]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/ext4/super.c
ext4: improve explanation of a mount failure caused by a misconfigured kernel
[mirror_ubuntu-bionic-kernel.git] / fs / ext4 / super.c
1 /*
2 * linux/fs/ext4/super.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * Big-endian to little-endian byte-swapping/bitmaps by
16 * David S. Miller (davem@caip.rutgers.edu), 1995
17 */
18
19 #include <linux/module.h>
20 #include <linux/string.h>
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/vmalloc.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/parser.h>
29 #include <linux/buffer_head.h>
30 #include <linux/exportfs.h>
31 #include <linux/vfs.h>
32 #include <linux/random.h>
33 #include <linux/mount.h>
34 #include <linux/namei.h>
35 #include <linux/quotaops.h>
36 #include <linux/seq_file.h>
37 #include <linux/ctype.h>
38 #include <linux/log2.h>
39 #include <linux/crc16.h>
40 #include <linux/dax.h>
41 #include <linux/cleancache.h>
42 #include <linux/uaccess.h>
43 #include <linux/user_namespace.h>
44
45 #include <linux/kthread.h>
46 #include <linux/freezer.h>
47
48 #include "ext4.h"
49 #include "ext4_extents.h" /* Needed for trace points definition */
50 #include "ext4_jbd2.h"
51 #include "xattr.h"
52 #include "acl.h"
53 #include "mballoc.h"
54 #include "fsmap.h"
55
56 #define CREATE_TRACE_POINTS
57 #include <trace/events/ext4.h>
58
59 static struct ext4_lazy_init *ext4_li_info;
60 static struct mutex ext4_li_mtx;
61 static struct ratelimit_state ext4_mount_msg_ratelimit;
62
63 static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
64 unsigned long journal_devnum);
65 static int ext4_show_options(struct seq_file *seq, struct dentry *root);
66 static int ext4_commit_super(struct super_block *sb, int sync);
67 static void ext4_mark_recovery_complete(struct super_block *sb,
68 struct ext4_super_block *es);
69 static void ext4_clear_journal_err(struct super_block *sb,
70 struct ext4_super_block *es);
71 static int ext4_sync_fs(struct super_block *sb, int wait);
72 static int ext4_remount(struct super_block *sb, int *flags, char *data);
73 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
74 static int ext4_unfreeze(struct super_block *sb);
75 static int ext4_freeze(struct super_block *sb);
76 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
77 const char *dev_name, void *data);
78 static inline int ext2_feature_set_ok(struct super_block *sb);
79 static inline int ext3_feature_set_ok(struct super_block *sb);
80 static int ext4_feature_set_ok(struct super_block *sb, int readonly);
81 static void ext4_destroy_lazyinit_thread(void);
82 static void ext4_unregister_li_request(struct super_block *sb);
83 static void ext4_clear_request_list(void);
84 static struct inode *ext4_get_journal_inode(struct super_block *sb,
85 unsigned int journal_inum);
86
87 /*
88 * Lock ordering
89 *
90 * Note the difference between i_mmap_sem (EXT4_I(inode)->i_mmap_sem) and
91 * i_mmap_rwsem (inode->i_mmap_rwsem)!
92 *
93 * page fault path:
94 * mmap_sem -> sb_start_pagefault -> i_mmap_sem (r) -> transaction start ->
95 * page lock -> i_data_sem (rw)
96 *
97 * buffered write path:
98 * sb_start_write -> i_mutex -> mmap_sem
99 * sb_start_write -> i_mutex -> transaction start -> page lock ->
100 * i_data_sem (rw)
101 *
102 * truncate:
103 * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (w) -> i_mmap_sem (w) ->
104 * i_mmap_rwsem (w) -> page lock
105 * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (w) -> i_mmap_sem (w) ->
106 * transaction start -> i_data_sem (rw)
107 *
108 * direct IO:
109 * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (r) -> mmap_sem
110 * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (r) ->
111 * transaction start -> i_data_sem (rw)
112 *
113 * writepages:
114 * transaction start -> page lock(s) -> i_data_sem (rw)
115 */
116
117 static bool userns_mounts = false;
118 module_param(userns_mounts, bool, 0644);
119 MODULE_PARM_DESC(userns_mounts, "Allow mounts from unprivileged user namespaces");
120
121 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
122 static struct file_system_type ext2_fs_type = {
123 .owner = THIS_MODULE,
124 .name = "ext2",
125 .mount = ext4_mount,
126 .kill_sb = kill_block_super,
127 .fs_flags = FS_REQUIRES_DEV | FS_USERNS_MOUNT,
128 };
129 MODULE_ALIAS_FS("ext2");
130 MODULE_ALIAS("ext2");
131 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type)
132 #else
133 #define IS_EXT2_SB(sb) (0)
134 #endif
135
136
137 static struct file_system_type ext3_fs_type = {
138 .owner = THIS_MODULE,
139 .name = "ext3",
140 .mount = ext4_mount,
141 .kill_sb = kill_block_super,
142 .fs_flags = FS_REQUIRES_DEV | FS_USERNS_MOUNT,
143 };
144 MODULE_ALIAS_FS("ext3");
145 MODULE_ALIAS("ext3");
146 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type)
147
148 /*
149 * This works like sb_bread() except it uses ERR_PTR for error
150 * returns. Currently with sb_bread it's impossible to distinguish
151 * between ENOMEM and EIO situations (since both result in a NULL
152 * return.
153 */
154 struct buffer_head *
155 ext4_sb_bread(struct super_block *sb, sector_t block, int op_flags)
156 {
157 struct buffer_head *bh = sb_getblk(sb, block);
158
159 if (bh == NULL)
160 return ERR_PTR(-ENOMEM);
161 if (buffer_uptodate(bh))
162 return bh;
163 ll_rw_block(REQ_OP_READ, REQ_META | op_flags, 1, &bh);
164 wait_on_buffer(bh);
165 if (buffer_uptodate(bh))
166 return bh;
167 put_bh(bh);
168 return ERR_PTR(-EIO);
169 }
170
171 static int ext4_verify_csum_type(struct super_block *sb,
172 struct ext4_super_block *es)
173 {
174 if (!ext4_has_feature_metadata_csum(sb))
175 return 1;
176
177 return es->s_checksum_type == EXT4_CRC32C_CHKSUM;
178 }
179
180 static __le32 ext4_superblock_csum(struct super_block *sb,
181 struct ext4_super_block *es)
182 {
183 struct ext4_sb_info *sbi = EXT4_SB(sb);
184 int offset = offsetof(struct ext4_super_block, s_checksum);
185 __u32 csum;
186
187 csum = ext4_chksum(sbi, ~0, (char *)es, offset);
188
189 return cpu_to_le32(csum);
190 }
191
192 static int ext4_superblock_csum_verify(struct super_block *sb,
193 struct ext4_super_block *es)
194 {
195 if (!ext4_has_metadata_csum(sb))
196 return 1;
197
198 return es->s_checksum == ext4_superblock_csum(sb, es);
199 }
200
201 void ext4_superblock_csum_set(struct super_block *sb)
202 {
203 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
204
205 if (!ext4_has_metadata_csum(sb))
206 return;
207
208 es->s_checksum = ext4_superblock_csum(sb, es);
209 }
210
211 void *ext4_kvmalloc(size_t size, gfp_t flags)
212 {
213 void *ret;
214
215 ret = kmalloc(size, flags | __GFP_NOWARN);
216 if (!ret)
217 ret = __vmalloc(size, flags, PAGE_KERNEL);
218 return ret;
219 }
220
221 void *ext4_kvzalloc(size_t size, gfp_t flags)
222 {
223 void *ret;
224
225 ret = kzalloc(size, flags | __GFP_NOWARN);
226 if (!ret)
227 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL);
228 return ret;
229 }
230
231 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
232 struct ext4_group_desc *bg)
233 {
234 return le32_to_cpu(bg->bg_block_bitmap_lo) |
235 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
236 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
237 }
238
239 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
240 struct ext4_group_desc *bg)
241 {
242 return le32_to_cpu(bg->bg_inode_bitmap_lo) |
243 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
244 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
245 }
246
247 ext4_fsblk_t ext4_inode_table(struct super_block *sb,
248 struct ext4_group_desc *bg)
249 {
250 return le32_to_cpu(bg->bg_inode_table_lo) |
251 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
252 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
253 }
254
255 __u32 ext4_free_group_clusters(struct super_block *sb,
256 struct ext4_group_desc *bg)
257 {
258 return le16_to_cpu(bg->bg_free_blocks_count_lo) |
259 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
260 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
261 }
262
263 __u32 ext4_free_inodes_count(struct super_block *sb,
264 struct ext4_group_desc *bg)
265 {
266 return le16_to_cpu(bg->bg_free_inodes_count_lo) |
267 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
268 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
269 }
270
271 __u32 ext4_used_dirs_count(struct super_block *sb,
272 struct ext4_group_desc *bg)
273 {
274 return le16_to_cpu(bg->bg_used_dirs_count_lo) |
275 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
276 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
277 }
278
279 __u32 ext4_itable_unused_count(struct super_block *sb,
280 struct ext4_group_desc *bg)
281 {
282 return le16_to_cpu(bg->bg_itable_unused_lo) |
283 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
284 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
285 }
286
287 void ext4_block_bitmap_set(struct super_block *sb,
288 struct ext4_group_desc *bg, ext4_fsblk_t blk)
289 {
290 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
291 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
292 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
293 }
294
295 void ext4_inode_bitmap_set(struct super_block *sb,
296 struct ext4_group_desc *bg, ext4_fsblk_t blk)
297 {
298 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk);
299 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
300 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
301 }
302
303 void ext4_inode_table_set(struct super_block *sb,
304 struct ext4_group_desc *bg, ext4_fsblk_t blk)
305 {
306 bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
307 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
308 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
309 }
310
311 void ext4_free_group_clusters_set(struct super_block *sb,
312 struct ext4_group_desc *bg, __u32 count)
313 {
314 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
315 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
316 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
317 }
318
319 void ext4_free_inodes_set(struct super_block *sb,
320 struct ext4_group_desc *bg, __u32 count)
321 {
322 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
323 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
324 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
325 }
326
327 void ext4_used_dirs_set(struct super_block *sb,
328 struct ext4_group_desc *bg, __u32 count)
329 {
330 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
331 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
332 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
333 }
334
335 void ext4_itable_unused_set(struct super_block *sb,
336 struct ext4_group_desc *bg, __u32 count)
337 {
338 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
339 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
340 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
341 }
342
343
344 static void __save_error_info(struct super_block *sb, const char *func,
345 unsigned int line)
346 {
347 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
348
349 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
350 if (bdev_read_only(sb->s_bdev))
351 return;
352 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
353 es->s_last_error_time = cpu_to_le32(get_seconds());
354 strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func));
355 es->s_last_error_line = cpu_to_le32(line);
356 if (!es->s_first_error_time) {
357 es->s_first_error_time = es->s_last_error_time;
358 strncpy(es->s_first_error_func, func,
359 sizeof(es->s_first_error_func));
360 es->s_first_error_line = cpu_to_le32(line);
361 es->s_first_error_ino = es->s_last_error_ino;
362 es->s_first_error_block = es->s_last_error_block;
363 }
364 /*
365 * Start the daily error reporting function if it hasn't been
366 * started already
367 */
368 if (!es->s_error_count)
369 mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ);
370 le32_add_cpu(&es->s_error_count, 1);
371 }
372
373 static void save_error_info(struct super_block *sb, const char *func,
374 unsigned int line)
375 {
376 __save_error_info(sb, func, line);
377 ext4_commit_super(sb, 1);
378 }
379
380 /*
381 * The del_gendisk() function uninitializes the disk-specific data
382 * structures, including the bdi structure, without telling anyone
383 * else. Once this happens, any attempt to call mark_buffer_dirty()
384 * (for example, by ext4_commit_super), will cause a kernel OOPS.
385 * This is a kludge to prevent these oops until we can put in a proper
386 * hook in del_gendisk() to inform the VFS and file system layers.
387 */
388 static int block_device_ejected(struct super_block *sb)
389 {
390 struct inode *bd_inode = sb->s_bdev->bd_inode;
391 struct backing_dev_info *bdi = inode_to_bdi(bd_inode);
392
393 return bdi->dev == NULL;
394 }
395
396 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn)
397 {
398 struct super_block *sb = journal->j_private;
399 struct ext4_sb_info *sbi = EXT4_SB(sb);
400 int error = is_journal_aborted(journal);
401 struct ext4_journal_cb_entry *jce;
402
403 BUG_ON(txn->t_state == T_FINISHED);
404
405 ext4_process_freed_data(sb, txn->t_tid);
406
407 spin_lock(&sbi->s_md_lock);
408 while (!list_empty(&txn->t_private_list)) {
409 jce = list_entry(txn->t_private_list.next,
410 struct ext4_journal_cb_entry, jce_list);
411 list_del_init(&jce->jce_list);
412 spin_unlock(&sbi->s_md_lock);
413 jce->jce_func(sb, jce, error);
414 spin_lock(&sbi->s_md_lock);
415 }
416 spin_unlock(&sbi->s_md_lock);
417 }
418
419 static bool system_going_down(void)
420 {
421 return system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF
422 || system_state == SYSTEM_RESTART;
423 }
424
425 /* Deal with the reporting of failure conditions on a filesystem such as
426 * inconsistencies detected or read IO failures.
427 *
428 * On ext2, we can store the error state of the filesystem in the
429 * superblock. That is not possible on ext4, because we may have other
430 * write ordering constraints on the superblock which prevent us from
431 * writing it out straight away; and given that the journal is about to
432 * be aborted, we can't rely on the current, or future, transactions to
433 * write out the superblock safely.
434 *
435 * We'll just use the jbd2_journal_abort() error code to record an error in
436 * the journal instead. On recovery, the journal will complain about
437 * that error until we've noted it down and cleared it.
438 */
439
440 static void ext4_handle_error(struct super_block *sb)
441 {
442 if (sb_rdonly(sb))
443 return;
444
445 if (!test_opt(sb, ERRORS_CONT)) {
446 journal_t *journal = EXT4_SB(sb)->s_journal;
447
448 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
449 if (journal)
450 jbd2_journal_abort(journal, -EIO);
451 }
452 /*
453 * We force ERRORS_RO behavior when system is rebooting. Otherwise we
454 * could panic during 'reboot -f' as the underlying device got already
455 * disabled.
456 */
457 if (test_opt(sb, ERRORS_RO) || system_going_down()) {
458 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
459 /*
460 * Make sure updated value of ->s_mount_flags will be visible
461 * before ->s_flags update
462 */
463 smp_wmb();
464 sb->s_flags |= SB_RDONLY;
465 } else if (test_opt(sb, ERRORS_PANIC)) {
466 if (EXT4_SB(sb)->s_journal &&
467 !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR))
468 return;
469 panic("EXT4-fs (device %s): panic forced after error\n",
470 sb->s_id);
471 }
472 }
473
474 #define ext4_error_ratelimit(sb) \
475 ___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state), \
476 "EXT4-fs error")
477
478 void __ext4_error(struct super_block *sb, const char *function,
479 unsigned int line, const char *fmt, ...)
480 {
481 struct va_format vaf;
482 va_list args;
483
484 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
485 return;
486
487 if (ext4_error_ratelimit(sb)) {
488 va_start(args, fmt);
489 vaf.fmt = fmt;
490 vaf.va = &args;
491 printk(KERN_CRIT
492 "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
493 sb->s_id, function, line, current->comm, &vaf);
494 va_end(args);
495 }
496 save_error_info(sb, function, line);
497 ext4_handle_error(sb);
498 }
499
500 void __ext4_error_inode(struct inode *inode, const char *function,
501 unsigned int line, ext4_fsblk_t block,
502 const char *fmt, ...)
503 {
504 va_list args;
505 struct va_format vaf;
506 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
507
508 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
509 return;
510
511 es->s_last_error_ino = cpu_to_le32(inode->i_ino);
512 es->s_last_error_block = cpu_to_le64(block);
513 if (ext4_error_ratelimit(inode->i_sb)) {
514 va_start(args, fmt);
515 vaf.fmt = fmt;
516 vaf.va = &args;
517 if (block)
518 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
519 "inode #%lu: block %llu: comm %s: %pV\n",
520 inode->i_sb->s_id, function, line, inode->i_ino,
521 block, current->comm, &vaf);
522 else
523 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
524 "inode #%lu: comm %s: %pV\n",
525 inode->i_sb->s_id, function, line, inode->i_ino,
526 current->comm, &vaf);
527 va_end(args);
528 }
529 save_error_info(inode->i_sb, function, line);
530 ext4_handle_error(inode->i_sb);
531 }
532
533 void __ext4_error_file(struct file *file, const char *function,
534 unsigned int line, ext4_fsblk_t block,
535 const char *fmt, ...)
536 {
537 va_list args;
538 struct va_format vaf;
539 struct ext4_super_block *es;
540 struct inode *inode = file_inode(file);
541 char pathname[80], *path;
542
543 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
544 return;
545
546 es = EXT4_SB(inode->i_sb)->s_es;
547 es->s_last_error_ino = cpu_to_le32(inode->i_ino);
548 if (ext4_error_ratelimit(inode->i_sb)) {
549 path = file_path(file, pathname, sizeof(pathname));
550 if (IS_ERR(path))
551 path = "(unknown)";
552 va_start(args, fmt);
553 vaf.fmt = fmt;
554 vaf.va = &args;
555 if (block)
556 printk(KERN_CRIT
557 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
558 "block %llu: comm %s: path %s: %pV\n",
559 inode->i_sb->s_id, function, line, inode->i_ino,
560 block, current->comm, path, &vaf);
561 else
562 printk(KERN_CRIT
563 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
564 "comm %s: path %s: %pV\n",
565 inode->i_sb->s_id, function, line, inode->i_ino,
566 current->comm, path, &vaf);
567 va_end(args);
568 }
569 save_error_info(inode->i_sb, function, line);
570 ext4_handle_error(inode->i_sb);
571 }
572
573 const char *ext4_decode_error(struct super_block *sb, int errno,
574 char nbuf[16])
575 {
576 char *errstr = NULL;
577
578 switch (errno) {
579 case -EFSCORRUPTED:
580 errstr = "Corrupt filesystem";
581 break;
582 case -EFSBADCRC:
583 errstr = "Filesystem failed CRC";
584 break;
585 case -EIO:
586 errstr = "IO failure";
587 break;
588 case -ENOMEM:
589 errstr = "Out of memory";
590 break;
591 case -EROFS:
592 if (!sb || (EXT4_SB(sb)->s_journal &&
593 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
594 errstr = "Journal has aborted";
595 else
596 errstr = "Readonly filesystem";
597 break;
598 default:
599 /* If the caller passed in an extra buffer for unknown
600 * errors, textualise them now. Else we just return
601 * NULL. */
602 if (nbuf) {
603 /* Check for truncated error codes... */
604 if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
605 errstr = nbuf;
606 }
607 break;
608 }
609
610 return errstr;
611 }
612
613 /* __ext4_std_error decodes expected errors from journaling functions
614 * automatically and invokes the appropriate error response. */
615
616 void __ext4_std_error(struct super_block *sb, const char *function,
617 unsigned int line, int errno)
618 {
619 char nbuf[16];
620 const char *errstr;
621
622 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
623 return;
624
625 /* Special case: if the error is EROFS, and we're not already
626 * inside a transaction, then there's really no point in logging
627 * an error. */
628 if (errno == -EROFS && journal_current_handle() == NULL && sb_rdonly(sb))
629 return;
630
631 if (ext4_error_ratelimit(sb)) {
632 errstr = ext4_decode_error(sb, errno, nbuf);
633 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
634 sb->s_id, function, line, errstr);
635 }
636
637 save_error_info(sb, function, line);
638 ext4_handle_error(sb);
639 }
640
641 /*
642 * ext4_abort is a much stronger failure handler than ext4_error. The
643 * abort function may be used to deal with unrecoverable failures such
644 * as journal IO errors or ENOMEM at a critical moment in log management.
645 *
646 * We unconditionally force the filesystem into an ABORT|READONLY state,
647 * unless the error response on the fs has been set to panic in which
648 * case we take the easy way out and panic immediately.
649 */
650
651 void __ext4_abort(struct super_block *sb, const char *function,
652 unsigned int line, const char *fmt, ...)
653 {
654 struct va_format vaf;
655 va_list args;
656
657 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
658 return;
659
660 save_error_info(sb, function, line);
661 va_start(args, fmt);
662 vaf.fmt = fmt;
663 vaf.va = &args;
664 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: %pV\n",
665 sb->s_id, function, line, &vaf);
666 va_end(args);
667
668 if (sb_rdonly(sb) == 0) {
669 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
670 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
671 /*
672 * Make sure updated value of ->s_mount_flags will be visible
673 * before ->s_flags update
674 */
675 smp_wmb();
676 sb->s_flags |= SB_RDONLY;
677 if (EXT4_SB(sb)->s_journal)
678 jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO);
679 save_error_info(sb, function, line);
680 }
681 if (test_opt(sb, ERRORS_PANIC) && !system_going_down()) {
682 if (EXT4_SB(sb)->s_journal &&
683 !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR))
684 return;
685 panic("EXT4-fs panic from previous error\n");
686 }
687 }
688
689 void __ext4_msg(struct super_block *sb,
690 const char *prefix, const char *fmt, ...)
691 {
692 struct va_format vaf;
693 va_list args;
694
695 if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state), "EXT4-fs"))
696 return;
697
698 va_start(args, fmt);
699 vaf.fmt = fmt;
700 vaf.va = &args;
701 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
702 va_end(args);
703 }
704
705 #define ext4_warning_ratelimit(sb) \
706 ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state), \
707 "EXT4-fs warning")
708
709 void __ext4_warning(struct super_block *sb, const char *function,
710 unsigned int line, const char *fmt, ...)
711 {
712 struct va_format vaf;
713 va_list args;
714
715 if (!ext4_warning_ratelimit(sb))
716 return;
717
718 va_start(args, fmt);
719 vaf.fmt = fmt;
720 vaf.va = &args;
721 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
722 sb->s_id, function, line, &vaf);
723 va_end(args);
724 }
725
726 void __ext4_warning_inode(const struct inode *inode, const char *function,
727 unsigned int line, const char *fmt, ...)
728 {
729 struct va_format vaf;
730 va_list args;
731
732 if (!ext4_warning_ratelimit(inode->i_sb))
733 return;
734
735 va_start(args, fmt);
736 vaf.fmt = fmt;
737 vaf.va = &args;
738 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: "
739 "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id,
740 function, line, inode->i_ino, current->comm, &vaf);
741 va_end(args);
742 }
743
744 void __ext4_grp_locked_error(const char *function, unsigned int line,
745 struct super_block *sb, ext4_group_t grp,
746 unsigned long ino, ext4_fsblk_t block,
747 const char *fmt, ...)
748 __releases(bitlock)
749 __acquires(bitlock)
750 {
751 struct va_format vaf;
752 va_list args;
753 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
754
755 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
756 return;
757
758 es->s_last_error_ino = cpu_to_le32(ino);
759 es->s_last_error_block = cpu_to_le64(block);
760 __save_error_info(sb, function, line);
761
762 if (ext4_error_ratelimit(sb)) {
763 va_start(args, fmt);
764 vaf.fmt = fmt;
765 vaf.va = &args;
766 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
767 sb->s_id, function, line, grp);
768 if (ino)
769 printk(KERN_CONT "inode %lu: ", ino);
770 if (block)
771 printk(KERN_CONT "block %llu:",
772 (unsigned long long) block);
773 printk(KERN_CONT "%pV\n", &vaf);
774 va_end(args);
775 }
776
777 if (test_opt(sb, ERRORS_CONT)) {
778 ext4_commit_super(sb, 0);
779 return;
780 }
781
782 ext4_unlock_group(sb, grp);
783 ext4_commit_super(sb, 1);
784 ext4_handle_error(sb);
785 /*
786 * We only get here in the ERRORS_RO case; relocking the group
787 * may be dangerous, but nothing bad will happen since the
788 * filesystem will have already been marked read/only and the
789 * journal has been aborted. We return 1 as a hint to callers
790 * who might what to use the return value from
791 * ext4_grp_locked_error() to distinguish between the
792 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
793 * aggressively from the ext4 function in question, with a
794 * more appropriate error code.
795 */
796 ext4_lock_group(sb, grp);
797 return;
798 }
799
800 void ext4_update_dynamic_rev(struct super_block *sb)
801 {
802 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
803
804 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
805 return;
806
807 ext4_warning(sb,
808 "updating to rev %d because of new feature flag, "
809 "running e2fsck is recommended",
810 EXT4_DYNAMIC_REV);
811
812 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
813 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
814 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
815 /* leave es->s_feature_*compat flags alone */
816 /* es->s_uuid will be set by e2fsck if empty */
817
818 /*
819 * The rest of the superblock fields should be zero, and if not it
820 * means they are likely already in use, so leave them alone. We
821 * can leave it up to e2fsck to clean up any inconsistencies there.
822 */
823 }
824
825 /*
826 * Open the external journal device
827 */
828 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb)
829 {
830 struct block_device *bdev;
831 char b[BDEVNAME_SIZE];
832
833 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb);
834 if (IS_ERR(bdev))
835 goto fail;
836 return bdev;
837
838 fail:
839 ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld",
840 __bdevname(dev, b), PTR_ERR(bdev));
841 return NULL;
842 }
843
844 /*
845 * Release the journal device
846 */
847 static void ext4_blkdev_put(struct block_device *bdev)
848 {
849 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
850 }
851
852 static void ext4_blkdev_remove(struct ext4_sb_info *sbi)
853 {
854 struct block_device *bdev;
855 bdev = sbi->journal_bdev;
856 if (bdev) {
857 ext4_blkdev_put(bdev);
858 sbi->journal_bdev = NULL;
859 }
860 }
861
862 static inline struct inode *orphan_list_entry(struct list_head *l)
863 {
864 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
865 }
866
867 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
868 {
869 struct list_head *l;
870
871 ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
872 le32_to_cpu(sbi->s_es->s_last_orphan));
873
874 printk(KERN_ERR "sb_info orphan list:\n");
875 list_for_each(l, &sbi->s_orphan) {
876 struct inode *inode = orphan_list_entry(l);
877 printk(KERN_ERR " "
878 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
879 inode->i_sb->s_id, inode->i_ino, inode,
880 inode->i_mode, inode->i_nlink,
881 NEXT_ORPHAN(inode));
882 }
883 }
884
885 #ifdef CONFIG_QUOTA
886 static int ext4_quota_off(struct super_block *sb, int type);
887
888 static inline void ext4_quota_off_umount(struct super_block *sb)
889 {
890 int type;
891
892 /* Use our quota_off function to clear inode flags etc. */
893 for (type = 0; type < EXT4_MAXQUOTAS; type++)
894 ext4_quota_off(sb, type);
895 }
896
897 /*
898 * This is a helper function which is used in the mount/remount
899 * codepaths (which holds s_umount) to fetch the quota file name.
