]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/ext4/super.c
ext4: make ext4_block_in_group() much more efficient
[mirror_ubuntu-artful-kernel.git] / fs / ext4 / super.c
1 /*
2 * linux/fs/ext4/super.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * Big-endian to little-endian byte-swapping/bitmaps by
16 * David S. Miller (davem@caip.rutgers.edu), 1995
17 */
18
19 #include <linux/module.h>
20 #include <linux/string.h>
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/vmalloc.h>
24 #include <linux/jbd2.h>
25 #include <linux/slab.h>
26 #include <linux/init.h>
27 #include <linux/blkdev.h>
28 #include <linux/parser.h>
29 #include <linux/buffer_head.h>
30 #include <linux/exportfs.h>
31 #include <linux/vfs.h>
32 #include <linux/random.h>
33 #include <linux/mount.h>
34 #include <linux/namei.h>
35 #include <linux/quotaops.h>
36 #include <linux/seq_file.h>
37 #include <linux/proc_fs.h>
38 #include <linux/ctype.h>
39 #include <linux/log2.h>
40 #include <linux/crc16.h>
41 #include <linux/cleancache.h>
42 #include <asm/uaccess.h>
43
44 #include <linux/kthread.h>
45 #include <linux/freezer.h>
46
47 #include "ext4.h"
48 #include "ext4_extents.h" /* Needed for trace points definition */
49 #include "ext4_jbd2.h"
50 #include "xattr.h"
51 #include "acl.h"
52 #include "mballoc.h"
53
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/ext4.h>
56
57 static struct proc_dir_entry *ext4_proc_root;
58 static struct kset *ext4_kset;
59 static struct ext4_lazy_init *ext4_li_info;
60 static struct mutex ext4_li_mtx;
61 static struct ext4_features *ext4_feat;
62
63 static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
64 unsigned long journal_devnum);
65 static int ext4_show_options(struct seq_file *seq, struct dentry *root);
66 static int ext4_commit_super(struct super_block *sb, int sync);
67 static void ext4_mark_recovery_complete(struct super_block *sb,
68 struct ext4_super_block *es);
69 static void ext4_clear_journal_err(struct super_block *sb,
70 struct ext4_super_block *es);
71 static int ext4_sync_fs(struct super_block *sb, int wait);
72 static int ext4_remount(struct super_block *sb, int *flags, char *data);
73 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
74 static int ext4_unfreeze(struct super_block *sb);
75 static int ext4_freeze(struct super_block *sb);
76 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
77 const char *dev_name, void *data);
78 static inline int ext2_feature_set_ok(struct super_block *sb);
79 static inline int ext3_feature_set_ok(struct super_block *sb);
80 static int ext4_feature_set_ok(struct super_block *sb, int readonly);
81 static void ext4_destroy_lazyinit_thread(void);
82 static void ext4_unregister_li_request(struct super_block *sb);
83 static void ext4_clear_request_list(void);
84
85 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
86 static struct file_system_type ext2_fs_type = {
87 .owner = THIS_MODULE,
88 .name = "ext2",
89 .mount = ext4_mount,
90 .kill_sb = kill_block_super,
91 .fs_flags = FS_REQUIRES_DEV,
92 };
93 MODULE_ALIAS_FS("ext2");
94 MODULE_ALIAS("ext2");
95 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type)
96 #else
97 #define IS_EXT2_SB(sb) (0)
98 #endif
99
100
101 #if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
102 static struct file_system_type ext3_fs_type = {
103 .owner = THIS_MODULE,
104 .name = "ext3",
105 .mount = ext4_mount,
106 .kill_sb = kill_block_super,
107 .fs_flags = FS_REQUIRES_DEV,
108 };
109 MODULE_ALIAS_FS("ext3");
110 MODULE_ALIAS("ext3");
111 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type)
112 #else
113 #define IS_EXT3_SB(sb) (0)
114 #endif
115
116 static int ext4_verify_csum_type(struct super_block *sb,
117 struct ext4_super_block *es)
118 {
119 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
120 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
121 return 1;
122
123 return es->s_checksum_type == EXT4_CRC32C_CHKSUM;
124 }
125
126 static __le32 ext4_superblock_csum(struct super_block *sb,
127 struct ext4_super_block *es)
128 {
129 struct ext4_sb_info *sbi = EXT4_SB(sb);
130 int offset = offsetof(struct ext4_super_block, s_checksum);
131 __u32 csum;
132
133 csum = ext4_chksum(sbi, ~0, (char *)es, offset);
134
135 return cpu_to_le32(csum);
136 }
137
138 int ext4_superblock_csum_verify(struct super_block *sb,
139 struct ext4_super_block *es)
140 {
141 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
142 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
143 return 1;
144
145 return es->s_checksum == ext4_superblock_csum(sb, es);
146 }
147
148 void ext4_superblock_csum_set(struct super_block *sb)
149 {
150 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
151
152 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
153 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
154 return;
155
156 es->s_checksum = ext4_superblock_csum(sb, es);
157 }
158
159 void *ext4_kvmalloc(size_t size, gfp_t flags)
160 {
161 void *ret;
162
163 ret = kmalloc(size, flags);
164 if (!ret)
165 ret = __vmalloc(size, flags, PAGE_KERNEL);
166 return ret;
167 }
168
169 void *ext4_kvzalloc(size_t size, gfp_t flags)
170 {
171 void *ret;
172
173 ret = kzalloc(size, flags);
174 if (!ret)
175 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL);
176 return ret;
177 }
178
179 void ext4_kvfree(void *ptr)
180 {
181 if (is_vmalloc_addr(ptr))
182 vfree(ptr);
183 else
184 kfree(ptr);
185
186 }
187
188 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
189 struct ext4_group_desc *bg)
190 {
191 return le32_to_cpu(bg->bg_block_bitmap_lo) |
192 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
193 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
194 }
195
196 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
197 struct ext4_group_desc *bg)
198 {
199 return le32_to_cpu(bg->bg_inode_bitmap_lo) |
200 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
201 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
202 }
203
204 ext4_fsblk_t ext4_inode_table(struct super_block *sb,
205 struct ext4_group_desc *bg)
206 {
207 return le32_to_cpu(bg->bg_inode_table_lo) |
208 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
209 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
210 }
211
212 __u32 ext4_free_group_clusters(struct super_block *sb,
213 struct ext4_group_desc *bg)
214 {
215 return le16_to_cpu(bg->bg_free_blocks_count_lo) |
216 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
217 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
218 }
219
220 __u32 ext4_free_inodes_count(struct super_block *sb,
221 struct ext4_group_desc *bg)
222 {
223 return le16_to_cpu(bg->bg_free_inodes_count_lo) |
224 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
225 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
226 }
227
228 __u32 ext4_used_dirs_count(struct super_block *sb,
229 struct ext4_group_desc *bg)
230 {
231 return le16_to_cpu(bg->bg_used_dirs_count_lo) |
232 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
233 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
234 }
235
236 __u32 ext4_itable_unused_count(struct super_block *sb,
237 struct ext4_group_desc *bg)
238 {
239 return le16_to_cpu(bg->bg_itable_unused_lo) |
240 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
241 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
242 }
243
244 void ext4_block_bitmap_set(struct super_block *sb,
245 struct ext4_group_desc *bg, ext4_fsblk_t blk)
246 {
247 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
248 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
249 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
250 }
251
252 void ext4_inode_bitmap_set(struct super_block *sb,
253 struct ext4_group_desc *bg, ext4_fsblk_t blk)
254 {
255 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk);
256 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
257 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
258 }
259
260 void ext4_inode_table_set(struct super_block *sb,
261 struct ext4_group_desc *bg, ext4_fsblk_t blk)
262 {
263 bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
264 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
265 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
266 }
267
268 void ext4_free_group_clusters_set(struct super_block *sb,
269 struct ext4_group_desc *bg, __u32 count)
270 {
271 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
272 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
273 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
274 }
275
276 void ext4_free_inodes_set(struct super_block *sb,
277 struct ext4_group_desc *bg, __u32 count)
278 {
279 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
280 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
281 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
282 }
283
284 void ext4_used_dirs_set(struct super_block *sb,
285 struct ext4_group_desc *bg, __u32 count)
286 {
287 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
288 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
289 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
290 }
291
292 void ext4_itable_unused_set(struct super_block *sb,
293 struct ext4_group_desc *bg, __u32 count)
294 {
295 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
296 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
297 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
298 }
299
300
301 static void __save_error_info(struct super_block *sb, const char *func,
302 unsigned int line)
303 {
304 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
305
306 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
307 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
308 es->s_last_error_time = cpu_to_le32(get_seconds());
309 strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func));
310 es->s_last_error_line = cpu_to_le32(line);
311 if (!es->s_first_error_time) {
312 es->s_first_error_time = es->s_last_error_time;
313 strncpy(es->s_first_error_func, func,
314 sizeof(es->s_first_error_func));
315 es->s_first_error_line = cpu_to_le32(line);
316 es->s_first_error_ino = es->s_last_error_ino;
317 es->s_first_error_block = es->s_last_error_block;
318 }
319 /*
320 * Start the daily error reporting function if it hasn't been
321 * started already
322 */
323 if (!es->s_error_count)
324 mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ);
325 le32_add_cpu(&es->s_error_count, 1);
326 }
327
328 static void save_error_info(struct super_block *sb, const char *func,
329 unsigned int line)
330 {
331 __save_error_info(sb, func, line);
332 ext4_commit_super(sb, 1);
333 }
334
335 /*
336 * The del_gendisk() function uninitializes the disk-specific data
337 * structures, including the bdi structure, without telling anyone
338 * else. Once this happens, any attempt to call mark_buffer_dirty()
339 * (for example, by ext4_commit_super), will cause a kernel OOPS.
340 * This is a kludge to prevent these oops until we can put in a proper
341 * hook in del_gendisk() to inform the VFS and file system layers.
342 */
343 static int block_device_ejected(struct super_block *sb)
344 {
345 struct inode *bd_inode = sb->s_bdev->bd_inode;
346 struct backing_dev_info *bdi = bd_inode->i_mapping->backing_dev_info;
347
348 return bdi->dev == NULL;
349 }
350
351 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn)
352 {
353 struct super_block *sb = journal->j_private;
354 struct ext4_sb_info *sbi = EXT4_SB(sb);
355 int error = is_journal_aborted(journal);
356 struct ext4_journal_cb_entry *jce;
357
358 BUG_ON(txn->t_state == T_FINISHED);
359 spin_lock(&sbi->s_md_lock);
360 while (!list_empty(&txn->t_private_list)) {
361 jce = list_entry(txn->t_private_list.next,
362 struct ext4_journal_cb_entry, jce_list);
363 list_del_init(&jce->jce_list);
364 spin_unlock(&sbi->s_md_lock);
365 jce->jce_func(sb, jce, error);
366 spin_lock(&sbi->s_md_lock);
367 }
368 spin_unlock(&sbi->s_md_lock);
369 }
370
371 /* Deal with the reporting of failure conditions on a filesystem such as
372 * inconsistencies detected or read IO failures.
373 *
374 * On ext2, we can store the error state of the filesystem in the
375 * superblock. That is not possible on ext4, because we may have other
376 * write ordering constraints on the superblock which prevent us from
377 * writing it out straight away; and given that the journal is about to
378 * be aborted, we can't rely on the current, or future, transactions to
379 * write out the superblock safely.
380 *
381 * We'll just use the jbd2_journal_abort() error code to record an error in
382 * the journal instead. On recovery, the journal will complain about
383 * that error until we've noted it down and cleared it.
384 */
385
386 static void ext4_handle_error(struct super_block *sb)
387 {
388 if (sb->s_flags & MS_RDONLY)
389 return;
390
391 if (!test_opt(sb, ERRORS_CONT)) {
392 journal_t *journal = EXT4_SB(sb)->s_journal;
393
394 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
395 if (journal)
396 jbd2_journal_abort(journal, -EIO);
397 }
398 if (test_opt(sb, ERRORS_RO)) {
399 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
400 sb->s_flags |= MS_RDONLY;
401 }
402 if (test_opt(sb, ERRORS_PANIC))
403 panic("EXT4-fs (device %s): panic forced after error\n",
404 sb->s_id);
405 }
406
407 void __ext4_error(struct super_block *sb, const char *function,
408 unsigned int line, const char *fmt, ...)
409 {
410 struct va_format vaf;
411 va_list args;
412
413 va_start(args, fmt);
414 vaf.fmt = fmt;
415 vaf.va = &args;
416 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
417 sb->s_id, function, line, current->comm, &vaf);
418 va_end(args);
419 save_error_info(sb, function, line);
420
421 ext4_handle_error(sb);
422 }
423
424 void ext4_error_inode(struct inode *inode, const char *function,
425 unsigned int line, ext4_fsblk_t block,
426 const char *fmt, ...)
427 {
428 va_list args;
429 struct va_format vaf;
430 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
431
432 es->s_last_error_ino = cpu_to_le32(inode->i_ino);
433 es->s_last_error_block = cpu_to_le64(block);
434 save_error_info(inode->i_sb, function, line);
435 va_start(args, fmt);
436 vaf.fmt = fmt;
437 vaf.va = &args;
438 if (block)
439 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
440 "inode #%lu: block %llu: comm %s: %pV\n",
441 inode->i_sb->s_id, function, line, inode->i_ino,
442 block, current->comm, &vaf);
443 else
444 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
445 "inode #%lu: comm %s: %pV\n",
446 inode->i_sb->s_id, function, line, inode->i_ino,
447 current->comm, &vaf);
448 va_end(args);
449
450 ext4_handle_error(inode->i_sb);
451 }
452
453 void ext4_error_file(struct file *file, const char *function,
454 unsigned int line, ext4_fsblk_t block,
455 const char *fmt, ...)
456 {
457 va_list args;
458 struct va_format vaf;
459 struct ext4_super_block *es;
460 struct inode *inode = file_inode(file);
461 char pathname[80], *path;
462
463 es = EXT4_SB(inode->i_sb)->s_es;
464 es->s_last_error_ino = cpu_to_le32(inode->i_ino);
465 save_error_info(inode->i_sb, function, line);
466 path = d_path(&(file->f_path), pathname, sizeof(pathname));
467 if (IS_ERR(path))
468 path = "(unknown)";
469 va_start(args, fmt);
470 vaf.fmt = fmt;
471 vaf.va = &args;
472 if (block)
473 printk(KERN_CRIT
474 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
475 "block %llu: comm %s: path %s: %pV\n",
476 inode->i_sb->s_id, function, line, inode->i_ino,
477 block, current->comm, path, &vaf);
478 else
479 printk(KERN_CRIT
480 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
481 "comm %s: path %s: %pV\n",
482 inode->i_sb->s_id, function, line, inode->i_ino,
483 current->comm, path, &vaf);
484 va_end(args);
485
486 ext4_handle_error(inode->i_sb);
487 }
488
489 const char *ext4_decode_error(struct super_block *sb, int errno,
490 char nbuf[16])
491 {
492 char *errstr = NULL;
493
494 switch (errno) {
495 case -EIO:
496 errstr = "IO failure";
497 break;
498 case -ENOMEM:
499 errstr = "Out of memory";
500 break;
501 case -EROFS:
502 if (!sb || (EXT4_SB(sb)->s_journal &&
503 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
504 errstr = "Journal has aborted";
505 else
506 errstr = "Readonly filesystem";
507 break;
508 default:
509 /* If the caller passed in an extra buffer for unknown
510 * errors, textualise them now. Else we just return
511 * NULL. */
512 if (nbuf) {
513 /* Check for truncated error codes... */
514 if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
515 errstr = nbuf;
516 }
517 break;
518 }
519
520 return errstr;
521 }
522
523 /* __ext4_std_error decodes expected errors from journaling functions
524 * automatically and invokes the appropriate error response. */
525
526 void __ext4_std_error(struct super_block *sb, const char *function,
527 unsigned int line, int errno)
528 {
529 char nbuf[16];
530 const char *errstr;
531
532 /* Special case: if the error is EROFS, and we're not already
533 * inside a transaction, then there's really no point in logging
534 * an error. */
535 if (errno == -EROFS && journal_current_handle() == NULL &&
536 (sb->s_flags & MS_RDONLY))
537 return;
538
539 errstr = ext4_decode_error(sb, errno, nbuf);
540 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
541 sb->s_id, function, line, errstr);
542 save_error_info(sb, function, line);
543
544 ext4_handle_error(sb);
545 }
546
547 /*
548 * ext4_abort is a much stronger failure handler than ext4_error. The
549 * abort function may be used to deal with unrecoverable failures such
550 * as journal IO errors or ENOMEM at a critical moment in log management.
551 *
552 * We unconditionally force the filesystem into an ABORT|READONLY state,
553 * unless the error response on the fs has been set to panic in which
554 * case we take the easy way out and panic immediately.
555 */
556
557 void __ext4_abort(struct super_block *sb, const char *function,
558 unsigned int line, const char *fmt, ...)
559 {
560 va_list args;
561
562 save_error_info(sb, function, line);
563 va_start(args, fmt);
564 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: ", sb->s_id,
565 function, line);
566 vprintk(fmt, args);
567 printk("\n");
568 va_end(args);
569
570 if ((sb->s_flags & MS_RDONLY) == 0) {
571 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
572 sb->s_flags |= MS_RDONLY;
573 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
574 if (EXT4_SB(sb)->s_journal)
575 jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO);
576 save_error_info(sb, function, line);
577 }
578 if (test_opt(sb, ERRORS_PANIC))
579 panic("EXT4-fs panic from previous error\n");
580 }
581
582 void ext4_msg(struct super_block *sb, const char *prefix, const char *fmt, ...)
583 {
584 struct va_format vaf;
585 va_list args;
586
587 va_start(args, fmt);
588 vaf.fmt = fmt;
589 vaf.va = &args;
590 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
591 va_end(args);
592 }
593
594 void __ext4_warning(struct super_block *sb, const char *function,
595 unsigned int line, const char *fmt, ...)
596 {
597 struct va_format vaf;
598 va_list args;
599
600 va_start(args, fmt);
601 vaf.fmt = fmt;
602 vaf.va = &args;
603 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
604 sb->s_id, function, line, &vaf);
605 va_end(args);
606 }
607
608 void __ext4_grp_locked_error(const char *function, unsigned int line,
609 struct super_block *sb, ext4_group_t grp,
610 unsigned long ino, ext4_fsblk_t block,
611 const char *fmt, ...)
612 __releases(bitlock)
613 __acquires(bitlock)
614 {
615 struct va_format vaf;
616 va_list args;
617 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
618
619 es->s_last_error_ino = cpu_to_le32(ino);
620 es->s_last_error_block = cpu_to_le64(block);
621 __save_error_info(sb, function, line);
622
623 va_start(args, fmt);
624
625 vaf.fmt = fmt;
626 vaf.va = &args;
627 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
628 sb->s_id, function, line, grp);
629 if (ino)
630 printk(KERN_CONT "inode %lu: ", ino);
631 if (block)
632 printk(KERN_CONT "block %llu:", (unsigned long long) block);
633 printk(KERN_CONT "%pV\n", &vaf);
634 va_end(args);
635
636 if (test_opt(sb, ERRORS_CONT)) {
637 ext4_commit_super(sb, 0);
638 return;
639 }
640
641 ext4_unlock_group(sb, grp);
642 ext4_handle_error(sb);
643 /*
644 * We only get here in the ERRORS_RO case; relocking the group
645 * may be dangerous, but nothing bad will happen since the
646 * filesystem will have already been marked read/only and the
647 * journal has been aborted. We return 1 as a hint to callers
648 * who might what to use the return value from
649 * ext4_grp_locked_error() to distinguish between the
650 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
651 * aggressively from the ext4 function in question, with a
652 * more appropriate error code.
653 */
654 ext4_lock_group(sb, grp);
655 return;
656 }
657
658 void ext4_update_dynamic_rev(struct super_block *sb)
659 {
660 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
661
662 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
663 return;
664
665 ext4_warning(sb,
666 "updating to rev %d because of new feature flag, "
667 "running e2fsck is recommended",
668 EXT4_DYNAMIC_REV);
669
670 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
671 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
672 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
673 /* leave es->s_feature_*compat flags alone */
674 /* es->s_uuid will be set by e2fsck if empty */
675
676 /*
677 * The rest of the superblock fields should be zero, and if not it
678 * means they are likely already in use, so leave them alone. We
679 * can leave it up to e2fsck to clean up any inconsistencies there.
680 */
681 }
682
683 /*
684 * Open the external journal device
685 */
686 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb)
687 {
688 struct block_device *bdev;
689 char b[BDEVNAME_SIZE];
690
691 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb);
692 if (IS_ERR(bdev))
693 goto fail;
694 return bdev;
695
696 fail:
697 ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld",
698 __bdevname(dev, b), PTR_ERR(bdev));
699 return NULL;
700 }
701
702 /*
703 * Release the journal device
704 */
705 static int ext4_blkdev_put(struct block_device *bdev)
706 {
707 return blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
708 }
709
710 static int ext4_blkdev_remove(struct ext4_sb_info *sbi)
711 {
712 struct block_device *bdev;
713 int ret = -ENODEV;
714
715 bdev = sbi->journal_bdev;
716 if (bdev) {
717 ret = ext4_blkdev_put(bdev);
718 sbi->journal_bdev = NULL;
719 }
720 return ret;
721 }
722
723 static inline struct inode *orphan_list_entry(struct list_head *l)
724 {
725 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
726 }
727
728 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
729 {
730 struct list_head *l;
731
732 ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
733 le32_to_cpu(sbi->s_es->s_last_orphan));
734
735 printk(KERN_ERR "sb_info orphan list:\n");
736 list_for_each(l, &sbi->s_orphan) {
737 struct inode *inode = orphan_list_entry(l);
738 printk(KERN_ERR " "
739 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
740 inode->i_sb->s_id, inode->i_ino, inode,
741 inode->i_mode, inode->i_nlink,
742 NEXT_ORPHAN(inode));
743 }
744 }
745
746 static void ext4_put_super(struct super_block *sb)
747 {
748 struct ext4_sb_info *sbi = EXT4_SB(sb);
749 struct ext4_super_block *es = sbi->s_es;
750 int i, err;
751
752 ext4_unregister_li_request(sb);
753 dquot_disable(sb, -1, DQUOT_USAGE_ENABLED | DQUOT_LIMITS_ENABLED);
754
755 flush_workqueue(sbi->dio_unwritten_wq);
756 destroy_workqueue(sbi->dio_unwritten_wq);
757
758 if (sbi->s_journal) {
759 err = jbd2_journal_destroy(sbi->s_journal);
760 sbi->s_journal = NULL;
761 if (err < 0)
762 ext4_abort(sb, "Couldn't clean up the journal");
763 }
764
765 ext4_es_unregister_shrinker(sb);
766 del_timer(&sbi->s_err_report);
767 ext4_release_system_zone(sb);
768 ext4_mb_release(sb);
769 ext4_ext_release(sb);
770 ext4_xattr_put_super(sb);
771
772 if (!(sb->s_flags & MS_RDONLY)) {
773 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
774 es->s_state = cpu_to_le16(sbi->s_mount_state);
775 }
776 if (!(sb->s_flags & MS_RDONLY))
777 ext4_commit_super(sb, 1);
778
779 if (sbi->s_proc) {
780 remove_proc_entry("options", sbi->s_proc);
781 remove_proc_entry(sb->s_id, ext4_proc_root);
782 }
783 kobject_del(&sbi->s_kobj);
784
785 for (i = 0; i < sbi->s_gdb_count; i++)
786 brelse(sbi->s_group_desc[i]);
787 ext4_kvfree(sbi->s_group_desc);
788 ext4_kvfree(sbi->s_flex_groups);
789 percpu_counter_destroy(&sbi->s_freeclusters_counter);
790 percpu_counter_destroy(&sbi->s_freeinodes_counter);
791 percpu_counter_destroy(&sbi->s_dirs_counter);
792 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
793 percpu_counter_destroy(&sbi->s_extent_cache_cnt);
794 brelse(sbi->s_sbh);
795 #ifdef CONFIG_QUOTA
796 for (i = 0; i < MAXQUOTAS; i++)
797 kfree(sbi->s_qf_names[i]);
798 #endif
799
800 /* Debugging code just in case the in-memory inode orphan list
801 * isn't empty. The on-disk one can be non-empty if we've
802 * detected an error and taken the fs readonly, but the
803 * in-memory list had better be clean by this point. */
804 if (!list_empty(&sbi->s_orphan))
805 dump_orphan_list(sb, sbi);
806 J_ASSERT(list_empty(&sbi->s_orphan));
807
808 invalidate_bdev(sb->s_bdev);
809 if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) {
810 /*
811 * Invalidate the journal device's buffers. We don't want them
812 * floating about in memory - the physical journal device may
813 * hotswapped, and it breaks the `ro-after' testing code.
