]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/ext4/super.c
fs: Remove ext3 filesystem driver
[mirror_ubuntu-artful-kernel.git] / fs / ext4 / super.c
1 /*
2 * linux/fs/ext4/super.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * Big-endian to little-endian byte-swapping/bitmaps by
16 * David S. Miller (davem@caip.rutgers.edu), 1995
17 */
18
19 #include <linux/module.h>
20 #include <linux/string.h>
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/vmalloc.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/parser.h>
29 #include <linux/buffer_head.h>
30 #include <linux/exportfs.h>
31 #include <linux/vfs.h>
32 #include <linux/random.h>
33 #include <linux/mount.h>
34 #include <linux/namei.h>
35 #include <linux/quotaops.h>
36 #include <linux/seq_file.h>
37 #include <linux/proc_fs.h>
38 #include <linux/ctype.h>
39 #include <linux/log2.h>
40 #include <linux/crc16.h>
41 #include <linux/cleancache.h>
42 #include <asm/uaccess.h>
43
44 #include <linux/kthread.h>
45 #include <linux/freezer.h>
46
47 #include "ext4.h"
48 #include "ext4_extents.h" /* Needed for trace points definition */
49 #include "ext4_jbd2.h"
50 #include "xattr.h"
51 #include "acl.h"
52 #include "mballoc.h"
53
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/ext4.h>
56
57 static struct proc_dir_entry *ext4_proc_root;
58 static struct kset *ext4_kset;
59 static struct ext4_lazy_init *ext4_li_info;
60 static struct mutex ext4_li_mtx;
61 static struct ext4_features *ext4_feat;
62 static int ext4_mballoc_ready;
63
64 static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
65 unsigned long journal_devnum);
66 static int ext4_show_options(struct seq_file *seq, struct dentry *root);
67 static int ext4_commit_super(struct super_block *sb, int sync);
68 static void ext4_mark_recovery_complete(struct super_block *sb,
69 struct ext4_super_block *es);
70 static void ext4_clear_journal_err(struct super_block *sb,
71 struct ext4_super_block *es);
72 static int ext4_sync_fs(struct super_block *sb, int wait);
73 static int ext4_remount(struct super_block *sb, int *flags, char *data);
74 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
75 static int ext4_unfreeze(struct super_block *sb);
76 static int ext4_freeze(struct super_block *sb);
77 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
78 const char *dev_name, void *data);
79 static inline int ext2_feature_set_ok(struct super_block *sb);
80 static inline int ext3_feature_set_ok(struct super_block *sb);
81 static int ext4_feature_set_ok(struct super_block *sb, int readonly);
82 static void ext4_destroy_lazyinit_thread(void);
83 static void ext4_unregister_li_request(struct super_block *sb);
84 static void ext4_clear_request_list(void);
85 static int ext4_reserve_clusters(struct ext4_sb_info *, ext4_fsblk_t);
86
87 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
88 static struct file_system_type ext2_fs_type = {
89 .owner = THIS_MODULE,
90 .name = "ext2",
91 .mount = ext4_mount,
92 .kill_sb = kill_block_super,
93 .fs_flags = FS_REQUIRES_DEV,
94 };
95 MODULE_ALIAS_FS("ext2");
96 MODULE_ALIAS("ext2");
97 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type)
98 #else
99 #define IS_EXT2_SB(sb) (0)
100 #endif
101
102
103 static struct file_system_type ext3_fs_type = {
104 .owner = THIS_MODULE,
105 .name = "ext3",
106 .mount = ext4_mount,
107 .kill_sb = kill_block_super,
108 .fs_flags = FS_REQUIRES_DEV,
109 };
110 MODULE_ALIAS_FS("ext3");
111 MODULE_ALIAS("ext3");
112 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type)
113
114 static int ext4_verify_csum_type(struct super_block *sb,
115 struct ext4_super_block *es)
116 {
117 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
118 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
119 return 1;
120
121 return es->s_checksum_type == EXT4_CRC32C_CHKSUM;
122 }
123
124 static __le32 ext4_superblock_csum(struct super_block *sb,
125 struct ext4_super_block *es)
126 {
127 struct ext4_sb_info *sbi = EXT4_SB(sb);
128 int offset = offsetof(struct ext4_super_block, s_checksum);
129 __u32 csum;
130
131 csum = ext4_chksum(sbi, ~0, (char *)es, offset);
132
133 return cpu_to_le32(csum);
134 }
135
136 static int ext4_superblock_csum_verify(struct super_block *sb,
137 struct ext4_super_block *es)
138 {
139 if (!ext4_has_metadata_csum(sb))
140 return 1;
141
142 return es->s_checksum == ext4_superblock_csum(sb, es);
143 }
144
145 void ext4_superblock_csum_set(struct super_block *sb)
146 {
147 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
148
149 if (!ext4_has_metadata_csum(sb))
150 return;
151
152 es->s_checksum = ext4_superblock_csum(sb, es);
153 }
154
155 void *ext4_kvmalloc(size_t size, gfp_t flags)
156 {
157 void *ret;
158
159 ret = kmalloc(size, flags | __GFP_NOWARN);
160 if (!ret)
161 ret = __vmalloc(size, flags, PAGE_KERNEL);
162 return ret;
163 }
164
165 void *ext4_kvzalloc(size_t size, gfp_t flags)
166 {
167 void *ret;
168
169 ret = kzalloc(size, flags | __GFP_NOWARN);
170 if (!ret)
171 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL);
172 return ret;
173 }
174
175 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
176 struct ext4_group_desc *bg)
177 {
178 return le32_to_cpu(bg->bg_block_bitmap_lo) |
179 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
180 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
181 }
182
183 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
184 struct ext4_group_desc *bg)
185 {
186 return le32_to_cpu(bg->bg_inode_bitmap_lo) |
187 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
188 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
189 }
190
191 ext4_fsblk_t ext4_inode_table(struct super_block *sb,
192 struct ext4_group_desc *bg)
193 {
194 return le32_to_cpu(bg->bg_inode_table_lo) |
195 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
196 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
197 }
198
199 __u32 ext4_free_group_clusters(struct super_block *sb,
200 struct ext4_group_desc *bg)
201 {
202 return le16_to_cpu(bg->bg_free_blocks_count_lo) |
203 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
204 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
205 }
206
207 __u32 ext4_free_inodes_count(struct super_block *sb,
208 struct ext4_group_desc *bg)
209 {
210 return le16_to_cpu(bg->bg_free_inodes_count_lo) |
211 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
212 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
213 }
214
215 __u32 ext4_used_dirs_count(struct super_block *sb,
216 struct ext4_group_desc *bg)
217 {
218 return le16_to_cpu(bg->bg_used_dirs_count_lo) |
219 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
220 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
221 }
222
223 __u32 ext4_itable_unused_count(struct super_block *sb,
224 struct ext4_group_desc *bg)
225 {
226 return le16_to_cpu(bg->bg_itable_unused_lo) |
227 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
228 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
229 }
230
231 void ext4_block_bitmap_set(struct super_block *sb,
232 struct ext4_group_desc *bg, ext4_fsblk_t blk)
233 {
234 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
235 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
236 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
237 }
238
239 void ext4_inode_bitmap_set(struct super_block *sb,
240 struct ext4_group_desc *bg, ext4_fsblk_t blk)
241 {
242 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk);
243 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
244 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
245 }
246
247 void ext4_inode_table_set(struct super_block *sb,
248 struct ext4_group_desc *bg, ext4_fsblk_t blk)
249 {
250 bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
251 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
252 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
253 }
254
255 void ext4_free_group_clusters_set(struct super_block *sb,
256 struct ext4_group_desc *bg, __u32 count)
257 {
258 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
259 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
260 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
261 }
262
263 void ext4_free_inodes_set(struct super_block *sb,
264 struct ext4_group_desc *bg, __u32 count)
265 {
266 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
267 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
268 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
269 }
270
271 void ext4_used_dirs_set(struct super_block *sb,
272 struct ext4_group_desc *bg, __u32 count)
273 {
274 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
275 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
276 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
277 }
278
279 void ext4_itable_unused_set(struct super_block *sb,
280 struct ext4_group_desc *bg, __u32 count)
281 {
282 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
283 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
284 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
285 }
286
287
288 static void __save_error_info(struct super_block *sb, const char *func,
289 unsigned int line)
290 {
291 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
292
293 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
294 if (bdev_read_only(sb->s_bdev))
295 return;
296 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
297 es->s_last_error_time = cpu_to_le32(get_seconds());
298 strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func));
299 es->s_last_error_line = cpu_to_le32(line);
300 if (!es->s_first_error_time) {
301 es->s_first_error_time = es->s_last_error_time;
302 strncpy(es->s_first_error_func, func,
303 sizeof(es->s_first_error_func));
304 es->s_first_error_line = cpu_to_le32(line);
305 es->s_first_error_ino = es->s_last_error_ino;
306 es->s_first_error_block = es->s_last_error_block;
307 }
308 /*
309 * Start the daily error reporting function if it hasn't been
310 * started already
311 */
312 if (!es->s_error_count)
313 mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ);
314 le32_add_cpu(&es->s_error_count, 1);
315 }
316
317 static void save_error_info(struct super_block *sb, const char *func,
318 unsigned int line)
319 {
320 __save_error_info(sb, func, line);
321 ext4_commit_super(sb, 1);
322 }
323
324 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn)
325 {
326 struct super_block *sb = journal->j_private;
327 struct ext4_sb_info *sbi = EXT4_SB(sb);
328 int error = is_journal_aborted(journal);
329 struct ext4_journal_cb_entry *jce;
330
331 BUG_ON(txn->t_state == T_FINISHED);
332 spin_lock(&sbi->s_md_lock);
333 while (!list_empty(&txn->t_private_list)) {
334 jce = list_entry(txn->t_private_list.next,
335 struct ext4_journal_cb_entry, jce_list);
336 list_del_init(&jce->jce_list);
337 spin_unlock(&sbi->s_md_lock);
338 jce->jce_func(sb, jce, error);
339 spin_lock(&sbi->s_md_lock);
340 }
341 spin_unlock(&sbi->s_md_lock);
342 }
343
344 /* Deal with the reporting of failure conditions on a filesystem such as
345 * inconsistencies detected or read IO failures.
346 *
347 * On ext2, we can store the error state of the filesystem in the
348 * superblock. That is not possible on ext4, because we may have other
349 * write ordering constraints on the superblock which prevent us from
350 * writing it out straight away; and given that the journal is about to
351 * be aborted, we can't rely on the current, or future, transactions to
352 * write out the superblock safely.
353 *
354 * We'll just use the jbd2_journal_abort() error code to record an error in
355 * the journal instead. On recovery, the journal will complain about
356 * that error until we've noted it down and cleared it.
357 */
358
359 static void ext4_handle_error(struct super_block *sb)
360 {
361 if (sb->s_flags & MS_RDONLY)
362 return;
363
364 if (!test_opt(sb, ERRORS_CONT)) {
365 journal_t *journal = EXT4_SB(sb)->s_journal;
366
367 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
368 if (journal)
369 jbd2_journal_abort(journal, -EIO);
370 }
371 if (test_opt(sb, ERRORS_RO)) {
372 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
373 /*
374 * Make sure updated value of ->s_mount_flags will be visible
375 * before ->s_flags update
376 */
377 smp_wmb();
378 sb->s_flags |= MS_RDONLY;
379 }
380 if (test_opt(sb, ERRORS_PANIC))
381 panic("EXT4-fs (device %s): panic forced after error\n",
382 sb->s_id);
383 }
384
385 #define ext4_error_ratelimit(sb) \
386 ___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state), \
387 "EXT4-fs error")
388
389 void __ext4_error(struct super_block *sb, const char *function,
390 unsigned int line, const char *fmt, ...)
391 {
392 struct va_format vaf;
393 va_list args;
394
395 if (ext4_error_ratelimit(sb)) {
396 va_start(args, fmt);
397 vaf.fmt = fmt;
398 vaf.va = &args;
399 printk(KERN_CRIT
400 "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
401 sb->s_id, function, line, current->comm, &vaf);
402 va_end(args);
403 }
404 save_error_info(sb, function, line);
405 ext4_handle_error(sb);
406 }
407
408 void __ext4_error_inode(struct inode *inode, const char *function,
409 unsigned int line, ext4_fsblk_t block,
410 const char *fmt, ...)
411 {
412 va_list args;
413 struct va_format vaf;
414 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
415
416 es->s_last_error_ino = cpu_to_le32(inode->i_ino);
417 es->s_last_error_block = cpu_to_le64(block);
418 if (ext4_error_ratelimit(inode->i_sb)) {
419 va_start(args, fmt);
420 vaf.fmt = fmt;
421 vaf.va = &args;
422 if (block)
423 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
424 "inode #%lu: block %llu: comm %s: %pV\n",
425 inode->i_sb->s_id, function, line, inode->i_ino,
426 block, current->comm, &vaf);
427 else
428 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
429 "inode #%lu: comm %s: %pV\n",
430 inode->i_sb->s_id, function, line, inode->i_ino,
431 current->comm, &vaf);
432 va_end(args);
433 }
434 save_error_info(inode->i_sb, function, line);
435 ext4_handle_error(inode->i_sb);
436 }
437
438 void __ext4_error_file(struct file *file, const char *function,
439 unsigned int line, ext4_fsblk_t block,
440 const char *fmt, ...)
441 {
442 va_list args;
443 struct va_format vaf;
444 struct ext4_super_block *es;
445 struct inode *inode = file_inode(file);
446 char pathname[80], *path;
447
448 es = EXT4_SB(inode->i_sb)->s_es;
449 es->s_last_error_ino = cpu_to_le32(inode->i_ino);
450 if (ext4_error_ratelimit(inode->i_sb)) {
451 path = file_path(file, pathname, sizeof(pathname));
452 if (IS_ERR(path))
453 path = "(unknown)";
454 va_start(args, fmt);
455 vaf.fmt = fmt;
456 vaf.va = &args;
457 if (block)
458 printk(KERN_CRIT
459 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
460 "block %llu: comm %s: path %s: %pV\n",
461 inode->i_sb->s_id, function, line, inode->i_ino,
462 block, current->comm, path, &vaf);
463 else
464 printk(KERN_CRIT
465 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
466 "comm %s: path %s: %pV\n",
467 inode->i_sb->s_id, function, line, inode->i_ino,
468 current->comm, path, &vaf);
469 va_end(args);
470 }
471 save_error_info(inode->i_sb, function, line);
472 ext4_handle_error(inode->i_sb);
473 }
474
475 const char *ext4_decode_error(struct super_block *sb, int errno,
476 char nbuf[16])
477 {
478 char *errstr = NULL;
479
480 switch (errno) {
481 case -EIO:
482 errstr = "IO failure";
483 break;
484 case -ENOMEM:
485 errstr = "Out of memory";
486 break;
487 case -EROFS:
488 if (!sb || (EXT4_SB(sb)->s_journal &&
489 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
490 errstr = "Journal has aborted";
491 else
492 errstr = "Readonly filesystem";
493 break;
494 default:
495 /* If the caller passed in an extra buffer for unknown
496 * errors, textualise them now. Else we just return
497 * NULL. */
498 if (nbuf) {
499 /* Check for truncated error codes... */
500 if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
501 errstr = nbuf;
502 }
503 break;
504 }
505
506 return errstr;
507 }
508
509 /* __ext4_std_error decodes expected errors from journaling functions
510 * automatically and invokes the appropriate error response. */
511
512 void __ext4_std_error(struct super_block *sb, const char *function,
513 unsigned int line, int errno)
514 {
515 char nbuf[16];
516 const char *errstr;
517
518 /* Special case: if the error is EROFS, and we're not already
519 * inside a transaction, then there's really no point in logging
520 * an error. */
521 if (errno == -EROFS && journal_current_handle() == NULL &&
522 (sb->s_flags & MS_RDONLY))
523 return;
524
525 if (ext4_error_ratelimit(sb)) {
526 errstr = ext4_decode_error(sb, errno, nbuf);
527 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
528 sb->s_id, function, line, errstr);
529 }
530
531 save_error_info(sb, function, line);
532 ext4_handle_error(sb);
533 }
534
535 /*
536 * ext4_abort is a much stronger failure handler than ext4_error. The
537 * abort function may be used to deal with unrecoverable failures such
538 * as journal IO errors or ENOMEM at a critical moment in log management.
539 *
540 * We unconditionally force the filesystem into an ABORT|READONLY state,
541 * unless the error response on the fs has been set to panic in which
542 * case we take the easy way out and panic immediately.
543 */
544
545 void __ext4_abort(struct super_block *sb, const char *function,
546 unsigned int line, const char *fmt, ...)
547 {
548 va_list args;
549
550 save_error_info(sb, function, line);
551 va_start(args, fmt);
552 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: ", sb->s_id,
553 function, line);
554 vprintk(fmt, args);
555 printk("\n");
556 va_end(args);
557
558 if ((sb->s_flags & MS_RDONLY) == 0) {
559 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
560 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
561 /*
562 * Make sure updated value of ->s_mount_flags will be visible
563 * before ->s_flags update
564 */
565 smp_wmb();
566 sb->s_flags |= MS_RDONLY;
567 if (EXT4_SB(sb)->s_journal)
568 jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO);
569 save_error_info(sb, function, line);
570 }
571 if (test_opt(sb, ERRORS_PANIC))
572 panic("EXT4-fs panic from previous error\n");
573 }
574
575 void __ext4_msg(struct super_block *sb,
576 const char *prefix, const char *fmt, ...)
577 {
578 struct va_format vaf;
579 va_list args;
580
581 if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state), "EXT4-fs"))
582 return;
583
584 va_start(args, fmt);
585 vaf.fmt = fmt;
586 vaf.va = &args;
587 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
588 va_end(args);
589 }
590
591 #define ext4_warning_ratelimit(sb) \
592 ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state), \
593 "EXT4-fs warning")
594
595 void __ext4_warning(struct super_block *sb, const char *function,
596 unsigned int line, const char *fmt, ...)
597 {
598 struct va_format vaf;
599 va_list args;
600
601 if (!ext4_warning_ratelimit(sb))
602 return;
603
604 va_start(args, fmt);
605 vaf.fmt = fmt;
606 vaf.va = &args;
607 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
608 sb->s_id, function, line, &vaf);
609 va_end(args);
610 }
611
612 void __ext4_warning_inode(const struct inode *inode, const char *function,
613 unsigned int line, const char *fmt, ...)
614 {
615 struct va_format vaf;
616 va_list args;
617
618 if (!ext4_warning_ratelimit(inode->i_sb))
619 return;
620
621 va_start(args, fmt);
622 vaf.fmt = fmt;
623 vaf.va = &args;
624 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: "
625 "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id,
626 function, line, inode->i_ino, current->comm, &vaf);
627 va_end(args);
628 }
629
630 void __ext4_grp_locked_error(const char *function, unsigned int line,
631 struct super_block *sb, ext4_group_t grp,
632 unsigned long ino, ext4_fsblk_t block,
633 const char *fmt, ...)
634 __releases(bitlock)
635 __acquires(bitlock)
636 {
637 struct va_format vaf;
638 va_list args;
639 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
640
641 es->s_last_error_ino = cpu_to_le32(ino);
642 es->s_last_error_block = cpu_to_le64(block);
643 __save_error_info(sb, function, line);
644
645 if (ext4_error_ratelimit(sb)) {
646 va_start(args, fmt);
647 vaf.fmt = fmt;
648 vaf.va = &args;
649 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
650 sb->s_id, function, line, grp);
651 if (ino)
652 printk(KERN_CONT "inode %lu: ", ino);
653 if (block)
654 printk(KERN_CONT "block %llu:",
655 (unsigned long long) block);
656 printk(KERN_CONT "%pV\n", &vaf);
657 va_end(args);
658 }
659
660 if (test_opt(sb, ERRORS_CONT)) {
661 ext4_commit_super(sb, 0);
662 return;
663 }
664
665 ext4_unlock_group(sb, grp);
666 ext4_handle_error(sb);
667 /*
668 * We only get here in the ERRORS_RO case; relocking the group
669 * may be dangerous, but nothing bad will happen since the
670 * filesystem will have already been marked read/only and the
671 * journal has been aborted. We return 1 as a hint to callers
672 * who might what to use the return value from
673 * ext4_grp_locked_error() to distinguish between the
674 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
675 * aggressively from the ext4 function in question, with a
676 * more appropriate error code.
677 */
678 ext4_lock_group(sb, grp);
679 return;
680 }
681
682 void ext4_update_dynamic_rev(struct super_block *sb)
683 {
684 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
685
686 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
687 return;
688
689 ext4_warning(sb,
690 "updating to rev %d because of new feature flag, "
691 "running e2fsck is recommended",
692 EXT4_DYNAMIC_REV);
693
694 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
695 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
696 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
697 /* leave es->s_feature_*compat flags alone */
698 /* es->s_uuid will be set by e2fsck if empty */
699
700 /*
701 * The rest of the superblock fields should be zero, and if not it
702 * means they are likely already in use, so leave them alone. We
703 * can leave it up to e2fsck to clean up any inconsistencies there.
704 */
705 }
706
707 /*
708 * Open the external journal device
709 */
710 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb)
711 {
712 struct block_device *bdev;
713 char b[BDEVNAME_SIZE];
714
715 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb);
716 if (IS_ERR(bdev))
717 goto fail;
718 return bdev;
719
720 fail:
721 ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld",
722 __bdevname(dev, b), PTR_ERR(bdev));
723 return NULL;
724 }
725
726 /*
727 * Release the journal device
728 */
729 static void ext4_blkdev_put(struct block_device *bdev)
730 {
731 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
732 }
733
734 static void ext4_blkdev_remove(struct ext4_sb_info *sbi)
735 {
736 struct block_device *bdev;
737 bdev = sbi->journal_bdev;
738 if (bdev) {
739 ext4_blkdev_put(bdev);
740 sbi->journal_bdev = NULL;
741 }
742 }
743
744 static inline struct inode *orphan_list_entry(struct list_head *l)
745 {
746 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
747 }
748
749 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
750 {
751 struct list_head *l;
752
753 ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
754 le32_to_cpu(sbi->s_es->s_last_orphan));
755
756 printk(KERN_ERR "sb_info orphan list:\n");
757 list_for_each(l, &sbi->s_orphan) {
758 struct inode *inode = orphan_list_entry(l);
759 printk(KERN_ERR " "
760 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
761 inode->i_sb->s_id, inode->i_ino, inode,
762 inode->i_mode, inode->i_nlink,
763 NEXT_ORPHAN(inode));
764 }
765 }
766
767 static void ext4_put_super(struct super_block *sb)
768 {
769 struct ext4_sb_info *sbi = EXT4_SB(sb);
770 struct ext4_super_block *es = sbi->s_es;
771 int i, err;
772
773 ext4_unregister_li_request(sb);
774 dquot_disable(sb, -1, DQUOT_USAGE_ENABLED | DQUOT_LIMITS_ENABLED);
775
776 flush_workqueue(sbi->rsv_conversion_wq);
777 destroy_workqueue(sbi->rsv_conversion_wq);
778
779 if (sbi->s_journal) {
780 err = jbd2_journal_destroy(sbi->s_journal);
781 sbi->s_journal = NULL;
782 if (err < 0)
783 ext4_abort(sb, "Couldn't clean up the journal");
784 }
785
786 ext4_es_unregister_shrinker(sbi);
787 del_timer_sync(&sbi->s_err_report);
788 ext4_release_system_zone(sb);
789 ext4_mb_release(sb);
790 ext4_ext_release(sb);
791 ext4_xattr_put_super(sb);
792
793 if (!(sb->s_flags & MS_RDONLY)) {
794 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
795 es->s_state = cpu_to_le16(sbi->s_mount_state);
796 }
797 if (!(sb->s_flags & MS_RDONLY))
798 ext4_commit_super(sb, 1);
799
800 if (sbi->s_proc) {
801 remove_proc_entry("options", sbi->s_proc);
802 remove_proc_entry(sb->s_id, ext4_proc_root);
803 }
804 kobject_del(&sbi->s_kobj);
805
806 for (i = 0; i < sbi->s_gdb_count; i++)
807 brelse(sbi->s_group_desc[i]);
808 kvfree(sbi->s_group_desc);
809 kvfree(sbi->s_flex_groups);
810 percpu_counter_destroy(&sbi->s_freeclusters_counter);
811 percpu_counter_destroy(&sbi->s_freeinodes_counter);
812 percpu_counter_destroy(&sbi->s_dirs_counter);
813 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
814 brelse(sbi->s_sbh);
815 #ifdef CONFIG_QUOTA
816 for (i = 0; i < EXT4_MAXQUOTAS; i++)
817 kfree(sbi->s_qf_names[i]);
818 #endif
819
820 /* Debugging code just in case the in-memory inode orphan list
821 * isn't empty. The on-disk one can be non-empty if we've
822 * detected an error and taken the fs readonly, but the
823 * in-memory list had better be clean by this point. */
824 if (!list_empty(&sbi->s_orphan))
825 dump_orphan_list(sb, sbi);
826 J_ASSERT(list_empty(&sbi->s_orphan));
827
828 sync_blockdev(sb->s_bdev);
829 invalidate_bdev(sb->s_bdev);
830 if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) {
831 /*
832 * Invalidate the journal device's buffers. We don't want them
833 * floating about in memory - the physical journal device may
834 * hotswapped, and it breaks the `ro-after' testing code.
