]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/ext4/super.c
Merge branch 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jack/linux-fs
[mirror_ubuntu-bionic-kernel.git] / fs / ext4 / super.c
1 /*
2 * linux/fs/ext4/super.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * Big-endian to little-endian byte-swapping/bitmaps by
16 * David S. Miller (davem@caip.rutgers.edu), 1995
17 */
18
19 #include <linux/module.h>
20 #include <linux/string.h>
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/vmalloc.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/parser.h>
29 #include <linux/buffer_head.h>
30 #include <linux/exportfs.h>
31 #include <linux/vfs.h>
32 #include <linux/random.h>
33 #include <linux/mount.h>
34 #include <linux/namei.h>
35 #include <linux/quotaops.h>
36 #include <linux/seq_file.h>
37 #include <linux/proc_fs.h>
38 #include <linux/ctype.h>
39 #include <linux/log2.h>
40 #include <linux/crc16.h>
41 #include <linux/cleancache.h>
42 #include <asm/uaccess.h>
43
44 #include <linux/kthread.h>
45 #include <linux/freezer.h>
46
47 #include "ext4.h"
48 #include "ext4_extents.h" /* Needed for trace points definition */
49 #include "ext4_jbd2.h"
50 #include "xattr.h"
51 #include "acl.h"
52 #include "mballoc.h"
53
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/ext4.h>
56
57 static struct proc_dir_entry *ext4_proc_root;
58 static struct kset *ext4_kset;
59 static struct ext4_lazy_init *ext4_li_info;
60 static struct mutex ext4_li_mtx;
61 static struct ext4_features *ext4_feat;
62 static int ext4_mballoc_ready;
63
64 static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
65 unsigned long journal_devnum);
66 static int ext4_show_options(struct seq_file *seq, struct dentry *root);
67 static int ext4_commit_super(struct super_block *sb, int sync);
68 static void ext4_mark_recovery_complete(struct super_block *sb,
69 struct ext4_super_block *es);
70 static void ext4_clear_journal_err(struct super_block *sb,
71 struct ext4_super_block *es);
72 static int ext4_sync_fs(struct super_block *sb, int wait);
73 static int ext4_remount(struct super_block *sb, int *flags, char *data);
74 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
75 static int ext4_unfreeze(struct super_block *sb);
76 static int ext4_freeze(struct super_block *sb);
77 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
78 const char *dev_name, void *data);
79 static inline int ext2_feature_set_ok(struct super_block *sb);
80 static inline int ext3_feature_set_ok(struct super_block *sb);
81 static int ext4_feature_set_ok(struct super_block *sb, int readonly);
82 static void ext4_destroy_lazyinit_thread(void);
83 static void ext4_unregister_li_request(struct super_block *sb);
84 static void ext4_clear_request_list(void);
85 static int ext4_reserve_clusters(struct ext4_sb_info *, ext4_fsblk_t);
86
87 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
88 static struct file_system_type ext2_fs_type = {
89 .owner = THIS_MODULE,
90 .name = "ext2",
91 .mount = ext4_mount,
92 .kill_sb = kill_block_super,
93 .fs_flags = FS_REQUIRES_DEV,
94 };
95 MODULE_ALIAS_FS("ext2");
96 MODULE_ALIAS("ext2");
97 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type)
98 #else
99 #define IS_EXT2_SB(sb) (0)
100 #endif
101
102
103 #if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
104 static struct file_system_type ext3_fs_type = {
105 .owner = THIS_MODULE,
106 .name = "ext3",
107 .mount = ext4_mount,
108 .kill_sb = kill_block_super,
109 .fs_flags = FS_REQUIRES_DEV,
110 };
111 MODULE_ALIAS_FS("ext3");
112 MODULE_ALIAS("ext3");
113 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type)
114 #else
115 #define IS_EXT3_SB(sb) (0)
116 #endif
117
118 static int ext4_verify_csum_type(struct super_block *sb,
119 struct ext4_super_block *es)
120 {
121 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
122 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
123 return 1;
124
125 return es->s_checksum_type == EXT4_CRC32C_CHKSUM;
126 }
127
128 static __le32 ext4_superblock_csum(struct super_block *sb,
129 struct ext4_super_block *es)
130 {
131 struct ext4_sb_info *sbi = EXT4_SB(sb);
132 int offset = offsetof(struct ext4_super_block, s_checksum);
133 __u32 csum;
134
135 csum = ext4_chksum(sbi, ~0, (char *)es, offset);
136
137 return cpu_to_le32(csum);
138 }
139
140 static int ext4_superblock_csum_verify(struct super_block *sb,
141 struct ext4_super_block *es)
142 {
143 if (!ext4_has_metadata_csum(sb))
144 return 1;
145
146 return es->s_checksum == ext4_superblock_csum(sb, es);
147 }
148
149 void ext4_superblock_csum_set(struct super_block *sb)
150 {
151 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
152
153 if (!ext4_has_metadata_csum(sb))
154 return;
155
156 es->s_checksum = ext4_superblock_csum(sb, es);
157 }
158
159 void *ext4_kvmalloc(size_t size, gfp_t flags)
160 {
161 void *ret;
162
163 ret = kmalloc(size, flags | __GFP_NOWARN);
164 if (!ret)
165 ret = __vmalloc(size, flags, PAGE_KERNEL);
166 return ret;
167 }
168
169 void *ext4_kvzalloc(size_t size, gfp_t flags)
170 {
171 void *ret;
172
173 ret = kzalloc(size, flags | __GFP_NOWARN);
174 if (!ret)
175 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL);
176 return ret;
177 }
178
179 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
180 struct ext4_group_desc *bg)
181 {
182 return le32_to_cpu(bg->bg_block_bitmap_lo) |
183 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
184 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
185 }
186
187 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
188 struct ext4_group_desc *bg)
189 {
190 return le32_to_cpu(bg->bg_inode_bitmap_lo) |
191 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
192 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
193 }
194
195 ext4_fsblk_t ext4_inode_table(struct super_block *sb,
196 struct ext4_group_desc *bg)
197 {
198 return le32_to_cpu(bg->bg_inode_table_lo) |
199 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
200 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
201 }
202
203 __u32 ext4_free_group_clusters(struct super_block *sb,
204 struct ext4_group_desc *bg)
205 {
206 return le16_to_cpu(bg->bg_free_blocks_count_lo) |
207 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
208 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
209 }
210
211 __u32 ext4_free_inodes_count(struct super_block *sb,
212 struct ext4_group_desc *bg)
213 {
214 return le16_to_cpu(bg->bg_free_inodes_count_lo) |
215 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
216 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
217 }
218
219 __u32 ext4_used_dirs_count(struct super_block *sb,
220 struct ext4_group_desc *bg)
221 {
222 return le16_to_cpu(bg->bg_used_dirs_count_lo) |
223 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
224 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
225 }
226
227 __u32 ext4_itable_unused_count(struct super_block *sb,
228 struct ext4_group_desc *bg)
229 {
230 return le16_to_cpu(bg->bg_itable_unused_lo) |
231 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
232 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
233 }
234
235 void ext4_block_bitmap_set(struct super_block *sb,
236 struct ext4_group_desc *bg, ext4_fsblk_t blk)
237 {
238 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
239 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
240 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
241 }
242
243 void ext4_inode_bitmap_set(struct super_block *sb,
244 struct ext4_group_desc *bg, ext4_fsblk_t blk)
245 {
246 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk);
247 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
248 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
249 }
250
251 void ext4_inode_table_set(struct super_block *sb,
252 struct ext4_group_desc *bg, ext4_fsblk_t blk)
253 {
254 bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
255 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
256 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
257 }
258
259 void ext4_free_group_clusters_set(struct super_block *sb,
260 struct ext4_group_desc *bg, __u32 count)
261 {
262 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
263 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
264 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
265 }
266
267 void ext4_free_inodes_set(struct super_block *sb,
268 struct ext4_group_desc *bg, __u32 count)
269 {
270 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
271 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
272 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
273 }
274
275 void ext4_used_dirs_set(struct super_block *sb,
276 struct ext4_group_desc *bg, __u32 count)
277 {
278 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
279 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
280 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
281 }
282
283 void ext4_itable_unused_set(struct super_block *sb,
284 struct ext4_group_desc *bg, __u32 count)
285 {
286 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
287 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
288 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
289 }
290
291
292 static void __save_error_info(struct super_block *sb, const char *func,
293 unsigned int line)
294 {
295 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
296
297 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
298 if (bdev_read_only(sb->s_bdev))
299 return;
300 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
301 es->s_last_error_time = cpu_to_le32(get_seconds());
302 strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func));
303 es->s_last_error_line = cpu_to_le32(line);
304 if (!es->s_first_error_time) {
305 es->s_first_error_time = es->s_last_error_time;
306 strncpy(es->s_first_error_func, func,
307 sizeof(es->s_first_error_func));
308 es->s_first_error_line = cpu_to_le32(line);
309 es->s_first_error_ino = es->s_last_error_ino;
310 es->s_first_error_block = es->s_last_error_block;
311 }
312 /*
313 * Start the daily error reporting function if it hasn't been
314 * started already
315 */
316 if (!es->s_error_count)
317 mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ);
318 le32_add_cpu(&es->s_error_count, 1);
319 }
320
321 static void save_error_info(struct super_block *sb, const char *func,
322 unsigned int line)
323 {
324 __save_error_info(sb, func, line);
325 ext4_commit_super(sb, 1);
326 }
327
328 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn)
329 {
330 struct super_block *sb = journal->j_private;
331 struct ext4_sb_info *sbi = EXT4_SB(sb);
332 int error = is_journal_aborted(journal);
333 struct ext4_journal_cb_entry *jce;
334
335 BUG_ON(txn->t_state == T_FINISHED);
336 spin_lock(&sbi->s_md_lock);
337 while (!list_empty(&txn->t_private_list)) {
338 jce = list_entry(txn->t_private_list.next,
339 struct ext4_journal_cb_entry, jce_list);
340 list_del_init(&jce->jce_list);
341 spin_unlock(&sbi->s_md_lock);
342 jce->jce_func(sb, jce, error);
343 spin_lock(&sbi->s_md_lock);
344 }
345 spin_unlock(&sbi->s_md_lock);
346 }
347
348 /* Deal with the reporting of failure conditions on a filesystem such as
349 * inconsistencies detected or read IO failures.
350 *
351 * On ext2, we can store the error state of the filesystem in the
352 * superblock. That is not possible on ext4, because we may have other
353 * write ordering constraints on the superblock which prevent us from
354 * writing it out straight away; and given that the journal is about to
355 * be aborted, we can't rely on the current, or future, transactions to
356 * write out the superblock safely.
357 *
358 * We'll just use the jbd2_journal_abort() error code to record an error in
359 * the journal instead. On recovery, the journal will complain about
360 * that error until we've noted it down and cleared it.
361 */
362
363 static void ext4_handle_error(struct super_block *sb)
364 {
365 if (sb->s_flags & MS_RDONLY)
366 return;
367
368 if (!test_opt(sb, ERRORS_CONT)) {
369 journal_t *journal = EXT4_SB(sb)->s_journal;
370
371 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
372 if (journal)
373 jbd2_journal_abort(journal, -EIO);
374 }
375 if (test_opt(sb, ERRORS_RO)) {
376 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
377 /*
378 * Make sure updated value of ->s_mount_flags will be visible
379 * before ->s_flags update
380 */
381 smp_wmb();
382 sb->s_flags |= MS_RDONLY;
383 }
384 if (test_opt(sb, ERRORS_PANIC))
385 panic("EXT4-fs (device %s): panic forced after error\n",
386 sb->s_id);
387 }
388
389 #define ext4_error_ratelimit(sb) \
390 ___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state), \
391 "EXT4-fs error")
392
393 void __ext4_error(struct super_block *sb, const char *function,
394 unsigned int line, const char *fmt, ...)
395 {
396 struct va_format vaf;
397 va_list args;
398
399 if (ext4_error_ratelimit(sb)) {
400 va_start(args, fmt);
401 vaf.fmt = fmt;
402 vaf.va = &args;
403 printk(KERN_CRIT
404 "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
405 sb->s_id, function, line, current->comm, &vaf);
406 va_end(args);
407 }
408 save_error_info(sb, function, line);
409 ext4_handle_error(sb);
410 }
411
412 void __ext4_error_inode(struct inode *inode, const char *function,
413 unsigned int line, ext4_fsblk_t block,
414 const char *fmt, ...)
415 {
416 va_list args;
417 struct va_format vaf;
418 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
419
420 es->s_last_error_ino = cpu_to_le32(inode->i_ino);
421 es->s_last_error_block = cpu_to_le64(block);
422 if (ext4_error_ratelimit(inode->i_sb)) {
423 va_start(args, fmt);
424 vaf.fmt = fmt;
425 vaf.va = &args;
426 if (block)
427 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
428 "inode #%lu: block %llu: comm %s: %pV\n",
429 inode->i_sb->s_id, function, line, inode->i_ino,
430 block, current->comm, &vaf);
431 else
432 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
433 "inode #%lu: comm %s: %pV\n",
434 inode->i_sb->s_id, function, line, inode->i_ino,
435 current->comm, &vaf);
436 va_end(args);
437 }
438 save_error_info(inode->i_sb, function, line);
439 ext4_handle_error(inode->i_sb);
440 }
441
442 void __ext4_error_file(struct file *file, const char *function,
443 unsigned int line, ext4_fsblk_t block,
444 const char *fmt, ...)
445 {
446 va_list args;
447 struct va_format vaf;
448 struct ext4_super_block *es;
449 struct inode *inode = file_inode(file);
450 char pathname[80], *path;
451
452 es = EXT4_SB(inode->i_sb)->s_es;
453 es->s_last_error_ino = cpu_to_le32(inode->i_ino);
454 if (ext4_error_ratelimit(inode->i_sb)) {
455 path = file_path(file, pathname, sizeof(pathname));
456 if (IS_ERR(path))
457 path = "(unknown)";
458 va_start(args, fmt);
459 vaf.fmt = fmt;
460 vaf.va = &args;
461 if (block)
462 printk(KERN_CRIT
463 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
464 "block %llu: comm %s: path %s: %pV\n",
465 inode->i_sb->s_id, function, line, inode->i_ino,
466 block, current->comm, path, &vaf);
467 else
468 printk(KERN_CRIT
469 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
470 "comm %s: path %s: %pV\n",
471 inode->i_sb->s_id, function, line, inode->i_ino,
472 current->comm, path, &vaf);
473 va_end(args);
474 }
475 save_error_info(inode->i_sb, function, line);
476 ext4_handle_error(inode->i_sb);
477 }
478
479 const char *ext4_decode_error(struct super_block *sb, int errno,
480 char nbuf[16])
481 {
482 char *errstr = NULL;
483
484 switch (errno) {
485 case -EIO:
486 errstr = "IO failure";
487 break;
488 case -ENOMEM:
489 errstr = "Out of memory";
490 break;
491 case -EROFS:
492 if (!sb || (EXT4_SB(sb)->s_journal &&
493 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
494 errstr = "Journal has aborted";
495 else
496 errstr = "Readonly filesystem";
497 break;
498 default:
499 /* If the caller passed in an extra buffer for unknown
500 * errors, textualise them now. Else we just return
501 * NULL. */
502 if (nbuf) {
503 /* Check for truncated error codes... */
504 if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
505 errstr = nbuf;
506 }
507 break;
508 }
509
510 return errstr;
511 }
512
513 /* __ext4_std_error decodes expected errors from journaling functions
514 * automatically and invokes the appropriate error response. */
515
516 void __ext4_std_error(struct super_block *sb, const char *function,
517 unsigned int line, int errno)
518 {
519 char nbuf[16];
520 const char *errstr;
521
522 /* Special case: if the error is EROFS, and we're not already
523 * inside a transaction, then there's really no point in logging
524 * an error. */
525 if (errno == -EROFS && journal_current_handle() == NULL &&
526 (sb->s_flags & MS_RDONLY))
527 return;
528
529 if (ext4_error_ratelimit(sb)) {
530 errstr = ext4_decode_error(sb, errno, nbuf);
531 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
532 sb->s_id, function, line, errstr);
533 }
534
535 save_error_info(sb, function, line);
536 ext4_handle_error(sb);
537 }
538
539 /*
540 * ext4_abort is a much stronger failure handler than ext4_error. The
541 * abort function may be used to deal with unrecoverable failures such
542 * as journal IO errors or ENOMEM at a critical moment in log management.
543 *
544 * We unconditionally force the filesystem into an ABORT|READONLY state,
545 * unless the error response on the fs has been set to panic in which
546 * case we take the easy way out and panic immediately.
547 */
548
549 void __ext4_abort(struct super_block *sb, const char *function,
550 unsigned int line, const char *fmt, ...)
551 {
552 va_list args;
553
554 save_error_info(sb, function, line);
555 va_start(args, fmt);
556 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: ", sb->s_id,
557 function, line);
558 vprintk(fmt, args);
559 printk("\n");
560 va_end(args);
561
562 if ((sb->s_flags & MS_RDONLY) == 0) {
563 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
564 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
565 /*
566 * Make sure updated value of ->s_mount_flags will be visible
567 * before ->s_flags update
568 */
569 smp_wmb();
570 sb->s_flags |= MS_RDONLY;
571 if (EXT4_SB(sb)->s_journal)
572 jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO);
573 save_error_info(sb, function, line);
574 }
575 if (test_opt(sb, ERRORS_PANIC))
576 panic("EXT4-fs panic from previous error\n");
577 }
578
579 void __ext4_msg(struct super_block *sb,
580 const char *prefix, const char *fmt, ...)
581 {
582 struct va_format vaf;
583 va_list args;
584
585 if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state), "EXT4-fs"))
586 return;
587
588 va_start(args, fmt);
589 vaf.fmt = fmt;
590 vaf.va = &args;
591 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
592 va_end(args);
593 }
594
595 #define ext4_warning_ratelimit(sb) \
596 ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state), \
597 "EXT4-fs warning")
598
599 void __ext4_warning(struct super_block *sb, const char *function,
600 unsigned int line, const char *fmt, ...)
601 {
602 struct va_format vaf;
603 va_list args;
604
605 if (!ext4_warning_ratelimit(sb))
606 return;
607
608 va_start(args, fmt);
609 vaf.fmt = fmt;
610 vaf.va = &args;
611 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
612 sb->s_id, function, line, &vaf);
613 va_end(args);
614 }
615
616 void __ext4_warning_inode(const struct inode *inode, const char *function,
617 unsigned int line, const char *fmt, ...)
618 {
619 struct va_format vaf;
620 va_list args;
621
622 if (!ext4_warning_ratelimit(inode->i_sb))
623 return;
624
625 va_start(args, fmt);
626 vaf.fmt = fmt;
627 vaf.va = &args;
628 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: "
629 "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id,
630 function, line, inode->i_ino, current->comm, &vaf);
631 va_end(args);
632 }
633
634 void __ext4_grp_locked_error(const char *function, unsigned int line,
635 struct super_block *sb, ext4_group_t grp,
636 unsigned long ino, ext4_fsblk_t block,
637 const char *fmt, ...)
638 __releases(bitlock)
639 __acquires(bitlock)
640 {
641 struct va_format vaf;
642 va_list args;
643 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
644
645 es->s_last_error_ino = cpu_to_le32(ino);
646 es->s_last_error_block = cpu_to_le64(block);
647 __save_error_info(sb, function, line);
648
649 if (ext4_error_ratelimit(sb)) {
650 va_start(args, fmt);
651 vaf.fmt = fmt;
652 vaf.va = &args;
653 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
654 sb->s_id, function, line, grp);
655 if (ino)
656 printk(KERN_CONT "inode %lu: ", ino);
657 if (block)
658 printk(KERN_CONT "block %llu:",
659 (unsigned long long) block);
660 printk(KERN_CONT "%pV\n", &vaf);
661 va_end(args);
662 }
663
664 if (test_opt(sb, ERRORS_CONT)) {
665 ext4_commit_super(sb, 0);
666 return;
667 }
668
669 ext4_unlock_group(sb, grp);
670 ext4_handle_error(sb);
671 /*
672 * We only get here in the ERRORS_RO case; relocking the group
673 * may be dangerous, but nothing bad will happen since the
674 * filesystem will have already been marked read/only and the
675 * journal has been aborted. We return 1 as a hint to callers
676 * who might what to use the return value from
677 * ext4_grp_locked_error() to distinguish between the
678 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
679 * aggressively from the ext4 function in question, with a
680 * more appropriate error code.
681 */
682 ext4_lock_group(sb, grp);
683 return;
684 }
685
686 void ext4_update_dynamic_rev(struct super_block *sb)
687 {
688 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
689
690 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
691 return;
692
693 ext4_warning(sb,
694 "updating to rev %d because of new feature flag, "
695 "running e2fsck is recommended",
696 EXT4_DYNAMIC_REV);
697
698 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
699 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
700 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
701 /* leave es->s_feature_*compat flags alone */
702 /* es->s_uuid will be set by e2fsck if empty */
703
704 /*
705 * The rest of the superblock fields should be zero, and if not it
706 * means they are likely already in use, so leave them alone. We
707 * can leave it up to e2fsck to clean up any inconsistencies there.
708 */
709 }
710
711 /*
712 * Open the external journal device
713 */
714 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb)
715 {
716 struct block_device *bdev;
717 char b[BDEVNAME_SIZE];
718
719 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb);
720 if (IS_ERR(bdev))
721 goto fail;
722 return bdev;
723
724 fail:
725 ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld",
726 __bdevname(dev, b), PTR_ERR(bdev));
727 return NULL;
728 }
729
730 /*
731 * Release the journal device
732 */
733 static void ext4_blkdev_put(struct block_device *bdev)
734 {
735 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
736 }
737
738 static void ext4_blkdev_remove(struct ext4_sb_info *sbi)
739 {
740 struct block_device *bdev;
741 bdev = sbi->journal_bdev;
742 if (bdev) {
743 ext4_blkdev_put(bdev);
744 sbi->journal_bdev = NULL;
745 }
746 }
747
748 static inline struct inode *orphan_list_entry(struct list_head *l)
749 {
750 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
751 }
752
753 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
754 {
755 struct list_head *l;
756
757 ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
758 le32_to_cpu(sbi->s_es->s_last_orphan));
759
760 printk(KERN_ERR "sb_info orphan list:\n");
761 list_for_each(l, &sbi->s_orphan) {
762 struct inode *inode = orphan_list_entry(l);
763 printk(KERN_ERR " "
764 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
765 inode->i_sb->s_id, inode->i_ino, inode,
766 inode->i_mode, inode->i_nlink,
767 NEXT_ORPHAN(inode));
768 }
769 }
770
771 static void ext4_put_super(struct super_block *sb)
772 {
773 struct ext4_sb_info *sbi = EXT4_SB(sb);
774 struct ext4_super_block *es = sbi->s_es;
775 int i, err;
776
777 ext4_unregister_li_request(sb);
778 dquot_disable(sb, -1, DQUOT_USAGE_ENABLED | DQUOT_LIMITS_ENABLED);
779
780 flush_workqueue(sbi->rsv_conversion_wq);
781 destroy_workqueue(sbi->rsv_conversion_wq);
782
783 if (sbi->s_journal) {
784 err = jbd2_journal_destroy(sbi->s_journal);
785 sbi->s_journal = NULL;
786 if (err < 0)
787 ext4_abort(sb, "Couldn't clean up the journal");
788 }
789
790 ext4_es_unregister_shrinker(sbi);
791 del_timer_sync(&sbi->s_err_report);
792 ext4_release_system_zone(sb);
793 ext4_mb_release(sb);
794 ext4_ext_release(sb);
795 ext4_xattr_put_super(sb);
796
797 if (!(sb->s_flags & MS_RDONLY)) {
798 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
799 es->s_state = cpu_to_le16(sbi->s_mount_state);
800 }
801 if (!(sb->s_flags & MS_RDONLY))
802 ext4_commit_super(sb, 1);
803
804 if (sbi->s_proc) {
805 remove_proc_entry("options", sbi->s_proc);
806 remove_proc_entry(sb->s_id, ext4_proc_root);
807 }
808 kobject_del(&sbi->s_kobj);
809
810 for (i = 0; i < sbi->s_gdb_count; i++)
811 brelse(sbi->s_group_desc[i]);
812 kvfree(sbi->s_group_desc);
813 kvfree(sbi->s_flex_groups);
814 percpu_counter_destroy(&sbi->s_freeclusters_counter);
815 percpu_counter_destroy(&sbi->s_freeinodes_counter);
816 percpu_counter_destroy(&sbi->s_dirs_counter);
817 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
818 brelse(sbi->s_sbh);
819 #ifdef CONFIG_QUOTA
820 for (i = 0; i < EXT4_MAXQUOTAS; i++)
821 kfree(sbi->s_qf_names[i]);
822 #endif
823
824 /* Debugging code just in case the in-memory inode orphan list
825 * isn't empty. The on-disk one can be non-empty if we've
826 * detected an error and taken the fs readonly, but the
827 * in-memory list had better be clean by this point. */
828 if (!list_empty(&sbi->s_orphan))
829 dump_orphan_list(sb, sbi);
830 J_ASSERT(list_empty(&sbi->s_orphan));
831
832 sync_blockdev(sb->s_bdev);
833 invalidate_bdev(sb->s_bdev);
834 if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) {
835 /*
836 * Invalidate the journal device's buffers. We don't want them
837 * floating about in memory - the physical journal device may
838 * hotswapped, and it breaks the `ro-after' testing code.
