]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - fs/ext4/super.c
ext4: introduce reserved space
[mirror_ubuntu-zesty-kernel.git] / fs / ext4 / super.c
1 /*
2 * linux/fs/ext4/super.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * Big-endian to little-endian byte-swapping/bitmaps by
16 * David S. Miller (davem@caip.rutgers.edu), 1995
17 */
18
19 #include <linux/module.h>
20 #include <linux/string.h>
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/vmalloc.h>
24 #include <linux/jbd2.h>
25 #include <linux/slab.h>
26 #include <linux/init.h>
27 #include <linux/blkdev.h>
28 #include <linux/parser.h>
29 #include <linux/buffer_head.h>
30 #include <linux/exportfs.h>
31 #include <linux/vfs.h>
32 #include <linux/random.h>
33 #include <linux/mount.h>
34 #include <linux/namei.h>
35 #include <linux/quotaops.h>
36 #include <linux/seq_file.h>
37 #include <linux/proc_fs.h>
38 #include <linux/ctype.h>
39 #include <linux/log2.h>
40 #include <linux/crc16.h>
41 #include <linux/cleancache.h>
42 #include <asm/uaccess.h>
43
44 #include <linux/kthread.h>
45 #include <linux/freezer.h>
46
47 #include "ext4.h"
48 #include "ext4_extents.h" /* Needed for trace points definition */
49 #include "ext4_jbd2.h"
50 #include "xattr.h"
51 #include "acl.h"
52 #include "mballoc.h"
53
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/ext4.h>
56
57 static struct proc_dir_entry *ext4_proc_root;
58 static struct kset *ext4_kset;
59 static struct ext4_lazy_init *ext4_li_info;
60 static struct mutex ext4_li_mtx;
61 static struct ext4_features *ext4_feat;
62
63 static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
64 unsigned long journal_devnum);
65 static int ext4_show_options(struct seq_file *seq, struct dentry *root);
66 static int ext4_commit_super(struct super_block *sb, int sync);
67 static void ext4_mark_recovery_complete(struct super_block *sb,
68 struct ext4_super_block *es);
69 static void ext4_clear_journal_err(struct super_block *sb,
70 struct ext4_super_block *es);
71 static int ext4_sync_fs(struct super_block *sb, int wait);
72 static int ext4_remount(struct super_block *sb, int *flags, char *data);
73 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
74 static int ext4_unfreeze(struct super_block *sb);
75 static int ext4_freeze(struct super_block *sb);
76 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
77 const char *dev_name, void *data);
78 static inline int ext2_feature_set_ok(struct super_block *sb);
79 static inline int ext3_feature_set_ok(struct super_block *sb);
80 static int ext4_feature_set_ok(struct super_block *sb, int readonly);
81 static void ext4_destroy_lazyinit_thread(void);
82 static void ext4_unregister_li_request(struct super_block *sb);
83 static void ext4_clear_request_list(void);
84 static int ext4_reserve_clusters(struct ext4_sb_info *, ext4_fsblk_t);
85
86 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
87 static struct file_system_type ext2_fs_type = {
88 .owner = THIS_MODULE,
89 .name = "ext2",
90 .mount = ext4_mount,
91 .kill_sb = kill_block_super,
92 .fs_flags = FS_REQUIRES_DEV,
93 };
94 MODULE_ALIAS_FS("ext2");
95 MODULE_ALIAS("ext2");
96 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type)
97 #else
98 #define IS_EXT2_SB(sb) (0)
99 #endif
100
101
102 #if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
103 static struct file_system_type ext3_fs_type = {
104 .owner = THIS_MODULE,
105 .name = "ext3",
106 .mount = ext4_mount,
107 .kill_sb = kill_block_super,
108 .fs_flags = FS_REQUIRES_DEV,
109 };
110 MODULE_ALIAS_FS("ext3");
111 MODULE_ALIAS("ext3");
112 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type)
113 #else
114 #define IS_EXT3_SB(sb) (0)
115 #endif
116
117 static int ext4_verify_csum_type(struct super_block *sb,
118 struct ext4_super_block *es)
119 {
120 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
121 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
122 return 1;
123
124 return es->s_checksum_type == EXT4_CRC32C_CHKSUM;
125 }
126
127 static __le32 ext4_superblock_csum(struct super_block *sb,
128 struct ext4_super_block *es)
129 {
130 struct ext4_sb_info *sbi = EXT4_SB(sb);
131 int offset = offsetof(struct ext4_super_block, s_checksum);
132 __u32 csum;
133
134 csum = ext4_chksum(sbi, ~0, (char *)es, offset);
135
136 return cpu_to_le32(csum);
137 }
138
139 int ext4_superblock_csum_verify(struct super_block *sb,
140 struct ext4_super_block *es)
141 {
142 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
143 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
144 return 1;
145
146 return es->s_checksum == ext4_superblock_csum(sb, es);
147 }
148
149 void ext4_superblock_csum_set(struct super_block *sb)
150 {
151 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
152
153 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
154 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
155 return;
156
157 es->s_checksum = ext4_superblock_csum(sb, es);
158 }
159
160 void *ext4_kvmalloc(size_t size, gfp_t flags)
161 {
162 void *ret;
163
164 ret = kmalloc(size, flags);
165 if (!ret)
166 ret = __vmalloc(size, flags, PAGE_KERNEL);
167 return ret;
168 }
169
170 void *ext4_kvzalloc(size_t size, gfp_t flags)
171 {
172 void *ret;
173
174 ret = kzalloc(size, flags);
175 if (!ret)
176 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL);
177 return ret;
178 }
179
180 void ext4_kvfree(void *ptr)
181 {
182 if (is_vmalloc_addr(ptr))
183 vfree(ptr);
184 else
185 kfree(ptr);
186
187 }
188
189 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
190 struct ext4_group_desc *bg)
191 {
192 return le32_to_cpu(bg->bg_block_bitmap_lo) |
193 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
194 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
195 }
196
197 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
198 struct ext4_group_desc *bg)
199 {
200 return le32_to_cpu(bg->bg_inode_bitmap_lo) |
201 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
202 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
203 }
204
205 ext4_fsblk_t ext4_inode_table(struct super_block *sb,
206 struct ext4_group_desc *bg)
207 {
208 return le32_to_cpu(bg->bg_inode_table_lo) |
209 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
210 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
211 }
212
213 __u32 ext4_free_group_clusters(struct super_block *sb,
214 struct ext4_group_desc *bg)
215 {
216 return le16_to_cpu(bg->bg_free_blocks_count_lo) |
217 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
218 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
219 }
220
221 __u32 ext4_free_inodes_count(struct super_block *sb,
222 struct ext4_group_desc *bg)
223 {
224 return le16_to_cpu(bg->bg_free_inodes_count_lo) |
225 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
226 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
227 }
228
229 __u32 ext4_used_dirs_count(struct super_block *sb,
230 struct ext4_group_desc *bg)
231 {
232 return le16_to_cpu(bg->bg_used_dirs_count_lo) |
233 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
234 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
235 }
236
237 __u32 ext4_itable_unused_count(struct super_block *sb,
238 struct ext4_group_desc *bg)
239 {
240 return le16_to_cpu(bg->bg_itable_unused_lo) |
241 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
242 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
243 }
244
245 void ext4_block_bitmap_set(struct super_block *sb,
246 struct ext4_group_desc *bg, ext4_fsblk_t blk)
247 {
248 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
249 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
250 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
251 }
252
253 void ext4_inode_bitmap_set(struct super_block *sb,
254 struct ext4_group_desc *bg, ext4_fsblk_t blk)
255 {
256 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk);
257 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
258 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
259 }
260
261 void ext4_inode_table_set(struct super_block *sb,
262 struct ext4_group_desc *bg, ext4_fsblk_t blk)
263 {
264 bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
265 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
266 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
267 }
268
269 void ext4_free_group_clusters_set(struct super_block *sb,
270 struct ext4_group_desc *bg, __u32 count)
271 {
272 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
273 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
274 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
275 }
276
277 void ext4_free_inodes_set(struct super_block *sb,
278 struct ext4_group_desc *bg, __u32 count)
279 {
280 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
281 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
282 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
283 }
284
285 void ext4_used_dirs_set(struct super_block *sb,
286 struct ext4_group_desc *bg, __u32 count)
287 {
288 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
289 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
290 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
291 }
292
293 void ext4_itable_unused_set(struct super_block *sb,
294 struct ext4_group_desc *bg, __u32 count)
295 {
296 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
297 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
298 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
299 }
300
301
302 static void __save_error_info(struct super_block *sb, const char *func,
303 unsigned int line)
304 {
305 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
306
307 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
308 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
309 es->s_last_error_time = cpu_to_le32(get_seconds());
310 strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func));
311 es->s_last_error_line = cpu_to_le32(line);
312 if (!es->s_first_error_time) {
313 es->s_first_error_time = es->s_last_error_time;
314 strncpy(es->s_first_error_func, func,
315 sizeof(es->s_first_error_func));
316 es->s_first_error_line = cpu_to_le32(line);
317 es->s_first_error_ino = es->s_last_error_ino;
318 es->s_first_error_block = es->s_last_error_block;
319 }
320 /*
321 * Start the daily error reporting function if it hasn't been
322 * started already
323 */
324 if (!es->s_error_count)
325 mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ);
326 le32_add_cpu(&es->s_error_count, 1);
327 }
328
329 static void save_error_info(struct super_block *sb, const char *func,
330 unsigned int line)
331 {
332 __save_error_info(sb, func, line);
333 ext4_commit_super(sb, 1);
334 }
335
336 /*
337 * The del_gendisk() function uninitializes the disk-specific data
338 * structures, including the bdi structure, without telling anyone
339 * else. Once this happens, any attempt to call mark_buffer_dirty()
340 * (for example, by ext4_commit_super), will cause a kernel OOPS.
341 * This is a kludge to prevent these oops until we can put in a proper
342 * hook in del_gendisk() to inform the VFS and file system layers.
343 */
344 static int block_device_ejected(struct super_block *sb)
345 {
346 struct inode *bd_inode = sb->s_bdev->bd_inode;
347 struct backing_dev_info *bdi = bd_inode->i_mapping->backing_dev_info;
348
349 return bdi->dev == NULL;
350 }
351
352 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn)
353 {
354 struct super_block *sb = journal->j_private;
355 struct ext4_sb_info *sbi = EXT4_SB(sb);
356 int error = is_journal_aborted(journal);
357 struct ext4_journal_cb_entry *jce;
358
359 BUG_ON(txn->t_state == T_FINISHED);
360 spin_lock(&sbi->s_md_lock);
361 while (!list_empty(&txn->t_private_list)) {
362 jce = list_entry(txn->t_private_list.next,
363 struct ext4_journal_cb_entry, jce_list);
364 list_del_init(&jce->jce_list);
365 spin_unlock(&sbi->s_md_lock);
366 jce->jce_func(sb, jce, error);
367 spin_lock(&sbi->s_md_lock);
368 }
369 spin_unlock(&sbi->s_md_lock);
370 }
371
372 /* Deal with the reporting of failure conditions on a filesystem such as
373 * inconsistencies detected or read IO failures.
374 *
375 * On ext2, we can store the error state of the filesystem in the
376 * superblock. That is not possible on ext4, because we may have other
377 * write ordering constraints on the superblock which prevent us from
378 * writing it out straight away; and given that the journal is about to
379 * be aborted, we can't rely on the current, or future, transactions to
380 * write out the superblock safely.
381 *
382 * We'll just use the jbd2_journal_abort() error code to record an error in
383 * the journal instead. On recovery, the journal will complain about
384 * that error until we've noted it down and cleared it.
385 */
386
387 static void ext4_handle_error(struct super_block *sb)
388 {
389 if (sb->s_flags & MS_RDONLY)
390 return;
391
392 if (!test_opt(sb, ERRORS_CONT)) {
393 journal_t *journal = EXT4_SB(sb)->s_journal;
394
395 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
396 if (journal)
397 jbd2_journal_abort(journal, -EIO);
398 }
399 if (test_opt(sb, ERRORS_RO)) {
400 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
401 sb->s_flags |= MS_RDONLY;
402 }
403 if (test_opt(sb, ERRORS_PANIC))
404 panic("EXT4-fs (device %s): panic forced after error\n",
405 sb->s_id);
406 }
407
408 void __ext4_error(struct super_block *sb, const char *function,
409 unsigned int line, const char *fmt, ...)
410 {
411 struct va_format vaf;
412 va_list args;
413
414 va_start(args, fmt);
415 vaf.fmt = fmt;
416 vaf.va = &args;
417 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
418 sb->s_id, function, line, current->comm, &vaf);
419 va_end(args);
420 save_error_info(sb, function, line);
421
422 ext4_handle_error(sb);
423 }
424
425 void ext4_error_inode(struct inode *inode, const char *function,
426 unsigned int line, ext4_fsblk_t block,
427 const char *fmt, ...)
428 {
429 va_list args;
430 struct va_format vaf;
431 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
432
433 es->s_last_error_ino = cpu_to_le32(inode->i_ino);
434 es->s_last_error_block = cpu_to_le64(block);
435 save_error_info(inode->i_sb, function, line);
436 va_start(args, fmt);
437 vaf.fmt = fmt;
438 vaf.va = &args;
439 if (block)
440 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
441 "inode #%lu: block %llu: comm %s: %pV\n",
442 inode->i_sb->s_id, function, line, inode->i_ino,
443 block, current->comm, &vaf);
444 else
445 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
446 "inode #%lu: comm %s: %pV\n",
447 inode->i_sb->s_id, function, line, inode->i_ino,
448 current->comm, &vaf);
449 va_end(args);
450
451 ext4_handle_error(inode->i_sb);
452 }
453
454 void ext4_error_file(struct file *file, const char *function,
455 unsigned int line, ext4_fsblk_t block,
456 const char *fmt, ...)
457 {
458 va_list args;
459 struct va_format vaf;
460 struct ext4_super_block *es;
461 struct inode *inode = file_inode(file);
462 char pathname[80], *path;
463
464 es = EXT4_SB(inode->i_sb)->s_es;
465 es->s_last_error_ino = cpu_to_le32(inode->i_ino);
466 save_error_info(inode->i_sb, function, line);
467 path = d_path(&(file->f_path), pathname, sizeof(pathname));
468 if (IS_ERR(path))
469 path = "(unknown)";
470 va_start(args, fmt);
471 vaf.fmt = fmt;
472 vaf.va = &args;
473 if (block)
474 printk(KERN_CRIT
475 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
476 "block %llu: comm %s: path %s: %pV\n",
477 inode->i_sb->s_id, function, line, inode->i_ino,
478 block, current->comm, path, &vaf);
479 else
480 printk(KERN_CRIT
481 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
482 "comm %s: path %s: %pV\n",
483 inode->i_sb->s_id, function, line, inode->i_ino,
484 current->comm, path, &vaf);
485 va_end(args);
486
487 ext4_handle_error(inode->i_sb);
488 }
489
490 const char *ext4_decode_error(struct super_block *sb, int errno,
491 char nbuf[16])
492 {
493 char *errstr = NULL;
494
495 switch (errno) {
496 case -EIO:
497 errstr = "IO failure";
498 break;
499 case -ENOMEM:
500 errstr = "Out of memory";
501 break;
502 case -EROFS:
503 if (!sb || (EXT4_SB(sb)->s_journal &&
504 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
505 errstr = "Journal has aborted";
506 else
507 errstr = "Readonly filesystem";
508 break;
509 default:
510 /* If the caller passed in an extra buffer for unknown
511 * errors, textualise them now. Else we just return
512 * NULL. */
513 if (nbuf) {
514 /* Check for truncated error codes... */
515 if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
516 errstr = nbuf;
517 }
518 break;
519 }
520
521 return errstr;
522 }
523
524 /* __ext4_std_error decodes expected errors from journaling functions
525 * automatically and invokes the appropriate error response. */
526
527 void __ext4_std_error(struct super_block *sb, const char *function,
528 unsigned int line, int errno)
529 {
530 char nbuf[16];
531 const char *errstr;
532
533 /* Special case: if the error is EROFS, and we're not already
534 * inside a transaction, then there's really no point in logging
535 * an error. */
536 if (errno == -EROFS && journal_current_handle() == NULL &&
537 (sb->s_flags & MS_RDONLY))
538 return;
539
540 errstr = ext4_decode_error(sb, errno, nbuf);
541 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
542 sb->s_id, function, line, errstr);
543 save_error_info(sb, function, line);
544
545 ext4_handle_error(sb);
546 }
547
548 /*
549 * ext4_abort is a much stronger failure handler than ext4_error. The
550 * abort function may be used to deal with unrecoverable failures such
551 * as journal IO errors or ENOMEM at a critical moment in log management.
552 *
553 * We unconditionally force the filesystem into an ABORT|READONLY state,
554 * unless the error response on the fs has been set to panic in which
555 * case we take the easy way out and panic immediately.
556 */
557
558 void __ext4_abort(struct super_block *sb, const char *function,
559 unsigned int line, const char *fmt, ...)
560 {
561 va_list args;
562
563 save_error_info(sb, function, line);
564 va_start(args, fmt);
565 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: ", sb->s_id,
566 function, line);
567 vprintk(fmt, args);
568 printk("\n");
569 va_end(args);
570
571 if ((sb->s_flags & MS_RDONLY) == 0) {
572 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
573 sb->s_flags |= MS_RDONLY;
574 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
575 if (EXT4_SB(sb)->s_journal)
576 jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO);
577 save_error_info(sb, function, line);
578 }
579 if (test_opt(sb, ERRORS_PANIC))
580 panic("EXT4-fs panic from previous error\n");
581 }
582
583 void ext4_msg(struct super_block *sb, const char *prefix, const char *fmt, ...)
584 {
585 struct va_format vaf;
586 va_list args;
587
588 va_start(args, fmt);
589 vaf.fmt = fmt;
590 vaf.va = &args;
591 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
592 va_end(args);
593 }
594
595 void __ext4_warning(struct super_block *sb, const char *function,
596 unsigned int line, const char *fmt, ...)
597 {
598 struct va_format vaf;
599 va_list args;
600
601 va_start(args, fmt);
602 vaf.fmt = fmt;
603 vaf.va = &args;
604 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
605 sb->s_id, function, line, &vaf);
606 va_end(args);
607 }
608
609 void __ext4_grp_locked_error(const char *function, unsigned int line,
610 struct super_block *sb, ext4_group_t grp,
611 unsigned long ino, ext4_fsblk_t block,
612 const char *fmt, ...)
613 __releases(bitlock)
614 __acquires(bitlock)
615 {
616 struct va_format vaf;
617 va_list args;
618 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
619
620 es->s_last_error_ino = cpu_to_le32(ino);
621 es->s_last_error_block = cpu_to_le64(block);
622 __save_error_info(sb, function, line);
623
624 va_start(args, fmt);
625
626 vaf.fmt = fmt;
627 vaf.va = &args;
628 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
629 sb->s_id, function, line, grp);
630 if (ino)
631 printk(KERN_CONT "inode %lu: ", ino);
632 if (block)
633 printk(KERN_CONT "block %llu:", (unsigned long long) block);
634 printk(KERN_CONT "%pV\n", &vaf);
635 va_end(args);
636
637 if (test_opt(sb, ERRORS_CONT)) {
638 ext4_commit_super(sb, 0);
639 return;
640 }
641
642 ext4_unlock_group(sb, grp);
643 ext4_handle_error(sb);
644 /*
645 * We only get here in the ERRORS_RO case; relocking the group
646 * may be dangerous, but nothing bad will happen since the
647 * filesystem will have already been marked read/only and the
648 * journal has been aborted. We return 1 as a hint to callers
649 * who might what to use the return value from
650 * ext4_grp_locked_error() to distinguish between the
651 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
652 * aggressively from the ext4 function in question, with a
653 * more appropriate error code.
654 */
655 ext4_lock_group(sb, grp);
656 return;
657 }
658
659 void ext4_update_dynamic_rev(struct super_block *sb)
660 {
661 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
662
663 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
664 return;
665
666 ext4_warning(sb,
667 "updating to rev %d because of new feature flag, "
668 "running e2fsck is recommended",
669 EXT4_DYNAMIC_REV);
670
671 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
672 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
673 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
674 /* leave es->s_feature_*compat flags alone */
675 /* es->s_uuid will be set by e2fsck if empty */
676
677 /*
678 * The rest of the superblock fields should be zero, and if not it
679 * means they are likely already in use, so leave them alone. We
680 * can leave it up to e2fsck to clean up any inconsistencies there.
681 */
682 }
683
684 /*
685 * Open the external journal device
686 */
687 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb)
688 {
689 struct block_device *bdev;
690 char b[BDEVNAME_SIZE];
691
692 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb);
693 if (IS_ERR(bdev))
694 goto fail;
695 return bdev;
696
697 fail:
698 ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld",
699 __bdevname(dev, b), PTR_ERR(bdev));
700 return NULL;
701 }
702
703 /*
704 * Release the journal device
705 */
706 static int ext4_blkdev_put(struct block_device *bdev)
707 {
708 return blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
709 }
710
711 static int ext4_blkdev_remove(struct ext4_sb_info *sbi)
712 {
713 struct block_device *bdev;
714 int ret = -ENODEV;
715
716 bdev = sbi->journal_bdev;
717 if (bdev) {
718 ret = ext4_blkdev_put(bdev);
719 sbi->journal_bdev = NULL;
720 }
721 return ret;
722 }
723
724 static inline struct inode *orphan_list_entry(struct list_head *l)
725 {
726 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
727 }
728
729 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
730 {
731 struct list_head *l;
732
733 ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
734 le32_to_cpu(sbi->s_es->s_last_orphan));
735
736 printk(KERN_ERR "sb_info orphan list:\n");
737 list_for_each(l, &sbi->s_orphan) {
738 struct inode *inode = orphan_list_entry(l);
739 printk(KERN_ERR " "
740 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
741 inode->i_sb->s_id, inode->i_ino, inode,
742 inode->i_mode, inode->i_nlink,
743 NEXT_ORPHAN(inode));
744 }
745 }
746
747 static void ext4_put_super(struct super_block *sb)
748 {
749 struct ext4_sb_info *sbi = EXT4_SB(sb);
750 struct ext4_super_block *es = sbi->s_es;
751 int i, err;
752
753 ext4_unregister_li_request(sb);
754 dquot_disable(sb, -1, DQUOT_USAGE_ENABLED | DQUOT_LIMITS_ENABLED);
755
756 flush_workqueue(sbi->dio_unwritten_wq);
757 destroy_workqueue(sbi->dio_unwritten_wq);
758
759 if (sbi->s_journal) {
760 err = jbd2_journal_destroy(sbi->s_journal);
761 sbi->s_journal = NULL;
762 if (err < 0)
763 ext4_abort(sb, "Couldn't clean up the journal");
764 }
765
766 ext4_es_unregister_shrinker(sb);
767 del_timer(&sbi->s_err_report);
768 ext4_release_system_zone(sb);
769 ext4_mb_release(sb);
770 ext4_ext_release(sb);
771 ext4_xattr_put_super(sb);
772
773 if (!(sb->s_flags & MS_RDONLY)) {
774 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
775 es->s_state = cpu_to_le16(sbi->s_mount_state);
776 }
777 if (!(sb->s_flags & MS_RDONLY))
778 ext4_commit_super(sb, 1);
779
780 if (sbi->s_proc) {
781 remove_proc_entry("options", sbi->s_proc);
782 remove_proc_entry(sb->s_id, ext4_proc_root);
783 }
784 kobject_del(&sbi->s_kobj);
785
786 for (i = 0; i < sbi->s_gdb_count; i++)
787 brelse(sbi->s_group_desc[i]);
788 ext4_kvfree(sbi->s_group_desc);
789 ext4_kvfree(sbi->s_flex_groups);
790 percpu_counter_destroy(&sbi->s_freeclusters_counter);
791 percpu_counter_destroy(&sbi->s_freeinodes_counter);
792 percpu_counter_destroy(&sbi->s_dirs_counter);
793 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
794 percpu_counter_destroy(&sbi->s_extent_cache_cnt);
795 brelse(sbi->s_sbh);
796 #ifdef CONFIG_QUOTA
797 for (i = 0; i < MAXQUOTAS; i++)
798 kfree(sbi->s_qf_names[i]);
799 #endif
800
801 /* Debugging code just in case the in-memory inode orphan list
802 * isn't empty. The on-disk one can be non-empty if we've
803 * detected an error and taken the fs readonly, but the
804 * in-memory list had better be clean by this point. */
805 if (!list_empty(&sbi->s_orphan))
806 dump_orphan_list(sb, sbi);
807 J_ASSERT(list_empty(&sbi->s_orphan));
808
809 invalidate_bdev(sb->s_bdev);
810 if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) {
811 /*
812 * Invalidate the journal device's buffers. We don't want them
813 * floating about in memory - the physical journal device may
814 * hotswapped, and it breaks the `ro-after' testing code.