814 */
815 sync_blockdev(sbi->journal_bdev);
816 invalidate_bdev(sbi->journal_bdev);
817 ext4_blkdev_remove(sbi);
818 }
819 if (sbi->s_mmp_tsk)
820 kthread_stop(sbi->s_mmp_tsk);
821 sb->s_fs_info = NULL;
822 /*
823 * Now that we are completely done shutting down the
824 * superblock, we need to actually destroy the kobject.
825 */
826 kobject_put(&sbi->s_kobj);
827 wait_for_completion(&sbi->s_kobj_unregister);
828 if (sbi->s_chksum_driver)
829 crypto_free_shash(sbi->s_chksum_driver);
830 kfree(sbi->s_blockgroup_lock);
831 kfree(sbi);
832 }
833
834 static struct kmem_cache *ext4_inode_cachep;
835
836 /*
837 * Called inside transaction, so use GFP_NOFS
838 */
839 static struct inode *ext4_alloc_inode(struct super_block *sb)
840 {
841 struct ext4_inode_info *ei;
842
843 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS);
844 if (!ei)
845 return NULL;
846
847 ei->vfs_inode.i_version = 1;
848 INIT_LIST_HEAD(&ei->i_prealloc_list);
849 spin_lock_init(&ei->i_prealloc_lock);
850 ext4_es_init_tree(&ei->i_es_tree);
851 rwlock_init(&ei->i_es_lock);
852 INIT_LIST_HEAD(&ei->i_es_lru);
853 ei->i_es_lru_nr = 0;
854 ei->i_reserved_data_blocks = 0;
855 ei->i_reserved_meta_blocks = 0;
856 ei->i_allocated_meta_blocks = 0;
857 ei->i_da_metadata_calc_len = 0;
858 ei->i_da_metadata_calc_last_lblock = 0;
859 spin_lock_init(&(ei->i_block_reservation_lock));
860 #ifdef CONFIG_QUOTA
861 ei->i_reserved_quota = 0;
862 #endif
863 ei->jinode = NULL;
864 INIT_LIST_HEAD(&ei->i_completed_io_list);
865 spin_lock_init(&ei->i_completed_io_lock);
866 ei->i_sync_tid = 0;
867 ei->i_datasync_tid = 0;
868 atomic_set(&ei->i_ioend_count, 0);
869 atomic_set(&ei->i_unwritten, 0);
870 INIT_WORK(&ei->i_unwritten_work, ext4_end_io_work);
871
872 return &ei->vfs_inode;
873 }
874
875 static int ext4_drop_inode(struct inode *inode)
876 {
877 int drop = generic_drop_inode(inode);
878
879 trace_ext4_drop_inode(inode, drop);
880 return drop;
881 }
882
883 static void ext4_i_callback(struct rcu_head *head)
884 {
885 struct inode *inode = container_of(head, struct inode, i_rcu);
886 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
887 }
888
889 static void ext4_destroy_inode(struct inode *inode)
890 {
891 if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
892 ext4_msg(inode->i_sb, KERN_ERR,
893 "Inode %lu (%p): orphan list check failed!",
894 inode->i_ino, EXT4_I(inode));
895 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
896 EXT4_I(inode), sizeof(struct ext4_inode_info),
897 true);
898 dump_stack();
899 }
900 call_rcu(&inode->i_rcu, ext4_i_callback);
901 }
902
903 static void init_once(void *foo)
904 {
905 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo;
906
907 INIT_LIST_HEAD(&ei->i_orphan);
908 init_rwsem(&ei->xattr_sem);
909 init_rwsem(&ei->i_data_sem);
910 inode_init_once(&ei->vfs_inode);
911 }
912
913 static int init_inodecache(void)
914 {
915 ext4_inode_cachep = kmem_cache_create("ext4_inode_cache",
916 sizeof(struct ext4_inode_info),
917 0, (SLAB_RECLAIM_ACCOUNT|
918 SLAB_MEM_SPREAD),
919 init_once);
920 if (ext4_inode_cachep == NULL)
921 return -ENOMEM;
922 return 0;
923 }
924
925 static void destroy_inodecache(void)
926 {
927 /*
928 * Make sure all delayed rcu free inodes are flushed before we
929 * destroy cache.
930 */
931 rcu_barrier();
932 kmem_cache_destroy(ext4_inode_cachep);
933 }
934
935 void ext4_clear_inode(struct inode *inode)
936 {
937 invalidate_inode_buffers(inode);
938 clear_inode(inode);
939 dquot_drop(inode);
940 ext4_discard_preallocations(inode);
941 ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS);
942 ext4_es_lru_del(inode);
943 if (EXT4_I(inode)->jinode) {
944 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
945 EXT4_I(inode)->jinode);
946 jbd2_free_inode(EXT4_I(inode)->jinode);
947 EXT4_I(inode)->jinode = NULL;
948 }
949 }
950
951 static struct inode *ext4_nfs_get_inode(struct super_block *sb,
952 u64 ino, u32 generation)
953 {
954 struct inode *inode;
955
956 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
957 return ERR_PTR(-ESTALE);
958 if (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
959 return ERR_PTR(-ESTALE);
960
961 /* iget isn't really right if the inode is currently unallocated!!
962 *
963 * ext4_read_inode will return a bad_inode if the inode had been
964 * deleted, so we should be safe.
965 *
966 * Currently we don't know the generation for parent directory, so
967 * a generation of 0 means "accept any"
968 */
969 inode = ext4_iget(sb, ino);
970 if (IS_ERR(inode))
971 return ERR_CAST(inode);
972 if (generation && inode->i_generation != generation) {
973 iput(inode);
974 return ERR_PTR(-ESTALE);
975 }
976
977 return inode;
978 }
979
980 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
981 int fh_len, int fh_type)
982 {
983 return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
984 ext4_nfs_get_inode);
985 }
986
987 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
988 int fh_len, int fh_type)
989 {
990 return generic_fh_to_parent(sb, fid, fh_len, fh_type,
991 ext4_nfs_get_inode);
992 }
993
994 /*
995 * Try to release metadata pages (indirect blocks, directories) which are
996 * mapped via the block device. Since these pages could have journal heads
997 * which would prevent try_to_free_buffers() from freeing them, we must use
998 * jbd2 layer's try_to_free_buffers() function to release them.
999 */
1000 static int bdev_try_to_free_page(struct super_block *sb, struct page *page,
1001 gfp_t wait)
1002 {
1003 journal_t *journal = EXT4_SB(sb)->s_journal;
1004
1005 WARN_ON(PageChecked(page));
1006 if (!page_has_buffers(page))
1007 return 0;
1008 if (journal)
1009 return jbd2_journal_try_to_free_buffers(journal, page,
1010 wait & ~__GFP_WAIT);
1011 return try_to_free_buffers(page);
1012 }
1013
1014 #ifdef CONFIG_QUOTA
1015 #define QTYPE2NAME(t) ((t) == USRQUOTA ? "user" : "group")
1016 #define QTYPE2MOPT(on, t) ((t) == USRQUOTA?((on)##USRJQUOTA):((on)##GRPJQUOTA))
1017
1018 static int ext4_write_dquot(struct dquot *dquot);
1019 static int ext4_acquire_dquot(struct dquot *dquot);
1020 static int ext4_release_dquot(struct dquot *dquot);
1021 static int ext4_mark_dquot_dirty(struct dquot *dquot);
1022 static int ext4_write_info(struct super_block *sb, int type);
1023 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1024 struct path *path);
1025 static int ext4_quota_on_sysfile(struct super_block *sb, int type,
1026 int format_id);
1027 static int ext4_quota_off(struct super_block *sb, int type);
1028 static int ext4_quota_off_sysfile(struct super_block *sb, int type);
1029 static int ext4_quota_on_mount(struct super_block *sb, int type);
1030 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1031 size_t len, loff_t off);
1032 static ssize_t ext4_quota_write(struct super_block *sb, int type,
1033 const char *data, size_t len, loff_t off);
1034 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
1035 unsigned int flags);
1036 static int ext4_enable_quotas(struct super_block *sb);
1037
1038 static const struct dquot_operations ext4_quota_operations = {
1039 .get_reserved_space = ext4_get_reserved_space,
1040 .write_dquot = ext4_write_dquot,
1041 .acquire_dquot = ext4_acquire_dquot,
1042 .release_dquot = ext4_release_dquot,
1043 .mark_dirty = ext4_mark_dquot_dirty,
1044 .write_info = ext4_write_info,
1045 .alloc_dquot = dquot_alloc,
1046 .destroy_dquot = dquot_destroy,
1047 };
1048
1049 static const struct quotactl_ops ext4_qctl_operations = {
1050 .quota_on = ext4_quota_on,
1051 .quota_off = ext4_quota_off,
1052 .quota_sync = dquot_quota_sync,
1053 .get_info = dquot_get_dqinfo,
1054 .set_info = dquot_set_dqinfo,
1055 .get_dqblk = dquot_get_dqblk,
1056 .set_dqblk = dquot_set_dqblk
1057 };
1058
1059 static const struct quotactl_ops ext4_qctl_sysfile_operations = {
1060 .quota_on_meta = ext4_quota_on_sysfile,
1061 .quota_off = ext4_quota_off_sysfile,
1062 .quota_sync = dquot_quota_sync,
1063 .get_info = dquot_get_dqinfo,
1064 .set_info = dquot_set_dqinfo,
1065 .get_dqblk = dquot_get_dqblk,
1066 .set_dqblk = dquot_set_dqblk
1067 };
1068 #endif
1069
1070 static const struct super_operations ext4_sops = {
1071 .alloc_inode = ext4_alloc_inode,
1072 .destroy_inode = ext4_destroy_inode,
1073 .write_inode = ext4_write_inode,
1074 .dirty_inode = ext4_dirty_inode,
1075 .drop_inode = ext4_drop_inode,
1076 .evict_inode = ext4_evict_inode,
1077 .put_super = ext4_put_super,
1078 .sync_fs = ext4_sync_fs,
1079 .freeze_fs = ext4_freeze,
1080 .unfreeze_fs = ext4_unfreeze,
1081 .statfs = ext4_statfs,
1082 .remount_fs = ext4_remount,
1083 .show_options = ext4_show_options,
1084 #ifdef CONFIG_QUOTA
1085 .quota_read = ext4_quota_read,
1086 .quota_write = ext4_quota_write,
1087 #endif
1088 .bdev_try_to_free_page = bdev_try_to_free_page,
1089 };
1090
1091 static const struct super_operations ext4_nojournal_sops = {
1092 .alloc_inode = ext4_alloc_inode,
1093 .destroy_inode = ext4_destroy_inode,
1094 .write_inode = ext4_write_inode,
1095 .dirty_inode = ext4_dirty_inode,
1096 .drop_inode = ext4_drop_inode,
1097 .evict_inode = ext4_evict_inode,
1098 .put_super = ext4_put_super,
1099 .statfs = ext4_statfs,
1100 .remount_fs = ext4_remount,
1101 .show_options = ext4_show_options,
1102 #ifdef CONFIG_QUOTA
1103 .quota_read = ext4_quota_read,
1104 .quota_write = ext4_quota_write,
1105 #endif
1106 .bdev_try_to_free_page = bdev_try_to_free_page,
1107 };
1108
1109 static const struct export_operations ext4_export_ops = {
1110 .fh_to_dentry = ext4_fh_to_dentry,
1111 .fh_to_parent = ext4_fh_to_parent,
1112 .get_parent = ext4_get_parent,
1113 };
1114
1115 enum {
1116 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1117 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro,
1118 Opt_nouid32, Opt_debug, Opt_removed,
1119 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl,
1120 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload,
1121 Opt_commit, Opt_min_batch_time, Opt_max_batch_time,
1122 Opt_journal_dev, Opt_journal_checksum, Opt_journal_async_commit,
1123 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1124 Opt_data_err_abort, Opt_data_err_ignore,
1125 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota,
1126 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota,
1127 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err,
1128 Opt_usrquota, Opt_grpquota, Opt_i_version,
1129 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_mblk_io_submit,
1130 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1131 Opt_inode_readahead_blks, Opt_journal_ioprio,
1132 Opt_dioread_nolock, Opt_dioread_lock,
1133 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable,
1134 Opt_max_dir_size_kb,
1135 };
1136
1137 static const match_table_t tokens = {
1138 {Opt_bsd_df, "bsddf"},
1139 {Opt_minix_df, "minixdf"},
1140 {Opt_grpid, "grpid"},
1141 {Opt_grpid, "bsdgroups"},
1142 {Opt_nogrpid, "nogrpid"},
1143 {Opt_nogrpid, "sysvgroups"},
1144 {Opt_resgid, "resgid=%u"},
1145 {Opt_resuid, "resuid=%u"},
1146 {Opt_sb, "sb=%u"},
1147 {Opt_err_cont, "errors=continue"},
1148 {Opt_err_panic, "errors=panic"},
1149 {Opt_err_ro, "errors=remount-ro"},
1150 {Opt_nouid32, "nouid32"},
1151 {Opt_debug, "debug"},
1152 {Opt_removed, "oldalloc"},
1153 {Opt_removed, "orlov"},
1154 {Opt_user_xattr, "user_xattr"},
1155 {Opt_nouser_xattr, "nouser_xattr"},
1156 {Opt_acl, "acl"},
1157 {Opt_noacl, "noacl"},
1158 {Opt_noload, "norecovery"},
1159 {Opt_noload, "noload"},
1160 {Opt_removed, "nobh"},
1161 {Opt_removed, "bh"},
1162 {Opt_commit, "commit=%u"},
1163 {Opt_min_batch_time, "min_batch_time=%u"},
1164 {Opt_max_batch_time, "max_batch_time=%u"},
1165 {Opt_journal_dev, "journal_dev=%u"},
1166 {Opt_journal_checksum, "journal_checksum"},
1167 {Opt_journal_async_commit, "journal_async_commit"},
1168 {Opt_abort, "abort"},
1169 {Opt_data_journal, "data=journal"},
1170 {Opt_data_ordered, "data=ordered"},
1171 {Opt_data_writeback, "data=writeback"},
1172 {Opt_data_err_abort, "data_err=abort"},
1173 {Opt_data_err_ignore, "data_err=ignore"},
1174 {Opt_offusrjquota, "usrjquota="},
1175 {Opt_usrjquota, "usrjquota=%s"},
1176 {Opt_offgrpjquota, "grpjquota="},
1177 {Opt_grpjquota, "grpjquota=%s"},
1178 {Opt_jqfmt_vfsold, "jqfmt=vfsold"},
1179 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
1180 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
1181 {Opt_grpquota, "grpquota"},
1182 {Opt_noquota, "noquota"},
1183 {Opt_quota, "quota"},
1184 {Opt_usrquota, "usrquota"},
1185 {Opt_barrier, "barrier=%u"},
1186 {Opt_barrier, "barrier"},
1187 {Opt_nobarrier, "nobarrier"},
1188 {Opt_i_version, "i_version"},
1189 {Opt_stripe, "stripe=%u"},
1190 {Opt_delalloc, "delalloc"},
1191 {Opt_nodelalloc, "nodelalloc"},
1192 {Opt_removed, "mblk_io_submit"},
1193 {Opt_removed, "nomblk_io_submit"},
1194 {Opt_block_validity, "block_validity"},
1195 {Opt_noblock_validity, "noblock_validity"},
1196 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"},
1197 {Opt_journal_ioprio, "journal_ioprio=%u"},
1198 {Opt_auto_da_alloc, "auto_da_alloc=%u"},
1199 {Opt_auto_da_alloc, "auto_da_alloc"},
1200 {Opt_noauto_da_alloc, "noauto_da_alloc"},
1201 {Opt_dioread_nolock, "dioread_nolock"},
1202 {Opt_dioread_lock, "dioread_lock"},
1203 {Opt_discard, "discard"},
1204 {Opt_nodiscard, "nodiscard"},
1205 {Opt_init_itable, "init_itable=%u"},
1206 {Opt_init_itable, "init_itable"},
1207 {Opt_noinit_itable, "noinit_itable"},
1208 {Opt_max_dir_size_kb, "max_dir_size_kb=%u"},
1209 {Opt_removed, "check=none"}, /* mount option from ext2/3 */
1210 {Opt_removed, "nocheck"}, /* mount option from ext2/3 */
1211 {Opt_removed, "reservation"}, /* mount option from ext2/3 */
1212 {Opt_removed, "noreservation"}, /* mount option from ext2/3 */
1213 {Opt_removed, "journal=%u"}, /* mount option from ext2/3 */
1214 {Opt_err, NULL},
1215 };
1216
1217 static ext4_fsblk_t get_sb_block(void **data)
1218 {
1219 ext4_fsblk_t sb_block;
1220 char *options = (char *) *data;
1221
1222 if (!options || strncmp(options, "sb=", 3) != 0)
1223 return 1; /* Default location */
1224
1225 options += 3;
1226 /* TODO: use simple_strtoll with >32bit ext4 */
1227 sb_block = simple_strtoul(options, &options, 0);
1228 if (*options && *options != ',') {
1229 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n",
1230 (char *) *data);
1231 return 1;
1232 }
1233 if (*options == ',')
1234 options++;
1235 *data = (void *) options;
1236
1237 return sb_block;
1238 }
1239
1240 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1241 static char deprecated_msg[] = "Mount option \"%s\" will be removed by %s\n"
1242 "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n";
1243
1244 #ifdef CONFIG_QUOTA
1245 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args)
1246 {
1247 struct ext4_sb_info *sbi = EXT4_SB(sb);
1248 char *qname;
1249 int ret = -1;
1250
1251 if (sb_any_quota_loaded(sb) &&
1252 !sbi->s_qf_names[qtype]) {
1253 ext4_msg(sb, KERN_ERR,
1254 "Cannot change journaled "
1255 "quota options when quota turned on");
1256 return -1;
1257 }
1258 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA)) {
1259 ext4_msg(sb, KERN_ERR, "Cannot set journaled quota options "
1260 "when QUOTA feature is enabled");
1261 return -1;
1262 }
1263 qname = match_strdup(args);
1264 if (!qname) {
1265 ext4_msg(sb, KERN_ERR,
1266 "Not enough memory for storing quotafile name");
1267 return -1;
1268 }
1269 if (sbi->s_qf_names[qtype]) {
1270 if (strcmp(sbi->s_qf_names[qtype], qname) == 0)
1271 ret = 1;
1272 else
1273 ext4_msg(sb, KERN_ERR,
1274 "%s quota file already specified",
1275 QTYPE2NAME(qtype));
1276 goto errout;
1277 }
1278 if (strchr(qname, '/')) {
1279 ext4_msg(sb, KERN_ERR,
1280 "quotafile must be on filesystem root");
1281 goto errout;
1282 }
1283 sbi->s_qf_names[qtype] = qname;
1284 set_opt(sb, QUOTA);
1285 return 1;
1286 errout:
1287 kfree(qname);
1288 return ret;
1289 }
1290
1291 static int clear_qf_name(struct super_block *sb, int qtype)
1292 {
1293
1294 struct ext4_sb_info *sbi = EXT4_SB(sb);
1295
1296 if (sb_any_quota_loaded(sb) &&
1297 sbi->s_qf_names[qtype]) {
1298 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options"
1299 " when quota turned on");
1300 return -1;
1301 }
1302 kfree(sbi->s_qf_names[qtype]);
1303 sbi->s_qf_names[qtype] = NULL;
1304 return 1;
1305 }
1306 #endif
1307
1308 #define MOPT_SET 0x0001
1309 #define MOPT_CLEAR 0x0002
1310 #define MOPT_NOSUPPORT 0x0004
1311 #define MOPT_EXPLICIT 0x0008
1312 #define MOPT_CLEAR_ERR 0x0010
1313 #define MOPT_GTE0 0x0020
1314 #ifdef CONFIG_QUOTA
1315 #define MOPT_Q 0
1316 #define MOPT_QFMT 0x0040
1317 #else
1318 #define MOPT_Q MOPT_NOSUPPORT
1319 #define MOPT_QFMT MOPT_NOSUPPORT
1320 #endif
1321 #define MOPT_DATAJ 0x0080
1322 #define MOPT_NO_EXT2 0x0100
1323 #define MOPT_NO_EXT3 0x0200
1324 #define MOPT_EXT4_ONLY (MOPT_NO_EXT2 | MOPT_NO_EXT3)
1325
1326 static const struct mount_opts {
1327 int token;
1328 int mount_opt;
1329 int flags;
1330 } ext4_mount_opts[] = {
1331 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET},
1332 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR},
1333 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET},
1334 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR},
1335 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET},
1336 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR},
1337 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK,
1338 MOPT_EXT4_ONLY | MOPT_SET},
1339 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK,
1340 MOPT_EXT4_ONLY | MOPT_CLEAR},
1341 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET},
1342 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR},
1343 {Opt_delalloc, EXT4_MOUNT_DELALLOC,
1344 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1345 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC,
1346 MOPT_EXT4_ONLY | MOPT_CLEAR | MOPT_EXPLICIT},
1347 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1348 MOPT_EXT4_ONLY | MOPT_SET},
1349 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT |
1350 EXT4_MOUNT_JOURNAL_CHECKSUM),
1351 MOPT_EXT4_ONLY | MOPT_SET},
1352 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET},
1353 {Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR},
1354 {Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR},
1355 {Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR},
1356 {Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT,
1357 MOPT_NO_EXT2 | MOPT_SET},
1358 {Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT,
1359 MOPT_NO_EXT2 | MOPT_CLEAR},
1360 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET},
1361 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR},
1362 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET},
1363 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR},
1364 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR},
1365 {Opt_commit, 0, MOPT_GTE0},
1366 {Opt_max_batch_time, 0, MOPT_GTE0},
1367 {Opt_min_batch_time, 0, MOPT_GTE0},
1368 {Opt_inode_readahead_blks, 0, MOPT_GTE0},
1369 {Opt_init_itable, 0, MOPT_GTE0},
1370 {Opt_stripe, 0, MOPT_GTE0},
1371 {Opt_resuid, 0, MOPT_GTE0},
1372 {Opt_resgid, 0, MOPT_GTE0},
1373 {Opt_journal_dev, 0, MOPT_GTE0},
1374 {Opt_journal_ioprio, 0, MOPT_GTE0},
1375 {Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1376 {Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1377 {Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA,
1378 MOPT_NO_EXT2 | MOPT_DATAJ},
1379 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET},
1380 {Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR},
1381 #ifdef CONFIG_EXT4_FS_POSIX_ACL
1382 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET},
1383 {Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR},
1384 #else
1385 {Opt_acl, 0, MOPT_NOSUPPORT},
1386 {Opt_noacl, 0, MOPT_NOSUPPORT},
1387 #endif
1388 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET},
1389 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET},
1390 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q},
1391 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA,
1392 MOPT_SET | MOPT_Q},
1393 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA,
1394 MOPT_SET | MOPT_Q},
1395 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
1396 EXT4_MOUNT_GRPQUOTA), MOPT_CLEAR | MOPT_Q},
1397 {Opt_usrjquota, 0, MOPT_Q},
1398 {Opt_grpjquota, 0, MOPT_Q},
1399 {Opt_offusrjquota, 0, MOPT_Q},
1400 {Opt_offgrpjquota, 0, MOPT_Q},
1401 {Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT},
1402 {Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT},
1403 {Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT},
1404 {Opt_max_dir_size_kb, 0, MOPT_GTE0},
1405 {Opt_err, 0, 0}
1406 };
1407
1408 static int handle_mount_opt(struct super_block *sb, char *opt, int token,
1409 substring_t *args, unsigned long *journal_devnum,
1410 unsigned int *journal_ioprio, int is_remount)
1411 {
1412 struct ext4_sb_info *sbi = EXT4_SB(sb);
1413 const struct mount_opts *m;
1414 kuid_t uid;
1415 kgid_t gid;
1416 int arg = 0;
1417
1418 #ifdef CONFIG_QUOTA
1419 if (token == Opt_usrjquota)
1420 return set_qf_name(sb, USRQUOTA, &args[0]);
1421 else if (token == Opt_grpjquota)
1422 return set_qf_name(sb, GRPQUOTA, &args[0]);
1423 else if (token == Opt_offusrjquota)
1424 return clear_qf_name(sb, USRQUOTA);
1425 else if (token == Opt_offgrpjquota)
1426 return clear_qf_name(sb, GRPQUOTA);
1427 #endif
1428 switch (token) {
1429 case Opt_noacl:
1430 case Opt_nouser_xattr:
1431 ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5");
1432 break;
1433 case Opt_sb:
1434 return 1; /* handled by get_sb_block() */
1435 case Opt_removed:
1436 ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt);
1437 return 1;
1438 case Opt_abort:
1439 sbi->s_mount_flags |= EXT4_MF_FS_ABORTED;
1440 return 1;
1441 case Opt_i_version:
1442 sb->s_flags |= MS_I_VERSION;
1443 return 1;
1444 }
1445
1446 for (m = ext4_mount_opts; m->token != Opt_err; m++)
1447 if (token == m->token)
1448 break;
1449
1450 if (m->token == Opt_err) {
1451 ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" "
1452 "or missing value", opt);
1453 return -1;
1454 }
1455
1456 if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) {
1457 ext4_msg(sb, KERN_ERR,
1458 "Mount option \"%s\" incompatible with ext2", opt);
1459 return -1;
1460 }
1461 if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) {
1462 ext4_msg(sb, KERN_ERR,
1463 "Mount option \"%s\" incompatible with ext3", opt);
1464 return -1;
1465 }
1466
1467 if (args->from && match_int(args, &arg))
1468 return -1;
1469 if (args->from && (m->flags & MOPT_GTE0) && (arg < 0))
1470 return -1;
1471 if (m->flags & MOPT_EXPLICIT)
1472 set_opt2(sb, EXPLICIT_DELALLOC);
1473 if (m->flags & MOPT_CLEAR_ERR)
1474 clear_opt(sb, ERRORS_MASK);
1475 if (token == Opt_noquota && sb_any_quota_loaded(sb)) {
1476 ext4_msg(sb, KERN_ERR, "Cannot change quota "
1477 "options when quota turned on");
1478 return -1;
1479 }
1480
1481 if (m->flags & MOPT_NOSUPPORT) {
1482 ext4_msg(sb, KERN_ERR, "%s option not supported", opt);
1483 } else if (token == Opt_commit) {
1484 if (arg == 0)
1485 arg = JBD2_DEFAULT_MAX_COMMIT_AGE;
1486 sbi->s_commit_interval = HZ * arg;
1487 } else if (token == Opt_max_batch_time) {
1488 if (arg == 0)
1489 arg = EXT4_DEF_MAX_BATCH_TIME;
1490 sbi->s_max_batch_time = arg;
1491 } else if (token == Opt_min_batch_time) {
1492 sbi->s_min_batch_time = arg;
1493 } else if (token == Opt_inode_readahead_blks) {
1494 if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) {
1495 ext4_msg(sb, KERN_ERR,
1496 "EXT4-fs: inode_readahead_blks must be "
1497 "0 or a power of 2 smaller than 2^31");
1498 return -1;
1499 }
1500 sbi->s_inode_readahead_blks = arg;
1501 } else if (token == Opt_init_itable) {
1502 set_opt(sb, INIT_INODE_TABLE);
1503 if (!args->from)
1504 arg = EXT4_DEF_LI_WAIT_MULT;
1505 sbi->s_li_wait_mult = arg;
1506 } else if (token == Opt_max_dir_size_kb) {
1507 sbi->s_max_dir_size_kb = arg;
1508 } else if (token == Opt_stripe) {
1509 sbi->s_stripe = arg;
1510 } else if (token == Opt_resuid) {
1511 uid = make_kuid(current_user_ns(), arg);
1512 if (!uid_valid(uid)) {
1513 ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg);
1514 return -1;
1515 }
1516 sbi->s_resuid = uid;
1517 } else if (token == Opt_resgid) {
1518 gid = make_kgid(current_user_ns(), arg);
1519 if (!gid_valid(gid)) {
1520 ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg);
1521 return -1;
1522 }
1523 sbi->s_resgid = gid;
1524 } else if (token == Opt_journal_dev) {
1525 if (is_remount) {
1526 ext4_msg(sb, KERN_ERR,
1527 "Cannot specify journal on remount");
1528 return -1;
1529 }
1530 *journal_devnum = arg;
1531 } else if (token == Opt_journal_ioprio) {
1532 if (arg > 7) {
1533 ext4_msg(sb, KERN_ERR, "Invalid journal IO priority"
1534 " (must be 0-7)");
1535 return -1;
1536 }
1537 *journal_ioprio =
1538 IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg);
1539 } else if (m->flags & MOPT_DATAJ) {
1540 if (is_remount) {
1541 if (!sbi->s_journal)
1542 ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option");
1543 else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) {
1544 ext4_msg(sb, KERN_ERR,
1545 "Cannot change data mode on remount");
1546 return -1;
1547 }
1548 } else {
1549 clear_opt(sb, DATA_FLAGS);
1550 sbi->s_mount_opt |= m->mount_opt;
1551 }
1552 #ifdef CONFIG_QUOTA
1553 } else if (m->flags & MOPT_QFMT) {
1554 if (sb_any_quota_loaded(sb) &&
1555 sbi->s_jquota_fmt != m->mount_opt) {
1556 ext4_msg(sb, KERN_ERR, "Cannot change journaled "
1557 "quota options when quota turned on");
1558 return -1;
1559 }
1560 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
1561 EXT4_FEATURE_RO_COMPAT_QUOTA)) {
1562 ext4_msg(sb, KERN_ERR,
1563 "Cannot set journaled quota options "
1564 "when QUOTA feature is enabled");
1565 return -1;
1566 }
1567 sbi->s_jquota_fmt = m->mount_opt;
1568 #endif
1569 } else {
1570 if (!args->from)
1571 arg = 1;
1572 if (m->flags & MOPT_CLEAR)
1573 arg = !arg;
1574 else if (unlikely(!(m->flags & MOPT_SET))) {
1575 ext4_msg(sb, KERN_WARNING,
1576 "buggy handling of option %s", opt);
1577 WARN_ON(1);
1578 return -1;
1579 }
1580 if (arg != 0)
1581 sbi->s_mount_opt |= m->mount_opt;
1582 else
1583 sbi->s_mount_opt &= ~m->mount_opt;
1584 }
1585 return 1;
1586 }
1587
1588 static int parse_options(char *options, struct super_block *sb,
1589 unsigned long *journal_devnum,
1590 unsigned int *journal_ioprio,
1591 int is_remount)
1592 {
1593 struct ext4_sb_info *sbi = EXT4_SB(sb);
1594 char *p;
1595 substring_t args[MAX_OPT_ARGS];
1596 int token;
1597
1598 if (!options)
1599 return 1;
1600
1601 while ((p = strsep(&options, ",")) != NULL) {
1602 if (!*p)
1603 continue;
1604 /*
1605 * Initialize args struct so we know whether arg was
1606 * found; some options take optional arguments.
1607 */
1608 args[0].to = args[0].from = NULL;
1609 token = match_token(p, tokens, args);
1610 if (handle_mount_opt(sb, p, token, args, journal_devnum,
1611 journal_ioprio, is_remount) < 0)
1612 return 0;
1613 }
1614 #ifdef CONFIG_QUOTA
1615 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) &&
1616 (test_opt(sb, USRQUOTA) || test_opt(sb, GRPQUOTA))) {
1617 ext4_msg(sb, KERN_ERR, "Cannot set quota options when QUOTA "
1618 "feature is enabled");
1619 return 0;
1620 }
1621 if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
1622 if (test_opt(sb, USRQUOTA) && sbi->s_qf_names[USRQUOTA])
1623 clear_opt(sb, USRQUOTA);
1624
1625 if (test_opt(sb, GRPQUOTA) && sbi->s_qf_names[GRPQUOTA])
1626 clear_opt(sb, GRPQUOTA);
1627
1628 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) {
1629 ext4_msg(sb, KERN_ERR, "old and new quota "
1630 "format mixing");
1631 return 0;
1632 }
1633
1634 if (!sbi->s_jquota_fmt) {
1635 ext4_msg(sb, KERN_ERR, "journaled quota format "
1636 "not specified");
1637 return 0;
1638 }
1639 } else {
1640 if (sbi->s_jquota_fmt) {
1641 ext4_msg(sb, KERN_ERR, "journaled quota format "
1642 "specified with no journaling "
1643 "enabled");
1644 return 0;
1645 }
1646 }
1647 #endif
1648 if (test_opt(sb, DIOREAD_NOLOCK)) {
1649 int blocksize =
1650 BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size);
1651
1652 if (blocksize < PAGE_CACHE_SIZE) {
1653 ext4_msg(sb, KERN_ERR, "can't mount with "
1654 "dioread_nolock if block size != PAGE_SIZE");
1655 return 0;
1656 }
1657 }
1658 return 1;
1659 }
1660
1661 static inline void ext4_show_quota_options(struct seq_file *seq,
1662 struct super_block *sb)
1663 {
1664 #if defined(CONFIG_QUOTA)
1665 struct ext4_sb_info *sbi = EXT4_SB(sb);
1666
1667 if (sbi->s_jquota_fmt) {
1668 char *fmtname = "";
1669
1670 switch (sbi->s_jquota_fmt) {
1671 case QFMT_VFS_OLD:
1672 fmtname = "vfsold";
1673 break;
1674 case QFMT_VFS_V0:
1675 fmtname = "vfsv0";
1676 break;
1677 case QFMT_VFS_V1:
1678 fmtname = "vfsv1";
1679 break;
1680 }
1681 seq_printf(seq, ",jqfmt=%s", fmtname);
1682 }
1683
1684 if (sbi->s_qf_names[USRQUOTA])
1685 seq_printf(seq, ",usrjquota=%s", sbi->s_qf_names[USRQUOTA]);
1686
1687 if (sbi->s_qf_names[GRPQUOTA])
1688 seq_printf(seq, ",grpjquota=%s", sbi->s_qf_names[GRPQUOTA]);
1689
1690 if (test_opt(sb, USRQUOTA))
1691 seq_puts(seq, ",usrquota");
1692
1693 if (test_opt(sb, GRPQUOTA))
1694 seq_puts(seq, ",grpquota");
1695 #endif
1696 }
1697
1698 static const char *token2str(int token)
1699 {
1700 const struct match_token *t;
1701
1702 for (t = tokens; t->token != Opt_err; t++)
1703 if (t->token == token && !strchr(t->pattern, '='))
1704 break;
1705 return t->pattern;
1706 }
1707
1708 /*
1709 * Show an option if
1710 * - it's set to a non-default value OR
1711 * - if the per-sb default is different from the global default
1712 */
1713 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb,
1714 int nodefs)
1715 {
1716 struct ext4_sb_info *sbi = EXT4_SB(sb);
1717 struct ext4_super_block *es = sbi->s_es;
1718 int def_errors, def_mount_opt = nodefs ? 0 : sbi->s_def_mount_opt;
1719 const struct mount_opts *m;
1720 char sep = nodefs ? '\n' : ',';
1721
1722 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep)
1723 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg)
1724
1725 if (sbi->s_sb_block != 1)
1726 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block);
1727
1728 for (m = ext4_mount_opts; m->token != Opt_err; m++) {
1729 int want_set = m->flags & MOPT_SET;
1730 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) ||
1731 (m->flags & MOPT_CLEAR_ERR))
1732 continue;
1733 if (!(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt)))
1734 continue; /* skip if same as the default */
1735 if ((want_set &&
1736 (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) ||
1737 (!want_set && (sbi->s_mount_opt & m->mount_opt)))
1738 continue; /* select Opt_noFoo vs Opt_Foo */
1739 SEQ_OPTS_PRINT("%s", token2str(m->token));
1740 }
1741
1742 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) ||
1743 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID)
1744 SEQ_OPTS_PRINT("resuid=%u",
1745 from_kuid_munged(&init_user_ns, sbi->s_resuid));
1746 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) ||
1747 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID)
1748 SEQ_OPTS_PRINT("resgid=%u",
1749 from_kgid_munged(&init_user_ns, sbi->s_resgid));
1750 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors);
1751 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO)
1752 SEQ_OPTS_PUTS("errors=remount-ro");
1753 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
1754 SEQ_OPTS_PUTS("errors=continue");
1755 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
1756 SEQ_OPTS_PUTS("errors=panic");
1757 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
1758 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ);
1759 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME)
1760 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time);
1761 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME)
1762 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time);
1763 if (sb->s_flags & MS_I_VERSION)
1764 SEQ_OPTS_PUTS("i_version");
1765 if (nodefs || sbi->s_stripe)
1766 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe);
1767 if (EXT4_MOUNT_DATA_FLAGS & (sbi->s_mount_opt ^ def_mount_opt)) {
1768 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
1769 SEQ_OPTS_PUTS("data=journal");
1770 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
1771 SEQ_OPTS_PUTS("data=ordered");
1772 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
1773 SEQ_OPTS_PUTS("data=writeback");
1774 }
1775 if (nodefs ||
1776 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
1777 SEQ_OPTS_PRINT("inode_readahead_blks=%u",
1778 sbi->s_inode_readahead_blks);
1779
1780 if (nodefs || (test_opt(sb, INIT_INODE_TABLE) &&
1781 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)))
1782 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult);
1783 if (nodefs || sbi->s_max_dir_size_kb)
1784 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb);
1785
1786 ext4_show_quota_options(seq, sb);
1787 return 0;
1788 }
1789
1790 static int ext4_show_options(struct seq_file *seq, struct dentry *root)
1791 {
1792 return _ext4_show_options(seq, root->d_sb, 0);
1793 }
1794
1795 static int options_seq_show(struct seq_file *seq, void *offset)
1796 {
1797 struct super_block *sb = seq->private;
1798 int rc;
1799
1800 seq_puts(seq, (sb->s_flags & MS_RDONLY) ? "ro" : "rw");
1801 rc = _ext4_show_options(seq, sb, 1);
1802 seq_puts(seq, "\n");
1803 return rc;
1804 }
1805
1806 static int options_open_fs(struct inode *inode, struct file *file)
1807 {
1808 return single_open(file, options_seq_show, PDE(inode)->data);
1809 }
1810
1811 static const struct file_operations ext4_seq_options_fops = {
1812 .owner = THIS_MODULE,
1813 .open = options_open_fs,
1814 .read = seq_read,
1815 .llseek = seq_lseek,
1816 .release = single_release,
1817 };
1818
1819 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
1820 int read_only)
1821 {
1822 struct ext4_sb_info *sbi = EXT4_SB(sb);
1823 int res = 0;
1824
1825 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
1826 ext4_msg(sb, KERN_ERR, "revision level too high, "
1827 "forcing read-only mode");
1828 res = MS_RDONLY;
1829 }
1830 if (read_only)
1831 goto done;
1832 if (!(sbi->s_mount_state & EXT4_VALID_FS))
1833 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
1834 "running e2fsck is recommended");
1835 else if ((sbi->s_mount_state & EXT4_ERROR_FS))
1836 ext4_msg(sb, KERN_WARNING,
1837 "warning: mounting fs with errors, "
1838 "running e2fsck is recommended");
1839 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
1840 le16_to_cpu(es->s_mnt_count) >=
1841 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
1842 ext4_msg(sb, KERN_WARNING,
1843 "warning: maximal mount count reached, "
1844 "running e2fsck is recommended");
1845 else if (le32_to_cpu(es->s_checkinterval) &&
1846 (le32_to_cpu(es->s_lastcheck) +
1847 le32_to_cpu(es->s_checkinterval) <= get_seconds()))
1848 ext4_msg(sb, KERN_WARNING,
1849 "warning: checktime reached, "
1850 "running e2fsck is recommended");
1851 if (!sbi->s_journal)
1852 es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
1853 if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
1854 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
1855 le16_add_cpu(&es->s_mnt_count, 1);
1856 es->s_mtime = cpu_to_le32(get_seconds());
1857 ext4_update_dynamic_rev(sb);
1858 if (sbi->s_journal)
1859 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
1860
1861 ext4_commit_super(sb, 1);
1862 done:
1863 if (test_opt(sb, DEBUG))
1864 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
1865 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
1866 sb->s_blocksize,
1867 sbi->s_groups_count,
1868 EXT4_BLOCKS_PER_GROUP(sb),
1869 EXT4_INODES_PER_GROUP(sb),
1870 sbi->s_mount_opt, sbi->s_mount_opt2);
1871
1872 cleancache_init_fs(sb);
1873 return res;
1874 }
1875
1876 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup)
1877 {
1878 struct ext4_sb_info *sbi = EXT4_SB(sb);
1879 struct flex_groups *new_groups;
1880 int size;
1881
1882 if (!sbi->s_log_groups_per_flex)
1883 return 0;
1884
1885 size = ext4_flex_group(sbi, ngroup - 1) + 1;
1886 if (size <= sbi->s_flex_groups_allocated)
1887 return 0;
1888
1889 size = roundup_pow_of_two(size * sizeof(struct flex_groups));
1890 new_groups = ext4_kvzalloc(size, GFP_KERNEL);
1891 if (!new_groups) {
1892 ext4_msg(sb, KERN_ERR, "not enough memory for %d flex groups",
1893 size / (int) sizeof(struct flex_groups));
1894 return -ENOMEM;
1895 }
1896
1897 if (sbi->s_flex_groups) {
1898 memcpy(new_groups, sbi->s_flex_groups,
1899 (sbi->s_flex_groups_allocated *
1900 sizeof(struct flex_groups)));
1901 ext4_kvfree(sbi->s_flex_groups);
1902 }
1903 sbi->s_flex_groups = new_groups;
1904 sbi->s_flex_groups_allocated = size / sizeof(struct flex_groups);
1905 return 0;
1906 }
1907
1908 static int ext4_fill_flex_info(struct super_block *sb)
1909 {
1910 struct ext4_sb_info *sbi = EXT4_SB(sb);
1911 struct ext4_group_desc *gdp = NULL;
1912 ext4_group_t flex_group;
1913 unsigned int groups_per_flex = 0;
1914 int i, err;
1915
1916 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
1917 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) {
1918 sbi->s_log_groups_per_flex = 0;
1919 return 1;
1920 }
1921 groups_per_flex = 1U << sbi->s_log_groups_per_flex;
1922
1923 err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count);
1924 if (err)
1925 goto failed;
1926
1927 for (i = 0; i < sbi->s_groups_count; i++) {
1928 gdp = ext4_get_group_desc(sb, i, NULL);
1929
1930 flex_group = ext4_flex_group(sbi, i);
1931 atomic_add(ext4_free_inodes_count(sb, gdp),
1932 &sbi->s_flex_groups[flex_group].free_inodes);
1933 atomic64_add(ext4_free_group_clusters(sb, gdp),
1934 &sbi->s_flex_groups[flex_group].free_clusters);
1935 atomic_add(ext4_used_dirs_count(sb, gdp),
1936 &sbi->s_flex_groups[flex_group].used_dirs);
1937 }
1938
1939 return 1;
1940 failed:
1941 return 0;
1942 }
1943
1944 static __le16 ext4_group_desc_csum(struct ext4_sb_info *sbi, __u32 block_group,
1945 struct ext4_group_desc *gdp)
1946 {
1947 int offset;
1948 __u16 crc = 0;
1949 __le32 le_group = cpu_to_le32(block_group);
1950
1951 if ((sbi->s_es->s_feature_ro_compat &
1952 cpu_to_le32(EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))) {
1953 /* Use new metadata_csum algorithm */
1954 __u16 old_csum;
1955 __u32 csum32;
1956
1957 old_csum = gdp->bg_checksum;
1958 gdp->bg_checksum = 0;
1959 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group,
1960 sizeof(le_group));
1961 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp,
1962 sbi->s_desc_size);
1963 gdp->bg_checksum = old_csum;
1964
1965 crc = csum32 & 0xFFFF;
1966 goto out;
1967 }
1968
1969 /* old crc16 code */
1970 offset = offsetof(struct ext4_group_desc, bg_checksum);
1971
1972 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
1973 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
1974 crc = crc16(crc, (__u8 *)gdp, offset);
1975 offset += sizeof(gdp->bg_checksum); /* skip checksum */
1976 /* for checksum of struct ext4_group_desc do the rest...*/
1977 if ((sbi->s_es->s_feature_incompat &
1978 cpu_to_le32(EXT4_FEATURE_INCOMPAT_64BIT)) &&
1979 offset < le16_to_cpu(sbi->s_es->s_desc_size))
1980 crc = crc16(crc, (__u8 *)gdp + offset,
1981 le16_to_cpu(sbi->s_es->s_desc_size) -
1982 offset);
1983
1984 out:
1985 return cpu_to_le16(crc);
1986 }
1987
1988 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group,
1989 struct ext4_group_desc *gdp)
1990 {
1991 if (ext4_has_group_desc_csum(sb) &&
1992 (gdp->bg_checksum != ext4_group_desc_csum(EXT4_SB(sb),
1993 block_group, gdp)))
1994 return 0;
1995
1996 return 1;
1997 }
1998
1999 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group,
2000 struct ext4_group_desc *gdp)
2001 {
2002 if (!ext4_has_group_desc_csum(sb))
2003 return;
2004 gdp->bg_checksum = ext4_group_desc_csum(EXT4_SB(sb), block_group, gdp);
2005 }
2006
2007 /* Called at mount-time, super-block is locked */
2008 static int ext4_check_descriptors(struct super_block *sb,
2009 ext4_group_t *first_not_zeroed)
2010 {
2011 struct ext4_sb_info *sbi = EXT4_SB(sb);
2012 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
2013 ext4_fsblk_t last_block;
2014 ext4_fsblk_t block_bitmap;
2015 ext4_fsblk_t inode_bitmap;
2016 ext4_fsblk_t inode_table;
2017 int flexbg_flag = 0;
2018 ext4_group_t i, grp = sbi->s_groups_count;
2019
2020 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG))
2021 flexbg_flag = 1;
2022
2023 ext4_debug("Checking group descriptors");
2024
2025 for (i = 0; i < sbi->s_groups_count; i++) {
2026 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
2027
2028 if (i == sbi->s_groups_count - 1 || flexbg_flag)
2029 last_block = ext4_blocks_count(sbi->s_es) - 1;
2030 else
2031 last_block = first_block +
2032 (EXT4_BLOCKS_PER_GROUP(sb) - 1);
2033
2034 if ((grp == sbi->s_groups_count) &&
2035 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2036 grp = i;
2037
2038 block_bitmap = ext4_block_bitmap(sb, gdp);
2039 if (block_bitmap < first_block || block_bitmap > last_block) {
2040 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2041 "Block bitmap for group %u not in group "
2042 "(block %llu)!", i, block_bitmap);
2043 return 0;
2044 }
2045 inode_bitmap = ext4_inode_bitmap(sb, gdp);
2046 if (inode_bitmap < first_block || inode_bitmap > last_block) {
2047 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2048 "Inode bitmap for group %u not in group "
2049 "(block %llu)!", i, inode_bitmap);
2050 return 0;
2051 }
2052 inode_table = ext4_inode_table(sb, gdp);
2053 if (inode_table < first_block ||
2054 inode_table + sbi->s_itb_per_group - 1 > last_block) {
2055 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2056 "Inode table for group %u not in group "
2057 "(block %llu)!", i, inode_table);
2058 return 0;
2059 }
2060 ext4_lock_group(sb, i);
2061 if (!ext4_group_desc_csum_verify(sb, i, gdp)) {
2062 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2063 "Checksum for group %u failed (%u!=%u)",
2064 i, le16_to_cpu(ext4_group_desc_csum(sbi, i,
2065 gdp)), le16_to_cpu(gdp->bg_checksum));
2066 if (!(sb->s_flags & MS_RDONLY)) {
2067 ext4_unlock_group(sb, i);
2068 return 0;
2069 }
2070 }
2071 ext4_unlock_group(sb, i);
2072 if (!flexbg_flag)
2073 first_block += EXT4_BLOCKS_PER_GROUP(sb);
2074 }
2075 if (NULL != first_not_zeroed)
2076 *first_not_zeroed = grp;
2077
2078 ext4_free_blocks_count_set(sbi->s_es,
2079 EXT4_C2B(sbi, ext4_count_free_clusters(sb)));
2080 sbi->s_es->s_free_inodes_count =cpu_to_le32(ext4_count_free_inodes(sb));
2081 return 1;
2082 }
2083
2084 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at
2085 * the superblock) which were deleted from all directories, but held open by
2086 * a process at the time of a crash. We walk the list and try to delete these
2087 * inodes at recovery time (only with a read-write filesystem).
