]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/ext4/namei.c
mtd: nand: atmel: Relax tADL_min constraint
[mirror_ubuntu-artful-kernel.git] / fs / ext4 / namei.c
1 /*
2 * linux/fs/ext4/namei.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/namei.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * Big-endian to little-endian byte-swapping/bitmaps by
16 * David S. Miller (davem@caip.rutgers.edu), 1995
17 * Directory entry file type support and forward compatibility hooks
18 * for B-tree directories by Theodore Ts'o (tytso@mit.edu), 1998
19 * Hash Tree Directory indexing (c)
20 * Daniel Phillips, 2001
21 * Hash Tree Directory indexing porting
22 * Christopher Li, 2002
23 * Hash Tree Directory indexing cleanup
24 * Theodore Ts'o, 2002
25 */
26
27 #include <linux/fs.h>
28 #include <linux/pagemap.h>
29 #include <linux/time.h>
30 #include <linux/fcntl.h>
31 #include <linux/stat.h>
32 #include <linux/string.h>
33 #include <linux/quotaops.h>
34 #include <linux/buffer_head.h>
35 #include <linux/bio.h>
36 #include "ext4.h"
37 #include "ext4_jbd2.h"
38
39 #include "xattr.h"
40 #include "acl.h"
41
42 #include <trace/events/ext4.h>
43 /*
44 * define how far ahead to read directories while searching them.
45 */
46 #define NAMEI_RA_CHUNKS 2
47 #define NAMEI_RA_BLOCKS 4
48 #define NAMEI_RA_SIZE (NAMEI_RA_CHUNKS * NAMEI_RA_BLOCKS)
49
50 static struct buffer_head *ext4_append(handle_t *handle,
51 struct inode *inode,
52 ext4_lblk_t *block)
53 {
54 struct buffer_head *bh;
55 int err;
56
57 if (unlikely(EXT4_SB(inode->i_sb)->s_max_dir_size_kb &&
58 ((inode->i_size >> 10) >=
59 EXT4_SB(inode->i_sb)->s_max_dir_size_kb)))
60 return ERR_PTR(-ENOSPC);
61
62 *block = inode->i_size >> inode->i_sb->s_blocksize_bits;
63
64 bh = ext4_bread(handle, inode, *block, EXT4_GET_BLOCKS_CREATE);
65 if (IS_ERR(bh))
66 return bh;
67 inode->i_size += inode->i_sb->s_blocksize;
68 EXT4_I(inode)->i_disksize = inode->i_size;
69 BUFFER_TRACE(bh, "get_write_access");
70 err = ext4_journal_get_write_access(handle, bh);
71 if (err) {
72 brelse(bh);
73 ext4_std_error(inode->i_sb, err);
74 return ERR_PTR(err);
75 }
76 return bh;
77 }
78
79 static int ext4_dx_csum_verify(struct inode *inode,
80 struct ext4_dir_entry *dirent);
81
82 typedef enum {
83 EITHER, INDEX, DIRENT
84 } dirblock_type_t;
85
86 #define ext4_read_dirblock(inode, block, type) \
87 __ext4_read_dirblock((inode), (block), (type), __func__, __LINE__)
88
89 static struct buffer_head *__ext4_read_dirblock(struct inode *inode,
90 ext4_lblk_t block,
91 dirblock_type_t type,
92 const char *func,
93 unsigned int line)
94 {
95 struct buffer_head *bh;
96 struct ext4_dir_entry *dirent;
97 int is_dx_block = 0;
98
99 bh = ext4_bread(NULL, inode, block, 0);
100 if (IS_ERR(bh)) {
101 __ext4_warning(inode->i_sb, func, line,
102 "inode #%lu: lblock %lu: comm %s: "
103 "error %ld reading directory block",
104 inode->i_ino, (unsigned long)block,
105 current->comm, PTR_ERR(bh));
106
107 return bh;
108 }
109 if (!bh) {
110 ext4_error_inode(inode, func, line, block,
111 "Directory hole found");
112 return ERR_PTR(-EFSCORRUPTED);
113 }
114 dirent = (struct ext4_dir_entry *) bh->b_data;
115 /* Determine whether or not we have an index block */
116 if (is_dx(inode)) {
117 if (block == 0)
118 is_dx_block = 1;
119 else if (ext4_rec_len_from_disk(dirent->rec_len,
120 inode->i_sb->s_blocksize) ==
121 inode->i_sb->s_blocksize)
122 is_dx_block = 1;
123 }
124 if (!is_dx_block && type == INDEX) {
125 ext4_error_inode(inode, func, line, block,
126 "directory leaf block found instead of index block");
127 return ERR_PTR(-EFSCORRUPTED);
128 }
129 if (!ext4_has_metadata_csum(inode->i_sb) ||
130 buffer_verified(bh))
131 return bh;
132
133 /*
134 * An empty leaf block can get mistaken for a index block; for
135 * this reason, we can only check the index checksum when the
136 * caller is sure it should be an index block.
137 */
138 if (is_dx_block && type == INDEX) {
139 if (ext4_dx_csum_verify(inode, dirent))
140 set_buffer_verified(bh);
141 else {
142 ext4_error_inode(inode, func, line, block,
143 "Directory index failed checksum");
144 brelse(bh);
145 return ERR_PTR(-EFSBADCRC);
146 }
147 }
148 if (!is_dx_block) {
149 if (ext4_dirent_csum_verify(inode, dirent))
150 set_buffer_verified(bh);
151 else {
152 ext4_error_inode(inode, func, line, block,
153 "Directory block failed checksum");
154 brelse(bh);
155 return ERR_PTR(-EFSBADCRC);
156 }
157 }
158 return bh;
159 }
160
161 #ifndef assert
162 #define assert(test) J_ASSERT(test)
163 #endif
164
165 #ifdef DX_DEBUG
166 #define dxtrace(command) command
167 #else
168 #define dxtrace(command)
169 #endif
170
171 struct fake_dirent
172 {
173 __le32 inode;
174 __le16 rec_len;
175 u8 name_len;
176 u8 file_type;
177 };
178
179 struct dx_countlimit
180 {
181 __le16 limit;
182 __le16 count;
183 };
184
185 struct dx_entry
186 {
187 __le32 hash;
188 __le32 block;
189 };
190
191 /*
192 * dx_root_info is laid out so that if it should somehow get overlaid by a
193 * dirent the two low bits of the hash version will be zero. Therefore, the
194 * hash version mod 4 should never be 0. Sincerely, the paranoia department.
195 */
196
197 struct dx_root
198 {
199 struct fake_dirent dot;
200 char dot_name[4];
201 struct fake_dirent dotdot;
202 char dotdot_name[4];
203 struct dx_root_info
204 {
205 __le32 reserved_zero;
206 u8 hash_version;
207 u8 info_length; /* 8 */
208 u8 indirect_levels;
209 u8 unused_flags;
210 }
211 info;
212 struct dx_entry entries[0];
213 };
214
215 struct dx_node
216 {
217 struct fake_dirent fake;
218 struct dx_entry entries[0];
219 };
220
221
222 struct dx_frame
223 {
224 struct buffer_head *bh;
225 struct dx_entry *entries;
226 struct dx_entry *at;
227 };
228
229 struct dx_map_entry
230 {
231 u32 hash;
232 u16 offs;
233 u16 size;
234 };
235
236 /*
237 * This goes at the end of each htree block.
238 */
239 struct dx_tail {
240 u32 dt_reserved;
241 __le32 dt_checksum; /* crc32c(uuid+inum+dirblock) */
242 };
243
244 static inline ext4_lblk_t dx_get_block(struct dx_entry *entry);
245 static void dx_set_block(struct dx_entry *entry, ext4_lblk_t value);
246 static inline unsigned dx_get_hash(struct dx_entry *entry);
247 static void dx_set_hash(struct dx_entry *entry, unsigned value);
248 static unsigned dx_get_count(struct dx_entry *entries);
249 static unsigned dx_get_limit(struct dx_entry *entries);
250 static void dx_set_count(struct dx_entry *entries, unsigned value);
251 static void dx_set_limit(struct dx_entry *entries, unsigned value);
252 static unsigned dx_root_limit(struct inode *dir, unsigned infosize);
253 static unsigned dx_node_limit(struct inode *dir);
254 static struct dx_frame *dx_probe(struct ext4_filename *fname,
255 struct inode *dir,
256 struct dx_hash_info *hinfo,
257 struct dx_frame *frame);
258 static void dx_release(struct dx_frame *frames);
259 static int dx_make_map(struct inode *dir, struct ext4_dir_entry_2 *de,
260 unsigned blocksize, struct dx_hash_info *hinfo,
261 struct dx_map_entry map[]);
262 static void dx_sort_map(struct dx_map_entry *map, unsigned count);
263 static struct ext4_dir_entry_2 *dx_move_dirents(char *from, char *to,
264 struct dx_map_entry *offsets, int count, unsigned blocksize);
265 static struct ext4_dir_entry_2* dx_pack_dirents(char *base, unsigned blocksize);
266 static void dx_insert_block(struct dx_frame *frame,
267 u32 hash, ext4_lblk_t block);
268 static int ext4_htree_next_block(struct inode *dir, __u32 hash,
269 struct dx_frame *frame,
270 struct dx_frame *frames,
271 __u32 *start_hash);
272 static struct buffer_head * ext4_dx_find_entry(struct inode *dir,
273 struct ext4_filename *fname,
274 struct ext4_dir_entry_2 **res_dir);
275 static int ext4_dx_add_entry(handle_t *handle, struct ext4_filename *fname,
276 struct inode *dir, struct inode *inode);
277
278 /* checksumming functions */
279 void initialize_dirent_tail(struct ext4_dir_entry_tail *t,
280 unsigned int blocksize)
281 {
282 memset(t, 0, sizeof(struct ext4_dir_entry_tail));
283 t->det_rec_len = ext4_rec_len_to_disk(
284 sizeof(struct ext4_dir_entry_tail), blocksize);
285 t->det_reserved_ft = EXT4_FT_DIR_CSUM;
286 }
287
288 /* Walk through a dirent block to find a checksum "dirent" at the tail */
289 static struct ext4_dir_entry_tail *get_dirent_tail(struct inode *inode,
290 struct ext4_dir_entry *de)
291 {
292 struct ext4_dir_entry_tail *t;
293
294 #ifdef PARANOID
295 struct ext4_dir_entry *d, *top;
296
297 d = de;
298 top = (struct ext4_dir_entry *)(((void *)de) +
299 (EXT4_BLOCK_SIZE(inode->i_sb) -
300 sizeof(struct ext4_dir_entry_tail)));
301 while (d < top && d->rec_len)
302 d = (struct ext4_dir_entry *)(((void *)d) +
303 le16_to_cpu(d->rec_len));
304
305 if (d != top)
306 return NULL;
307
308 t = (struct ext4_dir_entry_tail *)d;
309 #else
310 t = EXT4_DIRENT_TAIL(de, EXT4_BLOCK_SIZE(inode->i_sb));
311 #endif
312
313 if (t->det_reserved_zero1 ||
314 le16_to_cpu(t->det_rec_len) != sizeof(struct ext4_dir_entry_tail) ||
315 t->det_reserved_zero2 ||
316 t->det_reserved_ft != EXT4_FT_DIR_CSUM)
317 return NULL;
318
319 return t;
320 }
321
322 static __le32 ext4_dirent_csum(struct inode *inode,
323 struct ext4_dir_entry *dirent, int size)
324 {
325 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
326 struct ext4_inode_info *ei = EXT4_I(inode);
327 __u32 csum;
328
329 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)dirent, size);
330 return cpu_to_le32(csum);
331 }
332
333 #define warn_no_space_for_csum(inode) \
334 __warn_no_space_for_csum((inode), __func__, __LINE__)
335
336 static void __warn_no_space_for_csum(struct inode *inode, const char *func,
337 unsigned int line)
338 {
339 __ext4_warning_inode(inode, func, line,
340 "No space for directory leaf checksum. Please run e2fsck -D.");
341 }
342
343 int ext4_dirent_csum_verify(struct inode *inode, struct ext4_dir_entry *dirent)
344 {
345 struct ext4_dir_entry_tail *t;
346
347 if (!ext4_has_metadata_csum(inode->i_sb))
348 return 1;
349
350 t = get_dirent_tail(inode, dirent);
351 if (!t) {
352 warn_no_space_for_csum(inode);
353 return 0;
354 }
355
356 if (t->det_checksum != ext4_dirent_csum(inode, dirent,
357 (void *)t - (void *)dirent))
358 return 0;
359
360 return 1;
361 }
362
363 static void ext4_dirent_csum_set(struct inode *inode,
364 struct ext4_dir_entry *dirent)
365 {
366 struct ext4_dir_entry_tail *t;
367
368 if (!ext4_has_metadata_csum(inode->i_sb))
369 return;
370
371 t = get_dirent_tail(inode, dirent);
372 if (!t) {
373 warn_no_space_for_csum(inode);
374 return;
375 }
376
377 t->det_checksum = ext4_dirent_csum(inode, dirent,
378 (void *)t - (void *)dirent);
379 }
380
381 int ext4_handle_dirty_dirent_node(handle_t *handle,
382 struct inode *inode,
383 struct buffer_head *bh)
384 {
385 ext4_dirent_csum_set(inode, (struct ext4_dir_entry *)bh->b_data);
386 return ext4_handle_dirty_metadata(handle, inode, bh);
387 }
388
389 static struct dx_countlimit *get_dx_countlimit(struct inode *inode,
390 struct ext4_dir_entry *dirent,
391 int *offset)
392 {
393 struct ext4_dir_entry *dp;
394 struct dx_root_info *root;
395 int count_offset;
396
397 if (le16_to_cpu(dirent->rec_len) == EXT4_BLOCK_SIZE(inode->i_sb))
398 count_offset = 8;
399 else if (le16_to_cpu(dirent->rec_len) == 12) {
400 dp = (struct ext4_dir_entry *)(((void *)dirent) + 12);
401 if (le16_to_cpu(dp->rec_len) !=
402 EXT4_BLOCK_SIZE(inode->i_sb) - 12)
403 return NULL;
404 root = (struct dx_root_info *)(((void *)dp + 12));
405 if (root->reserved_zero ||
406 root->info_length != sizeof(struct dx_root_info))
407 return NULL;
408 count_offset = 32;
409 } else
410 return NULL;
411
412 if (offset)
413 *offset = count_offset;
414 return (struct dx_countlimit *)(((void *)dirent) + count_offset);
415 }
416
417 static __le32 ext4_dx_csum(struct inode *inode, struct ext4_dir_entry *dirent,
418 int count_offset, int count, struct dx_tail *t)
419 {
420 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
421 struct ext4_inode_info *ei = EXT4_I(inode);
422 __u32 csum;
423 int size;
424 __u32 dummy_csum = 0;
425 int offset = offsetof(struct dx_tail, dt_checksum);
426
427 size = count_offset + (count * sizeof(struct dx_entry));
428 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)dirent, size);
429 csum = ext4_chksum(sbi, csum, (__u8 *)t, offset);
430 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, sizeof(dummy_csum));
431
432 return cpu_to_le32(csum);
433 }
434
435 static int ext4_dx_csum_verify(struct inode *inode,
436 struct ext4_dir_entry *dirent)
437 {
438 struct dx_countlimit *c;
439 struct dx_tail *t;
440 int count_offset, limit, count;
441
442 if (!ext4_has_metadata_csum(inode->i_sb))
443 return 1;
444
445 c = get_dx_countlimit(inode, dirent, &count_offset);
446 if (!c) {
447 EXT4_ERROR_INODE(inode, "dir seems corrupt? Run e2fsck -D.");
448 return 0;
449 }
450 limit = le16_to_cpu(c->limit);
451 count = le16_to_cpu(c->count);
452 if (count_offset + (limit * sizeof(struct dx_entry)) >
453 EXT4_BLOCK_SIZE(inode->i_sb) - sizeof(struct dx_tail)) {
454 warn_no_space_for_csum(inode);
455 return 0;
456 }
457 t = (struct dx_tail *)(((struct dx_entry *)c) + limit);
458
459 if (t->dt_checksum != ext4_dx_csum(inode, dirent, count_offset,
460 count, t))
461 return 0;
462 return 1;
463 }
464
465 static void ext4_dx_csum_set(struct inode *inode, struct ext4_dir_entry *dirent)
466 {
467 struct dx_countlimit *c;
468 struct dx_tail *t;
469 int count_offset, limit, count;
470
471 if (!ext4_has_metadata_csum(inode->i_sb))
472 return;
473
474 c = get_dx_countlimit(inode, dirent, &count_offset);
475 if (!c) {
476 EXT4_ERROR_INODE(inode, "dir seems corrupt? Run e2fsck -D.");
477 return;
478 }
479 limit = le16_to_cpu(c->limit);
480 count = le16_to_cpu(c->count);
481 if (count_offset + (limit * sizeof(struct dx_entry)) >
482 EXT4_BLOCK_SIZE(inode->i_sb) - sizeof(struct dx_tail)) {
483 warn_no_space_for_csum(inode);
484 return;
485 }
486 t = (struct dx_tail *)(((struct dx_entry *)c) + limit);
487
488 t->dt_checksum = ext4_dx_csum(inode, dirent, count_offset, count, t);
489 }
490
491 static inline int ext4_handle_dirty_dx_node(handle_t *handle,
492 struct inode *inode,
493 struct buffer_head *bh)
494 {
495 ext4_dx_csum_set(inode, (struct ext4_dir_entry *)bh->b_data);
496 return ext4_handle_dirty_metadata(handle, inode, bh);
497 }
498
499 /*
500 * p is at least 6 bytes before the end of page
501 */
502 static inline struct ext4_dir_entry_2 *
503 ext4_next_entry(struct ext4_dir_entry_2 *p, unsigned long blocksize)
504 {
505 return (struct ext4_dir_entry_2 *)((char *)p +
506 ext4_rec_len_from_disk(p->rec_len, blocksize));
507 }
508
509 /*
510 * Future: use high four bits of block for coalesce-on-delete flags
511 * Mask them off for now.