900 */
901 static inline char *get_qf_name(struct super_block *sb,
902 struct ext4_sb_info *sbi,
903 int type)
904 {
905 return rcu_dereference_protected(sbi->s_qf_names[type],
906 lockdep_is_held(&sb->s_umount));
907 }
908 #else
909 static inline void ext4_quota_off_umount(struct super_block *sb)
910 {
911 }
912 #endif
913
914 static void ext4_put_super(struct super_block *sb)
915 {
916 struct ext4_sb_info *sbi = EXT4_SB(sb);
917 struct ext4_super_block *es = sbi->s_es;
918 int aborted = 0;
919 int i, err;
920
921 ext4_unregister_li_request(sb);
922 ext4_quota_off_umount(sb);
923
924 flush_workqueue(sbi->rsv_conversion_wq);
925 destroy_workqueue(sbi->rsv_conversion_wq);
926
927 if (sbi->s_journal) {
928 aborted = is_journal_aborted(sbi->s_journal);
929 err = jbd2_journal_destroy(sbi->s_journal);
930 sbi->s_journal = NULL;
931 if ((err < 0) && !aborted)
932 ext4_abort(sb, "Couldn't clean up the journal");
933 }
934
935 ext4_unregister_sysfs(sb);
936 ext4_es_unregister_shrinker(sbi);
937 del_timer_sync(&sbi->s_err_report);
938 ext4_release_system_zone(sb);
939 ext4_mb_release(sb);
940 ext4_ext_release(sb);
941
942 if (!sb_rdonly(sb) && !aborted) {
943 ext4_clear_feature_journal_needs_recovery(sb);
944 es->s_state = cpu_to_le16(sbi->s_mount_state);
945 }
946 if (!sb_rdonly(sb))
947 ext4_commit_super(sb, 1);
948
949 for (i = 0; i < sbi->s_gdb_count; i++)
950 brelse(sbi->s_group_desc[i]);
951 kvfree(sbi->s_group_desc);
952 kvfree(sbi->s_flex_groups);
953 percpu_counter_destroy(&sbi->s_freeclusters_counter);
954 percpu_counter_destroy(&sbi->s_freeinodes_counter);
955 percpu_counter_destroy(&sbi->s_dirs_counter);
956 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
957 percpu_free_rwsem(&sbi->s_journal_flag_rwsem);
958 #ifdef CONFIG_QUOTA
959 for (i = 0; i < EXT4_MAXQUOTAS; i++)
960 kfree(get_qf_name(sb, sbi, i));
961 #endif
962
963 /* Debugging code just in case the in-memory inode orphan list
964 * isn't empty. The on-disk one can be non-empty if we've
965 * detected an error and taken the fs readonly, but the
966 * in-memory list had better be clean by this point. */
967 if (!list_empty(&sbi->s_orphan))
968 dump_orphan_list(sb, sbi);
969 J_ASSERT(list_empty(&sbi->s_orphan));
970
971 sync_blockdev(sb->s_bdev);
972 invalidate_bdev(sb->s_bdev);
973 if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) {
974 /*
975 * Invalidate the journal device's buffers. We don't want them
976 * floating about in memory - the physical journal device may
977 * hotswapped, and it breaks the `ro-after' testing code.
978 */
979 sync_blockdev(sbi->journal_bdev);
980 invalidate_bdev(sbi->journal_bdev);
981 ext4_blkdev_remove(sbi);
982 }
983 if (sbi->s_ea_inode_cache) {
984 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
985 sbi->s_ea_inode_cache = NULL;
986 }
987 if (sbi->s_ea_block_cache) {
988 ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
989 sbi->s_ea_block_cache = NULL;
990 }
991 if (sbi->s_mmp_tsk)
992 kthread_stop(sbi->s_mmp_tsk);
993 brelse(sbi->s_sbh);
994 sb->s_fs_info = NULL;
995 /*
996 * Now that we are completely done shutting down the
997 * superblock, we need to actually destroy the kobject.
998 */
999 kobject_put(&sbi->s_kobj);
1000 wait_for_completion(&sbi->s_kobj_unregister);
1001 if (sbi->s_chksum_driver)
1002 crypto_free_shash(sbi->s_chksum_driver);
1003 kfree(sbi->s_blockgroup_lock);
1004 fs_put_dax(sbi->s_daxdev);
1005 kfree(sbi);
1006 }
1007
1008 static struct kmem_cache *ext4_inode_cachep;
1009
1010 /*
1011 * Called inside transaction, so use GFP_NOFS
1012 */
1013 static struct inode *ext4_alloc_inode(struct super_block *sb)
1014 {
1015 struct ext4_inode_info *ei;
1016
1017 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS);
1018 if (!ei)
1019 return NULL;
1020
1021 ei->vfs_inode.i_version = 1;
1022 spin_lock_init(&ei->i_raw_lock);
1023 INIT_LIST_HEAD(&ei->i_prealloc_list);
1024 spin_lock_init(&ei->i_prealloc_lock);
1025 ext4_es_init_tree(&ei->i_es_tree);
1026 rwlock_init(&ei->i_es_lock);
1027 INIT_LIST_HEAD(&ei->i_es_list);
1028 ei->i_es_all_nr = 0;
1029 ei->i_es_shk_nr = 0;
1030 ei->i_es_shrink_lblk = 0;
1031 ei->i_reserved_data_blocks = 0;
1032 ei->i_da_metadata_calc_len = 0;
1033 ei->i_da_metadata_calc_last_lblock = 0;
1034 spin_lock_init(&(ei->i_block_reservation_lock));
1035 #ifdef CONFIG_QUOTA
1036 ei->i_reserved_quota = 0;
1037 memset(&ei->i_dquot, 0, sizeof(ei->i_dquot));
1038 #endif
1039 ei->jinode = NULL;
1040 INIT_LIST_HEAD(&ei->i_rsv_conversion_list);
1041 spin_lock_init(&ei->i_completed_io_lock);
1042 ei->i_sync_tid = 0;
1043 ei->i_datasync_tid = 0;
1044 atomic_set(&ei->i_unwritten, 0);
1045 INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work);
1046 return &ei->vfs_inode;
1047 }
1048
1049 static int ext4_drop_inode(struct inode *inode)
1050 {
1051 int drop = generic_drop_inode(inode);
1052
1053 trace_ext4_drop_inode(inode, drop);
1054 return drop;
1055 }
1056
1057 static void ext4_i_callback(struct rcu_head *head)
1058 {
1059 struct inode *inode = container_of(head, struct inode, i_rcu);
1060 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
1061 }
1062
1063 static void ext4_destroy_inode(struct inode *inode)
1064 {
1065 if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
1066 ext4_msg(inode->i_sb, KERN_ERR,
1067 "Inode %lu (%p): orphan list check failed!",
1068 inode->i_ino, EXT4_I(inode));
1069 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
1070 EXT4_I(inode), sizeof(struct ext4_inode_info),
1071 true);
1072 dump_stack();
1073 }
1074 call_rcu(&inode->i_rcu, ext4_i_callback);
1075 }
1076
1077 static void init_once(void *foo)
1078 {
1079 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo;
1080
1081 INIT_LIST_HEAD(&ei->i_orphan);
1082 init_rwsem(&ei->xattr_sem);
1083 init_rwsem(&ei->i_data_sem);
1084 init_rwsem(&ei->i_mmap_sem);
1085 inode_init_once(&ei->vfs_inode);
1086 }
1087
1088 static int __init init_inodecache(void)
1089 {
1090 ext4_inode_cachep = kmem_cache_create("ext4_inode_cache",
1091 sizeof(struct ext4_inode_info),
1092 0, (SLAB_RECLAIM_ACCOUNT|
1093 SLAB_MEM_SPREAD|SLAB_ACCOUNT),
1094 init_once);
1095 if (ext4_inode_cachep == NULL)
1096 return -ENOMEM;
1097 return 0;
1098 }
1099
1100 static void destroy_inodecache(void)
1101 {
1102 /*
1103 * Make sure all delayed rcu free inodes are flushed before we
1104 * destroy cache.
1105 */
1106 rcu_barrier();
1107 kmem_cache_destroy(ext4_inode_cachep);
1108 }
1109
1110 void ext4_clear_inode(struct inode *inode)
1111 {
1112 invalidate_inode_buffers(inode);
1113 clear_inode(inode);
1114 dquot_drop(inode);
1115 ext4_discard_preallocations(inode);
1116 ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS);
1117 if (EXT4_I(inode)->jinode) {
1118 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
1119 EXT4_I(inode)->jinode);
1120 jbd2_free_inode(EXT4_I(inode)->jinode);
1121 EXT4_I(inode)->jinode = NULL;
1122 }
1123 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1124 fscrypt_put_encryption_info(inode, NULL);
1125 #endif
1126 }
1127
1128 static struct inode *ext4_nfs_get_inode(struct super_block *sb,
1129 u64 ino, u32 generation)
1130 {
1131 struct inode *inode;
1132
1133 /*
1134 * Currently we don't know the generation for parent directory, so
1135 * a generation of 0 means "accept any"
1136 */
1137 inode = ext4_iget(sb, ino, EXT4_IGET_HANDLE);
1138 if (IS_ERR(inode))
1139 return ERR_CAST(inode);
1140 if (generation && inode->i_generation != generation) {
1141 iput(inode);
1142 return ERR_PTR(-ESTALE);
1143 }
1144
1145 return inode;
1146 }
1147
1148 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
1149 int fh_len, int fh_type)
1150 {
1151 return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1152 ext4_nfs_get_inode);
1153 }
1154
1155 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
1156 int fh_len, int fh_type)
1157 {
1158 return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1159 ext4_nfs_get_inode);
1160 }
1161
1162 static int ext4_nfs_commit_metadata(struct inode *inode)
1163 {
1164 struct writeback_control wbc = {
1165 .sync_mode = WB_SYNC_ALL
1166 };
1167
1168 trace_ext4_nfs_commit_metadata(inode);
1169 return ext4_write_inode(inode, &wbc);
1170 }
1171
1172 /*
1173 * Try to release metadata pages (indirect blocks, directories) which are
1174 * mapped via the block device. Since these pages could have journal heads
1175 * which would prevent try_to_free_buffers() from freeing them, we must use
1176 * jbd2 layer's try_to_free_buffers() function to release them.
1177 */
1178 static int bdev_try_to_free_page(struct super_block *sb, struct page *page,
1179 gfp_t wait)
1180 {
1181 journal_t *journal = EXT4_SB(sb)->s_journal;
1182
1183 WARN_ON(PageChecked(page));
1184 if (!page_has_buffers(page))
1185 return 0;
1186 if (journal)
1187 return jbd2_journal_try_to_free_buffers(journal, page,
1188 wait & ~__GFP_DIRECT_RECLAIM);
1189 return try_to_free_buffers(page);
1190 }
1191
1192 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1193 static int ext4_get_context(struct inode *inode, void *ctx, size_t len)
1194 {
1195 return ext4_xattr_get(inode, EXT4_XATTR_INDEX_ENCRYPTION,
1196 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, ctx, len);
1197 }
1198
1199 static int ext4_set_context(struct inode *inode, const void *ctx, size_t len,
1200 void *fs_data)
1201 {
1202 handle_t *handle = fs_data;
1203 int res, res2, credits, retries = 0;
1204
1205 /*
1206 * Encrypting the root directory is not allowed because e2fsck expects
1207 * lost+found to exist and be unencrypted, and encrypting the root
1208 * directory would imply encrypting the lost+found directory as well as
1209 * the filename "lost+found" itself.
1210 */
1211 if (inode->i_ino == EXT4_ROOT_INO)
1212 return -EPERM;
1213
1214 if (WARN_ON_ONCE(IS_DAX(inode) && i_size_read(inode)))
1215 return -EINVAL;
1216
1217 res = ext4_convert_inline_data(inode);
1218 if (res)
1219 return res;
1220
1221 /*
1222 * If a journal handle was specified, then the encryption context is
1223 * being set on a new inode via inheritance and is part of a larger
1224 * transaction to create the inode. Otherwise the encryption context is
1225 * being set on an existing inode in its own transaction. Only in the
1226 * latter case should the "retry on ENOSPC" logic be used.
1227 */
1228
1229 if (handle) {
1230 res = ext4_xattr_set_handle(handle, inode,
1231 EXT4_XATTR_INDEX_ENCRYPTION,
1232 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT,
1233 ctx, len, 0);
1234 if (!res) {
1235 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT);
1236 ext4_clear_inode_state(inode,
1237 EXT4_STATE_MAY_INLINE_DATA);
1238 /*
1239 * Update inode->i_flags - S_ENCRYPTED will be enabled,
1240 * S_DAX may be disabled
1241 */
1242 ext4_set_inode_flags(inode);
1243 }
1244 return res;
1245 }
1246
1247 res = dquot_initialize(inode);
1248 if (res)
1249 return res;
1250 retry:
1251 res = ext4_xattr_set_credits(inode, len, false /* is_create */,
1252 &credits);
1253 if (res)
1254 return res;
1255
1256 handle = ext4_journal_start(inode, EXT4_HT_MISC, credits);
1257 if (IS_ERR(handle))
1258 return PTR_ERR(handle);
1259
1260 res = ext4_xattr_set_handle(handle, inode, EXT4_XATTR_INDEX_ENCRYPTION,
1261 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT,
1262 ctx, len, 0);
1263 if (!res) {
1264 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT);
1265 /*
1266 * Update inode->i_flags - S_ENCRYPTED will be enabled,
1267 * S_DAX may be disabled
1268 */
1269 ext4_set_inode_flags(inode);
1270 res = ext4_mark_inode_dirty(handle, inode);
1271 if (res)
1272 EXT4_ERROR_INODE(inode, "Failed to mark inode dirty");
1273 }
1274 res2 = ext4_journal_stop(handle);
1275
1276 if (res == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1277 goto retry;
1278 if (!res)
1279 res = res2;
1280 return res;
1281 }
1282
1283 static bool ext4_dummy_context(struct inode *inode)
1284 {
1285 return DUMMY_ENCRYPTION_ENABLED(EXT4_SB(inode->i_sb));
1286 }
1287
1288 static unsigned ext4_max_namelen(struct inode *inode)
1289 {
1290 return S_ISLNK(inode->i_mode) ? inode->i_sb->s_blocksize :
1291 EXT4_NAME_LEN;
1292 }
1293
1294 static const struct fscrypt_operations ext4_cryptops = {
1295 .key_prefix = "ext4:",
1296 .get_context = ext4_get_context,
1297 .set_context = ext4_set_context,
1298 .dummy_context = ext4_dummy_context,
1299 .empty_dir = ext4_empty_dir,
1300 .max_namelen = ext4_max_namelen,
1301 };
1302 #endif
1303
1304 #ifdef CONFIG_QUOTA
1305 static const char * const quotatypes[] = INITQFNAMES;
1306 #define QTYPE2NAME(t) (quotatypes[t])
1307
1308 static int ext4_write_dquot(struct dquot *dquot);
1309 static int ext4_acquire_dquot(struct dquot *dquot);
1310 static int ext4_release_dquot(struct dquot *dquot);
1311 static int ext4_mark_dquot_dirty(struct dquot *dquot);
1312 static int ext4_write_info(struct super_block *sb, int type);
1313 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1314 const struct path *path);
1315 static int ext4_quota_on_mount(struct super_block *sb, int type);
1316 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1317 size_t len, loff_t off);
1318 static ssize_t ext4_quota_write(struct super_block *sb, int type,
1319 const char *data, size_t len, loff_t off);
1320 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
1321 unsigned int flags);
1322 static int ext4_enable_quotas(struct super_block *sb);
1323 static int ext4_get_next_id(struct super_block *sb, struct kqid *qid);
1324
1325 static struct dquot **ext4_get_dquots(struct inode *inode)
1326 {
1327 return EXT4_I(inode)->i_dquot;
1328 }
1329
1330 static const struct dquot_operations ext4_quota_operations = {
1331 .get_reserved_space = ext4_get_reserved_space,
1332 .write_dquot = ext4_write_dquot,
1333 .acquire_dquot = ext4_acquire_dquot,
1334 .release_dquot = ext4_release_dquot,
1335 .mark_dirty = ext4_mark_dquot_dirty,
1336 .write_info = ext4_write_info,
1337 .alloc_dquot = dquot_alloc,
1338 .destroy_dquot = dquot_destroy,
1339 .get_projid = ext4_get_projid,
1340 .get_inode_usage = ext4_get_inode_usage,
1341 .get_next_id = ext4_get_next_id,
1342 };
1343
1344 static const struct quotactl_ops ext4_qctl_operations = {
1345 .quota_on = ext4_quota_on,
1346 .quota_off = ext4_quota_off,
1347 .quota_sync = dquot_quota_sync,
1348 .get_state = dquot_get_state,
1349 .set_info = dquot_set_dqinfo,
1350 .get_dqblk = dquot_get_dqblk,
1351 .set_dqblk = dquot_set_dqblk,
1352 .get_nextdqblk = dquot_get_next_dqblk,
1353 };
1354 #endif
1355
1356 static const struct super_operations ext4_sops = {
1357 .alloc_inode = ext4_alloc_inode,
1358 .destroy_inode = ext4_destroy_inode,
1359 .write_inode = ext4_write_inode,
1360 .dirty_inode = ext4_dirty_inode,
1361 .drop_inode = ext4_drop_inode,
1362 .evict_inode = ext4_evict_inode,
1363 .put_super = ext4_put_super,
1364 .sync_fs = ext4_sync_fs,
1365 .freeze_fs = ext4_freeze,
1366 .unfreeze_fs = ext4_unfreeze,
1367 .statfs = ext4_statfs,
1368 .remount_fs = ext4_remount,
1369 .show_options = ext4_show_options,
1370 #ifdef CONFIG_QUOTA
1371 .quota_read = ext4_quota_read,
1372 .quota_write = ext4_quota_write,
1373 .get_dquots = ext4_get_dquots,
1374 #endif
1375 .bdev_try_to_free_page = bdev_try_to_free_page,
1376 };
1377
1378 static const struct export_operations ext4_export_ops = {
1379 .fh_to_dentry = ext4_fh_to_dentry,
1380 .fh_to_parent = ext4_fh_to_parent,
1381 .get_parent = ext4_get_parent,
1382 .commit_metadata = ext4_nfs_commit_metadata,
1383 };
1384
1385 enum {
1386 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1387 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro,
1388 Opt_nouid32, Opt_debug, Opt_removed,
1389 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl,
1390 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload,
1391 Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev,
1392 Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit,
1393 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1394 Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption,
1395 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota,
1396 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota,
1397 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err,
1398 Opt_usrquota, Opt_grpquota, Opt_prjquota, Opt_i_version, Opt_dax,
1399 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_mblk_io_submit,
1400 Opt_lazytime, Opt_nolazytime, Opt_debug_want_extra_isize,
1401 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1402 Opt_inode_readahead_blks, Opt_journal_ioprio,
1403 Opt_dioread_nolock, Opt_dioread_lock,
1404 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable,
1405 Opt_max_dir_size_kb, Opt_nojournal_checksum, Opt_nombcache,
1406 };
1407
1408 static const match_table_t tokens = {
1409 {Opt_bsd_df, "bsddf"},
1410 {Opt_minix_df, "minixdf"},
1411 {Opt_grpid, "grpid"},
1412 {Opt_grpid, "bsdgroups"},
1413 {Opt_nogrpid, "nogrpid"},
1414 {Opt_nogrpid, "sysvgroups"},
1415 {Opt_resgid, "resgid=%u"},
1416 {Opt_resuid, "resuid=%u"},
1417 {Opt_sb, "sb=%u"},
1418 {Opt_err_cont, "errors=continue"},
1419 {Opt_err_panic, "errors=panic"},
1420 {Opt_err_ro, "errors=remount-ro"},
1421 {Opt_nouid32, "nouid32"},
1422 {Opt_debug, "debug"},
1423 {Opt_removed, "oldalloc"},
1424 {Opt_removed, "orlov"},
1425 {Opt_user_xattr, "user_xattr"},
1426 {Opt_nouser_xattr, "nouser_xattr"},
1427 {Opt_acl, "acl"},
1428 {Opt_noacl, "noacl"},
1429 {Opt_noload, "norecovery"},
1430 {Opt_noload, "noload"},
1431 {Opt_removed, "nobh"},
1432 {Opt_removed, "bh"},
1433 {Opt_commit, "commit=%u"},
1434 {Opt_min_batch_time, "min_batch_time=%u"},
1435 {Opt_max_batch_time, "max_batch_time=%u"},
1436 {Opt_journal_dev, "journal_dev=%u"},
1437 {Opt_journal_path, "journal_path=%s"},
1438 {Opt_journal_checksum, "journal_checksum"},
1439 {Opt_nojournal_checksum, "nojournal_checksum"},
1440 {Opt_journal_async_commit, "journal_async_commit"},
1441 {Opt_abort, "abort"},
1442 {Opt_data_journal, "data=journal"},
1443 {Opt_data_ordered, "data=ordered"},
1444 {Opt_data_writeback, "data=writeback"},
1445 {Opt_data_err_abort, "data_err=abort"},
1446 {Opt_data_err_ignore, "data_err=ignore"},
1447 {Opt_offusrjquota, "usrjquota="},
1448 {Opt_usrjquota, "usrjquota=%s"},
1449 {Opt_offgrpjquota, "grpjquota="},
1450 {Opt_grpjquota, "grpjquota=%s"},
1451 {Opt_jqfmt_vfsold, "jqfmt=vfsold"},
1452 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
1453 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
1454 {Opt_grpquota, "grpquota"},
1455 {Opt_noquota, "noquota"},
1456 {Opt_quota, "quota"},
1457 {Opt_usrquota, "usrquota"},
1458 {Opt_prjquota, "prjquota"},
1459 {Opt_barrier, "barrier=%u"},
1460 {Opt_barrier, "barrier"},
1461 {Opt_nobarrier, "nobarrier"},
1462 {Opt_i_version, "i_version"},
1463 {Opt_dax, "dax"},
1464 {Opt_stripe, "stripe=%u"},
1465 {Opt_delalloc, "delalloc"},
1466 {Opt_lazytime, "lazytime"},
1467 {Opt_nolazytime, "nolazytime"},
1468 {Opt_debug_want_extra_isize, "debug_want_extra_isize=%u"},
1469 {Opt_nodelalloc, "nodelalloc"},
1470 {Opt_removed, "mblk_io_submit"},
1471 {Opt_removed, "nomblk_io_submit"},
1472 {Opt_block_validity, "block_validity"},
1473 {Opt_noblock_validity, "noblock_validity"},
1474 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"},
1475 {Opt_journal_ioprio, "journal_ioprio=%u"},
1476 {Opt_auto_da_alloc, "auto_da_alloc=%u"},
1477 {Opt_auto_da_alloc, "auto_da_alloc"},
1478 {Opt_noauto_da_alloc, "noauto_da_alloc"},
1479 {Opt_dioread_nolock, "dioread_nolock"},
1480 {Opt_dioread_lock, "dioread_lock"},
1481 {Opt_discard, "discard"},
1482 {Opt_nodiscard, "nodiscard"},
1483 {Opt_init_itable, "init_itable=%u"},
1484 {Opt_init_itable, "init_itable"},
1485 {Opt_noinit_itable, "noinit_itable"},
1486 {Opt_max_dir_size_kb, "max_dir_size_kb=%u"},
1487 {Opt_test_dummy_encryption, "test_dummy_encryption"},
1488 {Opt_nombcache, "nombcache"},
1489 {Opt_nombcache, "no_mbcache"}, /* for backward compatibility */
1490 {Opt_removed, "check=none"}, /* mount option from ext2/3 */
1491 {Opt_removed, "nocheck"}, /* mount option from ext2/3 */
1492 {Opt_removed, "reservation"}, /* mount option from ext2/3 */
1493 {Opt_removed, "noreservation"}, /* mount option from ext2/3 */
1494 {Opt_removed, "journal=%u"}, /* mount option from ext2/3 */
1495 {Opt_err, NULL},
1496 };
1497
1498 static ext4_fsblk_t get_sb_block(void **data)
1499 {
1500 ext4_fsblk_t sb_block;
1501 char *options = (char *) *data;
1502
1503 if (!options || strncmp(options, "sb=", 3) != 0)
1504 return 1; /* Default location */
1505
1506 options += 3;
1507 /* TODO: use simple_strtoll with >32bit ext4 */
1508 sb_block = simple_strtoul(options, &options, 0);
1509 if (*options && *options != ',') {
1510 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n",
1511 (char *) *data);
1512 return 1;
1513 }
1514 if (*options == ',')
1515 options++;
1516 *data = (void *) options;
1517
1518 return sb_block;
1519 }
1520
1521 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1522 static const char deprecated_msg[] =
1523 "Mount option \"%s\" will be removed by %s\n"
1524 "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n";
1525
1526 #ifdef CONFIG_QUOTA
1527 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args)
1528 {
1529 struct ext4_sb_info *sbi = EXT4_SB(sb);
1530 char *qname, *old_qname = get_qf_name(sb, sbi, qtype);
1531 int ret = -1;
1532
1533 if (sb_any_quota_loaded(sb) && !old_qname) {
1534 ext4_msg(sb, KERN_ERR,
1535 "Cannot change journaled "
1536 "quota options when quota turned on");
1537 return -1;
1538 }
1539 if (ext4_has_feature_quota(sb)) {
1540 ext4_msg(sb, KERN_INFO, "Journaled quota options "
1541 "ignored when QUOTA feature is enabled");
1542 return 1;
1543 }
1544 qname = match_strdup(args);
1545 if (!qname) {
1546 ext4_msg(sb, KERN_ERR,
1547 "Not enough memory for storing quotafile name");
1548 return -1;
1549 }
1550 if (old_qname) {
1551 if (strcmp(old_qname, qname) == 0)
1552 ret = 1;
1553 else
1554 ext4_msg(sb, KERN_ERR,
1555 "%s quota file already specified",
1556 QTYPE2NAME(qtype));
1557 goto errout;
1558 }
1559 if (strchr(qname, '/')) {
1560 ext4_msg(sb, KERN_ERR,
1561 "quotafile must be on filesystem root");
1562 goto errout;
1563 }
1564 rcu_assign_pointer(sbi->s_qf_names[qtype], qname);
1565 set_opt(sb, QUOTA);
1566 return 1;
1567 errout:
1568 kfree(qname);
1569 return ret;
1570 }
1571
1572 static int clear_qf_name(struct super_block *sb, int qtype)
1573 {
1574
1575 struct ext4_sb_info *sbi = EXT4_SB(sb);
1576 char *old_qname = get_qf_name(sb, sbi, qtype);
1577
1578 if (sb_any_quota_loaded(sb) && old_qname) {
1579 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options"
1580 " when quota turned on");
1581 return -1;
1582 }
1583 rcu_assign_pointer(sbi->s_qf_names[qtype], NULL);
1584 synchronize_rcu();
1585 kfree(old_qname);
1586 return 1;
1587 }
1588 #endif
1589
1590 #define MOPT_SET 0x0001
1591 #define MOPT_CLEAR 0x0002
1592 #define MOPT_NOSUPPORT 0x0004
1593 #define MOPT_EXPLICIT 0x0008
1594 #define MOPT_CLEAR_ERR 0x0010
1595 #define MOPT_GTE0 0x0020
1596 #ifdef CONFIG_QUOTA
1597 #define MOPT_Q 0
1598 #define MOPT_QFMT 0x0040
1599 #else
1600 #define MOPT_Q MOPT_NOSUPPORT
1601 #define MOPT_QFMT MOPT_NOSUPPORT
1602 #endif
1603 #define MOPT_DATAJ 0x0080
1604 #define MOPT_NO_EXT2 0x0100
1605 #define MOPT_NO_EXT3 0x0200
1606 #define MOPT_EXT4_ONLY (MOPT_NO_EXT2 | MOPT_NO_EXT3)
1607 #define MOPT_STRING 0x0400
1608
1609 static const struct mount_opts {
1610 int token;
1611 int mount_opt;
1612 int flags;
1613 } ext4_mount_opts[] = {
1614 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET},
1615 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR},
1616 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET},
