]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - fs/ext4/super.c
Merge tag 'ext4_for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tytso...
[mirror_ubuntu-eoan-kernel.git] / fs / ext4 / super.c
1 /*
2 * linux/fs/ext4/super.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * Big-endian to little-endian byte-swapping/bitmaps by
16 * David S. Miller (davem@caip.rutgers.edu), 1995
17 */
18
19 #include <linux/module.h>
20 #include <linux/string.h>
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/vmalloc.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/parser.h>
29 #include <linux/buffer_head.h>
30 #include <linux/exportfs.h>
31 #include <linux/vfs.h>
32 #include <linux/random.h>
33 #include <linux/mount.h>
34 #include <linux/namei.h>
35 #include <linux/quotaops.h>
36 #include <linux/seq_file.h>
37 #include <linux/ctype.h>
38 #include <linux/log2.h>
39 #include <linux/crc16.h>
40 #include <linux/cleancache.h>
41 #include <asm/uaccess.h>
42
43 #include <linux/kthread.h>
44 #include <linux/freezer.h>
45
46 #include "ext4.h"
47 #include "ext4_extents.h" /* Needed for trace points definition */
48 #include "ext4_jbd2.h"
49 #include "xattr.h"
50 #include "acl.h"
51 #include "mballoc.h"
52
53 #define CREATE_TRACE_POINTS
54 #include <trace/events/ext4.h>
55
56 static struct ext4_lazy_init *ext4_li_info;
57 static struct mutex ext4_li_mtx;
58 static struct ratelimit_state ext4_mount_msg_ratelimit;
59
60 static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
61 unsigned long journal_devnum);
62 static int ext4_show_options(struct seq_file *seq, struct dentry *root);
63 static int ext4_commit_super(struct super_block *sb, int sync);
64 static void ext4_mark_recovery_complete(struct super_block *sb,
65 struct ext4_super_block *es);
66 static void ext4_clear_journal_err(struct super_block *sb,
67 struct ext4_super_block *es);
68 static int ext4_sync_fs(struct super_block *sb, int wait);
69 static int ext4_remount(struct super_block *sb, int *flags, char *data);
70 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
71 static int ext4_unfreeze(struct super_block *sb);
72 static int ext4_freeze(struct super_block *sb);
73 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
74 const char *dev_name, void *data);
75 static inline int ext2_feature_set_ok(struct super_block *sb);
76 static inline int ext3_feature_set_ok(struct super_block *sb);
77 static int ext4_feature_set_ok(struct super_block *sb, int readonly);
78 static void ext4_destroy_lazyinit_thread(void);
79 static void ext4_unregister_li_request(struct super_block *sb);
80 static void ext4_clear_request_list(void);
81
82 /*
83 * Lock ordering
84 *
85 * Note the difference between i_mmap_sem (EXT4_I(inode)->i_mmap_sem) and
86 * i_mmap_rwsem (inode->i_mmap_rwsem)!
87 *
88 * page fault path:
89 * mmap_sem -> sb_start_pagefault -> i_mmap_sem (r) -> transaction start ->
90 * page lock -> i_data_sem (rw)
91 *
92 * buffered write path:
93 * sb_start_write -> i_mutex -> mmap_sem
94 * sb_start_write -> i_mutex -> transaction start -> page lock ->
95 * i_data_sem (rw)
96 *
97 * truncate:
98 * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (w) -> i_mmap_sem (w) ->
99 * i_mmap_rwsem (w) -> page lock
100 * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (w) -> i_mmap_sem (w) ->
101 * transaction start -> i_data_sem (rw)
102 *
103 * direct IO:
104 * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (r) -> mmap_sem
105 * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (r) ->
106 * transaction start -> i_data_sem (rw)
107 *
108 * writepages:
109 * transaction start -> page lock(s) -> i_data_sem (rw)
110 */
111
112 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
113 static struct file_system_type ext2_fs_type = {
114 .owner = THIS_MODULE,
115 .name = "ext2",
116 .mount = ext4_mount,
117 .kill_sb = kill_block_super,
118 .fs_flags = FS_REQUIRES_DEV,
119 };
120 MODULE_ALIAS_FS("ext2");
121 MODULE_ALIAS("ext2");
122 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type)
123 #else
124 #define IS_EXT2_SB(sb) (0)
125 #endif
126
127
128 static struct file_system_type ext3_fs_type = {
129 .owner = THIS_MODULE,
130 .name = "ext3",
131 .mount = ext4_mount,
132 .kill_sb = kill_block_super,
133 .fs_flags = FS_REQUIRES_DEV,
134 };
135 MODULE_ALIAS_FS("ext3");
136 MODULE_ALIAS("ext3");
137 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type)
138
139 static int ext4_verify_csum_type(struct super_block *sb,
140 struct ext4_super_block *es)
141 {
142 if (!ext4_has_feature_metadata_csum(sb))
143 return 1;
144
145 return es->s_checksum_type == EXT4_CRC32C_CHKSUM;
146 }
147
148 static __le32 ext4_superblock_csum(struct super_block *sb,
149 struct ext4_super_block *es)
150 {
151 struct ext4_sb_info *sbi = EXT4_SB(sb);
152 int offset = offsetof(struct ext4_super_block, s_checksum);
153 __u32 csum;
154
155 csum = ext4_chksum(sbi, ~0, (char *)es, offset);
156
157 return cpu_to_le32(csum);
158 }
159
160 static int ext4_superblock_csum_verify(struct super_block *sb,
161 struct ext4_super_block *es)
162 {
163 if (!ext4_has_metadata_csum(sb))
164 return 1;
165
166 return es->s_checksum == ext4_superblock_csum(sb, es);
167 }
168
169 void ext4_superblock_csum_set(struct super_block *sb)
170 {
171 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
172
173 if (!ext4_has_metadata_csum(sb))
174 return;
175
176 es->s_checksum = ext4_superblock_csum(sb, es);
177 }
178
179 void *ext4_kvmalloc(size_t size, gfp_t flags)
180 {
181 void *ret;
182
183 ret = kmalloc(size, flags | __GFP_NOWARN);
184 if (!ret)
185 ret = __vmalloc(size, flags, PAGE_KERNEL);
186 return ret;
187 }
188
189 void *ext4_kvzalloc(size_t size, gfp_t flags)
190 {
191 void *ret;
192
193 ret = kzalloc(size, flags | __GFP_NOWARN);
194 if (!ret)
195 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL);
196 return ret;
197 }
198
199 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
200 struct ext4_group_desc *bg)
201 {
202 return le32_to_cpu(bg->bg_block_bitmap_lo) |
203 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
204 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
205 }
206
207 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
208 struct ext4_group_desc *bg)
209 {
210 return le32_to_cpu(bg->bg_inode_bitmap_lo) |
211 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
212 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
213 }
214
215 ext4_fsblk_t ext4_inode_table(struct super_block *sb,
216 struct ext4_group_desc *bg)
217 {
218 return le32_to_cpu(bg->bg_inode_table_lo) |
219 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
220 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
221 }
222
223 __u32 ext4_free_group_clusters(struct super_block *sb,
224 struct ext4_group_desc *bg)
225 {
226 return le16_to_cpu(bg->bg_free_blocks_count_lo) |
227 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
228 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
229 }
230
231 __u32 ext4_free_inodes_count(struct super_block *sb,
232 struct ext4_group_desc *bg)
233 {
234 return le16_to_cpu(bg->bg_free_inodes_count_lo) |
235 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
236 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
237 }
238
239 __u32 ext4_used_dirs_count(struct super_block *sb,
240 struct ext4_group_desc *bg)
241 {
242 return le16_to_cpu(bg->bg_used_dirs_count_lo) |
243 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
244 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
245 }
246
247 __u32 ext4_itable_unused_count(struct super_block *sb,
248 struct ext4_group_desc *bg)
249 {
250 return le16_to_cpu(bg->bg_itable_unused_lo) |
251 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
252 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
253 }
254
255 void ext4_block_bitmap_set(struct super_block *sb,
256 struct ext4_group_desc *bg, ext4_fsblk_t blk)
257 {
258 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
259 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
260 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
261 }
262
263 void ext4_inode_bitmap_set(struct super_block *sb,
264 struct ext4_group_desc *bg, ext4_fsblk_t blk)
265 {
266 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk);
267 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
268 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
269 }
270
271 void ext4_inode_table_set(struct super_block *sb,
272 struct ext4_group_desc *bg, ext4_fsblk_t blk)
273 {
274 bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
275 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
276 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
277 }
278
279 void ext4_free_group_clusters_set(struct super_block *sb,
280 struct ext4_group_desc *bg, __u32 count)
281 {
282 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
283 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
284 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
285 }
286
287 void ext4_free_inodes_set(struct super_block *sb,
288 struct ext4_group_desc *bg, __u32 count)
289 {
290 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
291 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
292 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
293 }
294
295 void ext4_used_dirs_set(struct super_block *sb,
296 struct ext4_group_desc *bg, __u32 count)
297 {
298 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
299 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
300 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
301 }
302
303 void ext4_itable_unused_set(struct super_block *sb,
304 struct ext4_group_desc *bg, __u32 count)
305 {
306 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
307 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
308 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
309 }
310
311
312 static void __save_error_info(struct super_block *sb, const char *func,
313 unsigned int line)
314 {
315 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
316
317 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
318 if (bdev_read_only(sb->s_bdev))
319 return;
320 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
321 es->s_last_error_time = cpu_to_le32(get_seconds());
322 strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func));
323 es->s_last_error_line = cpu_to_le32(line);
324 if (!es->s_first_error_time) {
325 es->s_first_error_time = es->s_last_error_time;
326 strncpy(es->s_first_error_func, func,
327 sizeof(es->s_first_error_func));
328 es->s_first_error_line = cpu_to_le32(line);
329 es->s_first_error_ino = es->s_last_error_ino;
330 es->s_first_error_block = es->s_last_error_block;
331 }
332 /*
333 * Start the daily error reporting function if it hasn't been
334 * started already
335 */
336 if (!es->s_error_count)
337 mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ);
338 le32_add_cpu(&es->s_error_count, 1);
339 }
340
341 static void save_error_info(struct super_block *sb, const char *func,
342 unsigned int line)
343 {
344 __save_error_info(sb, func, line);
345 ext4_commit_super(sb, 1);
346 }
347
348 /*
349 * The del_gendisk() function uninitializes the disk-specific data
350 * structures, including the bdi structure, without telling anyone
351 * else. Once this happens, any attempt to call mark_buffer_dirty()
352 * (for example, by ext4_commit_super), will cause a kernel OOPS.
353 * This is a kludge to prevent these oops until we can put in a proper
354 * hook in del_gendisk() to inform the VFS and file system layers.
355 */
356 static int block_device_ejected(struct super_block *sb)
357 {
358 struct inode *bd_inode = sb->s_bdev->bd_inode;
359 struct backing_dev_info *bdi = inode_to_bdi(bd_inode);
360
361 return bdi->dev == NULL;
362 }
363
364 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn)
365 {
366 struct super_block *sb = journal->j_private;
367 struct ext4_sb_info *sbi = EXT4_SB(sb);
368 int error = is_journal_aborted(journal);
369 struct ext4_journal_cb_entry *jce;
370
371 BUG_ON(txn->t_state == T_FINISHED);
372 spin_lock(&sbi->s_md_lock);
373 while (!list_empty(&txn->t_private_list)) {
374 jce = list_entry(txn->t_private_list.next,
375 struct ext4_journal_cb_entry, jce_list);
376 list_del_init(&jce->jce_list);
377 spin_unlock(&sbi->s_md_lock);
378 jce->jce_func(sb, jce, error);
379 spin_lock(&sbi->s_md_lock);
380 }
381 spin_unlock(&sbi->s_md_lock);
382 }
383
384 /* Deal with the reporting of failure conditions on a filesystem such as
385 * inconsistencies detected or read IO failures.
386 *
387 * On ext2, we can store the error state of the filesystem in the
388 * superblock. That is not possible on ext4, because we may have other
389 * write ordering constraints on the superblock which prevent us from
390 * writing it out straight away; and given that the journal is about to
391 * be aborted, we can't rely on the current, or future, transactions to
392 * write out the superblock safely.
393 *
394 * We'll just use the jbd2_journal_abort() error code to record an error in
395 * the journal instead. On recovery, the journal will complain about
396 * that error until we've noted it down and cleared it.
397 */
398
399 static void ext4_handle_error(struct super_block *sb)
400 {
401 if (sb->s_flags & MS_RDONLY)
402 return;
403
404 if (!test_opt(sb, ERRORS_CONT)) {
405 journal_t *journal = EXT4_SB(sb)->s_journal;
406
407 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
408 if (journal)
409 jbd2_journal_abort(journal, -EIO);
410 }
411 if (test_opt(sb, ERRORS_RO)) {
412 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
413 /*
414 * Make sure updated value of ->s_mount_flags will be visible
415 * before ->s_flags update
416 */
417 smp_wmb();
418 sb->s_flags |= MS_RDONLY;
419 }
420 if (test_opt(sb, ERRORS_PANIC)) {
421 if (EXT4_SB(sb)->s_journal &&
422 !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR))
423 return;
424 panic("EXT4-fs (device %s): panic forced after error\n",
425 sb->s_id);
426 }
427 }
428
429 #define ext4_error_ratelimit(sb) \
430 ___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state), \
431 "EXT4-fs error")
432
433 void __ext4_error(struct super_block *sb, const char *function,
434 unsigned int line, const char *fmt, ...)
435 {
436 struct va_format vaf;
437 va_list args;
438
439 if (ext4_error_ratelimit(sb)) {
440 va_start(args, fmt);
441 vaf.fmt = fmt;
442 vaf.va = &args;
443 printk(KERN_CRIT
444 "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
445 sb->s_id, function, line, current->comm, &vaf);
446 va_end(args);
447 }
448 save_error_info(sb, function, line);
449 ext4_handle_error(sb);
450 }
451
452 void __ext4_error_inode(struct inode *inode, const char *function,
453 unsigned int line, ext4_fsblk_t block,
454 const char *fmt, ...)
455 {
456 va_list args;
457 struct va_format vaf;
458 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
459
460 es->s_last_error_ino = cpu_to_le32(inode->i_ino);
461 es->s_last_error_block = cpu_to_le64(block);
462 if (ext4_error_ratelimit(inode->i_sb)) {
463 va_start(args, fmt);
464 vaf.fmt = fmt;
465 vaf.va = &args;
466 if (block)
467 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
468 "inode #%lu: block %llu: comm %s: %pV\n",
469 inode->i_sb->s_id, function, line, inode->i_ino,
470 block, current->comm, &vaf);
471 else
472 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
473 "inode #%lu: comm %s: %pV\n",
474 inode->i_sb->s_id, function, line, inode->i_ino,
475 current->comm, &vaf);
476 va_end(args);
477 }
478 save_error_info(inode->i_sb, function, line);
479 ext4_handle_error(inode->i_sb);
480 }
481
482 void __ext4_error_file(struct file *file, const char *function,
483 unsigned int line, ext4_fsblk_t block,
484 const char *fmt, ...)
485 {
486 va_list args;
487 struct va_format vaf;
488 struct ext4_super_block *es;
489 struct inode *inode = file_inode(file);
490 char pathname[80], *path;
491
492 es = EXT4_SB(inode->i_sb)->s_es;
493 es->s_last_error_ino = cpu_to_le32(inode->i_ino);
494 if (ext4_error_ratelimit(inode->i_sb)) {
495 path = file_path(file, pathname, sizeof(pathname));
496 if (IS_ERR(path))
497 path = "(unknown)";
498 va_start(args, fmt);
499 vaf.fmt = fmt;
500 vaf.va = &args;
501 if (block)
502 printk(KERN_CRIT
503 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
504 "block %llu: comm %s: path %s: %pV\n",
505 inode->i_sb->s_id, function, line, inode->i_ino,
506 block, current->comm, path, &vaf);
507 else
508 printk(KERN_CRIT
509 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
510 "comm %s: path %s: %pV\n",
511 inode->i_sb->s_id, function, line, inode->i_ino,
512 current->comm, path, &vaf);
513 va_end(args);
514 }
515 save_error_info(inode->i_sb, function, line);
516 ext4_handle_error(inode->i_sb);
517 }
518
519 const char *ext4_decode_error(struct super_block *sb, int errno,
520 char nbuf[16])
521 {
522 char *errstr = NULL;
523
524 switch (errno) {
525 case -EFSCORRUPTED:
526 errstr = "Corrupt filesystem";
527 break;
528 case -EFSBADCRC:
529 errstr = "Filesystem failed CRC";
530 break;
531 case -EIO:
532 errstr = "IO failure";
533 break;
534 case -ENOMEM:
535 errstr = "Out of memory";
536 break;
537 case -EROFS:
538 if (!sb || (EXT4_SB(sb)->s_journal &&
539 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
540 errstr = "Journal has aborted";
541 else
542 errstr = "Readonly filesystem";
543 break;
544 default:
545 /* If the caller passed in an extra buffer for unknown
546 * errors, textualise them now. Else we just return
547 * NULL. */
548 if (nbuf) {
549 /* Check for truncated error codes... */
550 if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
551 errstr = nbuf;
552 }
553 break;
554 }
555
556 return errstr;
557 }
558
559 /* __ext4_std_error decodes expected errors from journaling functions
560 * automatically and invokes the appropriate error response. */
561
562 void __ext4_std_error(struct super_block *sb, const char *function,
563 unsigned int line, int errno)
564 {
565 char nbuf[16];
566 const char *errstr;
567
568 /* Special case: if the error is EROFS, and we're not already
569 * inside a transaction, then there's really no point in logging
570 * an error. */
571 if (errno == -EROFS && journal_current_handle() == NULL &&
572 (sb->s_flags & MS_RDONLY))
573 return;
574
575 if (ext4_error_ratelimit(sb)) {
576 errstr = ext4_decode_error(sb, errno, nbuf);
577 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
578 sb->s_id, function, line, errstr);
579 }
580
581 save_error_info(sb, function, line);
582 ext4_handle_error(sb);
583 }
584
585 /*
586 * ext4_abort is a much stronger failure handler than ext4_error. The
587 * abort function may be used to deal with unrecoverable failures such
588 * as journal IO errors or ENOMEM at a critical moment in log management.
589 *
590 * We unconditionally force the filesystem into an ABORT|READONLY state,
591 * unless the error response on the fs has been set to panic in which
592 * case we take the easy way out and panic immediately.
593 */
594
595 void __ext4_abort(struct super_block *sb, const char *function,
596 unsigned int line, const char *fmt, ...)
597 {
598 va_list args;
599
600 save_error_info(sb, function, line);
601 va_start(args, fmt);
602 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: ", sb->s_id,
603 function, line);
604 vprintk(fmt, args);
605 printk("\n");
606 va_end(args);
607
608 if ((sb->s_flags & MS_RDONLY) == 0) {
609 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
610 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
611 /*
612 * Make sure updated value of ->s_mount_flags will be visible
613 * before ->s_flags update
614 */
615 smp_wmb();
616 sb->s_flags |= MS_RDONLY;
617 if (EXT4_SB(sb)->s_journal)
618 jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO);
619 save_error_info(sb, function, line);
620 }
621 if (test_opt(sb, ERRORS_PANIC)) {
622 if (EXT4_SB(sb)->s_journal &&
623 !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR))
624 return;
625 panic("EXT4-fs panic from previous error\n");
626 }
627 }
628
629 void __ext4_msg(struct super_block *sb,
630 const char *prefix, const char *fmt, ...)
631 {
632 struct va_format vaf;
633 va_list args;
634
635 if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state), "EXT4-fs"))
636 return;
637
638 va_start(args, fmt);
639 vaf.fmt = fmt;
640 vaf.va = &args;
641 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
642 va_end(args);
643 }
644
645 #define ext4_warning_ratelimit(sb) \
646 ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state), \
647 "EXT4-fs warning")
648
649 void __ext4_warning(struct super_block *sb, const char *function,
650 unsigned int line, const char *fmt, ...)
651 {
652 struct va_format vaf;
653 va_list args;
654
655 if (!ext4_warning_ratelimit(sb))
656 return;
657
658 va_start(args, fmt);
659 vaf.fmt = fmt;
660 vaf.va = &args;
661 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
662 sb->s_id, function, line, &vaf);
663 va_end(args);
664 }
665
666 void __ext4_warning_inode(const struct inode *inode, const char *function,
667 unsigned int line, const char *fmt, ...)
668 {
669 struct va_format vaf;
670 va_list args;
671
672 if (!ext4_warning_ratelimit(inode->i_sb))
673 return;
674
675 va_start(args, fmt);
676 vaf.fmt = fmt;
677 vaf.va = &args;
678 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: "
679 "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id,
680 function, line, inode->i_ino, current->comm, &vaf);
681 va_end(args);
682 }
683
684 void __ext4_grp_locked_error(const char *function, unsigned int line,
685 struct super_block *sb, ext4_group_t grp,
686 unsigned long ino, ext4_fsblk_t block,
687 const char *fmt, ...)
688 __releases(bitlock)
689 __acquires(bitlock)
690 {
691 struct va_format vaf;
692 va_list args;
693 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
694
695 es->s_last_error_ino = cpu_to_le32(ino);
696 es->s_last_error_block = cpu_to_le64(block);
697 __save_error_info(sb, function, line);
698
699 if (ext4_error_ratelimit(sb)) {
700 va_start(args, fmt);
701 vaf.fmt = fmt;
702 vaf.va = &args;
703 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
704 sb->s_id, function, line, grp);
705 if (ino)
706 printk(KERN_CONT "inode %lu: ", ino);
707 if (block)
708 printk(KERN_CONT "block %llu:",
709 (unsigned long long) block);
710 printk(KERN_CONT "%pV\n", &vaf);
711 va_end(args);
712 }
713
714 if (test_opt(sb, ERRORS_CONT)) {
715 ext4_commit_super(sb, 0);
716 return;
717 }
718
719 ext4_unlock_group(sb, grp);
720 ext4_handle_error(sb);
721 /*
722 * We only get here in the ERRORS_RO case; relocking the group
723 * may be dangerous, but nothing bad will happen since the
724 * filesystem will have already been marked read/only and the
725 * journal has been aborted. We return 1 as a hint to callers
726 * who might what to use the return value from
727 * ext4_grp_locked_error() to distinguish between the
728 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
729 * aggressively from the ext4 function in question, with a
730 * more appropriate error code.
731 */
732 ext4_lock_group(sb, grp);
733 return;
734 }
735
736 void ext4_update_dynamic_rev(struct super_block *sb)
737 {
738 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
739
740 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
741 return;
742
743 ext4_warning(sb,
744 "updating to rev %d because of new feature flag, "
745 "running e2fsck is recommended",
746 EXT4_DYNAMIC_REV);
747
748 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
749 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
750 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
751 /* leave es->s_feature_*compat flags alone */
752 /* es->s_uuid will be set by e2fsck if empty */
753
754 /*
755 * The rest of the superblock fields should be zero, and if not it
756 * means they are likely already in use, so leave them alone. We
757 * can leave it up to e2fsck to clean up any inconsistencies there.