512 */
513
514 static inline ext4_lblk_t dx_get_block(struct dx_entry *entry)
515 {
516 return le32_to_cpu(entry->block) & 0x0fffffff;
517 }
518
519 static inline void dx_set_block(struct dx_entry *entry, ext4_lblk_t value)
520 {
521 entry->block = cpu_to_le32(value);
522 }
523
524 static inline unsigned dx_get_hash(struct dx_entry *entry)
525 {
526 return le32_to_cpu(entry->hash);
527 }
528
529 static inline void dx_set_hash(struct dx_entry *entry, unsigned value)
530 {
531 entry->hash = cpu_to_le32(value);
532 }
533
534 static inline unsigned dx_get_count(struct dx_entry *entries)
535 {
536 return le16_to_cpu(((struct dx_countlimit *) entries)->count);
537 }
538
539 static inline unsigned dx_get_limit(struct dx_entry *entries)
540 {
541 return le16_to_cpu(((struct dx_countlimit *) entries)->limit);
542 }
543
544 static inline void dx_set_count(struct dx_entry *entries, unsigned value)
545 {
546 ((struct dx_countlimit *) entries)->count = cpu_to_le16(value);
547 }
548
549 static inline void dx_set_limit(struct dx_entry *entries, unsigned value)
550 {
551 ((struct dx_countlimit *) entries)->limit = cpu_to_le16(value);
552 }
553
554 static inline unsigned dx_root_limit(struct inode *dir, unsigned infosize)
555 {
556 unsigned entry_space = dir->i_sb->s_blocksize - EXT4_DIR_REC_LEN(1) -
557 EXT4_DIR_REC_LEN(2) - infosize;
558
559 if (ext4_has_metadata_csum(dir->i_sb))
560 entry_space -= sizeof(struct dx_tail);
561 return entry_space / sizeof(struct dx_entry);
562 }
563
564 static inline unsigned dx_node_limit(struct inode *dir)
565 {
566 unsigned entry_space = dir->i_sb->s_blocksize - EXT4_DIR_REC_LEN(0);
567
568 if (ext4_has_metadata_csum(dir->i_sb))
569 entry_space -= sizeof(struct dx_tail);
570 return entry_space / sizeof(struct dx_entry);
571 }
572
573 /*
574 * Debug
575 */
576 #ifdef DX_DEBUG
577 static void dx_show_index(char * label, struct dx_entry *entries)
578 {
579 int i, n = dx_get_count (entries);
580 printk(KERN_DEBUG "%s index", label);
581 for (i = 0; i < n; i++) {
582 printk(KERN_CONT " %x->%lu",
583 i ? dx_get_hash(entries + i) : 0,
584 (unsigned long)dx_get_block(entries + i));
585 }
586 printk(KERN_CONT "\n");
587 }
588
589 struct stats
590 {
591 unsigned names;
592 unsigned space;
593 unsigned bcount;
594 };
595
596 static struct stats dx_show_leaf(struct inode *dir,
597 struct dx_hash_info *hinfo,
598 struct ext4_dir_entry_2 *de,
599 int size, int show_names)
600 {
601 unsigned names = 0, space = 0;
602 char *base = (char *) de;
603 struct dx_hash_info h = *hinfo;
604
605 printk("names: ");
606 while ((char *) de < base + size)
607 {
608 if (de->inode)
609 {
610 if (show_names)
611 {
612 #ifdef CONFIG_EXT4_FS_ENCRYPTION
613 int len;
614 char *name;
615 struct fscrypt_str fname_crypto_str =
616 FSTR_INIT(NULL, 0);
617 int res = 0;
618
619 name = de->name;
620 len = de->name_len;
621 if (ext4_encrypted_inode(dir))
622 res = fscrypt_get_encryption_info(dir);
623 if (res) {
624 printk(KERN_WARNING "Error setting up"
625 " fname crypto: %d\n", res);
626 }
627 if (!fscrypt_has_encryption_key(dir)) {
628 /* Directory is not encrypted */
629 ext4fs_dirhash(de->name,
630 de->name_len, &h);
631 printk("%*.s:(U)%x.%u ", len,
632 name, h.hash,
633 (unsigned) ((char *) de
634 - base));
635 } else {
636 struct fscrypt_str de_name =
637 FSTR_INIT(name, len);
638
639 /* Directory is encrypted */
640 res = fscrypt_fname_alloc_buffer(
641 dir, len,
642 &fname_crypto_str);
643 if (res)
644 printk(KERN_WARNING "Error "
645 "allocating crypto "
646 "buffer--skipping "
647 "crypto\n");
648 res = fscrypt_fname_disk_to_usr(dir,
649 0, 0, &de_name,
650 &fname_crypto_str);
651 if (res) {
652 printk(KERN_WARNING "Error "
653 "converting filename "
654 "from disk to usr"
655 "\n");
656 name = "??";
657 len = 2;
658 } else {
659 name = fname_crypto_str.name;
660 len = fname_crypto_str.len;
661 }
662 ext4fs_dirhash(de->name, de->name_len,
663 &h);
664 printk("%*.s:(E)%x.%u ", len, name,
665 h.hash, (unsigned) ((char *) de
666 - base));
667 fscrypt_fname_free_buffer(
668 &fname_crypto_str);
669 }
670 #else
671 int len = de->name_len;
672 char *name = de->name;
673 ext4fs_dirhash(de->name, de->name_len, &h);
674 printk("%*.s:%x.%u ", len, name, h.hash,
675 (unsigned) ((char *) de - base));
676 #endif
677 }
678 space += EXT4_DIR_REC_LEN(de->name_len);
679 names++;
680 }
681 de = ext4_next_entry(de, size);
682 }
683 printk(KERN_CONT "(%i)\n", names);
684 return (struct stats) { names, space, 1 };
685 }
686
687 struct stats dx_show_entries(struct dx_hash_info *hinfo, struct inode *dir,
688 struct dx_entry *entries, int levels)
689 {
690 unsigned blocksize = dir->i_sb->s_blocksize;
691 unsigned count = dx_get_count(entries), names = 0, space = 0, i;
692 unsigned bcount = 0;
693 struct buffer_head *bh;
694 printk("%i indexed blocks...\n", count);
695 for (i = 0; i < count; i++, entries++)
696 {
697 ext4_lblk_t block = dx_get_block(entries);
698 ext4_lblk_t hash = i ? dx_get_hash(entries): 0;
699 u32 range = i < count - 1? (dx_get_hash(entries + 1) - hash): ~hash;
700 struct stats stats;
701 printk("%s%3u:%03u hash %8x/%8x ",levels?"":" ", i, block, hash, range);
702 bh = ext4_bread(NULL,dir, block, 0);
703 if (!bh || IS_ERR(bh))
704 continue;
705 stats = levels?
706 dx_show_entries(hinfo, dir, ((struct dx_node *) bh->b_data)->entries, levels - 1):
707 dx_show_leaf(dir, hinfo, (struct ext4_dir_entry_2 *)
708 bh->b_data, blocksize, 0);
709 names += stats.names;
710 space += stats.space;
711 bcount += stats.bcount;
712 brelse(bh);
713 }
714 if (bcount)
715 printk(KERN_DEBUG "%snames %u, fullness %u (%u%%)\n",
716 levels ? "" : " ", names, space/bcount,
717 (space/bcount)*100/blocksize);
718 return (struct stats) { names, space, bcount};
719 }
720 #endif /* DX_DEBUG */
721
722 /*
723 * Probe for a directory leaf block to search.
724 *
725 * dx_probe can return ERR_BAD_DX_DIR, which means there was a format
726 * error in the directory index, and the caller should fall back to
727 * searching the directory normally. The callers of dx_probe **MUST**
728 * check for this error code, and make sure it never gets reflected
729 * back to userspace.
730 */
731 static struct dx_frame *
732 dx_probe(struct ext4_filename *fname, struct inode *dir,
733 struct dx_hash_info *hinfo, struct dx_frame *frame_in)
734 {
735 unsigned count, indirect;
736 struct dx_entry *at, *entries, *p, *q, *m;
737 struct dx_root *root;
738 struct dx_frame *frame = frame_in;
739 struct dx_frame *ret_err = ERR_PTR(ERR_BAD_DX_DIR);
740 u32 hash;
741
742 memset(frame_in, 0, EXT4_HTREE_LEVEL * sizeof(frame_in[0]));
743 frame->bh = ext4_read_dirblock(dir, 0, INDEX);
744 if (IS_ERR(frame->bh))
745 return (struct dx_frame *) frame->bh;
746
747 root = (struct dx_root *) frame->bh->b_data;
748 if (root->info.hash_version != DX_HASH_TEA &&
749 root->info.hash_version != DX_HASH_HALF_MD4 &&
750 root->info.hash_version != DX_HASH_LEGACY) {
751 ext4_warning_inode(dir, "Unrecognised inode hash code %u",
752 root->info.hash_version);
753 goto fail;
754 }
755 if (fname)
756 hinfo = &fname->hinfo;
757 hinfo->hash_version = root->info.hash_version;
758 if (hinfo->hash_version <= DX_HASH_TEA)
759 hinfo->hash_version += EXT4_SB(dir->i_sb)->s_hash_unsigned;
760 hinfo->seed = EXT4_SB(dir->i_sb)->s_hash_seed;
761 if (fname && fname_name(fname))
762 ext4fs_dirhash(fname_name(fname), fname_len(fname), hinfo);
763 hash = hinfo->hash;
764
765 if (root->info.unused_flags & 1) {
766 ext4_warning_inode(dir, "Unimplemented hash flags: %#06x",
767 root->info.unused_flags);
768 goto fail;
769 }
770
771 indirect = root->info.indirect_levels;
772 if (indirect >= ext4_dir_htree_level(dir->i_sb)) {
773 ext4_warning(dir->i_sb,
774 "Directory (ino: %lu) htree depth %#06x exceed"
775 "supported value", dir->i_ino,
776 ext4_dir_htree_level(dir->i_sb));
777 if (ext4_dir_htree_level(dir->i_sb) < EXT4_HTREE_LEVEL) {
778 ext4_warning(dir->i_sb, "Enable large directory "
779 "feature to access it");
780 }
781 goto fail;
782 }
783
784 entries = (struct dx_entry *)(((char *)&root->info) +
785 root->info.info_length);
786
787 if (dx_get_limit(entries) != dx_root_limit(dir,
788 root->info.info_length)) {
789 ext4_warning_inode(dir, "dx entry: limit %u != root limit %u",
790 dx_get_limit(entries),
791 dx_root_limit(dir, root->info.info_length));
792 goto fail;
793 }
794
795 dxtrace(printk("Look up %x", hash));
796 while (1) {
797 count = dx_get_count(entries);
798 if (!count || count > dx_get_limit(entries)) {
799 ext4_warning_inode(dir,
800 "dx entry: count %u beyond limit %u",
801 count, dx_get_limit(entries));
802 goto fail;
803 }
804
805 p = entries + 1;
806 q = entries + count - 1;
807 while (p <= q) {
808 m = p + (q - p) / 2;
809 dxtrace(printk(KERN_CONT "."));
810 if (dx_get_hash(m) > hash)
811 q = m - 1;
812 else
813 p = m + 1;
814 }
815
816 if (0) { // linear search cross check
817 unsigned n = count - 1;
818 at = entries;
819 while (n--)
820 {
821 dxtrace(printk(KERN_CONT ","));
822 if (dx_get_hash(++at) > hash)
823 {
824 at--;
825 break;
826 }
827 }
828 assert (at == p - 1);
829 }
830
831 at = p - 1;
832 dxtrace(printk(KERN_CONT " %x->%u\n",
833 at == entries ? 0 : dx_get_hash(at),
834 dx_get_block(at)));
835 frame->entries = entries;
836 frame->at = at;
837 if (!indirect--)
838 return frame;
839 frame++;
840 frame->bh = ext4_read_dirblock(dir, dx_get_block(at), INDEX);
841 if (IS_ERR(frame->bh)) {
842 ret_err = (struct dx_frame *) frame->bh;
843 frame->bh = NULL;
844 goto fail;
845 }
846 entries = ((struct dx_node *) frame->bh->b_data)->entries;
847
848 if (dx_get_limit(entries) != dx_node_limit(dir)) {
849 ext4_warning_inode(dir,
850 "dx entry: limit %u != node limit %u",
851 dx_get_limit(entries), dx_node_limit(dir));
852 goto fail;
853 }
854 }
855 fail:
856 while (frame >= frame_in) {
857 brelse(frame->bh);
858 frame--;
859 }
860
861 if (ret_err == ERR_PTR(ERR_BAD_DX_DIR))
862 ext4_warning_inode(dir,
863 "Corrupt directory, running e2fsck is recommended");
864 return ret_err;
865 }
866
867 static void dx_release(struct dx_frame *frames)
868 {
869 struct dx_root_info *info;
870 int i;
871
872 if (frames[0].bh == NULL)
873 return;
874
875 info = &((struct dx_root *)frames[0].bh->b_data)->info;
876 for (i = 0; i <= info->indirect_levels; i++) {
877 if (frames[i].bh == NULL)
878 break;
879 brelse(frames[i].bh);
880 frames[i].bh = NULL;
881 }
882 }
883
884 /*
885 * This function increments the frame pointer to search the next leaf
886 * block, and reads in the necessary intervening nodes if the search
887 * should be necessary. Whether or not the search is necessary is
888 * controlled by the hash parameter. If the hash value is even, then
889 * the search is only continued if the next block starts with that
890 * hash value. This is used if we are searching for a specific file.
891 *
892 * If the hash value is HASH_NB_ALWAYS, then always go to the next block.
893 *
894 * This function returns 1 if the caller should continue to search,
895 * or 0 if it should not. If there is an error reading one of the
896 * index blocks, it will a negative error code.
897 *
898 * If start_hash is non-null, it will be filled in with the starting
899 * hash of the next page.
900 */
901 static int ext4_htree_next_block(struct inode *dir, __u32 hash,
902 struct dx_frame *frame,
903 struct dx_frame *frames,
904 __u32 *start_hash)
905 {
906 struct dx_frame *p;
907 struct buffer_head *bh;
908 int num_frames = 0;
909 __u32 bhash;
910
911 p = frame;
912 /*
913 * Find the next leaf page by incrementing the frame pointer.
914 * If we run out of entries in the interior node, loop around and
915 * increment pointer in the parent node. When we break out of
916 * this loop, num_frames indicates the number of interior
917 * nodes need to be read.
918 */
919 while (1) {
920 if (++(p->at) < p->entries + dx_get_count(p->entries))
921 break;
922 if (p == frames)
923 return 0;
924 num_frames++;
925 p--;
926 }
927
928 /*
929 * If the hash is 1, then continue only if the next page has a
930 * continuation hash of any value. This is used for readdir
931 * handling. Otherwise, check to see if the hash matches the
932 * desired contiuation hash. If it doesn't, return since
933 * there's no point to read in the successive index pages.
934 */
935 bhash = dx_get_hash(p->at);
936 if (start_hash)
937 *start_hash = bhash;
938 if ((hash & 1) == 0) {
939 if ((bhash & ~1) != hash)
940 return 0;
941 }
942 /*
943 * If the hash is HASH_NB_ALWAYS, we always go to the next
944 * block so no check is necessary
945 */
946 while (num_frames--) {
947 bh = ext4_read_dirblock(dir, dx_get_block(p->at), INDEX);
948 if (IS_ERR(bh))
949 return PTR_ERR(bh);
950 p++;
951 brelse(p->bh);
952 p->bh = bh;
953 p->at = p->entries = ((struct dx_node *) bh->b_data)->entries;
954 }
955 return 1;
956 }
957
958
959 /*
960 * This function fills a red-black tree with information from a
961 * directory block. It returns the number directory entries loaded
962 * into the tree. If there is an error it is returned in err.
963 */
964 static int htree_dirblock_to_tree(struct file *dir_file,
965 struct inode *dir, ext4_lblk_t block,
966 struct dx_hash_info *hinfo,
967 __u32 start_hash, __u32 start_minor_hash)
968 {
969 struct buffer_head *bh;
970 struct ext4_dir_entry_2 *de, *top;
971 int err = 0, count = 0;
972 struct fscrypt_str fname_crypto_str = FSTR_INIT(NULL, 0), tmp_str;
973
974 dxtrace(printk(KERN_INFO "In htree dirblock_to_tree: block %lu\n",
975 (unsigned long)block));
976 bh = ext4_read_dirblock(dir, block, DIRENT);
977 if (IS_ERR(bh))
978 return PTR_ERR(bh);
979
980 de = (struct ext4_dir_entry_2 *) bh->b_data;
981 top = (struct ext4_dir_entry_2 *) ((char *) de +
982 dir->i_sb->s_blocksize -
983 EXT4_DIR_REC_LEN(0));
984 #ifdef CONFIG_EXT4_FS_ENCRYPTION
985 /* Check if the directory is encrypted */
986 if (ext4_encrypted_inode(dir)) {
987 err = fscrypt_get_encryption_info(dir);
988 if (err < 0) {
989 brelse(bh);
990 return err;
991 }
992 err = fscrypt_fname_alloc_buffer(dir, EXT4_NAME_LEN,
993 &fname_crypto_str);
994 if (err < 0) {
995 brelse(bh);
996 return err;
997 }
998 }
999 #endif
1000 for (; de < top; de = ext4_next_entry(de, dir->i_sb->s_blocksize)) {
1001 if (ext4_check_dir_entry(dir, NULL, de, bh,
1002 bh->b_data, bh->b_size,
1003 (block<<EXT4_BLOCK_SIZE_BITS(dir->i_sb))
1004 + ((char *)de - bh->b_data))) {
1005 /* silently ignore the rest of the block */
1006 break;
1007 }
1008 ext4fs_dirhash(de->name, de->name_len, hinfo);
1009 if ((hinfo->hash < start_hash) ||
1010 ((hinfo->hash == start_hash) &&
1011 (hinfo->minor_hash < start_minor_hash)))
1012 continue;
1013 if (de->inode == 0)
1014 continue;
1015 if (!ext4_encrypted_inode(dir)) {
1016 tmp_str.name = de->name;
1017 tmp_str.len = de->name_len;
1018 err = ext4_htree_store_dirent(dir_file,
1019 hinfo->hash, hinfo->minor_hash, de,
1020 &tmp_str);
1021 } else {
1022 int save_len = fname_crypto_str.len;
1023 struct fscrypt_str de_name = FSTR_INIT(de->name,
1024 de->name_len);
1025
1026 /* Directory is encrypted */
1027 err = fscrypt_fname_disk_to_usr(dir, hinfo->hash,
1028 hinfo->minor_hash, &de_name,
1029 &fname_crypto_str);
1030 if (err) {
1031 count = err;
1032 goto errout;
1033 }
1034 err = ext4_htree_store_dirent(dir_file,
1035 hinfo->hash, hinfo->minor_hash, de,
1036 &fname_crypto_str);
1037 fname_crypto_str.len = save_len;
1038 }
1039 if (err != 0) {
1040 count = err;
1041 goto errout;
1042 }
1043 count++;
1044 }
1045 errout:
1046 brelse(bh);
1047 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1048 fscrypt_fname_free_buffer(&fname_crypto_str);
1049 #endif
1050 return count;
1051 }
1052
1053
1054 /*
1055 * This function fills a red-black tree with information from a
1056 * directory. We start scanning the directory in hash order, starting
1057 * at start_hash and start_minor_hash.