1617 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR},
1618 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET},
1619 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR},
1620 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK,
1621 MOPT_EXT4_ONLY | MOPT_SET},
1622 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK,
1623 MOPT_EXT4_ONLY | MOPT_CLEAR},
1624 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET},
1625 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR},
1626 {Opt_delalloc, EXT4_MOUNT_DELALLOC,
1627 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1628 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC,
1629 MOPT_EXT4_ONLY | MOPT_CLEAR},
1630 {Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1631 MOPT_EXT4_ONLY | MOPT_CLEAR},
1632 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1633 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1634 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT |
1635 EXT4_MOUNT_JOURNAL_CHECKSUM),
1636 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1637 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET},
1638 {Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR},
1639 {Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR},
1640 {Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR},
1641 {Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT,
1642 MOPT_NO_EXT2},
1643 {Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT,
1644 MOPT_NO_EXT2},
1645 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET},
1646 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR},
1647 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET},
1648 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR},
1649 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR},
1650 {Opt_commit, 0, MOPT_GTE0},
1651 {Opt_max_batch_time, 0, MOPT_GTE0},
1652 {Opt_min_batch_time, 0, MOPT_GTE0},
1653 {Opt_inode_readahead_blks, 0, MOPT_GTE0},
1654 {Opt_init_itable, 0, MOPT_GTE0},
1655 {Opt_dax, EXT4_MOUNT_DAX, MOPT_SET},
1656 {Opt_stripe, 0, MOPT_GTE0},
1657 {Opt_resuid, 0, MOPT_GTE0},
1658 {Opt_resgid, 0, MOPT_GTE0},
1659 {Opt_journal_dev, 0, MOPT_NO_EXT2 | MOPT_GTE0},
1660 {Opt_journal_path, 0, MOPT_NO_EXT2 | MOPT_STRING},
1661 {Opt_journal_ioprio, 0, MOPT_NO_EXT2 | MOPT_GTE0},
1662 {Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1663 {Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1664 {Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA,
1665 MOPT_NO_EXT2 | MOPT_DATAJ},
1666 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET},
1667 {Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR},
1668 #ifdef CONFIG_EXT4_FS_POSIX_ACL
1669 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET},
1670 {Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR},
1671 #else
1672 {Opt_acl, 0, MOPT_NOSUPPORT},
1673 {Opt_noacl, 0, MOPT_NOSUPPORT},
1674 #endif
1675 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET},
1676 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET},
1677 {Opt_debug_want_extra_isize, 0, MOPT_GTE0},
1678 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q},
1679 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA,
1680 MOPT_SET | MOPT_Q},
1681 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA,
1682 MOPT_SET | MOPT_Q},
1683 {Opt_prjquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_PRJQUOTA,
1684 MOPT_SET | MOPT_Q},
1685 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
1686 EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA),
1687 MOPT_CLEAR | MOPT_Q},
1688 {Opt_usrjquota, 0, MOPT_Q},
1689 {Opt_grpjquota, 0, MOPT_Q},
1690 {Opt_offusrjquota, 0, MOPT_Q},
1691 {Opt_offgrpjquota, 0, MOPT_Q},
1692 {Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT},
1693 {Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT},
1694 {Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT},
1695 {Opt_max_dir_size_kb, 0, MOPT_GTE0},
1696 {Opt_test_dummy_encryption, 0, MOPT_GTE0},
1697 {Opt_nombcache, EXT4_MOUNT_NO_MBCACHE, MOPT_SET},
1698 {Opt_err, 0, 0}
1699 };
1700
1701 static int handle_mount_opt(struct super_block *sb, char *opt, int token,
1702 substring_t *args, unsigned long *journal_devnum,
1703 unsigned int *journal_ioprio, int is_remount)
1704 {
1705 struct ext4_sb_info *sbi = EXT4_SB(sb);
1706 const struct mount_opts *m;
1707 kuid_t uid;
1708 kgid_t gid;
1709 int arg = 0;
1710
1711 #ifdef CONFIG_QUOTA
1712 if (token == Opt_usrjquota)
1713 return set_qf_name(sb, USRQUOTA, &args[0]);
1714 else if (token == Opt_grpjquota)
1715 return set_qf_name(sb, GRPQUOTA, &args[0]);
1716 else if (token == Opt_offusrjquota)
1717 return clear_qf_name(sb, USRQUOTA);
1718 else if (token == Opt_offgrpjquota)
1719 return clear_qf_name(sb, GRPQUOTA);
1720 #endif
1721 switch (token) {
1722 case Opt_noacl:
1723 case Opt_nouser_xattr:
1724 ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5");
1725 break;
1726 case Opt_sb:
1727 return 1; /* handled by get_sb_block() */
1728 case Opt_removed:
1729 ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt);
1730 return 1;
1731 case Opt_abort:
1732 sbi->s_mount_flags |= EXT4_MF_FS_ABORTED;
1733 return 1;
1734 case Opt_i_version:
1735 sb->s_flags |= SB_I_VERSION;
1736 return 1;
1737 case Opt_lazytime:
1738 sb->s_flags |= SB_LAZYTIME;
1739 return 1;
1740 case Opt_nolazytime:
1741 sb->s_flags &= ~SB_LAZYTIME;
1742 return 1;
1743 }
1744
1745 for (m = ext4_mount_opts; m->token != Opt_err; m++)
1746 if (token == m->token)
1747 break;
1748
1749 if (m->token == Opt_err) {
1750 ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" "
1751 "or missing value", opt);
1752 return -1;
1753 }
1754
1755 if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) {
1756 ext4_msg(sb, KERN_ERR,
1757 "Mount option \"%s\" incompatible with ext2", opt);
1758 return -1;
1759 }
1760 if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) {
1761 ext4_msg(sb, KERN_ERR,
1762 "Mount option \"%s\" incompatible with ext3", opt);
1763 return -1;
1764 }
1765
1766 if (token == Opt_err_panic && !capable(CAP_SYS_ADMIN)) {
1767 ext4_msg(sb, KERN_ERR,
1768 "Mount option \"%s\" not allowed for unprivileged mounts",
1769 opt);
1770 return -1;
1771 }
1772
1773 if (args->from && !(m->flags & MOPT_STRING) && match_int(args, &arg))
1774 return -1;
1775 if (args->from && (m->flags & MOPT_GTE0) && (arg < 0))
1776 return -1;
1777 if (m->flags & MOPT_EXPLICIT) {
1778 if (m->mount_opt & EXT4_MOUNT_DELALLOC) {
1779 set_opt2(sb, EXPLICIT_DELALLOC);
1780 } else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) {
1781 set_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM);
1782 } else
1783 return -1;
1784 }
1785 if (m->flags & MOPT_CLEAR_ERR)
1786 clear_opt(sb, ERRORS_MASK);
1787 if (token == Opt_noquota && sb_any_quota_loaded(sb)) {
1788 ext4_msg(sb, KERN_ERR, "Cannot change quota "
1789 "options when quota turned on");
1790 return -1;
1791 }
1792
1793 if (m->flags & MOPT_NOSUPPORT) {
1794 ext4_msg(sb, KERN_ERR, "%s option not supported", opt);
1795 } else if (token == Opt_commit) {
1796 if (arg == 0)
1797 arg = JBD2_DEFAULT_MAX_COMMIT_AGE;
1798 sbi->s_commit_interval = HZ * arg;
1799 } else if (token == Opt_debug_want_extra_isize) {
1800 if ((arg & 1) ||
1801 (arg < 4) ||
1802 (arg > (sbi->s_inode_size - EXT4_GOOD_OLD_INODE_SIZE))) {
1803 ext4_msg(sb, KERN_ERR,
1804 "Invalid want_extra_isize %d", arg);
1805 return -1;
1806 }
1807 sbi->s_want_extra_isize = arg;
1808 } else if (token == Opt_max_batch_time) {
1809 sbi->s_max_batch_time = arg;
1810 } else if (token == Opt_min_batch_time) {
1811 sbi->s_min_batch_time = arg;
1812 } else if (token == Opt_inode_readahead_blks) {
1813 if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) {
1814 ext4_msg(sb, KERN_ERR,
1815 "EXT4-fs: inode_readahead_blks must be "
1816 "0 or a power of 2 smaller than 2^31");
1817 return -1;
1818 }
1819 sbi->s_inode_readahead_blks = arg;
1820 } else if (token == Opt_init_itable) {
1821 set_opt(sb, INIT_INODE_TABLE);
1822 if (!args->from)
1823 arg = EXT4_DEF_LI_WAIT_MULT;
1824 sbi->s_li_wait_mult = arg;
1825 } else if (token == Opt_max_dir_size_kb) {
1826 sbi->s_max_dir_size_kb = arg;
1827 } else if (token == Opt_stripe) {
1828 sbi->s_stripe = arg;
1829 } else if (token == Opt_resuid) {
1830 uid = make_kuid(sb->s_user_ns, arg);
1831 if (!uid_valid(uid)) {
1832 ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg);
1833 return -1;
1834 }
1835 sbi->s_resuid = uid;
1836 } else if (token == Opt_resgid) {
1837 gid = make_kgid(sb->s_user_ns, arg);
1838 if (!gid_valid(gid)) {
1839 ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg);
1840 return -1;
1841 }
1842 sbi->s_resgid = gid;
1843 } else if (token == Opt_journal_dev) {
1844 if (is_remount) {
1845 ext4_msg(sb, KERN_ERR,
1846 "Cannot specify journal on remount");
1847 return -1;
1848 }
1849 *journal_devnum = arg;
1850 } else if (token == Opt_journal_path) {
1851 char *journal_path;
1852 struct inode *journal_inode;
1853 struct path path;
1854 int error;
1855
1856 if (is_remount) {
1857 ext4_msg(sb, KERN_ERR,
1858 "Cannot specify journal on remount");
1859 return -1;
1860 }
1861 journal_path = match_strdup(&args[0]);
1862 if (!journal_path) {
1863 ext4_msg(sb, KERN_ERR, "error: could not dup "
1864 "journal device string");
1865 return -1;
1866 }
1867
1868 error = kern_path(journal_path, LOOKUP_FOLLOW, &path);
1869 if (error) {
1870 ext4_msg(sb, KERN_ERR, "error: could not find "
1871 "journal device path: error %d", error);
1872 kfree(journal_path);
1873 return -1;
1874 }
1875
1876 /*
1877 * Refuse access for unprivileged mounts if the user does
1878 * not have rw access to the journal device via the supplied
1879 * path.
1880 */
1881 if (!capable(CAP_SYS_ADMIN) &&
1882 inode_permission(d_inode(path.dentry), MAY_READ|MAY_WRITE)) {
1883 ext4_msg(sb, KERN_ERR,
1884 "error: Insufficient access to journal path %s",
1885 journal_path);
1886 return -1;
1887 }
1888
1889 journal_inode = d_inode(path.dentry);
1890 if (!S_ISBLK(journal_inode->i_mode)) {
1891 ext4_msg(sb, KERN_ERR, "error: journal path %s "
1892 "is not a block device", journal_path);
1893 path_put(&path);
1894 kfree(journal_path);
1895 return -1;
1896 }
1897
1898 *journal_devnum = new_encode_dev(journal_inode->i_rdev);
1899 path_put(&path);
1900 kfree(journal_path);
1901 } else if (token == Opt_journal_ioprio) {
1902 if (arg > 7) {
1903 ext4_msg(sb, KERN_ERR, "Invalid journal IO priority"
1904 " (must be 0-7)");
1905 return -1;
1906 }
1907 *journal_ioprio =
1908 IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg);
1909 } else if (token == Opt_test_dummy_encryption) {
1910 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1911 sbi->s_mount_flags |= EXT4_MF_TEST_DUMMY_ENCRYPTION;
1912 ext4_msg(sb, KERN_WARNING,
1913 "Test dummy encryption mode enabled");
1914 #else
1915 ext4_msg(sb, KERN_WARNING,
1916 "Test dummy encryption mount option ignored");
1917 #endif
1918 } else if (m->flags & MOPT_DATAJ) {
1919 if (is_remount) {
1920 if (!sbi->s_journal)
1921 ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option");
1922 else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) {
1923 ext4_msg(sb, KERN_ERR,
1924 "Cannot change data mode on remount");
1925 return -1;
1926 }
1927 } else {
1928 clear_opt(sb, DATA_FLAGS);
1929 sbi->s_mount_opt |= m->mount_opt;
1930 }
1931 #ifdef CONFIG_QUOTA
1932 } else if (m->flags & MOPT_QFMT) {
1933 if (sb_any_quota_loaded(sb) &&
1934 sbi->s_jquota_fmt != m->mount_opt) {
1935 ext4_msg(sb, KERN_ERR, "Cannot change journaled "
1936 "quota options when quota turned on");
1937 return -1;
1938 }
1939 if (ext4_has_feature_quota(sb)) {
1940 ext4_msg(sb, KERN_INFO,
1941 "Quota format mount options ignored "
1942 "when QUOTA feature is enabled");
1943 return 1;
1944 }
1945 sbi->s_jquota_fmt = m->mount_opt;
1946 #endif
1947 } else if (token == Opt_dax) {
1948 #ifdef CONFIG_FS_DAX
1949 ext4_msg(sb, KERN_WARNING,
1950 "DAX enabled. Warning: EXPERIMENTAL, use at your own risk");
1951 sbi->s_mount_opt |= m->mount_opt;
1952 #else
1953 ext4_msg(sb, KERN_INFO, "dax option not supported");
1954 return -1;
1955 #endif
1956 } else if (token == Opt_data_err_abort) {
1957 sbi->s_mount_opt |= m->mount_opt;
1958 } else if (token == Opt_data_err_ignore) {
1959 sbi->s_mount_opt &= ~m->mount_opt;
1960 } else {
1961 if (!args->from)
1962 arg = 1;
1963 if (m->flags & MOPT_CLEAR)
1964 arg = !arg;
1965 else if (unlikely(!(m->flags & MOPT_SET))) {
1966 ext4_msg(sb, KERN_WARNING,
1967 "buggy handling of option %s", opt);
1968 WARN_ON(1);
1969 return -1;
1970 }
1971 if (arg != 0)
1972 sbi->s_mount_opt |= m->mount_opt;
1973 else
1974 sbi->s_mount_opt &= ~m->mount_opt;
1975 }
1976 return 1;
1977 }
1978
1979 static int parse_options(char *options, struct super_block *sb,
1980 unsigned long *journal_devnum,
1981 unsigned int *journal_ioprio,
1982 int is_remount)
1983 {
1984 struct ext4_sb_info *sbi = EXT4_SB(sb);
1985 char *p, __maybe_unused *usr_qf_name, __maybe_unused *grp_qf_name;
1986 substring_t args[MAX_OPT_ARGS];
1987 int token;
1988
1989 if (!options)
1990 return 1;
1991
1992 while ((p = strsep(&options, ",")) != NULL) {
1993 if (!*p)
1994 continue;
1995 /*
1996 * Initialize args struct so we know whether arg was
1997 * found; some options take optional arguments.
1998 */
1999 args[0].to = args[0].from = NULL;
2000 token = match_token(p, tokens, args);
2001 if (handle_mount_opt(sb, p, token, args, journal_devnum,
2002 journal_ioprio, is_remount) < 0)
2003 return 0;
2004 }
2005 #ifdef CONFIG_QUOTA
2006 /*
2007 * We do the test below only for project quotas. 'usrquota' and
2008 * 'grpquota' mount options are allowed even without quota feature
2009 * to support legacy quotas in quota files.
2010 */
2011 if (test_opt(sb, PRJQUOTA) && !ext4_has_feature_project(sb)) {
2012 ext4_msg(sb, KERN_ERR, "Project quota feature not enabled. "
2013 "Cannot enable project quota enforcement.");
2014 return 0;
2015 }
2016 usr_qf_name = get_qf_name(sb, sbi, USRQUOTA);
2017 grp_qf_name = get_qf_name(sb, sbi, GRPQUOTA);
2018 if (usr_qf_name || grp_qf_name) {
2019 if (test_opt(sb, USRQUOTA) && usr_qf_name)
2020 clear_opt(sb, USRQUOTA);
2021
2022 if (test_opt(sb, GRPQUOTA) && grp_qf_name)
2023 clear_opt(sb, GRPQUOTA);
2024
2025 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) {
2026 ext4_msg(sb, KERN_ERR, "old and new quota "
2027 "format mixing");
2028 return 0;
2029 }
2030
2031 if (!sbi->s_jquota_fmt) {
2032 ext4_msg(sb, KERN_ERR, "journaled quota format "
2033 "not specified");
2034 return 0;
2035 }
2036 }
2037 #endif
2038 if (test_opt(sb, DIOREAD_NOLOCK)) {
2039 int blocksize =
2040 BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size);
2041
2042 if (blocksize < PAGE_SIZE) {
2043 ext4_msg(sb, KERN_ERR, "can't mount with "
2044 "dioread_nolock if block size != PAGE_SIZE");
2045 return 0;
2046 }
2047 }
2048 return 1;
2049 }
2050
2051 static inline void ext4_show_quota_options(struct seq_file *seq,
2052 struct super_block *sb)
2053 {
2054 #if defined(CONFIG_QUOTA)
2055 struct ext4_sb_info *sbi = EXT4_SB(sb);
2056 char *usr_qf_name, *grp_qf_name;
2057
2058 if (sbi->s_jquota_fmt) {
2059 char *fmtname = "";
2060
2061 switch (sbi->s_jquota_fmt) {
2062 case QFMT_VFS_OLD:
2063 fmtname = "vfsold";
2064 break;
2065 case QFMT_VFS_V0:
2066 fmtname = "vfsv0";
2067 break;
2068 case QFMT_VFS_V1:
2069 fmtname = "vfsv1";
2070 break;
2071 }
2072 seq_printf(seq, ",jqfmt=%s", fmtname);
2073 }
2074
2075 rcu_read_lock();
2076 usr_qf_name = rcu_dereference(sbi->s_qf_names[USRQUOTA]);
2077 grp_qf_name = rcu_dereference(sbi->s_qf_names[GRPQUOTA]);
2078 if (usr_qf_name)
2079 seq_show_option(seq, "usrjquota", usr_qf_name);
2080 if (grp_qf_name)
2081 seq_show_option(seq, "grpjquota", grp_qf_name);
2082 rcu_read_unlock();
2083 #endif
2084 }
2085
2086 static const char *token2str(int token)
2087 {
2088 const struct match_token *t;
2089
2090 for (t = tokens; t->token != Opt_err; t++)
2091 if (t->token == token && !strchr(t->pattern, '='))
2092 break;
2093 return t->pattern;
2094 }
2095
2096 /*
2097 * Show an option if
2098 * - it's set to a non-default value OR
2099 * - if the per-sb default is different from the global default
2100 */
2101 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb,
2102 int nodefs)
2103 {
2104 struct ext4_sb_info *sbi = EXT4_SB(sb);
2105 struct ext4_super_block *es = sbi->s_es;
2106 int def_errors, def_mount_opt = nodefs ? 0 : sbi->s_def_mount_opt;
2107 const struct mount_opts *m;
2108 char sep = nodefs ? '\n' : ',';
2109
2110 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep)
2111 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg)
2112
2113 if (sbi->s_sb_block != 1)
2114 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block);
2115
2116 for (m = ext4_mount_opts; m->token != Opt_err; m++) {
2117 int want_set = m->flags & MOPT_SET;
2118 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) ||
2119 (m->flags & MOPT_CLEAR_ERR))
2120 continue;
2121 if (!(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt)))
2122 continue; /* skip if same as the default */
2123 if ((want_set &&
2124 (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) ||
2125 (!want_set && (sbi->s_mount_opt & m->mount_opt)))
2126 continue; /* select Opt_noFoo vs Opt_Foo */
2127 SEQ_OPTS_PRINT("%s", token2str(m->token));
2128 }
2129
2130 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(sb->s_user_ns, EXT4_DEF_RESUID)) ||
2131 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID)
2132 SEQ_OPTS_PRINT("resuid=%u",
2133 from_kuid_munged(sb->s_user_ns, sbi->s_resuid));
2134 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(sb->s_user_ns, EXT4_DEF_RESGID)) ||
2135 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID)
2136 SEQ_OPTS_PRINT("resgid=%u",
2137 from_kgid_munged(sb->s_user_ns, sbi->s_resgid));
2138 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors);
2139 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO)
2140 SEQ_OPTS_PUTS("errors=remount-ro");
2141 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
2142 SEQ_OPTS_PUTS("errors=continue");
2143 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
2144 SEQ_OPTS_PUTS("errors=panic");
2145 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
2146 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ);
2147 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME)
2148 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time);
2149 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME)
2150 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time);
2151 if (sb->s_flags & SB_I_VERSION)
2152 SEQ_OPTS_PUTS("i_version");
2153 if (nodefs || sbi->s_stripe)
2154 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe);
2155 if (EXT4_MOUNT_DATA_FLAGS & (sbi->s_mount_opt ^ def_mount_opt)) {
2156 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
2157 SEQ_OPTS_PUTS("data=journal");
2158 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
2159 SEQ_OPTS_PUTS("data=ordered");
2160 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
2161 SEQ_OPTS_PUTS("data=writeback");
2162 }
2163 if (nodefs ||
2164 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
2165 SEQ_OPTS_PRINT("inode_readahead_blks=%u",
2166 sbi->s_inode_readahead_blks);
2167
2168 if (nodefs || (test_opt(sb, INIT_INODE_TABLE) &&
2169 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)))
2170 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult);
2171 if (nodefs || sbi->s_max_dir_size_kb)
2172 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb);
2173 if (test_opt(sb, DATA_ERR_ABORT))
2174 SEQ_OPTS_PUTS("data_err=abort");
2175 if (DUMMY_ENCRYPTION_ENABLED(sbi))
2176 SEQ_OPTS_PUTS("test_dummy_encryption");
2177
2178 ext4_show_quota_options(seq, sb);
2179 return 0;
2180 }
2181
2182 static int ext4_show_options(struct seq_file *seq, struct dentry *root)
2183 {
2184 return _ext4_show_options(seq, root->d_sb, 0);
2185 }
2186
2187 int ext4_seq_options_show(struct seq_file *seq, void *offset)
2188 {
2189 struct super_block *sb = seq->private;
2190 int rc;
2191
2192 seq_puts(seq, sb_rdonly(sb) ? "ro" : "rw");
2193 rc = _ext4_show_options(seq, sb, 1);
2194 seq_puts(seq, "\n");
2195 return rc;
2196 }
2197
2198 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
2199 int read_only)
2200 {
2201 struct ext4_sb_info *sbi = EXT4_SB(sb);
2202 int res = 0;
2203
2204 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
2205 ext4_msg(sb, KERN_ERR, "revision level too high, "
2206 "forcing read-only mode");
2207 res = SB_RDONLY;
2208 }
2209 if (read_only)
2210 goto done;
2211 if (!(sbi->s_mount_state & EXT4_VALID_FS))
2212 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
2213 "running e2fsck is recommended");
2214 else if (sbi->s_mount_state & EXT4_ERROR_FS)
2215 ext4_msg(sb, KERN_WARNING,
2216 "warning: mounting fs with errors, "
2217 "running e2fsck is recommended");
2218 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
2219 le16_to_cpu(es->s_mnt_count) >=
2220 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
2221 ext4_msg(sb, KERN_WARNING,
2222 "warning: maximal mount count reached, "
2223 "running e2fsck is recommended");
2224 else if (le32_to_cpu(es->s_checkinterval) &&
2225 (le32_to_cpu(es->s_lastcheck) +
2226 le32_to_cpu(es->s_checkinterval) <= get_seconds()))
2227 ext4_msg(sb, KERN_WARNING,
2228 "warning: checktime reached, "
2229 "running e2fsck is recommended");
2230 if (!sbi->s_journal)
2231 es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
2232 if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
2233 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
2234 le16_add_cpu(&es->s_mnt_count, 1);
2235 es->s_mtime = cpu_to_le32(get_seconds());
2236 if (sbi->s_journal)
2237 ext4_set_feature_journal_needs_recovery(sb);
2238
2239 ext4_commit_super(sb, 1);
2240 done:
2241 if (test_opt(sb, DEBUG))
2242 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
2243 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
2244 sb->s_blocksize,
2245 sbi->s_groups_count,
2246 EXT4_BLOCKS_PER_GROUP(sb),
2247 EXT4_INODES_PER_GROUP(sb),
2248 sbi->s_mount_opt, sbi->s_mount_opt2);
2249
2250 cleancache_init_fs(sb);
2251 return res;
2252 }
2253
2254 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup)
2255 {
2256 struct ext4_sb_info *sbi = EXT4_SB(sb);
2257 struct flex_groups *new_groups;
2258 int size;
2259
2260 if (!sbi->s_log_groups_per_flex)
2261 return 0;
2262
2263 size = ext4_flex_group(sbi, ngroup - 1) + 1;
2264 if (size <= sbi->s_flex_groups_allocated)
2265 return 0;
2266
2267 size = roundup_pow_of_two(size * sizeof(struct flex_groups));
2268 new_groups = kvzalloc(size, GFP_KERNEL);
2269 if (!new_groups) {
2270 ext4_msg(sb, KERN_ERR, "not enough memory for %d flex groups",
2271 size / (int) sizeof(struct flex_groups));
2272 return -ENOMEM;
2273 }
2274
2275 if (sbi->s_flex_groups) {
2276 memcpy(new_groups, sbi->s_flex_groups,
2277 (sbi->s_flex_groups_allocated *
2278 sizeof(struct flex_groups)));
2279 kvfree(sbi->s_flex_groups);
2280 }
2281 sbi->s_flex_groups = new_groups;
2282 sbi->s_flex_groups_allocated = size / sizeof(struct flex_groups);
2283 return 0;
2284 }
2285
2286 static int ext4_fill_flex_info(struct super_block *sb)
2287 {
2288 struct ext4_sb_info *sbi = EXT4_SB(sb);
2289 struct ext4_group_desc *gdp = NULL;
2290 ext4_group_t flex_group;
2291 int i, err;
2292
2293 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
2294 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) {
2295 sbi->s_log_groups_per_flex = 0;
2296 return 1;
2297 }
2298
2299 err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count);
2300 if (err)
2301 goto failed;
2302
2303 for (i = 0; i < sbi->s_groups_count; i++) {