2088 *
2089 * In order to keep the orphan inode chain consistent during traversal (in
2090 * case of crash during recovery), we link each inode into the superblock
2091 * orphan list_head and handle it the same way as an inode deletion during
2092 * normal operation (which journals the operations for us).
2093 *
2094 * We only do an iget() and an iput() on each inode, which is very safe if we
2095 * accidentally point at an in-use or already deleted inode. The worst that
2096 * can happen in this case is that we get a "bit already cleared" message from
2097 * ext4_free_inode(). The only reason we would point at a wrong inode is if
2098 * e2fsck was run on this filesystem, and it must have already done the orphan
2099 * inode cleanup for us, so we can safely abort without any further action.
2100 */
2101 static void ext4_orphan_cleanup(struct super_block *sb,
2102 struct ext4_super_block *es)
2103 {
2104 unsigned int s_flags = sb->s_flags;
2105 int nr_orphans = 0, nr_truncates = 0;
2106 #ifdef CONFIG_QUOTA
2107 int i;
2108 #endif
2109 if (!es->s_last_orphan) {
2110 jbd_debug(4, "no orphan inodes to clean up\n");
2111 return;
2112 }
2113
2114 if (bdev_read_only(sb->s_bdev)) {
2115 ext4_msg(sb, KERN_ERR, "write access "
2116 "unavailable, skipping orphan cleanup");
2117 return;
2118 }
2119
2120 /* Check if feature set would not allow a r/w mount */
2121 if (!ext4_feature_set_ok(sb, 0)) {
2122 ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to "
2123 "unknown ROCOMPAT features");
2124 return;
2125 }
2126
2127 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2128 /* don't clear list on RO mount w/ errors */
2129 if (es->s_last_orphan && !(s_flags & MS_RDONLY)) {
2130 jbd_debug(1, "Errors on filesystem, "
2131 "clearing orphan list.\n");
2132 es->s_last_orphan = 0;
2133 }
2134 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2135 return;
2136 }
2137
2138 if (s_flags & MS_RDONLY) {
2139 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs");
2140 sb->s_flags &= ~MS_RDONLY;
2141 }
2142 #ifdef CONFIG_QUOTA
2143 /* Needed for iput() to work correctly and not trash data */
2144 sb->s_flags |= MS_ACTIVE;
2145 /* Turn on quotas so that they are updated correctly */
2146 for (i = 0; i < MAXQUOTAS; i++) {
2147 if (EXT4_SB(sb)->s_qf_names[i]) {
2148 int ret = ext4_quota_on_mount(sb, i);
2149 if (ret < 0)
2150 ext4_msg(sb, KERN_ERR,
2151 "Cannot turn on journaled "
2152 "quota: error %d", ret);
2153 }
2154 }
2155 #endif
2156
2157 while (es->s_last_orphan) {
2158 struct inode *inode;
2159
2160 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan));
2161 if (IS_ERR(inode)) {
2162 es->s_last_orphan = 0;
2163 break;
2164 }
2165
2166 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan);
2167 dquot_initialize(inode);
2168 if (inode->i_nlink) {
2169 ext4_msg(sb, KERN_DEBUG,
2170 "%s: truncating inode %lu to %lld bytes",
2171 __func__, inode->i_ino, inode->i_size);
2172 jbd_debug(2, "truncating inode %lu to %lld bytes\n",
2173 inode->i_ino, inode->i_size);
2174 mutex_lock(&inode->i_mutex);
2175 ext4_truncate(inode);
2176 mutex_unlock(&inode->i_mutex);
2177 nr_truncates++;
2178 } else {
2179 ext4_msg(sb, KERN_DEBUG,
2180 "%s: deleting unreferenced inode %lu",
2181 __func__, inode->i_ino);
2182 jbd_debug(2, "deleting unreferenced inode %lu\n",
2183 inode->i_ino);
2184 nr_orphans++;
2185 }
2186 iput(inode); /* The delete magic happens here! */
2187 }
2188
2189 #define PLURAL(x) (x), ((x) == 1) ? "" : "s"
2190
2191 if (nr_orphans)
2192 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted",
2193 PLURAL(nr_orphans));
2194 if (nr_truncates)
2195 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up",
2196 PLURAL(nr_truncates));
2197 #ifdef CONFIG_QUOTA
2198 /* Turn quotas off */
2199 for (i = 0; i < MAXQUOTAS; i++) {
2200 if (sb_dqopt(sb)->files[i])
2201 dquot_quota_off(sb, i);
2202 }
2203 #endif
2204 sb->s_flags = s_flags; /* Restore MS_RDONLY status */
2205 }
2206
2207 /*
2208 * Maximal extent format file size.
2209 * Resulting logical blkno at s_maxbytes must fit in our on-disk
2210 * extent format containers, within a sector_t, and within i_blocks
2211 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units,
2212 * so that won't be a limiting factor.
2213 *
2214 * However there is other limiting factor. We do store extents in the form
2215 * of starting block and length, hence the resulting length of the extent
2216 * covering maximum file size must fit into on-disk format containers as
2217 * well. Given that length is always by 1 unit bigger than max unit (because
2218 * we count 0 as well) we have to lower the s_maxbytes by one fs block.
2219 *
2220 * Note, this does *not* consider any metadata overhead for vfs i_blocks.
2221 */
2222 static loff_t ext4_max_size(int blkbits, int has_huge_files)
2223 {
2224 loff_t res;
2225 loff_t upper_limit = MAX_LFS_FILESIZE;
2226
2227 /* small i_blocks in vfs inode? */
2228 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2229 /*
2230 * CONFIG_LBDAF is not enabled implies the inode
2231 * i_block represent total blocks in 512 bytes
2232 * 32 == size of vfs inode i_blocks * 8
2233 */
2234 upper_limit = (1LL << 32) - 1;
2235
2236 /* total blocks in file system block size */
2237 upper_limit >>= (blkbits - 9);
2238 upper_limit <<= blkbits;
2239 }
2240
2241 /*
2242 * 32-bit extent-start container, ee_block. We lower the maxbytes
2243 * by one fs block, so ee_len can cover the extent of maximum file
2244 * size
2245 */
2246 res = (1LL << 32) - 1;
2247 res <<= blkbits;
2248
2249 /* Sanity check against vm- & vfs- imposed limits */
2250 if (res > upper_limit)
2251 res = upper_limit;
2252
2253 return res;
2254 }
2255
2256 /*
2257 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect
2258 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
2259 * We need to be 1 filesystem block less than the 2^48 sector limit.
2260 */
2261 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
2262 {
2263 loff_t res = EXT4_NDIR_BLOCKS;
2264 int meta_blocks;
2265 loff_t upper_limit;
2266 /* This is calculated to be the largest file size for a dense, block
2267 * mapped file such that the file's total number of 512-byte sectors,
2268 * including data and all indirect blocks, does not exceed (2^48 - 1).
2269 *
2270 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
2271 * number of 512-byte sectors of the file.
2272 */
2273
2274 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2275 /*
2276 * !has_huge_files or CONFIG_LBDAF not enabled implies that
2277 * the inode i_block field represents total file blocks in
2278 * 2^32 512-byte sectors == size of vfs inode i_blocks * 8
2279 */
2280 upper_limit = (1LL << 32) - 1;
2281
2282 /* total blocks in file system block size */
2283 upper_limit >>= (bits - 9);
2284
2285 } else {
2286 /*
2287 * We use 48 bit ext4_inode i_blocks
2288 * With EXT4_HUGE_FILE_FL set the i_blocks
2289 * represent total number of blocks in
2290 * file system block size
2291 */
2292 upper_limit = (1LL << 48) - 1;
2293
2294 }
2295
2296 /* indirect blocks */
2297 meta_blocks = 1;
2298 /* double indirect blocks */
2299 meta_blocks += 1 + (1LL << (bits-2));
2300 /* tripple indirect blocks */
2301 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2)));
2302
2303 upper_limit -= meta_blocks;
2304 upper_limit <<= bits;
2305
2306 res += 1LL << (bits-2);
2307 res += 1LL << (2*(bits-2));
2308 res += 1LL << (3*(bits-2));
2309 res <<= bits;
2310 if (res > upper_limit)
2311 res = upper_limit;
2312
2313 if (res > MAX_LFS_FILESIZE)
2314 res = MAX_LFS_FILESIZE;
2315
2316 return res;
2317 }
2318
2319 static ext4_fsblk_t descriptor_loc(struct super_block *sb,
2320 ext4_fsblk_t logical_sb_block, int nr)
2321 {
2322 struct ext4_sb_info *sbi = EXT4_SB(sb);
2323 ext4_group_t bg, first_meta_bg;
2324 int has_super = 0;
2325
2326 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
2327
2328 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_META_BG) ||
2329 nr < first_meta_bg)
2330 return logical_sb_block + nr + 1;
2331 bg = sbi->s_desc_per_block * nr;
2332 if (ext4_bg_has_super(sb, bg))
2333 has_super = 1;
2334
2335 return (has_super + ext4_group_first_block_no(sb, bg));
2336 }
2337
2338 /**
2339 * ext4_get_stripe_size: Get the stripe size.
2340 * @sbi: In memory super block info
2341 *
2342 * If we have specified it via mount option, then
2343 * use the mount option value. If the value specified at mount time is
2344 * greater than the blocks per group use the super block value.
2345 * If the super block value is greater than blocks per group return 0.
2346 * Allocator needs it be less than blocks per group.
2347 *
2348 */
2349 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
2350 {
2351 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
2352 unsigned long stripe_width =
2353 le32_to_cpu(sbi->s_es->s_raid_stripe_width);
2354 int ret;
2355
2356 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
2357 ret = sbi->s_stripe;
2358 else if (stripe_width <= sbi->s_blocks_per_group)
2359 ret = stripe_width;
2360 else if (stride <= sbi->s_blocks_per_group)
2361 ret = stride;
2362 else
2363 ret = 0;
2364
2365 /*
2366 * If the stripe width is 1, this makes no sense and
2367 * we set it to 0 to turn off stripe handling code.
2368 */
2369 if (ret <= 1)
2370 ret = 0;
2371
2372 return ret;
2373 }
2374
2375 /* sysfs supprt */
2376
2377 struct ext4_attr {
2378 struct attribute attr;
2379 ssize_t (*show)(struct ext4_attr *, struct ext4_sb_info *, char *);
2380 ssize_t (*store)(struct ext4_attr *, struct ext4_sb_info *,
2381 const char *, size_t);
2382 int offset;
2383 };
2384
2385 static int parse_strtoul(const char *buf,
2386 unsigned long max, unsigned long *value)
2387 {
2388 char *endp;
2389
2390 *value = simple_strtoul(skip_spaces(buf), &endp, 0);
2391 endp = skip_spaces(endp);
2392 if (*endp || *value > max)
2393 return -EINVAL;
2394
2395 return 0;
2396 }
2397
2398 static ssize_t delayed_allocation_blocks_show(struct ext4_attr *a,
2399 struct ext4_sb_info *sbi,
2400 char *buf)
2401 {
2402 return snprintf(buf, PAGE_SIZE, "%llu\n",
2403 (s64) EXT4_C2B(sbi,
2404 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
2405 }
2406
2407 static ssize_t session_write_kbytes_show(struct ext4_attr *a,
2408 struct ext4_sb_info *sbi, char *buf)
2409 {
2410 struct super_block *sb = sbi->s_buddy_cache->i_sb;
2411
2412 if (!sb->s_bdev->bd_part)
2413 return snprintf(buf, PAGE_SIZE, "0\n");
2414 return snprintf(buf, PAGE_SIZE, "%lu\n",
2415 (part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
2416 sbi->s_sectors_written_start) >> 1);
2417 }
2418
2419 static ssize_t lifetime_write_kbytes_show(struct ext4_attr *a,
2420 struct ext4_sb_info *sbi, char *buf)
2421 {
2422 struct super_block *sb = sbi->s_buddy_cache->i_sb;
2423
2424 if (!sb->s_bdev->bd_part)
2425 return snprintf(buf, PAGE_SIZE, "0\n");
2426 return snprintf(buf, PAGE_SIZE, "%llu\n",
2427 (unsigned long long)(sbi->s_kbytes_written +
2428 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
2429 EXT4_SB(sb)->s_sectors_written_start) >> 1)));
2430 }
2431
2432 static ssize_t inode_readahead_blks_store(struct ext4_attr *a,
2433 struct ext4_sb_info *sbi,
2434 const char *buf, size_t count)
2435 {
2436 unsigned long t;
2437
2438 if (parse_strtoul(buf, 0x40000000, &t))
2439 return -EINVAL;
2440
2441 if (t && !is_power_of_2(t))
2442 return -EINVAL;
2443
2444 sbi->s_inode_readahead_blks = t;
2445 return count;
2446 }
2447
2448 static ssize_t sbi_ui_show(struct ext4_attr *a,
2449 struct ext4_sb_info *sbi, char *buf)
2450 {
2451 unsigned int *ui = (unsigned int *) (((char *) sbi) + a->offset);
2452
2453 return snprintf(buf, PAGE_SIZE, "%u\n", *ui);
2454 }
2455
2456 static ssize_t sbi_ui_store(struct ext4_attr *a,
2457 struct ext4_sb_info *sbi,
2458 const char *buf, size_t count)
2459 {
2460 unsigned int *ui = (unsigned int *) (((char *) sbi) + a->offset);
2461 unsigned long t;
2462
2463 if (parse_strtoul(buf, 0xffffffff, &t))
2464 return -EINVAL;
2465 *ui = t;
2466 return count;
2467 }
2468
2469 static ssize_t trigger_test_error(struct ext4_attr *a,
2470 struct ext4_sb_info *sbi,
2471 const char *buf, size_t count)
2472 {
2473 int len = count;
2474
2475 if (!capable(CAP_SYS_ADMIN))
2476 return -EPERM;
2477
2478 if (len && buf[len-1] == '\n')
2479 len--;
2480
2481 if (len)
2482 ext4_error(sbi->s_sb, "%.*s", len, buf);
2483 return count;
2484 }
2485
2486 #define EXT4_ATTR_OFFSET(_name,_mode,_show,_store,_elname) \
2487 static struct ext4_attr ext4_attr_##_name = { \
2488 .attr = {.name = __stringify(_name), .mode = _mode }, \
2489 .show = _show, \
2490 .store = _store, \
2491 .offset = offsetof(struct ext4_sb_info, _elname), \
2492 }
2493 #define EXT4_ATTR(name, mode, show, store) \
2494 static struct ext4_attr ext4_attr_##name = __ATTR(name, mode, show, store)
2495
2496 #define EXT4_INFO_ATTR(name) EXT4_ATTR(name, 0444, NULL, NULL)
2497 #define EXT4_RO_ATTR(name) EXT4_ATTR(name, 0444, name##_show, NULL)
2498 #define EXT4_RW_ATTR(name) EXT4_ATTR(name, 0644, name##_show, name##_store)
2499 #define EXT4_RW_ATTR_SBI_UI(name, elname) \
2500 EXT4_ATTR_OFFSET(name, 0644, sbi_ui_show, sbi_ui_store, elname)
2501 #define ATTR_LIST(name) &ext4_attr_##name.attr
2502
2503 EXT4_RO_ATTR(delayed_allocation_blocks);
2504 EXT4_RO_ATTR(session_write_kbytes);
2505 EXT4_RO_ATTR(lifetime_write_kbytes);
2506 EXT4_ATTR_OFFSET(inode_readahead_blks, 0644, sbi_ui_show,
2507 inode_readahead_blks_store, s_inode_readahead_blks);
2508 EXT4_RW_ATTR_SBI_UI(inode_goal, s_inode_goal);
2509 EXT4_RW_ATTR_SBI_UI(mb_stats, s_mb_stats);
2510 EXT4_RW_ATTR_SBI_UI(mb_max_to_scan, s_mb_max_to_scan);
2511 EXT4_RW_ATTR_SBI_UI(mb_min_to_scan, s_mb_min_to_scan);
2512 EXT4_RW_ATTR_SBI_UI(mb_order2_req, s_mb_order2_reqs);
2513 EXT4_RW_ATTR_SBI_UI(mb_stream_req, s_mb_stream_request);
2514 EXT4_RW_ATTR_SBI_UI(mb_group_prealloc, s_mb_group_prealloc);
2515 EXT4_RW_ATTR_SBI_UI(max_writeback_mb_bump, s_max_writeback_mb_bump);
2516 EXT4_RW_ATTR_SBI_UI(extent_max_zeroout_kb, s_extent_max_zeroout_kb);
2517 EXT4_ATTR(trigger_fs_error, 0200, NULL, trigger_test_error);
2518
2519 static struct attribute *ext4_attrs[] = {
2520 ATTR_LIST(delayed_allocation_blocks),
2521 ATTR_LIST(session_write_kbytes),
2522 ATTR_LIST(lifetime_write_kbytes),
2523 ATTR_LIST(inode_readahead_blks),
2524 ATTR_LIST(inode_goal),
2525 ATTR_LIST(mb_stats),
2526 ATTR_LIST(mb_max_to_scan),
2527 ATTR_LIST(mb_min_to_scan),
2528 ATTR_LIST(mb_order2_req),
2529 ATTR_LIST(mb_stream_req),
2530 ATTR_LIST(mb_group_prealloc),
2531 ATTR_LIST(max_writeback_mb_bump),
2532 ATTR_LIST(extent_max_zeroout_kb),
2533 ATTR_LIST(trigger_fs_error),
2534 NULL,
2535 };
2536
2537 /* Features this copy of ext4 supports */
2538 EXT4_INFO_ATTR(lazy_itable_init);
2539 EXT4_INFO_ATTR(batched_discard);
2540 EXT4_INFO_ATTR(meta_bg_resize);
2541
2542 static struct attribute *ext4_feat_attrs[] = {
2543 ATTR_LIST(lazy_itable_init),
2544 ATTR_LIST(batched_discard),
2545 ATTR_LIST(meta_bg_resize),
2546 NULL,
2547 };
2548
2549 static ssize_t ext4_attr_show(struct kobject *kobj,
2550 struct attribute *attr, char *buf)
2551 {
2552 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2553 s_kobj);
2554 struct ext4_attr *a = container_of(attr, struct ext4_attr, attr);
2555
2556 return a->show ? a->show(a, sbi, buf) : 0;
2557 }
2558
2559 static ssize_t ext4_attr_store(struct kobject *kobj,
2560 struct attribute *attr,
2561 const char *buf, size_t len)
2562 {
2563 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2564 s_kobj);
2565 struct ext4_attr *a = container_of(attr, struct ext4_attr, attr);
2566
2567 return a->store ? a->store(a, sbi, buf, len) : 0;
2568 }
2569
2570 static void ext4_sb_release(struct kobject *kobj)
2571 {
2572 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2573 s_kobj);
2574 complete(&sbi->s_kobj_unregister);
2575 }
2576
2577 static const struct sysfs_ops ext4_attr_ops = {
2578 .show = ext4_attr_show,
2579 .store = ext4_attr_store,
2580 };
2581
2582 static struct kobj_type ext4_ktype = {
2583 .default_attrs = ext4_attrs,
2584 .sysfs_ops = &ext4_attr_ops,
2585 .release = ext4_sb_release,
2586 };
2587
2588 static void ext4_feat_release(struct kobject *kobj)
2589 {
2590 complete(&ext4_feat->f_kobj_unregister);
2591 }
2592
2593 static struct kobj_type ext4_feat_ktype = {
2594 .default_attrs = ext4_feat_attrs,
2595 .sysfs_ops = &ext4_attr_ops,
2596 .release = ext4_feat_release,
2597 };
2598
2599 /*
2600 * Check whether this filesystem can be mounted based on
2601 * the features present and the RDONLY/RDWR mount requested.
2602 * Returns 1 if this filesystem can be mounted as requested,
2603 * 0 if it cannot be.
