]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/ext4/super.c
mm, fs: get rid of PAGE_CACHE_* and page_cache_{get,release} macros
[mirror_ubuntu-artful-kernel.git] / fs / ext4 / super.c
1 /*
2 * linux/fs/ext4/super.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * Big-endian to little-endian byte-swapping/bitmaps by
16 * David S. Miller (davem@caip.rutgers.edu), 1995
17 */
18
19 #include <linux/module.h>
20 #include <linux/string.h>
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/vmalloc.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/parser.h>
29 #include <linux/buffer_head.h>
30 #include <linux/exportfs.h>
31 #include <linux/vfs.h>
32 #include <linux/random.h>
33 #include <linux/mount.h>
34 #include <linux/namei.h>
35 #include <linux/quotaops.h>
36 #include <linux/seq_file.h>
37 #include <linux/ctype.h>
38 #include <linux/log2.h>
39 #include <linux/crc16.h>
40 #include <linux/cleancache.h>
41 #include <asm/uaccess.h>
42
43 #include <linux/kthread.h>
44 #include <linux/freezer.h>
45
46 #include "ext4.h"
47 #include "ext4_extents.h" /* Needed for trace points definition */
48 #include "ext4_jbd2.h"
49 #include "xattr.h"
50 #include "acl.h"
51 #include "mballoc.h"
52
53 #define CREATE_TRACE_POINTS
54 #include <trace/events/ext4.h>
55
56 static struct ext4_lazy_init *ext4_li_info;
57 static struct mutex ext4_li_mtx;
58 static struct ratelimit_state ext4_mount_msg_ratelimit;
59
60 static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
61 unsigned long journal_devnum);
62 static int ext4_show_options(struct seq_file *seq, struct dentry *root);
63 static int ext4_commit_super(struct super_block *sb, int sync);
64 static void ext4_mark_recovery_complete(struct super_block *sb,
65 struct ext4_super_block *es);
66 static void ext4_clear_journal_err(struct super_block *sb,
67 struct ext4_super_block *es);
68 static int ext4_sync_fs(struct super_block *sb, int wait);
69 static int ext4_remount(struct super_block *sb, int *flags, char *data);
70 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
71 static int ext4_unfreeze(struct super_block *sb);
72 static int ext4_freeze(struct super_block *sb);
73 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
74 const char *dev_name, void *data);
75 static inline int ext2_feature_set_ok(struct super_block *sb);
76 static inline int ext3_feature_set_ok(struct super_block *sb);
77 static int ext4_feature_set_ok(struct super_block *sb, int readonly);
78 static void ext4_destroy_lazyinit_thread(void);
79 static void ext4_unregister_li_request(struct super_block *sb);
80 static void ext4_clear_request_list(void);
81
82 /*
83 * Lock ordering
84 *
85 * Note the difference between i_mmap_sem (EXT4_I(inode)->i_mmap_sem) and
86 * i_mmap_rwsem (inode->i_mmap_rwsem)!
87 *
88 * page fault path:
89 * mmap_sem -> sb_start_pagefault -> i_mmap_sem (r) -> transaction start ->
90 * page lock -> i_data_sem (rw)
91 *
92 * buffered write path:
93 * sb_start_write -> i_mutex -> mmap_sem
94 * sb_start_write -> i_mutex -> transaction start -> page lock ->
95 * i_data_sem (rw)
96 *
97 * truncate:
98 * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (w) -> i_mmap_sem (w) ->
99 * i_mmap_rwsem (w) -> page lock
100 * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (w) -> i_mmap_sem (w) ->
101 * transaction start -> i_data_sem (rw)
102 *
103 * direct IO:
104 * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (r) -> mmap_sem
105 * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (r) ->
106 * transaction start -> i_data_sem (rw)
107 *
108 * writepages:
109 * transaction start -> page lock(s) -> i_data_sem (rw)
110 */
111
112 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
113 static struct file_system_type ext2_fs_type = {
114 .owner = THIS_MODULE,
115 .name = "ext2",
116 .mount = ext4_mount,
117 .kill_sb = kill_block_super,
118 .fs_flags = FS_REQUIRES_DEV,
119 };
120 MODULE_ALIAS_FS("ext2");
121 MODULE_ALIAS("ext2");
122 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type)
123 #else
124 #define IS_EXT2_SB(sb) (0)
125 #endif
126
127
128 static struct file_system_type ext3_fs_type = {
129 .owner = THIS_MODULE,
130 .name = "ext3",
131 .mount = ext4_mount,
132 .kill_sb = kill_block_super,
133 .fs_flags = FS_REQUIRES_DEV,
134 };
135 MODULE_ALIAS_FS("ext3");
136 MODULE_ALIAS("ext3");
137 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type)
138
139 static int ext4_verify_csum_type(struct super_block *sb,
140 struct ext4_super_block *es)
141 {
142 if (!ext4_has_feature_metadata_csum(sb))
143 return 1;
144
145 return es->s_checksum_type == EXT4_CRC32C_CHKSUM;
146 }
147
148 static __le32 ext4_superblock_csum(struct super_block *sb,
149 struct ext4_super_block *es)
150 {
151 struct ext4_sb_info *sbi = EXT4_SB(sb);
152 int offset = offsetof(struct ext4_super_block, s_checksum);
153 __u32 csum;
154
155 csum = ext4_chksum(sbi, ~0, (char *)es, offset);
156
157 return cpu_to_le32(csum);
158 }
159
160 static int ext4_superblock_csum_verify(struct super_block *sb,
161 struct ext4_super_block *es)
162 {
163 if (!ext4_has_metadata_csum(sb))
164 return 1;
165
166 return es->s_checksum == ext4_superblock_csum(sb, es);
167 }
168
169 void ext4_superblock_csum_set(struct super_block *sb)
170 {
171 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
172
173 if (!ext4_has_metadata_csum(sb))
174 return;
175
176 es->s_checksum = ext4_superblock_csum(sb, es);
177 }
178
179 void *ext4_kvmalloc(size_t size, gfp_t flags)
180 {
181 void *ret;
182
183 ret = kmalloc(size, flags | __GFP_NOWARN);
184 if (!ret)
185 ret = __vmalloc(size, flags, PAGE_KERNEL);
186 return ret;
187 }
188
189 void *ext4_kvzalloc(size_t size, gfp_t flags)
190 {
191 void *ret;
192
193 ret = kzalloc(size, flags | __GFP_NOWARN);
194 if (!ret)
195 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL);
196 return ret;
197 }
198
199 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
200 struct ext4_group_desc *bg)
201 {
202 return le32_to_cpu(bg->bg_block_bitmap_lo) |
203 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
204 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
205 }
206
207 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
208 struct ext4_group_desc *bg)
209 {
210 return le32_to_cpu(bg->bg_inode_bitmap_lo) |
211 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
212 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
213 }
214
215 ext4_fsblk_t ext4_inode_table(struct super_block *sb,
216 struct ext4_group_desc *bg)
217 {
218 return le32_to_cpu(bg->bg_inode_table_lo) |
219 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
220 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
221 }
222
223 __u32 ext4_free_group_clusters(struct super_block *sb,
224 struct ext4_group_desc *bg)
225 {
226 return le16_to_cpu(bg->bg_free_blocks_count_lo) |
227 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
228 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
229 }
230
231 __u32 ext4_free_inodes_count(struct super_block *sb,
232 struct ext4_group_desc *bg)
233 {
234 return le16_to_cpu(bg->bg_free_inodes_count_lo) |
235 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
236 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
237 }
238
239 __u32 ext4_used_dirs_count(struct super_block *sb,
240 struct ext4_group_desc *bg)
241 {
242 return le16_to_cpu(bg->bg_used_dirs_count_lo) |
243 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
244 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
245 }
246
247 __u32 ext4_itable_unused_count(struct super_block *sb,
248 struct ext4_group_desc *bg)
249 {
250 return le16_to_cpu(bg->bg_itable_unused_lo) |
251 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
252 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
253 }
254
255 void ext4_block_bitmap_set(struct super_block *sb,
256 struct ext4_group_desc *bg, ext4_fsblk_t blk)
257 {
258 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
259 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
260 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
261 }
262
263 void ext4_inode_bitmap_set(struct super_block *sb,
264 struct ext4_group_desc *bg, ext4_fsblk_t blk)
265 {
266 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk);
267 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
268 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
269 }
270
271 void ext4_inode_table_set(struct super_block *sb,
272 struct ext4_group_desc *bg, ext4_fsblk_t blk)
273 {
274 bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
275 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
276 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
277 }
278
279 void ext4_free_group_clusters_set(struct super_block *sb,
280 struct ext4_group_desc *bg, __u32 count)
281 {
282 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
283 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
284 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
285 }
286
287 void ext4_free_inodes_set(struct super_block *sb,
288 struct ext4_group_desc *bg, __u32 count)
289 {
290 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
291 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
292 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
293 }
294
295 void ext4_used_dirs_set(struct super_block *sb,
296 struct ext4_group_desc *bg, __u32 count)
297 {
298 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
299 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
300 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
301 }
302
303 void ext4_itable_unused_set(struct super_block *sb,
304 struct ext4_group_desc *bg, __u32 count)
305 {
306 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
307 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
308 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
309 }
310
311
312 static void __save_error_info(struct super_block *sb, const char *func,
313 unsigned int line)
314 {
315 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
316
317 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
318 if (bdev_read_only(sb->s_bdev))
319 return;
320 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
321 es->s_last_error_time = cpu_to_le32(get_seconds());
322 strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func));
323 es->s_last_error_line = cpu_to_le32(line);
324 if (!es->s_first_error_time) {
325 es->s_first_error_time = es->s_last_error_time;
326 strncpy(es->s_first_error_func, func,
327 sizeof(es->s_first_error_func));
328 es->s_first_error_line = cpu_to_le32(line);
329 es->s_first_error_ino = es->s_last_error_ino;
330 es->s_first_error_block = es->s_last_error_block;
331 }
332 /*
333 * Start the daily error reporting function if it hasn't been
334 * started already
335 */
336 if (!es->s_error_count)
337 mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ);
338 le32_add_cpu(&es->s_error_count, 1);
339 }
340
341 static void save_error_info(struct super_block *sb, const char *func,
342 unsigned int line)
343 {
344 __save_error_info(sb, func, line);
345 ext4_commit_super(sb, 1);
346 }
347
348 /*
349 * The del_gendisk() function uninitializes the disk-specific data
350 * structures, including the bdi structure, without telling anyone
351 * else. Once this happens, any attempt to call mark_buffer_dirty()
352 * (for example, by ext4_commit_super), will cause a kernel OOPS.
353 * This is a kludge to prevent these oops until we can put in a proper
354 * hook in del_gendisk() to inform the VFS and file system layers.
355 */
356 static int block_device_ejected(struct super_block *sb)
357 {
358 struct inode *bd_inode = sb->s_bdev->bd_inode;
359 struct backing_dev_info *bdi = inode_to_bdi(bd_inode);
360
361 return bdi->dev == NULL;
362 }
363
364 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn)
365 {
366 struct super_block *sb = journal->j_private;
367 struct ext4_sb_info *sbi = EXT4_SB(sb);
368 int error = is_journal_aborted(journal);
369 struct ext4_journal_cb_entry *jce;
370
371 BUG_ON(txn->t_state == T_FINISHED);
372 spin_lock(&sbi->s_md_lock);
373 while (!list_empty(&txn->t_private_list)) {
374 jce = list_entry(txn->t_private_list.next,
375 struct ext4_journal_cb_entry, jce_list);
376 list_del_init(&jce->jce_list);
377 spin_unlock(&sbi->s_md_lock);
378 jce->jce_func(sb, jce, error);
379 spin_lock(&sbi->s_md_lock);
380 }
381 spin_unlock(&sbi->s_md_lock);
382 }
383
384 /* Deal with the reporting of failure conditions on a filesystem such as
385 * inconsistencies detected or read IO failures.
386 *
387 * On ext2, we can store the error state of the filesystem in the
388 * superblock. That is not possible on ext4, because we may have other
389 * write ordering constraints on the superblock which prevent us from
390 * writing it out straight away; and given that the journal is about to
391 * be aborted, we can't rely on the current, or future, transactions to
392 * write out the superblock safely.
393 *
394 * We'll just use the jbd2_journal_abort() error code to record an error in
395 * the journal instead. On recovery, the journal will complain about
396 * that error until we've noted it down and cleared it.
397 */
398
399 static void ext4_handle_error(struct super_block *sb)
400 {
401 if (sb->s_flags & MS_RDONLY)
402 return;
403
404 if (!test_opt(sb, ERRORS_CONT)) {
405 journal_t *journal = EXT4_SB(sb)->s_journal;
406
407 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
408 if (journal)
409 jbd2_journal_abort(journal, -EIO);
410 }
411 if (test_opt(sb, ERRORS_RO)) {
412 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
413 /*
414 * Make sure updated value of ->s_mount_flags will be visible
415 * before ->s_flags update
416 */
417 smp_wmb();
418 sb->s_flags |= MS_RDONLY;
419 }
420 if (test_opt(sb, ERRORS_PANIC)) {
421 if (EXT4_SB(sb)->s_journal &&
422 !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR))
423 return;
424 panic("EXT4-fs (device %s): panic forced after error\n",
425 sb->s_id);
426 }
427 }
428
429 #define ext4_error_ratelimit(sb) \
430 ___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state), \
431 "EXT4-fs error")
432
433 void __ext4_error(struct super_block *sb, const char *function,
434 unsigned int line, const char *fmt, ...)
435 {
436 struct va_format vaf;
437 va_list args;
438
439 if (ext4_error_ratelimit(sb)) {
440 va_start(args, fmt);
441 vaf.fmt = fmt;
442 vaf.va = &args;
443 printk(KERN_CRIT
444 "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
445 sb->s_id, function, line, current->comm, &vaf);
446 va_end(args);
447 }
448 save_error_info(sb, function, line);
449 ext4_handle_error(sb);
450 }
451
452 void __ext4_error_inode(struct inode *inode, const char *function,
453 unsigned int line, ext4_fsblk_t block,
454 const char *fmt, ...)
455 {
456 va_list args;
457 struct va_format vaf;
458 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
459
460 es->s_last_error_ino = cpu_to_le32(inode->i_ino);
461 es->s_last_error_block = cpu_to_le64(block);
462 if (ext4_error_ratelimit(inode->i_sb)) {
463 va_start(args, fmt);
464 vaf.fmt = fmt;
465 vaf.va = &args;
466 if (block)
467 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
468 "inode #%lu: block %llu: comm %s: %pV\n",
469 inode->i_sb->s_id, function, line, inode->i_ino,
470 block, current->comm, &vaf);
471 else
472 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
473 "inode #%lu: comm %s: %pV\n",
474 inode->i_sb->s_id, function, line, inode->i_ino,
475 current->comm, &vaf);
476 va_end(args);
477 }
478 save_error_info(inode->i_sb, function, line);
479 ext4_handle_error(inode->i_sb);
480 }
481
482 void __ext4_error_file(struct file *file, const char *function,
483 unsigned int line, ext4_fsblk_t block,
484 const char *fmt, ...)
485 {
486 va_list args;
487 struct va_format vaf;
488 struct ext4_super_block *es;
489 struct inode *inode = file_inode(file);
490 char pathname[80], *path;
491
492 es = EXT4_SB(inode->i_sb)->s_es;
493 es->s_last_error_ino = cpu_to_le32(inode->i_ino);
494 if (ext4_error_ratelimit(inode->i_sb)) {
495 path = file_path(file, pathname, sizeof(pathname));
496 if (IS_ERR(path))
497 path = "(unknown)";
498 va_start(args, fmt);
499 vaf.fmt = fmt;
500 vaf.va = &args;
501 if (block)
502 printk(KERN_CRIT
503 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
504 "block %llu: comm %s: path %s: %pV\n",
505 inode->i_sb->s_id, function, line, inode->i_ino,
506 block, current->comm, path, &vaf);
507 else
508 printk(KERN_CRIT
509 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
510 "comm %s: path %s: %pV\n",
511 inode->i_sb->s_id, function, line, inode->i_ino,
512 current->comm, path, &vaf);
513 va_end(args);
514 }
515 save_error_info(inode->i_sb, function, line);
516 ext4_handle_error(inode->i_sb);
517 }
518
519 const char *ext4_decode_error(struct super_block *sb, int errno,
520 char nbuf[16])
521 {
522 char *errstr = NULL;
523
524 switch (errno) {
525 case -EFSCORRUPTED:
526 errstr = "Corrupt filesystem";
527 break;
528 case -EFSBADCRC:
529 errstr = "Filesystem failed CRC";
530 break;
531 case -EIO:
532 errstr = "IO failure";
533 break;
534 case -ENOMEM:
535 errstr = "Out of memory";
536 break;
537 case -EROFS:
538 if (!sb || (EXT4_SB(sb)->s_journal &&
539 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
540 errstr = "Journal has aborted";
541 else
542 errstr = "Readonly filesystem";
543 break;
544 default:
545 /* If the caller passed in an extra buffer for unknown
546 * errors, textualise them now. Else we just return
547 * NULL. */
548 if (nbuf) {
549 /* Check for truncated error codes... */
550 if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
551 errstr = nbuf;
552 }
553 break;
554 }
555
556 return errstr;
557 }
558
559 /* __ext4_std_error decodes expected errors from journaling functions
560 * automatically and invokes the appropriate error response. */
561
562 void __ext4_std_error(struct super_block *sb, const char *function,
563 unsigned int line, int errno)
564 {
565 char nbuf[16];
566 const char *errstr;
567
568 /* Special case: if the error is EROFS, and we're not already
569 * inside a transaction, then there's really no point in logging
570 * an error. */
571 if (errno == -EROFS && journal_current_handle() == NULL &&
572 (sb->s_flags & MS_RDONLY))
573 return;
574
575 if (ext4_error_ratelimit(sb)) {
576 errstr = ext4_decode_error(sb, errno, nbuf);
577 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
578 sb->s_id, function, line, errstr);
579 }
580
581 save_error_info(sb, function, line);
582 ext4_handle_error(sb);
583 }
584
585 /*
586 * ext4_abort is a much stronger failure handler than ext4_error. The
587 * abort function may be used to deal with unrecoverable failures such
588 * as journal IO errors or ENOMEM at a critical moment in log management.
589 *
590 * We unconditionally force the filesystem into an ABORT|READONLY state,
591 * unless the error response on the fs has been set to panic in which
592 * case we take the easy way out and panic immediately.
593 */
594
595 void __ext4_abort(struct super_block *sb, const char *function,
596 unsigned int line, const char *fmt, ...)
597 {
598 va_list args;
599
600 save_error_info(sb, function, line);
601 va_start(args, fmt);
602 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: ", sb->s_id,
603 function, line);
604 vprintk(fmt, args);
605 printk("\n");
606 va_end(args);
607
608 if ((sb->s_flags & MS_RDONLY) == 0) {
609 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
610 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
611 /*
612 * Make sure updated value of ->s_mount_flags will be visible
613 * before ->s_flags update
614 */
615 smp_wmb();
616 sb->s_flags |= MS_RDONLY;
617 if (EXT4_SB(sb)->s_journal)
618 jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO);
619 save_error_info(sb, function, line);
620 }
621 if (test_opt(sb, ERRORS_PANIC)) {
622 if (EXT4_SB(sb)->s_journal &&
623 !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR))
624 return;
625 panic("EXT4-fs panic from previous error\n");
626 }
627 }
628
629 void __ext4_msg(struct super_block *sb,
630 const char *prefix, const char *fmt, ...)
631 {
632 struct va_format vaf;
633 va_list args;
634
635 if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state), "EXT4-fs"))
636 return;
637
638 va_start(args, fmt);
639 vaf.fmt = fmt;
640 vaf.va = &args;
641 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
642 va_end(args);
643 }
644
645 #define ext4_warning_ratelimit(sb) \
646 ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state), \
647 "EXT4-fs warning")
648
649 void __ext4_warning(struct super_block *sb, const char *function,
650 unsigned int line, const char *fmt, ...)
651 {
652 struct va_format vaf;
653 va_list args;
654
655 if (!ext4_warning_ratelimit(sb))
656 return;
657
658 va_start(args, fmt);
659 vaf.fmt = fmt;
660 vaf.va = &args;
661 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
662 sb->s_id, function, line, &vaf);
663 va_end(args);
664 }
665
666 void __ext4_warning_inode(const struct inode *inode, const char *function,
667 unsigned int line, const char *fmt, ...)
668 {
669 struct va_format vaf;
670 va_list args;
671
672 if (!ext4_warning_ratelimit(inode->i_sb))
673 return;
674
675 va_start(args, fmt);
676 vaf.fmt = fmt;
677 vaf.va = &args;
678 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: "
679 "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id,
680 function, line, inode->i_ino, current->comm, &vaf);
681 va_end(args);
682 }
683
684 void __ext4_grp_locked_error(const char *function, unsigned int line,
685 struct super_block *sb, ext4_group_t grp,
686 unsigned long ino, ext4_fsblk_t block,
687 const char *fmt, ...)
688 __releases(bitlock)
689 __acquires(bitlock)
690 {
691 struct va_format vaf;
692 va_list args;
693 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
694
695 es->s_last_error_ino = cpu_to_le32(ino);
696 es->s_last_error_block = cpu_to_le64(block);
697 __save_error_info(sb, function, line);
698
699 if (ext4_error_ratelimit(sb)) {
700 va_start(args, fmt);
701 vaf.fmt = fmt;
702 vaf.va = &args;
703 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
704 sb->s_id, function, line, grp);
705 if (ino)
706 printk(KERN_CONT "inode %lu: ", ino);
707 if (block)
708 printk(KERN_CONT "block %llu:",
709 (unsigned long long) block);
710 printk(KERN_CONT "%pV\n", &vaf);
711 va_end(args);
712 }
713
714 if (test_opt(sb, ERRORS_CONT)) {
715 ext4_commit_super(sb, 0);
716 return;
717 }
718
719 ext4_unlock_group(sb, grp);
720 ext4_handle_error(sb);
721 /*
722 * We only get here in the ERRORS_RO case; relocking the group
723 * may be dangerous, but nothing bad will happen since the
724 * filesystem will have already been marked read/only and the
725 * journal has been aborted. We return 1 as a hint to callers
726 * who might what to use the return value from
727 * ext4_grp_locked_error() to distinguish between the
728 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
729 * aggressively from the ext4 function in question, with a
730 * more appropriate error code.
731 */
732 ext4_lock_group(sb, grp);
733 return;
734 }
735
736 void ext4_update_dynamic_rev(struct super_block *sb)
737 {
738 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
739
740 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
741 return;
742
743 ext4_warning(sb,
744 "updating to rev %d because of new feature flag, "
745 "running e2fsck is recommended",
746 EXT4_DYNAMIC_REV);
747
748 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
749 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
750 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
751 /* leave es->s_feature_*compat flags alone */
752 /* es->s_uuid will be set by e2fsck if empty */
753
754 /*
755 * The rest of the superblock fields should be zero, and if not it
756 * means they are likely already in use, so leave them alone. We
757 * can leave it up to e2fsck to clean up any inconsistencies there.
