]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/ext4/super.c
MAINTAINERS: Update MAX77802 PMIC entry
[mirror_ubuntu-artful-kernel.git] / fs / ext4 / super.c
1 /*
2 * linux/fs/ext4/super.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * Big-endian to little-endian byte-swapping/bitmaps by
16 * David S. Miller (davem@caip.rutgers.edu), 1995
17 */
18
19 #include <linux/module.h>
20 #include <linux/string.h>
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/vmalloc.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/parser.h>
29 #include <linux/buffer_head.h>
30 #include <linux/exportfs.h>
31 #include <linux/vfs.h>
32 #include <linux/random.h>
33 #include <linux/mount.h>
34 #include <linux/namei.h>
35 #include <linux/quotaops.h>
36 #include <linux/seq_file.h>
37 #include <linux/ctype.h>
38 #include <linux/log2.h>
39 #include <linux/crc16.h>
40 #include <linux/dax.h>
41 #include <linux/cleancache.h>
42 #include <linux/uaccess.h>
43
44 #include <linux/kthread.h>
45 #include <linux/freezer.h>
46
47 #include "ext4.h"
48 #include "ext4_extents.h" /* Needed for trace points definition */
49 #include "ext4_jbd2.h"
50 #include "xattr.h"
51 #include "acl.h"
52 #include "mballoc.h"
53 #include "fsmap.h"
54
55 #define CREATE_TRACE_POINTS
56 #include <trace/events/ext4.h>
57
58 static struct ext4_lazy_init *ext4_li_info;
59 static struct mutex ext4_li_mtx;
60 static struct ratelimit_state ext4_mount_msg_ratelimit;
61
62 static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
63 unsigned long journal_devnum);
64 static int ext4_show_options(struct seq_file *seq, struct dentry *root);
65 static int ext4_commit_super(struct super_block *sb, int sync);
66 static void ext4_mark_recovery_complete(struct super_block *sb,
67 struct ext4_super_block *es);
68 static void ext4_clear_journal_err(struct super_block *sb,
69 struct ext4_super_block *es);
70 static int ext4_sync_fs(struct super_block *sb, int wait);
71 static int ext4_remount(struct super_block *sb, int *flags, char *data);
72 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
73 static int ext4_unfreeze(struct super_block *sb);
74 static int ext4_freeze(struct super_block *sb);
75 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
76 const char *dev_name, void *data);
77 static inline int ext2_feature_set_ok(struct super_block *sb);
78 static inline int ext3_feature_set_ok(struct super_block *sb);
79 static int ext4_feature_set_ok(struct super_block *sb, int readonly);
80 static void ext4_destroy_lazyinit_thread(void);
81 static void ext4_unregister_li_request(struct super_block *sb);
82 static void ext4_clear_request_list(void);
83 static struct inode *ext4_get_journal_inode(struct super_block *sb,
84 unsigned int journal_inum);
85
86 /*
87 * Lock ordering
88 *
89 * Note the difference between i_mmap_sem (EXT4_I(inode)->i_mmap_sem) and
90 * i_mmap_rwsem (inode->i_mmap_rwsem)!
91 *
92 * page fault path:
93 * mmap_sem -> sb_start_pagefault -> i_mmap_sem (r) -> transaction start ->
94 * page lock -> i_data_sem (rw)
95 *
96 * buffered write path:
97 * sb_start_write -> i_mutex -> mmap_sem
98 * sb_start_write -> i_mutex -> transaction start -> page lock ->
99 * i_data_sem (rw)
100 *
101 * truncate:
102 * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (w) -> i_mmap_sem (w) ->
103 * i_mmap_rwsem (w) -> page lock
104 * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (w) -> i_mmap_sem (w) ->
105 * transaction start -> i_data_sem (rw)
106 *
107 * direct IO:
108 * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (r) -> mmap_sem
109 * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (r) ->
110 * transaction start -> i_data_sem (rw)
111 *
112 * writepages:
113 * transaction start -> page lock(s) -> i_data_sem (rw)
114 */
115
116 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
117 static struct file_system_type ext2_fs_type = {
118 .owner = THIS_MODULE,
119 .name = "ext2",
120 .mount = ext4_mount,
121 .kill_sb = kill_block_super,
122 .fs_flags = FS_REQUIRES_DEV,
123 };
124 MODULE_ALIAS_FS("ext2");
125 MODULE_ALIAS("ext2");
126 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type)
127 #else
128 #define IS_EXT2_SB(sb) (0)
129 #endif
130
131
132 static struct file_system_type ext3_fs_type = {
133 .owner = THIS_MODULE,
134 .name = "ext3",
135 .mount = ext4_mount,
136 .kill_sb = kill_block_super,
137 .fs_flags = FS_REQUIRES_DEV,
138 };
139 MODULE_ALIAS_FS("ext3");
140 MODULE_ALIAS("ext3");
141 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type)
142
143 static int ext4_verify_csum_type(struct super_block *sb,
144 struct ext4_super_block *es)
145 {
146 if (!ext4_has_feature_metadata_csum(sb))
147 return 1;
148
149 return es->s_checksum_type == EXT4_CRC32C_CHKSUM;
150 }
151
152 static __le32 ext4_superblock_csum(struct super_block *sb,
153 struct ext4_super_block *es)
154 {
155 struct ext4_sb_info *sbi = EXT4_SB(sb);
156 int offset = offsetof(struct ext4_super_block, s_checksum);
157 __u32 csum;
158
159 csum = ext4_chksum(sbi, ~0, (char *)es, offset);
160
161 return cpu_to_le32(csum);
162 }
163
164 static int ext4_superblock_csum_verify(struct super_block *sb,
165 struct ext4_super_block *es)
166 {
167 if (!ext4_has_metadata_csum(sb))
168 return 1;
169
170 return es->s_checksum == ext4_superblock_csum(sb, es);
171 }
172
173 void ext4_superblock_csum_set(struct super_block *sb)
174 {
175 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
176
177 if (!ext4_has_metadata_csum(sb))
178 return;
179
180 es->s_checksum = ext4_superblock_csum(sb, es);
181 }
182
183 void *ext4_kvmalloc(size_t size, gfp_t flags)
184 {
185 void *ret;
186
187 ret = kmalloc(size, flags | __GFP_NOWARN);
188 if (!ret)
189 ret = __vmalloc(size, flags, PAGE_KERNEL);
190 return ret;
191 }
192
193 void *ext4_kvzalloc(size_t size, gfp_t flags)
194 {
195 void *ret;
196
197 ret = kzalloc(size, flags | __GFP_NOWARN);
198 if (!ret)
199 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL);
200 return ret;
201 }
202
203 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
204 struct ext4_group_desc *bg)
205 {
206 return le32_to_cpu(bg->bg_block_bitmap_lo) |
207 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
208 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
209 }
210
211 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
212 struct ext4_group_desc *bg)
213 {
214 return le32_to_cpu(bg->bg_inode_bitmap_lo) |
215 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
216 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
217 }
218
219 ext4_fsblk_t ext4_inode_table(struct super_block *sb,
220 struct ext4_group_desc *bg)
221 {
222 return le32_to_cpu(bg->bg_inode_table_lo) |
223 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
224 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
225 }
226
227 __u32 ext4_free_group_clusters(struct super_block *sb,
228 struct ext4_group_desc *bg)
229 {
230 return le16_to_cpu(bg->bg_free_blocks_count_lo) |
231 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
232 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
233 }
234
235 __u32 ext4_free_inodes_count(struct super_block *sb,
236 struct ext4_group_desc *bg)
237 {
238 return le16_to_cpu(bg->bg_free_inodes_count_lo) |
239 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
240 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
241 }
242
243 __u32 ext4_used_dirs_count(struct super_block *sb,
244 struct ext4_group_desc *bg)
245 {
246 return le16_to_cpu(bg->bg_used_dirs_count_lo) |
247 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
248 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
249 }
250
251 __u32 ext4_itable_unused_count(struct super_block *sb,
252 struct ext4_group_desc *bg)
253 {
254 return le16_to_cpu(bg->bg_itable_unused_lo) |
255 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
256 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
257 }
258
259 void ext4_block_bitmap_set(struct super_block *sb,
260 struct ext4_group_desc *bg, ext4_fsblk_t blk)
261 {
262 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
263 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
264 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
265 }
266
267 void ext4_inode_bitmap_set(struct super_block *sb,
268 struct ext4_group_desc *bg, ext4_fsblk_t blk)
269 {
270 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk);
271 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
272 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
273 }
274
275 void ext4_inode_table_set(struct super_block *sb,
276 struct ext4_group_desc *bg, ext4_fsblk_t blk)
277 {
278 bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
279 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
280 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
281 }
282
283 void ext4_free_group_clusters_set(struct super_block *sb,
284 struct ext4_group_desc *bg, __u32 count)
285 {
286 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
287 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
288 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
289 }
290
291 void ext4_free_inodes_set(struct super_block *sb,
292 struct ext4_group_desc *bg, __u32 count)
293 {
294 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
295 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
296 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
297 }
298
299 void ext4_used_dirs_set(struct super_block *sb,
300 struct ext4_group_desc *bg, __u32 count)
301 {
302 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
303 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
304 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
305 }
306
307 void ext4_itable_unused_set(struct super_block *sb,
308 struct ext4_group_desc *bg, __u32 count)
309 {
310 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
311 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
312 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
313 }
314
315
316 static void __save_error_info(struct super_block *sb, const char *func,
317 unsigned int line)
318 {
319 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
320
321 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
322 if (bdev_read_only(sb->s_bdev))
323 return;
324 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
325 es->s_last_error_time = cpu_to_le32(get_seconds());
326 strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func));
327 es->s_last_error_line = cpu_to_le32(line);
328 if (!es->s_first_error_time) {
329 es->s_first_error_time = es->s_last_error_time;
330 strncpy(es->s_first_error_func, func,
331 sizeof(es->s_first_error_func));
332 es->s_first_error_line = cpu_to_le32(line);
333 es->s_first_error_ino = es->s_last_error_ino;
334 es->s_first_error_block = es->s_last_error_block;
335 }
336 /*
337 * Start the daily error reporting function if it hasn't been
338 * started already
339 */
340 if (!es->s_error_count)
341 mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ);
342 le32_add_cpu(&es->s_error_count, 1);
343 }
344
345 static void save_error_info(struct super_block *sb, const char *func,
346 unsigned int line)
347 {
348 __save_error_info(sb, func, line);
349 ext4_commit_super(sb, 1);
350 }
351
352 /*
353 * The del_gendisk() function uninitializes the disk-specific data
354 * structures, including the bdi structure, without telling anyone
355 * else. Once this happens, any attempt to call mark_buffer_dirty()
356 * (for example, by ext4_commit_super), will cause a kernel OOPS.
357 * This is a kludge to prevent these oops until we can put in a proper
358 * hook in del_gendisk() to inform the VFS and file system layers.
359 */
360 static int block_device_ejected(struct super_block *sb)
361 {
362 struct inode *bd_inode = sb->s_bdev->bd_inode;
363 struct backing_dev_info *bdi = inode_to_bdi(bd_inode);
364
365 return bdi->dev == NULL;
366 }
367
368 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn)
369 {
370 struct super_block *sb = journal->j_private;
371 struct ext4_sb_info *sbi = EXT4_SB(sb);
372 int error = is_journal_aborted(journal);
373 struct ext4_journal_cb_entry *jce;
374
375 BUG_ON(txn->t_state == T_FINISHED);
376 spin_lock(&sbi->s_md_lock);
377 while (!list_empty(&txn->t_private_list)) {
378 jce = list_entry(txn->t_private_list.next,
379 struct ext4_journal_cb_entry, jce_list);
380 list_del_init(&jce->jce_list);
381 spin_unlock(&sbi->s_md_lock);
382 jce->jce_func(sb, jce, error);
383 spin_lock(&sbi->s_md_lock);
384 }
385 spin_unlock(&sbi->s_md_lock);
386 }
387
388 /* Deal with the reporting of failure conditions on a filesystem such as
389 * inconsistencies detected or read IO failures.
390 *
391 * On ext2, we can store the error state of the filesystem in the
392 * superblock. That is not possible on ext4, because we may have other
393 * write ordering constraints on the superblock which prevent us from
394 * writing it out straight away; and given that the journal is about to
395 * be aborted, we can't rely on the current, or future, transactions to
396 * write out the superblock safely.
397 *
398 * We'll just use the jbd2_journal_abort() error code to record an error in
399 * the journal instead. On recovery, the journal will complain about
400 * that error until we've noted it down and cleared it.
401 */
402
403 static void ext4_handle_error(struct super_block *sb)
404 {
405 if (sb->s_flags & MS_RDONLY)
406 return;
407
408 if (!test_opt(sb, ERRORS_CONT)) {
409 journal_t *journal = EXT4_SB(sb)->s_journal;
410
411 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
412 if (journal)
413 jbd2_journal_abort(journal, -EIO);
414 }
415 if (test_opt(sb, ERRORS_RO)) {
416 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
417 /*
418 * Make sure updated value of ->s_mount_flags will be visible
419 * before ->s_flags update
420 */
421 smp_wmb();
422 sb->s_flags |= MS_RDONLY;
423 }
424 if (test_opt(sb, ERRORS_PANIC)) {
425 if (EXT4_SB(sb)->s_journal &&
426 !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR))
427 return;
428 panic("EXT4-fs (device %s): panic forced after error\n",
429 sb->s_id);
430 }
431 }
432
433 #define ext4_error_ratelimit(sb) \
434 ___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state), \
435 "EXT4-fs error")
436
437 void __ext4_error(struct super_block *sb, const char *function,
438 unsigned int line, const char *fmt, ...)
439 {
440 struct va_format vaf;
441 va_list args;
442
443 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
444 return;
445
446 if (ext4_error_ratelimit(sb)) {
447 va_start(args, fmt);
448 vaf.fmt = fmt;
449 vaf.va = &args;
450 printk(KERN_CRIT
451 "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
452 sb->s_id, function, line, current->comm, &vaf);
453 va_end(args);
454 }
455 save_error_info(sb, function, line);
456 ext4_handle_error(sb);
457 }
458
459 void __ext4_error_inode(struct inode *inode, const char *function,
460 unsigned int line, ext4_fsblk_t block,
461 const char *fmt, ...)
462 {
463 va_list args;
464 struct va_format vaf;
465 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
466
467 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
468 return;
469
470 es->s_last_error_ino = cpu_to_le32(inode->i_ino);
471 es->s_last_error_block = cpu_to_le64(block);
472 if (ext4_error_ratelimit(inode->i_sb)) {
473 va_start(args, fmt);
474 vaf.fmt = fmt;
475 vaf.va = &args;
476 if (block)
477 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
478 "inode #%lu: block %llu: comm %s: %pV\n",
479 inode->i_sb->s_id, function, line, inode->i_ino,
480 block, current->comm, &vaf);
481 else
482 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
483 "inode #%lu: comm %s: %pV\n",
484 inode->i_sb->s_id, function, line, inode->i_ino,
485 current->comm, &vaf);
486 va_end(args);
487 }
488 save_error_info(inode->i_sb, function, line);
489 ext4_handle_error(inode->i_sb);
490 }
491
492 void __ext4_error_file(struct file *file, const char *function,
493 unsigned int line, ext4_fsblk_t block,
494 const char *fmt, ...)
495 {
496 va_list args;
497 struct va_format vaf;
498 struct ext4_super_block *es;
499 struct inode *inode = file_inode(file);
500 char pathname[80], *path;
501
502 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
503 return;
504
505 es = EXT4_SB(inode->i_sb)->s_es;
506 es->s_last_error_ino = cpu_to_le32(inode->i_ino);
507 if (ext4_error_ratelimit(inode->i_sb)) {
508 path = file_path(file, pathname, sizeof(pathname));
509 if (IS_ERR(path))
510 path = "(unknown)";
511 va_start(args, fmt);
512 vaf.fmt = fmt;
513 vaf.va = &args;
514 if (block)
515 printk(KERN_CRIT
516 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
517 "block %llu: comm %s: path %s: %pV\n",
518 inode->i_sb->s_id, function, line, inode->i_ino,
519 block, current->comm, path, &vaf);
520 else
521 printk(KERN_CRIT
522 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
523 "comm %s: path %s: %pV\n",
524 inode->i_sb->s_id, function, line, inode->i_ino,
525 current->comm, path, &vaf);
526 va_end(args);
527 }
528 save_error_info(inode->i_sb, function, line);
529 ext4_handle_error(inode->i_sb);
530 }
531
532 const char *ext4_decode_error(struct super_block *sb, int errno,
533 char nbuf[16])
534 {
535 char *errstr = NULL;
536
537 switch (errno) {
538 case -EFSCORRUPTED:
539 errstr = "Corrupt filesystem";
540 break;
541 case -EFSBADCRC:
542 errstr = "Filesystem failed CRC";
543 break;
544 case -EIO:
545 errstr = "IO failure";
546 break;
547 case -ENOMEM:
548 errstr = "Out of memory";
549 break;
550 case -EROFS:
551 if (!sb || (EXT4_SB(sb)->s_journal &&
552 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
553 errstr = "Journal has aborted";
554 else
555 errstr = "Readonly filesystem";
556 break;
557 default:
558 /* If the caller passed in an extra buffer for unknown
559 * errors, textualise them now. Else we just return
560 * NULL. */
561 if (nbuf) {
562 /* Check for truncated error codes... */
563 if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
564 errstr = nbuf;
565 }
566 break;
567 }
568
569 return errstr;
570 }
571
572 /* __ext4_std_error decodes expected errors from journaling functions
573 * automatically and invokes the appropriate error response. */
574
575 void __ext4_std_error(struct super_block *sb, const char *function,
576 unsigned int line, int errno)
577 {
578 char nbuf[16];
579 const char *errstr;
580
581 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
582 return;
583
584 /* Special case: if the error is EROFS, and we're not already
585 * inside a transaction, then there's really no point in logging
586 * an error. */
587 if (errno == -EROFS && journal_current_handle() == NULL &&
588 (sb->s_flags & MS_RDONLY))
589 return;
590
591 if (ext4_error_ratelimit(sb)) {
592 errstr = ext4_decode_error(sb, errno, nbuf);
593 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
594 sb->s_id, function, line, errstr);
595 }
596
597 save_error_info(sb, function, line);
598 ext4_handle_error(sb);
599 }
600
601 /*
602 * ext4_abort is a much stronger failure handler than ext4_error. The
603 * abort function may be used to deal with unrecoverable failures such
604 * as journal IO errors or ENOMEM at a critical moment in log management.
605 *
606 * We unconditionally force the filesystem into an ABORT|READONLY state,
607 * unless the error response on the fs has been set to panic in which
608 * case we take the easy way out and panic immediately.
609 */
610
611 void __ext4_abort(struct super_block *sb, const char *function,
612 unsigned int line, const char *fmt, ...)
613 {
614 struct va_format vaf;
615 va_list args;
616
617 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
618 return;
619
620 save_error_info(sb, function, line);
621 va_start(args, fmt);
622 vaf.fmt = fmt;
623 vaf.va = &args;
624 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: %pV\n",
625 sb->s_id, function, line, &vaf);
626 va_end(args);
627
628 if ((sb->s_flags & MS_RDONLY) == 0) {
629 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
630 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
631 /*
632 * Make sure updated value of ->s_mount_flags will be visible
633 * before ->s_flags update
634 */
635 smp_wmb();
636 sb->s_flags |= MS_RDONLY;
637 if (EXT4_SB(sb)->s_journal)
638 jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO);
639 save_error_info(sb, function, line);
640 }
641 if (test_opt(sb, ERRORS_PANIC)) {
642 if (EXT4_SB(sb)->s_journal &&
643 !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR))
644 return;
645 panic("EXT4-fs panic from previous error\n");
646 }
647 }
648
649 void __ext4_msg(struct super_block *sb,
650 const char *prefix, const char *fmt, ...)
651 {
652 struct va_format vaf;
653 va_list args;
654
655 if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state), "EXT4-fs"))
656 return;
657
658 va_start(args, fmt);
659 vaf.fmt = fmt;
660 vaf.va = &args;
661 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
662 va_end(args);
663 }
664
665 #define ext4_warning_ratelimit(sb) \
666 ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state), \
667 "EXT4-fs warning")
668
669 void __ext4_warning(struct super_block *sb, const char *function,
670 unsigned int line, const char *fmt, ...)
671 {
672 struct va_format vaf;
673 va_list args;
674
675 if (!ext4_warning_ratelimit(sb))
676 return;
677
678 va_start(args, fmt);
679 vaf.fmt = fmt;
680 vaf.va = &args;
681 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
682 sb->s_id, function, line, &vaf);
683 va_end(args);
684 }
685
686 void __ext4_warning_inode(const struct inode *inode, const char *function,
687 unsigned int line, const char *fmt, ...)
688 {
689 struct va_format vaf;
690 va_list args;
691
692 if (!ext4_warning_ratelimit(inode->i_sb))
693 return;
694
695 va_start(args, fmt);
696 vaf.fmt = fmt;
697 vaf.va = &args;
698 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: "
699 "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id,
700 function, line, inode->i_ino, current->comm, &vaf);
701 va_end(args);
702 }
703
704 void __ext4_grp_locked_error(const char *function, unsigned int line,
705 struct super_block *sb, ext4_group_t grp,
706 unsigned long ino, ext4_fsblk_t block,
707 const char *fmt, ...)
708 __releases(bitlock)
709 __acquires(bitlock)
710 {
711 struct va_format vaf;
712 va_list args;
713 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
714
715 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
716 return;
717
718 es->s_last_error_ino = cpu_to_le32(ino);
719 es->s_last_error_block = cpu_to_le64(block);
720 __save_error_info(sb, function, line);
721
722 if (ext4_error_ratelimit(sb)) {
723 va_start(args, fmt);
724 vaf.fmt = fmt;
725 vaf.va = &args;
726 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
727 sb->s_id, function, line, grp);
728 if (ino)
729 printk(KERN_CONT "inode %lu: ", ino);
730 if (block)
731 printk(KERN_CONT "block %llu:",
732 (unsigned long long) block);
733 printk(KERN_CONT "%pV\n", &vaf);
734 va_end(args);
735 }
736
737 if (test_opt(sb, ERRORS_CONT)) {
738 ext4_commit_super(sb, 0);
739 return;
740 }
741
742 ext4_unlock_group(sb, grp);
743 ext4_handle_error(sb);
744 /*
745 * We only get here in the ERRORS_RO case; relocking the group
746 * may be dangerous, but nothing bad will happen since the
747 * filesystem will have already been marked read/only and the
748 * journal has been aborted. We return 1 as a hint to callers
749 * who might what to use the return value from
750 * ext4_grp_locked_error() to distinguish between the
751 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
752 * aggressively from the ext4 function in question, with a
753 * more appropriate error code.
754 */
755 ext4_lock_group(sb, grp);
756 return;
757 }
758
759 void ext4_update_dynamic_rev(struct super_block *sb)
760 {
761 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
762
763 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
764 return;
765
766 ext4_warning(sb,
767 "updating to rev %d because of new feature flag, "
768 "running e2fsck is recommended",
769 EXT4_DYNAMIC_REV);
770
771 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
772 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
773 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
774 /* leave es->s_feature_*compat flags alone */
775 /* es->s_uuid will be set by e2fsck if empty */
776
777 /*
778 * The rest of the superblock fields should be zero, and if not it
779 * means they are likely already in use, so leave them alone. We
780 * can leave it up to e2fsck to clean up any inconsistencies there.