839 */
840 sync_blockdev(sbi->journal_bdev);
841 invalidate_bdev(sbi->journal_bdev);
842 ext4_blkdev_remove(sbi);
843 }
844 if (sbi->s_mb_cache) {
845 ext4_xattr_destroy_cache(sbi->s_mb_cache);
846 sbi->s_mb_cache = NULL;
847 }
848 if (sbi->s_mmp_tsk)
849 kthread_stop(sbi->s_mmp_tsk);
850 sb->s_fs_info = NULL;
851 /*
852 * Now that we are completely done shutting down the
853 * superblock, we need to actually destroy the kobject.
854 */
855 kobject_put(&sbi->s_kobj);
856 wait_for_completion(&sbi->s_kobj_unregister);
857 if (sbi->s_chksum_driver)
858 crypto_free_shash(sbi->s_chksum_driver);
859 kfree(sbi->s_blockgroup_lock);
860 kfree(sbi);
861 }
862
863 static struct kmem_cache *ext4_inode_cachep;
864
865 /*
866 * Called inside transaction, so use GFP_NOFS
867 */
868 static struct inode *ext4_alloc_inode(struct super_block *sb)
869 {
870 struct ext4_inode_info *ei;
871
872 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS);
873 if (!ei)
874 return NULL;
875
876 ei->vfs_inode.i_version = 1;
877 spin_lock_init(&ei->i_raw_lock);
878 INIT_LIST_HEAD(&ei->i_prealloc_list);
879 spin_lock_init(&ei->i_prealloc_lock);
880 ext4_es_init_tree(&ei->i_es_tree);
881 rwlock_init(&ei->i_es_lock);
882 INIT_LIST_HEAD(&ei->i_es_list);
883 ei->i_es_all_nr = 0;
884 ei->i_es_shk_nr = 0;
885 ei->i_es_shrink_lblk = 0;
886 ei->i_reserved_data_blocks = 0;
887 ei->i_reserved_meta_blocks = 0;
888 ei->i_allocated_meta_blocks = 0;
889 ei->i_da_metadata_calc_len = 0;
890 ei->i_da_metadata_calc_last_lblock = 0;
891 spin_lock_init(&(ei->i_block_reservation_lock));
892 #ifdef CONFIG_QUOTA
893 ei->i_reserved_quota = 0;
894 memset(&ei->i_dquot, 0, sizeof(ei->i_dquot));
895 #endif
896 ei->jinode = NULL;
897 INIT_LIST_HEAD(&ei->i_rsv_conversion_list);
898 spin_lock_init(&ei->i_completed_io_lock);
899 ei->i_sync_tid = 0;
900 ei->i_datasync_tid = 0;
901 atomic_set(&ei->i_ioend_count, 0);
902 atomic_set(&ei->i_unwritten, 0);
903 INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work);
904 #ifdef CONFIG_EXT4_FS_ENCRYPTION
905 ei->i_crypt_info = NULL;
906 #endif
907 return &ei->vfs_inode;
908 }
909
910 static int ext4_drop_inode(struct inode *inode)
911 {
912 int drop = generic_drop_inode(inode);
913
914 trace_ext4_drop_inode(inode, drop);
915 return drop;
916 }
917
918 static void ext4_i_callback(struct rcu_head *head)
919 {
920 struct inode *inode = container_of(head, struct inode, i_rcu);
921 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
922 }
923
924 static void ext4_destroy_inode(struct inode *inode)
925 {
926 if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
927 ext4_msg(inode->i_sb, KERN_ERR,
928 "Inode %lu (%p): orphan list check failed!",
929 inode->i_ino, EXT4_I(inode));
930 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
931 EXT4_I(inode), sizeof(struct ext4_inode_info),
932 true);
933 dump_stack();
934 }
935 call_rcu(&inode->i_rcu, ext4_i_callback);
936 }
937
938 static void init_once(void *foo)
939 {
940 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo;
941
942 INIT_LIST_HEAD(&ei->i_orphan);
943 init_rwsem(&ei->xattr_sem);
944 init_rwsem(&ei->i_data_sem);
945 inode_init_once(&ei->vfs_inode);
946 }
947
948 static int __init init_inodecache(void)
949 {
950 ext4_inode_cachep = kmem_cache_create("ext4_inode_cache",
951 sizeof(struct ext4_inode_info),
952 0, (SLAB_RECLAIM_ACCOUNT|
953 SLAB_MEM_SPREAD),
954 init_once);
955 if (ext4_inode_cachep == NULL)
956 return -ENOMEM;
957 return 0;
958 }
959
960 static void destroy_inodecache(void)
961 {
962 /*
963 * Make sure all delayed rcu free inodes are flushed before we
964 * destroy cache.
965 */
966 rcu_barrier();
967 kmem_cache_destroy(ext4_inode_cachep);
968 }
969
970 void ext4_clear_inode(struct inode *inode)
971 {
972 invalidate_inode_buffers(inode);
973 clear_inode(inode);
974 dquot_drop(inode);
975 ext4_discard_preallocations(inode);
976 ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS);
977 if (EXT4_I(inode)->jinode) {
978 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
979 EXT4_I(inode)->jinode);
980 jbd2_free_inode(EXT4_I(inode)->jinode);
981 EXT4_I(inode)->jinode = NULL;
982 }
983 #ifdef CONFIG_EXT4_FS_ENCRYPTION
984 if (EXT4_I(inode)->i_crypt_info)
985 ext4_free_encryption_info(inode, EXT4_I(inode)->i_crypt_info);
986 #endif
987 }
988
989 static struct inode *ext4_nfs_get_inode(struct super_block *sb,
990 u64 ino, u32 generation)
991 {
992 struct inode *inode;
993
994 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
995 return ERR_PTR(-ESTALE);
996 if (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
997 return ERR_PTR(-ESTALE);
998
999 /* iget isn't really right if the inode is currently unallocated!!
1000 *
1001 * ext4_read_inode will return a bad_inode if the inode had been
1002 * deleted, so we should be safe.
1003 *
1004 * Currently we don't know the generation for parent directory, so
1005 * a generation of 0 means "accept any"
1006 */
1007 inode = ext4_iget_normal(sb, ino);
1008 if (IS_ERR(inode))
1009 return ERR_CAST(inode);
1010 if (generation && inode->i_generation != generation) {
1011 iput(inode);
1012 return ERR_PTR(-ESTALE);
1013 }
1014
1015 return inode;
1016 }
1017
1018 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
1019 int fh_len, int fh_type)
1020 {
1021 return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1022 ext4_nfs_get_inode);
1023 }
1024
1025 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
1026 int fh_len, int fh_type)
1027 {
1028 return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1029 ext4_nfs_get_inode);
1030 }
1031
1032 /*
1033 * Try to release metadata pages (indirect blocks, directories) which are
1034 * mapped via the block device. Since these pages could have journal heads
1035 * which would prevent try_to_free_buffers() from freeing them, we must use
1036 * jbd2 layer's try_to_free_buffers() function to release them.
1037 */
1038 static int bdev_try_to_free_page(struct super_block *sb, struct page *page,
1039 gfp_t wait)
1040 {
1041 journal_t *journal = EXT4_SB(sb)->s_journal;
1042
1043 WARN_ON(PageChecked(page));
1044 if (!page_has_buffers(page))
1045 return 0;
1046 if (journal)
1047 return jbd2_journal_try_to_free_buffers(journal, page,
1048 wait & ~__GFP_WAIT);
1049 return try_to_free_buffers(page);
1050 }
1051
1052 #ifdef CONFIG_QUOTA
1053 #define QTYPE2NAME(t) ((t) == USRQUOTA ? "user" : "group")
1054 #define QTYPE2MOPT(on, t) ((t) == USRQUOTA?((on)##USRJQUOTA):((on)##GRPJQUOTA))
1055
1056 static int ext4_write_dquot(struct dquot *dquot);
1057 static int ext4_acquire_dquot(struct dquot *dquot);
1058 static int ext4_release_dquot(struct dquot *dquot);
1059 static int ext4_mark_dquot_dirty(struct dquot *dquot);
1060 static int ext4_write_info(struct super_block *sb, int type);
1061 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1062 struct path *path);
1063 static int ext4_quota_off(struct super_block *sb, int type);
1064 static int ext4_quota_on_mount(struct super_block *sb, int type);
1065 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1066 size_t len, loff_t off);
1067 static ssize_t ext4_quota_write(struct super_block *sb, int type,
1068 const char *data, size_t len, loff_t off);
1069 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
1070 unsigned int flags);
1071 static int ext4_enable_quotas(struct super_block *sb);
1072
1073 static struct dquot **ext4_get_dquots(struct inode *inode)
1074 {
1075 return EXT4_I(inode)->i_dquot;
1076 }
1077
1078 static const struct dquot_operations ext4_quota_operations = {
1079 .get_reserved_space = ext4_get_reserved_space,
1080 .write_dquot = ext4_write_dquot,
1081 .acquire_dquot = ext4_acquire_dquot,
1082 .release_dquot = ext4_release_dquot,
1083 .mark_dirty = ext4_mark_dquot_dirty,
1084 .write_info = ext4_write_info,
1085 .alloc_dquot = dquot_alloc,
1086 .destroy_dquot = dquot_destroy,
1087 };
1088
1089 static const struct quotactl_ops ext4_qctl_operations = {
1090 .quota_on = ext4_quota_on,
1091 .quota_off = ext4_quota_off,
1092 .quota_sync = dquot_quota_sync,
1093 .get_state = dquot_get_state,
1094 .set_info = dquot_set_dqinfo,
1095 .get_dqblk = dquot_get_dqblk,
1096 .set_dqblk = dquot_set_dqblk
1097 };
1098 #endif
1099
1100 static const struct super_operations ext4_sops = {
1101 .alloc_inode = ext4_alloc_inode,
1102 .destroy_inode = ext4_destroy_inode,
1103 .write_inode = ext4_write_inode,
1104 .dirty_inode = ext4_dirty_inode,
1105 .drop_inode = ext4_drop_inode,
1106 .evict_inode = ext4_evict_inode,
1107 .put_super = ext4_put_super,
1108 .sync_fs = ext4_sync_fs,
1109 .freeze_fs = ext4_freeze,
1110 .unfreeze_fs = ext4_unfreeze,
1111 .statfs = ext4_statfs,
1112 .remount_fs = ext4_remount,
1113 .show_options = ext4_show_options,
1114 #ifdef CONFIG_QUOTA
1115 .quota_read = ext4_quota_read,
1116 .quota_write = ext4_quota_write,
1117 .get_dquots = ext4_get_dquots,
1118 #endif
1119 .bdev_try_to_free_page = bdev_try_to_free_page,
1120 };
1121
1122 static const struct export_operations ext4_export_ops = {
1123 .fh_to_dentry = ext4_fh_to_dentry,
1124 .fh_to_parent = ext4_fh_to_parent,
1125 .get_parent = ext4_get_parent,
1126 };
1127
1128 enum {
1129 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1130 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro,
1131 Opt_nouid32, Opt_debug, Opt_removed,
1132 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl,
1133 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload,
1134 Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev,
1135 Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit,
1136 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1137 Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption,
1138 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota,
1139 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota,
1140 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err,
1141 Opt_usrquota, Opt_grpquota, Opt_i_version, Opt_dax,
1142 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_mblk_io_submit,
1143 Opt_lazytime, Opt_nolazytime,
1144 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1145 Opt_inode_readahead_blks, Opt_journal_ioprio,
1146 Opt_dioread_nolock, Opt_dioread_lock,
1147 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable,
1148 Opt_max_dir_size_kb, Opt_nojournal_checksum,
1149 };
1150
1151 static const match_table_t tokens = {
1152 {Opt_bsd_df, "bsddf"},
1153 {Opt_minix_df, "minixdf"},
1154 {Opt_grpid, "grpid"},
1155 {Opt_grpid, "bsdgroups"},
1156 {Opt_nogrpid, "nogrpid"},
1157 {Opt_nogrpid, "sysvgroups"},
1158 {Opt_resgid, "resgid=%u"},
1159 {Opt_resuid, "resuid=%u"},
1160 {Opt_sb, "sb=%u"},
1161 {Opt_err_cont, "errors=continue"},
1162 {Opt_err_panic, "errors=panic"},
1163 {Opt_err_ro, "errors=remount-ro"},
1164 {Opt_nouid32, "nouid32"},
1165 {Opt_debug, "debug"},
1166 {Opt_removed, "oldalloc"},
1167 {Opt_removed, "orlov"},
1168 {Opt_user_xattr, "user_xattr"},
1169 {Opt_nouser_xattr, "nouser_xattr"},
1170 {Opt_acl, "acl"},
1171 {Opt_noacl, "noacl"},
1172 {Opt_noload, "norecovery"},
1173 {Opt_noload, "noload"},
1174 {Opt_removed, "nobh"},
1175 {Opt_removed, "bh"},
1176 {Opt_commit, "commit=%u"},
1177 {Opt_min_batch_time, "min_batch_time=%u"},
1178 {Opt_max_batch_time, "max_batch_time=%u"},
1179 {Opt_journal_dev, "journal_dev=%u"},
1180 {Opt_journal_path, "journal_path=%s"},
1181 {Opt_journal_checksum, "journal_checksum"},
1182 {Opt_nojournal_checksum, "nojournal_checksum"},
1183 {Opt_journal_async_commit, "journal_async_commit"},
1184 {Opt_abort, "abort"},
1185 {Opt_data_journal, "data=journal"},
1186 {Opt_data_ordered, "data=ordered"},
1187 {Opt_data_writeback, "data=writeback"},
1188 {Opt_data_err_abort, "data_err=abort"},
1189 {Opt_data_err_ignore, "data_err=ignore"},
1190 {Opt_offusrjquota, "usrjquota="},
1191 {Opt_usrjquota, "usrjquota=%s"},
1192 {Opt_offgrpjquota, "grpjquota="},
1193 {Opt_grpjquota, "grpjquota=%s"},
1194 {Opt_jqfmt_vfsold, "jqfmt=vfsold"},
1195 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
1196 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
1197 {Opt_grpquota, "grpquota"},
1198 {Opt_noquota, "noquota"},
1199 {Opt_quota, "quota"},
1200 {Opt_usrquota, "usrquota"},
1201 {Opt_barrier, "barrier=%u"},
1202 {Opt_barrier, "barrier"},
1203 {Opt_nobarrier, "nobarrier"},
1204 {Opt_i_version, "i_version"},
1205 {Opt_dax, "dax"},
1206 {Opt_stripe, "stripe=%u"},
1207 {Opt_delalloc, "delalloc"},
1208 {Opt_lazytime, "lazytime"},
1209 {Opt_nolazytime, "nolazytime"},
1210 {Opt_nodelalloc, "nodelalloc"},
1211 {Opt_removed, "mblk_io_submit"},
1212 {Opt_removed, "nomblk_io_submit"},
1213 {Opt_block_validity, "block_validity"},
1214 {Opt_noblock_validity, "noblock_validity"},
1215 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"},
1216 {Opt_journal_ioprio, "journal_ioprio=%u"},
1217 {Opt_auto_da_alloc, "auto_da_alloc=%u"},
1218 {Opt_auto_da_alloc, "auto_da_alloc"},
1219 {Opt_noauto_da_alloc, "noauto_da_alloc"},
1220 {Opt_dioread_nolock, "dioread_nolock"},
1221 {Opt_dioread_lock, "dioread_lock"},
1222 {Opt_discard, "discard"},
1223 {Opt_nodiscard, "nodiscard"},
1224 {Opt_init_itable, "init_itable=%u"},
1225 {Opt_init_itable, "init_itable"},
1226 {Opt_noinit_itable, "noinit_itable"},
1227 {Opt_max_dir_size_kb, "max_dir_size_kb=%u"},
1228 {Opt_test_dummy_encryption, "test_dummy_encryption"},
1229 {Opt_removed, "check=none"}, /* mount option from ext2/3 */
1230 {Opt_removed, "nocheck"}, /* mount option from ext2/3 */
1231 {Opt_removed, "reservation"}, /* mount option from ext2/3 */
1232 {Opt_removed, "noreservation"}, /* mount option from ext2/3 */
1233 {Opt_removed, "journal=%u"}, /* mount option from ext2/3 */
1234 {Opt_err, NULL},
1235 };
1236
1237 static ext4_fsblk_t get_sb_block(void **data)
1238 {
1239 ext4_fsblk_t sb_block;
1240 char *options = (char *) *data;
1241
1242 if (!options || strncmp(options, "sb=", 3) != 0)
1243 return 1; /* Default location */
1244
1245 options += 3;
1246 /* TODO: use simple_strtoll with >32bit ext4 */
1247 sb_block = simple_strtoul(options, &options, 0);
1248 if (*options && *options != ',') {
1249 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n",
1250 (char *) *data);
1251 return 1;
1252 }
1253 if (*options == ',')
1254 options++;
1255 *data = (void *) options;
1256
1257 return sb_block;
1258 }
1259
1260 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1261 static char deprecated_msg[] = "Mount option \"%s\" will be removed by %s\n"
1262 "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n";
1263
1264 #ifdef CONFIG_QUOTA
1265 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args)
1266 {
1267 struct ext4_sb_info *sbi = EXT4_SB(sb);
1268 char *qname;
1269 int ret = -1;
1270
1271 if (sb_any_quota_loaded(sb) &&
1272 !sbi->s_qf_names[qtype]) {
1273 ext4_msg(sb, KERN_ERR,
1274 "Cannot change journaled "
1275 "quota options when quota turned on");
1276 return -1;
1277 }
1278 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA)) {
1279 ext4_msg(sb, KERN_ERR, "Cannot set journaled quota options "
1280 "when QUOTA feature is enabled");
1281 return -1;
1282 }
1283 qname = match_strdup(args);
1284 if (!qname) {
1285 ext4_msg(sb, KERN_ERR,
1286 "Not enough memory for storing quotafile name");
1287 return -1;
1288 }
1289 if (sbi->s_qf_names[qtype]) {
1290 if (strcmp(sbi->s_qf_names[qtype], qname) == 0)
1291 ret = 1;
1292 else
1293 ext4_msg(sb, KERN_ERR,
1294 "%s quota file already specified",
1295 QTYPE2NAME(qtype));
1296 goto errout;
1297 }
1298 if (strchr(qname, '/')) {
1299 ext4_msg(sb, KERN_ERR,
1300 "quotafile must be on filesystem root");
1301 goto errout;
1302 }
1303 sbi->s_qf_names[qtype] = qname;
1304 set_opt(sb, QUOTA);
1305 return 1;
1306 errout:
1307 kfree(qname);
1308 return ret;
1309 }
1310
1311 static int clear_qf_name(struct super_block *sb, int qtype)
1312 {
1313
1314 struct ext4_sb_info *sbi = EXT4_SB(sb);
1315
1316 if (sb_any_quota_loaded(sb) &&
1317 sbi->s_qf_names[qtype]) {
1318 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options"
1319 " when quota turned on");
1320 return -1;
1321 }
1322 kfree(sbi->s_qf_names[qtype]);
1323 sbi->s_qf_names[qtype] = NULL;
1324 return 1;
1325 }
1326 #endif
1327
1328 #define MOPT_SET 0x0001
1329 #define MOPT_CLEAR 0x0002
1330 #define MOPT_NOSUPPORT 0x0004
1331 #define MOPT_EXPLICIT 0x0008
1332 #define MOPT_CLEAR_ERR 0x0010
1333 #define MOPT_GTE0 0x0020
1334 #ifdef CONFIG_QUOTA
1335 #define MOPT_Q 0
1336 #define MOPT_QFMT 0x0040
1337 #else
1338 #define MOPT_Q MOPT_NOSUPPORT
1339 #define MOPT_QFMT MOPT_NOSUPPORT
1340 #endif
1341 #define MOPT_DATAJ 0x0080
1342 #define MOPT_NO_EXT2 0x0100
1343 #define MOPT_NO_EXT3 0x0200
1344 #define MOPT_EXT4_ONLY (MOPT_NO_EXT2 | MOPT_NO_EXT3)
1345 #define MOPT_STRING 0x0400
1346
1347 static const struct mount_opts {
1348 int token;
1349 int mount_opt;
1350 int flags;
1351 } ext4_mount_opts[] = {
1352 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET},
1353 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR},
1354 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET},
1355 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR},
1356 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET},
1357 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR},
1358 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK,
1359 MOPT_EXT4_ONLY | MOPT_SET},
1360 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK,
1361 MOPT_EXT4_ONLY | MOPT_CLEAR},
1362 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET},
1363 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR},
1364 {Opt_delalloc, EXT4_MOUNT_DELALLOC,
1365 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1366 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC,
1367 MOPT_EXT4_ONLY | MOPT_CLEAR},
1368 {Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1369 MOPT_EXT4_ONLY | MOPT_CLEAR},
1370 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1371 MOPT_EXT4_ONLY | MOPT_SET},
1372 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT |
1373 EXT4_MOUNT_JOURNAL_CHECKSUM),
1374 MOPT_EXT4_ONLY | MOPT_SET},
1375 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET},
1376 {Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR},
1377 {Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR},
1378 {Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR},
1379 {Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT,
1380 MOPT_NO_EXT2 | MOPT_SET},
1381 {Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT,
1382 MOPT_NO_EXT2 | MOPT_CLEAR},
1383 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET},
1384 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR},
1385 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET},
1386 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR},
1387 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR},
1388 {Opt_commit, 0, MOPT_GTE0},
1389 {Opt_max_batch_time, 0, MOPT_GTE0},
1390 {Opt_min_batch_time, 0, MOPT_GTE0},
1391 {Opt_inode_readahead_blks, 0, MOPT_GTE0},
1392 {Opt_init_itable, 0, MOPT_GTE0},
1393 {Opt_dax, EXT4_MOUNT_DAX, MOPT_SET},
1394 {Opt_stripe, 0, MOPT_GTE0},
1395 {Opt_resuid, 0, MOPT_GTE0},
1396 {Opt_resgid, 0, MOPT_GTE0},
1397 {Opt_journal_dev, 0, MOPT_GTE0},
1398 {Opt_journal_path, 0, MOPT_STRING},
1399 {Opt_journal_ioprio, 0, MOPT_GTE0},
1400 {Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1401 {Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1402 {Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA,
1403 MOPT_NO_EXT2 | MOPT_DATAJ},
1404 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET},
1405 {Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR},
1406 #ifdef CONFIG_EXT4_FS_POSIX_ACL
1407 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET},
1408 {Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR},
1409 #else
1410 {Opt_acl, 0, MOPT_NOSUPPORT},
1411 {Opt_noacl, 0, MOPT_NOSUPPORT},
1412 #endif
1413 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET},
1414 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET},
1415 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q},
1416 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA,
1417 MOPT_SET | MOPT_Q},
1418 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA,
1419 MOPT_SET | MOPT_Q},
1420 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
1421 EXT4_MOUNT_GRPQUOTA), MOPT_CLEAR | MOPT_Q},
1422 {Opt_usrjquota, 0, MOPT_Q},
1423 {Opt_grpjquota, 0, MOPT_Q},
1424 {Opt_offusrjquota, 0, MOPT_Q},
1425 {Opt_offgrpjquota, 0, MOPT_Q},
1426 {Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT},
1427 {Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT},
1428 {Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT},
1429 {Opt_max_dir_size_kb, 0, MOPT_GTE0},
1430 {Opt_test_dummy_encryption, 0, MOPT_GTE0},
1431 {Opt_err, 0, 0}
1432 };
1433
1434 static int handle_mount_opt(struct super_block *sb, char *opt, int token,
1435 substring_t *args, unsigned long *journal_devnum,
1436 unsigned int *journal_ioprio, int is_remount)
1437 {
1438 struct ext4_sb_info *sbi = EXT4_SB(sb);
1439 const struct mount_opts *m;
1440 kuid_t uid;
1441 kgid_t gid;
1442 int arg = 0;
1443
1444 #ifdef CONFIG_QUOTA
1445 if (token == Opt_usrjquota)
1446 return set_qf_name(sb, USRQUOTA, &args[0]);
1447 else if (token == Opt_grpjquota)
1448 return set_qf_name(sb, GRPQUOTA, &args[0]);
1449 else if (token == Opt_offusrjquota)
1450 return clear_qf_name(sb, USRQUOTA);
1451 else if (token == Opt_offgrpjquota)
1452 return clear_qf_name(sb, GRPQUOTA);
1453 #endif
1454 switch (token) {
1455 case Opt_noacl:
1456 case Opt_nouser_xattr:
1457 ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5");
1458 break;
1459 case Opt_sb:
1460 return 1; /* handled by get_sb_block() */
1461 case Opt_removed:
1462 ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt);
1463 return 1;
1464 case Opt_abort:
1465 sbi->s_mount_flags |= EXT4_MF_FS_ABORTED;
1466 return 1;
1467 case Opt_i_version:
1468 sb->s_flags |= MS_I_VERSION;
1469 return 1;
1470 case Opt_lazytime:
1471 sb->s_flags |= MS_LAZYTIME;
1472 return 1;
1473 case Opt_nolazytime:
1474 sb->s_flags &= ~MS_LAZYTIME;
1475 return 1;
1476 }
1477
1478 for (m = ext4_mount_opts; m->token != Opt_err; m++)
