]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - fs/ext4/page-io.c
Merge branch 'for-next' of git://git.kernel.org/pub/scm/linux/kernel/git/cooloney...
[mirror_ubuntu-zesty-kernel.git] / fs / ext4 / page-io.c
1 /*
2 * linux/fs/ext4/page-io.c
3 *
4 * This contains the new page_io functions for ext4
5 *
6 * Written by Theodore Ts'o, 2010.
7 */
8
9 #include <linux/fs.h>
10 #include <linux/time.h>
11 #include <linux/highuid.h>
12 #include <linux/pagemap.h>
13 #include <linux/quotaops.h>
14 #include <linux/string.h>
15 #include <linux/buffer_head.h>
16 #include <linux/writeback.h>
17 #include <linux/pagevec.h>
18 #include <linux/mpage.h>
19 #include <linux/namei.h>
20 #include <linux/uio.h>
21 #include <linux/bio.h>
22 #include <linux/workqueue.h>
23 #include <linux/kernel.h>
24 #include <linux/slab.h>
25 #include <linux/mm.h>
26
27 #include "ext4_jbd2.h"
28 #include "xattr.h"
29 #include "acl.h"
30
31 static struct kmem_cache *io_end_cachep;
32
33 int __init ext4_init_pageio(void)
34 {
35 io_end_cachep = KMEM_CACHE(ext4_io_end, SLAB_RECLAIM_ACCOUNT);
36 if (io_end_cachep == NULL)
37 return -ENOMEM;
38 return 0;
39 }
40
41 void ext4_exit_pageio(void)
42 {
43 kmem_cache_destroy(io_end_cachep);
44 }
45
46 /*
47 * Print an buffer I/O error compatible with the fs/buffer.c. This
48 * provides compatibility with dmesg scrapers that look for a specific
49 * buffer I/O error message. We really need a unified error reporting
50 * structure to userspace ala Digital Unix's uerf system, but it's
51 * probably not going to happen in my lifetime, due to LKML politics...
52 */
53 static void buffer_io_error(struct buffer_head *bh)
54 {
55 char b[BDEVNAME_SIZE];
56 printk_ratelimited(KERN_ERR "Buffer I/O error on device %s, logical block %llu\n",
57 bdevname(bh->b_bdev, b),
58 (unsigned long long)bh->b_blocknr);
59 }
60
61 static void ext4_finish_bio(struct bio *bio)
62 {
63 int i;
64 int error = !test_bit(BIO_UPTODATE, &bio->bi_flags);
65 struct bio_vec *bvec;
66
67 bio_for_each_segment_all(bvec, bio, i) {
68 struct page *page = bvec->bv_page;
69 #ifdef CONFIG_EXT4_FS_ENCRYPTION
70 struct page *data_page = NULL;
71 struct ext4_crypto_ctx *ctx = NULL;
72 #endif
73 struct buffer_head *bh, *head;
74 unsigned bio_start = bvec->bv_offset;
75 unsigned bio_end = bio_start + bvec->bv_len;
76 unsigned under_io = 0;
77 unsigned long flags;
78
79 if (!page)
80 continue;
81
82 #ifdef CONFIG_EXT4_FS_ENCRYPTION
83 if (!page->mapping) {
84 /* The bounce data pages are unmapped. */
85 data_page = page;
86 ctx = (struct ext4_crypto_ctx *)page_private(data_page);
87 page = ctx->w.control_page;
88 }
89 #endif
90
91 if (error) {
92 SetPageError(page);
93 set_bit(AS_EIO, &page->mapping->flags);
94 }
95 bh = head = page_buffers(page);
96 /*
97 * We check all buffers in the page under BH_Uptodate_Lock
98 * to avoid races with other end io clearing async_write flags
99 */
100 local_irq_save(flags);
101 bit_spin_lock(BH_Uptodate_Lock, &head->b_state);
102 do {
103 if (bh_offset(bh) < bio_start ||
104 bh_offset(bh) + bh->b_size > bio_end) {
