]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/ext4/super.c
0f77c2e4b8883f9fd5c3a343b703d60eae83c120
[mirror_ubuntu-bionic-kernel.git] / fs / ext4 / super.c
1 /*
2 * linux/fs/ext4/super.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * Big-endian to little-endian byte-swapping/bitmaps by
16 * David S. Miller (davem@caip.rutgers.edu), 1995
17 */
18
19 #include <linux/module.h>
20 #include <linux/string.h>
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/vmalloc.h>
24 #include <linux/jbd2.h>
25 #include <linux/slab.h>
26 #include <linux/init.h>
27 #include <linux/blkdev.h>
28 #include <linux/parser.h>
29 #include <linux/buffer_head.h>
30 #include <linux/exportfs.h>
31 #include <linux/vfs.h>
32 #include <linux/random.h>
33 #include <linux/mount.h>
34 #include <linux/namei.h>
35 #include <linux/quotaops.h>
36 #include <linux/seq_file.h>
37 #include <linux/proc_fs.h>
38 #include <linux/ctype.h>
39 #include <linux/log2.h>
40 #include <linux/crc16.h>
41 #include <linux/cleancache.h>
42 #include <asm/uaccess.h>
43
44 #include <linux/kthread.h>
45 #include <linux/freezer.h>
46
47 #include "ext4.h"
48 #include "ext4_extents.h" /* Needed for trace points definition */
49 #include "ext4_jbd2.h"
50 #include "xattr.h"
51 #include "acl.h"
52 #include "mballoc.h"
53
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/ext4.h>
56
57 static struct proc_dir_entry *ext4_proc_root;
58 static struct kset *ext4_kset;
59 static struct ext4_lazy_init *ext4_li_info;
60 static struct mutex ext4_li_mtx;
61 static struct ext4_features *ext4_feat;
62
63 static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
64 unsigned long journal_devnum);
65 static int ext4_show_options(struct seq_file *seq, struct dentry *root);
66 static int ext4_commit_super(struct super_block *sb, int sync);
67 static void ext4_mark_recovery_complete(struct super_block *sb,
68 struct ext4_super_block *es);
69 static void ext4_clear_journal_err(struct super_block *sb,
70 struct ext4_super_block *es);
71 static int ext4_sync_fs(struct super_block *sb, int wait);
72 static int ext4_sync_fs_nojournal(struct super_block *sb, int wait);
73 static int ext4_remount(struct super_block *sb, int *flags, char *data);
74 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
75 static int ext4_unfreeze(struct super_block *sb);
76 static int ext4_freeze(struct super_block *sb);
77 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
78 const char *dev_name, void *data);
79 static inline int ext2_feature_set_ok(struct super_block *sb);
80 static inline int ext3_feature_set_ok(struct super_block *sb);
81 static int ext4_feature_set_ok(struct super_block *sb, int readonly);
82 static void ext4_destroy_lazyinit_thread(void);
83 static void ext4_unregister_li_request(struct super_block *sb);
84 static void ext4_clear_request_list(void);
85 static int ext4_reserve_clusters(struct ext4_sb_info *, ext4_fsblk_t);
86
87 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
88 static struct file_system_type ext2_fs_type = {
89 .owner = THIS_MODULE,
90 .name = "ext2",
91 .mount = ext4_mount,
92 .kill_sb = kill_block_super,
93 .fs_flags = FS_REQUIRES_DEV,
94 };
95 MODULE_ALIAS_FS("ext2");
96 MODULE_ALIAS("ext2");
97 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type)
98 #else
99 #define IS_EXT2_SB(sb) (0)
100 #endif
101
102
103 #if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
104 static struct file_system_type ext3_fs_type = {
105 .owner = THIS_MODULE,
106 .name = "ext3",
107 .mount = ext4_mount,
108 .kill_sb = kill_block_super,
109 .fs_flags = FS_REQUIRES_DEV,
110 };
111 MODULE_ALIAS_FS("ext3");
112 MODULE_ALIAS("ext3");
113 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type)
114 #else
115 #define IS_EXT3_SB(sb) (0)
116 #endif
117
118 static int ext4_verify_csum_type(struct super_block *sb,
119 struct ext4_super_block *es)
120 {
121 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
122 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
123 return 1;
124
125 return es->s_checksum_type == EXT4_CRC32C_CHKSUM;
126 }
127
128 static __le32 ext4_superblock_csum(struct super_block *sb,
129 struct ext4_super_block *es)
130 {
131 struct ext4_sb_info *sbi = EXT4_SB(sb);
132 int offset = offsetof(struct ext4_super_block, s_checksum);
133 __u32 csum;
134
135 csum = ext4_chksum(sbi, ~0, (char *)es, offset);
136
137 return cpu_to_le32(csum);
138 }
139
140 int ext4_superblock_csum_verify(struct super_block *sb,
141 struct ext4_super_block *es)
142 {
143 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
144 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
145 return 1;
146
147 return es->s_checksum == ext4_superblock_csum(sb, es);
148 }
149
150 void ext4_superblock_csum_set(struct super_block *sb)
151 {
152 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
153
154 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
155 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
156 return;
157
158 es->s_checksum = ext4_superblock_csum(sb, es);
159 }
160
161 void *ext4_kvmalloc(size_t size, gfp_t flags)
162 {
163 void *ret;
164
165 ret = kmalloc(size, flags);
166 if (!ret)
167 ret = __vmalloc(size, flags, PAGE_KERNEL);
168 return ret;
169 }
170
171 void *ext4_kvzalloc(size_t size, gfp_t flags)
172 {
173 void *ret;
174
175 ret = kzalloc(size, flags);
176 if (!ret)
177 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL);
178 return ret;
179 }
180
181 void ext4_kvfree(void *ptr)
182 {
183 if (is_vmalloc_addr(ptr))
184 vfree(ptr);
185 else
186 kfree(ptr);
187
188 }
189
190 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
191 struct ext4_group_desc *bg)
192 {
193 return le32_to_cpu(bg->bg_block_bitmap_lo) |
194 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
195 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
196 }
197
198 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
199 struct ext4_group_desc *bg)
200 {
201 return le32_to_cpu(bg->bg_inode_bitmap_lo) |
202 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
203 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
204 }
205
206 ext4_fsblk_t ext4_inode_table(struct super_block *sb,
207 struct ext4_group_desc *bg)
208 {
209 return le32_to_cpu(bg->bg_inode_table_lo) |
210 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
211 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
212 }
213
214 __u32 ext4_free_group_clusters(struct super_block *sb,
215 struct ext4_group_desc *bg)
216 {
217 return le16_to_cpu(bg->bg_free_blocks_count_lo) |
218 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
219 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
220 }
221
222 __u32 ext4_free_inodes_count(struct super_block *sb,
223 struct ext4_group_desc *bg)
224 {
225 return le16_to_cpu(bg->bg_free_inodes_count_lo) |
226 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
227 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
228 }
229
230 __u32 ext4_used_dirs_count(struct super_block *sb,
231 struct ext4_group_desc *bg)
232 {
233 return le16_to_cpu(bg->bg_used_dirs_count_lo) |
234 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
235 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
236 }
237
238 __u32 ext4_itable_unused_count(struct super_block *sb,
239 struct ext4_group_desc *bg)
240 {
241 return le16_to_cpu(bg->bg_itable_unused_lo) |
242 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
243 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
244 }
245
246 void ext4_block_bitmap_set(struct super_block *sb,
247 struct ext4_group_desc *bg, ext4_fsblk_t blk)
248 {
249 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
250 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
251 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
252 }
253
254 void ext4_inode_bitmap_set(struct super_block *sb,
255 struct ext4_group_desc *bg, ext4_fsblk_t blk)
256 {
257 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk);
258 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
259 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
260 }
261
262 void ext4_inode_table_set(struct super_block *sb,
263 struct ext4_group_desc *bg, ext4_fsblk_t blk)
264 {
265 bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
266 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
267 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
268 }
269
270 void ext4_free_group_clusters_set(struct super_block *sb,
271 struct ext4_group_desc *bg, __u32 count)
272 {
273 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
274 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
275 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
276 }
277
278 void ext4_free_inodes_set(struct super_block *sb,
279 struct ext4_group_desc *bg, __u32 count)
280 {
281 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
282 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
283 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
284 }
285
286 void ext4_used_dirs_set(struct super_block *sb,
287 struct ext4_group_desc *bg, __u32 count)
288 {
289 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
290 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
291 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
292 }
293
294 void ext4_itable_unused_set(struct super_block *sb,
295 struct ext4_group_desc *bg, __u32 count)
296 {
297 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
298 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
299 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
300 }
301
302
303 static void __save_error_info(struct super_block *sb, const char *func,
304 unsigned int line)
305 {
306 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
307
308 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
309 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
310 es->s_last_error_time = cpu_to_le32(get_seconds());
311 strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func));
312 es->s_last_error_line = cpu_to_le32(line);
313 if (!es->s_first_error_time) {
314 es->s_first_error_time = es->s_last_error_time;
315 strncpy(es->s_first_error_func, func,
316 sizeof(es->s_first_error_func));
317 es->s_first_error_line = cpu_to_le32(line);
318 es->s_first_error_ino = es->s_last_error_ino;
319 es->s_first_error_block = es->s_last_error_block;
320 }
321 /*
322 * Start the daily error reporting function if it hasn't been
323 * started already
324 */
325 if (!es->s_error_count)
326 mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ);
327 le32_add_cpu(&es->s_error_count, 1);
328 }
329
330 static void save_error_info(struct super_block *sb, const char *func,
331 unsigned int line)
332 {
333 __save_error_info(sb, func, line);
334 ext4_commit_super(sb, 1);
335 }
336
337 /*
338 * The del_gendisk() function uninitializes the disk-specific data
339 * structures, including the bdi structure, without telling anyone
340 * else. Once this happens, any attempt to call mark_buffer_dirty()
341 * (for example, by ext4_commit_super), will cause a kernel OOPS.
342 * This is a kludge to prevent these oops until we can put in a proper
343 * hook in del_gendisk() to inform the VFS and file system layers.
344 */
345 static int block_device_ejected(struct super_block *sb)
346 {
347 struct inode *bd_inode = sb->s_bdev->bd_inode;
348 struct backing_dev_info *bdi = bd_inode->i_mapping->backing_dev_info;
349
350 return bdi->dev == NULL;
351 }
352
353 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn)
354 {
355 struct super_block *sb = journal->j_private;
356 struct ext4_sb_info *sbi = EXT4_SB(sb);
357 int error = is_journal_aborted(journal);
358 struct ext4_journal_cb_entry *jce;
359
360 BUG_ON(txn->t_state == T_FINISHED);
361 spin_lock(&sbi->s_md_lock);
362 while (!list_empty(&txn->t_private_list)) {
363 jce = list_entry(txn->t_private_list.next,
364 struct ext4_journal_cb_entry, jce_list);
365 list_del_init(&jce->jce_list);
366 spin_unlock(&sbi->s_md_lock);
367 jce->jce_func(sb, jce, error);
368 spin_lock(&sbi->s_md_lock);
369 }
370 spin_unlock(&sbi->s_md_lock);
371 }
372
373 /* Deal with the reporting of failure conditions on a filesystem such as
374 * inconsistencies detected or read IO failures.
375 *
376 * On ext2, we can store the error state of the filesystem in the
377 * superblock. That is not possible on ext4, because we may have other
378 * write ordering constraints on the superblock which prevent us from
379 * writing it out straight away; and given that the journal is about to
380 * be aborted, we can't rely on the current, or future, transactions to
381 * write out the superblock safely.
382 *
383 * We'll just use the jbd2_journal_abort() error code to record an error in
384 * the journal instead. On recovery, the journal will complain about
385 * that error until we've noted it down and cleared it.
386 */
387
388 static void ext4_handle_error(struct super_block *sb)
389 {
390 if (sb->s_flags & MS_RDONLY)
391 return;
392
393 if (!test_opt(sb, ERRORS_CONT)) {
394 journal_t *journal = EXT4_SB(sb)->s_journal;
395
396 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
397 if (journal)
398 jbd2_journal_abort(journal, -EIO);
399 }
400 if (test_opt(sb, ERRORS_RO)) {
401 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
402 sb->s_flags |= MS_RDONLY;
403 }
404 if (test_opt(sb, ERRORS_PANIC))
405 panic("EXT4-fs (device %s): panic forced after error\n",
406 sb->s_id);
407 }
408
409 void __ext4_error(struct super_block *sb, const char *function,
410 unsigned int line, const char *fmt, ...)
411 {
412 struct va_format vaf;
413 va_list args;
414
415 va_start(args, fmt);
416 vaf.fmt = fmt;
417 vaf.va = &args;
418 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
419 sb->s_id, function, line, current->comm, &vaf);
420 va_end(args);
421 save_error_info(sb, function, line);
422
423 ext4_handle_error(sb);
424 }
425
426 void ext4_error_inode(struct inode *inode, const char *function,
427 unsigned int line, ext4_fsblk_t block,
428 const char *fmt, ...)
429 {
430 va_list args;
431 struct va_format vaf;
432 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
433
434 es->s_last_error_ino = cpu_to_le32(inode->i_ino);
435 es->s_last_error_block = cpu_to_le64(block);
436 save_error_info(inode->i_sb, function, line);
437 va_start(args, fmt);
438 vaf.fmt = fmt;
439 vaf.va = &args;
440 if (block)
441 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
442 "inode #%lu: block %llu: comm %s: %pV\n",
443 inode->i_sb->s_id, function, line, inode->i_ino,
444 block, current->comm, &vaf);
445 else
446 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
447 "inode #%lu: comm %s: %pV\n",
448 inode->i_sb->s_id, function, line, inode->i_ino,
449 current->comm, &vaf);
450 va_end(args);
451
452 ext4_handle_error(inode->i_sb);
453 }
454
455 void ext4_error_file(struct file *file, const char *function,
456 unsigned int line, ext4_fsblk_t block,
457 const char *fmt, ...)
458 {
459 va_list args;
460 struct va_format vaf;
461 struct ext4_super_block *es;
462 struct inode *inode = file_inode(file);
463 char pathname[80], *path;
464
465 es = EXT4_SB(inode->i_sb)->s_es;
466 es->s_last_error_ino = cpu_to_le32(inode->i_ino);
467 save_error_info(inode->i_sb, function, line);
468 path = d_path(&(file->f_path), pathname, sizeof(pathname));
469 if (IS_ERR(path))
470 path = "(unknown)";
471 va_start(args, fmt);
472 vaf.fmt = fmt;
473 vaf.va = &args;
474 if (block)
475 printk(KERN_CRIT
476 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
477 "block %llu: comm %s: path %s: %pV\n",
478 inode->i_sb->s_id, function, line, inode->i_ino,
479 block, current->comm, path, &vaf);
480 else
481 printk(KERN_CRIT
482 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
483 "comm %s: path %s: %pV\n",
484 inode->i_sb->s_id, function, line, inode->i_ino,
485 current->comm, path, &vaf);
486 va_end(args);
487
488 ext4_handle_error(inode->i_sb);
489 }
490
491 const char *ext4_decode_error(struct super_block *sb, int errno,
492 char nbuf[16])
493 {
494 char *errstr = NULL;
495
496 switch (errno) {
497 case -EIO:
498 errstr = "IO failure";
499 break;
500 case -ENOMEM:
501 errstr = "Out of memory";
502 break;
503 case -EROFS:
504 if (!sb || (EXT4_SB(sb)->s_journal &&
505 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
506 errstr = "Journal has aborted";
507 else
508 errstr = "Readonly filesystem";
509 break;
510 default:
511 /* If the caller passed in an extra buffer for unknown
512 * errors, textualise them now. Else we just return
513 * NULL. */
514 if (nbuf) {
515 /* Check for truncated error codes... */
516 if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
517 errstr = nbuf;
518 }
519 break;
520 }
521
522 return errstr;
523 }
524
525 /* __ext4_std_error decodes expected errors from journaling functions
526 * automatically and invokes the appropriate error response. */
527
528 void __ext4_std_error(struct super_block *sb, const char *function,
529 unsigned int line, int errno)
530 {
531 char nbuf[16];
532 const char *errstr;
533
534 /* Special case: if the error is EROFS, and we're not already
535 * inside a transaction, then there's really no point in logging
536 * an error. */
537 if (errno == -EROFS && journal_current_handle() == NULL &&
538 (sb->s_flags & MS_RDONLY))
539 return;
540
541 errstr = ext4_decode_error(sb, errno, nbuf);
542 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
543 sb->s_id, function, line, errstr);
544 save_error_info(sb, function, line);
545
546 ext4_handle_error(sb);
547 }
548
549 /*
550 * ext4_abort is a much stronger failure handler than ext4_error. The
551 * abort function may be used to deal with unrecoverable failures such
552 * as journal IO errors or ENOMEM at a critical moment in log management.
553 *
554 * We unconditionally force the filesystem into an ABORT|READONLY state,
555 * unless the error response on the fs has been set to panic in which
556 * case we take the easy way out and panic immediately.
557 */
558
559 void __ext4_abort(struct super_block *sb, const char *function,
560 unsigned int line, const char *fmt, ...)
561 {
562 va_list args;
563
564 save_error_info(sb, function, line);
565 va_start(args, fmt);
566 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: ", sb->s_id,
567 function, line);
568 vprintk(fmt, args);
569 printk("\n");
570 va_end(args);
571
572 if ((sb->s_flags & MS_RDONLY) == 0) {
573 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
574 sb->s_flags |= MS_RDONLY;
575 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
576 if (EXT4_SB(sb)->s_journal)
577 jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO);
578 save_error_info(sb, function, line);
579 }
580 if (test_opt(sb, ERRORS_PANIC))
581 panic("EXT4-fs panic from previous error\n");
582 }
583
584 void ext4_msg(struct super_block *sb, const char *prefix, const char *fmt, ...)
585 {
586 struct va_format vaf;
587 va_list args;
588
589 va_start(args, fmt);
590 vaf.fmt = fmt;
591 vaf.va = &args;
592 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
593 va_end(args);
594 }
595
596 void __ext4_warning(struct super_block *sb, const char *function,
597 unsigned int line, const char *fmt, ...)
598 {
599 struct va_format vaf;
600 va_list args;
601
602 va_start(args, fmt);
603 vaf.fmt = fmt;
604 vaf.va = &args;
605 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
606 sb->s_id, function, line, &vaf);
607 va_end(args);
608 }
609
610 void __ext4_grp_locked_error(const char *function, unsigned int line,
611 struct super_block *sb, ext4_group_t grp,
612 unsigned long ino, ext4_fsblk_t block,
613 const char *fmt, ...)
614 __releases(bitlock)
615 __acquires(bitlock)
616 {
617 struct va_format vaf;
618 va_list args;
619 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
620
621 es->s_last_error_ino = cpu_to_le32(ino);
622 es->s_last_error_block = cpu_to_le64(block);
623 __save_error_info(sb, function, line);
624
625 va_start(args, fmt);
626
627 vaf.fmt = fmt;
628 vaf.va = &args;
629 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
630 sb->s_id, function, line, grp);
631 if (ino)
632 printk(KERN_CONT "inode %lu: ", ino);
633 if (block)
634 printk(KERN_CONT "block %llu:", (unsigned long long) block);
635 printk(KERN_CONT "%pV\n", &vaf);
636 va_end(args);
637
638 if (test_opt(sb, ERRORS_CONT)) {
639 ext4_commit_super(sb, 0);
640 return;
641 }
642
643 ext4_unlock_group(sb, grp);
644 ext4_handle_error(sb);
645 /*
646 * We only get here in the ERRORS_RO case; relocking the group
647 * may be dangerous, but nothing bad will happen since the
648 * filesystem will have already been marked read/only and the
649 * journal has been aborted. We return 1 as a hint to callers
650 * who might what to use the return value from
651 * ext4_grp_locked_error() to distinguish between the
652 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
653 * aggressively from the ext4 function in question, with a
654 * more appropriate error code.
655 */
656 ext4_lock_group(sb, grp);
657 return;
658 }
659
660 void ext4_update_dynamic_rev(struct super_block *sb)
661 {
662 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
663
664 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
665 return;
666
667 ext4_warning(sb,
668 "updating to rev %d because of new feature flag, "
669 "running e2fsck is recommended",
670 EXT4_DYNAMIC_REV);
671
672 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
673 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
674 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
675 /* leave es->s_feature_*compat flags alone */
676 /* es->s_uuid will be set by e2fsck if empty */
677
678 /*
679 * The rest of the superblock fields should be zero, and if not it
680 * means they are likely already in use, so leave them alone. We
681 * can leave it up to e2fsck to clean up any inconsistencies there.
682 */
683 }
684
685 /*
686 * Open the external journal device
687 */
688 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb)
689 {
690 struct block_device *bdev;
691 char b[BDEVNAME_SIZE];
692
693 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb);
694 if (IS_ERR(bdev))
695 goto fail;
696 return bdev;
697
698 fail:
699 ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld",
700 __bdevname(dev, b), PTR_ERR(bdev));
701 return NULL;
702 }
703
704 /*
705 * Release the journal device
706 */
707 static void ext4_blkdev_put(struct block_device *bdev)
708 {
709 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
710 }
711
712 static void ext4_blkdev_remove(struct ext4_sb_info *sbi)
713 {
714 struct block_device *bdev;
715 bdev = sbi->journal_bdev;
716 if (bdev) {
717 ext4_blkdev_put(bdev);
718 sbi->journal_bdev = NULL;
719 }
720 }
721
722 static inline struct inode *orphan_list_entry(struct list_head *l)
723 {
724 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
725 }
726
727 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
728 {
729 struct list_head *l;
730
731 ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
732 le32_to_cpu(sbi->s_es->s_last_orphan));
733
734 printk(KERN_ERR "sb_info orphan list:\n");
735 list_for_each(l, &sbi->s_orphan) {
736 struct inode *inode = orphan_list_entry(l);
737 printk(KERN_ERR " "
738 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
739 inode->i_sb->s_id, inode->i_ino, inode,
740 inode->i_mode, inode->i_nlink,
741 NEXT_ORPHAN(inode));
742 }
743 }
744
745 static void ext4_put_super(struct super_block *sb)
746 {
747 struct ext4_sb_info *sbi = EXT4_SB(sb);
748 struct ext4_super_block *es = sbi->s_es;
749 int i, err;
750
751 ext4_unregister_li_request(sb);
752 dquot_disable(sb, -1, DQUOT_USAGE_ENABLED | DQUOT_LIMITS_ENABLED);
753
754 flush_workqueue(sbi->unrsv_conversion_wq);
755 flush_workqueue(sbi->rsv_conversion_wq);
756 destroy_workqueue(sbi->unrsv_conversion_wq);
757 destroy_workqueue(sbi->rsv_conversion_wq);
758
759 if (sbi->s_journal) {
760 err = jbd2_journal_destroy(sbi->s_journal);
761 sbi->s_journal = NULL;
762 if (err < 0)
763 ext4_abort(sb, "Couldn't clean up the journal");
764 }
765
766 ext4_es_unregister_shrinker(sb);
767 del_timer(&sbi->s_err_report);
768 ext4_release_system_zone(sb);
769 ext4_mb_release(sb);
770 ext4_ext_release(sb);
771 ext4_xattr_put_super(sb);
772
773 if (!(sb->s_flags & MS_RDONLY)) {
774 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
775 es->s_state = cpu_to_le16(sbi->s_mount_state);
776 }
777 if (!(sb->s_flags & MS_RDONLY))
778 ext4_commit_super(sb, 1);
779
780 if (sbi->s_proc) {
781 remove_proc_entry("options", sbi->s_proc);
782 remove_proc_entry(sb->s_id, ext4_proc_root);
783 }
784 kobject_del(&sbi->s_kobj);
785
786 for (i = 0; i < sbi->s_gdb_count; i++)
787 brelse(sbi->s_group_desc[i]);
788 ext4_kvfree(sbi->s_group_desc);
789 ext4_kvfree(sbi->s_flex_groups);
790 percpu_counter_destroy(&sbi->s_freeclusters_counter);
791 percpu_counter_destroy(&sbi->s_freeinodes_counter);
792 percpu_counter_destroy(&sbi->s_dirs_counter);
793 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
794 percpu_counter_destroy(&sbi->s_extent_cache_cnt);
795 brelse(sbi->s_sbh);
796 #ifdef CONFIG_QUOTA
797 for (i = 0; i < MAXQUOTAS; i++)
798 kfree(sbi->s_qf_names[i]);
799 #endif
800
801 /* Debugging code just in case the in-memory inode orphan list
802 * isn't empty. The on-disk one can be non-empty if we've
803 * detected an error and taken the fs readonly, but the
804 * in-memory list had better be clean by this point. */
805 if (!list_empty(&sbi->s_orphan))
806 dump_orphan_list(sb, sbi);
807 J_ASSERT(list_empty(&sbi->s_orphan));
808
809 invalidate_bdev(sb->s_bdev);
810 if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) {
811 /*
812 * Invalidate the journal device's buffers. We don't want them
813 * floating about in memory - the physical journal device may
814 * hotswapped, and it breaks the `ro-after' testing code.