781 */
782 }
783
784 /*
785 * Open the external journal device
786 */
787 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb)
788 {
789 struct block_device *bdev;
790 char b[BDEVNAME_SIZE];
791
792 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb);
793 if (IS_ERR(bdev))
794 goto fail;
795 return bdev;
796
797 fail:
798 ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld",
799 __bdevname(dev, b), PTR_ERR(bdev));
800 return NULL;
801 }
802
803 /*
804 * Release the journal device
805 */
806 static void ext4_blkdev_put(struct block_device *bdev)
807 {
808 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
809 }
810
811 static void ext4_blkdev_remove(struct ext4_sb_info *sbi)
812 {
813 struct block_device *bdev;
814 bdev = sbi->journal_bdev;
815 if (bdev) {
816 ext4_blkdev_put(bdev);
817 sbi->journal_bdev = NULL;
818 }
819 }
820
821 static inline struct inode *orphan_list_entry(struct list_head *l)
822 {
823 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
824 }
825
826 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
827 {
828 struct list_head *l;
829
830 ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
831 le32_to_cpu(sbi->s_es->s_last_orphan));
832
833 printk(KERN_ERR "sb_info orphan list:\n");
834 list_for_each(l, &sbi->s_orphan) {
835 struct inode *inode = orphan_list_entry(l);
836 printk(KERN_ERR " "
837 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
838 inode->i_sb->s_id, inode->i_ino, inode,
839 inode->i_mode, inode->i_nlink,
840 NEXT_ORPHAN(inode));
841 }
842 }
843
844 #ifdef CONFIG_QUOTA
845 static int ext4_quota_off(struct super_block *sb, int type);
846
847 static inline void ext4_quota_off_umount(struct super_block *sb)
848 {
849 int type;
850
851 if (ext4_has_feature_quota(sb)) {
852 dquot_disable(sb, -1,
853 DQUOT_USAGE_ENABLED | DQUOT_LIMITS_ENABLED);
854 } else {
855 /* Use our quota_off function to clear inode flags etc. */
856 for (type = 0; type < EXT4_MAXQUOTAS; type++)
857 ext4_quota_off(sb, type);
858 }
859 }
860 #else
861 static inline void ext4_quota_off_umount(struct super_block *sb)
862 {
863 }
864 #endif
865
866 static void ext4_put_super(struct super_block *sb)
867 {
868 struct ext4_sb_info *sbi = EXT4_SB(sb);
869 struct ext4_super_block *es = sbi->s_es;
870 int aborted = 0;
871 int i, err;
872
873 ext4_unregister_li_request(sb);
874 ext4_quota_off_umount(sb);
875
876 flush_workqueue(sbi->rsv_conversion_wq);
877 destroy_workqueue(sbi->rsv_conversion_wq);
878
879 if (sbi->s_journal) {
880 aborted = is_journal_aborted(sbi->s_journal);
881 err = jbd2_journal_destroy(sbi->s_journal);
882 sbi->s_journal = NULL;
883 if ((err < 0) && !aborted)
884 ext4_abort(sb, "Couldn't clean up the journal");
885 }
886
887 ext4_unregister_sysfs(sb);
888 ext4_es_unregister_shrinker(sbi);
889 del_timer_sync(&sbi->s_err_report);
890 ext4_release_system_zone(sb);
891 ext4_mb_release(sb);
892 ext4_ext_release(sb);
893
894 if (!(sb->s_flags & MS_RDONLY) && !aborted) {
895 ext4_clear_feature_journal_needs_recovery(sb);
896 es->s_state = cpu_to_le16(sbi->s_mount_state);
897 }
898 if (!(sb->s_flags & MS_RDONLY))
899 ext4_commit_super(sb, 1);
900
901 for (i = 0; i < sbi->s_gdb_count; i++)
902 brelse(sbi->s_group_desc[i]);
903 kvfree(sbi->s_group_desc);
904 kvfree(sbi->s_flex_groups);
905 percpu_counter_destroy(&sbi->s_freeclusters_counter);
906 percpu_counter_destroy(&sbi->s_freeinodes_counter);
907 percpu_counter_destroy(&sbi->s_dirs_counter);
908 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
909 percpu_free_rwsem(&sbi->s_journal_flag_rwsem);
910 #ifdef CONFIG_QUOTA
911 for (i = 0; i < EXT4_MAXQUOTAS; i++)
912 kfree(sbi->s_qf_names[i]);
913 #endif
914
915 /* Debugging code just in case the in-memory inode orphan list
916 * isn't empty. The on-disk one can be non-empty if we've
917 * detected an error and taken the fs readonly, but the
918 * in-memory list had better be clean by this point. */
919 if (!list_empty(&sbi->s_orphan))
920 dump_orphan_list(sb, sbi);
921 J_ASSERT(list_empty(&sbi->s_orphan));
922
923 sync_blockdev(sb->s_bdev);
924 invalidate_bdev(sb->s_bdev);
925 if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) {
926 /*
927 * Invalidate the journal device's buffers. We don't want them
928 * floating about in memory - the physical journal device may
929 * hotswapped, and it breaks the `ro-after' testing code.
930 */
931 sync_blockdev(sbi->journal_bdev);
932 invalidate_bdev(sbi->journal_bdev);
933 ext4_blkdev_remove(sbi);
934 }
935 if (sbi->s_mb_cache) {
936 ext4_xattr_destroy_cache(sbi->s_mb_cache);
937 sbi->s_mb_cache = NULL;
938 }
939 if (sbi->s_mmp_tsk)
940 kthread_stop(sbi->s_mmp_tsk);
941 brelse(sbi->s_sbh);
942 sb->s_fs_info = NULL;
943 /*
944 * Now that we are completely done shutting down the
945 * superblock, we need to actually destroy the kobject.
946 */
947 kobject_put(&sbi->s_kobj);
948 wait_for_completion(&sbi->s_kobj_unregister);
949 if (sbi->s_chksum_driver)
950 crypto_free_shash(sbi->s_chksum_driver);
951 kfree(sbi->s_blockgroup_lock);
952 kfree(sbi);
953 }
954
955 static struct kmem_cache *ext4_inode_cachep;
956
957 /*
958 * Called inside transaction, so use GFP_NOFS
959 */
960 static struct inode *ext4_alloc_inode(struct super_block *sb)
961 {
962 struct ext4_inode_info *ei;
963
964 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS);
965 if (!ei)
966 return NULL;
967
968 ei->vfs_inode.i_version = 1;
969 spin_lock_init(&ei->i_raw_lock);
970 INIT_LIST_HEAD(&ei->i_prealloc_list);
971 spin_lock_init(&ei->i_prealloc_lock);
972 ext4_es_init_tree(&ei->i_es_tree);
973 rwlock_init(&ei->i_es_lock);
974 INIT_LIST_HEAD(&ei->i_es_list);
975 ei->i_es_all_nr = 0;
976 ei->i_es_shk_nr = 0;
977 ei->i_es_shrink_lblk = 0;
978 ei->i_reserved_data_blocks = 0;
979 ei->i_reserved_meta_blocks = 0;
980 ei->i_allocated_meta_blocks = 0;
981 ei->i_da_metadata_calc_len = 0;
982 ei->i_da_metadata_calc_last_lblock = 0;
983 spin_lock_init(&(ei->i_block_reservation_lock));
984 #ifdef CONFIG_QUOTA
985 ei->i_reserved_quota = 0;
986 memset(&ei->i_dquot, 0, sizeof(ei->i_dquot));
987 #endif
988 ei->jinode = NULL;
989 INIT_LIST_HEAD(&ei->i_rsv_conversion_list);
990 spin_lock_init(&ei->i_completed_io_lock);
991 ei->i_sync_tid = 0;
992 ei->i_datasync_tid = 0;
993 atomic_set(&ei->i_unwritten, 0);
994 INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work);
995 return &ei->vfs_inode;
996 }
997
998 static int ext4_drop_inode(struct inode *inode)
999 {
1000 int drop = generic_drop_inode(inode);
1001
1002 trace_ext4_drop_inode(inode, drop);
1003 return drop;
1004 }
1005
1006 static void ext4_i_callback(struct rcu_head *head)
1007 {
1008 struct inode *inode = container_of(head, struct inode, i_rcu);
1009 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
1010 }
1011
1012 static void ext4_destroy_inode(struct inode *inode)
1013 {
1014 if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
1015 ext4_msg(inode->i_sb, KERN_ERR,
1016 "Inode %lu (%p): orphan list check failed!",
1017 inode->i_ino, EXT4_I(inode));
1018 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
1019 EXT4_I(inode), sizeof(struct ext4_inode_info),
1020 true);
1021 dump_stack();
1022 }
1023 call_rcu(&inode->i_rcu, ext4_i_callback);
1024 }
1025
1026 static void init_once(void *foo)
1027 {
1028 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo;
1029
1030 INIT_LIST_HEAD(&ei->i_orphan);
1031 init_rwsem(&ei->xattr_sem);
1032 init_rwsem(&ei->i_data_sem);
1033 init_rwsem(&ei->i_mmap_sem);
1034 inode_init_once(&ei->vfs_inode);
1035 }
1036
1037 static int __init init_inodecache(void)
1038 {
1039 ext4_inode_cachep = kmem_cache_create("ext4_inode_cache",
1040 sizeof(struct ext4_inode_info),
1041 0, (SLAB_RECLAIM_ACCOUNT|
1042 SLAB_MEM_SPREAD|SLAB_ACCOUNT),
1043 init_once);
1044 if (ext4_inode_cachep == NULL)
1045 return -ENOMEM;
1046 return 0;
1047 }
1048
1049 static void destroy_inodecache(void)
1050 {
1051 /*
1052 * Make sure all delayed rcu free inodes are flushed before we
1053 * destroy cache.
1054 */
1055 rcu_barrier();
1056 kmem_cache_destroy(ext4_inode_cachep);
1057 }
1058
1059 void ext4_clear_inode(struct inode *inode)
1060 {
1061 invalidate_inode_buffers(inode);
1062 clear_inode(inode);
1063 dquot_drop(inode);
1064 ext4_discard_preallocations(inode);
1065 ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS);
1066 if (EXT4_I(inode)->jinode) {
1067 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
1068 EXT4_I(inode)->jinode);
1069 jbd2_free_inode(EXT4_I(inode)->jinode);
1070 EXT4_I(inode)->jinode = NULL;
1071 }
1072 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1073 fscrypt_put_encryption_info(inode, NULL);
1074 #endif
1075 }
1076
1077 static struct inode *ext4_nfs_get_inode(struct super_block *sb,
1078 u64 ino, u32 generation)
1079 {
1080 struct inode *inode;
1081
1082 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
1083 return ERR_PTR(-ESTALE);
1084 if (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
1085 return ERR_PTR(-ESTALE);
1086
1087 /* iget isn't really right if the inode is currently unallocated!!
1088 *
1089 * ext4_read_inode will return a bad_inode if the inode had been
1090 * deleted, so we should be safe.
1091 *
1092 * Currently we don't know the generation for parent directory, so
1093 * a generation of 0 means "accept any"
1094 */
1095 inode = ext4_iget_normal(sb, ino);
1096 if (IS_ERR(inode))
1097 return ERR_CAST(inode);
1098 if (generation && inode->i_generation != generation) {
1099 iput(inode);
1100 return ERR_PTR(-ESTALE);
1101 }
1102
1103 return inode;
1104 }
1105
1106 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
1107 int fh_len, int fh_type)
1108 {
1109 return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1110 ext4_nfs_get_inode);
1111 }
1112
1113 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
1114 int fh_len, int fh_type)
1115 {
1116 return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1117 ext4_nfs_get_inode);
1118 }
1119
1120 /*
1121 * Try to release metadata pages (indirect blocks, directories) which are
1122 * mapped via the block device. Since these pages could have journal heads
1123 * which would prevent try_to_free_buffers() from freeing them, we must use
1124 * jbd2 layer's try_to_free_buffers() function to release them.
1125 */
1126 static int bdev_try_to_free_page(struct super_block *sb, struct page *page,
1127 gfp_t wait)
1128 {
1129 journal_t *journal = EXT4_SB(sb)->s_journal;
1130
1131 WARN_ON(PageChecked(page));
1132 if (!page_has_buffers(page))
1133 return 0;
1134 if (journal)
1135 return jbd2_journal_try_to_free_buffers(journal, page,
1136 wait & ~__GFP_DIRECT_RECLAIM);
1137 return try_to_free_buffers(page);
1138 }
1139
1140 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1141 static int ext4_get_context(struct inode *inode, void *ctx, size_t len)
1142 {
1143 return ext4_xattr_get(inode, EXT4_XATTR_INDEX_ENCRYPTION,
1144 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, ctx, len);
1145 }
1146
1147 static int ext4_set_context(struct inode *inode, const void *ctx, size_t len,
1148 void *fs_data)
1149 {
1150 handle_t *handle = fs_data;
1151 int res, res2, retries = 0;
1152
1153 res = ext4_convert_inline_data(inode);
1154 if (res)
1155 return res;
1156
1157 /*
1158 * If a journal handle was specified, then the encryption context is
1159 * being set on a new inode via inheritance and is part of a larger
1160 * transaction to create the inode. Otherwise the encryption context is
1161 * being set on an existing inode in its own transaction. Only in the
1162 * latter case should the "retry on ENOSPC" logic be used.
1163 */
1164
1165 if (handle) {
1166 res = ext4_xattr_set_handle(handle, inode,
1167 EXT4_XATTR_INDEX_ENCRYPTION,
1168 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT,
1169 ctx, len, 0);
1170 if (!res) {
1171 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT);
1172 ext4_clear_inode_state(inode,
1173 EXT4_STATE_MAY_INLINE_DATA);
1174 /*
1175 * Update inode->i_flags - e.g. S_DAX may get disabled
1176 */
1177 ext4_set_inode_flags(inode);
1178 }
1179 return res;
1180 }
1181
1182 retry:
1183 handle = ext4_journal_start(inode, EXT4_HT_MISC,
1184 ext4_jbd2_credits_xattr(inode));
1185 if (IS_ERR(handle))
1186 return PTR_ERR(handle);
1187
1188 res = ext4_xattr_set_handle(handle, inode, EXT4_XATTR_INDEX_ENCRYPTION,
1189 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT,
1190 ctx, len, 0);
1191 if (!res) {
1192 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT);
1193 /* Update inode->i_flags - e.g. S_DAX may get disabled */
1194 ext4_set_inode_flags(inode);
1195 res = ext4_mark_inode_dirty(handle, inode);
1196 if (res)
1197 EXT4_ERROR_INODE(inode, "Failed to mark inode dirty");
1198 }
1199 res2 = ext4_journal_stop(handle);
1200
1201 if (res == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1202 goto retry;
1203 if (!res)
1204 res = res2;
1205 return res;
1206 }
1207
1208 static int ext4_dummy_context(struct inode *inode)
1209 {
1210 return DUMMY_ENCRYPTION_ENABLED(EXT4_SB(inode->i_sb));
1211 }
1212
1213 static unsigned ext4_max_namelen(struct inode *inode)
1214 {
1215 return S_ISLNK(inode->i_mode) ? inode->i_sb->s_blocksize :
1216 EXT4_NAME_LEN;
1217 }
1218
1219 static const struct fscrypt_operations ext4_cryptops = {
1220 .key_prefix = "ext4:",
1221 .get_context = ext4_get_context,
1222 .set_context = ext4_set_context,
1223 .dummy_context = ext4_dummy_context,
1224 .is_encrypted = ext4_encrypted_inode,
1225 .empty_dir = ext4_empty_dir,
1226 .max_namelen = ext4_max_namelen,
1227 };
1228 #else
1229 static const struct fscrypt_operations ext4_cryptops = {
1230 .is_encrypted = ext4_encrypted_inode,
1231 };
1232 #endif
1233
1234 #ifdef CONFIG_QUOTA
1235 static const char * const quotatypes[] = INITQFNAMES;
1236 #define QTYPE2NAME(t) (quotatypes[t])
1237
1238 static int ext4_write_dquot(struct dquot *dquot);
1239 static int ext4_acquire_dquot(struct dquot *dquot);
1240 static int ext4_release_dquot(struct dquot *dquot);
1241 static int ext4_mark_dquot_dirty(struct dquot *dquot);
1242 static int ext4_write_info(struct super_block *sb, int type);
1243 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1244 const struct path *path);
1245 static int ext4_quota_on_mount(struct super_block *sb, int type);
1246 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1247 size_t len, loff_t off);
1248 static ssize_t ext4_quota_write(struct super_block *sb, int type,
1249 const char *data, size_t len, loff_t off);
1250 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
1251 unsigned int flags);
1252 static int ext4_enable_quotas(struct super_block *sb);
1253 static int ext4_get_next_id(struct super_block *sb, struct kqid *qid);
1254
1255 static struct dquot **ext4_get_dquots(struct inode *inode)
1256 {
1257 return EXT4_I(inode)->i_dquot;
1258 }
1259
1260 static const struct dquot_operations ext4_quota_operations = {
1261 .get_reserved_space = ext4_get_reserved_space,
1262 .write_dquot = ext4_write_dquot,
1263 .acquire_dquot = ext4_acquire_dquot,
1264 .release_dquot = ext4_release_dquot,
1265 .mark_dirty = ext4_mark_dquot_dirty,
1266 .write_info = ext4_write_info,
1267 .alloc_dquot = dquot_alloc,
1268 .destroy_dquot = dquot_destroy,
1269 .get_projid = ext4_get_projid,
1270 .get_next_id = ext4_get_next_id,
1271 };
1272
1273 static const struct quotactl_ops ext4_qctl_operations = {
1274 .quota_on = ext4_quota_on,
1275 .quota_off = ext4_quota_off,
1276 .quota_sync = dquot_quota_sync,
1277 .get_state = dquot_get_state,
1278 .set_info = dquot_set_dqinfo,
1279 .get_dqblk = dquot_get_dqblk,
1280 .set_dqblk = dquot_set_dqblk,
1281 .get_nextdqblk = dquot_get_next_dqblk,
1282 };
1283 #endif
1284
1285 static const struct super_operations ext4_sops = {
1286 .alloc_inode = ext4_alloc_inode,
1287 .destroy_inode = ext4_destroy_inode,
1288 .write_inode = ext4_write_inode,
1289 .dirty_inode = ext4_dirty_inode,
1290 .drop_inode = ext4_drop_inode,
1291 .evict_inode = ext4_evict_inode,
1292 .put_super = ext4_put_super,
1293 .sync_fs = ext4_sync_fs,
1294 .freeze_fs = ext4_freeze,
1295 .unfreeze_fs = ext4_unfreeze,
1296 .statfs = ext4_statfs,
1297 .remount_fs = ext4_remount,
1298 .show_options = ext4_show_options,
1299 #ifdef CONFIG_QUOTA
1300 .quota_read = ext4_quota_read,
1301 .quota_write = ext4_quota_write,
1302 .get_dquots = ext4_get_dquots,
1303 #endif
1304 .bdev_try_to_free_page = bdev_try_to_free_page,
1305 };
1306
1307 static const struct export_operations ext4_export_ops = {
1308 .fh_to_dentry = ext4_fh_to_dentry,
1309 .fh_to_parent = ext4_fh_to_parent,
1310 .get_parent = ext4_get_parent,
1311 };
1312
1313 enum {
1314 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1315 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro,
1316 Opt_nouid32, Opt_debug, Opt_removed,
1317 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl,
1318 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload,
1319 Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev,
1320 Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit,
1321 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1322 Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption,
1323 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota,
1324 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota,
1325 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err,
1326 Opt_usrquota, Opt_grpquota, Opt_prjquota, Opt_i_version, Opt_dax,
1327 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_mblk_io_submit,
1328 Opt_lazytime, Opt_nolazytime, Opt_debug_want_extra_isize,
1329 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1330 Opt_inode_readahead_blks, Opt_journal_ioprio,
1331 Opt_dioread_nolock, Opt_dioread_lock,
1332 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable,
1333 Opt_max_dir_size_kb, Opt_nojournal_checksum,
1334 };
1335
1336 static const match_table_t tokens = {
1337 {Opt_bsd_df, "bsddf"},
1338 {Opt_minix_df, "minixdf"},
1339 {Opt_grpid, "grpid"},
1340 {Opt_grpid, "bsdgroups"},
1341 {Opt_nogrpid, "nogrpid"},
1342 {Opt_nogrpid, "sysvgroups"},
1343 {Opt_resgid, "resgid=%u"},
1344 {Opt_resuid, "resuid=%u"},
1345 {Opt_sb, "sb=%u"},
1346 {Opt_err_cont, "errors=continue"},
1347 {Opt_err_panic, "errors=panic"},
1348 {Opt_err_ro, "errors=remount-ro"},
1349 {Opt_nouid32, "nouid32"},
1350 {Opt_debug, "debug"},
1351 {Opt_removed, "oldalloc"},
1352 {Opt_removed, "orlov"},
1353 {Opt_user_xattr, "user_xattr"},
1354 {Opt_nouser_xattr, "nouser_xattr"},
1355 {Opt_acl, "acl"},
1356 {Opt_noacl, "noacl"},
1357 {Opt_noload, "norecovery"},
1358 {Opt_noload, "noload"},
1359 {Opt_removed, "nobh"},
1360 {Opt_removed, "bh"},
1361 {Opt_commit, "commit=%u"},
1362 {Opt_min_batch_time, "min_batch_time=%u"},
1363 {Opt_max_batch_time, "max_batch_time=%u"},
1364 {Opt_journal_dev, "journal_dev=%u"},
1365 {Opt_journal_path, "journal_path=%s"},
1366 {Opt_journal_checksum, "journal_checksum"},
1367 {Opt_nojournal_checksum, "nojournal_checksum"},
1368 {Opt_journal_async_commit, "journal_async_commit"},
1369 {Opt_abort, "abort"},
1370 {Opt_data_journal, "data=journal"},
1371 {Opt_data_ordered, "data=ordered"},
1372 {Opt_data_writeback, "data=writeback"},
1373 {Opt_data_err_abort, "data_err=abort"},
1374 {Opt_data_err_ignore, "data_err=ignore"},
1375 {Opt_offusrjquota, "usrjquota="},
1376 {Opt_usrjquota, "usrjquota=%s"},
1377 {Opt_offgrpjquota, "grpjquota="},
1378 {Opt_grpjquota, "grpjquota=%s"},
1379 {Opt_jqfmt_vfsold, "jqfmt=vfsold"},
1380 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
1381 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
1382 {Opt_grpquota, "grpquota"},
1383 {Opt_noquota, "noquota"},
1384 {Opt_quota, "quota"},
1385 {Opt_usrquota, "usrquota"},
1386 {Opt_prjquota, "prjquota"},
1387 {Opt_barrier, "barrier=%u"},
1388 {Opt_barrier, "barrier"},
1389 {Opt_nobarrier, "nobarrier"},
1390 {Opt_i_version, "i_version"},
1391 {Opt_dax, "dax"},
1392 {Opt_stripe, "stripe=%u"},
1393 {Opt_delalloc, "delalloc"},
1394 {Opt_lazytime, "lazytime"},
1395 {Opt_nolazytime, "nolazytime"},
1396 {Opt_debug_want_extra_isize, "debug_want_extra_isize=%u"},
1397 {Opt_nodelalloc, "nodelalloc"},
1398 {Opt_removed, "mblk_io_submit"},
1399 {Opt_removed, "nomblk_io_submit"},
1400 {Opt_block_validity, "block_validity"},
1401 {Opt_noblock_validity, "noblock_validity"},
1402 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"},
1403 {Opt_journal_ioprio, "journal_ioprio=%u"},
1404 {Opt_auto_da_alloc, "auto_da_alloc=%u"},
1405 {Opt_auto_da_alloc, "auto_da_alloc"},
1406 {Opt_noauto_da_alloc, "noauto_da_alloc"},
1407 {Opt_dioread_nolock, "dioread_nolock"},
1408 {Opt_dioread_lock, "dioread_lock"},
1409 {Opt_discard, "discard"},
1410 {Opt_nodiscard, "nodiscard"},
1411 {Opt_init_itable, "init_itable=%u"},
1412 {Opt_init_itable, "init_itable"},
1413 {Opt_noinit_itable, "noinit_itable"},
1414 {Opt_max_dir_size_kb, "max_dir_size_kb=%u"},
1415 {Opt_test_dummy_encryption, "test_dummy_encryption"},
1416 {Opt_removed, "check=none"}, /* mount option from ext2/3 */
1417 {Opt_removed, "nocheck"}, /* mount option from ext2/3 */
1418 {Opt_removed, "reservation"}, /* mount option from ext2/3 */
1419 {Opt_removed, "noreservation"}, /* mount option from ext2/3 */
1420 {Opt_removed, "journal=%u"}, /* mount option from ext2/3 */
1421 {Opt_err, NULL},
1422 };
1423
1424 static ext4_fsblk_t get_sb_block(void **data)
1425 {
1426 ext4_fsblk_t sb_block;
1427 char *options = (char *) *data;
1428
1429 if (!options || strncmp(options, "sb=", 3) != 0)
1430 return 1; /* Default location */
1431
1432 options += 3;
1433 /* TODO: use simple_strtoll with >32bit ext4 */
1434 sb_block = simple_strtoul(options, &options, 0);
1435 if (*options && *options != ',') {
1436 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n",
1437 (char *) *data);
1438 return 1;
1439 }
1440 if (*options == ',')
1441 options++;
1442 *data = (void *) options;
1443
1444 return sb_block;
1445 }
1446
1447 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1448 static const char deprecated_msg[] =
1449 "Mount option \"%s\" will be removed by %s\n"
1450 "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n";
1451
1452 #ifdef CONFIG_QUOTA
1453 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args)
1454 {
1455 struct ext4_sb_info *sbi = EXT4_SB(sb);
1456 char *qname;
1457 int ret = -1;
1458
1459 if (sb_any_quota_loaded(sb) &&
1460 !sbi->s_qf_names[qtype]) {
1461 ext4_msg(sb, KERN_ERR,
1462 "Cannot change journaled "
1463 "quota options when quota turned on");
1464 return -1;
1465 }
1466 if (ext4_has_feature_quota(sb)) {
1467 ext4_msg(sb, KERN_INFO, "Journaled quota options "
1468 "ignored when QUOTA feature is enabled");
1469 return 1;
1470 }
1471 qname = match_strdup(args);
1472 if (!qname) {
1473 ext4_msg(sb, KERN_ERR,
1474 "Not enough memory for storing quotafile name");
1475 return -1;
1476 }
1477 if (sbi->s_qf_names[qtype]) {
1478 if (strcmp(sbi->s_qf_names[qtype], qname) == 0)
1479 ret = 1;
1480 else
1481 ext4_msg(sb, KERN_ERR,
1482 "%s quota file already specified",
1483 QTYPE2NAME(qtype));
1484 goto errout;
1485 }
1486 if (strchr(qname, '/')) {
1487 ext4_msg(sb, KERN_ERR,
1488 "quotafile must be on filesystem root");
1489 goto errout;
1490 }
1491 sbi->s_qf_names[qtype] = qname;
1492 set_opt(sb, QUOTA);
1493 return 1;
1494 errout:
1495 kfree(qname);
1496 return ret;
1497 }
1498
1499 static int clear_qf_name(struct super_block *sb, int qtype)
1500 {
1501
1502 struct ext4_sb_info *sbi = EXT4_SB(sb);
1503
1504 if (sb_any_quota_loaded(sb) &&
1505 sbi->s_qf_names[qtype]) {
1506 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options"
1507 " when quota turned on");
1508 return -1;
1509 }
1510 kfree(sbi->s_qf_names[qtype]);
1511 sbi->s_qf_names[qtype] = NULL;
1512 return 1;
1513 }
1514 #endif
1515
1516 #define MOPT_SET 0x0001
1517 #define MOPT_CLEAR 0x0002
1518 #define MOPT_NOSUPPORT 0x0004
1519 #define MOPT_EXPLICIT 0x0008
1520 #define MOPT_CLEAR_ERR 0x0010
1521 #define MOPT_GTE0 0x0020
1522 #ifdef CONFIG_QUOTA
1523 #define MOPT_Q 0
1524 #define MOPT_QFMT 0x0040
1525 #else
1526 #define MOPT_Q MOPT_NOSUPPORT
1527 #define MOPT_QFMT MOPT_NOSUPPORT
1528 #endif
1529 #define MOPT_DATAJ 0x0080
1530 #define MOPT_NO_EXT2 0x0100
1531 #define MOPT_NO_EXT3 0x0200
1532 #define MOPT_EXT4_ONLY (MOPT_NO_EXT2 | MOPT_NO_EXT3)
1533 #define MOPT_STRING 0x0400
1534
1535 static const struct mount_opts {
1536 int token;
1537 int mount_opt;
1538 int flags;
1539 } ext4_mount_opts[] = {
1540 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET},
1541 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR},
1542 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET},
1543 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR},
1544 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET},
1545 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR},
1546 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK,
1547 MOPT_EXT4_ONLY | MOPT_SET},
1548 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK,
1549 MOPT_EXT4_ONLY | MOPT_CLEAR},
1550 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET},
1551 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR},
1552 {Opt_delalloc, EXT4_MOUNT_DELALLOC,
1553 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1554 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC,
1555 MOPT_EXT4_ONLY | MOPT_CLEAR},
1556 {Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1557 MOPT_EXT4_ONLY | MOPT_CLEAR},
1558 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1559 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1560 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT |
1561 EXT4_MOUNT_JOURNAL_CHECKSUM),
1562 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1563 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET},
1564 {Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR},
1565 {Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR},
1566 {Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR},
1567 {Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT,
1568 MOPT_NO_EXT2},
1569 {Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT,
1570 MOPT_NO_EXT2},
1571 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET},
1572 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR},
1573 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET},
1574 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR},
1575 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR},
1576 {Opt_commit, 0, MOPT_GTE0},