815 */
816 sync_blockdev(sbi->journal_bdev);
817 invalidate_bdev(sbi->journal_bdev);
818 ext4_blkdev_remove(sbi);
819 }
820 if (sbi->s_mmp_tsk)
821 kthread_stop(sbi->s_mmp_tsk);
822 sb->s_fs_info = NULL;
823 /*
824 * Now that we are completely done shutting down the
825 * superblock, we need to actually destroy the kobject.
826 */
827 kobject_put(&sbi->s_kobj);
828 wait_for_completion(&sbi->s_kobj_unregister);
829 if (sbi->s_chksum_driver)
830 crypto_free_shash(sbi->s_chksum_driver);
831 kfree(sbi->s_blockgroup_lock);
832 kfree(sbi);
833 }
834
835 static struct kmem_cache *ext4_inode_cachep;
836
837 /*
838 * Called inside transaction, so use GFP_NOFS
839 */
840 static struct inode *ext4_alloc_inode(struct super_block *sb)
841 {
842 struct ext4_inode_info *ei;
843
844 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS);
845 if (!ei)
846 return NULL;
847
848 ei->vfs_inode.i_version = 1;
849 INIT_LIST_HEAD(&ei->i_prealloc_list);
850 spin_lock_init(&ei->i_prealloc_lock);
851 ext4_es_init_tree(&ei->i_es_tree);
852 rwlock_init(&ei->i_es_lock);
853 INIT_LIST_HEAD(&ei->i_es_lru);
854 ei->i_es_lru_nr = 0;
855 ei->i_reserved_data_blocks = 0;
856 ei->i_reserved_meta_blocks = 0;
857 ei->i_allocated_meta_blocks = 0;
858 ei->i_da_metadata_calc_len = 0;
859 ei->i_da_metadata_calc_last_lblock = 0;
860 spin_lock_init(&(ei->i_block_reservation_lock));
861 #ifdef CONFIG_QUOTA
862 ei->i_reserved_quota = 0;
863 #endif
864 ei->jinode = NULL;
865 INIT_LIST_HEAD(&ei->i_completed_io_list);
866 spin_lock_init(&ei->i_completed_io_lock);
867 ei->i_sync_tid = 0;
868 ei->i_datasync_tid = 0;
869 atomic_set(&ei->i_ioend_count, 0);
870 atomic_set(&ei->i_unwritten, 0);
871 INIT_WORK(&ei->i_unwritten_work, ext4_end_io_work);
872
873 return &ei->vfs_inode;
874 }
875
876 static int ext4_drop_inode(struct inode *inode)
877 {
878 int drop = generic_drop_inode(inode);
879
880 trace_ext4_drop_inode(inode, drop);
881 return drop;
882 }
883
884 static void ext4_i_callback(struct rcu_head *head)
885 {
886 struct inode *inode = container_of(head, struct inode, i_rcu);
887 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
888 }
889
890 static void ext4_destroy_inode(struct inode *inode)
891 {
892 if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
893 ext4_msg(inode->i_sb, KERN_ERR,
894 "Inode %lu (%p): orphan list check failed!",
895 inode->i_ino, EXT4_I(inode));
896 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
897 EXT4_I(inode), sizeof(struct ext4_inode_info),
898 true);
899 dump_stack();
900 }
901 call_rcu(&inode->i_rcu, ext4_i_callback);
902 }
903
904 static void init_once(void *foo)
905 {
906 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo;
907
908 INIT_LIST_HEAD(&ei->i_orphan);
909 init_rwsem(&ei->xattr_sem);
910 init_rwsem(&ei->i_data_sem);
911 inode_init_once(&ei->vfs_inode);
912 }
913
914 static int init_inodecache(void)
915 {
916 ext4_inode_cachep = kmem_cache_create("ext4_inode_cache",
917 sizeof(struct ext4_inode_info),
918 0, (SLAB_RECLAIM_ACCOUNT|
919 SLAB_MEM_SPREAD),
920 init_once);
921 if (ext4_inode_cachep == NULL)
922 return -ENOMEM;
923 return 0;
924 }
925
926 static void destroy_inodecache(void)
927 {
928 /*
929 * Make sure all delayed rcu free inodes are flushed before we
930 * destroy cache.
931 */
932 rcu_barrier();
933 kmem_cache_destroy(ext4_inode_cachep);
934 }
935
936 void ext4_clear_inode(struct inode *inode)
937 {
938 invalidate_inode_buffers(inode);
939 clear_inode(inode);
940 dquot_drop(inode);
941 ext4_discard_preallocations(inode);
942 ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS);
943 ext4_es_lru_del(inode);
944 if (EXT4_I(inode)->jinode) {
945 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
946 EXT4_I(inode)->jinode);
947 jbd2_free_inode(EXT4_I(inode)->jinode);
948 EXT4_I(inode)->jinode = NULL;
949 }
950 }
951
952 static struct inode *ext4_nfs_get_inode(struct super_block *sb,
953 u64 ino, u32 generation)
954 {
955 struct inode *inode;
956
957 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
958 return ERR_PTR(-ESTALE);
959 if (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
960 return ERR_PTR(-ESTALE);
961
962 /* iget isn't really right if the inode is currently unallocated!!
963 *
964 * ext4_read_inode will return a bad_inode if the inode had been
965 * deleted, so we should be safe.
966 *
967 * Currently we don't know the generation for parent directory, so
968 * a generation of 0 means "accept any"
969 */
970 inode = ext4_iget(sb, ino);
971 if (IS_ERR(inode))
972 return ERR_CAST(inode);
973 if (generation && inode->i_generation != generation) {
974 iput(inode);
975 return ERR_PTR(-ESTALE);
976 }
977
978 return inode;
979 }
980
981 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
982 int fh_len, int fh_type)
983 {
984 return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
985 ext4_nfs_get_inode);
986 }
987
988 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
989 int fh_len, int fh_type)
990 {
991 return generic_fh_to_parent(sb, fid, fh_len, fh_type,
992 ext4_nfs_get_inode);
993 }
994
995 /*
996 * Try to release metadata pages (indirect blocks, directories) which are
997 * mapped via the block device. Since these pages could have journal heads
998 * which would prevent try_to_free_buffers() from freeing them, we must use
999 * jbd2 layer's try_to_free_buffers() function to release them.
1000 */
1001 static int bdev_try_to_free_page(struct super_block *sb, struct page *page,
1002 gfp_t wait)
1003 {
1004 journal_t *journal = EXT4_SB(sb)->s_journal;
1005
1006 WARN_ON(PageChecked(page));
1007 if (!page_has_buffers(page))
1008 return 0;
1009 if (journal)
1010 return jbd2_journal_try_to_free_buffers(journal, page,
1011 wait & ~__GFP_WAIT);
1012 return try_to_free_buffers(page);
1013 }
1014
1015 #ifdef CONFIG_QUOTA
1016 #define QTYPE2NAME(t) ((t) == USRQUOTA ? "user" : "group")
1017 #define QTYPE2MOPT(on, t) ((t) == USRQUOTA?((on)##USRJQUOTA):((on)##GRPJQUOTA))
1018
1019 static int ext4_write_dquot(struct dquot *dquot);
1020 static int ext4_acquire_dquot(struct dquot *dquot);
1021 static int ext4_release_dquot(struct dquot *dquot);
1022 static int ext4_mark_dquot_dirty(struct dquot *dquot);
1023 static int ext4_write_info(struct super_block *sb, int type);
1024 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1025 struct path *path);
1026 static int ext4_quota_on_sysfile(struct super_block *sb, int type,
1027 int format_id);
1028 static int ext4_quota_off(struct super_block *sb, int type);
1029 static int ext4_quota_off_sysfile(struct super_block *sb, int type);
1030 static int ext4_quota_on_mount(struct super_block *sb, int type);
1031 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1032 size_t len, loff_t off);
1033 static ssize_t ext4_quota_write(struct super_block *sb, int type,
1034 const char *data, size_t len, loff_t off);
1035 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
1036 unsigned int flags);
1037 static int ext4_enable_quotas(struct super_block *sb);
1038
1039 static const struct dquot_operations ext4_quota_operations = {
1040 .get_reserved_space = ext4_get_reserved_space,
1041 .write_dquot = ext4_write_dquot,
1042 .acquire_dquot = ext4_acquire_dquot,
1043 .release_dquot = ext4_release_dquot,
1044 .mark_dirty = ext4_mark_dquot_dirty,
1045 .write_info = ext4_write_info,
1046 .alloc_dquot = dquot_alloc,
1047 .destroy_dquot = dquot_destroy,
1048 };
1049
1050 static const struct quotactl_ops ext4_qctl_operations = {
1051 .quota_on = ext4_quota_on,
1052 .quota_off = ext4_quota_off,
1053 .quota_sync = dquot_quota_sync,
1054 .get_info = dquot_get_dqinfo,
1055 .set_info = dquot_set_dqinfo,
1056 .get_dqblk = dquot_get_dqblk,
1057 .set_dqblk = dquot_set_dqblk
1058 };
1059
1060 static const struct quotactl_ops ext4_qctl_sysfile_operations = {
1061 .quota_on_meta = ext4_quota_on_sysfile,
1062 .quota_off = ext4_quota_off_sysfile,
1063 .quota_sync = dquot_quota_sync,
1064 .get_info = dquot_get_dqinfo,
1065 .set_info = dquot_set_dqinfo,
1066 .get_dqblk = dquot_get_dqblk,
1067 .set_dqblk = dquot_set_dqblk
1068 };
1069 #endif
1070
1071 static const struct super_operations ext4_sops = {
1072 .alloc_inode = ext4_alloc_inode,
1073 .destroy_inode = ext4_destroy_inode,
1074 .write_inode = ext4_write_inode,
1075 .dirty_inode = ext4_dirty_inode,
1076 .drop_inode = ext4_drop_inode,
1077 .evict_inode = ext4_evict_inode,
1078 .put_super = ext4_put_super,
1079 .sync_fs = ext4_sync_fs,
1080 .freeze_fs = ext4_freeze,
1081 .unfreeze_fs = ext4_unfreeze,
1082 .statfs = ext4_statfs,
1083 .remount_fs = ext4_remount,
1084 .show_options = ext4_show_options,
1085 #ifdef CONFIG_QUOTA
1086 .quota_read = ext4_quota_read,
1087 .quota_write = ext4_quota_write,
1088 #endif
1089 .bdev_try_to_free_page = bdev_try_to_free_page,
1090 };
1091
1092 static const struct super_operations ext4_nojournal_sops = {
1093 .alloc_inode = ext4_alloc_inode,
1094 .destroy_inode = ext4_destroy_inode,
1095 .write_inode = ext4_write_inode,
1096 .dirty_inode = ext4_dirty_inode,
1097 .drop_inode = ext4_drop_inode,
1098 .evict_inode = ext4_evict_inode,
1099 .put_super = ext4_put_super,
1100 .statfs = ext4_statfs,
1101 .remount_fs = ext4_remount,
1102 .show_options = ext4_show_options,
1103 #ifdef CONFIG_QUOTA
1104 .quota_read = ext4_quota_read,
1105 .quota_write = ext4_quota_write,
1106 #endif
1107 .bdev_try_to_free_page = bdev_try_to_free_page,
1108 };
1109
1110 static const struct export_operations ext4_export_ops = {
1111 .fh_to_dentry = ext4_fh_to_dentry,
1112 .fh_to_parent = ext4_fh_to_parent,
1113 .get_parent = ext4_get_parent,
1114 };
1115
1116 enum {
1117 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1118 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro,
1119 Opt_nouid32, Opt_debug, Opt_removed,
1120 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl,
1121 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload,
1122 Opt_commit, Opt_min_batch_time, Opt_max_batch_time,
1123 Opt_journal_dev, Opt_journal_checksum, Opt_journal_async_commit,
1124 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1125 Opt_data_err_abort, Opt_data_err_ignore,
1126 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota,
1127 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota,
1128 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err,
1129 Opt_usrquota, Opt_grpquota, Opt_i_version,
1130 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_mblk_io_submit,
1131 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1132 Opt_inode_readahead_blks, Opt_journal_ioprio,
1133 Opt_dioread_nolock, Opt_dioread_lock,
1134 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable,
1135 Opt_max_dir_size_kb,
1136 };
1137
1138 static const match_table_t tokens = {
1139 {Opt_bsd_df, "bsddf"},
1140 {Opt_minix_df, "minixdf"},
1141 {Opt_grpid, "grpid"},
1142 {Opt_grpid, "bsdgroups"},
1143 {Opt_nogrpid, "nogrpid"},
1144 {Opt_nogrpid, "sysvgroups"},
1145 {Opt_resgid, "resgid=%u"},
1146 {Opt_resuid, "resuid=%u"},
1147 {Opt_sb, "sb=%u"},
1148 {Opt_err_cont, "errors=continue"},
1149 {Opt_err_panic, "errors=panic"},
1150 {Opt_err_ro, "errors=remount-ro"},
1151 {Opt_nouid32, "nouid32"},
1152 {Opt_debug, "debug"},
1153 {Opt_removed, "oldalloc"},
1154 {Opt_removed, "orlov"},
1155 {Opt_user_xattr, "user_xattr"},
1156 {Opt_nouser_xattr, "nouser_xattr"},
1157 {Opt_acl, "acl"},
1158 {Opt_noacl, "noacl"},
1159 {Opt_noload, "norecovery"},
1160 {Opt_noload, "noload"},
1161 {Opt_removed, "nobh"},
1162 {Opt_removed, "bh"},
1163 {Opt_commit, "commit=%u"},
1164 {Opt_min_batch_time, "min_batch_time=%u"},
1165 {Opt_max_batch_time, "max_batch_time=%u"},
1166 {Opt_journal_dev, "journal_dev=%u"},
1167 {Opt_journal_checksum, "journal_checksum"},
1168 {Opt_journal_async_commit, "journal_async_commit"},
1169 {Opt_abort, "abort"},
1170 {Opt_data_journal, "data=journal"},
1171 {Opt_data_ordered, "data=ordered"},
1172 {Opt_data_writeback, "data=writeback"},
1173 {Opt_data_err_abort, "data_err=abort"},
1174 {Opt_data_err_ignore, "data_err=ignore"},
1175 {Opt_offusrjquota, "usrjquota="},
1176 {Opt_usrjquota, "usrjquota=%s"},
1177 {Opt_offgrpjquota, "grpjquota="},
1178 {Opt_grpjquota, "grpjquota=%s"},
1179 {Opt_jqfmt_vfsold, "jqfmt=vfsold"},
1180 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
1181 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
1182 {Opt_grpquota, "grpquota"},
1183 {Opt_noquota, "noquota"},
1184 {Opt_quota, "quota"},
1185 {Opt_usrquota, "usrquota"},
1186 {Opt_barrier, "barrier=%u"},
1187 {Opt_barrier, "barrier"},
1188 {Opt_nobarrier, "nobarrier"},
1189 {Opt_i_version, "i_version"},
1190 {Opt_stripe, "stripe=%u"},
1191 {Opt_delalloc, "delalloc"},
1192 {Opt_nodelalloc, "nodelalloc"},
1193 {Opt_removed, "mblk_io_submit"},
1194 {Opt_removed, "nomblk_io_submit"},
1195 {Opt_block_validity, "block_validity"},
1196 {Opt_noblock_validity, "noblock_validity"},
1197 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"},
1198 {Opt_journal_ioprio, "journal_ioprio=%u"},
1199 {Opt_auto_da_alloc, "auto_da_alloc=%u"},
1200 {Opt_auto_da_alloc, "auto_da_alloc"},
1201 {Opt_noauto_da_alloc, "noauto_da_alloc"},
1202 {Opt_dioread_nolock, "dioread_nolock"},
1203 {Opt_dioread_lock, "dioread_lock"},
1204 {Opt_discard, "discard"},
1205 {Opt_nodiscard, "nodiscard"},
1206 {Opt_init_itable, "init_itable=%u"},
1207 {Opt_init_itable, "init_itable"},
1208 {Opt_noinit_itable, "noinit_itable"},
1209 {Opt_max_dir_size_kb, "max_dir_size_kb=%u"},
1210 {Opt_removed, "check=none"}, /* mount option from ext2/3 */
1211 {Opt_removed, "nocheck"}, /* mount option from ext2/3 */
1212 {Opt_removed, "reservation"}, /* mount option from ext2/3 */
1213 {Opt_removed, "noreservation"}, /* mount option from ext2/3 */
1214 {Opt_removed, "journal=%u"}, /* mount option from ext2/3 */
1215 {Opt_err, NULL},
1216 };
1217
1218 static ext4_fsblk_t get_sb_block(void **data)
1219 {
1220 ext4_fsblk_t sb_block;
1221 char *options = (char *) *data;
1222
1223 if (!options || strncmp(options, "sb=", 3) != 0)
1224 return 1; /* Default location */
1225
1226 options += 3;
1227 /* TODO: use simple_strtoll with >32bit ext4 */
1228 sb_block = simple_strtoul(options, &options, 0);
1229 if (*options && *options != ',') {
1230 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n",
1231 (char *) *data);
1232 return 1;
1233 }
1234 if (*options == ',')
1235 options++;
1236 *data = (void *) options;
1237
1238 return sb_block;
1239 }
1240
1241 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1242 static char deprecated_msg[] = "Mount option \"%s\" will be removed by %s\n"
1243 "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n";
1244
1245 #ifdef CONFIG_QUOTA
1246 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args)
1247 {
1248 struct ext4_sb_info *sbi = EXT4_SB(sb);
1249 char *qname;
1250 int ret = -1;
1251
1252 if (sb_any_quota_loaded(sb) &&
1253 !sbi->s_qf_names[qtype]) {
1254 ext4_msg(sb, KERN_ERR,
1255 "Cannot change journaled "
1256 "quota options when quota turned on");
1257 return -1;
1258 }
1259 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA)) {
1260 ext4_msg(sb, KERN_ERR, "Cannot set journaled quota options "
1261 "when QUOTA feature is enabled");
1262 return -1;
1263 }
1264 qname = match_strdup(args);
1265 if (!qname) {
1266 ext4_msg(sb, KERN_ERR,
1267 "Not enough memory for storing quotafile name");
1268 return -1;
1269 }
1270 if (sbi->s_qf_names[qtype]) {
1271 if (strcmp(sbi->s_qf_names[qtype], qname) == 0)
1272 ret = 1;
1273 else
1274 ext4_msg(sb, KERN_ERR,
1275 "%s quota file already specified",
1276 QTYPE2NAME(qtype));
1277 goto errout;
1278 }
1279 if (strchr(qname, '/')) {
1280 ext4_msg(sb, KERN_ERR,
1281 "quotafile must be on filesystem root");
1282 goto errout;
1283 }
1284 sbi->s_qf_names[qtype] = qname;
1285 set_opt(sb, QUOTA);
1286 return 1;
1287 errout:
1288 kfree(qname);
1289 return ret;
1290 }
1291
1292 static int clear_qf_name(struct super_block *sb, int qtype)
1293 {
1294
1295 struct ext4_sb_info *sbi = EXT4_SB(sb);
1296
1297 if (sb_any_quota_loaded(sb) &&
1298 sbi->s_qf_names[qtype]) {
1299 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options"
1300 " when quota turned on");
1301 return -1;
1302 }
1303 kfree(sbi->s_qf_names[qtype]);
1304 sbi->s_qf_names[qtype] = NULL;
1305 return 1;
1306 }
1307 #endif
1308
1309 #define MOPT_SET 0x0001
1310 #define MOPT_CLEAR 0x0002
1311 #define MOPT_NOSUPPORT 0x0004
1312 #define MOPT_EXPLICIT 0x0008
1313 #define MOPT_CLEAR_ERR 0x0010
1314 #define MOPT_GTE0 0x0020
1315 #ifdef CONFIG_QUOTA
1316 #define MOPT_Q 0
1317 #define MOPT_QFMT 0x0040
1318 #else
1319 #define MOPT_Q MOPT_NOSUPPORT
1320 #define MOPT_QFMT MOPT_NOSUPPORT
1321 #endif
1322 #define MOPT_DATAJ 0x0080
1323 #define MOPT_NO_EXT2 0x0100
1324 #define MOPT_NO_EXT3 0x0200
1325 #define MOPT_EXT4_ONLY (MOPT_NO_EXT2 | MOPT_NO_EXT3)
1326
1327 static const struct mount_opts {
1328 int token;
1329 int mount_opt;
1330 int flags;
1331 } ext4_mount_opts[] = {
1332 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET},
1333 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR},
1334 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET},
1335 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR},
1336 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET},
1337 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR},
1338 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK,
1339 MOPT_EXT4_ONLY | MOPT_SET},
1340 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK,
1341 MOPT_EXT4_ONLY | MOPT_CLEAR},
1342 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET},
1343 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR},
1344 {Opt_delalloc, EXT4_MOUNT_DELALLOC,
1345 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1346 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC,
1347 MOPT_EXT4_ONLY | MOPT_CLEAR | MOPT_EXPLICIT},
1348 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1349 MOPT_EXT4_ONLY | MOPT_SET},
1350 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT |
1351 EXT4_MOUNT_JOURNAL_CHECKSUM),
1352 MOPT_EXT4_ONLY | MOPT_SET},
1353 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET},
1354 {Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR},
1355 {Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR},
1356 {Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR},
1357 {Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT,
1358 MOPT_NO_EXT2 | MOPT_SET},
1359 {Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT,
1360 MOPT_NO_EXT2 | MOPT_CLEAR},
1361 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET},
1362 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR},
1363 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET},
1364 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR},
1365 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR},
1366 {Opt_commit, 0, MOPT_GTE0},
1367 {Opt_max_batch_time, 0, MOPT_GTE0},
1368 {Opt_min_batch_time, 0, MOPT_GTE0},
1369 {Opt_inode_readahead_blks, 0, MOPT_GTE0},
1370 {Opt_init_itable, 0, MOPT_GTE0},
1371 {Opt_stripe, 0, MOPT_GTE0},
1372 {Opt_resuid, 0, MOPT_GTE0},
1373 {Opt_resgid, 0, MOPT_GTE0},
1374 {Opt_journal_dev, 0, MOPT_GTE0},
1375 {Opt_journal_ioprio, 0, MOPT_GTE0},
1376 {Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1377 {Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1378 {Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA,
1379 MOPT_NO_EXT2 | MOPT_DATAJ},
1380 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET},
1381 {Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR},
1382 #ifdef CONFIG_EXT4_FS_POSIX_ACL
1383 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET},
1384 {Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR},
1385 #else
1386 {Opt_acl, 0, MOPT_NOSUPPORT},
1387 {Opt_noacl, 0, MOPT_NOSUPPORT},
1388 #endif
1389 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET},
1390 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET},
1391 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q},
1392 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA,
1393 MOPT_SET | MOPT_Q},
1394 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA,
1395 MOPT_SET | MOPT_Q},
1396 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
1397 EXT4_MOUNT_GRPQUOTA), MOPT_CLEAR | MOPT_Q},
1398 {Opt_usrjquota, 0, MOPT_Q},
1399 {Opt_grpjquota, 0, MOPT_Q},
1400 {Opt_offusrjquota, 0, MOPT_Q},
1401 {Opt_offgrpjquota, 0, MOPT_Q},
1402 {Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT},
1403 {Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT},
1404 {Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT},
1405 {Opt_max_dir_size_kb, 0, MOPT_GTE0},
1406 {Opt_err, 0, 0}
1407 };
1408
1409 static int handle_mount_opt(struct super_block *sb, char *opt, int token,
1410 substring_t *args, unsigned long *journal_devnum,
1411 unsigned int *journal_ioprio, int is_remount)
1412 {
1413 struct ext4_sb_info *sbi = EXT4_SB(sb);
1414 const struct mount_opts *m;
1415 kuid_t uid;
1416 kgid_t gid;
1417 int arg = 0;
1418
1419 #ifdef CONFIG_QUOTA
1420 if (token == Opt_usrjquota)
1421 return set_qf_name(sb, USRQUOTA, &args[0]);
1422 else if (token == Opt_grpjquota)
1423 return set_qf_name(sb, GRPQUOTA, &args[0]);
1424 else if (token == Opt_offusrjquota)
1425 return clear_qf_name(sb, USRQUOTA);
1426 else if (token == Opt_offgrpjquota)
1427 return clear_qf_name(sb, GRPQUOTA);
1428 #endif
1429 switch (token) {
1430 case Opt_noacl:
1431 case Opt_nouser_xattr:
1432 ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5");
1433 break;
1434 case Opt_sb:
1435 return 1; /* handled by get_sb_block() */
1436 case Opt_removed:
1437 ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt);
1438 return 1;
1439 case Opt_abort:
1440 sbi->s_mount_flags |= EXT4_MF_FS_ABORTED;
1441 return 1;
1442 case Opt_i_version:
1443 sb->s_flags |= MS_I_VERSION;
1444 return 1;
1445 }
1446
1447 for (m = ext4_mount_opts; m->token != Opt_err; m++)
1448 if (token == m->token)
1449 break;
1450
1451 if (m->token == Opt_err) {
1452 ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" "
1453 "or missing value", opt);
1454 return -1;
1455 }
1456
1457 if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) {
1458 ext4_msg(sb, KERN_ERR,
1459 "Mount option \"%s\" incompatible with ext2", opt);
1460 return -1;
1461 }
1462 if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) {
1463 ext4_msg(sb, KERN_ERR,
1464 "Mount option \"%s\" incompatible with ext3", opt);
1465 return -1;
1466 }
1467
1468 if (args->from && match_int(args, &arg))
1469 return -1;
1470 if (args->from && (m->flags & MOPT_GTE0) && (arg < 0))
1471 return -1;
1472 if (m->flags & MOPT_EXPLICIT)
1473 set_opt2(sb, EXPLICIT_DELALLOC);
1474 if (m->flags & MOPT_CLEAR_ERR)
1475 clear_opt(sb, ERRORS_MASK);
1476 if (token == Opt_noquota && sb_any_quota_loaded(sb)) {
1477 ext4_msg(sb, KERN_ERR, "Cannot change quota "
1478 "options when quota turned on");
1479 return -1;
1480 }
1481
1482 if (m->flags & MOPT_NOSUPPORT) {
1483 ext4_msg(sb, KERN_ERR, "%s option not supported", opt);
1484 } else if (token == Opt_commit) {
1485 if (arg == 0)
1486 arg = JBD2_DEFAULT_MAX_COMMIT_AGE;
1487 sbi->s_commit_interval = HZ * arg;
1488 } else if (token == Opt_max_batch_time) {
1489 if (arg == 0)
1490 arg = EXT4_DEF_MAX_BATCH_TIME;
1491 sbi->s_max_batch_time = arg;
1492 } else if (token == Opt_min_batch_time) {
1493 sbi->s_min_batch_time = arg;
1494 } else if (token == Opt_inode_readahead_blks) {
1495 if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) {
1496 ext4_msg(sb, KERN_ERR,
1497 "EXT4-fs: inode_readahead_blks must be "
1498 "0 or a power of 2 smaller than 2^31");
1499 return -1;
1500 }
1501 sbi->s_inode_readahead_blks = arg;
1502 } else if (token == Opt_init_itable) {
1503 set_opt(sb, INIT_INODE_TABLE);
1504 if (!args->from)
1505 arg = EXT4_DEF_LI_WAIT_MULT;
1506 sbi->s_li_wait_mult = arg;
1507 } else if (token == Opt_max_dir_size_kb) {
1508 sbi->s_max_dir_size_kb = arg;
1509 } else if (token == Opt_stripe) {
1510 sbi->s_stripe = arg;
1511 } else if (token == Opt_resuid) {
1512 uid = make_kuid(current_user_ns(), arg);
1513 if (!uid_valid(uid)) {
1514 ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg);
1515 return -1;
1516 }
1517 sbi->s_resuid = uid;
1518 } else if (token == Opt_resgid) {
1519 gid = make_kgid(current_user_ns(), arg);
1520 if (!gid_valid(gid)) {
1521 ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg);
1522 return -1;
1523 }
1524 sbi->s_resgid = gid;
1525 } else if (token == Opt_journal_dev) {
1526 if (is_remount) {
1527 ext4_msg(sb, KERN_ERR,
1528 "Cannot specify journal on remount");
1529 return -1;
1530 }
1531 *journal_devnum = arg;
1532 } else if (token == Opt_journal_ioprio) {
1533 if (arg > 7) {
1534 ext4_msg(sb, KERN_ERR, "Invalid journal IO priority"
1535 " (must be 0-7)");
1536 return -1;
1537 }
1538 *journal_ioprio =
1539 IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg);
1540 } else if (m->flags & MOPT_DATAJ) {
1541 if (is_remount) {
1542 if (!sbi->s_journal)
1543 ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option");
1544 else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) {
1545 ext4_msg(sb, KERN_ERR,
1546 "Cannot change data mode on remount");
1547 return -1;
1548 }
1549 } else {
1550 clear_opt(sb, DATA_FLAGS);
1551 sbi->s_mount_opt |= m->mount_opt;
1552 }
1553 #ifdef CONFIG_QUOTA
1554 } else if (m->flags & MOPT_QFMT) {
1555 if (sb_any_quota_loaded(sb) &&
1556 sbi->s_jquota_fmt != m->mount_opt) {
1557 ext4_msg(sb, KERN_ERR, "Cannot change journaled "
1558 "quota options when quota turned on");
1559 return -1;
1560 }
1561 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
1562 EXT4_FEATURE_RO_COMPAT_QUOTA)) {
1563 ext4_msg(sb, KERN_ERR,
1564 "Cannot set journaled quota options "
1565 "when QUOTA feature is enabled");
1566 return -1;
1567 }
1568 sbi->s_jquota_fmt = m->mount_opt;
1569 #endif
1570 } else {
1571 if (!args->from)
1572 arg = 1;
1573 if (m->flags & MOPT_CLEAR)
1574 arg = !arg;
1575 else if (unlikely(!(m->flags & MOPT_SET))) {
1576 ext4_msg(sb, KERN_WARNING,
1577 "buggy handling of option %s", opt);
1578 WARN_ON(1);
1579 return -1;
1580 }
1581 if (arg != 0)
1582 sbi->s_mount_opt |= m->mount_opt;
1583 else
1584 sbi->s_mount_opt &= ~m->mount_opt;
1585 }
1586 return 1;
1587 }
1588
1589 static int parse_options(char *options, struct super_block *sb,
1590 unsigned long *journal_devnum,
1591 unsigned int *journal_ioprio,
1592 int is_remount)
1593 {
1594 struct ext4_sb_info *sbi = EXT4_SB(sb);
1595 char *p;
1596 substring_t args[MAX_OPT_ARGS];
1597 int token;
1598
1599 if (!options)
1600 return 1;
1601
1602 while ((p = strsep(&options, ",")) != NULL) {
1603 if (!*p)
1604 continue;
1605 /*
1606 * Initialize args struct so we know whether arg was
1607 * found; some options take optional arguments.
1608 */
1609 args[0].to = args[0].from = NULL;
1610 token = match_token(p, tokens, args);
1611 if (handle_mount_opt(sb, p, token, args, journal_devnum,
1612 journal_ioprio, is_remount) < 0)
1613 return 0;
1614 }
1615 #ifdef CONFIG_QUOTA
1616 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) &&
1617 (test_opt(sb, USRQUOTA) || test_opt(sb, GRPQUOTA))) {
1618 ext4_msg(sb, KERN_ERR, "Cannot set quota options when QUOTA "
1619 "feature is enabled");
1620 return 0;
1621 }
1622 if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
1623 if (test_opt(sb, USRQUOTA) && sbi->s_qf_names[USRQUOTA])
1624 clear_opt(sb, USRQUOTA);
1625
1626 if (test_opt(sb, GRPQUOTA) && sbi->s_qf_names[GRPQUOTA])
1627 clear_opt(sb, GRPQUOTA);
1628
1629 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) {
1630 ext4_msg(sb, KERN_ERR, "old and new quota "
1631 "format mixing");
1632 return 0;
1633 }
1634
1635 if (!sbi->s_jquota_fmt) {
1636 ext4_msg(sb, KERN_ERR, "journaled quota format "
1637 "not specified");
1638 return 0;
1639 }
1640 } else {
1641 if (sbi->s_jquota_fmt) {
1642 ext4_msg(sb, KERN_ERR, "journaled quota format "
1643 "specified with no journaling "
1644 "enabled");
1645 return 0;
1646 }
1647 }
1648 #endif
1649 if (test_opt(sb, DIOREAD_NOLOCK)) {
1650 int blocksize =
1651 BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size);
1652
1653 if (blocksize < PAGE_CACHE_SIZE) {
1654 ext4_msg(sb, KERN_ERR, "can't mount with "
1655 "dioread_nolock if block size != PAGE_SIZE");
1656 return 0;
1657 }
1658 }
1659 return 1;
1660 }
1661
1662 static inline void ext4_show_quota_options(struct seq_file *seq,
1663 struct super_block *sb)
1664 {
1665 #if defined(CONFIG_QUOTA)
1666 struct ext4_sb_info *sbi = EXT4_SB(sb);
1667
1668 if (sbi->s_jquota_fmt) {
1669 char *fmtname = "";
1670
1671 switch (sbi->s_jquota_fmt) {
1672 case QFMT_VFS_OLD:
1673 fmtname = "vfsold";
1674 break;
1675 case QFMT_VFS_V0:
1676 fmtname = "vfsv0";
1677 break;
1678 case QFMT_VFS_V1:
1679 fmtname = "vfsv1";
1680 break;
1681 }
1682 seq_printf(seq, ",jqfmt=%s", fmtname);
1683 }
1684
1685 if (sbi->s_qf_names[USRQUOTA])
1686 seq_printf(seq, ",usrjquota=%s", sbi->s_qf_names[USRQUOTA]);
1687
1688 if (sbi->s_qf_names[GRPQUOTA])
1689 seq_printf(seq, ",grpjquota=%s", sbi->s_qf_names[GRPQUOTA]);
1690
1691 if (test_opt(sb, USRQUOTA))
1692 seq_puts(seq, ",usrquota");
1693
1694 if (test_opt(sb, GRPQUOTA))
1695 seq_puts(seq, ",grpquota");
1696 #endif
1697 }
1698
1699 static const char *token2str(int token)
1700 {
1701 const struct match_token *t;
1702
1703 for (t = tokens; t->token != Opt_err; t++)
1704 if (t->token == token && !strchr(t->pattern, '='))
1705 break;
1706 return t->pattern;
1707 }
1708
1709 /*
1710 * Show an option if
1711 * - it's set to a non-default value OR
1712 * - if the per-sb default is different from the global default
1713 */
1714 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb,
1715 int nodefs)
1716 {
1717 struct ext4_sb_info *sbi = EXT4_SB(sb);
1718 struct ext4_super_block *es = sbi->s_es;
1719 int def_errors, def_mount_opt = nodefs ? 0 : sbi->s_def_mount_opt;
1720 const struct mount_opts *m;
1721 char sep = nodefs ? '\n' : ',';
1722
1723 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep)
1724 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg)
1725
1726 if (sbi->s_sb_block != 1)
1727 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block);
1728
1729 for (m = ext4_mount_opts; m->token != Opt_err; m++) {
1730 int want_set = m->flags & MOPT_SET;
1731 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) ||
1732 (m->flags & MOPT_CLEAR_ERR))
1733 continue;
1734 if (!(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt)))
1735 continue; /* skip if same as the default */
1736 if ((want_set &&
1737 (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) ||
1738 (!want_set && (sbi->s_mount_opt & m->mount_opt)))
1739 continue; /* select Opt_noFoo vs Opt_Foo */
1740 SEQ_OPTS_PRINT("%s", token2str(m->token));
1741 }
1742
1743 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) ||
1744 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID)
1745 SEQ_OPTS_PRINT("resuid=%u",
1746 from_kuid_munged(&init_user_ns, sbi->s_resuid));
1747 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) ||
1748 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID)
1749 SEQ_OPTS_PRINT("resgid=%u",
1750 from_kgid_munged(&init_user_ns, sbi->s_resgid));
1751 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors);
1752 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO)
1753 SEQ_OPTS_PUTS("errors=remount-ro");
1754 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
1755 SEQ_OPTS_PUTS("errors=continue");
1756 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
1757 SEQ_OPTS_PUTS("errors=panic");
1758 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
1759 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ);
1760 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME)
1761 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time);
1762 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME)
1763 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time);
1764 if (sb->s_flags & MS_I_VERSION)
1765 SEQ_OPTS_PUTS("i_version");
1766 if (nodefs || sbi->s_stripe)
1767 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe);
1768 if (EXT4_MOUNT_DATA_FLAGS & (sbi->s_mount_opt ^ def_mount_opt)) {
1769 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
1770 SEQ_OPTS_PUTS("data=journal");
1771 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
1772 SEQ_OPTS_PUTS("data=ordered");
1773 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
1774 SEQ_OPTS_PUTS("data=writeback");
1775 }
1776 if (nodefs ||
1777 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
1778 SEQ_OPTS_PRINT("inode_readahead_blks=%u",
1779 sbi->s_inode_readahead_blks);
1780
1781 if (nodefs || (test_opt(sb, INIT_INODE_TABLE) &&
1782 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)))
1783 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult);
1784 if (nodefs || sbi->s_max_dir_size_kb)
1785 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb);
1786
1787 ext4_show_quota_options(seq, sb);
1788 return 0;
1789 }
1790
1791 static int ext4_show_options(struct seq_file *seq, struct dentry *root)
1792 {
1793 return _ext4_show_options(seq, root->d_sb, 0);
1794 }
1795
1796 static int options_seq_show(struct seq_file *seq, void *offset)
1797 {
1798 struct super_block *sb = seq->private;
1799 int rc;
1800
1801 seq_puts(seq, (sb->s_flags & MS_RDONLY) ? "ro" : "rw");
1802 rc = _ext4_show_options(seq, sb, 1);
1803 seq_puts(seq, "\n");
1804 return rc;
1805 }
1806
1807 static int options_open_fs(struct inode *inode, struct file *file)
1808 {
1809 return single_open(file, options_seq_show, PDE(inode)->data);
1810 }
1811
1812 static const struct file_operations ext4_seq_options_fops = {
1813 .owner = THIS_MODULE,
1814 .open = options_open_fs,
1815 .read = seq_read,
1816 .llseek = seq_lseek,
1817 .release = single_release,
1818 };
1819
1820 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
1821 int read_only)
1822 {
1823 struct ext4_sb_info *sbi = EXT4_SB(sb);
1824 int res = 0;
1825
1826 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
1827 ext4_msg(sb, KERN_ERR, "revision level too high, "
1828 "forcing read-only mode");
1829 res = MS_RDONLY;
1830 }
1831 if (read_only)
1832 goto done;
1833 if (!(sbi->s_mount_state & EXT4_VALID_FS))
1834 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
1835 "running e2fsck is recommended");
1836 else if ((sbi->s_mount_state & EXT4_ERROR_FS))
1837 ext4_msg(sb, KERN_WARNING,
1838 "warning: mounting fs with errors, "
1839 "running e2fsck is recommended");
1840 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
1841 le16_to_cpu(es->s_mnt_count) >=
1842 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
1843 ext4_msg(sb, KERN_WARNING,
1844 "warning: maximal mount count reached, "
1845 "running e2fsck is recommended");
1846 else if (le32_to_cpu(es->s_checkinterval) &&
1847 (le32_to_cpu(es->s_lastcheck) +
1848 le32_to_cpu(es->s_checkinterval) <= get_seconds()))
1849 ext4_msg(sb, KERN_WARNING,
1850 "warning: checktime reached, "
1851 "running e2fsck is recommended");
1852 if (!sbi->s_journal)
1853 es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
1854 if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
1855 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
1856 le16_add_cpu(&es->s_mnt_count, 1);
1857 es->s_mtime = cpu_to_le32(get_seconds());
1858 ext4_update_dynamic_rev(sb);
1859 if (sbi->s_journal)
1860 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
1861
1862 ext4_commit_super(sb, 1);
1863 done:
1864 if (test_opt(sb, DEBUG))
1865 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
1866 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
1867 sb->s_blocksize,
1868 sbi->s_groups_count,
1869 EXT4_BLOCKS_PER_GROUP(sb),
1870 EXT4_INODES_PER_GROUP(sb),
1871 sbi->s_mount_opt, sbi->s_mount_opt2);
1872
1873 cleancache_init_fs(sb);
1874 return res;
1875 }
1876
1877 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup)
1878 {
1879 struct ext4_sb_info *sbi = EXT4_SB(sb);
1880 struct flex_groups *new_groups;
1881 int size;
1882
1883 if (!sbi->s_log_groups_per_flex)
1884 return 0;
1885
1886 size = ext4_flex_group(sbi, ngroup - 1) + 1;
1887 if (size <= sbi->s_flex_groups_allocated)
1888 return 0;
1889
1890 size = roundup_pow_of_two(size * sizeof(struct flex_groups));
1891 new_groups = ext4_kvzalloc(size, GFP_KERNEL);
1892 if (!new_groups) {
1893 ext4_msg(sb, KERN_ERR, "not enough memory for %d flex groups",
1894 size / (int) sizeof(struct flex_groups));
1895 return -ENOMEM;
1896 }
1897
1898 if (sbi->s_flex_groups) {
1899 memcpy(new_groups, sbi->s_flex_groups,
1900 (sbi->s_flex_groups_allocated *
1901 sizeof(struct flex_groups)));
1902 ext4_kvfree(sbi->s_flex_groups);
1903 }
1904 sbi->s_flex_groups = new_groups;
1905 sbi->s_flex_groups_allocated = size / sizeof(struct flex_groups);
1906 return 0;
1907 }
1908
1909 static int ext4_fill_flex_info(struct super_block *sb)
1910 {
1911 struct ext4_sb_info *sbi = EXT4_SB(sb);
1912 struct ext4_group_desc *gdp = NULL;
1913 ext4_group_t flex_group;
1914 unsigned int groups_per_flex = 0;
1915 int i, err;
1916
1917 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
1918 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) {
1919 sbi->s_log_groups_per_flex = 0;
1920 return 1;
1921 }
1922 groups_per_flex = 1U << sbi->s_log_groups_per_flex;
1923
1924 err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count);
1925 if (err)
1926 goto failed;
1927
1928 for (i = 0; i < sbi->s_groups_count; i++) {
1929 gdp = ext4_get_group_desc(sb, i, NULL);
1930
1931 flex_group = ext4_flex_group(sbi, i);
1932 atomic_add(ext4_free_inodes_count(sb, gdp),
1933 &sbi->s_flex_groups[flex_group].free_inodes);
1934 atomic64_add(ext4_free_group_clusters(sb, gdp),
1935 &sbi->s_flex_groups[flex_group].free_clusters);
1936 atomic_add(ext4_used_dirs_count(sb, gdp),
1937 &sbi->s_flex_groups[flex_group].used_dirs);
1938 }
1939
1940 return 1;
1941 failed:
1942 return 0;
1943 }
1944
1945 static __le16 ext4_group_desc_csum(struct ext4_sb_info *sbi, __u32 block_group,
1946 struct ext4_group_desc *gdp)
1947 {
1948 int offset;
1949 __u16 crc = 0;
1950 __le32 le_group = cpu_to_le32(block_group);
1951
1952 if ((sbi->s_es->s_feature_ro_compat &
1953 cpu_to_le32(EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))) {
1954 /* Use new metadata_csum algorithm */
1955 __u16 old_csum;
1956 __u32 csum32;
1957
1958 old_csum = gdp->bg_checksum;
1959 gdp->bg_checksum = 0;
1960 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group,
1961 sizeof(le_group));
1962 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp,
1963 sbi->s_desc_size);
1964 gdp->bg_checksum = old_csum;
1965
1966 crc = csum32 & 0xFFFF;
1967 goto out;
1968 }
1969
1970 /* old crc16 code */
1971 offset = offsetof(struct ext4_group_desc, bg_checksum);
1972
1973 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
1974 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
1975 crc = crc16(crc, (__u8 *)gdp, offset);
1976 offset += sizeof(gdp->bg_checksum); /* skip checksum */
1977 /* for checksum of struct ext4_group_desc do the rest...*/
1978 if ((sbi->s_es->s_feature_incompat &
1979 cpu_to_le32(EXT4_FEATURE_INCOMPAT_64BIT)) &&
1980 offset < le16_to_cpu(sbi->s_es->s_desc_size))
1981 crc = crc16(crc, (__u8 *)gdp + offset,
1982 le16_to_cpu(sbi->s_es->s_desc_size) -
1983 offset);
1984
1985 out:
1986 return cpu_to_le16(crc);
1987 }
1988
1989 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group,
1990 struct ext4_group_desc *gdp)
1991 {
1992 if (ext4_has_group_desc_csum(sb) &&
1993 (gdp->bg_checksum != ext4_group_desc_csum(EXT4_SB(sb),
1994 block_group, gdp)))
1995 return 0;
1996
1997 return 1;
1998 }
1999
2000 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group,
2001 struct ext4_group_desc *gdp)
2002 {
2003 if (!ext4_has_group_desc_csum(sb))
2004 return;
2005 gdp->bg_checksum = ext4_group_desc_csum(EXT4_SB(sb), block_group, gdp);
2006 }
2007
2008 /* Called at mount-time, super-block is locked */
2009 static int ext4_check_descriptors(struct super_block *sb,
2010 ext4_group_t *first_not_zeroed)
2011 {
2012 struct ext4_sb_info *sbi = EXT4_SB(sb);
2013 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
2014 ext4_fsblk_t last_block;
2015 ext4_fsblk_t block_bitmap;
2016 ext4_fsblk_t inode_bitmap;
2017 ext4_fsblk_t inode_table;
2018 int flexbg_flag = 0;
2019 ext4_group_t i, grp = sbi->s_groups_count;
2020
2021 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG))
2022 flexbg_flag = 1;
2023
2024 ext4_debug("Checking group descriptors");
2025
2026 for (i = 0; i < sbi->s_groups_count; i++) {
2027 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
2028
2029 if (i == sbi->s_groups_count - 1 || flexbg_flag)
2030 last_block = ext4_blocks_count(sbi->s_es) - 1;
2031 else
2032 last_block = first_block +
2033 (EXT4_BLOCKS_PER_GROUP(sb) - 1);
2034
2035 if ((grp == sbi->s_groups_count) &&
2036 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2037 grp = i;
2038
2039 block_bitmap = ext4_block_bitmap(sb, gdp);
2040 if (block_bitmap < first_block || block_bitmap > last_block) {
2041 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2042 "Block bitmap for group %u not in group "
2043 "(block %llu)!", i, block_bitmap);
2044 return 0;
2045 }
2046 inode_bitmap = ext4_inode_bitmap(sb, gdp);
2047 if (inode_bitmap < first_block || inode_bitmap > last_block) {
2048 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2049 "Inode bitmap for group %u not in group "
2050 "(block %llu)!", i, inode_bitmap);
2051 return 0;
2052 }
2053 inode_table = ext4_inode_table(sb, gdp);
2054 if (inode_table < first_block ||
2055 inode_table + sbi->s_itb_per_group - 1 > last_block) {
2056 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2057 "Inode table for group %u not in group "
2058 "(block %llu)!", i, inode_table);
2059 return 0;
2060 }
2061 ext4_lock_group(sb, i);
2062 if (!ext4_group_desc_csum_verify(sb, i, gdp)) {
2063 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2064 "Checksum for group %u failed (%u!=%u)",
2065 i, le16_to_cpu(ext4_group_desc_csum(sbi, i,
2066 gdp)), le16_to_cpu(gdp->bg_checksum));
2067 if (!(sb->s_flags & MS_RDONLY)) {
2068 ext4_unlock_group(sb, i);
2069 return 0;
2070 }
2071 }
2072 ext4_unlock_group(sb, i);
2073 if (!flexbg_flag)
2074 first_block += EXT4_BLOCKS_PER_GROUP(sb);
2075 }
2076 if (NULL != first_not_zeroed)
2077 *first_not_zeroed = grp;
2078
2079 ext4_free_blocks_count_set(sbi->s_es,
2080 EXT4_C2B(sbi, ext4_count_free_clusters(sb)));
2081 sbi->s_es->s_free_inodes_count =cpu_to_le32(ext4_count_free_inodes(sb));
2082 return 1;
2083 }
2084
2085 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at
2086 * the superblock) which were deleted from all directories, but held open by
2087 * a process at the time of a crash. We walk the list and try to delete these
2088 * inodes at recovery time (only with a read-write filesystem).