835 */
836 sync_blockdev(sbi->journal_bdev);
837 invalidate_bdev(sbi->journal_bdev);
838 ext4_blkdev_remove(sbi);
839 }
840 if (sbi->s_mb_cache) {
841 ext4_xattr_destroy_cache(sbi->s_mb_cache);
842 sbi->s_mb_cache = NULL;
843 }
844 if (sbi->s_mmp_tsk)
845 kthread_stop(sbi->s_mmp_tsk);
846 sb->s_fs_info = NULL;
847 /*
848 * Now that we are completely done shutting down the
849 * superblock, we need to actually destroy the kobject.
850 */
851 kobject_put(&sbi->s_kobj);
852 wait_for_completion(&sbi->s_kobj_unregister);
853 if (sbi->s_chksum_driver)
854 crypto_free_shash(sbi->s_chksum_driver);
855 kfree(sbi->s_blockgroup_lock);
856 kfree(sbi);
857 }
858
859 static struct kmem_cache *ext4_inode_cachep;
860
861 /*
862 * Called inside transaction, so use GFP_NOFS
863 */
864 static struct inode *ext4_alloc_inode(struct super_block *sb)
865 {
866 struct ext4_inode_info *ei;
867
868 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS);
869 if (!ei)
870 return NULL;
871
872 ei->vfs_inode.i_version = 1;
873 spin_lock_init(&ei->i_raw_lock);
874 INIT_LIST_HEAD(&ei->i_prealloc_list);
875 spin_lock_init(&ei->i_prealloc_lock);
876 ext4_es_init_tree(&ei->i_es_tree);
877 rwlock_init(&ei->i_es_lock);
878 INIT_LIST_HEAD(&ei->i_es_list);
879 ei->i_es_all_nr = 0;
880 ei->i_es_shk_nr = 0;
881 ei->i_es_shrink_lblk = 0;
882 ei->i_reserved_data_blocks = 0;
883 ei->i_reserved_meta_blocks = 0;
884 ei->i_allocated_meta_blocks = 0;
885 ei->i_da_metadata_calc_len = 0;
886 ei->i_da_metadata_calc_last_lblock = 0;
887 spin_lock_init(&(ei->i_block_reservation_lock));
888 #ifdef CONFIG_QUOTA
889 ei->i_reserved_quota = 0;
890 memset(&ei->i_dquot, 0, sizeof(ei->i_dquot));
891 #endif
892 ei->jinode = NULL;
893 INIT_LIST_HEAD(&ei->i_rsv_conversion_list);
894 spin_lock_init(&ei->i_completed_io_lock);
895 ei->i_sync_tid = 0;
896 ei->i_datasync_tid = 0;
897 atomic_set(&ei->i_ioend_count, 0);
898 atomic_set(&ei->i_unwritten, 0);
899 INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work);
900 #ifdef CONFIG_EXT4_FS_ENCRYPTION
901 ei->i_crypt_info = NULL;
902 #endif
903 return &ei->vfs_inode;
904 }
905
906 static int ext4_drop_inode(struct inode *inode)
907 {
908 int drop = generic_drop_inode(inode);
909
910 trace_ext4_drop_inode(inode, drop);
911 return drop;
912 }
913
914 static void ext4_i_callback(struct rcu_head *head)
915 {
916 struct inode *inode = container_of(head, struct inode, i_rcu);
917 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
918 }
919
920 static void ext4_destroy_inode(struct inode *inode)
921 {
922 if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
923 ext4_msg(inode->i_sb, KERN_ERR,
924 "Inode %lu (%p): orphan list check failed!",
925 inode->i_ino, EXT4_I(inode));
926 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
927 EXT4_I(inode), sizeof(struct ext4_inode_info),
928 true);
929 dump_stack();
930 }
931 call_rcu(&inode->i_rcu, ext4_i_callback);
932 }
933
934 static void init_once(void *foo)
935 {
936 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo;
937
938 INIT_LIST_HEAD(&ei->i_orphan);
939 init_rwsem(&ei->xattr_sem);
940 init_rwsem(&ei->i_data_sem);
941 inode_init_once(&ei->vfs_inode);
942 }
943
944 static int __init init_inodecache(void)
945 {
946 ext4_inode_cachep = kmem_cache_create("ext4_inode_cache",
947 sizeof(struct ext4_inode_info),
948 0, (SLAB_RECLAIM_ACCOUNT|
949 SLAB_MEM_SPREAD),
950 init_once);
951 if (ext4_inode_cachep == NULL)
952 return -ENOMEM;
953 return 0;
954 }
955
956 static void destroy_inodecache(void)
957 {
958 /*
959 * Make sure all delayed rcu free inodes are flushed before we
960 * destroy cache.
961 */
962 rcu_barrier();
963 kmem_cache_destroy(ext4_inode_cachep);
964 }
965
966 void ext4_clear_inode(struct inode *inode)
967 {
968 invalidate_inode_buffers(inode);
969 clear_inode(inode);
970 dquot_drop(inode);
971 ext4_discard_preallocations(inode);
972 ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS);
973 if (EXT4_I(inode)->jinode) {
974 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
975 EXT4_I(inode)->jinode);
976 jbd2_free_inode(EXT4_I(inode)->jinode);
977 EXT4_I(inode)->jinode = NULL;
978 }
979 #ifdef CONFIG_EXT4_FS_ENCRYPTION
980 if (EXT4_I(inode)->i_crypt_info)
981 ext4_free_encryption_info(inode, EXT4_I(inode)->i_crypt_info);
982 #endif
983 }
984
985 static struct inode *ext4_nfs_get_inode(struct super_block *sb,
986 u64 ino, u32 generation)
987 {
988 struct inode *inode;
989
990 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
991 return ERR_PTR(-ESTALE);
992 if (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
993 return ERR_PTR(-ESTALE);
994
995 /* iget isn't really right if the inode is currently unallocated!!
996 *
997 * ext4_read_inode will return a bad_inode if the inode had been
998 * deleted, so we should be safe.
999 *
1000 * Currently we don't know the generation for parent directory, so
1001 * a generation of 0 means "accept any"
1002 */
1003 inode = ext4_iget_normal(sb, ino);
1004 if (IS_ERR(inode))
1005 return ERR_CAST(inode);
1006 if (generation && inode->i_generation != generation) {
1007 iput(inode);
1008 return ERR_PTR(-ESTALE);
1009 }
1010
1011 return inode;
1012 }
1013
1014 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
1015 int fh_len, int fh_type)
1016 {
1017 return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1018 ext4_nfs_get_inode);
1019 }
1020
1021 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
1022 int fh_len, int fh_type)
1023 {
1024 return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1025 ext4_nfs_get_inode);
1026 }
1027
1028 /*
1029 * Try to release metadata pages (indirect blocks, directories) which are
1030 * mapped via the block device. Since these pages could have journal heads
1031 * which would prevent try_to_free_buffers() from freeing them, we must use
1032 * jbd2 layer's try_to_free_buffers() function to release them.
1033 */
1034 static int bdev_try_to_free_page(struct super_block *sb, struct page *page,
1035 gfp_t wait)
1036 {
1037 journal_t *journal = EXT4_SB(sb)->s_journal;
1038
1039 WARN_ON(PageChecked(page));
1040 if (!page_has_buffers(page))
1041 return 0;
1042 if (journal)
1043 return jbd2_journal_try_to_free_buffers(journal, page,
1044 wait & ~__GFP_WAIT);
1045 return try_to_free_buffers(page);
1046 }
1047
1048 #ifdef CONFIG_QUOTA
1049 #define QTYPE2NAME(t) ((t) == USRQUOTA ? "user" : "group")
1050 #define QTYPE2MOPT(on, t) ((t) == USRQUOTA?((on)##USRJQUOTA):((on)##GRPJQUOTA))
1051
1052 static int ext4_write_dquot(struct dquot *dquot);
1053 static int ext4_acquire_dquot(struct dquot *dquot);
1054 static int ext4_release_dquot(struct dquot *dquot);
1055 static int ext4_mark_dquot_dirty(struct dquot *dquot);
1056 static int ext4_write_info(struct super_block *sb, int type);
1057 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1058 struct path *path);
1059 static int ext4_quota_off(struct super_block *sb, int type);
1060 static int ext4_quota_on_mount(struct super_block *sb, int type);
1061 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1062 size_t len, loff_t off);
1063 static ssize_t ext4_quota_write(struct super_block *sb, int type,
1064 const char *data, size_t len, loff_t off);
1065 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
1066 unsigned int flags);
1067 static int ext4_enable_quotas(struct super_block *sb);
1068
1069 static struct dquot **ext4_get_dquots(struct inode *inode)
1070 {
1071 return EXT4_I(inode)->i_dquot;
1072 }
1073
1074 static const struct dquot_operations ext4_quota_operations = {
1075 .get_reserved_space = ext4_get_reserved_space,
1076 .write_dquot = ext4_write_dquot,
1077 .acquire_dquot = ext4_acquire_dquot,
1078 .release_dquot = ext4_release_dquot,
1079 .mark_dirty = ext4_mark_dquot_dirty,
1080 .write_info = ext4_write_info,
1081 .alloc_dquot = dquot_alloc,
1082 .destroy_dquot = dquot_destroy,
1083 };
1084
1085 static const struct quotactl_ops ext4_qctl_operations = {
1086 .quota_on = ext4_quota_on,
1087 .quota_off = ext4_quota_off,
1088 .quota_sync = dquot_quota_sync,
1089 .get_state = dquot_get_state,
1090 .set_info = dquot_set_dqinfo,
1091 .get_dqblk = dquot_get_dqblk,
1092 .set_dqblk = dquot_set_dqblk
1093 };
1094 #endif
1095
1096 static const struct super_operations ext4_sops = {
1097 .alloc_inode = ext4_alloc_inode,
1098 .destroy_inode = ext4_destroy_inode,
1099 .write_inode = ext4_write_inode,
1100 .dirty_inode = ext4_dirty_inode,
1101 .drop_inode = ext4_drop_inode,
1102 .evict_inode = ext4_evict_inode,
1103 .put_super = ext4_put_super,
1104 .sync_fs = ext4_sync_fs,
1105 .freeze_fs = ext4_freeze,
1106 .unfreeze_fs = ext4_unfreeze,
1107 .statfs = ext4_statfs,
1108 .remount_fs = ext4_remount,
1109 .show_options = ext4_show_options,
1110 #ifdef CONFIG_QUOTA
1111 .quota_read = ext4_quota_read,
1112 .quota_write = ext4_quota_write,
1113 .get_dquots = ext4_get_dquots,
1114 #endif
1115 .bdev_try_to_free_page = bdev_try_to_free_page,
1116 };
1117
1118 static const struct export_operations ext4_export_ops = {
1119 .fh_to_dentry = ext4_fh_to_dentry,
1120 .fh_to_parent = ext4_fh_to_parent,
1121 .get_parent = ext4_get_parent,
1122 };
1123
1124 enum {
1125 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1126 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro,
1127 Opt_nouid32, Opt_debug, Opt_removed,
1128 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl,
1129 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload,
1130 Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev,
1131 Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit,
1132 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1133 Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption,
1134 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota,
1135 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota,
1136 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err,
1137 Opt_usrquota, Opt_grpquota, Opt_i_version, Opt_dax,
1138 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_mblk_io_submit,
1139 Opt_lazytime, Opt_nolazytime,
1140 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1141 Opt_inode_readahead_blks, Opt_journal_ioprio,
1142 Opt_dioread_nolock, Opt_dioread_lock,
1143 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable,
1144 Opt_max_dir_size_kb, Opt_nojournal_checksum,
1145 };
1146
1147 static const match_table_t tokens = {
1148 {Opt_bsd_df, "bsddf"},
1149 {Opt_minix_df, "minixdf"},
1150 {Opt_grpid, "grpid"},
1151 {Opt_grpid, "bsdgroups"},
1152 {Opt_nogrpid, "nogrpid"},
1153 {Opt_nogrpid, "sysvgroups"},
1154 {Opt_resgid, "resgid=%u"},
1155 {Opt_resuid, "resuid=%u"},
1156 {Opt_sb, "sb=%u"},
1157 {Opt_err_cont, "errors=continue"},
1158 {Opt_err_panic, "errors=panic"},
1159 {Opt_err_ro, "errors=remount-ro"},
1160 {Opt_nouid32, "nouid32"},
1161 {Opt_debug, "debug"},
1162 {Opt_removed, "oldalloc"},
1163 {Opt_removed, "orlov"},
1164 {Opt_user_xattr, "user_xattr"},
1165 {Opt_nouser_xattr, "nouser_xattr"},
1166 {Opt_acl, "acl"},
1167 {Opt_noacl, "noacl"},
1168 {Opt_noload, "norecovery"},
1169 {Opt_noload, "noload"},
1170 {Opt_removed, "nobh"},
1171 {Opt_removed, "bh"},
1172 {Opt_commit, "commit=%u"},
1173 {Opt_min_batch_time, "min_batch_time=%u"},
1174 {Opt_max_batch_time, "max_batch_time=%u"},
1175 {Opt_journal_dev, "journal_dev=%u"},
1176 {Opt_journal_path, "journal_path=%s"},
1177 {Opt_journal_checksum, "journal_checksum"},
1178 {Opt_nojournal_checksum, "nojournal_checksum"},
1179 {Opt_journal_async_commit, "journal_async_commit"},
1180 {Opt_abort, "abort"},
1181 {Opt_data_journal, "data=journal"},
1182 {Opt_data_ordered, "data=ordered"},
1183 {Opt_data_writeback, "data=writeback"},
1184 {Opt_data_err_abort, "data_err=abort"},
1185 {Opt_data_err_ignore, "data_err=ignore"},
1186 {Opt_offusrjquota, "usrjquota="},
1187 {Opt_usrjquota, "usrjquota=%s"},
1188 {Opt_offgrpjquota, "grpjquota="},
1189 {Opt_grpjquota, "grpjquota=%s"},
1190 {Opt_jqfmt_vfsold, "jqfmt=vfsold"},
1191 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
1192 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
1193 {Opt_grpquota, "grpquota"},
1194 {Opt_noquota, "noquota"},
1195 {Opt_quota, "quota"},
1196 {Opt_usrquota, "usrquota"},
1197 {Opt_barrier, "barrier=%u"},
1198 {Opt_barrier, "barrier"},
1199 {Opt_nobarrier, "nobarrier"},
1200 {Opt_i_version, "i_version"},
1201 {Opt_dax, "dax"},
1202 {Opt_stripe, "stripe=%u"},
1203 {Opt_delalloc, "delalloc"},
1204 {Opt_lazytime, "lazytime"},
1205 {Opt_nolazytime, "nolazytime"},
1206 {Opt_nodelalloc, "nodelalloc"},
1207 {Opt_removed, "mblk_io_submit"},
1208 {Opt_removed, "nomblk_io_submit"},
1209 {Opt_block_validity, "block_validity"},
1210 {Opt_noblock_validity, "noblock_validity"},
1211 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"},
1212 {Opt_journal_ioprio, "journal_ioprio=%u"},
1213 {Opt_auto_da_alloc, "auto_da_alloc=%u"},
1214 {Opt_auto_da_alloc, "auto_da_alloc"},
1215 {Opt_noauto_da_alloc, "noauto_da_alloc"},
1216 {Opt_dioread_nolock, "dioread_nolock"},
1217 {Opt_dioread_lock, "dioread_lock"},
1218 {Opt_discard, "discard"},
1219 {Opt_nodiscard, "nodiscard"},
1220 {Opt_init_itable, "init_itable=%u"},
1221 {Opt_init_itable, "init_itable"},
1222 {Opt_noinit_itable, "noinit_itable"},
1223 {Opt_max_dir_size_kb, "max_dir_size_kb=%u"},
1224 {Opt_test_dummy_encryption, "test_dummy_encryption"},
1225 {Opt_removed, "check=none"}, /* mount option from ext2/3 */
1226 {Opt_removed, "nocheck"}, /* mount option from ext2/3 */
1227 {Opt_removed, "reservation"}, /* mount option from ext2/3 */
1228 {Opt_removed, "noreservation"}, /* mount option from ext2/3 */
1229 {Opt_removed, "journal=%u"}, /* mount option from ext2/3 */
1230 {Opt_err, NULL},
1231 };
1232
1233 static ext4_fsblk_t get_sb_block(void **data)
1234 {
1235 ext4_fsblk_t sb_block;
1236 char *options = (char *) *data;
1237
1238 if (!options || strncmp(options, "sb=", 3) != 0)
1239 return 1; /* Default location */
1240
1241 options += 3;
1242 /* TODO: use simple_strtoll with >32bit ext4 */
1243 sb_block = simple_strtoul(options, &options, 0);
1244 if (*options && *options != ',') {
1245 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n",
1246 (char *) *data);
1247 return 1;
1248 }
1249 if (*options == ',')
1250 options++;
1251 *data = (void *) options;
1252
1253 return sb_block;
1254 }
1255
1256 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1257 static char deprecated_msg[] = "Mount option \"%s\" will be removed by %s\n"
1258 "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n";
1259
1260 #ifdef CONFIG_QUOTA
1261 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args)
1262 {
1263 struct ext4_sb_info *sbi = EXT4_SB(sb);
1264 char *qname;
1265 int ret = -1;
1266
1267 if (sb_any_quota_loaded(sb) &&
1268 !sbi->s_qf_names[qtype]) {
1269 ext4_msg(sb, KERN_ERR,
1270 "Cannot change journaled "
1271 "quota options when quota turned on");
1272 return -1;
1273 }
1274 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA)) {
1275 ext4_msg(sb, KERN_ERR, "Cannot set journaled quota options "
1276 "when QUOTA feature is enabled");
1277 return -1;
1278 }
1279 qname = match_strdup(args);
1280 if (!qname) {
1281 ext4_msg(sb, KERN_ERR,
1282 "Not enough memory for storing quotafile name");
1283 return -1;
1284 }
1285 if (sbi->s_qf_names[qtype]) {
1286 if (strcmp(sbi->s_qf_names[qtype], qname) == 0)
1287 ret = 1;
1288 else
1289 ext4_msg(sb, KERN_ERR,
1290 "%s quota file already specified",
1291 QTYPE2NAME(qtype));
1292 goto errout;
1293 }
1294 if (strchr(qname, '/')) {
1295 ext4_msg(sb, KERN_ERR,
1296 "quotafile must be on filesystem root");
1297 goto errout;
1298 }
1299 sbi->s_qf_names[qtype] = qname;
1300 set_opt(sb, QUOTA);
1301 return 1;
1302 errout:
1303 kfree(qname);
1304 return ret;
1305 }
1306
1307 static int clear_qf_name(struct super_block *sb, int qtype)
1308 {
1309
1310 struct ext4_sb_info *sbi = EXT4_SB(sb);
1311
1312 if (sb_any_quota_loaded(sb) &&
1313 sbi->s_qf_names[qtype]) {
1314 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options"
1315 " when quota turned on");
1316 return -1;
1317 }
1318 kfree(sbi->s_qf_names[qtype]);
1319 sbi->s_qf_names[qtype] = NULL;
1320 return 1;
1321 }
1322 #endif
1323
1324 #define MOPT_SET 0x0001
1325 #define MOPT_CLEAR 0x0002
1326 #define MOPT_NOSUPPORT 0x0004
1327 #define MOPT_EXPLICIT 0x0008
1328 #define MOPT_CLEAR_ERR 0x0010
1329 #define MOPT_GTE0 0x0020
1330 #ifdef CONFIG_QUOTA
1331 #define MOPT_Q 0
1332 #define MOPT_QFMT 0x0040
1333 #else
1334 #define MOPT_Q MOPT_NOSUPPORT
1335 #define MOPT_QFMT MOPT_NOSUPPORT
1336 #endif
1337 #define MOPT_DATAJ 0x0080
1338 #define MOPT_NO_EXT2 0x0100
1339 #define MOPT_NO_EXT3 0x0200
1340 #define MOPT_EXT4_ONLY (MOPT_NO_EXT2 | MOPT_NO_EXT3)
1341 #define MOPT_STRING 0x0400
1342
1343 static const struct mount_opts {
1344 int token;
1345 int mount_opt;
1346 int flags;
1347 } ext4_mount_opts[] = {
1348 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET},
1349 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR},
1350 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET},
1351 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR},
1352 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET},
1353 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR},
1354 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK,
1355 MOPT_EXT4_ONLY | MOPT_SET},
1356 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK,
1357 MOPT_EXT4_ONLY | MOPT_CLEAR},
1358 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET},
1359 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR},
1360 {Opt_delalloc, EXT4_MOUNT_DELALLOC,
1361 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1362 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC,
1363 MOPT_EXT4_ONLY | MOPT_CLEAR},
1364 {Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1365 MOPT_EXT4_ONLY | MOPT_CLEAR},
1366 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1367 MOPT_EXT4_ONLY | MOPT_SET},
1368 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT |
1369 EXT4_MOUNT_JOURNAL_CHECKSUM),
1370 MOPT_EXT4_ONLY | MOPT_SET},
1371 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET},
1372 {Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR},
1373 {Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR},
1374 {Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR},
1375 {Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT,
1376 MOPT_NO_EXT2 | MOPT_SET},
1377 {Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT,
1378 MOPT_NO_EXT2 | MOPT_CLEAR},
1379 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET},
1380 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR},
1381 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET},
1382 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR},
1383 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR},
1384 {Opt_commit, 0, MOPT_GTE0},
1385 {Opt_max_batch_time, 0, MOPT_GTE0},
1386 {Opt_min_batch_time, 0, MOPT_GTE0},
1387 {Opt_inode_readahead_blks, 0, MOPT_GTE0},
1388 {Opt_init_itable, 0, MOPT_GTE0},
1389 {Opt_dax, EXT4_MOUNT_DAX, MOPT_SET},
1390 {Opt_stripe, 0, MOPT_GTE0},
1391 {Opt_resuid, 0, MOPT_GTE0},
1392 {Opt_resgid, 0, MOPT_GTE0},
1393 {Opt_journal_dev, 0, MOPT_GTE0},
1394 {Opt_journal_path, 0, MOPT_STRING},
1395 {Opt_journal_ioprio, 0, MOPT_GTE0},
1396 {Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1397 {Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1398 {Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA,
1399 MOPT_NO_EXT2 | MOPT_DATAJ},
1400 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET},
1401 {Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR},
1402 #ifdef CONFIG_EXT4_FS_POSIX_ACL
1403 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET},
1404 {Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR},
1405 #else
1406 {Opt_acl, 0, MOPT_NOSUPPORT},
1407 {Opt_noacl, 0, MOPT_NOSUPPORT},
1408 #endif
1409 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET},
1410 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET},
1411 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q},
1412 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA,
1413 MOPT_SET | MOPT_Q},
1414 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA,
1415 MOPT_SET | MOPT_Q},
1416 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
1417 EXT4_MOUNT_GRPQUOTA), MOPT_CLEAR | MOPT_Q},
1418 {Opt_usrjquota, 0, MOPT_Q},
1419 {Opt_grpjquota, 0, MOPT_Q},
1420 {Opt_offusrjquota, 0, MOPT_Q},
1421 {Opt_offgrpjquota, 0, MOPT_Q},
1422 {Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT},
1423 {Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT},
1424 {Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT},
1425 {Opt_max_dir_size_kb, 0, MOPT_GTE0},
1426 {Opt_test_dummy_encryption, 0, MOPT_GTE0},
1427 {Opt_err, 0, 0}
1428 };
1429
1430 static int handle_mount_opt(struct super_block *sb, char *opt, int token,
1431 substring_t *args, unsigned long *journal_devnum,
1432 unsigned int *journal_ioprio, int is_remount)
1433 {
1434 struct ext4_sb_info *sbi = EXT4_SB(sb);
1435 const struct mount_opts *m;
1436 kuid_t uid;
1437 kgid_t gid;
1438 int arg = 0;
1439
1440 #ifdef CONFIG_QUOTA
1441 if (token == Opt_usrjquota)
1442 return set_qf_name(sb, USRQUOTA, &args[0]);
1443 else if (token == Opt_grpjquota)
1444 return set_qf_name(sb, GRPQUOTA, &args[0]);
1445 else if (token == Opt_offusrjquota)
1446 return clear_qf_name(sb, USRQUOTA);
1447 else if (token == Opt_offgrpjquota)
1448 return clear_qf_name(sb, GRPQUOTA);
1449 #endif
1450 switch (token) {
1451 case Opt_noacl:
1452 case Opt_nouser_xattr:
1453 ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5");
1454 break;
1455 case Opt_sb:
1456 return 1; /* handled by get_sb_block() */
1457 case Opt_removed:
1458 ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt);
1459 return 1;
1460 case Opt_abort:
1461 sbi->s_mount_flags |= EXT4_MF_FS_ABORTED;
1462 return 1;
1463 case Opt_i_version:
1464 sb->s_flags |= MS_I_VERSION;
1465 return 1;
1466 case Opt_lazytime:
1467 sb->s_flags |= MS_LAZYTIME;
1468 return 1;
1469 case Opt_nolazytime:
1470 sb->s_flags &= ~MS_LAZYTIME;
1471 return 1;
1472 }
1473
1474 for (m = ext4_mount_opts; m->token != Opt_err; m++)