2304 gdp = ext4_get_group_desc(sb, i, NULL);
2305
2306 flex_group = ext4_flex_group(sbi, i);
2307 atomic_add(ext4_free_inodes_count(sb, gdp),
2308 &sbi->s_flex_groups[flex_group].free_inodes);
2309 atomic64_add(ext4_free_group_clusters(sb, gdp),
2310 &sbi->s_flex_groups[flex_group].free_clusters);
2311 atomic_add(ext4_used_dirs_count(sb, gdp),
2312 &sbi->s_flex_groups[flex_group].used_dirs);
2313 }
2314
2315 return 1;
2316 failed:
2317 return 0;
2318 }
2319
2320 static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group,
2321 struct ext4_group_desc *gdp)
2322 {
2323 int offset = offsetof(struct ext4_group_desc, bg_checksum);
2324 __u16 crc = 0;
2325 __le32 le_group = cpu_to_le32(block_group);
2326 struct ext4_sb_info *sbi = EXT4_SB(sb);
2327
2328 if (ext4_has_metadata_csum(sbi->s_sb)) {
2329 /* Use new metadata_csum algorithm */
2330 __u32 csum32;
2331 __u16 dummy_csum = 0;
2332
2333 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group,
2334 sizeof(le_group));
2335 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, offset);
2336 csum32 = ext4_chksum(sbi, csum32, (__u8 *)&dummy_csum,
2337 sizeof(dummy_csum));
2338 offset += sizeof(dummy_csum);
2339 if (offset < sbi->s_desc_size)
2340 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp + offset,
2341 sbi->s_desc_size - offset);
2342
2343 crc = csum32 & 0xFFFF;
2344 goto out;
2345 }
2346
2347 /* old crc16 code */
2348 if (!ext4_has_feature_gdt_csum(sb))
2349 return 0;
2350
2351 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
2352 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
2353 crc = crc16(crc, (__u8 *)gdp, offset);
2354 offset += sizeof(gdp->bg_checksum); /* skip checksum */
2355 /* for checksum of struct ext4_group_desc do the rest...*/
2356 if (ext4_has_feature_64bit(sb) &&
2357 offset < le16_to_cpu(sbi->s_es->s_desc_size))
2358 crc = crc16(crc, (__u8 *)gdp + offset,
2359 le16_to_cpu(sbi->s_es->s_desc_size) -
2360 offset);
2361
2362 out:
2363 return cpu_to_le16(crc);
2364 }
2365
2366 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group,
2367 struct ext4_group_desc *gdp)
2368 {
2369 if (ext4_has_group_desc_csum(sb) &&
2370 (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp)))
2371 return 0;
2372
2373 return 1;
2374 }
2375
2376 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group,
2377 struct ext4_group_desc *gdp)
2378 {
2379 if (!ext4_has_group_desc_csum(sb))
2380 return;
2381 gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp);
2382 }
2383
2384 /* Called at mount-time, super-block is locked */
2385 static int ext4_check_descriptors(struct super_block *sb,
2386 ext4_fsblk_t sb_block,
2387 ext4_group_t *first_not_zeroed)
2388 {
2389 struct ext4_sb_info *sbi = EXT4_SB(sb);
2390 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
2391 ext4_fsblk_t last_block;
2392 ext4_fsblk_t last_bg_block = sb_block + ext4_bg_num_gdb(sb, 0);
2393 ext4_fsblk_t block_bitmap;
2394 ext4_fsblk_t inode_bitmap;
2395 ext4_fsblk_t inode_table;
2396 int flexbg_flag = 0;
2397 ext4_group_t i, grp = sbi->s_groups_count;
2398
2399 if (ext4_has_feature_flex_bg(sb))
2400 flexbg_flag = 1;
2401
2402 ext4_debug("Checking group descriptors");
2403
2404 for (i = 0; i < sbi->s_groups_count; i++) {
2405 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
2406
2407 if (i == sbi->s_groups_count - 1 || flexbg_flag)
2408 last_block = ext4_blocks_count(sbi->s_es) - 1;
2409 else
2410 last_block = first_block +
2411 (EXT4_BLOCKS_PER_GROUP(sb) - 1);
2412
2413 if ((grp == sbi->s_groups_count) &&
2414 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2415 grp = i;
2416
2417 block_bitmap = ext4_block_bitmap(sb, gdp);
2418 if (block_bitmap == sb_block) {
2419 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2420 "Block bitmap for group %u overlaps "
2421 "superblock", i);
2422 if (!sb_rdonly(sb))
2423 return 0;
2424 }
2425 if (block_bitmap >= sb_block + 1 &&
2426 block_bitmap <= last_bg_block) {
2427 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2428 "Block bitmap for group %u overlaps "
2429 "block group descriptors", i);
2430 if (!sb_rdonly(sb))
2431 return 0;
2432 }
2433 if (block_bitmap < first_block || block_bitmap > last_block) {
2434 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2435 "Block bitmap for group %u not in group "
2436 "(block %llu)!", i, block_bitmap);
2437 return 0;
2438 }
2439 inode_bitmap = ext4_inode_bitmap(sb, gdp);
2440 if (inode_bitmap == sb_block) {
2441 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2442 "Inode bitmap for group %u overlaps "
2443 "superblock", i);
2444 if (!sb_rdonly(sb))
2445 return 0;
2446 }
2447 if (inode_bitmap >= sb_block + 1 &&
2448 inode_bitmap <= last_bg_block) {
2449 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2450 "Inode bitmap for group %u overlaps "
2451 "block group descriptors", i);
2452 if (!sb_rdonly(sb))
2453 return 0;
2454 }
2455 if (inode_bitmap < first_block || inode_bitmap > last_block) {
2456 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2457 "Inode bitmap for group %u not in group "
2458 "(block %llu)!", i, inode_bitmap);
2459 return 0;
2460 }
2461 inode_table = ext4_inode_table(sb, gdp);
2462 if (inode_table == sb_block) {
2463 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2464 "Inode table for group %u overlaps "
2465 "superblock", i);
2466 if (!sb_rdonly(sb))
2467 return 0;
2468 }
2469 if (inode_table >= sb_block + 1 &&
2470 inode_table <= last_bg_block) {
2471 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2472 "Inode table for group %u overlaps "
2473 "block group descriptors", i);
2474 if (!sb_rdonly(sb))
2475 return 0;
2476 }
2477 if (inode_table < first_block ||
2478 inode_table + sbi->s_itb_per_group - 1 > last_block) {
2479 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2480 "Inode table for group %u not in group "
2481 "(block %llu)!", i, inode_table);
2482 return 0;
2483 }
2484 ext4_lock_group(sb, i);
2485 if (!ext4_group_desc_csum_verify(sb, i, gdp)) {
2486 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2487 "Checksum for group %u failed (%u!=%u)",
2488 i, le16_to_cpu(ext4_group_desc_csum(sb, i,
2489 gdp)), le16_to_cpu(gdp->bg_checksum));
2490 if (!sb_rdonly(sb)) {
2491 ext4_unlock_group(sb, i);
2492 return 0;
2493 }
2494 }
2495 ext4_unlock_group(sb, i);
2496 if (!flexbg_flag)
2497 first_block += EXT4_BLOCKS_PER_GROUP(sb);
2498 }
2499 if (NULL != first_not_zeroed)
2500 *first_not_zeroed = grp;
2501 return 1;
2502 }
2503
2504 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at
2505 * the superblock) which were deleted from all directories, but held open by
2506 * a process at the time of a crash. We walk the list and try to delete these
2507 * inodes at recovery time (only with a read-write filesystem).
2508 *
2509 * In order to keep the orphan inode chain consistent during traversal (in
2510 * case of crash during recovery), we link each inode into the superblock
2511 * orphan list_head and handle it the same way as an inode deletion during
2512 * normal operation (which journals the operations for us).
2513 *
2514 * We only do an iget() and an iput() on each inode, which is very safe if we
2515 * accidentally point at an in-use or already deleted inode. The worst that
2516 * can happen in this case is that we get a "bit already cleared" message from
2517 * ext4_free_inode(). The only reason we would point at a wrong inode is if
2518 * e2fsck was run on this filesystem, and it must have already done the orphan
2519 * inode cleanup for us, so we can safely abort without any further action.
2520 */
2521 static void ext4_orphan_cleanup(struct super_block *sb,
2522 struct ext4_super_block *es)
2523 {
2524 unsigned int s_flags = sb->s_flags;
2525 int ret, nr_orphans = 0, nr_truncates = 0;
2526 #ifdef CONFIG_QUOTA
2527 int quota_update = 0;
2528 int i;
2529 #endif
2530 if (!es->s_last_orphan) {
2531 jbd_debug(4, "no orphan inodes to clean up\n");
2532 return;
2533 }
2534
2535 if (bdev_read_only(sb->s_bdev)) {
2536 ext4_msg(sb, KERN_ERR, "write access "
2537 "unavailable, skipping orphan cleanup");
2538 return;
2539 }
2540
2541 /* Check if feature set would not allow a r/w mount */
2542 if (!ext4_feature_set_ok(sb, 0)) {
2543 ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to "
2544 "unknown ROCOMPAT features");
2545 return;
2546 }
2547
2548 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2549 /* don't clear list on RO mount w/ errors */
2550 if (es->s_last_orphan && !(s_flags & SB_RDONLY)) {
2551 ext4_msg(sb, KERN_INFO, "Errors on filesystem, "
2552 "clearing orphan list.\n");
2553 es->s_last_orphan = 0;
2554 }
2555 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2556 return;
2557 }
2558
2559 if (s_flags & SB_RDONLY) {
2560 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs");
2561 sb->s_flags &= ~SB_RDONLY;
2562 }
2563 #ifdef CONFIG_QUOTA
2564 /* Needed for iput() to work correctly and not trash data */
2565 sb->s_flags |= SB_ACTIVE;
2566
2567 /*
2568 * Turn on quotas which were not enabled for read-only mounts if
2569 * filesystem has quota feature, so that they are updated correctly.
2570 */
2571 if (ext4_has_feature_quota(sb) && (s_flags & SB_RDONLY)) {
2572 int ret = ext4_enable_quotas(sb);
2573
2574 if (!ret)
2575 quota_update = 1;
2576 else
2577 ext4_msg(sb, KERN_ERR,
2578 "Cannot turn on quotas: error %d", ret);
2579 }
2580
2581 /* Turn on journaled quotas used for old sytle */
2582 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2583 if (EXT4_SB(sb)->s_qf_names[i]) {
2584 int ret = ext4_quota_on_mount(sb, i);
2585
2586 if (!ret)
2587 quota_update = 1;
2588 else
2589 ext4_msg(sb, KERN_ERR,
2590 "Cannot turn on journaled "
2591 "quota: type %d: error %d", i, ret);
2592 }
2593 }
2594 #endif
2595
2596 while (es->s_last_orphan) {
2597 struct inode *inode;
2598
2599 /*
2600 * We may have encountered an error during cleanup; if
2601 * so, skip the rest.
2602 */
2603 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2604 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2605 es->s_last_orphan = 0;
2606 break;
2607 }
2608
2609 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan));
2610 if (IS_ERR(inode)) {
2611 es->s_last_orphan = 0;
2612 break;
2613 }
2614
2615 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan);
2616 dquot_initialize(inode);
2617 if (inode->i_nlink) {
2618 if (test_opt(sb, DEBUG))
2619 ext4_msg(sb, KERN_DEBUG,
2620 "%s: truncating inode %lu to %lld bytes",
2621 __func__, inode->i_ino, inode->i_size);
2622 jbd_debug(2, "truncating inode %lu to %lld bytes\n",
2623 inode->i_ino, inode->i_size);
2624 inode_lock(inode);
2625 truncate_inode_pages(inode->i_mapping, inode->i_size);
2626 ret = ext4_truncate(inode);
2627 if (ret)
2628 ext4_std_error(inode->i_sb, ret);
2629 inode_unlock(inode);
2630 nr_truncates++;
2631 } else {
2632 if (test_opt(sb, DEBUG))
2633 ext4_msg(sb, KERN_DEBUG,
2634 "%s: deleting unreferenced inode %lu",
2635 __func__, inode->i_ino);
2636 jbd_debug(2, "deleting unreferenced inode %lu\n",
2637 inode->i_ino);
2638 nr_orphans++;
2639 }
2640 iput(inode); /* The delete magic happens here! */
2641 }
2642
2643 #define PLURAL(x) (x), ((x) == 1) ? "" : "s"
2644
2645 if (nr_orphans)
2646 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted",
2647 PLURAL(nr_orphans));
2648 if (nr_truncates)
2649 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up",
2650 PLURAL(nr_truncates));
2651 #ifdef CONFIG_QUOTA
2652 /* Turn off quotas if they were enabled for orphan cleanup */
2653 if (quota_update) {
2654 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2655 if (sb_dqopt(sb)->files[i])
2656 dquot_quota_off(sb, i);
2657 }
2658 }
2659 #endif
2660 sb->s_flags = s_flags; /* Restore SB_RDONLY status */
2661 }
2662
2663 /*
2664 * Maximal extent format file size.
2665 * Resulting logical blkno at s_maxbytes must fit in our on-disk
2666 * extent format containers, within a sector_t, and within i_blocks
2667 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units,
2668 * so that won't be a limiting factor.
2669 *
2670 * However there is other limiting factor. We do store extents in the form
2671 * of starting block and length, hence the resulting length of the extent
2672 * covering maximum file size must fit into on-disk format containers as
2673 * well. Given that length is always by 1 unit bigger than max unit (because
2674 * we count 0 as well) we have to lower the s_maxbytes by one fs block.
2675 *
2676 * Note, this does *not* consider any metadata overhead for vfs i_blocks.
2677 */
2678 static loff_t ext4_max_size(int blkbits, int has_huge_files)
2679 {
2680 loff_t res;
2681 loff_t upper_limit = MAX_LFS_FILESIZE;
2682
2683 /* small i_blocks in vfs inode? */
2684 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2685 /*
2686 * CONFIG_LBDAF is not enabled implies the inode
2687 * i_block represent total blocks in 512 bytes
2688 * 32 == size of vfs inode i_blocks * 8
2689 */
2690 upper_limit = (1LL << 32) - 1;
2691
2692 /* total blocks in file system block size */
2693 upper_limit >>= (blkbits - 9);
2694 upper_limit <<= blkbits;
2695 }
2696
2697 /*
2698 * 32-bit extent-start container, ee_block. We lower the maxbytes
2699 * by one fs block, so ee_len can cover the extent of maximum file
2700 * size
2701 */
2702 res = (1LL << 32) - 1;
2703 res <<= blkbits;
2704
2705 /* Sanity check against vm- & vfs- imposed limits */
2706 if (res > upper_limit)
2707 res = upper_limit;
2708
2709 return res;
2710 }
2711
2712 /*
2713 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect
2714 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
2715 * We need to be 1 filesystem block less than the 2^48 sector limit.
2716 */
2717 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
2718 {
2719 loff_t res = EXT4_NDIR_BLOCKS;
2720 int meta_blocks;
2721 loff_t upper_limit;
2722 /* This is calculated to be the largest file size for a dense, block
2723 * mapped file such that the file's total number of 512-byte sectors,
2724 * including data and all indirect blocks, does not exceed (2^48 - 1).
2725 *
2726 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
2727 * number of 512-byte sectors of the file.
2728 */
2729
2730 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2731 /*
2732 * !has_huge_files or CONFIG_LBDAF not enabled implies that
2733 * the inode i_block field represents total file blocks in
2734 * 2^32 512-byte sectors == size of vfs inode i_blocks * 8
2735 */
2736 upper_limit = (1LL << 32) - 1;
2737
2738 /* total blocks in file system block size */
2739 upper_limit >>= (bits - 9);
2740
2741 } else {
2742 /*
2743 * We use 48 bit ext4_inode i_blocks
2744 * With EXT4_HUGE_FILE_FL set the i_blocks
2745 * represent total number of blocks in
2746 * file system block size
2747 */
2748 upper_limit = (1LL << 48) - 1;
2749
2750 }
2751
2752 /* indirect blocks */
2753 meta_blocks = 1;
2754 /* double indirect blocks */
2755 meta_blocks += 1 + (1LL << (bits-2));
2756 /* tripple indirect blocks */
2757 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2)));
2758
2759 upper_limit -= meta_blocks;
2760 upper_limit <<= bits;
2761
2762 res += 1LL << (bits-2);
2763 res += 1LL << (2*(bits-2));
2764 res += 1LL << (3*(bits-2));
2765 res <<= bits;
2766 if (res > upper_limit)
2767 res = upper_limit;
2768
2769 if (res > MAX_LFS_FILESIZE)
2770 res = MAX_LFS_FILESIZE;
2771
2772 return res;
2773 }
2774
2775 static ext4_fsblk_t descriptor_loc(struct super_block *sb,
2776 ext4_fsblk_t logical_sb_block, int nr)
2777 {
2778 struct ext4_sb_info *sbi = EXT4_SB(sb);
2779 ext4_group_t bg, first_meta_bg;
2780 int has_super = 0;
2781
2782 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
2783
2784 if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg)
2785 return logical_sb_block + nr + 1;
2786 bg = sbi->s_desc_per_block * nr;
2787 if (ext4_bg_has_super(sb, bg))
2788 has_super = 1;
2789
2790 /*
2791 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at
2792 * block 2, not 1. If s_first_data_block == 0 (bigalloc is enabled
2793 * on modern mke2fs or blksize > 1k on older mke2fs) then we must
2794 * compensate.
2795 */
2796 if (sb->s_blocksize == 1024 && nr == 0 &&
2797 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block) == 0)
2798 has_super++;
2799
2800 return (has_super + ext4_group_first_block_no(sb, bg));
2801 }
2802
2803 /**
2804 * ext4_get_stripe_size: Get the stripe size.
2805 * @sbi: In memory super block info
2806 *
2807 * If we have specified it via mount option, then
2808 * use the mount option value. If the value specified at mount time is
2809 * greater than the blocks per group use the super block value.
2810 * If the super block value is greater than blocks per group return 0.
2811 * Allocator needs it be less than blocks per group.
2812 *
2813 */
2814 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
2815 {
2816 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
2817 unsigned long stripe_width =
2818 le32_to_cpu(sbi->s_es->s_raid_stripe_width);
2819 int ret;
2820
2821 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
2822 ret = sbi->s_stripe;
2823 else if (stripe_width && stripe_width <= sbi->s_blocks_per_group)
2824 ret = stripe_width;
2825 else if (stride && stride <= sbi->s_blocks_per_group)
2826 ret = stride;
2827 else
2828 ret = 0;
2829
2830 /*
2831 * If the stripe width is 1, this makes no sense and
2832 * we set it to 0 to turn off stripe handling code.
2833 */
2834 if (ret <= 1)
2835 ret = 0;
2836
2837 return ret;
2838 }
2839
2840 /*
2841 * Check whether this filesystem can be mounted based on
2842 * the features present and the RDONLY/RDWR mount requested.
2843 * Returns 1 if this filesystem can be mounted as requested,
2844 * 0 if it cannot be.
2845 */
2846 static int ext4_feature_set_ok(struct super_block *sb, int readonly)
2847 {
2848 if (ext4_has_unknown_ext4_incompat_features(sb)) {
2849 ext4_msg(sb, KERN_ERR,
2850 "Couldn't mount because of "
2851 "unsupported optional features (%x)",
2852 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
2853 ~EXT4_FEATURE_INCOMPAT_SUPP));
2854 return 0;
2855 }
2856
2857 if (readonly)
2858 return 1;
2859
2860 if (ext4_has_feature_readonly(sb)) {
2861 ext4_msg(sb, KERN_INFO, "filesystem is read-only");
2862 sb->s_flags |= SB_RDONLY;
2863 return 1;
2864 }
2865
2866 /* Check that feature set is OK for a read-write mount */
2867 if (ext4_has_unknown_ext4_ro_compat_features(sb)) {
2868 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
2869 "unsupported optional features (%x)",
2870 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
2871 ~EXT4_FEATURE_RO_COMPAT_SUPP));
2872 return 0;
2873 }
2874 /*
2875 * Large file size enabled file system can only be mounted
2876 * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF
2877 */
2878 if (ext4_has_feature_huge_file(sb)) {
2879 if (sizeof(blkcnt_t) < sizeof(u64)) {
2880 ext4_msg(sb, KERN_ERR, "Filesystem with huge files "
2881 "cannot be mounted RDWR without "
2882 "CONFIG_LBDAF");
2883 return 0;
2884 }
2885 }
2886 if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) {
2887 ext4_msg(sb, KERN_ERR,
2888 "Can't support bigalloc feature without "
2889 "extents feature\n");
2890 return 0;
2891 }
2892
2893 #if !defined(CONFIG_QUOTA) || !defined(CONFIG_QFMT_V2)
2894 if (!readonly && (ext4_has_feature_quota(sb) ||
2895 ext4_has_feature_project(sb))) {
2896 ext4_msg(sb, KERN_ERR,
2897 "The kernel was not built with CONFIG_QUOTA and CONFIG_QFMT_V2");
2898 return 0;
2899 }
2900 #endif /* CONFIG_QUOTA */
2901 return 1;
2902 }
2903
2904 /*
2905 * This function is called once a day if we have errors logged
2906 * on the file system
2907 */
2908 static void print_daily_error_info(struct timer_list *t)
2909 {
2910 struct ext4_sb_info *sbi = from_timer(sbi, t, s_err_report);
2911 struct super_block *sb = sbi->s_sb;
2912 struct ext4_super_block *es = sbi->s_es;
2913
2914 if (es->s_error_count)
2915 /* fsck newer than v1.41.13 is needed to clean this condition. */
2916 ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u",
2917 le32_to_cpu(es->s_error_count));
2918 if (es->s_first_error_time) {
2919 printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %u: %.*s:%d",
2920 sb->s_id, le32_to_cpu(es->s_first_error_time),
2921 (int) sizeof(es->s_first_error_func),
2922 es->s_first_error_func,
2923 le32_to_cpu(es->s_first_error_line));
2924 if (es->s_first_error_ino)
2925 printk(KERN_CONT ": inode %u",
2926 le32_to_cpu(es->s_first_error_ino));
2927 if (es->s_first_error_block)
2928 printk(KERN_CONT ": block %llu", (unsigned long long)
2929 le64_to_cpu(es->s_first_error_block));
2930 printk(KERN_CONT "\n");
2931 }
2932 if (es->s_last_error_time) {
2933 printk(KERN_NOTICE "EXT4-fs (%s): last error at time %u: %.*s:%d",
2934 sb->s_id, le32_to_cpu(es->s_last_error_time),
2935 (int) sizeof(es->s_last_error_func),
2936 es->s_last_error_func,
2937 le32_to_cpu(es->s_last_error_line));
2938 if (es->s_last_error_ino)
2939 printk(KERN_CONT ": inode %u",
2940 le32_to_cpu(es->s_last_error_ino));
2941 if (es->s_last_error_block)
2942 printk(KERN_CONT ": block %llu", (unsigned long long)
2943 le64_to_cpu(es->s_last_error_block));
2944 printk(KERN_CONT "\n");
2945 }
2946 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */
2947 }
2948
2949 /* Find next suitable group and run ext4_init_inode_table */
2950 static int ext4_run_li_request(struct ext4_li_request *elr)
2951 {
2952 struct ext4_group_desc *gdp = NULL;
2953 ext4_group_t group, ngroups;
2954 struct super_block *sb;
2955 unsigned long timeout = 0;
2956 int ret = 0;
2957
2958 sb = elr->lr_super;
2959 ngroups = EXT4_SB(sb)->s_groups_count;
2960
2961 for (group = elr->lr_next_group; group < ngroups; group++) {
2962 gdp = ext4_get_group_desc(sb, group, NULL);
2963 if (!gdp) {
2964 ret = 1;
2965 break;
2966 }
2967
2968 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2969 break;
2970 }
2971
2972 if (group >= ngroups)
2973 ret = 1;
2974
2975 if (!ret) {
2976 timeout = jiffies;
2977 ret = ext4_init_inode_table(sb, group,
2978 elr->lr_timeout ? 0 : 1);
2979 if (elr->lr_timeout == 0) {
2980 timeout = (jiffies - timeout) *
2981 elr->lr_sbi->s_li_wait_mult;
2982 elr->lr_timeout = timeout;
2983 }
2984 elr->lr_next_sched = jiffies + elr->lr_timeout;
2985 elr->lr_next_group = group + 1;
2986 }
2987 return ret;
2988 }
2989
2990 /*
2991 * Remove lr_request from the list_request and free the
2992 * request structure. Should be called with li_list_mtx held
2993 */
2994 static void ext4_remove_li_request(struct ext4_li_request *elr)
2995 {
2996 struct ext4_sb_info *sbi;
2997
2998 if (!elr)
2999 return;
3000
3001 sbi = elr->lr_sbi;
3002
3003 list_del(&elr->lr_request);
3004 sbi->s_li_request = NULL;
3005 kfree(elr);
3006 }
3007
3008 static void ext4_unregister_li_request(struct super_block *sb)
3009 {
3010 mutex_lock(&ext4_li_mtx);
3011 if (!ext4_li_info) {
3012 mutex_unlock(&ext4_li_mtx);
3013 return;
3014 }
3015
3016 mutex_lock(&ext4_li_info->li_list_mtx);
3017 ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
3018 mutex_unlock(&ext4_li_info->li_list_mtx);
3019 mutex_unlock(&ext4_li_mtx);
3020 }
3021
3022 static struct task_struct *ext4_lazyinit_task;
3023
3024 /*
3025 * This is the function where ext4lazyinit thread lives. It walks
3026 * through the request list searching for next scheduled filesystem.
3027 * When such a fs is found, run the lazy initialization request
3028 * (ext4_rn_li_request) and keep track of the time spend in this
3029 * function. Based on that time we compute next schedule time of
3030 * the request. When walking through the list is complete, compute
3031 * next waking time and put itself into sleep.
