug, ext4_mballoc_debug, ushort, 0644);
35 MODULE_PARM_DESC(mballoc_debug, "Debugging level for ext4's mballoc");
36 #endif
37
38 /*
39 * MUSTDO:
40 * - test ext4_ext_search_left() and ext4_ext_search_right()
41 * - search for metadata in few groups
42 *
43 * TODO v4:
44 * - normalization should take into account whether file is still open
45 * - discard preallocations if no free space left (policy?)
46 * - don't normalize tails
47 * - quota
48 * - reservation for superuser
49 *
50 * TODO v3:
51 * - bitmap read-ahead (proposed by Oleg Drokin aka green)
52 * - track min/max extents in each group for better group selection
53 * - mb_mark_used() may allocate chunk right after splitting buddy
54 * - tree of groups sorted by number of free blocks
55 * - error handling
56 */
57
58 /*
59 * The allocation request involve request for multiple number of blocks
60 * near to the goal(block) value specified.
61 *
62 * During initialization phase of the allocator we decide to use the
63 * group preallocation or inode preallocation depending on the size of
64 * the file. The size of the file could be the resulting file size we
65 * would have after allocation, or the current file size, which ever
66 * is larger. If the size is less than sbi->s_mb_stream_request we
67 * select to use the group preallocation. The default value of
68 * s_mb_stream_request is 16 blocks. This can also be tuned via
69 * /sys/fs/ext4/<partition>/mb_stream_req. The value is represented in
70 * terms of number of blocks.
71 *
72 * The main motivation for having small file use group preallocation is to
73 * ensure that we have small files closer together on the disk.
74 *
75 * First stage the allocator looks at the inode prealloc list,
76 * ext4_inode_info->i_prealloc_list, which contains list of prealloc
77 * spaces for this particular inode. The inode prealloc space is
78 * represented as:
79 *
80 * pa_lstart -> the logical start block for this prealloc space
81 * pa_pstart -> the physical start block for this prealloc space
82 * pa_len -> length for this prealloc space (in clusters)
83 * pa_free -> free space available in this prealloc space (in clusters)
84 *
85 * The inode preallocation space is used looking at the _logical_ start
86 * block. If only the logical file block falls within the range of prealloc
87 * space we will consume the particular prealloc space. This makes sure that
88 * we have contiguous physical blocks representing the file blocks
89 *
90 * The important thing to be noted in case of inode prealloc space is that
91 * we don't modify the values associated to inode prealloc space except
92 * pa_free.
93 *
94 * If we are not able to find blocks in the inode prealloc space and if we
95 * have the group allocation flag set then we look at the locality group
96 * prealloc space. These are per CPU prealloc list represented as
97 *
98 * ext4_sb_info.s_locality_groups[smp_processor_id()]
99 *
100 * The reason for having a per cpu locality group is to reduce the contention
101 * between CPUs. It is possible to get scheduled at this point.
102 *
103 * The locality group prealloc space is used looking at whether we have
104 * enough free space (pa_free) within the prealloc space.
105 *
106 * If we can't allocate blocks via inode prealloc or/and locality group
107 * prealloc then we look at the buddy cache. The buddy cache is represented
108 * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets
109 * mapped to the buddy and bitmap information regarding different
110 * groups. The buddy information is attached to buddy cache inode so that
111 * we can access them through the page cache. The information regarding
112 * each group is loaded via ext4_mb_load_buddy. The information involve
113 * block bitmap and buddy information. The information are stored in the
114 * inode as:
115 *
116 * { page }
117 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
118 *
119 *
120 * one block each for bitmap and buddy information. So for each group we
121 * take up 2 blocks. A page can contain blocks_per_page (PAGE_CACHE_SIZE /
122 * blocksize) blocks. So it can have information regarding groups_per_page
123 * which is blocks_per_page/2
124 *
125 * The buddy cache inode is not stored on disk. The inode is thrown
126 * away when the filesystem is unmounted.
127 *
128 * We look for count number of blocks in the buddy cache. If we were able
129 * to locate that many free blocks we return with additional information
130 * regarding rest of the contiguous physical block available
131 *
132 * Before allocating blocks via buddy cache we normalize the request
133 * blocks. This ensure we ask for more blocks that we needed. The extra
134 * blocks that we get after allocation is added to the respective prealloc
135 * list. In case of inode preallocation we follow a list of heuristics
136 * based on file size. This can be found in ext4_mb_normalize_request. If
137 * we are doing a group prealloc we try to normalize the request to
138 * sbi->s_mb_group_prealloc. The default value of s_mb_group_prealloc is
139 * dependent on the cluster size; for non-bigalloc file systems, it is
140 * 512 blocks. This can be tuned via
141 * /sys/fs/ext4/<partition>/mb_group_prealloc. The value is represented in
142 * terms of number of blocks. If we have mounted the file system with -O
143 * stripe=<value> option the group prealloc request is normalized to the
144 * the smallest multiple of the stripe value (sbi->s_stripe) which is
145 * greater than the default mb_group_prealloc.
146 *
147 * The regular allocator (using the buddy cache) supports a few tunables.
148 *
149 * /sys/fs/ext4/<partition>/mb_min_to_scan
150 * /sys/fs/ext4/<partition>/mb_max_to_scan
151 * /sys/fs/ext4/<partition>/mb_order2_req
152 *
153 * The regular allocator uses buddy scan only if the request len is power of
154 * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The
155 * value of s_mb_order2_reqs can be tuned via
156 * /sys/fs/ext4/<partition>/mb_order2_req. If the request len is equal to
157 * stripe size (sbi->s_stripe), we try to search for contiguous block in
158 * stripe size. This should result in better allocation on RAID setups. If
159 * not, we search in the specific group using bitmap for best extents. The
160 * tunable min_to_scan and max_to_scan control the behaviour here.
161 * min_to_scan indicate how long the mballoc __must__ look for a best
162 * extent and max_to_scan indicates how long the mballoc __can__ look for a
163 * best extent in the found extents. Searching for the blocks starts with
164 * the group specified as the goal value in allocation context via
165 * ac_g_ex. Each group is first checked based on the criteria whether it
166 * can be used for allocation. ext4_mb_good_group explains how the groups are
167 * checked.
168 *
169 * Both the prealloc space are getting populated as above. So for the first
170 * request we will hit the buddy cache which will result in this prealloc
171 * space getting filled. The prealloc space is then later used for the
172 * subsequent request.
173 */
174
175 /*
176 * mballoc operates on the following data:
177 * - on-disk bitmap
178 * - in-core buddy (actually includes buddy and bitmap)
179 * - preallocation descriptors (PAs)
180 *
181 * there are two types of preallocations:
182 * - inode
183 * assiged to specific inode and can be used for this inode only.
184 * it describes part of inode's space preallocated to specific
185 * physical blocks. any block from that preallocated can be used
186 * independent. the descriptor just tracks number of blocks left
187 * unused. so, before taking some block from descriptor, one must
188 * make sure corresponded logical block isn't allocated yet. this
189 * also means that freeing any block within descriptor's range
190 * must discard all preallocated blocks.
191 * - locality group
192 * assigned to specific locality group which does not translate to
193 * permanent set of inodes: inode can join and leave group. space
194 * from this type of preallocation can be used for any inode. thus
195 * it's consumed from the beginning to the end.
196 *
197 * relation between them can be expressed as:
198 * in-core buddy = on-disk bitmap + preallocation descriptors
199 *
200 * this mean blocks mballoc considers used are:
201 * - allocated blocks (persistent)
202 * - preallocated blocks (non-persistent)
203 *
204 * consistency in mballoc world means that at any time a block is either
205 * free or used in ALL structures. notice: "any time" should not be read
206 * literally -- time is discrete and delimited by locks.
207 *
208 * to keep it simple, we don't use block numbers, instead we count number of
209 * blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA.
210 *
211 * all operations can be expressed as:
212 * - init buddy: buddy = on-disk + PAs
213 * - new PA: buddy += N; PA = N
214 * - use inode PA: on-disk += N; PA -= N
215 * - discard inode PA buddy -= on-disk - PA; PA = 0
216 * - use locality group PA on-disk += N; PA -= N
217 * - discard locality group PA buddy -= PA; PA = 0
218 * note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap
219 * is used in real operation because we can't know actual used
220 * bits from PA, only from on-disk bitmap
221 *
222 * if we follow this strict logic, then all operations above should be atomic.
223 * given some of them can block, we'd have to use something like semaphores
224 * killing performance on high-end SMP hardware. let's try to relax it using
225 * the following knowledge:
226 * 1) if buddy is referenced, it's already initialized
227 * 2) while block is used in buddy and the buddy is referenced,
228 * nobody can re-allocate that block
229 * 3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has
230 * bit set and PA claims same block, it's OK. IOW, one can set bit in
231 * on-disk bitmap if buddy has same bit set or/and PA covers corresponded
232 * block
233 *
234 * so, now we're building a concurrency table:
235 * - init buddy vs.
236 * - new PA
237 * blocks for PA are allocated in the buddy, buddy must be referenced
238 * until PA is linked to allocation group to avoid concurrent buddy init
239 * - use inode PA
240 * we need to make sure that either on-disk bitmap or PA has uptodate data
241 * given (3) we care that PA-=N operation doesn't interfere with init
242 * - discard inode PA
243 * the simplest way would be to have buddy initialized by the discard
244 * - use locality group PA
245 * again PA-=N must be serialized with init
246 * - discard locality group PA
247 * the simplest way would be to have buddy initialized by the discard
248 * - new PA vs.
249 * - use inode PA
250 * i_data_sem serializes them
251 * - discard inode PA
252 * discard process must wait until PA isn't used by another process
253 * - use locality group PA
254 * some mutex should serialize them
255 * - discard locality group PA
256 * discard process must wait until PA isn't used by another process
257 * - use inode PA
258 * - use inode PA
259 * i_data_sem or another mutex should serializes them
260 * - discard inode PA
261 * discard process must wait until PA isn't used by another process
262 * - use locality group PA
263 * nothing wrong here -- they're different PAs covering different blocks
264 * - discard locality group PA
265 * discard process must wait until PA isn't used by another process
266 *
267 * now we're ready to make few consequences:
268 * - PA is referenced and while it is no discard is possible
269 * - PA is referenced until block isn't marked in on-disk bitmap
270 * - PA changes only after on-disk bitmap
271 * - discard must not compete with init. either init is done before
272 * any discard or they're serialized somehow
273 * - buddy init as sum of on-disk bitmap and PAs is done atomically
274 *
275 * a special case when we've used PA to emptiness. no need to modify buddy
276 * in this case, but we should care about concurrent init
277 *
278 */
279
280 /*
281 * Logic in few words:
282 *
283 * - allocation:
284 * load group
285 * find blocks
286 * mark bits in on-disk bitmap
287 * release group
288 *
289 * - use preallocation:
290 * find proper PA (per-inode or group)
291 * load group
292 * mark bits in on-disk bitmap
293 * release group
294 * release PA
295 *
296 * - free:
297 * load group
298 * mark bits in on-disk bitmap
299 * release group
300 *
301 * - discard preallocations in group:
302 * mark PAs deleted
303 * move them onto local list
304 * load on-disk bitmap
305 * load group
306 * remove PA from object (inode or locality group)
307 * mark free blocks in-core
308 *
309 * - discard inode's preallocations:
310 */
311
312 /*
313 * Locking rules
314 *
315 * Locks:
316 * - bitlock on a group (group)
317 * - object (inode/locality) (object)
318 * - per-pa lock (pa)
319 *
320 * Paths:
321 * - new pa
322 * object
323 * group
324 *
325 * - find and use pa:
326 * pa
327 *
328 * - release consumed pa:
329 * pa
330 * group
331 * object
332 *
333 * - generate in-core bitmap:
334 * group
335 * pa
336 *
337 * - discard all for given object (inode, locality group):
338 * object
339 * pa
340 * group
341 *
342 * - discard all for given group:
343 * group
344 * pa
345 * group
346 * object
347 *
348 */
349 static struct kmem_cache *ext4_pspace_cachep;
350 static struct kmem_cache *ext4_ac_cachep;
351 static struct kmem_cache *ext4_free_data_cachep;
352
353 /* We create slab caches for groupinfo data structures based on the
354 * superblock block size. There will be one per mounted filesystem for
355 * each unique s_blocksize_bits */
356 #define NR_GRPINFO_CACHES 8
357 static struct kmem_cache *ext4_groupinfo_caches[NR_GRPINFO_CACHES];
358
359 static const char *ext4_groupinfo_slab_names[NR_GRPINFO_CACHES] = {
360 "ext4_groupinfo_1k", "ext4_groupinfo_2k", "ext4_groupinfo_4k",
361 "ext4_groupinfo_8k", "ext4_groupinfo_16k", "ext4_groupinfo_32k",
362 "ext4_groupinfo_64k", "ext4_groupinfo_128k"
363 };
364
365 static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
366 ext4_group_t group);
367 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
368 ext4_group_t group);
369 static void ext4_free_data_callback(struct super_block *sb,
370 struct ext4_journal_cb_entry *jce, int rc);
371
372 static inline void *mb_correct_addr_and_bit(int *bit, void *addr)
373 {
374 #if BITS_PER_LONG == 64
375 *bit += ((unsigned long) addr & 7UL) << 3;
376 addr = (void *) ((unsigned long) addr & ~7UL);
377 #elif BITS_PER_LONG == 32
378 *bit += ((unsigned long) addr & 3UL) << 3;
379 addr = (void *) ((unsigned long) addr & ~3UL);
380 #else
381 #error "how many bits you are?!"
382 #endif
383 return addr;
384 }
385
386 static inline int mb_test_bit(int bit, void *addr)
387 {
388 /*
389 * ext4_test_bit on architecture like powerpc
390 * needs unsigned long aligned address
391 */
392 addr = mb_correct_addr_and_bit(&bit, addr);
393 return ext4_test_bit(bit, addr);
394 }
395
396 static inline void mb_set_bit(int bit, void *addr)
397 {
398 addr = mb_correct_addr_and_bit(&bit, addr);
399 ext4_set_bit(bit, addr);
400 }
401
402 static inline void mb_clear_bit(int bit, void *addr)
403 {
404 addr = mb_correct_addr_and_bit(&bit, addr);
405 ext4_clear_bit(bit, addr);
406 }
407
408 static inline int mb_test_and_clear_bit(int bit, void *addr)
409 {
410 addr = mb_correct_addr_and_bit(&bit, addr);
411 return ext4_test_and_clear_bit(bit, addr);
412 }
413
414 static inline int mb_find_next_zero_bit(void *addr, int max, int start)
415 {
416 int fix = 0, ret, tmpmax;
417 addr = mb_correct_addr_and_bit(&fix, addr);
418 tmpmax = max + fix;
419 start += fix;
420
421 ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix;
422 if (ret > max)
423 return max;
424 return ret;
425 }
426
427 static inline int mb_find_next_bit(void *addr, int max, int start)
428 {
429 int fix = 0, ret, tmpmax;
430 addr = mb_correct_addr_and_bit(&fix, addr);
431 tmpmax = max + fix;
432 start += fix;
433
434 ret = ext4_find_next_bit(addr, tmpmax, start) - fix;
435 if (ret > max)
436 return max;
437 return ret;
438 }
439
440 static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max)
441 {
442 char *bb;
443
444 BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
445 BUG_ON(max == NULL);
446
447 if (order > e4b->bd_blkbits + 1) {
448 *max = 0;
449 return NULL;
450 }
451
452 /* at order 0 we see each particular block */
453 if (order == 0) {
454 *max = 1 << (e4b->bd_blkbits + 3);
455 return e4b->bd_bitmap;
456 }
457
458 bb = e4b->bd_buddy + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order];
459 *max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order];
460
461 return bb;
462 }
463
464 #ifdef DOUBLE_CHECK
465 static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b,
466 int first, int count)
467 {
468 int i;
469 struct super_block *sb = e4b->bd_sb;
470
471 if (unlikely(e4b->bd_info->bb_bitmap == NULL))
472 return;
473 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
474 for (i = 0; i < count; i++) {
475 if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) {
476 ext4_fsblk_t blocknr;
477
478 blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
479 blocknr += EXT4_C2B(EXT4_SB(sb), first + i);
480 ext4_grp_locked_error(sb, e4b->bd_group,
481 inode ? inode->i_ino : 0,
482 blocknr,
483 "freeing block already freed "
484 "(bit %u)",
485 first + i);
486 }
487 mb_clear_bit(first + i, e4b->bd_info->bb_bitmap);
488 }
489 }
490
491 static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count)
492 {
493 int i;
494
495 if (unlikely(e4b->bd_info->bb_bitmap == NULL))
496 return;
497 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
498 for (i = 0; i < count; i++) {
499 BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap));
500 mb_set_bit(first + i, e4b->bd_info->bb_bitmap);
501 }
502 }
503
504 static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
505 {
506 if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) {
507 unsigned char *b1, *b2;
508 int i;
509 b1 = (unsigned char *) e4b->bd_info->bb_bitmap;
510 b2 = (unsigned char *) bitmap;
511 for (i = 0; i < e4b->bd_sb->s_blocksize; i++) {
512 if (b1[i] != b2[i]) {
513 ext4_msg(e4b->bd_sb, KERN_ERR,
514 "corruption in group %u "
515 "at byte %u(%u): %x in copy != %x "
516 "on disk/prealloc",
517 e4b->bd_group, i, i * 8, b1[i], b2[i]);
518 BUG();
519 }
520 }
521 }
522 }
523
524 #else
525 static inline void mb_free_blocks_double(struct inode *inode,
526 struct ext4_buddy *e4b, int first, int count)
527 {
528 return;
529 }
530 static inline void mb_mark_used_double(struct ext4_buddy *e4b,
531 int first, int count)
532 {
533 return;
534 }
535 static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
536 {
537 return;
538 }
539 #endif
540
541 #ifdef AGGRESSIVE_CHECK
542
543 #define MB_CHECK_ASSERT(assert) \
544 do { \
545 if (!(assert)) { \
546 printk(KERN_EMERG \
547 "Assertion failure in %s() at %s:%d: \"%s\"\n", \
548 function, file, line, # assert); \
549 BUG(); \
550 } \
551 } while (0)
552
553 static int __mb_check_buddy(struct ext4_buddy *e4b, char *file,
554 const char *function, int line)
555 {
556 struct super_block *sb = e4b->bd_sb;
557 int order = e4b->bd_blkbits + 1;
558 int max;
559 int max2;
560 int i;
561 int j;
562 int k;
563 int count;
564 struct ext4_group_info *grp;
565 int fragments = 0;
566 int fstart;
567 struct list_head *cur;
568 void *buddy;
569 void *buddy2;
570
571 {
572 static int mb_check_counter;
573 if (mb_check_counter++ % 100 != 0)
574 return 0;
575 }
576
577 while (order > 1) {
578 buddy = mb_find_buddy(e4b, order, &max);
579 MB_CHECK_ASSERT(buddy);
580 buddy2 = mb_find_buddy(e4b, order - 1, &max2);
581 MB_CHECK_ASSERT(buddy2);
582 MB_CHECK_ASSERT(buddy != buddy2);
583 MB_CHECK_ASSERT(max * 2 == max2);
584
585 count = 0;
586 for (i = 0; i < max; i++) {
587
588 if (mb_test_bit(i, buddy)) {
589 /* only single bit in buddy2 may be 1 */
590 if (!mb_test_bit(i << 1, buddy2)) {
591 MB_CHECK_ASSERT(
592 mb_test_bit((i<<1)+1, buddy2));
593 } else if (!mb_test_bit((i << 1) + 1, buddy2)) {
594 MB_CHECK_ASSERT(
595 mb_test_bit(i << 1, buddy2));
596 }
597 continue;
598 }
599
600 /* both bits in buddy2 must be 1 */
601 MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2));
602 MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2));
603
604 for (j = 0; j < (1 << order); j++) {
605 k = (i * (1 << order)) + j;
606 MB_CHECK_ASSERT(
607 !mb_test_bit(k, e4b->bd_bitmap));
608 }
609 count++;
610 }
611 MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count);
612 order--;
613 }
614
615 fstart = -1;
616 buddy = mb_find_buddy(e4b, 0, &max);
617 for (i = 0; i < max; i++) {
618 if (!mb_test_bit(i, buddy)) {
619 MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free);
620 if (fstart == -1) {
621 fragments++;
622 fstart = i;
623 }
624 continue;
625 }
626 fstart = -1;
627 /* check used bits only */
628 for (j = 0; j < e4b->bd_blkbits + 1; j++) {
629 buddy2 = mb_find_buddy(e4b, j, &max2);
630 k = i >> j;
631 MB_CHECK_ASSERT(k < max2);
632 MB_CHECK_ASSERT(mb_test_bit(k, buddy2));
633 }
634 }
635 MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info));
636 MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments);
637
638 grp = ext4_get_group_info(sb, e4b->bd_group);
639 list_for_each(cur, &grp->bb_prealloc_list) {
640 ext4_group_t groupnr;
641 struct ext4_prealloc_space *pa;
642 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
643 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k);
644 MB_CHECK_ASSERT(groupnr == e4b->bd_group);
645 for (i = 0; i < pa->pa_len; i++)
646 MB_CHECK_ASSERT(mb_test_bit(k + i, buddy));
647 }
648 return 0;
649 }
650 #undef MB_CHECK_ASSERT
651 #define mb_check_buddy(e4b) __mb_check_buddy(e4b, \
652 __FILE__, __func__, __LINE__)
653 #else
654 #define mb_check_buddy(e4b)
655 #endif
656
657 /*
658 * Divide blocks started from @first with length @len into
659 * smaller chunks with power of 2 blocks.
660 * Clear the bits in bitmap which the blocks of the chunk(s) covered,
661 * then increase bb_counters[] for corresponded chunk size.
662 */
663 static void ext4_mb_mark_free_simple(struct super_block *sb,
664 void *buddy, ext4_grpblk_t first, ext4_grpblk_t len,
665 struct ext4_group_info *grp)
666 {
667 struct ext4_sb_info *sbi = EXT4_SB(sb);
668 ext4_grpblk_t min;
669 ext4_grpblk_t max;
670 ext4_grpblk_t chunk;
671 unsigned short border;
672
673 BUG_ON(len > EXT4_CLUSTERS_PER_GROUP(sb));
674
675 border = 2 << sb->s_blocksize_bits;
676
677 while (len > 0) {
678 /* find how many blocks can be covered since this position */
679 max = ffs(first | border) - 1;
680
681 /* find how many blocks of power 2 we need to mark */
682 min = fls(len) - 1;
683
684 if (max < min)
685 min = max;
686 chunk = 1 << min;
687
688 /* mark multiblock chunks only */
689 grp->bb_counters[min]++;
690 if (min > 0)
691 mb_clear_bit(first >> min,
692 buddy + sbi->s_mb_offsets[min]);
693
694 len -= chunk;
695 first += chunk;
696 }
697 }
698
699 /*
700 * Cache the order of the largest free extent we have available in this block
701 * group.
