]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/ext4/super.c
ext4: dynamically allocate the jbd2_inode in ext4_inode_info as necessary
[mirror_ubuntu-bionic-kernel.git] / fs / ext4 / super.c
1 /*
2 * linux/fs/ext4/super.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * Big-endian to little-endian byte-swapping/bitmaps by
16 * David S. Miller (davem@caip.rutgers.edu), 1995
17 */
18
19 #include <linux/module.h>
20 #include <linux/string.h>
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/vmalloc.h>
24 #include <linux/jbd2.h>
25 #include <linux/slab.h>
26 #include <linux/init.h>
27 #include <linux/blkdev.h>
28 #include <linux/parser.h>
29 #include <linux/buffer_head.h>
30 #include <linux/exportfs.h>
31 #include <linux/vfs.h>
32 #include <linux/random.h>
33 #include <linux/mount.h>
34 #include <linux/namei.h>
35 #include <linux/quotaops.h>
36 #include <linux/seq_file.h>
37 #include <linux/proc_fs.h>
38 #include <linux/ctype.h>
39 #include <linux/log2.h>
40 #include <linux/crc16.h>
41 #include <asm/uaccess.h>
42
43 #include <linux/kthread.h>
44 #include <linux/freezer.h>
45
46 #include "ext4.h"
47 #include "ext4_jbd2.h"
48 #include "xattr.h"
49 #include "acl.h"
50 #include "mballoc.h"
51
52 #define CREATE_TRACE_POINTS
53 #include <trace/events/ext4.h>
54
55 static struct proc_dir_entry *ext4_proc_root;
56 static struct kset *ext4_kset;
57 struct ext4_lazy_init *ext4_li_info;
58 struct mutex ext4_li_mtx;
59 struct ext4_features *ext4_feat;
60
61 static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
62 unsigned long journal_devnum);
63 static int ext4_commit_super(struct super_block *sb, int sync);
64 static void ext4_mark_recovery_complete(struct super_block *sb,
65 struct ext4_super_block *es);
66 static void ext4_clear_journal_err(struct super_block *sb,
67 struct ext4_super_block *es);
68 static int ext4_sync_fs(struct super_block *sb, int wait);
69 static const char *ext4_decode_error(struct super_block *sb, int errno,
70 char nbuf[16]);
71 static int ext4_remount(struct super_block *sb, int *flags, char *data);
72 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
73 static int ext4_unfreeze(struct super_block *sb);
74 static void ext4_write_super(struct super_block *sb);
75 static int ext4_freeze(struct super_block *sb);
76 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
77 const char *dev_name, void *data);
78 static void ext4_destroy_lazyinit_thread(void);
79 static void ext4_unregister_li_request(struct super_block *sb);
80
81 #if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
82 static struct file_system_type ext3_fs_type = {
83 .owner = THIS_MODULE,
84 .name = "ext3",
85 .mount = ext4_mount,
86 .kill_sb = kill_block_super,
87 .fs_flags = FS_REQUIRES_DEV,
88 };
89 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type)
90 #else
91 #define IS_EXT3_SB(sb) (0)
92 #endif
93
94 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
95 struct ext4_group_desc *bg)
96 {
97 return le32_to_cpu(bg->bg_block_bitmap_lo) |
98 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
99 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
100 }
101
102 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
103 struct ext4_group_desc *bg)
104 {
105 return le32_to_cpu(bg->bg_inode_bitmap_lo) |
106 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
107 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
108 }
109
110 ext4_fsblk_t ext4_inode_table(struct super_block *sb,
111 struct ext4_group_desc *bg)
112 {
113 return le32_to_cpu(bg->bg_inode_table_lo) |
114 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
115 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
116 }
117
118 __u32 ext4_free_blks_count(struct super_block *sb,
119 struct ext4_group_desc *bg)
120 {
121 return le16_to_cpu(bg->bg_free_blocks_count_lo) |
122 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
123 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
124 }
125
126 __u32 ext4_free_inodes_count(struct super_block *sb,
127 struct ext4_group_desc *bg)
128 {
129 return le16_to_cpu(bg->bg_free_inodes_count_lo) |
130 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
131 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
132 }
133
134 __u32 ext4_used_dirs_count(struct super_block *sb,
135 struct ext4_group_desc *bg)
136 {
137 return le16_to_cpu(bg->bg_used_dirs_count_lo) |
138 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
139 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
140 }
141
142 __u32 ext4_itable_unused_count(struct super_block *sb,
143 struct ext4_group_desc *bg)
144 {
145 return le16_to_cpu(bg->bg_itable_unused_lo) |
146 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
147 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
148 }
149
150 void ext4_block_bitmap_set(struct super_block *sb,
151 struct ext4_group_desc *bg, ext4_fsblk_t blk)
152 {
153 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
154 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
155 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
156 }
157
158 void ext4_inode_bitmap_set(struct super_block *sb,
159 struct ext4_group_desc *bg, ext4_fsblk_t blk)
160 {
161 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk);
162 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
163 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
164 }
165
166 void ext4_inode_table_set(struct super_block *sb,
167 struct ext4_group_desc *bg, ext4_fsblk_t blk)
168 {
169 bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
170 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
171 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
172 }
173
174 void ext4_free_blks_set(struct super_block *sb,
175 struct ext4_group_desc *bg, __u32 count)
176 {
177 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
178 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
179 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
180 }
181
182 void ext4_free_inodes_set(struct super_block *sb,
183 struct ext4_group_desc *bg, __u32 count)
184 {
185 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
186 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
187 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
188 }
189
190 void ext4_used_dirs_set(struct super_block *sb,
191 struct ext4_group_desc *bg, __u32 count)
192 {
193 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
194 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
195 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
196 }
197
198 void ext4_itable_unused_set(struct super_block *sb,
199 struct ext4_group_desc *bg, __u32 count)
200 {
201 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
202 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
203 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
204 }
205
206
207 /* Just increment the non-pointer handle value */
208 static handle_t *ext4_get_nojournal(void)
209 {
210 handle_t *handle = current->journal_info;
211 unsigned long ref_cnt = (unsigned long)handle;
212
213 BUG_ON(ref_cnt >= EXT4_NOJOURNAL_MAX_REF_COUNT);
214
215 ref_cnt++;
216 handle = (handle_t *)ref_cnt;
217
218 current->journal_info = handle;
219 return handle;
220 }
221
222
223 /* Decrement the non-pointer handle value */
224 static void ext4_put_nojournal(handle_t *handle)
225 {
226 unsigned long ref_cnt = (unsigned long)handle;
227
228 BUG_ON(ref_cnt == 0);
229
230 ref_cnt--;
231 handle = (handle_t *)ref_cnt;
232
233 current->journal_info = handle;
234 }
235
236 /*
237 * Wrappers for jbd2_journal_start/end.
238 *
239 * The only special thing we need to do here is to make sure that all
240 * journal_end calls result in the superblock being marked dirty, so
241 * that sync() will call the filesystem's write_super callback if
242 * appropriate.
243 */
244 handle_t *ext4_journal_start_sb(struct super_block *sb, int nblocks)
245 {
246 journal_t *journal;
247
248 if (sb->s_flags & MS_RDONLY)
249 return ERR_PTR(-EROFS);
250
251 vfs_check_frozen(sb, SB_FREEZE_TRANS);
252 /* Special case here: if the journal has aborted behind our
253 * backs (eg. EIO in the commit thread), then we still need to
254 * take the FS itself readonly cleanly. */
255 journal = EXT4_SB(sb)->s_journal;
256 if (journal) {
257 if (is_journal_aborted(journal)) {
258 ext4_abort(sb, "Detected aborted journal");
259 return ERR_PTR(-EROFS);
260 }
261 return jbd2_journal_start(journal, nblocks);
262 }
263 return ext4_get_nojournal();
264 }
265
266 /*
267 * The only special thing we need to do here is to make sure that all
268 * jbd2_journal_stop calls result in the superblock being marked dirty, so
269 * that sync() will call the filesystem's write_super callback if
270 * appropriate.
271 */
272 int __ext4_journal_stop(const char *where, unsigned int line, handle_t *handle)
273 {
274 struct super_block *sb;
275 int err;
276 int rc;
277
278 if (!ext4_handle_valid(handle)) {
279 ext4_put_nojournal(handle);
280 return 0;
281 }
282 sb = handle->h_transaction->t_journal->j_private;
283 err = handle->h_err;
284 rc = jbd2_journal_stop(handle);
285
286 if (!err)
287 err = rc;
288 if (err)
289 __ext4_std_error(sb, where, line, err);
290 return err;
291 }
292
293 void ext4_journal_abort_handle(const char *caller, unsigned int line,
294 const char *err_fn, struct buffer_head *bh,
295 handle_t *handle, int err)
296 {
297 char nbuf[16];
298 const char *errstr = ext4_decode_error(NULL, err, nbuf);
299
300 BUG_ON(!ext4_handle_valid(handle));
301
302 if (bh)
303 BUFFER_TRACE(bh, "abort");
304
305 if (!handle->h_err)
306 handle->h_err = err;
307
308 if (is_handle_aborted(handle))
309 return;
310
311 printk(KERN_ERR "%s:%d: aborting transaction: %s in %s\n",
312 caller, line, errstr, err_fn);
313
314 jbd2_journal_abort_handle(handle);
315 }
316
317 static void __save_error_info(struct super_block *sb, const char *func,
318 unsigned int line)
319 {
320 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
321
322 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
323 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
324 es->s_last_error_time = cpu_to_le32(get_seconds());
325 strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func));
326 es->s_last_error_line = cpu_to_le32(line);
327 if (!es->s_first_error_time) {
328 es->s_first_error_time = es->s_last_error_time;
329 strncpy(es->s_first_error_func, func,
330 sizeof(es->s_first_error_func));
331 es->s_first_error_line = cpu_to_le32(line);
332 es->s_first_error_ino = es->s_last_error_ino;
333 es->s_first_error_block = es->s_last_error_block;
334 }
335 /*
336 * Start the daily error reporting function if it hasn't been
337 * started already
338 */
339 if (!es->s_error_count)
340 mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ);
341 es->s_error_count = cpu_to_le32(le32_to_cpu(es->s_error_count) + 1);
342 }
343
344 static void save_error_info(struct super_block *sb, const char *func,
345 unsigned int line)
346 {
347 __save_error_info(sb, func, line);
348 ext4_commit_super(sb, 1);
349 }
350
351
352 /* Deal with the reporting of failure conditions on a filesystem such as
353 * inconsistencies detected or read IO failures.
354 *
355 * On ext2, we can store the error state of the filesystem in the
356 * superblock. That is not possible on ext4, because we may have other
357 * write ordering constraints on the superblock which prevent us from
358 * writing it out straight away; and given that the journal is about to
359 * be aborted, we can't rely on the current, or future, transactions to
360 * write out the superblock safely.
361 *
362 * We'll just use the jbd2_journal_abort() error code to record an error in
363 * the journal instead. On recovery, the journal will complain about
364 * that error until we've noted it down and cleared it.
365 */
366
367 static void ext4_handle_error(struct super_block *sb)
368 {
369 if (sb->s_flags & MS_RDONLY)
370 return;
371
372 if (!test_opt(sb, ERRORS_CONT)) {
373 journal_t *journal = EXT4_SB(sb)->s_journal;
374
375 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
376 if (journal)
377 jbd2_journal_abort(journal, -EIO);
378 }
379 if (test_opt(sb, ERRORS_RO)) {
380 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
381 sb->s_flags |= MS_RDONLY;
382 }
383 if (test_opt(sb, ERRORS_PANIC))
384 panic("EXT4-fs (device %s): panic forced after error\n",
385 sb->s_id);
386 }
387
388 void __ext4_error(struct super_block *sb, const char *function,
389 unsigned int line, const char *fmt, ...)
390 {
391 struct va_format vaf;
392 va_list args;
393
394 va_start(args, fmt);
395 vaf.fmt = fmt;
396 vaf.va = &args;
397 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
398 sb->s_id, function, line, current->comm, &vaf);
399 va_end(args);
400
401 ext4_handle_error(sb);
402 }
403
404 void ext4_error_inode(struct inode *inode, const char *function,
405 unsigned int line, ext4_fsblk_t block,
406 const char *fmt, ...)
407 {
408 va_list args;
409 struct va_format vaf;
410 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
411
412 es->s_last_error_ino = cpu_to_le32(inode->i_ino);
413 es->s_last_error_block = cpu_to_le64(block);
414 save_error_info(inode->i_sb, function, line);
415 va_start(args, fmt);
416 vaf.fmt = fmt;
417 vaf.va = &args;
418 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: inode #%lu: ",
419 inode->i_sb->s_id, function, line, inode->i_ino);
420 if (block)
421 printk(KERN_CONT "block %llu: ", block);
422 printk(KERN_CONT "comm %s: %pV\n", current->comm, &vaf);
423 va_end(args);
424
425 ext4_handle_error(inode->i_sb);
426 }
427
428 void ext4_error_file(struct file *file, const char *function,
429 unsigned int line, ext4_fsblk_t block,
430 const char *fmt, ...)
431 {
432 va_list args;
433 struct va_format vaf;
434 struct ext4_super_block *es;
435 struct inode *inode = file->f_dentry->d_inode;
436 char pathname[80], *path;
437
438 es = EXT4_SB(inode->i_sb)->s_es;
439 es->s_last_error_ino = cpu_to_le32(inode->i_ino);
440 save_error_info(inode->i_sb, function, line);
441 path = d_path(&(file->f_path), pathname, sizeof(pathname));
442 if (IS_ERR(path))
443 path = "(unknown)";
444 printk(KERN_CRIT
445 "EXT4-fs error (device %s): %s:%d: inode #%lu: ",
446 inode->i_sb->s_id, function, line, inode->i_ino);
447 if (block)
448 printk(KERN_CONT "block %llu: ", block);
449 va_start(args, fmt);
450 vaf.fmt = fmt;
451 vaf.va = &args;
452 printk(KERN_CONT "comm %s: path %s: %pV\n", current->comm, path, &vaf);
453 va_end(args);
454
455 ext4_handle_error(inode->i_sb);
456 }
457
458 static const char *ext4_decode_error(struct super_block *sb, int errno,
459 char nbuf[16])
460 {
461 char *errstr = NULL;
462
463 switch (errno) {
464 case -EIO:
465 errstr = "IO failure";
466 break;
467 case -ENOMEM:
468 errstr = "Out of memory";
469 break;
470 case -EROFS:
471 if (!sb || (EXT4_SB(sb)->s_journal &&
472 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
473 errstr = "Journal has aborted";
474 else
475 errstr = "Readonly filesystem";
476 break;
477 default:
478 /* If the caller passed in an extra buffer for unknown
479 * errors, textualise them now. Else we just return
480 * NULL. */
481 if (nbuf) {
482 /* Check for truncated error codes... */
483 if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
484 errstr = nbuf;
485 }
486 break;
487 }
488
489 return errstr;
490 }
491
492 /* __ext4_std_error decodes expected errors from journaling functions
493 * automatically and invokes the appropriate error response. */
494
495 void __ext4_std_error(struct super_block *sb, const char *function,
496 unsigned int line, int errno)
497 {
498 char nbuf[16];
499 const char *errstr;
500
501 /* Special case: if the error is EROFS, and we're not already
502 * inside a transaction, then there's really no point in logging
503 * an error. */
504 if (errno == -EROFS && journal_current_handle() == NULL &&
505 (sb->s_flags & MS_RDONLY))
506 return;
507
508 errstr = ext4_decode_error(sb, errno, nbuf);
509 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
510 sb->s_id, function, line, errstr);
511 save_error_info(sb, function, line);
512
513 ext4_handle_error(sb);
514 }
515
516 /*
517 * ext4_abort is a much stronger failure handler than ext4_error. The
518 * abort function may be used to deal with unrecoverable failures such
519 * as journal IO errors or ENOMEM at a critical moment in log management.
520 *
521 * We unconditionally force the filesystem into an ABORT|READONLY state,
522 * unless the error response on the fs has been set to panic in which
523 * case we take the easy way out and panic immediately.
524 */
525
526 void __ext4_abort(struct super_block *sb, const char *function,
527 unsigned int line, const char *fmt, ...)
528 {
529 va_list args;
530
531 save_error_info(sb, function, line);
532 va_start(args, fmt);
533 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: ", sb->s_id,
534 function, line);
535 vprintk(fmt, args);
536 printk("\n");
537 va_end(args);
538
539 if ((sb->s_flags & MS_RDONLY) == 0) {
540 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
541 sb->s_flags |= MS_RDONLY;
542 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
543 if (EXT4_SB(sb)->s_journal)
544 jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO);
545 save_error_info(sb, function, line);
546 }
547 if (test_opt(sb, ERRORS_PANIC))
548 panic("EXT4-fs panic from previous error\n");
549 }
550
551 void ext4_msg(struct super_block *sb, const char *prefix, const char *fmt, ...)
552 {
553 struct va_format vaf;
554 va_list args;
555
556 va_start(args, fmt);
557 vaf.fmt = fmt;
558 vaf.va = &args;
559 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
560 va_end(args);
561 }
562
563 void __ext4_warning(struct super_block *sb, const char *function,
564 unsigned int line, const char *fmt, ...)
565 {
566 struct va_format vaf;
567 va_list args;
568
569 va_start(args, fmt);
570 vaf.fmt = fmt;
571 vaf.va = &args;
572 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
573 sb->s_id, function, line, &vaf);
574 va_end(args);
575 }
576
577 void __ext4_grp_locked_error(const char *function, unsigned int line,
578 struct super_block *sb, ext4_group_t grp,
579 unsigned long ino, ext4_fsblk_t block,
580 const char *fmt, ...)
581 __releases(bitlock)
582 __acquires(bitlock)
583 {
584 struct va_format vaf;
585 va_list args;
586 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
587
588 es->s_last_error_ino = cpu_to_le32(ino);
589 es->s_last_error_block = cpu_to_le64(block);
590 __save_error_info(sb, function, line);
591
592 va_start(args, fmt);
593
594 vaf.fmt = fmt;
595 vaf.va = &args;
596 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u",
597 sb->s_id, function, line, grp);
598 if (ino)
599 printk(KERN_CONT "inode %lu: ", ino);
600 if (block)
601 printk(KERN_CONT "block %llu:", (unsigned long long) block);
602 printk(KERN_CONT "%pV\n", &vaf);
603 va_end(args);
604
605 if (test_opt(sb, ERRORS_CONT)) {
606 ext4_commit_super(sb, 0);
607 return;
608 }
609
610 ext4_unlock_group(sb, grp);
611 ext4_handle_error(sb);
612 /*
613 * We only get here in the ERRORS_RO case; relocking the group
614 * may be dangerous, but nothing bad will happen since the
615 * filesystem will have already been marked read/only and the
616 * journal has been aborted. We return 1 as a hint to callers
617 * who might what to use the return value from
618 * ext4_grp_locked_error() to distinguish beween the
619 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
620 * aggressively from the ext4 function in question, with a
621 * more appropriate error code.
622 */
623 ext4_lock_group(sb, grp);
624 return;
625 }
626
627 void ext4_update_dynamic_rev(struct super_block *sb)
628 {
629 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
630
631 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
632 return;
633
634 ext4_warning(sb,
635 "updating to rev %d because of new feature flag, "
636 "running e2fsck is recommended",
637 EXT4_DYNAMIC_REV);
638
639 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
640 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
641 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
642 /* leave es->s_feature_*compat flags alone */
643 /* es->s_uuid will be set by e2fsck if empty */
644
645 /*
646 * The rest of the superblock fields should be zero, and if not it
647 * means they are likely already in use, so leave them alone. We
648 * can leave it up to e2fsck to clean up any inconsistencies there.