105 if (buffer_async_write(bh))
106 under_io++;
107 continue;
108 }
109 clear_buffer_async_write(bh);
110 if (error)
111 buffer_io_error(bh);
112 } while ((bh = bh->b_this_page) != head);
113 bit_spin_unlock(BH_Uptodate_Lock, &head->b_state);
114 local_irq_restore(flags);
115 if (!under_io) {
116 #ifdef CONFIG_EXT4_FS_ENCRYPTION
117 if (ctx)
118 ext4_restore_control_page(data_page);
119 #endif
120 end_page_writeback(page);
121 }
122 }
123 }
124
125 static void ext4_release_io_end(ext4_io_end_t *io_end)
126 {
127 struct bio *bio, *next_bio;
128
129 BUG_ON(!list_empty(&io_end->list));
130 BUG_ON(io_end->flag & EXT4_IO_END_UNWRITTEN);
131 WARN_ON(io_end->handle);
132
133 if (atomic_dec_and_test(&EXT4_I(io_end->inode)->i_ioend_count))
134 wake_up_all(ext4_ioend_wq(io_end->inode));
135
136 for (bio = io_end->bio; bio; bio = next_bio) {
137 next_bio = bio->bi_private;
138 ext4_finish_bio(bio);
139 bio_put(bio);
140 }
141 kmem_cache_free(io_end_cachep, io_end);
142 }
143
144 static void ext4_clear_io_unwritten_flag(ext4_io_end_t *io_end)
145 {
146 struct inode *inode = io_end->inode;
147
148 io_end->flag &= ~EXT4_IO_END_UNWRITTEN;
149 /* Wake up anyone waiting on unwritten extent conversion */
150 if (atomic_dec_and_test(&EXT4_I(inode)->i_unwritten))
151 wake_up_all(ext4_ioend_wq(inode));
152 }
153
154 /*
155 * Check a range of space and convert unwritten extents to written. Note that
156 * we are protected from truncate touching same part of extent tree by the
157 * fact that truncate code waits for all DIO to finish (thus exclusion from
158 * direct IO is achieved) and also waits for PageWriteback bits. Thus we
159 * cannot get to ext4_ext_truncate() before all IOs overlapping that range are
160 * completed (happens from ext4_free_ioend()).
161 */
162 static int ext4_end_io(ext4_io_end_t *io)
163 {
164 struct inode *inode = io->inode;
165 loff_t offset = io->offset;
166 ssize_t size = io->size;
167 handle_t *handle = io->handle;
168 int ret = 0;
169
170 ext4_debug("ext4_end_io_nolock: io 0x%p from inode %lu,list->next 0x%p,"
171 "list->prev 0x%p\n",
172 io, inode->i_ino, io->list.next, io->list.prev);
173
174 io->handle = NULL; /* Following call will use up the handle */
175 ret = ext4_convert_unwritten_extents(handle, inode, offset, size);
176 if (ret < 0) {
177 ext4_msg(inode->i_sb, KERN_EMERG,
178 "failed to convert unwritten extents to written "
179 "extents -- potential data loss! "
180 "(inode %lu, offset %llu, size %zd, error %d)",
181 inode->i_ino, offset, size, ret);
182 }
183 ext4_clear_io_unwritten_flag(io);
184 ext4_release_io_end(io);
185 return ret;
186 }
187
188 static void dump_completed_IO(struct inode *inode, struct list_head *head)
189 {
190 #ifdef EXT4FS_DEBUG
191 struct list_head *cur, *before, *after;
192 ext4_io_end_t *io, *io0, *io1;
193
194 if (list_empty(head))
195 return;
196
197 ext4_debug("Dump inode %lu completed io list\n", inode->i_ino);
198 list_for_each_entry(io, head, list) {
199 cur = &io->list;
200 before = cur->prev;
201 io0 = container_of(before, ext4_io_end_t, list);
202 after = cur->next;