702 */
703 static void
704 mb_set_largest_free_order(struct super_block *sb, struct ext4_group_info *grp)
705 {
706 int i;
707 int bits;
708
709 grp->bb_largest_free_order = -1; /* uninit */
710
711 bits = sb->s_blocksize_bits + 1;
712 for (i = bits; i >= 0; i--) {
713 if (grp->bb_counters[i] > 0) {
714 grp->bb_largest_free_order = i;
715 break;
716 }
717 }
718 }
719
720 static noinline_for_stack
721 void ext4_mb_generate_buddy(struct super_block *sb,
722 void *buddy, void *bitmap, ext4_group_t group)
723 {
724 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
725 ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb);
726 ext4_grpblk_t i = 0;
727 ext4_grpblk_t first;
728 ext4_grpblk_t len;
729 unsigned free = 0;
730 unsigned fragments = 0;
731 unsigned long long period = get_cycles();
732
733 /* initialize buddy from bitmap which is aggregation
734 * of on-disk bitmap and preallocations */
735 i = mb_find_next_zero_bit(bitmap, max, 0);
736 grp->bb_first_free = i;
737 while (i < max) {
738 fragments++;
739 first = i;
740 i = mb_find_next_bit(bitmap, max, i);
741 len = i - first;
742 free += len;
743 if (len > 1)
744 ext4_mb_mark_free_simple(sb, buddy, first, len, grp);
745 else
746 grp->bb_counters[0]++;
747 if (i < max)
748 i = mb_find_next_zero_bit(bitmap, max, i);
749 }
750 grp->bb_fragments = fragments;
751
752 if (free != grp->bb_free) {
753 ext4_grp_locked_error(sb, group, 0, 0,
754 "%u clusters in bitmap, %u in gd; "
755 "block bitmap corrupt.",
756 free, grp->bb_free);
757 /*
758 * If we intend to continue, we consider group descriptor
759 * corrupt and update bb_free using bitmap value
760 */
761 grp->bb_free = free;
762 set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT, &grp->bb_state);
763 }
764 mb_set_largest_free_order(sb, grp);
765
766 clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state));
767
768 period = get_cycles() - period;
769 spin_lock(&EXT4_SB(sb)->s_bal_lock);
770 EXT4_SB(sb)->s_mb_buddies_generated++;
771 EXT4_SB(sb)->s_mb_generation_time += period;
772 spin_unlock(&EXT4_SB(sb)->s_bal_lock);
773 }
774
775 static void mb_regenerate_buddy(struct ext4_buddy *e4b)
776 {
777 int count;
778 int order = 1;
779 void *buddy;
780
781 while ((buddy = mb_find_buddy(e4b, order++, &count))) {
782 ext4_set_bits(buddy, 0, count);
783 }
784 e4b->bd_info->bb_fragments = 0;
785 memset(e4b->bd_info->bb_counters, 0,
786 sizeof(*e4b->bd_info->bb_counters) *
787 (e4b->bd_sb->s_blocksize_bits + 2));
788
789 ext4_mb_generate_buddy(e4b->bd_sb, e4b->bd_buddy,
790 e4b->bd_bitmap, e4b->bd_group);
791 }
792
793 /* The buddy information is attached the buddy cache inode
794 * for convenience. The information regarding each group
795 * is loaded via ext4_mb_load_buddy. The information involve
796 * block bitmap and buddy information. The information are
797 * stored in the inode as
798 *
799 * { page }
800 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
801 *
802 *
803 * one block each for bitmap and buddy information.
804 * So for each group we take up 2 blocks. A page can
805 * contain blocks_per_page (PAGE_CACHE_SIZE / blocksize) blocks.
806 * So it can have information regarding groups_per_page which
807 * is blocks_per_page/2
808 *
809 * Locking note: This routine takes the block group lock of all groups
810 * for this page; do not hold this lock when calling this routine!
811 */
812
813 static int ext4_mb_init_cache(struct page *page, char *incore)
814 {
815 ext4_group_t ngroups;
816 int blocksize;
817 int blocks_per_page;
818 int groups_per_page;
819 int err = 0;
820 int i;
821 ext4_group_t first_group, group;
822 int first_block;
823 struct super_block *sb;
824 struct buffer_head *bhs;
825 struct buffer_head **bh = NULL;
826 struct inode *inode;
827 char *data;
828 char *bitmap;
829 struct ext4_group_info *grinfo;
830
831 mb_debug(1, "init page %lu\n", page->index);
832
833 inode = page->mapping->host;
834 sb = inode->i_sb;
835 ngroups = ext4_get_groups_count(sb);
836 blocksize = 1 << inode->i_blkbits;
837 blocks_per_page = PAGE_CACHE_SIZE / blocksize;
838
839 groups_per_page = blocks_per_page >> 1;
840 if (groups_per_page == 0)
841 groups_per_page = 1;
842
843 /* allocate buffer_heads to read bitmaps */
844 if (groups_per_page > 1) {
845 i = sizeof(struct buffer_head *) * groups_per_page;
846 bh = kzalloc(i, GFP_NOFS);
847 if (bh == NULL) {
848 err = -ENOMEM;
849 goto out;
850 }
851 } else
852 bh = &bhs;
853
854 first_group = page->index * blocks_per_page / 2;
855
856 /* read all groups the page covers into the cache */
857 for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
858 if (group >= ngroups)
859 break;
860
861 grinfo = ext4_get_group_info(sb, group);
862 /*
863 * If page is uptodate then we came here after online resize
864 * which added some new uninitialized group info structs, so
865 * we must skip all initialized uptodate buddies on the page,
866 * which may be currently in use by an allocating task.
867 */
868 if (PageUptodate(page) && !EXT4_MB_GRP_NEED_INIT(grinfo)) {
869 bh[i] = NULL;
870 continue;
871 }
872 if (!(bh[i] = ext4_read_block_bitmap_nowait(sb, group))) {
873 err = -ENOMEM;
874 goto out;
875 }
876 mb_debug(1, "read bitmap for group %u\n", group);
877 }
878
879 /* wait for I/O completion */
880 for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
881 if (bh[i] && ext4_wait_block_bitmap(sb, group, bh[i])) {
882 err = -EIO;
883 goto out;
884 }
885 }
886
887 first_block = page->index * blocks_per_page;
888 for (i = 0; i < blocks_per_page; i++) {
889 group = (first_block + i) >> 1;
890 if (group >= ngroups)
891 break;
892
893 if (!bh[group - first_group])
894 /* skip initialized uptodate buddy */
895 continue;
896
897 /*
898 * data carry information regarding this
899 * particular group in the format specified
900 * above
901 *
902 */
903 data = page_address(page) + (i * blocksize);
904 bitmap = bh[group - first_group]->b_data;
905
906 /*
907 * We place the buddy block and bitmap block
908 * close together
909 */
910 if ((first_block + i) & 1) {
911 /* this is block of buddy */
912 BUG_ON(incore == NULL);
913 mb_debug(1, "put buddy for group %u in page %lu/%x\n",
914 group, page->index, i * blocksize);
915 trace_ext4_mb_buddy_bitmap_load(sb, group);
916 grinfo = ext4_get_group_info(sb, group);
917 grinfo->bb_fragments = 0;
918 memset(grinfo->bb_counters, 0,
919 sizeof(*grinfo->bb_counters) *
920 (sb->s_blocksize_bits+2));
921 /*
922 * incore got set to the group block bitmap below
923 */
924 ext4_lock_group(sb, group);
925 /* init the buddy */
926 memset(data, 0xff, blocksize);
927 ext4_mb_generate_buddy(sb, data, incore, group);
928 ext4_unlock_group(sb, group);
929 incore = NULL;
930 } else {
931 /* this is block of bitmap */
932 BUG_ON(incore != NULL);
933 mb_debug(1, "put bitmap for group %u in page %lu/%x\n",
934 group, page->index, i * blocksize);
935 trace_ext4_mb_bitmap_load(sb, group);
936
937 /* see comments in ext4_mb_put_pa() */
938 ext4_lock_group(sb, group);
939 memcpy(data, bitmap, blocksize);
940
941 /* mark all preallocated blks used in in-core bitmap */
942 ext4_mb_generate_from_pa(sb, data, group);
943 ext4_mb_generate_from_freelist(sb, data, group);
944 ext4_unlock_group(sb, group);
945
946 /* set incore so that the buddy information can be
947 * generated using this
948 */
949 incore = data;
950 }
951 }
952 SetPageUptodate(page);
953
954 out:
955 if (bh) {
956 for (i = 0; i < groups_per_page; i++)
957 brelse(bh[i]);
958 if (bh != &bhs)
959 kfree(bh);
960 }
961 return err;
962 }
963
964 /*
965 * Lock the buddy and bitmap pages. This make sure other parallel init_group
966 * on the same buddy page doesn't happen whild holding the buddy page lock.
967 * Return locked buddy and bitmap pages on e4b struct. If buddy and bitmap
968 * are on the same page e4b->bd_buddy_page is NULL and return value is 0.
969 */
970 static int ext4_mb_get_buddy_page_lock(struct super_block *sb,
971 ext4_group_t group, struct ext4_buddy *e4b)
972 {
973 struct inode *inode = EXT4_SB(sb)->s_buddy_cache;
974 int block, pnum, poff;
975 int blocks_per_page;
976 struct page *page;
977
978 e4b->bd_buddy_page = NULL;
979 e4b->bd_bitmap_page = NULL;
980
981 blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize;
982 /*
983 * the buddy cache inode stores the block bitmap
984 * and buddy information in consecutive blocks.
985 * So for each group we need two blocks.
986 */
987 block = group * 2;
988 pnum = block / blocks_per_page;
989 poff = block % blocks_per_page;
990 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
991 if (!page)
992 return -ENOMEM;
993 BUG_ON(page->mapping != inode->i_mapping);
994 e4b->bd_bitmap_page = page;
995 e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
996
997 if (blocks_per_page >= 2) {
998 /* buddy and bitmap are on the same page */
999 return 0;
1000 }
1001
1002 block++;
1003 pnum = block / blocks_per_page;
1004 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
1005 if (!page)
1006 return -ENOMEM;
1007 BUG_ON(page->mapping != inode->i_mapping);
1008 e4b->bd_buddy_page = page;
1009 return 0;
1010 }
1011
1012 static void ext4_mb_put_buddy_page_lock(struct ext4_buddy *e4b)
1013 {
1014 if (e4b->bd_bitmap_page) {
1015 unlock_page(e4b->bd_bitmap_page);
1016 page_cache_release(e4b->bd_bitmap_page);
1017 }
1018 if (e4b->bd_buddy_page) {
1019 unlock_page(e4b->bd_buddy_page);
1020 page_cache_release(e4b->bd_buddy_page);
1021 }
1022 }
1023
1024 /*
1025 * Locking note: This routine calls ext4_mb_init_cache(), which takes the
1026 * block group lock of all groups for this page; do not hold the BG lock when
1027 * calling this routine!
1028 */
1029 static noinline_for_stack
1030 int ext4_mb_init_group(struct super_block *sb, ext4_group_t group)
1031 {
1032
1033 struct ext4_group_info *this_grp;
1034 struct ext4_buddy e4b;
1035 struct page *page;
1036 int ret = 0;
1037
1038 might_sleep();
1039 mb_debug(1, "init group %u\n", group);
1040 this_grp = ext4_get_group_info(sb, group);
1041 /*
1042 * This ensures that we don't reinit the buddy cache
1043 * page which map to the group from which we are already
1044 * allocating. If we are looking at the buddy cache we would
1045 * have taken a reference using ext4_mb_load_buddy and that
1046 * would have pinned buddy page to page cache.
1047 * The call to ext4_mb_get_buddy_page_lock will mark the
1048 * page accessed.
1049 */
1050 ret = ext4_mb_get_buddy_page_lock(sb, group, &e4b);
1051 if (ret || !EXT4_MB_GRP_NEED_INIT(this_grp)) {
1052 /*
1053 * somebody initialized the group
1054 * return without doing anything
1055 */
1056 goto err;
1057 }
1058
1059 page = e4b.bd_bitmap_page;
1060 ret = ext4_mb_init_cache(page, NULL);
1061 if (ret)
1062 goto err;
1063 if (!PageUptodate(page)) {
1064 ret = -EIO;
1065 goto err;
1066 }
1067
1068 if (e4b.bd_buddy_page == NULL) {
1069 /*
1070 * If both the bitmap and buddy are in
1071 * the same page we don't need to force
1072 * init the buddy
1073 */
1074 ret = 0;
1075 goto err;
1076 }
1077 /* init buddy cache */
1078 page = e4b.bd_buddy_page;
1079 ret = ext4_mb_init_cache(page, e4b.bd_bitmap);
1080 if (ret)
1081 goto err;
1082 if (!PageUptodate(page)) {
1083 ret = -EIO;
1084 goto err;
1085 }
1086 err:
1087 ext4_mb_put_buddy_page_lock(&e4b);
1088 return ret;
1089 }
1090
1091 /*
1092 * Locking note: This routine calls ext4_mb_init_cache(), which takes the
1093 * block group lock of all groups for this page; do not hold the BG lock when
1094 * calling this routine!
1095 */
1096 static noinline_for_stack int
1097 ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group,
1098 struct ext4_buddy *e4b)
1099 {
1100 int blocks_per_page;
1101 int block;
1102 int pnum;
1103 int poff;
1104 struct page *page;
1105 int ret;
1106 struct ext4_group_info *grp;
1107 struct ext4_sb_info *sbi = EXT4_SB(sb);
1108 struct inode *inode = sbi->s_buddy_cache;
1109
1110 might_sleep();
1111 mb_debug(1, "load group %u\n", group);
1112
1113 blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize;
1114 grp = ext4_get_group_info(sb, group);
1115
1116 e4b->bd_blkbits = sb->s_blocksize_bits;
1117 e4b->bd_info = grp;
1118 e4b->bd_sb = sb;
1119 e4b->bd_group = group;
1120 e4b->bd_buddy_page = NULL;
1121 e4b->bd_bitmap_page = NULL;
1122
1123 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
1124 /*
1125 * we need full data about the group
1126 * to make a good selection
1127 */
1128 ret = ext4_mb_init_group(sb, group);
1129 if (ret)
1130 return ret;
1131 }
1132
1133 /*
1134 * the buddy cache inode stores the block bitmap
1135 * and buddy information in consecutive blocks.
1136 * So for each group we need two blocks.
1137 */
1138 block = group * 2;
1139 pnum = block / blocks_per_page;
1140 poff = block % blocks_per_page;
1141
1142 /* we could use find_or_create_page(), but it locks page
1143 * what we'd like to avoid in fast path ... */
1144 page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED);
1145 if (page == NULL || !PageUptodate(page)) {
1146 if (page)
1147 /*
1148 * drop the page reference and try
1149 * to get the page with lock. If we
1150 * are not uptodate that implies
1151 * somebody just created the page but
1152 * is yet to initialize the same. So
1153 * wait for it to initialize.
1154 */
1155 page_cache_release(page);
1156 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
1157 if (page) {
1158 BUG_ON(page->mapping != inode->i_mapping);
1159 if (!PageUptodate(page)) {
1160 ret = ext4_mb_init_cache(page, NULL);
1161 if (ret) {
1162 unlock_page(page);
1163 goto err;
1164 }
1165 mb_cmp_bitmaps(e4b, page_address(page) +
1166 (poff * sb->s_blocksize));
1167 }
1168 unlock_page(page);
1169 }
1170 }
1171 if (page == NULL) {
1172 ret = -ENOMEM;
1173 goto err;
1174 }
1175 if (!PageUptodate(page)) {
1176 ret = -EIO;
1177 goto err;
1178 }
1179
1180 /* Pages marked accessed already */
1181 e4b->bd_bitmap_page = page;
1182 e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
1183
1184 block++;
1185 pnum = block / blocks_per_page;
1186 poff = block % blocks_per_page;
1187
1188 page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED);
1189 if (page == NULL || !PageUptodate(page)) {
1190 if (page)
1191 page_cache_release(page);
1192 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
1193 if (page) {
1194 BUG_ON(page->mapping != inode->i_mapping);
1195 if (!PageUptodate(page)) {
1196 ret = ext4_mb_init_cache(page, e4b->bd_bitmap);
1197 if (ret) {
1198 unlock_page(page);
1199 goto err;
1200 }
1201 }
1202 unlock_page(page);
1203 }
1204 }
1205 if (page == NULL) {
1206 ret = -ENOMEM;
1207 goto err;
1208 }
1209 if (!PageUptodate(page)) {
1210 ret = -EIO;
1211 goto err;
1212 }
1213
1214 /* Pages marked accessed already */
1215 e4b->bd_buddy_page = page;
1216 e4b->bd_buddy = page_address(page) + (poff * sb->s_blocksize);
1217
1218 BUG_ON(e4b->bd_bitmap_page == NULL);
1219 BUG_ON(e4b->bd_buddy_page == NULL);
1220
1221 return 0;
1222
1223 err:
1224 if (page)
1225 page_cache_release(page);
1226 if (e4b->bd_bitmap_page)
1227 page_cache_release(e4b->bd_bitmap_page);
1228 if (e4b->bd_buddy_page)
1229 page_cache_release(e4b->bd_buddy_page);
1230 e4b->bd_buddy = NULL;
1231 e4b->bd_bitmap = NULL;
1232 return ret;
1233 }
1234
1235 static void ext4_mb_unload_buddy(struct ext4_buddy *e4b)
1236 {
1237 if (e4b->bd_bitmap_page)
1238 page_cache_release(e4b->bd_bitmap_page);
1239 if (e4b->bd_buddy_page)
1240 page_cache_release(e4b->bd_buddy_page);
1241 }
1242
1243
1244 static int mb_find_order_for_block(struct ext4_buddy *e4b, int block)
1245 {
1246 int order = 1;
1247 void *bb;
1248
1249 BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
1250 BUG_ON(block >= (1 << (e4b->bd_blkbits + 3)));
1251
1252 bb = e4b->bd_buddy;
1253 while (order <= e4b->bd_blkbits + 1) {
1254 block = block >> 1;
1255 if (!mb_test_bit(block, bb)) {
1256 /* this block is part of buddy of order 'order' */
1257 return order;
1258 }
1259 bb += 1 << (e4b->bd_blkbits - order);
1260 order++;
1261 }
1262 return 0;
1263 }
1264
1265 static void mb_clear_bits(void *bm, int cur, int len)
1266 {
1267 __u32 *addr;
1268
1269 len = cur + len;
1270 while (cur < len) {
1271 if ((cur & 31) == 0 && (len - cur) >= 32) {
1272 /* fast path: clear whole word at once */
1273 addr = bm + (cur >> 3);
1274 *addr = 0;
1275 cur += 32;
1276 continue;
1277 }
1278 mb_clear_bit(cur, bm);
1279 cur++;
1280 }
1281 }
1282
1283 /* clear bits in given range
1284 * will return first found zero bit if any, -1 otherwise
1285 */
1286 static int mb_test_and_clear_bits(void *bm, int cur, int len)
1287 {
1288 __u32 *addr;
1289 int zero_bit = -1;
1290
1291 len = cur + len;
1292 while (cur < len) {
1293 if ((cur & 31) == 0 && (len - cur) >= 32) {
1294 /* fast path: clear whole word at once */
1295 addr = bm + (cur >> 3);
1296 if (*addr != (__u32)(-1) && zero_bit == -1)
1297 zero_bit = cur + mb_find_next_zero_bit(addr, 32, 0);
1298 *addr = 0;
1299 cur += 32;
1300 continue;
1301 }
1302 if (!mb_test_and_clear_bit(cur, bm) && zero_bit == -1)
1303 zero_bit = cur;
1304 cur++;
1305 }
1306
1307 return zero_bit;
1308 }
1309
1310 void ext4_set_bits(void *bm, int cur, int len)
1311 {
1312 __u32 *addr;
1313
1314 len = cur + len;
1315 while (cur < len) {
1316 if ((cur & 31) == 0 && (len - cur) >= 32) {
1317 /* fast path: set whole word at once */
1318 addr = bm + (cur >> 3);
1319 *addr = 0xffffffff;
1320 cur += 32;
1321 continue;
1322 }
1323 mb_set_bit(cur, bm);
1324 cur++;
1325 }
1326 }
1327
1328 /*
1329 * _________________________________________________________________ */
1330
1331 static inline int mb_buddy_adjust_border(int* bit, void* bitmap, int side)
1332 {
1333 if (mb_test_bit(*bit + side, bitmap)) {
1334 mb_clear_bit(*bit, bitmap);
1335 (*bit) -= side;
1336 return 1;
1337 }
1338 else {
1339 (*bit) += side;
1340 mb_set_bit(*bit, bitmap);
1341 return -1;
1342 }
1343 }
1344
1345 static void mb_buddy_mark_free(struct ext4_buddy *e4b, int first, int last)
1346 {
1347 int max;
1348 int order = 1;
1349 void *buddy = mb_find_buddy(e4b, order, &max);
1350
1351 while (buddy) {
1352 void *buddy2;
1353
1354 /* Bits in range [first; last] are known to be set since
1355 * corresponding blocks were allocated. Bits in range
1356 * (first; last) will stay set because they form buddies on
1357 * upper layer. We just deal with borders if they don't
1358 * align with upper layer and then go up.
1359 * Releasing entire group is all about clearing
1360 * single bit of highest order buddy.
1361 */
1362
1363 /* Example:
1364 * ---------------------------------
1365 * | 1 | 1 | 1 | 1 |
1366 * ---------------------------------
1367 * | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
1368 * ---------------------------------
1369 * 0 1 2 3 4 5 6 7
1370 * \_____________________/
1371 *
1372 * Neither [1] nor [6] is aligned to above layer.
1373 * Left neighbour [0] is free, so mark it busy,
1374 * decrease bb_counters and extend range to
1375 * [0; 6]
1376 * Right neighbour [7] is busy. It can't be coaleasced with [6], so
1377 * mark [6] free, increase bb_counters and shrink range to
1378 * [0; 5].
1379 * Then shift range to [0; 2], go up and do the same.
1380 */
1381
1382
1383 if (first & 1)
1384 e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&first, buddy, -1);
1385 if (!(last & 1))
1386 e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&last, buddy, 1);
1387 if (first > last)
1388 break;
1389 order++;
1390
1391 if (first == last || !(buddy2 = mb_find_buddy(e4b, order, &max))) {
1392 mb_clear_bits(buddy, first, last - first + 1);
1393 e4b->bd_info->bb_counters[order - 1] += last - first + 1;
1394 break;
1395 }
1396 first >>= 1;
1397 last >>= 1;
1398 buddy = buddy2;
1399 }
1400 }
1401
1402 static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b,
1403 int first, int count)
1404 {
1405 int left_is_free = 0;
1406 int right_is_free = 0;
1407 int block;
1408 int last = first + count - 1;
1409 struct super_block *sb = e4b->bd_sb;
1410
1411 BUG_ON(last >= (sb->s_blocksize << 3));
1412 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
1413 /* Don't bother if the block group is corrupt. */
1414 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info)))
1415 return;
1416
1417 mb_check_buddy(e4b);
1418 mb_free_blocks_double(inode, e4b, first, count);
1419
1420 e4b->bd_info->bb_free += count;
1421 if (first < e4b->bd_info->bb_first_free)
1422 e4b->bd_info->bb_first_free = first;
1423
1424 /* access memory sequentially: check left neighbour,
1425 * clear range and then check right neighbour
1426 */
1427 if (first != 0)
1428 left_is_free = !mb_test_bit(first - 1, e4b->bd_bitmap);
1429 block = mb_test_and_clear_bits(e4b->bd_bitmap, first, count);
1430 if (last + 1 < EXT4_SB(sb)->s_mb_maxs[0])
1431 right_is_free = !mb_test_bit(last + 1, e4b->bd_bitmap);
1432
1433 if (unlikely(block != -1)) {
1434 ext4_fsblk_t blocknr;
1435
1436 blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
1437 blocknr += EXT4_C2B(EXT4_SB(sb), block);
1438 ext4_grp_locked_error(sb, e4b->bd_group,
1439 inode ? inode->i_ino : 0,
1440 blocknr,
1441 "freeing already freed block "
1442 "(bit %u); block bitmap corrupt.",
1443 block);
1444 /* Mark the block group as corrupt. */
1445 set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT,
1446 &e4b->bd_info->bb_state);
1447 mb_regenerate_buddy(e4b);
1448 goto done;
1449 }
1450
1451 /* let's maintain fragments counter */
1452 if (left_is_free && right_is_free)
1453 e4b->bd_info->bb_fragments--;
1454 else if (!left_is_free && !right_is_free)
1455 e4b->bd_info->bb_fragments++;
1456
1457 /* buddy[0] == bd_bitmap is a special case, so handle
1458 * it right away and let mb_buddy_mark_free stay free of
1459 * zero order checks.