649 */
650 }
651
652 /*
653 * Open the external journal device
654 */
655 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb)
656 {
657 struct block_device *bdev;
658 char b[BDEVNAME_SIZE];
659
660 bdev = open_by_devnum(dev, FMODE_READ|FMODE_WRITE);
661 if (IS_ERR(bdev))
662 goto fail;
663 return bdev;
664
665 fail:
666 ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld",
667 __bdevname(dev, b), PTR_ERR(bdev));
668 return NULL;
669 }
670
671 /*
672 * Release the journal device
673 */
674 static int ext4_blkdev_put(struct block_device *bdev)
675 {
676 bd_release(bdev);
677 return blkdev_put(bdev, FMODE_READ|FMODE_WRITE);
678 }
679
680 static int ext4_blkdev_remove(struct ext4_sb_info *sbi)
681 {
682 struct block_device *bdev;
683 int ret = -ENODEV;
684
685 bdev = sbi->journal_bdev;
686 if (bdev) {
687 ret = ext4_blkdev_put(bdev);
688 sbi->journal_bdev = NULL;
689 }
690 return ret;
691 }
692
693 static inline struct inode *orphan_list_entry(struct list_head *l)
694 {
695 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
696 }
697
698 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
699 {
700 struct list_head *l;
701
702 ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
703 le32_to_cpu(sbi->s_es->s_last_orphan));
704
705 printk(KERN_ERR "sb_info orphan list:\n");
706 list_for_each(l, &sbi->s_orphan) {
707 struct inode *inode = orphan_list_entry(l);
708 printk(KERN_ERR " "
709 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
710 inode->i_sb->s_id, inode->i_ino, inode,
711 inode->i_mode, inode->i_nlink,
712 NEXT_ORPHAN(inode));
713 }
714 }
715
716 static void ext4_put_super(struct super_block *sb)
717 {
718 struct ext4_sb_info *sbi = EXT4_SB(sb);
719 struct ext4_super_block *es = sbi->s_es;
720 int i, err;
721
722 ext4_unregister_li_request(sb);
723 dquot_disable(sb, -1, DQUOT_USAGE_ENABLED | DQUOT_LIMITS_ENABLED);
724
725 flush_workqueue(sbi->dio_unwritten_wq);
726 destroy_workqueue(sbi->dio_unwritten_wq);
727
728 lock_super(sb);
729 if (sb->s_dirt)
730 ext4_commit_super(sb, 1);
731
732 if (sbi->s_journal) {
733 err = jbd2_journal_destroy(sbi->s_journal);
734 sbi->s_journal = NULL;
735 if (err < 0)
736 ext4_abort(sb, "Couldn't clean up the journal");
737 }
738
739 del_timer(&sbi->s_err_report);
740 ext4_release_system_zone(sb);
741 ext4_mb_release(sb);
742 ext4_ext_release(sb);
743 ext4_xattr_put_super(sb);
744
745 if (!(sb->s_flags & MS_RDONLY)) {
746 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
747 es->s_state = cpu_to_le16(sbi->s_mount_state);
748 ext4_commit_super(sb, 1);
749 }
750 if (sbi->s_proc) {
751 remove_proc_entry(sb->s_id, ext4_proc_root);
752 }
753 kobject_del(&sbi->s_kobj);
754
755 for (i = 0; i < sbi->s_gdb_count; i++)
756 brelse(sbi->s_group_desc[i]);
757 kfree(sbi->s_group_desc);
758 if (is_vmalloc_addr(sbi->s_flex_groups))
759 vfree(sbi->s_flex_groups);
760 else
761 kfree(sbi->s_flex_groups);
762 percpu_counter_destroy(&sbi->s_freeblocks_counter);
763 percpu_counter_destroy(&sbi->s_freeinodes_counter);
764 percpu_counter_destroy(&sbi->s_dirs_counter);
765 percpu_counter_destroy(&sbi->s_dirtyblocks_counter);
766 brelse(sbi->s_sbh);
767 #ifdef CONFIG_QUOTA
768 for (i = 0; i < MAXQUOTAS; i++)
769 kfree(sbi->s_qf_names[i]);
770 #endif
771
772 /* Debugging code just in case the in-memory inode orphan list
773 * isn't empty. The on-disk one can be non-empty if we've
774 * detected an error and taken the fs readonly, but the
775 * in-memory list had better be clean by this point. */
776 if (!list_empty(&sbi->s_orphan))
777 dump_orphan_list(sb, sbi);
778 J_ASSERT(list_empty(&sbi->s_orphan));
779
780 invalidate_bdev(sb->s_bdev);
781 if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) {
782 /*
783 * Invalidate the journal device's buffers. We don't want them
784 * floating about in memory - the physical journal device may
785 * hotswapped, and it breaks the `ro-after' testing code.
786 */
787 sync_blockdev(sbi->journal_bdev);
788 invalidate_bdev(sbi->journal_bdev);
789 ext4_blkdev_remove(sbi);
790 }
791 sb->s_fs_info = NULL;
792 /*
793 * Now that we are completely done shutting down the
794 * superblock, we need to actually destroy the kobject.
795 */
796 unlock_super(sb);
797 kobject_put(&sbi->s_kobj);
798 wait_for_completion(&sbi->s_kobj_unregister);
799 kfree(sbi->s_blockgroup_lock);
800 kfree(sbi);
801 }
802
803 static struct kmem_cache *ext4_inode_cachep;
804
805 /*
806 * Called inside transaction, so use GFP_NOFS
807 */
808 static struct inode *ext4_alloc_inode(struct super_block *sb)
809 {
810 struct ext4_inode_info *ei;
811
812 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS);
813 if (!ei)
814 return NULL;
815
816 ei->vfs_inode.i_version = 1;
817 ei->vfs_inode.i_data.writeback_index = 0;
818 memset(&ei->i_cached_extent, 0, sizeof(struct ext4_ext_cache));
819 INIT_LIST_HEAD(&ei->i_prealloc_list);
820 spin_lock_init(&ei->i_prealloc_lock);
821 ei->i_reserved_data_blocks = 0;
822 ei->i_reserved_meta_blocks = 0;
823 ei->i_allocated_meta_blocks = 0;
824 ei->i_da_metadata_calc_len = 0;
825 spin_lock_init(&(ei->i_block_reservation_lock));
826 #ifdef CONFIG_QUOTA
827 ei->i_reserved_quota = 0;
828 #endif
829 ei->jinode = NULL;
830 INIT_LIST_HEAD(&ei->i_completed_io_list);
831 spin_lock_init(&ei->i_completed_io_lock);
832 ei->cur_aio_dio = NULL;
833 ei->i_sync_tid = 0;
834 ei->i_datasync_tid = 0;
835 atomic_set(&ei->i_ioend_count, 0);
836
837 return &ei->vfs_inode;
838 }
839
840 static int ext4_drop_inode(struct inode *inode)
841 {
842 int drop = generic_drop_inode(inode);
843
844 trace_ext4_drop_inode(inode, drop);
845 return drop;
846 }
847
848 static void ext4_destroy_inode(struct inode *inode)
849 {
850 ext4_ioend_wait(inode);
851 if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
852 ext4_msg(inode->i_sb, KERN_ERR,
853 "Inode %lu (%p): orphan list check failed!",
854 inode->i_ino, EXT4_I(inode));
855 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
856 EXT4_I(inode), sizeof(struct ext4_inode_info),
857 true);
858 dump_stack();
859 }
860 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
861 }
862
863 static void init_once(void *foo)
864 {
865 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo;
866
867 INIT_LIST_HEAD(&ei->i_orphan);
868 #ifdef CONFIG_EXT4_FS_XATTR
869 init_rwsem(&ei->xattr_sem);
870 #endif
871 init_rwsem(&ei->i_data_sem);
872 inode_init_once(&ei->vfs_inode);
873 }
874
875 static int init_inodecache(void)
876 {
877 ext4_inode_cachep = kmem_cache_create("ext4_inode_cache",
878 sizeof(struct ext4_inode_info),
879 0, (SLAB_RECLAIM_ACCOUNT|
880 SLAB_MEM_SPREAD),
881 init_once);
882 if (ext4_inode_cachep == NULL)
883 return -ENOMEM;
884 return 0;
885 }
886
887 static void destroy_inodecache(void)
888 {
889 kmem_cache_destroy(ext4_inode_cachep);
890 }
891
892 void ext4_clear_inode(struct inode *inode)
893 {
894 invalidate_inode_buffers(inode);
895 end_writeback(inode);
896 dquot_drop(inode);
897 ext4_discard_preallocations(inode);
898 if (EXT4_I(inode)->jinode) {
899 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
900 EXT4_I(inode)->jinode);
901 jbd2_free_inode(EXT4_I(inode)->jinode);
902 EXT4_I(inode)->jinode = NULL;
903 }
904 }
905
906 static inline void ext4_show_quota_options(struct seq_file *seq,
907 struct super_block *sb)
908 {
909 #if defined(CONFIG_QUOTA)
910 struct ext4_sb_info *sbi = EXT4_SB(sb);
911
912 if (sbi->s_jquota_fmt) {
913 char *fmtname = "";
914
915 switch (sbi->s_jquota_fmt) {
916 case QFMT_VFS_OLD:
917 fmtname = "vfsold";
918 break;
919 case QFMT_VFS_V0:
920 fmtname = "vfsv0";
921 break;
922 case QFMT_VFS_V1:
923 fmtname = "vfsv1";
924 break;
925 }
926 seq_printf(seq, ",jqfmt=%s", fmtname);
927 }
928
929 if (sbi->s_qf_names[USRQUOTA])
930 seq_printf(seq, ",usrjquota=%s", sbi->s_qf_names[USRQUOTA]);
931
932 if (sbi->s_qf_names[GRPQUOTA])
933 seq_printf(seq, ",grpjquota=%s", sbi->s_qf_names[GRPQUOTA]);
934
935 if (test_opt(sb, USRQUOTA))
936 seq_puts(seq, ",usrquota");
937
938 if (test_opt(sb, GRPQUOTA))
939 seq_puts(seq, ",grpquota");
940 #endif
941 }
942
943 /*
944 * Show an option if
945 * - it's set to a non-default value OR
946 * - if the per-sb default is different from the global default
947 */
948 static int ext4_show_options(struct seq_file *seq, struct vfsmount *vfs)
949 {
950 int def_errors;
951 unsigned long def_mount_opts;
952 struct super_block *sb = vfs->mnt_sb;
953 struct ext4_sb_info *sbi = EXT4_SB(sb);
954 struct ext4_super_block *es = sbi->s_es;
955
956 def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
957 def_errors = le16_to_cpu(es->s_errors);
958
959 if (sbi->s_sb_block != 1)
960 seq_printf(seq, ",sb=%llu", sbi->s_sb_block);
961 if (test_opt(sb, MINIX_DF))
962 seq_puts(seq, ",minixdf");
963 if (test_opt(sb, GRPID) && !(def_mount_opts & EXT4_DEFM_BSDGROUPS))
964 seq_puts(seq, ",grpid");
965 if (!test_opt(sb, GRPID) && (def_mount_opts & EXT4_DEFM_BSDGROUPS))
966 seq_puts(seq, ",nogrpid");
967 if (sbi->s_resuid != EXT4_DEF_RESUID ||
968 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID) {
969 seq_printf(seq, ",resuid=%u", sbi->s_resuid);
970 }
971 if (sbi->s_resgid != EXT4_DEF_RESGID ||
972 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID) {
973 seq_printf(seq, ",resgid=%u", sbi->s_resgid);
974 }
975 if (test_opt(sb, ERRORS_RO)) {
976 if (def_errors == EXT4_ERRORS_PANIC ||
977 def_errors == EXT4_ERRORS_CONTINUE) {
978 seq_puts(seq, ",errors=remount-ro");
979 }
980 }
981 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
982 seq_puts(seq, ",errors=continue");
983 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
984 seq_puts(seq, ",errors=panic");
985 if (test_opt(sb, NO_UID32) && !(def_mount_opts & EXT4_DEFM_UID16))
986 seq_puts(seq, ",nouid32");
987 if (test_opt(sb, DEBUG) && !(def_mount_opts & EXT4_DEFM_DEBUG))
988 seq_puts(seq, ",debug");
989 if (test_opt(sb, OLDALLOC))
990 seq_puts(seq, ",oldalloc");
991 #ifdef CONFIG_EXT4_FS_XATTR
992 if (test_opt(sb, XATTR_USER) &&
993 !(def_mount_opts & EXT4_DEFM_XATTR_USER))
994 seq_puts(seq, ",user_xattr");
995 if (!test_opt(sb, XATTR_USER) &&
996 (def_mount_opts & EXT4_DEFM_XATTR_USER)) {
997 seq_puts(seq, ",nouser_xattr");
998 }
999 #endif
1000 #ifdef CONFIG_EXT4_FS_POSIX_ACL
1001 if (test_opt(sb, POSIX_ACL) && !(def_mount_opts & EXT4_DEFM_ACL))
1002 seq_puts(seq, ",acl");
1003 if (!test_opt(sb, POSIX_ACL) && (def_mount_opts & EXT4_DEFM_ACL))
1004 seq_puts(seq, ",noacl");
1005 #endif
1006 if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) {
1007 seq_printf(seq, ",commit=%u",
1008 (unsigned) (sbi->s_commit_interval / HZ));
1009 }
1010 if (sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME) {
1011 seq_printf(seq, ",min_batch_time=%u",
1012 (unsigned) sbi->s_min_batch_time);
1013 }
1014 if (sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME) {
1015 seq_printf(seq, ",max_batch_time=%u",
1016 (unsigned) sbi->s_min_batch_time);
1017 }
1018
1019 /*
1020 * We're changing the default of barrier mount option, so
1021 * let's always display its mount state so it's clear what its
1022 * status is.
1023 */
1024 seq_puts(seq, ",barrier=");
1025 seq_puts(seq, test_opt(sb, BARRIER) ? "1" : "0");
1026 if (test_opt(sb, JOURNAL_ASYNC_COMMIT))
1027 seq_puts(seq, ",journal_async_commit");
1028 else if (test_opt(sb, JOURNAL_CHECKSUM))
1029 seq_puts(seq, ",journal_checksum");
1030 if (test_opt(sb, I_VERSION))
1031 seq_puts(seq, ",i_version");
1032 if (!test_opt(sb, DELALLOC) &&
1033 !(def_mount_opts & EXT4_DEFM_NODELALLOC))
1034 seq_puts(seq, ",nodelalloc");
1035
1036 if (test_opt(sb, MBLK_IO_SUBMIT))
1037 seq_puts(seq, ",mblk_io_submit");
1038 if (sbi->s_stripe)
1039 seq_printf(seq, ",stripe=%lu", sbi->s_stripe);
1040 /*
1041 * journal mode get enabled in different ways
1042 * So just print the value even if we didn't specify it
1043 */
1044 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
1045 seq_puts(seq, ",data=journal");
1046 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
1047 seq_puts(seq, ",data=ordered");
1048 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
1049 seq_puts(seq, ",data=writeback");
1050
1051 if (sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
1052 seq_printf(seq, ",inode_readahead_blks=%u",
1053 sbi->s_inode_readahead_blks);
1054
1055 if (test_opt(sb, DATA_ERR_ABORT))
1056 seq_puts(seq, ",data_err=abort");
1057
1058 if (test_opt(sb, NO_AUTO_DA_ALLOC))
1059 seq_puts(seq, ",noauto_da_alloc");
1060
1061 if (test_opt(sb, DISCARD) && !(def_mount_opts & EXT4_DEFM_DISCARD))
1062 seq_puts(seq, ",discard");
1063
1064 if (test_opt(sb, NOLOAD))
1065 seq_puts(seq, ",norecovery");
1066
1067 if (test_opt(sb, DIOREAD_NOLOCK))
1068 seq_puts(seq, ",dioread_nolock");
1069
1070 if (test_opt(sb, BLOCK_VALIDITY) &&
1071 !(def_mount_opts & EXT4_DEFM_BLOCK_VALIDITY))
1072 seq_puts(seq, ",block_validity");
1073
1074 if (!test_opt(sb, INIT_INODE_TABLE))
1075 seq_puts(seq, ",noinit_inode_table");
1076 else if (sbi->s_li_wait_mult)
1077 seq_printf(seq, ",init_inode_table=%u",
1078 (unsigned) sbi->s_li_wait_mult);
1079
1080 ext4_show_quota_options(seq, sb);
1081
1082 return 0;
1083 }
1084
1085 static struct inode *ext4_nfs_get_inode(struct super_block *sb,
1086 u64 ino, u32 generation)
1087 {
1088 struct inode *inode;
1089
1090 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
1091 return ERR_PTR(-ESTALE);
1092 if (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
1093 return ERR_PTR(-ESTALE);
1094
1095 /* iget isn't really right if the inode is currently unallocated!!
1096 *
1097 * ext4_read_inode will return a bad_inode if the inode had been
1098 * deleted, so we should be safe.
1099 *
1100 * Currently we don't know the generation for parent directory, so
1101 * a generation of 0 means "accept any"
1102 */
1103 inode = ext4_iget(sb, ino);
1104 if (IS_ERR(inode))
1105 return ERR_CAST(inode);
1106 if (generation && inode->i_generation != generation) {
1107 iput(inode);
1108 return ERR_PTR(-ESTALE);
1109 }
1110
1111 return inode;
1112 }
1113
1114 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
1115 int fh_len, int fh_type)
1116 {
1117 return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1118 ext4_nfs_get_inode);
1119 }
1120
1121 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
1122 int fh_len, int fh_type)
1123 {
1124 return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1125 ext4_nfs_get_inode);
1126 }
1127
1128 /*
1129 * Try to release metadata pages (indirect blocks, directories) which are
1130 * mapped via the block device. Since these pages could have journal heads
1131 * which would prevent try_to_free_buffers() from freeing them, we must use
1132 * jbd2 layer's try_to_free_buffers() function to release them.
