]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - fs/ext4/super.c
9a6f9875aa3499fb7ac3a48a062f933b162aa2b9
[mirror_ubuntu-hirsute-kernel.git] / fs / ext4 / super.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/fs/ext4/super.c
4 *
5 * Copyright (C) 1992, 1993, 1994, 1995
6 * Remy Card (card@masi.ibp.fr)
7 * Laboratoire MASI - Institut Blaise Pascal
8 * Universite Pierre et Marie Curie (Paris VI)
9 *
10 * from
11 *
12 * linux/fs/minix/inode.c
13 *
14 * Copyright (C) 1991, 1992 Linus Torvalds
15 *
16 * Big-endian to little-endian byte-swapping/bitmaps by
17 * David S. Miller (davem@caip.rutgers.edu), 1995
18 */
19
20 #include <linux/module.h>
21 #include <linux/string.h>
22 #include <linux/fs.h>
23 #include <linux/time.h>
24 #include <linux/vmalloc.h>
25 #include <linux/slab.h>
26 #include <linux/init.h>
27 #include <linux/blkdev.h>
28 #include <linux/backing-dev.h>
29 #include <linux/parser.h>
30 #include <linux/buffer_head.h>
31 #include <linux/exportfs.h>
32 #include <linux/vfs.h>
33 #include <linux/random.h>
34 #include <linux/mount.h>
35 #include <linux/namei.h>
36 #include <linux/quotaops.h>
37 #include <linux/seq_file.h>
38 #include <linux/ctype.h>
39 #include <linux/log2.h>
40 #include <linux/crc16.h>
41 #include <linux/dax.h>
42 #include <linux/cleancache.h>
43 #include <linux/uaccess.h>
44 #include <linux/iversion.h>
45 #include <linux/unicode.h>
46 #include <linux/part_stat.h>
47 #include <linux/kthread.h>
48 #include <linux/freezer.h>
49
50 #include "ext4.h"
51 #include "ext4_extents.h" /* Needed for trace points definition */
52 #include "ext4_jbd2.h"
53 #include "xattr.h"
54 #include "acl.h"
55 #include "mballoc.h"
56 #include "fsmap.h"
57
58 #define CREATE_TRACE_POINTS
59 #include <trace/events/ext4.h>
60
61 static struct ext4_lazy_init *ext4_li_info;
62 static struct mutex ext4_li_mtx;
63 static struct ratelimit_state ext4_mount_msg_ratelimit;
64
65 static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
66 unsigned long journal_devnum);
67 static int ext4_show_options(struct seq_file *seq, struct dentry *root);
68 static void ext4_update_super(struct super_block *sb);
69 static int ext4_commit_super(struct super_block *sb);
70 static int ext4_mark_recovery_complete(struct super_block *sb,
71 struct ext4_super_block *es);
72 static int ext4_clear_journal_err(struct super_block *sb,
73 struct ext4_super_block *es);
74 static int ext4_sync_fs(struct super_block *sb, int wait);
75 static int ext4_remount(struct super_block *sb, int *flags, char *data);
76 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
77 static int ext4_unfreeze(struct super_block *sb);
78 static int ext4_freeze(struct super_block *sb);
79 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
80 const char *dev_name, void *data);
81 static inline int ext2_feature_set_ok(struct super_block *sb);
82 static inline int ext3_feature_set_ok(struct super_block *sb);
83 static int ext4_feature_set_ok(struct super_block *sb, int readonly);
84 static void ext4_destroy_lazyinit_thread(void);
85 static void ext4_unregister_li_request(struct super_block *sb);
86 static void ext4_clear_request_list(void);
87 static struct inode *ext4_get_journal_inode(struct super_block *sb,
88 unsigned int journal_inum);
89
90 /*
91 * Lock ordering
92 *
93 * Note the difference between i_mmap_sem (EXT4_I(inode)->i_mmap_sem) and
94 * i_mmap_rwsem (inode->i_mmap_rwsem)!
