]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - fs/ext4/namei.c
spi: Fix double "when"
[mirror_ubuntu-hirsute-kernel.git] / fs / ext4 / namei.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/fs/ext4/namei.c
4 *
5 * Copyright (C) 1992, 1993, 1994, 1995
6 * Remy Card (card@masi.ibp.fr)
7 * Laboratoire MASI - Institut Blaise Pascal
8 * Universite Pierre et Marie Curie (Paris VI)
9 *
10 * from
11 *
12 * linux/fs/minix/namei.c
13 *
14 * Copyright (C) 1991, 1992 Linus Torvalds
15 *
16 * Big-endian to little-endian byte-swapping/bitmaps by
17 * David S. Miller (davem@caip.rutgers.edu), 1995
18 * Directory entry file type support and forward compatibility hooks
19 * for B-tree directories by Theodore Ts'o (tytso@mit.edu), 1998
20 * Hash Tree Directory indexing (c)
21 * Daniel Phillips, 2001
22 * Hash Tree Directory indexing porting
23 * Christopher Li, 2002
24 * Hash Tree Directory indexing cleanup
25 * Theodore Ts'o, 2002
26 */
27
28 #include <linux/fs.h>
29 #include <linux/pagemap.h>
30 #include <linux/time.h>
31 #include <linux/fcntl.h>
32 #include <linux/stat.h>
33 #include <linux/string.h>
34 #include <linux/quotaops.h>
35 #include <linux/buffer_head.h>
36 #include <linux/bio.h>
37 #include "ext4.h"
38 #include "ext4_jbd2.h"
39
40 #include "xattr.h"
41 #include "acl.h"
42
43 #include <trace/events/ext4.h>
44 /*
45 * define how far ahead to read directories while searching them.
46 */
47 #define NAMEI_RA_CHUNKS 2
48 #define NAMEI_RA_BLOCKS 4
49 #define NAMEI_RA_SIZE (NAMEI_RA_CHUNKS * NAMEI_RA_BLOCKS)
50
51 static struct buffer_head *ext4_append(handle_t *handle,
52 struct inode *inode,
53 ext4_lblk_t *block)
54 {
55 struct buffer_head *bh;
56 int err;
57
58 if (unlikely(EXT4_SB(inode->i_sb)->s_max_dir_size_kb &&
59 ((inode->i_size >> 10) >=
60 EXT4_SB(inode->i_sb)->s_max_dir_size_kb)))
61 return ERR_PTR(-ENOSPC);
62
63 *block = inode->i_size >> inode->i_sb->s_blocksize_bits;
64
65 bh = ext4_bread(handle, inode, *block, EXT4_GET_BLOCKS_CREATE);
66 if (IS_ERR(bh))
67 return bh;
68 inode->i_size += inode->i_sb->s_blocksize;
69 EXT4_I(inode)->i_disksize = inode->i_size;
70 BUFFER_TRACE(bh, "get_write_access");
71 err = ext4_journal_get_write_access(handle, bh);
72 if (err) {
73 brelse(bh);
74 ext4_std_error(inode->i_sb, err);
75 return ERR_PTR(err);
76 }
77 return bh;
78 }
79
80 static int ext4_dx_csum_verify(struct inode *inode,
81 struct ext4_dir_entry *dirent);
82
83 typedef enum {
84 EITHER, INDEX, DIRENT
85 } dirblock_type_t;
86
87 #define ext4_read_dirblock(inode, block, type) \
88 __ext4_read_dirblock((inode), (block), (type), __func__, __LINE__)
89
90 static struct buffer_head *__ext4_read_dirblock(struct inode *inode,
91 ext4_lblk_t block,
92 dirblock_type_t type,
93 const char *func,
94 unsigned int line)
95 {
96 struct buffer_head *bh;
97 struct ext4_dir_entry *dirent;
98 int is_dx_block = 0;
99
100 bh = ext4_bread(NULL, inode, block, 0);
101 if (IS_ERR(bh)) {
102 __ext4_warning(inode->i_sb, func, line,
103 "inode #%lu: lblock %lu: comm %s: "
104 "error %ld reading directory block",
105 inode->i_ino, (unsigned long)block,
106 current->comm, PTR_ERR(bh));
107
108 return bh;
109 }
110 if (!bh) {
111 ext4_error_inode(inode, func, line, block,
112 "Directory hole found");
113 return ERR_PTR(-EFSCORRUPTED);
114 }
115 dirent = (struct ext4_dir_entry *) bh->b_data;
116 /* Determine whether or not we have an index block */
117 if (is_dx(inode)) {
118 if (block == 0)
119 is_dx_block = 1;
120 else if (ext4_rec_len_from_disk(dirent->rec_len,
121 inode->i_sb->s_blocksize) ==
122 inode->i_sb->s_blocksize)
123 is_dx_block = 1;
124 }
125 if (!is_dx_block && type == INDEX) {
126 ext4_error_inode(inode, func, line, block,
127 "directory leaf block found instead of index block");
128 return ERR_PTR(-EFSCORRUPTED);
129 }
130 if (!ext4_has_metadata_csum(inode->i_sb) ||
131 buffer_verified(bh))
132 return bh;
133
134 /*
135 * An empty leaf block can get mistaken for a index block; for
136 * this reason, we can only check the index checksum when the
137 * caller is sure it should be an index block.
138 */
139 if (is_dx_block && type == INDEX) {
140 if (ext4_dx_csum_verify(inode, dirent))
141 set_buffer_verified(bh);
142 else {
143 ext4_error_inode(inode, func, line, block,
144 "Directory index failed checksum");
145 brelse(bh);
146 return ERR_PTR(-EFSBADCRC);
147 }
148 }
149 if (!is_dx_block) {
150 if (ext4_dirent_csum_verify(inode, dirent))
151 set_buffer_verified(bh);
152 else {
153 ext4_error_inode(inode, func, line, block,
154 "Directory block failed checksum");
155 brelse(bh);
156 return ERR_PTR(-EFSBADCRC);
157 }
158 }
159 return bh;
160 }
161
162 #ifndef assert
163 #define assert(test) J_ASSERT(test)
164 #endif
165
166 #ifdef DX_DEBUG
167 #define dxtrace(command) command
168 #else
169 #define dxtrace(command)
170 #endif
171
172 struct fake_dirent
173 {
174 __le32 inode;
175 __le16 rec_len;
176 u8 name_len;
177 u8 file_type;
178 };
179
180 struct dx_countlimit
181 {
182 __le16 limit;
183 __le16 count;
184 };
185
186 struct dx_entry
187 {
188 __le32 hash;
189 __le32 block;
190 };
191
192 /*
193 * dx_root_info is laid out so that if it should somehow get overlaid by a
194 * dirent the two low bits of the hash version will be zero. Therefore, the
195 * hash version mod 4 should never be 0. Sincerely, the paranoia department.
196 */
197
198 struct dx_root
199 {
200 struct fake_dirent dot;
201 char dot_name[4];
202 struct fake_dirent dotdot;
203 char dotdot_name[4];
204 struct dx_root_info
205 {
206 __le32 reserved_zero;
207 u8 hash_version;
208 u8 info_length; /* 8 */
209 u8 indirect_levels;
210 u8 unused_flags;
211 }
212 info;
213 struct dx_entry entries[0];
214 };
215
216 struct dx_node
217 {
218 struct fake_dirent fake;
219 struct dx_entry entries[0];
220 };
221
222
223 struct dx_frame
224 {
225 struct buffer_head *bh;
226 struct dx_entry *entries;
227 struct dx_entry *at;
228 };
229
230 struct dx_map_entry
231 {
232 u32 hash;
233 u16 offs;
234 u16 size;
235 };
236
237 /*
238 * This goes at the end of each htree block.
239 */
240 struct dx_tail {
241 u32 dt_reserved;
242 __le32 dt_checksum; /* crc32c(uuid+inum+dirblock) */
243 };
244
245 static inline ext4_lblk_t dx_get_block(struct dx_entry *entry);
246 static void dx_set_block(struct dx_entry *entry, ext4_lblk_t value);
247 static inline unsigned dx_get_hash(struct dx_entry *entry);
248 static void dx_set_hash(struct dx_entry *entry, unsigned value);
249 static unsigned dx_get_count(struct dx_entry *entries);
250 static unsigned dx_get_limit(struct dx_entry *entries);
251 static void dx_set_count(struct dx_entry *entries, unsigned value);
252 static void dx_set_limit(struct dx_entry *entries, unsigned value);
253 static unsigned dx_root_limit(struct inode *dir, unsigned infosize);
254 static unsigned dx_node_limit(struct inode *dir);
255 static struct dx_frame *dx_probe(struct ext4_filename *fname,
256 struct inode *dir,
257 struct dx_hash_info *hinfo,
258 struct dx_frame *frame);
259 static void dx_release(struct dx_frame *frames);
260 static int dx_make_map(struct inode *dir, struct ext4_dir_entry_2 *de,
261 unsigned blocksize, struct dx_hash_info *hinfo,
262 struct dx_map_entry map[]);
263 static void dx_sort_map(struct dx_map_entry *map, unsigned count);
264 static struct ext4_dir_entry_2 *dx_move_dirents(char *from, char *to,
265 struct dx_map_entry *offsets, int count, unsigned blocksize);
266 static struct ext4_dir_entry_2* dx_pack_dirents(char *base, unsigned blocksize);
267 static void dx_insert_block(struct dx_frame *frame,
268 u32 hash, ext4_lblk_t block);
269 static int ext4_htree_next_block(struct inode *dir, __u32 hash,
270 struct dx_frame *frame,
271 struct dx_frame *frames,
272 __u32 *start_hash);
273 static struct buffer_head * ext4_dx_find_entry(struct inode *dir,
274 struct ext4_filename *fname,
275 struct ext4_dir_entry_2 **res_dir);
276 static int ext4_dx_add_entry(handle_t *handle, struct ext4_filename *fname,
277 struct inode *dir, struct inode *inode);
278
279 /* checksumming functions */
280 void initialize_dirent_tail(struct ext4_dir_entry_tail *t,
281 unsigned int blocksize)
282 {
283 memset(t, 0, sizeof(struct ext4_dir_entry_tail));
284 t->det_rec_len = ext4_rec_len_to_disk(
285 sizeof(struct ext4_dir_entry_tail), blocksize);
286 t->det_reserved_ft = EXT4_FT_DIR_CSUM;
287 }
288
289 /* Walk through a dirent block to find a checksum "dirent" at the tail */
290 static struct ext4_dir_entry_tail *get_dirent_tail(struct inode *inode,
291 struct ext4_dir_entry *de)
292 {
293 struct ext4_dir_entry_tail *t;
294
295 #ifdef PARANOID
296 struct ext4_dir_entry *d, *top;
297
298 d = de;
299 top = (struct ext4_dir_entry *)(((void *)de) +
300 (EXT4_BLOCK_SIZE(inode->i_sb) -
301 sizeof(struct ext4_dir_entry_tail)));
302 while (d < top && d->rec_len)
303 d = (struct ext4_dir_entry *)(((void *)d) +
304 le16_to_cpu(d->rec_len));
305
306 if (d != top)
307 return NULL;
308
309 t = (struct ext4_dir_entry_tail *)d;
310 #else
311 t = EXT4_DIRENT_TAIL(de, EXT4_BLOCK_SIZE(inode->i_sb));
312 #endif
313
314 if (t->det_reserved_zero1 ||
315 le16_to_cpu(t->det_rec_len) != sizeof(struct ext4_dir_entry_tail) ||
316 t->det_reserved_zero2 ||
317 t->det_reserved_ft != EXT4_FT_DIR_CSUM)
318 return NULL;
319
320 return t;
321 }
322
323 static __le32 ext4_dirent_csum(struct inode *inode,
324 struct ext4_dir_entry *dirent, int size)
325 {
326 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
327 struct ext4_inode_info *ei = EXT4_I(inode);
328 __u32 csum;
329
330 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)dirent, size);
331 return cpu_to_le32(csum);
332 }
333
334 #define warn_no_space_for_csum(inode) \
335 __warn_no_space_for_csum((inode), __func__, __LINE__)
336
337 static void __warn_no_space_for_csum(struct inode *inode, const char *func,
338 unsigned int line)
339 {
340 __ext4_warning_inode(inode, func, line,
341 "No space for directory leaf checksum. Please run e2fsck -D.");
342 }
343
344 int ext4_dirent_csum_verify(struct inode *inode, struct ext4_dir_entry *dirent)
345 {
346 struct ext4_dir_entry_tail *t;
347
348 if (!ext4_has_metadata_csum(inode->i_sb))
349 return 1;
350
351 t = get_dirent_tail(inode, dirent);
352 if (!t) {
353 warn_no_space_for_csum(inode);
354 return 0;
355 }
356
357 if (t->det_checksum != ext4_dirent_csum(inode, dirent,
358 (void *)t - (void *)dirent))
359 return 0;
360
361 return 1;
362 }
363
364 static void ext4_dirent_csum_set(struct inode *inode,
365 struct ext4_dir_entry *dirent)
366 {
367 struct ext4_dir_entry_tail *t;
368
369 if (!ext4_has_metadata_csum(inode->i_sb))
370 return;
371
372 t = get_dirent_tail(inode, dirent);
373 if (!t) {
374 warn_no_space_for_csum(inode);
375 return;
376 }
377
378 t->det_checksum = ext4_dirent_csum(inode, dirent,
379 (void *)t - (void *)dirent);
380 }
381
382 int ext4_handle_dirty_dirent_node(handle_t *handle,
383 struct inode *inode,
384 struct buffer_head *bh)
385 {
386 ext4_dirent_csum_set(inode, (struct ext4_dir_entry *)bh->b_data);
387 return ext4_handle_dirty_metadata(handle, inode, bh);
388 }
389
390 static struct dx_countlimit *get_dx_countlimit(struct inode *inode,
391 struct ext4_dir_entry *dirent,
392 int *offset)
393 {
394 struct ext4_dir_entry *dp;
395 struct dx_root_info *root;
396 int count_offset;
397
398 if (le16_to_cpu(dirent->rec_len) == EXT4_BLOCK_SIZE(inode->i_sb))
399 count_offset = 8;
400 else if (le16_to_cpu(dirent->rec_len) == 12) {
401 dp = (struct ext4_dir_entry *)(((void *)dirent) + 12);
402 if (le16_to_cpu(dp->rec_len) !=
403 EXT4_BLOCK_SIZE(inode->i_sb) - 12)
404 return NULL;
405 root = (struct dx_root_info *)(((void *)dp + 12));
406 if (root->reserved_zero ||
407 root->info_length != sizeof(struct dx_root_info))
408 return NULL;
409 count_offset = 32;
410 } else
411 return NULL;
412
413 if (offset)
414 *offset = count_offset;
415 return (struct dx_countlimit *)(((void *)dirent) + count_offset);
416 }
417
418 static __le32 ext4_dx_csum(struct inode *inode, struct ext4_dir_entry *dirent,
419 int count_offset, int count, struct dx_tail *t)
420 {
421 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
422 struct ext4_inode_info *ei = EXT4_I(inode);
423 __u32 csum;
424 int size;
425 __u32 dummy_csum = 0;
426 int offset = offsetof(struct dx_tail, dt_checksum);
427
428 size = count_offset + (count * sizeof(struct dx_entry));
429 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)dirent, size);
430 csum = ext4_chksum(sbi, csum, (__u8 *)t, offset);
431 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, sizeof(dummy_csum));
432
433 return cpu_to_le32(csum);
434 }
435
436 static int ext4_dx_csum_verify(struct inode *inode,
437 struct ext4_dir_entry *dirent)
438 {
439 struct dx_countlimit *c;
440 struct dx_tail *t;
441 int count_offset, limit, count;
442
443 if (!ext4_has_metadata_csum(inode->i_sb))
444 return 1;
445
446 c = get_dx_countlimit(inode, dirent, &count_offset);
447 if (!c) {
448 EXT4_ERROR_INODE(inode, "dir seems corrupt? Run e2fsck -D.");
449 return 0;
450 }
451 limit = le16_to_cpu(c->limit);
452 count = le16_to_cpu(c->count);
453 if (count_offset + (limit * sizeof(struct dx_entry)) >
454 EXT4_BLOCK_SIZE(inode->i_sb) - sizeof(struct dx_tail)) {
455 warn_no_space_for_csum(inode);
456 return 0;
457 }
458 t = (struct dx_tail *)(((struct dx_entry *)c) + limit);
459
460 if (t->dt_checksum != ext4_dx_csum(inode, dirent, count_offset,
461 count, t))
462 return 0;
463 return 1;
464 }
465
466 static void ext4_dx_csum_set(struct inode *inode, struct ext4_dir_entry *dirent)
467 {
468 struct dx_countlimit *c;
469 struct dx_tail *t;
470 int count_offset, limit, count;
471
472 if (!ext4_has_metadata_csum(inode->i_sb))
473 return;
474
475 c = get_dx_countlimit(inode, dirent, &count_offset);
476 if (!c) {
477 EXT4_ERROR_INODE(inode, "dir seems corrupt? Run e2fsck -D.");
478 return;
479 }
480 limit = le16_to_cpu(c->limit);
481 count = le16_to_cpu(c->count);
482 if (count_offset + (limit * sizeof(struct dx_entry)) >
483 EXT4_BLOCK_SIZE(inode->i_sb) - sizeof(struct dx_tail)) {
484 warn_no_space_for_csum(inode);
485 return;
486 }
487 t = (struct dx_tail *)(((struct dx_entry *)c) + limit);
488
489 t->dt_checksum = ext4_dx_csum(inode, dirent, count_offset, count, t);
490 }
491
492 static inline int ext4_handle_dirty_dx_node(handle_t *handle,
493 struct inode *inode,
494 struct buffer_head *bh)
495 {
496 ext4_dx_csum_set(inode, (struct ext4_dir_entry *)bh->b_data);
497 return ext4_handle_dirty_metadata(handle, inode, bh);
498 }
499
500 /*
501 * p is at least 6 bytes before the end of page
502 */
503 static inline struct ext4_dir_entry_2 *
504 ext4_next_entry(struct ext4_dir_entry_2 *p, unsigned long blocksize)
505 {
506 return (struct ext4_dir_entry_2 *)((char *)p +
507 ext4_rec_len_from_disk(p->rec_len, blocksize));
508 }
509
510 /*
511 * Future: use high four bits of block for coalesce-on-delete flags
512 * Mask them off for now.