1577 {Opt_max_batch_time, 0, MOPT_GTE0},
1578 {Opt_min_batch_time, 0, MOPT_GTE0},
1579 {Opt_inode_readahead_blks, 0, MOPT_GTE0},
1580 {Opt_init_itable, 0, MOPT_GTE0},
1581 {Opt_dax, EXT4_MOUNT_DAX, MOPT_SET},
1582 {Opt_stripe, 0, MOPT_GTE0},
1583 {Opt_resuid, 0, MOPT_GTE0},
1584 {Opt_resgid, 0, MOPT_GTE0},
1585 {Opt_journal_dev, 0, MOPT_NO_EXT2 | MOPT_GTE0},
1586 {Opt_journal_path, 0, MOPT_NO_EXT2 | MOPT_STRING},
1587 {Opt_journal_ioprio, 0, MOPT_NO_EXT2 | MOPT_GTE0},
1588 {Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1589 {Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1590 {Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA,
1591 MOPT_NO_EXT2 | MOPT_DATAJ},
1592 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET},
1593 {Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR},
1594 #ifdef CONFIG_EXT4_FS_POSIX_ACL
1595 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET},
1596 {Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR},
1597 #else
1598 {Opt_acl, 0, MOPT_NOSUPPORT},
1599 {Opt_noacl, 0, MOPT_NOSUPPORT},
1600 #endif
1601 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET},
1602 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET},
1603 {Opt_debug_want_extra_isize, 0, MOPT_GTE0},
1604 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q},
1605 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA,
1606 MOPT_SET | MOPT_Q},
1607 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA,
1608 MOPT_SET | MOPT_Q},
1609 {Opt_prjquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_PRJQUOTA,
1610 MOPT_SET | MOPT_Q},
1611 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
1612 EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA),
1613 MOPT_CLEAR | MOPT_Q},
1614 {Opt_usrjquota, 0, MOPT_Q},
1615 {Opt_grpjquota, 0, MOPT_Q},
1616 {Opt_offusrjquota, 0, MOPT_Q},
1617 {Opt_offgrpjquota, 0, MOPT_Q},
1618 {Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT},
1619 {Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT},
1620 {Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT},
1621 {Opt_max_dir_size_kb, 0, MOPT_GTE0},
1622 {Opt_test_dummy_encryption, 0, MOPT_GTE0},
1623 {Opt_err, 0, 0}
1624 };
1625
1626 static int handle_mount_opt(struct super_block *sb, char *opt, int token,
1627 substring_t *args, unsigned long *journal_devnum,
1628 unsigned int *journal_ioprio, int is_remount)
1629 {
1630 struct ext4_sb_info *sbi = EXT4_SB(sb);
1631 const struct mount_opts *m;
1632 kuid_t uid;
1633 kgid_t gid;
1634 int arg = 0;
1635
1636 #ifdef CONFIG_QUOTA
1637 if (token == Opt_usrjquota)
1638 return set_qf_name(sb, USRQUOTA, &args[0]);
1639 else if (token == Opt_grpjquota)
1640 return set_qf_name(sb, GRPQUOTA, &args[0]);
1641 else if (token == Opt_offusrjquota)
1642 return clear_qf_name(sb, USRQUOTA);
1643 else if (token == Opt_offgrpjquota)
1644 return clear_qf_name(sb, GRPQUOTA);
1645 #endif
1646 switch (token) {
1647 case Opt_noacl:
1648 case Opt_nouser_xattr:
1649 ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5");
1650 break;
1651 case Opt_sb:
1652 return 1; /* handled by get_sb_block() */
1653 case Opt_removed:
1654 ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt);
1655 return 1;
1656 case Opt_abort:
1657 sbi->s_mount_flags |= EXT4_MF_FS_ABORTED;
1658 return 1;
1659 case Opt_i_version:
1660 sb->s_flags |= MS_I_VERSION;
1661 return 1;
1662 case Opt_lazytime:
1663 sb->s_flags |= MS_LAZYTIME;
1664 return 1;
1665 case Opt_nolazytime:
1666 sb->s_flags &= ~MS_LAZYTIME;
1667 return 1;
1668 }
1669
1670 for (m = ext4_mount_opts; m->token != Opt_err; m++)
1671 if (token == m->token)
1672 break;
1673
1674 if (m->token == Opt_err) {
1675 ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" "
1676 "or missing value", opt);
1677 return -1;
1678 }
1679
1680 if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) {
1681 ext4_msg(sb, KERN_ERR,
1682 "Mount option \"%s\" incompatible with ext2", opt);
1683 return -1;
1684 }
1685 if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) {
1686 ext4_msg(sb, KERN_ERR,
1687 "Mount option \"%s\" incompatible with ext3", opt);
1688 return -1;
1689 }
1690
1691 if (args->from && !(m->flags & MOPT_STRING) && match_int(args, &arg))
1692 return -1;
1693 if (args->from && (m->flags & MOPT_GTE0) && (arg < 0))
1694 return -1;
1695 if (m->flags & MOPT_EXPLICIT) {
1696 if (m->mount_opt & EXT4_MOUNT_DELALLOC) {
1697 set_opt2(sb, EXPLICIT_DELALLOC);
1698 } else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) {
1699 set_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM);
1700 } else
1701 return -1;
1702 }
1703 if (m->flags & MOPT_CLEAR_ERR)
1704 clear_opt(sb, ERRORS_MASK);
1705 if (token == Opt_noquota && sb_any_quota_loaded(sb)) {
1706 ext4_msg(sb, KERN_ERR, "Cannot change quota "
1707 "options when quota turned on");
1708 return -1;
1709 }
1710
1711 if (m->flags & MOPT_NOSUPPORT) {
1712 ext4_msg(sb, KERN_ERR, "%s option not supported", opt);
1713 } else if (token == Opt_commit) {
1714 if (arg == 0)
1715 arg = JBD2_DEFAULT_MAX_COMMIT_AGE;
1716 sbi->s_commit_interval = HZ * arg;
1717 } else if (token == Opt_debug_want_extra_isize) {
1718 sbi->s_want_extra_isize = arg;
1719 } else if (token == Opt_max_batch_time) {
1720 sbi->s_max_batch_time = arg;
1721 } else if (token == Opt_min_batch_time) {
1722 sbi->s_min_batch_time = arg;
1723 } else if (token == Opt_inode_readahead_blks) {
1724 if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) {
1725 ext4_msg(sb, KERN_ERR,
1726 "EXT4-fs: inode_readahead_blks must be "
1727 "0 or a power of 2 smaller than 2^31");
1728 return -1;
1729 }
1730 sbi->s_inode_readahead_blks = arg;
1731 } else if (token == Opt_init_itable) {
1732 set_opt(sb, INIT_INODE_TABLE);
1733 if (!args->from)
1734 arg = EXT4_DEF_LI_WAIT_MULT;
1735 sbi->s_li_wait_mult = arg;
1736 } else if (token == Opt_max_dir_size_kb) {
1737 sbi->s_max_dir_size_kb = arg;
1738 } else if (token == Opt_stripe) {
1739 sbi->s_stripe = arg;
1740 } else if (token == Opt_resuid) {
1741 uid = make_kuid(current_user_ns(), arg);
1742 if (!uid_valid(uid)) {
1743 ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg);
1744 return -1;
1745 }
1746 sbi->s_resuid = uid;
1747 } else if (token == Opt_resgid) {
1748 gid = make_kgid(current_user_ns(), arg);
1749 if (!gid_valid(gid)) {
1750 ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg);
1751 return -1;
1752 }
1753 sbi->s_resgid = gid;
1754 } else if (token == Opt_journal_dev) {
1755 if (is_remount) {
1756 ext4_msg(sb, KERN_ERR,
1757 "Cannot specify journal on remount");
1758 return -1;
1759 }
1760 *journal_devnum = arg;
1761 } else if (token == Opt_journal_path) {
1762 char *journal_path;
1763 struct inode *journal_inode;
1764 struct path path;
1765 int error;
1766
1767 if (is_remount) {
1768 ext4_msg(sb, KERN_ERR,
1769 "Cannot specify journal on remount");
1770 return -1;
1771 }
1772 journal_path = match_strdup(&args[0]);
1773 if (!journal_path) {
1774 ext4_msg(sb, KERN_ERR, "error: could not dup "
1775 "journal device string");
1776 return -1;
1777 }
1778
1779 error = kern_path(journal_path, LOOKUP_FOLLOW, &path);
1780 if (error) {
1781 ext4_msg(sb, KERN_ERR, "error: could not find "
1782 "journal device path: error %d", error);
1783 kfree(journal_path);
1784 return -1;
1785 }
1786
1787 journal_inode = d_inode(path.dentry);
1788 if (!S_ISBLK(journal_inode->i_mode)) {
1789 ext4_msg(sb, KERN_ERR, "error: journal path %s "
1790 "is not a block device", journal_path);
1791 path_put(&path);
1792 kfree(journal_path);
1793 return -1;
1794 }
1795
1796 *journal_devnum = new_encode_dev(journal_inode->i_rdev);
1797 path_put(&path);
1798 kfree(journal_path);
1799 } else if (token == Opt_journal_ioprio) {
1800 if (arg > 7) {
1801 ext4_msg(sb, KERN_ERR, "Invalid journal IO priority"
1802 " (must be 0-7)");
1803 return -1;
1804 }
1805 *journal_ioprio =
1806 IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg);
1807 } else if (token == Opt_test_dummy_encryption) {
1808 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1809 sbi->s_mount_flags |= EXT4_MF_TEST_DUMMY_ENCRYPTION;
1810 ext4_msg(sb, KERN_WARNING,
1811 "Test dummy encryption mode enabled");
1812 #else
1813 ext4_msg(sb, KERN_WARNING,
1814 "Test dummy encryption mount option ignored");
1815 #endif
1816 } else if (m->flags & MOPT_DATAJ) {
1817 if (is_remount) {
1818 if (!sbi->s_journal)
1819 ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option");
1820 else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) {
1821 ext4_msg(sb, KERN_ERR,
1822 "Cannot change data mode on remount");
1823 return -1;
1824 }
1825 } else {
1826 clear_opt(sb, DATA_FLAGS);
1827 sbi->s_mount_opt |= m->mount_opt;
1828 }
1829 #ifdef CONFIG_QUOTA
1830 } else if (m->flags & MOPT_QFMT) {
1831 if (sb_any_quota_loaded(sb) &&
1832 sbi->s_jquota_fmt != m->mount_opt) {
1833 ext4_msg(sb, KERN_ERR, "Cannot change journaled "
1834 "quota options when quota turned on");
1835 return -1;
1836 }
1837 if (ext4_has_feature_quota(sb)) {
1838 ext4_msg(sb, KERN_INFO,
1839 "Quota format mount options ignored "
1840 "when QUOTA feature is enabled");
1841 return 1;
1842 }
1843 sbi->s_jquota_fmt = m->mount_opt;
1844 #endif
1845 } else if (token == Opt_dax) {
1846 #ifdef CONFIG_FS_DAX
1847 ext4_msg(sb, KERN_WARNING,
1848 "DAX enabled. Warning: EXPERIMENTAL, use at your own risk");
1849 sbi->s_mount_opt |= m->mount_opt;
1850 #else
1851 ext4_msg(sb, KERN_INFO, "dax option not supported");
1852 return -1;
1853 #endif
1854 } else if (token == Opt_data_err_abort) {
1855 sbi->s_mount_opt |= m->mount_opt;
1856 } else if (token == Opt_data_err_ignore) {
1857 sbi->s_mount_opt &= ~m->mount_opt;
1858 } else {
1859 if (!args->from)
1860 arg = 1;
1861 if (m->flags & MOPT_CLEAR)
1862 arg = !arg;
1863 else if (unlikely(!(m->flags & MOPT_SET))) {
1864 ext4_msg(sb, KERN_WARNING,
1865 "buggy handling of option %s", opt);
1866 WARN_ON(1);
1867 return -1;
1868 }
1869 if (arg != 0)
1870 sbi->s_mount_opt |= m->mount_opt;
1871 else
1872 sbi->s_mount_opt &= ~m->mount_opt;
1873 }
1874 return 1;
1875 }
1876
1877 static int parse_options(char *options, struct super_block *sb,
1878 unsigned long *journal_devnum,
1879 unsigned int *journal_ioprio,
1880 int is_remount)
1881 {
1882 struct ext4_sb_info *sbi = EXT4_SB(sb);
1883 char *p;
1884 substring_t args[MAX_OPT_ARGS];
1885 int token;
1886
1887 if (!options)
1888 return 1;
1889
1890 while ((p = strsep(&options, ",")) != NULL) {
1891 if (!*p)
1892 continue;
1893 /*
1894 * Initialize args struct so we know whether arg was
1895 * found; some options take optional arguments.
1896 */
1897 args[0].to = args[0].from = NULL;
1898 token = match_token(p, tokens, args);
1899 if (handle_mount_opt(sb, p, token, args, journal_devnum,
1900 journal_ioprio, is_remount) < 0)
1901 return 0;
1902 }
1903 #ifdef CONFIG_QUOTA
1904 /*
1905 * We do the test below only for project quotas. 'usrquota' and
1906 * 'grpquota' mount options are allowed even without quota feature
1907 * to support legacy quotas in quota files.
1908 */
1909 if (test_opt(sb, PRJQUOTA) && !ext4_has_feature_project(sb)) {
1910 ext4_msg(sb, KERN_ERR, "Project quota feature not enabled. "
1911 "Cannot enable project quota enforcement.");
1912 return 0;
1913 }
1914 if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
1915 if (test_opt(sb, USRQUOTA) && sbi->s_qf_names[USRQUOTA])
1916 clear_opt(sb, USRQUOTA);
1917
1918 if (test_opt(sb, GRPQUOTA) && sbi->s_qf_names[GRPQUOTA])
1919 clear_opt(sb, GRPQUOTA);
1920
1921 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) {
1922 ext4_msg(sb, KERN_ERR, "old and new quota "
1923 "format mixing");
1924 return 0;
1925 }
1926
1927 if (!sbi->s_jquota_fmt) {
1928 ext4_msg(sb, KERN_ERR, "journaled quota format "
1929 "not specified");
1930 return 0;
1931 }
1932 }
1933 #endif
1934 if (test_opt(sb, DIOREAD_NOLOCK)) {
1935 int blocksize =
1936 BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size);
1937
1938 if (blocksize < PAGE_SIZE) {
1939 ext4_msg(sb, KERN_ERR, "can't mount with "
1940 "dioread_nolock if block size != PAGE_SIZE");
1941 return 0;
1942 }
1943 }
1944 return 1;
1945 }
1946
1947 static inline void ext4_show_quota_options(struct seq_file *seq,
1948 struct super_block *sb)
1949 {
1950 #if defined(CONFIG_QUOTA)
1951 struct ext4_sb_info *sbi = EXT4_SB(sb);
1952
1953 if (sbi->s_jquota_fmt) {
1954 char *fmtname = "";
1955
1956 switch (sbi->s_jquota_fmt) {
1957 case QFMT_VFS_OLD:
1958 fmtname = "vfsold";
1959 break;
1960 case QFMT_VFS_V0:
1961 fmtname = "vfsv0";
1962 break;
1963 case QFMT_VFS_V1:
1964 fmtname = "vfsv1";
1965 break;
1966 }
1967 seq_printf(seq, ",jqfmt=%s", fmtname);
1968 }
1969
1970 if (sbi->s_qf_names[USRQUOTA])
1971 seq_show_option(seq, "usrjquota", sbi->s_qf_names[USRQUOTA]);
1972
1973 if (sbi->s_qf_names[GRPQUOTA])
1974 seq_show_option(seq, "grpjquota", sbi->s_qf_names[GRPQUOTA]);
1975 #endif
1976 }
1977
1978 static const char *token2str(int token)
1979 {
1980 const struct match_token *t;
1981
1982 for (t = tokens; t->token != Opt_err; t++)
1983 if (t->token == token && !strchr(t->pattern, '='))
1984 break;
1985 return t->pattern;
1986 }
1987
1988 /*
1989 * Show an option if
1990 * - it's set to a non-default value OR
1991 * - if the per-sb default is different from the global default
1992 */
1993 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb,
1994 int nodefs)
1995 {
1996 struct ext4_sb_info *sbi = EXT4_SB(sb);
1997 struct ext4_super_block *es = sbi->s_es;
1998 int def_errors, def_mount_opt = nodefs ? 0 : sbi->s_def_mount_opt;
1999 const struct mount_opts *m;
2000 char sep = nodefs ? '\n' : ',';
2001
2002 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep)
2003 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg)
2004
2005 if (sbi->s_sb_block != 1)
2006 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block);
2007
2008 for (m = ext4_mount_opts; m->token != Opt_err; m++) {
2009 int want_set = m->flags & MOPT_SET;
2010 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) ||
2011 (m->flags & MOPT_CLEAR_ERR))
2012 continue;
2013 if (!(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt)))
2014 continue; /* skip if same as the default */
2015 if ((want_set &&
2016 (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) ||
2017 (!want_set && (sbi->s_mount_opt & m->mount_opt)))
2018 continue; /* select Opt_noFoo vs Opt_Foo */
2019 SEQ_OPTS_PRINT("%s", token2str(m->token));
2020 }
2021
2022 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) ||
2023 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID)
2024 SEQ_OPTS_PRINT("resuid=%u",
2025 from_kuid_munged(&init_user_ns, sbi->s_resuid));
2026 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) ||
2027 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID)
2028 SEQ_OPTS_PRINT("resgid=%u",
2029 from_kgid_munged(&init_user_ns, sbi->s_resgid));
2030 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors);
2031 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO)
2032 SEQ_OPTS_PUTS("errors=remount-ro");
2033 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
2034 SEQ_OPTS_PUTS("errors=continue");
2035 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
2036 SEQ_OPTS_PUTS("errors=panic");
2037 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
2038 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ);
2039 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME)
2040 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time);
2041 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME)
2042 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time);
2043 if (sb->s_flags & MS_I_VERSION)
2044 SEQ_OPTS_PUTS("i_version");
2045 if (nodefs || sbi->s_stripe)
2046 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe);
2047 if (EXT4_MOUNT_DATA_FLAGS & (sbi->s_mount_opt ^ def_mount_opt)) {
2048 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
2049 SEQ_OPTS_PUTS("data=journal");
2050 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
2051 SEQ_OPTS_PUTS("data=ordered");
2052 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
2053 SEQ_OPTS_PUTS("data=writeback");
2054 }
2055 if (nodefs ||
2056 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
2057 SEQ_OPTS_PRINT("inode_readahead_blks=%u",
2058 sbi->s_inode_readahead_blks);
2059
2060 if (nodefs || (test_opt(sb, INIT_INODE_TABLE) &&
2061 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)))
2062 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult);
2063 if (nodefs || sbi->s_max_dir_size_kb)
2064 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb);
2065 if (test_opt(sb, DATA_ERR_ABORT))
2066 SEQ_OPTS_PUTS("data_err=abort");
2067
2068 ext4_show_quota_options(seq, sb);
2069 return 0;
2070 }
2071
2072 static int ext4_show_options(struct seq_file *seq, struct dentry *root)
2073 {
2074 return _ext4_show_options(seq, root->d_sb, 0);
2075 }
2076
2077 int ext4_seq_options_show(struct seq_file *seq, void *offset)
2078 {
2079 struct super_block *sb = seq->private;
2080 int rc;
2081
2082 seq_puts(seq, (sb->s_flags & MS_RDONLY) ? "ro" : "rw");
2083 rc = _ext4_show_options(seq, sb, 1);
2084 seq_puts(seq, "\n");
2085 return rc;
2086 }
2087
2088 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
2089 int read_only)
2090 {
2091 struct ext4_sb_info *sbi = EXT4_SB(sb);
2092 int res = 0;
2093
2094 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
2095 ext4_msg(sb, KERN_ERR, "revision level too high, "
2096 "forcing read-only mode");
2097 res = MS_RDONLY;
2098 }
2099 if (read_only)
2100 goto done;
2101 if (!(sbi->s_mount_state & EXT4_VALID_FS))
2102 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
2103 "running e2fsck is recommended");
2104 else if (sbi->s_mount_state & EXT4_ERROR_FS)
2105 ext4_msg(sb, KERN_WARNING,
2106 "warning: mounting fs with errors, "
2107 "running e2fsck is recommended");
2108 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
2109 le16_to_cpu(es->s_mnt_count) >=
2110 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
2111 ext4_msg(sb, KERN_WARNING,
2112 "warning: maximal mount count reached, "
2113 "running e2fsck is recommended");
2114 else if (le32_to_cpu(es->s_checkinterval) &&
2115 (le32_to_cpu(es->s_lastcheck) +
2116 le32_to_cpu(es->s_checkinterval) <= get_seconds()))
2117 ext4_msg(sb, KERN_WARNING,
2118 "warning: checktime reached, "
2119 "running e2fsck is recommended");
2120 if (!sbi->s_journal)
2121 es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
2122 if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
2123 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
2124 le16_add_cpu(&es->s_mnt_count, 1);
2125 es->s_mtime = cpu_to_le32(get_seconds());
2126 ext4_update_dynamic_rev(sb);
2127 if (sbi->s_journal)
2128 ext4_set_feature_journal_needs_recovery(sb);
2129
2130 ext4_commit_super(sb, 1);
2131 done:
2132 if (test_opt(sb, DEBUG))
2133 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
2134 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
2135 sb->s_blocksize,
2136 sbi->s_groups_count,
2137 EXT4_BLOCKS_PER_GROUP(sb),
2138 EXT4_INODES_PER_GROUP(sb),
2139 sbi->s_mount_opt, sbi->s_mount_opt2);
2140
2141 cleancache_init_fs(sb);
2142 return res;
2143 }
2144
2145 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup)
2146 {
2147 struct ext4_sb_info *sbi = EXT4_SB(sb);
2148 struct flex_groups *new_groups;
2149 int size;
2150
2151 if (!sbi->s_log_groups_per_flex)
2152 return 0;
2153
2154 size = ext4_flex_group(sbi, ngroup - 1) + 1;
2155 if (size <= sbi->s_flex_groups_allocated)
2156 return 0;
2157
2158 size = roundup_pow_of_two(size * sizeof(struct flex_groups));
2159 new_groups = kvzalloc(size, GFP_KERNEL);
2160 if (!new_groups) {
2161 ext4_msg(sb, KERN_ERR, "not enough memory for %d flex groups",
2162 size / (int) sizeof(struct flex_groups));
2163 return -ENOMEM;
2164 }
2165
2166 if (sbi->s_flex_groups) {
2167 memcpy(new_groups, sbi->s_flex_groups,
2168 (sbi->s_flex_groups_allocated *
2169 sizeof(struct flex_groups)));
2170 kvfree(sbi->s_flex_groups);
2171 }
2172 sbi->s_flex_groups = new_groups;
2173 sbi->s_flex_groups_allocated = size / sizeof(struct flex_groups);
2174 return 0;
2175 }
2176
2177 static int ext4_fill_flex_info(struct super_block *sb)
2178 {
2179 struct ext4_sb_info *sbi = EXT4_SB(sb);
2180 struct ext4_group_desc *gdp = NULL;
2181 ext4_group_t flex_group;
2182 int i, err;
2183
2184 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
2185 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) {
2186 sbi->s_log_groups_per_flex = 0;
2187 return 1;
2188 }
2189
2190 err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count);
2191 if (err)
2192 goto failed;
2193
2194 for (i = 0; i < sbi->s_groups_count; i++) {
2195 gdp = ext4_get_group_desc(sb, i, NULL);
2196
2197 flex_group = ext4_flex_group(sbi, i);
2198 atomic_add(ext4_free_inodes_count(sb, gdp),
2199 &sbi->s_flex_groups[flex_group].free_inodes);
2200 atomic64_add(ext4_free_group_clusters(sb, gdp),
2201 &sbi->s_flex_groups[flex_group].free_clusters);
2202 atomic_add(ext4_used_dirs_count(sb, gdp),
2203 &sbi->s_flex_groups[flex_group].used_dirs);
2204 }
2205
2206 return 1;
2207 failed:
2208 return 0;
2209 }
2210
2211 static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group,
2212 struct ext4_group_desc *gdp)
2213 {
2214 int offset = offsetof(struct ext4_group_desc, bg_checksum);
2215 __u16 crc = 0;
2216 __le32 le_group = cpu_to_le32(block_group);
2217 struct ext4_sb_info *sbi = EXT4_SB(sb);
2218
2219 if (ext4_has_metadata_csum(sbi->s_sb)) {
2220 /* Use new metadata_csum algorithm */
2221 __u32 csum32;
2222 __u16 dummy_csum = 0;
2223
2224 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group,
2225 sizeof(le_group));
2226 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, offset);
2227 csum32 = ext4_chksum(sbi, csum32, (__u8 *)&dummy_csum,
2228 sizeof(dummy_csum));
2229 offset += sizeof(dummy_csum);
2230 if (offset < sbi->s_desc_size)
2231 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp + offset,
2232 sbi->s_desc_size - offset);
2233
2234 crc = csum32 & 0xFFFF;
2235 goto out;
2236 }
2237
2238 /* old crc16 code */
2239 if (!ext4_has_feature_gdt_csum(sb))
2240 return 0;
2241
2242 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
2243 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
2244 crc = crc16(crc, (__u8 *)gdp, offset);
2245 offset += sizeof(gdp->bg_checksum); /* skip checksum */
2246 /* for checksum of struct ext4_group_desc do the rest...*/
2247 if (ext4_has_feature_64bit(sb) &&
2248 offset < le16_to_cpu(sbi->s_es->s_desc_size))
2249 crc = crc16(crc, (__u8 *)gdp + offset,
2250 le16_to_cpu(sbi->s_es->s_desc_size) -
2251 offset);
2252
2253 out:
2254 return cpu_to_le16(crc);
2255 }
2256
2257 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group,
2258 struct ext4_group_desc *gdp)
2259 {
2260 if (ext4_has_group_desc_csum(sb) &&
2261 (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp)))
2262 return 0;
2263
2264 return 1;
2265 }
2266
2267 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group,
2268 struct ext4_group_desc *gdp)
2269 {
2270 if (!ext4_has_group_desc_csum(sb))
2271 return;
2272 gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp);
2273 }
2274
2275 /* Called at mount-time, super-block is locked */
2276 static int ext4_check_descriptors(struct super_block *sb,
2277 ext4_fsblk_t sb_block,
2278 ext4_group_t *first_not_zeroed)
2279 {
2280 struct ext4_sb_info *sbi = EXT4_SB(sb);
2281 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
2282 ext4_fsblk_t last_block;
2283 ext4_fsblk_t block_bitmap;
2284 ext4_fsblk_t inode_bitmap;
2285 ext4_fsblk_t inode_table;
2286 int flexbg_flag = 0;
2287 ext4_group_t i, grp = sbi->s_groups_count;
2288
2289 if (ext4_has_feature_flex_bg(sb))
2290 flexbg_flag = 1;
2291
2292 ext4_debug("Checking group descriptors");
2293
2294 for (i = 0; i < sbi->s_groups_count; i++) {
2295 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
2296
2297 if (i == sbi->s_groups_count - 1 || flexbg_flag)
2298 last_block = ext4_blocks_count(sbi->s_es) - 1;
2299 else
2300 last_block = first_block +
2301 (EXT4_BLOCKS_PER_GROUP(sb) - 1);
2302
2303 if ((grp == sbi->s_groups_count) &&
2304 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2305 grp = i;
2306
2307 block_bitmap = ext4_block_bitmap(sb, gdp);
2308 if (block_bitmap == sb_block) {
2309 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2310 "Block bitmap for group %u overlaps "
2311 "superblock", i);
2312 }
2313 if (block_bitmap < first_block || block_bitmap > last_block) {
2314 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2315 "Block bitmap for group %u not in group "
2316 "(block %llu)!", i, block_bitmap);
2317 return 0;
2318 }
2319 inode_bitmap = ext4_inode_bitmap(sb, gdp);
2320 if (inode_bitmap == sb_block) {
2321 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2322 "Inode bitmap for group %u overlaps "
2323 "superblock", i);
2324 }
2325 if (inode_bitmap < first_block || inode_bitmap > last_block) {
2326 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2327 "Inode bitmap for group %u not in group "
2328 "(block %llu)!", i, inode_bitmap);
2329 return 0;
2330 }
2331 inode_table = ext4_inode_table(sb, gdp);
2332 if (inode_table == sb_block) {
2333 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2334 "Inode table for group %u overlaps "
2335 "superblock", i);
2336 }
2337 if (inode_table < first_block ||
2338 inode_table + sbi->s_itb_per_group - 1 > last_block) {
2339 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2340 "Inode table for group %u not in group "
2341 "(block %llu)!", i, inode_table);
2342 return 0;
2343 }
2344 ext4_lock_group(sb, i);
2345 if (!ext4_group_desc_csum_verify(sb, i, gdp)) {
2346 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2347 "Checksum for group %u failed (%u!=%u)",
2348 i, le16_to_cpu(ext4_group_desc_csum(sb, i,
2349 gdp)), le16_to_cpu(gdp->bg_checksum));
2350 if (!(sb->s_flags & MS_RDONLY)) {
2351 ext4_unlock_group(sb, i);
2352 return 0;
2353 }
2354 }
2355 ext4_unlock_group(sb, i);
2356 if (!flexbg_flag)
2357 first_block += EXT4_BLOCKS_PER_GROUP(sb);
2358 }
2359 if (NULL != first_not_zeroed)
2360 *first_not_zeroed = grp;
2361 return 1;
2362 }
2363
2364 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at
2365 * the superblock) which were deleted from all directories, but held open by
2366 * a process at the time of a crash. We walk the list and try to delete these
2367 * inodes at recovery time (only with a read-write filesystem).