1133 */
1134 static int bdev_try_to_free_page(struct super_block *sb, struct page *page,
1135 gfp_t wait)
1136 {
1137 journal_t *journal = EXT4_SB(sb)->s_journal;
1138
1139 WARN_ON(PageChecked(page));
1140 if (!page_has_buffers(page))
1141 return 0;
1142 if (journal)
1143 return jbd2_journal_try_to_free_buffers(journal, page,
1144 wait & ~__GFP_WAIT);
1145 return try_to_free_buffers(page);
1146 }
1147
1148 #ifdef CONFIG_QUOTA
1149 #define QTYPE2NAME(t) ((t) == USRQUOTA ? "user" : "group")
1150 #define QTYPE2MOPT(on, t) ((t) == USRQUOTA?((on)##USRJQUOTA):((on)##GRPJQUOTA))
1151
1152 static int ext4_write_dquot(struct dquot *dquot);
1153 static int ext4_acquire_dquot(struct dquot *dquot);
1154 static int ext4_release_dquot(struct dquot *dquot);
1155 static int ext4_mark_dquot_dirty(struct dquot *dquot);
1156 static int ext4_write_info(struct super_block *sb, int type);
1157 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1158 char *path);
1159 static int ext4_quota_off(struct super_block *sb, int type);
1160 static int ext4_quota_on_mount(struct super_block *sb, int type);
1161 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1162 size_t len, loff_t off);
1163 static ssize_t ext4_quota_write(struct super_block *sb, int type,
1164 const char *data, size_t len, loff_t off);
1165
1166 static const struct dquot_operations ext4_quota_operations = {
1167 #ifdef CONFIG_QUOTA
1168 .get_reserved_space = ext4_get_reserved_space,
1169 #endif
1170 .write_dquot = ext4_write_dquot,
1171 .acquire_dquot = ext4_acquire_dquot,
1172 .release_dquot = ext4_release_dquot,
1173 .mark_dirty = ext4_mark_dquot_dirty,
1174 .write_info = ext4_write_info,
1175 .alloc_dquot = dquot_alloc,
1176 .destroy_dquot = dquot_destroy,
1177 };
1178
1179 static const struct quotactl_ops ext4_qctl_operations = {
1180 .quota_on = ext4_quota_on,
1181 .quota_off = ext4_quota_off,
1182 .quota_sync = dquot_quota_sync,
1183 .get_info = dquot_get_dqinfo,
1184 .set_info = dquot_set_dqinfo,
1185 .get_dqblk = dquot_get_dqblk,
1186 .set_dqblk = dquot_set_dqblk
1187 };
1188 #endif
1189
1190 static const struct super_operations ext4_sops = {
1191 .alloc_inode = ext4_alloc_inode,
1192 .destroy_inode = ext4_destroy_inode,
1193 .write_inode = ext4_write_inode,
1194 .dirty_inode = ext4_dirty_inode,
1195 .drop_inode = ext4_drop_inode,
1196 .evict_inode = ext4_evict_inode,
1197 .put_super = ext4_put_super,
1198 .sync_fs = ext4_sync_fs,
1199 .freeze_fs = ext4_freeze,
1200 .unfreeze_fs = ext4_unfreeze,
1201 .statfs = ext4_statfs,
1202 .remount_fs = ext4_remount,
1203 .show_options = ext4_show_options,
1204 #ifdef CONFIG_QUOTA
1205 .quota_read = ext4_quota_read,
1206 .quota_write = ext4_quota_write,
1207 #endif
1208 .bdev_try_to_free_page = bdev_try_to_free_page,
1209 };
1210
1211 static const struct super_operations ext4_nojournal_sops = {
1212 .alloc_inode = ext4_alloc_inode,
1213 .destroy_inode = ext4_destroy_inode,
1214 .write_inode = ext4_write_inode,
1215 .dirty_inode = ext4_dirty_inode,
1216 .drop_inode = ext4_drop_inode,
1217 .evict_inode = ext4_evict_inode,
1218 .write_super = ext4_write_super,
1219 .put_super = ext4_put_super,
1220 .statfs = ext4_statfs,
1221 .remount_fs = ext4_remount,
1222 .show_options = ext4_show_options,
1223 #ifdef CONFIG_QUOTA
1224 .quota_read = ext4_quota_read,
1225 .quota_write = ext4_quota_write,
1226 #endif
1227 .bdev_try_to_free_page = bdev_try_to_free_page,
1228 };
1229
1230 static const struct export_operations ext4_export_ops = {
1231 .fh_to_dentry = ext4_fh_to_dentry,
1232 .fh_to_parent = ext4_fh_to_parent,
1233 .get_parent = ext4_get_parent,
1234 };
1235
1236 enum {
1237 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1238 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro,
1239 Opt_nouid32, Opt_debug, Opt_oldalloc, Opt_orlov,
1240 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl,
1241 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload, Opt_nobh, Opt_bh,
1242 Opt_commit, Opt_min_batch_time, Opt_max_batch_time,
1243 Opt_journal_update, Opt_journal_dev,
1244 Opt_journal_checksum, Opt_journal_async_commit,
1245 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1246 Opt_data_err_abort, Opt_data_err_ignore,
1247 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota,
1248 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota,
1249 Opt_noquota, Opt_ignore, Opt_barrier, Opt_nobarrier, Opt_err,
1250 Opt_resize, Opt_usrquota, Opt_grpquota, Opt_i_version,
1251 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_mblk_io_submit,
1252 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1253 Opt_inode_readahead_blks, Opt_journal_ioprio,
1254 Opt_dioread_nolock, Opt_dioread_lock,
1255 Opt_discard, Opt_nodiscard,
1256 Opt_init_inode_table, Opt_noinit_inode_table,
1257 };
1258
1259 static const match_table_t tokens = {
1260 {Opt_bsd_df, "bsddf"},
1261 {Opt_minix_df, "minixdf"},
1262 {Opt_grpid, "grpid"},
1263 {Opt_grpid, "bsdgroups"},
1264 {Opt_nogrpid, "nogrpid"},
1265 {Opt_nogrpid, "sysvgroups"},
1266 {Opt_resgid, "resgid=%u"},
1267 {Opt_resuid, "resuid=%u"},
1268 {Opt_sb, "sb=%u"},
1269 {Opt_err_cont, "errors=continue"},
1270 {Opt_err_panic, "errors=panic"},
1271 {Opt_err_ro, "errors=remount-ro"},
1272 {Opt_nouid32, "nouid32"},
1273 {Opt_debug, "debug"},
1274 {Opt_oldalloc, "oldalloc"},
1275 {Opt_orlov, "orlov"},
1276 {Opt_user_xattr, "user_xattr"},
1277 {Opt_nouser_xattr, "nouser_xattr"},
1278 {Opt_acl, "acl"},
1279 {Opt_noacl, "noacl"},
1280 {Opt_noload, "noload"},
1281 {Opt_noload, "norecovery"},
1282 {Opt_nobh, "nobh"},
1283 {Opt_bh, "bh"},
1284 {Opt_commit, "commit=%u"},
1285 {Opt_min_batch_time, "min_batch_time=%u"},
1286 {Opt_max_batch_time, "max_batch_time=%u"},
1287 {Opt_journal_update, "journal=update"},
1288 {Opt_journal_dev, "journal_dev=%u"},
1289 {Opt_journal_checksum, "journal_checksum"},
1290 {Opt_journal_async_commit, "journal_async_commit"},
1291 {Opt_abort, "abort"},
1292 {Opt_data_journal, "data=journal"},
1293 {Opt_data_ordered, "data=ordered"},
1294 {Opt_data_writeback, "data=writeback"},
1295 {Opt_data_err_abort, "data_err=abort"},
1296 {Opt_data_err_ignore, "data_err=ignore"},
1297 {Opt_offusrjquota, "usrjquota="},
1298 {Opt_usrjquota, "usrjquota=%s"},
1299 {Opt_offgrpjquota, "grpjquota="},
1300 {Opt_grpjquota, "grpjquota=%s"},
1301 {Opt_jqfmt_vfsold, "jqfmt=vfsold"},
1302 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
1303 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
1304 {Opt_grpquota, "grpquota"},
1305 {Opt_noquota, "noquota"},
1306 {Opt_quota, "quota"},
1307 {Opt_usrquota, "usrquota"},
1308 {Opt_barrier, "barrier=%u"},
1309 {Opt_barrier, "barrier"},
1310 {Opt_nobarrier, "nobarrier"},
1311 {Opt_i_version, "i_version"},
1312 {Opt_stripe, "stripe=%u"},
1313 {Opt_resize, "resize"},
1314 {Opt_delalloc, "delalloc"},
1315 {Opt_nodelalloc, "nodelalloc"},
1316 {Opt_mblk_io_submit, "mblk_io_submit"},
1317 {Opt_nomblk_io_submit, "nomblk_io_submit"},
1318 {Opt_block_validity, "block_validity"},
1319 {Opt_noblock_validity, "noblock_validity"},
1320 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"},
1321 {Opt_journal_ioprio, "journal_ioprio=%u"},
1322 {Opt_auto_da_alloc, "auto_da_alloc=%u"},
1323 {Opt_auto_da_alloc, "auto_da_alloc"},
1324 {Opt_noauto_da_alloc, "noauto_da_alloc"},
1325 {Opt_dioread_nolock, "dioread_nolock"},
1326 {Opt_dioread_lock, "dioread_lock"},
1327 {Opt_discard, "discard"},
1328 {Opt_nodiscard, "nodiscard"},
1329 {Opt_init_inode_table, "init_itable=%u"},
1330 {Opt_init_inode_table, "init_itable"},
1331 {Opt_noinit_inode_table, "noinit_itable"},
1332 {Opt_err, NULL},
1333 };
1334
1335 static ext4_fsblk_t get_sb_block(void **data)
1336 {
1337 ext4_fsblk_t sb_block;
1338 char *options = (char *) *data;
1339
1340 if (!options || strncmp(options, "sb=", 3) != 0)
1341 return 1; /* Default location */
1342
1343 options += 3;
1344 /* TODO: use simple_strtoll with >32bit ext4 */
1345 sb_block = simple_strtoul(options, &options, 0);
1346 if (*options && *options != ',') {
1347 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n",
1348 (char *) *data);
1349 return 1;
1350 }
1351 if (*options == ',')
1352 options++;
1353 *data = (void *) options;
1354
1355 return sb_block;
1356 }
1357
1358 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1359 static char deprecated_msg[] = "Mount option \"%s\" will be removed by %s\n"
1360 "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n";
1361
1362 #ifdef CONFIG_QUOTA
1363 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args)
1364 {
1365 struct ext4_sb_info *sbi = EXT4_SB(sb);
1366 char *qname;
1367
1368 if (sb_any_quota_loaded(sb) &&
1369 !sbi->s_qf_names[qtype]) {
1370 ext4_msg(sb, KERN_ERR,
1371 "Cannot change journaled "
1372 "quota options when quota turned on");
1373 return 0;
1374 }
1375 qname = match_strdup(args);
1376 if (!qname) {
1377 ext4_msg(sb, KERN_ERR,
1378 "Not enough memory for storing quotafile name");
1379 return 0;
1380 }
1381 if (sbi->s_qf_names[qtype] &&
1382 strcmp(sbi->s_qf_names[qtype], qname)) {
1383 ext4_msg(sb, KERN_ERR,
1384 "%s quota file already specified", QTYPE2NAME(qtype));
1385 kfree(qname);
1386 return 0;
1387 }
1388 sbi->s_qf_names[qtype] = qname;
1389 if (strchr(sbi->s_qf_names[qtype], '/')) {
1390 ext4_msg(sb, KERN_ERR,
1391 "quotafile must be on filesystem root");
1392 kfree(sbi->s_qf_names[qtype]);
1393 sbi->s_qf_names[qtype] = NULL;
1394 return 0;
1395 }
1396 set_opt(sb, QUOTA);
1397 return 1;
1398 }
1399
1400 static int clear_qf_name(struct super_block *sb, int qtype)
1401 {
1402
1403 struct ext4_sb_info *sbi = EXT4_SB(sb);
1404
1405 if (sb_any_quota_loaded(sb) &&
1406 sbi->s_qf_names[qtype]) {
1407 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options"
1408 " when quota turned on");
1409 return 0;
1410 }
1411 /*
1412 * The space will be released later when all options are confirmed
1413 * to be correct
1414 */
1415 sbi->s_qf_names[qtype] = NULL;
1416 return 1;
1417 }
1418 #endif
1419
1420 static int parse_options(char *options, struct super_block *sb,
1421 unsigned long *journal_devnum,
1422 unsigned int *journal_ioprio,
1423 ext4_fsblk_t *n_blocks_count, int is_remount)
1424 {
1425 struct ext4_sb_info *sbi = EXT4_SB(sb);
1426 char *p;
1427 substring_t args[MAX_OPT_ARGS];
1428 int data_opt = 0;
1429 int option;
1430 #ifdef CONFIG_QUOTA
1431 int qfmt;
1432 #endif
1433
1434 if (!options)
1435 return 1;
1436
1437 while ((p = strsep(&options, ",")) != NULL) {
1438 int token;
1439 if (!*p)
1440 continue;
1441
1442 /*
1443 * Initialize args struct so we know whether arg was
1444 * found; some options take optional arguments.
1445 */
1446 args[0].to = args[0].from = 0;
1447 token = match_token(p, tokens, args);
1448 switch (token) {
1449 case Opt_bsd_df:
1450 ext4_msg(sb, KERN_WARNING, deprecated_msg, p, "2.6.38");
1451 clear_opt(sb, MINIX_DF);
1452 break;
1453 case Opt_minix_df:
1454 ext4_msg(sb, KERN_WARNING, deprecated_msg, p, "2.6.38");
1455 set_opt(sb, MINIX_DF);
1456
1457 break;
1458 case Opt_grpid:
1459 ext4_msg(sb, KERN_WARNING, deprecated_msg, p, "2.6.38");
1460 set_opt(sb, GRPID);
1461
1462 break;
1463 case Opt_nogrpid:
1464 ext4_msg(sb, KERN_WARNING, deprecated_msg, p, "2.6.38");
1465 clear_opt(sb, GRPID);
1466
1467 break;
1468 case Opt_resuid:
1469 if (match_int(&args[0], &option))
1470 return 0;
1471 sbi->s_resuid = option;
1472 break;
1473 case Opt_resgid:
1474 if (match_int(&args[0], &option))
1475 return 0;
1476 sbi->s_resgid = option;
1477 break;
1478 case Opt_sb:
1479 /* handled by get_sb_block() instead of here */
1480 /* *sb_block = match_int(&args[0]); */
1481 break;
1482 case Opt_err_panic:
1483 clear_opt(sb, ERRORS_CONT);
1484 clear_opt(sb, ERRORS_RO);
1485 set_opt(sb, ERRORS_PANIC);
1486 break;
1487 case Opt_err_ro:
1488 clear_opt(sb, ERRORS_CONT);
1489 clear_opt(sb, ERRORS_PANIC);
1490 set_opt(sb, ERRORS_RO);
1491 break;
1492 case Opt_err_cont:
1493 clear_opt(sb, ERRORS_RO);
1494 clear_opt(sb, ERRORS_PANIC);
1495 set_opt(sb, ERRORS_CONT);
1496 break;
1497 case Opt_nouid32:
1498 set_opt(sb, NO_UID32);
1499 break;
1500 case Opt_debug:
1501 set_opt(sb, DEBUG);
1502 break;
1503 case Opt_oldalloc:
1504 set_opt(sb, OLDALLOC);
1505 break;
1506 case Opt_orlov:
1507 clear_opt(sb, OLDALLOC);
1508 break;
1509 #ifdef CONFIG_EXT4_FS_XATTR
1510 case Opt_user_xattr:
1511 set_opt(sb, XATTR_USER);
1512 break;
1513 case Opt_nouser_xattr:
1514 clear_opt(sb, XATTR_USER);
1515 break;
1516 #else
1517 case Opt_user_xattr:
1518 case Opt_nouser_xattr:
1519 ext4_msg(sb, KERN_ERR, "(no)user_xattr options not supported");
1520 break;
1521 #endif
1522 #ifdef CONFIG_EXT4_FS_POSIX_ACL
1523 case Opt_acl:
1524 set_opt(sb, POSIX_ACL);
1525 break;
1526 case Opt_noacl:
1527 clear_opt(sb, POSIX_ACL);
1528 break;
1529 #else
1530 case Opt_acl:
1531 case Opt_noacl:
1532 ext4_msg(sb, KERN_ERR, "(no)acl options not supported");
1533 break;
1534 #endif
1535 case Opt_journal_update:
1536 /* @@@ FIXME */
1537 /* Eventually we will want to be able to create
1538 a journal file here. For now, only allow the
1539 user to specify an existing inode to be the
1540 journal file. */
1541 if (is_remount) {
1542 ext4_msg(sb, KERN_ERR,
1543 "Cannot specify journal on remount");
1544 return 0;
1545 }
1546 set_opt(sb, UPDATE_JOURNAL);
1547 break;
1548 case Opt_journal_dev:
1549 if (is_remount) {
1550 ext4_msg(sb, KERN_ERR,
1551 "Cannot specify journal on remount");
1552 return 0;
1553 }
1554 if (match_int(&args[0], &option))
1555 return 0;
1556 *journal_devnum = option;
1557 break;
1558 case Opt_journal_checksum:
1559 set_opt(sb, JOURNAL_CHECKSUM);
1560 break;
1561 case Opt_journal_async_commit:
1562 set_opt(sb, JOURNAL_ASYNC_COMMIT);
1563 set_opt(sb, JOURNAL_CHECKSUM);
1564 break;
1565 case Opt_noload:
1566 set_opt(sb, NOLOAD);
1567 break;
1568 case Opt_commit:
1569 if (match_int(&args[0], &option))
1570 return 0;
1571 if (option < 0)
1572 return 0;
1573 if (option == 0)
1574 option = JBD2_DEFAULT_MAX_COMMIT_AGE;
1575 sbi->s_commit_interval = HZ * option;
1576 break;
1577 case Opt_max_batch_time:
1578 if (match_int(&args[0], &option))
1579 return 0;
1580 if (option < 0)
1581 return 0;
1582 if (option == 0)
1583 option = EXT4_DEF_MAX_BATCH_TIME;
1584 sbi->s_max_batch_time = option;
1585 break;
1586 case Opt_min_batch_time:
1587 if (match_int(&args[0], &option))
1588 return 0;
1589 if (option < 0)
1590 return 0;
1591 sbi->s_min_batch_time = option;
1592 break;
1593 case Opt_data_journal:
1594 data_opt = EXT4_MOUNT_JOURNAL_DATA;
1595 goto datacheck;
1596 case Opt_data_ordered:
1597 data_opt = EXT4_MOUNT_ORDERED_DATA;
1598 goto datacheck;
1599 case Opt_data_writeback:
1600 data_opt = EXT4_MOUNT_WRITEBACK_DATA;
1601 datacheck:
1602 if (is_remount) {
1603 if (test_opt(sb, DATA_FLAGS) != data_opt) {
1604 ext4_msg(sb, KERN_ERR,
1605 "Cannot change data mode on remount");
1606 return 0;
1607 }
1608 } else {
1609 clear_opt(sb, DATA_FLAGS);
1610 sbi->s_mount_opt |= data_opt;
1611 }
1612 break;
1613 case Opt_data_err_abort:
1614 set_opt(sb, DATA_ERR_ABORT);
1615 break;
1616 case Opt_data_err_ignore:
1617 clear_opt(sb, DATA_ERR_ABORT);
1618 break;
1619 #ifdef CONFIG_QUOTA
1620 case Opt_usrjquota:
1621 if (!set_qf_name(sb, USRQUOTA, &args[0]))
1622 return 0;
1623 break;
1624 case Opt_grpjquota:
1625 if (!set_qf_name(sb, GRPQUOTA, &args[0]))
1626 return 0;
1627 break;
1628 case Opt_offusrjquota:
1629 if (!clear_qf_name(sb, USRQUOTA))
1630 return 0;
1631 break;
1632 case Opt_offgrpjquota:
1633 if (!clear_qf_name(sb, GRPQUOTA))
1634 return 0;
1635 break;
1636
1637 case Opt_jqfmt_vfsold:
1638 qfmt = QFMT_VFS_OLD;
1639 goto set_qf_format;
1640 case Opt_jqfmt_vfsv0:
1641 qfmt = QFMT_VFS_V0;
1642 goto set_qf_format;
1643 case Opt_jqfmt_vfsv1:
1644 qfmt = QFMT_VFS_V1;
1645 set_qf_format:
1646 if (sb_any_quota_loaded(sb) &&
1647 sbi->s_jquota_fmt != qfmt) {
1648 ext4_msg(sb, KERN_ERR, "Cannot change "
1649 "journaled quota options when "
1650 "quota turned on");
1651 return 0;
1652 }
1653 sbi->s_jquota_fmt = qfmt;
1654 break;
1655 case Opt_quota:
1656 case Opt_usrquota:
1657 set_opt(sb, QUOTA);
1658 set_opt(sb, USRQUOTA);
1659 break;
1660 case Opt_grpquota:
1661 set_opt(sb, QUOTA);
1662 set_opt(sb, GRPQUOTA);
1663 break;
1664 case Opt_noquota:
1665 if (sb_any_quota_loaded(sb)) {
1666 ext4_msg(sb, KERN_ERR, "Cannot change quota "
1667 "options when quota turned on");
1668 return 0;
1669 }
1670 clear_opt(sb, QUOTA);
1671 clear_opt(sb, USRQUOTA);
1672 clear_opt(sb, GRPQUOTA);
1673 break;
1674 #else
1675 case Opt_quota:
1676 case Opt_usrquota:
1677 case Opt_grpquota:
1678 ext4_msg(sb, KERN_ERR,
1679 "quota options not supported");
1680 break;
1681 case Opt_usrjquota:
1682 case Opt_grpjquota:
1683 case Opt_offusrjquota:
1684 case Opt_offgrpjquota:
1685 case Opt_jqfmt_vfsold:
1686 case Opt_jqfmt_vfsv0:
1687 case Opt_jqfmt_vfsv1:
1688 ext4_msg(sb, KERN_ERR,
1689 "journaled quota options not supported");
1690 break;
1691 case Opt_noquota:
1692 break;
1693 #endif
1694 case Opt_abort:
1695 sbi->s_mount_flags |= EXT4_MF_FS_ABORTED;
1696 break;
1697 case Opt_nobarrier:
1698 clear_opt(sb, BARRIER);
1699 break;
1700 case Opt_barrier:
1701 if (args[0].from) {
1702 if (match_int(&args[0], &option))
1703 return 0;
1704 } else
1705 option = 1; /* No argument, default to 1 */
1706 if (option)
1707 set_opt(sb, BARRIER);
1708 else
1709 clear_opt(sb, BARRIER);
1710 break;
1711 case Opt_ignore:
1712 break;
1713 case Opt_resize:
1714 if (!is_remount) {
1715 ext4_msg(sb, KERN_ERR,
1716 "resize option only available "
1717 "for remount");
1718 return 0;
1719 }
1720 if (match_int(&args[0], &option) != 0)
1721 return 0;
1722 *n_blocks_count = option;
1723 break;
1724 case Opt_nobh:
1725 ext4_msg(sb, KERN_WARNING,
1726 "Ignoring deprecated nobh option");
1727 break;
1728 case Opt_bh:
1729 ext4_msg(sb, KERN_WARNING,
1730 "Ignoring deprecated bh option");
1731 break;
1732 case Opt_i_version:
1733 set_opt(sb, I_VERSION);
1734 sb->s_flags |= MS_I_VERSION;
1735 break;
1736 case Opt_nodelalloc:
1737 clear_opt(sb, DELALLOC);
1738 break;
1739 case Opt_mblk_io_submit:
1740 set_opt(sb, MBLK_IO_SUBMIT);
1741 break;
1742 case Opt_nomblk_io_submit:
1743 clear_opt(sb, MBLK_IO_SUBMIT);
1744 break;
1745 case Opt_stripe:
1746 if (match_int(&args[0], &option))
1747 return 0;
1748 if (option < 0)
1749 return 0;
1750 sbi->s_stripe = option;
1751 break;
1752 case Opt_delalloc:
1753 set_opt(sb, DELALLOC);
1754 break;
1755 case Opt_block_validity:
1756 set_opt(sb, BLOCK_VALIDITY);
1757 break;
1758 case Opt_noblock_validity:
1759 clear_opt(sb, BLOCK_VALIDITY);
1760 break;
1761 case Opt_inode_readahead_blks:
1762 if (match_int(&args[0], &option))
1763 return 0;
1764 if (option < 0 || option > (1 << 30))
1765 return 0;
1766 if (!is_power_of_2(option)) {
1767 ext4_msg(sb, KERN_ERR,
1768 "EXT4-fs: inode_readahead_blks"
1769 " must be a power of 2");
1770 return 0;
1771 }
1772 sbi->s_inode_readahead_blks = option;
1773 break;
1774 case Opt_journal_ioprio:
1775 if (match_int(&args[0], &option))
1776 return 0;
1777 if (option < 0 || option > 7)
1778 break;
1779 *journal_ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE,
1780 option);
1781 break;
1782 case Opt_noauto_da_alloc:
1783 set_opt(sb, NO_AUTO_DA_ALLOC);
1784 break;
1785 case Opt_auto_da_alloc:
1786 if (args[0].from) {
1787 if (match_int(&args[0], &option))
1788 return 0;
1789 } else
1790 option = 1; /* No argument, default to 1 */
1791 if (option)
1792 clear_opt(sb, NO_AUTO_DA_ALLOC);
1793 else
1794 set_opt(sb,NO_AUTO_DA_ALLOC);
1795 break;
1796 case Opt_discard:
1797 set_opt(sb, DISCARD);
1798 break;
1799 case Opt_nodiscard:
1800 clear_opt(sb, DISCARD);
1801 break;
1802 case Opt_dioread_nolock:
1803 set_opt(sb, DIOREAD_NOLOCK);
1804 break;
1805 case Opt_dioread_lock:
1806 clear_opt(sb, DIOREAD_NOLOCK);
1807 break;
1808 case Opt_init_inode_table:
1809 set_opt(sb, INIT_INODE_TABLE);
1810 if (args[0].from) {
1811 if (match_int(&args[0], &option))
1812 return 0;
1813 } else
1814 option = EXT4_DEF_LI_WAIT_MULT;
1815 if (option < 0)
1816 return 0;
1817 sbi->s_li_wait_mult = option;
1818 break;
1819 case Opt_noinit_inode_table:
1820 clear_opt(sb, INIT_INODE_TABLE);
1821 break;
1822 default:
1823 ext4_msg(sb, KERN_ERR,
1824 "Unrecognized mount option \"%s\" "
1825 "or missing value", p);
1826 return 0;
1827 }
1828 }
1829 #ifdef CONFIG_QUOTA
1830 if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
1831 if (test_opt(sb, USRQUOTA) && sbi->s_qf_names[USRQUOTA])
1832 clear_opt(sb, USRQUOTA);
1833
1834 if (test_opt(sb, GRPQUOTA) && sbi->s_qf_names[GRPQUOTA])
1835 clear_opt(sb, GRPQUOTA);
1836
1837 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) {
1838 ext4_msg(sb, KERN_ERR, "old and new quota "
1839 "format mixing");
1840 return 0;
1841 }
1842
1843 if (!sbi->s_jquota_fmt) {
1844 ext4_msg(sb, KERN_ERR, "journaled quota format "
1845 "not specified");
1846 return 0;
1847 }
1848 } else {
1849 if (sbi->s_jquota_fmt) {
1850 ext4_msg(sb, KERN_ERR, "journaled quota format "
1851 "specified with no journaling "
1852 "enabled");
1853 return 0;
1854 }
1855 }
1856 #endif
1857 return 1;
1858 }
1859
1860 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
1861 int read_only)
1862 {
1863 struct ext4_sb_info *sbi = EXT4_SB(sb);
1864 int res = 0;
1865
1866 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
1867 ext4_msg(sb, KERN_ERR, "revision level too high, "
1868 "forcing read-only mode");
1869 res = MS_RDONLY;
1870 }
1871 if (read_only)
1872 return res;
1873 if (!(sbi->s_mount_state & EXT4_VALID_FS))
1874 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
1875 "running e2fsck is recommended");
1876 else if ((sbi->s_mount_state & EXT4_ERROR_FS))
1877 ext4_msg(sb, KERN_WARNING,
1878 "warning: mounting fs with errors, "
1879 "running e2fsck is recommended");
1880 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) >= 0 &&
1881 le16_to_cpu(es->s_mnt_count) >=
1882 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
1883 ext4_msg(sb, KERN_WARNING,
1884 "warning: maximal mount count reached, "
1885 "running e2fsck is recommended");
1886 else if (le32_to_cpu(es->s_checkinterval) &&
1887 (le32_to_cpu(es->s_lastcheck) +
1888 le32_to_cpu(es->s_checkinterval) <= get_seconds()))
1889 ext4_msg(sb, KERN_WARNING,
1890 "warning: checktime reached, "
1891 "running e2fsck is recommended");
1892 if (!sbi->s_journal)
1893 es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
1894 if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
1895 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
1896 le16_add_cpu(&es->s_mnt_count, 1);
1897 es->s_mtime = cpu_to_le32(get_seconds());
1898 ext4_update_dynamic_rev(sb);
1899 if (sbi->s_journal)
1900 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
1901
1902 ext4_commit_super(sb, 1);
1903 if (test_opt(sb, DEBUG))
1904 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
1905 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
1906 sb->s_blocksize,
1907 sbi->s_groups_count,
1908 EXT4_BLOCKS_PER_GROUP(sb),
1909 EXT4_INODES_PER_GROUP(sb),
1910 sbi->s_mount_opt, sbi->s_mount_opt2);
1911
1912 return res;
1913 }
1914
1915 static int ext4_fill_flex_info(struct super_block *sb)
1916 {
1917 struct ext4_sb_info *sbi = EXT4_SB(sb);
1918 struct ext4_group_desc *gdp = NULL;
1919 ext4_group_t flex_group_count;
1920 ext4_group_t flex_group;
1921 int groups_per_flex = 0;
1922 size_t size;
1923 int i;
1924
1925 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
1926 groups_per_flex = 1 << sbi->s_log_groups_per_flex;
1927
1928 if (groups_per_flex < 2) {
1929 sbi->s_log_groups_per_flex = 0;
1930 return 1;
1931 }
1932
1933 /* We allocate both existing and potentially added groups */
1934 flex_group_count = ((sbi->s_groups_count + groups_per_flex - 1) +
1935 ((le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) + 1) <<
1936 EXT4_DESC_PER_BLOCK_BITS(sb))) / groups_per_flex;
1937 size = flex_group_count * sizeof(struct flex_groups);
1938 sbi->s_flex_groups = kzalloc(size, GFP_KERNEL);
1939 if (sbi->s_flex_groups == NULL) {
1940 sbi->s_flex_groups = vzalloc(size);
1941 if (sbi->s_flex_groups == NULL) {
1942 ext4_msg(sb, KERN_ERR,
1943 "not enough memory for %u flex groups",
1944 flex_group_count);
1945 goto failed;
1946 }
1947 }
1948
1949 for (i = 0; i < sbi->s_groups_count; i++) {
1950 gdp = ext4_get_group_desc(sb, i, NULL);
1951
1952 flex_group = ext4_flex_group(sbi, i);
1953 atomic_add(ext4_free_inodes_count(sb, gdp),
1954 &sbi->s_flex_groups[flex_group].free_inodes);
1955 atomic_add(ext4_free_blks_count(sb, gdp),
1956 &sbi->s_flex_groups[flex_group].free_blocks);
1957 atomic_add(ext4_used_dirs_count(sb, gdp),
1958 &sbi->s_flex_groups[flex_group].used_dirs);
1959 }
1960
1961 return 1;
1962 failed:
1963 return 0;
1964 }
1965
1966 __le16 ext4_group_desc_csum(struct ext4_sb_info *sbi, __u32 block_group,
1967 struct ext4_group_desc *gdp)
1968 {
1969 __u16 crc = 0;
1970
1971 if (sbi->s_es->s_feature_ro_compat &
1972 cpu_to_le32(EXT4_FEATURE_RO_COMPAT_GDT_CSUM)) {
1973 int offset = offsetof(struct ext4_group_desc, bg_checksum);
1974 __le32 le_group = cpu_to_le32(block_group);
1975
1976 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
1977 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
1978 crc = crc16(crc, (__u8 *)gdp, offset);
1979 offset += sizeof(gdp->bg_checksum); /* skip checksum */
1980 /* for checksum of struct ext4_group_desc do the rest...*/
1981 if ((sbi->s_es->s_feature_incompat &
1982 cpu_to_le32(EXT4_FEATURE_INCOMPAT_64BIT)) &&
1983 offset < le16_to_cpu(sbi->s_es->s_desc_size))
1984 crc = crc16(crc, (__u8 *)gdp + offset,
1985 le16_to_cpu(sbi->s_es->s_desc_size) -
1986 offset);
1987 }
1988
1989 return cpu_to_le16(crc);
1990 }
1991
1992 int ext4_group_desc_csum_verify(struct ext4_sb_info *sbi, __u32 block_group,
1993 struct ext4_group_desc *gdp)
1994 {
1995 if ((sbi->s_es->s_feature_ro_compat &
1996 cpu_to_le32(EXT4_FEATURE_RO_COMPAT_GDT_CSUM)) &&
1997 (gdp->bg_checksum != ext4_group_desc_csum(sbi, block_group, gdp)))
1998 return 0;
1999
2000 return 1;
2001 }
2002
2003 /* Called at mount-time, super-block is locked */
2004 static int ext4_check_descriptors(struct super_block *sb,
2005 ext4_group_t *first_not_zeroed)
2006 {
2007 struct ext4_sb_info *sbi = EXT4_SB(sb);
2008 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
2009 ext4_fsblk_t last_block;
2010 ext4_fsblk_t block_bitmap;
2011 ext4_fsblk_t inode_bitmap;
2012 ext4_fsblk_t inode_table;
2013 int flexbg_flag = 0;
2014 ext4_group_t i, grp = sbi->s_groups_count;
2015
2016 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG))
2017 flexbg_flag = 1;
2018
2019 ext4_debug("Checking group descriptors");
2020
2021 for (i = 0; i < sbi->s_groups_count; i++) {
2022 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
2023
2024 if (i == sbi->s_groups_count - 1 || flexbg_flag)
2025 last_block = ext4_blocks_count(sbi->s_es) - 1;
2026 else
2027 last_block = first_block +
2028 (EXT4_BLOCKS_PER_GROUP(sb) - 1);
2029
2030 if ((grp == sbi->s_groups_count) &&
2031 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2032 grp = i;
2033
2034 block_bitmap = ext4_block_bitmap(sb, gdp);
2035 if (block_bitmap < first_block || block_bitmap > last_block) {
2036 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2037 "Block bitmap for group %u not in group "
2038 "(block %llu)!", i, block_bitmap);
2039 return 0;
2040 }
2041 inode_bitmap = ext4_inode_bitmap(sb, gdp);
2042 if (inode_bitmap < first_block || inode_bitmap > last_block) {
2043 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2044 "Inode bitmap for group %u not in group "
2045 "(block %llu)!", i, inode_bitmap);
2046 return 0;
2047 }
2048 inode_table = ext4_inode_table(sb, gdp);
2049 if (inode_table < first_block ||
2050 inode_table + sbi->s_itb_per_group - 1 > last_block) {
2051 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2052 "Inode table for group %u not in group "
2053 "(block %llu)!", i, inode_table);
2054 return 0;
2055 }
2056 ext4_lock_group(sb, i);
2057 if (!ext4_group_desc_csum_verify(sbi, i, gdp)) {
2058 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2059 "Checksum for group %u failed (%u!=%u)",
2060 i, le16_to_cpu(ext4_group_desc_csum(sbi, i,
2061 gdp)), le16_to_cpu(gdp->bg_checksum));
2062 if (!(sb->s_flags & MS_RDONLY)) {
2063 ext4_unlock_group(sb, i);
2064 return 0;
2065 }
2066 }
2067 ext4_unlock_group(sb, i);
2068 if (!flexbg_flag)
2069 first_block += EXT4_BLOCKS_PER_GROUP(sb);
2070 }
2071 if (NULL != first_not_zeroed)
2072 *first_not_zeroed = grp;
2073
2074 ext4_free_blocks_count_set(sbi->s_es, ext4_count_free_blocks(sb));
2075 sbi->s_es->s_free_inodes_count =cpu_to_le32(ext4_count_free_inodes(sb));
2076 return 1;
2077 }
2078
2079 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at
2080 * the superblock) which were deleted from all directories, but held open by
2081 * a process at the time of a crash. We walk the list and try to delete these
2082 * inodes at recovery time (only with a read-write filesystem).
2083 *
2084 * In order to keep the orphan inode chain consistent during traversal (in
2085 * case of crash during recovery), we link each inode into the superblock
2086 * orphan list_head and handle it the same way as an inode deletion during
2087 * normal operation (which journals the operations for us).
2088 *
2089 * We only do an iget() and an iput() on each inode, which is very safe if we
2090 * accidentally point at an in-use or already deleted inode. The worst that
2091 * can happen in this case is that we get a "bit already cleared" message from
2092 * ext4_free_inode(). The only reason we would point at a wrong inode is if
2093 * e2fsck was run on this filesystem, and it must have already done the orphan
2094 * inode cleanup for us, so we can safely abort without any further action.
2095 */
2096 static void ext4_orphan_cleanup(struct super_block *sb,
2097 struct ext4_super_block *es)
2098 {
2099 unsigned int s_flags = sb->s_flags;
2100 int nr_orphans = 0, nr_truncates = 0;
2101 #ifdef CONFIG_QUOTA
2102 int i;
2103 #endif
2104 if (!es->s_last_orphan) {
2105 jbd_debug(4, "no orphan inodes to clean up\n");
2106 return;
2107 }
2108
2109 if (bdev_read_only(sb->s_bdev)) {
2110 ext4_msg(sb, KERN_ERR, "write access "
2111 "unavailable, skipping orphan cleanup");
2112 return;
2113 }
2114
2115 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2116 if (es->s_last_orphan)
2117 jbd_debug(1, "Errors on filesystem, "
2118 "clearing orphan list.\n");
2119 es->s_last_orphan = 0;
2120 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2121 return;
2122 }
2123
2124 if (s_flags & MS_RDONLY) {
2125 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs");
2126 sb->s_flags &= ~MS_RDONLY;
2127 }
2128 #ifdef CONFIG_QUOTA
2129 /* Needed for iput() to work correctly and not trash data */
2130 sb->s_flags |= MS_ACTIVE;
2131 /* Turn on quotas so that they are updated correctly */
2132 for (i = 0; i < MAXQUOTAS; i++) {
2133 if (EXT4_SB(sb)->s_qf_names[i]) {
2134 int ret = ext4_quota_on_mount(sb, i);
2135 if (ret < 0)
2136 ext4_msg(sb, KERN_ERR,
2137 "Cannot turn on journaled "
2138 "quota: error %d", ret);
2139 }
2140 }
2141 #endif
2142
2143 while (es->s_last_orphan) {
2144 struct inode *inode;
2145
2146 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan));
2147 if (IS_ERR(inode)) {
2148 es->s_last_orphan = 0;
2149 break;
2150 }
2151
2152 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan);
2153 dquot_initialize(inode);
2154 if (inode->i_nlink) {
2155 ext4_msg(sb, KERN_DEBUG,
2156 "%s: truncating inode %lu to %lld bytes",
2157 __func__, inode->i_ino, inode->i_size);
2158 jbd_debug(2, "truncating inode %lu to %lld bytes\n",
2159 inode->i_ino, inode->i_size);
2160 ext4_truncate(inode);
2161 nr_truncates++;
2162 } else {
2163 ext4_msg(sb, KERN_DEBUG,
2164 "%s: deleting unreferenced inode %lu",
2165 __func__, inode->i_ino);
2166 jbd_debug(2, "deleting unreferenced inode %lu\n",
2167 inode->i_ino);
2168 nr_orphans++;
2169 }
2170 iput(inode); /* The delete magic happens here! */
2171 }
2172
2173 #define PLURAL(x) (x), ((x) == 1) ? "" : "s"
2174
2175 if (nr_orphans)
2176 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted",
2177 PLURAL(nr_orphans));
2178 if (nr_truncates)
2179 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up",
2180 PLURAL(nr_truncates));
2181 #ifdef CONFIG_QUOTA
2182 /* Turn quotas off */
2183 for (i = 0; i < MAXQUOTAS; i++) {
2184 if (sb_dqopt(sb)->files[i])
2185 dquot_quota_off(sb, i);
2186 }
2187 #endif
2188 sb->s_flags = s_flags; /* Restore MS_RDONLY status */
2189 }
2190
2191 /*
2192 * Maximal extent format file size.
2193 * Resulting logical blkno at s_maxbytes must fit in our on-disk
2194 * extent format containers, within a sector_t, and within i_blocks
2195 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units,
2196 * so that won't be a limiting factor.
2197 *
2198 * Note, this does *not* consider any metadata overhead for vfs i_blocks.
2199 */
2200 static loff_t ext4_max_size(int blkbits, int has_huge_files)
2201 {
2202 loff_t res;
2203 loff_t upper_limit = MAX_LFS_FILESIZE;
2204
2205 /* small i_blocks in vfs inode? */
2206 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2207 /*
2208 * CONFIG_LBDAF is not enabled implies the inode
2209 * i_block represent total blocks in 512 bytes
2210 * 32 == size of vfs inode i_blocks * 8
2211 */
2212 upper_limit = (1LL << 32) - 1;
2213
2214 /* total blocks in file system block size */
2215 upper_limit >>= (blkbits - 9);
2216 upper_limit <<= blkbits;
2217 }
2218
2219 /* 32-bit extent-start container, ee_block */
2220 res = 1LL << 32;
2221 res <<= blkbits;
2222 res -= 1;
2223
2224 /* Sanity check against vm- & vfs- imposed limits */
2225 if (res > upper_limit)
2226 res = upper_limit;
2227
2228 return res;
2229 }
2230
2231 /*
2232 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect
2233 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
2234 * We need to be 1 filesystem block less than the 2^48 sector limit.
2235 */
2236 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
2237 {
2238 loff_t res = EXT4_NDIR_BLOCKS;
2239 int meta_blocks;
2240 loff_t upper_limit;
2241 /* This is calculated to be the largest file size for a dense, block
2242 * mapped file such that the file's total number of 512-byte sectors,
2243 * including data and all indirect blocks, does not exceed (2^48 - 1).
2244 *
2245 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
2246 * number of 512-byte sectors of the file.
2247 */
2248
2249 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2250 /*
2251 * !has_huge_files or CONFIG_LBDAF not enabled implies that
2252 * the inode i_block field represents total file blocks in
2253 * 2^32 512-byte sectors == size of vfs inode i_blocks * 8
2254 */
2255 upper_limit = (1LL << 32) - 1;
2256
2257 /* total blocks in file system block size */
2258 upper_limit >>= (bits - 9);
2259
2260 } else {
2261 /*
2262 * We use 48 bit ext4_inode i_blocks
2263 * With EXT4_HUGE_FILE_FL set the i_blocks
2264 * represent total number of blocks in
2265 * file system block size
2266 */
2267 upper_limit = (1LL << 48) - 1;
2268
2269 }
2270
2271 /* indirect blocks */
2272 meta_blocks = 1;
2273 /* double indirect blocks */
2274 meta_blocks += 1 + (1LL << (bits-2));
2275 /* tripple indirect blocks */
2276 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2)));
2277
2278 upper_limit -= meta_blocks;
2279 upper_limit <<= bits;
2280
2281 res += 1LL << (bits-2);
2282 res += 1LL << (2*(bits-2));
2283 res += 1LL << (3*(bits-2));
2284 res <<= bits;
2285 if (res > upper_limit)
2286 res = upper_limit;
2287
2288 if (res > MAX_LFS_FILESIZE)
2289 res = MAX_LFS_FILESIZE;
2290
2291 return res;
2292 }
2293
2294 static ext4_fsblk_t descriptor_loc(struct super_block *sb,
2295 ext4_fsblk_t logical_sb_block, int nr)
2296 {
2297 struct ext4_sb_info *sbi = EXT4_SB(sb);
2298 ext4_group_t bg, first_meta_bg;
2299 int has_super = 0;
2300
2301 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
2302
2303 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_META_BG) ||
2304 nr < first_meta_bg)
2305 return logical_sb_block + nr + 1;
2306 bg = sbi->s_desc_per_block * nr;
2307 if (ext4_bg_has_super(sb, bg))
2308 has_super = 1;
2309
2310 return (has_super + ext4_group_first_block_no(sb, bg));
2311 }
2312
2313 /**
2314 * ext4_get_stripe_size: Get the stripe size.
2315 * @sbi: In memory super block info
2316 *
2317 * If we have specified it via mount option, then
2318 * use the mount option value. If the value specified at mount time is
2319 * greater than the blocks per group use the super block value.
2320 * If the super block value is greater than blocks per group return 0.
2321 * Allocator needs it be less than blocks per group.