513 */
514
515 static inline ext4_lblk_t dx_get_block(struct dx_entry *entry)
516 {
517 return le32_to_cpu(entry->block) & 0x0fffffff;
518 }
519
520 static inline void dx_set_block(struct dx_entry *entry, ext4_lblk_t value)
521 {
522 entry->block = cpu_to_le32(value);
523 }
524
525 static inline unsigned dx_get_hash(struct dx_entry *entry)
526 {
527 return le32_to_cpu(entry->hash);
528 }
529
530 static inline void dx_set_hash(struct dx_entry *entry, unsigned value)
531 {
532 entry->hash = cpu_to_le32(value);
533 }
534
535 static inline unsigned dx_get_count(struct dx_entry *entries)
536 {
537 return le16_to_cpu(((struct dx_countlimit *) entries)->count);
538 }
539
540 static inline unsigned dx_get_limit(struct dx_entry *entries)
541 {
542 return le16_to_cpu(((struct dx_countlimit *) entries)->limit);
543 }
544
545 static inline void dx_set_count(struct dx_entry *entries, unsigned value)
546 {
547 ((struct dx_countlimit *) entries)->count = cpu_to_le16(value);
548 }
549
550 static inline void dx_set_limit(struct dx_entry *entries, unsigned value)
551 {
552 ((struct dx_countlimit *) entries)->limit = cpu_to_le16(value);
553 }
554
555 static inline unsigned dx_root_limit(struct inode *dir, unsigned infosize)
556 {
557 unsigned entry_space = dir->i_sb->s_blocksize - EXT4_DIR_REC_LEN(1) -
558 EXT4_DIR_REC_LEN(2) - infosize;
559
560 if (ext4_has_metadata_csum(dir->i_sb))
561 entry_space -= sizeof(struct dx_tail);
562 return entry_space / sizeof(struct dx_entry);
563 }
564
565 static inline unsigned dx_node_limit(struct inode *dir)
566 {
567 unsigned entry_space = dir->i_sb->s_blocksize - EXT4_DIR_REC_LEN(0);
568
569 if (ext4_has_metadata_csum(dir->i_sb))
570 entry_space -= sizeof(struct dx_tail);
571 return entry_space / sizeof(struct dx_entry);
572 }
573
574 /*
575 * Debug
576 */
577 #ifdef DX_DEBUG
578 static void dx_show_index(char * label, struct dx_entry *entries)
579 {
580 int i, n = dx_get_count (entries);
581 printk(KERN_DEBUG "%s index", label);
582 for (i = 0; i < n; i++) {
583 printk(KERN_CONT " %x->%lu",
584 i ? dx_get_hash(entries + i) : 0,
585 (unsigned long)dx_get_block(entries + i));
586 }
587 printk(KERN_CONT "\n");
588 }
589
590 struct stats
591 {
592 unsigned names;
593 unsigned space;
594 unsigned bcount;
595 };
596
597 static struct stats dx_show_leaf(struct inode *dir,
598 struct dx_hash_info *hinfo,
599 struct ext4_dir_entry_2 *de,
600 int size, int show_names)
601 {
602 unsigned names = 0, space = 0;
603 char *base = (char *) de;
604 struct dx_hash_info h = *hinfo;
605
606 printk("names: ");
607 while ((char *) de < base + size)
608 {
609 if (de->inode)
610 {
611 if (show_names)
612 {
613 #ifdef CONFIG_EXT4_FS_ENCRYPTION
614 int len;
615 char *name;
616 struct fscrypt_str fname_crypto_str =
617 FSTR_INIT(NULL, 0);
618 int res = 0;
619
620 name = de->name;
621 len = de->name_len;
622 if (ext4_encrypted_inode(dir))
623 res = fscrypt_get_encryption_info(dir);
624 if (res) {
625 printk(KERN_WARNING "Error setting up"
626 " fname crypto: %d\n", res);
627 }
628 if (!fscrypt_has_encryption_key(dir)) {
629 /* Directory is not encrypted */
630 ext4fs_dirhash(de->name,
631 de->name_len, &h);
632 printk("%*.s:(U)%x.%u ", len,
633 name, h.hash,
634 (unsigned) ((char *) de
635 - base));
636 } else {
637 struct fscrypt_str de_name =
638 FSTR_INIT(name, len);
639
640 /* Directory is encrypted */
641 res = fscrypt_fname_alloc_buffer(
642 dir, len,
643 &fname_crypto_str);
644 if (res)
645 printk(KERN_WARNING "Error "
646 "allocating crypto "
647 "buffer--skipping "
648 "crypto\n");
649 res = fscrypt_fname_disk_to_usr(dir,
650 0, 0, &de_name,
651 &fname_crypto_str);
652 if (res) {
653 printk(KERN_WARNING "Error "
654 "converting filename "
655 "from disk to usr"
656 "\n");
657 name = "??";
658 len = 2;
659 } else {
660 name = fname_crypto_str.name;
661 len = fname_crypto_str.len;
662 }
663 ext4fs_dirhash(de->name, de->name_len,
664 &h);
665 printk("%*.s:(E)%x.%u ", len, name,
666 h.hash, (unsigned) ((char *) de
667 - base));
668 fscrypt_fname_free_buffer(
669 &fname_crypto_str);
670 }
671 #else
672 int len = de->name_len;
673 char *name = de->name;
674 ext4fs_dirhash(de->name, de->name_len, &h);
675 printk("%*.s:%x.%u ", len, name, h.hash,
676 (unsigned) ((char *) de - base));
677 #endif
678 }
679 space += EXT4_DIR_REC_LEN(de->name_len);
680 names++;
681 }
682 de = ext4_next_entry(de, size);
683 }
684 printk(KERN_CONT "(%i)\n", names);
685 return (struct stats) { names, space, 1 };
686 }
687
688 struct stats dx_show_entries(struct dx_hash_info *hinfo, struct inode *dir,
689 struct dx_entry *entries, int levels)
690 {
691 unsigned blocksize = dir->i_sb->s_blocksize;
692 unsigned count = dx_get_count(entries), names = 0, space = 0, i;
693 unsigned bcount = 0;
694 struct buffer_head *bh;
695 printk("%i indexed blocks...\n", count);
696 for (i = 0; i < count; i++, entries++)
697 {
698 ext4_lblk_t block = dx_get_block(entries);
699 ext4_lblk_t hash = i ? dx_get_hash(entries): 0;
700 u32 range = i < count - 1? (dx_get_hash(entries + 1) - hash): ~hash;
701 struct stats stats;
702 printk("%s%3u:%03u hash %8x/%8x ",levels?"":" ", i, block, hash, range);
703 bh = ext4_bread(NULL,dir, block, 0);
704 if (!bh || IS_ERR(bh))
705 continue;
706 stats = levels?
707 dx_show_entries(hinfo, dir, ((struct dx_node *) bh->b_data)->entries, levels - 1):
708 dx_show_leaf(dir, hinfo, (struct ext4_dir_entry_2 *)
709 bh->b_data, blocksize, 0);
710 names += stats.names;
711 space += stats.space;
712 bcount += stats.bcount;
713 brelse(bh);
714 }
715 if (bcount)
716 printk(KERN_DEBUG "%snames %u, fullness %u (%u%%)\n",
717 levels ? "" : " ", names, space/bcount,
718 (space/bcount)*100/blocksize);
719 return (struct stats) { names, space, bcount};
720 }
721 #endif /* DX_DEBUG */
722
723 /*
724 * Probe for a directory leaf block to search.
725 *
726 * dx_probe can return ERR_BAD_DX_DIR, which means there was a format
727 * error in the directory index, and the caller should fall back to
728 * searching the directory normally. The callers of dx_probe **MUST**
729 * check for this error code, and make sure it never gets reflected
730 * back to userspace.
731 */
732 static struct dx_frame *
733 dx_probe(struct ext4_filename *fname, struct inode *dir,
734 struct dx_hash_info *hinfo, struct dx_frame *frame_in)
735 {
736 unsigned count, indirect;
737 struct dx_entry *at, *entries, *p, *q, *m;
738 struct dx_root *root;
739 struct dx_frame *frame = frame_in;
740 struct dx_frame *ret_err = ERR_PTR(ERR_BAD_DX_DIR);
741 u32 hash;
742
743 memset(frame_in, 0, EXT4_HTREE_LEVEL * sizeof(frame_in[0]));
744 frame->bh = ext4_read_dirblock(dir, 0, INDEX);
745 if (IS_ERR(frame->bh))
746 return (struct dx_frame *) frame->bh;
747
748 root = (struct dx_root *) frame->bh->b_data;
749 if (root->info.hash_version != DX_HASH_TEA &&
750 root->info.hash_version != DX_HASH_HALF_MD4 &&
751 root->info.hash_version != DX_HASH_LEGACY) {
752 ext4_warning_inode(dir, "Unrecognised inode hash code %u",
753 root->info.hash_version);
754 goto fail;
755 }
756 if (fname)
757 hinfo = &fname->hinfo;
758 hinfo->hash_version = root->info.hash_version;
759 if (hinfo->hash_version <= DX_HASH_TEA)
760 hinfo->hash_version += EXT4_SB(dir->i_sb)->s_hash_unsigned;
761 hinfo->seed = EXT4_SB(dir->i_sb)->s_hash_seed;
762 if (fname && fname_name(fname))
763 ext4fs_dirhash(fname_name(fname), fname_len(fname), hinfo);
764 hash = hinfo->hash;
765
766 if (root->info.unused_flags & 1) {
767 ext4_warning_inode(dir, "Unimplemented hash flags: %#06x",
768 root->info.unused_flags);
769 goto fail;
770 }
771
772 indirect = root->info.indirect_levels;
773 if (indirect >= ext4_dir_htree_level(dir->i_sb)) {
774 ext4_warning(dir->i_sb,
775 "Directory (ino: %lu) htree depth %#06x exceed"
776 "supported value", dir->i_ino,
777 ext4_dir_htree_level(dir->i_sb));
778 if (ext4_dir_htree_level(dir->i_sb) < EXT4_HTREE_LEVEL) {
779 ext4_warning(dir->i_sb, "Enable large directory "
780 "feature to access it");
781 }
782 goto fail;
783 }
784
785 entries = (struct dx_entry *)(((char *)&root->info) +
786 root->info.info_length);
787
788 if (dx_get_limit(entries) != dx_root_limit(dir,
789 root->info.info_length)) {
790 ext4_warning_inode(dir, "dx entry: limit %u != root limit %u",
791 dx_get_limit(entries),
792 dx_root_limit(dir, root->info.info_length));
793 goto fail;
794 }
795
796 dxtrace(printk("Look up %x", hash));
797 while (1) {
798 count = dx_get_count(entries);
799 if (!count || count > dx_get_limit(entries)) {
800 ext4_warning_inode(dir,
801 "dx entry: count %u beyond limit %u",
802 count, dx_get_limit(entries));
803 goto fail;
804 }
805
806 p = entries + 1;
807 q = entries + count - 1;
808 while (p <= q) {
809 m = p + (q - p) / 2;
810 dxtrace(printk(KERN_CONT "."));
811 if (dx_get_hash(m) > hash)
812 q = m - 1;
813 else
814 p = m + 1;
815 }
816
817 if (0) { // linear search cross check
818 unsigned n = count - 1;
819 at = entries;
820 while (n--)
821 {
822 dxtrace(printk(KERN_CONT ","));
823 if (dx_get_hash(++at) > hash)
824 {
825 at--;
826 break;
827 }
828 }
829 assert (at == p - 1);
830 }
831
832 at = p - 1;
833 dxtrace(printk(KERN_CONT " %x->%u\n",
834 at == entries ? 0 : dx_get_hash(at),
835 dx_get_block(at)));
836 frame->entries = entries;
837 frame->at = at;
838 if (!indirect--)
839 return frame;
840 frame++;
841 frame->bh = ext4_read_dirblock(dir, dx_get_block(at), INDEX);
842 if (IS_ERR(frame->bh)) {
843 ret_err = (struct dx_frame *) frame->bh;
844 frame->bh = NULL;
845 goto fail;
846 }
847 entries = ((struct dx_node *) frame->bh->b_data)->entries;
848
849 if (dx_get_limit(entries) != dx_node_limit(dir)) {
850 ext4_warning_inode(dir,
851 "dx entry: limit %u != node limit %u",
852 dx_get_limit(entries), dx_node_limit(dir));
853 goto fail;
854 }
855 }
856 fail:
857 while (frame >= frame_in) {
858 brelse(frame->bh);
859 frame--;
860 }
861
862 if (ret_err == ERR_PTR(ERR_BAD_DX_DIR))
863 ext4_warning_inode(dir,
864 "Corrupt directory, running e2fsck is recommended");
865 return ret_err;
866 }
867
868 static void dx_release(struct dx_frame *frames)
869 {
870 struct dx_root_info *info;
871 int i;
872
873 if (frames[0].bh == NULL)
874 return;
875
876 info = &((struct dx_root *)frames[0].bh->b_data)->info;
877 for (i = 0; i <= info->indirect_levels; i++) {
878 if (frames[i].bh == NULL)
879 break;
880 brelse(frames[i].bh);
881 frames[i].bh = NULL;
882 }
883 }
884
885 /*
886 * This function increments the frame pointer to search the next leaf
887 * block, and reads in the necessary intervening nodes if the search
888 * should be necessary. Whether or not the search is necessary is
889 * controlled by the hash parameter. If the hash value is even, then
890 * the search is only continued if the next block starts with that
891 * hash value. This is used if we are searching for a specific file.
892 *
893 * If the hash value is HASH_NB_ALWAYS, then always go to the next block.
894 *
895 * This function returns 1 if the caller should continue to search,
896 * or 0 if it should not. If there is an error reading one of the
897 * index blocks, it will a negative error code.
898 *
899 * If start_hash is non-null, it will be filled in with the starting
900 * hash of the next page.
901 */
902 static int ext4_htree_next_block(struct inode *dir, __u32 hash,
903 struct dx_frame *frame,
904 struct dx_frame *frames,
905 __u32 *start_hash)
906 {
907 struct dx_frame *p;
908 struct buffer_head *bh;
909 int num_frames = 0;
910 __u32 bhash;
911
912 p = frame;
913 /*
914 * Find the next leaf page by incrementing the frame pointer.
915 * If we run out of entries in the interior node, loop around and
916 * increment pointer in the parent node. When we break out of
917 * this loop, num_frames indicates the number of interior
918 * nodes need to be read.
919 */
920 while (1) {
921 if (++(p->at) < p->entries + dx_get_count(p->entries))
922 break;
923 if (p == frames)
924 return 0;
925 num_frames++;
926 p--;
927 }
928
929 /*
930 * If the hash is 1, then continue only if the next page has a
931 * continuation hash of any value. This is used for readdir
932 * handling. Otherwise, check to see if the hash matches the
933 * desired contiuation hash. If it doesn't, return since
934 * there's no point to read in the successive index pages.
935 */
936 bhash = dx_get_hash(p->at);
937 if (start_hash)
938 *start_hash = bhash;
939 if ((hash & 1) == 0) {
940 if ((bhash & ~1) != hash)
941 return 0;
942 }
943 /*
944 * If the hash is HASH_NB_ALWAYS, we always go to the next
945 * block so no check is necessary
946 */
947 while (num_frames--) {
948 bh = ext4_read_dirblock(dir, dx_get_block(p->at), INDEX);
949 if (IS_ERR(bh))
950 return PTR_ERR(bh);
951 p++;
952 brelse(p->bh);
953 p->bh = bh;
954 p->at = p->entries = ((struct dx_node *) bh->b_data)->entries;
955 }
956 return 1;
957 }
958
959
960 /*
961 * This function fills a red-black tree with information from a
962 * directory block. It returns the number directory entries loaded
963 * into the tree. If there is an error it is returned in err.
964 */
965 static int htree_dirblock_to_tree(struct file *dir_file,
966 struct inode *dir, ext4_lblk_t block,
967 struct dx_hash_info *hinfo,
968 __u32 start_hash, __u32 start_minor_hash)
969 {
970 struct buffer_head *bh;
971 struct ext4_dir_entry_2 *de, *top;
972 int err = 0, count = 0;
973 struct fscrypt_str fname_crypto_str = FSTR_INIT(NULL, 0), tmp_str;
974
975 dxtrace(printk(KERN_INFO "In htree dirblock_to_tree: block %lu\n",
976 (unsigned long)block));
977 bh = ext4_read_dirblock(dir, block, DIRENT);
978 if (IS_ERR(bh))
979 return PTR_ERR(bh);
980
981 de = (struct ext4_dir_entry_2 *) bh->b_data;
982 top = (struct ext4_dir_entry_2 *) ((char *) de +
983 dir->i_sb->s_blocksize -
984 EXT4_DIR_REC_LEN(0));
985 #ifdef CONFIG_EXT4_FS_ENCRYPTION
986 /* Check if the directory is encrypted */
987 if (ext4_encrypted_inode(dir)) {
988 err = fscrypt_get_encryption_info(dir);
989 if (err < 0) {
990 brelse(bh);
991 return err;
992 }
993 err = fscrypt_fname_alloc_buffer(dir, EXT4_NAME_LEN,
994 &fname_crypto_str);
995 if (err < 0) {
996 brelse(bh);
997 return err;
998 }
999 }
1000 #endif
1001 for (; de < top; de = ext4_next_entry(de, dir->i_sb->s_blocksize)) {
1002 if (ext4_check_dir_entry(dir, NULL, de, bh,
1003 bh->b_data, bh->b_size,
1004 (block<<EXT4_BLOCK_SIZE_BITS(dir->i_sb))
1005 + ((char *)de - bh->b_data))) {
1006 /* silently ignore the rest of the block */
1007 break;
1008 }
1009 ext4fs_dirhash(de->name, de->name_len, hinfo);
1010 if ((hinfo->hash < start_hash) ||
1011 ((hinfo->hash == start_hash) &&
1012 (hinfo->minor_hash < start_minor_hash)))
1013 continue;
1014 if (de->inode == 0)
1015 continue;
1016 if (!ext4_encrypted_inode(dir)) {
1017 tmp_str.name = de->name;
1018 tmp_str.len = de->name_len;
1019 err = ext4_htree_store_dirent(dir_file,
1020 hinfo->hash, hinfo->minor_hash, de,
1021 &tmp_str);
1022 } else {
1023 int save_len = fname_crypto_str.len;
1024 struct fscrypt_str de_name = FSTR_INIT(de->name,
1025 de->name_len);
1026
1027 /* Directory is encrypted */
1028 err = fscrypt_fname_disk_to_usr(dir, hinfo->hash,
1029 hinfo->minor_hash, &de_name,
1030 &fname_crypto_str);
1031 if (err) {
1032 count = err;
1033 goto errout;
1034 }
1035 err = ext4_htree_store_dirent(dir_file,
1036 hinfo->hash, hinfo->minor_hash, de,
1037 &fname_crypto_str);
1038 fname_crypto_str.len = save_len;
1039 }
1040 if (err != 0) {
1041 count = err;
1042 goto errout;
1043 }
1044 count++;
1045 }
1046 errout:
1047 brelse(bh);
1048 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1049 fscrypt_fname_free_buffer(&fname_crypto_str);
1050 #endif
1051 return count;
1052 }
1053
1054
1055 /*
1056 * This function fills a red-black tree with information from a
1057 * directory. We start scanning the directory in hash order, starting
1058 * at start_hash and start_minor_hash.