1475 if (token == m->token)
1476 break;
1477
1478 if (m->token == Opt_err) {
1479 ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" "
1480 "or missing value", opt);
1481 return -1;
1482 }
1483
1484 if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) {
1485 ext4_msg(sb, KERN_ERR,
1486 "Mount option \"%s\" incompatible with ext2", opt);
1487 return -1;
1488 }
1489 if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) {
1490 ext4_msg(sb, KERN_ERR,
1491 "Mount option \"%s\" incompatible with ext3", opt);
1492 return -1;
1493 }
1494
1495 if (args->from && !(m->flags & MOPT_STRING) && match_int(args, &arg))
1496 return -1;
1497 if (args->from && (m->flags & MOPT_GTE0) && (arg < 0))
1498 return -1;
1499 if (m->flags & MOPT_EXPLICIT)
1500 set_opt2(sb, EXPLICIT_DELALLOC);
1501 if (m->flags & MOPT_CLEAR_ERR)
1502 clear_opt(sb, ERRORS_MASK);
1503 if (token == Opt_noquota && sb_any_quota_loaded(sb)) {
1504 ext4_msg(sb, KERN_ERR, "Cannot change quota "
1505 "options when quota turned on");
1506 return -1;
1507 }
1508
1509 if (m->flags & MOPT_NOSUPPORT) {
1510 ext4_msg(sb, KERN_ERR, "%s option not supported", opt);
1511 } else if (token == Opt_commit) {
1512 if (arg == 0)
1513 arg = JBD2_DEFAULT_MAX_COMMIT_AGE;
1514 sbi->s_commit_interval = HZ * arg;
1515 } else if (token == Opt_max_batch_time) {
1516 sbi->s_max_batch_time = arg;
1517 } else if (token == Opt_min_batch_time) {
1518 sbi->s_min_batch_time = arg;
1519 } else if (token == Opt_inode_readahead_blks) {
1520 if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) {
1521 ext4_msg(sb, KERN_ERR,
1522 "EXT4-fs: inode_readahead_blks must be "
1523 "0 or a power of 2 smaller than 2^31");
1524 return -1;
1525 }
1526 sbi->s_inode_readahead_blks = arg;
1527 } else if (token == Opt_init_itable) {
1528 set_opt(sb, INIT_INODE_TABLE);
1529 if (!args->from)
1530 arg = EXT4_DEF_LI_WAIT_MULT;
1531 sbi->s_li_wait_mult = arg;
1532 } else if (token == Opt_max_dir_size_kb) {
1533 sbi->s_max_dir_size_kb = arg;
1534 } else if (token == Opt_stripe) {
1535 sbi->s_stripe = arg;
1536 } else if (token == Opt_resuid) {
1537 uid = make_kuid(current_user_ns(), arg);
1538 if (!uid_valid(uid)) {
1539 ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg);
1540 return -1;
1541 }
1542 sbi->s_resuid = uid;
1543 } else if (token == Opt_resgid) {
1544 gid = make_kgid(current_user_ns(), arg);
1545 if (!gid_valid(gid)) {
1546 ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg);
1547 return -1;
1548 }
1549 sbi->s_resgid = gid;
1550 } else if (token == Opt_journal_dev) {
1551 if (is_remount) {
1552 ext4_msg(sb, KERN_ERR,
1553 "Cannot specify journal on remount");
1554 return -1;
1555 }
1556 *journal_devnum = arg;
1557 } else if (token == Opt_journal_path) {
1558 char *journal_path;
1559 struct inode *journal_inode;
1560 struct path path;
1561 int error;
1562
1563 if (is_remount) {
1564 ext4_msg(sb, KERN_ERR,
1565 "Cannot specify journal on remount");
1566 return -1;
1567 }
1568 journal_path = match_strdup(&args[0]);
1569 if (!journal_path) {
1570 ext4_msg(sb, KERN_ERR, "error: could not dup "
1571 "journal device string");
1572 return -1;
1573 }
1574
1575 error = kern_path(journal_path, LOOKUP_FOLLOW, &path);
1576 if (error) {
1577 ext4_msg(sb, KERN_ERR, "error: could not find "
1578 "journal device path: error %d", error);
1579 kfree(journal_path);
1580 return -1;
1581 }
1582
1583 journal_inode = d_inode(path.dentry);
1584 if (!S_ISBLK(journal_inode->i_mode)) {
1585 ext4_msg(sb, KERN_ERR, "error: journal path %s "
1586 "is not a block device", journal_path);
1587 path_put(&path);
1588 kfree(journal_path);
1589 return -1;
1590 }
1591
1592 *journal_devnum = new_encode_dev(journal_inode->i_rdev);
1593 path_put(&path);
1594 kfree(journal_path);
1595 } else if (token == Opt_journal_ioprio) {
1596 if (arg > 7) {
1597 ext4_msg(sb, KERN_ERR, "Invalid journal IO priority"
1598 " (must be 0-7)");
1599 return -1;
1600 }
1601 *journal_ioprio =
1602 IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg);
1603 } else if (token == Opt_test_dummy_encryption) {
1604 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1605 sbi->s_mount_flags |= EXT4_MF_TEST_DUMMY_ENCRYPTION;
1606 ext4_msg(sb, KERN_WARNING,
1607 "Test dummy encryption mode enabled");
1608 #else
1609 ext4_msg(sb, KERN_WARNING,
1610 "Test dummy encryption mount option ignored");
1611 #endif
1612 } else if (m->flags & MOPT_DATAJ) {
1613 if (is_remount) {
1614 if (!sbi->s_journal)
1615 ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option");
1616 else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) {
1617 ext4_msg(sb, KERN_ERR,
1618 "Cannot change data mode on remount");
1619 return -1;
1620 }
1621 } else {
1622 clear_opt(sb, DATA_FLAGS);
1623 sbi->s_mount_opt |= m->mount_opt;
1624 }
1625 #ifdef CONFIG_QUOTA
1626 } else if (m->flags & MOPT_QFMT) {
1627 if (sb_any_quota_loaded(sb) &&
1628 sbi->s_jquota_fmt != m->mount_opt) {
1629 ext4_msg(sb, KERN_ERR, "Cannot change journaled "
1630 "quota options when quota turned on");
1631 return -1;
1632 }
1633 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
1634 EXT4_FEATURE_RO_COMPAT_QUOTA)) {
1635 ext4_msg(sb, KERN_ERR,
1636 "Cannot set journaled quota options "
1637 "when QUOTA feature is enabled");
1638 return -1;
1639 }
1640 sbi->s_jquota_fmt = m->mount_opt;
1641 #endif
1642 #ifndef CONFIG_FS_DAX
1643 } else if (token == Opt_dax) {
1644 ext4_msg(sb, KERN_INFO, "dax option not supported");
1645 return -1;
1646 #endif
1647 } else {
1648 if (!args->from)
1649 arg = 1;
1650 if (m->flags & MOPT_CLEAR)
1651 arg = !arg;
1652 else if (unlikely(!(m->flags & MOPT_SET))) {
1653 ext4_msg(sb, KERN_WARNING,
1654 "buggy handling of option %s", opt);
1655 WARN_ON(1);
1656 return -1;
1657 }
1658 if (arg != 0)
1659 sbi->s_mount_opt |= m->mount_opt;
1660 else
1661 sbi->s_mount_opt &= ~m->mount_opt;
1662 }
1663 return 1;
1664 }
1665
1666 static int parse_options(char *options, struct super_block *sb,
1667 unsigned long *journal_devnum,
1668 unsigned int *journal_ioprio,
1669 int is_remount)
1670 {
1671 struct ext4_sb_info *sbi = EXT4_SB(sb);
1672 char *p;
1673 substring_t args[MAX_OPT_ARGS];
1674 int token;
1675
1676 if (!options)
1677 return 1;
1678
1679 while ((p = strsep(&options, ",")) != NULL) {
1680 if (!*p)
1681 continue;
1682 /*
1683 * Initialize args struct so we know whether arg was
1684 * found; some options take optional arguments.
1685 */
1686 args[0].to = args[0].from = NULL;
1687 token = match_token(p, tokens, args);
1688 if (handle_mount_opt(sb, p, token, args, journal_devnum,
1689 journal_ioprio, is_remount) < 0)
1690 return 0;
1691 }
1692 #ifdef CONFIG_QUOTA
1693 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) &&
1694 (test_opt(sb, USRQUOTA) || test_opt(sb, GRPQUOTA))) {
1695 ext4_msg(sb, KERN_ERR, "Cannot set quota options when QUOTA "
1696 "feature is enabled");
1697 return 0;
1698 }
1699 if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
1700 if (test_opt(sb, USRQUOTA) && sbi->s_qf_names[USRQUOTA])
1701 clear_opt(sb, USRQUOTA);
1702
1703 if (test_opt(sb, GRPQUOTA) && sbi->s_qf_names[GRPQUOTA])
1704 clear_opt(sb, GRPQUOTA);
1705
1706 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) {
1707 ext4_msg(sb, KERN_ERR, "old and new quota "
1708 "format mixing");
1709 return 0;
1710 }
1711
1712 if (!sbi->s_jquota_fmt) {
1713 ext4_msg(sb, KERN_ERR, "journaled quota format "
1714 "not specified");
1715 return 0;
1716 }
1717 }
1718 #endif
1719 if (test_opt(sb, DIOREAD_NOLOCK)) {
1720 int blocksize =
1721 BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size);
1722
1723 if (blocksize < PAGE_CACHE_SIZE) {
1724 ext4_msg(sb, KERN_ERR, "can't mount with "
1725 "dioread_nolock if block size != PAGE_SIZE");
1726 return 0;
1727 }
1728 }
1729 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA &&
1730 test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
1731 ext4_msg(sb, KERN_ERR, "can't mount with journal_async_commit "
1732 "in data=ordered mode");
1733 return 0;
1734 }
1735 return 1;
1736 }
1737
1738 static inline void ext4_show_quota_options(struct seq_file *seq,
1739 struct super_block *sb)
1740 {
1741 #if defined(CONFIG_QUOTA)
1742 struct ext4_sb_info *sbi = EXT4_SB(sb);
1743
1744 if (sbi->s_jquota_fmt) {
1745 char *fmtname = "";
1746
1747 switch (sbi->s_jquota_fmt) {
1748 case QFMT_VFS_OLD:
1749 fmtname = "vfsold";
1750 break;
1751 case QFMT_VFS_V0:
1752 fmtname = "vfsv0";
1753 break;
1754 case QFMT_VFS_V1:
1755 fmtname = "vfsv1";
1756 break;
1757 }
1758 seq_printf(seq, ",jqfmt=%s", fmtname);
1759 }
1760
1761 if (sbi->s_qf_names[USRQUOTA])
1762 seq_printf(seq, ",usrjquota=%s", sbi->s_qf_names[USRQUOTA]);
1763
1764 if (sbi->s_qf_names[GRPQUOTA])
1765 seq_printf(seq, ",grpjquota=%s", sbi->s_qf_names[GRPQUOTA]);
1766 #endif
1767 }
1768
1769 static const char *token2str(int token)
1770 {
1771 const struct match_token *t;
1772
1773 for (t = tokens; t->token != Opt_err; t++)
1774 if (t->token == token && !strchr(t->pattern, '='))
1775 break;
1776 return t->pattern;
1777 }
1778
1779 /*
1780 * Show an option if
1781 * - it's set to a non-default value OR
1782 * - if the per-sb default is different from the global default
1783 */
1784 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb,
1785 int nodefs)
1786 {
1787 struct ext4_sb_info *sbi = EXT4_SB(sb);
1788 struct ext4_super_block *es = sbi->s_es;
1789 int def_errors, def_mount_opt = nodefs ? 0 : sbi->s_def_mount_opt;
1790 const struct mount_opts *m;
1791 char sep = nodefs ? '\n' : ',';
1792
1793 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep)
1794 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg)
1795
1796 if (sbi->s_sb_block != 1)
1797 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block);
1798
1799 for (m = ext4_mount_opts; m->token != Opt_err; m++) {
1800 int want_set = m->flags & MOPT_SET;
1801 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) ||
1802 (m->flags & MOPT_CLEAR_ERR))
1803 continue;
1804 if (!(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt)))
1805 continue; /* skip if same as the default */
1806 if ((want_set &&
1807 (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) ||
1808 (!want_set && (sbi->s_mount_opt & m->mount_opt)))
1809 continue; /* select Opt_noFoo vs Opt_Foo */
1810 SEQ_OPTS_PRINT("%s", token2str(m->token));
1811 }
1812
1813 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) ||
1814 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID)
1815 SEQ_OPTS_PRINT("resuid=%u",
1816 from_kuid_munged(&init_user_ns, sbi->s_resuid));
1817 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) ||
1818 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID)
1819 SEQ_OPTS_PRINT("resgid=%u",
1820 from_kgid_munged(&init_user_ns, sbi->s_resgid));
1821 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors);
1822 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO)
1823 SEQ_OPTS_PUTS("errors=remount-ro");
1824 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
1825 SEQ_OPTS_PUTS("errors=continue");
1826 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
1827 SEQ_OPTS_PUTS("errors=panic");
1828 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
1829 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ);
1830 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME)
1831 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time);
1832 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME)
1833 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time);
1834 if (sb->s_flags & MS_I_VERSION)
1835 SEQ_OPTS_PUTS("i_version");
1836 if (nodefs || sbi->s_stripe)
1837 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe);
1838 if (EXT4_MOUNT_DATA_FLAGS & (sbi->s_mount_opt ^ def_mount_opt)) {
1839 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
1840 SEQ_OPTS_PUTS("data=journal");
1841 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
1842 SEQ_OPTS_PUTS("data=ordered");
1843 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
1844 SEQ_OPTS_PUTS("data=writeback");
1845 }
1846 if (nodefs ||
1847 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
1848 SEQ_OPTS_PRINT("inode_readahead_blks=%u",
1849 sbi->s_inode_readahead_blks);
1850
1851 if (nodefs || (test_opt(sb, INIT_INODE_TABLE) &&
1852 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)))
1853 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult);
1854 if (nodefs || sbi->s_max_dir_size_kb)
1855 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb);
1856
1857 ext4_show_quota_options(seq, sb);
1858 return 0;
1859 }
1860
1861 static int ext4_show_options(struct seq_file *seq, struct dentry *root)
1862 {
1863 return _ext4_show_options(seq, root->d_sb, 0);
1864 }
1865
1866 static int options_seq_show(struct seq_file *seq, void *offset)
1867 {
1868 struct super_block *sb = seq->private;
1869 int rc;
1870
1871 seq_puts(seq, (sb->s_flags & MS_RDONLY) ? "ro" : "rw");
1872 rc = _ext4_show_options(seq, sb, 1);
1873 seq_puts(seq, "\n");
1874 return rc;
1875 }
1876
1877 static int options_open_fs(struct inode *inode, struct file *file)
1878 {
1879 return single_open(file, options_seq_show, PDE_DATA(inode));
1880 }
1881
1882 static const struct file_operations ext4_seq_options_fops = {
1883 .owner = THIS_MODULE,
1884 .open = options_open_fs,
1885 .read = seq_read,
1886 .llseek = seq_lseek,
1887 .release = single_release,
1888 };
1889
1890 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
1891 int read_only)
1892 {
1893 struct ext4_sb_info *sbi = EXT4_SB(sb);
1894 int res = 0;
1895
1896 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
1897 ext4_msg(sb, KERN_ERR, "revision level too high, "
1898 "forcing read-only mode");
1899 res = MS_RDONLY;
1900 }
1901 if (read_only)
1902 goto done;
1903 if (!(sbi->s_mount_state & EXT4_VALID_FS))
1904 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
1905 "running e2fsck is recommended");
1906 else if (sbi->s_mount_state & EXT4_ERROR_FS)
1907 ext4_msg(sb, KERN_WARNING,
1908 "warning: mounting fs with errors, "
1909 "running e2fsck is recommended");
1910 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
1911 le16_to_cpu(es->s_mnt_count) >=
1912 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
1913 ext4_msg(sb, KERN_WARNING,
1914 "warning: maximal mount count reached, "
1915 "running e2fsck is recommended");
1916 else if (le32_to_cpu(es->s_checkinterval) &&
1917 (le32_to_cpu(es->s_lastcheck) +
1918 le32_to_cpu(es->s_checkinterval) <= get_seconds()))
1919 ext4_msg(sb, KERN_WARNING,
1920 "warning: checktime reached, "
1921 "running e2fsck is recommended");
1922 if (!sbi->s_journal)
1923 es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
1924 if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
1925 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
1926 le16_add_cpu(&es->s_mnt_count, 1);
1927 es->s_mtime = cpu_to_le32(get_seconds());
1928 ext4_update_dynamic_rev(sb);
1929 if (sbi->s_journal)
1930 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
1931
1932 ext4_commit_super(sb, 1);
1933 done:
1934 if (test_opt(sb, DEBUG))
1935 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
1936 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
1937 sb->s_blocksize,
1938 sbi->s_groups_count,
1939 EXT4_BLOCKS_PER_GROUP(sb),
1940 EXT4_INODES_PER_GROUP(sb),
1941 sbi->s_mount_opt, sbi->s_mount_opt2);
1942
1943 cleancache_init_fs(sb);
1944 return res;
1945 }
1946
1947 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup)
1948 {
1949 struct ext4_sb_info *sbi = EXT4_SB(sb);
1950 struct flex_groups *new_groups;
1951 int size;
1952
1953 if (!sbi->s_log_groups_per_flex)
1954 return 0;
1955
1956 size = ext4_flex_group(sbi, ngroup - 1) + 1;
1957 if (size <= sbi->s_flex_groups_allocated)
1958 return 0;
1959
1960 size = roundup_pow_of_two(size * sizeof(struct flex_groups));
1961 new_groups = ext4_kvzalloc(size, GFP_KERNEL);
1962 if (!new_groups) {
1963 ext4_msg(sb, KERN_ERR, "not enough memory for %d flex groups",
1964 size / (int) sizeof(struct flex_groups));
1965 return -ENOMEM;
1966 }
1967
1968 if (sbi->s_flex_groups) {
1969 memcpy(new_groups, sbi->s_flex_groups,
1970 (sbi->s_flex_groups_allocated *
1971 sizeof(struct flex_groups)));
1972 kvfree(sbi->s_flex_groups);
1973 }
1974 sbi->s_flex_groups = new_groups;
1975 sbi->s_flex_groups_allocated = size / sizeof(struct flex_groups);
1976 return 0;
1977 }
1978
1979 static int ext4_fill_flex_info(struct super_block *sb)
1980 {
1981 struct ext4_sb_info *sbi = EXT4_SB(sb);
1982 struct ext4_group_desc *gdp = NULL;
1983 ext4_group_t flex_group;
1984 int i, err;
1985
1986 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
1987 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) {
1988 sbi->s_log_groups_per_flex = 0;
1989 return 1;
1990 }
1991
1992 err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count);
1993 if (err)
1994 goto failed;
1995
1996 for (i = 0; i < sbi->s_groups_count; i++) {
1997 gdp = ext4_get_group_desc(sb, i, NULL);
1998
1999 flex_group = ext4_flex_group(sbi, i);
2000 atomic_add(ext4_free_inodes_count(sb, gdp),
2001 &sbi->s_flex_groups[flex_group].free_inodes);
2002 atomic64_add(ext4_free_group_clusters(sb, gdp),
2003 &sbi->s_flex_groups[flex_group].free_clusters);
2004 atomic_add(ext4_used_dirs_count(sb, gdp),
2005 &sbi->s_flex_groups[flex_group].used_dirs);
2006 }
2007
2008 return 1;
2009 failed:
2010 return 0;
2011 }
2012
2013 static __le16 ext4_group_desc_csum(struct ext4_sb_info *sbi, __u32 block_group,
2014 struct ext4_group_desc *gdp)
2015 {
2016 int offset;
2017 __u16 crc = 0;
2018 __le32 le_group = cpu_to_le32(block_group);
2019
2020 if (ext4_has_metadata_csum(sbi->s_sb)) {
2021 /* Use new metadata_csum algorithm */
2022 __le16 save_csum;
2023 __u32 csum32;
2024
2025 save_csum = gdp->bg_checksum;
2026 gdp->bg_checksum = 0;
2027 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group,
2028 sizeof(le_group));
2029 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp,
2030 sbi->s_desc_size);
2031 gdp->bg_checksum = save_csum;
2032
2033 crc = csum32 & 0xFFFF;
2034 goto out;
2035 }
2036
2037 /* old crc16 code */
2038 if (!(sbi->s_es->s_feature_ro_compat &
2039 cpu_to_le32(EXT4_FEATURE_RO_COMPAT_GDT_CSUM)))
2040 return 0;
2041
2042 offset = offsetof(struct ext4_group_desc, bg_checksum);
2043
2044 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
2045 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
2046 crc = crc16(crc, (__u8 *)gdp, offset);
2047 offset += sizeof(gdp->bg_checksum); /* skip checksum */
2048 /* for checksum of struct ext4_group_desc do the rest...*/
2049 if ((sbi->s_es->s_feature_incompat &
2050 cpu_to_le32(EXT4_FEATURE_INCOMPAT_64BIT)) &&
2051 offset < le16_to_cpu(sbi->s_es->s_desc_size))
2052 crc = crc16(crc, (__u8 *)gdp + offset,
2053 le16_to_cpu(sbi->s_es->s_desc_size) -
2054 offset);
2055
2056 out:
2057 return cpu_to_le16(crc);
2058 }
2059
2060 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group,
2061 struct ext4_group_desc *gdp)
2062 {
2063 if (ext4_has_group_desc_csum(sb) &&
2064 (gdp->bg_checksum != ext4_group_desc_csum(EXT4_SB(sb),
2065 block_group, gdp)))
2066 return 0;
2067
2068 return 1;
2069 }
2070
2071 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group,
2072 struct ext4_group_desc *gdp)
2073 {
2074 if (!ext4_has_group_desc_csum(sb))
2075 return;
2076 gdp->bg_checksum = ext4_group_desc_csum(EXT4_SB(sb), block_group, gdp);
2077 }
2078
2079 /* Called at mount-time, super-block is locked */
2080 static int ext4_check_descriptors(struct super_block *sb,
2081 ext4_group_t *first_not_zeroed)
2082 {
2083 struct ext4_sb_info *sbi = EXT4_SB(sb);
2084 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
2085 ext4_fsblk_t last_block;
2086 ext4_fsblk_t block_bitmap;
2087 ext4_fsblk_t inode_bitmap;
2088 ext4_fsblk_t inode_table;
2089 int flexbg_flag = 0;
2090 ext4_group_t i, grp = sbi->s_groups_count;
2091
2092 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG))
2093 flexbg_flag = 1;
2094
2095 ext4_debug("Checking group descriptors");
2096
2097 for (i = 0; i < sbi->s_groups_count; i++) {
2098 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
2099
2100 if (i == sbi->s_groups_count - 1 || flexbg_flag)
2101 last_block = ext4_blocks_count(sbi->s_es) - 1;
2102 else
2103 last_block = first_block +
2104 (EXT4_BLOCKS_PER_GROUP(sb) - 1);
2105
2106 if ((grp == sbi->s_groups_count) &&
2107 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2108 grp = i;
2109
2110 block_bitmap = ext4_block_bitmap(sb, gdp);
2111 if (block_bitmap < first_block || block_bitmap > last_block) {
2112 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2113 "Block bitmap for group %u not in group "
2114 "(block %llu)!", i, block_bitmap);
2115 return 0;
2116 }
2117 inode_bitmap = ext4_inode_bitmap(sb, gdp);
2118 if (inode_bitmap < first_block || inode_bitmap > last_block) {
2119 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2120 "Inode bitmap for group %u not in group "
2121 "(block %llu)!", i, inode_bitmap);
2122 return 0;
2123 }
2124 inode_table = ext4_inode_table(sb, gdp);
2125 if (inode_table < first_block ||
2126 inode_table + sbi->s_itb_per_group - 1 > last_block) {
2127 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2128 "Inode table for group %u not in group "
2129 "(block %llu)!", i, inode_table);
2130 return 0;
2131 }
2132 ext4_lock_group(sb, i);
2133 if (!ext4_group_desc_csum_verify(sb, i, gdp)) {
2134 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2135 "Checksum for group %u failed (%u!=%u)",
2136 i, le16_to_cpu(ext4_group_desc_csum(sbi, i,
2137 gdp)), le16_to_cpu(gdp->bg_checksum));
2138 if (!(sb->s_flags & MS_RDONLY)) {
2139 ext4_unlock_group(sb, i);
2140 return 0;
2141 }
2142 }
2143 ext4_unlock_group(sb, i);
2144 if (!flexbg_flag)
2145 first_block += EXT4_BLOCKS_PER_GROUP(sb);
2146 }
2147 if (NULL != first_not_zeroed)
2148 *first_not_zeroed = grp;
2149 return 1;
2150 }
2151
2152 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at
2153 * the superblock) which were deleted from all directories, but held open by
2154 * a process at the time of a crash. We walk the list and try to delete these
2155 * inodes at recovery time (only with a read-write filesystem).
