]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/ext4/super.c
scsi: cxgb4i: call neigh_event_send() to update MAC address
[mirror_ubuntu-artful-kernel.git] / fs / ext4 / super.c
1 /*
2 * linux/fs/ext4/super.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * Big-endian to little-endian byte-swapping/bitmaps by
16 * David S. Miller (davem@caip.rutgers.edu), 1995
17 */
18
19 #include <linux/module.h>
20 #include <linux/string.h>
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/vmalloc.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/parser.h>
29 #include <linux/buffer_head.h>
30 #include <linux/exportfs.h>
31 #include <linux/vfs.h>
32 #include <linux/random.h>
33 #include <linux/mount.h>
34 #include <linux/namei.h>
35 #include <linux/quotaops.h>
36 #include <linux/seq_file.h>
37 #include <linux/ctype.h>
38 #include <linux/log2.h>
39 #include <linux/crc16.h>
40 #include <linux/dax.h>
41 #include <linux/cleancache.h>
42 #include <linux/uaccess.h>
43
44 #include <linux/kthread.h>
45 #include <linux/freezer.h>
46
47 #include "ext4.h"
48 #include "ext4_extents.h" /* Needed for trace points definition */
49 #include "ext4_jbd2.h"
50 #include "xattr.h"
51 #include "acl.h"
52 #include "mballoc.h"
53 #include "fsmap.h"
54
55 #define CREATE_TRACE_POINTS
56 #include <trace/events/ext4.h>
57
58 static struct ext4_lazy_init *ext4_li_info;
59 static struct mutex ext4_li_mtx;
60 static struct ratelimit_state ext4_mount_msg_ratelimit;
61
62 static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
63 unsigned long journal_devnum);
64 static int ext4_show_options(struct seq_file *seq, struct dentry *root);
65 static int ext4_commit_super(struct super_block *sb, int sync);
66 static void ext4_mark_recovery_complete(struct super_block *sb,
67 struct ext4_super_block *es);
68 static void ext4_clear_journal_err(struct super_block *sb,
69 struct ext4_super_block *es);
70 static int ext4_sync_fs(struct super_block *sb, int wait);
71 static int ext4_remount(struct super_block *sb, int *flags, char *data);
72 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
73 static int ext4_unfreeze(struct super_block *sb);
74 static int ext4_freeze(struct super_block *sb);
75 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
76 const char *dev_name, void *data);
77 static inline int ext2_feature_set_ok(struct super_block *sb);
78 static inline int ext3_feature_set_ok(struct super_block *sb);
79 static int ext4_feature_set_ok(struct super_block *sb, int readonly);
80 static void ext4_destroy_lazyinit_thread(void);
81 static void ext4_unregister_li_request(struct super_block *sb);
82 static void ext4_clear_request_list(void);
83 static struct inode *ext4_get_journal_inode(struct super_block *sb,
84 unsigned int journal_inum);
85
86 /*
87 * Lock ordering
88 *
89 * Note the difference between i_mmap_sem (EXT4_I(inode)->i_mmap_sem) and
90 * i_mmap_rwsem (inode->i_mmap_rwsem)!
91 *
92 * page fault path:
93 * mmap_sem -> sb_start_pagefault -> i_mmap_sem (r) -> transaction start ->
94 * page lock -> i_data_sem (rw)
95 *
96 * buffered write path:
97 * sb_start_write -> i_mutex -> mmap_sem
98 * sb_start_write -> i_mutex -> transaction start -> page lock ->
99 * i_data_sem (rw)
100 *
101 * truncate:
102 * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (w) -> i_mmap_sem (w) ->
103 * i_mmap_rwsem (w) -> page lock
104 * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (w) -> i_mmap_sem (w) ->
105 * transaction start -> i_data_sem (rw)
106 *
107 * direct IO:
108 * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (r) -> mmap_sem
109 * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (r) ->
110 * transaction start -> i_data_sem (rw)
111 *
112 * writepages:
113 * transaction start -> page lock(s) -> i_data_sem (rw)
114 */
115
116 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
117 static struct file_system_type ext2_fs_type = {
118 .owner = THIS_MODULE,
119 .name = "ext2",
120 .mount = ext4_mount,
121 .kill_sb = kill_block_super,
122 .fs_flags = FS_REQUIRES_DEV,
123 };
124 MODULE_ALIAS_FS("ext2");
125 MODULE_ALIAS("ext2");
126 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type)
127 #else
128 #define IS_EXT2_SB(sb) (0)
129 #endif
130
131
132 static struct file_system_type ext3_fs_type = {
133 .owner = THIS_MODULE,
134 .name = "ext3",
135 .mount = ext4_mount,
136 .kill_sb = kill_block_super,
137 .fs_flags = FS_REQUIRES_DEV,
138 };
139 MODULE_ALIAS_FS("ext3");
140 MODULE_ALIAS("ext3");
141 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type)
142
143 static int ext4_verify_csum_type(struct super_block *sb,
144 struct ext4_super_block *es)
145 {
146 if (!ext4_has_feature_metadata_csum(sb))
147 return 1;
148
149 return es->s_checksum_type == EXT4_CRC32C_CHKSUM;
150 }
151
152 static __le32 ext4_superblock_csum(struct super_block *sb,
153 struct ext4_super_block *es)
154 {
155 struct ext4_sb_info *sbi = EXT4_SB(sb);
156 int offset = offsetof(struct ext4_super_block, s_checksum);
157 __u32 csum;
158
159 csum = ext4_chksum(sbi, ~0, (char *)es, offset);
160
161 return cpu_to_le32(csum);
162 }
163
164 static int ext4_superblock_csum_verify(struct super_block *sb,
165 struct ext4_super_block *es)
166 {
167 if (!ext4_has_metadata_csum(sb))
168 return 1;
169
170 return es->s_checksum == ext4_superblock_csum(sb, es);
171 }
172
173 void ext4_superblock_csum_set(struct super_block *sb)
174 {
175 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
176
177 if (!ext4_has_metadata_csum(sb))
178 return;
179
180 es->s_checksum = ext4_superblock_csum(sb, es);
181 }
182
183 void *ext4_kvmalloc(size_t size, gfp_t flags)
184 {
185 void *ret;
186
187 ret = kmalloc(size, flags | __GFP_NOWARN);
188 if (!ret)
189 ret = __vmalloc(size, flags, PAGE_KERNEL);
190 return ret;
191 }
192
193 void *ext4_kvzalloc(size_t size, gfp_t flags)
194 {
195 void *ret;
196
197 ret = kzalloc(size, flags | __GFP_NOWARN);
198 if (!ret)
199 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL);
200 return ret;
201 }
202
203 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
204 struct ext4_group_desc *bg)
205 {
206 return le32_to_cpu(bg->bg_block_bitmap_lo) |
207 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
208 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
209 }
210
211 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
212 struct ext4_group_desc *bg)
213 {
214 return le32_to_cpu(bg->bg_inode_bitmap_lo) |
215 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
216 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
217 }
218
219 ext4_fsblk_t ext4_inode_table(struct super_block *sb,
220 struct ext4_group_desc *bg)
221 {
222 return le32_to_cpu(bg->bg_inode_table_lo) |
223 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
224 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
225 }
226
227 __u32 ext4_free_group_clusters(struct super_block *sb,
228 struct ext4_group_desc *bg)
229 {
230 return le16_to_cpu(bg->bg_free_blocks_count_lo) |
231 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
232 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
233 }
234
235 __u32 ext4_free_inodes_count(struct super_block *sb,
236 struct ext4_group_desc *bg)
237 {
238 return le16_to_cpu(bg->bg_free_inodes_count_lo) |
239 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
240 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
241 }
242
243 __u32 ext4_used_dirs_count(struct super_block *sb,
244 struct ext4_group_desc *bg)
245 {
246 return le16_to_cpu(bg->bg_used_dirs_count_lo) |
247 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
248 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
249 }
250
251 __u32 ext4_itable_unused_count(struct super_block *sb,
252 struct ext4_group_desc *bg)
253 {
254 return le16_to_cpu(bg->bg_itable_unused_lo) |
255 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
256 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
257 }
258
259 void ext4_block_bitmap_set(struct super_block *sb,
260 struct ext4_group_desc *bg, ext4_fsblk_t blk)
261 {
262 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
263 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
264 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
265 }
266
267 void ext4_inode_bitmap_set(struct super_block *sb,
268 struct ext4_group_desc *bg, ext4_fsblk_t blk)
269 {
270 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk);
271 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
272 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
273 }
274
275 void ext4_inode_table_set(struct super_block *sb,
276 struct ext4_group_desc *bg, ext4_fsblk_t blk)
277 {
278 bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
279 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
280 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
281 }
282
283 void ext4_free_group_clusters_set(struct super_block *sb,
284 struct ext4_group_desc *bg, __u32 count)
285 {
286 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
287 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
288 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
289 }
290
291 void ext4_free_inodes_set(struct super_block *sb,
292 struct ext4_group_desc *bg, __u32 count)
293 {
294 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
295 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
296 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
297 }
298
299 void ext4_used_dirs_set(struct super_block *sb,
300 struct ext4_group_desc *bg, __u32 count)
301 {
302 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
303 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
304 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
305 }
306
307 void ext4_itable_unused_set(struct super_block *sb,
308 struct ext4_group_desc *bg, __u32 count)
309 {
310 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
311 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
312 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
313 }
314
315
316 static void __save_error_info(struct super_block *sb, const char *func,
317 unsigned int line)
318 {
319 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
320
321 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
322 if (bdev_read_only(sb->s_bdev))
323 return;
324 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
325 es->s_last_error_time = cpu_to_le32(get_seconds());
326 strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func));
327 es->s_last_error_line = cpu_to_le32(line);
328 if (!es->s_first_error_time) {
329 es->s_first_error_time = es->s_last_error_time;
330 strncpy(es->s_first_error_func, func,
331 sizeof(es->s_first_error_func));
332 es->s_first_error_line = cpu_to_le32(line);
333 es->s_first_error_ino = es->s_last_error_ino;
334 es->s_first_error_block = es->s_last_error_block;
335 }
336 /*
337 * Start the daily error reporting function if it hasn't been
338 * started already
339 */
340 if (!es->s_error_count)
341 mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ);
342 le32_add_cpu(&es->s_error_count, 1);
343 }
344
345 static void save_error_info(struct super_block *sb, const char *func,
346 unsigned int line)
347 {
348 __save_error_info(sb, func, line);
349 ext4_commit_super(sb, 1);
350 }
351
352 /*
353 * The del_gendisk() function uninitializes the disk-specific data
354 * structures, including the bdi structure, without telling anyone
355 * else. Once this happens, any attempt to call mark_buffer_dirty()
356 * (for example, by ext4_commit_super), will cause a kernel OOPS.
357 * This is a kludge to prevent these oops until we can put in a proper
358 * hook in del_gendisk() to inform the VFS and file system layers.
359 */
360 static int block_device_ejected(struct super_block *sb)
361 {
362 struct inode *bd_inode = sb->s_bdev->bd_inode;
363 struct backing_dev_info *bdi = inode_to_bdi(bd_inode);
364
365 return bdi->dev == NULL;
366 }
367
368 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn)
369 {
370 struct super_block *sb = journal->j_private;
371 struct ext4_sb_info *sbi = EXT4_SB(sb);
372 int error = is_journal_aborted(journal);
373 struct ext4_journal_cb_entry *jce;
374
375 BUG_ON(txn->t_state == T_FINISHED);
376
377 ext4_process_freed_data(sb, txn->t_tid);
378
379 spin_lock(&sbi->s_md_lock);
380 while (!list_empty(&txn->t_private_list)) {
381 jce = list_entry(txn->t_private_list.next,
382 struct ext4_journal_cb_entry, jce_list);
383 list_del_init(&jce->jce_list);
384 spin_unlock(&sbi->s_md_lock);
385 jce->jce_func(sb, jce, error);
386 spin_lock(&sbi->s_md_lock);
387 }
388 spin_unlock(&sbi->s_md_lock);
389 }
390
391 /* Deal with the reporting of failure conditions on a filesystem such as
392 * inconsistencies detected or read IO failures.
393 *
394 * On ext2, we can store the error state of the filesystem in the
395 * superblock. That is not possible on ext4, because we may have other
396 * write ordering constraints on the superblock which prevent us from
397 * writing it out straight away; and given that the journal is about to
398 * be aborted, we can't rely on the current, or future, transactions to
399 * write out the superblock safely.
400 *
401 * We'll just use the jbd2_journal_abort() error code to record an error in
402 * the journal instead. On recovery, the journal will complain about
403 * that error until we've noted it down and cleared it.
404 */
405
406 static void ext4_handle_error(struct super_block *sb)
407 {
408 if (sb->s_flags & MS_RDONLY)
409 return;
410
411 if (!test_opt(sb, ERRORS_CONT)) {
412 journal_t *journal = EXT4_SB(sb)->s_journal;
413
414 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
415 if (journal)
416 jbd2_journal_abort(journal, -EIO);
417 }
418 if (test_opt(sb, ERRORS_RO)) {
419 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
420 /*
421 * Make sure updated value of ->s_mount_flags will be visible
422 * before ->s_flags update
423 */
424 smp_wmb();
425 sb->s_flags |= MS_RDONLY;
426 }
427 if (test_opt(sb, ERRORS_PANIC)) {
428 if (EXT4_SB(sb)->s_journal &&
429 !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR))
430 return;
431 panic("EXT4-fs (device %s): panic forced after error\n",
432 sb->s_id);
433 }
434 }
435
436 #define ext4_error_ratelimit(sb) \
437 ___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state), \
438 "EXT4-fs error")
439
440 void __ext4_error(struct super_block *sb, const char *function,
441 unsigned int line, const char *fmt, ...)
442 {
443 struct va_format vaf;
444 va_list args;
445
446 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
447 return;
448
449 if (ext4_error_ratelimit(sb)) {
450 va_start(args, fmt);
451 vaf.fmt = fmt;
452 vaf.va = &args;
453 printk(KERN_CRIT
454 "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
455 sb->s_id, function, line, current->comm, &vaf);
456 va_end(args);
457 }
458 save_error_info(sb, function, line);
459 ext4_handle_error(sb);
460 }
461
462 void __ext4_error_inode(struct inode *inode, const char *function,
463 unsigned int line, ext4_fsblk_t block,
464 const char *fmt, ...)
465 {
466 va_list args;
467 struct va_format vaf;
468 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
469
470 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
471 return;
472
473 es->s_last_error_ino = cpu_to_le32(inode->i_ino);
474 es->s_last_error_block = cpu_to_le64(block);
475 if (ext4_error_ratelimit(inode->i_sb)) {
476 va_start(args, fmt);
477 vaf.fmt = fmt;
478 vaf.va = &args;
479 if (block)
480 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
481 "inode #%lu: block %llu: comm %s: %pV\n",
482 inode->i_sb->s_id, function, line, inode->i_ino,
483 block, current->comm, &vaf);
484 else
485 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
486 "inode #%lu: comm %s: %pV\n",
487 inode->i_sb->s_id, function, line, inode->i_ino,
488 current->comm, &vaf);
489 va_end(args);
490 }
491 save_error_info(inode->i_sb, function, line);
492 ext4_handle_error(inode->i_sb);
493 }
494
495 void __ext4_error_file(struct file *file, const char *function,
496 unsigned int line, ext4_fsblk_t block,
497 const char *fmt, ...)
498 {
499 va_list args;
500 struct va_format vaf;
501 struct ext4_super_block *es;
502 struct inode *inode = file_inode(file);
503 char pathname[80], *path;
504
505 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
506 return;
507
508 es = EXT4_SB(inode->i_sb)->s_es;
509 es->s_last_error_ino = cpu_to_le32(inode->i_ino);
510 if (ext4_error_ratelimit(inode->i_sb)) {
511 path = file_path(file, pathname, sizeof(pathname));
512 if (IS_ERR(path))
513 path = "(unknown)";
514 va_start(args, fmt);
515 vaf.fmt = fmt;
516 vaf.va = &args;
517 if (block)
518 printk(KERN_CRIT
519 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
520 "block %llu: comm %s: path %s: %pV\n",
521 inode->i_sb->s_id, function, line, inode->i_ino,
522 block, current->comm, path, &vaf);
523 else
524 printk(KERN_CRIT
525 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
526 "comm %s: path %s: %pV\n",
527 inode->i_sb->s_id, function, line, inode->i_ino,
528 current->comm, path, &vaf);
529 va_end(args);
530 }
531 save_error_info(inode->i_sb, function, line);
532 ext4_handle_error(inode->i_sb);
533 }
534
535 const char *ext4_decode_error(struct super_block *sb, int errno,
536 char nbuf[16])
537 {
538 char *errstr = NULL;
539
540 switch (errno) {
541 case -EFSCORRUPTED:
542 errstr = "Corrupt filesystem";
543 break;
544 case -EFSBADCRC:
545 errstr = "Filesystem failed CRC";
546 break;
547 case -EIO:
548 errstr = "IO failure";
549 break;
550 case -ENOMEM:
551 errstr = "Out of memory";
552 break;
553 case -EROFS:
554 if (!sb || (EXT4_SB(sb)->s_journal &&
555 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
556 errstr = "Journal has aborted";
557 else
558 errstr = "Readonly filesystem";
559 break;
560 default:
561 /* If the caller passed in an extra buffer for unknown
562 * errors, textualise them now. Else we just return
563 * NULL. */
564 if (nbuf) {
565 /* Check for truncated error codes... */
566 if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
567 errstr = nbuf;
568 }
569 break;
570 }
571
572 return errstr;
573 }
574
575 /* __ext4_std_error decodes expected errors from journaling functions
576 * automatically and invokes the appropriate error response. */
577
578 void __ext4_std_error(struct super_block *sb, const char *function,
579 unsigned int line, int errno)
580 {
581 char nbuf[16];
582 const char *errstr;
583
584 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
585 return;
586
587 /* Special case: if the error is EROFS, and we're not already
588 * inside a transaction, then there's really no point in logging
589 * an error. */
590 if (errno == -EROFS && journal_current_handle() == NULL &&
591 (sb->s_flags & MS_RDONLY))
592 return;
593
594 if (ext4_error_ratelimit(sb)) {
595 errstr = ext4_decode_error(sb, errno, nbuf);
596 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
597 sb->s_id, function, line, errstr);
598 }
599
600 save_error_info(sb, function, line);
601 ext4_handle_error(sb);
602 }
603
604 /*
605 * ext4_abort is a much stronger failure handler than ext4_error. The
606 * abort function may be used to deal with unrecoverable failures such
607 * as journal IO errors or ENOMEM at a critical moment in log management.
608 *
609 * We unconditionally force the filesystem into an ABORT|READONLY state,
610 * unless the error response on the fs has been set to panic in which
611 * case we take the easy way out and panic immediately.
612 */
613
614 void __ext4_abort(struct super_block *sb, const char *function,
615 unsigned int line, const char *fmt, ...)
616 {
617 struct va_format vaf;
618 va_list args;
619
620 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
621 return;
622
623 save_error_info(sb, function, line);
624 va_start(args, fmt);
625 vaf.fmt = fmt;
626 vaf.va = &args;
627 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: %pV\n",
628 sb->s_id, function, line, &vaf);
629 va_end(args);
630
631 if ((sb->s_flags & MS_RDONLY) == 0) {
632 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
633 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
634 /*
635 * Make sure updated value of ->s_mount_flags will be visible
636 * before ->s_flags update
637 */
638 smp_wmb();
639 sb->s_flags |= MS_RDONLY;
640 if (EXT4_SB(sb)->s_journal)
641 jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO);
642 save_error_info(sb, function, line);
643 }
644 if (test_opt(sb, ERRORS_PANIC)) {
645 if (EXT4_SB(sb)->s_journal &&
646 !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR))
647 return;
648 panic("EXT4-fs panic from previous error\n");
649 }
650 }
651
652 void __ext4_msg(struct super_block *sb,
653 const char *prefix, const char *fmt, ...)
654 {
655 struct va_format vaf;
656 va_list args;
657
658 if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state), "EXT4-fs"))
659 return;
660
661 va_start(args, fmt);
662 vaf.fmt = fmt;
663 vaf.va = &args;
664 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
665 va_end(args);
666 }
667
668 #define ext4_warning_ratelimit(sb) \
669 ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state), \
670 "EXT4-fs warning")
671
672 void __ext4_warning(struct super_block *sb, const char *function,
673 unsigned int line, const char *fmt, ...)
674 {
675 struct va_format vaf;
676 va_list args;
677
678 if (!ext4_warning_ratelimit(sb))
679 return;
680
681 va_start(args, fmt);
682 vaf.fmt = fmt;
683 vaf.va = &args;
684 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
685 sb->s_id, function, line, &vaf);
686 va_end(args);
687 }
688
689 void __ext4_warning_inode(const struct inode *inode, const char *function,
690 unsigned int line, const char *fmt, ...)
691 {
692 struct va_format vaf;
693 va_list args;
694
695 if (!ext4_warning_ratelimit(inode->i_sb))
696 return;
697
698 va_start(args, fmt);
699 vaf.fmt = fmt;
700 vaf.va = &args;
701 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: "
702 "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id,
703 function, line, inode->i_ino, current->comm, &vaf);
704 va_end(args);
705 }
706
707 void __ext4_grp_locked_error(const char *function, unsigned int line,
708 struct super_block *sb, ext4_group_t grp,
709 unsigned long ino, ext4_fsblk_t block,
710 const char *fmt, ...)
711 __releases(bitlock)
712 __acquires(bitlock)
713 {
714 struct va_format vaf;
715 va_list args;
716 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
717
718 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
719 return;
720
721 es->s_last_error_ino = cpu_to_le32(ino);
722 es->s_last_error_block = cpu_to_le64(block);
723 __save_error_info(sb, function, line);
724
725 if (ext4_error_ratelimit(sb)) {
726 va_start(args, fmt);
727 vaf.fmt = fmt;
728 vaf.va = &args;
729 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
730 sb->s_id, function, line, grp);
731 if (ino)
732 printk(KERN_CONT "inode %lu: ", ino);
733 if (block)
734 printk(KERN_CONT "block %llu:",
735 (unsigned long long) block);
736 printk(KERN_CONT "%pV\n", &vaf);
737 va_end(args);
738 }
739
740 if (test_opt(sb, ERRORS_CONT)) {
741 ext4_commit_super(sb, 0);
742 return;
743 }
744
745 ext4_unlock_group(sb, grp);
746 ext4_handle_error(sb);
747 /*
748 * We only get here in the ERRORS_RO case; relocking the group
749 * may be dangerous, but nothing bad will happen since the
750 * filesystem will have already been marked read/only and the
751 * journal has been aborted. We return 1 as a hint to callers
752 * who might what to use the return value from
753 * ext4_grp_locked_error() to distinguish between the
754 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
755 * aggressively from the ext4 function in question, with a
756 * more appropriate error code.
757 */
758 ext4_lock_group(sb, grp);
759 return;
760 }
761
762 void ext4_update_dynamic_rev(struct super_block *sb)
763 {
764 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
765
766 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
767 return;
768
769 ext4_warning(sb,
770 "updating to rev %d because of new feature flag, "
771 "running e2fsck is recommended",
772 EXT4_DYNAMIC_REV);
773
774 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
775 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
776 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
777 /* leave es->s_feature_*compat flags alone */
778 /* es->s_uuid will be set by e2fsck if empty */
779
780 /*
781 * The rest of the superblock fields should be zero, and if not it
782 * means they are likely already in use, so leave them alone. We
783 * can leave it up to e2fsck to clean up any inconsistencies there.