1059 *
1060 * This function returns the number of entries inserted into the tree,
1061 * or a negative error code.
1062 */
1063 int ext4_htree_fill_tree(struct file *dir_file, __u32 start_hash,
1064 __u32 start_minor_hash, __u32 *next_hash)
1065 {
1066 struct dx_hash_info hinfo;
1067 struct ext4_dir_entry_2 *de;
1068 struct dx_frame frames[EXT4_HTREE_LEVEL], *frame;
1069 struct inode *dir;
1070 ext4_lblk_t block;
1071 int count = 0;
1072 int ret, err;
1073 __u32 hashval;
1074 struct fscrypt_str tmp_str;
1075
1076 dxtrace(printk(KERN_DEBUG "In htree_fill_tree, start hash: %x:%x\n",
1077 start_hash, start_minor_hash));
1078 dir = file_inode(dir_file);
1079 if (!(ext4_test_inode_flag(dir, EXT4_INODE_INDEX))) {
1080 hinfo.hash_version = EXT4_SB(dir->i_sb)->s_def_hash_version;
1081 if (hinfo.hash_version <= DX_HASH_TEA)
1082 hinfo.hash_version +=
1083 EXT4_SB(dir->i_sb)->s_hash_unsigned;
1084 hinfo.seed = EXT4_SB(dir->i_sb)->s_hash_seed;
1085 if (ext4_has_inline_data(dir)) {
1086 int has_inline_data = 1;
1087 count = htree_inlinedir_to_tree(dir_file, dir, 0,
1088 &hinfo, start_hash,
1089 start_minor_hash,
1090 &has_inline_data);
1091 if (has_inline_data) {
1092 *next_hash = ~0;
1093 return count;
1094 }
1095 }
1096 count = htree_dirblock_to_tree(dir_file, dir, 0, &hinfo,
1097 start_hash, start_minor_hash);
1098 *next_hash = ~0;
1099 return count;
1100 }
1101 hinfo.hash = start_hash;
1102 hinfo.minor_hash = 0;
1103 frame = dx_probe(NULL, dir, &hinfo, frames);
1104 if (IS_ERR(frame))
1105 return PTR_ERR(frame);
1106
1107 /* Add '.' and '..' from the htree header */
1108 if (!start_hash && !start_minor_hash) {
1109 de = (struct ext4_dir_entry_2 *) frames[0].bh->b_data;
1110 tmp_str.name = de->name;
1111 tmp_str.len = de->name_len;
1112 err = ext4_htree_store_dirent(dir_file, 0, 0,
1113 de, &tmp_str);
1114 if (err != 0)
1115 goto errout;
1116 count++;
1117 }
1118 if (start_hash < 2 || (start_hash ==2 && start_minor_hash==0)) {
1119 de = (struct ext4_dir_entry_2 *) frames[0].bh->b_data;
1120 de = ext4_next_entry(de, dir->i_sb->s_blocksize);
1121 tmp_str.name = de->name;
1122 tmp_str.len = de->name_len;
1123 err = ext4_htree_store_dirent(dir_file, 2, 0,
1124 de, &tmp_str);
1125 if (err != 0)
1126 goto errout;
1127 count++;
1128 }
1129
1130 while (1) {
1131 if (fatal_signal_pending(current)) {
1132 err = -ERESTARTSYS;
1133 goto errout;
1134 }
1135 cond_resched();
1136 block = dx_get_block(frame->at);
1137 ret = htree_dirblock_to_tree(dir_file, dir, block, &hinfo,
1138 start_hash, start_minor_hash);
1139 if (ret < 0) {
1140 err = ret;
1141 goto errout;
1142 }
1143 count += ret;
1144 hashval = ~0;
1145 ret = ext4_htree_next_block(dir, HASH_NB_ALWAYS,
1146 frame, frames, &hashval);
1147 *next_hash = hashval;
1148 if (ret < 0) {
1149 err = ret;
1150 goto errout;
1151 }
1152 /*
1153 * Stop if: (a) there are no more entries, or
1154 * (b) we have inserted at least one entry and the
1155 * next hash value is not a continuation
1156 */
1157 if ((ret == 0) ||
1158 (count && ((hashval & 1) == 0)))
1159 break;
1160 }
1161 dx_release(frames);
1162 dxtrace(printk(KERN_DEBUG "Fill tree: returned %d entries, "
1163 "next hash: %x\n", count, *next_hash));
1164 return count;
1165 errout:
1166 dx_release(frames);
1167 return (err);
1168 }
1169
1170 static inline int search_dirblock(struct buffer_head *bh,
1171 struct inode *dir,
1172 struct ext4_filename *fname,
1173 unsigned int offset,
1174 struct ext4_dir_entry_2 **res_dir)
1175 {
1176 return ext4_search_dir(bh, bh->b_data, dir->i_sb->s_blocksize, dir,
1177 fname, offset, res_dir);
1178 }
1179
1180 /*
1181 * Directory block splitting, compacting
1182 */
1183
1184 /*
1185 * Create map of hash values, offsets, and sizes, stored at end of block.
1186 * Returns number of entries mapped.
1187 */
1188 static int dx_make_map(struct inode *dir, struct ext4_dir_entry_2 *de,
1189 unsigned blocksize, struct dx_hash_info *hinfo,
1190 struct dx_map_entry *map_tail)
1191 {
1192 int count = 0;
1193 char *base = (char *) de;
1194 struct dx_hash_info h = *hinfo;
1195
1196 while ((char *) de < base + blocksize) {
1197 if (de->name_len && de->inode) {
1198 ext4fs_dirhash(de->name, de->name_len, &h);
1199 map_tail--;
1200 map_tail->hash = h.hash;
1201 map_tail->offs = ((char *) de - base)>>2;
1202 map_tail->size = le16_to_cpu(de->rec_len);
1203 count++;
1204 cond_resched();
1205 }
1206 /* XXX: do we need to check rec_len == 0 case? -Chris */
1207 de = ext4_next_entry(de, blocksize);
1208 }
1209 return count;
1210 }
1211
1212 /* Sort map by hash value */
1213 static void dx_sort_map (struct dx_map_entry *map, unsigned count)
1214 {
1215 struct dx_map_entry *p, *q, *top = map + count - 1;
1216 int more;
1217 /* Combsort until bubble sort doesn't suck */
1218 while (count > 2) {
1219 count = count*10/13;
1220 if (count - 9 < 2) /* 9, 10 -> 11 */
1221 count = 11;
1222 for (p = top, q = p - count; q >= map; p--, q--)
1223 if (p->hash < q->hash)
1224 swap(*p, *q);
1225 }
1226 /* Garden variety bubble sort */
1227 do {
1228 more = 0;
1229 q = top;
1230 while (q-- > map) {
1231 if (q[1].hash >= q[0].hash)
1232 continue;
1233 swap(*(q+1), *q);
1234 more = 1;
1235 }
1236 } while(more);
1237 }
1238
1239 static void dx_insert_block(struct dx_frame *frame, u32 hash, ext4_lblk_t block)
1240 {
1241 struct dx_entry *entries = frame->entries;
1242 struct dx_entry *old = frame->at, *new = old + 1;
1243 int count = dx_get_count(entries);
1244
1245 assert(count < dx_get_limit(entries));
1246 assert(old < entries + count);
1247 memmove(new + 1, new, (char *)(entries + count) - (char *)(new));
1248 dx_set_hash(new, hash);
1249 dx_set_block(new, block);
1250 dx_set_count(entries, count + 1);
1251 }
1252
1253 /*
1254 * Test whether a directory entry matches the filename being searched for.
1255 *
1256 * Return: %true if the directory entry matches, otherwise %false.
1257 */
1258 static inline bool ext4_match(const struct ext4_filename *fname,
1259 const struct ext4_dir_entry_2 *de)
1260 {
1261 struct fscrypt_name f;
1262
1263 if (!de->inode)
1264 return false;
1265
1266 f.usr_fname = fname->usr_fname;
1267 f.disk_name = fname->disk_name;
1268 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1269 f.crypto_buf = fname->crypto_buf;
1270 #endif
1271 return fscrypt_match_name(&f, de->name, de->name_len);
1272 }
1273
1274 /*
1275 * Returns 0 if not found, -1 on failure, and 1 on success
1276 */
1277 int ext4_search_dir(struct buffer_head *bh, char *search_buf, int buf_size,
1278 struct inode *dir, struct ext4_filename *fname,
1279 unsigned int offset, struct ext4_dir_entry_2 **res_dir)
1280 {
1281 struct ext4_dir_entry_2 * de;
1282 char * dlimit;
1283 int de_len;
1284
1285 de = (struct ext4_dir_entry_2 *)search_buf;
1286 dlimit = search_buf + buf_size;
1287 while ((char *) de < dlimit) {
1288 /* this code is executed quadratically often */
1289 /* do minimal checking `by hand' */
1290 if ((char *) de + de->name_len <= dlimit &&
1291 ext4_match(fname, de)) {
1292 /* found a match - just to be sure, do
1293 * a full check */
1294 if (ext4_check_dir_entry(dir, NULL, de, bh, bh->b_data,
1295 bh->b_size, offset))
1296 return -1;
1297 *res_dir = de;
1298 return 1;
1299 }
1300 /* prevent looping on a bad block */
1301 de_len = ext4_rec_len_from_disk(de->rec_len,
1302 dir->i_sb->s_blocksize);
1303 if (de_len <= 0)
1304 return -1;
1305 offset += de_len;
1306 de = (struct ext4_dir_entry_2 *) ((char *) de + de_len);
1307 }
1308 return 0;
1309 }
1310
1311 static int is_dx_internal_node(struct inode *dir, ext4_lblk_t block,
1312 struct ext4_dir_entry *de)
1313 {
1314 struct super_block *sb = dir->i_sb;
1315
1316 if (!is_dx(dir))
1317 return 0;
1318 if (block == 0)
1319 return 1;
1320 if (de->inode == 0 &&
1321 ext4_rec_len_from_disk(de->rec_len, sb->s_blocksize) ==
1322 sb->s_blocksize)
1323 return 1;
1324 return 0;
1325 }
1326
1327 /*
1328 * ext4_find_entry()
1329 *
1330 * finds an entry in the specified directory with the wanted name. It
1331 * returns the cache buffer in which the entry was found, and the entry
1332 * itself (as a parameter - res_dir). It does NOT read the inode of the
1333 * entry - you'll have to do that yourself if you want to.
1334 *
1335 * The returned buffer_head has ->b_count elevated. The caller is expected
1336 * to brelse() it when appropriate.
1337 */
1338 static struct buffer_head * ext4_find_entry (struct inode *dir,
1339 const struct qstr *d_name,
1340 struct ext4_dir_entry_2 **res_dir,
1341 int *inlined)
1342 {
1343 struct super_block *sb;
1344 struct buffer_head *bh_use[NAMEI_RA_SIZE];
1345 struct buffer_head *bh, *ret = NULL;
1346 ext4_lblk_t start, block;
1347 const u8 *name = d_name->name;
1348 size_t ra_max = 0; /* Number of bh's in the readahead
1349 buffer, bh_use[] */
1350 size_t ra_ptr = 0; /* Current index into readahead
1351 buffer */
1352 ext4_lblk_t nblocks;
1353 int i, namelen, retval;
1354 struct ext4_filename fname;
1355
1356 *res_dir = NULL;
1357 sb = dir->i_sb;
1358 namelen = d_name->len;
1359 if (namelen > EXT4_NAME_LEN)
1360 return NULL;
1361
1362 retval = ext4_fname_setup_filename(dir, d_name, 1, &fname);
1363 if (retval == -ENOENT)
1364 return NULL;
1365 if (retval)
1366 return ERR_PTR(retval);
1367
1368 if (ext4_has_inline_data(dir)) {
1369 int has_inline_data = 1;
1370 ret = ext4_find_inline_entry(dir, &fname, res_dir,
1371 &has_inline_data);
1372 if (has_inline_data) {
1373 if (inlined)
1374 *inlined = 1;
1375 goto cleanup_and_exit;
1376 }
1377 }
1378
1379 if ((namelen <= 2) && (name[0] == '.') &&
1380 (name[1] == '.' || name[1] == '\0')) {
1381 /*
1382 * "." or ".." will only be in the first block
1383 * NFS may look up ".."; "." should be handled by the VFS
1384 */
1385 block = start = 0;
1386 nblocks = 1;
1387 goto restart;
1388 }
1389 if (is_dx(dir)) {
1390 ret = ext4_dx_find_entry(dir, &fname, res_dir);
1391 /*
1392 * On success, or if the error was file not found,
1393 * return. Otherwise, fall back to doing a search the
1394 * old fashioned way.
1395 */
1396 if (!IS_ERR(ret) || PTR_ERR(ret) != ERR_BAD_DX_DIR)
1397 goto cleanup_and_exit;
1398 dxtrace(printk(KERN_DEBUG "ext4_find_entry: dx failed, "
1399 "falling back\n"));
1400 }
1401 nblocks = dir->i_size >> EXT4_BLOCK_SIZE_BITS(sb);
1402 start = EXT4_I(dir)->i_dir_start_lookup;
1403 if (start >= nblocks)
1404 start = 0;
1405 block = start;
1406 restart:
1407 do {
1408 /*
1409 * We deal with the read-ahead logic here.
1410 */
1411 if (ra_ptr >= ra_max) {
1412 /* Refill the readahead buffer */
1413 ra_ptr = 0;
1414 if (block < start)
1415 ra_max = start - block;
1416 else
1417 ra_max = nblocks - block;
1418 ra_max = min(ra_max, ARRAY_SIZE(bh_use));
1419 retval = ext4_bread_batch(dir, block, ra_max,
1420 false /* wait */, bh_use);
1421 if (retval) {
1422 ret = ERR_PTR(retval);
1423 ra_max = 0;
1424 goto cleanup_and_exit;
1425 }
1426 }
1427 if ((bh = bh_use[ra_ptr++]) == NULL)
1428 goto next;
1429 wait_on_buffer(bh);
1430 if (!buffer_uptodate(bh)) {
1431 EXT4_ERROR_INODE(dir, "reading directory lblock %lu",
1432 (unsigned long) block);
1433 brelse(bh);
1434 ret = ERR_PTR(-EIO);
1435 goto cleanup_and_exit;
1436 }
1437 if (!buffer_verified(bh) &&
1438 !is_dx_internal_node(dir, block,
1439 (struct ext4_dir_entry *)bh->b_data) &&
1440 !ext4_dirent_csum_verify(dir,
1441 (struct ext4_dir_entry *)bh->b_data)) {
1442 EXT4_ERROR_INODE(dir, "checksumming directory "
1443 "block %lu", (unsigned long)block);
1444 brelse(bh);
1445 ret = ERR_PTR(-EFSBADCRC);
1446 goto cleanup_and_exit;
1447 }
1448 set_buffer_verified(bh);
1449 i = search_dirblock(bh, dir, &fname,
1450 block << EXT4_BLOCK_SIZE_BITS(sb), res_dir);
1451 if (i == 1) {
1452 EXT4_I(dir)->i_dir_start_lookup = block;
1453 ret = bh;
1454 goto cleanup_and_exit;
1455 } else {
1456 brelse(bh);
1457 if (i < 0)
1458 goto cleanup_and_exit;
1459 }
1460 next:
1461 if (++block >= nblocks)
1462 block = 0;
1463 } while (block != start);
1464
1465 /*
1466 * If the directory has grown while we were searching, then
1467 * search the last part of the directory before giving up.