758 */
759 }
760
761 /*
762 * Open the external journal device
763 */
764 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb)
765 {
766 struct block_device *bdev;
767 char b[BDEVNAME_SIZE];
768
769 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb);
770 if (IS_ERR(bdev))
771 goto fail;
772 return bdev;
773
774 fail:
775 ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld",
776 __bdevname(dev, b), PTR_ERR(bdev));
777 return NULL;
778 }
779
780 /*
781 * Release the journal device
782 */
783 static void ext4_blkdev_put(struct block_device *bdev)
784 {
785 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
786 }
787
788 static void ext4_blkdev_remove(struct ext4_sb_info *sbi)
789 {
790 struct block_device *bdev;
791 bdev = sbi->journal_bdev;
792 if (bdev) {
793 ext4_blkdev_put(bdev);
794 sbi->journal_bdev = NULL;
795 }
796 }
797
798 static inline struct inode *orphan_list_entry(struct list_head *l)
799 {
800 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
801 }
802
803 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
804 {
805 struct list_head *l;
806
807 ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
808 le32_to_cpu(sbi->s_es->s_last_orphan));
809
810 printk(KERN_ERR "sb_info orphan list:\n");
811 list_for_each(l, &sbi->s_orphan) {
812 struct inode *inode = orphan_list_entry(l);
813 printk(KERN_ERR " "
814 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
815 inode->i_sb->s_id, inode->i_ino, inode,
816 inode->i_mode, inode->i_nlink,
817 NEXT_ORPHAN(inode));
818 }
819 }
820
821 static void ext4_put_super(struct super_block *sb)
822 {
823 struct ext4_sb_info *sbi = EXT4_SB(sb);
824 struct ext4_super_block *es = sbi->s_es;
825 int i, err;
826
827 ext4_unregister_li_request(sb);
828 dquot_disable(sb, -1, DQUOT_USAGE_ENABLED | DQUOT_LIMITS_ENABLED);
829
830 flush_workqueue(sbi->rsv_conversion_wq);
831 destroy_workqueue(sbi->rsv_conversion_wq);
832
833 if (sbi->s_journal) {
834 err = jbd2_journal_destroy(sbi->s_journal);
835 sbi->s_journal = NULL;
836 if (err < 0)
837 ext4_abort(sb, "Couldn't clean up the journal");
838 }
839
840 ext4_unregister_sysfs(sb);
841 ext4_es_unregister_shrinker(sbi);
842 del_timer_sync(&sbi->s_err_report);
843 ext4_release_system_zone(sb);
844 ext4_mb_release(sb);
845 ext4_ext_release(sb);
846
847 if (!(sb->s_flags & MS_RDONLY)) {
848 ext4_clear_feature_journal_needs_recovery(sb);
849 es->s_state = cpu_to_le16(sbi->s_mount_state);
850 }
851 if (!(sb->s_flags & MS_RDONLY))
852 ext4_commit_super(sb, 1);
853
854 for (i = 0; i < sbi->s_gdb_count; i++)
855 brelse(sbi->s_group_desc[i]);
856 kvfree(sbi->s_group_desc);
857 kvfree(sbi->s_flex_groups);
858 percpu_counter_destroy(&sbi->s_freeclusters_counter);
859 percpu_counter_destroy(&sbi->s_freeinodes_counter);
860 percpu_counter_destroy(&sbi->s_dirs_counter);
861 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
862 brelse(sbi->s_sbh);
863 #ifdef CONFIG_QUOTA
864 for (i = 0; i < EXT4_MAXQUOTAS; i++)
865 kfree(sbi->s_qf_names[i]);
866 #endif
867
868 /* Debugging code just in case the in-memory inode orphan list
869 * isn't empty. The on-disk one can be non-empty if we've
870 * detected an error and taken the fs readonly, but the
871 * in-memory list had better be clean by this point. */
872 if (!list_empty(&sbi->s_orphan))
873 dump_orphan_list(sb, sbi);
874 J_ASSERT(list_empty(&sbi->s_orphan));
875
876 sync_blockdev(sb->s_bdev);
877 invalidate_bdev(sb->s_bdev);
878 if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) {
879 /*
880 * Invalidate the journal device's buffers. We don't want them
881 * floating about in memory - the physical journal device may
882 * hotswapped, and it breaks the `ro-after' testing code.
883 */
884 sync_blockdev(sbi->journal_bdev);
885 invalidate_bdev(sbi->journal_bdev);
886 ext4_blkdev_remove(sbi);
887 }
888 if (sbi->s_mb_cache) {
889 ext4_xattr_destroy_cache(sbi->s_mb_cache);
890 sbi->s_mb_cache = NULL;
891 }
892 if (sbi->s_mmp_tsk)
893 kthread_stop(sbi->s_mmp_tsk);
894 sb->s_fs_info = NULL;
895 /*
896 * Now that we are completely done shutting down the
897 * superblock, we need to actually destroy the kobject.
898 */
899 kobject_put(&sbi->s_kobj);
900 wait_for_completion(&sbi->s_kobj_unregister);
901 if (sbi->s_chksum_driver)
902 crypto_free_shash(sbi->s_chksum_driver);
903 kfree(sbi->s_blockgroup_lock);
904 kfree(sbi);
905 }
906
907 static struct kmem_cache *ext4_inode_cachep;
908
909 /*
910 * Called inside transaction, so use GFP_NOFS
911 */
912 static struct inode *ext4_alloc_inode(struct super_block *sb)
913 {
914 struct ext4_inode_info *ei;
915
916 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS);
917 if (!ei)
918 return NULL;
919
920 ei->vfs_inode.i_version = 1;
921 spin_lock_init(&ei->i_raw_lock);
922 INIT_LIST_HEAD(&ei->i_prealloc_list);
923 spin_lock_init(&ei->i_prealloc_lock);
924 ext4_es_init_tree(&ei->i_es_tree);
925 rwlock_init(&ei->i_es_lock);
926 INIT_LIST_HEAD(&ei->i_es_list);
927 ei->i_es_all_nr = 0;
928 ei->i_es_shk_nr = 0;
929 ei->i_es_shrink_lblk = 0;
930 ei->i_reserved_data_blocks = 0;
931 ei->i_reserved_meta_blocks = 0;
932 ei->i_allocated_meta_blocks = 0;
933 ei->i_da_metadata_calc_len = 0;
934 ei->i_da_metadata_calc_last_lblock = 0;
935 spin_lock_init(&(ei->i_block_reservation_lock));
936 #ifdef CONFIG_QUOTA
937 ei->i_reserved_quota = 0;
938 memset(&ei->i_dquot, 0, sizeof(ei->i_dquot));
939 #endif
940 ei->jinode = NULL;
941 INIT_LIST_HEAD(&ei->i_rsv_conversion_list);
942 spin_lock_init(&ei->i_completed_io_lock);
943 ei->i_sync_tid = 0;
944 ei->i_datasync_tid = 0;
945 atomic_set(&ei->i_unwritten, 0);
946 INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work);
947 #ifdef CONFIG_EXT4_FS_ENCRYPTION
948 ei->i_crypt_info = NULL;
949 #endif
950 return &ei->vfs_inode;
951 }
952
953 static int ext4_drop_inode(struct inode *inode)
954 {
955 int drop = generic_drop_inode(inode);
956
957 trace_ext4_drop_inode(inode, drop);
958 return drop;
959 }
960
961 static void ext4_i_callback(struct rcu_head *head)
962 {
963 struct inode *inode = container_of(head, struct inode, i_rcu);
964 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
965 }
966
967 static void ext4_destroy_inode(struct inode *inode)
968 {
969 if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
970 ext4_msg(inode->i_sb, KERN_ERR,
971 "Inode %lu (%p): orphan list check failed!",
972 inode->i_ino, EXT4_I(inode));
973 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
974 EXT4_I(inode), sizeof(struct ext4_inode_info),
975 true);
976 dump_stack();
977 }
978 call_rcu(&inode->i_rcu, ext4_i_callback);
979 }
980
981 static void init_once(void *foo)
982 {
983 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo;
984
985 INIT_LIST_HEAD(&ei->i_orphan);
986 init_rwsem(&ei->xattr_sem);
987 init_rwsem(&ei->i_data_sem);
988 init_rwsem(&ei->i_mmap_sem);
989 inode_init_once(&ei->vfs_inode);
990 }
991
992 static int __init init_inodecache(void)
993 {
994 ext4_inode_cachep = kmem_cache_create("ext4_inode_cache",
995 sizeof(struct ext4_inode_info),
996 0, (SLAB_RECLAIM_ACCOUNT|
997 SLAB_MEM_SPREAD|SLAB_ACCOUNT),
998 init_once);
999 if (ext4_inode_cachep == NULL)
1000 return -ENOMEM;
1001 return 0;
1002 }
1003
1004 static void destroy_inodecache(void)
1005 {
1006 /*
1007 * Make sure all delayed rcu free inodes are flushed before we
1008 * destroy cache.
1009 */
1010 rcu_barrier();
1011 kmem_cache_destroy(ext4_inode_cachep);
1012 }
1013
1014 void ext4_clear_inode(struct inode *inode)
1015 {
1016 invalidate_inode_buffers(inode);
1017 clear_inode(inode);
1018 dquot_drop(inode);
1019 ext4_discard_preallocations(inode);
1020 ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS);
1021 if (EXT4_I(inode)->jinode) {
1022 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
1023 EXT4_I(inode)->jinode);
1024 jbd2_free_inode(EXT4_I(inode)->jinode);
1025 EXT4_I(inode)->jinode = NULL;
1026 }
1027 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1028 if (EXT4_I(inode)->i_crypt_info)
1029 ext4_free_encryption_info(inode, EXT4_I(inode)->i_crypt_info);
1030 #endif
1031 }
1032
1033 static struct inode *ext4_nfs_get_inode(struct super_block *sb,
1034 u64 ino, u32 generation)
1035 {
1036 struct inode *inode;
1037
1038 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
1039 return ERR_PTR(-ESTALE);
1040 if (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
1041 return ERR_PTR(-ESTALE);
1042
1043 /* iget isn't really right if the inode is currently unallocated!!
1044 *
1045 * ext4_read_inode will return a bad_inode if the inode had been
1046 * deleted, so we should be safe.
1047 *
1048 * Currently we don't know the generation for parent directory, so
1049 * a generation of 0 means "accept any"
1050 */
1051 inode = ext4_iget_normal(sb, ino);
1052 if (IS_ERR(inode))
1053 return ERR_CAST(inode);
1054 if (generation && inode->i_generation != generation) {
1055 iput(inode);
1056 return ERR_PTR(-ESTALE);
1057 }
1058
1059 return inode;
1060 }
1061
1062 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
1063 int fh_len, int fh_type)
1064 {
1065 return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1066 ext4_nfs_get_inode);
1067 }
1068
1069 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
1070 int fh_len, int fh_type)
1071 {
1072 return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1073 ext4_nfs_get_inode);
1074 }
1075
1076 /*
1077 * Try to release metadata pages (indirect blocks, directories) which are
1078 * mapped via the block device. Since these pages could have journal heads
1079 * which would prevent try_to_free_buffers() from freeing them, we must use
1080 * jbd2 layer's try_to_free_buffers() function to release them.
1081 */
1082 static int bdev_try_to_free_page(struct super_block *sb, struct page *page,
1083 gfp_t wait)
1084 {
1085 journal_t *journal = EXT4_SB(sb)->s_journal;
1086
1087 WARN_ON(PageChecked(page));
1088 if (!page_has_buffers(page))
1089 return 0;
1090 if (journal)
1091 return jbd2_journal_try_to_free_buffers(journal, page,
1092 wait & ~__GFP_DIRECT_RECLAIM);
1093 return try_to_free_buffers(page);
1094 }
1095
1096 #ifdef CONFIG_QUOTA
1097 static char *quotatypes[] = INITQFNAMES;
1098 #define QTYPE2NAME(t) (quotatypes[t])
1099
1100 static int ext4_write_dquot(struct dquot *dquot);
1101 static int ext4_acquire_dquot(struct dquot *dquot);
1102 static int ext4_release_dquot(struct dquot *dquot);
1103 static int ext4_mark_dquot_dirty(struct dquot *dquot);
1104 static int ext4_write_info(struct super_block *sb, int type);
1105 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1106 struct path *path);
1107 static int ext4_quota_off(struct super_block *sb, int type);
1108 static int ext4_quota_on_mount(struct super_block *sb, int type);
1109 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1110 size_t len, loff_t off);
1111 static ssize_t ext4_quota_write(struct super_block *sb, int type,
1112 const char *data, size_t len, loff_t off);
1113 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
1114 unsigned int flags);
1115 static int ext4_enable_quotas(struct super_block *sb);
1116
1117 static struct dquot **ext4_get_dquots(struct inode *inode)
1118 {
1119 return EXT4_I(inode)->i_dquot;
1120 }
1121
1122 static const struct dquot_operations ext4_quota_operations = {
1123 .get_reserved_space = ext4_get_reserved_space,
1124 .write_dquot = ext4_write_dquot,
1125 .acquire_dquot = ext4_acquire_dquot,
1126 .release_dquot = ext4_release_dquot,
1127 .mark_dirty = ext4_mark_dquot_dirty,
1128 .write_info = ext4_write_info,
1129 .alloc_dquot = dquot_alloc,
1130 .destroy_dquot = dquot_destroy,
1131 .get_projid = ext4_get_projid,
1132 .get_next_id = dquot_get_next_id,
1133 };
1134
1135 static const struct quotactl_ops ext4_qctl_operations = {
1136 .quota_on = ext4_quota_on,
1137 .quota_off = ext4_quota_off,
1138 .quota_sync = dquot_quota_sync,
1139 .get_state = dquot_get_state,
1140 .set_info = dquot_set_dqinfo,
1141 .get_dqblk = dquot_get_dqblk,
1142 .set_dqblk = dquot_set_dqblk,
1143 .get_nextdqblk = dquot_get_next_dqblk,
1144 };
1145 #endif
1146
1147 static const struct super_operations ext4_sops = {
1148 .alloc_inode = ext4_alloc_inode,
1149 .destroy_inode = ext4_destroy_inode,
1150 .write_inode = ext4_write_inode,
1151 .dirty_inode = ext4_dirty_inode,
1152 .drop_inode = ext4_drop_inode,
1153 .evict_inode = ext4_evict_inode,
1154 .put_super = ext4_put_super,
1155 .sync_fs = ext4_sync_fs,
1156 .freeze_fs = ext4_freeze,
1157 .unfreeze_fs = ext4_unfreeze,
1158 .statfs = ext4_statfs,
1159 .remount_fs = ext4_remount,
1160 .show_options = ext4_show_options,
1161 #ifdef CONFIG_QUOTA
1162 .quota_read = ext4_quota_read,
1163 .quota_write = ext4_quota_write,
1164 .get_dquots = ext4_get_dquots,
1165 #endif
1166 .bdev_try_to_free_page = bdev_try_to_free_page,
1167 };
1168
1169 static const struct export_operations ext4_export_ops = {
1170 .fh_to_dentry = ext4_fh_to_dentry,
1171 .fh_to_parent = ext4_fh_to_parent,
1172 .get_parent = ext4_get_parent,
1173 };
1174
1175 enum {
1176 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1177 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro,
1178 Opt_nouid32, Opt_debug, Opt_removed,
1179 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl,
1180 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload,
1181 Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev,
1182 Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit,
1183 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1184 Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption,
1185 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota,
1186 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota,
1187 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err,
1188 Opt_usrquota, Opt_grpquota, Opt_i_version, Opt_dax,
1189 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_mblk_io_submit,
1190 Opt_lazytime, Opt_nolazytime,
1191 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1192 Opt_inode_readahead_blks, Opt_journal_ioprio,
1193 Opt_dioread_nolock, Opt_dioread_lock,
1194 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable,
1195 Opt_max_dir_size_kb, Opt_nojournal_checksum,
1196 };
1197
1198 static const match_table_t tokens = {
1199 {Opt_bsd_df, "bsddf"},
1200 {Opt_minix_df, "minixdf"},
1201 {Opt_grpid, "grpid"},
1202 {Opt_grpid, "bsdgroups"},
1203 {Opt_nogrpid, "nogrpid"},
1204 {Opt_nogrpid, "sysvgroups"},
1205 {Opt_resgid, "resgid=%u"},
1206 {Opt_resuid, "resuid=%u"},
1207 {Opt_sb, "sb=%u"},
1208 {Opt_err_cont, "errors=continue"},
1209 {Opt_err_panic, "errors=panic"},
1210 {Opt_err_ro, "errors=remount-ro"},
1211 {Opt_nouid32, "nouid32"},
1212 {Opt_debug, "debug"},
1213 {Opt_removed, "oldalloc"},
1214 {Opt_removed, "orlov"},
1215 {Opt_user_xattr, "user_xattr"},
1216 {Opt_nouser_xattr, "nouser_xattr"},
1217 {Opt_acl, "acl"},
1218 {Opt_noacl, "noacl"},
1219 {Opt_noload, "norecovery"},
1220 {Opt_noload, "noload"},
1221 {Opt_removed, "nobh"},
1222 {Opt_removed, "bh"},
1223 {Opt_commit, "commit=%u"},
1224 {Opt_min_batch_time, "min_batch_time=%u"},
1225 {Opt_max_batch_time, "max_batch_time=%u"},
1226 {Opt_journal_dev, "journal_dev=%u"},
1227 {Opt_journal_path, "journal_path=%s"},
1228 {Opt_journal_checksum, "journal_checksum"},
1229 {Opt_nojournal_checksum, "nojournal_checksum"},
1230 {Opt_journal_async_commit, "journal_async_commit"},
1231 {Opt_abort, "abort"},
1232 {Opt_data_journal, "data=journal"},
1233 {Opt_data_ordered, "data=ordered"},
1234 {Opt_data_writeback, "data=writeback"},
1235 {Opt_data_err_abort, "data_err=abort"},
1236 {Opt_data_err_ignore, "data_err=ignore"},
1237 {Opt_offusrjquota, "usrjquota="},
1238 {Opt_usrjquota, "usrjquota=%s"},
1239 {Opt_offgrpjquota, "grpjquota="},
1240 {Opt_grpjquota, "grpjquota=%s"},
1241 {Opt_jqfmt_vfsold, "jqfmt=vfsold"},
1242 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
1243 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
1244 {Opt_grpquota, "grpquota"},
1245 {Opt_noquota, "noquota"},
1246 {Opt_quota, "quota"},
1247 {Opt_usrquota, "usrquota"},
1248 {Opt_barrier, "barrier=%u"},
1249 {Opt_barrier, "barrier"},
1250 {Opt_nobarrier, "nobarrier"},
1251 {Opt_i_version, "i_version"},
1252 {Opt_dax, "dax"},
1253 {Opt_stripe, "stripe=%u"},
1254 {Opt_delalloc, "delalloc"},
1255 {Opt_lazytime, "lazytime"},
1256 {Opt_nolazytime, "nolazytime"},
1257 {Opt_nodelalloc, "nodelalloc"},
1258 {Opt_removed, "mblk_io_submit"},
1259 {Opt_removed, "nomblk_io_submit"},
1260 {Opt_block_validity, "block_validity"},
1261 {Opt_noblock_validity, "noblock_validity"},
1262 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"},
1263 {Opt_journal_ioprio, "journal_ioprio=%u"},
1264 {Opt_auto_da_alloc, "auto_da_alloc=%u"},
1265 {Opt_auto_da_alloc, "auto_da_alloc"},
1266 {Opt_noauto_da_alloc, "noauto_da_alloc"},
1267 {Opt_dioread_nolock, "dioread_nolock"},
1268 {Opt_dioread_lock, "dioread_lock"},
1269 {Opt_discard, "discard"},
1270 {Opt_nodiscard, "nodiscard"},
1271 {Opt_init_itable, "init_itable=%u"},
1272 {Opt_init_itable, "init_itable"},
1273 {Opt_noinit_itable, "noinit_itable"},
1274 {Opt_max_dir_size_kb, "max_dir_size_kb=%u"},
1275 {Opt_test_dummy_encryption, "test_dummy_encryption"},
1276 {Opt_removed, "check=none"}, /* mount option from ext2/3 */
1277 {Opt_removed, "nocheck"}, /* mount option from ext2/3 */
1278 {Opt_removed, "reservation"}, /* mount option from ext2/3 */
1279 {Opt_removed, "noreservation"}, /* mount option from ext2/3 */
1280 {Opt_removed, "journal=%u"}, /* mount option from ext2/3 */
1281 {Opt_err, NULL},
1282 };
1283
1284 static ext4_fsblk_t get_sb_block(void **data)
1285 {
1286 ext4_fsblk_t sb_block;
1287 char *options = (char *) *data;
1288
1289 if (!options || strncmp(options, "sb=", 3) != 0)
1290 return 1; /* Default location */
1291
1292 options += 3;
1293 /* TODO: use simple_strtoll with >32bit ext4 */
1294 sb_block = simple_strtoul(options, &options, 0);
1295 if (*options && *options != ',') {
1296 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n",
1297 (char *) *data);
1298 return 1;
1299 }
1300 if (*options == ',')
1301 options++;
1302 *data = (void *) options;
1303
1304 return sb_block;
1305 }
1306
1307 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1308 static char deprecated_msg[] = "Mount option \"%s\" will be removed by %s\n"
1309 "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n";
1310
1311 #ifdef CONFIG_QUOTA
1312 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args)
1313 {
1314 struct ext4_sb_info *sbi = EXT4_SB(sb);
1315 char *qname;
1316 int ret = -1;
1317
1318 if (sb_any_quota_loaded(sb) &&
1319 !sbi->s_qf_names[qtype]) {
1320 ext4_msg(sb, KERN_ERR,
1321 "Cannot change journaled "
1322 "quota options when quota turned on");
1323 return -1;
1324 }
1325 if (ext4_has_feature_quota(sb)) {
1326 ext4_msg(sb, KERN_ERR, "Cannot set journaled quota options "
1327 "when QUOTA feature is enabled");
1328 return -1;
1329 }
1330 qname = match_strdup(args);
1331 if (!qname) {
1332 ext4_msg(sb, KERN_ERR,
1333 "Not enough memory for storing quotafile name");
1334 return -1;
1335 }
1336 if (sbi->s_qf_names[qtype]) {
1337 if (strcmp(sbi->s_qf_names[qtype], qname) == 0)
1338 ret = 1;
1339 else
1340 ext4_msg(sb, KERN_ERR,
1341 "%s quota file already specified",
1342 QTYPE2NAME(qtype));
1343 goto errout;
1344 }
1345 if (strchr(qname, '/')) {
1346 ext4_msg(sb, KERN_ERR,
1347 "quotafile must be on filesystem root");
1348 goto errout;
1349 }
1350 sbi->s_qf_names[qtype] = qname;
1351 set_opt(sb, QUOTA);
1352 return 1;
1353 errout:
1354 kfree(qname);
1355 return ret;
1356 }
1357
1358 static int clear_qf_name(struct super_block *sb, int qtype)
1359 {
1360
1361 struct ext4_sb_info *sbi = EXT4_SB(sb);
1362
1363 if (sb_any_quota_loaded(sb) &&
1364 sbi->s_qf_names[qtype]) {
1365 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options"
1366 " when quota turned on");
1367 return -1;
1368 }
1369 kfree(sbi->s_qf_names[qtype]);
1370 sbi->s_qf_names[qtype] = NULL;
1371 return 1;
1372 }
1373 #endif
1374
1375 #define MOPT_SET 0x0001
1376 #define MOPT_CLEAR 0x0002
1377 #define MOPT_NOSUPPORT 0x0004
1378 #define MOPT_EXPLICIT 0x0008
1379 #define MOPT_CLEAR_ERR 0x0010
1380 #define MOPT_GTE0 0x0020
1381 #ifdef CONFIG_QUOTA
1382 #define MOPT_Q 0
1383 #define MOPT_QFMT 0x0040
1384 #else
1385 #define MOPT_Q MOPT_NOSUPPORT
1386 #define MOPT_QFMT MOPT_NOSUPPORT
1387 #endif
1388 #define MOPT_DATAJ 0x0080
1389 #define MOPT_NO_EXT2 0x0100
1390 #define MOPT_NO_EXT3 0x0200
1391 #define MOPT_EXT4_ONLY (MOPT_NO_EXT2 | MOPT_NO_EXT3)
1392 #define MOPT_STRING 0x0400
1393
1394 static const struct mount_opts {
1395 int token;
1396 int mount_opt;
1397 int flags;
1398 } ext4_mount_opts[] = {
1399 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET},
1400 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR},
1401 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET},
1402 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR},
1403 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET},
1404 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR},
1405 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK,
1406 MOPT_EXT4_ONLY | MOPT_SET},
1407 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK,
1408 MOPT_EXT4_ONLY | MOPT_CLEAR},
1409 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET},
1410 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR},
1411 {Opt_delalloc, EXT4_MOUNT_DELALLOC,
1412 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1413 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC,
1414 MOPT_EXT4_ONLY | MOPT_CLEAR},
1415 {Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1416 MOPT_EXT4_ONLY | MOPT_CLEAR},
1417 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1418 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1419 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT |
1420 EXT4_MOUNT_JOURNAL_CHECKSUM),
1421 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1422 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET},
1423 {Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR},
1424 {Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR},
1425 {Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR},
1426 {Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT,
1427 MOPT_NO_EXT2},
1428 {Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT,
1429 MOPT_NO_EXT2},
1430 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET},
1431 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR},
1432 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET},
1433 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR},
1434 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR},
1435 {Opt_commit, 0, MOPT_GTE0},
1436 {Opt_max_batch_time, 0, MOPT_GTE0},
1437 {Opt_min_batch_time, 0, MOPT_GTE0},
1438 {Opt_inode_readahead_blks, 0, MOPT_GTE0},
1439 {Opt_init_itable, 0, MOPT_GTE0},
1440 {Opt_dax, EXT4_MOUNT_DAX, MOPT_SET},
1441 {Opt_stripe, 0, MOPT_GTE0},
1442 {Opt_resuid, 0, MOPT_GTE0},
1443 {Opt_resgid, 0, MOPT_GTE0},
1444 {Opt_journal_dev, 0, MOPT_NO_EXT2 | MOPT_GTE0},
1445 {Opt_journal_path, 0, MOPT_NO_EXT2 | MOPT_STRING},
1446 {Opt_journal_ioprio, 0, MOPT_NO_EXT2 | MOPT_GTE0},
1447 {Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1448 {Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1449 {Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA,
1450 MOPT_NO_EXT2 | MOPT_DATAJ},
1451 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET},
1452 {Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR},
1453 #ifdef CONFIG_EXT4_FS_POSIX_ACL
1454 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET},
1455 {Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR},
1456 #else
1457 {Opt_acl, 0, MOPT_NOSUPPORT},
1458 {Opt_noacl, 0, MOPT_NOSUPPORT},
1459 #endif
1460 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET},
1461 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET},
1462 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q},
1463 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA,
1464 MOPT_SET | MOPT_Q},
1465 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA,
1466 MOPT_SET | MOPT_Q},