2156 *
2157 * In order to keep the orphan inode chain consistent during traversal (in
2158 * case of crash during recovery), we link each inode into the superblock
2159 * orphan list_head and handle it the same way as an inode deletion during
2160 * normal operation (which journals the operations for us).
2161 *
2162 * We only do an iget() and an iput() on each inode, which is very safe if we
2163 * accidentally point at an in-use or already deleted inode. The worst that
2164 * can happen in this case is that we get a "bit already cleared" message from
2165 * ext4_free_inode(). The only reason we would point at a wrong inode is if
2166 * e2fsck was run on this filesystem, and it must have already done the orphan
2167 * inode cleanup for us, so we can safely abort without any further action.
2168 */
2169 static void ext4_orphan_cleanup(struct super_block *sb,
2170 struct ext4_super_block *es)
2171 {
2172 unsigned int s_flags = sb->s_flags;
2173 int nr_orphans = 0, nr_truncates = 0;
2174 #ifdef CONFIG_QUOTA
2175 int i;
2176 #endif
2177 if (!es->s_last_orphan) {
2178 jbd_debug(4, "no orphan inodes to clean up\n");
2179 return;
2180 }
2181
2182 if (bdev_read_only(sb->s_bdev)) {
2183 ext4_msg(sb, KERN_ERR, "write access "
2184 "unavailable, skipping orphan cleanup");
2185 return;
2186 }
2187
2188 /* Check if feature set would not allow a r/w mount */
2189 if (!ext4_feature_set_ok(sb, 0)) {
2190 ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to "
2191 "unknown ROCOMPAT features");
2192 return;
2193 }
2194
2195 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2196 /* don't clear list on RO mount w/ errors */
2197 if (es->s_last_orphan && !(s_flags & MS_RDONLY)) {
2198 ext4_msg(sb, KERN_INFO, "Errors on filesystem, "
2199 "clearing orphan list.\n");
2200 es->s_last_orphan = 0;
2201 }
2202 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2203 return;
2204 }
2205
2206 if (s_flags & MS_RDONLY) {
2207 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs");
2208 sb->s_flags &= ~MS_RDONLY;
2209 }
2210 #ifdef CONFIG_QUOTA
2211 /* Needed for iput() to work correctly and not trash data */
2212 sb->s_flags |= MS_ACTIVE;
2213 /* Turn on quotas so that they are updated correctly */
2214 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2215 if (EXT4_SB(sb)->s_qf_names[i]) {
2216 int ret = ext4_quota_on_mount(sb, i);
2217 if (ret < 0)
2218 ext4_msg(sb, KERN_ERR,
2219 "Cannot turn on journaled "
2220 "quota: error %d", ret);
2221 }
2222 }
2223 #endif
2224
2225 while (es->s_last_orphan) {
2226 struct inode *inode;
2227
2228 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan));
2229 if (IS_ERR(inode)) {
2230 es->s_last_orphan = 0;
2231 break;
2232 }
2233
2234 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan);
2235 dquot_initialize(inode);
2236 if (inode->i_nlink) {
2237 if (test_opt(sb, DEBUG))
2238 ext4_msg(sb, KERN_DEBUG,
2239 "%s: truncating inode %lu to %lld bytes",
2240 __func__, inode->i_ino, inode->i_size);
2241 jbd_debug(2, "truncating inode %lu to %lld bytes\n",
2242 inode->i_ino, inode->i_size);
2243 mutex_lock(&inode->i_mutex);
2244 truncate_inode_pages(inode->i_mapping, inode->i_size);
2245 ext4_truncate(inode);
2246 mutex_unlock(&inode->i_mutex);
2247 nr_truncates++;
2248 } else {
2249 if (test_opt(sb, DEBUG))
2250 ext4_msg(sb, KERN_DEBUG,
2251 "%s: deleting unreferenced inode %lu",
2252 __func__, inode->i_ino);
2253 jbd_debug(2, "deleting unreferenced inode %lu\n",
2254 inode->i_ino);
2255 nr_orphans++;
2256 }
2257 iput(inode); /* The delete magic happens here! */
2258 }
2259
2260 #define PLURAL(x) (x), ((x) == 1) ? "" : "s"
2261
2262 if (nr_orphans)
2263 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted",
2264 PLURAL(nr_orphans));
2265 if (nr_truncates)
2266 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up",
2267 PLURAL(nr_truncates));
2268 #ifdef CONFIG_QUOTA
2269 /* Turn quotas off */
2270 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2271 if (sb_dqopt(sb)->files[i])
2272 dquot_quota_off(sb, i);
2273 }
2274 #endif
2275 sb->s_flags = s_flags; /* Restore MS_RDONLY status */
2276 }
2277
2278 /*
2279 * Maximal extent format file size.
2280 * Resulting logical blkno at s_maxbytes must fit in our on-disk
2281 * extent format containers, within a sector_t, and within i_blocks
2282 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units,
2283 * so that won't be a limiting factor.
2284 *
2285 * However there is other limiting factor. We do store extents in the form
2286 * of starting block and length, hence the resulting length of the extent
2287 * covering maximum file size must fit into on-disk format containers as
2288 * well. Given that length is always by 1 unit bigger than max unit (because
2289 * we count 0 as well) we have to lower the s_maxbytes by one fs block.
2290 *
2291 * Note, this does *not* consider any metadata overhead for vfs i_blocks.
2292 */
2293 static loff_t ext4_max_size(int blkbits, int has_huge_files)
2294 {
2295 loff_t res;
2296 loff_t upper_limit = MAX_LFS_FILESIZE;
2297
2298 /* small i_blocks in vfs inode? */
2299 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2300 /*
2301 * CONFIG_LBDAF is not enabled implies the inode
2302 * i_block represent total blocks in 512 bytes
2303 * 32 == size of vfs inode i_blocks * 8
2304 */
2305 upper_limit = (1LL << 32) - 1;
2306
2307 /* total blocks in file system block size */
2308 upper_limit >>= (blkbits - 9);
2309 upper_limit <<= blkbits;
2310 }
2311
2312 /*
2313 * 32-bit extent-start container, ee_block. We lower the maxbytes
2314 * by one fs block, so ee_len can cover the extent of maximum file
2315 * size
2316 */
2317 res = (1LL << 32) - 1;
2318 res <<= blkbits;
2319
2320 /* Sanity check against vm- & vfs- imposed limits */
2321 if (res > upper_limit)
2322 res = upper_limit;
2323
2324 return res;
2325 }
2326
2327 /*
2328 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect
2329 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
2330 * We need to be 1 filesystem block less than the 2^48 sector limit.
2331 */
2332 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
2333 {
2334 loff_t res = EXT4_NDIR_BLOCKS;
2335 int meta_blocks;
2336 loff_t upper_limit;
2337 /* This is calculated to be the largest file size for a dense, block
2338 * mapped file such that the file's total number of 512-byte sectors,
2339 * including data and all indirect blocks, does not exceed (2^48 - 1).
2340 *
2341 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
2342 * number of 512-byte sectors of the file.
2343 */
2344
2345 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2346 /*
2347 * !has_huge_files or CONFIG_LBDAF not enabled implies that
2348 * the inode i_block field represents total file blocks in
2349 * 2^32 512-byte sectors == size of vfs inode i_blocks * 8
2350 */
2351 upper_limit = (1LL << 32) - 1;
2352
2353 /* total blocks in file system block size */
2354 upper_limit >>= (bits - 9);
2355
2356 } else {
2357 /*
2358 * We use 48 bit ext4_inode i_blocks
2359 * With EXT4_HUGE_FILE_FL set the i_blocks
2360 * represent total number of blocks in
2361 * file system block size
2362 */
2363 upper_limit = (1LL << 48) - 1;
2364
2365 }
2366
2367 /* indirect blocks */
2368 meta_blocks = 1;
2369 /* double indirect blocks */
2370 meta_blocks += 1 + (1LL << (bits-2));
2371 /* tripple indirect blocks */
2372 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2)));
2373
2374 upper_limit -= meta_blocks;
2375 upper_limit <<= bits;
2376
2377 res += 1LL << (bits-2);
2378 res += 1LL << (2*(bits-2));
2379 res += 1LL << (3*(bits-2));
2380 res <<= bits;
2381 if (res > upper_limit)
2382 res = upper_limit;
2383
2384 if (res > MAX_LFS_FILESIZE)
2385 res = MAX_LFS_FILESIZE;
2386
2387 return res;
2388 }
2389
2390 static ext4_fsblk_t descriptor_loc(struct super_block *sb,
2391 ext4_fsblk_t logical_sb_block, int nr)
2392 {
2393 struct ext4_sb_info *sbi = EXT4_SB(sb);
2394 ext4_group_t bg, first_meta_bg;
2395 int has_super = 0;
2396
2397 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
2398
2399 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_META_BG) ||
2400 nr < first_meta_bg)
2401 return logical_sb_block + nr + 1;
2402 bg = sbi->s_desc_per_block * nr;
2403 if (ext4_bg_has_super(sb, bg))
2404 has_super = 1;
2405
2406 /*
2407 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at
2408 * block 2, not 1. If s_first_data_block == 0 (bigalloc is enabled
2409 * on modern mke2fs or blksize > 1k on older mke2fs) then we must
2410 * compensate.
2411 */
2412 if (sb->s_blocksize == 1024 && nr == 0 &&
2413 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block) == 0)
2414 has_super++;
2415
2416 return (has_super + ext4_group_first_block_no(sb, bg));
2417 }
2418
2419 /**
2420 * ext4_get_stripe_size: Get the stripe size.
2421 * @sbi: In memory super block info
2422 *
2423 * If we have specified it via mount option, then
2424 * use the mount option value. If the value specified at mount time is
2425 * greater than the blocks per group use the super block value.
2426 * If the super block value is greater than blocks per group return 0.
2427 * Allocator needs it be less than blocks per group.
2428 *
2429 */
2430 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
2431 {
2432 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
2433 unsigned long stripe_width =
2434 le32_to_cpu(sbi->s_es->s_raid_stripe_width);
2435 int ret;
2436
2437 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
2438 ret = sbi->s_stripe;
2439 else if (stripe_width <= sbi->s_blocks_per_group)
2440 ret = stripe_width;
2441 else if (stride <= sbi->s_blocks_per_group)
2442 ret = stride;
2443 else
2444 ret = 0;
2445
2446 /*
2447 * If the stripe width is 1, this makes no sense and
2448 * we set it to 0 to turn off stripe handling code.
2449 */
2450 if (ret <= 1)
2451 ret = 0;
2452
2453 return ret;
2454 }
2455
2456 /* sysfs supprt */
2457
2458 struct ext4_attr {
2459 struct attribute attr;
2460 ssize_t (*show)(struct ext4_attr *, struct ext4_sb_info *, char *);
2461 ssize_t (*store)(struct ext4_attr *, struct ext4_sb_info *,
2462 const char *, size_t);
2463 union {
2464 int offset;
2465 int deprecated_val;
2466 } u;
2467 };
2468
2469 static int parse_strtoull(const char *buf,
2470 unsigned long long max, unsigned long long *value)
2471 {
2472 int ret;
2473
2474 ret = kstrtoull(skip_spaces(buf), 0, value);
2475 if (!ret && *value > max)
2476 ret = -EINVAL;
2477 return ret;
2478 }
2479
2480 static ssize_t delayed_allocation_blocks_show(struct ext4_attr *a,
2481 struct ext4_sb_info *sbi,
2482 char *buf)
2483 {
2484 return snprintf(buf, PAGE_SIZE, "%llu\n",
2485 (s64) EXT4_C2B(sbi,
2486 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
2487 }
2488
2489 static ssize_t session_write_kbytes_show(struct ext4_attr *a,
2490 struct ext4_sb_info *sbi, char *buf)
2491 {
2492 struct super_block *sb = sbi->s_buddy_cache->i_sb;
2493
2494 if (!sb->s_bdev->bd_part)
2495 return snprintf(buf, PAGE_SIZE, "0\n");
2496 return snprintf(buf, PAGE_SIZE, "%lu\n",
2497 (part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
2498 sbi->s_sectors_written_start) >> 1);
2499 }
2500
2501 static ssize_t lifetime_write_kbytes_show(struct ext4_attr *a,
2502 struct ext4_sb_info *sbi, char *buf)
2503 {
2504 struct super_block *sb = sbi->s_buddy_cache->i_sb;
2505
2506 if (!sb->s_bdev->bd_part)
2507 return snprintf(buf, PAGE_SIZE, "0\n");
2508 return snprintf(buf, PAGE_SIZE, "%llu\n",
2509 (unsigned long long)(sbi->s_kbytes_written +
2510 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
2511 EXT4_SB(sb)->s_sectors_written_start) >> 1)));
2512 }
2513
2514 static ssize_t inode_readahead_blks_store(struct ext4_attr *a,
2515 struct ext4_sb_info *sbi,
2516 const char *buf, size_t count)
2517 {
2518 unsigned long t;
2519 int ret;
2520
2521 ret = kstrtoul(skip_spaces(buf), 0, &t);
2522 if (ret)
2523 return ret;
2524
2525 if (t && (!is_power_of_2(t) || t > 0x40000000))
2526 return -EINVAL;
2527
2528 sbi->s_inode_readahead_blks = t;
2529 return count;
2530 }
2531
2532 static ssize_t sbi_ui_show(struct ext4_attr *a,
2533 struct ext4_sb_info *sbi, char *buf)
2534 {
2535 unsigned int *ui = (unsigned int *) (((char *) sbi) + a->u.offset);
2536
2537 return snprintf(buf, PAGE_SIZE, "%u\n", *ui);
2538 }
2539
2540 static ssize_t sbi_ui_store(struct ext4_attr *a,
2541 struct ext4_sb_info *sbi,
2542 const char *buf, size_t count)
2543 {
2544 unsigned int *ui = (unsigned int *) (((char *) sbi) + a->u.offset);
2545 unsigned long t;
2546 int ret;
2547
2548 ret = kstrtoul(skip_spaces(buf), 0, &t);
2549 if (ret)
2550 return ret;
2551 *ui = t;
2552 return count;
2553 }
2554
2555 static ssize_t es_ui_show(struct ext4_attr *a,
2556 struct ext4_sb_info *sbi, char *buf)
2557 {
2558
2559 unsigned int *ui = (unsigned int *) (((char *) sbi->s_es) +
2560 a->u.offset);
2561
2562 return snprintf(buf, PAGE_SIZE, "%u\n", *ui);
2563 }
2564
2565 static ssize_t reserved_clusters_show(struct ext4_attr *a,
2566 struct ext4_sb_info *sbi, char *buf)
2567 {
2568 return snprintf(buf, PAGE_SIZE, "%llu\n",
2569 (unsigned long long) atomic64_read(&sbi->s_resv_clusters));
2570 }
2571
2572 static ssize_t reserved_clusters_store(struct ext4_attr *a,
2573 struct ext4_sb_info *sbi,
2574 const char *buf, size_t count)
2575 {
2576 unsigned long long val;
2577 int ret;
2578
2579 if (parse_strtoull(buf, -1ULL, &val))
2580 return -EINVAL;
2581 ret = ext4_reserve_clusters(sbi, val);
2582
2583 return ret ? ret : count;
2584 }
2585
2586 static ssize_t trigger_test_error(struct ext4_attr *a,
2587 struct ext4_sb_info *sbi,
2588 const char *buf, size_t count)
2589 {
2590 int len = count;
2591
2592 if (!capable(CAP_SYS_ADMIN))
2593 return -EPERM;
2594
2595 if (len && buf[len-1] == '\n')
2596 len--;
2597
2598 if (len)
2599 ext4_error(sbi->s_sb, "%.*s", len, buf);
2600 return count;
2601 }
2602
2603 static ssize_t sbi_deprecated_show(struct ext4_attr *a,
2604 struct ext4_sb_info *sbi, char *buf)
2605 {
2606 return snprintf(buf, PAGE_SIZE, "%d\n", a->u.deprecated_val);
2607 }
2608
2609 #define EXT4_ATTR_OFFSET(_name,_mode,_show,_store,_elname) \
2610 static struct ext4_attr ext4_attr_##_name = { \
2611 .attr = {.name = __stringify(_name), .mode = _mode }, \
2612 .show = _show, \
2613 .store = _store, \
2614 .u = { \
2615 .offset = offsetof(struct ext4_sb_info, _elname),\
2616 }, \
2617 }
2618
2619 #define EXT4_ATTR_OFFSET_ES(_name,_mode,_show,_store,_elname) \
2620 static struct ext4_attr ext4_attr_##_name = { \
2621 .attr = {.name = __stringify(_name), .mode = _mode }, \
2622 .show = _show, \
2623 .store = _store, \
2624 .u = { \
2625 .offset = offsetof(struct ext4_super_block, _elname), \
2626 }, \
2627 }
2628
2629 #define EXT4_ATTR(name, mode, show, store) \
2630 static struct ext4_attr ext4_attr_##name = __ATTR(name, mode, show, store)
2631
2632 #define EXT4_INFO_ATTR(name) EXT4_ATTR(name, 0444, NULL, NULL)
2633 #define EXT4_RO_ATTR(name) EXT4_ATTR(name, 0444, name##_show, NULL)
2634 #define EXT4_RW_ATTR(name) EXT4_ATTR(name, 0644, name##_show, name##_store)
2635
2636 #define EXT4_RO_ATTR_ES_UI(name, elname) \
2637 EXT4_ATTR_OFFSET_ES(name, 0444, es_ui_show, NULL, elname)
2638 #define EXT4_RW_ATTR_SBI_UI(name, elname) \
2639 EXT4_ATTR_OFFSET(name, 0644, sbi_ui_show, sbi_ui_store, elname)
2640
2641 #define ATTR_LIST(name) &ext4_attr_##name.attr
2642 #define EXT4_DEPRECATED_ATTR(_name, _val) \
2643 static struct ext4_attr ext4_attr_##_name = { \
2644 .attr = {.name = __stringify(_name), .mode = 0444 }, \
2645 .show = sbi_deprecated_show, \
2646 .u = { \
2647 .deprecated_val = _val, \
2648 }, \
2649 }
2650
2651 EXT4_RO_ATTR(delayed_allocation_blocks);
2652 EXT4_RO_ATTR(session_write_kbytes);
2653 EXT4_RO_ATTR(lifetime_write_kbytes);
2654 EXT4_RW_ATTR(reserved_clusters);
2655 EXT4_ATTR_OFFSET(inode_readahead_blks, 0644, sbi_ui_show,
2656 inode_readahead_blks_store, s_inode_readahead_blks);
2657 EXT4_RW_ATTR_SBI_UI(inode_goal, s_inode_goal);
2658 EXT4_RW_ATTR_SBI_UI(mb_stats, s_mb_stats);
2659 EXT4_RW_ATTR_SBI_UI(mb_max_to_scan, s_mb_max_to_scan);
2660 EXT4_RW_ATTR_SBI_UI(mb_min_to_scan, s_mb_min_to_scan);
2661 EXT4_RW_ATTR_SBI_UI(mb_order2_req, s_mb_order2_reqs);
2662 EXT4_RW_ATTR_SBI_UI(mb_stream_req, s_mb_stream_request);
2663 EXT4_RW_ATTR_SBI_UI(mb_group_prealloc, s_mb_group_prealloc);
2664 EXT4_DEPRECATED_ATTR(max_writeback_mb_bump, 128);
2665 EXT4_RW_ATTR_SBI_UI(extent_max_zeroout_kb, s_extent_max_zeroout_kb);
2666 EXT4_ATTR(trigger_fs_error, 0200, NULL, trigger_test_error);
2667 EXT4_RW_ATTR_SBI_UI(err_ratelimit_interval_ms, s_err_ratelimit_state.interval);
2668 EXT4_RW_ATTR_SBI_UI(err_ratelimit_burst, s_err_ratelimit_state.burst);
2669 EXT4_RW_ATTR_SBI_UI(warning_ratelimit_interval_ms, s_warning_ratelimit_state.interval);
2670 EXT4_RW_ATTR_SBI_UI(warning_ratelimit_burst, s_warning_ratelimit_state.burst);
2671 EXT4_RW_ATTR_SBI_UI(msg_ratelimit_interval_ms, s_msg_ratelimit_state.interval);
2672 EXT4_RW_ATTR_SBI_UI(msg_ratelimit_burst, s_msg_ratelimit_state.burst);
2673 EXT4_RO_ATTR_ES_UI(errors_count, s_error_count);
2674 EXT4_RO_ATTR_ES_UI(first_error_time, s_first_error_time);
2675 EXT4_RO_ATTR_ES_UI(last_error_time, s_last_error_time);
2676
2677 static struct attribute *ext4_attrs[] = {
2678 ATTR_LIST(delayed_allocation_blocks),
2679 ATTR_LIST(session_write_kbytes),
2680 ATTR_LIST(lifetime_write_kbytes),
2681 ATTR_LIST(reserved_clusters),
2682 ATTR_LIST(inode_readahead_blks),
2683 ATTR_LIST(inode_goal),
2684 ATTR_LIST(mb_stats),
2685 ATTR_LIST(mb_max_to_scan),
2686 ATTR_LIST(mb_min_to_scan),
2687 ATTR_LIST(mb_order2_req),
2688 ATTR_LIST(mb_stream_req),
2689 ATTR_LIST(mb_group_prealloc),
2690 ATTR_LIST(max_writeback_mb_bump),
2691 ATTR_LIST(extent_max_zeroout_kb),
2692 ATTR_LIST(trigger_fs_error),
2693 ATTR_LIST(err_ratelimit_interval_ms),
2694 ATTR_LIST(err_ratelimit_burst),
2695 ATTR_LIST(warning_ratelimit_interval_ms),
2696 ATTR_LIST(warning_ratelimit_burst),
2697 ATTR_LIST(msg_ratelimit_interval_ms),
2698 ATTR_LIST(msg_ratelimit_burst),
2699 ATTR_LIST(errors_count),
2700 ATTR_LIST(first_error_time),
2701 ATTR_LIST(last_error_time),
2702 NULL,
2703 };
2704
2705 /* Features this copy of ext4 supports */
2706 EXT4_INFO_ATTR(lazy_itable_init);
2707 EXT4_INFO_ATTR(batched_discard);
2708 EXT4_INFO_ATTR(meta_bg_resize);
2709 EXT4_INFO_ATTR(encryption);
2710
2711 static struct attribute *ext4_feat_attrs[] = {
2712 ATTR_LIST(lazy_itable_init),
2713 ATTR_LIST(batched_discard),
2714 ATTR_LIST(meta_bg_resize),
2715 ATTR_LIST(encryption),
2716 NULL,
2717 };
2718
2719 static ssize_t ext4_attr_show(struct kobject *kobj,
2720 struct attribute *attr, char *buf)
2721 {
2722 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2723 s_kobj);
2724 struct ext4_attr *a = container_of(attr, struct ext4_attr, attr);
2725
2726 return a->show ? a->show(a, sbi, buf) : 0;
2727 }
2728
2729 static ssize_t ext4_attr_store(struct kobject *kobj,
2730 struct attribute *attr,
2731 const char *buf, size_t len)
2732 {
2733 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2734 s_kobj);
2735 struct ext4_attr *a = container_of(attr, struct ext4_attr, attr);
2736
2737 return a->store ? a->store(a, sbi, buf, len) : 0;
2738 }
2739
2740 static void ext4_sb_release(struct kobject *kobj)
2741 {
2742 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2743 s_kobj);
2744 complete(&sbi->s_kobj_unregister);
2745 }
2746
2747 static const struct sysfs_ops ext4_attr_ops = {
2748 .show = ext4_attr_show,
2749 .store = ext4_attr_store,
2750 };
2751
2752 static struct kobj_type ext4_ktype = {
2753 .default_attrs = ext4_attrs,
2754 .sysfs_ops = &ext4_attr_ops,
2755 .release = ext4_sb_release,
2756 };
2757
2758 static void ext4_feat_release(struct kobject *kobj)
2759 {
2760 complete(&ext4_feat->f_kobj_unregister);
2761 }
2762
2763 static ssize_t ext4_feat_show(struct kobject *kobj,
2764 struct attribute *attr, char *buf)
2765 {
2766 return snprintf(buf, PAGE_SIZE, "supported\n");
2767 }
2768
2769 /*
2770 * We can not use ext4_attr_show/store because it relies on the kobject
2771 * being embedded in the ext4_sb_info structure which is definitely not
2772 * true in this case.
2773 */
2774 static const struct sysfs_ops ext4_feat_ops = {
2775 .show = ext4_feat_show,
2776 .store = NULL,
2777 };
2778
2779 static struct kobj_type ext4_feat_ktype = {
2780 .default_attrs = ext4_feat_attrs,
2781 .sysfs_ops = &ext4_feat_ops,
2782 .release = ext4_feat_release,
2783 };
2784
2785 /*
2786 * Check whether this filesystem can be mounted based on
2787 * the features present and the RDONLY/RDWR mount requested.