1460 * Check if neighbours are to be coaleasced,
1461 * adjust bitmap bb_counters and borders appropriately.
1462 */
1463 if (first & 1) {
1464 first += !left_is_free;
1465 e4b->bd_info->bb_counters[0] += left_is_free ? -1 : 1;
1466 }
1467 if (!(last & 1)) {
1468 last -= !right_is_free;
1469 e4b->bd_info->bb_counters[0] += right_is_free ? -1 : 1;
1470 }
1471
1472 if (first <= last)
1473 mb_buddy_mark_free(e4b, first >> 1, last >> 1);
1474
1475 done:
1476 mb_set_largest_free_order(sb, e4b->bd_info);
1477 mb_check_buddy(e4b);
1478 }
1479
1480 static int mb_find_extent(struct ext4_buddy *e4b, int block,
1481 int needed, struct ext4_free_extent *ex)
1482 {
1483 int next = block;
1484 int max, order;
1485 void *buddy;
1486
1487 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1488 BUG_ON(ex == NULL);
1489
1490 buddy = mb_find_buddy(e4b, 0, &max);
1491 BUG_ON(buddy == NULL);
1492 BUG_ON(block >= max);
1493 if (mb_test_bit(block, buddy)) {
1494 ex->fe_len = 0;
1495 ex->fe_start = 0;
1496 ex->fe_group = 0;
1497 return 0;
1498 }
1499
1500 /* find actual order */
1501 order = mb_find_order_for_block(e4b, block);
1502 block = block >> order;
1503
1504 ex->fe_len = 1 << order;
1505 ex->fe_start = block << order;
1506 ex->fe_group = e4b->bd_group;
1507
1508 /* calc difference from given start */
1509 next = next - ex->fe_start;
1510 ex->fe_len -= next;
1511 ex->fe_start += next;
1512
1513 while (needed > ex->fe_len &&
1514 mb_find_buddy(e4b, order, &max)) {
1515
1516 if (block + 1 >= max)
1517 break;
1518
1519 next = (block + 1) * (1 << order);
1520 if (mb_test_bit(next, e4b->bd_bitmap))
1521 break;
1522
1523 order = mb_find_order_for_block(e4b, next);
1524
1525 block = next >> order;
1526 ex->fe_len += 1 << order;
1527 }
1528
1529 BUG_ON(ex->fe_start + ex->fe_len > (1 << (e4b->bd_blkbits + 3)));
1530 return ex->fe_len;
1531 }
1532
1533 static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex)
1534 {
1535 int ord;
1536 int mlen = 0;
1537 int max = 0;
1538 int cur;
1539 int start = ex->fe_start;
1540 int len = ex->fe_len;
1541 unsigned ret = 0;
1542 int len0 = len;
1543 void *buddy;
1544
1545 BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3));
1546 BUG_ON(e4b->bd_group != ex->fe_group);
1547 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1548 mb_check_buddy(e4b);
1549 mb_mark_used_double(e4b, start, len);
1550
1551 e4b->bd_info->bb_free -= len;
1552 if (e4b->bd_info->bb_first_free == start)
1553 e4b->bd_info->bb_first_free += len;
1554
1555 /* let's maintain fragments counter */
1556 if (start != 0)
1557 mlen = !mb_test_bit(start - 1, e4b->bd_bitmap);
1558 if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0])
1559 max = !mb_test_bit(start + len, e4b->bd_bitmap);
1560 if (mlen && max)
1561 e4b->bd_info->bb_fragments++;
1562 else if (!mlen && !max)
1563 e4b->bd_info->bb_fragments--;
1564
1565 /* let's maintain buddy itself */
1566 while (len) {
1567 ord = mb_find_order_for_block(e4b, start);
1568
1569 if (((start >> ord) << ord) == start && len >= (1 << ord)) {
1570 /* the whole chunk may be allocated at once! */
1571 mlen = 1 << ord;
1572 buddy = mb_find_buddy(e4b, ord, &max);
1573 BUG_ON((start >> ord) >= max);
1574 mb_set_bit(start >> ord, buddy);
1575 e4b->bd_info->bb_counters[ord]--;
1576 start += mlen;
1577 len -= mlen;
1578 BUG_ON(len < 0);
1579 continue;
1580 }
1581
1582 /* store for history */
1583 if (ret == 0)
1584 ret = len | (ord << 16);
1585
1586 /* we have to split large buddy */
1587 BUG_ON(ord <= 0);
1588 buddy = mb_find_buddy(e4b, ord, &max);
1589 mb_set_bit(start >> ord, buddy);
1590 e4b->bd_info->bb_counters[ord]--;
1591
1592 ord--;
1593 cur = (start >> ord) & ~1U;
1594 buddy = mb_find_buddy(e4b, ord, &max);
1595 mb_clear_bit(cur, buddy);
1596 mb_clear_bit(cur + 1, buddy);
1597 e4b->bd_info->bb_counters[ord]++;
1598 e4b->bd_info->bb_counters[ord]++;
1599 }
1600 mb_set_largest_free_order(e4b->bd_sb, e4b->bd_info);
1601
1602 ext4_set_bits(e4b->bd_bitmap, ex->fe_start, len0);
1603 mb_check_buddy(e4b);
1604
1605 return ret;
1606 }
1607
1608 /*
1609 * Must be called under group lock!
1610 */
1611 static void ext4_mb_use_best_found(struct ext4_allocation_context *ac,
1612 struct ext4_buddy *e4b)
1613 {
1614 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1615 int ret;
1616
1617 BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group);
1618 BUG_ON(ac->ac_status == AC_STATUS_FOUND);
1619
1620 ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len);
1621 ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical;
1622 ret = mb_mark_used(e4b, &ac->ac_b_ex);
1623
1624 /* preallocation can change ac_b_ex, thus we store actually
1625 * allocated blocks for history */
1626 ac->ac_f_ex = ac->ac_b_ex;
1627
1628 ac->ac_status = AC_STATUS_FOUND;
1629 ac->ac_tail = ret & 0xffff;
1630 ac->ac_buddy = ret >> 16;
1631
1632 /*
1633 * take the page reference. We want the page to be pinned
1634 * so that we don't get a ext4_mb_init_cache_call for this
1635 * group until we update the bitmap. That would mean we
1636 * double allocate blocks. The reference is dropped
1637 * in ext4_mb_release_context
1638 */
1639 ac->ac_bitmap_page = e4b->bd_bitmap_page;
1640 get_page(ac->ac_bitmap_page);
1641 ac->ac_buddy_page = e4b->bd_buddy_page;
1642 get_page(ac->ac_buddy_page);
1643 /* store last allocated for subsequent stream allocation */
1644 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
1645 spin_lock(&sbi->s_md_lock);
1646 sbi->s_mb_last_group = ac->ac_f_ex.fe_group;
1647 sbi->s_mb_last_start = ac->ac_f_ex.fe_start;
1648 spin_unlock(&sbi->s_md_lock);
1649 }
1650 }
1651
1652 /*
1653 * regular allocator, for general purposes allocation
1654 */
1655
1656 static void ext4_mb_check_limits(struct ext4_allocation_context *ac,
1657 struct ext4_buddy *e4b,
1658 int finish_group)
1659 {
1660 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1661 struct ext4_free_extent *bex = &ac->ac_b_ex;
1662 struct ext4_free_extent *gex = &ac->ac_g_ex;
1663 struct ext4_free_extent ex;
1664 int max;
1665
1666 if (ac->ac_status == AC_STATUS_FOUND)
1667 return;
1668 /*
1669 * We don't want to scan for a whole year
1670 */
1671 if (ac->ac_found > sbi->s_mb_max_to_scan &&
1672 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1673 ac->ac_status = AC_STATUS_BREAK;
1674 return;
1675 }
1676
1677 /*
1678 * Haven't found good chunk so far, let's continue
1679 */
1680 if (bex->fe_len < gex->fe_len)
1681 return;
1682
1683 if ((finish_group || ac->ac_found > sbi->s_mb_min_to_scan)
1684 && bex->fe_group == e4b->bd_group) {
1685 /* recheck chunk's availability - we don't know
1686 * when it was found (within this lock-unlock
1687 * period or not) */
1688 max = mb_find_extent(e4b, bex->fe_start, gex->fe_len, &ex);
1689 if (max >= gex->fe_len) {
1690 ext4_mb_use_best_found(ac, e4b);
1691 return;
1692 }
1693 }
1694 }
1695
1696 /*
1697 * The routine checks whether found extent is good enough. If it is,
1698 * then the extent gets marked used and flag is set to the context
1699 * to stop scanning. Otherwise, the extent is compared with the
1700 * previous found extent and if new one is better, then it's stored
1701 * in the context. Later, the best found extent will be used, if
1702 * mballoc can't find good enough extent.
1703 *
1704 * FIXME: real allocation policy is to be designed yet!
1705 */
1706 static void ext4_mb_measure_extent(struct ext4_allocation_context *ac,
1707 struct ext4_free_extent *ex,
1708 struct ext4_buddy *e4b)
1709 {
1710 struct ext4_free_extent *bex = &ac->ac_b_ex;
1711 struct ext4_free_extent *gex = &ac->ac_g_ex;
1712
1713 BUG_ON(ex->fe_len <= 0);
1714 BUG_ON(ex->fe_len > EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
1715 BUG_ON(ex->fe_start >= EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
1716 BUG_ON(ac->ac_status != AC_STATUS_CONTINUE);
1717
1718 ac->ac_found++;
1719
1720 /*
1721 * The special case - take what you catch first
1722 */
1723 if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1724 *bex = *ex;
1725 ext4_mb_use_best_found(ac, e4b);
1726 return;
1727 }
1728
1729 /*
1730 * Let's check whether the chuck is good enough
1731 */
1732 if (ex->fe_len == gex->fe_len) {
1733 *bex = *ex;
1734 ext4_mb_use_best_found(ac, e4b);
1735 return;
1736 }
1737
1738 /*
1739 * If this is first found extent, just store it in the context
1740 */
1741 if (bex->fe_len == 0) {
1742 *bex = *ex;
1743 return;
1744 }
1745
1746 /*
1747 * If new found extent is better, store it in the context
1748 */
1749 if (bex->fe_len < gex->fe_len) {
1750 /* if the request isn't satisfied, any found extent
1751 * larger than previous best one is better */
1752 if (ex->fe_len > bex->fe_len)
1753 *bex = *ex;
1754 } else if (ex->fe_len > gex->fe_len) {
1755 /* if the request is satisfied, then we try to find
1756 * an extent that still satisfy the request, but is
1757 * smaller than previous one */
1758 if (ex->fe_len < bex->fe_len)
1759 *bex = *ex;
1760 }
1761
1762 ext4_mb_check_limits(ac, e4b, 0);
1763 }
1764
1765 static noinline_for_stack
1766 int ext4_mb_try_best_found(struct ext4_allocation_context *ac,
1767 struct ext4_buddy *e4b)
1768 {
1769 struct ext4_free_extent ex = ac->ac_b_ex;
1770 ext4_group_t group = ex.fe_group;
1771 int max;
1772 int err;
1773
1774 BUG_ON(ex.fe_len <= 0);
1775 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1776 if (err)
1777 return err;
1778
1779 ext4_lock_group(ac->ac_sb, group);
1780 max = mb_find_extent(e4b, ex.fe_start, ex.fe_len, &ex);
1781
1782 if (max > 0) {
1783 ac->ac_b_ex = ex;
1784 ext4_mb_use_best_found(ac, e4b);
1785 }
1786
1787 ext4_unlock_group(ac->ac_sb, group);
1788 ext4_mb_unload_buddy(e4b);
1789
1790 return 0;
1791 }
1792
1793 static noinline_for_stack
1794 int ext4_mb_find_by_goal(struct ext4_allocation_context *ac,
1795 struct ext4_buddy *e4b)
1796 {
1797 ext4_group_t group = ac->ac_g_ex.fe_group;
1798 int max;
1799 int err;
1800 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1801 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
1802 struct ext4_free_extent ex;
1803
1804 if (!(ac->ac_flags & EXT4_MB_HINT_TRY_GOAL))
1805 return 0;
1806 if (grp->bb_free == 0)
1807 return 0;
1808
1809 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1810 if (err)
1811 return err;
1812
1813 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info))) {
1814 ext4_mb_unload_buddy(e4b);
1815 return 0;
1816 }
1817
1818 ext4_lock_group(ac->ac_sb, group);
1819 max = mb_find_extent(e4b, ac->ac_g_ex.fe_start,
1820 ac->ac_g_ex.fe_len, &ex);
1821 ex.fe_logical = 0xDEADFA11; /* debug value */
1822
1823 if (max >= ac->ac_g_ex.fe_len && ac->ac_g_ex.fe_len == sbi->s_stripe) {
1824 ext4_fsblk_t start;
1825
1826 start = ext4_group_first_block_no(ac->ac_sb, e4b->bd_group) +
1827 ex.fe_start;
1828 /* use do_div to get remainder (would be 64-bit modulo) */
1829 if (do_div(start, sbi->s_stripe) == 0) {
1830 ac->ac_found++;
1831 ac->ac_b_ex = ex;
1832 ext4_mb_use_best_found(ac, e4b);
1833 }
1834 } else if (max >= ac->ac_g_ex.fe_len) {
1835 BUG_ON(ex.fe_len <= 0);
1836 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1837 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1838 ac->ac_found++;
1839 ac->ac_b_ex = ex;
1840 ext4_mb_use_best_found(ac, e4b);
1841 } else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) {
1842 /* Sometimes, caller may want to merge even small
1843 * number of blocks to an existing extent */
1844 BUG_ON(ex.fe_len <= 0);
1845 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1846 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1847 ac->ac_found++;
1848 ac->ac_b_ex = ex;
1849 ext4_mb_use_best_found(ac, e4b);
1850 }
1851 ext4_unlock_group(ac->ac_sb, group);
1852 ext4_mb_unload_buddy(e4b);
1853
1854 return 0;
1855 }
1856
1857 /*
1858 * The routine scans buddy structures (not bitmap!) from given order
1859 * to max order and tries to find big enough chunk to satisfy the req
1860 */
1861 static noinline_for_stack
1862 void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac,
1863 struct ext4_buddy *e4b)
1864 {
1865 struct super_block *sb = ac->ac_sb;
1866 struct ext4_group_info *grp = e4b->bd_info;
1867 void *buddy;
1868 int i;
1869 int k;
1870 int max;
1871
1872 BUG_ON(ac->ac_2order <= 0);
1873 for (i = ac->ac_2order; i <= sb->s_blocksize_bits + 1; i++) {
1874 if (grp->bb_counters[i] == 0)
1875 continue;
1876
1877 buddy = mb_find_buddy(e4b, i, &max);
1878 BUG_ON(buddy == NULL);
1879
1880 k = mb_find_next_zero_bit(buddy, max, 0);
1881 BUG_ON(k >= max);
1882
1883 ac->ac_found++;
1884
1885 ac->ac_b_ex.fe_len = 1 << i;
1886 ac->ac_b_ex.fe_start = k << i;
1887 ac->ac_b_ex.fe_group = e4b->bd_group;
1888
1889 ext4_mb_use_best_found(ac, e4b);
1890
1891 BUG_ON(ac->ac_b_ex.fe_len != ac->ac_g_ex.fe_len);
1892
1893 if (EXT4_SB(sb)->s_mb_stats)
1894 atomic_inc(&EXT4_SB(sb)->s_bal_2orders);
1895
1896 break;
1897 }
1898 }
1899
1900 /*
1901 * The routine scans the group and measures all found extents.
1902 * In order to optimize scanning, caller must pass number of
1903 * free blocks in the group, so the routine can know upper limit.
1904 */
1905 static noinline_for_stack
1906 void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac,
1907 struct ext4_buddy *e4b)
1908 {
1909 struct super_block *sb = ac->ac_sb;
1910 void *bitmap = e4b->bd_bitmap;
1911 struct ext4_free_extent ex;
1912 int i;
1913 int free;
1914
1915 free = e4b->bd_info->bb_free;
1916 BUG_ON(free <= 0);
1917
1918 i = e4b->bd_info->bb_first_free;
1919
1920 while (free && ac->ac_status == AC_STATUS_CONTINUE) {
1921 i = mb_find_next_zero_bit(bitmap,
1922 EXT4_CLUSTERS_PER_GROUP(sb), i);
1923 if (i >= EXT4_CLUSTERS_PER_GROUP(sb)) {
1924 /*
1925 * IF we have corrupt bitmap, we won't find any
1926 * free blocks even though group info says we
1927 * we have free blocks
1928 */
1929 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
1930 "%d free clusters as per "
1931 "group info. But bitmap says 0",
1932 free);
1933 break;
1934 }
1935
1936 mb_find_extent(e4b, i, ac->ac_g_ex.fe_len, &ex);
1937 BUG_ON(ex.fe_len <= 0);
1938 if (free < ex.fe_len) {
1939 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
1940 "%d free clusters as per "
1941 "group info. But got %d blocks",
1942 free, ex.fe_len);
1943 /*
1944 * The number of free blocks differs. This mostly
1945 * indicate that the bitmap is corrupt. So exit
1946 * without claiming the space.
1947 */
1948 break;
1949 }
1950 ex.fe_logical = 0xDEADC0DE; /* debug value */
1951 ext4_mb_measure_extent(ac, &ex, e4b);
1952
1953 i += ex.fe_len;
1954 free -= ex.fe_len;
1955 }
1956
1957 ext4_mb_check_limits(ac, e4b, 1);
1958 }
1959
1960 /*
1961 * This is a special case for storages like raid5
1962 * we try to find stripe-aligned chunks for stripe-size-multiple requests
1963 */
1964 static noinline_for_stack
1965 void ext4_mb_scan_aligned(struct ext4_allocation_context *ac,
1966 struct ext4_buddy *e4b)
1967 {
1968 struct super_block *sb = ac->ac_sb;
1969 struct ext4_sb_info *sbi = EXT4_SB(sb);
1970 void *bitmap = e4b->bd_bitmap;
1971 struct ext4_free_extent ex;
1972 ext4_fsblk_t first_group_block;
1973 ext4_fsblk_t a;
1974 ext4_grpblk_t i;
1975 int max;
1976
1977 BUG_ON(sbi->s_stripe == 0);
1978
1979 /* find first stripe-aligned block in group */
1980 first_group_block = ext4_group_first_block_no(sb, e4b->bd_group);
1981
1982 a = first_group_block + sbi->s_stripe - 1;
1983 do_div(a, sbi->s_stripe);
1984 i = (a * sbi->s_stripe) - first_group_block;
1985
1986 while (i < EXT4_CLUSTERS_PER_GROUP(sb)) {
1987 if (!mb_test_bit(i, bitmap)) {
1988 max = mb_find_extent(e4b, i, sbi->s_stripe, &ex);
1989 if (max >= sbi->s_stripe) {
1990 ac->ac_found++;
1991 ex.fe_logical = 0xDEADF00D; /* debug value */
1992 ac->ac_b_ex = ex;
1993 ext4_mb_use_best_found(ac, e4b);
1994 break;
1995 }
1996 }
1997 i += sbi->s_stripe;
1998 }
1999 }
2000
2001 /* This is now called BEFORE we load the buddy bitmap. */
2002 static int ext4_mb_good_group(struct ext4_allocation_context *ac,
2003 ext4_group_t group, int cr)
2004 {
2005 unsigned free, fragments;
2006 int flex_size = ext4_flex_bg_size(EXT4_SB(ac->ac_sb));
2007 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
2008
2009 BUG_ON(cr < 0 || cr >= 4);
2010
2011 free = grp->bb_free;
2012 if (free == 0)
2013 return 0;
2014 if (cr <= 2 && free < ac->ac_g_ex.fe_len)
2015 return 0;
2016
2017 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(grp)))
2018 return 0;
2019
2020 /* We only do this if the grp has never been initialized */
2021 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
2022 int ret = ext4_mb_init_group(ac->ac_sb, group);
2023 if (ret)
2024 return 0;
2025 }
2026
2027 fragments = grp->bb_fragments;
2028 if (fragments == 0)
2029 return 0;
2030
2031 switch (cr) {
2032 case 0:
2033 BUG_ON(ac->ac_2order == 0);
2034
2035 /* Avoid using the first bg of a flexgroup for data files */
2036 if ((ac->ac_flags & EXT4_MB_HINT_DATA) &&
2037 (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) &&
2038 ((group % flex_size) == 0))
2039 return 0;
2040
2041 if ((ac->ac_2order > ac->ac_sb->s_blocksize_bits+1) ||
2042 (free / fragments) >= ac->ac_g_ex.fe_len)
2043 return 1;
2044
2045 if (grp->bb_largest_free_order < ac->ac_2order)
2046 return 0;
2047
2048 return 1;
2049 case 1:
2050 if ((free / fragments) >= ac->ac_g_ex.fe_len)
2051 return 1;
2052 break;
2053 case 2:
2054 if (free >= ac->ac_g_ex.fe_len)
2055 return 1;
2056 break;
2057 case 3:
2058 return 1;
2059 default:
2060 BUG();
2061 }
2062
2063 return 0;
2064 }
2065
2066 static noinline_for_stack int
2067 ext4_mb_regular_allocator(struct ext4_allocation_context *ac)
2068 {
2069 ext4_group_t ngroups, group, i;
2070 int cr;
2071 int err = 0;
2072 struct ext4_sb_info *sbi;
2073 struct super_block *sb;
2074 struct ext4_buddy e4b;
2075
2076 sb = ac->ac_sb;
2077 sbi = EXT4_SB(sb);
2078 ngroups = ext4_get_groups_count(sb);
2079 /* non-extent files are limited to low blocks/groups */
2080 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)))
2081 ngroups = sbi->s_blockfile_groups;
2082
2083 BUG_ON(ac->ac_status == AC_STATUS_FOUND);
2084
2085 /* first, try the goal */
2086 err = ext4_mb_find_by_goal(ac, &e4b);
2087 if (err || ac->ac_status == AC_STATUS_FOUND)
2088 goto out;
2089
2090 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
2091 goto out;
2092
2093 /*
2094 * ac->ac2_order is set only if the fe_len is a power of 2
2095 * if ac2_order is set we also set criteria to 0 so that we
2096 * try exact allocation using buddy.
