]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/ext4/super.c
ext4: make ext4_show_options() be table-driven
[mirror_ubuntu-artful-kernel.git] / fs / ext4 / super.c
1 /*
2 * linux/fs/ext4/super.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * Big-endian to little-endian byte-swapping/bitmaps by
16 * David S. Miller (davem@caip.rutgers.edu), 1995
17 */
18
19 #include <linux/module.h>
20 #include <linux/string.h>
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/vmalloc.h>
24 #include <linux/jbd2.h>
25 #include <linux/slab.h>
26 #include <linux/init.h>
27 #include <linux/blkdev.h>
28 #include <linux/parser.h>
29 #include <linux/buffer_head.h>
30 #include <linux/exportfs.h>
31 #include <linux/vfs.h>
32 #include <linux/random.h>
33 #include <linux/mount.h>
34 #include <linux/namei.h>
35 #include <linux/quotaops.h>
36 #include <linux/seq_file.h>
37 #include <linux/proc_fs.h>
38 #include <linux/ctype.h>
39 #include <linux/log2.h>
40 #include <linux/crc16.h>
41 #include <linux/cleancache.h>
42 #include <asm/uaccess.h>
43
44 #include <linux/kthread.h>
45 #include <linux/freezer.h>
46
47 #include "ext4.h"
48 #include "ext4_extents.h"
49 #include "ext4_jbd2.h"
50 #include "xattr.h"
51 #include "acl.h"
52 #include "mballoc.h"
53
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/ext4.h>
56
57 static struct proc_dir_entry *ext4_proc_root;
58 static struct kset *ext4_kset;
59 static struct ext4_lazy_init *ext4_li_info;
60 static struct mutex ext4_li_mtx;
61 static struct ext4_features *ext4_feat;
62
63 static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
64 unsigned long journal_devnum);
65 static int ext4_show_options(struct seq_file *seq, struct dentry *root);
66 static int ext4_commit_super(struct super_block *sb, int sync);
67 static void ext4_mark_recovery_complete(struct super_block *sb,
68 struct ext4_super_block *es);
69 static void ext4_clear_journal_err(struct super_block *sb,
70 struct ext4_super_block *es);
71 static int ext4_sync_fs(struct super_block *sb, int wait);
72 static const char *ext4_decode_error(struct super_block *sb, int errno,
73 char nbuf[16]);
74 static int ext4_remount(struct super_block *sb, int *flags, char *data);
75 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
76 static int ext4_unfreeze(struct super_block *sb);
77 static void ext4_write_super(struct super_block *sb);
78 static int ext4_freeze(struct super_block *sb);
79 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
80 const char *dev_name, void *data);
81 static inline int ext2_feature_set_ok(struct super_block *sb);
82 static inline int ext3_feature_set_ok(struct super_block *sb);
83 static int ext4_feature_set_ok(struct super_block *sb, int readonly);
84 static void ext4_destroy_lazyinit_thread(void);
85 static void ext4_unregister_li_request(struct super_block *sb);
86 static void ext4_clear_request_list(void);
87
88 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
89 static struct file_system_type ext2_fs_type = {
90 .owner = THIS_MODULE,
91 .name = "ext2",
92 .mount = ext4_mount,
93 .kill_sb = kill_block_super,
94 .fs_flags = FS_REQUIRES_DEV,
95 };
96 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type)
97 #else
98 #define IS_EXT2_SB(sb) (0)
99 #endif
100
101
102 #if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
103 static struct file_system_type ext3_fs_type = {
104 .owner = THIS_MODULE,
105 .name = "ext3",
106 .mount = ext4_mount,
107 .kill_sb = kill_block_super,
108 .fs_flags = FS_REQUIRES_DEV,
109 };
110 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type)
111 #else
112 #define IS_EXT3_SB(sb) (0)
113 #endif
114
115 void *ext4_kvmalloc(size_t size, gfp_t flags)
116 {
117 void *ret;
118
119 ret = kmalloc(size, flags);
120 if (!ret)
121 ret = __vmalloc(size, flags, PAGE_KERNEL);
122 return ret;
123 }
124
125 void *ext4_kvzalloc(size_t size, gfp_t flags)
126 {
127 void *ret;
128
129 ret = kzalloc(size, flags);
130 if (!ret)
131 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL);
132 return ret;
133 }
134
135 void ext4_kvfree(void *ptr)
136 {
137 if (is_vmalloc_addr(ptr))
138 vfree(ptr);
139 else
140 kfree(ptr);
141
142 }
143
144 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
145 struct ext4_group_desc *bg)
146 {
147 return le32_to_cpu(bg->bg_block_bitmap_lo) |
148 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
149 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
150 }
151
152 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
153 struct ext4_group_desc *bg)
154 {
155 return le32_to_cpu(bg->bg_inode_bitmap_lo) |
156 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
157 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
158 }
159
160 ext4_fsblk_t ext4_inode_table(struct super_block *sb,
161 struct ext4_group_desc *bg)
162 {
163 return le32_to_cpu(bg->bg_inode_table_lo) |
164 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
165 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
166 }
167
168 __u32 ext4_free_group_clusters(struct super_block *sb,
169 struct ext4_group_desc *bg)
170 {
171 return le16_to_cpu(bg->bg_free_blocks_count_lo) |
172 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
173 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
174 }
175
176 __u32 ext4_free_inodes_count(struct super_block *sb,
177 struct ext4_group_desc *bg)
178 {
179 return le16_to_cpu(bg->bg_free_inodes_count_lo) |
180 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
181 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
182 }
183
184 __u32 ext4_used_dirs_count(struct super_block *sb,
185 struct ext4_group_desc *bg)
186 {
187 return le16_to_cpu(bg->bg_used_dirs_count_lo) |
188 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
189 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
190 }
191
192 __u32 ext4_itable_unused_count(struct super_block *sb,
193 struct ext4_group_desc *bg)
194 {
195 return le16_to_cpu(bg->bg_itable_unused_lo) |
196 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
197 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
198 }
199
200 void ext4_block_bitmap_set(struct super_block *sb,
201 struct ext4_group_desc *bg, ext4_fsblk_t blk)
202 {
203 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
204 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
205 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
206 }
207
208 void ext4_inode_bitmap_set(struct super_block *sb,
209 struct ext4_group_desc *bg, ext4_fsblk_t blk)
210 {
211 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk);
212 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
213 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
214 }
215
216 void ext4_inode_table_set(struct super_block *sb,
217 struct ext4_group_desc *bg, ext4_fsblk_t blk)
218 {
219 bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
220 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
221 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
222 }
223
224 void ext4_free_group_clusters_set(struct super_block *sb,
225 struct ext4_group_desc *bg, __u32 count)
226 {
227 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
228 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
229 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
230 }
231
232 void ext4_free_inodes_set(struct super_block *sb,
233 struct ext4_group_desc *bg, __u32 count)
234 {
235 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
236 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
237 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
238 }
239
240 void ext4_used_dirs_set(struct super_block *sb,
241 struct ext4_group_desc *bg, __u32 count)
242 {
243 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
244 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
245 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
246 }
247
248 void ext4_itable_unused_set(struct super_block *sb,
249 struct ext4_group_desc *bg, __u32 count)
250 {
251 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
252 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
253 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
254 }
255
256
257 /* Just increment the non-pointer handle value */
258 static handle_t *ext4_get_nojournal(void)
259 {
260 handle_t *handle = current->journal_info;
261 unsigned long ref_cnt = (unsigned long)handle;
262
263 BUG_ON(ref_cnt >= EXT4_NOJOURNAL_MAX_REF_COUNT);
264
265 ref_cnt++;
266 handle = (handle_t *)ref_cnt;
267
268 current->journal_info = handle;
269 return handle;
270 }
271
272
273 /* Decrement the non-pointer handle value */
274 static void ext4_put_nojournal(handle_t *handle)
275 {
276 unsigned long ref_cnt = (unsigned long)handle;
277
278 BUG_ON(ref_cnt == 0);
279
280 ref_cnt--;
281 handle = (handle_t *)ref_cnt;
282
283 current->journal_info = handle;
284 }
285
286 /*
287 * Wrappers for jbd2_journal_start/end.
288 *
289 * The only special thing we need to do here is to make sure that all
290 * journal_end calls result in the superblock being marked dirty, so
291 * that sync() will call the filesystem's write_super callback if
292 * appropriate.
293 *
294 * To avoid j_barrier hold in userspace when a user calls freeze(),
295 * ext4 prevents a new handle from being started by s_frozen, which
296 * is in an upper layer.
297 */
298 handle_t *ext4_journal_start_sb(struct super_block *sb, int nblocks)
299 {
300 journal_t *journal;
301 handle_t *handle;
302
303 trace_ext4_journal_start(sb, nblocks, _RET_IP_);
304 if (sb->s_flags & MS_RDONLY)
305 return ERR_PTR(-EROFS);
306
307 journal = EXT4_SB(sb)->s_journal;
308 handle = ext4_journal_current_handle();
309
310 /*
311 * If a handle has been started, it should be allowed to
312 * finish, otherwise deadlock could happen between freeze
313 * and others(e.g. truncate) due to the restart of the
314 * journal handle if the filesystem is forzen and active
315 * handles are not stopped.
316 */
317 if (!handle)
318 vfs_check_frozen(sb, SB_FREEZE_TRANS);
319
320 if (!journal)
321 return ext4_get_nojournal();
322 /*
323 * Special case here: if the journal has aborted behind our
324 * backs (eg. EIO in the commit thread), then we still need to
325 * take the FS itself readonly cleanly.
326 */
327 if (is_journal_aborted(journal)) {
328 ext4_abort(sb, "Detected aborted journal");
329 return ERR_PTR(-EROFS);
330 }
331 return jbd2_journal_start(journal, nblocks);
332 }
333
334 /*
335 * The only special thing we need to do here is to make sure that all
336 * jbd2_journal_stop calls result in the superblock being marked dirty, so
337 * that sync() will call the filesystem's write_super callback if
338 * appropriate.
339 */
340 int __ext4_journal_stop(const char *where, unsigned int line, handle_t *handle)
341 {
342 struct super_block *sb;
343 int err;
344 int rc;
345
346 if (!ext4_handle_valid(handle)) {
347 ext4_put_nojournal(handle);
348 return 0;
349 }
350 sb = handle->h_transaction->t_journal->j_private;
351 err = handle->h_err;
352 rc = jbd2_journal_stop(handle);
353
354 if (!err)
355 err = rc;
356 if (err)
357 __ext4_std_error(sb, where, line, err);
358 return err;
359 }
360
361 void ext4_journal_abort_handle(const char *caller, unsigned int line,
362 const char *err_fn, struct buffer_head *bh,
363 handle_t *handle, int err)
364 {
365 char nbuf[16];
366 const char *errstr = ext4_decode_error(NULL, err, nbuf);
367
368 BUG_ON(!ext4_handle_valid(handle));
369
370 if (bh)
371 BUFFER_TRACE(bh, "abort");
372
373 if (!handle->h_err)
374 handle->h_err = err;
375
376 if (is_handle_aborted(handle))
377 return;
378
379 printk(KERN_ERR "%s:%d: aborting transaction: %s in %s\n",
380 caller, line, errstr, err_fn);
381
382 jbd2_journal_abort_handle(handle);
383 }
384
385 static void __save_error_info(struct super_block *sb, const char *func,
386 unsigned int line)
387 {
388 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
389
390 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
391 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
392 es->s_last_error_time = cpu_to_le32(get_seconds());
393 strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func));
394 es->s_last_error_line = cpu_to_le32(line);
395 if (!es->s_first_error_time) {
396 es->s_first_error_time = es->s_last_error_time;
397 strncpy(es->s_first_error_func, func,
398 sizeof(es->s_first_error_func));
399 es->s_first_error_line = cpu_to_le32(line);
400 es->s_first_error_ino = es->s_last_error_ino;
401 es->s_first_error_block = es->s_last_error_block;
402 }
403 /*
404 * Start the daily error reporting function if it hasn't been
405 * started already
406 */
407 if (!es->s_error_count)
408 mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ);
409 es->s_error_count = cpu_to_le32(le32_to_cpu(es->s_error_count) + 1);
410 }
411
412 static void save_error_info(struct super_block *sb, const char *func,
413 unsigned int line)
414 {
415 __save_error_info(sb, func, line);
416 ext4_commit_super(sb, 1);
417 }
418
419 /*
420 * The del_gendisk() function uninitializes the disk-specific data
421 * structures, including the bdi structure, without telling anyone
422 * else. Once this happens, any attempt to call mark_buffer_dirty()
423 * (for example, by ext4_commit_super), will cause a kernel OOPS.
424 * This is a kludge to prevent these oops until we can put in a proper
425 * hook in del_gendisk() to inform the VFS and file system layers.
426 */
427 static int block_device_ejected(struct super_block *sb)
428 {
429 struct inode *bd_inode = sb->s_bdev->bd_inode;
430 struct backing_dev_info *bdi = bd_inode->i_mapping->backing_dev_info;
431
432 return bdi->dev == NULL;
433 }
434
435 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn)
436 {
437 struct super_block *sb = journal->j_private;
438 struct ext4_sb_info *sbi = EXT4_SB(sb);
439 int error = is_journal_aborted(journal);
440 struct ext4_journal_cb_entry *jce, *tmp;
441
442 spin_lock(&sbi->s_md_lock);
443 list_for_each_entry_safe(jce, tmp, &txn->t_private_list, jce_list) {
444 list_del_init(&jce->jce_list);
445 spin_unlock(&sbi->s_md_lock);
446 jce->jce_func(sb, jce, error);
447 spin_lock(&sbi->s_md_lock);
448 }
449 spin_unlock(&sbi->s_md_lock);
450 }
451
452 /* Deal with the reporting of failure conditions on a filesystem such as
453 * inconsistencies detected or read IO failures.
454 *
455 * On ext2, we can store the error state of the filesystem in the
456 * superblock. That is not possible on ext4, because we may have other
457 * write ordering constraints on the superblock which prevent us from
458 * writing it out straight away; and given that the journal is about to
459 * be aborted, we can't rely on the current, or future, transactions to
460 * write out the superblock safely.
461 *
462 * We'll just use the jbd2_journal_abort() error code to record an error in
463 * the journal instead. On recovery, the journal will complain about
464 * that error until we've noted it down and cleared it.
465 */
466
467 static void ext4_handle_error(struct super_block *sb)
468 {
469 if (sb->s_flags & MS_RDONLY)
470 return;
471
472 if (!test_opt(sb, ERRORS_CONT)) {
473 journal_t *journal = EXT4_SB(sb)->s_journal;
474
475 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
476 if (journal)
477 jbd2_journal_abort(journal, -EIO);
478 }
479 if (test_opt(sb, ERRORS_RO)) {
480 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
481 sb->s_flags |= MS_RDONLY;
482 }
483 if (test_opt(sb, ERRORS_PANIC))
484 panic("EXT4-fs (device %s): panic forced after error\n",
485 sb->s_id);
486 }
487
488 void __ext4_error(struct super_block *sb, const char *function,
489 unsigned int line, const char *fmt, ...)
490 {
491 struct va_format vaf;
492 va_list args;
493
494 va_start(args, fmt);
495 vaf.fmt = fmt;
496 vaf.va = &args;
497 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
498 sb->s_id, function, line, current->comm, &vaf);
499 va_end(args);
500
501 ext4_handle_error(sb);
502 }
503
504 void ext4_error_inode(struct inode *inode, const char *function,
505 unsigned int line, ext4_fsblk_t block,
506 const char *fmt, ...)
507 {
508 va_list args;
509 struct va_format vaf;
510 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
511
512 es->s_last_error_ino = cpu_to_le32(inode->i_ino);
513 es->s_last_error_block = cpu_to_le64(block);
514 save_error_info(inode->i_sb, function, line);
515 va_start(args, fmt);
516 vaf.fmt = fmt;
517 vaf.va = &args;
518 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: inode #%lu: ",
519 inode->i_sb->s_id, function, line, inode->i_ino);
520 if (block)
521 printk(KERN_CONT "block %llu: ", block);
522 printk(KERN_CONT "comm %s: %pV\n", current->comm, &vaf);
523 va_end(args);
524
525 ext4_handle_error(inode->i_sb);
526 }
527
528 void ext4_error_file(struct file *file, const char *function,
529 unsigned int line, ext4_fsblk_t block,
530 const char *fmt, ...)
531 {
532 va_list args;
533 struct va_format vaf;
534 struct ext4_super_block *es;
535 struct inode *inode = file->f_dentry->d_inode;
536 char pathname[80], *path;
537
538 es = EXT4_SB(inode->i_sb)->s_es;
539 es->s_last_error_ino = cpu_to_le32(inode->i_ino);
540 save_error_info(inode->i_sb, function, line);
541 path = d_path(&(file->f_path), pathname, sizeof(pathname));
542 if (IS_ERR(path))
543 path = "(unknown)";
544 printk(KERN_CRIT
545 "EXT4-fs error (device %s): %s:%d: inode #%lu: ",
546 inode->i_sb->s_id, function, line, inode->i_ino);
547 if (block)
548 printk(KERN_CONT "block %llu: ", block);
549 va_start(args, fmt);
550 vaf.fmt = fmt;
551 vaf.va = &args;
552 printk(KERN_CONT "comm %s: path %s: %pV\n", current->comm, path, &vaf);
553 va_end(args);
554
555 ext4_handle_error(inode->i_sb);
556 }
557
558 static const char *ext4_decode_error(struct super_block *sb, int errno,
559 char nbuf[16])
560 {
561 char *errstr = NULL;
562
563 switch (errno) {
564 case -EIO:
565 errstr = "IO failure";
566 break;
567 case -ENOMEM:
568 errstr = "Out of memory";
569 break;
570 case -EROFS:
571 if (!sb || (EXT4_SB(sb)->s_journal &&
572 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
573 errstr = "Journal has aborted";
574 else
575 errstr = "Readonly filesystem";
576 break;
577 default:
578 /* If the caller passed in an extra buffer for unknown
579 * errors, textualise them now. Else we just return
580 * NULL. */
581 if (nbuf) {
582 /* Check for truncated error codes... */
583 if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
584 errstr = nbuf;
585 }
586 break;
587 }
588
589 return errstr;
590 }
591
592 /* __ext4_std_error decodes expected errors from journaling functions
593 * automatically and invokes the appropriate error response. */
594
595 void __ext4_std_error(struct super_block *sb, const char *function,
596 unsigned int line, int errno)
597 {
598 char nbuf[16];
599 const char *errstr;
600
601 /* Special case: if the error is EROFS, and we're not already
602 * inside a transaction, then there's really no point in logging
603 * an error. */
604 if (errno == -EROFS && journal_current_handle() == NULL &&
605 (sb->s_flags & MS_RDONLY))
606 return;
607
608 errstr = ext4_decode_error(sb, errno, nbuf);
609 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
610 sb->s_id, function, line, errstr);
611 save_error_info(sb, function, line);
612
613 ext4_handle_error(sb);
614 }
615
616 /*
617 * ext4_abort is a much stronger failure handler than ext4_error. The
618 * abort function may be used to deal with unrecoverable failures such
619 * as journal IO errors or ENOMEM at a critical moment in log management.
620 *
621 * We unconditionally force the filesystem into an ABORT|READONLY state,
622 * unless the error response on the fs has been set to panic in which
623 * case we take the easy way out and panic immediately.
624 */
625
626 void __ext4_abort(struct super_block *sb, const char *function,
627 unsigned int line, const char *fmt, ...)
628 {
629 va_list args;
630
631 save_error_info(sb, function, line);
632 va_start(args, fmt);
633 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: ", sb->s_id,
634 function, line);
635 vprintk(fmt, args);
636 printk("\n");
637 va_end(args);
638
639 if ((sb->s_flags & MS_RDONLY) == 0) {
640 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
641 sb->s_flags |= MS_RDONLY;
642 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
643 if (EXT4_SB(sb)->s_journal)
644 jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO);
645 save_error_info(sb, function, line);
646 }
647 if (test_opt(sb, ERRORS_PANIC))
648 panic("EXT4-fs panic from previous error\n");
649 }
650
651 void ext4_msg(struct super_block *sb, const char *prefix, const char *fmt, ...)
652 {
653 struct va_format vaf;
654 va_list args;
655
656 va_start(args, fmt);
657 vaf.fmt = fmt;
658 vaf.va = &args;
659 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
660 va_end(args);
661 }
662
663 void __ext4_warning(struct super_block *sb, const char *function,
664 unsigned int line, const char *fmt, ...)
665 {
666 struct va_format vaf;
667 va_list args;
668
669 va_start(args, fmt);
670 vaf.fmt = fmt;
671 vaf.va = &args;
672 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
673 sb->s_id, function, line, &vaf);
674 va_end(args);
675 }
676
677 void __ext4_grp_locked_error(const char *function, unsigned int line,
678 struct super_block *sb, ext4_group_t grp,
679 unsigned long ino, ext4_fsblk_t block,
680 const char *fmt, ...)
681 __releases(bitlock)
682 __acquires(bitlock)
683 {
684 struct va_format vaf;
685 va_list args;
686 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
687
688 es->s_last_error_ino = cpu_to_le32(ino);
689 es->s_last_error_block = cpu_to_le64(block);
690 __save_error_info(sb, function, line);
691
692 va_start(args, fmt);
693
694 vaf.fmt = fmt;
695 vaf.va = &args;
696 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
697 sb->s_id, function, line, grp);
698 if (ino)
699 printk(KERN_CONT "inode %lu: ", ino);
700 if (block)
701 printk(KERN_CONT "block %llu:", (unsigned long long) block);
702 printk(KERN_CONT "%pV\n", &vaf);
703 va_end(args);
704
705 if (test_opt(sb, ERRORS_CONT)) {
706 ext4_commit_super(sb, 0);
707 return;
708 }
709
710 ext4_unlock_group(sb, grp);
711 ext4_handle_error(sb);
712 /*
713 * We only get here in the ERRORS_RO case; relocking the group
714 * may be dangerous, but nothing bad will happen since the
715 * filesystem will have already been marked read/only and the
716 * journal has been aborted. We return 1 as a hint to callers
717 * who might what to use the return value from
718 * ext4_grp_locked_error() to distinguish between the
719 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
720 * aggressively from the ext4 function in question, with a
721 * more appropriate error code.