1479 if (token == m->token)
1480 break;
1481
1482 if (m->token == Opt_err) {
1483 ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" "
1484 "or missing value", opt);
1485 return -1;
1486 }
1487
1488 if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) {
1489 ext4_msg(sb, KERN_ERR,
1490 "Mount option \"%s\" incompatible with ext2", opt);
1491 return -1;
1492 }
1493 if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) {
1494 ext4_msg(sb, KERN_ERR,
1495 "Mount option \"%s\" incompatible with ext3", opt);
1496 return -1;
1497 }
1498
1499 if (args->from && !(m->flags & MOPT_STRING) && match_int(args, &arg))
1500 return -1;
1501 if (args->from && (m->flags & MOPT_GTE0) && (arg < 0))
1502 return -1;
1503 if (m->flags & MOPT_EXPLICIT)
1504 set_opt2(sb, EXPLICIT_DELALLOC);
1505 if (m->flags & MOPT_CLEAR_ERR)
1506 clear_opt(sb, ERRORS_MASK);
1507 if (token == Opt_noquota && sb_any_quota_loaded(sb)) {
1508 ext4_msg(sb, KERN_ERR, "Cannot change quota "
1509 "options when quota turned on");
1510 return -1;
1511 }
1512
1513 if (m->flags & MOPT_NOSUPPORT) {
1514 ext4_msg(sb, KERN_ERR, "%s option not supported", opt);
1515 } else if (token == Opt_commit) {
1516 if (arg == 0)
1517 arg = JBD2_DEFAULT_MAX_COMMIT_AGE;
1518 sbi->s_commit_interval = HZ * arg;
1519 } else if (token == Opt_max_batch_time) {
1520 sbi->s_max_batch_time = arg;
1521 } else if (token == Opt_min_batch_time) {
1522 sbi->s_min_batch_time = arg;
1523 } else if (token == Opt_inode_readahead_blks) {
1524 if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) {
1525 ext4_msg(sb, KERN_ERR,
1526 "EXT4-fs: inode_readahead_blks must be "
1527 "0 or a power of 2 smaller than 2^31");
1528 return -1;
1529 }
1530 sbi->s_inode_readahead_blks = arg;
1531 } else if (token == Opt_init_itable) {
1532 set_opt(sb, INIT_INODE_TABLE);
1533 if (!args->from)
1534 arg = EXT4_DEF_LI_WAIT_MULT;
1535 sbi->s_li_wait_mult = arg;
1536 } else if (token == Opt_max_dir_size_kb) {
1537 sbi->s_max_dir_size_kb = arg;
1538 } else if (token == Opt_stripe) {
1539 sbi->s_stripe = arg;
1540 } else if (token == Opt_resuid) {
1541 uid = make_kuid(current_user_ns(), arg);
1542 if (!uid_valid(uid)) {
1543 ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg);
1544 return -1;
1545 }
1546 sbi->s_resuid = uid;
1547 } else if (token == Opt_resgid) {
1548 gid = make_kgid(current_user_ns(), arg);
1549 if (!gid_valid(gid)) {
1550 ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg);
1551 return -1;
1552 }
1553 sbi->s_resgid = gid;
1554 } else if (token == Opt_journal_dev) {
1555 if (is_remount) {
1556 ext4_msg(sb, KERN_ERR,
1557 "Cannot specify journal on remount");
1558 return -1;
1559 }
1560 *journal_devnum = arg;
1561 } else if (token == Opt_journal_path) {
1562 char *journal_path;
1563 struct inode *journal_inode;
1564 struct path path;
1565 int error;
1566
1567 if (is_remount) {
1568 ext4_msg(sb, KERN_ERR,
1569 "Cannot specify journal on remount");
1570 return -1;
1571 }
1572 journal_path = match_strdup(&args[0]);
1573 if (!journal_path) {
1574 ext4_msg(sb, KERN_ERR, "error: could not dup "
1575 "journal device string");
1576 return -1;
1577 }
1578
1579 error = kern_path(journal_path, LOOKUP_FOLLOW, &path);
1580 if (error) {
1581 ext4_msg(sb, KERN_ERR, "error: could not find "
1582 "journal device path: error %d", error);
1583 kfree(journal_path);
1584 return -1;
1585 }
1586
1587 journal_inode = d_inode(path.dentry);
1588 if (!S_ISBLK(journal_inode->i_mode)) {
1589 ext4_msg(sb, KERN_ERR, "error: journal path %s "
1590 "is not a block device", journal_path);
1591 path_put(&path);
1592 kfree(journal_path);
1593 return -1;
1594 }
1595
1596 *journal_devnum = new_encode_dev(journal_inode->i_rdev);
1597 path_put(&path);
1598 kfree(journal_path);
1599 } else if (token == Opt_journal_ioprio) {
1600 if (arg > 7) {
1601 ext4_msg(sb, KERN_ERR, "Invalid journal IO priority"
1602 " (must be 0-7)");
1603 return -1;
1604 }
1605 *journal_ioprio =
1606 IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg);
1607 } else if (token == Opt_test_dummy_encryption) {
1608 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1609 sbi->s_mount_flags |= EXT4_MF_TEST_DUMMY_ENCRYPTION;
1610 ext4_msg(sb, KERN_WARNING,
1611 "Test dummy encryption mode enabled");
1612 #else
1613 ext4_msg(sb, KERN_WARNING,
1614 "Test dummy encryption mount option ignored");
1615 #endif
1616 } else if (m->flags & MOPT_DATAJ) {
1617 if (is_remount) {
1618 if (!sbi->s_journal)
1619 ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option");
1620 else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) {
1621 ext4_msg(sb, KERN_ERR,
1622 "Cannot change data mode on remount");
1623 return -1;
1624 }
1625 } else {
1626 clear_opt(sb, DATA_FLAGS);
1627 sbi->s_mount_opt |= m->mount_opt;
1628 }
1629 #ifdef CONFIG_QUOTA
1630 } else if (m->flags & MOPT_QFMT) {
1631 if (sb_any_quota_loaded(sb) &&
1632 sbi->s_jquota_fmt != m->mount_opt) {
1633 ext4_msg(sb, KERN_ERR, "Cannot change journaled "
1634 "quota options when quota turned on");
1635 return -1;
1636 }
1637 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
1638 EXT4_FEATURE_RO_COMPAT_QUOTA)) {
1639 ext4_msg(sb, KERN_ERR,
1640 "Cannot set journaled quota options "
1641 "when QUOTA feature is enabled");
1642 return -1;
1643 }
1644 sbi->s_jquota_fmt = m->mount_opt;
1645 #endif
1646 #ifndef CONFIG_FS_DAX
1647 } else if (token == Opt_dax) {
1648 ext4_msg(sb, KERN_INFO, "dax option not supported");
1649 return -1;
1650 #endif
1651 } else {
1652 if (!args->from)
1653 arg = 1;
1654 if (m->flags & MOPT_CLEAR)
1655 arg = !arg;
1656 else if (unlikely(!(m->flags & MOPT_SET))) {
1657 ext4_msg(sb, KERN_WARNING,
1658 "buggy handling of option %s", opt);
1659 WARN_ON(1);
1660 return -1;
1661 }
1662 if (arg != 0)
1663 sbi->s_mount_opt |= m->mount_opt;
1664 else
1665 sbi->s_mount_opt &= ~m->mount_opt;
1666 }
1667 return 1;
1668 }
1669
1670 static int parse_options(char *options, struct super_block *sb,
1671 unsigned long *journal_devnum,
1672 unsigned int *journal_ioprio,
1673 int is_remount)
1674 {
1675 struct ext4_sb_info *sbi = EXT4_SB(sb);
1676 char *p;
1677 substring_t args[MAX_OPT_ARGS];
1678 int token;
1679
1680 if (!options)
1681 return 1;
1682
1683 while ((p = strsep(&options, ",")) != NULL) {
1684 if (!*p)
1685 continue;
1686 /*
1687 * Initialize args struct so we know whether arg was
1688 * found; some options take optional arguments.
1689 */
1690 args[0].to = args[0].from = NULL;
1691 token = match_token(p, tokens, args);
1692 if (handle_mount_opt(sb, p, token, args, journal_devnum,
1693 journal_ioprio, is_remount) < 0)
1694 return 0;
1695 }
1696 #ifdef CONFIG_QUOTA
1697 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) &&
1698 (test_opt(sb, USRQUOTA) || test_opt(sb, GRPQUOTA))) {
1699 ext4_msg(sb, KERN_ERR, "Cannot set quota options when QUOTA "
1700 "feature is enabled");
1701 return 0;
1702 }
1703 if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
1704 if (test_opt(sb, USRQUOTA) && sbi->s_qf_names[USRQUOTA])
1705 clear_opt(sb, USRQUOTA);
1706
1707 if (test_opt(sb, GRPQUOTA) && sbi->s_qf_names[GRPQUOTA])
1708 clear_opt(sb, GRPQUOTA);
1709
1710 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) {
1711 ext4_msg(sb, KERN_ERR, "old and new quota "
1712 "format mixing");
1713 return 0;
1714 }
1715
1716 if (!sbi->s_jquota_fmt) {
1717 ext4_msg(sb, KERN_ERR, "journaled quota format "
1718 "not specified");
1719 return 0;
1720 }
1721 }
1722 #endif
1723 if (test_opt(sb, DIOREAD_NOLOCK)) {
1724 int blocksize =
1725 BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size);
1726
1727 if (blocksize < PAGE_CACHE_SIZE) {
1728 ext4_msg(sb, KERN_ERR, "can't mount with "
1729 "dioread_nolock if block size != PAGE_SIZE");
1730 return 0;
1731 }
1732 }
1733 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA &&
1734 test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
1735 ext4_msg(sb, KERN_ERR, "can't mount with journal_async_commit "
1736 "in data=ordered mode");
1737 return 0;
1738 }
1739 return 1;
1740 }
1741
1742 static inline void ext4_show_quota_options(struct seq_file *seq,
1743 struct super_block *sb)
1744 {
1745 #if defined(CONFIG_QUOTA)
1746 struct ext4_sb_info *sbi = EXT4_SB(sb);
1747
1748 if (sbi->s_jquota_fmt) {
1749 char *fmtname = "";
1750
1751 switch (sbi->s_jquota_fmt) {
1752 case QFMT_VFS_OLD:
1753 fmtname = "vfsold";
1754 break;
1755 case QFMT_VFS_V0:
1756 fmtname = "vfsv0";
1757 break;
1758 case QFMT_VFS_V1:
1759 fmtname = "vfsv1";
1760 break;
1761 }
1762 seq_printf(seq, ",jqfmt=%s", fmtname);
1763 }
1764
1765 if (sbi->s_qf_names[USRQUOTA])
1766 seq_printf(seq, ",usrjquota=%s", sbi->s_qf_names[USRQUOTA]);
1767
1768 if (sbi->s_qf_names[GRPQUOTA])
1769 seq_printf(seq, ",grpjquota=%s", sbi->s_qf_names[GRPQUOTA]);
1770 #endif
1771 }
1772
1773 static const char *token2str(int token)
1774 {
1775 const struct match_token *t;
1776
1777 for (t = tokens; t->token != Opt_err; t++)
1778 if (t->token == token && !strchr(t->pattern, '='))
1779 break;
1780 return t->pattern;
1781 }
1782
1783 /*
1784 * Show an option if
1785 * - it's set to a non-default value OR
1786 * - if the per-sb default is different from the global default
1787 */
1788 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb,
1789 int nodefs)
1790 {
1791 struct ext4_sb_info *sbi = EXT4_SB(sb);
1792 struct ext4_super_block *es = sbi->s_es;
1793 int def_errors, def_mount_opt = nodefs ? 0 : sbi->s_def_mount_opt;
1794 const struct mount_opts *m;
1795 char sep = nodefs ? '\n' : ',';
1796
1797 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep)
1798 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg)
1799
1800 if (sbi->s_sb_block != 1)
1801 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block);
1802
1803 for (m = ext4_mount_opts; m->token != Opt_err; m++) {
1804 int want_set = m->flags & MOPT_SET;
1805 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) ||
1806 (m->flags & MOPT_CLEAR_ERR))
1807 continue;
1808 if (!(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt)))
1809 continue; /* skip if same as the default */
1810 if ((want_set &&
1811 (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) ||
1812 (!want_set && (sbi->s_mount_opt & m->mount_opt)))
1813 continue; /* select Opt_noFoo vs Opt_Foo */
1814 SEQ_OPTS_PRINT("%s", token2str(m->token));
1815 }
1816
1817 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) ||
1818 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID)
1819 SEQ_OPTS_PRINT("resuid=%u",
1820 from_kuid_munged(&init_user_ns, sbi->s_resuid));
1821 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) ||
1822 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID)
1823 SEQ_OPTS_PRINT("resgid=%u",
1824 from_kgid_munged(&init_user_ns, sbi->s_resgid));
1825 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors);
1826 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO)
1827 SEQ_OPTS_PUTS("errors=remount-ro");
1828 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
1829 SEQ_OPTS_PUTS("errors=continue");
1830 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
1831 SEQ_OPTS_PUTS("errors=panic");
1832 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
1833 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ);
1834 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME)
1835 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time);
1836 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME)
1837 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time);
1838 if (sb->s_flags & MS_I_VERSION)
1839 SEQ_OPTS_PUTS("i_version");
1840 if (nodefs || sbi->s_stripe)
1841 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe);
1842 if (EXT4_MOUNT_DATA_FLAGS & (sbi->s_mount_opt ^ def_mount_opt)) {
1843 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
1844 SEQ_OPTS_PUTS("data=journal");
1845 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
1846 SEQ_OPTS_PUTS("data=ordered");
1847 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
1848 SEQ_OPTS_PUTS("data=writeback");
1849 }
1850 if (nodefs ||
1851 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
1852 SEQ_OPTS_PRINT("inode_readahead_blks=%u",
1853 sbi->s_inode_readahead_blks);
1854
1855 if (nodefs || (test_opt(sb, INIT_INODE_TABLE) &&
1856 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)))
1857 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult);
1858 if (nodefs || sbi->s_max_dir_size_kb)
1859 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb);
1860
1861 ext4_show_quota_options(seq, sb);
1862 return 0;
1863 }
1864
1865 static int ext4_show_options(struct seq_file *seq, struct dentry *root)
1866 {
1867 return _ext4_show_options(seq, root->d_sb, 0);
1868 }
1869
1870 static int options_seq_show(struct seq_file *seq, void *offset)
1871 {
1872 struct super_block *sb = seq->private;
1873 int rc;
1874
1875 seq_puts(seq, (sb->s_flags & MS_RDONLY) ? "ro" : "rw");
1876 rc = _ext4_show_options(seq, sb, 1);
1877 seq_puts(seq, "\n");
1878 return rc;
1879 }
1880
1881 static int options_open_fs(struct inode *inode, struct file *file)
1882 {
1883 return single_open(file, options_seq_show, PDE_DATA(inode));
1884 }
1885
1886 static const struct file_operations ext4_seq_options_fops = {
1887 .owner = THIS_MODULE,
1888 .open = options_open_fs,
1889 .read = seq_read,
1890 .llseek = seq_lseek,
1891 .release = single_release,
1892 };
1893
1894 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
1895 int read_only)
1896 {
1897 struct ext4_sb_info *sbi = EXT4_SB(sb);
1898 int res = 0;
1899
1900 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
1901 ext4_msg(sb, KERN_ERR, "revision level too high, "
1902 "forcing read-only mode");
1903 res = MS_RDONLY;
1904 }
1905 if (read_only)
1906 goto done;
1907 if (!(sbi->s_mount_state & EXT4_VALID_FS))
1908 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
1909 "running e2fsck is recommended");
1910 else if (sbi->s_mount_state & EXT4_ERROR_FS)
1911 ext4_msg(sb, KERN_WARNING,
1912 "warning: mounting fs with errors, "
1913 "running e2fsck is recommended");
1914 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
1915 le16_to_cpu(es->s_mnt_count) >=
1916 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
1917 ext4_msg(sb, KERN_WARNING,
1918 "warning: maximal mount count reached, "
1919 "running e2fsck is recommended");
1920 else if (le32_to_cpu(es->s_checkinterval) &&
1921 (le32_to_cpu(es->s_lastcheck) +
1922 le32_to_cpu(es->s_checkinterval) <= get_seconds()))
1923 ext4_msg(sb, KERN_WARNING,
1924 "warning: checktime reached, "
1925 "running e2fsck is recommended");
1926 if (!sbi->s_journal)
1927 es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
1928 if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
1929 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
1930 le16_add_cpu(&es->s_mnt_count, 1);
1931 es->s_mtime = cpu_to_le32(get_seconds());
1932 ext4_update_dynamic_rev(sb);
1933 if (sbi->s_journal)
1934 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
1935
1936 ext4_commit_super(sb, 1);
1937 done:
1938 if (test_opt(sb, DEBUG))
1939 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
1940 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
1941 sb->s_blocksize,
1942 sbi->s_groups_count,
1943 EXT4_BLOCKS_PER_GROUP(sb),
1944 EXT4_INODES_PER_GROUP(sb),
1945 sbi->s_mount_opt, sbi->s_mount_opt2);
1946
1947 cleancache_init_fs(sb);
1948 return res;
1949 }
1950
1951 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup)
1952 {
1953 struct ext4_sb_info *sbi = EXT4_SB(sb);
1954 struct flex_groups *new_groups;
1955 int size;
1956
1957 if (!sbi->s_log_groups_per_flex)
1958 return 0;
1959
1960 size = ext4_flex_group(sbi, ngroup - 1) + 1;
1961 if (size <= sbi->s_flex_groups_allocated)
1962 return 0;
1963
1964 size = roundup_pow_of_two(size * sizeof(struct flex_groups));
1965 new_groups = ext4_kvzalloc(size, GFP_KERNEL);
1966 if (!new_groups) {
1967 ext4_msg(sb, KERN_ERR, "not enough memory for %d flex groups",
1968 size / (int) sizeof(struct flex_groups));
1969 return -ENOMEM;
1970 }
1971
1972 if (sbi->s_flex_groups) {
1973 memcpy(new_groups, sbi->s_flex_groups,
1974 (sbi->s_flex_groups_allocated *
1975 sizeof(struct flex_groups)));
1976 kvfree(sbi->s_flex_groups);
1977 }
1978 sbi->s_flex_groups = new_groups;
1979 sbi->s_flex_groups_allocated = size / sizeof(struct flex_groups);
1980 return 0;
1981 }
1982
1983 static int ext4_fill_flex_info(struct super_block *sb)
1984 {
1985 struct ext4_sb_info *sbi = EXT4_SB(sb);
1986 struct ext4_group_desc *gdp = NULL;
1987 ext4_group_t flex_group;
1988 int i, err;
1989
1990 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
1991 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) {
1992 sbi->s_log_groups_per_flex = 0;
1993 return 1;
1994 }
1995
1996 err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count);
1997 if (err)
1998 goto failed;
1999
2000 for (i = 0; i < sbi->s_groups_count; i++) {
2001 gdp = ext4_get_group_desc(sb, i, NULL);
2002
2003 flex_group = ext4_flex_group(sbi, i);
2004 atomic_add(ext4_free_inodes_count(sb, gdp),
2005 &sbi->s_flex_groups[flex_group].free_inodes);
2006 atomic64_add(ext4_free_group_clusters(sb, gdp),
2007 &sbi->s_flex_groups[flex_group].free_clusters);
2008 atomic_add(ext4_used_dirs_count(sb, gdp),
2009 &sbi->s_flex_groups[flex_group].used_dirs);
2010 }
2011
2012 return 1;
2013 failed:
2014 return 0;
2015 }
2016
2017 static __le16 ext4_group_desc_csum(struct ext4_sb_info *sbi, __u32 block_group,
2018 struct ext4_group_desc *gdp)
2019 {
2020 int offset;
2021 __u16 crc = 0;
2022 __le32 le_group = cpu_to_le32(block_group);
2023
2024 if (ext4_has_metadata_csum(sbi->s_sb)) {
2025 /* Use new metadata_csum algorithm */
2026 __le16 save_csum;
2027 __u32 csum32;
2028
2029 save_csum = gdp->bg_checksum;
2030 gdp->bg_checksum = 0;
2031 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group,
2032 sizeof(le_group));
2033 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp,
2034 sbi->s_desc_size);
2035 gdp->bg_checksum = save_csum;
2036
2037 crc = csum32 & 0xFFFF;
2038 goto out;
2039 }
2040
2041 /* old crc16 code */
2042 if (!(sbi->s_es->s_feature_ro_compat &
2043 cpu_to_le32(EXT4_FEATURE_RO_COMPAT_GDT_CSUM)))
2044 return 0;
2045
2046 offset = offsetof(struct ext4_group_desc, bg_checksum);
2047
2048 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
2049 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
2050 crc = crc16(crc, (__u8 *)gdp, offset);
2051 offset += sizeof(gdp->bg_checksum); /* skip checksum */
2052 /* for checksum of struct ext4_group_desc do the rest...*/
2053 if ((sbi->s_es->s_feature_incompat &
2054 cpu_to_le32(EXT4_FEATURE_INCOMPAT_64BIT)) &&
2055 offset < le16_to_cpu(sbi->s_es->s_desc_size))
2056 crc = crc16(crc, (__u8 *)gdp + offset,
2057 le16_to_cpu(sbi->s_es->s_desc_size) -
2058 offset);
2059
2060 out:
2061 return cpu_to_le16(crc);
2062 }
2063
2064 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group,
2065 struct ext4_group_desc *gdp)
2066 {
2067 if (ext4_has_group_desc_csum(sb) &&
2068 (gdp->bg_checksum != ext4_group_desc_csum(EXT4_SB(sb),
2069 block_group, gdp)))
2070 return 0;
2071
2072 return 1;
2073 }
2074
2075 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group,
2076 struct ext4_group_desc *gdp)
2077 {
2078 if (!ext4_has_group_desc_csum(sb))
2079 return;
2080 gdp->bg_checksum = ext4_group_desc_csum(EXT4_SB(sb), block_group, gdp);
2081 }
2082
2083 /* Called at mount-time, super-block is locked */
2084 static int ext4_check_descriptors(struct super_block *sb,
2085 ext4_group_t *first_not_zeroed)
2086 {
2087 struct ext4_sb_info *sbi = EXT4_SB(sb);
2088 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
2089 ext4_fsblk_t last_block;
2090 ext4_fsblk_t block_bitmap;
2091 ext4_fsblk_t inode_bitmap;
2092 ext4_fsblk_t inode_table;
2093 int flexbg_flag = 0;
2094 ext4_group_t i, grp = sbi->s_groups_count;
2095
2096 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG))
2097 flexbg_flag = 1;
2098
2099 ext4_debug("Checking group descriptors");
2100
2101 for (i = 0; i < sbi->s_groups_count; i++) {
2102 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
2103
2104 if (i == sbi->s_groups_count - 1 || flexbg_flag)
2105 last_block = ext4_blocks_count(sbi->s_es) - 1;
2106 else
2107 last_block = first_block +
2108 (EXT4_BLOCKS_PER_GROUP(sb) - 1);
2109
2110 if ((grp == sbi->s_groups_count) &&
2111 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2112 grp = i;
2113
2114 block_bitmap = ext4_block_bitmap(sb, gdp);
2115 if (block_bitmap < first_block || block_bitmap > last_block) {
2116 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2117 "Block bitmap for group %u not in group "
2118 "(block %llu)!", i, block_bitmap);
2119 return 0;
2120 }
2121 inode_bitmap = ext4_inode_bitmap(sb, gdp);
2122 if (inode_bitmap < first_block || inode_bitmap > last_block) {
2123 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2124 "Inode bitmap for group %u not in group "
2125 "(block %llu)!", i, inode_bitmap);
2126 return 0;
2127 }
2128 inode_table = ext4_inode_table(sb, gdp);
2129 if (inode_table < first_block ||
2130 inode_table + sbi->s_itb_per_group - 1 > last_block) {
2131 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2132 "Inode table for group %u not in group "
2133 "(block %llu)!", i, inode_table);
2134 return 0;
2135 }
2136 ext4_lock_group(sb, i);
2137 if (!ext4_group_desc_csum_verify(sb, i, gdp)) {
2138 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2139 "Checksum for group %u failed (%u!=%u)",
2140 i, le16_to_cpu(ext4_group_desc_csum(sbi, i,
2141 gdp)), le16_to_cpu(gdp->bg_checksum));
2142 if (!(sb->s_flags & MS_RDONLY)) {
2143 ext4_unlock_group(sb, i);
2144 return 0;
2145 }
2146 }
2147 ext4_unlock_group(sb, i);
2148 if (!flexbg_flag)
2149 first_block += EXT4_BLOCKS_PER_GROUP(sb);
2150 }
2151 if (NULL != first_not_zeroed)
2152 *first_not_zeroed = grp;
2153 return 1;
2154 }
2155
2156 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at
2157 * the superblock) which were deleted from all directories, but held open by
2158 * a process at the time of a crash. We walk the list and try to delete these
2159 * inodes at recovery time (only with a read-write filesystem).