758 */
759 }
760
761 /*
762 * Open the external journal device
763 */
764 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb)
765 {
766 struct block_device *bdev;
767 char b[BDEVNAME_SIZE];
768
769 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb);
770 if (IS_ERR(bdev))
771 goto fail;
772 return bdev;
773
774 fail:
775 ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld",
776 __bdevname(dev, b), PTR_ERR(bdev));
777 return NULL;
778 }
779
780 /*
781 * Release the journal device
782 */
783 static void ext4_blkdev_put(struct block_device *bdev)
784 {
785 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
786 }
787
788 static void ext4_blkdev_remove(struct ext4_sb_info *sbi)
789 {
790 struct block_device *bdev;
791 bdev = sbi->journal_bdev;
792 if (bdev) {
793 ext4_blkdev_put(bdev);
794 sbi->journal_bdev = NULL;
795 }
796 }
797
798 static inline struct inode *orphan_list_entry(struct list_head *l)
799 {
800 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
801 }
802
803 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
804 {
805 struct list_head *l;
806
807 ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
808 le32_to_cpu(sbi->s_es->s_last_orphan));
809
810 printk(KERN_ERR "sb_info orphan list:\n");
811 list_for_each(l, &sbi->s_orphan) {
812 struct inode *inode = orphan_list_entry(l);
813 printk(KERN_ERR " "
814 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
815 inode->i_sb->s_id, inode->i_ino, inode,
816 inode->i_mode, inode->i_nlink,
817 NEXT_ORPHAN(inode));
818 }
819 }
820
821 static void ext4_put_super(struct super_block *sb)
822 {
823 struct ext4_sb_info *sbi = EXT4_SB(sb);
824 struct ext4_super_block *es = sbi->s_es;
825 int i, err;
826
827 ext4_unregister_li_request(sb);
828 dquot_disable(sb, -1, DQUOT_USAGE_ENABLED | DQUOT_LIMITS_ENABLED);
829
830 flush_workqueue(sbi->rsv_conversion_wq);
831 destroy_workqueue(sbi->rsv_conversion_wq);
832
833 if (sbi->s_journal) {
834 err = jbd2_journal_destroy(sbi->s_journal);
835 sbi->s_journal = NULL;
836 if (err < 0)
837 ext4_abort(sb, "Couldn't clean up the journal");
838 }
839
840 ext4_unregister_sysfs(sb);
841 ext4_es_unregister_shrinker(sbi);
842 del_timer_sync(&sbi->s_err_report);
843 ext4_release_system_zone(sb);
844 ext4_mb_release(sb);
845 ext4_ext_release(sb);
846
847 if (!(sb->s_flags & MS_RDONLY)) {
848 ext4_clear_feature_journal_needs_recovery(sb);
849 es->s_state = cpu_to_le16(sbi->s_mount_state);
850 }
851 if (!(sb->s_flags & MS_RDONLY))
852 ext4_commit_super(sb, 1);
853
854 for (i = 0; i < sbi->s_gdb_count; i++)
855 brelse(sbi->s_group_desc[i]);
856 kvfree(sbi->s_group_desc);
857 kvfree(sbi->s_flex_groups);
858 percpu_counter_destroy(&sbi->s_freeclusters_counter);
859 percpu_counter_destroy(&sbi->s_freeinodes_counter);
860 percpu_counter_destroy(&sbi->s_dirs_counter);
861 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
862 brelse(sbi->s_sbh);
863 #ifdef CONFIG_QUOTA
864 for (i = 0; i < EXT4_MAXQUOTAS; i++)
865 kfree(sbi->s_qf_names[i]);
866 #endif
867
868 /* Debugging code just in case the in-memory inode orphan list
869 * isn't empty. The on-disk one can be non-empty if we've
870 * detected an error and taken the fs readonly, but the
871 * in-memory list had better be clean by this point. */
872 if (!list_empty(&sbi->s_orphan))
873 dump_orphan_list(sb, sbi);
874 J_ASSERT(list_empty(&sbi->s_orphan));
875
876 sync_blockdev(sb->s_bdev);
877 invalidate_bdev(sb->s_bdev);
878 if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) {
879 /*
880 * Invalidate the journal device's buffers. We don't want them
881 * floating about in memory - the physical journal device may
882 * hotswapped, and it breaks the `ro-after' testing code.
883 */
884 sync_blockdev(sbi->journal_bdev);
885 invalidate_bdev(sbi->journal_bdev);
886 ext4_blkdev_remove(sbi);
887 }
888 if (sbi->s_mb_cache) {
889 ext4_xattr_destroy_cache(sbi->s_mb_cache);
890 sbi->s_mb_cache = NULL;
891 }
892 if (sbi->s_mmp_tsk)
893 kthread_stop(sbi->s_mmp_tsk);
894 sb->s_fs_info = NULL;
895 /*
896 * Now that we are completely done shutting down the
897 * superblock, we need to actually destroy the kobject.
898 */
899 kobject_put(&sbi->s_kobj);
900 wait_for_completion(&sbi->s_kobj_unregister);
901 if (sbi->s_chksum_driver)
902 crypto_free_shash(sbi->s_chksum_driver);
903 kfree(sbi->s_blockgroup_lock);
904 kfree(sbi);
905 }
906
907 static struct kmem_cache *ext4_inode_cachep;
908
909 /*
910 * Called inside transaction, so use GFP_NOFS
911 */
912 static struct inode *ext4_alloc_inode(struct super_block *sb)
913 {
914 struct ext4_inode_info *ei;
915
916 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS);
917 if (!ei)
918 return NULL;
919
920 ei->vfs_inode.i_version = 1;
921 spin_lock_init(&ei->i_raw_lock);
922 INIT_LIST_HEAD(&ei->i_prealloc_list);
923 spin_lock_init(&ei->i_prealloc_lock);
924 ext4_es_init_tree(&ei->i_es_tree);
925 rwlock_init(&ei->i_es_lock);
926 INIT_LIST_HEAD(&ei->i_es_list);
927 ei->i_es_all_nr = 0;
928 ei->i_es_shk_nr = 0;
929 ei->i_es_shrink_lblk = 0;
930 ei->i_reserved_data_blocks = 0;
931 ei->i_reserved_meta_blocks = 0;
932 ei->i_allocated_meta_blocks = 0;
933 ei->i_da_metadata_calc_len = 0;
934 ei->i_da_metadata_calc_last_lblock = 0;
935 spin_lock_init(&(ei->i_block_reservation_lock));
936 #ifdef CONFIG_QUOTA
937 ei->i_reserved_quota = 0;
938 memset(&ei->i_dquot, 0, sizeof(ei->i_dquot));
939 #endif
940 ei->jinode = NULL;
941 INIT_LIST_HEAD(&ei->i_rsv_conversion_list);
942 spin_lock_init(&ei->i_completed_io_lock);
943 ei->i_sync_tid = 0;
944 ei->i_datasync_tid = 0;
945 atomic_set(&ei->i_unwritten, 0);
946 INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work);
947 #ifdef CONFIG_EXT4_FS_ENCRYPTION
948 ei->i_crypt_info = NULL;
949 #endif
950 return &ei->vfs_inode;
951 }
952
953 static int ext4_drop_inode(struct inode *inode)
954 {
955 int drop = generic_drop_inode(inode);
956
957 trace_ext4_drop_inode(inode, drop);
958 return drop;
959 }
960
961 static void ext4_i_callback(struct rcu_head *head)
962 {
963 struct inode *inode = container_of(head, struct inode, i_rcu);
964 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
965 }
966
967 static void ext4_destroy_inode(struct inode *inode)
968 {
969 if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
970 ext4_msg(inode->i_sb, KERN_ERR,
971 "Inode %lu (%p): orphan list check failed!",
972 inode->i_ino, EXT4_I(inode));
973 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
974 EXT4_I(inode), sizeof(struct ext4_inode_info),
975 true);
976 dump_stack();
977 }
978 call_rcu(&inode->i_rcu, ext4_i_callback);
979 }
980
981 static void init_once(void *foo)
982 {
983 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo;
984
985 INIT_LIST_HEAD(&ei->i_orphan);
986 init_rwsem(&ei->xattr_sem);
987 init_rwsem(&ei->i_data_sem);
988 init_rwsem(&ei->i_mmap_sem);
989 inode_init_once(&ei->vfs_inode);
990 }
991
992 static int __init init_inodecache(void)
993 {
994 ext4_inode_cachep = kmem_cache_create("ext4_inode_cache",
995 sizeof(struct ext4_inode_info),
996 0, (SLAB_RECLAIM_ACCOUNT|
997 SLAB_MEM_SPREAD|SLAB_ACCOUNT),
998 init_once);
999 if (ext4_inode_cachep == NULL)
1000 return -ENOMEM;
1001 return 0;
1002 }
1003
1004 static void destroy_inodecache(void)
1005 {
1006 /*
1007 * Make sure all delayed rcu free inodes are flushed before we
1008 * destroy cache.
1009 */
1010 rcu_barrier();
1011 kmem_cache_destroy(ext4_inode_cachep);
1012 }
1013
1014 void ext4_clear_inode(struct inode *inode)
1015 {
1016 invalidate_inode_buffers(inode);
1017 clear_inode(inode);
1018 dquot_drop(inode);
1019 ext4_discard_preallocations(inode);
1020 ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS);
1021 if (EXT4_I(inode)->jinode) {
1022 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
1023 EXT4_I(inode)->jinode);
1024 jbd2_free_inode(EXT4_I(inode)->jinode);
1025 EXT4_I(inode)->jinode = NULL;
1026 }
1027 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1028 if (EXT4_I(inode)->i_crypt_info)
1029 ext4_free_encryption_info(inode, EXT4_I(inode)->i_crypt_info);
1030 #endif
1031 }
1032
1033 static struct inode *ext4_nfs_get_inode(struct super_block *sb,
1034 u64 ino, u32 generation)
1035 {
1036 struct inode *inode;
1037
1038 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
1039 return ERR_PTR(-ESTALE);
1040 if (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
1041 return ERR_PTR(-ESTALE);
1042
1043 /* iget isn't really right if the inode is currently unallocated!!
1044 *
1045 * ext4_read_inode will return a bad_inode if the inode had been
1046 * deleted, so we should be safe.
1047 *
1048 * Currently we don't know the generation for parent directory, so
1049 * a generation of 0 means "accept any"
1050 */
1051 inode = ext4_iget_normal(sb, ino);
1052 if (IS_ERR(inode))
1053 return ERR_CAST(inode);
1054 if (generation && inode->i_generation != generation) {
1055 iput(inode);
1056 return ERR_PTR(-ESTALE);
1057 }
1058
1059 return inode;
1060 }
1061
1062 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
1063 int fh_len, int fh_type)
1064 {
1065 return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1066 ext4_nfs_get_inode);
1067 }
1068
1069 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
1070 int fh_len, int fh_type)
1071 {
1072 return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1073 ext4_nfs_get_inode);
1074 }
1075
1076 /*
1077 * Try to release metadata pages (indirect blocks, directories) which are
1078 * mapped via the block device. Since these pages could have journal heads
1079 * which would prevent try_to_free_buffers() from freeing them, we must use
1080 * jbd2 layer's try_to_free_buffers() function to release them.
1081 */
1082 static int bdev_try_to_free_page(struct super_block *sb, struct page *page,
1083 gfp_t wait)
1084 {
1085 journal_t *journal = EXT4_SB(sb)->s_journal;
1086
1087 WARN_ON(PageChecked(page));
1088 if (!page_has_buffers(page))
1089 return 0;
1090 if (journal)
1091 return jbd2_journal_try_to_free_buffers(journal, page,
1092 wait & ~__GFP_DIRECT_RECLAIM);
1093 return try_to_free_buffers(page);
1094 }
1095
1096 #ifdef CONFIG_QUOTA
1097 static char *quotatypes[] = INITQFNAMES;
1098 #define QTYPE2NAME(t) (quotatypes[t])
1099
1100 static int ext4_write_dquot(struct dquot *dquot);
1101 static int ext4_acquire_dquot(struct dquot *dquot);
1102 static int ext4_release_dquot(struct dquot *dquot);
1103 static int ext4_mark_dquot_dirty(struct dquot *dquot);
1104 static int ext4_write_info(struct super_block *sb, int type);
1105 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1106 struct path *path);
1107 static int ext4_quota_off(struct super_block *sb, int type);
1108 static int ext4_quota_on_mount(struct super_block *sb, int type);
1109 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1110 size_t len, loff_t off);
1111 static ssize_t ext4_quota_write(struct super_block *sb, int type,
1112 const char *data, size_t len, loff_t off);
1113 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
1114 unsigned int flags);
1115 static int ext4_enable_quotas(struct super_block *sb);
1116
1117 static struct dquot **ext4_get_dquots(struct inode *inode)
1118 {
1119 return EXT4_I(inode)->i_dquot;
1120 }
1121
1122 static const struct dquot_operations ext4_quota_operations = {
1123 .get_reserved_space = ext4_get_reserved_space,
1124 .write_dquot = ext4_write_dquot,
1125 .acquire_dquot = ext4_acquire_dquot,
1126 .release_dquot = ext4_release_dquot,
1127 .mark_dirty = ext4_mark_dquot_dirty,
1128 .write_info = ext4_write_info,
1129 .alloc_dquot = dquot_alloc,
1130 .destroy_dquot = dquot_destroy,
1131 .get_projid = ext4_get_projid,
1132 };
1133
1134 static const struct quotactl_ops ext4_qctl_operations = {
1135 .quota_on = ext4_quota_on,
1136 .quota_off = ext4_quota_off,
1137 .quota_sync = dquot_quota_sync,
1138 .get_state = dquot_get_state,
1139 .set_info = dquot_set_dqinfo,
1140 .get_dqblk = dquot_get_dqblk,
1141 .set_dqblk = dquot_set_dqblk
1142 };
1143 #endif
1144
1145 static const struct super_operations ext4_sops = {
1146 .alloc_inode = ext4_alloc_inode,
1147 .destroy_inode = ext4_destroy_inode,
1148 .write_inode = ext4_write_inode,
1149 .dirty_inode = ext4_dirty_inode,
1150 .drop_inode = ext4_drop_inode,
1151 .evict_inode = ext4_evict_inode,
1152 .put_super = ext4_put_super,
1153 .sync_fs = ext4_sync_fs,
1154 .freeze_fs = ext4_freeze,
1155 .unfreeze_fs = ext4_unfreeze,
1156 .statfs = ext4_statfs,
1157 .remount_fs = ext4_remount,
1158 .show_options = ext4_show_options,
1159 #ifdef CONFIG_QUOTA
1160 .quota_read = ext4_quota_read,
1161 .quota_write = ext4_quota_write,
1162 .get_dquots = ext4_get_dquots,
1163 #endif
1164 .bdev_try_to_free_page = bdev_try_to_free_page,
1165 };
1166
1167 static const struct export_operations ext4_export_ops = {
1168 .fh_to_dentry = ext4_fh_to_dentry,
1169 .fh_to_parent = ext4_fh_to_parent,
1170 .get_parent = ext4_get_parent,
1171 };
1172
1173 enum {
1174 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1175 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro,
1176 Opt_nouid32, Opt_debug, Opt_removed,
1177 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl,
1178 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload,
1179 Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev,
1180 Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit,
1181 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1182 Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption,
1183 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota,
1184 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota,
1185 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err,
1186 Opt_usrquota, Opt_grpquota, Opt_i_version, Opt_dax,
1187 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_mblk_io_submit,
1188 Opt_lazytime, Opt_nolazytime,
1189 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1190 Opt_inode_readahead_blks, Opt_journal_ioprio,
1191 Opt_dioread_nolock, Opt_dioread_lock,
1192 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable,
1193 Opt_max_dir_size_kb, Opt_nojournal_checksum,
1194 };
1195
1196 static const match_table_t tokens = {
1197 {Opt_bsd_df, "bsddf"},
1198 {Opt_minix_df, "minixdf"},
1199 {Opt_grpid, "grpid"},
1200 {Opt_grpid, "bsdgroups"},
1201 {Opt_nogrpid, "nogrpid"},
1202 {Opt_nogrpid, "sysvgroups"},
1203 {Opt_resgid, "resgid=%u"},
1204 {Opt_resuid, "resuid=%u"},
1205 {Opt_sb, "sb=%u"},
1206 {Opt_err_cont, "errors=continue"},
1207 {Opt_err_panic, "errors=panic"},
1208 {Opt_err_ro, "errors=remount-ro"},
1209 {Opt_nouid32, "nouid32"},
1210 {Opt_debug, "debug"},
1211 {Opt_removed, "oldalloc"},
1212 {Opt_removed, "orlov"},
1213 {Opt_user_xattr, "user_xattr"},
1214 {Opt_nouser_xattr, "nouser_xattr"},
1215 {Opt_acl, "acl"},
1216 {Opt_noacl, "noacl"},
1217 {Opt_noload, "norecovery"},
1218 {Opt_noload, "noload"},
1219 {Opt_removed, "nobh"},
1220 {Opt_removed, "bh"},
1221 {Opt_commit, "commit=%u"},
1222 {Opt_min_batch_time, "min_batch_time=%u"},
1223 {Opt_max_batch_time, "max_batch_time=%u"},
1224 {Opt_journal_dev, "journal_dev=%u"},
1225 {Opt_journal_path, "journal_path=%s"},
1226 {Opt_journal_checksum, "journal_checksum"},
1227 {Opt_nojournal_checksum, "nojournal_checksum"},
1228 {Opt_journal_async_commit, "journal_async_commit"},
1229 {Opt_abort, "abort"},
1230 {Opt_data_journal, "data=journal"},
1231 {Opt_data_ordered, "data=ordered"},
1232 {Opt_data_writeback, "data=writeback"},
1233 {Opt_data_err_abort, "data_err=abort"},
1234 {Opt_data_err_ignore, "data_err=ignore"},
1235 {Opt_offusrjquota, "usrjquota="},
1236 {Opt_usrjquota, "usrjquota=%s"},
1237 {Opt_offgrpjquota, "grpjquota="},
1238 {Opt_grpjquota, "grpjquota=%s"},
1239 {Opt_jqfmt_vfsold, "jqfmt=vfsold"},
1240 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
1241 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
1242 {Opt_grpquota, "grpquota"},
1243 {Opt_noquota, "noquota"},
1244 {Opt_quota, "quota"},
1245 {Opt_usrquota, "usrquota"},
1246 {Opt_barrier, "barrier=%u"},
1247 {Opt_barrier, "barrier"},
1248 {Opt_nobarrier, "nobarrier"},
1249 {Opt_i_version, "i_version"},
1250 {Opt_dax, "dax"},
1251 {Opt_stripe, "stripe=%u"},
1252 {Opt_delalloc, "delalloc"},
1253 {Opt_lazytime, "lazytime"},
1254 {Opt_nolazytime, "nolazytime"},
1255 {Opt_nodelalloc, "nodelalloc"},
1256 {Opt_removed, "mblk_io_submit"},
1257 {Opt_removed, "nomblk_io_submit"},
1258 {Opt_block_validity, "block_validity"},
1259 {Opt_noblock_validity, "noblock_validity"},
1260 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"},
1261 {Opt_journal_ioprio, "journal_ioprio=%u"},
1262 {Opt_auto_da_alloc, "auto_da_alloc=%u"},
1263 {Opt_auto_da_alloc, "auto_da_alloc"},
1264 {Opt_noauto_da_alloc, "noauto_da_alloc"},
1265 {Opt_dioread_nolock, "dioread_nolock"},
1266 {Opt_dioread_lock, "dioread_lock"},
1267 {Opt_discard, "discard"},
1268 {Opt_nodiscard, "nodiscard"},
1269 {Opt_init_itable, "init_itable=%u"},
1270 {Opt_init_itable, "init_itable"},
1271 {Opt_noinit_itable, "noinit_itable"},
1272 {Opt_max_dir_size_kb, "max_dir_size_kb=%u"},
1273 {Opt_test_dummy_encryption, "test_dummy_encryption"},
1274 {Opt_removed, "check=none"}, /* mount option from ext2/3 */
1275 {Opt_removed, "nocheck"}, /* mount option from ext2/3 */
1276 {Opt_removed, "reservation"}, /* mount option from ext2/3 */
1277 {Opt_removed, "noreservation"}, /* mount option from ext2/3 */
1278 {Opt_removed, "journal=%u"}, /* mount option from ext2/3 */
1279 {Opt_err, NULL},
1280 };
1281
1282 static ext4_fsblk_t get_sb_block(void **data)
1283 {
1284 ext4_fsblk_t sb_block;
1285 char *options = (char *) *data;
1286
1287 if (!options || strncmp(options, "sb=", 3) != 0)
1288 return 1; /* Default location */
1289
1290 options += 3;
1291 /* TODO: use simple_strtoll with >32bit ext4 */
1292 sb_block = simple_strtoul(options, &options, 0);
1293 if (*options && *options != ',') {
1294 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n",
1295 (char *) *data);
1296 return 1;
1297 }
1298 if (*options == ',')
1299 options++;
1300 *data = (void *) options;
1301
1302 return sb_block;
1303 }
1304
1305 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1306 static char deprecated_msg[] = "Mount option \"%s\" will be removed by %s\n"
1307 "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n";
1308
1309 #ifdef CONFIG_QUOTA
1310 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args)
1311 {
1312 struct ext4_sb_info *sbi = EXT4_SB(sb);
1313 char *qname;
1314 int ret = -1;
1315
1316 if (sb_any_quota_loaded(sb) &&
1317 !sbi->s_qf_names[qtype]) {
1318 ext4_msg(sb, KERN_ERR,
1319 "Cannot change journaled "
1320 "quota options when quota turned on");
1321 return -1;
1322 }
1323 if (ext4_has_feature_quota(sb)) {
1324 ext4_msg(sb, KERN_ERR, "Cannot set journaled quota options "
1325 "when QUOTA feature is enabled");
1326 return -1;
1327 }
1328 qname = match_strdup(args);
1329 if (!qname) {
1330 ext4_msg(sb, KERN_ERR,
1331 "Not enough memory for storing quotafile name");
1332 return -1;
1333 }
1334 if (sbi->s_qf_names[qtype]) {
1335 if (strcmp(sbi->s_qf_names[qtype], qname) == 0)
1336 ret = 1;
1337 else
1338 ext4_msg(sb, KERN_ERR,
1339 "%s quota file already specified",
1340 QTYPE2NAME(qtype));
1341 goto errout;
1342 }
1343 if (strchr(qname, '/')) {
1344 ext4_msg(sb, KERN_ERR,
1345 "quotafile must be on filesystem root");
1346 goto errout;
1347 }
1348 sbi->s_qf_names[qtype] = qname;
1349 set_opt(sb, QUOTA);
1350 return 1;
1351 errout:
1352 kfree(qname);
1353 return ret;
1354 }
1355
1356 static int clear_qf_name(struct super_block *sb, int qtype)
1357 {
1358
1359 struct ext4_sb_info *sbi = EXT4_SB(sb);
1360
1361 if (sb_any_quota_loaded(sb) &&
1362 sbi->s_qf_names[qtype]) {
1363 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options"
1364 " when quota turned on");
1365 return -1;
1366 }
1367 kfree(sbi->s_qf_names[qtype]);
1368 sbi->s_qf_names[qtype] = NULL;
1369 return 1;
1370 }
1371 #endif
1372
1373 #define MOPT_SET 0x0001
1374 #define MOPT_CLEAR 0x0002
1375 #define MOPT_NOSUPPORT 0x0004
1376 #define MOPT_EXPLICIT 0x0008
1377 #define MOPT_CLEAR_ERR 0x0010
1378 #define MOPT_GTE0 0x0020
1379 #ifdef CONFIG_QUOTA
1380 #define MOPT_Q 0
1381 #define MOPT_QFMT 0x0040
1382 #else
1383 #define MOPT_Q MOPT_NOSUPPORT
1384 #define MOPT_QFMT MOPT_NOSUPPORT
1385 #endif
1386 #define MOPT_DATAJ 0x0080
1387 #define MOPT_NO_EXT2 0x0100
1388 #define MOPT_NO_EXT3 0x0200
1389 #define MOPT_EXT4_ONLY (MOPT_NO_EXT2 | MOPT_NO_EXT3)
1390 #define MOPT_STRING 0x0400
1391
1392 static const struct mount_opts {
1393 int token;
1394 int mount_opt;
1395 int flags;
1396 } ext4_mount_opts[] = {
1397 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET},
1398 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR},
1399 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET},
1400 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR},
1401 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET},
1402 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR},
1403 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK,
1404 MOPT_EXT4_ONLY | MOPT_SET},
1405 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK,
1406 MOPT_EXT4_ONLY | MOPT_CLEAR},
1407 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET},
1408 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR},
1409 {Opt_delalloc, EXT4_MOUNT_DELALLOC,
1410 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1411 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC,
1412 MOPT_EXT4_ONLY | MOPT_CLEAR},
1413 {Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1414 MOPT_EXT4_ONLY | MOPT_CLEAR},
1415 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1416 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1417 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT |
1418 EXT4_MOUNT_JOURNAL_CHECKSUM),
1419 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1420 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET},
1421 {Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR},
1422 {Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR},
1423 {Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR},
1424 {Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT,
1425 MOPT_NO_EXT2},
1426 {Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT,
1427 MOPT_NO_EXT2},
1428 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET},
1429 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR},
1430 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET},
1431 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR},
1432 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR},
1433 {Opt_commit, 0, MOPT_GTE0},
1434 {Opt_max_batch_time, 0, MOPT_GTE0},
1435 {Opt_min_batch_time, 0, MOPT_GTE0},
1436 {Opt_inode_readahead_blks, 0, MOPT_GTE0},
1437 {Opt_init_itable, 0, MOPT_GTE0},
1438 {Opt_dax, EXT4_MOUNT_DAX, MOPT_SET},
1439 {Opt_stripe, 0, MOPT_GTE0},
1440 {Opt_resuid, 0, MOPT_GTE0},
1441 {Opt_resgid, 0, MOPT_GTE0},
1442 {Opt_journal_dev, 0, MOPT_NO_EXT2 | MOPT_GTE0},
1443 {Opt_journal_path, 0, MOPT_NO_EXT2 | MOPT_STRING},
1444 {Opt_journal_ioprio, 0, MOPT_NO_EXT2 | MOPT_GTE0},
1445 {Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1446 {Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1447 {Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA,
1448 MOPT_NO_EXT2 | MOPT_DATAJ},
1449 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET},
1450 {Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR},
1451 #ifdef CONFIG_EXT4_FS_POSIX_ACL
1452 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET},
1453 {Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR},
1454 #else
1455 {Opt_acl, 0, MOPT_NOSUPPORT},
1456 {Opt_noacl, 0, MOPT_NOSUPPORT},
1457 #endif
1458 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET},
1459 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET},
1460 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q},
1461 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA,
1462 MOPT_SET | MOPT_Q},
1463 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA,
1464 MOPT_SET | MOPT_Q},
1465 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