2604 */
2605 static int ext4_feature_set_ok(struct super_block *sb, int readonly)
2606 {
2607 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT4_FEATURE_INCOMPAT_SUPP)) {
2608 ext4_msg(sb, KERN_ERR,
2609 "Couldn't mount because of "
2610 "unsupported optional features (%x)",
2611 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
2612 ~EXT4_FEATURE_INCOMPAT_SUPP));
2613 return 0;
2614 }
2615
2616 if (readonly)
2617 return 1;
2618
2619 /* Check that feature set is OK for a read-write mount */
2620 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT4_FEATURE_RO_COMPAT_SUPP)) {
2621 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
2622 "unsupported optional features (%x)",
2623 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
2624 ~EXT4_FEATURE_RO_COMPAT_SUPP));
2625 return 0;
2626 }
2627 /*
2628 * Large file size enabled file system can only be mounted
2629 * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF
2630 */
2631 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
2632 if (sizeof(blkcnt_t) < sizeof(u64)) {
2633 ext4_msg(sb, KERN_ERR, "Filesystem with huge files "
2634 "cannot be mounted RDWR without "
2635 "CONFIG_LBDAF");
2636 return 0;
2637 }
2638 }
2639 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_BIGALLOC) &&
2640 !EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) {
2641 ext4_msg(sb, KERN_ERR,
2642 "Can't support bigalloc feature without "
2643 "extents feature\n");
2644 return 0;
2645 }
2646
2647 #ifndef CONFIG_QUOTA
2648 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) &&
2649 !readonly) {
2650 ext4_msg(sb, KERN_ERR,
2651 "Filesystem with quota feature cannot be mounted RDWR "
2652 "without CONFIG_QUOTA");
2653 return 0;
2654 }
2655 #endif /* CONFIG_QUOTA */
2656 return 1;
2657 }
2658
2659 /*
2660 * This function is called once a day if we have errors logged
2661 * on the file system
2662 */
2663 static void print_daily_error_info(unsigned long arg)
2664 {
2665 struct super_block *sb = (struct super_block *) arg;
2666 struct ext4_sb_info *sbi;
2667 struct ext4_super_block *es;
2668
2669 sbi = EXT4_SB(sb);
2670 es = sbi->s_es;
2671
2672 if (es->s_error_count)
2673 ext4_msg(sb, KERN_NOTICE, "error count: %u",
2674 le32_to_cpu(es->s_error_count));
2675 if (es->s_first_error_time) {
2676 printk(KERN_NOTICE "EXT4-fs (%s): initial error at %u: %.*s:%d",
2677 sb->s_id, le32_to_cpu(es->s_first_error_time),
2678 (int) sizeof(es->s_first_error_func),
2679 es->s_first_error_func,
2680 le32_to_cpu(es->s_first_error_line));
2681 if (es->s_first_error_ino)
2682 printk(": inode %u",
2683 le32_to_cpu(es->s_first_error_ino));
2684 if (es->s_first_error_block)
2685 printk(": block %llu", (unsigned long long)
2686 le64_to_cpu(es->s_first_error_block));
2687 printk("\n");
2688 }
2689 if (es->s_last_error_time) {
2690 printk(KERN_NOTICE "EXT4-fs (%s): last error at %u: %.*s:%d",
2691 sb->s_id, le32_to_cpu(es->s_last_error_time),
2692 (int) sizeof(es->s_last_error_func),
2693 es->s_last_error_func,
2694 le32_to_cpu(es->s_last_error_line));
2695 if (es->s_last_error_ino)
2696 printk(": inode %u",
2697 le32_to_cpu(es->s_last_error_ino));
2698 if (es->s_last_error_block)
2699 printk(": block %llu", (unsigned long long)
2700 le64_to_cpu(es->s_last_error_block));
2701 printk("\n");
2702 }
2703 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */
2704 }
2705
2706 /* Find next suitable group and run ext4_init_inode_table */
2707 static int ext4_run_li_request(struct ext4_li_request *elr)
2708 {
2709 struct ext4_group_desc *gdp = NULL;
2710 ext4_group_t group, ngroups;
2711 struct super_block *sb;
2712 unsigned long timeout = 0;
2713 int ret = 0;
2714
2715 sb = elr->lr_super;
2716 ngroups = EXT4_SB(sb)->s_groups_count;
2717
2718 sb_start_write(sb);
2719 for (group = elr->lr_next_group; group < ngroups; group++) {
2720 gdp = ext4_get_group_desc(sb, group, NULL);
2721 if (!gdp) {
2722 ret = 1;
2723 break;
2724 }
2725
2726 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2727 break;
2728 }
2729
2730 if (group >= ngroups)
2731 ret = 1;
2732
2733 if (!ret) {
2734 timeout = jiffies;
2735 ret = ext4_init_inode_table(sb, group,
2736 elr->lr_timeout ? 0 : 1);
2737 if (elr->lr_timeout == 0) {
2738 timeout = (jiffies - timeout) *
2739 elr->lr_sbi->s_li_wait_mult;
2740 elr->lr_timeout = timeout;
2741 }
2742 elr->lr_next_sched = jiffies + elr->lr_timeout;
2743 elr->lr_next_group = group + 1;
2744 }
2745 sb_end_write(sb);
2746
2747 return ret;
2748 }
2749
2750 /*
2751 * Remove lr_request from the list_request and free the
2752 * request structure. Should be called with li_list_mtx held
2753 */
2754 static void ext4_remove_li_request(struct ext4_li_request *elr)
2755 {
2756 struct ext4_sb_info *sbi;
2757
2758 if (!elr)
2759 return;
2760
2761 sbi = elr->lr_sbi;
2762
2763 list_del(&elr->lr_request);
2764 sbi->s_li_request = NULL;
2765 kfree(elr);
2766 }
2767
2768 static void ext4_unregister_li_request(struct super_block *sb)
2769 {
2770 mutex_lock(&ext4_li_mtx);
2771 if (!ext4_li_info) {
2772 mutex_unlock(&ext4_li_mtx);
2773 return;
2774 }
2775
2776 mutex_lock(&ext4_li_info->li_list_mtx);
2777 ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
2778 mutex_unlock(&ext4_li_info->li_list_mtx);
2779 mutex_unlock(&ext4_li_mtx);
2780 }
2781
2782 static struct task_struct *ext4_lazyinit_task;
2783
2784 /*
2785 * This is the function where ext4lazyinit thread lives. It walks
2786 * through the request list searching for next scheduled filesystem.
2787 * When such a fs is found, run the lazy initialization request
2788 * (ext4_rn_li_request) and keep track of the time spend in this
2789 * function. Based on that time we compute next schedule time of
2790 * the request. When walking through the list is complete, compute
2791 * next waking time and put itself into sleep.
2792 */
2793 static int ext4_lazyinit_thread(void *arg)
2794 {
2795 struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg;
2796 struct list_head *pos, *n;
2797 struct ext4_li_request *elr;
2798 unsigned long next_wakeup, cur;
2799
2800 BUG_ON(NULL == eli);
2801
2802 cont_thread:
2803 while (true) {
2804 next_wakeup = MAX_JIFFY_OFFSET;
2805
2806 mutex_lock(&eli->li_list_mtx);
2807 if (list_empty(&eli->li_request_list)) {
2808 mutex_unlock(&eli->li_list_mtx);
2809 goto exit_thread;
2810 }
2811
2812 list_for_each_safe(pos, n, &eli->li_request_list) {
2813 elr = list_entry(pos, struct ext4_li_request,
2814 lr_request);
2815
2816 if (time_after_eq(jiffies, elr->lr_next_sched)) {
2817 if (ext4_run_li_request(elr) != 0) {
2818 /* error, remove the lazy_init job */
2819 ext4_remove_li_request(elr);
2820 continue;
2821 }
2822 }
2823
2824 if (time_before(elr->lr_next_sched, next_wakeup))
2825 next_wakeup = elr->lr_next_sched;
2826 }
2827 mutex_unlock(&eli->li_list_mtx);
2828
2829 try_to_freeze();
2830
2831 cur = jiffies;
2832 if ((time_after_eq(cur, next_wakeup)) ||
2833 (MAX_JIFFY_OFFSET == next_wakeup)) {
2834 cond_resched();
2835 continue;
2836 }
2837
2838 schedule_timeout_interruptible(next_wakeup - cur);
2839
2840 if (kthread_should_stop()) {
2841 ext4_clear_request_list();
2842 goto exit_thread;
2843 }
2844 }
2845
2846 exit_thread:
2847 /*
2848 * It looks like the request list is empty, but we need
2849 * to check it under the li_list_mtx lock, to prevent any
2850 * additions into it, and of course we should lock ext4_li_mtx
2851 * to atomically free the list and ext4_li_info, because at
2852 * this point another ext4 filesystem could be registering
2853 * new one.
2854 */
2855 mutex_lock(&ext4_li_mtx);
2856 mutex_lock(&eli->li_list_mtx);
2857 if (!list_empty(&eli->li_request_list)) {
2858 mutex_unlock(&eli->li_list_mtx);
2859 mutex_unlock(&ext4_li_mtx);
2860 goto cont_thread;
2861 }
2862 mutex_unlock(&eli->li_list_mtx);
2863 kfree(ext4_li_info);
2864 ext4_li_info = NULL;
2865 mutex_unlock(&ext4_li_mtx);
2866
2867 return 0;
2868 }
2869
2870 static void ext4_clear_request_list(void)
2871 {
2872 struct list_head *pos, *n;
2873 struct ext4_li_request *elr;
2874
2875 mutex_lock(&ext4_li_info->li_list_mtx);
2876 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
2877 elr = list_entry(pos, struct ext4_li_request,
2878 lr_request);
2879 ext4_remove_li_request(elr);
2880 }
2881 mutex_unlock(&ext4_li_info->li_list_mtx);
2882 }
2883
2884 static int ext4_run_lazyinit_thread(void)
2885 {
2886 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
2887 ext4_li_info, "ext4lazyinit");
2888 if (IS_ERR(ext4_lazyinit_task)) {
2889 int err = PTR_ERR(ext4_lazyinit_task);
2890 ext4_clear_request_list();
2891 kfree(ext4_li_info);
2892 ext4_li_info = NULL;
2893 printk(KERN_CRIT "EXT4-fs: error %d creating inode table "
2894 "initialization thread\n",
2895 err);
2896 return err;
2897 }
2898 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
2899 return 0;
2900 }
2901
2902 /*
2903 * Check whether it make sense to run itable init. thread or not.
2904 * If there is at least one uninitialized inode table, return
2905 * corresponding group number, else the loop goes through all
2906 * groups and return total number of groups.
2907 */
2908 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
2909 {
2910 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
2911 struct ext4_group_desc *gdp = NULL;
2912
2913 for (group = 0; group < ngroups; group++) {
2914 gdp = ext4_get_group_desc(sb, group, NULL);
2915 if (!gdp)
2916 continue;
2917
2918 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2919 break;
2920 }
2921
2922 return group;
2923 }
2924
2925 static int ext4_li_info_new(void)
2926 {
2927 struct ext4_lazy_init *eli = NULL;
2928
2929 eli = kzalloc(sizeof(*eli), GFP_KERNEL);
2930 if (!eli)
2931 return -ENOMEM;
2932
2933 INIT_LIST_HEAD(&eli->li_request_list);
2934 mutex_init(&eli->li_list_mtx);
2935
2936 eli->li_state |= EXT4_LAZYINIT_QUIT;
2937
2938 ext4_li_info = eli;
2939
2940 return 0;
2941 }
2942
2943 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
2944 ext4_group_t start)
2945 {
2946 struct ext4_sb_info *sbi = EXT4_SB(sb);
2947 struct ext4_li_request *elr;
2948 unsigned long rnd;
2949
2950 elr = kzalloc(sizeof(*elr), GFP_KERNEL);
2951 if (!elr)
2952 return NULL;
2953
2954 elr->lr_super = sb;
2955 elr->lr_sbi = sbi;
2956 elr->lr_next_group = start;
2957
2958 /*
2959 * Randomize first schedule time of the request to
2960 * spread the inode table initialization requests
2961 * better.
2962 */
2963 get_random_bytes(&rnd, sizeof(rnd));
2964 elr->lr_next_sched = jiffies + (unsigned long)rnd %
2965 (EXT4_DEF_LI_MAX_START_DELAY * HZ);
2966
2967 return elr;
2968 }
2969
2970 int ext4_register_li_request(struct super_block *sb,
2971 ext4_group_t first_not_zeroed)
2972 {
2973 struct ext4_sb_info *sbi = EXT4_SB(sb);
2974 struct ext4_li_request *elr = NULL;
2975 ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count;
2976 int ret = 0;
2977
2978 mutex_lock(&ext4_li_mtx);
2979 if (sbi->s_li_request != NULL) {
2980 /*
2981 * Reset timeout so it can be computed again, because
2982 * s_li_wait_mult might have changed.
2983 */
2984 sbi->s_li_request->lr_timeout = 0;
2985 goto out;
2986 }
2987
2988 if (first_not_zeroed == ngroups ||
2989 (sb->s_flags & MS_RDONLY) ||
2990 !test_opt(sb, INIT_INODE_TABLE))
2991 goto out;
2992
2993 elr = ext4_li_request_new(sb, first_not_zeroed);
2994 if (!elr) {
2995 ret = -ENOMEM;
2996 goto out;
2997 }
2998
2999 if (NULL == ext4_li_info) {
3000 ret = ext4_li_info_new();
3001 if (ret)
3002 goto out;
3003 }
3004
3005 mutex_lock(&ext4_li_info->li_list_mtx);
3006 list_add(&elr->lr_request, &ext4_li_info->li_request_list);
3007 mutex_unlock(&ext4_li_info->li_list_mtx);
3008
3009 sbi->s_li_request = elr;
3010 /*
3011 * set elr to NULL here since it has been inserted to
3012 * the request_list and the removal and free of it is
3013 * handled by ext4_clear_request_list from now on.
3014 */
3015 elr = NULL;
3016
3017 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
3018 ret = ext4_run_lazyinit_thread();
3019 if (ret)
3020 goto out;
3021 }
3022 out:
3023 mutex_unlock(&ext4_li_mtx);
3024 if (ret)
3025 kfree(elr);
3026 return ret;
3027 }
3028
3029 /*
3030 * We do not need to lock anything since this is called on
3031 * module unload.
3032 */
3033 static void ext4_destroy_lazyinit_thread(void)
3034 {
3035 /*
3036 * If thread exited earlier
3037 * there's nothing to be done.
3038 */
3039 if (!ext4_li_info || !ext4_lazyinit_task)
3040 return;
3041
3042 kthread_stop(ext4_lazyinit_task);
3043 }
3044
3045 static int set_journal_csum_feature_set(struct super_block *sb)
3046 {
3047 int ret = 1;
3048 int compat, incompat;
3049 struct ext4_sb_info *sbi = EXT4_SB(sb);
3050
3051 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3052 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
3053 /* journal checksum v2 */
3054 compat = 0;
3055 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V2;
3056 } else {
3057 /* journal checksum v1 */
3058 compat = JBD2_FEATURE_COMPAT_CHECKSUM;
3059 incompat = 0;
3060 }
3061
3062 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
3063 ret = jbd2_journal_set_features(sbi->s_journal,
3064 compat, 0,
3065 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
3066 incompat);
3067 } else if (test_opt(sb, JOURNAL_CHECKSUM)) {
3068 ret = jbd2_journal_set_features(sbi->s_journal,
3069 compat, 0,
3070 incompat);
3071 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3072 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3073 } else {
3074 jbd2_journal_clear_features(sbi->s_journal,
3075 JBD2_FEATURE_COMPAT_CHECKSUM, 0,
3076 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
3077 JBD2_FEATURE_INCOMPAT_CSUM_V2);
3078 }
3079
3080 return ret;
3081 }
3082
3083 /*
3084 * Note: calculating the overhead so we can be compatible with
3085 * historical BSD practice is quite difficult in the face of
3086 * clusters/bigalloc. This is because multiple metadata blocks from
3087 * different block group can end up in the same allocation cluster.
3088 * Calculating the exact overhead in the face of clustered allocation
3089 * requires either O(all block bitmaps) in memory or O(number of block
3090 * groups**2) in time. We will still calculate the superblock for
3091 * older file systems --- and if we come across with a bigalloc file
3092 * system with zero in s_overhead_clusters the estimate will be close to
3093 * correct especially for very large cluster sizes --- but for newer
3094 * file systems, it's better to calculate this figure once at mkfs
3095 * time, and store it in the superblock. If the superblock value is
3096 * present (even for non-bigalloc file systems), we will use it.
3097 */
3098 static int count_overhead(struct super_block *sb, ext4_group_t grp,
3099 char *buf)
3100 {
3101 struct ext4_sb_info *sbi = EXT4_SB(sb);
3102 struct ext4_group_desc *gdp;
3103 ext4_fsblk_t first_block, last_block, b;
3104 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3105 int s, j, count = 0;
3106
3107 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_BIGALLOC))
3108 return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) +
3109 sbi->s_itb_per_group + 2);
3110
3111 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) +
3112 (grp * EXT4_BLOCKS_PER_GROUP(sb));
3113 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1;
3114 for (i = 0; i < ngroups; i++) {
3115 gdp = ext4_get_group_desc(sb, i, NULL);
3116 b = ext4_block_bitmap(sb, gdp);
3117 if (b >= first_block && b <= last_block) {
3118 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3119 count++;
3120 }
3121 b = ext4_inode_bitmap(sb, gdp);
3122 if (b >= first_block && b <= last_block) {
3123 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3124 count++;
3125 }
3126 b = ext4_inode_table(sb, gdp);
3127 if (b >= first_block && b + sbi->s_itb_per_group <= last_block)
3128 for (j = 0; j < sbi->s_itb_per_group; j++, b++) {
3129 int c = EXT4_B2C(sbi, b - first_block);
3130 ext4_set_bit(c, buf);
3131 count++;
3132 }
3133 if (i != grp)
3134 continue;
3135 s = 0;
3136 if (ext4_bg_has_super(sb, grp)) {
3137 ext4_set_bit(s++, buf);
3138 count++;
3139 }
3140 for (j = ext4_bg_num_gdb(sb, grp); j > 0; j--) {
3141 ext4_set_bit(EXT4_B2C(sbi, s++), buf);
3142 count++;
3143 }
3144 }
3145 if (!count)
3146 return 0;
3147 return EXT4_CLUSTERS_PER_GROUP(sb) -
3148 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8);
3149 }
3150
3151 /*
3152 * Compute the overhead and stash it in sbi->s_overhead
3153 */
3154 int ext4_calculate_overhead(struct super_block *sb)
3155 {
3156 struct ext4_sb_info *sbi = EXT4_SB(sb);
3157 struct ext4_super_block *es = sbi->s_es;
3158 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3159 ext4_fsblk_t overhead = 0;
3160 char *buf = (char *) get_zeroed_page(GFP_KERNEL);
3161
3162 if (!buf)
3163 return -ENOMEM;
3164
3165 /*
3166 * Compute the overhead (FS structures). This is constant
3167 * for a given filesystem unless the number of block groups
3168 * changes so we cache the previous value until it does.
3169 */
3170
3171 /*
3172 * All of the blocks before first_data_block are overhead
3173 */
3174 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
3175
3176 /*
3177 * Add the overhead found in each block group
3178 */
3179 for (i = 0; i < ngroups; i++) {
3180 int blks;
3181
3182 blks = count_overhead(sb, i, buf);
3183 overhead += blks;
3184 if (blks)
3185 memset(buf, 0, PAGE_SIZE);
3186 cond_resched();
3187 }
3188 /* Add the journal blocks as well */
3189 if (sbi->s_journal)
3190 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_maxlen);
3191
3192 sbi->s_overhead = overhead;
3193 smp_wmb();
3194 free_page((unsigned long) buf);
3195 return 0;
3196 }
3197
3198 static int ext4_fill_super(struct super_block *sb, void *data, int silent)
3199 {
3200 char *orig_data = kstrdup(data, GFP_KERNEL);
3201 struct buffer_head *bh;
3202 struct ext4_super_block *es = NULL;
3203 struct ext4_sb_info *sbi;
3204 ext4_fsblk_t block;
3205 ext4_fsblk_t sb_block = get_sb_block(&data);
3206 ext4_fsblk_t logical_sb_block;
3207 unsigned long offset = 0;
3208 unsigned long journal_devnum = 0;
3209 unsigned long def_mount_opts;
3210 struct inode *root;
3211 char *cp;
3212 const char *descr;
3213 int ret = -ENOMEM;
3214 int blocksize, clustersize;
3215 unsigned int db_count;
3216 unsigned int i;
3217 int needs_recovery, has_huge_files, has_bigalloc;
3218 __u64 blocks_count;
3219 int err = 0;
3220 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
3221 ext4_group_t first_not_zeroed;
3222
3223 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
3224 if (!sbi)
3225 goto out_free_orig;
3226
3227 sbi->s_blockgroup_lock =
3228 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
3229 if (!sbi->s_blockgroup_lock) {
3230 kfree(sbi);
3231 goto out_free_orig;
3232 }
3233 sb->s_fs_info = sbi;
3234 sbi->s_sb = sb;
3235 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
3236 sbi->s_sb_block = sb_block;
3237 if (sb->s_bdev->bd_part)
3238 sbi->s_sectors_written_start =
3239 part_stat_read(sb->s_bdev->bd_part, sectors[1]);
3240
3241 /* Cleanup superblock name */
3242 for (cp = sb->s_id; (cp = strchr(cp, '/'));)
3243 *cp = '!';
3244
3245 /* -EINVAL is default */
3246 ret = -EINVAL;
3247 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
3248 if (!blocksize) {
3249 ext4_msg(sb, KERN_ERR, "unable to set blocksize");
3250 goto out_fail;
3251 }
3252
3253 /*
3254 * The ext4 superblock will not be buffer aligned for other than 1kB
3255 * block sizes. We need to calculate the offset from buffer start.