2788 * Returns 1 if this filesystem can be mounted as requested,
2789 * 0 if it cannot be.
2790 */
2791 static int ext4_feature_set_ok(struct super_block *sb, int readonly)
2792 {
2793 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT4_FEATURE_INCOMPAT_SUPP)) {
2794 ext4_msg(sb, KERN_ERR,
2795 "Couldn't mount because of "
2796 "unsupported optional features (%x)",
2797 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
2798 ~EXT4_FEATURE_INCOMPAT_SUPP));
2799 return 0;
2800 }
2801
2802 if (readonly)
2803 return 1;
2804
2805 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_READONLY)) {
2806 ext4_msg(sb, KERN_INFO, "filesystem is read-only");
2807 sb->s_flags |= MS_RDONLY;
2808 return 1;
2809 }
2810
2811 /* Check that feature set is OK for a read-write mount */
2812 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT4_FEATURE_RO_COMPAT_SUPP)) {
2813 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
2814 "unsupported optional features (%x)",
2815 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
2816 ~EXT4_FEATURE_RO_COMPAT_SUPP));
2817 return 0;
2818 }
2819 /*
2820 * Large file size enabled file system can only be mounted
2821 * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF
2822 */
2823 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
2824 if (sizeof(blkcnt_t) < sizeof(u64)) {
2825 ext4_msg(sb, KERN_ERR, "Filesystem with huge files "
2826 "cannot be mounted RDWR without "
2827 "CONFIG_LBDAF");
2828 return 0;
2829 }
2830 }
2831 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_BIGALLOC) &&
2832 !EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) {
2833 ext4_msg(sb, KERN_ERR,
2834 "Can't support bigalloc feature without "
2835 "extents feature\n");
2836 return 0;
2837 }
2838
2839 #ifndef CONFIG_QUOTA
2840 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) &&
2841 !readonly) {
2842 ext4_msg(sb, KERN_ERR,
2843 "Filesystem with quota feature cannot be mounted RDWR "
2844 "without CONFIG_QUOTA");
2845 return 0;
2846 }
2847 #endif /* CONFIG_QUOTA */
2848 return 1;
2849 }
2850
2851 /*
2852 * This function is called once a day if we have errors logged
2853 * on the file system
2854 */
2855 static void print_daily_error_info(unsigned long arg)
2856 {
2857 struct super_block *sb = (struct super_block *) arg;
2858 struct ext4_sb_info *sbi;
2859 struct ext4_super_block *es;
2860
2861 sbi = EXT4_SB(sb);
2862 es = sbi->s_es;
2863
2864 if (es->s_error_count)
2865 /* fsck newer than v1.41.13 is needed to clean this condition. */
2866 ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u",
2867 le32_to_cpu(es->s_error_count));
2868 if (es->s_first_error_time) {
2869 printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %u: %.*s:%d",
2870 sb->s_id, le32_to_cpu(es->s_first_error_time),
2871 (int) sizeof(es->s_first_error_func),
2872 es->s_first_error_func,
2873 le32_to_cpu(es->s_first_error_line));
2874 if (es->s_first_error_ino)
2875 printk(": inode %u",
2876 le32_to_cpu(es->s_first_error_ino));
2877 if (es->s_first_error_block)
2878 printk(": block %llu", (unsigned long long)
2879 le64_to_cpu(es->s_first_error_block));
2880 printk("\n");
2881 }
2882 if (es->s_last_error_time) {
2883 printk(KERN_NOTICE "EXT4-fs (%s): last error at time %u: %.*s:%d",
2884 sb->s_id, le32_to_cpu(es->s_last_error_time),
2885 (int) sizeof(es->s_last_error_func),
2886 es->s_last_error_func,
2887 le32_to_cpu(es->s_last_error_line));
2888 if (es->s_last_error_ino)
2889 printk(": inode %u",
2890 le32_to_cpu(es->s_last_error_ino));
2891 if (es->s_last_error_block)
2892 printk(": block %llu", (unsigned long long)
2893 le64_to_cpu(es->s_last_error_block));
2894 printk("\n");
2895 }
2896 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */
2897 }
2898
2899 /* Find next suitable group and run ext4_init_inode_table */
2900 static int ext4_run_li_request(struct ext4_li_request *elr)
2901 {
2902 struct ext4_group_desc *gdp = NULL;
2903 ext4_group_t group, ngroups;
2904 struct super_block *sb;
2905 unsigned long timeout = 0;
2906 int ret = 0;
2907
2908 sb = elr->lr_super;
2909 ngroups = EXT4_SB(sb)->s_groups_count;
2910
2911 sb_start_write(sb);
2912 for (group = elr->lr_next_group; group < ngroups; group++) {
2913 gdp = ext4_get_group_desc(sb, group, NULL);
2914 if (!gdp) {
2915 ret = 1;
2916 break;
2917 }
2918
2919 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2920 break;
2921 }
2922
2923 if (group >= ngroups)
2924 ret = 1;
2925
2926 if (!ret) {
2927 timeout = jiffies;
2928 ret = ext4_init_inode_table(sb, group,
2929 elr->lr_timeout ? 0 : 1);
2930 if (elr->lr_timeout == 0) {
2931 timeout = (jiffies - timeout) *
2932 elr->lr_sbi->s_li_wait_mult;
2933 elr->lr_timeout = timeout;
2934 }
2935 elr->lr_next_sched = jiffies + elr->lr_timeout;
2936 elr->lr_next_group = group + 1;
2937 }
2938 sb_end_write(sb);
2939
2940 return ret;
2941 }
2942
2943 /*
2944 * Remove lr_request from the list_request and free the
2945 * request structure. Should be called with li_list_mtx held
2946 */
2947 static void ext4_remove_li_request(struct ext4_li_request *elr)
2948 {
2949 struct ext4_sb_info *sbi;
2950
2951 if (!elr)
2952 return;
2953
2954 sbi = elr->lr_sbi;
2955
2956 list_del(&elr->lr_request);
2957 sbi->s_li_request = NULL;
2958 kfree(elr);
2959 }
2960
2961 static void ext4_unregister_li_request(struct super_block *sb)
2962 {
2963 mutex_lock(&ext4_li_mtx);
2964 if (!ext4_li_info) {
2965 mutex_unlock(&ext4_li_mtx);
2966 return;
2967 }
2968
2969 mutex_lock(&ext4_li_info->li_list_mtx);
2970 ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
2971 mutex_unlock(&ext4_li_info->li_list_mtx);
2972 mutex_unlock(&ext4_li_mtx);
2973 }
2974
2975 static struct task_struct *ext4_lazyinit_task;
2976
2977 /*
2978 * This is the function where ext4lazyinit thread lives. It walks
2979 * through the request list searching for next scheduled filesystem.
2980 * When such a fs is found, run the lazy initialization request
2981 * (ext4_rn_li_request) and keep track of the time spend in this
2982 * function. Based on that time we compute next schedule time of
2983 * the request. When walking through the list is complete, compute
2984 * next waking time and put itself into sleep.
2985 */
2986 static int ext4_lazyinit_thread(void *arg)
2987 {
2988 struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg;
2989 struct list_head *pos, *n;
2990 struct ext4_li_request *elr;
2991 unsigned long next_wakeup, cur;
2992
2993 BUG_ON(NULL == eli);
2994
2995 cont_thread:
2996 while (true) {
2997 next_wakeup = MAX_JIFFY_OFFSET;
2998
2999 mutex_lock(&eli->li_list_mtx);
3000 if (list_empty(&eli->li_request_list)) {
3001 mutex_unlock(&eli->li_list_mtx);
3002 goto exit_thread;
3003 }
3004
3005 list_for_each_safe(pos, n, &eli->li_request_list) {
3006 elr = list_entry(pos, struct ext4_li_request,
3007 lr_request);
3008
3009 if (time_after_eq(jiffies, elr->lr_next_sched)) {
3010 if (ext4_run_li_request(elr) != 0) {
3011 /* error, remove the lazy_init job */
3012 ext4_remove_li_request(elr);
3013 continue;
3014 }
3015 }
3016
3017 if (time_before(elr->lr_next_sched, next_wakeup))
3018 next_wakeup = elr->lr_next_sched;
3019 }
3020 mutex_unlock(&eli->li_list_mtx);
3021
3022 try_to_freeze();
3023
3024 cur = jiffies;
3025 if ((time_after_eq(cur, next_wakeup)) ||
3026 (MAX_JIFFY_OFFSET == next_wakeup)) {
3027 cond_resched();
3028 continue;
3029 }
3030
3031 schedule_timeout_interruptible(next_wakeup - cur);
3032
3033 if (kthread_should_stop()) {
3034 ext4_clear_request_list();
3035 goto exit_thread;
3036 }
3037 }
3038
3039 exit_thread:
3040 /*
3041 * It looks like the request list is empty, but we need
3042 * to check it under the li_list_mtx lock, to prevent any
3043 * additions into it, and of course we should lock ext4_li_mtx
3044 * to atomically free the list and ext4_li_info, because at
3045 * this point another ext4 filesystem could be registering
3046 * new one.
3047 */
3048 mutex_lock(&ext4_li_mtx);
3049 mutex_lock(&eli->li_list_mtx);
3050 if (!list_empty(&eli->li_request_list)) {
3051 mutex_unlock(&eli->li_list_mtx);
3052 mutex_unlock(&ext4_li_mtx);
3053 goto cont_thread;
3054 }
3055 mutex_unlock(&eli->li_list_mtx);
3056 kfree(ext4_li_info);
3057 ext4_li_info = NULL;
3058 mutex_unlock(&ext4_li_mtx);
3059
3060 return 0;
3061 }
3062
3063 static void ext4_clear_request_list(void)
3064 {
3065 struct list_head *pos, *n;
3066 struct ext4_li_request *elr;
3067
3068 mutex_lock(&ext4_li_info->li_list_mtx);
3069 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
3070 elr = list_entry(pos, struct ext4_li_request,
3071 lr_request);
3072 ext4_remove_li_request(elr);
3073 }
3074 mutex_unlock(&ext4_li_info->li_list_mtx);
3075 }
3076
3077 static int ext4_run_lazyinit_thread(void)
3078 {
3079 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
3080 ext4_li_info, "ext4lazyinit");
3081 if (IS_ERR(ext4_lazyinit_task)) {
3082 int err = PTR_ERR(ext4_lazyinit_task);
3083 ext4_clear_request_list();
3084 kfree(ext4_li_info);
3085 ext4_li_info = NULL;
3086 printk(KERN_CRIT "EXT4-fs: error %d creating inode table "
3087 "initialization thread\n",
3088 err);
3089 return err;
3090 }
3091 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
3092 return 0;
3093 }
3094
3095 /*
3096 * Check whether it make sense to run itable init. thread or not.
3097 * If there is at least one uninitialized inode table, return
3098 * corresponding group number, else the loop goes through all
3099 * groups and return total number of groups.
3100 */
3101 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
3102 {
3103 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
3104 struct ext4_group_desc *gdp = NULL;
3105
3106 for (group = 0; group < ngroups; group++) {
3107 gdp = ext4_get_group_desc(sb, group, NULL);
3108 if (!gdp)
3109 continue;
3110
3111 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3112 break;
3113 }
3114
3115 return group;
3116 }
3117
3118 static int ext4_li_info_new(void)
3119 {
3120 struct ext4_lazy_init *eli = NULL;
3121
3122 eli = kzalloc(sizeof(*eli), GFP_KERNEL);
3123 if (!eli)
3124 return -ENOMEM;
3125
3126 INIT_LIST_HEAD(&eli->li_request_list);
3127 mutex_init(&eli->li_list_mtx);
3128
3129 eli->li_state |= EXT4_LAZYINIT_QUIT;
3130
3131 ext4_li_info = eli;
3132
3133 return 0;
3134 }
3135
3136 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
3137 ext4_group_t start)
3138 {
3139 struct ext4_sb_info *sbi = EXT4_SB(sb);
3140 struct ext4_li_request *elr;
3141
3142 elr = kzalloc(sizeof(*elr), GFP_KERNEL);
3143 if (!elr)
3144 return NULL;
3145
3146 elr->lr_super = sb;
3147 elr->lr_sbi = sbi;
3148 elr->lr_next_group = start;
3149
3150 /*
3151 * Randomize first schedule time of the request to
3152 * spread the inode table initialization requests
3153 * better.
3154 */
3155 elr->lr_next_sched = jiffies + (prandom_u32() %
3156 (EXT4_DEF_LI_MAX_START_DELAY * HZ));
3157 return elr;
3158 }
3159
3160 int ext4_register_li_request(struct super_block *sb,
3161 ext4_group_t first_not_zeroed)
3162 {
3163 struct ext4_sb_info *sbi = EXT4_SB(sb);
3164 struct ext4_li_request *elr = NULL;
3165 ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count;
3166 int ret = 0;
3167
3168 mutex_lock(&ext4_li_mtx);
3169 if (sbi->s_li_request != NULL) {
3170 /*
3171 * Reset timeout so it can be computed again, because
3172 * s_li_wait_mult might have changed.
3173 */
3174 sbi->s_li_request->lr_timeout = 0;
3175 goto out;
3176 }
3177
3178 if (first_not_zeroed == ngroups ||
3179 (sb->s_flags & MS_RDONLY) ||
3180 !test_opt(sb, INIT_INODE_TABLE))
3181 goto out;
3182
3183 elr = ext4_li_request_new(sb, first_not_zeroed);
3184 if (!elr) {
3185 ret = -ENOMEM;
3186 goto out;
3187 }
3188
3189 if (NULL == ext4_li_info) {
3190 ret = ext4_li_info_new();
3191 if (ret)
3192 goto out;
3193 }
3194
3195 mutex_lock(&ext4_li_info->li_list_mtx);
3196 list_add(&elr->lr_request, &ext4_li_info->li_request_list);
3197 mutex_unlock(&ext4_li_info->li_list_mtx);
3198
3199 sbi->s_li_request = elr;
3200 /*
3201 * set elr to NULL here since it has been inserted to
3202 * the request_list and the removal and free of it is
3203 * handled by ext4_clear_request_list from now on.
3204 */
3205 elr = NULL;
3206
3207 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
3208 ret = ext4_run_lazyinit_thread();
3209 if (ret)
3210 goto out;
3211 }
3212 out:
3213 mutex_unlock(&ext4_li_mtx);
3214 if (ret)
3215 kfree(elr);
3216 return ret;
3217 }
3218
3219 /*
3220 * We do not need to lock anything since this is called on
3221 * module unload.
3222 */
3223 static void ext4_destroy_lazyinit_thread(void)
3224 {
3225 /*
3226 * If thread exited earlier
3227 * there's nothing to be done.
3228 */
3229 if (!ext4_li_info || !ext4_lazyinit_task)
3230 return;
3231
3232 kthread_stop(ext4_lazyinit_task);
3233 }
3234
3235 static int set_journal_csum_feature_set(struct super_block *sb)
3236 {
3237 int ret = 1;
3238 int compat, incompat;
3239 struct ext4_sb_info *sbi = EXT4_SB(sb);
3240
3241 if (ext4_has_metadata_csum(sb)) {
3242 /* journal checksum v3 */
3243 compat = 0;
3244 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3;
3245 } else {
3246 /* journal checksum v1 */
3247 compat = JBD2_FEATURE_COMPAT_CHECKSUM;
3248 incompat = 0;
3249 }
3250
3251 jbd2_journal_clear_features(sbi->s_journal,
3252 JBD2_FEATURE_COMPAT_CHECKSUM, 0,
3253 JBD2_FEATURE_INCOMPAT_CSUM_V3 |
3254 JBD2_FEATURE_INCOMPAT_CSUM_V2);
3255 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
3256 ret = jbd2_journal_set_features(sbi->s_journal,
3257 compat, 0,
3258 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
3259 incompat);
3260 } else if (test_opt(sb, JOURNAL_CHECKSUM)) {
3261 ret = jbd2_journal_set_features(sbi->s_journal,
3262 compat, 0,
3263 incompat);
3264 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3265 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3266 } else {
3267 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3268 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3269 }
3270
3271 return ret;
3272 }
3273
3274 /*
3275 * Note: calculating the overhead so we can be compatible with
3276 * historical BSD practice is quite difficult in the face of
3277 * clusters/bigalloc. This is because multiple metadata blocks from
3278 * different block group can end up in the same allocation cluster.
3279 * Calculating the exact overhead in the face of clustered allocation
3280 * requires either O(all block bitmaps) in memory or O(number of block
3281 * groups**2) in time. We will still calculate the superblock for
3282 * older file systems --- and if we come across with a bigalloc file
3283 * system with zero in s_overhead_clusters the estimate will be close to
3284 * correct especially for very large cluster sizes --- but for newer
3285 * file systems, it's better to calculate this figure once at mkfs
3286 * time, and store it in the superblock. If the superblock value is
3287 * present (even for non-bigalloc file systems), we will use it.
3288 */
3289 static int count_overhead(struct super_block *sb, ext4_group_t grp,
3290 char *buf)
3291 {
3292 struct ext4_sb_info *sbi = EXT4_SB(sb);
3293 struct ext4_group_desc *gdp;
3294 ext4_fsblk_t first_block, last_block, b;
3295 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3296 int s, j, count = 0;
3297
3298 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_BIGALLOC))
3299 return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) +
3300 sbi->s_itb_per_group + 2);
3301
3302 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) +
3303 (grp * EXT4_BLOCKS_PER_GROUP(sb));
3304 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1;
3305 for (i = 0; i < ngroups; i++) {
3306 gdp = ext4_get_group_desc(sb, i, NULL);
3307 b = ext4_block_bitmap(sb, gdp);
3308 if (b >= first_block && b <= last_block) {
3309 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3310 count++;
3311 }
3312 b = ext4_inode_bitmap(sb, gdp);
3313 if (b >= first_block && b <= last_block) {
3314 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3315 count++;
3316 }
3317 b = ext4_inode_table(sb, gdp);
3318 if (b >= first_block && b + sbi->s_itb_per_group <= last_block)
3319 for (j = 0; j < sbi->s_itb_per_group; j++, b++) {
3320 int c = EXT4_B2C(sbi, b - first_block);
3321 ext4_set_bit(c, buf);
3322 count++;
3323 }
3324 if (i != grp)
3325 continue;
3326 s = 0;
3327 if (ext4_bg_has_super(sb, grp)) {
3328 ext4_set_bit(s++, buf);
3329 count++;
3330 }
3331 for (j = ext4_bg_num_gdb(sb, grp); j > 0; j--) {
3332 ext4_set_bit(EXT4_B2C(sbi, s++), buf);
3333 count++;
3334 }
3335 }
3336 if (!count)
3337 return 0;
3338 return EXT4_CLUSTERS_PER_GROUP(sb) -
3339 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8);
3340 }
3341
3342 /*
3343 * Compute the overhead and stash it in sbi->s_overhead
3344 */
3345 int ext4_calculate_overhead(struct super_block *sb)
3346 {
3347 struct ext4_sb_info *sbi = EXT4_SB(sb);
3348 struct ext4_super_block *es = sbi->s_es;
3349 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3350 ext4_fsblk_t overhead = 0;
3351 char *buf = (char *) get_zeroed_page(GFP_NOFS);
3352
3353 if (!buf)
3354 return -ENOMEM;
3355
3356 /*
3357 * Compute the overhead (FS structures). This is constant
3358 * for a given filesystem unless the number of block groups
3359 * changes so we cache the previous value until it does.
3360 */
3361
3362 /*
3363 * All of the blocks before first_data_block are overhead
3364 */
3365 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
3366
3367 /*
3368 * Add the overhead found in each block group
3369 */
3370 for (i = 0; i < ngroups; i++) {
3371 int blks;
3372
3373 blks = count_overhead(sb, i, buf);
3374 overhead += blks;
3375 if (blks)
3376 memset(buf, 0, PAGE_SIZE);
3377 cond_resched();
3378 }
3379 /* Add the internal journal blocks as well */
3380 if (sbi->s_journal && !sbi->journal_bdev)
3381 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_maxlen);
3382
3383 sbi->s_overhead = overhead;
3384 smp_wmb();
3385 free_page((unsigned long) buf);
3386 return 0;
3387 }
3388
3389
3390 static ext4_fsblk_t ext4_calculate_resv_clusters(struct super_block *sb)
3391 {
3392 ext4_fsblk_t resv_clusters;
3393
3394 /*
3395 * There's no need to reserve anything when we aren't using extents.
3396 * The space estimates are exact, there are no unwritten extents,
3397 * hole punching doesn't need new metadata... This is needed especially
3398 * to keep ext2/3 backward compatibility.
3399 */
3400 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS))
3401 return 0;
3402 /*
3403 * By default we reserve 2% or 4096 clusters, whichever is smaller.
3404 * This should cover the situations where we can not afford to run
3405 * out of space like for example punch hole, or converting
3406 * unwritten extents in delalloc path. In most cases such
3407 * allocation would require 1, or 2 blocks, higher numbers are
3408 * very rare.
3409 */
3410 resv_clusters = ext4_blocks_count(EXT4_SB(sb)->s_es) >>
3411 EXT4_SB(sb)->s_cluster_bits;
3412
3413 do_div(resv_clusters, 50);
3414 resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096);
3415
3416 return resv_clusters;
3417 }
3418
3419
3420 static int ext4_reserve_clusters(struct ext4_sb_info *sbi, ext4_fsblk_t count)
3421 {
3422 ext4_fsblk_t clusters = ext4_blocks_count(sbi->s_es) >>
3423 sbi->s_cluster_bits;
3424
3425 if (count >= clusters)
3426 return -EINVAL;
3427
3428 atomic64_set(&sbi->s_resv_clusters, count);
3429 return 0;
3430 }
3431
3432 static int ext4_fill_super(struct super_block *sb, void *data, int silent)
3433 {
3434 char *orig_data = kstrdup(data, GFP_KERNEL);
3435 struct buffer_head *bh;
3436 struct ext4_super_block *es = NULL;
3437 struct ext4_sb_info *sbi;
3438 ext4_fsblk_t block;
3439 ext4_fsblk_t sb_block = get_sb_block(&data);
3440 ext4_fsblk_t logical_sb_block;
3441 unsigned long offset = 0;
3442 unsigned long journal_devnum = 0;
3443 unsigned long def_mount_opts;
3444 struct inode *root;
3445 const char *descr;
3446 int ret = -ENOMEM;
3447 int blocksize, clustersize;
3448 unsigned int db_count;
3449 unsigned int i;
3450 int needs_recovery, has_huge_files, has_bigalloc;
3451 __u64 blocks_count;
3452 int err = 0;
3453 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
3454 ext4_group_t first_not_zeroed;
3455
3456 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
3457 if (!sbi)
3458 goto out_free_orig;
3459
3460 sbi->s_blockgroup_lock =
3461 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
3462 if (!sbi->s_blockgroup_lock) {
3463 kfree(sbi);
3464 goto out_free_orig;
3465 }
3466 sb->s_fs_info = sbi;
3467 sbi->s_sb = sb;
3468 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
3469 sbi->s_sb_block = sb_block;
3470 if (sb->s_bdev->bd_part)
3471 sbi->s_sectors_written_start =
3472 part_stat_read(sb->s_bdev->bd_part, sectors[1]);
3473
3474 /* Cleanup superblock name */
3475 strreplace(sb->s_id, '/', '!');
3476
3477 /* -EINVAL is default */
3478 ret = -EINVAL;
3479 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
3480 if (!blocksize) {
3481 ext4_msg(sb, KERN_ERR, "unable to set blocksize");
3482 goto out_fail;
3483 }
3484
3485 /*
3486 * The ext4 superblock will not be buffer aligned for other than 1kB
3487 * block sizes. We need to calculate the offset from buffer start.