95 *
96 * page fault path:
97 * mmap_lock -> sb_start_pagefault -> i_mmap_sem (r) -> transaction start ->
98 * page lock -> i_data_sem (rw)
99 *
100 * buffered write path:
101 * sb_start_write -> i_mutex -> mmap_lock
102 * sb_start_write -> i_mutex -> transaction start -> page lock ->
103 * i_data_sem (rw)
104 *
105 * truncate:
106 * sb_start_write -> i_mutex -> i_mmap_sem (w) -> i_mmap_rwsem (w) -> page lock
107 * sb_start_write -> i_mutex -> i_mmap_sem (w) -> transaction start ->
108 * i_data_sem (rw)
109 *
110 * direct IO:
111 * sb_start_write -> i_mutex -> mmap_lock
112 * sb_start_write -> i_mutex -> transaction start -> i_data_sem (rw)
113 *
114 * writepages:
115 * transaction start -> page lock(s) -> i_data_sem (rw)
116 */
117
118 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
119 static struct file_system_type ext2_fs_type = {
120 .owner = THIS_MODULE,
121 .name = "ext2",
122 .mount = ext4_mount,
123 .kill_sb = kill_block_super,
124 .fs_flags = FS_REQUIRES_DEV,
125 };
126 MODULE_ALIAS_FS("ext2");
127 MODULE_ALIAS("ext2");
128 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type)
129 #else
130 #define IS_EXT2_SB(sb) (0)
131 #endif
132
133
134 static struct file_system_type ext3_fs_type = {
135 .owner = THIS_MODULE,
136 .name = "ext3",
137 .mount = ext4_mount,
138 .kill_sb = kill_block_super,
139 .fs_flags = FS_REQUIRES_DEV,
140 };
141 MODULE_ALIAS_FS("ext3");
142 MODULE_ALIAS("ext3");
143 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type)
144
145
146 static inline void __ext4_read_bh(struct buffer_head *bh, int op_flags,
147 bh_end_io_t *end_io)
148 {
149 /*
150 * buffer's verified bit is no longer valid after reading from
151 * disk again due to write out error, clear it to make sure we
152 * recheck the buffer contents.
153 */
154 clear_buffer_verified(bh);
155
156 bh->b_end_io = end_io ? end_io : end_buffer_read_sync;
157 get_bh(bh);
158 submit_bh(REQ_OP_READ, op_flags, bh);
159 }
160
161 void ext4_read_bh_nowait(struct buffer_head *bh, int op_flags,
162 bh_end_io_t *end_io)
163 {
164 BUG_ON(!buffer_locked(bh));
165
166 if (ext4_buffer_uptodate(bh)) {
167 unlock_buffer(bh);
168 return;
169 }
170 __ext4_read_bh(bh, op_flags, end_io);
171 }
172
173 int ext4_read_bh(struct buffer_head *bh, int op_flags, bh_end_io_t *end_io)
174 {
175 BUG_ON(!buffer_locked(bh));
176
177 if (ext4_buffer_uptodate(bh)) {
178 unlock_buffer(bh);
179 return 0;
180 }
181
182 __ext4_read_bh(bh, op_flags, end_io);
183
184 wait_on_buffer(bh);
185 if (buffer_uptodate(bh))
186 return 0;
187 return -EIO;
188 }
189
190 int ext4_read_bh_lock(struct buffer_head *bh, int op_flags, bool wait)
191 {
192 if (trylock_buffer(bh)) {
193 if (wait)
194 return ext4_read_bh(bh, op_flags, NULL);
195 ext4_read_bh_nowait(bh, op_flags, NULL);
196 return 0;
197 }
198 if (wait) {
199 wait_on_buffer(bh);
200 if (buffer_uptodate(bh))
201 return 0;
202 return -EIO;
203 }
204 return 0;
205 }
206
207 /*
208 * This works like __bread_gfp() except it uses ERR_PTR for error
209 * returns. Currently with sb_bread it's impossible to distinguish
210 * between ENOMEM and EIO situations (since both result in a NULL
211 * return.