1468 */
1469 block = nblocks;
1470 nblocks = dir->i_size >> EXT4_BLOCK_SIZE_BITS(sb);
1471 if (block < nblocks) {
1472 start = 0;
1473 goto restart;
1474 }
1475
1476 cleanup_and_exit:
1477 /* Clean up the read-ahead blocks */
1478 for (; ra_ptr < ra_max; ra_ptr++)
1479 brelse(bh_use[ra_ptr]);
1480 ext4_fname_free_filename(&fname);
1481 return ret;
1482 }
1483
1484 static struct buffer_head * ext4_dx_find_entry(struct inode *dir,
1485 struct ext4_filename *fname,
1486 struct ext4_dir_entry_2 **res_dir)
1487 {
1488 struct super_block * sb = dir->i_sb;
1489 struct dx_frame frames[EXT4_HTREE_LEVEL], *frame;
1490 struct buffer_head *bh;
1491 ext4_lblk_t block;
1492 int retval;
1493
1494 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1495 *res_dir = NULL;
1496 #endif
1497 frame = dx_probe(fname, dir, NULL, frames);
1498 if (IS_ERR(frame))
1499 return (struct buffer_head *) frame;
1500 do {
1501 block = dx_get_block(frame->at);
1502 bh = ext4_read_dirblock(dir, block, DIRENT);
1503 if (IS_ERR(bh))
1504 goto errout;
1505
1506 retval = search_dirblock(bh, dir, fname,
1507 block << EXT4_BLOCK_SIZE_BITS(sb),
1508 res_dir);
1509 if (retval == 1)
1510 goto success;
1511 brelse(bh);
1512 if (retval == -1) {
1513 bh = ERR_PTR(ERR_BAD_DX_DIR);
1514 goto errout;
1515 }
1516
1517 /* Check to see if we should continue to search */
1518 retval = ext4_htree_next_block(dir, fname->hinfo.hash, frame,
1519 frames, NULL);
1520 if (retval < 0) {
1521 ext4_warning_inode(dir,
1522 "error %d reading directory index block",
1523 retval);
1524 bh = ERR_PTR(retval);
1525 goto errout;
1526 }
1527 } while (retval == 1);
1528
1529 bh = NULL;
1530 errout:
1531 dxtrace(printk(KERN_DEBUG "%s not found\n", fname->usr_fname->name));
1532 success:
1533 dx_release(frames);
1534 return bh;
1535 }
1536
1537 static struct dentry *ext4_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
1538 {
1539 struct inode *inode;
1540 struct ext4_dir_entry_2 *de;
1541 struct buffer_head *bh;
1542 int err;
1543
1544 err = fscrypt_prepare_lookup(dir, dentry, flags);
1545 if (err)
1546 return ERR_PTR(err);
1547
1548 if (dentry->d_name.len > EXT4_NAME_LEN)
1549 return ERR_PTR(-ENAMETOOLONG);
1550
1551 bh = ext4_find_entry(dir, &dentry->d_name, &de, NULL);
1552 if (IS_ERR(bh))
1553 return (struct dentry *) bh;
1554 inode = NULL;
1555 if (bh) {
1556 __u32 ino = le32_to_cpu(de->inode);
1557 brelse(bh);
1558 if (!ext4_valid_inum(dir->i_sb, ino)) {
1559 EXT4_ERROR_INODE(dir, "bad inode number: %u", ino);
1560 return ERR_PTR(-EFSCORRUPTED);
1561 }
1562 if (unlikely(ino == dir->i_ino)) {
1563 EXT4_ERROR_INODE(dir, "'%pd' linked to parent dir",
1564 dentry);
1565 return ERR_PTR(-EFSCORRUPTED);
1566 }
1567 inode = ext4_iget_normal(dir->i_sb, ino);
1568 if (inode == ERR_PTR(-ESTALE)) {
1569 EXT4_ERROR_INODE(dir,
1570 "deleted inode referenced: %u",
1571 ino);
1572 return ERR_PTR(-EFSCORRUPTED);
1573 }
1574 if (!IS_ERR(inode) && ext4_encrypted_inode(dir) &&
1575 (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode)) &&
1576 !fscrypt_has_permitted_context(dir, inode)) {
1577 ext4_warning(inode->i_sb,
1578 "Inconsistent encryption contexts: %lu/%lu",
1579 dir->i_ino, inode->i_ino);
1580 iput(inode);
1581 return ERR_PTR(-EPERM);
1582 }
1583 }
1584 return d_splice_alias(inode, dentry);
1585 }
1586
1587
1588 struct dentry *ext4_get_parent(struct dentry *child)
1589 {
1590 __u32 ino;
1591 static const struct qstr dotdot = QSTR_INIT("..", 2);
1592 struct ext4_dir_entry_2 * de;
1593 struct buffer_head *bh;
1594
1595 bh = ext4_find_entry(d_inode(child), &dotdot, &de, NULL);
1596 if (IS_ERR(bh))
1597 return (struct dentry *) bh;
1598 if (!bh)
1599 return ERR_PTR(-ENOENT);
1600 ino = le32_to_cpu(de->inode);
1601 brelse(bh);
1602
1603 if (!ext4_valid_inum(child->d_sb, ino)) {
1604 EXT4_ERROR_INODE(d_inode(child),
1605 "bad parent inode number: %u", ino);
1606 return ERR_PTR(-EFSCORRUPTED);
1607 }
1608
1609 return d_obtain_alias(ext4_iget_normal(child->d_sb, ino));
1610 }
1611
1612 /*
1613 * Move count entries from end of map between two memory locations.
1614 * Returns pointer to last entry moved.
1615 */
1616 static struct ext4_dir_entry_2 *
1617 dx_move_dirents(char *from, char *to, struct dx_map_entry *map, int count,
1618 unsigned blocksize)
1619 {
1620 unsigned rec_len = 0;
1621
1622 while (count--) {
1623 struct ext4_dir_entry_2 *de = (struct ext4_dir_entry_2 *)
1624 (from + (map->offs<<2));
1625 rec_len = EXT4_DIR_REC_LEN(de->name_len);
1626 memcpy (to, de, rec_len);
1627 ((struct ext4_dir_entry_2 *) to)->rec_len =
1628 ext4_rec_len_to_disk(rec_len, blocksize);
1629 de->inode = 0;
1630 map++;
1631 to += rec_len;
1632 }
1633 return (struct ext4_dir_entry_2 *) (to - rec_len);
1634 }
1635
1636 /*
1637 * Compact each dir entry in the range to the minimal rec_len.
1638 * Returns pointer to last entry in range.
1639 */
1640 static struct ext4_dir_entry_2* dx_pack_dirents(char *base, unsigned blocksize)
1641 {
1642 struct ext4_dir_entry_2 *next, *to, *prev, *de = (struct ext4_dir_entry_2 *) base;
1643 unsigned rec_len = 0;
1644
1645 prev = to = de;
1646 while ((char*)de < base + blocksize) {
1647 next = ext4_next_entry(de, blocksize);
1648 if (de->inode && de->name_len) {
1649 rec_len = EXT4_DIR_REC_LEN(de->name_len);
1650 if (de > to)
1651 memmove(to, de, rec_len);
1652 to->rec_len = ext4_rec_len_to_disk(rec_len, blocksize);
1653 prev = to;
1654 to = (struct ext4_dir_entry_2 *) (((char *) to) + rec_len);
1655 }
1656 de = next;
1657 }
1658 return prev;
1659 }
1660
1661 /*
1662 * Split a full leaf block to make room for a new dir entry.
1663 * Allocate a new block, and move entries so that they are approx. equally full.
1664 * Returns pointer to de in block into which the new entry will be inserted.
1665 */
1666 static struct ext4_dir_entry_2 *do_split(handle_t *handle, struct inode *dir,
1667 struct buffer_head **bh,struct dx_frame *frame,
1668 struct dx_hash_info *hinfo)
1669 {
1670 unsigned blocksize = dir->i_sb->s_blocksize;
1671 unsigned count, continued;
1672 struct buffer_head *bh2;
1673 ext4_lblk_t newblock;
1674 u32 hash2;
1675 struct dx_map_entry *map;
1676 char *data1 = (*bh)->b_data, *data2;
1677 unsigned split, move, size;
1678 struct ext4_dir_entry_2 *de = NULL, *de2;
1679 struct ext4_dir_entry_tail *t;
1680 int csum_size = 0;
1681 int err = 0, i;
1682
1683 if (ext4_has_metadata_csum(dir->i_sb))
1684 csum_size = sizeof(struct ext4_dir_entry_tail);
1685
1686 bh2 = ext4_append(handle, dir, &newblock);
1687 if (IS_ERR(bh2)) {
1688 brelse(*bh);
1689 *bh = NULL;
1690 return (struct ext4_dir_entry_2 *) bh2;
1691 }
1692
1693 BUFFER_TRACE(*bh, "get_write_access");
1694 err = ext4_journal_get_write_access(handle, *bh);
1695 if (err)
1696 goto journal_error;
1697
1698 BUFFER_TRACE(frame->bh, "get_write_access");
1699 err = ext4_journal_get_write_access(handle, frame->bh);
1700 if (err)
1701 goto journal_error;
1702
1703 data2 = bh2->b_data;
1704
1705 /* create map in the end of data2 block */
1706 map = (struct dx_map_entry *) (data2 + blocksize);
1707 count = dx_make_map(dir, (struct ext4_dir_entry_2 *) data1,
1708 blocksize, hinfo, map);
1709 map -= count;
1710 dx_sort_map(map, count);
1711 /* Split the existing block in the middle, size-wise */
1712 size = 0;
1713 move = 0;
1714 for (i = count-1; i >= 0; i--) {
1715 /* is more than half of this entry in 2nd half of the block? */
1716 if (size + map[i].size/2 > blocksize/2)
1717 break;
1718 size += map[i].size;
1719 move++;
1720 }
1721 /* map index at which we will split */
1722 split = count - move;
1723 hash2 = map[split].hash;
1724 continued = hash2 == map[split - 1].hash;
1725 dxtrace(printk(KERN_INFO "Split block %lu at %x, %i/%i\n",
1726 (unsigned long)dx_get_block(frame->at),
1727 hash2, split, count-split));
1728
1729 /* Fancy dance to stay within two buffers */
1730 de2 = dx_move_dirents(data1, data2, map + split, count - split,
1731 blocksize);
1732 de = dx_pack_dirents(data1, blocksize);
1733 de->rec_len = ext4_rec_len_to_disk(data1 + (blocksize - csum_size) -
1734 (char *) de,
1735 blocksize);
1736 de2->rec_len = ext4_rec_len_to_disk(data2 + (blocksize - csum_size) -
1737 (char *) de2,
1738 blocksize);
1739 if (csum_size) {
1740 t = EXT4_DIRENT_TAIL(data2, blocksize);
1741 initialize_dirent_tail(t, blocksize);
1742
1743 t = EXT4_DIRENT_TAIL(data1, blocksize);
1744 initialize_dirent_tail(t, blocksize);
1745 }
1746
1747 dxtrace(dx_show_leaf(dir, hinfo, (struct ext4_dir_entry_2 *) data1,
1748 blocksize, 1));
1749 dxtrace(dx_show_leaf(dir, hinfo, (struct ext4_dir_entry_2 *) data2,
1750 blocksize, 1));
1751
1752 /* Which block gets the new entry? */
1753 if (hinfo->hash >= hash2) {
1754 swap(*bh, bh2);
1755 de = de2;
1756 }
1757 dx_insert_block(frame, hash2 + continued, newblock);
1758 err = ext4_handle_dirty_dirent_node(handle, dir, bh2);
1759 if (err)
1760 goto journal_error;
1761 err = ext4_handle_dirty_dx_node(handle, dir, frame->bh);
1762 if (err)
1763 goto journal_error;
1764 brelse(bh2);
1765 dxtrace(dx_show_index("frame", frame->entries));
1766 return de;
1767
1768 journal_error:
1769 brelse(*bh);
1770 brelse(bh2);
1771 *bh = NULL;
1772 ext4_std_error(dir->i_sb, err);
1773 return ERR_PTR(err);
1774 }
1775
1776 int ext4_find_dest_de(struct inode *dir, struct inode *inode,
1777 struct buffer_head *bh,
1778 void *buf, int buf_size,
1779 struct ext4_filename *fname,
1780 struct ext4_dir_entry_2 **dest_de)
1781 {
1782 struct ext4_dir_entry_2 *de;
1783 unsigned short reclen = EXT4_DIR_REC_LEN(fname_len(fname));
1784 int nlen, rlen;
1785 unsigned int offset = 0;
1786 char *top;
1787
1788 de = (struct ext4_dir_entry_2 *)buf;
1789 top = buf + buf_size - reclen;
1790 while ((char *) de <= top) {
1791 if (ext4_check_dir_entry(dir, NULL, de, bh,
1792 buf, buf_size, offset))
1793 return -EFSCORRUPTED;
1794 if (ext4_match(fname, de))
1795 return -EEXIST;
1796 nlen = EXT4_DIR_REC_LEN(de->name_len);
1797 rlen = ext4_rec_len_from_disk(de->rec_len, buf_size);
1798 if ((de->inode ? rlen - nlen : rlen) >= reclen)
1799 break;
1800 de = (struct ext4_dir_entry_2 *)((char *)de + rlen);
1801 offset += rlen;
1802 }
1803 if ((char *) de > top)
1804 return -ENOSPC;
1805
1806 *dest_de = de;
1807 return 0;
1808 }
1809
1810 void ext4_insert_dentry(struct inode *inode,
1811 struct ext4_dir_entry_2 *de,
1812 int buf_size,
1813 struct ext4_filename *fname)
1814 {
1815
1816 int nlen, rlen;
1817
1818 nlen = EXT4_DIR_REC_LEN(de->name_len);
1819 rlen = ext4_rec_len_from_disk(de->rec_len, buf_size);
1820 if (de->inode) {
1821 struct ext4_dir_entry_2 *de1 =
1822 (struct ext4_dir_entry_2 *)((char *)de + nlen);
1823 de1->rec_len = ext4_rec_len_to_disk(rlen - nlen, buf_size);
1824 de->rec_len = ext4_rec_len_to_disk(nlen, buf_size);
1825 de = de1;
1826 }
1827 de->file_type = EXT4_FT_UNKNOWN;
1828 de->inode = cpu_to_le32(inode->i_ino);
1829 ext4_set_de_type(inode->i_sb, de, inode->i_mode);
1830 de->name_len = fname_len(fname);
1831 memcpy(de->name, fname_name(fname), fname_len(fname));
1832 }
1833
1834 /*
1835 * Add a new entry into a directory (leaf) block. If de is non-NULL,
1836 * it points to a directory entry which is guaranteed to be large
1837 * enough for new directory entry. If de is NULL, then
1838 * add_dirent_to_buf will attempt search the directory block for
1839 * space. It will return -ENOSPC if no space is available, and -EIO
1840 * and -EEXIST if directory entry already exists.
1841 */
1842 static int add_dirent_to_buf(handle_t *handle, struct ext4_filename *fname,
1843 struct inode *dir,
1844 struct inode *inode, struct ext4_dir_entry_2 *de,
1845 struct buffer_head *bh)
1846 {
1847 unsigned int blocksize = dir->i_sb->s_blocksize;
1848 int csum_size = 0;
1849 int err;
1850
1851 if (ext4_has_metadata_csum(inode->i_sb))
1852 csum_size = sizeof(struct ext4_dir_entry_tail);
1853
1854 if (!de) {
1855 err = ext4_find_dest_de(dir, inode, bh, bh->b_data,
1856 blocksize - csum_size, fname, &de);
1857 if (err)
1858 return err;
1859 }
1860 BUFFER_TRACE(bh, "get_write_access");
1861 err = ext4_journal_get_write_access(handle, bh);
1862 if (err) {
1863 ext4_std_error(dir->i_sb, err);
1864 return err;
1865 }
1866
1867 /* By now the buffer is marked for journaling */
1868 ext4_insert_dentry(inode, de, blocksize, fname);
1869
1870 /*
1871 * XXX shouldn't update any times until successful
1872 * completion of syscall, but too many callers depend
1873 * on this.
1874 *
1875 * XXX similarly, too many callers depend on
1876 * ext4_new_inode() setting the times, but error
1877 * recovery deletes the inode, so the worst that can
1878 * happen is that the times are slightly out of date
1879 * and/or different from the directory change time.
1880 */
1881 dir->i_mtime = dir->i_ctime = current_time(dir);
1882 ext4_update_dx_flag(dir);
1883 inode_inc_iversion(dir);
1884 ext4_mark_inode_dirty(handle, dir);
1885 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1886 err = ext4_handle_dirty_dirent_node(handle, dir, bh);
1887 if (err)
1888 ext4_std_error(dir->i_sb, err);
1889 return 0;
1890 }
1891
1892 /*
1893 * This converts a one block unindexed directory to a 3 block indexed
1894 * directory, and adds the dentry to the indexed directory.
1895 */
1896 static int make_indexed_dir(handle_t *handle, struct ext4_filename *fname,
1897 struct inode *dir,
1898 struct inode *inode, struct buffer_head *bh)
1899 {
1900 struct buffer_head *bh2;
1901 struct dx_root *root;
1902 struct dx_frame frames[EXT4_HTREE_LEVEL], *frame;
1903 struct dx_entry *entries;
1904 struct ext4_dir_entry_2 *de, *de2;
1905 struct ext4_dir_entry_tail *t;
1906 char *data1, *top;
1907 unsigned len;
1908 int retval;
1909 unsigned blocksize;
1910 ext4_lblk_t block;
1911 struct fake_dirent *fde;
1912 int csum_size = 0;
1913
1914 if (ext4_has_metadata_csum(inode->i_sb))
1915 csum_size = sizeof(struct ext4_dir_entry_tail);
1916
1917 blocksize = dir->i_sb->s_blocksize;
1918 dxtrace(printk(KERN_DEBUG "Creating index: inode %lu\n", dir->i_ino));
1919 BUFFER_TRACE(bh, "get_write_access");
1920 retval = ext4_journal_get_write_access(handle, bh);
1921 if (retval) {
1922 ext4_std_error(dir->i_sb, retval);
1923 brelse(bh);
1924 return retval;
1925 }
1926 root = (struct dx_root *) bh->b_data;
1927
1928 /* The 0th block becomes the root, move the dirents out */
1929 fde = &root->dotdot;
1930 de = (struct ext4_dir_entry_2 *)((char *)fde +
1931 ext4_rec_len_from_disk(fde->rec_len, blocksize));
1932 if ((char *) de >= (((char *) root) + blocksize)) {
1933 EXT4_ERROR_INODE(dir, "invalid rec_len for '..'");
1934 brelse(bh);
1935 return -EFSCORRUPTED;
1936 }
1937 len = ((char *) root) + (blocksize - csum_size) - (char *) de;
1938
1939 /* Allocate new block for the 0th block's dirents */
1940 bh2 = ext4_append(handle, dir, &block);
1941 if (IS_ERR(bh2)) {
1942 brelse(bh);
1943 return PTR_ERR(bh2);
1944 }
1945 ext4_set_inode_flag(dir, EXT4_INODE_INDEX);
1946 data1 = bh2->b_data;
1947
1948 memcpy (data1, de, len);
1949 de = (struct ext4_dir_entry_2 *) data1;
1950 top = data1 + len;
1951 while ((char *)(de2 = ext4_next_entry(de, blocksize)) < top)
1952 de = de2;
1953 de->rec_len = ext4_rec_len_to_disk(data1 + (blocksize - csum_size) -
1954 (char *) de,
1955 blocksize);
1956
1957 if (csum_size) {
1958 t = EXT4_DIRENT_TAIL(data1, blocksize);
1959 initialize_dirent_tail(t, blocksize);
1960 }
1961
1962 /* Initialize the root; the dot dirents already exist */
1963 de = (struct ext4_dir_entry_2 *) (&root->dotdot);
1964 de->rec_len = ext4_rec_len_to_disk(blocksize - EXT4_DIR_REC_LEN(2),
1965 blocksize);
1966 memset (&root->info, 0, sizeof(root->info));
1967 root->info.info_length = sizeof(root->info);
1968 root->info.hash_version = EXT4_SB(dir->i_sb)->s_def_hash_version;
1969 entries = root->entries;
1970 dx_set_block(entries, 1);
1971 dx_set_count(entries, 1);
1972 dx_set_limit(entries, dx_root_limit(dir, sizeof(root->info)));
1973
1974 /* Initialize as for dx_probe */
1975 fname->hinfo.hash_version = root->info.hash_version;
1976 if (fname->hinfo.hash_version <= DX_HASH_TEA)
1977 fname->hinfo.hash_version += EXT4_SB(dir->i_sb)->s_hash_unsigned;
1978 fname->hinfo.seed = EXT4_SB(dir->i_sb)->s_hash_seed;
1979 ext4fs_dirhash(fname_name(fname), fname_len(fname), &fname->hinfo);
1980
1981 memset(frames, 0, sizeof(frames));
1982 frame = frames;
1983 frame->entries = entries;
1984 frame->at = entries;
1985 frame->bh = bh;
1986
1987 retval = ext4_handle_dirty_dx_node(handle, dir, frame->bh);
1988 if (retval)
1989 goto out_frames;
1990 retval = ext4_handle_dirty_dirent_node(handle, dir, bh2);
1991 if (retval)
1992 goto out_frames;
1993
1994 de = do_split(handle,dir, &bh2, frame, &fname->hinfo);
1995 if (IS_ERR(de)) {
1996 retval = PTR_ERR(de);
1997 goto out_frames;
1998 }
1999
2000 retval = add_dirent_to_buf(handle, fname, dir, inode, de, bh2);
2001 out_frames:
2002 /*
2003 * Even if the block split failed, we have to properly write
2004 * out all the changes we did so far. Otherwise we can end up
2005 * with corrupted filesystem.