815 */
816 sync_blockdev(sbi->journal_bdev);
817 invalidate_bdev(sbi->journal_bdev);
818 ext4_blkdev_remove(sbi);
819 }
820 if (sbi->s_mmp_tsk)
821 kthread_stop(sbi->s_mmp_tsk);
822 sb->s_fs_info = NULL;
823 /*
824 * Now that we are completely done shutting down the
825 * superblock, we need to actually destroy the kobject.
826 */
827 kobject_put(&sbi->s_kobj);
828 wait_for_completion(&sbi->s_kobj_unregister);
829 if (sbi->s_chksum_driver)
830 crypto_free_shash(sbi->s_chksum_driver);
831 kfree(sbi->s_blockgroup_lock);
832 kfree(sbi);
833 }
834
835 static struct kmem_cache *ext4_inode_cachep;
836
837 /*
838 * Called inside transaction, so use GFP_NOFS
839 */
840 static struct inode *ext4_alloc_inode(struct super_block *sb)
841 {
842 struct ext4_inode_info *ei;
843
844 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS);
845 if (!ei)
846 return NULL;
847
848 ei->vfs_inode.i_version = 1;
849 INIT_LIST_HEAD(&ei->i_prealloc_list);
850 spin_lock_init(&ei->i_prealloc_lock);
851 ext4_es_init_tree(&ei->i_es_tree);
852 rwlock_init(&ei->i_es_lock);
853 INIT_LIST_HEAD(&ei->i_es_lru);
854 ei->i_es_lru_nr = 0;
855 ei->i_reserved_data_blocks = 0;
856 ei->i_reserved_meta_blocks = 0;
857 ei->i_allocated_meta_blocks = 0;
858 ei->i_da_metadata_calc_len = 0;
859 ei->i_da_metadata_calc_last_lblock = 0;
860 spin_lock_init(&(ei->i_block_reservation_lock));
861 #ifdef CONFIG_QUOTA
862 ei->i_reserved_quota = 0;
863 #endif
864 ei->jinode = NULL;
865 INIT_LIST_HEAD(&ei->i_rsv_conversion_list);
866 INIT_LIST_HEAD(&ei->i_unrsv_conversion_list);
867 spin_lock_init(&ei->i_completed_io_lock);
868 ei->i_sync_tid = 0;
869 ei->i_datasync_tid = 0;
870 atomic_set(&ei->i_ioend_count, 0);
871 atomic_set(&ei->i_unwritten, 0);
872 INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work);
873 INIT_WORK(&ei->i_unrsv_conversion_work, ext4_end_io_unrsv_work);
874
875 return &ei->vfs_inode;
876 }
877
878 static int ext4_drop_inode(struct inode *inode)
879 {
880 int drop = generic_drop_inode(inode);
881
882 trace_ext4_drop_inode(inode, drop);
883 return drop;
884 }
885
886 static void ext4_i_callback(struct rcu_head *head)
887 {
888 struct inode *inode = container_of(head, struct inode, i_rcu);
889 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
890 }
891
892 static void ext4_destroy_inode(struct inode *inode)
893 {
894 if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
895 ext4_msg(inode->i_sb, KERN_ERR,
896 "Inode %lu (%p): orphan list check failed!",
897 inode->i_ino, EXT4_I(inode));
898 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
899 EXT4_I(inode), sizeof(struct ext4_inode_info),
900 true);
901 dump_stack();
902 }
903 call_rcu(&inode->i_rcu, ext4_i_callback);
904 }
905
906 static void init_once(void *foo)
907 {
908 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo;
909
910 INIT_LIST_HEAD(&ei->i_orphan);
911 init_rwsem(&ei->xattr_sem);
912 init_rwsem(&ei->i_data_sem);
913 inode_init_once(&ei->vfs_inode);
914 }
915
916 static int init_inodecache(void)
917 {
918 ext4_inode_cachep = kmem_cache_create("ext4_inode_cache",
919 sizeof(struct ext4_inode_info),
920 0, (SLAB_RECLAIM_ACCOUNT|
921 SLAB_MEM_SPREAD),
922 init_once);
923 if (ext4_inode_cachep == NULL)
924 return -ENOMEM;
925 return 0;
926 }
927
928 static void destroy_inodecache(void)
929 {
930 /*
931 * Make sure all delayed rcu free inodes are flushed before we
932 * destroy cache.
933 */
934 rcu_barrier();
935 kmem_cache_destroy(ext4_inode_cachep);
936 }
937
938 void ext4_clear_inode(struct inode *inode)
939 {
940 invalidate_inode_buffers(inode);
941 clear_inode(inode);
942 dquot_drop(inode);
943 ext4_discard_preallocations(inode);
944 ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS);
945 ext4_es_lru_del(inode);
946 if (EXT4_I(inode)->jinode) {
947 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
948 EXT4_I(inode)->jinode);
949 jbd2_free_inode(EXT4_I(inode)->jinode);
950 EXT4_I(inode)->jinode = NULL;
951 }
952 }
953
954 static struct inode *ext4_nfs_get_inode(struct super_block *sb,
955 u64 ino, u32 generation)
956 {
957 struct inode *inode;
958
959 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
960 return ERR_PTR(-ESTALE);
961 if (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
962 return ERR_PTR(-ESTALE);
963
964 /* iget isn't really right if the inode is currently unallocated!!
965 *
966 * ext4_read_inode will return a bad_inode if the inode had been
967 * deleted, so we should be safe.
968 *
969 * Currently we don't know the generation for parent directory, so
970 * a generation of 0 means "accept any"
971 */
972 inode = ext4_iget(sb, ino);
973 if (IS_ERR(inode))
974 return ERR_CAST(inode);
975 if (generation && inode->i_generation != generation) {
976 iput(inode);
977 return ERR_PTR(-ESTALE);
978 }
979
980 return inode;
981 }
982
983 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
984 int fh_len, int fh_type)
985 {
986 return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
987 ext4_nfs_get_inode);
988 }
989
990 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
991 int fh_len, int fh_type)
992 {
993 return generic_fh_to_parent(sb, fid, fh_len, fh_type,
994 ext4_nfs_get_inode);
995 }
996
997 /*
998 * Try to release metadata pages (indirect blocks, directories) which are
999 * mapped via the block device. Since these pages could have journal heads
1000 * which would prevent try_to_free_buffers() from freeing them, we must use
1001 * jbd2 layer's try_to_free_buffers() function to release them.
1002 */
1003 static int bdev_try_to_free_page(struct super_block *sb, struct page *page,
1004 gfp_t wait)
1005 {
1006 journal_t *journal = EXT4_SB(sb)->s_journal;
1007
1008 WARN_ON(PageChecked(page));
1009 if (!page_has_buffers(page))
1010 return 0;
1011 if (journal)
1012 return jbd2_journal_try_to_free_buffers(journal, page,
1013 wait & ~__GFP_WAIT);
1014 return try_to_free_buffers(page);
1015 }
1016
1017 #ifdef CONFIG_QUOTA
1018 #define QTYPE2NAME(t) ((t) == USRQUOTA ? "user" : "group")
1019 #define QTYPE2MOPT(on, t) ((t) == USRQUOTA?((on)##USRJQUOTA):((on)##GRPJQUOTA))
1020
1021 static int ext4_write_dquot(struct dquot *dquot);
1022 static int ext4_acquire_dquot(struct dquot *dquot);
1023 static int ext4_release_dquot(struct dquot *dquot);
1024 static int ext4_mark_dquot_dirty(struct dquot *dquot);
1025 static int ext4_write_info(struct super_block *sb, int type);
1026 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1027 struct path *path);
1028 static int ext4_quota_on_sysfile(struct super_block *sb, int type,
1029 int format_id);
1030 static int ext4_quota_off(struct super_block *sb, int type);
1031 static int ext4_quota_off_sysfile(struct super_block *sb, int type);
1032 static int ext4_quota_on_mount(struct super_block *sb, int type);
1033 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1034 size_t len, loff_t off);
1035 static ssize_t ext4_quota_write(struct super_block *sb, int type,
1036 const char *data, size_t len, loff_t off);
1037 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
1038 unsigned int flags);
1039 static int ext4_enable_quotas(struct super_block *sb);
1040
1041 static const struct dquot_operations ext4_quota_operations = {
1042 .get_reserved_space = ext4_get_reserved_space,
1043 .write_dquot = ext4_write_dquot,
1044 .acquire_dquot = ext4_acquire_dquot,
1045 .release_dquot = ext4_release_dquot,
1046 .mark_dirty = ext4_mark_dquot_dirty,
1047 .write_info = ext4_write_info,
1048 .alloc_dquot = dquot_alloc,
1049 .destroy_dquot = dquot_destroy,
1050 };
1051
1052 static const struct quotactl_ops ext4_qctl_operations = {
1053 .quota_on = ext4_quota_on,
1054 .quota_off = ext4_quota_off,
1055 .quota_sync = dquot_quota_sync,
1056 .get_info = dquot_get_dqinfo,
1057 .set_info = dquot_set_dqinfo,
1058 .get_dqblk = dquot_get_dqblk,
1059 .set_dqblk = dquot_set_dqblk
1060 };
1061
1062 static const struct quotactl_ops ext4_qctl_sysfile_operations = {
1063 .quota_on_meta = ext4_quota_on_sysfile,
1064 .quota_off = ext4_quota_off_sysfile,
1065 .quota_sync = dquot_quota_sync,
1066 .get_info = dquot_get_dqinfo,
1067 .set_info = dquot_set_dqinfo,
1068 .get_dqblk = dquot_get_dqblk,
1069 .set_dqblk = dquot_set_dqblk
1070 };
1071 #endif
1072
1073 static const struct super_operations ext4_sops = {
1074 .alloc_inode = ext4_alloc_inode,
1075 .destroy_inode = ext4_destroy_inode,
1076 .write_inode = ext4_write_inode,
1077 .dirty_inode = ext4_dirty_inode,
1078 .drop_inode = ext4_drop_inode,
1079 .evict_inode = ext4_evict_inode,
1080 .put_super = ext4_put_super,
1081 .sync_fs = ext4_sync_fs,
1082 .freeze_fs = ext4_freeze,
1083 .unfreeze_fs = ext4_unfreeze,
1084 .statfs = ext4_statfs,
1085 .remount_fs = ext4_remount,
1086 .show_options = ext4_show_options,
1087 #ifdef CONFIG_QUOTA
1088 .quota_read = ext4_quota_read,
1089 .quota_write = ext4_quota_write,
1090 #endif
1091 .bdev_try_to_free_page = bdev_try_to_free_page,
1092 };
1093
1094 static const struct super_operations ext4_nojournal_sops = {
1095 .alloc_inode = ext4_alloc_inode,
1096 .destroy_inode = ext4_destroy_inode,
1097 .write_inode = ext4_write_inode,
1098 .dirty_inode = ext4_dirty_inode,
1099 .drop_inode = ext4_drop_inode,
1100 .evict_inode = ext4_evict_inode,
1101 .sync_fs = ext4_sync_fs_nojournal,
1102 .put_super = ext4_put_super,
1103 .statfs = ext4_statfs,
1104 .remount_fs = ext4_remount,
1105 .show_options = ext4_show_options,
1106 #ifdef CONFIG_QUOTA
1107 .quota_read = ext4_quota_read,
1108 .quota_write = ext4_quota_write,
1109 #endif
1110 .bdev_try_to_free_page = bdev_try_to_free_page,
1111 };
1112
1113 static const struct export_operations ext4_export_ops = {
1114 .fh_to_dentry = ext4_fh_to_dentry,
1115 .fh_to_parent = ext4_fh_to_parent,
1116 .get_parent = ext4_get_parent,
1117 };
1118
1119 enum {
1120 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1121 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro,
1122 Opt_nouid32, Opt_debug, Opt_removed,
1123 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl,
1124 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload,
1125 Opt_commit, Opt_min_batch_time, Opt_max_batch_time,
1126 Opt_journal_dev, Opt_journal_checksum, Opt_journal_async_commit,
1127 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1128 Opt_data_err_abort, Opt_data_err_ignore,
1129 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota,
1130 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota,
1131 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err,
1132 Opt_usrquota, Opt_grpquota, Opt_i_version,
1133 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_mblk_io_submit,
1134 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1135 Opt_inode_readahead_blks, Opt_journal_ioprio,
1136 Opt_dioread_nolock, Opt_dioread_lock,
1137 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable,
1138 Opt_max_dir_size_kb,
1139 };
1140
1141 static const match_table_t tokens = {
1142 {Opt_bsd_df, "bsddf"},
1143 {Opt_minix_df, "minixdf"},
1144 {Opt_grpid, "grpid"},
1145 {Opt_grpid, "bsdgroups"},
1146 {Opt_nogrpid, "nogrpid"},
1147 {Opt_nogrpid, "sysvgroups"},
1148 {Opt_resgid, "resgid=%u"},
1149 {Opt_resuid, "resuid=%u"},
1150 {Opt_sb, "sb=%u"},
1151 {Opt_err_cont, "errors=continue"},
1152 {Opt_err_panic, "errors=panic"},
1153 {Opt_err_ro, "errors=remount-ro"},
1154 {Opt_nouid32, "nouid32"},
1155 {Opt_debug, "debug"},
1156 {Opt_removed, "oldalloc"},
1157 {Opt_removed, "orlov"},
1158 {Opt_user_xattr, "user_xattr"},
1159 {Opt_nouser_xattr, "nouser_xattr"},
1160 {Opt_acl, "acl"},
1161 {Opt_noacl, "noacl"},
1162 {Opt_noload, "norecovery"},
1163 {Opt_noload, "noload"},
1164 {Opt_removed, "nobh"},
1165 {Opt_removed, "bh"},
1166 {Opt_commit, "commit=%u"},
1167 {Opt_min_batch_time, "min_batch_time=%u"},
1168 {Opt_max_batch_time, "max_batch_time=%u"},
1169 {Opt_journal_dev, "journal_dev=%u"},
1170 {Opt_journal_checksum, "journal_checksum"},
1171 {Opt_journal_async_commit, "journal_async_commit"},
1172 {Opt_abort, "abort"},
1173 {Opt_data_journal, "data=journal"},
1174 {Opt_data_ordered, "data=ordered"},
1175 {Opt_data_writeback, "data=writeback"},
1176 {Opt_data_err_abort, "data_err=abort"},
1177 {Opt_data_err_ignore, "data_err=ignore"},
1178 {Opt_offusrjquota, "usrjquota="},
1179 {Opt_usrjquota, "usrjquota=%s"},
1180 {Opt_offgrpjquota, "grpjquota="},
1181 {Opt_grpjquota, "grpjquota=%s"},
1182 {Opt_jqfmt_vfsold, "jqfmt=vfsold"},
1183 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
1184 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
1185 {Opt_grpquota, "grpquota"},
1186 {Opt_noquota, "noquota"},
1187 {Opt_quota, "quota"},
1188 {Opt_usrquota, "usrquota"},
1189 {Opt_barrier, "barrier=%u"},
1190 {Opt_barrier, "barrier"},
1191 {Opt_nobarrier, "nobarrier"},
1192 {Opt_i_version, "i_version"},
1193 {Opt_stripe, "stripe=%u"},
1194 {Opt_delalloc, "delalloc"},
1195 {Opt_nodelalloc, "nodelalloc"},
1196 {Opt_removed, "mblk_io_submit"},
1197 {Opt_removed, "nomblk_io_submit"},
1198 {Opt_block_validity, "block_validity"},
1199 {Opt_noblock_validity, "noblock_validity"},
1200 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"},
1201 {Opt_journal_ioprio, "journal_ioprio=%u"},
1202 {Opt_auto_da_alloc, "auto_da_alloc=%u"},
1203 {Opt_auto_da_alloc, "auto_da_alloc"},
1204 {Opt_noauto_da_alloc, "noauto_da_alloc"},
1205 {Opt_dioread_nolock, "dioread_nolock"},
1206 {Opt_dioread_lock, "dioread_lock"},
1207 {Opt_discard, "discard"},
1208 {Opt_nodiscard, "nodiscard"},
1209 {Opt_init_itable, "init_itable=%u"},
1210 {Opt_init_itable, "init_itable"},
1211 {Opt_noinit_itable, "noinit_itable"},
1212 {Opt_max_dir_size_kb, "max_dir_size_kb=%u"},
1213 {Opt_removed, "check=none"}, /* mount option from ext2/3 */
1214 {Opt_removed, "nocheck"}, /* mount option from ext2/3 */
1215 {Opt_removed, "reservation"}, /* mount option from ext2/3 */
1216 {Opt_removed, "noreservation"}, /* mount option from ext2/3 */
1217 {Opt_removed, "journal=%u"}, /* mount option from ext2/3 */
1218 {Opt_err, NULL},
1219 };
1220
1221 static ext4_fsblk_t get_sb_block(void **data)
1222 {
1223 ext4_fsblk_t sb_block;
1224 char *options = (char *) *data;
1225
1226 if (!options || strncmp(options, "sb=", 3) != 0)
1227 return 1; /* Default location */
1228
1229 options += 3;
1230 /* TODO: use simple_strtoll with >32bit ext4 */
1231 sb_block = simple_strtoul(options, &options, 0);
1232 if (*options && *options != ',') {
1233 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n",
1234 (char *) *data);
1235 return 1;
1236 }
1237 if (*options == ',')
1238 options++;
1239 *data = (void *) options;
1240
1241 return sb_block;
1242 }
1243
1244 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1245 static char deprecated_msg[] = "Mount option \"%s\" will be removed by %s\n"
1246 "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n";
1247
1248 #ifdef CONFIG_QUOTA
1249 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args)
1250 {
1251 struct ext4_sb_info *sbi = EXT4_SB(sb);
1252 char *qname;
1253 int ret = -1;
1254
1255 if (sb_any_quota_loaded(sb) &&
1256 !sbi->s_qf_names[qtype]) {
1257 ext4_msg(sb, KERN_ERR,
1258 "Cannot change journaled "
1259 "quota options when quota turned on");
1260 return -1;
1261 }
1262 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA)) {
1263 ext4_msg(sb, KERN_ERR, "Cannot set journaled quota options "
1264 "when QUOTA feature is enabled");
1265 return -1;
1266 }
1267 qname = match_strdup(args);
1268 if (!qname) {
1269 ext4_msg(sb, KERN_ERR,
1270 "Not enough memory for storing quotafile name");
1271 return -1;
1272 }
1273 if (sbi->s_qf_names[qtype]) {
1274 if (strcmp(sbi->s_qf_names[qtype], qname) == 0)
1275 ret = 1;
1276 else
1277 ext4_msg(sb, KERN_ERR,
1278 "%s quota file already specified",
1279 QTYPE2NAME(qtype));
1280 goto errout;
1281 }
1282 if (strchr(qname, '/')) {
1283 ext4_msg(sb, KERN_ERR,
1284 "quotafile must be on filesystem root");
1285 goto errout;
1286 }
1287 sbi->s_qf_names[qtype] = qname;
1288 set_opt(sb, QUOTA);
1289 return 1;
1290 errout:
1291 kfree(qname);
1292 return ret;
1293 }
1294
1295 static int clear_qf_name(struct super_block *sb, int qtype)
1296 {
1297
1298 struct ext4_sb_info *sbi = EXT4_SB(sb);
1299
1300 if (sb_any_quota_loaded(sb) &&
1301 sbi->s_qf_names[qtype]) {
1302 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options"
1303 " when quota turned on");
1304 return -1;
1305 }
1306 kfree(sbi->s_qf_names[qtype]);
1307 sbi->s_qf_names[qtype] = NULL;
1308 return 1;
1309 }
1310 #endif
1311
1312 #define MOPT_SET 0x0001
1313 #define MOPT_CLEAR 0x0002
1314 #define MOPT_NOSUPPORT 0x0004
1315 #define MOPT_EXPLICIT 0x0008
1316 #define MOPT_CLEAR_ERR 0x0010
1317 #define MOPT_GTE0 0x0020
1318 #ifdef CONFIG_QUOTA
1319 #define MOPT_Q 0
1320 #define MOPT_QFMT 0x0040
1321 #else
1322 #define MOPT_Q MOPT_NOSUPPORT
1323 #define MOPT_QFMT MOPT_NOSUPPORT
1324 #endif
1325 #define MOPT_DATAJ 0x0080
1326 #define MOPT_NO_EXT2 0x0100
1327 #define MOPT_NO_EXT3 0x0200
1328 #define MOPT_EXT4_ONLY (MOPT_NO_EXT2 | MOPT_NO_EXT3)
1329
1330 static const struct mount_opts {
1331 int token;
1332 int mount_opt;
1333 int flags;
1334 } ext4_mount_opts[] = {
1335 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET},
1336 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR},
1337 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET},
1338 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR},
1339 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET},
1340 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR},
1341 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK,
1342 MOPT_EXT4_ONLY | MOPT_SET},
1343 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK,
1344 MOPT_EXT4_ONLY | MOPT_CLEAR},
1345 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET},
1346 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR},
1347 {Opt_delalloc, EXT4_MOUNT_DELALLOC,
1348 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1349 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC,
1350 MOPT_EXT4_ONLY | MOPT_CLEAR | MOPT_EXPLICIT},
1351 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1352 MOPT_EXT4_ONLY | MOPT_SET},
1353 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT |
1354 EXT4_MOUNT_JOURNAL_CHECKSUM),
1355 MOPT_EXT4_ONLY | MOPT_SET},
1356 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET},
1357 {Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR},
1358 {Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR},
1359 {Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR},
1360 {Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT,
1361 MOPT_NO_EXT2 | MOPT_SET},
1362 {Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT,
1363 MOPT_NO_EXT2 | MOPT_CLEAR},
1364 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET},
1365 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR},
1366 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET},
1367 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR},
1368 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR},
1369 {Opt_commit, 0, MOPT_GTE0},
1370 {Opt_max_batch_time, 0, MOPT_GTE0},
1371 {Opt_min_batch_time, 0, MOPT_GTE0},
1372 {Opt_inode_readahead_blks, 0, MOPT_GTE0},
1373 {Opt_init_itable, 0, MOPT_GTE0},
1374 {Opt_stripe, 0, MOPT_GTE0},
1375 {Opt_resuid, 0, MOPT_GTE0},
1376 {Opt_resgid, 0, MOPT_GTE0},
1377 {Opt_journal_dev, 0, MOPT_GTE0},
1378 {Opt_journal_ioprio, 0, MOPT_GTE0},
1379 {Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1380 {Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1381 {Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA,
1382 MOPT_NO_EXT2 | MOPT_DATAJ},
1383 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET},
1384 {Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR},
1385 #ifdef CONFIG_EXT4_FS_POSIX_ACL
1386 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET},
1387 {Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR},
1388 #else
1389 {Opt_acl, 0, MOPT_NOSUPPORT},
1390 {Opt_noacl, 0, MOPT_NOSUPPORT},
1391 #endif
1392 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET},
1393 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET},
1394 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q},
1395 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA,
1396 MOPT_SET | MOPT_Q},
1397 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA,
1398 MOPT_SET | MOPT_Q},
1399 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
1400 EXT4_MOUNT_GRPQUOTA), MOPT_CLEAR | MOPT_Q},
1401 {Opt_usrjquota, 0, MOPT_Q},
1402 {Opt_grpjquota, 0, MOPT_Q},
1403 {Opt_offusrjquota, 0, MOPT_Q},
1404 {Opt_offgrpjquota, 0, MOPT_Q},
1405 {Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT},
1406 {Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT},
1407 {Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT},
1408 {Opt_max_dir_size_kb, 0, MOPT_GTE0},
1409 {Opt_err, 0, 0}
1410 };
1411
1412 static int handle_mount_opt(struct super_block *sb, char *opt, int token,
1413 substring_t *args, unsigned long *journal_devnum,
1414 unsigned int *journal_ioprio, int is_remount)
1415 {
1416 struct ext4_sb_info *sbi = EXT4_SB(sb);
1417 const struct mount_opts *m;
1418 kuid_t uid;
1419 kgid_t gid;
1420 int arg = 0;
1421
1422 #ifdef CONFIG_QUOTA
1423 if (token == Opt_usrjquota)
1424 return set_qf_name(sb, USRQUOTA, &args[0]);
1425 else if (token == Opt_grpjquota)
1426 return set_qf_name(sb, GRPQUOTA, &args[0]);
1427 else if (token == Opt_offusrjquota)
1428 return clear_qf_name(sb, USRQUOTA);
1429 else if (token == Opt_offgrpjquota)
1430 return clear_qf_name(sb, GRPQUOTA);