1466 EXT4_MOUNT_GRPQUOTA), MOPT_CLEAR | MOPT_Q},
1467 {Opt_usrjquota, 0, MOPT_Q},
1468 {Opt_grpjquota, 0, MOPT_Q},
1469 {Opt_offusrjquota, 0, MOPT_Q},
1470 {Opt_offgrpjquota, 0, MOPT_Q},
1471 {Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT},
1472 {Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT},
1473 {Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT},
1474 {Opt_max_dir_size_kb, 0, MOPT_GTE0},
1475 {Opt_test_dummy_encryption, 0, MOPT_GTE0},
1476 {Opt_err, 0, 0}
1477 };
1478
1479 static int handle_mount_opt(struct super_block *sb, char *opt, int token,
1480 substring_t *args, unsigned long *journal_devnum,
1481 unsigned int *journal_ioprio, int is_remount)
1482 {
1483 struct ext4_sb_info *sbi = EXT4_SB(sb);
1484 const struct mount_opts *m;
1485 kuid_t uid;
1486 kgid_t gid;
1487 int arg = 0;
1488
1489 #ifdef CONFIG_QUOTA
1490 if (token == Opt_usrjquota)
1491 return set_qf_name(sb, USRQUOTA, &args[0]);
1492 else if (token == Opt_grpjquota)
1493 return set_qf_name(sb, GRPQUOTA, &args[0]);
1494 else if (token == Opt_offusrjquota)
1495 return clear_qf_name(sb, USRQUOTA);
1496 else if (token == Opt_offgrpjquota)
1497 return clear_qf_name(sb, GRPQUOTA);
1498 #endif
1499 switch (token) {
1500 case Opt_noacl:
1501 case Opt_nouser_xattr:
1502 ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5");
1503 break;
1504 case Opt_sb:
1505 return 1; /* handled by get_sb_block() */
1506 case Opt_removed:
1507 ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt);
1508 return 1;
1509 case Opt_abort:
1510 sbi->s_mount_flags |= EXT4_MF_FS_ABORTED;
1511 return 1;
1512 case Opt_i_version:
1513 sb->s_flags |= MS_I_VERSION;
1514 return 1;
1515 case Opt_lazytime:
1516 sb->s_flags |= MS_LAZYTIME;
1517 return 1;
1518 case Opt_nolazytime:
1519 sb->s_flags &= ~MS_LAZYTIME;
1520 return 1;
1521 }
1522
1523 for (m = ext4_mount_opts; m->token != Opt_err; m++)
1524 if (token == m->token)
1525 break;
1526
1527 if (m->token == Opt_err) {
1528 ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" "
1529 "or missing value", opt);
1530 return -1;
1531 }
1532
1533 if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) {
1534 ext4_msg(sb, KERN_ERR,
1535 "Mount option \"%s\" incompatible with ext2", opt);
1536 return -1;
1537 }
1538 if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) {
1539 ext4_msg(sb, KERN_ERR,
1540 "Mount option \"%s\" incompatible with ext3", opt);
1541 return -1;
1542 }
1543
1544 if (args->from && !(m->flags & MOPT_STRING) && match_int(args, &arg))
1545 return -1;
1546 if (args->from && (m->flags & MOPT_GTE0) && (arg < 0))
1547 return -1;
1548 if (m->flags & MOPT_EXPLICIT) {
1549 if (m->mount_opt & EXT4_MOUNT_DELALLOC) {
1550 set_opt2(sb, EXPLICIT_DELALLOC);
1551 } else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) {
1552 set_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM);
1553 } else
1554 return -1;
1555 }
1556 if (m->flags & MOPT_CLEAR_ERR)
1557 clear_opt(sb, ERRORS_MASK);
1558 if (token == Opt_noquota && sb_any_quota_loaded(sb)) {
1559 ext4_msg(sb, KERN_ERR, "Cannot change quota "
1560 "options when quota turned on");
1561 return -1;
1562 }
1563
1564 if (m->flags & MOPT_NOSUPPORT) {
1565 ext4_msg(sb, KERN_ERR, "%s option not supported", opt);
1566 } else if (token == Opt_commit) {
1567 if (arg == 0)
1568 arg = JBD2_DEFAULT_MAX_COMMIT_AGE;
1569 sbi->s_commit_interval = HZ * arg;
1570 } else if (token == Opt_max_batch_time) {
1571 sbi->s_max_batch_time = arg;
1572 } else if (token == Opt_min_batch_time) {
1573 sbi->s_min_batch_time = arg;
1574 } else if (token == Opt_inode_readahead_blks) {
1575 if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) {
1576 ext4_msg(sb, KERN_ERR,
1577 "EXT4-fs: inode_readahead_blks must be "
1578 "0 or a power of 2 smaller than 2^31");
1579 return -1;
1580 }
1581 sbi->s_inode_readahead_blks = arg;
1582 } else if (token == Opt_init_itable) {
1583 set_opt(sb, INIT_INODE_TABLE);
1584 if (!args->from)
1585 arg = EXT4_DEF_LI_WAIT_MULT;
1586 sbi->s_li_wait_mult = arg;
1587 } else if (token == Opt_max_dir_size_kb) {
1588 sbi->s_max_dir_size_kb = arg;
1589 } else if (token == Opt_stripe) {
1590 sbi->s_stripe = arg;
1591 } else if (token == Opt_resuid) {
1592 uid = make_kuid(current_user_ns(), arg);
1593 if (!uid_valid(uid)) {
1594 ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg);
1595 return -1;
1596 }
1597 sbi->s_resuid = uid;
1598 } else if (token == Opt_resgid) {
1599 gid = make_kgid(current_user_ns(), arg);
1600 if (!gid_valid(gid)) {
1601 ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg);
1602 return -1;
1603 }
1604 sbi->s_resgid = gid;
1605 } else if (token == Opt_journal_dev) {
1606 if (is_remount) {
1607 ext4_msg(sb, KERN_ERR,
1608 "Cannot specify journal on remount");
1609 return -1;
1610 }
1611 *journal_devnum = arg;
1612 } else if (token == Opt_journal_path) {
1613 char *journal_path;
1614 struct inode *journal_inode;
1615 struct path path;
1616 int error;
1617
1618 if (is_remount) {
1619 ext4_msg(sb, KERN_ERR,
1620 "Cannot specify journal on remount");
1621 return -1;
1622 }
1623 journal_path = match_strdup(&args[0]);
1624 if (!journal_path) {
1625 ext4_msg(sb, KERN_ERR, "error: could not dup "
1626 "journal device string");
1627 return -1;
1628 }
1629
1630 error = kern_path(journal_path, LOOKUP_FOLLOW, &path);
1631 if (error) {
1632 ext4_msg(sb, KERN_ERR, "error: could not find "
1633 "journal device path: error %d", error);
1634 kfree(journal_path);
1635 return -1;
1636 }
1637
1638 journal_inode = d_inode(path.dentry);
1639 if (!S_ISBLK(journal_inode->i_mode)) {
1640 ext4_msg(sb, KERN_ERR, "error: journal path %s "
1641 "is not a block device", journal_path);
1642 path_put(&path);
1643 kfree(journal_path);
1644 return -1;
1645 }
1646
1647 *journal_devnum = new_encode_dev(journal_inode->i_rdev);
1648 path_put(&path);
1649 kfree(journal_path);
1650 } else if (token == Opt_journal_ioprio) {
1651 if (arg > 7) {
1652 ext4_msg(sb, KERN_ERR, "Invalid journal IO priority"
1653 " (must be 0-7)");
1654 return -1;
1655 }
1656 *journal_ioprio =
1657 IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg);
1658 } else if (token == Opt_test_dummy_encryption) {
1659 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1660 sbi->s_mount_flags |= EXT4_MF_TEST_DUMMY_ENCRYPTION;
1661 ext4_msg(sb, KERN_WARNING,
1662 "Test dummy encryption mode enabled");
1663 #else
1664 ext4_msg(sb, KERN_WARNING,
1665 "Test dummy encryption mount option ignored");
1666 #endif
1667 } else if (m->flags & MOPT_DATAJ) {
1668 if (is_remount) {
1669 if (!sbi->s_journal)
1670 ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option");
1671 else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) {
1672 ext4_msg(sb, KERN_ERR,
1673 "Cannot change data mode on remount");
1674 return -1;
1675 }
1676 } else {
1677 clear_opt(sb, DATA_FLAGS);
1678 sbi->s_mount_opt |= m->mount_opt;
1679 }
1680 #ifdef CONFIG_QUOTA
1681 } else if (m->flags & MOPT_QFMT) {
1682 if (sb_any_quota_loaded(sb) &&
1683 sbi->s_jquota_fmt != m->mount_opt) {
1684 ext4_msg(sb, KERN_ERR, "Cannot change journaled "
1685 "quota options when quota turned on");
1686 return -1;
1687 }
1688 if (ext4_has_feature_quota(sb)) {
1689 ext4_msg(sb, KERN_ERR,
1690 "Cannot set journaled quota options "
1691 "when QUOTA feature is enabled");
1692 return -1;
1693 }
1694 sbi->s_jquota_fmt = m->mount_opt;
1695 #endif
1696 } else if (token == Opt_dax) {
1697 #ifdef CONFIG_FS_DAX
1698 ext4_msg(sb, KERN_WARNING,
1699 "DAX enabled. Warning: EXPERIMENTAL, use at your own risk");
1700 sbi->s_mount_opt |= m->mount_opt;
1701 #else
1702 ext4_msg(sb, KERN_INFO, "dax option not supported");
1703 return -1;
1704 #endif
1705 } else if (token == Opt_data_err_abort) {
1706 sbi->s_mount_opt |= m->mount_opt;
1707 } else if (token == Opt_data_err_ignore) {
1708 sbi->s_mount_opt &= ~m->mount_opt;
1709 } else {
1710 if (!args->from)
1711 arg = 1;
1712 if (m->flags & MOPT_CLEAR)
1713 arg = !arg;
1714 else if (unlikely(!(m->flags & MOPT_SET))) {
1715 ext4_msg(sb, KERN_WARNING,
1716 "buggy handling of option %s", opt);
1717 WARN_ON(1);
1718 return -1;
1719 }
1720 if (arg != 0)
1721 sbi->s_mount_opt |= m->mount_opt;
1722 else
1723 sbi->s_mount_opt &= ~m->mount_opt;
1724 }
1725 return 1;
1726 }
1727
1728 static int parse_options(char *options, struct super_block *sb,
1729 unsigned long *journal_devnum,
1730 unsigned int *journal_ioprio,
1731 int is_remount)
1732 {
1733 struct ext4_sb_info *sbi = EXT4_SB(sb);
1734 char *p;
1735 substring_t args[MAX_OPT_ARGS];
1736 int token;
1737
1738 if (!options)
1739 return 1;
1740
1741 while ((p = strsep(&options, ",")) != NULL) {
1742 if (!*p)
1743 continue;
1744 /*
1745 * Initialize args struct so we know whether arg was
1746 * found; some options take optional arguments.
1747 */
1748 args[0].to = args[0].from = NULL;
1749 token = match_token(p, tokens, args);
1750 if (handle_mount_opt(sb, p, token, args, journal_devnum,
1751 journal_ioprio, is_remount) < 0)
1752 return 0;
1753 }
1754 #ifdef CONFIG_QUOTA
1755 if (ext4_has_feature_quota(sb) &&
1756 (test_opt(sb, USRQUOTA) || test_opt(sb, GRPQUOTA))) {
1757 ext4_msg(sb, KERN_ERR, "Cannot set quota options when QUOTA "
1758 "feature is enabled");
1759 return 0;
1760 }
1761 if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
1762 if (test_opt(sb, USRQUOTA) && sbi->s_qf_names[USRQUOTA])
1763 clear_opt(sb, USRQUOTA);
1764
1765 if (test_opt(sb, GRPQUOTA) && sbi->s_qf_names[GRPQUOTA])
1766 clear_opt(sb, GRPQUOTA);
1767
1768 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) {
1769 ext4_msg(sb, KERN_ERR, "old and new quota "
1770 "format mixing");
1771 return 0;
1772 }
1773
1774 if (!sbi->s_jquota_fmt) {
1775 ext4_msg(sb, KERN_ERR, "journaled quota format "
1776 "not specified");
1777 return 0;
1778 }
1779 }
1780 #endif
1781 if (test_opt(sb, DIOREAD_NOLOCK)) {
1782 int blocksize =
1783 BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size);
1784
1785 if (blocksize < PAGE_CACHE_SIZE) {
1786 ext4_msg(sb, KERN_ERR, "can't mount with "
1787 "dioread_nolock if block size != PAGE_SIZE");
1788 return 0;
1789 }
1790 }
1791 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA &&
1792 test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
1793 ext4_msg(sb, KERN_ERR, "can't mount with journal_async_commit "
1794 "in data=ordered mode");
1795 return 0;
1796 }
1797 return 1;
1798 }
1799
1800 static inline void ext4_show_quota_options(struct seq_file *seq,
1801 struct super_block *sb)
1802 {
1803 #if defined(CONFIG_QUOTA)
1804 struct ext4_sb_info *sbi = EXT4_SB(sb);
1805
1806 if (sbi->s_jquota_fmt) {
1807 char *fmtname = "";
1808
1809 switch (sbi->s_jquota_fmt) {
1810 case QFMT_VFS_OLD:
1811 fmtname = "vfsold";
1812 break;
1813 case QFMT_VFS_V0:
1814 fmtname = "vfsv0";
1815 break;
1816 case QFMT_VFS_V1:
1817 fmtname = "vfsv1";
1818 break;
1819 }
1820 seq_printf(seq, ",jqfmt=%s", fmtname);
1821 }
1822
1823 if (sbi->s_qf_names[USRQUOTA])
1824 seq_show_option(seq, "usrjquota", sbi->s_qf_names[USRQUOTA]);
1825
1826 if (sbi->s_qf_names[GRPQUOTA])
1827 seq_show_option(seq, "grpjquota", sbi->s_qf_names[GRPQUOTA]);
1828 #endif
1829 }
1830
1831 static const char *token2str(int token)
1832 {
1833 const struct match_token *t;
1834
1835 for (t = tokens; t->token != Opt_err; t++)
1836 if (t->token == token && !strchr(t->pattern, '='))
1837 break;
1838 return t->pattern;
1839 }
1840
1841 /*
1842 * Show an option if
1843 * - it's set to a non-default value OR
1844 * - if the per-sb default is different from the global default
1845 */
1846 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb,
1847 int nodefs)
1848 {
1849 struct ext4_sb_info *sbi = EXT4_SB(sb);
1850 struct ext4_super_block *es = sbi->s_es;
1851 int def_errors, def_mount_opt = nodefs ? 0 : sbi->s_def_mount_opt;
1852 const struct mount_opts *m;
1853 char sep = nodefs ? '\n' : ',';
1854
1855 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep)
1856 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg)
1857
1858 if (sbi->s_sb_block != 1)
1859 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block);
1860
1861 for (m = ext4_mount_opts; m->token != Opt_err; m++) {
1862 int want_set = m->flags & MOPT_SET;
1863 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) ||
1864 (m->flags & MOPT_CLEAR_ERR))
1865 continue;
1866 if (!(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt)))
1867 continue; /* skip if same as the default */
1868 if ((want_set &&
1869 (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) ||
1870 (!want_set && (sbi->s_mount_opt & m->mount_opt)))
1871 continue; /* select Opt_noFoo vs Opt_Foo */
1872 SEQ_OPTS_PRINT("%s", token2str(m->token));
1873 }
1874
1875 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) ||
1876 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID)
1877 SEQ_OPTS_PRINT("resuid=%u",
1878 from_kuid_munged(&init_user_ns, sbi->s_resuid));
1879 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) ||
1880 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID)
1881 SEQ_OPTS_PRINT("resgid=%u",
1882 from_kgid_munged(&init_user_ns, sbi->s_resgid));
1883 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors);
1884 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO)
1885 SEQ_OPTS_PUTS("errors=remount-ro");
1886 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
1887 SEQ_OPTS_PUTS("errors=continue");
1888 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
1889 SEQ_OPTS_PUTS("errors=panic");
1890 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
1891 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ);
1892 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME)
1893 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time);
1894 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME)
1895 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time);
1896 if (sb->s_flags & MS_I_VERSION)
1897 SEQ_OPTS_PUTS("i_version");
1898 if (nodefs || sbi->s_stripe)
1899 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe);
1900 if (EXT4_MOUNT_DATA_FLAGS & (sbi->s_mount_opt ^ def_mount_opt)) {
1901 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
1902 SEQ_OPTS_PUTS("data=journal");
1903 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
1904 SEQ_OPTS_PUTS("data=ordered");
1905 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
1906 SEQ_OPTS_PUTS("data=writeback");
1907 }
1908 if (nodefs ||
1909 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
1910 SEQ_OPTS_PRINT("inode_readahead_blks=%u",
1911 sbi->s_inode_readahead_blks);
1912
1913 if (nodefs || (test_opt(sb, INIT_INODE_TABLE) &&
1914 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)))
1915 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult);
1916 if (nodefs || sbi->s_max_dir_size_kb)
1917 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb);
1918 if (test_opt(sb, DATA_ERR_ABORT))
1919 SEQ_OPTS_PUTS("data_err=abort");
1920
1921 ext4_show_quota_options(seq, sb);
1922 return 0;
1923 }
1924
1925 static int ext4_show_options(struct seq_file *seq, struct dentry *root)
1926 {
1927 return _ext4_show_options(seq, root->d_sb, 0);
1928 }
1929
1930 int ext4_seq_options_show(struct seq_file *seq, void *offset)
1931 {
1932 struct super_block *sb = seq->private;
1933 int rc;
1934
1935 seq_puts(seq, (sb->s_flags & MS_RDONLY) ? "ro" : "rw");
1936 rc = _ext4_show_options(seq, sb, 1);
1937 seq_puts(seq, "\n");
1938 return rc;
1939 }
1940
1941 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
1942 int read_only)
1943 {
1944 struct ext4_sb_info *sbi = EXT4_SB(sb);
1945 int res = 0;
1946
1947 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
1948 ext4_msg(sb, KERN_ERR, "revision level too high, "
1949 "forcing read-only mode");
1950 res = MS_RDONLY;
1951 }
1952 if (read_only)
1953 goto done;
1954 if (!(sbi->s_mount_state & EXT4_VALID_FS))
1955 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
1956 "running e2fsck is recommended");
1957 else if (sbi->s_mount_state & EXT4_ERROR_FS)
1958 ext4_msg(sb, KERN_WARNING,
1959 "warning: mounting fs with errors, "
1960 "running e2fsck is recommended");
1961 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
1962 le16_to_cpu(es->s_mnt_count) >=
1963 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
1964 ext4_msg(sb, KERN_WARNING,
1965 "warning: maximal mount count reached, "
1966 "running e2fsck is recommended");
1967 else if (le32_to_cpu(es->s_checkinterval) &&
1968 (le32_to_cpu(es->s_lastcheck) +
1969 le32_to_cpu(es->s_checkinterval) <= get_seconds()))
1970 ext4_msg(sb, KERN_WARNING,
1971 "warning: checktime reached, "
1972 "running e2fsck is recommended");
1973 if (!sbi->s_journal)
1974 es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
1975 if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
1976 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
1977 le16_add_cpu(&es->s_mnt_count, 1);
1978 es->s_mtime = cpu_to_le32(get_seconds());
1979 ext4_update_dynamic_rev(sb);
1980 if (sbi->s_journal)
1981 ext4_set_feature_journal_needs_recovery(sb);
1982
1983 ext4_commit_super(sb, 1);
1984 done:
1985 if (test_opt(sb, DEBUG))
1986 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
1987 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
1988 sb->s_blocksize,
1989 sbi->s_groups_count,
1990 EXT4_BLOCKS_PER_GROUP(sb),
1991 EXT4_INODES_PER_GROUP(sb),
1992 sbi->s_mount_opt, sbi->s_mount_opt2);
1993
1994 cleancache_init_fs(sb);
1995 return res;
1996 }
1997
1998 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup)
1999 {
2000 struct ext4_sb_info *sbi = EXT4_SB(sb);
2001 struct flex_groups *new_groups;
2002 int size;
2003
2004 if (!sbi->s_log_groups_per_flex)
2005 return 0;
2006
2007 size = ext4_flex_group(sbi, ngroup - 1) + 1;
2008 if (size <= sbi->s_flex_groups_allocated)
2009 return 0;
2010
2011 size = roundup_pow_of_two(size * sizeof(struct flex_groups));
2012 new_groups = ext4_kvzalloc(size, GFP_KERNEL);
2013 if (!new_groups) {
2014 ext4_msg(sb, KERN_ERR, "not enough memory for %d flex groups",
2015 size / (int) sizeof(struct flex_groups));
2016 return -ENOMEM;
2017 }
2018
2019 if (sbi->s_flex_groups) {
2020 memcpy(new_groups, sbi->s_flex_groups,
2021 (sbi->s_flex_groups_allocated *
2022 sizeof(struct flex_groups)));
2023 kvfree(sbi->s_flex_groups);
2024 }
2025 sbi->s_flex_groups = new_groups;
2026 sbi->s_flex_groups_allocated = size / sizeof(struct flex_groups);
2027 return 0;
2028 }
2029
2030 static int ext4_fill_flex_info(struct super_block *sb)
2031 {
2032 struct ext4_sb_info *sbi = EXT4_SB(sb);
2033 struct ext4_group_desc *gdp = NULL;
2034 ext4_group_t flex_group;
2035 int i, err;
2036
2037 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
2038 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) {
2039 sbi->s_log_groups_per_flex = 0;
2040 return 1;
2041 }
2042
2043 err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count);
2044 if (err)
2045 goto failed;
2046
2047 for (i = 0; i < sbi->s_groups_count; i++) {
2048 gdp = ext4_get_group_desc(sb, i, NULL);
2049
2050 flex_group = ext4_flex_group(sbi, i);
2051 atomic_add(ext4_free_inodes_count(sb, gdp),
2052 &sbi->s_flex_groups[flex_group].free_inodes);
2053 atomic64_add(ext4_free_group_clusters(sb, gdp),
2054 &sbi->s_flex_groups[flex_group].free_clusters);
2055 atomic_add(ext4_used_dirs_count(sb, gdp),
2056 &sbi->s_flex_groups[flex_group].used_dirs);
2057 }
2058
2059 return 1;
2060 failed:
2061 return 0;
2062 }
2063
2064 static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group,
2065 struct ext4_group_desc *gdp)
2066 {
2067 int offset;
2068 __u16 crc = 0;
2069 __le32 le_group = cpu_to_le32(block_group);
2070 struct ext4_sb_info *sbi = EXT4_SB(sb);
2071
2072 if (ext4_has_metadata_csum(sbi->s_sb)) {
2073 /* Use new metadata_csum algorithm */
2074 __le16 save_csum;
2075 __u32 csum32;
2076
2077 save_csum = gdp->bg_checksum;
2078 gdp->bg_checksum = 0;
2079 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group,
2080 sizeof(le_group));
2081 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp,
2082 sbi->s_desc_size);
2083 gdp->bg_checksum = save_csum;
2084
2085 crc = csum32 & 0xFFFF;
2086 goto out;
2087 }
2088
2089 /* old crc16 code */
2090 if (!ext4_has_feature_gdt_csum(sb))
2091 return 0;
2092
2093 offset = offsetof(struct ext4_group_desc, bg_checksum);
2094
2095 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
2096 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
2097 crc = crc16(crc, (__u8 *)gdp, offset);
2098 offset += sizeof(gdp->bg_checksum); /* skip checksum */
2099 /* for checksum of struct ext4_group_desc do the rest...*/
2100 if (ext4_has_feature_64bit(sb) &&
2101 offset < le16_to_cpu(sbi->s_es->s_desc_size))
2102 crc = crc16(crc, (__u8 *)gdp + offset,
2103 le16_to_cpu(sbi->s_es->s_desc_size) -
2104 offset);
2105
2106 out:
2107 return cpu_to_le16(crc);
2108 }
2109
2110 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group,
2111 struct ext4_group_desc *gdp)
2112 {
2113 if (ext4_has_group_desc_csum(sb) &&
2114 (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp)))
2115 return 0;
2116
2117 return 1;
2118 }
2119
2120 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group,
2121 struct ext4_group_desc *gdp)
2122 {
2123 if (!ext4_has_group_desc_csum(sb))
2124 return;
2125 gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp);
2126 }
2127
2128 /* Called at mount-time, super-block is locked */
2129 static int ext4_check_descriptors(struct super_block *sb,
2130 ext4_group_t *first_not_zeroed)
2131 {
2132 struct ext4_sb_info *sbi = EXT4_SB(sb);
2133 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
2134 ext4_fsblk_t last_block;
2135 ext4_fsblk_t block_bitmap;
2136 ext4_fsblk_t inode_bitmap;
2137 ext4_fsblk_t inode_table;
2138 int flexbg_flag = 0;
2139 ext4_group_t i, grp = sbi->s_groups_count;
2140
2141 if (ext4_has_feature_flex_bg(sb))
2142 flexbg_flag = 1;
2143
2144 ext4_debug("Checking group descriptors");
2145
2146 for (i = 0; i < sbi->s_groups_count; i++) {
2147 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
2148
2149 if (i == sbi->s_groups_count - 1 || flexbg_flag)
2150 last_block = ext4_blocks_count(sbi->s_es) - 1;
2151 else
2152 last_block = first_block +
2153 (EXT4_BLOCKS_PER_GROUP(sb) - 1);
2154
2155 if ((grp == sbi->s_groups_count) &&
2156 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2157 grp = i;
2158
2159 block_bitmap = ext4_block_bitmap(sb, gdp);
2160 if (block_bitmap < first_block || block_bitmap > last_block) {
2161 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2162 "Block bitmap for group %u not in group "
2163 "(block %llu)!", i, block_bitmap);
2164 return 0;
2165 }
2166 inode_bitmap = ext4_inode_bitmap(sb, gdp);
2167 if (inode_bitmap < first_block || inode_bitmap > last_block) {
2168 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2169 "Inode bitmap for group %u not in group "
2170 "(block %llu)!", i, inode_bitmap);
2171 return 0;
2172 }
2173 inode_table = ext4_inode_table(sb, gdp);
2174 if (inode_table < first_block ||
2175 inode_table + sbi->s_itb_per_group - 1 > last_block) {
2176 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2177 "Inode table for group %u not in group "
2178 "(block %llu)!", i, inode_table);
2179 return 0;
2180 }
2181 ext4_lock_group(sb, i);
2182 if (!ext4_group_desc_csum_verify(sb, i, gdp)) {
2183 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2184 "Checksum for group %u failed (%u!=%u)",
2185 i, le16_to_cpu(ext4_group_desc_csum(sb, i,
2186 gdp)), le16_to_cpu(gdp->bg_checksum));
2187 if (!(sb->s_flags & MS_RDONLY)) {
2188 ext4_unlock_group(sb, i);
2189 return 0;
2190 }
2191 }
2192 ext4_unlock_group(sb, i);
2193 if (!flexbg_flag)
2194 first_block += EXT4_BLOCKS_PER_GROUP(sb);
2195 }
2196 if (NULL != first_not_zeroed)
2197 *first_not_zeroed = grp;
2198 return 1;
2199 }
2200
2201 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at
2202 * the superblock) which were deleted from all directories, but held open by
2203 * a process at the time of a crash. We walk the list and try to delete these
2204 * inodes at recovery time (only with a read-write filesystem).