784 */
785 }
786
787 /*
788 * Open the external journal device
789 */
790 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb)
791 {
792 struct block_device *bdev;
793 char b[BDEVNAME_SIZE];
794
795 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb);
796 if (IS_ERR(bdev))
797 goto fail;
798 return bdev;
799
800 fail:
801 ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld",
802 __bdevname(dev, b), PTR_ERR(bdev));
803 return NULL;
804 }
805
806 /*
807 * Release the journal device
808 */
809 static void ext4_blkdev_put(struct block_device *bdev)
810 {
811 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
812 }
813
814 static void ext4_blkdev_remove(struct ext4_sb_info *sbi)
815 {
816 struct block_device *bdev;
817 bdev = sbi->journal_bdev;
818 if (bdev) {
819 ext4_blkdev_put(bdev);
820 sbi->journal_bdev = NULL;
821 }
822 }
823
824 static inline struct inode *orphan_list_entry(struct list_head *l)
825 {
826 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
827 }
828
829 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
830 {
831 struct list_head *l;
832
833 ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
834 le32_to_cpu(sbi->s_es->s_last_orphan));
835
836 printk(KERN_ERR "sb_info orphan list:\n");
837 list_for_each(l, &sbi->s_orphan) {
838 struct inode *inode = orphan_list_entry(l);
839 printk(KERN_ERR " "
840 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
841 inode->i_sb->s_id, inode->i_ino, inode,
842 inode->i_mode, inode->i_nlink,
843 NEXT_ORPHAN(inode));
844 }
845 }
846
847 #ifdef CONFIG_QUOTA
848 static int ext4_quota_off(struct super_block *sb, int type);
849
850 static inline void ext4_quota_off_umount(struct super_block *sb)
851 {
852 int type;
853
854 /* Use our quota_off function to clear inode flags etc. */
855 for (type = 0; type < EXT4_MAXQUOTAS; type++)
856 ext4_quota_off(sb, type);
857 }
858 #else
859 static inline void ext4_quota_off_umount(struct super_block *sb)
860 {
861 }
862 #endif
863
864 static void ext4_put_super(struct super_block *sb)
865 {
866 struct ext4_sb_info *sbi = EXT4_SB(sb);
867 struct ext4_super_block *es = sbi->s_es;
868 int aborted = 0;
869 int i, err;
870
871 ext4_unregister_li_request(sb);
872 ext4_quota_off_umount(sb);
873
874 flush_workqueue(sbi->rsv_conversion_wq);
875 destroy_workqueue(sbi->rsv_conversion_wq);
876
877 if (sbi->s_journal) {
878 aborted = is_journal_aborted(sbi->s_journal);
879 err = jbd2_journal_destroy(sbi->s_journal);
880 sbi->s_journal = NULL;
881 if ((err < 0) && !aborted)
882 ext4_abort(sb, "Couldn't clean up the journal");
883 }
884
885 ext4_unregister_sysfs(sb);
886 ext4_es_unregister_shrinker(sbi);
887 del_timer_sync(&sbi->s_err_report);
888 ext4_release_system_zone(sb);
889 ext4_mb_release(sb);
890 ext4_ext_release(sb);
891
892 if (!(sb->s_flags & MS_RDONLY) && !aborted) {
893 ext4_clear_feature_journal_needs_recovery(sb);
894 es->s_state = cpu_to_le16(sbi->s_mount_state);
895 }
896 if (!(sb->s_flags & MS_RDONLY))
897 ext4_commit_super(sb, 1);
898
899 for (i = 0; i < sbi->s_gdb_count; i++)
900 brelse(sbi->s_group_desc[i]);
901 kvfree(sbi->s_group_desc);
902 kvfree(sbi->s_flex_groups);
903 percpu_counter_destroy(&sbi->s_freeclusters_counter);
904 percpu_counter_destroy(&sbi->s_freeinodes_counter);
905 percpu_counter_destroy(&sbi->s_dirs_counter);
906 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
907 percpu_free_rwsem(&sbi->s_journal_flag_rwsem);
908 #ifdef CONFIG_QUOTA
909 for (i = 0; i < EXT4_MAXQUOTAS; i++)
910 kfree(sbi->s_qf_names[i]);
911 #endif
912
913 /* Debugging code just in case the in-memory inode orphan list
914 * isn't empty. The on-disk one can be non-empty if we've
915 * detected an error and taken the fs readonly, but the
916 * in-memory list had better be clean by this point. */
917 if (!list_empty(&sbi->s_orphan))
918 dump_orphan_list(sb, sbi);
919 J_ASSERT(list_empty(&sbi->s_orphan));
920
921 sync_blockdev(sb->s_bdev);
922 invalidate_bdev(sb->s_bdev);
923 if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) {
924 /*
925 * Invalidate the journal device's buffers. We don't want them
926 * floating about in memory - the physical journal device may
927 * hotswapped, and it breaks the `ro-after' testing code.
928 */
929 sync_blockdev(sbi->journal_bdev);
930 invalidate_bdev(sbi->journal_bdev);
931 ext4_blkdev_remove(sbi);
932 }
933 if (sbi->s_ea_inode_cache) {
934 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
935 sbi->s_ea_inode_cache = NULL;
936 }
937 if (sbi->s_ea_block_cache) {
938 ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
939 sbi->s_ea_block_cache = NULL;
940 }
941 if (sbi->s_mmp_tsk)
942 kthread_stop(sbi->s_mmp_tsk);
943 brelse(sbi->s_sbh);
944 sb->s_fs_info = NULL;
945 /*
946 * Now that we are completely done shutting down the
947 * superblock, we need to actually destroy the kobject.
948 */
949 kobject_put(&sbi->s_kobj);
950 wait_for_completion(&sbi->s_kobj_unregister);
951 if (sbi->s_chksum_driver)
952 crypto_free_shash(sbi->s_chksum_driver);
953 kfree(sbi->s_blockgroup_lock);
954 kfree(sbi);
955 }
956
957 static struct kmem_cache *ext4_inode_cachep;
958
959 /*
960 * Called inside transaction, so use GFP_NOFS
961 */
962 static struct inode *ext4_alloc_inode(struct super_block *sb)
963 {
964 struct ext4_inode_info *ei;
965
966 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS);
967 if (!ei)
968 return NULL;
969
970 ei->vfs_inode.i_version = 1;
971 spin_lock_init(&ei->i_raw_lock);
972 INIT_LIST_HEAD(&ei->i_prealloc_list);
973 spin_lock_init(&ei->i_prealloc_lock);
974 ext4_es_init_tree(&ei->i_es_tree);
975 rwlock_init(&ei->i_es_lock);
976 INIT_LIST_HEAD(&ei->i_es_list);
977 ei->i_es_all_nr = 0;
978 ei->i_es_shk_nr = 0;
979 ei->i_es_shrink_lblk = 0;
980 ei->i_reserved_data_blocks = 0;
981 ei->i_reserved_meta_blocks = 0;
982 ei->i_allocated_meta_blocks = 0;
983 ei->i_da_metadata_calc_len = 0;
984 ei->i_da_metadata_calc_last_lblock = 0;
985 spin_lock_init(&(ei->i_block_reservation_lock));
986 #ifdef CONFIG_QUOTA
987 ei->i_reserved_quota = 0;
988 memset(&ei->i_dquot, 0, sizeof(ei->i_dquot));
989 #endif
990 ei->jinode = NULL;
991 INIT_LIST_HEAD(&ei->i_rsv_conversion_list);
992 spin_lock_init(&ei->i_completed_io_lock);
993 ei->i_sync_tid = 0;
994 ei->i_datasync_tid = 0;
995 atomic_set(&ei->i_unwritten, 0);
996 INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work);
997 return &ei->vfs_inode;
998 }
999
1000 static int ext4_drop_inode(struct inode *inode)
1001 {
1002 int drop = generic_drop_inode(inode);
1003
1004 trace_ext4_drop_inode(inode, drop);
1005 return drop;
1006 }
1007
1008 static void ext4_i_callback(struct rcu_head *head)
1009 {
1010 struct inode *inode = container_of(head, struct inode, i_rcu);
1011 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
1012 }
1013
1014 static void ext4_destroy_inode(struct inode *inode)
1015 {
1016 if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
1017 ext4_msg(inode->i_sb, KERN_ERR,
1018 "Inode %lu (%p): orphan list check failed!",
1019 inode->i_ino, EXT4_I(inode));
1020 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
1021 EXT4_I(inode), sizeof(struct ext4_inode_info),
1022 true);
1023 dump_stack();
1024 }
1025 call_rcu(&inode->i_rcu, ext4_i_callback);
1026 }
1027
1028 static void init_once(void *foo)
1029 {
1030 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo;
1031
1032 INIT_LIST_HEAD(&ei->i_orphan);
1033 init_rwsem(&ei->xattr_sem);
1034 init_rwsem(&ei->i_data_sem);
1035 init_rwsem(&ei->i_mmap_sem);
1036 inode_init_once(&ei->vfs_inode);
1037 }
1038
1039 static int __init init_inodecache(void)
1040 {
1041 ext4_inode_cachep = kmem_cache_create("ext4_inode_cache",
1042 sizeof(struct ext4_inode_info),
1043 0, (SLAB_RECLAIM_ACCOUNT|
1044 SLAB_MEM_SPREAD|SLAB_ACCOUNT),
1045 init_once);
1046 if (ext4_inode_cachep == NULL)
1047 return -ENOMEM;
1048 return 0;
1049 }
1050
1051 static void destroy_inodecache(void)
1052 {
1053 /*
1054 * Make sure all delayed rcu free inodes are flushed before we
1055 * destroy cache.
1056 */
1057 rcu_barrier();
1058 kmem_cache_destroy(ext4_inode_cachep);
1059 }
1060
1061 void ext4_clear_inode(struct inode *inode)
1062 {
1063 invalidate_inode_buffers(inode);
1064 clear_inode(inode);
1065 dquot_drop(inode);
1066 ext4_discard_preallocations(inode);
1067 ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS);
1068 if (EXT4_I(inode)->jinode) {
1069 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
1070 EXT4_I(inode)->jinode);
1071 jbd2_free_inode(EXT4_I(inode)->jinode);
1072 EXT4_I(inode)->jinode = NULL;
1073 }
1074 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1075 fscrypt_put_encryption_info(inode, NULL);
1076 #endif
1077 }
1078
1079 static struct inode *ext4_nfs_get_inode(struct super_block *sb,
1080 u64 ino, u32 generation)
1081 {
1082 struct inode *inode;
1083
1084 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
1085 return ERR_PTR(-ESTALE);
1086 if (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
1087 return ERR_PTR(-ESTALE);
1088
1089 /* iget isn't really right if the inode is currently unallocated!!
1090 *
1091 * ext4_read_inode will return a bad_inode if the inode had been
1092 * deleted, so we should be safe.
1093 *
1094 * Currently we don't know the generation for parent directory, so
1095 * a generation of 0 means "accept any"
1096 */
1097 inode = ext4_iget_normal(sb, ino);
1098 if (IS_ERR(inode))
1099 return ERR_CAST(inode);
1100 if (generation && inode->i_generation != generation) {
1101 iput(inode);
1102 return ERR_PTR(-ESTALE);
1103 }
1104
1105 return inode;
1106 }
1107
1108 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
1109 int fh_len, int fh_type)
1110 {
1111 return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1112 ext4_nfs_get_inode);
1113 }
1114
1115 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
1116 int fh_len, int fh_type)
1117 {
1118 return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1119 ext4_nfs_get_inode);
1120 }
1121
1122 /*
1123 * Try to release metadata pages (indirect blocks, directories) which are
1124 * mapped via the block device. Since these pages could have journal heads
1125 * which would prevent try_to_free_buffers() from freeing them, we must use
1126 * jbd2 layer's try_to_free_buffers() function to release them.
1127 */
1128 static int bdev_try_to_free_page(struct super_block *sb, struct page *page,
1129 gfp_t wait)
1130 {
1131 journal_t *journal = EXT4_SB(sb)->s_journal;
1132
1133 WARN_ON(PageChecked(page));
1134 if (!page_has_buffers(page))
1135 return 0;
1136 if (journal)
1137 return jbd2_journal_try_to_free_buffers(journal, page,
1138 wait & ~__GFP_DIRECT_RECLAIM);
1139 return try_to_free_buffers(page);
1140 }
1141
1142 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1143 static int ext4_get_context(struct inode *inode, void *ctx, size_t len)
1144 {
1145 return ext4_xattr_get(inode, EXT4_XATTR_INDEX_ENCRYPTION,
1146 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, ctx, len);
1147 }
1148
1149 static int ext4_set_context(struct inode *inode, const void *ctx, size_t len,
1150 void *fs_data)
1151 {
1152 handle_t *handle = fs_data;
1153 int res, res2, credits, retries = 0;
1154
1155 /*
1156 * Encrypting the root directory is not allowed because e2fsck expects
1157 * lost+found to exist and be unencrypted, and encrypting the root
1158 * directory would imply encrypting the lost+found directory as well as
1159 * the filename "lost+found" itself.
1160 */
1161 if (inode->i_ino == EXT4_ROOT_INO)
1162 return -EPERM;
1163
1164 res = ext4_convert_inline_data(inode);
1165 if (res)
1166 return res;
1167
1168 /*
1169 * If a journal handle was specified, then the encryption context is
1170 * being set on a new inode via inheritance and is part of a larger
1171 * transaction to create the inode. Otherwise the encryption context is
1172 * being set on an existing inode in its own transaction. Only in the
1173 * latter case should the "retry on ENOSPC" logic be used.
1174 */
1175
1176 if (handle) {
1177 res = ext4_xattr_set_handle(handle, inode,
1178 EXT4_XATTR_INDEX_ENCRYPTION,
1179 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT,
1180 ctx, len, 0);
1181 if (!res) {
1182 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT);
1183 ext4_clear_inode_state(inode,
1184 EXT4_STATE_MAY_INLINE_DATA);
1185 /*
1186 * Update inode->i_flags - e.g. S_DAX may get disabled
1187 */
1188 ext4_set_inode_flags(inode);
1189 }
1190 return res;
1191 }
1192
1193 res = dquot_initialize(inode);
1194 if (res)
1195 return res;
1196 retry:
1197 res = ext4_xattr_set_credits(inode, len, false /* is_create */,
1198 &credits);
1199 if (res)
1200 return res;
1201
1202 handle = ext4_journal_start(inode, EXT4_HT_MISC, credits);
1203 if (IS_ERR(handle))
1204 return PTR_ERR(handle);
1205
1206 res = ext4_xattr_set_handle(handle, inode, EXT4_XATTR_INDEX_ENCRYPTION,
1207 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT,
1208 ctx, len, 0);
1209 if (!res) {
1210 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT);
1211 /* Update inode->i_flags - e.g. S_DAX may get disabled */
1212 ext4_set_inode_flags(inode);
1213 res = ext4_mark_inode_dirty(handle, inode);
1214 if (res)
1215 EXT4_ERROR_INODE(inode, "Failed to mark inode dirty");
1216 }
1217 res2 = ext4_journal_stop(handle);
1218
1219 if (res == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1220 goto retry;
1221 if (!res)
1222 res = res2;
1223 return res;
1224 }
1225
1226 static bool ext4_dummy_context(struct inode *inode)
1227 {
1228 return DUMMY_ENCRYPTION_ENABLED(EXT4_SB(inode->i_sb));
1229 }
1230
1231 static unsigned ext4_max_namelen(struct inode *inode)
1232 {
1233 return S_ISLNK(inode->i_mode) ? inode->i_sb->s_blocksize :
1234 EXT4_NAME_LEN;
1235 }
1236
1237 static const struct fscrypt_operations ext4_cryptops = {
1238 .key_prefix = "ext4:",
1239 .get_context = ext4_get_context,
1240 .set_context = ext4_set_context,
1241 .dummy_context = ext4_dummy_context,
1242 .is_encrypted = ext4_encrypted_inode,
1243 .empty_dir = ext4_empty_dir,
1244 .max_namelen = ext4_max_namelen,
1245 };
1246 #else
1247 static const struct fscrypt_operations ext4_cryptops = {
1248 .is_encrypted = ext4_encrypted_inode,
1249 };
1250 #endif
1251
1252 #ifdef CONFIG_QUOTA
1253 static const char * const quotatypes[] = INITQFNAMES;
1254 #define QTYPE2NAME(t) (quotatypes[t])
1255
1256 static int ext4_write_dquot(struct dquot *dquot);
1257 static int ext4_acquire_dquot(struct dquot *dquot);
1258 static int ext4_release_dquot(struct dquot *dquot);
1259 static int ext4_mark_dquot_dirty(struct dquot *dquot);
1260 static int ext4_write_info(struct super_block *sb, int type);
1261 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1262 const struct path *path);
1263 static int ext4_quota_on_mount(struct super_block *sb, int type);
1264 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1265 size_t len, loff_t off);
1266 static ssize_t ext4_quota_write(struct super_block *sb, int type,
1267 const char *data, size_t len, loff_t off);
1268 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
1269 unsigned int flags);
1270 static int ext4_enable_quotas(struct super_block *sb);
1271 static int ext4_get_next_id(struct super_block *sb, struct kqid *qid);
1272
1273 static struct dquot **ext4_get_dquots(struct inode *inode)
1274 {
1275 return EXT4_I(inode)->i_dquot;
1276 }
1277
1278 static const struct dquot_operations ext4_quota_operations = {
1279 .get_reserved_space = ext4_get_reserved_space,
1280 .write_dquot = ext4_write_dquot,
1281 .acquire_dquot = ext4_acquire_dquot,
1282 .release_dquot = ext4_release_dquot,
1283 .mark_dirty = ext4_mark_dquot_dirty,
1284 .write_info = ext4_write_info,
1285 .alloc_dquot = dquot_alloc,
1286 .destroy_dquot = dquot_destroy,
1287 .get_projid = ext4_get_projid,
1288 .get_inode_usage = ext4_get_inode_usage,
1289 .get_next_id = ext4_get_next_id,
1290 };
1291
1292 static const struct quotactl_ops ext4_qctl_operations = {
1293 .quota_on = ext4_quota_on,
1294 .quota_off = ext4_quota_off,
1295 .quota_sync = dquot_quota_sync,
1296 .get_state = dquot_get_state,
1297 .set_info = dquot_set_dqinfo,
1298 .get_dqblk = dquot_get_dqblk,
1299 .set_dqblk = dquot_set_dqblk,
1300 .get_nextdqblk = dquot_get_next_dqblk,
1301 };
1302 #endif
1303
1304 static const struct super_operations ext4_sops = {
1305 .alloc_inode = ext4_alloc_inode,
1306 .destroy_inode = ext4_destroy_inode,
1307 .write_inode = ext4_write_inode,
1308 .dirty_inode = ext4_dirty_inode,
1309 .drop_inode = ext4_drop_inode,
1310 .evict_inode = ext4_evict_inode,
1311 .put_super = ext4_put_super,
1312 .sync_fs = ext4_sync_fs,
1313 .freeze_fs = ext4_freeze,
1314 .unfreeze_fs = ext4_unfreeze,
1315 .statfs = ext4_statfs,
1316 .remount_fs = ext4_remount,
1317 .show_options = ext4_show_options,
1318 #ifdef CONFIG_QUOTA
1319 .quota_read = ext4_quota_read,
1320 .quota_write = ext4_quota_write,
1321 .get_dquots = ext4_get_dquots,
1322 #endif
1323 .bdev_try_to_free_page = bdev_try_to_free_page,
1324 };
1325
1326 static const struct export_operations ext4_export_ops = {
1327 .fh_to_dentry = ext4_fh_to_dentry,
1328 .fh_to_parent = ext4_fh_to_parent,
1329 .get_parent = ext4_get_parent,
1330 };
1331
1332 enum {
1333 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1334 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro,
1335 Opt_nouid32, Opt_debug, Opt_removed,
1336 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl,
1337 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload,
1338 Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev,
1339 Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit,
1340 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1341 Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption,
1342 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota,
1343 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota,
1344 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err,
1345 Opt_usrquota, Opt_grpquota, Opt_prjquota, Opt_i_version, Opt_dax,
1346 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_mblk_io_submit,
1347 Opt_lazytime, Opt_nolazytime, Opt_debug_want_extra_isize,
1348 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1349 Opt_inode_readahead_blks, Opt_journal_ioprio,
1350 Opt_dioread_nolock, Opt_dioread_lock,
1351 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable,
1352 Opt_max_dir_size_kb, Opt_nojournal_checksum, Opt_nombcache,
1353 };
1354
1355 static const match_table_t tokens = {
1356 {Opt_bsd_df, "bsddf"},
1357 {Opt_minix_df, "minixdf"},
1358 {Opt_grpid, "grpid"},
1359 {Opt_grpid, "bsdgroups"},
1360 {Opt_nogrpid, "nogrpid"},
1361 {Opt_nogrpid, "sysvgroups"},
1362 {Opt_resgid, "resgid=%u"},
1363 {Opt_resuid, "resuid=%u"},
1364 {Opt_sb, "sb=%u"},
1365 {Opt_err_cont, "errors=continue"},
1366 {Opt_err_panic, "errors=panic"},
1367 {Opt_err_ro, "errors=remount-ro"},
1368 {Opt_nouid32, "nouid32"},
1369 {Opt_debug, "debug"},
1370 {Opt_removed, "oldalloc"},
1371 {Opt_removed, "orlov"},
1372 {Opt_user_xattr, "user_xattr"},
1373 {Opt_nouser_xattr, "nouser_xattr"},
1374 {Opt_acl, "acl"},
1375 {Opt_noacl, "noacl"},
1376 {Opt_noload, "norecovery"},
1377 {Opt_noload, "noload"},
1378 {Opt_removed, "nobh"},
1379 {Opt_removed, "bh"},
1380 {Opt_commit, "commit=%u"},
1381 {Opt_min_batch_time, "min_batch_time=%u"},
1382 {Opt_max_batch_time, "max_batch_time=%u"},
1383 {Opt_journal_dev, "journal_dev=%u"},
1384 {Opt_journal_path, "journal_path=%s"},
1385 {Opt_journal_checksum, "journal_checksum"},
1386 {Opt_nojournal_checksum, "nojournal_checksum"},
1387 {Opt_journal_async_commit, "journal_async_commit"},
1388 {Opt_abort, "abort"},
1389 {Opt_data_journal, "data=journal"},
1390 {Opt_data_ordered, "data=ordered"},
1391 {Opt_data_writeback, "data=writeback"},
1392 {Opt_data_err_abort, "data_err=abort"},
1393 {Opt_data_err_ignore, "data_err=ignore"},
1394 {Opt_offusrjquota, "usrjquota="},
1395 {Opt_usrjquota, "usrjquota=%s"},
1396 {Opt_offgrpjquota, "grpjquota="},
1397 {Opt_grpjquota, "grpjquota=%s"},
1398 {Opt_jqfmt_vfsold, "jqfmt=vfsold"},
1399 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
1400 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
1401 {Opt_grpquota, "grpquota"},
1402 {Opt_noquota, "noquota"},
1403 {Opt_quota, "quota"},
1404 {Opt_usrquota, "usrquota"},
1405 {Opt_prjquota, "prjquota"},
1406 {Opt_barrier, "barrier=%u"},
1407 {Opt_barrier, "barrier"},
1408 {Opt_nobarrier, "nobarrier"},
1409 {Opt_i_version, "i_version"},
1410 {Opt_dax, "dax"},
1411 {Opt_stripe, "stripe=%u"},
1412 {Opt_delalloc, "delalloc"},
1413 {Opt_lazytime, "lazytime"},
1414 {Opt_nolazytime, "nolazytime"},
1415 {Opt_debug_want_extra_isize, "debug_want_extra_isize=%u"},
1416 {Opt_nodelalloc, "nodelalloc"},
1417 {Opt_removed, "mblk_io_submit"},
1418 {Opt_removed, "nomblk_io_submit"},
1419 {Opt_block_validity, "block_validity"},
1420 {Opt_noblock_validity, "noblock_validity"},
1421 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"},
1422 {Opt_journal_ioprio, "journal_ioprio=%u"},
1423 {Opt_auto_da_alloc, "auto_da_alloc=%u"},
1424 {Opt_auto_da_alloc, "auto_da_alloc"},
1425 {Opt_noauto_da_alloc, "noauto_da_alloc"},
1426 {Opt_dioread_nolock, "dioread_nolock"},
1427 {Opt_dioread_lock, "dioread_lock"},
1428 {Opt_discard, "discard"},
1429 {Opt_nodiscard, "nodiscard"},
1430 {Opt_init_itable, "init_itable=%u"},
1431 {Opt_init_itable, "init_itable"},
1432 {Opt_noinit_itable, "noinit_itable"},
1433 {Opt_max_dir_size_kb, "max_dir_size_kb=%u"},
1434 {Opt_test_dummy_encryption, "test_dummy_encryption"},
1435 {Opt_nombcache, "nombcache"},
1436 {Opt_nombcache, "no_mbcache"}, /* for backward compatibility */
1437 {Opt_removed, "check=none"}, /* mount option from ext2/3 */
1438 {Opt_removed, "nocheck"}, /* mount option from ext2/3 */
1439 {Opt_removed, "reservation"}, /* mount option from ext2/3 */
1440 {Opt_removed, "noreservation"}, /* mount option from ext2/3 */
1441 {Opt_removed, "journal=%u"}, /* mount option from ext2/3 */
1442 {Opt_err, NULL},
1443 };
1444
1445 static ext4_fsblk_t get_sb_block(void **data)
1446 {
1447 ext4_fsblk_t sb_block;
1448 char *options = (char *) *data;
1449
1450 if (!options || strncmp(options, "sb=", 3) != 0)
1451 return 1; /* Default location */
1452
1453 options += 3;
1454 /* TODO: use simple_strtoll with >32bit ext4 */
1455 sb_block = simple_strtoul(options, &options, 0);
1456 if (*options && *options != ',') {
1457 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n",
1458 (char *) *data);
1459 return 1;
1460 }
1461 if (*options == ',')
1462 options++;
1463 *data = (void *) options;
1464
1465 return sb_block;
1466 }
1467
1468 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1469 static const char deprecated_msg[] =
1470 "Mount option \"%s\" will be removed by %s\n"
1471 "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n";
1472
1473 #ifdef CONFIG_QUOTA
1474 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args)
1475 {
1476 struct ext4_sb_info *sbi = EXT4_SB(sb);
1477 char *qname;
1478 int ret = -1;
1479
1480 if (sb_any_quota_loaded(sb) &&
1481 !sbi->s_qf_names[qtype]) {
1482 ext4_msg(sb, KERN_ERR,
1483 "Cannot change journaled "
1484 "quota options when quota turned on");
1485 return -1;
1486 }
1487 if (ext4_has_feature_quota(sb)) {
1488 ext4_msg(sb, KERN_INFO, "Journaled quota options "
1489 "ignored when QUOTA feature is enabled");
1490 return 1;
1491 }
1492 qname = match_strdup(args);
1493 if (!qname) {
1494 ext4_msg(sb, KERN_ERR,
1495 "Not enough memory for storing quotafile name");
1496 return -1;
1497 }
1498 if (sbi->s_qf_names[qtype]) {
1499 if (strcmp(sbi->s_qf_names[qtype], qname) == 0)
1500 ret = 1;
1501 else
1502 ext4_msg(sb, KERN_ERR,
1503 "%s quota file already specified",
1504 QTYPE2NAME(qtype));
1505 goto errout;
1506 }
1507 if (strchr(qname, '/')) {
1508 ext4_msg(sb, KERN_ERR,
1509 "quotafile must be on filesystem root");
1510 goto errout;
1511 }
1512 sbi->s_qf_names[qtype] = qname;
1513 set_opt(sb, QUOTA);
1514 return 1;
1515 errout:
1516 kfree(qname);
1517 return ret;
1518 }
1519
1520 static int clear_qf_name(struct super_block *sb, int qtype)
1521 {
1522
1523 struct ext4_sb_info *sbi = EXT4_SB(sb);
1524
1525 if (sb_any_quota_loaded(sb) &&
1526 sbi->s_qf_names[qtype]) {
1527 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options"
1528 " when quota turned on");
1529 return -1;
1530 }
1531 kfree(sbi->s_qf_names[qtype]);
1532 sbi->s_qf_names[qtype] = NULL;
1533 return 1;
1534 }
1535 #endif
1536
1537 #define MOPT_SET 0x0001
1538 #define MOPT_CLEAR 0x0002
1539 #define MOPT_NOSUPPORT 0x0004
1540 #define MOPT_EXPLICIT 0x0008
1541 #define MOPT_CLEAR_ERR 0x0010
1542 #define MOPT_GTE0 0x0020
1543 #ifdef CONFIG_QUOTA
1544 #define MOPT_Q 0
1545 #define MOPT_QFMT 0x0040
1546 #else
1547 #define MOPT_Q MOPT_NOSUPPORT
1548 #define MOPT_QFMT MOPT_NOSUPPORT
1549 #endif
1550 #define MOPT_DATAJ 0x0080
1551 #define MOPT_NO_EXT2 0x0100
1552 #define MOPT_NO_EXT3 0x0200
1553 #define MOPT_EXT4_ONLY (MOPT_NO_EXT2 | MOPT_NO_EXT3)
1554 #define MOPT_STRING 0x0400
1555
1556 static const struct mount_opts {
1557 int token;
1558 int mount_opt;
1559 int flags;
1560 } ext4_mount_opts[] = {
1561 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET},
1562 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR},
1563 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET},
1564 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR},
1565 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET},
1566 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR},
1567 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK,
1568 MOPT_EXT4_ONLY | MOPT_SET},
1569 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK,
1570 MOPT_EXT4_ONLY | MOPT_CLEAR},
1571 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET},
1572 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR},
1573 {Opt_delalloc, EXT4_MOUNT_DELALLOC,
1574 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1575 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC,
1576 MOPT_EXT4_ONLY | MOPT_CLEAR},
1577 {Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1578 MOPT_EXT4_ONLY | MOPT_CLEAR},
1579 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1580 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1581 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT |
1582 EXT4_MOUNT_JOURNAL_CHECKSUM),
1583 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1584 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET},
1585 {Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR},
1586 {Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR},
1587 {Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR},
1588 {Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT,
1589 MOPT_NO_EXT2},
1590 {Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT,
1591 MOPT_NO_EXT2},