2006 */
2007 if (retval)
2008 ext4_mark_inode_dirty(handle, dir);
2009 dx_release(frames);
2010 brelse(bh2);
2011 return retval;
2012 }
2013
2014 /*
2015 * ext4_add_entry()
2016 *
2017 * adds a file entry to the specified directory, using the same
2018 * semantics as ext4_find_entry(). It returns NULL if it failed.
2019 *
2020 * NOTE!! The inode part of 'de' is left at 0 - which means you
2021 * may not sleep between calling this and putting something into
2022 * the entry, as someone else might have used it while you slept.
2023 */
2024 static int ext4_add_entry(handle_t *handle, struct dentry *dentry,
2025 struct inode *inode)
2026 {
2027 struct inode *dir = d_inode(dentry->d_parent);
2028 struct buffer_head *bh = NULL;
2029 struct ext4_dir_entry_2 *de;
2030 struct ext4_dir_entry_tail *t;
2031 struct super_block *sb;
2032 struct ext4_filename fname;
2033 int retval;
2034 int dx_fallback=0;
2035 unsigned blocksize;
2036 ext4_lblk_t block, blocks;
2037 int csum_size = 0;
2038
2039 if (ext4_has_metadata_csum(inode->i_sb))
2040 csum_size = sizeof(struct ext4_dir_entry_tail);
2041
2042 sb = dir->i_sb;
2043 blocksize = sb->s_blocksize;
2044 if (!dentry->d_name.len)
2045 return -EINVAL;
2046
2047 retval = ext4_fname_setup_filename(dir, &dentry->d_name, 0, &fname);
2048 if (retval)
2049 return retval;
2050
2051 if (ext4_has_inline_data(dir)) {
2052 retval = ext4_try_add_inline_entry(handle, &fname, dir, inode);
2053 if (retval < 0)
2054 goto out;
2055 if (retval == 1) {
2056 retval = 0;
2057 goto out;
2058 }
2059 }
2060
2061 if (is_dx(dir)) {
2062 retval = ext4_dx_add_entry(handle, &fname, dir, inode);
2063 if (!retval || (retval != ERR_BAD_DX_DIR))
2064 goto out;
2065 ext4_clear_inode_flag(dir, EXT4_INODE_INDEX);
2066 dx_fallback++;
2067 ext4_mark_inode_dirty(handle, dir);
2068 }
2069 blocks = dir->i_size >> sb->s_blocksize_bits;
2070 for (block = 0; block < blocks; block++) {
2071 bh = ext4_read_dirblock(dir, block, DIRENT);
2072 if (IS_ERR(bh)) {
2073 retval = PTR_ERR(bh);
2074 bh = NULL;
2075 goto out;
2076 }
2077 retval = add_dirent_to_buf(handle, &fname, dir, inode,
2078 NULL, bh);
2079 if (retval != -ENOSPC)
2080 goto out;
2081
2082 if (blocks == 1 && !dx_fallback &&
2083 ext4_has_feature_dir_index(sb)) {
2084 retval = make_indexed_dir(handle, &fname, dir,
2085 inode, bh);
2086 bh = NULL; /* make_indexed_dir releases bh */
2087 goto out;
2088 }
2089 brelse(bh);
2090 }
2091 bh = ext4_append(handle, dir, &block);
2092 if (IS_ERR(bh)) {
2093 retval = PTR_ERR(bh);
2094 bh = NULL;
2095 goto out;
2096 }
2097 de = (struct ext4_dir_entry_2 *) bh->b_data;
2098 de->inode = 0;
2099 de->rec_len = ext4_rec_len_to_disk(blocksize - csum_size, blocksize);
2100
2101 if (csum_size) {
2102 t = EXT4_DIRENT_TAIL(bh->b_data, blocksize);
2103 initialize_dirent_tail(t, blocksize);
2104 }
2105
2106 retval = add_dirent_to_buf(handle, &fname, dir, inode, de, bh);
2107 out:
2108 ext4_fname_free_filename(&fname);
2109 brelse(bh);
2110 if (retval == 0)
2111 ext4_set_inode_state(inode, EXT4_STATE_NEWENTRY);
2112 return retval;
2113 }
2114
2115 /*
2116 * Returns 0 for success, or a negative error value
2117 */
2118 static int ext4_dx_add_entry(handle_t *handle, struct ext4_filename *fname,
2119 struct inode *dir, struct inode *inode)
2120 {
2121 struct dx_frame frames[EXT4_HTREE_LEVEL], *frame;
2122 struct dx_entry *entries, *at;
2123 struct buffer_head *bh;
2124 struct super_block *sb = dir->i_sb;
2125 struct ext4_dir_entry_2 *de;
2126 int restart;
2127 int err;
2128
2129 again:
2130 restart = 0;
2131 frame = dx_probe(fname, dir, NULL, frames);
2132 if (IS_ERR(frame))
2133 return PTR_ERR(frame);
2134 entries = frame->entries;
2135 at = frame->at;
2136 bh = ext4_read_dirblock(dir, dx_get_block(frame->at), DIRENT);
2137 if (IS_ERR(bh)) {
2138 err = PTR_ERR(bh);
2139 bh = NULL;
2140 goto cleanup;
2141 }
2142
2143 BUFFER_TRACE(bh, "get_write_access");
2144 err = ext4_journal_get_write_access(handle, bh);
2145 if (err)
2146 goto journal_error;
2147
2148 err = add_dirent_to_buf(handle, fname, dir, inode, NULL, bh);
2149 if (err != -ENOSPC)
2150 goto cleanup;
2151
2152 err = 0;
2153 /* Block full, should compress but for now just split */
2154 dxtrace(printk(KERN_DEBUG "using %u of %u node entries\n",
2155 dx_get_count(entries), dx_get_limit(entries)));
2156 /* Need to split index? */
2157 if (dx_get_count(entries) == dx_get_limit(entries)) {
2158 ext4_lblk_t newblock;
2159 int levels = frame - frames + 1;
2160 unsigned int icount;
2161 int add_level = 1;
2162 struct dx_entry *entries2;
2163 struct dx_node *node2;
2164 struct buffer_head *bh2;
2165
2166 while (frame > frames) {
2167 if (dx_get_count((frame - 1)->entries) <
2168 dx_get_limit((frame - 1)->entries)) {
2169 add_level = 0;
2170 break;
2171 }
2172 frame--; /* split higher index block */
2173 at = frame->at;
2174 entries = frame->entries;
2175 restart = 1;
2176 }
2177 if (add_level && levels == ext4_dir_htree_level(sb)) {
2178 ext4_warning(sb, "Directory (ino: %lu) index full, "
2179 "reach max htree level :%d",
2180 dir->i_ino, levels);
2181 if (ext4_dir_htree_level(sb) < EXT4_HTREE_LEVEL) {
2182 ext4_warning(sb, "Large directory feature is "
2183 "not enabled on this "
2184 "filesystem");
2185 }
2186 err = -ENOSPC;
2187 goto cleanup;
2188 }
2189 icount = dx_get_count(entries);
2190 bh2 = ext4_append(handle, dir, &newblock);
2191 if (IS_ERR(bh2)) {
2192 err = PTR_ERR(bh2);
2193 goto cleanup;
2194 }
2195 node2 = (struct dx_node *)(bh2->b_data);
2196 entries2 = node2->entries;
2197 memset(&node2->fake, 0, sizeof(struct fake_dirent));
2198 node2->fake.rec_len = ext4_rec_len_to_disk(sb->s_blocksize,
2199 sb->s_blocksize);
2200 BUFFER_TRACE(frame->bh, "get_write_access");
2201 err = ext4_journal_get_write_access(handle, frame->bh);
2202 if (err)
2203 goto journal_error;
2204 if (!add_level) {
2205 unsigned icount1 = icount/2, icount2 = icount - icount1;
2206 unsigned hash2 = dx_get_hash(entries + icount1);
2207 dxtrace(printk(KERN_DEBUG "Split index %i/%i\n",
2208 icount1, icount2));
2209
2210 BUFFER_TRACE(frame->bh, "get_write_access"); /* index root */
2211 err = ext4_journal_get_write_access(handle,
2212 (frame - 1)->bh);
2213 if (err)
2214 goto journal_error;
2215
2216 memcpy((char *) entries2, (char *) (entries + icount1),
2217 icount2 * sizeof(struct dx_entry));
2218 dx_set_count(entries, icount1);
2219 dx_set_count(entries2, icount2);
2220 dx_set_limit(entries2, dx_node_limit(dir));
2221
2222 /* Which index block gets the new entry? */
2223 if (at - entries >= icount1) {
2224 frame->at = at = at - entries - icount1 + entries2;
2225 frame->entries = entries = entries2;
2226 swap(frame->bh, bh2);
2227 }
2228 dx_insert_block((frame - 1), hash2, newblock);
2229 dxtrace(dx_show_index("node", frame->entries));
2230 dxtrace(dx_show_index("node",
2231 ((struct dx_node *) bh2->b_data)->entries));
2232 err = ext4_handle_dirty_dx_node(handle, dir, bh2);
2233 if (err)
2234 goto journal_error;
2235 brelse (bh2);
2236 err = ext4_handle_dirty_dx_node(handle, dir,
2237 (frame - 1)->bh);
2238 if (err)
2239 goto journal_error;
2240 if (restart) {
2241 err = ext4_handle_dirty_dx_node(handle, dir,
2242 frame->bh);
2243 goto journal_error;
2244 }
2245 } else {
2246 struct dx_root *dxroot;
2247 memcpy((char *) entries2, (char *) entries,
2248 icount * sizeof(struct dx_entry));
2249 dx_set_limit(entries2, dx_node_limit(dir));
2250
2251 /* Set up root */
2252 dx_set_count(entries, 1);
2253 dx_set_block(entries + 0, newblock);
2254 dxroot = (struct dx_root *)frames[0].bh->b_data;
2255 dxroot->info.indirect_levels += 1;
2256 dxtrace(printk(KERN_DEBUG
2257 "Creating %d level index...\n",
2258 info->indirect_levels));
2259 err = ext4_handle_dirty_dx_node(handle, dir, frame->bh);
2260 if (err)
2261 goto journal_error;
2262 err = ext4_handle_dirty_dx_node(handle, dir, bh2);
2263 brelse(bh2);
2264 restart = 1;
2265 goto journal_error;
2266 }
2267 }
2268 de = do_split(handle, dir, &bh, frame, &fname->hinfo);
2269 if (IS_ERR(de)) {
2270 err = PTR_ERR(de);
2271 goto cleanup;
2272 }
2273 err = add_dirent_to_buf(handle, fname, dir, inode, de, bh);
2274 goto cleanup;
2275
2276 journal_error:
2277 ext4_std_error(dir->i_sb, err); /* this is a no-op if err == 0 */
2278 cleanup:
2279 brelse(bh);
2280 dx_release(frames);
2281 /* @restart is true means htree-path has been changed, we need to
2282 * repeat dx_probe() to find out valid htree-path
2283 */
2284 if (restart && err == 0)
2285 goto again;
2286 return err;
2287 }
2288
2289 /*
2290 * ext4_generic_delete_entry deletes a directory entry by merging it
2291 * with the previous entry
2292 */
2293 int ext4_generic_delete_entry(handle_t *handle,
2294 struct inode *dir,
2295 struct ext4_dir_entry_2 *de_del,
2296 struct buffer_head *bh,
2297 void *entry_buf,
2298 int buf_size,
2299 int csum_size)
2300 {
2301 struct ext4_dir_entry_2 *de, *pde;
2302 unsigned int blocksize = dir->i_sb->s_blocksize;
2303 int i;
2304
2305 i = 0;
2306 pde = NULL;
2307 de = (struct ext4_dir_entry_2 *)entry_buf;
2308 while (i < buf_size - csum_size) {
2309 if (ext4_check_dir_entry(dir, NULL, de, bh,
2310 bh->b_data, bh->b_size, i))
2311 return -EFSCORRUPTED;
2312 if (de == de_del) {
2313 if (pde)
2314 pde->rec_len = ext4_rec_len_to_disk(
2315 ext4_rec_len_from_disk(pde->rec_len,
2316 blocksize) +
2317 ext4_rec_len_from_disk(de->rec_len,
2318 blocksize),
2319 blocksize);
2320 else
2321 de->inode = 0;
2322 inode_inc_iversion(dir);
2323 return 0;
2324 }
2325 i += ext4_rec_len_from_disk(de->rec_len, blocksize);
2326 pde = de;
2327 de = ext4_next_entry(de, blocksize);
2328 }
2329 return -ENOENT;
2330 }
2331
2332 static int ext4_delete_entry(handle_t *handle,
2333 struct inode *dir,
2334 struct ext4_dir_entry_2 *de_del,
2335 struct buffer_head *bh)
2336 {
2337 int err, csum_size = 0;
2338
2339 if (ext4_has_inline_data(dir)) {
2340 int has_inline_data = 1;
2341 err = ext4_delete_inline_entry(handle, dir, de_del, bh,
2342 &has_inline_data);
2343 if (has_inline_data)
2344 return err;
2345 }
2346
2347 if (ext4_has_metadata_csum(dir->i_sb))
2348 csum_size = sizeof(struct ext4_dir_entry_tail);
2349
2350 BUFFER_TRACE(bh, "get_write_access");
2351 err = ext4_journal_get_write_access(handle, bh);
2352 if (unlikely(err))
2353 goto out;
2354
2355 err = ext4_generic_delete_entry(handle, dir, de_del,
2356 bh, bh->b_data,
2357 dir->i_sb->s_blocksize, csum_size);
2358 if (err)
2359 goto out;
2360
2361 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
2362 err = ext4_handle_dirty_dirent_node(handle, dir, bh);
2363 if (unlikely(err))
2364 goto out;
2365
2366 return 0;
2367 out:
2368 if (err != -ENOENT)
2369 ext4_std_error(dir->i_sb, err);
2370 return err;
2371 }
2372
2373 /*
2374 * Set directory link count to 1 if nlinks > EXT4_LINK_MAX, or if nlinks == 2
2375 * since this indicates that nlinks count was previously 1 to avoid overflowing
2376 * the 16-bit i_links_count field on disk. Directories with i_nlink == 1 mean
2377 * that subdirectory link counts are not being maintained accurately.
2378 *
2379 * The caller has already checked for i_nlink overflow in case the DIR_LINK
2380 * feature is not enabled and returned -EMLINK. The is_dx() check is a proxy
2381 * for checking S_ISDIR(inode) (since the INODE_INDEX feature will not be set
2382 * on regular files) and to avoid creating huge/slow non-HTREE directories.
2383 */
2384 static void ext4_inc_count(handle_t *handle, struct inode *inode)
2385 {
2386 inc_nlink(inode);
2387 if (is_dx(inode) &&
2388 (inode->i_nlink > EXT4_LINK_MAX || inode->i_nlink == 2))
2389 set_nlink(inode, 1);
2390 }
2391
2392 /*
2393 * If a directory had nlink == 1, then we should let it be 1. This indicates
2394 * directory has >EXT4_LINK_MAX subdirs.
2395 */
2396 static void ext4_dec_count(handle_t *handle, struct inode *inode)
2397 {
2398 if (!S_ISDIR(inode->i_mode) || inode->i_nlink > 2)
2399 drop_nlink(inode);
2400 }
2401
2402
2403 static int ext4_add_nondir(handle_t *handle,
2404 struct dentry *dentry, struct inode *inode)
2405 {
2406 int err = ext4_add_entry(handle, dentry, inode);
2407 if (!err) {
2408 ext4_mark_inode_dirty(handle, inode);
2409 unlock_new_inode(inode);
2410 d_instantiate(dentry, inode);
2411 return 0;
2412 }
2413 drop_nlink(inode);
2414 unlock_new_inode(inode);
2415 iput(inode);
2416 return err;
2417 }
2418
2419 /*
2420 * By the time this is called, we already have created
2421 * the directory cache entry for the new file, but it
2422 * is so far negative - it has no inode.
2423 *
2424 * If the create succeeds, we fill in the inode information
2425 * with d_instantiate().