2205 *
2206 * In order to keep the orphan inode chain consistent during traversal (in
2207 * case of crash during recovery), we link each inode into the superblock
2208 * orphan list_head and handle it the same way as an inode deletion during
2209 * normal operation (which journals the operations for us).
2210 *
2211 * We only do an iget() and an iput() on each inode, which is very safe if we
2212 * accidentally point at an in-use or already deleted inode. The worst that
2213 * can happen in this case is that we get a "bit already cleared" message from
2214 * ext4_free_inode(). The only reason we would point at a wrong inode is if
2215 * e2fsck was run on this filesystem, and it must have already done the orphan
2216 * inode cleanup for us, so we can safely abort without any further action.
2217 */
2218 static void ext4_orphan_cleanup(struct super_block *sb,
2219 struct ext4_super_block *es)
2220 {
2221 unsigned int s_flags = sb->s_flags;
2222 int nr_orphans = 0, nr_truncates = 0;
2223 #ifdef CONFIG_QUOTA
2224 int i;
2225 #endif
2226 if (!es->s_last_orphan) {
2227 jbd_debug(4, "no orphan inodes to clean up\n");
2228 return;
2229 }
2230
2231 if (bdev_read_only(sb->s_bdev)) {
2232 ext4_msg(sb, KERN_ERR, "write access "
2233 "unavailable, skipping orphan cleanup");
2234 return;
2235 }
2236
2237 /* Check if feature set would not allow a r/w mount */
2238 if (!ext4_feature_set_ok(sb, 0)) {
2239 ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to "
2240 "unknown ROCOMPAT features");
2241 return;
2242 }
2243
2244 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2245 /* don't clear list on RO mount w/ errors */
2246 if (es->s_last_orphan && !(s_flags & MS_RDONLY)) {
2247 ext4_msg(sb, KERN_INFO, "Errors on filesystem, "
2248 "clearing orphan list.\n");
2249 es->s_last_orphan = 0;
2250 }
2251 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2252 return;
2253 }
2254
2255 if (s_flags & MS_RDONLY) {
2256 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs");
2257 sb->s_flags &= ~MS_RDONLY;
2258 }
2259 #ifdef CONFIG_QUOTA
2260 /* Needed for iput() to work correctly and not trash data */
2261 sb->s_flags |= MS_ACTIVE;
2262 /* Turn on quotas so that they are updated correctly */
2263 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2264 if (EXT4_SB(sb)->s_qf_names[i]) {
2265 int ret = ext4_quota_on_mount(sb, i);
2266 if (ret < 0)
2267 ext4_msg(sb, KERN_ERR,
2268 "Cannot turn on journaled "
2269 "quota: error %d", ret);
2270 }
2271 }
2272 #endif
2273
2274 while (es->s_last_orphan) {
2275 struct inode *inode;
2276
2277 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan));
2278 if (IS_ERR(inode)) {
2279 es->s_last_orphan = 0;
2280 break;
2281 }
2282
2283 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan);
2284 dquot_initialize(inode);
2285 if (inode->i_nlink) {
2286 if (test_opt(sb, DEBUG))
2287 ext4_msg(sb, KERN_DEBUG,
2288 "%s: truncating inode %lu to %lld bytes",
2289 __func__, inode->i_ino, inode->i_size);
2290 jbd_debug(2, "truncating inode %lu to %lld bytes\n",
2291 inode->i_ino, inode->i_size);
2292 inode_lock(inode);
2293 truncate_inode_pages(inode->i_mapping, inode->i_size);
2294 ext4_truncate(inode);
2295 inode_unlock(inode);
2296 nr_truncates++;
2297 } else {
2298 if (test_opt(sb, DEBUG))
2299 ext4_msg(sb, KERN_DEBUG,
2300 "%s: deleting unreferenced inode %lu",
2301 __func__, inode->i_ino);
2302 jbd_debug(2, "deleting unreferenced inode %lu\n",
2303 inode->i_ino);
2304 nr_orphans++;
2305 }
2306 iput(inode); /* The delete magic happens here! */
2307 }
2308
2309 #define PLURAL(x) (x), ((x) == 1) ? "" : "s"
2310
2311 if (nr_orphans)
2312 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted",
2313 PLURAL(nr_orphans));
2314 if (nr_truncates)
2315 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up",
2316 PLURAL(nr_truncates));
2317 #ifdef CONFIG_QUOTA
2318 /* Turn quotas off */
2319 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2320 if (sb_dqopt(sb)->files[i])
2321 dquot_quota_off(sb, i);
2322 }
2323 #endif
2324 sb->s_flags = s_flags; /* Restore MS_RDONLY status */
2325 }
2326
2327 /*
2328 * Maximal extent format file size.
2329 * Resulting logical blkno at s_maxbytes must fit in our on-disk
2330 * extent format containers, within a sector_t, and within i_blocks
2331 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units,
2332 * so that won't be a limiting factor.
2333 *
2334 * However there is other limiting factor. We do store extents in the form
2335 * of starting block and length, hence the resulting length of the extent
2336 * covering maximum file size must fit into on-disk format containers as
2337 * well. Given that length is always by 1 unit bigger than max unit (because
2338 * we count 0 as well) we have to lower the s_maxbytes by one fs block.
2339 *
2340 * Note, this does *not* consider any metadata overhead for vfs i_blocks.
2341 */
2342 static loff_t ext4_max_size(int blkbits, int has_huge_files)
2343 {
2344 loff_t res;
2345 loff_t upper_limit = MAX_LFS_FILESIZE;
2346
2347 /* small i_blocks in vfs inode? */
2348 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2349 /*
2350 * CONFIG_LBDAF is not enabled implies the inode
2351 * i_block represent total blocks in 512 bytes
2352 * 32 == size of vfs inode i_blocks * 8
2353 */
2354 upper_limit = (1LL << 32) - 1;
2355
2356 /* total blocks in file system block size */
2357 upper_limit >>= (blkbits - 9);
2358 upper_limit <<= blkbits;
2359 }
2360
2361 /*
2362 * 32-bit extent-start container, ee_block. We lower the maxbytes
2363 * by one fs block, so ee_len can cover the extent of maximum file
2364 * size
2365 */
2366 res = (1LL << 32) - 1;
2367 res <<= blkbits;
2368
2369 /* Sanity check against vm- & vfs- imposed limits */
2370 if (res > upper_limit)
2371 res = upper_limit;
2372
2373 return res;
2374 }
2375
2376 /*
2377 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect
2378 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
2379 * We need to be 1 filesystem block less than the 2^48 sector limit.
2380 */
2381 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
2382 {
2383 loff_t res = EXT4_NDIR_BLOCKS;
2384 int meta_blocks;
2385 loff_t upper_limit;
2386 /* This is calculated to be the largest file size for a dense, block
2387 * mapped file such that the file's total number of 512-byte sectors,
2388 * including data and all indirect blocks, does not exceed (2^48 - 1).
2389 *
2390 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
2391 * number of 512-byte sectors of the file.
2392 */
2393
2394 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2395 /*
2396 * !has_huge_files or CONFIG_LBDAF not enabled implies that
2397 * the inode i_block field represents total file blocks in
2398 * 2^32 512-byte sectors == size of vfs inode i_blocks * 8
2399 */
2400 upper_limit = (1LL << 32) - 1;
2401
2402 /* total blocks in file system block size */
2403 upper_limit >>= (bits - 9);
2404
2405 } else {
2406 /*
2407 * We use 48 bit ext4_inode i_blocks
2408 * With EXT4_HUGE_FILE_FL set the i_blocks
2409 * represent total number of blocks in
2410 * file system block size
2411 */
2412 upper_limit = (1LL << 48) - 1;
2413
2414 }
2415
2416 /* indirect blocks */
2417 meta_blocks = 1;
2418 /* double indirect blocks */
2419 meta_blocks += 1 + (1LL << (bits-2));
2420 /* tripple indirect blocks */
2421 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2)));
2422
2423 upper_limit -= meta_blocks;
2424 upper_limit <<= bits;
2425
2426 res += 1LL << (bits-2);
2427 res += 1LL << (2*(bits-2));
2428 res += 1LL << (3*(bits-2));
2429 res <<= bits;
2430 if (res > upper_limit)
2431 res = upper_limit;
2432
2433 if (res > MAX_LFS_FILESIZE)
2434 res = MAX_LFS_FILESIZE;
2435
2436 return res;
2437 }
2438
2439 static ext4_fsblk_t descriptor_loc(struct super_block *sb,
2440 ext4_fsblk_t logical_sb_block, int nr)
2441 {
2442 struct ext4_sb_info *sbi = EXT4_SB(sb);
2443 ext4_group_t bg, first_meta_bg;
2444 int has_super = 0;
2445
2446 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
2447
2448 if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg)
2449 return logical_sb_block + nr + 1;
2450 bg = sbi->s_desc_per_block * nr;
2451 if (ext4_bg_has_super(sb, bg))
2452 has_super = 1;
2453
2454 /*
2455 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at
2456 * block 2, not 1. If s_first_data_block == 0 (bigalloc is enabled
2457 * on modern mke2fs or blksize > 1k on older mke2fs) then we must
2458 * compensate.
2459 */
2460 if (sb->s_blocksize == 1024 && nr == 0 &&
2461 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block) == 0)
2462 has_super++;
2463
2464 return (has_super + ext4_group_first_block_no(sb, bg));
2465 }
2466
2467 /**
2468 * ext4_get_stripe_size: Get the stripe size.
2469 * @sbi: In memory super block info
2470 *
2471 * If we have specified it via mount option, then
2472 * use the mount option value. If the value specified at mount time is
2473 * greater than the blocks per group use the super block value.
2474 * If the super block value is greater than blocks per group return 0.
2475 * Allocator needs it be less than blocks per group.
2476 *
2477 */
2478 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
2479 {
2480 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
2481 unsigned long stripe_width =
2482 le32_to_cpu(sbi->s_es->s_raid_stripe_width);
2483 int ret;
2484
2485 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
2486 ret = sbi->s_stripe;
2487 else if (stripe_width <= sbi->s_blocks_per_group)
2488 ret = stripe_width;
2489 else if (stride <= sbi->s_blocks_per_group)
2490 ret = stride;
2491 else
2492 ret = 0;
2493
2494 /*
2495 * If the stripe width is 1, this makes no sense and
2496 * we set it to 0 to turn off stripe handling code.
2497 */
2498 if (ret <= 1)
2499 ret = 0;
2500
2501 return ret;
2502 }
2503
2504 /*
2505 * Check whether this filesystem can be mounted based on
2506 * the features present and the RDONLY/RDWR mount requested.
2507 * Returns 1 if this filesystem can be mounted as requested,
2508 * 0 if it cannot be.
2509 */
2510 static int ext4_feature_set_ok(struct super_block *sb, int readonly)
2511 {
2512 if (ext4_has_unknown_ext4_incompat_features(sb)) {
2513 ext4_msg(sb, KERN_ERR,
2514 "Couldn't mount because of "
2515 "unsupported optional features (%x)",
2516 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
2517 ~EXT4_FEATURE_INCOMPAT_SUPP));
2518 return 0;
2519 }
2520
2521 if (readonly)
2522 return 1;
2523
2524 if (ext4_has_feature_readonly(sb)) {
2525 ext4_msg(sb, KERN_INFO, "filesystem is read-only");
2526 sb->s_flags |= MS_RDONLY;
2527 return 1;
2528 }
2529
2530 /* Check that feature set is OK for a read-write mount */
2531 if (ext4_has_unknown_ext4_ro_compat_features(sb)) {
2532 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
2533 "unsupported optional features (%x)",
2534 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
2535 ~EXT4_FEATURE_RO_COMPAT_SUPP));
2536 return 0;
2537 }
2538 /*
2539 * Large file size enabled file system can only be mounted
2540 * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF
2541 */
2542 if (ext4_has_feature_huge_file(sb)) {
2543 if (sizeof(blkcnt_t) < sizeof(u64)) {
2544 ext4_msg(sb, KERN_ERR, "Filesystem with huge files "
2545 "cannot be mounted RDWR without "
2546 "CONFIG_LBDAF");
2547 return 0;
2548 }
2549 }
2550 if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) {
2551 ext4_msg(sb, KERN_ERR,
2552 "Can't support bigalloc feature without "
2553 "extents feature\n");
2554 return 0;
2555 }
2556
2557 #ifndef CONFIG_QUOTA
2558 if (ext4_has_feature_quota(sb) && !readonly) {
2559 ext4_msg(sb, KERN_ERR,
2560 "Filesystem with quota feature cannot be mounted RDWR "
2561 "without CONFIG_QUOTA");
2562 return 0;
2563 }
2564 if (ext4_has_feature_project(sb) && !readonly) {
2565 ext4_msg(sb, KERN_ERR,
2566 "Filesystem with project quota feature cannot be mounted RDWR "
2567 "without CONFIG_QUOTA");
2568 return 0;
2569 }
2570 #endif /* CONFIG_QUOTA */
2571 return 1;
2572 }
2573
2574 /*
2575 * This function is called once a day if we have errors logged
2576 * on the file system
2577 */
2578 static void print_daily_error_info(unsigned long arg)
2579 {
2580 struct super_block *sb = (struct super_block *) arg;
2581 struct ext4_sb_info *sbi;
2582 struct ext4_super_block *es;
2583
2584 sbi = EXT4_SB(sb);
2585 es = sbi->s_es;
2586
2587 if (es->s_error_count)
2588 /* fsck newer than v1.41.13 is needed to clean this condition. */
2589 ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u",
2590 le32_to_cpu(es->s_error_count));
2591 if (es->s_first_error_time) {
2592 printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %u: %.*s:%d",
2593 sb->s_id, le32_to_cpu(es->s_first_error_time),
2594 (int) sizeof(es->s_first_error_func),
2595 es->s_first_error_func,
2596 le32_to_cpu(es->s_first_error_line));
2597 if (es->s_first_error_ino)
2598 printk(": inode %u",
2599 le32_to_cpu(es->s_first_error_ino));
2600 if (es->s_first_error_block)
2601 printk(": block %llu", (unsigned long long)
2602 le64_to_cpu(es->s_first_error_block));
2603 printk("\n");
2604 }
2605 if (es->s_last_error_time) {
2606 printk(KERN_NOTICE "EXT4-fs (%s): last error at time %u: %.*s:%d",
2607 sb->s_id, le32_to_cpu(es->s_last_error_time),
2608 (int) sizeof(es->s_last_error_func),
2609 es->s_last_error_func,
2610 le32_to_cpu(es->s_last_error_line));
2611 if (es->s_last_error_ino)
2612 printk(": inode %u",
2613 le32_to_cpu(es->s_last_error_ino));
2614 if (es->s_last_error_block)
2615 printk(": block %llu", (unsigned long long)
2616 le64_to_cpu(es->s_last_error_block));
2617 printk("\n");
2618 }
2619 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */
2620 }
2621
2622 /* Find next suitable group and run ext4_init_inode_table */
2623 static int ext4_run_li_request(struct ext4_li_request *elr)
2624 {
2625 struct ext4_group_desc *gdp = NULL;
2626 ext4_group_t group, ngroups;
2627 struct super_block *sb;
2628 unsigned long timeout = 0;
2629 int ret = 0;
2630
2631 sb = elr->lr_super;
2632 ngroups = EXT4_SB(sb)->s_groups_count;
2633
2634 sb_start_write(sb);
2635 for (group = elr->lr_next_group; group < ngroups; group++) {
2636 gdp = ext4_get_group_desc(sb, group, NULL);
2637 if (!gdp) {
2638 ret = 1;
2639 break;
2640 }
2641
2642 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2643 break;
2644 }
2645
2646 if (group >= ngroups)
2647 ret = 1;
2648
2649 if (!ret) {
2650 timeout = jiffies;
2651 ret = ext4_init_inode_table(sb, group,
2652 elr->lr_timeout ? 0 : 1);
2653 if (elr->lr_timeout == 0) {
2654 timeout = (jiffies - timeout) *
2655 elr->lr_sbi->s_li_wait_mult;
2656 elr->lr_timeout = timeout;
2657 }
2658 elr->lr_next_sched = jiffies + elr->lr_timeout;
2659 elr->lr_next_group = group + 1;
2660 }
2661 sb_end_write(sb);
2662
2663 return ret;
2664 }
2665
2666 /*
2667 * Remove lr_request from the list_request and free the
2668 * request structure. Should be called with li_list_mtx held
2669 */
2670 static void ext4_remove_li_request(struct ext4_li_request *elr)
2671 {
2672 struct ext4_sb_info *sbi;
2673
2674 if (!elr)
2675 return;
2676
2677 sbi = elr->lr_sbi;
2678
2679 list_del(&elr->lr_request);
2680 sbi->s_li_request = NULL;
2681 kfree(elr);
2682 }
2683
2684 static void ext4_unregister_li_request(struct super_block *sb)
2685 {
2686 mutex_lock(&ext4_li_mtx);
2687 if (!ext4_li_info) {
2688 mutex_unlock(&ext4_li_mtx);
2689 return;
2690 }
2691
2692 mutex_lock(&ext4_li_info->li_list_mtx);
2693 ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
2694 mutex_unlock(&ext4_li_info->li_list_mtx);
2695 mutex_unlock(&ext4_li_mtx);
2696 }
2697
2698 static struct task_struct *ext4_lazyinit_task;
2699
2700 /*
2701 * This is the function where ext4lazyinit thread lives. It walks
2702 * through the request list searching for next scheduled filesystem.