2160 *
2161 * In order to keep the orphan inode chain consistent during traversal (in
2162 * case of crash during recovery), we link each inode into the superblock
2163 * orphan list_head and handle it the same way as an inode deletion during
2164 * normal operation (which journals the operations for us).
2165 *
2166 * We only do an iget() and an iput() on each inode, which is very safe if we
2167 * accidentally point at an in-use or already deleted inode. The worst that
2168 * can happen in this case is that we get a "bit already cleared" message from
2169 * ext4_free_inode(). The only reason we would point at a wrong inode is if
2170 * e2fsck was run on this filesystem, and it must have already done the orphan
2171 * inode cleanup for us, so we can safely abort without any further action.
2172 */
2173 static void ext4_orphan_cleanup(struct super_block *sb,
2174 struct ext4_super_block *es)
2175 {
2176 unsigned int s_flags = sb->s_flags;
2177 int nr_orphans = 0, nr_truncates = 0;
2178 #ifdef CONFIG_QUOTA
2179 int i;
2180 #endif
2181 if (!es->s_last_orphan) {
2182 jbd_debug(4, "no orphan inodes to clean up\n");
2183 return;
2184 }
2185
2186 if (bdev_read_only(sb->s_bdev)) {
2187 ext4_msg(sb, KERN_ERR, "write access "
2188 "unavailable, skipping orphan cleanup");
2189 return;
2190 }
2191
2192 /* Check if feature set would not allow a r/w mount */
2193 if (!ext4_feature_set_ok(sb, 0)) {
2194 ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to "
2195 "unknown ROCOMPAT features");
2196 return;
2197 }
2198
2199 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2200 /* don't clear list on RO mount w/ errors */
2201 if (es->s_last_orphan && !(s_flags & MS_RDONLY)) {
2202 ext4_msg(sb, KERN_INFO, "Errors on filesystem, "
2203 "clearing orphan list.\n");
2204 es->s_last_orphan = 0;
2205 }
2206 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2207 return;
2208 }
2209
2210 if (s_flags & MS_RDONLY) {
2211 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs");
2212 sb->s_flags &= ~MS_RDONLY;
2213 }
2214 #ifdef CONFIG_QUOTA
2215 /* Needed for iput() to work correctly and not trash data */
2216 sb->s_flags |= MS_ACTIVE;
2217 /* Turn on quotas so that they are updated correctly */
2218 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2219 if (EXT4_SB(sb)->s_qf_names[i]) {
2220 int ret = ext4_quota_on_mount(sb, i);
2221 if (ret < 0)
2222 ext4_msg(sb, KERN_ERR,
2223 "Cannot turn on journaled "
2224 "quota: error %d", ret);
2225 }
2226 }
2227 #endif
2228
2229 while (es->s_last_orphan) {
2230 struct inode *inode;
2231
2232 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan));
2233 if (IS_ERR(inode)) {
2234 es->s_last_orphan = 0;
2235 break;
2236 }
2237
2238 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan);
2239 dquot_initialize(inode);
2240 if (inode->i_nlink) {
2241 if (test_opt(sb, DEBUG))
2242 ext4_msg(sb, KERN_DEBUG,
2243 "%s: truncating inode %lu to %lld bytes",
2244 __func__, inode->i_ino, inode->i_size);
2245 jbd_debug(2, "truncating inode %lu to %lld bytes\n",
2246 inode->i_ino, inode->i_size);
2247 mutex_lock(&inode->i_mutex);
2248 truncate_inode_pages(inode->i_mapping, inode->i_size);
2249 ext4_truncate(inode);
2250 mutex_unlock(&inode->i_mutex);
2251 nr_truncates++;
2252 } else {
2253 if (test_opt(sb, DEBUG))
2254 ext4_msg(sb, KERN_DEBUG,
2255 "%s: deleting unreferenced inode %lu",
2256 __func__, inode->i_ino);
2257 jbd_debug(2, "deleting unreferenced inode %lu\n",
2258 inode->i_ino);
2259 nr_orphans++;
2260 }
2261 iput(inode); /* The delete magic happens here! */
2262 }
2263
2264 #define PLURAL(x) (x), ((x) == 1) ? "" : "s"
2265
2266 if (nr_orphans)
2267 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted",
2268 PLURAL(nr_orphans));
2269 if (nr_truncates)
2270 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up",
2271 PLURAL(nr_truncates));
2272 #ifdef CONFIG_QUOTA
2273 /* Turn quotas off */
2274 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2275 if (sb_dqopt(sb)->files[i])
2276 dquot_quota_off(sb, i);
2277 }
2278 #endif
2279 sb->s_flags = s_flags; /* Restore MS_RDONLY status */
2280 }
2281
2282 /*
2283 * Maximal extent format file size.
2284 * Resulting logical blkno at s_maxbytes must fit in our on-disk
2285 * extent format containers, within a sector_t, and within i_blocks
2286 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units,
2287 * so that won't be a limiting factor.
2288 *
2289 * However there is other limiting factor. We do store extents in the form
2290 * of starting block and length, hence the resulting length of the extent
2291 * covering maximum file size must fit into on-disk format containers as
2292 * well. Given that length is always by 1 unit bigger than max unit (because
2293 * we count 0 as well) we have to lower the s_maxbytes by one fs block.
2294 *
2295 * Note, this does *not* consider any metadata overhead for vfs i_blocks.
2296 */
2297 static loff_t ext4_max_size(int blkbits, int has_huge_files)
2298 {
2299 loff_t res;
2300 loff_t upper_limit = MAX_LFS_FILESIZE;
2301
2302 /* small i_blocks in vfs inode? */
2303 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2304 /*
2305 * CONFIG_LBDAF is not enabled implies the inode
2306 * i_block represent total blocks in 512 bytes
2307 * 32 == size of vfs inode i_blocks * 8
2308 */
2309 upper_limit = (1LL << 32) - 1;
2310
2311 /* total blocks in file system block size */
2312 upper_limit >>= (blkbits - 9);
2313 upper_limit <<= blkbits;
2314 }
2315
2316 /*
2317 * 32-bit extent-start container, ee_block. We lower the maxbytes
2318 * by one fs block, so ee_len can cover the extent of maximum file
2319 * size
2320 */
2321 res = (1LL << 32) - 1;
2322 res <<= blkbits;
2323
2324 /* Sanity check against vm- & vfs- imposed limits */
2325 if (res > upper_limit)
2326 res = upper_limit;
2327
2328 return res;
2329 }
2330
2331 /*
2332 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect
2333 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
2334 * We need to be 1 filesystem block less than the 2^48 sector limit.
2335 */
2336 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
2337 {
2338 loff_t res = EXT4_NDIR_BLOCKS;
2339 int meta_blocks;
2340 loff_t upper_limit;
2341 /* This is calculated to be the largest file size for a dense, block
2342 * mapped file such that the file's total number of 512-byte sectors,
2343 * including data and all indirect blocks, does not exceed (2^48 - 1).
2344 *
2345 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
2346 * number of 512-byte sectors of the file.
2347 */
2348
2349 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2350 /*
2351 * !has_huge_files or CONFIG_LBDAF not enabled implies that
2352 * the inode i_block field represents total file blocks in
2353 * 2^32 512-byte sectors == size of vfs inode i_blocks * 8
2354 */
2355 upper_limit = (1LL << 32) - 1;
2356
2357 /* total blocks in file system block size */
2358 upper_limit >>= (bits - 9);
2359
2360 } else {
2361 /*
2362 * We use 48 bit ext4_inode i_blocks
2363 * With EXT4_HUGE_FILE_FL set the i_blocks
2364 * represent total number of blocks in
2365 * file system block size
2366 */
2367 upper_limit = (1LL << 48) - 1;
2368
2369 }
2370
2371 /* indirect blocks */
2372 meta_blocks = 1;
2373 /* double indirect blocks */
2374 meta_blocks += 1 + (1LL << (bits-2));
2375 /* tripple indirect blocks */
2376 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2)));
2377
2378 upper_limit -= meta_blocks;
2379 upper_limit <<= bits;
2380
2381 res += 1LL << (bits-2);
2382 res += 1LL << (2*(bits-2));
2383 res += 1LL << (3*(bits-2));
2384 res <<= bits;
2385 if (res > upper_limit)
2386 res = upper_limit;
2387
2388 if (res > MAX_LFS_FILESIZE)
2389 res = MAX_LFS_FILESIZE;
2390
2391 return res;
2392 }
2393
2394 static ext4_fsblk_t descriptor_loc(struct super_block *sb,
2395 ext4_fsblk_t logical_sb_block, int nr)
2396 {
2397 struct ext4_sb_info *sbi = EXT4_SB(sb);
2398 ext4_group_t bg, first_meta_bg;
2399 int has_super = 0;
2400
2401 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
2402
2403 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_META_BG) ||
2404 nr < first_meta_bg)
2405 return logical_sb_block + nr + 1;
2406 bg = sbi->s_desc_per_block * nr;
2407 if (ext4_bg_has_super(sb, bg))
2408 has_super = 1;
2409
2410 /*
2411 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at
2412 * block 2, not 1. If s_first_data_block == 0 (bigalloc is enabled
2413 * on modern mke2fs or blksize > 1k on older mke2fs) then we must
2414 * compensate.
2415 */
2416 if (sb->s_blocksize == 1024 && nr == 0 &&
2417 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block) == 0)
2418 has_super++;
2419
2420 return (has_super + ext4_group_first_block_no(sb, bg));
2421 }
2422
2423 /**
2424 * ext4_get_stripe_size: Get the stripe size.
2425 * @sbi: In memory super block info
2426 *
2427 * If we have specified it via mount option, then
2428 * use the mount option value. If the value specified at mount time is
2429 * greater than the blocks per group use the super block value.
2430 * If the super block value is greater than blocks per group return 0.
2431 * Allocator needs it be less than blocks per group.
2432 *
2433 */
2434 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
2435 {
2436 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
2437 unsigned long stripe_width =
2438 le32_to_cpu(sbi->s_es->s_raid_stripe_width);
2439 int ret;
2440
2441 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
2442 ret = sbi->s_stripe;
2443 else if (stripe_width <= sbi->s_blocks_per_group)
2444 ret = stripe_width;
2445 else if (stride <= sbi->s_blocks_per_group)
2446 ret = stride;
2447 else
2448 ret = 0;
2449
2450 /*
2451 * If the stripe width is 1, this makes no sense and
2452 * we set it to 0 to turn off stripe handling code.
2453 */
2454 if (ret <= 1)
2455 ret = 0;
2456
2457 return ret;
2458 }
2459
2460 /* sysfs supprt */
2461
2462 struct ext4_attr {
2463 struct attribute attr;
2464 ssize_t (*show)(struct ext4_attr *, struct ext4_sb_info *, char *);
2465 ssize_t (*store)(struct ext4_attr *, struct ext4_sb_info *,
2466 const char *, size_t);
2467 union {
2468 int offset;
2469 int deprecated_val;
2470 } u;
2471 };
2472
2473 static int parse_strtoull(const char *buf,
2474 unsigned long long max, unsigned long long *value)
2475 {
2476 int ret;
2477
2478 ret = kstrtoull(skip_spaces(buf), 0, value);
2479 if (!ret && *value > max)
2480 ret = -EINVAL;
2481 return ret;
2482 }
2483
2484 static ssize_t delayed_allocation_blocks_show(struct ext4_attr *a,
2485 struct ext4_sb_info *sbi,
2486 char *buf)
2487 {
2488 return snprintf(buf, PAGE_SIZE, "%llu\n",
2489 (s64) EXT4_C2B(sbi,
2490 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
2491 }
2492
2493 static ssize_t session_write_kbytes_show(struct ext4_attr *a,
2494 struct ext4_sb_info *sbi, char *buf)
2495 {
2496 struct super_block *sb = sbi->s_buddy_cache->i_sb;
2497
2498 if (!sb->s_bdev->bd_part)
2499 return snprintf(buf, PAGE_SIZE, "0\n");
2500 return snprintf(buf, PAGE_SIZE, "%lu\n",
2501 (part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
2502 sbi->s_sectors_written_start) >> 1);
2503 }
2504
2505 static ssize_t lifetime_write_kbytes_show(struct ext4_attr *a,
2506 struct ext4_sb_info *sbi, char *buf)
2507 {
2508 struct super_block *sb = sbi->s_buddy_cache->i_sb;
2509
2510 if (!sb->s_bdev->bd_part)
2511 return snprintf(buf, PAGE_SIZE, "0\n");
2512 return snprintf(buf, PAGE_SIZE, "%llu\n",
2513 (unsigned long long)(sbi->s_kbytes_written +
2514 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
2515 EXT4_SB(sb)->s_sectors_written_start) >> 1)));
2516 }
2517
2518 static ssize_t inode_readahead_blks_store(struct ext4_attr *a,
2519 struct ext4_sb_info *sbi,
2520 const char *buf, size_t count)
2521 {
2522 unsigned long t;
2523 int ret;
2524
2525 ret = kstrtoul(skip_spaces(buf), 0, &t);
2526 if (ret)
2527 return ret;
2528
2529 if (t && (!is_power_of_2(t) || t > 0x40000000))
2530 return -EINVAL;
2531
2532 sbi->s_inode_readahead_blks = t;
2533 return count;
2534 }
2535
2536 static ssize_t sbi_ui_show(struct ext4_attr *a,
2537 struct ext4_sb_info *sbi, char *buf)
2538 {
2539 unsigned int *ui = (unsigned int *) (((char *) sbi) + a->u.offset);
2540
2541 return snprintf(buf, PAGE_SIZE, "%u\n", *ui);
2542 }
2543
2544 static ssize_t sbi_ui_store(struct ext4_attr *a,
2545 struct ext4_sb_info *sbi,
2546 const char *buf, size_t count)
2547 {
2548 unsigned int *ui = (unsigned int *) (((char *) sbi) + a->u.offset);
2549 unsigned long t;
2550 int ret;
2551
2552 ret = kstrtoul(skip_spaces(buf), 0, &t);
2553 if (ret)
2554 return ret;
2555 *ui = t;
2556 return count;
2557 }
2558
2559 static ssize_t es_ui_show(struct ext4_attr *a,
2560 struct ext4_sb_info *sbi, char *buf)
2561 {
2562
2563 unsigned int *ui = (unsigned int *) (((char *) sbi->s_es) +
2564 a->u.offset);
2565
2566 return snprintf(buf, PAGE_SIZE, "%u\n", *ui);
2567 }
2568
2569 static ssize_t reserved_clusters_show(struct ext4_attr *a,
2570 struct ext4_sb_info *sbi, char *buf)
2571 {
2572 return snprintf(buf, PAGE_SIZE, "%llu\n",
2573 (unsigned long long) atomic64_read(&sbi->s_resv_clusters));
2574 }
2575
2576 static ssize_t reserved_clusters_store(struct ext4_attr *a,
2577 struct ext4_sb_info *sbi,
2578 const char *buf, size_t count)
2579 {
2580 unsigned long long val;
2581 int ret;
2582
2583 if (parse_strtoull(buf, -1ULL, &val))
2584 return -EINVAL;
2585 ret = ext4_reserve_clusters(sbi, val);
2586
2587 return ret ? ret : count;
2588 }
2589
2590 static ssize_t trigger_test_error(struct ext4_attr *a,
2591 struct ext4_sb_info *sbi,
2592 const char *buf, size_t count)
2593 {
2594 int len = count;
2595
2596 if (!capable(CAP_SYS_ADMIN))
2597 return -EPERM;
2598
2599 if (len && buf[len-1] == '\n')
2600 len--;
2601
2602 if (len)
2603 ext4_error(sbi->s_sb, "%.*s", len, buf);
2604 return count;
2605 }
2606
2607 static ssize_t sbi_deprecated_show(struct ext4_attr *a,
2608 struct ext4_sb_info *sbi, char *buf)
2609 {
2610 return snprintf(buf, PAGE_SIZE, "%d\n", a->u.deprecated_val);
2611 }
2612
2613 #define EXT4_ATTR_OFFSET(_name,_mode,_show,_store,_elname) \
2614 static struct ext4_attr ext4_attr_##_name = { \
2615 .attr = {.name = __stringify(_name), .mode = _mode }, \
2616 .show = _show, \
2617 .store = _store, \
2618 .u = { \
2619 .offset = offsetof(struct ext4_sb_info, _elname),\
2620 }, \
2621 }
2622
2623 #define EXT4_ATTR_OFFSET_ES(_name,_mode,_show,_store,_elname) \
2624 static struct ext4_attr ext4_attr_##_name = { \
2625 .attr = {.name = __stringify(_name), .mode = _mode }, \
2626 .show = _show, \
2627 .store = _store, \
2628 .u = { \
2629 .offset = offsetof(struct ext4_super_block, _elname), \
2630 }, \
2631 }
2632
2633 #define EXT4_ATTR(name, mode, show, store) \
2634 static struct ext4_attr ext4_attr_##name = __ATTR(name, mode, show, store)
2635
2636 #define EXT4_INFO_ATTR(name) EXT4_ATTR(name, 0444, NULL, NULL)
2637 #define EXT4_RO_ATTR(name) EXT4_ATTR(name, 0444, name##_show, NULL)
2638 #define EXT4_RW_ATTR(name) EXT4_ATTR(name, 0644, name##_show, name##_store)
2639
2640 #define EXT4_RO_ATTR_ES_UI(name, elname) \
2641 EXT4_ATTR_OFFSET_ES(name, 0444, es_ui_show, NULL, elname)
2642 #define EXT4_RW_ATTR_SBI_UI(name, elname) \
2643 EXT4_ATTR_OFFSET(name, 0644, sbi_ui_show, sbi_ui_store, elname)
2644
2645 #define ATTR_LIST(name) &ext4_attr_##name.attr
2646 #define EXT4_DEPRECATED_ATTR(_name, _val) \
2647 static struct ext4_attr ext4_attr_##_name = { \
2648 .attr = {.name = __stringify(_name), .mode = 0444 }, \
2649 .show = sbi_deprecated_show, \
2650 .u = { \
2651 .deprecated_val = _val, \
2652 }, \
2653 }
2654
2655 EXT4_RO_ATTR(delayed_allocation_blocks);
2656 EXT4_RO_ATTR(session_write_kbytes);
2657 EXT4_RO_ATTR(lifetime_write_kbytes);
2658 EXT4_RW_ATTR(reserved_clusters);
2659 EXT4_ATTR_OFFSET(inode_readahead_blks, 0644, sbi_ui_show,
2660 inode_readahead_blks_store, s_inode_readahead_blks);
2661 EXT4_RW_ATTR_SBI_UI(inode_goal, s_inode_goal);
2662 EXT4_RW_ATTR_SBI_UI(mb_stats, s_mb_stats);
2663 EXT4_RW_ATTR_SBI_UI(mb_max_to_scan, s_mb_max_to_scan);
2664 EXT4_RW_ATTR_SBI_UI(mb_min_to_scan, s_mb_min_to_scan);
2665 EXT4_RW_ATTR_SBI_UI(mb_order2_req, s_mb_order2_reqs);
2666 EXT4_RW_ATTR_SBI_UI(mb_stream_req, s_mb_stream_request);
2667 EXT4_RW_ATTR_SBI_UI(mb_group_prealloc, s_mb_group_prealloc);
2668 EXT4_DEPRECATED_ATTR(max_writeback_mb_bump, 128);
2669 EXT4_RW_ATTR_SBI_UI(extent_max_zeroout_kb, s_extent_max_zeroout_kb);
2670 EXT4_ATTR(trigger_fs_error, 0200, NULL, trigger_test_error);
2671 EXT4_RW_ATTR_SBI_UI(err_ratelimit_interval_ms, s_err_ratelimit_state.interval);
2672 EXT4_RW_ATTR_SBI_UI(err_ratelimit_burst, s_err_ratelimit_state.burst);
2673 EXT4_RW_ATTR_SBI_UI(warning_ratelimit_interval_ms, s_warning_ratelimit_state.interval);
2674 EXT4_RW_ATTR_SBI_UI(warning_ratelimit_burst, s_warning_ratelimit_state.burst);
2675 EXT4_RW_ATTR_SBI_UI(msg_ratelimit_interval_ms, s_msg_ratelimit_state.interval);
2676 EXT4_RW_ATTR_SBI_UI(msg_ratelimit_burst, s_msg_ratelimit_state.burst);
2677 EXT4_RO_ATTR_ES_UI(errors_count, s_error_count);
2678 EXT4_RO_ATTR_ES_UI(first_error_time, s_first_error_time);
2679 EXT4_RO_ATTR_ES_UI(last_error_time, s_last_error_time);
2680
2681 static struct attribute *ext4_attrs[] = {
2682 ATTR_LIST(delayed_allocation_blocks),
2683 ATTR_LIST(session_write_kbytes),
2684 ATTR_LIST(lifetime_write_kbytes),
2685 ATTR_LIST(reserved_clusters),
2686 ATTR_LIST(inode_readahead_blks),
2687 ATTR_LIST(inode_goal),
2688 ATTR_LIST(mb_stats),
2689 ATTR_LIST(mb_max_to_scan),
2690 ATTR_LIST(mb_min_to_scan),
2691 ATTR_LIST(mb_order2_req),
2692 ATTR_LIST(mb_stream_req),
2693 ATTR_LIST(mb_group_prealloc),
2694 ATTR_LIST(max_writeback_mb_bump),
2695 ATTR_LIST(extent_max_zeroout_kb),
2696 ATTR_LIST(trigger_fs_error),
2697 ATTR_LIST(err_ratelimit_interval_ms),
2698 ATTR_LIST(err_ratelimit_burst),
2699 ATTR_LIST(warning_ratelimit_interval_ms),
2700 ATTR_LIST(warning_ratelimit_burst),
2701 ATTR_LIST(msg_ratelimit_interval_ms),
2702 ATTR_LIST(msg_ratelimit_burst),
2703 ATTR_LIST(errors_count),
2704 ATTR_LIST(first_error_time),
2705 ATTR_LIST(last_error_time),
2706 NULL,
2707 };
2708
2709 /* Features this copy of ext4 supports */
2710 EXT4_INFO_ATTR(lazy_itable_init);
2711 EXT4_INFO_ATTR(batched_discard);
2712 EXT4_INFO_ATTR(meta_bg_resize);
2713 EXT4_INFO_ATTR(encryption);
2714
2715 static struct attribute *ext4_feat_attrs[] = {
2716 ATTR_LIST(lazy_itable_init),
2717 ATTR_LIST(batched_discard),
2718 ATTR_LIST(meta_bg_resize),
2719 ATTR_LIST(encryption),
2720 NULL,
2721 };
2722
2723 static ssize_t ext4_attr_show(struct kobject *kobj,
2724 struct attribute *attr, char *buf)
2725 {
2726 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2727 s_kobj);
2728 struct ext4_attr *a = container_of(attr, struct ext4_attr, attr);
2729
2730 return a->show ? a->show(a, sbi, buf) : 0;
2731 }
2732
2733 static ssize_t ext4_attr_store(struct kobject *kobj,
2734 struct attribute *attr,
2735 const char *buf, size_t len)
2736 {
2737 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2738 s_kobj);
2739 struct ext4_attr *a = container_of(attr, struct ext4_attr, attr);
2740
2741 return a->store ? a->store(a, sbi, buf, len) : 0;
2742 }
2743
2744 static void ext4_sb_release(struct kobject *kobj)
2745 {
2746 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2747 s_kobj);
2748 complete(&sbi->s_kobj_unregister);
2749 }
2750
2751 static const struct sysfs_ops ext4_attr_ops = {
2752 .show = ext4_attr_show,
2753 .store = ext4_attr_store,
2754 };
2755
2756 static struct kobj_type ext4_ktype = {
2757 .default_attrs = ext4_attrs,
2758 .sysfs_ops = &ext4_attr_ops,
2759 .release = ext4_sb_release,
2760 };
2761
2762 static void ext4_feat_release(struct kobject *kobj)
2763 {
2764 complete(&ext4_feat->f_kobj_unregister);
2765 }
2766
2767 static ssize_t ext4_feat_show(struct kobject *kobj,
2768 struct attribute *attr, char *buf)
2769 {
2770 return snprintf(buf, PAGE_SIZE, "supported\n");
2771 }
2772
2773 /*
2774 * We can not use ext4_attr_show/store because it relies on the kobject
2775 * being embedded in the ext4_sb_info structure which is definitely not
2776 * true in this case.
2777 */
2778 static const struct sysfs_ops ext4_feat_ops = {
2779 .show = ext4_feat_show,
2780 .store = NULL,
2781 };
2782
2783 static struct kobj_type ext4_feat_ktype = {
2784 .default_attrs = ext4_feat_attrs,
2785 .sysfs_ops = &ext4_feat_ops,
2786 .release = ext4_feat_release,
2787 };
2788
2789 /*
2790 * Check whether this filesystem can be mounted based on
2791 * the features present and the RDONLY/RDWR mount requested.