722 */
723 ext4_lock_group(sb, grp);
724 return;
725 }
726
727 void ext4_update_dynamic_rev(struct super_block *sb)
728 {
729 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
730
731 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
732 return;
733
734 ext4_warning(sb,
735 "updating to rev %d because of new feature flag, "
736 "running e2fsck is recommended",
737 EXT4_DYNAMIC_REV);
738
739 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
740 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
741 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
742 /* leave es->s_feature_*compat flags alone */
743 /* es->s_uuid will be set by e2fsck if empty */
744
745 /*
746 * The rest of the superblock fields should be zero, and if not it
747 * means they are likely already in use, so leave them alone. We
748 * can leave it up to e2fsck to clean up any inconsistencies there.
749 */
750 }
751
752 /*
753 * Open the external journal device
754 */
755 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb)
756 {
757 struct block_device *bdev;
758 char b[BDEVNAME_SIZE];
759
760 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb);
761 if (IS_ERR(bdev))
762 goto fail;
763 return bdev;
764
765 fail:
766 ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld",
767 __bdevname(dev, b), PTR_ERR(bdev));
768 return NULL;
769 }
770
771 /*
772 * Release the journal device
773 */
774 static int ext4_blkdev_put(struct block_device *bdev)
775 {
776 return blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
777 }
778
779 static int ext4_blkdev_remove(struct ext4_sb_info *sbi)
780 {
781 struct block_device *bdev;
782 int ret = -ENODEV;
783
784 bdev = sbi->journal_bdev;
785 if (bdev) {
786 ret = ext4_blkdev_put(bdev);
787 sbi->journal_bdev = NULL;
788 }
789 return ret;
790 }
791
792 static inline struct inode *orphan_list_entry(struct list_head *l)
793 {
794 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
795 }
796
797 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
798 {
799 struct list_head *l;
800
801 ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
802 le32_to_cpu(sbi->s_es->s_last_orphan));
803
804 printk(KERN_ERR "sb_info orphan list:\n");
805 list_for_each(l, &sbi->s_orphan) {
806 struct inode *inode = orphan_list_entry(l);
807 printk(KERN_ERR " "
808 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
809 inode->i_sb->s_id, inode->i_ino, inode,
810 inode->i_mode, inode->i_nlink,
811 NEXT_ORPHAN(inode));
812 }
813 }
814
815 static void ext4_put_super(struct super_block *sb)
816 {
817 struct ext4_sb_info *sbi = EXT4_SB(sb);
818 struct ext4_super_block *es = sbi->s_es;
819 int i, err;
820
821 ext4_unregister_li_request(sb);
822 dquot_disable(sb, -1, DQUOT_USAGE_ENABLED | DQUOT_LIMITS_ENABLED);
823
824 flush_workqueue(sbi->dio_unwritten_wq);
825 destroy_workqueue(sbi->dio_unwritten_wq);
826
827 lock_super(sb);
828 if (sb->s_dirt)
829 ext4_commit_super(sb, 1);
830
831 if (sbi->s_journal) {
832 err = jbd2_journal_destroy(sbi->s_journal);
833 sbi->s_journal = NULL;
834 if (err < 0)
835 ext4_abort(sb, "Couldn't clean up the journal");
836 }
837
838 del_timer(&sbi->s_err_report);
839 ext4_release_system_zone(sb);
840 ext4_mb_release(sb);
841 ext4_ext_release(sb);
842 ext4_xattr_put_super(sb);
843
844 if (!(sb->s_flags & MS_RDONLY)) {
845 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
846 es->s_state = cpu_to_le16(sbi->s_mount_state);
847 ext4_commit_super(sb, 1);
848 }
849 if (sbi->s_proc) {
850 remove_proc_entry(sb->s_id, ext4_proc_root);
851 }
852 kobject_del(&sbi->s_kobj);
853
854 for (i = 0; i < sbi->s_gdb_count; i++)
855 brelse(sbi->s_group_desc[i]);
856 ext4_kvfree(sbi->s_group_desc);
857 ext4_kvfree(sbi->s_flex_groups);
858 percpu_counter_destroy(&sbi->s_freeclusters_counter);
859 percpu_counter_destroy(&sbi->s_freeinodes_counter);
860 percpu_counter_destroy(&sbi->s_dirs_counter);
861 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
862 brelse(sbi->s_sbh);
863 #ifdef CONFIG_QUOTA
864 for (i = 0; i < MAXQUOTAS; i++)
865 kfree(sbi->s_qf_names[i]);
866 #endif
867
868 /* Debugging code just in case the in-memory inode orphan list
869 * isn't empty. The on-disk one can be non-empty if we've
870 * detected an error and taken the fs readonly, but the
871 * in-memory list had better be clean by this point. */
872 if (!list_empty(&sbi->s_orphan))
873 dump_orphan_list(sb, sbi);
874 J_ASSERT(list_empty(&sbi->s_orphan));
875
876 invalidate_bdev(sb->s_bdev);
877 if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) {
878 /*
879 * Invalidate the journal device's buffers. We don't want them
880 * floating about in memory - the physical journal device may
881 * hotswapped, and it breaks the `ro-after' testing code.
882 */
883 sync_blockdev(sbi->journal_bdev);
884 invalidate_bdev(sbi->journal_bdev);
885 ext4_blkdev_remove(sbi);
886 }
887 if (sbi->s_mmp_tsk)
888 kthread_stop(sbi->s_mmp_tsk);
889 sb->s_fs_info = NULL;
890 /*
891 * Now that we are completely done shutting down the
892 * superblock, we need to actually destroy the kobject.
893 */
894 unlock_super(sb);
895 kobject_put(&sbi->s_kobj);
896 wait_for_completion(&sbi->s_kobj_unregister);
897 kfree(sbi->s_blockgroup_lock);
898 kfree(sbi);
899 }
900
901 static struct kmem_cache *ext4_inode_cachep;
902
903 /*
904 * Called inside transaction, so use GFP_NOFS
905 */
906 static struct inode *ext4_alloc_inode(struct super_block *sb)
907 {
908 struct ext4_inode_info *ei;
909
910 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS);
911 if (!ei)
912 return NULL;
913
914 ei->vfs_inode.i_version = 1;
915 ei->vfs_inode.i_data.writeback_index = 0;
916 memset(&ei->i_cached_extent, 0, sizeof(struct ext4_ext_cache));
917 INIT_LIST_HEAD(&ei->i_prealloc_list);
918 spin_lock_init(&ei->i_prealloc_lock);
919 ei->i_reserved_data_blocks = 0;
920 ei->i_reserved_meta_blocks = 0;
921 ei->i_allocated_meta_blocks = 0;
922 ei->i_da_metadata_calc_len = 0;
923 spin_lock_init(&(ei->i_block_reservation_lock));
924 #ifdef CONFIG_QUOTA
925 ei->i_reserved_quota = 0;
926 #endif
927 ei->jinode = NULL;
928 INIT_LIST_HEAD(&ei->i_completed_io_list);
929 spin_lock_init(&ei->i_completed_io_lock);
930 ei->cur_aio_dio = NULL;
931 ei->i_sync_tid = 0;
932 ei->i_datasync_tid = 0;
933 atomic_set(&ei->i_ioend_count, 0);
934 atomic_set(&ei->i_aiodio_unwritten, 0);
935
936 return &ei->vfs_inode;
937 }
938
939 static int ext4_drop_inode(struct inode *inode)
940 {
941 int drop = generic_drop_inode(inode);
942
943 trace_ext4_drop_inode(inode, drop);
944 return drop;
945 }
946
947 static void ext4_i_callback(struct rcu_head *head)
948 {
949 struct inode *inode = container_of(head, struct inode, i_rcu);
950 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
951 }
952
953 static void ext4_destroy_inode(struct inode *inode)
954 {
955 if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
956 ext4_msg(inode->i_sb, KERN_ERR,
957 "Inode %lu (%p): orphan list check failed!",
958 inode->i_ino, EXT4_I(inode));
959 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
960 EXT4_I(inode), sizeof(struct ext4_inode_info),
961 true);
962 dump_stack();
963 }
964 call_rcu(&inode->i_rcu, ext4_i_callback);
965 }
966
967 static void init_once(void *foo)
968 {
969 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo;
970
971 INIT_LIST_HEAD(&ei->i_orphan);
972 #ifdef CONFIG_EXT4_FS_XATTR
973 init_rwsem(&ei->xattr_sem);
974 #endif
975 init_rwsem(&ei->i_data_sem);
976 inode_init_once(&ei->vfs_inode);
977 }
978
979 static int init_inodecache(void)
980 {
981 ext4_inode_cachep = kmem_cache_create("ext4_inode_cache",
982 sizeof(struct ext4_inode_info),
983 0, (SLAB_RECLAIM_ACCOUNT|
984 SLAB_MEM_SPREAD),
985 init_once);
986 if (ext4_inode_cachep == NULL)
987 return -ENOMEM;
988 return 0;
989 }
990
991 static void destroy_inodecache(void)
992 {
993 kmem_cache_destroy(ext4_inode_cachep);
994 }
995
996 void ext4_clear_inode(struct inode *inode)
997 {
998 invalidate_inode_buffers(inode);
999 end_writeback(inode);
1000 dquot_drop(inode);
1001 ext4_discard_preallocations(inode);
1002 if (EXT4_I(inode)->jinode) {
1003 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
1004 EXT4_I(inode)->jinode);
1005 jbd2_free_inode(EXT4_I(inode)->jinode);
1006 EXT4_I(inode)->jinode = NULL;
1007 }
1008 }
1009
1010 static struct inode *ext4_nfs_get_inode(struct super_block *sb,
1011 u64 ino, u32 generation)
1012 {
1013 struct inode *inode;
1014
1015 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
1016 return ERR_PTR(-ESTALE);
1017 if (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
1018 return ERR_PTR(-ESTALE);
1019
1020 /* iget isn't really right if the inode is currently unallocated!!
1021 *
1022 * ext4_read_inode will return a bad_inode if the inode had been
1023 * deleted, so we should be safe.
1024 *
1025 * Currently we don't know the generation for parent directory, so
1026 * a generation of 0 means "accept any"
1027 */
1028 inode = ext4_iget(sb, ino);
1029 if (IS_ERR(inode))
1030 return ERR_CAST(inode);
1031 if (generation && inode->i_generation != generation) {
1032 iput(inode);
1033 return ERR_PTR(-ESTALE);
1034 }
1035
1036 return inode;
1037 }
1038
1039 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
1040 int fh_len, int fh_type)
1041 {
1042 return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1043 ext4_nfs_get_inode);
1044 }
1045
1046 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
1047 int fh_len, int fh_type)
1048 {
1049 return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1050 ext4_nfs_get_inode);
1051 }
1052
1053 /*
1054 * Try to release metadata pages (indirect blocks, directories) which are
1055 * mapped via the block device. Since these pages could have journal heads
1056 * which would prevent try_to_free_buffers() from freeing them, we must use
1057 * jbd2 layer's try_to_free_buffers() function to release them.
1058 */
1059 static int bdev_try_to_free_page(struct super_block *sb, struct page *page,
1060 gfp_t wait)
1061 {
1062 journal_t *journal = EXT4_SB(sb)->s_journal;
1063
1064 WARN_ON(PageChecked(page));
1065 if (!page_has_buffers(page))
1066 return 0;
1067 if (journal)
1068 return jbd2_journal_try_to_free_buffers(journal, page,
1069 wait & ~__GFP_WAIT);
1070 return try_to_free_buffers(page);
1071 }
1072
1073 #ifdef CONFIG_QUOTA
1074 #define QTYPE2NAME(t) ((t) == USRQUOTA ? "user" : "group")
1075 #define QTYPE2MOPT(on, t) ((t) == USRQUOTA?((on)##USRJQUOTA):((on)##GRPJQUOTA))
1076
1077 static int ext4_write_dquot(struct dquot *dquot);
1078 static int ext4_acquire_dquot(struct dquot *dquot);
1079 static int ext4_release_dquot(struct dquot *dquot);
1080 static int ext4_mark_dquot_dirty(struct dquot *dquot);
1081 static int ext4_write_info(struct super_block *sb, int type);
1082 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1083 struct path *path);
1084 static int ext4_quota_off(struct super_block *sb, int type);
1085 static int ext4_quota_on_mount(struct super_block *sb, int type);
1086 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1087 size_t len, loff_t off);
1088 static ssize_t ext4_quota_write(struct super_block *sb, int type,
1089 const char *data, size_t len, loff_t off);
1090
1091 static const struct dquot_operations ext4_quota_operations = {
1092 .get_reserved_space = ext4_get_reserved_space,
1093 .write_dquot = ext4_write_dquot,
1094 .acquire_dquot = ext4_acquire_dquot,
1095 .release_dquot = ext4_release_dquot,
1096 .mark_dirty = ext4_mark_dquot_dirty,
1097 .write_info = ext4_write_info,
1098 .alloc_dquot = dquot_alloc,
1099 .destroy_dquot = dquot_destroy,
1100 };
1101
1102 static const struct quotactl_ops ext4_qctl_operations = {
1103 .quota_on = ext4_quota_on,
1104 .quota_off = ext4_quota_off,
1105 .quota_sync = dquot_quota_sync,
1106 .get_info = dquot_get_dqinfo,
1107 .set_info = dquot_set_dqinfo,
1108 .get_dqblk = dquot_get_dqblk,
1109 .set_dqblk = dquot_set_dqblk
1110 };
1111 #endif
1112
1113 static const struct super_operations ext4_sops = {
1114 .alloc_inode = ext4_alloc_inode,
1115 .destroy_inode = ext4_destroy_inode,
1116 .write_inode = ext4_write_inode,
1117 .dirty_inode = ext4_dirty_inode,
1118 .drop_inode = ext4_drop_inode,
1119 .evict_inode = ext4_evict_inode,
1120 .put_super = ext4_put_super,
1121 .sync_fs = ext4_sync_fs,
1122 .freeze_fs = ext4_freeze,
1123 .unfreeze_fs = ext4_unfreeze,
1124 .statfs = ext4_statfs,
1125 .remount_fs = ext4_remount,
1126 .show_options = ext4_show_options,
1127 #ifdef CONFIG_QUOTA
1128 .quota_read = ext4_quota_read,
1129 .quota_write = ext4_quota_write,
1130 #endif
1131 .bdev_try_to_free_page = bdev_try_to_free_page,
1132 };
1133
1134 static const struct super_operations ext4_nojournal_sops = {
1135 .alloc_inode = ext4_alloc_inode,
1136 .destroy_inode = ext4_destroy_inode,
1137 .write_inode = ext4_write_inode,
1138 .dirty_inode = ext4_dirty_inode,
1139 .drop_inode = ext4_drop_inode,
1140 .evict_inode = ext4_evict_inode,
1141 .write_super = ext4_write_super,
1142 .put_super = ext4_put_super,
1143 .statfs = ext4_statfs,
1144 .remount_fs = ext4_remount,
1145 .show_options = ext4_show_options,
1146 #ifdef CONFIG_QUOTA
1147 .quota_read = ext4_quota_read,
1148 .quota_write = ext4_quota_write,
1149 #endif
1150 .bdev_try_to_free_page = bdev_try_to_free_page,
1151 };
1152
1153 static const struct export_operations ext4_export_ops = {
1154 .fh_to_dentry = ext4_fh_to_dentry,
1155 .fh_to_parent = ext4_fh_to_parent,
1156 .get_parent = ext4_get_parent,
1157 };
1158
1159 enum {
1160 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1161 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro,
1162 Opt_nouid32, Opt_debug, Opt_removed,
1163 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl,
1164 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload,
1165 Opt_commit, Opt_min_batch_time, Opt_max_batch_time,
1166 Opt_journal_dev, Opt_journal_checksum, Opt_journal_async_commit,
1167 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1168 Opt_data_err_abort, Opt_data_err_ignore,
1169 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota,
1170 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota,
1171 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err,
1172 Opt_usrquota, Opt_grpquota, Opt_i_version,
1173 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_mblk_io_submit,
1174 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1175 Opt_inode_readahead_blks, Opt_journal_ioprio,
1176 Opt_dioread_nolock, Opt_dioread_lock,
1177 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable,
1178 };
1179
1180 static const match_table_t tokens = {
1181 {Opt_bsd_df, "bsddf"},
1182 {Opt_minix_df, "minixdf"},
1183 {Opt_grpid, "grpid"},
1184 {Opt_grpid, "bsdgroups"},
1185 {Opt_nogrpid, "nogrpid"},
1186 {Opt_nogrpid, "sysvgroups"},
1187 {Opt_resgid, "resgid=%u"},
1188 {Opt_resuid, "resuid=%u"},
1189 {Opt_sb, "sb=%u"},
1190 {Opt_err_cont, "errors=continue"},
1191 {Opt_err_panic, "errors=panic"},
1192 {Opt_err_ro, "errors=remount-ro"},
1193 {Opt_nouid32, "nouid32"},
1194 {Opt_debug, "debug"},
1195 {Opt_removed, "oldalloc"},
1196 {Opt_removed, "orlov"},
1197 {Opt_user_xattr, "user_xattr"},
1198 {Opt_nouser_xattr, "nouser_xattr"},
1199 {Opt_acl, "acl"},
1200 {Opt_noacl, "noacl"},
1201 {Opt_noload, "norecovery"},
1202 {Opt_noload, "noload"},
1203 {Opt_removed, "nobh"},
1204 {Opt_removed, "bh"},
1205 {Opt_commit, "commit=%u"},
1206 {Opt_min_batch_time, "min_batch_time=%u"},
1207 {Opt_max_batch_time, "max_batch_time=%u"},
1208 {Opt_journal_dev, "journal_dev=%u"},
1209 {Opt_journal_checksum, "journal_checksum"},
1210 {Opt_journal_async_commit, "journal_async_commit"},
1211 {Opt_abort, "abort"},
1212 {Opt_data_journal, "data=journal"},
1213 {Opt_data_ordered, "data=ordered"},
1214 {Opt_data_writeback, "data=writeback"},
1215 {Opt_data_err_abort, "data_err=abort"},
1216 {Opt_data_err_ignore, "data_err=ignore"},
1217 {Opt_offusrjquota, "usrjquota="},
1218 {Opt_usrjquota, "usrjquota=%s"},
1219 {Opt_offgrpjquota, "grpjquota="},
1220 {Opt_grpjquota, "grpjquota=%s"},
1221 {Opt_jqfmt_vfsold, "jqfmt=vfsold"},
1222 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
1223 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
1224 {Opt_grpquota, "grpquota"},
1225 {Opt_noquota, "noquota"},
1226 {Opt_quota, "quota"},
1227 {Opt_usrquota, "usrquota"},
1228 {Opt_barrier, "barrier=%u"},
1229 {Opt_barrier, "barrier"},
1230 {Opt_nobarrier, "nobarrier"},
1231 {Opt_i_version, "i_version"},
1232 {Opt_stripe, "stripe=%u"},
1233 {Opt_delalloc, "delalloc"},
1234 {Opt_nodelalloc, "nodelalloc"},
1235 {Opt_mblk_io_submit, "mblk_io_submit"},
1236 {Opt_nomblk_io_submit, "nomblk_io_submit"},
1237 {Opt_block_validity, "block_validity"},
1238 {Opt_noblock_validity, "noblock_validity"},
1239 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"},
1240 {Opt_journal_ioprio, "journal_ioprio=%u"},
1241 {Opt_auto_da_alloc, "auto_da_alloc=%u"},
1242 {Opt_auto_da_alloc, "auto_da_alloc"},
1243 {Opt_noauto_da_alloc, "noauto_da_alloc"},
1244 {Opt_dioread_nolock, "dioread_nolock"},
1245 {Opt_dioread_lock, "dioread_lock"},
1246 {Opt_discard, "discard"},
1247 {Opt_nodiscard, "nodiscard"},
1248 {Opt_init_itable, "init_itable=%u"},
1249 {Opt_init_itable, "init_itable"},
1250 {Opt_noinit_itable, "noinit_itable"},
1251 {Opt_err, NULL},
1252 };
1253
1254 static ext4_fsblk_t get_sb_block(void **data)
1255 {
1256 ext4_fsblk_t sb_block;
1257 char *options = (char *) *data;
1258
1259 if (!options || strncmp(options, "sb=", 3) != 0)
1260 return 1; /* Default location */
1261
1262 options += 3;
1263 /* TODO: use simple_strtoll with >32bit ext4 */
1264 sb_block = simple_strtoul(options, &options, 0);
1265 if (*options && *options != ',') {
1266 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n",
1267 (char *) *data);
1268 return 1;
1269 }
1270 if (*options == ',')
1271 options++;
1272 *data = (void *) options;
1273
1274 return sb_block;
1275 }
1276
1277 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1278 static char deprecated_msg[] = "Mount option \"%s\" will be removed by %s\n"
1279 "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n";
1280
1281 #ifdef CONFIG_QUOTA
1282 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args)
1283 {
1284 struct ext4_sb_info *sbi = EXT4_SB(sb);
1285 char *qname;
1286
1287 if (sb_any_quota_loaded(sb) &&
1288 !sbi->s_qf_names[qtype]) {
1289 ext4_msg(sb, KERN_ERR,
1290 "Cannot change journaled "
1291 "quota options when quota turned on");
1292 return 0;
1293 }
1294 qname = match_strdup(args);
1295 if (!qname) {
1296 ext4_msg(sb, KERN_ERR,
1297 "Not enough memory for storing quotafile name");
1298 return 0;
1299 }
1300 if (sbi->s_qf_names[qtype] &&
1301 strcmp(sbi->s_qf_names[qtype], qname)) {
1302 ext4_msg(sb, KERN_ERR,
1303 "%s quota file already specified", QTYPE2NAME(qtype));
1304 kfree(qname);
1305 return 0;
1306 }
1307 sbi->s_qf_names[qtype] = qname;
1308 if (strchr(sbi->s_qf_names[qtype], '/')) {
1309 ext4_msg(sb, KERN_ERR,
1310 "quotafile must be on filesystem root");
1311 kfree(sbi->s_qf_names[qtype]);
1312 sbi->s_qf_names[qtype] = NULL;
1313 return 0;
1314 }
1315 set_opt(sb, QUOTA);
1316 return 1;
1317 }
1318
1319 static int clear_qf_name(struct super_block *sb, int qtype)
1320 {
1321
1322 struct ext4_sb_info *sbi = EXT4_SB(sb);
1323
1324 if (sb_any_quota_loaded(sb) &&
1325 sbi->s_qf_names[qtype]) {
1326 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options"
1327 " when quota turned on");
1328 return 0;
1329 }
1330 /*
1331 * The space will be released later when all options are confirmed
1332 * to be correct
1333 */
1334 sbi->s_qf_names[qtype] = NULL;
1335 return 1;
1336 }
1337 #endif
1338
1339 #define MOPT_SET 0x0001
1340 #define MOPT_CLEAR 0x0002
1341 #define MOPT_NOSUPPORT 0x0004
1342 #define MOPT_EXPLICIT 0x0008
1343 #define MOPT_CLEAR_ERR 0x0010
1344 #define MOPT_GTE0 0x0020
1345 #ifdef CONFIG_QUOTA
1346 #define MOPT_Q 0
1347 #define MOPT_QFMT 0x0040
1348 #else
1349 #define MOPT_Q MOPT_NOSUPPORT
1350 #define MOPT_QFMT MOPT_NOSUPPORT
1351 #endif
1352 #define MOPT_DATAJ 0x0080
1353
1354 static const struct mount_opts {
1355 int token;
1356 int mount_opt;
1357 int flags;
1358 } ext4_mount_opts[] = {
1359 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET},
1360 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR},
1361 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET},
1362 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR},
1363 {Opt_mblk_io_submit, EXT4_MOUNT_MBLK_IO_SUBMIT, MOPT_SET},
1364 {Opt_nomblk_io_submit, EXT4_MOUNT_MBLK_IO_SUBMIT, MOPT_CLEAR},
1365 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET},
1366 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR},
1367 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK, MOPT_SET},
1368 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK, MOPT_CLEAR},
1369 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET},
1370 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR},
1371 {Opt_delalloc, EXT4_MOUNT_DELALLOC, MOPT_SET | MOPT_EXPLICIT},