3488 */
3489 if (blocksize != EXT4_MIN_BLOCK_SIZE) {
3490 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3491 offset = do_div(logical_sb_block, blocksize);
3492 } else {
3493 logical_sb_block = sb_block;
3494 }
3495
3496 if (!(bh = sb_bread_unmovable(sb, logical_sb_block))) {
3497 ext4_msg(sb, KERN_ERR, "unable to read superblock");
3498 goto out_fail;
3499 }
3500 /*
3501 * Note: s_es must be initialized as soon as possible because
3502 * some ext4 macro-instructions depend on its value
3503 */
3504 es = (struct ext4_super_block *) (bh->b_data + offset);
3505 sbi->s_es = es;
3506 sb->s_magic = le16_to_cpu(es->s_magic);
3507 if (sb->s_magic != EXT4_SUPER_MAGIC)
3508 goto cantfind_ext4;
3509 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
3510
3511 /* Warn if metadata_csum and gdt_csum are both set. */
3512 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3513 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
3514 EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
3515 ext4_warning(sb, "metadata_csum and uninit_bg are "
3516 "redundant flags; please run fsck.");
3517
3518 /* Check for a known checksum algorithm */
3519 if (!ext4_verify_csum_type(sb, es)) {
3520 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3521 "unknown checksum algorithm.");
3522 silent = 1;
3523 goto cantfind_ext4;
3524 }
3525
3526 /* Load the checksum driver */
3527 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3528 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
3529 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
3530 if (IS_ERR(sbi->s_chksum_driver)) {
3531 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver.");
3532 ret = PTR_ERR(sbi->s_chksum_driver);
3533 sbi->s_chksum_driver = NULL;
3534 goto failed_mount;
3535 }
3536 }
3537
3538 /* Check superblock checksum */
3539 if (!ext4_superblock_csum_verify(sb, es)) {
3540 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3541 "invalid superblock checksum. Run e2fsck?");
3542 silent = 1;
3543 goto cantfind_ext4;
3544 }
3545
3546 /* Precompute checksum seed for all metadata */
3547 if (ext4_has_metadata_csum(sb))
3548 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid,
3549 sizeof(es->s_uuid));
3550
3551 /* Set defaults before we parse the mount options */
3552 def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
3553 set_opt(sb, INIT_INODE_TABLE);
3554 if (def_mount_opts & EXT4_DEFM_DEBUG)
3555 set_opt(sb, DEBUG);
3556 if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
3557 set_opt(sb, GRPID);
3558 if (def_mount_opts & EXT4_DEFM_UID16)
3559 set_opt(sb, NO_UID32);
3560 /* xattr user namespace & acls are now defaulted on */
3561 set_opt(sb, XATTR_USER);
3562 #ifdef CONFIG_EXT4_FS_POSIX_ACL
3563 set_opt(sb, POSIX_ACL);
3564 #endif
3565 /* don't forget to enable journal_csum when metadata_csum is enabled. */
3566 if (ext4_has_metadata_csum(sb))
3567 set_opt(sb, JOURNAL_CHECKSUM);
3568
3569 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
3570 set_opt(sb, JOURNAL_DATA);
3571 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
3572 set_opt(sb, ORDERED_DATA);
3573 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
3574 set_opt(sb, WRITEBACK_DATA);
3575
3576 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC)
3577 set_opt(sb, ERRORS_PANIC);
3578 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE)
3579 set_opt(sb, ERRORS_CONT);
3580 else
3581 set_opt(sb, ERRORS_RO);
3582 /* block_validity enabled by default; disable with noblock_validity */
3583 set_opt(sb, BLOCK_VALIDITY);
3584 if (def_mount_opts & EXT4_DEFM_DISCARD)
3585 set_opt(sb, DISCARD);
3586
3587 sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid));
3588 sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid));
3589 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
3590 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
3591 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
3592
3593 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
3594 set_opt(sb, BARRIER);
3595
3596 /*
3597 * enable delayed allocation by default
3598 * Use -o nodelalloc to turn it off
3599 */
3600 if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) &&
3601 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
3602 set_opt(sb, DELALLOC);
3603
3604 /*
3605 * set default s_li_wait_mult for lazyinit, for the case there is
3606 * no mount option specified.
3607 */
3608 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
3609
3610 if (!parse_options((char *) sbi->s_es->s_mount_opts, sb,
3611 &journal_devnum, &journal_ioprio, 0)) {
3612 ext4_msg(sb, KERN_WARNING,
3613 "failed to parse options in superblock: %s",
3614 sbi->s_es->s_mount_opts);
3615 }
3616 sbi->s_def_mount_opt = sbi->s_mount_opt;
3617 if (!parse_options((char *) data, sb, &journal_devnum,
3618 &journal_ioprio, 0))
3619 goto failed_mount;
3620
3621 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
3622 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting "
3623 "with data=journal disables delayed "
3624 "allocation and O_DIRECT support!\n");
3625 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
3626 ext4_msg(sb, KERN_ERR, "can't mount with "
3627 "both data=journal and delalloc");
3628 goto failed_mount;
3629 }
3630 if (test_opt(sb, DIOREAD_NOLOCK)) {
3631 ext4_msg(sb, KERN_ERR, "can't mount with "
3632 "both data=journal and dioread_nolock");
3633 goto failed_mount;
3634 }
3635 if (test_opt(sb, DAX)) {
3636 ext4_msg(sb, KERN_ERR, "can't mount with "
3637 "both data=journal and dax");
3638 goto failed_mount;
3639 }
3640 if (test_opt(sb, DELALLOC))
3641 clear_opt(sb, DELALLOC);
3642 }
3643
3644 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
3645 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
3646
3647 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
3648 (EXT4_HAS_COMPAT_FEATURE(sb, ~0U) ||
3649 EXT4_HAS_RO_COMPAT_FEATURE(sb, ~0U) ||
3650 EXT4_HAS_INCOMPAT_FEATURE(sb, ~0U)))
3651 ext4_msg(sb, KERN_WARNING,
3652 "feature flags set on rev 0 fs, "
3653 "running e2fsck is recommended");
3654
3655 if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) {
3656 set_opt2(sb, HURD_COMPAT);
3657 if (EXT4_HAS_INCOMPAT_FEATURE(sb,
3658 EXT4_FEATURE_INCOMPAT_64BIT)) {
3659 ext4_msg(sb, KERN_ERR,
3660 "The Hurd can't support 64-bit file systems");
3661 goto failed_mount;
3662 }
3663 }
3664
3665 if (IS_EXT2_SB(sb)) {
3666 if (ext2_feature_set_ok(sb))
3667 ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
3668 "using the ext4 subsystem");
3669 else {
3670 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
3671 "to feature incompatibilities");
3672 goto failed_mount;
3673 }
3674 }
3675
3676 if (IS_EXT3_SB(sb)) {
3677 if (ext3_feature_set_ok(sb))
3678 ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
3679 "using the ext4 subsystem");
3680 else {
3681 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
3682 "to feature incompatibilities");
3683 goto failed_mount;
3684 }
3685 }
3686
3687 /*
3688 * Check feature flags regardless of the revision level, since we
3689 * previously didn't change the revision level when setting the flags,
3690 * so there is a chance incompat flags are set on a rev 0 filesystem.
3691 */
3692 if (!ext4_feature_set_ok(sb, (sb->s_flags & MS_RDONLY)))
3693 goto failed_mount;
3694
3695 blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
3696 if (blocksize < EXT4_MIN_BLOCK_SIZE ||
3697 blocksize > EXT4_MAX_BLOCK_SIZE) {
3698 ext4_msg(sb, KERN_ERR,
3699 "Unsupported filesystem blocksize %d", blocksize);
3700 goto failed_mount;
3701 }
3702
3703 if (sbi->s_mount_opt & EXT4_MOUNT_DAX) {
3704 if (blocksize != PAGE_SIZE) {
3705 ext4_msg(sb, KERN_ERR,
3706 "error: unsupported blocksize for dax");
3707 goto failed_mount;
3708 }
3709 if (!sb->s_bdev->bd_disk->fops->direct_access) {
3710 ext4_msg(sb, KERN_ERR,
3711 "error: device does not support dax");
3712 goto failed_mount;
3713 }
3714 }
3715
3716 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_ENCRYPT) &&
3717 es->s_encryption_level) {
3718 ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d",
3719 es->s_encryption_level);
3720 goto failed_mount;
3721 }
3722
3723 if (sb->s_blocksize != blocksize) {
3724 /* Validate the filesystem blocksize */
3725 if (!sb_set_blocksize(sb, blocksize)) {
3726 ext4_msg(sb, KERN_ERR, "bad block size %d",
3727 blocksize);
3728 goto failed_mount;
3729 }
3730
3731 brelse(bh);
3732 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3733 offset = do_div(logical_sb_block, blocksize);
3734 bh = sb_bread_unmovable(sb, logical_sb_block);
3735 if (!bh) {
3736 ext4_msg(sb, KERN_ERR,
3737 "Can't read superblock on 2nd try");
3738 goto failed_mount;
3739 }
3740 es = (struct ext4_super_block *)(bh->b_data + offset);
3741 sbi->s_es = es;
3742 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
3743 ext4_msg(sb, KERN_ERR,
3744 "Magic mismatch, very weird!");
3745 goto failed_mount;
3746 }
3747 }
3748
3749 has_huge_files = EXT4_HAS_RO_COMPAT_FEATURE(sb,
3750 EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
3751 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
3752 has_huge_files);
3753 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
3754
3755 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
3756 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
3757 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
3758 } else {
3759 sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
3760 sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
3761 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
3762 (!is_power_of_2(sbi->s_inode_size)) ||
3763 (sbi->s_inode_size > blocksize)) {
3764 ext4_msg(sb, KERN_ERR,
3765 "unsupported inode size: %d",
3766 sbi->s_inode_size);
3767 goto failed_mount;
3768 }
3769 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE)
3770 sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2);
3771 }
3772
3773 sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
3774 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT)) {
3775 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
3776 sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
3777 !is_power_of_2(sbi->s_desc_size)) {
3778 ext4_msg(sb, KERN_ERR,
3779 "unsupported descriptor size %lu",
3780 sbi->s_desc_size);
3781 goto failed_mount;
3782 }
3783 } else
3784 sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
3785
3786 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
3787 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
3788 if (EXT4_INODE_SIZE(sb) == 0 || EXT4_INODES_PER_GROUP(sb) == 0)
3789 goto cantfind_ext4;
3790
3791 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb);
3792 if (sbi->s_inodes_per_block == 0)
3793 goto cantfind_ext4;
3794 sbi->s_itb_per_group = sbi->s_inodes_per_group /
3795 sbi->s_inodes_per_block;
3796 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb);
3797 sbi->s_sbh = bh;
3798 sbi->s_mount_state = le16_to_cpu(es->s_state);
3799 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
3800 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
3801
3802 for (i = 0; i < 4; i++)
3803 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
3804 sbi->s_def_hash_version = es->s_def_hash_version;
3805 if (EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_DIR_INDEX)) {
3806 i = le32_to_cpu(es->s_flags);
3807 if (i & EXT2_FLAGS_UNSIGNED_HASH)
3808 sbi->s_hash_unsigned = 3;
3809 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
3810 #ifdef __CHAR_UNSIGNED__
3811 if (!(sb->s_flags & MS_RDONLY))
3812 es->s_flags |=
3813 cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
3814 sbi->s_hash_unsigned = 3;
3815 #else
3816 if (!(sb->s_flags & MS_RDONLY))
3817 es->s_flags |=
3818 cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
3819 #endif
3820 }
3821 }
3822
3823 /* Handle clustersize */
3824 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size);
3825 has_bigalloc = EXT4_HAS_RO_COMPAT_FEATURE(sb,
3826 EXT4_FEATURE_RO_COMPAT_BIGALLOC);
3827 if (has_bigalloc) {
3828 if (clustersize < blocksize) {
3829 ext4_msg(sb, KERN_ERR,
3830 "cluster size (%d) smaller than "
3831 "block size (%d)", clustersize, blocksize);
3832 goto failed_mount;
3833 }
3834 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) -
3835 le32_to_cpu(es->s_log_block_size);
3836 sbi->s_clusters_per_group =
3837 le32_to_cpu(es->s_clusters_per_group);
3838 if (sbi->s_clusters_per_group > blocksize * 8) {
3839 ext4_msg(sb, KERN_ERR,
3840 "#clusters per group too big: %lu",
3841 sbi->s_clusters_per_group);
3842 goto failed_mount;
3843 }
3844 if (sbi->s_blocks_per_group !=
3845 (sbi->s_clusters_per_group * (clustersize / blocksize))) {
3846 ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and "
3847 "clusters per group (%lu) inconsistent",
3848 sbi->s_blocks_per_group,
3849 sbi->s_clusters_per_group);
3850 goto failed_mount;
3851 }
3852 } else {
3853 if (clustersize != blocksize) {
3854 ext4_warning(sb, "fragment/cluster size (%d) != "
3855 "block size (%d)", clustersize,
3856 blocksize);
3857 clustersize = blocksize;
3858 }
3859 if (sbi->s_blocks_per_group > blocksize * 8) {
3860 ext4_msg(sb, KERN_ERR,
3861 "#blocks per group too big: %lu",
3862 sbi->s_blocks_per_group);
3863 goto failed_mount;
3864 }
3865 sbi->s_clusters_per_group = sbi->s_blocks_per_group;
3866 sbi->s_cluster_bits = 0;
3867 }
3868 sbi->s_cluster_ratio = clustersize / blocksize;
3869
3870 if (sbi->s_inodes_per_group > blocksize * 8) {
3871 ext4_msg(sb, KERN_ERR,
3872 "#inodes per group too big: %lu",
3873 sbi->s_inodes_per_group);
3874 goto failed_mount;
3875 }
3876
3877 /* Do we have standard group size of clustersize * 8 blocks ? */
3878 if (sbi->s_blocks_per_group == clustersize << 3)
3879 set_opt2(sb, STD_GROUP_SIZE);
3880
3881 /*
3882 * Test whether we have more sectors than will fit in sector_t,
3883 * and whether the max offset is addressable by the page cache.
3884 */
3885 err = generic_check_addressable(sb->s_blocksize_bits,
3886 ext4_blocks_count(es));
3887 if (err) {
3888 ext4_msg(sb, KERN_ERR, "filesystem"
3889 " too large to mount safely on this system");
3890 if (sizeof(sector_t) < 8)
3891 ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled");
3892 goto failed_mount;
3893 }
3894
3895 if (EXT4_BLOCKS_PER_GROUP(sb) == 0)
3896 goto cantfind_ext4;
3897
3898 /* check blocks count against device size */
3899 blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
3900 if (blocks_count && ext4_blocks_count(es) > blocks_count) {
3901 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
3902 "exceeds size of device (%llu blocks)",
3903 ext4_blocks_count(es), blocks_count);
3904 goto failed_mount;
3905 }
3906
3907 /*
3908 * It makes no sense for the first data block to be beyond the end
3909 * of the filesystem.
3910 */
3911 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
3912 ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
3913 "block %u is beyond end of filesystem (%llu)",
3914 le32_to_cpu(es->s_first_data_block),
3915 ext4_blocks_count(es));
3916 goto failed_mount;
3917 }
3918 blocks_count = (ext4_blocks_count(es) -
3919 le32_to_cpu(es->s_first_data_block) +
3920 EXT4_BLOCKS_PER_GROUP(sb) - 1);
3921 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
3922 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
3923 ext4_msg(sb, KERN_WARNING, "groups count too large: %u "
3924 "(block count %llu, first data block %u, "
3925 "blocks per group %lu)", sbi->s_groups_count,
3926 ext4_blocks_count(es),
3927 le32_to_cpu(es->s_first_data_block),
3928 EXT4_BLOCKS_PER_GROUP(sb));
3929 goto failed_mount;
3930 }
3931 sbi->s_groups_count = blocks_count;
3932 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
3933 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
3934 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
3935 EXT4_DESC_PER_BLOCK(sb);
3936 sbi->s_group_desc = ext4_kvmalloc(db_count *
3937 sizeof(struct buffer_head *),
3938 GFP_KERNEL);
3939 if (sbi->s_group_desc == NULL) {
3940 ext4_msg(sb, KERN_ERR, "not enough memory");
3941 ret = -ENOMEM;
3942 goto failed_mount;
3943 }
3944
3945 if (ext4_proc_root)
3946 sbi->s_proc = proc_mkdir(sb->s_id, ext4_proc_root);
3947
3948 if (sbi->s_proc)
3949 proc_create_data("options", S_IRUGO, sbi->s_proc,
3950 &ext4_seq_options_fops, sb);
3951
3952 bgl_lock_init(sbi->s_blockgroup_lock);
3953
3954 for (i = 0; i < db_count; i++) {
3955 block = descriptor_loc(sb, logical_sb_block, i);
3956 sbi->s_group_desc[i] = sb_bread_unmovable(sb, block);
3957 if (!sbi->s_group_desc[i]) {
3958 ext4_msg(sb, KERN_ERR,
3959 "can't read group descriptor %d", i);
3960 db_count = i;
3961 goto failed_mount2;
3962 }
3963 }
3964 if (!ext4_check_descriptors(sb, &first_not_zeroed)) {
3965 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
3966 goto failed_mount2;
3967 }
3968
3969 sbi->s_gdb_count = db_count;
3970 get_random_bytes(&sbi->s_next_generation, sizeof(u32));
3971 spin_lock_init(&sbi->s_next_gen_lock);
3972
3973 setup_timer(&sbi->s_err_report, print_daily_error_info,
3974 (unsigned long) sb);
3975
3976 /* Register extent status tree shrinker */
3977 if (ext4_es_register_shrinker(sbi))
3978 goto failed_mount3;
3979
3980 sbi->s_stripe = ext4_get_stripe_size(sbi);
3981 sbi->s_extent_max_zeroout_kb = 32;
3982
3983 /*
3984 * set up enough so that it can read an inode
3985 */
3986 sb->s_op = &ext4_sops;
3987 sb->s_export_op = &ext4_export_ops;
3988 sb->s_xattr = ext4_xattr_handlers;
3989 #ifdef CONFIG_QUOTA
3990 sb->dq_op = &ext4_quota_operations;
3991 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA))
3992 sb->s_qcop = &dquot_quotactl_sysfile_ops;
3993 else
3994 sb->s_qcop = &ext4_qctl_operations;
3995 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP;
3996 #endif
3997 memcpy(sb->s_uuid, es->s_uuid, sizeof(es->s_uuid));
3998
3999 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
4000 mutex_init(&sbi->s_orphan_lock);
4001
4002 sb->s_root = NULL;
4003
4004 needs_recovery = (es->s_last_orphan != 0 ||
4005 EXT4_HAS_INCOMPAT_FEATURE(sb,
4006 EXT4_FEATURE_INCOMPAT_RECOVER));
4007
4008 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_MMP) &&
4009 !(sb->s_flags & MS_RDONLY))
4010 if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block)))
4011 goto failed_mount3a;
4012
4013 /*
4014 * The first inode we look at is the journal inode. Don't try
4015 * root first: it may be modified in the journal!
4016 */
4017 if (!test_opt(sb, NOLOAD) &&
4018 EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) {
4019 if (ext4_load_journal(sb, es, journal_devnum))
4020 goto failed_mount3a;
4021 } else if (test_opt(sb, NOLOAD) && !(sb->s_flags & MS_RDONLY) &&
4022 EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) {
4023 ext4_msg(sb, KERN_ERR, "required journal recovery "
4024 "suppressed and not mounted read-only");
4025 goto failed_mount_wq;
4026 } else {
4027 clear_opt(sb, DATA_FLAGS);
4028 sbi->s_journal = NULL;
4029 needs_recovery = 0;
4030 goto no_journal;
4031 }
4032
4033 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT) &&
4034 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
4035 JBD2_FEATURE_INCOMPAT_64BIT)) {
4036 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
4037 goto failed_mount_wq;
4038 }
4039
4040 if (!set_journal_csum_feature_set(sb)) {
4041 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum "
4042 "feature set");
4043 goto failed_mount_wq;
4044 }
4045
4046 /* We have now updated the journal if required, so we can
4047 * validate the data journaling mode. */
4048 switch (test_opt(sb, DATA_FLAGS)) {
4049 case 0:
4050 /* No mode set, assume a default based on the journal
4051 * capabilities: ORDERED_DATA if the journal can
4052 * cope, else JOURNAL_DATA
4053 */
4054 if (jbd2_journal_check_available_features
4055 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE))
4056 set_opt(sb, ORDERED_DATA);
4057 else
4058 set_opt(sb, JOURNAL_DATA);
4059 break;
4060
4061 case EXT4_MOUNT_ORDERED_DATA:
4062 case EXT4_MOUNT_WRITEBACK_DATA:
4063 if (!jbd2_journal_check_available_features
4064 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4065 ext4_msg(sb, KERN_ERR, "Journal does not support "
4066 "requested data journaling mode");
4067 goto failed_mount_wq;
4068 }
4069 default:
4070 break;
4071 }
4072 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
4073
4074 sbi->s_journal->j_commit_callback = ext4_journal_commit_callback;
4075
4076 no_journal:
4077 if (ext4_mballoc_ready) {
4078 sbi->s_mb_cache = ext4_xattr_create_cache(sb->s_id);
4079 if (!sbi->s_mb_cache) {
4080 ext4_msg(sb, KERN_ERR, "Failed to create an mb_cache");
4081 goto failed_mount_wq;
4082 }
4083 }
4084
4085 if ((DUMMY_ENCRYPTION_ENABLED(sbi) ||
4086 EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_ENCRYPT)) &&
4087 (blocksize != PAGE_CACHE_SIZE)) {
4088 ext4_msg(sb, KERN_ERR,
4089 "Unsupported blocksize for fs encryption");
4090 goto failed_mount_wq;
4091 }
4092
4093 if (DUMMY_ENCRYPTION_ENABLED(sbi) &&
4094 !(sb->s_flags & MS_RDONLY) &&
4095 !EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_ENCRYPT)) {
4096 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_ENCRYPT);
4097 ext4_commit_super(sb, 1);
4098 }
4099
4100 /*
4101 * Get the # of file system overhead blocks from the
4102 * superblock if present.
4103 */
4104 if (es->s_overhead_clusters)
4105 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters);
4106 else {
4107 err = ext4_calculate_overhead(sb);
4108 if (err)
4109 goto failed_mount_wq;
4110 }
4111
4112 /*
4113 * The maximum number of concurrent works can be high and
4114 * concurrency isn't really necessary. Limit it to 1.
4115 */
4116 EXT4_SB(sb)->rsv_conversion_wq =
4117 alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
4118 if (!EXT4_SB(sb)->rsv_conversion_wq) {
4119 printk(KERN_ERR "EXT4-fs: failed to create workqueue\n");
4120 ret = -ENOMEM;
4121 goto failed_mount4;
4122 }
4123
4124 /*
4125 * The jbd2_journal_load will have done any necessary log recovery,
4126 * so we can safely mount the rest of the filesystem now.