3256 */
3257 if (blocksize != EXT4_MIN_BLOCK_SIZE) {
3258 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3259 offset = do_div(logical_sb_block, blocksize);
3260 } else {
3261 logical_sb_block = sb_block;
3262 }
3263
3264 if (!(bh = sb_bread(sb, logical_sb_block))) {
3265 ext4_msg(sb, KERN_ERR, "unable to read superblock");
3266 goto out_fail;
3267 }
3268 /*
3269 * Note: s_es must be initialized as soon as possible because
3270 * some ext4 macro-instructions depend on its value
3271 */
3272 es = (struct ext4_super_block *) (bh->b_data + offset);
3273 sbi->s_es = es;
3274 sb->s_magic = le16_to_cpu(es->s_magic);
3275 if (sb->s_magic != EXT4_SUPER_MAGIC)
3276 goto cantfind_ext4;
3277 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
3278
3279 /* Warn if metadata_csum and gdt_csum are both set. */
3280 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3281 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
3282 EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
3283 ext4_warning(sb, KERN_INFO "metadata_csum and uninit_bg are "
3284 "redundant flags; please run fsck.");
3285
3286 /* Check for a known checksum algorithm */
3287 if (!ext4_verify_csum_type(sb, es)) {
3288 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3289 "unknown checksum algorithm.");
3290 silent = 1;
3291 goto cantfind_ext4;
3292 }
3293
3294 /* Load the checksum driver */
3295 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3296 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
3297 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
3298 if (IS_ERR(sbi->s_chksum_driver)) {
3299 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver.");
3300 ret = PTR_ERR(sbi->s_chksum_driver);
3301 sbi->s_chksum_driver = NULL;
3302 goto failed_mount;
3303 }
3304 }
3305
3306 /* Check superblock checksum */
3307 if (!ext4_superblock_csum_verify(sb, es)) {
3308 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3309 "invalid superblock checksum. Run e2fsck?");
3310 silent = 1;
3311 goto cantfind_ext4;
3312 }
3313
3314 /* Precompute checksum seed for all metadata */
3315 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3316 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
3317 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid,
3318 sizeof(es->s_uuid));
3319
3320 /* Set defaults before we parse the mount options */
3321 def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
3322 set_opt(sb, INIT_INODE_TABLE);
3323 if (def_mount_opts & EXT4_DEFM_DEBUG)
3324 set_opt(sb, DEBUG);
3325 if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
3326 set_opt(sb, GRPID);
3327 if (def_mount_opts & EXT4_DEFM_UID16)
3328 set_opt(sb, NO_UID32);
3329 /* xattr user namespace & acls are now defaulted on */
3330 set_opt(sb, XATTR_USER);
3331 #ifdef CONFIG_EXT4_FS_POSIX_ACL
3332 set_opt(sb, POSIX_ACL);
3333 #endif
3334 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
3335 set_opt(sb, JOURNAL_DATA);
3336 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
3337 set_opt(sb, ORDERED_DATA);
3338 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
3339 set_opt(sb, WRITEBACK_DATA);
3340
3341 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC)
3342 set_opt(sb, ERRORS_PANIC);
3343 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE)
3344 set_opt(sb, ERRORS_CONT);
3345 else
3346 set_opt(sb, ERRORS_RO);
3347 if (def_mount_opts & EXT4_DEFM_BLOCK_VALIDITY)
3348 set_opt(sb, BLOCK_VALIDITY);
3349 if (def_mount_opts & EXT4_DEFM_DISCARD)
3350 set_opt(sb, DISCARD);
3351
3352 sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid));
3353 sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid));
3354 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
3355 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
3356 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
3357
3358 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
3359 set_opt(sb, BARRIER);
3360
3361 /*
3362 * enable delayed allocation by default
3363 * Use -o nodelalloc to turn it off
3364 */
3365 if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) &&
3366 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
3367 set_opt(sb, DELALLOC);
3368
3369 /*
3370 * set default s_li_wait_mult for lazyinit, for the case there is
3371 * no mount option specified.
3372 */
3373 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
3374
3375 if (!parse_options((char *) sbi->s_es->s_mount_opts, sb,
3376 &journal_devnum, &journal_ioprio, 0)) {
3377 ext4_msg(sb, KERN_WARNING,
3378 "failed to parse options in superblock: %s",
3379 sbi->s_es->s_mount_opts);
3380 }
3381 sbi->s_def_mount_opt = sbi->s_mount_opt;
3382 if (!parse_options((char *) data, sb, &journal_devnum,
3383 &journal_ioprio, 0))
3384 goto failed_mount;
3385
3386 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
3387 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting "
3388 "with data=journal disables delayed "
3389 "allocation and O_DIRECT support!\n");
3390 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
3391 ext4_msg(sb, KERN_ERR, "can't mount with "
3392 "both data=journal and delalloc");
3393 goto failed_mount;
3394 }
3395 if (test_opt(sb, DIOREAD_NOLOCK)) {
3396 ext4_msg(sb, KERN_ERR, "can't mount with "
3397 "both data=journal and delalloc");
3398 goto failed_mount;
3399 }
3400 if (test_opt(sb, DELALLOC))
3401 clear_opt(sb, DELALLOC);
3402 }
3403
3404 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
3405 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
3406
3407 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
3408 (EXT4_HAS_COMPAT_FEATURE(sb, ~0U) ||
3409 EXT4_HAS_RO_COMPAT_FEATURE(sb, ~0U) ||
3410 EXT4_HAS_INCOMPAT_FEATURE(sb, ~0U)))
3411 ext4_msg(sb, KERN_WARNING,
3412 "feature flags set on rev 0 fs, "
3413 "running e2fsck is recommended");
3414
3415 if (IS_EXT2_SB(sb)) {
3416 if (ext2_feature_set_ok(sb))
3417 ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
3418 "using the ext4 subsystem");
3419 else {
3420 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
3421 "to feature incompatibilities");
3422 goto failed_mount;
3423 }
3424 }
3425
3426 if (IS_EXT3_SB(sb)) {
3427 if (ext3_feature_set_ok(sb))
3428 ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
3429 "using the ext4 subsystem");
3430 else {
3431 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
3432 "to feature incompatibilities");
3433 goto failed_mount;
3434 }
3435 }
3436
3437 /*
3438 * Check feature flags regardless of the revision level, since we
3439 * previously didn't change the revision level when setting the flags,
3440 * so there is a chance incompat flags are set on a rev 0 filesystem.
3441 */
3442 if (!ext4_feature_set_ok(sb, (sb->s_flags & MS_RDONLY)))
3443 goto failed_mount;
3444
3445 blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
3446 if (blocksize < EXT4_MIN_BLOCK_SIZE ||
3447 blocksize > EXT4_MAX_BLOCK_SIZE) {
3448 ext4_msg(sb, KERN_ERR,
3449 "Unsupported filesystem blocksize %d", blocksize);
3450 goto failed_mount;
3451 }
3452
3453 if (sb->s_blocksize != blocksize) {
3454 /* Validate the filesystem blocksize */
3455 if (!sb_set_blocksize(sb, blocksize)) {
3456 ext4_msg(sb, KERN_ERR, "bad block size %d",
3457 blocksize);
3458 goto failed_mount;
3459 }
3460
3461 brelse(bh);
3462 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3463 offset = do_div(logical_sb_block, blocksize);
3464 bh = sb_bread(sb, logical_sb_block);
3465 if (!bh) {
3466 ext4_msg(sb, KERN_ERR,
3467 "Can't read superblock on 2nd try");
3468 goto failed_mount;
3469 }
3470 es = (struct ext4_super_block *)(bh->b_data + offset);
3471 sbi->s_es = es;
3472 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
3473 ext4_msg(sb, KERN_ERR,
3474 "Magic mismatch, very weird!");
3475 goto failed_mount;
3476 }
3477 }
3478
3479 has_huge_files = EXT4_HAS_RO_COMPAT_FEATURE(sb,
3480 EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
3481 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
3482 has_huge_files);
3483 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
3484
3485 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
3486 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
3487 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
3488 } else {
3489 sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
3490 sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
3491 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
3492 (!is_power_of_2(sbi->s_inode_size)) ||
3493 (sbi->s_inode_size > blocksize)) {
3494 ext4_msg(sb, KERN_ERR,
3495 "unsupported inode size: %d",
3496 sbi->s_inode_size);
3497 goto failed_mount;
3498 }
3499 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE)
3500 sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2);
3501 }
3502
3503 sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
3504 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT)) {
3505 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
3506 sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
3507 !is_power_of_2(sbi->s_desc_size)) {
3508 ext4_msg(sb, KERN_ERR,
3509 "unsupported descriptor size %lu",
3510 sbi->s_desc_size);
3511 goto failed_mount;
3512 }
3513 } else
3514 sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
3515
3516 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
3517 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
3518 if (EXT4_INODE_SIZE(sb) == 0 || EXT4_INODES_PER_GROUP(sb) == 0)
3519 goto cantfind_ext4;
3520
3521 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb);
3522 if (sbi->s_inodes_per_block == 0)
3523 goto cantfind_ext4;
3524 sbi->s_itb_per_group = sbi->s_inodes_per_group /
3525 sbi->s_inodes_per_block;
3526 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb);
3527 sbi->s_sbh = bh;
3528 sbi->s_mount_state = le16_to_cpu(es->s_state);
3529 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
3530 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
3531
3532 /* Do we have standard group size of blocksize * 8 blocks ? */
3533 if (sbi->s_blocks_per_group == blocksize << 3)
3534 set_opt2(sb, STD_GROUP_SIZE);
3535
3536 for (i = 0; i < 4; i++)
3537 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
3538 sbi->s_def_hash_version = es->s_def_hash_version;
3539 i = le32_to_cpu(es->s_flags);
3540 if (i & EXT2_FLAGS_UNSIGNED_HASH)
3541 sbi->s_hash_unsigned = 3;
3542 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
3543 #ifdef __CHAR_UNSIGNED__
3544 es->s_flags |= cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
3545 sbi->s_hash_unsigned = 3;
3546 #else
3547 es->s_flags |= cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
3548 #endif
3549 }
3550
3551 /* Handle clustersize */
3552 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size);
3553 has_bigalloc = EXT4_HAS_RO_COMPAT_FEATURE(sb,
3554 EXT4_FEATURE_RO_COMPAT_BIGALLOC);
3555 if (has_bigalloc) {
3556 if (clustersize < blocksize) {
3557 ext4_msg(sb, KERN_ERR,
3558 "cluster size (%d) smaller than "
3559 "block size (%d)", clustersize, blocksize);
3560 goto failed_mount;
3561 }
3562 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) -
3563 le32_to_cpu(es->s_log_block_size);
3564 sbi->s_clusters_per_group =
3565 le32_to_cpu(es->s_clusters_per_group);
3566 if (sbi->s_clusters_per_group > blocksize * 8) {
3567 ext4_msg(sb, KERN_ERR,
3568 "#clusters per group too big: %lu",
3569 sbi->s_clusters_per_group);
3570 goto failed_mount;
3571 }
3572 if (sbi->s_blocks_per_group !=
3573 (sbi->s_clusters_per_group * (clustersize / blocksize))) {
3574 ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and "
3575 "clusters per group (%lu) inconsistent",
3576 sbi->s_blocks_per_group,
3577 sbi->s_clusters_per_group);
3578 goto failed_mount;
3579 }
3580 } else {
3581 if (clustersize != blocksize) {
3582 ext4_warning(sb, "fragment/cluster size (%d) != "
3583 "block size (%d)", clustersize,
3584 blocksize);
3585 clustersize = blocksize;
3586 }
3587 if (sbi->s_blocks_per_group > blocksize * 8) {
3588 ext4_msg(sb, KERN_ERR,
3589 "#blocks per group too big: %lu",
3590 sbi->s_blocks_per_group);
3591 goto failed_mount;
3592 }
3593 sbi->s_clusters_per_group = sbi->s_blocks_per_group;
3594 sbi->s_cluster_bits = 0;
3595 }
3596 sbi->s_cluster_ratio = clustersize / blocksize;
3597
3598 if (sbi->s_inodes_per_group > blocksize * 8) {
3599 ext4_msg(sb, KERN_ERR,
3600 "#inodes per group too big: %lu",
3601 sbi->s_inodes_per_group);
3602 goto failed_mount;
3603 }
3604
3605 /*
3606 * Test whether we have more sectors than will fit in sector_t,
3607 * and whether the max offset is addressable by the page cache.
3608 */
3609 err = generic_check_addressable(sb->s_blocksize_bits,
3610 ext4_blocks_count(es));
3611 if (err) {
3612 ext4_msg(sb, KERN_ERR, "filesystem"
3613 " too large to mount safely on this system");
3614 if (sizeof(sector_t) < 8)
3615 ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled");
3616 goto failed_mount;
3617 }
3618
3619 if (EXT4_BLOCKS_PER_GROUP(sb) == 0)
3620 goto cantfind_ext4;
3621
3622 /* check blocks count against device size */
3623 blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
3624 if (blocks_count && ext4_blocks_count(es) > blocks_count) {
3625 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
3626 "exceeds size of device (%llu blocks)",
3627 ext4_blocks_count(es), blocks_count);
3628 goto failed_mount;
3629 }
3630
3631 /*
3632 * It makes no sense for the first data block to be beyond the end
3633 * of the filesystem.
3634 */
3635 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
3636 ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
3637 "block %u is beyond end of filesystem (%llu)",
3638 le32_to_cpu(es->s_first_data_block),
3639 ext4_blocks_count(es));
3640 goto failed_mount;
3641 }
3642 blocks_count = (ext4_blocks_count(es) -
3643 le32_to_cpu(es->s_first_data_block) +
3644 EXT4_BLOCKS_PER_GROUP(sb) - 1);
3645 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
3646 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
3647 ext4_msg(sb, KERN_WARNING, "groups count too large: %u "
3648 "(block count %llu, first data block %u, "
3649 "blocks per group %lu)", sbi->s_groups_count,
3650 ext4_blocks_count(es),
3651 le32_to_cpu(es->s_first_data_block),
3652 EXT4_BLOCKS_PER_GROUP(sb));
3653 goto failed_mount;
3654 }
3655 sbi->s_groups_count = blocks_count;
3656 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
3657 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
3658 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
3659 EXT4_DESC_PER_BLOCK(sb);
3660 sbi->s_group_desc = ext4_kvmalloc(db_count *
3661 sizeof(struct buffer_head *),
3662 GFP_KERNEL);
3663 if (sbi->s_group_desc == NULL) {
3664 ext4_msg(sb, KERN_ERR, "not enough memory");
3665 ret = -ENOMEM;
3666 goto failed_mount;
3667 }
3668
3669 if (ext4_proc_root)
3670 sbi->s_proc = proc_mkdir(sb->s_id, ext4_proc_root);
3671
3672 if (sbi->s_proc)
3673 proc_create_data("options", S_IRUGO, sbi->s_proc,
3674 &ext4_seq_options_fops, sb);
3675
3676 bgl_lock_init(sbi->s_blockgroup_lock);
3677
3678 for (i = 0; i < db_count; i++) {
3679 block = descriptor_loc(sb, logical_sb_block, i);
3680 sbi->s_group_desc[i] = sb_bread(sb, block);
3681 if (!sbi->s_group_desc[i]) {
3682 ext4_msg(sb, KERN_ERR,
3683 "can't read group descriptor %d", i);
3684 db_count = i;
3685 goto failed_mount2;
3686 }
3687 }
3688 if (!ext4_check_descriptors(sb, &first_not_zeroed)) {
3689 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
3690 goto failed_mount2;
3691 }
3692 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG))
3693 if (!ext4_fill_flex_info(sb)) {
3694 ext4_msg(sb, KERN_ERR,
3695 "unable to initialize "
3696 "flex_bg meta info!");
3697 goto failed_mount2;
3698 }
3699
3700 sbi->s_gdb_count = db_count;
3701 get_random_bytes(&sbi->s_next_generation, sizeof(u32));
3702 spin_lock_init(&sbi->s_next_gen_lock);
3703
3704 init_timer(&sbi->s_err_report);
3705 sbi->s_err_report.function = print_daily_error_info;
3706 sbi->s_err_report.data = (unsigned long) sb;
3707
3708 /* Register extent status tree shrinker */
3709 ext4_es_register_shrinker(sb);
3710
3711 err = percpu_counter_init(&sbi->s_freeclusters_counter,
3712 ext4_count_free_clusters(sb));
3713 if (!err) {
3714 err = percpu_counter_init(&sbi->s_freeinodes_counter,
3715 ext4_count_free_inodes(sb));
3716 }
3717 if (!err) {
3718 err = percpu_counter_init(&sbi->s_dirs_counter,
3719 ext4_count_dirs(sb));
3720 }
3721 if (!err) {
3722 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0);
3723 }
3724 if (!err) {
3725 err = percpu_counter_init(&sbi->s_extent_cache_cnt, 0);
3726 }
3727 if (err) {
3728 ext4_msg(sb, KERN_ERR, "insufficient memory");
3729 goto failed_mount3;
3730 }
3731
3732 sbi->s_stripe = ext4_get_stripe_size(sbi);
3733 sbi->s_max_writeback_mb_bump = 128;
3734 sbi->s_extent_max_zeroout_kb = 32;
3735
3736 /*
3737 * set up enough so that it can read an inode
3738 */
3739 if (!test_opt(sb, NOLOAD) &&
3740 EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL))
3741 sb->s_op = &ext4_sops;
3742 else
3743 sb->s_op = &ext4_nojournal_sops;
3744 sb->s_export_op = &ext4_export_ops;
3745 sb->s_xattr = ext4_xattr_handlers;
3746 #ifdef CONFIG_QUOTA
3747 sb->dq_op = &ext4_quota_operations;
3748 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA))
3749 sb->s_qcop = &ext4_qctl_sysfile_operations;
3750 else
3751 sb->s_qcop = &ext4_qctl_operations;
3752 #endif
3753 memcpy(sb->s_uuid, es->s_uuid, sizeof(es->s_uuid));
3754
3755 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
3756 mutex_init(&sbi->s_orphan_lock);
3757
3758 sb->s_root = NULL;
3759
3760 needs_recovery = (es->s_last_orphan != 0 ||
3761 EXT4_HAS_INCOMPAT_FEATURE(sb,
3762 EXT4_FEATURE_INCOMPAT_RECOVER));
3763
3764 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_MMP) &&
3765 !(sb->s_flags & MS_RDONLY))
3766 if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block)))
3767 goto failed_mount3;
3768
3769 /*
3770 * The first inode we look at is the journal inode. Don't try
3771 * root first: it may be modified in the journal!
3772 */
3773 if (!test_opt(sb, NOLOAD) &&
3774 EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) {
3775 if (ext4_load_journal(sb, es, journal_devnum))
3776 goto failed_mount3;
3777 } else if (test_opt(sb, NOLOAD) && !(sb->s_flags & MS_RDONLY) &&
3778 EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) {
3779 ext4_msg(sb, KERN_ERR, "required journal recovery "
3780 "suppressed and not mounted read-only");
3781 goto failed_mount_wq;
3782 } else {
3783 clear_opt(sb, DATA_FLAGS);
3784 sbi->s_journal = NULL;
3785 needs_recovery = 0;
3786 goto no_journal;
3787 }
3788
3789 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT) &&
3790 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
3791 JBD2_FEATURE_INCOMPAT_64BIT)) {
3792 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
3793 goto failed_mount_wq;
3794 }
3795
3796 if (!set_journal_csum_feature_set(sb)) {
3797 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum "
3798 "feature set");
3799 goto failed_mount_wq;
3800 }
3801
3802 /* We have now updated the journal if required, so we can
3803 * validate the data journaling mode. */
3804 switch (test_opt(sb, DATA_FLAGS)) {
3805 case 0:
3806 /* No mode set, assume a default based on the journal
3807 * capabilities: ORDERED_DATA if the journal can
3808 * cope, else JOURNAL_DATA
3809 */
3810 if (jbd2_journal_check_available_features
3811 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE))
3812 set_opt(sb, ORDERED_DATA);
3813 else
3814 set_opt(sb, JOURNAL_DATA);
3815 break;
3816
3817 case EXT4_MOUNT_ORDERED_DATA:
3818 case EXT4_MOUNT_WRITEBACK_DATA:
3819 if (!jbd2_journal_check_available_features
3820 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
3821 ext4_msg(sb, KERN_ERR, "Journal does not support "
3822 "requested data journaling mode");
3823 goto failed_mount_wq;
3824 }
3825 default:
3826 break;
3827 }
3828 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
3829
3830 sbi->s_journal->j_commit_callback = ext4_journal_commit_callback;
3831
3832 /*
3833 * The journal may have updated the bg summary counts, so we
3834 * need to update the global counters.
3835 */
3836 percpu_counter_set(&sbi->s_freeclusters_counter,
3837 ext4_count_free_clusters(sb));
3838 percpu_counter_set(&sbi->s_freeinodes_counter,
3839 ext4_count_free_inodes(sb));
3840 percpu_counter_set(&sbi->s_dirs_counter,
3841 ext4_count_dirs(sb));
3842 percpu_counter_set(&sbi->s_dirtyclusters_counter, 0);
3843
3844 no_journal:
3845 /*
3846 * Get the # of file system overhead blocks from the
3847 * superblock if present.
3848 */
3849 if (es->s_overhead_clusters)
3850 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters);
3851 else {
3852 err = ext4_calculate_overhead(sb);
3853 if (err)
3854 goto failed_mount_wq;
3855 }
3856
3857 /*
3858 * The maximum number of concurrent works can be high and
3859 * concurrency isn't really necessary. Limit it to 1.
3860 */
3861 EXT4_SB(sb)->dio_unwritten_wq =
3862 alloc_workqueue("ext4-dio-unwritten", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
3863 if (!EXT4_SB(sb)->dio_unwritten_wq) {
3864 printk(KERN_ERR "EXT4-fs: failed to create DIO workqueue\n");
3865 ret = -ENOMEM;
3866 goto failed_mount_wq;
3867 }
3868
3869 /*
3870 * The jbd2_journal_load will have done any necessary log recovery,
3871 * so we can safely mount the rest of the filesystem now.