203 io1 = container_of(after, ext4_io_end_t, list);
204
205 ext4_debug("io 0x%p from inode %lu,prev 0x%p,next 0x%p\n",
206 io, inode->i_ino, io0, io1);
207 }
208 #endif
209 }
210
211 /* Add the io_end to per-inode completed end_io list. */
212 static void ext4_add_complete_io(ext4_io_end_t *io_end)
213 {
214 struct ext4_inode_info *ei = EXT4_I(io_end->inode);
215 struct ext4_sb_info *sbi = EXT4_SB(io_end->inode->i_sb);
216 struct workqueue_struct *wq;
217 unsigned long flags;
218
219 /* Only reserved conversions from writeback should enter here */
220 WARN_ON(!(io_end->flag & EXT4_IO_END_UNWRITTEN));
221 WARN_ON(!io_end->handle && sbi->s_journal);
222 spin_lock_irqsave(&ei->i_completed_io_lock, flags);
223 wq = sbi->rsv_conversion_wq;
224 if (list_empty(&ei->i_rsv_conversion_list))
225 queue_work(wq, &ei->i_rsv_conversion_work);
226 list_add_tail(&io_end->list, &ei->i_rsv_conversion_list);
227 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
228 }
229
230 static int ext4_do_flush_completed_IO(struct inode *inode,
231 struct list_head *head)
232 {
233 ext4_io_end_t *io;
234 struct list_head unwritten;
235 unsigned long flags;
236 struct ext4_inode_info *ei = EXT4_I(inode);
237 int err, ret = 0;
238
239 spin_lock_irqsave(&ei->i_completed_io_lock, flags);
240 dump_completed_IO(inode, head);
241 list_replace_init(head, &unwritten);
242 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
243
244 while (!list_empty(&unwritten)) {
245 io = list_entry(unwritten.next, ext4_io_end_t, list);
246 BUG_ON(!(io->flag & EXT4_IO_END_UNWRITTEN));
247 list_del_init(&io->list);
248
249 err = ext4_end_io(io);
250 if (unlikely(!ret && err))
251 ret = err;
252 }
253 return ret;
254 }
255
256 /*
257 * work on completed IO, to convert unwritten extents to extents
258 */
259 void ext4_end_io_rsv_work(struct work_struct *work)
260 {
261 struct ext4_inode_info *ei = container_of(work, struct ext4_inode_info,
262 i_rsv_conversion_work);
263 ext4_do_flush_completed_IO(&ei->vfs_inode, &ei->i_rsv_conversion_list);
264 }
265
266 ext4_io_end_t *ext4_init_io_end(struct inode *inode, gfp_t flags)
267 {
268 ext4_io_end_t *io = kmem_cache_zalloc(io_end_cachep, flags);
269 if (io) {
270 atomic_inc(&EXT4_I(inode)->i_ioend_count);
271 io->inode = inode;
272 INIT_LIST_HEAD(&io->list);
273 atomic_set(&io->count, 1);
274 }
275 return io;
276 }
277
278 void ext4_put_io_end_defer(ext4_io_end_t *io_end)
279 {
280 if (atomic_dec_and_test(&io_end->count)) {
281 if (!(io_end->flag & EXT4_IO_END_UNWRITTEN) || !io_end->size) {
282 ext4_release_io_end(io_end);
283 return;
284 }
285 ext4_add_complete_io(io_end);
286 }
287 }
288
289 int ext4_put_io_end(ext4_io_end_t *io_end)
290 {
291 int err = 0;
292
293 if (atomic_dec_and_test(&io_end->count)) {
294 if (io_end->flag & EXT4_IO_END_UNWRITTEN) {
295 err = ext4_convert_unwritten_extents(io_end->handle,
296 io_end->inode, io_end->offset,
297 io_end->size);
298 io_end->handle = NULL;
299 ext4_clear_io_unwritten_flag(io_end);
300 }
301 ext4_release_io_end(io_end);
302 }
303 return err;
304 }
305