2322 *
2323 */
2324 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
2325 {
2326 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
2327 unsigned long stripe_width =
2328 le32_to_cpu(sbi->s_es->s_raid_stripe_width);
2329
2330 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
2331 return sbi->s_stripe;
2332
2333 if (stripe_width <= sbi->s_blocks_per_group)
2334 return stripe_width;
2335
2336 if (stride <= sbi->s_blocks_per_group)
2337 return stride;
2338
2339 return 0;
2340 }
2341
2342 /* sysfs supprt */
2343
2344 struct ext4_attr {
2345 struct attribute attr;
2346 ssize_t (*show)(struct ext4_attr *, struct ext4_sb_info *, char *);
2347 ssize_t (*store)(struct ext4_attr *, struct ext4_sb_info *,
2348 const char *, size_t);
2349 int offset;
2350 };
2351
2352 static int parse_strtoul(const char *buf,
2353 unsigned long max, unsigned long *value)
2354 {
2355 char *endp;
2356
2357 *value = simple_strtoul(skip_spaces(buf), &endp, 0);
2358 endp = skip_spaces(endp);
2359 if (*endp || *value > max)
2360 return -EINVAL;
2361
2362 return 0;
2363 }
2364
2365 static ssize_t delayed_allocation_blocks_show(struct ext4_attr *a,
2366 struct ext4_sb_info *sbi,
2367 char *buf)
2368 {
2369 return snprintf(buf, PAGE_SIZE, "%llu\n",
2370 (s64) percpu_counter_sum(&sbi->s_dirtyblocks_counter));
2371 }
2372
2373 static ssize_t session_write_kbytes_show(struct ext4_attr *a,
2374 struct ext4_sb_info *sbi, char *buf)
2375 {
2376 struct super_block *sb = sbi->s_buddy_cache->i_sb;
2377
2378 if (!sb->s_bdev->bd_part)
2379 return snprintf(buf, PAGE_SIZE, "0\n");
2380 return snprintf(buf, PAGE_SIZE, "%lu\n",
2381 (part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
2382 sbi->s_sectors_written_start) >> 1);
2383 }
2384
2385 static ssize_t lifetime_write_kbytes_show(struct ext4_attr *a,
2386 struct ext4_sb_info *sbi, char *buf)
2387 {
2388 struct super_block *sb = sbi->s_buddy_cache->i_sb;
2389
2390 if (!sb->s_bdev->bd_part)
2391 return snprintf(buf, PAGE_SIZE, "0\n");
2392 return snprintf(buf, PAGE_SIZE, "%llu\n",
2393 (unsigned long long)(sbi->s_kbytes_written +
2394 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
2395 EXT4_SB(sb)->s_sectors_written_start) >> 1)));
2396 }
2397
2398 static ssize_t inode_readahead_blks_store(struct ext4_attr *a,
2399 struct ext4_sb_info *sbi,
2400 const char *buf, size_t count)
2401 {
2402 unsigned long t;
2403
2404 if (parse_strtoul(buf, 0x40000000, &t))
2405 return -EINVAL;
2406
2407 if (!is_power_of_2(t))
2408 return -EINVAL;
2409
2410 sbi->s_inode_readahead_blks = t;
2411 return count;
2412 }
2413
2414 static ssize_t sbi_ui_show(struct ext4_attr *a,
2415 struct ext4_sb_info *sbi, char *buf)
2416 {
2417 unsigned int *ui = (unsigned int *) (((char *) sbi) + a->offset);
2418
2419 return snprintf(buf, PAGE_SIZE, "%u\n", *ui);
2420 }
2421
2422 static ssize_t sbi_ui_store(struct ext4_attr *a,
2423 struct ext4_sb_info *sbi,
2424 const char *buf, size_t count)
2425 {
2426 unsigned int *ui = (unsigned int *) (((char *) sbi) + a->offset);
2427 unsigned long t;
2428
2429 if (parse_strtoul(buf, 0xffffffff, &t))
2430 return -EINVAL;
2431 *ui = t;
2432 return count;
2433 }
2434
2435 #define EXT4_ATTR_OFFSET(_name,_mode,_show,_store,_elname) \
2436 static struct ext4_attr ext4_attr_##_name = { \
2437 .attr = {.name = __stringify(_name), .mode = _mode }, \
2438 .show = _show, \
2439 .store = _store, \
2440 .offset = offsetof(struct ext4_sb_info, _elname), \
2441 }
2442 #define EXT4_ATTR(name, mode, show, store) \
2443 static struct ext4_attr ext4_attr_##name = __ATTR(name, mode, show, store)
2444
2445 #define EXT4_INFO_ATTR(name) EXT4_ATTR(name, 0444, NULL, NULL)
2446 #define EXT4_RO_ATTR(name) EXT4_ATTR(name, 0444, name##_show, NULL)
2447 #define EXT4_RW_ATTR(name) EXT4_ATTR(name, 0644, name##_show, name##_store)
2448 #define EXT4_RW_ATTR_SBI_UI(name, elname) \
2449 EXT4_ATTR_OFFSET(name, 0644, sbi_ui_show, sbi_ui_store, elname)
2450 #define ATTR_LIST(name) &ext4_attr_##name.attr
2451
2452 EXT4_RO_ATTR(delayed_allocation_blocks);
2453 EXT4_RO_ATTR(session_write_kbytes);
2454 EXT4_RO_ATTR(lifetime_write_kbytes);
2455 EXT4_ATTR_OFFSET(inode_readahead_blks, 0644, sbi_ui_show,
2456 inode_readahead_blks_store, s_inode_readahead_blks);
2457 EXT4_RW_ATTR_SBI_UI(inode_goal, s_inode_goal);
2458 EXT4_RW_ATTR_SBI_UI(mb_stats, s_mb_stats);
2459 EXT4_RW_ATTR_SBI_UI(mb_max_to_scan, s_mb_max_to_scan);
2460 EXT4_RW_ATTR_SBI_UI(mb_min_to_scan, s_mb_min_to_scan);
2461 EXT4_RW_ATTR_SBI_UI(mb_order2_req, s_mb_order2_reqs);
2462 EXT4_RW_ATTR_SBI_UI(mb_stream_req, s_mb_stream_request);
2463 EXT4_RW_ATTR_SBI_UI(mb_group_prealloc, s_mb_group_prealloc);
2464 EXT4_RW_ATTR_SBI_UI(max_writeback_mb_bump, s_max_writeback_mb_bump);
2465
2466 static struct attribute *ext4_attrs[] = {
2467 ATTR_LIST(delayed_allocation_blocks),
2468 ATTR_LIST(session_write_kbytes),
2469 ATTR_LIST(lifetime_write_kbytes),
2470 ATTR_LIST(inode_readahead_blks),
2471 ATTR_LIST(inode_goal),
2472 ATTR_LIST(mb_stats),
2473 ATTR_LIST(mb_max_to_scan),
2474 ATTR_LIST(mb_min_to_scan),
2475 ATTR_LIST(mb_order2_req),
2476 ATTR_LIST(mb_stream_req),
2477 ATTR_LIST(mb_group_prealloc),
2478 ATTR_LIST(max_writeback_mb_bump),
2479 NULL,
2480 };
2481
2482 /* Features this copy of ext4 supports */
2483 EXT4_INFO_ATTR(lazy_itable_init);
2484 EXT4_INFO_ATTR(batched_discard);
2485
2486 static struct attribute *ext4_feat_attrs[] = {
2487 ATTR_LIST(lazy_itable_init),
2488 ATTR_LIST(batched_discard),
2489 NULL,
2490 };
2491
2492 static ssize_t ext4_attr_show(struct kobject *kobj,
2493 struct attribute *attr, char *buf)
2494 {
2495 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2496 s_kobj);
2497 struct ext4_attr *a = container_of(attr, struct ext4_attr, attr);
2498
2499 return a->show ? a->show(a, sbi, buf) : 0;
2500 }
2501
2502 static ssize_t ext4_attr_store(struct kobject *kobj,
2503 struct attribute *attr,
2504 const char *buf, size_t len)
2505 {
2506 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2507 s_kobj);
2508 struct ext4_attr *a = container_of(attr, struct ext4_attr, attr);
2509
2510 return a->store ? a->store(a, sbi, buf, len) : 0;
2511 }
2512
2513 static void ext4_sb_release(struct kobject *kobj)
2514 {
2515 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2516 s_kobj);
2517 complete(&sbi->s_kobj_unregister);
2518 }
2519
2520 static const struct sysfs_ops ext4_attr_ops = {
2521 .show = ext4_attr_show,
2522 .store = ext4_attr_store,
2523 };
2524
2525 static struct kobj_type ext4_ktype = {
2526 .default_attrs = ext4_attrs,
2527 .sysfs_ops = &ext4_attr_ops,
2528 .release = ext4_sb_release,
2529 };
2530
2531 static void ext4_feat_release(struct kobject *kobj)
2532 {
2533 complete(&ext4_feat->f_kobj_unregister);
2534 }
2535
2536 static struct kobj_type ext4_feat_ktype = {
2537 .default_attrs = ext4_feat_attrs,
2538 .sysfs_ops = &ext4_attr_ops,
2539 .release = ext4_feat_release,
2540 };
2541
2542 /*
2543 * Check whether this filesystem can be mounted based on
2544 * the features present and the RDONLY/RDWR mount requested.
2545 * Returns 1 if this filesystem can be mounted as requested,
2546 * 0 if it cannot be.
2547 */
2548 static int ext4_feature_set_ok(struct super_block *sb, int readonly)
2549 {
2550 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT4_FEATURE_INCOMPAT_SUPP)) {
2551 ext4_msg(sb, KERN_ERR,
2552 "Couldn't mount because of "
2553 "unsupported optional features (%x)",
2554 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
2555 ~EXT4_FEATURE_INCOMPAT_SUPP));
2556 return 0;
2557 }
2558
2559 if (readonly)
2560 return 1;
2561
2562 /* Check that feature set is OK for a read-write mount */
2563 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT4_FEATURE_RO_COMPAT_SUPP)) {
2564 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
2565 "unsupported optional features (%x)",
2566 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
2567 ~EXT4_FEATURE_RO_COMPAT_SUPP));
2568 return 0;
2569 }
2570 /*
2571 * Large file size enabled file system can only be mounted
2572 * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF
2573 */
2574 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
2575 if (sizeof(blkcnt_t) < sizeof(u64)) {
2576 ext4_msg(sb, KERN_ERR, "Filesystem with huge files "
2577 "cannot be mounted RDWR without "
2578 "CONFIG_LBDAF");
2579 return 0;
2580 }
2581 }
2582 return 1;
2583 }
2584
2585 /*
2586 * This function is called once a day if we have errors logged
2587 * on the file system
2588 */
2589 static void print_daily_error_info(unsigned long arg)
2590 {
2591 struct super_block *sb = (struct super_block *) arg;
2592 struct ext4_sb_info *sbi;
2593 struct ext4_super_block *es;
2594
2595 sbi = EXT4_SB(sb);
2596 es = sbi->s_es;
2597
2598 if (es->s_error_count)
2599 ext4_msg(sb, KERN_NOTICE, "error count: %u",
2600 le32_to_cpu(es->s_error_count));
2601 if (es->s_first_error_time) {
2602 printk(KERN_NOTICE "EXT4-fs (%s): initial error at %u: %.*s:%d",
2603 sb->s_id, le32_to_cpu(es->s_first_error_time),
2604 (int) sizeof(es->s_first_error_func),
2605 es->s_first_error_func,
2606 le32_to_cpu(es->s_first_error_line));
2607 if (es->s_first_error_ino)
2608 printk(": inode %u",
2609 le32_to_cpu(es->s_first_error_ino));
2610 if (es->s_first_error_block)
2611 printk(": block %llu", (unsigned long long)
2612 le64_to_cpu(es->s_first_error_block));
2613 printk("\n");
2614 }
2615 if (es->s_last_error_time) {
2616 printk(KERN_NOTICE "EXT4-fs (%s): last error at %u: %.*s:%d",
2617 sb->s_id, le32_to_cpu(es->s_last_error_time),
2618 (int) sizeof(es->s_last_error_func),
2619 es->s_last_error_func,
2620 le32_to_cpu(es->s_last_error_line));
2621 if (es->s_last_error_ino)
2622 printk(": inode %u",
2623 le32_to_cpu(es->s_last_error_ino));
2624 if (es->s_last_error_block)
2625 printk(": block %llu", (unsigned long long)
2626 le64_to_cpu(es->s_last_error_block));
2627 printk("\n");
2628 }
2629 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */
2630 }
2631
2632 static void ext4_lazyinode_timeout(unsigned long data)
2633 {
2634 struct task_struct *p = (struct task_struct *)data;
2635 wake_up_process(p);
2636 }
2637
2638 /* Find next suitable group and run ext4_init_inode_table */
2639 static int ext4_run_li_request(struct ext4_li_request *elr)
2640 {
2641 struct ext4_group_desc *gdp = NULL;
2642 ext4_group_t group, ngroups;
2643 struct super_block *sb;
2644 unsigned long timeout = 0;
2645 int ret = 0;
2646
2647 sb = elr->lr_super;
2648 ngroups = EXT4_SB(sb)->s_groups_count;
2649
2650 for (group = elr->lr_next_group; group < ngroups; group++) {
2651 gdp = ext4_get_group_desc(sb, group, NULL);
2652 if (!gdp) {
2653 ret = 1;
2654 break;
2655 }
2656
2657 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2658 break;
2659 }
2660
2661 if (group == ngroups)
2662 ret = 1;
2663
2664 if (!ret) {
2665 timeout = jiffies;
2666 ret = ext4_init_inode_table(sb, group,
2667 elr->lr_timeout ? 0 : 1);
2668 if (elr->lr_timeout == 0) {
2669 timeout = jiffies - timeout;
2670 if (elr->lr_sbi->s_li_wait_mult)
2671 timeout *= elr->lr_sbi->s_li_wait_mult;
2672 else
2673 timeout *= 20;
2674 elr->lr_timeout = timeout;
2675 }
2676 elr->lr_next_sched = jiffies + elr->lr_timeout;
2677 elr->lr_next_group = group + 1;
2678 }
2679
2680 return ret;
2681 }
2682
2683 /*
2684 * Remove lr_request from the list_request and free the
2685 * request tructure. Should be called with li_list_mtx held
2686 */
2687 static void ext4_remove_li_request(struct ext4_li_request *elr)
2688 {
2689 struct ext4_sb_info *sbi;
2690
2691 if (!elr)
2692 return;
2693
2694 sbi = elr->lr_sbi;
2695
2696 list_del(&elr->lr_request);
2697 sbi->s_li_request = NULL;
2698 kfree(elr);
2699 }
2700
2701 static void ext4_unregister_li_request(struct super_block *sb)
2702 {
2703 struct ext4_li_request *elr = EXT4_SB(sb)->s_li_request;
2704
2705 if (!ext4_li_info)
2706 return;
2707
2708 mutex_lock(&ext4_li_info->li_list_mtx);
2709 ext4_remove_li_request(elr);
2710 mutex_unlock(&ext4_li_info->li_list_mtx);
2711 }
2712
2713 /*
2714 * This is the function where ext4lazyinit thread lives. It walks
2715 * through the request list searching for next scheduled filesystem.
2716 * When such a fs is found, run the lazy initialization request
2717 * (ext4_rn_li_request) and keep track of the time spend in this
2718 * function. Based on that time we compute next schedule time of
2719 * the request. When walking through the list is complete, compute
2720 * next waking time and put itself into sleep.
2721 */
2722 static int ext4_lazyinit_thread(void *arg)
2723 {
2724 struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg;
2725 struct list_head *pos, *n;
2726 struct ext4_li_request *elr;
2727 unsigned long next_wakeup;
2728 DEFINE_WAIT(wait);
2729
2730 BUG_ON(NULL == eli);
2731
2732 eli->li_timer.data = (unsigned long)current;
2733 eli->li_timer.function = ext4_lazyinode_timeout;
2734
2735 eli->li_task = current;
2736 wake_up(&eli->li_wait_task);
2737
2738 cont_thread:
2739 while (true) {
2740 next_wakeup = MAX_JIFFY_OFFSET;
2741
2742 mutex_lock(&eli->li_list_mtx);
2743 if (list_empty(&eli->li_request_list)) {
2744 mutex_unlock(&eli->li_list_mtx);
2745 goto exit_thread;
2746 }
2747
2748 list_for_each_safe(pos, n, &eli->li_request_list) {
2749 elr = list_entry(pos, struct ext4_li_request,
2750 lr_request);
2751
2752 if (time_after_eq(jiffies, elr->lr_next_sched)) {
2753 if (ext4_run_li_request(elr) != 0) {
2754 /* error, remove the lazy_init job */
2755 ext4_remove_li_request(elr);
2756 continue;
2757 }
2758 }
2759
2760 if (time_before(elr->lr_next_sched, next_wakeup))
2761 next_wakeup = elr->lr_next_sched;
2762 }
2763 mutex_unlock(&eli->li_list_mtx);
2764
2765 if (freezing(current))
2766 refrigerator();
2767
2768 if ((time_after_eq(jiffies, next_wakeup)) ||
2769 (MAX_JIFFY_OFFSET == next_wakeup)) {
2770 cond_resched();
2771 continue;
2772 }
2773
2774 eli->li_timer.expires = next_wakeup;
2775 add_timer(&eli->li_timer);
2776 prepare_to_wait(&eli->li_wait_daemon, &wait,
2777 TASK_INTERRUPTIBLE);
2778 if (time_before(jiffies, next_wakeup))
2779 schedule();
2780 finish_wait(&eli->li_wait_daemon, &wait);
2781 }
2782
2783 exit_thread:
2784 /*
2785 * It looks like the request list is empty, but we need
2786 * to check it under the li_list_mtx lock, to prevent any
2787 * additions into it, and of course we should lock ext4_li_mtx
2788 * to atomically free the list and ext4_li_info, because at
2789 * this point another ext4 filesystem could be registering
2790 * new one.
2791 */
2792 mutex_lock(&ext4_li_mtx);
2793 mutex_lock(&eli->li_list_mtx);
2794 if (!list_empty(&eli->li_request_list)) {
2795 mutex_unlock(&eli->li_list_mtx);
2796 mutex_unlock(&ext4_li_mtx);
2797 goto cont_thread;
2798 }
2799 mutex_unlock(&eli->li_list_mtx);
2800 del_timer_sync(&ext4_li_info->li_timer);
2801 eli->li_task = NULL;
2802 wake_up(&eli->li_wait_task);
2803
2804 kfree(ext4_li_info);
2805 ext4_li_info = NULL;
2806 mutex_unlock(&ext4_li_mtx);
2807
2808 return 0;
2809 }
2810
2811 static void ext4_clear_request_list(void)
2812 {
2813 struct list_head *pos, *n;
2814 struct ext4_li_request *elr;
2815
2816 mutex_lock(&ext4_li_info->li_list_mtx);
2817 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
2818 elr = list_entry(pos, struct ext4_li_request,
2819 lr_request);
2820 ext4_remove_li_request(elr);
2821 }
2822 mutex_unlock(&ext4_li_info->li_list_mtx);
2823 }
2824
2825 static int ext4_run_lazyinit_thread(void)
2826 {
2827 struct task_struct *t;
2828
2829 t = kthread_run(ext4_lazyinit_thread, ext4_li_info, "ext4lazyinit");
2830 if (IS_ERR(t)) {
2831 int err = PTR_ERR(t);
2832 ext4_clear_request_list();
2833 del_timer_sync(&ext4_li_info->li_timer);
2834 kfree(ext4_li_info);
2835 ext4_li_info = NULL;
2836 printk(KERN_CRIT "EXT4: error %d creating inode table "
2837 "initialization thread\n",
2838 err);
2839 return err;
2840 }
2841 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
2842
2843 wait_event(ext4_li_info->li_wait_task, ext4_li_info->li_task != NULL);
2844 return 0;
2845 }
2846
2847 /*
2848 * Check whether it make sense to run itable init. thread or not.
2849 * If there is at least one uninitialized inode table, return
2850 * corresponding group number, else the loop goes through all
2851 * groups and return total number of groups.
2852 */
2853 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
2854 {
2855 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
2856 struct ext4_group_desc *gdp = NULL;
2857
2858 for (group = 0; group < ngroups; group++) {
2859 gdp = ext4_get_group_desc(sb, group, NULL);
2860 if (!gdp)
2861 continue;
2862
2863 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2864 break;
2865 }
2866
2867 return group;
2868 }
2869
2870 static int ext4_li_info_new(void)
2871 {
2872 struct ext4_lazy_init *eli = NULL;
2873
2874 eli = kzalloc(sizeof(*eli), GFP_KERNEL);
2875 if (!eli)
2876 return -ENOMEM;
2877
2878 eli->li_task = NULL;
2879 INIT_LIST_HEAD(&eli->li_request_list);
2880 mutex_init(&eli->li_list_mtx);
2881
2882 init_waitqueue_head(&eli->li_wait_daemon);
2883 init_waitqueue_head(&eli->li_wait_task);
2884 init_timer(&eli->li_timer);
2885 eli->li_state |= EXT4_LAZYINIT_QUIT;
2886
2887 ext4_li_info = eli;
2888
2889 return 0;
2890 }
2891
2892 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
2893 ext4_group_t start)
2894 {
2895 struct ext4_sb_info *sbi = EXT4_SB(sb);
2896 struct ext4_li_request *elr;
2897 unsigned long rnd;
2898
2899 elr = kzalloc(sizeof(*elr), GFP_KERNEL);
2900 if (!elr)
2901 return NULL;
2902
2903 elr->lr_super = sb;
2904 elr->lr_sbi = sbi;
2905 elr->lr_next_group = start;
2906
2907 /*
2908 * Randomize first schedule time of the request to
2909 * spread the inode table initialization requests
2910 * better.
2911 */
2912 get_random_bytes(&rnd, sizeof(rnd));
2913 elr->lr_next_sched = jiffies + (unsigned long)rnd %
2914 (EXT4_DEF_LI_MAX_START_DELAY * HZ);
2915
2916 return elr;
2917 }
2918
2919 static int ext4_register_li_request(struct super_block *sb,
2920 ext4_group_t first_not_zeroed)
2921 {
2922 struct ext4_sb_info *sbi = EXT4_SB(sb);
2923 struct ext4_li_request *elr;
2924 ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count;
2925 int ret;
2926
2927 if (sbi->s_li_request != NULL)
2928 return 0;
2929
2930 if (first_not_zeroed == ngroups ||
2931 (sb->s_flags & MS_RDONLY) ||
2932 !test_opt(sb, INIT_INODE_TABLE)) {
2933 sbi->s_li_request = NULL;
2934 return 0;
2935 }
2936
2937 if (first_not_zeroed == ngroups) {
2938 sbi->s_li_request = NULL;
2939 return 0;
2940 }
2941
2942 elr = ext4_li_request_new(sb, first_not_zeroed);
2943 if (!elr)
2944 return -ENOMEM;
2945
2946 mutex_lock(&ext4_li_mtx);
2947
2948 if (NULL == ext4_li_info) {
2949 ret = ext4_li_info_new();
2950 if (ret)
2951 goto out;
2952 }
2953
2954 mutex_lock(&ext4_li_info->li_list_mtx);
2955 list_add(&elr->lr_request, &ext4_li_info->li_request_list);
2956 mutex_unlock(&ext4_li_info->li_list_mtx);
2957
2958 sbi->s_li_request = elr;
2959
2960 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
2961 ret = ext4_run_lazyinit_thread();
2962 if (ret)
2963 goto out;
2964 }
2965 out:
2966 mutex_unlock(&ext4_li_mtx);
2967 if (ret)
2968 kfree(elr);
2969 return ret;
2970 }
2971
2972 /*
2973 * We do not need to lock anything since this is called on
2974 * module unload.
2975 */
2976 static void ext4_destroy_lazyinit_thread(void)
2977 {
2978 /*
2979 * If thread exited earlier
2980 * there's nothing to be done.
2981 */
2982 if (!ext4_li_info)
2983 return;
2984
2985 ext4_clear_request_list();
2986
2987 while (ext4_li_info->li_task) {
2988 wake_up(&ext4_li_info->li_wait_daemon);
2989 wait_event(ext4_li_info->li_wait_task,
2990 ext4_li_info->li_task == NULL);
2991 }
2992 }
2993
2994 static int ext4_fill_super(struct super_block *sb, void *data, int silent)
2995 __releases(kernel_lock)
2996 __acquires(kernel_lock)
2997 {
2998 char *orig_data = kstrdup(data, GFP_KERNEL);
2999 struct buffer_head *bh;
3000 struct ext4_super_block *es = NULL;
3001 struct ext4_sb_info *sbi;
3002 ext4_fsblk_t block;
3003 ext4_fsblk_t sb_block = get_sb_block(&data);
3004 ext4_fsblk_t logical_sb_block;
3005 unsigned long offset = 0;
3006 unsigned long journal_devnum = 0;
3007 unsigned long def_mount_opts;
3008 struct inode *root;
3009 char *cp;
3010 const char *descr;
3011 int ret = -ENOMEM;
3012 int blocksize;
3013 unsigned int db_count;
3014 unsigned int i;
3015 int needs_recovery, has_huge_files;
3016 __u64 blocks_count;
3017 int err;
3018 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
3019 ext4_group_t first_not_zeroed;
3020
3021 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
3022 if (!sbi)
3023 goto out_free_orig;
3024
3025 sbi->s_blockgroup_lock =
3026 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
3027 if (!sbi->s_blockgroup_lock) {
3028 kfree(sbi);
3029 goto out_free_orig;
3030 }
3031 sb->s_fs_info = sbi;
3032 sbi->s_mount_opt = 0;
3033 sbi->s_resuid = EXT4_DEF_RESUID;
3034 sbi->s_resgid = EXT4_DEF_RESGID;
3035 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
3036 sbi->s_sb_block = sb_block;
3037 if (sb->s_bdev->bd_part)
3038 sbi->s_sectors_written_start =
3039 part_stat_read(sb->s_bdev->bd_part, sectors[1]);
3040
3041 /* Cleanup superblock name */
3042 for (cp = sb->s_id; (cp = strchr(cp, '/'));)
3043 *cp = '!';
3044
3045 ret = -EINVAL;
3046 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
3047 if (!blocksize) {
3048 ext4_msg(sb, KERN_ERR, "unable to set blocksize");
3049 goto out_fail;
3050 }
3051
3052 /*
3053 * The ext4 superblock will not be buffer aligned for other than 1kB
3054 * block sizes. We need to calculate the offset from buffer start.