1058 *
1059 * This function returns the number of entries inserted into the tree,
1060 * or a negative error code.
1061 */
1062 int ext4_htree_fill_tree(struct file *dir_file, __u32 start_hash,
1063 __u32 start_minor_hash, __u32 *next_hash)
1064 {
1065 struct dx_hash_info hinfo;
1066 struct ext4_dir_entry_2 *de;
1067 struct dx_frame frames[EXT4_HTREE_LEVEL], *frame;
1068 struct inode *dir;
1069 ext4_lblk_t block;
1070 int count = 0;
1071 int ret, err;
1072 __u32 hashval;
1073 struct fscrypt_str tmp_str;
1074
1075 dxtrace(printk(KERN_DEBUG "In htree_fill_tree, start hash: %x:%x\n",
1076 start_hash, start_minor_hash));
1077 dir = file_inode(dir_file);
1078 if (!(ext4_test_inode_flag(dir, EXT4_INODE_INDEX))) {
1079 hinfo.hash_version = EXT4_SB(dir->i_sb)->s_def_hash_version;
1080 if (hinfo.hash_version <= DX_HASH_TEA)
1081 hinfo.hash_version +=
1082 EXT4_SB(dir->i_sb)->s_hash_unsigned;
1083 hinfo.seed = EXT4_SB(dir->i_sb)->s_hash_seed;
1084 if (ext4_has_inline_data(dir)) {
1085 int has_inline_data = 1;
1086 count = htree_inlinedir_to_tree(dir_file, dir, 0,
1087 &hinfo, start_hash,
1088 start_minor_hash,
1089 &has_inline_data);
1090 if (has_inline_data) {
1091 *next_hash = ~0;
1092 return count;
1093 }
1094 }
1095 count = htree_dirblock_to_tree(dir_file, dir, 0, &hinfo,
1096 start_hash, start_minor_hash);
1097 *next_hash = ~0;
1098 return count;
1099 }
1100 hinfo.hash = start_hash;
1101 hinfo.minor_hash = 0;
1102 frame = dx_probe(NULL, dir, &hinfo, frames);
1103 if (IS_ERR(frame))
1104 return PTR_ERR(frame);
1105
1106 /* Add '.' and '..' from the htree header */
1107 if (!start_hash && !start_minor_hash) {
1108 de = (struct ext4_dir_entry_2 *) frames[0].bh->b_data;
1109 tmp_str.name = de->name;
1110 tmp_str.len = de->name_len;
1111 err = ext4_htree_store_dirent(dir_file, 0, 0,
1112 de, &tmp_str);
1113 if (err != 0)
1114 goto errout;
1115 count++;
1116 }
1117 if (start_hash < 2 || (start_hash ==2 && start_minor_hash==0)) {
1118 de = (struct ext4_dir_entry_2 *) frames[0].bh->b_data;
1119 de = ext4_next_entry(de, dir->i_sb->s_blocksize);
1120 tmp_str.name = de->name;
1121 tmp_str.len = de->name_len;
1122 err = ext4_htree_store_dirent(dir_file, 2, 0,
1123 de, &tmp_str);
1124 if (err != 0)
1125 goto errout;
1126 count++;
1127 }
1128
1129 while (1) {
1130 if (fatal_signal_pending(current)) {
1131 err = -ERESTARTSYS;
1132 goto errout;
1133 }
1134 cond_resched();
1135 block = dx_get_block(frame->at);
1136 ret = htree_dirblock_to_tree(dir_file, dir, block, &hinfo,
1137 start_hash, start_minor_hash);
1138 if (ret < 0) {
1139 err = ret;
1140 goto errout;
1141 }
1142 count += ret;
1143 hashval = ~0;
1144 ret = ext4_htree_next_block(dir, HASH_NB_ALWAYS,
1145 frame, frames, &hashval);
1146 *next_hash = hashval;
1147 if (ret < 0) {
1148 err = ret;
1149 goto errout;
1150 }
1151 /*
1152 * Stop if: (a) there are no more entries, or
1153 * (b) we have inserted at least one entry and the
1154 * next hash value is not a continuation
1155 */
1156 if ((ret == 0) ||
1157 (count && ((hashval & 1) == 0)))
1158 break;
1159 }
1160 dx_release(frames);
1161 dxtrace(printk(KERN_DEBUG "Fill tree: returned %d entries, "
1162 "next hash: %x\n", count, *next_hash));
1163 return count;
1164 errout:
1165 dx_release(frames);
1166 return (err);
1167 }
1168
1169 static inline int search_dirblock(struct buffer_head *bh,
1170 struct inode *dir,
1171 struct ext4_filename *fname,
1172 unsigned int offset,
1173 struct ext4_dir_entry_2 **res_dir)
1174 {
1175 return ext4_search_dir(bh, bh->b_data, dir->i_sb->s_blocksize, dir,
1176 fname, offset, res_dir);
1177 }
1178
1179 /*
1180 * Directory block splitting, compacting
1181 */
1182
1183 /*
1184 * Create map of hash values, offsets, and sizes, stored at end of block.
1185 * Returns number of entries mapped.
1186 */
1187 static int dx_make_map(struct inode *dir, struct ext4_dir_entry_2 *de,
1188 unsigned blocksize, struct dx_hash_info *hinfo,
1189 struct dx_map_entry *map_tail)
1190 {
1191 int count = 0;
1192 char *base = (char *) de;
1193 struct dx_hash_info h = *hinfo;
1194
1195 while ((char *) de < base + blocksize) {
1196 if (de->name_len && de->inode) {
1197 ext4fs_dirhash(de->name, de->name_len, &h);
1198 map_tail--;
1199 map_tail->hash = h.hash;
1200 map_tail->offs = ((char *) de - base)>>2;
1201 map_tail->size = le16_to_cpu(de->rec_len);
1202 count++;
1203 cond_resched();
1204 }
1205 /* XXX: do we need to check rec_len == 0 case? -Chris */
1206 de = ext4_next_entry(de, blocksize);
1207 }
1208 return count;
1209 }
1210
1211 /* Sort map by hash value */
1212 static void dx_sort_map (struct dx_map_entry *map, unsigned count)
1213 {
1214 struct dx_map_entry *p, *q, *top = map + count - 1;
1215 int more;
1216 /* Combsort until bubble sort doesn't suck */
1217 while (count > 2) {
1218 count = count*10/13;
1219 if (count - 9 < 2) /* 9, 10 -> 11 */
1220 count = 11;
1221 for (p = top, q = p - count; q >= map; p--, q--)
1222 if (p->hash < q->hash)
1223 swap(*p, *q);
1224 }
1225 /* Garden variety bubble sort */
1226 do {
1227 more = 0;
1228 q = top;
1229 while (q-- > map) {
1230 if (q[1].hash >= q[0].hash)
1231 continue;
1232 swap(*(q+1), *q);
1233 more = 1;
1234 }
1235 } while(more);
1236 }
1237
1238 static void dx_insert_block(struct dx_frame *frame, u32 hash, ext4_lblk_t block)
1239 {
1240 struct dx_entry *entries = frame->entries;
1241 struct dx_entry *old = frame->at, *new = old + 1;
1242 int count = dx_get_count(entries);
1243
1244 assert(count < dx_get_limit(entries));
1245 assert(old < entries + count);
1246 memmove(new + 1, new, (char *)(entries + count) - (char *)(new));
1247 dx_set_hash(new, hash);
1248 dx_set_block(new, block);
1249 dx_set_count(entries, count + 1);
1250 }
1251
1252 /*
1253 * Test whether a directory entry matches the filename being searched for.
1254 *
1255 * Return: %true if the directory entry matches, otherwise %false.
1256 */
1257 static inline bool ext4_match(const struct ext4_filename *fname,
1258 const struct ext4_dir_entry_2 *de)
1259 {
1260 struct fscrypt_name f;
1261
1262 if (!de->inode)
1263 return false;
1264
1265 f.usr_fname = fname->usr_fname;
1266 f.disk_name = fname->disk_name;
1267 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1268 f.crypto_buf = fname->crypto_buf;
1269 #endif
1270 return fscrypt_match_name(&f, de->name, de->name_len);
1271 }
1272
1273 /*
1274 * Returns 0 if not found, -1 on failure, and 1 on success
1275 */
1276 int ext4_search_dir(struct buffer_head *bh, char *search_buf, int buf_size,
1277 struct inode *dir, struct ext4_filename *fname,
1278 unsigned int offset, struct ext4_dir_entry_2 **res_dir)
1279 {
1280 struct ext4_dir_entry_2 * de;
1281 char * dlimit;
1282 int de_len;
1283
1284 de = (struct ext4_dir_entry_2 *)search_buf;
1285 dlimit = search_buf + buf_size;
1286 while ((char *) de < dlimit) {
1287 /* this code is executed quadratically often */
1288 /* do minimal checking `by hand' */
1289 if ((char *) de + de->name_len <= dlimit &&
1290 ext4_match(fname, de)) {
1291 /* found a match - just to be sure, do
1292 * a full check */
1293 if (ext4_check_dir_entry(dir, NULL, de, bh, bh->b_data,
1294 bh->b_size, offset))
1295 return -1;
1296 *res_dir = de;
1297 return 1;
1298 }
1299 /* prevent looping on a bad block */
1300 de_len = ext4_rec_len_from_disk(de->rec_len,
1301 dir->i_sb->s_blocksize);
1302 if (de_len <= 0)
1303 return -1;
1304 offset += de_len;
1305 de = (struct ext4_dir_entry_2 *) ((char *) de + de_len);
1306 }
1307 return 0;
1308 }
1309
1310 static int is_dx_internal_node(struct inode *dir, ext4_lblk_t block,
1311 struct ext4_dir_entry *de)
1312 {
1313 struct super_block *sb = dir->i_sb;
1314
1315 if (!is_dx(dir))
1316 return 0;
1317 if (block == 0)
1318 return 1;
1319 if (de->inode == 0 &&
1320 ext4_rec_len_from_disk(de->rec_len, sb->s_blocksize) ==
1321 sb->s_blocksize)
1322 return 1;
1323 return 0;
1324 }
1325
1326 /*
1327 * ext4_find_entry()
1328 *
1329 * finds an entry in the specified directory with the wanted name. It
1330 * returns the cache buffer in which the entry was found, and the entry
1331 * itself (as a parameter - res_dir). It does NOT read the inode of the
1332 * entry - you'll have to do that yourself if you want to.
1333 *
1334 * The returned buffer_head has ->b_count elevated. The caller is expected
1335 * to brelse() it when appropriate.
1336 */
1337 static struct buffer_head * ext4_find_entry (struct inode *dir,
1338 const struct qstr *d_name,
1339 struct ext4_dir_entry_2 **res_dir,
1340 int *inlined)
1341 {
1342 struct super_block *sb;
1343 struct buffer_head *bh_use[NAMEI_RA_SIZE];
1344 struct buffer_head *bh, *ret = NULL;
1345 ext4_lblk_t start, block, b;
1346 const u8 *name = d_name->name;
1347 int ra_max = 0; /* Number of bh's in the readahead
1348 buffer, bh_use[] */
1349 int ra_ptr = 0; /* Current index into readahead
1350 buffer */
1351 int num = 0;
1352 ext4_lblk_t nblocks;
1353 int i, namelen, retval;
1354 struct ext4_filename fname;
1355
1356 *res_dir = NULL;
1357 sb = dir->i_sb;
1358 namelen = d_name->len;
1359 if (namelen > EXT4_NAME_LEN)
1360 return NULL;
1361
1362 retval = ext4_fname_setup_filename(dir, d_name, 1, &fname);
1363 if (retval == -ENOENT)
1364 return NULL;
1365 if (retval)
1366 return ERR_PTR(retval);
1367
1368 if (ext4_has_inline_data(dir)) {
1369 int has_inline_data = 1;
1370 ret = ext4_find_inline_entry(dir, &fname, res_dir,
1371 &has_inline_data);
1372 if (has_inline_data) {
1373 if (inlined)
1374 *inlined = 1;
1375 goto cleanup_and_exit;
1376 }
1377 }
1378
1379 if ((namelen <= 2) && (name[0] == '.') &&
1380 (name[1] == '.' || name[1] == '\0')) {
1381 /*
1382 * "." or ".." will only be in the first block
1383 * NFS may look up ".."; "." should be handled by the VFS
1384 */
1385 block = start = 0;
1386 nblocks = 1;
1387 goto restart;
1388 }
1389 if (is_dx(dir)) {
1390 ret = ext4_dx_find_entry(dir, &fname, res_dir);
1391 /*
1392 * On success, or if the error was file not found,
1393 * return. Otherwise, fall back to doing a search the
1394 * old fashioned way.
1395 */
1396 if (!IS_ERR(ret) || PTR_ERR(ret) != ERR_BAD_DX_DIR)
1397 goto cleanup_and_exit;
1398 dxtrace(printk(KERN_DEBUG "ext4_find_entry: dx failed, "
1399 "falling back\n"));
1400 }
1401 nblocks = dir->i_size >> EXT4_BLOCK_SIZE_BITS(sb);
1402 start = EXT4_I(dir)->i_dir_start_lookup;
1403 if (start >= nblocks)
1404 start = 0;
1405 block = start;
1406 restart:
1407 do {
1408 /*
1409 * We deal with the read-ahead logic here.
1410 */
1411 if (ra_ptr >= ra_max) {
1412 /* Refill the readahead buffer */
1413 ra_ptr = 0;
1414 b = block;
1415 for (ra_max = 0; ra_max < NAMEI_RA_SIZE; ra_max++) {
1416 /*
1417 * Terminate if we reach the end of the
1418 * directory and must wrap, or if our
1419 * search has finished at this block.
1420 */
1421 if (b >= nblocks || (num && block == start)) {
1422 bh_use[ra_max] = NULL;
1423 break;
1424 }
1425 num++;
1426 bh = ext4_getblk(NULL, dir, b++, 0);
1427 if (IS_ERR(bh)) {
1428 if (ra_max == 0) {
1429 ret = bh;
1430 goto cleanup_and_exit;
1431 }
1432 break;
1433 }
1434 bh_use[ra_max] = bh;
1435 if (bh)
1436 ll_rw_block(REQ_OP_READ,
1437 REQ_META | REQ_PRIO,
1438 1, &bh);
1439 }
1440 }
1441 if ((bh = bh_use[ra_ptr++]) == NULL)
1442 goto next;
1443 wait_on_buffer(bh);
1444 if (!buffer_uptodate(bh)) {
1445 EXT4_ERROR_INODE(dir, "reading directory lblock %lu",
1446 (unsigned long) block);
1447 brelse(bh);
1448 ret = ERR_PTR(-EIO);
1449 goto cleanup_and_exit;
1450 }
1451 if (!buffer_verified(bh) &&
1452 !is_dx_internal_node(dir, block,
1453 (struct ext4_dir_entry *)bh->b_data) &&
1454 !ext4_dirent_csum_verify(dir,
1455 (struct ext4_dir_entry *)bh->b_data)) {
1456 EXT4_ERROR_INODE(dir, "checksumming directory "
1457 "block %lu", (unsigned long)block);
1458 brelse(bh);
1459 ret = ERR_PTR(-EFSBADCRC);
1460 goto cleanup_and_exit;
1461 }
1462 set_buffer_verified(bh);
1463 i = search_dirblock(bh, dir, &fname,
1464 block << EXT4_BLOCK_SIZE_BITS(sb), res_dir);
1465 if (i == 1) {
1466 EXT4_I(dir)->i_dir_start_lookup = block;
1467 ret = bh;
1468 goto cleanup_and_exit;
1469 } else {
1470 brelse(bh);
1471 if (i < 0)
1472 goto cleanup_and_exit;
1473 }
1474 next:
1475 if (++block >= nblocks)
1476 block = 0;
1477 } while (block != start);
1478
1479 /*
1480 * If the directory has grown while we were searching, then
1481 * search the last part of the directory before giving up.
1482 */
1483 block = nblocks;
1484 nblocks = dir->i_size >> EXT4_BLOCK_SIZE_BITS(sb);
1485 if (block < nblocks) {
1486 start = 0;
1487 goto restart;
1488 }
1489
1490 cleanup_and_exit:
1491 /* Clean up the read-ahead blocks */
1492 for (; ra_ptr < ra_max; ra_ptr++)
1493 brelse(bh_use[ra_ptr]);
1494 ext4_fname_free_filename(&fname);
1495 return ret;
1496 }
1497
1498 static struct buffer_head * ext4_dx_find_entry(struct inode *dir,
1499 struct ext4_filename *fname,
1500 struct ext4_dir_entry_2 **res_dir)
1501 {
1502 struct super_block * sb = dir->i_sb;
1503 struct dx_frame frames[EXT4_HTREE_LEVEL], *frame;
1504 struct buffer_head *bh;
1505 ext4_lblk_t block;
1506 int retval;
1507
1508 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1509 *res_dir = NULL;
1510 #endif
1511 frame = dx_probe(fname, dir, NULL, frames);
1512 if (IS_ERR(frame))
1513 return (struct buffer_head *) frame;
1514 do {
1515 block = dx_get_block(frame->at);
1516 bh = ext4_read_dirblock(dir, block, DIRENT);
1517 if (IS_ERR(bh))
1518 goto errout;
1519
1520 retval = search_dirblock(bh, dir, fname,
1521 block << EXT4_BLOCK_SIZE_BITS(sb),
1522 res_dir);
1523 if (retval == 1)
1524 goto success;
1525 brelse(bh);
1526 if (retval == -1) {
1527 bh = ERR_PTR(ERR_BAD_DX_DIR);
1528 goto errout;
1529 }
1530
1531 /* Check to see if we should continue to search */
1532 retval = ext4_htree_next_block(dir, fname->hinfo.hash, frame,
1533 frames, NULL);
1534 if (retval < 0) {
1535 ext4_warning_inode(dir,
1536 "error %d reading directory index block",
1537 retval);
1538 bh = ERR_PTR(retval);
1539 goto errout;
1540 }
1541 } while (retval == 1);
1542
1543 bh = NULL;
1544 errout:
1545 dxtrace(printk(KERN_DEBUG "%s not found\n", fname->usr_fname->name));
1546 success:
1547 dx_release(frames);
1548 return bh;
1549 }
1550
1551 static struct dentry *ext4_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
1552 {
1553 struct inode *inode;
1554 struct ext4_dir_entry_2 *de;
1555 struct buffer_head *bh;
1556
1557 if (ext4_encrypted_inode(dir)) {
1558 int res = fscrypt_get_encryption_info(dir);
1559
1560 /*
1561 * DCACHE_ENCRYPTED_WITH_KEY is set if the dentry is
1562 * created while the directory was encrypted and we
1563 * have access to the key.