3032 */
3033 static int ext4_lazyinit_thread(void *arg)
3034 {
3035 struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg;
3036 struct list_head *pos, *n;
3037 struct ext4_li_request *elr;
3038 unsigned long next_wakeup, cur;
3039
3040 BUG_ON(NULL == eli);
3041
3042 cont_thread:
3043 while (true) {
3044 next_wakeup = MAX_JIFFY_OFFSET;
3045
3046 mutex_lock(&eli->li_list_mtx);
3047 if (list_empty(&eli->li_request_list)) {
3048 mutex_unlock(&eli->li_list_mtx);
3049 goto exit_thread;
3050 }
3051 list_for_each_safe(pos, n, &eli->li_request_list) {
3052 int err = 0;
3053 int progress = 0;
3054 elr = list_entry(pos, struct ext4_li_request,
3055 lr_request);
3056
3057 if (time_before(jiffies, elr->lr_next_sched)) {
3058 if (time_before(elr->lr_next_sched, next_wakeup))
3059 next_wakeup = elr->lr_next_sched;
3060 continue;
3061 }
3062 if (down_read_trylock(&elr->lr_super->s_umount)) {
3063 if (sb_start_write_trylock(elr->lr_super)) {
3064 progress = 1;
3065 /*
3066 * We hold sb->s_umount, sb can not
3067 * be removed from the list, it is
3068 * now safe to drop li_list_mtx
3069 */
3070 mutex_unlock(&eli->li_list_mtx);
3071 err = ext4_run_li_request(elr);
3072 sb_end_write(elr->lr_super);
3073 mutex_lock(&eli->li_list_mtx);
3074 n = pos->next;
3075 }
3076 up_read((&elr->lr_super->s_umount));
3077 }
3078 /* error, remove the lazy_init job */
3079 if (err) {
3080 ext4_remove_li_request(elr);
3081 continue;
3082 }
3083 if (!progress) {
3084 elr->lr_next_sched = jiffies +
3085 (prandom_u32()
3086 % (EXT4_DEF_LI_MAX_START_DELAY * HZ));
3087 }
3088 if (time_before(elr->lr_next_sched, next_wakeup))
3089 next_wakeup = elr->lr_next_sched;
3090 }
3091 mutex_unlock(&eli->li_list_mtx);
3092
3093 try_to_freeze();
3094
3095 cur = jiffies;
3096 if ((time_after_eq(cur, next_wakeup)) ||
3097 (MAX_JIFFY_OFFSET == next_wakeup)) {
3098 cond_resched();
3099 continue;
3100 }
3101
3102 schedule_timeout_interruptible(next_wakeup - cur);
3103
3104 if (kthread_should_stop()) {
3105 ext4_clear_request_list();
3106 goto exit_thread;
3107 }
3108 }
3109
3110 exit_thread:
3111 /*
3112 * It looks like the request list is empty, but we need
3113 * to check it under the li_list_mtx lock, to prevent any
3114 * additions into it, and of course we should lock ext4_li_mtx
3115 * to atomically free the list and ext4_li_info, because at
3116 * this point another ext4 filesystem could be registering
3117 * new one.
3118 */
3119 mutex_lock(&ext4_li_mtx);
3120 mutex_lock(&eli->li_list_mtx);
3121 if (!list_empty(&eli->li_request_list)) {
3122 mutex_unlock(&eli->li_list_mtx);
3123 mutex_unlock(&ext4_li_mtx);
3124 goto cont_thread;
3125 }
3126 mutex_unlock(&eli->li_list_mtx);
3127 kfree(ext4_li_info);
3128 ext4_li_info = NULL;
3129 mutex_unlock(&ext4_li_mtx);
3130
3131 return 0;
3132 }
3133
3134 static void ext4_clear_request_list(void)
3135 {
3136 struct list_head *pos, *n;
3137 struct ext4_li_request *elr;
3138
3139 mutex_lock(&ext4_li_info->li_list_mtx);
3140 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
3141 elr = list_entry(pos, struct ext4_li_request,
3142 lr_request);
3143 ext4_remove_li_request(elr);
3144 }
3145 mutex_unlock(&ext4_li_info->li_list_mtx);
3146 }
3147
3148 static int ext4_run_lazyinit_thread(void)
3149 {
3150 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
3151 ext4_li_info, "ext4lazyinit");
3152 if (IS_ERR(ext4_lazyinit_task)) {
3153 int err = PTR_ERR(ext4_lazyinit_task);
3154 ext4_clear_request_list();
3155 kfree(ext4_li_info);
3156 ext4_li_info = NULL;
3157 printk(KERN_CRIT "EXT4-fs: error %d creating inode table "
3158 "initialization thread\n",
3159 err);
3160 return err;
3161 }
3162 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
3163 return 0;
3164 }
3165
3166 /*
3167 * Check whether it make sense to run itable init. thread or not.
3168 * If there is at least one uninitialized inode table, return
3169 * corresponding group number, else the loop goes through all
3170 * groups and return total number of groups.
3171 */
3172 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
3173 {
3174 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
3175 struct ext4_group_desc *gdp = NULL;
3176
3177 if (!ext4_has_group_desc_csum(sb))
3178 return ngroups;
3179
3180 for (group = 0; group < ngroups; group++) {
3181 gdp = ext4_get_group_desc(sb, group, NULL);
3182 if (!gdp)
3183 continue;
3184
3185 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3186 break;
3187 }
3188
3189 return group;
3190 }
3191
3192 static int ext4_li_info_new(void)
3193 {
3194 struct ext4_lazy_init *eli = NULL;
3195
3196 eli = kzalloc(sizeof(*eli), GFP_KERNEL);
3197 if (!eli)
3198 return -ENOMEM;
3199
3200 INIT_LIST_HEAD(&eli->li_request_list);
3201 mutex_init(&eli->li_list_mtx);
3202
3203 eli->li_state |= EXT4_LAZYINIT_QUIT;
3204
3205 ext4_li_info = eli;
3206
3207 return 0;
3208 }
3209
3210 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
3211 ext4_group_t start)
3212 {
3213 struct ext4_sb_info *sbi = EXT4_SB(sb);
3214 struct ext4_li_request *elr;
3215
3216 elr = kzalloc(sizeof(*elr), GFP_KERNEL);
3217 if (!elr)
3218 return NULL;
3219
3220 elr->lr_super = sb;
3221 elr->lr_sbi = sbi;
3222 elr->lr_next_group = start;
3223
3224 /*
3225 * Randomize first schedule time of the request to
3226 * spread the inode table initialization requests
3227 * better.
3228 */
3229 elr->lr_next_sched = jiffies + (prandom_u32() %
3230 (EXT4_DEF_LI_MAX_START_DELAY * HZ));
3231 return elr;
3232 }
3233
3234 int ext4_register_li_request(struct super_block *sb,
3235 ext4_group_t first_not_zeroed)
3236 {
3237 struct ext4_sb_info *sbi = EXT4_SB(sb);
3238 struct ext4_li_request *elr = NULL;
3239 ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count;
3240 int ret = 0;
3241
3242 mutex_lock(&ext4_li_mtx);
3243 if (sbi->s_li_request != NULL) {
3244 /*
3245 * Reset timeout so it can be computed again, because
3246 * s_li_wait_mult might have changed.
3247 */
3248 sbi->s_li_request->lr_timeout = 0;
3249 goto out;
3250 }
3251
3252 if (first_not_zeroed == ngroups || sb_rdonly(sb) ||
3253 !test_opt(sb, INIT_INODE_TABLE))
3254 goto out;
3255
3256 elr = ext4_li_request_new(sb, first_not_zeroed);
3257 if (!elr) {
3258 ret = -ENOMEM;
3259 goto out;
3260 }
3261
3262 if (NULL == ext4_li_info) {
3263 ret = ext4_li_info_new();
3264 if (ret)
3265 goto out;
3266 }
3267
3268 mutex_lock(&ext4_li_info->li_list_mtx);
3269 list_add(&elr->lr_request, &ext4_li_info->li_request_list);
3270 mutex_unlock(&ext4_li_info->li_list_mtx);
3271
3272 sbi->s_li_request = elr;
3273 /*
3274 * set elr to NULL here since it has been inserted to
3275 * the request_list and the removal and free of it is
3276 * handled by ext4_clear_request_list from now on.
3277 */
3278 elr = NULL;
3279
3280 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
3281 ret = ext4_run_lazyinit_thread();
3282 if (ret)
3283 goto out;
3284 }
3285 out:
3286 mutex_unlock(&ext4_li_mtx);
3287 if (ret)
3288 kfree(elr);
3289 return ret;
3290 }
3291
3292 /*
3293 * We do not need to lock anything since this is called on
3294 * module unload.
3295 */
3296 static void ext4_destroy_lazyinit_thread(void)
3297 {
3298 /*
3299 * If thread exited earlier
3300 * there's nothing to be done.
3301 */
3302 if (!ext4_li_info || !ext4_lazyinit_task)
3303 return;
3304
3305 kthread_stop(ext4_lazyinit_task);
3306 }
3307
3308 static int set_journal_csum_feature_set(struct super_block *sb)
3309 {
3310 int ret = 1;
3311 int compat, incompat;
3312 struct ext4_sb_info *sbi = EXT4_SB(sb);
3313
3314 if (ext4_has_metadata_csum(sb)) {
3315 /* journal checksum v3 */
3316 compat = 0;
3317 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3;
3318 } else {
3319 /* journal checksum v1 */
3320 compat = JBD2_FEATURE_COMPAT_CHECKSUM;
3321 incompat = 0;
3322 }
3323
3324 jbd2_journal_clear_features(sbi->s_journal,
3325 JBD2_FEATURE_COMPAT_CHECKSUM, 0,
3326 JBD2_FEATURE_INCOMPAT_CSUM_V3 |
3327 JBD2_FEATURE_INCOMPAT_CSUM_V2);
3328 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
3329 ret = jbd2_journal_set_features(sbi->s_journal,
3330 compat, 0,
3331 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
3332 incompat);
3333 } else if (test_opt(sb, JOURNAL_CHECKSUM)) {
3334 ret = jbd2_journal_set_features(sbi->s_journal,
3335 compat, 0,
3336 incompat);
3337 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3338 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3339 } else {
3340 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3341 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3342 }
3343
3344 return ret;
3345 }
3346
3347 /*
3348 * Note: calculating the overhead so we can be compatible with
3349 * historical BSD practice is quite difficult in the face of
3350 * clusters/bigalloc. This is because multiple metadata blocks from
3351 * different block group can end up in the same allocation cluster.
3352 * Calculating the exact overhead in the face of clustered allocation
3353 * requires either O(all block bitmaps) in memory or O(number of block
3354 * groups**2) in time. We will still calculate the superblock for
3355 * older file systems --- and if we come across with a bigalloc file
3356 * system with zero in s_overhead_clusters the estimate will be close to
3357 * correct especially for very large cluster sizes --- but for newer
3358 * file systems, it's better to calculate this figure once at mkfs
3359 * time, and store it in the superblock. If the superblock value is
3360 * present (even for non-bigalloc file systems), we will use it.
3361 */
3362 static int count_overhead(struct super_block *sb, ext4_group_t grp,
3363 char *buf)
3364 {
3365 struct ext4_sb_info *sbi = EXT4_SB(sb);
3366 struct ext4_group_desc *gdp;
3367 ext4_fsblk_t first_block, last_block, b;
3368 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3369 int s, j, count = 0;
3370
3371 if (!ext4_has_feature_bigalloc(sb))
3372 return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) +
3373 sbi->s_itb_per_group + 2);
3374
3375 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) +
3376 (grp * EXT4_BLOCKS_PER_GROUP(sb));
3377 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1;
3378 for (i = 0; i < ngroups; i++) {
3379 gdp = ext4_get_group_desc(sb, i, NULL);
3380 b = ext4_block_bitmap(sb, gdp);
3381 if (b >= first_block && b <= last_block) {
3382 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3383 count++;
3384 }
3385 b = ext4_inode_bitmap(sb, gdp);
3386 if (b >= first_block && b <= last_block) {
3387 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3388 count++;
3389 }
3390 b = ext4_inode_table(sb, gdp);
3391 if (b >= first_block && b + sbi->s_itb_per_group <= last_block)
3392 for (j = 0; j < sbi->s_itb_per_group; j++, b++) {
3393 int c = EXT4_B2C(sbi, b - first_block);
3394 ext4_set_bit(c, buf);
3395 count++;
3396 }
3397 if (i != grp)
3398 continue;
3399 s = 0;
3400 if (ext4_bg_has_super(sb, grp)) {
3401 ext4_set_bit(s++, buf);
3402 count++;
3403 }
3404 j = ext4_bg_num_gdb(sb, grp);
3405 if (s + j > EXT4_BLOCKS_PER_GROUP(sb)) {
3406 ext4_error(sb, "Invalid number of block group "
3407 "descriptor blocks: %d", j);
3408 j = EXT4_BLOCKS_PER_GROUP(sb) - s;
3409 }
3410 count += j;
3411 for (; j > 0; j--)
3412 ext4_set_bit(EXT4_B2C(sbi, s++), buf);
3413 }
3414 if (!count)
3415 return 0;
3416 return EXT4_CLUSTERS_PER_GROUP(sb) -
3417 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8);
3418 }
3419
3420 /*
3421 * Compute the overhead and stash it in sbi->s_overhead
3422 */
3423 int ext4_calculate_overhead(struct super_block *sb)
3424 {
3425 struct ext4_sb_info *sbi = EXT4_SB(sb);
3426 struct ext4_super_block *es = sbi->s_es;
3427 struct inode *j_inode;
3428 unsigned int j_blocks, j_inum = le32_to_cpu(es->s_journal_inum);
3429 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3430 ext4_fsblk_t overhead = 0;
3431 char *buf = (char *) get_zeroed_page(GFP_NOFS);
3432
3433 if (!buf)
3434 return -ENOMEM;
3435
3436 /*
3437 * Compute the overhead (FS structures). This is constant
3438 * for a given filesystem unless the number of block groups
3439 * changes so we cache the previous value until it does.
3440 */
3441
3442 /*
3443 * All of the blocks before first_data_block are overhead
3444 */
3445 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
3446
3447 /*
3448 * Add the overhead found in each block group
3449 */
3450 for (i = 0; i < ngroups; i++) {
3451 int blks;
3452
3453 blks = count_overhead(sb, i, buf);
3454 overhead += blks;
3455 if (blks)
3456 memset(buf, 0, PAGE_SIZE);
3457 cond_resched();
3458 }
3459
3460 /*
3461 * Add the internal journal blocks whether the journal has been
3462 * loaded or not
3463 */
3464 if (sbi->s_journal && !sbi->journal_bdev)
3465 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_maxlen);
3466 else if (ext4_has_feature_journal(sb) && !sbi->s_journal) {
3467 j_inode = ext4_get_journal_inode(sb, j_inum);
3468 if (j_inode) {
3469 j_blocks = j_inode->i_size >> sb->s_blocksize_bits;
3470 overhead += EXT4_NUM_B2C(sbi, j_blocks);
3471 iput(j_inode);
3472 } else {
3473 ext4_msg(sb, KERN_ERR, "can't get journal size");
3474 }
3475 }
3476 sbi->s_overhead = overhead;
3477 smp_wmb();
3478 free_page((unsigned long) buf);
3479 return 0;
3480 }
3481
3482 static void ext4_set_resv_clusters(struct super_block *sb)
3483 {
3484 ext4_fsblk_t resv_clusters;
3485 struct ext4_sb_info *sbi = EXT4_SB(sb);
3486
3487 /*
3488 * There's no need to reserve anything when we aren't using extents.
3489 * The space estimates are exact, there are no unwritten extents,
3490 * hole punching doesn't need new metadata... This is needed especially
3491 * to keep ext2/3 backward compatibility.
3492 */
3493 if (!ext4_has_feature_extents(sb))
3494 return;
3495 /*
3496 * By default we reserve 2% or 4096 clusters, whichever is smaller.
3497 * This should cover the situations where we can not afford to run
3498 * out of space like for example punch hole, or converting
3499 * unwritten extents in delalloc path. In most cases such
3500 * allocation would require 1, or 2 blocks, higher numbers are
3501 * very rare.
3502 */
3503 resv_clusters = (ext4_blocks_count(sbi->s_es) >>
3504 sbi->s_cluster_bits);
3505
3506 do_div(resv_clusters, 50);
3507 resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096);
3508
3509 atomic64_set(&sbi->s_resv_clusters, resv_clusters);
3510 }
3511
3512 static int ext4_fill_super(struct super_block *sb, void *data, int silent)
3513 {
3514 struct dax_device *dax_dev = fs_dax_get_by_bdev(sb->s_bdev);
3515 char *orig_data = kstrdup(data, GFP_KERNEL);
3516 struct buffer_head *bh;
3517 struct ext4_super_block *es = NULL;
3518 struct ext4_sb_info *sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
3519 ext4_fsblk_t block;
3520 ext4_fsblk_t sb_block = get_sb_block(&data);
3521 ext4_fsblk_t logical_sb_block;
3522 unsigned long offset = 0;
3523 unsigned long journal_devnum = 0;
3524 unsigned long def_mount_opts;
3525 struct inode *root;
3526 const char *descr;
3527 int ret = -ENOMEM;
3528 int blocksize, clustersize;
3529 unsigned int db_count;
3530 unsigned int i;
3531 int needs_recovery, has_huge_files, has_bigalloc;
3532 __u64 blocks_count;
3533 int err = 0;
3534 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
3535 ext4_group_t first_not_zeroed;
3536
3537 if ((data && !orig_data) || !sbi)
3538 goto out_free_base;
3539
3540 if (!userns_mounts && !capable(CAP_SYS_ADMIN)) {
3541 ret = -EPERM;
3542 goto out_free_base;
3543 }
3544
3545 sbi->s_daxdev = dax_dev;
3546 sbi->s_blockgroup_lock =
3547 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
3548 if (!sbi->s_blockgroup_lock)
3549 goto out_free_base;
3550
3551 sb->s_fs_info = sbi;
3552 sbi->s_sb = sb;
3553 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
3554 sbi->s_sb_block = sb_block;
3555 if (sb->s_bdev->bd_part)
3556 sbi->s_sectors_written_start =
3557 part_stat_read(sb->s_bdev->bd_part, sectors[1]);
3558
3559 /* Cleanup superblock name */
3560 strreplace(sb->s_id, '/', '!');
3561
3562 /* -EINVAL is default */
3563 ret = -EINVAL;
3564 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
3565 if (!blocksize) {
3566 ext4_msg(sb, KERN_ERR, "unable to set blocksize");
3567 goto out_fail;
3568 }
3569
3570 /*
3571 * The ext4 superblock will not be buffer aligned for other than 1kB
3572 * block sizes. We need to calculate the offset from buffer start.
3573 */
3574 if (blocksize != EXT4_MIN_BLOCK_SIZE) {
3575 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3576 offset = do_div(logical_sb_block, blocksize);
3577 } else {
3578 logical_sb_block = sb_block;
3579 }
3580
3581 if (!(bh = sb_bread_unmovable(sb, logical_sb_block))) {
3582 ext4_msg(sb, KERN_ERR, "unable to read superblock");
3583 goto out_fail;
3584 }
3585 /*
3586 * Note: s_es must be initialized as soon as possible because
3587 * some ext4 macro-instructions depend on its value
3588 */
3589 es = (struct ext4_super_block *) (bh->b_data + offset);
3590 sbi->s_es = es;
3591 sb->s_magic = le16_to_cpu(es->s_magic);
3592 if (sb->s_magic != EXT4_SUPER_MAGIC)
3593 goto cantfind_ext4;
3594 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
3595
3596 /* Warn if metadata_csum and gdt_csum are both set. */
3597 if (ext4_has_feature_metadata_csum(sb) &&
3598 ext4_has_feature_gdt_csum(sb))
3599 ext4_warning(sb, "metadata_csum and uninit_bg are "
3600 "redundant flags; please run fsck.");
3601
3602 /* Check for a known checksum algorithm */
3603 if (!ext4_verify_csum_type(sb, es)) {
3604 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3605 "unknown checksum algorithm.");
3606 silent = 1;
3607 goto cantfind_ext4;
3608 }
3609
3610 /* Load the checksum driver */
3611 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
3612 if (IS_ERR(sbi->s_chksum_driver)) {
3613 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver.");
3614 ret = PTR_ERR(sbi->s_chksum_driver);
3615 sbi->s_chksum_driver = NULL;
3616 goto failed_mount;
3617 }
3618
3619 /* Check superblock checksum */
3620 if (!ext4_superblock_csum_verify(sb, es)) {
3621 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3622 "invalid superblock checksum. Run e2fsck?");
3623 silent = 1;
3624 ret = -EFSBADCRC;
3625 goto cantfind_ext4;
3626 }
3627
3628 /* Precompute checksum seed for all metadata */
3629 if (ext4_has_feature_csum_seed(sb))
3630 sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed);
3631 else if (ext4_has_metadata_csum(sb) || ext4_has_feature_ea_inode(sb))
3632 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid,
3633 sizeof(es->s_uuid));
3634
3635 /* Set defaults before we parse the mount options */
3636 def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
3637 set_opt(sb, INIT_INODE_TABLE);
3638 if (def_mount_opts & EXT4_DEFM_DEBUG)
3639 set_opt(sb, DEBUG);
3640 if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
3641 set_opt(sb, GRPID);
3642 if (def_mount_opts & EXT4_DEFM_UID16)
3643 set_opt(sb, NO_UID32);
3644 /* xattr user namespace & acls are now defaulted on */
3645 set_opt(sb, XATTR_USER);
3646 #ifdef CONFIG_EXT4_FS_POSIX_ACL
3647 set_opt(sb, POSIX_ACL);
3648 #endif
3649 /* don't forget to enable journal_csum when metadata_csum is enabled. */
3650 if (ext4_has_metadata_csum(sb))
3651 set_opt(sb, JOURNAL_CHECKSUM);
3652
3653 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
3654 set_opt(sb, JOURNAL_DATA);
3655 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
3656 set_opt(sb, ORDERED_DATA);
3657 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
3658 set_opt(sb, WRITEBACK_DATA);
3659
3660 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC) {
3661 if (!capable(CAP_SYS_ADMIN))
3662 goto failed_mount;
3663 set_opt(sb, ERRORS_PANIC);
3664 } else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE) {
3665 set_opt(sb, ERRORS_CONT);
3666 } else {
3667 set_opt(sb, ERRORS_RO);
3668 }
3669 /* block_validity enabled by default; disable with noblock_validity */
3670 set_opt(sb, BLOCK_VALIDITY);
3671 if (def_mount_opts & EXT4_DEFM_DISCARD)
3672 set_opt(sb, DISCARD);
3673
3674 sbi->s_resuid = make_kuid(sb->s_user_ns, le16_to_cpu(es->s_def_resuid));
3675 if (!uid_valid(sbi->s_resuid))
3676 sbi->s_resuid = make_kuid(sb->s_user_ns, EXT4_DEF_RESUID);
3677 sbi->s_resgid = make_kgid(sb->s_user_ns, le16_to_cpu(es->s_def_resgid));
3678 if (!gid_valid(sbi->s_resgid))
3679 sbi->s_resgid = make_kgid(sb->s_user_ns, EXT4_DEF_RESGID);
3680 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
3681 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
3682 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
3683
3684 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
3685 set_opt(sb, BARRIER);
3686
3687 /*
3688 * enable delayed allocation by default
3689 * Use -o nodelalloc to turn it off
3690 */
3691 if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) &&
3692 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
3693 set_opt(sb, DELALLOC);
3694
3695 /*
3696 * set default s_li_wait_mult for lazyinit, for the case there is
3697 * no mount option specified.
3698 */
3699 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
3700
3701 blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
3702 if (blocksize < EXT4_MIN_BLOCK_SIZE ||
3703 blocksize > EXT4_MAX_BLOCK_SIZE) {
3704 ext4_msg(sb, KERN_ERR,
3705 "Unsupported filesystem blocksize %d (%d log_block_size)",
3706 blocksize, le32_to_cpu(es->s_log_block_size));
3707 goto failed_mount;
3708 }
3709
3710 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
3711 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
3712 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
3713 } else {
3714 sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
3715 sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
3716 if (sbi->s_first_ino < EXT4_GOOD_OLD_FIRST_INO) {
3717 ext4_msg(sb, KERN_ERR, "invalid first ino: %u",
3718 sbi->s_first_ino);
3719 goto failed_mount;
3720 }
3721 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
3722 (!is_power_of_2(sbi->s_inode_size)) ||
3723 (sbi->s_inode_size > blocksize)) {
3724 ext4_msg(sb, KERN_ERR,
3725 "unsupported inode size: %d",
3726 sbi->s_inode_size);
3727 ext4_msg(sb, KERN_ERR, "blocksize: %d", blocksize);
3728 goto failed_mount;
3729 }
3730 /*
3731 * i_atime_extra is the last extra field available for
3732 * [acm]times in struct ext4_inode. Checking for that
3733 * field should suffice to ensure we have extra space
3734 * for all three.
3735 */
3736 if (sbi->s_inode_size >= offsetof(struct ext4_inode, i_atime_extra) +
3737 sizeof(((struct ext4_inode *)0)->i_atime_extra)) {
3738 sb->s_time_gran = 1;
3739 } else {
3740 sb->s_time_gran = NSEC_PER_SEC;
3741 }
3742 }
3743 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) {
3744 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
3745 EXT4_GOOD_OLD_INODE_SIZE;
3746 if (ext4_has_feature_extra_isize(sb)) {
3747 unsigned v, max = (sbi->s_inode_size -
3748 EXT4_GOOD_OLD_INODE_SIZE);
3749
3750 v = le16_to_cpu(es->s_want_extra_isize);
3751 if (v > max) {
3752 ext4_msg(sb, KERN_ERR,
3753 "bad s_want_extra_isize: %d", v);
3754 goto failed_mount;
3755 }
3756 if (sbi->s_want_extra_isize < v)
3757 sbi->s_want_extra_isize = v;
3758
3759 v = le16_to_cpu(es->s_min_extra_isize);
3760 if (v > max) {
3761 ext4_msg(sb, KERN_ERR,
3762 "bad s_min_extra_isize: %d", v);
3763 goto failed_mount;
3764 }
3765 if (sbi->s_want_extra_isize < v)
3766 sbi->s_want_extra_isize = v;
3767 }
3768 }
3769
3770 if (sbi->s_es->s_mount_opts[0]) {
3771 char *s_mount_opts = kstrndup(sbi->s_es->s_mount_opts,
3772 sizeof(sbi->s_es->s_mount_opts),
3773 GFP_KERNEL);
3774 if (!s_mount_opts)
3775 goto failed_mount;
3776 if (!parse_options(s_mount_opts, sb, &journal_devnum,
3777 &journal_ioprio, 0)) {
3778 ext4_msg(sb, KERN_WARNING,
3779 "failed to parse options in superblock: %s",
3780 s_mount_opts);
3781 }
3782 kfree(s_mount_opts);
3783 }
3784 sbi->s_def_mount_opt = sbi->s_mount_opt;
3785 if (!parse_options((char *) data, sb, &journal_devnum,
3786 &journal_ioprio, 0))
3787 goto failed_mount;
3788
3789 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
3790 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting "
3791 "with data=journal disables delayed "
3792 "allocation and O_DIRECT support!\n");
3793 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
3794 ext4_msg(sb, KERN_ERR, "can't mount with "
3795 "both data=journal and delalloc");
3796 goto failed_mount;
3797 }
3798 if (test_opt(sb, DIOREAD_NOLOCK)) {
3799 ext4_msg(sb, KERN_ERR, "can't mount with "
3800 "both data=journal and dioread_nolock");
3801 goto failed_mount;
3802 }
3803 if (test_opt(sb, DAX)) {
3804 ext4_msg(sb, KERN_ERR, "can't mount with "
3805 "both data=journal and dax");
3806 goto failed_mount;
3807 }
3808 if (ext4_has_feature_encrypt(sb)) {
3809 ext4_msg(sb, KERN_WARNING,
3810 "encrypted files will use data=ordered "
3811 "instead of data journaling mode");
3812 }
3813 if (test_opt(sb, DELALLOC))
3814 clear_opt(sb, DELALLOC);
3815 } else {
3816 sb->s_iflags |= SB_I_CGROUPWB;
3817 }
3818
3819 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
3820 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
3821
3822 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
3823 (ext4_has_compat_features(sb) ||
3824 ext4_has_ro_compat_features(sb) ||
3825 ext4_has_incompat_features(sb)))
3826 ext4_msg(sb, KERN_WARNING,
3827 "feature flags set on rev 0 fs, "
3828 "running e2fsck is recommended");
3829
3830 if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) {
3831 set_opt2(sb, HURD_COMPAT);
3832 if (ext4_has_feature_64bit(sb)) {
3833 ext4_msg(sb, KERN_ERR,
3834 "The Hurd can't support 64-bit file systems");
3835 goto failed_mount;
3836 }
3837
3838 /*
3839 * ea_inode feature uses l_i_version field which is not
3840 * available in HURD_COMPAT mode.