1372 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC, MOPT_CLEAR | MOPT_EXPLICIT},
1373 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM, MOPT_SET},
1374 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT |
1375 EXT4_MOUNT_JOURNAL_CHECKSUM), MOPT_SET},
1376 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_SET},
1377 {Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR},
1378 {Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR},
1379 {Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR},
1380 {Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT, MOPT_SET},
1381 {Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT, MOPT_CLEAR},
1382 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET},
1383 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR},
1384 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET},
1385 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR},
1386 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR},
1387 {Opt_commit, 0, MOPT_GTE0},
1388 {Opt_max_batch_time, 0, MOPT_GTE0},
1389 {Opt_min_batch_time, 0, MOPT_GTE0},
1390 {Opt_inode_readahead_blks, 0, MOPT_GTE0},
1391 {Opt_init_itable, 0, MOPT_GTE0},
1392 {Opt_stripe, 0, MOPT_GTE0},
1393 {Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_DATAJ},
1394 {Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_DATAJ},
1395 {Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA, MOPT_DATAJ},
1396 #ifdef CONFIG_EXT4_FS_XATTR
1397 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET},
1398 {Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR},
1399 #else
1400 {Opt_user_xattr, 0, MOPT_NOSUPPORT},
1401 {Opt_nouser_xattr, 0, MOPT_NOSUPPORT},
1402 #endif
1403 #ifdef CONFIG_EXT4_FS_POSIX_ACL
1404 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET},
1405 {Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR},
1406 #else
1407 {Opt_acl, 0, MOPT_NOSUPPORT},
1408 {Opt_noacl, 0, MOPT_NOSUPPORT},
1409 #endif
1410 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET},
1411 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET},
1412 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q},
1413 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA,
1414 MOPT_SET | MOPT_Q},
1415 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA,
1416 MOPT_SET | MOPT_Q},
1417 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
1418 EXT4_MOUNT_GRPQUOTA), MOPT_CLEAR | MOPT_Q},
1419 {Opt_usrjquota, 0, MOPT_Q},
1420 {Opt_grpjquota, 0, MOPT_Q},
1421 {Opt_offusrjquota, 0, MOPT_Q},
1422 {Opt_offgrpjquota, 0, MOPT_Q},
1423 {Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT},
1424 {Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT},
1425 {Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT},
1426 {Opt_err, 0, 0}
1427 };
1428
1429 static int handle_mount_opt(struct super_block *sb, char *opt, int token,
1430 substring_t *args, unsigned long *journal_devnum,
1431 unsigned int *journal_ioprio, int is_remount)
1432 {
1433 struct ext4_sb_info *sbi = EXT4_SB(sb);
1434 const struct mount_opts *m;
1435 int arg = 0;
1436
1437 if (args->from && match_int(args, &arg))
1438 return -1;
1439 switch (token) {
1440 case Opt_sb:
1441 return 1; /* handled by get_sb_block() */
1442 case Opt_removed:
1443 ext4_msg(sb, KERN_WARNING,
1444 "Ignoring removed %s option", opt);
1445 return 1;
1446 case Opt_resuid:
1447 sbi->s_resuid = arg;
1448 return 1;
1449 case Opt_resgid:
1450 sbi->s_resgid = arg;
1451 return 1;
1452 case Opt_abort:
1453 sbi->s_mount_flags |= EXT4_MF_FS_ABORTED;
1454 return 1;
1455 case Opt_i_version:
1456 sb->s_flags |= MS_I_VERSION;
1457 return 1;
1458 case Opt_journal_dev:
1459 if (is_remount) {
1460 ext4_msg(sb, KERN_ERR,
1461 "Cannot specify journal on remount");
1462 return -1;
1463 }
1464 *journal_devnum = arg;
1465 return 1;
1466 case Opt_journal_ioprio:
1467 if (arg < 0 || arg > 7)
1468 return -1;
1469 *journal_ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg);
1470 return 1;
1471 }
1472
1473 for (m = ext4_mount_opts; m->token != Opt_err; m++) {
1474 if (token != m->token)
1475 continue;
1476 if (args->from && (m->flags & MOPT_GTE0) && (arg < 0))
1477 return -1;
1478 if (m->flags & MOPT_EXPLICIT)
1479 set_opt2(sb, EXPLICIT_DELALLOC);
1480 if (m->flags & MOPT_CLEAR_ERR)
1481 clear_opt(sb, ERRORS_MASK);
1482 if (token == Opt_noquota && sb_any_quota_loaded(sb)) {
1483 ext4_msg(sb, KERN_ERR, "Cannot change quota "
1484 "options when quota turned on");
1485 return -1;
1486 }
1487
1488 if (m->flags & MOPT_NOSUPPORT) {
1489 ext4_msg(sb, KERN_ERR, "%s option not supported", opt);
1490 } else if (token == Opt_commit) {
1491 if (arg == 0)
1492 arg = JBD2_DEFAULT_MAX_COMMIT_AGE;
1493 sbi->s_commit_interval = HZ * arg;
1494 } else if (token == Opt_max_batch_time) {
1495 if (arg == 0)
1496 arg = EXT4_DEF_MAX_BATCH_TIME;
1497 sbi->s_max_batch_time = arg;
1498 } else if (token == Opt_min_batch_time) {
1499 sbi->s_min_batch_time = arg;
1500 } else if (token == Opt_inode_readahead_blks) {
1501 if (arg > (1 << 30))
1502 return -1;
1503 if (arg && !is_power_of_2(arg)) {
1504 ext4_msg(sb, KERN_ERR,
1505 "EXT4-fs: inode_readahead_blks"
1506 " must be a power of 2");
1507 return -1;
1508 }
1509 sbi->s_inode_readahead_blks = arg;
1510 } else if (token == Opt_init_itable) {
1511 set_opt(sb, INIT_INODE_TABLE);
1512 if (!args->from)
1513 arg = EXT4_DEF_LI_WAIT_MULT;
1514 sbi->s_li_wait_mult = arg;
1515 } else if (token == Opt_stripe) {
1516 sbi->s_stripe = arg;
1517 } else if (m->flags & MOPT_DATAJ) {
1518 if (is_remount) {
1519 if (!sbi->s_journal)
1520 ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option");
1521 else if (test_opt(sb, DATA_FLAGS) !=
1522 m->mount_opt) {
1523 ext4_msg(sb, KERN_ERR,
1524 "Cannot change data mode on remount");
1525 return -1;
1526 }
1527 } else {
1528 clear_opt(sb, DATA_FLAGS);
1529 sbi->s_mount_opt |= m->mount_opt;
1530 }
1531 #ifdef CONFIG_QUOTA
1532 } else if (token == Opt_usrjquota) {
1533 if (!set_qf_name(sb, USRQUOTA, &args[0]))
1534 return -1;
1535 } else if (token == Opt_grpjquota) {
1536 if (!set_qf_name(sb, GRPQUOTA, &args[0]))
1537 return -1;
1538 } else if (token == Opt_offusrjquota) {
1539 if (!clear_qf_name(sb, USRQUOTA))
1540 return -1;
1541 } else if (token == Opt_offgrpjquota) {
1542 if (!clear_qf_name(sb, GRPQUOTA))
1543 return -1;
1544 } else if (m->flags & MOPT_QFMT) {
1545 if (sb_any_quota_loaded(sb) &&
1546 sbi->s_jquota_fmt != m->mount_opt) {
1547 ext4_msg(sb, KERN_ERR, "Cannot "
1548 "change journaled quota options "
1549 "when quota turned on");
1550 return -1;
1551 }
1552 sbi->s_jquota_fmt = m->mount_opt;
1553 #endif
1554 } else {
1555 if (!args->from)
1556 arg = 1;
1557 if (m->flags & MOPT_CLEAR)
1558 arg = !arg;
1559 else if (unlikely(!(m->flags & MOPT_SET))) {
1560 ext4_msg(sb, KERN_WARNING,
1561 "buggy handling of option %s", opt);
1562 WARN_ON(1);
1563 return -1;
1564 }
1565 if (arg != 0)
1566 sbi->s_mount_opt |= m->mount_opt;
1567 else
1568 sbi->s_mount_opt &= ~m->mount_opt;
1569 }
1570 return 1;
1571 }
1572 ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" "
1573 "or missing value", opt);
1574 return -1;
1575 }
1576
1577 static int parse_options(char *options, struct super_block *sb,
1578 unsigned long *journal_devnum,
1579 unsigned int *journal_ioprio,
1580 int is_remount)
1581 {
1582 struct ext4_sb_info *sbi = EXT4_SB(sb);
1583 char *p;
1584 substring_t args[MAX_OPT_ARGS];
1585 int token;
1586
1587 if (!options)
1588 return 1;
1589
1590 while ((p = strsep(&options, ",")) != NULL) {
1591 if (!*p)
1592 continue;
1593 /*
1594 * Initialize args struct so we know whether arg was
1595 * found; some options take optional arguments.
1596 */
1597 args[0].to = args[0].from = 0;
1598 token = match_token(p, tokens, args);
1599 if (handle_mount_opt(sb, p, token, args, journal_devnum,
1600 journal_ioprio, is_remount) < 0)
1601 return 0;
1602 }
1603 #ifdef CONFIG_QUOTA
1604 if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
1605 if (test_opt(sb, USRQUOTA) && sbi->s_qf_names[USRQUOTA])
1606 clear_opt(sb, USRQUOTA);
1607
1608 if (test_opt(sb, GRPQUOTA) && sbi->s_qf_names[GRPQUOTA])
1609 clear_opt(sb, GRPQUOTA);
1610
1611 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) {
1612 ext4_msg(sb, KERN_ERR, "old and new quota "
1613 "format mixing");
1614 return 0;
1615 }
1616
1617 if (!sbi->s_jquota_fmt) {
1618 ext4_msg(sb, KERN_ERR, "journaled quota format "
1619 "not specified");
1620 return 0;
1621 }
1622 } else {
1623 if (sbi->s_jquota_fmt) {
1624 ext4_msg(sb, KERN_ERR, "journaled quota format "
1625 "specified with no journaling "
1626 "enabled");
1627 return 0;
1628 }
1629 }
1630 #endif
1631 return 1;
1632 }
1633
1634 static inline void ext4_show_quota_options(struct seq_file *seq,
1635 struct super_block *sb)
1636 {
1637 #if defined(CONFIG_QUOTA)
1638 struct ext4_sb_info *sbi = EXT4_SB(sb);
1639
1640 if (sbi->s_jquota_fmt) {
1641 char *fmtname = "";
1642
1643 switch (sbi->s_jquota_fmt) {
1644 case QFMT_VFS_OLD:
1645 fmtname = "vfsold";
1646 break;
1647 case QFMT_VFS_V0:
1648 fmtname = "vfsv0";
1649 break;
1650 case QFMT_VFS_V1:
1651 fmtname = "vfsv1";
1652 break;
1653 }
1654 seq_printf(seq, ",jqfmt=%s", fmtname);
1655 }
1656
1657 if (sbi->s_qf_names[USRQUOTA])
1658 seq_printf(seq, ",usrjquota=%s", sbi->s_qf_names[USRQUOTA]);
1659
1660 if (sbi->s_qf_names[GRPQUOTA])
1661 seq_printf(seq, ",grpjquota=%s", sbi->s_qf_names[GRPQUOTA]);
1662
1663 if (test_opt(sb, USRQUOTA))
1664 seq_puts(seq, ",usrquota");
1665
1666 if (test_opt(sb, GRPQUOTA))
1667 seq_puts(seq, ",grpquota");
1668 #endif
1669 }
1670
1671 static const char *token2str(int token)
1672 {
1673 static const struct match_token *t;
1674
1675 for (t = tokens; t->token != Opt_err; t++)
1676 if (t->token == token && !strchr(t->pattern, '='))
1677 break;
1678 return t->pattern;
1679 }
1680
1681 /*
1682 * Show an option if
1683 * - it's set to a non-default value OR
1684 * - if the per-sb default is different from the global default
1685 */
1686 static int ext4_show_options(struct seq_file *seq, struct dentry *root)
1687 {
1688 int def_errors;
1689 struct super_block *sb = root->d_sb;
1690 struct ext4_sb_info *sbi = EXT4_SB(sb);
1691 struct ext4_super_block *es = sbi->s_es;
1692 const struct mount_opts *m;
1693
1694 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "," str)
1695 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "," str, arg)
1696
1697 if (sbi->s_sb_block != 1)
1698 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block);
1699
1700 for (m = ext4_mount_opts; m->token != Opt_err; m++) {
1701 int want_set = m->flags & MOPT_SET;
1702 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) ||
1703 (m->flags & MOPT_CLEAR_ERR))
1704 continue;
1705 if (!(m->mount_opt & (sbi->s_mount_opt ^ sbi->s_def_mount_opt)))
1706 continue; /* skip if same as the default */
1707 if ((want_set &&
1708 (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) ||
1709 (!want_set && (sbi->s_mount_opt & m->mount_opt)))
1710 continue; /* select Opt_noFoo vs Opt_Foo */
1711 SEQ_OPTS_PRINT("%s", token2str(m->token));
1712 }
1713
1714 if (sbi->s_resuid != EXT4_DEF_RESUID ||
1715 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID)
1716 SEQ_OPTS_PRINT("resuid=%u", sbi->s_resuid);
1717 if (sbi->s_resgid != EXT4_DEF_RESGID ||
1718 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID)
1719 SEQ_OPTS_PRINT("resgid=%u", sbi->s_resgid);
1720 def_errors = le16_to_cpu(es->s_errors);
1721 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO)
1722 SEQ_OPTS_PUTS("errors=remount-ro");
1723 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
1724 SEQ_OPTS_PUTS("errors=continue");
1725 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
1726 SEQ_OPTS_PUTS("errors=panic");
1727 if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
1728 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ);
1729 if (sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME)
1730 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time);
1731 if (sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME)
1732 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time);
1733 if (sb->s_flags & MS_I_VERSION)
1734 SEQ_OPTS_PUTS("i_version");
1735 if (sbi->s_stripe)
1736 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe);
1737 if (EXT4_MOUNT_DATA_FLAGS & (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) {
1738 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
1739 SEQ_OPTS_PUTS("data=journal");
1740 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
1741 SEQ_OPTS_PUTS("data=ordered");
1742 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
1743 SEQ_OPTS_PUTS("data=writeback");
1744 }
1745 if (sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
1746 SEQ_OPTS_PRINT("inode_readahead_blks=%u",
1747 sbi->s_inode_readahead_blks);
1748
1749 if (test_opt(sb, INIT_INODE_TABLE) &&
1750 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT))
1751 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult);
1752
1753 ext4_show_quota_options(seq, sb);
1754 return 0;
1755 }
1756
1757 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
1758 int read_only)
1759 {
1760 struct ext4_sb_info *sbi = EXT4_SB(sb);
1761 int res = 0;
1762
1763 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
1764 ext4_msg(sb, KERN_ERR, "revision level too high, "
1765 "forcing read-only mode");
1766 res = MS_RDONLY;
1767 }
1768 if (read_only)
1769 goto done;
1770 if (!(sbi->s_mount_state & EXT4_VALID_FS))
1771 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
1772 "running e2fsck is recommended");
1773 else if ((sbi->s_mount_state & EXT4_ERROR_FS))
1774 ext4_msg(sb, KERN_WARNING,
1775 "warning: mounting fs with errors, "
1776 "running e2fsck is recommended");
1777 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
1778 le16_to_cpu(es->s_mnt_count) >=
1779 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
1780 ext4_msg(sb, KERN_WARNING,
1781 "warning: maximal mount count reached, "
1782 "running e2fsck is recommended");
1783 else if (le32_to_cpu(es->s_checkinterval) &&
1784 (le32_to_cpu(es->s_lastcheck) +
1785 le32_to_cpu(es->s_checkinterval) <= get_seconds()))
1786 ext4_msg(sb, KERN_WARNING,
1787 "warning: checktime reached, "
1788 "running e2fsck is recommended");
1789 if (!sbi->s_journal)
1790 es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
1791 if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
1792 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
1793 le16_add_cpu(&es->s_mnt_count, 1);
1794 es->s_mtime = cpu_to_le32(get_seconds());
1795 ext4_update_dynamic_rev(sb);
1796 if (sbi->s_journal)
1797 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
1798
1799 ext4_commit_super(sb, 1);
1800 done:
1801 if (test_opt(sb, DEBUG))
1802 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
1803 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
1804 sb->s_blocksize,
1805 sbi->s_groups_count,
1806 EXT4_BLOCKS_PER_GROUP(sb),
1807 EXT4_INODES_PER_GROUP(sb),
1808 sbi->s_mount_opt, sbi->s_mount_opt2);
1809
1810 cleancache_init_fs(sb);
1811 return res;
1812 }
1813
1814 static int ext4_fill_flex_info(struct super_block *sb)
1815 {
1816 struct ext4_sb_info *sbi = EXT4_SB(sb);
1817 struct ext4_group_desc *gdp = NULL;
1818 ext4_group_t flex_group_count;
1819 ext4_group_t flex_group;
1820 unsigned int groups_per_flex = 0;
1821 size_t size;
1822 int i;
1823
1824 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
1825 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) {
1826 sbi->s_log_groups_per_flex = 0;
1827 return 1;
1828 }
1829 groups_per_flex = 1 << sbi->s_log_groups_per_flex;
1830
1831 /* We allocate both existing and potentially added groups */
1832 flex_group_count = ((sbi->s_groups_count + groups_per_flex - 1) +
1833 ((le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) + 1) <<
1834 EXT4_DESC_PER_BLOCK_BITS(sb))) / groups_per_flex;
1835 size = flex_group_count * sizeof(struct flex_groups);
1836 sbi->s_flex_groups = ext4_kvzalloc(size, GFP_KERNEL);
1837 if (sbi->s_flex_groups == NULL) {
1838 ext4_msg(sb, KERN_ERR, "not enough memory for %u flex groups",
1839 flex_group_count);
1840 goto failed;
1841 }
1842
1843 for (i = 0; i < sbi->s_groups_count; i++) {
1844 gdp = ext4_get_group_desc(sb, i, NULL);
1845
1846 flex_group = ext4_flex_group(sbi, i);
1847 atomic_add(ext4_free_inodes_count(sb, gdp),
1848 &sbi->s_flex_groups[flex_group].free_inodes);
1849 atomic_add(ext4_free_group_clusters(sb, gdp),
1850 &sbi->s_flex_groups[flex_group].free_clusters);
1851 atomic_add(ext4_used_dirs_count(sb, gdp),
1852 &sbi->s_flex_groups[flex_group].used_dirs);
1853 }
1854
1855 return 1;
1856 failed:
1857 return 0;
1858 }
1859
1860 __le16 ext4_group_desc_csum(struct ext4_sb_info *sbi, __u32 block_group,
1861 struct ext4_group_desc *gdp)
1862 {
1863 __u16 crc = 0;
1864
1865 if (sbi->s_es->s_feature_ro_compat &
1866 cpu_to_le32(EXT4_FEATURE_RO_COMPAT_GDT_CSUM)) {
1867 int offset = offsetof(struct ext4_group_desc, bg_checksum);
1868 __le32 le_group = cpu_to_le32(block_group);
1869
1870 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
1871 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
1872 crc = crc16(crc, (__u8 *)gdp, offset);
1873 offset += sizeof(gdp->bg_checksum); /* skip checksum */
1874 /* for checksum of struct ext4_group_desc do the rest...*/
1875 if ((sbi->s_es->s_feature_incompat &
1876 cpu_to_le32(EXT4_FEATURE_INCOMPAT_64BIT)) &&
1877 offset < le16_to_cpu(sbi->s_es->s_desc_size))
1878 crc = crc16(crc, (__u8 *)gdp + offset,
1879 le16_to_cpu(sbi->s_es->s_desc_size) -
1880 offset);
1881 }
1882
1883 return cpu_to_le16(crc);
1884 }
1885
1886 int ext4_group_desc_csum_verify(struct ext4_sb_info *sbi, __u32 block_group,
1887 struct ext4_group_desc *gdp)
1888 {
1889 if ((sbi->s_es->s_feature_ro_compat &
1890 cpu_to_le32(EXT4_FEATURE_RO_COMPAT_GDT_CSUM)) &&
1891 (gdp->bg_checksum != ext4_group_desc_csum(sbi, block_group, gdp)))
1892 return 0;
1893
1894 return 1;
1895 }
1896
1897 /* Called at mount-time, super-block is locked */
1898 static int ext4_check_descriptors(struct super_block *sb,
1899 ext4_group_t *first_not_zeroed)
1900 {
1901 struct ext4_sb_info *sbi = EXT4_SB(sb);
1902 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
1903 ext4_fsblk_t last_block;
1904 ext4_fsblk_t block_bitmap;
1905 ext4_fsblk_t inode_bitmap;
1906 ext4_fsblk_t inode_table;
1907 int flexbg_flag = 0;
1908 ext4_group_t i, grp = sbi->s_groups_count;
1909
1910 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG))
1911 flexbg_flag = 1;
1912
1913 ext4_debug("Checking group descriptors");
1914
1915 for (i = 0; i < sbi->s_groups_count; i++) {
1916 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
1917
1918 if (i == sbi->s_groups_count - 1 || flexbg_flag)
1919 last_block = ext4_blocks_count(sbi->s_es) - 1;
1920 else
1921 last_block = first_block +
1922 (EXT4_BLOCKS_PER_GROUP(sb) - 1);
1923
1924 if ((grp == sbi->s_groups_count) &&
1925 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
1926 grp = i;
1927
1928 block_bitmap = ext4_block_bitmap(sb, gdp);
1929 if (block_bitmap < first_block || block_bitmap > last_block) {
1930 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
1931 "Block bitmap for group %u not in group "
1932 "(block %llu)!", i, block_bitmap);
1933 return 0;
1934 }
1935 inode_bitmap = ext4_inode_bitmap(sb, gdp);
1936 if (inode_bitmap < first_block || inode_bitmap > last_block) {
1937 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
1938 "Inode bitmap for group %u not in group "
1939 "(block %llu)!", i, inode_bitmap);
1940 return 0;
1941 }
1942 inode_table = ext4_inode_table(sb, gdp);
1943 if (inode_table < first_block ||
1944 inode_table + sbi->s_itb_per_group - 1 > last_block) {
1945 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
1946 "Inode table for group %u not in group "
1947 "(block %llu)!", i, inode_table);
1948 return 0;
1949 }
1950 ext4_lock_group(sb, i);
1951 if (!ext4_group_desc_csum_verify(sbi, i, gdp)) {
1952 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
1953 "Checksum for group %u failed (%u!=%u)",
1954 i, le16_to_cpu(ext4_group_desc_csum(sbi, i,
1955 gdp)), le16_to_cpu(gdp->bg_checksum));
1956 if (!(sb->s_flags & MS_RDONLY)) {
1957 ext4_unlock_group(sb, i);
1958 return 0;
1959 }
1960 }
1961 ext4_unlock_group(sb, i);
1962 if (!flexbg_flag)
1963 first_block += EXT4_BLOCKS_PER_GROUP(sb);
1964 }
1965 if (NULL != first_not_zeroed)
1966 *first_not_zeroed = grp;
1967
1968 ext4_free_blocks_count_set(sbi->s_es,
1969 EXT4_C2B(sbi, ext4_count_free_clusters(sb)));
1970 sbi->s_es->s_free_inodes_count =cpu_to_le32(ext4_count_free_inodes(sb));
1971 return 1;
1972 }
1973
1974 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at
1975 * the superblock) which were deleted from all directories, but held open by
1976 * a process at the time of a crash. We walk the list and try to delete these
1977 * inodes at recovery time (only with a read-write filesystem).