1431 #endif
1432 switch (token) {
1433 case Opt_noacl:
1434 case Opt_nouser_xattr:
1435 ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5");
1436 break;
1437 case Opt_sb:
1438 return 1; /* handled by get_sb_block() */
1439 case Opt_removed:
1440 ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt);
1441 return 1;
1442 case Opt_abort:
1443 sbi->s_mount_flags |= EXT4_MF_FS_ABORTED;
1444 return 1;
1445 case Opt_i_version:
1446 sb->s_flags |= MS_I_VERSION;
1447 return 1;
1448 }
1449
1450 for (m = ext4_mount_opts; m->token != Opt_err; m++)
1451 if (token == m->token)
1452 break;
1453
1454 if (m->token == Opt_err) {
1455 ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" "
1456 "or missing value", opt);
1457 return -1;
1458 }
1459
1460 if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) {
1461 ext4_msg(sb, KERN_ERR,
1462 "Mount option \"%s\" incompatible with ext2", opt);
1463 return -1;
1464 }
1465 if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) {
1466 ext4_msg(sb, KERN_ERR,
1467 "Mount option \"%s\" incompatible with ext3", opt);
1468 return -1;
1469 }
1470
1471 if (args->from && match_int(args, &arg))
1472 return -1;
1473 if (args->from && (m->flags & MOPT_GTE0) && (arg < 0))
1474 return -1;
1475 if (m->flags & MOPT_EXPLICIT)
1476 set_opt2(sb, EXPLICIT_DELALLOC);
1477 if (m->flags & MOPT_CLEAR_ERR)
1478 clear_opt(sb, ERRORS_MASK);
1479 if (token == Opt_noquota && sb_any_quota_loaded(sb)) {
1480 ext4_msg(sb, KERN_ERR, "Cannot change quota "
1481 "options when quota turned on");
1482 return -1;
1483 }
1484
1485 if (m->flags & MOPT_NOSUPPORT) {
1486 ext4_msg(sb, KERN_ERR, "%s option not supported", opt);
1487 } else if (token == Opt_commit) {
1488 if (arg == 0)
1489 arg = JBD2_DEFAULT_MAX_COMMIT_AGE;
1490 sbi->s_commit_interval = HZ * arg;
1491 } else if (token == Opt_max_batch_time) {
1492 if (arg == 0)
1493 arg = EXT4_DEF_MAX_BATCH_TIME;
1494 sbi->s_max_batch_time = arg;
1495 } else if (token == Opt_min_batch_time) {
1496 sbi->s_min_batch_time = arg;
1497 } else if (token == Opt_inode_readahead_blks) {
1498 if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) {
1499 ext4_msg(sb, KERN_ERR,
1500 "EXT4-fs: inode_readahead_blks must be "
1501 "0 or a power of 2 smaller than 2^31");
1502 return -1;
1503 }
1504 sbi->s_inode_readahead_blks = arg;
1505 } else if (token == Opt_init_itable) {
1506 set_opt(sb, INIT_INODE_TABLE);
1507 if (!args->from)
1508 arg = EXT4_DEF_LI_WAIT_MULT;
1509 sbi->s_li_wait_mult = arg;
1510 } else if (token == Opt_max_dir_size_kb) {
1511 sbi->s_max_dir_size_kb = arg;
1512 } else if (token == Opt_stripe) {
1513 sbi->s_stripe = arg;
1514 } else if (token == Opt_resuid) {
1515 uid = make_kuid(current_user_ns(), arg);
1516 if (!uid_valid(uid)) {
1517 ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg);
1518 return -1;
1519 }
1520 sbi->s_resuid = uid;
1521 } else if (token == Opt_resgid) {
1522 gid = make_kgid(current_user_ns(), arg);
1523 if (!gid_valid(gid)) {
1524 ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg);
1525 return -1;
1526 }
1527 sbi->s_resgid = gid;
1528 } else if (token == Opt_journal_dev) {
1529 if (is_remount) {
1530 ext4_msg(sb, KERN_ERR,
1531 "Cannot specify journal on remount");
1532 return -1;
1533 }
1534 *journal_devnum = arg;
1535 } else if (token == Opt_journal_ioprio) {
1536 if (arg > 7) {
1537 ext4_msg(sb, KERN_ERR, "Invalid journal IO priority"
1538 " (must be 0-7)");
1539 return -1;
1540 }
1541 *journal_ioprio =
1542 IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg);
1543 } else if (m->flags & MOPT_DATAJ) {
1544 if (is_remount) {
1545 if (!sbi->s_journal)
1546 ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option");
1547 else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) {
1548 ext4_msg(sb, KERN_ERR,
1549 "Cannot change data mode on remount");
1550 return -1;
1551 }
1552 } else {
1553 clear_opt(sb, DATA_FLAGS);
1554 sbi->s_mount_opt |= m->mount_opt;
1555 }
1556 #ifdef CONFIG_QUOTA
1557 } else if (m->flags & MOPT_QFMT) {
1558 if (sb_any_quota_loaded(sb) &&
1559 sbi->s_jquota_fmt != m->mount_opt) {
1560 ext4_msg(sb, KERN_ERR, "Cannot change journaled "
1561 "quota options when quota turned on");
1562 return -1;
1563 }
1564 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
1565 EXT4_FEATURE_RO_COMPAT_QUOTA)) {
1566 ext4_msg(sb, KERN_ERR,
1567 "Cannot set journaled quota options "
1568 "when QUOTA feature is enabled");
1569 return -1;
1570 }
1571 sbi->s_jquota_fmt = m->mount_opt;
1572 #endif
1573 } else {
1574 if (!args->from)
1575 arg = 1;
1576 if (m->flags & MOPT_CLEAR)
1577 arg = !arg;
1578 else if (unlikely(!(m->flags & MOPT_SET))) {
1579 ext4_msg(sb, KERN_WARNING,
1580 "buggy handling of option %s", opt);
1581 WARN_ON(1);
1582 return -1;
1583 }
1584 if (arg != 0)
1585 sbi->s_mount_opt |= m->mount_opt;
1586 else
1587 sbi->s_mount_opt &= ~m->mount_opt;
1588 }
1589 return 1;
1590 }
1591
1592 static int parse_options(char *options, struct super_block *sb,
1593 unsigned long *journal_devnum,
1594 unsigned int *journal_ioprio,
1595 int is_remount)
1596 {
1597 struct ext4_sb_info *sbi = EXT4_SB(sb);
1598 char *p;
1599 substring_t args[MAX_OPT_ARGS];
1600 int token;
1601
1602 if (!options)
1603 return 1;
1604
1605 while ((p = strsep(&options, ",")) != NULL) {
1606 if (!*p)
1607 continue;
1608 /*
1609 * Initialize args struct so we know whether arg was
1610 * found; some options take optional arguments.
1611 */
1612 args[0].to = args[0].from = NULL;
1613 token = match_token(p, tokens, args);
1614 if (handle_mount_opt(sb, p, token, args, journal_devnum,
1615 journal_ioprio, is_remount) < 0)
1616 return 0;
1617 }
1618 #ifdef CONFIG_QUOTA
1619 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) &&
1620 (test_opt(sb, USRQUOTA) || test_opt(sb, GRPQUOTA))) {
1621 ext4_msg(sb, KERN_ERR, "Cannot set quota options when QUOTA "
1622 "feature is enabled");
1623 return 0;
1624 }
1625 if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
1626 if (test_opt(sb, USRQUOTA) && sbi->s_qf_names[USRQUOTA])
1627 clear_opt(sb, USRQUOTA);
1628
1629 if (test_opt(sb, GRPQUOTA) && sbi->s_qf_names[GRPQUOTA])
1630 clear_opt(sb, GRPQUOTA);
1631
1632 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) {
1633 ext4_msg(sb, KERN_ERR, "old and new quota "
1634 "format mixing");
1635 return 0;
1636 }
1637
1638 if (!sbi->s_jquota_fmt) {
1639 ext4_msg(sb, KERN_ERR, "journaled quota format "
1640 "not specified");
1641 return 0;
1642 }
1643 } else {
1644 if (sbi->s_jquota_fmt) {
1645 ext4_msg(sb, KERN_ERR, "journaled quota format "
1646 "specified with no journaling "
1647 "enabled");
1648 return 0;
1649 }
1650 }
1651 #endif
1652 if (test_opt(sb, DIOREAD_NOLOCK)) {
1653 int blocksize =
1654 BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size);
1655
1656 if (blocksize < PAGE_CACHE_SIZE) {
1657 ext4_msg(sb, KERN_ERR, "can't mount with "
1658 "dioread_nolock if block size != PAGE_SIZE");
1659 return 0;
1660 }
1661 }
1662 return 1;
1663 }
1664
1665 static inline void ext4_show_quota_options(struct seq_file *seq,
1666 struct super_block *sb)
1667 {
1668 #if defined(CONFIG_QUOTA)
1669 struct ext4_sb_info *sbi = EXT4_SB(sb);
1670
1671 if (sbi->s_jquota_fmt) {
1672 char *fmtname = "";
1673
1674 switch (sbi->s_jquota_fmt) {
1675 case QFMT_VFS_OLD:
1676 fmtname = "vfsold";
1677 break;
1678 case QFMT_VFS_V0:
1679 fmtname = "vfsv0";
1680 break;
1681 case QFMT_VFS_V1:
1682 fmtname = "vfsv1";
1683 break;
1684 }
1685 seq_printf(seq, ",jqfmt=%s", fmtname);
1686 }
1687
1688 if (sbi->s_qf_names[USRQUOTA])
1689 seq_printf(seq, ",usrjquota=%s", sbi->s_qf_names[USRQUOTA]);
1690
1691 if (sbi->s_qf_names[GRPQUOTA])
1692 seq_printf(seq, ",grpjquota=%s", sbi->s_qf_names[GRPQUOTA]);
1693
1694 if (test_opt(sb, USRQUOTA))
1695 seq_puts(seq, ",usrquota");
1696
1697 if (test_opt(sb, GRPQUOTA))
1698 seq_puts(seq, ",grpquota");
1699 #endif
1700 }
1701
1702 static const char *token2str(int token)
1703 {
1704 const struct match_token *t;
1705
1706 for (t = tokens; t->token != Opt_err; t++)
1707 if (t->token == token && !strchr(t->pattern, '='))
1708 break;
1709 return t->pattern;
1710 }
1711
1712 /*
1713 * Show an option if
1714 * - it's set to a non-default value OR
1715 * - if the per-sb default is different from the global default
1716 */
1717 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb,
1718 int nodefs)
1719 {
1720 struct ext4_sb_info *sbi = EXT4_SB(sb);
1721 struct ext4_super_block *es = sbi->s_es;
1722 int def_errors, def_mount_opt = nodefs ? 0 : sbi->s_def_mount_opt;
1723 const struct mount_opts *m;
1724 char sep = nodefs ? '\n' : ',';
1725
1726 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep)
1727 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg)
1728
1729 if (sbi->s_sb_block != 1)
1730 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block);
1731
1732 for (m = ext4_mount_opts; m->token != Opt_err; m++) {
1733 int want_set = m->flags & MOPT_SET;
1734 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) ||
1735 (m->flags & MOPT_CLEAR_ERR))
1736 continue;
1737 if (!(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt)))
1738 continue; /* skip if same as the default */
1739 if ((want_set &&
1740 (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) ||
1741 (!want_set && (sbi->s_mount_opt & m->mount_opt)))
1742 continue; /* select Opt_noFoo vs Opt_Foo */
1743 SEQ_OPTS_PRINT("%s", token2str(m->token));
1744 }
1745
1746 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) ||
1747 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID)
1748 SEQ_OPTS_PRINT("resuid=%u",
1749 from_kuid_munged(&init_user_ns, sbi->s_resuid));
1750 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) ||
1751 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID)
1752 SEQ_OPTS_PRINT("resgid=%u",
1753 from_kgid_munged(&init_user_ns, sbi->s_resgid));
1754 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors);
1755 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO)
1756 SEQ_OPTS_PUTS("errors=remount-ro");
1757 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
1758 SEQ_OPTS_PUTS("errors=continue");
1759 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
1760 SEQ_OPTS_PUTS("errors=panic");
1761 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
1762 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ);
1763 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME)
1764 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time);
1765 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME)
1766 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time);
1767 if (sb->s_flags & MS_I_VERSION)
1768 SEQ_OPTS_PUTS("i_version");
1769 if (nodefs || sbi->s_stripe)
1770 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe);
1771 if (EXT4_MOUNT_DATA_FLAGS & (sbi->s_mount_opt ^ def_mount_opt)) {
1772 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
1773 SEQ_OPTS_PUTS("data=journal");
1774 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
1775 SEQ_OPTS_PUTS("data=ordered");
1776 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
1777 SEQ_OPTS_PUTS("data=writeback");
1778 }
1779 if (nodefs ||
1780 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
1781 SEQ_OPTS_PRINT("inode_readahead_blks=%u",
1782 sbi->s_inode_readahead_blks);
1783
1784 if (nodefs || (test_opt(sb, INIT_INODE_TABLE) &&
1785 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)))
1786 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult);
1787 if (nodefs || sbi->s_max_dir_size_kb)
1788 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb);
1789
1790 ext4_show_quota_options(seq, sb);
1791 return 0;
1792 }
1793
1794 static int ext4_show_options(struct seq_file *seq, struct dentry *root)
1795 {
1796 return _ext4_show_options(seq, root->d_sb, 0);
1797 }
1798
1799 static int options_seq_show(struct seq_file *seq, void *offset)
1800 {
1801 struct super_block *sb = seq->private;
1802 int rc;
1803
1804 seq_puts(seq, (sb->s_flags & MS_RDONLY) ? "ro" : "rw");
1805 rc = _ext4_show_options(seq, sb, 1);
1806 seq_puts(seq, "\n");
1807 return rc;
1808 }
1809
1810 static int options_open_fs(struct inode *inode, struct file *file)
1811 {
1812 return single_open(file, options_seq_show, PDE_DATA(inode));
1813 }
1814
1815 static const struct file_operations ext4_seq_options_fops = {
1816 .owner = THIS_MODULE,
1817 .open = options_open_fs,
1818 .read = seq_read,
1819 .llseek = seq_lseek,
1820 .release = single_release,
1821 };
1822
1823 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
1824 int read_only)
1825 {
1826 struct ext4_sb_info *sbi = EXT4_SB(sb);
1827 int res = 0;
1828
1829 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
1830 ext4_msg(sb, KERN_ERR, "revision level too high, "
1831 "forcing read-only mode");
1832 res = MS_RDONLY;
1833 }
1834 if (read_only)
1835 goto done;
1836 if (!(sbi->s_mount_state & EXT4_VALID_FS))
1837 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
1838 "running e2fsck is recommended");
1839 else if ((sbi->s_mount_state & EXT4_ERROR_FS))
1840 ext4_msg(sb, KERN_WARNING,
1841 "warning: mounting fs with errors, "
1842 "running e2fsck is recommended");
1843 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
1844 le16_to_cpu(es->s_mnt_count) >=
1845 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
1846 ext4_msg(sb, KERN_WARNING,
1847 "warning: maximal mount count reached, "
1848 "running e2fsck is recommended");
1849 else if (le32_to_cpu(es->s_checkinterval) &&
1850 (le32_to_cpu(es->s_lastcheck) +
1851 le32_to_cpu(es->s_checkinterval) <= get_seconds()))
1852 ext4_msg(sb, KERN_WARNING,
1853 "warning: checktime reached, "
1854 "running e2fsck is recommended");
1855 if (!sbi->s_journal)
1856 es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
1857 if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
1858 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
1859 le16_add_cpu(&es->s_mnt_count, 1);
1860 es->s_mtime = cpu_to_le32(get_seconds());
1861 ext4_update_dynamic_rev(sb);
1862 if (sbi->s_journal)
1863 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
1864
1865 ext4_commit_super(sb, 1);
1866 done:
1867 if (test_opt(sb, DEBUG))
1868 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
1869 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
1870 sb->s_blocksize,
1871 sbi->s_groups_count,
1872 EXT4_BLOCKS_PER_GROUP(sb),
1873 EXT4_INODES_PER_GROUP(sb),
1874 sbi->s_mount_opt, sbi->s_mount_opt2);
1875
1876 cleancache_init_fs(sb);
1877 return res;
1878 }
1879
1880 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup)
1881 {
1882 struct ext4_sb_info *sbi = EXT4_SB(sb);
1883 struct flex_groups *new_groups;
1884 int size;
1885
1886 if (!sbi->s_log_groups_per_flex)
1887 return 0;
1888
1889 size = ext4_flex_group(sbi, ngroup - 1) + 1;
1890 if (size <= sbi->s_flex_groups_allocated)
1891 return 0;
1892
1893 size = roundup_pow_of_two(size * sizeof(struct flex_groups));
1894 new_groups = ext4_kvzalloc(size, GFP_KERNEL);
1895 if (!new_groups) {
1896 ext4_msg(sb, KERN_ERR, "not enough memory for %d flex groups",
1897 size / (int) sizeof(struct flex_groups));
1898 return -ENOMEM;
1899 }
1900
1901 if (sbi->s_flex_groups) {
1902 memcpy(new_groups, sbi->s_flex_groups,
1903 (sbi->s_flex_groups_allocated *
1904 sizeof(struct flex_groups)));
1905 ext4_kvfree(sbi->s_flex_groups);
1906 }
1907 sbi->s_flex_groups = new_groups;
1908 sbi->s_flex_groups_allocated = size / sizeof(struct flex_groups);
1909 return 0;
1910 }
1911
1912 static int ext4_fill_flex_info(struct super_block *sb)
1913 {
1914 struct ext4_sb_info *sbi = EXT4_SB(sb);
1915 struct ext4_group_desc *gdp = NULL;
1916 ext4_group_t flex_group;
1917 unsigned int groups_per_flex = 0;
1918 int i, err;
1919
1920 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
1921 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) {
1922 sbi->s_log_groups_per_flex = 0;
1923 return 1;
1924 }
1925 groups_per_flex = 1U << sbi->s_log_groups_per_flex;
1926
1927 err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count);
1928 if (err)
1929 goto failed;
1930
1931 for (i = 0; i < sbi->s_groups_count; i++) {
1932 gdp = ext4_get_group_desc(sb, i, NULL);
1933
1934 flex_group = ext4_flex_group(sbi, i);
1935 atomic_add(ext4_free_inodes_count(sb, gdp),
1936 &sbi->s_flex_groups[flex_group].free_inodes);
1937 atomic64_add(ext4_free_group_clusters(sb, gdp),
1938 &sbi->s_flex_groups[flex_group].free_clusters);
1939 atomic_add(ext4_used_dirs_count(sb, gdp),
1940 &sbi->s_flex_groups[flex_group].used_dirs);
1941 }
1942
1943 return 1;
1944 failed:
1945 return 0;
1946 }
1947
1948 static __le16 ext4_group_desc_csum(struct ext4_sb_info *sbi, __u32 block_group,
1949 struct ext4_group_desc *gdp)
1950 {
1951 int offset;
1952 __u16 crc = 0;
1953 __le32 le_group = cpu_to_le32(block_group);
1954
1955 if ((sbi->s_es->s_feature_ro_compat &
1956 cpu_to_le32(EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))) {
1957 /* Use new metadata_csum algorithm */
1958 __le16 save_csum;
1959 __u32 csum32;
1960
1961 save_csum = gdp->bg_checksum;
1962 gdp->bg_checksum = 0;
1963 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group,
1964 sizeof(le_group));
1965 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp,
1966 sbi->s_desc_size);
1967 gdp->bg_checksum = save_csum;
1968
1969 crc = csum32 & 0xFFFF;
1970 goto out;
1971 }
1972
1973 /* old crc16 code */
1974 offset = offsetof(struct ext4_group_desc, bg_checksum);
1975
1976 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
1977 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
1978 crc = crc16(crc, (__u8 *)gdp, offset);
1979 offset += sizeof(gdp->bg_checksum); /* skip checksum */
1980 /* for checksum of struct ext4_group_desc do the rest...*/
1981 if ((sbi->s_es->s_feature_incompat &
1982 cpu_to_le32(EXT4_FEATURE_INCOMPAT_64BIT)) &&
1983 offset < le16_to_cpu(sbi->s_es->s_desc_size))
1984 crc = crc16(crc, (__u8 *)gdp + offset,
1985 le16_to_cpu(sbi->s_es->s_desc_size) -
1986 offset);
1987
1988 out:
1989 return cpu_to_le16(crc);
1990 }
1991
1992 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group,
1993 struct ext4_group_desc *gdp)
1994 {
1995 if (ext4_has_group_desc_csum(sb) &&
1996 (gdp->bg_checksum != ext4_group_desc_csum(EXT4_SB(sb),
1997 block_group, gdp)))
1998 return 0;
1999
2000 return 1;
2001 }
2002
2003 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group,
2004 struct ext4_group_desc *gdp)
2005 {
2006 if (!ext4_has_group_desc_csum(sb))
2007 return;
2008 gdp->bg_checksum = ext4_group_desc_csum(EXT4_SB(sb), block_group, gdp);
2009 }
2010
2011 /* Called at mount-time, super-block is locked */
2012 static int ext4_check_descriptors(struct super_block *sb,
2013 ext4_group_t *first_not_zeroed)
2014 {
2015 struct ext4_sb_info *sbi = EXT4_SB(sb);
2016 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
2017 ext4_fsblk_t last_block;
2018 ext4_fsblk_t block_bitmap;
2019 ext4_fsblk_t inode_bitmap;
2020 ext4_fsblk_t inode_table;
2021 int flexbg_flag = 0;
2022 ext4_group_t i, grp = sbi->s_groups_count;
2023
2024 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG))
2025 flexbg_flag = 1;
2026
2027 ext4_debug("Checking group descriptors");
2028
2029 for (i = 0; i < sbi->s_groups_count; i++) {
2030 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
2031
2032 if (i == sbi->s_groups_count - 1 || flexbg_flag)
2033 last_block = ext4_blocks_count(sbi->s_es) - 1;
2034 else
2035 last_block = first_block +
2036 (EXT4_BLOCKS_PER_GROUP(sb) - 1);
2037
2038 if ((grp == sbi->s_groups_count) &&
2039 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2040 grp = i;
2041
2042 block_bitmap = ext4_block_bitmap(sb, gdp);
2043 if (block_bitmap < first_block || block_bitmap > last_block) {
2044 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2045 "Block bitmap for group %u not in group "
2046 "(block %llu)!", i, block_bitmap);
2047 return 0;
2048 }
2049 inode_bitmap = ext4_inode_bitmap(sb, gdp);
2050 if (inode_bitmap < first_block || inode_bitmap > last_block) {
2051 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2052 "Inode bitmap for group %u not in group "
2053 "(block %llu)!", i, inode_bitmap);
2054 return 0;
2055 }
2056 inode_table = ext4_inode_table(sb, gdp);
2057 if (inode_table < first_block ||
2058 inode_table + sbi->s_itb_per_group - 1 > last_block) {
2059 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2060 "Inode table for group %u not in group "
2061 "(block %llu)!", i, inode_table);
2062 return 0;
2063 }
2064 ext4_lock_group(sb, i);
2065 if (!ext4_group_desc_csum_verify(sb, i, gdp)) {
2066 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2067 "Checksum for group %u failed (%u!=%u)",
2068 i, le16_to_cpu(ext4_group_desc_csum(sbi, i,
2069 gdp)), le16_to_cpu(gdp->bg_checksum));
2070 if (!(sb->s_flags & MS_RDONLY)) {
2071 ext4_unlock_group(sb, i);
2072 return 0;
2073 }
2074 }
2075 ext4_unlock_group(sb, i);
2076 if (!flexbg_flag)
2077 first_block += EXT4_BLOCKS_PER_GROUP(sb);
2078 }
2079 if (NULL != first_not_zeroed)
2080 *first_not_zeroed = grp;
2081
2082 ext4_free_blocks_count_set(sbi->s_es,
2083 EXT4_C2B(sbi, ext4_count_free_clusters(sb)));
2084 sbi->s_es->s_free_inodes_count =cpu_to_le32(ext4_count_free_inodes(sb));
2085 return 1;
2086 }
2087
2088 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at
2089 * the superblock) which were deleted from all directories, but held open by
2090 * a process at the time of a crash. We walk the list and try to delete these
2091 * inodes at recovery time (only with a read-write filesystem).