1592 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET},
1593 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR},
1594 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET},
1595 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR},
1596 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR},
1597 {Opt_commit, 0, MOPT_GTE0},
1598 {Opt_max_batch_time, 0, MOPT_GTE0},
1599 {Opt_min_batch_time, 0, MOPT_GTE0},
1600 {Opt_inode_readahead_blks, 0, MOPT_GTE0},
1601 {Opt_init_itable, 0, MOPT_GTE0},
1602 {Opt_dax, EXT4_MOUNT_DAX, MOPT_SET},
1603 {Opt_stripe, 0, MOPT_GTE0},
1604 {Opt_resuid, 0, MOPT_GTE0},
1605 {Opt_resgid, 0, MOPT_GTE0},
1606 {Opt_journal_dev, 0, MOPT_NO_EXT2 | MOPT_GTE0},
1607 {Opt_journal_path, 0, MOPT_NO_EXT2 | MOPT_STRING},
1608 {Opt_journal_ioprio, 0, MOPT_NO_EXT2 | MOPT_GTE0},
1609 {Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1610 {Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1611 {Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA,
1612 MOPT_NO_EXT2 | MOPT_DATAJ},
1613 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET},
1614 {Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR},
1615 #ifdef CONFIG_EXT4_FS_POSIX_ACL
1616 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET},
1617 {Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR},
1618 #else
1619 {Opt_acl, 0, MOPT_NOSUPPORT},
1620 {Opt_noacl, 0, MOPT_NOSUPPORT},
1621 #endif
1622 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET},
1623 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET},
1624 {Opt_debug_want_extra_isize, 0, MOPT_GTE0},
1625 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q},
1626 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA,
1627 MOPT_SET | MOPT_Q},
1628 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA,
1629 MOPT_SET | MOPT_Q},
1630 {Opt_prjquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_PRJQUOTA,
1631 MOPT_SET | MOPT_Q},
1632 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
1633 EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA),
1634 MOPT_CLEAR | MOPT_Q},
1635 {Opt_usrjquota, 0, MOPT_Q},
1636 {Opt_grpjquota, 0, MOPT_Q},
1637 {Opt_offusrjquota, 0, MOPT_Q},
1638 {Opt_offgrpjquota, 0, MOPT_Q},
1639 {Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT},
1640 {Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT},
1641 {Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT},
1642 {Opt_max_dir_size_kb, 0, MOPT_GTE0},
1643 {Opt_test_dummy_encryption, 0, MOPT_GTE0},
1644 {Opt_nombcache, EXT4_MOUNT_NO_MBCACHE, MOPT_SET},
1645 {Opt_err, 0, 0}
1646 };
1647
1648 static int handle_mount_opt(struct super_block *sb, char *opt, int token,
1649 substring_t *args, unsigned long *journal_devnum,
1650 unsigned int *journal_ioprio, int is_remount)
1651 {
1652 struct ext4_sb_info *sbi = EXT4_SB(sb);
1653 const struct mount_opts *m;
1654 kuid_t uid;
1655 kgid_t gid;
1656 int arg = 0;
1657
1658 #ifdef CONFIG_QUOTA
1659 if (token == Opt_usrjquota)
1660 return set_qf_name(sb, USRQUOTA, &args[0]);
1661 else if (token == Opt_grpjquota)
1662 return set_qf_name(sb, GRPQUOTA, &args[0]);
1663 else if (token == Opt_offusrjquota)
1664 return clear_qf_name(sb, USRQUOTA);
1665 else if (token == Opt_offgrpjquota)
1666 return clear_qf_name(sb, GRPQUOTA);
1667 #endif
1668 switch (token) {
1669 case Opt_noacl:
1670 case Opt_nouser_xattr:
1671 ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5");
1672 break;
1673 case Opt_sb:
1674 return 1; /* handled by get_sb_block() */
1675 case Opt_removed:
1676 ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt);
1677 return 1;
1678 case Opt_abort:
1679 sbi->s_mount_flags |= EXT4_MF_FS_ABORTED;
1680 return 1;
1681 case Opt_i_version:
1682 sb->s_flags |= MS_I_VERSION;
1683 return 1;
1684 case Opt_lazytime:
1685 sb->s_flags |= MS_LAZYTIME;
1686 return 1;
1687 case Opt_nolazytime:
1688 sb->s_flags &= ~MS_LAZYTIME;
1689 return 1;
1690 }
1691
1692 for (m = ext4_mount_opts; m->token != Opt_err; m++)
1693 if (token == m->token)
1694 break;
1695
1696 if (m->token == Opt_err) {
1697 ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" "
1698 "or missing value", opt);
1699 return -1;
1700 }
1701
1702 if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) {
1703 ext4_msg(sb, KERN_ERR,
1704 "Mount option \"%s\" incompatible with ext2", opt);
1705 return -1;
1706 }
1707 if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) {
1708 ext4_msg(sb, KERN_ERR,
1709 "Mount option \"%s\" incompatible with ext3", opt);
1710 return -1;
1711 }
1712
1713 if (args->from && !(m->flags & MOPT_STRING) && match_int(args, &arg))
1714 return -1;
1715 if (args->from && (m->flags & MOPT_GTE0) && (arg < 0))
1716 return -1;
1717 if (m->flags & MOPT_EXPLICIT) {
1718 if (m->mount_opt & EXT4_MOUNT_DELALLOC) {
1719 set_opt2(sb, EXPLICIT_DELALLOC);
1720 } else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) {
1721 set_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM);
1722 } else
1723 return -1;
1724 }
1725 if (m->flags & MOPT_CLEAR_ERR)
1726 clear_opt(sb, ERRORS_MASK);
1727 if (token == Opt_noquota && sb_any_quota_loaded(sb)) {
1728 ext4_msg(sb, KERN_ERR, "Cannot change quota "
1729 "options when quota turned on");
1730 return -1;
1731 }
1732
1733 if (m->flags & MOPT_NOSUPPORT) {
1734 ext4_msg(sb, KERN_ERR, "%s option not supported", opt);
1735 } else if (token == Opt_commit) {
1736 if (arg == 0)
1737 arg = JBD2_DEFAULT_MAX_COMMIT_AGE;
1738 sbi->s_commit_interval = HZ * arg;
1739 } else if (token == Opt_debug_want_extra_isize) {
1740 sbi->s_want_extra_isize = arg;
1741 } else if (token == Opt_max_batch_time) {
1742 sbi->s_max_batch_time = arg;
1743 } else if (token == Opt_min_batch_time) {
1744 sbi->s_min_batch_time = arg;
1745 } else if (token == Opt_inode_readahead_blks) {
1746 if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) {
1747 ext4_msg(sb, KERN_ERR,
1748 "EXT4-fs: inode_readahead_blks must be "
1749 "0 or a power of 2 smaller than 2^31");
1750 return -1;
1751 }
1752 sbi->s_inode_readahead_blks = arg;
1753 } else if (token == Opt_init_itable) {
1754 set_opt(sb, INIT_INODE_TABLE);
1755 if (!args->from)
1756 arg = EXT4_DEF_LI_WAIT_MULT;
1757 sbi->s_li_wait_mult = arg;
1758 } else if (token == Opt_max_dir_size_kb) {
1759 sbi->s_max_dir_size_kb = arg;
1760 } else if (token == Opt_stripe) {
1761 sbi->s_stripe = arg;
1762 } else if (token == Opt_resuid) {
1763 uid = make_kuid(current_user_ns(), arg);
1764 if (!uid_valid(uid)) {
1765 ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg);
1766 return -1;
1767 }
1768 sbi->s_resuid = uid;
1769 } else if (token == Opt_resgid) {
1770 gid = make_kgid(current_user_ns(), arg);
1771 if (!gid_valid(gid)) {
1772 ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg);
1773 return -1;
1774 }
1775 sbi->s_resgid = gid;
1776 } else if (token == Opt_journal_dev) {
1777 if (is_remount) {
1778 ext4_msg(sb, KERN_ERR,
1779 "Cannot specify journal on remount");
1780 return -1;
1781 }
1782 *journal_devnum = arg;
1783 } else if (token == Opt_journal_path) {
1784 char *journal_path;
1785 struct inode *journal_inode;
1786 struct path path;
1787 int error;
1788
1789 if (is_remount) {
1790 ext4_msg(sb, KERN_ERR,
1791 "Cannot specify journal on remount");
1792 return -1;
1793 }
1794 journal_path = match_strdup(&args[0]);
1795 if (!journal_path) {
1796 ext4_msg(sb, KERN_ERR, "error: could not dup "
1797 "journal device string");
1798 return -1;
1799 }
1800
1801 error = kern_path(journal_path, LOOKUP_FOLLOW, &path);
1802 if (error) {
1803 ext4_msg(sb, KERN_ERR, "error: could not find "
1804 "journal device path: error %d", error);
1805 kfree(journal_path);
1806 return -1;
1807 }
1808
1809 journal_inode = d_inode(path.dentry);
1810 if (!S_ISBLK(journal_inode->i_mode)) {
1811 ext4_msg(sb, KERN_ERR, "error: journal path %s "
1812 "is not a block device", journal_path);
1813 path_put(&path);
1814 kfree(journal_path);
1815 return -1;
1816 }
1817
1818 *journal_devnum = new_encode_dev(journal_inode->i_rdev);
1819 path_put(&path);
1820 kfree(journal_path);
1821 } else if (token == Opt_journal_ioprio) {
1822 if (arg > 7) {
1823 ext4_msg(sb, KERN_ERR, "Invalid journal IO priority"
1824 " (must be 0-7)");
1825 return -1;
1826 }
1827 *journal_ioprio =
1828 IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg);
1829 } else if (token == Opt_test_dummy_encryption) {
1830 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1831 sbi->s_mount_flags |= EXT4_MF_TEST_DUMMY_ENCRYPTION;
1832 ext4_msg(sb, KERN_WARNING,
1833 "Test dummy encryption mode enabled");
1834 #else
1835 ext4_msg(sb, KERN_WARNING,
1836 "Test dummy encryption mount option ignored");
1837 #endif
1838 } else if (m->flags & MOPT_DATAJ) {
1839 if (is_remount) {
1840 if (!sbi->s_journal)
1841 ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option");
1842 else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) {
1843 ext4_msg(sb, KERN_ERR,
1844 "Cannot change data mode on remount");
1845 return -1;
1846 }
1847 } else {
1848 clear_opt(sb, DATA_FLAGS);
1849 sbi->s_mount_opt |= m->mount_opt;
1850 }
1851 #ifdef CONFIG_QUOTA
1852 } else if (m->flags & MOPT_QFMT) {
1853 if (sb_any_quota_loaded(sb) &&
1854 sbi->s_jquota_fmt != m->mount_opt) {
1855 ext4_msg(sb, KERN_ERR, "Cannot change journaled "
1856 "quota options when quota turned on");
1857 return -1;
1858 }
1859 if (ext4_has_feature_quota(sb)) {
1860 ext4_msg(sb, KERN_INFO,
1861 "Quota format mount options ignored "
1862 "when QUOTA feature is enabled");
1863 return 1;
1864 }
1865 sbi->s_jquota_fmt = m->mount_opt;
1866 #endif
1867 } else if (token == Opt_dax) {
1868 #ifdef CONFIG_FS_DAX
1869 ext4_msg(sb, KERN_WARNING,
1870 "DAX enabled. Warning: EXPERIMENTAL, use at your own risk");
1871 sbi->s_mount_opt |= m->mount_opt;
1872 #else
1873 ext4_msg(sb, KERN_INFO, "dax option not supported");
1874 return -1;
1875 #endif
1876 } else if (token == Opt_data_err_abort) {
1877 sbi->s_mount_opt |= m->mount_opt;
1878 } else if (token == Opt_data_err_ignore) {
1879 sbi->s_mount_opt &= ~m->mount_opt;
1880 } else {
1881 if (!args->from)
1882 arg = 1;
1883 if (m->flags & MOPT_CLEAR)
1884 arg = !arg;
1885 else if (unlikely(!(m->flags & MOPT_SET))) {
1886 ext4_msg(sb, KERN_WARNING,
1887 "buggy handling of option %s", opt);
1888 WARN_ON(1);
1889 return -1;
1890 }
1891 if (arg != 0)
1892 sbi->s_mount_opt |= m->mount_opt;
1893 else
1894 sbi->s_mount_opt &= ~m->mount_opt;
1895 }
1896 return 1;
1897 }
1898
1899 static int parse_options(char *options, struct super_block *sb,
1900 unsigned long *journal_devnum,
1901 unsigned int *journal_ioprio,
1902 int is_remount)
1903 {
1904 struct ext4_sb_info *sbi = EXT4_SB(sb);
1905 char *p;
1906 substring_t args[MAX_OPT_ARGS];
1907 int token;
1908
1909 if (!options)
1910 return 1;
1911
1912 while ((p = strsep(&options, ",")) != NULL) {
1913 if (!*p)
1914 continue;
1915 /*
1916 * Initialize args struct so we know whether arg was
1917 * found; some options take optional arguments.
1918 */
1919 args[0].to = args[0].from = NULL;
1920 token = match_token(p, tokens, args);
1921 if (handle_mount_opt(sb, p, token, args, journal_devnum,
1922 journal_ioprio, is_remount) < 0)
1923 return 0;
1924 }
1925 #ifdef CONFIG_QUOTA
1926 /*
1927 * We do the test below only for project quotas. 'usrquota' and
1928 * 'grpquota' mount options are allowed even without quota feature
1929 * to support legacy quotas in quota files.
1930 */
1931 if (test_opt(sb, PRJQUOTA) && !ext4_has_feature_project(sb)) {
1932 ext4_msg(sb, KERN_ERR, "Project quota feature not enabled. "
1933 "Cannot enable project quota enforcement.");
1934 return 0;
1935 }
1936 if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
1937 if (test_opt(sb, USRQUOTA) && sbi->s_qf_names[USRQUOTA])
1938 clear_opt(sb, USRQUOTA);
1939
1940 if (test_opt(sb, GRPQUOTA) && sbi->s_qf_names[GRPQUOTA])
1941 clear_opt(sb, GRPQUOTA);
1942
1943 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) {
1944 ext4_msg(sb, KERN_ERR, "old and new quota "
1945 "format mixing");
1946 return 0;
1947 }
1948
1949 if (!sbi->s_jquota_fmt) {
1950 ext4_msg(sb, KERN_ERR, "journaled quota format "
1951 "not specified");
1952 return 0;
1953 }
1954 }
1955 #endif
1956 if (test_opt(sb, DIOREAD_NOLOCK)) {
1957 int blocksize =
1958 BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size);
1959
1960 if (blocksize < PAGE_SIZE) {
1961 ext4_msg(sb, KERN_ERR, "can't mount with "
1962 "dioread_nolock if block size != PAGE_SIZE");
1963 return 0;
1964 }
1965 }
1966 return 1;
1967 }
1968
1969 static inline void ext4_show_quota_options(struct seq_file *seq,
1970 struct super_block *sb)
1971 {
1972 #if defined(CONFIG_QUOTA)
1973 struct ext4_sb_info *sbi = EXT4_SB(sb);
1974
1975 if (sbi->s_jquota_fmt) {
1976 char *fmtname = "";
1977
1978 switch (sbi->s_jquota_fmt) {
1979 case QFMT_VFS_OLD:
1980 fmtname = "vfsold";
1981 break;
1982 case QFMT_VFS_V0:
1983 fmtname = "vfsv0";
1984 break;
1985 case QFMT_VFS_V1:
1986 fmtname = "vfsv1";
1987 break;
1988 }
1989 seq_printf(seq, ",jqfmt=%s", fmtname);
1990 }
1991
1992 if (sbi->s_qf_names[USRQUOTA])
1993 seq_show_option(seq, "usrjquota", sbi->s_qf_names[USRQUOTA]);
1994
1995 if (sbi->s_qf_names[GRPQUOTA])
1996 seq_show_option(seq, "grpjquota", sbi->s_qf_names[GRPQUOTA]);
1997 #endif
1998 }
1999
2000 static const char *token2str(int token)
2001 {
2002 const struct match_token *t;
2003
2004 for (t = tokens; t->token != Opt_err; t++)
2005 if (t->token == token && !strchr(t->pattern, '='))
2006 break;
2007 return t->pattern;
2008 }
2009
2010 /*
2011 * Show an option if
2012 * - it's set to a non-default value OR
2013 * - if the per-sb default is different from the global default
2014 */
2015 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb,
2016 int nodefs)
2017 {
2018 struct ext4_sb_info *sbi = EXT4_SB(sb);
2019 struct ext4_super_block *es = sbi->s_es;
2020 int def_errors, def_mount_opt = nodefs ? 0 : sbi->s_def_mount_opt;
2021 const struct mount_opts *m;
2022 char sep = nodefs ? '\n' : ',';
2023
2024 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep)
2025 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg)
2026
2027 if (sbi->s_sb_block != 1)
2028 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block);
2029
2030 for (m = ext4_mount_opts; m->token != Opt_err; m++) {
2031 int want_set = m->flags & MOPT_SET;
2032 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) ||
2033 (m->flags & MOPT_CLEAR_ERR))
2034 continue;
2035 if (!(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt)))
2036 continue; /* skip if same as the default */
2037 if ((want_set &&
2038 (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) ||
2039 (!want_set && (sbi->s_mount_opt & m->mount_opt)))
2040 continue; /* select Opt_noFoo vs Opt_Foo */
2041 SEQ_OPTS_PRINT("%s", token2str(m->token));
2042 }
2043
2044 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) ||
2045 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID)
2046 SEQ_OPTS_PRINT("resuid=%u",
2047 from_kuid_munged(&init_user_ns, sbi->s_resuid));
2048 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) ||
2049 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID)
2050 SEQ_OPTS_PRINT("resgid=%u",
2051 from_kgid_munged(&init_user_ns, sbi->s_resgid));
2052 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors);
2053 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO)
2054 SEQ_OPTS_PUTS("errors=remount-ro");
2055 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
2056 SEQ_OPTS_PUTS("errors=continue");
2057 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
2058 SEQ_OPTS_PUTS("errors=panic");
2059 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
2060 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ);
2061 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME)
2062 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time);
2063 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME)
2064 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time);
2065 if (sb->s_flags & MS_I_VERSION)
2066 SEQ_OPTS_PUTS("i_version");
2067 if (nodefs || sbi->s_stripe)
2068 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe);
2069 if (EXT4_MOUNT_DATA_FLAGS & (sbi->s_mount_opt ^ def_mount_opt)) {
2070 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
2071 SEQ_OPTS_PUTS("data=journal");
2072 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
2073 SEQ_OPTS_PUTS("data=ordered");
2074 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
2075 SEQ_OPTS_PUTS("data=writeback");
2076 }
2077 if (nodefs ||
2078 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
2079 SEQ_OPTS_PRINT("inode_readahead_blks=%u",
2080 sbi->s_inode_readahead_blks);
2081
2082 if (nodefs || (test_opt(sb, INIT_INODE_TABLE) &&
2083 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)))
2084 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult);
2085 if (nodefs || sbi->s_max_dir_size_kb)
2086 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb);
2087 if (test_opt(sb, DATA_ERR_ABORT))
2088 SEQ_OPTS_PUTS("data_err=abort");
2089
2090 ext4_show_quota_options(seq, sb);
2091 return 0;
2092 }
2093
2094 static int ext4_show_options(struct seq_file *seq, struct dentry *root)
2095 {
2096 return _ext4_show_options(seq, root->d_sb, 0);
2097 }
2098
2099 int ext4_seq_options_show(struct seq_file *seq, void *offset)
2100 {
2101 struct super_block *sb = seq->private;
2102 int rc;
2103
2104 seq_puts(seq, (sb->s_flags & MS_RDONLY) ? "ro" : "rw");
2105 rc = _ext4_show_options(seq, sb, 1);
2106 seq_puts(seq, "\n");
2107 return rc;
2108 }
2109
2110 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
2111 int read_only)
2112 {
2113 struct ext4_sb_info *sbi = EXT4_SB(sb);
2114 int res = 0;
2115
2116 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
2117 ext4_msg(sb, KERN_ERR, "revision level too high, "
2118 "forcing read-only mode");
2119 res = MS_RDONLY;
2120 }
2121 if (read_only)
2122 goto done;
2123 if (!(sbi->s_mount_state & EXT4_VALID_FS))
2124 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
2125 "running e2fsck is recommended");
2126 else if (sbi->s_mount_state & EXT4_ERROR_FS)
2127 ext4_msg(sb, KERN_WARNING,
2128 "warning: mounting fs with errors, "
2129 "running e2fsck is recommended");
2130 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
2131 le16_to_cpu(es->s_mnt_count) >=
2132 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
2133 ext4_msg(sb, KERN_WARNING,
2134 "warning: maximal mount count reached, "
2135 "running e2fsck is recommended");
2136 else if (le32_to_cpu(es->s_checkinterval) &&
2137 (le32_to_cpu(es->s_lastcheck) +
2138 le32_to_cpu(es->s_checkinterval) <= get_seconds()))
2139 ext4_msg(sb, KERN_WARNING,
2140 "warning: checktime reached, "
2141 "running e2fsck is recommended");
2142 if (!sbi->s_journal)
2143 es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
2144 if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
2145 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
2146 le16_add_cpu(&es->s_mnt_count, 1);
2147 es->s_mtime = cpu_to_le32(get_seconds());
2148 ext4_update_dynamic_rev(sb);
2149 if (sbi->s_journal)
2150 ext4_set_feature_journal_needs_recovery(sb);
2151
2152 ext4_commit_super(sb, 1);
2153 done:
2154 if (test_opt(sb, DEBUG))
2155 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
2156 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
2157 sb->s_blocksize,
2158 sbi->s_groups_count,
2159 EXT4_BLOCKS_PER_GROUP(sb),
2160 EXT4_INODES_PER_GROUP(sb),
2161 sbi->s_mount_opt, sbi->s_mount_opt2);
2162
2163 cleancache_init_fs(sb);
2164 return res;
2165 }
2166
2167 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup)
2168 {
2169 struct ext4_sb_info *sbi = EXT4_SB(sb);
2170 struct flex_groups *new_groups;
2171 int size;
2172
2173 if (!sbi->s_log_groups_per_flex)
2174 return 0;
2175
2176 size = ext4_flex_group(sbi, ngroup - 1) + 1;
2177 if (size <= sbi->s_flex_groups_allocated)
2178 return 0;
2179
2180 size = roundup_pow_of_two(size * sizeof(struct flex_groups));
2181 new_groups = kvzalloc(size, GFP_KERNEL);
2182 if (!new_groups) {
2183 ext4_msg(sb, KERN_ERR, "not enough memory for %d flex groups",
2184 size / (int) sizeof(struct flex_groups));
2185 return -ENOMEM;
2186 }
2187
2188 if (sbi->s_flex_groups) {
2189 memcpy(new_groups, sbi->s_flex_groups,
2190 (sbi->s_flex_groups_allocated *
2191 sizeof(struct flex_groups)));
2192 kvfree(sbi->s_flex_groups);
2193 }
2194 sbi->s_flex_groups = new_groups;
2195 sbi->s_flex_groups_allocated = size / sizeof(struct flex_groups);
2196 return 0;
2197 }
2198
2199 static int ext4_fill_flex_info(struct super_block *sb)
2200 {
2201 struct ext4_sb_info *sbi = EXT4_SB(sb);
2202 struct ext4_group_desc *gdp = NULL;
2203 ext4_group_t flex_group;
2204 int i, err;
2205
2206 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
2207 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) {
2208 sbi->s_log_groups_per_flex = 0;
2209 return 1;
2210 }
2211
2212 err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count);
2213 if (err)
2214 goto failed;
2215
2216 for (i = 0; i < sbi->s_groups_count; i++) {
2217 gdp = ext4_get_group_desc(sb, i, NULL);
2218
2219 flex_group = ext4_flex_group(sbi, i);
2220 atomic_add(ext4_free_inodes_count(sb, gdp),
2221 &sbi->s_flex_groups[flex_group].free_inodes);
2222 atomic64_add(ext4_free_group_clusters(sb, gdp),
2223 &sbi->s_flex_groups[flex_group].free_clusters);
2224 atomic_add(ext4_used_dirs_count(sb, gdp),
2225 &sbi->s_flex_groups[flex_group].used_dirs);
2226 }
2227
2228 return 1;
2229 failed:
2230 return 0;
2231 }
2232
2233 static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group,
2234 struct ext4_group_desc *gdp)
2235 {
2236 int offset = offsetof(struct ext4_group_desc, bg_checksum);
2237 __u16 crc = 0;
2238 __le32 le_group = cpu_to_le32(block_group);
2239 struct ext4_sb_info *sbi = EXT4_SB(sb);
2240
2241 if (ext4_has_metadata_csum(sbi->s_sb)) {
2242 /* Use new metadata_csum algorithm */
2243 __u32 csum32;
2244 __u16 dummy_csum = 0;
2245
2246 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group,
2247 sizeof(le_group));
2248 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, offset);
2249 csum32 = ext4_chksum(sbi, csum32, (__u8 *)&dummy_csum,
2250 sizeof(dummy_csum));
2251 offset += sizeof(dummy_csum);
2252 if (offset < sbi->s_desc_size)
2253 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp + offset,
2254 sbi->s_desc_size - offset);
2255
2256 crc = csum32 & 0xFFFF;
2257 goto out;
2258 }
2259
2260 /* old crc16 code */
2261 if (!ext4_has_feature_gdt_csum(sb))
2262 return 0;
2263
2264 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
2265 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
2266 crc = crc16(crc, (__u8 *)gdp, offset);
2267 offset += sizeof(gdp->bg_checksum); /* skip checksum */
2268 /* for checksum of struct ext4_group_desc do the rest...*/
2269 if (ext4_has_feature_64bit(sb) &&
2270 offset < le16_to_cpu(sbi->s_es->s_desc_size))
2271 crc = crc16(crc, (__u8 *)gdp + offset,
2272 le16_to_cpu(sbi->s_es->s_desc_size) -
2273 offset);
2274
2275 out:
2276 return cpu_to_le16(crc);
2277 }
2278
2279 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group,
2280 struct ext4_group_desc *gdp)
2281 {
2282 if (ext4_has_group_desc_csum(sb) &&
2283 (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp)))
2284 return 0;
2285
2286 return 1;
2287 }
2288
2289 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group,
2290 struct ext4_group_desc *gdp)
2291 {
2292 if (!ext4_has_group_desc_csum(sb))
2293 return;
2294 gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp);
2295 }
2296
2297 /* Called at mount-time, super-block is locked */
2298 static int ext4_check_descriptors(struct super_block *sb,
2299 ext4_fsblk_t sb_block,
2300 ext4_group_t *first_not_zeroed)
2301 {
2302 struct ext4_sb_info *sbi = EXT4_SB(sb);
2303 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
2304 ext4_fsblk_t last_block;
2305 ext4_fsblk_t block_bitmap;
2306 ext4_fsblk_t inode_bitmap;
2307 ext4_fsblk_t inode_table;
2308 int flexbg_flag = 0;
2309 ext4_group_t i, grp = sbi->s_groups_count;
2310
2311 if (ext4_has_feature_flex_bg(sb))
2312 flexbg_flag = 1;
2313
2314 ext4_debug("Checking group descriptors");
2315
2316 for (i = 0; i < sbi->s_groups_count; i++) {
2317 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
2318
2319 if (i == sbi->s_groups_count - 1 || flexbg_flag)
2320 last_block = ext4_blocks_count(sbi->s_es) - 1;
2321 else
2322 last_block = first_block +
2323 (EXT4_BLOCKS_PER_GROUP(sb) - 1);
2324
2325 if ((grp == sbi->s_groups_count) &&
2326 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2327 grp = i;
2328
2329 block_bitmap = ext4_block_bitmap(sb, gdp);
2330 if (block_bitmap == sb_block) {
2331 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2332 "Block bitmap for group %u overlaps "
2333 "superblock", i);
2334 }
2335 if (block_bitmap < first_block || block_bitmap > last_block) {
2336 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2337 "Block bitmap for group %u not in group "
2338 "(block %llu)!", i, block_bitmap);
2339 return 0;
2340 }
2341 inode_bitmap = ext4_inode_bitmap(sb, gdp);
2342 if (inode_bitmap == sb_block) {
2343 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2344 "Inode bitmap for group %u overlaps "
2345 "superblock", i);
2346 }
2347 if (inode_bitmap < first_block || inode_bitmap > last_block) {
2348 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2349 "Inode bitmap for group %u not in group "
2350 "(block %llu)!", i, inode_bitmap);
2351 return 0;
2352 }
2353 inode_table = ext4_inode_table(sb, gdp);
2354 if (inode_table == sb_block) {
2355 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2356 "Inode table for group %u overlaps "
2357 "superblock", i);
2358 }
2359 if (inode_table < first_block ||
2360 inode_table + sbi->s_itb_per_group - 1 > last_block) {
2361 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2362 "Inode table for group %u not in group "
2363 "(block %llu)!", i, inode_table);
2364 return 0;
2365 }
2366 ext4_lock_group(sb, i);
2367 if (!ext4_group_desc_csum_verify(sb, i, gdp)) {
2368 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2369 "Checksum for group %u failed (%u!=%u)",
2370 i, le16_to_cpu(ext4_group_desc_csum(sb, i,
2371 gdp)), le16_to_cpu(gdp->bg_checksum));
2372 if (!(sb->s_flags & MS_RDONLY)) {
2373 ext4_unlock_group(sb, i);
2374 return 0;
2375 }
2376 }
2377 ext4_unlock_group(sb, i);
2378 if (!flexbg_flag)
2379 first_block += EXT4_BLOCKS_PER_GROUP(sb);
2380 }
2381 if (NULL != first_not_zeroed)
2382 *first_not_zeroed = grp;
2383 return 1;
2384 }
2385
2386 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at
2387 * the superblock) which were deleted from all directories, but held open by
2388 * a process at the time of a crash. We walk the list and try to delete these
2389 * inodes at recovery time (only with a read-write filesystem).