3055 */
3056 if (blocksize != EXT4_MIN_BLOCK_SIZE) {
3057 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3058 offset = do_div(logical_sb_block, blocksize);
3059 } else {
3060 logical_sb_block = sb_block;
3061 }
3062
3063 if (!(bh = sb_bread(sb, logical_sb_block))) {
3064 ext4_msg(sb, KERN_ERR, "unable to read superblock");
3065 goto out_fail;
3066 }
3067 /*
3068 * Note: s_es must be initialized as soon as possible because
3069 * some ext4 macro-instructions depend on its value
3070 */
3071 es = (struct ext4_super_block *) (((char *)bh->b_data) + offset);
3072 sbi->s_es = es;
3073 sb->s_magic = le16_to_cpu(es->s_magic);
3074 if (sb->s_magic != EXT4_SUPER_MAGIC)
3075 goto cantfind_ext4;
3076 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
3077
3078 /* Set defaults before we parse the mount options */
3079 def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
3080 set_opt(sb, INIT_INODE_TABLE);
3081 if (def_mount_opts & EXT4_DEFM_DEBUG)
3082 set_opt(sb, DEBUG);
3083 if (def_mount_opts & EXT4_DEFM_BSDGROUPS) {
3084 ext4_msg(sb, KERN_WARNING, deprecated_msg, "bsdgroups",
3085 "2.6.38");
3086 set_opt(sb, GRPID);
3087 }
3088 if (def_mount_opts & EXT4_DEFM_UID16)
3089 set_opt(sb, NO_UID32);
3090 #ifdef CONFIG_EXT4_FS_XATTR
3091 if (def_mount_opts & EXT4_DEFM_XATTR_USER)
3092 set_opt(sb, XATTR_USER);
3093 #endif
3094 #ifdef CONFIG_EXT4_FS_POSIX_ACL
3095 if (def_mount_opts & EXT4_DEFM_ACL)
3096 set_opt(sb, POSIX_ACL);
3097 #endif
3098 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
3099 set_opt(sb, JOURNAL_DATA);
3100 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
3101 set_opt(sb, ORDERED_DATA);
3102 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
3103 set_opt(sb, WRITEBACK_DATA);
3104
3105 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC)
3106 set_opt(sb, ERRORS_PANIC);
3107 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE)
3108 set_opt(sb, ERRORS_CONT);
3109 else
3110 set_opt(sb, ERRORS_RO);
3111 if (def_mount_opts & EXT4_DEFM_BLOCK_VALIDITY)
3112 set_opt(sb, BLOCK_VALIDITY);
3113 if (def_mount_opts & EXT4_DEFM_DISCARD)
3114 set_opt(sb, DISCARD);
3115
3116 sbi->s_resuid = le16_to_cpu(es->s_def_resuid);
3117 sbi->s_resgid = le16_to_cpu(es->s_def_resgid);
3118 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
3119 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
3120 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
3121
3122 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
3123 set_opt(sb, BARRIER);
3124
3125 /*
3126 * enable delayed allocation by default
3127 * Use -o nodelalloc to turn it off
3128 */
3129 if (!IS_EXT3_SB(sb) &&
3130 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
3131 set_opt(sb, DELALLOC);
3132
3133 if (!parse_options((char *) sbi->s_es->s_mount_opts, sb,
3134 &journal_devnum, &journal_ioprio, NULL, 0)) {
3135 ext4_msg(sb, KERN_WARNING,
3136 "failed to parse options in superblock: %s",
3137 sbi->s_es->s_mount_opts);
3138 }
3139 if (!parse_options((char *) data, sb, &journal_devnum,
3140 &journal_ioprio, NULL, 0))
3141 goto failed_mount;
3142
3143 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
3144 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
3145
3146 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
3147 (EXT4_HAS_COMPAT_FEATURE(sb, ~0U) ||
3148 EXT4_HAS_RO_COMPAT_FEATURE(sb, ~0U) ||
3149 EXT4_HAS_INCOMPAT_FEATURE(sb, ~0U)))
3150 ext4_msg(sb, KERN_WARNING,
3151 "feature flags set on rev 0 fs, "
3152 "running e2fsck is recommended");
3153
3154 /*
3155 * Check feature flags regardless of the revision level, since we
3156 * previously didn't change the revision level when setting the flags,
3157 * so there is a chance incompat flags are set on a rev 0 filesystem.
3158 */
3159 if (!ext4_feature_set_ok(sb, (sb->s_flags & MS_RDONLY)))
3160 goto failed_mount;
3161
3162 blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
3163
3164 if (blocksize < EXT4_MIN_BLOCK_SIZE ||
3165 blocksize > EXT4_MAX_BLOCK_SIZE) {
3166 ext4_msg(sb, KERN_ERR,
3167 "Unsupported filesystem blocksize %d", blocksize);
3168 goto failed_mount;
3169 }
3170
3171 if (sb->s_blocksize != blocksize) {
3172 /* Validate the filesystem blocksize */
3173 if (!sb_set_blocksize(sb, blocksize)) {
3174 ext4_msg(sb, KERN_ERR, "bad block size %d",
3175 blocksize);
3176 goto failed_mount;
3177 }
3178
3179 brelse(bh);
3180 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3181 offset = do_div(logical_sb_block, blocksize);
3182 bh = sb_bread(sb, logical_sb_block);
3183 if (!bh) {
3184 ext4_msg(sb, KERN_ERR,
3185 "Can't read superblock on 2nd try");
3186 goto failed_mount;
3187 }
3188 es = (struct ext4_super_block *)(((char *)bh->b_data) + offset);
3189 sbi->s_es = es;
3190 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
3191 ext4_msg(sb, KERN_ERR,
3192 "Magic mismatch, very weird!");
3193 goto failed_mount;
3194 }
3195 }
3196
3197 has_huge_files = EXT4_HAS_RO_COMPAT_FEATURE(sb,
3198 EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
3199 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
3200 has_huge_files);
3201 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
3202
3203 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
3204 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
3205 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
3206 } else {
3207 sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
3208 sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
3209 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
3210 (!is_power_of_2(sbi->s_inode_size)) ||
3211 (sbi->s_inode_size > blocksize)) {
3212 ext4_msg(sb, KERN_ERR,
3213 "unsupported inode size: %d",
3214 sbi->s_inode_size);
3215 goto failed_mount;
3216 }
3217 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE)
3218 sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2);
3219 }
3220
3221 sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
3222 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT)) {
3223 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
3224 sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
3225 !is_power_of_2(sbi->s_desc_size)) {
3226 ext4_msg(sb, KERN_ERR,
3227 "unsupported descriptor size %lu",
3228 sbi->s_desc_size);
3229 goto failed_mount;
3230 }
3231 } else
3232 sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
3233
3234 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
3235 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
3236 if (EXT4_INODE_SIZE(sb) == 0 || EXT4_INODES_PER_GROUP(sb) == 0)
3237 goto cantfind_ext4;
3238
3239 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb);
3240 if (sbi->s_inodes_per_block == 0)
3241 goto cantfind_ext4;
3242 sbi->s_itb_per_group = sbi->s_inodes_per_group /
3243 sbi->s_inodes_per_block;
3244 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb);
3245 sbi->s_sbh = bh;
3246 sbi->s_mount_state = le16_to_cpu(es->s_state);
3247 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
3248 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
3249
3250 for (i = 0; i < 4; i++)
3251 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
3252 sbi->s_def_hash_version = es->s_def_hash_version;
3253 i = le32_to_cpu(es->s_flags);
3254 if (i & EXT2_FLAGS_UNSIGNED_HASH)
3255 sbi->s_hash_unsigned = 3;
3256 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
3257 #ifdef __CHAR_UNSIGNED__
3258 es->s_flags |= cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
3259 sbi->s_hash_unsigned = 3;
3260 #else
3261 es->s_flags |= cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
3262 #endif
3263 sb->s_dirt = 1;
3264 }
3265
3266 if (sbi->s_blocks_per_group > blocksize * 8) {
3267 ext4_msg(sb, KERN_ERR,
3268 "#blocks per group too big: %lu",
3269 sbi->s_blocks_per_group);
3270 goto failed_mount;
3271 }
3272 if (sbi->s_inodes_per_group > blocksize * 8) {
3273 ext4_msg(sb, KERN_ERR,
3274 "#inodes per group too big: %lu",
3275 sbi->s_inodes_per_group);
3276 goto failed_mount;
3277 }
3278
3279 /*
3280 * Test whether we have more sectors than will fit in sector_t,
3281 * and whether the max offset is addressable by the page cache.
3282 */
3283 err = generic_check_addressable(sb->s_blocksize_bits,
3284 ext4_blocks_count(es));
3285 if (err) {
3286 ext4_msg(sb, KERN_ERR, "filesystem"
3287 " too large to mount safely on this system");
3288 if (sizeof(sector_t) < 8)
3289 ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled");
3290 ret = err;
3291 goto failed_mount;
3292 }
3293
3294 if (EXT4_BLOCKS_PER_GROUP(sb) == 0)
3295 goto cantfind_ext4;
3296
3297 /* check blocks count against device size */
3298 blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
3299 if (blocks_count && ext4_blocks_count(es) > blocks_count) {
3300 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
3301 "exceeds size of device (%llu blocks)",
3302 ext4_blocks_count(es), blocks_count);
3303 goto failed_mount;
3304 }
3305
3306 /*
3307 * It makes no sense for the first data block to be beyond the end
3308 * of the filesystem.
3309 */
3310 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
3311 ext4_msg(sb, KERN_WARNING, "bad geometry: first data"
3312 "block %u is beyond end of filesystem (%llu)",
3313 le32_to_cpu(es->s_first_data_block),
3314 ext4_blocks_count(es));
3315 goto failed_mount;
3316 }
3317 blocks_count = (ext4_blocks_count(es) -
3318 le32_to_cpu(es->s_first_data_block) +
3319 EXT4_BLOCKS_PER_GROUP(sb) - 1);
3320 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
3321 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
3322 ext4_msg(sb, KERN_WARNING, "groups count too large: %u "
3323 "(block count %llu, first data block %u, "
3324 "blocks per group %lu)", sbi->s_groups_count,
3325 ext4_blocks_count(es),
3326 le32_to_cpu(es->s_first_data_block),
3327 EXT4_BLOCKS_PER_GROUP(sb));
3328 goto failed_mount;
3329 }
3330 sbi->s_groups_count = blocks_count;
3331 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
3332 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
3333 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
3334 EXT4_DESC_PER_BLOCK(sb);
3335 sbi->s_group_desc = kmalloc(db_count * sizeof(struct buffer_head *),
3336 GFP_KERNEL);
3337 if (sbi->s_group_desc == NULL) {
3338 ext4_msg(sb, KERN_ERR, "not enough memory");
3339 goto failed_mount;
3340 }
3341
3342 #ifdef CONFIG_PROC_FS
3343 if (ext4_proc_root)
3344 sbi->s_proc = proc_mkdir(sb->s_id, ext4_proc_root);
3345 #endif
3346
3347 bgl_lock_init(sbi->s_blockgroup_lock);
3348
3349 for (i = 0; i < db_count; i++) {
3350 block = descriptor_loc(sb, logical_sb_block, i);
3351 sbi->s_group_desc[i] = sb_bread(sb, block);
3352 if (!sbi->s_group_desc[i]) {
3353 ext4_msg(sb, KERN_ERR,
3354 "can't read group descriptor %d", i);
3355 db_count = i;
3356 goto failed_mount2;
3357 }
3358 }
3359 if (!ext4_check_descriptors(sb, &first_not_zeroed)) {
3360 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
3361 goto failed_mount2;
3362 }
3363 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG))
3364 if (!ext4_fill_flex_info(sb)) {
3365 ext4_msg(sb, KERN_ERR,
3366 "unable to initialize "
3367 "flex_bg meta info!");
3368 goto failed_mount2;
3369 }
3370
3371 sbi->s_gdb_count = db_count;
3372 get_random_bytes(&sbi->s_next_generation, sizeof(u32));
3373 spin_lock_init(&sbi->s_next_gen_lock);
3374
3375 err = percpu_counter_init(&sbi->s_freeblocks_counter,
3376 ext4_count_free_blocks(sb));
3377 if (!err) {
3378 err = percpu_counter_init(&sbi->s_freeinodes_counter,
3379 ext4_count_free_inodes(sb));
3380 }
3381 if (!err) {
3382 err = percpu_counter_init(&sbi->s_dirs_counter,
3383 ext4_count_dirs(sb));
3384 }
3385 if (!err) {
3386 err = percpu_counter_init(&sbi->s_dirtyblocks_counter, 0);
3387 }
3388 if (err) {
3389 ext4_msg(sb, KERN_ERR, "insufficient memory");
3390 goto failed_mount3;
3391 }
3392
3393 sbi->s_stripe = ext4_get_stripe_size(sbi);
3394 sbi->s_max_writeback_mb_bump = 128;
3395
3396 /*
3397 * set up enough so that it can read an inode
3398 */
3399 if (!test_opt(sb, NOLOAD) &&
3400 EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL))
3401 sb->s_op = &ext4_sops;
3402 else
3403 sb->s_op = &ext4_nojournal_sops;
3404 sb->s_export_op = &ext4_export_ops;
3405 sb->s_xattr = ext4_xattr_handlers;
3406 #ifdef CONFIG_QUOTA
3407 sb->s_qcop = &ext4_qctl_operations;
3408 sb->dq_op = &ext4_quota_operations;
3409 #endif
3410 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
3411 mutex_init(&sbi->s_orphan_lock);
3412 mutex_init(&sbi->s_resize_lock);
3413
3414 sb->s_root = NULL;
3415
3416 needs_recovery = (es->s_last_orphan != 0 ||
3417 EXT4_HAS_INCOMPAT_FEATURE(sb,
3418 EXT4_FEATURE_INCOMPAT_RECOVER));
3419
3420 /*
3421 * The first inode we look at is the journal inode. Don't try
3422 * root first: it may be modified in the journal!
3423 */
3424 if (!test_opt(sb, NOLOAD) &&
3425 EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) {
3426 if (ext4_load_journal(sb, es, journal_devnum))
3427 goto failed_mount3;
3428 } else if (test_opt(sb, NOLOAD) && !(sb->s_flags & MS_RDONLY) &&
3429 EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) {
3430 ext4_msg(sb, KERN_ERR, "required journal recovery "
3431 "suppressed and not mounted read-only");
3432 goto failed_mount_wq;
3433 } else {
3434 clear_opt(sb, DATA_FLAGS);
3435 set_opt(sb, WRITEBACK_DATA);
3436 sbi->s_journal = NULL;
3437 needs_recovery = 0;
3438 goto no_journal;
3439 }
3440
3441 if (ext4_blocks_count(es) > 0xffffffffULL &&
3442 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
3443 JBD2_FEATURE_INCOMPAT_64BIT)) {
3444 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
3445 goto failed_mount_wq;
3446 }
3447
3448 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
3449 jbd2_journal_set_features(sbi->s_journal,
3450 JBD2_FEATURE_COMPAT_CHECKSUM, 0,
3451 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3452 } else if (test_opt(sb, JOURNAL_CHECKSUM)) {
3453 jbd2_journal_set_features(sbi->s_journal,
3454 JBD2_FEATURE_COMPAT_CHECKSUM, 0, 0);
3455 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3456 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3457 } else {
3458 jbd2_journal_clear_features(sbi->s_journal,
3459 JBD2_FEATURE_COMPAT_CHECKSUM, 0,
3460 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3461 }
3462
3463 /* We have now updated the journal if required, so we can
3464 * validate the data journaling mode. */
3465 switch (test_opt(sb, DATA_FLAGS)) {
3466 case 0:
3467 /* No mode set, assume a default based on the journal
3468 * capabilities: ORDERED_DATA if the journal can
3469 * cope, else JOURNAL_DATA
3470 */
3471 if (jbd2_journal_check_available_features
3472 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE))
3473 set_opt(sb, ORDERED_DATA);
3474 else
3475 set_opt(sb, JOURNAL_DATA);
3476 break;
3477
3478 case EXT4_MOUNT_ORDERED_DATA:
3479 case EXT4_MOUNT_WRITEBACK_DATA:
3480 if (!jbd2_journal_check_available_features
3481 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
3482 ext4_msg(sb, KERN_ERR, "Journal does not support "
3483 "requested data journaling mode");
3484 goto failed_mount_wq;
3485 }
3486 default:
3487 break;
3488 }
3489 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
3490
3491 /*
3492 * The journal may have updated the bg summary counts, so we
3493 * need to update the global counters.
3494 */
3495 percpu_counter_set(&sbi->s_freeblocks_counter,
3496 ext4_count_free_blocks(sb));
3497 percpu_counter_set(&sbi->s_freeinodes_counter,
3498 ext4_count_free_inodes(sb));
3499 percpu_counter_set(&sbi->s_dirs_counter,
3500 ext4_count_dirs(sb));
3501 percpu_counter_set(&sbi->s_dirtyblocks_counter, 0);
3502
3503 no_journal:
3504 EXT4_SB(sb)->dio_unwritten_wq = create_workqueue("ext4-dio-unwritten");
3505 if (!EXT4_SB(sb)->dio_unwritten_wq) {
3506 printk(KERN_ERR "EXT4-fs: failed to create DIO workqueue\n");
3507 goto failed_mount_wq;
3508 }
3509
3510 /*
3511 * The jbd2_journal_load will have done any necessary log recovery,
3512 * so we can safely mount the rest of the filesystem now.
3513 */
3514
3515 root = ext4_iget(sb, EXT4_ROOT_INO);
3516 if (IS_ERR(root)) {
3517 ext4_msg(sb, KERN_ERR, "get root inode failed");
3518 ret = PTR_ERR(root);
3519 goto failed_mount4;
3520 }
3521 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
3522 iput(root);
3523 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
3524 goto failed_mount4;
3525 }
3526 sb->s_root = d_alloc_root(root);
3527 if (!sb->s_root) {
3528 ext4_msg(sb, KERN_ERR, "get root dentry failed");
3529 iput(root);
3530 ret = -ENOMEM;
3531 goto failed_mount4;
3532 }
3533
3534 ext4_setup_super(sb, es, sb->s_flags & MS_RDONLY);
3535
3536 /* determine the minimum size of new large inodes, if present */
3537 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) {
3538 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
3539 EXT4_GOOD_OLD_INODE_SIZE;
3540 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3541 EXT4_FEATURE_RO_COMPAT_EXTRA_ISIZE)) {
3542 if (sbi->s_want_extra_isize <
3543 le16_to_cpu(es->s_want_extra_isize))
3544 sbi->s_want_extra_isize =
3545 le16_to_cpu(es->s_want_extra_isize);
3546 if (sbi->s_want_extra_isize <
3547 le16_to_cpu(es->s_min_extra_isize))
3548 sbi->s_want_extra_isize =
3549 le16_to_cpu(es->s_min_extra_isize);
3550 }
3551 }
3552 /* Check if enough inode space is available */
3553 if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize >
3554 sbi->s_inode_size) {
3555 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
3556 EXT4_GOOD_OLD_INODE_SIZE;
3557 ext4_msg(sb, KERN_INFO, "required extra inode space not"
3558 "available");
3559 }
3560
3561 if (test_opt(sb, DELALLOC) &&
3562 (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)) {
3563 ext4_msg(sb, KERN_WARNING, "Ignoring delalloc option - "
3564 "requested data journaling mode");
3565 clear_opt(sb, DELALLOC);
3566 }
3567 if (test_opt(sb, DIOREAD_NOLOCK)) {
3568 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
3569 ext4_msg(sb, KERN_WARNING, "Ignoring dioread_nolock "
3570 "option - requested data journaling mode");
3571 clear_opt(sb, DIOREAD_NOLOCK);
3572 }
3573 if (sb->s_blocksize < PAGE_SIZE) {
3574 ext4_msg(sb, KERN_WARNING, "Ignoring dioread_nolock "
3575 "option - block size is too small");
3576 clear_opt(sb, DIOREAD_NOLOCK);
3577 }
3578 }
3579
3580 err = ext4_setup_system_zone(sb);
3581 if (err) {
3582 ext4_msg(sb, KERN_ERR, "failed to initialize system "
3583 "zone (%d)", err);
3584 goto failed_mount4;
3585 }
3586
3587 ext4_ext_init(sb);
3588 err = ext4_mb_init(sb, needs_recovery);
3589 if (err) {
3590 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
3591 err);
3592 goto failed_mount4;
3593 }
3594
3595 err = ext4_register_li_request(sb, first_not_zeroed);
3596 if (err)
3597 goto failed_mount4;
3598
3599 sbi->s_kobj.kset = ext4_kset;
3600 init_completion(&sbi->s_kobj_unregister);
3601 err = kobject_init_and_add(&sbi->s_kobj, &ext4_ktype, NULL,
3602 "%s", sb->s_id);
3603 if (err) {
3604 ext4_mb_release(sb);
3605 ext4_ext_release(sb);
3606 goto failed_mount4;
3607 };
3608
3609 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
3610 ext4_orphan_cleanup(sb, es);
3611 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
3612 if (needs_recovery) {
3613 ext4_msg(sb, KERN_INFO, "recovery complete");
3614 ext4_mark_recovery_complete(sb, es);
3615 }
3616 if (EXT4_SB(sb)->s_journal) {
3617 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
3618 descr = " journalled data mode";
3619 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
3620 descr = " ordered data mode";
3621 else
3622 descr = " writeback data mode";
3623 } else
3624 descr = "out journal";
3625
3626 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. "
3627 "Opts: %s%s%s", descr, sbi->s_es->s_mount_opts,
3628 *sbi->s_es->s_mount_opts ? "; " : "", orig_data);
3629
3630 init_timer(&sbi->s_err_report);
3631 sbi->s_err_report.function = print_daily_error_info;
3632 sbi->s_err_report.data = (unsigned long) sb;
3633 if (es->s_error_count)
3634 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
3635
3636 kfree(orig_data);
3637 return 0;
3638
3639 cantfind_ext4:
3640 if (!silent)
3641 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
3642 goto failed_mount;
3643
3644 failed_mount4:
3645 ext4_msg(sb, KERN_ERR, "mount failed");
3646 destroy_workqueue(EXT4_SB(sb)->dio_unwritten_wq);
3647 failed_mount_wq:
3648 ext4_release_system_zone(sb);
3649 if (sbi->s_journal) {
3650 jbd2_journal_destroy(sbi->s_journal);
3651 sbi->s_journal = NULL;
3652 }
3653 failed_mount3:
3654 if (sbi->s_flex_groups) {
3655 if (is_vmalloc_addr(sbi->s_flex_groups))
3656 vfree(sbi->s_flex_groups);
3657 else
3658 kfree(sbi->s_flex_groups);
3659 }
3660 percpu_counter_destroy(&sbi->s_freeblocks_counter);
3661 percpu_counter_destroy(&sbi->s_freeinodes_counter);
3662 percpu_counter_destroy(&sbi->s_dirs_counter);
3663 percpu_counter_destroy(&sbi->s_dirtyblocks_counter);
3664 failed_mount2:
3665 for (i = 0; i < db_count; i++)
3666 brelse(sbi->s_group_desc[i]);
3667 kfree(sbi->s_group_desc);
3668 failed_mount:
3669 if (sbi->s_proc) {
3670 remove_proc_entry(sb->s_id, ext4_proc_root);
3671 }
3672 #ifdef CONFIG_QUOTA
3673 for (i = 0; i < MAXQUOTAS; i++)
3674 kfree(sbi->s_qf_names[i]);
3675 #endif
3676 ext4_blkdev_remove(sbi);
3677 brelse(bh);
3678 out_fail:
3679 sb->s_fs_info = NULL;
3680 kfree(sbi->s_blockgroup_lock);
3681 kfree(sbi);
3682 out_free_orig:
3683 kfree(orig_data);
3684 return ret;
3685 }
3686
3687 /*
3688 * Setup any per-fs journal parameters now. We'll do this both on
3689 * initial mount, once the journal has been initialised but before we've
3690 * done any recovery; and again on any subsequent remount.