2792 * Returns 1 if this filesystem can be mounted as requested,
2793 * 0 if it cannot be.
2794 */
2795 static int ext4_feature_set_ok(struct super_block *sb, int readonly)
2796 {
2797 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT4_FEATURE_INCOMPAT_SUPP)) {
2798 ext4_msg(sb, KERN_ERR,
2799 "Couldn't mount because of "
2800 "unsupported optional features (%x)",
2801 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
2802 ~EXT4_FEATURE_INCOMPAT_SUPP));
2803 return 0;
2804 }
2805
2806 if (readonly)
2807 return 1;
2808
2809 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_READONLY)) {
2810 ext4_msg(sb, KERN_INFO, "filesystem is read-only");
2811 sb->s_flags |= MS_RDONLY;
2812 return 1;
2813 }
2814
2815 /* Check that feature set is OK for a read-write mount */
2816 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT4_FEATURE_RO_COMPAT_SUPP)) {
2817 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
2818 "unsupported optional features (%x)",
2819 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
2820 ~EXT4_FEATURE_RO_COMPAT_SUPP));
2821 return 0;
2822 }
2823 /*
2824 * Large file size enabled file system can only be mounted
2825 * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF
2826 */
2827 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
2828 if (sizeof(blkcnt_t) < sizeof(u64)) {
2829 ext4_msg(sb, KERN_ERR, "Filesystem with huge files "
2830 "cannot be mounted RDWR without "
2831 "CONFIG_LBDAF");
2832 return 0;
2833 }
2834 }
2835 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_BIGALLOC) &&
2836 !EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) {
2837 ext4_msg(sb, KERN_ERR,
2838 "Can't support bigalloc feature without "
2839 "extents feature\n");
2840 return 0;
2841 }
2842
2843 #ifndef CONFIG_QUOTA
2844 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) &&
2845 !readonly) {
2846 ext4_msg(sb, KERN_ERR,
2847 "Filesystem with quota feature cannot be mounted RDWR "
2848 "without CONFIG_QUOTA");
2849 return 0;
2850 }
2851 #endif /* CONFIG_QUOTA */
2852 return 1;
2853 }
2854
2855 /*
2856 * This function is called once a day if we have errors logged
2857 * on the file system
2858 */
2859 static void print_daily_error_info(unsigned long arg)
2860 {
2861 struct super_block *sb = (struct super_block *) arg;
2862 struct ext4_sb_info *sbi;
2863 struct ext4_super_block *es;
2864
2865 sbi = EXT4_SB(sb);
2866 es = sbi->s_es;
2867
2868 if (es->s_error_count)
2869 /* fsck newer than v1.41.13 is needed to clean this condition. */
2870 ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u",
2871 le32_to_cpu(es->s_error_count));
2872 if (es->s_first_error_time) {
2873 printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %u: %.*s:%d",
2874 sb->s_id, le32_to_cpu(es->s_first_error_time),
2875 (int) sizeof(es->s_first_error_func),
2876 es->s_first_error_func,
2877 le32_to_cpu(es->s_first_error_line));
2878 if (es->s_first_error_ino)
2879 printk(": inode %u",
2880 le32_to_cpu(es->s_first_error_ino));
2881 if (es->s_first_error_block)
2882 printk(": block %llu", (unsigned long long)
2883 le64_to_cpu(es->s_first_error_block));
2884 printk("\n");
2885 }
2886 if (es->s_last_error_time) {
2887 printk(KERN_NOTICE "EXT4-fs (%s): last error at time %u: %.*s:%d",
2888 sb->s_id, le32_to_cpu(es->s_last_error_time),
2889 (int) sizeof(es->s_last_error_func),
2890 es->s_last_error_func,
2891 le32_to_cpu(es->s_last_error_line));
2892 if (es->s_last_error_ino)
2893 printk(": inode %u",
2894 le32_to_cpu(es->s_last_error_ino));
2895 if (es->s_last_error_block)
2896 printk(": block %llu", (unsigned long long)
2897 le64_to_cpu(es->s_last_error_block));
2898 printk("\n");
2899 }
2900 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */
2901 }
2902
2903 /* Find next suitable group and run ext4_init_inode_table */
2904 static int ext4_run_li_request(struct ext4_li_request *elr)
2905 {
2906 struct ext4_group_desc *gdp = NULL;
2907 ext4_group_t group, ngroups;
2908 struct super_block *sb;
2909 unsigned long timeout = 0;
2910 int ret = 0;
2911
2912 sb = elr->lr_super;
2913 ngroups = EXT4_SB(sb)->s_groups_count;
2914
2915 sb_start_write(sb);
2916 for (group = elr->lr_next_group; group < ngroups; group++) {
2917 gdp = ext4_get_group_desc(sb, group, NULL);
2918 if (!gdp) {
2919 ret = 1;
2920 break;
2921 }
2922
2923 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2924 break;
2925 }
2926
2927 if (group >= ngroups)
2928 ret = 1;
2929
2930 if (!ret) {
2931 timeout = jiffies;
2932 ret = ext4_init_inode_table(sb, group,
2933 elr->lr_timeout ? 0 : 1);
2934 if (elr->lr_timeout == 0) {
2935 timeout = (jiffies - timeout) *
2936 elr->lr_sbi->s_li_wait_mult;
2937 elr->lr_timeout = timeout;
2938 }
2939 elr->lr_next_sched = jiffies + elr->lr_timeout;
2940 elr->lr_next_group = group + 1;
2941 }
2942 sb_end_write(sb);
2943
2944 return ret;
2945 }
2946
2947 /*
2948 * Remove lr_request from the list_request and free the
2949 * request structure. Should be called with li_list_mtx held
2950 */
2951 static void ext4_remove_li_request(struct ext4_li_request *elr)
2952 {
2953 struct ext4_sb_info *sbi;
2954
2955 if (!elr)
2956 return;
2957
2958 sbi = elr->lr_sbi;
2959
2960 list_del(&elr->lr_request);
2961 sbi->s_li_request = NULL;
2962 kfree(elr);
2963 }
2964
2965 static void ext4_unregister_li_request(struct super_block *sb)
2966 {
2967 mutex_lock(&ext4_li_mtx);
2968 if (!ext4_li_info) {
2969 mutex_unlock(&ext4_li_mtx);
2970 return;
2971 }
2972
2973 mutex_lock(&ext4_li_info->li_list_mtx);
2974 ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
2975 mutex_unlock(&ext4_li_info->li_list_mtx);
2976 mutex_unlock(&ext4_li_mtx);
2977 }
2978
2979 static struct task_struct *ext4_lazyinit_task;
2980
2981 /*
2982 * This is the function where ext4lazyinit thread lives. It walks
2983 * through the request list searching for next scheduled filesystem.
2984 * When such a fs is found, run the lazy initialization request
2985 * (ext4_rn_li_request) and keep track of the time spend in this
2986 * function. Based on that time we compute next schedule time of
2987 * the request. When walking through the list is complete, compute
2988 * next waking time and put itself into sleep.
2989 */
2990 static int ext4_lazyinit_thread(void *arg)
2991 {
2992 struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg;
2993 struct list_head *pos, *n;
2994 struct ext4_li_request *elr;
2995 unsigned long next_wakeup, cur;
2996
2997 BUG_ON(NULL == eli);
2998
2999 cont_thread:
3000 while (true) {
3001 next_wakeup = MAX_JIFFY_OFFSET;
3002
3003 mutex_lock(&eli->li_list_mtx);
3004 if (list_empty(&eli->li_request_list)) {
3005 mutex_unlock(&eli->li_list_mtx);
3006 goto exit_thread;
3007 }
3008
3009 list_for_each_safe(pos, n, &eli->li_request_list) {
3010 elr = list_entry(pos, struct ext4_li_request,
3011 lr_request);
3012
3013 if (time_after_eq(jiffies, elr->lr_next_sched)) {
3014 if (ext4_run_li_request(elr) != 0) {
3015 /* error, remove the lazy_init job */
3016 ext4_remove_li_request(elr);
3017 continue;
3018 }
3019 }
3020
3021 if (time_before(elr->lr_next_sched, next_wakeup))
3022 next_wakeup = elr->lr_next_sched;
3023 }
3024 mutex_unlock(&eli->li_list_mtx);
3025
3026 try_to_freeze();
3027
3028 cur = jiffies;
3029 if ((time_after_eq(cur, next_wakeup)) ||
3030 (MAX_JIFFY_OFFSET == next_wakeup)) {
3031 cond_resched();
3032 continue;
3033 }
3034
3035 schedule_timeout_interruptible(next_wakeup - cur);
3036
3037 if (kthread_should_stop()) {
3038 ext4_clear_request_list();
3039 goto exit_thread;
3040 }
3041 }
3042
3043 exit_thread:
3044 /*
3045 * It looks like the request list is empty, but we need
3046 * to check it under the li_list_mtx lock, to prevent any
3047 * additions into it, and of course we should lock ext4_li_mtx
3048 * to atomically free the list and ext4_li_info, because at
3049 * this point another ext4 filesystem could be registering
3050 * new one.
3051 */
3052 mutex_lock(&ext4_li_mtx);
3053 mutex_lock(&eli->li_list_mtx);
3054 if (!list_empty(&eli->li_request_list)) {
3055 mutex_unlock(&eli->li_list_mtx);
3056 mutex_unlock(&ext4_li_mtx);
3057 goto cont_thread;
3058 }
3059 mutex_unlock(&eli->li_list_mtx);
3060 kfree(ext4_li_info);
3061 ext4_li_info = NULL;
3062 mutex_unlock(&ext4_li_mtx);
3063
3064 return 0;
3065 }
3066
3067 static void ext4_clear_request_list(void)
3068 {
3069 struct list_head *pos, *n;
3070 struct ext4_li_request *elr;
3071
3072 mutex_lock(&ext4_li_info->li_list_mtx);
3073 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
3074 elr = list_entry(pos, struct ext4_li_request,
3075 lr_request);
3076 ext4_remove_li_request(elr);
3077 }
3078 mutex_unlock(&ext4_li_info->li_list_mtx);
3079 }
3080
3081 static int ext4_run_lazyinit_thread(void)
3082 {
3083 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
3084 ext4_li_info, "ext4lazyinit");
3085 if (IS_ERR(ext4_lazyinit_task)) {
3086 int err = PTR_ERR(ext4_lazyinit_task);
3087 ext4_clear_request_list();
3088 kfree(ext4_li_info);
3089 ext4_li_info = NULL;
3090 printk(KERN_CRIT "EXT4-fs: error %d creating inode table "
3091 "initialization thread\n",
3092 err);
3093 return err;
3094 }
3095 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
3096 return 0;
3097 }
3098
3099 /*
3100 * Check whether it make sense to run itable init. thread or not.
3101 * If there is at least one uninitialized inode table, return
3102 * corresponding group number, else the loop goes through all
3103 * groups and return total number of groups.
3104 */
3105 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
3106 {
3107 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
3108 struct ext4_group_desc *gdp = NULL;
3109
3110 for (group = 0; group < ngroups; group++) {
3111 gdp = ext4_get_group_desc(sb, group, NULL);
3112 if (!gdp)
3113 continue;
3114
3115 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3116 break;
3117 }
3118
3119 return group;
3120 }
3121
3122 static int ext4_li_info_new(void)
3123 {
3124 struct ext4_lazy_init *eli = NULL;
3125
3126 eli = kzalloc(sizeof(*eli), GFP_KERNEL);
3127 if (!eli)
3128 return -ENOMEM;
3129
3130 INIT_LIST_HEAD(&eli->li_request_list);
3131 mutex_init(&eli->li_list_mtx);
3132
3133 eli->li_state |= EXT4_LAZYINIT_QUIT;
3134
3135 ext4_li_info = eli;
3136
3137 return 0;
3138 }
3139
3140 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
3141 ext4_group_t start)
3142 {
3143 struct ext4_sb_info *sbi = EXT4_SB(sb);
3144 struct ext4_li_request *elr;
3145
3146 elr = kzalloc(sizeof(*elr), GFP_KERNEL);
3147 if (!elr)
3148 return NULL;
3149
3150 elr->lr_super = sb;
3151 elr->lr_sbi = sbi;
3152 elr->lr_next_group = start;
3153
3154 /*
3155 * Randomize first schedule time of the request to
3156 * spread the inode table initialization requests
3157 * better.
3158 */
3159 elr->lr_next_sched = jiffies + (prandom_u32() %
3160 (EXT4_DEF_LI_MAX_START_DELAY * HZ));
3161 return elr;
3162 }
3163
3164 int ext4_register_li_request(struct super_block *sb,
3165 ext4_group_t first_not_zeroed)
3166 {
3167 struct ext4_sb_info *sbi = EXT4_SB(sb);
3168 struct ext4_li_request *elr = NULL;
3169 ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count;
3170 int ret = 0;
3171
3172 mutex_lock(&ext4_li_mtx);
3173 if (sbi->s_li_request != NULL) {
3174 /*
3175 * Reset timeout so it can be computed again, because
3176 * s_li_wait_mult might have changed.
3177 */
3178 sbi->s_li_request->lr_timeout = 0;
3179 goto out;
3180 }
3181
3182 if (first_not_zeroed == ngroups ||
3183 (sb->s_flags & MS_RDONLY) ||
3184 !test_opt(sb, INIT_INODE_TABLE))
3185 goto out;
3186
3187 elr = ext4_li_request_new(sb, first_not_zeroed);
3188 if (!elr) {
3189 ret = -ENOMEM;
3190 goto out;
3191 }
3192
3193 if (NULL == ext4_li_info) {
3194 ret = ext4_li_info_new();
3195 if (ret)
3196 goto out;
3197 }
3198
3199 mutex_lock(&ext4_li_info->li_list_mtx);
3200 list_add(&elr->lr_request, &ext4_li_info->li_request_list);
3201 mutex_unlock(&ext4_li_info->li_list_mtx);
3202
3203 sbi->s_li_request = elr;
3204 /*
3205 * set elr to NULL here since it has been inserted to
3206 * the request_list and the removal and free of it is
3207 * handled by ext4_clear_request_list from now on.
3208 */
3209 elr = NULL;
3210
3211 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
3212 ret = ext4_run_lazyinit_thread();
3213 if (ret)
3214 goto out;
3215 }
3216 out:
3217 mutex_unlock(&ext4_li_mtx);
3218 if (ret)
3219 kfree(elr);
3220 return ret;
3221 }
3222
3223 /*
3224 * We do not need to lock anything since this is called on
3225 * module unload.
3226 */
3227 static void ext4_destroy_lazyinit_thread(void)
3228 {
3229 /*
3230 * If thread exited earlier
3231 * there's nothing to be done.
3232 */
3233 if (!ext4_li_info || !ext4_lazyinit_task)
3234 return;
3235
3236 kthread_stop(ext4_lazyinit_task);
3237 }
3238
3239 static int set_journal_csum_feature_set(struct super_block *sb)
3240 {
3241 int ret = 1;
3242 int compat, incompat;
3243 struct ext4_sb_info *sbi = EXT4_SB(sb);
3244
3245 if (ext4_has_metadata_csum(sb)) {
3246 /* journal checksum v3 */
3247 compat = 0;
3248 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3;
3249 } else {
3250 /* journal checksum v1 */
3251 compat = JBD2_FEATURE_COMPAT_CHECKSUM;
3252 incompat = 0;
3253 }
3254
3255 jbd2_journal_clear_features(sbi->s_journal,
3256 JBD2_FEATURE_COMPAT_CHECKSUM, 0,
3257 JBD2_FEATURE_INCOMPAT_CSUM_V3 |
3258 JBD2_FEATURE_INCOMPAT_CSUM_V2);
3259 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
3260 ret = jbd2_journal_set_features(sbi->s_journal,
3261 compat, 0,
3262 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
3263 incompat);
3264 } else if (test_opt(sb, JOURNAL_CHECKSUM)) {
3265 ret = jbd2_journal_set_features(sbi->s_journal,
3266 compat, 0,
3267 incompat);
3268 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3269 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3270 } else {
3271 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3272 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3273 }
3274
3275 return ret;
3276 }
3277
3278 /*
3279 * Note: calculating the overhead so we can be compatible with
3280 * historical BSD practice is quite difficult in the face of
3281 * clusters/bigalloc. This is because multiple metadata blocks from
3282 * different block group can end up in the same allocation cluster.
3283 * Calculating the exact overhead in the face of clustered allocation
3284 * requires either O(all block bitmaps) in memory or O(number of block
3285 * groups**2) in time. We will still calculate the superblock for
3286 * older file systems --- and if we come across with a bigalloc file
3287 * system with zero in s_overhead_clusters the estimate will be close to
3288 * correct especially for very large cluster sizes --- but for newer
3289 * file systems, it's better to calculate this figure once at mkfs
3290 * time, and store it in the superblock. If the superblock value is
3291 * present (even for non-bigalloc file systems), we will use it.
3292 */
3293 static int count_overhead(struct super_block *sb, ext4_group_t grp,
3294 char *buf)
3295 {
3296 struct ext4_sb_info *sbi = EXT4_SB(sb);
3297 struct ext4_group_desc *gdp;
3298 ext4_fsblk_t first_block, last_block, b;
3299 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3300 int s, j, count = 0;
3301
3302 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_BIGALLOC))
3303 return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) +
3304 sbi->s_itb_per_group + 2);
3305
3306 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) +
3307 (grp * EXT4_BLOCKS_PER_GROUP(sb));
3308 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1;
3309 for (i = 0; i < ngroups; i++) {
3310 gdp = ext4_get_group_desc(sb, i, NULL);
3311 b = ext4_block_bitmap(sb, gdp);
3312 if (b >= first_block && b <= last_block) {
3313 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3314 count++;
3315 }
3316 b = ext4_inode_bitmap(sb, gdp);
3317 if (b >= first_block && b <= last_block) {
3318 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3319 count++;
3320 }
3321 b = ext4_inode_table(sb, gdp);
3322 if (b >= first_block && b + sbi->s_itb_per_group <= last_block)
3323 for (j = 0; j < sbi->s_itb_per_group; j++, b++) {
3324 int c = EXT4_B2C(sbi, b - first_block);
3325 ext4_set_bit(c, buf);
3326 count++;
3327 }
3328 if (i != grp)
3329 continue;
3330 s = 0;
3331 if (ext4_bg_has_super(sb, grp)) {
3332 ext4_set_bit(s++, buf);
3333 count++;
3334 }
3335 for (j = ext4_bg_num_gdb(sb, grp); j > 0; j--) {
3336 ext4_set_bit(EXT4_B2C(sbi, s++), buf);
3337 count++;
3338 }
3339 }
3340 if (!count)
3341 return 0;
3342 return EXT4_CLUSTERS_PER_GROUP(sb) -
3343 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8);
3344 }
3345
3346 /*
3347 * Compute the overhead and stash it in sbi->s_overhead
3348 */
3349 int ext4_calculate_overhead(struct super_block *sb)
3350 {
3351 struct ext4_sb_info *sbi = EXT4_SB(sb);
3352 struct ext4_super_block *es = sbi->s_es;
3353 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3354 ext4_fsblk_t overhead = 0;
3355 char *buf = (char *) get_zeroed_page(GFP_NOFS);
3356
3357 if (!buf)
3358 return -ENOMEM;
3359
3360 /*
3361 * Compute the overhead (FS structures). This is constant
3362 * for a given filesystem unless the number of block groups
3363 * changes so we cache the previous value until it does.
3364 */
3365
3366 /*
3367 * All of the blocks before first_data_block are overhead
3368 */
3369 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
3370
3371 /*
3372 * Add the overhead found in each block group
3373 */
3374 for (i = 0; i < ngroups; i++) {
3375 int blks;
3376
3377 blks = count_overhead(sb, i, buf);
3378 overhead += blks;
3379 if (blks)
3380 memset(buf, 0, PAGE_SIZE);
3381 cond_resched();
3382 }
3383 /* Add the internal journal blocks as well */
3384 if (sbi->s_journal && !sbi->journal_bdev)
3385 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_maxlen);
3386
3387 sbi->s_overhead = overhead;
3388 smp_wmb();
3389 free_page((unsigned long) buf);
3390 return 0;
3391 }
3392
3393
3394 static ext4_fsblk_t ext4_calculate_resv_clusters(struct super_block *sb)
3395 {
3396 ext4_fsblk_t resv_clusters;
3397
3398 /*
3399 * There's no need to reserve anything when we aren't using extents.
3400 * The space estimates are exact, there are no unwritten extents,
3401 * hole punching doesn't need new metadata... This is needed especially
3402 * to keep ext2/3 backward compatibility.
3403 */
3404 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS))
3405 return 0;
3406 /*
3407 * By default we reserve 2% or 4096 clusters, whichever is smaller.
3408 * This should cover the situations where we can not afford to run
3409 * out of space like for example punch hole, or converting
3410 * unwritten extents in delalloc path. In most cases such
3411 * allocation would require 1, or 2 blocks, higher numbers are
3412 * very rare.
3413 */
3414 resv_clusters = ext4_blocks_count(EXT4_SB(sb)->s_es) >>
3415 EXT4_SB(sb)->s_cluster_bits;
3416
3417 do_div(resv_clusters, 50);
3418 resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096);
3419
3420 return resv_clusters;
3421 }
3422
3423
3424 static int ext4_reserve_clusters(struct ext4_sb_info *sbi, ext4_fsblk_t count)
3425 {
3426 ext4_fsblk_t clusters = ext4_blocks_count(sbi->s_es) >>
3427 sbi->s_cluster_bits;
3428
3429 if (count >= clusters)
3430 return -EINVAL;
3431
3432 atomic64_set(&sbi->s_resv_clusters, count);
3433 return 0;
3434 }
3435
3436 static int ext4_fill_super(struct super_block *sb, void *data, int silent)
3437 {
3438 char *orig_data = kstrdup(data, GFP_KERNEL);
3439 struct buffer_head *bh;
3440 struct ext4_super_block *es = NULL;
3441 struct ext4_sb_info *sbi;
3442 ext4_fsblk_t block;
3443 ext4_fsblk_t sb_block = get_sb_block(&data);
3444 ext4_fsblk_t logical_sb_block;
3445 unsigned long offset = 0;
3446 unsigned long journal_devnum = 0;
3447 unsigned long def_mount_opts;
3448 struct inode *root;
3449 const char *descr;
3450 int ret = -ENOMEM;
3451 int blocksize, clustersize;
3452 unsigned int db_count;
3453 unsigned int i;
3454 int needs_recovery, has_huge_files, has_bigalloc;
3455 __u64 blocks_count;
3456 int err = 0;
3457 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
3458 ext4_group_t first_not_zeroed;
3459
3460 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
3461 if (!sbi)
3462 goto out_free_orig;
3463
3464 sbi->s_blockgroup_lock =
3465 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
3466 if (!sbi->s_blockgroup_lock) {
3467 kfree(sbi);
3468 goto out_free_orig;
3469 }
3470 sb->s_fs_info = sbi;
3471 sbi->s_sb = sb;
3472 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
3473 sbi->s_sb_block = sb_block;
3474 if (sb->s_bdev->bd_part)
3475 sbi->s_sectors_written_start =
3476 part_stat_read(sb->s_bdev->bd_part, sectors[1]);
3477
3478 /* Cleanup superblock name */
3479 strreplace(sb->s_id, '/', '!');
3480
3481 /* -EINVAL is default */
3482 ret = -EINVAL;
3483 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
3484 if (!blocksize) {
3485 ext4_msg(sb, KERN_ERR, "unable to set blocksize");
3486 goto out_fail;
3487 }
3488
3489 /*
3490 * The ext4 superblock will not be buffer aligned for other than 1kB
3491 * block sizes. We need to calculate the offset from buffer start.