2390 *
2391 * In order to keep the orphan inode chain consistent during traversal (in
2392 * case of crash during recovery), we link each inode into the superblock
2393 * orphan list_head and handle it the same way as an inode deletion during
2394 * normal operation (which journals the operations for us).
2395 *
2396 * We only do an iget() and an iput() on each inode, which is very safe if we
2397 * accidentally point at an in-use or already deleted inode. The worst that
2398 * can happen in this case is that we get a "bit already cleared" message from
2399 * ext4_free_inode(). The only reason we would point at a wrong inode is if
2400 * e2fsck was run on this filesystem, and it must have already done the orphan
2401 * inode cleanup for us, so we can safely abort without any further action.
2402 */
2403 static void ext4_orphan_cleanup(struct super_block *sb,
2404 struct ext4_super_block *es)
2405 {
2406 unsigned int s_flags = sb->s_flags;
2407 int ret, nr_orphans = 0, nr_truncates = 0;
2408 #ifdef CONFIG_QUOTA
2409 int i;
2410 #endif
2411 if (!es->s_last_orphan) {
2412 jbd_debug(4, "no orphan inodes to clean up\n");
2413 return;
2414 }
2415
2416 if (bdev_read_only(sb->s_bdev)) {
2417 ext4_msg(sb, KERN_ERR, "write access "
2418 "unavailable, skipping orphan cleanup");
2419 return;
2420 }
2421
2422 /* Check if feature set would not allow a r/w mount */
2423 if (!ext4_feature_set_ok(sb, 0)) {
2424 ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to "
2425 "unknown ROCOMPAT features");
2426 return;
2427 }
2428
2429 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2430 /* don't clear list on RO mount w/ errors */
2431 if (es->s_last_orphan && !(s_flags & MS_RDONLY)) {
2432 ext4_msg(sb, KERN_INFO, "Errors on filesystem, "
2433 "clearing orphan list.\n");
2434 es->s_last_orphan = 0;
2435 }
2436 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2437 return;
2438 }
2439
2440 if (s_flags & MS_RDONLY) {
2441 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs");
2442 sb->s_flags &= ~MS_RDONLY;
2443 }
2444 #ifdef CONFIG_QUOTA
2445 /* Needed for iput() to work correctly and not trash data */
2446 sb->s_flags |= MS_ACTIVE;
2447 /* Turn on quotas so that they are updated correctly */
2448 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2449 if (EXT4_SB(sb)->s_qf_names[i]) {
2450 int ret = ext4_quota_on_mount(sb, i);
2451 if (ret < 0)
2452 ext4_msg(sb, KERN_ERR,
2453 "Cannot turn on journaled "
2454 "quota: error %d", ret);
2455 }
2456 }
2457 #endif
2458
2459 while (es->s_last_orphan) {
2460 struct inode *inode;
2461
2462 /*
2463 * We may have encountered an error during cleanup; if
2464 * so, skip the rest.
2465 */
2466 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2467 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2468 es->s_last_orphan = 0;
2469 break;
2470 }
2471
2472 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan));
2473 if (IS_ERR(inode)) {
2474 es->s_last_orphan = 0;
2475 break;
2476 }
2477
2478 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan);
2479 dquot_initialize(inode);
2480 if (inode->i_nlink) {
2481 if (test_opt(sb, DEBUG))
2482 ext4_msg(sb, KERN_DEBUG,
2483 "%s: truncating inode %lu to %lld bytes",
2484 __func__, inode->i_ino, inode->i_size);
2485 jbd_debug(2, "truncating inode %lu to %lld bytes\n",
2486 inode->i_ino, inode->i_size);
2487 inode_lock(inode);
2488 truncate_inode_pages(inode->i_mapping, inode->i_size);
2489 ret = ext4_truncate(inode);
2490 if (ret)
2491 ext4_std_error(inode->i_sb, ret);
2492 inode_unlock(inode);
2493 nr_truncates++;
2494 } else {
2495 if (test_opt(sb, DEBUG))
2496 ext4_msg(sb, KERN_DEBUG,
2497 "%s: deleting unreferenced inode %lu",
2498 __func__, inode->i_ino);
2499 jbd_debug(2, "deleting unreferenced inode %lu\n",
2500 inode->i_ino);
2501 nr_orphans++;
2502 }
2503 iput(inode); /* The delete magic happens here! */
2504 }
2505
2506 #define PLURAL(x) (x), ((x) == 1) ? "" : "s"
2507
2508 if (nr_orphans)
2509 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted",
2510 PLURAL(nr_orphans));
2511 if (nr_truncates)
2512 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up",
2513 PLURAL(nr_truncates));
2514 #ifdef CONFIG_QUOTA
2515 /* Turn quotas off */
2516 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2517 if (sb_dqopt(sb)->files[i])
2518 dquot_quota_off(sb, i);
2519 }
2520 #endif
2521 sb->s_flags = s_flags; /* Restore MS_RDONLY status */
2522 }
2523
2524 /*
2525 * Maximal extent format file size.
2526 * Resulting logical blkno at s_maxbytes must fit in our on-disk
2527 * extent format containers, within a sector_t, and within i_blocks
2528 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units,
2529 * so that won't be a limiting factor.
2530 *
2531 * However there is other limiting factor. We do store extents in the form
2532 * of starting block and length, hence the resulting length of the extent
2533 * covering maximum file size must fit into on-disk format containers as
2534 * well. Given that length is always by 1 unit bigger than max unit (because
2535 * we count 0 as well) we have to lower the s_maxbytes by one fs block.
2536 *
2537 * Note, this does *not* consider any metadata overhead for vfs i_blocks.
2538 */
2539 static loff_t ext4_max_size(int blkbits, int has_huge_files)
2540 {
2541 loff_t res;
2542 loff_t upper_limit = MAX_LFS_FILESIZE;
2543
2544 /* small i_blocks in vfs inode? */
2545 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2546 /*
2547 * CONFIG_LBDAF is not enabled implies the inode
2548 * i_block represent total blocks in 512 bytes
2549 * 32 == size of vfs inode i_blocks * 8
2550 */
2551 upper_limit = (1LL << 32) - 1;
2552
2553 /* total blocks in file system block size */
2554 upper_limit >>= (blkbits - 9);
2555 upper_limit <<= blkbits;
2556 }
2557
2558 /*
2559 * 32-bit extent-start container, ee_block. We lower the maxbytes
2560 * by one fs block, so ee_len can cover the extent of maximum file
2561 * size
2562 */
2563 res = (1LL << 32) - 1;
2564 res <<= blkbits;
2565
2566 /* Sanity check against vm- & vfs- imposed limits */
2567 if (res > upper_limit)
2568 res = upper_limit;
2569
2570 return res;
2571 }
2572
2573 /*
2574 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect
2575 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
2576 * We need to be 1 filesystem block less than the 2^48 sector limit.
2577 */
2578 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
2579 {
2580 loff_t res = EXT4_NDIR_BLOCKS;
2581 int meta_blocks;
2582 loff_t upper_limit;
2583 /* This is calculated to be the largest file size for a dense, block
2584 * mapped file such that the file's total number of 512-byte sectors,
2585 * including data and all indirect blocks, does not exceed (2^48 - 1).
2586 *
2587 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
2588 * number of 512-byte sectors of the file.
2589 */
2590
2591 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2592 /*
2593 * !has_huge_files or CONFIG_LBDAF not enabled implies that
2594 * the inode i_block field represents total file blocks in
2595 * 2^32 512-byte sectors == size of vfs inode i_blocks * 8
2596 */
2597 upper_limit = (1LL << 32) - 1;
2598
2599 /* total blocks in file system block size */
2600 upper_limit >>= (bits - 9);
2601
2602 } else {
2603 /*
2604 * We use 48 bit ext4_inode i_blocks
2605 * With EXT4_HUGE_FILE_FL set the i_blocks
2606 * represent total number of blocks in
2607 * file system block size
2608 */
2609 upper_limit = (1LL << 48) - 1;
2610
2611 }
2612
2613 /* indirect blocks */
2614 meta_blocks = 1;
2615 /* double indirect blocks */
2616 meta_blocks += 1 + (1LL << (bits-2));
2617 /* tripple indirect blocks */
2618 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2)));
2619
2620 upper_limit -= meta_blocks;
2621 upper_limit <<= bits;
2622
2623 res += 1LL << (bits-2);
2624 res += 1LL << (2*(bits-2));
2625 res += 1LL << (3*(bits-2));
2626 res <<= bits;
2627 if (res > upper_limit)
2628 res = upper_limit;
2629
2630 if (res > MAX_LFS_FILESIZE)
2631 res = MAX_LFS_FILESIZE;
2632
2633 return res;
2634 }
2635
2636 static ext4_fsblk_t descriptor_loc(struct super_block *sb,
2637 ext4_fsblk_t logical_sb_block, int nr)
2638 {
2639 struct ext4_sb_info *sbi = EXT4_SB(sb);
2640 ext4_group_t bg, first_meta_bg;
2641 int has_super = 0;
2642
2643 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
2644
2645 if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg)
2646 return logical_sb_block + nr + 1;
2647 bg = sbi->s_desc_per_block * nr;
2648 if (ext4_bg_has_super(sb, bg))
2649 has_super = 1;
2650
2651 /*
2652 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at
2653 * block 2, not 1. If s_first_data_block == 0 (bigalloc is enabled
2654 * on modern mke2fs or blksize > 1k on older mke2fs) then we must
2655 * compensate.
2656 */
2657 if (sb->s_blocksize == 1024 && nr == 0 &&
2658 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block) == 0)
2659 has_super++;
2660
2661 return (has_super + ext4_group_first_block_no(sb, bg));
2662 }
2663
2664 /**
2665 * ext4_get_stripe_size: Get the stripe size.
2666 * @sbi: In memory super block info
2667 *
2668 * If we have specified it via mount option, then
2669 * use the mount option value. If the value specified at mount time is
2670 * greater than the blocks per group use the super block value.
2671 * If the super block value is greater than blocks per group return 0.
2672 * Allocator needs it be less than blocks per group.
2673 *
2674 */
2675 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
2676 {
2677 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
2678 unsigned long stripe_width =
2679 le32_to_cpu(sbi->s_es->s_raid_stripe_width);
2680 int ret;
2681
2682 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
2683 ret = sbi->s_stripe;
2684 else if (stripe_width && stripe_width <= sbi->s_blocks_per_group)
2685 ret = stripe_width;
2686 else if (stride && stride <= sbi->s_blocks_per_group)
2687 ret = stride;
2688 else
2689 ret = 0;
2690
2691 /*
2692 * If the stripe width is 1, this makes no sense and
2693 * we set it to 0 to turn off stripe handling code.
2694 */
2695 if (ret <= 1)
2696 ret = 0;
2697
2698 return ret;
2699 }
2700
2701 /*
2702 * Check whether this filesystem can be mounted based on
2703 * the features present and the RDONLY/RDWR mount requested.
2704 * Returns 1 if this filesystem can be mounted as requested,
2705 * 0 if it cannot be.
2706 */
2707 static int ext4_feature_set_ok(struct super_block *sb, int readonly)
2708 {
2709 if (ext4_has_unknown_ext4_incompat_features(sb)) {
2710 ext4_msg(sb, KERN_ERR,
2711 "Couldn't mount because of "
2712 "unsupported optional features (%x)",
2713 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
2714 ~EXT4_FEATURE_INCOMPAT_SUPP));
2715 return 0;
2716 }
2717
2718 if (readonly)
2719 return 1;
2720
2721 if (ext4_has_feature_readonly(sb)) {
2722 ext4_msg(sb, KERN_INFO, "filesystem is read-only");
2723 sb->s_flags |= MS_RDONLY;
2724 return 1;
2725 }
2726
2727 /* Check that feature set is OK for a read-write mount */
2728 if (ext4_has_unknown_ext4_ro_compat_features(sb)) {
2729 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
2730 "unsupported optional features (%x)",
2731 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
2732 ~EXT4_FEATURE_RO_COMPAT_SUPP));
2733 return 0;
2734 }
2735 /*
2736 * Large file size enabled file system can only be mounted
2737 * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF
2738 */
2739 if (ext4_has_feature_huge_file(sb)) {
2740 if (sizeof(blkcnt_t) < sizeof(u64)) {
2741 ext4_msg(sb, KERN_ERR, "Filesystem with huge files "
2742 "cannot be mounted RDWR without "
2743 "CONFIG_LBDAF");
2744 return 0;
2745 }
2746 }
2747 if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) {
2748 ext4_msg(sb, KERN_ERR,
2749 "Can't support bigalloc feature without "
2750 "extents feature\n");
2751 return 0;
2752 }
2753
2754 #ifndef CONFIG_QUOTA
2755 if (ext4_has_feature_quota(sb) && !readonly) {
2756 ext4_msg(sb, KERN_ERR,
2757 "Filesystem with quota feature cannot be mounted RDWR "
2758 "without CONFIG_QUOTA");
2759 return 0;
2760 }
2761 if (ext4_has_feature_project(sb) && !readonly) {
2762 ext4_msg(sb, KERN_ERR,
2763 "Filesystem with project quota feature cannot be mounted RDWR "
2764 "without CONFIG_QUOTA");
2765 return 0;
2766 }
2767 #endif /* CONFIG_QUOTA */
2768 return 1;
2769 }
2770
2771 /*
2772 * This function is called once a day if we have errors logged
2773 * on the file system
2774 */
2775 static void print_daily_error_info(unsigned long arg)
2776 {
2777 struct super_block *sb = (struct super_block *) arg;
2778 struct ext4_sb_info *sbi;
2779 struct ext4_super_block *es;
2780
2781 sbi = EXT4_SB(sb);
2782 es = sbi->s_es;
2783
2784 if (es->s_error_count)
2785 /* fsck newer than v1.41.13 is needed to clean this condition. */
2786 ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u",
2787 le32_to_cpu(es->s_error_count));
2788 if (es->s_first_error_time) {
2789 printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %u: %.*s:%d",
2790 sb->s_id, le32_to_cpu(es->s_first_error_time),
2791 (int) sizeof(es->s_first_error_func),
2792 es->s_first_error_func,
2793 le32_to_cpu(es->s_first_error_line));
2794 if (es->s_first_error_ino)
2795 printk(KERN_CONT ": inode %u",
2796 le32_to_cpu(es->s_first_error_ino));
2797 if (es->s_first_error_block)
2798 printk(KERN_CONT ": block %llu", (unsigned long long)
2799 le64_to_cpu(es->s_first_error_block));
2800 printk(KERN_CONT "\n");
2801 }
2802 if (es->s_last_error_time) {
2803 printk(KERN_NOTICE "EXT4-fs (%s): last error at time %u: %.*s:%d",
2804 sb->s_id, le32_to_cpu(es->s_last_error_time),
2805 (int) sizeof(es->s_last_error_func),
2806 es->s_last_error_func,
2807 le32_to_cpu(es->s_last_error_line));
2808 if (es->s_last_error_ino)
2809 printk(KERN_CONT ": inode %u",
2810 le32_to_cpu(es->s_last_error_ino));
2811 if (es->s_last_error_block)
2812 printk(KERN_CONT ": block %llu", (unsigned long long)
2813 le64_to_cpu(es->s_last_error_block));
2814 printk(KERN_CONT "\n");
2815 }
2816 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */
2817 }
2818
2819 /* Find next suitable group and run ext4_init_inode_table */
2820 static int ext4_run_li_request(struct ext4_li_request *elr)
2821 {
2822 struct ext4_group_desc *gdp = NULL;
2823 ext4_group_t group, ngroups;
2824 struct super_block *sb;
2825 unsigned long timeout = 0;
2826 int ret = 0;
2827
2828 sb = elr->lr_super;
2829 ngroups = EXT4_SB(sb)->s_groups_count;
2830
2831 for (group = elr->lr_next_group; group < ngroups; group++) {
2832 gdp = ext4_get_group_desc(sb, group, NULL);
2833 if (!gdp) {
2834 ret = 1;
2835 break;
2836 }
2837
2838 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2839 break;
2840 }
2841
2842 if (group >= ngroups)
2843 ret = 1;
2844
2845 if (!ret) {
2846 timeout = jiffies;
2847 ret = ext4_init_inode_table(sb, group,
2848 elr->lr_timeout ? 0 : 1);
2849 if (elr->lr_timeout == 0) {
2850 timeout = (jiffies - timeout) *
2851 elr->lr_sbi->s_li_wait_mult;
2852 elr->lr_timeout = timeout;
2853 }
2854 elr->lr_next_sched = jiffies + elr->lr_timeout;
2855 elr->lr_next_group = group + 1;
2856 }
2857 return ret;
2858 }
2859
2860 /*
2861 * Remove lr_request from the list_request and free the
2862 * request structure. Should be called with li_list_mtx held
2863 */
2864 static void ext4_remove_li_request(struct ext4_li_request *elr)
2865 {
2866 struct ext4_sb_info *sbi;
2867
2868 if (!elr)
2869 return;
2870
2871 sbi = elr->lr_sbi;
2872
2873 list_del(&elr->lr_request);
2874 sbi->s_li_request = NULL;
2875 kfree(elr);
2876 }
2877
2878 static void ext4_unregister_li_request(struct super_block *sb)
2879 {
2880 mutex_lock(&ext4_li_mtx);
2881 if (!ext4_li_info) {
2882 mutex_unlock(&ext4_li_mtx);
2883 return;
2884 }
2885
2886 mutex_lock(&ext4_li_info->li_list_mtx);
2887 ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
2888 mutex_unlock(&ext4_li_info->li_list_mtx);
2889 mutex_unlock(&ext4_li_mtx);
2890 }
2891
2892 static struct task_struct *ext4_lazyinit_task;
2893
2894 /*
2895 * This is the function where ext4lazyinit thread lives. It walks
2896 * through the request list searching for next scheduled filesystem.
2897 * When such a fs is found, run the lazy initialization request
2898 * (ext4_rn_li_request) and keep track of the time spend in this
2899 * function. Based on that time we compute next schedule time of
2900 * the request. When walking through the list is complete, compute
2901 * next waking time and put itself into sleep.