2097 */
2098 i = fls(ac->ac_g_ex.fe_len);
2099 ac->ac_2order = 0;
2100 /*
2101 * We search using buddy data only if the order of the request
2102 * is greater than equal to the sbi_s_mb_order2_reqs
2103 * You can tune it via /sys/fs/ext4/<partition>/mb_order2_req
2104 */
2105 if (i >= sbi->s_mb_order2_reqs) {
2106 /*
2107 * This should tell if fe_len is exactly power of 2
2108 */
2109 if ((ac->ac_g_ex.fe_len & (~(1 << (i - 1)))) == 0)
2110 ac->ac_2order = i - 1;
2111 }
2112
2113 /* if stream allocation is enabled, use global goal */
2114 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
2115 /* TBD: may be hot point */
2116 spin_lock(&sbi->s_md_lock);
2117 ac->ac_g_ex.fe_group = sbi->s_mb_last_group;
2118 ac->ac_g_ex.fe_start = sbi->s_mb_last_start;
2119 spin_unlock(&sbi->s_md_lock);
2120 }
2121
2122 /* Let's just scan groups to find more-less suitable blocks */
2123 cr = ac->ac_2order ? 0 : 1;
2124 /*
2125 * cr == 0 try to get exact allocation,
2126 * cr == 3 try to get anything
2127 */
2128 repeat:
2129 for (; cr < 4 && ac->ac_status == AC_STATUS_CONTINUE; cr++) {
2130 ac->ac_criteria = cr;
2131 /*
2132 * searching for the right group start
2133 * from the goal value specified
2134 */
2135 group = ac->ac_g_ex.fe_group;
2136
2137 for (i = 0; i < ngroups; group++, i++) {
2138 cond_resched();
2139 /*
2140 * Artificially restricted ngroups for non-extent
2141 * files makes group > ngroups possible on first loop.
2142 */
2143 if (group >= ngroups)
2144 group = 0;
2145
2146 /* This now checks without needing the buddy page */
2147 if (!ext4_mb_good_group(ac, group, cr))
2148 continue;
2149
2150 err = ext4_mb_load_buddy(sb, group, &e4b);
2151 if (err)
2152 goto out;
2153
2154 ext4_lock_group(sb, group);
2155
2156 /*
2157 * We need to check again after locking the
2158 * block group
2159 */
2160 if (!ext4_mb_good_group(ac, group, cr)) {
2161 ext4_unlock_group(sb, group);
2162 ext4_mb_unload_buddy(&e4b);
2163 continue;
2164 }
2165
2166 ac->ac_groups_scanned++;
2167 if (cr == 0 && ac->ac_2order < sb->s_blocksize_bits+2)
2168 ext4_mb_simple_scan_group(ac, &e4b);
2169 else if (cr == 1 && sbi->s_stripe &&
2170 !(ac->ac_g_ex.fe_len % sbi->s_stripe))
2171 ext4_mb_scan_aligned(ac, &e4b);
2172 else
2173 ext4_mb_complex_scan_group(ac, &e4b);
2174
2175 ext4_unlock_group(sb, group);
2176 ext4_mb_unload_buddy(&e4b);
2177
2178 if (ac->ac_status != AC_STATUS_CONTINUE)
2179 break;
2180 }
2181 }
2182
2183 if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND &&
2184 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2185 /*
2186 * We've been searching too long. Let's try to allocate
2187 * the best chunk we've found so far
2188 */
2189
2190 ext4_mb_try_best_found(ac, &e4b);
2191 if (ac->ac_status != AC_STATUS_FOUND) {
2192 /*
2193 * Someone more lucky has already allocated it.
2194 * The only thing we can do is just take first
2195 * found block(s)
2196 printk(KERN_DEBUG "EXT4-fs: someone won our chunk\n");
2197 */
2198 ac->ac_b_ex.fe_group = 0;
2199 ac->ac_b_ex.fe_start = 0;
2200 ac->ac_b_ex.fe_len = 0;
2201 ac->ac_status = AC_STATUS_CONTINUE;
2202 ac->ac_flags |= EXT4_MB_HINT_FIRST;
2203 cr = 3;
2204 atomic_inc(&sbi->s_mb_lost_chunks);
2205 goto repeat;
2206 }
2207 }
2208 out:
2209 return err;
2210 }
2211
2212 static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos)
2213 {
2214 struct super_block *sb = seq->private;
2215 ext4_group_t group;
2216
2217 if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2218 return NULL;
2219 group = *pos + 1;
2220 return (void *) ((unsigned long) group);
2221 }
2222
2223 static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos)
2224 {
2225 struct super_block *sb = seq->private;
2226 ext4_group_t group;
2227
2228 ++*pos;
2229 if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2230 return NULL;
2231 group = *pos + 1;
2232 return (void *) ((unsigned long) group);
2233 }
2234
2235 static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v)
2236 {
2237 struct super_block *sb = seq->private;
2238 ext4_group_t group = (ext4_group_t) ((unsigned long) v);
2239 int i;
2240 int err, buddy_loaded = 0;
2241 struct ext4_buddy e4b;
2242 struct ext4_group_info *grinfo;
2243 struct sg {
2244 struct ext4_group_info info;
2245 ext4_grpblk_t counters[16];
2246 } sg;
2247
2248 group--;
2249 if (group == 0)
2250 seq_printf(seq, "#%-5s: %-5s %-5s %-5s "
2251 "[ %-5s %-5s %-5s %-5s %-5s %-5s %-5s "
2252 "%-5s %-5s %-5s %-5s %-5s %-5s %-5s ]\n",
2253 "group", "free", "frags", "first",
2254 "2^0", "2^1", "2^2", "2^3", "2^4", "2^5", "2^6",
2255 "2^7", "2^8", "2^9", "2^10", "2^11", "2^12", "2^13");
2256
2257 i = (sb->s_blocksize_bits + 2) * sizeof(sg.info.bb_counters[0]) +
2258 sizeof(struct ext4_group_info);
2259 grinfo = ext4_get_group_info(sb, group);
2260 /* Load the group info in memory only if not already loaded. */
2261 if (unlikely(EXT4_MB_GRP_NEED_INIT(grinfo))) {
2262 err = ext4_mb_load_buddy(sb, group, &e4b);
2263 if (err) {
2264 seq_printf(seq, "#%-5u: I/O error\n", group);
2265 return 0;
2266 }
2267 buddy_loaded = 1;
2268 }
2269
2270 memcpy(&sg, ext4_get_group_info(sb, group), i);
2271
2272 if (buddy_loaded)
2273 ext4_mb_unload_buddy(&e4b);
2274
2275 seq_printf(seq, "#%-5u: %-5u %-5u %-5u [", group, sg.info.bb_free,
2276 sg.info.bb_fragments, sg.info.bb_first_free);
2277 for (i = 0; i <= 13; i++)
2278 seq_printf(seq, " %-5u", i <= sb->s_blocksize_bits + 1 ?
2279 sg.info.bb_counters[i] : 0);
2280 seq_printf(seq, " ]\n");
2281
2282 return 0;
2283 }
2284
2285 static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v)
2286 {
2287 }
2288
2289 static const struct seq_operations ext4_mb_seq_groups_ops = {
2290 .start = ext4_mb_seq_groups_start,
2291 .next = ext4_mb_seq_groups_next,
2292 .stop = ext4_mb_seq_groups_stop,
2293 .show = ext4_mb_seq_groups_show,
2294 };
2295
2296 static int ext4_mb_seq_groups_open(struct inode *inode, struct file *file)
2297 {
2298 struct super_block *sb = PDE_DATA(inode);
2299 int rc;
2300
2301 rc = seq_open(file, &ext4_mb_seq_groups_ops);
2302 if (rc == 0) {
2303 struct seq_file *m = file->private_data;
2304 m->private = sb;
2305 }
2306 return rc;
2307
2308 }
2309
2310 static const struct file_operations ext4_mb_seq_groups_fops = {
2311 .owner = THIS_MODULE,
2312 .open = ext4_mb_seq_groups_open,
2313 .read = seq_read,
2314 .llseek = seq_lseek,
2315 .release = seq_release,
2316 };
2317
2318 static struct kmem_cache *get_groupinfo_cache(int blocksize_bits)
2319 {
2320 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
2321 struct kmem_cache *cachep = ext4_groupinfo_caches[cache_index];
2322
2323 BUG_ON(!cachep);
2324 return cachep;
2325 }
2326
2327 /*
2328 * Allocate the top-level s_group_info array for the specified number
2329 * of groups
2330 */
2331 int ext4_mb_alloc_groupinfo(struct super_block *sb, ext4_group_t ngroups)
2332 {
2333 struct ext4_sb_info *sbi = EXT4_SB(sb);
2334 unsigned size;
2335 struct ext4_group_info ***new_groupinfo;
2336
2337 size = (ngroups + EXT4_DESC_PER_BLOCK(sb) - 1) >>
2338 EXT4_DESC_PER_BLOCK_BITS(sb);
2339 if (size <= sbi->s_group_info_size)
2340 return 0;
2341
2342 size = roundup_pow_of_two(sizeof(*sbi->s_group_info) * size);
2343 new_groupinfo = ext4_kvzalloc(size, GFP_KERNEL);
2344 if (!new_groupinfo) {
2345 ext4_msg(sb, KERN_ERR, "can't allocate buddy meta group");
2346 return -ENOMEM;
2347 }
2348 if (sbi->s_group_info) {
2349 memcpy(new_groupinfo, sbi->s_group_info,
2350 sbi->s_group_info_size * sizeof(*sbi->s_group_info));
2351 ext4_kvfree(sbi->s_group_info);
2352 }
2353 sbi->s_group_info = new_groupinfo;
2354 sbi->s_group_info_size = size / sizeof(*sbi->s_group_info);
2355 ext4_debug("allocated s_groupinfo array for %d meta_bg's\n",
2356 sbi->s_group_info_size);
2357 return 0;
2358 }
2359
2360 /* Create and initialize ext4_group_info data for the given group. */
2361 int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group,
2362 struct ext4_group_desc *desc)
2363 {
2364 int i;
2365 int metalen = 0;
2366 struct ext4_sb_info *sbi = EXT4_SB(sb);
2367 struct ext4_group_info **meta_group_info;
2368 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2369
2370 /*
2371 * First check if this group is the first of a reserved block.
2372 * If it's true, we have to allocate a new table of pointers
2373 * to ext4_group_info structures
2374 */
2375 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
2376 metalen = sizeof(*meta_group_info) <<
2377 EXT4_DESC_PER_BLOCK_BITS(sb);
2378 meta_group_info = kmalloc(metalen, GFP_KERNEL);
2379 if (meta_group_info == NULL) {
2380 ext4_msg(sb, KERN_ERR, "can't allocate mem "
2381 "for a buddy group");
2382 goto exit_meta_group_info;
2383 }
2384 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)] =
2385 meta_group_info;
2386 }
2387
2388 meta_group_info =
2389 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)];
2390 i = group & (EXT4_DESC_PER_BLOCK(sb) - 1);
2391
2392 meta_group_info[i] = kmem_cache_zalloc(cachep, GFP_KERNEL);
2393 if (meta_group_info[i] == NULL) {
2394 ext4_msg(sb, KERN_ERR, "can't allocate buddy mem");
2395 goto exit_group_info;
2396 }
2397 set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT,
2398 &(meta_group_info[i]->bb_state));
2399
2400 /*
2401 * initialize bb_free to be able to skip
2402 * empty groups without initialization
2403 */
2404 if (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
2405 meta_group_info[i]->bb_free =
2406 ext4_free_clusters_after_init(sb, group, desc);
2407 } else {
2408 meta_group_info[i]->bb_free =
2409 ext4_free_group_clusters(sb, desc);
2410 }
2411
2412 INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list);
2413 init_rwsem(&meta_group_info[i]->alloc_sem);
2414 meta_group_info[i]->bb_free_root = RB_ROOT;
2415 meta_group_info[i]->bb_largest_free_order = -1; /* uninit */
2416
2417 #ifdef DOUBLE_CHECK
2418 {
2419 struct buffer_head *bh;
2420 meta_group_info[i]->bb_bitmap =
2421 kmalloc(sb->s_blocksize, GFP_KERNEL);
2422 BUG_ON(meta_group_info[i]->bb_bitmap == NULL);
2423 bh = ext4_read_block_bitmap(sb, group);
2424 BUG_ON(bh == NULL);
2425 memcpy(meta_group_info[i]->bb_bitmap, bh->b_data,
2426 sb->s_blocksize);
2427 put_bh(bh);
2428 }
2429 #endif
2430
2431 return 0;
2432
2433 exit_group_info:
2434 /* If a meta_group_info table has been allocated, release it now */
2435 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
2436 kfree(sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)]);
2437 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)] = NULL;
2438 }
2439 exit_meta_group_info:
2440 return -ENOMEM;
2441 } /* ext4_mb_add_groupinfo */
2442
2443 static int ext4_mb_init_backend(struct super_block *sb)
2444 {
2445 ext4_group_t ngroups = ext4_get_groups_count(sb);
2446 ext4_group_t i;
2447 struct ext4_sb_info *sbi = EXT4_SB(sb);
2448 int err;
2449 struct ext4_group_desc *desc;
2450 struct kmem_cache *cachep;
2451
2452 err = ext4_mb_alloc_groupinfo(sb, ngroups);
2453 if (err)
2454 return err;
2455
2456 sbi->s_buddy_cache = new_inode(sb);
2457 if (sbi->s_buddy_cache == NULL) {
2458 ext4_msg(sb, KERN_ERR, "can't get new inode");
2459 goto err_freesgi;
2460 }
2461 /* To avoid potentially colliding with an valid on-disk inode number,
2462 * use EXT4_BAD_INO for the buddy cache inode number. This inode is
2463 * not in the inode hash, so it should never be found by iget(), but
2464 * this will avoid confusion if it ever shows up during debugging. */
2465 sbi->s_buddy_cache->i_ino = EXT4_BAD_INO;
2466 EXT4_I(sbi->s_buddy_cache)->i_disksize = 0;
2467 for (i = 0; i < ngroups; i++) {
2468 desc = ext4_get_group_desc(sb, i, NULL);
2469 if (desc == NULL) {
2470 ext4_msg(sb, KERN_ERR, "can't read descriptor %u", i);
2471 goto err_freebuddy;
2472 }
2473 if (ext4_mb_add_groupinfo(sb, i, desc) != 0)
2474 goto err_freebuddy;
2475 }
2476
2477 return 0;
2478
2479 err_freebuddy:
2480 cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2481 while (i-- > 0)
2482 kmem_cache_free(cachep, ext4_get_group_info(sb, i));
2483 i = sbi->s_group_info_size;
2484 while (i-- > 0)
2485 kfree(sbi->s_group_info[i]);
2486 iput(sbi->s_buddy_cache);
2487 err_freesgi:
2488 ext4_kvfree(sbi->s_group_info);
2489 return -ENOMEM;
2490 }
2491
2492 static void ext4_groupinfo_destroy_slabs(void)
2493 {
2494 int i;
2495
2496 for (i = 0; i < NR_GRPINFO_CACHES; i++) {
2497 if (ext4_groupinfo_caches[i])
2498 kmem_cache_destroy(ext4_groupinfo_caches[i]);
2499 ext4_groupinfo_caches[i] = NULL;
2500 }
2501 }
2502
2503 static int ext4_groupinfo_create_slab(size_t size)
2504 {
2505 static DEFINE_MUTEX(ext4_grpinfo_slab_create_mutex);
2506 int slab_size;
2507 int blocksize_bits = order_base_2(size);
2508 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
2509 struct kmem_cache *cachep;
2510
2511 if (cache_index >= NR_GRPINFO_CACHES)
2512 return -EINVAL;
2513
2514 if (unlikely(cache_index < 0))
2515 cache_index = 0;
2516
2517 mutex_lock(&ext4_grpinfo_slab_create_mutex);
2518 if (ext4_groupinfo_caches[cache_index]) {
2519 mutex_unlock(&ext4_grpinfo_slab_create_mutex);
2520 return 0; /* Already created */
2521 }
2522
2523 slab_size = offsetof(struct ext4_group_info,
2524 bb_counters[blocksize_bits + 2]);
2525
2526 cachep = kmem_cache_create(ext4_groupinfo_slab_names[cache_index],
2527 slab_size, 0, SLAB_RECLAIM_ACCOUNT,
2528 NULL);
2529
2530 ext4_groupinfo_caches[cache_index] = cachep;
2531
2532 mutex_unlock(&ext4_grpinfo_slab_create_mutex);
2533 if (!cachep) {
2534 printk(KERN_EMERG
2535 "EXT4-fs: no memory for groupinfo slab cache\n");
2536 return -ENOMEM;
2537 }
2538
2539 return 0;
2540 }
2541
2542 int ext4_mb_init(struct super_block *sb)
2543 {
2544 struct ext4_sb_info *sbi = EXT4_SB(sb);
2545 unsigned i, j;
2546 unsigned offset;
2547 unsigned max;
2548 int ret;
2549
2550 i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_offsets);
2551
2552 sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL);
2553 if (sbi->s_mb_offsets == NULL) {
2554 ret = -ENOMEM;
2555 goto out;
2556 }
2557
2558 i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_maxs);
2559 sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL);
2560 if (sbi->s_mb_maxs == NULL) {
2561 ret = -ENOMEM;
2562 goto out;
2563 }
2564
2565 ret = ext4_groupinfo_create_slab(sb->s_blocksize);
2566 if (ret < 0)
2567 goto out;
2568
2569 /* order 0 is regular bitmap */
2570 sbi->s_mb_maxs[0] = sb->s_blocksize << 3;
2571 sbi->s_mb_offsets[0] = 0;
2572
2573 i = 1;
2574 offset = 0;
2575 max = sb->s_blocksize << 2;
2576 do {
2577 sbi->s_mb_offsets[i] = offset;
2578 sbi->s_mb_maxs[i] = max;
2579 offset += 1 << (sb->s_blocksize_bits - i);
2580 max = max >> 1;
2581 i++;
2582 } while (i <= sb->s_blocksize_bits + 1);
2583
2584 spin_lock_init(&sbi->s_md_lock);
2585 spin_lock_init(&sbi->s_bal_lock);
2586
2587 sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN;
2588 sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN;
2589 sbi->s_mb_stats = MB_DEFAULT_STATS;
2590 sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD;
2591 sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS;
2592 /*
2593 * The default group preallocation is 512, which for 4k block
2594 * sizes translates to 2 megabytes. However for bigalloc file
2595 * systems, this is probably too big (i.e, if the cluster size
2596 * is 1 megabyte, then group preallocation size becomes half a
2597 * gigabyte!). As a default, we will keep a two megabyte
2598 * group pralloc size for cluster sizes up to 64k, and after
2599 * that, we will force a minimum group preallocation size of
2600 * 32 clusters. This translates to 8 megs when the cluster
2601 * size is 256k, and 32 megs when the cluster size is 1 meg,
2602 * which seems reasonable as a default.
2603 */
2604 sbi->s_mb_group_prealloc = max(MB_DEFAULT_GROUP_PREALLOC >>
2605 sbi->s_cluster_bits, 32);
2606 /*
2607 * If there is a s_stripe > 1, then we set the s_mb_group_prealloc
2608 * to the lowest multiple of s_stripe which is bigger than
2609 * the s_mb_group_prealloc as determined above. We want
2610 * the preallocation size to be an exact multiple of the
2611 * RAID stripe size so that preallocations don't fragment
2612 * the stripes.
2613 */
2614 if (sbi->s_stripe > 1) {
2615 sbi->s_mb_group_prealloc = roundup(
2616 sbi->s_mb_group_prealloc, sbi->s_stripe);
2617 }
2618
2619 sbi->s_locality_groups = alloc_percpu(struct ext4_locality_group);
2620 if (sbi->s_locality_groups == NULL) {
2621 ret = -ENOMEM;
2622 goto out;
2623 }
2624 for_each_possible_cpu(i) {
2625 struct ext4_locality_group *lg;
2626 lg = per_cpu_ptr(sbi->s_locality_groups, i);
2627 mutex_init(&lg->lg_mutex);
2628 for (j = 0; j < PREALLOC_TB_SIZE; j++)
2629 INIT_LIST_HEAD(&lg->lg_prealloc_list[j]);
2630 spin_lock_init(&lg->lg_prealloc_lock);
2631 }
2632
2633 /* init file for buddy data */
2634 ret = ext4_mb_init_backend(sb);
2635 if (ret != 0)
2636 goto out_free_locality_groups;
2637
2638 if (sbi->s_proc)
2639 proc_create_data("mb_groups", S_IRUGO, sbi->s_proc,
2640 &ext4_mb_seq_groups_fops, sb);
2641
2642 return 0;
2643
2644 out_free_locality_groups:
2645 free_percpu(sbi->s_locality_groups);
2646 sbi->s_locality_groups = NULL;
2647 out:
2648 kfree(sbi->s_mb_offsets);
2649 sbi->s_mb_offsets = NULL;
2650 kfree(sbi->s_mb_maxs);
2651 sbi->s_mb_maxs = NULL;
2652 return ret;
2653 }
2654
2655 /* need to called with the ext4 group lock held */
2656 static void ext4_mb_cleanup_pa(struct ext4_group_info *grp)
2657 {
2658 struct ext4_prealloc_space *pa;
2659 struct list_head *cur, *tmp;
2660 int count = 0;
2661
2662 list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) {
2663 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
2664 list_del(&pa->pa_group_list);
2665 count++;
2666 kmem_cache_free(ext4_pspace_cachep, pa);
2667 }
2668 if (count)
2669 mb_debug(1, "mballoc: %u PAs left\n", count);
2670
2671 }
2672
2673 int ext4_mb_release(struct super_block *sb)
2674 {
2675 ext4_group_t ngroups = ext4_get_groups_count(sb);
2676 ext4_group_t i;
2677 int num_meta_group_infos;
2678 struct ext4_group_info *grinfo;
2679 struct ext4_sb_info *sbi = EXT4_SB(sb);
2680 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2681
2682 if (sbi->s_proc)
2683 remove_proc_entry("mb_groups", sbi->s_proc);
2684
2685 if (sbi->s_group_info) {
2686 for (i = 0; i < ngroups; i++) {
2687 grinfo = ext4_get_group_info(sb, i);
2688 #ifdef DOUBLE_CHECK
2689 kfree(grinfo->bb_bitmap);
2690 #endif
2691 ext4_lock_group(sb, i);
2692 ext4_mb_cleanup_pa(grinfo);
2693 ext4_unlock_group(sb, i);
2694 kmem_cache_free(cachep, grinfo);
2695 }
2696 num_meta_group_infos = (ngroups +
2697 EXT4_DESC_PER_BLOCK(sb) - 1) >>
2698 EXT4_DESC_PER_BLOCK_BITS(sb);
2699 for (i = 0; i < num_meta_group_infos; i++)
2700 kfree(sbi->s_group_info[i]);
2701 ext4_kvfree(sbi->s_group_info);
2702 }
2703 kfree(sbi->s_mb_offsets);
2704 kfree(sbi->s_mb_maxs);
2705 if (sbi->s_buddy_cache)
2706 iput(sbi->s_buddy_cache);
2707 if (sbi->s_mb_stats) {
2708 ext4_msg(sb, KERN_INFO,
2709 "mballoc: %u blocks %u reqs (%u success)",
2710 atomic_read(&sbi->s_bal_allocated),
2711 atomic_read(&sbi->s_bal_reqs),
2712 atomic_read(&sbi->s_bal_success));
2713 ext4_msg(sb, KERN_INFO,
2714 "mballoc: %u extents scanned, %u goal hits, "
2715 "%u 2^N hits, %u breaks, %u lost",
2716 atomic_read(&sbi->s_bal_ex_scanned),
2717 atomic_read(&sbi->s_bal_goals),
2718 atomic_read(&sbi->s_bal_2orders),
2719 atomic_read(&sbi->s_bal_breaks),
2720 atomic_read(&sbi->s_mb_lost_chunks));
2721 ext4_msg(sb, KERN_INFO,
2722 "mballoc: %lu generated and it took %Lu",
2723 sbi->s_mb_buddies_generated,
2724 sbi->s_mb_generation_time);
2725 ext4_msg(sb, KERN_INFO,
2726 "mballoc: %u preallocated, %u discarded",
2727 atomic_read(&sbi->s_mb_preallocated),
2728 atomic_read(&sbi->s_mb_discarded));
2729 }
2730
2731 free_percpu(sbi->s_locality_groups);
2732
2733 return 0;
2734 }
2735
2736 static inline int ext4_issue_discard(struct super_block *sb,
2737 ext4_group_t block_group, ext4_grpblk_t cluster, int count)
2738 {
2739 ext4_fsblk_t discard_block;
2740
2741 discard_block = (EXT4_C2B(EXT4_SB(sb), cluster) +
2742 ext4_group_first_block_no(sb, block_group));
2743 count = EXT4_C2B(EXT4_SB(sb), count);
2744 trace_ext4_discard_blocks(sb,
2745 (unsigned long long) discard_block, count);
2746 return sb_issue_discard(sb, discard_block, count, GFP_NOFS, 0);
2747 }
2748
2749 /*
2750 * This function is called by the jbd2 layer once the commit has finished,
2751 * so we know we can free the blocks that were released with that commit.