1467 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
1468 EXT4_MOUNT_GRPQUOTA), MOPT_CLEAR | MOPT_Q},
1469 {Opt_usrjquota, 0, MOPT_Q},
1470 {Opt_grpjquota, 0, MOPT_Q},
1471 {Opt_offusrjquota, 0, MOPT_Q},
1472 {Opt_offgrpjquota, 0, MOPT_Q},
1473 {Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT},
1474 {Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT},
1475 {Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT},
1476 {Opt_max_dir_size_kb, 0, MOPT_GTE0},
1477 {Opt_test_dummy_encryption, 0, MOPT_GTE0},
1478 {Opt_err, 0, 0}
1479 };
1480
1481 static int handle_mount_opt(struct super_block *sb, char *opt, int token,
1482 substring_t *args, unsigned long *journal_devnum,
1483 unsigned int *journal_ioprio, int is_remount)
1484 {
1485 struct ext4_sb_info *sbi = EXT4_SB(sb);
1486 const struct mount_opts *m;
1487 kuid_t uid;
1488 kgid_t gid;
1489 int arg = 0;
1490
1491 #ifdef CONFIG_QUOTA
1492 if (token == Opt_usrjquota)
1493 return set_qf_name(sb, USRQUOTA, &args[0]);
1494 else if (token == Opt_grpjquota)
1495 return set_qf_name(sb, GRPQUOTA, &args[0]);
1496 else if (token == Opt_offusrjquota)
1497 return clear_qf_name(sb, USRQUOTA);
1498 else if (token == Opt_offgrpjquota)
1499 return clear_qf_name(sb, GRPQUOTA);
1500 #endif
1501 switch (token) {
1502 case Opt_noacl:
1503 case Opt_nouser_xattr:
1504 ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5");
1505 break;
1506 case Opt_sb:
1507 return 1; /* handled by get_sb_block() */
1508 case Opt_removed:
1509 ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt);
1510 return 1;
1511 case Opt_abort:
1512 sbi->s_mount_flags |= EXT4_MF_FS_ABORTED;
1513 return 1;
1514 case Opt_i_version:
1515 sb->s_flags |= MS_I_VERSION;
1516 return 1;
1517 case Opt_lazytime:
1518 sb->s_flags |= MS_LAZYTIME;
1519 return 1;
1520 case Opt_nolazytime:
1521 sb->s_flags &= ~MS_LAZYTIME;
1522 return 1;
1523 }
1524
1525 for (m = ext4_mount_opts; m->token != Opt_err; m++)
1526 if (token == m->token)
1527 break;
1528
1529 if (m->token == Opt_err) {
1530 ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" "
1531 "or missing value", opt);
1532 return -1;
1533 }
1534
1535 if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) {
1536 ext4_msg(sb, KERN_ERR,
1537 "Mount option \"%s\" incompatible with ext2", opt);
1538 return -1;
1539 }
1540 if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) {
1541 ext4_msg(sb, KERN_ERR,
1542 "Mount option \"%s\" incompatible with ext3", opt);
1543 return -1;
1544 }
1545
1546 if (args->from && !(m->flags & MOPT_STRING) && match_int(args, &arg))
1547 return -1;
1548 if (args->from && (m->flags & MOPT_GTE0) && (arg < 0))
1549 return -1;
1550 if (m->flags & MOPT_EXPLICIT) {
1551 if (m->mount_opt & EXT4_MOUNT_DELALLOC) {
1552 set_opt2(sb, EXPLICIT_DELALLOC);
1553 } else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) {
1554 set_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM);
1555 } else
1556 return -1;
1557 }
1558 if (m->flags & MOPT_CLEAR_ERR)
1559 clear_opt(sb, ERRORS_MASK);
1560 if (token == Opt_noquota && sb_any_quota_loaded(sb)) {
1561 ext4_msg(sb, KERN_ERR, "Cannot change quota "
1562 "options when quota turned on");
1563 return -1;
1564 }
1565
1566 if (m->flags & MOPT_NOSUPPORT) {
1567 ext4_msg(sb, KERN_ERR, "%s option not supported", opt);
1568 } else if (token == Opt_commit) {
1569 if (arg == 0)
1570 arg = JBD2_DEFAULT_MAX_COMMIT_AGE;
1571 sbi->s_commit_interval = HZ * arg;
1572 } else if (token == Opt_max_batch_time) {
1573 sbi->s_max_batch_time = arg;
1574 } else if (token == Opt_min_batch_time) {
1575 sbi->s_min_batch_time = arg;
1576 } else if (token == Opt_inode_readahead_blks) {
1577 if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) {
1578 ext4_msg(sb, KERN_ERR,
1579 "EXT4-fs: inode_readahead_blks must be "
1580 "0 or a power of 2 smaller than 2^31");
1581 return -1;
1582 }
1583 sbi->s_inode_readahead_blks = arg;
1584 } else if (token == Opt_init_itable) {
1585 set_opt(sb, INIT_INODE_TABLE);
1586 if (!args->from)
1587 arg = EXT4_DEF_LI_WAIT_MULT;
1588 sbi->s_li_wait_mult = arg;
1589 } else if (token == Opt_max_dir_size_kb) {
1590 sbi->s_max_dir_size_kb = arg;
1591 } else if (token == Opt_stripe) {
1592 sbi->s_stripe = arg;
1593 } else if (token == Opt_resuid) {
1594 uid = make_kuid(current_user_ns(), arg);
1595 if (!uid_valid(uid)) {
1596 ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg);
1597 return -1;
1598 }
1599 sbi->s_resuid = uid;
1600 } else if (token == Opt_resgid) {
1601 gid = make_kgid(current_user_ns(), arg);
1602 if (!gid_valid(gid)) {
1603 ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg);
1604 return -1;
1605 }
1606 sbi->s_resgid = gid;
1607 } else if (token == Opt_journal_dev) {
1608 if (is_remount) {
1609 ext4_msg(sb, KERN_ERR,
1610 "Cannot specify journal on remount");
1611 return -1;
1612 }
1613 *journal_devnum = arg;
1614 } else if (token == Opt_journal_path) {
1615 char *journal_path;
1616 struct inode *journal_inode;
1617 struct path path;
1618 int error;
1619
1620 if (is_remount) {
1621 ext4_msg(sb, KERN_ERR,
1622 "Cannot specify journal on remount");
1623 return -1;
1624 }
1625 journal_path = match_strdup(&args[0]);
1626 if (!journal_path) {
1627 ext4_msg(sb, KERN_ERR, "error: could not dup "
1628 "journal device string");
1629 return -1;
1630 }
1631
1632 error = kern_path(journal_path, LOOKUP_FOLLOW, &path);
1633 if (error) {
1634 ext4_msg(sb, KERN_ERR, "error: could not find "
1635 "journal device path: error %d", error);
1636 kfree(journal_path);
1637 return -1;
1638 }
1639
1640 journal_inode = d_inode(path.dentry);
1641 if (!S_ISBLK(journal_inode->i_mode)) {
1642 ext4_msg(sb, KERN_ERR, "error: journal path %s "
1643 "is not a block device", journal_path);
1644 path_put(&path);
1645 kfree(journal_path);
1646 return -1;
1647 }
1648
1649 *journal_devnum = new_encode_dev(journal_inode->i_rdev);
1650 path_put(&path);
1651 kfree(journal_path);
1652 } else if (token == Opt_journal_ioprio) {
1653 if (arg > 7) {
1654 ext4_msg(sb, KERN_ERR, "Invalid journal IO priority"
1655 " (must be 0-7)");
1656 return -1;
1657 }
1658 *journal_ioprio =
1659 IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg);
1660 } else if (token == Opt_test_dummy_encryption) {
1661 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1662 sbi->s_mount_flags |= EXT4_MF_TEST_DUMMY_ENCRYPTION;
1663 ext4_msg(sb, KERN_WARNING,
1664 "Test dummy encryption mode enabled");
1665 #else
1666 ext4_msg(sb, KERN_WARNING,
1667 "Test dummy encryption mount option ignored");
1668 #endif
1669 } else if (m->flags & MOPT_DATAJ) {
1670 if (is_remount) {
1671 if (!sbi->s_journal)
1672 ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option");
1673 else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) {
1674 ext4_msg(sb, KERN_ERR,
1675 "Cannot change data mode on remount");
1676 return -1;
1677 }
1678 } else {
1679 clear_opt(sb, DATA_FLAGS);
1680 sbi->s_mount_opt |= m->mount_opt;
1681 }
1682 #ifdef CONFIG_QUOTA
1683 } else if (m->flags & MOPT_QFMT) {
1684 if (sb_any_quota_loaded(sb) &&
1685 sbi->s_jquota_fmt != m->mount_opt) {
1686 ext4_msg(sb, KERN_ERR, "Cannot change journaled "
1687 "quota options when quota turned on");
1688 return -1;
1689 }
1690 if (ext4_has_feature_quota(sb)) {
1691 ext4_msg(sb, KERN_ERR,
1692 "Cannot set journaled quota options "
1693 "when QUOTA feature is enabled");
1694 return -1;
1695 }
1696 sbi->s_jquota_fmt = m->mount_opt;
1697 #endif
1698 } else if (token == Opt_dax) {
1699 #ifdef CONFIG_FS_DAX
1700 ext4_msg(sb, KERN_WARNING,
1701 "DAX enabled. Warning: EXPERIMENTAL, use at your own risk");
1702 sbi->s_mount_opt |= m->mount_opt;
1703 #else
1704 ext4_msg(sb, KERN_INFO, "dax option not supported");
1705 return -1;
1706 #endif
1707 } else if (token == Opt_data_err_abort) {
1708 sbi->s_mount_opt |= m->mount_opt;
1709 } else if (token == Opt_data_err_ignore) {
1710 sbi->s_mount_opt &= ~m->mount_opt;
1711 } else {
1712 if (!args->from)
1713 arg = 1;
1714 if (m->flags & MOPT_CLEAR)
1715 arg = !arg;
1716 else if (unlikely(!(m->flags & MOPT_SET))) {
1717 ext4_msg(sb, KERN_WARNING,
1718 "buggy handling of option %s", opt);
1719 WARN_ON(1);
1720 return -1;
1721 }
1722 if (arg != 0)
1723 sbi->s_mount_opt |= m->mount_opt;
1724 else
1725 sbi->s_mount_opt &= ~m->mount_opt;
1726 }
1727 return 1;
1728 }
1729
1730 static int parse_options(char *options, struct super_block *sb,
1731 unsigned long *journal_devnum,
1732 unsigned int *journal_ioprio,
1733 int is_remount)
1734 {
1735 struct ext4_sb_info *sbi = EXT4_SB(sb);
1736 char *p;
1737 substring_t args[MAX_OPT_ARGS];
1738 int token;
1739
1740 if (!options)
1741 return 1;
1742
1743 while ((p = strsep(&options, ",")) != NULL) {
1744 if (!*p)
1745 continue;
1746 /*
1747 * Initialize args struct so we know whether arg was
1748 * found; some options take optional arguments.
1749 */
1750 args[0].to = args[0].from = NULL;
1751 token = match_token(p, tokens, args);
1752 if (handle_mount_opt(sb, p, token, args, journal_devnum,
1753 journal_ioprio, is_remount) < 0)
1754 return 0;
1755 }
1756 #ifdef CONFIG_QUOTA
1757 if (ext4_has_feature_quota(sb) &&
1758 (test_opt(sb, USRQUOTA) || test_opt(sb, GRPQUOTA))) {
1759 ext4_msg(sb, KERN_ERR, "Cannot set quota options when QUOTA "
1760 "feature is enabled");
1761 return 0;
1762 }
1763 if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
1764 if (test_opt(sb, USRQUOTA) && sbi->s_qf_names[USRQUOTA])
1765 clear_opt(sb, USRQUOTA);
1766
1767 if (test_opt(sb, GRPQUOTA) && sbi->s_qf_names[GRPQUOTA])
1768 clear_opt(sb, GRPQUOTA);
1769
1770 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) {
1771 ext4_msg(sb, KERN_ERR, "old and new quota "
1772 "format mixing");
1773 return 0;
1774 }
1775
1776 if (!sbi->s_jquota_fmt) {
1777 ext4_msg(sb, KERN_ERR, "journaled quota format "
1778 "not specified");
1779 return 0;
1780 }
1781 }
1782 #endif
1783 if (test_opt(sb, DIOREAD_NOLOCK)) {
1784 int blocksize =
1785 BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size);
1786
1787 if (blocksize < PAGE_SIZE) {
1788 ext4_msg(sb, KERN_ERR, "can't mount with "
1789 "dioread_nolock if block size != PAGE_SIZE");
1790 return 0;
1791 }
1792 }
1793 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA &&
1794 test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
1795 ext4_msg(sb, KERN_ERR, "can't mount with journal_async_commit "
1796 "in data=ordered mode");
1797 return 0;
1798 }
1799 return 1;
1800 }
1801
1802 static inline void ext4_show_quota_options(struct seq_file *seq,
1803 struct super_block *sb)
1804 {
1805 #if defined(CONFIG_QUOTA)
1806 struct ext4_sb_info *sbi = EXT4_SB(sb);
1807
1808 if (sbi->s_jquota_fmt) {
1809 char *fmtname = "";
1810
1811 switch (sbi->s_jquota_fmt) {
1812 case QFMT_VFS_OLD:
1813 fmtname = "vfsold";
1814 break;
1815 case QFMT_VFS_V0:
1816 fmtname = "vfsv0";
1817 break;
1818 case QFMT_VFS_V1:
1819 fmtname = "vfsv1";
1820 break;
1821 }
1822 seq_printf(seq, ",jqfmt=%s", fmtname);
1823 }
1824
1825 if (sbi->s_qf_names[USRQUOTA])
1826 seq_show_option(seq, "usrjquota", sbi->s_qf_names[USRQUOTA]);
1827
1828 if (sbi->s_qf_names[GRPQUOTA])
1829 seq_show_option(seq, "grpjquota", sbi->s_qf_names[GRPQUOTA]);
1830 #endif
1831 }
1832
1833 static const char *token2str(int token)
1834 {
1835 const struct match_token *t;
1836
1837 for (t = tokens; t->token != Opt_err; t++)
1838 if (t->token == token && !strchr(t->pattern, '='))
1839 break;
1840 return t->pattern;
1841 }
1842
1843 /*
1844 * Show an option if
1845 * - it's set to a non-default value OR
1846 * - if the per-sb default is different from the global default
1847 */
1848 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb,
1849 int nodefs)
1850 {
1851 struct ext4_sb_info *sbi = EXT4_SB(sb);
1852 struct ext4_super_block *es = sbi->s_es;
1853 int def_errors, def_mount_opt = nodefs ? 0 : sbi->s_def_mount_opt;
1854 const struct mount_opts *m;
1855 char sep = nodefs ? '\n' : ',';
1856
1857 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep)
1858 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg)
1859
1860 if (sbi->s_sb_block != 1)
1861 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block);
1862
1863 for (m = ext4_mount_opts; m->token != Opt_err; m++) {
1864 int want_set = m->flags & MOPT_SET;
1865 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) ||
1866 (m->flags & MOPT_CLEAR_ERR))
1867 continue;
1868 if (!(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt)))
1869 continue; /* skip if same as the default */
1870 if ((want_set &&
1871 (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) ||
1872 (!want_set && (sbi->s_mount_opt & m->mount_opt)))
1873 continue; /* select Opt_noFoo vs Opt_Foo */
1874 SEQ_OPTS_PRINT("%s", token2str(m->token));
1875 }
1876
1877 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) ||
1878 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID)
1879 SEQ_OPTS_PRINT("resuid=%u",
1880 from_kuid_munged(&init_user_ns, sbi->s_resuid));
1881 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) ||
1882 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID)
1883 SEQ_OPTS_PRINT("resgid=%u",
1884 from_kgid_munged(&init_user_ns, sbi->s_resgid));
1885 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors);
1886 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO)
1887 SEQ_OPTS_PUTS("errors=remount-ro");
1888 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
1889 SEQ_OPTS_PUTS("errors=continue");
1890 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
1891 SEQ_OPTS_PUTS("errors=panic");
1892 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
1893 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ);
1894 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME)
1895 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time);
1896 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME)
1897 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time);
1898 if (sb->s_flags & MS_I_VERSION)
1899 SEQ_OPTS_PUTS("i_version");
1900 if (nodefs || sbi->s_stripe)
1901 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe);
1902 if (EXT4_MOUNT_DATA_FLAGS & (sbi->s_mount_opt ^ def_mount_opt)) {
1903 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
1904 SEQ_OPTS_PUTS("data=journal");
1905 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
1906 SEQ_OPTS_PUTS("data=ordered");
1907 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
1908 SEQ_OPTS_PUTS("data=writeback");
1909 }
1910 if (nodefs ||
1911 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
1912 SEQ_OPTS_PRINT("inode_readahead_blks=%u",
1913 sbi->s_inode_readahead_blks);
1914
1915 if (nodefs || (test_opt(sb, INIT_INODE_TABLE) &&
1916 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)))
1917 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult);
1918 if (nodefs || sbi->s_max_dir_size_kb)
1919 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb);
1920 if (test_opt(sb, DATA_ERR_ABORT))
1921 SEQ_OPTS_PUTS("data_err=abort");
1922
1923 ext4_show_quota_options(seq, sb);
1924 return 0;
1925 }
1926
1927 static int ext4_show_options(struct seq_file *seq, struct dentry *root)
1928 {
1929 return _ext4_show_options(seq, root->d_sb, 0);
1930 }
1931
1932 int ext4_seq_options_show(struct seq_file *seq, void *offset)
1933 {
1934 struct super_block *sb = seq->private;
1935 int rc;
1936
1937 seq_puts(seq, (sb->s_flags & MS_RDONLY) ? "ro" : "rw");
1938 rc = _ext4_show_options(seq, sb, 1);
1939 seq_puts(seq, "\n");
1940 return rc;
1941 }
1942
1943 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
1944 int read_only)
1945 {
1946 struct ext4_sb_info *sbi = EXT4_SB(sb);
1947 int res = 0;
1948
1949 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
1950 ext4_msg(sb, KERN_ERR, "revision level too high, "
1951 "forcing read-only mode");
1952 res = MS_RDONLY;
1953 }
1954 if (read_only)
1955 goto done;
1956 if (!(sbi->s_mount_state & EXT4_VALID_FS))
1957 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
1958 "running e2fsck is recommended");
1959 else if (sbi->s_mount_state & EXT4_ERROR_FS)
1960 ext4_msg(sb, KERN_WARNING,
1961 "warning: mounting fs with errors, "
1962 "running e2fsck is recommended");
1963 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
1964 le16_to_cpu(es->s_mnt_count) >=
1965 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
1966 ext4_msg(sb, KERN_WARNING,
1967 "warning: maximal mount count reached, "
1968 "running e2fsck is recommended");
1969 else if (le32_to_cpu(es->s_checkinterval) &&
1970 (le32_to_cpu(es->s_lastcheck) +
1971 le32_to_cpu(es->s_checkinterval) <= get_seconds()))
1972 ext4_msg(sb, KERN_WARNING,
1973 "warning: checktime reached, "
1974 "running e2fsck is recommended");
1975 if (!sbi->s_journal)
1976 es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
1977 if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
1978 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
1979 le16_add_cpu(&es->s_mnt_count, 1);
1980 es->s_mtime = cpu_to_le32(get_seconds());
1981 ext4_update_dynamic_rev(sb);
1982 if (sbi->s_journal)
1983 ext4_set_feature_journal_needs_recovery(sb);
1984
1985 ext4_commit_super(sb, 1);
1986 done:
1987 if (test_opt(sb, DEBUG))
1988 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
1989 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
1990 sb->s_blocksize,
1991 sbi->s_groups_count,
1992 EXT4_BLOCKS_PER_GROUP(sb),
1993 EXT4_INODES_PER_GROUP(sb),
1994 sbi->s_mount_opt, sbi->s_mount_opt2);
1995
1996 cleancache_init_fs(sb);
1997 return res;
1998 }
1999
2000 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup)
2001 {
2002 struct ext4_sb_info *sbi = EXT4_SB(sb);
2003 struct flex_groups *new_groups;
2004 int size;
2005
2006 if (!sbi->s_log_groups_per_flex)
2007 return 0;
2008
2009 size = ext4_flex_group(sbi, ngroup - 1) + 1;
2010 if (size <= sbi->s_flex_groups_allocated)
2011 return 0;
2012
2013 size = roundup_pow_of_two(size * sizeof(struct flex_groups));
2014 new_groups = ext4_kvzalloc(size, GFP_KERNEL);
2015 if (!new_groups) {
2016 ext4_msg(sb, KERN_ERR, "not enough memory for %d flex groups",
2017 size / (int) sizeof(struct flex_groups));
2018 return -ENOMEM;
2019 }
2020
2021 if (sbi->s_flex_groups) {
2022 memcpy(new_groups, sbi->s_flex_groups,
2023 (sbi->s_flex_groups_allocated *
2024 sizeof(struct flex_groups)));
2025 kvfree(sbi->s_flex_groups);
2026 }
2027 sbi->s_flex_groups = new_groups;
2028 sbi->s_flex_groups_allocated = size / sizeof(struct flex_groups);
2029 return 0;
2030 }
2031
2032 static int ext4_fill_flex_info(struct super_block *sb)
2033 {
2034 struct ext4_sb_info *sbi = EXT4_SB(sb);
2035 struct ext4_group_desc *gdp = NULL;
2036 ext4_group_t flex_group;
2037 int i, err;
2038
2039 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
2040 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) {
2041 sbi->s_log_groups_per_flex = 0;
2042 return 1;
2043 }
2044
2045 err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count);
2046 if (err)
2047 goto failed;
2048
2049 for (i = 0; i < sbi->s_groups_count; i++) {
2050 gdp = ext4_get_group_desc(sb, i, NULL);
2051
2052 flex_group = ext4_flex_group(sbi, i);
2053 atomic_add(ext4_free_inodes_count(sb, gdp),
2054 &sbi->s_flex_groups[flex_group].free_inodes);
2055 atomic64_add(ext4_free_group_clusters(sb, gdp),
2056 &sbi->s_flex_groups[flex_group].free_clusters);
2057 atomic_add(ext4_used_dirs_count(sb, gdp),
2058 &sbi->s_flex_groups[flex_group].used_dirs);
2059 }
2060
2061 return 1;
2062 failed:
2063 return 0;
2064 }
2065
2066 static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group,
2067 struct ext4_group_desc *gdp)
2068 {
2069 int offset;
2070 __u16 crc = 0;
2071 __le32 le_group = cpu_to_le32(block_group);
2072 struct ext4_sb_info *sbi = EXT4_SB(sb);
2073
2074 if (ext4_has_metadata_csum(sbi->s_sb)) {
2075 /* Use new metadata_csum algorithm */
2076 __le16 save_csum;
2077 __u32 csum32;
2078
2079 save_csum = gdp->bg_checksum;
2080 gdp->bg_checksum = 0;
2081 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group,
2082 sizeof(le_group));
2083 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp,
2084 sbi->s_desc_size);
2085 gdp->bg_checksum = save_csum;
2086
2087 crc = csum32 & 0xFFFF;
2088 goto out;
2089 }
2090
2091 /* old crc16 code */
2092 if (!ext4_has_feature_gdt_csum(sb))
2093 return 0;
2094
2095 offset = offsetof(struct ext4_group_desc, bg_checksum);
2096
2097 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
2098 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
2099 crc = crc16(crc, (__u8 *)gdp, offset);
2100 offset += sizeof(gdp->bg_checksum); /* skip checksum */
2101 /* for checksum of struct ext4_group_desc do the rest...*/
2102 if (ext4_has_feature_64bit(sb) &&
2103 offset < le16_to_cpu(sbi->s_es->s_desc_size))
2104 crc = crc16(crc, (__u8 *)gdp + offset,
2105 le16_to_cpu(sbi->s_es->s_desc_size) -
2106 offset);
2107
2108 out:
2109 return cpu_to_le16(crc);
2110 }
2111
2112 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group,
2113 struct ext4_group_desc *gdp)
2114 {
2115 if (ext4_has_group_desc_csum(sb) &&
2116 (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp)))
2117 return 0;
2118
2119 return 1;
2120 }
2121
2122 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group,
2123 struct ext4_group_desc *gdp)
2124 {
2125 if (!ext4_has_group_desc_csum(sb))
2126 return;
2127 gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp);
2128 }
2129
2130 /* Called at mount-time, super-block is locked */
2131 static int ext4_check_descriptors(struct super_block *sb,
2132 ext4_group_t *first_not_zeroed)
2133 {
2134 struct ext4_sb_info *sbi = EXT4_SB(sb);
2135 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
2136 ext4_fsblk_t last_block;
2137 ext4_fsblk_t block_bitmap;
2138 ext4_fsblk_t inode_bitmap;
2139 ext4_fsblk_t inode_table;
2140 int flexbg_flag = 0;
2141 ext4_group_t i, grp = sbi->s_groups_count;
2142
2143 if (ext4_has_feature_flex_bg(sb))
2144 flexbg_flag = 1;
2145
2146 ext4_debug("Checking group descriptors");
2147
2148 for (i = 0; i < sbi->s_groups_count; i++) {
2149 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
2150
2151 if (i == sbi->s_groups_count - 1 || flexbg_flag)
2152 last_block = ext4_blocks_count(sbi->s_es) - 1;
2153 else
2154 last_block = first_block +
2155 (EXT4_BLOCKS_PER_GROUP(sb) - 1);
2156
2157 if ((grp == sbi->s_groups_count) &&
2158 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2159 grp = i;
2160
2161 block_bitmap = ext4_block_bitmap(sb, gdp);
2162 if (block_bitmap < first_block || block_bitmap > last_block) {
2163 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2164 "Block bitmap for group %u not in group "
2165 "(block %llu)!", i, block_bitmap);
2166 return 0;
2167 }
2168 inode_bitmap = ext4_inode_bitmap(sb, gdp);
2169 if (inode_bitmap < first_block || inode_bitmap > last_block) {
2170 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2171 "Inode bitmap for group %u not in group "
2172 "(block %llu)!", i, inode_bitmap);
2173 return 0;
2174 }
2175 inode_table = ext4_inode_table(sb, gdp);
2176 if (inode_table < first_block ||
2177 inode_table + sbi->s_itb_per_group - 1 > last_block) {
2178 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2179 "Inode table for group %u not in group "
2180 "(block %llu)!", i, inode_table);
2181 return 0;
2182 }
2183 ext4_lock_group(sb, i);
2184 if (!ext4_group_desc_csum_verify(sb, i, gdp)) {
2185 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2186 "Checksum for group %u failed (%u!=%u)",
2187 i, le16_to_cpu(ext4_group_desc_csum(sb, i,
2188 gdp)), le16_to_cpu(gdp->bg_checksum));
2189 if (!(sb->s_flags & MS_RDONLY)) {
2190 ext4_unlock_group(sb, i);
2191 return 0;
2192 }
2193 }
2194 ext4_unlock_group(sb, i);
2195 if (!flexbg_flag)
2196 first_block += EXT4_BLOCKS_PER_GROUP(sb);
2197 }
2198 if (NULL != first_not_zeroed)
2199 *first_not_zeroed = grp;
2200 return 1;
2201 }
2202
2203 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at
2204 * the superblock) which were deleted from all directories, but held open by
2205 * a process at the time of a crash. We walk the list and try to delete these
2206 * inodes at recovery time (only with a read-write filesystem).