306 ext4_io_end_t *ext4_get_io_end(ext4_io_end_t *io_end)
307 {
308 atomic_inc(&io_end->count);
309 return io_end;
310 }
311
312 /* BIO completion function for page writeback */
313 static void ext4_end_bio(struct bio *bio, int error)
314 {
315 ext4_io_end_t *io_end = bio->bi_private;
316 sector_t bi_sector = bio->bi_iter.bi_sector;
317
318 BUG_ON(!io_end);
319 bio->bi_end_io = NULL;
320 if (test_bit(BIO_UPTODATE, &bio->bi_flags))
321 error = 0;
322
323 if (error) {
324 struct inode *inode = io_end->inode;
325
326 ext4_warning(inode->i_sb, "I/O error %d writing to inode %lu "
327 "(offset %llu size %ld starting block %llu)",
328 error, inode->i_ino,
329 (unsigned long long) io_end->offset,
330 (long) io_end->size,
331 (unsigned long long)
332 bi_sector >> (inode->i_blkbits - 9));
333 mapping_set_error(inode->i_mapping, error);
334 }
335
336 if (io_end->flag & EXT4_IO_END_UNWRITTEN) {
337 /*
338 * Link bio into list hanging from io_end. We have to do it
339 * atomically as bio completions can be racing against each
340 * other.
341 */
342 bio->bi_private = xchg(&io_end->bio, bio);
343 ext4_put_io_end_defer(io_end);
344 } else {
345 /*
346 * Drop io_end reference early. Inode can get freed once
347 * we finish the bio.
348 */
349 ext4_put_io_end_defer(io_end);
350 ext4_finish_bio(bio);
351 bio_put(bio);
352 }
353 }
354
355 void ext4_io_submit(struct ext4_io_submit *io)
356 {
357 struct bio *bio = io->io_bio;
358
359 if (bio) {
360 bio_get(io->io_bio);
361 submit_bio(io->io_op, io->io_bio);
362 bio_put(io->io_bio);
363 }
364 io->io_bio = NULL;
365 }
366
367 void ext4_io_submit_init(struct ext4_io_submit *io,
368 struct writeback_control *wbc)
369 {
370 io->io_op = (wbc->sync_mode == WB_SYNC_ALL ? WRITE_SYNC : WRITE);
371 io->io_bio = NULL;
372 io->io_end = NULL;
373 }
374
375 static int io_submit_init_bio(struct ext4_io_submit *io,
376 struct buffer_head *bh)
377 {
378 int nvecs = bio_get_nr_vecs(bh->b_bdev);
379 struct bio *bio;
380
381 bio = bio_alloc(GFP_NOIO, min(nvecs, BIO_MAX_PAGES));
382 if (!bio)
383 return -ENOMEM;
384 bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
385 bio->bi_bdev = bh->b_bdev;
386 bio->bi_end_io = ext4_end_bio;
387 bio->bi_private = ext4_get_io_end(io->io_end);
388 io->io_bio = bio;
389 io->io_next_block = bh->b_blocknr;
390 return 0;
391 }
392
393 static int io_submit_add_bh(struct ext4_io_submit *io,
394 struct inode *inode,
395 struct page *page,
396 struct buffer_head *bh)
397 {
398 int ret;
399
400 if (io->io_bio && bh->b_blocknr != io->io_next_block) {
401 submit_and_retry:
402 ext4_io_submit(io);
403 }
404 if (io->io_bio == NULL) {
405 ret = io_submit_init_bio(io, bh);
406 if (ret)
407 return ret;
408 }
409 ret = bio_add_page(io->io_bio, page, bh->b_size, bh_offset(bh));
410 if (ret != bh->b_size)
411 goto submit_and_retry;
412 io->io_next_block++;
413 return 0;
414 }
415
416 int ext4_bio_write_page(struct ext4_io_submit *io,
417 struct page *page,
418 int len,
419 struct writeback_control *wbc,
420 bool keep_towrite)
421 {
422 struct page *data_page = NULL;
423 struct inode *inode = page->mapping->host;