2368 *
2369 * In order to keep the orphan inode chain consistent during traversal (in
2370 * case of crash during recovery), we link each inode into the superblock
2371 * orphan list_head and handle it the same way as an inode deletion during
2372 * normal operation (which journals the operations for us).
2373 *
2374 * We only do an iget() and an iput() on each inode, which is very safe if we
2375 * accidentally point at an in-use or already deleted inode. The worst that
2376 * can happen in this case is that we get a "bit already cleared" message from
2377 * ext4_free_inode(). The only reason we would point at a wrong inode is if
2378 * e2fsck was run on this filesystem, and it must have already done the orphan
2379 * inode cleanup for us, so we can safely abort without any further action.
2380 */
2381 static void ext4_orphan_cleanup(struct super_block *sb,
2382 struct ext4_super_block *es)
2383 {
2384 unsigned int s_flags = sb->s_flags;
2385 int ret, nr_orphans = 0, nr_truncates = 0;
2386 #ifdef CONFIG_QUOTA
2387 int i;
2388 #endif
2389 if (!es->s_last_orphan) {
2390 jbd_debug(4, "no orphan inodes to clean up\n");
2391 return;
2392 }
2393
2394 if (bdev_read_only(sb->s_bdev)) {
2395 ext4_msg(sb, KERN_ERR, "write access "
2396 "unavailable, skipping orphan cleanup");
2397 return;
2398 }
2399
2400 /* Check if feature set would not allow a r/w mount */
2401 if (!ext4_feature_set_ok(sb, 0)) {
2402 ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to "
2403 "unknown ROCOMPAT features");
2404 return;
2405 }
2406
2407 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2408 /* don't clear list on RO mount w/ errors */
2409 if (es->s_last_orphan && !(s_flags & MS_RDONLY)) {
2410 ext4_msg(sb, KERN_INFO, "Errors on filesystem, "
2411 "clearing orphan list.\n");
2412 es->s_last_orphan = 0;
2413 }
2414 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2415 return;
2416 }
2417
2418 if (s_flags & MS_RDONLY) {
2419 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs");
2420 sb->s_flags &= ~MS_RDONLY;
2421 }
2422 #ifdef CONFIG_QUOTA
2423 /* Needed for iput() to work correctly and not trash data */
2424 sb->s_flags |= MS_ACTIVE;
2425 /* Turn on quotas so that they are updated correctly */
2426 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2427 if (EXT4_SB(sb)->s_qf_names[i]) {
2428 int ret = ext4_quota_on_mount(sb, i);
2429 if (ret < 0)
2430 ext4_msg(sb, KERN_ERR,
2431 "Cannot turn on journaled "
2432 "quota: error %d", ret);
2433 }
2434 }
2435 #endif
2436
2437 while (es->s_last_orphan) {
2438 struct inode *inode;
2439
2440 /*
2441 * We may have encountered an error during cleanup; if
2442 * so, skip the rest.
2443 */
2444 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2445 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2446 es->s_last_orphan = 0;
2447 break;
2448 }
2449
2450 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan));
2451 if (IS_ERR(inode)) {
2452 es->s_last_orphan = 0;
2453 break;
2454 }
2455
2456 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan);
2457 dquot_initialize(inode);
2458 if (inode->i_nlink) {
2459 if (test_opt(sb, DEBUG))
2460 ext4_msg(sb, KERN_DEBUG,
2461 "%s: truncating inode %lu to %lld bytes",
2462 __func__, inode->i_ino, inode->i_size);
2463 jbd_debug(2, "truncating inode %lu to %lld bytes\n",
2464 inode->i_ino, inode->i_size);
2465 inode_lock(inode);
2466 truncate_inode_pages(inode->i_mapping, inode->i_size);
2467 ret = ext4_truncate(inode);
2468 if (ret)
2469 ext4_std_error(inode->i_sb, ret);
2470 inode_unlock(inode);
2471 nr_truncates++;
2472 } else {
2473 if (test_opt(sb, DEBUG))
2474 ext4_msg(sb, KERN_DEBUG,
2475 "%s: deleting unreferenced inode %lu",
2476 __func__, inode->i_ino);
2477 jbd_debug(2, "deleting unreferenced inode %lu\n",
2478 inode->i_ino);
2479 nr_orphans++;
2480 }
2481 iput(inode); /* The delete magic happens here! */
2482 }
2483
2484 #define PLURAL(x) (x), ((x) == 1) ? "" : "s"
2485
2486 if (nr_orphans)
2487 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted",
2488 PLURAL(nr_orphans));
2489 if (nr_truncates)
2490 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up",
2491 PLURAL(nr_truncates));
2492 #ifdef CONFIG_QUOTA
2493 /* Turn quotas off */
2494 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2495 if (sb_dqopt(sb)->files[i])
2496 dquot_quota_off(sb, i);
2497 }
2498 #endif
2499 sb->s_flags = s_flags; /* Restore MS_RDONLY status */
2500 }
2501
2502 /*
2503 * Maximal extent format file size.
2504 * Resulting logical blkno at s_maxbytes must fit in our on-disk
2505 * extent format containers, within a sector_t, and within i_blocks
2506 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units,
2507 * so that won't be a limiting factor.
2508 *
2509 * However there is other limiting factor. We do store extents in the form
2510 * of starting block and length, hence the resulting length of the extent
2511 * covering maximum file size must fit into on-disk format containers as
2512 * well. Given that length is always by 1 unit bigger than max unit (because
2513 * we count 0 as well) we have to lower the s_maxbytes by one fs block.
2514 *
2515 * Note, this does *not* consider any metadata overhead for vfs i_blocks.
2516 */
2517 static loff_t ext4_max_size(int blkbits, int has_huge_files)
2518 {
2519 loff_t res;
2520 loff_t upper_limit = MAX_LFS_FILESIZE;
2521
2522 /* small i_blocks in vfs inode? */
2523 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2524 /*
2525 * CONFIG_LBDAF is not enabled implies the inode
2526 * i_block represent total blocks in 512 bytes
2527 * 32 == size of vfs inode i_blocks * 8
2528 */
2529 upper_limit = (1LL << 32) - 1;
2530
2531 /* total blocks in file system block size */
2532 upper_limit >>= (blkbits - 9);
2533 upper_limit <<= blkbits;
2534 }
2535
2536 /*
2537 * 32-bit extent-start container, ee_block. We lower the maxbytes
2538 * by one fs block, so ee_len can cover the extent of maximum file
2539 * size
2540 */
2541 res = (1LL << 32) - 1;
2542 res <<= blkbits;
2543
2544 /* Sanity check against vm- & vfs- imposed limits */
2545 if (res > upper_limit)
2546 res = upper_limit;
2547
2548 return res;
2549 }
2550
2551 /*
2552 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect
2553 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
2554 * We need to be 1 filesystem block less than the 2^48 sector limit.
2555 */
2556 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
2557 {
2558 loff_t res = EXT4_NDIR_BLOCKS;
2559 int meta_blocks;
2560 loff_t upper_limit;
2561 /* This is calculated to be the largest file size for a dense, block
2562 * mapped file such that the file's total number of 512-byte sectors,
2563 * including data and all indirect blocks, does not exceed (2^48 - 1).
2564 *
2565 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
2566 * number of 512-byte sectors of the file.
2567 */
2568
2569 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2570 /*
2571 * !has_huge_files or CONFIG_LBDAF not enabled implies that
2572 * the inode i_block field represents total file blocks in
2573 * 2^32 512-byte sectors == size of vfs inode i_blocks * 8
2574 */
2575 upper_limit = (1LL << 32) - 1;
2576
2577 /* total blocks in file system block size */
2578 upper_limit >>= (bits - 9);
2579
2580 } else {
2581 /*
2582 * We use 48 bit ext4_inode i_blocks
2583 * With EXT4_HUGE_FILE_FL set the i_blocks
2584 * represent total number of blocks in
2585 * file system block size
2586 */
2587 upper_limit = (1LL << 48) - 1;
2588
2589 }
2590
2591 /* indirect blocks */
2592 meta_blocks = 1;
2593 /* double indirect blocks */
2594 meta_blocks += 1 + (1LL << (bits-2));
2595 /* tripple indirect blocks */
2596 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2)));
2597
2598 upper_limit -= meta_blocks;
2599 upper_limit <<= bits;
2600
2601 res += 1LL << (bits-2);
2602 res += 1LL << (2*(bits-2));
2603 res += 1LL << (3*(bits-2));
2604 res <<= bits;
2605 if (res > upper_limit)
2606 res = upper_limit;
2607
2608 if (res > MAX_LFS_FILESIZE)
2609 res = MAX_LFS_FILESIZE;
2610
2611 return res;
2612 }
2613
2614 static ext4_fsblk_t descriptor_loc(struct super_block *sb,
2615 ext4_fsblk_t logical_sb_block, int nr)
2616 {
2617 struct ext4_sb_info *sbi = EXT4_SB(sb);
2618 ext4_group_t bg, first_meta_bg;
2619 int has_super = 0;
2620
2621 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
2622
2623 if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg)
2624 return logical_sb_block + nr + 1;
2625 bg = sbi->s_desc_per_block * nr;
2626 if (ext4_bg_has_super(sb, bg))
2627 has_super = 1;
2628
2629 /*
2630 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at
2631 * block 2, not 1. If s_first_data_block == 0 (bigalloc is enabled
2632 * on modern mke2fs or blksize > 1k on older mke2fs) then we must
2633 * compensate.
2634 */
2635 if (sb->s_blocksize == 1024 && nr == 0 &&
2636 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block) == 0)
2637 has_super++;
2638
2639 return (has_super + ext4_group_first_block_no(sb, bg));
2640 }
2641
2642 /**
2643 * ext4_get_stripe_size: Get the stripe size.
2644 * @sbi: In memory super block info
2645 *
2646 * If we have specified it via mount option, then
2647 * use the mount option value. If the value specified at mount time is
2648 * greater than the blocks per group use the super block value.
2649 * If the super block value is greater than blocks per group return 0.
2650 * Allocator needs it be less than blocks per group.
2651 *
2652 */
2653 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
2654 {
2655 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
2656 unsigned long stripe_width =
2657 le32_to_cpu(sbi->s_es->s_raid_stripe_width);
2658 int ret;
2659
2660 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
2661 ret = sbi->s_stripe;
2662 else if (stripe_width && stripe_width <= sbi->s_blocks_per_group)
2663 ret = stripe_width;
2664 else if (stride && stride <= sbi->s_blocks_per_group)
2665 ret = stride;
2666 else
2667 ret = 0;
2668
2669 /*
2670 * If the stripe width is 1, this makes no sense and
2671 * we set it to 0 to turn off stripe handling code.
2672 */
2673 if (ret <= 1)
2674 ret = 0;
2675
2676 return ret;
2677 }
2678
2679 /*
2680 * Check whether this filesystem can be mounted based on
2681 * the features present and the RDONLY/RDWR mount requested.
2682 * Returns 1 if this filesystem can be mounted as requested,
2683 * 0 if it cannot be.
2684 */
2685 static int ext4_feature_set_ok(struct super_block *sb, int readonly)
2686 {
2687 if (ext4_has_unknown_ext4_incompat_features(sb)) {
2688 ext4_msg(sb, KERN_ERR,
2689 "Couldn't mount because of "
2690 "unsupported optional features (%x)",
2691 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
2692 ~EXT4_FEATURE_INCOMPAT_SUPP));
2693 return 0;
2694 }
2695
2696 if (readonly)
2697 return 1;
2698
2699 if (ext4_has_feature_readonly(sb)) {
2700 ext4_msg(sb, KERN_INFO, "filesystem is read-only");
2701 sb->s_flags |= MS_RDONLY;
2702 return 1;
2703 }
2704
2705 /* Check that feature set is OK for a read-write mount */
2706 if (ext4_has_unknown_ext4_ro_compat_features(sb)) {
2707 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
2708 "unsupported optional features (%x)",
2709 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
2710 ~EXT4_FEATURE_RO_COMPAT_SUPP));
2711 return 0;
2712 }
2713 /*
2714 * Large file size enabled file system can only be mounted
2715 * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF
2716 */
2717 if (ext4_has_feature_huge_file(sb)) {
2718 if (sizeof(blkcnt_t) < sizeof(u64)) {
2719 ext4_msg(sb, KERN_ERR, "Filesystem with huge files "
2720 "cannot be mounted RDWR without "
2721 "CONFIG_LBDAF");
2722 return 0;
2723 }
2724 }
2725 if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) {
2726 ext4_msg(sb, KERN_ERR,
2727 "Can't support bigalloc feature without "
2728 "extents feature\n");
2729 return 0;
2730 }
2731
2732 #ifndef CONFIG_QUOTA
2733 if (ext4_has_feature_quota(sb) && !readonly) {
2734 ext4_msg(sb, KERN_ERR,
2735 "Filesystem with quota feature cannot be mounted RDWR "
2736 "without CONFIG_QUOTA");
2737 return 0;
2738 }
2739 if (ext4_has_feature_project(sb) && !readonly) {
2740 ext4_msg(sb, KERN_ERR,
2741 "Filesystem with project quota feature cannot be mounted RDWR "
2742 "without CONFIG_QUOTA");
2743 return 0;
2744 }
2745 #endif /* CONFIG_QUOTA */
2746 return 1;
2747 }
2748
2749 /*
2750 * This function is called once a day if we have errors logged
2751 * on the file system
2752 */
2753 static void print_daily_error_info(unsigned long arg)
2754 {
2755 struct super_block *sb = (struct super_block *) arg;
2756 struct ext4_sb_info *sbi;
2757 struct ext4_super_block *es;
2758
2759 sbi = EXT4_SB(sb);
2760 es = sbi->s_es;
2761
2762 if (es->s_error_count)
2763 /* fsck newer than v1.41.13 is needed to clean this condition. */
2764 ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u",
2765 le32_to_cpu(es->s_error_count));
2766 if (es->s_first_error_time) {
2767 printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %u: %.*s:%d",
2768 sb->s_id, le32_to_cpu(es->s_first_error_time),
2769 (int) sizeof(es->s_first_error_func),
2770 es->s_first_error_func,
2771 le32_to_cpu(es->s_first_error_line));
2772 if (es->s_first_error_ino)
2773 printk(KERN_CONT ": inode %u",
2774 le32_to_cpu(es->s_first_error_ino));
2775 if (es->s_first_error_block)
2776 printk(KERN_CONT ": block %llu", (unsigned long long)
2777 le64_to_cpu(es->s_first_error_block));
2778 printk(KERN_CONT "\n");
2779 }
2780 if (es->s_last_error_time) {
2781 printk(KERN_NOTICE "EXT4-fs (%s): last error at time %u: %.*s:%d",
2782 sb->s_id, le32_to_cpu(es->s_last_error_time),
2783 (int) sizeof(es->s_last_error_func),
2784 es->s_last_error_func,
2785 le32_to_cpu(es->s_last_error_line));
2786 if (es->s_last_error_ino)
2787 printk(KERN_CONT ": inode %u",
2788 le32_to_cpu(es->s_last_error_ino));
2789 if (es->s_last_error_block)
2790 printk(KERN_CONT ": block %llu", (unsigned long long)
2791 le64_to_cpu(es->s_last_error_block));
2792 printk(KERN_CONT "\n");
2793 }
2794 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */
2795 }
2796
2797 /* Find next suitable group and run ext4_init_inode_table */
2798 static int ext4_run_li_request(struct ext4_li_request *elr)
2799 {
2800 struct ext4_group_desc *gdp = NULL;
2801 ext4_group_t group, ngroups;
2802 struct super_block *sb;
2803 unsigned long timeout = 0;
2804 int ret = 0;
2805
2806 sb = elr->lr_super;
2807 ngroups = EXT4_SB(sb)->s_groups_count;
2808
2809 for (group = elr->lr_next_group; group < ngroups; group++) {
2810 gdp = ext4_get_group_desc(sb, group, NULL);
2811 if (!gdp) {
2812 ret = 1;
2813 break;
2814 }
2815
2816 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2817 break;
2818 }
2819
2820 if (group >= ngroups)
2821 ret = 1;
2822
2823 if (!ret) {
2824 timeout = jiffies;
2825 ret = ext4_init_inode_table(sb, group,
2826 elr->lr_timeout ? 0 : 1);
2827 if (elr->lr_timeout == 0) {
2828 timeout = (jiffies - timeout) *
2829 elr->lr_sbi->s_li_wait_mult;
2830 elr->lr_timeout = timeout;
2831 }
2832 elr->lr_next_sched = jiffies + elr->lr_timeout;
2833 elr->lr_next_group = group + 1;
2834 }
2835 return ret;
2836 }
2837
2838 /*
2839 * Remove lr_request from the list_request and free the
2840 * request structure. Should be called with li_list_mtx held
2841 */
2842 static void ext4_remove_li_request(struct ext4_li_request *elr)
2843 {
2844 struct ext4_sb_info *sbi;
2845
2846 if (!elr)
2847 return;
2848
2849 sbi = elr->lr_sbi;
2850
2851 list_del(&elr->lr_request);
2852 sbi->s_li_request = NULL;
2853 kfree(elr);
2854 }
2855
2856 static void ext4_unregister_li_request(struct super_block *sb)
2857 {
2858 mutex_lock(&ext4_li_mtx);
2859 if (!ext4_li_info) {
2860 mutex_unlock(&ext4_li_mtx);
2861 return;
2862 }
2863
2864 mutex_lock(&ext4_li_info->li_list_mtx);
2865 ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
2866 mutex_unlock(&ext4_li_info->li_list_mtx);
2867 mutex_unlock(&ext4_li_mtx);
2868 }
2869
2870 static struct task_struct *ext4_lazyinit_task;
2871
2872 /*
2873 * This is the function where ext4lazyinit thread lives. It walks
2874 * through the request list searching for next scheduled filesystem.
2875 * When such a fs is found, run the lazy initialization request
2876 * (ext4_rn_li_request) and keep track of the time spend in this
2877 * function. Based on that time we compute next schedule time of
2878 * the request. When walking through the list is complete, compute
2879 * next waking time and put itself into sleep.