2426 */
2427 static int ext4_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2428 bool excl)
2429 {
2430 handle_t *handle;
2431 struct inode *inode;
2432 int err, credits, retries = 0;
2433
2434 err = dquot_initialize(dir);
2435 if (err)
2436 return err;
2437
2438 credits = (EXT4_DATA_TRANS_BLOCKS(dir->i_sb) +
2439 EXT4_INDEX_EXTRA_TRANS_BLOCKS + 3);
2440 retry:
2441 inode = ext4_new_inode_start_handle(dir, mode, &dentry->d_name, 0,
2442 NULL, EXT4_HT_DIR, credits);
2443 handle = ext4_journal_current_handle();
2444 err = PTR_ERR(inode);
2445 if (!IS_ERR(inode)) {
2446 inode->i_op = &ext4_file_inode_operations;
2447 inode->i_fop = &ext4_file_operations;
2448 ext4_set_aops(inode);
2449 err = ext4_add_nondir(handle, dentry, inode);
2450 if (!err && IS_DIRSYNC(dir))
2451 ext4_handle_sync(handle);
2452 }
2453 if (handle)
2454 ext4_journal_stop(handle);
2455 if (err == -ENOSPC && ext4_should_retry_alloc(dir->i_sb, &retries))
2456 goto retry;
2457 return err;
2458 }
2459
2460 static int ext4_mknod(struct inode *dir, struct dentry *dentry,
2461 umode_t mode, dev_t rdev)
2462 {
2463 handle_t *handle;
2464 struct inode *inode;
2465 int err, credits, retries = 0;
2466
2467 err = dquot_initialize(dir);
2468 if (err)
2469 return err;
2470
2471 credits = (EXT4_DATA_TRANS_BLOCKS(dir->i_sb) +
2472 EXT4_INDEX_EXTRA_TRANS_BLOCKS + 3);
2473 retry:
2474 inode = ext4_new_inode_start_handle(dir, mode, &dentry->d_name, 0,
2475 NULL, EXT4_HT_DIR, credits);
2476 handle = ext4_journal_current_handle();
2477 err = PTR_ERR(inode);
2478 if (!IS_ERR(inode)) {
2479 init_special_inode(inode, inode->i_mode, rdev);
2480 inode->i_op = &ext4_special_inode_operations;
2481 err = ext4_add_nondir(handle, dentry, inode);
2482 if (!err && IS_DIRSYNC(dir))
2483 ext4_handle_sync(handle);
2484 }
2485 if (handle)
2486 ext4_journal_stop(handle);
2487 if (err == -ENOSPC && ext4_should_retry_alloc(dir->i_sb, &retries))
2488 goto retry;
2489 return err;
2490 }
2491
2492 static int ext4_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
2493 {
2494 handle_t *handle;
2495 struct inode *inode;
2496 int err, retries = 0;
2497
2498 err = dquot_initialize(dir);
2499 if (err)
2500 return err;
2501
2502 retry:
2503 inode = ext4_new_inode_start_handle(dir, mode,
2504 NULL, 0, NULL,
2505 EXT4_HT_DIR,
2506 EXT4_MAXQUOTAS_INIT_BLOCKS(dir->i_sb) +
2507 4 + EXT4_XATTR_TRANS_BLOCKS);
2508 handle = ext4_journal_current_handle();
2509 err = PTR_ERR(inode);
2510 if (!IS_ERR(inode)) {
2511 inode->i_op = &ext4_file_inode_operations;
2512 inode->i_fop = &ext4_file_operations;
2513 ext4_set_aops(inode);
2514 d_tmpfile(dentry, inode);
2515 err = ext4_orphan_add(handle, inode);
2516 if (err)
2517 goto err_unlock_inode;
2518 mark_inode_dirty(inode);
2519 unlock_new_inode(inode);
2520 }
2521 if (handle)
2522 ext4_journal_stop(handle);
2523 if (err == -ENOSPC && ext4_should_retry_alloc(dir->i_sb, &retries))
2524 goto retry;
2525 return err;
2526 err_unlock_inode:
2527 ext4_journal_stop(handle);
2528 unlock_new_inode(inode);
2529 return err;
2530 }
2531
2532 struct ext4_dir_entry_2 *ext4_init_dot_dotdot(struct inode *inode,
2533 struct ext4_dir_entry_2 *de,
2534 int blocksize, int csum_size,
2535 unsigned int parent_ino, int dotdot_real_len)
2536 {
2537 de->inode = cpu_to_le32(inode->i_ino);
2538 de->name_len = 1;
2539 de->rec_len = ext4_rec_len_to_disk(EXT4_DIR_REC_LEN(de->name_len),
2540 blocksize);
2541 strcpy(de->name, ".");
2542 ext4_set_de_type(inode->i_sb, de, S_IFDIR);
2543
2544 de = ext4_next_entry(de, blocksize);
2545 de->inode = cpu_to_le32(parent_ino);
2546 de->name_len = 2;
2547 if (!dotdot_real_len)
2548 de->rec_len = ext4_rec_len_to_disk(blocksize -
2549 (csum_size + EXT4_DIR_REC_LEN(1)),
2550 blocksize);
2551 else
2552 de->rec_len = ext4_rec_len_to_disk(
2553 EXT4_DIR_REC_LEN(de->name_len), blocksize);
2554 strcpy(de->name, "..");
2555 ext4_set_de_type(inode->i_sb, de, S_IFDIR);
2556
2557 return ext4_next_entry(de, blocksize);
2558 }
2559
2560 static int ext4_init_new_dir(handle_t *handle, struct inode *dir,
2561 struct inode *inode)
2562 {
2563 struct buffer_head *dir_block = NULL;
2564 struct ext4_dir_entry_2 *de;
2565 struct ext4_dir_entry_tail *t;
2566 ext4_lblk_t block = 0;
2567 unsigned int blocksize = dir->i_sb->s_blocksize;
2568 int csum_size = 0;
2569 int err;
2570
2571 if (ext4_has_metadata_csum(dir->i_sb))
2572 csum_size = sizeof(struct ext4_dir_entry_tail);
2573
2574 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2575 err = ext4_try_create_inline_dir(handle, dir, inode);
2576 if (err < 0 && err != -ENOSPC)
2577 goto out;
2578 if (!err)
2579 goto out;
2580 }
2581
2582 inode->i_size = 0;
2583 dir_block = ext4_append(handle, inode, &block);
2584 if (IS_ERR(dir_block))
2585 return PTR_ERR(dir_block);
2586 de = (struct ext4_dir_entry_2 *)dir_block->b_data;
2587 ext4_init_dot_dotdot(inode, de, blocksize, csum_size, dir->i_ino, 0);
2588 set_nlink(inode, 2);
2589 if (csum_size) {
2590 t = EXT4_DIRENT_TAIL(dir_block->b_data, blocksize);
2591 initialize_dirent_tail(t, blocksize);
2592 }
2593
2594 BUFFER_TRACE(dir_block, "call ext4_handle_dirty_metadata");
2595 err = ext4_handle_dirty_dirent_node(handle, inode, dir_block);
2596 if (err)
2597 goto out;
2598 set_buffer_verified(dir_block);
2599 out:
2600 brelse(dir_block);
2601 return err;
2602 }
2603
2604 static int ext4_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2605 {
2606 handle_t *handle;
2607 struct inode *inode;
2608 int err, credits, retries = 0;
2609
2610 if (EXT4_DIR_LINK_MAX(dir))
2611 return -EMLINK;
2612
2613 err = dquot_initialize(dir);
2614 if (err)
2615 return err;
2616
2617 credits = (EXT4_DATA_TRANS_BLOCKS(dir->i_sb) +
2618 EXT4_INDEX_EXTRA_TRANS_BLOCKS + 3);
2619 retry:
2620 inode = ext4_new_inode_start_handle(dir, S_IFDIR | mode,
2621 &dentry->d_name,
2622 0, NULL, EXT4_HT_DIR, credits);
2623 handle = ext4_journal_current_handle();
2624 err = PTR_ERR(inode);
2625 if (IS_ERR(inode))
2626 goto out_stop;
2627
2628 inode->i_op = &ext4_dir_inode_operations;
2629 inode->i_fop = &ext4_dir_operations;
2630 err = ext4_init_new_dir(handle, dir, inode);
2631 if (err)
2632 goto out_clear_inode;
2633 err = ext4_mark_inode_dirty(handle, inode);
2634 if (!err)
2635 err = ext4_add_entry(handle, dentry, inode);
2636 if (err) {
2637 out_clear_inode:
2638 clear_nlink(inode);
2639 unlock_new_inode(inode);
2640 ext4_mark_inode_dirty(handle, inode);
2641 iput(inode);
2642 goto out_stop;
2643 }
2644 ext4_inc_count(handle, dir);
2645 ext4_update_dx_flag(dir);
2646 err = ext4_mark_inode_dirty(handle, dir);
2647 if (err)
2648 goto out_clear_inode;
2649 unlock_new_inode(inode);
2650 d_instantiate(dentry, inode);
2651 if (IS_DIRSYNC(dir))
2652 ext4_handle_sync(handle);
2653
2654 out_stop:
2655 if (handle)
2656 ext4_journal_stop(handle);
2657 if (err == -ENOSPC && ext4_should_retry_alloc(dir->i_sb, &retries))
2658 goto retry;
2659 return err;
2660 }
2661
2662 /*
2663 * routine to check that the specified directory is empty (for rmdir)
2664 */
2665 bool ext4_empty_dir(struct inode *inode)
2666 {
2667 unsigned int offset;
2668 struct buffer_head *bh;
2669 struct ext4_dir_entry_2 *de, *de1;
2670 struct super_block *sb;
2671
2672 if (ext4_has_inline_data(inode)) {
2673 int has_inline_data = 1;
2674 int ret;
2675
2676 ret = empty_inline_dir(inode, &has_inline_data);
2677 if (has_inline_data)
2678 return ret;
2679 }
2680
2681 sb = inode->i_sb;
2682 if (inode->i_size < EXT4_DIR_REC_LEN(1) + EXT4_DIR_REC_LEN(2)) {
2683 EXT4_ERROR_INODE(inode, "invalid size");
2684 return true;
2685 }
2686 bh = ext4_read_dirblock(inode, 0, EITHER);
2687 if (IS_ERR(bh))
2688 return true;
2689
2690 de = (struct ext4_dir_entry_2 *) bh->b_data;
2691 de1 = ext4_next_entry(de, sb->s_blocksize);
2692 if (le32_to_cpu(de->inode) != inode->i_ino ||
2693 le32_to_cpu(de1->inode) == 0 ||
2694 strcmp(".", de->name) || strcmp("..", de1->name)) {
2695 ext4_warning_inode(inode, "directory missing '.' and/or '..'");
2696 brelse(bh);
2697 return true;
2698 }
2699 offset = ext4_rec_len_from_disk(de->rec_len, sb->s_blocksize) +
2700 ext4_rec_len_from_disk(de1->rec_len, sb->s_blocksize);
2701 de = ext4_next_entry(de1, sb->s_blocksize);
2702 while (offset < inode->i_size) {
2703 if ((void *) de >= (void *) (bh->b_data+sb->s_blocksize)) {
2704 unsigned int lblock;
2705 brelse(bh);
2706 lblock = offset >> EXT4_BLOCK_SIZE_BITS(sb);
2707 bh = ext4_read_dirblock(inode, lblock, EITHER);
2708 if (IS_ERR(bh))
2709 return true;
2710 de = (struct ext4_dir_entry_2 *) bh->b_data;
2711 }
2712 if (ext4_check_dir_entry(inode, NULL, de, bh,
2713 bh->b_data, bh->b_size, offset)) {
2714 de = (struct ext4_dir_entry_2 *)(bh->b_data +
2715 sb->s_blocksize);
2716 offset = (offset | (sb->s_blocksize - 1)) + 1;
2717 continue;
2718 }
2719 if (le32_to_cpu(de->inode)) {
2720 brelse(bh);
2721 return false;
2722 }
2723 offset += ext4_rec_len_from_disk(de->rec_len, sb->s_blocksize);
2724 de = ext4_next_entry(de, sb->s_blocksize);
2725 }
2726 brelse(bh);
2727 return true;
2728 }
2729
2730 /*
2731 * ext4_orphan_add() links an unlinked or truncated inode into a list of
2732 * such inodes, starting at the superblock, in case we crash before the
2733 * file is closed/deleted, or in case the inode truncate spans multiple
2734 * transactions and the last transaction is not recovered after a crash.
2735 *
2736 * At filesystem recovery time, we walk this list deleting unlinked
2737 * inodes and truncating linked inodes in ext4_orphan_cleanup().
2738 *
2739 * Orphan list manipulation functions must be called under i_mutex unless
2740 * we are just creating the inode or deleting it.
2741 */
2742 int ext4_orphan_add(handle_t *handle, struct inode *inode)
2743 {
2744 struct super_block *sb = inode->i_sb;
2745 struct ext4_sb_info *sbi = EXT4_SB(sb);
2746 struct ext4_iloc iloc;
2747 int err = 0, rc;
2748 bool dirty = false;
2749
2750 if (!sbi->s_journal || is_bad_inode(inode))
2751 return 0;
2752
2753 WARN_ON_ONCE(!(inode->i_state & (I_NEW | I_FREEING)) &&
2754 !inode_is_locked(inode));
2755 /*
2756 * Exit early if inode already is on orphan list. This is a big speedup
2757 * since we don't have to contend on the global s_orphan_lock.
2758 */
2759 if (!list_empty(&EXT4_I(inode)->i_orphan))
2760 return 0;
2761
2762 /*
2763 * Orphan handling is only valid for files with data blocks
2764 * being truncated, or files being unlinked. Note that we either
2765 * hold i_mutex, or the inode can not be referenced from outside,
2766 * so i_nlink should not be bumped due to race
2767 */
2768 J_ASSERT((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
2769 S_ISLNK(inode->i_mode)) || inode->i_nlink == 0);
2770
2771 BUFFER_TRACE(sbi->s_sbh, "get_write_access");
2772 err = ext4_journal_get_write_access(handle, sbi->s_sbh);
2773 if (err)
2774 goto out;
2775
2776 err = ext4_reserve_inode_write(handle, inode, &iloc);
2777 if (err)
2778 goto out;
2779
2780 mutex_lock(&sbi->s_orphan_lock);
2781 /*
2782 * Due to previous errors inode may be already a part of on-disk
2783 * orphan list. If so skip on-disk list modification.
2784 */
2785 if (!NEXT_ORPHAN(inode) || NEXT_ORPHAN(inode) >
2786 (le32_to_cpu(sbi->s_es->s_inodes_count))) {
2787 /* Insert this inode at the head of the on-disk orphan list */
2788 NEXT_ORPHAN(inode) = le32_to_cpu(sbi->s_es->s_last_orphan);
2789 sbi->s_es->s_last_orphan = cpu_to_le32(inode->i_ino);
2790 dirty = true;
2791 }
2792 list_add(&EXT4_I(inode)->i_orphan, &sbi->s_orphan);
2793 mutex_unlock(&sbi->s_orphan_lock);
2794
2795 if (dirty) {
2796 err = ext4_handle_dirty_super(handle, sb);
2797 rc = ext4_mark_iloc_dirty(handle, inode, &iloc);
2798 if (!err)
2799 err = rc;
2800 if (err) {
2801 /*
2802 * We have to remove inode from in-memory list if
2803 * addition to on disk orphan list failed. Stray orphan
2804 * list entries can cause panics at unmount time.
2805 */
2806 mutex_lock(&sbi->s_orphan_lock);
2807 list_del_init(&EXT4_I(inode)->i_orphan);
2808 mutex_unlock(&sbi->s_orphan_lock);
2809 }
2810 }
2811 jbd_debug(4, "superblock will point to %lu\n", inode->i_ino);
2812 jbd_debug(4, "orphan inode %lu will point to %d\n",
2813 inode->i_ino, NEXT_ORPHAN(inode));
2814 out:
2815 ext4_std_error(sb, err);
2816 return err;
2817 }
2818
2819 /*
2820 * ext4_orphan_del() removes an unlinked or truncated inode from the list
2821 * of such inodes stored on disk, because it is finally being cleaned up.