2703 * When such a fs is found, run the lazy initialization request
2704 * (ext4_rn_li_request) and keep track of the time spend in this
2705 * function. Based on that time we compute next schedule time of
2706 * the request. When walking through the list is complete, compute
2707 * next waking time and put itself into sleep.
2708 */
2709 static int ext4_lazyinit_thread(void *arg)
2710 {
2711 struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg;
2712 struct list_head *pos, *n;
2713 struct ext4_li_request *elr;
2714 unsigned long next_wakeup, cur;
2715
2716 BUG_ON(NULL == eli);
2717
2718 cont_thread:
2719 while (true) {
2720 next_wakeup = MAX_JIFFY_OFFSET;
2721
2722 mutex_lock(&eli->li_list_mtx);
2723 if (list_empty(&eli->li_request_list)) {
2724 mutex_unlock(&eli->li_list_mtx);
2725 goto exit_thread;
2726 }
2727
2728 list_for_each_safe(pos, n, &eli->li_request_list) {
2729 elr = list_entry(pos, struct ext4_li_request,
2730 lr_request);
2731
2732 if (time_after_eq(jiffies, elr->lr_next_sched)) {
2733 if (ext4_run_li_request(elr) != 0) {
2734 /* error, remove the lazy_init job */
2735 ext4_remove_li_request(elr);
2736 continue;
2737 }
2738 }
2739
2740 if (time_before(elr->lr_next_sched, next_wakeup))
2741 next_wakeup = elr->lr_next_sched;
2742 }
2743 mutex_unlock(&eli->li_list_mtx);
2744
2745 try_to_freeze();
2746
2747 cur = jiffies;
2748 if ((time_after_eq(cur, next_wakeup)) ||
2749 (MAX_JIFFY_OFFSET == next_wakeup)) {
2750 cond_resched();
2751 continue;
2752 }
2753
2754 schedule_timeout_interruptible(next_wakeup - cur);
2755
2756 if (kthread_should_stop()) {
2757 ext4_clear_request_list();
2758 goto exit_thread;
2759 }
2760 }
2761
2762 exit_thread:
2763 /*
2764 * It looks like the request list is empty, but we need
2765 * to check it under the li_list_mtx lock, to prevent any
2766 * additions into it, and of course we should lock ext4_li_mtx
2767 * to atomically free the list and ext4_li_info, because at
2768 * this point another ext4 filesystem could be registering
2769 * new one.
2770 */
2771 mutex_lock(&ext4_li_mtx);
2772 mutex_lock(&eli->li_list_mtx);
2773 if (!list_empty(&eli->li_request_list)) {
2774 mutex_unlock(&eli->li_list_mtx);
2775 mutex_unlock(&ext4_li_mtx);
2776 goto cont_thread;
2777 }
2778 mutex_unlock(&eli->li_list_mtx);
2779 kfree(ext4_li_info);
2780 ext4_li_info = NULL;
2781 mutex_unlock(&ext4_li_mtx);
2782
2783 return 0;
2784 }
2785
2786 static void ext4_clear_request_list(void)
2787 {
2788 struct list_head *pos, *n;
2789 struct ext4_li_request *elr;
2790
2791 mutex_lock(&ext4_li_info->li_list_mtx);
2792 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
2793 elr = list_entry(pos, struct ext4_li_request,
2794 lr_request);
2795 ext4_remove_li_request(elr);
2796 }
2797 mutex_unlock(&ext4_li_info->li_list_mtx);
2798 }
2799
2800 static int ext4_run_lazyinit_thread(void)
2801 {
2802 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
2803 ext4_li_info, "ext4lazyinit");
2804 if (IS_ERR(ext4_lazyinit_task)) {
2805 int err = PTR_ERR(ext4_lazyinit_task);
2806 ext4_clear_request_list();
2807 kfree(ext4_li_info);
2808 ext4_li_info = NULL;
2809 printk(KERN_CRIT "EXT4-fs: error %d creating inode table "
2810 "initialization thread\n",
2811 err);
2812 return err;
2813 }
2814 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
2815 return 0;
2816 }
2817
2818 /*
2819 * Check whether it make sense to run itable init. thread or not.
2820 * If there is at least one uninitialized inode table, return
2821 * corresponding group number, else the loop goes through all
2822 * groups and return total number of groups.
2823 */
2824 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
2825 {
2826 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
2827 struct ext4_group_desc *gdp = NULL;
2828
2829 for (group = 0; group < ngroups; group++) {
2830 gdp = ext4_get_group_desc(sb, group, NULL);
2831 if (!gdp)
2832 continue;
2833
2834 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2835 break;
2836 }
2837
2838 return group;
2839 }
2840
2841 static int ext4_li_info_new(void)
2842 {
2843 struct ext4_lazy_init *eli = NULL;
2844
2845 eli = kzalloc(sizeof(*eli), GFP_KERNEL);
2846 if (!eli)
2847 return -ENOMEM;
2848
2849 INIT_LIST_HEAD(&eli->li_request_list);
2850 mutex_init(&eli->li_list_mtx);
2851
2852 eli->li_state |= EXT4_LAZYINIT_QUIT;
2853
2854 ext4_li_info = eli;
2855
2856 return 0;
2857 }
2858
2859 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
2860 ext4_group_t start)
2861 {
2862 struct ext4_sb_info *sbi = EXT4_SB(sb);
2863 struct ext4_li_request *elr;
2864
2865 elr = kzalloc(sizeof(*elr), GFP_KERNEL);
2866 if (!elr)
2867 return NULL;
2868
2869 elr->lr_super = sb;
2870 elr->lr_sbi = sbi;
2871 elr->lr_next_group = start;
2872
2873 /*
2874 * Randomize first schedule time of the request to
2875 * spread the inode table initialization requests
2876 * better.
2877 */
2878 elr->lr_next_sched = jiffies + (prandom_u32() %
2879 (EXT4_DEF_LI_MAX_START_DELAY * HZ));
2880 return elr;
2881 }
2882
2883 int ext4_register_li_request(struct super_block *sb,
2884 ext4_group_t first_not_zeroed)
2885 {
2886 struct ext4_sb_info *sbi = EXT4_SB(sb);
2887 struct ext4_li_request *elr = NULL;
2888 ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count;
2889 int ret = 0;
2890
2891 mutex_lock(&ext4_li_mtx);
2892 if (sbi->s_li_request != NULL) {
2893 /*
2894 * Reset timeout so it can be computed again, because
2895 * s_li_wait_mult might have changed.
2896 */
2897 sbi->s_li_request->lr_timeout = 0;
2898 goto out;
2899 }
2900
2901 if (first_not_zeroed == ngroups ||
2902 (sb->s_flags & MS_RDONLY) ||
2903 !test_opt(sb, INIT_INODE_TABLE))
2904 goto out;
2905
2906 elr = ext4_li_request_new(sb, first_not_zeroed);
2907 if (!elr) {
2908 ret = -ENOMEM;
2909 goto out;
2910 }
2911
2912 if (NULL == ext4_li_info) {
2913 ret = ext4_li_info_new();
2914 if (ret)
2915 goto out;
2916 }
2917
2918 mutex_lock(&ext4_li_info->li_list_mtx);
2919 list_add(&elr->lr_request, &ext4_li_info->li_request_list);
2920 mutex_unlock(&ext4_li_info->li_list_mtx);
2921
2922 sbi->s_li_request = elr;
2923 /*
2924 * set elr to NULL here since it has been inserted to
2925 * the request_list and the removal and free of it is
2926 * handled by ext4_clear_request_list from now on.
2927 */
2928 elr = NULL;
2929
2930 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
2931 ret = ext4_run_lazyinit_thread();
2932 if (ret)
2933 goto out;
2934 }
2935 out:
2936 mutex_unlock(&ext4_li_mtx);
2937 if (ret)
2938 kfree(elr);
2939 return ret;
2940 }
2941
2942 /*
2943 * We do not need to lock anything since this is called on
2944 * module unload.
2945 */
2946 static void ext4_destroy_lazyinit_thread(void)
2947 {
2948 /*
2949 * If thread exited earlier
2950 * there's nothing to be done.
2951 */
2952 if (!ext4_li_info || !ext4_lazyinit_task)
2953 return;
2954
2955 kthread_stop(ext4_lazyinit_task);
2956 }
2957
2958 static int set_journal_csum_feature_set(struct super_block *sb)
2959 {
2960 int ret = 1;
2961 int compat, incompat;
2962 struct ext4_sb_info *sbi = EXT4_SB(sb);
2963
2964 if (ext4_has_metadata_csum(sb)) {
2965 /* journal checksum v3 */
2966 compat = 0;
2967 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3;
2968 } else {
2969 /* journal checksum v1 */
2970 compat = JBD2_FEATURE_COMPAT_CHECKSUM;
2971 incompat = 0;
2972 }
2973
2974 jbd2_journal_clear_features(sbi->s_journal,
2975 JBD2_FEATURE_COMPAT_CHECKSUM, 0,
2976 JBD2_FEATURE_INCOMPAT_CSUM_V3 |
2977 JBD2_FEATURE_INCOMPAT_CSUM_V2);
2978 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
2979 ret = jbd2_journal_set_features(sbi->s_journal,
2980 compat, 0,
2981 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
2982 incompat);
2983 } else if (test_opt(sb, JOURNAL_CHECKSUM)) {
2984 ret = jbd2_journal_set_features(sbi->s_journal,
2985 compat, 0,
2986 incompat);
2987 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
2988 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
2989 } else {
2990 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
2991 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
2992 }
2993
2994 return ret;
2995 }
2996
2997 /*
2998 * Note: calculating the overhead so we can be compatible with
2999 * historical BSD practice is quite difficult in the face of
3000 * clusters/bigalloc. This is because multiple metadata blocks from
3001 * different block group can end up in the same allocation cluster.
3002 * Calculating the exact overhead in the face of clustered allocation
3003 * requires either O(all block bitmaps) in memory or O(number of block
3004 * groups**2) in time. We will still calculate the superblock for
3005 * older file systems --- and if we come across with a bigalloc file
3006 * system with zero in s_overhead_clusters the estimate will be close to
3007 * correct especially for very large cluster sizes --- but for newer
3008 * file systems, it's better to calculate this figure once at mkfs
3009 * time, and store it in the superblock. If the superblock value is
3010 * present (even for non-bigalloc file systems), we will use it.
3011 */
3012 static int count_overhead(struct super_block *sb, ext4_group_t grp,
3013 char *buf)
3014 {
3015 struct ext4_sb_info *sbi = EXT4_SB(sb);
3016 struct ext4_group_desc *gdp;
3017 ext4_fsblk_t first_block, last_block, b;
3018 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3019 int s, j, count = 0;
3020
3021 if (!ext4_has_feature_bigalloc(sb))
3022 return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) +
3023 sbi->s_itb_per_group + 2);
3024
3025 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) +
3026 (grp * EXT4_BLOCKS_PER_GROUP(sb));
3027 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1;
3028 for (i = 0; i < ngroups; i++) {
3029 gdp = ext4_get_group_desc(sb, i, NULL);
3030 b = ext4_block_bitmap(sb, gdp);
3031 if (b >= first_block && b <= last_block) {
3032 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3033 count++;
3034 }
3035 b = ext4_inode_bitmap(sb, gdp);
3036 if (b >= first_block && b <= last_block) {
3037 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3038 count++;
3039 }
3040 b = ext4_inode_table(sb, gdp);
3041 if (b >= first_block && b + sbi->s_itb_per_group <= last_block)
3042 for (j = 0; j < sbi->s_itb_per_group; j++, b++) {
3043 int c = EXT4_B2C(sbi, b - first_block);
3044 ext4_set_bit(c, buf);
3045 count++;
3046 }
3047 if (i != grp)
3048 continue;
3049 s = 0;
3050 if (ext4_bg_has_super(sb, grp)) {
3051 ext4_set_bit(s++, buf);
3052 count++;
3053 }
3054 for (j = ext4_bg_num_gdb(sb, grp); j > 0; j--) {
3055 ext4_set_bit(EXT4_B2C(sbi, s++), buf);
3056 count++;
3057 }
3058 }
3059 if (!count)
3060 return 0;
3061 return EXT4_CLUSTERS_PER_GROUP(sb) -
3062 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8);
3063 }
3064
3065 /*
3066 * Compute the overhead and stash it in sbi->s_overhead
3067 */
3068 int ext4_calculate_overhead(struct super_block *sb)
3069 {
3070 struct ext4_sb_info *sbi = EXT4_SB(sb);
3071 struct ext4_super_block *es = sbi->s_es;
3072 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3073 ext4_fsblk_t overhead = 0;
3074 char *buf = (char *) get_zeroed_page(GFP_NOFS);
3075
3076 if (!buf)
3077 return -ENOMEM;
3078
3079 /*
3080 * Compute the overhead (FS structures). This is constant
3081 * for a given filesystem unless the number of block groups
3082 * changes so we cache the previous value until it does.
3083 */
3084
3085 /*
3086 * All of the blocks before first_data_block are overhead
3087 */
3088 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
3089
3090 /*
3091 * Add the overhead found in each block group
3092 */
3093 for (i = 0; i < ngroups; i++) {
3094 int blks;
3095
3096 blks = count_overhead(sb, i, buf);
3097 overhead += blks;
3098 if (blks)
3099 memset(buf, 0, PAGE_SIZE);
3100 cond_resched();
3101 }
3102 /* Add the internal journal blocks as well */
3103 if (sbi->s_journal && !sbi->journal_bdev)
3104 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_maxlen);
3105
3106 sbi->s_overhead = overhead;
3107 smp_wmb();
3108 free_page((unsigned long) buf);
3109 return 0;
3110 }
3111
3112 static void ext4_set_resv_clusters(struct super_block *sb)
3113 {
3114 ext4_fsblk_t resv_clusters;
3115 struct ext4_sb_info *sbi = EXT4_SB(sb);
3116
3117 /*
3118 * There's no need to reserve anything when we aren't using extents.
3119 * The space estimates are exact, there are no unwritten extents,
3120 * hole punching doesn't need new metadata... This is needed especially
3121 * to keep ext2/3 backward compatibility.
3122 */
3123 if (!ext4_has_feature_extents(sb))
3124 return;
3125 /*
3126 * By default we reserve 2% or 4096 clusters, whichever is smaller.
3127 * This should cover the situations where we can not afford to run
3128 * out of space like for example punch hole, or converting
3129 * unwritten extents in delalloc path. In most cases such
3130 * allocation would require 1, or 2 blocks, higher numbers are
3131 * very rare.
3132 */
3133 resv_clusters = (ext4_blocks_count(sbi->s_es) >>
3134 sbi->s_cluster_bits);
3135
3136 do_div(resv_clusters, 50);
3137 resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096);
3138
3139 atomic64_set(&sbi->s_resv_clusters, resv_clusters);
3140 }
3141
3142 static int ext4_fill_super(struct super_block *sb, void *data, int silent)
3143 {
3144 char *orig_data = kstrdup(data, GFP_KERNEL);
3145 struct buffer_head *bh;
3146 struct ext4_super_block *es = NULL;
3147 struct ext4_sb_info *sbi;
3148 ext4_fsblk_t block;
3149 ext4_fsblk_t sb_block = get_sb_block(&data);
3150 ext4_fsblk_t logical_sb_block;
3151 unsigned long offset = 0;
3152 unsigned long journal_devnum = 0;
3153 unsigned long def_mount_opts;
3154 struct inode *root;
3155 const char *descr;
3156 int ret = -ENOMEM;
3157 int blocksize, clustersize;
3158 unsigned int db_count;
3159 unsigned int i;
3160 int needs_recovery, has_huge_files, has_bigalloc;
3161 __u64 blocks_count;
3162 int err = 0;
3163 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
3164 ext4_group_t first_not_zeroed;
3165
3166 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
3167 if (!sbi)
3168 goto out_free_orig;
3169
3170 sbi->s_blockgroup_lock =
3171 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
3172 if (!sbi->s_blockgroup_lock) {
3173 kfree(sbi);
3174 goto out_free_orig;
3175 }
3176 sb->s_fs_info = sbi;
3177 sbi->s_sb = sb;
3178 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
3179 sbi->s_sb_block = sb_block;
3180 if (sb->s_bdev->bd_part)
3181 sbi->s_sectors_written_start =
3182 part_stat_read(sb->s_bdev->bd_part, sectors[1]);
3183
3184 /* Cleanup superblock name */
3185 strreplace(sb->s_id, '/', '!');
3186
3187 /* -EINVAL is default */
3188 ret = -EINVAL;
3189 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
3190 if (!blocksize) {
3191 ext4_msg(sb, KERN_ERR, "unable to set blocksize");
3192 goto out_fail;
3193 }
3194
3195 /*
3196 * The ext4 superblock will not be buffer aligned for other than 1kB
3197 * block sizes. We need to calculate the offset from buffer start.
3198 */
3199 if (blocksize != EXT4_MIN_BLOCK_SIZE) {
3200 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3201 offset = do_div(logical_sb_block, blocksize);
3202 } else {
3203 logical_sb_block = sb_block;
3204 }
3205
3206 if (!(bh = sb_bread_unmovable(sb, logical_sb_block))) {
3207 ext4_msg(sb, KERN_ERR, "unable to read superblock");
3208 goto out_fail;
3209 }
3210 /*
3211 * Note: s_es must be initialized as soon as possible because
3212 * some ext4 macro-instructions depend on its value
3213 */
3214 es = (struct ext4_super_block *) (bh->b_data + offset);
3215 sbi->s_es = es;
3216 sb->s_magic = le16_to_cpu(es->s_magic);
3217 if (sb->s_magic != EXT4_SUPER_MAGIC)
3218 goto cantfind_ext4;
3219 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
3220
3221 /* Warn if metadata_csum and gdt_csum are both set. */
3222 if (ext4_has_feature_metadata_csum(sb) &&
3223 ext4_has_feature_gdt_csum(sb))
3224 ext4_warning(sb, "metadata_csum and uninit_bg are "
3225 "redundant flags; please run fsck.");
3226
3227 /* Check for a known checksum algorithm */
3228 if (!ext4_verify_csum_type(sb, es)) {
3229 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3230 "unknown checksum algorithm.");
3231 silent = 1;
3232 goto cantfind_ext4;
3233 }
3234
3235 /* Load the checksum driver */
3236 if (ext4_has_feature_metadata_csum(sb)) {
3237 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
3238 if (IS_ERR(sbi->s_chksum_driver)) {
3239 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver.");
3240 ret = PTR_ERR(sbi->s_chksum_driver);
3241 sbi->s_chksum_driver = NULL;
3242 goto failed_mount;
3243 }
3244 }
3245
3246 /* Check superblock checksum */
3247 if (!ext4_superblock_csum_verify(sb, es)) {
3248 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3249 "invalid superblock checksum. Run e2fsck?");
3250 silent = 1;
3251 ret = -EFSBADCRC;
3252 goto cantfind_ext4;
3253 }
3254
3255 /* Precompute checksum seed for all metadata */
3256 if (ext4_has_feature_csum_seed(sb))
3257 sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed);
3258 else if (ext4_has_metadata_csum(sb))
3259 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid,
3260 sizeof(es->s_uuid));
3261
3262 /* Set defaults before we parse the mount options */
3263 def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
3264 set_opt(sb, INIT_INODE_TABLE);
3265 if (def_mount_opts & EXT4_DEFM_DEBUG)
3266 set_opt(sb, DEBUG);
3267 if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
3268 set_opt(sb, GRPID);
3269 if (def_mount_opts & EXT4_DEFM_UID16)
3270 set_opt(sb, NO_UID32);
3271 /* xattr user namespace & acls are now defaulted on */
3272 set_opt(sb, XATTR_USER);
3273 #ifdef CONFIG_EXT4_FS_POSIX_ACL
3274 set_opt(sb, POSIX_ACL);
3275 #endif
3276 /* don't forget to enable journal_csum when metadata_csum is enabled. */
3277 if (ext4_has_metadata_csum(sb))
3278 set_opt(sb, JOURNAL_CHECKSUM);
3279
3280 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
3281 set_opt(sb, JOURNAL_DATA);
3282 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
3283 set_opt(sb, ORDERED_DATA);
3284 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
3285 set_opt(sb, WRITEBACK_DATA);
3286
3287 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC)
3288 set_opt(sb, ERRORS_PANIC);
3289 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE)
3290 set_opt(sb, ERRORS_CONT);
3291 else
3292 set_opt(sb, ERRORS_RO);
3293 /* block_validity enabled by default; disable with noblock_validity */
3294 set_opt(sb, BLOCK_VALIDITY);
3295 if (def_mount_opts & EXT4_DEFM_DISCARD)
3296 set_opt(sb, DISCARD);
3297
3298 sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid));
3299 sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid));
3300 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
3301 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
3302 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
3303
3304 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
3305 set_opt(sb, BARRIER);
3306
3307 /*
3308 * enable delayed allocation by default
3309 * Use -o nodelalloc to turn it off
3310 */
3311 if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) &&
3312 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
3313 set_opt(sb, DELALLOC);
3314
3315 /*
3316 * set default s_li_wait_mult for lazyinit, for the case there is
3317 * no mount option specified.
3318 */
3319 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
3320
3321 if (!parse_options((char *) sbi->s_es->s_mount_opts, sb,
3322 &journal_devnum, &journal_ioprio, 0)) {
3323 ext4_msg(sb, KERN_WARNING,
3324 "failed to parse options in superblock: %s",
3325 sbi->s_es->s_mount_opts);
3326 }
3327 sbi->s_def_mount_opt = sbi->s_mount_opt;
3328 if (!parse_options((char *) data, sb, &journal_devnum,
3329 &journal_ioprio, 0))
3330 goto failed_mount;
3331
3332 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
3333 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting "
3334 "with data=journal disables delayed "
3335 "allocation and O_DIRECT support!\n");
3336 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
3337 ext4_msg(sb, KERN_ERR, "can't mount with "
3338 "both data=journal and delalloc");
3339 goto failed_mount;
3340 }
3341 if (test_opt(sb, DIOREAD_NOLOCK)) {
3342 ext4_msg(sb, KERN_ERR, "can't mount with "
3343 "both data=journal and dioread_nolock");
3344 goto failed_mount;
3345 }
3346 if (test_opt(sb, DAX)) {
3347 ext4_msg(sb, KERN_ERR, "can't mount with "
3348 "both data=journal and dax");
3349 goto failed_mount;
3350 }
3351 if (test_opt(sb, DELALLOC))
3352 clear_opt(sb, DELALLOC);
3353 } else {
3354 sb->s_iflags |= SB_I_CGROUPWB;
3355 }
3356
3357 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
3358 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
3359
3360 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
3361 (ext4_has_compat_features(sb) ||
3362 ext4_has_ro_compat_features(sb) ||
3363 ext4_has_incompat_features(sb)))
3364 ext4_msg(sb, KERN_WARNING,
3365 "feature flags set on rev 0 fs, "
3366 "running e2fsck is recommended");
3367
3368 if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) {
3369 set_opt2(sb, HURD_COMPAT);
3370 if (ext4_has_feature_64bit(sb)) {
3371 ext4_msg(sb, KERN_ERR,
3372 "The Hurd can't support 64-bit file systems");
3373 goto failed_mount;
3374 }
3375 }
3376
3377 if (IS_EXT2_SB(sb)) {
3378 if (ext2_feature_set_ok(sb))
3379 ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
3380 "using the ext4 subsystem");
3381 else {
3382 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
3383 "to feature incompatibilities");
3384 goto failed_mount;
3385 }
3386 }
3387
3388 if (IS_EXT3_SB(sb)) {
3389 if (ext3_feature_set_ok(sb))
3390 ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
3391 "using the ext4 subsystem");
3392 else {
3393 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
3394 "to feature incompatibilities");
3395 goto failed_mount;
3396 }
3397 }
3398
3399 /*
3400 * Check feature flags regardless of the revision level, since we
3401 * previously didn't change the revision level when setting the flags,
3402 * so there is a chance incompat flags are set on a rev 0 filesystem.