1564 */
1565 if (fscrypt_has_encryption_key(dir))
1566 fscrypt_set_encrypted_dentry(dentry);
1567 fscrypt_set_d_op(dentry);
1568 if (res && res != -ENOKEY)
1569 return ERR_PTR(res);
1570 }
1571
1572 if (dentry->d_name.len > EXT4_NAME_LEN)
1573 return ERR_PTR(-ENAMETOOLONG);
1574
1575 bh = ext4_find_entry(dir, &dentry->d_name, &de, NULL);
1576 if (IS_ERR(bh))
1577 return (struct dentry *) bh;
1578 inode = NULL;
1579 if (bh) {
1580 __u32 ino = le32_to_cpu(de->inode);
1581 brelse(bh);
1582 if (!ext4_valid_inum(dir->i_sb, ino)) {
1583 EXT4_ERROR_INODE(dir, "bad inode number: %u", ino);
1584 return ERR_PTR(-EFSCORRUPTED);
1585 }
1586 if (unlikely(ino == dir->i_ino)) {
1587 EXT4_ERROR_INODE(dir, "'%pd' linked to parent dir",
1588 dentry);
1589 return ERR_PTR(-EFSCORRUPTED);
1590 }
1591 inode = ext4_iget_normal(dir->i_sb, ino);
1592 if (inode == ERR_PTR(-ESTALE)) {
1593 EXT4_ERROR_INODE(dir,
1594 "deleted inode referenced: %u",
1595 ino);
1596 return ERR_PTR(-EFSCORRUPTED);
1597 }
1598 if (!IS_ERR(inode) && ext4_encrypted_inode(dir) &&
1599 (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode)) &&
1600 !fscrypt_has_permitted_context(dir, inode)) {
1601 ext4_warning(inode->i_sb,
1602 "Inconsistent encryption contexts: %lu/%lu",
1603 dir->i_ino, inode->i_ino);
1604 iput(inode);
1605 return ERR_PTR(-EPERM);
1606 }
1607 }
1608 return d_splice_alias(inode, dentry);
1609 }
1610
1611
1612 struct dentry *ext4_get_parent(struct dentry *child)
1613 {
1614 __u32 ino;
1615 static const struct qstr dotdot = QSTR_INIT("..", 2);
1616 struct ext4_dir_entry_2 * de;
1617 struct buffer_head *bh;
1618
1619 bh = ext4_find_entry(d_inode(child), &dotdot, &de, NULL);
1620 if (IS_ERR(bh))
1621 return (struct dentry *) bh;
1622 if (!bh)
1623 return ERR_PTR(-ENOENT);
1624 ino = le32_to_cpu(de->inode);
1625 brelse(bh);
1626
1627 if (!ext4_valid_inum(child->d_sb, ino)) {
1628 EXT4_ERROR_INODE(d_inode(child),
1629 "bad parent inode number: %u", ino);
1630 return ERR_PTR(-EFSCORRUPTED);
1631 }
1632
1633 return d_obtain_alias(ext4_iget_normal(child->d_sb, ino));
1634 }
1635
1636 /*
1637 * Move count entries from end of map between two memory locations.
1638 * Returns pointer to last entry moved.
1639 */
1640 static struct ext4_dir_entry_2 *
1641 dx_move_dirents(char *from, char *to, struct dx_map_entry *map, int count,
1642 unsigned blocksize)
1643 {
1644 unsigned rec_len = 0;
1645
1646 while (count--) {
1647 struct ext4_dir_entry_2 *de = (struct ext4_dir_entry_2 *)
1648 (from + (map->offs<<2));
1649 rec_len = EXT4_DIR_REC_LEN(de->name_len);
1650 memcpy (to, de, rec_len);
1651 ((struct ext4_dir_entry_2 *) to)->rec_len =
1652 ext4_rec_len_to_disk(rec_len, blocksize);
1653 de->inode = 0;
1654 map++;
1655 to += rec_len;
1656 }
1657 return (struct ext4_dir_entry_2 *) (to - rec_len);
1658 }
1659
1660 /*
1661 * Compact each dir entry in the range to the minimal rec_len.
1662 * Returns pointer to last entry in range.
1663 */
1664 static struct ext4_dir_entry_2* dx_pack_dirents(char *base, unsigned blocksize)
1665 {
1666 struct ext4_dir_entry_2 *next, *to, *prev, *de = (struct ext4_dir_entry_2 *) base;
1667 unsigned rec_len = 0;
1668
1669 prev = to = de;
1670 while ((char*)de < base + blocksize) {
1671 next = ext4_next_entry(de, blocksize);
1672 if (de->inode && de->name_len) {
1673 rec_len = EXT4_DIR_REC_LEN(de->name_len);
1674 if (de > to)
1675 memmove(to, de, rec_len);
1676 to->rec_len = ext4_rec_len_to_disk(rec_len, blocksize);
1677 prev = to;
1678 to = (struct ext4_dir_entry_2 *) (((char *) to) + rec_len);
1679 }
1680 de = next;
1681 }
1682 return prev;
1683 }
1684
1685 /*
1686 * Split a full leaf block to make room for a new dir entry.
1687 * Allocate a new block, and move entries so that they are approx. equally full.
1688 * Returns pointer to de in block into which the new entry will be inserted.
1689 */
1690 static struct ext4_dir_entry_2 *do_split(handle_t *handle, struct inode *dir,
1691 struct buffer_head **bh,struct dx_frame *frame,
1692 struct dx_hash_info *hinfo)
1693 {
1694 unsigned blocksize = dir->i_sb->s_blocksize;
1695 unsigned count, continued;
1696 struct buffer_head *bh2;
1697 ext4_lblk_t newblock;
1698 u32 hash2;
1699 struct dx_map_entry *map;
1700 char *data1 = (*bh)->b_data, *data2;
1701 unsigned split, move, size;
1702 struct ext4_dir_entry_2 *de = NULL, *de2;
1703 struct ext4_dir_entry_tail *t;
1704 int csum_size = 0;
1705 int err = 0, i;
1706
1707 if (ext4_has_metadata_csum(dir->i_sb))
1708 csum_size = sizeof(struct ext4_dir_entry_tail);
1709
1710 bh2 = ext4_append(handle, dir, &newblock);
1711 if (IS_ERR(bh2)) {
1712 brelse(*bh);
1713 *bh = NULL;
1714 return (struct ext4_dir_entry_2 *) bh2;
1715 }
1716
1717 BUFFER_TRACE(*bh, "get_write_access");
1718 err = ext4_journal_get_write_access(handle, *bh);
1719 if (err)
1720 goto journal_error;
1721
1722 BUFFER_TRACE(frame->bh, "get_write_access");
1723 err = ext4_journal_get_write_access(handle, frame->bh);
1724 if (err)
1725 goto journal_error;
1726
1727 data2 = bh2->b_data;
1728
1729 /* create map in the end of data2 block */
1730 map = (struct dx_map_entry *) (data2 + blocksize);
1731 count = dx_make_map(dir, (struct ext4_dir_entry_2 *) data1,
1732 blocksize, hinfo, map);
1733 map -= count;
1734 dx_sort_map(map, count);
1735 /* Split the existing block in the middle, size-wise */
1736 size = 0;
1737 move = 0;
1738 for (i = count-1; i >= 0; i--) {
1739 /* is more than half of this entry in 2nd half of the block? */
1740 if (size + map[i].size/2 > blocksize/2)
1741 break;
1742 size += map[i].size;
1743 move++;
1744 }
1745 /* map index at which we will split */
1746 split = count - move;
1747 hash2 = map[split].hash;
1748 continued = hash2 == map[split - 1].hash;
1749 dxtrace(printk(KERN_INFO "Split block %lu at %x, %i/%i\n",
1750 (unsigned long)dx_get_block(frame->at),
1751 hash2, split, count-split));
1752
1753 /* Fancy dance to stay within two buffers */
1754 de2 = dx_move_dirents(data1, data2, map + split, count - split,
1755 blocksize);
1756 de = dx_pack_dirents(data1, blocksize);
1757 de->rec_len = ext4_rec_len_to_disk(data1 + (blocksize - csum_size) -
1758 (char *) de,
1759 blocksize);
1760 de2->rec_len = ext4_rec_len_to_disk(data2 + (blocksize - csum_size) -
1761 (char *) de2,
1762 blocksize);
1763 if (csum_size) {
1764 t = EXT4_DIRENT_TAIL(data2, blocksize);
1765 initialize_dirent_tail(t, blocksize);
1766
1767 t = EXT4_DIRENT_TAIL(data1, blocksize);
1768 initialize_dirent_tail(t, blocksize);
1769 }
1770
1771 dxtrace(dx_show_leaf(dir, hinfo, (struct ext4_dir_entry_2 *) data1,
1772 blocksize, 1));
1773 dxtrace(dx_show_leaf(dir, hinfo, (struct ext4_dir_entry_2 *) data2,
1774 blocksize, 1));
1775
1776 /* Which block gets the new entry? */
1777 if (hinfo->hash >= hash2) {
1778 swap(*bh, bh2);
1779 de = de2;
1780 }
1781 dx_insert_block(frame, hash2 + continued, newblock);
1782 err = ext4_handle_dirty_dirent_node(handle, dir, bh2);
1783 if (err)
1784 goto journal_error;
1785 err = ext4_handle_dirty_dx_node(handle, dir, frame->bh);
1786 if (err)
1787 goto journal_error;
1788 brelse(bh2);
1789 dxtrace(dx_show_index("frame", frame->entries));
1790 return de;
1791
1792 journal_error:
1793 brelse(*bh);
1794 brelse(bh2);
1795 *bh = NULL;
1796 ext4_std_error(dir->i_sb, err);
1797 return ERR_PTR(err);
1798 }
1799
1800 int ext4_find_dest_de(struct inode *dir, struct inode *inode,
1801 struct buffer_head *bh,
1802 void *buf, int buf_size,
1803 struct ext4_filename *fname,
1804 struct ext4_dir_entry_2 **dest_de)
1805 {
1806 struct ext4_dir_entry_2 *de;
1807 unsigned short reclen = EXT4_DIR_REC_LEN(fname_len(fname));
1808 int nlen, rlen;
1809 unsigned int offset = 0;
1810 char *top;
1811
1812 de = (struct ext4_dir_entry_2 *)buf;
1813 top = buf + buf_size - reclen;
1814 while ((char *) de <= top) {
1815 if (ext4_check_dir_entry(dir, NULL, de, bh,
1816 buf, buf_size, offset))
1817 return -EFSCORRUPTED;
1818 if (ext4_match(fname, de))
1819 return -EEXIST;
1820 nlen = EXT4_DIR_REC_LEN(de->name_len);
1821 rlen = ext4_rec_len_from_disk(de->rec_len, buf_size);
1822 if ((de->inode ? rlen - nlen : rlen) >= reclen)
1823 break;
1824 de = (struct ext4_dir_entry_2 *)((char *)de + rlen);
1825 offset += rlen;
1826 }
1827 if ((char *) de > top)
1828 return -ENOSPC;
1829
1830 *dest_de = de;
1831 return 0;
1832 }
1833
1834 void ext4_insert_dentry(struct inode *inode,
1835 struct ext4_dir_entry_2 *de,
1836 int buf_size,
1837 struct ext4_filename *fname)
1838 {
1839
1840 int nlen, rlen;
1841
1842 nlen = EXT4_DIR_REC_LEN(de->name_len);
1843 rlen = ext4_rec_len_from_disk(de->rec_len, buf_size);
1844 if (de->inode) {
1845 struct ext4_dir_entry_2 *de1 =
1846 (struct ext4_dir_entry_2 *)((char *)de + nlen);
1847 de1->rec_len = ext4_rec_len_to_disk(rlen - nlen, buf_size);
1848 de->rec_len = ext4_rec_len_to_disk(nlen, buf_size);
1849 de = de1;
1850 }
1851 de->file_type = EXT4_FT_UNKNOWN;
1852 de->inode = cpu_to_le32(inode->i_ino);
1853 ext4_set_de_type(inode->i_sb, de, inode->i_mode);
1854 de->name_len = fname_len(fname);
1855 memcpy(de->name, fname_name(fname), fname_len(fname));
1856 }
1857
1858 /*
1859 * Add a new entry into a directory (leaf) block. If de is non-NULL,
1860 * it points to a directory entry which is guaranteed to be large
1861 * enough for new directory entry. If de is NULL, then
1862 * add_dirent_to_buf will attempt search the directory block for
1863 * space. It will return -ENOSPC if no space is available, and -EIO
1864 * and -EEXIST if directory entry already exists.
1865 */
1866 static int add_dirent_to_buf(handle_t *handle, struct ext4_filename *fname,
1867 struct inode *dir,
1868 struct inode *inode, struct ext4_dir_entry_2 *de,
1869 struct buffer_head *bh)
1870 {
1871 unsigned int blocksize = dir->i_sb->s_blocksize;
1872 int csum_size = 0;
1873 int err;
1874
1875 if (ext4_has_metadata_csum(inode->i_sb))
1876 csum_size = sizeof(struct ext4_dir_entry_tail);
1877
1878 if (!de) {
1879 err = ext4_find_dest_de(dir, inode, bh, bh->b_data,
1880 blocksize - csum_size, fname, &de);
1881 if (err)
1882 return err;
1883 }
1884 BUFFER_TRACE(bh, "get_write_access");
1885 err = ext4_journal_get_write_access(handle, bh);
1886 if (err) {
1887 ext4_std_error(dir->i_sb, err);
1888 return err;
1889 }
1890
1891 /* By now the buffer is marked for journaling */
1892 ext4_insert_dentry(inode, de, blocksize, fname);
1893
1894 /*
1895 * XXX shouldn't update any times until successful
1896 * completion of syscall, but too many callers depend
1897 * on this.
1898 *
1899 * XXX similarly, too many callers depend on
1900 * ext4_new_inode() setting the times, but error
1901 * recovery deletes the inode, so the worst that can
1902 * happen is that the times are slightly out of date
1903 * and/or different from the directory change time.
1904 */
1905 dir->i_mtime = dir->i_ctime = current_time(dir);
1906 ext4_update_dx_flag(dir);
1907 inode_inc_iversion(dir);
1908 ext4_mark_inode_dirty(handle, dir);
1909 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1910 err = ext4_handle_dirty_dirent_node(handle, dir, bh);
1911 if (err)
1912 ext4_std_error(dir->i_sb, err);
1913 return 0;
1914 }
1915
1916 /*
1917 * This converts a one block unindexed directory to a 3 block indexed
1918 * directory, and adds the dentry to the indexed directory.
1919 */
1920 static int make_indexed_dir(handle_t *handle, struct ext4_filename *fname,
1921 struct inode *dir,
1922 struct inode *inode, struct buffer_head *bh)
1923 {
1924 struct buffer_head *bh2;
1925 struct dx_root *root;
1926 struct dx_frame frames[EXT4_HTREE_LEVEL], *frame;
1927 struct dx_entry *entries;
1928 struct ext4_dir_entry_2 *de, *de2;
1929 struct ext4_dir_entry_tail *t;
1930 char *data1, *top;
1931 unsigned len;
1932 int retval;
1933 unsigned blocksize;
1934 ext4_lblk_t block;
1935 struct fake_dirent *fde;
1936 int csum_size = 0;
1937
1938 if (ext4_has_metadata_csum(inode->i_sb))
1939 csum_size = sizeof(struct ext4_dir_entry_tail);
1940
1941 blocksize = dir->i_sb->s_blocksize;
1942 dxtrace(printk(KERN_DEBUG "Creating index: inode %lu\n", dir->i_ino));
1943 BUFFER_TRACE(bh, "get_write_access");
1944 retval = ext4_journal_get_write_access(handle, bh);
1945 if (retval) {
1946 ext4_std_error(dir->i_sb, retval);
1947 brelse(bh);
1948 return retval;
1949 }
1950 root = (struct dx_root *) bh->b_data;
1951
1952 /* The 0th block becomes the root, move the dirents out */
1953 fde = &root->dotdot;
1954 de = (struct ext4_dir_entry_2 *)((char *)fde +
1955 ext4_rec_len_from_disk(fde->rec_len, blocksize));
1956 if ((char *) de >= (((char *) root) + blocksize)) {
1957 EXT4_ERROR_INODE(dir, "invalid rec_len for '..'");
1958 brelse(bh);
1959 return -EFSCORRUPTED;
1960 }
1961 len = ((char *) root) + (blocksize - csum_size) - (char *) de;
1962
1963 /* Allocate new block for the 0th block's dirents */
1964 bh2 = ext4_append(handle, dir, &block);
1965 if (IS_ERR(bh2)) {
1966 brelse(bh);
1967 return PTR_ERR(bh2);
1968 }
1969 ext4_set_inode_flag(dir, EXT4_INODE_INDEX);
1970 data1 = bh2->b_data;
1971
1972 memcpy (data1, de, len);
1973 de = (struct ext4_dir_entry_2 *) data1;
1974 top = data1 + len;
1975 while ((char *)(de2 = ext4_next_entry(de, blocksize)) < top)
1976 de = de2;
1977 de->rec_len = ext4_rec_len_to_disk(data1 + (blocksize - csum_size) -
1978 (char *) de,
1979 blocksize);
1980
1981 if (csum_size) {
1982 t = EXT4_DIRENT_TAIL(data1, blocksize);
1983 initialize_dirent_tail(t, blocksize);
1984 }
1985
1986 /* Initialize the root; the dot dirents already exist */
1987 de = (struct ext4_dir_entry_2 *) (&root->dotdot);
1988 de->rec_len = ext4_rec_len_to_disk(blocksize - EXT4_DIR_REC_LEN(2),
1989 blocksize);
1990 memset (&root->info, 0, sizeof(root->info));
1991 root->info.info_length = sizeof(root->info);
1992 root->info.hash_version = EXT4_SB(dir->i_sb)->s_def_hash_version;
1993 entries = root->entries;
1994 dx_set_block(entries, 1);
1995 dx_set_count(entries, 1);
1996 dx_set_limit(entries, dx_root_limit(dir, sizeof(root->info)));
1997
1998 /* Initialize as for dx_probe */
1999 fname->hinfo.hash_version = root->info.hash_version;
2000 if (fname->hinfo.hash_version <= DX_HASH_TEA)
2001 fname->hinfo.hash_version += EXT4_SB(dir->i_sb)->s_hash_unsigned;
2002 fname->hinfo.seed = EXT4_SB(dir->i_sb)->s_hash_seed;
2003 ext4fs_dirhash(fname_name(fname), fname_len(fname), &fname->hinfo);
2004
2005 memset(frames, 0, sizeof(frames));
2006 frame = frames;
2007 frame->entries = entries;
2008 frame->at = entries;
2009 frame->bh = bh;
2010
2011 retval = ext4_handle_dirty_dx_node(handle, dir, frame->bh);
2012 if (retval)
2013 goto out_frames;
2014 retval = ext4_handle_dirty_dirent_node(handle, dir, bh2);
2015 if (retval)
2016 goto out_frames;
2017
2018 de = do_split(handle,dir, &bh2, frame, &fname->hinfo);
2019 if (IS_ERR(de)) {
2020 retval = PTR_ERR(de);
2021 goto out_frames;
2022 }
2023
2024 retval = add_dirent_to_buf(handle, fname, dir, inode, de, bh2);
2025 out_frames:
2026 /*
2027 * Even if the block split failed, we have to properly write
2028 * out all the changes we did so far. Otherwise we can end up
2029 * with corrupted filesystem.