2092 *
2093 * In order to keep the orphan inode chain consistent during traversal (in
2094 * case of crash during recovery), we link each inode into the superblock
2095 * orphan list_head and handle it the same way as an inode deletion during
2096 * normal operation (which journals the operations for us).
2097 *
2098 * We only do an iget() and an iput() on each inode, which is very safe if we
2099 * accidentally point at an in-use or already deleted inode. The worst that
2100 * can happen in this case is that we get a "bit already cleared" message from
2101 * ext4_free_inode(). The only reason we would point at a wrong inode is if
2102 * e2fsck was run on this filesystem, and it must have already done the orphan
2103 * inode cleanup for us, so we can safely abort without any further action.
2104 */
2105 static void ext4_orphan_cleanup(struct super_block *sb,
2106 struct ext4_super_block *es)
2107 {
2108 unsigned int s_flags = sb->s_flags;
2109 int nr_orphans = 0, nr_truncates = 0;
2110 #ifdef CONFIG_QUOTA
2111 int i;
2112 #endif
2113 if (!es->s_last_orphan) {
2114 jbd_debug(4, "no orphan inodes to clean up\n");
2115 return;
2116 }
2117
2118 if (bdev_read_only(sb->s_bdev)) {
2119 ext4_msg(sb, KERN_ERR, "write access "
2120 "unavailable, skipping orphan cleanup");
2121 return;
2122 }
2123
2124 /* Check if feature set would not allow a r/w mount */
2125 if (!ext4_feature_set_ok(sb, 0)) {
2126 ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to "
2127 "unknown ROCOMPAT features");
2128 return;
2129 }
2130
2131 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2132 /* don't clear list on RO mount w/ errors */
2133 if (es->s_last_orphan && !(s_flags & MS_RDONLY)) {
2134 jbd_debug(1, "Errors on filesystem, "
2135 "clearing orphan list.\n");
2136 es->s_last_orphan = 0;
2137 }
2138 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2139 return;
2140 }
2141
2142 if (s_flags & MS_RDONLY) {
2143 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs");
2144 sb->s_flags &= ~MS_RDONLY;
2145 }
2146 #ifdef CONFIG_QUOTA
2147 /* Needed for iput() to work correctly and not trash data */
2148 sb->s_flags |= MS_ACTIVE;
2149 /* Turn on quotas so that they are updated correctly */
2150 for (i = 0; i < MAXQUOTAS; i++) {
2151 if (EXT4_SB(sb)->s_qf_names[i]) {
2152 int ret = ext4_quota_on_mount(sb, i);
2153 if (ret < 0)
2154 ext4_msg(sb, KERN_ERR,
2155 "Cannot turn on journaled "
2156 "quota: error %d", ret);
2157 }
2158 }
2159 #endif
2160
2161 while (es->s_last_orphan) {
2162 struct inode *inode;
2163
2164 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan));
2165 if (IS_ERR(inode)) {
2166 es->s_last_orphan = 0;
2167 break;
2168 }
2169
2170 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan);
2171 dquot_initialize(inode);
2172 if (inode->i_nlink) {
2173 if (test_opt(sb, DEBUG))
2174 ext4_msg(sb, KERN_DEBUG,
2175 "%s: truncating inode %lu to %lld bytes",
2176 __func__, inode->i_ino, inode->i_size);
2177 jbd_debug(2, "truncating inode %lu to %lld bytes\n",
2178 inode->i_ino, inode->i_size);
2179 mutex_lock(&inode->i_mutex);
2180 truncate_inode_pages(inode->i_mapping, inode->i_size);
2181 ext4_truncate(inode);
2182 mutex_unlock(&inode->i_mutex);
2183 nr_truncates++;
2184 } else {
2185 if (test_opt(sb, DEBUG))
2186 ext4_msg(sb, KERN_DEBUG,
2187 "%s: deleting unreferenced inode %lu",
2188 __func__, inode->i_ino);
2189 jbd_debug(2, "deleting unreferenced inode %lu\n",
2190 inode->i_ino);
2191 nr_orphans++;
2192 }
2193 iput(inode); /* The delete magic happens here! */
2194 }
2195
2196 #define PLURAL(x) (x), ((x) == 1) ? "" : "s"
2197
2198 if (nr_orphans)
2199 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted",
2200 PLURAL(nr_orphans));
2201 if (nr_truncates)
2202 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up",
2203 PLURAL(nr_truncates));
2204 #ifdef CONFIG_QUOTA
2205 /* Turn quotas off */
2206 for (i = 0; i < MAXQUOTAS; i++) {
2207 if (sb_dqopt(sb)->files[i])
2208 dquot_quota_off(sb, i);
2209 }
2210 #endif
2211 sb->s_flags = s_flags; /* Restore MS_RDONLY status */
2212 }
2213
2214 /*
2215 * Maximal extent format file size.
2216 * Resulting logical blkno at s_maxbytes must fit in our on-disk
2217 * extent format containers, within a sector_t, and within i_blocks
2218 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units,
2219 * so that won't be a limiting factor.
2220 *
2221 * However there is other limiting factor. We do store extents in the form
2222 * of starting block and length, hence the resulting length of the extent
2223 * covering maximum file size must fit into on-disk format containers as
2224 * well. Given that length is always by 1 unit bigger than max unit (because
2225 * we count 0 as well) we have to lower the s_maxbytes by one fs block.
2226 *
2227 * Note, this does *not* consider any metadata overhead for vfs i_blocks.
2228 */
2229 static loff_t ext4_max_size(int blkbits, int has_huge_files)
2230 {
2231 loff_t res;
2232 loff_t upper_limit = MAX_LFS_FILESIZE;
2233
2234 /* small i_blocks in vfs inode? */
2235 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2236 /*
2237 * CONFIG_LBDAF is not enabled implies the inode
2238 * i_block represent total blocks in 512 bytes
2239 * 32 == size of vfs inode i_blocks * 8
2240 */
2241 upper_limit = (1LL << 32) - 1;
2242
2243 /* total blocks in file system block size */
2244 upper_limit >>= (blkbits - 9);
2245 upper_limit <<= blkbits;
2246 }
2247
2248 /*
2249 * 32-bit extent-start container, ee_block. We lower the maxbytes
2250 * by one fs block, so ee_len can cover the extent of maximum file
2251 * size
2252 */
2253 res = (1LL << 32) - 1;
2254 res <<= blkbits;
2255
2256 /* Sanity check against vm- & vfs- imposed limits */
2257 if (res > upper_limit)
2258 res = upper_limit;
2259
2260 return res;
2261 }
2262
2263 /*
2264 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect
2265 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
2266 * We need to be 1 filesystem block less than the 2^48 sector limit.
2267 */
2268 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
2269 {
2270 loff_t res = EXT4_NDIR_BLOCKS;
2271 int meta_blocks;
2272 loff_t upper_limit;
2273 /* This is calculated to be the largest file size for a dense, block
2274 * mapped file such that the file's total number of 512-byte sectors,
2275 * including data and all indirect blocks, does not exceed (2^48 - 1).
2276 *
2277 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
2278 * number of 512-byte sectors of the file.
2279 */
2280
2281 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2282 /*
2283 * !has_huge_files or CONFIG_LBDAF not enabled implies that
2284 * the inode i_block field represents total file blocks in
2285 * 2^32 512-byte sectors == size of vfs inode i_blocks * 8
2286 */
2287 upper_limit = (1LL << 32) - 1;
2288
2289 /* total blocks in file system block size */
2290 upper_limit >>= (bits - 9);
2291
2292 } else {
2293 /*
2294 * We use 48 bit ext4_inode i_blocks
2295 * With EXT4_HUGE_FILE_FL set the i_blocks
2296 * represent total number of blocks in
2297 * file system block size
2298 */
2299 upper_limit = (1LL << 48) - 1;
2300
2301 }
2302
2303 /* indirect blocks */
2304 meta_blocks = 1;
2305 /* double indirect blocks */
2306 meta_blocks += 1 + (1LL << (bits-2));
2307 /* tripple indirect blocks */
2308 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2)));
2309
2310 upper_limit -= meta_blocks;
2311 upper_limit <<= bits;
2312
2313 res += 1LL << (bits-2);
2314 res += 1LL << (2*(bits-2));
2315 res += 1LL << (3*(bits-2));
2316 res <<= bits;
2317 if (res > upper_limit)
2318 res = upper_limit;
2319
2320 if (res > MAX_LFS_FILESIZE)
2321 res = MAX_LFS_FILESIZE;
2322
2323 return res;
2324 }
2325
2326 static ext4_fsblk_t descriptor_loc(struct super_block *sb,
2327 ext4_fsblk_t logical_sb_block, int nr)
2328 {
2329 struct ext4_sb_info *sbi = EXT4_SB(sb);
2330 ext4_group_t bg, first_meta_bg;
2331 int has_super = 0;
2332
2333 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
2334
2335 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_META_BG) ||
2336 nr < first_meta_bg)
2337 return logical_sb_block + nr + 1;
2338 bg = sbi->s_desc_per_block * nr;
2339 if (ext4_bg_has_super(sb, bg))
2340 has_super = 1;
2341
2342 return (has_super + ext4_group_first_block_no(sb, bg));
2343 }
2344
2345 /**
2346 * ext4_get_stripe_size: Get the stripe size.
2347 * @sbi: In memory super block info
2348 *
2349 * If we have specified it via mount option, then
2350 * use the mount option value. If the value specified at mount time is
2351 * greater than the blocks per group use the super block value.
2352 * If the super block value is greater than blocks per group return 0.
2353 * Allocator needs it be less than blocks per group.
2354 *
2355 */
2356 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
2357 {
2358 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
2359 unsigned long stripe_width =
2360 le32_to_cpu(sbi->s_es->s_raid_stripe_width);
2361 int ret;
2362
2363 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
2364 ret = sbi->s_stripe;
2365 else if (stripe_width <= sbi->s_blocks_per_group)
2366 ret = stripe_width;
2367 else if (stride <= sbi->s_blocks_per_group)
2368 ret = stride;
2369 else
2370 ret = 0;
2371
2372 /*
2373 * If the stripe width is 1, this makes no sense and
2374 * we set it to 0 to turn off stripe handling code.
2375 */
2376 if (ret <= 1)
2377 ret = 0;
2378
2379 return ret;
2380 }
2381
2382 /* sysfs supprt */
2383
2384 struct ext4_attr {
2385 struct attribute attr;
2386 ssize_t (*show)(struct ext4_attr *, struct ext4_sb_info *, char *);
2387 ssize_t (*store)(struct ext4_attr *, struct ext4_sb_info *,
2388 const char *, size_t);
2389 union {
2390 int offset;
2391 int deprecated_val;
2392 } u;
2393 };
2394
2395 static int parse_strtoull(const char *buf,
2396 unsigned long long max, unsigned long long *value)
2397 {
2398 int ret;
2399
2400 ret = kstrtoull(skip_spaces(buf), 0, value);
2401 if (!ret && *value > max)
2402 ret = -EINVAL;
2403 return ret;
2404 }
2405
2406 static ssize_t delayed_allocation_blocks_show(struct ext4_attr *a,
2407 struct ext4_sb_info *sbi,
2408 char *buf)
2409 {
2410 return snprintf(buf, PAGE_SIZE, "%llu\n",
2411 (s64) EXT4_C2B(sbi,
2412 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
2413 }
2414
2415 static ssize_t session_write_kbytes_show(struct ext4_attr *a,
2416 struct ext4_sb_info *sbi, char *buf)
2417 {
2418 struct super_block *sb = sbi->s_buddy_cache->i_sb;
2419
2420 if (!sb->s_bdev->bd_part)
2421 return snprintf(buf, PAGE_SIZE, "0\n");
2422 return snprintf(buf, PAGE_SIZE, "%lu\n",
2423 (part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
2424 sbi->s_sectors_written_start) >> 1);
2425 }
2426
2427 static ssize_t lifetime_write_kbytes_show(struct ext4_attr *a,
2428 struct ext4_sb_info *sbi, char *buf)
2429 {
2430 struct super_block *sb = sbi->s_buddy_cache->i_sb;
2431
2432 if (!sb->s_bdev->bd_part)
2433 return snprintf(buf, PAGE_SIZE, "0\n");
2434 return snprintf(buf, PAGE_SIZE, "%llu\n",
2435 (unsigned long long)(sbi->s_kbytes_written +
2436 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
2437 EXT4_SB(sb)->s_sectors_written_start) >> 1)));
2438 }
2439
2440 static ssize_t inode_readahead_blks_store(struct ext4_attr *a,
2441 struct ext4_sb_info *sbi,
2442 const char *buf, size_t count)
2443 {
2444 unsigned long t;
2445 int ret;
2446
2447 ret = kstrtoul(skip_spaces(buf), 0, &t);
2448 if (ret)
2449 return ret;
2450
2451 if (t && (!is_power_of_2(t) || t > 0x40000000))
2452 return -EINVAL;
2453
2454 sbi->s_inode_readahead_blks = t;
2455 return count;
2456 }
2457
2458 static ssize_t sbi_ui_show(struct ext4_attr *a,
2459 struct ext4_sb_info *sbi, char *buf)
2460 {
2461 unsigned int *ui = (unsigned int *) (((char *) sbi) + a->u.offset);
2462
2463 return snprintf(buf, PAGE_SIZE, "%u\n", *ui);
2464 }
2465
2466 static ssize_t sbi_ui_store(struct ext4_attr *a,
2467 struct ext4_sb_info *sbi,
2468 const char *buf, size_t count)
2469 {
2470 unsigned int *ui = (unsigned int *) (((char *) sbi) + a->u.offset);
2471 unsigned long t;
2472 int ret;
2473
2474 ret = kstrtoul(skip_spaces(buf), 0, &t);
2475 if (ret)
2476 return ret;
2477 *ui = t;
2478 return count;
2479 }
2480
2481 static ssize_t reserved_clusters_show(struct ext4_attr *a,
2482 struct ext4_sb_info *sbi, char *buf)
2483 {
2484 return snprintf(buf, PAGE_SIZE, "%llu\n",
2485 (unsigned long long) atomic64_read(&sbi->s_resv_clusters));
2486 }
2487
2488 static ssize_t reserved_clusters_store(struct ext4_attr *a,
2489 struct ext4_sb_info *sbi,
2490 const char *buf, size_t count)
2491 {
2492 unsigned long long val;
2493 int ret;
2494
2495 if (parse_strtoull(buf, -1ULL, &val))
2496 return -EINVAL;
2497 ret = ext4_reserve_clusters(sbi, val);
2498
2499 return ret ? ret : count;
2500 }
2501
2502 static ssize_t trigger_test_error(struct ext4_attr *a,
2503 struct ext4_sb_info *sbi,
2504 const char *buf, size_t count)
2505 {
2506 int len = count;
2507
2508 if (!capable(CAP_SYS_ADMIN))
2509 return -EPERM;
2510
2511 if (len && buf[len-1] == '\n')
2512 len--;
2513
2514 if (len)
2515 ext4_error(sbi->s_sb, "%.*s", len, buf);
2516 return count;
2517 }
2518
2519 static ssize_t sbi_deprecated_show(struct ext4_attr *a,
2520 struct ext4_sb_info *sbi, char *buf)
2521 {
2522 return snprintf(buf, PAGE_SIZE, "%d\n", a->u.deprecated_val);
2523 }
2524
2525 #define EXT4_ATTR_OFFSET(_name,_mode,_show,_store,_elname) \
2526 static struct ext4_attr ext4_attr_##_name = { \
2527 .attr = {.name = __stringify(_name), .mode = _mode }, \
2528 .show = _show, \
2529 .store = _store, \
2530 .u = { \
2531 .offset = offsetof(struct ext4_sb_info, _elname),\
2532 }, \
2533 }
2534 #define EXT4_ATTR(name, mode, show, store) \
2535 static struct ext4_attr ext4_attr_##name = __ATTR(name, mode, show, store)
2536
2537 #define EXT4_INFO_ATTR(name) EXT4_ATTR(name, 0444, NULL, NULL)
2538 #define EXT4_RO_ATTR(name) EXT4_ATTR(name, 0444, name##_show, NULL)
2539 #define EXT4_RW_ATTR(name) EXT4_ATTR(name, 0644, name##_show, name##_store)
2540 #define EXT4_RW_ATTR_SBI_UI(name, elname) \
2541 EXT4_ATTR_OFFSET(name, 0644, sbi_ui_show, sbi_ui_store, elname)
2542 #define ATTR_LIST(name) &ext4_attr_##name.attr
2543 #define EXT4_DEPRECATED_ATTR(_name, _val) \
2544 static struct ext4_attr ext4_attr_##_name = { \
2545 .attr = {.name = __stringify(_name), .mode = 0444 }, \
2546 .show = sbi_deprecated_show, \
2547 .u = { \
2548 .deprecated_val = _val, \
2549 }, \
2550 }
2551
2552 EXT4_RO_ATTR(delayed_allocation_blocks);
2553 EXT4_RO_ATTR(session_write_kbytes);
2554 EXT4_RO_ATTR(lifetime_write_kbytes);
2555 EXT4_RW_ATTR(reserved_clusters);
2556 EXT4_ATTR_OFFSET(inode_readahead_blks, 0644, sbi_ui_show,
2557 inode_readahead_blks_store, s_inode_readahead_blks);
2558 EXT4_RW_ATTR_SBI_UI(inode_goal, s_inode_goal);
2559 EXT4_RW_ATTR_SBI_UI(mb_stats, s_mb_stats);
2560 EXT4_RW_ATTR_SBI_UI(mb_max_to_scan, s_mb_max_to_scan);
2561 EXT4_RW_ATTR_SBI_UI(mb_min_to_scan, s_mb_min_to_scan);
2562 EXT4_RW_ATTR_SBI_UI(mb_order2_req, s_mb_order2_reqs);
2563 EXT4_RW_ATTR_SBI_UI(mb_stream_req, s_mb_stream_request);
2564 EXT4_RW_ATTR_SBI_UI(mb_group_prealloc, s_mb_group_prealloc);
2565 EXT4_DEPRECATED_ATTR(max_writeback_mb_bump, 128);
2566 EXT4_RW_ATTR_SBI_UI(extent_max_zeroout_kb, s_extent_max_zeroout_kb);
2567 EXT4_ATTR(trigger_fs_error, 0200, NULL, trigger_test_error);
2568
2569 static struct attribute *ext4_attrs[] = {
2570 ATTR_LIST(delayed_allocation_blocks),
2571 ATTR_LIST(session_write_kbytes),
2572 ATTR_LIST(lifetime_write_kbytes),
2573 ATTR_LIST(reserved_clusters),
2574 ATTR_LIST(inode_readahead_blks),
2575 ATTR_LIST(inode_goal),
2576 ATTR_LIST(mb_stats),
2577 ATTR_LIST(mb_max_to_scan),
2578 ATTR_LIST(mb_min_to_scan),
2579 ATTR_LIST(mb_order2_req),
2580 ATTR_LIST(mb_stream_req),
2581 ATTR_LIST(mb_group_prealloc),
2582 ATTR_LIST(max_writeback_mb_bump),
2583 ATTR_LIST(extent_max_zeroout_kb),
2584 ATTR_LIST(trigger_fs_error),
2585 NULL,
2586 };
2587
2588 /* Features this copy of ext4 supports */
2589 EXT4_INFO_ATTR(lazy_itable_init);
2590 EXT4_INFO_ATTR(batched_discard);
2591 EXT4_INFO_ATTR(meta_bg_resize);
2592
2593 static struct attribute *ext4_feat_attrs[] = {
2594 ATTR_LIST(lazy_itable_init),
2595 ATTR_LIST(batched_discard),
2596 ATTR_LIST(meta_bg_resize),
2597 NULL,
2598 };
2599
2600 static ssize_t ext4_attr_show(struct kobject *kobj,
2601 struct attribute *attr, char *buf)
2602 {
2603 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2604 s_kobj);
2605 struct ext4_attr *a = container_of(attr, struct ext4_attr, attr);
2606
2607 return a->show ? a->show(a, sbi, buf) : 0;
2608 }
2609
2610 static ssize_t ext4_attr_store(struct kobject *kobj,
2611 struct attribute *attr,
2612 const char *buf, size_t len)
2613 {
2614 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2615 s_kobj);
2616 struct ext4_attr *a = container_of(attr, struct ext4_attr, attr);
2617
2618 return a->store ? a->store(a, sbi, buf, len) : 0;
2619 }
2620
2621 static void ext4_sb_release(struct kobject *kobj)
2622 {
2623 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2624 s_kobj);
2625 complete(&sbi->s_kobj_unregister);
2626 }
2627
2628 static const struct sysfs_ops ext4_attr_ops = {
2629 .show = ext4_attr_show,
2630 .store = ext4_attr_store,
2631 };
2632
2633 static struct kobj_type ext4_ktype = {
2634 .default_attrs = ext4_attrs,
2635 .sysfs_ops = &ext4_attr_ops,
2636 .release = ext4_sb_release,
2637 };
2638
2639 static void ext4_feat_release(struct kobject *kobj)
2640 {
2641 complete(&ext4_feat->f_kobj_unregister);
2642 }
2643
2644 static struct kobj_type ext4_feat_ktype = {
2645 .default_attrs = ext4_feat_attrs,
2646 .sysfs_ops = &ext4_attr_ops,
2647 .release = ext4_feat_release,
2648 };
2649
2650 /*
2651 * Check whether this filesystem can be mounted based on
2652 * the features present and the RDONLY/RDWR mount requested.
2653 * Returns 1 if this filesystem can be mounted as requested,
2654 * 0 if it cannot be.