2902 */
2903 static int ext4_lazyinit_thread(void *arg)
2904 {
2905 struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg;
2906 struct list_head *pos, *n;
2907 struct ext4_li_request *elr;
2908 unsigned long next_wakeup, cur;
2909
2910 BUG_ON(NULL == eli);
2911
2912 cont_thread:
2913 while (true) {
2914 next_wakeup = MAX_JIFFY_OFFSET;
2915
2916 mutex_lock(&eli->li_list_mtx);
2917 if (list_empty(&eli->li_request_list)) {
2918 mutex_unlock(&eli->li_list_mtx);
2919 goto exit_thread;
2920 }
2921 list_for_each_safe(pos, n, &eli->li_request_list) {
2922 int err = 0;
2923 int progress = 0;
2924 elr = list_entry(pos, struct ext4_li_request,
2925 lr_request);
2926
2927 if (time_before(jiffies, elr->lr_next_sched)) {
2928 if (time_before(elr->lr_next_sched, next_wakeup))
2929 next_wakeup = elr->lr_next_sched;
2930 continue;
2931 }
2932 if (down_read_trylock(&elr->lr_super->s_umount)) {
2933 if (sb_start_write_trylock(elr->lr_super)) {
2934 progress = 1;
2935 /*
2936 * We hold sb->s_umount, sb can not
2937 * be removed from the list, it is
2938 * now safe to drop li_list_mtx
2939 */
2940 mutex_unlock(&eli->li_list_mtx);
2941 err = ext4_run_li_request(elr);
2942 sb_end_write(elr->lr_super);
2943 mutex_lock(&eli->li_list_mtx);
2944 n = pos->next;
2945 }
2946 up_read((&elr->lr_super->s_umount));
2947 }
2948 /* error, remove the lazy_init job */
2949 if (err) {
2950 ext4_remove_li_request(elr);
2951 continue;
2952 }
2953 if (!progress) {
2954 elr->lr_next_sched = jiffies +
2955 (prandom_u32()
2956 % (EXT4_DEF_LI_MAX_START_DELAY * HZ));
2957 }
2958 if (time_before(elr->lr_next_sched, next_wakeup))
2959 next_wakeup = elr->lr_next_sched;
2960 }
2961 mutex_unlock(&eli->li_list_mtx);
2962
2963 try_to_freeze();
2964
2965 cur = jiffies;
2966 if ((time_after_eq(cur, next_wakeup)) ||
2967 (MAX_JIFFY_OFFSET == next_wakeup)) {
2968 cond_resched();
2969 continue;
2970 }
2971
2972 schedule_timeout_interruptible(next_wakeup - cur);
2973
2974 if (kthread_should_stop()) {
2975 ext4_clear_request_list();
2976 goto exit_thread;
2977 }
2978 }
2979
2980 exit_thread:
2981 /*
2982 * It looks like the request list is empty, but we need
2983 * to check it under the li_list_mtx lock, to prevent any
2984 * additions into it, and of course we should lock ext4_li_mtx
2985 * to atomically free the list and ext4_li_info, because at
2986 * this point another ext4 filesystem could be registering
2987 * new one.
2988 */
2989 mutex_lock(&ext4_li_mtx);
2990 mutex_lock(&eli->li_list_mtx);
2991 if (!list_empty(&eli->li_request_list)) {
2992 mutex_unlock(&eli->li_list_mtx);
2993 mutex_unlock(&ext4_li_mtx);
2994 goto cont_thread;
2995 }
2996 mutex_unlock(&eli->li_list_mtx);
2997 kfree(ext4_li_info);
2998 ext4_li_info = NULL;
2999 mutex_unlock(&ext4_li_mtx);
3000
3001 return 0;
3002 }
3003
3004 static void ext4_clear_request_list(void)
3005 {
3006 struct list_head *pos, *n;
3007 struct ext4_li_request *elr;
3008
3009 mutex_lock(&ext4_li_info->li_list_mtx);
3010 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
3011 elr = list_entry(pos, struct ext4_li_request,
3012 lr_request);
3013 ext4_remove_li_request(elr);
3014 }
3015 mutex_unlock(&ext4_li_info->li_list_mtx);
3016 }
3017
3018 static int ext4_run_lazyinit_thread(void)
3019 {
3020 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
3021 ext4_li_info, "ext4lazyinit");
3022 if (IS_ERR(ext4_lazyinit_task)) {
3023 int err = PTR_ERR(ext4_lazyinit_task);
3024 ext4_clear_request_list();
3025 kfree(ext4_li_info);
3026 ext4_li_info = NULL;
3027 printk(KERN_CRIT "EXT4-fs: error %d creating inode table "
3028 "initialization thread\n",
3029 err);
3030 return err;
3031 }
3032 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
3033 return 0;
3034 }
3035
3036 /*
3037 * Check whether it make sense to run itable init. thread or not.
3038 * If there is at least one uninitialized inode table, return
3039 * corresponding group number, else the loop goes through all
3040 * groups and return total number of groups.
3041 */
3042 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
3043 {
3044 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
3045 struct ext4_group_desc *gdp = NULL;
3046
3047 for (group = 0; group < ngroups; group++) {
3048 gdp = ext4_get_group_desc(sb, group, NULL);
3049 if (!gdp)
3050 continue;
3051
3052 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3053 break;
3054 }
3055
3056 return group;
3057 }
3058
3059 static int ext4_li_info_new(void)
3060 {
3061 struct ext4_lazy_init *eli = NULL;
3062
3063 eli = kzalloc(sizeof(*eli), GFP_KERNEL);
3064 if (!eli)
3065 return -ENOMEM;
3066
3067 INIT_LIST_HEAD(&eli->li_request_list);
3068 mutex_init(&eli->li_list_mtx);
3069
3070 eli->li_state |= EXT4_LAZYINIT_QUIT;
3071
3072 ext4_li_info = eli;
3073
3074 return 0;
3075 }
3076
3077 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
3078 ext4_group_t start)
3079 {
3080 struct ext4_sb_info *sbi = EXT4_SB(sb);
3081 struct ext4_li_request *elr;
3082
3083 elr = kzalloc(sizeof(*elr), GFP_KERNEL);
3084 if (!elr)
3085 return NULL;
3086
3087 elr->lr_super = sb;
3088 elr->lr_sbi = sbi;
3089 elr->lr_next_group = start;
3090
3091 /*
3092 * Randomize first schedule time of the request to
3093 * spread the inode table initialization requests
3094 * better.
3095 */
3096 elr->lr_next_sched = jiffies + (prandom_u32() %
3097 (EXT4_DEF_LI_MAX_START_DELAY * HZ));
3098 return elr;
3099 }
3100
3101 int ext4_register_li_request(struct super_block *sb,
3102 ext4_group_t first_not_zeroed)
3103 {
3104 struct ext4_sb_info *sbi = EXT4_SB(sb);
3105 struct ext4_li_request *elr = NULL;
3106 ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count;
3107 int ret = 0;
3108
3109 mutex_lock(&ext4_li_mtx);
3110 if (sbi->s_li_request != NULL) {
3111 /*
3112 * Reset timeout so it can be computed again, because
3113 * s_li_wait_mult might have changed.
3114 */
3115 sbi->s_li_request->lr_timeout = 0;
3116 goto out;
3117 }
3118
3119 if (first_not_zeroed == ngroups ||
3120 (sb->s_flags & MS_RDONLY) ||
3121 !test_opt(sb, INIT_INODE_TABLE))
3122 goto out;
3123
3124 elr = ext4_li_request_new(sb, first_not_zeroed);
3125 if (!elr) {
3126 ret = -ENOMEM;
3127 goto out;
3128 }
3129
3130 if (NULL == ext4_li_info) {
3131 ret = ext4_li_info_new();
3132 if (ret)
3133 goto out;
3134 }
3135
3136 mutex_lock(&ext4_li_info->li_list_mtx);
3137 list_add(&elr->lr_request, &ext4_li_info->li_request_list);
3138 mutex_unlock(&ext4_li_info->li_list_mtx);
3139
3140 sbi->s_li_request = elr;
3141 /*
3142 * set elr to NULL here since it has been inserted to
3143 * the request_list and the removal and free of it is
3144 * handled by ext4_clear_request_list from now on.
3145 */
3146 elr = NULL;
3147
3148 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
3149 ret = ext4_run_lazyinit_thread();
3150 if (ret)
3151 goto out;
3152 }
3153 out:
3154 mutex_unlock(&ext4_li_mtx);
3155 if (ret)
3156 kfree(elr);
3157 return ret;
3158 }
3159
3160 /*
3161 * We do not need to lock anything since this is called on
3162 * module unload.
3163 */
3164 static void ext4_destroy_lazyinit_thread(void)
3165 {
3166 /*
3167 * If thread exited earlier
3168 * there's nothing to be done.
3169 */
3170 if (!ext4_li_info || !ext4_lazyinit_task)
3171 return;
3172
3173 kthread_stop(ext4_lazyinit_task);
3174 }
3175
3176 static int set_journal_csum_feature_set(struct super_block *sb)
3177 {
3178 int ret = 1;
3179 int compat, incompat;
3180 struct ext4_sb_info *sbi = EXT4_SB(sb);
3181
3182 if (ext4_has_metadata_csum(sb)) {
3183 /* journal checksum v3 */
3184 compat = 0;
3185 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3;
3186 } else {
3187 /* journal checksum v1 */
3188 compat = JBD2_FEATURE_COMPAT_CHECKSUM;
3189 incompat = 0;
3190 }
3191
3192 jbd2_journal_clear_features(sbi->s_journal,
3193 JBD2_FEATURE_COMPAT_CHECKSUM, 0,
3194 JBD2_FEATURE_INCOMPAT_CSUM_V3 |
3195 JBD2_FEATURE_INCOMPAT_CSUM_V2);
3196 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
3197 ret = jbd2_journal_set_features(sbi->s_journal,
3198 compat, 0,
3199 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
3200 incompat);
3201 } else if (test_opt(sb, JOURNAL_CHECKSUM)) {
3202 ret = jbd2_journal_set_features(sbi->s_journal,
3203 compat, 0,
3204 incompat);
3205 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3206 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3207 } else {
3208 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3209 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3210 }
3211
3212 return ret;
3213 }
3214
3215 /*
3216 * Note: calculating the overhead so we can be compatible with
3217 * historical BSD practice is quite difficult in the face of
3218 * clusters/bigalloc. This is because multiple metadata blocks from
3219 * different block group can end up in the same allocation cluster.
3220 * Calculating the exact overhead in the face of clustered allocation
3221 * requires either O(all block bitmaps) in memory or O(number of block
3222 * groups**2) in time. We will still calculate the superblock for
3223 * older file systems --- and if we come across with a bigalloc file
3224 * system with zero in s_overhead_clusters the estimate will be close to
3225 * correct especially for very large cluster sizes --- but for newer
3226 * file systems, it's better to calculate this figure once at mkfs
3227 * time, and store it in the superblock. If the superblock value is
3228 * present (even for non-bigalloc file systems), we will use it.
3229 */
3230 static int count_overhead(struct super_block *sb, ext4_group_t grp,
3231 char *buf)
3232 {
3233 struct ext4_sb_info *sbi = EXT4_SB(sb);
3234 struct ext4_group_desc *gdp;
3235 ext4_fsblk_t first_block, last_block, b;
3236 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3237 int s, j, count = 0;
3238
3239 if (!ext4_has_feature_bigalloc(sb))
3240 return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) +
3241 sbi->s_itb_per_group + 2);
3242
3243 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) +
3244 (grp * EXT4_BLOCKS_PER_GROUP(sb));
3245 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1;
3246 for (i = 0; i < ngroups; i++) {
3247 gdp = ext4_get_group_desc(sb, i, NULL);
3248 b = ext4_block_bitmap(sb, gdp);
3249 if (b >= first_block && b <= last_block) {
3250 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3251 count++;
3252 }
3253 b = ext4_inode_bitmap(sb, gdp);
3254 if (b >= first_block && b <= last_block) {
3255 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3256 count++;
3257 }
3258 b = ext4_inode_table(sb, gdp);
3259 if (b >= first_block && b + sbi->s_itb_per_group <= last_block)
3260 for (j = 0; j < sbi->s_itb_per_group; j++, b++) {
3261 int c = EXT4_B2C(sbi, b - first_block);
3262 ext4_set_bit(c, buf);
3263 count++;
3264 }
3265 if (i != grp)
3266 continue;
3267 s = 0;
3268 if (ext4_bg_has_super(sb, grp)) {
3269 ext4_set_bit(s++, buf);
3270 count++;
3271 }
3272 j = ext4_bg_num_gdb(sb, grp);
3273 if (s + j > EXT4_BLOCKS_PER_GROUP(sb)) {
3274 ext4_error(sb, "Invalid number of block group "
3275 "descriptor blocks: %d", j);
3276 j = EXT4_BLOCKS_PER_GROUP(sb) - s;
3277 }
3278 count += j;
3279 for (; j > 0; j--)
3280 ext4_set_bit(EXT4_B2C(sbi, s++), buf);
3281 }
3282 if (!count)
3283 return 0;
3284 return EXT4_CLUSTERS_PER_GROUP(sb) -
3285 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8);
3286 }
3287
3288 /*
3289 * Compute the overhead and stash it in sbi->s_overhead
3290 */
3291 int ext4_calculate_overhead(struct super_block *sb)
3292 {
3293 struct ext4_sb_info *sbi = EXT4_SB(sb);
3294 struct ext4_super_block *es = sbi->s_es;
3295 struct inode *j_inode;
3296 unsigned int j_blocks, j_inum = le32_to_cpu(es->s_journal_inum);
3297 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3298 ext4_fsblk_t overhead = 0;
3299 char *buf = (char *) get_zeroed_page(GFP_NOFS);
3300
3301 if (!buf)
3302 return -ENOMEM;
3303
3304 /*
3305 * Compute the overhead (FS structures). This is constant
3306 * for a given filesystem unless the number of block groups
3307 * changes so we cache the previous value until it does.
3308 */
3309
3310 /*
3311 * All of the blocks before first_data_block are overhead
3312 */
3313 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
3314
3315 /*
3316 * Add the overhead found in each block group
3317 */
3318 for (i = 0; i < ngroups; i++) {
3319 int blks;
3320
3321 blks = count_overhead(sb, i, buf);
3322 overhead += blks;
3323 if (blks)
3324 memset(buf, 0, PAGE_SIZE);
3325 cond_resched();
3326 }
3327
3328 /*
3329 * Add the internal journal blocks whether the journal has been
3330 * loaded or not
3331 */
3332 if (sbi->s_journal && !sbi->journal_bdev)
3333 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_maxlen);
3334 else if (ext4_has_feature_journal(sb) && !sbi->s_journal) {
3335 j_inode = ext4_get_journal_inode(sb, j_inum);
3336 if (j_inode) {
3337 j_blocks = j_inode->i_size >> sb->s_blocksize_bits;
3338 overhead += EXT4_NUM_B2C(sbi, j_blocks);
3339 iput(j_inode);
3340 } else {
3341 ext4_msg(sb, KERN_ERR, "can't get journal size");
3342 }
3343 }
3344 sbi->s_overhead = overhead;
3345 smp_wmb();
3346 free_page((unsigned long) buf);
3347 return 0;
3348 }
3349
3350 static void ext4_set_resv_clusters(struct super_block *sb)
3351 {
3352 ext4_fsblk_t resv_clusters;
3353 struct ext4_sb_info *sbi = EXT4_SB(sb);
3354
3355 /*
3356 * There's no need to reserve anything when we aren't using extents.
3357 * The space estimates are exact, there are no unwritten extents,
3358 * hole punching doesn't need new metadata... This is needed especially
3359 * to keep ext2/3 backward compatibility.
3360 */
3361 if (!ext4_has_feature_extents(sb))
3362 return;
3363 /*
3364 * By default we reserve 2% or 4096 clusters, whichever is smaller.
3365 * This should cover the situations where we can not afford to run
3366 * out of space like for example punch hole, or converting
3367 * unwritten extents in delalloc path. In most cases such
3368 * allocation would require 1, or 2 blocks, higher numbers are
3369 * very rare.
3370 */
3371 resv_clusters = (ext4_blocks_count(sbi->s_es) >>
3372 sbi->s_cluster_bits);
3373
3374 do_div(resv_clusters, 50);
3375 resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096);
3376
3377 atomic64_set(&sbi->s_resv_clusters, resv_clusters);
3378 }
3379
3380 static int ext4_fill_super(struct super_block *sb, void *data, int silent)
3381 {
3382 char *orig_data = kstrdup(data, GFP_KERNEL);
3383 struct buffer_head *bh;
3384 struct ext4_super_block *es = NULL;
3385 struct ext4_sb_info *sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
3386 ext4_fsblk_t block;
3387 ext4_fsblk_t sb_block = get_sb_block(&data);
3388 ext4_fsblk_t logical_sb_block;
3389 unsigned long offset = 0;
3390 unsigned long journal_devnum = 0;
3391 unsigned long def_mount_opts;
3392 struct inode *root;
3393 const char *descr;
3394 int ret = -ENOMEM;
3395 int blocksize, clustersize;
3396 unsigned int db_count;
3397 unsigned int i;
3398 int needs_recovery, has_huge_files, has_bigalloc;
3399 __u64 blocks_count;
3400 int err = 0;
3401 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
3402 ext4_group_t first_not_zeroed;
3403
3404 if ((data && !orig_data) || !sbi)
3405 goto out_free_base;
3406
3407 sbi->s_blockgroup_lock =
3408 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
3409 if (!sbi->s_blockgroup_lock)
3410 goto out_free_base;
3411
3412 sb->s_fs_info = sbi;
3413 sbi->s_sb = sb;
3414 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
3415 sbi->s_sb_block = sb_block;
3416 if (sb->s_bdev->bd_part)
3417 sbi->s_sectors_written_start =
3418 part_stat_read(sb->s_bdev->bd_part, sectors[1]);
3419
3420 /* Cleanup superblock name */
3421 strreplace(sb->s_id, '/', '!');
3422
3423 /* -EINVAL is default */
3424 ret = -EINVAL;
3425 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
3426 if (!blocksize) {
3427 ext4_msg(sb, KERN_ERR, "unable to set blocksize");
3428 goto out_fail;
3429 }
3430
3431 /*
3432 * The ext4 superblock will not be buffer aligned for other than 1kB
3433 * block sizes. We need to calculate the offset from buffer start.
3434 */
3435 if (blocksize != EXT4_MIN_BLOCK_SIZE) {
3436 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3437 offset = do_div(logical_sb_block, blocksize);
3438 } else {
3439 logical_sb_block = sb_block;
3440 }
3441
3442 if (!(bh = sb_bread_unmovable(sb, logical_sb_block))) {
3443 ext4_msg(sb, KERN_ERR, "unable to read superblock");
3444 goto out_fail;
3445 }
3446 /*
3447 * Note: s_es must be initialized as soon as possible because
3448 * some ext4 macro-instructions depend on its value
3449 */
3450 es = (struct ext4_super_block *) (bh->b_data + offset);
3451 sbi->s_es = es;
3452 sb->s_magic = le16_to_cpu(es->s_magic);
3453 if (sb->s_magic != EXT4_SUPER_MAGIC)
3454 goto cantfind_ext4;
3455 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
3456
3457 /* Warn if metadata_csum and gdt_csum are both set. */
3458 if (ext4_has_feature_metadata_csum(sb) &&
3459 ext4_has_feature_gdt_csum(sb))
3460 ext4_warning(sb, "metadata_csum and uninit_bg are "
3461 "redundant flags; please run fsck.");
3462
3463 /* Check for a known checksum algorithm */
3464 if (!ext4_verify_csum_type(sb, es)) {
3465 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3466 "unknown checksum algorithm.");
3467 silent = 1;
3468 goto cantfind_ext4;
3469 }
3470
3471 /* Load the checksum driver */
3472 if (ext4_has_feature_metadata_csum(sb) ||
3473 ext4_has_feature_ea_inode(sb)) {
3474 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
3475 if (IS_ERR(sbi->s_chksum_driver)) {
3476 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver.");
3477 ret = PTR_ERR(sbi->s_chksum_driver);
3478 sbi->s_chksum_driver = NULL;
3479 goto failed_mount;
3480 }
3481 }
3482
3483 /* Check superblock checksum */
3484 if (!ext4_superblock_csum_verify(sb, es)) {
3485 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3486 "invalid superblock checksum. Run e2fsck?");
3487 silent = 1;
3488 ret = -EFSBADCRC;
3489 goto cantfind_ext4;
3490 }
3491
3492 /* Precompute checksum seed for all metadata */
3493 if (ext4_has_feature_csum_seed(sb))
3494 sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed);
3495 else if (ext4_has_metadata_csum(sb) || ext4_has_feature_ea_inode(sb))
3496 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid,
3497 sizeof(es->s_uuid));
3498
3499 /* Set defaults before we parse the mount options */
3500 def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
3501 set_opt(sb, INIT_INODE_TABLE);
3502 if (def_mount_opts & EXT4_DEFM_DEBUG)
3503 set_opt(sb, DEBUG);
3504 if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
3505 set_opt(sb, GRPID);
3506 if (def_mount_opts & EXT4_DEFM_UID16)
3507 set_opt(sb, NO_UID32);
3508 /* xattr user namespace & acls are now defaulted on */
3509 set_opt(sb, XATTR_USER);
3510 #ifdef CONFIG_EXT4_FS_POSIX_ACL
3511 set_opt(sb, POSIX_ACL);
3512 #endif
3513 /* don't forget to enable journal_csum when metadata_csum is enabled. */
3514 if (ext4_has_metadata_csum(sb))
3515 set_opt(sb, JOURNAL_CHECKSUM);
3516
3517 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
3518 set_opt(sb, JOURNAL_DATA);
3519 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
3520 set_opt(sb, ORDERED_DATA);
3521 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
3522 set_opt(sb, WRITEBACK_DATA);
3523
3524 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC)
3525 set_opt(sb, ERRORS_PANIC);
3526 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE)
3527 set_opt(sb, ERRORS_CONT);
3528 else
3529 set_opt(sb, ERRORS_RO);
3530 /* block_validity enabled by default; disable with noblock_validity */
3531 set_opt(sb, BLOCK_VALIDITY);
3532 if (def_mount_opts & EXT4_DEFM_DISCARD)
3533 set_opt(sb, DISCARD);
3534
3535 sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid));
3536 sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid));
3537 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
3538 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
3539 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
3540
3541 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
3542 set_opt(sb, BARRIER);
3543
3544 /*
3545 * enable delayed allocation by default
3546 * Use -o nodelalloc to turn it off
3547 */
3548 if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) &&
3549 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
3550 set_opt(sb, DELALLOC);
3551
3552 /*
3553 * set default s_li_wait_mult for lazyinit, for the case there is
3554 * no mount option specified.
3555 */
3556 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
3557
3558 if (sbi->s_es->s_mount_opts[0]) {
3559 char *s_mount_opts = kstrndup(sbi->s_es->s_mount_opts,
3560 sizeof(sbi->s_es->s_mount_opts),
3561 GFP_KERNEL);
3562 if (!s_mount_opts)
3563 goto failed_mount;
3564 if (!parse_options(s_mount_opts, sb, &journal_devnum,
3565 &journal_ioprio, 0)) {
3566 ext4_msg(sb, KERN_WARNING,
3567 "failed to parse options in superblock: %s",
3568 s_mount_opts);
3569 }
3570 kfree(s_mount_opts);
3571 }
3572 sbi->s_def_mount_opt = sbi->s_mount_opt;
3573 if (!parse_options((char *) data, sb, &journal_devnum,
3574 &journal_ioprio, 0))
3575 goto failed_mount;
3576
3577 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
3578 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting "
3579 "with data=journal disables delayed "
3580 "allocation and O_DIRECT support!\n");
3581 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
3582 ext4_msg(sb, KERN_ERR, "can't mount with "
3583 "both data=journal and delalloc");
3584 goto failed_mount;
3585 }
3586 if (test_opt(sb, DIOREAD_NOLOCK)) {
3587 ext4_msg(sb, KERN_ERR, "can't mount with "
3588 "both data=journal and dioread_nolock");
3589 goto failed_mount;
3590 }
3591 if (test_opt(sb, DAX)) {
3592 ext4_msg(sb, KERN_ERR, "can't mount with "
3593 "both data=journal and dax");
3594 goto failed_mount;
3595 }
3596 if (ext4_has_feature_encrypt(sb)) {
3597 ext4_msg(sb, KERN_WARNING,
3598 "encrypted files will use data=ordered "
3599 "instead of data journaling mode");
3600 }
3601 if (test_opt(sb, DELALLOC))
3602 clear_opt(sb, DELALLOC);
3603 } else {
3604 sb->s_iflags |= SB_I_CGROUPWB;
3605 }
3606
3607 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
3608 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
3609
3610 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
3611 (ext4_has_compat_features(sb) ||
3612 ext4_has_ro_compat_features(sb) ||
3613 ext4_has_incompat_features(sb)))
3614 ext4_msg(sb, KERN_WARNING,
3615 "feature flags set on rev 0 fs, "
3616 "running e2fsck is recommended");
3617
3618 if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) {
3619 set_opt2(sb, HURD_COMPAT);
3620 if (ext4_has_feature_64bit(sb)) {
3621 ext4_msg(sb, KERN_ERR,
3622 "The Hurd can't support 64-bit file systems");
3623 goto failed_mount;
3624 }
3625
3626 /*
3627 * ea_inode feature uses l_i_version field which is not
3628 * available in HURD_COMPAT mode.
3629 */
3630 if (ext4_has_feature_ea_inode(sb)) {
3631 ext4_msg(sb, KERN_ERR,
3632 "ea_inode feature is not supported for Hurd");
3633 goto failed_mount;
3634 }
3635 }
3636
3637 if (IS_EXT2_SB(sb)) {
3638 if (ext2_feature_set_ok(sb))
3639 ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
3640 "using the ext4 subsystem");
3641 else {
3642 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
3643 "to feature incompatibilities");
3644 goto failed_mount;
3645 }
3646 }
3647
3648 if (IS_EXT3_SB(sb)) {
3649 if (ext3_feature_set_ok(sb))
3650 ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
3651 "using the ext4 subsystem");
3652 else {
3653 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
3654 "to feature incompatibilities");
3655 goto failed_mount;
3656 }
3657 }
3658
3659 /*
3660 * Check feature flags regardless of the revision level, since we
3661 * previously didn't change the revision level when setting the flags,
3662 * so there is a chance incompat flags are set on a rev 0 filesystem.