2822 */
2823 int ext4_orphan_del(handle_t *handle, struct inode *inode)
2824 {
2825 struct list_head *prev;
2826 struct ext4_inode_info *ei = EXT4_I(inode);
2827 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2828 __u32 ino_next;
2829 struct ext4_iloc iloc;
2830 int err = 0;
2831
2832 if (!sbi->s_journal && !(sbi->s_mount_state & EXT4_ORPHAN_FS))
2833 return 0;
2834
2835 WARN_ON_ONCE(!(inode->i_state & (I_NEW | I_FREEING)) &&
2836 !inode_is_locked(inode));
2837 /* Do this quick check before taking global s_orphan_lock. */
2838 if (list_empty(&ei->i_orphan))
2839 return 0;
2840
2841 if (handle) {
2842 /* Grab inode buffer early before taking global s_orphan_lock */
2843 err = ext4_reserve_inode_write(handle, inode, &iloc);
2844 }
2845
2846 mutex_lock(&sbi->s_orphan_lock);
2847 jbd_debug(4, "remove inode %lu from orphan list\n", inode->i_ino);
2848
2849 prev = ei->i_orphan.prev;
2850 list_del_init(&ei->i_orphan);
2851
2852 /* If we're on an error path, we may not have a valid
2853 * transaction handle with which to update the orphan list on
2854 * disk, but we still need to remove the inode from the linked
2855 * list in memory. */
2856 if (!handle || err) {
2857 mutex_unlock(&sbi->s_orphan_lock);
2858 goto out_err;
2859 }
2860
2861 ino_next = NEXT_ORPHAN(inode);
2862 if (prev == &sbi->s_orphan) {
2863 jbd_debug(4, "superblock will point to %u\n", ino_next);
2864 BUFFER_TRACE(sbi->s_sbh, "get_write_access");
2865 err = ext4_journal_get_write_access(handle, sbi->s_sbh);
2866 if (err) {
2867 mutex_unlock(&sbi->s_orphan_lock);
2868 goto out_brelse;
2869 }
2870 sbi->s_es->s_last_orphan = cpu_to_le32(ino_next);
2871 mutex_unlock(&sbi->s_orphan_lock);
2872 err = ext4_handle_dirty_super(handle, inode->i_sb);
2873 } else {
2874 struct ext4_iloc iloc2;
2875 struct inode *i_prev =
2876 &list_entry(prev, struct ext4_inode_info, i_orphan)->vfs_inode;
2877
2878 jbd_debug(4, "orphan inode %lu will point to %u\n",
2879 i_prev->i_ino, ino_next);
2880 err = ext4_reserve_inode_write(handle, i_prev, &iloc2);
2881 if (err) {
2882 mutex_unlock(&sbi->s_orphan_lock);
2883 goto out_brelse;
2884 }
2885 NEXT_ORPHAN(i_prev) = ino_next;
2886 err = ext4_mark_iloc_dirty(handle, i_prev, &iloc2);
2887 mutex_unlock(&sbi->s_orphan_lock);
2888 }
2889 if (err)
2890 goto out_brelse;
2891 NEXT_ORPHAN(inode) = 0;
2892 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
2893 out_err:
2894 ext4_std_error(inode->i_sb, err);
2895 return err;
2896
2897 out_brelse:
2898 brelse(iloc.bh);
2899 goto out_err;
2900 }
2901
2902 static int ext4_rmdir(struct inode *dir, struct dentry *dentry)
2903 {
2904 int retval;
2905 struct inode *inode;
2906 struct buffer_head *bh;
2907 struct ext4_dir_entry_2 *de;
2908 handle_t *handle = NULL;
2909
2910 if (unlikely(ext4_forced_shutdown(EXT4_SB(dir->i_sb))))
2911 return -EIO;
2912
2913 /* Initialize quotas before so that eventual writes go in
2914 * separate transaction */
2915 retval = dquot_initialize(dir);
2916 if (retval)
2917 return retval;
2918 retval = dquot_initialize(d_inode(dentry));
2919 if (retval)
2920 return retval;
2921
2922 retval = -ENOENT;
2923 bh = ext4_find_entry(dir, &dentry->d_name, &de, NULL);
2924 if (IS_ERR(bh))
2925 return PTR_ERR(bh);
2926 if (!bh)
2927 goto end_rmdir;
2928
2929 inode = d_inode(dentry);
2930
2931 retval = -EFSCORRUPTED;
2932 if (le32_to_cpu(de->inode) != inode->i_ino)
2933 goto end_rmdir;
2934
2935 retval = -ENOTEMPTY;
2936 if (!ext4_empty_dir(inode))
2937 goto end_rmdir;
2938
2939 handle = ext4_journal_start(dir, EXT4_HT_DIR,
2940 EXT4_DATA_TRANS_BLOCKS(dir->i_sb));
2941 if (IS_ERR(handle)) {
2942 retval = PTR_ERR(handle);
2943 handle = NULL;
2944 goto end_rmdir;
2945 }
2946
2947 if (IS_DIRSYNC(dir))
2948 ext4_handle_sync(handle);
2949
2950 retval = ext4_delete_entry(handle, dir, de, bh);
2951 if (retval)
2952 goto end_rmdir;
2953 if (!EXT4_DIR_LINK_EMPTY(inode))
2954 ext4_warning_inode(inode,
2955 "empty directory '%.*s' has too many links (%u)",
2956 dentry->d_name.len, dentry->d_name.name,
2957 inode->i_nlink);
2958 inode->i_version++;
2959 clear_nlink(inode);
2960 /* There's no need to set i_disksize: the fact that i_nlink is
2961 * zero will ensure that the right thing happens during any
2962 * recovery. */
2963 inode->i_size = 0;
2964 ext4_orphan_add(handle, inode);
2965 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2966 ext4_mark_inode_dirty(handle, inode);
2967 ext4_dec_count(handle, dir);
2968 ext4_update_dx_flag(dir);
2969 ext4_mark_inode_dirty(handle, dir);
2970
2971 end_rmdir:
2972 brelse(bh);
2973 if (handle)
2974 ext4_journal_stop(handle);
2975 return retval;
2976 }
2977
2978 static int ext4_unlink(struct inode *dir, struct dentry *dentry)
2979 {
2980 int retval;
2981 struct inode *inode;
2982 struct buffer_head *bh;
2983 struct ext4_dir_entry_2 *de;
2984 handle_t *handle = NULL;
2985
2986 if (unlikely(ext4_forced_shutdown(EXT4_SB(dir->i_sb))))
2987 return -EIO;
2988
2989 trace_ext4_unlink_enter(dir, dentry);
2990 /* Initialize quotas before so that eventual writes go
2991 * in separate transaction */
2992 retval = dquot_initialize(dir);
2993 if (retval)
2994 return retval;
2995 retval = dquot_initialize(d_inode(dentry));
2996 if (retval)
2997 return retval;
2998
2999 retval = -ENOENT;
3000 bh = ext4_find_entry(dir, &dentry->d_name, &de, NULL);
3001 if (IS_ERR(bh))
3002 return PTR_ERR(bh);
3003 if (!bh)
3004 goto end_unlink;
3005
3006 inode = d_inode(dentry);
3007
3008 retval = -EFSCORRUPTED;
3009 if (le32_to_cpu(de->inode) != inode->i_ino)
3010 goto end_unlink;
3011
3012 handle = ext4_journal_start(dir, EXT4_HT_DIR,
3013 EXT4_DATA_TRANS_BLOCKS(dir->i_sb));
3014 if (IS_ERR(handle)) {
3015 retval = PTR_ERR(handle);
3016 handle = NULL;
3017 goto end_unlink;
3018 }
3019
3020 if (IS_DIRSYNC(dir))
3021 ext4_handle_sync(handle);
3022
3023 if (inode->i_nlink == 0) {
3024 ext4_warning_inode(inode, "Deleting file '%.*s' with no links",
3025 dentry->d_name.len, dentry->d_name.name);
3026 set_nlink(inode, 1);
3027 }
3028 retval = ext4_delete_entry(handle, dir, de, bh);
3029 if (retval)
3030 goto end_unlink;
3031 dir->i_ctime = dir->i_mtime = current_time(dir);
3032 ext4_update_dx_flag(dir);
3033 ext4_mark_inode_dirty(handle, dir);
3034 drop_nlink(inode);
3035 if (!inode->i_nlink)
3036 ext4_orphan_add(handle, inode);
3037 inode->i_ctime = current_time(inode);
3038 ext4_mark_inode_dirty(handle, inode);
3039
3040 end_unlink:
3041 brelse(bh);
3042 if (handle)
3043 ext4_journal_stop(handle);
3044 trace_ext4_unlink_exit(dentry, retval);
3045 return retval;
3046 }
3047
3048 static int ext4_symlink(struct inode *dir,
3049 struct dentry *dentry, const char *symname)
3050 {
3051 handle_t *handle;
3052 struct inode *inode;
3053 int err, len = strlen(symname);
3054 int credits;
3055 bool encryption_required;
3056 struct fscrypt_str disk_link;
3057 struct fscrypt_symlink_data *sd = NULL;
3058
3059 if (unlikely(ext4_forced_shutdown(EXT4_SB(dir->i_sb))))
3060 return -EIO;
3061
3062 disk_link.len = len + 1;
3063 disk_link.name = (char *) symname;
3064
3065 encryption_required = (ext4_encrypted_inode(dir) ||
3066 DUMMY_ENCRYPTION_ENABLED(EXT4_SB(dir->i_sb)));
3067 if (encryption_required) {
3068 err = fscrypt_get_encryption_info(dir);
3069 if (err)
3070 return err;
3071 if (!fscrypt_has_encryption_key(dir))
3072 return -ENOKEY;
3073 disk_link.len = (fscrypt_fname_encrypted_size(dir, len) +
3074 sizeof(struct fscrypt_symlink_data));
3075 sd = kzalloc(disk_link.len, GFP_KERNEL);
3076 if (!sd)
3077 return -ENOMEM;
3078 }
3079
3080 if (disk_link.len > dir->i_sb->s_blocksize) {
3081 err = -ENAMETOOLONG;
3082 goto err_free_sd;
3083 }
3084
3085 err = dquot_initialize(dir);
3086 if (err)
3087 goto err_free_sd;
3088
3089 if ((disk_link.len > EXT4_N_BLOCKS * 4)) {
3090 /*
3091 * For non-fast symlinks, we just allocate inode and put it on
3092 * orphan list in the first transaction => we need bitmap,
3093 * group descriptor, sb, inode block, quota blocks, and
3094 * possibly selinux xattr blocks.
3095 */
3096 credits = 4 + EXT4_MAXQUOTAS_INIT_BLOCKS(dir->i_sb) +
3097 EXT4_XATTR_TRANS_BLOCKS;
3098 } else {
3099 /*
3100 * Fast symlink. We have to add entry to directory
3101 * (EXT4_DATA_TRANS_BLOCKS + EXT4_INDEX_EXTRA_TRANS_BLOCKS),
3102 * allocate new inode (bitmap, group descriptor, inode block,
3103 * quota blocks, sb is already counted in previous macros).
3104 */
3105 credits = EXT4_DATA_TRANS_BLOCKS(dir->i_sb) +
3106 EXT4_INDEX_EXTRA_TRANS_BLOCKS + 3;
3107 }
3108
3109 inode = ext4_new_inode_start_handle(dir, S_IFLNK|S_IRWXUGO,
3110 &dentry->d_name, 0, NULL,
3111 EXT4_HT_DIR, credits);
3112 handle = ext4_journal_current_handle();
3113 if (IS_ERR(inode)) {
3114 if (handle)
3115 ext4_journal_stop(handle);
3116 err = PTR_ERR(inode);
3117 goto err_free_sd;
3118 }
3119
3120 if (encryption_required) {
3121 struct qstr istr;
3122 struct fscrypt_str ostr =
3123 FSTR_INIT(sd->encrypted_path, disk_link.len);
3124
3125 istr.name = (const unsigned char *) symname;
3126 istr.len = len;
3127 err = fscrypt_fname_usr_to_disk(inode, &istr, &ostr);
3128 if (err)
3129 goto err_drop_inode;
3130 sd->len = cpu_to_le16(ostr.len);
3131 disk_link.name = (char *) sd;
3132 inode->i_op = &ext4_encrypted_symlink_inode_operations;
3133 }
3134
3135 if ((disk_link.len > EXT4_N_BLOCKS * 4)) {
3136 if (!encryption_required)
3137 inode->i_op = &ext4_symlink_inode_operations;
3138 inode_nohighmem(inode);
3139 ext4_set_aops(inode);
3140 /*
3141 * We cannot call page_symlink() with transaction started
3142 * because it calls into ext4_write_begin() which can wait
3143 * for transaction commit if we are running out of space
3144 * and thus we deadlock. So we have to stop transaction now
3145 * and restart it when symlink contents is written.
3146 *
3147 * To keep fs consistent in case of crash, we have to put inode
3148 * to orphan list in the mean time.
3149 */
3150 drop_nlink(inode);
3151 err = ext4_orphan_add(handle, inode);
3152 ext4_journal_stop(handle);
3153 handle = NULL;
3154 if (err)
3155 goto err_drop_inode;
3156 err = __page_symlink(inode, disk_link.name, disk_link.len, 1);
3157 if (err)
3158 goto err_drop_inode;
3159 /*
3160 * Now inode is being linked into dir (EXT4_DATA_TRANS_BLOCKS
3161 * + EXT4_INDEX_EXTRA_TRANS_BLOCKS), inode is also modified
3162 */
3163 handle = ext4_journal_start(dir, EXT4_HT_DIR,
3164 EXT4_DATA_TRANS_BLOCKS(dir->i_sb) +
3165 EXT4_INDEX_EXTRA_TRANS_BLOCKS + 1);
3166 if (IS_ERR(handle)) {
3167 err = PTR_ERR(handle);
3168 handle = NULL;
3169 goto err_drop_inode;
3170 }
3171 set_nlink(inode, 1);
3172 err = ext4_orphan_del(handle, inode);
3173 if (err)
3174 goto err_drop_inode;
3175 } else {
3176 /* clear the extent format for fast symlink */
3177 ext4_clear_inode_flag(inode, EXT4_INODE_EXTENTS);
3178 if (!encryption_required) {
3179 inode->i_op = &ext4_fast_symlink_inode_operations;
3180 inode->i_link = (char *)&EXT4_I(inode)->i_data;
3181 }
3182 memcpy((char *)&EXT4_I(inode)->i_data, disk_link.name,
3183 disk_link.len);
3184 inode->i_size = disk_link.len - 1;
3185 }
3186 EXT4_I(inode)->i_disksize = inode->i_size;
3187 err = ext4_add_nondir(handle, dentry, inode);
3188 if (!err && IS_DIRSYNC(dir))
3189 ext4_handle_sync(handle);
3190
3191 if (handle)
3192 ext4_journal_stop(handle);
3193 kfree(sd);
3194 return err;
3195 err_drop_inode:
3196 if (handle)
3197 ext4_journal_stop(handle);
3198 clear_nlink(inode);
3199 unlock_new_inode(inode);
3200 iput(inode);
3201 err_free_sd:
3202 kfree(sd);
3203 return err;
3204 }
3205
3206 static int ext4_link(struct dentry *old_dentry,
3207 struct inode *dir, struct dentry *dentry)
3208 {
3209 handle_t *handle;
3210 struct inode *inode = d_inode(old_dentry);
3211 int err, retries = 0;
3212
3213 if (inode->i_nlink >= EXT4_LINK_MAX)
3214 return -EMLINK;
3215
3216 err = fscrypt_prepare_link(old_dentry, dir, dentry);
3217 if (err)
3218 return err;
3219
3220 if ((ext4_test_inode_flag(dir, EXT4_INODE_PROJINHERIT)) &&
3221 (!projid_eq(EXT4_I(dir)->i_projid,
3222 EXT4_I(old_dentry->d_inode)->i_projid)))
3223 return -EXDEV;
3224
3225 err = dquot_initialize(dir);
3226 if (err)
3227 return err;
3228
3229 retry:
3230 handle = ext4_journal_start(dir, EXT4_HT_DIR,
3231 (EXT4_DATA_TRANS_BLOCKS(dir->i_sb) +
3232 EXT4_INDEX_EXTRA_TRANS_BLOCKS) + 1);
3233 if (IS_ERR(handle))
3234 return PTR_ERR(handle);
3235
3236 if (IS_DIRSYNC(dir))
3237 ext4_handle_sync(handle);
3238
3239 inode->i_ctime = current_time(inode);
3240 ext4_inc_count(handle, inode);
3241 ihold(inode);
3242
3243 err = ext4_add_entry(handle, dentry, inode);
3244 if (!err) {
3245 ext4_mark_inode_dirty(handle, inode);
3246 /* this can happen only for tmpfile being
3247 * linked the first time
3248 */
3249 if (inode->i_nlink == 1)
3250 ext4_orphan_del(handle, inode);
3251 d_instantiate(dentry, inode);
3252 } else {
3253 drop_nlink(inode);
3254 iput(inode);
3255 }
3256 ext4_journal_stop(handle);
3257 if (err == -ENOSPC && ext4_should_retry_alloc(dir->i_sb, &retries))
3258 goto retry;
3259 return err;
3260 }
3261
3262
3263 /*
3264 * Try to find buffer head where contains the parent block.
3265 * It should be the inode block if it is inlined or the 1st block
3266 * if it is a normal dir.
3267 */
3268 static struct buffer_head *ext4_get_first_dir_block(handle_t *handle,
3269 struct inode *inode,
3270 int *retval,
3271 struct ext4_dir_entry_2 **parent_de,
3272 int *inlined)
3273 {
3274 struct buffer_head *bh;
3275
3276 if (!ext4_has_inline_data(inode)) {
3277 bh = ext4_read_dirblock(inode, 0, EITHER);
3278 if (IS_ERR(bh)) {
3279 *retval = PTR_ERR(bh);
3280 return NULL;
3281 }
3282 *parent_de = ext4_next_entry(
3283 (struct ext4_dir_entry_2 *)bh->b_data,
3284 inode->i_sb->s_blocksize);
3285 return bh;
3286 }
3287
3288 *inlined = 1;
3289 return ext4_get_first_inline_block(inode, parent_de, retval);
3290 }
3291
3292 struct ext4_renament {
3293 struct inode *dir;
3294 struct dentry *dentry;
3295 struct inode *inode;
3296 bool is_dir;
3297 int dir_nlink_delta;
3298
3299 /* entry for "dentry" */
3300 struct buffer_head *bh;
3301 struct ext4_dir_entry_2 *de;
3302 int inlined;
3303
3304 /* entry for ".." in inode if it's a directory */
3305 struct buffer_head *dir_bh;
3306 struct ext4_dir_entry_2 *parent_de;
3307 int dir_inlined;
3308 };
3309
3310 static int ext4_rename_dir_prepare(handle_t *handle, struct ext4_renament *ent)
3311 {
3312 int retval;
3313
3314 ent->dir_bh = ext4_get_first_dir_block(handle, ent->inode,
3315 &retval, &ent->parent_de,
3316 &ent->dir_inlined);
3317 if (!ent->dir_bh)
3318 return retval;
3319 if (le32_to_cpu(ent->parent_de->inode) != ent->dir->i_ino)
3320 return -EFSCORRUPTED;
3321 BUFFER_TRACE(ent->dir_bh, "get_write_access");
3322 return ext4_journal_get_write_access(handle, ent->dir_bh);
3323 }
3324
3325 static int ext4_rename_dir_finish(handle_t *handle, struct ext4_renament *ent,
3326 unsigned dir_ino)
3327 {
3328 int retval;
3329
3330 ent->parent_de->inode = cpu_to_le32(dir_ino);
3331 BUFFER_TRACE(ent->dir_bh, "call ext4_handle_dirty_metadata");
3332 if (!ent->dir_inlined) {
3333 if (is_dx(ent->inode)) {
3334 retval = ext4_handle_dirty_dx_node(handle,
3335 ent->inode,
3336 ent->dir_bh);
3337 } else {
3338 retval = ext4_handle_dirty_dirent_node(handle,
3339 ent->inode,
3340 ent->dir_bh);
3341 }
3342 } else {
3343 retval = ext4_mark_inode_dirty(handle, ent->inode);
3344 }
3345 if (retval) {
3346 ext4_std_error(ent->dir->i_sb, retval);
3347 return retval;
3348 }
3349 return 0;
3350 }
3351
3352 static int ext4_setent(handle_t *handle, struct ext4_renament *ent,
3353 unsigned ino, unsigned file_type)
3354 {
3355 int retval;
3356
3357 BUFFER_TRACE(ent->bh, "get write access");
3358 retval = ext4_journal_get_write_access(handle, ent->bh);
3359 if (retval)
3360 return retval;
3361 ent->de->inode = cpu_to_le32(ino);
3362 if (ext4_has_feature_filetype(ent->dir->i_sb))
3363 ent->de->file_type = file_type;
3364 ent->dir->i_version++;
3365 ent->dir->i_ctime = ent->dir->i_mtime =
3366 current_time(ent->dir);
3367 ext4_mark_inode_dirty(handle, ent->dir);
3368 BUFFER_TRACE(ent->bh, "call ext4_handle_dirty_metadata");
3369 if (!ent->inlined) {
3370 retval = ext4_handle_dirty_dirent_node(handle,
3371 ent->dir, ent->bh);
3372 if (unlikely(retval)) {
3373 ext4_std_error(ent->dir->i_sb, retval);
3374 return retval;
3375 }
3376 }
3377 brelse(ent->bh);
3378 ent->bh = NULL;
3379
3380 return 0;
3381 }
3382
3383 static int ext4_find_delete_entry(handle_t *handle, struct inode *dir,
3384 const struct qstr *d_name)
3385 {
3386 int retval = -ENOENT;
3387 struct buffer_head *bh;
3388 struct ext4_dir_entry_2 *de;
3389
3390 bh = ext4_find_entry(dir, d_name, &de, NULL);
3391 if (IS_ERR(bh))
3392 return PTR_ERR(bh);
3393 if (bh) {
3394 retval = ext4_delete_entry(handle, dir, de, bh);
3395 brelse(bh);
3396 }
3397 return retval;
3398 }
3399
3400 static void ext4_rename_delete(handle_t *handle, struct ext4_renament *ent,
3401 int force_reread)
3402 {
3403 int retval;
3404 /*
3405 * ent->de could have moved from under us during htree split, so make
3406 * sure that we are deleting the right entry. We might also be pointing
3407 * to a stale entry in the unused part of ent->bh so just checking inum
3408 * and the name isn't enough.