3841 */
3842 if (ext4_has_feature_ea_inode(sb)) {
3843 ext4_msg(sb, KERN_ERR,
3844 "ea_inode feature is not supported for Hurd");
3845 goto failed_mount;
3846 }
3847 }
3848
3849 if (IS_EXT2_SB(sb)) {
3850 if (ext2_feature_set_ok(sb))
3851 ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
3852 "using the ext4 subsystem");
3853 else {
3854 /*
3855 * If we're probing be silent, if this looks like
3856 * it's actually an ext[34] filesystem.
3857 */
3858 if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
3859 goto failed_mount;
3860 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
3861 "to feature incompatibilities");
3862 goto failed_mount;
3863 }
3864 }
3865
3866 if (IS_EXT3_SB(sb)) {
3867 if (ext3_feature_set_ok(sb))
3868 ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
3869 "using the ext4 subsystem");
3870 else {
3871 /*
3872 * If we're probing be silent, if this looks like
3873 * it's actually an ext4 filesystem.
3874 */
3875 if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
3876 goto failed_mount;
3877 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
3878 "to feature incompatibilities");
3879 goto failed_mount;
3880 }
3881 }
3882
3883 /*
3884 * Check feature flags regardless of the revision level, since we
3885 * previously didn't change the revision level when setting the flags,
3886 * so there is a chance incompat flags are set on a rev 0 filesystem.
3887 */
3888 if (!ext4_feature_set_ok(sb, (sb_rdonly(sb))))
3889 goto failed_mount;
3890
3891 if (le32_to_cpu(es->s_log_block_size) >
3892 (EXT4_MAX_BLOCK_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
3893 ext4_msg(sb, KERN_ERR,
3894 "Invalid log block size: %u",
3895 le32_to_cpu(es->s_log_block_size));
3896 goto failed_mount;
3897 }
3898 if (le32_to_cpu(es->s_log_cluster_size) >
3899 (EXT4_MAX_CLUSTER_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
3900 ext4_msg(sb, KERN_ERR,
3901 "Invalid log cluster size: %u",
3902 le32_to_cpu(es->s_log_cluster_size));
3903 goto failed_mount;
3904 }
3905
3906 if (le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) > (blocksize / 4)) {
3907 ext4_msg(sb, KERN_ERR,
3908 "Number of reserved GDT blocks insanely large: %d",
3909 le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks));
3910 goto failed_mount;
3911 }
3912
3913 if (sbi->s_mount_opt & EXT4_MOUNT_DAX) {
3914 if (ext4_has_feature_inline_data(sb)) {
3915 ext4_msg(sb, KERN_ERR, "Cannot use DAX on a filesystem"
3916 " that may contain inline data");
3917 sbi->s_mount_opt &= ~EXT4_MOUNT_DAX;
3918 }
3919 if (!bdev_dax_supported(sb->s_bdev, blocksize)) {
3920 ext4_msg(sb, KERN_ERR,
3921 "DAX unsupported by block device. Turning off DAX.");
3922 sbi->s_mount_opt &= ~EXT4_MOUNT_DAX;
3923 }
3924 }
3925
3926 if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) {
3927 ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d",
3928 es->s_encryption_level);
3929 goto failed_mount;
3930 }
3931
3932 if (sb->s_blocksize != blocksize) {
3933 /* Validate the filesystem blocksize */
3934 if (!sb_set_blocksize(sb, blocksize)) {
3935 ext4_msg(sb, KERN_ERR, "bad block size %d",
3936 blocksize);
3937 goto failed_mount;
3938 }
3939
3940 brelse(bh);
3941 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3942 offset = do_div(logical_sb_block, blocksize);
3943 bh = sb_bread_unmovable(sb, logical_sb_block);
3944 if (!bh) {
3945 ext4_msg(sb, KERN_ERR,
3946 "Can't read superblock on 2nd try");
3947 goto failed_mount;
3948 }
3949 es = (struct ext4_super_block *)(bh->b_data + offset);
3950 sbi->s_es = es;
3951 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
3952 ext4_msg(sb, KERN_ERR,
3953 "Magic mismatch, very weird!");
3954 goto failed_mount;
3955 }
3956 }
3957
3958 has_huge_files = ext4_has_feature_huge_file(sb);
3959 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
3960 has_huge_files);
3961 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
3962
3963 sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
3964 if (ext4_has_feature_64bit(sb)) {
3965 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
3966 sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
3967 !is_power_of_2(sbi->s_desc_size)) {
3968 ext4_msg(sb, KERN_ERR,
3969 "unsupported descriptor size %lu",
3970 sbi->s_desc_size);
3971 goto failed_mount;
3972 }
3973 } else
3974 sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
3975
3976 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
3977 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
3978
3979 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb);
3980 if (sbi->s_inodes_per_block == 0)
3981 goto cantfind_ext4;
3982 if (sbi->s_inodes_per_group < sbi->s_inodes_per_block ||
3983 sbi->s_inodes_per_group > blocksize * 8) {
3984 ext4_msg(sb, KERN_ERR, "invalid inodes per group: %lu\n",
3985 sbi->s_blocks_per_group);
3986 goto failed_mount;
3987 }
3988 sbi->s_itb_per_group = sbi->s_inodes_per_group /
3989 sbi->s_inodes_per_block;
3990 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb);
3991 sbi->s_sbh = bh;
3992 sbi->s_mount_state = le16_to_cpu(es->s_state);
3993 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
3994 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
3995
3996 for (i = 0; i < 4; i++)
3997 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
3998 sbi->s_def_hash_version = es->s_def_hash_version;
3999 if (ext4_has_feature_dir_index(sb)) {
4000 i = le32_to_cpu(es->s_flags);
4001 if (i & EXT2_FLAGS_UNSIGNED_HASH)
4002 sbi->s_hash_unsigned = 3;
4003 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
4004 #ifdef __CHAR_UNSIGNED__
4005 if (!sb_rdonly(sb))
4006 es->s_flags |=
4007 cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
4008 sbi->s_hash_unsigned = 3;
4009 #else
4010 if (!sb_rdonly(sb))
4011 es->s_flags |=
4012 cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
4013 #endif
4014 }
4015 }
4016
4017 /* Handle clustersize */
4018 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size);
4019 has_bigalloc = ext4_has_feature_bigalloc(sb);
4020 if (has_bigalloc) {
4021 if (clustersize < blocksize) {
4022 ext4_msg(sb, KERN_ERR,
4023 "cluster size (%d) smaller than "
4024 "block size (%d)", clustersize, blocksize);
4025 goto failed_mount;
4026 }
4027 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) -
4028 le32_to_cpu(es->s_log_block_size);
4029 sbi->s_clusters_per_group =
4030 le32_to_cpu(es->s_clusters_per_group);
4031 if (sbi->s_clusters_per_group > blocksize * 8) {
4032 ext4_msg(sb, KERN_ERR,
4033 "#clusters per group too big: %lu",
4034 sbi->s_clusters_per_group);
4035 goto failed_mount;
4036 }
4037 if (sbi->s_blocks_per_group !=
4038 (sbi->s_clusters_per_group * (clustersize / blocksize))) {
4039 ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and "
4040 "clusters per group (%lu) inconsistent",
4041 sbi->s_blocks_per_group,
4042 sbi->s_clusters_per_group);
4043 goto failed_mount;
4044 }
4045 } else {
4046 if (clustersize != blocksize) {
4047 ext4_msg(sb, KERN_ERR,
4048 "fragment/cluster size (%d) != "
4049 "block size (%d)", clustersize, blocksize);
4050 goto failed_mount;
4051 }
4052 if (sbi->s_blocks_per_group > blocksize * 8) {
4053 ext4_msg(sb, KERN_ERR,
4054 "#blocks per group too big: %lu",
4055 sbi->s_blocks_per_group);
4056 goto failed_mount;
4057 }
4058 sbi->s_clusters_per_group = sbi->s_blocks_per_group;
4059 sbi->s_cluster_bits = 0;
4060 }
4061 sbi->s_cluster_ratio = clustersize / blocksize;
4062
4063 /* Do we have standard group size of clustersize * 8 blocks ? */
4064 if (sbi->s_blocks_per_group == clustersize << 3)
4065 set_opt2(sb, STD_GROUP_SIZE);
4066
4067 /*
4068 * Test whether we have more sectors than will fit in sector_t,
4069 * and whether the max offset is addressable by the page cache.
4070 */
4071 err = generic_check_addressable(sb->s_blocksize_bits,
4072 ext4_blocks_count(es));
4073 if (err) {
4074 ext4_msg(sb, KERN_ERR, "filesystem"
4075 " too large to mount safely on this system");
4076 if (sizeof(sector_t) < 8)
4077 ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled");
4078 goto failed_mount;
4079 }
4080
4081 if (EXT4_BLOCKS_PER_GROUP(sb) == 0)
4082 goto cantfind_ext4;
4083
4084 /* check blocks count against device size */
4085 blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
4086 if (blocks_count && ext4_blocks_count(es) > blocks_count) {
4087 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
4088 "exceeds size of device (%llu blocks)",
4089 ext4_blocks_count(es), blocks_count);
4090 goto failed_mount;
4091 }
4092
4093 /*
4094 * It makes no sense for the first data block to be beyond the end
4095 * of the filesystem.
4096 */
4097 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
4098 ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
4099 "block %u is beyond end of filesystem (%llu)",
4100 le32_to_cpu(es->s_first_data_block),
4101 ext4_blocks_count(es));
4102 goto failed_mount;
4103 }
4104 if ((es->s_first_data_block == 0) && (es->s_log_block_size == 0) &&
4105 (sbi->s_cluster_ratio == 1)) {
4106 ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
4107 "block is 0 with a 1k block and cluster size");
4108 goto failed_mount;
4109 }
4110
4111 blocks_count = (ext4_blocks_count(es) -
4112 le32_to_cpu(es->s_first_data_block) +
4113 EXT4_BLOCKS_PER_GROUP(sb) - 1);
4114 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
4115 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
4116 ext4_msg(sb, KERN_WARNING, "groups count too large: %u "
4117 "(block count %llu, first data block %u, "
4118 "blocks per group %lu)", sbi->s_groups_count,
4119 ext4_blocks_count(es),
4120 le32_to_cpu(es->s_first_data_block),
4121 EXT4_BLOCKS_PER_GROUP(sb));
4122 goto failed_mount;
4123 }
4124 sbi->s_groups_count = blocks_count;
4125 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
4126 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
4127 if (((u64)sbi->s_groups_count * sbi->s_inodes_per_group) !=
4128 le32_to_cpu(es->s_inodes_count)) {
4129 ext4_msg(sb, KERN_ERR, "inodes count not valid: %u vs %llu",
4130 le32_to_cpu(es->s_inodes_count),
4131 ((u64)sbi->s_groups_count * sbi->s_inodes_per_group));
4132 ret = -EINVAL;
4133 goto failed_mount;
4134 }
4135 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
4136 EXT4_DESC_PER_BLOCK(sb);
4137 if (ext4_has_feature_meta_bg(sb)) {
4138 if (le32_to_cpu(es->s_first_meta_bg) > db_count) {
4139 ext4_msg(sb, KERN_WARNING,
4140 "first meta block group too large: %u "
4141 "(group descriptor block count %u)",
4142 le32_to_cpu(es->s_first_meta_bg), db_count);
4143 goto failed_mount;
4144 }
4145 }
4146 sbi->s_group_desc = kvmalloc(db_count *
4147 sizeof(struct buffer_head *),
4148 GFP_KERNEL);
4149 if (sbi->s_group_desc == NULL) {
4150 ext4_msg(sb, KERN_ERR, "not enough memory");
4151 ret = -ENOMEM;
4152 goto failed_mount;
4153 }
4154
4155 bgl_lock_init(sbi->s_blockgroup_lock);
4156
4157 /* Pre-read the descriptors into the buffer cache */
4158 for (i = 0; i < db_count; i++) {
4159 block = descriptor_loc(sb, logical_sb_block, i);
4160 sb_breadahead(sb, block);
4161 }
4162
4163 for (i = 0; i < db_count; i++) {
4164 block = descriptor_loc(sb, logical_sb_block, i);
4165 sbi->s_group_desc[i] = sb_bread_unmovable(sb, block);
4166 if (!sbi->s_group_desc[i]) {
4167 ext4_msg(sb, KERN_ERR,
4168 "can't read group descriptor %d", i);
4169 db_count = i;
4170 goto failed_mount2;
4171 }
4172 }
4173 sbi->s_gdb_count = db_count;
4174 if (!ext4_check_descriptors(sb, logical_sb_block, &first_not_zeroed)) {
4175 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
4176 ret = -EFSCORRUPTED;
4177 goto failed_mount2;
4178 }
4179
4180 timer_setup(&sbi->s_err_report, print_daily_error_info, 0);
4181
4182 /* Register extent status tree shrinker */
4183 if (ext4_es_register_shrinker(sbi))
4184 goto failed_mount3;
4185
4186 sbi->s_stripe = ext4_get_stripe_size(sbi);
4187 sbi->s_extent_max_zeroout_kb = 32;
4188
4189 /*
4190 * set up enough so that it can read an inode
4191 */
4192 sb->s_op = &ext4_sops;
4193 sb->s_export_op = &ext4_export_ops;
4194 sb->s_xattr = ext4_xattr_handlers;
4195 #ifdef CONFIG_EXT4_FS_ENCRYPTION
4196 sb->s_cop = &ext4_cryptops;
4197 #endif
4198 #ifdef CONFIG_QUOTA
4199 sb->dq_op = &ext4_quota_operations;
4200 if (ext4_has_feature_quota(sb))
4201 sb->s_qcop = &dquot_quotactl_sysfile_ops;
4202 else
4203 sb->s_qcop = &ext4_qctl_operations;
4204 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
4205 #endif
4206 memcpy(&sb->s_uuid, es->s_uuid, sizeof(es->s_uuid));
4207
4208 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
4209 mutex_init(&sbi->s_orphan_lock);
4210
4211 sb->s_root = NULL;
4212
4213 needs_recovery = (es->s_last_orphan != 0 ||
4214 ext4_has_feature_journal_needs_recovery(sb));
4215
4216 if (ext4_has_feature_mmp(sb) && !sb_rdonly(sb))
4217 if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block)))
4218 goto failed_mount3a;
4219
4220 /*
4221 * The first inode we look at is the journal inode. Don't try
4222 * root first: it may be modified in the journal!
4223 */
4224 if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) {
4225 err = ext4_load_journal(sb, es, journal_devnum);
4226 if (err)
4227 goto failed_mount3a;
4228 } else if (test_opt(sb, NOLOAD) && !sb_rdonly(sb) &&
4229 ext4_has_feature_journal_needs_recovery(sb)) {
4230 ext4_msg(sb, KERN_ERR, "required journal recovery "
4231 "suppressed and not mounted read-only");
4232 goto failed_mount_wq;
4233 } else {
4234 /* Nojournal mode, all journal mount options are illegal */
4235 if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) {
4236 ext4_msg(sb, KERN_ERR, "can't mount with "
4237 "journal_checksum, fs mounted w/o journal");
4238 goto failed_mount_wq;
4239 }
4240 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4241 ext4_msg(sb, KERN_ERR, "can't mount with "
4242 "journal_async_commit, fs mounted w/o journal");
4243 goto failed_mount_wq;
4244 }
4245 if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) {
4246 ext4_msg(sb, KERN_ERR, "can't mount with "
4247 "commit=%lu, fs mounted w/o journal",
4248 sbi->s_commit_interval / HZ);
4249 goto failed_mount_wq;
4250 }
4251 if (EXT4_MOUNT_DATA_FLAGS &
4252 (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) {
4253 ext4_msg(sb, KERN_ERR, "can't mount with "
4254 "data=, fs mounted w/o journal");
4255 goto failed_mount_wq;
4256 }
4257 sbi->s_def_mount_opt &= ~EXT4_MOUNT_JOURNAL_CHECKSUM;
4258 clear_opt(sb, JOURNAL_CHECKSUM);
4259 clear_opt(sb, DATA_FLAGS);
4260 sbi->s_journal = NULL;
4261 needs_recovery = 0;
4262 goto no_journal;
4263 }
4264
4265 if (ext4_has_feature_64bit(sb) &&
4266 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
4267 JBD2_FEATURE_INCOMPAT_64BIT)) {
4268 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
4269 goto failed_mount_wq;
4270 }
4271
4272 if (!set_journal_csum_feature_set(sb)) {
4273 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum "
4274 "feature set");
4275 goto failed_mount_wq;
4276 }
4277
4278 /* We have now updated the journal if required, so we can
4279 * validate the data journaling mode. */
4280 switch (test_opt(sb, DATA_FLAGS)) {
4281 case 0:
4282 /* No mode set, assume a default based on the journal
4283 * capabilities: ORDERED_DATA if the journal can
4284 * cope, else JOURNAL_DATA
4285 */
4286 if (jbd2_journal_check_available_features
4287 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE))
4288 set_opt(sb, ORDERED_DATA);
4289 else
4290 set_opt(sb, JOURNAL_DATA);
4291 break;
4292
4293 case EXT4_MOUNT_ORDERED_DATA:
4294 case EXT4_MOUNT_WRITEBACK_DATA:
4295 if (!jbd2_journal_check_available_features
4296 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4297 ext4_msg(sb, KERN_ERR, "Journal does not support "
4298 "requested data journaling mode");
4299 goto failed_mount_wq;
4300 }
4301 default:
4302 break;
4303 }
4304
4305 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA &&
4306 test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4307 ext4_msg(sb, KERN_ERR, "can't mount with "
4308 "journal_async_commit in data=ordered mode");
4309 goto failed_mount_wq;
4310 }
4311
4312 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
4313
4314 sbi->s_journal->j_commit_callback = ext4_journal_commit_callback;
4315
4316 no_journal:
4317 if (!test_opt(sb, NO_MBCACHE)) {
4318 sbi->s_ea_block_cache = ext4_xattr_create_cache();
4319 if (!sbi->s_ea_block_cache) {
4320 ext4_msg(sb, KERN_ERR,
4321 "Failed to create ea_block_cache");
4322 goto failed_mount_wq;
4323 }
4324
4325 if (ext4_has_feature_ea_inode(sb)) {
4326 sbi->s_ea_inode_cache = ext4_xattr_create_cache();
4327 if (!sbi->s_ea_inode_cache) {
4328 ext4_msg(sb, KERN_ERR,
4329 "Failed to create ea_inode_cache");
4330 goto failed_mount_wq;
4331 }
4332 }
4333 }
4334
4335 if ((DUMMY_ENCRYPTION_ENABLED(sbi) || ext4_has_feature_encrypt(sb)) &&
4336 (blocksize != PAGE_SIZE)) {
4337 ext4_msg(sb, KERN_ERR,
4338 "Unsupported blocksize for fs encryption");
4339 goto failed_mount_wq;
4340 }
4341
4342 if (DUMMY_ENCRYPTION_ENABLED(sbi) && !sb_rdonly(sb) &&
4343 !ext4_has_feature_encrypt(sb)) {
4344 ext4_set_feature_encrypt(sb);
4345 ext4_commit_super(sb, 1);
4346 }
4347
4348 /*
4349 * Get the # of file system overhead blocks from the
4350 * superblock if present.
4351 */
4352 if (es->s_overhead_clusters)
4353 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters);
4354 else {
4355 err = ext4_calculate_overhead(sb);
4356 if (err)
4357 goto failed_mount_wq;
4358 }
4359
4360 /*
4361 * The maximum number of concurrent works can be high and
4362 * concurrency isn't really necessary. Limit it to 1.
4363 */
4364 EXT4_SB(sb)->rsv_conversion_wq =
4365 alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
4366 if (!EXT4_SB(sb)->rsv_conversion_wq) {
4367 printk(KERN_ERR "EXT4-fs: failed to create workqueue\n");
4368 ret = -ENOMEM;
4369 goto failed_mount4;
4370 }
4371
4372 /*
4373 * The jbd2_journal_load will have done any necessary log recovery,
4374 * so we can safely mount the rest of the filesystem now.
4375 */
4376
4377 root = ext4_iget(sb, EXT4_ROOT_INO, EXT4_IGET_SPECIAL);
4378 if (IS_ERR(root)) {
4379 ext4_msg(sb, KERN_ERR, "get root inode failed");
4380 ret = PTR_ERR(root);
4381 root = NULL;
4382 goto failed_mount4;
4383 }
4384 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
4385 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
4386 iput(root);
4387 goto failed_mount4;
4388 }
4389 sb->s_root = d_make_root(root);
4390 if (!sb->s_root) {
4391 ext4_msg(sb, KERN_ERR, "get root dentry failed");
4392 ret = -ENOMEM;
4393 goto failed_mount4;
4394 }
4395
4396 if (ext4_setup_super(sb, es, sb_rdonly(sb)))
4397 sb->s_flags |= SB_RDONLY;
4398
4399 ext4_set_resv_clusters(sb);
4400
4401 err = ext4_setup_system_zone(sb);
4402 if (err) {
4403 ext4_msg(sb, KERN_ERR, "failed to initialize system "
4404 "zone (%d)", err);
4405 goto failed_mount4a;
4406 }
4407
4408 ext4_ext_init(sb);
4409 err = ext4_mb_init(sb);
4410 if (err) {
4411 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
4412 err);
4413 goto failed_mount5;
4414 }
4415
4416 block = ext4_count_free_clusters(sb);
4417 ext4_free_blocks_count_set(sbi->s_es,
4418 EXT4_C2B(sbi, block));
4419 ext4_superblock_csum_set(sb);
4420 err = percpu_counter_init(&sbi->s_freeclusters_counter, block,
4421 GFP_KERNEL);
4422 if (!err) {
4423 unsigned long freei = ext4_count_free_inodes(sb);
4424 sbi->s_es->s_free_inodes_count = cpu_to_le32(freei);
4425 ext4_superblock_csum_set(sb);
4426 err = percpu_counter_init(&sbi->s_freeinodes_counter, freei,
4427 GFP_KERNEL);
4428 }
4429 if (!err)
4430 err = percpu_counter_init(&sbi->s_dirs_counter,
4431 ext4_count_dirs(sb), GFP_KERNEL);
4432 if (!err)
4433 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0,
4434 GFP_KERNEL);
4435 if (!err)
4436 err = percpu_init_rwsem(&sbi->s_journal_flag_rwsem);
4437
4438 if (err) {
4439 ext4_msg(sb, KERN_ERR, "insufficient memory");
4440 goto failed_mount6;
4441 }
4442
4443 if (ext4_has_feature_flex_bg(sb))
4444 if (!ext4_fill_flex_info(sb)) {
4445 ext4_msg(sb, KERN_ERR,
4446 "unable to initialize "
4447 "flex_bg meta info!");
4448 goto failed_mount6;
4449 }
4450
4451 err = ext4_register_li_request(sb, first_not_zeroed);
4452 if (err)
4453 goto failed_mount6;
4454
4455 err = ext4_register_sysfs(sb);
4456 if (err)
4457 goto failed_mount7;
4458
4459 #ifdef CONFIG_QUOTA
4460 /* Enable quota usage during mount. */
4461 if (ext4_has_feature_quota(sb) && !sb_rdonly(sb)) {
4462 err = ext4_enable_quotas(sb);
4463 if (err)
4464 goto failed_mount8;
4465 }
4466 #endif /* CONFIG_QUOTA */
4467
4468 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
4469 ext4_orphan_cleanup(sb, es);
4470 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
4471 if (needs_recovery) {
4472 ext4_msg(sb, KERN_INFO, "recovery complete");
4473 ext4_mark_recovery_complete(sb, es);
4474 }
4475 if (EXT4_SB(sb)->s_journal) {
4476 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
4477 descr = " journalled data mode";
4478 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
4479 descr = " ordered data mode";
4480 else
4481 descr = " writeback data mode";
4482 } else
4483 descr = "out journal";
4484
4485 if (test_opt(sb, DISCARD)) {
4486 struct request_queue *q = bdev_get_queue(sb->s_bdev);
4487 if (!blk_queue_discard(q))
4488 ext4_msg(sb, KERN_WARNING,
4489 "mounting with \"discard\" option, but "
4490 "the device does not support discard");
4491 }
4492
4493 if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount"))
4494 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. "
4495 "Opts: %.*s%s%s", descr,
4496 (int) sizeof(sbi->s_es->s_mount_opts),
4497 sbi->s_es->s_mount_opts,
4498 *sbi->s_es->s_mount_opts ? "; " : "", orig_data);
4499
4500 if (es->s_error_count)
4501 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
4502
4503 /* Enable message ratelimiting. Default is 10 messages per 5 secs. */
4504 ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10);
4505 ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10);
4506 ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10);
4507
4508 kfree(orig_data);
4509 return 0;
4510
4511 cantfind_ext4:
4512 if (!silent)
4513 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
4514 goto failed_mount;
4515
4516 #ifdef CONFIG_QUOTA
4517 failed_mount8:
4518 ext4_unregister_sysfs(sb);
4519 #endif
4520 failed_mount7:
4521 ext4_unregister_li_request(sb);
4522 failed_mount6:
4523 ext4_mb_release(sb);
4524 if (sbi->s_flex_groups)
4525 kvfree(sbi->s_flex_groups);
4526 percpu_counter_destroy(&sbi->s_freeclusters_counter);
4527 percpu_counter_destroy(&sbi->s_freeinodes_counter);
4528 percpu_counter_destroy(&sbi->s_dirs_counter);
4529 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
4530 percpu_free_rwsem(&sbi->s_journal_flag_rwsem);
4531 failed_mount5:
4532 ext4_ext_release(sb);
4533 ext4_release_system_zone(sb);
4534 failed_mount4a:
4535 dput(sb->s_root);
4536 sb->s_root = NULL;
4537 failed_mount4:
4538 ext4_msg(sb, KERN_ERR, "mount failed");
4539 if (EXT4_SB(sb)->rsv_conversion_wq)
4540 destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq);
4541 failed_mount_wq:
4542 if (sbi->s_ea_inode_cache) {
4543 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
4544 sbi->s_ea_inode_cache = NULL;
4545 }
4546 if (sbi->s_ea_block_cache) {
4547 ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
4548 sbi->s_ea_block_cache = NULL;
4549 }
4550 if (sbi->s_journal) {
4551 jbd2_journal_destroy(sbi->s_journal);
4552 sbi->s_journal = NULL;
4553 }
4554 failed_mount3a:
4555 ext4_es_unregister_shrinker(sbi);
4556 failed_mount3:
4557 del_timer_sync(&sbi->s_err_report);
4558 if (sbi->s_mmp_tsk)
4559 kthread_stop(sbi->s_mmp_tsk);
4560 failed_mount2:
4561 for (i = 0; i < db_count; i++)
4562 brelse(sbi->s_group_desc[i]);
4563 kvfree(sbi->s_group_desc);
4564 failed_mount:
4565 if (sbi->s_chksum_driver)
4566 crypto_free_shash(sbi->s_chksum_driver);
4567 #ifdef CONFIG_QUOTA
4568 for (i = 0; i < EXT4_MAXQUOTAS; i++)
4569 kfree(sbi->s_qf_names[i]);
4570 #endif
4571 ext4_blkdev_remove(sbi);
4572 brelse(bh);
4573 out_fail:
4574 /* sb->s_user_ns will be put when sb is destroyed */
4575 sb->s_fs_info = NULL;
4576 kfree(sbi->s_blockgroup_lock);
4577 out_free_base:
4578 kfree(sbi);
4579 kfree(orig_data);
4580 fs_put_dax(dax_dev);
4581 return err ? err : ret;
4582 }
4583
4584 /*
4585 * Setup any per-fs journal parameters now. We'll do this both on
4586 * initial mount, once the journal has been initialised but before we've
4587 * done any recovery; and again on any subsequent remount.