4127 */
4128
4129 root = ext4_iget(sb, EXT4_ROOT_INO);
4130 if (IS_ERR(root)) {
4131 ext4_msg(sb, KERN_ERR, "get root inode failed");
4132 ret = PTR_ERR(root);
4133 root = NULL;
4134 goto failed_mount4;
4135 }
4136 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
4137 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
4138 iput(root);
4139 goto failed_mount4;
4140 }
4141 sb->s_root = d_make_root(root);
4142 if (!sb->s_root) {
4143 ext4_msg(sb, KERN_ERR, "get root dentry failed");
4144 ret = -ENOMEM;
4145 goto failed_mount4;
4146 }
4147
4148 if (ext4_setup_super(sb, es, sb->s_flags & MS_RDONLY))
4149 sb->s_flags |= MS_RDONLY;
4150
4151 /* determine the minimum size of new large inodes, if present */
4152 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) {
4153 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
4154 EXT4_GOOD_OLD_INODE_SIZE;
4155 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4156 EXT4_FEATURE_RO_COMPAT_EXTRA_ISIZE)) {
4157 if (sbi->s_want_extra_isize <
4158 le16_to_cpu(es->s_want_extra_isize))
4159 sbi->s_want_extra_isize =
4160 le16_to_cpu(es->s_want_extra_isize);
4161 if (sbi->s_want_extra_isize <
4162 le16_to_cpu(es->s_min_extra_isize))
4163 sbi->s_want_extra_isize =
4164 le16_to_cpu(es->s_min_extra_isize);
4165 }
4166 }
4167 /* Check if enough inode space is available */
4168 if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize >
4169 sbi->s_inode_size) {
4170 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
4171 EXT4_GOOD_OLD_INODE_SIZE;
4172 ext4_msg(sb, KERN_INFO, "required extra inode space not"
4173 "available");
4174 }
4175
4176 err = ext4_reserve_clusters(sbi, ext4_calculate_resv_clusters(sb));
4177 if (err) {
4178 ext4_msg(sb, KERN_ERR, "failed to reserve %llu clusters for "
4179 "reserved pool", ext4_calculate_resv_clusters(sb));
4180 goto failed_mount4a;
4181 }
4182
4183 err = ext4_setup_system_zone(sb);
4184 if (err) {
4185 ext4_msg(sb, KERN_ERR, "failed to initialize system "
4186 "zone (%d)", err);
4187 goto failed_mount4a;
4188 }
4189
4190 ext4_ext_init(sb);
4191 err = ext4_mb_init(sb);
4192 if (err) {
4193 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
4194 err);
4195 goto failed_mount5;
4196 }
4197
4198 block = ext4_count_free_clusters(sb);
4199 ext4_free_blocks_count_set(sbi->s_es,
4200 EXT4_C2B(sbi, block));
4201 err = percpu_counter_init(&sbi->s_freeclusters_counter, block,
4202 GFP_KERNEL);
4203 if (!err) {
4204 unsigned long freei = ext4_count_free_inodes(sb);
4205 sbi->s_es->s_free_inodes_count = cpu_to_le32(freei);
4206 err = percpu_counter_init(&sbi->s_freeinodes_counter, freei,
4207 GFP_KERNEL);
4208 }
4209 if (!err)
4210 err = percpu_counter_init(&sbi->s_dirs_counter,
4211 ext4_count_dirs(sb), GFP_KERNEL);
4212 if (!err)
4213 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0,
4214 GFP_KERNEL);
4215 if (err) {
4216 ext4_msg(sb, KERN_ERR, "insufficient memory");
4217 goto failed_mount6;
4218 }
4219
4220 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG))
4221 if (!ext4_fill_flex_info(sb)) {
4222 ext4_msg(sb, KERN_ERR,
4223 "unable to initialize "
4224 "flex_bg meta info!");
4225 goto failed_mount6;
4226 }
4227
4228 err = ext4_register_li_request(sb, first_not_zeroed);
4229 if (err)
4230 goto failed_mount6;
4231
4232 sbi->s_kobj.kset = ext4_kset;
4233 init_completion(&sbi->s_kobj_unregister);
4234 err = kobject_init_and_add(&sbi->s_kobj, &ext4_ktype, NULL,
4235 "%s", sb->s_id);
4236 if (err)
4237 goto failed_mount7;
4238
4239 #ifdef CONFIG_QUOTA
4240 /* Enable quota usage during mount. */
4241 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) &&
4242 !(sb->s_flags & MS_RDONLY)) {
4243 err = ext4_enable_quotas(sb);
4244 if (err)
4245 goto failed_mount8;
4246 }
4247 #endif /* CONFIG_QUOTA */
4248
4249 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
4250 ext4_orphan_cleanup(sb, es);
4251 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
4252 if (needs_recovery) {
4253 ext4_msg(sb, KERN_INFO, "recovery complete");
4254 ext4_mark_recovery_complete(sb, es);
4255 }
4256 if (EXT4_SB(sb)->s_journal) {
4257 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
4258 descr = " journalled data mode";
4259 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
4260 descr = " ordered data mode";
4261 else
4262 descr = " writeback data mode";
4263 } else
4264 descr = "out journal";
4265
4266 if (test_opt(sb, DISCARD)) {
4267 struct request_queue *q = bdev_get_queue(sb->s_bdev);
4268 if (!blk_queue_discard(q))
4269 ext4_msg(sb, KERN_WARNING,
4270 "mounting with \"discard\" option, but "
4271 "the device does not support discard");
4272 }
4273
4274 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. "
4275 "Opts: %s%s%s", descr, sbi->s_es->s_mount_opts,
4276 *sbi->s_es->s_mount_opts ? "; " : "", orig_data);
4277
4278 if (es->s_error_count)
4279 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
4280
4281 /* Enable message ratelimiting. Default is 10 messages per 5 secs. */
4282 ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10);
4283 ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10);
4284 ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10);
4285
4286 kfree(orig_data);
4287 return 0;
4288
4289 cantfind_ext4:
4290 if (!silent)
4291 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
4292 goto failed_mount;
4293
4294 #ifdef CONFIG_QUOTA
4295 failed_mount8:
4296 kobject_del(&sbi->s_kobj);
4297 #endif
4298 failed_mount7:
4299 ext4_unregister_li_request(sb);
4300 failed_mount6:
4301 ext4_mb_release(sb);
4302 if (sbi->s_flex_groups)
4303 kvfree(sbi->s_flex_groups);
4304 percpu_counter_destroy(&sbi->s_freeclusters_counter);
4305 percpu_counter_destroy(&sbi->s_freeinodes_counter);
4306 percpu_counter_destroy(&sbi->s_dirs_counter);
4307 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
4308 failed_mount5:
4309 ext4_ext_release(sb);
4310 ext4_release_system_zone(sb);
4311 failed_mount4a:
4312 dput(sb->s_root);
4313 sb->s_root = NULL;
4314 failed_mount4:
4315 ext4_msg(sb, KERN_ERR, "mount failed");
4316 if (EXT4_SB(sb)->rsv_conversion_wq)
4317 destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq);
4318 failed_mount_wq:
4319 if (sbi->s_journal) {
4320 jbd2_journal_destroy(sbi->s_journal);
4321 sbi->s_journal = NULL;
4322 }
4323 failed_mount3a:
4324 ext4_es_unregister_shrinker(sbi);
4325 failed_mount3:
4326 del_timer_sync(&sbi->s_err_report);
4327 if (sbi->s_mmp_tsk)
4328 kthread_stop(sbi->s_mmp_tsk);
4329 failed_mount2:
4330 for (i = 0; i < db_count; i++)
4331 brelse(sbi->s_group_desc[i]);
4332 kvfree(sbi->s_group_desc);
4333 failed_mount:
4334 if (sbi->s_chksum_driver)
4335 crypto_free_shash(sbi->s_chksum_driver);
4336 if (sbi->s_proc) {
4337 remove_proc_entry("options", sbi->s_proc);
4338 remove_proc_entry(sb->s_id, ext4_proc_root);
4339 }
4340 #ifdef CONFIG_QUOTA
4341 for (i = 0; i < EXT4_MAXQUOTAS; i++)
4342 kfree(sbi->s_qf_names[i]);
4343 #endif
4344 ext4_blkdev_remove(sbi);
4345 brelse(bh);
4346 out_fail:
4347 sb->s_fs_info = NULL;
4348 kfree(sbi->s_blockgroup_lock);
4349 kfree(sbi);
4350 out_free_orig:
4351 kfree(orig_data);
4352 return err ? err : ret;
4353 }
4354
4355 /*
4356 * Setup any per-fs journal parameters now. We'll do this both on
4357 * initial mount, once the journal has been initialised but before we've
4358 * done any recovery; and again on any subsequent remount.
4359 */
4360 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
4361 {
4362 struct ext4_sb_info *sbi = EXT4_SB(sb);
4363
4364 journal->j_commit_interval = sbi->s_commit_interval;
4365 journal->j_min_batch_time = sbi->s_min_batch_time;
4366 journal->j_max_batch_time = sbi->s_max_batch_time;
4367
4368 write_lock(&journal->j_state_lock);
4369 if (test_opt(sb, BARRIER))
4370 journal->j_flags |= JBD2_BARRIER;
4371 else
4372 journal->j_flags &= ~JBD2_BARRIER;
4373 if (test_opt(sb, DATA_ERR_ABORT))
4374 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
4375 else
4376 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
4377 write_unlock(&journal->j_state_lock);
4378 }
4379
4380 static journal_t *ext4_get_journal(struct super_block *sb,
4381 unsigned int journal_inum)
4382 {
4383 struct inode *journal_inode;
4384 journal_t *journal;
4385
4386 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
4387
4388 /* First, test for the existence of a valid inode on disk. Bad
4389 * things happen if we iget() an unused inode, as the subsequent
4390 * iput() will try to delete it. */
4391
4392 journal_inode = ext4_iget(sb, journal_inum);
4393 if (IS_ERR(journal_inode)) {
4394 ext4_msg(sb, KERN_ERR, "no journal found");
4395 return NULL;
4396 }
4397 if (!journal_inode->i_nlink) {
4398 make_bad_inode(journal_inode);
4399 iput(journal_inode);
4400 ext4_msg(sb, KERN_ERR, "journal inode is deleted");
4401 return NULL;
4402 }
4403
4404 jbd_debug(2, "Journal inode found at %p: %lld bytes\n",
4405 journal_inode, journal_inode->i_size);
4406 if (!S_ISREG(journal_inode->i_mode)) {
4407 ext4_msg(sb, KERN_ERR, "invalid journal inode");
4408 iput(journal_inode);
4409 return NULL;
4410 }
4411
4412 journal = jbd2_journal_init_inode(journal_inode);
4413 if (!journal) {
4414 ext4_msg(sb, KERN_ERR, "Could not load journal inode");
4415 iput(journal_inode);
4416 return NULL;
4417 }
4418 journal->j_private = sb;
4419 ext4_init_journal_params(sb, journal);
4420 return journal;
4421 }
4422
4423 static journal_t *ext4_get_dev_journal(struct super_block *sb,
4424 dev_t j_dev)
4425 {
4426 struct buffer_head *bh;
4427 journal_t *journal;
4428 ext4_fsblk_t start;
4429 ext4_fsblk_t len;
4430 int hblock, blocksize;
4431 ext4_fsblk_t sb_block;
4432 unsigned long offset;
4433 struct ext4_super_block *es;
4434 struct block_device *bdev;
4435
4436 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
4437
4438 bdev = ext4_blkdev_get(j_dev, sb);
4439 if (bdev == NULL)
4440 return NULL;
4441
4442 blocksize = sb->s_blocksize;
4443 hblock = bdev_logical_block_size(bdev);
4444 if (blocksize < hblock) {
4445 ext4_msg(sb, KERN_ERR,
4446 "blocksize too small for journal device");
4447 goto out_bdev;
4448 }
4449
4450 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
4451 offset = EXT4_MIN_BLOCK_SIZE % blocksize;
4452 set_blocksize(bdev, blocksize);
4453 if (!(bh = __bread(bdev, sb_block, blocksize))) {
4454 ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
4455 "external journal");
4456 goto out_bdev;
4457 }
4458
4459 es = (struct ext4_super_block *) (bh->b_data + offset);
4460 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
4461 !(le32_to_cpu(es->s_feature_incompat) &
4462 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
4463 ext4_msg(sb, KERN_ERR, "external journal has "
4464 "bad superblock");
4465 brelse(bh);
4466 goto out_bdev;
4467 }
4468
4469 if ((le32_to_cpu(es->s_feature_ro_compat) &
4470 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
4471 es->s_checksum != ext4_superblock_csum(sb, es)) {
4472 ext4_msg(sb, KERN_ERR, "external journal has "
4473 "corrupt superblock");
4474 brelse(bh);
4475 goto out_bdev;
4476 }
4477
4478 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
4479 ext4_msg(sb, KERN_ERR, "journal UUID does not match");
4480 brelse(bh);
4481 goto out_bdev;
4482 }
4483
4484 len = ext4_blocks_count(es);
4485 start = sb_block + 1;
4486 brelse(bh); /* we're done with the superblock */
4487
4488 journal = jbd2_journal_init_dev(bdev, sb->s_bdev,
4489 start, len, blocksize);
4490 if (!journal) {
4491 ext4_msg(sb, KERN_ERR, "failed to create device journal");
4492 goto out_bdev;
4493 }
4494 journal->j_private = sb;
4495 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &journal->j_sb_buffer);
4496 wait_on_buffer(journal->j_sb_buffer);
4497 if (!buffer_uptodate(journal->j_sb_buffer)) {
4498 ext4_msg(sb, KERN_ERR, "I/O error on journal device");
4499 goto out_journal;
4500 }
4501 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
4502 ext4_msg(sb, KERN_ERR, "External journal has more than one "
4503 "user (unsupported) - %d",
4504 be32_to_cpu(journal->j_superblock->s_nr_users));
4505 goto out_journal;
4506 }
4507 EXT4_SB(sb)->journal_bdev = bdev;
4508 ext4_init_journal_params(sb, journal);
4509 return journal;
4510
4511 out_journal:
4512 jbd2_journal_destroy(journal);
4513 out_bdev:
4514 ext4_blkdev_put(bdev);
4515 return NULL;
4516 }
4517
4518 static int ext4_load_journal(struct super_block *sb,
4519 struct ext4_super_block *es,
4520 unsigned long journal_devnum)
4521 {
4522 journal_t *journal;
4523 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
4524 dev_t journal_dev;
4525 int err = 0;
4526 int really_read_only;
4527
4528 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
4529
4530 if (journal_devnum &&
4531 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4532 ext4_msg(sb, KERN_INFO, "external journal device major/minor "
4533 "numbers have changed");
4534 journal_dev = new_decode_dev(journal_devnum);
4535 } else
4536 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
4537
4538 really_read_only = bdev_read_only(sb->s_bdev);
4539
4540 /*
4541 * Are we loading a blank journal or performing recovery after a
4542 * crash? For recovery, we need to check in advance whether we
4543 * can get read-write access to the device.
4544 */
4545 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) {
4546 if (sb->s_flags & MS_RDONLY) {
4547 ext4_msg(sb, KERN_INFO, "INFO: recovery "
4548 "required on readonly filesystem");
4549 if (really_read_only) {
4550 ext4_msg(sb, KERN_ERR, "write access "
4551 "unavailable, cannot proceed");
4552 return -EROFS;
4553 }
4554 ext4_msg(sb, KERN_INFO, "write access will "
4555 "be enabled during recovery");
4556 }
4557 }
4558
4559 if (journal_inum && journal_dev) {
4560 ext4_msg(sb, KERN_ERR, "filesystem has both journal "
4561 "and inode journals!");
4562 return -EINVAL;
4563 }
4564
4565 if (journal_inum) {
4566 if (!(journal = ext4_get_journal(sb, journal_inum)))
4567 return -EINVAL;
4568 } else {
4569 if (!(journal = ext4_get_dev_journal(sb, journal_dev)))
4570 return -EINVAL;
4571 }
4572
4573 if (!(journal->j_flags & JBD2_BARRIER))
4574 ext4_msg(sb, KERN_INFO, "barriers disabled");
4575
4576 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER))
4577 err = jbd2_journal_wipe(journal, !really_read_only);
4578 if (!err) {
4579 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
4580 if (save)
4581 memcpy(save, ((char *) es) +
4582 EXT4_S_ERR_START, EXT4_S_ERR_LEN);
4583 err = jbd2_journal_load(journal);
4584 if (save)
4585 memcpy(((char *) es) + EXT4_S_ERR_START,
4586 save, EXT4_S_ERR_LEN);
4587 kfree(save);
4588 }
4589
4590 if (err) {
4591 ext4_msg(sb, KERN_ERR, "error loading journal");
4592 jbd2_journal_destroy(journal);
4593 return err;
4594 }
4595
4596 EXT4_SB(sb)->s_journal = journal;
4597 ext4_clear_journal_err(sb, es);
4598
4599 if (!really_read_only && journal_devnum &&
4600 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4601 es->s_journal_dev = cpu_to_le32(journal_devnum);
4602
4603 /* Make sure we flush the recovery flag to disk. */
4604 ext4_commit_super(sb, 1);
4605 }
4606
4607 return 0;
4608 }
4609
4610 static int ext4_commit_super(struct super_block *sb, int sync)
4611 {
4612 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
4613 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
4614 int error = 0;
4615
4616 if (!sbh)
4617 return error;
4618 if (buffer_write_io_error(sbh)) {
4619 /*
4620 * Oh, dear. A previous attempt to write the
4621 * superblock failed. This could happen because the
4622 * USB device was yanked out. Or it could happen to
4623 * be a transient write error and maybe the block will
4624 * be remapped. Nothing we can do but to retry the
4625 * write and hope for the best.
4626 */
4627 ext4_msg(sb, KERN_ERR, "previous I/O error to "
4628 "superblock detected");
4629 clear_buffer_write_io_error(sbh);
4630 set_buffer_uptodate(sbh);
4631 }
4632 /*
4633 * If the file system is mounted read-only, don't update the
4634 * superblock write time. This avoids updating the superblock
4635 * write time when we are mounting the root file system
4636 * read/only but we need to replay the journal; at that point,
4637 * for people who are east of GMT and who make their clock
4638 * tick in localtime for Windows bug-for-bug compatibility,
4639 * the clock is set in the future, and this will cause e2fsck
4640 * to complain and force a full file system check.
4641 */
4642 if (!(sb->s_flags & MS_RDONLY))
4643 es->s_wtime = cpu_to_le32(get_seconds());
4644 if (sb->s_bdev->bd_part)
4645 es->s_kbytes_written =
4646 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written +
4647 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
4648 EXT4_SB(sb)->s_sectors_written_start) >> 1));
4649 else
4650 es->s_kbytes_written =
4651 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written);
4652 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeclusters_counter))
4653 ext4_free_blocks_count_set(es,
4654 EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive(
4655 &EXT4_SB(sb)->s_freeclusters_counter)));
4656 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeinodes_counter))
4657 es->s_free_inodes_count =
4658 cpu_to_le32(percpu_counter_sum_positive(
4659 &EXT4_SB(sb)->s_freeinodes_counter));
4660 BUFFER_TRACE(sbh, "marking dirty");
4661 ext4_superblock_csum_set(sb);
4662 mark_buffer_dirty(sbh);
4663 if (sync) {
4664 error = sync_dirty_buffer(sbh);
4665 if (error)
4666 return error;
4667
4668 error = buffer_write_io_error(sbh);
4669 if (error) {
4670 ext4_msg(sb, KERN_ERR, "I/O error while writing "
4671 "superblock");
4672 clear_buffer_write_io_error(sbh);
4673 set_buffer_uptodate(sbh);
4674 }
4675 }
4676 return error;
4677 }
4678
4679 /*
4680 * Have we just finished recovery? If so, and if we are mounting (or
4681 * remounting) the filesystem readonly, then we will end up with a
4682 * consistent fs on disk. Record that fact.
4683 */
4684 static void ext4_mark_recovery_complete(struct super_block *sb,
4685 struct ext4_super_block *es)
4686 {
4687 journal_t *journal = EXT4_SB(sb)->s_journal;
4688
4689 if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) {
4690 BUG_ON(journal != NULL);
4691 return;
4692 }
4693 jbd2_journal_lock_updates(journal);
4694 if (jbd2_journal_flush(journal) < 0)
4695 goto out;
4696
4697 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER) &&
4698 sb->s_flags & MS_RDONLY) {
4699 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4700 ext4_commit_super(sb, 1);
4701 }
4702
4703 out:
4704 jbd2_journal_unlock_updates(journal);
4705 }
4706
4707 /*
4708 * If we are mounting (or read-write remounting) a filesystem whose journal
4709 * has recorded an error from a previous lifetime, move that error to the
4710 * main filesystem now.
4711 */
4712 static void ext4_clear_journal_err(struct super_block *sb,
4713 struct ext4_super_block *es)
4714 {
4715 journal_t *journal;
4716 int j_errno;
4717 const char *errstr;
4718
4719 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
4720
4721 journal = EXT4_SB(sb)->s_journal;
4722
4723 /*
4724 * Now check for any error status which may have been recorded in the
4725 * journal by a prior ext4_error() or ext4_abort()
4726 */
4727
4728 j_errno = jbd2_journal_errno(journal);
4729 if (j_errno) {
4730 char nbuf[16];
4731
4732 errstr = ext4_decode_error(sb, j_errno, nbuf);
4733 ext4_warning(sb, "Filesystem error recorded "
4734 "from previous mount: %s", errstr);
4735 ext4_warning(sb, "Marking fs in need of filesystem check.");
4736
4737 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
4738 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
4739 ext4_commit_super(sb, 1);
4740
4741 jbd2_journal_clear_err(journal);
4742 jbd2_journal_update_sb_errno(journal);
4743 }
4744 }
4745
4746 /*
4747 * Force the running and committing transactions to commit,
4748 * and wait on the commit.
4749 */
4750 int ext4_force_commit(struct super_block *sb)
4751 {
4752 journal_t *journal;
4753
4754 if (sb->s_flags & MS_RDONLY)
4755 return 0;
4756
4757 journal = EXT4_SB(sb)->s_journal;
4758 return ext4_journal_force_commit(journal);
4759 }
4760
4761 static int ext4_sync_fs(struct super_block *sb, int wait)
4762 {
4763 int ret = 0;
4764 tid_t target;
4765 bool needs_barrier = false;
4766 struct ext4_sb_info *sbi = EXT4_SB(sb);
4767
4768 trace_ext4_sync_fs(sb, wait);
4769 flush_workqueue(sbi->rsv_conversion_wq);
4770 /*
4771 * Writeback quota in non-journalled quota case - journalled quota has
4772 * no dirty dquots
4773 */
4774 dquot_writeback_dquots(sb, -1);
4775 /*
4776 * Data writeback is possible w/o journal transaction, so barrier must
4777 * being sent at the end of the function. But we can skip it if
4778 * transaction_commit will do it for us.
4779 */
4780 if (sbi->s_journal) {
4781 target = jbd2_get_latest_transaction(sbi->s_journal);
4782 if (wait && sbi->s_journal->j_flags & JBD2_BARRIER &&
4783 !jbd2_trans_will_send_data_barrier(sbi->s_journal, target))
4784 needs_barrier = true;
4785
4786 if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
4787 if (wait)
4788 ret = jbd2_log_wait_commit(sbi->s_journal,
4789 target);
4790 }
4791 } else if (wait && test_opt(sb, BARRIER))
4792 needs_barrier = true;
4793 if (needs_barrier) {
4794 int err;
4795 err = blkdev_issue_flush(sb->s_bdev, GFP_KERNEL, NULL);
4796 if (!ret)
4797 ret = err;
4798 }
4799
4800 return ret;
4801 }
4802
4803 /*
4804 * LVM calls this function before a (read-only) snapshot is created. This
4805 * gives us a chance to flush the journal completely and mark the fs clean.
4806 *
4807 * Note that only this function cannot bring a filesystem to be in a clean
4808 * state independently. It relies on upper layer to stop all data & metadata
4809 * modifications.
4810 */
4811 static int ext4_freeze(struct super_block *sb)
4812 {
4813 int error = 0;
4814 journal_t *journal;
4815
4816 if (sb->s_flags & MS_RDONLY)
4817 return 0;
4818
4819 journal = EXT4_SB(sb)->s_journal;
4820
4821 if (journal) {
4822 /* Now we set up the journal barrier. */
4823 jbd2_journal_lock_updates(journal);
4824
4825 /*
4826 * Don't clear the needs_recovery flag if we failed to
4827 * flush the journal.
4828 */
4829 error = jbd2_journal_flush(journal);
4830 if (error < 0)
4831 goto out;
4832 }
4833
4834 /* Journal blocked and flushed, clear needs_recovery flag. */
4835 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4836 error = ext4_commit_super(sb, 1);
4837 out:
4838 if (journal)
4839 /* we rely on upper layer to stop further updates */
4840 jbd2_journal_unlock_updates(journal);
4841 return error;
4842 }
4843
4844 /*
4845 * Called by LVM after the snapshot is done. We need to reset the RECOVER
4846 * flag here, even though the filesystem is not technically dirty yet.
4847 */
4848 static int ext4_unfreeze(struct super_block *sb)
4849 {
4850 if (sb->s_flags & MS_RDONLY)
4851 return 0;
4852
4853 /* Reset the needs_recovery flag before the fs is unlocked. */
4854 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4855 ext4_commit_super(sb, 1);
4856 return 0;
4857 }
4858
4859 /*
4860 * Structure to save mount options for ext4_remount's benefit
4861 */
4862 struct ext4_mount_options {
4863 unsigned long s_mount_opt;
4864 unsigned long s_mount_opt2;
4865 kuid_t s_resuid;
4866 kgid_t s_resgid;
4867 unsigned long s_commit_interval;
4868 u32 s_min_batch_time, s_max_batch_time;
4869 #ifdef CONFIG_QUOTA
4870 int s_jquota_fmt;
4871 char *s_qf_names[EXT4_MAXQUOTAS];
4872 #endif
4873 };
4874
4875 static int ext4_remount(struct super_block *sb, int *flags, char *data)
4876 {
4877 struct ext4_super_block *es;
4878 struct ext4_sb_info *sbi = EXT4_SB(sb);
4879 unsigned long old_sb_flags;
4880 struct ext4_mount_options old_opts;
4881 int enable_quota = 0;
4882 ext4_group_t g;
4883 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
4884 int err = 0;
4885 #ifdef CONFIG_QUOTA
4886 int i, j;
4887 #endif
4888 char *orig_data = kstrdup(data, GFP_KERNEL);
4889
4890 /* Store the original options */
4891 old_sb_flags = sb->s_flags;
4892 old_opts.s_mount_opt = sbi->s_mount_opt;
4893 old_opts.s_mount_opt2 = sbi->s_mount_opt2;
4894 old_opts.s_resuid = sbi->s_resuid;
4895 old_opts.s_resgid = sbi->s_resgid;
4896 old_opts.s_commit_interval = sbi->s_commit_interval;
4897 old_opts.s_min_batch_time = sbi->s_min_batch_time;
4898 old_opts.s_max_batch_time = sbi->s_max_batch_time;
4899 #ifdef CONFIG_QUOTA
4900 old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
4901 for (i = 0; i < EXT4_MAXQUOTAS; i++)
4902 if (sbi->s_qf_names[i]) {
4903 old_opts.s_qf_names[i] = kstrdup(sbi->s_qf_names[i],
4904 GFP_KERNEL);
4905 if (!old_opts.s_qf_names[i]) {
4906 for (j = 0; j < i; j++)
4907 kfree(old_opts.s_qf_names[j]);
4908 kfree(orig_data);
4909 return -ENOMEM;
4910 }
4911 } else
4912 old_opts.s_qf_names[i] = NULL;
4913 #endif
4914 if (sbi->s_journal && sbi->s_journal->j_task->io_context)
4915 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio;
4916
4917 if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) {
4918 err = -EINVAL;
4919 goto restore_opts;
4920 }
4921
4922 if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^
4923 test_opt(sb, JOURNAL_CHECKSUM)) {
4924 ext4_msg(sb, KERN_ERR, "changing journal_checksum "
4925 "during remount not supported; ignoring");
4926 sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM;
4927 }
4928
4929 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
4930 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
4931 ext4_msg(sb, KERN_ERR, "can't mount with "
4932 "both data=journal and delalloc");
4933 err = -EINVAL;
4934 goto restore_opts;
4935 }
4936 if (test_opt(sb, DIOREAD_NOLOCK)) {
4937 ext4_msg(sb, KERN_ERR, "can't mount with "
4938 "both data=journal and dioread_nolock");
4939 err = -EINVAL;
4940 goto restore_opts;
4941 }
4942 if (test_opt(sb, DAX)) {
4943 ext4_msg(sb, KERN_ERR, "can't mount with "
4944 "both data=journal and dax");
4945 err = -EINVAL;
4946 goto restore_opts;
4947 }
4948 }
4949
4950 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_DAX) {
4951 ext4_msg(sb, KERN_WARNING, "warning: refusing change of "
4952 "dax flag with busy inodes while remounting");
4953 sbi->s_mount_opt ^= EXT4_MOUNT_DAX;
4954 }
4955
4956 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED)
4957 ext4_abort(sb, "Abort forced by user");
4958
4959 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
4960 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
4961
4962 es = sbi->s_es;
4963
4964 if (sbi->s_journal) {
4965 ext4_init_journal_params(sb, sbi->s_journal);
4966 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
4967 }
4968
4969 if (*flags & MS_LAZYTIME)
4970 sb->s_flags |= MS_LAZYTIME;
4971
4972 if ((*flags & MS_RDONLY) != (sb->s_flags & MS_RDONLY)) {
4973 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) {
4974 err = -EROFS;
4975 goto restore_opts;
4976 }
4977
4978 if (*flags & MS_RDONLY) {
4979 err = sync_filesystem(sb);
4980 if (err < 0)
4981 goto restore_opts;
4982 err = dquot_suspend(sb, -1);
4983 if (err < 0)
4984 goto restore_opts;
4985
4986 /*
4987 * First of all, the unconditional stuff we have to do
4988 * to disable replay of the journal when we next remount
4989 */
4990 sb->s_flags |= MS_RDONLY;
4991
4992 /*
4993 * OK, test if we are remounting a valid rw partition
4994 * readonly, and if so set the rdonly flag and then
4995 * mark the partition as valid again.