3663 */
3664 if (!ext4_feature_set_ok(sb, (sb->s_flags & MS_RDONLY)))
3665 goto failed_mount;
3666
3667 blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
3668 if (blocksize < EXT4_MIN_BLOCK_SIZE ||
3669 blocksize > EXT4_MAX_BLOCK_SIZE) {
3670 ext4_msg(sb, KERN_ERR,
3671 "Unsupported filesystem blocksize %d (%d log_block_size)",
3672 blocksize, le32_to_cpu(es->s_log_block_size));
3673 goto failed_mount;
3674 }
3675 if (le32_to_cpu(es->s_log_block_size) >
3676 (EXT4_MAX_BLOCK_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
3677 ext4_msg(sb, KERN_ERR,
3678 "Invalid log block size: %u",
3679 le32_to_cpu(es->s_log_block_size));
3680 goto failed_mount;
3681 }
3682
3683 if (le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) > (blocksize / 4)) {
3684 ext4_msg(sb, KERN_ERR,
3685 "Number of reserved GDT blocks insanely large: %d",
3686 le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks));
3687 goto failed_mount;
3688 }
3689
3690 if (sbi->s_mount_opt & EXT4_MOUNT_DAX) {
3691 err = bdev_dax_supported(sb, blocksize);
3692 if (err)
3693 goto failed_mount;
3694 }
3695
3696 if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) {
3697 ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d",
3698 es->s_encryption_level);
3699 goto failed_mount;
3700 }
3701
3702 if (sb->s_blocksize != blocksize) {
3703 /* Validate the filesystem blocksize */
3704 if (!sb_set_blocksize(sb, blocksize)) {
3705 ext4_msg(sb, KERN_ERR, "bad block size %d",
3706 blocksize);
3707 goto failed_mount;
3708 }
3709
3710 brelse(bh);
3711 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3712 offset = do_div(logical_sb_block, blocksize);
3713 bh = sb_bread_unmovable(sb, logical_sb_block);
3714 if (!bh) {
3715 ext4_msg(sb, KERN_ERR,
3716 "Can't read superblock on 2nd try");
3717 goto failed_mount;
3718 }
3719 es = (struct ext4_super_block *)(bh->b_data + offset);
3720 sbi->s_es = es;
3721 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
3722 ext4_msg(sb, KERN_ERR,
3723 "Magic mismatch, very weird!");
3724 goto failed_mount;
3725 }
3726 }
3727
3728 has_huge_files = ext4_has_feature_huge_file(sb);
3729 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
3730 has_huge_files);
3731 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
3732
3733 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
3734 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
3735 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
3736 } else {
3737 sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
3738 sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
3739 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
3740 (!is_power_of_2(sbi->s_inode_size)) ||
3741 (sbi->s_inode_size > blocksize)) {
3742 ext4_msg(sb, KERN_ERR,
3743 "unsupported inode size: %d",
3744 sbi->s_inode_size);
3745 goto failed_mount;
3746 }
3747 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE)
3748 sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2);
3749 }
3750
3751 sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
3752 if (ext4_has_feature_64bit(sb)) {
3753 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
3754 sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
3755 !is_power_of_2(sbi->s_desc_size)) {
3756 ext4_msg(sb, KERN_ERR,
3757 "unsupported descriptor size %lu",
3758 sbi->s_desc_size);
3759 goto failed_mount;
3760 }
3761 } else
3762 sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
3763
3764 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
3765 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
3766
3767 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb);
3768 if (sbi->s_inodes_per_block == 0)
3769 goto cantfind_ext4;
3770 if (sbi->s_inodes_per_group < sbi->s_inodes_per_block ||
3771 sbi->s_inodes_per_group > blocksize * 8) {
3772 ext4_msg(sb, KERN_ERR, "invalid inodes per group: %lu\n",
3773 sbi->s_blocks_per_group);
3774 goto failed_mount;
3775 }
3776 sbi->s_itb_per_group = sbi->s_inodes_per_group /
3777 sbi->s_inodes_per_block;
3778 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb);
3779 sbi->s_sbh = bh;
3780 sbi->s_mount_state = le16_to_cpu(es->s_state);
3781 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
3782 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
3783
3784 for (i = 0; i < 4; i++)
3785 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
3786 sbi->s_def_hash_version = es->s_def_hash_version;
3787 if (ext4_has_feature_dir_index(sb)) {
3788 i = le32_to_cpu(es->s_flags);
3789 if (i & EXT2_FLAGS_UNSIGNED_HASH)
3790 sbi->s_hash_unsigned = 3;
3791 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
3792 #ifdef __CHAR_UNSIGNED__
3793 if (!(sb->s_flags & MS_RDONLY))
3794 es->s_flags |=
3795 cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
3796 sbi->s_hash_unsigned = 3;
3797 #else
3798 if (!(sb->s_flags & MS_RDONLY))
3799 es->s_flags |=
3800 cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
3801 #endif
3802 }
3803 }
3804
3805 /* Handle clustersize */
3806 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size);
3807 has_bigalloc = ext4_has_feature_bigalloc(sb);
3808 if (has_bigalloc) {
3809 if (clustersize < blocksize) {
3810 ext4_msg(sb, KERN_ERR,
3811 "cluster size (%d) smaller than "
3812 "block size (%d)", clustersize, blocksize);
3813 goto failed_mount;
3814 }
3815 if (le32_to_cpu(es->s_log_cluster_size) >
3816 (EXT4_MAX_CLUSTER_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
3817 ext4_msg(sb, KERN_ERR,
3818 "Invalid log cluster size: %u",
3819 le32_to_cpu(es->s_log_cluster_size));
3820 goto failed_mount;
3821 }
3822 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) -
3823 le32_to_cpu(es->s_log_block_size);
3824 sbi->s_clusters_per_group =
3825 le32_to_cpu(es->s_clusters_per_group);
3826 if (sbi->s_clusters_per_group > blocksize * 8) {
3827 ext4_msg(sb, KERN_ERR,
3828 "#clusters per group too big: %lu",
3829 sbi->s_clusters_per_group);
3830 goto failed_mount;
3831 }
3832 if (sbi->s_blocks_per_group !=
3833 (sbi->s_clusters_per_group * (clustersize / blocksize))) {
3834 ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and "
3835 "clusters per group (%lu) inconsistent",
3836 sbi->s_blocks_per_group,
3837 sbi->s_clusters_per_group);
3838 goto failed_mount;
3839 }
3840 } else {
3841 if (clustersize != blocksize) {
3842 ext4_warning(sb, "fragment/cluster size (%d) != "
3843 "block size (%d)", clustersize,
3844 blocksize);
3845 clustersize = blocksize;
3846 }
3847 if (sbi->s_blocks_per_group > blocksize * 8) {
3848 ext4_msg(sb, KERN_ERR,
3849 "#blocks per group too big: %lu",
3850 sbi->s_blocks_per_group);
3851 goto failed_mount;
3852 }
3853 sbi->s_clusters_per_group = sbi->s_blocks_per_group;
3854 sbi->s_cluster_bits = 0;
3855 }
3856 sbi->s_cluster_ratio = clustersize / blocksize;
3857
3858 /* Do we have standard group size of clustersize * 8 blocks ? */
3859 if (sbi->s_blocks_per_group == clustersize << 3)
3860 set_opt2(sb, STD_GROUP_SIZE);
3861
3862 /*
3863 * Test whether we have more sectors than will fit in sector_t,
3864 * and whether the max offset is addressable by the page cache.
3865 */
3866 err = generic_check_addressable(sb->s_blocksize_bits,
3867 ext4_blocks_count(es));
3868 if (err) {
3869 ext4_msg(sb, KERN_ERR, "filesystem"
3870 " too large to mount safely on this system");
3871 if (sizeof(sector_t) < 8)
3872 ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled");
3873 goto failed_mount;
3874 }
3875
3876 if (EXT4_BLOCKS_PER_GROUP(sb) == 0)
3877 goto cantfind_ext4;
3878
3879 /* check blocks count against device size */
3880 blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
3881 if (blocks_count && ext4_blocks_count(es) > blocks_count) {
3882 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
3883 "exceeds size of device (%llu blocks)",
3884 ext4_blocks_count(es), blocks_count);
3885 goto failed_mount;
3886 }
3887
3888 /*
3889 * It makes no sense for the first data block to be beyond the end
3890 * of the filesystem.
3891 */
3892 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
3893 ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
3894 "block %u is beyond end of filesystem (%llu)",
3895 le32_to_cpu(es->s_first_data_block),
3896 ext4_blocks_count(es));
3897 goto failed_mount;
3898 }
3899 blocks_count = (ext4_blocks_count(es) -
3900 le32_to_cpu(es->s_first_data_block) +
3901 EXT4_BLOCKS_PER_GROUP(sb) - 1);
3902 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
3903 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
3904 ext4_msg(sb, KERN_WARNING, "groups count too large: %u "
3905 "(block count %llu, first data block %u, "
3906 "blocks per group %lu)", sbi->s_groups_count,
3907 ext4_blocks_count(es),
3908 le32_to_cpu(es->s_first_data_block),
3909 EXT4_BLOCKS_PER_GROUP(sb));
3910 goto failed_mount;
3911 }
3912 sbi->s_groups_count = blocks_count;
3913 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
3914 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
3915 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
3916 EXT4_DESC_PER_BLOCK(sb);
3917 if (ext4_has_feature_meta_bg(sb)) {
3918 if (le32_to_cpu(es->s_first_meta_bg) > db_count) {
3919 ext4_msg(sb, KERN_WARNING,
3920 "first meta block group too large: %u "
3921 "(group descriptor block count %u)",
3922 le32_to_cpu(es->s_first_meta_bg), db_count);
3923 goto failed_mount;
3924 }
3925 }
3926 sbi->s_group_desc = kvmalloc(db_count *
3927 sizeof(struct buffer_head *),
3928 GFP_KERNEL);
3929 if (sbi->s_group_desc == NULL) {
3930 ext4_msg(sb, KERN_ERR, "not enough memory");
3931 ret = -ENOMEM;
3932 goto failed_mount;
3933 }
3934
3935 bgl_lock_init(sbi->s_blockgroup_lock);
3936
3937 /* Pre-read the descriptors into the buffer cache */
3938 for (i = 0; i < db_count; i++) {
3939 block = descriptor_loc(sb, logical_sb_block, i);
3940 sb_breadahead(sb, block);
3941 }
3942
3943 for (i = 0; i < db_count; i++) {
3944 block = descriptor_loc(sb, logical_sb_block, i);
3945 sbi->s_group_desc[i] = sb_bread_unmovable(sb, block);
3946 if (!sbi->s_group_desc[i]) {
3947 ext4_msg(sb, KERN_ERR,
3948 "can't read group descriptor %d", i);
3949 db_count = i;
3950 goto failed_mount2;
3951 }
3952 }
3953 if (!ext4_check_descriptors(sb, logical_sb_block, &first_not_zeroed)) {
3954 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
3955 ret = -EFSCORRUPTED;
3956 goto failed_mount2;
3957 }
3958
3959 sbi->s_gdb_count = db_count;
3960 get_random_bytes(&sbi->s_next_generation, sizeof(u32));
3961 spin_lock_init(&sbi->s_next_gen_lock);
3962
3963 setup_timer(&sbi->s_err_report, print_daily_error_info,
3964 (unsigned long) sb);
3965
3966 /* Register extent status tree shrinker */
3967 if (ext4_es_register_shrinker(sbi))
3968 goto failed_mount3;
3969
3970 sbi->s_stripe = ext4_get_stripe_size(sbi);
3971 sbi->s_extent_max_zeroout_kb = 32;
3972
3973 /*
3974 * set up enough so that it can read an inode
3975 */
3976 sb->s_op = &ext4_sops;
3977 sb->s_export_op = &ext4_export_ops;
3978 sb->s_xattr = ext4_xattr_handlers;
3979 sb->s_cop = &ext4_cryptops;
3980 #ifdef CONFIG_QUOTA
3981 sb->dq_op = &ext4_quota_operations;
3982 if (ext4_has_feature_quota(sb))
3983 sb->s_qcop = &dquot_quotactl_sysfile_ops;
3984 else
3985 sb->s_qcop = &ext4_qctl_operations;
3986 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
3987 #endif
3988 memcpy(&sb->s_uuid, es->s_uuid, sizeof(es->s_uuid));
3989
3990 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
3991 mutex_init(&sbi->s_orphan_lock);
3992
3993 sb->s_root = NULL;
3994
3995 needs_recovery = (es->s_last_orphan != 0 ||
3996 ext4_has_feature_journal_needs_recovery(sb));
3997
3998 if (ext4_has_feature_mmp(sb) && !(sb->s_flags & MS_RDONLY))
3999 if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block)))
4000 goto failed_mount3a;
4001
4002 /*
4003 * The first inode we look at is the journal inode. Don't try
4004 * root first: it may be modified in the journal!
4005 */
4006 if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) {
4007 err = ext4_load_journal(sb, es, journal_devnum);
4008 if (err)
4009 goto failed_mount3a;
4010 } else if (test_opt(sb, NOLOAD) && !(sb->s_flags & MS_RDONLY) &&
4011 ext4_has_feature_journal_needs_recovery(sb)) {
4012 ext4_msg(sb, KERN_ERR, "required journal recovery "
4013 "suppressed and not mounted read-only");
4014 goto failed_mount_wq;
4015 } else {
4016 /* Nojournal mode, all journal mount options are illegal */
4017 if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) {
4018 ext4_msg(sb, KERN_ERR, "can't mount with "
4019 "journal_checksum, fs mounted w/o journal");
4020 goto failed_mount_wq;
4021 }
4022 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4023 ext4_msg(sb, KERN_ERR, "can't mount with "
4024 "journal_async_commit, fs mounted w/o journal");
4025 goto failed_mount_wq;
4026 }
4027 if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) {
4028 ext4_msg(sb, KERN_ERR, "can't mount with "
4029 "commit=%lu, fs mounted w/o journal",
4030 sbi->s_commit_interval / HZ);
4031 goto failed_mount_wq;
4032 }
4033 if (EXT4_MOUNT_DATA_FLAGS &
4034 (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) {
4035 ext4_msg(sb, KERN_ERR, "can't mount with "
4036 "data=, fs mounted w/o journal");
4037 goto failed_mount_wq;
4038 }
4039 sbi->s_def_mount_opt &= EXT4_MOUNT_JOURNAL_CHECKSUM;
4040 clear_opt(sb, JOURNAL_CHECKSUM);
4041 clear_opt(sb, DATA_FLAGS);
4042 sbi->s_journal = NULL;
4043 needs_recovery = 0;
4044 goto no_journal;
4045 }
4046
4047 if (ext4_has_feature_64bit(sb) &&
4048 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
4049 JBD2_FEATURE_INCOMPAT_64BIT)) {
4050 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
4051 goto failed_mount_wq;
4052 }
4053
4054 if (!set_journal_csum_feature_set(sb)) {
4055 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum "
4056 "feature set");
4057 goto failed_mount_wq;
4058 }
4059
4060 /* We have now updated the journal if required, so we can
4061 * validate the data journaling mode. */
4062 switch (test_opt(sb, DATA_FLAGS)) {
4063 case 0:
4064 /* No mode set, assume a default based on the journal
4065 * capabilities: ORDERED_DATA if the journal can
4066 * cope, else JOURNAL_DATA
4067 */
4068 if (jbd2_journal_check_available_features
4069 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE))
4070 set_opt(sb, ORDERED_DATA);
4071 else
4072 set_opt(sb, JOURNAL_DATA);
4073 break;
4074
4075 case EXT4_MOUNT_ORDERED_DATA:
4076 case EXT4_MOUNT_WRITEBACK_DATA:
4077 if (!jbd2_journal_check_available_features
4078 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4079 ext4_msg(sb, KERN_ERR, "Journal does not support "
4080 "requested data journaling mode");
4081 goto failed_mount_wq;
4082 }
4083 default:
4084 break;
4085 }
4086
4087 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA &&
4088 test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4089 ext4_msg(sb, KERN_ERR, "can't mount with "
4090 "journal_async_commit in data=ordered mode");
4091 goto failed_mount_wq;
4092 }
4093
4094 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
4095
4096 sbi->s_journal->j_commit_callback = ext4_journal_commit_callback;
4097
4098 no_journal:
4099 if (!test_opt(sb, NO_MBCACHE)) {
4100 sbi->s_ea_block_cache = ext4_xattr_create_cache();
4101 if (!sbi->s_ea_block_cache) {
4102 ext4_msg(sb, KERN_ERR,
4103 "Failed to create ea_block_cache");
4104 goto failed_mount_wq;
4105 }
4106
4107 if (ext4_has_feature_ea_inode(sb)) {
4108 sbi->s_ea_inode_cache = ext4_xattr_create_cache();
4109 if (!sbi->s_ea_inode_cache) {
4110 ext4_msg(sb, KERN_ERR,
4111 "Failed to create ea_inode_cache");
4112 goto failed_mount_wq;
4113 }
4114 }
4115 }
4116
4117 if ((DUMMY_ENCRYPTION_ENABLED(sbi) || ext4_has_feature_encrypt(sb)) &&
4118 (blocksize != PAGE_SIZE)) {
4119 ext4_msg(sb, KERN_ERR,
4120 "Unsupported blocksize for fs encryption");
4121 goto failed_mount_wq;
4122 }
4123
4124 if (DUMMY_ENCRYPTION_ENABLED(sbi) && !(sb->s_flags & MS_RDONLY) &&
4125 !ext4_has_feature_encrypt(sb)) {
4126 ext4_set_feature_encrypt(sb);
4127 ext4_commit_super(sb, 1);
4128 }
4129
4130 /*
4131 * Get the # of file system overhead blocks from the
4132 * superblock if present.
4133 */
4134 if (es->s_overhead_clusters)
4135 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters);
4136 else {
4137 err = ext4_calculate_overhead(sb);
4138 if (err)
4139 goto failed_mount_wq;
4140 }
4141
4142 /*
4143 * The maximum number of concurrent works can be high and
4144 * concurrency isn't really necessary. Limit it to 1.
4145 */
4146 EXT4_SB(sb)->rsv_conversion_wq =
4147 alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
4148 if (!EXT4_SB(sb)->rsv_conversion_wq) {
4149 printk(KERN_ERR "EXT4-fs: failed to create workqueue\n");
4150 ret = -ENOMEM;
4151 goto failed_mount4;
4152 }
4153
4154 /*
4155 * The jbd2_journal_load will have done any necessary log recovery,
4156 * so we can safely mount the rest of the filesystem now.
4157 */
4158
4159 root = ext4_iget(sb, EXT4_ROOT_INO);
4160 if (IS_ERR(root)) {
4161 ext4_msg(sb, KERN_ERR, "get root inode failed");
4162 ret = PTR_ERR(root);
4163 root = NULL;
4164 goto failed_mount4;
4165 }
4166 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
4167 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
4168 iput(root);
4169 goto failed_mount4;
4170 }
4171 sb->s_root = d_make_root(root);
4172 if (!sb->s_root) {
4173 ext4_msg(sb, KERN_ERR, "get root dentry failed");
4174 ret = -ENOMEM;
4175 goto failed_mount4;
4176 }
4177
4178 if (ext4_setup_super(sb, es, sb->s_flags & MS_RDONLY))
4179 sb->s_flags |= MS_RDONLY;
4180
4181 /* determine the minimum size of new large inodes, if present */
4182 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE &&
4183 sbi->s_want_extra_isize == 0) {
4184 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
4185 EXT4_GOOD_OLD_INODE_SIZE;
4186 if (ext4_has_feature_extra_isize(sb)) {
4187 if (sbi->s_want_extra_isize <
4188 le16_to_cpu(es->s_want_extra_isize))
4189 sbi->s_want_extra_isize =
4190 le16_to_cpu(es->s_want_extra_isize);
4191 if (sbi->s_want_extra_isize <
4192 le16_to_cpu(es->s_min_extra_isize))
4193 sbi->s_want_extra_isize =
4194 le16_to_cpu(es->s_min_extra_isize);
4195 }
4196 }
4197 /* Check if enough inode space is available */
4198 if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize >
4199 sbi->s_inode_size) {
4200 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
4201 EXT4_GOOD_OLD_INODE_SIZE;
4202 ext4_msg(sb, KERN_INFO, "required extra inode space not"
4203 "available");
4204 }
4205
4206 ext4_set_resv_clusters(sb);
4207
4208 err = ext4_setup_system_zone(sb);
4209 if (err) {
4210 ext4_msg(sb, KERN_ERR, "failed to initialize system "
4211 "zone (%d)", err);
4212 goto failed_mount4a;
4213 }
4214
4215 ext4_ext_init(sb);
4216 err = ext4_mb_init(sb);
4217 if (err) {
4218 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
4219 err);
4220 goto failed_mount5;
4221 }
4222
4223 block = ext4_count_free_clusters(sb);
4224 ext4_free_blocks_count_set(sbi->s_es,
4225 EXT4_C2B(sbi, block));
4226 err = percpu_counter_init(&sbi->s_freeclusters_counter, block,
4227 GFP_KERNEL);
4228 if (!err) {
4229 unsigned long freei = ext4_count_free_inodes(sb);
4230 sbi->s_es->s_free_inodes_count = cpu_to_le32(freei);
4231 err = percpu_counter_init(&sbi->s_freeinodes_counter, freei,
4232 GFP_KERNEL);
4233 }
4234 if (!err)
4235 err = percpu_counter_init(&sbi->s_dirs_counter,
4236 ext4_count_dirs(sb), GFP_KERNEL);
4237 if (!err)
4238 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0,
4239 GFP_KERNEL);
4240 if (!err)
4241 err = percpu_init_rwsem(&sbi->s_journal_flag_rwsem);
4242
4243 if (err) {
4244 ext4_msg(sb, KERN_ERR, "insufficient memory");
4245 goto failed_mount6;
4246 }
4247
4248 if (ext4_has_feature_flex_bg(sb))
4249 if (!ext4_fill_flex_info(sb)) {
4250 ext4_msg(sb, KERN_ERR,
4251 "unable to initialize "
4252 "flex_bg meta info!");
4253 goto failed_mount6;
4254 }
4255
4256 err = ext4_register_li_request(sb, first_not_zeroed);
4257 if (err)
4258 goto failed_mount6;
4259
4260 err = ext4_register_sysfs(sb);
4261 if (err)
4262 goto failed_mount7;
4263
4264 #ifdef CONFIG_QUOTA
4265 /* Enable quota usage during mount. */
4266 if (ext4_has_feature_quota(sb) && !(sb->s_flags & MS_RDONLY)) {
4267 err = ext4_enable_quotas(sb);
4268 if (err)
4269 goto failed_mount8;
4270 }
4271 #endif /* CONFIG_QUOTA */
4272
4273 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
4274 ext4_orphan_cleanup(sb, es);
4275 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
4276 if (needs_recovery) {
4277 ext4_msg(sb, KERN_INFO, "recovery complete");
4278 ext4_mark_recovery_complete(sb, es);
4279 }
4280 if (EXT4_SB(sb)->s_journal) {
4281 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
4282 descr = " journalled data mode";
4283 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
4284 descr = " ordered data mode";
4285 else
4286 descr = " writeback data mode";
4287 } else
4288 descr = "out journal";
4289
4290 if (test_opt(sb, DISCARD)) {
4291 struct request_queue *q = bdev_get_queue(sb->s_bdev);
4292 if (!blk_queue_discard(q))
4293 ext4_msg(sb, KERN_WARNING,
4294 "mounting with \"discard\" option, but "
4295 "the device does not support discard");
4296 }
4297
4298 if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount"))
4299 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. "
4300 "Opts: %.*s%s%s", descr,
4301 (int) sizeof(sbi->s_es->s_mount_opts),
4302 sbi->s_es->s_mount_opts,
4303 *sbi->s_es->s_mount_opts ? "; " : "", orig_data);
4304
4305 if (es->s_error_count)
4306 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
4307
4308 /* Enable message ratelimiting. Default is 10 messages per 5 secs. */
4309 ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10);
4310 ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10);
4311 ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10);
4312
4313 kfree(orig_data);
4314 return 0;
4315
4316 cantfind_ext4:
4317 if (!silent)
4318 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
4319 goto failed_mount;
4320
4321 #ifdef CONFIG_QUOTA
4322 failed_mount8:
4323 ext4_unregister_sysfs(sb);
4324 #endif
4325 failed_mount7:
4326 ext4_unregister_li_request(sb);
4327 failed_mount6:
4328 ext4_mb_release(sb);
4329 if (sbi->s_flex_groups)
4330 kvfree(sbi->s_flex_groups);
4331 percpu_counter_destroy(&sbi->s_freeclusters_counter);
4332 percpu_counter_destroy(&sbi->s_freeinodes_counter);
4333 percpu_counter_destroy(&sbi->s_dirs_counter);
4334 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
4335 failed_mount5:
4336 ext4_ext_release(sb);
4337 ext4_release_system_zone(sb);
4338 failed_mount4a:
4339 dput(sb->s_root);
4340 sb->s_root = NULL;
4341 failed_mount4:
4342 ext4_msg(sb, KERN_ERR, "mount failed");
4343 if (EXT4_SB(sb)->rsv_conversion_wq)
4344 destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq);
4345 failed_mount_wq:
4346 if (sbi->s_ea_inode_cache) {
4347 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
4348 sbi->s_ea_inode_cache = NULL;
4349 }
4350 if (sbi->s_ea_block_cache) {
4351 ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
4352 sbi->s_ea_block_cache = NULL;
4353 }
4354 if (sbi->s_journal) {
4355 jbd2_journal_destroy(sbi->s_journal);
4356 sbi->s_journal = NULL;
4357 }
4358 failed_mount3a:
4359 ext4_es_unregister_shrinker(sbi);
4360 failed_mount3:
4361 del_timer_sync(&sbi->s_err_report);
4362 if (sbi->s_mmp_tsk)
4363 kthread_stop(sbi->s_mmp_tsk);
4364 failed_mount2:
4365 for (i = 0; i < db_count; i++)
4366 brelse(sbi->s_group_desc[i]);
4367 kvfree(sbi->s_group_desc);
4368 failed_mount:
4369 if (sbi->s_chksum_driver)
4370 crypto_free_shash(sbi->s_chksum_driver);
4371 #ifdef CONFIG_QUOTA
4372 for (i = 0; i < EXT4_MAXQUOTAS; i++)
4373 kfree(sbi->s_qf_names[i]);
4374 #endif
4375 ext4_blkdev_remove(sbi);
4376 brelse(bh);
4377 out_fail:
4378 sb->s_fs_info = NULL;
4379 kfree(sbi->s_blockgroup_lock);
4380 out_free_base:
4381 kfree(sbi);
4382 kfree(orig_data);
4383 return err ? err : ret;
4384 }
4385
4386 /*
4387 * Setup any per-fs journal parameters now. We'll do this both on
4388 * initial mount, once the journal has been initialised but before we've
4389 * done any recovery; and again on any subsequent remount.