2752 */
2753 static void ext4_free_data_callback(struct super_block *sb,
2754 struct ext4_journal_cb_entry *jce,
2755 int rc)
2756 {
2757 struct ext4_free_data *entry = (struct ext4_free_data *)jce;
2758 struct ext4_buddy e4b;
2759 struct ext4_group_info *db;
2760 int err, count = 0, count2 = 0;
2761
2762 mb_debug(1, "gonna free %u blocks in group %u (0x%p):",
2763 entry->efd_count, entry->efd_group, entry);
2764
2765 if (test_opt(sb, DISCARD)) {
2766 err = ext4_issue_discard(sb, entry->efd_group,
2767 entry->efd_start_cluster,
2768 entry->efd_count);
2769 if (err && err != -EOPNOTSUPP)
2770 ext4_msg(sb, KERN_WARNING, "discard request in"
2771 " group:%d block:%d count:%d failed"
2772 " with %d", entry->efd_group,
2773 entry->efd_start_cluster,
2774 entry->efd_count, err);
2775 }
2776
2777 err = ext4_mb_load_buddy(sb, entry->efd_group, &e4b);
2778 /* we expect to find existing buddy because it's pinned */
2779 BUG_ON(err != 0);
2780
2781
2782 db = e4b.bd_info;
2783 /* there are blocks to put in buddy to make them really free */
2784 count += entry->efd_count;
2785 count2++;
2786 ext4_lock_group(sb, entry->efd_group);
2787 /* Take it out of per group rb tree */
2788 rb_erase(&entry->efd_node, &(db->bb_free_root));
2789 mb_free_blocks(NULL, &e4b, entry->efd_start_cluster, entry->efd_count);
2790
2791 /*
2792 * Clear the trimmed flag for the group so that the next
2793 * ext4_trim_fs can trim it.
2794 * If the volume is mounted with -o discard, online discard
2795 * is supported and the free blocks will be trimmed online.
2796 */
2797 if (!test_opt(sb, DISCARD))
2798 EXT4_MB_GRP_CLEAR_TRIMMED(db);
2799
2800 if (!db->bb_free_root.rb_node) {
2801 /* No more items in the per group rb tree
2802 * balance refcounts from ext4_mb_free_metadata()
2803 */
2804 page_cache_release(e4b.bd_buddy_page);
2805 page_cache_release(e4b.bd_bitmap_page);
2806 }
2807 ext4_unlock_group(sb, entry->efd_group);
2808 kmem_cache_free(ext4_free_data_cachep, entry);
2809 ext4_mb_unload_buddy(&e4b);
2810
2811 mb_debug(1, "freed %u blocks in %u structures\n", count, count2);
2812 }
2813
2814 int __init ext4_init_mballoc(void)
2815 {
2816 ext4_pspace_cachep = KMEM_CACHE(ext4_prealloc_space,
2817 SLAB_RECLAIM_ACCOUNT);
2818 if (ext4_pspace_cachep == NULL)
2819 return -ENOMEM;
2820
2821 ext4_ac_cachep = KMEM_CACHE(ext4_allocation_context,
2822 SLAB_RECLAIM_ACCOUNT);
2823 if (ext4_ac_cachep == NULL) {
2824 kmem_cache_destroy(ext4_pspace_cachep);
2825 return -ENOMEM;
2826 }
2827
2828 ext4_free_data_cachep = KMEM_CACHE(ext4_free_data,
2829 SLAB_RECLAIM_ACCOUNT);
2830 if (ext4_free_data_cachep == NULL) {
2831 kmem_cache_destroy(ext4_pspace_cachep);
2832 kmem_cache_destroy(ext4_ac_cachep);
2833 return -ENOMEM;
2834 }
2835 return 0;
2836 }
2837
2838 void ext4_exit_mballoc(void)
2839 {
2840 /*
2841 * Wait for completion of call_rcu()'s on ext4_pspace_cachep
2842 * before destroying the slab cache.
2843 */
2844 rcu_barrier();
2845 kmem_cache_destroy(ext4_pspace_cachep);
2846 kmem_cache_destroy(ext4_ac_cachep);
2847 kmem_cache_destroy(ext4_free_data_cachep);
2848 ext4_groupinfo_destroy_slabs();
2849 }
2850
2851
2852 /*
2853 * Check quota and mark chosen space (ac->ac_b_ex) non-free in bitmaps
2854 * Returns 0 if success or error code
2855 */
2856 static noinline_for_stack int
2857 ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac,
2858 handle_t *handle, unsigned int reserv_clstrs)
2859 {
2860 struct buffer_head *bitmap_bh = NULL;
2861 struct ext4_group_desc *gdp;
2862 struct buffer_head *gdp_bh;
2863 struct ext4_sb_info *sbi;
2864 struct super_block *sb;
2865 ext4_fsblk_t block;
2866 int err, len;
2867
2868 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
2869 BUG_ON(ac->ac_b_ex.fe_len <= 0);
2870
2871 sb = ac->ac_sb;
2872 sbi = EXT4_SB(sb);
2873
2874 err = -EIO;
2875 bitmap_bh = ext4_read_block_bitmap(sb, ac->ac_b_ex.fe_group);
2876 if (!bitmap_bh)
2877 goto out_err;
2878
2879 BUFFER_TRACE(bitmap_bh, "getting write access");
2880 err = ext4_journal_get_write_access(handle, bitmap_bh);
2881 if (err)
2882 goto out_err;
2883
2884 err = -EIO;
2885 gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, &gdp_bh);
2886 if (!gdp)
2887 goto out_err;
2888
2889 ext4_debug("using block group %u(%d)\n", ac->ac_b_ex.fe_group,
2890 ext4_free_group_clusters(sb, gdp));
2891
2892 BUFFER_TRACE(gdp_bh, "get_write_access");
2893 err = ext4_journal_get_write_access(handle, gdp_bh);
2894 if (err)
2895 goto out_err;
2896
2897 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
2898
2899 len = EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
2900 if (!ext4_data_block_valid(sbi, block, len)) {
2901 ext4_error(sb, "Allocating blocks %llu-%llu which overlap "
2902 "fs metadata", block, block+len);
2903 /* File system mounted not to panic on error
2904 * Fix the bitmap and repeat the block allocation
2905 * We leak some of the blocks here.
2906 */
2907 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
2908 ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
2909 ac->ac_b_ex.fe_len);
2910 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
2911 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
2912 if (!err)
2913 err = -EAGAIN;
2914 goto out_err;
2915 }
2916
2917 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
2918 #ifdef AGGRESSIVE_CHECK
2919 {
2920 int i;
2921 for (i = 0; i < ac->ac_b_ex.fe_len; i++) {
2922 BUG_ON(mb_test_bit(ac->ac_b_ex.fe_start + i,
2923 bitmap_bh->b_data));
2924 }
2925 }
2926 #endif
2927 ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
2928 ac->ac_b_ex.fe_len);
2929 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
2930 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
2931 ext4_free_group_clusters_set(sb, gdp,
2932 ext4_free_clusters_after_init(sb,
2933 ac->ac_b_ex.fe_group, gdp));
2934 }
2935 len = ext4_free_group_clusters(sb, gdp) - ac->ac_b_ex.fe_len;
2936 ext4_free_group_clusters_set(sb, gdp, len);
2937 ext4_block_bitmap_csum_set(sb, ac->ac_b_ex.fe_group, gdp, bitmap_bh);
2938 ext4_group_desc_csum_set(sb, ac->ac_b_ex.fe_group, gdp);
2939
2940 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
2941 percpu_counter_sub(&sbi->s_freeclusters_counter, ac->ac_b_ex.fe_len);
2942 /*
2943 * Now reduce the dirty block count also. Should not go negative
2944 */
2945 if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED))
2946 /* release all the reserved blocks if non delalloc */
2947 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
2948 reserv_clstrs);
2949
2950 if (sbi->s_log_groups_per_flex) {
2951 ext4_group_t flex_group = ext4_flex_group(sbi,
2952 ac->ac_b_ex.fe_group);
2953 atomic64_sub(ac->ac_b_ex.fe_len,
2954 &sbi->s_flex_groups[flex_group].free_clusters);
2955 }
2956
2957 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
2958 if (err)
2959 goto out_err;
2960 err = ext4_handle_dirty_metadata(handle, NULL, gdp_bh);
2961
2962 out_err:
2963 brelse(bitmap_bh);
2964 return err;
2965 }
2966
2967 /*
2968 * here we normalize request for locality group
2969 * Group request are normalized to s_mb_group_prealloc, which goes to
2970 * s_strip if we set the same via mount option.
2971 * s_mb_group_prealloc can be configured via
2972 * /sys/fs/ext4/<partition>/mb_group_prealloc
2973 *
2974 * XXX: should we try to preallocate more than the group has now?
2975 */
2976 static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac)
2977 {
2978 struct super_block *sb = ac->ac_sb;
2979 struct ext4_locality_group *lg = ac->ac_lg;
2980
2981 BUG_ON(lg == NULL);
2982 ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc;
2983 mb_debug(1, "#%u: goal %u blocks for locality group\n",
2984 current->pid, ac->ac_g_ex.fe_len);
2985 }
2986
2987 /*
2988 * Normalization means making request better in terms of
2989 * size and alignment
2990 */
2991 static noinline_for_stack void
2992 ext4_mb_normalize_request(struct ext4_allocation_context *ac,
2993 struct ext4_allocation_request *ar)
2994 {
2995 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
2996 int bsbits, max;
2997 ext4_lblk_t end;
2998 loff_t size, start_off;
2999 loff_t orig_size __maybe_unused;
3000 ext4_lblk_t start;
3001 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
3002 struct ext4_prealloc_space *pa;
3003
3004 /* do normalize only data requests, metadata requests
3005 do not need preallocation */
3006 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3007 return;
3008
3009 /* sometime caller may want exact blocks */
3010 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
3011 return;
3012
3013 /* caller may indicate that preallocation isn't
3014 * required (it's a tail, for example) */
3015 if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC)
3016 return;
3017
3018 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) {
3019 ext4_mb_normalize_group_request(ac);
3020 return ;
3021 }
3022
3023 bsbits = ac->ac_sb->s_blocksize_bits;
3024
3025 /* first, let's learn actual file size
3026 * given current request is allocated */
3027 size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len);
3028 size = size << bsbits;
3029 if (size < i_size_read(ac->ac_inode))
3030 size = i_size_read(ac->ac_inode);
3031 orig_size = size;
3032
3033 /* max size of free chunks */
3034 max = 2 << bsbits;
3035
3036 #define NRL_CHECK_SIZE(req, size, max, chunk_size) \
3037 (req <= (size) || max <= (chunk_size))
3038
3039 /* first, try to predict filesize */
3040 /* XXX: should this table be tunable? */
3041 start_off = 0;
3042 if (size <= 16 * 1024) {
3043 size = 16 * 1024;
3044 } else if (size <= 32 * 1024) {
3045 size = 32 * 1024;
3046 } else if (size <= 64 * 1024) {
3047 size = 64 * 1024;
3048 } else if (size <= 128 * 1024) {
3049 size = 128 * 1024;
3050 } else if (size <= 256 * 1024) {
3051 size = 256 * 1024;
3052 } else if (size <= 512 * 1024) {
3053 size = 512 * 1024;
3054 } else if (size <= 1024 * 1024) {
3055 size = 1024 * 1024;
3056 } else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) {
3057 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3058 (21 - bsbits)) << 21;
3059 size = 2 * 1024 * 1024;
3060 } else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) {
3061 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3062 (22 - bsbits)) << 22;
3063 size = 4 * 1024 * 1024;
3064 } else if (NRL_CHECK_SIZE(ac->ac_o_ex.fe_len,
3065 (8<<20)>>bsbits, max, 8 * 1024)) {
3066 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3067 (23 - bsbits)) << 23;
3068 size = 8 * 1024 * 1024;
3069 } else {
3070 start_off = (loff_t)ac->ac_o_ex.fe_logical << bsbits;
3071 size = ac->ac_o_ex.fe_len << bsbits;
3072 }
3073 size = size >> bsbits;
3074 start = start_off >> bsbits;
3075
3076 /* don't cover already allocated blocks in selected range */
3077 if (ar->pleft && start <= ar->lleft) {
3078 size -= ar->lleft + 1 - start;
3079 start = ar->lleft + 1;
3080 }
3081 if (ar->pright && start + size - 1 >= ar->lright)
3082 size -= start + size - ar->lright;
3083
3084 end = start + size;
3085
3086 /* check we don't cross already preallocated blocks */
3087 rcu_read_lock();
3088 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3089 ext4_lblk_t pa_end;
3090
3091 if (pa->pa_deleted)
3092 continue;
3093 spin_lock(&pa->pa_lock);
3094 if (pa->pa_deleted) {
3095 spin_unlock(&pa->pa_lock);
3096 continue;
3097 }
3098
3099 pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb),
3100 pa->pa_len);
3101
3102 /* PA must not overlap original request */
3103 BUG_ON(!(ac->ac_o_ex.fe_logical >= pa_end ||
3104 ac->ac_o_ex.fe_logical < pa->pa_lstart));
3105
3106 /* skip PAs this normalized request doesn't overlap with */
3107 if (pa->pa_lstart >= end || pa_end <= start) {
3108 spin_unlock(&pa->pa_lock);
3109 continue;
3110 }
3111 BUG_ON(pa->pa_lstart <= start && pa_end >= end);
3112
3113 /* adjust start or end to be adjacent to this pa */
3114 if (pa_end <= ac->ac_o_ex.fe_logical) {
3115 BUG_ON(pa_end < start);
3116 start = pa_end;
3117 } else if (pa->pa_lstart > ac->ac_o_ex.fe_logical) {
3118 BUG_ON(pa->pa_lstart > end);
3119 end = pa->pa_lstart;
3120 }
3121 spin_unlock(&pa->pa_lock);
3122 }
3123 rcu_read_unlock();
3124 size = end - start;
3125
3126 /* XXX: extra loop to check we really don't overlap preallocations */
3127 rcu_read_lock();
3128 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3129 ext4_lblk_t pa_end;
3130
3131 spin_lock(&pa->pa_lock);
3132 if (pa->pa_deleted == 0) {
3133 pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb),
3134 pa->pa_len);
3135 BUG_ON(!(start >= pa_end || end <= pa->pa_lstart));
3136 }
3137 spin_unlock(&pa->pa_lock);
3138 }
3139 rcu_read_unlock();
3140
3141 if (start + size <= ac->ac_o_ex.fe_logical &&
3142 start > ac->ac_o_ex.fe_logical) {
3143 ext4_msg(ac->ac_sb, KERN_ERR,
3144 "start %lu, size %lu, fe_logical %lu",
3145 (unsigned long) start, (unsigned long) size,
3146 (unsigned long) ac->ac_o_ex.fe_logical);
3147 }
3148 BUG_ON(start + size <= ac->ac_o_ex.fe_logical &&
3149 start > ac->ac_o_ex.fe_logical);
3150 BUG_ON(size <= 0 || size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb));
3151
3152 /* now prepare goal request */
3153
3154 /* XXX: is it better to align blocks WRT to logical
3155 * placement or satisfy big request as is */
3156 ac->ac_g_ex.fe_logical = start;
3157 ac->ac_g_ex.fe_len = EXT4_NUM_B2C(sbi, size);
3158
3159 /* define goal start in order to merge */
3160 if (ar->pright && (ar->lright == (start + size))) {
3161 /* merge to the right */
3162 ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size,
3163 &ac->ac_f_ex.fe_group,
3164 &ac->ac_f_ex.fe_start);
3165 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3166 }
3167 if (ar->pleft && (ar->lleft + 1 == start)) {
3168 /* merge to the left */
3169 ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1,
3170 &ac->ac_f_ex.fe_group,
3171 &ac->ac_f_ex.fe_start);
3172 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3173 }
3174
3175 mb_debug(1, "goal: %u(was %u) blocks at %u\n", (unsigned) size,
3176 (unsigned) orig_size, (unsigned) start);
3177 }
3178
3179 static void ext4_mb_collect_stats(struct ext4_allocation_context *ac)
3180 {
3181 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3182
3183 if (sbi->s_mb_stats && ac->ac_g_ex.fe_len > 1) {
3184 atomic_inc(&sbi->s_bal_reqs);
3185 atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated);
3186 if (ac->ac_b_ex.fe_len >= ac->ac_o_ex.fe_len)
3187 atomic_inc(&sbi->s_bal_success);
3188 atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned);
3189 if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start &&
3190 ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group)
3191 atomic_inc(&sbi->s_bal_goals);
3192 if (ac->ac_found > sbi->s_mb_max_to_scan)
3193 atomic_inc(&sbi->s_bal_breaks);
3194 }
3195
3196 if (ac->ac_op == EXT4_MB_HISTORY_ALLOC)
3197 trace_ext4_mballoc_alloc(ac);
3198 else
3199 trace_ext4_mballoc_prealloc(ac);
3200 }
3201
3202 /*
3203 * Called on failure; free up any blocks from the inode PA for this
3204 * context. We don't need this for MB_GROUP_PA because we only change
3205 * pa_free in ext4_mb_release_context(), but on failure, we've already
3206 * zeroed out ac->ac_b_ex.fe_len, so group_pa->pa_free is not changed.
3207 */
3208 static void ext4_discard_allocated_blocks(struct ext4_allocation_context *ac)
3209 {
3210 struct ext4_prealloc_space *pa = ac->ac_pa;
3211
3212 if (pa && pa->pa_type == MB_INODE_PA)
3213 pa->pa_free += ac->ac_b_ex.fe_len;
3214 }
3215
3216 /*
3217 * use blocks preallocated to inode
3218 */
3219 static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac,
3220 struct ext4_prealloc_space *pa)
3221 {
3222 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3223 ext4_fsblk_t start;
3224 ext4_fsblk_t end;
3225 int len;
3226
3227 /* found preallocated blocks, use them */
3228 start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart);
3229 end = min(pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len),
3230 start + EXT4_C2B(sbi, ac->ac_o_ex.fe_len));
3231 len = EXT4_NUM_B2C(sbi, end - start);
3232 ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group,
3233 &ac->ac_b_ex.fe_start);
3234 ac->ac_b_ex.fe_len = len;
3235 ac->ac_status = AC_STATUS_FOUND;
3236 ac->ac_pa = pa;
3237
3238 BUG_ON(start < pa->pa_pstart);
3239 BUG_ON(end > pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len));
3240 BUG_ON(pa->pa_free < len);
3241 pa->pa_free -= len;
3242
3243 mb_debug(1, "use %llu/%u from inode pa %p\n", start, len, pa);
3244 }
3245
3246 /*
3247 * use blocks preallocated to locality group
3248 */
3249 static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac,
3250 struct ext4_prealloc_space *pa)
3251 {
3252 unsigned int len = ac->ac_o_ex.fe_len;
3253
3254 ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart,
3255 &ac->ac_b_ex.fe_group,
3256 &ac->ac_b_ex.fe_start);
3257 ac->ac_b_ex.fe_len = len;
3258 ac->ac_status = AC_STATUS_FOUND;
3259 ac->ac_pa = pa;
3260
3261 /* we don't correct pa_pstart or pa_plen here to avoid
3262 * possible race when the group is being loaded concurrently
3263 * instead we correct pa later, after blocks are marked
3264 * in on-disk bitmap -- see ext4_mb_release_context()
3265 * Other CPUs are prevented from allocating from this pa by lg_mutex
3266 */
3267 mb_debug(1, "use %u/%u from group pa %p\n", pa->pa_lstart-len, len, pa);
3268 }
3269
3270 /*
3271 * Return the prealloc space that have minimal distance
3272 * from the goal block. @cpa is the prealloc
3273 * space that is having currently known minimal distance
3274 * from the goal block.
3275 */
3276 static struct ext4_prealloc_space *
3277 ext4_mb_check_group_pa(ext4_fsblk_t goal_block,
3278 struct ext4_prealloc_space *pa,
3279 struct ext4_prealloc_space *cpa)
3280 {
3281 ext4_fsblk_t cur_distance, new_distance;
3282
3283 if (cpa == NULL) {
3284 atomic_inc(&pa->pa_count);
3285 return pa;
3286 }
3287 cur_distance = abs(goal_block - cpa->pa_pstart);
3288 new_distance = abs(goal_block - pa->pa_pstart);
3289
3290 if (cur_distance <= new_distance)
3291 return cpa;
3292
3293 /* drop the previous reference */
3294 atomic_dec(&cpa->pa_count);
3295 atomic_inc(&pa->pa_count);
3296 return pa;
3297 }
3298
3299 /*
3300 * search goal blocks in preallocated space
3301 */
3302 static noinline_for_stack int
3303 ext4_mb_use_preallocated(struct ext4_allocation_context *ac)
3304 {
3305 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3306 int order, i;
3307 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
3308 struct ext4_locality_group *lg;
3309 struct ext4_prealloc_space *pa, *cpa = NULL;
3310 ext4_fsblk_t goal_block;
3311
3312 /* only data can be preallocated */
3313 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3314 return 0;
3315
3316 /* first, try per-file preallocation */
3317 rcu_read_lock();
3318 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3319
3320 /* all fields in this condition don't change,
3321 * so we can skip locking for them */
3322 if (ac->ac_o_ex.fe_logical < pa->pa_lstart ||
3323 ac->ac_o_ex.fe_logical >= (pa->pa_lstart +
3324 EXT4_C2B(sbi, pa->pa_len)))
3325 continue;
3326
3327 /* non-extent files can't have physical blocks past 2^32 */
3328 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)) &&
3329 (pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len) >
3330 EXT4_MAX_BLOCK_FILE_PHYS))
3331 continue;
3332
3333 /* found preallocated blocks, use them */
3334 spin_lock(&pa->pa_lock);
3335 if (pa->pa_deleted == 0 && pa->pa_free) {
3336 atomic_inc(&pa->pa_count);
3337 ext4_mb_use_inode_pa(ac, pa);
3338 spin_unlock(&pa->pa_lock);
3339 ac->ac_criteria = 10;
3340 rcu_read_unlock();
3341 return 1;
3342 }
3343 spin_unlock(&pa->pa_lock);
3344 }
3345 rcu_read_unlock();
3346
3347 /* can we use group allocation? */
3348 if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC))
3349 return 0;
3350
3351 /* inode may have no locality group for some reason */
3352 lg = ac->ac_lg;
3353 if (lg == NULL)
3354 return 0;
3355 order = fls(ac->ac_o_ex.fe_len) - 1;
3356 if (order > PREALLOC_TB_SIZE - 1)
3357 /* The max size of hash table is PREALLOC_TB_SIZE */
3358 order = PREALLOC_TB_SIZE - 1;
3359
3360 goal_block = ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex);
3361 /*
3362 * search for the prealloc space that is having
3363 * minimal distance from the goal block.