3492 */
3493 if (blocksize != EXT4_MIN_BLOCK_SIZE) {
3494 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3495 offset = do_div(logical_sb_block, blocksize);
3496 } else {
3497 logical_sb_block = sb_block;
3498 }
3499
3500 if (!(bh = sb_bread_unmovable(sb, logical_sb_block))) {
3501 ext4_msg(sb, KERN_ERR, "unable to read superblock");
3502 goto out_fail;
3503 }
3504 /*
3505 * Note: s_es must be initialized as soon as possible because
3506 * some ext4 macro-instructions depend on its value
3507 */
3508 es = (struct ext4_super_block *) (bh->b_data + offset);
3509 sbi->s_es = es;
3510 sb->s_magic = le16_to_cpu(es->s_magic);
3511 if (sb->s_magic != EXT4_SUPER_MAGIC)
3512 goto cantfind_ext4;
3513 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
3514
3515 /* Warn if metadata_csum and gdt_csum are both set. */
3516 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3517 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
3518 EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
3519 ext4_warning(sb, "metadata_csum and uninit_bg are "
3520 "redundant flags; please run fsck.");
3521
3522 /* Check for a known checksum algorithm */
3523 if (!ext4_verify_csum_type(sb, es)) {
3524 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3525 "unknown checksum algorithm.");
3526 silent = 1;
3527 goto cantfind_ext4;
3528 }
3529
3530 /* Load the checksum driver */
3531 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3532 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
3533 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
3534 if (IS_ERR(sbi->s_chksum_driver)) {
3535 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver.");
3536 ret = PTR_ERR(sbi->s_chksum_driver);
3537 sbi->s_chksum_driver = NULL;
3538 goto failed_mount;
3539 }
3540 }
3541
3542 /* Check superblock checksum */
3543 if (!ext4_superblock_csum_verify(sb, es)) {
3544 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3545 "invalid superblock checksum. Run e2fsck?");
3546 silent = 1;
3547 goto cantfind_ext4;
3548 }
3549
3550 /* Precompute checksum seed for all metadata */
3551 if (ext4_has_metadata_csum(sb))
3552 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid,
3553 sizeof(es->s_uuid));
3554
3555 /* Set defaults before we parse the mount options */
3556 def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
3557 set_opt(sb, INIT_INODE_TABLE);
3558 if (def_mount_opts & EXT4_DEFM_DEBUG)
3559 set_opt(sb, DEBUG);
3560 if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
3561 set_opt(sb, GRPID);
3562 if (def_mount_opts & EXT4_DEFM_UID16)
3563 set_opt(sb, NO_UID32);
3564 /* xattr user namespace & acls are now defaulted on */
3565 set_opt(sb, XATTR_USER);
3566 #ifdef CONFIG_EXT4_FS_POSIX_ACL
3567 set_opt(sb, POSIX_ACL);
3568 #endif
3569 /* don't forget to enable journal_csum when metadata_csum is enabled. */
3570 if (ext4_has_metadata_csum(sb))
3571 set_opt(sb, JOURNAL_CHECKSUM);
3572
3573 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
3574 set_opt(sb, JOURNAL_DATA);
3575 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
3576 set_opt(sb, ORDERED_DATA);
3577 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
3578 set_opt(sb, WRITEBACK_DATA);
3579
3580 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC)
3581 set_opt(sb, ERRORS_PANIC);
3582 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE)
3583 set_opt(sb, ERRORS_CONT);
3584 else
3585 set_opt(sb, ERRORS_RO);
3586 /* block_validity enabled by default; disable with noblock_validity */
3587 set_opt(sb, BLOCK_VALIDITY);
3588 if (def_mount_opts & EXT4_DEFM_DISCARD)
3589 set_opt(sb, DISCARD);
3590
3591 sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid));
3592 sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid));
3593 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
3594 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
3595 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
3596
3597 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
3598 set_opt(sb, BARRIER);
3599
3600 /*
3601 * enable delayed allocation by default
3602 * Use -o nodelalloc to turn it off
3603 */
3604 if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) &&
3605 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
3606 set_opt(sb, DELALLOC);
3607
3608 /*
3609 * set default s_li_wait_mult for lazyinit, for the case there is
3610 * no mount option specified.
3611 */
3612 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
3613
3614 if (!parse_options((char *) sbi->s_es->s_mount_opts, sb,
3615 &journal_devnum, &journal_ioprio, 0)) {
3616 ext4_msg(sb, KERN_WARNING,
3617 "failed to parse options in superblock: %s",
3618 sbi->s_es->s_mount_opts);
3619 }
3620 sbi->s_def_mount_opt = sbi->s_mount_opt;
3621 if (!parse_options((char *) data, sb, &journal_devnum,
3622 &journal_ioprio, 0))
3623 goto failed_mount;
3624
3625 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
3626 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting "
3627 "with data=journal disables delayed "
3628 "allocation and O_DIRECT support!\n");
3629 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
3630 ext4_msg(sb, KERN_ERR, "can't mount with "
3631 "both data=journal and delalloc");
3632 goto failed_mount;
3633 }
3634 if (test_opt(sb, DIOREAD_NOLOCK)) {
3635 ext4_msg(sb, KERN_ERR, "can't mount with "
3636 "both data=journal and dioread_nolock");
3637 goto failed_mount;
3638 }
3639 if (test_opt(sb, DAX)) {
3640 ext4_msg(sb, KERN_ERR, "can't mount with "
3641 "both data=journal and dax");
3642 goto failed_mount;
3643 }
3644 if (test_opt(sb, DELALLOC))
3645 clear_opt(sb, DELALLOC);
3646 }
3647
3648 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
3649 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
3650
3651 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
3652 (EXT4_HAS_COMPAT_FEATURE(sb, ~0U) ||
3653 EXT4_HAS_RO_COMPAT_FEATURE(sb, ~0U) ||
3654 EXT4_HAS_INCOMPAT_FEATURE(sb, ~0U)))
3655 ext4_msg(sb, KERN_WARNING,
3656 "feature flags set on rev 0 fs, "
3657 "running e2fsck is recommended");
3658
3659 if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) {
3660 set_opt2(sb, HURD_COMPAT);
3661 if (EXT4_HAS_INCOMPAT_FEATURE(sb,
3662 EXT4_FEATURE_INCOMPAT_64BIT)) {
3663 ext4_msg(sb, KERN_ERR,
3664 "The Hurd can't support 64-bit file systems");
3665 goto failed_mount;
3666 }
3667 }
3668
3669 if (IS_EXT2_SB(sb)) {
3670 if (ext2_feature_set_ok(sb))
3671 ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
3672 "using the ext4 subsystem");
3673 else {
3674 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
3675 "to feature incompatibilities");
3676 goto failed_mount;
3677 }
3678 }
3679
3680 if (IS_EXT3_SB(sb)) {
3681 if (ext3_feature_set_ok(sb))
3682 ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
3683 "using the ext4 subsystem");
3684 else {
3685 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
3686 "to feature incompatibilities");
3687 goto failed_mount;
3688 }
3689 }
3690
3691 /*
3692 * Check feature flags regardless of the revision level, since we
3693 * previously didn't change the revision level when setting the flags,
3694 * so there is a chance incompat flags are set on a rev 0 filesystem.
3695 */
3696 if (!ext4_feature_set_ok(sb, (sb->s_flags & MS_RDONLY)))
3697 goto failed_mount;
3698
3699 blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
3700 if (blocksize < EXT4_MIN_BLOCK_SIZE ||
3701 blocksize > EXT4_MAX_BLOCK_SIZE) {
3702 ext4_msg(sb, KERN_ERR,
3703 "Unsupported filesystem blocksize %d", blocksize);
3704 goto failed_mount;
3705 }
3706
3707 if (sbi->s_mount_opt & EXT4_MOUNT_DAX) {
3708 if (blocksize != PAGE_SIZE) {
3709 ext4_msg(sb, KERN_ERR,
3710 "error: unsupported blocksize for dax");
3711 goto failed_mount;
3712 }
3713 if (!sb->s_bdev->bd_disk->fops->direct_access) {
3714 ext4_msg(sb, KERN_ERR,
3715 "error: device does not support dax");
3716 goto failed_mount;
3717 }
3718 }
3719
3720 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_ENCRYPT) &&
3721 es->s_encryption_level) {
3722 ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d",
3723 es->s_encryption_level);
3724 goto failed_mount;
3725 }
3726
3727 if (sb->s_blocksize != blocksize) {
3728 /* Validate the filesystem blocksize */
3729 if (!sb_set_blocksize(sb, blocksize)) {
3730 ext4_msg(sb, KERN_ERR, "bad block size %d",
3731 blocksize);
3732 goto failed_mount;
3733 }
3734
3735 brelse(bh);
3736 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3737 offset = do_div(logical_sb_block, blocksize);
3738 bh = sb_bread_unmovable(sb, logical_sb_block);
3739 if (!bh) {
3740 ext4_msg(sb, KERN_ERR,
3741 "Can't read superblock on 2nd try");
3742 goto failed_mount;
3743 }
3744 es = (struct ext4_super_block *)(bh->b_data + offset);
3745 sbi->s_es = es;
3746 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
3747 ext4_msg(sb, KERN_ERR,
3748 "Magic mismatch, very weird!");
3749 goto failed_mount;
3750 }
3751 }
3752
3753 has_huge_files = EXT4_HAS_RO_COMPAT_FEATURE(sb,
3754 EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
3755 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
3756 has_huge_files);
3757 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
3758
3759 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
3760 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
3761 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
3762 } else {
3763 sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
3764 sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
3765 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
3766 (!is_power_of_2(sbi->s_inode_size)) ||
3767 (sbi->s_inode_size > blocksize)) {
3768 ext4_msg(sb, KERN_ERR,
3769 "unsupported inode size: %d",
3770 sbi->s_inode_size);
3771 goto failed_mount;
3772 }
3773 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE)
3774 sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2);
3775 }
3776
3777 sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
3778 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT)) {
3779 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
3780 sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
3781 !is_power_of_2(sbi->s_desc_size)) {
3782 ext4_msg(sb, KERN_ERR,
3783 "unsupported descriptor size %lu",
3784 sbi->s_desc_size);
3785 goto failed_mount;
3786 }
3787 } else
3788 sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
3789
3790 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
3791 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
3792 if (EXT4_INODE_SIZE(sb) == 0 || EXT4_INODES_PER_GROUP(sb) == 0)
3793 goto cantfind_ext4;
3794
3795 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb);
3796 if (sbi->s_inodes_per_block == 0)
3797 goto cantfind_ext4;
3798 sbi->s_itb_per_group = sbi->s_inodes_per_group /
3799 sbi->s_inodes_per_block;
3800 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb);
3801 sbi->s_sbh = bh;
3802 sbi->s_mount_state = le16_to_cpu(es->s_state);
3803 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
3804 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
3805
3806 for (i = 0; i < 4; i++)
3807 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
3808 sbi->s_def_hash_version = es->s_def_hash_version;
3809 if (EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_DIR_INDEX)) {
3810 i = le32_to_cpu(es->s_flags);
3811 if (i & EXT2_FLAGS_UNSIGNED_HASH)
3812 sbi->s_hash_unsigned = 3;
3813 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
3814 #ifdef __CHAR_UNSIGNED__
3815 if (!(sb->s_flags & MS_RDONLY))
3816 es->s_flags |=
3817 cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
3818 sbi->s_hash_unsigned = 3;
3819 #else
3820 if (!(sb->s_flags & MS_RDONLY))
3821 es->s_flags |=
3822 cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
3823 #endif
3824 }
3825 }
3826
3827 /* Handle clustersize */
3828 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size);
3829 has_bigalloc = EXT4_HAS_RO_COMPAT_FEATURE(sb,
3830 EXT4_FEATURE_RO_COMPAT_BIGALLOC);
3831 if (has_bigalloc) {
3832 if (clustersize < blocksize) {
3833 ext4_msg(sb, KERN_ERR,
3834 "cluster size (%d) smaller than "
3835 "block size (%d)", clustersize, blocksize);
3836 goto failed_mount;
3837 }
3838 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) -
3839 le32_to_cpu(es->s_log_block_size);
3840 sbi->s_clusters_per_group =
3841 le32_to_cpu(es->s_clusters_per_group);
3842 if (sbi->s_clusters_per_group > blocksize * 8) {
3843 ext4_msg(sb, KERN_ERR,
3844 "#clusters per group too big: %lu",
3845 sbi->s_clusters_per_group);
3846 goto failed_mount;
3847 }
3848 if (sbi->s_blocks_per_group !=
3849 (sbi->s_clusters_per_group * (clustersize / blocksize))) {
3850 ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and "
3851 "clusters per group (%lu) inconsistent",
3852 sbi->s_blocks_per_group,
3853 sbi->s_clusters_per_group);
3854 goto failed_mount;
3855 }
3856 } else {
3857 if (clustersize != blocksize) {
3858 ext4_warning(sb, "fragment/cluster size (%d) != "
3859 "block size (%d)", clustersize,
3860 blocksize);
3861 clustersize = blocksize;
3862 }
3863 if (sbi->s_blocks_per_group > blocksize * 8) {
3864 ext4_msg(sb, KERN_ERR,
3865 "#blocks per group too big: %lu",
3866 sbi->s_blocks_per_group);
3867 goto failed_mount;
3868 }
3869 sbi->s_clusters_per_group = sbi->s_blocks_per_group;
3870 sbi->s_cluster_bits = 0;
3871 }
3872 sbi->s_cluster_ratio = clustersize / blocksize;
3873
3874 if (sbi->s_inodes_per_group > blocksize * 8) {
3875 ext4_msg(sb, KERN_ERR,
3876 "#inodes per group too big: %lu",
3877 sbi->s_inodes_per_group);
3878 goto failed_mount;
3879 }
3880
3881 /* Do we have standard group size of clustersize * 8 blocks ? */
3882 if (sbi->s_blocks_per_group == clustersize << 3)
3883 set_opt2(sb, STD_GROUP_SIZE);
3884
3885 /*
3886 * Test whether we have more sectors than will fit in sector_t,
3887 * and whether the max offset is addressable by the page cache.
3888 */
3889 err = generic_check_addressable(sb->s_blocksize_bits,
3890 ext4_blocks_count(es));
3891 if (err) {
3892 ext4_msg(sb, KERN_ERR, "filesystem"
3893 " too large to mount safely on this system");
3894 if (sizeof(sector_t) < 8)
3895 ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled");
3896 goto failed_mount;
3897 }
3898
3899 if (EXT4_BLOCKS_PER_GROUP(sb) == 0)
3900 goto cantfind_ext4;
3901
3902 /* check blocks count against device size */
3903 blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
3904 if (blocks_count && ext4_blocks_count(es) > blocks_count) {
3905 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
3906 "exceeds size of device (%llu blocks)",
3907 ext4_blocks_count(es), blocks_count);
3908 goto failed_mount;
3909 }
3910
3911 /*
3912 * It makes no sense for the first data block to be beyond the end
3913 * of the filesystem.
3914 */
3915 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
3916 ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
3917 "block %u is beyond end of filesystem (%llu)",
3918 le32_to_cpu(es->s_first_data_block),
3919 ext4_blocks_count(es));
3920 goto failed_mount;
3921 }
3922 blocks_count = (ext4_blocks_count(es) -
3923 le32_to_cpu(es->s_first_data_block) +
3924 EXT4_BLOCKS_PER_GROUP(sb) - 1);
3925 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
3926 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
3927 ext4_msg(sb, KERN_WARNING, "groups count too large: %u "
3928 "(block count %llu, first data block %u, "
3929 "blocks per group %lu)", sbi->s_groups_count,
3930 ext4_blocks_count(es),
3931 le32_to_cpu(es->s_first_data_block),
3932 EXT4_BLOCKS_PER_GROUP(sb));
3933 goto failed_mount;
3934 }
3935 sbi->s_groups_count = blocks_count;
3936 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
3937 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
3938 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
3939 EXT4_DESC_PER_BLOCK(sb);
3940 sbi->s_group_desc = ext4_kvmalloc(db_count *
3941 sizeof(struct buffer_head *),
3942 GFP_KERNEL);
3943 if (sbi->s_group_desc == NULL) {
3944 ext4_msg(sb, KERN_ERR, "not enough memory");
3945 ret = -ENOMEM;
3946 goto failed_mount;
3947 }
3948
3949 if (ext4_proc_root)
3950 sbi->s_proc = proc_mkdir(sb->s_id, ext4_proc_root);
3951
3952 if (sbi->s_proc)
3953 proc_create_data("options", S_IRUGO, sbi->s_proc,
3954 &ext4_seq_options_fops, sb);
3955
3956 bgl_lock_init(sbi->s_blockgroup_lock);
3957
3958 for (i = 0; i < db_count; i++) {
3959 block = descriptor_loc(sb, logical_sb_block, i);
3960 sbi->s_group_desc[i] = sb_bread_unmovable(sb, block);
3961 if (!sbi->s_group_desc[i]) {
3962 ext4_msg(sb, KERN_ERR,
3963 "can't read group descriptor %d", i);
3964 db_count = i;
3965 goto failed_mount2;
3966 }
3967 }
3968 if (!ext4_check_descriptors(sb, &first_not_zeroed)) {
3969 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
3970 goto failed_mount2;
3971 }
3972
3973 sbi->s_gdb_count = db_count;
3974 get_random_bytes(&sbi->s_next_generation, sizeof(u32));
3975 spin_lock_init(&sbi->s_next_gen_lock);
3976
3977 setup_timer(&sbi->s_err_report, print_daily_error_info,
3978 (unsigned long) sb);
3979
3980 /* Register extent status tree shrinker */
3981 if (ext4_es_register_shrinker(sbi))
3982 goto failed_mount3;
3983
3984 sbi->s_stripe = ext4_get_stripe_size(sbi);
3985 sbi->s_extent_max_zeroout_kb = 32;
3986
3987 /*
3988 * set up enough so that it can read an inode
3989 */
3990 sb->s_op = &ext4_sops;
3991 sb->s_export_op = &ext4_export_ops;
3992 sb->s_xattr = ext4_xattr_handlers;
3993 #ifdef CONFIG_QUOTA
3994 sb->dq_op = &ext4_quota_operations;
3995 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA))
3996 sb->s_qcop = &dquot_quotactl_sysfile_ops;
3997 else
3998 sb->s_qcop = &ext4_qctl_operations;
3999 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP;
4000 #endif
4001 memcpy(sb->s_uuid, es->s_uuid, sizeof(es->s_uuid));
4002
4003 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
4004 mutex_init(&sbi->s_orphan_lock);
4005
4006 sb->s_root = NULL;
4007
4008 needs_recovery = (es->s_last_orphan != 0 ||
4009 EXT4_HAS_INCOMPAT_FEATURE(sb,
4010 EXT4_FEATURE_INCOMPAT_RECOVER));
4011
4012 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_MMP) &&
4013 !(sb->s_flags & MS_RDONLY))
4014 if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block)))
4015 goto failed_mount3a;
4016
4017 /*
4018 * The first inode we look at is the journal inode. Don't try
4019 * root first: it may be modified in the journal!
4020 */
4021 if (!test_opt(sb, NOLOAD) &&
4022 EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) {
4023 if (ext4_load_journal(sb, es, journal_devnum))
4024 goto failed_mount3a;
4025 } else if (test_opt(sb, NOLOAD) && !(sb->s_flags & MS_RDONLY) &&
4026 EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) {
4027 ext4_msg(sb, KERN_ERR, "required journal recovery "
4028 "suppressed and not mounted read-only");
4029 goto failed_mount_wq;
4030 } else {
4031 clear_opt(sb, DATA_FLAGS);
4032 sbi->s_journal = NULL;
4033 needs_recovery = 0;
4034 goto no_journal;
4035 }
4036
4037 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT) &&
4038 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
4039 JBD2_FEATURE_INCOMPAT_64BIT)) {
4040 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
4041 goto failed_mount_wq;
4042 }
4043
4044 if (!set_journal_csum_feature_set(sb)) {
4045 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum "
4046 "feature set");
4047 goto failed_mount_wq;
4048 }
4049
4050 /* We have now updated the journal if required, so we can
4051 * validate the data journaling mode. */
4052 switch (test_opt(sb, DATA_FLAGS)) {
4053 case 0:
4054 /* No mode set, assume a default based on the journal
4055 * capabilities: ORDERED_DATA if the journal can
4056 * cope, else JOURNAL_DATA
4057 */
4058 if (jbd2_journal_check_available_features
4059 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE))
4060 set_opt(sb, ORDERED_DATA);
4061 else
4062 set_opt(sb, JOURNAL_DATA);
4063 break;
4064
4065 case EXT4_MOUNT_ORDERED_DATA:
4066 case EXT4_MOUNT_WRITEBACK_DATA:
4067 if (!jbd2_journal_check_available_features
4068 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4069 ext4_msg(sb, KERN_ERR, "Journal does not support "
4070 "requested data journaling mode");
4071 goto failed_mount_wq;
4072 }
4073 default:
4074 break;
4075 }
4076 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
4077
4078 sbi->s_journal->j_commit_callback = ext4_journal_commit_callback;
4079
4080 no_journal:
4081 if (ext4_mballoc_ready) {
4082 sbi->s_mb_cache = ext4_xattr_create_cache(sb->s_id);
4083 if (!sbi->s_mb_cache) {
4084 ext4_msg(sb, KERN_ERR, "Failed to create an mb_cache");
4085 goto failed_mount_wq;
4086 }
4087 }
4088
4089 if ((DUMMY_ENCRYPTION_ENABLED(sbi) ||
4090 EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_ENCRYPT)) &&
4091 (blocksize != PAGE_CACHE_SIZE)) {
4092 ext4_msg(sb, KERN_ERR,
4093 "Unsupported blocksize for fs encryption");
4094 goto failed_mount_wq;
4095 }
4096
4097 if (DUMMY_ENCRYPTION_ENABLED(sbi) &&
4098 !(sb->s_flags & MS_RDONLY) &&
4099 !EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_ENCRYPT)) {
4100 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_ENCRYPT);
4101 ext4_commit_super(sb, 1);
4102 }
4103
4104 /*
4105 * Get the # of file system overhead blocks from the
4106 * superblock if present.
4107 */
4108 if (es->s_overhead_clusters)
4109 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters);
4110 else {
4111 err = ext4_calculate_overhead(sb);
4112 if (err)
4113 goto failed_mount_wq;
4114 }
4115
4116 /*
4117 * The maximum number of concurrent works can be high and
4118 * concurrency isn't really necessary. Limit it to 1.
4119 */
4120 EXT4_SB(sb)->rsv_conversion_wq =
4121 alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
4122 if (!EXT4_SB(sb)->rsv_conversion_wq) {
4123 printk(KERN_ERR "EXT4-fs: failed to create workqueue\n");
4124 ret = -ENOMEM;
4125 goto failed_mount4;
4126 }
4127
4128 /*
4129 * The jbd2_journal_load will have done any necessary log recovery,
4130 * so we can safely mount the rest of the filesystem now.