2655 */
2656 static int ext4_feature_set_ok(struct super_block *sb, int readonly)
2657 {
2658 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT4_FEATURE_INCOMPAT_SUPP)) {
2659 ext4_msg(sb, KERN_ERR,
2660 "Couldn't mount because of "
2661 "unsupported optional features (%x)",
2662 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
2663 ~EXT4_FEATURE_INCOMPAT_SUPP));
2664 return 0;
2665 }
2666
2667 if (readonly)
2668 return 1;
2669
2670 /* Check that feature set is OK for a read-write mount */
2671 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT4_FEATURE_RO_COMPAT_SUPP)) {
2672 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
2673 "unsupported optional features (%x)",
2674 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
2675 ~EXT4_FEATURE_RO_COMPAT_SUPP));
2676 return 0;
2677 }
2678 /*
2679 * Large file size enabled file system can only be mounted
2680 * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF
2681 */
2682 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
2683 if (sizeof(blkcnt_t) < sizeof(u64)) {
2684 ext4_msg(sb, KERN_ERR, "Filesystem with huge files "
2685 "cannot be mounted RDWR without "
2686 "CONFIG_LBDAF");
2687 return 0;
2688 }
2689 }
2690 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_BIGALLOC) &&
2691 !EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) {
2692 ext4_msg(sb, KERN_ERR,
2693 "Can't support bigalloc feature without "
2694 "extents feature\n");
2695 return 0;
2696 }
2697
2698 #ifndef CONFIG_QUOTA
2699 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) &&
2700 !readonly) {
2701 ext4_msg(sb, KERN_ERR,
2702 "Filesystem with quota feature cannot be mounted RDWR "
2703 "without CONFIG_QUOTA");
2704 return 0;
2705 }
2706 #endif /* CONFIG_QUOTA */
2707 return 1;
2708 }
2709
2710 /*
2711 * This function is called once a day if we have errors logged
2712 * on the file system
2713 */
2714 static void print_daily_error_info(unsigned long arg)
2715 {
2716 struct super_block *sb = (struct super_block *) arg;
2717 struct ext4_sb_info *sbi;
2718 struct ext4_super_block *es;
2719
2720 sbi = EXT4_SB(sb);
2721 es = sbi->s_es;
2722
2723 if (es->s_error_count)
2724 ext4_msg(sb, KERN_NOTICE, "error count: %u",
2725 le32_to_cpu(es->s_error_count));
2726 if (es->s_first_error_time) {
2727 printk(KERN_NOTICE "EXT4-fs (%s): initial error at %u: %.*s:%d",
2728 sb->s_id, le32_to_cpu(es->s_first_error_time),
2729 (int) sizeof(es->s_first_error_func),
2730 es->s_first_error_func,
2731 le32_to_cpu(es->s_first_error_line));
2732 if (es->s_first_error_ino)
2733 printk(": inode %u",
2734 le32_to_cpu(es->s_first_error_ino));
2735 if (es->s_first_error_block)
2736 printk(": block %llu", (unsigned long long)
2737 le64_to_cpu(es->s_first_error_block));
2738 printk("\n");
2739 }
2740 if (es->s_last_error_time) {
2741 printk(KERN_NOTICE "EXT4-fs (%s): last error at %u: %.*s:%d",
2742 sb->s_id, le32_to_cpu(es->s_last_error_time),
2743 (int) sizeof(es->s_last_error_func),
2744 es->s_last_error_func,
2745 le32_to_cpu(es->s_last_error_line));
2746 if (es->s_last_error_ino)
2747 printk(": inode %u",
2748 le32_to_cpu(es->s_last_error_ino));
2749 if (es->s_last_error_block)
2750 printk(": block %llu", (unsigned long long)
2751 le64_to_cpu(es->s_last_error_block));
2752 printk("\n");
2753 }
2754 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */
2755 }
2756
2757 /* Find next suitable group and run ext4_init_inode_table */
2758 static int ext4_run_li_request(struct ext4_li_request *elr)
2759 {
2760 struct ext4_group_desc *gdp = NULL;
2761 ext4_group_t group, ngroups;
2762 struct super_block *sb;
2763 unsigned long timeout = 0;
2764 int ret = 0;
2765
2766 sb = elr->lr_super;
2767 ngroups = EXT4_SB(sb)->s_groups_count;
2768
2769 sb_start_write(sb);
2770 for (group = elr->lr_next_group; group < ngroups; group++) {
2771 gdp = ext4_get_group_desc(sb, group, NULL);
2772 if (!gdp) {
2773 ret = 1;
2774 break;
2775 }
2776
2777 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2778 break;
2779 }
2780
2781 if (group >= ngroups)
2782 ret = 1;
2783
2784 if (!ret) {
2785 timeout = jiffies;
2786 ret = ext4_init_inode_table(sb, group,
2787 elr->lr_timeout ? 0 : 1);
2788 if (elr->lr_timeout == 0) {
2789 timeout = (jiffies - timeout) *
2790 elr->lr_sbi->s_li_wait_mult;
2791 elr->lr_timeout = timeout;
2792 }
2793 elr->lr_next_sched = jiffies + elr->lr_timeout;
2794 elr->lr_next_group = group + 1;
2795 }
2796 sb_end_write(sb);
2797
2798 return ret;
2799 }
2800
2801 /*
2802 * Remove lr_request from the list_request and free the
2803 * request structure. Should be called with li_list_mtx held
2804 */
2805 static void ext4_remove_li_request(struct ext4_li_request *elr)
2806 {
2807 struct ext4_sb_info *sbi;
2808
2809 if (!elr)
2810 return;
2811
2812 sbi = elr->lr_sbi;
2813
2814 list_del(&elr->lr_request);
2815 sbi->s_li_request = NULL;
2816 kfree(elr);
2817 }
2818
2819 static void ext4_unregister_li_request(struct super_block *sb)
2820 {
2821 mutex_lock(&ext4_li_mtx);
2822 if (!ext4_li_info) {
2823 mutex_unlock(&ext4_li_mtx);
2824 return;
2825 }
2826
2827 mutex_lock(&ext4_li_info->li_list_mtx);
2828 ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
2829 mutex_unlock(&ext4_li_info->li_list_mtx);
2830 mutex_unlock(&ext4_li_mtx);
2831 }
2832
2833 static struct task_struct *ext4_lazyinit_task;
2834
2835 /*
2836 * This is the function where ext4lazyinit thread lives. It walks
2837 * through the request list searching for next scheduled filesystem.
2838 * When such a fs is found, run the lazy initialization request
2839 * (ext4_rn_li_request) and keep track of the time spend in this
2840 * function. Based on that time we compute next schedule time of
2841 * the request. When walking through the list is complete, compute
2842 * next waking time and put itself into sleep.
2843 */
2844 static int ext4_lazyinit_thread(void *arg)
2845 {
2846 struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg;
2847 struct list_head *pos, *n;
2848 struct ext4_li_request *elr;
2849 unsigned long next_wakeup, cur;
2850
2851 BUG_ON(NULL == eli);
2852
2853 cont_thread:
2854 while (true) {
2855 next_wakeup = MAX_JIFFY_OFFSET;
2856
2857 mutex_lock(&eli->li_list_mtx);
2858 if (list_empty(&eli->li_request_list)) {
2859 mutex_unlock(&eli->li_list_mtx);
2860 goto exit_thread;
2861 }
2862
2863 list_for_each_safe(pos, n, &eli->li_request_list) {
2864 elr = list_entry(pos, struct ext4_li_request,
2865 lr_request);
2866
2867 if (time_after_eq(jiffies, elr->lr_next_sched)) {
2868 if (ext4_run_li_request(elr) != 0) {
2869 /* error, remove the lazy_init job */
2870 ext4_remove_li_request(elr);
2871 continue;
2872 }
2873 }
2874
2875 if (time_before(elr->lr_next_sched, next_wakeup))
2876 next_wakeup = elr->lr_next_sched;
2877 }
2878 mutex_unlock(&eli->li_list_mtx);
2879
2880 try_to_freeze();
2881
2882 cur = jiffies;
2883 if ((time_after_eq(cur, next_wakeup)) ||
2884 (MAX_JIFFY_OFFSET == next_wakeup)) {
2885 cond_resched();
2886 continue;
2887 }
2888
2889 schedule_timeout_interruptible(next_wakeup - cur);
2890
2891 if (kthread_should_stop()) {
2892 ext4_clear_request_list();
2893 goto exit_thread;
2894 }
2895 }
2896
2897 exit_thread:
2898 /*
2899 * It looks like the request list is empty, but we need
2900 * to check it under the li_list_mtx lock, to prevent any
2901 * additions into it, and of course we should lock ext4_li_mtx
2902 * to atomically free the list and ext4_li_info, because at
2903 * this point another ext4 filesystem could be registering
2904 * new one.
2905 */
2906 mutex_lock(&ext4_li_mtx);
2907 mutex_lock(&eli->li_list_mtx);
2908 if (!list_empty(&eli->li_request_list)) {
2909 mutex_unlock(&eli->li_list_mtx);
2910 mutex_unlock(&ext4_li_mtx);
2911 goto cont_thread;
2912 }
2913 mutex_unlock(&eli->li_list_mtx);
2914 kfree(ext4_li_info);
2915 ext4_li_info = NULL;
2916 mutex_unlock(&ext4_li_mtx);
2917
2918 return 0;
2919 }
2920
2921 static void ext4_clear_request_list(void)
2922 {
2923 struct list_head *pos, *n;
2924 struct ext4_li_request *elr;
2925
2926 mutex_lock(&ext4_li_info->li_list_mtx);
2927 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
2928 elr = list_entry(pos, struct ext4_li_request,
2929 lr_request);
2930 ext4_remove_li_request(elr);
2931 }
2932 mutex_unlock(&ext4_li_info->li_list_mtx);
2933 }
2934
2935 static int ext4_run_lazyinit_thread(void)
2936 {
2937 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
2938 ext4_li_info, "ext4lazyinit");
2939 if (IS_ERR(ext4_lazyinit_task)) {
2940 int err = PTR_ERR(ext4_lazyinit_task);
2941 ext4_clear_request_list();
2942 kfree(ext4_li_info);
2943 ext4_li_info = NULL;
2944 printk(KERN_CRIT "EXT4-fs: error %d creating inode table "
2945 "initialization thread\n",
2946 err);
2947 return err;
2948 }
2949 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
2950 return 0;
2951 }
2952
2953 /*
2954 * Check whether it make sense to run itable init. thread or not.
2955 * If there is at least one uninitialized inode table, return
2956 * corresponding group number, else the loop goes through all
2957 * groups and return total number of groups.
2958 */
2959 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
2960 {
2961 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
2962 struct ext4_group_desc *gdp = NULL;
2963
2964 for (group = 0; group < ngroups; group++) {
2965 gdp = ext4_get_group_desc(sb, group, NULL);
2966 if (!gdp)
2967 continue;
2968
2969 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2970 break;
2971 }
2972
2973 return group;
2974 }
2975
2976 static int ext4_li_info_new(void)
2977 {
2978 struct ext4_lazy_init *eli = NULL;
2979
2980 eli = kzalloc(sizeof(*eli), GFP_KERNEL);
2981 if (!eli)
2982 return -ENOMEM;
2983
2984 INIT_LIST_HEAD(&eli->li_request_list);
2985 mutex_init(&eli->li_list_mtx);
2986
2987 eli->li_state |= EXT4_LAZYINIT_QUIT;
2988
2989 ext4_li_info = eli;
2990
2991 return 0;
2992 }
2993
2994 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
2995 ext4_group_t start)
2996 {
2997 struct ext4_sb_info *sbi = EXT4_SB(sb);
2998 struct ext4_li_request *elr;
2999 unsigned long rnd;
3000
3001 elr = kzalloc(sizeof(*elr), GFP_KERNEL);
3002 if (!elr)
3003 return NULL;
3004
3005 elr->lr_super = sb;
3006 elr->lr_sbi = sbi;
3007 elr->lr_next_group = start;
3008
3009 /*
3010 * Randomize first schedule time of the request to
3011 * spread the inode table initialization requests
3012 * better.
3013 */
3014 get_random_bytes(&rnd, sizeof(rnd));
3015 elr->lr_next_sched = jiffies + (unsigned long)rnd %
3016 (EXT4_DEF_LI_MAX_START_DELAY * HZ);
3017
3018 return elr;
3019 }
3020
3021 int ext4_register_li_request(struct super_block *sb,
3022 ext4_group_t first_not_zeroed)
3023 {
3024 struct ext4_sb_info *sbi = EXT4_SB(sb);
3025 struct ext4_li_request *elr = NULL;
3026 ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count;
3027 int ret = 0;
3028
3029 mutex_lock(&ext4_li_mtx);
3030 if (sbi->s_li_request != NULL) {
3031 /*
3032 * Reset timeout so it can be computed again, because
3033 * s_li_wait_mult might have changed.
3034 */
3035 sbi->s_li_request->lr_timeout = 0;
3036 goto out;
3037 }
3038
3039 if (first_not_zeroed == ngroups ||
3040 (sb->s_flags & MS_RDONLY) ||
3041 !test_opt(sb, INIT_INODE_TABLE))
3042 goto out;
3043
3044 elr = ext4_li_request_new(sb, first_not_zeroed);
3045 if (!elr) {
3046 ret = -ENOMEM;
3047 goto out;
3048 }
3049
3050 if (NULL == ext4_li_info) {
3051 ret = ext4_li_info_new();
3052 if (ret)
3053 goto out;
3054 }
3055
3056 mutex_lock(&ext4_li_info->li_list_mtx);
3057 list_add(&elr->lr_request, &ext4_li_info->li_request_list);
3058 mutex_unlock(&ext4_li_info->li_list_mtx);
3059
3060 sbi->s_li_request = elr;
3061 /*
3062 * set elr to NULL here since it has been inserted to
3063 * the request_list and the removal and free of it is
3064 * handled by ext4_clear_request_list from now on.
3065 */
3066 elr = NULL;
3067
3068 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
3069 ret = ext4_run_lazyinit_thread();
3070 if (ret)
3071 goto out;
3072 }
3073 out:
3074 mutex_unlock(&ext4_li_mtx);
3075 if (ret)
3076 kfree(elr);
3077 return ret;
3078 }
3079
3080 /*
3081 * We do not need to lock anything since this is called on
3082 * module unload.
3083 */
3084 static void ext4_destroy_lazyinit_thread(void)
3085 {
3086 /*
3087 * If thread exited earlier
3088 * there's nothing to be done.
3089 */
3090 if (!ext4_li_info || !ext4_lazyinit_task)
3091 return;
3092
3093 kthread_stop(ext4_lazyinit_task);
3094 }
3095
3096 static int set_journal_csum_feature_set(struct super_block *sb)
3097 {
3098 int ret = 1;
3099 int compat, incompat;
3100 struct ext4_sb_info *sbi = EXT4_SB(sb);
3101
3102 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3103 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
3104 /* journal checksum v2 */
3105 compat = 0;
3106 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V2;
3107 } else {
3108 /* journal checksum v1 */
3109 compat = JBD2_FEATURE_COMPAT_CHECKSUM;
3110 incompat = 0;
3111 }
3112
3113 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
3114 ret = jbd2_journal_set_features(sbi->s_journal,
3115 compat, 0,
3116 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
3117 incompat);
3118 } else if (test_opt(sb, JOURNAL_CHECKSUM)) {
3119 ret = jbd2_journal_set_features(sbi->s_journal,
3120 compat, 0,
3121 incompat);
3122 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3123 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3124 } else {
3125 jbd2_journal_clear_features(sbi->s_journal,
3126 JBD2_FEATURE_COMPAT_CHECKSUM, 0,
3127 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
3128 JBD2_FEATURE_INCOMPAT_CSUM_V2);
3129 }
3130
3131 return ret;
3132 }
3133
3134 /*
3135 * Note: calculating the overhead so we can be compatible with
3136 * historical BSD practice is quite difficult in the face of
3137 * clusters/bigalloc. This is because multiple metadata blocks from
3138 * different block group can end up in the same allocation cluster.
3139 * Calculating the exact overhead in the face of clustered allocation
3140 * requires either O(all block bitmaps) in memory or O(number of block
3141 * groups**2) in time. We will still calculate the superblock for
3142 * older file systems --- and if we come across with a bigalloc file
3143 * system with zero in s_overhead_clusters the estimate will be close to
3144 * correct especially for very large cluster sizes --- but for newer
3145 * file systems, it's better to calculate this figure once at mkfs
3146 * time, and store it in the superblock. If the superblock value is
3147 * present (even for non-bigalloc file systems), we will use it.
3148 */
3149 static int count_overhead(struct super_block *sb, ext4_group_t grp,
3150 char *buf)
3151 {
3152 struct ext4_sb_info *sbi = EXT4_SB(sb);
3153 struct ext4_group_desc *gdp;
3154 ext4_fsblk_t first_block, last_block, b;
3155 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3156 int s, j, count = 0;
3157
3158 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_BIGALLOC))
3159 return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) +
3160 sbi->s_itb_per_group + 2);
3161
3162 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) +
3163 (grp * EXT4_BLOCKS_PER_GROUP(sb));
3164 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1;
3165 for (i = 0; i < ngroups; i++) {
3166 gdp = ext4_get_group_desc(sb, i, NULL);
3167 b = ext4_block_bitmap(sb, gdp);
3168 if (b >= first_block && b <= last_block) {
3169 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3170 count++;
3171 }
3172 b = ext4_inode_bitmap(sb, gdp);
3173 if (b >= first_block && b <= last_block) {
3174 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3175 count++;
3176 }
3177 b = ext4_inode_table(sb, gdp);
3178 if (b >= first_block && b + sbi->s_itb_per_group <= last_block)
3179 for (j = 0; j < sbi->s_itb_per_group; j++, b++) {
3180 int c = EXT4_B2C(sbi, b - first_block);
3181 ext4_set_bit(c, buf);
3182 count++;
3183 }
3184 if (i != grp)
3185 continue;
3186 s = 0;
3187 if (ext4_bg_has_super(sb, grp)) {
3188 ext4_set_bit(s++, buf);
3189 count++;
3190 }
3191 for (j = ext4_bg_num_gdb(sb, grp); j > 0; j--) {
3192 ext4_set_bit(EXT4_B2C(sbi, s++), buf);
3193 count++;
3194 }
3195 }
3196 if (!count)
3197 return 0;
3198 return EXT4_CLUSTERS_PER_GROUP(sb) -
3199 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8);
3200 }
3201
3202 /*
3203 * Compute the overhead and stash it in sbi->s_overhead
3204 */
3205 int ext4_calculate_overhead(struct super_block *sb)
3206 {
3207 struct ext4_sb_info *sbi = EXT4_SB(sb);
3208 struct ext4_super_block *es = sbi->s_es;
3209 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3210 ext4_fsblk_t overhead = 0;
3211 char *buf = (char *) get_zeroed_page(GFP_KERNEL);
3212
3213 if (!buf)
3214 return -ENOMEM;
3215
3216 /*
3217 * Compute the overhead (FS structures). This is constant
3218 * for a given filesystem unless the number of block groups
3219 * changes so we cache the previous value until it does.
3220 */
3221
3222 /*
3223 * All of the blocks before first_data_block are overhead
3224 */
3225 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
3226
3227 /*
3228 * Add the overhead found in each block group
3229 */
3230 for (i = 0; i < ngroups; i++) {
3231 int blks;
3232
3233 blks = count_overhead(sb, i, buf);
3234 overhead += blks;
3235 if (blks)
3236 memset(buf, 0, PAGE_SIZE);
3237 cond_resched();
3238 }
3239 /* Add the journal blocks as well */
3240 if (sbi->s_journal)
3241 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_maxlen);
3242
3243 sbi->s_overhead = overhead;
3244 smp_wmb();
3245 free_page((unsigned long) buf);
3246 return 0;
3247 }
3248
3249
3250 static ext4_fsblk_t ext4_calculate_resv_clusters(struct ext4_sb_info *sbi)
3251 {
3252 ext4_fsblk_t resv_clusters;
3253
3254 /*
3255 * By default we reserve 2% or 4096 clusters, whichever is smaller.
3256 * This should cover the situations where we can not afford to run
3257 * out of space like for example punch hole, or converting
3258 * uninitialized extents in delalloc path. In most cases such
3259 * allocation would require 1, or 2 blocks, higher numbers are
3260 * very rare.
3261 */
3262 resv_clusters = ext4_blocks_count(sbi->s_es) >> sbi->s_cluster_bits;
3263
3264 do_div(resv_clusters, 50);
3265 resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096);
3266
3267 return resv_clusters;
3268 }
3269
3270
3271 static int ext4_reserve_clusters(struct ext4_sb_info *sbi, ext4_fsblk_t count)
3272 {
3273 ext4_fsblk_t clusters = ext4_blocks_count(sbi->s_es) >>
3274 sbi->s_cluster_bits;
3275
3276 if (count >= clusters)
3277 return -EINVAL;
3278
3279 atomic64_set(&sbi->s_resv_clusters, count);
3280 return 0;
3281 }
3282
3283 static int ext4_fill_super(struct super_block *sb, void *data, int silent)
3284 {
3285 char *orig_data = kstrdup(data, GFP_KERNEL);
3286 struct buffer_head *bh;
3287 struct ext4_super_block *es = NULL;
3288 struct ext4_sb_info *sbi;
3289 ext4_fsblk_t block;
3290 ext4_fsblk_t sb_block = get_sb_block(&data);
3291 ext4_fsblk_t logical_sb_block;
3292 unsigned long offset = 0;
3293 unsigned long journal_devnum = 0;
3294 unsigned long def_mount_opts;
3295 struct inode *root;
3296 char *cp;
3297 const char *descr;
3298 int ret = -ENOMEM;
3299 int blocksize, clustersize;
3300 unsigned int db_count;
3301 unsigned int i;
3302 int needs_recovery, has_huge_files, has_bigalloc;
3303 __u64 blocks_count;
3304 int err = 0;
3305 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
3306 ext4_group_t first_not_zeroed;
3307
3308 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
3309 if (!sbi)
3310 goto out_free_orig;
3311
3312 sbi->s_blockgroup_lock =
3313 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
3314 if (!sbi->s_blockgroup_lock) {
3315 kfree(sbi);
3316 goto out_free_orig;
3317 }
3318 sb->s_fs_info = sbi;
3319 sbi->s_sb = sb;
3320 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
3321 sbi->s_sb_block = sb_block;
3322 if (sb->s_bdev->bd_part)
3323 sbi->s_sectors_written_start =
3324 part_stat_read(sb->s_bdev->bd_part, sectors[1]);
3325
3326 /* Cleanup superblock name */
3327 for (cp = sb->s_id; (cp = strchr(cp, '/'));)
3328 *cp = '!';
3329
3330 /* -EINVAL is default */
3331 ret = -EINVAL;
3332 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
3333 if (!blocksize) {
3334 ext4_msg(sb, KERN_ERR, "unable to set blocksize");
3335 goto out_fail;
3336 }
3337
3338 /*
3339 * The ext4 superblock will not be buffer aligned for other than 1kB
3340 * block sizes. We need to calculate the offset from buffer start.