2880 */
2881 static int ext4_lazyinit_thread(void *arg)
2882 {
2883 struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg;
2884 struct list_head *pos, *n;
2885 struct ext4_li_request *elr;
2886 unsigned long next_wakeup, cur;
2887
2888 BUG_ON(NULL == eli);
2889
2890 cont_thread:
2891 while (true) {
2892 next_wakeup = MAX_JIFFY_OFFSET;
2893
2894 mutex_lock(&eli->li_list_mtx);
2895 if (list_empty(&eli->li_request_list)) {
2896 mutex_unlock(&eli->li_list_mtx);
2897 goto exit_thread;
2898 }
2899 list_for_each_safe(pos, n, &eli->li_request_list) {
2900 int err = 0;
2901 int progress = 0;
2902 elr = list_entry(pos, struct ext4_li_request,
2903 lr_request);
2904
2905 if (time_before(jiffies, elr->lr_next_sched)) {
2906 if (time_before(elr->lr_next_sched, next_wakeup))
2907 next_wakeup = elr->lr_next_sched;
2908 continue;
2909 }
2910 if (down_read_trylock(&elr->lr_super->s_umount)) {
2911 if (sb_start_write_trylock(elr->lr_super)) {
2912 progress = 1;
2913 /*
2914 * We hold sb->s_umount, sb can not
2915 * be removed from the list, it is
2916 * now safe to drop li_list_mtx
2917 */
2918 mutex_unlock(&eli->li_list_mtx);
2919 err = ext4_run_li_request(elr);
2920 sb_end_write(elr->lr_super);
2921 mutex_lock(&eli->li_list_mtx);
2922 n = pos->next;
2923 }
2924 up_read((&elr->lr_super->s_umount));
2925 }
2926 /* error, remove the lazy_init job */
2927 if (err) {
2928 ext4_remove_li_request(elr);
2929 continue;
2930 }
2931 if (!progress) {
2932 elr->lr_next_sched = jiffies +
2933 (prandom_u32()
2934 % (EXT4_DEF_LI_MAX_START_DELAY * HZ));
2935 }
2936 if (time_before(elr->lr_next_sched, next_wakeup))
2937 next_wakeup = elr->lr_next_sched;
2938 }
2939 mutex_unlock(&eli->li_list_mtx);
2940
2941 try_to_freeze();
2942
2943 cur = jiffies;
2944 if ((time_after_eq(cur, next_wakeup)) ||
2945 (MAX_JIFFY_OFFSET == next_wakeup)) {
2946 cond_resched();
2947 continue;
2948 }
2949
2950 schedule_timeout_interruptible(next_wakeup - cur);
2951
2952 if (kthread_should_stop()) {
2953 ext4_clear_request_list();
2954 goto exit_thread;
2955 }
2956 }
2957
2958 exit_thread:
2959 /*
2960 * It looks like the request list is empty, but we need
2961 * to check it under the li_list_mtx lock, to prevent any
2962 * additions into it, and of course we should lock ext4_li_mtx
2963 * to atomically free the list and ext4_li_info, because at
2964 * this point another ext4 filesystem could be registering
2965 * new one.
2966 */
2967 mutex_lock(&ext4_li_mtx);
2968 mutex_lock(&eli->li_list_mtx);
2969 if (!list_empty(&eli->li_request_list)) {
2970 mutex_unlock(&eli->li_list_mtx);
2971 mutex_unlock(&ext4_li_mtx);
2972 goto cont_thread;
2973 }
2974 mutex_unlock(&eli->li_list_mtx);
2975 kfree(ext4_li_info);
2976 ext4_li_info = NULL;
2977 mutex_unlock(&ext4_li_mtx);
2978
2979 return 0;
2980 }
2981
2982 static void ext4_clear_request_list(void)
2983 {
2984 struct list_head *pos, *n;
2985 struct ext4_li_request *elr;
2986
2987 mutex_lock(&ext4_li_info->li_list_mtx);
2988 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
2989 elr = list_entry(pos, struct ext4_li_request,
2990 lr_request);
2991 ext4_remove_li_request(elr);
2992 }
2993 mutex_unlock(&ext4_li_info->li_list_mtx);
2994 }
2995
2996 static int ext4_run_lazyinit_thread(void)
2997 {
2998 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
2999 ext4_li_info, "ext4lazyinit");
3000 if (IS_ERR(ext4_lazyinit_task)) {
3001 int err = PTR_ERR(ext4_lazyinit_task);
3002 ext4_clear_request_list();
3003 kfree(ext4_li_info);
3004 ext4_li_info = NULL;
3005 printk(KERN_CRIT "EXT4-fs: error %d creating inode table "
3006 "initialization thread\n",
3007 err);
3008 return err;
3009 }
3010 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
3011 return 0;
3012 }
3013
3014 /*
3015 * Check whether it make sense to run itable init. thread or not.
3016 * If there is at least one uninitialized inode table, return
3017 * corresponding group number, else the loop goes through all
3018 * groups and return total number of groups.
3019 */
3020 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
3021 {
3022 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
3023 struct ext4_group_desc *gdp = NULL;
3024
3025 for (group = 0; group < ngroups; group++) {
3026 gdp = ext4_get_group_desc(sb, group, NULL);
3027 if (!gdp)
3028 continue;
3029
3030 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3031 break;
3032 }
3033
3034 return group;
3035 }
3036
3037 static int ext4_li_info_new(void)
3038 {
3039 struct ext4_lazy_init *eli = NULL;
3040
3041 eli = kzalloc(sizeof(*eli), GFP_KERNEL);
3042 if (!eli)
3043 return -ENOMEM;
3044
3045 INIT_LIST_HEAD(&eli->li_request_list);
3046 mutex_init(&eli->li_list_mtx);
3047
3048 eli->li_state |= EXT4_LAZYINIT_QUIT;
3049
3050 ext4_li_info = eli;
3051
3052 return 0;
3053 }
3054
3055 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
3056 ext4_group_t start)
3057 {
3058 struct ext4_sb_info *sbi = EXT4_SB(sb);
3059 struct ext4_li_request *elr;
3060
3061 elr = kzalloc(sizeof(*elr), GFP_KERNEL);
3062 if (!elr)
3063 return NULL;
3064
3065 elr->lr_super = sb;
3066 elr->lr_sbi = sbi;
3067 elr->lr_next_group = start;
3068
3069 /*
3070 * Randomize first schedule time of the request to
3071 * spread the inode table initialization requests
3072 * better.
3073 */
3074 elr->lr_next_sched = jiffies + (prandom_u32() %
3075 (EXT4_DEF_LI_MAX_START_DELAY * HZ));
3076 return elr;
3077 }
3078
3079 int ext4_register_li_request(struct super_block *sb,
3080 ext4_group_t first_not_zeroed)
3081 {
3082 struct ext4_sb_info *sbi = EXT4_SB(sb);
3083 struct ext4_li_request *elr = NULL;
3084 ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count;
3085 int ret = 0;
3086
3087 mutex_lock(&ext4_li_mtx);
3088 if (sbi->s_li_request != NULL) {
3089 /*
3090 * Reset timeout so it can be computed again, because
3091 * s_li_wait_mult might have changed.
3092 */
3093 sbi->s_li_request->lr_timeout = 0;
3094 goto out;
3095 }
3096
3097 if (first_not_zeroed == ngroups ||
3098 (sb->s_flags & MS_RDONLY) ||
3099 !test_opt(sb, INIT_INODE_TABLE))
3100 goto out;
3101
3102 elr = ext4_li_request_new(sb, first_not_zeroed);
3103 if (!elr) {
3104 ret = -ENOMEM;
3105 goto out;
3106 }
3107
3108 if (NULL == ext4_li_info) {
3109 ret = ext4_li_info_new();
3110 if (ret)
3111 goto out;
3112 }
3113
3114 mutex_lock(&ext4_li_info->li_list_mtx);
3115 list_add(&elr->lr_request, &ext4_li_info->li_request_list);
3116 mutex_unlock(&ext4_li_info->li_list_mtx);
3117
3118 sbi->s_li_request = elr;
3119 /*
3120 * set elr to NULL here since it has been inserted to
3121 * the request_list and the removal and free of it is
3122 * handled by ext4_clear_request_list from now on.
3123 */
3124 elr = NULL;
3125
3126 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
3127 ret = ext4_run_lazyinit_thread();
3128 if (ret)
3129 goto out;
3130 }
3131 out:
3132 mutex_unlock(&ext4_li_mtx);
3133 if (ret)
3134 kfree(elr);
3135 return ret;
3136 }
3137
3138 /*
3139 * We do not need to lock anything since this is called on
3140 * module unload.
3141 */
3142 static void ext4_destroy_lazyinit_thread(void)
3143 {
3144 /*
3145 * If thread exited earlier
3146 * there's nothing to be done.
3147 */
3148 if (!ext4_li_info || !ext4_lazyinit_task)
3149 return;
3150
3151 kthread_stop(ext4_lazyinit_task);
3152 }
3153
3154 static int set_journal_csum_feature_set(struct super_block *sb)
3155 {
3156 int ret = 1;
3157 int compat, incompat;
3158 struct ext4_sb_info *sbi = EXT4_SB(sb);
3159
3160 if (ext4_has_metadata_csum(sb)) {
3161 /* journal checksum v3 */
3162 compat = 0;
3163 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3;
3164 } else {
3165 /* journal checksum v1 */
3166 compat = JBD2_FEATURE_COMPAT_CHECKSUM;
3167 incompat = 0;
3168 }
3169
3170 jbd2_journal_clear_features(sbi->s_journal,
3171 JBD2_FEATURE_COMPAT_CHECKSUM, 0,
3172 JBD2_FEATURE_INCOMPAT_CSUM_V3 |
3173 JBD2_FEATURE_INCOMPAT_CSUM_V2);
3174 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
3175 ret = jbd2_journal_set_features(sbi->s_journal,
3176 compat, 0,
3177 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
3178 incompat);
3179 } else if (test_opt(sb, JOURNAL_CHECKSUM)) {
3180 ret = jbd2_journal_set_features(sbi->s_journal,
3181 compat, 0,
3182 incompat);
3183 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3184 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3185 } else {
3186 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3187 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3188 }
3189
3190 return ret;
3191 }
3192
3193 /*
3194 * Note: calculating the overhead so we can be compatible with
3195 * historical BSD practice is quite difficult in the face of
3196 * clusters/bigalloc. This is because multiple metadata blocks from
3197 * different block group can end up in the same allocation cluster.
3198 * Calculating the exact overhead in the face of clustered allocation
3199 * requires either O(all block bitmaps) in memory or O(number of block
3200 * groups**2) in time. We will still calculate the superblock for
3201 * older file systems --- and if we come across with a bigalloc file
3202 * system with zero in s_overhead_clusters the estimate will be close to
3203 * correct especially for very large cluster sizes --- but for newer
3204 * file systems, it's better to calculate this figure once at mkfs
3205 * time, and store it in the superblock. If the superblock value is
3206 * present (even for non-bigalloc file systems), we will use it.
3207 */
3208 static int count_overhead(struct super_block *sb, ext4_group_t grp,
3209 char *buf)
3210 {
3211 struct ext4_sb_info *sbi = EXT4_SB(sb);
3212 struct ext4_group_desc *gdp;
3213 ext4_fsblk_t first_block, last_block, b;
3214 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3215 int s, j, count = 0;
3216
3217 if (!ext4_has_feature_bigalloc(sb))
3218 return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) +
3219 sbi->s_itb_per_group + 2);
3220
3221 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) +
3222 (grp * EXT4_BLOCKS_PER_GROUP(sb));
3223 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1;
3224 for (i = 0; i < ngroups; i++) {
3225 gdp = ext4_get_group_desc(sb, i, NULL);
3226 b = ext4_block_bitmap(sb, gdp);
3227 if (b >= first_block && b <= last_block) {
3228 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3229 count++;
3230 }
3231 b = ext4_inode_bitmap(sb, gdp);
3232 if (b >= first_block && b <= last_block) {
3233 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3234 count++;
3235 }
3236 b = ext4_inode_table(sb, gdp);
3237 if (b >= first_block && b + sbi->s_itb_per_group <= last_block)
3238 for (j = 0; j < sbi->s_itb_per_group; j++, b++) {
3239 int c = EXT4_B2C(sbi, b - first_block);
3240 ext4_set_bit(c, buf);
3241 count++;
3242 }
3243 if (i != grp)
3244 continue;
3245 s = 0;
3246 if (ext4_bg_has_super(sb, grp)) {
3247 ext4_set_bit(s++, buf);
3248 count++;
3249 }
3250 j = ext4_bg_num_gdb(sb, grp);
3251 if (s + j > EXT4_BLOCKS_PER_GROUP(sb)) {
3252 ext4_error(sb, "Invalid number of block group "
3253 "descriptor blocks: %d", j);
3254 j = EXT4_BLOCKS_PER_GROUP(sb) - s;
3255 }
3256 count += j;
3257 for (; j > 0; j--)
3258 ext4_set_bit(EXT4_B2C(sbi, s++), buf);
3259 }
3260 if (!count)
3261 return 0;
3262 return EXT4_CLUSTERS_PER_GROUP(sb) -
3263 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8);
3264 }
3265
3266 /*
3267 * Compute the overhead and stash it in sbi->s_overhead
3268 */
3269 int ext4_calculate_overhead(struct super_block *sb)
3270 {
3271 struct ext4_sb_info *sbi = EXT4_SB(sb);
3272 struct ext4_super_block *es = sbi->s_es;
3273 struct inode *j_inode;
3274 unsigned int j_blocks, j_inum = le32_to_cpu(es->s_journal_inum);
3275 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3276 ext4_fsblk_t overhead = 0;
3277 char *buf = (char *) get_zeroed_page(GFP_NOFS);
3278
3279 if (!buf)
3280 return -ENOMEM;
3281
3282 /*
3283 * Compute the overhead (FS structures). This is constant
3284 * for a given filesystem unless the number of block groups
3285 * changes so we cache the previous value until it does.
3286 */
3287
3288 /*
3289 * All of the blocks before first_data_block are overhead
3290 */
3291 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
3292
3293 /*
3294 * Add the overhead found in each block group
3295 */
3296 for (i = 0; i < ngroups; i++) {
3297 int blks;
3298
3299 blks = count_overhead(sb, i, buf);
3300 overhead += blks;
3301 if (blks)
3302 memset(buf, 0, PAGE_SIZE);
3303 cond_resched();
3304 }
3305
3306 /*
3307 * Add the internal journal blocks whether the journal has been
3308 * loaded or not
3309 */
3310 if (sbi->s_journal && !sbi->journal_bdev)
3311 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_maxlen);
3312 else if (ext4_has_feature_journal(sb) && !sbi->s_journal) {
3313 j_inode = ext4_get_journal_inode(sb, j_inum);
3314 if (j_inode) {
3315 j_blocks = j_inode->i_size >> sb->s_blocksize_bits;
3316 overhead += EXT4_NUM_B2C(sbi, j_blocks);
3317 iput(j_inode);
3318 } else {
3319 ext4_msg(sb, KERN_ERR, "can't get journal size");
3320 }
3321 }
3322 sbi->s_overhead = overhead;
3323 smp_wmb();
3324 free_page((unsigned long) buf);
3325 return 0;
3326 }
3327
3328 static void ext4_set_resv_clusters(struct super_block *sb)
3329 {
3330 ext4_fsblk_t resv_clusters;
3331 struct ext4_sb_info *sbi = EXT4_SB(sb);
3332
3333 /*
3334 * There's no need to reserve anything when we aren't using extents.
3335 * The space estimates are exact, there are no unwritten extents,
3336 * hole punching doesn't need new metadata... This is needed especially
3337 * to keep ext2/3 backward compatibility.
3338 */
3339 if (!ext4_has_feature_extents(sb))
3340 return;
3341 /*
3342 * By default we reserve 2% or 4096 clusters, whichever is smaller.
3343 * This should cover the situations where we can not afford to run
3344 * out of space like for example punch hole, or converting
3345 * unwritten extents in delalloc path. In most cases such
3346 * allocation would require 1, or 2 blocks, higher numbers are
3347 * very rare.
3348 */
3349 resv_clusters = (ext4_blocks_count(sbi->s_es) >>
3350 sbi->s_cluster_bits);
3351
3352 do_div(resv_clusters, 50);
3353 resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096);
3354
3355 atomic64_set(&sbi->s_resv_clusters, resv_clusters);
3356 }
3357
3358 static int ext4_fill_super(struct super_block *sb, void *data, int silent)
3359 {
3360 char *orig_data = kstrdup(data, GFP_KERNEL);
3361 struct buffer_head *bh;
3362 struct ext4_super_block *es = NULL;
3363 struct ext4_sb_info *sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
3364 ext4_fsblk_t block;
3365 ext4_fsblk_t sb_block = get_sb_block(&data);
3366 ext4_fsblk_t logical_sb_block;
3367 unsigned long offset = 0;
3368 unsigned long journal_devnum = 0;
3369 unsigned long def_mount_opts;
3370 struct inode *root;
3371 const char *descr;
3372 int ret = -ENOMEM;
3373 int blocksize, clustersize;
3374 unsigned int db_count;
3375 unsigned int i;
3376 int needs_recovery, has_huge_files, has_bigalloc;
3377 __u64 blocks_count;
3378 int err = 0;
3379 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
3380 ext4_group_t first_not_zeroed;
3381
3382 if ((data && !orig_data) || !sbi)
3383 goto out_free_base;
3384
3385 sbi->s_blockgroup_lock =
3386 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
3387 if (!sbi->s_blockgroup_lock)
3388 goto out_free_base;
3389
3390 sb->s_fs_info = sbi;
3391 sbi->s_sb = sb;
3392 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
3393 sbi->s_sb_block = sb_block;
3394 if (sb->s_bdev->bd_part)
3395 sbi->s_sectors_written_start =
3396 part_stat_read(sb->s_bdev->bd_part, sectors[1]);
3397
3398 /* Cleanup superblock name */
3399 strreplace(sb->s_id, '/', '!');
3400
3401 /* -EINVAL is default */
3402 ret = -EINVAL;
3403 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
3404 if (!blocksize) {
3405 ext4_msg(sb, KERN_ERR, "unable to set blocksize");
3406 goto out_fail;
3407 }
3408
3409 /*
3410 * The ext4 superblock will not be buffer aligned for other than 1kB
3411 * block sizes. We need to calculate the offset from buffer start.
3412 */
3413 if (blocksize != EXT4_MIN_BLOCK_SIZE) {
3414 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3415 offset = do_div(logical_sb_block, blocksize);
3416 } else {
3417 logical_sb_block = sb_block;
3418 }
3419
3420 if (!(bh = sb_bread_unmovable(sb, logical_sb_block))) {
3421 ext4_msg(sb, KERN_ERR, "unable to read superblock");
3422 goto out_fail;
3423 }
3424 /*
3425 * Note: s_es must be initialized as soon as possible because
3426 * some ext4 macro-instructions depend on its value
3427 */
3428 es = (struct ext4_super_block *) (bh->b_data + offset);
3429 sbi->s_es = es;
3430 sb->s_magic = le16_to_cpu(es->s_magic);
3431 if (sb->s_magic != EXT4_SUPER_MAGIC)
3432 goto cantfind_ext4;
3433 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
3434
3435 /* Warn if metadata_csum and gdt_csum are both set. */
3436 if (ext4_has_feature_metadata_csum(sb) &&
3437 ext4_has_feature_gdt_csum(sb))
3438 ext4_warning(sb, "metadata_csum and uninit_bg are "
3439 "redundant flags; please run fsck.");
3440
3441 /* Check for a known checksum algorithm */
3442 if (!ext4_verify_csum_type(sb, es)) {
3443 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3444 "unknown checksum algorithm.");
3445 silent = 1;
3446 goto cantfind_ext4;
3447 }
3448
3449 /* Load the checksum driver */
3450 if (ext4_has_feature_metadata_csum(sb)) {
3451 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
3452 if (IS_ERR(sbi->s_chksum_driver)) {
3453 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver.");
3454 ret = PTR_ERR(sbi->s_chksum_driver);
3455 sbi->s_chksum_driver = NULL;
3456 goto failed_mount;
3457 }
3458 }
3459
3460 /* Check superblock checksum */
3461 if (!ext4_superblock_csum_verify(sb, es)) {
3462 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3463 "invalid superblock checksum. Run e2fsck?");
3464 silent = 1;
3465 ret = -EFSBADCRC;
3466 goto cantfind_ext4;
3467 }
3468
3469 /* Precompute checksum seed for all metadata */
3470 if (ext4_has_feature_csum_seed(sb))
3471 sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed);
3472 else if (ext4_has_metadata_csum(sb))
3473 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid,
3474 sizeof(es->s_uuid));
3475
3476 /* Set defaults before we parse the mount options */
3477 def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
3478 set_opt(sb, INIT_INODE_TABLE);
3479 if (def_mount_opts & EXT4_DEFM_DEBUG)
3480 set_opt(sb, DEBUG);
3481 if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
3482 set_opt(sb, GRPID);
3483 if (def_mount_opts & EXT4_DEFM_UID16)
3484 set_opt(sb, NO_UID32);
3485 /* xattr user namespace & acls are now defaulted on */
3486 set_opt(sb, XATTR_USER);
3487 #ifdef CONFIG_EXT4_FS_POSIX_ACL
3488 set_opt(sb, POSIX_ACL);
3489 #endif
3490 /* don't forget to enable journal_csum when metadata_csum is enabled. */
3491 if (ext4_has_metadata_csum(sb))
3492 set_opt(sb, JOURNAL_CHECKSUM);
3493
3494 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
3495 set_opt(sb, JOURNAL_DATA);
3496 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
3497 set_opt(sb, ORDERED_DATA);
3498 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
3499 set_opt(sb, WRITEBACK_DATA);
3500
3501 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC)
3502 set_opt(sb, ERRORS_PANIC);
3503 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE)
3504 set_opt(sb, ERRORS_CONT);
3505 else
3506 set_opt(sb, ERRORS_RO);
3507 /* block_validity enabled by default; disable with noblock_validity */
3508 set_opt(sb, BLOCK_VALIDITY);
3509 if (def_mount_opts & EXT4_DEFM_DISCARD)
3510 set_opt(sb, DISCARD);
3511
3512 sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid));
3513 sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid));
3514 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
3515 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
3516 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
3517
3518 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
3519 set_opt(sb, BARRIER);
3520
3521 /*
3522 * enable delayed allocation by default
3523 * Use -o nodelalloc to turn it off
3524 */
3525 if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) &&
3526 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
3527 set_opt(sb, DELALLOC);
3528
3529 /*
3530 * set default s_li_wait_mult for lazyinit, for the case there is
3531 * no mount option specified.
3532 */
3533 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
3534
3535 if (sbi->s_es->s_mount_opts[0]) {
3536 char *s_mount_opts = kstrndup(sbi->s_es->s_mount_opts,
3537 sizeof(sbi->s_es->s_mount_opts),
3538 GFP_KERNEL);
3539 if (!s_mount_opts)
3540 goto failed_mount;
3541 if (!parse_options(s_mount_opts, sb, &journal_devnum,
3542 &journal_ioprio, 0)) {
3543 ext4_msg(sb, KERN_WARNING,
3544 "failed to parse options in superblock: %s",
3545 s_mount_opts);
3546 }
3547 kfree(s_mount_opts);
3548 }
3549 sbi->s_def_mount_opt = sbi->s_mount_opt;
3550 if (!parse_options((char *) data, sb, &journal_devnum,
3551 &journal_ioprio, 0))
3552 goto failed_mount;
3553
3554 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
3555 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting "
3556 "with data=journal disables delayed "
3557 "allocation and O_DIRECT support!\n");
3558 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
3559 ext4_msg(sb, KERN_ERR, "can't mount with "
3560 "both data=journal and delalloc");
3561 goto failed_mount;
3562 }
3563 if (test_opt(sb, DIOREAD_NOLOCK)) {
3564 ext4_msg(sb, KERN_ERR, "can't mount with "
3565 "both data=journal and dioread_nolock");
3566 goto failed_mount;
3567 }
3568 if (test_opt(sb, DAX)) {
3569 ext4_msg(sb, KERN_ERR, "can't mount with "
3570 "both data=journal and dax");
3571 goto failed_mount;
3572 }
3573 if (ext4_has_feature_encrypt(sb)) {
3574 ext4_msg(sb, KERN_WARNING,
3575 "encrypted files will use data=ordered "
3576 "instead of data journaling mode");
3577 }
3578 if (test_opt(sb, DELALLOC))
3579 clear_opt(sb, DELALLOC);
3580 } else {
3581 sb->s_iflags |= SB_I_CGROUPWB;
3582 }
3583
3584 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
3585 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
3586
3587 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
3588 (ext4_has_compat_features(sb) ||
3589 ext4_has_ro_compat_features(sb) ||
3590 ext4_has_incompat_features(sb)))
3591 ext4_msg(sb, KERN_WARNING,
3592 "feature flags set on rev 0 fs, "
3593 "running e2fsck is recommended");
3594
3595 if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) {
3596 set_opt2(sb, HURD_COMPAT);
3597 if (ext4_has_feature_64bit(sb)) {
3598 ext4_msg(sb, KERN_ERR,
3599 "The Hurd can't support 64-bit file systems");
3600 goto failed_mount;
3601 }
3602 }
3603
3604 if (IS_EXT2_SB(sb)) {
3605 if (ext2_feature_set_ok(sb))
3606 ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
3607 "using the ext4 subsystem");
3608 else {
3609 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
3610 "to feature incompatibilities");
3611 goto failed_mount;
3612 }
3613 }
3614
3615 if (IS_EXT3_SB(sb)) {
3616 if (ext3_feature_set_ok(sb))
3617 ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
3618 "using the ext4 subsystem");
3619 else {
3620 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
3621 "to feature incompatibilities");
3622 goto failed_mount;
3623 }
3624 }
3625
3626 /*
3627 * Check feature flags regardless of the revision level, since we
3628 * previously didn't change the revision level when setting the flags,
3629 * so there is a chance incompat flags are set on a rev 0 filesystem.