2030 */
2031 if (retval)
2032 ext4_mark_inode_dirty(handle, dir);
2033 dx_release(frames);
2034 brelse(bh2);
2035 return retval;
2036 }
2037
2038 /*
2039 * ext4_add_entry()
2040 *
2041 * adds a file entry to the specified directory, using the same
2042 * semantics as ext4_find_entry(). It returns NULL if it failed.
2043 *
2044 * NOTE!! The inode part of 'de' is left at 0 - which means you
2045 * may not sleep between calling this and putting something into
2046 * the entry, as someone else might have used it while you slept.
2047 */
2048 static int ext4_add_entry(handle_t *handle, struct dentry *dentry,
2049 struct inode *inode)
2050 {
2051 struct inode *dir = d_inode(dentry->d_parent);
2052 struct buffer_head *bh = NULL;
2053 struct ext4_dir_entry_2 *de;
2054 struct ext4_dir_entry_tail *t;
2055 struct super_block *sb;
2056 struct ext4_filename fname;
2057 int retval;
2058 int dx_fallback=0;
2059 unsigned blocksize;
2060 ext4_lblk_t block, blocks;
2061 int csum_size = 0;
2062
2063 if (ext4_has_metadata_csum(inode->i_sb))
2064 csum_size = sizeof(struct ext4_dir_entry_tail);
2065
2066 sb = dir->i_sb;
2067 blocksize = sb->s_blocksize;
2068 if (!dentry->d_name.len)
2069 return -EINVAL;
2070
2071 retval = ext4_fname_setup_filename(dir, &dentry->d_name, 0, &fname);
2072 if (retval)
2073 return retval;
2074
2075 if (ext4_has_inline_data(dir)) {
2076 retval = ext4_try_add_inline_entry(handle, &fname, dir, inode);
2077 if (retval < 0)
2078 goto out;
2079 if (retval == 1) {
2080 retval = 0;
2081 goto out;
2082 }
2083 }
2084
2085 if (is_dx(dir)) {
2086 retval = ext4_dx_add_entry(handle, &fname, dir, inode);
2087 if (!retval || (retval != ERR_BAD_DX_DIR))
2088 goto out;
2089 ext4_clear_inode_flag(dir, EXT4_INODE_INDEX);
2090 dx_fallback++;
2091 ext4_mark_inode_dirty(handle, dir);
2092 }
2093 blocks = dir->i_size >> sb->s_blocksize_bits;
2094 for (block = 0; block < blocks; block++) {
2095 bh = ext4_read_dirblock(dir, block, DIRENT);
2096 if (IS_ERR(bh)) {
2097 retval = PTR_ERR(bh);
2098 bh = NULL;
2099 goto out;
2100 }
2101 retval = add_dirent_to_buf(handle, &fname, dir, inode,
2102 NULL, bh);
2103 if (retval != -ENOSPC)
2104 goto out;
2105
2106 if (blocks == 1 && !dx_fallback &&
2107 ext4_has_feature_dir_index(sb)) {
2108 retval = make_indexed_dir(handle, &fname, dir,
2109 inode, bh);
2110 bh = NULL; /* make_indexed_dir releases bh */
2111 goto out;
2112 }
2113 brelse(bh);
2114 }
2115 bh = ext4_append(handle, dir, &block);
2116 if (IS_ERR(bh)) {
2117 retval = PTR_ERR(bh);
2118 bh = NULL;
2119 goto out;
2120 }
2121 de = (struct ext4_dir_entry_2 *) bh->b_data;
2122 de->inode = 0;
2123 de->rec_len = ext4_rec_len_to_disk(blocksize - csum_size, blocksize);
2124
2125 if (csum_size) {
2126 t = EXT4_DIRENT_TAIL(bh->b_data, blocksize);
2127 initialize_dirent_tail(t, blocksize);
2128 }
2129
2130 retval = add_dirent_to_buf(handle, &fname, dir, inode, de, bh);
2131 out:
2132 ext4_fname_free_filename(&fname);
2133 brelse(bh);
2134 if (retval == 0)
2135 ext4_set_inode_state(inode, EXT4_STATE_NEWENTRY);
2136 return retval;
2137 }
2138
2139 /*
2140 * Returns 0 for success, or a negative error value
2141 */
2142 static int ext4_dx_add_entry(handle_t *handle, struct ext4_filename *fname,
2143 struct inode *dir, struct inode *inode)
2144 {
2145 struct dx_frame frames[EXT4_HTREE_LEVEL], *frame;
2146 struct dx_entry *entries, *at;
2147 struct buffer_head *bh;
2148 struct super_block *sb = dir->i_sb;
2149 struct ext4_dir_entry_2 *de;
2150 int restart;
2151 int err;
2152
2153 again:
2154 restart = 0;
2155 frame = dx_probe(fname, dir, NULL, frames);
2156 if (IS_ERR(frame))
2157 return PTR_ERR(frame);
2158 entries = frame->entries;
2159 at = frame->at;
2160 bh = ext4_read_dirblock(dir, dx_get_block(frame->at), DIRENT);
2161 if (IS_ERR(bh)) {
2162 err = PTR_ERR(bh);
2163 bh = NULL;
2164 goto cleanup;
2165 }
2166
2167 BUFFER_TRACE(bh, "get_write_access");
2168 err = ext4_journal_get_write_access(handle, bh);
2169 if (err)
2170 goto journal_error;
2171
2172 err = add_dirent_to_buf(handle, fname, dir, inode, NULL, bh);
2173 if (err != -ENOSPC)
2174 goto cleanup;
2175
2176 err = 0;
2177 /* Block full, should compress but for now just split */
2178 dxtrace(printk(KERN_DEBUG "using %u of %u node entries\n",
2179 dx_get_count(entries), dx_get_limit(entries)));
2180 /* Need to split index? */
2181 if (dx_get_count(entries) == dx_get_limit(entries)) {
2182 ext4_lblk_t newblock;
2183 int levels = frame - frames + 1;
2184 unsigned int icount;
2185 int add_level = 1;
2186 struct dx_entry *entries2;
2187 struct dx_node *node2;
2188 struct buffer_head *bh2;
2189
2190 while (frame > frames) {
2191 if (dx_get_count((frame - 1)->entries) <
2192 dx_get_limit((frame - 1)->entries)) {
2193 add_level = 0;
2194 break;
2195 }
2196 frame--; /* split higher index block */
2197 at = frame->at;
2198 entries = frame->entries;
2199 restart = 1;
2200 }
2201 if (add_level && levels == ext4_dir_htree_level(sb)) {
2202 ext4_warning(sb, "Directory (ino: %lu) index full, "
2203 "reach max htree level :%d",
2204 dir->i_ino, levels);
2205 if (ext4_dir_htree_level(sb) < EXT4_HTREE_LEVEL) {
2206 ext4_warning(sb, "Large directory feature is "
2207 "not enabled on this "
2208 "filesystem");
2209 }
2210 err = -ENOSPC;
2211 goto cleanup;
2212 }
2213 icount = dx_get_count(entries);
2214 bh2 = ext4_append(handle, dir, &newblock);
2215 if (IS_ERR(bh2)) {
2216 err = PTR_ERR(bh2);
2217 goto cleanup;
2218 }
2219 node2 = (struct dx_node *)(bh2->b_data);
2220 entries2 = node2->entries;
2221 memset(&node2->fake, 0, sizeof(struct fake_dirent));
2222 node2->fake.rec_len = ext4_rec_len_to_disk(sb->s_blocksize,
2223 sb->s_blocksize);
2224 BUFFER_TRACE(frame->bh, "get_write_access");
2225 err = ext4_journal_get_write_access(handle, frame->bh);
2226 if (err)
2227 goto journal_error;
2228 if (!add_level) {
2229 unsigned icount1 = icount/2, icount2 = icount - icount1;
2230 unsigned hash2 = dx_get_hash(entries + icount1);
2231 dxtrace(printk(KERN_DEBUG "Split index %i/%i\n",
2232 icount1, icount2));
2233
2234 BUFFER_TRACE(frame->bh, "get_write_access"); /* index root */
2235 err = ext4_journal_get_write_access(handle,
2236 (frame - 1)->bh);
2237 if (err)
2238 goto journal_error;
2239
2240 memcpy((char *) entries2, (char *) (entries + icount1),
2241 icount2 * sizeof(struct dx_entry));
2242 dx_set_count(entries, icount1);
2243 dx_set_count(entries2, icount2);
2244 dx_set_limit(entries2, dx_node_limit(dir));
2245
2246 /* Which index block gets the new entry? */
2247 if (at - entries >= icount1) {
2248 frame->at = at = at - entries - icount1 + entries2;
2249 frame->entries = entries = entries2;
2250 swap(frame->bh, bh2);
2251 }
2252 dx_insert_block((frame - 1), hash2, newblock);
2253 dxtrace(dx_show_index("node", frame->entries));
2254 dxtrace(dx_show_index("node",
2255 ((struct dx_node *) bh2->b_data)->entries));
2256 err = ext4_handle_dirty_dx_node(handle, dir, bh2);
2257 if (err)
2258 goto journal_error;
2259 brelse (bh2);
2260 err = ext4_handle_dirty_dx_node(handle, dir,
2261 (frame - 1)->bh);
2262 if (err)
2263 goto journal_error;
2264 if (restart) {
2265 err = ext4_handle_dirty_dx_node(handle, dir,
2266 frame->bh);
2267 goto journal_error;
2268 }
2269 } else {
2270 struct dx_root *dxroot;
2271 memcpy((char *) entries2, (char *) entries,
2272 icount * sizeof(struct dx_entry));
2273 dx_set_limit(entries2, dx_node_limit(dir));
2274
2275 /* Set up root */
2276 dx_set_count(entries, 1);
2277 dx_set_block(entries + 0, newblock);
2278 dxroot = (struct dx_root *)frames[0].bh->b_data;
2279 dxroot->info.indirect_levels += 1;
2280 dxtrace(printk(KERN_DEBUG
2281 "Creating %d level index...\n",
2282 info->indirect_levels));
2283 err = ext4_handle_dirty_dx_node(handle, dir, frame->bh);
2284 if (err)
2285 goto journal_error;
2286 err = ext4_handle_dirty_dx_node(handle, dir, bh2);
2287 brelse(bh2);
2288 restart = 1;
2289 goto journal_error;
2290 }
2291 }
2292 de = do_split(handle, dir, &bh, frame, &fname->hinfo);
2293 if (IS_ERR(de)) {
2294 err = PTR_ERR(de);
2295 goto cleanup;
2296 }
2297 err = add_dirent_to_buf(handle, fname, dir, inode, de, bh);
2298 goto cleanup;
2299
2300 journal_error:
2301 ext4_std_error(dir->i_sb, err); /* this is a no-op if err == 0 */
2302 cleanup:
2303 brelse(bh);
2304 dx_release(frames);
2305 /* @restart is true means htree-path has been changed, we need to
2306 * repeat dx_probe() to find out valid htree-path
2307 */
2308 if (restart && err == 0)
2309 goto again;
2310 return err;
2311 }
2312
2313 /*
2314 * ext4_generic_delete_entry deletes a directory entry by merging it
2315 * with the previous entry
2316 */
2317 int ext4_generic_delete_entry(handle_t *handle,
2318 struct inode *dir,
2319 struct ext4_dir_entry_2 *de_del,
2320 struct buffer_head *bh,
2321 void *entry_buf,
2322 int buf_size,
2323 int csum_size)
2324 {
2325 struct ext4_dir_entry_2 *de, *pde;
2326 unsigned int blocksize = dir->i_sb->s_blocksize;
2327 int i;
2328
2329 i = 0;
2330 pde = NULL;
2331 de = (struct ext4_dir_entry_2 *)entry_buf;
2332 while (i < buf_size - csum_size) {
2333 if (ext4_check_dir_entry(dir, NULL, de, bh,
2334 bh->b_data, bh->b_size, i))
2335 return -EFSCORRUPTED;
2336 if (de == de_del) {
2337 if (pde)
2338 pde->rec_len = ext4_rec_len_to_disk(
2339 ext4_rec_len_from_disk(pde->rec_len,
2340 blocksize) +
2341 ext4_rec_len_from_disk(de->rec_len,
2342 blocksize),
2343 blocksize);
2344 else
2345 de->inode = 0;
2346 inode_inc_iversion(dir);
2347 return 0;
2348 }
2349 i += ext4_rec_len_from_disk(de->rec_len, blocksize);
2350 pde = de;
2351 de = ext4_next_entry(de, blocksize);
2352 }
2353 return -ENOENT;
2354 }
2355
2356 static int ext4_delete_entry(handle_t *handle,
2357 struct inode *dir,
2358 struct ext4_dir_entry_2 *de_del,
2359 struct buffer_head *bh)
2360 {
2361 int err, csum_size = 0;
2362
2363 if (ext4_has_inline_data(dir)) {
2364 int has_inline_data = 1;
2365 err = ext4_delete_inline_entry(handle, dir, de_del, bh,
2366 &has_inline_data);
2367 if (has_inline_data)
2368 return err;
2369 }
2370
2371 if (ext4_has_metadata_csum(dir->i_sb))
2372 csum_size = sizeof(struct ext4_dir_entry_tail);
2373
2374 BUFFER_TRACE(bh, "get_write_access");
2375 err = ext4_journal_get_write_access(handle, bh);
2376 if (unlikely(err))
2377 goto out;
2378
2379 err = ext4_generic_delete_entry(handle, dir, de_del,
2380 bh, bh->b_data,
2381 dir->i_sb->s_blocksize, csum_size);
2382 if (err)
2383 goto out;
2384
2385 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
2386 err = ext4_handle_dirty_dirent_node(handle, dir, bh);
2387 if (unlikely(err))
2388 goto out;
2389
2390 return 0;
2391 out:
2392 if (err != -ENOENT)
2393 ext4_std_error(dir->i_sb, err);
2394 return err;
2395 }
2396
2397 /*
2398 * DIR_NLINK feature is set if 1) nlinks > EXT4_LINK_MAX or 2) nlinks == 2,
2399 * since this indicates that nlinks count was previously 1.
2400 */
2401 static void ext4_inc_count(handle_t *handle, struct inode *inode)
2402 {
2403 inc_nlink(inode);
2404 if (is_dx(inode) && inode->i_nlink > 1) {
2405 /* limit is 16-bit i_links_count */
2406 if (inode->i_nlink >= EXT4_LINK_MAX || inode->i_nlink == 2) {
2407 set_nlink(inode, 1);
2408 ext4_set_feature_dir_nlink(inode->i_sb);
2409 }
2410 }
2411 }
2412
2413 /*
2414 * If a directory had nlink == 1, then we should let it be 1. This indicates
2415 * directory has >EXT4_LINK_MAX subdirs.
2416 */
2417 static void ext4_dec_count(handle_t *handle, struct inode *inode)
2418 {
2419 if (!S_ISDIR(inode->i_mode) || inode->i_nlink > 2)
2420 drop_nlink(inode);
2421 }
2422
2423
2424 static int ext4_add_nondir(handle_t *handle,
2425 struct dentry *dentry, struct inode *inode)
2426 {
2427 int err = ext4_add_entry(handle, dentry, inode);
2428 if (!err) {
2429 ext4_mark_inode_dirty(handle, inode);
2430 unlock_new_inode(inode);
2431 d_instantiate(dentry, inode);
2432 return 0;
2433 }
2434 drop_nlink(inode);
2435 unlock_new_inode(inode);
2436 iput(inode);
2437 return err;
2438 }
2439
2440 /*
2441 * By the time this is called, we already have created
2442 * the directory cache entry for the new file, but it
2443 * is so far negative - it has no inode.
2444 *
2445 * If the create succeeds, we fill in the inode information
2446 * with d_instantiate().