4131 */
4132
4133 root = ext4_iget(sb, EXT4_ROOT_INO);
4134 if (IS_ERR(root)) {
4135 ext4_msg(sb, KERN_ERR, "get root inode failed");
4136 ret = PTR_ERR(root);
4137 root = NULL;
4138 goto failed_mount4;
4139 }
4140 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
4141 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
4142 iput(root);
4143 goto failed_mount4;
4144 }
4145 sb->s_root = d_make_root(root);
4146 if (!sb->s_root) {
4147 ext4_msg(sb, KERN_ERR, "get root dentry failed");
4148 ret = -ENOMEM;
4149 goto failed_mount4;
4150 }
4151
4152 if (ext4_setup_super(sb, es, sb->s_flags & MS_RDONLY))
4153 sb->s_flags |= MS_RDONLY;
4154
4155 /* determine the minimum size of new large inodes, if present */
4156 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) {
4157 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
4158 EXT4_GOOD_OLD_INODE_SIZE;
4159 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4160 EXT4_FEATURE_RO_COMPAT_EXTRA_ISIZE)) {
4161 if (sbi->s_want_extra_isize <
4162 le16_to_cpu(es->s_want_extra_isize))
4163 sbi->s_want_extra_isize =
4164 le16_to_cpu(es->s_want_extra_isize);
4165 if (sbi->s_want_extra_isize <
4166 le16_to_cpu(es->s_min_extra_isize))
4167 sbi->s_want_extra_isize =
4168 le16_to_cpu(es->s_min_extra_isize);
4169 }
4170 }
4171 /* Check if enough inode space is available */
4172 if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize >
4173 sbi->s_inode_size) {
4174 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
4175 EXT4_GOOD_OLD_INODE_SIZE;
4176 ext4_msg(sb, KERN_INFO, "required extra inode space not"
4177 "available");
4178 }
4179
4180 err = ext4_reserve_clusters(sbi, ext4_calculate_resv_clusters(sb));
4181 if (err) {
4182 ext4_msg(sb, KERN_ERR, "failed to reserve %llu clusters for "
4183 "reserved pool", ext4_calculate_resv_clusters(sb));
4184 goto failed_mount4a;
4185 }
4186
4187 err = ext4_setup_system_zone(sb);
4188 if (err) {
4189 ext4_msg(sb, KERN_ERR, "failed to initialize system "
4190 "zone (%d)", err);
4191 goto failed_mount4a;
4192 }
4193
4194 ext4_ext_init(sb);
4195 err = ext4_mb_init(sb);
4196 if (err) {
4197 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
4198 err);
4199 goto failed_mount5;
4200 }
4201
4202 block = ext4_count_free_clusters(sb);
4203 ext4_free_blocks_count_set(sbi->s_es,
4204 EXT4_C2B(sbi, block));
4205 err = percpu_counter_init(&sbi->s_freeclusters_counter, block,
4206 GFP_KERNEL);
4207 if (!err) {
4208 unsigned long freei = ext4_count_free_inodes(sb);
4209 sbi->s_es->s_free_inodes_count = cpu_to_le32(freei);
4210 err = percpu_counter_init(&sbi->s_freeinodes_counter, freei,
4211 GFP_KERNEL);
4212 }
4213 if (!err)
4214 err = percpu_counter_init(&sbi->s_dirs_counter,
4215 ext4_count_dirs(sb), GFP_KERNEL);
4216 if (!err)
4217 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0,
4218 GFP_KERNEL);
4219 if (err) {
4220 ext4_msg(sb, KERN_ERR, "insufficient memory");
4221 goto failed_mount6;
4222 }
4223
4224 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG))
4225 if (!ext4_fill_flex_info(sb)) {
4226 ext4_msg(sb, KERN_ERR,
4227 "unable to initialize "
4228 "flex_bg meta info!");
4229 goto failed_mount6;
4230 }
4231
4232 err = ext4_register_li_request(sb, first_not_zeroed);
4233 if (err)
4234 goto failed_mount6;
4235
4236 sbi->s_kobj.kset = ext4_kset;
4237 init_completion(&sbi->s_kobj_unregister);
4238 err = kobject_init_and_add(&sbi->s_kobj, &ext4_ktype, NULL,
4239 "%s", sb->s_id);
4240 if (err)
4241 goto failed_mount7;
4242
4243 #ifdef CONFIG_QUOTA
4244 /* Enable quota usage during mount. */
4245 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) &&
4246 !(sb->s_flags & MS_RDONLY)) {
4247 err = ext4_enable_quotas(sb);
4248 if (err)
4249 goto failed_mount8;
4250 }
4251 #endif /* CONFIG_QUOTA */
4252
4253 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
4254 ext4_orphan_cleanup(sb, es);
4255 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
4256 if (needs_recovery) {
4257 ext4_msg(sb, KERN_INFO, "recovery complete");
4258 ext4_mark_recovery_complete(sb, es);
4259 }
4260 if (EXT4_SB(sb)->s_journal) {
4261 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
4262 descr = " journalled data mode";
4263 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
4264 descr = " ordered data mode";
4265 else
4266 descr = " writeback data mode";
4267 } else
4268 descr = "out journal";
4269
4270 if (test_opt(sb, DISCARD)) {
4271 struct request_queue *q = bdev_get_queue(sb->s_bdev);
4272 if (!blk_queue_discard(q))
4273 ext4_msg(sb, KERN_WARNING,
4274 "mounting with \"discard\" option, but "
4275 "the device does not support discard");
4276 }
4277
4278 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. "
4279 "Opts: %s%s%s", descr, sbi->s_es->s_mount_opts,
4280 *sbi->s_es->s_mount_opts ? "; " : "", orig_data);
4281
4282 if (es->s_error_count)
4283 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
4284
4285 /* Enable message ratelimiting. Default is 10 messages per 5 secs. */
4286 ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10);
4287 ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10);
4288 ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10);
4289
4290 kfree(orig_data);
4291 return 0;
4292
4293 cantfind_ext4:
4294 if (!silent)
4295 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
4296 goto failed_mount;
4297
4298 #ifdef CONFIG_QUOTA
4299 failed_mount8:
4300 kobject_del(&sbi->s_kobj);
4301 #endif
4302 failed_mount7:
4303 ext4_unregister_li_request(sb);
4304 failed_mount6:
4305 ext4_mb_release(sb);
4306 if (sbi->s_flex_groups)
4307 kvfree(sbi->s_flex_groups);
4308 percpu_counter_destroy(&sbi->s_freeclusters_counter);
4309 percpu_counter_destroy(&sbi->s_freeinodes_counter);
4310 percpu_counter_destroy(&sbi->s_dirs_counter);
4311 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
4312 failed_mount5:
4313 ext4_ext_release(sb);
4314 ext4_release_system_zone(sb);
4315 failed_mount4a:
4316 dput(sb->s_root);
4317 sb->s_root = NULL;
4318 failed_mount4:
4319 ext4_msg(sb, KERN_ERR, "mount failed");
4320 if (EXT4_SB(sb)->rsv_conversion_wq)
4321 destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq);
4322 failed_mount_wq:
4323 if (sbi->s_journal) {
4324 jbd2_journal_destroy(sbi->s_journal);
4325 sbi->s_journal = NULL;
4326 }
4327 failed_mount3a:
4328 ext4_es_unregister_shrinker(sbi);
4329 failed_mount3:
4330 del_timer_sync(&sbi->s_err_report);
4331 if (sbi->s_mmp_tsk)
4332 kthread_stop(sbi->s_mmp_tsk);
4333 failed_mount2:
4334 for (i = 0; i < db_count; i++)
4335 brelse(sbi->s_group_desc[i]);
4336 kvfree(sbi->s_group_desc);
4337 failed_mount:
4338 if (sbi->s_chksum_driver)
4339 crypto_free_shash(sbi->s_chksum_driver);
4340 if (sbi->s_proc) {
4341 remove_proc_entry("options", sbi->s_proc);
4342 remove_proc_entry(sb->s_id, ext4_proc_root);
4343 }
4344 #ifdef CONFIG_QUOTA
4345 for (i = 0; i < EXT4_MAXQUOTAS; i++)
4346 kfree(sbi->s_qf_names[i]);
4347 #endif
4348 ext4_blkdev_remove(sbi);
4349 brelse(bh);
4350 out_fail:
4351 sb->s_fs_info = NULL;
4352 kfree(sbi->s_blockgroup_lock);
4353 kfree(sbi);
4354 out_free_orig:
4355 kfree(orig_data);
4356 return err ? err : ret;
4357 }
4358
4359 /*
4360 * Setup any per-fs journal parameters now. We'll do this both on
4361 * initial mount, once the journal has been initialised but before we've
4362 * done any recovery; and again on any subsequent remount.
4363 */
4364 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
4365 {
4366 struct ext4_sb_info *sbi = EXT4_SB(sb);
4367
4368 journal->j_commit_interval = sbi->s_commit_interval;
4369 journal->j_min_batch_time = sbi->s_min_batch_time;
4370 journal->j_max_batch_time = sbi->s_max_batch_time;
4371
4372 write_lock(&journal->j_state_lock);
4373 if (test_opt(sb, BARRIER))
4374 journal->j_flags |= JBD2_BARRIER;
4375 else
4376 journal->j_flags &= ~JBD2_BARRIER;
4377 if (test_opt(sb, DATA_ERR_ABORT))
4378 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
4379 else
4380 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
4381 write_unlock(&journal->j_state_lock);
4382 }
4383
4384 static journal_t *ext4_get_journal(struct super_block *sb,
4385 unsigned int journal_inum)
4386 {
4387 struct inode *journal_inode;
4388 journal_t *journal;
4389
4390 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
4391
4392 /* First, test for the existence of a valid inode on disk. Bad
4393 * things happen if we iget() an unused inode, as the subsequent
4394 * iput() will try to delete it. */
4395
4396 journal_inode = ext4_iget(sb, journal_inum);
4397 if (IS_ERR(journal_inode)) {
4398 ext4_msg(sb, KERN_ERR, "no journal found");
4399 return NULL;
4400 }
4401 if (!journal_inode->i_nlink) {
4402 make_bad_inode(journal_inode);
4403 iput(journal_inode);
4404 ext4_msg(sb, KERN_ERR, "journal inode is deleted");
4405 return NULL;
4406 }
4407
4408 jbd_debug(2, "Journal inode found at %p: %lld bytes\n",
4409 journal_inode, journal_inode->i_size);
4410 if (!S_ISREG(journal_inode->i_mode)) {
4411 ext4_msg(sb, KERN_ERR, "invalid journal inode");
4412 iput(journal_inode);
4413 return NULL;
4414 }
4415
4416 journal = jbd2_journal_init_inode(journal_inode);
4417 if (!journal) {
4418 ext4_msg(sb, KERN_ERR, "Could not load journal inode");
4419 iput(journal_inode);
4420 return NULL;
4421 }
4422 journal->j_private = sb;
4423 ext4_init_journal_params(sb, journal);
4424 return journal;
4425 }
4426
4427 static journal_t *ext4_get_dev_journal(struct super_block *sb,
4428 dev_t j_dev)
4429 {
4430 struct buffer_head *bh;
4431 journal_t *journal;
4432 ext4_fsblk_t start;
4433 ext4_fsblk_t len;
4434 int hblock, blocksize;
4435 ext4_fsblk_t sb_block;
4436 unsigned long offset;
4437 struct ext4_super_block *es;
4438 struct block_device *bdev;
4439
4440 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
4441
4442 bdev = ext4_blkdev_get(j_dev, sb);
4443 if (bdev == NULL)
4444 return NULL;
4445
4446 blocksize = sb->s_blocksize;
4447 hblock = bdev_logical_block_size(bdev);
4448 if (blocksize < hblock) {
4449 ext4_msg(sb, KERN_ERR,
4450 "blocksize too small for journal device");
4451 goto out_bdev;
4452 }
4453
4454 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
4455 offset = EXT4_MIN_BLOCK_SIZE % blocksize;
4456 set_blocksize(bdev, blocksize);
4457 if (!(bh = __bread(bdev, sb_block, blocksize))) {
4458 ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
4459 "external journal");
4460 goto out_bdev;
4461 }
4462
4463 es = (struct ext4_super_block *) (bh->b_data + offset);
4464 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
4465 !(le32_to_cpu(es->s_feature_incompat) &
4466 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
4467 ext4_msg(sb, KERN_ERR, "external journal has "
4468 "bad superblock");
4469 brelse(bh);
4470 goto out_bdev;
4471 }
4472
4473 if ((le32_to_cpu(es->s_feature_ro_compat) &
4474 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
4475 es->s_checksum != ext4_superblock_csum(sb, es)) {
4476 ext4_msg(sb, KERN_ERR, "external journal has "
4477 "corrupt superblock");
4478 brelse(bh);
4479 goto out_bdev;
4480 }
4481
4482 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
4483 ext4_msg(sb, KERN_ERR, "journal UUID does not match");
4484 brelse(bh);
4485 goto out_bdev;
4486 }
4487
4488 len = ext4_blocks_count(es);
4489 start = sb_block + 1;
4490 brelse(bh); /* we're done with the superblock */
4491
4492 journal = jbd2_journal_init_dev(bdev, sb->s_bdev,
4493 start, len, blocksize);
4494 if (!journal) {
4495 ext4_msg(sb, KERN_ERR, "failed to create device journal");
4496 goto out_bdev;
4497 }
4498 journal->j_private = sb;
4499 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &journal->j_sb_buffer);
4500 wait_on_buffer(journal->j_sb_buffer);
4501 if (!buffer_uptodate(journal->j_sb_buffer)) {
4502 ext4_msg(sb, KERN_ERR, "I/O error on journal device");
4503 goto out_journal;
4504 }
4505 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
4506 ext4_msg(sb, KERN_ERR, "External journal has more than one "
4507 "user (unsupported) - %d",
4508 be32_to_cpu(journal->j_superblock->s_nr_users));
4509 goto out_journal;
4510 }
4511 EXT4_SB(sb)->journal_bdev = bdev;
4512 ext4_init_journal_params(sb, journal);
4513 return journal;
4514
4515 out_journal:
4516 jbd2_journal_destroy(journal);
4517 out_bdev:
4518 ext4_blkdev_put(bdev);
4519 return NULL;
4520 }
4521
4522 static int ext4_load_journal(struct super_block *sb,
4523 struct ext4_super_block *es,
4524 unsigned long journal_devnum)
4525 {
4526 journal_t *journal;
4527 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
4528 dev_t journal_dev;
4529 int err = 0;
4530 int really_read_only;
4531
4532 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
4533
4534 if (journal_devnum &&
4535 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4536 ext4_msg(sb, KERN_INFO, "external journal device major/minor "
4537 "numbers have changed");
4538 journal_dev = new_decode_dev(journal_devnum);
4539 } else
4540 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
4541
4542 really_read_only = bdev_read_only(sb->s_bdev);
4543
4544 /*
4545 * Are we loading a blank journal or performing recovery after a
4546 * crash? For recovery, we need to check in advance whether we
4547 * can get read-write access to the device.
4548 */
4549 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) {
4550 if (sb->s_flags & MS_RDONLY) {
4551 ext4_msg(sb, KERN_INFO, "INFO: recovery "
4552 "required on readonly filesystem");
4553 if (really_read_only) {
4554 ext4_msg(sb, KERN_ERR, "write access "
4555 "unavailable, cannot proceed");
4556 return -EROFS;
4557 }
4558 ext4_msg(sb, KERN_INFO, "write access will "
4559 "be enabled during recovery");
4560 }
4561 }
4562
4563 if (journal_inum && journal_dev) {
4564 ext4_msg(sb, KERN_ERR, "filesystem has both journal "
4565 "and inode journals!");
4566 return -EINVAL;
4567 }
4568
4569 if (journal_inum) {
4570 if (!(journal = ext4_get_journal(sb, journal_inum)))
4571 return -EINVAL;
4572 } else {
4573 if (!(journal = ext4_get_dev_journal(sb, journal_dev)))
4574 return -EINVAL;
4575 }
4576
4577 if (!(journal->j_flags & JBD2_BARRIER))
4578 ext4_msg(sb, KERN_INFO, "barriers disabled");
4579
4580 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER))
4581 err = jbd2_journal_wipe(journal, !really_read_only);
4582 if (!err) {
4583 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
4584 if (save)
4585 memcpy(save, ((char *) es) +
4586 EXT4_S_ERR_START, EXT4_S_ERR_LEN);
4587 err = jbd2_journal_load(journal);
4588 if (save)
4589 memcpy(((char *) es) + EXT4_S_ERR_START,
4590 save, EXT4_S_ERR_LEN);
4591 kfree(save);
4592 }
4593
4594 if (err) {
4595 ext4_msg(sb, KERN_ERR, "error loading journal");
4596 jbd2_journal_destroy(journal);
4597 return err;
4598 }
4599
4600 EXT4_SB(sb)->s_journal = journal;
4601 ext4_clear_journal_err(sb, es);
4602
4603 if (!really_read_only && journal_devnum &&
4604 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4605 es->s_journal_dev = cpu_to_le32(journal_devnum);
4606
4607 /* Make sure we flush the recovery flag to disk. */
4608 ext4_commit_super(sb, 1);
4609 }
4610
4611 return 0;
4612 }
4613
4614 static int ext4_commit_super(struct super_block *sb, int sync)
4615 {
4616 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
4617 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
4618 int error = 0;
4619
4620 if (!sbh)
4621 return error;
4622 if (buffer_write_io_error(sbh)) {
4623 /*
4624 * Oh, dear. A previous attempt to write the
4625 * superblock failed. This could happen because the
4626 * USB device was yanked out. Or it could happen to
4627 * be a transient write error and maybe the block will
4628 * be remapped. Nothing we can do but to retry the
4629 * write and hope for the best.
4630 */
4631 ext4_msg(sb, KERN_ERR, "previous I/O error to "
4632 "superblock detected");
4633 clear_buffer_write_io_error(sbh);
4634 set_buffer_uptodate(sbh);
4635 }
4636 /*
4637 * If the file system is mounted read-only, don't update the
4638 * superblock write time. This avoids updating the superblock
4639 * write time when we are mounting the root file system
4640 * read/only but we need to replay the journal; at that point,
4641 * for people who are east of GMT and who make their clock
4642 * tick in localtime for Windows bug-for-bug compatibility,
4643 * the clock is set in the future, and this will cause e2fsck
4644 * to complain and force a full file system check.
4645 */
4646 if (!(sb->s_flags & MS_RDONLY))
4647 es->s_wtime = cpu_to_le32(get_seconds());
4648 if (sb->s_bdev->bd_part)
4649 es->s_kbytes_written =
4650 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written +
4651 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
4652 EXT4_SB(sb)->s_sectors_written_start) >> 1));
4653 else
4654 es->s_kbytes_written =
4655 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written);
4656 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeclusters_counter))
4657 ext4_free_blocks_count_set(es,
4658 EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive(
4659 &EXT4_SB(sb)->s_freeclusters_counter)));
4660 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeinodes_counter))
4661 es->s_free_inodes_count =
4662 cpu_to_le32(percpu_counter_sum_positive(
4663 &EXT4_SB(sb)->s_freeinodes_counter));
4664 BUFFER_TRACE(sbh, "marking dirty");
4665 ext4_superblock_csum_set(sb);
4666 mark_buffer_dirty(sbh);
4667 if (sync) {
4668 error = sync_dirty_buffer(sbh);
4669 if (error)
4670 return error;
4671
4672 error = buffer_write_io_error(sbh);
4673 if (error) {
4674 ext4_msg(sb, KERN_ERR, "I/O error while writing "
4675 "superblock");
4676 clear_buffer_write_io_error(sbh);
4677 set_buffer_uptodate(sbh);
4678 }
4679 }
4680 return error;
4681 }
4682
4683 /*
4684 * Have we just finished recovery? If so, and if we are mounting (or
4685 * remounting) the filesystem readonly, then we will end up with a
4686 * consistent fs on disk. Record that fact.
4687 */
4688 static void ext4_mark_recovery_complete(struct super_block *sb,
4689 struct ext4_super_block *es)
4690 {
4691 journal_t *journal = EXT4_SB(sb)->s_journal;
4692
4693 if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) {
4694 BUG_ON(journal != NULL);
4695 return;
4696 }
4697 jbd2_journal_lock_updates(journal);
4698 if (jbd2_journal_flush(journal) < 0)
4699 goto out;
4700
4701 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER) &&
4702 sb->s_flags & MS_RDONLY) {
4703 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4704 ext4_commit_super(sb, 1);
4705 }
4706
4707 out:
4708 jbd2_journal_unlock_updates(journal);
4709 }
4710
4711 /*
4712 * If we are mounting (or read-write remounting) a filesystem whose journal
4713 * has recorded an error from a previous lifetime, move that error to the
4714 * main filesystem now.
4715 */
4716 static void ext4_clear_journal_err(struct super_block *sb,
4717 struct ext4_super_block *es)
4718 {
4719 journal_t *journal;
4720 int j_errno;
4721 const char *errstr;
4722
4723 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
4724
4725 journal = EXT4_SB(sb)->s_journal;
4726
4727 /*
4728 * Now check for any error status which may have been recorded in the
4729 * journal by a prior ext4_error() or ext4_abort()
4730 */
4731
4732 j_errno = jbd2_journal_errno(journal);
4733 if (j_errno) {
4734 char nbuf[16];
4735
4736 errstr = ext4_decode_error(sb, j_errno, nbuf);
4737 ext4_warning(sb, "Filesystem error recorded "
4738 "from previous mount: %s", errstr);
4739 ext4_warning(sb, "Marking fs in need of filesystem check.");
4740
4741 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
4742 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
4743 ext4_commit_super(sb, 1);
4744
4745 jbd2_journal_clear_err(journal);
4746 jbd2_journal_update_sb_errno(journal);
4747 }
4748 }
4749
4750 /*
4751 * Force the running and committing transactions to commit,
4752 * and wait on the commit.
4753 */
4754 int ext4_force_commit(struct super_block *sb)
4755 {
4756 journal_t *journal;
4757
4758 if (sb->s_flags & MS_RDONLY)
4759 return 0;
4760
4761 journal = EXT4_SB(sb)->s_journal;
4762 return ext4_journal_force_commit(journal);
4763 }
4764
4765 static int ext4_sync_fs(struct super_block *sb, int wait)
4766 {
4767 int ret = 0;
4768 tid_t target;
4769 bool needs_barrier = false;
4770 struct ext4_sb_info *sbi = EXT4_SB(sb);
4771
4772 trace_ext4_sync_fs(sb, wait);
4773 flush_workqueue(sbi->rsv_conversion_wq);
4774 /*
4775 * Writeback quota in non-journalled quota case - journalled quota has
4776 * no dirty dquots
4777 */
4778 dquot_writeback_dquots(sb, -1);
4779 /*
4780 * Data writeback is possible w/o journal transaction, so barrier must
4781 * being sent at the end of the function. But we can skip it if
4782 * transaction_commit will do it for us.
4783 */
4784 if (sbi->s_journal) {
4785 target = jbd2_get_latest_transaction(sbi->s_journal);
4786 if (wait && sbi->s_journal->j_flags & JBD2_BARRIER &&
4787 !jbd2_trans_will_send_data_barrier(sbi->s_journal, target))
4788 needs_barrier = true;
4789
4790 if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
4791 if (wait)
4792 ret = jbd2_log_wait_commit(sbi->s_journal,
4793 target);
4794 }
4795 } else if (wait && test_opt(sb, BARRIER))
4796 needs_barrier = true;
4797 if (needs_barrier) {
4798 int err;
4799 err = blkdev_issue_flush(sb->s_bdev, GFP_KERNEL, NULL);
4800 if (!ret)
4801 ret = err;
4802 }
4803
4804 return ret;
4805 }
4806
4807 /*
4808 * LVM calls this function before a (read-only) snapshot is created. This
4809 * gives us a chance to flush the journal completely and mark the fs clean.
4810 *
4811 * Note that only this function cannot bring a filesystem to be in a clean
4812 * state independently. It relies on upper layer to stop all data & metadata
4813 * modifications.
4814 */
4815 static int ext4_freeze(struct super_block *sb)
4816 {
4817 int error = 0;
4818 journal_t *journal;
4819
4820 if (sb->s_flags & MS_RDONLY)
4821 return 0;
4822
4823 journal = EXT4_SB(sb)->s_journal;
4824
4825 if (journal) {
4826 /* Now we set up the journal barrier. */
4827 jbd2_journal_lock_updates(journal);
4828
4829 /*
4830 * Don't clear the needs_recovery flag if we failed to
4831 * flush the journal.
4832 */
4833 error = jbd2_journal_flush(journal);
4834 if (error < 0)
4835 goto out;
4836 }
4837
4838 /* Journal blocked and flushed, clear needs_recovery flag. */
4839 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4840 error = ext4_commit_super(sb, 1);
4841 out:
4842 if (journal)
4843 /* we rely on upper layer to stop further updates */
4844 jbd2_journal_unlock_updates(journal);
4845 return error;
4846 }
4847
4848 /*
4849 * Called by LVM after the snapshot is done. We need to reset the RECOVER
4850 * flag here, even though the filesystem is not technically dirty yet.
4851 */
4852 static int ext4_unfreeze(struct super_block *sb)
4853 {
4854 if (sb->s_flags & MS_RDONLY)
4855 return 0;
4856
4857 /* Reset the needs_recovery flag before the fs is unlocked. */
4858 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4859 ext4_commit_super(sb, 1);
4860 return 0;
4861 }
4862
4863 /*
4864 * Structure to save mount options for ext4_remount's benefit
4865 */
4866 struct ext4_mount_options {
4867 unsigned long s_mount_opt;
4868 unsigned long s_mount_opt2;
4869 kuid_t s_resuid;
4870 kgid_t s_resgid;
4871 unsigned long s_commit_interval;
4872 u32 s_min_batch_time, s_max_batch_time;
4873 #ifdef CONFIG_QUOTA
4874 int s_jquota_fmt;
4875 char *s_qf_names[EXT4_MAXQUOTAS];
4876 #endif
4877 };
4878
4879 static int ext4_remount(struct super_block *sb, int *flags, char *data)
4880 {
4881 struct ext4_super_block *es;
4882 struct ext4_sb_info *sbi = EXT4_SB(sb);
4883 unsigned long old_sb_flags;
4884 struct ext4_mount_options old_opts;
4885 int enable_quota = 0;
4886 ext4_group_t g;
4887 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
4888 int err = 0;
4889 #ifdef CONFIG_QUOTA
4890 int i, j;
4891 #endif
4892 char *orig_data = kstrdup(data, GFP_KERNEL);
4893
4894 /* Store the original options */
4895 old_sb_flags = sb->s_flags;
4896 old_opts.s_mount_opt = sbi->s_mount_opt;
4897 old_opts.s_mount_opt2 = sbi->s_mount_opt2;
4898 old_opts.s_resuid = sbi->s_resuid;
4899 old_opts.s_resgid = sbi->s_resgid;
4900 old_opts.s_commit_interval = sbi->s_commit_interval;
4901 old_opts.s_min_batch_time = sbi->s_min_batch_time;
4902 old_opts.s_max_batch_time = sbi->s_max_batch_time;
4903 #ifdef CONFIG_QUOTA
4904 old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
4905 for (i = 0; i < EXT4_MAXQUOTAS; i++)
4906 if (sbi->s_qf_names[i]) {
4907 old_opts.s_qf_names[i] = kstrdup(sbi->s_qf_names[i],
4908 GFP_KERNEL);
4909 if (!old_opts.s_qf_names[i]) {
4910 for (j = 0; j < i; j++)
4911 kfree(old_opts.s_qf_names[j]);
4912 kfree(orig_data);
4913 return -ENOMEM;
4914 }
4915 } else
4916 old_opts.s_qf_names[i] = NULL;
4917 #endif
4918 if (sbi->s_journal && sbi->s_journal->j_task->io_context)
4919 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio;
4920
4921 if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) {
4922 err = -EINVAL;
4923 goto restore_opts;
4924 }
4925
4926 if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^
4927 test_opt(sb, JOURNAL_CHECKSUM)) {
4928 ext4_msg(sb, KERN_ERR, "changing journal_checksum "
4929 "during remount not supported; ignoring");
4930 sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM;
4931 }
4932
4933 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
4934 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
4935 ext4_msg(sb, KERN_ERR, "can't mount with "
4936 "both data=journal and delalloc");
4937 err = -EINVAL;
4938 goto restore_opts;
4939 }
4940 if (test_opt(sb, DIOREAD_NOLOCK)) {
4941 ext4_msg(sb, KERN_ERR, "can't mount with "
4942 "both data=journal and dioread_nolock");
4943 err = -EINVAL;
4944 goto restore_opts;
4945 }
4946 if (test_opt(sb, DAX)) {
4947 ext4_msg(sb, KERN_ERR, "can't mount with "
4948 "both data=journal and dax");
4949 err = -EINVAL;
4950 goto restore_opts;
4951 }
4952 }
4953
4954 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_DAX) {
4955 ext4_msg(sb, KERN_WARNING, "warning: refusing change of "
4956 "dax flag with busy inodes while remounting");
4957 sbi->s_mount_opt ^= EXT4_MOUNT_DAX;
4958 }
4959
4960 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED)
4961 ext4_abort(sb, "Abort forced by user");
4962
4963 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
4964 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
4965
4966 es = sbi->s_es;
4967
4968 if (sbi->s_journal) {
4969 ext4_init_journal_params(sb, sbi->s_journal);
4970 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
4971 }
4972
4973 if (*flags & MS_LAZYTIME)
4974 sb->s_flags |= MS_LAZYTIME;
4975
4976 if ((*flags & MS_RDONLY) != (sb->s_flags & MS_RDONLY)) {
4977 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) {
4978 err = -EROFS;
4979 goto restore_opts;
4980 }
4981
4982 if (*flags & MS_RDONLY) {
4983 err = sync_filesystem(sb);
4984 if (err < 0)
4985 goto restore_opts;
4986 err = dquot_suspend(sb, -1);
4987 if (err < 0)
4988 goto restore_opts;
4989
4990 /*
4991 * First of all, the unconditional stuff we have to do
4992 * to disable replay of the journal when we next remount
4993 */
4994 sb->s_flags |= MS_RDONLY;
4995
4996 /*
4997 * OK, test if we are remounting a valid rw partition
4998 * readonly, and if so set the rdonly flag and then
4999 * mark the partition as valid again.