2207 *
2208 * In order to keep the orphan inode chain consistent during traversal (in
2209 * case of crash during recovery), we link each inode into the superblock
2210 * orphan list_head and handle it the same way as an inode deletion during
2211 * normal operation (which journals the operations for us).
2212 *
2213 * We only do an iget() and an iput() on each inode, which is very safe if we
2214 * accidentally point at an in-use or already deleted inode. The worst that
2215 * can happen in this case is that we get a "bit already cleared" message from
2216 * ext4_free_inode(). The only reason we would point at a wrong inode is if
2217 * e2fsck was run on this filesystem, and it must have already done the orphan
2218 * inode cleanup for us, so we can safely abort without any further action.
2219 */
2220 static void ext4_orphan_cleanup(struct super_block *sb,
2221 struct ext4_super_block *es)
2222 {
2223 unsigned int s_flags = sb->s_flags;
2224 int nr_orphans = 0, nr_truncates = 0;
2225 #ifdef CONFIG_QUOTA
2226 int i;
2227 #endif
2228 if (!es->s_last_orphan) {
2229 jbd_debug(4, "no orphan inodes to clean up\n");
2230 return;
2231 }
2232
2233 if (bdev_read_only(sb->s_bdev)) {
2234 ext4_msg(sb, KERN_ERR, "write access "
2235 "unavailable, skipping orphan cleanup");
2236 return;
2237 }
2238
2239 /* Check if feature set would not allow a r/w mount */
2240 if (!ext4_feature_set_ok(sb, 0)) {
2241 ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to "
2242 "unknown ROCOMPAT features");
2243 return;
2244 }
2245
2246 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2247 /* don't clear list on RO mount w/ errors */
2248 if (es->s_last_orphan && !(s_flags & MS_RDONLY)) {
2249 ext4_msg(sb, KERN_INFO, "Errors on filesystem, "
2250 "clearing orphan list.\n");
2251 es->s_last_orphan = 0;
2252 }
2253 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2254 return;
2255 }
2256
2257 if (s_flags & MS_RDONLY) {
2258 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs");
2259 sb->s_flags &= ~MS_RDONLY;
2260 }
2261 #ifdef CONFIG_QUOTA
2262 /* Needed for iput() to work correctly and not trash data */
2263 sb->s_flags |= MS_ACTIVE;
2264 /* Turn on quotas so that they are updated correctly */
2265 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2266 if (EXT4_SB(sb)->s_qf_names[i]) {
2267 int ret = ext4_quota_on_mount(sb, i);
2268 if (ret < 0)
2269 ext4_msg(sb, KERN_ERR,
2270 "Cannot turn on journaled "
2271 "quota: error %d", ret);
2272 }
2273 }
2274 #endif
2275
2276 while (es->s_last_orphan) {
2277 struct inode *inode;
2278
2279 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan));
2280 if (IS_ERR(inode)) {
2281 es->s_last_orphan = 0;
2282 break;
2283 }
2284
2285 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan);
2286 dquot_initialize(inode);
2287 if (inode->i_nlink) {
2288 if (test_opt(sb, DEBUG))
2289 ext4_msg(sb, KERN_DEBUG,
2290 "%s: truncating inode %lu to %lld bytes",
2291 __func__, inode->i_ino, inode->i_size);
2292 jbd_debug(2, "truncating inode %lu to %lld bytes\n",
2293 inode->i_ino, inode->i_size);
2294 inode_lock(inode);
2295 truncate_inode_pages(inode->i_mapping, inode->i_size);
2296 ext4_truncate(inode);
2297 inode_unlock(inode);
2298 nr_truncates++;
2299 } else {
2300 if (test_opt(sb, DEBUG))
2301 ext4_msg(sb, KERN_DEBUG,
2302 "%s: deleting unreferenced inode %lu",
2303 __func__, inode->i_ino);
2304 jbd_debug(2, "deleting unreferenced inode %lu\n",
2305 inode->i_ino);
2306 nr_orphans++;
2307 }
2308 iput(inode); /* The delete magic happens here! */
2309 }
2310
2311 #define PLURAL(x) (x), ((x) == 1) ? "" : "s"
2312
2313 if (nr_orphans)
2314 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted",
2315 PLURAL(nr_orphans));
2316 if (nr_truncates)
2317 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up",
2318 PLURAL(nr_truncates));
2319 #ifdef CONFIG_QUOTA
2320 /* Turn quotas off */
2321 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2322 if (sb_dqopt(sb)->files[i])
2323 dquot_quota_off(sb, i);
2324 }
2325 #endif
2326 sb->s_flags = s_flags; /* Restore MS_RDONLY status */
2327 }
2328
2329 /*
2330 * Maximal extent format file size.
2331 * Resulting logical blkno at s_maxbytes must fit in our on-disk
2332 * extent format containers, within a sector_t, and within i_blocks
2333 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units,
2334 * so that won't be a limiting factor.
2335 *
2336 * However there is other limiting factor. We do store extents in the form
2337 * of starting block and length, hence the resulting length of the extent
2338 * covering maximum file size must fit into on-disk format containers as
2339 * well. Given that length is always by 1 unit bigger than max unit (because
2340 * we count 0 as well) we have to lower the s_maxbytes by one fs block.
2341 *
2342 * Note, this does *not* consider any metadata overhead for vfs i_blocks.
2343 */
2344 static loff_t ext4_max_size(int blkbits, int has_huge_files)
2345 {
2346 loff_t res;
2347 loff_t upper_limit = MAX_LFS_FILESIZE;
2348
2349 /* small i_blocks in vfs inode? */
2350 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2351 /*
2352 * CONFIG_LBDAF is not enabled implies the inode
2353 * i_block represent total blocks in 512 bytes
2354 * 32 == size of vfs inode i_blocks * 8
2355 */
2356 upper_limit = (1LL << 32) - 1;
2357
2358 /* total blocks in file system block size */
2359 upper_limit >>= (blkbits - 9);
2360 upper_limit <<= blkbits;
2361 }
2362
2363 /*
2364 * 32-bit extent-start container, ee_block. We lower the maxbytes
2365 * by one fs block, so ee_len can cover the extent of maximum file
2366 * size
2367 */
2368 res = (1LL << 32) - 1;
2369 res <<= blkbits;
2370
2371 /* Sanity check against vm- & vfs- imposed limits */
2372 if (res > upper_limit)
2373 res = upper_limit;
2374
2375 return res;
2376 }
2377
2378 /*
2379 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect
2380 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
2381 * We need to be 1 filesystem block less than the 2^48 sector limit.
2382 */
2383 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
2384 {
2385 loff_t res = EXT4_NDIR_BLOCKS;
2386 int meta_blocks;
2387 loff_t upper_limit;
2388 /* This is calculated to be the largest file size for a dense, block
2389 * mapped file such that the file's total number of 512-byte sectors,
2390 * including data and all indirect blocks, does not exceed (2^48 - 1).
2391 *
2392 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
2393 * number of 512-byte sectors of the file.
2394 */
2395
2396 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2397 /*
2398 * !has_huge_files or CONFIG_LBDAF not enabled implies that
2399 * the inode i_block field represents total file blocks in
2400 * 2^32 512-byte sectors == size of vfs inode i_blocks * 8
2401 */
2402 upper_limit = (1LL << 32) - 1;
2403
2404 /* total blocks in file system block size */
2405 upper_limit >>= (bits - 9);
2406
2407 } else {
2408 /*
2409 * We use 48 bit ext4_inode i_blocks
2410 * With EXT4_HUGE_FILE_FL set the i_blocks
2411 * represent total number of blocks in
2412 * file system block size
2413 */
2414 upper_limit = (1LL << 48) - 1;
2415
2416 }
2417
2418 /* indirect blocks */
2419 meta_blocks = 1;
2420 /* double indirect blocks */
2421 meta_blocks += 1 + (1LL << (bits-2));
2422 /* tripple indirect blocks */
2423 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2)));
2424
2425 upper_limit -= meta_blocks;
2426 upper_limit <<= bits;
2427
2428 res += 1LL << (bits-2);
2429 res += 1LL << (2*(bits-2));
2430 res += 1LL << (3*(bits-2));
2431 res <<= bits;
2432 if (res > upper_limit)
2433 res = upper_limit;
2434
2435 if (res > MAX_LFS_FILESIZE)
2436 res = MAX_LFS_FILESIZE;
2437
2438 return res;
2439 }
2440
2441 static ext4_fsblk_t descriptor_loc(struct super_block *sb,
2442 ext4_fsblk_t logical_sb_block, int nr)
2443 {
2444 struct ext4_sb_info *sbi = EXT4_SB(sb);
2445 ext4_group_t bg, first_meta_bg;
2446 int has_super = 0;
2447
2448 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
2449
2450 if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg)
2451 return logical_sb_block + nr + 1;
2452 bg = sbi->s_desc_per_block * nr;
2453 if (ext4_bg_has_super(sb, bg))
2454 has_super = 1;
2455
2456 /*
2457 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at
2458 * block 2, not 1. If s_first_data_block == 0 (bigalloc is enabled
2459 * on modern mke2fs or blksize > 1k on older mke2fs) then we must
2460 * compensate.
2461 */
2462 if (sb->s_blocksize == 1024 && nr == 0 &&
2463 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block) == 0)
2464 has_super++;
2465
2466 return (has_super + ext4_group_first_block_no(sb, bg));
2467 }
2468
2469 /**
2470 * ext4_get_stripe_size: Get the stripe size.
2471 * @sbi: In memory super block info
2472 *
2473 * If we have specified it via mount option, then
2474 * use the mount option value. If the value specified at mount time is
2475 * greater than the blocks per group use the super block value.
2476 * If the super block value is greater than blocks per group return 0.
2477 * Allocator needs it be less than blocks per group.
2478 *
2479 */
2480 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
2481 {
2482 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
2483 unsigned long stripe_width =
2484 le32_to_cpu(sbi->s_es->s_raid_stripe_width);
2485 int ret;
2486
2487 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
2488 ret = sbi->s_stripe;
2489 else if (stripe_width <= sbi->s_blocks_per_group)
2490 ret = stripe_width;
2491 else if (stride <= sbi->s_blocks_per_group)
2492 ret = stride;
2493 else
2494 ret = 0;
2495
2496 /*
2497 * If the stripe width is 1, this makes no sense and
2498 * we set it to 0 to turn off stripe handling code.
2499 */
2500 if (ret <= 1)
2501 ret = 0;
2502
2503 return ret;
2504 }
2505
2506 /*
2507 * Check whether this filesystem can be mounted based on
2508 * the features present and the RDONLY/RDWR mount requested.
2509 * Returns 1 if this filesystem can be mounted as requested,
2510 * 0 if it cannot be.
2511 */
2512 static int ext4_feature_set_ok(struct super_block *sb, int readonly)
2513 {
2514 if (ext4_has_unknown_ext4_incompat_features(sb)) {
2515 ext4_msg(sb, KERN_ERR,
2516 "Couldn't mount because of "
2517 "unsupported optional features (%x)",
2518 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
2519 ~EXT4_FEATURE_INCOMPAT_SUPP));
2520 return 0;
2521 }
2522
2523 if (readonly)
2524 return 1;
2525
2526 if (ext4_has_feature_readonly(sb)) {
2527 ext4_msg(sb, KERN_INFO, "filesystem is read-only");
2528 sb->s_flags |= MS_RDONLY;
2529 return 1;
2530 }
2531
2532 /* Check that feature set is OK for a read-write mount */
2533 if (ext4_has_unknown_ext4_ro_compat_features(sb)) {
2534 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
2535 "unsupported optional features (%x)",
2536 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
2537 ~EXT4_FEATURE_RO_COMPAT_SUPP));
2538 return 0;
2539 }
2540 /*
2541 * Large file size enabled file system can only be mounted
2542 * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF
2543 */
2544 if (ext4_has_feature_huge_file(sb)) {
2545 if (sizeof(blkcnt_t) < sizeof(u64)) {
2546 ext4_msg(sb, KERN_ERR, "Filesystem with huge files "
2547 "cannot be mounted RDWR without "
2548 "CONFIG_LBDAF");
2549 return 0;
2550 }
2551 }
2552 if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) {
2553 ext4_msg(sb, KERN_ERR,
2554 "Can't support bigalloc feature without "
2555 "extents feature\n");
2556 return 0;
2557 }
2558
2559 #ifndef CONFIG_QUOTA
2560 if (ext4_has_feature_quota(sb) && !readonly) {
2561 ext4_msg(sb, KERN_ERR,
2562 "Filesystem with quota feature cannot be mounted RDWR "
2563 "without CONFIG_QUOTA");
2564 return 0;
2565 }
2566 if (ext4_has_feature_project(sb) && !readonly) {
2567 ext4_msg(sb, KERN_ERR,
2568 "Filesystem with project quota feature cannot be mounted RDWR "
2569 "without CONFIG_QUOTA");
2570 return 0;
2571 }
2572 #endif /* CONFIG_QUOTA */
2573 return 1;
2574 }
2575
2576 /*
2577 * This function is called once a day if we have errors logged
2578 * on the file system
2579 */
2580 static void print_daily_error_info(unsigned long arg)
2581 {
2582 struct super_block *sb = (struct super_block *) arg;
2583 struct ext4_sb_info *sbi;
2584 struct ext4_super_block *es;
2585
2586 sbi = EXT4_SB(sb);
2587 es = sbi->s_es;
2588
2589 if (es->s_error_count)
2590 /* fsck newer than v1.41.13 is needed to clean this condition. */
2591 ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u",
2592 le32_to_cpu(es->s_error_count));
2593 if (es->s_first_error_time) {
2594 printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %u: %.*s:%d",
2595 sb->s_id, le32_to_cpu(es->s_first_error_time),
2596 (int) sizeof(es->s_first_error_func),
2597 es->s_first_error_func,
2598 le32_to_cpu(es->s_first_error_line));
2599 if (es->s_first_error_ino)
2600 printk(": inode %u",
2601 le32_to_cpu(es->s_first_error_ino));
2602 if (es->s_first_error_block)
2603 printk(": block %llu", (unsigned long long)
2604 le64_to_cpu(es->s_first_error_block));
2605 printk("\n");
2606 }
2607 if (es->s_last_error_time) {
2608 printk(KERN_NOTICE "EXT4-fs (%s): last error at time %u: %.*s:%d",
2609 sb->s_id, le32_to_cpu(es->s_last_error_time),
2610 (int) sizeof(es->s_last_error_func),
2611 es->s_last_error_func,
2612 le32_to_cpu(es->s_last_error_line));
2613 if (es->s_last_error_ino)
2614 printk(": inode %u",
2615 le32_to_cpu(es->s_last_error_ino));
2616 if (es->s_last_error_block)
2617 printk(": block %llu", (unsigned long long)
2618 le64_to_cpu(es->s_last_error_block));
2619 printk("\n");
2620 }
2621 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */
2622 }
2623
2624 /* Find next suitable group and run ext4_init_inode_table */
2625 static int ext4_run_li_request(struct ext4_li_request *elr)
2626 {
2627 struct ext4_group_desc *gdp = NULL;
2628 ext4_group_t group, ngroups;
2629 struct super_block *sb;
2630 unsigned long timeout = 0;
2631 int ret = 0;
2632
2633 sb = elr->lr_super;
2634 ngroups = EXT4_SB(sb)->s_groups_count;
2635
2636 sb_start_write(sb);
2637 for (group = elr->lr_next_group; group < ngroups; group++) {
2638 gdp = ext4_get_group_desc(sb, group, NULL);
2639 if (!gdp) {
2640 ret = 1;
2641 break;
2642 }
2643
2644 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2645 break;
2646 }
2647
2648 if (group >= ngroups)
2649 ret = 1;
2650
2651 if (!ret) {
2652 timeout = jiffies;
2653 ret = ext4_init_inode_table(sb, group,
2654 elr->lr_timeout ? 0 : 1);
2655 if (elr->lr_timeout == 0) {
2656 timeout = (jiffies - timeout) *
2657 elr->lr_sbi->s_li_wait_mult;
2658 elr->lr_timeout = timeout;
2659 }
2660 elr->lr_next_sched = jiffies + elr->lr_timeout;
2661 elr->lr_next_group = group + 1;
2662 }
2663 sb_end_write(sb);
2664
2665 return ret;
2666 }
2667
2668 /*
2669 * Remove lr_request from the list_request and free the
2670 * request structure. Should be called with li_list_mtx held
2671 */
2672 static void ext4_remove_li_request(struct ext4_li_request *elr)
2673 {
2674 struct ext4_sb_info *sbi;
2675
2676 if (!elr)
2677 return;
2678
2679 sbi = elr->lr_sbi;
2680
2681 list_del(&elr->lr_request);
2682 sbi->s_li_request = NULL;
2683 kfree(elr);
2684 }
2685
2686 static void ext4_unregister_li_request(struct super_block *sb)
2687 {
2688 mutex_lock(&ext4_li_mtx);
2689 if (!ext4_li_info) {
2690 mutex_unlock(&ext4_li_mtx);
2691 return;
2692 }
2693
2694 mutex_lock(&ext4_li_info->li_list_mtx);
2695 ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
2696 mutex_unlock(&ext4_li_info->li_list_mtx);
2697 mutex_unlock(&ext4_li_mtx);
2698 }
2699
2700 static struct task_struct *ext4_lazyinit_task;
2701
2702 /*
2703 * This is the function where ext4lazyinit thread lives. It walks
2704 * through the request list searching for next scheduled filesystem.