3872 */
3873
3874 root = ext4_iget(sb, EXT4_ROOT_INO);
3875 if (IS_ERR(root)) {
3876 ext4_msg(sb, KERN_ERR, "get root inode failed");
3877 ret = PTR_ERR(root);
3878 root = NULL;
3879 goto failed_mount4;
3880 }
3881 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
3882 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
3883 iput(root);
3884 goto failed_mount4;
3885 }
3886 sb->s_root = d_make_root(root);
3887 if (!sb->s_root) {
3888 ext4_msg(sb, KERN_ERR, "get root dentry failed");
3889 ret = -ENOMEM;
3890 goto failed_mount4;
3891 }
3892
3893 if (ext4_setup_super(sb, es, sb->s_flags & MS_RDONLY))
3894 sb->s_flags |= MS_RDONLY;
3895
3896 /* determine the minimum size of new large inodes, if present */
3897 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) {
3898 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
3899 EXT4_GOOD_OLD_INODE_SIZE;
3900 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3901 EXT4_FEATURE_RO_COMPAT_EXTRA_ISIZE)) {
3902 if (sbi->s_want_extra_isize <
3903 le16_to_cpu(es->s_want_extra_isize))
3904 sbi->s_want_extra_isize =
3905 le16_to_cpu(es->s_want_extra_isize);
3906 if (sbi->s_want_extra_isize <
3907 le16_to_cpu(es->s_min_extra_isize))
3908 sbi->s_want_extra_isize =
3909 le16_to_cpu(es->s_min_extra_isize);
3910 }
3911 }
3912 /* Check if enough inode space is available */
3913 if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize >
3914 sbi->s_inode_size) {
3915 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
3916 EXT4_GOOD_OLD_INODE_SIZE;
3917 ext4_msg(sb, KERN_INFO, "required extra inode space not"
3918 "available");
3919 }
3920
3921 err = ext4_setup_system_zone(sb);
3922 if (err) {
3923 ext4_msg(sb, KERN_ERR, "failed to initialize system "
3924 "zone (%d)", err);
3925 goto failed_mount4a;
3926 }
3927
3928 ext4_ext_init(sb);
3929 err = ext4_mb_init(sb);
3930 if (err) {
3931 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
3932 err);
3933 goto failed_mount5;
3934 }
3935
3936 err = ext4_register_li_request(sb, first_not_zeroed);
3937 if (err)
3938 goto failed_mount6;
3939
3940 sbi->s_kobj.kset = ext4_kset;
3941 init_completion(&sbi->s_kobj_unregister);
3942 err = kobject_init_and_add(&sbi->s_kobj, &ext4_ktype, NULL,
3943 "%s", sb->s_id);
3944 if (err)
3945 goto failed_mount7;
3946
3947 #ifdef CONFIG_QUOTA
3948 /* Enable quota usage during mount. */
3949 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) &&
3950 !(sb->s_flags & MS_RDONLY)) {
3951 err = ext4_enable_quotas(sb);
3952 if (err)
3953 goto failed_mount8;
3954 }
3955 #endif /* CONFIG_QUOTA */
3956
3957 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
3958 ext4_orphan_cleanup(sb, es);
3959 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
3960 if (needs_recovery) {
3961 ext4_msg(sb, KERN_INFO, "recovery complete");
3962 ext4_mark_recovery_complete(sb, es);
3963 }
3964 if (EXT4_SB(sb)->s_journal) {
3965 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
3966 descr = " journalled data mode";
3967 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
3968 descr = " ordered data mode";
3969 else
3970 descr = " writeback data mode";
3971 } else
3972 descr = "out journal";
3973
3974 if (test_opt(sb, DISCARD)) {
3975 struct request_queue *q = bdev_get_queue(sb->s_bdev);
3976 if (!blk_queue_discard(q))
3977 ext4_msg(sb, KERN_WARNING,
3978 "mounting with \"discard\" option, but "
3979 "the device does not support discard");
3980 }
3981
3982 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. "
3983 "Opts: %s%s%s", descr, sbi->s_es->s_mount_opts,
3984 *sbi->s_es->s_mount_opts ? "; " : "", orig_data);
3985
3986 if (es->s_error_count)
3987 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
3988
3989 kfree(orig_data);
3990 return 0;
3991
3992 cantfind_ext4:
3993 if (!silent)
3994 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
3995 goto failed_mount;
3996
3997 #ifdef CONFIG_QUOTA
3998 failed_mount8:
3999 kobject_del(&sbi->s_kobj);
4000 #endif
4001 failed_mount7:
4002 ext4_unregister_li_request(sb);
4003 failed_mount6:
4004 ext4_mb_release(sb);
4005 failed_mount5:
4006 ext4_ext_release(sb);
4007 ext4_release_system_zone(sb);
4008 failed_mount4a:
4009 dput(sb->s_root);
4010 sb->s_root = NULL;
4011 failed_mount4:
4012 ext4_msg(sb, KERN_ERR, "mount failed");
4013 destroy_workqueue(EXT4_SB(sb)->dio_unwritten_wq);
4014 failed_mount_wq:
4015 if (sbi->s_journal) {
4016 jbd2_journal_destroy(sbi->s_journal);
4017 sbi->s_journal = NULL;
4018 }
4019 failed_mount3:
4020 ext4_es_unregister_shrinker(sb);
4021 del_timer(&sbi->s_err_report);
4022 if (sbi->s_flex_groups)
4023 ext4_kvfree(sbi->s_flex_groups);
4024 percpu_counter_destroy(&sbi->s_freeclusters_counter);
4025 percpu_counter_destroy(&sbi->s_freeinodes_counter);
4026 percpu_counter_destroy(&sbi->s_dirs_counter);
4027 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
4028 percpu_counter_destroy(&sbi->s_extent_cache_cnt);
4029 if (sbi->s_mmp_tsk)
4030 kthread_stop(sbi->s_mmp_tsk);
4031 failed_mount2:
4032 for (i = 0; i < db_count; i++)
4033 brelse(sbi->s_group_desc[i]);
4034 ext4_kvfree(sbi->s_group_desc);
4035 failed_mount:
4036 if (sbi->s_chksum_driver)
4037 crypto_free_shash(sbi->s_chksum_driver);
4038 if (sbi->s_proc) {
4039 remove_proc_entry("options", sbi->s_proc);
4040 remove_proc_entry(sb->s_id, ext4_proc_root);
4041 }
4042 #ifdef CONFIG_QUOTA
4043 for (i = 0; i < MAXQUOTAS; i++)
4044 kfree(sbi->s_qf_names[i]);
4045 #endif
4046 ext4_blkdev_remove(sbi);
4047 brelse(bh);
4048 out_fail:
4049 sb->s_fs_info = NULL;
4050 kfree(sbi->s_blockgroup_lock);
4051 kfree(sbi);
4052 out_free_orig:
4053 kfree(orig_data);
4054 return err ? err : ret;
4055 }
4056
4057 /*
4058 * Setup any per-fs journal parameters now. We'll do this both on
4059 * initial mount, once the journal has been initialised but before we've
4060 * done any recovery; and again on any subsequent remount.
4061 */
4062 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
4063 {
4064 struct ext4_sb_info *sbi = EXT4_SB(sb);
4065
4066 journal->j_commit_interval = sbi->s_commit_interval;
4067 journal->j_min_batch_time = sbi->s_min_batch_time;
4068 journal->j_max_batch_time = sbi->s_max_batch_time;
4069
4070 write_lock(&journal->j_state_lock);
4071 if (test_opt(sb, BARRIER))
4072 journal->j_flags |= JBD2_BARRIER;
4073 else
4074 journal->j_flags &= ~JBD2_BARRIER;
4075 if (test_opt(sb, DATA_ERR_ABORT))
4076 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
4077 else
4078 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
4079 write_unlock(&journal->j_state_lock);
4080 }
4081
4082 static journal_t *ext4_get_journal(struct super_block *sb,
4083 unsigned int journal_inum)
4084 {
4085 struct inode *journal_inode;
4086 journal_t *journal;
4087
4088 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
4089
4090 /* First, test for the existence of a valid inode on disk. Bad
4091 * things happen if we iget() an unused inode, as the subsequent
4092 * iput() will try to delete it. */
4093
4094 journal_inode = ext4_iget(sb, journal_inum);
4095 if (IS_ERR(journal_inode)) {
4096 ext4_msg(sb, KERN_ERR, "no journal found");
4097 return NULL;
4098 }
4099 if (!journal_inode->i_nlink) {
4100 make_bad_inode(journal_inode);
4101 iput(journal_inode);
4102 ext4_msg(sb, KERN_ERR, "journal inode is deleted");
4103 return NULL;
4104 }
4105
4106 jbd_debug(2, "Journal inode found at %p: %lld bytes\n",
4107 journal_inode, journal_inode->i_size);
4108 if (!S_ISREG(journal_inode->i_mode)) {
4109 ext4_msg(sb, KERN_ERR, "invalid journal inode");
4110 iput(journal_inode);
4111 return NULL;
4112 }
4113
4114 journal = jbd2_journal_init_inode(journal_inode);
4115 if (!journal) {
4116 ext4_msg(sb, KERN_ERR, "Could not load journal inode");
4117 iput(journal_inode);
4118 return NULL;
4119 }
4120 journal->j_private = sb;
4121 ext4_init_journal_params(sb, journal);
4122 return journal;
4123 }
4124
4125 static journal_t *ext4_get_dev_journal(struct super_block *sb,
4126 dev_t j_dev)
4127 {
4128 struct buffer_head *bh;
4129 journal_t *journal;
4130 ext4_fsblk_t start;
4131 ext4_fsblk_t len;
4132 int hblock, blocksize;
4133 ext4_fsblk_t sb_block;
4134 unsigned long offset;
4135 struct ext4_super_block *es;
4136 struct block_device *bdev;
4137
4138 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
4139
4140 bdev = ext4_blkdev_get(j_dev, sb);
4141 if (bdev == NULL)
4142 return NULL;
4143
4144 blocksize = sb->s_blocksize;
4145 hblock = bdev_logical_block_size(bdev);
4146 if (blocksize < hblock) {
4147 ext4_msg(sb, KERN_ERR,
4148 "blocksize too small for journal device");
4149 goto out_bdev;
4150 }
4151
4152 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
4153 offset = EXT4_MIN_BLOCK_SIZE % blocksize;
4154 set_blocksize(bdev, blocksize);
4155 if (!(bh = __bread(bdev, sb_block, blocksize))) {
4156 ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
4157 "external journal");
4158 goto out_bdev;
4159 }
4160
4161 es = (struct ext4_super_block *) (bh->b_data + offset);
4162 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
4163 !(le32_to_cpu(es->s_feature_incompat) &
4164 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
4165 ext4_msg(sb, KERN_ERR, "external journal has "
4166 "bad superblock");
4167 brelse(bh);
4168 goto out_bdev;
4169 }
4170
4171 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
4172 ext4_msg(sb, KERN_ERR, "journal UUID does not match");
4173 brelse(bh);
4174 goto out_bdev;
4175 }
4176
4177 len = ext4_blocks_count(es);
4178 start = sb_block + 1;
4179 brelse(bh); /* we're done with the superblock */
4180
4181 journal = jbd2_journal_init_dev(bdev, sb->s_bdev,
4182 start, len, blocksize);
4183 if (!journal) {
4184 ext4_msg(sb, KERN_ERR, "failed to create device journal");
4185 goto out_bdev;
4186 }
4187 journal->j_private = sb;
4188 ll_rw_block(READ, 1, &journal->j_sb_buffer);
4189 wait_on_buffer(journal->j_sb_buffer);
4190 if (!buffer_uptodate(journal->j_sb_buffer)) {
4191 ext4_msg(sb, KERN_ERR, "I/O error on journal device");
4192 goto out_journal;
4193 }
4194 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
4195 ext4_msg(sb, KERN_ERR, "External journal has more than one "
4196 "user (unsupported) - %d",
4197 be32_to_cpu(journal->j_superblock->s_nr_users));
4198 goto out_journal;
4199 }
4200 EXT4_SB(sb)->journal_bdev = bdev;
4201 ext4_init_journal_params(sb, journal);
4202 return journal;
4203
4204 out_journal:
4205 jbd2_journal_destroy(journal);
4206 out_bdev:
4207 ext4_blkdev_put(bdev);
4208 return NULL;
4209 }
4210
4211 static int ext4_load_journal(struct super_block *sb,
4212 struct ext4_super_block *es,
4213 unsigned long journal_devnum)
4214 {
4215 journal_t *journal;
4216 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
4217 dev_t journal_dev;
4218 int err = 0;
4219 int really_read_only;
4220
4221 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
4222
4223 if (journal_devnum &&
4224 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4225 ext4_msg(sb, KERN_INFO, "external journal device major/minor "
4226 "numbers have changed");
4227 journal_dev = new_decode_dev(journal_devnum);
4228 } else
4229 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
4230
4231 really_read_only = bdev_read_only(sb->s_bdev);
4232
4233 /*
4234 * Are we loading a blank journal or performing recovery after a
4235 * crash? For recovery, we need to check in advance whether we
4236 * can get read-write access to the device.
4237 */
4238 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) {
4239 if (sb->s_flags & MS_RDONLY) {
4240 ext4_msg(sb, KERN_INFO, "INFO: recovery "
4241 "required on readonly filesystem");
4242 if (really_read_only) {
4243 ext4_msg(sb, KERN_ERR, "write access "
4244 "unavailable, cannot proceed");
4245 return -EROFS;
4246 }
4247 ext4_msg(sb, KERN_INFO, "write access will "
4248 "be enabled during recovery");
4249 }
4250 }
4251
4252 if (journal_inum && journal_dev) {
4253 ext4_msg(sb, KERN_ERR, "filesystem has both journal "
4254 "and inode journals!");
4255 return -EINVAL;
4256 }
4257
4258 if (journal_inum) {
4259 if (!(journal = ext4_get_journal(sb, journal_inum)))
4260 return -EINVAL;
4261 } else {
4262 if (!(journal = ext4_get_dev_journal(sb, journal_dev)))
4263 return -EINVAL;
4264 }
4265
4266 if (!(journal->j_flags & JBD2_BARRIER))
4267 ext4_msg(sb, KERN_INFO, "barriers disabled");
4268
4269 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER))
4270 err = jbd2_journal_wipe(journal, !really_read_only);
4271 if (!err) {
4272 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
4273 if (save)
4274 memcpy(save, ((char *) es) +
4275 EXT4_S_ERR_START, EXT4_S_ERR_LEN);
4276 err = jbd2_journal_load(journal);
4277 if (save)
4278 memcpy(((char *) es) + EXT4_S_ERR_START,
4279 save, EXT4_S_ERR_LEN);
4280 kfree(save);
4281 }
4282
4283 if (err) {
4284 ext4_msg(sb, KERN_ERR, "error loading journal");
4285 jbd2_journal_destroy(journal);
4286 return err;
4287 }
4288
4289 EXT4_SB(sb)->s_journal = journal;
4290 ext4_clear_journal_err(sb, es);
4291
4292 if (!really_read_only && journal_devnum &&
4293 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4294 es->s_journal_dev = cpu_to_le32(journal_devnum);
4295
4296 /* Make sure we flush the recovery flag to disk. */
4297 ext4_commit_super(sb, 1);
4298 }
4299
4300 return 0;
4301 }
4302
4303 static int ext4_commit_super(struct super_block *sb, int sync)
4304 {
4305 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
4306 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
4307 int error = 0;
4308
4309 if (!sbh || block_device_ejected(sb))
4310 return error;
4311 if (buffer_write_io_error(sbh)) {
4312 /*
4313 * Oh, dear. A previous attempt to write the
4314 * superblock failed. This could happen because the
4315 * USB device was yanked out. Or it could happen to
4316 * be a transient write error and maybe the block will
4317 * be remapped. Nothing we can do but to retry the
4318 * write and hope for the best.
4319 */
4320 ext4_msg(sb, KERN_ERR, "previous I/O error to "
4321 "superblock detected");
4322 clear_buffer_write_io_error(sbh);
4323 set_buffer_uptodate(sbh);
4324 }
4325 /*
4326 * If the file system is mounted read-only, don't update the
4327 * superblock write time. This avoids updating the superblock
4328 * write time when we are mounting the root file system
4329 * read/only but we need to replay the journal; at that point,
4330 * for people who are east of GMT and who make their clock
4331 * tick in localtime for Windows bug-for-bug compatibility,
4332 * the clock is set in the future, and this will cause e2fsck
4333 * to complain and force a full file system check.
4334 */
4335 if (!(sb->s_flags & MS_RDONLY))
4336 es->s_wtime = cpu_to_le32(get_seconds());
4337 if (sb->s_bdev->bd_part)
4338 es->s_kbytes_written =
4339 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written +
4340 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
4341 EXT4_SB(sb)->s_sectors_written_start) >> 1));
4342 else
4343 es->s_kbytes_written =
4344 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written);
4345 ext4_free_blocks_count_set(es,
4346 EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive(
4347 &EXT4_SB(sb)->s_freeclusters_counter)));
4348 es->s_free_inodes_count =
4349 cpu_to_le32(percpu_counter_sum_positive(
4350 &EXT4_SB(sb)->s_freeinodes_counter));
4351 BUFFER_TRACE(sbh, "marking dirty");
4352 ext4_superblock_csum_set(sb);
4353 mark_buffer_dirty(sbh);
4354 if (sync) {
4355 error = sync_dirty_buffer(sbh);
4356 if (error)
4357 return error;
4358
4359 error = buffer_write_io_error(sbh);
4360 if (error) {
4361 ext4_msg(sb, KERN_ERR, "I/O error while writing "
4362 "superblock");
4363 clear_buffer_write_io_error(sbh);
4364 set_buffer_uptodate(sbh);
4365 }
4366 }
4367 return error;
4368 }
4369
4370 /*
4371 * Have we just finished recovery? If so, and if we are mounting (or
4372 * remounting) the filesystem readonly, then we will end up with a
4373 * consistent fs on disk. Record that fact.
4374 */
4375 static void ext4_mark_recovery_complete(struct super_block *sb,
4376 struct ext4_super_block *es)
4377 {
4378 journal_t *journal = EXT4_SB(sb)->s_journal;
4379
4380 if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) {
4381 BUG_ON(journal != NULL);
4382 return;
4383 }
4384 jbd2_journal_lock_updates(journal);
4385 if (jbd2_journal_flush(journal) < 0)
4386 goto out;
4387
4388 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER) &&
4389 sb->s_flags & MS_RDONLY) {
4390 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4391 ext4_commit_super(sb, 1);
4392 }
4393
4394 out:
4395 jbd2_journal_unlock_updates(journal);
4396 }
4397
4398 /*
4399 * If we are mounting (or read-write remounting) a filesystem whose journal
4400 * has recorded an error from a previous lifetime, move that error to the
4401 * main filesystem now.
4402 */
4403 static void ext4_clear_journal_err(struct super_block *sb,
4404 struct ext4_super_block *es)
4405 {
4406 journal_t *journal;
4407 int j_errno;
4408 const char *errstr;
4409
4410 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
4411
4412 journal = EXT4_SB(sb)->s_journal;
4413
4414 /*
4415 * Now check for any error status which may have been recorded in the
4416 * journal by a prior ext4_error() or ext4_abort()
4417 */
4418
4419 j_errno = jbd2_journal_errno(journal);
4420 if (j_errno) {
4421 char nbuf[16];
4422
4423 errstr = ext4_decode_error(sb, j_errno, nbuf);
4424 ext4_warning(sb, "Filesystem error recorded "
4425 "from previous mount: %s", errstr);
4426 ext4_warning(sb, "Marking fs in need of filesystem check.");
4427
4428 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
4429 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
4430 ext4_commit_super(sb, 1);
4431
4432 jbd2_journal_clear_err(journal);
4433 jbd2_journal_update_sb_errno(journal);
4434 }
4435 }
4436
4437 /*
4438 * Force the running and committing transactions to commit,
4439 * and wait on the commit.
4440 */
4441 int ext4_force_commit(struct super_block *sb)
4442 {
4443 journal_t *journal;
4444
4445 if (sb->s_flags & MS_RDONLY)
4446 return 0;
4447
4448 journal = EXT4_SB(sb)->s_journal;
4449 return ext4_journal_force_commit(journal);
4450 }
4451
4452 static int ext4_sync_fs(struct super_block *sb, int wait)
4453 {
4454 int ret = 0;
4455 tid_t target;
4456 struct ext4_sb_info *sbi = EXT4_SB(sb);
4457
4458 trace_ext4_sync_fs(sb, wait);
4459 flush_workqueue(sbi->dio_unwritten_wq);
4460 /*
4461 * Writeback quota in non-journalled quota case - journalled quota has
4462 * no dirty dquots
4463 */
4464 dquot_writeback_dquots(sb, -1);
4465 if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
4466 if (wait)
4467 jbd2_log_wait_commit(sbi->s_journal, target);
4468 }
4469 return ret;
4470 }
4471
4472 /*
4473 * LVM calls this function before a (read-only) snapshot is created. This
4474 * gives us a chance to flush the journal completely and mark the fs clean.
4475 *
4476 * Note that only this function cannot bring a filesystem to be in a clean
4477 * state independently. It relies on upper layer to stop all data & metadata
4478 * modifications.
4479 */
4480 static int ext4_freeze(struct super_block *sb)
4481 {
4482 int error = 0;
4483 journal_t *journal;
4484
4485 if (sb->s_flags & MS_RDONLY)
4486 return 0;
4487
4488 journal = EXT4_SB(sb)->s_journal;
4489
4490 /* Now we set up the journal barrier. */
4491 jbd2_journal_lock_updates(journal);
4492
4493 /*
4494 * Don't clear the needs_recovery flag if we failed to flush
4495 * the journal.
4496 */
4497 error = jbd2_journal_flush(journal);
4498 if (error < 0)
4499 goto out;
4500
4501 /* Journal blocked and flushed, clear needs_recovery flag. */
4502 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4503 error = ext4_commit_super(sb, 1);
4504 out:
4505 /* we rely on upper layer to stop further updates */
4506 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
4507 return error;
4508 }
4509
4510 /*
4511 * Called by LVM after the snapshot is done. We need to reset the RECOVER
4512 * flag here, even though the filesystem is not technically dirty yet.
4513 */
4514 static int ext4_unfreeze(struct super_block *sb)
4515 {
4516 if (sb->s_flags & MS_RDONLY)
4517 return 0;
4518
4519 /* Reset the needs_recovery flag before the fs is unlocked. */
4520 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4521 ext4_commit_super(sb, 1);
4522 return 0;
4523 }
4524
4525 /*
4526 * Structure to save mount options for ext4_remount's benefit
4527 */
4528 struct ext4_mount_options {
4529 unsigned long s_mount_opt;
4530 unsigned long s_mount_opt2;
4531 kuid_t s_resuid;
4532 kgid_t s_resgid;
4533 unsigned long s_commit_interval;
4534 u32 s_min_batch_time, s_max_batch_time;
4535 #ifdef CONFIG_QUOTA
4536 int s_jquota_fmt;
4537 char *s_qf_names[MAXQUOTAS];
4538 #endif
4539 };
4540
4541 static int ext4_remount(struct super_block *sb, int *flags, char *data)
4542 {
4543 struct ext4_super_block *es;
4544 struct ext4_sb_info *sbi = EXT4_SB(sb);
4545 unsigned long old_sb_flags;
4546 struct ext4_mount_options old_opts;
4547 int enable_quota = 0;
4548 ext4_group_t g;
4549 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
4550 int err = 0;
4551 #ifdef CONFIG_QUOTA
4552 int i, j;
4553 #endif
4554 char *orig_data = kstrdup(data, GFP_KERNEL);
4555
4556 /* Store the original options */
4557 old_sb_flags = sb->s_flags;
4558 old_opts.s_mount_opt = sbi->s_mount_opt;
4559 old_opts.s_mount_opt2 = sbi->s_mount_opt2;
4560 old_opts.s_resuid = sbi->s_resuid;
4561 old_opts.s_resgid = sbi->s_resgid;
4562 old_opts.s_commit_interval = sbi->s_commit_interval;
4563 old_opts.s_min_batch_time = sbi->s_min_batch_time;
4564 old_opts.s_max_batch_time = sbi->s_max_batch_time;
4565 #ifdef CONFIG_QUOTA
4566 old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
4567 for (i = 0; i < MAXQUOTAS; i++)
4568 if (sbi->s_qf_names[i]) {
4569 old_opts.s_qf_names[i] = kstrdup(sbi->s_qf_names[i],
4570 GFP_KERNEL);
4571 if (!old_opts.s_qf_names[i]) {
4572 for (j = 0; j < i; j++)
4573 kfree(old_opts.s_qf_names[j]);
4574 kfree(orig_data);
4575 return -ENOMEM;
4576 }
4577 } else
4578 old_opts.s_qf_names[i] = NULL;
4579 #endif
4580 if (sbi->s_journal && sbi->s_journal->j_task->io_context)
4581 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio;
4582
4583 /*
4584 * Allow the "check" option to be passed as a remount option.
4585 */
4586 if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) {
4587 err = -EINVAL;
4588 goto restore_opts;
4589 }
4590
4591 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED)
4592 ext4_abort(sb, "Abort forced by user");
4593
4594 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
4595 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
4596
4597 es = sbi->s_es;
4598
4599 if (sbi->s_journal) {
4600 ext4_init_journal_params(sb, sbi->s_journal);
4601 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
4602 }
4603
4604 if ((*flags & MS_RDONLY) != (sb->s_flags & MS_RDONLY)) {
4605 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) {
4606 err = -EROFS;
4607 goto restore_opts;
4608 }
4609
4610 if (*flags & MS_RDONLY) {
4611 err = dquot_suspend(sb, -1);
4612 if (err < 0)
4613 goto restore_opts;
4614
4615 /*
4616 * First of all, the unconditional stuff we have to do
4617 * to disable replay of the journal when we next remount
4618 */
4619 sb->s_flags |= MS_RDONLY;
4620
4621 /*
4622 * OK, test if we are remounting a valid rw partition
4623 * readonly, and if so set the rdonly flag and then
4624 * mark the partition as valid again.
4625 */
4626 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
4627 (sbi->s_mount_state & EXT4_VALID_FS))
4628 es->s_state = cpu_to_le16(sbi->s_mount_state);
4629
4630 if (sbi->s_journal)
4631 ext4_mark_recovery_complete(sb, es);
4632 } else {
4633 /* Make sure we can mount this feature set readwrite */
4634 if (!ext4_feature_set_ok(sb, 0)) {
4635 err = -EROFS;
4636 goto restore_opts;
4637 }
4638 /*
4639 * Make sure the group descriptor checksums
4640 * are sane. If they aren't, refuse to remount r/w.