3403 */
3404 if (!ext4_feature_set_ok(sb, (sb->s_flags & MS_RDONLY)))
3405 goto failed_mount;
3406
3407 blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
3408 if (blocksize < EXT4_MIN_BLOCK_SIZE ||
3409 blocksize > EXT4_MAX_BLOCK_SIZE) {
3410 ext4_msg(sb, KERN_ERR,
3411 "Unsupported filesystem blocksize %d", blocksize);
3412 goto failed_mount;
3413 }
3414
3415 if (sbi->s_mount_opt & EXT4_MOUNT_DAX) {
3416 if (blocksize != PAGE_SIZE) {
3417 ext4_msg(sb, KERN_ERR,
3418 "error: unsupported blocksize for dax");
3419 goto failed_mount;
3420 }
3421 if (!sb->s_bdev->bd_disk->fops->direct_access) {
3422 ext4_msg(sb, KERN_ERR,
3423 "error: device does not support dax");
3424 goto failed_mount;
3425 }
3426 }
3427
3428 if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) {
3429 ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d",
3430 es->s_encryption_level);
3431 goto failed_mount;
3432 }
3433
3434 if (sb->s_blocksize != blocksize) {
3435 /* Validate the filesystem blocksize */
3436 if (!sb_set_blocksize(sb, blocksize)) {
3437 ext4_msg(sb, KERN_ERR, "bad block size %d",
3438 blocksize);
3439 goto failed_mount;
3440 }
3441
3442 brelse(bh);
3443 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3444 offset = do_div(logical_sb_block, blocksize);
3445 bh = sb_bread_unmovable(sb, logical_sb_block);
3446 if (!bh) {
3447 ext4_msg(sb, KERN_ERR,
3448 "Can't read superblock on 2nd try");
3449 goto failed_mount;
3450 }
3451 es = (struct ext4_super_block *)(bh->b_data + offset);
3452 sbi->s_es = es;
3453 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
3454 ext4_msg(sb, KERN_ERR,
3455 "Magic mismatch, very weird!");
3456 goto failed_mount;
3457 }
3458 }
3459
3460 has_huge_files = ext4_has_feature_huge_file(sb);
3461 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
3462 has_huge_files);
3463 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
3464
3465 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
3466 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
3467 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
3468 } else {
3469 sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
3470 sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
3471 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
3472 (!is_power_of_2(sbi->s_inode_size)) ||
3473 (sbi->s_inode_size > blocksize)) {
3474 ext4_msg(sb, KERN_ERR,
3475 "unsupported inode size: %d",
3476 sbi->s_inode_size);
3477 goto failed_mount;
3478 }
3479 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE)
3480 sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2);
3481 }
3482
3483 sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
3484 if (ext4_has_feature_64bit(sb)) {
3485 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
3486 sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
3487 !is_power_of_2(sbi->s_desc_size)) {
3488 ext4_msg(sb, KERN_ERR,
3489 "unsupported descriptor size %lu",
3490 sbi->s_desc_size);
3491 goto failed_mount;
3492 }
3493 } else
3494 sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
3495
3496 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
3497 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
3498 if (EXT4_INODE_SIZE(sb) == 0 || EXT4_INODES_PER_GROUP(sb) == 0)
3499 goto cantfind_ext4;
3500
3501 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb);
3502 if (sbi->s_inodes_per_block == 0)
3503 goto cantfind_ext4;
3504 sbi->s_itb_per_group = sbi->s_inodes_per_group /
3505 sbi->s_inodes_per_block;
3506 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb);
3507 sbi->s_sbh = bh;
3508 sbi->s_mount_state = le16_to_cpu(es->s_state);
3509 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
3510 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
3511
3512 for (i = 0; i < 4; i++)
3513 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
3514 sbi->s_def_hash_version = es->s_def_hash_version;
3515 if (ext4_has_feature_dir_index(sb)) {
3516 i = le32_to_cpu(es->s_flags);
3517 if (i & EXT2_FLAGS_UNSIGNED_HASH)
3518 sbi->s_hash_unsigned = 3;
3519 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
3520 #ifdef __CHAR_UNSIGNED__
3521 if (!(sb->s_flags & MS_RDONLY))
3522 es->s_flags |=
3523 cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
3524 sbi->s_hash_unsigned = 3;
3525 #else
3526 if (!(sb->s_flags & MS_RDONLY))
3527 es->s_flags |=
3528 cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
3529 #endif
3530 }
3531 }
3532
3533 /* Handle clustersize */
3534 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size);
3535 has_bigalloc = ext4_has_feature_bigalloc(sb);
3536 if (has_bigalloc) {
3537 if (clustersize < blocksize) {
3538 ext4_msg(sb, KERN_ERR,
3539 "cluster size (%d) smaller than "
3540 "block size (%d)", clustersize, blocksize);
3541 goto failed_mount;
3542 }
3543 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) -
3544 le32_to_cpu(es->s_log_block_size);
3545 sbi->s_clusters_per_group =
3546 le32_to_cpu(es->s_clusters_per_group);
3547 if (sbi->s_clusters_per_group > blocksize * 8) {
3548 ext4_msg(sb, KERN_ERR,
3549 "#clusters per group too big: %lu",
3550 sbi->s_clusters_per_group);
3551 goto failed_mount;
3552 }
3553 if (sbi->s_blocks_per_group !=
3554 (sbi->s_clusters_per_group * (clustersize / blocksize))) {
3555 ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and "
3556 "clusters per group (%lu) inconsistent",
3557 sbi->s_blocks_per_group,
3558 sbi->s_clusters_per_group);
3559 goto failed_mount;
3560 }
3561 } else {
3562 if (clustersize != blocksize) {
3563 ext4_warning(sb, "fragment/cluster size (%d) != "
3564 "block size (%d)", clustersize,
3565 blocksize);
3566 clustersize = blocksize;
3567 }
3568 if (sbi->s_blocks_per_group > blocksize * 8) {
3569 ext4_msg(sb, KERN_ERR,
3570 "#blocks per group too big: %lu",
3571 sbi->s_blocks_per_group);
3572 goto failed_mount;
3573 }
3574 sbi->s_clusters_per_group = sbi->s_blocks_per_group;
3575 sbi->s_cluster_bits = 0;
3576 }
3577 sbi->s_cluster_ratio = clustersize / blocksize;
3578
3579 if (sbi->s_inodes_per_group > blocksize * 8) {
3580 ext4_msg(sb, KERN_ERR,
3581 "#inodes per group too big: %lu",
3582 sbi->s_inodes_per_group);
3583 goto failed_mount;
3584 }
3585
3586 /* Do we have standard group size of clustersize * 8 blocks ? */
3587 if (sbi->s_blocks_per_group == clustersize << 3)
3588 set_opt2(sb, STD_GROUP_SIZE);
3589
3590 /*
3591 * Test whether we have more sectors than will fit in sector_t,
3592 * and whether the max offset is addressable by the page cache.
3593 */
3594 err = generic_check_addressable(sb->s_blocksize_bits,
3595 ext4_blocks_count(es));
3596 if (err) {
3597 ext4_msg(sb, KERN_ERR, "filesystem"
3598 " too large to mount safely on this system");
3599 if (sizeof(sector_t) < 8)
3600 ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled");
3601 goto failed_mount;
3602 }
3603
3604 if (EXT4_BLOCKS_PER_GROUP(sb) == 0)
3605 goto cantfind_ext4;
3606
3607 /* check blocks count against device size */
3608 blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
3609 if (blocks_count && ext4_blocks_count(es) > blocks_count) {
3610 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
3611 "exceeds size of device (%llu blocks)",
3612 ext4_blocks_count(es), blocks_count);
3613 goto failed_mount;
3614 }
3615
3616 /*
3617 * It makes no sense for the first data block to be beyond the end
3618 * of the filesystem.
3619 */
3620 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
3621 ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
3622 "block %u is beyond end of filesystem (%llu)",
3623 le32_to_cpu(es->s_first_data_block),
3624 ext4_blocks_count(es));
3625 goto failed_mount;
3626 }
3627 blocks_count = (ext4_blocks_count(es) -
3628 le32_to_cpu(es->s_first_data_block) +
3629 EXT4_BLOCKS_PER_GROUP(sb) - 1);
3630 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
3631 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
3632 ext4_msg(sb, KERN_WARNING, "groups count too large: %u "
3633 "(block count %llu, first data block %u, "
3634 "blocks per group %lu)", sbi->s_groups_count,
3635 ext4_blocks_count(es),
3636 le32_to_cpu(es->s_first_data_block),
3637 EXT4_BLOCKS_PER_GROUP(sb));
3638 goto failed_mount;
3639 }
3640 sbi->s_groups_count = blocks_count;
3641 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
3642 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
3643 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
3644 EXT4_DESC_PER_BLOCK(sb);
3645 sbi->s_group_desc = ext4_kvmalloc(db_count *
3646 sizeof(struct buffer_head *),
3647 GFP_KERNEL);
3648 if (sbi->s_group_desc == NULL) {
3649 ext4_msg(sb, KERN_ERR, "not enough memory");
3650 ret = -ENOMEM;
3651 goto failed_mount;
3652 }
3653
3654 bgl_lock_init(sbi->s_blockgroup_lock);
3655
3656 for (i = 0; i < db_count; i++) {
3657 block = descriptor_loc(sb, logical_sb_block, i);
3658 sbi->s_group_desc[i] = sb_bread_unmovable(sb, block);
3659 if (!sbi->s_group_desc[i]) {
3660 ext4_msg(sb, KERN_ERR,
3661 "can't read group descriptor %d", i);
3662 db_count = i;
3663 goto failed_mount2;
3664 }
3665 }
3666 if (!ext4_check_descriptors(sb, &first_not_zeroed)) {
3667 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
3668 ret = -EFSCORRUPTED;
3669 goto failed_mount2;
3670 }
3671
3672 sbi->s_gdb_count = db_count;
3673 get_random_bytes(&sbi->s_next_generation, sizeof(u32));
3674 spin_lock_init(&sbi->s_next_gen_lock);
3675
3676 setup_timer(&sbi->s_err_report, print_daily_error_info,
3677 (unsigned long) sb);
3678
3679 /* Register extent status tree shrinker */
3680 if (ext4_es_register_shrinker(sbi))
3681 goto failed_mount3;
3682
3683 sbi->s_stripe = ext4_get_stripe_size(sbi);
3684 sbi->s_extent_max_zeroout_kb = 32;
3685
3686 /*
3687 * set up enough so that it can read an inode
3688 */
3689 sb->s_op = &ext4_sops;
3690 sb->s_export_op = &ext4_export_ops;
3691 sb->s_xattr = ext4_xattr_handlers;
3692 #ifdef CONFIG_QUOTA
3693 sb->dq_op = &ext4_quota_operations;
3694 if (ext4_has_feature_quota(sb))
3695 sb->s_qcop = &dquot_quotactl_sysfile_ops;
3696 else
3697 sb->s_qcop = &ext4_qctl_operations;
3698 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
3699 #endif
3700 memcpy(sb->s_uuid, es->s_uuid, sizeof(es->s_uuid));
3701
3702 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
3703 mutex_init(&sbi->s_orphan_lock);
3704
3705 sb->s_root = NULL;
3706
3707 needs_recovery = (es->s_last_orphan != 0 ||
3708 ext4_has_feature_journal_needs_recovery(sb));
3709
3710 if (ext4_has_feature_mmp(sb) && !(sb->s_flags & MS_RDONLY))
3711 if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block)))
3712 goto failed_mount3a;
3713
3714 /*
3715 * The first inode we look at is the journal inode. Don't try
3716 * root first: it may be modified in the journal!
3717 */
3718 if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) {
3719 if (ext4_load_journal(sb, es, journal_devnum))
3720 goto failed_mount3a;
3721 } else if (test_opt(sb, NOLOAD) && !(sb->s_flags & MS_RDONLY) &&
3722 ext4_has_feature_journal_needs_recovery(sb)) {
3723 ext4_msg(sb, KERN_ERR, "required journal recovery "
3724 "suppressed and not mounted read-only");
3725 goto failed_mount_wq;
3726 } else {
3727 /* Nojournal mode, all journal mount options are illegal */
3728 if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) {
3729 ext4_msg(sb, KERN_ERR, "can't mount with "
3730 "journal_checksum, fs mounted w/o journal");
3731 goto failed_mount_wq;
3732 }
3733 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
3734 ext4_msg(sb, KERN_ERR, "can't mount with "
3735 "journal_async_commit, fs mounted w/o journal");
3736 goto failed_mount_wq;
3737 }
3738 if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) {
3739 ext4_msg(sb, KERN_ERR, "can't mount with "
3740 "commit=%lu, fs mounted w/o journal",
3741 sbi->s_commit_interval / HZ);
3742 goto failed_mount_wq;
3743 }
3744 if (EXT4_MOUNT_DATA_FLAGS &
3745 (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) {
3746 ext4_msg(sb, KERN_ERR, "can't mount with "
3747 "data=, fs mounted w/o journal");
3748 goto failed_mount_wq;
3749 }
3750 sbi->s_def_mount_opt &= EXT4_MOUNT_JOURNAL_CHECKSUM;
3751 clear_opt(sb, JOURNAL_CHECKSUM);
3752 clear_opt(sb, DATA_FLAGS);
3753 sbi->s_journal = NULL;
3754 needs_recovery = 0;
3755 goto no_journal;
3756 }
3757
3758 if (ext4_has_feature_64bit(sb) &&
3759 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
3760 JBD2_FEATURE_INCOMPAT_64BIT)) {
3761 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
3762 goto failed_mount_wq;
3763 }
3764
3765 if (!set_journal_csum_feature_set(sb)) {
3766 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum "
3767 "feature set");
3768 goto failed_mount_wq;
3769 }
3770
3771 /* We have now updated the journal if required, so we can
3772 * validate the data journaling mode. */
3773 switch (test_opt(sb, DATA_FLAGS)) {
3774 case 0:
3775 /* No mode set, assume a default based on the journal
3776 * capabilities: ORDERED_DATA if the journal can
3777 * cope, else JOURNAL_DATA
3778 */
3779 if (jbd2_journal_check_available_features
3780 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE))
3781 set_opt(sb, ORDERED_DATA);
3782 else
3783 set_opt(sb, JOURNAL_DATA);
3784 break;
3785
3786 case EXT4_MOUNT_ORDERED_DATA:
3787 case EXT4_MOUNT_WRITEBACK_DATA:
3788 if (!jbd2_journal_check_available_features
3789 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
3790 ext4_msg(sb, KERN_ERR, "Journal does not support "
3791 "requested data journaling mode");
3792 goto failed_mount_wq;
3793 }
3794 default:
3795 break;
3796 }
3797 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
3798
3799 sbi->s_journal->j_commit_callback = ext4_journal_commit_callback;
3800
3801 no_journal:
3802 sbi->s_mb_cache = ext4_xattr_create_cache();
3803 if (!sbi->s_mb_cache) {
3804 ext4_msg(sb, KERN_ERR, "Failed to create an mb_cache");
3805 goto failed_mount_wq;
3806 }
3807
3808 if ((DUMMY_ENCRYPTION_ENABLED(sbi) || ext4_has_feature_encrypt(sb)) &&
3809 (blocksize != PAGE_CACHE_SIZE)) {
3810 ext4_msg(sb, KERN_ERR,
3811 "Unsupported blocksize for fs encryption");
3812 goto failed_mount_wq;
3813 }
3814
3815 if (DUMMY_ENCRYPTION_ENABLED(sbi) && !(sb->s_flags & MS_RDONLY) &&
3816 !ext4_has_feature_encrypt(sb)) {
3817 ext4_set_feature_encrypt(sb);
3818 ext4_commit_super(sb, 1);
3819 }
3820
3821 /*
3822 * Get the # of file system overhead blocks from the
3823 * superblock if present.
3824 */
3825 if (es->s_overhead_clusters)
3826 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters);
3827 else {
3828 err = ext4_calculate_overhead(sb);
3829 if (err)
3830 goto failed_mount_wq;
3831 }
3832
3833 /*
3834 * The maximum number of concurrent works can be high and
3835 * concurrency isn't really necessary. Limit it to 1.
3836 */
3837 EXT4_SB(sb)->rsv_conversion_wq =
3838 alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
3839 if (!EXT4_SB(sb)->rsv_conversion_wq) {
3840 printk(KERN_ERR "EXT4-fs: failed to create workqueue\n");
3841 ret = -ENOMEM;
3842 goto failed_mount4;
3843 }
3844
3845 /*
3846 * The jbd2_journal_load will have done any necessary log recovery,
3847 * so we can safely mount the rest of the filesystem now.
3848 */
3849
3850 root = ext4_iget(sb, EXT4_ROOT_INO);
3851 if (IS_ERR(root)) {
3852 ext4_msg(sb, KERN_ERR, "get root inode failed");
3853 ret = PTR_ERR(root);
3854 root = NULL;
3855 goto failed_mount4;
3856 }
3857 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
3858 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
3859 iput(root);
3860 goto failed_mount4;
3861 }
3862 sb->s_root = d_make_root(root);
3863 if (!sb->s_root) {
3864 ext4_msg(sb, KERN_ERR, "get root dentry failed");
3865 ret = -ENOMEM;
3866 goto failed_mount4;
3867 }
3868
3869 if (ext4_setup_super(sb, es, sb->s_flags & MS_RDONLY))
3870 sb->s_flags |= MS_RDONLY;
3871
3872 /* determine the minimum size of new large inodes, if present */
3873 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) {
3874 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
3875 EXT4_GOOD_OLD_INODE_SIZE;
3876 if (ext4_has_feature_extra_isize(sb)) {
3877 if (sbi->s_want_extra_isize <
3878 le16_to_cpu(es->s_want_extra_isize))
3879 sbi->s_want_extra_isize =
3880 le16_to_cpu(es->s_want_extra_isize);
3881 if (sbi->s_want_extra_isize <
3882 le16_to_cpu(es->s_min_extra_isize))
3883 sbi->s_want_extra_isize =
3884 le16_to_cpu(es->s_min_extra_isize);
3885 }
3886 }
3887 /* Check if enough inode space is available */
3888 if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize >
3889 sbi->s_inode_size) {
3890 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
3891 EXT4_GOOD_OLD_INODE_SIZE;
3892 ext4_msg(sb, KERN_INFO, "required extra inode space not"
3893 "available");
3894 }
3895
3896 ext4_set_resv_clusters(sb);
3897
3898 err = ext4_setup_system_zone(sb);
3899 if (err) {
3900 ext4_msg(sb, KERN_ERR, "failed to initialize system "
3901 "zone (%d)", err);
3902 goto failed_mount4a;
3903 }
3904
3905 ext4_ext_init(sb);
3906 err = ext4_mb_init(sb);
3907 if (err) {
3908 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
3909 err);
3910 goto failed_mount5;
3911 }
3912
3913 block = ext4_count_free_clusters(sb);
3914 ext4_free_blocks_count_set(sbi->s_es,
3915 EXT4_C2B(sbi, block));
3916 err = percpu_counter_init(&sbi->s_freeclusters_counter, block,
3917 GFP_KERNEL);
3918 if (!err) {
3919 unsigned long freei = ext4_count_free_inodes(sb);
3920 sbi->s_es->s_free_inodes_count = cpu_to_le32(freei);
3921 err = percpu_counter_init(&sbi->s_freeinodes_counter, freei,
3922 GFP_KERNEL);
3923 }
3924 if (!err)
3925 err = percpu_counter_init(&sbi->s_dirs_counter,
3926 ext4_count_dirs(sb), GFP_KERNEL);
3927 if (!err)
3928 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0,
3929 GFP_KERNEL);
3930 if (err) {
3931 ext4_msg(sb, KERN_ERR, "insufficient memory");
3932 goto failed_mount6;
3933 }
3934
3935 if (ext4_has_feature_flex_bg(sb))
3936 if (!ext4_fill_flex_info(sb)) {
3937 ext4_msg(sb, KERN_ERR,
3938 "unable to initialize "
3939 "flex_bg meta info!");
3940 goto failed_mount6;
3941 }
3942
3943 err = ext4_register_li_request(sb, first_not_zeroed);
3944 if (err)
3945 goto failed_mount6;
3946
3947 err = ext4_register_sysfs(sb);
3948 if (err)
3949 goto failed_mount7;
3950
3951 #ifdef CONFIG_QUOTA
3952 /* Enable quota usage during mount. */
3953 if (ext4_has_feature_quota(sb) && !(sb->s_flags & MS_RDONLY)) {
3954 err = ext4_enable_quotas(sb);
3955 if (err)
3956 goto failed_mount8;
3957 }
3958 #endif /* CONFIG_QUOTA */
3959
3960 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
3961 ext4_orphan_cleanup(sb, es);
3962 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
3963 if (needs_recovery) {
3964 ext4_msg(sb, KERN_INFO, "recovery complete");
3965 ext4_mark_recovery_complete(sb, es);
3966 }
3967 if (EXT4_SB(sb)->s_journal) {
3968 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
3969 descr = " journalled data mode";
3970 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
3971 descr = " ordered data mode";
3972 else
3973 descr = " writeback data mode";
3974 } else
3975 descr = "out journal";
3976
3977 if (test_opt(sb, DISCARD)) {
3978 struct request_queue *q = bdev_get_queue(sb->s_bdev);
3979 if (!blk_queue_discard(q))
3980 ext4_msg(sb, KERN_WARNING,
3981 "mounting with \"discard\" option, but "
3982 "the device does not support discard");
3983 }
3984
3985 if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount"))
3986 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. "
3987 "Opts: %s%s%s", descr, sbi->s_es->s_mount_opts,
3988 *sbi->s_es->s_mount_opts ? "; " : "", orig_data);
3989
3990 if (es->s_error_count)
3991 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
3992
3993 /* Enable message ratelimiting. Default is 10 messages per 5 secs. */
3994 ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10);
3995 ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10);
3996 ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10);
3997
3998 kfree(orig_data);
3999 return 0;
4000
4001 cantfind_ext4:
4002 if (!silent)
4003 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
4004 goto failed_mount;
4005
4006 #ifdef CONFIG_QUOTA
4007 failed_mount8:
4008 ext4_unregister_sysfs(sb);
4009 #endif
4010 failed_mount7:
4011 ext4_unregister_li_request(sb);
4012 failed_mount6:
4013 ext4_mb_release(sb);
4014 if (sbi->s_flex_groups)
4015 kvfree(sbi->s_flex_groups);
4016 percpu_counter_destroy(&sbi->s_freeclusters_counter);
4017 percpu_counter_destroy(&sbi->s_freeinodes_counter);
4018 percpu_counter_destroy(&sbi->s_dirs_counter);
4019 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
4020 failed_mount5:
4021 ext4_ext_release(sb);
4022 ext4_release_system_zone(sb);
4023 failed_mount4a:
4024 dput(sb->s_root);
4025 sb->s_root = NULL;
4026 failed_mount4:
4027 ext4_msg(sb, KERN_ERR, "mount failed");
4028 if (EXT4_SB(sb)->rsv_conversion_wq)
4029 destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq);
4030 failed_mount_wq:
4031 if (sbi->s_mb_cache) {
4032 ext4_xattr_destroy_cache(sbi->s_mb_cache);
4033 sbi->s_mb_cache = NULL;
4034 }
4035 if (sbi->s_journal) {
4036 jbd2_journal_destroy(sbi->s_journal);
4037 sbi->s_journal = NULL;
4038 }
4039 failed_mount3a:
4040 ext4_es_unregister_shrinker(sbi);
4041 failed_mount3:
4042 del_timer_sync(&sbi->s_err_report);
4043 if (sbi->s_mmp_tsk)
4044 kthread_stop(sbi->s_mmp_tsk);
4045 failed_mount2:
4046 for (i = 0; i < db_count; i++)
4047 brelse(sbi->s_group_desc[i]);
4048 kvfree(sbi->s_group_desc);
4049 failed_mount:
4050 if (sbi->s_chksum_driver)
4051 crypto_free_shash(sbi->s_chksum_driver);
4052 #ifdef CONFIG_QUOTA
4053 for (i = 0; i < EXT4_MAXQUOTAS; i++)
4054 kfree(sbi->s_qf_names[i]);
4055 #endif
4056 ext4_blkdev_remove(sbi);
4057 brelse(bh);
4058 out_fail:
4059 sb->s_fs_info = NULL;
4060 kfree(sbi->s_blockgroup_lock);
4061 kfree(sbi);
4062 out_free_orig:
4063 kfree(orig_data);
4064 return err ? err : ret;
4065 }
4066
4067 /*
4068 * Setup any per-fs journal parameters now. We'll do this both on
4069 * initial mount, once the journal has been initialised but before we've
4070 * done any recovery; and again on any subsequent remount.