1978 *
1979 * In order to keep the orphan inode chain consistent during traversal (in
1980 * case of crash during recovery), we link each inode into the superblock
1981 * orphan list_head and handle it the same way as an inode deletion during
1982 * normal operation (which journals the operations for us).
1983 *
1984 * We only do an iget() and an iput() on each inode, which is very safe if we
1985 * accidentally point at an in-use or already deleted inode. The worst that
1986 * can happen in this case is that we get a "bit already cleared" message from
1987 * ext4_free_inode(). The only reason we would point at a wrong inode is if
1988 * e2fsck was run on this filesystem, and it must have already done the orphan
1989 * inode cleanup for us, so we can safely abort without any further action.
1990 */
1991 static void ext4_orphan_cleanup(struct super_block *sb,
1992 struct ext4_super_block *es)
1993 {
1994 unsigned int s_flags = sb->s_flags;
1995 int nr_orphans = 0, nr_truncates = 0;
1996 #ifdef CONFIG_QUOTA
1997 int i;
1998 #endif
1999 if (!es->s_last_orphan) {
2000 jbd_debug(4, "no orphan inodes to clean up\n");
2001 return;
2002 }
2003
2004 if (bdev_read_only(sb->s_bdev)) {
2005 ext4_msg(sb, KERN_ERR, "write access "
2006 "unavailable, skipping orphan cleanup");
2007 return;
2008 }
2009
2010 /* Check if feature set would not allow a r/w mount */
2011 if (!ext4_feature_set_ok(sb, 0)) {
2012 ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to "
2013 "unknown ROCOMPAT features");
2014 return;
2015 }
2016
2017 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2018 if (es->s_last_orphan)
2019 jbd_debug(1, "Errors on filesystem, "
2020 "clearing orphan list.\n");
2021 es->s_last_orphan = 0;
2022 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2023 return;
2024 }
2025
2026 if (s_flags & MS_RDONLY) {
2027 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs");
2028 sb->s_flags &= ~MS_RDONLY;
2029 }
2030 #ifdef CONFIG_QUOTA
2031 /* Needed for iput() to work correctly and not trash data */
2032 sb->s_flags |= MS_ACTIVE;
2033 /* Turn on quotas so that they are updated correctly */
2034 for (i = 0; i < MAXQUOTAS; i++) {
2035 if (EXT4_SB(sb)->s_qf_names[i]) {
2036 int ret = ext4_quota_on_mount(sb, i);
2037 if (ret < 0)
2038 ext4_msg(sb, KERN_ERR,
2039 "Cannot turn on journaled "
2040 "quota: error %d", ret);
2041 }
2042 }
2043 #endif
2044
2045 while (es->s_last_orphan) {
2046 struct inode *inode;
2047
2048 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan));
2049 if (IS_ERR(inode)) {
2050 es->s_last_orphan = 0;
2051 break;
2052 }
2053
2054 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan);
2055 dquot_initialize(inode);
2056 if (inode->i_nlink) {
2057 ext4_msg(sb, KERN_DEBUG,
2058 "%s: truncating inode %lu to %lld bytes",
2059 __func__, inode->i_ino, inode->i_size);
2060 jbd_debug(2, "truncating inode %lu to %lld bytes\n",
2061 inode->i_ino, inode->i_size);
2062 ext4_truncate(inode);
2063 nr_truncates++;
2064 } else {
2065 ext4_msg(sb, KERN_DEBUG,
2066 "%s: deleting unreferenced inode %lu",
2067 __func__, inode->i_ino);
2068 jbd_debug(2, "deleting unreferenced inode %lu\n",
2069 inode->i_ino);
2070 nr_orphans++;
2071 }
2072 iput(inode); /* The delete magic happens here! */
2073 }
2074
2075 #define PLURAL(x) (x), ((x) == 1) ? "" : "s"
2076
2077 if (nr_orphans)
2078 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted",
2079 PLURAL(nr_orphans));
2080 if (nr_truncates)
2081 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up",
2082 PLURAL(nr_truncates));
2083 #ifdef CONFIG_QUOTA
2084 /* Turn quotas off */
2085 for (i = 0; i < MAXQUOTAS; i++) {
2086 if (sb_dqopt(sb)->files[i])
2087 dquot_quota_off(sb, i);
2088 }
2089 #endif
2090 sb->s_flags = s_flags; /* Restore MS_RDONLY status */
2091 }
2092
2093 /*
2094 * Maximal extent format file size.
2095 * Resulting logical blkno at s_maxbytes must fit in our on-disk
2096 * extent format containers, within a sector_t, and within i_blocks
2097 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units,
2098 * so that won't be a limiting factor.
2099 *
2100 * However there is other limiting factor. We do store extents in the form
2101 * of starting block and length, hence the resulting length of the extent
2102 * covering maximum file size must fit into on-disk format containers as
2103 * well. Given that length is always by 1 unit bigger than max unit (because
2104 * we count 0 as well) we have to lower the s_maxbytes by one fs block.
2105 *
2106 * Note, this does *not* consider any metadata overhead for vfs i_blocks.
2107 */
2108 static loff_t ext4_max_size(int blkbits, int has_huge_files)
2109 {
2110 loff_t res;
2111 loff_t upper_limit = MAX_LFS_FILESIZE;
2112
2113 /* small i_blocks in vfs inode? */
2114 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2115 /*
2116 * CONFIG_LBDAF is not enabled implies the inode
2117 * i_block represent total blocks in 512 bytes
2118 * 32 == size of vfs inode i_blocks * 8
2119 */
2120 upper_limit = (1LL << 32) - 1;
2121
2122 /* total blocks in file system block size */
2123 upper_limit >>= (blkbits - 9);
2124 upper_limit <<= blkbits;
2125 }
2126
2127 /*
2128 * 32-bit extent-start container, ee_block. We lower the maxbytes
2129 * by one fs block, so ee_len can cover the extent of maximum file
2130 * size
2131 */
2132 res = (1LL << 32) - 1;
2133 res <<= blkbits;
2134
2135 /* Sanity check against vm- & vfs- imposed limits */
2136 if (res > upper_limit)
2137 res = upper_limit;
2138
2139 return res;
2140 }
2141
2142 /*
2143 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect
2144 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
2145 * We need to be 1 filesystem block less than the 2^48 sector limit.
2146 */
2147 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
2148 {
2149 loff_t res = EXT4_NDIR_BLOCKS;
2150 int meta_blocks;
2151 loff_t upper_limit;
2152 /* This is calculated to be the largest file size for a dense, block
2153 * mapped file such that the file's total number of 512-byte sectors,
2154 * including data and all indirect blocks, does not exceed (2^48 - 1).
2155 *
2156 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
2157 * number of 512-byte sectors of the file.
2158 */
2159
2160 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2161 /*
2162 * !has_huge_files or CONFIG_LBDAF not enabled implies that
2163 * the inode i_block field represents total file blocks in
2164 * 2^32 512-byte sectors == size of vfs inode i_blocks * 8
2165 */
2166 upper_limit = (1LL << 32) - 1;
2167
2168 /* total blocks in file system block size */
2169 upper_limit >>= (bits - 9);
2170
2171 } else {
2172 /*
2173 * We use 48 bit ext4_inode i_blocks
2174 * With EXT4_HUGE_FILE_FL set the i_blocks
2175 * represent total number of blocks in
2176 * file system block size
2177 */
2178 upper_limit = (1LL << 48) - 1;
2179
2180 }
2181
2182 /* indirect blocks */
2183 meta_blocks = 1;
2184 /* double indirect blocks */
2185 meta_blocks += 1 + (1LL << (bits-2));
2186 /* tripple indirect blocks */
2187 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2)));
2188
2189 upper_limit -= meta_blocks;
2190 upper_limit <<= bits;
2191
2192 res += 1LL << (bits-2);
2193 res += 1LL << (2*(bits-2));
2194 res += 1LL << (3*(bits-2));
2195 res <<= bits;
2196 if (res > upper_limit)
2197 res = upper_limit;
2198
2199 if (res > MAX_LFS_FILESIZE)
2200 res = MAX_LFS_FILESIZE;
2201
2202 return res;
2203 }
2204
2205 static ext4_fsblk_t descriptor_loc(struct super_block *sb,
2206 ext4_fsblk_t logical_sb_block, int nr)
2207 {
2208 struct ext4_sb_info *sbi = EXT4_SB(sb);
2209 ext4_group_t bg, first_meta_bg;
2210 int has_super = 0;
2211
2212 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
2213
2214 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_META_BG) ||
2215 nr < first_meta_bg)
2216 return logical_sb_block + nr + 1;
2217 bg = sbi->s_desc_per_block * nr;
2218 if (ext4_bg_has_super(sb, bg))
2219 has_super = 1;
2220
2221 return (has_super + ext4_group_first_block_no(sb, bg));
2222 }
2223
2224 /**
2225 * ext4_get_stripe_size: Get the stripe size.
2226 * @sbi: In memory super block info
2227 *
2228 * If we have specified it via mount option, then
2229 * use the mount option value. If the value specified at mount time is
2230 * greater than the blocks per group use the super block value.
2231 * If the super block value is greater than blocks per group return 0.
2232 * Allocator needs it be less than blocks per group.
2233 *
2234 */
2235 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
2236 {
2237 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
2238 unsigned long stripe_width =
2239 le32_to_cpu(sbi->s_es->s_raid_stripe_width);
2240 int ret;
2241
2242 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
2243 ret = sbi->s_stripe;
2244 else if (stripe_width <= sbi->s_blocks_per_group)
2245 ret = stripe_width;
2246 else if (stride <= sbi->s_blocks_per_group)
2247 ret = stride;
2248 else
2249 ret = 0;
2250
2251 /*
2252 * If the stripe width is 1, this makes no sense and
2253 * we set it to 0 to turn off stripe handling code.
2254 */
2255 if (ret <= 1)
2256 ret = 0;
2257
2258 return ret;
2259 }
2260
2261 /* sysfs supprt */
2262
2263 struct ext4_attr {
2264 struct attribute attr;
2265 ssize_t (*show)(struct ext4_attr *, struct ext4_sb_info *, char *);
2266 ssize_t (*store)(struct ext4_attr *, struct ext4_sb_info *,
2267 const char *, size_t);
2268 int offset;
2269 };
2270
2271 static int parse_strtoul(const char *buf,
2272 unsigned long max, unsigned long *value)
2273 {
2274 char *endp;
2275
2276 *value = simple_strtoul(skip_spaces(buf), &endp, 0);
2277 endp = skip_spaces(endp);
2278 if (*endp || *value > max)
2279 return -EINVAL;
2280
2281 return 0;
2282 }
2283
2284 static ssize_t delayed_allocation_blocks_show(struct ext4_attr *a,
2285 struct ext4_sb_info *sbi,
2286 char *buf)
2287 {
2288 return snprintf(buf, PAGE_SIZE, "%llu\n",
2289 (s64) EXT4_C2B(sbi,
2290 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
2291 }
2292
2293 static ssize_t session_write_kbytes_show(struct ext4_attr *a,
2294 struct ext4_sb_info *sbi, char *buf)
2295 {
2296 struct super_block *sb = sbi->s_buddy_cache->i_sb;
2297
2298 if (!sb->s_bdev->bd_part)
2299 return snprintf(buf, PAGE_SIZE, "0\n");
2300 return snprintf(buf, PAGE_SIZE, "%lu\n",
2301 (part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
2302 sbi->s_sectors_written_start) >> 1);
2303 }
2304
2305 static ssize_t lifetime_write_kbytes_show(struct ext4_attr *a,
2306 struct ext4_sb_info *sbi, char *buf)
2307 {
2308 struct super_block *sb = sbi->s_buddy_cache->i_sb;
2309
2310 if (!sb->s_bdev->bd_part)
2311 return snprintf(buf, PAGE_SIZE, "0\n");
2312 return snprintf(buf, PAGE_SIZE, "%llu\n",
2313 (unsigned long long)(sbi->s_kbytes_written +
2314 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
2315 EXT4_SB(sb)->s_sectors_written_start) >> 1)));
2316 }
2317
2318 static ssize_t extent_cache_hits_show(struct ext4_attr *a,
2319 struct ext4_sb_info *sbi, char *buf)
2320 {
2321 return snprintf(buf, PAGE_SIZE, "%lu\n", sbi->extent_cache_hits);
2322 }
2323
2324 static ssize_t extent_cache_misses_show(struct ext4_attr *a,
2325 struct ext4_sb_info *sbi, char *buf)
2326 {
2327 return snprintf(buf, PAGE_SIZE, "%lu\n", sbi->extent_cache_misses);
2328 }
2329
2330 static ssize_t inode_readahead_blks_store(struct ext4_attr *a,
2331 struct ext4_sb_info *sbi,
2332 const char *buf, size_t count)
2333 {
2334 unsigned long t;
2335
2336 if (parse_strtoul(buf, 0x40000000, &t))
2337 return -EINVAL;
2338
2339 if (t && !is_power_of_2(t))
2340 return -EINVAL;
2341
2342 sbi->s_inode_readahead_blks = t;
2343 return count;
2344 }
2345
2346 static ssize_t sbi_ui_show(struct ext4_attr *a,
2347 struct ext4_sb_info *sbi, char *buf)
2348 {
2349 unsigned int *ui = (unsigned int *) (((char *) sbi) + a->offset);
2350
2351 return snprintf(buf, PAGE_SIZE, "%u\n", *ui);
2352 }
2353
2354 static ssize_t sbi_ui_store(struct ext4_attr *a,
2355 struct ext4_sb_info *sbi,
2356 const char *buf, size_t count)
2357 {
2358 unsigned int *ui = (unsigned int *) (((char *) sbi) + a->offset);
2359 unsigned long t;
2360
2361 if (parse_strtoul(buf, 0xffffffff, &t))
2362 return -EINVAL;
2363 *ui = t;
2364 return count;
2365 }
2366
2367 #define EXT4_ATTR_OFFSET(_name,_mode,_show,_store,_elname) \
2368 static struct ext4_attr ext4_attr_##_name = { \
2369 .attr = {.name = __stringify(_name), .mode = _mode }, \
2370 .show = _show, \
2371 .store = _store, \
2372 .offset = offsetof(struct ext4_sb_info, _elname), \
2373 }
2374 #define EXT4_ATTR(name, mode, show, store) \
2375 static struct ext4_attr ext4_attr_##name = __ATTR(name, mode, show, store)
2376
2377 #define EXT4_INFO_ATTR(name) EXT4_ATTR(name, 0444, NULL, NULL)
2378 #define EXT4_RO_ATTR(name) EXT4_ATTR(name, 0444, name##_show, NULL)
2379 #define EXT4_RW_ATTR(name) EXT4_ATTR(name, 0644, name##_show, name##_store)
2380 #define EXT4_RW_ATTR_SBI_UI(name, elname) \
2381 EXT4_ATTR_OFFSET(name, 0644, sbi_ui_show, sbi_ui_store, elname)
2382 #define ATTR_LIST(name) &ext4_attr_##name.attr
2383
2384 EXT4_RO_ATTR(delayed_allocation_blocks);
2385 EXT4_RO_ATTR(session_write_kbytes);
2386 EXT4_RO_ATTR(lifetime_write_kbytes);
2387 EXT4_RO_ATTR(extent_cache_hits);
2388 EXT4_RO_ATTR(extent_cache_misses);
2389 EXT4_ATTR_OFFSET(inode_readahead_blks, 0644, sbi_ui_show,
2390 inode_readahead_blks_store, s_inode_readahead_blks);
2391 EXT4_RW_ATTR_SBI_UI(inode_goal, s_inode_goal);
2392 EXT4_RW_ATTR_SBI_UI(mb_stats, s_mb_stats);
2393 EXT4_RW_ATTR_SBI_UI(mb_max_to_scan, s_mb_max_to_scan);
2394 EXT4_RW_ATTR_SBI_UI(mb_min_to_scan, s_mb_min_to_scan);
2395 EXT4_RW_ATTR_SBI_UI(mb_order2_req, s_mb_order2_reqs);
2396 EXT4_RW_ATTR_SBI_UI(mb_stream_req, s_mb_stream_request);
2397 EXT4_RW_ATTR_SBI_UI(mb_group_prealloc, s_mb_group_prealloc);
2398 EXT4_RW_ATTR_SBI_UI(max_writeback_mb_bump, s_max_writeback_mb_bump);
2399
2400 static struct attribute *ext4_attrs[] = {
2401 ATTR_LIST(delayed_allocation_blocks),
2402 ATTR_LIST(session_write_kbytes),
2403 ATTR_LIST(lifetime_write_kbytes),
2404 ATTR_LIST(extent_cache_hits),
2405 ATTR_LIST(extent_cache_misses),
2406 ATTR_LIST(inode_readahead_blks),
2407 ATTR_LIST(inode_goal),
2408 ATTR_LIST(mb_stats),
2409 ATTR_LIST(mb_max_to_scan),
2410 ATTR_LIST(mb_min_to_scan),
2411 ATTR_LIST(mb_order2_req),
2412 ATTR_LIST(mb_stream_req),
2413 ATTR_LIST(mb_group_prealloc),
2414 ATTR_LIST(max_writeback_mb_bump),
2415 NULL,
2416 };
2417
2418 /* Features this copy of ext4 supports */
2419 EXT4_INFO_ATTR(lazy_itable_init);
2420 EXT4_INFO_ATTR(batched_discard);
2421
2422 static struct attribute *ext4_feat_attrs[] = {
2423 ATTR_LIST(lazy_itable_init),
2424 ATTR_LIST(batched_discard),
2425 NULL,
2426 };
2427
2428 static ssize_t ext4_attr_show(struct kobject *kobj,
2429 struct attribute *attr, char *buf)
2430 {
2431 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2432 s_kobj);
2433 struct ext4_attr *a = container_of(attr, struct ext4_attr, attr);
2434
2435 return a->show ? a->show(a, sbi, buf) : 0;
2436 }
2437
2438 static ssize_t ext4_attr_store(struct kobject *kobj,
2439 struct attribute *attr,
2440 const char *buf, size_t len)
2441 {
2442 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2443 s_kobj);
2444 struct ext4_attr *a = container_of(attr, struct ext4_attr, attr);
2445
2446 return a->store ? a->store(a, sbi, buf, len) : 0;
2447 }
2448
2449 static void ext4_sb_release(struct kobject *kobj)
2450 {
2451 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2452 s_kobj);
2453 complete(&sbi->s_kobj_unregister);
2454 }
2455
2456 static const struct sysfs_ops ext4_attr_ops = {
2457 .show = ext4_attr_show,
2458 .store = ext4_attr_store,
2459 };
2460
2461 static struct kobj_type ext4_ktype = {
2462 .default_attrs = ext4_attrs,
2463 .sysfs_ops = &ext4_attr_ops,
2464 .release = ext4_sb_release,
2465 };
2466
2467 static void ext4_feat_release(struct kobject *kobj)
2468 {
2469 complete(&ext4_feat->f_kobj_unregister);
2470 }
2471
2472 static struct kobj_type ext4_feat_ktype = {
2473 .default_attrs = ext4_feat_attrs,
2474 .sysfs_ops = &ext4_attr_ops,
2475 .release = ext4_feat_release,
2476 };
2477
2478 /*
2479 * Check whether this filesystem can be mounted based on
2480 * the features present and the RDONLY/RDWR mount requested.