2089 *
2090 * In order to keep the orphan inode chain consistent during traversal (in
2091 * case of crash during recovery), we link each inode into the superblock
2092 * orphan list_head and handle it the same way as an inode deletion during
2093 * normal operation (which journals the operations for us).
2094 *
2095 * We only do an iget() and an iput() on each inode, which is very safe if we
2096 * accidentally point at an in-use or already deleted inode. The worst that
2097 * can happen in this case is that we get a "bit already cleared" message from
2098 * ext4_free_inode(). The only reason we would point at a wrong inode is if
2099 * e2fsck was run on this filesystem, and it must have already done the orphan
2100 * inode cleanup for us, so we can safely abort without any further action.
2101 */
2102 static void ext4_orphan_cleanup(struct super_block *sb,
2103 struct ext4_super_block *es)
2104 {
2105 unsigned int s_flags = sb->s_flags;
2106 int nr_orphans = 0, nr_truncates = 0;
2107 #ifdef CONFIG_QUOTA
2108 int i;
2109 #endif
2110 if (!es->s_last_orphan) {
2111 jbd_debug(4, "no orphan inodes to clean up\n");
2112 return;
2113 }
2114
2115 if (bdev_read_only(sb->s_bdev)) {
2116 ext4_msg(sb, KERN_ERR, "write access "
2117 "unavailable, skipping orphan cleanup");
2118 return;
2119 }
2120
2121 /* Check if feature set would not allow a r/w mount */
2122 if (!ext4_feature_set_ok(sb, 0)) {
2123 ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to "
2124 "unknown ROCOMPAT features");
2125 return;
2126 }
2127
2128 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2129 /* don't clear list on RO mount w/ errors */
2130 if (es->s_last_orphan && !(s_flags & MS_RDONLY)) {
2131 jbd_debug(1, "Errors on filesystem, "
2132 "clearing orphan list.\n");
2133 es->s_last_orphan = 0;
2134 }
2135 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2136 return;
2137 }
2138
2139 if (s_flags & MS_RDONLY) {
2140 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs");
2141 sb->s_flags &= ~MS_RDONLY;
2142 }
2143 #ifdef CONFIG_QUOTA
2144 /* Needed for iput() to work correctly and not trash data */
2145 sb->s_flags |= MS_ACTIVE;
2146 /* Turn on quotas so that they are updated correctly */
2147 for (i = 0; i < MAXQUOTAS; i++) {
2148 if (EXT4_SB(sb)->s_qf_names[i]) {
2149 int ret = ext4_quota_on_mount(sb, i);
2150 if (ret < 0)
2151 ext4_msg(sb, KERN_ERR,
2152 "Cannot turn on journaled "
2153 "quota: error %d", ret);
2154 }
2155 }
2156 #endif
2157
2158 while (es->s_last_orphan) {
2159 struct inode *inode;
2160
2161 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan));
2162 if (IS_ERR(inode)) {
2163 es->s_last_orphan = 0;
2164 break;
2165 }
2166
2167 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan);
2168 dquot_initialize(inode);
2169 if (inode->i_nlink) {
2170 ext4_msg(sb, KERN_DEBUG,
2171 "%s: truncating inode %lu to %lld bytes",
2172 __func__, inode->i_ino, inode->i_size);
2173 jbd_debug(2, "truncating inode %lu to %lld bytes\n",
2174 inode->i_ino, inode->i_size);
2175 mutex_lock(&inode->i_mutex);
2176 ext4_truncate(inode);
2177 mutex_unlock(&inode->i_mutex);
2178 nr_truncates++;
2179 } else {
2180 ext4_msg(sb, KERN_DEBUG,
2181 "%s: deleting unreferenced inode %lu",
2182 __func__, inode->i_ino);
2183 jbd_debug(2, "deleting unreferenced inode %lu\n",
2184 inode->i_ino);
2185 nr_orphans++;
2186 }
2187 iput(inode); /* The delete magic happens here! */
2188 }
2189
2190 #define PLURAL(x) (x), ((x) == 1) ? "" : "s"
2191
2192 if (nr_orphans)
2193 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted",
2194 PLURAL(nr_orphans));
2195 if (nr_truncates)
2196 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up",
2197 PLURAL(nr_truncates));
2198 #ifdef CONFIG_QUOTA
2199 /* Turn quotas off */
2200 for (i = 0; i < MAXQUOTAS; i++) {
2201 if (sb_dqopt(sb)->files[i])
2202 dquot_quota_off(sb, i);
2203 }
2204 #endif
2205 sb->s_flags = s_flags; /* Restore MS_RDONLY status */
2206 }
2207
2208 /*
2209 * Maximal extent format file size.
2210 * Resulting logical blkno at s_maxbytes must fit in our on-disk
2211 * extent format containers, within a sector_t, and within i_blocks
2212 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units,
2213 * so that won't be a limiting factor.
2214 *
2215 * However there is other limiting factor. We do store extents in the form
2216 * of starting block and length, hence the resulting length of the extent
2217 * covering maximum file size must fit into on-disk format containers as
2218 * well. Given that length is always by 1 unit bigger than max unit (because
2219 * we count 0 as well) we have to lower the s_maxbytes by one fs block.
2220 *
2221 * Note, this does *not* consider any metadata overhead for vfs i_blocks.
2222 */
2223 static loff_t ext4_max_size(int blkbits, int has_huge_files)
2224 {
2225 loff_t res;
2226 loff_t upper_limit = MAX_LFS_FILESIZE;
2227
2228 /* small i_blocks in vfs inode? */
2229 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2230 /*
2231 * CONFIG_LBDAF is not enabled implies the inode
2232 * i_block represent total blocks in 512 bytes
2233 * 32 == size of vfs inode i_blocks * 8
2234 */
2235 upper_limit = (1LL << 32) - 1;
2236
2237 /* total blocks in file system block size */
2238 upper_limit >>= (blkbits - 9);
2239 upper_limit <<= blkbits;
2240 }
2241
2242 /*
2243 * 32-bit extent-start container, ee_block. We lower the maxbytes
2244 * by one fs block, so ee_len can cover the extent of maximum file
2245 * size
2246 */
2247 res = (1LL << 32) - 1;
2248 res <<= blkbits;
2249
2250 /* Sanity check against vm- & vfs- imposed limits */
2251 if (res > upper_limit)
2252 res = upper_limit;
2253
2254 return res;
2255 }
2256
2257 /*
2258 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect
2259 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
2260 * We need to be 1 filesystem block less than the 2^48 sector limit.
2261 */
2262 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
2263 {
2264 loff_t res = EXT4_NDIR_BLOCKS;
2265 int meta_blocks;
2266 loff_t upper_limit;
2267 /* This is calculated to be the largest file size for a dense, block
2268 * mapped file such that the file's total number of 512-byte sectors,
2269 * including data and all indirect blocks, does not exceed (2^48 - 1).
2270 *
2271 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
2272 * number of 512-byte sectors of the file.
2273 */
2274
2275 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2276 /*
2277 * !has_huge_files or CONFIG_LBDAF not enabled implies that
2278 * the inode i_block field represents total file blocks in
2279 * 2^32 512-byte sectors == size of vfs inode i_blocks * 8
2280 */
2281 upper_limit = (1LL << 32) - 1;
2282
2283 /* total blocks in file system block size */
2284 upper_limit >>= (bits - 9);
2285
2286 } else {
2287 /*
2288 * We use 48 bit ext4_inode i_blocks
2289 * With EXT4_HUGE_FILE_FL set the i_blocks
2290 * represent total number of blocks in
2291 * file system block size
2292 */
2293 upper_limit = (1LL << 48) - 1;
2294
2295 }
2296
2297 /* indirect blocks */
2298 meta_blocks = 1;
2299 /* double indirect blocks */
2300 meta_blocks += 1 + (1LL << (bits-2));
2301 /* tripple indirect blocks */
2302 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2)));
2303
2304 upper_limit -= meta_blocks;
2305 upper_limit <<= bits;
2306
2307 res += 1LL << (bits-2);
2308 res += 1LL << (2*(bits-2));
2309 res += 1LL << (3*(bits-2));
2310 res <<= bits;
2311 if (res > upper_limit)
2312 res = upper_limit;
2313
2314 if (res > MAX_LFS_FILESIZE)
2315 res = MAX_LFS_FILESIZE;
2316
2317 return res;
2318 }
2319
2320 static ext4_fsblk_t descriptor_loc(struct super_block *sb,
2321 ext4_fsblk_t logical_sb_block, int nr)
2322 {
2323 struct ext4_sb_info *sbi = EXT4_SB(sb);
2324 ext4_group_t bg, first_meta_bg;
2325 int has_super = 0;
2326
2327 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
2328
2329 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_META_BG) ||
2330 nr < first_meta_bg)
2331 return logical_sb_block + nr + 1;
2332 bg = sbi->s_desc_per_block * nr;
2333 if (ext4_bg_has_super(sb, bg))
2334 has_super = 1;
2335
2336 return (has_super + ext4_group_first_block_no(sb, bg));
2337 }
2338
2339 /**
2340 * ext4_get_stripe_size: Get the stripe size.
2341 * @sbi: In memory super block info
2342 *
2343 * If we have specified it via mount option, then
2344 * use the mount option value. If the value specified at mount time is
2345 * greater than the blocks per group use the super block value.
2346 * If the super block value is greater than blocks per group return 0.
2347 * Allocator needs it be less than blocks per group.
2348 *
2349 */
2350 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
2351 {
2352 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
2353 unsigned long stripe_width =
2354 le32_to_cpu(sbi->s_es->s_raid_stripe_width);
2355 int ret;
2356
2357 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
2358 ret = sbi->s_stripe;
2359 else if (stripe_width <= sbi->s_blocks_per_group)
2360 ret = stripe_width;
2361 else if (stride <= sbi->s_blocks_per_group)
2362 ret = stride;
2363 else
2364 ret = 0;
2365
2366 /*
2367 * If the stripe width is 1, this makes no sense and
2368 * we set it to 0 to turn off stripe handling code.
2369 */
2370 if (ret <= 1)
2371 ret = 0;
2372
2373 return ret;
2374 }
2375
2376 /* sysfs supprt */
2377
2378 struct ext4_attr {
2379 struct attribute attr;
2380 ssize_t (*show)(struct ext4_attr *, struct ext4_sb_info *, char *);
2381 ssize_t (*store)(struct ext4_attr *, struct ext4_sb_info *,
2382 const char *, size_t);
2383 int offset;
2384 };
2385
2386 static int parse_strtoull(const char *buf,
2387 unsigned long long max, unsigned long long *value)
2388 {
2389 int ret;
2390
2391 ret = kstrtoull(skip_spaces(buf), 0, value);
2392 if (!ret && *value > max)
2393 ret = -EINVAL;
2394 return ret;
2395 }
2396
2397 static int parse_strtoul(const char *buf,
2398 unsigned long max, unsigned long *value)
2399 {
2400 char *endp;
2401
2402 *value = simple_strtoul(skip_spaces(buf), &endp, 0);
2403 endp = skip_spaces(endp);
2404 if (*endp || *value > max)
2405 return -EINVAL;
2406
2407 return 0;
2408 }
2409
2410 static ssize_t delayed_allocation_blocks_show(struct ext4_attr *a,
2411 struct ext4_sb_info *sbi,
2412 char *buf)
2413 {
2414 return snprintf(buf, PAGE_SIZE, "%llu\n",
2415 (s64) EXT4_C2B(sbi,
2416 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
2417 }
2418
2419 static ssize_t session_write_kbytes_show(struct ext4_attr *a,
2420 struct ext4_sb_info *sbi, char *buf)
2421 {
2422 struct super_block *sb = sbi->s_buddy_cache->i_sb;
2423
2424 if (!sb->s_bdev->bd_part)
2425 return snprintf(buf, PAGE_SIZE, "0\n");
2426 return snprintf(buf, PAGE_SIZE, "%lu\n",
2427 (part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
2428 sbi->s_sectors_written_start) >> 1);
2429 }
2430
2431 static ssize_t lifetime_write_kbytes_show(struct ext4_attr *a,
2432 struct ext4_sb_info *sbi, char *buf)
2433 {
2434 struct super_block *sb = sbi->s_buddy_cache->i_sb;
2435
2436 if (!sb->s_bdev->bd_part)
2437 return snprintf(buf, PAGE_SIZE, "0\n");
2438 return snprintf(buf, PAGE_SIZE, "%llu\n",
2439 (unsigned long long)(sbi->s_kbytes_written +
2440 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
2441 EXT4_SB(sb)->s_sectors_written_start) >> 1)));
2442 }
2443
2444 static ssize_t inode_readahead_blks_store(struct ext4_attr *a,
2445 struct ext4_sb_info *sbi,
2446 const char *buf, size_t count)
2447 {
2448 unsigned long t;
2449
2450 if (parse_strtoul(buf, 0x40000000, &t))
2451 return -EINVAL;
2452
2453 if (t && !is_power_of_2(t))
2454 return -EINVAL;
2455
2456 sbi->s_inode_readahead_blks = t;
2457 return count;
2458 }
2459
2460 static ssize_t sbi_ui_show(struct ext4_attr *a,
2461 struct ext4_sb_info *sbi, char *buf)
2462 {
2463 unsigned int *ui = (unsigned int *) (((char *) sbi) + a->offset);
2464
2465 return snprintf(buf, PAGE_SIZE, "%u\n", *ui);
2466 }
2467
2468 static ssize_t sbi_ui_store(struct ext4_attr *a,
2469 struct ext4_sb_info *sbi,
2470 const char *buf, size_t count)
2471 {
2472 unsigned int *ui = (unsigned int *) (((char *) sbi) + a->offset);
2473 unsigned long t;
2474
2475 if (parse_strtoul(buf, 0xffffffff, &t))
2476 return -EINVAL;
2477 *ui = t;
2478 return count;
2479 }
2480
2481 static ssize_t reserved_clusters_show(struct ext4_attr *a,
2482 struct ext4_sb_info *sbi, char *buf)
2483 {
2484 return snprintf(buf, PAGE_SIZE, "%llu\n",
2485 (unsigned long long) atomic64_read(&sbi->s_resv_clusters));
2486 }
2487
2488 static ssize_t reserved_clusters_store(struct ext4_attr *a,
2489 struct ext4_sb_info *sbi,
2490 const char *buf, size_t count)
2491 {
2492 unsigned long long val;
2493 int ret;
2494
2495 if (parse_strtoull(buf, -1ULL, &val))
2496 return -EINVAL;
2497 ret = ext4_reserve_clusters(sbi, val);
2498
2499 return ret ? ret : count;
2500 }
2501
2502 static ssize_t trigger_test_error(struct ext4_attr *a,
2503 struct ext4_sb_info *sbi,
2504 const char *buf, size_t count)
2505 {
2506 int len = count;
2507
2508 if (!capable(CAP_SYS_ADMIN))
2509 return -EPERM;
2510
2511 if (len && buf[len-1] == '\n')
2512 len--;
2513
2514 if (len)
2515 ext4_error(sbi->s_sb, "%.*s", len, buf);
2516 return count;
2517 }
2518
2519 #define EXT4_ATTR_OFFSET(_name,_mode,_show,_store,_elname) \
2520 static struct ext4_attr ext4_attr_##_name = { \
2521 .attr = {.name = __stringify(_name), .mode = _mode }, \
2522 .show = _show, \
2523 .store = _store, \
2524 .offset = offsetof(struct ext4_sb_info, _elname), \
2525 }
2526 #define EXT4_ATTR(name, mode, show, store) \
2527 static struct ext4_attr ext4_attr_##name = __ATTR(name, mode, show, store)
2528
2529 #define EXT4_INFO_ATTR(name) EXT4_ATTR(name, 0444, NULL, NULL)
2530 #define EXT4_RO_ATTR(name) EXT4_ATTR(name, 0444, name##_show, NULL)
2531 #define EXT4_RW_ATTR(name) EXT4_ATTR(name, 0644, name##_show, name##_store)
2532 #define EXT4_RW_ATTR_SBI_UI(name, elname) \
2533 EXT4_ATTR_OFFSET(name, 0644, sbi_ui_show, sbi_ui_store, elname)
2534 #define ATTR_LIST(name) &ext4_attr_##name.attr
2535
2536 EXT4_RO_ATTR(delayed_allocation_blocks);
2537 EXT4_RO_ATTR(session_write_kbytes);
2538 EXT4_RO_ATTR(lifetime_write_kbytes);
2539 EXT4_RW_ATTR(reserved_clusters);
2540 EXT4_ATTR_OFFSET(inode_readahead_blks, 0644, sbi_ui_show,
2541 inode_readahead_blks_store, s_inode_readahead_blks);
2542 EXT4_RW_ATTR_SBI_UI(inode_goal, s_inode_goal);
2543 EXT4_RW_ATTR_SBI_UI(mb_stats, s_mb_stats);
2544 EXT4_RW_ATTR_SBI_UI(mb_max_to_scan, s_mb_max_to_scan);
2545 EXT4_RW_ATTR_SBI_UI(mb_min_to_scan, s_mb_min_to_scan);
2546 EXT4_RW_ATTR_SBI_UI(mb_order2_req, s_mb_order2_reqs);
2547 EXT4_RW_ATTR_SBI_UI(mb_stream_req, s_mb_stream_request);
2548 EXT4_RW_ATTR_SBI_UI(mb_group_prealloc, s_mb_group_prealloc);
2549 EXT4_RW_ATTR_SBI_UI(max_writeback_mb_bump, s_max_writeback_mb_bump);
2550 EXT4_RW_ATTR_SBI_UI(extent_max_zeroout_kb, s_extent_max_zeroout_kb);
2551 EXT4_ATTR(trigger_fs_error, 0200, NULL, trigger_test_error);
2552
2553 static struct attribute *ext4_attrs[] = {
2554 ATTR_LIST(delayed_allocation_blocks),
2555 ATTR_LIST(session_write_kbytes),
2556 ATTR_LIST(lifetime_write_kbytes),
2557 ATTR_LIST(reserved_clusters),
2558 ATTR_LIST(inode_readahead_blks),
2559 ATTR_LIST(inode_goal),
2560 ATTR_LIST(mb_stats),
2561 ATTR_LIST(mb_max_to_scan),
2562 ATTR_LIST(mb_min_to_scan),
2563 ATTR_LIST(mb_order2_req),
2564 ATTR_LIST(mb_stream_req),
2565 ATTR_LIST(mb_group_prealloc),
2566 ATTR_LIST(max_writeback_mb_bump),
2567 ATTR_LIST(extent_max_zeroout_kb),
2568 ATTR_LIST(trigger_fs_error),
2569 NULL,
2570 };
2571
2572 /* Features this copy of ext4 supports */
2573 EXT4_INFO_ATTR(lazy_itable_init);
2574 EXT4_INFO_ATTR(batched_discard);
2575 EXT4_INFO_ATTR(meta_bg_resize);
2576
2577 static struct attribute *ext4_feat_attrs[] = {
2578 ATTR_LIST(lazy_itable_init),
2579 ATTR_LIST(batched_discard),
2580 ATTR_LIST(meta_bg_resize),
2581 NULL,
2582 };
2583
2584 static ssize_t ext4_attr_show(struct kobject *kobj,
2585 struct attribute *attr, char *buf)
2586 {
2587 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2588 s_kobj);
2589 struct ext4_attr *a = container_of(attr, struct ext4_attr, attr);
2590
2591 return a->show ? a->show(a, sbi, buf) : 0;
2592 }
2593
2594 static ssize_t ext4_attr_store(struct kobject *kobj,
2595 struct attribute *attr,
2596 const char *buf, size_t len)
2597 {
2598 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2599 s_kobj);
2600 struct ext4_attr *a = container_of(attr, struct ext4_attr, attr);
2601
2602 return a->store ? a->store(a, sbi, buf, len) : 0;
2603 }
2604
2605 static void ext4_sb_release(struct kobject *kobj)
2606 {
2607 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2608 s_kobj);
2609 complete(&sbi->s_kobj_unregister);
2610 }
2611
2612 static const struct sysfs_ops ext4_attr_ops = {
2613 .show = ext4_attr_show,
2614 .store = ext4_attr_store,
2615 };
2616
2617 static struct kobj_type ext4_ktype = {
2618 .default_attrs = ext4_attrs,
2619 .sysfs_ops = &ext4_attr_ops,
2620 .release = ext4_sb_release,
2621 };
2622
2623 static void ext4_feat_release(struct kobject *kobj)
2624 {
2625 complete(&ext4_feat->f_kobj_unregister);
2626 }
2627
2628 static struct kobj_type ext4_feat_ktype = {
2629 .default_attrs = ext4_feat_attrs,
2630 .sysfs_ops = &ext4_attr_ops,
2631 .release = ext4_feat_release,
2632 };
2633
2634 /*
2635 * Check whether this filesystem can be mounted based on
2636 * the features present and the RDONLY/RDWR mount requested.
2637 * Returns 1 if this filesystem can be mounted as requested,
2638 * 0 if it cannot be.