2705 * When such a fs is found, run the lazy initialization request
2706 * (ext4_rn_li_request) and keep track of the time spend in this
2707 * function. Based on that time we compute next schedule time of
2708 * the request. When walking through the list is complete, compute
2709 * next waking time and put itself into sleep.
2710 */
2711 static int ext4_lazyinit_thread(void *arg)
2712 {
2713 struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg;
2714 struct list_head *pos, *n;
2715 struct ext4_li_request *elr;
2716 unsigned long next_wakeup, cur;
2717
2718 BUG_ON(NULL == eli);
2719
2720 cont_thread:
2721 while (true) {
2722 next_wakeup = MAX_JIFFY_OFFSET;
2723
2724 mutex_lock(&eli->li_list_mtx);
2725 if (list_empty(&eli->li_request_list)) {
2726 mutex_unlock(&eli->li_list_mtx);
2727 goto exit_thread;
2728 }
2729
2730 list_for_each_safe(pos, n, &eli->li_request_list) {
2731 elr = list_entry(pos, struct ext4_li_request,
2732 lr_request);
2733
2734 if (time_after_eq(jiffies, elr->lr_next_sched)) {
2735 if (ext4_run_li_request(elr) != 0) {
2736 /* error, remove the lazy_init job */
2737 ext4_remove_li_request(elr);
2738 continue;
2739 }
2740 }
2741
2742 if (time_before(elr->lr_next_sched, next_wakeup))
2743 next_wakeup = elr->lr_next_sched;
2744 }
2745 mutex_unlock(&eli->li_list_mtx);
2746
2747 try_to_freeze();
2748
2749 cur = jiffies;
2750 if ((time_after_eq(cur, next_wakeup)) ||
2751 (MAX_JIFFY_OFFSET == next_wakeup)) {
2752 cond_resched();
2753 continue;
2754 }
2755
2756 schedule_timeout_interruptible(next_wakeup - cur);
2757
2758 if (kthread_should_stop()) {
2759 ext4_clear_request_list();
2760 goto exit_thread;
2761 }
2762 }
2763
2764 exit_thread:
2765 /*
2766 * It looks like the request list is empty, but we need
2767 * to check it under the li_list_mtx lock, to prevent any
2768 * additions into it, and of course we should lock ext4_li_mtx
2769 * to atomically free the list and ext4_li_info, because at
2770 * this point another ext4 filesystem could be registering
2771 * new one.
2772 */
2773 mutex_lock(&ext4_li_mtx);
2774 mutex_lock(&eli->li_list_mtx);
2775 if (!list_empty(&eli->li_request_list)) {
2776 mutex_unlock(&eli->li_list_mtx);
2777 mutex_unlock(&ext4_li_mtx);
2778 goto cont_thread;
2779 }
2780 mutex_unlock(&eli->li_list_mtx);
2781 kfree(ext4_li_info);
2782 ext4_li_info = NULL;
2783 mutex_unlock(&ext4_li_mtx);
2784
2785 return 0;
2786 }
2787
2788 static void ext4_clear_request_list(void)
2789 {
2790 struct list_head *pos, *n;
2791 struct ext4_li_request *elr;
2792
2793 mutex_lock(&ext4_li_info->li_list_mtx);
2794 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
2795 elr = list_entry(pos, struct ext4_li_request,
2796 lr_request);
2797 ext4_remove_li_request(elr);
2798 }
2799 mutex_unlock(&ext4_li_info->li_list_mtx);
2800 }
2801
2802 static int ext4_run_lazyinit_thread(void)
2803 {
2804 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
2805 ext4_li_info, "ext4lazyinit");
2806 if (IS_ERR(ext4_lazyinit_task)) {
2807 int err = PTR_ERR(ext4_lazyinit_task);
2808 ext4_clear_request_list();
2809 kfree(ext4_li_info);
2810 ext4_li_info = NULL;
2811 printk(KERN_CRIT "EXT4-fs: error %d creating inode table "
2812 "initialization thread\n",
2813 err);
2814 return err;
2815 }
2816 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
2817 return 0;
2818 }
2819
2820 /*
2821 * Check whether it make sense to run itable init. thread or not.
2822 * If there is at least one uninitialized inode table, return
2823 * corresponding group number, else the loop goes through all
2824 * groups and return total number of groups.
2825 */
2826 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
2827 {
2828 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
2829 struct ext4_group_desc *gdp = NULL;
2830
2831 for (group = 0; group < ngroups; group++) {
2832 gdp = ext4_get_group_desc(sb, group, NULL);
2833 if (!gdp)
2834 continue;
2835
2836 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2837 break;
2838 }
2839
2840 return group;
2841 }
2842
2843 static int ext4_li_info_new(void)
2844 {
2845 struct ext4_lazy_init *eli = NULL;
2846
2847 eli = kzalloc(sizeof(*eli), GFP_KERNEL);
2848 if (!eli)
2849 return -ENOMEM;
2850
2851 INIT_LIST_HEAD(&eli->li_request_list);
2852 mutex_init(&eli->li_list_mtx);
2853
2854 eli->li_state |= EXT4_LAZYINIT_QUIT;
2855
2856 ext4_li_info = eli;
2857
2858 return 0;
2859 }
2860
2861 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
2862 ext4_group_t start)
2863 {
2864 struct ext4_sb_info *sbi = EXT4_SB(sb);
2865 struct ext4_li_request *elr;
2866
2867 elr = kzalloc(sizeof(*elr), GFP_KERNEL);
2868 if (!elr)
2869 return NULL;
2870
2871 elr->lr_super = sb;
2872 elr->lr_sbi = sbi;
2873 elr->lr_next_group = start;
2874
2875 /*
2876 * Randomize first schedule time of the request to
2877 * spread the inode table initialization requests
2878 * better.
2879 */
2880 elr->lr_next_sched = jiffies + (prandom_u32() %
2881 (EXT4_DEF_LI_MAX_START_DELAY * HZ));
2882 return elr;
2883 }
2884
2885 int ext4_register_li_request(struct super_block *sb,
2886 ext4_group_t first_not_zeroed)
2887 {
2888 struct ext4_sb_info *sbi = EXT4_SB(sb);
2889 struct ext4_li_request *elr = NULL;
2890 ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count;
2891 int ret = 0;
2892
2893 mutex_lock(&ext4_li_mtx);
2894 if (sbi->s_li_request != NULL) {
2895 /*
2896 * Reset timeout so it can be computed again, because
2897 * s_li_wait_mult might have changed.
2898 */
2899 sbi->s_li_request->lr_timeout = 0;
2900 goto out;
2901 }
2902
2903 if (first_not_zeroed == ngroups ||
2904 (sb->s_flags & MS_RDONLY) ||
2905 !test_opt(sb, INIT_INODE_TABLE))
2906 goto out;
2907
2908 elr = ext4_li_request_new(sb, first_not_zeroed);
2909 if (!elr) {
2910 ret = -ENOMEM;
2911 goto out;
2912 }
2913
2914 if (NULL == ext4_li_info) {
2915 ret = ext4_li_info_new();
2916 if (ret)
2917 goto out;
2918 }
2919
2920 mutex_lock(&ext4_li_info->li_list_mtx);
2921 list_add(&elr->lr_request, &ext4_li_info->li_request_list);
2922 mutex_unlock(&ext4_li_info->li_list_mtx);
2923
2924 sbi->s_li_request = elr;
2925 /*
2926 * set elr to NULL here since it has been inserted to
2927 * the request_list and the removal and free of it is
2928 * handled by ext4_clear_request_list from now on.
2929 */
2930 elr = NULL;
2931
2932 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
2933 ret = ext4_run_lazyinit_thread();
2934 if (ret)
2935 goto out;
2936 }
2937 out:
2938 mutex_unlock(&ext4_li_mtx);
2939 if (ret)
2940 kfree(elr);
2941 return ret;
2942 }
2943
2944 /*
2945 * We do not need to lock anything since this is called on
2946 * module unload.
2947 */
2948 static void ext4_destroy_lazyinit_thread(void)
2949 {
2950 /*
2951 * If thread exited earlier
2952 * there's nothing to be done.
2953 */
2954 if (!ext4_li_info || !ext4_lazyinit_task)
2955 return;
2956
2957 kthread_stop(ext4_lazyinit_task);
2958 }
2959
2960 static int set_journal_csum_feature_set(struct super_block *sb)
2961 {
2962 int ret = 1;
2963 int compat, incompat;
2964 struct ext4_sb_info *sbi = EXT4_SB(sb);
2965
2966 if (ext4_has_metadata_csum(sb)) {
2967 /* journal checksum v3 */
2968 compat = 0;
2969 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3;
2970 } else {
2971 /* journal checksum v1 */
2972 compat = JBD2_FEATURE_COMPAT_CHECKSUM;
2973 incompat = 0;
2974 }
2975
2976 jbd2_journal_clear_features(sbi->s_journal,
2977 JBD2_FEATURE_COMPAT_CHECKSUM, 0,
2978 JBD2_FEATURE_INCOMPAT_CSUM_V3 |
2979 JBD2_FEATURE_INCOMPAT_CSUM_V2);
2980 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
2981 ret = jbd2_journal_set_features(sbi->s_journal,
2982 compat, 0,
2983 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
2984 incompat);
2985 } else if (test_opt(sb, JOURNAL_CHECKSUM)) {
2986 ret = jbd2_journal_set_features(sbi->s_journal,
2987 compat, 0,
2988 incompat);
2989 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
2990 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
2991 } else {
2992 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
2993 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
2994 }
2995
2996 return ret;
2997 }
2998
2999 /*
3000 * Note: calculating the overhead so we can be compatible with
3001 * historical BSD practice is quite difficult in the face of
3002 * clusters/bigalloc. This is because multiple metadata blocks from
3003 * different block group can end up in the same allocation cluster.
3004 * Calculating the exact overhead in the face of clustered allocation
3005 * requires either O(all block bitmaps) in memory or O(number of block
3006 * groups**2) in time. We will still calculate the superblock for
3007 * older file systems --- and if we come across with a bigalloc file
3008 * system with zero in s_overhead_clusters the estimate will be close to
3009 * correct especially for very large cluster sizes --- but for newer
3010 * file systems, it's better to calculate this figure once at mkfs
3011 * time, and store it in the superblock. If the superblock value is
3012 * present (even for non-bigalloc file systems), we will use it.
3013 */
3014 static int count_overhead(struct super_block *sb, ext4_group_t grp,
3015 char *buf)
3016 {
3017 struct ext4_sb_info *sbi = EXT4_SB(sb);
3018 struct ext4_group_desc *gdp;
3019 ext4_fsblk_t first_block, last_block, b;
3020 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3021 int s, j, count = 0;
3022
3023 if (!ext4_has_feature_bigalloc(sb))
3024 return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) +
3025 sbi->s_itb_per_group + 2);
3026
3027 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) +
3028 (grp * EXT4_BLOCKS_PER_GROUP(sb));
3029 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1;
3030 for (i = 0; i < ngroups; i++) {
3031 gdp = ext4_get_group_desc(sb, i, NULL);
3032 b = ext4_block_bitmap(sb, gdp);
3033 if (b >= first_block && b <= last_block) {
3034 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3035 count++;
3036 }
3037 b = ext4_inode_bitmap(sb, gdp);
3038 if (b >= first_block && b <= last_block) {
3039 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3040 count++;
3041 }
3042 b = ext4_inode_table(sb, gdp);
3043 if (b >= first_block && b + sbi->s_itb_per_group <= last_block)
3044 for (j = 0; j < sbi->s_itb_per_group; j++, b++) {
3045 int c = EXT4_B2C(sbi, b - first_block);
3046 ext4_set_bit(c, buf);
3047 count++;
3048 }
3049 if (i != grp)
3050 continue;
3051 s = 0;
3052 if (ext4_bg_has_super(sb, grp)) {
3053 ext4_set_bit(s++, buf);
3054 count++;
3055 }
3056 for (j = ext4_bg_num_gdb(sb, grp); j > 0; j--) {
3057 ext4_set_bit(EXT4_B2C(sbi, s++), buf);
3058 count++;
3059 }
3060 }
3061 if (!count)
3062 return 0;
3063 return EXT4_CLUSTERS_PER_GROUP(sb) -
3064 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8);
3065 }
3066
3067 /*
3068 * Compute the overhead and stash it in sbi->s_overhead
3069 */
3070 int ext4_calculate_overhead(struct super_block *sb)
3071 {
3072 struct ext4_sb_info *sbi = EXT4_SB(sb);
3073 struct ext4_super_block *es = sbi->s_es;
3074 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3075 ext4_fsblk_t overhead = 0;
3076 char *buf = (char *) get_zeroed_page(GFP_NOFS);
3077
3078 if (!buf)
3079 return -ENOMEM;
3080
3081 /*
3082 * Compute the overhead (FS structures). This is constant
3083 * for a given filesystem unless the number of block groups
3084 * changes so we cache the previous value until it does.
3085 */
3086
3087 /*
3088 * All of the blocks before first_data_block are overhead
3089 */
3090 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
3091
3092 /*
3093 * Add the overhead found in each block group
3094 */
3095 for (i = 0; i < ngroups; i++) {
3096 int blks;
3097
3098 blks = count_overhead(sb, i, buf);
3099 overhead += blks;
3100 if (blks)
3101 memset(buf, 0, PAGE_SIZE);
3102 cond_resched();
3103 }
3104 /* Add the internal journal blocks as well */
3105 if (sbi->s_journal && !sbi->journal_bdev)
3106 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_maxlen);
3107
3108 sbi->s_overhead = overhead;
3109 smp_wmb();
3110 free_page((unsigned long) buf);
3111 return 0;
3112 }
3113
3114 static void ext4_set_resv_clusters(struct super_block *sb)
3115 {
3116 ext4_fsblk_t resv_clusters;
3117 struct ext4_sb_info *sbi = EXT4_SB(sb);
3118
3119 /*
3120 * There's no need to reserve anything when we aren't using extents.
3121 * The space estimates are exact, there are no unwritten extents,
3122 * hole punching doesn't need new metadata... This is needed especially
3123 * to keep ext2/3 backward compatibility.
3124 */
3125 if (!ext4_has_feature_extents(sb))
3126 return;
3127 /*
3128 * By default we reserve 2% or 4096 clusters, whichever is smaller.
3129 * This should cover the situations where we can not afford to run
3130 * out of space like for example punch hole, or converting
3131 * unwritten extents in delalloc path. In most cases such
3132 * allocation would require 1, or 2 blocks, higher numbers are
3133 * very rare.
3134 */
3135 resv_clusters = (ext4_blocks_count(sbi->s_es) >>
3136 sbi->s_cluster_bits);
3137
3138 do_div(resv_clusters, 50);
3139 resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096);
3140
3141 atomic64_set(&sbi->s_resv_clusters, resv_clusters);
3142 }
3143
3144 static int ext4_fill_super(struct super_block *sb, void *data, int silent)
3145 {
3146 char *orig_data = kstrdup(data, GFP_KERNEL);
3147 struct buffer_head *bh;
3148 struct ext4_super_block *es = NULL;
3149 struct ext4_sb_info *sbi;
3150 ext4_fsblk_t block;
3151 ext4_fsblk_t sb_block = get_sb_block(&data);
3152 ext4_fsblk_t logical_sb_block;
3153 unsigned long offset = 0;
3154 unsigned long journal_devnum = 0;
3155 unsigned long def_mount_opts;
3156 struct inode *root;
3157 const char *descr;
3158 int ret = -ENOMEM;
3159 int blocksize, clustersize;
3160 unsigned int db_count;
3161 unsigned int i;
3162 int needs_recovery, has_huge_files, has_bigalloc;
3163 __u64 blocks_count;
3164 int err = 0;
3165 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
3166 ext4_group_t first_not_zeroed;
3167
3168 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
3169 if (!sbi)
3170 goto out_free_orig;
3171
3172 sbi->s_blockgroup_lock =
3173 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
3174 if (!sbi->s_blockgroup_lock) {
3175 kfree(sbi);
3176 goto out_free_orig;
3177 }
3178 sb->s_fs_info = sbi;
3179 sbi->s_sb = sb;
3180 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
3181 sbi->s_sb_block = sb_block;
3182 if (sb->s_bdev->bd_part)
3183 sbi->s_sectors_written_start =
3184 part_stat_read(sb->s_bdev->bd_part, sectors[1]);
3185
3186 /* Cleanup superblock name */
3187 strreplace(sb->s_id, '/', '!');
3188
3189 /* -EINVAL is default */
3190 ret = -EINVAL;
3191 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
3192 if (!blocksize) {
3193 ext4_msg(sb, KERN_ERR, "unable to set blocksize");
3194 goto out_fail;
3195 }
3196
3197 /*
3198 * The ext4 superblock will not be buffer aligned for other than 1kB
3199 * block sizes. We need to calculate the offset from buffer start.
3200 */
3201 if (blocksize != EXT4_MIN_BLOCK_SIZE) {
3202 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3203 offset = do_div(logical_sb_block, blocksize);
3204 } else {
3205 logical_sb_block = sb_block;
3206 }
3207
3208 if (!(bh = sb_bread_unmovable(sb, logical_sb_block))) {
3209 ext4_msg(sb, KERN_ERR, "unable to read superblock");
3210 goto out_fail;
3211 }
3212 /*
3213 * Note: s_es must be initialized as soon as possible because
3214 * some ext4 macro-instructions depend on its value
3215 */
3216 es = (struct ext4_super_block *) (bh->b_data + offset);
3217 sbi->s_es = es;
3218 sb->s_magic = le16_to_cpu(es->s_magic);
3219 if (sb->s_magic != EXT4_SUPER_MAGIC)
3220 goto cantfind_ext4;
3221 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
3222
3223 /* Warn if metadata_csum and gdt_csum are both set. */
3224 if (ext4_has_feature_metadata_csum(sb) &&
3225 ext4_has_feature_gdt_csum(sb))
3226 ext4_warning(sb, "metadata_csum and uninit_bg are "
3227 "redundant flags; please run fsck.");
3228
3229 /* Check for a known checksum algorithm */
3230 if (!ext4_verify_csum_type(sb, es)) {
3231 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3232 "unknown checksum algorithm.");
3233 silent = 1;
3234 goto cantfind_ext4;
3235 }
3236
3237 /* Load the checksum driver */
3238 if (ext4_has_feature_metadata_csum(sb)) {
3239 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
3240 if (IS_ERR(sbi->s_chksum_driver)) {
3241 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver.");
3242 ret = PTR_ERR(sbi->s_chksum_driver);
3243 sbi->s_chksum_driver = NULL;
3244 goto failed_mount;
3245 }
3246 }
3247
3248 /* Check superblock checksum */
3249 if (!ext4_superblock_csum_verify(sb, es)) {
3250 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3251 "invalid superblock checksum. Run e2fsck?");
3252 silent = 1;
3253 ret = -EFSBADCRC;
3254 goto cantfind_ext4;
3255 }
3256
3257 /* Precompute checksum seed for all metadata */
3258 if (ext4_has_feature_csum_seed(sb))
3259 sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed);
3260 else if (ext4_has_metadata_csum(sb))
3261 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid,
3262 sizeof(es->s_uuid));
3263
3264 /* Set defaults before we parse the mount options */
3265 def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
3266 set_opt(sb, INIT_INODE_TABLE);
3267 if (def_mount_opts & EXT4_DEFM_DEBUG)
3268 set_opt(sb, DEBUG);
3269 if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
3270 set_opt(sb, GRPID);
3271 if (def_mount_opts & EXT4_DEFM_UID16)
3272 set_opt(sb, NO_UID32);
3273 /* xattr user namespace & acls are now defaulted on */
3274 set_opt(sb, XATTR_USER);
3275 #ifdef CONFIG_EXT4_FS_POSIX_ACL
3276 set_opt(sb, POSIX_ACL);
3277 #endif
3278 /* don't forget to enable journal_csum when metadata_csum is enabled. */
3279 if (ext4_has_metadata_csum(sb))
3280 set_opt(sb, JOURNAL_CHECKSUM);
3281
3282 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
3283 set_opt(sb, JOURNAL_DATA);
3284 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
3285 set_opt(sb, ORDERED_DATA);
3286 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
3287 set_opt(sb, WRITEBACK_DATA);
3288
3289 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC)
3290 set_opt(sb, ERRORS_PANIC);
3291 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE)
3292 set_opt(sb, ERRORS_CONT);
3293 else
3294 set_opt(sb, ERRORS_RO);
3295 /* block_validity enabled by default; disable with noblock_validity */
3296 set_opt(sb, BLOCK_VALIDITY);
3297 if (def_mount_opts & EXT4_DEFM_DISCARD)
3298 set_opt(sb, DISCARD);
3299
3300 sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid));
3301 sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid));
3302 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
3303 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
3304 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
3305
3306 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
3307 set_opt(sb, BARRIER);
3308
3309 /*
3310 * enable delayed allocation by default
3311 * Use -o nodelalloc to turn it off
3312 */
3313 if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) &&
3314 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
3315 set_opt(sb, DELALLOC);
3316
3317 /*
3318 * set default s_li_wait_mult for lazyinit, for the case there is
3319 * no mount option specified.
3320 */
3321 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
3322
3323 if (!parse_options((char *) sbi->s_es->s_mount_opts, sb,
3324 &journal_devnum, &journal_ioprio, 0)) {
3325 ext4_msg(sb, KERN_WARNING,
3326 "failed to parse options in superblock: %s",
3327 sbi->s_es->s_mount_opts);
3328 }
3329 sbi->s_def_mount_opt = sbi->s_mount_opt;
3330 if (!parse_options((char *) data, sb, &journal_devnum,
3331 &journal_ioprio, 0))
3332 goto failed_mount;
3333
3334 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
3335 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting "
3336 "with data=journal disables delayed "
3337 "allocation and O_DIRECT support!\n");
3338 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
3339 ext4_msg(sb, KERN_ERR, "can't mount with "
3340 "both data=journal and delalloc");
3341 goto failed_mount;
3342 }
3343 if (test_opt(sb, DIOREAD_NOLOCK)) {
3344 ext4_msg(sb, KERN_ERR, "can't mount with "
3345 "both data=journal and dioread_nolock");
3346 goto failed_mount;
3347 }
3348 if (test_opt(sb, DAX)) {
3349 ext4_msg(sb, KERN_ERR, "can't mount with "
3350 "both data=journal and dax");
3351 goto failed_mount;
3352 }
3353 if (test_opt(sb, DELALLOC))
3354 clear_opt(sb, DELALLOC);
3355 } else {
3356 sb->s_iflags |= SB_I_CGROUPWB;
3357 }
3358
3359 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
3360 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
3361
3362 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
3363 (ext4_has_compat_features(sb) ||
3364 ext4_has_ro_compat_features(sb) ||
3365 ext4_has_incompat_features(sb)))
3366 ext4_msg(sb, KERN_WARNING,
3367 "feature flags set on rev 0 fs, "
3368 "running e2fsck is recommended");
3369
3370 if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) {
3371 set_opt2(sb, HURD_COMPAT);
3372 if (ext4_has_feature_64bit(sb)) {
3373 ext4_msg(sb, KERN_ERR,
3374 "The Hurd can't support 64-bit file systems");
3375 goto failed_mount;
3376 }
3377 }
3378
3379 if (IS_EXT2_SB(sb)) {
3380 if (ext2_feature_set_ok(sb))
3381 ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
3382 "using the ext4 subsystem");
3383 else {
3384 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
3385 "to feature incompatibilities");
3386 goto failed_mount;
3387 }
3388 }
3389
3390 if (IS_EXT3_SB(sb)) {
3391 if (ext3_feature_set_ok(sb))
3392 ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
3393 "using the ext4 subsystem");
3394 else {
3395 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
3396 "to feature incompatibilities");
3397 goto failed_mount;
3398 }
3399 }
3400
3401 /*
3402 * Check feature flags regardless of the revision level, since we
3403 * previously didn't change the revision level when setting the flags,
3404 * so there is a chance incompat flags are set on a rev 0 filesystem.