2481 * Returns 1 if this filesystem can be mounted as requested,
2482 * 0 if it cannot be.
2483 */
2484 static int ext4_feature_set_ok(struct super_block *sb, int readonly)
2485 {
2486 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT4_FEATURE_INCOMPAT_SUPP)) {
2487 ext4_msg(sb, KERN_ERR,
2488 "Couldn't mount because of "
2489 "unsupported optional features (%x)",
2490 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
2491 ~EXT4_FEATURE_INCOMPAT_SUPP));
2492 return 0;
2493 }
2494
2495 if (readonly)
2496 return 1;
2497
2498 /* Check that feature set is OK for a read-write mount */
2499 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT4_FEATURE_RO_COMPAT_SUPP)) {
2500 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
2501 "unsupported optional features (%x)",
2502 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
2503 ~EXT4_FEATURE_RO_COMPAT_SUPP));
2504 return 0;
2505 }
2506 /*
2507 * Large file size enabled file system can only be mounted
2508 * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF
2509 */
2510 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
2511 if (sizeof(blkcnt_t) < sizeof(u64)) {
2512 ext4_msg(sb, KERN_ERR, "Filesystem with huge files "
2513 "cannot be mounted RDWR without "
2514 "CONFIG_LBDAF");
2515 return 0;
2516 }
2517 }
2518 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_BIGALLOC) &&
2519 !EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) {
2520 ext4_msg(sb, KERN_ERR,
2521 "Can't support bigalloc feature without "
2522 "extents feature\n");
2523 return 0;
2524 }
2525 return 1;
2526 }
2527
2528 /*
2529 * This function is called once a day if we have errors logged
2530 * on the file system
2531 */
2532 static void print_daily_error_info(unsigned long arg)
2533 {
2534 struct super_block *sb = (struct super_block *) arg;
2535 struct ext4_sb_info *sbi;
2536 struct ext4_super_block *es;
2537
2538 sbi = EXT4_SB(sb);
2539 es = sbi->s_es;
2540
2541 if (es->s_error_count)
2542 ext4_msg(sb, KERN_NOTICE, "error count: %u",
2543 le32_to_cpu(es->s_error_count));
2544 if (es->s_first_error_time) {
2545 printk(KERN_NOTICE "EXT4-fs (%s): initial error at %u: %.*s:%d",
2546 sb->s_id, le32_to_cpu(es->s_first_error_time),
2547 (int) sizeof(es->s_first_error_func),
2548 es->s_first_error_func,
2549 le32_to_cpu(es->s_first_error_line));
2550 if (es->s_first_error_ino)
2551 printk(": inode %u",
2552 le32_to_cpu(es->s_first_error_ino));
2553 if (es->s_first_error_block)
2554 printk(": block %llu", (unsigned long long)
2555 le64_to_cpu(es->s_first_error_block));
2556 printk("\n");
2557 }
2558 if (es->s_last_error_time) {
2559 printk(KERN_NOTICE "EXT4-fs (%s): last error at %u: %.*s:%d",
2560 sb->s_id, le32_to_cpu(es->s_last_error_time),
2561 (int) sizeof(es->s_last_error_func),
2562 es->s_last_error_func,
2563 le32_to_cpu(es->s_last_error_line));
2564 if (es->s_last_error_ino)
2565 printk(": inode %u",
2566 le32_to_cpu(es->s_last_error_ino));
2567 if (es->s_last_error_block)
2568 printk(": block %llu", (unsigned long long)
2569 le64_to_cpu(es->s_last_error_block));
2570 printk("\n");
2571 }
2572 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */
2573 }
2574
2575 /* Find next suitable group and run ext4_init_inode_table */
2576 static int ext4_run_li_request(struct ext4_li_request *elr)
2577 {
2578 struct ext4_group_desc *gdp = NULL;
2579 ext4_group_t group, ngroups;
2580 struct super_block *sb;
2581 unsigned long timeout = 0;
2582 int ret = 0;
2583
2584 sb = elr->lr_super;
2585 ngroups = EXT4_SB(sb)->s_groups_count;
2586
2587 for (group = elr->lr_next_group; group < ngroups; group++) {
2588 gdp = ext4_get_group_desc(sb, group, NULL);
2589 if (!gdp) {
2590 ret = 1;
2591 break;
2592 }
2593
2594 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2595 break;
2596 }
2597
2598 if (group == ngroups)
2599 ret = 1;
2600
2601 if (!ret) {
2602 timeout = jiffies;
2603 ret = ext4_init_inode_table(sb, group,
2604 elr->lr_timeout ? 0 : 1);
2605 if (elr->lr_timeout == 0) {
2606 timeout = (jiffies - timeout) *
2607 elr->lr_sbi->s_li_wait_mult;
2608 elr->lr_timeout = timeout;
2609 }
2610 elr->lr_next_sched = jiffies + elr->lr_timeout;
2611 elr->lr_next_group = group + 1;
2612 }
2613
2614 return ret;
2615 }
2616
2617 /*
2618 * Remove lr_request from the list_request and free the
2619 * request structure. Should be called with li_list_mtx held
2620 */
2621 static void ext4_remove_li_request(struct ext4_li_request *elr)
2622 {
2623 struct ext4_sb_info *sbi;
2624
2625 if (!elr)
2626 return;
2627
2628 sbi = elr->lr_sbi;
2629
2630 list_del(&elr->lr_request);
2631 sbi->s_li_request = NULL;
2632 kfree(elr);
2633 }
2634
2635 static void ext4_unregister_li_request(struct super_block *sb)
2636 {
2637 mutex_lock(&ext4_li_mtx);
2638 if (!ext4_li_info) {
2639 mutex_unlock(&ext4_li_mtx);
2640 return;
2641 }
2642
2643 mutex_lock(&ext4_li_info->li_list_mtx);
2644 ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
2645 mutex_unlock(&ext4_li_info->li_list_mtx);
2646 mutex_unlock(&ext4_li_mtx);
2647 }
2648
2649 static struct task_struct *ext4_lazyinit_task;
2650
2651 /*
2652 * This is the function where ext4lazyinit thread lives. It walks
2653 * through the request list searching for next scheduled filesystem.
2654 * When such a fs is found, run the lazy initialization request
2655 * (ext4_rn_li_request) and keep track of the time spend in this
2656 * function. Based on that time we compute next schedule time of
2657 * the request. When walking through the list is complete, compute
2658 * next waking time and put itself into sleep.
2659 */
2660 static int ext4_lazyinit_thread(void *arg)
2661 {
2662 struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg;
2663 struct list_head *pos, *n;
2664 struct ext4_li_request *elr;
2665 unsigned long next_wakeup, cur;
2666
2667 BUG_ON(NULL == eli);
2668
2669 cont_thread:
2670 while (true) {
2671 next_wakeup = MAX_JIFFY_OFFSET;
2672
2673 mutex_lock(&eli->li_list_mtx);
2674 if (list_empty(&eli->li_request_list)) {
2675 mutex_unlock(&eli->li_list_mtx);
2676 goto exit_thread;
2677 }
2678
2679 list_for_each_safe(pos, n, &eli->li_request_list) {
2680 elr = list_entry(pos, struct ext4_li_request,
2681 lr_request);
2682
2683 if (time_after_eq(jiffies, elr->lr_next_sched)) {
2684 if (ext4_run_li_request(elr) != 0) {
2685 /* error, remove the lazy_init job */
2686 ext4_remove_li_request(elr);
2687 continue;
2688 }
2689 }
2690
2691 if (time_before(elr->lr_next_sched, next_wakeup))
2692 next_wakeup = elr->lr_next_sched;
2693 }
2694 mutex_unlock(&eli->li_list_mtx);
2695
2696 try_to_freeze();
2697
2698 cur = jiffies;
2699 if ((time_after_eq(cur, next_wakeup)) ||
2700 (MAX_JIFFY_OFFSET == next_wakeup)) {
2701 cond_resched();
2702 continue;
2703 }
2704
2705 schedule_timeout_interruptible(next_wakeup - cur);
2706
2707 if (kthread_should_stop()) {
2708 ext4_clear_request_list();
2709 goto exit_thread;
2710 }
2711 }
2712
2713 exit_thread:
2714 /*
2715 * It looks like the request list is empty, but we need
2716 * to check it under the li_list_mtx lock, to prevent any
2717 * additions into it, and of course we should lock ext4_li_mtx
2718 * to atomically free the list and ext4_li_info, because at
2719 * this point another ext4 filesystem could be registering
2720 * new one.
2721 */
2722 mutex_lock(&ext4_li_mtx);
2723 mutex_lock(&eli->li_list_mtx);
2724 if (!list_empty(&eli->li_request_list)) {
2725 mutex_unlock(&eli->li_list_mtx);
2726 mutex_unlock(&ext4_li_mtx);
2727 goto cont_thread;
2728 }
2729 mutex_unlock(&eli->li_list_mtx);
2730 kfree(ext4_li_info);
2731 ext4_li_info = NULL;
2732 mutex_unlock(&ext4_li_mtx);
2733
2734 return 0;
2735 }
2736
2737 static void ext4_clear_request_list(void)
2738 {
2739 struct list_head *pos, *n;
2740 struct ext4_li_request *elr;
2741
2742 mutex_lock(&ext4_li_info->li_list_mtx);
2743 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
2744 elr = list_entry(pos, struct ext4_li_request,
2745 lr_request);
2746 ext4_remove_li_request(elr);
2747 }
2748 mutex_unlock(&ext4_li_info->li_list_mtx);
2749 }
2750
2751 static int ext4_run_lazyinit_thread(void)
2752 {
2753 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
2754 ext4_li_info, "ext4lazyinit");
2755 if (IS_ERR(ext4_lazyinit_task)) {
2756 int err = PTR_ERR(ext4_lazyinit_task);
2757 ext4_clear_request_list();
2758 kfree(ext4_li_info);
2759 ext4_li_info = NULL;
2760 printk(KERN_CRIT "EXT4: error %d creating inode table "
2761 "initialization thread\n",
2762 err);
2763 return err;
2764 }
2765 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
2766 return 0;
2767 }
2768
2769 /*
2770 * Check whether it make sense to run itable init. thread or not.
2771 * If there is at least one uninitialized inode table, return
2772 * corresponding group number, else the loop goes through all
2773 * groups and return total number of groups.
2774 */
2775 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
2776 {
2777 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
2778 struct ext4_group_desc *gdp = NULL;
2779
2780 for (group = 0; group < ngroups; group++) {
2781 gdp = ext4_get_group_desc(sb, group, NULL);
2782 if (!gdp)
2783 continue;
2784
2785 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2786 break;
2787 }
2788
2789 return group;
2790 }
2791
2792 static int ext4_li_info_new(void)
2793 {
2794 struct ext4_lazy_init *eli = NULL;
2795
2796 eli = kzalloc(sizeof(*eli), GFP_KERNEL);
2797 if (!eli)
2798 return -ENOMEM;
2799
2800 INIT_LIST_HEAD(&eli->li_request_list);
2801 mutex_init(&eli->li_list_mtx);
2802
2803 eli->li_state |= EXT4_LAZYINIT_QUIT;
2804
2805 ext4_li_info = eli;
2806
2807 return 0;
2808 }
2809
2810 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
2811 ext4_group_t start)
2812 {
2813 struct ext4_sb_info *sbi = EXT4_SB(sb);
2814 struct ext4_li_request *elr;
2815 unsigned long rnd;
2816
2817 elr = kzalloc(sizeof(*elr), GFP_KERNEL);
2818 if (!elr)
2819 return NULL;
2820
2821 elr->lr_super = sb;
2822 elr->lr_sbi = sbi;
2823 elr->lr_next_group = start;
2824
2825 /*
2826 * Randomize first schedule time of the request to
2827 * spread the inode table initialization requests
2828 * better.
2829 */
2830 get_random_bytes(&rnd, sizeof(rnd));
2831 elr->lr_next_sched = jiffies + (unsigned long)rnd %
2832 (EXT4_DEF_LI_MAX_START_DELAY * HZ);
2833
2834 return elr;
2835 }
2836
2837 static int ext4_register_li_request(struct super_block *sb,
2838 ext4_group_t first_not_zeroed)
2839 {
2840 struct ext4_sb_info *sbi = EXT4_SB(sb);
2841 struct ext4_li_request *elr;
2842 ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count;
2843 int ret = 0;
2844
2845 if (sbi->s_li_request != NULL) {
2846 /*
2847 * Reset timeout so it can be computed again, because
2848 * s_li_wait_mult might have changed.
2849 */
2850 sbi->s_li_request->lr_timeout = 0;
2851 return 0;
2852 }
2853
2854 if (first_not_zeroed == ngroups ||
2855 (sb->s_flags & MS_RDONLY) ||
2856 !test_opt(sb, INIT_INODE_TABLE))
2857 return 0;
2858
2859 elr = ext4_li_request_new(sb, first_not_zeroed);
2860 if (!elr)
2861 return -ENOMEM;
2862
2863 mutex_lock(&ext4_li_mtx);
2864
2865 if (NULL == ext4_li_info) {
2866 ret = ext4_li_info_new();
2867 if (ret)
2868 goto out;
2869 }
2870
2871 mutex_lock(&ext4_li_info->li_list_mtx);
2872 list_add(&elr->lr_request, &ext4_li_info->li_request_list);
2873 mutex_unlock(&ext4_li_info->li_list_mtx);
2874
2875 sbi->s_li_request = elr;
2876 /*
2877 * set elr to NULL here since it has been inserted to
2878 * the request_list and the removal and free of it is
2879 * handled by ext4_clear_request_list from now on.
2880 */
2881 elr = NULL;
2882
2883 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
2884 ret = ext4_run_lazyinit_thread();
2885 if (ret)
2886 goto out;
2887 }
2888 out:
2889 mutex_unlock(&ext4_li_mtx);
2890 if (ret)
2891 kfree(elr);
2892 return ret;
2893 }
2894
2895 /*
2896 * We do not need to lock anything since this is called on
2897 * module unload.
2898 */
2899 static void ext4_destroy_lazyinit_thread(void)
2900 {
2901 /*
2902 * If thread exited earlier
2903 * there's nothing to be done.
2904 */
2905 if (!ext4_li_info || !ext4_lazyinit_task)
2906 return;
2907
2908 kthread_stop(ext4_lazyinit_task);
2909 }
2910
2911 static int ext4_fill_super(struct super_block *sb, void *data, int silent)
2912 {
2913 char *orig_data = kstrdup(data, GFP_KERNEL);
2914 struct buffer_head *bh;
2915 struct ext4_super_block *es = NULL;
2916 struct ext4_sb_info *sbi;
2917 ext4_fsblk_t block;
2918 ext4_fsblk_t sb_block = get_sb_block(&data);
2919 ext4_fsblk_t logical_sb_block;
2920 unsigned long offset = 0;
2921 unsigned long journal_devnum = 0;
2922 unsigned long def_mount_opts;
2923 struct inode *root;
2924 char *cp;
2925 const char *descr;
2926 int ret = -ENOMEM;
2927 int blocksize, clustersize;
2928 unsigned int db_count;
2929 unsigned int i;
2930 int needs_recovery, has_huge_files, has_bigalloc;
2931 __u64 blocks_count;
2932 int err;
2933 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
2934 ext4_group_t first_not_zeroed;
2935
2936 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
2937 if (!sbi)
2938 goto out_free_orig;
2939
2940 sbi->s_blockgroup_lock =
2941 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
2942 if (!sbi->s_blockgroup_lock) {
2943 kfree(sbi);
2944 goto out_free_orig;
2945 }
2946 sb->s_fs_info = sbi;
2947 sbi->s_mount_opt = 0;
2948 sbi->s_resuid = EXT4_DEF_RESUID;
2949 sbi->s_resgid = EXT4_DEF_RESGID;
2950 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
2951 sbi->s_sb_block = sb_block;
2952 if (sb->s_bdev->bd_part)
2953 sbi->s_sectors_written_start =
2954 part_stat_read(sb->s_bdev->bd_part, sectors[1]);
2955
2956 /* Cleanup superblock name */
2957 for (cp = sb->s_id; (cp = strchr(cp, '/'));)
2958 *cp = '!';
2959
2960 ret = -EINVAL;
2961 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
2962 if (!blocksize) {
2963 ext4_msg(sb, KERN_ERR, "unable to set blocksize");
2964 goto out_fail;
2965 }
2966
2967 /*
2968 * The ext4 superblock will not be buffer aligned for other than 1kB
2969 * block sizes. We need to calculate the offset from buffer start.
2970 */
2971 if (blocksize != EXT4_MIN_BLOCK_SIZE) {
2972 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
2973 offset = do_div(logical_sb_block, blocksize);
2974 } else {
2975 logical_sb_block = sb_block;
2976 }
2977
2978 if (!(bh = sb_bread(sb, logical_sb_block))) {
2979 ext4_msg(sb, KERN_ERR, "unable to read superblock");
2980 goto out_fail;
2981 }
2982 /*
2983 * Note: s_es must be initialized as soon as possible because
2984 * some ext4 macro-instructions depend on its value
2985 */
2986 es = (struct ext4_super_block *) (((char *)bh->b_data) + offset);
2987 sbi->s_es = es;
2988 sb->s_magic = le16_to_cpu(es->s_magic);
2989 if (sb->s_magic != EXT4_SUPER_MAGIC)
2990 goto cantfind_ext4;
2991 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
2992
2993 /* Set defaults before we parse the mount options */
2994 def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
2995 set_opt(sb, INIT_INODE_TABLE);
2996 if (def_mount_opts & EXT4_DEFM_DEBUG)
2997 set_opt(sb, DEBUG);
2998 if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
2999 set_opt(sb, GRPID);
3000 if (def_mount_opts & EXT4_DEFM_UID16)
3001 set_opt(sb, NO_UID32);
3002 /* xattr user namespace & acls are now defaulted on */
3003 #ifdef CONFIG_EXT4_FS_XATTR
3004 set_opt(sb, XATTR_USER);
3005 #endif
3006 #ifdef CONFIG_EXT4_FS_POSIX_ACL
3007 set_opt(sb, POSIX_ACL);
3008 #endif
3009 set_opt(sb, MBLK_IO_SUBMIT);
3010 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
3011 set_opt(sb, JOURNAL_DATA);
3012 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
3013 set_opt(sb, ORDERED_DATA);
3014 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
3015 set_opt(sb, WRITEBACK_DATA);
3016
3017 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC)
3018 set_opt(sb, ERRORS_PANIC);
3019 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE)
3020 set_opt(sb, ERRORS_CONT);
3021 else
3022 set_opt(sb, ERRORS_RO);
3023 if (def_mount_opts & EXT4_DEFM_BLOCK_VALIDITY)
3024 set_opt(sb, BLOCK_VALIDITY);
3025 if (def_mount_opts & EXT4_DEFM_DISCARD)
3026 set_opt(sb, DISCARD);
3027
3028 sbi->s_resuid = le16_to_cpu(es->s_def_resuid);
3029 sbi->s_resgid = le16_to_cpu(es->s_def_resgid);
3030 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
3031 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
3032 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
3033
3034 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
3035 set_opt(sb, BARRIER);
3036
3037 /*
3038 * enable delayed allocation by default
3039 * Use -o nodelalloc to turn it off
3040 */
3041 if (!IS_EXT3_SB(sb) &&
3042 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
3043 set_opt(sb, DELALLOC);
3044
3045 /*
3046 * set default s_li_wait_mult for lazyinit, for the case there is
3047 * no mount option specified.