3630 */
3631 if (!ext4_feature_set_ok(sb, (sb->s_flags & MS_RDONLY)))
3632 goto failed_mount;
3633
3634 blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
3635 if (blocksize < EXT4_MIN_BLOCK_SIZE ||
3636 blocksize > EXT4_MAX_BLOCK_SIZE) {
3637 ext4_msg(sb, KERN_ERR,
3638 "Unsupported filesystem blocksize %d (%d log_block_size)",
3639 blocksize, le32_to_cpu(es->s_log_block_size));
3640 goto failed_mount;
3641 }
3642 if (le32_to_cpu(es->s_log_block_size) >
3643 (EXT4_MAX_BLOCK_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
3644 ext4_msg(sb, KERN_ERR,
3645 "Invalid log block size: %u",
3646 le32_to_cpu(es->s_log_block_size));
3647 goto failed_mount;
3648 }
3649
3650 if (le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) > (blocksize / 4)) {
3651 ext4_msg(sb, KERN_ERR,
3652 "Number of reserved GDT blocks insanely large: %d",
3653 le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks));
3654 goto failed_mount;
3655 }
3656
3657 if (sbi->s_mount_opt & EXT4_MOUNT_DAX) {
3658 err = bdev_dax_supported(sb, blocksize);
3659 if (err)
3660 goto failed_mount;
3661 }
3662
3663 if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) {
3664 ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d",
3665 es->s_encryption_level);
3666 goto failed_mount;
3667 }
3668
3669 if (sb->s_blocksize != blocksize) {
3670 /* Validate the filesystem blocksize */
3671 if (!sb_set_blocksize(sb, blocksize)) {
3672 ext4_msg(sb, KERN_ERR, "bad block size %d",
3673 blocksize);
3674 goto failed_mount;
3675 }
3676
3677 brelse(bh);
3678 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3679 offset = do_div(logical_sb_block, blocksize);
3680 bh = sb_bread_unmovable(sb, logical_sb_block);
3681 if (!bh) {
3682 ext4_msg(sb, KERN_ERR,
3683 "Can't read superblock on 2nd try");
3684 goto failed_mount;
3685 }
3686 es = (struct ext4_super_block *)(bh->b_data + offset);
3687 sbi->s_es = es;
3688 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
3689 ext4_msg(sb, KERN_ERR,
3690 "Magic mismatch, very weird!");
3691 goto failed_mount;
3692 }
3693 }
3694
3695 has_huge_files = ext4_has_feature_huge_file(sb);
3696 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
3697 has_huge_files);
3698 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
3699
3700 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
3701 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
3702 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
3703 } else {
3704 sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
3705 sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
3706 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
3707 (!is_power_of_2(sbi->s_inode_size)) ||
3708 (sbi->s_inode_size > blocksize)) {
3709 ext4_msg(sb, KERN_ERR,
3710 "unsupported inode size: %d",
3711 sbi->s_inode_size);
3712 goto failed_mount;
3713 }
3714 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE)
3715 sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2);
3716 }
3717
3718 sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
3719 if (ext4_has_feature_64bit(sb)) {
3720 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
3721 sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
3722 !is_power_of_2(sbi->s_desc_size)) {
3723 ext4_msg(sb, KERN_ERR,
3724 "unsupported descriptor size %lu",
3725 sbi->s_desc_size);
3726 goto failed_mount;
3727 }
3728 } else
3729 sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
3730
3731 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
3732 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
3733
3734 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb);
3735 if (sbi->s_inodes_per_block == 0)
3736 goto cantfind_ext4;
3737 if (sbi->s_inodes_per_group < sbi->s_inodes_per_block ||
3738 sbi->s_inodes_per_group > blocksize * 8) {
3739 ext4_msg(sb, KERN_ERR, "invalid inodes per group: %lu\n",
3740 sbi->s_blocks_per_group);
3741 goto failed_mount;
3742 }
3743 sbi->s_itb_per_group = sbi->s_inodes_per_group /
3744 sbi->s_inodes_per_block;
3745 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb);
3746 sbi->s_sbh = bh;
3747 sbi->s_mount_state = le16_to_cpu(es->s_state);
3748 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
3749 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
3750
3751 for (i = 0; i < 4; i++)
3752 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
3753 sbi->s_def_hash_version = es->s_def_hash_version;
3754 if (ext4_has_feature_dir_index(sb)) {
3755 i = le32_to_cpu(es->s_flags);
3756 if (i & EXT2_FLAGS_UNSIGNED_HASH)
3757 sbi->s_hash_unsigned = 3;
3758 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
3759 #ifdef __CHAR_UNSIGNED__
3760 if (!(sb->s_flags & MS_RDONLY))
3761 es->s_flags |=
3762 cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
3763 sbi->s_hash_unsigned = 3;
3764 #else
3765 if (!(sb->s_flags & MS_RDONLY))
3766 es->s_flags |=
3767 cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
3768 #endif
3769 }
3770 }
3771
3772 /* Handle clustersize */
3773 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size);
3774 has_bigalloc = ext4_has_feature_bigalloc(sb);
3775 if (has_bigalloc) {
3776 if (clustersize < blocksize) {
3777 ext4_msg(sb, KERN_ERR,
3778 "cluster size (%d) smaller than "
3779 "block size (%d)", clustersize, blocksize);
3780 goto failed_mount;
3781 }
3782 if (le32_to_cpu(es->s_log_cluster_size) >
3783 (EXT4_MAX_CLUSTER_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
3784 ext4_msg(sb, KERN_ERR,
3785 "Invalid log cluster size: %u",
3786 le32_to_cpu(es->s_log_cluster_size));
3787 goto failed_mount;
3788 }
3789 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) -
3790 le32_to_cpu(es->s_log_block_size);
3791 sbi->s_clusters_per_group =
3792 le32_to_cpu(es->s_clusters_per_group);
3793 if (sbi->s_clusters_per_group > blocksize * 8) {
3794 ext4_msg(sb, KERN_ERR,
3795 "#clusters per group too big: %lu",
3796 sbi->s_clusters_per_group);
3797 goto failed_mount;
3798 }
3799 if (sbi->s_blocks_per_group !=
3800 (sbi->s_clusters_per_group * (clustersize / blocksize))) {
3801 ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and "
3802 "clusters per group (%lu) inconsistent",
3803 sbi->s_blocks_per_group,
3804 sbi->s_clusters_per_group);
3805 goto failed_mount;
3806 }
3807 } else {
3808 if (clustersize != blocksize) {
3809 ext4_warning(sb, "fragment/cluster size (%d) != "
3810 "block size (%d)", clustersize,
3811 blocksize);
3812 clustersize = blocksize;
3813 }
3814 if (sbi->s_blocks_per_group > blocksize * 8) {
3815 ext4_msg(sb, KERN_ERR,
3816 "#blocks per group too big: %lu",
3817 sbi->s_blocks_per_group);
3818 goto failed_mount;
3819 }
3820 sbi->s_clusters_per_group = sbi->s_blocks_per_group;
3821 sbi->s_cluster_bits = 0;
3822 }
3823 sbi->s_cluster_ratio = clustersize / blocksize;
3824
3825 /* Do we have standard group size of clustersize * 8 blocks ? */
3826 if (sbi->s_blocks_per_group == clustersize << 3)
3827 set_opt2(sb, STD_GROUP_SIZE);
3828
3829 /*
3830 * Test whether we have more sectors than will fit in sector_t,
3831 * and whether the max offset is addressable by the page cache.
3832 */
3833 err = generic_check_addressable(sb->s_blocksize_bits,
3834 ext4_blocks_count(es));
3835 if (err) {
3836 ext4_msg(sb, KERN_ERR, "filesystem"
3837 " too large to mount safely on this system");
3838 if (sizeof(sector_t) < 8)
3839 ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled");
3840 goto failed_mount;
3841 }
3842
3843 if (EXT4_BLOCKS_PER_GROUP(sb) == 0)
3844 goto cantfind_ext4;
3845
3846 /* check blocks count against device size */
3847 blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
3848 if (blocks_count && ext4_blocks_count(es) > blocks_count) {
3849 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
3850 "exceeds size of device (%llu blocks)",
3851 ext4_blocks_count(es), blocks_count);
3852 goto failed_mount;
3853 }
3854
3855 /*
3856 * It makes no sense for the first data block to be beyond the end
3857 * of the filesystem.
3858 */
3859 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
3860 ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
3861 "block %u is beyond end of filesystem (%llu)",
3862 le32_to_cpu(es->s_first_data_block),
3863 ext4_blocks_count(es));
3864 goto failed_mount;
3865 }
3866 blocks_count = (ext4_blocks_count(es) -
3867 le32_to_cpu(es->s_first_data_block) +
3868 EXT4_BLOCKS_PER_GROUP(sb) - 1);
3869 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
3870 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
3871 ext4_msg(sb, KERN_WARNING, "groups count too large: %u "
3872 "(block count %llu, first data block %u, "
3873 "blocks per group %lu)", sbi->s_groups_count,
3874 ext4_blocks_count(es),
3875 le32_to_cpu(es->s_first_data_block),
3876 EXT4_BLOCKS_PER_GROUP(sb));
3877 goto failed_mount;
3878 }
3879 sbi->s_groups_count = blocks_count;
3880 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
3881 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
3882 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
3883 EXT4_DESC_PER_BLOCK(sb);
3884 if (ext4_has_feature_meta_bg(sb)) {
3885 if (le32_to_cpu(es->s_first_meta_bg) > db_count) {
3886 ext4_msg(sb, KERN_WARNING,
3887 "first meta block group too large: %u "
3888 "(group descriptor block count %u)",
3889 le32_to_cpu(es->s_first_meta_bg), db_count);
3890 goto failed_mount;
3891 }
3892 }
3893 sbi->s_group_desc = kvmalloc(db_count *
3894 sizeof(struct buffer_head *),
3895 GFP_KERNEL);
3896 if (sbi->s_group_desc == NULL) {
3897 ext4_msg(sb, KERN_ERR, "not enough memory");
3898 ret = -ENOMEM;
3899 goto failed_mount;
3900 }
3901
3902 bgl_lock_init(sbi->s_blockgroup_lock);
3903
3904 /* Pre-read the descriptors into the buffer cache */
3905 for (i = 0; i < db_count; i++) {
3906 block = descriptor_loc(sb, logical_sb_block, i);
3907 sb_breadahead(sb, block);
3908 }
3909
3910 for (i = 0; i < db_count; i++) {
3911 block = descriptor_loc(sb, logical_sb_block, i);
3912 sbi->s_group_desc[i] = sb_bread_unmovable(sb, block);
3913 if (!sbi->s_group_desc[i]) {
3914 ext4_msg(sb, KERN_ERR,
3915 "can't read group descriptor %d", i);
3916 db_count = i;
3917 goto failed_mount2;
3918 }
3919 }
3920 if (!ext4_check_descriptors(sb, logical_sb_block, &first_not_zeroed)) {
3921 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
3922 ret = -EFSCORRUPTED;
3923 goto failed_mount2;
3924 }
3925
3926 sbi->s_gdb_count = db_count;
3927 get_random_bytes(&sbi->s_next_generation, sizeof(u32));
3928 spin_lock_init(&sbi->s_next_gen_lock);
3929
3930 setup_timer(&sbi->s_err_report, print_daily_error_info,
3931 (unsigned long) sb);
3932
3933 /* Register extent status tree shrinker */
3934 if (ext4_es_register_shrinker(sbi))
3935 goto failed_mount3;
3936
3937 sbi->s_stripe = ext4_get_stripe_size(sbi);
3938 sbi->s_extent_max_zeroout_kb = 32;
3939
3940 /*
3941 * set up enough so that it can read an inode
3942 */
3943 sb->s_op = &ext4_sops;
3944 sb->s_export_op = &ext4_export_ops;
3945 sb->s_xattr = ext4_xattr_handlers;
3946 sb->s_cop = &ext4_cryptops;
3947 #ifdef CONFIG_QUOTA
3948 sb->dq_op = &ext4_quota_operations;
3949 if (ext4_has_feature_quota(sb))
3950 sb->s_qcop = &dquot_quotactl_sysfile_ops;
3951 else
3952 sb->s_qcop = &ext4_qctl_operations;
3953 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
3954 #endif
3955 memcpy(sb->s_uuid, es->s_uuid, sizeof(es->s_uuid));
3956
3957 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
3958 mutex_init(&sbi->s_orphan_lock);
3959
3960 sb->s_root = NULL;
3961
3962 needs_recovery = (es->s_last_orphan != 0 ||
3963 ext4_has_feature_journal_needs_recovery(sb));
3964
3965 if (ext4_has_feature_mmp(sb) && !(sb->s_flags & MS_RDONLY))
3966 if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block)))
3967 goto failed_mount3a;
3968
3969 /*
3970 * The first inode we look at is the journal inode. Don't try
3971 * root first: it may be modified in the journal!
3972 */
3973 if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) {
3974 err = ext4_load_journal(sb, es, journal_devnum);
3975 if (err)
3976 goto failed_mount3a;
3977 } else if (test_opt(sb, NOLOAD) && !(sb->s_flags & MS_RDONLY) &&
3978 ext4_has_feature_journal_needs_recovery(sb)) {
3979 ext4_msg(sb, KERN_ERR, "required journal recovery "
3980 "suppressed and not mounted read-only");
3981 goto failed_mount_wq;
3982 } else {
3983 /* Nojournal mode, all journal mount options are illegal */
3984 if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) {
3985 ext4_msg(sb, KERN_ERR, "can't mount with "
3986 "journal_checksum, fs mounted w/o journal");
3987 goto failed_mount_wq;
3988 }
3989 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
3990 ext4_msg(sb, KERN_ERR, "can't mount with "
3991 "journal_async_commit, fs mounted w/o journal");
3992 goto failed_mount_wq;
3993 }
3994 if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) {
3995 ext4_msg(sb, KERN_ERR, "can't mount with "
3996 "commit=%lu, fs mounted w/o journal",
3997 sbi->s_commit_interval / HZ);
3998 goto failed_mount_wq;
3999 }
4000 if (EXT4_MOUNT_DATA_FLAGS &
4001 (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) {
4002 ext4_msg(sb, KERN_ERR, "can't mount with "
4003 "data=, fs mounted w/o journal");
4004 goto failed_mount_wq;
4005 }
4006 sbi->s_def_mount_opt &= EXT4_MOUNT_JOURNAL_CHECKSUM;
4007 clear_opt(sb, JOURNAL_CHECKSUM);
4008 clear_opt(sb, DATA_FLAGS);
4009 sbi->s_journal = NULL;
4010 needs_recovery = 0;
4011 goto no_journal;
4012 }
4013
4014 if (ext4_has_feature_64bit(sb) &&
4015 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
4016 JBD2_FEATURE_INCOMPAT_64BIT)) {
4017 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
4018 goto failed_mount_wq;
4019 }
4020
4021 if (!set_journal_csum_feature_set(sb)) {
4022 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum "
4023 "feature set");
4024 goto failed_mount_wq;
4025 }
4026
4027 /* We have now updated the journal if required, so we can
4028 * validate the data journaling mode. */
4029 switch (test_opt(sb, DATA_FLAGS)) {
4030 case 0:
4031 /* No mode set, assume a default based on the journal
4032 * capabilities: ORDERED_DATA if the journal can
4033 * cope, else JOURNAL_DATA
4034 */
4035 if (jbd2_journal_check_available_features
4036 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE))
4037 set_opt(sb, ORDERED_DATA);
4038 else
4039 set_opt(sb, JOURNAL_DATA);
4040 break;
4041
4042 case EXT4_MOUNT_ORDERED_DATA:
4043 case EXT4_MOUNT_WRITEBACK_DATA:
4044 if (!jbd2_journal_check_available_features
4045 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4046 ext4_msg(sb, KERN_ERR, "Journal does not support "
4047 "requested data journaling mode");
4048 goto failed_mount_wq;
4049 }
4050 default:
4051 break;
4052 }
4053
4054 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA &&
4055 test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4056 ext4_msg(sb, KERN_ERR, "can't mount with "
4057 "journal_async_commit in data=ordered mode");
4058 goto failed_mount_wq;
4059 }
4060
4061 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
4062
4063 sbi->s_journal->j_commit_callback = ext4_journal_commit_callback;
4064
4065 no_journal:
4066 sbi->s_mb_cache = ext4_xattr_create_cache();
4067 if (!sbi->s_mb_cache) {
4068 ext4_msg(sb, KERN_ERR, "Failed to create an mb_cache");
4069 goto failed_mount_wq;
4070 }
4071
4072 if ((DUMMY_ENCRYPTION_ENABLED(sbi) || ext4_has_feature_encrypt(sb)) &&
4073 (blocksize != PAGE_SIZE)) {
4074 ext4_msg(sb, KERN_ERR,
4075 "Unsupported blocksize for fs encryption");
4076 goto failed_mount_wq;
4077 }
4078
4079 if (DUMMY_ENCRYPTION_ENABLED(sbi) && !(sb->s_flags & MS_RDONLY) &&
4080 !ext4_has_feature_encrypt(sb)) {
4081 ext4_set_feature_encrypt(sb);
4082 ext4_commit_super(sb, 1);
4083 }
4084
4085 /*
4086 * Get the # of file system overhead blocks from the
4087 * superblock if present.
4088 */
4089 if (es->s_overhead_clusters)
4090 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters);
4091 else {
4092 err = ext4_calculate_overhead(sb);
4093 if (err)
4094 goto failed_mount_wq;
4095 }
4096
4097 /*
4098 * The maximum number of concurrent works can be high and
4099 * concurrency isn't really necessary. Limit it to 1.
4100 */
4101 EXT4_SB(sb)->rsv_conversion_wq =
4102 alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
4103 if (!EXT4_SB(sb)->rsv_conversion_wq) {
4104 printk(KERN_ERR "EXT4-fs: failed to create workqueue\n");
4105 ret = -ENOMEM;
4106 goto failed_mount4;
4107 }
4108
4109 /*
4110 * The jbd2_journal_load will have done any necessary log recovery,
4111 * so we can safely mount the rest of the filesystem now.
4112 */
4113
4114 root = ext4_iget(sb, EXT4_ROOT_INO);
4115 if (IS_ERR(root)) {
4116 ext4_msg(sb, KERN_ERR, "get root inode failed");
4117 ret = PTR_ERR(root);
4118 root = NULL;
4119 goto failed_mount4;
4120 }
4121 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
4122 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
4123 iput(root);
4124 goto failed_mount4;
4125 }
4126 sb->s_root = d_make_root(root);
4127 if (!sb->s_root) {
4128 ext4_msg(sb, KERN_ERR, "get root dentry failed");
4129 ret = -ENOMEM;
4130 goto failed_mount4;
4131 }
4132
4133 if (ext4_setup_super(sb, es, sb->s_flags & MS_RDONLY))
4134 sb->s_flags |= MS_RDONLY;
4135
4136 /* determine the minimum size of new large inodes, if present */
4137 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE &&
4138 sbi->s_want_extra_isize == 0) {
4139 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
4140 EXT4_GOOD_OLD_INODE_SIZE;
4141 if (ext4_has_feature_extra_isize(sb)) {
4142 if (sbi->s_want_extra_isize <
4143 le16_to_cpu(es->s_want_extra_isize))
4144 sbi->s_want_extra_isize =
4145 le16_to_cpu(es->s_want_extra_isize);
4146 if (sbi->s_want_extra_isize <
4147 le16_to_cpu(es->s_min_extra_isize))
4148 sbi->s_want_extra_isize =
4149 le16_to_cpu(es->s_min_extra_isize);
4150 }
4151 }
4152 /* Check if enough inode space is available */
4153 if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize >
4154 sbi->s_inode_size) {
4155 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
4156 EXT4_GOOD_OLD_INODE_SIZE;
4157 ext4_msg(sb, KERN_INFO, "required extra inode space not"
4158 "available");
4159 }
4160
4161 ext4_set_resv_clusters(sb);
4162
4163 err = ext4_setup_system_zone(sb);
4164 if (err) {
4165 ext4_msg(sb, KERN_ERR, "failed to initialize system "
4166 "zone (%d)", err);
4167 goto failed_mount4a;
4168 }
4169
4170 ext4_ext_init(sb);
4171 err = ext4_mb_init(sb);
4172 if (err) {
4173 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
4174 err);
4175 goto failed_mount5;
4176 }
4177
4178 block = ext4_count_free_clusters(sb);
4179 ext4_free_blocks_count_set(sbi->s_es,
4180 EXT4_C2B(sbi, block));
4181 err = percpu_counter_init(&sbi->s_freeclusters_counter, block,
4182 GFP_KERNEL);
4183 if (!err) {
4184 unsigned long freei = ext4_count_free_inodes(sb);
4185 sbi->s_es->s_free_inodes_count = cpu_to_le32(freei);
4186 err = percpu_counter_init(&sbi->s_freeinodes_counter, freei,
4187 GFP_KERNEL);
4188 }
4189 if (!err)
4190 err = percpu_counter_init(&sbi->s_dirs_counter,
4191 ext4_count_dirs(sb), GFP_KERNEL);
4192 if (!err)
4193 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0,
4194 GFP_KERNEL);
4195 if (!err)
4196 err = percpu_init_rwsem(&sbi->s_journal_flag_rwsem);
4197
4198 if (err) {
4199 ext4_msg(sb, KERN_ERR, "insufficient memory");
4200 goto failed_mount6;
4201 }
4202
4203 if (ext4_has_feature_flex_bg(sb))
4204 if (!ext4_fill_flex_info(sb)) {
4205 ext4_msg(sb, KERN_ERR,
4206 "unable to initialize "
4207 "flex_bg meta info!");
4208 goto failed_mount6;
4209 }
4210
4211 err = ext4_register_li_request(sb, first_not_zeroed);
4212 if (err)
4213 goto failed_mount6;
4214
4215 err = ext4_register_sysfs(sb);
4216 if (err)
4217 goto failed_mount7;
4218
4219 #ifdef CONFIG_QUOTA
4220 /* Enable quota usage during mount. */
4221 if (ext4_has_feature_quota(sb) && !(sb->s_flags & MS_RDONLY)) {
4222 err = ext4_enable_quotas(sb);
4223 if (err)
4224 goto failed_mount8;
4225 }
4226 #endif /* CONFIG_QUOTA */
4227
4228 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
4229 ext4_orphan_cleanup(sb, es);
4230 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
4231 if (needs_recovery) {
4232 ext4_msg(sb, KERN_INFO, "recovery complete");
4233 ext4_mark_recovery_complete(sb, es);
4234 }
4235 if (EXT4_SB(sb)->s_journal) {
4236 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
4237 descr = " journalled data mode";
4238 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
4239 descr = " ordered data mode";
4240 else
4241 descr = " writeback data mode";
4242 } else
4243 descr = "out journal";
4244
4245 if (test_opt(sb, DISCARD)) {
4246 struct request_queue *q = bdev_get_queue(sb->s_bdev);
4247 if (!blk_queue_discard(q))
4248 ext4_msg(sb, KERN_WARNING,
4249 "mounting with \"discard\" option, but "
4250 "the device does not support discard");
4251 }
4252
4253 if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount"))
4254 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. "
4255 "Opts: %.*s%s%s", descr,
4256 (int) sizeof(sbi->s_es->s_mount_opts),
4257 sbi->s_es->s_mount_opts,
4258 *sbi->s_es->s_mount_opts ? "; " : "", orig_data);
4259
4260 if (es->s_error_count)
4261 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
4262
4263 /* Enable message ratelimiting. Default is 10 messages per 5 secs. */
4264 ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10);
4265 ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10);
4266 ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10);
4267
4268 kfree(orig_data);
4269 return 0;
4270
4271 cantfind_ext4:
4272 if (!silent)
4273 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
4274 goto failed_mount;
4275
4276 #ifdef CONFIG_QUOTA
4277 failed_mount8:
4278 ext4_unregister_sysfs(sb);
4279 #endif
4280 failed_mount7:
4281 ext4_unregister_li_request(sb);
4282 failed_mount6:
4283 ext4_mb_release(sb);
4284 if (sbi->s_flex_groups)
4285 kvfree(sbi->s_flex_groups);
4286 percpu_counter_destroy(&sbi->s_freeclusters_counter);
4287 percpu_counter_destroy(&sbi->s_freeinodes_counter);
4288 percpu_counter_destroy(&sbi->s_dirs_counter);
4289 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
4290 failed_mount5:
4291 ext4_ext_release(sb);
4292 ext4_release_system_zone(sb);
4293 failed_mount4a:
4294 dput(sb->s_root);
4295 sb->s_root = NULL;
4296 failed_mount4:
4297 ext4_msg(sb, KERN_ERR, "mount failed");
4298 if (EXT4_SB(sb)->rsv_conversion_wq)
4299 destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq);
4300 failed_mount_wq:
4301 if (sbi->s_mb_cache) {
4302 ext4_xattr_destroy_cache(sbi->s_mb_cache);
4303 sbi->s_mb_cache = NULL;
4304 }
4305 if (sbi->s_journal) {
4306 jbd2_journal_destroy(sbi->s_journal);
4307 sbi->s_journal = NULL;
4308 }
4309 failed_mount3a:
4310 ext4_es_unregister_shrinker(sbi);
4311 failed_mount3:
4312 del_timer_sync(&sbi->s_err_report);
4313 if (sbi->s_mmp_tsk)
4314 kthread_stop(sbi->s_mmp_tsk);
4315 failed_mount2:
4316 for (i = 0; i < db_count; i++)
4317 brelse(sbi->s_group_desc[i]);
4318 kvfree(sbi->s_group_desc);
4319 failed_mount:
4320 if (sbi->s_chksum_driver)
4321 crypto_free_shash(sbi->s_chksum_driver);
4322 #ifdef CONFIG_QUOTA
4323 for (i = 0; i < EXT4_MAXQUOTAS; i++)
4324 kfree(sbi->s_qf_names[i]);
4325 #endif
4326 ext4_blkdev_remove(sbi);
4327 brelse(bh);
4328 out_fail:
4329 sb->s_fs_info = NULL;
4330 kfree(sbi->s_blockgroup_lock);
4331 out_free_base:
4332 kfree(sbi);
4333 kfree(orig_data);
4334 return err ? err : ret;
4335 }
4336
4337 /*
4338 * Setup any per-fs journal parameters now. We'll do this both on
4339 * initial mount, once the journal has been initialised but before we've
4340 * done any recovery; and again on any subsequent remount.