2639 */
2640 static int ext4_feature_set_ok(struct super_block *sb, int readonly)
2641 {
2642 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT4_FEATURE_INCOMPAT_SUPP)) {
2643 ext4_msg(sb, KERN_ERR,
2644 "Couldn't mount because of "
2645 "unsupported optional features (%x)",
2646 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
2647 ~EXT4_FEATURE_INCOMPAT_SUPP));
2648 return 0;
2649 }
2650
2651 if (readonly)
2652 return 1;
2653
2654 /* Check that feature set is OK for a read-write mount */
2655 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT4_FEATURE_RO_COMPAT_SUPP)) {
2656 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
2657 "unsupported optional features (%x)",
2658 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
2659 ~EXT4_FEATURE_RO_COMPAT_SUPP));
2660 return 0;
2661 }
2662 /*
2663 * Large file size enabled file system can only be mounted
2664 * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF
2665 */
2666 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
2667 if (sizeof(blkcnt_t) < sizeof(u64)) {
2668 ext4_msg(sb, KERN_ERR, "Filesystem with huge files "
2669 "cannot be mounted RDWR without "
2670 "CONFIG_LBDAF");
2671 return 0;
2672 }
2673 }
2674 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_BIGALLOC) &&
2675 !EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) {
2676 ext4_msg(sb, KERN_ERR,
2677 "Can't support bigalloc feature without "
2678 "extents feature\n");
2679 return 0;
2680 }
2681
2682 #ifndef CONFIG_QUOTA
2683 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) &&
2684 !readonly) {
2685 ext4_msg(sb, KERN_ERR,
2686 "Filesystem with quota feature cannot be mounted RDWR "
2687 "without CONFIG_QUOTA");
2688 return 0;
2689 }
2690 #endif /* CONFIG_QUOTA */
2691 return 1;
2692 }
2693
2694 /*
2695 * This function is called once a day if we have errors logged
2696 * on the file system
2697 */
2698 static void print_daily_error_info(unsigned long arg)
2699 {
2700 struct super_block *sb = (struct super_block *) arg;
2701 struct ext4_sb_info *sbi;
2702 struct ext4_super_block *es;
2703
2704 sbi = EXT4_SB(sb);
2705 es = sbi->s_es;
2706
2707 if (es->s_error_count)
2708 ext4_msg(sb, KERN_NOTICE, "error count: %u",
2709 le32_to_cpu(es->s_error_count));
2710 if (es->s_first_error_time) {
2711 printk(KERN_NOTICE "EXT4-fs (%s): initial error at %u: %.*s:%d",
2712 sb->s_id, le32_to_cpu(es->s_first_error_time),
2713 (int) sizeof(es->s_first_error_func),
2714 es->s_first_error_func,
2715 le32_to_cpu(es->s_first_error_line));
2716 if (es->s_first_error_ino)
2717 printk(": inode %u",
2718 le32_to_cpu(es->s_first_error_ino));
2719 if (es->s_first_error_block)
2720 printk(": block %llu", (unsigned long long)
2721 le64_to_cpu(es->s_first_error_block));
2722 printk("\n");
2723 }
2724 if (es->s_last_error_time) {
2725 printk(KERN_NOTICE "EXT4-fs (%s): last error at %u: %.*s:%d",
2726 sb->s_id, le32_to_cpu(es->s_last_error_time),
2727 (int) sizeof(es->s_last_error_func),
2728 es->s_last_error_func,
2729 le32_to_cpu(es->s_last_error_line));
2730 if (es->s_last_error_ino)
2731 printk(": inode %u",
2732 le32_to_cpu(es->s_last_error_ino));
2733 if (es->s_last_error_block)
2734 printk(": block %llu", (unsigned long long)
2735 le64_to_cpu(es->s_last_error_block));
2736 printk("\n");
2737 }
2738 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */
2739 }
2740
2741 /* Find next suitable group and run ext4_init_inode_table */
2742 static int ext4_run_li_request(struct ext4_li_request *elr)
2743 {
2744 struct ext4_group_desc *gdp = NULL;
2745 ext4_group_t group, ngroups;
2746 struct super_block *sb;
2747 unsigned long timeout = 0;
2748 int ret = 0;
2749
2750 sb = elr->lr_super;
2751 ngroups = EXT4_SB(sb)->s_groups_count;
2752
2753 sb_start_write(sb);
2754 for (group = elr->lr_next_group; group < ngroups; group++) {
2755 gdp = ext4_get_group_desc(sb, group, NULL);
2756 if (!gdp) {
2757 ret = 1;
2758 break;
2759 }
2760
2761 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2762 break;
2763 }
2764
2765 if (group >= ngroups)
2766 ret = 1;
2767
2768 if (!ret) {
2769 timeout = jiffies;
2770 ret = ext4_init_inode_table(sb, group,
2771 elr->lr_timeout ? 0 : 1);
2772 if (elr->lr_timeout == 0) {
2773 timeout = (jiffies - timeout) *
2774 elr->lr_sbi->s_li_wait_mult;
2775 elr->lr_timeout = timeout;
2776 }
2777 elr->lr_next_sched = jiffies + elr->lr_timeout;
2778 elr->lr_next_group = group + 1;
2779 }
2780 sb_end_write(sb);
2781
2782 return ret;
2783 }
2784
2785 /*
2786 * Remove lr_request from the list_request and free the
2787 * request structure. Should be called with li_list_mtx held
2788 */
2789 static void ext4_remove_li_request(struct ext4_li_request *elr)
2790 {
2791 struct ext4_sb_info *sbi;
2792
2793 if (!elr)
2794 return;
2795
2796 sbi = elr->lr_sbi;
2797
2798 list_del(&elr->lr_request);
2799 sbi->s_li_request = NULL;
2800 kfree(elr);
2801 }
2802
2803 static void ext4_unregister_li_request(struct super_block *sb)
2804 {
2805 mutex_lock(&ext4_li_mtx);
2806 if (!ext4_li_info) {
2807 mutex_unlock(&ext4_li_mtx);
2808 return;
2809 }
2810
2811 mutex_lock(&ext4_li_info->li_list_mtx);
2812 ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
2813 mutex_unlock(&ext4_li_info->li_list_mtx);
2814 mutex_unlock(&ext4_li_mtx);
2815 }
2816
2817 static struct task_struct *ext4_lazyinit_task;
2818
2819 /*
2820 * This is the function where ext4lazyinit thread lives. It walks
2821 * through the request list searching for next scheduled filesystem.
2822 * When such a fs is found, run the lazy initialization request
2823 * (ext4_rn_li_request) and keep track of the time spend in this
2824 * function. Based on that time we compute next schedule time of
2825 * the request. When walking through the list is complete, compute
2826 * next waking time and put itself into sleep.
2827 */
2828 static int ext4_lazyinit_thread(void *arg)
2829 {
2830 struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg;
2831 struct list_head *pos, *n;
2832 struct ext4_li_request *elr;
2833 unsigned long next_wakeup, cur;
2834
2835 BUG_ON(NULL == eli);
2836
2837 cont_thread:
2838 while (true) {
2839 next_wakeup = MAX_JIFFY_OFFSET;
2840
2841 mutex_lock(&eli->li_list_mtx);
2842 if (list_empty(&eli->li_request_list)) {
2843 mutex_unlock(&eli->li_list_mtx);
2844 goto exit_thread;
2845 }
2846
2847 list_for_each_safe(pos, n, &eli->li_request_list) {
2848 elr = list_entry(pos, struct ext4_li_request,
2849 lr_request);
2850
2851 if (time_after_eq(jiffies, elr->lr_next_sched)) {
2852 if (ext4_run_li_request(elr) != 0) {
2853 /* error, remove the lazy_init job */
2854 ext4_remove_li_request(elr);
2855 continue;
2856 }
2857 }
2858
2859 if (time_before(elr->lr_next_sched, next_wakeup))
2860 next_wakeup = elr->lr_next_sched;
2861 }
2862 mutex_unlock(&eli->li_list_mtx);
2863
2864 try_to_freeze();
2865
2866 cur = jiffies;
2867 if ((time_after_eq(cur, next_wakeup)) ||
2868 (MAX_JIFFY_OFFSET == next_wakeup)) {
2869 cond_resched();
2870 continue;
2871 }
2872
2873 schedule_timeout_interruptible(next_wakeup - cur);
2874
2875 if (kthread_should_stop()) {
2876 ext4_clear_request_list();
2877 goto exit_thread;
2878 }
2879 }
2880
2881 exit_thread:
2882 /*
2883 * It looks like the request list is empty, but we need
2884 * to check it under the li_list_mtx lock, to prevent any
2885 * additions into it, and of course we should lock ext4_li_mtx
2886 * to atomically free the list and ext4_li_info, because at
2887 * this point another ext4 filesystem could be registering
2888 * new one.
2889 */
2890 mutex_lock(&ext4_li_mtx);
2891 mutex_lock(&eli->li_list_mtx);
2892 if (!list_empty(&eli->li_request_list)) {
2893 mutex_unlock(&eli->li_list_mtx);
2894 mutex_unlock(&ext4_li_mtx);
2895 goto cont_thread;
2896 }
2897 mutex_unlock(&eli->li_list_mtx);
2898 kfree(ext4_li_info);
2899 ext4_li_info = NULL;
2900 mutex_unlock(&ext4_li_mtx);
2901
2902 return 0;
2903 }
2904
2905 static void ext4_clear_request_list(void)
2906 {
2907 struct list_head *pos, *n;
2908 struct ext4_li_request *elr;
2909
2910 mutex_lock(&ext4_li_info->li_list_mtx);
2911 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
2912 elr = list_entry(pos, struct ext4_li_request,
2913 lr_request);
2914 ext4_remove_li_request(elr);
2915 }
2916 mutex_unlock(&ext4_li_info->li_list_mtx);
2917 }
2918
2919 static int ext4_run_lazyinit_thread(void)
2920 {
2921 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
2922 ext4_li_info, "ext4lazyinit");
2923 if (IS_ERR(ext4_lazyinit_task)) {
2924 int err = PTR_ERR(ext4_lazyinit_task);
2925 ext4_clear_request_list();
2926 kfree(ext4_li_info);
2927 ext4_li_info = NULL;
2928 printk(KERN_CRIT "EXT4-fs: error %d creating inode table "
2929 "initialization thread\n",
2930 err);
2931 return err;
2932 }
2933 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
2934 return 0;
2935 }
2936
2937 /*
2938 * Check whether it make sense to run itable init. thread or not.
2939 * If there is at least one uninitialized inode table, return
2940 * corresponding group number, else the loop goes through all
2941 * groups and return total number of groups.
2942 */
2943 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
2944 {
2945 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
2946 struct ext4_group_desc *gdp = NULL;
2947
2948 for (group = 0; group < ngroups; group++) {
2949 gdp = ext4_get_group_desc(sb, group, NULL);
2950 if (!gdp)
2951 continue;
2952
2953 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2954 break;
2955 }
2956
2957 return group;
2958 }
2959
2960 static int ext4_li_info_new(void)
2961 {
2962 struct ext4_lazy_init *eli = NULL;
2963
2964 eli = kzalloc(sizeof(*eli), GFP_KERNEL);
2965 if (!eli)
2966 return -ENOMEM;
2967
2968 INIT_LIST_HEAD(&eli->li_request_list);
2969 mutex_init(&eli->li_list_mtx);
2970
2971 eli->li_state |= EXT4_LAZYINIT_QUIT;
2972
2973 ext4_li_info = eli;
2974
2975 return 0;
2976 }
2977
2978 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
2979 ext4_group_t start)
2980 {
2981 struct ext4_sb_info *sbi = EXT4_SB(sb);
2982 struct ext4_li_request *elr;
2983 unsigned long rnd;
2984
2985 elr = kzalloc(sizeof(*elr), GFP_KERNEL);
2986 if (!elr)
2987 return NULL;
2988
2989 elr->lr_super = sb;
2990 elr->lr_sbi = sbi;
2991 elr->lr_next_group = start;
2992
2993 /*
2994 * Randomize first schedule time of the request to
2995 * spread the inode table initialization requests
2996 * better.
2997 */
2998 get_random_bytes(&rnd, sizeof(rnd));
2999 elr->lr_next_sched = jiffies + (unsigned long)rnd %
3000 (EXT4_DEF_LI_MAX_START_DELAY * HZ);
3001
3002 return elr;
3003 }
3004
3005 int ext4_register_li_request(struct super_block *sb,
3006 ext4_group_t first_not_zeroed)
3007 {
3008 struct ext4_sb_info *sbi = EXT4_SB(sb);
3009 struct ext4_li_request *elr = NULL;
3010 ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count;
3011 int ret = 0;
3012
3013 mutex_lock(&ext4_li_mtx);
3014 if (sbi->s_li_request != NULL) {
3015 /*
3016 * Reset timeout so it can be computed again, because
3017 * s_li_wait_mult might have changed.
3018 */
3019 sbi->s_li_request->lr_timeout = 0;
3020 goto out;
3021 }
3022
3023 if (first_not_zeroed == ngroups ||
3024 (sb->s_flags & MS_RDONLY) ||
3025 !test_opt(sb, INIT_INODE_TABLE))
3026 goto out;
3027
3028 elr = ext4_li_request_new(sb, first_not_zeroed);
3029 if (!elr) {
3030 ret = -ENOMEM;
3031 goto out;
3032 }
3033
3034 if (NULL == ext4_li_info) {
3035 ret = ext4_li_info_new();
3036 if (ret)
3037 goto out;
3038 }
3039
3040 mutex_lock(&ext4_li_info->li_list_mtx);
3041 list_add(&elr->lr_request, &ext4_li_info->li_request_list);
3042 mutex_unlock(&ext4_li_info->li_list_mtx);
3043
3044 sbi->s_li_request = elr;
3045 /*
3046 * set elr to NULL here since it has been inserted to
3047 * the request_list and the removal and free of it is
3048 * handled by ext4_clear_request_list from now on.
3049 */
3050 elr = NULL;
3051
3052 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
3053 ret = ext4_run_lazyinit_thread();
3054 if (ret)
3055 goto out;
3056 }
3057 out:
3058 mutex_unlock(&ext4_li_mtx);
3059 if (ret)
3060 kfree(elr);
3061 return ret;
3062 }
3063
3064 /*
3065 * We do not need to lock anything since this is called on
3066 * module unload.
3067 */
3068 static void ext4_destroy_lazyinit_thread(void)
3069 {
3070 /*
3071 * If thread exited earlier
3072 * there's nothing to be done.
3073 */
3074 if (!ext4_li_info || !ext4_lazyinit_task)
3075 return;
3076
3077 kthread_stop(ext4_lazyinit_task);
3078 }
3079
3080 static int set_journal_csum_feature_set(struct super_block *sb)
3081 {
3082 int ret = 1;
3083 int compat, incompat;
3084 struct ext4_sb_info *sbi = EXT4_SB(sb);
3085
3086 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3087 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
3088 /* journal checksum v2 */
3089 compat = 0;
3090 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V2;
3091 } else {
3092 /* journal checksum v1 */
3093 compat = JBD2_FEATURE_COMPAT_CHECKSUM;
3094 incompat = 0;
3095 }
3096
3097 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
3098 ret = jbd2_journal_set_features(sbi->s_journal,
3099 compat, 0,
3100 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
3101 incompat);
3102 } else if (test_opt(sb, JOURNAL_CHECKSUM)) {
3103 ret = jbd2_journal_set_features(sbi->s_journal,
3104 compat, 0,
3105 incompat);
3106 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3107 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3108 } else {
3109 jbd2_journal_clear_features(sbi->s_journal,
3110 JBD2_FEATURE_COMPAT_CHECKSUM, 0,
3111 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
3112 JBD2_FEATURE_INCOMPAT_CSUM_V2);
3113 }
3114
3115 return ret;
3116 }
3117
3118 /*
3119 * Note: calculating the overhead so we can be compatible with
3120 * historical BSD practice is quite difficult in the face of
3121 * clusters/bigalloc. This is because multiple metadata blocks from
3122 * different block group can end up in the same allocation cluster.
3123 * Calculating the exact overhead in the face of clustered allocation
3124 * requires either O(all block bitmaps) in memory or O(number of block
3125 * groups**2) in time. We will still calculate the superblock for
3126 * older file systems --- and if we come across with a bigalloc file
3127 * system with zero in s_overhead_clusters the estimate will be close to
3128 * correct especially for very large cluster sizes --- but for newer
3129 * file systems, it's better to calculate this figure once at mkfs
3130 * time, and store it in the superblock. If the superblock value is
3131 * present (even for non-bigalloc file systems), we will use it.
3132 */
3133 static int count_overhead(struct super_block *sb, ext4_group_t grp,
3134 char *buf)
3135 {
3136 struct ext4_sb_info *sbi = EXT4_SB(sb);
3137 struct ext4_group_desc *gdp;
3138 ext4_fsblk_t first_block, last_block, b;
3139 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3140 int s, j, count = 0;
3141
3142 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_BIGALLOC))
3143 return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) +
3144 sbi->s_itb_per_group + 2);
3145
3146 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) +
3147 (grp * EXT4_BLOCKS_PER_GROUP(sb));
3148 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1;
3149 for (i = 0; i < ngroups; i++) {
3150 gdp = ext4_get_group_desc(sb, i, NULL);
3151 b = ext4_block_bitmap(sb, gdp);
3152 if (b >= first_block && b <= last_block) {
3153 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3154 count++;
3155 }
3156 b = ext4_inode_bitmap(sb, gdp);
3157 if (b >= first_block && b <= last_block) {
3158 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3159 count++;
3160 }
3161 b = ext4_inode_table(sb, gdp);
3162 if (b >= first_block && b + sbi->s_itb_per_group <= last_block)
3163 for (j = 0; j < sbi->s_itb_per_group; j++, b++) {
3164 int c = EXT4_B2C(sbi, b - first_block);
3165 ext4_set_bit(c, buf);
3166 count++;
3167 }
3168 if (i != grp)
3169 continue;
3170 s = 0;
3171 if (ext4_bg_has_super(sb, grp)) {
3172 ext4_set_bit(s++, buf);
3173 count++;
3174 }
3175 for (j = ext4_bg_num_gdb(sb, grp); j > 0; j--) {
3176 ext4_set_bit(EXT4_B2C(sbi, s++), buf);
3177 count++;
3178 }
3179 }
3180 if (!count)
3181 return 0;
3182 return EXT4_CLUSTERS_PER_GROUP(sb) -
3183 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8);
3184 }
3185
3186 /*
3187 * Compute the overhead and stash it in sbi->s_overhead
3188 */
3189 int ext4_calculate_overhead(struct super_block *sb)
3190 {
3191 struct ext4_sb_info *sbi = EXT4_SB(sb);
3192 struct ext4_super_block *es = sbi->s_es;
3193 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3194 ext4_fsblk_t overhead = 0;
3195 char *buf = (char *) get_zeroed_page(GFP_KERNEL);
3196
3197 if (!buf)
3198 return -ENOMEM;
3199
3200 /*
3201 * Compute the overhead (FS structures). This is constant
3202 * for a given filesystem unless the number of block groups
3203 * changes so we cache the previous value until it does.
3204 */
3205
3206 /*
3207 * All of the blocks before first_data_block are overhead
3208 */
3209 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
3210
3211 /*
3212 * Add the overhead found in each block group
3213 */
3214 for (i = 0; i < ngroups; i++) {
3215 int blks;
3216
3217 blks = count_overhead(sb, i, buf);
3218 overhead += blks;
3219 if (blks)
3220 memset(buf, 0, PAGE_SIZE);
3221 cond_resched();
3222 }
3223 /* Add the journal blocks as well */
3224 if (sbi->s_journal)
3225 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_maxlen);
3226
3227 sbi->s_overhead = overhead;
3228 smp_wmb();
3229 free_page((unsigned long) buf);
3230 return 0;
3231 }
3232
3233
3234 static ext4_fsblk_t ext4_calculate_resv_clusters(struct ext4_sb_info *sbi)
3235 {
3236 ext4_fsblk_t resv_clusters;
3237
3238 /*
3239 * By default we reserve 2% or 4096 clusters, whichever is smaller.
3240 * This should cover the situations where we can not afford to run
3241 * out of space like for example punch hole, or converting
3242 * uninitialized extents in delalloc path. In most cases such
3243 * allocation would require 1, or 2 blocks, higher numbers are
3244 * very rare.
3245 */
3246 resv_clusters = ext4_blocks_count(sbi->s_es) >> sbi->s_cluster_bits;
3247
3248 do_div(resv_clusters, 50);
3249 resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096);
3250
3251 return resv_clusters;
3252 }
3253
3254
3255 static int ext4_reserve_clusters(struct ext4_sb_info *sbi, ext4_fsblk_t count)
3256 {
3257 ext4_fsblk_t clusters = ext4_blocks_count(sbi->s_es) >>
3258 sbi->s_cluster_bits;
3259
3260 if (count >= clusters)
3261 return -EINVAL;
3262
3263 atomic64_set(&sbi->s_resv_clusters, count);
3264 return 0;
3265 }
3266
3267 static int ext4_fill_super(struct super_block *sb, void *data, int silent)
3268 {
3269 char *orig_data = kstrdup(data, GFP_KERNEL);
3270 struct buffer_head *bh;
3271 struct ext4_super_block *es = NULL;
3272 struct ext4_sb_info *sbi;
3273 ext4_fsblk_t block;
3274 ext4_fsblk_t sb_block = get_sb_block(&data);
3275 ext4_fsblk_t logical_sb_block;
3276 unsigned long offset = 0;
3277 unsigned long journal_devnum = 0;
3278 unsigned long def_mount_opts;
3279 struct inode *root;
3280 char *cp;
3281 const char *descr;
3282 int ret = -ENOMEM;
3283 int blocksize, clustersize;
3284 unsigned int db_count;
3285 unsigned int i;
3286 int needs_recovery, has_huge_files, has_bigalloc;
3287 __u64 blocks_count;
3288 int err = 0;
3289 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
3290 ext4_group_t first_not_zeroed;
3291
3292 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
3293 if (!sbi)
3294 goto out_free_orig;
3295
3296 sbi->s_blockgroup_lock =
3297 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
3298 if (!sbi->s_blockgroup_lock) {
3299 kfree(sbi);
3300 goto out_free_orig;
3301 }
3302 sb->s_fs_info = sbi;
3303 sbi->s_sb = sb;
3304 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
3305 sbi->s_sb_block = sb_block;
3306 if (sb->s_bdev->bd_part)
3307 sbi->s_sectors_written_start =
3308 part_stat_read(sb->s_bdev->bd_part, sectors[1]);
3309
3310 /* Cleanup superblock name */
3311 for (cp = sb->s_id; (cp = strchr(cp, '/'));)
3312 *cp = '!';
3313
3314 /* -EINVAL is default */
3315 ret = -EINVAL;
3316 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
3317 if (!blocksize) {
3318 ext4_msg(sb, KERN_ERR, "unable to set blocksize");
3319 goto out_fail;
3320 }
3321
3322 /*
3323 * The ext4 superblock will not be buffer aligned for other than 1kB
3324 * block sizes. We need to calculate the offset from buffer start.