4390 */
4391 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
4392 {
4393 struct ext4_sb_info *sbi = EXT4_SB(sb);
4394
4395 journal->j_commit_interval = sbi->s_commit_interval;
4396 journal->j_min_batch_time = sbi->s_min_batch_time;
4397 journal->j_max_batch_time = sbi->s_max_batch_time;
4398
4399 write_lock(&journal->j_state_lock);
4400 if (test_opt(sb, BARRIER))
4401 journal->j_flags |= JBD2_BARRIER;
4402 else
4403 journal->j_flags &= ~JBD2_BARRIER;
4404 if (test_opt(sb, DATA_ERR_ABORT))
4405 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
4406 else
4407 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
4408 write_unlock(&journal->j_state_lock);
4409 }
4410
4411 static struct inode *ext4_get_journal_inode(struct super_block *sb,
4412 unsigned int journal_inum)
4413 {
4414 struct inode *journal_inode;
4415
4416 /*
4417 * Test for the existence of a valid inode on disk. Bad things
4418 * happen if we iget() an unused inode, as the subsequent iput()
4419 * will try to delete it.
4420 */
4421 journal_inode = ext4_iget(sb, journal_inum);
4422 if (IS_ERR(journal_inode)) {
4423 ext4_msg(sb, KERN_ERR, "no journal found");
4424 return NULL;
4425 }
4426 if (!journal_inode->i_nlink) {
4427 make_bad_inode(journal_inode);
4428 iput(journal_inode);
4429 ext4_msg(sb, KERN_ERR, "journal inode is deleted");
4430 return NULL;
4431 }
4432
4433 jbd_debug(2, "Journal inode found at %p: %lld bytes\n",
4434 journal_inode, journal_inode->i_size);
4435 if (!S_ISREG(journal_inode->i_mode)) {
4436 ext4_msg(sb, KERN_ERR, "invalid journal inode");
4437 iput(journal_inode);
4438 return NULL;
4439 }
4440 return journal_inode;
4441 }
4442
4443 static journal_t *ext4_get_journal(struct super_block *sb,
4444 unsigned int journal_inum)
4445 {
4446 struct inode *journal_inode;
4447 journal_t *journal;
4448
4449 BUG_ON(!ext4_has_feature_journal(sb));
4450
4451 journal_inode = ext4_get_journal_inode(sb, journal_inum);
4452 if (!journal_inode)
4453 return NULL;
4454
4455 journal = jbd2_journal_init_inode(journal_inode);
4456 if (!journal) {
4457 ext4_msg(sb, KERN_ERR, "Could not load journal inode");
4458 iput(journal_inode);
4459 return NULL;
4460 }
4461 journal->j_private = sb;
4462 ext4_init_journal_params(sb, journal);
4463 return journal;
4464 }
4465
4466 static journal_t *ext4_get_dev_journal(struct super_block *sb,
4467 dev_t j_dev)
4468 {
4469 struct buffer_head *bh;
4470 journal_t *journal;
4471 ext4_fsblk_t start;
4472 ext4_fsblk_t len;
4473 int hblock, blocksize;
4474 ext4_fsblk_t sb_block;
4475 unsigned long offset;
4476 struct ext4_super_block *es;
4477 struct block_device *bdev;
4478
4479 BUG_ON(!ext4_has_feature_journal(sb));
4480
4481 bdev = ext4_blkdev_get(j_dev, sb);
4482 if (bdev == NULL)
4483 return NULL;
4484
4485 blocksize = sb->s_blocksize;
4486 hblock = bdev_logical_block_size(bdev);
4487 if (blocksize < hblock) {
4488 ext4_msg(sb, KERN_ERR,
4489 "blocksize too small for journal device");
4490 goto out_bdev;
4491 }
4492
4493 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
4494 offset = EXT4_MIN_BLOCK_SIZE % blocksize;
4495 set_blocksize(bdev, blocksize);
4496 if (!(bh = __bread(bdev, sb_block, blocksize))) {
4497 ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
4498 "external journal");
4499 goto out_bdev;
4500 }
4501
4502 es = (struct ext4_super_block *) (bh->b_data + offset);
4503 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
4504 !(le32_to_cpu(es->s_feature_incompat) &
4505 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
4506 ext4_msg(sb, KERN_ERR, "external journal has "
4507 "bad superblock");
4508 brelse(bh);
4509 goto out_bdev;
4510 }
4511
4512 if ((le32_to_cpu(es->s_feature_ro_compat) &
4513 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
4514 es->s_checksum != ext4_superblock_csum(sb, es)) {
4515 ext4_msg(sb, KERN_ERR, "external journal has "
4516 "corrupt superblock");
4517 brelse(bh);
4518 goto out_bdev;
4519 }
4520
4521 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
4522 ext4_msg(sb, KERN_ERR, "journal UUID does not match");
4523 brelse(bh);
4524 goto out_bdev;
4525 }
4526
4527 len = ext4_blocks_count(es);
4528 start = sb_block + 1;
4529 brelse(bh); /* we're done with the superblock */
4530
4531 journal = jbd2_journal_init_dev(bdev, sb->s_bdev,
4532 start, len, blocksize);
4533 if (!journal) {
4534 ext4_msg(sb, KERN_ERR, "failed to create device journal");
4535 goto out_bdev;
4536 }
4537 journal->j_private = sb;
4538 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &journal->j_sb_buffer);
4539 wait_on_buffer(journal->j_sb_buffer);
4540 if (!buffer_uptodate(journal->j_sb_buffer)) {
4541 ext4_msg(sb, KERN_ERR, "I/O error on journal device");
4542 goto out_journal;
4543 }
4544 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
4545 ext4_msg(sb, KERN_ERR, "External journal has more than one "
4546 "user (unsupported) - %d",
4547 be32_to_cpu(journal->j_superblock->s_nr_users));
4548 goto out_journal;
4549 }
4550 EXT4_SB(sb)->journal_bdev = bdev;
4551 ext4_init_journal_params(sb, journal);
4552 return journal;
4553
4554 out_journal:
4555 jbd2_journal_destroy(journal);
4556 out_bdev:
4557 ext4_blkdev_put(bdev);
4558 return NULL;
4559 }
4560
4561 static int ext4_load_journal(struct super_block *sb,
4562 struct ext4_super_block *es,
4563 unsigned long journal_devnum)
4564 {
4565 journal_t *journal;
4566 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
4567 dev_t journal_dev;
4568 int err = 0;
4569 int really_read_only;
4570
4571 BUG_ON(!ext4_has_feature_journal(sb));
4572
4573 if (journal_devnum &&
4574 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4575 ext4_msg(sb, KERN_INFO, "external journal device major/minor "
4576 "numbers have changed");
4577 journal_dev = new_decode_dev(journal_devnum);
4578 } else
4579 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
4580
4581 really_read_only = bdev_read_only(sb->s_bdev);
4582
4583 /*
4584 * Are we loading a blank journal or performing recovery after a
4585 * crash? For recovery, we need to check in advance whether we
4586 * can get read-write access to the device.
4587 */
4588 if (ext4_has_feature_journal_needs_recovery(sb)) {
4589 if (sb->s_flags & MS_RDONLY) {
4590 ext4_msg(sb, KERN_INFO, "INFO: recovery "
4591 "required on readonly filesystem");
4592 if (really_read_only) {
4593 ext4_msg(sb, KERN_ERR, "write access "
4594 "unavailable, cannot proceed");
4595 return -EROFS;
4596 }
4597 ext4_msg(sb, KERN_INFO, "write access will "
4598 "be enabled during recovery");
4599 }
4600 }
4601
4602 if (journal_inum && journal_dev) {
4603 ext4_msg(sb, KERN_ERR, "filesystem has both journal "
4604 "and inode journals!");
4605 return -EINVAL;
4606 }
4607
4608 if (journal_inum) {
4609 if (!(journal = ext4_get_journal(sb, journal_inum)))
4610 return -EINVAL;
4611 } else {
4612 if (!(journal = ext4_get_dev_journal(sb, journal_dev)))
4613 return -EINVAL;
4614 }
4615
4616 if (!(journal->j_flags & JBD2_BARRIER))
4617 ext4_msg(sb, KERN_INFO, "barriers disabled");
4618
4619 if (!ext4_has_feature_journal_needs_recovery(sb))
4620 err = jbd2_journal_wipe(journal, !really_read_only);
4621 if (!err) {
4622 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
4623 if (save)
4624 memcpy(save, ((char *) es) +
4625 EXT4_S_ERR_START, EXT4_S_ERR_LEN);
4626 err = jbd2_journal_load(journal);
4627 if (save)
4628 memcpy(((char *) es) + EXT4_S_ERR_START,
4629 save, EXT4_S_ERR_LEN);
4630 kfree(save);
4631 }
4632
4633 if (err) {
4634 ext4_msg(sb, KERN_ERR, "error loading journal");
4635 jbd2_journal_destroy(journal);
4636 return err;
4637 }
4638
4639 EXT4_SB(sb)->s_journal = journal;
4640 ext4_clear_journal_err(sb, es);
4641
4642 if (!really_read_only && journal_devnum &&
4643 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4644 es->s_journal_dev = cpu_to_le32(journal_devnum);
4645
4646 /* Make sure we flush the recovery flag to disk. */
4647 ext4_commit_super(sb, 1);
4648 }
4649
4650 return 0;
4651 }
4652
4653 static int ext4_commit_super(struct super_block *sb, int sync)
4654 {
4655 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
4656 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
4657 int error = 0;
4658
4659 if (!sbh || block_device_ejected(sb))
4660 return error;
4661 /*
4662 * If the file system is mounted read-only, don't update the
4663 * superblock write time. This avoids updating the superblock
4664 * write time when we are mounting the root file system
4665 * read/only but we need to replay the journal; at that point,
4666 * for people who are east of GMT and who make their clock
4667 * tick in localtime for Windows bug-for-bug compatibility,
4668 * the clock is set in the future, and this will cause e2fsck
4669 * to complain and force a full file system check.
4670 */
4671 if (!(sb->s_flags & MS_RDONLY))
4672 es->s_wtime = cpu_to_le32(get_seconds());
4673 if (sb->s_bdev->bd_part)
4674 es->s_kbytes_written =
4675 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written +
4676 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
4677 EXT4_SB(sb)->s_sectors_written_start) >> 1));
4678 else
4679 es->s_kbytes_written =
4680 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written);
4681 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeclusters_counter))
4682 ext4_free_blocks_count_set(es,
4683 EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive(
4684 &EXT4_SB(sb)->s_freeclusters_counter)));
4685 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeinodes_counter))
4686 es->s_free_inodes_count =
4687 cpu_to_le32(percpu_counter_sum_positive(
4688 &EXT4_SB(sb)->s_freeinodes_counter));
4689 BUFFER_TRACE(sbh, "marking dirty");
4690 ext4_superblock_csum_set(sb);
4691 if (sync)
4692 lock_buffer(sbh);
4693 if (buffer_write_io_error(sbh)) {
4694 /*
4695 * Oh, dear. A previous attempt to write the
4696 * superblock failed. This could happen because the
4697 * USB device was yanked out. Or it could happen to
4698 * be a transient write error and maybe the block will
4699 * be remapped. Nothing we can do but to retry the
4700 * write and hope for the best.
4701 */
4702 ext4_msg(sb, KERN_ERR, "previous I/O error to "
4703 "superblock detected");
4704 clear_buffer_write_io_error(sbh);
4705 set_buffer_uptodate(sbh);
4706 }
4707 mark_buffer_dirty(sbh);
4708 if (sync) {
4709 unlock_buffer(sbh);
4710 error = __sync_dirty_buffer(sbh,
4711 REQ_SYNC | (test_opt(sb, BARRIER) ? REQ_FUA : 0));
4712 if (error)
4713 return error;
4714
4715 error = buffer_write_io_error(sbh);
4716 if (error) {
4717 ext4_msg(sb, KERN_ERR, "I/O error while writing "
4718 "superblock");
4719 clear_buffer_write_io_error(sbh);
4720 set_buffer_uptodate(sbh);
4721 }
4722 }
4723 return error;
4724 }
4725
4726 /*
4727 * Have we just finished recovery? If so, and if we are mounting (or
4728 * remounting) the filesystem readonly, then we will end up with a
4729 * consistent fs on disk. Record that fact.
4730 */
4731 static void ext4_mark_recovery_complete(struct super_block *sb,
4732 struct ext4_super_block *es)
4733 {
4734 journal_t *journal = EXT4_SB(sb)->s_journal;
4735
4736 if (!ext4_has_feature_journal(sb)) {
4737 BUG_ON(journal != NULL);
4738 return;
4739 }
4740 jbd2_journal_lock_updates(journal);
4741 if (jbd2_journal_flush(journal) < 0)
4742 goto out;
4743
4744 if (ext4_has_feature_journal_needs_recovery(sb) &&
4745 sb->s_flags & MS_RDONLY) {
4746 ext4_clear_feature_journal_needs_recovery(sb);
4747 ext4_commit_super(sb, 1);
4748 }
4749
4750 out:
4751 jbd2_journal_unlock_updates(journal);
4752 }
4753
4754 /*
4755 * If we are mounting (or read-write remounting) a filesystem whose journal
4756 * has recorded an error from a previous lifetime, move that error to the
4757 * main filesystem now.
4758 */
4759 static void ext4_clear_journal_err(struct super_block *sb,
4760 struct ext4_super_block *es)
4761 {
4762 journal_t *journal;
4763 int j_errno;
4764 const char *errstr;
4765
4766 BUG_ON(!ext4_has_feature_journal(sb));
4767
4768 journal = EXT4_SB(sb)->s_journal;
4769
4770 /*
4771 * Now check for any error status which may have been recorded in the
4772 * journal by a prior ext4_error() or ext4_abort()
4773 */
4774
4775 j_errno = jbd2_journal_errno(journal);
4776 if (j_errno) {
4777 char nbuf[16];
4778
4779 errstr = ext4_decode_error(sb, j_errno, nbuf);
4780 ext4_warning(sb, "Filesystem error recorded "
4781 "from previous mount: %s", errstr);
4782 ext4_warning(sb, "Marking fs in need of filesystem check.");
4783
4784 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
4785 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
4786 ext4_commit_super(sb, 1);
4787
4788 jbd2_journal_clear_err(journal);
4789 jbd2_journal_update_sb_errno(journal);
4790 }
4791 }
4792
4793 /*
4794 * Force the running and committing transactions to commit,
4795 * and wait on the commit.
4796 */
4797 int ext4_force_commit(struct super_block *sb)
4798 {
4799 journal_t *journal;
4800
4801 if (sb->s_flags & MS_RDONLY)
4802 return 0;
4803
4804 journal = EXT4_SB(sb)->s_journal;
4805 return ext4_journal_force_commit(journal);
4806 }
4807
4808 static int ext4_sync_fs(struct super_block *sb, int wait)
4809 {
4810 int ret = 0;
4811 tid_t target;
4812 bool needs_barrier = false;
4813 struct ext4_sb_info *sbi = EXT4_SB(sb);
4814
4815 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
4816 return 0;
4817
4818 trace_ext4_sync_fs(sb, wait);
4819 flush_workqueue(sbi->rsv_conversion_wq);
4820 /*
4821 * Writeback quota in non-journalled quota case - journalled quota has
4822 * no dirty dquots
4823 */
4824 dquot_writeback_dquots(sb, -1);
4825 /*
4826 * Data writeback is possible w/o journal transaction, so barrier must
4827 * being sent at the end of the function. But we can skip it if
4828 * transaction_commit will do it for us.
4829 */
4830 if (sbi->s_journal) {
4831 target = jbd2_get_latest_transaction(sbi->s_journal);
4832 if (wait && sbi->s_journal->j_flags & JBD2_BARRIER &&
4833 !jbd2_trans_will_send_data_barrier(sbi->s_journal, target))
4834 needs_barrier = true;
4835
4836 if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
4837 if (wait)
4838 ret = jbd2_log_wait_commit(sbi->s_journal,
4839 target);
4840 }
4841 } else if (wait && test_opt(sb, BARRIER))
4842 needs_barrier = true;
4843 if (needs_barrier) {
4844 int err;
4845 err = blkdev_issue_flush(sb->s_bdev, GFP_KERNEL, NULL);
4846 if (!ret)
4847 ret = err;
4848 }
4849
4850 return ret;
4851 }
4852
4853 /*
4854 * LVM calls this function before a (read-only) snapshot is created. This
4855 * gives us a chance to flush the journal completely and mark the fs clean.
4856 *
4857 * Note that only this function cannot bring a filesystem to be in a clean
4858 * state independently. It relies on upper layer to stop all data & metadata
4859 * modifications.
4860 */
4861 static int ext4_freeze(struct super_block *sb)
4862 {
4863 int error = 0;
4864 journal_t *journal;
4865
4866 if (sb->s_flags & MS_RDONLY)
4867 return 0;
4868
4869 journal = EXT4_SB(sb)->s_journal;
4870
4871 if (journal) {
4872 /* Now we set up the journal barrier. */
4873 jbd2_journal_lock_updates(journal);
4874
4875 /*
4876 * Don't clear the needs_recovery flag if we failed to
4877 * flush the journal.
4878 */
4879 error = jbd2_journal_flush(journal);
4880 if (error < 0)
4881 goto out;
4882
4883 /* Journal blocked and flushed, clear needs_recovery flag. */
4884 ext4_clear_feature_journal_needs_recovery(sb);
4885 }
4886
4887 error = ext4_commit_super(sb, 1);
4888 out:
4889 if (journal)
4890 /* we rely on upper layer to stop further updates */
4891 jbd2_journal_unlock_updates(journal);
4892 return error;
4893 }
4894
4895 /*
4896 * Called by LVM after the snapshot is done. We need to reset the RECOVER
4897 * flag here, even though the filesystem is not technically dirty yet.
4898 */
4899 static int ext4_unfreeze(struct super_block *sb)
4900 {
4901 if ((sb->s_flags & MS_RDONLY) || ext4_forced_shutdown(EXT4_SB(sb)))
4902 return 0;
4903
4904 if (EXT4_SB(sb)->s_journal) {
4905 /* Reset the needs_recovery flag before the fs is unlocked. */
4906 ext4_set_feature_journal_needs_recovery(sb);
4907 }
4908
4909 ext4_commit_super(sb, 1);
4910 return 0;
4911 }
4912
4913 /*
4914 * Structure to save mount options for ext4_remount's benefit
4915 */
4916 struct ext4_mount_options {
4917 unsigned long s_mount_opt;
4918 unsigned long s_mount_opt2;
4919 kuid_t s_resuid;
4920 kgid_t s_resgid;
4921 unsigned long s_commit_interval;
4922 u32 s_min_batch_time, s_max_batch_time;
4923 #ifdef CONFIG_QUOTA
4924 int s_jquota_fmt;
4925 char *s_qf_names[EXT4_MAXQUOTAS];
4926 #endif
4927 };
4928
4929 static int ext4_remount(struct super_block *sb, int *flags, char *data)
4930 {
4931 struct ext4_super_block *es;
4932 struct ext4_sb_info *sbi = EXT4_SB(sb);
4933 unsigned long old_sb_flags;
4934 struct ext4_mount_options old_opts;
4935 int enable_quota = 0;
4936 ext4_group_t g;
4937 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
4938 int err = 0;
4939 #ifdef CONFIG_QUOTA
4940 int i, j;
4941 #endif
4942 char *orig_data = kstrdup(data, GFP_KERNEL);
4943
4944 /* Store the original options */
4945 old_sb_flags = sb->s_flags;
4946 old_opts.s_mount_opt = sbi->s_mount_opt;
4947 old_opts.s_mount_opt2 = sbi->s_mount_opt2;
4948 old_opts.s_resuid = sbi->s_resuid;
4949 old_opts.s_resgid = sbi->s_resgid;
4950 old_opts.s_commit_interval = sbi->s_commit_interval;
4951 old_opts.s_min_batch_time = sbi->s_min_batch_time;
4952 old_opts.s_max_batch_time = sbi->s_max_batch_time;
4953 #ifdef CONFIG_QUOTA
4954 old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
4955 for (i = 0; i < EXT4_MAXQUOTAS; i++)
4956 if (sbi->s_qf_names[i]) {
4957 old_opts.s_qf_names[i] = kstrdup(sbi->s_qf_names[i],
4958 GFP_KERNEL);
4959 if (!old_opts.s_qf_names[i]) {
4960 for (j = 0; j < i; j++)
4961 kfree(old_opts.s_qf_names[j]);
4962 kfree(orig_data);
4963 return -ENOMEM;
4964 }
4965 } else
4966 old_opts.s_qf_names[i] = NULL;
4967 #endif
4968 if (sbi->s_journal && sbi->s_journal->j_task->io_context)
4969 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio;
4970
4971 if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) {
4972 err = -EINVAL;
4973 goto restore_opts;
4974 }
4975
4976 if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^
4977 test_opt(sb, JOURNAL_CHECKSUM)) {
4978 ext4_msg(sb, KERN_ERR, "changing journal_checksum "
4979 "during remount not supported; ignoring");
4980 sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM;
4981 }
4982
4983 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
4984 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
4985 ext4_msg(sb, KERN_ERR, "can't mount with "
4986 "both data=journal and delalloc");
4987 err = -EINVAL;
4988 goto restore_opts;
4989 }
4990 if (test_opt(sb, DIOREAD_NOLOCK)) {
4991 ext4_msg(sb, KERN_ERR, "can't mount with "
4992 "both data=journal and dioread_nolock");
4993 err = -EINVAL;
4994 goto restore_opts;
4995 }
4996 if (test_opt(sb, DAX)) {
4997 ext4_msg(sb, KERN_ERR, "can't mount with "
4998 "both data=journal and dax");
4999 err = -EINVAL;
5000 goto restore_opts;
5001 }
5002 } else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) {
5003 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
5004 ext4_msg(sb, KERN_ERR, "can't mount with "
5005 "journal_async_commit in data=ordered mode");
5006 err = -EINVAL;
5007 goto restore_opts;
5008 }
5009 }
5010
5011 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_NO_MBCACHE) {
5012 ext4_msg(sb, KERN_ERR, "can't enable nombcache during remount");
5013 err = -EINVAL;
5014 goto restore_opts;
5015 }
5016
5017 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_DAX) {
5018 ext4_msg(sb, KERN_WARNING, "warning: refusing change of "
5019 "dax flag with busy inodes while remounting");
5020 sbi->s_mount_opt ^= EXT4_MOUNT_DAX;
5021 }
5022
5023 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED)
5024 ext4_abort(sb, "Abort forced by user");
5025
5026 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
5027 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
5028
5029 es = sbi->s_es;
5030
5031 if (sbi->s_journal) {
5032 ext4_init_journal_params(sb, sbi->s_journal);
5033 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
5034 }
5035
5036 if (*flags & MS_LAZYTIME)
5037 sb->s_flags |= MS_LAZYTIME;
5038
5039 if ((*flags & MS_RDONLY) != (sb->s_flags & MS_RDONLY)) {
5040 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) {
5041 err = -EROFS;
5042 goto restore_opts;
5043 }
5044
5045 if (*flags & MS_RDONLY) {
5046 err = sync_filesystem(sb);
5047 if (err < 0)
5048 goto restore_opts;
5049 err = dquot_suspend(sb, -1);
5050 if (err < 0)
5051 goto restore_opts;
5052
5053 /*
5054 * First of all, the unconditional stuff we have to do
5055 * to disable replay of the journal when we next remount
5056 */
5057 sb->s_flags |= MS_RDONLY;
5058
5059 /*
5060 * OK, test if we are remounting a valid rw partition
5061 * readonly, and if so set the rdonly flag and then
5062 * mark the partition as valid again.
5063 */
5064 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
5065 (sbi->s_mount_state & EXT4_VALID_FS))
5066 es->s_state = cpu_to_le16(sbi->s_mount_state);
5067
5068 if (sbi->s_journal)
5069 ext4_mark_recovery_complete(sb, es);
5070 } else {
5071 /* Make sure we can mount this feature set readwrite */
5072 if (ext4_has_feature_readonly(sb) ||
5073 !ext4_feature_set_ok(sb, 0)) {
5074 err = -EROFS;
5075 goto restore_opts;
5076 }
5077 /*
5078 * Make sure the group descriptor checksums
5079 * are sane. If they aren't, refuse to remount r/w.