3364 */
3365 for (i = order; i < PREALLOC_TB_SIZE; i++) {
3366 rcu_read_lock();
3367 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[i],
3368 pa_inode_list) {
3369 spin_lock(&pa->pa_lock);
3370 if (pa->pa_deleted == 0 &&
3371 pa->pa_free >= ac->ac_o_ex.fe_len) {
3372
3373 cpa = ext4_mb_check_group_pa(goal_block,
3374 pa, cpa);
3375 }
3376 spin_unlock(&pa->pa_lock);
3377 }
3378 rcu_read_unlock();
3379 }
3380 if (cpa) {
3381 ext4_mb_use_group_pa(ac, cpa);
3382 ac->ac_criteria = 20;
3383 return 1;
3384 }
3385 return 0;
3386 }
3387
3388 /*
3389 * the function goes through all block freed in the group
3390 * but not yet committed and marks them used in in-core bitmap.
3391 * buddy must be generated from this bitmap
3392 * Need to be called with the ext4 group lock held
3393 */
3394 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
3395 ext4_group_t group)
3396 {
3397 struct rb_node *n;
3398 struct ext4_group_info *grp;
3399 struct ext4_free_data *entry;
3400
3401 grp = ext4_get_group_info(sb, group);
3402 n = rb_first(&(grp->bb_free_root));
3403
3404 while (n) {
3405 entry = rb_entry(n, struct ext4_free_data, efd_node);
3406 ext4_set_bits(bitmap, entry->efd_start_cluster, entry->efd_count);
3407 n = rb_next(n);
3408 }
3409 return;
3410 }
3411
3412 /*
3413 * the function goes through all preallocation in this group and marks them
3414 * used in in-core bitmap. buddy must be generated from this bitmap
3415 * Need to be called with ext4 group lock held
3416 */
3417 static noinline_for_stack
3418 void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
3419 ext4_group_t group)
3420 {
3421 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
3422 struct ext4_prealloc_space *pa;
3423 struct list_head *cur;
3424 ext4_group_t groupnr;
3425 ext4_grpblk_t start;
3426 int preallocated = 0;
3427 int len;
3428
3429 /* all form of preallocation discards first load group,
3430 * so the only competing code is preallocation use.
3431 * we don't need any locking here
3432 * notice we do NOT ignore preallocations with pa_deleted
3433 * otherwise we could leave used blocks available for
3434 * allocation in buddy when concurrent ext4_mb_put_pa()
3435 * is dropping preallocation
3436 */
3437 list_for_each(cur, &grp->bb_prealloc_list) {
3438 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
3439 spin_lock(&pa->pa_lock);
3440 ext4_get_group_no_and_offset(sb, pa->pa_pstart,
3441 &groupnr, &start);
3442 len = pa->pa_len;
3443 spin_unlock(&pa->pa_lock);
3444 if (unlikely(len == 0))
3445 continue;
3446 BUG_ON(groupnr != group);
3447 ext4_set_bits(bitmap, start, len);
3448 preallocated += len;
3449 }
3450 mb_debug(1, "prellocated %u for group %u\n", preallocated, group);
3451 }
3452
3453 static void ext4_mb_pa_callback(struct rcu_head *head)
3454 {
3455 struct ext4_prealloc_space *pa;
3456 pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu);
3457
3458 BUG_ON(atomic_read(&pa->pa_count));
3459 BUG_ON(pa->pa_deleted == 0);
3460 kmem_cache_free(ext4_pspace_cachep, pa);
3461 }
3462
3463 /*
3464 * drops a reference to preallocated space descriptor
3465 * if this was the last reference and the space is consumed
3466 */
3467 static void ext4_mb_put_pa(struct ext4_allocation_context *ac,
3468 struct super_block *sb, struct ext4_prealloc_space *pa)
3469 {
3470 ext4_group_t grp;
3471 ext4_fsblk_t grp_blk;
3472
3473 /* in this short window concurrent discard can set pa_deleted */
3474 spin_lock(&pa->pa_lock);
3475 if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0) {
3476 spin_unlock(&pa->pa_lock);
3477 return;
3478 }
3479
3480 if (pa->pa_deleted == 1) {
3481 spin_unlock(&pa->pa_lock);
3482 return;
3483 }
3484
3485 pa->pa_deleted = 1;
3486 spin_unlock(&pa->pa_lock);
3487
3488 grp_blk = pa->pa_pstart;
3489 /*
3490 * If doing group-based preallocation, pa_pstart may be in the
3491 * next group when pa is used up
3492 */
3493 if (pa->pa_type == MB_GROUP_PA)
3494 grp_blk--;
3495
3496 grp = ext4_get_group_number(sb, grp_blk);
3497
3498 /*
3499 * possible race:
3500 *
3501 * P1 (buddy init) P2 (regular allocation)
3502 * find block B in PA
3503 * copy on-disk bitmap to buddy
3504 * mark B in on-disk bitmap
3505 * drop PA from group
3506 * mark all PAs in buddy
3507 *
3508 * thus, P1 initializes buddy with B available. to prevent this
3509 * we make "copy" and "mark all PAs" atomic and serialize "drop PA"
3510 * against that pair
3511 */
3512 ext4_lock_group(sb, grp);
3513 list_del(&pa->pa_group_list);
3514 ext4_unlock_group(sb, grp);
3515
3516 spin_lock(pa->pa_obj_lock);
3517 list_del_rcu(&pa->pa_inode_list);
3518 spin_unlock(pa->pa_obj_lock);
3519
3520 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3521 }
3522
3523 /*
3524 * creates new preallocated space for given inode
3525 */
3526 static noinline_for_stack int
3527 ext4_mb_new_inode_pa(struct ext4_allocation_context *ac)
3528 {
3529 struct super_block *sb = ac->ac_sb;
3530 struct ext4_sb_info *sbi = EXT4_SB(sb);
3531 struct ext4_prealloc_space *pa;
3532 struct ext4_group_info *grp;
3533 struct ext4_inode_info *ei;
3534
3535 /* preallocate only when found space is larger then requested */
3536 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
3537 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3538 BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
3539
3540 pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
3541 if (pa == NULL)
3542 return -ENOMEM;
3543
3544 if (ac->ac_b_ex.fe_len < ac->ac_g_ex.fe_len) {
3545 int winl;
3546 int wins;
3547 int win;
3548 int offs;
3549
3550 /* we can't allocate as much as normalizer wants.
3551 * so, found space must get proper lstart
3552 * to cover original request */
3553 BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical);
3554 BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len);
3555
3556 /* we're limited by original request in that
3557 * logical block must be covered any way
3558 * winl is window we can move our chunk within */
3559 winl = ac->ac_o_ex.fe_logical - ac->ac_g_ex.fe_logical;
3560
3561 /* also, we should cover whole original request */
3562 wins = EXT4_C2B(sbi, ac->ac_b_ex.fe_len - ac->ac_o_ex.fe_len);
3563
3564 /* the smallest one defines real window */
3565 win = min(winl, wins);
3566
3567 offs = ac->ac_o_ex.fe_logical %
3568 EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
3569 if (offs && offs < win)
3570 win = offs;
3571
3572 ac->ac_b_ex.fe_logical = ac->ac_o_ex.fe_logical -
3573 EXT4_NUM_B2C(sbi, win);
3574 BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical);
3575 BUG_ON(ac->ac_o_ex.fe_len > ac->ac_b_ex.fe_len);
3576 }
3577
3578 /* preallocation can change ac_b_ex, thus we store actually
3579 * allocated blocks for history */
3580 ac->ac_f_ex = ac->ac_b_ex;
3581
3582 pa->pa_lstart = ac->ac_b_ex.fe_logical;
3583 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3584 pa->pa_len = ac->ac_b_ex.fe_len;
3585 pa->pa_free = pa->pa_len;
3586 atomic_set(&pa->pa_count, 1);
3587 spin_lock_init(&pa->pa_lock);
3588 INIT_LIST_HEAD(&pa->pa_inode_list);
3589 INIT_LIST_HEAD(&pa->pa_group_list);
3590 pa->pa_deleted = 0;
3591 pa->pa_type = MB_INODE_PA;
3592
3593 mb_debug(1, "new inode pa %p: %llu/%u for %u\n", pa,
3594 pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3595 trace_ext4_mb_new_inode_pa(ac, pa);
3596
3597 ext4_mb_use_inode_pa(ac, pa);
3598 atomic_add(pa->pa_free, &sbi->s_mb_preallocated);
3599
3600 ei = EXT4_I(ac->ac_inode);
3601 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
3602
3603 pa->pa_obj_lock = &ei->i_prealloc_lock;
3604 pa->pa_inode = ac->ac_inode;
3605
3606 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3607 list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
3608 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3609
3610 spin_lock(pa->pa_obj_lock);
3611 list_add_rcu(&pa->pa_inode_list, &ei->i_prealloc_list);
3612 spin_unlock(pa->pa_obj_lock);
3613
3614 return 0;
3615 }
3616
3617 /*
3618 * creates new preallocated space for locality group inodes belongs to
3619 */
3620 static noinline_for_stack int
3621 ext4_mb_new_group_pa(struct ext4_allocation_context *ac)
3622 {
3623 struct super_block *sb = ac->ac_sb;
3624 struct ext4_locality_group *lg;
3625 struct ext4_prealloc_space *pa;
3626 struct ext4_group_info *grp;
3627
3628 /* preallocate only when found space is larger then requested */
3629 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
3630 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3631 BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
3632
3633 BUG_ON(ext4_pspace_cachep == NULL);
3634 pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
3635 if (pa == NULL)
3636 return -ENOMEM;
3637
3638 /* preallocation can change ac_b_ex, thus we store actually
3639 * allocated blocks for history */
3640 ac->ac_f_ex = ac->ac_b_ex;
3641
3642 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3643 pa->pa_lstart = pa->pa_pstart;
3644 pa->pa_len = ac->ac_b_ex.fe_len;
3645 pa->pa_free = pa->pa_len;
3646 atomic_set(&pa->pa_count, 1);
3647 spin_lock_init(&pa->pa_lock);
3648 INIT_LIST_HEAD(&pa->pa_inode_list);
3649 INIT_LIST_HEAD(&pa->pa_group_list);
3650 pa->pa_deleted = 0;
3651 pa->pa_type = MB_GROUP_PA;
3652
3653 mb_debug(1, "new group pa %p: %llu/%u for %u\n", pa,
3654 pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3655 trace_ext4_mb_new_group_pa(ac, pa);
3656
3657 ext4_mb_use_group_pa(ac, pa);
3658 atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated);
3659
3660 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
3661 lg = ac->ac_lg;
3662 BUG_ON(lg == NULL);
3663
3664 pa->pa_obj_lock = &lg->lg_prealloc_lock;
3665 pa->pa_inode = NULL;
3666
3667 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3668 list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
3669 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3670
3671 /*
3672 * We will later add the new pa to the right bucket
3673 * after updating the pa_free in ext4_mb_release_context
3674 */
3675 return 0;
3676 }
3677
3678 static int ext4_mb_new_preallocation(struct ext4_allocation_context *ac)
3679 {
3680 int err;
3681
3682 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
3683 err = ext4_mb_new_group_pa(ac);
3684 else
3685 err = ext4_mb_new_inode_pa(ac);
3686 return err;
3687 }
3688
3689 /*
3690 * finds all unused blocks in on-disk bitmap, frees them in
3691 * in-core bitmap and buddy.
3692 * @pa must be unlinked from inode and group lists, so that
3693 * nobody else can find/use it.
3694 * the caller MUST hold group/inode locks.
3695 * TODO: optimize the case when there are no in-core structures yet
3696 */
3697 static noinline_for_stack int
3698 ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh,
3699 struct ext4_prealloc_space *pa)
3700 {
3701 struct super_block *sb = e4b->bd_sb;
3702 struct ext4_sb_info *sbi = EXT4_SB(sb);
3703 unsigned int end;
3704 unsigned int next;
3705 ext4_group_t group;
3706 ext4_grpblk_t bit;
3707 unsigned long long grp_blk_start;
3708 int err = 0;
3709 int free = 0;
3710
3711 BUG_ON(pa->pa_deleted == 0);
3712 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3713 grp_blk_start = pa->pa_pstart - EXT4_C2B(sbi, bit);
3714 BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
3715 end = bit + pa->pa_len;
3716
3717 while (bit < end) {
3718 bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit);
3719 if (bit >= end)
3720 break;
3721 next = mb_find_next_bit(bitmap_bh->b_data, end, bit);
3722 mb_debug(1, " free preallocated %u/%u in group %u\n",
3723 (unsigned) ext4_group_first_block_no(sb, group) + bit,
3724 (unsigned) next - bit, (unsigned) group);
3725 free += next - bit;
3726
3727 trace_ext4_mballoc_discard(sb, NULL, group, bit, next - bit);
3728 trace_ext4_mb_release_inode_pa(pa, (grp_blk_start +
3729 EXT4_C2B(sbi, bit)),
3730 next - bit);
3731 mb_free_blocks(pa->pa_inode, e4b, bit, next - bit);
3732 bit = next + 1;
3733 }
3734 if (free != pa->pa_free) {
3735 ext4_msg(e4b->bd_sb, KERN_CRIT,
3736 "pa %p: logic %lu, phys. %lu, len %lu",
3737 pa, (unsigned long) pa->pa_lstart,
3738 (unsigned long) pa->pa_pstart,
3739 (unsigned long) pa->pa_len);
3740 ext4_grp_locked_error(sb, group, 0, 0, "free %u, pa_free %u",
3741 free, pa->pa_free);
3742 /*
3743 * pa is already deleted so we use the value obtained
3744 * from the bitmap and continue.
3745 */
3746 }
3747 atomic_add(free, &sbi->s_mb_discarded);
3748
3749 return err;
3750 }
3751
3752 static noinline_for_stack int
3753 ext4_mb_release_group_pa(struct ext4_buddy *e4b,
3754 struct ext4_prealloc_space *pa)
3755 {
3756 struct super_block *sb = e4b->bd_sb;
3757 ext4_group_t group;
3758 ext4_grpblk_t bit;
3759
3760 trace_ext4_mb_release_group_pa(sb, pa);
3761 BUG_ON(pa->pa_deleted == 0);
3762 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3763 BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
3764 mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len);
3765 atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded);
3766 trace_ext4_mballoc_discard(sb, NULL, group, bit, pa->pa_len);
3767
3768 return 0;
3769 }
3770
3771 /*
3772 * releases all preallocations in given group
3773 *
3774 * first, we need to decide discard policy:
3775 * - when do we discard
3776 * 1) ENOSPC
3777 * - how many do we discard
3778 * 1) how many requested
3779 */
3780 static noinline_for_stack int
3781 ext4_mb_discard_group_preallocations(struct super_block *sb,
3782 ext4_group_t group, int needed)
3783 {
3784 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
3785 struct buffer_head *bitmap_bh = NULL;
3786 struct ext4_prealloc_space *pa, *tmp;
3787 struct list_head list;
3788 struct ext4_buddy e4b;
3789 int err;
3790 int busy = 0;
3791 int free = 0;
3792
3793 mb_debug(1, "discard preallocation for group %u\n", group);
3794
3795 if (list_empty(&grp->bb_prealloc_list))
3796 return 0;
3797
3798 bitmap_bh = ext4_read_block_bitmap(sb, group);
3799 if (bitmap_bh == NULL) {
3800 ext4_error(sb, "Error reading block bitmap for %u", group);
3801 return 0;
3802 }
3803
3804 err = ext4_mb_load_buddy(sb, group, &e4b);
3805 if (err) {
3806 ext4_error(sb, "Error loading buddy information for %u", group);
3807 put_bh(bitmap_bh);
3808 return 0;
3809 }
3810
3811 if (needed == 0)
3812 needed = EXT4_CLUSTERS_PER_GROUP(sb) + 1;
3813
3814 INIT_LIST_HEAD(&list);
3815 repeat:
3816 ext4_lock_group(sb, group);
3817 list_for_each_entry_safe(pa, tmp,
3818 &grp->bb_prealloc_list, pa_group_list) {
3819 spin_lock(&pa->pa_lock);
3820 if (atomic_read(&pa->pa_count)) {
3821 spin_unlock(&pa->pa_lock);
3822 busy = 1;
3823 continue;
3824 }
3825 if (pa->pa_deleted) {
3826 spin_unlock(&pa->pa_lock);
3827 continue;
3828 }
3829
3830 /* seems this one can be freed ... */
3831 pa->pa_deleted = 1;
3832
3833 /* we can trust pa_free ... */
3834 free += pa->pa_free;
3835
3836 spin_unlock(&pa->pa_lock);
3837
3838 list_del(&pa->pa_group_list);
3839 list_add(&pa->u.pa_tmp_list, &list);
3840 }
3841
3842 /* if we still need more blocks and some PAs were used, try again */
3843 if (free < needed && busy) {
3844 busy = 0;
3845 ext4_unlock_group(sb, group);
3846 cond_resched();
3847 goto repeat;
3848 }
3849
3850 /* found anything to free? */
3851 if (list_empty(&list)) {
3852 BUG_ON(free != 0);
3853 goto out;
3854 }
3855
3856 /* now free all selected PAs */
3857 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
3858
3859 /* remove from object (inode or locality group) */
3860 spin_lock(pa->pa_obj_lock);
3861 list_del_rcu(&pa->pa_inode_list);
3862 spin_unlock(pa->pa_obj_lock);
3863
3864 if (pa->pa_type == MB_GROUP_PA)
3865 ext4_mb_release_group_pa(&e4b, pa);
3866 else
3867 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
3868
3869 list_del(&pa->u.pa_tmp_list);
3870 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3871 }
3872
3873 out:
3874 ext4_unlock_group(sb, group);
3875 ext4_mb_unload_buddy(&e4b);
3876 put_bh(bitmap_bh);
3877 return free;
3878 }
3879
3880 /*
3881 * releases all non-used preallocated blocks for given inode
3882 *
3883 * It's important to discard preallocations under i_data_sem
3884 * We don't want another block to be served from the prealloc
3885 * space when we are discarding the inode prealloc space.
3886 *
3887 * FIXME!! Make sure it is valid at all the call sites
3888 */
3889 void ext4_discard_preallocations(struct inode *inode)
3890 {
3891 struct ext4_inode_info *ei = EXT4_I(inode);
3892 struct super_block *sb = inode->i_sb;
3893 struct buffer_head *bitmap_bh = NULL;
3894 struct ext4_prealloc_space *pa, *tmp;
3895 ext4_group_t group = 0;
3896 struct list_head list;
3897 struct ext4_buddy e4b;
3898 int err;
3899
3900 if (!S_ISREG(inode->i_mode)) {
3901 /*BUG_ON(!list_empty(&ei->i_prealloc_list));*/
3902 return;
3903 }
3904
3905 mb_debug(1, "discard preallocation for inode %lu\n", inode->i_ino);
3906 trace_ext4_discard_preallocations(inode);
3907
3908 INIT_LIST_HEAD(&list);
3909
3910 repeat:
3911 /* first, collect all pa's in the inode */
3912 spin_lock(&ei->i_prealloc_lock);
3913 while (!list_empty(&ei->i_prealloc_list)) {
3914 pa = list_entry(ei->i_prealloc_list.next,
3915 struct ext4_prealloc_space, pa_inode_list);
3916 BUG_ON(pa->pa_obj_lock != &ei->i_prealloc_lock);
3917 spin_lock(&pa->pa_lock);
3918 if (atomic_read(&pa->pa_count)) {
3919 /* this shouldn't happen often - nobody should
3920 * use preallocation while we're discarding it */
3921 spin_unlock(&pa->pa_lock);
3922 spin_unlock(&ei->i_prealloc_lock);
3923 ext4_msg(sb, KERN_ERR,
3924 "uh-oh! used pa while discarding");
3925 WARN_ON(1);
3926 schedule_timeout_uninterruptible(HZ);
3927 goto repeat;
3928
3929 }
3930 if (pa->pa_deleted == 0) {
3931 pa->pa_deleted = 1;
3932 spin_unlock(&pa->pa_lock);
3933 list_del_rcu(&pa->pa_inode_list);
3934 list_add(&pa->u.pa_tmp_list, &list);
3935 continue;
3936 }
3937
3938 /* someone is deleting pa right now */
3939 spin_unlock(&pa->pa_lock);
3940 spin_unlock(&ei->i_prealloc_lock);
3941
3942 /* we have to wait here because pa_deleted
3943 * doesn't mean pa is already unlinked from
3944 * the list. as we might be called from
3945 * ->clear_inode() the inode will get freed
3946 * and concurrent thread which is unlinking
3947 * pa from inode's list may access already
3948 * freed memory, bad-bad-bad */
3949
3950 /* XXX: if this happens too often, we can
3951 * add a flag to force wait only in case
3952 * of ->clear_inode(), but not in case of
3953 * regular truncate */
3954 schedule_timeout_uninterruptible(HZ);
3955 goto repeat;
3956 }
3957 spin_unlock(&ei->i_prealloc_lock);
3958
3959 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
3960 BUG_ON(pa->pa_type != MB_INODE_PA);
3961 group = ext4_get_group_number(sb, pa->pa_pstart);
3962
3963 err = ext4_mb_load_buddy(sb, group, &e4b);
3964 if (err) {
3965 ext4_error(sb, "Error loading buddy information for %u",
3966 group);
3967 continue;
3968 }
3969
3970 bitmap_bh = ext4_read_block_bitmap(sb, group);
3971 if (bitmap_bh == NULL) {
3972 ext4_error(sb, "Error reading block bitmap for %u",
3973 group);
3974 ext4_mb_unload_buddy(&e4b);
3975 continue;
3976 }
3977
3978 ext4_lock_group(sb, group);
3979 list_del(&pa->pa_group_list);
3980 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
3981 ext4_unlock_group(sb, group);
3982
3983 ext4_mb_unload_buddy(&e4b);
3984 put_bh(bitmap_bh);
3985
3986 list_del(&pa->u.pa_tmp_list);
3987 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3988 }
3989 }
3990
3991 #ifdef CONFIG_EXT4_DEBUG
3992 static void ext4_mb_show_ac(struct ext4_allocation_context *ac)
3993 {
3994 struct super_block *sb = ac->ac_sb;
3995 ext4_group_t ngroups, i;
3996
3997 if (!ext4_mballoc_debug ||
3998 (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED))
3999 return;
4000
4001 ext4_msg(ac->ac_sb, KERN_ERR, "Can't allocate:"
4002 " Allocation context details:");
4003 ext4_msg(ac->ac_sb, KERN_ERR, "status %d flags %d",
4004 ac->ac_status, ac->ac_flags);
4005 ext4_msg(ac->ac_sb, KERN_ERR, "orig %lu/%lu/%lu@%lu, "
4006 "goal %lu/%lu/%lu@%lu, "
4007 "best %lu/%lu/%lu@%lu cr %d",
4008 (unsigned long)ac->ac_o_ex.fe_group,
4009 (unsigned long)ac->ac_o_ex.fe_start,
4010 (unsigned long)ac->ac_o_ex.fe_len,
4011 (unsigned long)ac->ac_o_ex.fe_logical,
4012 (unsigned long)ac->ac_g_ex.fe_group,
4013 (unsigned long)ac->ac_g_ex.fe_start,
4014 (unsigned long)ac->ac_g_ex.fe_len,
4015 (unsigned long)ac->ac_g_ex.fe_logical,
4016 (unsigned long)ac->ac_b_ex.fe_group,
4017 (unsigned long)ac->ac_b_ex.fe_start,
4018 (unsigned long)ac->ac_b_ex.fe_len,
4019 (unsigned long)ac->ac_b_ex.fe_logical,
4020 (int)ac->ac_criteria);
4021 ext4_msg(ac->ac_sb, KERN_ERR, "%d found", ac->ac_found);
4022 ext4_msg(ac->ac_sb, KERN_ERR, "groups: ");
4023 ngroups = ext4_get_groups_count(sb);
4024 for (i = 0; i < ngroups; i++) {
4025 struct ext4_group_info *grp = ext4_get_group_info(sb, i);
4026 struct ext4_prealloc_space *pa;
4027 ext4_grpblk_t start;
4028 struct list_head *cur;
4029 ext4_lock_group(sb, i);
4030 list_for_each(cur, &grp->bb_prealloc_list) {
4031 pa = list_entry(cur, struct ext4_prealloc_space,
4032 pa_group_list);
4033 spin_lock(&pa->pa_lock);
4034 ext4_get_group_no_and_offset(sb, pa->pa_pstart,
4035 NULL, &start);
4036 spin_unlock(&pa->pa_lock);
4037 printk(KERN_ERR "PA:%u:%d:%u \n", i,
4038 start, pa->pa_len);
4039 }
4040 ext4_unlock_group(sb, i);
4041
4042 if (grp->bb_free == 0)
4043 continue;
4044 printk(KERN_ERR "%u: %d/%d \n",
4045 i, grp->bb_free, grp->bb_fragments);
4046 }
4047 printk(KERN_ERR "\n");
4048 }
4049 #else
4050 static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac)
4051 {
4052 return;
4053 }
4054 #endif
4055
4056 /*
4057 * We use locality group preallocation for small size file. The size of the
4058 * file is determined by the current size or the resulting size after
4059 * allocation which ever is larger
4060 *
4061 * One can tune this size via /sys/fs/ext4/<partition>/mb_stream_req
4062 */
4063 static void ext4_mb_group_or_file(struct ext4_allocation_context *ac)
4064 {
4065 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4066 int bsbits = ac->ac_sb->s_blocksize_bits;
4067 loff_t size, isize;
4068
4069 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
4070 return;
4071
4072 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
4073 return;
4074
4075 size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len);
4076 isize = (i_size_read(ac->ac_inode) + ac->ac_sb->s_blocksize - 1)
4077 >> bsbits;
4078
4079 if ((size == isize) &&
4080 !ext4_fs_is_busy(sbi) &&
4081 (atomic_read(&ac->ac_inode->i_writecount) == 0)) {
4082 ac->ac_flags |= EXT4_MB_HINT_NOPREALLOC;
4083 return;
4084 }
4085
4086 if (sbi->s_mb_group_prealloc <= 0) {
4087 ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
4088 return;
4089 }
4090
4091 /* don't use group allocation for large files */
4092 size = max(size, isize);
4093 if (size > sbi->s_mb_stream_request) {
4094 ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
4095 return;
4096 }
4097
4098 BUG_ON(ac->ac_lg != NULL);
4099 /*
4100 * locality group prealloc space are per cpu. The reason for having
4101 * per cpu locality group is to reduce the contention between block
4102 * request from multiple CPUs.