3325 */
3326 if (blocksize != EXT4_MIN_BLOCK_SIZE) {
3327 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3328 offset = do_div(logical_sb_block, blocksize);
3329 } else {
3330 logical_sb_block = sb_block;
3331 }
3332
3333 if (!(bh = sb_bread(sb, logical_sb_block))) {
3334 ext4_msg(sb, KERN_ERR, "unable to read superblock");
3335 goto out_fail;
3336 }
3337 /*
3338 * Note: s_es must be initialized as soon as possible because
3339 * some ext4 macro-instructions depend on its value
3340 */
3341 es = (struct ext4_super_block *) (bh->b_data + offset);
3342 sbi->s_es = es;
3343 sb->s_magic = le16_to_cpu(es->s_magic);
3344 if (sb->s_magic != EXT4_SUPER_MAGIC)
3345 goto cantfind_ext4;
3346 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
3347
3348 /* Warn if metadata_csum and gdt_csum are both set. */
3349 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3350 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
3351 EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
3352 ext4_warning(sb, KERN_INFO "metadata_csum and uninit_bg are "
3353 "redundant flags; please run fsck.");
3354
3355 /* Check for a known checksum algorithm */
3356 if (!ext4_verify_csum_type(sb, es)) {
3357 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3358 "unknown checksum algorithm.");
3359 silent = 1;
3360 goto cantfind_ext4;
3361 }
3362
3363 /* Load the checksum driver */
3364 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3365 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
3366 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
3367 if (IS_ERR(sbi->s_chksum_driver)) {
3368 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver.");
3369 ret = PTR_ERR(sbi->s_chksum_driver);
3370 sbi->s_chksum_driver = NULL;
3371 goto failed_mount;
3372 }
3373 }
3374
3375 /* Check superblock checksum */
3376 if (!ext4_superblock_csum_verify(sb, es)) {
3377 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3378 "invalid superblock checksum. Run e2fsck?");
3379 silent = 1;
3380 goto cantfind_ext4;
3381 }
3382
3383 /* Precompute checksum seed for all metadata */
3384 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3385 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
3386 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid,
3387 sizeof(es->s_uuid));
3388
3389 /* Set defaults before we parse the mount options */
3390 def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
3391 set_opt(sb, INIT_INODE_TABLE);
3392 if (def_mount_opts & EXT4_DEFM_DEBUG)
3393 set_opt(sb, DEBUG);
3394 if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
3395 set_opt(sb, GRPID);
3396 if (def_mount_opts & EXT4_DEFM_UID16)
3397 set_opt(sb, NO_UID32);
3398 /* xattr user namespace & acls are now defaulted on */
3399 set_opt(sb, XATTR_USER);
3400 #ifdef CONFIG_EXT4_FS_POSIX_ACL
3401 set_opt(sb, POSIX_ACL);
3402 #endif
3403 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
3404 set_opt(sb, JOURNAL_DATA);
3405 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
3406 set_opt(sb, ORDERED_DATA);
3407 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
3408 set_opt(sb, WRITEBACK_DATA);
3409
3410 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC)
3411 set_opt(sb, ERRORS_PANIC);
3412 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE)
3413 set_opt(sb, ERRORS_CONT);
3414 else
3415 set_opt(sb, ERRORS_RO);
3416 if (def_mount_opts & EXT4_DEFM_BLOCK_VALIDITY)
3417 set_opt(sb, BLOCK_VALIDITY);
3418 if (def_mount_opts & EXT4_DEFM_DISCARD)
3419 set_opt(sb, DISCARD);
3420
3421 sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid));
3422 sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid));
3423 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
3424 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
3425 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
3426
3427 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
3428 set_opt(sb, BARRIER);
3429
3430 /*
3431 * enable delayed allocation by default
3432 * Use -o nodelalloc to turn it off
3433 */
3434 if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) &&
3435 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
3436 set_opt(sb, DELALLOC);
3437
3438 /*
3439 * set default s_li_wait_mult for lazyinit, for the case there is
3440 * no mount option specified.
3441 */
3442 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
3443
3444 if (!parse_options((char *) sbi->s_es->s_mount_opts, sb,
3445 &journal_devnum, &journal_ioprio, 0)) {
3446 ext4_msg(sb, KERN_WARNING,
3447 "failed to parse options in superblock: %s",
3448 sbi->s_es->s_mount_opts);
3449 }
3450 sbi->s_def_mount_opt = sbi->s_mount_opt;
3451 if (!parse_options((char *) data, sb, &journal_devnum,
3452 &journal_ioprio, 0))
3453 goto failed_mount;
3454
3455 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
3456 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting "
3457 "with data=journal disables delayed "
3458 "allocation and O_DIRECT support!\n");
3459 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
3460 ext4_msg(sb, KERN_ERR, "can't mount with "
3461 "both data=journal and delalloc");
3462 goto failed_mount;
3463 }
3464 if (test_opt(sb, DIOREAD_NOLOCK)) {
3465 ext4_msg(sb, KERN_ERR, "can't mount with "
3466 "both data=journal and delalloc");
3467 goto failed_mount;
3468 }
3469 if (test_opt(sb, DELALLOC))
3470 clear_opt(sb, DELALLOC);
3471 }
3472
3473 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
3474 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
3475
3476 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
3477 (EXT4_HAS_COMPAT_FEATURE(sb, ~0U) ||
3478 EXT4_HAS_RO_COMPAT_FEATURE(sb, ~0U) ||
3479 EXT4_HAS_INCOMPAT_FEATURE(sb, ~0U)))
3480 ext4_msg(sb, KERN_WARNING,
3481 "feature flags set on rev 0 fs, "
3482 "running e2fsck is recommended");
3483
3484 if (IS_EXT2_SB(sb)) {
3485 if (ext2_feature_set_ok(sb))
3486 ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
3487 "using the ext4 subsystem");
3488 else {
3489 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
3490 "to feature incompatibilities");
3491 goto failed_mount;
3492 }
3493 }
3494
3495 if (IS_EXT3_SB(sb)) {
3496 if (ext3_feature_set_ok(sb))
3497 ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
3498 "using the ext4 subsystem");
3499 else {
3500 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
3501 "to feature incompatibilities");
3502 goto failed_mount;
3503 }
3504 }
3505
3506 /*
3507 * Check feature flags regardless of the revision level, since we
3508 * previously didn't change the revision level when setting the flags,
3509 * so there is a chance incompat flags are set on a rev 0 filesystem.
3510 */
3511 if (!ext4_feature_set_ok(sb, (sb->s_flags & MS_RDONLY)))
3512 goto failed_mount;
3513
3514 blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
3515 if (blocksize < EXT4_MIN_BLOCK_SIZE ||
3516 blocksize > EXT4_MAX_BLOCK_SIZE) {
3517 ext4_msg(sb, KERN_ERR,
3518 "Unsupported filesystem blocksize %d", blocksize);
3519 goto failed_mount;
3520 }
3521
3522 if (sb->s_blocksize != blocksize) {
3523 /* Validate the filesystem blocksize */
3524 if (!sb_set_blocksize(sb, blocksize)) {
3525 ext4_msg(sb, KERN_ERR, "bad block size %d",
3526 blocksize);
3527 goto failed_mount;
3528 }
3529
3530 brelse(bh);
3531 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3532 offset = do_div(logical_sb_block, blocksize);
3533 bh = sb_bread(sb, logical_sb_block);
3534 if (!bh) {
3535 ext4_msg(sb, KERN_ERR,
3536 "Can't read superblock on 2nd try");
3537 goto failed_mount;
3538 }
3539 es = (struct ext4_super_block *)(bh->b_data + offset);
3540 sbi->s_es = es;
3541 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
3542 ext4_msg(sb, KERN_ERR,
3543 "Magic mismatch, very weird!");
3544 goto failed_mount;
3545 }
3546 }
3547
3548 has_huge_files = EXT4_HAS_RO_COMPAT_FEATURE(sb,
3549 EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
3550 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
3551 has_huge_files);
3552 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
3553
3554 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
3555 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
3556 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
3557 } else {
3558 sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
3559 sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
3560 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
3561 (!is_power_of_2(sbi->s_inode_size)) ||
3562 (sbi->s_inode_size > blocksize)) {
3563 ext4_msg(sb, KERN_ERR,
3564 "unsupported inode size: %d",
3565 sbi->s_inode_size);
3566 goto failed_mount;
3567 }
3568 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE)
3569 sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2);
3570 }
3571
3572 sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
3573 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT)) {
3574 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
3575 sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
3576 !is_power_of_2(sbi->s_desc_size)) {
3577 ext4_msg(sb, KERN_ERR,
3578 "unsupported descriptor size %lu",
3579 sbi->s_desc_size);
3580 goto failed_mount;
3581 }
3582 } else
3583 sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
3584
3585 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
3586 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
3587 if (EXT4_INODE_SIZE(sb) == 0 || EXT4_INODES_PER_GROUP(sb) == 0)
3588 goto cantfind_ext4;
3589
3590 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb);
3591 if (sbi->s_inodes_per_block == 0)
3592 goto cantfind_ext4;
3593 sbi->s_itb_per_group = sbi->s_inodes_per_group /
3594 sbi->s_inodes_per_block;
3595 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb);
3596 sbi->s_sbh = bh;
3597 sbi->s_mount_state = le16_to_cpu(es->s_state);
3598 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
3599 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
3600
3601 /* Do we have standard group size of blocksize * 8 blocks ? */
3602 if (sbi->s_blocks_per_group == blocksize << 3)
3603 set_opt2(sb, STD_GROUP_SIZE);
3604
3605 for (i = 0; i < 4; i++)
3606 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
3607 sbi->s_def_hash_version = es->s_def_hash_version;
3608 i = le32_to_cpu(es->s_flags);
3609 if (i & EXT2_FLAGS_UNSIGNED_HASH)
3610 sbi->s_hash_unsigned = 3;
3611 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
3612 #ifdef __CHAR_UNSIGNED__
3613 es->s_flags |= cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
3614 sbi->s_hash_unsigned = 3;
3615 #else
3616 es->s_flags |= cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
3617 #endif
3618 }
3619
3620 /* Handle clustersize */
3621 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size);
3622 has_bigalloc = EXT4_HAS_RO_COMPAT_FEATURE(sb,
3623 EXT4_FEATURE_RO_COMPAT_BIGALLOC);
3624 if (has_bigalloc) {
3625 if (clustersize < blocksize) {
3626 ext4_msg(sb, KERN_ERR,
3627 "cluster size (%d) smaller than "
3628 "block size (%d)", clustersize, blocksize);
3629 goto failed_mount;
3630 }
3631 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) -
3632 le32_to_cpu(es->s_log_block_size);
3633 sbi->s_clusters_per_group =
3634 le32_to_cpu(es->s_clusters_per_group);
3635 if (sbi->s_clusters_per_group > blocksize * 8) {
3636 ext4_msg(sb, KERN_ERR,
3637 "#clusters per group too big: %lu",
3638 sbi->s_clusters_per_group);
3639 goto failed_mount;
3640 }
3641 if (sbi->s_blocks_per_group !=
3642 (sbi->s_clusters_per_group * (clustersize / blocksize))) {
3643 ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and "
3644 "clusters per group (%lu) inconsistent",
3645 sbi->s_blocks_per_group,
3646 sbi->s_clusters_per_group);
3647 goto failed_mount;
3648 }
3649 } else {
3650 if (clustersize != blocksize) {
3651 ext4_warning(sb, "fragment/cluster size (%d) != "
3652 "block size (%d)", clustersize,
3653 blocksize);
3654 clustersize = blocksize;
3655 }
3656 if (sbi->s_blocks_per_group > blocksize * 8) {
3657 ext4_msg(sb, KERN_ERR,
3658 "#blocks per group too big: %lu",
3659 sbi->s_blocks_per_group);
3660 goto failed_mount;
3661 }
3662 sbi->s_clusters_per_group = sbi->s_blocks_per_group;
3663 sbi->s_cluster_bits = 0;
3664 }
3665 sbi->s_cluster_ratio = clustersize / blocksize;
3666
3667 if (sbi->s_inodes_per_group > blocksize * 8) {
3668 ext4_msg(sb, KERN_ERR,
3669 "#inodes per group too big: %lu",
3670 sbi->s_inodes_per_group);
3671 goto failed_mount;
3672 }
3673
3674 /*
3675 * Test whether we have more sectors than will fit in sector_t,
3676 * and whether the max offset is addressable by the page cache.
3677 */
3678 err = generic_check_addressable(sb->s_blocksize_bits,
3679 ext4_blocks_count(es));
3680 if (err) {
3681 ext4_msg(sb, KERN_ERR, "filesystem"
3682 " too large to mount safely on this system");
3683 if (sizeof(sector_t) < 8)
3684 ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled");
3685 goto failed_mount;
3686 }
3687
3688 if (EXT4_BLOCKS_PER_GROUP(sb) == 0)
3689 goto cantfind_ext4;
3690
3691 /* check blocks count against device size */
3692 blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
3693 if (blocks_count && ext4_blocks_count(es) > blocks_count) {
3694 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
3695 "exceeds size of device (%llu blocks)",
3696 ext4_blocks_count(es), blocks_count);
3697 goto failed_mount;
3698 }
3699
3700 /*
3701 * It makes no sense for the first data block to be beyond the end
3702 * of the filesystem.
3703 */
3704 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
3705 ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
3706 "block %u is beyond end of filesystem (%llu)",
3707 le32_to_cpu(es->s_first_data_block),
3708 ext4_blocks_count(es));
3709 goto failed_mount;
3710 }
3711 blocks_count = (ext4_blocks_count(es) -
3712 le32_to_cpu(es->s_first_data_block) +
3713 EXT4_BLOCKS_PER_GROUP(sb) - 1);
3714 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
3715 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
3716 ext4_msg(sb, KERN_WARNING, "groups count too large: %u "
3717 "(block count %llu, first data block %u, "
3718 "blocks per group %lu)", sbi->s_groups_count,
3719 ext4_blocks_count(es),
3720 le32_to_cpu(es->s_first_data_block),
3721 EXT4_BLOCKS_PER_GROUP(sb));
3722 goto failed_mount;
3723 }
3724 sbi->s_groups_count = blocks_count;
3725 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
3726 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
3727 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
3728 EXT4_DESC_PER_BLOCK(sb);
3729 sbi->s_group_desc = ext4_kvmalloc(db_count *
3730 sizeof(struct buffer_head *),
3731 GFP_KERNEL);
3732 if (sbi->s_group_desc == NULL) {
3733 ext4_msg(sb, KERN_ERR, "not enough memory");
3734 ret = -ENOMEM;
3735 goto failed_mount;
3736 }
3737
3738 if (ext4_proc_root)
3739 sbi->s_proc = proc_mkdir(sb->s_id, ext4_proc_root);
3740
3741 if (sbi->s_proc)
3742 proc_create_data("options", S_IRUGO, sbi->s_proc,
3743 &ext4_seq_options_fops, sb);
3744
3745 bgl_lock_init(sbi->s_blockgroup_lock);
3746
3747 for (i = 0; i < db_count; i++) {
3748 block = descriptor_loc(sb, logical_sb_block, i);
3749 sbi->s_group_desc[i] = sb_bread(sb, block);
3750 if (!sbi->s_group_desc[i]) {
3751 ext4_msg(sb, KERN_ERR,
3752 "can't read group descriptor %d", i);
3753 db_count = i;
3754 goto failed_mount2;
3755 }
3756 }
3757 if (!ext4_check_descriptors(sb, &first_not_zeroed)) {
3758 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
3759 goto failed_mount2;
3760 }
3761 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG))
3762 if (!ext4_fill_flex_info(sb)) {
3763 ext4_msg(sb, KERN_ERR,
3764 "unable to initialize "
3765 "flex_bg meta info!");
3766 goto failed_mount2;
3767 }
3768
3769 sbi->s_gdb_count = db_count;
3770 get_random_bytes(&sbi->s_next_generation, sizeof(u32));
3771 spin_lock_init(&sbi->s_next_gen_lock);
3772
3773 init_timer(&sbi->s_err_report);
3774 sbi->s_err_report.function = print_daily_error_info;
3775 sbi->s_err_report.data = (unsigned long) sb;
3776
3777 /* Register extent status tree shrinker */
3778 ext4_es_register_shrinker(sb);
3779
3780 err = percpu_counter_init(&sbi->s_freeclusters_counter,
3781 ext4_count_free_clusters(sb));
3782 if (!err) {
3783 err = percpu_counter_init(&sbi->s_freeinodes_counter,
3784 ext4_count_free_inodes(sb));
3785 }
3786 if (!err) {
3787 err = percpu_counter_init(&sbi->s_dirs_counter,
3788 ext4_count_dirs(sb));
3789 }
3790 if (!err) {
3791 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0);
3792 }
3793 if (!err) {
3794 err = percpu_counter_init(&sbi->s_extent_cache_cnt, 0);
3795 }
3796 if (err) {
3797 ext4_msg(sb, KERN_ERR, "insufficient memory");
3798 goto failed_mount3;
3799 }
3800
3801 sbi->s_stripe = ext4_get_stripe_size(sbi);
3802 sbi->s_max_writeback_mb_bump = 128;
3803 sbi->s_extent_max_zeroout_kb = 32;
3804
3805 /*
3806 * set up enough so that it can read an inode
3807 */
3808 if (!test_opt(sb, NOLOAD) &&
3809 EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL))
3810 sb->s_op = &ext4_sops;
3811 else
3812 sb->s_op = &ext4_nojournal_sops;
3813 sb->s_export_op = &ext4_export_ops;
3814 sb->s_xattr = ext4_xattr_handlers;
3815 #ifdef CONFIG_QUOTA
3816 sb->dq_op = &ext4_quota_operations;
3817 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA))
3818 sb->s_qcop = &ext4_qctl_sysfile_operations;
3819 else
3820 sb->s_qcop = &ext4_qctl_operations;
3821 #endif
3822 memcpy(sb->s_uuid, es->s_uuid, sizeof(es->s_uuid));
3823
3824 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
3825 mutex_init(&sbi->s_orphan_lock);
3826
3827 sb->s_root = NULL;
3828
3829 needs_recovery = (es->s_last_orphan != 0 ||
3830 EXT4_HAS_INCOMPAT_FEATURE(sb,
3831 EXT4_FEATURE_INCOMPAT_RECOVER));
3832
3833 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_MMP) &&
3834 !(sb->s_flags & MS_RDONLY))
3835 if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block)))
3836 goto failed_mount3;
3837
3838 /*
3839 * The first inode we look at is the journal inode. Don't try
3840 * root first: it may be modified in the journal!
3841 */
3842 if (!test_opt(sb, NOLOAD) &&
3843 EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) {
3844 if (ext4_load_journal(sb, es, journal_devnum))
3845 goto failed_mount3;
3846 } else if (test_opt(sb, NOLOAD) && !(sb->s_flags & MS_RDONLY) &&
3847 EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) {
3848 ext4_msg(sb, KERN_ERR, "required journal recovery "
3849 "suppressed and not mounted read-only");
3850 goto failed_mount_wq;
3851 } else {
3852 clear_opt(sb, DATA_FLAGS);
3853 sbi->s_journal = NULL;
3854 needs_recovery = 0;
3855 goto no_journal;
3856 }
3857
3858 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT) &&
3859 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
3860 JBD2_FEATURE_INCOMPAT_64BIT)) {
3861 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
3862 goto failed_mount_wq;
3863 }
3864
3865 if (!set_journal_csum_feature_set(sb)) {
3866 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum "
3867 "feature set");
3868 goto failed_mount_wq;
3869 }
3870
3871 /* We have now updated the journal if required, so we can
3872 * validate the data journaling mode. */
3873 switch (test_opt(sb, DATA_FLAGS)) {
3874 case 0:
3875 /* No mode set, assume a default based on the journal
3876 * capabilities: ORDERED_DATA if the journal can
3877 * cope, else JOURNAL_DATA
3878 */
3879 if (jbd2_journal_check_available_features
3880 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE))
3881 set_opt(sb, ORDERED_DATA);
3882 else
3883 set_opt(sb, JOURNAL_DATA);
3884 break;
3885
3886 case EXT4_MOUNT_ORDERED_DATA:
3887 case EXT4_MOUNT_WRITEBACK_DATA:
3888 if (!jbd2_journal_check_available_features
3889 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
3890 ext4_msg(sb, KERN_ERR, "Journal does not support "
3891 "requested data journaling mode");
3892 goto failed_mount_wq;
3893 }
3894 default:
3895 break;
3896 }
3897 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
3898
3899 sbi->s_journal->j_commit_callback = ext4_journal_commit_callback;
3900
3901 /*
3902 * The journal may have updated the bg summary counts, so we
3903 * need to update the global counters.
3904 */
3905 percpu_counter_set(&sbi->s_freeclusters_counter,
3906 ext4_count_free_clusters(sb));
3907 percpu_counter_set(&sbi->s_freeinodes_counter,
3908 ext4_count_free_inodes(sb));
3909 percpu_counter_set(&sbi->s_dirs_counter,
3910 ext4_count_dirs(sb));
3911 percpu_counter_set(&sbi->s_dirtyclusters_counter, 0);
3912
3913 no_journal:
3914 /*
3915 * Get the # of file system overhead blocks from the
3916 * superblock if present.
3917 */
3918 if (es->s_overhead_clusters)
3919 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters);
3920 else {
3921 err = ext4_calculate_overhead(sb);
3922 if (err)
3923 goto failed_mount_wq;
3924 }
3925
3926 /*
3927 * The maximum number of concurrent works can be high and
3928 * concurrency isn't really necessary. Limit it to 1.
3929 */
3930 EXT4_SB(sb)->dio_unwritten_wq =
3931 alloc_workqueue("ext4-dio-unwritten", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
3932 if (!EXT4_SB(sb)->dio_unwritten_wq) {
3933 printk(KERN_ERR "EXT4-fs: failed to create DIO workqueue\n");
3934 ret = -ENOMEM;
3935 goto failed_mount_wq;
3936 }
3937
3938 /*
3939 * The jbd2_journal_load will have done any necessary log recovery,
3940 * so we can safely mount the rest of the filesystem now.