3341 */
3342 if (blocksize != EXT4_MIN_BLOCK_SIZE) {
3343 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3344 offset = do_div(logical_sb_block, blocksize);
3345 } else {
3346 logical_sb_block = sb_block;
3347 }
3348
3349 if (!(bh = sb_bread(sb, logical_sb_block))) {
3350 ext4_msg(sb, KERN_ERR, "unable to read superblock");
3351 goto out_fail;
3352 }
3353 /*
3354 * Note: s_es must be initialized as soon as possible because
3355 * some ext4 macro-instructions depend on its value
3356 */
3357 es = (struct ext4_super_block *) (bh->b_data + offset);
3358 sbi->s_es = es;
3359 sb->s_magic = le16_to_cpu(es->s_magic);
3360 if (sb->s_magic != EXT4_SUPER_MAGIC)
3361 goto cantfind_ext4;
3362 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
3363
3364 /* Warn if metadata_csum and gdt_csum are both set. */
3365 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3366 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
3367 EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
3368 ext4_warning(sb, KERN_INFO "metadata_csum and uninit_bg are "
3369 "redundant flags; please run fsck.");
3370
3371 /* Check for a known checksum algorithm */
3372 if (!ext4_verify_csum_type(sb, es)) {
3373 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3374 "unknown checksum algorithm.");
3375 silent = 1;
3376 goto cantfind_ext4;
3377 }
3378
3379 /* Load the checksum driver */
3380 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3381 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
3382 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
3383 if (IS_ERR(sbi->s_chksum_driver)) {
3384 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver.");
3385 ret = PTR_ERR(sbi->s_chksum_driver);
3386 sbi->s_chksum_driver = NULL;
3387 goto failed_mount;
3388 }
3389 }
3390
3391 /* Check superblock checksum */
3392 if (!ext4_superblock_csum_verify(sb, es)) {
3393 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3394 "invalid superblock checksum. Run e2fsck?");
3395 silent = 1;
3396 goto cantfind_ext4;
3397 }
3398
3399 /* Precompute checksum seed for all metadata */
3400 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3401 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
3402 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid,
3403 sizeof(es->s_uuid));
3404
3405 /* Set defaults before we parse the mount options */
3406 def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
3407 set_opt(sb, INIT_INODE_TABLE);
3408 if (def_mount_opts & EXT4_DEFM_DEBUG)
3409 set_opt(sb, DEBUG);
3410 if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
3411 set_opt(sb, GRPID);
3412 if (def_mount_opts & EXT4_DEFM_UID16)
3413 set_opt(sb, NO_UID32);
3414 /* xattr user namespace & acls are now defaulted on */
3415 set_opt(sb, XATTR_USER);
3416 #ifdef CONFIG_EXT4_FS_POSIX_ACL
3417 set_opt(sb, POSIX_ACL);
3418 #endif
3419 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
3420 set_opt(sb, JOURNAL_DATA);
3421 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
3422 set_opt(sb, ORDERED_DATA);
3423 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
3424 set_opt(sb, WRITEBACK_DATA);
3425
3426 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC)
3427 set_opt(sb, ERRORS_PANIC);
3428 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE)
3429 set_opt(sb, ERRORS_CONT);
3430 else
3431 set_opt(sb, ERRORS_RO);
3432 if (def_mount_opts & EXT4_DEFM_BLOCK_VALIDITY)
3433 set_opt(sb, BLOCK_VALIDITY);
3434 if (def_mount_opts & EXT4_DEFM_DISCARD)
3435 set_opt(sb, DISCARD);
3436
3437 sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid));
3438 sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid));
3439 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
3440 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
3441 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
3442
3443 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
3444 set_opt(sb, BARRIER);
3445
3446 /*
3447 * enable delayed allocation by default
3448 * Use -o nodelalloc to turn it off
3449 */
3450 if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) &&
3451 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
3452 set_opt(sb, DELALLOC);
3453
3454 /*
3455 * set default s_li_wait_mult for lazyinit, for the case there is
3456 * no mount option specified.
3457 */
3458 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
3459
3460 if (!parse_options((char *) sbi->s_es->s_mount_opts, sb,
3461 &journal_devnum, &journal_ioprio, 0)) {
3462 ext4_msg(sb, KERN_WARNING,
3463 "failed to parse options in superblock: %s",
3464 sbi->s_es->s_mount_opts);
3465 }
3466 sbi->s_def_mount_opt = sbi->s_mount_opt;
3467 if (!parse_options((char *) data, sb, &journal_devnum,
3468 &journal_ioprio, 0))
3469 goto failed_mount;
3470
3471 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
3472 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting "
3473 "with data=journal disables delayed "
3474 "allocation and O_DIRECT support!\n");
3475 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
3476 ext4_msg(sb, KERN_ERR, "can't mount with "
3477 "both data=journal and delalloc");
3478 goto failed_mount;
3479 }
3480 if (test_opt(sb, DIOREAD_NOLOCK)) {
3481 ext4_msg(sb, KERN_ERR, "can't mount with "
3482 "both data=journal and delalloc");
3483 goto failed_mount;
3484 }
3485 if (test_opt(sb, DELALLOC))
3486 clear_opt(sb, DELALLOC);
3487 }
3488
3489 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
3490 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
3491
3492 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
3493 (EXT4_HAS_COMPAT_FEATURE(sb, ~0U) ||
3494 EXT4_HAS_RO_COMPAT_FEATURE(sb, ~0U) ||
3495 EXT4_HAS_INCOMPAT_FEATURE(sb, ~0U)))
3496 ext4_msg(sb, KERN_WARNING,
3497 "feature flags set on rev 0 fs, "
3498 "running e2fsck is recommended");
3499
3500 if (IS_EXT2_SB(sb)) {
3501 if (ext2_feature_set_ok(sb))
3502 ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
3503 "using the ext4 subsystem");
3504 else {
3505 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
3506 "to feature incompatibilities");
3507 goto failed_mount;
3508 }
3509 }
3510
3511 if (IS_EXT3_SB(sb)) {
3512 if (ext3_feature_set_ok(sb))
3513 ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
3514 "using the ext4 subsystem");
3515 else {
3516 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
3517 "to feature incompatibilities");
3518 goto failed_mount;
3519 }
3520 }
3521
3522 /*
3523 * Check feature flags regardless of the revision level, since we
3524 * previously didn't change the revision level when setting the flags,
3525 * so there is a chance incompat flags are set on a rev 0 filesystem.
3526 */
3527 if (!ext4_feature_set_ok(sb, (sb->s_flags & MS_RDONLY)))
3528 goto failed_mount;
3529
3530 blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
3531 if (blocksize < EXT4_MIN_BLOCK_SIZE ||
3532 blocksize > EXT4_MAX_BLOCK_SIZE) {
3533 ext4_msg(sb, KERN_ERR,
3534 "Unsupported filesystem blocksize %d", blocksize);
3535 goto failed_mount;
3536 }
3537
3538 if (sb->s_blocksize != blocksize) {
3539 /* Validate the filesystem blocksize */
3540 if (!sb_set_blocksize(sb, blocksize)) {
3541 ext4_msg(sb, KERN_ERR, "bad block size %d",
3542 blocksize);
3543 goto failed_mount;
3544 }
3545
3546 brelse(bh);
3547 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3548 offset = do_div(logical_sb_block, blocksize);
3549 bh = sb_bread(sb, logical_sb_block);
3550 if (!bh) {
3551 ext4_msg(sb, KERN_ERR,
3552 "Can't read superblock on 2nd try");
3553 goto failed_mount;
3554 }
3555 es = (struct ext4_super_block *)(bh->b_data + offset);
3556 sbi->s_es = es;
3557 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
3558 ext4_msg(sb, KERN_ERR,
3559 "Magic mismatch, very weird!");
3560 goto failed_mount;
3561 }
3562 }
3563
3564 has_huge_files = EXT4_HAS_RO_COMPAT_FEATURE(sb,
3565 EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
3566 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
3567 has_huge_files);
3568 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
3569
3570 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
3571 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
3572 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
3573 } else {
3574 sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
3575 sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
3576 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
3577 (!is_power_of_2(sbi->s_inode_size)) ||
3578 (sbi->s_inode_size > blocksize)) {
3579 ext4_msg(sb, KERN_ERR,
3580 "unsupported inode size: %d",
3581 sbi->s_inode_size);
3582 goto failed_mount;
3583 }
3584 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE)
3585 sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2);
3586 }
3587
3588 sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
3589 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT)) {
3590 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
3591 sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
3592 !is_power_of_2(sbi->s_desc_size)) {
3593 ext4_msg(sb, KERN_ERR,
3594 "unsupported descriptor size %lu",
3595 sbi->s_desc_size);
3596 goto failed_mount;
3597 }
3598 } else
3599 sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
3600
3601 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
3602 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
3603 if (EXT4_INODE_SIZE(sb) == 0 || EXT4_INODES_PER_GROUP(sb) == 0)
3604 goto cantfind_ext4;
3605
3606 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb);
3607 if (sbi->s_inodes_per_block == 0)
3608 goto cantfind_ext4;
3609 sbi->s_itb_per_group = sbi->s_inodes_per_group /
3610 sbi->s_inodes_per_block;
3611 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb);
3612 sbi->s_sbh = bh;
3613 sbi->s_mount_state = le16_to_cpu(es->s_state);
3614 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
3615 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
3616
3617 /* Do we have standard group size of blocksize * 8 blocks ? */
3618 if (sbi->s_blocks_per_group == blocksize << 3)
3619 set_opt2(sb, STD_GROUP_SIZE);
3620
3621 for (i = 0; i < 4; i++)
3622 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
3623 sbi->s_def_hash_version = es->s_def_hash_version;
3624 i = le32_to_cpu(es->s_flags);
3625 if (i & EXT2_FLAGS_UNSIGNED_HASH)
3626 sbi->s_hash_unsigned = 3;
3627 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
3628 #ifdef __CHAR_UNSIGNED__
3629 es->s_flags |= cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
3630 sbi->s_hash_unsigned = 3;
3631 #else
3632 es->s_flags |= cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
3633 #endif
3634 }
3635
3636 /* Handle clustersize */
3637 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size);
3638 has_bigalloc = EXT4_HAS_RO_COMPAT_FEATURE(sb,
3639 EXT4_FEATURE_RO_COMPAT_BIGALLOC);
3640 if (has_bigalloc) {
3641 if (clustersize < blocksize) {
3642 ext4_msg(sb, KERN_ERR,
3643 "cluster size (%d) smaller than "
3644 "block size (%d)", clustersize, blocksize);
3645 goto failed_mount;
3646 }
3647 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) -
3648 le32_to_cpu(es->s_log_block_size);
3649 sbi->s_clusters_per_group =
3650 le32_to_cpu(es->s_clusters_per_group);
3651 if (sbi->s_clusters_per_group > blocksize * 8) {
3652 ext4_msg(sb, KERN_ERR,
3653 "#clusters per group too big: %lu",
3654 sbi->s_clusters_per_group);
3655 goto failed_mount;
3656 }
3657 if (sbi->s_blocks_per_group !=
3658 (sbi->s_clusters_per_group * (clustersize / blocksize))) {
3659 ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and "
3660 "clusters per group (%lu) inconsistent",
3661 sbi->s_blocks_per_group,
3662 sbi->s_clusters_per_group);
3663 goto failed_mount;
3664 }
3665 } else {
3666 if (clustersize != blocksize) {
3667 ext4_warning(sb, "fragment/cluster size (%d) != "
3668 "block size (%d)", clustersize,
3669 blocksize);
3670 clustersize = blocksize;
3671 }
3672 if (sbi->s_blocks_per_group > blocksize * 8) {
3673 ext4_msg(sb, KERN_ERR,
3674 "#blocks per group too big: %lu",
3675 sbi->s_blocks_per_group);
3676 goto failed_mount;
3677 }
3678 sbi->s_clusters_per_group = sbi->s_blocks_per_group;
3679 sbi->s_cluster_bits = 0;
3680 }
3681 sbi->s_cluster_ratio = clustersize / blocksize;
3682
3683 if (sbi->s_inodes_per_group > blocksize * 8) {
3684 ext4_msg(sb, KERN_ERR,
3685 "#inodes per group too big: %lu",
3686 sbi->s_inodes_per_group);
3687 goto failed_mount;
3688 }
3689
3690 /*
3691 * Test whether we have more sectors than will fit in sector_t,
3692 * and whether the max offset is addressable by the page cache.
3693 */
3694 err = generic_check_addressable(sb->s_blocksize_bits,
3695 ext4_blocks_count(es));
3696 if (err) {
3697 ext4_msg(sb, KERN_ERR, "filesystem"
3698 " too large to mount safely on this system");
3699 if (sizeof(sector_t) < 8)
3700 ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled");
3701 goto failed_mount;
3702 }
3703
3704 if (EXT4_BLOCKS_PER_GROUP(sb) == 0)
3705 goto cantfind_ext4;
3706
3707 /* check blocks count against device size */
3708 blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
3709 if (blocks_count && ext4_blocks_count(es) > blocks_count) {
3710 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
3711 "exceeds size of device (%llu blocks)",
3712 ext4_blocks_count(es), blocks_count);
3713 goto failed_mount;
3714 }
3715
3716 /*
3717 * It makes no sense for the first data block to be beyond the end
3718 * of the filesystem.
3719 */
3720 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
3721 ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
3722 "block %u is beyond end of filesystem (%llu)",
3723 le32_to_cpu(es->s_first_data_block),
3724 ext4_blocks_count(es));
3725 goto failed_mount;
3726 }
3727 blocks_count = (ext4_blocks_count(es) -
3728 le32_to_cpu(es->s_first_data_block) +
3729 EXT4_BLOCKS_PER_GROUP(sb) - 1);
3730 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
3731 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
3732 ext4_msg(sb, KERN_WARNING, "groups count too large: %u "
3733 "(block count %llu, first data block %u, "
3734 "blocks per group %lu)", sbi->s_groups_count,
3735 ext4_blocks_count(es),
3736 le32_to_cpu(es->s_first_data_block),
3737 EXT4_BLOCKS_PER_GROUP(sb));
3738 goto failed_mount;
3739 }
3740 sbi->s_groups_count = blocks_count;
3741 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
3742 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
3743 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
3744 EXT4_DESC_PER_BLOCK(sb);
3745 sbi->s_group_desc = ext4_kvmalloc(db_count *
3746 sizeof(struct buffer_head *),
3747 GFP_KERNEL);
3748 if (sbi->s_group_desc == NULL) {
3749 ext4_msg(sb, KERN_ERR, "not enough memory");
3750 ret = -ENOMEM;
3751 goto failed_mount;
3752 }
3753
3754 if (ext4_proc_root)
3755 sbi->s_proc = proc_mkdir(sb->s_id, ext4_proc_root);
3756
3757 if (sbi->s_proc)
3758 proc_create_data("options", S_IRUGO, sbi->s_proc,
3759 &ext4_seq_options_fops, sb);
3760
3761 bgl_lock_init(sbi->s_blockgroup_lock);
3762
3763 for (i = 0; i < db_count; i++) {
3764 block = descriptor_loc(sb, logical_sb_block, i);
3765 sbi->s_group_desc[i] = sb_bread(sb, block);
3766 if (!sbi->s_group_desc[i]) {
3767 ext4_msg(sb, KERN_ERR,
3768 "can't read group descriptor %d", i);
3769 db_count = i;
3770 goto failed_mount2;
3771 }
3772 }
3773 if (!ext4_check_descriptors(sb, &first_not_zeroed)) {
3774 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
3775 goto failed_mount2;
3776 }
3777 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG))
3778 if (!ext4_fill_flex_info(sb)) {
3779 ext4_msg(sb, KERN_ERR,
3780 "unable to initialize "
3781 "flex_bg meta info!");
3782 goto failed_mount2;
3783 }
3784
3785 sbi->s_gdb_count = db_count;
3786 get_random_bytes(&sbi->s_next_generation, sizeof(u32));
3787 spin_lock_init(&sbi->s_next_gen_lock);
3788
3789 init_timer(&sbi->s_err_report);
3790 sbi->s_err_report.function = print_daily_error_info;
3791 sbi->s_err_report.data = (unsigned long) sb;
3792
3793 /* Register extent status tree shrinker */
3794 ext4_es_register_shrinker(sb);
3795
3796 err = percpu_counter_init(&sbi->s_freeclusters_counter,
3797 ext4_count_free_clusters(sb));
3798 if (!err) {
3799 err = percpu_counter_init(&sbi->s_freeinodes_counter,
3800 ext4_count_free_inodes(sb));
3801 }
3802 if (!err) {
3803 err = percpu_counter_init(&sbi->s_dirs_counter,
3804 ext4_count_dirs(sb));
3805 }
3806 if (!err) {
3807 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0);
3808 }
3809 if (!err) {
3810 err = percpu_counter_init(&sbi->s_extent_cache_cnt, 0);
3811 }
3812 if (err) {
3813 ext4_msg(sb, KERN_ERR, "insufficient memory");
3814 goto failed_mount3;
3815 }
3816
3817 sbi->s_stripe = ext4_get_stripe_size(sbi);
3818 sbi->s_extent_max_zeroout_kb = 32;
3819
3820 /*
3821 * set up enough so that it can read an inode
3822 */
3823 if (!test_opt(sb, NOLOAD) &&
3824 EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL))
3825 sb->s_op = &ext4_sops;
3826 else
3827 sb->s_op = &ext4_nojournal_sops;
3828 sb->s_export_op = &ext4_export_ops;
3829 sb->s_xattr = ext4_xattr_handlers;
3830 #ifdef CONFIG_QUOTA
3831 sb->dq_op = &ext4_quota_operations;
3832 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA))
3833 sb->s_qcop = &ext4_qctl_sysfile_operations;
3834 else
3835 sb->s_qcop = &ext4_qctl_operations;
3836 #endif
3837 memcpy(sb->s_uuid, es->s_uuid, sizeof(es->s_uuid));
3838
3839 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
3840 mutex_init(&sbi->s_orphan_lock);
3841
3842 sb->s_root = NULL;
3843
3844 needs_recovery = (es->s_last_orphan != 0 ||
3845 EXT4_HAS_INCOMPAT_FEATURE(sb,
3846 EXT4_FEATURE_INCOMPAT_RECOVER));
3847
3848 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_MMP) &&
3849 !(sb->s_flags & MS_RDONLY))
3850 if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block)))
3851 goto failed_mount3;
3852
3853 /*
3854 * The first inode we look at is the journal inode. Don't try
3855 * root first: it may be modified in the journal!
3856 */
3857 if (!test_opt(sb, NOLOAD) &&
3858 EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) {
3859 if (ext4_load_journal(sb, es, journal_devnum))
3860 goto failed_mount3;
3861 } else if (test_opt(sb, NOLOAD) && !(sb->s_flags & MS_RDONLY) &&
3862 EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) {
3863 ext4_msg(sb, KERN_ERR, "required journal recovery "
3864 "suppressed and not mounted read-only");
3865 goto failed_mount_wq;
3866 } else {
3867 clear_opt(sb, DATA_FLAGS);
3868 sbi->s_journal = NULL;
3869 needs_recovery = 0;
3870 goto no_journal;
3871 }
3872
3873 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT) &&
3874 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
3875 JBD2_FEATURE_INCOMPAT_64BIT)) {
3876 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
3877 goto failed_mount_wq;
3878 }
3879
3880 if (!set_journal_csum_feature_set(sb)) {
3881 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum "
3882 "feature set");
3883 goto failed_mount_wq;
3884 }
3885
3886 /* We have now updated the journal if required, so we can
3887 * validate the data journaling mode. */
3888 switch (test_opt(sb, DATA_FLAGS)) {
3889 case 0:
3890 /* No mode set, assume a default based on the journal
3891 * capabilities: ORDERED_DATA if the journal can
3892 * cope, else JOURNAL_DATA
3893 */
3894 if (jbd2_journal_check_available_features
3895 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE))
3896 set_opt(sb, ORDERED_DATA);
3897 else
3898 set_opt(sb, JOURNAL_DATA);
3899 break;
3900
3901 case EXT4_MOUNT_ORDERED_DATA:
3902 case EXT4_MOUNT_WRITEBACK_DATA:
3903 if (!jbd2_journal_check_available_features
3904 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
3905 ext4_msg(sb, KERN_ERR, "Journal does not support "
3906 "requested data journaling mode");
3907 goto failed_mount_wq;
3908 }
3909 default:
3910 break;
3911 }
3912 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
3913
3914 sbi->s_journal->j_commit_callback = ext4_journal_commit_callback;
3915
3916 /*
3917 * The journal may have updated the bg summary counts, so we
3918 * need to update the global counters.
3919 */
3920 percpu_counter_set(&sbi->s_freeclusters_counter,
3921 ext4_count_free_clusters(sb));
3922 percpu_counter_set(&sbi->s_freeinodes_counter,
3923 ext4_count_free_inodes(sb));
3924 percpu_counter_set(&sbi->s_dirs_counter,
3925 ext4_count_dirs(sb));
3926 percpu_counter_set(&sbi->s_dirtyclusters_counter, 0);
3927
3928 no_journal:
3929 /*
3930 * Get the # of file system overhead blocks from the
3931 * superblock if present.
3932 */
3933 if (es->s_overhead_clusters)
3934 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters);
3935 else {
3936 err = ext4_calculate_overhead(sb);
3937 if (err)
3938 goto failed_mount_wq;
3939 }
3940
3941 /*
3942 * The maximum number of concurrent works can be high and
3943 * concurrency isn't really necessary. Limit it to 1.
3944 */
3945 EXT4_SB(sb)->rsv_conversion_wq =
3946 alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
3947 if (!EXT4_SB(sb)->rsv_conversion_wq) {
3948 printk(KERN_ERR "EXT4-fs: failed to create workqueue\n");
3949 ret = -ENOMEM;
3950 goto failed_mount4;
3951 }
3952
3953 EXT4_SB(sb)->unrsv_conversion_wq =
3954 alloc_workqueue("ext4-unrsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
3955 if (!EXT4_SB(sb)->unrsv_conversion_wq) {
3956 printk(KERN_ERR "EXT4-fs: failed to create workqueue\n");
3957 ret = -ENOMEM;
3958 goto failed_mount4;
3959 }
3960
3961 /*
3962 * The jbd2_journal_load will have done any necessary log recovery,
3963 * so we can safely mount the rest of the filesystem now.