3405 */
3406 if (!ext4_feature_set_ok(sb, (sb->s_flags & MS_RDONLY)))
3407 goto failed_mount;
3408
3409 blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
3410 if (blocksize < EXT4_MIN_BLOCK_SIZE ||
3411 blocksize > EXT4_MAX_BLOCK_SIZE) {
3412 ext4_msg(sb, KERN_ERR,
3413 "Unsupported filesystem blocksize %d", blocksize);
3414 goto failed_mount;
3415 }
3416
3417 if (sbi->s_mount_opt & EXT4_MOUNT_DAX) {
3418 if (blocksize != PAGE_SIZE) {
3419 ext4_msg(sb, KERN_ERR,
3420 "error: unsupported blocksize for dax");
3421 goto failed_mount;
3422 }
3423 if (!sb->s_bdev->bd_disk->fops->direct_access) {
3424 ext4_msg(sb, KERN_ERR,
3425 "error: device does not support dax");
3426 goto failed_mount;
3427 }
3428 }
3429
3430 if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) {
3431 ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d",
3432 es->s_encryption_level);
3433 goto failed_mount;
3434 }
3435
3436 if (sb->s_blocksize != blocksize) {
3437 /* Validate the filesystem blocksize */
3438 if (!sb_set_blocksize(sb, blocksize)) {
3439 ext4_msg(sb, KERN_ERR, "bad block size %d",
3440 blocksize);
3441 goto failed_mount;
3442 }
3443
3444 brelse(bh);
3445 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3446 offset = do_div(logical_sb_block, blocksize);
3447 bh = sb_bread_unmovable(sb, logical_sb_block);
3448 if (!bh) {
3449 ext4_msg(sb, KERN_ERR,
3450 "Can't read superblock on 2nd try");
3451 goto failed_mount;
3452 }
3453 es = (struct ext4_super_block *)(bh->b_data + offset);
3454 sbi->s_es = es;
3455 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
3456 ext4_msg(sb, KERN_ERR,
3457 "Magic mismatch, very weird!");
3458 goto failed_mount;
3459 }
3460 }
3461
3462 has_huge_files = ext4_has_feature_huge_file(sb);
3463 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
3464 has_huge_files);
3465 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
3466
3467 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
3468 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
3469 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
3470 } else {
3471 sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
3472 sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
3473 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
3474 (!is_power_of_2(sbi->s_inode_size)) ||
3475 (sbi->s_inode_size > blocksize)) {
3476 ext4_msg(sb, KERN_ERR,
3477 "unsupported inode size: %d",
3478 sbi->s_inode_size);
3479 goto failed_mount;
3480 }
3481 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE)
3482 sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2);
3483 }
3484
3485 sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
3486 if (ext4_has_feature_64bit(sb)) {
3487 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
3488 sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
3489 !is_power_of_2(sbi->s_desc_size)) {
3490 ext4_msg(sb, KERN_ERR,
3491 "unsupported descriptor size %lu",
3492 sbi->s_desc_size);
3493 goto failed_mount;
3494 }
3495 } else
3496 sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
3497
3498 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
3499 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
3500 if (EXT4_INODE_SIZE(sb) == 0 || EXT4_INODES_PER_GROUP(sb) == 0)
3501 goto cantfind_ext4;
3502
3503 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb);
3504 if (sbi->s_inodes_per_block == 0)
3505 goto cantfind_ext4;
3506 sbi->s_itb_per_group = sbi->s_inodes_per_group /
3507 sbi->s_inodes_per_block;
3508 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb);
3509 sbi->s_sbh = bh;
3510 sbi->s_mount_state = le16_to_cpu(es->s_state);
3511 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
3512 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
3513
3514 for (i = 0; i < 4; i++)
3515 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
3516 sbi->s_def_hash_version = es->s_def_hash_version;
3517 if (ext4_has_feature_dir_index(sb)) {
3518 i = le32_to_cpu(es->s_flags);
3519 if (i & EXT2_FLAGS_UNSIGNED_HASH)
3520 sbi->s_hash_unsigned = 3;
3521 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
3522 #ifdef __CHAR_UNSIGNED__
3523 if (!(sb->s_flags & MS_RDONLY))
3524 es->s_flags |=
3525 cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
3526 sbi->s_hash_unsigned = 3;
3527 #else
3528 if (!(sb->s_flags & MS_RDONLY))
3529 es->s_flags |=
3530 cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
3531 #endif
3532 }
3533 }
3534
3535 /* Handle clustersize */
3536 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size);
3537 has_bigalloc = ext4_has_feature_bigalloc(sb);
3538 if (has_bigalloc) {
3539 if (clustersize < blocksize) {
3540 ext4_msg(sb, KERN_ERR,
3541 "cluster size (%d) smaller than "
3542 "block size (%d)", clustersize, blocksize);
3543 goto failed_mount;
3544 }
3545 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) -
3546 le32_to_cpu(es->s_log_block_size);
3547 sbi->s_clusters_per_group =
3548 le32_to_cpu(es->s_clusters_per_group);
3549 if (sbi->s_clusters_per_group > blocksize * 8) {
3550 ext4_msg(sb, KERN_ERR,
3551 "#clusters per group too big: %lu",
3552 sbi->s_clusters_per_group);
3553 goto failed_mount;
3554 }
3555 if (sbi->s_blocks_per_group !=
3556 (sbi->s_clusters_per_group * (clustersize / blocksize))) {
3557 ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and "
3558 "clusters per group (%lu) inconsistent",
3559 sbi->s_blocks_per_group,
3560 sbi->s_clusters_per_group);
3561 goto failed_mount;
3562 }
3563 } else {
3564 if (clustersize != blocksize) {
3565 ext4_warning(sb, "fragment/cluster size (%d) != "
3566 "block size (%d)", clustersize,
3567 blocksize);
3568 clustersize = blocksize;
3569 }
3570 if (sbi->s_blocks_per_group > blocksize * 8) {
3571 ext4_msg(sb, KERN_ERR,
3572 "#blocks per group too big: %lu",
3573 sbi->s_blocks_per_group);
3574 goto failed_mount;
3575 }
3576 sbi->s_clusters_per_group = sbi->s_blocks_per_group;
3577 sbi->s_cluster_bits = 0;
3578 }
3579 sbi->s_cluster_ratio = clustersize / blocksize;
3580
3581 if (sbi->s_inodes_per_group > blocksize * 8) {
3582 ext4_msg(sb, KERN_ERR,
3583 "#inodes per group too big: %lu",
3584 sbi->s_inodes_per_group);
3585 goto failed_mount;
3586 }
3587
3588 /* Do we have standard group size of clustersize * 8 blocks ? */
3589 if (sbi->s_blocks_per_group == clustersize << 3)
3590 set_opt2(sb, STD_GROUP_SIZE);
3591
3592 /*
3593 * Test whether we have more sectors than will fit in sector_t,
3594 * and whether the max offset is addressable by the page cache.
3595 */
3596 err = generic_check_addressable(sb->s_blocksize_bits,
3597 ext4_blocks_count(es));
3598 if (err) {
3599 ext4_msg(sb, KERN_ERR, "filesystem"
3600 " too large to mount safely on this system");
3601 if (sizeof(sector_t) < 8)
3602 ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled");
3603 goto failed_mount;
3604 }
3605
3606 if (EXT4_BLOCKS_PER_GROUP(sb) == 0)
3607 goto cantfind_ext4;
3608
3609 /* check blocks count against device size */
3610 blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
3611 if (blocks_count && ext4_blocks_count(es) > blocks_count) {
3612 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
3613 "exceeds size of device (%llu blocks)",
3614 ext4_blocks_count(es), blocks_count);
3615 goto failed_mount;
3616 }
3617
3618 /*
3619 * It makes no sense for the first data block to be beyond the end
3620 * of the filesystem.
3621 */
3622 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
3623 ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
3624 "block %u is beyond end of filesystem (%llu)",
3625 le32_to_cpu(es->s_first_data_block),
3626 ext4_blocks_count(es));
3627 goto failed_mount;
3628 }
3629 blocks_count = (ext4_blocks_count(es) -
3630 le32_to_cpu(es->s_first_data_block) +
3631 EXT4_BLOCKS_PER_GROUP(sb) - 1);
3632 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
3633 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
3634 ext4_msg(sb, KERN_WARNING, "groups count too large: %u "
3635 "(block count %llu, first data block %u, "
3636 "blocks per group %lu)", sbi->s_groups_count,
3637 ext4_blocks_count(es),
3638 le32_to_cpu(es->s_first_data_block),
3639 EXT4_BLOCKS_PER_GROUP(sb));
3640 goto failed_mount;
3641 }
3642 sbi->s_groups_count = blocks_count;
3643 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
3644 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
3645 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
3646 EXT4_DESC_PER_BLOCK(sb);
3647 sbi->s_group_desc = ext4_kvmalloc(db_count *
3648 sizeof(struct buffer_head *),
3649 GFP_KERNEL);
3650 if (sbi->s_group_desc == NULL) {
3651 ext4_msg(sb, KERN_ERR, "not enough memory");
3652 ret = -ENOMEM;
3653 goto failed_mount;
3654 }
3655
3656 bgl_lock_init(sbi->s_blockgroup_lock);
3657
3658 for (i = 0; i < db_count; i++) {
3659 block = descriptor_loc(sb, logical_sb_block, i);
3660 sbi->s_group_desc[i] = sb_bread_unmovable(sb, block);
3661 if (!sbi->s_group_desc[i]) {
3662 ext4_msg(sb, KERN_ERR,
3663 "can't read group descriptor %d", i);
3664 db_count = i;
3665 goto failed_mount2;
3666 }
3667 }
3668 if (!ext4_check_descriptors(sb, &first_not_zeroed)) {
3669 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
3670 ret = -EFSCORRUPTED;
3671 goto failed_mount2;
3672 }
3673
3674 sbi->s_gdb_count = db_count;
3675 get_random_bytes(&sbi->s_next_generation, sizeof(u32));
3676 spin_lock_init(&sbi->s_next_gen_lock);
3677
3678 setup_timer(&sbi->s_err_report, print_daily_error_info,
3679 (unsigned long) sb);
3680
3681 /* Register extent status tree shrinker */
3682 if (ext4_es_register_shrinker(sbi))
3683 goto failed_mount3;
3684
3685 sbi->s_stripe = ext4_get_stripe_size(sbi);
3686 sbi->s_extent_max_zeroout_kb = 32;
3687
3688 /*
3689 * set up enough so that it can read an inode
3690 */
3691 sb->s_op = &ext4_sops;
3692 sb->s_export_op = &ext4_export_ops;
3693 sb->s_xattr = ext4_xattr_handlers;
3694 #ifdef CONFIG_QUOTA
3695 sb->dq_op = &ext4_quota_operations;
3696 if (ext4_has_feature_quota(sb))
3697 sb->s_qcop = &dquot_quotactl_sysfile_ops;
3698 else
3699 sb->s_qcop = &ext4_qctl_operations;
3700 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
3701 #endif
3702 memcpy(sb->s_uuid, es->s_uuid, sizeof(es->s_uuid));
3703
3704 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
3705 mutex_init(&sbi->s_orphan_lock);
3706
3707 sb->s_root = NULL;
3708
3709 needs_recovery = (es->s_last_orphan != 0 ||
3710 ext4_has_feature_journal_needs_recovery(sb));
3711
3712 if (ext4_has_feature_mmp(sb) && !(sb->s_flags & MS_RDONLY))
3713 if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block)))
3714 goto failed_mount3a;
3715
3716 /*
3717 * The first inode we look at is the journal inode. Don't try
3718 * root first: it may be modified in the journal!
3719 */
3720 if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) {
3721 if (ext4_load_journal(sb, es, journal_devnum))
3722 goto failed_mount3a;
3723 } else if (test_opt(sb, NOLOAD) && !(sb->s_flags & MS_RDONLY) &&
3724 ext4_has_feature_journal_needs_recovery(sb)) {
3725 ext4_msg(sb, KERN_ERR, "required journal recovery "
3726 "suppressed and not mounted read-only");
3727 goto failed_mount_wq;
3728 } else {
3729 /* Nojournal mode, all journal mount options are illegal */
3730 if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) {
3731 ext4_msg(sb, KERN_ERR, "can't mount with "
3732 "journal_checksum, fs mounted w/o journal");
3733 goto failed_mount_wq;
3734 }
3735 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
3736 ext4_msg(sb, KERN_ERR, "can't mount with "
3737 "journal_async_commit, fs mounted w/o journal");
3738 goto failed_mount_wq;
3739 }
3740 if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) {
3741 ext4_msg(sb, KERN_ERR, "can't mount with "
3742 "commit=%lu, fs mounted w/o journal",
3743 sbi->s_commit_interval / HZ);
3744 goto failed_mount_wq;
3745 }
3746 if (EXT4_MOUNT_DATA_FLAGS &
3747 (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) {
3748 ext4_msg(sb, KERN_ERR, "can't mount with "
3749 "data=, fs mounted w/o journal");
3750 goto failed_mount_wq;
3751 }
3752 sbi->s_def_mount_opt &= EXT4_MOUNT_JOURNAL_CHECKSUM;
3753 clear_opt(sb, JOURNAL_CHECKSUM);
3754 clear_opt(sb, DATA_FLAGS);
3755 sbi->s_journal = NULL;
3756 needs_recovery = 0;
3757 goto no_journal;
3758 }
3759
3760 if (ext4_has_feature_64bit(sb) &&
3761 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
3762 JBD2_FEATURE_INCOMPAT_64BIT)) {
3763 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
3764 goto failed_mount_wq;
3765 }
3766
3767 if (!set_journal_csum_feature_set(sb)) {
3768 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum "
3769 "feature set");
3770 goto failed_mount_wq;
3771 }
3772
3773 /* We have now updated the journal if required, so we can
3774 * validate the data journaling mode. */
3775 switch (test_opt(sb, DATA_FLAGS)) {
3776 case 0:
3777 /* No mode set, assume a default based on the journal
3778 * capabilities: ORDERED_DATA if the journal can
3779 * cope, else JOURNAL_DATA
3780 */
3781 if (jbd2_journal_check_available_features
3782 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE))
3783 set_opt(sb, ORDERED_DATA);
3784 else
3785 set_opt(sb, JOURNAL_DATA);
3786 break;
3787
3788 case EXT4_MOUNT_ORDERED_DATA:
3789 case EXT4_MOUNT_WRITEBACK_DATA:
3790 if (!jbd2_journal_check_available_features
3791 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
3792 ext4_msg(sb, KERN_ERR, "Journal does not support "
3793 "requested data journaling mode");
3794 goto failed_mount_wq;
3795 }
3796 default:
3797 break;
3798 }
3799 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
3800
3801 sbi->s_journal->j_commit_callback = ext4_journal_commit_callback;
3802
3803 no_journal:
3804 sbi->s_mb_cache = ext4_xattr_create_cache();
3805 if (!sbi->s_mb_cache) {
3806 ext4_msg(sb, KERN_ERR, "Failed to create an mb_cache");
3807 goto failed_mount_wq;
3808 }
3809
3810 if ((DUMMY_ENCRYPTION_ENABLED(sbi) || ext4_has_feature_encrypt(sb)) &&
3811 (blocksize != PAGE_SIZE)) {
3812 ext4_msg(sb, KERN_ERR,
3813 "Unsupported blocksize for fs encryption");
3814 goto failed_mount_wq;
3815 }
3816
3817 if (DUMMY_ENCRYPTION_ENABLED(sbi) && !(sb->s_flags & MS_RDONLY) &&
3818 !ext4_has_feature_encrypt(sb)) {
3819 ext4_set_feature_encrypt(sb);
3820 ext4_commit_super(sb, 1);
3821 }
3822
3823 /*
3824 * Get the # of file system overhead blocks from the
3825 * superblock if present.
3826 */
3827 if (es->s_overhead_clusters)
3828 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters);
3829 else {
3830 err = ext4_calculate_overhead(sb);
3831 if (err)
3832 goto failed_mount_wq;
3833 }
3834
3835 /*
3836 * The maximum number of concurrent works can be high and
3837 * concurrency isn't really necessary. Limit it to 1.
3838 */
3839 EXT4_SB(sb)->rsv_conversion_wq =
3840 alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
3841 if (!EXT4_SB(sb)->rsv_conversion_wq) {
3842 printk(KERN_ERR "EXT4-fs: failed to create workqueue\n");
3843 ret = -ENOMEM;
3844 goto failed_mount4;
3845 }
3846
3847 /*
3848 * The jbd2_journal_load will have done any necessary log recovery,
3849 * so we can safely mount the rest of the filesystem now.
3850 */
3851
3852 root = ext4_iget(sb, EXT4_ROOT_INO);
3853 if (IS_ERR(root)) {
3854 ext4_msg(sb, KERN_ERR, "get root inode failed");
3855 ret = PTR_ERR(root);
3856 root = NULL;
3857 goto failed_mount4;
3858 }
3859 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
3860 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
3861 iput(root);
3862 goto failed_mount4;
3863 }
3864 sb->s_root = d_make_root(root);
3865 if (!sb->s_root) {
3866 ext4_msg(sb, KERN_ERR, "get root dentry failed");
3867 ret = -ENOMEM;
3868 goto failed_mount4;
3869 }
3870
3871 if (ext4_setup_super(sb, es, sb->s_flags & MS_RDONLY))
3872 sb->s_flags |= MS_RDONLY;
3873
3874 /* determine the minimum size of new large inodes, if present */
3875 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) {
3876 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
3877 EXT4_GOOD_OLD_INODE_SIZE;
3878 if (ext4_has_feature_extra_isize(sb)) {
3879 if (sbi->s_want_extra_isize <
3880 le16_to_cpu(es->s_want_extra_isize))
3881 sbi->s_want_extra_isize =
3882 le16_to_cpu(es->s_want_extra_isize);
3883 if (sbi->s_want_extra_isize <
3884 le16_to_cpu(es->s_min_extra_isize))
3885 sbi->s_want_extra_isize =
3886 le16_to_cpu(es->s_min_extra_isize);
3887 }
3888 }
3889 /* Check if enough inode space is available */
3890 if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize >
3891 sbi->s_inode_size) {
3892 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
3893 EXT4_GOOD_OLD_INODE_SIZE;
3894 ext4_msg(sb, KERN_INFO, "required extra inode space not"
3895 "available");
3896 }
3897
3898 ext4_set_resv_clusters(sb);
3899
3900 err = ext4_setup_system_zone(sb);
3901 if (err) {
3902 ext4_msg(sb, KERN_ERR, "failed to initialize system "
3903 "zone (%d)", err);
3904 goto failed_mount4a;
3905 }
3906
3907 ext4_ext_init(sb);
3908 err = ext4_mb_init(sb);
3909 if (err) {
3910 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
3911 err);
3912 goto failed_mount5;
3913 }
3914
3915 block = ext4_count_free_clusters(sb);
3916 ext4_free_blocks_count_set(sbi->s_es,
3917 EXT4_C2B(sbi, block));
3918 err = percpu_counter_init(&sbi->s_freeclusters_counter, block,
3919 GFP_KERNEL);
3920 if (!err) {
3921 unsigned long freei = ext4_count_free_inodes(sb);
3922 sbi->s_es->s_free_inodes_count = cpu_to_le32(freei);
3923 err = percpu_counter_init(&sbi->s_freeinodes_counter, freei,
3924 GFP_KERNEL);
3925 }
3926 if (!err)
3927 err = percpu_counter_init(&sbi->s_dirs_counter,
3928 ext4_count_dirs(sb), GFP_KERNEL);
3929 if (!err)
3930 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0,
3931 GFP_KERNEL);
3932 if (err) {
3933 ext4_msg(sb, KERN_ERR, "insufficient memory");
3934 goto failed_mount6;
3935 }
3936
3937 if (ext4_has_feature_flex_bg(sb))
3938 if (!ext4_fill_flex_info(sb)) {
3939 ext4_msg(sb, KERN_ERR,
3940 "unable to initialize "
3941 "flex_bg meta info!");
3942 goto failed_mount6;
3943 }
3944
3945 err = ext4_register_li_request(sb, first_not_zeroed);
3946 if (err)
3947 goto failed_mount6;
3948
3949 err = ext4_register_sysfs(sb);
3950 if (err)
3951 goto failed_mount7;
3952
3953 #ifdef CONFIG_QUOTA
3954 /* Enable quota usage during mount. */
3955 if (ext4_has_feature_quota(sb) && !(sb->s_flags & MS_RDONLY)) {
3956 err = ext4_enable_quotas(sb);
3957 if (err)
3958 goto failed_mount8;
3959 }
3960 #endif /* CONFIG_QUOTA */
3961
3962 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
3963 ext4_orphan_cleanup(sb, es);
3964 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
3965 if (needs_recovery) {
3966 ext4_msg(sb, KERN_INFO, "recovery complete");
3967 ext4_mark_recovery_complete(sb, es);
3968 }
3969 if (EXT4_SB(sb)->s_journal) {
3970 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
3971 descr = " journalled data mode";
3972 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
3973 descr = " ordered data mode";
3974 else
3975 descr = " writeback data mode";
3976 } else
3977 descr = "out journal";
3978
3979 if (test_opt(sb, DISCARD)) {
3980 struct request_queue *q = bdev_get_queue(sb->s_bdev);
3981 if (!blk_queue_discard(q))
3982 ext4_msg(sb, KERN_WARNING,
3983 "mounting with \"discard\" option, but "
3984 "the device does not support discard");
3985 }
3986
3987 if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount"))
3988 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. "
3989 "Opts: %s%s%s", descr, sbi->s_es->s_mount_opts,
3990 *sbi->s_es->s_mount_opts ? "; " : "", orig_data);
3991
3992 if (es->s_error_count)
3993 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
3994
3995 /* Enable message ratelimiting. Default is 10 messages per 5 secs. */
3996 ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10);
3997 ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10);
3998 ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10);
3999
4000 kfree(orig_data);
4001 return 0;
4002
4003 cantfind_ext4:
4004 if (!silent)
4005 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
4006 goto failed_mount;
4007
4008 #ifdef CONFIG_QUOTA
4009 failed_mount8:
4010 ext4_unregister_sysfs(sb);
4011 #endif
4012 failed_mount7:
4013 ext4_unregister_li_request(sb);
4014 failed_mount6:
4015 ext4_mb_release(sb);
4016 if (sbi->s_flex_groups)
4017 kvfree(sbi->s_flex_groups);
4018 percpu_counter_destroy(&sbi->s_freeclusters_counter);
4019 percpu_counter_destroy(&sbi->s_freeinodes_counter);
4020 percpu_counter_destroy(&sbi->s_dirs_counter);
4021 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
4022 failed_mount5:
4023 ext4_ext_release(sb);
4024 ext4_release_system_zone(sb);
4025 failed_mount4a:
4026 dput(sb->s_root);
4027 sb->s_root = NULL;
4028 failed_mount4:
4029 ext4_msg(sb, KERN_ERR, "mount failed");
4030 if (EXT4_SB(sb)->rsv_conversion_wq)
4031 destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq);
4032 failed_mount_wq:
4033 if (sbi->s_mb_cache) {
4034 ext4_xattr_destroy_cache(sbi->s_mb_cache);
4035 sbi->s_mb_cache = NULL;
4036 }
4037 if (sbi->s_journal) {
4038 jbd2_journal_destroy(sbi->s_journal);
4039 sbi->s_journal = NULL;
4040 }
4041 failed_mount3a:
4042 ext4_es_unregister_shrinker(sbi);
4043 failed_mount3:
4044 del_timer_sync(&sbi->s_err_report);
4045 if (sbi->s_mmp_tsk)
4046 kthread_stop(sbi->s_mmp_tsk);
4047 failed_mount2:
4048 for (i = 0; i < db_count; i++)
4049 brelse(sbi->s_group_desc[i]);
4050 kvfree(sbi->s_group_desc);
4051 failed_mount:
4052 if (sbi->s_chksum_driver)
4053 crypto_free_shash(sbi->s_chksum_driver);
4054 #ifdef CONFIG_QUOTA
4055 for (i = 0; i < EXT4_MAXQUOTAS; i++)
4056 kfree(sbi->s_qf_names[i]);
4057 #endif
4058 ext4_blkdev_remove(sbi);
4059 brelse(bh);
4060 out_fail:
4061 sb->s_fs_info = NULL;
4062 kfree(sbi->s_blockgroup_lock);
4063 kfree(sbi);
4064 out_free_orig:
4065 kfree(orig_data);
4066 return err ? err : ret;
4067 }
4068
4069 /*
4070 * Setup any per-fs journal parameters now. We'll do this both on
4071 * initial mount, once the journal has been initialised but before we've
4072 * done any recovery; and again on any subsequent remount.