3409 */
3410 if (le32_to_cpu(ent->de->inode) != ent->inode->i_ino ||
3411 ent->de->name_len != ent->dentry->d_name.len ||
3412 strncmp(ent->de->name, ent->dentry->d_name.name,
3413 ent->de->name_len) ||
3414 force_reread) {
3415 retval = ext4_find_delete_entry(handle, ent->dir,
3416 &ent->dentry->d_name);
3417 } else {
3418 retval = ext4_delete_entry(handle, ent->dir, ent->de, ent->bh);
3419 if (retval == -ENOENT) {
3420 retval = ext4_find_delete_entry(handle, ent->dir,
3421 &ent->dentry->d_name);
3422 }
3423 }
3424
3425 if (retval) {
3426 ext4_warning_inode(ent->dir,
3427 "Deleting old file: nlink %d, error=%d",
3428 ent->dir->i_nlink, retval);
3429 }
3430 }
3431
3432 static void ext4_update_dir_count(handle_t *handle, struct ext4_renament *ent)
3433 {
3434 if (ent->dir_nlink_delta) {
3435 if (ent->dir_nlink_delta == -1)
3436 ext4_dec_count(handle, ent->dir);
3437 else
3438 ext4_inc_count(handle, ent->dir);
3439 ext4_mark_inode_dirty(handle, ent->dir);
3440 }
3441 }
3442
3443 static struct inode *ext4_whiteout_for_rename(struct ext4_renament *ent,
3444 int credits, handle_t **h)
3445 {
3446 struct inode *wh;
3447 handle_t *handle;
3448 int retries = 0;
3449
3450 /*
3451 * for inode block, sb block, group summaries,
3452 * and inode bitmap
3453 */
3454 credits += (EXT4_MAXQUOTAS_TRANS_BLOCKS(ent->dir->i_sb) +
3455 EXT4_XATTR_TRANS_BLOCKS + 4);
3456 retry:
3457 wh = ext4_new_inode_start_handle(ent->dir, S_IFCHR | WHITEOUT_MODE,
3458 &ent->dentry->d_name, 0, NULL,
3459 EXT4_HT_DIR, credits);
3460
3461 handle = ext4_journal_current_handle();
3462 if (IS_ERR(wh)) {
3463 if (handle)
3464 ext4_journal_stop(handle);
3465 if (PTR_ERR(wh) == -ENOSPC &&
3466 ext4_should_retry_alloc(ent->dir->i_sb, &retries))
3467 goto retry;
3468 } else {
3469 *h = handle;
3470 init_special_inode(wh, wh->i_mode, WHITEOUT_DEV);
3471 wh->i_op = &ext4_special_inode_operations;
3472 }
3473 return wh;
3474 }
3475
3476 /*
3477 * Anybody can rename anything with this: the permission checks are left to the
3478 * higher-level routines.
3479 *
3480 * n.b. old_{dentry,inode) refers to the source dentry/inode
3481 * while new_{dentry,inode) refers to the destination dentry/inode
3482 * This comes from rename(const char *oldpath, const char *newpath)
3483 */
3484 static int ext4_rename(struct inode *old_dir, struct dentry *old_dentry,
3485 struct inode *new_dir, struct dentry *new_dentry,
3486 unsigned int flags)
3487 {
3488 handle_t *handle = NULL;
3489 struct ext4_renament old = {
3490 .dir = old_dir,
3491 .dentry = old_dentry,
3492 .inode = d_inode(old_dentry),
3493 };
3494 struct ext4_renament new = {
3495 .dir = new_dir,
3496 .dentry = new_dentry,
3497 .inode = d_inode(new_dentry),
3498 };
3499 int force_reread;
3500 int retval;
3501 struct inode *whiteout = NULL;
3502 int credits;
3503 u8 old_file_type;
3504
3505 if ((ext4_test_inode_flag(new_dir, EXT4_INODE_PROJINHERIT)) &&
3506 (!projid_eq(EXT4_I(new_dir)->i_projid,
3507 EXT4_I(old_dentry->d_inode)->i_projid)))
3508 return -EXDEV;
3509
3510 retval = dquot_initialize(old.dir);
3511 if (retval)
3512 return retval;
3513 retval = dquot_initialize(new.dir);
3514 if (retval)
3515 return retval;
3516
3517 /* Initialize quotas before so that eventual writes go
3518 * in separate transaction */
3519 if (new.inode) {
3520 retval = dquot_initialize(new.inode);
3521 if (retval)
3522 return retval;
3523 }
3524
3525 old.bh = ext4_find_entry(old.dir, &old.dentry->d_name, &old.de, NULL);
3526 if (IS_ERR(old.bh))
3527 return PTR_ERR(old.bh);
3528 /*
3529 * Check for inode number is _not_ due to possible IO errors.
3530 * We might rmdir the source, keep it as pwd of some process
3531 * and merrily kill the link to whatever was created under the
3532 * same name. Goodbye sticky bit ;-<
3533 */
3534 retval = -ENOENT;
3535 if (!old.bh || le32_to_cpu(old.de->inode) != old.inode->i_ino)
3536 goto end_rename;
3537
3538 new.bh = ext4_find_entry(new.dir, &new.dentry->d_name,
3539 &new.de, &new.inlined);
3540 if (IS_ERR(new.bh)) {
3541 retval = PTR_ERR(new.bh);
3542 new.bh = NULL;
3543 goto end_rename;
3544 }
3545 if (new.bh) {
3546 if (!new.inode) {
3547 brelse(new.bh);
3548 new.bh = NULL;
3549 }
3550 }
3551 if (new.inode && !test_opt(new.dir->i_sb, NO_AUTO_DA_ALLOC))
3552 ext4_alloc_da_blocks(old.inode);
3553
3554 credits = (2 * EXT4_DATA_TRANS_BLOCKS(old.dir->i_sb) +
3555 EXT4_INDEX_EXTRA_TRANS_BLOCKS + 2);
3556 if (!(flags & RENAME_WHITEOUT)) {
3557 handle = ext4_journal_start(old.dir, EXT4_HT_DIR, credits);
3558 if (IS_ERR(handle)) {
3559 retval = PTR_ERR(handle);
3560 handle = NULL;
3561 goto end_rename;
3562 }
3563 } else {
3564 whiteout = ext4_whiteout_for_rename(&old, credits, &handle);
3565 if (IS_ERR(whiteout)) {
3566 retval = PTR_ERR(whiteout);
3567 whiteout = NULL;
3568 goto end_rename;
3569 }
3570 }
3571
3572 if (IS_DIRSYNC(old.dir) || IS_DIRSYNC(new.dir))
3573 ext4_handle_sync(handle);
3574
3575 if (S_ISDIR(old.inode->i_mode)) {
3576 if (new.inode) {
3577 retval = -ENOTEMPTY;
3578 if (!ext4_empty_dir(new.inode))
3579 goto end_rename;
3580 } else {
3581 retval = -EMLINK;
3582 if (new.dir != old.dir && EXT4_DIR_LINK_MAX(new.dir))
3583 goto end_rename;
3584 }
3585 retval = ext4_rename_dir_prepare(handle, &old);
3586 if (retval)
3587 goto end_rename;
3588 }
3589 /*
3590 * If we're renaming a file within an inline_data dir and adding or
3591 * setting the new dirent causes a conversion from inline_data to
3592 * extents/blockmap, we need to force the dirent delete code to
3593 * re-read the directory, or else we end up trying to delete a dirent
3594 * from what is now the extent tree root (or a block map).
3595 */
3596 force_reread = (new.dir->i_ino == old.dir->i_ino &&
3597 ext4_test_inode_flag(new.dir, EXT4_INODE_INLINE_DATA));
3598
3599 old_file_type = old.de->file_type;
3600 if (whiteout) {
3601 /*
3602 * Do this before adding a new entry, so the old entry is sure
3603 * to be still pointing to the valid old entry.
3604 */
3605 retval = ext4_setent(handle, &old, whiteout->i_ino,
3606 EXT4_FT_CHRDEV);
3607 if (retval)
3608 goto end_rename;
3609 ext4_mark_inode_dirty(handle, whiteout);
3610 }
3611 if (!new.bh) {
3612 retval = ext4_add_entry(handle, new.dentry, old.inode);
3613 if (retval)
3614 goto end_rename;
3615 } else {
3616 retval = ext4_setent(handle, &new,
3617 old.inode->i_ino, old_file_type);
3618 if (retval)
3619 goto end_rename;
3620 }
3621 if (force_reread)
3622 force_reread = !ext4_test_inode_flag(new.dir,
3623 EXT4_INODE_INLINE_DATA);
3624
3625 /*
3626 * Like most other Unix systems, set the ctime for inodes on a
3627 * rename.
3628 */
3629 old.inode->i_ctime = current_time(old.inode);
3630 ext4_mark_inode_dirty(handle, old.inode);
3631
3632 if (!whiteout) {
3633 /*
3634 * ok, that's it
3635 */
3636 ext4_rename_delete(handle, &old, force_reread);
3637 }
3638
3639 if (new.inode) {
3640 ext4_dec_count(handle, new.inode);
3641 new.inode->i_ctime = current_time(new.inode);
3642 }
3643 old.dir->i_ctime = old.dir->i_mtime = current_time(old.dir);
3644 ext4_update_dx_flag(old.dir);
3645 if (old.dir_bh) {
3646 retval = ext4_rename_dir_finish(handle, &old, new.dir->i_ino);
3647 if (retval)
3648 goto end_rename;
3649
3650 ext4_dec_count(handle, old.dir);
3651 if (new.inode) {
3652 /* checked ext4_empty_dir above, can't have another
3653 * parent, ext4_dec_count() won't work for many-linked
3654 * dirs */
3655 clear_nlink(new.inode);
3656 } else {
3657 ext4_inc_count(handle, new.dir);
3658 ext4_update_dx_flag(new.dir);
3659 ext4_mark_inode_dirty(handle, new.dir);
3660 }
3661 }
3662 ext4_mark_inode_dirty(handle, old.dir);
3663 if (new.inode) {
3664 ext4_mark_inode_dirty(handle, new.inode);
3665 if (!new.inode->i_nlink)
3666 ext4_orphan_add(handle, new.inode);
3667 }
3668 retval = 0;
3669
3670 end_rename:
3671 brelse(old.dir_bh);
3672 brelse(old.bh);
3673 brelse(new.bh);
3674 if (whiteout) {
3675 if (retval)
3676 drop_nlink(whiteout);
3677 unlock_new_inode(whiteout);
3678 iput(whiteout);
3679 }
3680 if (handle)
3681 ext4_journal_stop(handle);
3682 return retval;
3683 }
3684
3685 static int ext4_cross_rename(struct inode *old_dir, struct dentry *old_dentry,
3686 struct inode *new_dir, struct dentry *new_dentry)
3687 {
3688 handle_t *handle = NULL;
3689 struct ext4_renament old = {
3690 .dir = old_dir,
3691 .dentry = old_dentry,
3692 .inode = d_inode(old_dentry),
3693 };
3694 struct ext4_renament new = {
3695 .dir = new_dir,
3696 .dentry = new_dentry,
3697 .inode = d_inode(new_dentry),
3698 };
3699 u8 new_file_type;
3700 int retval;
3701 struct timespec ctime;
3702
3703 if ((ext4_test_inode_flag(new_dir, EXT4_INODE_PROJINHERIT) &&
3704 !projid_eq(EXT4_I(new_dir)->i_projid,
3705 EXT4_I(old_dentry->d_inode)->i_projid)) ||
3706 (ext4_test_inode_flag(old_dir, EXT4_INODE_PROJINHERIT) &&
3707 !projid_eq(EXT4_I(old_dir)->i_projid,
3708 EXT4_I(new_dentry->d_inode)->i_projid)))
3709 return -EXDEV;
3710
3711 retval = dquot_initialize(old.dir);
3712 if (retval)
3713 return retval;
3714 retval = dquot_initialize(new.dir);
3715 if (retval)
3716 return retval;
3717
3718 old.bh = ext4_find_entry(old.dir, &old.dentry->d_name,
3719 &old.de, &old.inlined);
3720 if (IS_ERR(old.bh))
3721 return PTR_ERR(old.bh);
3722 /*
3723 * Check for inode number is _not_ due to possible IO errors.
3724 * We might rmdir the source, keep it as pwd of some process
3725 * and merrily kill the link to whatever was created under the
3726 * same name. Goodbye sticky bit ;-<
3727 */
3728 retval = -ENOENT;
3729 if (!old.bh || le32_to_cpu(old.de->inode) != old.inode->i_ino)
3730 goto end_rename;
3731
3732 new.bh = ext4_find_entry(new.dir, &new.dentry->d_name,
3733 &new.de, &new.inlined);
3734 if (IS_ERR(new.bh)) {
3735 retval = PTR_ERR(new.bh);
3736 new.bh = NULL;
3737 goto end_rename;
3738 }
3739
3740 /* RENAME_EXCHANGE case: old *and* new must both exist */
3741 if (!new.bh || le32_to_cpu(new.de->inode) != new.inode->i_ino)
3742 goto end_rename;
3743
3744 handle = ext4_journal_start(old.dir, EXT4_HT_DIR,
3745 (2 * EXT4_DATA_TRANS_BLOCKS(old.dir->i_sb) +
3746 2 * EXT4_INDEX_EXTRA_TRANS_BLOCKS + 2));
3747 if (IS_ERR(handle)) {
3748 retval = PTR_ERR(handle);
3749 handle = NULL;
3750 goto end_rename;
3751 }
3752
3753 if (IS_DIRSYNC(old.dir) || IS_DIRSYNC(new.dir))
3754 ext4_handle_sync(handle);
3755
3756 if (S_ISDIR(old.inode->i_mode)) {
3757 old.is_dir = true;
3758 retval = ext4_rename_dir_prepare(handle, &old);
3759 if (retval)
3760 goto end_rename;
3761 }
3762 if (S_ISDIR(new.inode->i_mode)) {
3763 new.is_dir = true;
3764 retval = ext4_rename_dir_prepare(handle, &new);
3765 if (retval)
3766 goto end_rename;
3767 }
3768
3769 /*
3770 * Other than the special case of overwriting a directory, parents'
3771 * nlink only needs to be modified if this is a cross directory rename.
3772 */
3773 if (old.dir != new.dir && old.is_dir != new.is_dir) {
3774 old.dir_nlink_delta = old.is_dir ? -1 : 1;
3775 new.dir_nlink_delta = -old.dir_nlink_delta;
3776 retval = -EMLINK;
3777 if ((old.dir_nlink_delta > 0 && EXT4_DIR_LINK_MAX(old.dir)) ||
3778 (new.dir_nlink_delta > 0 && EXT4_DIR_LINK_MAX(new.dir)))
3779 goto end_rename;
3780 }
3781
3782 new_file_type = new.de->file_type;
3783 retval = ext4_setent(handle, &new, old.inode->i_ino, old.de->file_type);
3784 if (retval)
3785 goto end_rename;
3786
3787 retval = ext4_setent(handle, &old, new.inode->i_ino, new_file_type);
3788 if (retval)
3789 goto end_rename;
3790
3791 /*
3792 * Like most other Unix systems, set the ctime for inodes on a
3793 * rename.
3794 */
3795 ctime = current_time(old.inode);
3796 old.inode->i_ctime = ctime;
3797 new.inode->i_ctime = ctime;
3798 ext4_mark_inode_dirty(handle, old.inode);
3799 ext4_mark_inode_dirty(handle, new.inode);
3800
3801 if (old.dir_bh) {
3802 retval = ext4_rename_dir_finish(handle, &old, new.dir->i_ino);
3803 if (retval)
3804 goto end_rename;
3805 }
3806 if (new.dir_bh) {
3807 retval = ext4_rename_dir_finish(handle, &new, old.dir->i_ino);
3808 if (retval)
3809 goto end_rename;
3810 }
3811 ext4_update_dir_count(handle, &old);
3812 ext4_update_dir_count(handle, &new);
3813 retval = 0;
3814
3815 end_rename:
3816 brelse(old.dir_bh);
3817 brelse(new.dir_bh);
3818 brelse(old.bh);
3819 brelse(new.bh);
3820 if (handle)
3821 ext4_journal_stop(handle);
3822 return retval;
3823 }
3824
3825 static int ext4_rename2(struct inode *old_dir, struct dentry *old_dentry,
3826 struct inode *new_dir, struct dentry *new_dentry,
3827 unsigned int flags)
3828 {
3829 int err;
3830
3831 if (unlikely(ext4_forced_shutdown(EXT4_SB(old_dir->i_sb))))
3832 return -EIO;
3833
3834 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3835 return -EINVAL;
3836
3837 err = fscrypt_prepare_rename(old_dir, old_dentry, new_dir, new_dentry,
3838 flags);
3839 if (err)
3840 return err;
3841
3842 if (flags & RENAME_EXCHANGE) {
3843 return ext4_cross_rename(old_dir, old_dentry,
3844 new_dir, new_dentry);
3845 }
3846
3847 return ext4_rename(old_dir, old_dentry, new_dir, new_dentry, flags);
3848 }
3849
3850 /*
3851 * directories can handle most operations...
3852 */
3853 const struct inode_operations ext4_dir_inode_operations = {
3854 .create = ext4_create,
3855 .lookup = ext4_lookup,
3856 .link = ext4_link,
3857 .unlink = ext4_unlink,
3858 .symlink = ext4_symlink,
3859 .mkdir = ext4_mkdir,
3860 .rmdir = ext4_rmdir,
3861 .mknod = ext4_mknod,
3862 .tmpfile = ext4_tmpfile,
3863 .rename = ext4_rename2,
3864 .setattr = ext4_setattr,
3865 .getattr = ext4_getattr,
3866 .listxattr = ext4_listxattr,
3867 .get_acl = ext4_get_acl,
3868 .set_acl = ext4_set_acl,
3869 .fiemap = ext4_fiemap,
3870 };
3871
3872 const struct inode_operations ext4_special_inode_operations = {
3873 .setattr = ext4_setattr,
3874 .getattr = ext4_getattr,
3875 .listxattr = ext4_listxattr,
3876 .get_acl = ext4_get_acl,
3877 .set_acl = ext4_set_acl,
3878 };