3964 */
3965
3966 root = ext4_iget(sb, EXT4_ROOT_INO);
3967 if (IS_ERR(root)) {
3968 ext4_msg(sb, KERN_ERR, "get root inode failed");
3969 ret = PTR_ERR(root);
3970 root = NULL;
3971 goto failed_mount4;
3972 }
3973 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
3974 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
3975 iput(root);
3976 goto failed_mount4;
3977 }
3978 sb->s_root = d_make_root(root);
3979 if (!sb->s_root) {
3980 ext4_msg(sb, KERN_ERR, "get root dentry failed");
3981 ret = -ENOMEM;
3982 goto failed_mount4;
3983 }
3984
3985 if (ext4_setup_super(sb, es, sb->s_flags & MS_RDONLY))
3986 sb->s_flags |= MS_RDONLY;
3987
3988 /* determine the minimum size of new large inodes, if present */
3989 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) {
3990 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
3991 EXT4_GOOD_OLD_INODE_SIZE;
3992 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3993 EXT4_FEATURE_RO_COMPAT_EXTRA_ISIZE)) {
3994 if (sbi->s_want_extra_isize <
3995 le16_to_cpu(es->s_want_extra_isize))
3996 sbi->s_want_extra_isize =
3997 le16_to_cpu(es->s_want_extra_isize);
3998 if (sbi->s_want_extra_isize <
3999 le16_to_cpu(es->s_min_extra_isize))
4000 sbi->s_want_extra_isize =
4001 le16_to_cpu(es->s_min_extra_isize);
4002 }
4003 }
4004 /* Check if enough inode space is available */
4005 if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize >
4006 sbi->s_inode_size) {
4007 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
4008 EXT4_GOOD_OLD_INODE_SIZE;
4009 ext4_msg(sb, KERN_INFO, "required extra inode space not"
4010 "available");
4011 }
4012
4013 err = ext4_reserve_clusters(sbi, ext4_calculate_resv_clusters(sbi));
4014 if (err) {
4015 ext4_msg(sb, KERN_ERR, "failed to reserve %llu clusters for "
4016 "reserved pool", ext4_calculate_resv_clusters(sbi));
4017 goto failed_mount4a;
4018 }
4019
4020 err = ext4_setup_system_zone(sb);
4021 if (err) {
4022 ext4_msg(sb, KERN_ERR, "failed to initialize system "
4023 "zone (%d)", err);
4024 goto failed_mount4a;
4025 }
4026
4027 ext4_ext_init(sb);
4028 err = ext4_mb_init(sb);
4029 if (err) {
4030 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
4031 err);
4032 goto failed_mount5;
4033 }
4034
4035 err = ext4_register_li_request(sb, first_not_zeroed);
4036 if (err)
4037 goto failed_mount6;
4038
4039 sbi->s_kobj.kset = ext4_kset;
4040 init_completion(&sbi->s_kobj_unregister);
4041 err = kobject_init_and_add(&sbi->s_kobj, &ext4_ktype, NULL,
4042 "%s", sb->s_id);
4043 if (err)
4044 goto failed_mount7;
4045
4046 #ifdef CONFIG_QUOTA
4047 /* Enable quota usage during mount. */
4048 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) &&
4049 !(sb->s_flags & MS_RDONLY)) {
4050 err = ext4_enable_quotas(sb);
4051 if (err)
4052 goto failed_mount8;
4053 }
4054 #endif /* CONFIG_QUOTA */
4055
4056 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
4057 ext4_orphan_cleanup(sb, es);
4058 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
4059 if (needs_recovery) {
4060 ext4_msg(sb, KERN_INFO, "recovery complete");
4061 ext4_mark_recovery_complete(sb, es);
4062 }
4063 if (EXT4_SB(sb)->s_journal) {
4064 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
4065 descr = " journalled data mode";
4066 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
4067 descr = " ordered data mode";
4068 else
4069 descr = " writeback data mode";
4070 } else
4071 descr = "out journal";
4072
4073 if (test_opt(sb, DISCARD)) {
4074 struct request_queue *q = bdev_get_queue(sb->s_bdev);
4075 if (!blk_queue_discard(q))
4076 ext4_msg(sb, KERN_WARNING,
4077 "mounting with \"discard\" option, but "
4078 "the device does not support discard");
4079 }
4080
4081 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. "
4082 "Opts: %s%s%s", descr, sbi->s_es->s_mount_opts,
4083 *sbi->s_es->s_mount_opts ? "; " : "", orig_data);
4084
4085 if (es->s_error_count)
4086 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
4087
4088 kfree(orig_data);
4089 return 0;
4090
4091 cantfind_ext4:
4092 if (!silent)
4093 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
4094 goto failed_mount;
4095
4096 #ifdef CONFIG_QUOTA
4097 failed_mount8:
4098 kobject_del(&sbi->s_kobj);
4099 #endif
4100 failed_mount7:
4101 ext4_unregister_li_request(sb);
4102 failed_mount6:
4103 ext4_mb_release(sb);
4104 failed_mount5:
4105 ext4_ext_release(sb);
4106 ext4_release_system_zone(sb);
4107 failed_mount4a:
4108 dput(sb->s_root);
4109 sb->s_root = NULL;
4110 failed_mount4:
4111 ext4_msg(sb, KERN_ERR, "mount failed");
4112 if (EXT4_SB(sb)->rsv_conversion_wq)
4113 destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq);
4114 if (EXT4_SB(sb)->unrsv_conversion_wq)
4115 destroy_workqueue(EXT4_SB(sb)->unrsv_conversion_wq);
4116 failed_mount_wq:
4117 if (sbi->s_journal) {
4118 jbd2_journal_destroy(sbi->s_journal);
4119 sbi->s_journal = NULL;
4120 }
4121 failed_mount3:
4122 ext4_es_unregister_shrinker(sb);
4123 del_timer(&sbi->s_err_report);
4124 if (sbi->s_flex_groups)
4125 ext4_kvfree(sbi->s_flex_groups);
4126 percpu_counter_destroy(&sbi->s_freeclusters_counter);
4127 percpu_counter_destroy(&sbi->s_freeinodes_counter);
4128 percpu_counter_destroy(&sbi->s_dirs_counter);
4129 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
4130 percpu_counter_destroy(&sbi->s_extent_cache_cnt);
4131 if (sbi->s_mmp_tsk)
4132 kthread_stop(sbi->s_mmp_tsk);
4133 failed_mount2:
4134 for (i = 0; i < db_count; i++)
4135 brelse(sbi->s_group_desc[i]);
4136 ext4_kvfree(sbi->s_group_desc);
4137 failed_mount:
4138 if (sbi->s_chksum_driver)
4139 crypto_free_shash(sbi->s_chksum_driver);
4140 if (sbi->s_proc) {
4141 remove_proc_entry("options", sbi->s_proc);
4142 remove_proc_entry(sb->s_id, ext4_proc_root);
4143 }
4144 #ifdef CONFIG_QUOTA
4145 for (i = 0; i < MAXQUOTAS; i++)
4146 kfree(sbi->s_qf_names[i]);
4147 #endif
4148 ext4_blkdev_remove(sbi);
4149 brelse(bh);
4150 out_fail:
4151 sb->s_fs_info = NULL;
4152 kfree(sbi->s_blockgroup_lock);
4153 kfree(sbi);
4154 out_free_orig:
4155 kfree(orig_data);
4156 return err ? err : ret;
4157 }
4158
4159 /*
4160 * Setup any per-fs journal parameters now. We'll do this both on
4161 * initial mount, once the journal has been initialised but before we've
4162 * done any recovery; and again on any subsequent remount.
4163 */
4164 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
4165 {
4166 struct ext4_sb_info *sbi = EXT4_SB(sb);
4167
4168 journal->j_commit_interval = sbi->s_commit_interval;
4169 journal->j_min_batch_time = sbi->s_min_batch_time;
4170 journal->j_max_batch_time = sbi->s_max_batch_time;
4171
4172 write_lock(&journal->j_state_lock);
4173 if (test_opt(sb, BARRIER))
4174 journal->j_flags |= JBD2_BARRIER;
4175 else
4176 journal->j_flags &= ~JBD2_BARRIER;
4177 if (test_opt(sb, DATA_ERR_ABORT))
4178 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
4179 else
4180 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
4181 write_unlock(&journal->j_state_lock);
4182 }
4183
4184 static journal_t *ext4_get_journal(struct super_block *sb,
4185 unsigned int journal_inum)
4186 {
4187 struct inode *journal_inode;
4188 journal_t *journal;
4189
4190 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
4191
4192 /* First, test for the existence of a valid inode on disk. Bad
4193 * things happen if we iget() an unused inode, as the subsequent
4194 * iput() will try to delete it. */
4195
4196 journal_inode = ext4_iget(sb, journal_inum);
4197 if (IS_ERR(journal_inode)) {
4198 ext4_msg(sb, KERN_ERR, "no journal found");
4199 return NULL;
4200 }
4201 if (!journal_inode->i_nlink) {
4202 make_bad_inode(journal_inode);
4203 iput(journal_inode);
4204 ext4_msg(sb, KERN_ERR, "journal inode is deleted");
4205 return NULL;
4206 }
4207
4208 jbd_debug(2, "Journal inode found at %p: %lld bytes\n",
4209 journal_inode, journal_inode->i_size);
4210 if (!S_ISREG(journal_inode->i_mode)) {
4211 ext4_msg(sb, KERN_ERR, "invalid journal inode");
4212 iput(journal_inode);
4213 return NULL;
4214 }
4215
4216 journal = jbd2_journal_init_inode(journal_inode);
4217 if (!journal) {
4218 ext4_msg(sb, KERN_ERR, "Could not load journal inode");
4219 iput(journal_inode);
4220 return NULL;
4221 }
4222 journal->j_private = sb;
4223 ext4_init_journal_params(sb, journal);
4224 return journal;
4225 }
4226
4227 static journal_t *ext4_get_dev_journal(struct super_block *sb,
4228 dev_t j_dev)
4229 {
4230 struct buffer_head *bh;
4231 journal_t *journal;
4232 ext4_fsblk_t start;
4233 ext4_fsblk_t len;
4234 int hblock, blocksize;
4235 ext4_fsblk_t sb_block;
4236 unsigned long offset;
4237 struct ext4_super_block *es;
4238 struct block_device *bdev;
4239
4240 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
4241
4242 bdev = ext4_blkdev_get(j_dev, sb);
4243 if (bdev == NULL)
4244 return NULL;
4245
4246 blocksize = sb->s_blocksize;
4247 hblock = bdev_logical_block_size(bdev);
4248 if (blocksize < hblock) {
4249 ext4_msg(sb, KERN_ERR,
4250 "blocksize too small for journal device");
4251 goto out_bdev;
4252 }
4253
4254 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
4255 offset = EXT4_MIN_BLOCK_SIZE % blocksize;
4256 set_blocksize(bdev, blocksize);
4257 if (!(bh = __bread(bdev, sb_block, blocksize))) {
4258 ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
4259 "external journal");
4260 goto out_bdev;
4261 }
4262
4263 es = (struct ext4_super_block *) (bh->b_data + offset);
4264 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
4265 !(le32_to_cpu(es->s_feature_incompat) &
4266 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
4267 ext4_msg(sb, KERN_ERR, "external journal has "
4268 "bad superblock");
4269 brelse(bh);
4270 goto out_bdev;
4271 }
4272
4273 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
4274 ext4_msg(sb, KERN_ERR, "journal UUID does not match");
4275 brelse(bh);
4276 goto out_bdev;
4277 }
4278
4279 len = ext4_blocks_count(es);
4280 start = sb_block + 1;
4281 brelse(bh); /* we're done with the superblock */
4282
4283 journal = jbd2_journal_init_dev(bdev, sb->s_bdev,
4284 start, len, blocksize);
4285 if (!journal) {
4286 ext4_msg(sb, KERN_ERR, "failed to create device journal");
4287 goto out_bdev;
4288 }
4289 journal->j_private = sb;
4290 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &journal->j_sb_buffer);
4291 wait_on_buffer(journal->j_sb_buffer);
4292 if (!buffer_uptodate(journal->j_sb_buffer)) {
4293 ext4_msg(sb, KERN_ERR, "I/O error on journal device");
4294 goto out_journal;
4295 }
4296 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
4297 ext4_msg(sb, KERN_ERR, "External journal has more than one "
4298 "user (unsupported) - %d",
4299 be32_to_cpu(journal->j_superblock->s_nr_users));
4300 goto out_journal;
4301 }
4302 EXT4_SB(sb)->journal_bdev = bdev;
4303 ext4_init_journal_params(sb, journal);
4304 return journal;
4305
4306 out_journal:
4307 jbd2_journal_destroy(journal);
4308 out_bdev:
4309 ext4_blkdev_put(bdev);
4310 return NULL;
4311 }
4312
4313 static int ext4_load_journal(struct super_block *sb,
4314 struct ext4_super_block *es,
4315 unsigned long journal_devnum)
4316 {
4317 journal_t *journal;
4318 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
4319 dev_t journal_dev;
4320 int err = 0;
4321 int really_read_only;
4322
4323 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
4324
4325 if (journal_devnum &&
4326 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4327 ext4_msg(sb, KERN_INFO, "external journal device major/minor "
4328 "numbers have changed");
4329 journal_dev = new_decode_dev(journal_devnum);
4330 } else
4331 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
4332
4333 really_read_only = bdev_read_only(sb->s_bdev);
4334
4335 /*
4336 * Are we loading a blank journal or performing recovery after a
4337 * crash? For recovery, we need to check in advance whether we
4338 * can get read-write access to the device.
4339 */
4340 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) {
4341 if (sb->s_flags & MS_RDONLY) {
4342 ext4_msg(sb, KERN_INFO, "INFO: recovery "
4343 "required on readonly filesystem");
4344 if (really_read_only) {
4345 ext4_msg(sb, KERN_ERR, "write access "
4346 "unavailable, cannot proceed");
4347 return -EROFS;
4348 }
4349 ext4_msg(sb, KERN_INFO, "write access will "
4350 "be enabled during recovery");
4351 }
4352 }
4353
4354 if (journal_inum && journal_dev) {
4355 ext4_msg(sb, KERN_ERR, "filesystem has both journal "
4356 "and inode journals!");
4357 return -EINVAL;
4358 }
4359
4360 if (journal_inum) {
4361 if (!(journal = ext4_get_journal(sb, journal_inum)))
4362 return -EINVAL;
4363 } else {
4364 if (!(journal = ext4_get_dev_journal(sb, journal_dev)))
4365 return -EINVAL;
4366 }
4367
4368 if (!(journal->j_flags & JBD2_BARRIER))
4369 ext4_msg(sb, KERN_INFO, "barriers disabled");
4370
4371 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER))
4372 err = jbd2_journal_wipe(journal, !really_read_only);
4373 if (!err) {
4374 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
4375 if (save)
4376 memcpy(save, ((char *) es) +
4377 EXT4_S_ERR_START, EXT4_S_ERR_LEN);
4378 err = jbd2_journal_load(journal);
4379 if (save)
4380 memcpy(((char *) es) + EXT4_S_ERR_START,
4381 save, EXT4_S_ERR_LEN);
4382 kfree(save);
4383 }
4384
4385 if (err) {
4386 ext4_msg(sb, KERN_ERR, "error loading journal");
4387 jbd2_journal_destroy(journal);
4388 return err;
4389 }
4390
4391 EXT4_SB(sb)->s_journal = journal;
4392 ext4_clear_journal_err(sb, es);
4393
4394 if (!really_read_only && journal_devnum &&
4395 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4396 es->s_journal_dev = cpu_to_le32(journal_devnum);
4397
4398 /* Make sure we flush the recovery flag to disk. */
4399 ext4_commit_super(sb, 1);
4400 }
4401
4402 return 0;
4403 }
4404
4405 static int ext4_commit_super(struct super_block *sb, int sync)
4406 {
4407 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
4408 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
4409 int error = 0;
4410
4411 if (!sbh || block_device_ejected(sb))
4412 return error;
4413 if (buffer_write_io_error(sbh)) {
4414 /*
4415 * Oh, dear. A previous attempt to write the
4416 * superblock failed. This could happen because the
4417 * USB device was yanked out. Or it could happen to
4418 * be a transient write error and maybe the block will
4419 * be remapped. Nothing we can do but to retry the
4420 * write and hope for the best.
4421 */
4422 ext4_msg(sb, KERN_ERR, "previous I/O error to "
4423 "superblock detected");
4424 clear_buffer_write_io_error(sbh);
4425 set_buffer_uptodate(sbh);
4426 }
4427 /*
4428 * If the file system is mounted read-only, don't update the
4429 * superblock write time. This avoids updating the superblock
4430 * write time when we are mounting the root file system
4431 * read/only but we need to replay the journal; at that point,
4432 * for people who are east of GMT and who make their clock
4433 * tick in localtime for Windows bug-for-bug compatibility,
4434 * the clock is set in the future, and this will cause e2fsck
4435 * to complain and force a full file system check.
4436 */
4437 if (!(sb->s_flags & MS_RDONLY))
4438 es->s_wtime = cpu_to_le32(get_seconds());
4439 if (sb->s_bdev->bd_part)
4440 es->s_kbytes_written =
4441 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written +
4442 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
4443 EXT4_SB(sb)->s_sectors_written_start) >> 1));
4444 else
4445 es->s_kbytes_written =
4446 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written);
4447 ext4_free_blocks_count_set(es,
4448 EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive(
4449 &EXT4_SB(sb)->s_freeclusters_counter)));
4450 es->s_free_inodes_count =
4451 cpu_to_le32(percpu_counter_sum_positive(
4452 &EXT4_SB(sb)->s_freeinodes_counter));
4453 BUFFER_TRACE(sbh, "marking dirty");
4454 ext4_superblock_csum_set(sb);
4455 mark_buffer_dirty(sbh);
4456 if (sync) {
4457 error = sync_dirty_buffer(sbh);
4458 if (error)
4459 return error;
4460
4461 error = buffer_write_io_error(sbh);
4462 if (error) {
4463 ext4_msg(sb, KERN_ERR, "I/O error while writing "
4464 "superblock");
4465 clear_buffer_write_io_error(sbh);
4466 set_buffer_uptodate(sbh);
4467 }
4468 }
4469 return error;
4470 }
4471
4472 /*
4473 * Have we just finished recovery? If so, and if we are mounting (or
4474 * remounting) the filesystem readonly, then we will end up with a
4475 * consistent fs on disk. Record that fact.
4476 */
4477 static void ext4_mark_recovery_complete(struct super_block *sb,
4478 struct ext4_super_block *es)
4479 {
4480 journal_t *journal = EXT4_SB(sb)->s_journal;
4481
4482 if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) {
4483 BUG_ON(journal != NULL);
4484 return;
4485 }
4486 jbd2_journal_lock_updates(journal);
4487 if (jbd2_journal_flush(journal) < 0)
4488 goto out;
4489
4490 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER) &&
4491 sb->s_flags & MS_RDONLY) {
4492 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4493 ext4_commit_super(sb, 1);
4494 }
4495
4496 out:
4497 jbd2_journal_unlock_updates(journal);
4498 }
4499
4500 /*
4501 * If we are mounting (or read-write remounting) a filesystem whose journal
4502 * has recorded an error from a previous lifetime, move that error to the
4503 * main filesystem now.
4504 */
4505 static void ext4_clear_journal_err(struct super_block *sb,
4506 struct ext4_super_block *es)
4507 {
4508 journal_t *journal;
4509 int j_errno;
4510 const char *errstr;
4511
4512 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
4513
4514 journal = EXT4_SB(sb)->s_journal;
4515
4516 /*
4517 * Now check for any error status which may have been recorded in the
4518 * journal by a prior ext4_error() or ext4_abort()
4519 */
4520
4521 j_errno = jbd2_journal_errno(journal);
4522 if (j_errno) {
4523 char nbuf[16];
4524
4525 errstr = ext4_decode_error(sb, j_errno, nbuf);
4526 ext4_warning(sb, "Filesystem error recorded "
4527 "from previous mount: %s", errstr);
4528 ext4_warning(sb, "Marking fs in need of filesystem check.");
4529
4530 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
4531 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
4532 ext4_commit_super(sb, 1);
4533
4534 jbd2_journal_clear_err(journal);
4535 jbd2_journal_update_sb_errno(journal);
4536 }
4537 }
4538
4539 /*
4540 * Force the running and committing transactions to commit,
4541 * and wait on the commit.
4542 */
4543 int ext4_force_commit(struct super_block *sb)
4544 {
4545 journal_t *journal;
4546
4547 if (sb->s_flags & MS_RDONLY)
4548 return 0;
4549
4550 journal = EXT4_SB(sb)->s_journal;
4551 return ext4_journal_force_commit(journal);
4552 }
4553
4554 static int ext4_sync_fs(struct super_block *sb, int wait)
4555 {
4556 int ret = 0;
4557 tid_t target;
4558 bool needs_barrier = false;
4559 struct ext4_sb_info *sbi = EXT4_SB(sb);
4560
4561 trace_ext4_sync_fs(sb, wait);
4562 flush_workqueue(sbi->rsv_conversion_wq);
4563 flush_workqueue(sbi->unrsv_conversion_wq);
4564 /*
4565 * Writeback quota in non-journalled quota case - journalled quota has
4566 * no dirty dquots
4567 */
4568 dquot_writeback_dquots(sb, -1);
4569 /*
4570 * Data writeback is possible w/o journal transaction, so barrier must
4571 * being sent at the end of the function. But we can skip it if
4572 * transaction_commit will do it for us.
4573 */
4574 target = jbd2_get_latest_transaction(sbi->s_journal);
4575 if (wait && sbi->s_journal->j_flags & JBD2_BARRIER &&
4576 !jbd2_trans_will_send_data_barrier(sbi->s_journal, target))
4577 needs_barrier = true;
4578
4579 if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
4580 if (wait)
4581 ret = jbd2_log_wait_commit(sbi->s_journal, target);
4582 }
4583 if (needs_barrier) {
4584 int err;
4585 err = blkdev_issue_flush(sb->s_bdev, GFP_KERNEL, NULL);
4586 if (!ret)
4587 ret = err;
4588 }
4589
4590 return ret;
4591 }
4592
4593 static int ext4_sync_fs_nojournal(struct super_block *sb, int wait)
4594 {
4595 int ret = 0;
4596
4597 trace_ext4_sync_fs(sb, wait);
4598 flush_workqueue(EXT4_SB(sb)->rsv_conversion_wq);
4599 flush_workqueue(EXT4_SB(sb)->unrsv_conversion_wq);
4600 dquot_writeback_dquots(sb, -1);
4601 if (wait && test_opt(sb, BARRIER))
4602 ret = blkdev_issue_flush(sb->s_bdev, GFP_KERNEL, NULL);
4603
4604 return ret;
4605 }
4606
4607 /*
4608 * LVM calls this function before a (read-only) snapshot is created. This
4609 * gives us a chance to flush the journal completely and mark the fs clean.
4610 *
4611 * Note that only this function cannot bring a filesystem to be in a clean
4612 * state independently. It relies on upper layer to stop all data & metadata
4613 * modifications.
4614 */
4615 static int ext4_freeze(struct super_block *sb)
4616 {
4617 int error = 0;
4618 journal_t *journal;
4619
4620 if (sb->s_flags & MS_RDONLY)
4621 return 0;
4622
4623 journal = EXT4_SB(sb)->s_journal;
4624
4625 /* Now we set up the journal barrier. */
4626 jbd2_journal_lock_updates(journal);
4627
4628 /*
4629 * Don't clear the needs_recovery flag if we failed to flush
4630 * the journal.
4631 */
4632 error = jbd2_journal_flush(journal);
4633 if (error < 0)
4634 goto out;
4635
4636 /* Journal blocked and flushed, clear needs_recovery flag. */
4637 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4638 error = ext4_commit_super(sb, 1);
4639 out:
4640 /* we rely on upper layer to stop further updates */
4641 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
4642 return error;
4643 }
4644
4645 /*
4646 * Called by LVM after the snapshot is done. We need to reset the RECOVER
4647 * flag here, even though the filesystem is not technically dirty yet.
4648 */
4649 static int ext4_unfreeze(struct super_block *sb)
4650 {
4651 if (sb->s_flags & MS_RDONLY)
4652 return 0;
4653
4654 /* Reset the needs_recovery flag before the fs is unlocked. */
4655 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4656 ext4_commit_super(sb, 1);
4657 return 0;
4658 }
4659
4660 /*
4661 * Structure to save mount options for ext4_remount's benefit
4662 */
4663 struct ext4_mount_options {
4664 unsigned long s_mount_opt;
4665 unsigned long s_mount_opt2;
4666 kuid_t s_resuid;
4667 kgid_t s_resgid;
4668 unsigned long s_commit_interval;
4669 u32 s_min_batch_time, s_max_batch_time;
4670 #ifdef CONFIG_QUOTA
4671 int s_jquota_fmt;
4672 char *s_qf_names[MAXQUOTAS];
4673 #endif
4674 };
4675
4676 static int ext4_remount(struct super_block *sb, int *flags, char *data)
4677 {
4678 struct ext4_super_block *es;
4679 struct ext4_sb_info *sbi = EXT4_SB(sb);
4680 unsigned long old_sb_flags;
4681 struct ext4_mount_options old_opts;
4682 int enable_quota = 0;
4683 ext4_group_t g;
4684 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
4685 int err = 0;
4686 #ifdef CONFIG_QUOTA
4687 int i, j;
4688 #endif
4689 char *orig_data = kstrdup(data, GFP_KERNEL);
4690
4691 /* Store the original options */
4692 old_sb_flags = sb->s_flags;
4693 old_opts.s_mount_opt = sbi->s_mount_opt;
4694 old_opts.s_mount_opt2 = sbi->s_mount_opt2;
4695 old_opts.s_resuid = sbi->s_resuid;
4696 old_opts.s_resgid = sbi->s_resgid;
4697 old_opts.s_commit_interval = sbi->s_commit_interval;
4698 old_opts.s_min_batch_time = sbi->s_min_batch_time;
4699 old_opts.s_max_batch_time = sbi->s_max_batch_time;
4700 #ifdef CONFIG_QUOTA
4701 old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
4702 for (i = 0; i < MAXQUOTAS; i++)
4703 if (sbi->s_qf_names[i]) {
4704 old_opts.s_qf_names[i] = kstrdup(sbi->s_qf_names[i],
4705 GFP_KERNEL);
4706 if (!old_opts.s_qf_names[i]) {
4707 for (j = 0; j < i; j++)
4708 kfree(old_opts.s_qf_names[j]);
4709 kfree(orig_data);
4710 return -ENOMEM;
4711 }
4712 } else
4713 old_opts.s_qf_names[i] = NULL;
4714 #endif
4715 if (sbi->s_journal && sbi->s_journal->j_task->io_context)
4716 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio;
4717
4718 /*
4719 * Allow the "check" option to be passed as a remount option.
4720 */
4721 if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) {
4722 err = -EINVAL;
4723 goto restore_opts;
4724 }
4725
4726 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED)
4727 ext4_abort(sb, "Abort forced by user");
4728
4729 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
4730 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
4731
4732 es = sbi->s_es;
4733
4734 if (sbi->s_journal) {
4735 ext4_init_journal_params(sb, sbi->s_journal);
4736 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
4737 }
4738
4739 if ((*flags & MS_RDONLY) != (sb->s_flags & MS_RDONLY)) {
4740 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) {
4741 err = -EROFS;
4742 goto restore_opts;
4743 }
4744
4745 if (*flags & MS_RDONLY) {
4746 err = dquot_suspend(sb, -1);
4747 if (err < 0)
4748 goto restore_opts;
4749
4750 /*
4751 * First of all, the unconditional stuff we have to do
4752 * to disable replay of the journal when we next remount
4753 */
4754 sb->s_flags |= MS_RDONLY;
4755
4756 /*
4757 * OK, test if we are remounting a valid rw partition
4758 * readonly, and if so set the rdonly flag and then
4759 * mark the partition as valid again.