4341 */
4342 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
4343 {
4344 struct ext4_sb_info *sbi = EXT4_SB(sb);
4345
4346 journal->j_commit_interval = sbi->s_commit_interval;
4347 journal->j_min_batch_time = sbi->s_min_batch_time;
4348 journal->j_max_batch_time = sbi->s_max_batch_time;
4349
4350 write_lock(&journal->j_state_lock);
4351 if (test_opt(sb, BARRIER))
4352 journal->j_flags |= JBD2_BARRIER;
4353 else
4354 journal->j_flags &= ~JBD2_BARRIER;
4355 if (test_opt(sb, DATA_ERR_ABORT))
4356 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
4357 else
4358 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
4359 write_unlock(&journal->j_state_lock);
4360 }
4361
4362 static struct inode *ext4_get_journal_inode(struct super_block *sb,
4363 unsigned int journal_inum)
4364 {
4365 struct inode *journal_inode;
4366
4367 /*
4368 * Test for the existence of a valid inode on disk. Bad things
4369 * happen if we iget() an unused inode, as the subsequent iput()
4370 * will try to delete it.
4371 */
4372 journal_inode = ext4_iget(sb, journal_inum);
4373 if (IS_ERR(journal_inode)) {
4374 ext4_msg(sb, KERN_ERR, "no journal found");
4375 return NULL;
4376 }
4377 if (!journal_inode->i_nlink) {
4378 make_bad_inode(journal_inode);
4379 iput(journal_inode);
4380 ext4_msg(sb, KERN_ERR, "journal inode is deleted");
4381 return NULL;
4382 }
4383
4384 jbd_debug(2, "Journal inode found at %p: %lld bytes\n",
4385 journal_inode, journal_inode->i_size);
4386 if (!S_ISREG(journal_inode->i_mode)) {
4387 ext4_msg(sb, KERN_ERR, "invalid journal inode");
4388 iput(journal_inode);
4389 return NULL;
4390 }
4391 return journal_inode;
4392 }
4393
4394 static journal_t *ext4_get_journal(struct super_block *sb,
4395 unsigned int journal_inum)
4396 {
4397 struct inode *journal_inode;
4398 journal_t *journal;
4399
4400 BUG_ON(!ext4_has_feature_journal(sb));
4401
4402 journal_inode = ext4_get_journal_inode(sb, journal_inum);
4403 if (!journal_inode)
4404 return NULL;
4405
4406 journal = jbd2_journal_init_inode(journal_inode);
4407 if (!journal) {
4408 ext4_msg(sb, KERN_ERR, "Could not load journal inode");
4409 iput(journal_inode);
4410 return NULL;
4411 }
4412 journal->j_private = sb;
4413 ext4_init_journal_params(sb, journal);
4414 return journal;
4415 }
4416
4417 static journal_t *ext4_get_dev_journal(struct super_block *sb,
4418 dev_t j_dev)
4419 {
4420 struct buffer_head *bh;
4421 journal_t *journal;
4422 ext4_fsblk_t start;
4423 ext4_fsblk_t len;
4424 int hblock, blocksize;
4425 ext4_fsblk_t sb_block;
4426 unsigned long offset;
4427 struct ext4_super_block *es;
4428 struct block_device *bdev;
4429
4430 BUG_ON(!ext4_has_feature_journal(sb));
4431
4432 bdev = ext4_blkdev_get(j_dev, sb);
4433 if (bdev == NULL)
4434 return NULL;
4435
4436 blocksize = sb->s_blocksize;
4437 hblock = bdev_logical_block_size(bdev);
4438 if (blocksize < hblock) {
4439 ext4_msg(sb, KERN_ERR,
4440 "blocksize too small for journal device");
4441 goto out_bdev;
4442 }
4443
4444 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
4445 offset = EXT4_MIN_BLOCK_SIZE % blocksize;
4446 set_blocksize(bdev, blocksize);
4447 if (!(bh = __bread(bdev, sb_block, blocksize))) {
4448 ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
4449 "external journal");
4450 goto out_bdev;
4451 }
4452
4453 es = (struct ext4_super_block *) (bh->b_data + offset);
4454 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
4455 !(le32_to_cpu(es->s_feature_incompat) &
4456 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
4457 ext4_msg(sb, KERN_ERR, "external journal has "
4458 "bad superblock");
4459 brelse(bh);
4460 goto out_bdev;
4461 }
4462
4463 if ((le32_to_cpu(es->s_feature_ro_compat) &
4464 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
4465 es->s_checksum != ext4_superblock_csum(sb, es)) {
4466 ext4_msg(sb, KERN_ERR, "external journal has "
4467 "corrupt superblock");
4468 brelse(bh);
4469 goto out_bdev;
4470 }
4471
4472 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
4473 ext4_msg(sb, KERN_ERR, "journal UUID does not match");
4474 brelse(bh);
4475 goto out_bdev;
4476 }
4477
4478 len = ext4_blocks_count(es);
4479 start = sb_block + 1;
4480 brelse(bh); /* we're done with the superblock */
4481
4482 journal = jbd2_journal_init_dev(bdev, sb->s_bdev,
4483 start, len, blocksize);
4484 if (!journal) {
4485 ext4_msg(sb, KERN_ERR, "failed to create device journal");
4486 goto out_bdev;
4487 }
4488 journal->j_private = sb;
4489 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &journal->j_sb_buffer);
4490 wait_on_buffer(journal->j_sb_buffer);
4491 if (!buffer_uptodate(journal->j_sb_buffer)) {
4492 ext4_msg(sb, KERN_ERR, "I/O error on journal device");
4493 goto out_journal;
4494 }
4495 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
4496 ext4_msg(sb, KERN_ERR, "External journal has more than one "
4497 "user (unsupported) - %d",
4498 be32_to_cpu(journal->j_superblock->s_nr_users));
4499 goto out_journal;
4500 }
4501 EXT4_SB(sb)->journal_bdev = bdev;
4502 ext4_init_journal_params(sb, journal);
4503 return journal;
4504
4505 out_journal:
4506 jbd2_journal_destroy(journal);
4507 out_bdev:
4508 ext4_blkdev_put(bdev);
4509 return NULL;
4510 }
4511
4512 static int ext4_load_journal(struct super_block *sb,
4513 struct ext4_super_block *es,
4514 unsigned long journal_devnum)
4515 {
4516 journal_t *journal;
4517 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
4518 dev_t journal_dev;
4519 int err = 0;
4520 int really_read_only;
4521
4522 BUG_ON(!ext4_has_feature_journal(sb));
4523
4524 if (journal_devnum &&
4525 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4526 ext4_msg(sb, KERN_INFO, "external journal device major/minor "
4527 "numbers have changed");
4528 journal_dev = new_decode_dev(journal_devnum);
4529 } else
4530 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
4531
4532 really_read_only = bdev_read_only(sb->s_bdev);
4533
4534 /*
4535 * Are we loading a blank journal or performing recovery after a
4536 * crash? For recovery, we need to check in advance whether we
4537 * can get read-write access to the device.
4538 */
4539 if (ext4_has_feature_journal_needs_recovery(sb)) {
4540 if (sb->s_flags & MS_RDONLY) {
4541 ext4_msg(sb, KERN_INFO, "INFO: recovery "
4542 "required on readonly filesystem");
4543 if (really_read_only) {
4544 ext4_msg(sb, KERN_ERR, "write access "
4545 "unavailable, cannot proceed");
4546 return -EROFS;
4547 }
4548 ext4_msg(sb, KERN_INFO, "write access will "
4549 "be enabled during recovery");
4550 }
4551 }
4552
4553 if (journal_inum && journal_dev) {
4554 ext4_msg(sb, KERN_ERR, "filesystem has both journal "
4555 "and inode journals!");
4556 return -EINVAL;
4557 }
4558
4559 if (journal_inum) {
4560 if (!(journal = ext4_get_journal(sb, journal_inum)))
4561 return -EINVAL;
4562 } else {
4563 if (!(journal = ext4_get_dev_journal(sb, journal_dev)))
4564 return -EINVAL;
4565 }
4566
4567 if (!(journal->j_flags & JBD2_BARRIER))
4568 ext4_msg(sb, KERN_INFO, "barriers disabled");
4569
4570 if (!ext4_has_feature_journal_needs_recovery(sb))
4571 err = jbd2_journal_wipe(journal, !really_read_only);
4572 if (!err) {
4573 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
4574 if (save)
4575 memcpy(save, ((char *) es) +
4576 EXT4_S_ERR_START, EXT4_S_ERR_LEN);
4577 err = jbd2_journal_load(journal);
4578 if (save)
4579 memcpy(((char *) es) + EXT4_S_ERR_START,
4580 save, EXT4_S_ERR_LEN);
4581 kfree(save);
4582 }
4583
4584 if (err) {
4585 ext4_msg(sb, KERN_ERR, "error loading journal");
4586 jbd2_journal_destroy(journal);
4587 return err;
4588 }
4589
4590 EXT4_SB(sb)->s_journal = journal;
4591 ext4_clear_journal_err(sb, es);
4592
4593 if (!really_read_only && journal_devnum &&
4594 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4595 es->s_journal_dev = cpu_to_le32(journal_devnum);
4596
4597 /* Make sure we flush the recovery flag to disk. */
4598 ext4_commit_super(sb, 1);
4599 }
4600
4601 return 0;
4602 }
4603
4604 static int ext4_commit_super(struct super_block *sb, int sync)
4605 {
4606 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
4607 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
4608 int error = 0;
4609
4610 if (!sbh || block_device_ejected(sb))
4611 return error;
4612 /*
4613 * If the file system is mounted read-only, don't update the
4614 * superblock write time. This avoids updating the superblock
4615 * write time when we are mounting the root file system
4616 * read/only but we need to replay the journal; at that point,
4617 * for people who are east of GMT and who make their clock
4618 * tick in localtime for Windows bug-for-bug compatibility,
4619 * the clock is set in the future, and this will cause e2fsck
4620 * to complain and force a full file system check.
4621 */
4622 if (!(sb->s_flags & MS_RDONLY))
4623 es->s_wtime = cpu_to_le32(get_seconds());
4624 if (sb->s_bdev->bd_part)
4625 es->s_kbytes_written =
4626 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written +
4627 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
4628 EXT4_SB(sb)->s_sectors_written_start) >> 1));
4629 else
4630 es->s_kbytes_written =
4631 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written);
4632 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeclusters_counter))
4633 ext4_free_blocks_count_set(es,
4634 EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive(
4635 &EXT4_SB(sb)->s_freeclusters_counter)));
4636 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeinodes_counter))
4637 es->s_free_inodes_count =
4638 cpu_to_le32(percpu_counter_sum_positive(
4639 &EXT4_SB(sb)->s_freeinodes_counter));
4640 BUFFER_TRACE(sbh, "marking dirty");
4641 ext4_superblock_csum_set(sb);
4642 if (sync)
4643 lock_buffer(sbh);
4644 if (buffer_write_io_error(sbh)) {
4645 /*
4646 * Oh, dear. A previous attempt to write the
4647 * superblock failed. This could happen because the
4648 * USB device was yanked out. Or it could happen to
4649 * be a transient write error and maybe the block will
4650 * be remapped. Nothing we can do but to retry the
4651 * write and hope for the best.
4652 */
4653 ext4_msg(sb, KERN_ERR, "previous I/O error to "
4654 "superblock detected");
4655 clear_buffer_write_io_error(sbh);
4656 set_buffer_uptodate(sbh);
4657 }
4658 mark_buffer_dirty(sbh);
4659 if (sync) {
4660 unlock_buffer(sbh);
4661 error = __sync_dirty_buffer(sbh,
4662 REQ_SYNC | (test_opt(sb, BARRIER) ? REQ_FUA : 0));
4663 if (error)
4664 return error;
4665
4666 error = buffer_write_io_error(sbh);
4667 if (error) {
4668 ext4_msg(sb, KERN_ERR, "I/O error while writing "
4669 "superblock");
4670 clear_buffer_write_io_error(sbh);
4671 set_buffer_uptodate(sbh);
4672 }
4673 }
4674 return error;
4675 }
4676
4677 /*
4678 * Have we just finished recovery? If so, and if we are mounting (or
4679 * remounting) the filesystem readonly, then we will end up with a
4680 * consistent fs on disk. Record that fact.
4681 */
4682 static void ext4_mark_recovery_complete(struct super_block *sb,
4683 struct ext4_super_block *es)
4684 {
4685 journal_t *journal = EXT4_SB(sb)->s_journal;
4686
4687 if (!ext4_has_feature_journal(sb)) {
4688 BUG_ON(journal != NULL);
4689 return;
4690 }
4691 jbd2_journal_lock_updates(journal);
4692 if (jbd2_journal_flush(journal) < 0)
4693 goto out;
4694
4695 if (ext4_has_feature_journal_needs_recovery(sb) &&
4696 sb->s_flags & MS_RDONLY) {
4697 ext4_clear_feature_journal_needs_recovery(sb);
4698 ext4_commit_super(sb, 1);
4699 }
4700
4701 out:
4702 jbd2_journal_unlock_updates(journal);
4703 }
4704
4705 /*
4706 * If we are mounting (or read-write remounting) a filesystem whose journal
4707 * has recorded an error from a previous lifetime, move that error to the
4708 * main filesystem now.
4709 */
4710 static void ext4_clear_journal_err(struct super_block *sb,
4711 struct ext4_super_block *es)
4712 {
4713 journal_t *journal;
4714 int j_errno;
4715 const char *errstr;
4716
4717 BUG_ON(!ext4_has_feature_journal(sb));
4718
4719 journal = EXT4_SB(sb)->s_journal;
4720
4721 /*
4722 * Now check for any error status which may have been recorded in the
4723 * journal by a prior ext4_error() or ext4_abort()
4724 */
4725
4726 j_errno = jbd2_journal_errno(journal);
4727 if (j_errno) {
4728 char nbuf[16];
4729
4730 errstr = ext4_decode_error(sb, j_errno, nbuf);
4731 ext4_warning(sb, "Filesystem error recorded "
4732 "from previous mount: %s", errstr);
4733 ext4_warning(sb, "Marking fs in need of filesystem check.");
4734
4735 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
4736 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
4737 ext4_commit_super(sb, 1);
4738
4739 jbd2_journal_clear_err(journal);
4740 jbd2_journal_update_sb_errno(journal);
4741 }
4742 }
4743
4744 /*
4745 * Force the running and committing transactions to commit,
4746 * and wait on the commit.
4747 */
4748 int ext4_force_commit(struct super_block *sb)
4749 {
4750 journal_t *journal;
4751
4752 if (sb->s_flags & MS_RDONLY)
4753 return 0;
4754
4755 journal = EXT4_SB(sb)->s_journal;
4756 return ext4_journal_force_commit(journal);
4757 }
4758
4759 static int ext4_sync_fs(struct super_block *sb, int wait)
4760 {
4761 int ret = 0;
4762 tid_t target;
4763 bool needs_barrier = false;
4764 struct ext4_sb_info *sbi = EXT4_SB(sb);
4765
4766 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
4767 return 0;
4768
4769 trace_ext4_sync_fs(sb, wait);
4770 flush_workqueue(sbi->rsv_conversion_wq);
4771 /*
4772 * Writeback quota in non-journalled quota case - journalled quota has
4773 * no dirty dquots
4774 */
4775 dquot_writeback_dquots(sb, -1);
4776 /*
4777 * Data writeback is possible w/o journal transaction, so barrier must
4778 * being sent at the end of the function. But we can skip it if
4779 * transaction_commit will do it for us.
4780 */
4781 if (sbi->s_journal) {
4782 target = jbd2_get_latest_transaction(sbi->s_journal);
4783 if (wait && sbi->s_journal->j_flags & JBD2_BARRIER &&
4784 !jbd2_trans_will_send_data_barrier(sbi->s_journal, target))
4785 needs_barrier = true;
4786
4787 if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
4788 if (wait)
4789 ret = jbd2_log_wait_commit(sbi->s_journal,
4790 target);
4791 }
4792 } else if (wait && test_opt(sb, BARRIER))
4793 needs_barrier = true;
4794 if (needs_barrier) {
4795 int err;
4796 err = blkdev_issue_flush(sb->s_bdev, GFP_KERNEL, NULL);
4797 if (!ret)
4798 ret = err;
4799 }
4800
4801 return ret;
4802 }
4803
4804 /*
4805 * LVM calls this function before a (read-only) snapshot is created. This
4806 * gives us a chance to flush the journal completely and mark the fs clean.
4807 *
4808 * Note that only this function cannot bring a filesystem to be in a clean
4809 * state independently. It relies on upper layer to stop all data & metadata
4810 * modifications.
4811 */
4812 static int ext4_freeze(struct super_block *sb)
4813 {
4814 int error = 0;
4815 journal_t *journal;
4816
4817 if (sb->s_flags & MS_RDONLY)
4818 return 0;
4819
4820 journal = EXT4_SB(sb)->s_journal;
4821
4822 if (journal) {
4823 /* Now we set up the journal barrier. */
4824 jbd2_journal_lock_updates(journal);
4825
4826 /*
4827 * Don't clear the needs_recovery flag if we failed to
4828 * flush the journal.
4829 */
4830 error = jbd2_journal_flush(journal);
4831 if (error < 0)
4832 goto out;
4833
4834 /* Journal blocked and flushed, clear needs_recovery flag. */
4835 ext4_clear_feature_journal_needs_recovery(sb);
4836 }
4837
4838 error = ext4_commit_super(sb, 1);
4839 out:
4840 if (journal)
4841 /* we rely on upper layer to stop further updates */
4842 jbd2_journal_unlock_updates(journal);
4843 return error;
4844 }
4845
4846 /*
4847 * Called by LVM after the snapshot is done. We need to reset the RECOVER
4848 * flag here, even though the filesystem is not technically dirty yet.
4849 */
4850 static int ext4_unfreeze(struct super_block *sb)
4851 {
4852 if ((sb->s_flags & MS_RDONLY) || ext4_forced_shutdown(EXT4_SB(sb)))
4853 return 0;
4854
4855 if (EXT4_SB(sb)->s_journal) {
4856 /* Reset the needs_recovery flag before the fs is unlocked. */
4857 ext4_set_feature_journal_needs_recovery(sb);
4858 }
4859
4860 ext4_commit_super(sb, 1);
4861 return 0;
4862 }
4863
4864 /*
4865 * Structure to save mount options for ext4_remount's benefit
4866 */
4867 struct ext4_mount_options {
4868 unsigned long s_mount_opt;
4869 unsigned long s_mount_opt2;
4870 kuid_t s_resuid;
4871 kgid_t s_resgid;
4872 unsigned long s_commit_interval;
4873 u32 s_min_batch_time, s_max_batch_time;
4874 #ifdef CONFIG_QUOTA
4875 int s_jquota_fmt;
4876 char *s_qf_names[EXT4_MAXQUOTAS];
4877 #endif
4878 };
4879
4880 static int ext4_remount(struct super_block *sb, int *flags, char *data)
4881 {
4882 struct ext4_super_block *es;
4883 struct ext4_sb_info *sbi = EXT4_SB(sb);
4884 unsigned long old_sb_flags;
4885 struct ext4_mount_options old_opts;
4886 int enable_quota = 0;
4887 ext4_group_t g;
4888 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
4889 int err = 0;
4890 #ifdef CONFIG_QUOTA
4891 int i, j;
4892 #endif
4893 char *orig_data = kstrdup(data, GFP_KERNEL);
4894
4895 /* Store the original options */
4896 old_sb_flags = sb->s_flags;
4897 old_opts.s_mount_opt = sbi->s_mount_opt;
4898 old_opts.s_mount_opt2 = sbi->s_mount_opt2;
4899 old_opts.s_resuid = sbi->s_resuid;
4900 old_opts.s_resgid = sbi->s_resgid;
4901 old_opts.s_commit_interval = sbi->s_commit_interval;
4902 old_opts.s_min_batch_time = sbi->s_min_batch_time;
4903 old_opts.s_max_batch_time = sbi->s_max_batch_time;
4904 #ifdef CONFIG_QUOTA
4905 old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
4906 for (i = 0; i < EXT4_MAXQUOTAS; i++)
4907 if (sbi->s_qf_names[i]) {
4908 old_opts.s_qf_names[i] = kstrdup(sbi->s_qf_names[i],
4909 GFP_KERNEL);
4910 if (!old_opts.s_qf_names[i]) {
4911 for (j = 0; j < i; j++)
4912 kfree(old_opts.s_qf_names[j]);
4913 kfree(orig_data);
4914 return -ENOMEM;
4915 }
4916 } else
4917 old_opts.s_qf_names[i] = NULL;
4918 #endif
4919 if (sbi->s_journal && sbi->s_journal->j_task->io_context)
4920 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio;
4921
4922 if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) {
4923 err = -EINVAL;
4924 goto restore_opts;
4925 }
4926
4927 if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^
4928 test_opt(sb, JOURNAL_CHECKSUM)) {
4929 ext4_msg(sb, KERN_ERR, "changing journal_checksum "
4930 "during remount not supported; ignoring");
4931 sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM;
4932 }
4933
4934 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
4935 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
4936 ext4_msg(sb, KERN_ERR, "can't mount with "
4937 "both data=journal and delalloc");
4938 err = -EINVAL;
4939 goto restore_opts;
4940 }
4941 if (test_opt(sb, DIOREAD_NOLOCK)) {
4942 ext4_msg(sb, KERN_ERR, "can't mount with "
4943 "both data=journal and dioread_nolock");
4944 err = -EINVAL;
4945 goto restore_opts;
4946 }
4947 if (test_opt(sb, DAX)) {
4948 ext4_msg(sb, KERN_ERR, "can't mount with "
4949 "both data=journal and dax");
4950 err = -EINVAL;
4951 goto restore_opts;
4952 }
4953 } else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) {
4954 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4955 ext4_msg(sb, KERN_ERR, "can't mount with "
4956 "journal_async_commit in data=ordered mode");
4957 err = -EINVAL;
4958 goto restore_opts;
4959 }
4960 }
4961
4962 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_DAX) {
4963 ext4_msg(sb, KERN_WARNING, "warning: refusing change of "
4964 "dax flag with busy inodes while remounting");
4965 sbi->s_mount_opt ^= EXT4_MOUNT_DAX;
4966 }
4967
4968 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED)
4969 ext4_abort(sb, "Abort forced by user");
4970
4971 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
4972 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
4973
4974 es = sbi->s_es;
4975
4976 if (sbi->s_journal) {
4977 ext4_init_journal_params(sb, sbi->s_journal);
4978 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
4979 }
4980
4981 if (*flags & MS_LAZYTIME)
4982 sb->s_flags |= MS_LAZYTIME;
4983
4984 if ((*flags & MS_RDONLY) != (sb->s_flags & MS_RDONLY)) {
4985 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) {
4986 err = -EROFS;
4987 goto restore_opts;
4988 }
4989
4990 if (*flags & MS_RDONLY) {
4991 err = sync_filesystem(sb);
4992 if (err < 0)
4993 goto restore_opts;
4994 err = dquot_suspend(sb, -1);
4995 if (err < 0)
4996 goto restore_opts;
4997
4998 /*
4999 * First of all, the unconditional stuff we have to do
5000 * to disable replay of the journal when we next remount
5001 */
5002 sb->s_flags |= MS_RDONLY;
5003
5004 /*
5005 * OK, test if we are remounting a valid rw partition
5006 * readonly, and if so set the rdonly flag and then
5007 * mark the partition as valid again.
5008 */
5009 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
5010 (sbi->s_mount_state & EXT4_VALID_FS))
5011 es->s_state = cpu_to_le16(sbi->s_mount_state);
5012
5013 if (sbi->s_journal)
5014 ext4_mark_recovery_complete(sb, es);
5015 } else {
5016 /* Make sure we can mount this feature set readwrite */
5017 if (ext4_has_feature_readonly(sb) ||
5018 !ext4_feature_set_ok(sb, 0)) {
5019 err = -EROFS;
5020 goto restore_opts;
5021 }
5022 /*
5023 * Make sure the group descriptor checksums
5024 * are sane. If they aren't, refuse to remount r/w.