4071 */
4072 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
4073 {
4074 struct ext4_sb_info *sbi = EXT4_SB(sb);
4075
4076 journal->j_commit_interval = sbi->s_commit_interval;
4077 journal->j_min_batch_time = sbi->s_min_batch_time;
4078 journal->j_max_batch_time = sbi->s_max_batch_time;
4079
4080 write_lock(&journal->j_state_lock);
4081 if (test_opt(sb, BARRIER))
4082 journal->j_flags |= JBD2_BARRIER;
4083 else
4084 journal->j_flags &= ~JBD2_BARRIER;
4085 if (test_opt(sb, DATA_ERR_ABORT))
4086 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
4087 else
4088 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
4089 write_unlock(&journal->j_state_lock);
4090 }
4091
4092 static journal_t *ext4_get_journal(struct super_block *sb,
4093 unsigned int journal_inum)
4094 {
4095 struct inode *journal_inode;
4096 journal_t *journal;
4097
4098 BUG_ON(!ext4_has_feature_journal(sb));
4099
4100 /* First, test for the existence of a valid inode on disk. Bad
4101 * things happen if we iget() an unused inode, as the subsequent
4102 * iput() will try to delete it. */
4103
4104 journal_inode = ext4_iget(sb, journal_inum);
4105 if (IS_ERR(journal_inode)) {
4106 ext4_msg(sb, KERN_ERR, "no journal found");
4107 return NULL;
4108 }
4109 if (!journal_inode->i_nlink) {
4110 make_bad_inode(journal_inode);
4111 iput(journal_inode);
4112 ext4_msg(sb, KERN_ERR, "journal inode is deleted");
4113 return NULL;
4114 }
4115
4116 jbd_debug(2, "Journal inode found at %p: %lld bytes\n",
4117 journal_inode, journal_inode->i_size);
4118 if (!S_ISREG(journal_inode->i_mode)) {
4119 ext4_msg(sb, KERN_ERR, "invalid journal inode");
4120 iput(journal_inode);
4121 return NULL;
4122 }
4123
4124 journal = jbd2_journal_init_inode(journal_inode);
4125 if (!journal) {
4126 ext4_msg(sb, KERN_ERR, "Could not load journal inode");
4127 iput(journal_inode);
4128 return NULL;
4129 }
4130 journal->j_private = sb;
4131 ext4_init_journal_params(sb, journal);
4132 return journal;
4133 }
4134
4135 static journal_t *ext4_get_dev_journal(struct super_block *sb,
4136 dev_t j_dev)
4137 {
4138 struct buffer_head *bh;
4139 journal_t *journal;
4140 ext4_fsblk_t start;
4141 ext4_fsblk_t len;
4142 int hblock, blocksize;
4143 ext4_fsblk_t sb_block;
4144 unsigned long offset;
4145 struct ext4_super_block *es;
4146 struct block_device *bdev;
4147
4148 BUG_ON(!ext4_has_feature_journal(sb));
4149
4150 bdev = ext4_blkdev_get(j_dev, sb);
4151 if (bdev == NULL)
4152 return NULL;
4153
4154 blocksize = sb->s_blocksize;
4155 hblock = bdev_logical_block_size(bdev);
4156 if (blocksize < hblock) {
4157 ext4_msg(sb, KERN_ERR,
4158 "blocksize too small for journal device");
4159 goto out_bdev;
4160 }
4161
4162 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
4163 offset = EXT4_MIN_BLOCK_SIZE % blocksize;
4164 set_blocksize(bdev, blocksize);
4165 if (!(bh = __bread(bdev, sb_block, blocksize))) {
4166 ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
4167 "external journal");
4168 goto out_bdev;
4169 }
4170
4171 es = (struct ext4_super_block *) (bh->b_data + offset);
4172 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
4173 !(le32_to_cpu(es->s_feature_incompat) &
4174 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
4175 ext4_msg(sb, KERN_ERR, "external journal has "
4176 "bad superblock");
4177 brelse(bh);
4178 goto out_bdev;
4179 }
4180
4181 if ((le32_to_cpu(es->s_feature_ro_compat) &
4182 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
4183 es->s_checksum != ext4_superblock_csum(sb, es)) {
4184 ext4_msg(sb, KERN_ERR, "external journal has "
4185 "corrupt superblock");
4186 brelse(bh);
4187 goto out_bdev;
4188 }
4189
4190 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
4191 ext4_msg(sb, KERN_ERR, "journal UUID does not match");
4192 brelse(bh);
4193 goto out_bdev;
4194 }
4195
4196 len = ext4_blocks_count(es);
4197 start = sb_block + 1;
4198 brelse(bh); /* we're done with the superblock */
4199
4200 journal = jbd2_journal_init_dev(bdev, sb->s_bdev,
4201 start, len, blocksize);
4202 if (!journal) {
4203 ext4_msg(sb, KERN_ERR, "failed to create device journal");
4204 goto out_bdev;
4205 }
4206 journal->j_private = sb;
4207 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &journal->j_sb_buffer);
4208 wait_on_buffer(journal->j_sb_buffer);
4209 if (!buffer_uptodate(journal->j_sb_buffer)) {
4210 ext4_msg(sb, KERN_ERR, "I/O error on journal device");
4211 goto out_journal;
4212 }
4213 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
4214 ext4_msg(sb, KERN_ERR, "External journal has more than one "
4215 "user (unsupported) - %d",
4216 be32_to_cpu(journal->j_superblock->s_nr_users));
4217 goto out_journal;
4218 }
4219 EXT4_SB(sb)->journal_bdev = bdev;
4220 ext4_init_journal_params(sb, journal);
4221 return journal;
4222
4223 out_journal:
4224 jbd2_journal_destroy(journal);
4225 out_bdev:
4226 ext4_blkdev_put(bdev);
4227 return NULL;
4228 }
4229
4230 static int ext4_load_journal(struct super_block *sb,
4231 struct ext4_super_block *es,
4232 unsigned long journal_devnum)
4233 {
4234 journal_t *journal;
4235 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
4236 dev_t journal_dev;
4237 int err = 0;
4238 int really_read_only;
4239
4240 BUG_ON(!ext4_has_feature_journal(sb));
4241
4242 if (journal_devnum &&
4243 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4244 ext4_msg(sb, KERN_INFO, "external journal device major/minor "
4245 "numbers have changed");
4246 journal_dev = new_decode_dev(journal_devnum);
4247 } else
4248 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
4249
4250 really_read_only = bdev_read_only(sb->s_bdev);
4251
4252 /*
4253 * Are we loading a blank journal or performing recovery after a
4254 * crash? For recovery, we need to check in advance whether we
4255 * can get read-write access to the device.
4256 */
4257 if (ext4_has_feature_journal_needs_recovery(sb)) {
4258 if (sb->s_flags & MS_RDONLY) {
4259 ext4_msg(sb, KERN_INFO, "INFO: recovery "
4260 "required on readonly filesystem");
4261 if (really_read_only) {
4262 ext4_msg(sb, KERN_ERR, "write access "
4263 "unavailable, cannot proceed");
4264 return -EROFS;
4265 }
4266 ext4_msg(sb, KERN_INFO, "write access will "
4267 "be enabled during recovery");
4268 }
4269 }
4270
4271 if (journal_inum && journal_dev) {
4272 ext4_msg(sb, KERN_ERR, "filesystem has both journal "
4273 "and inode journals!");
4274 return -EINVAL;
4275 }
4276
4277 if (journal_inum) {
4278 if (!(journal = ext4_get_journal(sb, journal_inum)))
4279 return -EINVAL;
4280 } else {
4281 if (!(journal = ext4_get_dev_journal(sb, journal_dev)))
4282 return -EINVAL;
4283 }
4284
4285 if (!(journal->j_flags & JBD2_BARRIER))
4286 ext4_msg(sb, KERN_INFO, "barriers disabled");
4287
4288 if (!ext4_has_feature_journal_needs_recovery(sb))
4289 err = jbd2_journal_wipe(journal, !really_read_only);
4290 if (!err) {
4291 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
4292 if (save)
4293 memcpy(save, ((char *) es) +
4294 EXT4_S_ERR_START, EXT4_S_ERR_LEN);
4295 err = jbd2_journal_load(journal);
4296 if (save)
4297 memcpy(((char *) es) + EXT4_S_ERR_START,
4298 save, EXT4_S_ERR_LEN);
4299 kfree(save);
4300 }
4301
4302 if (err) {
4303 ext4_msg(sb, KERN_ERR, "error loading journal");
4304 jbd2_journal_destroy(journal);
4305 return err;
4306 }
4307
4308 EXT4_SB(sb)->s_journal = journal;
4309 ext4_clear_journal_err(sb, es);
4310
4311 if (!really_read_only && journal_devnum &&
4312 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4313 es->s_journal_dev = cpu_to_le32(journal_devnum);
4314
4315 /* Make sure we flush the recovery flag to disk. */
4316 ext4_commit_super(sb, 1);
4317 }
4318
4319 return 0;
4320 }
4321
4322 static int ext4_commit_super(struct super_block *sb, int sync)
4323 {
4324 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
4325 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
4326 int error = 0;
4327
4328 if (!sbh || block_device_ejected(sb))
4329 return error;
4330 if (buffer_write_io_error(sbh)) {
4331 /*
4332 * Oh, dear. A previous attempt to write the
4333 * superblock failed. This could happen because the
4334 * USB device was yanked out. Or it could happen to
4335 * be a transient write error and maybe the block will
4336 * be remapped. Nothing we can do but to retry the
4337 * write and hope for the best.
4338 */
4339 ext4_msg(sb, KERN_ERR, "previous I/O error to "
4340 "superblock detected");
4341 clear_buffer_write_io_error(sbh);
4342 set_buffer_uptodate(sbh);
4343 }
4344 /*
4345 * If the file system is mounted read-only, don't update the
4346 * superblock write time. This avoids updating the superblock
4347 * write time when we are mounting the root file system
4348 * read/only but we need to replay the journal; at that point,
4349 * for people who are east of GMT and who make their clock
4350 * tick in localtime for Windows bug-for-bug compatibility,
4351 * the clock is set in the future, and this will cause e2fsck
4352 * to complain and force a full file system check.
4353 */
4354 if (!(sb->s_flags & MS_RDONLY))
4355 es->s_wtime = cpu_to_le32(get_seconds());
4356 if (sb->s_bdev->bd_part)
4357 es->s_kbytes_written =
4358 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written +
4359 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
4360 EXT4_SB(sb)->s_sectors_written_start) >> 1));
4361 else
4362 es->s_kbytes_written =
4363 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written);
4364 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeclusters_counter))
4365 ext4_free_blocks_count_set(es,
4366 EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive(
4367 &EXT4_SB(sb)->s_freeclusters_counter)));
4368 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeinodes_counter))
4369 es->s_free_inodes_count =
4370 cpu_to_le32(percpu_counter_sum_positive(
4371 &EXT4_SB(sb)->s_freeinodes_counter));
4372 BUFFER_TRACE(sbh, "marking dirty");
4373 ext4_superblock_csum_set(sb);
4374 mark_buffer_dirty(sbh);
4375 if (sync) {
4376 error = __sync_dirty_buffer(sbh,
4377 test_opt(sb, BARRIER) ? WRITE_FUA : WRITE_SYNC);
4378 if (error)
4379 return error;
4380
4381 error = buffer_write_io_error(sbh);
4382 if (error) {
4383 ext4_msg(sb, KERN_ERR, "I/O error while writing "
4384 "superblock");
4385 clear_buffer_write_io_error(sbh);
4386 set_buffer_uptodate(sbh);
4387 }
4388 }
4389 return error;
4390 }
4391
4392 /*
4393 * Have we just finished recovery? If so, and if we are mounting (or
4394 * remounting) the filesystem readonly, then we will end up with a
4395 * consistent fs on disk. Record that fact.
4396 */
4397 static void ext4_mark_recovery_complete(struct super_block *sb,
4398 struct ext4_super_block *es)
4399 {
4400 journal_t *journal = EXT4_SB(sb)->s_journal;
4401
4402 if (!ext4_has_feature_journal(sb)) {
4403 BUG_ON(journal != NULL);
4404 return;
4405 }
4406 jbd2_journal_lock_updates(journal);
4407 if (jbd2_journal_flush(journal) < 0)
4408 goto out;
4409
4410 if (ext4_has_feature_journal_needs_recovery(sb) &&
4411 sb->s_flags & MS_RDONLY) {
4412 ext4_clear_feature_journal_needs_recovery(sb);
4413 ext4_commit_super(sb, 1);
4414 }
4415
4416 out:
4417 jbd2_journal_unlock_updates(journal);
4418 }
4419
4420 /*
4421 * If we are mounting (or read-write remounting) a filesystem whose journal
4422 * has recorded an error from a previous lifetime, move that error to the
4423 * main filesystem now.
4424 */
4425 static void ext4_clear_journal_err(struct super_block *sb,
4426 struct ext4_super_block *es)
4427 {
4428 journal_t *journal;
4429 int j_errno;
4430 const char *errstr;
4431
4432 BUG_ON(!ext4_has_feature_journal(sb));
4433
4434 journal = EXT4_SB(sb)->s_journal;
4435
4436 /*
4437 * Now check for any error status which may have been recorded in the
4438 * journal by a prior ext4_error() or ext4_abort()
4439 */
4440
4441 j_errno = jbd2_journal_errno(journal);
4442 if (j_errno) {
4443 char nbuf[16];
4444
4445 errstr = ext4_decode_error(sb, j_errno, nbuf);
4446 ext4_warning(sb, "Filesystem error recorded "
4447 "from previous mount: %s", errstr);
4448 ext4_warning(sb, "Marking fs in need of filesystem check.");
4449
4450 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
4451 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
4452 ext4_commit_super(sb, 1);
4453
4454 jbd2_journal_clear_err(journal);
4455 jbd2_journal_update_sb_errno(journal);
4456 }
4457 }
4458
4459 /*
4460 * Force the running and committing transactions to commit,
4461 * and wait on the commit.
4462 */
4463 int ext4_force_commit(struct super_block *sb)
4464 {
4465 journal_t *journal;
4466
4467 if (sb->s_flags & MS_RDONLY)
4468 return 0;
4469
4470 journal = EXT4_SB(sb)->s_journal;
4471 return ext4_journal_force_commit(journal);
4472 }
4473
4474 static int ext4_sync_fs(struct super_block *sb, int wait)
4475 {
4476 int ret = 0;
4477 tid_t target;
4478 bool needs_barrier = false;
4479 struct ext4_sb_info *sbi = EXT4_SB(sb);
4480
4481 trace_ext4_sync_fs(sb, wait);
4482 flush_workqueue(sbi->rsv_conversion_wq);
4483 /*
4484 * Writeback quota in non-journalled quota case - journalled quota has
4485 * no dirty dquots
4486 */
4487 dquot_writeback_dquots(sb, -1);
4488 /*
4489 * Data writeback is possible w/o journal transaction, so barrier must
4490 * being sent at the end of the function. But we can skip it if
4491 * transaction_commit will do it for us.
4492 */
4493 if (sbi->s_journal) {
4494 target = jbd2_get_latest_transaction(sbi->s_journal);
4495 if (wait && sbi->s_journal->j_flags & JBD2_BARRIER &&
4496 !jbd2_trans_will_send_data_barrier(sbi->s_journal, target))
4497 needs_barrier = true;
4498
4499 if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
4500 if (wait)
4501 ret = jbd2_log_wait_commit(sbi->s_journal,
4502 target);
4503 }
4504 } else if (wait && test_opt(sb, BARRIER))
4505 needs_barrier = true;
4506 if (needs_barrier) {
4507 int err;
4508 err = blkdev_issue_flush(sb->s_bdev, GFP_KERNEL, NULL);
4509 if (!ret)
4510 ret = err;
4511 }
4512
4513 return ret;
4514 }
4515
4516 /*
4517 * LVM calls this function before a (read-only) snapshot is created. This
4518 * gives us a chance to flush the journal completely and mark the fs clean.
4519 *
4520 * Note that only this function cannot bring a filesystem to be in a clean
4521 * state independently. It relies on upper layer to stop all data & metadata
4522 * modifications.
4523 */
4524 static int ext4_freeze(struct super_block *sb)
4525 {
4526 int error = 0;
4527 journal_t *journal;
4528
4529 if (sb->s_flags & MS_RDONLY)
4530 return 0;
4531
4532 journal = EXT4_SB(sb)->s_journal;
4533
4534 if (journal) {
4535 /* Now we set up the journal barrier. */
4536 jbd2_journal_lock_updates(journal);
4537
4538 /*
4539 * Don't clear the needs_recovery flag if we failed to
4540 * flush the journal.
4541 */
4542 error = jbd2_journal_flush(journal);
4543 if (error < 0)
4544 goto out;
4545
4546 /* Journal blocked and flushed, clear needs_recovery flag. */
4547 ext4_clear_feature_journal_needs_recovery(sb);
4548 }
4549
4550 error = ext4_commit_super(sb, 1);
4551 out:
4552 if (journal)
4553 /* we rely on upper layer to stop further updates */
4554 jbd2_journal_unlock_updates(journal);
4555 return error;
4556 }
4557
4558 /*
4559 * Called by LVM after the snapshot is done. We need to reset the RECOVER
4560 * flag here, even though the filesystem is not technically dirty yet.
4561 */
4562 static int ext4_unfreeze(struct super_block *sb)
4563 {
4564 if (sb->s_flags & MS_RDONLY)
4565 return 0;
4566
4567 if (EXT4_SB(sb)->s_journal) {
4568 /* Reset the needs_recovery flag before the fs is unlocked. */
4569 ext4_set_feature_journal_needs_recovery(sb);
4570 }
4571
4572 ext4_commit_super(sb, 1);
4573 return 0;
4574 }
4575
4576 /*
4577 * Structure to save mount options for ext4_remount's benefit
4578 */
4579 struct ext4_mount_options {
4580 unsigned long s_mount_opt;
4581 unsigned long s_mount_opt2;
4582 kuid_t s_resuid;
4583 kgid_t s_resgid;
4584 unsigned long s_commit_interval;
4585 u32 s_min_batch_time, s_max_batch_time;
4586 #ifdef CONFIG_QUOTA
4587 int s_jquota_fmt;
4588 char *s_qf_names[EXT4_MAXQUOTAS];
4589 #endif
4590 };
4591
4592 static int ext4_remount(struct super_block *sb, int *flags, char *data)
4593 {
4594 struct ext4_super_block *es;
4595 struct ext4_sb_info *sbi = EXT4_SB(sb);
4596 unsigned long old_sb_flags;
4597 struct ext4_mount_options old_opts;
4598 int enable_quota = 0;
4599 ext4_group_t g;
4600 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
4601 int err = 0;
4602 #ifdef CONFIG_QUOTA
4603 int i, j;
4604 #endif
4605 char *orig_data = kstrdup(data, GFP_KERNEL);
4606
4607 /* Store the original options */
4608 old_sb_flags = sb->s_flags;
4609 old_opts.s_mount_opt = sbi->s_mount_opt;
4610 old_opts.s_mount_opt2 = sbi->s_mount_opt2;
4611 old_opts.s_resuid = sbi->s_resuid;
4612 old_opts.s_resgid = sbi->s_resgid;
4613 old_opts.s_commit_interval = sbi->s_commit_interval;
4614 old_opts.s_min_batch_time = sbi->s_min_batch_time;
4615 old_opts.s_max_batch_time = sbi->s_max_batch_time;
4616 #ifdef CONFIG_QUOTA
4617 old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
4618 for (i = 0; i < EXT4_MAXQUOTAS; i++)
4619 if (sbi->s_qf_names[i]) {
4620 old_opts.s_qf_names[i] = kstrdup(sbi->s_qf_names[i],
4621 GFP_KERNEL);
4622 if (!old_opts.s_qf_names[i]) {
4623 for (j = 0; j < i; j++)
4624 kfree(old_opts.s_qf_names[j]);
4625 kfree(orig_data);
4626 return -ENOMEM;
4627 }
4628 } else
4629 old_opts.s_qf_names[i] = NULL;
4630 #endif
4631 if (sbi->s_journal && sbi->s_journal->j_task->io_context)
4632 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio;
4633
4634 if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) {
4635 err = -EINVAL;
4636 goto restore_opts;
4637 }
4638
4639 if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^
4640 test_opt(sb, JOURNAL_CHECKSUM)) {
4641 ext4_msg(sb, KERN_ERR, "changing journal_checksum "
4642 "during remount not supported; ignoring");
4643 sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM;
4644 }
4645
4646 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
4647 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
4648 ext4_msg(sb, KERN_ERR, "can't mount with "
4649 "both data=journal and delalloc");
4650 err = -EINVAL;
4651 goto restore_opts;
4652 }
4653 if (test_opt(sb, DIOREAD_NOLOCK)) {
4654 ext4_msg(sb, KERN_ERR, "can't mount with "
4655 "both data=journal and dioread_nolock");
4656 err = -EINVAL;
4657 goto restore_opts;
4658 }
4659 if (test_opt(sb, DAX)) {
4660 ext4_msg(sb, KERN_ERR, "can't mount with "
4661 "both data=journal and dax");
4662 err = -EINVAL;
4663 goto restore_opts;
4664 }
4665 }
4666
4667 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_DAX) {
4668 ext4_msg(sb, KERN_WARNING, "warning: refusing change of "
4669 "dax flag with busy inodes while remounting");
4670 sbi->s_mount_opt ^= EXT4_MOUNT_DAX;
4671 }
4672
4673 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED)
4674 ext4_abort(sb, "Abort forced by user");
4675
4676 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
4677 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
4678
4679 es = sbi->s_es;
4680
4681 if (sbi->s_journal) {
4682 ext4_init_journal_params(sb, sbi->s_journal);
4683 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
4684 }
4685
4686 if (*flags & MS_LAZYTIME)
4687 sb->s_flags |= MS_LAZYTIME;
4688
4689 if ((*flags & MS_RDONLY) != (sb->s_flags & MS_RDONLY)) {
4690 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) {
4691 err = -EROFS;
4692 goto restore_opts;
4693 }
4694
4695 if (*flags & MS_RDONLY) {
4696 err = sync_filesystem(sb);
4697 if (err < 0)
4698 goto restore_opts;
4699 err = dquot_suspend(sb, -1);
4700 if (err < 0)
4701 goto restore_opts;
4702
4703 /*
4704 * First of all, the unconditional stuff we have to do
4705 * to disable replay of the journal when we next remount
4706 */
4707 sb->s_flags |= MS_RDONLY;
4708
4709 /*
4710 * OK, test if we are remounting a valid rw partition
4711 * readonly, and if so set the rdonly flag and then
4712 * mark the partition as valid again.