2447 */
2448 static int ext4_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2449 bool excl)
2450 {
2451 handle_t *handle;
2452 struct inode *inode;
2453 int err, credits, retries = 0;
2454
2455 err = dquot_initialize(dir);
2456 if (err)
2457 return err;
2458
2459 credits = (EXT4_DATA_TRANS_BLOCKS(dir->i_sb) +
2460 EXT4_INDEX_EXTRA_TRANS_BLOCKS + 3);
2461 retry:
2462 inode = ext4_new_inode_start_handle(dir, mode, &dentry->d_name, 0,
2463 NULL, EXT4_HT_DIR, credits);
2464 handle = ext4_journal_current_handle();
2465 err = PTR_ERR(inode);
2466 if (!IS_ERR(inode)) {
2467 inode->i_op = &ext4_file_inode_operations;
2468 inode->i_fop = &ext4_file_operations;
2469 ext4_set_aops(inode);
2470 err = ext4_add_nondir(handle, dentry, inode);
2471 if (!err && IS_DIRSYNC(dir))
2472 ext4_handle_sync(handle);
2473 }
2474 if (handle)
2475 ext4_journal_stop(handle);
2476 if (err == -ENOSPC && ext4_should_retry_alloc(dir->i_sb, &retries))
2477 goto retry;
2478 return err;
2479 }
2480
2481 static int ext4_mknod(struct inode *dir, struct dentry *dentry,
2482 umode_t mode, dev_t rdev)
2483 {
2484 handle_t *handle;
2485 struct inode *inode;
2486 int err, credits, retries = 0;
2487
2488 err = dquot_initialize(dir);
2489 if (err)
2490 return err;
2491
2492 credits = (EXT4_DATA_TRANS_BLOCKS(dir->i_sb) +
2493 EXT4_INDEX_EXTRA_TRANS_BLOCKS + 3);
2494 retry:
2495 inode = ext4_new_inode_start_handle(dir, mode, &dentry->d_name, 0,
2496 NULL, EXT4_HT_DIR, credits);
2497 handle = ext4_journal_current_handle();
2498 err = PTR_ERR(inode);
2499 if (!IS_ERR(inode)) {
2500 init_special_inode(inode, inode->i_mode, rdev);
2501 inode->i_op = &ext4_special_inode_operations;
2502 err = ext4_add_nondir(handle, dentry, inode);
2503 if (!err && IS_DIRSYNC(dir))
2504 ext4_handle_sync(handle);
2505 }
2506 if (handle)
2507 ext4_journal_stop(handle);
2508 if (err == -ENOSPC && ext4_should_retry_alloc(dir->i_sb, &retries))
2509 goto retry;
2510 return err;
2511 }
2512
2513 static int ext4_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
2514 {
2515 handle_t *handle;
2516 struct inode *inode;
2517 int err, retries = 0;
2518
2519 err = dquot_initialize(dir);
2520 if (err)
2521 return err;
2522
2523 retry:
2524 inode = ext4_new_inode_start_handle(dir, mode,
2525 NULL, 0, NULL,
2526 EXT4_HT_DIR,
2527 EXT4_MAXQUOTAS_INIT_BLOCKS(dir->i_sb) +
2528 4 + EXT4_XATTR_TRANS_BLOCKS);
2529 handle = ext4_journal_current_handle();
2530 err = PTR_ERR(inode);
2531 if (!IS_ERR(inode)) {
2532 inode->i_op = &ext4_file_inode_operations;
2533 inode->i_fop = &ext4_file_operations;
2534 ext4_set_aops(inode);
2535 d_tmpfile(dentry, inode);
2536 err = ext4_orphan_add(handle, inode);
2537 if (err)
2538 goto err_unlock_inode;
2539 mark_inode_dirty(inode);
2540 unlock_new_inode(inode);
2541 }
2542 if (handle)
2543 ext4_journal_stop(handle);
2544 if (err == -ENOSPC && ext4_should_retry_alloc(dir->i_sb, &retries))
2545 goto retry;
2546 return err;
2547 err_unlock_inode:
2548 ext4_journal_stop(handle);
2549 unlock_new_inode(inode);
2550 return err;
2551 }
2552
2553 struct ext4_dir_entry_2 *ext4_init_dot_dotdot(struct inode *inode,
2554 struct ext4_dir_entry_2 *de,
2555 int blocksize, int csum_size,
2556 unsigned int parent_ino, int dotdot_real_len)
2557 {
2558 de->inode = cpu_to_le32(inode->i_ino);
2559 de->name_len = 1;
2560 de->rec_len = ext4_rec_len_to_disk(EXT4_DIR_REC_LEN(de->name_len),
2561 blocksize);
2562 strcpy(de->name, ".");
2563 ext4_set_de_type(inode->i_sb, de, S_IFDIR);
2564
2565 de = ext4_next_entry(de, blocksize);
2566 de->inode = cpu_to_le32(parent_ino);
2567 de->name_len = 2;
2568 if (!dotdot_real_len)
2569 de->rec_len = ext4_rec_len_to_disk(blocksize -
2570 (csum_size + EXT4_DIR_REC_LEN(1)),
2571 blocksize);
2572 else
2573 de->rec_len = ext4_rec_len_to_disk(
2574 EXT4_DIR_REC_LEN(de->name_len), blocksize);
2575 strcpy(de->name, "..");
2576 ext4_set_de_type(inode->i_sb, de, S_IFDIR);
2577
2578 return ext4_next_entry(de, blocksize);
2579 }
2580
2581 static int ext4_init_new_dir(handle_t *handle, struct inode *dir,
2582 struct inode *inode)
2583 {
2584 struct buffer_head *dir_block = NULL;
2585 struct ext4_dir_entry_2 *de;
2586 struct ext4_dir_entry_tail *t;
2587 ext4_lblk_t block = 0;
2588 unsigned int blocksize = dir->i_sb->s_blocksize;
2589 int csum_size = 0;
2590 int err;
2591
2592 if (ext4_has_metadata_csum(dir->i_sb))
2593 csum_size = sizeof(struct ext4_dir_entry_tail);
2594
2595 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2596 err = ext4_try_create_inline_dir(handle, dir, inode);
2597 if (err < 0 && err != -ENOSPC)
2598 goto out;
2599 if (!err)
2600 goto out;
2601 }
2602
2603 inode->i_size = 0;
2604 dir_block = ext4_append(handle, inode, &block);
2605 if (IS_ERR(dir_block))
2606 return PTR_ERR(dir_block);
2607 de = (struct ext4_dir_entry_2 *)dir_block->b_data;
2608 ext4_init_dot_dotdot(inode, de, blocksize, csum_size, dir->i_ino, 0);
2609 set_nlink(inode, 2);
2610 if (csum_size) {
2611 t = EXT4_DIRENT_TAIL(dir_block->b_data, blocksize);
2612 initialize_dirent_tail(t, blocksize);
2613 }
2614
2615 BUFFER_TRACE(dir_block, "call ext4_handle_dirty_metadata");
2616 err = ext4_handle_dirty_dirent_node(handle, inode, dir_block);
2617 if (err)
2618 goto out;
2619 set_buffer_verified(dir_block);
2620 out:
2621 brelse(dir_block);
2622 return err;
2623 }
2624
2625 static int ext4_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2626 {
2627 handle_t *handle;
2628 struct inode *inode;
2629 int err, credits, retries = 0;
2630
2631 if (EXT4_DIR_LINK_MAX(dir))
2632 return -EMLINK;
2633
2634 err = dquot_initialize(dir);
2635 if (err)
2636 return err;
2637
2638 credits = (EXT4_DATA_TRANS_BLOCKS(dir->i_sb) +
2639 EXT4_INDEX_EXTRA_TRANS_BLOCKS + 3);
2640 retry:
2641 inode = ext4_new_inode_start_handle(dir, S_IFDIR | mode,
2642 &dentry->d_name,
2643 0, NULL, EXT4_HT_DIR, credits);
2644 handle = ext4_journal_current_handle();
2645 err = PTR_ERR(inode);
2646 if (IS_ERR(inode))
2647 goto out_stop;
2648
2649 inode->i_op = &ext4_dir_inode_operations;
2650 inode->i_fop = &ext4_dir_operations;
2651 err = ext4_init_new_dir(handle, dir, inode);
2652 if (err)
2653 goto out_clear_inode;
2654 err = ext4_mark_inode_dirty(handle, inode);
2655 if (!err)
2656 err = ext4_add_entry(handle, dentry, inode);
2657 if (err) {
2658 out_clear_inode:
2659 clear_nlink(inode);
2660 unlock_new_inode(inode);
2661 ext4_mark_inode_dirty(handle, inode);
2662 iput(inode);
2663 goto out_stop;
2664 }
2665 ext4_inc_count(handle, dir);
2666 ext4_update_dx_flag(dir);
2667 err = ext4_mark_inode_dirty(handle, dir);
2668 if (err)
2669 goto out_clear_inode;
2670 unlock_new_inode(inode);
2671 d_instantiate(dentry, inode);
2672 if (IS_DIRSYNC(dir))
2673 ext4_handle_sync(handle);
2674
2675 out_stop:
2676 if (handle)
2677 ext4_journal_stop(handle);
2678 if (err == -ENOSPC && ext4_should_retry_alloc(dir->i_sb, &retries))
2679 goto retry;
2680 return err;
2681 }
2682
2683 /*
2684 * routine to check that the specified directory is empty (for rmdir)
2685 */
2686 bool ext4_empty_dir(struct inode *inode)
2687 {
2688 unsigned int offset;
2689 struct buffer_head *bh;
2690 struct ext4_dir_entry_2 *de, *de1;
2691 struct super_block *sb;
2692
2693 if (ext4_has_inline_data(inode)) {
2694 int has_inline_data = 1;
2695 int ret;
2696
2697 ret = empty_inline_dir(inode, &has_inline_data);
2698 if (has_inline_data)
2699 return ret;
2700 }
2701
2702 sb = inode->i_sb;
2703 if (inode->i_size < EXT4_DIR_REC_LEN(1) + EXT4_DIR_REC_LEN(2)) {
2704 EXT4_ERROR_INODE(inode, "invalid size");
2705 return true;
2706 }
2707 bh = ext4_read_dirblock(inode, 0, EITHER);
2708 if (IS_ERR(bh))
2709 return true;
2710
2711 de = (struct ext4_dir_entry_2 *) bh->b_data;
2712 de1 = ext4_next_entry(de, sb->s_blocksize);
2713 if (le32_to_cpu(de->inode) != inode->i_ino ||
2714 le32_to_cpu(de1->inode) == 0 ||
2715 strcmp(".", de->name) || strcmp("..", de1->name)) {
2716 ext4_warning_inode(inode, "directory missing '.' and/or '..'");
2717 brelse(bh);
2718 return true;
2719 }
2720 offset = ext4_rec_len_from_disk(de->rec_len, sb->s_blocksize) +
2721 ext4_rec_len_from_disk(de1->rec_len, sb->s_blocksize);
2722 de = ext4_next_entry(de1, sb->s_blocksize);
2723 while (offset < inode->i_size) {
2724 if ((void *) de >= (void *) (bh->b_data+sb->s_blocksize)) {
2725 unsigned int lblock;
2726 brelse(bh);
2727 lblock = offset >> EXT4_BLOCK_SIZE_BITS(sb);
2728 bh = ext4_read_dirblock(inode, lblock, EITHER);
2729 if (IS_ERR(bh))
2730 return true;
2731 de = (struct ext4_dir_entry_2 *) bh->b_data;
2732 }
2733 if (ext4_check_dir_entry(inode, NULL, de, bh,
2734 bh->b_data, bh->b_size, offset)) {
2735 de = (struct ext4_dir_entry_2 *)(bh->b_data +
2736 sb->s_blocksize);
2737 offset = (offset | (sb->s_blocksize - 1)) + 1;
2738 continue;
2739 }
2740 if (le32_to_cpu(de->inode)) {
2741 brelse(bh);
2742 return false;
2743 }
2744 offset += ext4_rec_len_from_disk(de->rec_len, sb->s_blocksize);
2745 de = ext4_next_entry(de, sb->s_blocksize);
2746 }
2747 brelse(bh);
2748 return true;
2749 }
2750
2751 /*
2752 * ext4_orphan_add() links an unlinked or truncated inode into a list of
2753 * such inodes, starting at the superblock, in case we crash before the
2754 * file is closed/deleted, or in case the inode truncate spans multiple
2755 * transactions and the last transaction is not recovered after a crash.
2756 *
2757 * At filesystem recovery time, we walk this list deleting unlinked
2758 * inodes and truncating linked inodes in ext4_orphan_cleanup().
2759 *
2760 * Orphan list manipulation functions must be called under i_mutex unless
2761 * we are just creating the inode or deleting it.
2762 */
2763 int ext4_orphan_add(handle_t *handle, struct inode *inode)
2764 {
2765 struct super_block *sb = inode->i_sb;
2766 struct ext4_sb_info *sbi = EXT4_SB(sb);
2767 struct ext4_iloc iloc;
2768 int err = 0, rc;
2769 bool dirty = false;
2770
2771 if (!sbi->s_journal || is_bad_inode(inode))
2772 return 0;
2773
2774 WARN_ON_ONCE(!(inode->i_state & (I_NEW | I_FREEING)) &&
2775 !inode_is_locked(inode));
2776 /*
2777 * Exit early if inode already is on orphan list. This is a big speedup
2778 * since we don't have to contend on the global s_orphan_lock.
2779 */
2780 if (!list_empty(&EXT4_I(inode)->i_orphan))
2781 return 0;
2782
2783 /*
2784 * Orphan handling is only valid for files with data blocks
2785 * being truncated, or files being unlinked. Note that we either
2786 * hold i_mutex, or the inode can not be referenced from outside,
2787 * so i_nlink should not be bumped due to race
2788 */
2789 J_ASSERT((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
2790 S_ISLNK(inode->i_mode)) || inode->i_nlink == 0);
2791
2792 BUFFER_TRACE(sbi->s_sbh, "get_write_access");
2793 err = ext4_journal_get_write_access(handle, sbi->s_sbh);
2794 if (err)
2795 goto out;
2796
2797 err = ext4_reserve_inode_write(handle, inode, &iloc);
2798 if (err)
2799 goto out;
2800
2801 mutex_lock(&sbi->s_orphan_lock);
2802 /*
2803 * Due to previous errors inode may be already a part of on-disk
2804 * orphan list. If so skip on-disk list modification.
2805 */
2806 if (!NEXT_ORPHAN(inode) || NEXT_ORPHAN(inode) >
2807 (le32_to_cpu(sbi->s_es->s_inodes_count))) {
2808 /* Insert this inode at the head of the on-disk orphan list */
2809 NEXT_ORPHAN(inode) = le32_to_cpu(sbi->s_es->s_last_orphan);
2810 sbi->s_es->s_last_orphan = cpu_to_le32(inode->i_ino);
2811 dirty = true;
2812 }
2813 list_add(&EXT4_I(inode)->i_orphan, &sbi->s_orphan);
2814 mutex_unlock(&sbi->s_orphan_lock);
2815
2816 if (dirty) {
2817 err = ext4_handle_dirty_super(handle, sb);
2818 rc = ext4_mark_iloc_dirty(handle, inode, &iloc);
2819 if (!err)
2820 err = rc;
2821 if (err) {
2822 /*
2823 * We have to remove inode from in-memory list if
2824 * addition to on disk orphan list failed. Stray orphan
2825 * list entries can cause panics at unmount time.
2826 */
2827 mutex_lock(&sbi->s_orphan_lock);
2828 list_del_init(&EXT4_I(inode)->i_orphan);
2829 mutex_unlock(&sbi->s_orphan_lock);
2830 }
2831 }
2832 jbd_debug(4, "superblock will point to %lu\n", inode->i_ino);
2833 jbd_debug(4, "orphan inode %lu will point to %d\n",
2834 inode->i_ino, NEXT_ORPHAN(inode));
2835 out:
2836 ext4_std_error(sb, err);
2837 return err;
2838 }
2839
2840 /*
2841 * ext4_orphan_del() removes an unlinked or truncated inode from the list
2842 * of such inodes stored on disk, because it is finally being cleaned up.