4641 */
4642 for (g = 0; g < sbi->s_groups_count; g++) {
4643 struct ext4_group_desc *gdp =
4644 ext4_get_group_desc(sb, g, NULL);
4645
4646 if (!ext4_group_desc_csum_verify(sb, g, gdp)) {
4647 ext4_msg(sb, KERN_ERR,
4648 "ext4_remount: Checksum for group %u failed (%u!=%u)",
4649 g, le16_to_cpu(ext4_group_desc_csum(sbi, g, gdp)),
4650 le16_to_cpu(gdp->bg_checksum));
4651 err = -EINVAL;
4652 goto restore_opts;
4653 }
4654 }
4655
4656 /*
4657 * If we have an unprocessed orphan list hanging
4658 * around from a previously readonly bdev mount,
4659 * require a full umount/remount for now.
4660 */
4661 if (es->s_last_orphan) {
4662 ext4_msg(sb, KERN_WARNING, "Couldn't "
4663 "remount RDWR because of unprocessed "
4664 "orphan inode list. Please "
4665 "umount/remount instead");
4666 err = -EINVAL;
4667 goto restore_opts;
4668 }
4669
4670 /*
4671 * Mounting a RDONLY partition read-write, so reread
4672 * and store the current valid flag. (It may have
4673 * been changed by e2fsck since we originally mounted
4674 * the partition.)
4675 */
4676 if (sbi->s_journal)
4677 ext4_clear_journal_err(sb, es);
4678 sbi->s_mount_state = le16_to_cpu(es->s_state);
4679 if (!ext4_setup_super(sb, es, 0))
4680 sb->s_flags &= ~MS_RDONLY;
4681 if (EXT4_HAS_INCOMPAT_FEATURE(sb,
4682 EXT4_FEATURE_INCOMPAT_MMP))
4683 if (ext4_multi_mount_protect(sb,
4684 le64_to_cpu(es->s_mmp_block))) {
4685 err = -EROFS;
4686 goto restore_opts;
4687 }
4688 enable_quota = 1;
4689 }
4690 }
4691
4692 /*
4693 * Reinitialize lazy itable initialization thread based on
4694 * current settings
4695 */
4696 if ((sb->s_flags & MS_RDONLY) || !test_opt(sb, INIT_INODE_TABLE))
4697 ext4_unregister_li_request(sb);
4698 else {
4699 ext4_group_t first_not_zeroed;
4700 first_not_zeroed = ext4_has_uninit_itable(sb);
4701 ext4_register_li_request(sb, first_not_zeroed);
4702 }
4703
4704 ext4_setup_system_zone(sb);
4705 if (sbi->s_journal == NULL && !(old_sb_flags & MS_RDONLY))
4706 ext4_commit_super(sb, 1);
4707
4708 #ifdef CONFIG_QUOTA
4709 /* Release old quota file names */
4710 for (i = 0; i < MAXQUOTAS; i++)
4711 kfree(old_opts.s_qf_names[i]);
4712 if (enable_quota) {
4713 if (sb_any_quota_suspended(sb))
4714 dquot_resume(sb, -1);
4715 else if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4716 EXT4_FEATURE_RO_COMPAT_QUOTA)) {
4717 err = ext4_enable_quotas(sb);
4718 if (err)
4719 goto restore_opts;
4720 }
4721 }
4722 #endif
4723
4724 ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data);
4725 kfree(orig_data);
4726 return 0;
4727
4728 restore_opts:
4729 sb->s_flags = old_sb_flags;
4730 sbi->s_mount_opt = old_opts.s_mount_opt;
4731 sbi->s_mount_opt2 = old_opts.s_mount_opt2;
4732 sbi->s_resuid = old_opts.s_resuid;
4733 sbi->s_resgid = old_opts.s_resgid;
4734 sbi->s_commit_interval = old_opts.s_commit_interval;
4735 sbi->s_min_batch_time = old_opts.s_min_batch_time;
4736 sbi->s_max_batch_time = old_opts.s_max_batch_time;
4737 #ifdef CONFIG_QUOTA
4738 sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
4739 for (i = 0; i < MAXQUOTAS; i++) {
4740 kfree(sbi->s_qf_names[i]);
4741 sbi->s_qf_names[i] = old_opts.s_qf_names[i];
4742 }
4743 #endif
4744 kfree(orig_data);
4745 return err;
4746 }
4747
4748 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
4749 {
4750 struct super_block *sb = dentry->d_sb;
4751 struct ext4_sb_info *sbi = EXT4_SB(sb);
4752 struct ext4_super_block *es = sbi->s_es;
4753 ext4_fsblk_t overhead = 0;
4754 u64 fsid;
4755 s64 bfree;
4756
4757 if (!test_opt(sb, MINIX_DF))
4758 overhead = sbi->s_overhead;
4759
4760 buf->f_type = EXT4_SUPER_MAGIC;
4761 buf->f_bsize = sb->s_blocksize;
4762 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead);
4763 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
4764 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
4765 /* prevent underflow in case that few free space is available */
4766 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0));
4767 buf->f_bavail = buf->f_bfree - ext4_r_blocks_count(es);
4768 if (buf->f_bfree < ext4_r_blocks_count(es))
4769 buf->f_bavail = 0;
4770 buf->f_files = le32_to_cpu(es->s_inodes_count);
4771 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
4772 buf->f_namelen = EXT4_NAME_LEN;
4773 fsid = le64_to_cpup((void *)es->s_uuid) ^
4774 le64_to_cpup((void *)es->s_uuid + sizeof(u64));
4775 buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL;
4776 buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL;
4777
4778 return 0;
4779 }
4780
4781 /* Helper function for writing quotas on sync - we need to start transaction
4782 * before quota file is locked for write. Otherwise the are possible deadlocks:
4783 * Process 1 Process 2
4784 * ext4_create() quota_sync()
4785 * jbd2_journal_start() write_dquot()
4786 * dquot_initialize() down(dqio_mutex)
4787 * down(dqio_mutex) jbd2_journal_start()
4788 *
4789 */
4790
4791 #ifdef CONFIG_QUOTA
4792
4793 static inline struct inode *dquot_to_inode(struct dquot *dquot)
4794 {
4795 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type];
4796 }
4797
4798 static int ext4_write_dquot(struct dquot *dquot)
4799 {
4800 int ret, err;
4801 handle_t *handle;
4802 struct inode *inode;
4803
4804 inode = dquot_to_inode(dquot);
4805 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4806 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
4807 if (IS_ERR(handle))
4808 return PTR_ERR(handle);
4809 ret = dquot_commit(dquot);
4810 err = ext4_journal_stop(handle);
4811 if (!ret)
4812 ret = err;
4813 return ret;
4814 }
4815
4816 static int ext4_acquire_dquot(struct dquot *dquot)
4817 {
4818 int ret, err;
4819 handle_t *handle;
4820
4821 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
4822 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
4823 if (IS_ERR(handle))
4824 return PTR_ERR(handle);
4825 ret = dquot_acquire(dquot);
4826 err = ext4_journal_stop(handle);
4827 if (!ret)
4828 ret = err;
4829 return ret;
4830 }
4831
4832 static int ext4_release_dquot(struct dquot *dquot)
4833 {
4834 int ret, err;
4835 handle_t *handle;
4836
4837 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
4838 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
4839 if (IS_ERR(handle)) {
4840 /* Release dquot anyway to avoid endless cycle in dqput() */
4841 dquot_release(dquot);
4842 return PTR_ERR(handle);
4843 }
4844 ret = dquot_release(dquot);
4845 err = ext4_journal_stop(handle);
4846 if (!ret)
4847 ret = err;
4848 return ret;
4849 }
4850
4851 static int ext4_mark_dquot_dirty(struct dquot *dquot)
4852 {
4853 struct super_block *sb = dquot->dq_sb;
4854 struct ext4_sb_info *sbi = EXT4_SB(sb);
4855
4856 /* Are we journaling quotas? */
4857 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) ||
4858 sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
4859 dquot_mark_dquot_dirty(dquot);
4860 return ext4_write_dquot(dquot);
4861 } else {
4862 return dquot_mark_dquot_dirty(dquot);
4863 }
4864 }
4865
4866 static int ext4_write_info(struct super_block *sb, int type)
4867 {
4868 int ret, err;
4869 handle_t *handle;
4870
4871 /* Data block + inode block */
4872 handle = ext4_journal_start(sb->s_root->d_inode, EXT4_HT_QUOTA, 2);
4873 if (IS_ERR(handle))
4874 return PTR_ERR(handle);
4875 ret = dquot_commit_info(sb, type);
4876 err = ext4_journal_stop(handle);
4877 if (!ret)
4878 ret = err;
4879 return ret;
4880 }
4881
4882 /*
4883 * Turn on quotas during mount time - we need to find
4884 * the quota file and such...
4885 */
4886 static int ext4_quota_on_mount(struct super_block *sb, int type)
4887 {
4888 return dquot_quota_on_mount(sb, EXT4_SB(sb)->s_qf_names[type],
4889 EXT4_SB(sb)->s_jquota_fmt, type);
4890 }
4891
4892 /*
4893 * Standard function to be called on quota_on
4894 */
4895 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
4896 struct path *path)
4897 {
4898 int err;
4899
4900 if (!test_opt(sb, QUOTA))
4901 return -EINVAL;
4902
4903 /* Quotafile not on the same filesystem? */
4904 if (path->dentry->d_sb != sb)
4905 return -EXDEV;
4906 /* Journaling quota? */
4907 if (EXT4_SB(sb)->s_qf_names[type]) {
4908 /* Quotafile not in fs root? */
4909 if (path->dentry->d_parent != sb->s_root)
4910 ext4_msg(sb, KERN_WARNING,
4911 "Quota file not on filesystem root. "
4912 "Journaled quota will not work");
4913 }
4914
4915 /*
4916 * When we journal data on quota file, we have to flush journal to see
4917 * all updates to the file when we bypass pagecache...
4918 */
4919 if (EXT4_SB(sb)->s_journal &&
4920 ext4_should_journal_data(path->dentry->d_inode)) {
4921 /*
4922 * We don't need to lock updates but journal_flush() could
4923 * otherwise be livelocked...
4924 */
4925 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal);
4926 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal);
4927 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
4928 if (err)
4929 return err;
4930 }
4931
4932 return dquot_quota_on(sb, type, format_id, path);
4933 }
4934
4935 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
4936 unsigned int flags)
4937 {
4938 int err;
4939 struct inode *qf_inode;
4940 unsigned long qf_inums[MAXQUOTAS] = {
4941 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
4942 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum)
4943 };
4944
4945 BUG_ON(!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA));
4946
4947 if (!qf_inums[type])
4948 return -EPERM;
4949
4950 qf_inode = ext4_iget(sb, qf_inums[type]);
4951 if (IS_ERR(qf_inode)) {
4952 ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]);
4953 return PTR_ERR(qf_inode);
4954 }
4955
4956 err = dquot_enable(qf_inode, type, format_id, flags);
4957 iput(qf_inode);
4958
4959 return err;
4960 }
4961
4962 /* Enable usage tracking for all quota types. */
4963 static int ext4_enable_quotas(struct super_block *sb)
4964 {
4965 int type, err = 0;
4966 unsigned long qf_inums[MAXQUOTAS] = {
4967 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
4968 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum)
4969 };
4970
4971 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE;
4972 for (type = 0; type < MAXQUOTAS; type++) {
4973 if (qf_inums[type]) {
4974 err = ext4_quota_enable(sb, type, QFMT_VFS_V1,
4975 DQUOT_USAGE_ENABLED);
4976 if (err) {
4977 ext4_warning(sb,
4978 "Failed to enable quota tracking "
4979 "(type=%d, err=%d). Please run "
4980 "e2fsck to fix.", type, err);
4981 return err;
4982 }
4983 }
4984 }
4985 return 0;
4986 }
4987
4988 /*
4989 * quota_on function that is used when QUOTA feature is set.
4990 */
4991 static int ext4_quota_on_sysfile(struct super_block *sb, int type,
4992 int format_id)
4993 {
4994 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA))
4995 return -EINVAL;
4996
4997 /*
4998 * USAGE was enabled at mount time. Only need to enable LIMITS now.
4999 */
5000 return ext4_quota_enable(sb, type, format_id, DQUOT_LIMITS_ENABLED);
5001 }
5002
5003 static int ext4_quota_off(struct super_block *sb, int type)
5004 {
5005 struct inode *inode = sb_dqopt(sb)->files[type];
5006 handle_t *handle;
5007
5008 /* Force all delayed allocation blocks to be allocated.
5009 * Caller already holds s_umount sem */
5010 if (test_opt(sb, DELALLOC))
5011 sync_filesystem(sb);
5012
5013 if (!inode)
5014 goto out;
5015
5016 /* Update modification times of quota files when userspace can
5017 * start looking at them */
5018 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
5019 if (IS_ERR(handle))
5020 goto out;
5021 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
5022 ext4_mark_inode_dirty(handle, inode);
5023 ext4_journal_stop(handle);
5024
5025 out:
5026 return dquot_quota_off(sb, type);
5027 }
5028
5029 /*
5030 * quota_off function that is used when QUOTA feature is set.
5031 */
5032 static int ext4_quota_off_sysfile(struct super_block *sb, int type)
5033 {
5034 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA))
5035 return -EINVAL;
5036
5037 /* Disable only the limits. */
5038 return dquot_disable(sb, type, DQUOT_LIMITS_ENABLED);
5039 }
5040
5041 /* Read data from quotafile - avoid pagecache and such because we cannot afford
5042 * acquiring the locks... As quota files are never truncated and quota code
5043 * itself serializes the operations (and no one else should touch the files)
5044 * we don't have to be afraid of races */
5045 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
5046 size_t len, loff_t off)
5047 {
5048 struct inode *inode = sb_dqopt(sb)->files[type];
5049 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5050 int err = 0;
5051 int offset = off & (sb->s_blocksize - 1);
5052 int tocopy;
5053 size_t toread;
5054 struct buffer_head *bh;
5055 loff_t i_size = i_size_read(inode);
5056
5057 if (off > i_size)
5058 return 0;
5059 if (off+len > i_size)
5060 len = i_size-off;
5061 toread = len;
5062 while (toread > 0) {
5063 tocopy = sb->s_blocksize - offset < toread ?
5064 sb->s_blocksize - offset : toread;
5065 bh = ext4_bread(NULL, inode, blk, 0, &err);
5066 if (err)
5067 return err;
5068 if (!bh) /* A hole? */
5069 memset(data, 0, tocopy);
5070 else
5071 memcpy(data, bh->b_data+offset, tocopy);
5072 brelse(bh);
5073 offset = 0;
5074 toread -= tocopy;
5075 data += tocopy;
5076 blk++;
5077 }
5078 return len;
5079 }
5080
5081 /* Write to quotafile (we know the transaction is already started and has
5082 * enough credits) */
5083 static ssize_t ext4_quota_write(struct super_block *sb, int type,
5084 const char *data, size_t len, loff_t off)
5085 {
5086 struct inode *inode = sb_dqopt(sb)->files[type];
5087 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5088 int err = 0;
5089 int offset = off & (sb->s_blocksize - 1);
5090 struct buffer_head *bh;
5091 handle_t *handle = journal_current_handle();
5092
5093 if (EXT4_SB(sb)->s_journal && !handle) {
5094 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5095 " cancelled because transaction is not started",
5096 (unsigned long long)off, (unsigned long long)len);
5097 return -EIO;
5098 }
5099 /*
5100 * Since we account only one data block in transaction credits,
5101 * then it is impossible to cross a block boundary.
5102 */
5103 if (sb->s_blocksize - offset < len) {
5104 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5105 " cancelled because not block aligned",
5106 (unsigned long long)off, (unsigned long long)len);
5107 return -EIO;
5108 }
5109
5110 bh = ext4_bread(handle, inode, blk, 1, &err);
5111 if (!bh)
5112 goto out;
5113 err = ext4_journal_get_write_access(handle, bh);
5114 if (err) {
5115 brelse(bh);
5116 goto out;
5117 }
5118 lock_buffer(bh);
5119 memcpy(bh->b_data+offset, data, len);
5120 flush_dcache_page(bh->b_page);
5121 unlock_buffer(bh);
5122 err = ext4_handle_dirty_metadata(handle, NULL, bh);
5123 brelse(bh);
5124 out:
5125 if (err)
5126 return err;
5127 if (inode->i_size < off + len) {
5128 i_size_write(inode, off + len);
5129 EXT4_I(inode)->i_disksize = inode->i_size;
5130 ext4_mark_inode_dirty(handle, inode);
5131 }
5132 return len;
5133 }
5134
5135 #endif
5136
5137 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
5138 const char *dev_name, void *data)
5139 {
5140 return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super);
5141 }
5142
5143 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
5144 static inline void register_as_ext2(void)
5145 {
5146 int err = register_filesystem(&ext2_fs_type);
5147 if (err)
5148 printk(KERN_WARNING
5149 "EXT4-fs: Unable to register as ext2 (%d)\n", err);
5150 }
5151
5152 static inline void unregister_as_ext2(void)
5153 {
5154 unregister_filesystem(&ext2_fs_type);
5155 }
5156
5157 static inline int ext2_feature_set_ok(struct super_block *sb)
5158 {
5159 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT2_FEATURE_INCOMPAT_SUPP))
5160 return 0;
5161 if (sb->s_flags & MS_RDONLY)
5162 return 1;
5163 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT2_FEATURE_RO_COMPAT_SUPP))
5164 return 0;
5165 return 1;
5166 }
5167 #else
5168 static inline void register_as_ext2(void) { }
5169 static inline void unregister_as_ext2(void) { }
5170 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
5171 #endif
5172
5173 #if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
5174 static inline void register_as_ext3(void)
5175 {
5176 int err = register_filesystem(&ext3_fs_type);
5177 if (err)
5178 printk(KERN_WARNING
5179 "EXT4-fs: Unable to register as ext3 (%d)\n", err);
5180 }
5181
5182 static inline void unregister_as_ext3(void)
5183 {
5184 unregister_filesystem(&ext3_fs_type);
5185 }
5186
5187 static inline int ext3_feature_set_ok(struct super_block *sb)
5188 {
5189 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT3_FEATURE_INCOMPAT_SUPP))
5190 return 0;
5191 if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL))
5192 return 0;
5193 if (sb->s_flags & MS_RDONLY)
5194 return 1;
5195 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT3_FEATURE_RO_COMPAT_SUPP))
5196 return 0;
5197 return 1;
5198 }
5199 #else
5200 static inline void register_as_ext3(void) { }
5201 static inline void unregister_as_ext3(void) { }
5202 static inline int ext3_feature_set_ok(struct super_block *sb) { return 0; }
5203 #endif
5204
5205 static struct file_system_type ext4_fs_type = {
5206 .owner = THIS_MODULE,
5207 .name = "ext4",
5208 .mount = ext4_mount,
5209 .kill_sb = kill_block_super,
5210 .fs_flags = FS_REQUIRES_DEV,
5211 };
5212 MODULE_ALIAS_FS("ext4");
5213
5214 static int __init ext4_init_feat_adverts(void)
5215 {
5216 struct ext4_features *ef;
5217 int ret = -ENOMEM;
5218
5219 ef = kzalloc(sizeof(struct ext4_features), GFP_KERNEL);
5220 if (!ef)
5221 goto out;
5222
5223 ef->f_kobj.kset = ext4_kset;
5224 init_completion(&ef->f_kobj_unregister);
5225 ret = kobject_init_and_add(&ef->f_kobj, &ext4_feat_ktype, NULL,
5226 "features");
5227 if (ret) {
5228 kfree(ef);
5229 goto out;
5230 }
5231
5232 ext4_feat = ef;
5233 ret = 0;
5234 out:
5235 return ret;
5236 }
5237
5238 static void ext4_exit_feat_adverts(void)
5239 {
5240 kobject_put(&ext4_feat->f_kobj);
5241 wait_for_completion(&ext4_feat->f_kobj_unregister);
5242 kfree(ext4_feat);
5243 }
5244
5245 /* Shared across all ext4 file systems */
5246 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ];
5247 struct mutex ext4__aio_mutex[EXT4_WQ_HASH_SZ];
5248
5249 static int __init ext4_init_fs(void)
5250 {
5251 int i, err;
5252
5253 ext4_li_info = NULL;
5254 mutex_init(&ext4_li_mtx);
5255
5256 /* Build-time check for flags consistency */
5257 ext4_check_flag_values();
5258
5259 for (i = 0; i < EXT4_WQ_HASH_SZ; i++) {
5260 mutex_init(&ext4__aio_mutex[i]);
5261 init_waitqueue_head(&ext4__ioend_wq[i]);
5262 }
5263
5264 err = ext4_init_es();
5265 if (err)
5266 return err;
5267
5268 err = ext4_init_pageio();
5269 if (err)
5270 goto out7;
5271
5272 err = ext4_init_system_zone();
5273 if (err)
5274 goto out6;
5275 ext4_kset = kset_create_and_add("ext4", NULL, fs_kobj);
5276 if (!ext4_kset) {
5277 err = -ENOMEM;
5278 goto out5;
5279 }
5280 ext4_proc_root = proc_mkdir("fs/ext4", NULL);
5281
5282 err = ext4_init_feat_adverts();
5283 if (err)
5284 goto out4;
5285
5286 err = ext4_init_mballoc();
5287 if (err)
5288 goto out3;
5289
5290 err = ext4_init_xattr();
5291 if (err)
5292 goto out2;
5293 err = init_inodecache();
5294 if (err)
5295 goto out1;
5296 register_as_ext3();
5297 register_as_ext2();
5298 err = register_filesystem(&ext4_fs_type);
5299 if (err)
5300 goto out;
5301
5302 return 0;
5303 out:
5304 unregister_as_ext2();
5305 unregister_as_ext3();
5306 destroy_inodecache();
5307 out1:
5308 ext4_exit_xattr();
5309 out2:
5310 ext4_exit_mballoc();
5311 out3:
5312 ext4_exit_feat_adverts();
5313 out4:
5314 if (ext4_proc_root)
5315 remove_proc_entry("fs/ext4", NULL);
5316 kset_unregister(ext4_kset);
5317 out5:
5318 ext4_exit_system_zone();
5319 out6:
5320 ext4_exit_pageio();
5321 out7:
5322 ext4_exit_es();
5323
5324 return err;
5325 }
5326
5327 static void __exit ext4_exit_fs(void)
5328 {
5329 ext4_destroy_lazyinit_thread();
5330 unregister_as_ext2();
5331 unregister_as_ext3();
5332 unregister_filesystem(&ext4_fs_type);
5333 destroy_inodecache();
5334 ext4_exit_xattr();
5335 ext4_exit_mballoc();
5336 ext4_exit_feat_adverts();
5337 remove_proc_entry("fs/ext4", NULL);
5338 kset_unregister(ext4_kset);
5339 ext4_exit_system_zone();
5340 ext4_exit_pageio();
5341 }
5342
5343 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
5344 MODULE_DESCRIPTION("Fourth Extended Filesystem");
5345 MODULE_LICENSE("GPL");
5346 module_init(ext4_init_fs)
5347 module_exit(ext4_exit_fs)