4588 */
4589 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
4590 {
4591 struct ext4_sb_info *sbi = EXT4_SB(sb);
4592
4593 journal->j_commit_interval = sbi->s_commit_interval;
4594 journal->j_min_batch_time = sbi->s_min_batch_time;
4595 journal->j_max_batch_time = sbi->s_max_batch_time;
4596
4597 write_lock(&journal->j_state_lock);
4598 if (test_opt(sb, BARRIER))
4599 journal->j_flags |= JBD2_BARRIER;
4600 else
4601 journal->j_flags &= ~JBD2_BARRIER;
4602 if (test_opt(sb, DATA_ERR_ABORT))
4603 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
4604 else
4605 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
4606 write_unlock(&journal->j_state_lock);
4607 }
4608
4609 static struct inode *ext4_get_journal_inode(struct super_block *sb,
4610 unsigned int journal_inum)
4611 {
4612 struct inode *journal_inode;
4613
4614 /*
4615 * Test for the existence of a valid inode on disk. Bad things
4616 * happen if we iget() an unused inode, as the subsequent iput()
4617 * will try to delete it.
4618 */
4619 journal_inode = ext4_iget(sb, journal_inum, EXT4_IGET_SPECIAL);
4620 if (IS_ERR(journal_inode)) {
4621 ext4_msg(sb, KERN_ERR, "no journal found");
4622 return NULL;
4623 }
4624 if (!journal_inode->i_nlink) {
4625 make_bad_inode(journal_inode);
4626 iput(journal_inode);
4627 ext4_msg(sb, KERN_ERR, "journal inode is deleted");
4628 return NULL;
4629 }
4630
4631 jbd_debug(2, "Journal inode found at %p: %lld bytes\n",
4632 journal_inode, journal_inode->i_size);
4633 if (!S_ISREG(journal_inode->i_mode)) {
4634 ext4_msg(sb, KERN_ERR, "invalid journal inode");
4635 iput(journal_inode);
4636 return NULL;
4637 }
4638 return journal_inode;
4639 }
4640
4641 static journal_t *ext4_get_journal(struct super_block *sb,
4642 unsigned int journal_inum)
4643 {
4644 struct inode *journal_inode;
4645 journal_t *journal;
4646
4647 BUG_ON(!ext4_has_feature_journal(sb));
4648
4649 journal_inode = ext4_get_journal_inode(sb, journal_inum);
4650 if (!journal_inode)
4651 return NULL;
4652
4653 journal = jbd2_journal_init_inode(journal_inode);
4654 if (!journal) {
4655 ext4_msg(sb, KERN_ERR, "Could not load journal inode");
4656 iput(journal_inode);
4657 return NULL;
4658 }
4659 journal->j_private = sb;
4660 ext4_init_journal_params(sb, journal);
4661 return journal;
4662 }
4663
4664 static journal_t *ext4_get_dev_journal(struct super_block *sb,
4665 dev_t j_dev)
4666 {
4667 struct buffer_head *bh;
4668 journal_t *journal;
4669 ext4_fsblk_t start;
4670 ext4_fsblk_t len;
4671 int hblock, blocksize;
4672 ext4_fsblk_t sb_block;
4673 unsigned long offset;
4674 struct ext4_super_block *es;
4675 struct block_device *bdev;
4676
4677 BUG_ON(!ext4_has_feature_journal(sb));
4678
4679 bdev = ext4_blkdev_get(j_dev, sb);
4680 if (bdev == NULL)
4681 return NULL;
4682
4683 blocksize = sb->s_blocksize;
4684 hblock = bdev_logical_block_size(bdev);
4685 if (blocksize < hblock) {
4686 ext4_msg(sb, KERN_ERR,
4687 "blocksize too small for journal device");
4688 goto out_bdev;
4689 }
4690
4691 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
4692 offset = EXT4_MIN_BLOCK_SIZE % blocksize;
4693 set_blocksize(bdev, blocksize);
4694 if (!(bh = __bread(bdev, sb_block, blocksize))) {
4695 ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
4696 "external journal");
4697 goto out_bdev;
4698 }
4699
4700 es = (struct ext4_super_block *) (bh->b_data + offset);
4701 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
4702 !(le32_to_cpu(es->s_feature_incompat) &
4703 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
4704 ext4_msg(sb, KERN_ERR, "external journal has "
4705 "bad superblock");
4706 brelse(bh);
4707 goto out_bdev;
4708 }
4709
4710 if ((le32_to_cpu(es->s_feature_ro_compat) &
4711 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
4712 es->s_checksum != ext4_superblock_csum(sb, es)) {
4713 ext4_msg(sb, KERN_ERR, "external journal has "
4714 "corrupt superblock");
4715 brelse(bh);
4716 goto out_bdev;
4717 }
4718
4719 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
4720 ext4_msg(sb, KERN_ERR, "journal UUID does not match");
4721 brelse(bh);
4722 goto out_bdev;
4723 }
4724
4725 len = ext4_blocks_count(es);
4726 start = sb_block + 1;
4727 brelse(bh); /* we're done with the superblock */
4728
4729 journal = jbd2_journal_init_dev(bdev, sb->s_bdev,
4730 start, len, blocksize);
4731 if (!journal) {
4732 ext4_msg(sb, KERN_ERR, "failed to create device journal");
4733 goto out_bdev;
4734 }
4735 journal->j_private = sb;
4736 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &journal->j_sb_buffer);
4737 wait_on_buffer(journal->j_sb_buffer);
4738 if (!buffer_uptodate(journal->j_sb_buffer)) {
4739 ext4_msg(sb, KERN_ERR, "I/O error on journal device");
4740 goto out_journal;
4741 }
4742 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
4743 ext4_msg(sb, KERN_ERR, "External journal has more than one "
4744 "user (unsupported) - %d",
4745 be32_to_cpu(journal->j_superblock->s_nr_users));
4746 goto out_journal;
4747 }
4748 EXT4_SB(sb)->journal_bdev = bdev;
4749 ext4_init_journal_params(sb, journal);
4750 return journal;
4751
4752 out_journal:
4753 jbd2_journal_destroy(journal);
4754 out_bdev:
4755 ext4_blkdev_put(bdev);
4756 return NULL;
4757 }
4758
4759 static int ext4_load_journal(struct super_block *sb,
4760 struct ext4_super_block *es,
4761 unsigned long journal_devnum)
4762 {
4763 journal_t *journal;
4764 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
4765 dev_t journal_dev;
4766 int err = 0;
4767 int really_read_only;
4768
4769 BUG_ON(!ext4_has_feature_journal(sb));
4770
4771 if (journal_devnum &&
4772 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4773 ext4_msg(sb, KERN_INFO, "external journal device major/minor "
4774 "numbers have changed");
4775 journal_dev = new_decode_dev(journal_devnum);
4776 } else
4777 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
4778
4779 really_read_only = bdev_read_only(sb->s_bdev);
4780
4781 /*
4782 * Are we loading a blank journal or performing recovery after a
4783 * crash? For recovery, we need to check in advance whether we
4784 * can get read-write access to the device.
4785 */
4786 if (ext4_has_feature_journal_needs_recovery(sb)) {
4787 if (sb_rdonly(sb)) {
4788 ext4_msg(sb, KERN_INFO, "INFO: recovery "
4789 "required on readonly filesystem");
4790 if (really_read_only) {
4791 ext4_msg(sb, KERN_ERR, "write access "
4792 "unavailable, cannot proceed "
4793 "(try mounting with noload)");
4794 return -EROFS;
4795 }
4796 ext4_msg(sb, KERN_INFO, "write access will "
4797 "be enabled during recovery");
4798 }
4799 }
4800
4801 if (journal_inum && journal_dev) {
4802 ext4_msg(sb, KERN_ERR, "filesystem has both journal "
4803 "and inode journals!");
4804 return -EINVAL;
4805 }
4806
4807 if (journal_inum) {
4808 if (!(journal = ext4_get_journal(sb, journal_inum)))
4809 return -EINVAL;
4810 } else {
4811 if (!(journal = ext4_get_dev_journal(sb, journal_dev)))
4812 return -EINVAL;
4813 }
4814
4815 if (!(journal->j_flags & JBD2_BARRIER))
4816 ext4_msg(sb, KERN_INFO, "barriers disabled");
4817
4818 if (!ext4_has_feature_journal_needs_recovery(sb))
4819 err = jbd2_journal_wipe(journal, !really_read_only);
4820 if (!err) {
4821 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
4822 if (save)
4823 memcpy(save, ((char *) es) +
4824 EXT4_S_ERR_START, EXT4_S_ERR_LEN);
4825 err = jbd2_journal_load(journal);
4826 if (save)
4827 memcpy(((char *) es) + EXT4_S_ERR_START,
4828 save, EXT4_S_ERR_LEN);
4829 kfree(save);
4830 }
4831
4832 if (err) {
4833 ext4_msg(sb, KERN_ERR, "error loading journal");
4834 jbd2_journal_destroy(journal);
4835 return err;
4836 }
4837
4838 EXT4_SB(sb)->s_journal = journal;
4839 ext4_clear_journal_err(sb, es);
4840
4841 if (!really_read_only && journal_devnum &&
4842 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4843 es->s_journal_dev = cpu_to_le32(journal_devnum);
4844
4845 /* Make sure we flush the recovery flag to disk. */
4846 ext4_commit_super(sb, 1);
4847 }
4848
4849 return 0;
4850 }
4851
4852 static int ext4_commit_super(struct super_block *sb, int sync)
4853 {
4854 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
4855 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
4856 int error = 0;
4857
4858 if (!sbh || block_device_ejected(sb))
4859 return error;
4860
4861 /*
4862 * The superblock bh should be mapped, but it might not be if the
4863 * device was hot-removed. Not much we can do but fail the I/O.
4864 */
4865 if (!buffer_mapped(sbh))
4866 return error;
4867
4868 /*
4869 * If the file system is mounted read-only, don't update the
4870 * superblock write time. This avoids updating the superblock
4871 * write time when we are mounting the root file system
4872 * read/only but we need to replay the journal; at that point,
4873 * for people who are east of GMT and who make their clock
4874 * tick in localtime for Windows bug-for-bug compatibility,
4875 * the clock is set in the future, and this will cause e2fsck
4876 * to complain and force a full file system check.
4877 */
4878 if (!(sb->s_flags & SB_RDONLY))
4879 es->s_wtime = cpu_to_le32(get_seconds());
4880 if (sb->s_bdev->bd_part)
4881 es->s_kbytes_written =
4882 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written +
4883 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
4884 EXT4_SB(sb)->s_sectors_written_start) >> 1));
4885 else
4886 es->s_kbytes_written =
4887 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written);
4888 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeclusters_counter))
4889 ext4_free_blocks_count_set(es,
4890 EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive(
4891 &EXT4_SB(sb)->s_freeclusters_counter)));
4892 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeinodes_counter))
4893 es->s_free_inodes_count =
4894 cpu_to_le32(percpu_counter_sum_positive(
4895 &EXT4_SB(sb)->s_freeinodes_counter));
4896 BUFFER_TRACE(sbh, "marking dirty");
4897 ext4_superblock_csum_set(sb);
4898 if (sync)
4899 lock_buffer(sbh);
4900 if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) {
4901 /*
4902 * Oh, dear. A previous attempt to write the
4903 * superblock failed. This could happen because the
4904 * USB device was yanked out. Or it could happen to
4905 * be a transient write error and maybe the block will
4906 * be remapped. Nothing we can do but to retry the
4907 * write and hope for the best.
4908 */
4909 ext4_msg(sb, KERN_ERR, "previous I/O error to "
4910 "superblock detected");
4911 clear_buffer_write_io_error(sbh);
4912 set_buffer_uptodate(sbh);
4913 }
4914 mark_buffer_dirty(sbh);
4915 if (sync) {
4916 unlock_buffer(sbh);
4917 error = __sync_dirty_buffer(sbh,
4918 REQ_SYNC | (test_opt(sb, BARRIER) ? REQ_FUA : 0));
4919 if (error)
4920 return error;
4921
4922 error = buffer_write_io_error(sbh);
4923 if (error) {
4924 ext4_msg(sb, KERN_ERR, "I/O error while writing "
4925 "superblock");
4926 clear_buffer_write_io_error(sbh);
4927 set_buffer_uptodate(sbh);
4928 }
4929 }
4930 return error;
4931 }
4932
4933 /*
4934 * Have we just finished recovery? If so, and if we are mounting (or
4935 * remounting) the filesystem readonly, then we will end up with a
4936 * consistent fs on disk. Record that fact.
4937 */
4938 static void ext4_mark_recovery_complete(struct super_block *sb,
4939 struct ext4_super_block *es)
4940 {
4941 journal_t *journal = EXT4_SB(sb)->s_journal;
4942
4943 if (!ext4_has_feature_journal(sb)) {
4944 BUG_ON(journal != NULL);
4945 return;
4946 }
4947 jbd2_journal_lock_updates(journal);
4948 if (jbd2_journal_flush(journal) < 0)
4949 goto out;
4950
4951 if (ext4_has_feature_journal_needs_recovery(sb) && sb_rdonly(sb)) {
4952 ext4_clear_feature_journal_needs_recovery(sb);
4953 ext4_commit_super(sb, 1);
4954 }
4955
4956 out:
4957 jbd2_journal_unlock_updates(journal);
4958 }
4959
4960 /*
4961 * If we are mounting (or read-write remounting) a filesystem whose journal
4962 * has recorded an error from a previous lifetime, move that error to the
4963 * main filesystem now.
4964 */
4965 static void ext4_clear_journal_err(struct super_block *sb,
4966 struct ext4_super_block *es)
4967 {
4968 journal_t *journal;
4969 int j_errno;
4970 const char *errstr;
4971
4972 BUG_ON(!ext4_has_feature_journal(sb));
4973
4974 journal = EXT4_SB(sb)->s_journal;
4975
4976 /*
4977 * Now check for any error status which may have been recorded in the
4978 * journal by a prior ext4_error() or ext4_abort()
4979 */
4980
4981 j_errno = jbd2_journal_errno(journal);
4982 if (j_errno) {
4983 char nbuf[16];
4984
4985 errstr = ext4_decode_error(sb, j_errno, nbuf);
4986 ext4_warning(sb, "Filesystem error recorded "
4987 "from previous mount: %s", errstr);
4988 ext4_warning(sb, "Marking fs in need of filesystem check.");
4989
4990 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
4991 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
4992 ext4_commit_super(sb, 1);
4993
4994 jbd2_journal_clear_err(journal);
4995 jbd2_journal_update_sb_errno(journal);
4996 }
4997 }
4998
4999 /*
5000 * Force the running and committing transactions to commit,
5001 * and wait on the commit.
5002 */
5003 int ext4_force_commit(struct super_block *sb)
5004 {
5005 journal_t *journal;
5006
5007 if (sb_rdonly(sb))
5008 return 0;
5009
5010 journal = EXT4_SB(sb)->s_journal;
5011 return ext4_journal_force_commit(journal);
5012 }
5013
5014 static int ext4_sync_fs(struct super_block *sb, int wait)
5015 {
5016 int ret = 0;
5017 tid_t target;
5018 bool needs_barrier = false;
5019 struct ext4_sb_info *sbi = EXT4_SB(sb);
5020
5021 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
5022 return 0;
5023
5024 trace_ext4_sync_fs(sb, wait);
5025 flush_workqueue(sbi->rsv_conversion_wq);
5026 /*
5027 * Writeback quota in non-journalled quota case - journalled quota has
5028 * no dirty dquots
5029 */
5030 dquot_writeback_dquots(sb, -1);
5031 /*
5032 * Data writeback is possible w/o journal transaction, so barrier must
5033 * being sent at the end of the function. But we can skip it if
5034 * transaction_commit will do it for us.
5035 */
5036 if (sbi->s_journal) {
5037 target = jbd2_get_latest_transaction(sbi->s_journal);
5038 if (wait && sbi->s_journal->j_flags & JBD2_BARRIER &&
5039 !jbd2_trans_will_send_data_barrier(sbi->s_journal, target))
5040 needs_barrier = true;
5041
5042 if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
5043 if (wait)
5044 ret = jbd2_log_wait_commit(sbi->s_journal,
5045 target);
5046 }
5047 } else if (wait && test_opt(sb, BARRIER))
5048 needs_barrier = true;
5049 if (needs_barrier) {
5050 int err;
5051 err = blkdev_issue_flush(sb->s_bdev, GFP_KERNEL, NULL);
5052 if (!ret)
5053 ret = err;
5054 }
5055
5056 return ret;
5057 }
5058
5059 /*
5060 * LVM calls this function before a (read-only) snapshot is created. This
5061 * gives us a chance to flush the journal completely and mark the fs clean.
5062 *
5063 * Note that only this function cannot bring a filesystem to be in a clean
5064 * state independently. It relies on upper layer to stop all data & metadata
5065 * modifications.
5066 */
5067 static int ext4_freeze(struct super_block *sb)
5068 {
5069 int error = 0;
5070 journal_t *journal;
5071
5072 if (sb_rdonly(sb))
5073 return 0;
5074
5075 journal = EXT4_SB(sb)->s_journal;
5076
5077 if (journal) {
5078 /* Now we set up the journal barrier. */
5079 jbd2_journal_lock_updates(journal);
5080
5081 /*
5082 * Don't clear the needs_recovery flag if we failed to
5083 * flush the journal.
5084 */
5085 error = jbd2_journal_flush(journal);
5086 if (error < 0)
5087 goto out;
5088
5089 /* Journal blocked and flushed, clear needs_recovery flag. */
5090 ext4_clear_feature_journal_needs_recovery(sb);
5091 }
5092
5093 error = ext4_commit_super(sb, 1);
5094 out:
5095 if (journal)
5096 /* we rely on upper layer to stop further updates */
5097 jbd2_journal_unlock_updates(journal);
5098 return error;
5099 }
5100
5101 /*
5102 * Called by LVM after the snapshot is done. We need to reset the RECOVER
5103 * flag here, even though the filesystem is not technically dirty yet.
5104 */
5105 static int ext4_unfreeze(struct super_block *sb)
5106 {
5107 if (sb_rdonly(sb) || ext4_forced_shutdown(EXT4_SB(sb)))
5108 return 0;
5109
5110 if (EXT4_SB(sb)->s_journal) {
5111 /* Reset the needs_recovery flag before the fs is unlocked. */
5112 ext4_set_feature_journal_needs_recovery(sb);
5113 }
5114
5115 ext4_commit_super(sb, 1);
5116 return 0;
5117 }
5118
5119 /*
5120 * Structure to save mount options for ext4_remount's benefit
5121 */
5122 struct ext4_mount_options {
5123 unsigned long s_mount_opt;
5124 unsigned long s_mount_opt2;
5125 kuid_t s_resuid;
5126 kgid_t s_resgid;
5127 unsigned long s_commit_interval;
5128 u32 s_min_batch_time, s_max_batch_time;
5129 #ifdef CONFIG_QUOTA
5130 int s_jquota_fmt;
5131 char *s_qf_names[EXT4_MAXQUOTAS];
5132 #endif
5133 };
5134
5135 static int ext4_remount(struct super_block *sb, int *flags, char *data)
5136 {
5137 struct ext4_super_block *es;
5138 struct ext4_sb_info *sbi = EXT4_SB(sb);
5139 unsigned long old_sb_flags;
5140 struct ext4_mount_options old_opts;
5141 int enable_quota = 0;
5142 ext4_group_t g;
5143 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
5144 int err = 0;
5145 #ifdef CONFIG_QUOTA
5146 int i, j;
5147 char *to_free[EXT4_MAXQUOTAS];
5148 #endif
5149 char *orig_data = kstrdup(data, GFP_KERNEL);
5150
5151 /* Store the original options */
5152 old_sb_flags = sb->s_flags;
5153 old_opts.s_mount_opt = sbi->s_mount_opt;
5154 old_opts.s_mount_opt2 = sbi->s_mount_opt2;
5155 old_opts.s_resuid = sbi->s_resuid;
5156 old_opts.s_resgid = sbi->s_resgid;
5157 old_opts.s_commit_interval = sbi->s_commit_interval;
5158 old_opts.s_min_batch_time = sbi->s_min_batch_time;
5159 old_opts.s_max_batch_time = sbi->s_max_batch_time;
5160 #ifdef CONFIG_QUOTA
5161 old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
5162 for (i = 0; i < EXT4_MAXQUOTAS; i++)
5163 if (sbi->s_qf_names[i]) {
5164 char *qf_name = get_qf_name(sb, sbi, i);
5165
5166 old_opts.s_qf_names[i] = kstrdup(qf_name, GFP_KERNEL);
5167 if (!old_opts.s_qf_names[i]) {
5168 for (j = 0; j < i; j++)
5169 kfree(old_opts.s_qf_names[j]);
5170 kfree(orig_data);
5171 return -ENOMEM;
5172 }
5173 } else
5174 old_opts.s_qf_names[i] = NULL;
5175 #endif
5176 if (sbi->s_journal && sbi->s_journal->j_task->io_context)
5177 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio;
5178
5179 if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) {
5180 err = -EINVAL;
5181 goto restore_opts;
5182 }
5183
5184 if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^
5185 test_opt(sb, JOURNAL_CHECKSUM)) {
5186 ext4_msg(sb, KERN_ERR, "changing journal_checksum "
5187 "during remount not supported; ignoring");
5188 sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM;
5189 }
5190
5191 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
5192 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
5193 ext4_msg(sb, KERN_ERR, "can't mount with "
5194 "both data=journal and delalloc");
5195 err = -EINVAL;
5196 goto restore_opts;
5197 }
5198 if (test_opt(sb, DIOREAD_NOLOCK)) {
5199 ext4_msg(sb, KERN_ERR, "can't mount with "
5200 "both data=journal and dioread_nolock");
5201 err = -EINVAL;
5202 goto restore_opts;
5203 }
5204 if (test_opt(sb, DAX)) {
5205 ext4_msg(sb, KERN_ERR, "can't mount with "
5206 "both data=journal and dax");
5207 err = -EINVAL;
5208 goto restore_opts;
5209 }
5210 } else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) {
5211 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
5212 ext4_msg(sb, KERN_ERR, "can't mount with "
5213 "journal_async_commit in data=ordered mode");
5214 err = -EINVAL;
5215 goto restore_opts;
5216 }
5217 }
5218
5219 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_NO_MBCACHE) {
5220 ext4_msg(sb, KERN_ERR, "can't enable nombcache during remount");
5221 err = -EINVAL;
5222 goto restore_opts;
5223 }
5224
5225 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_DAX) {
5226 ext4_msg(sb, KERN_WARNING, "warning: refusing change of "
5227 "dax flag with busy inodes while remounting");
5228 sbi->s_mount_opt ^= EXT4_MOUNT_DAX;
5229 }
5230
5231 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED)
5232 ext4_abort(sb, "Abort forced by user");
5233
5234 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
5235 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
5236
5237 es = sbi->s_es;
5238
5239 if (sbi->s_journal) {
5240 ext4_init_journal_params(sb, sbi->s_journal);
5241 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
5242 }
5243
5244 if (*flags & SB_LAZYTIME)
5245 sb->s_flags |= SB_LAZYTIME;
5246
5247 if ((bool)(*flags & SB_RDONLY) != sb_rdonly(sb)) {
5248 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) {
5249 err = -EROFS;
5250 goto restore_opts;
5251 }
5252
5253 if (*flags & SB_RDONLY) {
5254 err = sync_filesystem(sb);
5255 if (err < 0)
5256 goto restore_opts;
5257 err = dquot_suspend(sb, -1);
5258 if (err < 0)
5259 goto restore_opts;
5260
5261 /*
5262 * First of all, the unconditional stuff we have to do
5263 * to disable replay of the journal when we next remount
5264 */
5265 sb->s_flags |= SB_RDONLY;
5266
5267 /*
5268 * OK, test if we are remounting a valid rw partition
5269 * readonly, and if so set the rdonly flag and then
5270 * mark the partition as valid again.