4073 */
4074 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
4075 {
4076 struct ext4_sb_info *sbi = EXT4_SB(sb);
4077
4078 journal->j_commit_interval = sbi->s_commit_interval;
4079 journal->j_min_batch_time = sbi->s_min_batch_time;
4080 journal->j_max_batch_time = sbi->s_max_batch_time;
4081
4082 write_lock(&journal->j_state_lock);
4083 if (test_opt(sb, BARRIER))
4084 journal->j_flags |= JBD2_BARRIER;
4085 else
4086 journal->j_flags &= ~JBD2_BARRIER;
4087 if (test_opt(sb, DATA_ERR_ABORT))
4088 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
4089 else
4090 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
4091 write_unlock(&journal->j_state_lock);
4092 }
4093
4094 static journal_t *ext4_get_journal(struct super_block *sb,
4095 unsigned int journal_inum)
4096 {
4097 struct inode *journal_inode;
4098 journal_t *journal;
4099
4100 BUG_ON(!ext4_has_feature_journal(sb));
4101
4102 /* First, test for the existence of a valid inode on disk. Bad
4103 * things happen if we iget() an unused inode, as the subsequent
4104 * iput() will try to delete it. */
4105
4106 journal_inode = ext4_iget(sb, journal_inum);
4107 if (IS_ERR(journal_inode)) {
4108 ext4_msg(sb, KERN_ERR, "no journal found");
4109 return NULL;
4110 }
4111 if (!journal_inode->i_nlink) {
4112 make_bad_inode(journal_inode);
4113 iput(journal_inode);
4114 ext4_msg(sb, KERN_ERR, "journal inode is deleted");
4115 return NULL;
4116 }
4117
4118 jbd_debug(2, "Journal inode found at %p: %lld bytes\n",
4119 journal_inode, journal_inode->i_size);
4120 if (!S_ISREG(journal_inode->i_mode)) {
4121 ext4_msg(sb, KERN_ERR, "invalid journal inode");
4122 iput(journal_inode);
4123 return NULL;
4124 }
4125
4126 journal = jbd2_journal_init_inode(journal_inode);
4127 if (!journal) {
4128 ext4_msg(sb, KERN_ERR, "Could not load journal inode");
4129 iput(journal_inode);
4130 return NULL;
4131 }
4132 journal->j_private = sb;
4133 ext4_init_journal_params(sb, journal);
4134 return journal;
4135 }
4136
4137 static journal_t *ext4_get_dev_journal(struct super_block *sb,
4138 dev_t j_dev)
4139 {
4140 struct buffer_head *bh;
4141 journal_t *journal;
4142 ext4_fsblk_t start;
4143 ext4_fsblk_t len;
4144 int hblock, blocksize;
4145 ext4_fsblk_t sb_block;
4146 unsigned long offset;
4147 struct ext4_super_block *es;
4148 struct block_device *bdev;
4149
4150 BUG_ON(!ext4_has_feature_journal(sb));
4151
4152 bdev = ext4_blkdev_get(j_dev, sb);
4153 if (bdev == NULL)
4154 return NULL;
4155
4156 blocksize = sb->s_blocksize;
4157 hblock = bdev_logical_block_size(bdev);
4158 if (blocksize < hblock) {
4159 ext4_msg(sb, KERN_ERR,
4160 "blocksize too small for journal device");
4161 goto out_bdev;
4162 }
4163
4164 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
4165 offset = EXT4_MIN_BLOCK_SIZE % blocksize;
4166 set_blocksize(bdev, blocksize);
4167 if (!(bh = __bread(bdev, sb_block, blocksize))) {
4168 ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
4169 "external journal");
4170 goto out_bdev;
4171 }
4172
4173 es = (struct ext4_super_block *) (bh->b_data + offset);
4174 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
4175 !(le32_to_cpu(es->s_feature_incompat) &
4176 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
4177 ext4_msg(sb, KERN_ERR, "external journal has "
4178 "bad superblock");
4179 brelse(bh);
4180 goto out_bdev;
4181 }
4182
4183 if ((le32_to_cpu(es->s_feature_ro_compat) &
4184 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
4185 es->s_checksum != ext4_superblock_csum(sb, es)) {
4186 ext4_msg(sb, KERN_ERR, "external journal has "
4187 "corrupt superblock");
4188 brelse(bh);
4189 goto out_bdev;
4190 }
4191
4192 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
4193 ext4_msg(sb, KERN_ERR, "journal UUID does not match");
4194 brelse(bh);
4195 goto out_bdev;
4196 }
4197
4198 len = ext4_blocks_count(es);
4199 start = sb_block + 1;
4200 brelse(bh); /* we're done with the superblock */
4201
4202 journal = jbd2_journal_init_dev(bdev, sb->s_bdev,
4203 start, len, blocksize);
4204 if (!journal) {
4205 ext4_msg(sb, KERN_ERR, "failed to create device journal");
4206 goto out_bdev;
4207 }
4208 journal->j_private = sb;
4209 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &journal->j_sb_buffer);
4210 wait_on_buffer(journal->j_sb_buffer);
4211 if (!buffer_uptodate(journal->j_sb_buffer)) {
4212 ext4_msg(sb, KERN_ERR, "I/O error on journal device");
4213 goto out_journal;
4214 }
4215 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
4216 ext4_msg(sb, KERN_ERR, "External journal has more than one "
4217 "user (unsupported) - %d",
4218 be32_to_cpu(journal->j_superblock->s_nr_users));
4219 goto out_journal;
4220 }
4221 EXT4_SB(sb)->journal_bdev = bdev;
4222 ext4_init_journal_params(sb, journal);
4223 return journal;
4224
4225 out_journal:
4226 jbd2_journal_destroy(journal);
4227 out_bdev:
4228 ext4_blkdev_put(bdev);
4229 return NULL;
4230 }
4231
4232 static int ext4_load_journal(struct super_block *sb,
4233 struct ext4_super_block *es,
4234 unsigned long journal_devnum)
4235 {
4236 journal_t *journal;
4237 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
4238 dev_t journal_dev;
4239 int err = 0;
4240 int really_read_only;
4241
4242 BUG_ON(!ext4_has_feature_journal(sb));
4243
4244 if (journal_devnum &&
4245 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4246 ext4_msg(sb, KERN_INFO, "external journal device major/minor "
4247 "numbers have changed");
4248 journal_dev = new_decode_dev(journal_devnum);
4249 } else
4250 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
4251
4252 really_read_only = bdev_read_only(sb->s_bdev);
4253
4254 /*
4255 * Are we loading a blank journal or performing recovery after a
4256 * crash? For recovery, we need to check in advance whether we
4257 * can get read-write access to the device.
4258 */
4259 if (ext4_has_feature_journal_needs_recovery(sb)) {
4260 if (sb->s_flags & MS_RDONLY) {
4261 ext4_msg(sb, KERN_INFO, "INFO: recovery "
4262 "required on readonly filesystem");
4263 if (really_read_only) {
4264 ext4_msg(sb, KERN_ERR, "write access "
4265 "unavailable, cannot proceed");
4266 return -EROFS;
4267 }
4268 ext4_msg(sb, KERN_INFO, "write access will "
4269 "be enabled during recovery");
4270 }
4271 }
4272
4273 if (journal_inum && journal_dev) {
4274 ext4_msg(sb, KERN_ERR, "filesystem has both journal "
4275 "and inode journals!");
4276 return -EINVAL;
4277 }
4278
4279 if (journal_inum) {
4280 if (!(journal = ext4_get_journal(sb, journal_inum)))
4281 return -EINVAL;
4282 } else {
4283 if (!(journal = ext4_get_dev_journal(sb, journal_dev)))
4284 return -EINVAL;
4285 }
4286
4287 if (!(journal->j_flags & JBD2_BARRIER))
4288 ext4_msg(sb, KERN_INFO, "barriers disabled");
4289
4290 if (!ext4_has_feature_journal_needs_recovery(sb))
4291 err = jbd2_journal_wipe(journal, !really_read_only);
4292 if (!err) {
4293 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
4294 if (save)
4295 memcpy(save, ((char *) es) +
4296 EXT4_S_ERR_START, EXT4_S_ERR_LEN);
4297 err = jbd2_journal_load(journal);
4298 if (save)
4299 memcpy(((char *) es) + EXT4_S_ERR_START,
4300 save, EXT4_S_ERR_LEN);
4301 kfree(save);
4302 }
4303
4304 if (err) {
4305 ext4_msg(sb, KERN_ERR, "error loading journal");
4306 jbd2_journal_destroy(journal);
4307 return err;
4308 }
4309
4310 EXT4_SB(sb)->s_journal = journal;
4311 ext4_clear_journal_err(sb, es);
4312
4313 if (!really_read_only && journal_devnum &&
4314 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4315 es->s_journal_dev = cpu_to_le32(journal_devnum);
4316
4317 /* Make sure we flush the recovery flag to disk. */
4318 ext4_commit_super(sb, 1);
4319 }
4320
4321 return 0;
4322 }
4323
4324 static int ext4_commit_super(struct super_block *sb, int sync)
4325 {
4326 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
4327 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
4328 int error = 0;
4329
4330 if (!sbh || block_device_ejected(sb))
4331 return error;
4332 if (buffer_write_io_error(sbh)) {
4333 /*
4334 * Oh, dear. A previous attempt to write the
4335 * superblock failed. This could happen because the
4336 * USB device was yanked out. Or it could happen to
4337 * be a transient write error and maybe the block will
4338 * be remapped. Nothing we can do but to retry the
4339 * write and hope for the best.
4340 */
4341 ext4_msg(sb, KERN_ERR, "previous I/O error to "
4342 "superblock detected");
4343 clear_buffer_write_io_error(sbh);
4344 set_buffer_uptodate(sbh);
4345 }
4346 /*
4347 * If the file system is mounted read-only, don't update the
4348 * superblock write time. This avoids updating the superblock
4349 * write time when we are mounting the root file system
4350 * read/only but we need to replay the journal; at that point,
4351 * for people who are east of GMT and who make their clock
4352 * tick in localtime for Windows bug-for-bug compatibility,
4353 * the clock is set in the future, and this will cause e2fsck
4354 * to complain and force a full file system check.
4355 */
4356 if (!(sb->s_flags & MS_RDONLY))
4357 es->s_wtime = cpu_to_le32(get_seconds());
4358 if (sb->s_bdev->bd_part)
4359 es->s_kbytes_written =
4360 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written +
4361 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
4362 EXT4_SB(sb)->s_sectors_written_start) >> 1));
4363 else
4364 es->s_kbytes_written =
4365 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written);
4366 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeclusters_counter))
4367 ext4_free_blocks_count_set(es,
4368 EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive(
4369 &EXT4_SB(sb)->s_freeclusters_counter)));
4370 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeinodes_counter))
4371 es->s_free_inodes_count =
4372 cpu_to_le32(percpu_counter_sum_positive(
4373 &EXT4_SB(sb)->s_freeinodes_counter));
4374 BUFFER_TRACE(sbh, "marking dirty");
4375 ext4_superblock_csum_set(sb);
4376 mark_buffer_dirty(sbh);
4377 if (sync) {
4378 error = __sync_dirty_buffer(sbh,
4379 test_opt(sb, BARRIER) ? WRITE_FUA : WRITE_SYNC);
4380 if (error)
4381 return error;
4382
4383 error = buffer_write_io_error(sbh);
4384 if (error) {
4385 ext4_msg(sb, KERN_ERR, "I/O error while writing "
4386 "superblock");
4387 clear_buffer_write_io_error(sbh);
4388 set_buffer_uptodate(sbh);
4389 }
4390 }
4391 return error;
4392 }
4393
4394 /*
4395 * Have we just finished recovery? If so, and if we are mounting (or
4396 * remounting) the filesystem readonly, then we will end up with a
4397 * consistent fs on disk. Record that fact.
4398 */
4399 static void ext4_mark_recovery_complete(struct super_block *sb,
4400 struct ext4_super_block *es)
4401 {
4402 journal_t *journal = EXT4_SB(sb)->s_journal;
4403
4404 if (!ext4_has_feature_journal(sb)) {
4405 BUG_ON(journal != NULL);
4406 return;
4407 }
4408 jbd2_journal_lock_updates(journal);
4409 if (jbd2_journal_flush(journal) < 0)
4410 goto out;
4411
4412 if (ext4_has_feature_journal_needs_recovery(sb) &&
4413 sb->s_flags & MS_RDONLY) {
4414 ext4_clear_feature_journal_needs_recovery(sb);
4415 ext4_commit_super(sb, 1);
4416 }
4417
4418 out:
4419 jbd2_journal_unlock_updates(journal);
4420 }
4421
4422 /*
4423 * If we are mounting (or read-write remounting) a filesystem whose journal
4424 * has recorded an error from a previous lifetime, move that error to the
4425 * main filesystem now.
4426 */
4427 static void ext4_clear_journal_err(struct super_block *sb,
4428 struct ext4_super_block *es)
4429 {
4430 journal_t *journal;
4431 int j_errno;
4432 const char *errstr;
4433
4434 BUG_ON(!ext4_has_feature_journal(sb));
4435
4436 journal = EXT4_SB(sb)->s_journal;
4437
4438 /*
4439 * Now check for any error status which may have been recorded in the
4440 * journal by a prior ext4_error() or ext4_abort()
4441 */
4442
4443 j_errno = jbd2_journal_errno(journal);
4444 if (j_errno) {
4445 char nbuf[16];
4446
4447 errstr = ext4_decode_error(sb, j_errno, nbuf);
4448 ext4_warning(sb, "Filesystem error recorded "
4449 "from previous mount: %s", errstr);
4450 ext4_warning(sb, "Marking fs in need of filesystem check.");
4451
4452 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
4453 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
4454 ext4_commit_super(sb, 1);
4455
4456 jbd2_journal_clear_err(journal);
4457 jbd2_journal_update_sb_errno(journal);
4458 }
4459 }
4460
4461 /*
4462 * Force the running and committing transactions to commit,
4463 * and wait on the commit.
4464 */
4465 int ext4_force_commit(struct super_block *sb)
4466 {
4467 journal_t *journal;
4468
4469 if (sb->s_flags & MS_RDONLY)
4470 return 0;
4471
4472 journal = EXT4_SB(sb)->s_journal;
4473 return ext4_journal_force_commit(journal);
4474 }
4475
4476 static int ext4_sync_fs(struct super_block *sb, int wait)
4477 {
4478 int ret = 0;
4479 tid_t target;
4480 bool needs_barrier = false;
4481 struct ext4_sb_info *sbi = EXT4_SB(sb);
4482
4483 trace_ext4_sync_fs(sb, wait);
4484 flush_workqueue(sbi->rsv_conversion_wq);
4485 /*
4486 * Writeback quota in non-journalled quota case - journalled quota has
4487 * no dirty dquots
4488 */
4489 dquot_writeback_dquots(sb, -1);
4490 /*
4491 * Data writeback is possible w/o journal transaction, so barrier must
4492 * being sent at the end of the function. But we can skip it if
4493 * transaction_commit will do it for us.
4494 */
4495 if (sbi->s_journal) {
4496 target = jbd2_get_latest_transaction(sbi->s_journal);
4497 if (wait && sbi->s_journal->j_flags & JBD2_BARRIER &&
4498 !jbd2_trans_will_send_data_barrier(sbi->s_journal, target))
4499 needs_barrier = true;
4500
4501 if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
4502 if (wait)
4503 ret = jbd2_log_wait_commit(sbi->s_journal,
4504 target);
4505 }
4506 } else if (wait && test_opt(sb, BARRIER))
4507 needs_barrier = true;
4508 if (needs_barrier) {
4509 int err;
4510 err = blkdev_issue_flush(sb->s_bdev, GFP_KERNEL, NULL);
4511 if (!ret)
4512 ret = err;
4513 }
4514
4515 return ret;
4516 }
4517
4518 /*
4519 * LVM calls this function before a (read-only) snapshot is created. This
4520 * gives us a chance to flush the journal completely and mark the fs clean.
4521 *
4522 * Note that only this function cannot bring a filesystem to be in a clean
4523 * state independently. It relies on upper layer to stop all data & metadata
4524 * modifications.
4525 */
4526 static int ext4_freeze(struct super_block *sb)
4527 {
4528 int error = 0;
4529 journal_t *journal;
4530
4531 if (sb->s_flags & MS_RDONLY)
4532 return 0;
4533
4534 journal = EXT4_SB(sb)->s_journal;
4535
4536 if (journal) {
4537 /* Now we set up the journal barrier. */
4538 jbd2_journal_lock_updates(journal);
4539
4540 /*
4541 * Don't clear the needs_recovery flag if we failed to
4542 * flush the journal.
4543 */
4544 error = jbd2_journal_flush(journal);
4545 if (error < 0)
4546 goto out;
4547
4548 /* Journal blocked and flushed, clear needs_recovery flag. */
4549 ext4_clear_feature_journal_needs_recovery(sb);
4550 }
4551
4552 error = ext4_commit_super(sb, 1);
4553 out:
4554 if (journal)
4555 /* we rely on upper layer to stop further updates */
4556 jbd2_journal_unlock_updates(journal);
4557 return error;
4558 }
4559
4560 /*
4561 * Called by LVM after the snapshot is done. We need to reset the RECOVER
4562 * flag here, even though the filesystem is not technically dirty yet.
4563 */
4564 static int ext4_unfreeze(struct super_block *sb)
4565 {
4566 if (sb->s_flags & MS_RDONLY)
4567 return 0;
4568
4569 if (EXT4_SB(sb)->s_journal) {
4570 /* Reset the needs_recovery flag before the fs is unlocked. */
4571 ext4_set_feature_journal_needs_recovery(sb);
4572 }
4573
4574 ext4_commit_super(sb, 1);
4575 return 0;
4576 }
4577
4578 /*
4579 * Structure to save mount options for ext4_remount's benefit
4580 */
4581 struct ext4_mount_options {
4582 unsigned long s_mount_opt;
4583 unsigned long s_mount_opt2;
4584 kuid_t s_resuid;
4585 kgid_t s_resgid;
4586 unsigned long s_commit_interval;
4587 u32 s_min_batch_time, s_max_batch_time;
4588 #ifdef CONFIG_QUOTA
4589 int s_jquota_fmt;
4590 char *s_qf_names[EXT4_MAXQUOTAS];
4591 #endif
4592 };
4593
4594 static int ext4_remount(struct super_block *sb, int *flags, char *data)
4595 {
4596 struct ext4_super_block *es;
4597 struct ext4_sb_info *sbi = EXT4_SB(sb);
4598 unsigned long old_sb_flags;
4599 struct ext4_mount_options old_opts;
4600 int enable_quota = 0;
4601 ext4_group_t g;
4602 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
4603 int err = 0;
4604 #ifdef CONFIG_QUOTA
4605 int i, j;
4606 #endif
4607 char *orig_data = kstrdup(data, GFP_KERNEL);
4608
4609 /* Store the original options */
4610 old_sb_flags = sb->s_flags;
4611 old_opts.s_mount_opt = sbi->s_mount_opt;
4612 old_opts.s_mount_opt2 = sbi->s_mount_opt2;
4613 old_opts.s_resuid = sbi->s_resuid;
4614 old_opts.s_resgid = sbi->s_resgid;
4615 old_opts.s_commit_interval = sbi->s_commit_interval;
4616 old_opts.s_min_batch_time = sbi->s_min_batch_time;
4617 old_opts.s_max_batch_time = sbi->s_max_batch_time;
4618 #ifdef CONFIG_QUOTA
4619 old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
4620 for (i = 0; i < EXT4_MAXQUOTAS; i++)
4621 if (sbi->s_qf_names[i]) {
4622 old_opts.s_qf_names[i] = kstrdup(sbi->s_qf_names[i],
4623 GFP_KERNEL);
4624 if (!old_opts.s_qf_names[i]) {
4625 for (j = 0; j < i; j++)
4626 kfree(old_opts.s_qf_names[j]);
4627 kfree(orig_data);
4628 return -ENOMEM;
4629 }
4630 } else
4631 old_opts.s_qf_names[i] = NULL;
4632 #endif
4633 if (sbi->s_journal && sbi->s_journal->j_task->io_context)
4634 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio;
4635
4636 if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) {
4637 err = -EINVAL;
4638 goto restore_opts;
4639 }
4640
4641 if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^
4642 test_opt(sb, JOURNAL_CHECKSUM)) {
4643 ext4_msg(sb, KERN_ERR, "changing journal_checksum "
4644 "during remount not supported; ignoring");
4645 sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM;
4646 }
4647
4648 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
4649 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
4650 ext4_msg(sb, KERN_ERR, "can't mount with "
4651 "both data=journal and delalloc");
4652 err = -EINVAL;
4653 goto restore_opts;
4654 }
4655 if (test_opt(sb, DIOREAD_NOLOCK)) {
4656 ext4_msg(sb, KERN_ERR, "can't mount with "
4657 "both data=journal and dioread_nolock");
4658 err = -EINVAL;
4659 goto restore_opts;
4660 }
4661 if (test_opt(sb, DAX)) {
4662 ext4_msg(sb, KERN_ERR, "can't mount with "
4663 "both data=journal and dax");
4664 err = -EINVAL;
4665 goto restore_opts;
4666 }
4667 }
4668
4669 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_DAX) {
4670 ext4_msg(sb, KERN_WARNING, "warning: refusing change of "
4671 "dax flag with busy inodes while remounting");
4672 sbi->s_mount_opt ^= EXT4_MOUNT_DAX;
4673 }
4674
4675 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED)
4676 ext4_abort(sb, "Abort forced by user");
4677
4678 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
4679 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
4680
4681 es = sbi->s_es;
4682
4683 if (sbi->s_journal) {
4684 ext4_init_journal_params(sb, sbi->s_journal);
4685 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
4686 }
4687
4688 if (*flags & MS_LAZYTIME)
4689 sb->s_flags |= MS_LAZYTIME;
4690
4691 if ((*flags & MS_RDONLY) != (sb->s_flags & MS_RDONLY)) {
4692 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) {
4693 err = -EROFS;
4694 goto restore_opts;
4695 }
4696
4697 if (*flags & MS_RDONLY) {
4698 err = sync_filesystem(sb);
4699 if (err < 0)
4700 goto restore_opts;
4701 err = dquot_suspend(sb, -1);
4702 if (err < 0)
4703 goto restore_opts;
4704
4705 /*
4706 * First of all, the unconditional stuff we have to do
4707 * to disable replay of the journal when we next remount
4708 */
4709 sb->s_flags |= MS_RDONLY;
4710
4711 /*
4712 * OK, test if we are remounting a valid rw partition
4713 * readonly, and if so set the rdonly flag and then
4714 * mark the partition as valid again.