424 unsigned block_start, blocksize;
425 struct buffer_head *bh, *head;
426 int ret = 0;
427 int nr_submitted = 0;
428
429 blocksize = 1 << inode->i_blkbits;
430
431 BUG_ON(!PageLocked(page));
432 BUG_ON(PageWriteback(page));
433
434 if (keep_towrite)
435 set_page_writeback_keepwrite(page);
436 else
437 set_page_writeback(page);
438 ClearPageError(page);
439
440 /*
441 * Comments copied from block_write_full_page:
442 *
443 * The page straddles i_size. It must be zeroed out on each and every
444 * writepage invocation because it may be mmapped. "A file is mapped
445 * in multiples of the page size. For a file that is not a multiple of
446 * the page size, the remaining memory is zeroed when mapped, and
447 * writes to that region are not written out to the file."
448 */
449 if (len < PAGE_CACHE_SIZE)
450 zero_user_segment(page, len, PAGE_CACHE_SIZE);
451 /*
452 * In the first loop we prepare and mark buffers to submit. We have to
453 * mark all buffers in the page before submitting so that
454 * end_page_writeback() cannot be called from ext4_bio_end_io() when IO
455 * on the first buffer finishes and we are still working on submitting
456 * the second buffer.
457 */
458 bh = head = page_buffers(page);
459 do {
460 block_start = bh_offset(bh);
461 if (block_start >= len) {
462 clear_buffer_dirty(bh);
463 set_buffer_uptodate(bh);
464 continue;
465 }
466 if (!buffer_dirty(bh) || buffer_delay(bh) ||
467 !buffer_mapped(bh) || buffer_unwritten(bh)) {
468 /* A hole? We can safely clear the dirty bit */
469 if (!buffer_mapped(bh))
470 clear_buffer_dirty(bh);
471 if (io->io_bio)
472 ext4_io_submit(io);
473 continue;
474 }
475 if (buffer_new(bh)) {
476 clear_buffer_new(bh);
477 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
478 }
479 set_buffer_async_write(bh);
480 } while ((bh = bh->b_this_page) != head);
481
482 bh = head = page_buffers(page);
483
484 if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode)) {
485 data_page = ext4_encrypt(inode, page);
486 if (IS_ERR(data_page)) {
487 ret = PTR_ERR(data_page);
488 data_page = NULL;
489 goto out;
490 }
491 }
492
493 /* Now submit buffers to write */
494 do {
495 if (!buffer_async_write(bh))
496 continue;
497 ret = io_submit_add_bh(io, inode,
498 data_page ? data_page : page, bh);
499 if (ret) {
500 /*
501 * We only get here on ENOMEM. Not much else
502 * we can do but mark the page as dirty, and
503 * better luck next time.
504 */
505 break;
506 }
507 nr_submitted++;
508 clear_buffer_dirty(bh);
509 } while ((bh = bh->b_this_page) != head);
510
511 /* Error stopped previous loop? Clean up buffers... */
512 if (ret) {
513 out:
514 if (data_page)
515 ext4_restore_control_page(data_page);
516 printk_ratelimited(KERN_ERR "%s: ret = %d\n", __func__, ret);
517 redirty_page_for_writepage(wbc, page);
518 do {
519 clear_buffer_async_write(bh);
520 bh = bh->b_this_page;
521 } while (bh != head);
522 }
523 unlock_page(page);
524 /* Nothing submitted - we have to end page writeback */
525 if (!nr_submitted)
526 end_page_writeback(page);
527 return ret;
528 }