5080 */
5081 for (g = 0; g < sbi->s_groups_count; g++) {
5082 struct ext4_group_desc *gdp =
5083 ext4_get_group_desc(sb, g, NULL);
5084
5085 if (!ext4_group_desc_csum_verify(sb, g, gdp)) {
5086 ext4_msg(sb, KERN_ERR,
5087 "ext4_remount: Checksum for group %u failed (%u!=%u)",
5088 g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)),
5089 le16_to_cpu(gdp->bg_checksum));
5090 err = -EFSBADCRC;
5091 goto restore_opts;
5092 }
5093 }
5094
5095 /*
5096 * If we have an unprocessed orphan list hanging
5097 * around from a previously readonly bdev mount,
5098 * require a full umount/remount for now.
5099 */
5100 if (es->s_last_orphan) {
5101 ext4_msg(sb, KERN_WARNING, "Couldn't "
5102 "remount RDWR because of unprocessed "
5103 "orphan inode list. Please "
5104 "umount/remount instead");
5105 err = -EINVAL;
5106 goto restore_opts;
5107 }
5108
5109 /*
5110 * Mounting a RDONLY partition read-write, so reread
5111 * and store the current valid flag. (It may have
5112 * been changed by e2fsck since we originally mounted
5113 * the partition.)
5114 */
5115 if (sbi->s_journal)
5116 ext4_clear_journal_err(sb, es);
5117 sbi->s_mount_state = le16_to_cpu(es->s_state);
5118 if (!ext4_setup_super(sb, es, 0))
5119 sb->s_flags &= ~MS_RDONLY;
5120 if (ext4_has_feature_mmp(sb))
5121 if (ext4_multi_mount_protect(sb,
5122 le64_to_cpu(es->s_mmp_block))) {
5123 err = -EROFS;
5124 goto restore_opts;
5125 }
5126 enable_quota = 1;
5127 }
5128 }
5129
5130 /*
5131 * Reinitialize lazy itable initialization thread based on
5132 * current settings
5133 */
5134 if ((sb->s_flags & MS_RDONLY) || !test_opt(sb, INIT_INODE_TABLE))
5135 ext4_unregister_li_request(sb);
5136 else {
5137 ext4_group_t first_not_zeroed;
5138 first_not_zeroed = ext4_has_uninit_itable(sb);
5139 ext4_register_li_request(sb, first_not_zeroed);
5140 }
5141
5142 ext4_setup_system_zone(sb);
5143 if (sbi->s_journal == NULL && !(old_sb_flags & MS_RDONLY))
5144 ext4_commit_super(sb, 1);
5145
5146 #ifdef CONFIG_QUOTA
5147 /* Release old quota file names */
5148 for (i = 0; i < EXT4_MAXQUOTAS; i++)
5149 kfree(old_opts.s_qf_names[i]);
5150 if (enable_quota) {
5151 if (sb_any_quota_suspended(sb))
5152 dquot_resume(sb, -1);
5153 else if (ext4_has_feature_quota(sb)) {
5154 err = ext4_enable_quotas(sb);
5155 if (err)
5156 goto restore_opts;
5157 }
5158 }
5159 #endif
5160
5161 *flags = (*flags & ~MS_LAZYTIME) | (sb->s_flags & MS_LAZYTIME);
5162 ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data);
5163 kfree(orig_data);
5164 return 0;
5165
5166 restore_opts:
5167 sb->s_flags = old_sb_flags;
5168 sbi->s_mount_opt = old_opts.s_mount_opt;
5169 sbi->s_mount_opt2 = old_opts.s_mount_opt2;
5170 sbi->s_resuid = old_opts.s_resuid;
5171 sbi->s_resgid = old_opts.s_resgid;
5172 sbi->s_commit_interval = old_opts.s_commit_interval;
5173 sbi->s_min_batch_time = old_opts.s_min_batch_time;
5174 sbi->s_max_batch_time = old_opts.s_max_batch_time;
5175 #ifdef CONFIG_QUOTA
5176 sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
5177 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
5178 kfree(sbi->s_qf_names[i]);
5179 sbi->s_qf_names[i] = old_opts.s_qf_names[i];
5180 }
5181 #endif
5182 kfree(orig_data);
5183 return err;
5184 }
5185
5186 #ifdef CONFIG_QUOTA
5187 static int ext4_statfs_project(struct super_block *sb,
5188 kprojid_t projid, struct kstatfs *buf)
5189 {
5190 struct kqid qid;
5191 struct dquot *dquot;
5192 u64 limit;
5193 u64 curblock;
5194
5195 qid = make_kqid_projid(projid);
5196 dquot = dqget(sb, qid);
5197 if (IS_ERR(dquot))
5198 return PTR_ERR(dquot);
5199 spin_lock(&dq_data_lock);
5200
5201 limit = (dquot->dq_dqb.dqb_bsoftlimit ?
5202 dquot->dq_dqb.dqb_bsoftlimit :
5203 dquot->dq_dqb.dqb_bhardlimit) >> sb->s_blocksize_bits;
5204 if (limit && buf->f_blocks > limit) {
5205 curblock = dquot->dq_dqb.dqb_curspace >> sb->s_blocksize_bits;
5206 buf->f_blocks = limit;
5207 buf->f_bfree = buf->f_bavail =
5208 (buf->f_blocks > curblock) ?
5209 (buf->f_blocks - curblock) : 0;
5210 }
5211
5212 limit = dquot->dq_dqb.dqb_isoftlimit ?
5213 dquot->dq_dqb.dqb_isoftlimit :
5214 dquot->dq_dqb.dqb_ihardlimit;
5215 if (limit && buf->f_files > limit) {
5216 buf->f_files = limit;
5217 buf->f_ffree =
5218 (buf->f_files > dquot->dq_dqb.dqb_curinodes) ?
5219 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0;
5220 }
5221
5222 spin_unlock(&dq_data_lock);
5223 dqput(dquot);
5224 return 0;
5225 }
5226 #endif
5227
5228 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
5229 {
5230 struct super_block *sb = dentry->d_sb;
5231 struct ext4_sb_info *sbi = EXT4_SB(sb);
5232 struct ext4_super_block *es = sbi->s_es;
5233 ext4_fsblk_t overhead = 0, resv_blocks;
5234 u64 fsid;
5235 s64 bfree;
5236 resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters));
5237
5238 if (!test_opt(sb, MINIX_DF))
5239 overhead = sbi->s_overhead;
5240
5241 buf->f_type = EXT4_SUPER_MAGIC;
5242 buf->f_bsize = sb->s_blocksize;
5243 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead);
5244 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
5245 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
5246 /* prevent underflow in case that few free space is available */
5247 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0));
5248 buf->f_bavail = buf->f_bfree -
5249 (ext4_r_blocks_count(es) + resv_blocks);
5250 if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks))
5251 buf->f_bavail = 0;
5252 buf->f_files = le32_to_cpu(es->s_inodes_count);
5253 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
5254 buf->f_namelen = EXT4_NAME_LEN;
5255 fsid = le64_to_cpup((void *)es->s_uuid) ^
5256 le64_to_cpup((void *)es->s_uuid + sizeof(u64));
5257 buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL;
5258 buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL;
5259
5260 #ifdef CONFIG_QUOTA
5261 if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) &&
5262 sb_has_quota_limits_enabled(sb, PRJQUOTA))
5263 ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf);
5264 #endif
5265 return 0;
5266 }
5267
5268 /* Helper function for writing quotas on sync - we need to start transaction
5269 * before quota file is locked for write. Otherwise the are possible deadlocks:
5270 * Process 1 Process 2
5271 * ext4_create() quota_sync()
5272 * jbd2_journal_start() write_dquot()
5273 * dquot_initialize() down(dqio_mutex)
5274 * down(dqio_mutex) jbd2_journal_start()
5275 *
5276 */
5277
5278 #ifdef CONFIG_QUOTA
5279
5280 static inline struct inode *dquot_to_inode(struct dquot *dquot)
5281 {
5282 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type];
5283 }
5284
5285 static int ext4_write_dquot(struct dquot *dquot)
5286 {
5287 int ret, err;
5288 handle_t *handle;
5289 struct inode *inode;
5290
5291 inode = dquot_to_inode(dquot);
5292 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5293 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
5294 if (IS_ERR(handle))
5295 return PTR_ERR(handle);
5296 ret = dquot_commit(dquot);
5297 err = ext4_journal_stop(handle);
5298 if (!ret)
5299 ret = err;
5300 return ret;
5301 }
5302
5303 static int ext4_acquire_dquot(struct dquot *dquot)
5304 {
5305 int ret, err;
5306 handle_t *handle;
5307
5308 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
5309 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
5310 if (IS_ERR(handle))
5311 return PTR_ERR(handle);
5312 ret = dquot_acquire(dquot);
5313 err = ext4_journal_stop(handle);
5314 if (!ret)
5315 ret = err;
5316 return ret;
5317 }
5318
5319 static int ext4_release_dquot(struct dquot *dquot)
5320 {
5321 int ret, err;
5322 handle_t *handle;
5323
5324 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
5325 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
5326 if (IS_ERR(handle)) {
5327 /* Release dquot anyway to avoid endless cycle in dqput() */
5328 dquot_release(dquot);
5329 return PTR_ERR(handle);
5330 }
5331 ret = dquot_release(dquot);
5332 err = ext4_journal_stop(handle);
5333 if (!ret)
5334 ret = err;
5335 return ret;
5336 }
5337
5338 static int ext4_mark_dquot_dirty(struct dquot *dquot)
5339 {
5340 struct super_block *sb = dquot->dq_sb;
5341 struct ext4_sb_info *sbi = EXT4_SB(sb);
5342
5343 /* Are we journaling quotas? */
5344 if (ext4_has_feature_quota(sb) ||
5345 sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
5346 dquot_mark_dquot_dirty(dquot);
5347 return ext4_write_dquot(dquot);
5348 } else {
5349 return dquot_mark_dquot_dirty(dquot);
5350 }
5351 }
5352
5353 static int ext4_write_info(struct super_block *sb, int type)
5354 {
5355 int ret, err;
5356 handle_t *handle;
5357
5358 /* Data block + inode block */
5359 handle = ext4_journal_start(d_inode(sb->s_root), EXT4_HT_QUOTA, 2);
5360 if (IS_ERR(handle))
5361 return PTR_ERR(handle);
5362 ret = dquot_commit_info(sb, type);
5363 err = ext4_journal_stop(handle);
5364 if (!ret)
5365 ret = err;
5366 return ret;
5367 }
5368
5369 /*
5370 * Turn on quotas during mount time - we need to find
5371 * the quota file and such...
5372 */
5373 static int ext4_quota_on_mount(struct super_block *sb, int type)
5374 {
5375 return dquot_quota_on_mount(sb, EXT4_SB(sb)->s_qf_names[type],
5376 EXT4_SB(sb)->s_jquota_fmt, type);
5377 }
5378
5379 static void lockdep_set_quota_inode(struct inode *inode, int subclass)
5380 {
5381 struct ext4_inode_info *ei = EXT4_I(inode);
5382
5383 /* The first argument of lockdep_set_subclass has to be
5384 * *exactly* the same as the argument to init_rwsem() --- in
5385 * this case, in init_once() --- or lockdep gets unhappy
5386 * because the name of the lock is set using the
5387 * stringification of the argument to init_rwsem().
5388 */
5389 (void) ei; /* shut up clang warning if !CONFIG_LOCKDEP */
5390 lockdep_set_subclass(&ei->i_data_sem, subclass);
5391 }
5392
5393 /*
5394 * Standard function to be called on quota_on
5395 */
5396 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
5397 const struct path *path)
5398 {
5399 int err;
5400
5401 if (!test_opt(sb, QUOTA))
5402 return -EINVAL;
5403
5404 /* Quotafile not on the same filesystem? */
5405 if (path->dentry->d_sb != sb)
5406 return -EXDEV;
5407 /* Journaling quota? */
5408 if (EXT4_SB(sb)->s_qf_names[type]) {
5409 /* Quotafile not in fs root? */
5410 if (path->dentry->d_parent != sb->s_root)
5411 ext4_msg(sb, KERN_WARNING,
5412 "Quota file not on filesystem root. "
5413 "Journaled quota will not work");
5414 }
5415
5416 /*
5417 * When we journal data on quota file, we have to flush journal to see
5418 * all updates to the file when we bypass pagecache...
5419 */
5420 if (EXT4_SB(sb)->s_journal &&
5421 ext4_should_journal_data(d_inode(path->dentry))) {
5422 /*
5423 * We don't need to lock updates but journal_flush() could
5424 * otherwise be livelocked...
5425 */
5426 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal);
5427 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal);
5428 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
5429 if (err)
5430 return err;
5431 }
5432
5433 lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA);
5434 err = dquot_quota_on(sb, type, format_id, path);
5435 if (err) {
5436 lockdep_set_quota_inode(path->dentry->d_inode,
5437 I_DATA_SEM_NORMAL);
5438 } else {
5439 struct inode *inode = d_inode(path->dentry);
5440 handle_t *handle;
5441
5442 /*
5443 * Set inode flags to prevent userspace from messing with quota
5444 * files. If this fails, we return success anyway since quotas
5445 * are already enabled and this is not a hard failure.
5446 */
5447 inode_lock(inode);
5448 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
5449 if (IS_ERR(handle))
5450 goto unlock_inode;
5451 EXT4_I(inode)->i_flags |= EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL;
5452 inode_set_flags(inode, S_NOATIME | S_IMMUTABLE,
5453 S_NOATIME | S_IMMUTABLE);
5454 ext4_mark_inode_dirty(handle, inode);
5455 ext4_journal_stop(handle);
5456 unlock_inode:
5457 inode_unlock(inode);
5458 }
5459 return err;
5460 }
5461
5462 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
5463 unsigned int flags)
5464 {
5465 int err;
5466 struct inode *qf_inode;
5467 unsigned long qf_inums[EXT4_MAXQUOTAS] = {
5468 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
5469 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
5470 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
5471 };
5472
5473 BUG_ON(!ext4_has_feature_quota(sb));
5474
5475 if (!qf_inums[type])
5476 return -EPERM;
5477
5478 qf_inode = ext4_iget(sb, qf_inums[type]);
5479 if (IS_ERR(qf_inode)) {
5480 ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]);
5481 return PTR_ERR(qf_inode);
5482 }
5483
5484 /* Don't account quota for quota files to avoid recursion */
5485 qf_inode->i_flags |= S_NOQUOTA;
5486 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA);
5487 err = dquot_enable(qf_inode, type, format_id, flags);
5488 iput(qf_inode);
5489 if (err)
5490 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL);
5491
5492 return err;
5493 }
5494
5495 /* Enable usage tracking for all quota types. */
5496 static int ext4_enable_quotas(struct super_block *sb)
5497 {
5498 int type, err = 0;
5499 unsigned long qf_inums[EXT4_MAXQUOTAS] = {
5500 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
5501 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
5502 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
5503 };
5504 bool quota_mopt[EXT4_MAXQUOTAS] = {
5505 test_opt(sb, USRQUOTA),
5506 test_opt(sb, GRPQUOTA),
5507 test_opt(sb, PRJQUOTA),
5508 };
5509
5510 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE;
5511 for (type = 0; type < EXT4_MAXQUOTAS; type++) {
5512 if (qf_inums[type]) {
5513 err = ext4_quota_enable(sb, type, QFMT_VFS_V1,
5514 DQUOT_USAGE_ENABLED |
5515 (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0));
5516 if (err) {
5517 ext4_warning(sb,
5518 "Failed to enable quota tracking "
5519 "(type=%d, err=%d). Please run "
5520 "e2fsck to fix.", type, err);
5521 return err;
5522 }
5523 }
5524 }
5525 return 0;
5526 }
5527
5528 static int ext4_quota_off(struct super_block *sb, int type)
5529 {
5530 struct inode *inode = sb_dqopt(sb)->files[type];
5531 handle_t *handle;
5532 int err;
5533
5534 /* Force all delayed allocation blocks to be allocated.
5535 * Caller already holds s_umount sem */
5536 if (test_opt(sb, DELALLOC))
5537 sync_filesystem(sb);
5538
5539 if (!inode || !igrab(inode))
5540 goto out;
5541
5542 err = dquot_quota_off(sb, type);
5543 if (err || ext4_has_feature_quota(sb))
5544 goto out_put;
5545
5546 inode_lock(inode);
5547 /*
5548 * Update modification times of quota files when userspace can
5549 * start looking at them. If we fail, we return success anyway since
5550 * this is not a hard failure and quotas are already disabled.
5551 */
5552 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
5553 if (IS_ERR(handle))
5554 goto out_unlock;
5555 EXT4_I(inode)->i_flags &= ~(EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL);
5556 inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE);
5557 inode->i_mtime = inode->i_ctime = current_time(inode);
5558 ext4_mark_inode_dirty(handle, inode);
5559 ext4_journal_stop(handle);
5560 out_unlock:
5561 inode_unlock(inode);
5562 out_put:
5563 lockdep_set_quota_inode(inode, I_DATA_SEM_NORMAL);
5564 iput(inode);
5565 return err;
5566 out:
5567 return dquot_quota_off(sb, type);
5568 }
5569
5570 /* Read data from quotafile - avoid pagecache and such because we cannot afford
5571 * acquiring the locks... As quota files are never truncated and quota code
5572 * itself serializes the operations (and no one else should touch the files)
5573 * we don't have to be afraid of races */
5574 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
5575 size_t len, loff_t off)
5576 {
5577 struct inode *inode = sb_dqopt(sb)->files[type];
5578 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5579 int offset = off & (sb->s_blocksize - 1);
5580 int tocopy;
5581 size_t toread;
5582 struct buffer_head *bh;
5583 loff_t i_size = i_size_read(inode);
5584
5585 if (off > i_size)
5586 return 0;
5587 if (off+len > i_size)
5588 len = i_size-off;
5589 toread = len;
5590 while (toread > 0) {
5591 tocopy = sb->s_blocksize - offset < toread ?
5592 sb->s_blocksize - offset : toread;
5593 bh = ext4_bread(NULL, inode, blk, 0);
5594 if (IS_ERR(bh))
5595 return PTR_ERR(bh);
5596 if (!bh) /* A hole? */
5597 memset(data, 0, tocopy);
5598 else
5599 memcpy(data, bh->b_data+offset, tocopy);
5600 brelse(bh);
5601 offset = 0;
5602 toread -= tocopy;
5603 data += tocopy;
5604 blk++;
5605 }
5606 return len;
5607 }
5608
5609 /* Write to quotafile (we know the transaction is already started and has
5610 * enough credits) */
5611 static ssize_t ext4_quota_write(struct super_block *sb, int type,
5612 const char *data, size_t len, loff_t off)
5613 {
5614 struct inode *inode = sb_dqopt(sb)->files[type];
5615 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5616 int err, offset = off & (sb->s_blocksize - 1);
5617 int retries = 0;
5618 struct buffer_head *bh;
5619 handle_t *handle = journal_current_handle();
5620
5621 if (EXT4_SB(sb)->s_journal && !handle) {
5622 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5623 " cancelled because transaction is not started",
5624 (unsigned long long)off, (unsigned long long)len);
5625 return -EIO;
5626 }
5627 /*
5628 * Since we account only one data block in transaction credits,
5629 * then it is impossible to cross a block boundary.
5630 */
5631 if (sb->s_blocksize - offset < len) {
5632 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5633 " cancelled because not block aligned",
5634 (unsigned long long)off, (unsigned long long)len);
5635 return -EIO;
5636 }
5637
5638 do {
5639 bh = ext4_bread(handle, inode, blk,
5640 EXT4_GET_BLOCKS_CREATE |
5641 EXT4_GET_BLOCKS_METADATA_NOFAIL);
5642 } while (IS_ERR(bh) && (PTR_ERR(bh) == -ENOSPC) &&
5643 ext4_should_retry_alloc(inode->i_sb, &retries));
5644 if (IS_ERR(bh))
5645 return PTR_ERR(bh);
5646 if (!bh)
5647 goto out;
5648 BUFFER_TRACE(bh, "get write access");
5649 err = ext4_journal_get_write_access(handle, bh);
5650 if (err) {
5651 brelse(bh);
5652 return err;
5653 }
5654 lock_buffer(bh);
5655 memcpy(bh->b_data+offset, data, len);
5656 flush_dcache_page(bh->b_page);
5657 unlock_buffer(bh);
5658 err = ext4_handle_dirty_metadata(handle, NULL, bh);
5659 brelse(bh);
5660 out:
5661 if (inode->i_size < off + len) {
5662 i_size_write(inode, off + len);
5663 EXT4_I(inode)->i_disksize = inode->i_size;
5664 ext4_mark_inode_dirty(handle, inode);
5665 }
5666 return len;
5667 }
5668
5669 static int ext4_get_next_id(struct super_block *sb, struct kqid *qid)
5670 {
5671 const struct quota_format_ops *ops;
5672
5673 if (!sb_has_quota_loaded(sb, qid->type))
5674 return -ESRCH;
5675 ops = sb_dqopt(sb)->ops[qid->type];
5676 if (!ops || !ops->get_next_id)
5677 return -ENOSYS;
5678 return dquot_get_next_id(sb, qid);
5679 }
5680 #endif
5681
5682 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
5683 const char *dev_name, void *data)
5684 {
5685 return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super);
5686 }
5687
5688 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
5689 static inline void register_as_ext2(void)
5690 {
5691 int err = register_filesystem(&ext2_fs_type);
5692 if (err)
5693 printk(KERN_WARNING
5694 "EXT4-fs: Unable to register as ext2 (%d)\n", err);
5695 }
5696
5697 static inline void unregister_as_ext2(void)
5698 {
5699 unregister_filesystem(&ext2_fs_type);
5700 }
5701
5702 static inline int ext2_feature_set_ok(struct super_block *sb)
5703 {
5704 if (ext4_has_unknown_ext2_incompat_features(sb))
5705 return 0;
5706 if (sb->s_flags & MS_RDONLY)
5707 return 1;
5708 if (ext4_has_unknown_ext2_ro_compat_features(sb))
5709 return 0;
5710 return 1;
5711 }
5712 #else
5713 static inline void register_as_ext2(void) { }
5714 static inline void unregister_as_ext2(void) { }
5715 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
5716 #endif
5717
5718 static inline void register_as_ext3(void)
5719 {
5720 int err = register_filesystem(&ext3_fs_type);
5721 if (err)
5722 printk(KERN_WARNING
5723 "EXT4-fs: Unable to register as ext3 (%d)\n", err);
5724 }
5725
5726 static inline void unregister_as_ext3(void)
5727 {
5728 unregister_filesystem(&ext3_fs_type);
5729 }
5730
5731 static inline int ext3_feature_set_ok(struct super_block *sb)
5732 {
5733 if (ext4_has_unknown_ext3_incompat_features(sb))
5734 return 0;
5735 if (!ext4_has_feature_journal(sb))
5736 return 0;
5737 if (sb->s_flags & MS_RDONLY)
5738 return 1;
5739 if (ext4_has_unknown_ext3_ro_compat_features(sb))
5740 return 0;
5741 return 1;
5742 }
5743
5744 static struct file_system_type ext4_fs_type = {
5745 .owner = THIS_MODULE,
5746 .name = "ext4",
5747 .mount = ext4_mount,
5748 .kill_sb = kill_block_super,
5749 .fs_flags = FS_REQUIRES_DEV,
5750 };
5751 MODULE_ALIAS_FS("ext4");
5752
5753 /* Shared across all ext4 file systems */
5754 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ];
5755
5756 static int __init ext4_init_fs(void)
5757 {
5758 int i, err;
5759
5760 ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64);
5761 ext4_li_info = NULL;
5762 mutex_init(&ext4_li_mtx);
5763
5764 /* Build-time check for flags consistency */
5765 ext4_check_flag_values();
5766
5767 for (i = 0; i < EXT4_WQ_HASH_SZ; i++)
5768 init_waitqueue_head(&ext4__ioend_wq[i]);
5769
5770 err = ext4_init_es();
5771 if (err)
5772 return err;
5773
5774 err = ext4_init_pageio();
5775 if (err)
5776 goto out5;
5777
5778 err = ext4_init_system_zone();
5779 if (err)
5780 goto out4;
5781
5782 err = ext4_init_sysfs();
5783 if (err)
5784 goto out3;
5785
5786 err = ext4_init_mballoc();
5787 if (err)
5788 goto out2;
5789 err = init_inodecache();
5790 if (err)
5791 goto out1;
5792 register_as_ext3();
5793 register_as_ext2();
5794 err = register_filesystem(&ext4_fs_type);
5795 if (err)
5796 goto out;
5797
5798 return 0;
5799 out:
5800 unregister_as_ext2();
5801 unregister_as_ext3();
5802 destroy_inodecache();
5803 out1:
5804 ext4_exit_mballoc();
5805 out2:
5806 ext4_exit_sysfs();
5807 out3:
5808 ext4_exit_system_zone();
5809 out4:
5810 ext4_exit_pageio();
5811 out5:
5812 ext4_exit_es();
5813
5814 return err;
5815 }
5816
5817 static void __exit ext4_exit_fs(void)
5818 {
5819 ext4_destroy_lazyinit_thread();
5820 unregister_as_ext2();
5821 unregister_as_ext3();
5822 unregister_filesystem(&ext4_fs_type);
5823 destroy_inodecache();
5824 ext4_exit_mballoc();
5825 ext4_exit_sysfs();
5826 ext4_exit_system_zone();
5827 ext4_exit_pageio();
5828 ext4_exit_es();
5829 }
5830
5831 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
5832 MODULE_DESCRIPTION("Fourth Extended Filesystem");
5833 MODULE_LICENSE("GPL");
5834 module_init(ext4_init_fs)
5835 module_exit(ext4_exit_fs)