4715 */
4716 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
4717 (sbi->s_mount_state & EXT4_VALID_FS))
4718 es->s_state = cpu_to_le16(sbi->s_mount_state);
4719
4720 if (sbi->s_journal)
4721 ext4_mark_recovery_complete(sb, es);
4722 } else {
4723 /* Make sure we can mount this feature set readwrite */
4724 if (ext4_has_feature_readonly(sb) ||
4725 !ext4_feature_set_ok(sb, 0)) {
4726 err = -EROFS;
4727 goto restore_opts;
4728 }
4729 /*
4730 * Make sure the group descriptor checksums
4731 * are sane. If they aren't, refuse to remount r/w.
4732 */
4733 for (g = 0; g < sbi->s_groups_count; g++) {
4734 struct ext4_group_desc *gdp =
4735 ext4_get_group_desc(sb, g, NULL);
4736
4737 if (!ext4_group_desc_csum_verify(sb, g, gdp)) {
4738 ext4_msg(sb, KERN_ERR,
4739 "ext4_remount: Checksum for group %u failed (%u!=%u)",
4740 g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)),
4741 le16_to_cpu(gdp->bg_checksum));
4742 err = -EFSBADCRC;
4743 goto restore_opts;
4744 }
4745 }
4746
4747 /*
4748 * If we have an unprocessed orphan list hanging
4749 * around from a previously readonly bdev mount,
4750 * require a full umount/remount for now.
4751 */
4752 if (es->s_last_orphan) {
4753 ext4_msg(sb, KERN_WARNING, "Couldn't "
4754 "remount RDWR because of unprocessed "
4755 "orphan inode list. Please "
4756 "umount/remount instead");
4757 err = -EINVAL;
4758 goto restore_opts;
4759 }
4760
4761 /*
4762 * Mounting a RDONLY partition read-write, so reread
4763 * and store the current valid flag. (It may have
4764 * been changed by e2fsck since we originally mounted
4765 * the partition.)
4766 */
4767 if (sbi->s_journal)
4768 ext4_clear_journal_err(sb, es);
4769 sbi->s_mount_state = le16_to_cpu(es->s_state);
4770 if (!ext4_setup_super(sb, es, 0))
4771 sb->s_flags &= ~MS_RDONLY;
4772 if (ext4_has_feature_mmp(sb))
4773 if (ext4_multi_mount_protect(sb,
4774 le64_to_cpu(es->s_mmp_block))) {
4775 err = -EROFS;
4776 goto restore_opts;
4777 }
4778 enable_quota = 1;
4779 }
4780 }
4781
4782 /*
4783 * Reinitialize lazy itable initialization thread based on
4784 * current settings
4785 */
4786 if ((sb->s_flags & MS_RDONLY) || !test_opt(sb, INIT_INODE_TABLE))
4787 ext4_unregister_li_request(sb);
4788 else {
4789 ext4_group_t first_not_zeroed;
4790 first_not_zeroed = ext4_has_uninit_itable(sb);
4791 ext4_register_li_request(sb, first_not_zeroed);
4792 }
4793
4794 ext4_setup_system_zone(sb);
4795 if (sbi->s_journal == NULL && !(old_sb_flags & MS_RDONLY))
4796 ext4_commit_super(sb, 1);
4797
4798 #ifdef CONFIG_QUOTA
4799 /* Release old quota file names */
4800 for (i = 0; i < EXT4_MAXQUOTAS; i++)
4801 kfree(old_opts.s_qf_names[i]);
4802 if (enable_quota) {
4803 if (sb_any_quota_suspended(sb))
4804 dquot_resume(sb, -1);
4805 else if (ext4_has_feature_quota(sb)) {
4806 err = ext4_enable_quotas(sb);
4807 if (err)
4808 goto restore_opts;
4809 }
4810 }
4811 #endif
4812
4813 *flags = (*flags & ~MS_LAZYTIME) | (sb->s_flags & MS_LAZYTIME);
4814 ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data);
4815 kfree(orig_data);
4816 return 0;
4817
4818 restore_opts:
4819 sb->s_flags = old_sb_flags;
4820 sbi->s_mount_opt = old_opts.s_mount_opt;
4821 sbi->s_mount_opt2 = old_opts.s_mount_opt2;
4822 sbi->s_resuid = old_opts.s_resuid;
4823 sbi->s_resgid = old_opts.s_resgid;
4824 sbi->s_commit_interval = old_opts.s_commit_interval;
4825 sbi->s_min_batch_time = old_opts.s_min_batch_time;
4826 sbi->s_max_batch_time = old_opts.s_max_batch_time;
4827 #ifdef CONFIG_QUOTA
4828 sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
4829 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
4830 kfree(sbi->s_qf_names[i]);
4831 sbi->s_qf_names[i] = old_opts.s_qf_names[i];
4832 }
4833 #endif
4834 kfree(orig_data);
4835 return err;
4836 }
4837
4838 #ifdef CONFIG_QUOTA
4839 static int ext4_statfs_project(struct super_block *sb,
4840 kprojid_t projid, struct kstatfs *buf)
4841 {
4842 struct kqid qid;
4843 struct dquot *dquot;
4844 u64 limit;
4845 u64 curblock;
4846
4847 qid = make_kqid_projid(projid);
4848 dquot = dqget(sb, qid);
4849 if (IS_ERR(dquot))
4850 return PTR_ERR(dquot);
4851 spin_lock(&dq_data_lock);
4852
4853 limit = (dquot->dq_dqb.dqb_bsoftlimit ?
4854 dquot->dq_dqb.dqb_bsoftlimit :
4855 dquot->dq_dqb.dqb_bhardlimit) >> sb->s_blocksize_bits;
4856 if (limit && buf->f_blocks > limit) {
4857 curblock = dquot->dq_dqb.dqb_curspace >> sb->s_blocksize_bits;
4858 buf->f_blocks = limit;
4859 buf->f_bfree = buf->f_bavail =
4860 (buf->f_blocks > curblock) ?
4861 (buf->f_blocks - curblock) : 0;
4862 }
4863
4864 limit = dquot->dq_dqb.dqb_isoftlimit ?
4865 dquot->dq_dqb.dqb_isoftlimit :
4866 dquot->dq_dqb.dqb_ihardlimit;
4867 if (limit && buf->f_files > limit) {
4868 buf->f_files = limit;
4869 buf->f_ffree =
4870 (buf->f_files > dquot->dq_dqb.dqb_curinodes) ?
4871 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0;
4872 }
4873
4874 spin_unlock(&dq_data_lock);
4875 dqput(dquot);
4876 return 0;
4877 }
4878 #endif
4879
4880 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
4881 {
4882 struct super_block *sb = dentry->d_sb;
4883 struct ext4_sb_info *sbi = EXT4_SB(sb);
4884 struct ext4_super_block *es = sbi->s_es;
4885 ext4_fsblk_t overhead = 0, resv_blocks;
4886 u64 fsid;
4887 s64 bfree;
4888 resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters));
4889
4890 if (!test_opt(sb, MINIX_DF))
4891 overhead = sbi->s_overhead;
4892
4893 buf->f_type = EXT4_SUPER_MAGIC;
4894 buf->f_bsize = sb->s_blocksize;
4895 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead);
4896 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
4897 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
4898 /* prevent underflow in case that few free space is available */
4899 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0));
4900 buf->f_bavail = buf->f_bfree -
4901 (ext4_r_blocks_count(es) + resv_blocks);
4902 if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks))
4903 buf->f_bavail = 0;
4904 buf->f_files = le32_to_cpu(es->s_inodes_count);
4905 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
4906 buf->f_namelen = EXT4_NAME_LEN;
4907 fsid = le64_to_cpup((void *)es->s_uuid) ^
4908 le64_to_cpup((void *)es->s_uuid + sizeof(u64));
4909 buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL;
4910 buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL;
4911
4912 #ifdef CONFIG_QUOTA
4913 if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) &&
4914 sb_has_quota_limits_enabled(sb, PRJQUOTA))
4915 ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf);
4916 #endif
4917 return 0;
4918 }
4919
4920 /* Helper function for writing quotas on sync - we need to start transaction
4921 * before quota file is locked for write. Otherwise the are possible deadlocks:
4922 * Process 1 Process 2
4923 * ext4_create() quota_sync()
4924 * jbd2_journal_start() write_dquot()
4925 * dquot_initialize() down(dqio_mutex)
4926 * down(dqio_mutex) jbd2_journal_start()
4927 *
4928 */
4929
4930 #ifdef CONFIG_QUOTA
4931
4932 static inline struct inode *dquot_to_inode(struct dquot *dquot)
4933 {
4934 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type];
4935 }
4936
4937 static int ext4_write_dquot(struct dquot *dquot)
4938 {
4939 int ret, err;
4940 handle_t *handle;
4941 struct inode *inode;
4942
4943 inode = dquot_to_inode(dquot);
4944 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4945 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
4946 if (IS_ERR(handle))
4947 return PTR_ERR(handle);
4948 ret = dquot_commit(dquot);
4949 err = ext4_journal_stop(handle);
4950 if (!ret)
4951 ret = err;
4952 return ret;
4953 }
4954
4955 static int ext4_acquire_dquot(struct dquot *dquot)
4956 {
4957 int ret, err;
4958 handle_t *handle;
4959
4960 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
4961 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
4962 if (IS_ERR(handle))
4963 return PTR_ERR(handle);
4964 ret = dquot_acquire(dquot);
4965 err = ext4_journal_stop(handle);
4966 if (!ret)
4967 ret = err;
4968 return ret;
4969 }
4970
4971 static int ext4_release_dquot(struct dquot *dquot)
4972 {
4973 int ret, err;
4974 handle_t *handle;
4975
4976 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
4977 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
4978 if (IS_ERR(handle)) {
4979 /* Release dquot anyway to avoid endless cycle in dqput() */
4980 dquot_release(dquot);
4981 return PTR_ERR(handle);
4982 }
4983 ret = dquot_release(dquot);
4984 err = ext4_journal_stop(handle);
4985 if (!ret)
4986 ret = err;
4987 return ret;
4988 }
4989
4990 static int ext4_mark_dquot_dirty(struct dquot *dquot)
4991 {
4992 struct super_block *sb = dquot->dq_sb;
4993 struct ext4_sb_info *sbi = EXT4_SB(sb);
4994
4995 /* Are we journaling quotas? */
4996 if (ext4_has_feature_quota(sb) ||
4997 sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
4998 dquot_mark_dquot_dirty(dquot);
4999 return ext4_write_dquot(dquot);
5000 } else {
5001 return dquot_mark_dquot_dirty(dquot);
5002 }
5003 }
5004
5005 static int ext4_write_info(struct super_block *sb, int type)
5006 {
5007 int ret, err;
5008 handle_t *handle;
5009
5010 /* Data block + inode block */
5011 handle = ext4_journal_start(d_inode(sb->s_root), EXT4_HT_QUOTA, 2);
5012 if (IS_ERR(handle))
5013 return PTR_ERR(handle);
5014 ret = dquot_commit_info(sb, type);
5015 err = ext4_journal_stop(handle);
5016 if (!ret)
5017 ret = err;
5018 return ret;
5019 }
5020
5021 /*
5022 * Turn on quotas during mount time - we need to find
5023 * the quota file and such...
5024 */
5025 static int ext4_quota_on_mount(struct super_block *sb, int type)
5026 {
5027 return dquot_quota_on_mount(sb, EXT4_SB(sb)->s_qf_names[type],
5028 EXT4_SB(sb)->s_jquota_fmt, type);
5029 }
5030
5031 /*
5032 * Standard function to be called on quota_on
5033 */
5034 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
5035 struct path *path)
5036 {
5037 int err;
5038
5039 if (!test_opt(sb, QUOTA))
5040 return -EINVAL;
5041
5042 /* Quotafile not on the same filesystem? */
5043 if (path->dentry->d_sb != sb)
5044 return -EXDEV;
5045 /* Journaling quota? */
5046 if (EXT4_SB(sb)->s_qf_names[type]) {
5047 /* Quotafile not in fs root? */
5048 if (path->dentry->d_parent != sb->s_root)
5049 ext4_msg(sb, KERN_WARNING,
5050 "Quota file not on filesystem root. "
5051 "Journaled quota will not work");
5052 }
5053
5054 /*
5055 * When we journal data on quota file, we have to flush journal to see
5056 * all updates to the file when we bypass pagecache...
5057 */
5058 if (EXT4_SB(sb)->s_journal &&
5059 ext4_should_journal_data(d_inode(path->dentry))) {
5060 /*
5061 * We don't need to lock updates but journal_flush() could
5062 * otherwise be livelocked...
5063 */
5064 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal);
5065 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal);
5066 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
5067 if (err)
5068 return err;
5069 }
5070
5071 return dquot_quota_on(sb, type, format_id, path);
5072 }
5073
5074 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
5075 unsigned int flags)
5076 {
5077 int err;
5078 struct inode *qf_inode;
5079 unsigned long qf_inums[EXT4_MAXQUOTAS] = {
5080 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
5081 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
5082 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
5083 };
5084
5085 BUG_ON(!ext4_has_feature_quota(sb));
5086
5087 if (!qf_inums[type])
5088 return -EPERM;
5089
5090 qf_inode = ext4_iget(sb, qf_inums[type]);
5091 if (IS_ERR(qf_inode)) {
5092 ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]);
5093 return PTR_ERR(qf_inode);
5094 }
5095
5096 /* Don't account quota for quota files to avoid recursion */
5097 qf_inode->i_flags |= S_NOQUOTA;
5098 err = dquot_enable(qf_inode, type, format_id, flags);
5099 iput(qf_inode);
5100
5101 return err;
5102 }
5103
5104 /* Enable usage tracking for all quota types. */
5105 static int ext4_enable_quotas(struct super_block *sb)
5106 {
5107 int type, err = 0;
5108 unsigned long qf_inums[EXT4_MAXQUOTAS] = {
5109 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
5110 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
5111 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
5112 };
5113
5114 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE;
5115 for (type = 0; type < EXT4_MAXQUOTAS; type++) {
5116 if (qf_inums[type]) {
5117 err = ext4_quota_enable(sb, type, QFMT_VFS_V1,
5118 DQUOT_USAGE_ENABLED);
5119 if (err) {
5120 ext4_warning(sb,
5121 "Failed to enable quota tracking "
5122 "(type=%d, err=%d). Please run "
5123 "e2fsck to fix.", type, err);
5124 return err;
5125 }
5126 }
5127 }
5128 return 0;
5129 }
5130
5131 static int ext4_quota_off(struct super_block *sb, int type)
5132 {
5133 struct inode *inode = sb_dqopt(sb)->files[type];
5134 handle_t *handle;
5135
5136 /* Force all delayed allocation blocks to be allocated.
5137 * Caller already holds s_umount sem */
5138 if (test_opt(sb, DELALLOC))
5139 sync_filesystem(sb);
5140
5141 if (!inode)
5142 goto out;
5143
5144 /* Update modification times of quota files when userspace can
5145 * start looking at them */
5146 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
5147 if (IS_ERR(handle))
5148 goto out;
5149 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
5150 ext4_mark_inode_dirty(handle, inode);
5151 ext4_journal_stop(handle);
5152
5153 out:
5154 return dquot_quota_off(sb, type);
5155 }
5156
5157 /* Read data from quotafile - avoid pagecache and such because we cannot afford
5158 * acquiring the locks... As quota files are never truncated and quota code
5159 * itself serializes the operations (and no one else should touch the files)
5160 * we don't have to be afraid of races */
5161 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
5162 size_t len, loff_t off)
5163 {
5164 struct inode *inode = sb_dqopt(sb)->files[type];
5165 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5166 int offset = off & (sb->s_blocksize - 1);
5167 int tocopy;
5168 size_t toread;
5169 struct buffer_head *bh;
5170 loff_t i_size = i_size_read(inode);
5171
5172 if (off > i_size)
5173 return 0;
5174 if (off+len > i_size)
5175 len = i_size-off;
5176 toread = len;
5177 while (toread > 0) {
5178 tocopy = sb->s_blocksize - offset < toread ?
5179 sb->s_blocksize - offset : toread;
5180 bh = ext4_bread(NULL, inode, blk, 0);
5181 if (IS_ERR(bh))
5182 return PTR_ERR(bh);
5183 if (!bh) /* A hole? */
5184 memset(data, 0, tocopy);
5185 else
5186 memcpy(data, bh->b_data+offset, tocopy);
5187 brelse(bh);
5188 offset = 0;
5189 toread -= tocopy;
5190 data += tocopy;
5191 blk++;
5192 }
5193 return len;
5194 }
5195
5196 /* Write to quotafile (we know the transaction is already started and has
5197 * enough credits) */
5198 static ssize_t ext4_quota_write(struct super_block *sb, int type,
5199 const char *data, size_t len, loff_t off)
5200 {
5201 struct inode *inode = sb_dqopt(sb)->files[type];
5202 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5203 int err, offset = off & (sb->s_blocksize - 1);
5204 int retries = 0;
5205 struct buffer_head *bh;
5206 handle_t *handle = journal_current_handle();
5207
5208 if (EXT4_SB(sb)->s_journal && !handle) {
5209 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5210 " cancelled because transaction is not started",
5211 (unsigned long long)off, (unsigned long long)len);
5212 return -EIO;
5213 }
5214 /*
5215 * Since we account only one data block in transaction credits,
5216 * then it is impossible to cross a block boundary.
5217 */
5218 if (sb->s_blocksize - offset < len) {
5219 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5220 " cancelled because not block aligned",
5221 (unsigned long long)off, (unsigned long long)len);
5222 return -EIO;
5223 }
5224
5225 do {
5226 bh = ext4_bread(handle, inode, blk,
5227 EXT4_GET_BLOCKS_CREATE |
5228 EXT4_GET_BLOCKS_METADATA_NOFAIL);
5229 } while (IS_ERR(bh) && (PTR_ERR(bh) == -ENOSPC) &&
5230 ext4_should_retry_alloc(inode->i_sb, &retries));
5231 if (IS_ERR(bh))
5232 return PTR_ERR(bh);
5233 if (!bh)
5234 goto out;
5235 BUFFER_TRACE(bh, "get write access");
5236 err = ext4_journal_get_write_access(handle, bh);
5237 if (err) {
5238 brelse(bh);
5239 return err;
5240 }
5241 lock_buffer(bh);
5242 memcpy(bh->b_data+offset, data, len);
5243 flush_dcache_page(bh->b_page);
5244 unlock_buffer(bh);
5245 err = ext4_handle_dirty_metadata(handle, NULL, bh);
5246 brelse(bh);
5247 out:
5248 if (inode->i_size < off + len) {
5249 i_size_write(inode, off + len);
5250 EXT4_I(inode)->i_disksize = inode->i_size;
5251 ext4_mark_inode_dirty(handle, inode);
5252 }
5253 return len;
5254 }
5255
5256 #endif
5257
5258 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
5259 const char *dev_name, void *data)
5260 {
5261 return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super);
5262 }
5263
5264 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
5265 static inline void register_as_ext2(void)
5266 {
5267 int err = register_filesystem(&ext2_fs_type);
5268 if (err)
5269 printk(KERN_WARNING
5270 "EXT4-fs: Unable to register as ext2 (%d)\n", err);
5271 }
5272
5273 static inline void unregister_as_ext2(void)
5274 {
5275 unregister_filesystem(&ext2_fs_type);
5276 }
5277
5278 static inline int ext2_feature_set_ok(struct super_block *sb)
5279 {
5280 if (ext4_has_unknown_ext2_incompat_features(sb))
5281 return 0;
5282 if (sb->s_flags & MS_RDONLY)
5283 return 1;
5284 if (ext4_has_unknown_ext2_ro_compat_features(sb))
5285 return 0;
5286 return 1;
5287 }
5288 #else
5289 static inline void register_as_ext2(void) { }
5290 static inline void unregister_as_ext2(void) { }
5291 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
5292 #endif
5293
5294 static inline void register_as_ext3(void)
5295 {
5296 int err = register_filesystem(&ext3_fs_type);
5297 if (err)
5298 printk(KERN_WARNING
5299 "EXT4-fs: Unable to register as ext3 (%d)\n", err);
5300 }
5301
5302 static inline void unregister_as_ext3(void)
5303 {
5304 unregister_filesystem(&ext3_fs_type);
5305 }
5306
5307 static inline int ext3_feature_set_ok(struct super_block *sb)
5308 {
5309 if (ext4_has_unknown_ext3_incompat_features(sb))
5310 return 0;
5311 if (!ext4_has_feature_journal(sb))
5312 return 0;
5313 if (sb->s_flags & MS_RDONLY)
5314 return 1;
5315 if (ext4_has_unknown_ext3_ro_compat_features(sb))
5316 return 0;
5317 return 1;
5318 }
5319
5320 static struct file_system_type ext4_fs_type = {
5321 .owner = THIS_MODULE,
5322 .name = "ext4",
5323 .mount = ext4_mount,
5324 .kill_sb = kill_block_super,
5325 .fs_flags = FS_REQUIRES_DEV,
5326 };
5327 MODULE_ALIAS_FS("ext4");
5328
5329 /* Shared across all ext4 file systems */
5330 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ];
5331
5332 static int __init ext4_init_fs(void)
5333 {
5334 int i, err;
5335
5336 ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64);
5337 ext4_li_info = NULL;
5338 mutex_init(&ext4_li_mtx);
5339
5340 /* Build-time check for flags consistency */
5341 ext4_check_flag_values();
5342
5343 for (i = 0; i < EXT4_WQ_HASH_SZ; i++)
5344 init_waitqueue_head(&ext4__ioend_wq[i]);
5345
5346 err = ext4_init_es();
5347 if (err)
5348 return err;
5349
5350 err = ext4_init_pageio();
5351 if (err)
5352 goto out5;
5353
5354 err = ext4_init_system_zone();
5355 if (err)
5356 goto out4;
5357
5358 err = ext4_init_sysfs();
5359 if (err)
5360 goto out3;
5361
5362 err = ext4_init_mballoc();
5363 if (err)
5364 goto out2;
5365 err = init_inodecache();
5366 if (err)
5367 goto out1;
5368 register_as_ext3();
5369 register_as_ext2();
5370 err = register_filesystem(&ext4_fs_type);
5371 if (err)
5372 goto out;
5373
5374 return 0;
5375 out:
5376 unregister_as_ext2();
5377 unregister_as_ext3();
5378 destroy_inodecache();
5379 out1:
5380 ext4_exit_mballoc();
5381 out2:
5382 ext4_exit_sysfs();
5383 out3:
5384 ext4_exit_system_zone();
5385 out4:
5386 ext4_exit_pageio();
5387 out5:
5388 ext4_exit_es();
5389
5390 return err;
5391 }
5392
5393 static void __exit ext4_exit_fs(void)
5394 {
5395 ext4_exit_crypto();
5396 ext4_destroy_lazyinit_thread();
5397 unregister_as_ext2();
5398 unregister_as_ext3();
5399 unregister_filesystem(&ext4_fs_type);
5400 destroy_inodecache();
5401 ext4_exit_mballoc();
5402 ext4_exit_sysfs();
5403 ext4_exit_system_zone();
5404 ext4_exit_pageio();
5405 ext4_exit_es();
5406 }
5407
5408 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
5409 MODULE_DESCRIPTION("Fourth Extended Filesystem");
5410 MODULE_LICENSE("GPL");
5411 module_init(ext4_init_fs)
5412 module_exit(ext4_exit_fs)