3048 */
3049 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
3050
3051 if (!parse_options((char *) sbi->s_es->s_mount_opts, sb,
3052 &journal_devnum, &journal_ioprio, 0)) {
3053 ext4_msg(sb, KERN_WARNING,
3054 "failed to parse options in superblock: %s",
3055 sbi->s_es->s_mount_opts);
3056 }
3057 sbi->s_def_mount_opt = sbi->s_mount_opt;
3058 if (!parse_options((char *) data, sb, &journal_devnum,
3059 &journal_ioprio, 0))
3060 goto failed_mount;
3061
3062 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
3063 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting "
3064 "with data=journal disables delayed "
3065 "allocation and O_DIRECT support!\n");
3066 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
3067 ext4_msg(sb, KERN_ERR, "can't mount with "
3068 "both data=journal and delalloc");
3069 goto failed_mount;
3070 }
3071 if (test_opt(sb, DIOREAD_NOLOCK)) {
3072 ext4_msg(sb, KERN_ERR, "can't mount with "
3073 "both data=journal and delalloc");
3074 goto failed_mount;
3075 }
3076 if (test_opt(sb, DELALLOC))
3077 clear_opt(sb, DELALLOC);
3078 }
3079
3080 blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
3081 if (test_opt(sb, DIOREAD_NOLOCK)) {
3082 if (blocksize < PAGE_SIZE) {
3083 ext4_msg(sb, KERN_ERR, "can't mount with "
3084 "dioread_nolock if block size != PAGE_SIZE");
3085 goto failed_mount;
3086 }
3087 }
3088
3089 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
3090 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
3091
3092 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
3093 (EXT4_HAS_COMPAT_FEATURE(sb, ~0U) ||
3094 EXT4_HAS_RO_COMPAT_FEATURE(sb, ~0U) ||
3095 EXT4_HAS_INCOMPAT_FEATURE(sb, ~0U)))
3096 ext4_msg(sb, KERN_WARNING,
3097 "feature flags set on rev 0 fs, "
3098 "running e2fsck is recommended");
3099
3100 if (IS_EXT2_SB(sb)) {
3101 if (ext2_feature_set_ok(sb))
3102 ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
3103 "using the ext4 subsystem");
3104 else {
3105 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
3106 "to feature incompatibilities");
3107 goto failed_mount;
3108 }
3109 }
3110
3111 if (IS_EXT3_SB(sb)) {
3112 if (ext3_feature_set_ok(sb))
3113 ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
3114 "using the ext4 subsystem");
3115 else {
3116 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
3117 "to feature incompatibilities");
3118 goto failed_mount;
3119 }
3120 }
3121
3122 /*
3123 * Check feature flags regardless of the revision level, since we
3124 * previously didn't change the revision level when setting the flags,
3125 * so there is a chance incompat flags are set on a rev 0 filesystem.
3126 */
3127 if (!ext4_feature_set_ok(sb, (sb->s_flags & MS_RDONLY)))
3128 goto failed_mount;
3129
3130 if (blocksize < EXT4_MIN_BLOCK_SIZE ||
3131 blocksize > EXT4_MAX_BLOCK_SIZE) {
3132 ext4_msg(sb, KERN_ERR,
3133 "Unsupported filesystem blocksize %d", blocksize);
3134 goto failed_mount;
3135 }
3136
3137 if (sb->s_blocksize != blocksize) {
3138 /* Validate the filesystem blocksize */
3139 if (!sb_set_blocksize(sb, blocksize)) {
3140 ext4_msg(sb, KERN_ERR, "bad block size %d",
3141 blocksize);
3142 goto failed_mount;
3143 }
3144
3145 brelse(bh);
3146 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3147 offset = do_div(logical_sb_block, blocksize);
3148 bh = sb_bread(sb, logical_sb_block);
3149 if (!bh) {
3150 ext4_msg(sb, KERN_ERR,
3151 "Can't read superblock on 2nd try");
3152 goto failed_mount;
3153 }
3154 es = (struct ext4_super_block *)(((char *)bh->b_data) + offset);
3155 sbi->s_es = es;
3156 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
3157 ext4_msg(sb, KERN_ERR,
3158 "Magic mismatch, very weird!");
3159 goto failed_mount;
3160 }
3161 }
3162
3163 has_huge_files = EXT4_HAS_RO_COMPAT_FEATURE(sb,
3164 EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
3165 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
3166 has_huge_files);
3167 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
3168
3169 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
3170 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
3171 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
3172 } else {
3173 sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
3174 sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
3175 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
3176 (!is_power_of_2(sbi->s_inode_size)) ||
3177 (sbi->s_inode_size > blocksize)) {
3178 ext4_msg(sb, KERN_ERR,
3179 "unsupported inode size: %d",
3180 sbi->s_inode_size);
3181 goto failed_mount;
3182 }
3183 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE)
3184 sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2);
3185 }
3186
3187 sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
3188 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT)) {
3189 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
3190 sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
3191 !is_power_of_2(sbi->s_desc_size)) {
3192 ext4_msg(sb, KERN_ERR,
3193 "unsupported descriptor size %lu",
3194 sbi->s_desc_size);
3195 goto failed_mount;
3196 }
3197 } else
3198 sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
3199
3200 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
3201 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
3202 if (EXT4_INODE_SIZE(sb) == 0 || EXT4_INODES_PER_GROUP(sb) == 0)
3203 goto cantfind_ext4;
3204
3205 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb);
3206 if (sbi->s_inodes_per_block == 0)
3207 goto cantfind_ext4;
3208 sbi->s_itb_per_group = sbi->s_inodes_per_group /
3209 sbi->s_inodes_per_block;
3210 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb);
3211 sbi->s_sbh = bh;
3212 sbi->s_mount_state = le16_to_cpu(es->s_state);
3213 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
3214 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
3215
3216 for (i = 0; i < 4; i++)
3217 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
3218 sbi->s_def_hash_version = es->s_def_hash_version;
3219 i = le32_to_cpu(es->s_flags);
3220 if (i & EXT2_FLAGS_UNSIGNED_HASH)
3221 sbi->s_hash_unsigned = 3;
3222 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
3223 #ifdef __CHAR_UNSIGNED__
3224 es->s_flags |= cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
3225 sbi->s_hash_unsigned = 3;
3226 #else
3227 es->s_flags |= cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
3228 #endif
3229 sb->s_dirt = 1;
3230 }
3231
3232 /* Handle clustersize */
3233 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size);
3234 has_bigalloc = EXT4_HAS_RO_COMPAT_FEATURE(sb,
3235 EXT4_FEATURE_RO_COMPAT_BIGALLOC);
3236 if (has_bigalloc) {
3237 if (clustersize < blocksize) {
3238 ext4_msg(sb, KERN_ERR,
3239 "cluster size (%d) smaller than "
3240 "block size (%d)", clustersize, blocksize);
3241 goto failed_mount;
3242 }
3243 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) -
3244 le32_to_cpu(es->s_log_block_size);
3245 sbi->s_clusters_per_group =
3246 le32_to_cpu(es->s_clusters_per_group);
3247 if (sbi->s_clusters_per_group > blocksize * 8) {
3248 ext4_msg(sb, KERN_ERR,
3249 "#clusters per group too big: %lu",
3250 sbi->s_clusters_per_group);
3251 goto failed_mount;
3252 }
3253 if (sbi->s_blocks_per_group !=
3254 (sbi->s_clusters_per_group * (clustersize / blocksize))) {
3255 ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and "
3256 "clusters per group (%lu) inconsistent",
3257 sbi->s_blocks_per_group,
3258 sbi->s_clusters_per_group);
3259 goto failed_mount;
3260 }
3261 } else {
3262 if (clustersize != blocksize) {
3263 ext4_warning(sb, "fragment/cluster size (%d) != "
3264 "block size (%d)", clustersize,
3265 blocksize);
3266 clustersize = blocksize;
3267 }
3268 if (sbi->s_blocks_per_group > blocksize * 8) {
3269 ext4_msg(sb, KERN_ERR,
3270 "#blocks per group too big: %lu",
3271 sbi->s_blocks_per_group);
3272 goto failed_mount;
3273 }
3274 sbi->s_clusters_per_group = sbi->s_blocks_per_group;
3275 sbi->s_cluster_bits = 0;
3276 }
3277 sbi->s_cluster_ratio = clustersize / blocksize;
3278
3279 if (sbi->s_inodes_per_group > blocksize * 8) {
3280 ext4_msg(sb, KERN_ERR,
3281 "#inodes per group too big: %lu",
3282 sbi->s_inodes_per_group);
3283 goto failed_mount;
3284 }
3285
3286 /*
3287 * Test whether we have more sectors than will fit in sector_t,
3288 * and whether the max offset is addressable by the page cache.
3289 */
3290 err = generic_check_addressable(sb->s_blocksize_bits,
3291 ext4_blocks_count(es));
3292 if (err) {
3293 ext4_msg(sb, KERN_ERR, "filesystem"
3294 " too large to mount safely on this system");
3295 if (sizeof(sector_t) < 8)
3296 ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled");
3297 ret = err;
3298 goto failed_mount;
3299 }
3300
3301 if (EXT4_BLOCKS_PER_GROUP(sb) == 0)
3302 goto cantfind_ext4;
3303
3304 /* check blocks count against device size */
3305 blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
3306 if (blocks_count && ext4_blocks_count(es) > blocks_count) {
3307 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
3308 "exceeds size of device (%llu blocks)",
3309 ext4_blocks_count(es), blocks_count);
3310 goto failed_mount;
3311 }
3312
3313 /*
3314 * It makes no sense for the first data block to be beyond the end
3315 * of the filesystem.
3316 */
3317 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
3318 ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
3319 "block %u is beyond end of filesystem (%llu)",
3320 le32_to_cpu(es->s_first_data_block),
3321 ext4_blocks_count(es));
3322 goto failed_mount;
3323 }
3324 blocks_count = (ext4_blocks_count(es) -
3325 le32_to_cpu(es->s_first_data_block) +
3326 EXT4_BLOCKS_PER_GROUP(sb) - 1);
3327 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
3328 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
3329 ext4_msg(sb, KERN_WARNING, "groups count too large: %u "
3330 "(block count %llu, first data block %u, "
3331 "blocks per group %lu)", sbi->s_groups_count,
3332 ext4_blocks_count(es),
3333 le32_to_cpu(es->s_first_data_block),
3334 EXT4_BLOCKS_PER_GROUP(sb));
3335 goto failed_mount;
3336 }
3337 sbi->s_groups_count = blocks_count;
3338 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
3339 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
3340 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
3341 EXT4_DESC_PER_BLOCK(sb);
3342 sbi->s_group_desc = ext4_kvmalloc(db_count *
3343 sizeof(struct buffer_head *),
3344 GFP_KERNEL);
3345 if (sbi->s_group_desc == NULL) {
3346 ext4_msg(sb, KERN_ERR, "not enough memory");
3347 goto failed_mount;
3348 }
3349
3350 if (ext4_proc_root)
3351 sbi->s_proc = proc_mkdir(sb->s_id, ext4_proc_root);
3352
3353 bgl_lock_init(sbi->s_blockgroup_lock);
3354
3355 for (i = 0; i < db_count; i++) {
3356 block = descriptor_loc(sb, logical_sb_block, i);
3357 sbi->s_group_desc[i] = sb_bread(sb, block);
3358 if (!sbi->s_group_desc[i]) {
3359 ext4_msg(sb, KERN_ERR,
3360 "can't read group descriptor %d", i);
3361 db_count = i;
3362 goto failed_mount2;
3363 }
3364 }
3365 if (!ext4_check_descriptors(sb, &first_not_zeroed)) {
3366 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
3367 goto failed_mount2;
3368 }
3369 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG))
3370 if (!ext4_fill_flex_info(sb)) {
3371 ext4_msg(sb, KERN_ERR,
3372 "unable to initialize "
3373 "flex_bg meta info!");
3374 goto failed_mount2;
3375 }
3376
3377 sbi->s_gdb_count = db_count;
3378 get_random_bytes(&sbi->s_next_generation, sizeof(u32));
3379 spin_lock_init(&sbi->s_next_gen_lock);
3380
3381 init_timer(&sbi->s_err_report);
3382 sbi->s_err_report.function = print_daily_error_info;
3383 sbi->s_err_report.data = (unsigned long) sb;
3384
3385 err = percpu_counter_init(&sbi->s_freeclusters_counter,
3386 ext4_count_free_clusters(sb));
3387 if (!err) {
3388 err = percpu_counter_init(&sbi->s_freeinodes_counter,
3389 ext4_count_free_inodes(sb));
3390 }
3391 if (!err) {
3392 err = percpu_counter_init(&sbi->s_dirs_counter,
3393 ext4_count_dirs(sb));
3394 }
3395 if (!err) {
3396 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0);
3397 }
3398 if (err) {
3399 ext4_msg(sb, KERN_ERR, "insufficient memory");
3400 goto failed_mount3;
3401 }
3402
3403 sbi->s_stripe = ext4_get_stripe_size(sbi);
3404 sbi->s_max_writeback_mb_bump = 128;
3405
3406 /*
3407 * set up enough so that it can read an inode
3408 */
3409 if (!test_opt(sb, NOLOAD) &&
3410 EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL))
3411 sb->s_op = &ext4_sops;
3412 else
3413 sb->s_op = &ext4_nojournal_sops;
3414 sb->s_export_op = &ext4_export_ops;
3415 sb->s_xattr = ext4_xattr_handlers;
3416 #ifdef CONFIG_QUOTA
3417 sb->s_qcop = &ext4_qctl_operations;
3418 sb->dq_op = &ext4_quota_operations;
3419 #endif
3420 memcpy(sb->s_uuid, es->s_uuid, sizeof(es->s_uuid));
3421
3422 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
3423 mutex_init(&sbi->s_orphan_lock);
3424 sbi->s_resize_flags = 0;
3425
3426 sb->s_root = NULL;
3427
3428 needs_recovery = (es->s_last_orphan != 0 ||
3429 EXT4_HAS_INCOMPAT_FEATURE(sb,
3430 EXT4_FEATURE_INCOMPAT_RECOVER));
3431
3432 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_MMP) &&
3433 !(sb->s_flags & MS_RDONLY))
3434 if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block)))
3435 goto failed_mount3;
3436
3437 /*
3438 * The first inode we look at is the journal inode. Don't try
3439 * root first: it may be modified in the journal!
3440 */
3441 if (!test_opt(sb, NOLOAD) &&
3442 EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) {
3443 if (ext4_load_journal(sb, es, journal_devnum))
3444 goto failed_mount3;
3445 } else if (test_opt(sb, NOLOAD) && !(sb->s_flags & MS_RDONLY) &&
3446 EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) {
3447 ext4_msg(sb, KERN_ERR, "required journal recovery "
3448 "suppressed and not mounted read-only");
3449 goto failed_mount_wq;
3450 } else {
3451 clear_opt(sb, DATA_FLAGS);
3452 sbi->s_journal = NULL;
3453 needs_recovery = 0;
3454 goto no_journal;
3455 }
3456
3457 if (ext4_blocks_count(es) > 0xffffffffULL &&
3458 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
3459 JBD2_FEATURE_INCOMPAT_64BIT)) {
3460 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
3461 goto failed_mount_wq;
3462 }
3463
3464 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
3465 jbd2_journal_set_features(sbi->s_journal,
3466 JBD2_FEATURE_COMPAT_CHECKSUM, 0,
3467 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3468 } else if (test_opt(sb, JOURNAL_CHECKSUM)) {
3469 jbd2_journal_set_features(sbi->s_journal,
3470 JBD2_FEATURE_COMPAT_CHECKSUM, 0, 0);
3471 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3472 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3473 } else {
3474 jbd2_journal_clear_features(sbi->s_journal,
3475 JBD2_FEATURE_COMPAT_CHECKSUM, 0,
3476 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3477 }
3478
3479 /* We have now updated the journal if required, so we can
3480 * validate the data journaling mode. */
3481 switch (test_opt(sb, DATA_FLAGS)) {
3482 case 0:
3483 /* No mode set, assume a default based on the journal
3484 * capabilities: ORDERED_DATA if the journal can
3485 * cope, else JOURNAL_DATA
3486 */
3487 if (jbd2_journal_check_available_features
3488 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE))
3489 set_opt(sb, ORDERED_DATA);
3490 else
3491 set_opt(sb, JOURNAL_DATA);
3492 break;
3493
3494 case EXT4_MOUNT_ORDERED_DATA:
3495 case EXT4_MOUNT_WRITEBACK_DATA:
3496 if (!jbd2_journal_check_available_features
3497 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
3498 ext4_msg(sb, KERN_ERR, "Journal does not support "
3499 "requested data journaling mode");
3500 goto failed_mount_wq;
3501 }
3502 default:
3503 break;
3504 }
3505 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
3506
3507 sbi->s_journal->j_commit_callback = ext4_journal_commit_callback;
3508
3509 /*
3510 * The journal may have updated the bg summary counts, so we
3511 * need to update the global counters.
3512 */
3513 percpu_counter_set(&sbi->s_freeclusters_counter,
3514 ext4_count_free_clusters(sb));
3515 percpu_counter_set(&sbi->s_freeinodes_counter,
3516 ext4_count_free_inodes(sb));
3517 percpu_counter_set(&sbi->s_dirs_counter,
3518 ext4_count_dirs(sb));
3519 percpu_counter_set(&sbi->s_dirtyclusters_counter, 0);
3520
3521 no_journal:
3522 /*
3523 * The maximum number of concurrent works can be high and
3524 * concurrency isn't really necessary. Limit it to 1.
3525 */
3526 EXT4_SB(sb)->dio_unwritten_wq =
3527 alloc_workqueue("ext4-dio-unwritten", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
3528 if (!EXT4_SB(sb)->dio_unwritten_wq) {
3529 printk(KERN_ERR "EXT4-fs: failed to create DIO workqueue\n");
3530 goto failed_mount_wq;
3531 }
3532
3533 /*
3534 * The jbd2_journal_load will have done any necessary log recovery,
3535 * so we can safely mount the rest of the filesystem now.
3536 */
3537
3538 root = ext4_iget(sb, EXT4_ROOT_INO);
3539 if (IS_ERR(root)) {
3540 ext4_msg(sb, KERN_ERR, "get root inode failed");
3541 ret = PTR_ERR(root);
3542 root = NULL;
3543 goto failed_mount4;
3544 }
3545 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
3546 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
3547 iput(root);
3548 goto failed_mount4;
3549 }
3550 sb->s_root = d_alloc_root(root);
3551 if (!sb->s_root) {
3552 iput(root);
3553 ext4_msg(sb, KERN_ERR, "get root dentry failed");
3554 ret = -ENOMEM;
3555 goto failed_mount4;
3556 }
3557
3558 ext4_setup_super(sb, es, sb->s_flags & MS_RDONLY);
3559
3560 /* determine the minimum size of new large inodes, if present */
3561 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) {
3562 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
3563 EXT4_GOOD_OLD_INODE_SIZE;
3564 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3565 EXT4_FEATURE_RO_COMPAT_EXTRA_ISIZE)) {
3566 if (sbi->s_want_extra_isize <
3567 le16_to_cpu(es->s_want_extra_isize))
3568 sbi->s_want_extra_isize =
3569 le16_to_cpu(es->s_want_extra_isize);
3570 if (sbi->s_want_extra_isize <
3571 le16_to_cpu(es->s_min_extra_isize))
3572 sbi->s_want_extra_isize =
3573 le16_to_cpu(es->s_min_extra_isize);
3574 }
3575 }
3576 /* Check if enough inode space is available */
3577 if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize >
3578 sbi->s_inode_size) {
3579 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
3580 EXT4_GOOD_OLD_INODE_SIZE;
3581 ext4_msg(sb, KERN_INFO, "required extra inode space not"
3582 "available");
3583 }
3584
3585 err = ext4_setup_system_zone(sb);
3586 if (err) {
3587 ext4_msg(sb, KERN_ERR, "failed to initialize system "
3588 "zone (%d)", err);
3589 goto failed_mount4a;
3590 }
3591
3592 ext4_ext_init(sb);
3593 err = ext4_mb_init(sb, needs_recovery);
3594 if (err) {
3595 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
3596 err);
3597 goto failed_mount5;
3598 }
3599
3600 err = ext4_register_li_request(sb, first_not_zeroed);
3601 if (err)
3602 goto failed_mount6;
3603
3604 sbi->s_kobj.kset = ext4_kset;
3605 init_completion(&sbi->s_kobj_unregister);
3606 err = kobject_init_and_add(&sbi->s_kobj, &ext4_ktype, NULL,
3607 "%s", sb->s_id);
3608 if (err)
3609 goto failed_mount7;
3610
3611 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
3612 ext4_orphan_cleanup(sb, es);
3613 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
3614 if (needs_recovery) {
3615 ext4_msg(sb, KERN_INFO, "recovery complete");
3616 ext4_mark_recovery_complete(sb, es);
3617 }
3618 if (EXT4_SB(sb)->s_journal) {
3619 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
3620 descr = " journalled data mode";
3621 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
3622 descr = " ordered data mode";
3623 else
3624 descr = " writeback data mode";
3625 } else
3626 descr = "out journal";
3627
3628 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. "
3629 "Opts: %s%s%s", descr, sbi->s_es->s_mount_opts,
3630 *sbi->s_es->s_mount_opts ? "; " : "", orig_data);
3631
3632 if (es->s_error_count)
3633 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
3634
3635 kfree(orig_data);
3636 return 0;
3637
3638 cantfind_ext4:
3639 if (!silent)
3640 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
3641 goto failed_mount;
3642
3643 failed_mount7:
3644 ext4_unregister_li_request(sb);
3645 failed_mount6:
3646 ext4_mb_release(sb);
3647 failed_mount5:
3648 ext4_ext_release(sb);
3649 ext4_release_system_zone(sb);
3650 failed_mount4a:
3651 dput(sb->s_root);
3652 sb->s_root = NULL;
3653 failed_mount4:
3654 ext4_msg(sb, KERN_ERR, "mount failed");
3655 destroy_workqueue(EXT4_SB(sb)->dio_unwritten_wq);
3656 failed_mount_wq:
3657 if (sbi->s_journal) {
3658 jbd2_journal_destroy(sbi->s_journal);
3659 sbi->s_journal = NULL;
3660 }
3661 failed_mount3:
3662 del_timer(&sbi->s_err_report);
3663 if (sbi->s_flex_groups)
3664 ext4_kvfree(sbi->s_flex_groups);
3665 percpu_counter_destroy(&sbi->s_freeclusters_counter);
3666 percpu_counter_destroy(&sbi->s_freeinodes_counter);
3667 percpu_counter_destroy(&sbi->s_dirs_counter);
3668 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
3669 if (sbi->s_mmp_tsk)
3670 kthread_stop(sbi->s_mmp_tsk);
3671 failed_mount2:
3672 for (i = 0; i < db_count; i++)
3673 brelse(sbi->s_group_desc[i]);
3674 ext4_kvfree(sbi->s_group_desc);
3675 failed_mount:
3676 if (sbi->s_proc) {
3677 remove_proc_entry(sb->s_id, ext4_proc_root);
3678 }
3679 #ifdef CONFIG_QUOTA
3680 for (i = 0; i < MAXQUOTAS; i++)
3681 kfree(sbi->s_qf_names[i]);
3682 #endif
3683 ext4_blkdev_remove(sbi);
3684 brelse(bh);
3685 out_fail:
3686 sb->s_fs_info = NULL;
3687 kfree(sbi->s_blockgroup_lock);
3688 kfree(sbi);
3689 out_free_orig:
3690 kfree(orig_data);
3691 return ret;
3692 }
3693
3694 /*
3695 * Setup any per-fs journal parameters now. We'll do this both on
3696 * initial mount, once the journal has been initialised but before we've
3697 * done any recovery; and again on any subsequent remount.