5271 */
5272 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
5273 (sbi->s_mount_state & EXT4_VALID_FS))
5274 es->s_state = cpu_to_le16(sbi->s_mount_state);
5275
5276 if (sbi->s_journal)
5277 ext4_mark_recovery_complete(sb, es);
5278 if (sbi->s_mmp_tsk)
5279 kthread_stop(sbi->s_mmp_tsk);
5280 } else {
5281 /* Make sure we can mount this feature set readwrite */
5282 if (ext4_has_feature_readonly(sb) ||
5283 !ext4_feature_set_ok(sb, 0)) {
5284 err = -EROFS;
5285 goto restore_opts;
5286 }
5287 /*
5288 * Make sure the group descriptor checksums
5289 * are sane. If they aren't, refuse to remount r/w.
5290 */
5291 for (g = 0; g < sbi->s_groups_count; g++) {
5292 struct ext4_group_desc *gdp =
5293 ext4_get_group_desc(sb, g, NULL);
5294
5295 if (!ext4_group_desc_csum_verify(sb, g, gdp)) {
5296 ext4_msg(sb, KERN_ERR,
5297 "ext4_remount: Checksum for group %u failed (%u!=%u)",
5298 g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)),
5299 le16_to_cpu(gdp->bg_checksum));
5300 err = -EFSBADCRC;
5301 goto restore_opts;
5302 }
5303 }
5304
5305 /*
5306 * If we have an unprocessed orphan list hanging
5307 * around from a previously readonly bdev mount,
5308 * require a full umount/remount for now.
5309 */
5310 if (es->s_last_orphan) {
5311 ext4_msg(sb, KERN_WARNING, "Couldn't "
5312 "remount RDWR because of unprocessed "
5313 "orphan inode list. Please "
5314 "umount/remount instead");
5315 err = -EINVAL;
5316 goto restore_opts;
5317 }
5318
5319 /*
5320 * Mounting a RDONLY partition read-write, so reread
5321 * and store the current valid flag. (It may have
5322 * been changed by e2fsck since we originally mounted
5323 * the partition.)
5324 */
5325 if (sbi->s_journal)
5326 ext4_clear_journal_err(sb, es);
5327 sbi->s_mount_state = le16_to_cpu(es->s_state);
5328 if (!ext4_setup_super(sb, es, 0))
5329 sb->s_flags &= ~SB_RDONLY;
5330 if (ext4_has_feature_mmp(sb))
5331 if (ext4_multi_mount_protect(sb,
5332 le64_to_cpu(es->s_mmp_block))) {
5333 err = -EROFS;
5334 goto restore_opts;
5335 }
5336 enable_quota = 1;
5337 }
5338 }
5339
5340 /*
5341 * Reinitialize lazy itable initialization thread based on
5342 * current settings
5343 */
5344 if (sb_rdonly(sb) || !test_opt(sb, INIT_INODE_TABLE))
5345 ext4_unregister_li_request(sb);
5346 else {
5347 ext4_group_t first_not_zeroed;
5348 first_not_zeroed = ext4_has_uninit_itable(sb);
5349 ext4_register_li_request(sb, first_not_zeroed);
5350 }
5351
5352 ext4_setup_system_zone(sb);
5353 if (sbi->s_journal == NULL && !(old_sb_flags & SB_RDONLY))
5354 ext4_commit_super(sb, 1);
5355
5356 #ifdef CONFIG_QUOTA
5357 /* Release old quota file names */
5358 for (i = 0; i < EXT4_MAXQUOTAS; i++)
5359 kfree(old_opts.s_qf_names[i]);
5360 if (enable_quota) {
5361 if (sb_any_quota_suspended(sb))
5362 dquot_resume(sb, -1);
5363 else if (ext4_has_feature_quota(sb)) {
5364 err = ext4_enable_quotas(sb);
5365 if (err)
5366 goto restore_opts;
5367 }
5368 }
5369 #endif
5370
5371 *flags = (*flags & ~SB_LAZYTIME) | (sb->s_flags & SB_LAZYTIME);
5372 ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data);
5373 kfree(orig_data);
5374 return 0;
5375
5376 restore_opts:
5377 sb->s_flags = old_sb_flags;
5378 sbi->s_mount_opt = old_opts.s_mount_opt;
5379 sbi->s_mount_opt2 = old_opts.s_mount_opt2;
5380 sbi->s_resuid = old_opts.s_resuid;
5381 sbi->s_resgid = old_opts.s_resgid;
5382 sbi->s_commit_interval = old_opts.s_commit_interval;
5383 sbi->s_min_batch_time = old_opts.s_min_batch_time;
5384 sbi->s_max_batch_time = old_opts.s_max_batch_time;
5385 #ifdef CONFIG_QUOTA
5386 sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
5387 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
5388 to_free[i] = get_qf_name(sb, sbi, i);
5389 rcu_assign_pointer(sbi->s_qf_names[i], old_opts.s_qf_names[i]);
5390 }
5391 synchronize_rcu();
5392 for (i = 0; i < EXT4_MAXQUOTAS; i++)
5393 kfree(to_free[i]);
5394 #endif
5395 kfree(orig_data);
5396 return err;
5397 }
5398
5399 #ifdef CONFIG_QUOTA
5400 static int ext4_statfs_project(struct super_block *sb,
5401 kprojid_t projid, struct kstatfs *buf)
5402 {
5403 struct kqid qid;
5404 struct dquot *dquot;
5405 u64 limit;
5406 u64 curblock;
5407
5408 qid = make_kqid_projid(projid);
5409 dquot = dqget(sb, qid);
5410 if (IS_ERR(dquot))
5411 return PTR_ERR(dquot);
5412 spin_lock(&dquot->dq_dqb_lock);
5413
5414 limit = (dquot->dq_dqb.dqb_bsoftlimit ?
5415 dquot->dq_dqb.dqb_bsoftlimit :
5416 dquot->dq_dqb.dqb_bhardlimit) >> sb->s_blocksize_bits;
5417 if (limit && buf->f_blocks > limit) {
5418 curblock = dquot->dq_dqb.dqb_curspace >> sb->s_blocksize_bits;
5419 buf->f_blocks = limit;
5420 buf->f_bfree = buf->f_bavail =
5421 (buf->f_blocks > curblock) ?
5422 (buf->f_blocks - curblock) : 0;
5423 }
5424
5425 limit = dquot->dq_dqb.dqb_isoftlimit ?
5426 dquot->dq_dqb.dqb_isoftlimit :
5427 dquot->dq_dqb.dqb_ihardlimit;
5428 if (limit && buf->f_files > limit) {
5429 buf->f_files = limit;
5430 buf->f_ffree =
5431 (buf->f_files > dquot->dq_dqb.dqb_curinodes) ?
5432 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0;
5433 }
5434
5435 spin_unlock(&dquot->dq_dqb_lock);
5436 dqput(dquot);
5437 return 0;
5438 }
5439 #endif
5440
5441 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
5442 {
5443 struct super_block *sb = dentry->d_sb;
5444 struct ext4_sb_info *sbi = EXT4_SB(sb);
5445 struct ext4_super_block *es = sbi->s_es;
5446 ext4_fsblk_t overhead = 0, resv_blocks;
5447 u64 fsid;
5448 s64 bfree;
5449 resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters));
5450
5451 if (!test_opt(sb, MINIX_DF))
5452 overhead = sbi->s_overhead;
5453
5454 buf->f_type = EXT4_SUPER_MAGIC;
5455 buf->f_bsize = sb->s_blocksize;
5456 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead);
5457 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
5458 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
5459 /* prevent underflow in case that few free space is available */
5460 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0));
5461 buf->f_bavail = buf->f_bfree -
5462 (ext4_r_blocks_count(es) + resv_blocks);
5463 if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks))
5464 buf->f_bavail = 0;
5465 buf->f_files = le32_to_cpu(es->s_inodes_count);
5466 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
5467 buf->f_namelen = EXT4_NAME_LEN;
5468 fsid = le64_to_cpup((void *)es->s_uuid) ^
5469 le64_to_cpup((void *)es->s_uuid + sizeof(u64));
5470 buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL;
5471 buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL;
5472
5473 #ifdef CONFIG_QUOTA
5474 if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) &&
5475 sb_has_quota_limits_enabled(sb, PRJQUOTA))
5476 ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf);
5477 #endif
5478 return 0;
5479 }
5480
5481
5482 #ifdef CONFIG_QUOTA
5483
5484 /*
5485 * Helper functions so that transaction is started before we acquire dqio_sem
5486 * to keep correct lock ordering of transaction > dqio_sem
5487 */
5488 static inline struct inode *dquot_to_inode(struct dquot *dquot)
5489 {
5490 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type];
5491 }
5492
5493 static int ext4_write_dquot(struct dquot *dquot)
5494 {
5495 int ret, err;
5496 handle_t *handle;
5497 struct inode *inode;
5498
5499 inode = dquot_to_inode(dquot);
5500 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5501 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
5502 if (IS_ERR(handle))
5503 return PTR_ERR(handle);
5504 ret = dquot_commit(dquot);
5505 err = ext4_journal_stop(handle);
5506 if (!ret)
5507 ret = err;
5508 return ret;
5509 }
5510
5511 static int ext4_acquire_dquot(struct dquot *dquot)
5512 {
5513 int ret, err;
5514 handle_t *handle;
5515
5516 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
5517 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
5518 if (IS_ERR(handle))
5519 return PTR_ERR(handle);
5520 ret = dquot_acquire(dquot);
5521 err = ext4_journal_stop(handle);
5522 if (!ret)
5523 ret = err;
5524 return ret;
5525 }
5526
5527 static int ext4_release_dquot(struct dquot *dquot)
5528 {
5529 int ret, err;
5530 handle_t *handle;
5531
5532 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
5533 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
5534 if (IS_ERR(handle)) {
5535 /* Release dquot anyway to avoid endless cycle in dqput() */
5536 dquot_release(dquot);
5537 return PTR_ERR(handle);
5538 }
5539 ret = dquot_release(dquot);
5540 err = ext4_journal_stop(handle);
5541 if (!ret)
5542 ret = err;
5543 return ret;
5544 }
5545
5546 static int ext4_mark_dquot_dirty(struct dquot *dquot)
5547 {
5548 struct super_block *sb = dquot->dq_sb;
5549 struct ext4_sb_info *sbi = EXT4_SB(sb);
5550
5551 /* Are we journaling quotas? */
5552 if (ext4_has_feature_quota(sb) ||
5553 sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
5554 dquot_mark_dquot_dirty(dquot);
5555 return ext4_write_dquot(dquot);
5556 } else {
5557 return dquot_mark_dquot_dirty(dquot);
5558 }
5559 }
5560
5561 static int ext4_write_info(struct super_block *sb, int type)
5562 {
5563 int ret, err;
5564 handle_t *handle;
5565
5566 /* Data block + inode block */
5567 handle = ext4_journal_start(d_inode(sb->s_root), EXT4_HT_QUOTA, 2);
5568 if (IS_ERR(handle))
5569 return PTR_ERR(handle);
5570 ret = dquot_commit_info(sb, type);
5571 err = ext4_journal_stop(handle);
5572 if (!ret)
5573 ret = err;
5574 return ret;
5575 }
5576
5577 /*
5578 * Turn on quotas during mount time - we need to find
5579 * the quota file and such...
5580 */
5581 static int ext4_quota_on_mount(struct super_block *sb, int type)
5582 {
5583 return dquot_quota_on_mount(sb, get_qf_name(sb, EXT4_SB(sb), type),
5584 EXT4_SB(sb)->s_jquota_fmt, type);
5585 }
5586
5587 static void lockdep_set_quota_inode(struct inode *inode, int subclass)
5588 {
5589 struct ext4_inode_info *ei = EXT4_I(inode);
5590
5591 /* The first argument of lockdep_set_subclass has to be
5592 * *exactly* the same as the argument to init_rwsem() --- in
5593 * this case, in init_once() --- or lockdep gets unhappy
5594 * because the name of the lock is set using the
5595 * stringification of the argument to init_rwsem().
5596 */
5597 (void) ei; /* shut up clang warning if !CONFIG_LOCKDEP */
5598 lockdep_set_subclass(&ei->i_data_sem, subclass);
5599 }
5600
5601 /*
5602 * Standard function to be called on quota_on
5603 */
5604 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
5605 const struct path *path)
5606 {
5607 int err;
5608
5609 if (!test_opt(sb, QUOTA))
5610 return -EINVAL;
5611
5612 /* Quotafile not on the same filesystem? */
5613 if (path->dentry->d_sb != sb)
5614 return -EXDEV;
5615 /* Journaling quota? */
5616 if (EXT4_SB(sb)->s_qf_names[type]) {
5617 /* Quotafile not in fs root? */
5618 if (path->dentry->d_parent != sb->s_root)
5619 ext4_msg(sb, KERN_WARNING,
5620 "Quota file not on filesystem root. "
5621 "Journaled quota will not work");
5622 sb_dqopt(sb)->flags |= DQUOT_NOLIST_DIRTY;
5623 } else {
5624 /*
5625 * Clear the flag just in case mount options changed since
5626 * last time.
5627 */
5628 sb_dqopt(sb)->flags &= ~DQUOT_NOLIST_DIRTY;
5629 }
5630
5631 /*
5632 * When we journal data on quota file, we have to flush journal to see
5633 * all updates to the file when we bypass pagecache...
5634 */
5635 if (EXT4_SB(sb)->s_journal &&
5636 ext4_should_journal_data(d_inode(path->dentry))) {
5637 /*
5638 * We don't need to lock updates but journal_flush() could
5639 * otherwise be livelocked...
5640 */
5641 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal);
5642 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal);
5643 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
5644 if (err)
5645 return err;
5646 }
5647
5648 lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA);
5649 err = dquot_quota_on(sb, type, format_id, path);
5650 if (err) {
5651 lockdep_set_quota_inode(path->dentry->d_inode,
5652 I_DATA_SEM_NORMAL);
5653 } else {
5654 struct inode *inode = d_inode(path->dentry);
5655 handle_t *handle;
5656
5657 /*
5658 * Set inode flags to prevent userspace from messing with quota
5659 * files. If this fails, we return success anyway since quotas
5660 * are already enabled and this is not a hard failure.
5661 */
5662 inode_lock(inode);
5663 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
5664 if (IS_ERR(handle))
5665 goto unlock_inode;
5666 EXT4_I(inode)->i_flags |= EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL;
5667 inode_set_flags(inode, S_NOATIME | S_IMMUTABLE,
5668 S_NOATIME | S_IMMUTABLE);
5669 ext4_mark_inode_dirty(handle, inode);
5670 ext4_journal_stop(handle);
5671 unlock_inode:
5672 inode_unlock(inode);
5673 }
5674 return err;
5675 }
5676
5677 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
5678 unsigned int flags)
5679 {
5680 int err;
5681 struct inode *qf_inode;
5682 unsigned long qf_inums[EXT4_MAXQUOTAS] = {
5683 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
5684 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
5685 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
5686 };
5687
5688 BUG_ON(!ext4_has_feature_quota(sb));
5689
5690 if (!qf_inums[type])
5691 return -EPERM;
5692
5693 qf_inode = ext4_iget(sb, qf_inums[type], EXT4_IGET_SPECIAL);
5694 if (IS_ERR(qf_inode)) {
5695 ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]);
5696 return PTR_ERR(qf_inode);
5697 }
5698
5699 /* Don't account quota for quota files to avoid recursion */
5700 qf_inode->i_flags |= S_NOQUOTA;
5701 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA);
5702 err = dquot_enable(qf_inode, type, format_id, flags);
5703 if (err)
5704 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL);
5705 iput(qf_inode);
5706
5707 return err;
5708 }
5709
5710 /* Enable usage tracking for all quota types. */
5711 static int ext4_enable_quotas(struct super_block *sb)
5712 {
5713 int type, err = 0;
5714 unsigned long qf_inums[EXT4_MAXQUOTAS] = {
5715 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
5716 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
5717 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
5718 };
5719 bool quota_mopt[EXT4_MAXQUOTAS] = {
5720 test_opt(sb, USRQUOTA),
5721 test_opt(sb, GRPQUOTA),
5722 test_opt(sb, PRJQUOTA),
5723 };
5724
5725 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY;
5726 for (type = 0; type < EXT4_MAXQUOTAS; type++) {
5727 if (qf_inums[type]) {
5728 err = ext4_quota_enable(sb, type, QFMT_VFS_V1,
5729 DQUOT_USAGE_ENABLED |
5730 (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0));
5731 if (err) {
5732 for (type--; type >= 0; type--)
5733 dquot_quota_off(sb, type);
5734
5735 ext4_warning(sb,
5736 "Failed to enable quota tracking "
5737 "(type=%d, err=%d). Please run "
5738 "e2fsck to fix.", type, err);
5739 return err;
5740 }
5741 }
5742 }
5743 return 0;
5744 }
5745
5746 static int ext4_quota_off(struct super_block *sb, int type)
5747 {
5748 struct inode *inode = sb_dqopt(sb)->files[type];
5749 handle_t *handle;
5750 int err;
5751
5752 /* Force all delayed allocation blocks to be allocated.
5753 * Caller already holds s_umount sem */
5754 if (test_opt(sb, DELALLOC))
5755 sync_filesystem(sb);
5756
5757 if (!inode || !igrab(inode))
5758 goto out;
5759
5760 err = dquot_quota_off(sb, type);
5761 if (err || ext4_has_feature_quota(sb))
5762 goto out_put;
5763
5764 inode_lock(inode);
5765 /*
5766 * Update modification times of quota files when userspace can
5767 * start looking at them. If we fail, we return success anyway since
5768 * this is not a hard failure and quotas are already disabled.
5769 */
5770 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
5771 if (IS_ERR(handle))
5772 goto out_unlock;
5773 EXT4_I(inode)->i_flags &= ~(EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL);
5774 inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE);
5775 inode->i_mtime = inode->i_ctime = current_time(inode);
5776 ext4_mark_inode_dirty(handle, inode);
5777 ext4_journal_stop(handle);
5778 out_unlock:
5779 inode_unlock(inode);
5780 out_put:
5781 lockdep_set_quota_inode(inode, I_DATA_SEM_NORMAL);
5782 iput(inode);
5783 return err;
5784 out:
5785 return dquot_quota_off(sb, type);
5786 }
5787
5788 /* Read data from quotafile - avoid pagecache and such because we cannot afford
5789 * acquiring the locks... As quota files are never truncated and quota code
5790 * itself serializes the operations (and no one else should touch the files)
5791 * we don't have to be afraid of races */
5792 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
5793 size_t len, loff_t off)
5794 {
5795 struct inode *inode = sb_dqopt(sb)->files[type];
5796 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5797 int offset = off & (sb->s_blocksize - 1);
5798 int tocopy;
5799 size_t toread;
5800 struct buffer_head *bh;
5801 loff_t i_size = i_size_read(inode);
5802
5803 if (off > i_size)
5804 return 0;
5805 if (off+len > i_size)
5806 len = i_size-off;
5807 toread = len;
5808 while (toread > 0) {
5809 tocopy = sb->s_blocksize - offset < toread ?
5810 sb->s_blocksize - offset : toread;
5811 bh = ext4_bread(NULL, inode, blk, 0);
5812 if (IS_ERR(bh))
5813 return PTR_ERR(bh);
5814 if (!bh) /* A hole? */
5815 memset(data, 0, tocopy);
5816 else
5817 memcpy(data, bh->b_data+offset, tocopy);
5818 brelse(bh);
5819 offset = 0;
5820 toread -= tocopy;
5821 data += tocopy;
5822 blk++;
5823 }
5824 return len;
5825 }
5826
5827 /* Write to quotafile (we know the transaction is already started and has
5828 * enough credits) */
5829 static ssize_t ext4_quota_write(struct super_block *sb, int type,
5830 const char *data, size_t len, loff_t off)
5831 {
5832 struct inode *inode = sb_dqopt(sb)->files[type];
5833 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5834 int err, offset = off & (sb->s_blocksize - 1);
5835 int retries = 0;
5836 struct buffer_head *bh;
5837 handle_t *handle = journal_current_handle();
5838
5839 if (EXT4_SB(sb)->s_journal && !handle) {
5840 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5841 " cancelled because transaction is not started",
5842 (unsigned long long)off, (unsigned long long)len);
5843 return -EIO;
5844 }
5845 /*
5846 * Since we account only one data block in transaction credits,
5847 * then it is impossible to cross a block boundary.
5848 */
5849 if (sb->s_blocksize - offset < len) {
5850 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5851 " cancelled because not block aligned",
5852 (unsigned long long)off, (unsigned long long)len);
5853 return -EIO;
5854 }
5855
5856 do {
5857 bh = ext4_bread(handle, inode, blk,
5858 EXT4_GET_BLOCKS_CREATE |
5859 EXT4_GET_BLOCKS_METADATA_NOFAIL);
5860 } while (IS_ERR(bh) && (PTR_ERR(bh) == -ENOSPC) &&
5861 ext4_should_retry_alloc(inode->i_sb, &retries));
5862 if (IS_ERR(bh))
5863 return PTR_ERR(bh);
5864 if (!bh)
5865 goto out;
5866 BUFFER_TRACE(bh, "get write access");
5867 err = ext4_journal_get_write_access(handle, bh);
5868 if (err) {
5869 brelse(bh);
5870 return err;
5871 }
5872 lock_buffer(bh);
5873 memcpy(bh->b_data+offset, data, len);
5874 flush_dcache_page(bh->b_page);
5875 unlock_buffer(bh);
5876 err = ext4_handle_dirty_metadata(handle, NULL, bh);
5877 brelse(bh);
5878 out:
5879 if (inode->i_size < off + len) {
5880 i_size_write(inode, off + len);
5881 EXT4_I(inode)->i_disksize = inode->i_size;
5882 ext4_mark_inode_dirty(handle, inode);
5883 }
5884 return len;
5885 }
5886
5887 static int ext4_get_next_id(struct super_block *sb, struct kqid *qid)
5888 {
5889 const struct quota_format_ops *ops;
5890
5891 if (!sb_has_quota_loaded(sb, qid->type))
5892 return -ESRCH;
5893 ops = sb_dqopt(sb)->ops[qid->type];
5894 if (!ops || !ops->get_next_id)
5895 return -ENOSYS;
5896 return dquot_get_next_id(sb, qid);
5897 }
5898 #endif
5899
5900 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
5901 const char *dev_name, void *data)
5902 {
5903 return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super);
5904 }
5905
5906 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
5907 static inline void register_as_ext2(void)
5908 {
5909 int err = register_filesystem(&ext2_fs_type);
5910 if (err)
5911 printk(KERN_WARNING
5912 "EXT4-fs: Unable to register as ext2 (%d)\n", err);
5913 }
5914
5915 static inline void unregister_as_ext2(void)
5916 {
5917 unregister_filesystem(&ext2_fs_type);
5918 }
5919
5920 static inline int ext2_feature_set_ok(struct super_block *sb)
5921 {
5922 if (ext4_has_unknown_ext2_incompat_features(sb))
5923 return 0;
5924 if (sb_rdonly(sb))
5925 return 1;
5926 if (ext4_has_unknown_ext2_ro_compat_features(sb))
5927 return 0;
5928 return 1;
5929 }
5930 #else
5931 static inline void register_as_ext2(void) { }
5932 static inline void unregister_as_ext2(void) { }
5933 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
5934 #endif
5935
5936 static inline void register_as_ext3(void)
5937 {
5938 int err = register_filesystem(&ext3_fs_type);
5939 if (err)
5940 printk(KERN_WARNING
5941 "EXT4-fs: Unable to register as ext3 (%d)\n", err);
5942 }
5943
5944 static inline void unregister_as_ext3(void)
5945 {
5946 unregister_filesystem(&ext3_fs_type);
5947 }
5948
5949 static inline int ext3_feature_set_ok(struct super_block *sb)
5950 {
5951 if (ext4_has_unknown_ext3_incompat_features(sb))
5952 return 0;
5953 if (!ext4_has_feature_journal(sb))
5954 return 0;
5955 if (sb_rdonly(sb))
5956 return 1;
5957 if (ext4_has_unknown_ext3_ro_compat_features(sb))
5958 return 0;
5959 return 1;
5960 }
5961
5962 static struct file_system_type ext4_fs_type = {
5963 .owner = THIS_MODULE,
5964 .name = "ext4",
5965 .mount = ext4_mount,
5966 .kill_sb = kill_block_super,
5967 .fs_flags = FS_REQUIRES_DEV | FS_USERNS_MOUNT,
5968 };
5969 MODULE_ALIAS_FS("ext4");
5970
5971 /* Shared across all ext4 file systems */
5972 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ];
5973
5974 static int __init ext4_init_fs(void)
5975 {
5976 int i, err;
5977
5978 ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64);
5979 ext4_li_info = NULL;
5980 mutex_init(&ext4_li_mtx);
5981
5982 /* Build-time check for flags consistency */
5983 ext4_check_flag_values();
5984
5985 for (i = 0; i < EXT4_WQ_HASH_SZ; i++)
5986 init_waitqueue_head(&ext4__ioend_wq[i]);
5987
5988 err = ext4_init_es();
5989 if (err)
5990 return err;
5991
5992 err = ext4_init_pageio();
5993 if (err)
5994 goto out5;
5995
5996 err = ext4_init_system_zone();
5997 if (err)
5998 goto out4;
5999
6000 err = ext4_init_sysfs();
6001 if (err)
6002 goto out3;
6003
6004 err = ext4_init_mballoc();
6005 if (err)
6006 goto out2;
6007 err = init_inodecache();
6008 if (err)
6009 goto out1;
6010 register_as_ext3();
6011 register_as_ext2();
6012 err = register_filesystem(&ext4_fs_type);
6013 if (err)
6014 goto out;
6015
6016 return 0;
6017 out:
6018 unregister_as_ext2();
6019 unregister_as_ext3();
6020 destroy_inodecache();
6021 out1:
6022 ext4_exit_mballoc();
6023 out2:
6024 ext4_exit_sysfs();
6025 out3:
6026 ext4_exit_system_zone();
6027 out4:
6028 ext4_exit_pageio();
6029 out5:
6030 ext4_exit_es();
6031
6032 return err;
6033 }
6034
6035 static void __exit ext4_exit_fs(void)
6036 {
6037 ext4_destroy_lazyinit_thread();
6038 unregister_as_ext2();
6039 unregister_as_ext3();
6040 unregister_filesystem(&ext4_fs_type);
6041 destroy_inodecache();
6042 ext4_exit_mballoc();
6043 ext4_exit_sysfs();
6044 ext4_exit_system_zone();
6045 ext4_exit_pageio();
6046 ext4_exit_es();
6047 }
6048
6049 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
6050 MODULE_DESCRIPTION("Fourth Extended Filesystem");
6051 MODULE_LICENSE("GPL");
6052 MODULE_SOFTDEP("pre: crc32c");
6053 module_init(ext4_init_fs)
6054 module_exit(ext4_exit_fs)