3691 */
3692 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
3693 {
3694 struct ext4_sb_info *sbi = EXT4_SB(sb);
3695
3696 journal->j_commit_interval = sbi->s_commit_interval;
3697 journal->j_min_batch_time = sbi->s_min_batch_time;
3698 journal->j_max_batch_time = sbi->s_max_batch_time;
3699
3700 write_lock(&journal->j_state_lock);
3701 if (test_opt(sb, BARRIER))
3702 journal->j_flags |= JBD2_BARRIER;
3703 else
3704 journal->j_flags &= ~JBD2_BARRIER;
3705 if (test_opt(sb, DATA_ERR_ABORT))
3706 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
3707 else
3708 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
3709 write_unlock(&journal->j_state_lock);
3710 }
3711
3712 static journal_t *ext4_get_journal(struct super_block *sb,
3713 unsigned int journal_inum)
3714 {
3715 struct inode *journal_inode;
3716 journal_t *journal;
3717
3718 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
3719
3720 /* First, test for the existence of a valid inode on disk. Bad
3721 * things happen if we iget() an unused inode, as the subsequent
3722 * iput() will try to delete it. */
3723
3724 journal_inode = ext4_iget(sb, journal_inum);
3725 if (IS_ERR(journal_inode)) {
3726 ext4_msg(sb, KERN_ERR, "no journal found");
3727 return NULL;
3728 }
3729 if (!journal_inode->i_nlink) {
3730 make_bad_inode(journal_inode);
3731 iput(journal_inode);
3732 ext4_msg(sb, KERN_ERR, "journal inode is deleted");
3733 return NULL;
3734 }
3735
3736 jbd_debug(2, "Journal inode found at %p: %lld bytes\n",
3737 journal_inode, journal_inode->i_size);
3738 if (!S_ISREG(journal_inode->i_mode)) {
3739 ext4_msg(sb, KERN_ERR, "invalid journal inode");
3740 iput(journal_inode);
3741 return NULL;
3742 }
3743
3744 journal = jbd2_journal_init_inode(journal_inode);
3745 if (!journal) {
3746 ext4_msg(sb, KERN_ERR, "Could not load journal inode");
3747 iput(journal_inode);
3748 return NULL;
3749 }
3750 journal->j_private = sb;
3751 ext4_init_journal_params(sb, journal);
3752 return journal;
3753 }
3754
3755 static journal_t *ext4_get_dev_journal(struct super_block *sb,
3756 dev_t j_dev)
3757 {
3758 struct buffer_head *bh;
3759 journal_t *journal;
3760 ext4_fsblk_t start;
3761 ext4_fsblk_t len;
3762 int hblock, blocksize;
3763 ext4_fsblk_t sb_block;
3764 unsigned long offset;
3765 struct ext4_super_block *es;
3766 struct block_device *bdev;
3767
3768 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
3769
3770 bdev = ext4_blkdev_get(j_dev, sb);
3771 if (bdev == NULL)
3772 return NULL;
3773
3774 if (bd_claim(bdev, sb)) {
3775 ext4_msg(sb, KERN_ERR,
3776 "failed to claim external journal device");
3777 blkdev_put(bdev, FMODE_READ|FMODE_WRITE);
3778 return NULL;
3779 }
3780
3781 blocksize = sb->s_blocksize;
3782 hblock = bdev_logical_block_size(bdev);
3783 if (blocksize < hblock) {
3784 ext4_msg(sb, KERN_ERR,
3785 "blocksize too small for journal device");
3786 goto out_bdev;
3787 }
3788
3789 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
3790 offset = EXT4_MIN_BLOCK_SIZE % blocksize;
3791 set_blocksize(bdev, blocksize);
3792 if (!(bh = __bread(bdev, sb_block, blocksize))) {
3793 ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
3794 "external journal");
3795 goto out_bdev;
3796 }
3797
3798 es = (struct ext4_super_block *) (((char *)bh->b_data) + offset);
3799 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
3800 !(le32_to_cpu(es->s_feature_incompat) &
3801 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
3802 ext4_msg(sb, KERN_ERR, "external journal has "
3803 "bad superblock");
3804 brelse(bh);
3805 goto out_bdev;
3806 }
3807
3808 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
3809 ext4_msg(sb, KERN_ERR, "journal UUID does not match");
3810 brelse(bh);
3811 goto out_bdev;
3812 }
3813
3814 len = ext4_blocks_count(es);
3815 start = sb_block + 1;
3816 brelse(bh); /* we're done with the superblock */
3817
3818 journal = jbd2_journal_init_dev(bdev, sb->s_bdev,
3819 start, len, blocksize);
3820 if (!journal) {
3821 ext4_msg(sb, KERN_ERR, "failed to create device journal");
3822 goto out_bdev;
3823 }
3824 journal->j_private = sb;
3825 ll_rw_block(READ, 1, &journal->j_sb_buffer);
3826 wait_on_buffer(journal->j_sb_buffer);
3827 if (!buffer_uptodate(journal->j_sb_buffer)) {
3828 ext4_msg(sb, KERN_ERR, "I/O error on journal device");
3829 goto out_journal;
3830 }
3831 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
3832 ext4_msg(sb, KERN_ERR, "External journal has more than one "
3833 "user (unsupported) - %d",
3834 be32_to_cpu(journal->j_superblock->s_nr_users));
3835 goto out_journal;
3836 }
3837 EXT4_SB(sb)->journal_bdev = bdev;
3838 ext4_init_journal_params(sb, journal);
3839 return journal;
3840
3841 out_journal:
3842 jbd2_journal_destroy(journal);
3843 out_bdev:
3844 ext4_blkdev_put(bdev);
3845 return NULL;
3846 }
3847
3848 static int ext4_load_journal(struct super_block *sb,
3849 struct ext4_super_block *es,
3850 unsigned long journal_devnum)
3851 {
3852 journal_t *journal;
3853 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
3854 dev_t journal_dev;
3855 int err = 0;
3856 int really_read_only;
3857
3858 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
3859
3860 if (journal_devnum &&
3861 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
3862 ext4_msg(sb, KERN_INFO, "external journal device major/minor "
3863 "numbers have changed");
3864 journal_dev = new_decode_dev(journal_devnum);
3865 } else
3866 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
3867
3868 really_read_only = bdev_read_only(sb->s_bdev);
3869
3870 /*
3871 * Are we loading a blank journal or performing recovery after a
3872 * crash? For recovery, we need to check in advance whether we
3873 * can get read-write access to the device.
3874 */
3875 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) {
3876 if (sb->s_flags & MS_RDONLY) {
3877 ext4_msg(sb, KERN_INFO, "INFO: recovery "
3878 "required on readonly filesystem");
3879 if (really_read_only) {
3880 ext4_msg(sb, KERN_ERR, "write access "
3881 "unavailable, cannot proceed");
3882 return -EROFS;
3883 }
3884 ext4_msg(sb, KERN_INFO, "write access will "
3885 "be enabled during recovery");
3886 }
3887 }
3888
3889 if (journal_inum && journal_dev) {
3890 ext4_msg(sb, KERN_ERR, "filesystem has both journal "
3891 "and inode journals!");
3892 return -EINVAL;
3893 }
3894
3895 if (journal_inum) {
3896 if (!(journal = ext4_get_journal(sb, journal_inum)))
3897 return -EINVAL;
3898 } else {
3899 if (!(journal = ext4_get_dev_journal(sb, journal_dev)))
3900 return -EINVAL;
3901 }
3902
3903 if (!(journal->j_flags & JBD2_BARRIER))
3904 ext4_msg(sb, KERN_INFO, "barriers disabled");
3905
3906 if (!really_read_only && test_opt(sb, UPDATE_JOURNAL)) {
3907 err = jbd2_journal_update_format(journal);
3908 if (err) {
3909 ext4_msg(sb, KERN_ERR, "error updating journal");
3910 jbd2_journal_destroy(journal);
3911 return err;
3912 }
3913 }
3914
3915 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER))
3916 err = jbd2_journal_wipe(journal, !really_read_only);
3917 if (!err) {
3918 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
3919 if (save)
3920 memcpy(save, ((char *) es) +
3921 EXT4_S_ERR_START, EXT4_S_ERR_LEN);
3922 err = jbd2_journal_load(journal);
3923 if (save)
3924 memcpy(((char *) es) + EXT4_S_ERR_START,
3925 save, EXT4_S_ERR_LEN);
3926 kfree(save);
3927 }
3928
3929 if (err) {
3930 ext4_msg(sb, KERN_ERR, "error loading journal");
3931 jbd2_journal_destroy(journal);
3932 return err;
3933 }
3934
3935 EXT4_SB(sb)->s_journal = journal;
3936 ext4_clear_journal_err(sb, es);
3937
3938 if (!really_read_only && journal_devnum &&
3939 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
3940 es->s_journal_dev = cpu_to_le32(journal_devnum);
3941
3942 /* Make sure we flush the recovery flag to disk. */
3943 ext4_commit_super(sb, 1);
3944 }
3945
3946 return 0;
3947 }
3948
3949 static int ext4_commit_super(struct super_block *sb, int sync)
3950 {
3951 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
3952 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
3953 int error = 0;
3954
3955 if (!sbh)
3956 return error;
3957 if (buffer_write_io_error(sbh)) {
3958 /*
3959 * Oh, dear. A previous attempt to write the
3960 * superblock failed. This could happen because the
3961 * USB device was yanked out. Or it could happen to
3962 * be a transient write error and maybe the block will
3963 * be remapped. Nothing we can do but to retry the
3964 * write and hope for the best.
3965 */
3966 ext4_msg(sb, KERN_ERR, "previous I/O error to "
3967 "superblock detected");
3968 clear_buffer_write_io_error(sbh);
3969 set_buffer_uptodate(sbh);
3970 }
3971 /*
3972 * If the file system is mounted read-only, don't update the
3973 * superblock write time. This avoids updating the superblock
3974 * write time when we are mounting the root file system
3975 * read/only but we need to replay the journal; at that point,
3976 * for people who are east of GMT and who make their clock
3977 * tick in localtime for Windows bug-for-bug compatibility,
3978 * the clock is set in the future, and this will cause e2fsck
3979 * to complain and force a full file system check.
3980 */
3981 if (!(sb->s_flags & MS_RDONLY))
3982 es->s_wtime = cpu_to_le32(get_seconds());
3983 if (sb->s_bdev->bd_part)
3984 es->s_kbytes_written =
3985 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written +
3986 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
3987 EXT4_SB(sb)->s_sectors_written_start) >> 1));
3988 else
3989 es->s_kbytes_written =
3990 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written);
3991 ext4_free_blocks_count_set(es, percpu_counter_sum_positive(
3992 &EXT4_SB(sb)->s_freeblocks_counter));
3993 es->s_free_inodes_count =
3994 cpu_to_le32(percpu_counter_sum_positive(
3995 &EXT4_SB(sb)->s_freeinodes_counter));
3996 sb->s_dirt = 0;
3997 BUFFER_TRACE(sbh, "marking dirty");
3998 mark_buffer_dirty(sbh);
3999 if (sync) {
4000 error = sync_dirty_buffer(sbh);
4001 if (error)
4002 return error;
4003
4004 error = buffer_write_io_error(sbh);
4005 if (error) {
4006 ext4_msg(sb, KERN_ERR, "I/O error while writing "
4007 "superblock");
4008 clear_buffer_write_io_error(sbh);
4009 set_buffer_uptodate(sbh);
4010 }
4011 }
4012 return error;
4013 }
4014
4015 /*
4016 * Have we just finished recovery? If so, and if we are mounting (or
4017 * remounting) the filesystem readonly, then we will end up with a
4018 * consistent fs on disk. Record that fact.
4019 */
4020 static void ext4_mark_recovery_complete(struct super_block *sb,
4021 struct ext4_super_block *es)
4022 {
4023 journal_t *journal = EXT4_SB(sb)->s_journal;
4024
4025 if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) {
4026 BUG_ON(journal != NULL);
4027 return;
4028 }
4029 jbd2_journal_lock_updates(journal);
4030 if (jbd2_journal_flush(journal) < 0)
4031 goto out;
4032
4033 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER) &&
4034 sb->s_flags & MS_RDONLY) {
4035 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4036 ext4_commit_super(sb, 1);
4037 }
4038
4039 out:
4040 jbd2_journal_unlock_updates(journal);
4041 }
4042
4043 /*
4044 * If we are mounting (or read-write remounting) a filesystem whose journal
4045 * has recorded an error from a previous lifetime, move that error to the
4046 * main filesystem now.
4047 */
4048 static void ext4_clear_journal_err(struct super_block *sb,
4049 struct ext4_super_block *es)
4050 {
4051 journal_t *journal;
4052 int j_errno;
4053 const char *errstr;
4054
4055 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
4056
4057 journal = EXT4_SB(sb)->s_journal;
4058
4059 /*
4060 * Now check for any error status which may have been recorded in the
4061 * journal by a prior ext4_error() or ext4_abort()
4062 */
4063
4064 j_errno = jbd2_journal_errno(journal);
4065 if (j_errno) {
4066 char nbuf[16];
4067
4068 errstr = ext4_decode_error(sb, j_errno, nbuf);
4069 ext4_warning(sb, "Filesystem error recorded "
4070 "from previous mount: %s", errstr);
4071 ext4_warning(sb, "Marking fs in need of filesystem check.");
4072
4073 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
4074 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
4075 ext4_commit_super(sb, 1);
4076
4077 jbd2_journal_clear_err(journal);
4078 }
4079 }
4080
4081 /*
4082 * Force the running and committing transactions to commit,
4083 * and wait on the commit.
4084 */
4085 int ext4_force_commit(struct super_block *sb)
4086 {
4087 journal_t *journal;
4088 int ret = 0;
4089
4090 if (sb->s_flags & MS_RDONLY)
4091 return 0;
4092
4093 journal = EXT4_SB(sb)->s_journal;
4094 if (journal) {
4095 vfs_check_frozen(sb, SB_FREEZE_TRANS);
4096 ret = ext4_journal_force_commit(journal);
4097 }
4098
4099 return ret;
4100 }
4101
4102 static void ext4_write_super(struct super_block *sb)
4103 {
4104 lock_super(sb);
4105 ext4_commit_super(sb, 1);
4106 unlock_super(sb);
4107 }
4108
4109 static int ext4_sync_fs(struct super_block *sb, int wait)
4110 {
4111 int ret = 0;
4112 tid_t target;
4113 struct ext4_sb_info *sbi = EXT4_SB(sb);
4114
4115 trace_ext4_sync_fs(sb, wait);
4116 flush_workqueue(sbi->dio_unwritten_wq);
4117 if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
4118 if (wait)
4119 jbd2_log_wait_commit(sbi->s_journal, target);
4120 }
4121 return ret;
4122 }
4123
4124 /*
4125 * LVM calls this function before a (read-only) snapshot is created. This
4126 * gives us a chance to flush the journal completely and mark the fs clean.
4127 */
4128 static int ext4_freeze(struct super_block *sb)
4129 {
4130 int error = 0;
4131 journal_t *journal;
4132
4133 if (sb->s_flags & MS_RDONLY)
4134 return 0;
4135
4136 journal = EXT4_SB(sb)->s_journal;
4137
4138 /* Now we set up the journal barrier. */
4139 jbd2_journal_lock_updates(journal);
4140
4141 /*
4142 * Don't clear the needs_recovery flag if we failed to flush
4143 * the journal.
4144 */
4145 error = jbd2_journal_flush(journal);
4146 if (error < 0)
4147 goto out;
4148
4149 /* Journal blocked and flushed, clear needs_recovery flag. */
4150 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4151 error = ext4_commit_super(sb, 1);
4152 out:
4153 /* we rely on s_frozen to stop further updates */
4154 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
4155 return error;
4156 }
4157
4158 /*
4159 * Called by LVM after the snapshot is done. We need to reset the RECOVER
4160 * flag here, even though the filesystem is not technically dirty yet.
4161 */
4162 static int ext4_unfreeze(struct super_block *sb)
4163 {
4164 if (sb->s_flags & MS_RDONLY)
4165 return 0;
4166
4167 lock_super(sb);
4168 /* Reset the needs_recovery flag before the fs is unlocked. */
4169 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4170 ext4_commit_super(sb, 1);
4171 unlock_super(sb);
4172 return 0;
4173 }
4174
4175 /*
4176 * Structure to save mount options for ext4_remount's benefit
4177 */
4178 struct ext4_mount_options {
4179 unsigned long s_mount_opt;
4180 unsigned long s_mount_opt2;
4181 uid_t s_resuid;
4182 gid_t s_resgid;
4183 unsigned long s_commit_interval;
4184 u32 s_min_batch_time, s_max_batch_time;
4185 #ifdef CONFIG_QUOTA
4186 int s_jquota_fmt;
4187 char *s_qf_names[MAXQUOTAS];
4188 #endif
4189 };
4190
4191 static int ext4_remount(struct super_block *sb, int *flags, char *data)
4192 {
4193 struct ext4_super_block *es;
4194 struct ext4_sb_info *sbi = EXT4_SB(sb);
4195 ext4_fsblk_t n_blocks_count = 0;
4196 unsigned long old_sb_flags;
4197 struct ext4_mount_options old_opts;
4198 int enable_quota = 0;
4199 ext4_group_t g;
4200 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
4201 int err;
4202 #ifdef CONFIG_QUOTA
4203 int i;
4204 #endif
4205 char *orig_data = kstrdup(data, GFP_KERNEL);
4206
4207 /* Store the original options */
4208 lock_super(sb);
4209 old_sb_flags = sb->s_flags;
4210 old_opts.s_mount_opt = sbi->s_mount_opt;
4211 old_opts.s_mount_opt2 = sbi->s_mount_opt2;
4212 old_opts.s_resuid = sbi->s_resuid;
4213 old_opts.s_resgid = sbi->s_resgid;
4214 old_opts.s_commit_interval = sbi->s_commit_interval;
4215 old_opts.s_min_batch_time = sbi->s_min_batch_time;
4216 old_opts.s_max_batch_time = sbi->s_max_batch_time;
4217 #ifdef CONFIG_QUOTA
4218 old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
4219 for (i = 0; i < MAXQUOTAS; i++)
4220 old_opts.s_qf_names[i] = sbi->s_qf_names[i];
4221 #endif
4222 if (sbi->s_journal && sbi->s_journal->j_task->io_context)
4223 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio;
4224
4225 /*
4226 * Allow the "check" option to be passed as a remount option.