3698 */
3699 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
3700 {
3701 struct ext4_sb_info *sbi = EXT4_SB(sb);
3702
3703 journal->j_commit_interval = sbi->s_commit_interval;
3704 journal->j_min_batch_time = sbi->s_min_batch_time;
3705 journal->j_max_batch_time = sbi->s_max_batch_time;
3706
3707 write_lock(&journal->j_state_lock);
3708 if (test_opt(sb, BARRIER))
3709 journal->j_flags |= JBD2_BARRIER;
3710 else
3711 journal->j_flags &= ~JBD2_BARRIER;
3712 if (test_opt(sb, DATA_ERR_ABORT))
3713 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
3714 else
3715 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
3716 write_unlock(&journal->j_state_lock);
3717 }
3718
3719 static journal_t *ext4_get_journal(struct super_block *sb,
3720 unsigned int journal_inum)
3721 {
3722 struct inode *journal_inode;
3723 journal_t *journal;
3724
3725 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
3726
3727 /* First, test for the existence of a valid inode on disk. Bad
3728 * things happen if we iget() an unused inode, as the subsequent
3729 * iput() will try to delete it. */
3730
3731 journal_inode = ext4_iget(sb, journal_inum);
3732 if (IS_ERR(journal_inode)) {
3733 ext4_msg(sb, KERN_ERR, "no journal found");
3734 return NULL;
3735 }
3736 if (!journal_inode->i_nlink) {
3737 make_bad_inode(journal_inode);
3738 iput(journal_inode);
3739 ext4_msg(sb, KERN_ERR, "journal inode is deleted");
3740 return NULL;
3741 }
3742
3743 jbd_debug(2, "Journal inode found at %p: %lld bytes\n",
3744 journal_inode, journal_inode->i_size);
3745 if (!S_ISREG(journal_inode->i_mode)) {
3746 ext4_msg(sb, KERN_ERR, "invalid journal inode");
3747 iput(journal_inode);
3748 return NULL;
3749 }
3750
3751 journal = jbd2_journal_init_inode(journal_inode);
3752 if (!journal) {
3753 ext4_msg(sb, KERN_ERR, "Could not load journal inode");
3754 iput(journal_inode);
3755 return NULL;
3756 }
3757 journal->j_private = sb;
3758 ext4_init_journal_params(sb, journal);
3759 return journal;
3760 }
3761
3762 static journal_t *ext4_get_dev_journal(struct super_block *sb,
3763 dev_t j_dev)
3764 {
3765 struct buffer_head *bh;
3766 journal_t *journal;
3767 ext4_fsblk_t start;
3768 ext4_fsblk_t len;
3769 int hblock, blocksize;
3770 ext4_fsblk_t sb_block;
3771 unsigned long offset;
3772 struct ext4_super_block *es;
3773 struct block_device *bdev;
3774
3775 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
3776
3777 bdev = ext4_blkdev_get(j_dev, sb);
3778 if (bdev == NULL)
3779 return NULL;
3780
3781 blocksize = sb->s_blocksize;
3782 hblock = bdev_logical_block_size(bdev);
3783 if (blocksize < hblock) {
3784 ext4_msg(sb, KERN_ERR,
3785 "blocksize too small for journal device");
3786 goto out_bdev;
3787 }
3788
3789 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
3790 offset = EXT4_MIN_BLOCK_SIZE % blocksize;
3791 set_blocksize(bdev, blocksize);
3792 if (!(bh = __bread(bdev, sb_block, blocksize))) {
3793 ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
3794 "external journal");
3795 goto out_bdev;
3796 }
3797
3798 es = (struct ext4_super_block *) (((char *)bh->b_data) + offset);
3799 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
3800 !(le32_to_cpu(es->s_feature_incompat) &
3801 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
3802 ext4_msg(sb, KERN_ERR, "external journal has "
3803 "bad superblock");
3804 brelse(bh);
3805 goto out_bdev;
3806 }
3807
3808 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
3809 ext4_msg(sb, KERN_ERR, "journal UUID does not match");
3810 brelse(bh);
3811 goto out_bdev;
3812 }
3813
3814 len = ext4_blocks_count(es);
3815 start = sb_block + 1;
3816 brelse(bh); /* we're done with the superblock */
3817
3818 journal = jbd2_journal_init_dev(bdev, sb->s_bdev,
3819 start, len, blocksize);
3820 if (!journal) {
3821 ext4_msg(sb, KERN_ERR, "failed to create device journal");
3822 goto out_bdev;
3823 }
3824 journal->j_private = sb;
3825 ll_rw_block(READ, 1, &journal->j_sb_buffer);
3826 wait_on_buffer(journal->j_sb_buffer);
3827 if (!buffer_uptodate(journal->j_sb_buffer)) {
3828 ext4_msg(sb, KERN_ERR, "I/O error on journal device");
3829 goto out_journal;
3830 }
3831 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
3832 ext4_msg(sb, KERN_ERR, "External journal has more than one "
3833 "user (unsupported) - %d",
3834 be32_to_cpu(journal->j_superblock->s_nr_users));
3835 goto out_journal;
3836 }
3837 EXT4_SB(sb)->journal_bdev = bdev;
3838 ext4_init_journal_params(sb, journal);
3839 return journal;
3840
3841 out_journal:
3842 jbd2_journal_destroy(journal);
3843 out_bdev:
3844 ext4_blkdev_put(bdev);
3845 return NULL;
3846 }
3847
3848 static int ext4_load_journal(struct super_block *sb,
3849 struct ext4_super_block *es,
3850 unsigned long journal_devnum)
3851 {
3852 journal_t *journal;
3853 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
3854 dev_t journal_dev;
3855 int err = 0;
3856 int really_read_only;
3857
3858 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
3859
3860 if (journal_devnum &&
3861 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
3862 ext4_msg(sb, KERN_INFO, "external journal device major/minor "
3863 "numbers have changed");
3864 journal_dev = new_decode_dev(journal_devnum);
3865 } else
3866 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
3867
3868 really_read_only = bdev_read_only(sb->s_bdev);
3869
3870 /*
3871 * Are we loading a blank journal or performing recovery after a
3872 * crash? For recovery, we need to check in advance whether we
3873 * can get read-write access to the device.
3874 */
3875 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) {
3876 if (sb->s_flags & MS_RDONLY) {
3877 ext4_msg(sb, KERN_INFO, "INFO: recovery "
3878 "required on readonly filesystem");
3879 if (really_read_only) {
3880 ext4_msg(sb, KERN_ERR, "write access "
3881 "unavailable, cannot proceed");
3882 return -EROFS;
3883 }
3884 ext4_msg(sb, KERN_INFO, "write access will "
3885 "be enabled during recovery");
3886 }
3887 }
3888
3889 if (journal_inum && journal_dev) {
3890 ext4_msg(sb, KERN_ERR, "filesystem has both journal "
3891 "and inode journals!");
3892 return -EINVAL;
3893 }
3894
3895 if (journal_inum) {
3896 if (!(journal = ext4_get_journal(sb, journal_inum)))
3897 return -EINVAL;
3898 } else {
3899 if (!(journal = ext4_get_dev_journal(sb, journal_dev)))
3900 return -EINVAL;
3901 }
3902
3903 if (!(journal->j_flags & JBD2_BARRIER))
3904 ext4_msg(sb, KERN_INFO, "barriers disabled");
3905
3906 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER))
3907 err = jbd2_journal_wipe(journal, !really_read_only);
3908 if (!err) {
3909 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
3910 if (save)
3911 memcpy(save, ((char *) es) +
3912 EXT4_S_ERR_START, EXT4_S_ERR_LEN);
3913 err = jbd2_journal_load(journal);
3914 if (save)
3915 memcpy(((char *) es) + EXT4_S_ERR_START,
3916 save, EXT4_S_ERR_LEN);
3917 kfree(save);
3918 }
3919
3920 if (err) {
3921 ext4_msg(sb, KERN_ERR, "error loading journal");
3922 jbd2_journal_destroy(journal);
3923 return err;
3924 }
3925
3926 EXT4_SB(sb)->s_journal = journal;
3927 ext4_clear_journal_err(sb, es);
3928
3929 if (!really_read_only && journal_devnum &&
3930 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
3931 es->s_journal_dev = cpu_to_le32(journal_devnum);
3932
3933 /* Make sure we flush the recovery flag to disk. */
3934 ext4_commit_super(sb, 1);
3935 }
3936
3937 return 0;
3938 }
3939
3940 static int ext4_commit_super(struct super_block *sb, int sync)
3941 {
3942 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
3943 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
3944 int error = 0;
3945
3946 if (!sbh || block_device_ejected(sb))
3947 return error;
3948 if (buffer_write_io_error(sbh)) {
3949 /*
3950 * Oh, dear. A previous attempt to write the
3951 * superblock failed. This could happen because the
3952 * USB device was yanked out. Or it could happen to
3953 * be a transient write error and maybe the block will
3954 * be remapped. Nothing we can do but to retry the
3955 * write and hope for the best.
3956 */
3957 ext4_msg(sb, KERN_ERR, "previous I/O error to "
3958 "superblock detected");
3959 clear_buffer_write_io_error(sbh);
3960 set_buffer_uptodate(sbh);
3961 }
3962 /*
3963 * If the file system is mounted read-only, don't update the
3964 * superblock write time. This avoids updating the superblock
3965 * write time when we are mounting the root file system
3966 * read/only but we need to replay the journal; at that point,
3967 * for people who are east of GMT and who make their clock
3968 * tick in localtime for Windows bug-for-bug compatibility,
3969 * the clock is set in the future, and this will cause e2fsck
3970 * to complain and force a full file system check.
3971 */
3972 if (!(sb->s_flags & MS_RDONLY))
3973 es->s_wtime = cpu_to_le32(get_seconds());
3974 if (sb->s_bdev->bd_part)
3975 es->s_kbytes_written =
3976 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written +
3977 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
3978 EXT4_SB(sb)->s_sectors_written_start) >> 1));
3979 else
3980 es->s_kbytes_written =
3981 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written);
3982 ext4_free_blocks_count_set(es,
3983 EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive(
3984 &EXT4_SB(sb)->s_freeclusters_counter)));
3985 es->s_free_inodes_count =
3986 cpu_to_le32(percpu_counter_sum_positive(
3987 &EXT4_SB(sb)->s_freeinodes_counter));
3988 sb->s_dirt = 0;
3989 BUFFER_TRACE(sbh, "marking dirty");
3990 mark_buffer_dirty(sbh);
3991 if (sync) {
3992 error = sync_dirty_buffer(sbh);
3993 if (error)
3994 return error;
3995
3996 error = buffer_write_io_error(sbh);
3997 if (error) {
3998 ext4_msg(sb, KERN_ERR, "I/O error while writing "
3999 "superblock");
4000 clear_buffer_write_io_error(sbh);
4001 set_buffer_uptodate(sbh);
4002 }
4003 }
4004 return error;
4005 }
4006
4007 /*
4008 * Have we just finished recovery? If so, and if we are mounting (or
4009 * remounting) the filesystem readonly, then we will end up with a
4010 * consistent fs on disk. Record that fact.
4011 */
4012 static void ext4_mark_recovery_complete(struct super_block *sb,
4013 struct ext4_super_block *es)
4014 {
4015 journal_t *journal = EXT4_SB(sb)->s_journal;
4016
4017 if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) {
4018 BUG_ON(journal != NULL);
4019 return;
4020 }
4021 jbd2_journal_lock_updates(journal);
4022 if (jbd2_journal_flush(journal) < 0)
4023 goto out;
4024
4025 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER) &&
4026 sb->s_flags & MS_RDONLY) {
4027 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4028 ext4_commit_super(sb, 1);
4029 }
4030
4031 out:
4032 jbd2_journal_unlock_updates(journal);
4033 }
4034
4035 /*
4036 * If we are mounting (or read-write remounting) a filesystem whose journal
4037 * has recorded an error from a previous lifetime, move that error to the
4038 * main filesystem now.
4039 */
4040 static void ext4_clear_journal_err(struct super_block *sb,
4041 struct ext4_super_block *es)
4042 {
4043 journal_t *journal;
4044 int j_errno;
4045 const char *errstr;
4046
4047 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
4048
4049 journal = EXT4_SB(sb)->s_journal;
4050
4051 /*
4052 * Now check for any error status which may have been recorded in the
4053 * journal by a prior ext4_error() or ext4_abort()
4054 */
4055
4056 j_errno = jbd2_journal_errno(journal);
4057 if (j_errno) {
4058 char nbuf[16];
4059
4060 errstr = ext4_decode_error(sb, j_errno, nbuf);
4061 ext4_warning(sb, "Filesystem error recorded "
4062 "from previous mount: %s", errstr);
4063 ext4_warning(sb, "Marking fs in need of filesystem check.");
4064
4065 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
4066 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
4067 ext4_commit_super(sb, 1);
4068
4069 jbd2_journal_clear_err(journal);
4070 }
4071 }
4072
4073 /*
4074 * Force the running and committing transactions to commit,
4075 * and wait on the commit.
4076 */
4077 int ext4_force_commit(struct super_block *sb)
4078 {
4079 journal_t *journal;
4080 int ret = 0;
4081
4082 if (sb->s_flags & MS_RDONLY)
4083 return 0;
4084
4085 journal = EXT4_SB(sb)->s_journal;
4086 if (journal) {
4087 vfs_check_frozen(sb, SB_FREEZE_TRANS);
4088 ret = ext4_journal_force_commit(journal);
4089 }
4090
4091 return ret;
4092 }
4093
4094 static void ext4_write_super(struct super_block *sb)
4095 {
4096 lock_super(sb);
4097 ext4_commit_super(sb, 1);
4098 unlock_super(sb);
4099 }
4100
4101 static int ext4_sync_fs(struct super_block *sb, int wait)
4102 {
4103 int ret = 0;
4104 tid_t target;
4105 struct ext4_sb_info *sbi = EXT4_SB(sb);
4106
4107 trace_ext4_sync_fs(sb, wait);
4108 flush_workqueue(sbi->dio_unwritten_wq);
4109 if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
4110 if (wait)
4111 jbd2_log_wait_commit(sbi->s_journal, target);
4112 }
4113 return ret;
4114 }
4115
4116 /*
4117 * LVM calls this function before a (read-only) snapshot is created. This
4118 * gives us a chance to flush the journal completely and mark the fs clean.
4119 *
4120 * Note that only this function cannot bring a filesystem to be in a clean
4121 * state independently, because ext4 prevents a new handle from being started
4122 * by @sb->s_frozen, which stays in an upper layer. It thus needs help from
4123 * the upper layer.
4124 */
4125 static int ext4_freeze(struct super_block *sb)
4126 {
4127 int error = 0;
4128 journal_t *journal;
4129
4130 if (sb->s_flags & MS_RDONLY)
4131 return 0;
4132
4133 journal = EXT4_SB(sb)->s_journal;
4134
4135 /* Now we set up the journal barrier. */
4136 jbd2_journal_lock_updates(journal);
4137
4138 /*
4139 * Don't clear the needs_recovery flag if we failed to flush
4140 * the journal.
4141 */
4142 error = jbd2_journal_flush(journal);
4143 if (error < 0)
4144 goto out;
4145
4146 /* Journal blocked and flushed, clear needs_recovery flag. */
4147 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4148 error = ext4_commit_super(sb, 1);
4149 out:
4150 /* we rely on s_frozen to stop further updates */
4151 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
4152 return error;
4153 }
4154
4155 /*
4156 * Called by LVM after the snapshot is done. We need to reset the RECOVER
4157 * flag here, even though the filesystem is not technically dirty yet.
4158 */
4159 static int ext4_unfreeze(struct super_block *sb)
4160 {
4161 if (sb->s_flags & MS_RDONLY)
4162 return 0;
4163
4164 lock_super(sb);
4165 /* Reset the needs_recovery flag before the fs is unlocked. */
4166 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4167 ext4_commit_super(sb, 1);
4168 unlock_super(sb);
4169 return 0;
4170 }
4171
4172 /*
4173 * Structure to save mount options for ext4_remount's benefit
4174 */
4175 struct ext4_mount_options {
4176 unsigned long s_mount_opt;
4177 unsigned long s_mount_opt2;
4178 uid_t s_resuid;
4179 gid_t s_resgid;
4180 unsigned long s_commit_interval;
4181 u32 s_min_batch_time, s_max_batch_time;
4182 #ifdef CONFIG_QUOTA
4183 int s_jquota_fmt;
4184 char *s_qf_names[MAXQUOTAS];
4185 #endif
4186 };
4187
4188 static int ext4_remount(struct super_block *sb, int *flags, char *data)
4189 {
4190 struct ext4_super_block *es;
4191 struct ext4_sb_info *sbi = EXT4_SB(sb);
4192 unsigned long old_sb_flags;
4193 struct ext4_mount_options old_opts;
4194 int enable_quota = 0;
4195 ext4_group_t g;
4196 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
4197 int err = 0;
4198 #ifdef CONFIG_QUOTA
4199 int i;
4200 #endif
4201 char *orig_data = kstrdup(data, GFP_KERNEL);
4202
4203 /* Store the original options */
4204 lock_super(sb);
4205 old_sb_flags = sb->s_flags;
4206 old_opts.s_mount_opt = sbi->s_mount_opt;
4207 old_opts.s_mount_opt2 = sbi->s_mount_opt2;
4208 old_opts.s_resuid = sbi->s_resuid;
4209 old_opts.s_resgid = sbi->s_resgid;
4210 old_opts.s_commit_interval = sbi->s_commit_interval;
4211 old_opts.s_min_batch_time = sbi->s_min_batch_time;
4212 old_opts.s_max_batch_time = sbi->s_max_batch_time;
4213 #ifdef CONFIG_QUOTA
4214 old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
4215 for (i = 0; i < MAXQUOTAS; i++)
4216 old_opts.s_qf_names[i] = sbi->s_qf_names[i];
4217 #endif
4218 if (sbi->s_journal && sbi->s_journal->j_task->io_context)
4219 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio;
4220
4221 /*
4222 * Allow the "check" option to be passed as a remount option.
4223 */
4224 if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) {
4225 err = -EINVAL;
4226 goto restore_opts;
4227 }
4228
4229 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED)
4230 ext4_abort(sb, "Abort forced by user");
4231
4232 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
4233 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
4234
4235 es = sbi->s_es;
4236
4237 if (sbi->s_journal) {
4238 ext4_init_journal_params(sb, sbi->s_journal);
4239 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
4240 }
4241
4242 if ((*flags & MS_RDONLY) != (sb->s_flags & MS_RDONLY)) {
4243 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) {
4244 err = -EROFS;
4245 goto restore_opts;
4246 }
4247
4248 if (*flags & MS_RDONLY) {
4249 err = dquot_suspend(sb, -1);
4250 if (err < 0)
4251 goto restore_opts;
4252
4253 /*
4254 * First of all, the unconditional stuff we have to do
4255 * to disable replay of the journal when we next remount
4256 */
4257 sb->s_flags |= MS_RDONLY;
4258
4259 /*
4260 * OK, test if we are remounting a valid rw partition
4261 * readonly, and if so set the rdonly flag and then
4262 * mark the partition as valid again.
4263 */
4264 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
4265 (sbi->s_mount_state & EXT4_VALID_FS))
4266 es->s_state = cpu_to_le16(sbi->s_mount_state);
4267
4268 if (sbi->s_journal)
4269 ext4_mark_recovery_complete(sb, es);
4270 } else {
4271 /* Make sure we can mount this feature set readwrite */
4272 if (!ext4_feature_set_ok(sb, 0)) {
4273 err = -EROFS;
4274 goto restore_opts;
4275 }
4276 /*
4277 * Make sure the group descriptor checksums
4278 * are sane. If they aren't, refuse to remount r/w.
4279 */
4280 for (g = 0; g < sbi->s_groups_count; g++) {
4281 struct ext4_group_desc *gdp =
4282 ext4_get_group_desc(sb, g, NULL);
4283
4284 if (!ext4_group_desc_csum_verify(sbi, g, gdp)) {
4285 ext4_msg(sb, KERN_ERR,
4286 "ext4_remount: Checksum for group %u failed (%u!=%u)",
4287 g, le16_to_cpu(ext4_group_desc_csum(sbi, g, gdp)),
4288 le16_to_cpu(gdp->bg_checksum));
4289 err = -EINVAL;
4290 goto restore_opts;
4291 }
4292 }
4293
4294 /*
4295 * If we have an unprocessed orphan list hanging
4296 * around from a previously readonly bdev mount,
4297 * require a full umount/remount for now.
4298 */
4299 if (es->s_last_orphan) {
4300 ext4_msg(sb, KERN_WARNING, "Couldn't "
4301 "remount RDWR because of unprocessed "
4302 "orphan inode list. Please "
4303 "umount/remount instead");
4304 err = -EINVAL;
4305 goto restore_opts;
4306 }
4307
4308 /*
4309 * Mounting a RDONLY partition read-write, so reread
4310 * and store the current valid flag. (It may have
4311 * been changed by e2fsck since we originally mounted
4312 * the partition.)