4103 */
4104 ac->ac_lg = __this_cpu_ptr(sbi->s_locality_groups);
4105
4106 /* we're going to use group allocation */
4107 ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC;
4108
4109 /* serialize all allocations in the group */
4110 mutex_lock(&ac->ac_lg->lg_mutex);
4111 }
4112
4113 static noinline_for_stack int
4114 ext4_mb_initialize_context(struct ext4_allocation_context *ac,
4115 struct ext4_allocation_request *ar)
4116 {
4117 struct super_block *sb = ar->inode->i_sb;
4118 struct ext4_sb_info *sbi = EXT4_SB(sb);
4119 struct ext4_super_block *es = sbi->s_es;
4120 ext4_group_t group;
4121 unsigned int len;
4122 ext4_fsblk_t goal;
4123 ext4_grpblk_t block;
4124
4125 /* we can't allocate > group size */
4126 len = ar->len;
4127
4128 /* just a dirty hack to filter too big requests */
4129 if (len >= EXT4_CLUSTERS_PER_GROUP(sb))
4130 len = EXT4_CLUSTERS_PER_GROUP(sb);
4131
4132 /* start searching from the goal */
4133 goal = ar->goal;
4134 if (goal < le32_to_cpu(es->s_first_data_block) ||
4135 goal >= ext4_blocks_count(es))
4136 goal = le32_to_cpu(es->s_first_data_block);
4137 ext4_get_group_no_and_offset(sb, goal, &group, &block);
4138
4139 /* set up allocation goals */
4140 ac->ac_b_ex.fe_logical = EXT4_LBLK_CMASK(sbi, ar->logical);
4141 ac->ac_status = AC_STATUS_CONTINUE;
4142 ac->ac_sb = sb;
4143 ac->ac_inode = ar->inode;
4144 ac->ac_o_ex.fe_logical = ac->ac_b_ex.fe_logical;
4145 ac->ac_o_ex.fe_group = group;
4146 ac->ac_o_ex.fe_start = block;
4147 ac->ac_o_ex.fe_len = len;
4148 ac->ac_g_ex = ac->ac_o_ex;
4149 ac->ac_flags = ar->flags;
4150
4151 /* we have to define context: we'll we work with a file or
4152 * locality group. this is a policy, actually */
4153 ext4_mb_group_or_file(ac);
4154
4155 mb_debug(1, "init ac: %u blocks @ %u, goal %u, flags %x, 2^%d, "
4156 "left: %u/%u, right %u/%u to %swritable\n",
4157 (unsigned) ar->len, (unsigned) ar->logical,
4158 (unsigned) ar->goal, ac->ac_flags, ac->ac_2order,
4159 (unsigned) ar->lleft, (unsigned) ar->pleft,
4160 (unsigned) ar->lright, (unsigned) ar->pright,
4161 atomic_read(&ar->inode->i_writecount) ? "" : "non-");
4162 return 0;
4163
4164 }
4165
4166 static noinline_for_stack void
4167 ext4_mb_discard_lg_preallocations(struct super_block *sb,
4168 struct ext4_locality_group *lg,
4169 int order, int total_entries)
4170 {
4171 ext4_group_t group = 0;
4172 struct ext4_buddy e4b;
4173 struct list_head discard_list;
4174 struct ext4_prealloc_space *pa, *tmp;
4175
4176 mb_debug(1, "discard locality group preallocation\n");
4177
4178 INIT_LIST_HEAD(&discard_list);
4179
4180 spin_lock(&lg->lg_prealloc_lock);
4181 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[order],
4182 pa_inode_list) {
4183 spin_lock(&pa->pa_lock);
4184 if (atomic_read(&pa->pa_count)) {
4185 /*
4186 * This is the pa that we just used
4187 * for block allocation. So don't
4188 * free that
4189 */
4190 spin_unlock(&pa->pa_lock);
4191 continue;
4192 }
4193 if (pa->pa_deleted) {
4194 spin_unlock(&pa->pa_lock);
4195 continue;
4196 }
4197 /* only lg prealloc space */
4198 BUG_ON(pa->pa_type != MB_GROUP_PA);
4199
4200 /* seems this one can be freed ... */
4201 pa->pa_deleted = 1;
4202 spin_unlock(&pa->pa_lock);
4203
4204 list_del_rcu(&pa->pa_inode_list);
4205 list_add(&pa->u.pa_tmp_list, &discard_list);
4206
4207 total_entries--;
4208 if (total_entries <= 5) {
4209 /*
4210 * we want to keep only 5 entries
4211 * allowing it to grow to 8. This
4212 * mak sure we don't call discard
4213 * soon for this list.
4214 */
4215 break;
4216 }
4217 }
4218 spin_unlock(&lg->lg_prealloc_lock);
4219
4220 list_for_each_entry_safe(pa, tmp, &discard_list, u.pa_tmp_list) {
4221
4222 group = ext4_get_group_number(sb, pa->pa_pstart);
4223 if (ext4_mb_load_buddy(sb, group, &e4b)) {
4224 ext4_error(sb, "Error loading buddy information for %u",
4225 group);
4226 continue;
4227 }
4228 ext4_lock_group(sb, group);
4229 list_del(&pa->pa_group_list);
4230 ext4_mb_release_group_pa(&e4b, pa);
4231 ext4_unlock_group(sb, group);
4232
4233 ext4_mb_unload_buddy(&e4b);
4234 list_del(&pa->u.pa_tmp_list);
4235 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4236 }
4237 }
4238
4239 /*
4240 * We have incremented pa_count. So it cannot be freed at this
4241 * point. Also we hold lg_mutex. So no parallel allocation is
4242 * possible from this lg. That means pa_free cannot be updated.
4243 *
4244 * A parallel ext4_mb_discard_group_preallocations is possible.
4245 * which can cause the lg_prealloc_list to be updated.
4246 */
4247
4248 static void ext4_mb_add_n_trim(struct ext4_allocation_context *ac)
4249 {
4250 int order, added = 0, lg_prealloc_count = 1;
4251 struct super_block *sb = ac->ac_sb;
4252 struct ext4_locality_group *lg = ac->ac_lg;
4253 struct ext4_prealloc_space *tmp_pa, *pa = ac->ac_pa;
4254
4255 order = fls(pa->pa_free) - 1;
4256 if (order > PREALLOC_TB_SIZE - 1)
4257 /* The max size of hash table is PREALLOC_TB_SIZE */
4258 order = PREALLOC_TB_SIZE - 1;
4259 /* Add the prealloc space to lg */
4260 spin_lock(&lg->lg_prealloc_lock);
4261 list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[order],
4262 pa_inode_list) {
4263 spin_lock(&tmp_pa->pa_lock);
4264 if (tmp_pa->pa_deleted) {
4265 spin_unlock(&tmp_pa->pa_lock);
4266 continue;
4267 }
4268 if (!added && pa->pa_free < tmp_pa->pa_free) {
4269 /* Add to the tail of the previous entry */
4270 list_add_tail_rcu(&pa->pa_inode_list,
4271 &tmp_pa->pa_inode_list);
4272 added = 1;
4273 /*
4274 * we want to count the total
4275 * number of entries in the list
4276 */
4277 }
4278 spin_unlock(&tmp_pa->pa_lock);
4279 lg_prealloc_count++;
4280 }
4281 if (!added)
4282 list_add_tail_rcu(&pa->pa_inode_list,
4283 &lg->lg_prealloc_list[order]);
4284 spin_unlock(&lg->lg_prealloc_lock);
4285
4286 /* Now trim the list to be not more than 8 elements */
4287 if (lg_prealloc_count > 8) {
4288 ext4_mb_discard_lg_preallocations(sb, lg,
4289 order, lg_prealloc_count);
4290 return;
4291 }
4292 return ;
4293 }
4294
4295 /*
4296 * release all resource we used in allocation
4297 */
4298 static int ext4_mb_release_context(struct ext4_allocation_context *ac)
4299 {
4300 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4301 struct ext4_prealloc_space *pa = ac->ac_pa;
4302 if (pa) {
4303 if (pa->pa_type == MB_GROUP_PA) {
4304 /* see comment in ext4_mb_use_group_pa() */
4305 spin_lock(&pa->pa_lock);
4306 pa->pa_pstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
4307 pa->pa_lstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
4308 pa->pa_free -= ac->ac_b_ex.fe_len;
4309 pa->pa_len -= ac->ac_b_ex.fe_len;
4310 spin_unlock(&pa->pa_lock);
4311 }
4312 }
4313 if (pa) {
4314 /*
4315 * We want to add the pa to the right bucket.
4316 * Remove it from the list and while adding
4317 * make sure the list to which we are adding
4318 * doesn't grow big.
4319 */
4320 if ((pa->pa_type == MB_GROUP_PA) && likely(pa->pa_free)) {
4321 spin_lock(pa->pa_obj_lock);
4322 list_del_rcu(&pa->pa_inode_list);
4323 spin_unlock(pa->pa_obj_lock);
4324 ext4_mb_add_n_trim(ac);
4325 }
4326 ext4_mb_put_pa(ac, ac->ac_sb, pa);
4327 }
4328 if (ac->ac_bitmap_page)
4329 page_cache_release(ac->ac_bitmap_page);
4330 if (ac->ac_buddy_page)
4331 page_cache_release(ac->ac_buddy_page);
4332 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
4333 mutex_unlock(&ac->ac_lg->lg_mutex);
4334 ext4_mb_collect_stats(ac);
4335 return 0;
4336 }
4337
4338 static int ext4_mb_discard_preallocations(struct super_block *sb, int needed)
4339 {
4340 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
4341 int ret;
4342 int freed = 0;
4343
4344 trace_ext4_mb_discard_preallocations(sb, needed);
4345 for (i = 0; i < ngroups && needed > 0; i++) {
4346 ret = ext4_mb_discard_group_preallocations(sb, i, needed);
4347 freed += ret;
4348 needed -= ret;
4349 }
4350
4351 return freed;
4352 }
4353
4354 /*
4355 * Main entry point into mballoc to allocate blocks
4356 * it tries to use preallocation first, then falls back
4357 * to usual allocation
4358 */
4359 ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle,
4360 struct ext4_allocation_request *ar, int *errp)
4361 {
4362 int freed;
4363 struct ext4_allocation_context *ac = NULL;
4364 struct ext4_sb_info *sbi;
4365 struct super_block *sb;
4366 ext4_fsblk_t block = 0;
4367 unsigned int inquota = 0;
4368 unsigned int reserv_clstrs = 0;
4369
4370 might_sleep();
4371 sb = ar->inode->i_sb;
4372 sbi = EXT4_SB(sb);
4373
4374 trace_ext4_request_blocks(ar);
4375
4376 /* Allow to use superuser reservation for quota file */
4377 if (IS_NOQUOTA(ar->inode))
4378 ar->flags |= EXT4_MB_USE_ROOT_BLOCKS;
4379
4380 /*
4381 * For delayed allocation, we could skip the ENOSPC and
4382 * EDQUOT check, as blocks and quotas have been already
4383 * reserved when data being copied into pagecache.
4384 */
4385 if (ext4_test_inode_state(ar->inode, EXT4_STATE_DELALLOC_RESERVED))
4386 ar->flags |= EXT4_MB_DELALLOC_RESERVED;
4387 else {
4388 /* Without delayed allocation we need to verify
4389 * there is enough free blocks to do block allocation
4390 * and verify allocation doesn't exceed the quota limits.
4391 */
4392 while (ar->len &&
4393 ext4_claim_free_clusters(sbi, ar->len, ar->flags)) {
4394
4395 /* let others to free the space */
4396 cond_resched();
4397 ar->len = ar->len >> 1;
4398 }
4399 if (!ar->len) {
4400 *errp = -ENOSPC;
4401 return 0;
4402 }
4403 reserv_clstrs = ar->len;
4404 if (ar->flags & EXT4_MB_USE_ROOT_BLOCKS) {
4405 dquot_alloc_block_nofail(ar->inode,
4406 EXT4_C2B(sbi, ar->len));
4407 } else {
4408 while (ar->len &&
4409 dquot_alloc_block(ar->inode,
4410 EXT4_C2B(sbi, ar->len))) {
4411
4412 ar->flags |= EXT4_MB_HINT_NOPREALLOC;
4413 ar->len--;
4414 }
4415 }
4416 inquota = ar->len;
4417 if (ar->len == 0) {
4418 *errp = -EDQUOT;
4419 goto out;
4420 }
4421 }
4422
4423 ac = kmem_cache_zalloc(ext4_ac_cachep, GFP_NOFS);
4424 if (!ac) {
4425 ar->len = 0;
4426 *errp = -ENOMEM;
4427 goto out;
4428 }
4429
4430 *errp = ext4_mb_initialize_context(ac, ar);
4431 if (*errp) {
4432 ar->len = 0;
4433 goto out;
4434 }
4435
4436 ac->ac_op = EXT4_MB_HISTORY_PREALLOC;
4437 if (!ext4_mb_use_preallocated(ac)) {
4438 ac->ac_op = EXT4_MB_HISTORY_ALLOC;
4439 ext4_mb_normalize_request(ac, ar);
4440 repeat:
4441 /* allocate space in core */
4442 *errp = ext4_mb_regular_allocator(ac);
4443 if (*errp)
4444 goto discard_and_exit;
4445
4446 /* as we've just preallocated more space than
4447 * user requested originally, we store allocated
4448 * space in a special descriptor */
4449 if (ac->ac_status == AC_STATUS_FOUND &&
4450 ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len)
4451 *errp = ext4_mb_new_preallocation(ac);
4452 if (*errp) {
4453 discard_and_exit:
4454 ext4_discard_allocated_blocks(ac);
4455 goto errout;
4456 }
4457 }
4458 if (likely(ac->ac_status == AC_STATUS_FOUND)) {
4459 *errp = ext4_mb_mark_diskspace_used(ac, handle, reserv_clstrs);
4460 if (*errp == -EAGAIN) {
4461 /*
4462 * drop the reference that we took
4463 * in ext4_mb_use_best_found
4464 */
4465 ext4_mb_release_context(ac);
4466 ac->ac_b_ex.fe_group = 0;
4467 ac->ac_b_ex.fe_start = 0;
4468 ac->ac_b_ex.fe_len = 0;
4469 ac->ac_status = AC_STATUS_CONTINUE;
4470 goto repeat;
4471 } else if (*errp) {
4472 ext4_discard_allocated_blocks(ac);
4473 goto errout;
4474 } else {
4475 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
4476 ar->len = ac->ac_b_ex.fe_len;
4477 }
4478 } else {
4479 freed = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len);
4480 if (freed)
4481 goto repeat;
4482 *errp = -ENOSPC;
4483 }
4484
4485 errout:
4486 if (*errp) {
4487 ac->ac_b_ex.fe_len = 0;
4488 ar->len = 0;
4489 ext4_mb_show_ac(ac);
4490 }
4491 ext4_mb_release_context(ac);
4492 out:
4493 if (ac)
4494 kmem_cache_free(ext4_ac_cachep, ac);
4495 if (inquota && ar->len < inquota)
4496 dquot_free_block(ar->inode, EXT4_C2B(sbi, inquota - ar->len));
4497 if (!ar->len) {
4498 if (!ext4_test_inode_state(ar->inode,
4499 EXT4_STATE_DELALLOC_RESERVED))
4500 /* release all the reserved blocks if non delalloc */
4501 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
4502 reserv_clstrs);
4503 }
4504
4505 trace_ext4_allocate_blocks(ar, (unsigned long long)block);
4506
4507 return block;
4508 }
4509
4510 /*
4511 * We can merge two free data extents only if the physical blocks
4512 * are contiguous, AND the extents were freed by the same transaction,
4513 * AND the blocks are associated with the same group.
4514 */
4515 static int can_merge(struct ext4_free_data *entry1,
4516 struct ext4_free_data *entry2)
4517 {
4518 if ((entry1->efd_tid == entry2->efd_tid) &&
4519 (entry1->efd_group == entry2->efd_group) &&
4520 ((entry1->efd_start_cluster + entry1->efd_count) == entry2->efd_start_cluster))
4521 return 1;
4522 return 0;
4523 }
4524
4525 static noinline_for_stack int
4526 ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b,
4527 struct ext4_free_data *new_entry)
4528 {
4529 ext4_group_t group = e4b->bd_group;
4530 ext4_grpblk_t cluster;
4531 struct ext4_free_data *entry;
4532 struct ext4_group_info *db = e4b->bd_info;
4533 struct super_block *sb = e4b->bd_sb;
4534 struct ext4_sb_info *sbi = EXT4_SB(sb);
4535 struct rb_node **n = &db->bb_free_root.rb_node, *node;
4536 struct rb_node *parent = NULL, *new_node;
4537
4538 BUG_ON(!ext4_handle_valid(handle));
4539 BUG_ON(e4b->bd_bitmap_page == NULL);
4540 BUG_ON(e4b->bd_buddy_page == NULL);
4541
4542 new_node = &new_entry->efd_node;
4543 cluster = new_entry->efd_start_cluster;
4544
4545 if (!*n) {
4546 /* first free block exent. We need to
4547 protect buddy cache from being freed,
4548 * otherwise we'll refresh it from
4549 * on-disk bitmap and lose not-yet-available
4550 * blocks */
4551 page_cache_get(e4b->bd_buddy_page);
4552 page_cache_get(e4b->bd_bitmap_page);
4553 }
4554 while (*n) {
4555 parent = *n;
4556 entry = rb_entry(parent, struct ext4_free_data, efd_node);
4557 if (cluster < entry->efd_start_cluster)
4558 n = &(*n)->rb_left;
4559 else if (cluster >= (entry->efd_start_cluster + entry->efd_count))
4560 n = &(*n)->rb_right;
4561 else {
4562 ext4_grp_locked_error(sb, group, 0,
4563 ext4_group_first_block_no(sb, group) +
4564 EXT4_C2B(sbi, cluster),
4565 "Block already on to-be-freed list");
4566 return 0;
4567 }
4568 }
4569
4570 rb_link_node(new_node, parent, n);
4571 rb_insert_color(new_node, &db->bb_free_root);
4572
4573 /* Now try to see the extent can be merged to left and right */
4574 node = rb_prev(new_node);
4575 if (node) {
4576 entry = rb_entry(node, struct ext4_free_data, efd_node);
4577 if (can_merge(entry, new_entry) &&
4578 ext4_journal_callback_try_del(handle, &entry->efd_jce)) {
4579 new_entry->efd_start_cluster = entry->efd_start_cluster;
4580 new_entry->efd_count += entry->efd_count;
4581 rb_erase(node, &(db->bb_free_root));
4582 kmem_cache_free(ext4_free_data_cachep, entry);
4583 }
4584 }
4585
4586 node = rb_next(new_node);
4587 if (node) {
4588 entry = rb_entry(node, struct ext4_free_data, efd_node);
4589 if (can_merge(new_entry, entry) &&
4590 ext4_journal_callback_try_del(handle, &entry->efd_jce)) {
4591 new_entry->efd_count += entry->efd_count;
4592 rb_erase(node, &(db->bb_free_root));
4593 kmem_cache_free(ext4_free_data_cachep, entry);
4594 }
4595 }
4596 /* Add the extent to transaction's private list */
4597 ext4_journal_callback_add(handle, ext4_free_data_callback,
4598 &new_entry->efd_jce);
4599 return 0;
4600 }
4601
4602 /**
4603 * ext4_free_blocks() -- Free given blocks and update quota
4604 * @handle: handle for this transaction
4605 * @inode: inode
4606 * @block: start physical block to free
4607 * @count: number of blocks to count
4608 * @flags: flags used by ext4_free_blocks
4609 */
4610 void ext4_free_blocks(handle_t *handle, struct inode *inode,
4611 struct buffer_head *bh, ext4_fsblk_t block,
4612 unsigned long count, int flags)
4613 {
4614 struct buffer_head *bitmap_bh = NULL;
4615 struct super_block *sb = inode->i_sb;
4616 struct ext4_group_desc *gdp;
4617 unsigned int overflow;
4618 ext4_grpblk_t bit;
4619 struct buffer_head *gd_bh;
4620 ext4_group_t block_group;
4621 struct ext4_sb_info *sbi;
4622 struct ext4_inode_info *ei = EXT4_I(inode);
4623 struct ext4_buddy e4b;
4624 unsigned int count_clusters;
4625 int err = 0;
4626 int ret;
4627
4628 might_sleep();
4629 if (bh) {
4630 if (block)
4631 BUG_ON(block != bh->b_blocknr);
4632 else
4633 block = bh->b_blocknr;
4634 }
4635
4636 sbi = EXT4_SB(sb);
4637 if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) &&
4638 !ext4_data_block_valid(sbi, block, count)) {
4639 ext4_error(sb, "Freeing blocks not in datazone - "
4640 "block = %llu, count = %lu", block, count);
4641 goto error_return;
4642 }
4643
4644 ext4_debug("freeing block %llu\n", block);
4645 trace_ext4_free_blocks(inode, block, count, flags);
4646
4647 if (flags & EXT4_FREE_BLOCKS_FORGET) {
4648 struct buffer_head *tbh = bh;
4649 int i;
4650
4651 BUG_ON(bh && (count > 1));
4652
4653 for (i = 0; i < count; i++) {
4654 cond_resched();
4655 if (!bh)
4656 tbh = sb_find_get_block(inode->i_sb,
4657 block + i);
4658 if (!tbh)
4659 continue;
4660 ext4_forget(handle, flags & EXT4_FREE_BLOCKS_METADATA,
4661 inode, tbh, block + i);
4662 }
4663 }
4664
4665 /*
4666 * We need to make sure we don't reuse the freed block until
4667 * after the transaction is committed, which we can do by
4668 * treating the block as metadata, below. We make an
4669 * exception if the inode is to be written in writeback mode
4670 * since writeback mode has weak data consistency guarantees.