2843 */
2844 int ext4_orphan_del(handle_t *handle, struct inode *inode)
2845 {
2846 struct list_head *prev;
2847 struct ext4_inode_info *ei = EXT4_I(inode);
2848 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2849 __u32 ino_next;
2850 struct ext4_iloc iloc;
2851 int err = 0;
2852
2853 if (!sbi->s_journal && !(sbi->s_mount_state & EXT4_ORPHAN_FS))
2854 return 0;
2855
2856 WARN_ON_ONCE(!(inode->i_state & (I_NEW | I_FREEING)) &&
2857 !inode_is_locked(inode));
2858 /* Do this quick check before taking global s_orphan_lock. */
2859 if (list_empty(&ei->i_orphan))
2860 return 0;
2861
2862 if (handle) {
2863 /* Grab inode buffer early before taking global s_orphan_lock */
2864 err = ext4_reserve_inode_write(handle, inode, &iloc);
2865 }
2866
2867 mutex_lock(&sbi->s_orphan_lock);
2868 jbd_debug(4, "remove inode %lu from orphan list\n", inode->i_ino);
2869
2870 prev = ei->i_orphan.prev;
2871 list_del_init(&ei->i_orphan);
2872
2873 /* If we're on an error path, we may not have a valid
2874 * transaction handle with which to update the orphan list on
2875 * disk, but we still need to remove the inode from the linked
2876 * list in memory. */
2877 if (!handle || err) {
2878 mutex_unlock(&sbi->s_orphan_lock);
2879 goto out_err;
2880 }
2881
2882 ino_next = NEXT_ORPHAN(inode);
2883 if (prev == &sbi->s_orphan) {
2884 jbd_debug(4, "superblock will point to %u\n", ino_next);
2885 BUFFER_TRACE(sbi->s_sbh, "get_write_access");
2886 err = ext4_journal_get_write_access(handle, sbi->s_sbh);
2887 if (err) {
2888 mutex_unlock(&sbi->s_orphan_lock);
2889 goto out_brelse;
2890 }
2891 sbi->s_es->s_last_orphan = cpu_to_le32(ino_next);
2892 mutex_unlock(&sbi->s_orphan_lock);
2893 err = ext4_handle_dirty_super(handle, inode->i_sb);
2894 } else {
2895 struct ext4_iloc iloc2;
2896 struct inode *i_prev =
2897 &list_entry(prev, struct ext4_inode_info, i_orphan)->vfs_inode;
2898
2899 jbd_debug(4, "orphan inode %lu will point to %u\n",
2900 i_prev->i_ino, ino_next);
2901 err = ext4_reserve_inode_write(handle, i_prev, &iloc2);
2902 if (err) {
2903 mutex_unlock(&sbi->s_orphan_lock);
2904 goto out_brelse;
2905 }
2906 NEXT_ORPHAN(i_prev) = ino_next;
2907 err = ext4_mark_iloc_dirty(handle, i_prev, &iloc2);
2908 mutex_unlock(&sbi->s_orphan_lock);
2909 }
2910 if (err)
2911 goto out_brelse;
2912 NEXT_ORPHAN(inode) = 0;
2913 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
2914 out_err:
2915 ext4_std_error(inode->i_sb, err);
2916 return err;
2917
2918 out_brelse:
2919 brelse(iloc.bh);
2920 goto out_err;
2921 }
2922
2923 static int ext4_rmdir(struct inode *dir, struct dentry *dentry)
2924 {
2925 int retval;
2926 struct inode *inode;
2927 struct buffer_head *bh;
2928 struct ext4_dir_entry_2 *de;
2929 handle_t *handle = NULL;
2930
2931 if (unlikely(ext4_forced_shutdown(EXT4_SB(dir->i_sb))))
2932 return -EIO;
2933
2934 /* Initialize quotas before so that eventual writes go in
2935 * separate transaction */
2936 retval = dquot_initialize(dir);
2937 if (retval)
2938 return retval;
2939 retval = dquot_initialize(d_inode(dentry));
2940 if (retval)
2941 return retval;
2942
2943 retval = -ENOENT;
2944 bh = ext4_find_entry(dir, &dentry->d_name, &de, NULL);
2945 if (IS_ERR(bh))
2946 return PTR_ERR(bh);
2947 if (!bh)
2948 goto end_rmdir;
2949
2950 inode = d_inode(dentry);
2951
2952 retval = -EFSCORRUPTED;
2953 if (le32_to_cpu(de->inode) != inode->i_ino)
2954 goto end_rmdir;
2955
2956 retval = -ENOTEMPTY;
2957 if (!ext4_empty_dir(inode))
2958 goto end_rmdir;
2959
2960 handle = ext4_journal_start(dir, EXT4_HT_DIR,
2961 EXT4_DATA_TRANS_BLOCKS(dir->i_sb));
2962 if (IS_ERR(handle)) {
2963 retval = PTR_ERR(handle);
2964 handle = NULL;
2965 goto end_rmdir;
2966 }
2967
2968 if (IS_DIRSYNC(dir))
2969 ext4_handle_sync(handle);
2970
2971 retval = ext4_delete_entry(handle, dir, de, bh);
2972 if (retval)
2973 goto end_rmdir;
2974 if (!EXT4_DIR_LINK_EMPTY(inode))
2975 ext4_warning_inode(inode,
2976 "empty directory '%.*s' has too many links (%u)",
2977 dentry->d_name.len, dentry->d_name.name,
2978 inode->i_nlink);
2979 inode->i_version++;
2980 clear_nlink(inode);
2981 /* There's no need to set i_disksize: the fact that i_nlink is
2982 * zero will ensure that the right thing happens during any
2983 * recovery. */
2984 inode->i_size = 0;
2985 ext4_orphan_add(handle, inode);
2986 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2987 ext4_mark_inode_dirty(handle, inode);
2988 ext4_dec_count(handle, dir);
2989 ext4_update_dx_flag(dir);
2990 ext4_mark_inode_dirty(handle, dir);
2991
2992 end_rmdir:
2993 brelse(bh);
2994 if (handle)
2995 ext4_journal_stop(handle);
2996 return retval;
2997 }
2998
2999 static int ext4_unlink(struct inode *dir, struct dentry *dentry)
3000 {
3001 int retval;
3002 struct inode *inode;
3003 struct buffer_head *bh;
3004 struct ext4_dir_entry_2 *de;
3005 handle_t *handle = NULL;
3006
3007 if (unlikely(ext4_forced_shutdown(EXT4_SB(dir->i_sb))))
3008 return -EIO;
3009
3010 trace_ext4_unlink_enter(dir, dentry);
3011 /* Initialize quotas before so that eventual writes go
3012 * in separate transaction */
3013 retval = dquot_initialize(dir);
3014 if (retval)
3015 return retval;
3016 retval = dquot_initialize(d_inode(dentry));
3017 if (retval)
3018 return retval;
3019
3020 retval = -ENOENT;
3021 bh = ext4_find_entry(dir, &dentry->d_name, &de, NULL);
3022 if (IS_ERR(bh))
3023 return PTR_ERR(bh);
3024 if (!bh)
3025 goto end_unlink;
3026
3027 inode = d_inode(dentry);
3028
3029 retval = -EFSCORRUPTED;
3030 if (le32_to_cpu(de->inode) != inode->i_ino)
3031 goto end_unlink;
3032
3033 handle = ext4_journal_start(dir, EXT4_HT_DIR,
3034 EXT4_DATA_TRANS_BLOCKS(dir->i_sb));
3035 if (IS_ERR(handle)) {
3036 retval = PTR_ERR(handle);
3037 handle = NULL;
3038 goto end_unlink;
3039 }
3040
3041 if (IS_DIRSYNC(dir))
3042 ext4_handle_sync(handle);
3043
3044 if (inode->i_nlink == 0) {
3045 ext4_warning_inode(inode, "Deleting file '%.*s' with no links",
3046 dentry->d_name.len, dentry->d_name.name);
3047 set_nlink(inode, 1);
3048 }
3049 retval = ext4_delete_entry(handle, dir, de, bh);
3050 if (retval)
3051 goto end_unlink;
3052 dir->i_ctime = dir->i_mtime = current_time(dir);
3053 ext4_update_dx_flag(dir);
3054 ext4_mark_inode_dirty(handle, dir);
3055 drop_nlink(inode);
3056 if (!inode->i_nlink)
3057 ext4_orphan_add(handle, inode);
3058 inode->i_ctime = current_time(inode);
3059 ext4_mark_inode_dirty(handle, inode);
3060
3061 end_unlink:
3062 brelse(bh);
3063 if (handle)
3064 ext4_journal_stop(handle);
3065 trace_ext4_unlink_exit(dentry, retval);
3066 return retval;
3067 }
3068
3069 static int ext4_symlink(struct inode *dir,
3070 struct dentry *dentry, const char *symname)
3071 {
3072 handle_t *handle;
3073 struct inode *inode;
3074 int err, len = strlen(symname);
3075 int credits;
3076 bool encryption_required;
3077 struct fscrypt_str disk_link;
3078 struct fscrypt_symlink_data *sd = NULL;
3079
3080 if (unlikely(ext4_forced_shutdown(EXT4_SB(dir->i_sb))))
3081 return -EIO;
3082
3083 disk_link.len = len + 1;
3084 disk_link.name = (char *) symname;
3085
3086 encryption_required = (ext4_encrypted_inode(dir) ||
3087 DUMMY_ENCRYPTION_ENABLED(EXT4_SB(dir->i_sb)));
3088 if (encryption_required) {
3089 err = fscrypt_get_encryption_info(dir);
3090 if (err)
3091 return err;
3092 if (!fscrypt_has_encryption_key(dir))
3093 return -ENOKEY;
3094 disk_link.len = (fscrypt_fname_encrypted_size(dir, len) +
3095 sizeof(struct fscrypt_symlink_data));
3096 sd = kzalloc(disk_link.len, GFP_KERNEL);
3097 if (!sd)
3098 return -ENOMEM;
3099 }
3100
3101 if (disk_link.len > dir->i_sb->s_blocksize) {
3102 err = -ENAMETOOLONG;
3103 goto err_free_sd;
3104 }
3105
3106 err = dquot_initialize(dir);
3107 if (err)
3108 goto err_free_sd;
3109
3110 if ((disk_link.len > EXT4_N_BLOCKS * 4)) {
3111 /*
3112 * For non-fast symlinks, we just allocate inode and put it on
3113 * orphan list in the first transaction => we need bitmap,
3114 * group descriptor, sb, inode block, quota blocks, and
3115 * possibly selinux xattr blocks.
3116 */
3117 credits = 4 + EXT4_MAXQUOTAS_INIT_BLOCKS(dir->i_sb) +
3118 EXT4_XATTR_TRANS_BLOCKS;
3119 } else {
3120 /*
3121 * Fast symlink. We have to add entry to directory
3122 * (EXT4_DATA_TRANS_BLOCKS + EXT4_INDEX_EXTRA_TRANS_BLOCKS),
3123 * allocate new inode (bitmap, group descriptor, inode block,
3124 * quota blocks, sb is already counted in previous macros).
3125 */
3126 credits = EXT4_DATA_TRANS_BLOCKS(dir->i_sb) +
3127 EXT4_INDEX_EXTRA_TRANS_BLOCKS + 3;
3128 }
3129
3130 inode = ext4_new_inode_start_handle(dir, S_IFLNK|S_IRWXUGO,
3131 &dentry->d_name, 0, NULL,
3132 EXT4_HT_DIR, credits);
3133 handle = ext4_journal_current_handle();
3134 if (IS_ERR(inode)) {
3135 if (handle)
3136 ext4_journal_stop(handle);
3137 err = PTR_ERR(inode);
3138 goto err_free_sd;
3139 }
3140
3141 if (encryption_required) {
3142 struct qstr istr;
3143 struct fscrypt_str ostr =
3144 FSTR_INIT(sd->encrypted_path, disk_link.len);
3145
3146 istr.name = (const unsigned char *) symname;
3147 istr.len = len;
3148 err = fscrypt_fname_usr_to_disk(inode, &istr, &ostr);
3149 if (err)
3150 goto err_drop_inode;
3151 sd->len = cpu_to_le16(ostr.len);
3152 disk_link.name = (char *) sd;
3153 inode->i_op = &ext4_encrypted_symlink_inode_operations;
3154 }
3155
3156 if ((disk_link.len > EXT4_N_BLOCKS * 4)) {
3157 if (!encryption_required)
3158 inode->i_op = &ext4_symlink_inode_operations;
3159 inode_nohighmem(inode);
3160 ext4_set_aops(inode);
3161 /*
3162 * We cannot call page_symlink() with transaction started
3163 * because it calls into ext4_write_begin() which can wait
3164 * for transaction commit if we are running out of space
3165 * and thus we deadlock. So we have to stop transaction now
3166 * and restart it when symlink contents is written.
3167 *
3168 * To keep fs consistent in case of crash, we have to put inode
3169 * to orphan list in the mean time.
3170 */
3171 drop_nlink(inode);
3172 err = ext4_orphan_add(handle, inode);
3173 ext4_journal_stop(handle);
3174 handle = NULL;
3175 if (err)
3176 goto err_drop_inode;
3177 err = __page_symlink(inode, disk_link.name, disk_link.len, 1);
3178 if (err)
3179 goto err_drop_inode;
3180 /*
3181 * Now inode is being linked into dir (EXT4_DATA_TRANS_BLOCKS
3182 * + EXT4_INDEX_EXTRA_TRANS_BLOCKS), inode is also modified
3183 */
3184 handle = ext4_journal_start(dir, EXT4_HT_DIR,
3185 EXT4_DATA_TRANS_BLOCKS(dir->i_sb) +
3186 EXT4_INDEX_EXTRA_TRANS_BLOCKS + 1);
3187 if (IS_ERR(handle)) {
3188 err = PTR_ERR(handle);
3189 handle = NULL;
3190 goto err_drop_inode;
3191 }
3192 set_nlink(inode, 1);
3193 err = ext4_orphan_del(handle, inode);
3194 if (err)
3195 goto err_drop_inode;
3196 } else {
3197 /* clear the extent format for fast symlink */
3198 ext4_clear_inode_flag(inode, EXT4_INODE_EXTENTS);
3199 if (!encryption_required) {
3200 inode->i_op = &ext4_fast_symlink_inode_operations;
3201 inode->i_link = (char *)&EXT4_I(inode)->i_data;
3202 }
3203 memcpy((char *)&EXT4_I(inode)->i_data, disk_link.name,
3204 disk_link.len);
3205 inode->i_size = disk_link.len - 1;
3206 }
3207 EXT4_I(inode)->i_disksize = inode->i_size;
3208 err = ext4_add_nondir(handle, dentry, inode);
3209 if (!err && IS_DIRSYNC(dir))
3210 ext4_handle_sync(handle);
3211
3212 if (handle)
3213 ext4_journal_stop(handle);
3214 kfree(sd);
3215 return err;
3216 err_drop_inode:
3217 if (handle)
3218 ext4_journal_stop(handle);
3219 clear_nlink(inode);
3220 unlock_new_inode(inode);
3221 iput(inode);
3222 err_free_sd:
3223 kfree(sd);
3224 return err;
3225 }
3226
3227 static int ext4_link(struct dentry *old_dentry,
3228 struct inode *dir, struct dentry *dentry)
3229 {
3230 handle_t *handle;
3231 struct inode *inode = d_inode(old_dentry);
3232 int err, retries = 0;
3233
3234 if (inode->i_nlink >= EXT4_LINK_MAX)
3235 return -EMLINK;
3236 if (ext4_encrypted_inode(dir) &&
3237 !fscrypt_has_permitted_context(dir, inode))
3238 return -EPERM;
3239
3240 if ((ext4_test_inode_flag(dir, EXT4_INODE_PROJINHERIT)) &&
3241 (!projid_eq(EXT4_I(dir)->i_projid,
3242 EXT4_I(old_dentry->d_inode)->i_projid)))
3243 return -EXDEV;
3244
3245 err = dquot_initialize(dir);
3246 if (err)
3247 return err;
3248
3249 retry:
3250 handle = ext4_journal_start(dir, EXT4_HT_DIR,
3251 (EXT4_DATA_TRANS_BLOCKS(dir->i_sb) +
3252 EXT4_INDEX_EXTRA_TRANS_BLOCKS) + 1);
3253 if (IS_ERR(handle))
3254 return PTR_ERR(handle);
3255
3256 if (IS_DIRSYNC(dir))
3257 ext4_handle_sync(handle);
3258
3259 inode->i_ctime = current_time(inode);
3260 ext4_inc_count(handle, inode);
3261 ihold(inode);
3262
3263 err = ext4_add_entry(handle, dentry, inode);
3264 if (!err) {
3265 ext4_mark_inode_dirty(handle, inode);
3266 /* this can happen only for tmpfile being
3267 * linked the first time
3268 */
3269 if (inode->i_nlink == 1)
3270 ext4_orphan_del(handle, inode);
3271 d_instantiate(dentry, inode);
3272 } else {
3273 drop_nlink(inode);
3274 iput(inode);
3275 }
3276 ext4_journal_stop(handle);
3277 if (err == -ENOSPC && ext4_should_retry_alloc(dir->i_sb, &retries))
3278 goto retry;
3279 return err;
3280 }
3281
3282
3283 /*
3284 * Try to find buffer head where contains the parent block.
3285 * It should be the inode block if it is inlined or the 1st block
3286 * if it is a normal dir.
3287 */
3288 static struct buffer_head *ext4_get_first_dir_block(handle_t *handle,
3289 struct inode *inode,
3290 int *retval,
3291 struct ext4_dir_entry_2 **parent_de,
3292 int *inlined)
3293 {
3294 struct buffer_head *bh;
3295
3296 if (!ext4_has_inline_data(inode)) {
3297 bh = ext4_read_dirblock(inode, 0, EITHER);
3298 if (IS_ERR(bh)) {
3299 *retval = PTR_ERR(bh);
3300 return NULL;
3301 }
3302 *parent_de = ext4_next_entry(
3303 (struct ext4_dir_entry_2 *)bh->b_data,
3304 inode->i_sb->s_blocksize);
3305 return bh;
3306 }
3307
3308 *inlined = 1;
3309 return ext4_get_first_inline_block(inode, parent_de, retval);
3310 }
3311
3312 struct ext4_renament {
3313 struct inode *dir;
3314 struct dentry *dentry;
3315 struct inode *inode;
3316 bool is_dir;
3317 int dir_nlink_delta;
3318
3319 /* entry for "dentry" */
3320 struct buffer_head *bh;
3321 struct ext4_dir_entry_2 *de;
3322 int inlined;
3323
3324 /* entry for ".." in inode if it's a directory */
3325 struct buffer_head *dir_bh;
3326 struct ext4_dir_entry_2 *parent_de;
3327 int dir_inlined;
3328 };
3329
3330 static int ext4_rename_dir_prepare(handle_t *handle, struct ext4_renament *ent)
3331 {
3332 int retval;
3333
3334 ent->dir_bh = ext4_get_first_dir_block(handle, ent->inode,
3335 &retval, &ent->parent_de,
3336 &ent->dir_inlined);
3337 if (!ent->dir_bh)
3338 return retval;
3339 if (le32_to_cpu(ent->parent_de->inode) != ent->dir->i_ino)
3340 return -EFSCORRUPTED;
3341 BUFFER_TRACE(ent->dir_bh, "get_write_access");
3342 return ext4_journal_get_write_access(handle, ent->dir_bh);
3343 }
3344
3345 static int ext4_rename_dir_finish(handle_t *handle, struct ext4_renament *ent,
3346 unsigned dir_ino)
3347 {
3348 int retval;
3349
3350 ent->parent_de->inode = cpu_to_le32(dir_ino);
3351 BUFFER_TRACE(ent->dir_bh, "call ext4_handle_dirty_metadata");
3352 if (!ent->dir_inlined) {
3353 if (is_dx(ent->inode)) {
3354 retval = ext4_handle_dirty_dx_node(handle,
3355 ent->inode,
3356 ent->dir_bh);
3357 } else {
3358 retval = ext4_handle_dirty_dirent_node(handle,
3359 ent->inode,
3360 ent->dir_bh);
3361 }
3362 } else {
3363 retval = ext4_mark_inode_dirty(handle, ent->inode);
3364 }
3365 if (retval) {
3366 ext4_std_error(ent->dir->i_sb, retval);
3367 return retval;
3368 }
3369 return 0;
3370 }
3371
3372 static int ext4_setent(handle_t *handle, struct ext4_renament *ent,
3373 unsigned ino, unsigned file_type)
3374 {
3375 int retval;
3376
3377 BUFFER_TRACE(ent->bh, "get write access");
3378 retval = ext4_journal_get_write_access(handle, ent->bh);
3379 if (retval)
3380 return retval;
3381 ent->de->inode = cpu_to_le32(ino);
3382 if (ext4_has_feature_filetype(ent->dir->i_sb))
3383 ent->de->file_type = file_type;
3384 ent->dir->i_version++;
3385 ent->dir->i_ctime = ent->dir->i_mtime =
3386 current_time(ent->dir);
3387 ext4_mark_inode_dirty(handle, ent->dir);
3388 BUFFER_TRACE(ent->bh, "call ext4_handle_dirty_metadata");
3389 if (!ent->inlined) {
3390 retval = ext4_handle_dirty_dirent_node(handle,
3391 ent->dir, ent->bh);
3392 if (unlikely(retval)) {
3393 ext4_std_error(ent->dir->i_sb, retval);
3394 return retval;
3395 }
3396 }
3397 brelse(ent->bh);
3398 ent->bh = NULL;
3399
3400 return 0;
3401 }
3402
3403 static int ext4_find_delete_entry(handle_t *handle, struct inode *dir,
3404 const struct qstr *d_name)
3405 {
3406 int retval = -ENOENT;
3407 struct buffer_head *bh;
3408 struct ext4_dir_entry_2 *de;
3409
3410 bh = ext4_find_entry(dir, d_name, &de, NULL);
3411 if (IS_ERR(bh))
3412 return PTR_ERR(bh);
3413 if (bh) {
3414 retval = ext4_delete_entry(handle, dir, de, bh);
3415 brelse(bh);
3416 }
3417 return retval;
3418 }
3419
3420 static void ext4_rename_delete(handle_t *handle, struct ext4_renament *ent,
3421 int force_reread)
3422 {
3423 int retval;
3424 /*
3425 * ent->de could have moved from under us during htree split, so make
3426 * sure that we are deleting the right entry. We might also be pointing
3427 * to a stale entry in the unused part of ent->bh so just checking inum
3428 * and the name isn't enough.