5000 */
5001 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
5002 (sbi->s_mount_state & EXT4_VALID_FS))
5003 es->s_state = cpu_to_le16(sbi->s_mount_state);
5004
5005 if (sbi->s_journal)
5006 ext4_mark_recovery_complete(sb, es);
5007 } else {
5008 /* Make sure we can mount this feature set readwrite */
5009 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
5010 EXT4_FEATURE_RO_COMPAT_READONLY) ||
5011 !ext4_feature_set_ok(sb, 0)) {
5012 err = -EROFS;
5013 goto restore_opts;
5014 }
5015 /*
5016 * Make sure the group descriptor checksums
5017 * are sane. If they aren't, refuse to remount r/w.
5018 */
5019 for (g = 0; g < sbi->s_groups_count; g++) {
5020 struct ext4_group_desc *gdp =
5021 ext4_get_group_desc(sb, g, NULL);
5022
5023 if (!ext4_group_desc_csum_verify(sb, g, gdp)) {
5024 ext4_msg(sb, KERN_ERR,
5025 "ext4_remount: Checksum for group %u failed (%u!=%u)",
5026 g, le16_to_cpu(ext4_group_desc_csum(sbi, g, gdp)),
5027 le16_to_cpu(gdp->bg_checksum));
5028 err = -EINVAL;
5029 goto restore_opts;
5030 }
5031 }
5032
5033 /*
5034 * If we have an unprocessed orphan list hanging
5035 * around from a previously readonly bdev mount,
5036 * require a full umount/remount for now.
5037 */
5038 if (es->s_last_orphan) {
5039 ext4_msg(sb, KERN_WARNING, "Couldn't "
5040 "remount RDWR because of unprocessed "
5041 "orphan inode list. Please "
5042 "umount/remount instead");
5043 err = -EINVAL;
5044 goto restore_opts;
5045 }
5046
5047 /*
5048 * Mounting a RDONLY partition read-write, so reread
5049 * and store the current valid flag. (It may have
5050 * been changed by e2fsck since we originally mounted
5051 * the partition.)
5052 */
5053 if (sbi->s_journal)
5054 ext4_clear_journal_err(sb, es);
5055 sbi->s_mount_state = le16_to_cpu(es->s_state);
5056 if (!ext4_setup_super(sb, es, 0))
5057 sb->s_flags &= ~MS_RDONLY;
5058 if (EXT4_HAS_INCOMPAT_FEATURE(sb,
5059 EXT4_FEATURE_INCOMPAT_MMP))
5060 if (ext4_multi_mount_protect(sb,
5061 le64_to_cpu(es->s_mmp_block))) {
5062 err = -EROFS;
5063 goto restore_opts;
5064 }
5065 enable_quota = 1;
5066 }
5067 }
5068
5069 /*
5070 * Reinitialize lazy itable initialization thread based on
5071 * current settings
5072 */
5073 if ((sb->s_flags & MS_RDONLY) || !test_opt(sb, INIT_INODE_TABLE))
5074 ext4_unregister_li_request(sb);
5075 else {
5076 ext4_group_t first_not_zeroed;
5077 first_not_zeroed = ext4_has_uninit_itable(sb);
5078 ext4_register_li_request(sb, first_not_zeroed);
5079 }
5080
5081 ext4_setup_system_zone(sb);
5082 if (sbi->s_journal == NULL && !(old_sb_flags & MS_RDONLY))
5083 ext4_commit_super(sb, 1);
5084
5085 #ifdef CONFIG_QUOTA
5086 /* Release old quota file names */
5087 for (i = 0; i < EXT4_MAXQUOTAS; i++)
5088 kfree(old_opts.s_qf_names[i]);
5089 if (enable_quota) {
5090 if (sb_any_quota_suspended(sb))
5091 dquot_resume(sb, -1);
5092 else if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
5093 EXT4_FEATURE_RO_COMPAT_QUOTA)) {
5094 err = ext4_enable_quotas(sb);
5095 if (err)
5096 goto restore_opts;
5097 }
5098 }
5099 #endif
5100
5101 *flags = (*flags & ~MS_LAZYTIME) | (sb->s_flags & MS_LAZYTIME);
5102 ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data);
5103 kfree(orig_data);
5104 return 0;
5105
5106 restore_opts:
5107 sb->s_flags = old_sb_flags;
5108 sbi->s_mount_opt = old_opts.s_mount_opt;
5109 sbi->s_mount_opt2 = old_opts.s_mount_opt2;
5110 sbi->s_resuid = old_opts.s_resuid;
5111 sbi->s_resgid = old_opts.s_resgid;
5112 sbi->s_commit_interval = old_opts.s_commit_interval;
5113 sbi->s_min_batch_time = old_opts.s_min_batch_time;
5114 sbi->s_max_batch_time = old_opts.s_max_batch_time;
5115 #ifdef CONFIG_QUOTA
5116 sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
5117 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
5118 kfree(sbi->s_qf_names[i]);
5119 sbi->s_qf_names[i] = old_opts.s_qf_names[i];
5120 }
5121 #endif
5122 kfree(orig_data);
5123 return err;
5124 }
5125
5126 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
5127 {
5128 struct super_block *sb = dentry->d_sb;
5129 struct ext4_sb_info *sbi = EXT4_SB(sb);
5130 struct ext4_super_block *es = sbi->s_es;
5131 ext4_fsblk_t overhead = 0, resv_blocks;
5132 u64 fsid;
5133 s64 bfree;
5134 resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters));
5135
5136 if (!test_opt(sb, MINIX_DF))
5137 overhead = sbi->s_overhead;
5138
5139 buf->f_type = EXT4_SUPER_MAGIC;
5140 buf->f_bsize = sb->s_blocksize;
5141 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead);
5142 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
5143 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
5144 /* prevent underflow in case that few free space is available */
5145 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0));
5146 buf->f_bavail = buf->f_bfree -
5147 (ext4_r_blocks_count(es) + resv_blocks);
5148 if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks))
5149 buf->f_bavail = 0;
5150 buf->f_files = le32_to_cpu(es->s_inodes_count);
5151 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
5152 buf->f_namelen = EXT4_NAME_LEN;
5153 fsid = le64_to_cpup((void *)es->s_uuid) ^
5154 le64_to_cpup((void *)es->s_uuid + sizeof(u64));
5155 buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL;
5156 buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL;
5157
5158 return 0;
5159 }
5160
5161 /* Helper function for writing quotas on sync - we need to start transaction
5162 * before quota file is locked for write. Otherwise the are possible deadlocks:
5163 * Process 1 Process 2
5164 * ext4_create() quota_sync()
5165 * jbd2_journal_start() write_dquot()
5166 * dquot_initialize() down(dqio_mutex)
5167 * down(dqio_mutex) jbd2_journal_start()
5168 *
5169 */
5170
5171 #ifdef CONFIG_QUOTA
5172
5173 static inline struct inode *dquot_to_inode(struct dquot *dquot)
5174 {
5175 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type];
5176 }
5177
5178 static int ext4_write_dquot(struct dquot *dquot)
5179 {
5180 int ret, err;
5181 handle_t *handle;
5182 struct inode *inode;
5183
5184 inode = dquot_to_inode(dquot);
5185 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5186 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
5187 if (IS_ERR(handle))
5188 return PTR_ERR(handle);
5189 ret = dquot_commit(dquot);
5190 err = ext4_journal_stop(handle);
5191 if (!ret)
5192 ret = err;
5193 return ret;
5194 }
5195
5196 static int ext4_acquire_dquot(struct dquot *dquot)
5197 {
5198 int ret, err;
5199 handle_t *handle;
5200
5201 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
5202 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
5203 if (IS_ERR(handle))
5204 return PTR_ERR(handle);
5205 ret = dquot_acquire(dquot);
5206 err = ext4_journal_stop(handle);
5207 if (!ret)
5208 ret = err;
5209 return ret;
5210 }
5211
5212 static int ext4_release_dquot(struct dquot *dquot)
5213 {
5214 int ret, err;
5215 handle_t *handle;
5216
5217 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
5218 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
5219 if (IS_ERR(handle)) {
5220 /* Release dquot anyway to avoid endless cycle in dqput() */
5221 dquot_release(dquot);
5222 return PTR_ERR(handle);
5223 }
5224 ret = dquot_release(dquot);
5225 err = ext4_journal_stop(handle);
5226 if (!ret)
5227 ret = err;
5228 return ret;
5229 }
5230
5231 static int ext4_mark_dquot_dirty(struct dquot *dquot)
5232 {
5233 struct super_block *sb = dquot->dq_sb;
5234 struct ext4_sb_info *sbi = EXT4_SB(sb);
5235
5236 /* Are we journaling quotas? */
5237 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) ||
5238 sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
5239 dquot_mark_dquot_dirty(dquot);
5240 return ext4_write_dquot(dquot);
5241 } else {
5242 return dquot_mark_dquot_dirty(dquot);
5243 }
5244 }
5245
5246 static int ext4_write_info(struct super_block *sb, int type)
5247 {
5248 int ret, err;
5249 handle_t *handle;
5250
5251 /* Data block + inode block */
5252 handle = ext4_journal_start(d_inode(sb->s_root), EXT4_HT_QUOTA, 2);
5253 if (IS_ERR(handle))
5254 return PTR_ERR(handle);
5255 ret = dquot_commit_info(sb, type);
5256 err = ext4_journal_stop(handle);
5257 if (!ret)
5258 ret = err;
5259 return ret;
5260 }
5261
5262 /*
5263 * Turn on quotas during mount time - we need to find
5264 * the quota file and such...
5265 */
5266 static int ext4_quota_on_mount(struct super_block *sb, int type)
5267 {
5268 return dquot_quota_on_mount(sb, EXT4_SB(sb)->s_qf_names[type],
5269 EXT4_SB(sb)->s_jquota_fmt, type);
5270 }
5271
5272 /*
5273 * Standard function to be called on quota_on
5274 */
5275 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
5276 struct path *path)
5277 {
5278 int err;
5279
5280 if (!test_opt(sb, QUOTA))
5281 return -EINVAL;
5282
5283 /* Quotafile not on the same filesystem? */
5284 if (path->dentry->d_sb != sb)
5285 return -EXDEV;
5286 /* Journaling quota? */
5287 if (EXT4_SB(sb)->s_qf_names[type]) {
5288 /* Quotafile not in fs root? */
5289 if (path->dentry->d_parent != sb->s_root)
5290 ext4_msg(sb, KERN_WARNING,
5291 "Quota file not on filesystem root. "
5292 "Journaled quota will not work");
5293 }
5294
5295 /*
5296 * When we journal data on quota file, we have to flush journal to see
5297 * all updates to the file when we bypass pagecache...
5298 */
5299 if (EXT4_SB(sb)->s_journal &&
5300 ext4_should_journal_data(d_inode(path->dentry))) {
5301 /*
5302 * We don't need to lock updates but journal_flush() could
5303 * otherwise be livelocked...
5304 */
5305 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal);
5306 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal);
5307 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
5308 if (err)
5309 return err;
5310 }
5311
5312 return dquot_quota_on(sb, type, format_id, path);
5313 }
5314
5315 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
5316 unsigned int flags)
5317 {
5318 int err;
5319 struct inode *qf_inode;
5320 unsigned long qf_inums[EXT4_MAXQUOTAS] = {
5321 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
5322 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum)
5323 };
5324
5325 BUG_ON(!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA));
5326
5327 if (!qf_inums[type])
5328 return -EPERM;
5329
5330 qf_inode = ext4_iget(sb, qf_inums[type]);
5331 if (IS_ERR(qf_inode)) {
5332 ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]);
5333 return PTR_ERR(qf_inode);
5334 }
5335
5336 /* Don't account quota for quota files to avoid recursion */
5337 qf_inode->i_flags |= S_NOQUOTA;
5338 err = dquot_enable(qf_inode, type, format_id, flags);
5339 iput(qf_inode);
5340
5341 return err;
5342 }
5343
5344 /* Enable usage tracking for all quota types. */
5345 static int ext4_enable_quotas(struct super_block *sb)
5346 {
5347 int type, err = 0;
5348 unsigned long qf_inums[EXT4_MAXQUOTAS] = {
5349 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
5350 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum)
5351 };
5352
5353 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE;
5354 for (type = 0; type < EXT4_MAXQUOTAS; type++) {
5355 if (qf_inums[type]) {
5356 err = ext4_quota_enable(sb, type, QFMT_VFS_V1,
5357 DQUOT_USAGE_ENABLED);
5358 if (err) {
5359 ext4_warning(sb,
5360 "Failed to enable quota tracking "
5361 "(type=%d, err=%d). Please run "
5362 "e2fsck to fix.", type, err);
5363 return err;
5364 }
5365 }
5366 }
5367 return 0;
5368 }
5369
5370 static int ext4_quota_off(struct super_block *sb, int type)
5371 {
5372 struct inode *inode = sb_dqopt(sb)->files[type];
5373 handle_t *handle;
5374
5375 /* Force all delayed allocation blocks to be allocated.
5376 * Caller already holds s_umount sem */
5377 if (test_opt(sb, DELALLOC))
5378 sync_filesystem(sb);
5379
5380 if (!inode)
5381 goto out;
5382
5383 /* Update modification times of quota files when userspace can
5384 * start looking at them */
5385 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
5386 if (IS_ERR(handle))
5387 goto out;
5388 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
5389 ext4_mark_inode_dirty(handle, inode);
5390 ext4_journal_stop(handle);
5391
5392 out:
5393 return dquot_quota_off(sb, type);
5394 }
5395
5396 /* Read data from quotafile - avoid pagecache and such because we cannot afford
5397 * acquiring the locks... As quota files are never truncated and quota code
5398 * itself serializes the operations (and no one else should touch the files)
5399 * we don't have to be afraid of races */
5400 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
5401 size_t len, loff_t off)
5402 {
5403 struct inode *inode = sb_dqopt(sb)->files[type];
5404 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5405 int offset = off & (sb->s_blocksize - 1);
5406 int tocopy;
5407 size_t toread;
5408 struct buffer_head *bh;
5409 loff_t i_size = i_size_read(inode);
5410
5411 if (off > i_size)
5412 return 0;
5413 if (off+len > i_size)
5414 len = i_size-off;
5415 toread = len;
5416 while (toread > 0) {
5417 tocopy = sb->s_blocksize - offset < toread ?
5418 sb->s_blocksize - offset : toread;
5419 bh = ext4_bread(NULL, inode, blk, 0);
5420 if (IS_ERR(bh))
5421 return PTR_ERR(bh);
5422 if (!bh) /* A hole? */
5423 memset(data, 0, tocopy);
5424 else
5425 memcpy(data, bh->b_data+offset, tocopy);
5426 brelse(bh);
5427 offset = 0;
5428 toread -= tocopy;
5429 data += tocopy;
5430 blk++;
5431 }
5432 return len;
5433 }
5434
5435 /* Write to quotafile (we know the transaction is already started and has
5436 * enough credits) */
5437 static ssize_t ext4_quota_write(struct super_block *sb, int type,
5438 const char *data, size_t len, loff_t off)
5439 {
5440 struct inode *inode = sb_dqopt(sb)->files[type];
5441 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5442 int err, offset = off & (sb->s_blocksize - 1);
5443 int retries = 0;
5444 struct buffer_head *bh;
5445 handle_t *handle = journal_current_handle();
5446
5447 if (EXT4_SB(sb)->s_journal && !handle) {
5448 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5449 " cancelled because transaction is not started",
5450 (unsigned long long)off, (unsigned long long)len);
5451 return -EIO;
5452 }
5453 /*
5454 * Since we account only one data block in transaction credits,
5455 * then it is impossible to cross a block boundary.
5456 */
5457 if (sb->s_blocksize - offset < len) {
5458 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5459 " cancelled because not block aligned",
5460 (unsigned long long)off, (unsigned long long)len);
5461 return -EIO;
5462 }
5463
5464 do {
5465 bh = ext4_bread(handle, inode, blk,
5466 EXT4_GET_BLOCKS_CREATE |
5467 EXT4_GET_BLOCKS_METADATA_NOFAIL);
5468 } while (IS_ERR(bh) && (PTR_ERR(bh) == -ENOSPC) &&
5469 ext4_should_retry_alloc(inode->i_sb, &retries));
5470 if (IS_ERR(bh))
5471 return PTR_ERR(bh);
5472 if (!bh)
5473 goto out;
5474 BUFFER_TRACE(bh, "get write access");
5475 err = ext4_journal_get_write_access(handle, bh);
5476 if (err) {
5477 brelse(bh);
5478 return err;
5479 }
5480 lock_buffer(bh);
5481 memcpy(bh->b_data+offset, data, len);
5482 flush_dcache_page(bh->b_page);
5483 unlock_buffer(bh);
5484 err = ext4_handle_dirty_metadata(handle, NULL, bh);
5485 brelse(bh);
5486 out:
5487 if (inode->i_size < off + len) {
5488 i_size_write(inode, off + len);
5489 EXT4_I(inode)->i_disksize = inode->i_size;
5490 ext4_mark_inode_dirty(handle, inode);
5491 }
5492 return len;
5493 }
5494
5495 #endif
5496
5497 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
5498 const char *dev_name, void *data)
5499 {
5500 return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super);
5501 }
5502
5503 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
5504 static inline void register_as_ext2(void)
5505 {
5506 int err = register_filesystem(&ext2_fs_type);
5507 if (err)
5508 printk(KERN_WARNING
5509 "EXT4-fs: Unable to register as ext2 (%d)\n", err);
5510 }
5511
5512 static inline void unregister_as_ext2(void)
5513 {
5514 unregister_filesystem(&ext2_fs_type);
5515 }
5516
5517 static inline int ext2_feature_set_ok(struct super_block *sb)
5518 {
5519 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT2_FEATURE_INCOMPAT_SUPP))
5520 return 0;
5521 if (sb->s_flags & MS_RDONLY)
5522 return 1;
5523 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT2_FEATURE_RO_COMPAT_SUPP))
5524 return 0;
5525 return 1;
5526 }
5527 #else
5528 static inline void register_as_ext2(void) { }
5529 static inline void unregister_as_ext2(void) { }
5530 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
5531 #endif
5532
5533 #if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
5534 static inline void register_as_ext3(void)
5535 {
5536 int err = register_filesystem(&ext3_fs_type);
5537 if (err)
5538 printk(KERN_WARNING
5539 "EXT4-fs: Unable to register as ext3 (%d)\n", err);
5540 }
5541
5542 static inline void unregister_as_ext3(void)
5543 {
5544 unregister_filesystem(&ext3_fs_type);
5545 }
5546
5547 static inline int ext3_feature_set_ok(struct super_block *sb)
5548 {
5549 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT3_FEATURE_INCOMPAT_SUPP))
5550 return 0;
5551 if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL))
5552 return 0;
5553 if (sb->s_flags & MS_RDONLY)
5554 return 1;
5555 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT3_FEATURE_RO_COMPAT_SUPP))
5556 return 0;
5557 return 1;
5558 }
5559 #else
5560 static inline void register_as_ext3(void) { }
5561 static inline void unregister_as_ext3(void) { }
5562 static inline int ext3_feature_set_ok(struct super_block *sb) { return 0; }
5563 #endif
5564
5565 static struct file_system_type ext4_fs_type = {
5566 .owner = THIS_MODULE,
5567 .name = "ext4",
5568 .mount = ext4_mount,
5569 .kill_sb = kill_block_super,
5570 .fs_flags = FS_REQUIRES_DEV,
5571 };
5572 MODULE_ALIAS_FS("ext4");
5573
5574 static int __init ext4_init_feat_adverts(void)
5575 {
5576 struct ext4_features *ef;
5577 int ret = -ENOMEM;
5578
5579 ef = kzalloc(sizeof(struct ext4_features), GFP_KERNEL);
5580 if (!ef)
5581 goto out;
5582
5583 ef->f_kobj.kset = ext4_kset;
5584 init_completion(&ef->f_kobj_unregister);
5585 ret = kobject_init_and_add(&ef->f_kobj, &ext4_feat_ktype, NULL,
5586 "features");
5587 if (ret) {
5588 kfree(ef);
5589 goto out;
5590 }
5591
5592 ext4_feat = ef;
5593 ret = 0;
5594 out:
5595 return ret;
5596 }
5597
5598 static void ext4_exit_feat_adverts(void)
5599 {
5600 kobject_put(&ext4_feat->f_kobj);
5601 wait_for_completion(&ext4_feat->f_kobj_unregister);
5602 kfree(ext4_feat);
5603 }
5604
5605 /* Shared across all ext4 file systems */
5606 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ];
5607 struct mutex ext4__aio_mutex[EXT4_WQ_HASH_SZ];
5608
5609 static int __init ext4_init_fs(void)
5610 {
5611 int i, err;
5612
5613 ext4_li_info = NULL;
5614 mutex_init(&ext4_li_mtx);
5615
5616 /* Build-time check for flags consistency */
5617 ext4_check_flag_values();
5618
5619 for (i = 0; i < EXT4_WQ_HASH_SZ; i++) {
5620 mutex_init(&ext4__aio_mutex[i]);
5621 init_waitqueue_head(&ext4__ioend_wq[i]);
5622 }
5623
5624 err = ext4_init_es();
5625 if (err)
5626 return err;
5627
5628 err = ext4_init_pageio();
5629 if (err)
5630 goto out7;
5631
5632 err = ext4_init_system_zone();
5633 if (err)
5634 goto out6;
5635 ext4_kset = kset_create_and_add("ext4", NULL, fs_kobj);
5636 if (!ext4_kset) {
5637 err = -ENOMEM;
5638 goto out5;
5639 }
5640 ext4_proc_root = proc_mkdir("fs/ext4", NULL);
5641
5642 err = ext4_init_feat_adverts();
5643 if (err)
5644 goto out4;
5645
5646 err = ext4_init_mballoc();
5647 if (err)
5648 goto out2;
5649 else
5650 ext4_mballoc_ready = 1;
5651 err = init_inodecache();
5652 if (err)
5653 goto out1;
5654 register_as_ext3();
5655 register_as_ext2();
5656 err = register_filesystem(&ext4_fs_type);
5657 if (err)
5658 goto out;
5659
5660 return 0;
5661 out:
5662 unregister_as_ext2();
5663 unregister_as_ext3();
5664 destroy_inodecache();
5665 out1:
5666 ext4_mballoc_ready = 0;
5667 ext4_exit_mballoc();
5668 out2:
5669 ext4_exit_feat_adverts();
5670 out4:
5671 if (ext4_proc_root)
5672 remove_proc_entry("fs/ext4", NULL);
5673 kset_unregister(ext4_kset);
5674 out5:
5675 ext4_exit_system_zone();
5676 out6:
5677 ext4_exit_pageio();
5678 out7:
5679 ext4_exit_es();
5680
5681 return err;
5682 }
5683
5684 static void __exit ext4_exit_fs(void)
5685 {
5686 ext4_exit_crypto();
5687 ext4_destroy_lazyinit_thread();
5688 unregister_as_ext2();
5689 unregister_as_ext3();
5690 unregister_filesystem(&ext4_fs_type);
5691 destroy_inodecache();
5692 ext4_exit_mballoc();
5693 ext4_exit_feat_adverts();
5694 remove_proc_entry("fs/ext4", NULL);
5695 kset_unregister(ext4_kset);
5696 ext4_exit_system_zone();
5697 ext4_exit_pageio();
5698 ext4_exit_es();
5699 }
5700
5701 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
5702 MODULE_DESCRIPTION("Fourth Extended Filesystem");
5703 MODULE_LICENSE("GPL");
5704 module_init(ext4_init_fs)
5705 module_exit(ext4_exit_fs)