4713 */
4714 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
4715 (sbi->s_mount_state & EXT4_VALID_FS))
4716 es->s_state = cpu_to_le16(sbi->s_mount_state);
4717
4718 if (sbi->s_journal)
4719 ext4_mark_recovery_complete(sb, es);
4720 } else {
4721 /* Make sure we can mount this feature set readwrite */
4722 if (ext4_has_feature_readonly(sb) ||
4723 !ext4_feature_set_ok(sb, 0)) {
4724 err = -EROFS;
4725 goto restore_opts;
4726 }
4727 /*
4728 * Make sure the group descriptor checksums
4729 * are sane. If they aren't, refuse to remount r/w.
4730 */
4731 for (g = 0; g < sbi->s_groups_count; g++) {
4732 struct ext4_group_desc *gdp =
4733 ext4_get_group_desc(sb, g, NULL);
4734
4735 if (!ext4_group_desc_csum_verify(sb, g, gdp)) {
4736 ext4_msg(sb, KERN_ERR,
4737 "ext4_remount: Checksum for group %u failed (%u!=%u)",
4738 g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)),
4739 le16_to_cpu(gdp->bg_checksum));
4740 err = -EFSBADCRC;
4741 goto restore_opts;
4742 }
4743 }
4744
4745 /*
4746 * If we have an unprocessed orphan list hanging
4747 * around from a previously readonly bdev mount,
4748 * require a full umount/remount for now.
4749 */
4750 if (es->s_last_orphan) {
4751 ext4_msg(sb, KERN_WARNING, "Couldn't "
4752 "remount RDWR because of unprocessed "
4753 "orphan inode list. Please "
4754 "umount/remount instead");
4755 err = -EINVAL;
4756 goto restore_opts;
4757 }
4758
4759 /*
4760 * Mounting a RDONLY partition read-write, so reread
4761 * and store the current valid flag. (It may have
4762 * been changed by e2fsck since we originally mounted
4763 * the partition.)
4764 */
4765 if (sbi->s_journal)
4766 ext4_clear_journal_err(sb, es);
4767 sbi->s_mount_state = le16_to_cpu(es->s_state);
4768 if (!ext4_setup_super(sb, es, 0))
4769 sb->s_flags &= ~MS_RDONLY;
4770 if (ext4_has_feature_mmp(sb))
4771 if (ext4_multi_mount_protect(sb,
4772 le64_to_cpu(es->s_mmp_block))) {
4773 err = -EROFS;
4774 goto restore_opts;
4775 }
4776 enable_quota = 1;
4777 }
4778 }
4779
4780 /*
4781 * Reinitialize lazy itable initialization thread based on
4782 * current settings
4783 */
4784 if ((sb->s_flags & MS_RDONLY) || !test_opt(sb, INIT_INODE_TABLE))
4785 ext4_unregister_li_request(sb);
4786 else {
4787 ext4_group_t first_not_zeroed;
4788 first_not_zeroed = ext4_has_uninit_itable(sb);
4789 ext4_register_li_request(sb, first_not_zeroed);
4790 }
4791
4792 ext4_setup_system_zone(sb);
4793 if (sbi->s_journal == NULL && !(old_sb_flags & MS_RDONLY))
4794 ext4_commit_super(sb, 1);
4795
4796 #ifdef CONFIG_QUOTA
4797 /* Release old quota file names */
4798 for (i = 0; i < EXT4_MAXQUOTAS; i++)
4799 kfree(old_opts.s_qf_names[i]);
4800 if (enable_quota) {
4801 if (sb_any_quota_suspended(sb))
4802 dquot_resume(sb, -1);
4803 else if (ext4_has_feature_quota(sb)) {
4804 err = ext4_enable_quotas(sb);
4805 if (err)
4806 goto restore_opts;
4807 }
4808 }
4809 #endif
4810
4811 *flags = (*flags & ~MS_LAZYTIME) | (sb->s_flags & MS_LAZYTIME);
4812 ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data);
4813 kfree(orig_data);
4814 return 0;
4815
4816 restore_opts:
4817 sb->s_flags = old_sb_flags;
4818 sbi->s_mount_opt = old_opts.s_mount_opt;
4819 sbi->s_mount_opt2 = old_opts.s_mount_opt2;
4820 sbi->s_resuid = old_opts.s_resuid;
4821 sbi->s_resgid = old_opts.s_resgid;
4822 sbi->s_commit_interval = old_opts.s_commit_interval;
4823 sbi->s_min_batch_time = old_opts.s_min_batch_time;
4824 sbi->s_max_batch_time = old_opts.s_max_batch_time;
4825 #ifdef CONFIG_QUOTA
4826 sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
4827 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
4828 kfree(sbi->s_qf_names[i]);
4829 sbi->s_qf_names[i] = old_opts.s_qf_names[i];
4830 }
4831 #endif
4832 kfree(orig_data);
4833 return err;
4834 }
4835
4836 #ifdef CONFIG_QUOTA
4837 static int ext4_statfs_project(struct super_block *sb,
4838 kprojid_t projid, struct kstatfs *buf)
4839 {
4840 struct kqid qid;
4841 struct dquot *dquot;
4842 u64 limit;
4843 u64 curblock;
4844
4845 qid = make_kqid_projid(projid);
4846 dquot = dqget(sb, qid);
4847 if (IS_ERR(dquot))
4848 return PTR_ERR(dquot);
4849 spin_lock(&dq_data_lock);
4850
4851 limit = (dquot->dq_dqb.dqb_bsoftlimit ?
4852 dquot->dq_dqb.dqb_bsoftlimit :
4853 dquot->dq_dqb.dqb_bhardlimit) >> sb->s_blocksize_bits;
4854 if (limit && buf->f_blocks > limit) {
4855 curblock = dquot->dq_dqb.dqb_curspace >> sb->s_blocksize_bits;
4856 buf->f_blocks = limit;
4857 buf->f_bfree = buf->f_bavail =
4858 (buf->f_blocks > curblock) ?
4859 (buf->f_blocks - curblock) : 0;
4860 }
4861
4862 limit = dquot->dq_dqb.dqb_isoftlimit ?
4863 dquot->dq_dqb.dqb_isoftlimit :
4864 dquot->dq_dqb.dqb_ihardlimit;
4865 if (limit && buf->f_files > limit) {
4866 buf->f_files = limit;
4867 buf->f_ffree =
4868 (buf->f_files > dquot->dq_dqb.dqb_curinodes) ?
4869 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0;
4870 }
4871
4872 spin_unlock(&dq_data_lock);
4873 dqput(dquot);
4874 return 0;
4875 }
4876 #endif
4877
4878 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
4879 {
4880 struct super_block *sb = dentry->d_sb;
4881 struct ext4_sb_info *sbi = EXT4_SB(sb);
4882 struct ext4_super_block *es = sbi->s_es;
4883 ext4_fsblk_t overhead = 0, resv_blocks;
4884 u64 fsid;
4885 s64 bfree;
4886 resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters));
4887
4888 if (!test_opt(sb, MINIX_DF))
4889 overhead = sbi->s_overhead;
4890
4891 buf->f_type = EXT4_SUPER_MAGIC;
4892 buf->f_bsize = sb->s_blocksize;
4893 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead);
4894 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
4895 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
4896 /* prevent underflow in case that few free space is available */
4897 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0));
4898 buf->f_bavail = buf->f_bfree -
4899 (ext4_r_blocks_count(es) + resv_blocks);
4900 if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks))
4901 buf->f_bavail = 0;
4902 buf->f_files = le32_to_cpu(es->s_inodes_count);
4903 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
4904 buf->f_namelen = EXT4_NAME_LEN;
4905 fsid = le64_to_cpup((void *)es->s_uuid) ^
4906 le64_to_cpup((void *)es->s_uuid + sizeof(u64));
4907 buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL;
4908 buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL;
4909
4910 #ifdef CONFIG_QUOTA
4911 if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) &&
4912 sb_has_quota_limits_enabled(sb, PRJQUOTA))
4913 ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf);
4914 #endif
4915 return 0;
4916 }
4917
4918 /* Helper function for writing quotas on sync - we need to start transaction
4919 * before quota file is locked for write. Otherwise the are possible deadlocks:
4920 * Process 1 Process 2
4921 * ext4_create() quota_sync()
4922 * jbd2_journal_start() write_dquot()
4923 * dquot_initialize() down(dqio_mutex)
4924 * down(dqio_mutex) jbd2_journal_start()
4925 *
4926 */
4927
4928 #ifdef CONFIG_QUOTA
4929
4930 static inline struct inode *dquot_to_inode(struct dquot *dquot)
4931 {
4932 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type];
4933 }
4934
4935 static int ext4_write_dquot(struct dquot *dquot)
4936 {
4937 int ret, err;
4938 handle_t *handle;
4939 struct inode *inode;
4940
4941 inode = dquot_to_inode(dquot);
4942 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4943 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
4944 if (IS_ERR(handle))
4945 return PTR_ERR(handle);
4946 ret = dquot_commit(dquot);
4947 err = ext4_journal_stop(handle);
4948 if (!ret)
4949 ret = err;
4950 return ret;
4951 }
4952
4953 static int ext4_acquire_dquot(struct dquot *dquot)
4954 {
4955 int ret, err;
4956 handle_t *handle;
4957
4958 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
4959 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
4960 if (IS_ERR(handle))
4961 return PTR_ERR(handle);
4962 ret = dquot_acquire(dquot);
4963 err = ext4_journal_stop(handle);
4964 if (!ret)
4965 ret = err;
4966 return ret;
4967 }
4968
4969 static int ext4_release_dquot(struct dquot *dquot)
4970 {
4971 int ret, err;
4972 handle_t *handle;
4973
4974 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
4975 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
4976 if (IS_ERR(handle)) {
4977 /* Release dquot anyway to avoid endless cycle in dqput() */
4978 dquot_release(dquot);
4979 return PTR_ERR(handle);
4980 }
4981 ret = dquot_release(dquot);
4982 err = ext4_journal_stop(handle);
4983 if (!ret)
4984 ret = err;
4985 return ret;
4986 }
4987
4988 static int ext4_mark_dquot_dirty(struct dquot *dquot)
4989 {
4990 struct super_block *sb = dquot->dq_sb;
4991 struct ext4_sb_info *sbi = EXT4_SB(sb);
4992
4993 /* Are we journaling quotas? */
4994 if (ext4_has_feature_quota(sb) ||
4995 sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
4996 dquot_mark_dquot_dirty(dquot);
4997 return ext4_write_dquot(dquot);
4998 } else {
4999 return dquot_mark_dquot_dirty(dquot);
5000 }
5001 }
5002
5003 static int ext4_write_info(struct super_block *sb, int type)
5004 {
5005 int ret, err;
5006 handle_t *handle;
5007
5008 /* Data block + inode block */
5009 handle = ext4_journal_start(d_inode(sb->s_root), EXT4_HT_QUOTA, 2);
5010 if (IS_ERR(handle))
5011 return PTR_ERR(handle);
5012 ret = dquot_commit_info(sb, type);
5013 err = ext4_journal_stop(handle);
5014 if (!ret)
5015 ret = err;
5016 return ret;
5017 }
5018
5019 /*
5020 * Turn on quotas during mount time - we need to find
5021 * the quota file and such...
5022 */
5023 static int ext4_quota_on_mount(struct super_block *sb, int type)
5024 {
5025 return dquot_quota_on_mount(sb, EXT4_SB(sb)->s_qf_names[type],
5026 EXT4_SB(sb)->s_jquota_fmt, type);
5027 }
5028
5029 /*
5030 * Standard function to be called on quota_on
5031 */
5032 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
5033 struct path *path)
5034 {
5035 int err;
5036
5037 if (!test_opt(sb, QUOTA))
5038 return -EINVAL;
5039
5040 /* Quotafile not on the same filesystem? */
5041 if (path->dentry->d_sb != sb)
5042 return -EXDEV;
5043 /* Journaling quota? */
5044 if (EXT4_SB(sb)->s_qf_names[type]) {
5045 /* Quotafile not in fs root? */
5046 if (path->dentry->d_parent != sb->s_root)
5047 ext4_msg(sb, KERN_WARNING,
5048 "Quota file not on filesystem root. "
5049 "Journaled quota will not work");
5050 }
5051
5052 /*
5053 * When we journal data on quota file, we have to flush journal to see
5054 * all updates to the file when we bypass pagecache...
5055 */
5056 if (EXT4_SB(sb)->s_journal &&
5057 ext4_should_journal_data(d_inode(path->dentry))) {
5058 /*
5059 * We don't need to lock updates but journal_flush() could
5060 * otherwise be livelocked...
5061 */
5062 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal);
5063 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal);
5064 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
5065 if (err)
5066 return err;
5067 }
5068
5069 return dquot_quota_on(sb, type, format_id, path);
5070 }
5071
5072 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
5073 unsigned int flags)
5074 {
5075 int err;
5076 struct inode *qf_inode;
5077 unsigned long qf_inums[EXT4_MAXQUOTAS] = {
5078 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
5079 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
5080 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
5081 };
5082
5083 BUG_ON(!ext4_has_feature_quota(sb));
5084
5085 if (!qf_inums[type])
5086 return -EPERM;
5087
5088 qf_inode = ext4_iget(sb, qf_inums[type]);
5089 if (IS_ERR(qf_inode)) {
5090 ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]);
5091 return PTR_ERR(qf_inode);
5092 }
5093
5094 /* Don't account quota for quota files to avoid recursion */
5095 qf_inode->i_flags |= S_NOQUOTA;
5096 err = dquot_enable(qf_inode, type, format_id, flags);
5097 iput(qf_inode);
5098
5099 return err;
5100 }
5101
5102 /* Enable usage tracking for all quota types. */
5103 static int ext4_enable_quotas(struct super_block *sb)
5104 {
5105 int type, err = 0;
5106 unsigned long qf_inums[EXT4_MAXQUOTAS] = {
5107 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
5108 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
5109 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
5110 };
5111
5112 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE;
5113 for (type = 0; type < EXT4_MAXQUOTAS; type++) {
5114 if (qf_inums[type]) {
5115 err = ext4_quota_enable(sb, type, QFMT_VFS_V1,
5116 DQUOT_USAGE_ENABLED);
5117 if (err) {
5118 ext4_warning(sb,
5119 "Failed to enable quota tracking "
5120 "(type=%d, err=%d). Please run "
5121 "e2fsck to fix.", type, err);
5122 return err;
5123 }
5124 }
5125 }
5126 return 0;
5127 }
5128
5129 static int ext4_quota_off(struct super_block *sb, int type)
5130 {
5131 struct inode *inode = sb_dqopt(sb)->files[type];
5132 handle_t *handle;
5133
5134 /* Force all delayed allocation blocks to be allocated.
5135 * Caller already holds s_umount sem */
5136 if (test_opt(sb, DELALLOC))
5137 sync_filesystem(sb);
5138
5139 if (!inode)
5140 goto out;
5141
5142 /* Update modification times of quota files when userspace can
5143 * start looking at them */
5144 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
5145 if (IS_ERR(handle))
5146 goto out;
5147 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
5148 ext4_mark_inode_dirty(handle, inode);
5149 ext4_journal_stop(handle);
5150
5151 out:
5152 return dquot_quota_off(sb, type);
5153 }
5154
5155 /* Read data from quotafile - avoid pagecache and such because we cannot afford
5156 * acquiring the locks... As quota files are never truncated and quota code
5157 * itself serializes the operations (and no one else should touch the files)
5158 * we don't have to be afraid of races */
5159 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
5160 size_t len, loff_t off)
5161 {
5162 struct inode *inode = sb_dqopt(sb)->files[type];
5163 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5164 int offset = off & (sb->s_blocksize - 1);
5165 int tocopy;
5166 size_t toread;
5167 struct buffer_head *bh;
5168 loff_t i_size = i_size_read(inode);
5169
5170 if (off > i_size)
5171 return 0;
5172 if (off+len > i_size)
5173 len = i_size-off;
5174 toread = len;
5175 while (toread > 0) {
5176 tocopy = sb->s_blocksize - offset < toread ?
5177 sb->s_blocksize - offset : toread;
5178 bh = ext4_bread(NULL, inode, blk, 0);
5179 if (IS_ERR(bh))
5180 return PTR_ERR(bh);
5181 if (!bh) /* A hole? */
5182 memset(data, 0, tocopy);
5183 else
5184 memcpy(data, bh->b_data+offset, tocopy);
5185 brelse(bh);
5186 offset = 0;
5187 toread -= tocopy;
5188 data += tocopy;
5189 blk++;
5190 }
5191 return len;
5192 }
5193
5194 /* Write to quotafile (we know the transaction is already started and has
5195 * enough credits) */
5196 static ssize_t ext4_quota_write(struct super_block *sb, int type,
5197 const char *data, size_t len, loff_t off)
5198 {
5199 struct inode *inode = sb_dqopt(sb)->files[type];
5200 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5201 int err, offset = off & (sb->s_blocksize - 1);
5202 int retries = 0;
5203 struct buffer_head *bh;
5204 handle_t *handle = journal_current_handle();
5205
5206 if (EXT4_SB(sb)->s_journal && !handle) {
5207 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5208 " cancelled because transaction is not started",
5209 (unsigned long long)off, (unsigned long long)len);
5210 return -EIO;
5211 }
5212 /*
5213 * Since we account only one data block in transaction credits,
5214 * then it is impossible to cross a block boundary.
5215 */
5216 if (sb->s_blocksize - offset < len) {
5217 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5218 " cancelled because not block aligned",
5219 (unsigned long long)off, (unsigned long long)len);
5220 return -EIO;
5221 }
5222
5223 do {
5224 bh = ext4_bread(handle, inode, blk,
5225 EXT4_GET_BLOCKS_CREATE |
5226 EXT4_GET_BLOCKS_METADATA_NOFAIL);
5227 } while (IS_ERR(bh) && (PTR_ERR(bh) == -ENOSPC) &&
5228 ext4_should_retry_alloc(inode->i_sb, &retries));
5229 if (IS_ERR(bh))
5230 return PTR_ERR(bh);
5231 if (!bh)
5232 goto out;
5233 BUFFER_TRACE(bh, "get write access");
5234 err = ext4_journal_get_write_access(handle, bh);
5235 if (err) {
5236 brelse(bh);
5237 return err;
5238 }
5239 lock_buffer(bh);
5240 memcpy(bh->b_data+offset, data, len);
5241 flush_dcache_page(bh->b_page);
5242 unlock_buffer(bh);
5243 err = ext4_handle_dirty_metadata(handle, NULL, bh);
5244 brelse(bh);
5245 out:
5246 if (inode->i_size < off + len) {
5247 i_size_write(inode, off + len);
5248 EXT4_I(inode)->i_disksize = inode->i_size;
5249 ext4_mark_inode_dirty(handle, inode);
5250 }
5251 return len;
5252 }
5253
5254 #endif
5255
5256 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
5257 const char *dev_name, void *data)
5258 {
5259 return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super);
5260 }
5261
5262 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
5263 static inline void register_as_ext2(void)
5264 {
5265 int err = register_filesystem(&ext2_fs_type);
5266 if (err)
5267 printk(KERN_WARNING
5268 "EXT4-fs: Unable to register as ext2 (%d)\n", err);
5269 }
5270
5271 static inline void unregister_as_ext2(void)
5272 {
5273 unregister_filesystem(&ext2_fs_type);
5274 }
5275
5276 static inline int ext2_feature_set_ok(struct super_block *sb)
5277 {
5278 if (ext4_has_unknown_ext2_incompat_features(sb))
5279 return 0;
5280 if (sb->s_flags & MS_RDONLY)
5281 return 1;
5282 if (ext4_has_unknown_ext2_ro_compat_features(sb))
5283 return 0;
5284 return 1;
5285 }
5286 #else
5287 static inline void register_as_ext2(void) { }
5288 static inline void unregister_as_ext2(void) { }
5289 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
5290 #endif
5291
5292 static inline void register_as_ext3(void)
5293 {
5294 int err = register_filesystem(&ext3_fs_type);
5295 if (err)
5296 printk(KERN_WARNING
5297 "EXT4-fs: Unable to register as ext3 (%d)\n", err);
5298 }
5299
5300 static inline void unregister_as_ext3(void)
5301 {
5302 unregister_filesystem(&ext3_fs_type);
5303 }
5304
5305 static inline int ext3_feature_set_ok(struct super_block *sb)
5306 {
5307 if (ext4_has_unknown_ext3_incompat_features(sb))
5308 return 0;
5309 if (!ext4_has_feature_journal(sb))
5310 return 0;
5311 if (sb->s_flags & MS_RDONLY)
5312 return 1;
5313 if (ext4_has_unknown_ext3_ro_compat_features(sb))
5314 return 0;
5315 return 1;
5316 }
5317
5318 static struct file_system_type ext4_fs_type = {
5319 .owner = THIS_MODULE,
5320 .name = "ext4",
5321 .mount = ext4_mount,
5322 .kill_sb = kill_block_super,
5323 .fs_flags = FS_REQUIRES_DEV,
5324 };
5325 MODULE_ALIAS_FS("ext4");
5326
5327 /* Shared across all ext4 file systems */
5328 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ];
5329
5330 static int __init ext4_init_fs(void)
5331 {
5332 int i, err;
5333
5334 ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64);
5335 ext4_li_info = NULL;
5336 mutex_init(&ext4_li_mtx);
5337
5338 /* Build-time check for flags consistency */
5339 ext4_check_flag_values();
5340
5341 for (i = 0; i < EXT4_WQ_HASH_SZ; i++)
5342 init_waitqueue_head(&ext4__ioend_wq[i]);
5343
5344 err = ext4_init_es();
5345 if (err)
5346 return err;
5347
5348 err = ext4_init_pageio();
5349 if (err)
5350 goto out5;
5351
5352 err = ext4_init_system_zone();
5353 if (err)
5354 goto out4;
5355
5356 err = ext4_init_sysfs();
5357 if (err)
5358 goto out3;
5359
5360 err = ext4_init_mballoc();
5361 if (err)
5362 goto out2;
5363 err = init_inodecache();
5364 if (err)
5365 goto out1;
5366 register_as_ext3();
5367 register_as_ext2();
5368 err = register_filesystem(&ext4_fs_type);
5369 if (err)
5370 goto out;
5371
5372 return 0;
5373 out:
5374 unregister_as_ext2();
5375 unregister_as_ext3();
5376 destroy_inodecache();
5377 out1:
5378 ext4_exit_mballoc();
5379 out2:
5380 ext4_exit_sysfs();
5381 out3:
5382 ext4_exit_system_zone();
5383 out4:
5384 ext4_exit_pageio();
5385 out5:
5386 ext4_exit_es();
5387
5388 return err;
5389 }
5390
5391 static void __exit ext4_exit_fs(void)
5392 {
5393 ext4_exit_crypto();
5394 ext4_destroy_lazyinit_thread();
5395 unregister_as_ext2();
5396 unregister_as_ext3();
5397 unregister_filesystem(&ext4_fs_type);
5398 destroy_inodecache();
5399 ext4_exit_mballoc();
5400 ext4_exit_sysfs();
5401 ext4_exit_system_zone();
5402 ext4_exit_pageio();
5403 ext4_exit_es();
5404 }
5405
5406 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
5407 MODULE_DESCRIPTION("Fourth Extended Filesystem");
5408 MODULE_LICENSE("GPL");
5409 module_init(ext4_init_fs)
5410 module_exit(ext4_exit_fs)