3429 */
3430 if (le32_to_cpu(ent->de->inode) != ent->inode->i_ino ||
3431 ent->de->name_len != ent->dentry->d_name.len ||
3432 strncmp(ent->de->name, ent->dentry->d_name.name,
3433 ent->de->name_len) ||
3434 force_reread) {
3435 retval = ext4_find_delete_entry(handle, ent->dir,
3436 &ent->dentry->d_name);
3437 } else {
3438 retval = ext4_delete_entry(handle, ent->dir, ent->de, ent->bh);
3439 if (retval == -ENOENT) {
3440 retval = ext4_find_delete_entry(handle, ent->dir,
3441 &ent->dentry->d_name);
3442 }
3443 }
3444
3445 if (retval) {
3446 ext4_warning_inode(ent->dir,
3447 "Deleting old file: nlink %d, error=%d",
3448 ent->dir->i_nlink, retval);
3449 }
3450 }
3451
3452 static void ext4_update_dir_count(handle_t *handle, struct ext4_renament *ent)
3453 {
3454 if (ent->dir_nlink_delta) {
3455 if (ent->dir_nlink_delta == -1)
3456 ext4_dec_count(handle, ent->dir);
3457 else
3458 ext4_inc_count(handle, ent->dir);
3459 ext4_mark_inode_dirty(handle, ent->dir);
3460 }
3461 }
3462
3463 static struct inode *ext4_whiteout_for_rename(struct ext4_renament *ent,
3464 int credits, handle_t **h)
3465 {
3466 struct inode *wh;
3467 handle_t *handle;
3468 int retries = 0;
3469
3470 /*
3471 * for inode block, sb block, group summaries,
3472 * and inode bitmap
3473 */
3474 credits += (EXT4_MAXQUOTAS_TRANS_BLOCKS(ent->dir->i_sb) +
3475 EXT4_XATTR_TRANS_BLOCKS + 4);
3476 retry:
3477 wh = ext4_new_inode_start_handle(ent->dir, S_IFCHR | WHITEOUT_MODE,
3478 &ent->dentry->d_name, 0, NULL,
3479 EXT4_HT_DIR, credits);
3480
3481 handle = ext4_journal_current_handle();
3482 if (IS_ERR(wh)) {
3483 if (handle)
3484 ext4_journal_stop(handle);
3485 if (PTR_ERR(wh) == -ENOSPC &&
3486 ext4_should_retry_alloc(ent->dir->i_sb, &retries))
3487 goto retry;
3488 } else {
3489 *h = handle;
3490 init_special_inode(wh, wh->i_mode, WHITEOUT_DEV);
3491 wh->i_op = &ext4_special_inode_operations;
3492 }
3493 return wh;
3494 }
3495
3496 /*
3497 * Anybody can rename anything with this: the permission checks are left to the
3498 * higher-level routines.
3499 *
3500 * n.b. old_{dentry,inode) refers to the source dentry/inode
3501 * while new_{dentry,inode) refers to the destination dentry/inode
3502 * This comes from rename(const char *oldpath, const char *newpath)
3503 */
3504 static int ext4_rename(struct inode *old_dir, struct dentry *old_dentry,
3505 struct inode *new_dir, struct dentry *new_dentry,
3506 unsigned int flags)
3507 {
3508 handle_t *handle = NULL;
3509 struct ext4_renament old = {
3510 .dir = old_dir,
3511 .dentry = old_dentry,
3512 .inode = d_inode(old_dentry),
3513 };
3514 struct ext4_renament new = {
3515 .dir = new_dir,
3516 .dentry = new_dentry,
3517 .inode = d_inode(new_dentry),
3518 };
3519 int force_reread;
3520 int retval;
3521 struct inode *whiteout = NULL;
3522 int credits;
3523 u8 old_file_type;
3524
3525 if ((ext4_test_inode_flag(new_dir, EXT4_INODE_PROJINHERIT)) &&
3526 (!projid_eq(EXT4_I(new_dir)->i_projid,
3527 EXT4_I(old_dentry->d_inode)->i_projid)))
3528 return -EXDEV;
3529
3530 if ((ext4_encrypted_inode(old_dir) &&
3531 !fscrypt_has_encryption_key(old_dir)) ||
3532 (ext4_encrypted_inode(new_dir) &&
3533 !fscrypt_has_encryption_key(new_dir)))
3534 return -ENOKEY;
3535
3536 retval = dquot_initialize(old.dir);
3537 if (retval)
3538 return retval;
3539 retval = dquot_initialize(new.dir);
3540 if (retval)
3541 return retval;
3542
3543 /* Initialize quotas before so that eventual writes go
3544 * in separate transaction */
3545 if (new.inode) {
3546 retval = dquot_initialize(new.inode);
3547 if (retval)
3548 return retval;
3549 }
3550
3551 old.bh = ext4_find_entry(old.dir, &old.dentry->d_name, &old.de, NULL);
3552 if (IS_ERR(old.bh))
3553 return PTR_ERR(old.bh);
3554 /*
3555 * Check for inode number is _not_ due to possible IO errors.
3556 * We might rmdir the source, keep it as pwd of some process
3557 * and merrily kill the link to whatever was created under the
3558 * same name. Goodbye sticky bit ;-<
3559 */
3560 retval = -ENOENT;
3561 if (!old.bh || le32_to_cpu(old.de->inode) != old.inode->i_ino)
3562 goto end_rename;
3563
3564 if ((old.dir != new.dir) &&
3565 ext4_encrypted_inode(new.dir) &&
3566 !fscrypt_has_permitted_context(new.dir, old.inode)) {
3567 retval = -EPERM;
3568 goto end_rename;
3569 }
3570
3571 new.bh = ext4_find_entry(new.dir, &new.dentry->d_name,
3572 &new.de, &new.inlined);
3573 if (IS_ERR(new.bh)) {
3574 retval = PTR_ERR(new.bh);
3575 new.bh = NULL;
3576 goto end_rename;
3577 }
3578 if (new.bh) {
3579 if (!new.inode) {
3580 brelse(new.bh);
3581 new.bh = NULL;
3582 }
3583 }
3584 if (new.inode && !test_opt(new.dir->i_sb, NO_AUTO_DA_ALLOC))
3585 ext4_alloc_da_blocks(old.inode);
3586
3587 credits = (2 * EXT4_DATA_TRANS_BLOCKS(old.dir->i_sb) +
3588 EXT4_INDEX_EXTRA_TRANS_BLOCKS + 2);
3589 if (!(flags & RENAME_WHITEOUT)) {
3590 handle = ext4_journal_start(old.dir, EXT4_HT_DIR, credits);
3591 if (IS_ERR(handle)) {
3592 retval = PTR_ERR(handle);
3593 handle = NULL;
3594 goto end_rename;
3595 }
3596 } else {
3597 whiteout = ext4_whiteout_for_rename(&old, credits, &handle);
3598 if (IS_ERR(whiteout)) {
3599 retval = PTR_ERR(whiteout);
3600 whiteout = NULL;
3601 goto end_rename;
3602 }
3603 }
3604
3605 if (IS_DIRSYNC(old.dir) || IS_DIRSYNC(new.dir))
3606 ext4_handle_sync(handle);
3607
3608 if (S_ISDIR(old.inode->i_mode)) {
3609 if (new.inode) {
3610 retval = -ENOTEMPTY;
3611 if (!ext4_empty_dir(new.inode))
3612 goto end_rename;
3613 } else {
3614 retval = -EMLINK;
3615 if (new.dir != old.dir && EXT4_DIR_LINK_MAX(new.dir))
3616 goto end_rename;
3617 }
3618 retval = ext4_rename_dir_prepare(handle, &old);
3619 if (retval)
3620 goto end_rename;
3621 }
3622 /*
3623 * If we're renaming a file within an inline_data dir and adding or
3624 * setting the new dirent causes a conversion from inline_data to
3625 * extents/blockmap, we need to force the dirent delete code to
3626 * re-read the directory, or else we end up trying to delete a dirent
3627 * from what is now the extent tree root (or a block map).
3628 */
3629 force_reread = (new.dir->i_ino == old.dir->i_ino &&
3630 ext4_test_inode_flag(new.dir, EXT4_INODE_INLINE_DATA));
3631
3632 old_file_type = old.de->file_type;
3633 if (whiteout) {
3634 /*
3635 * Do this before adding a new entry, so the old entry is sure
3636 * to be still pointing to the valid old entry.
3637 */
3638 retval = ext4_setent(handle, &old, whiteout->i_ino,
3639 EXT4_FT_CHRDEV);
3640 if (retval)
3641 goto end_rename;
3642 ext4_mark_inode_dirty(handle, whiteout);
3643 }
3644 if (!new.bh) {
3645 retval = ext4_add_entry(handle, new.dentry, old.inode);
3646 if (retval)
3647 goto end_rename;
3648 } else {
3649 retval = ext4_setent(handle, &new,
3650 old.inode->i_ino, old_file_type);
3651 if (retval)
3652 goto end_rename;
3653 }
3654 if (force_reread)
3655 force_reread = !ext4_test_inode_flag(new.dir,
3656 EXT4_INODE_INLINE_DATA);
3657
3658 /*
3659 * Like most other Unix systems, set the ctime for inodes on a
3660 * rename.
3661 */
3662 old.inode->i_ctime = current_time(old.inode);
3663 ext4_mark_inode_dirty(handle, old.inode);
3664
3665 if (!whiteout) {
3666 /*
3667 * ok, that's it
3668 */
3669 ext4_rename_delete(handle, &old, force_reread);
3670 }
3671
3672 if (new.inode) {
3673 ext4_dec_count(handle, new.inode);
3674 new.inode->i_ctime = current_time(new.inode);
3675 }
3676 old.dir->i_ctime = old.dir->i_mtime = current_time(old.dir);
3677 ext4_update_dx_flag(old.dir);
3678 if (old.dir_bh) {
3679 retval = ext4_rename_dir_finish(handle, &old, new.dir->i_ino);
3680 if (retval)
3681 goto end_rename;
3682
3683 ext4_dec_count(handle, old.dir);
3684 if (new.inode) {
3685 /* checked ext4_empty_dir above, can't have another
3686 * parent, ext4_dec_count() won't work for many-linked
3687 * dirs */
3688 clear_nlink(new.inode);
3689 } else {
3690 ext4_inc_count(handle, new.dir);
3691 ext4_update_dx_flag(new.dir);
3692 ext4_mark_inode_dirty(handle, new.dir);
3693 }
3694 }
3695 ext4_mark_inode_dirty(handle, old.dir);
3696 if (new.inode) {
3697 ext4_mark_inode_dirty(handle, new.inode);
3698 if (!new.inode->i_nlink)
3699 ext4_orphan_add(handle, new.inode);
3700 }
3701 retval = 0;
3702
3703 end_rename:
3704 brelse(old.dir_bh);
3705 brelse(old.bh);
3706 brelse(new.bh);
3707 if (whiteout) {
3708 if (retval)
3709 drop_nlink(whiteout);
3710 unlock_new_inode(whiteout);
3711 iput(whiteout);
3712 }
3713 if (handle)
3714 ext4_journal_stop(handle);
3715 return retval;
3716 }
3717
3718 static int ext4_cross_rename(struct inode *old_dir, struct dentry *old_dentry,
3719 struct inode *new_dir, struct dentry *new_dentry)
3720 {
3721 handle_t *handle = NULL;
3722 struct ext4_renament old = {
3723 .dir = old_dir,
3724 .dentry = old_dentry,
3725 .inode = d_inode(old_dentry),
3726 };
3727 struct ext4_renament new = {
3728 .dir = new_dir,
3729 .dentry = new_dentry,
3730 .inode = d_inode(new_dentry),
3731 };
3732 u8 new_file_type;
3733 int retval;
3734 struct timespec ctime;
3735
3736 if ((ext4_encrypted_inode(old_dir) &&
3737 !fscrypt_has_encryption_key(old_dir)) ||
3738 (ext4_encrypted_inode(new_dir) &&
3739 !fscrypt_has_encryption_key(new_dir)))
3740 return -ENOKEY;
3741
3742 if ((ext4_encrypted_inode(old_dir) ||
3743 ext4_encrypted_inode(new_dir)) &&
3744 (old_dir != new_dir) &&
3745 (!fscrypt_has_permitted_context(new_dir, old.inode) ||
3746 !fscrypt_has_permitted_context(old_dir, new.inode)))
3747 return -EPERM;
3748
3749 if ((ext4_test_inode_flag(new_dir, EXT4_INODE_PROJINHERIT) &&
3750 !projid_eq(EXT4_I(new_dir)->i_projid,
3751 EXT4_I(old_dentry->d_inode)->i_projid)) ||
3752 (ext4_test_inode_flag(old_dir, EXT4_INODE_PROJINHERIT) &&
3753 !projid_eq(EXT4_I(old_dir)->i_projid,
3754 EXT4_I(new_dentry->d_inode)->i_projid)))
3755 return -EXDEV;
3756
3757 retval = dquot_initialize(old.dir);
3758 if (retval)
3759 return retval;
3760 retval = dquot_initialize(new.dir);
3761 if (retval)
3762 return retval;
3763
3764 old.bh = ext4_find_entry(old.dir, &old.dentry->d_name,
3765 &old.de, &old.inlined);
3766 if (IS_ERR(old.bh))
3767 return PTR_ERR(old.bh);
3768 /*
3769 * Check for inode number is _not_ due to possible IO errors.
3770 * We might rmdir the source, keep it as pwd of some process
3771 * and merrily kill the link to whatever was created under the
3772 * same name. Goodbye sticky bit ;-<
3773 */
3774 retval = -ENOENT;
3775 if (!old.bh || le32_to_cpu(old.de->inode) != old.inode->i_ino)
3776 goto end_rename;
3777
3778 new.bh = ext4_find_entry(new.dir, &new.dentry->d_name,
3779 &new.de, &new.inlined);
3780 if (IS_ERR(new.bh)) {
3781 retval = PTR_ERR(new.bh);
3782 new.bh = NULL;
3783 goto end_rename;
3784 }
3785
3786 /* RENAME_EXCHANGE case: old *and* new must both exist */
3787 if (!new.bh || le32_to_cpu(new.de->inode) != new.inode->i_ino)
3788 goto end_rename;
3789
3790 handle = ext4_journal_start(old.dir, EXT4_HT_DIR,
3791 (2 * EXT4_DATA_TRANS_BLOCKS(old.dir->i_sb) +
3792 2 * EXT4_INDEX_EXTRA_TRANS_BLOCKS + 2));
3793 if (IS_ERR(handle)) {
3794 retval = PTR_ERR(handle);
3795 handle = NULL;
3796 goto end_rename;
3797 }
3798
3799 if (IS_DIRSYNC(old.dir) || IS_DIRSYNC(new.dir))
3800 ext4_handle_sync(handle);
3801
3802 if (S_ISDIR(old.inode->i_mode)) {
3803 old.is_dir = true;
3804 retval = ext4_rename_dir_prepare(handle, &old);
3805 if (retval)
3806 goto end_rename;
3807 }
3808 if (S_ISDIR(new.inode->i_mode)) {
3809 new.is_dir = true;
3810 retval = ext4_rename_dir_prepare(handle, &new);
3811 if (retval)
3812 goto end_rename;
3813 }
3814
3815 /*
3816 * Other than the special case of overwriting a directory, parents'
3817 * nlink only needs to be modified if this is a cross directory rename.
3818 */
3819 if (old.dir != new.dir && old.is_dir != new.is_dir) {
3820 old.dir_nlink_delta = old.is_dir ? -1 : 1;
3821 new.dir_nlink_delta = -old.dir_nlink_delta;
3822 retval = -EMLINK;
3823 if ((old.dir_nlink_delta > 0 && EXT4_DIR_LINK_MAX(old.dir)) ||
3824 (new.dir_nlink_delta > 0 && EXT4_DIR_LINK_MAX(new.dir)))
3825 goto end_rename;
3826 }
3827
3828 new_file_type = new.de->file_type;
3829 retval = ext4_setent(handle, &new, old.inode->i_ino, old.de->file_type);
3830 if (retval)
3831 goto end_rename;
3832
3833 retval = ext4_setent(handle, &old, new.inode->i_ino, new_file_type);
3834 if (retval)
3835 goto end_rename;
3836
3837 /*
3838 * Like most other Unix systems, set the ctime for inodes on a
3839 * rename.
3840 */
3841 ctime = current_time(old.inode);
3842 old.inode->i_ctime = ctime;
3843 new.inode->i_ctime = ctime;
3844 ext4_mark_inode_dirty(handle, old.inode);
3845 ext4_mark_inode_dirty(handle, new.inode);
3846
3847 if (old.dir_bh) {
3848 retval = ext4_rename_dir_finish(handle, &old, new.dir->i_ino);
3849 if (retval)
3850 goto end_rename;
3851 }
3852 if (new.dir_bh) {
3853 retval = ext4_rename_dir_finish(handle, &new, old.dir->i_ino);
3854 if (retval)
3855 goto end_rename;
3856 }
3857 ext4_update_dir_count(handle, &old);
3858 ext4_update_dir_count(handle, &new);
3859 retval = 0;
3860
3861 end_rename:
3862 brelse(old.dir_bh);
3863 brelse(new.dir_bh);
3864 brelse(old.bh);
3865 brelse(new.bh);
3866 if (handle)
3867 ext4_journal_stop(handle);
3868 return retval;
3869 }
3870
3871 static int ext4_rename2(struct inode *old_dir, struct dentry *old_dentry,
3872 struct inode *new_dir, struct dentry *new_dentry,
3873 unsigned int flags)
3874 {
3875 if (unlikely(ext4_forced_shutdown(EXT4_SB(old_dir->i_sb))))
3876 return -EIO;
3877
3878 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3879 return -EINVAL;
3880
3881 if (flags & RENAME_EXCHANGE) {
3882 return ext4_cross_rename(old_dir, old_dentry,
3883 new_dir, new_dentry);
3884 }
3885
3886 return ext4_rename(old_dir, old_dentry, new_dir, new_dentry, flags);
3887 }
3888
3889 /*
3890 * directories can handle most operations...
3891 */
3892 const struct inode_operations ext4_dir_inode_operations = {
3893 .create = ext4_create,
3894 .lookup = ext4_lookup,
3895 .link = ext4_link,
3896 .unlink = ext4_unlink,
3897 .symlink = ext4_symlink,
3898 .mkdir = ext4_mkdir,
3899 .rmdir = ext4_rmdir,
3900 .mknod = ext4_mknod,
3901 .tmpfile = ext4_tmpfile,
3902 .rename = ext4_rename2,
3903 .setattr = ext4_setattr,
3904 .getattr = ext4_getattr,
3905 .listxattr = ext4_listxattr,
3906 .get_acl = ext4_get_acl,
3907 .set_acl = ext4_set_acl,
3908 .fiemap = ext4_fiemap,
3909 };
3910
3911 const struct inode_operations ext4_special_inode_operations = {
3912 .setattr = ext4_setattr,
3913 .getattr = ext4_getattr,
3914 .listxattr = ext4_listxattr,
3915 .get_acl = ext4_get_acl,
3916 .set_acl = ext4_set_acl,
3917 };