5025 */
5026 for (g = 0; g < sbi->s_groups_count; g++) {
5027 struct ext4_group_desc *gdp =
5028 ext4_get_group_desc(sb, g, NULL);
5029
5030 if (!ext4_group_desc_csum_verify(sb, g, gdp)) {
5031 ext4_msg(sb, KERN_ERR,
5032 "ext4_remount: Checksum for group %u failed (%u!=%u)",
5033 g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)),
5034 le16_to_cpu(gdp->bg_checksum));
5035 err = -EFSBADCRC;
5036 goto restore_opts;
5037 }
5038 }
5039
5040 /*
5041 * If we have an unprocessed orphan list hanging
5042 * around from a previously readonly bdev mount,
5043 * require a full umount/remount for now.
5044 */
5045 if (es->s_last_orphan) {
5046 ext4_msg(sb, KERN_WARNING, "Couldn't "
5047 "remount RDWR because of unprocessed "
5048 "orphan inode list. Please "
5049 "umount/remount instead");
5050 err = -EINVAL;
5051 goto restore_opts;
5052 }
5053
5054 /*
5055 * Mounting a RDONLY partition read-write, so reread
5056 * and store the current valid flag. (It may have
5057 * been changed by e2fsck since we originally mounted
5058 * the partition.)
5059 */
5060 if (sbi->s_journal)
5061 ext4_clear_journal_err(sb, es);
5062 sbi->s_mount_state = le16_to_cpu(es->s_state);
5063 if (!ext4_setup_super(sb, es, 0))
5064 sb->s_flags &= ~MS_RDONLY;
5065 if (ext4_has_feature_mmp(sb))
5066 if (ext4_multi_mount_protect(sb,
5067 le64_to_cpu(es->s_mmp_block))) {
5068 err = -EROFS;
5069 goto restore_opts;
5070 }
5071 enable_quota = 1;
5072 }
5073 }
5074
5075 /*
5076 * Reinitialize lazy itable initialization thread based on
5077 * current settings
5078 */
5079 if ((sb->s_flags & MS_RDONLY) || !test_opt(sb, INIT_INODE_TABLE))
5080 ext4_unregister_li_request(sb);
5081 else {
5082 ext4_group_t first_not_zeroed;
5083 first_not_zeroed = ext4_has_uninit_itable(sb);
5084 ext4_register_li_request(sb, first_not_zeroed);
5085 }
5086
5087 ext4_setup_system_zone(sb);
5088 if (sbi->s_journal == NULL && !(old_sb_flags & MS_RDONLY))
5089 ext4_commit_super(sb, 1);
5090
5091 #ifdef CONFIG_QUOTA
5092 /* Release old quota file names */
5093 for (i = 0; i < EXT4_MAXQUOTAS; i++)
5094 kfree(old_opts.s_qf_names[i]);
5095 if (enable_quota) {
5096 if (sb_any_quota_suspended(sb))
5097 dquot_resume(sb, -1);
5098 else if (ext4_has_feature_quota(sb)) {
5099 err = ext4_enable_quotas(sb);
5100 if (err)
5101 goto restore_opts;
5102 }
5103 }
5104 #endif
5105
5106 *flags = (*flags & ~MS_LAZYTIME) | (sb->s_flags & MS_LAZYTIME);
5107 ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data);
5108 kfree(orig_data);
5109 return 0;
5110
5111 restore_opts:
5112 sb->s_flags = old_sb_flags;
5113 sbi->s_mount_opt = old_opts.s_mount_opt;
5114 sbi->s_mount_opt2 = old_opts.s_mount_opt2;
5115 sbi->s_resuid = old_opts.s_resuid;
5116 sbi->s_resgid = old_opts.s_resgid;
5117 sbi->s_commit_interval = old_opts.s_commit_interval;
5118 sbi->s_min_batch_time = old_opts.s_min_batch_time;
5119 sbi->s_max_batch_time = old_opts.s_max_batch_time;
5120 #ifdef CONFIG_QUOTA
5121 sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
5122 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
5123 kfree(sbi->s_qf_names[i]);
5124 sbi->s_qf_names[i] = old_opts.s_qf_names[i];
5125 }
5126 #endif
5127 kfree(orig_data);
5128 return err;
5129 }
5130
5131 #ifdef CONFIG_QUOTA
5132 static int ext4_statfs_project(struct super_block *sb,
5133 kprojid_t projid, struct kstatfs *buf)
5134 {
5135 struct kqid qid;
5136 struct dquot *dquot;
5137 u64 limit;
5138 u64 curblock;
5139
5140 qid = make_kqid_projid(projid);
5141 dquot = dqget(sb, qid);
5142 if (IS_ERR(dquot))
5143 return PTR_ERR(dquot);
5144 spin_lock(&dq_data_lock);
5145
5146 limit = (dquot->dq_dqb.dqb_bsoftlimit ?
5147 dquot->dq_dqb.dqb_bsoftlimit :
5148 dquot->dq_dqb.dqb_bhardlimit) >> sb->s_blocksize_bits;
5149 if (limit && buf->f_blocks > limit) {
5150 curblock = dquot->dq_dqb.dqb_curspace >> sb->s_blocksize_bits;
5151 buf->f_blocks = limit;
5152 buf->f_bfree = buf->f_bavail =
5153 (buf->f_blocks > curblock) ?
5154 (buf->f_blocks - curblock) : 0;
5155 }
5156
5157 limit = dquot->dq_dqb.dqb_isoftlimit ?
5158 dquot->dq_dqb.dqb_isoftlimit :
5159 dquot->dq_dqb.dqb_ihardlimit;
5160 if (limit && buf->f_files > limit) {
5161 buf->f_files = limit;
5162 buf->f_ffree =
5163 (buf->f_files > dquot->dq_dqb.dqb_curinodes) ?
5164 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0;
5165 }
5166
5167 spin_unlock(&dq_data_lock);
5168 dqput(dquot);
5169 return 0;
5170 }
5171 #endif
5172
5173 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
5174 {
5175 struct super_block *sb = dentry->d_sb;
5176 struct ext4_sb_info *sbi = EXT4_SB(sb);
5177 struct ext4_super_block *es = sbi->s_es;
5178 ext4_fsblk_t overhead = 0, resv_blocks;
5179 u64 fsid;
5180 s64 bfree;
5181 resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters));
5182
5183 if (!test_opt(sb, MINIX_DF))
5184 overhead = sbi->s_overhead;
5185
5186 buf->f_type = EXT4_SUPER_MAGIC;
5187 buf->f_bsize = sb->s_blocksize;
5188 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead);
5189 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
5190 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
5191 /* prevent underflow in case that few free space is available */
5192 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0));
5193 buf->f_bavail = buf->f_bfree -
5194 (ext4_r_blocks_count(es) + resv_blocks);
5195 if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks))
5196 buf->f_bavail = 0;
5197 buf->f_files = le32_to_cpu(es->s_inodes_count);
5198 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
5199 buf->f_namelen = EXT4_NAME_LEN;
5200 fsid = le64_to_cpup((void *)es->s_uuid) ^
5201 le64_to_cpup((void *)es->s_uuid + sizeof(u64));
5202 buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL;
5203 buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL;
5204
5205 #ifdef CONFIG_QUOTA
5206 if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) &&
5207 sb_has_quota_limits_enabled(sb, PRJQUOTA))
5208 ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf);
5209 #endif
5210 return 0;
5211 }
5212
5213 /* Helper function for writing quotas on sync - we need to start transaction
5214 * before quota file is locked for write. Otherwise the are possible deadlocks:
5215 * Process 1 Process 2
5216 * ext4_create() quota_sync()
5217 * jbd2_journal_start() write_dquot()
5218 * dquot_initialize() down(dqio_mutex)
5219 * down(dqio_mutex) jbd2_journal_start()
5220 *
5221 */
5222
5223 #ifdef CONFIG_QUOTA
5224
5225 static inline struct inode *dquot_to_inode(struct dquot *dquot)
5226 {
5227 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type];
5228 }
5229
5230 static int ext4_write_dquot(struct dquot *dquot)
5231 {
5232 int ret, err;
5233 handle_t *handle;
5234 struct inode *inode;
5235
5236 inode = dquot_to_inode(dquot);
5237 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5238 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
5239 if (IS_ERR(handle))
5240 return PTR_ERR(handle);
5241 ret = dquot_commit(dquot);
5242 err = ext4_journal_stop(handle);
5243 if (!ret)
5244 ret = err;
5245 return ret;
5246 }
5247
5248 static int ext4_acquire_dquot(struct dquot *dquot)
5249 {
5250 int ret, err;
5251 handle_t *handle;
5252
5253 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
5254 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
5255 if (IS_ERR(handle))
5256 return PTR_ERR(handle);
5257 ret = dquot_acquire(dquot);
5258 err = ext4_journal_stop(handle);
5259 if (!ret)
5260 ret = err;
5261 return ret;
5262 }
5263
5264 static int ext4_release_dquot(struct dquot *dquot)
5265 {
5266 int ret, err;
5267 handle_t *handle;
5268
5269 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
5270 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
5271 if (IS_ERR(handle)) {
5272 /* Release dquot anyway to avoid endless cycle in dqput() */
5273 dquot_release(dquot);
5274 return PTR_ERR(handle);
5275 }
5276 ret = dquot_release(dquot);
5277 err = ext4_journal_stop(handle);
5278 if (!ret)
5279 ret = err;
5280 return ret;
5281 }
5282
5283 static int ext4_mark_dquot_dirty(struct dquot *dquot)
5284 {
5285 struct super_block *sb = dquot->dq_sb;
5286 struct ext4_sb_info *sbi = EXT4_SB(sb);
5287
5288 /* Are we journaling quotas? */
5289 if (ext4_has_feature_quota(sb) ||
5290 sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
5291 dquot_mark_dquot_dirty(dquot);
5292 return ext4_write_dquot(dquot);
5293 } else {
5294 return dquot_mark_dquot_dirty(dquot);
5295 }
5296 }
5297
5298 static int ext4_write_info(struct super_block *sb, int type)
5299 {
5300 int ret, err;
5301 handle_t *handle;
5302
5303 /* Data block + inode block */
5304 handle = ext4_journal_start(d_inode(sb->s_root), EXT4_HT_QUOTA, 2);
5305 if (IS_ERR(handle))
5306 return PTR_ERR(handle);
5307 ret = dquot_commit_info(sb, type);
5308 err = ext4_journal_stop(handle);
5309 if (!ret)
5310 ret = err;
5311 return ret;
5312 }
5313
5314 /*
5315 * Turn on quotas during mount time - we need to find
5316 * the quota file and such...
5317 */
5318 static int ext4_quota_on_mount(struct super_block *sb, int type)
5319 {
5320 return dquot_quota_on_mount(sb, EXT4_SB(sb)->s_qf_names[type],
5321 EXT4_SB(sb)->s_jquota_fmt, type);
5322 }
5323
5324 static void lockdep_set_quota_inode(struct inode *inode, int subclass)
5325 {
5326 struct ext4_inode_info *ei = EXT4_I(inode);
5327
5328 /* The first argument of lockdep_set_subclass has to be
5329 * *exactly* the same as the argument to init_rwsem() --- in
5330 * this case, in init_once() --- or lockdep gets unhappy
5331 * because the name of the lock is set using the
5332 * stringification of the argument to init_rwsem().
5333 */
5334 (void) ei; /* shut up clang warning if !CONFIG_LOCKDEP */
5335 lockdep_set_subclass(&ei->i_data_sem, subclass);
5336 }
5337
5338 /*
5339 * Standard function to be called on quota_on
5340 */
5341 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
5342 const struct path *path)
5343 {
5344 int err;
5345
5346 if (!test_opt(sb, QUOTA))
5347 return -EINVAL;
5348
5349 /* Quotafile not on the same filesystem? */
5350 if (path->dentry->d_sb != sb)
5351 return -EXDEV;
5352 /* Journaling quota? */
5353 if (EXT4_SB(sb)->s_qf_names[type]) {
5354 /* Quotafile not in fs root? */
5355 if (path->dentry->d_parent != sb->s_root)
5356 ext4_msg(sb, KERN_WARNING,
5357 "Quota file not on filesystem root. "
5358 "Journaled quota will not work");
5359 }
5360
5361 /*
5362 * When we journal data on quota file, we have to flush journal to see
5363 * all updates to the file when we bypass pagecache...
5364 */
5365 if (EXT4_SB(sb)->s_journal &&
5366 ext4_should_journal_data(d_inode(path->dentry))) {
5367 /*
5368 * We don't need to lock updates but journal_flush() could
5369 * otherwise be livelocked...
5370 */
5371 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal);
5372 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal);
5373 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
5374 if (err)
5375 return err;
5376 }
5377
5378 lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA);
5379 err = dquot_quota_on(sb, type, format_id, path);
5380 if (err) {
5381 lockdep_set_quota_inode(path->dentry->d_inode,
5382 I_DATA_SEM_NORMAL);
5383 } else {
5384 struct inode *inode = d_inode(path->dentry);
5385 handle_t *handle;
5386
5387 /*
5388 * Set inode flags to prevent userspace from messing with quota
5389 * files. If this fails, we return success anyway since quotas
5390 * are already enabled and this is not a hard failure.
5391 */
5392 inode_lock(inode);
5393 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
5394 if (IS_ERR(handle))
5395 goto unlock_inode;
5396 EXT4_I(inode)->i_flags |= EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL;
5397 inode_set_flags(inode, S_NOATIME | S_IMMUTABLE,
5398 S_NOATIME | S_IMMUTABLE);
5399 ext4_mark_inode_dirty(handle, inode);
5400 ext4_journal_stop(handle);
5401 unlock_inode:
5402 inode_unlock(inode);
5403 }
5404 return err;
5405 }
5406
5407 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
5408 unsigned int flags)
5409 {
5410 int err;
5411 struct inode *qf_inode;
5412 unsigned long qf_inums[EXT4_MAXQUOTAS] = {
5413 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
5414 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
5415 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
5416 };
5417
5418 BUG_ON(!ext4_has_feature_quota(sb));
5419
5420 if (!qf_inums[type])
5421 return -EPERM;
5422
5423 qf_inode = ext4_iget(sb, qf_inums[type]);
5424 if (IS_ERR(qf_inode)) {
5425 ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]);
5426 return PTR_ERR(qf_inode);
5427 }
5428
5429 /* Don't account quota for quota files to avoid recursion */
5430 qf_inode->i_flags |= S_NOQUOTA;
5431 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA);
5432 err = dquot_enable(qf_inode, type, format_id, flags);
5433 iput(qf_inode);
5434 if (err)
5435 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL);
5436
5437 return err;
5438 }
5439
5440 /* Enable usage tracking for all quota types. */
5441 static int ext4_enable_quotas(struct super_block *sb)
5442 {
5443 int type, err = 0;
5444 unsigned long qf_inums[EXT4_MAXQUOTAS] = {
5445 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
5446 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
5447 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
5448 };
5449 bool quota_mopt[EXT4_MAXQUOTAS] = {
5450 test_opt(sb, USRQUOTA),
5451 test_opt(sb, GRPQUOTA),
5452 test_opt(sb, PRJQUOTA),
5453 };
5454
5455 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE;
5456 for (type = 0; type < EXT4_MAXQUOTAS; type++) {
5457 if (qf_inums[type]) {
5458 err = ext4_quota_enable(sb, type, QFMT_VFS_V1,
5459 DQUOT_USAGE_ENABLED |
5460 (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0));
5461 if (err) {
5462 ext4_warning(sb,
5463 "Failed to enable quota tracking "
5464 "(type=%d, err=%d). Please run "
5465 "e2fsck to fix.", type, err);
5466 return err;
5467 }
5468 }
5469 }
5470 return 0;
5471 }
5472
5473 static int ext4_quota_off(struct super_block *sb, int type)
5474 {
5475 struct inode *inode = sb_dqopt(sb)->files[type];
5476 handle_t *handle;
5477 int err;
5478
5479 /* Force all delayed allocation blocks to be allocated.
5480 * Caller already holds s_umount sem */
5481 if (test_opt(sb, DELALLOC))
5482 sync_filesystem(sb);
5483
5484 if (!inode || !igrab(inode))
5485 goto out;
5486
5487 err = dquot_quota_off(sb, type);
5488 if (err)
5489 goto out_put;
5490
5491 inode_lock(inode);
5492 /*
5493 * Update modification times of quota files when userspace can
5494 * start looking at them. If we fail, we return success anyway since
5495 * this is not a hard failure and quotas are already disabled.
5496 */
5497 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
5498 if (IS_ERR(handle))
5499 goto out_unlock;
5500 EXT4_I(inode)->i_flags &= ~(EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL);
5501 inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE);
5502 inode->i_mtime = inode->i_ctime = current_time(inode);
5503 ext4_mark_inode_dirty(handle, inode);
5504 ext4_journal_stop(handle);
5505 out_unlock:
5506 inode_unlock(inode);
5507 out_put:
5508 iput(inode);
5509 return err;
5510 out:
5511 return dquot_quota_off(sb, type);
5512 }
5513
5514 /* Read data from quotafile - avoid pagecache and such because we cannot afford
5515 * acquiring the locks... As quota files are never truncated and quota code
5516 * itself serializes the operations (and no one else should touch the files)
5517 * we don't have to be afraid of races */
5518 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
5519 size_t len, loff_t off)
5520 {
5521 struct inode *inode = sb_dqopt(sb)->files[type];
5522 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5523 int offset = off & (sb->s_blocksize - 1);
5524 int tocopy;
5525 size_t toread;
5526 struct buffer_head *bh;
5527 loff_t i_size = i_size_read(inode);
5528
5529 if (off > i_size)
5530 return 0;
5531 if (off+len > i_size)
5532 len = i_size-off;
5533 toread = len;
5534 while (toread > 0) {
5535 tocopy = sb->s_blocksize - offset < toread ?
5536 sb->s_blocksize - offset : toread;
5537 bh = ext4_bread(NULL, inode, blk, 0);
5538 if (IS_ERR(bh))
5539 return PTR_ERR(bh);
5540 if (!bh) /* A hole? */
5541 memset(data, 0, tocopy);
5542 else
5543 memcpy(data, bh->b_data+offset, tocopy);
5544 brelse(bh);
5545 offset = 0;
5546 toread -= tocopy;
5547 data += tocopy;
5548 blk++;
5549 }
5550 return len;
5551 }
5552
5553 /* Write to quotafile (we know the transaction is already started and has
5554 * enough credits) */
5555 static ssize_t ext4_quota_write(struct super_block *sb, int type,
5556 const char *data, size_t len, loff_t off)
5557 {
5558 struct inode *inode = sb_dqopt(sb)->files[type];
5559 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5560 int err, offset = off & (sb->s_blocksize - 1);
5561 int retries = 0;
5562 struct buffer_head *bh;
5563 handle_t *handle = journal_current_handle();
5564
5565 if (EXT4_SB(sb)->s_journal && !handle) {
5566 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5567 " cancelled because transaction is not started",
5568 (unsigned long long)off, (unsigned long long)len);
5569 return -EIO;
5570 }
5571 /*
5572 * Since we account only one data block in transaction credits,
5573 * then it is impossible to cross a block boundary.
5574 */
5575 if (sb->s_blocksize - offset < len) {
5576 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5577 " cancelled because not block aligned",
5578 (unsigned long long)off, (unsigned long long)len);
5579 return -EIO;
5580 }
5581
5582 do {
5583 bh = ext4_bread(handle, inode, blk,
5584 EXT4_GET_BLOCKS_CREATE |
5585 EXT4_GET_BLOCKS_METADATA_NOFAIL);
5586 } while (IS_ERR(bh) && (PTR_ERR(bh) == -ENOSPC) &&
5587 ext4_should_retry_alloc(inode->i_sb, &retries));
5588 if (IS_ERR(bh))
5589 return PTR_ERR(bh);
5590 if (!bh)
5591 goto out;
5592 BUFFER_TRACE(bh, "get write access");
5593 err = ext4_journal_get_write_access(handle, bh);
5594 if (err) {
5595 brelse(bh);
5596 return err;
5597 }
5598 lock_buffer(bh);
5599 memcpy(bh->b_data+offset, data, len);
5600 flush_dcache_page(bh->b_page);
5601 unlock_buffer(bh);
5602 err = ext4_handle_dirty_metadata(handle, NULL, bh);
5603 brelse(bh);
5604 out:
5605 if (inode->i_size < off + len) {
5606 i_size_write(inode, off + len);
5607 EXT4_I(inode)->i_disksize = inode->i_size;
5608 ext4_mark_inode_dirty(handle, inode);
5609 }
5610 return len;
5611 }
5612
5613 static int ext4_get_next_id(struct super_block *sb, struct kqid *qid)
5614 {
5615 const struct quota_format_ops *ops;
5616
5617 if (!sb_has_quota_loaded(sb, qid->type))
5618 return -ESRCH;
5619 ops = sb_dqopt(sb)->ops[qid->type];
5620 if (!ops || !ops->get_next_id)
5621 return -ENOSYS;
5622 return dquot_get_next_id(sb, qid);
5623 }
5624 #endif
5625
5626 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
5627 const char *dev_name, void *data)
5628 {
5629 return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super);
5630 }
5631
5632 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
5633 static inline void register_as_ext2(void)
5634 {
5635 int err = register_filesystem(&ext2_fs_type);
5636 if (err)
5637 printk(KERN_WARNING
5638 "EXT4-fs: Unable to register as ext2 (%d)\n", err);
5639 }
5640
5641 static inline void unregister_as_ext2(void)
5642 {
5643 unregister_filesystem(&ext2_fs_type);
5644 }
5645
5646 static inline int ext2_feature_set_ok(struct super_block *sb)
5647 {
5648 if (ext4_has_unknown_ext2_incompat_features(sb))
5649 return 0;
5650 if (sb->s_flags & MS_RDONLY)
5651 return 1;
5652 if (ext4_has_unknown_ext2_ro_compat_features(sb))
5653 return 0;
5654 return 1;
5655 }
5656 #else
5657 static inline void register_as_ext2(void) { }
5658 static inline void unregister_as_ext2(void) { }
5659 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
5660 #endif
5661
5662 static inline void register_as_ext3(void)
5663 {
5664 int err = register_filesystem(&ext3_fs_type);
5665 if (err)
5666 printk(KERN_WARNING
5667 "EXT4-fs: Unable to register as ext3 (%d)\n", err);
5668 }
5669
5670 static inline void unregister_as_ext3(void)
5671 {
5672 unregister_filesystem(&ext3_fs_type);
5673 }
5674
5675 static inline int ext3_feature_set_ok(struct super_block *sb)
5676 {
5677 if (ext4_has_unknown_ext3_incompat_features(sb))
5678 return 0;
5679 if (!ext4_has_feature_journal(sb))
5680 return 0;
5681 if (sb->s_flags & MS_RDONLY)
5682 return 1;
5683 if (ext4_has_unknown_ext3_ro_compat_features(sb))
5684 return 0;
5685 return 1;
5686 }
5687
5688 static struct file_system_type ext4_fs_type = {
5689 .owner = THIS_MODULE,
5690 .name = "ext4",
5691 .mount = ext4_mount,
5692 .kill_sb = kill_block_super,
5693 .fs_flags = FS_REQUIRES_DEV,
5694 };
5695 MODULE_ALIAS_FS("ext4");
5696
5697 /* Shared across all ext4 file systems */
5698 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ];
5699
5700 static int __init ext4_init_fs(void)
5701 {
5702 int i, err;
5703
5704 ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64);
5705 ext4_li_info = NULL;
5706 mutex_init(&ext4_li_mtx);
5707
5708 /* Build-time check for flags consistency */
5709 ext4_check_flag_values();
5710
5711 for (i = 0; i < EXT4_WQ_HASH_SZ; i++)
5712 init_waitqueue_head(&ext4__ioend_wq[i]);
5713
5714 err = ext4_init_es();
5715 if (err)
5716 return err;
5717
5718 err = ext4_init_pageio();
5719 if (err)
5720 goto out5;
5721
5722 err = ext4_init_system_zone();
5723 if (err)
5724 goto out4;
5725
5726 err = ext4_init_sysfs();
5727 if (err)
5728 goto out3;
5729
5730 err = ext4_init_mballoc();
5731 if (err)
5732 goto out2;
5733 err = init_inodecache();
5734 if (err)
5735 goto out1;
5736 register_as_ext3();
5737 register_as_ext2();
5738 err = register_filesystem(&ext4_fs_type);
5739 if (err)
5740 goto out;
5741
5742 return 0;
5743 out:
5744 unregister_as_ext2();
5745 unregister_as_ext3();
5746 destroy_inodecache();
5747 out1:
5748 ext4_exit_mballoc();
5749 out2:
5750 ext4_exit_sysfs();
5751 out3:
5752 ext4_exit_system_zone();
5753 out4:
5754 ext4_exit_pageio();
5755 out5:
5756 ext4_exit_es();
5757
5758 return err;
5759 }
5760
5761 static void __exit ext4_exit_fs(void)
5762 {
5763 ext4_destroy_lazyinit_thread();
5764 unregister_as_ext2();
5765 unregister_as_ext3();
5766 unregister_filesystem(&ext4_fs_type);
5767 destroy_inodecache();
5768 ext4_exit_mballoc();
5769 ext4_exit_sysfs();
5770 ext4_exit_system_zone();
5771 ext4_exit_pageio();
5772 ext4_exit_es();
5773 }
5774
5775 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
5776 MODULE_DESCRIPTION("Fourth Extended Filesystem");
5777 MODULE_LICENSE("GPL");
5778 module_init(ext4_init_fs)
5779 module_exit(ext4_exit_fs)