4996 */
4997 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
4998 (sbi->s_mount_state & EXT4_VALID_FS))
4999 es->s_state = cpu_to_le16(sbi->s_mount_state);
5000
5001 if (sbi->s_journal)
5002 ext4_mark_recovery_complete(sb, es);
5003 } else {
5004 /* Make sure we can mount this feature set readwrite */
5005 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
5006 EXT4_FEATURE_RO_COMPAT_READONLY) ||
5007 !ext4_feature_set_ok(sb, 0)) {
5008 err = -EROFS;
5009 goto restore_opts;
5010 }
5011 /*
5012 * Make sure the group descriptor checksums
5013 * are sane. If they aren't, refuse to remount r/w.
5014 */
5015 for (g = 0; g < sbi->s_groups_count; g++) {
5016 struct ext4_group_desc *gdp =
5017 ext4_get_group_desc(sb, g, NULL);
5018
5019 if (!ext4_group_desc_csum_verify(sb, g, gdp)) {
5020 ext4_msg(sb, KERN_ERR,
5021 "ext4_remount: Checksum for group %u failed (%u!=%u)",
5022 g, le16_to_cpu(ext4_group_desc_csum(sbi, g, gdp)),
5023 le16_to_cpu(gdp->bg_checksum));
5024 err = -EINVAL;
5025 goto restore_opts;
5026 }
5027 }
5028
5029 /*
5030 * If we have an unprocessed orphan list hanging
5031 * around from a previously readonly bdev mount,
5032 * require a full umount/remount for now.
5033 */
5034 if (es->s_last_orphan) {
5035 ext4_msg(sb, KERN_WARNING, "Couldn't "
5036 "remount RDWR because of unprocessed "
5037 "orphan inode list. Please "
5038 "umount/remount instead");
5039 err = -EINVAL;
5040 goto restore_opts;
5041 }
5042
5043 /*
5044 * Mounting a RDONLY partition read-write, so reread
5045 * and store the current valid flag. (It may have
5046 * been changed by e2fsck since we originally mounted
5047 * the partition.)
5048 */
5049 if (sbi->s_journal)
5050 ext4_clear_journal_err(sb, es);
5051 sbi->s_mount_state = le16_to_cpu(es->s_state);
5052 if (!ext4_setup_super(sb, es, 0))
5053 sb->s_flags &= ~MS_RDONLY;
5054 if (EXT4_HAS_INCOMPAT_FEATURE(sb,
5055 EXT4_FEATURE_INCOMPAT_MMP))
5056 if (ext4_multi_mount_protect(sb,
5057 le64_to_cpu(es->s_mmp_block))) {
5058 err = -EROFS;
5059 goto restore_opts;
5060 }
5061 enable_quota = 1;
5062 }
5063 }
5064
5065 /*
5066 * Reinitialize lazy itable initialization thread based on
5067 * current settings
5068 */
5069 if ((sb->s_flags & MS_RDONLY) || !test_opt(sb, INIT_INODE_TABLE))
5070 ext4_unregister_li_request(sb);
5071 else {
5072 ext4_group_t first_not_zeroed;
5073 first_not_zeroed = ext4_has_uninit_itable(sb);
5074 ext4_register_li_request(sb, first_not_zeroed);
5075 }
5076
5077 ext4_setup_system_zone(sb);
5078 if (sbi->s_journal == NULL && !(old_sb_flags & MS_RDONLY))
5079 ext4_commit_super(sb, 1);
5080
5081 #ifdef CONFIG_QUOTA
5082 /* Release old quota file names */
5083 for (i = 0; i < EXT4_MAXQUOTAS; i++)
5084 kfree(old_opts.s_qf_names[i]);
5085 if (enable_quota) {
5086 if (sb_any_quota_suspended(sb))
5087 dquot_resume(sb, -1);
5088 else if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
5089 EXT4_FEATURE_RO_COMPAT_QUOTA)) {
5090 err = ext4_enable_quotas(sb);
5091 if (err)
5092 goto restore_opts;
5093 }
5094 }
5095 #endif
5096
5097 *flags = (*flags & ~MS_LAZYTIME) | (sb->s_flags & MS_LAZYTIME);
5098 ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data);
5099 kfree(orig_data);
5100 return 0;
5101
5102 restore_opts:
5103 sb->s_flags = old_sb_flags;
5104 sbi->s_mount_opt = old_opts.s_mount_opt;
5105 sbi->s_mount_opt2 = old_opts.s_mount_opt2;
5106 sbi->s_resuid = old_opts.s_resuid;
5107 sbi->s_resgid = old_opts.s_resgid;
5108 sbi->s_commit_interval = old_opts.s_commit_interval;
5109 sbi->s_min_batch_time = old_opts.s_min_batch_time;
5110 sbi->s_max_batch_time = old_opts.s_max_batch_time;
5111 #ifdef CONFIG_QUOTA
5112 sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
5113 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
5114 kfree(sbi->s_qf_names[i]);
5115 sbi->s_qf_names[i] = old_opts.s_qf_names[i];
5116 }
5117 #endif
5118 kfree(orig_data);
5119 return err;
5120 }
5121
5122 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
5123 {
5124 struct super_block *sb = dentry->d_sb;
5125 struct ext4_sb_info *sbi = EXT4_SB(sb);
5126 struct ext4_super_block *es = sbi->s_es;
5127 ext4_fsblk_t overhead = 0, resv_blocks;
5128 u64 fsid;
5129 s64 bfree;
5130 resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters));
5131
5132 if (!test_opt(sb, MINIX_DF))
5133 overhead = sbi->s_overhead;
5134
5135 buf->f_type = EXT4_SUPER_MAGIC;
5136 buf->f_bsize = sb->s_blocksize;
5137 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead);
5138 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
5139 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
5140 /* prevent underflow in case that few free space is available */
5141 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0));
5142 buf->f_bavail = buf->f_bfree -
5143 (ext4_r_blocks_count(es) + resv_blocks);
5144 if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks))
5145 buf->f_bavail = 0;
5146 buf->f_files = le32_to_cpu(es->s_inodes_count);
5147 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
5148 buf->f_namelen = EXT4_NAME_LEN;
5149 fsid = le64_to_cpup((void *)es->s_uuid) ^
5150 le64_to_cpup((void *)es->s_uuid + sizeof(u64));
5151 buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL;
5152 buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL;
5153
5154 return 0;
5155 }
5156
5157 /* Helper function for writing quotas on sync - we need to start transaction
5158 * before quota file is locked for write. Otherwise the are possible deadlocks:
5159 * Process 1 Process 2
5160 * ext4_create() quota_sync()
5161 * jbd2_journal_start() write_dquot()
5162 * dquot_initialize() down(dqio_mutex)
5163 * down(dqio_mutex) jbd2_journal_start()
5164 *
5165 */
5166
5167 #ifdef CONFIG_QUOTA
5168
5169 static inline struct inode *dquot_to_inode(struct dquot *dquot)
5170 {
5171 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type];
5172 }
5173
5174 static int ext4_write_dquot(struct dquot *dquot)
5175 {
5176 int ret, err;
5177 handle_t *handle;
5178 struct inode *inode;
5179
5180 inode = dquot_to_inode(dquot);
5181 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5182 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
5183 if (IS_ERR(handle))
5184 return PTR_ERR(handle);
5185 ret = dquot_commit(dquot);
5186 err = ext4_journal_stop(handle);
5187 if (!ret)
5188 ret = err;
5189 return ret;
5190 }
5191
5192 static int ext4_acquire_dquot(struct dquot *dquot)
5193 {
5194 int ret, err;
5195 handle_t *handle;
5196
5197 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
5198 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
5199 if (IS_ERR(handle))
5200 return PTR_ERR(handle);
5201 ret = dquot_acquire(dquot);
5202 err = ext4_journal_stop(handle);
5203 if (!ret)
5204 ret = err;
5205 return ret;
5206 }
5207
5208 static int ext4_release_dquot(struct dquot *dquot)
5209 {
5210 int ret, err;
5211 handle_t *handle;
5212
5213 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
5214 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
5215 if (IS_ERR(handle)) {
5216 /* Release dquot anyway to avoid endless cycle in dqput() */
5217 dquot_release(dquot);
5218 return PTR_ERR(handle);
5219 }
5220 ret = dquot_release(dquot);
5221 err = ext4_journal_stop(handle);
5222 if (!ret)
5223 ret = err;
5224 return ret;
5225 }
5226
5227 static int ext4_mark_dquot_dirty(struct dquot *dquot)
5228 {
5229 struct super_block *sb = dquot->dq_sb;
5230 struct ext4_sb_info *sbi = EXT4_SB(sb);
5231
5232 /* Are we journaling quotas? */
5233 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) ||
5234 sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
5235 dquot_mark_dquot_dirty(dquot);
5236 return ext4_write_dquot(dquot);
5237 } else {
5238 return dquot_mark_dquot_dirty(dquot);
5239 }
5240 }
5241
5242 static int ext4_write_info(struct super_block *sb, int type)
5243 {
5244 int ret, err;
5245 handle_t *handle;
5246
5247 /* Data block + inode block */
5248 handle = ext4_journal_start(d_inode(sb->s_root), EXT4_HT_QUOTA, 2);
5249 if (IS_ERR(handle))
5250 return PTR_ERR(handle);
5251 ret = dquot_commit_info(sb, type);
5252 err = ext4_journal_stop(handle);
5253 if (!ret)
5254 ret = err;
5255 return ret;
5256 }
5257
5258 /*
5259 * Turn on quotas during mount time - we need to find
5260 * the quota file and such...
5261 */
5262 static int ext4_quota_on_mount(struct super_block *sb, int type)
5263 {
5264 return dquot_quota_on_mount(sb, EXT4_SB(sb)->s_qf_names[type],
5265 EXT4_SB(sb)->s_jquota_fmt, type);
5266 }
5267
5268 /*
5269 * Standard function to be called on quota_on
5270 */
5271 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
5272 struct path *path)
5273 {
5274 int err;
5275
5276 if (!test_opt(sb, QUOTA))
5277 return -EINVAL;
5278
5279 /* Quotafile not on the same filesystem? */
5280 if (path->dentry->d_sb != sb)
5281 return -EXDEV;
5282 /* Journaling quota? */
5283 if (EXT4_SB(sb)->s_qf_names[type]) {
5284 /* Quotafile not in fs root? */
5285 if (path->dentry->d_parent != sb->s_root)
5286 ext4_msg(sb, KERN_WARNING,
5287 "Quota file not on filesystem root. "
5288 "Journaled quota will not work");
5289 }
5290
5291 /*
5292 * When we journal data on quota file, we have to flush journal to see
5293 * all updates to the file when we bypass pagecache...
5294 */
5295 if (EXT4_SB(sb)->s_journal &&
5296 ext4_should_journal_data(d_inode(path->dentry))) {
5297 /*
5298 * We don't need to lock updates but journal_flush() could
5299 * otherwise be livelocked...
5300 */
5301 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal);
5302 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal);
5303 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
5304 if (err)
5305 return err;
5306 }
5307
5308 return dquot_quota_on(sb, type, format_id, path);
5309 }
5310
5311 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
5312 unsigned int flags)
5313 {
5314 int err;
5315 struct inode *qf_inode;
5316 unsigned long qf_inums[EXT4_MAXQUOTAS] = {
5317 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
5318 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum)
5319 };
5320
5321 BUG_ON(!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA));
5322
5323 if (!qf_inums[type])
5324 return -EPERM;
5325
5326 qf_inode = ext4_iget(sb, qf_inums[type]);
5327 if (IS_ERR(qf_inode)) {
5328 ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]);
5329 return PTR_ERR(qf_inode);
5330 }
5331
5332 /* Don't account quota for quota files to avoid recursion */
5333 qf_inode->i_flags |= S_NOQUOTA;
5334 err = dquot_enable(qf_inode, type, format_id, flags);
5335 iput(qf_inode);
5336
5337 return err;
5338 }
5339
5340 /* Enable usage tracking for all quota types. */
5341 static int ext4_enable_quotas(struct super_block *sb)
5342 {
5343 int type, err = 0;
5344 unsigned long qf_inums[EXT4_MAXQUOTAS] = {
5345 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
5346 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum)
5347 };
5348
5349 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE;
5350 for (type = 0; type < EXT4_MAXQUOTAS; type++) {
5351 if (qf_inums[type]) {
5352 err = ext4_quota_enable(sb, type, QFMT_VFS_V1,
5353 DQUOT_USAGE_ENABLED);
5354 if (err) {
5355 ext4_warning(sb,
5356 "Failed to enable quota tracking "
5357 "(type=%d, err=%d). Please run "
5358 "e2fsck to fix.", type, err);
5359 return err;
5360 }
5361 }
5362 }
5363 return 0;
5364 }
5365
5366 static int ext4_quota_off(struct super_block *sb, int type)
5367 {
5368 struct inode *inode = sb_dqopt(sb)->files[type];
5369 handle_t *handle;
5370
5371 /* Force all delayed allocation blocks to be allocated.
5372 * Caller already holds s_umount sem */
5373 if (test_opt(sb, DELALLOC))
5374 sync_filesystem(sb);
5375
5376 if (!inode)
5377 goto out;
5378
5379 /* Update modification times of quota files when userspace can
5380 * start looking at them */
5381 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
5382 if (IS_ERR(handle))
5383 goto out;
5384 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
5385 ext4_mark_inode_dirty(handle, inode);
5386 ext4_journal_stop(handle);
5387
5388 out:
5389 return dquot_quota_off(sb, type);
5390 }
5391
5392 /* Read data from quotafile - avoid pagecache and such because we cannot afford
5393 * acquiring the locks... As quota files are never truncated and quota code
5394 * itself serializes the operations (and no one else should touch the files)
5395 * we don't have to be afraid of races */
5396 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
5397 size_t len, loff_t off)
5398 {
5399 struct inode *inode = sb_dqopt(sb)->files[type];
5400 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5401 int offset = off & (sb->s_blocksize - 1);
5402 int tocopy;
5403 size_t toread;
5404 struct buffer_head *bh;
5405 loff_t i_size = i_size_read(inode);
5406
5407 if (off > i_size)
5408 return 0;
5409 if (off+len > i_size)
5410 len = i_size-off;
5411 toread = len;
5412 while (toread > 0) {
5413 tocopy = sb->s_blocksize - offset < toread ?
5414 sb->s_blocksize - offset : toread;
5415 bh = ext4_bread(NULL, inode, blk, 0);
5416 if (IS_ERR(bh))
5417 return PTR_ERR(bh);
5418 if (!bh) /* A hole? */
5419 memset(data, 0, tocopy);
5420 else
5421 memcpy(data, bh->b_data+offset, tocopy);
5422 brelse(bh);
5423 offset = 0;
5424 toread -= tocopy;
5425 data += tocopy;
5426 blk++;
5427 }
5428 return len;
5429 }
5430
5431 /* Write to quotafile (we know the transaction is already started and has
5432 * enough credits) */
5433 static ssize_t ext4_quota_write(struct super_block *sb, int type,
5434 const char *data, size_t len, loff_t off)
5435 {
5436 struct inode *inode = sb_dqopt(sb)->files[type];
5437 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5438 int err, offset = off & (sb->s_blocksize - 1);
5439 int retries = 0;
5440 struct buffer_head *bh;
5441 handle_t *handle = journal_current_handle();
5442
5443 if (EXT4_SB(sb)->s_journal && !handle) {
5444 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5445 " cancelled because transaction is not started",
5446 (unsigned long long)off, (unsigned long long)len);
5447 return -EIO;
5448 }
5449 /*
5450 * Since we account only one data block in transaction credits,
5451 * then it is impossible to cross a block boundary.
5452 */
5453 if (sb->s_blocksize - offset < len) {
5454 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5455 " cancelled because not block aligned",
5456 (unsigned long long)off, (unsigned long long)len);
5457 return -EIO;
5458 }
5459
5460 do {
5461 bh = ext4_bread(handle, inode, blk,
5462 EXT4_GET_BLOCKS_CREATE |
5463 EXT4_GET_BLOCKS_METADATA_NOFAIL);
5464 } while (IS_ERR(bh) && (PTR_ERR(bh) == -ENOSPC) &&
5465 ext4_should_retry_alloc(inode->i_sb, &retries));
5466 if (IS_ERR(bh))
5467 return PTR_ERR(bh);
5468 if (!bh)
5469 goto out;
5470 BUFFER_TRACE(bh, "get write access");
5471 err = ext4_journal_get_write_access(handle, bh);
5472 if (err) {
5473 brelse(bh);
5474 return err;
5475 }
5476 lock_buffer(bh);
5477 memcpy(bh->b_data+offset, data, len);
5478 flush_dcache_page(bh->b_page);
5479 unlock_buffer(bh);
5480 err = ext4_handle_dirty_metadata(handle, NULL, bh);
5481 brelse(bh);
5482 out:
5483 if (inode->i_size < off + len) {
5484 i_size_write(inode, off + len);
5485 EXT4_I(inode)->i_disksize = inode->i_size;
5486 ext4_mark_inode_dirty(handle, inode);
5487 }
5488 return len;
5489 }
5490
5491 #endif
5492
5493 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
5494 const char *dev_name, void *data)
5495 {
5496 return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super);
5497 }
5498
5499 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
5500 static inline void register_as_ext2(void)
5501 {
5502 int err = register_filesystem(&ext2_fs_type);
5503 if (err)
5504 printk(KERN_WARNING
5505 "EXT4-fs: Unable to register as ext2 (%d)\n", err);
5506 }
5507
5508 static inline void unregister_as_ext2(void)
5509 {
5510 unregister_filesystem(&ext2_fs_type);
5511 }
5512
5513 static inline int ext2_feature_set_ok(struct super_block *sb)
5514 {
5515 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT2_FEATURE_INCOMPAT_SUPP))
5516 return 0;
5517 if (sb->s_flags & MS_RDONLY)
5518 return 1;
5519 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT2_FEATURE_RO_COMPAT_SUPP))
5520 return 0;
5521 return 1;
5522 }
5523 #else
5524 static inline void register_as_ext2(void) { }
5525 static inline void unregister_as_ext2(void) { }
5526 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
5527 #endif
5528
5529 static inline void register_as_ext3(void)
5530 {
5531 int err = register_filesystem(&ext3_fs_type);
5532 if (err)
5533 printk(KERN_WARNING
5534 "EXT4-fs: Unable to register as ext3 (%d)\n", err);
5535 }
5536
5537 static inline void unregister_as_ext3(void)
5538 {
5539 unregister_filesystem(&ext3_fs_type);
5540 }
5541
5542 static inline int ext3_feature_set_ok(struct super_block *sb)
5543 {
5544 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT3_FEATURE_INCOMPAT_SUPP))
5545 return 0;
5546 if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL))
5547 return 0;
5548 if (sb->s_flags & MS_RDONLY)
5549 return 1;
5550 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT3_FEATURE_RO_COMPAT_SUPP))
5551 return 0;
5552 return 1;
5553 }
5554
5555 static struct file_system_type ext4_fs_type = {
5556 .owner = THIS_MODULE,
5557 .name = "ext4",
5558 .mount = ext4_mount,
5559 .kill_sb = kill_block_super,
5560 .fs_flags = FS_REQUIRES_DEV,
5561 };
5562 MODULE_ALIAS_FS("ext4");
5563
5564 static int __init ext4_init_feat_adverts(void)
5565 {
5566 struct ext4_features *ef;
5567 int ret = -ENOMEM;
5568
5569 ef = kzalloc(sizeof(struct ext4_features), GFP_KERNEL);
5570 if (!ef)
5571 goto out;
5572
5573 ef->f_kobj.kset = ext4_kset;
5574 init_completion(&ef->f_kobj_unregister);
5575 ret = kobject_init_and_add(&ef->f_kobj, &ext4_feat_ktype, NULL,
5576 "features");
5577 if (ret) {
5578 kfree(ef);
5579 goto out;
5580 }
5581
5582 ext4_feat = ef;
5583 ret = 0;
5584 out:
5585 return ret;
5586 }
5587
5588 static void ext4_exit_feat_adverts(void)
5589 {
5590 kobject_put(&ext4_feat->f_kobj);
5591 wait_for_completion(&ext4_feat->f_kobj_unregister);
5592 kfree(ext4_feat);
5593 }
5594
5595 /* Shared across all ext4 file systems */
5596 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ];
5597 struct mutex ext4__aio_mutex[EXT4_WQ_HASH_SZ];
5598
5599 static int __init ext4_init_fs(void)
5600 {
5601 int i, err;
5602
5603 ext4_li_info = NULL;
5604 mutex_init(&ext4_li_mtx);
5605
5606 /* Build-time check for flags consistency */
5607 ext4_check_flag_values();
5608
5609 for (i = 0; i < EXT4_WQ_HASH_SZ; i++) {
5610 mutex_init(&ext4__aio_mutex[i]);
5611 init_waitqueue_head(&ext4__ioend_wq[i]);
5612 }
5613
5614 err = ext4_init_es();
5615 if (err)
5616 return err;
5617
5618 err = ext4_init_pageio();
5619 if (err)
5620 goto out7;
5621
5622 err = ext4_init_system_zone();
5623 if (err)
5624 goto out6;
5625 ext4_kset = kset_create_and_add("ext4", NULL, fs_kobj);
5626 if (!ext4_kset) {
5627 err = -ENOMEM;
5628 goto out5;
5629 }
5630 ext4_proc_root = proc_mkdir("fs/ext4", NULL);
5631
5632 err = ext4_init_feat_adverts();
5633 if (err)
5634 goto out4;
5635
5636 err = ext4_init_mballoc();
5637 if (err)
5638 goto out2;
5639 else
5640 ext4_mballoc_ready = 1;
5641 err = init_inodecache();
5642 if (err)
5643 goto out1;
5644 register_as_ext3();
5645 register_as_ext2();
5646 err = register_filesystem(&ext4_fs_type);
5647 if (err)
5648 goto out;
5649
5650 return 0;
5651 out:
5652 unregister_as_ext2();
5653 unregister_as_ext3();
5654 destroy_inodecache();
5655 out1:
5656 ext4_mballoc_ready = 0;
5657 ext4_exit_mballoc();
5658 out2:
5659 ext4_exit_feat_adverts();
5660 out4:
5661 if (ext4_proc_root)
5662 remove_proc_entry("fs/ext4", NULL);
5663 kset_unregister(ext4_kset);
5664 out5:
5665 ext4_exit_system_zone();
5666 out6:
5667 ext4_exit_pageio();
5668 out7:
5669 ext4_exit_es();
5670
5671 return err;
5672 }
5673
5674 static void __exit ext4_exit_fs(void)
5675 {
5676 ext4_exit_crypto();
5677 ext4_destroy_lazyinit_thread();
5678 unregister_as_ext2();
5679 unregister_as_ext3();
5680 unregister_filesystem(&ext4_fs_type);
5681 destroy_inodecache();
5682 ext4_exit_mballoc();
5683 ext4_exit_feat_adverts();
5684 remove_proc_entry("fs/ext4", NULL);
5685 kset_unregister(ext4_kset);
5686 ext4_exit_system_zone();
5687 ext4_exit_pageio();
5688 ext4_exit_es();
5689 }
5690
5691 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
5692 MODULE_DESCRIPTION("Fourth Extended Filesystem");
5693 MODULE_LICENSE("GPL");
5694 module_init(ext4_init_fs)
5695 module_exit(ext4_exit_fs)