4313 */
4314 if (sbi->s_journal)
4315 ext4_clear_journal_err(sb, es);
4316 sbi->s_mount_state = le16_to_cpu(es->s_state);
4317 if (!ext4_setup_super(sb, es, 0))
4318 sb->s_flags &= ~MS_RDONLY;
4319 if (EXT4_HAS_INCOMPAT_FEATURE(sb,
4320 EXT4_FEATURE_INCOMPAT_MMP))
4321 if (ext4_multi_mount_protect(sb,
4322 le64_to_cpu(es->s_mmp_block))) {
4323 err = -EROFS;
4324 goto restore_opts;
4325 }
4326 enable_quota = 1;
4327 }
4328 }
4329
4330 /*
4331 * Reinitialize lazy itable initialization thread based on
4332 * current settings
4333 */
4334 if ((sb->s_flags & MS_RDONLY) || !test_opt(sb, INIT_INODE_TABLE))
4335 ext4_unregister_li_request(sb);
4336 else {
4337 ext4_group_t first_not_zeroed;
4338 first_not_zeroed = ext4_has_uninit_itable(sb);
4339 ext4_register_li_request(sb, first_not_zeroed);
4340 }
4341
4342 ext4_setup_system_zone(sb);
4343 if (sbi->s_journal == NULL)
4344 ext4_commit_super(sb, 1);
4345
4346 #ifdef CONFIG_QUOTA
4347 /* Release old quota file names */
4348 for (i = 0; i < MAXQUOTAS; i++)
4349 if (old_opts.s_qf_names[i] &&
4350 old_opts.s_qf_names[i] != sbi->s_qf_names[i])
4351 kfree(old_opts.s_qf_names[i]);
4352 #endif
4353 unlock_super(sb);
4354 if (enable_quota)
4355 dquot_resume(sb, -1);
4356
4357 ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data);
4358 kfree(orig_data);
4359 return 0;
4360
4361 restore_opts:
4362 sb->s_flags = old_sb_flags;
4363 sbi->s_mount_opt = old_opts.s_mount_opt;
4364 sbi->s_mount_opt2 = old_opts.s_mount_opt2;
4365 sbi->s_resuid = old_opts.s_resuid;
4366 sbi->s_resgid = old_opts.s_resgid;
4367 sbi->s_commit_interval = old_opts.s_commit_interval;
4368 sbi->s_min_batch_time = old_opts.s_min_batch_time;
4369 sbi->s_max_batch_time = old_opts.s_max_batch_time;
4370 #ifdef CONFIG_QUOTA
4371 sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
4372 for (i = 0; i < MAXQUOTAS; i++) {
4373 if (sbi->s_qf_names[i] &&
4374 old_opts.s_qf_names[i] != sbi->s_qf_names[i])
4375 kfree(sbi->s_qf_names[i]);
4376 sbi->s_qf_names[i] = old_opts.s_qf_names[i];
4377 }
4378 #endif
4379 unlock_super(sb);
4380 kfree(orig_data);
4381 return err;
4382 }
4383
4384 /*
4385 * Note: calculating the overhead so we can be compatible with
4386 * historical BSD practice is quite difficult in the face of
4387 * clusters/bigalloc. This is because multiple metadata blocks from
4388 * different block group can end up in the same allocation cluster.
4389 * Calculating the exact overhead in the face of clustered allocation
4390 * requires either O(all block bitmaps) in memory or O(number of block
4391 * groups**2) in time. We will still calculate the superblock for
4392 * older file systems --- and if we come across with a bigalloc file
4393 * system with zero in s_overhead_clusters the estimate will be close to
4394 * correct especially for very large cluster sizes --- but for newer
4395 * file systems, it's better to calculate this figure once at mkfs
4396 * time, and store it in the superblock. If the superblock value is
4397 * present (even for non-bigalloc file systems), we will use it.
4398 */
4399 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
4400 {
4401 struct super_block *sb = dentry->d_sb;
4402 struct ext4_sb_info *sbi = EXT4_SB(sb);
4403 struct ext4_super_block *es = sbi->s_es;
4404 struct ext4_group_desc *gdp;
4405 u64 fsid;
4406 s64 bfree;
4407
4408 if (test_opt(sb, MINIX_DF)) {
4409 sbi->s_overhead_last = 0;
4410 } else if (es->s_overhead_clusters) {
4411 sbi->s_overhead_last = le32_to_cpu(es->s_overhead_clusters);
4412 } else if (sbi->s_blocks_last != ext4_blocks_count(es)) {
4413 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
4414 ext4_fsblk_t overhead = 0;
4415
4416 /*
4417 * Compute the overhead (FS structures). This is constant
4418 * for a given filesystem unless the number of block groups
4419 * changes so we cache the previous value until it does.
4420 */
4421
4422 /*
4423 * All of the blocks before first_data_block are
4424 * overhead
4425 */
4426 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
4427
4428 /*
4429 * Add the overhead found in each block group
4430 */
4431 for (i = 0; i < ngroups; i++) {
4432 gdp = ext4_get_group_desc(sb, i, NULL);
4433 overhead += ext4_num_overhead_clusters(sb, i, gdp);
4434 cond_resched();
4435 }
4436 sbi->s_overhead_last = overhead;
4437 smp_wmb();
4438 sbi->s_blocks_last = ext4_blocks_count(es);
4439 }
4440
4441 buf->f_type = EXT4_SUPER_MAGIC;
4442 buf->f_bsize = sb->s_blocksize;
4443 buf->f_blocks = (ext4_blocks_count(es) -
4444 EXT4_C2B(sbi, sbi->s_overhead_last));
4445 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
4446 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
4447 /* prevent underflow in case that few free space is available */
4448 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0));
4449 buf->f_bavail = buf->f_bfree - ext4_r_blocks_count(es);
4450 if (buf->f_bfree < ext4_r_blocks_count(es))
4451 buf->f_bavail = 0;
4452 buf->f_files = le32_to_cpu(es->s_inodes_count);
4453 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
4454 buf->f_namelen = EXT4_NAME_LEN;
4455 fsid = le64_to_cpup((void *)es->s_uuid) ^
4456 le64_to_cpup((void *)es->s_uuid + sizeof(u64));
4457 buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL;
4458 buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL;
4459
4460 return 0;
4461 }
4462
4463 /* Helper function for writing quotas on sync - we need to start transaction
4464 * before quota file is locked for write. Otherwise the are possible deadlocks:
4465 * Process 1 Process 2
4466 * ext4_create() quota_sync()
4467 * jbd2_journal_start() write_dquot()
4468 * dquot_initialize() down(dqio_mutex)
4469 * down(dqio_mutex) jbd2_journal_start()
4470 *
4471 */
4472
4473 #ifdef CONFIG_QUOTA
4474
4475 static inline struct inode *dquot_to_inode(struct dquot *dquot)
4476 {
4477 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_type];
4478 }
4479
4480 static int ext4_write_dquot(struct dquot *dquot)
4481 {
4482 int ret, err;
4483 handle_t *handle;
4484 struct inode *inode;
4485
4486 inode = dquot_to_inode(dquot);
4487 handle = ext4_journal_start(inode,
4488 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
4489 if (IS_ERR(handle))
4490 return PTR_ERR(handle);
4491 ret = dquot_commit(dquot);
4492 err = ext4_journal_stop(handle);
4493 if (!ret)
4494 ret = err;
4495 return ret;
4496 }
4497
4498 static int ext4_acquire_dquot(struct dquot *dquot)
4499 {
4500 int ret, err;
4501 handle_t *handle;
4502
4503 handle = ext4_journal_start(dquot_to_inode(dquot),
4504 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
4505 if (IS_ERR(handle))
4506 return PTR_ERR(handle);
4507 ret = dquot_acquire(dquot);
4508 err = ext4_journal_stop(handle);
4509 if (!ret)
4510 ret = err;
4511 return ret;
4512 }
4513
4514 static int ext4_release_dquot(struct dquot *dquot)
4515 {
4516 int ret, err;
4517 handle_t *handle;
4518
4519 handle = ext4_journal_start(dquot_to_inode(dquot),
4520 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
4521 if (IS_ERR(handle)) {
4522 /* Release dquot anyway to avoid endless cycle in dqput() */
4523 dquot_release(dquot);
4524 return PTR_ERR(handle);
4525 }
4526 ret = dquot_release(dquot);
4527 err = ext4_journal_stop(handle);
4528 if (!ret)
4529 ret = err;
4530 return ret;
4531 }
4532
4533 static int ext4_mark_dquot_dirty(struct dquot *dquot)
4534 {
4535 /* Are we journaling quotas? */
4536 if (EXT4_SB(dquot->dq_sb)->s_qf_names[USRQUOTA] ||
4537 EXT4_SB(dquot->dq_sb)->s_qf_names[GRPQUOTA]) {
4538 dquot_mark_dquot_dirty(dquot);
4539 return ext4_write_dquot(dquot);
4540 } else {
4541 return dquot_mark_dquot_dirty(dquot);
4542 }
4543 }
4544
4545 static int ext4_write_info(struct super_block *sb, int type)
4546 {
4547 int ret, err;
4548 handle_t *handle;
4549
4550 /* Data block + inode block */
4551 handle = ext4_journal_start(sb->s_root->d_inode, 2);
4552 if (IS_ERR(handle))
4553 return PTR_ERR(handle);
4554 ret = dquot_commit_info(sb, type);
4555 err = ext4_journal_stop(handle);
4556 if (!ret)
4557 ret = err;
4558 return ret;
4559 }
4560
4561 /*
4562 * Turn on quotas during mount time - we need to find
4563 * the quota file and such...
4564 */
4565 static int ext4_quota_on_mount(struct super_block *sb, int type)
4566 {
4567 return dquot_quota_on_mount(sb, EXT4_SB(sb)->s_qf_names[type],
4568 EXT4_SB(sb)->s_jquota_fmt, type);
4569 }
4570
4571 /*
4572 * Standard function to be called on quota_on
4573 */
4574 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
4575 struct path *path)
4576 {
4577 int err;
4578
4579 if (!test_opt(sb, QUOTA))
4580 return -EINVAL;
4581
4582 /* Quotafile not on the same filesystem? */
4583 if (path->dentry->d_sb != sb)
4584 return -EXDEV;
4585 /* Journaling quota? */
4586 if (EXT4_SB(sb)->s_qf_names[type]) {
4587 /* Quotafile not in fs root? */
4588 if (path->dentry->d_parent != sb->s_root)
4589 ext4_msg(sb, KERN_WARNING,
4590 "Quota file not on filesystem root. "
4591 "Journaled quota will not work");
4592 }
4593
4594 /*
4595 * When we journal data on quota file, we have to flush journal to see
4596 * all updates to the file when we bypass pagecache...
4597 */
4598 if (EXT4_SB(sb)->s_journal &&
4599 ext4_should_journal_data(path->dentry->d_inode)) {
4600 /*
4601 * We don't need to lock updates but journal_flush() could
4602 * otherwise be livelocked...
4603 */
4604 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal);
4605 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal);
4606 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
4607 if (err)
4608 return err;
4609 }
4610
4611 return dquot_quota_on(sb, type, format_id, path);
4612 }
4613
4614 static int ext4_quota_off(struct super_block *sb, int type)
4615 {
4616 struct inode *inode = sb_dqopt(sb)->files[type];
4617 handle_t *handle;
4618
4619 /* Force all delayed allocation blocks to be allocated.
4620 * Caller already holds s_umount sem */
4621 if (test_opt(sb, DELALLOC))
4622 sync_filesystem(sb);
4623
4624 if (!inode)
4625 goto out;
4626
4627 /* Update modification times of quota files when userspace can
4628 * start looking at them */
4629 handle = ext4_journal_start(inode, 1);
4630 if (IS_ERR(handle))
4631 goto out;
4632 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
4633 ext4_mark_inode_dirty(handle, inode);
4634 ext4_journal_stop(handle);
4635
4636 out:
4637 return dquot_quota_off(sb, type);
4638 }
4639
4640 /* Read data from quotafile - avoid pagecache and such because we cannot afford
4641 * acquiring the locks... As quota files are never truncated and quota code
4642 * itself serializes the operations (and no one else should touch the files)
4643 * we don't have to be afraid of races */
4644 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
4645 size_t len, loff_t off)
4646 {
4647 struct inode *inode = sb_dqopt(sb)->files[type];
4648 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
4649 int err = 0;
4650 int offset = off & (sb->s_blocksize - 1);
4651 int tocopy;
4652 size_t toread;
4653 struct buffer_head *bh;
4654 loff_t i_size = i_size_read(inode);
4655
4656 if (off > i_size)
4657 return 0;
4658 if (off+len > i_size)
4659 len = i_size-off;
4660 toread = len;
4661 while (toread > 0) {
4662 tocopy = sb->s_blocksize - offset < toread ?
4663 sb->s_blocksize - offset : toread;
4664 bh = ext4_bread(NULL, inode, blk, 0, &err);
4665 if (err)
4666 return err;
4667 if (!bh) /* A hole? */
4668 memset(data, 0, tocopy);
4669 else
4670 memcpy(data, bh->b_data+offset, tocopy);
4671 brelse(bh);
4672 offset = 0;
4673 toread -= tocopy;
4674 data += tocopy;
4675 blk++;
4676 }
4677 return len;
4678 }
4679
4680 /* Write to quotafile (we know the transaction is already started and has
4681 * enough credits) */
4682 static ssize_t ext4_quota_write(struct super_block *sb, int type,
4683 const char *data, size_t len, loff_t off)
4684 {
4685 struct inode *inode = sb_dqopt(sb)->files[type];
4686 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
4687 int err = 0;
4688 int offset = off & (sb->s_blocksize - 1);
4689 struct buffer_head *bh;
4690 handle_t *handle = journal_current_handle();
4691
4692 if (EXT4_SB(sb)->s_journal && !handle) {
4693 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
4694 " cancelled because transaction is not started",
4695 (unsigned long long)off, (unsigned long long)len);
4696 return -EIO;
4697 }
4698 /*
4699 * Since we account only one data block in transaction credits,
4700 * then it is impossible to cross a block boundary.
4701 */
4702 if (sb->s_blocksize - offset < len) {
4703 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
4704 " cancelled because not block aligned",
4705 (unsigned long long)off, (unsigned long long)len);
4706 return -EIO;
4707 }
4708
4709 mutex_lock_nested(&inode->i_mutex, I_MUTEX_QUOTA);
4710 bh = ext4_bread(handle, inode, blk, 1, &err);
4711 if (!bh)
4712 goto out;
4713 err = ext4_journal_get_write_access(handle, bh);
4714 if (err) {
4715 brelse(bh);
4716 goto out;
4717 }
4718 lock_buffer(bh);
4719 memcpy(bh->b_data+offset, data, len);
4720 flush_dcache_page(bh->b_page);
4721 unlock_buffer(bh);
4722 err = ext4_handle_dirty_metadata(handle, NULL, bh);
4723 brelse(bh);
4724 out:
4725 if (err) {
4726 mutex_unlock(&inode->i_mutex);
4727 return err;
4728 }
4729 if (inode->i_size < off + len) {
4730 i_size_write(inode, off + len);
4731 EXT4_I(inode)->i_disksize = inode->i_size;
4732 ext4_mark_inode_dirty(handle, inode);
4733 }
4734 mutex_unlock(&inode->i_mutex);
4735 return len;
4736 }
4737
4738 #endif
4739
4740 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
4741 const char *dev_name, void *data)
4742 {
4743 return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super);
4744 }
4745
4746 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
4747 static inline void register_as_ext2(void)
4748 {
4749 int err = register_filesystem(&ext2_fs_type);
4750 if (err)
4751 printk(KERN_WARNING
4752 "EXT4-fs: Unable to register as ext2 (%d)\n", err);
4753 }
4754
4755 static inline void unregister_as_ext2(void)
4756 {
4757 unregister_filesystem(&ext2_fs_type);
4758 }
4759
4760 static inline int ext2_feature_set_ok(struct super_block *sb)
4761 {
4762 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT2_FEATURE_INCOMPAT_SUPP))
4763 return 0;
4764 if (sb->s_flags & MS_RDONLY)
4765 return 1;
4766 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT2_FEATURE_RO_COMPAT_SUPP))
4767 return 0;
4768 return 1;
4769 }
4770 MODULE_ALIAS("ext2");
4771 #else
4772 static inline void register_as_ext2(void) { }
4773 static inline void unregister_as_ext2(void) { }
4774 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
4775 #endif
4776
4777 #if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
4778 static inline void register_as_ext3(void)
4779 {
4780 int err = register_filesystem(&ext3_fs_type);
4781 if (err)
4782 printk(KERN_WARNING
4783 "EXT4-fs: Unable to register as ext3 (%d)\n", err);
4784 }
4785
4786 static inline void unregister_as_ext3(void)
4787 {
4788 unregister_filesystem(&ext3_fs_type);
4789 }
4790
4791 static inline int ext3_feature_set_ok(struct super_block *sb)
4792 {
4793 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT3_FEATURE_INCOMPAT_SUPP))
4794 return 0;
4795 if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL))
4796 return 0;
4797 if (sb->s_flags & MS_RDONLY)
4798 return 1;
4799 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT3_FEATURE_RO_COMPAT_SUPP))
4800 return 0;
4801 return 1;
4802 }
4803 MODULE_ALIAS("ext3");
4804 #else
4805 static inline void register_as_ext3(void) { }
4806 static inline void unregister_as_ext3(void) { }
4807 static inline int ext3_feature_set_ok(struct super_block *sb) { return 0; }
4808 #endif
4809
4810 static struct file_system_type ext4_fs_type = {
4811 .owner = THIS_MODULE,
4812 .name = "ext4",
4813 .mount = ext4_mount,
4814 .kill_sb = kill_block_super,
4815 .fs_flags = FS_REQUIRES_DEV,
4816 };
4817
4818 static int __init ext4_init_feat_adverts(void)
4819 {
4820 struct ext4_features *ef;
4821 int ret = -ENOMEM;
4822
4823 ef = kzalloc(sizeof(struct ext4_features), GFP_KERNEL);
4824 if (!ef)
4825 goto out;
4826
4827 ef->f_kobj.kset = ext4_kset;
4828 init_completion(&ef->f_kobj_unregister);
4829 ret = kobject_init_and_add(&ef->f_kobj, &ext4_feat_ktype, NULL,
4830 "features");
4831 if (ret) {
4832 kfree(ef);
4833 goto out;
4834 }
4835
4836 ext4_feat = ef;
4837 ret = 0;
4838 out:
4839 return ret;
4840 }
4841
4842 static void ext4_exit_feat_adverts(void)
4843 {
4844 kobject_put(&ext4_feat->f_kobj);
4845 wait_for_completion(&ext4_feat->f_kobj_unregister);
4846 kfree(ext4_feat);
4847 }
4848
4849 /* Shared across all ext4 file systems */
4850 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ];
4851 struct mutex ext4__aio_mutex[EXT4_WQ_HASH_SZ];
4852
4853 static int __init ext4_init_fs(void)
4854 {
4855 int i, err;
4856
4857 ext4_check_flag_values();
4858
4859 for (i = 0; i < EXT4_WQ_HASH_SZ; i++) {
4860 mutex_init(&ext4__aio_mutex[i]);
4861 init_waitqueue_head(&ext4__ioend_wq[i]);
4862 }
4863
4864 err = ext4_init_pageio();
4865 if (err)
4866 return err;
4867 err = ext4_init_system_zone();
4868 if (err)
4869 goto out6;
4870 ext4_kset = kset_create_and_add("ext4", NULL, fs_kobj);
4871 if (!ext4_kset)
4872 goto out5;
4873 ext4_proc_root = proc_mkdir("fs/ext4", NULL);
4874
4875 err = ext4_init_feat_adverts();
4876 if (err)
4877 goto out4;
4878
4879 err = ext4_init_mballoc();
4880 if (err)
4881 goto out3;
4882
4883 err = ext4_init_xattr();
4884 if (err)
4885 goto out2;
4886 err = init_inodecache();
4887 if (err)
4888 goto out1;
4889 register_as_ext3();
4890 register_as_ext2();
4891 err = register_filesystem(&ext4_fs_type);
4892 if (err)
4893 goto out;
4894
4895 ext4_li_info = NULL;
4896 mutex_init(&ext4_li_mtx);
4897 return 0;
4898 out:
4899 unregister_as_ext2();
4900 unregister_as_ext3();
4901 destroy_inodecache();
4902 out1:
4903 ext4_exit_xattr();
4904 out2:
4905 ext4_exit_mballoc();
4906 out3:
4907 ext4_exit_feat_adverts();
4908 out4:
4909 if (ext4_proc_root)
4910 remove_proc_entry("fs/ext4", NULL);
4911 kset_unregister(ext4_kset);
4912 out5:
4913 ext4_exit_system_zone();
4914 out6:
4915 ext4_exit_pageio();
4916 return err;
4917 }
4918
4919 static void __exit ext4_exit_fs(void)
4920 {
4921 ext4_destroy_lazyinit_thread();
4922 unregister_as_ext2();
4923 unregister_as_ext3();
4924 unregister_filesystem(&ext4_fs_type);
4925 destroy_inodecache();
4926 ext4_exit_xattr();
4927 ext4_exit_mballoc();
4928 ext4_exit_feat_adverts();
4929 remove_proc_entry("fs/ext4", NULL);
4930 kset_unregister(ext4_kset);
4931 ext4_exit_system_zone();
4932 ext4_exit_pageio();
4933 }
4934
4935 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
4936 MODULE_DESCRIPTION("Fourth Extended Filesystem");
4937 MODULE_LICENSE("GPL");
4938 module_init(ext4_init_fs)
4939 module_exit(ext4_exit_fs)