3941 */
3942
3943 root = ext4_iget(sb, EXT4_ROOT_INO);
3944 if (IS_ERR(root)) {
3945 ext4_msg(sb, KERN_ERR, "get root inode failed");
3946 ret = PTR_ERR(root);
3947 root = NULL;
3948 goto failed_mount4;
3949 }
3950 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
3951 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
3952 iput(root);
3953 goto failed_mount4;
3954 }
3955 sb->s_root = d_make_root(root);
3956 if (!sb->s_root) {
3957 ext4_msg(sb, KERN_ERR, "get root dentry failed");
3958 ret = -ENOMEM;
3959 goto failed_mount4;
3960 }
3961
3962 if (ext4_setup_super(sb, es, sb->s_flags & MS_RDONLY))
3963 sb->s_flags |= MS_RDONLY;
3964
3965 /* determine the minimum size of new large inodes, if present */
3966 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) {
3967 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
3968 EXT4_GOOD_OLD_INODE_SIZE;
3969 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3970 EXT4_FEATURE_RO_COMPAT_EXTRA_ISIZE)) {
3971 if (sbi->s_want_extra_isize <
3972 le16_to_cpu(es->s_want_extra_isize))
3973 sbi->s_want_extra_isize =
3974 le16_to_cpu(es->s_want_extra_isize);
3975 if (sbi->s_want_extra_isize <
3976 le16_to_cpu(es->s_min_extra_isize))
3977 sbi->s_want_extra_isize =
3978 le16_to_cpu(es->s_min_extra_isize);
3979 }
3980 }
3981 /* Check if enough inode space is available */
3982 if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize >
3983 sbi->s_inode_size) {
3984 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
3985 EXT4_GOOD_OLD_INODE_SIZE;
3986 ext4_msg(sb, KERN_INFO, "required extra inode space not"
3987 "available");
3988 }
3989
3990 err = ext4_reserve_clusters(sbi, ext4_calculate_resv_clusters(sbi));
3991 if (err) {
3992 ext4_msg(sb, KERN_ERR, "failed to reserve %llu clusters for "
3993 "reserved pool", ext4_calculate_resv_clusters(sbi));
3994 goto failed_mount4a;
3995 }
3996
3997 err = ext4_setup_system_zone(sb);
3998 if (err) {
3999 ext4_msg(sb, KERN_ERR, "failed to initialize system "
4000 "zone (%d)", err);
4001 goto failed_mount4a;
4002 }
4003
4004 ext4_ext_init(sb);
4005 err = ext4_mb_init(sb);
4006 if (err) {
4007 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
4008 err);
4009 goto failed_mount5;
4010 }
4011
4012 err = ext4_register_li_request(sb, first_not_zeroed);
4013 if (err)
4014 goto failed_mount6;
4015
4016 sbi->s_kobj.kset = ext4_kset;
4017 init_completion(&sbi->s_kobj_unregister);
4018 err = kobject_init_and_add(&sbi->s_kobj, &ext4_ktype, NULL,
4019 "%s", sb->s_id);
4020 if (err)
4021 goto failed_mount7;
4022
4023 #ifdef CONFIG_QUOTA
4024 /* Enable quota usage during mount. */
4025 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) &&
4026 !(sb->s_flags & MS_RDONLY)) {
4027 err = ext4_enable_quotas(sb);
4028 if (err)
4029 goto failed_mount8;
4030 }
4031 #endif /* CONFIG_QUOTA */
4032
4033 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
4034 ext4_orphan_cleanup(sb, es);
4035 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
4036 if (needs_recovery) {
4037 ext4_msg(sb, KERN_INFO, "recovery complete");
4038 ext4_mark_recovery_complete(sb, es);
4039 }
4040 if (EXT4_SB(sb)->s_journal) {
4041 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
4042 descr = " journalled data mode";
4043 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
4044 descr = " ordered data mode";
4045 else
4046 descr = " writeback data mode";
4047 } else
4048 descr = "out journal";
4049
4050 if (test_opt(sb, DISCARD)) {
4051 struct request_queue *q = bdev_get_queue(sb->s_bdev);
4052 if (!blk_queue_discard(q))
4053 ext4_msg(sb, KERN_WARNING,
4054 "mounting with \"discard\" option, but "
4055 "the device does not support discard");
4056 }
4057
4058 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. "
4059 "Opts: %s%s%s", descr, sbi->s_es->s_mount_opts,
4060 *sbi->s_es->s_mount_opts ? "; " : "", orig_data);
4061
4062 if (es->s_error_count)
4063 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
4064
4065 kfree(orig_data);
4066 return 0;
4067
4068 cantfind_ext4:
4069 if (!silent)
4070 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
4071 goto failed_mount;
4072
4073 #ifdef CONFIG_QUOTA
4074 failed_mount8:
4075 kobject_del(&sbi->s_kobj);
4076 #endif
4077 failed_mount7:
4078 ext4_unregister_li_request(sb);
4079 failed_mount6:
4080 ext4_mb_release(sb);
4081 failed_mount5:
4082 ext4_ext_release(sb);
4083 ext4_release_system_zone(sb);
4084 failed_mount4a:
4085 dput(sb->s_root);
4086 sb->s_root = NULL;
4087 failed_mount4:
4088 ext4_msg(sb, KERN_ERR, "mount failed");
4089 destroy_workqueue(EXT4_SB(sb)->dio_unwritten_wq);
4090 failed_mount_wq:
4091 if (sbi->s_journal) {
4092 jbd2_journal_destroy(sbi->s_journal);
4093 sbi->s_journal = NULL;
4094 }
4095 failed_mount3:
4096 ext4_es_unregister_shrinker(sb);
4097 del_timer(&sbi->s_err_report);
4098 if (sbi->s_flex_groups)
4099 ext4_kvfree(sbi->s_flex_groups);
4100 percpu_counter_destroy(&sbi->s_freeclusters_counter);
4101 percpu_counter_destroy(&sbi->s_freeinodes_counter);
4102 percpu_counter_destroy(&sbi->s_dirs_counter);
4103 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
4104 percpu_counter_destroy(&sbi->s_extent_cache_cnt);
4105 if (sbi->s_mmp_tsk)
4106 kthread_stop(sbi->s_mmp_tsk);
4107 failed_mount2:
4108 for (i = 0; i < db_count; i++)
4109 brelse(sbi->s_group_desc[i]);
4110 ext4_kvfree(sbi->s_group_desc);
4111 failed_mount:
4112 if (sbi->s_chksum_driver)
4113 crypto_free_shash(sbi->s_chksum_driver);
4114 if (sbi->s_proc) {
4115 remove_proc_entry("options", sbi->s_proc);
4116 remove_proc_entry(sb->s_id, ext4_proc_root);
4117 }
4118 #ifdef CONFIG_QUOTA
4119 for (i = 0; i < MAXQUOTAS; i++)
4120 kfree(sbi->s_qf_names[i]);
4121 #endif
4122 ext4_blkdev_remove(sbi);
4123 brelse(bh);
4124 out_fail:
4125 sb->s_fs_info = NULL;
4126 kfree(sbi->s_blockgroup_lock);
4127 kfree(sbi);
4128 out_free_orig:
4129 kfree(orig_data);
4130 return err ? err : ret;
4131 }
4132
4133 /*
4134 * Setup any per-fs journal parameters now. We'll do this both on
4135 * initial mount, once the journal has been initialised but before we've
4136 * done any recovery; and again on any subsequent remount.
4137 */
4138 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
4139 {
4140 struct ext4_sb_info *sbi = EXT4_SB(sb);
4141
4142 journal->j_commit_interval = sbi->s_commit_interval;
4143 journal->j_min_batch_time = sbi->s_min_batch_time;
4144 journal->j_max_batch_time = sbi->s_max_batch_time;
4145
4146 write_lock(&journal->j_state_lock);
4147 if (test_opt(sb, BARRIER))
4148 journal->j_flags |= JBD2_BARRIER;
4149 else
4150 journal->j_flags &= ~JBD2_BARRIER;
4151 if (test_opt(sb, DATA_ERR_ABORT))
4152 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
4153 else
4154 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
4155 write_unlock(&journal->j_state_lock);
4156 }
4157
4158 static journal_t *ext4_get_journal(struct super_block *sb,
4159 unsigned int journal_inum)
4160 {
4161 struct inode *journal_inode;
4162 journal_t *journal;
4163
4164 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
4165
4166 /* First, test for the existence of a valid inode on disk. Bad
4167 * things happen if we iget() an unused inode, as the subsequent
4168 * iput() will try to delete it. */
4169
4170 journal_inode = ext4_iget(sb, journal_inum);
4171 if (IS_ERR(journal_inode)) {
4172 ext4_msg(sb, KERN_ERR, "no journal found");
4173 return NULL;
4174 }
4175 if (!journal_inode->i_nlink) {
4176 make_bad_inode(journal_inode);
4177 iput(journal_inode);
4178 ext4_msg(sb, KERN_ERR, "journal inode is deleted");
4179 return NULL;
4180 }
4181
4182 jbd_debug(2, "Journal inode found at %p: %lld bytes\n",
4183 journal_inode, journal_inode->i_size);
4184 if (!S_ISREG(journal_inode->i_mode)) {
4185 ext4_msg(sb, KERN_ERR, "invalid journal inode");
4186 iput(journal_inode);
4187 return NULL;
4188 }
4189
4190 journal = jbd2_journal_init_inode(journal_inode);
4191 if (!journal) {
4192 ext4_msg(sb, KERN_ERR, "Could not load journal inode");
4193 iput(journal_inode);
4194 return NULL;
4195 }
4196 journal->j_private = sb;
4197 ext4_init_journal_params(sb, journal);
4198 return journal;
4199 }
4200
4201 static journal_t *ext4_get_dev_journal(struct super_block *sb,
4202 dev_t j_dev)
4203 {
4204 struct buffer_head *bh;
4205 journal_t *journal;
4206 ext4_fsblk_t start;
4207 ext4_fsblk_t len;
4208 int hblock, blocksize;
4209 ext4_fsblk_t sb_block;
4210 unsigned long offset;
4211 struct ext4_super_block *es;
4212 struct block_device *bdev;
4213
4214 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
4215
4216 bdev = ext4_blkdev_get(j_dev, sb);
4217 if (bdev == NULL)
4218 return NULL;
4219
4220 blocksize = sb->s_blocksize;
4221 hblock = bdev_logical_block_size(bdev);
4222 if (blocksize < hblock) {
4223 ext4_msg(sb, KERN_ERR,
4224 "blocksize too small for journal device");
4225 goto out_bdev;
4226 }
4227
4228 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
4229 offset = EXT4_MIN_BLOCK_SIZE % blocksize;
4230 set_blocksize(bdev, blocksize);
4231 if (!(bh = __bread(bdev, sb_block, blocksize))) {
4232 ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
4233 "external journal");
4234 goto out_bdev;
4235 }
4236
4237 es = (struct ext4_super_block *) (bh->b_data + offset);
4238 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
4239 !(le32_to_cpu(es->s_feature_incompat) &
4240 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
4241 ext4_msg(sb, KERN_ERR, "external journal has "
4242 "bad superblock");
4243 brelse(bh);
4244 goto out_bdev;
4245 }
4246
4247 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
4248 ext4_msg(sb, KERN_ERR, "journal UUID does not match");
4249 brelse(bh);
4250 goto out_bdev;
4251 }
4252
4253 len = ext4_blocks_count(es);
4254 start = sb_block + 1;
4255 brelse(bh); /* we're done with the superblock */
4256
4257 journal = jbd2_journal_init_dev(bdev, sb->s_bdev,
4258 start, len, blocksize);
4259 if (!journal) {
4260 ext4_msg(sb, KERN_ERR, "failed to create device journal");
4261 goto out_bdev;
4262 }
4263 journal->j_private = sb;
4264 ll_rw_block(READ, 1, &journal->j_sb_buffer);
4265 wait_on_buffer(journal->j_sb_buffer);
4266 if (!buffer_uptodate(journal->j_sb_buffer)) {
4267 ext4_msg(sb, KERN_ERR, "I/O error on journal device");
4268 goto out_journal;
4269 }
4270 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
4271 ext4_msg(sb, KERN_ERR, "External journal has more than one "
4272 "user (unsupported) - %d",
4273 be32_to_cpu(journal->j_superblock->s_nr_users));
4274 goto out_journal;
4275 }
4276 EXT4_SB(sb)->journal_bdev = bdev;
4277 ext4_init_journal_params(sb, journal);
4278 return journal;
4279
4280 out_journal:
4281 jbd2_journal_destroy(journal);
4282 out_bdev:
4283 ext4_blkdev_put(bdev);
4284 return NULL;
4285 }
4286
4287 static int ext4_load_journal(struct super_block *sb,
4288 struct ext4_super_block *es,
4289 unsigned long journal_devnum)
4290 {
4291 journal_t *journal;
4292 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
4293 dev_t journal_dev;
4294 int err = 0;
4295 int really_read_only;
4296
4297 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
4298
4299 if (journal_devnum &&
4300 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4301 ext4_msg(sb, KERN_INFO, "external journal device major/minor "
4302 "numbers have changed");
4303 journal_dev = new_decode_dev(journal_devnum);
4304 } else
4305 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
4306
4307 really_read_only = bdev_read_only(sb->s_bdev);
4308
4309 /*
4310 * Are we loading a blank journal or performing recovery after a
4311 * crash? For recovery, we need to check in advance whether we
4312 * can get read-write access to the device.
4313 */
4314 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) {
4315 if (sb->s_flags & MS_RDONLY) {
4316 ext4_msg(sb, KERN_INFO, "INFO: recovery "
4317 "required on readonly filesystem");
4318 if (really_read_only) {
4319 ext4_msg(sb, KERN_ERR, "write access "
4320 "unavailable, cannot proceed");
4321 return -EROFS;
4322 }
4323 ext4_msg(sb, KERN_INFO, "write access will "
4324 "be enabled during recovery");
4325 }
4326 }
4327
4328 if (journal_inum && journal_dev) {
4329 ext4_msg(sb, KERN_ERR, "filesystem has both journal "
4330 "and inode journals!");
4331 return -EINVAL;
4332 }
4333
4334 if (journal_inum) {
4335 if (!(journal = ext4_get_journal(sb, journal_inum)))
4336 return -EINVAL;
4337 } else {
4338 if (!(journal = ext4_get_dev_journal(sb, journal_dev)))
4339 return -EINVAL;
4340 }
4341
4342 if (!(journal->j_flags & JBD2_BARRIER))
4343 ext4_msg(sb, KERN_INFO, "barriers disabled");
4344
4345 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER))
4346 err = jbd2_journal_wipe(journal, !really_read_only);
4347 if (!err) {
4348 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
4349 if (save)
4350 memcpy(save, ((char *) es) +
4351 EXT4_S_ERR_START, EXT4_S_ERR_LEN);
4352 err = jbd2_journal_load(journal);
4353 if (save)
4354 memcpy(((char *) es) + EXT4_S_ERR_START,
4355 save, EXT4_S_ERR_LEN);
4356 kfree(save);
4357 }
4358
4359 if (err) {
4360 ext4_msg(sb, KERN_ERR, "error loading journal");
4361 jbd2_journal_destroy(journal);
4362 return err;
4363 }
4364
4365 EXT4_SB(sb)->s_journal = journal;
4366 ext4_clear_journal_err(sb, es);
4367
4368 if (!really_read_only && journal_devnum &&
4369 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4370 es->s_journal_dev = cpu_to_le32(journal_devnum);
4371
4372 /* Make sure we flush the recovery flag to disk. */
4373 ext4_commit_super(sb, 1);
4374 }
4375
4376 return 0;
4377 }
4378
4379 static int ext4_commit_super(struct super_block *sb, int sync)
4380 {
4381 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
4382 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
4383 int error = 0;
4384
4385 if (!sbh || block_device_ejected(sb))
4386 return error;
4387 if (buffer_write_io_error(sbh)) {
4388 /*
4389 * Oh, dear. A previous attempt to write the
4390 * superblock failed. This could happen because the
4391 * USB device was yanked out. Or it could happen to
4392 * be a transient write error and maybe the block will
4393 * be remapped. Nothing we can do but to retry the
4394 * write and hope for the best.
4395 */
4396 ext4_msg(sb, KERN_ERR, "previous I/O error to "
4397 "superblock detected");
4398 clear_buffer_write_io_error(sbh);
4399 set_buffer_uptodate(sbh);
4400 }
4401 /*
4402 * If the file system is mounted read-only, don't update the
4403 * superblock write time. This avoids updating the superblock
4404 * write time when we are mounting the root file system
4405 * read/only but we need to replay the journal; at that point,
4406 * for people who are east of GMT and who make their clock
4407 * tick in localtime for Windows bug-for-bug compatibility,
4408 * the clock is set in the future, and this will cause e2fsck
4409 * to complain and force a full file system check.
4410 */
4411 if (!(sb->s_flags & MS_RDONLY))
4412 es->s_wtime = cpu_to_le32(get_seconds());
4413 if (sb->s_bdev->bd_part)
4414 es->s_kbytes_written =
4415 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written +
4416 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
4417 EXT4_SB(sb)->s_sectors_written_start) >> 1));
4418 else
4419 es->s_kbytes_written =
4420 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written);
4421 ext4_free_blocks_count_set(es,
4422 EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive(
4423 &EXT4_SB(sb)->s_freeclusters_counter)));
4424 es->s_free_inodes_count =
4425 cpu_to_le32(percpu_counter_sum_positive(
4426 &EXT4_SB(sb)->s_freeinodes_counter));
4427 BUFFER_TRACE(sbh, "marking dirty");
4428 ext4_superblock_csum_set(sb);
4429 mark_buffer_dirty(sbh);
4430 if (sync) {
4431 error = sync_dirty_buffer(sbh);
4432 if (error)
4433 return error;
4434
4435 error = buffer_write_io_error(sbh);
4436 if (error) {
4437 ext4_msg(sb, KERN_ERR, "I/O error while writing "
4438 "superblock");
4439 clear_buffer_write_io_error(sbh);
4440 set_buffer_uptodate(sbh);
4441 }
4442 }
4443 return error;
4444 }
4445
4446 /*
4447 * Have we just finished recovery? If so, and if we are mounting (or
4448 * remounting) the filesystem readonly, then we will end up with a
4449 * consistent fs on disk. Record that fact.
4450 */
4451 static void ext4_mark_recovery_complete(struct super_block *sb,
4452 struct ext4_super_block *es)
4453 {
4454 journal_t *journal = EXT4_SB(sb)->s_journal;
4455
4456 if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) {
4457 BUG_ON(journal != NULL);
4458 return;
4459 }
4460 jbd2_journal_lock_updates(journal);
4461 if (jbd2_journal_flush(journal) < 0)
4462 goto out;
4463
4464 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER) &&
4465 sb->s_flags & MS_RDONLY) {
4466 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4467 ext4_commit_super(sb, 1);
4468 }
4469
4470 out:
4471 jbd2_journal_unlock_updates(journal);
4472 }
4473
4474 /*
4475 * If we are mounting (or read-write remounting) a filesystem whose journal
4476 * has recorded an error from a previous lifetime, move that error to the
4477 * main filesystem now.
4478 */
4479 static void ext4_clear_journal_err(struct super_block *sb,
4480 struct ext4_super_block *es)
4481 {
4482 journal_t *journal;
4483 int j_errno;
4484 const char *errstr;
4485
4486 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
4487
4488 journal = EXT4_SB(sb)->s_journal;
4489
4490 /*
4491 * Now check for any error status which may have been recorded in the
4492 * journal by a prior ext4_error() or ext4_abort()
4493 */
4494
4495 j_errno = jbd2_journal_errno(journal);
4496 if (j_errno) {
4497 char nbuf[16];
4498
4499 errstr = ext4_decode_error(sb, j_errno, nbuf);
4500 ext4_warning(sb, "Filesystem error recorded "
4501 "from previous mount: %s", errstr);
4502 ext4_warning(sb, "Marking fs in need of filesystem check.");
4503
4504 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
4505 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
4506 ext4_commit_super(sb, 1);
4507
4508 jbd2_journal_clear_err(journal);
4509 jbd2_journal_update_sb_errno(journal);
4510 }
4511 }
4512
4513 /*
4514 * Force the running and committing transactions to commit,
4515 * and wait on the commit.
4516 */
4517 int ext4_force_commit(struct super_block *sb)
4518 {
4519 journal_t *journal;
4520
4521 if (sb->s_flags & MS_RDONLY)
4522 return 0;
4523
4524 journal = EXT4_SB(sb)->s_journal;
4525 return ext4_journal_force_commit(journal);
4526 }
4527
4528 static int ext4_sync_fs(struct super_block *sb, int wait)
4529 {
4530 int ret = 0;
4531 tid_t target;
4532 struct ext4_sb_info *sbi = EXT4_SB(sb);
4533
4534 trace_ext4_sync_fs(sb, wait);
4535 flush_workqueue(sbi->dio_unwritten_wq);
4536 /*
4537 * Writeback quota in non-journalled quota case - journalled quota has
4538 * no dirty dquots
4539 */
4540 dquot_writeback_dquots(sb, -1);
4541 if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
4542 if (wait)
4543 jbd2_log_wait_commit(sbi->s_journal, target);
4544 }
4545 return ret;
4546 }
4547
4548 /*
4549 * LVM calls this function before a (read-only) snapshot is created. This
4550 * gives us a chance to flush the journal completely and mark the fs clean.
4551 *
4552 * Note that only this function cannot bring a filesystem to be in a clean
4553 * state independently. It relies on upper layer to stop all data & metadata
4554 * modifications.
4555 */
4556 static int ext4_freeze(struct super_block *sb)
4557 {
4558 int error = 0;
4559 journal_t *journal;
4560
4561 if (sb->s_flags & MS_RDONLY)
4562 return 0;
4563
4564 journal = EXT4_SB(sb)->s_journal;
4565
4566 /* Now we set up the journal barrier. */
4567 jbd2_journal_lock_updates(journal);
4568
4569 /*
4570 * Don't clear the needs_recovery flag if we failed to flush
4571 * the journal.
4572 */
4573 error = jbd2_journal_flush(journal);
4574 if (error < 0)
4575 goto out;
4576
4577 /* Journal blocked and flushed, clear needs_recovery flag. */
4578 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4579 error = ext4_commit_super(sb, 1);
4580 out:
4581 /* we rely on upper layer to stop further updates */
4582 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
4583 return error;
4584 }
4585
4586 /*
4587 * Called by LVM after the snapshot is done. We need to reset the RECOVER
4588 * flag here, even though the filesystem is not technically dirty yet.
4589 */
4590 static int ext4_unfreeze(struct super_block *sb)
4591 {
4592 if (sb->s_flags & MS_RDONLY)
4593 return 0;
4594
4595 /* Reset the needs_recovery flag before the fs is unlocked. */
4596 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4597 ext4_commit_super(sb, 1);
4598 return 0;
4599 }
4600
4601 /*
4602 * Structure to save mount options for ext4_remount's benefit
4603 */
4604 struct ext4_mount_options {
4605 unsigned long s_mount_opt;
4606 unsigned long s_mount_opt2;
4607 kuid_t s_resuid;
4608 kgid_t s_resgid;
4609 unsigned long s_commit_interval;
4610 u32 s_min_batch_time, s_max_batch_time;
4611 #ifdef CONFIG_QUOTA
4612 int s_jquota_fmt;
4613 char *s_qf_names[MAXQUOTAS];
4614 #endif
4615 };
4616
4617 static int ext4_remount(struct super_block *sb, int *flags, char *data)
4618 {
4619 struct ext4_super_block *es;
4620 struct ext4_sb_info *sbi = EXT4_SB(sb);
4621 unsigned long old_sb_flags;
4622 struct ext4_mount_options old_opts;
4623 int enable_quota = 0;
4624 ext4_group_t g;
4625 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
4626 int err = 0;
4627 #ifdef CONFIG_QUOTA
4628 int i, j;
4629 #endif
4630 char *orig_data = kstrdup(data, GFP_KERNEL);
4631
4632 /* Store the original options */
4633 old_sb_flags = sb->s_flags;
4634 old_opts.s_mount_opt = sbi->s_mount_opt;
4635 old_opts.s_mount_opt2 = sbi->s_mount_opt2;
4636 old_opts.s_resuid = sbi->s_resuid;
4637 old_opts.s_resgid = sbi->s_resgid;
4638 old_opts.s_commit_interval = sbi->s_commit_interval;
4639 old_opts.s_min_batch_time = sbi->s_min_batch_time;
4640 old_opts.s_max_batch_time = sbi->s_max_batch_time;
4641 #ifdef CONFIG_QUOTA
4642 old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
4643 for (i = 0; i < MAXQUOTAS; i++)
4644 if (sbi->s_qf_names[i]) {
4645 old_opts.s_qf_names[i] = kstrdup(sbi->s_qf_names[i],
4646 GFP_KERNEL);
4647 if (!old_opts.s_qf_names[i]) {
4648 for (j = 0; j < i; j++)
4649 kfree(old_opts.s_qf_names[j]);
4650 kfree(orig_data);
4651 return -ENOMEM;
4652 }
4653 } else
4654 old_opts.s_qf_names[i] = NULL;
4655 #endif
4656 if (sbi->s_journal && sbi->s_journal->j_task->io_context)
4657 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio;
4658
4659 /*
4660 * Allow the "check" option to be passed as a remount option.
4661 */
4662 if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) {
4663 err = -EINVAL;
4664 goto restore_opts;
4665 }
4666
4667 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED)
4668 ext4_abort(sb, "Abort forced by user");
4669
4670 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
4671 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
4672
4673 es = sbi->s_es;
4674
4675 if (sbi->s_journal) {
4676 ext4_init_journal_params(sb, sbi->s_journal);
4677 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
4678 }
4679
4680 if ((*flags & MS_RDONLY) != (sb->s_flags & MS_RDONLY)) {
4681 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) {
4682 err = -EROFS;
4683 goto restore_opts;
4684 }
4685
4686 if (*flags & MS_RDONLY) {
4687 err = dquot_suspend(sb, -1);
4688 if (err < 0)
4689 goto restore_opts;
4690
4691 /*
4692 * First of all, the unconditional stuff we have to do
4693 * to disable replay of the journal when we next remount
4694 */
4695 sb->s_flags |= MS_RDONLY;
4696
4697 /*
4698 * OK, test if we are remounting a valid rw partition
4699 * readonly, and if so set the rdonly flag and then
4700 * mark the partition as valid again.