4760 */
4761 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
4762 (sbi->s_mount_state & EXT4_VALID_FS))
4763 es->s_state = cpu_to_le16(sbi->s_mount_state);
4764
4765 if (sbi->s_journal)
4766 ext4_mark_recovery_complete(sb, es);
4767 } else {
4768 /* Make sure we can mount this feature set readwrite */
4769 if (!ext4_feature_set_ok(sb, 0)) {
4770 err = -EROFS;
4771 goto restore_opts;
4772 }
4773 /*
4774 * Make sure the group descriptor checksums
4775 * are sane. If they aren't, refuse to remount r/w.
4776 */
4777 for (g = 0; g < sbi->s_groups_count; g++) {
4778 struct ext4_group_desc *gdp =
4779 ext4_get_group_desc(sb, g, NULL);
4780
4781 if (!ext4_group_desc_csum_verify(sb, g, gdp)) {
4782 ext4_msg(sb, KERN_ERR,
4783 "ext4_remount: Checksum for group %u failed (%u!=%u)",
4784 g, le16_to_cpu(ext4_group_desc_csum(sbi, g, gdp)),
4785 le16_to_cpu(gdp->bg_checksum));
4786 err = -EINVAL;
4787 goto restore_opts;
4788 }
4789 }
4790
4791 /*
4792 * If we have an unprocessed orphan list hanging
4793 * around from a previously readonly bdev mount,
4794 * require a full umount/remount for now.
4795 */
4796 if (es->s_last_orphan) {
4797 ext4_msg(sb, KERN_WARNING, "Couldn't "
4798 "remount RDWR because of unprocessed "
4799 "orphan inode list. Please "
4800 "umount/remount instead");
4801 err = -EINVAL;
4802 goto restore_opts;
4803 }
4804
4805 /*
4806 * Mounting a RDONLY partition read-write, so reread
4807 * and store the current valid flag. (It may have
4808 * been changed by e2fsck since we originally mounted
4809 * the partition.)
4810 */
4811 if (sbi->s_journal)
4812 ext4_clear_journal_err(sb, es);
4813 sbi->s_mount_state = le16_to_cpu(es->s_state);
4814 if (!ext4_setup_super(sb, es, 0))
4815 sb->s_flags &= ~MS_RDONLY;
4816 if (EXT4_HAS_INCOMPAT_FEATURE(sb,
4817 EXT4_FEATURE_INCOMPAT_MMP))
4818 if (ext4_multi_mount_protect(sb,
4819 le64_to_cpu(es->s_mmp_block))) {
4820 err = -EROFS;
4821 goto restore_opts;
4822 }
4823 enable_quota = 1;
4824 }
4825 }
4826
4827 /*
4828 * Reinitialize lazy itable initialization thread based on
4829 * current settings
4830 */
4831 if ((sb->s_flags & MS_RDONLY) || !test_opt(sb, INIT_INODE_TABLE))
4832 ext4_unregister_li_request(sb);
4833 else {
4834 ext4_group_t first_not_zeroed;
4835 first_not_zeroed = ext4_has_uninit_itable(sb);
4836 ext4_register_li_request(sb, first_not_zeroed);
4837 }
4838
4839 ext4_setup_system_zone(sb);
4840 if (sbi->s_journal == NULL && !(old_sb_flags & MS_RDONLY))
4841 ext4_commit_super(sb, 1);
4842
4843 #ifdef CONFIG_QUOTA
4844 /* Release old quota file names */
4845 for (i = 0; i < MAXQUOTAS; i++)
4846 kfree(old_opts.s_qf_names[i]);
4847 if (enable_quota) {
4848 if (sb_any_quota_suspended(sb))
4849 dquot_resume(sb, -1);
4850 else if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4851 EXT4_FEATURE_RO_COMPAT_QUOTA)) {
4852 err = ext4_enable_quotas(sb);
4853 if (err)
4854 goto restore_opts;
4855 }
4856 }
4857 #endif
4858
4859 ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data);
4860 kfree(orig_data);
4861 return 0;
4862
4863 restore_opts:
4864 sb->s_flags = old_sb_flags;
4865 sbi->s_mount_opt = old_opts.s_mount_opt;
4866 sbi->s_mount_opt2 = old_opts.s_mount_opt2;
4867 sbi->s_resuid = old_opts.s_resuid;
4868 sbi->s_resgid = old_opts.s_resgid;
4869 sbi->s_commit_interval = old_opts.s_commit_interval;
4870 sbi->s_min_batch_time = old_opts.s_min_batch_time;
4871 sbi->s_max_batch_time = old_opts.s_max_batch_time;
4872 #ifdef CONFIG_QUOTA
4873 sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
4874 for (i = 0; i < MAXQUOTAS; i++) {
4875 kfree(sbi->s_qf_names[i]);
4876 sbi->s_qf_names[i] = old_opts.s_qf_names[i];
4877 }
4878 #endif
4879 kfree(orig_data);
4880 return err;
4881 }
4882
4883 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
4884 {
4885 struct super_block *sb = dentry->d_sb;
4886 struct ext4_sb_info *sbi = EXT4_SB(sb);
4887 struct ext4_super_block *es = sbi->s_es;
4888 ext4_fsblk_t overhead = 0, resv_blocks;
4889 u64 fsid;
4890 s64 bfree;
4891 resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters));
4892
4893 if (!test_opt(sb, MINIX_DF))
4894 overhead = sbi->s_overhead;
4895
4896 buf->f_type = EXT4_SUPER_MAGIC;
4897 buf->f_bsize = sb->s_blocksize;
4898 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead);
4899 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
4900 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
4901 /* prevent underflow in case that few free space is available */
4902 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0));
4903 buf->f_bavail = buf->f_bfree -
4904 (ext4_r_blocks_count(es) + resv_blocks);
4905 if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks))
4906 buf->f_bavail = 0;
4907 buf->f_files = le32_to_cpu(es->s_inodes_count);
4908 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
4909 buf->f_namelen = EXT4_NAME_LEN;
4910 fsid = le64_to_cpup((void *)es->s_uuid) ^
4911 le64_to_cpup((void *)es->s_uuid + sizeof(u64));
4912 buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL;
4913 buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL;
4914
4915 return 0;
4916 }
4917
4918 /* Helper function for writing quotas on sync - we need to start transaction
4919 * before quota file is locked for write. Otherwise the are possible deadlocks:
4920 * Process 1 Process 2
4921 * ext4_create() quota_sync()
4922 * jbd2_journal_start() write_dquot()
4923 * dquot_initialize() down(dqio_mutex)
4924 * down(dqio_mutex) jbd2_journal_start()
4925 *
4926 */
4927
4928 #ifdef CONFIG_QUOTA
4929
4930 static inline struct inode *dquot_to_inode(struct dquot *dquot)
4931 {
4932 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type];
4933 }
4934
4935 static int ext4_write_dquot(struct dquot *dquot)
4936 {
4937 int ret, err;
4938 handle_t *handle;
4939 struct inode *inode;
4940
4941 inode = dquot_to_inode(dquot);
4942 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4943 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
4944 if (IS_ERR(handle))
4945 return PTR_ERR(handle);
4946 ret = dquot_commit(dquot);
4947 err = ext4_journal_stop(handle);
4948 if (!ret)
4949 ret = err;
4950 return ret;
4951 }
4952
4953 static int ext4_acquire_dquot(struct dquot *dquot)
4954 {
4955 int ret, err;
4956 handle_t *handle;
4957
4958 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
4959 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
4960 if (IS_ERR(handle))
4961 return PTR_ERR(handle);
4962 ret = dquot_acquire(dquot);
4963 err = ext4_journal_stop(handle);
4964 if (!ret)
4965 ret = err;
4966 return ret;
4967 }
4968
4969 static int ext4_release_dquot(struct dquot *dquot)
4970 {
4971 int ret, err;
4972 handle_t *handle;
4973
4974 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
4975 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
4976 if (IS_ERR(handle)) {
4977 /* Release dquot anyway to avoid endless cycle in dqput() */
4978 dquot_release(dquot);
4979 return PTR_ERR(handle);
4980 }
4981 ret = dquot_release(dquot);
4982 err = ext4_journal_stop(handle);
4983 if (!ret)
4984 ret = err;
4985 return ret;
4986 }
4987
4988 static int ext4_mark_dquot_dirty(struct dquot *dquot)
4989 {
4990 struct super_block *sb = dquot->dq_sb;
4991 struct ext4_sb_info *sbi = EXT4_SB(sb);
4992
4993 /* Are we journaling quotas? */
4994 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) ||
4995 sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
4996 dquot_mark_dquot_dirty(dquot);
4997 return ext4_write_dquot(dquot);
4998 } else {
4999 return dquot_mark_dquot_dirty(dquot);
5000 }
5001 }
5002
5003 static int ext4_write_info(struct super_block *sb, int type)
5004 {
5005 int ret, err;
5006 handle_t *handle;
5007
5008 /* Data block + inode block */
5009 handle = ext4_journal_start(sb->s_root->d_inode, EXT4_HT_QUOTA, 2);
5010 if (IS_ERR(handle))
5011 return PTR_ERR(handle);
5012 ret = dquot_commit_info(sb, type);
5013 err = ext4_journal_stop(handle);
5014 if (!ret)
5015 ret = err;
5016 return ret;
5017 }
5018
5019 /*
5020 * Turn on quotas during mount time - we need to find
5021 * the quota file and such...
5022 */
5023 static int ext4_quota_on_mount(struct super_block *sb, int type)
5024 {
5025 return dquot_quota_on_mount(sb, EXT4_SB(sb)->s_qf_names[type],
5026 EXT4_SB(sb)->s_jquota_fmt, type);
5027 }
5028
5029 /*
5030 * Standard function to be called on quota_on
5031 */
5032 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
5033 struct path *path)
5034 {
5035 int err;
5036
5037 if (!test_opt(sb, QUOTA))
5038 return -EINVAL;
5039
5040 /* Quotafile not on the same filesystem? */
5041 if (path->dentry->d_sb != sb)
5042 return -EXDEV;
5043 /* Journaling quota? */
5044 if (EXT4_SB(sb)->s_qf_names[type]) {
5045 /* Quotafile not in fs root? */
5046 if (path->dentry->d_parent != sb->s_root)
5047 ext4_msg(sb, KERN_WARNING,
5048 "Quota file not on filesystem root. "
5049 "Journaled quota will not work");
5050 }
5051
5052 /*
5053 * When we journal data on quota file, we have to flush journal to see
5054 * all updates to the file when we bypass pagecache...
5055 */
5056 if (EXT4_SB(sb)->s_journal &&
5057 ext4_should_journal_data(path->dentry->d_inode)) {
5058 /*
5059 * We don't need to lock updates but journal_flush() could
5060 * otherwise be livelocked...
5061 */
5062 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal);
5063 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal);
5064 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
5065 if (err)
5066 return err;
5067 }
5068
5069 return dquot_quota_on(sb, type, format_id, path);
5070 }
5071
5072 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
5073 unsigned int flags)
5074 {
5075 int err;
5076 struct inode *qf_inode;
5077 unsigned long qf_inums[MAXQUOTAS] = {
5078 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
5079 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum)
5080 };
5081
5082 BUG_ON(!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA));
5083
5084 if (!qf_inums[type])
5085 return -EPERM;
5086
5087 qf_inode = ext4_iget(sb, qf_inums[type]);
5088 if (IS_ERR(qf_inode)) {
5089 ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]);
5090 return PTR_ERR(qf_inode);
5091 }
5092
5093 /* Don't account quota for quota files to avoid recursion */
5094 qf_inode->i_flags |= S_NOQUOTA;
5095 err = dquot_enable(qf_inode, type, format_id, flags);
5096 iput(qf_inode);
5097
5098 return err;
5099 }
5100
5101 /* Enable usage tracking for all quota types. */
5102 static int ext4_enable_quotas(struct super_block *sb)
5103 {
5104 int type, err = 0;
5105 unsigned long qf_inums[MAXQUOTAS] = {
5106 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
5107 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum)
5108 };
5109
5110 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE;
5111 for (type = 0; type < MAXQUOTAS; type++) {
5112 if (qf_inums[type]) {
5113 err = ext4_quota_enable(sb, type, QFMT_VFS_V1,
5114 DQUOT_USAGE_ENABLED);
5115 if (err) {
5116 ext4_warning(sb,
5117 "Failed to enable quota tracking "
5118 "(type=%d, err=%d). Please run "
5119 "e2fsck to fix.", type, err);
5120 return err;
5121 }
5122 }
5123 }
5124 return 0;
5125 }
5126
5127 /*
5128 * quota_on function that is used when QUOTA feature is set.
5129 */
5130 static int ext4_quota_on_sysfile(struct super_block *sb, int type,
5131 int format_id)
5132 {
5133 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA))
5134 return -EINVAL;
5135
5136 /*
5137 * USAGE was enabled at mount time. Only need to enable LIMITS now.
5138 */
5139 return ext4_quota_enable(sb, type, format_id, DQUOT_LIMITS_ENABLED);
5140 }
5141
5142 static int ext4_quota_off(struct super_block *sb, int type)
5143 {
5144 struct inode *inode = sb_dqopt(sb)->files[type];
5145 handle_t *handle;
5146
5147 /* Force all delayed allocation blocks to be allocated.
5148 * Caller already holds s_umount sem */
5149 if (test_opt(sb, DELALLOC))
5150 sync_filesystem(sb);
5151
5152 if (!inode)
5153 goto out;
5154
5155 /* Update modification times of quota files when userspace can
5156 * start looking at them */
5157 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
5158 if (IS_ERR(handle))
5159 goto out;
5160 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
5161 ext4_mark_inode_dirty(handle, inode);
5162 ext4_journal_stop(handle);
5163
5164 out:
5165 return dquot_quota_off(sb, type);
5166 }
5167
5168 /*
5169 * quota_off function that is used when QUOTA feature is set.
5170 */
5171 static int ext4_quota_off_sysfile(struct super_block *sb, int type)
5172 {
5173 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA))
5174 return -EINVAL;
5175
5176 /* Disable only the limits. */
5177 return dquot_disable(sb, type, DQUOT_LIMITS_ENABLED);
5178 }
5179
5180 /* Read data from quotafile - avoid pagecache and such because we cannot afford
5181 * acquiring the locks... As quota files are never truncated and quota code
5182 * itself serializes the operations (and no one else should touch the files)
5183 * we don't have to be afraid of races */
5184 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
5185 size_t len, loff_t off)
5186 {
5187 struct inode *inode = sb_dqopt(sb)->files[type];
5188 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5189 int err = 0;
5190 int offset = off & (sb->s_blocksize - 1);
5191 int tocopy;
5192 size_t toread;
5193 struct buffer_head *bh;
5194 loff_t i_size = i_size_read(inode);
5195
5196 if (off > i_size)
5197 return 0;
5198 if (off+len > i_size)
5199 len = i_size-off;
5200 toread = len;
5201 while (toread > 0) {
5202 tocopy = sb->s_blocksize - offset < toread ?
5203 sb->s_blocksize - offset : toread;
5204 bh = ext4_bread(NULL, inode, blk, 0, &err);
5205 if (err)
5206 return err;
5207 if (!bh) /* A hole? */
5208 memset(data, 0, tocopy);
5209 else
5210 memcpy(data, bh->b_data+offset, tocopy);
5211 brelse(bh);
5212 offset = 0;
5213 toread -= tocopy;
5214 data += tocopy;
5215 blk++;
5216 }
5217 return len;
5218 }
5219
5220 /* Write to quotafile (we know the transaction is already started and has
5221 * enough credits) */
5222 static ssize_t ext4_quota_write(struct super_block *sb, int type,
5223 const char *data, size_t len, loff_t off)
5224 {
5225 struct inode *inode = sb_dqopt(sb)->files[type];
5226 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5227 int err = 0;
5228 int offset = off & (sb->s_blocksize - 1);
5229 struct buffer_head *bh;
5230 handle_t *handle = journal_current_handle();
5231
5232 if (EXT4_SB(sb)->s_journal && !handle) {
5233 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5234 " cancelled because transaction is not started",
5235 (unsigned long long)off, (unsigned long long)len);
5236 return -EIO;
5237 }
5238 /*
5239 * Since we account only one data block in transaction credits,
5240 * then it is impossible to cross a block boundary.
5241 */
5242 if (sb->s_blocksize - offset < len) {
5243 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5244 " cancelled because not block aligned",
5245 (unsigned long long)off, (unsigned long long)len);
5246 return -EIO;
5247 }
5248
5249 bh = ext4_bread(handle, inode, blk, 1, &err);
5250 if (!bh)
5251 goto out;
5252 err = ext4_journal_get_write_access(handle, bh);
5253 if (err) {
5254 brelse(bh);
5255 goto out;
5256 }
5257 lock_buffer(bh);
5258 memcpy(bh->b_data+offset, data, len);
5259 flush_dcache_page(bh->b_page);
5260 unlock_buffer(bh);
5261 err = ext4_handle_dirty_metadata(handle, NULL, bh);
5262 brelse(bh);
5263 out:
5264 if (err)
5265 return err;
5266 if (inode->i_size < off + len) {
5267 i_size_write(inode, off + len);
5268 EXT4_I(inode)->i_disksize = inode->i_size;
5269 ext4_mark_inode_dirty(handle, inode);
5270 }
5271 return len;
5272 }
5273
5274 #endif
5275
5276 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
5277 const char *dev_name, void *data)
5278 {
5279 return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super);
5280 }
5281
5282 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
5283 static inline void register_as_ext2(void)
5284 {
5285 int err = register_filesystem(&ext2_fs_type);
5286 if (err)
5287 printk(KERN_WARNING
5288 "EXT4-fs: Unable to register as ext2 (%d)\n", err);
5289 }
5290
5291 static inline void unregister_as_ext2(void)
5292 {
5293 unregister_filesystem(&ext2_fs_type);
5294 }
5295
5296 static inline int ext2_feature_set_ok(struct super_block *sb)
5297 {
5298 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT2_FEATURE_INCOMPAT_SUPP))
5299 return 0;
5300 if (sb->s_flags & MS_RDONLY)
5301 return 1;
5302 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT2_FEATURE_RO_COMPAT_SUPP))
5303 return 0;
5304 return 1;
5305 }
5306 #else
5307 static inline void register_as_ext2(void) { }
5308 static inline void unregister_as_ext2(void) { }
5309 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
5310 #endif
5311
5312 #if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
5313 static inline void register_as_ext3(void)
5314 {
5315 int err = register_filesystem(&ext3_fs_type);
5316 if (err)
5317 printk(KERN_WARNING
5318 "EXT4-fs: Unable to register as ext3 (%d)\n", err);
5319 }
5320
5321 static inline void unregister_as_ext3(void)
5322 {
5323 unregister_filesystem(&ext3_fs_type);
5324 }
5325
5326 static inline int ext3_feature_set_ok(struct super_block *sb)
5327 {
5328 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT3_FEATURE_INCOMPAT_SUPP))
5329 return 0;
5330 if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL))
5331 return 0;
5332 if (sb->s_flags & MS_RDONLY)
5333 return 1;
5334 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT3_FEATURE_RO_COMPAT_SUPP))
5335 return 0;
5336 return 1;
5337 }
5338 #else
5339 static inline void register_as_ext3(void) { }
5340 static inline void unregister_as_ext3(void) { }
5341 static inline int ext3_feature_set_ok(struct super_block *sb) { return 0; }
5342 #endif
5343
5344 static struct file_system_type ext4_fs_type = {
5345 .owner = THIS_MODULE,
5346 .name = "ext4",
5347 .mount = ext4_mount,
5348 .kill_sb = kill_block_super,
5349 .fs_flags = FS_REQUIRES_DEV,
5350 };
5351 MODULE_ALIAS_FS("ext4");
5352
5353 static int __init ext4_init_feat_adverts(void)
5354 {
5355 struct ext4_features *ef;
5356 int ret = -ENOMEM;
5357
5358 ef = kzalloc(sizeof(struct ext4_features), GFP_KERNEL);
5359 if (!ef)
5360 goto out;
5361
5362 ef->f_kobj.kset = ext4_kset;
5363 init_completion(&ef->f_kobj_unregister);
5364 ret = kobject_init_and_add(&ef->f_kobj, &ext4_feat_ktype, NULL,
5365 "features");
5366 if (ret) {
5367 kfree(ef);
5368 goto out;
5369 }
5370
5371 ext4_feat = ef;
5372 ret = 0;
5373 out:
5374 return ret;
5375 }
5376
5377 static void ext4_exit_feat_adverts(void)
5378 {
5379 kobject_put(&ext4_feat->f_kobj);
5380 wait_for_completion(&ext4_feat->f_kobj_unregister);
5381 kfree(ext4_feat);
5382 }
5383
5384 /* Shared across all ext4 file systems */
5385 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ];
5386 struct mutex ext4__aio_mutex[EXT4_WQ_HASH_SZ];
5387
5388 static int __init ext4_init_fs(void)
5389 {
5390 int i, err;
5391
5392 ext4_li_info = NULL;
5393 mutex_init(&ext4_li_mtx);
5394
5395 /* Build-time check for flags consistency */
5396 ext4_check_flag_values();
5397
5398 for (i = 0; i < EXT4_WQ_HASH_SZ; i++) {
5399 mutex_init(&ext4__aio_mutex[i]);
5400 init_waitqueue_head(&ext4__ioend_wq[i]);
5401 }
5402
5403 err = ext4_init_es();
5404 if (err)
5405 return err;
5406
5407 err = ext4_init_pageio();
5408 if (err)
5409 goto out7;
5410
5411 err = ext4_init_system_zone();
5412 if (err)
5413 goto out6;
5414 ext4_kset = kset_create_and_add("ext4", NULL, fs_kobj);
5415 if (!ext4_kset) {
5416 err = -ENOMEM;
5417 goto out5;
5418 }
5419 ext4_proc_root = proc_mkdir("fs/ext4", NULL);
5420
5421 err = ext4_init_feat_adverts();
5422 if (err)
5423 goto out4;
5424
5425 err = ext4_init_mballoc();
5426 if (err)
5427 goto out3;
5428
5429 err = ext4_init_xattr();
5430 if (err)
5431 goto out2;
5432 err = init_inodecache();
5433 if (err)
5434 goto out1;
5435 register_as_ext3();
5436 register_as_ext2();
5437 err = register_filesystem(&ext4_fs_type);
5438 if (err)
5439 goto out;
5440
5441 return 0;
5442 out:
5443 unregister_as_ext2();
5444 unregister_as_ext3();
5445 destroy_inodecache();
5446 out1:
5447 ext4_exit_xattr();
5448 out2:
5449 ext4_exit_mballoc();
5450 out3:
5451 ext4_exit_feat_adverts();
5452 out4:
5453 if (ext4_proc_root)
5454 remove_proc_entry("fs/ext4", NULL);
5455 kset_unregister(ext4_kset);
5456 out5:
5457 ext4_exit_system_zone();
5458 out6:
5459 ext4_exit_pageio();
5460 out7:
5461 ext4_exit_es();
5462
5463 return err;
5464 }
5465
5466 static void __exit ext4_exit_fs(void)
5467 {
5468 ext4_destroy_lazyinit_thread();
5469 unregister_as_ext2();
5470 unregister_as_ext3();
5471 unregister_filesystem(&ext4_fs_type);
5472 destroy_inodecache();
5473 ext4_exit_xattr();
5474 ext4_exit_mballoc();
5475 ext4_exit_feat_adverts();
5476 remove_proc_entry("fs/ext4", NULL);
5477 kset_unregister(ext4_kset);
5478 ext4_exit_system_zone();
5479 ext4_exit_pageio();
5480 }
5481
5482 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
5483 MODULE_DESCRIPTION("Fourth Extended Filesystem");
5484 MODULE_LICENSE("GPL");
5485 module_init(ext4_init_fs)
5486 module_exit(ext4_exit_fs)