4227 */
4228 if (!parse_options(data, sb, NULL, &journal_ioprio,
4229 &n_blocks_count, 1)) {
4230 err = -EINVAL;
4231 goto restore_opts;
4232 }
4233
4234 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED)
4235 ext4_abort(sb, "Abort forced by user");
4236
4237 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
4238 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
4239
4240 es = sbi->s_es;
4241
4242 if (sbi->s_journal) {
4243 ext4_init_journal_params(sb, sbi->s_journal);
4244 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
4245 }
4246
4247 if ((*flags & MS_RDONLY) != (sb->s_flags & MS_RDONLY) ||
4248 n_blocks_count > ext4_blocks_count(es)) {
4249 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) {
4250 err = -EROFS;
4251 goto restore_opts;
4252 }
4253
4254 if (*flags & MS_RDONLY) {
4255 err = dquot_suspend(sb, -1);
4256 if (err < 0)
4257 goto restore_opts;
4258
4259 /*
4260 * First of all, the unconditional stuff we have to do
4261 * to disable replay of the journal when we next remount
4262 */
4263 sb->s_flags |= MS_RDONLY;
4264
4265 /*
4266 * OK, test if we are remounting a valid rw partition
4267 * readonly, and if so set the rdonly flag and then
4268 * mark the partition as valid again.
4269 */
4270 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
4271 (sbi->s_mount_state & EXT4_VALID_FS))
4272 es->s_state = cpu_to_le16(sbi->s_mount_state);
4273
4274 if (sbi->s_journal)
4275 ext4_mark_recovery_complete(sb, es);
4276 } else {
4277 /* Make sure we can mount this feature set readwrite */
4278 if (!ext4_feature_set_ok(sb, 0)) {
4279 err = -EROFS;
4280 goto restore_opts;
4281 }
4282 /*
4283 * Make sure the group descriptor checksums
4284 * are sane. If they aren't, refuse to remount r/w.
4285 */
4286 for (g = 0; g < sbi->s_groups_count; g++) {
4287 struct ext4_group_desc *gdp =
4288 ext4_get_group_desc(sb, g, NULL);
4289
4290 if (!ext4_group_desc_csum_verify(sbi, g, gdp)) {
4291 ext4_msg(sb, KERN_ERR,
4292 "ext4_remount: Checksum for group %u failed (%u!=%u)",
4293 g, le16_to_cpu(ext4_group_desc_csum(sbi, g, gdp)),
4294 le16_to_cpu(gdp->bg_checksum));
4295 err = -EINVAL;
4296 goto restore_opts;
4297 }
4298 }
4299
4300 /*
4301 * If we have an unprocessed orphan list hanging
4302 * around from a previously readonly bdev mount,
4303 * require a full umount/remount for now.
4304 */
4305 if (es->s_last_orphan) {
4306 ext4_msg(sb, KERN_WARNING, "Couldn't "
4307 "remount RDWR because of unprocessed "
4308 "orphan inode list. Please "
4309 "umount/remount instead");
4310 err = -EINVAL;
4311 goto restore_opts;
4312 }
4313
4314 /*
4315 * Mounting a RDONLY partition read-write, so reread
4316 * and store the current valid flag. (It may have
4317 * been changed by e2fsck since we originally mounted
4318 * the partition.)
4319 */
4320 if (sbi->s_journal)
4321 ext4_clear_journal_err(sb, es);
4322 sbi->s_mount_state = le16_to_cpu(es->s_state);
4323 if ((err = ext4_group_extend(sb, es, n_blocks_count)))
4324 goto restore_opts;
4325 if (!ext4_setup_super(sb, es, 0))
4326 sb->s_flags &= ~MS_RDONLY;
4327 enable_quota = 1;
4328 }
4329 }
4330
4331 /*
4332 * Reinitialize lazy itable initialization thread based on
4333 * current settings
4334 */
4335 if ((sb->s_flags & MS_RDONLY) || !test_opt(sb, INIT_INODE_TABLE))
4336 ext4_unregister_li_request(sb);
4337 else {
4338 ext4_group_t first_not_zeroed;
4339 first_not_zeroed = ext4_has_uninit_itable(sb);
4340 ext4_register_li_request(sb, first_not_zeroed);
4341 }
4342
4343 ext4_setup_system_zone(sb);
4344 if (sbi->s_journal == NULL)
4345 ext4_commit_super(sb, 1);
4346
4347 #ifdef CONFIG_QUOTA
4348 /* Release old quota file names */
4349 for (i = 0; i < MAXQUOTAS; i++)
4350 if (old_opts.s_qf_names[i] &&
4351 old_opts.s_qf_names[i] != sbi->s_qf_names[i])
4352 kfree(old_opts.s_qf_names[i]);
4353 #endif
4354 unlock_super(sb);
4355 if (enable_quota)
4356 dquot_resume(sb, -1);
4357
4358 ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data);
4359 kfree(orig_data);
4360 return 0;
4361
4362 restore_opts:
4363 sb->s_flags = old_sb_flags;
4364 sbi->s_mount_opt = old_opts.s_mount_opt;
4365 sbi->s_mount_opt2 = old_opts.s_mount_opt2;
4366 sbi->s_resuid = old_opts.s_resuid;
4367 sbi->s_resgid = old_opts.s_resgid;
4368 sbi->s_commit_interval = old_opts.s_commit_interval;
4369 sbi->s_min_batch_time = old_opts.s_min_batch_time;
4370 sbi->s_max_batch_time = old_opts.s_max_batch_time;
4371 #ifdef CONFIG_QUOTA
4372 sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
4373 for (i = 0; i < MAXQUOTAS; i++) {
4374 if (sbi->s_qf_names[i] &&
4375 old_opts.s_qf_names[i] != sbi->s_qf_names[i])
4376 kfree(sbi->s_qf_names[i]);
4377 sbi->s_qf_names[i] = old_opts.s_qf_names[i];
4378 }
4379 #endif
4380 unlock_super(sb);
4381 kfree(orig_data);
4382 return err;
4383 }
4384
4385 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
4386 {
4387 struct super_block *sb = dentry->d_sb;
4388 struct ext4_sb_info *sbi = EXT4_SB(sb);
4389 struct ext4_super_block *es = sbi->s_es;
4390 u64 fsid;
4391
4392 if (test_opt(sb, MINIX_DF)) {
4393 sbi->s_overhead_last = 0;
4394 } else if (sbi->s_blocks_last != ext4_blocks_count(es)) {
4395 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
4396 ext4_fsblk_t overhead = 0;
4397
4398 /*
4399 * Compute the overhead (FS structures). This is constant
4400 * for a given filesystem unless the number of block groups
4401 * changes so we cache the previous value until it does.
4402 */
4403
4404 /*
4405 * All of the blocks before first_data_block are
4406 * overhead
4407 */
4408 overhead = le32_to_cpu(es->s_first_data_block);
4409
4410 /*
4411 * Add the overhead attributed to the superblock and
4412 * block group descriptors. If the sparse superblocks
4413 * feature is turned on, then not all groups have this.
4414 */
4415 for (i = 0; i < ngroups; i++) {
4416 overhead += ext4_bg_has_super(sb, i) +
4417 ext4_bg_num_gdb(sb, i);
4418 cond_resched();
4419 }
4420
4421 /*
4422 * Every block group has an inode bitmap, a block
4423 * bitmap, and an inode table.
4424 */
4425 overhead += ngroups * (2 + sbi->s_itb_per_group);
4426 sbi->s_overhead_last = overhead;
4427 smp_wmb();
4428 sbi->s_blocks_last = ext4_blocks_count(es);
4429 }
4430
4431 buf->f_type = EXT4_SUPER_MAGIC;
4432 buf->f_bsize = sb->s_blocksize;
4433 buf->f_blocks = ext4_blocks_count(es) - sbi->s_overhead_last;
4434 buf->f_bfree = percpu_counter_sum_positive(&sbi->s_freeblocks_counter) -
4435 percpu_counter_sum_positive(&sbi->s_dirtyblocks_counter);
4436 buf->f_bavail = buf->f_bfree - ext4_r_blocks_count(es);
4437 if (buf->f_bfree < ext4_r_blocks_count(es))
4438 buf->f_bavail = 0;
4439 buf->f_files = le32_to_cpu(es->s_inodes_count);
4440 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
4441 buf->f_namelen = EXT4_NAME_LEN;
4442 fsid = le64_to_cpup((void *)es->s_uuid) ^
4443 le64_to_cpup((void *)es->s_uuid + sizeof(u64));
4444 buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL;
4445 buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL;
4446
4447 return 0;
4448 }
4449
4450 /* Helper function for writing quotas on sync - we need to start transaction
4451 * before quota file is locked for write. Otherwise the are possible deadlocks:
4452 * Process 1 Process 2
4453 * ext4_create() quota_sync()
4454 * jbd2_journal_start() write_dquot()
4455 * dquot_initialize() down(dqio_mutex)
4456 * down(dqio_mutex) jbd2_journal_start()
4457 *
4458 */
4459
4460 #ifdef CONFIG_QUOTA
4461
4462 static inline struct inode *dquot_to_inode(struct dquot *dquot)
4463 {
4464 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_type];
4465 }
4466
4467 static int ext4_write_dquot(struct dquot *dquot)
4468 {
4469 int ret, err;
4470 handle_t *handle;
4471 struct inode *inode;
4472
4473 inode = dquot_to_inode(dquot);
4474 handle = ext4_journal_start(inode,
4475 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
4476 if (IS_ERR(handle))
4477 return PTR_ERR(handle);
4478 ret = dquot_commit(dquot);
4479 err = ext4_journal_stop(handle);
4480 if (!ret)
4481 ret = err;
4482 return ret;
4483 }
4484
4485 static int ext4_acquire_dquot(struct dquot *dquot)
4486 {
4487 int ret, err;
4488 handle_t *handle;
4489
4490 handle = ext4_journal_start(dquot_to_inode(dquot),
4491 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
4492 if (IS_ERR(handle))
4493 return PTR_ERR(handle);
4494 ret = dquot_acquire(dquot);
4495 err = ext4_journal_stop(handle);
4496 if (!ret)
4497 ret = err;
4498 return ret;
4499 }
4500
4501 static int ext4_release_dquot(struct dquot *dquot)
4502 {
4503 int ret, err;
4504 handle_t *handle;
4505
4506 handle = ext4_journal_start(dquot_to_inode(dquot),
4507 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
4508 if (IS_ERR(handle)) {
4509 /* Release dquot anyway to avoid endless cycle in dqput() */
4510 dquot_release(dquot);
4511 return PTR_ERR(handle);
4512 }
4513 ret = dquot_release(dquot);
4514 err = ext4_journal_stop(handle);
4515 if (!ret)
4516 ret = err;
4517 return ret;
4518 }
4519
4520 static int ext4_mark_dquot_dirty(struct dquot *dquot)
4521 {
4522 /* Are we journaling quotas? */
4523 if (EXT4_SB(dquot->dq_sb)->s_qf_names[USRQUOTA] ||
4524 EXT4_SB(dquot->dq_sb)->s_qf_names[GRPQUOTA]) {
4525 dquot_mark_dquot_dirty(dquot);
4526 return ext4_write_dquot(dquot);
4527 } else {
4528 return dquot_mark_dquot_dirty(dquot);
4529 }
4530 }
4531
4532 static int ext4_write_info(struct super_block *sb, int type)
4533 {
4534 int ret, err;
4535 handle_t *handle;
4536
4537 /* Data block + inode block */
4538 handle = ext4_journal_start(sb->s_root->d_inode, 2);
4539 if (IS_ERR(handle))
4540 return PTR_ERR(handle);
4541 ret = dquot_commit_info(sb, type);
4542 err = ext4_journal_stop(handle);
4543 if (!ret)
4544 ret = err;
4545 return ret;
4546 }
4547
4548 /*
4549 * Turn on quotas during mount time - we need to find
4550 * the quota file and such...
4551 */
4552 static int ext4_quota_on_mount(struct super_block *sb, int type)
4553 {
4554 return dquot_quota_on_mount(sb, EXT4_SB(sb)->s_qf_names[type],
4555 EXT4_SB(sb)->s_jquota_fmt, type);
4556 }
4557
4558 /*
4559 * Standard function to be called on quota_on
4560 */
4561 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
4562 char *name)
4563 {
4564 int err;
4565 struct path path;
4566
4567 if (!test_opt(sb, QUOTA))
4568 return -EINVAL;
4569
4570 err = kern_path(name, LOOKUP_FOLLOW, &path);
4571 if (err)
4572 return err;
4573
4574 /* Quotafile not on the same filesystem? */
4575 if (path.mnt->mnt_sb != sb) {
4576 path_put(&path);
4577 return -EXDEV;
4578 }
4579 /* Journaling quota? */
4580 if (EXT4_SB(sb)->s_qf_names[type]) {
4581 /* Quotafile not in fs root? */
4582 if (path.dentry->d_parent != sb->s_root)
4583 ext4_msg(sb, KERN_WARNING,
4584 "Quota file not on filesystem root. "
4585 "Journaled quota will not work");
4586 }
4587
4588 /*
4589 * When we journal data on quota file, we have to flush journal to see
4590 * all updates to the file when we bypass pagecache...
4591 */
4592 if (EXT4_SB(sb)->s_journal &&
4593 ext4_should_journal_data(path.dentry->d_inode)) {
4594 /*
4595 * We don't need to lock updates but journal_flush() could
4596 * otherwise be livelocked...
4597 */
4598 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal);
4599 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal);
4600 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
4601 if (err) {
4602 path_put(&path);
4603 return err;
4604 }
4605 }
4606
4607 err = dquot_quota_on_path(sb, type, format_id, &path);
4608 path_put(&path);
4609 return err;
4610 }
4611
4612 static int ext4_quota_off(struct super_block *sb, int type)
4613 {
4614 /* Force all delayed allocation blocks to be allocated.
4615 * Caller already holds s_umount sem */
4616 if (test_opt(sb, DELALLOC))
4617 sync_filesystem(sb);
4618
4619 return dquot_quota_off(sb, type);
4620 }
4621
4622 /* Read data from quotafile - avoid pagecache and such because we cannot afford
4623 * acquiring the locks... As quota files are never truncated and quota code
4624 * itself serializes the operations (and noone else should touch the files)
4625 * we don't have to be afraid of races */
4626 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
4627 size_t len, loff_t off)
4628 {
4629 struct inode *inode = sb_dqopt(sb)->files[type];
4630 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
4631 int err = 0;
4632 int offset = off & (sb->s_blocksize - 1);
4633 int tocopy;
4634 size_t toread;
4635 struct buffer_head *bh;
4636 loff_t i_size = i_size_read(inode);
4637
4638 if (off > i_size)
4639 return 0;
4640 if (off+len > i_size)
4641 len = i_size-off;
4642 toread = len;
4643 while (toread > 0) {
4644 tocopy = sb->s_blocksize - offset < toread ?
4645 sb->s_blocksize - offset : toread;
4646 bh = ext4_bread(NULL, inode, blk, 0, &err);
4647 if (err)
4648 return err;
4649 if (!bh) /* A hole? */
4650 memset(data, 0, tocopy);
4651 else
4652 memcpy(data, bh->b_data+offset, tocopy);
4653 brelse(bh);
4654 offset = 0;
4655 toread -= tocopy;
4656 data += tocopy;
4657 blk++;
4658 }
4659 return len;
4660 }
4661
4662 /* Write to quotafile (we know the transaction is already started and has
4663 * enough credits) */
4664 static ssize_t ext4_quota_write(struct super_block *sb, int type,
4665 const char *data, size_t len, loff_t off)
4666 {
4667 struct inode *inode = sb_dqopt(sb)->files[type];
4668 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
4669 int err = 0;
4670 int offset = off & (sb->s_blocksize - 1);
4671 struct buffer_head *bh;
4672 handle_t *handle = journal_current_handle();
4673
4674 if (EXT4_SB(sb)->s_journal && !handle) {
4675 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
4676 " cancelled because transaction is not started",
4677 (unsigned long long)off, (unsigned long long)len);
4678 return -EIO;
4679 }
4680 /*
4681 * Since we account only one data block in transaction credits,
4682 * then it is impossible to cross a block boundary.
4683 */
4684 if (sb->s_blocksize - offset < len) {
4685 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
4686 " cancelled because not block aligned",
4687 (unsigned long long)off, (unsigned long long)len);
4688 return -EIO;
4689 }
4690
4691 mutex_lock_nested(&inode->i_mutex, I_MUTEX_QUOTA);
4692 bh = ext4_bread(handle, inode, blk, 1, &err);
4693 if (!bh)
4694 goto out;
4695 err = ext4_journal_get_write_access(handle, bh);
4696 if (err) {
4697 brelse(bh);
4698 goto out;
4699 }
4700 lock_buffer(bh);
4701 memcpy(bh->b_data+offset, data, len);
4702 flush_dcache_page(bh->b_page);
4703 unlock_buffer(bh);
4704 err = ext4_handle_dirty_metadata(handle, NULL, bh);
4705 brelse(bh);
4706 out:
4707 if (err) {
4708 mutex_unlock(&inode->i_mutex);
4709 return err;
4710 }
4711 if (inode->i_size < off + len) {
4712 i_size_write(inode, off + len);
4713 EXT4_I(inode)->i_disksize = inode->i_size;
4714 }
4715 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
4716 ext4_mark_inode_dirty(handle, inode);
4717 mutex_unlock(&inode->i_mutex);
4718 return len;
4719 }
4720
4721 #endif
4722
4723 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
4724 const char *dev_name, void *data)
4725 {
4726 return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super);
4727 }
4728
4729 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
4730 static struct file_system_type ext2_fs_type = {
4731 .owner = THIS_MODULE,
4732 .name = "ext2",
4733 .mount = ext4_mount,
4734 .kill_sb = kill_block_super,
4735 .fs_flags = FS_REQUIRES_DEV,
4736 };
4737
4738 static inline void register_as_ext2(void)
4739 {
4740 int err = register_filesystem(&ext2_fs_type);
4741 if (err)
4742 printk(KERN_WARNING
4743 "EXT4-fs: Unable to register as ext2 (%d)\n", err);
4744 }
4745
4746 static inline void unregister_as_ext2(void)
4747 {
4748 unregister_filesystem(&ext2_fs_type);
4749 }
4750 MODULE_ALIAS("ext2");
4751 #else
4752 static inline void register_as_ext2(void) { }
4753 static inline void unregister_as_ext2(void) { }
4754 #endif
4755
4756 #if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
4757 static inline void register_as_ext3(void)
4758 {
4759 int err = register_filesystem(&ext3_fs_type);
4760 if (err)
4761 printk(KERN_WARNING
4762 "EXT4-fs: Unable to register as ext3 (%d)\n", err);
4763 }
4764
4765 static inline void unregister_as_ext3(void)
4766 {
4767 unregister_filesystem(&ext3_fs_type);
4768 }
4769 MODULE_ALIAS("ext3");
4770 #else
4771 static inline void register_as_ext3(void) { }
4772 static inline void unregister_as_ext3(void) { }
4773 #endif
4774
4775 static struct file_system_type ext4_fs_type = {
4776 .owner = THIS_MODULE,
4777 .name = "ext4",
4778 .mount = ext4_mount,
4779 .kill_sb = kill_block_super,
4780 .fs_flags = FS_REQUIRES_DEV,
4781 };
4782
4783 int __init ext4_init_feat_adverts(void)
4784 {
4785 struct ext4_features *ef;
4786 int ret = -ENOMEM;
4787
4788 ef = kzalloc(sizeof(struct ext4_features), GFP_KERNEL);
4789 if (!ef)
4790 goto out;
4791
4792 ef->f_kobj.kset = ext4_kset;
4793 init_completion(&ef->f_kobj_unregister);
4794 ret = kobject_init_and_add(&ef->f_kobj, &ext4_feat_ktype, NULL,
4795 "features");
4796 if (ret) {
4797 kfree(ef);
4798 goto out;
4799 }
4800
4801 ext4_feat = ef;
4802 ret = 0;
4803 out:
4804 return ret;
4805 }
4806
4807 static int __init ext4_init_fs(void)
4808 {
4809 int err;
4810
4811 ext4_check_flag_values();
4812 err = ext4_init_pageio();
4813 if (err)
4814 return err;
4815 err = ext4_init_system_zone();
4816 if (err)
4817 goto out5;
4818 ext4_kset = kset_create_and_add("ext4", NULL, fs_kobj);
4819 if (!ext4_kset)
4820 goto out4;
4821 ext4_proc_root = proc_mkdir("fs/ext4", NULL);
4822
4823 err = ext4_init_feat_adverts();
4824
4825 err = ext4_init_mballoc();
4826 if (err)
4827 goto out3;
4828
4829 err = ext4_init_xattr();
4830 if (err)
4831 goto out2;
4832 err = init_inodecache();
4833 if (err)
4834 goto out1;
4835 register_as_ext2();
4836 register_as_ext3();
4837 err = register_filesystem(&ext4_fs_type);
4838 if (err)
4839 goto out;
4840
4841 ext4_li_info = NULL;
4842 mutex_init(&ext4_li_mtx);
4843 return 0;
4844 out:
4845 unregister_as_ext2();
4846 unregister_as_ext3();
4847 destroy_inodecache();
4848 out1:
4849 ext4_exit_xattr();
4850 out2:
4851 ext4_exit_mballoc();
4852 out3:
4853 kfree(ext4_feat);
4854 remove_proc_entry("fs/ext4", NULL);
4855 kset_unregister(ext4_kset);
4856 out4:
4857 ext4_exit_system_zone();
4858 out5:
4859 ext4_exit_pageio();
4860 return err;
4861 }
4862
4863 static void __exit ext4_exit_fs(void)
4864 {
4865 ext4_destroy_lazyinit_thread();
4866 unregister_as_ext2();
4867 unregister_as_ext3();
4868 unregister_filesystem(&ext4_fs_type);
4869 destroy_inodecache();
4870 ext4_exit_xattr();
4871 ext4_exit_mballoc();
4872 remove_proc_entry("fs/ext4", NULL);
4873 kset_unregister(ext4_kset);
4874 ext4_exit_system_zone();
4875 ext4_exit_pageio();
4876 }
4877
4878 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
4879 MODULE_DESCRIPTION("Fourth Extended Filesystem");
4880 MODULE_LICENSE("GPL");
4881 module_init(ext4_init_fs)
4882 module_exit(ext4_exit_fs)