4701 */
4702 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
4703 (sbi->s_mount_state & EXT4_VALID_FS))
4704 es->s_state = cpu_to_le16(sbi->s_mount_state);
4705
4706 if (sbi->s_journal)
4707 ext4_mark_recovery_complete(sb, es);
4708 } else {
4709 /* Make sure we can mount this feature set readwrite */
4710 if (!ext4_feature_set_ok(sb, 0)) {
4711 err = -EROFS;
4712 goto restore_opts;
4713 }
4714 /*
4715 * Make sure the group descriptor checksums
4716 * are sane. If they aren't, refuse to remount r/w.
4717 */
4718 for (g = 0; g < sbi->s_groups_count; g++) {
4719 struct ext4_group_desc *gdp =
4720 ext4_get_group_desc(sb, g, NULL);
4721
4722 if (!ext4_group_desc_csum_verify(sb, g, gdp)) {
4723 ext4_msg(sb, KERN_ERR,
4724 "ext4_remount: Checksum for group %u failed (%u!=%u)",
4725 g, le16_to_cpu(ext4_group_desc_csum(sbi, g, gdp)),
4726 le16_to_cpu(gdp->bg_checksum));
4727 err = -EINVAL;
4728 goto restore_opts;
4729 }
4730 }
4731
4732 /*
4733 * If we have an unprocessed orphan list hanging
4734 * around from a previously readonly bdev mount,
4735 * require a full umount/remount for now.
4736 */
4737 if (es->s_last_orphan) {
4738 ext4_msg(sb, KERN_WARNING, "Couldn't "
4739 "remount RDWR because of unprocessed "
4740 "orphan inode list. Please "
4741 "umount/remount instead");
4742 err = -EINVAL;
4743 goto restore_opts;
4744 }
4745
4746 /*
4747 * Mounting a RDONLY partition read-write, so reread
4748 * and store the current valid flag. (It may have
4749 * been changed by e2fsck since we originally mounted
4750 * the partition.)
4751 */
4752 if (sbi->s_journal)
4753 ext4_clear_journal_err(sb, es);
4754 sbi->s_mount_state = le16_to_cpu(es->s_state);
4755 if (!ext4_setup_super(sb, es, 0))
4756 sb->s_flags &= ~MS_RDONLY;
4757 if (EXT4_HAS_INCOMPAT_FEATURE(sb,
4758 EXT4_FEATURE_INCOMPAT_MMP))
4759 if (ext4_multi_mount_protect(sb,
4760 le64_to_cpu(es->s_mmp_block))) {
4761 err = -EROFS;
4762 goto restore_opts;
4763 }
4764 enable_quota = 1;
4765 }
4766 }
4767
4768 /*
4769 * Reinitialize lazy itable initialization thread based on
4770 * current settings
4771 */
4772 if ((sb->s_flags & MS_RDONLY) || !test_opt(sb, INIT_INODE_TABLE))
4773 ext4_unregister_li_request(sb);
4774 else {
4775 ext4_group_t first_not_zeroed;
4776 first_not_zeroed = ext4_has_uninit_itable(sb);
4777 ext4_register_li_request(sb, first_not_zeroed);
4778 }
4779
4780 ext4_setup_system_zone(sb);
4781 if (sbi->s_journal == NULL && !(old_sb_flags & MS_RDONLY))
4782 ext4_commit_super(sb, 1);
4783
4784 #ifdef CONFIG_QUOTA
4785 /* Release old quota file names */
4786 for (i = 0; i < MAXQUOTAS; i++)
4787 kfree(old_opts.s_qf_names[i]);
4788 if (enable_quota) {
4789 if (sb_any_quota_suspended(sb))
4790 dquot_resume(sb, -1);
4791 else if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4792 EXT4_FEATURE_RO_COMPAT_QUOTA)) {
4793 err = ext4_enable_quotas(sb);
4794 if (err)
4795 goto restore_opts;
4796 }
4797 }
4798 #endif
4799
4800 ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data);
4801 kfree(orig_data);
4802 return 0;
4803
4804 restore_opts:
4805 sb->s_flags = old_sb_flags;
4806 sbi->s_mount_opt = old_opts.s_mount_opt;
4807 sbi->s_mount_opt2 = old_opts.s_mount_opt2;
4808 sbi->s_resuid = old_opts.s_resuid;
4809 sbi->s_resgid = old_opts.s_resgid;
4810 sbi->s_commit_interval = old_opts.s_commit_interval;
4811 sbi->s_min_batch_time = old_opts.s_min_batch_time;
4812 sbi->s_max_batch_time = old_opts.s_max_batch_time;
4813 #ifdef CONFIG_QUOTA
4814 sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
4815 for (i = 0; i < MAXQUOTAS; i++) {
4816 kfree(sbi->s_qf_names[i]);
4817 sbi->s_qf_names[i] = old_opts.s_qf_names[i];
4818 }
4819 #endif
4820 kfree(orig_data);
4821 return err;
4822 }
4823
4824 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
4825 {
4826 struct super_block *sb = dentry->d_sb;
4827 struct ext4_sb_info *sbi = EXT4_SB(sb);
4828 struct ext4_super_block *es = sbi->s_es;
4829 ext4_fsblk_t overhead = 0, resv_blocks;
4830 u64 fsid;
4831 s64 bfree;
4832 resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters));
4833
4834 if (!test_opt(sb, MINIX_DF))
4835 overhead = sbi->s_overhead;
4836
4837 buf->f_type = EXT4_SUPER_MAGIC;
4838 buf->f_bsize = sb->s_blocksize;
4839 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead);
4840 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
4841 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
4842 /* prevent underflow in case that few free space is available */
4843 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0));
4844 buf->f_bavail = buf->f_bfree -
4845 (ext4_r_blocks_count(es) + resv_blocks);
4846 if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks))
4847 buf->f_bavail = 0;
4848 buf->f_files = le32_to_cpu(es->s_inodes_count);
4849 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
4850 buf->f_namelen = EXT4_NAME_LEN;
4851 fsid = le64_to_cpup((void *)es->s_uuid) ^
4852 le64_to_cpup((void *)es->s_uuid + sizeof(u64));
4853 buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL;
4854 buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL;
4855
4856 return 0;
4857 }
4858
4859 /* Helper function for writing quotas on sync - we need to start transaction
4860 * before quota file is locked for write. Otherwise the are possible deadlocks:
4861 * Process 1 Process 2
4862 * ext4_create() quota_sync()
4863 * jbd2_journal_start() write_dquot()
4864 * dquot_initialize() down(dqio_mutex)
4865 * down(dqio_mutex) jbd2_journal_start()
4866 *
4867 */
4868
4869 #ifdef CONFIG_QUOTA
4870
4871 static inline struct inode *dquot_to_inode(struct dquot *dquot)
4872 {
4873 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type];
4874 }
4875
4876 static int ext4_write_dquot(struct dquot *dquot)
4877 {
4878 int ret, err;
4879 handle_t *handle;
4880 struct inode *inode;
4881
4882 inode = dquot_to_inode(dquot);
4883 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4884 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
4885 if (IS_ERR(handle))
4886 return PTR_ERR(handle);
4887 ret = dquot_commit(dquot);
4888 err = ext4_journal_stop(handle);
4889 if (!ret)
4890 ret = err;
4891 return ret;
4892 }
4893
4894 static int ext4_acquire_dquot(struct dquot *dquot)
4895 {
4896 int ret, err;
4897 handle_t *handle;
4898
4899 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
4900 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
4901 if (IS_ERR(handle))
4902 return PTR_ERR(handle);
4903 ret = dquot_acquire(dquot);
4904 err = ext4_journal_stop(handle);
4905 if (!ret)
4906 ret = err;
4907 return ret;
4908 }
4909
4910 static int ext4_release_dquot(struct dquot *dquot)
4911 {
4912 int ret, err;
4913 handle_t *handle;
4914
4915 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
4916 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
4917 if (IS_ERR(handle)) {
4918 /* Release dquot anyway to avoid endless cycle in dqput() */
4919 dquot_release(dquot);
4920 return PTR_ERR(handle);
4921 }
4922 ret = dquot_release(dquot);
4923 err = ext4_journal_stop(handle);
4924 if (!ret)
4925 ret = err;
4926 return ret;
4927 }
4928
4929 static int ext4_mark_dquot_dirty(struct dquot *dquot)
4930 {
4931 struct super_block *sb = dquot->dq_sb;
4932 struct ext4_sb_info *sbi = EXT4_SB(sb);
4933
4934 /* Are we journaling quotas? */
4935 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) ||
4936 sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
4937 dquot_mark_dquot_dirty(dquot);
4938 return ext4_write_dquot(dquot);
4939 } else {
4940 return dquot_mark_dquot_dirty(dquot);
4941 }
4942 }
4943
4944 static int ext4_write_info(struct super_block *sb, int type)
4945 {
4946 int ret, err;
4947 handle_t *handle;
4948
4949 /* Data block + inode block */
4950 handle = ext4_journal_start(sb->s_root->d_inode, EXT4_HT_QUOTA, 2);
4951 if (IS_ERR(handle))
4952 return PTR_ERR(handle);
4953 ret = dquot_commit_info(sb, type);
4954 err = ext4_journal_stop(handle);
4955 if (!ret)
4956 ret = err;
4957 return ret;
4958 }
4959
4960 /*
4961 * Turn on quotas during mount time - we need to find
4962 * the quota file and such...
4963 */
4964 static int ext4_quota_on_mount(struct super_block *sb, int type)
4965 {
4966 return dquot_quota_on_mount(sb, EXT4_SB(sb)->s_qf_names[type],
4967 EXT4_SB(sb)->s_jquota_fmt, type);
4968 }
4969
4970 /*
4971 * Standard function to be called on quota_on
4972 */
4973 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
4974 struct path *path)
4975 {
4976 int err;
4977
4978 if (!test_opt(sb, QUOTA))
4979 return -EINVAL;
4980
4981 /* Quotafile not on the same filesystem? */
4982 if (path->dentry->d_sb != sb)
4983 return -EXDEV;
4984 /* Journaling quota? */
4985 if (EXT4_SB(sb)->s_qf_names[type]) {
4986 /* Quotafile not in fs root? */
4987 if (path->dentry->d_parent != sb->s_root)
4988 ext4_msg(sb, KERN_WARNING,
4989 "Quota file not on filesystem root. "
4990 "Journaled quota will not work");
4991 }
4992
4993 /*
4994 * When we journal data on quota file, we have to flush journal to see
4995 * all updates to the file when we bypass pagecache...
4996 */
4997 if (EXT4_SB(sb)->s_journal &&
4998 ext4_should_journal_data(path->dentry->d_inode)) {
4999 /*
5000 * We don't need to lock updates but journal_flush() could
5001 * otherwise be livelocked...
5002 */
5003 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal);
5004 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal);
5005 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
5006 if (err)
5007 return err;
5008 }
5009
5010 return dquot_quota_on(sb, type, format_id, path);
5011 }
5012
5013 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
5014 unsigned int flags)
5015 {
5016 int err;
5017 struct inode *qf_inode;
5018 unsigned long qf_inums[MAXQUOTAS] = {
5019 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
5020 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum)
5021 };
5022
5023 BUG_ON(!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA));
5024
5025 if (!qf_inums[type])
5026 return -EPERM;
5027
5028 qf_inode = ext4_iget(sb, qf_inums[type]);
5029 if (IS_ERR(qf_inode)) {
5030 ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]);
5031 return PTR_ERR(qf_inode);
5032 }
5033
5034 /* Don't account quota for quota files to avoid recursion */
5035 qf_inode->i_flags |= S_NOQUOTA;
5036 err = dquot_enable(qf_inode, type, format_id, flags);
5037 iput(qf_inode);
5038
5039 return err;
5040 }
5041
5042 /* Enable usage tracking for all quota types. */
5043 static int ext4_enable_quotas(struct super_block *sb)
5044 {
5045 int type, err = 0;
5046 unsigned long qf_inums[MAXQUOTAS] = {
5047 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
5048 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum)
5049 };
5050
5051 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE;
5052 for (type = 0; type < MAXQUOTAS; type++) {
5053 if (qf_inums[type]) {
5054 err = ext4_quota_enable(sb, type, QFMT_VFS_V1,
5055 DQUOT_USAGE_ENABLED);
5056 if (err) {
5057 ext4_warning(sb,
5058 "Failed to enable quota tracking "
5059 "(type=%d, err=%d). Please run "
5060 "e2fsck to fix.", type, err);
5061 return err;
5062 }
5063 }
5064 }
5065 return 0;
5066 }
5067
5068 /*
5069 * quota_on function that is used when QUOTA feature is set.
5070 */
5071 static int ext4_quota_on_sysfile(struct super_block *sb, int type,
5072 int format_id)
5073 {
5074 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA))
5075 return -EINVAL;
5076
5077 /*
5078 * USAGE was enabled at mount time. Only need to enable LIMITS now.
5079 */
5080 return ext4_quota_enable(sb, type, format_id, DQUOT_LIMITS_ENABLED);
5081 }
5082
5083 static int ext4_quota_off(struct super_block *sb, int type)
5084 {
5085 struct inode *inode = sb_dqopt(sb)->files[type];
5086 handle_t *handle;
5087
5088 /* Force all delayed allocation blocks to be allocated.
5089 * Caller already holds s_umount sem */
5090 if (test_opt(sb, DELALLOC))
5091 sync_filesystem(sb);
5092
5093 if (!inode)
5094 goto out;
5095
5096 /* Update modification times of quota files when userspace can
5097 * start looking at them */
5098 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
5099 if (IS_ERR(handle))
5100 goto out;
5101 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
5102 ext4_mark_inode_dirty(handle, inode);
5103 ext4_journal_stop(handle);
5104
5105 out:
5106 return dquot_quota_off(sb, type);
5107 }
5108
5109 /*
5110 * quota_off function that is used when QUOTA feature is set.
5111 */
5112 static int ext4_quota_off_sysfile(struct super_block *sb, int type)
5113 {
5114 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA))
5115 return -EINVAL;
5116
5117 /* Disable only the limits. */
5118 return dquot_disable(sb, type, DQUOT_LIMITS_ENABLED);
5119 }
5120
5121 /* Read data from quotafile - avoid pagecache and such because we cannot afford
5122 * acquiring the locks... As quota files are never truncated and quota code
5123 * itself serializes the operations (and no one else should touch the files)
5124 * we don't have to be afraid of races */
5125 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
5126 size_t len, loff_t off)
5127 {
5128 struct inode *inode = sb_dqopt(sb)->files[type];
5129 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5130 int err = 0;
5131 int offset = off & (sb->s_blocksize - 1);
5132 int tocopy;
5133 size_t toread;
5134 struct buffer_head *bh;
5135 loff_t i_size = i_size_read(inode);
5136
5137 if (off > i_size)
5138 return 0;
5139 if (off+len > i_size)
5140 len = i_size-off;
5141 toread = len;
5142 while (toread > 0) {
5143 tocopy = sb->s_blocksize - offset < toread ?
5144 sb->s_blocksize - offset : toread;
5145 bh = ext4_bread(NULL, inode, blk, 0, &err);
5146 if (err)
5147 return err;
5148 if (!bh) /* A hole? */
5149 memset(data, 0, tocopy);
5150 else
5151 memcpy(data, bh->b_data+offset, tocopy);
5152 brelse(bh);
5153 offset = 0;
5154 toread -= tocopy;
5155 data += tocopy;
5156 blk++;
5157 }
5158 return len;
5159 }
5160
5161 /* Write to quotafile (we know the transaction is already started and has
5162 * enough credits) */
5163 static ssize_t ext4_quota_write(struct super_block *sb, int type,
5164 const char *data, size_t len, loff_t off)
5165 {
5166 struct inode *inode = sb_dqopt(sb)->files[type];
5167 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5168 int err = 0;
5169 int offset = off & (sb->s_blocksize - 1);
5170 struct buffer_head *bh;
5171 handle_t *handle = journal_current_handle();
5172
5173 if (EXT4_SB(sb)->s_journal && !handle) {
5174 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5175 " cancelled because transaction is not started",
5176 (unsigned long long)off, (unsigned long long)len);
5177 return -EIO;
5178 }
5179 /*
5180 * Since we account only one data block in transaction credits,
5181 * then it is impossible to cross a block boundary.
5182 */
5183 if (sb->s_blocksize - offset < len) {
5184 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5185 " cancelled because not block aligned",
5186 (unsigned long long)off, (unsigned long long)len);
5187 return -EIO;
5188 }
5189
5190 bh = ext4_bread(handle, inode, blk, 1, &err);
5191 if (!bh)
5192 goto out;
5193 err = ext4_journal_get_write_access(handle, bh);
5194 if (err) {
5195 brelse(bh);
5196 goto out;
5197 }
5198 lock_buffer(bh);
5199 memcpy(bh->b_data+offset, data, len);
5200 flush_dcache_page(bh->b_page);
5201 unlock_buffer(bh);
5202 err = ext4_handle_dirty_metadata(handle, NULL, bh);
5203 brelse(bh);
5204 out:
5205 if (err)
5206 return err;
5207 if (inode->i_size < off + len) {
5208 i_size_write(inode, off + len);
5209 EXT4_I(inode)->i_disksize = inode->i_size;
5210 ext4_mark_inode_dirty(handle, inode);
5211 }
5212 return len;
5213 }
5214
5215 #endif
5216
5217 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
5218 const char *dev_name, void *data)
5219 {
5220 return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super);
5221 }
5222
5223 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
5224 static inline void register_as_ext2(void)
5225 {
5226 int err = register_filesystem(&ext2_fs_type);
5227 if (err)
5228 printk(KERN_WARNING
5229 "EXT4-fs: Unable to register as ext2 (%d)\n", err);
5230 }
5231
5232 static inline void unregister_as_ext2(void)
5233 {
5234 unregister_filesystem(&ext2_fs_type);
5235 }
5236
5237 static inline int ext2_feature_set_ok(struct super_block *sb)
5238 {
5239 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT2_FEATURE_INCOMPAT_SUPP))
5240 return 0;
5241 if (sb->s_flags & MS_RDONLY)
5242 return 1;
5243 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT2_FEATURE_RO_COMPAT_SUPP))
5244 return 0;
5245 return 1;
5246 }
5247 #else
5248 static inline void register_as_ext2(void) { }
5249 static inline void unregister_as_ext2(void) { }
5250 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
5251 #endif
5252
5253 #if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
5254 static inline void register_as_ext3(void)
5255 {
5256 int err = register_filesystem(&ext3_fs_type);
5257 if (err)
5258 printk(KERN_WARNING
5259 "EXT4-fs: Unable to register as ext3 (%d)\n", err);
5260 }
5261
5262 static inline void unregister_as_ext3(void)
5263 {
5264 unregister_filesystem(&ext3_fs_type);
5265 }
5266
5267 static inline int ext3_feature_set_ok(struct super_block *sb)
5268 {
5269 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT3_FEATURE_INCOMPAT_SUPP))
5270 return 0;
5271 if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL))
5272 return 0;
5273 if (sb->s_flags & MS_RDONLY)
5274 return 1;
5275 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT3_FEATURE_RO_COMPAT_SUPP))
5276 return 0;
5277 return 1;
5278 }
5279 #else
5280 static inline void register_as_ext3(void) { }
5281 static inline void unregister_as_ext3(void) { }
5282 static inline int ext3_feature_set_ok(struct super_block *sb) { return 0; }
5283 #endif
5284
5285 static struct file_system_type ext4_fs_type = {
5286 .owner = THIS_MODULE,
5287 .name = "ext4",
5288 .mount = ext4_mount,
5289 .kill_sb = kill_block_super,
5290 .fs_flags = FS_REQUIRES_DEV,
5291 };
5292 MODULE_ALIAS_FS("ext4");
5293
5294 static int __init ext4_init_feat_adverts(void)
5295 {
5296 struct ext4_features *ef;
5297 int ret = -ENOMEM;
5298
5299 ef = kzalloc(sizeof(struct ext4_features), GFP_KERNEL);
5300 if (!ef)
5301 goto out;
5302
5303 ef->f_kobj.kset = ext4_kset;
5304 init_completion(&ef->f_kobj_unregister);
5305 ret = kobject_init_and_add(&ef->f_kobj, &ext4_feat_ktype, NULL,
5306 "features");
5307 if (ret) {
5308 kfree(ef);
5309 goto out;
5310 }
5311
5312 ext4_feat = ef;
5313 ret = 0;
5314 out:
5315 return ret;
5316 }
5317
5318 static void ext4_exit_feat_adverts(void)
5319 {
5320 kobject_put(&ext4_feat->f_kobj);
5321 wait_for_completion(&ext4_feat->f_kobj_unregister);
5322 kfree(ext4_feat);
5323 }
5324
5325 /* Shared across all ext4 file systems */
5326 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ];
5327 struct mutex ext4__aio_mutex[EXT4_WQ_HASH_SZ];
5328
5329 static int __init ext4_init_fs(void)
5330 {
5331 int i, err;
5332
5333 ext4_li_info = NULL;
5334 mutex_init(&ext4_li_mtx);
5335
5336 /* Build-time check for flags consistency */
5337 ext4_check_flag_values();
5338
5339 for (i = 0; i < EXT4_WQ_HASH_SZ; i++) {
5340 mutex_init(&ext4__aio_mutex[i]);
5341 init_waitqueue_head(&ext4__ioend_wq[i]);
5342 }
5343
5344 err = ext4_init_es();
5345 if (err)
5346 return err;
5347
5348 err = ext4_init_pageio();
5349 if (err)
5350 goto out7;
5351
5352 err = ext4_init_system_zone();
5353 if (err)
5354 goto out6;
5355 ext4_kset = kset_create_and_add("ext4", NULL, fs_kobj);
5356 if (!ext4_kset) {
5357 err = -ENOMEM;
5358 goto out5;
5359 }
5360 ext4_proc_root = proc_mkdir("fs/ext4", NULL);
5361
5362 err = ext4_init_feat_adverts();
5363 if (err)
5364 goto out4;
5365
5366 err = ext4_init_mballoc();
5367 if (err)
5368 goto out3;
5369
5370 err = ext4_init_xattr();
5371 if (err)
5372 goto out2;
5373 err = init_inodecache();
5374 if (err)
5375 goto out1;
5376 register_as_ext3();
5377 register_as_ext2();
5378 err = register_filesystem(&ext4_fs_type);
5379 if (err)
5380 goto out;
5381
5382 return 0;
5383 out:
5384 unregister_as_ext2();
5385 unregister_as_ext3();
5386 destroy_inodecache();
5387 out1:
5388 ext4_exit_xattr();
5389 out2:
5390 ext4_exit_mballoc();
5391 out3:
5392 ext4_exit_feat_adverts();
5393 out4:
5394 if (ext4_proc_root)
5395 remove_proc_entry("fs/ext4", NULL);
5396 kset_unregister(ext4_kset);
5397 out5:
5398 ext4_exit_system_zone();
5399 out6:
5400 ext4_exit_pageio();
5401 out7:
5402 ext4_exit_es();
5403
5404 return err;
5405 }
5406
5407 static void __exit ext4_exit_fs(void)
5408 {
5409 ext4_destroy_lazyinit_thread();
5410 unregister_as_ext2();
5411 unregister_as_ext3();
5412 unregister_filesystem(&ext4_fs_type);
5413 destroy_inodecache();
5414 ext4_exit_xattr();
5415 ext4_exit_mballoc();
5416 ext4_exit_feat_adverts();
5417 remove_proc_entry("fs/ext4", NULL);
5418 kset_unregister(ext4_kset);
5419 ext4_exit_system_zone();
5420 ext4_exit_pageio();
5421 }
5422
5423 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
5424 MODULE_DESCRIPTION("Fourth Extended Filesystem");
5425 MODULE_LICENSE("GPL");
5426 module_init(ext4_init_fs)
5427 module_exit(ext4_exit_fs)