4671 */
4672 if (!ext4_should_writeback_data(inode))
4673 flags |= EXT4_FREE_BLOCKS_METADATA;
4674
4675 /*
4676 * If the extent to be freed does not begin on a cluster
4677 * boundary, we need to deal with partial clusters at the
4678 * beginning and end of the extent. Normally we will free
4679 * blocks at the beginning or the end unless we are explicitly
4680 * requested to avoid doing so.
4681 */
4682 overflow = EXT4_PBLK_COFF(sbi, block);
4683 if (overflow) {
4684 if (flags & EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER) {
4685 overflow = sbi->s_cluster_ratio - overflow;
4686 block += overflow;
4687 if (count > overflow)
4688 count -= overflow;
4689 else
4690 return;
4691 } else {
4692 block -= overflow;
4693 count += overflow;
4694 }
4695 }
4696 overflow = EXT4_LBLK_COFF(sbi, count);
4697 if (overflow) {
4698 if (flags & EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER) {
4699 if (count > overflow)
4700 count -= overflow;
4701 else
4702 return;
4703 } else
4704 count += sbi->s_cluster_ratio - overflow;
4705 }
4706
4707 do_more:
4708 overflow = 0;
4709 ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
4710
4711 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(
4712 ext4_get_group_info(sb, block_group))))
4713 return;
4714
4715 /*
4716 * Check to see if we are freeing blocks across a group
4717 * boundary.
4718 */
4719 if (EXT4_C2B(sbi, bit) + count > EXT4_BLOCKS_PER_GROUP(sb)) {
4720 overflow = EXT4_C2B(sbi, bit) + count -
4721 EXT4_BLOCKS_PER_GROUP(sb);
4722 count -= overflow;
4723 }
4724 count_clusters = EXT4_NUM_B2C(sbi, count);
4725 bitmap_bh = ext4_read_block_bitmap(sb, block_group);
4726 if (!bitmap_bh) {
4727 err = -EIO;
4728 goto error_return;
4729 }
4730 gdp = ext4_get_group_desc(sb, block_group, &gd_bh);
4731 if (!gdp) {
4732 err = -EIO;
4733 goto error_return;
4734 }
4735
4736 if (in_range(ext4_block_bitmap(sb, gdp), block, count) ||
4737 in_range(ext4_inode_bitmap(sb, gdp), block, count) ||
4738 in_range(block, ext4_inode_table(sb, gdp),
4739 EXT4_SB(sb)->s_itb_per_group) ||
4740 in_range(block + count - 1, ext4_inode_table(sb, gdp),
4741 EXT4_SB(sb)->s_itb_per_group)) {
4742
4743 ext4_error(sb, "Freeing blocks in system zone - "
4744 "Block = %llu, count = %lu", block, count);
4745 /* err = 0. ext4_std_error should be a no op */
4746 goto error_return;
4747 }
4748
4749 BUFFER_TRACE(bitmap_bh, "getting write access");
4750 err = ext4_journal_get_write_access(handle, bitmap_bh);
4751 if (err)
4752 goto error_return;
4753
4754 /*
4755 * We are about to modify some metadata. Call the journal APIs
4756 * to unshare ->b_data if a currently-committing transaction is
4757 * using it
4758 */
4759 BUFFER_TRACE(gd_bh, "get_write_access");
4760 err = ext4_journal_get_write_access(handle, gd_bh);
4761 if (err)
4762 goto error_return;
4763 #ifdef AGGRESSIVE_CHECK
4764 {
4765 int i;
4766 for (i = 0; i < count_clusters; i++)
4767 BUG_ON(!mb_test_bit(bit + i, bitmap_bh->b_data));
4768 }
4769 #endif
4770 trace_ext4_mballoc_free(sb, inode, block_group, bit, count_clusters);
4771
4772 err = ext4_mb_load_buddy(sb, block_group, &e4b);
4773 if (err)
4774 goto error_return;
4775
4776 if ((flags & EXT4_FREE_BLOCKS_METADATA) && ext4_handle_valid(handle)) {
4777 struct ext4_free_data *new_entry;
4778 /*
4779 * blocks being freed are metadata. these blocks shouldn't
4780 * be used until this transaction is committed
4781 */
4782 retry:
4783 new_entry = kmem_cache_alloc(ext4_free_data_cachep, GFP_NOFS);
4784 if (!new_entry) {
4785 /*
4786 * We use a retry loop because
4787 * ext4_free_blocks() is not allowed to fail.
4788 */
4789 cond_resched();
4790 congestion_wait(BLK_RW_ASYNC, HZ/50);
4791 goto retry;
4792 }
4793 new_entry->efd_start_cluster = bit;
4794 new_entry->efd_group = block_group;
4795 new_entry->efd_count = count_clusters;
4796 new_entry->efd_tid = handle->h_transaction->t_tid;
4797
4798 ext4_lock_group(sb, block_group);
4799 mb_clear_bits(bitmap_bh->b_data, bit, count_clusters);
4800 ext4_mb_free_metadata(handle, &e4b, new_entry);
4801 } else {
4802 /* need to update group_info->bb_free and bitmap
4803 * with group lock held. generate_buddy look at
4804 * them with group lock_held
4805 */
4806 if (test_opt(sb, DISCARD)) {
4807 err = ext4_issue_discard(sb, block_group, bit, count);
4808 if (err && err != -EOPNOTSUPP)
4809 ext4_msg(sb, KERN_WARNING, "discard request in"
4810 " group:%d block:%d count:%lu failed"
4811 " with %d", block_group, bit, count,
4812 err);
4813 } else
4814 EXT4_MB_GRP_CLEAR_TRIMMED(e4b.bd_info);
4815
4816 ext4_lock_group(sb, block_group);
4817 mb_clear_bits(bitmap_bh->b_data, bit, count_clusters);
4818 mb_free_blocks(inode, &e4b, bit, count_clusters);
4819 }
4820
4821 ret = ext4_free_group_clusters(sb, gdp) + count_clusters;
4822 ext4_free_group_clusters_set(sb, gdp, ret);
4823 ext4_block_bitmap_csum_set(sb, block_group, gdp, bitmap_bh);
4824 ext4_group_desc_csum_set(sb, block_group, gdp);
4825 ext4_unlock_group(sb, block_group);
4826
4827 if (sbi->s_log_groups_per_flex) {
4828 ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
4829 atomic64_add(count_clusters,
4830 &sbi->s_flex_groups[flex_group].free_clusters);
4831 }
4832
4833 if (flags & EXT4_FREE_BLOCKS_RESERVE && ei->i_reserved_data_blocks) {
4834 percpu_counter_add(&sbi->s_dirtyclusters_counter,
4835 count_clusters);
4836 spin_lock(&ei->i_block_reservation_lock);
4837 if (flags & EXT4_FREE_BLOCKS_METADATA)
4838 ei->i_reserved_meta_blocks += count_clusters;
4839 else
4840 ei->i_reserved_data_blocks += count_clusters;
4841 spin_unlock(&ei->i_block_reservation_lock);
4842 if (!(flags & EXT4_FREE_BLOCKS_NO_QUOT_UPDATE))
4843 dquot_reclaim_block(inode,
4844 EXT4_C2B(sbi, count_clusters));
4845 } else if (!(flags & EXT4_FREE_BLOCKS_NO_QUOT_UPDATE))
4846 dquot_free_block(inode, EXT4_C2B(sbi, count_clusters));
4847 percpu_counter_add(&sbi->s_freeclusters_counter, count_clusters);
4848
4849 ext4_mb_unload_buddy(&e4b);
4850
4851 /* We dirtied the bitmap block */
4852 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
4853 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
4854
4855 /* And the group descriptor block */
4856 BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
4857 ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
4858 if (!err)
4859 err = ret;
4860
4861 if (overflow && !err) {
4862 block += count;
4863 count = overflow;
4864 put_bh(bitmap_bh);
4865 goto do_more;
4866 }
4867 error_return:
4868 brelse(bitmap_bh);
4869 ext4_std_error(sb, err);
4870 return;
4871 }
4872
4873 /**
4874 * ext4_group_add_blocks() -- Add given blocks to an existing group
4875 * @handle: handle to this transaction
4876 * @sb: super block
4877 * @block: start physical block to add to the block group
4878 * @count: number of blocks to free
4879 *
4880 * This marks the blocks as free in the bitmap and buddy.
4881 */
4882 int ext4_group_add_blocks(handle_t *handle, struct super_block *sb,
4883 ext4_fsblk_t block, unsigned long count)
4884 {
4885 struct buffer_head *bitmap_bh = NULL;
4886 struct buffer_head *gd_bh;
4887 ext4_group_t block_group;
4888 ext4_grpblk_t bit;
4889 unsigned int i;
4890 struct ext4_group_desc *desc;
4891 struct ext4_sb_info *sbi = EXT4_SB(sb);
4892 struct ext4_buddy e4b;
4893 int err = 0, ret, blk_free_count;
4894 ext4_grpblk_t blocks_freed;
4895
4896 ext4_debug("Adding block(s) %llu-%llu\n", block, block + count - 1);
4897
4898 if (count == 0)
4899 return 0;
4900
4901 ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
4902 /*
4903 * Check to see if we are freeing blocks across a group
4904 * boundary.
4905 */
4906 if (bit + count > EXT4_BLOCKS_PER_GROUP(sb)) {
4907 ext4_warning(sb, "too much blocks added to group %u\n",
4908 block_group);
4909 err = -EINVAL;
4910 goto error_return;
4911 }
4912
4913 bitmap_bh = ext4_read_block_bitmap(sb, block_group);
4914 if (!bitmap_bh) {
4915 err = -EIO;
4916 goto error_return;
4917 }
4918
4919 desc = ext4_get_group_desc(sb, block_group, &gd_bh);
4920 if (!desc) {
4921 err = -EIO;
4922 goto error_return;
4923 }
4924
4925 if (in_range(ext4_block_bitmap(sb, desc), block, count) ||
4926 in_range(ext4_inode_bitmap(sb, desc), block, count) ||
4927 in_range(block, ext4_inode_table(sb, desc), sbi->s_itb_per_group) ||
4928 in_range(block + count - 1, ext4_inode_table(sb, desc),
4929 sbi->s_itb_per_group)) {
4930 ext4_error(sb, "Adding blocks in system zones - "
4931 "Block = %llu, count = %lu",
4932 block, count);
4933 err = -EINVAL;
4934 goto error_return;
4935 }
4936
4937 BUFFER_TRACE(bitmap_bh, "getting write access");
4938 err = ext4_journal_get_write_access(handle, bitmap_bh);
4939 if (err)
4940 goto error_return;
4941
4942 /*
4943 * We are about to modify some metadata. Call the journal APIs
4944 * to unshare ->b_data if a currently-committing transaction is
4945 * using it
4946 */
4947 BUFFER_TRACE(gd_bh, "get_write_access");
4948 err = ext4_journal_get_write_access(handle, gd_bh);
4949 if (err)
4950 goto error_return;
4951
4952 for (i = 0, blocks_freed = 0; i < count; i++) {
4953 BUFFER_TRACE(bitmap_bh, "clear bit");
4954 if (!mb_test_bit(bit + i, bitmap_bh->b_data)) {
4955 ext4_error(sb, "bit already cleared for block %llu",
4956 (ext4_fsblk_t)(block + i));
4957 BUFFER_TRACE(bitmap_bh, "bit already cleared");
4958 } else {
4959 blocks_freed++;
4960 }
4961 }
4962
4963 err = ext4_mb_load_buddy(sb, block_group, &e4b);
4964 if (err)
4965 goto error_return;
4966
4967 /*
4968 * need to update group_info->bb_free and bitmap
4969 * with group lock held. generate_buddy look at
4970 * them with group lock_held
4971 */
4972 ext4_lock_group(sb, block_group);
4973 mb_clear_bits(bitmap_bh->b_data, bit, count);
4974 mb_free_blocks(NULL, &e4b, bit, count);
4975 blk_free_count = blocks_freed + ext4_free_group_clusters(sb, desc);
4976 ext4_free_group_clusters_set(sb, desc, blk_free_count);
4977 ext4_block_bitmap_csum_set(sb, block_group, desc, bitmap_bh);
4978 ext4_group_desc_csum_set(sb, block_group, desc);
4979 ext4_unlock_group(sb, block_group);
4980 percpu_counter_add(&sbi->s_freeclusters_counter,
4981 EXT4_NUM_B2C(sbi, blocks_freed));
4982
4983 if (sbi->s_log_groups_per_flex) {
4984 ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
4985 atomic64_add(EXT4_NUM_B2C(sbi, blocks_freed),
4986 &sbi->s_flex_groups[flex_group].free_clusters);
4987 }
4988
4989 ext4_mb_unload_buddy(&e4b);
4990
4991 /* We dirtied the bitmap block */
4992 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
4993 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
4994
4995 /* And the group descriptor block */
4996 BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
4997 ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
4998 if (!err)
4999 err = ret;
5000
5001 error_return:
5002 brelse(bitmap_bh);
5003 ext4_std_error(sb, err);
5004 return err;
5005 }
5006
5007 /**
5008 * ext4_trim_extent -- function to TRIM one single free extent in the group
5009 * @sb: super block for the file system
5010 * @start: starting block of the free extent in the alloc. group
5011 * @count: number of blocks to TRIM
5012 * @group: alloc. group we are working with
5013 * @e4b: ext4 buddy for the group
5014 *
5015 * Trim "count" blocks starting at "start" in the "group". To assure that no
5016 * one will allocate those blocks, mark it as used in buddy bitmap. This must
5017 * be called with under the group lock.
5018 */
5019 static int ext4_trim_extent(struct super_block *sb, int start, int count,
5020 ext4_group_t group, struct ext4_buddy *e4b)
5021 __releases(bitlock)
5022 __acquires(bitlock)
5023 {
5024 struct ext4_free_extent ex;
5025 int ret = 0;
5026
5027 trace_ext4_trim_extent(sb, group, start, count);
5028
5029 assert_spin_locked(ext4_group_lock_ptr(sb, group));
5030
5031 ex.fe_start = start;
5032 ex.fe_group = group;
5033 ex.fe_len = count;
5034
5035 /*
5036 * Mark blocks used, so no one can reuse them while
5037 * being trimmed.
5038 */
5039 mb_mark_used(e4b, &ex);
5040 ext4_unlock_group(sb, group);
5041 ret = ext4_issue_discard(sb, group, start, count);
5042 ext4_lock_group(sb, group);
5043 mb_free_blocks(NULL, e4b, start, ex.fe_len);
5044 return ret;
5045 }
5046
5047 /**
5048 * ext4_trim_all_free -- function to trim all free space in alloc. group
5049 * @sb: super block for file system
5050 * @group: group to be trimmed
5051 * @start: first group block to examine
5052 * @max: last group block to examine
5053 * @minblocks: minimum extent block count
5054 *
5055 * ext4_trim_all_free walks through group's buddy bitmap searching for free
5056 * extents. When the free block is found, ext4_trim_extent is called to TRIM
5057 * the extent.
5058 *
5059 *
5060 * ext4_trim_all_free walks through group's block bitmap searching for free
5061 * extents. When the free extent is found, mark it as used in group buddy
5062 * bitmap. Then issue a TRIM command on this extent and free the extent in
5063 * the group buddy bitmap. This is done until whole group is scanned.
5064 */
5065 static ext4_grpblk_t
5066 ext4_trim_all_free(struct super_block *sb, ext4_group_t group,
5067 ext4_grpblk_t start, ext4_grpblk_t max,
5068 ext4_grpblk_t minblocks)
5069 {
5070 void *bitmap;
5071 ext4_grpblk_t next, count = 0, free_count = 0;
5072 struct ext4_buddy e4b;
5073 int ret = 0;
5074
5075 trace_ext4_trim_all_free(sb, group, start, max);
5076
5077 ret = ext4_mb_load_buddy(sb, group, &e4b);
5078 if (ret) {
5079 ext4_error(sb, "Error in loading buddy "
5080 "information for %u", group);
5081 return ret;
5082 }
5083 bitmap = e4b.bd_bitmap;
5084
5085 ext4_lock_group(sb, group);
5086 if (EXT4_MB_GRP_WAS_TRIMMED(e4b.bd_info) &&
5087 minblocks >= atomic_read(&EXT4_SB(sb)->s_last_trim_minblks))
5088 goto out;
5089
5090 start = (e4b.bd_info->bb_first_free > start) ?
5091 e4b.bd_info->bb_first_free : start;
5092
5093 while (start <= max) {
5094 start = mb_find_next_zero_bit(bitmap, max + 1, start);
5095 if (start > max)
5096 break;
5097 next = mb_find_next_bit(bitmap, max + 1, start);
5098
5099 if ((next - start) >= minblocks) {
5100 ret = ext4_trim_extent(sb, start,
5101 next - start, group, &e4b);
5102 if (ret && ret != -EOPNOTSUPP)
5103 break;
5104 ret = 0;
5105 count += next - start;
5106 }
5107 free_count += next - start;
5108 start = next + 1;
5109
5110 if (fatal_signal_pending(current)) {
5111 count = -ERESTARTSYS;
5112 break;
5113 }
5114
5115 if (need_resched()) {
5116 ext4_unlock_group(sb, group);
5117 cond_resched();
5118 ext4_lock_group(sb, group);
5119 }
5120
5121 if ((e4b.bd_info->bb_free - free_count) < minblocks)
5122 break;
5123 }
5124
5125 if (!ret) {
5126 ret = count;
5127 EXT4_MB_GRP_SET_TRIMMED(e4b.bd_info);
5128 }
5129 out:
5130 ext4_unlock_group(sb, group);
5131 ext4_mb_unload_buddy(&e4b);
5132
5133 ext4_debug("trimmed %d blocks in the group %d\n",
5134 count, group);
5135
5136 return ret;
5137 }
5138
5139 /**
5140 * ext4_trim_fs() -- trim ioctl handle function
5141 * @sb: superblock for filesystem
5142 * @range: fstrim_range structure
5143 *
5144 * start: First Byte to trim
5145 * len: number of Bytes to trim from start
5146 * minlen: minimum extent length in Bytes
5147 * ext4_trim_fs goes through all allocation groups containing Bytes from
5148 * start to start+len. For each such a group ext4_trim_all_free function
5149 * is invoked to trim all free space.
5150 */
5151 int ext4_trim_fs(struct super_block *sb, struct fstrim_range *range)
5152 {
5153 struct ext4_group_info *grp;
5154 ext4_group_t group, first_group, last_group;
5155 ext4_grpblk_t cnt = 0, first_cluster, last_cluster;
5156 uint64_t start, end, minlen, trimmed = 0;
5157 ext4_fsblk_t first_data_blk =
5158 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block);
5159 ext4_fsblk_t max_blks = ext4_blocks_count(EXT4_SB(sb)->s_es);
5160 int ret = 0;
5161
5162 start = range->start >> sb->s_blocksize_bits;
5163 end = start + (range->len >> sb->s_blocksize_bits) - 1;
5164 minlen = EXT4_NUM_B2C(EXT4_SB(sb),
5165 range->minlen >> sb->s_blocksize_bits);
5166
5167 if (minlen > EXT4_CLUSTERS_PER_GROUP(sb) ||
5168 start >= max_blks ||
5169 range->len < sb->s_blocksize)
5170 return -EINVAL;
5171 if (end >= max_blks)
5172 end = max_blks - 1;
5173 if (end <= first_data_blk)
5174 goto out;
5175 if (start < first_data_blk)
5176 start = first_data_blk;
5177
5178 /* Determine first and last group to examine based on start and end */
5179 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) start,
5180 &first_group, &first_cluster);
5181 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) end,
5182 &last_group, &last_cluster);
5183
5184 /* end now represents the last cluster to discard in this group */
5185 end = EXT4_CLUSTERS_PER_GROUP(sb) - 1;
5186
5187 for (group = first_group; group <= last_group; group++) {
5188 grp = ext4_get_group_info(sb, group);
5189 /* We only do this if the grp has never been initialized */
5190 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
5191 ret = ext4_mb_init_group(sb, group);
5192 if (ret)
5193 break;
5194 }
5195
5196 /*
5197 * For all the groups except the last one, last cluster will
5198 * always be EXT4_CLUSTERS_PER_GROUP(sb)-1, so we only need to
5199 * change it for the last group, note that last_cluster is
5200 * already computed earlier by ext4_get_group_no_and_offset()
5201 */
5202 if (group == last_group)
5203 end = last_cluster;
5204
5205 if (grp->bb_free >= minlen) {
5206 cnt = ext4_trim_all_free(sb, group, first_cluster,
5207 end, minlen);
5208 if (cnt < 0) {
5209 ret = cnt;
5210 break;
5211 }
5212 trimmed += cnt;
5213 }
5214
5215 /*
5216 * For every group except the first one, we are sure
5217 * that the first cluster to discard will be cluster #0.
5218 */
5219 first_cluster = 0;
5220 }
5221
5222 if (!ret)
5223 atomic_set(&EXT4_SB(sb)->s_last_trim_minblks, minlen);
5224
5225 out:
5226 range->len = EXT4_C2B(EXT4_SB(sb), trimmed) << sb->s_blocksize_bits;
5227 return ret;
5228 }