212 */
213 static struct buffer_head *__ext4_sb_bread_gfp(struct super_block *sb,
214 sector_t block, int op_flags,
215 gfp_t gfp)
216 {
217 struct buffer_head *bh;
218 int ret;
219
220 bh = sb_getblk_gfp(sb, block, gfp);
221 if (bh == NULL)
222 return ERR_PTR(-ENOMEM);
223 if (ext4_buffer_uptodate(bh))
224 return bh;
225
226 ret = ext4_read_bh_lock(bh, REQ_META | op_flags, true);
227 if (ret) {
228 put_bh(bh);
229 return ERR_PTR(ret);
230 }
231 return bh;
232 }
233
234 struct buffer_head *ext4_sb_bread(struct super_block *sb, sector_t block,
235 int op_flags)
236 {
237 return __ext4_sb_bread_gfp(sb, block, op_flags, __GFP_MOVABLE);
238 }
239
240 struct buffer_head *ext4_sb_bread_unmovable(struct super_block *sb,
241 sector_t block)
242 {
243 return __ext4_sb_bread_gfp(sb, block, 0, 0);
244 }
245
246 void ext4_sb_breadahead_unmovable(struct super_block *sb, sector_t block)
247 {
248 struct buffer_head *bh = sb_getblk_gfp(sb, block, 0);
249
250 if (likely(bh)) {
251 ext4_read_bh_lock(bh, REQ_RAHEAD, false);
252 brelse(bh);
253 }
254 }
255
256 static int ext4_verify_csum_type(struct super_block *sb,
257 struct ext4_super_block *es)
258 {
259 if (!ext4_has_feature_metadata_csum(sb))
260 return 1;
261
262 return es->s_checksum_type == EXT4_CRC32C_CHKSUM;
263 }
264
265 static __le32 ext4_superblock_csum(struct super_block *sb,
266 struct ext4_super_block *es)
267 {
268 struct ext4_sb_info *sbi = EXT4_SB(sb);
269 int offset = offsetof(struct ext4_super_block, s_checksum);
270 __u32 csum;
271
272 csum = ext4_chksum(sbi, ~0, (char *)es, offset);
273
274 return cpu_to_le32(csum);
275 }
276
277 static int ext4_superblock_csum_verify(struct super_block *sb,
278 struct ext4_super_block *es)
279 {
280 if (!ext4_has_metadata_csum(sb))
281 return 1;
282
283 return es->s_checksum == ext4_superblock_csum(sb, es);
284 }
285
286 void ext4_superblock_csum_set(struct super_block *sb)
287 {
288 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
289
290 if (!ext4_has_metadata_csum(sb))
291 return;
292
293 es->s_checksum = ext4_superblock_csum(sb, es);
294 }
295
296 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
297 struct ext4_group_desc *bg)
298 {
299 return le32_to_cpu(bg->bg_block_bitmap_lo) |
300 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
301 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
302 }
303
304 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
305 struct ext4_group_desc *bg)
306 {
307 return le32_to_cpu(bg->bg_inode_bitmap_lo) |
308 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
309 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
310 }
311
312 ext4_fsblk_t ext4_inode_table(struct super_block *sb,
313 struct ext4_group_desc *bg)
314 {
315 return le32_to_cpu(bg->bg_inode_table_lo) |
316 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
317 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
318 }
319
320 __u32 ext4_free_group_clusters(struct super_block *sb,
321 struct ext4_group_desc *bg)
322 {
323 return le16_to_cpu(bg->bg_free_blocks_count_lo) |
324 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
325 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
326 }
327
328 __u32 ext4_free_inodes_count(struct super_block *sb,
329 struct ext4_group_desc *bg)
330 {
331 return le16_to_cpu(bg->bg_free_inodes_count_lo) |
332 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
333 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
334 }
335
336 __u32 ext4_used_dirs_count(struct super_block *sb,
337 struct ext4_group_desc *bg)
338 {
339 return le16_to_cpu(bg->bg_used_dirs_count_lo) |
340 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
341 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
342 }
343
344 __u32 ext4_itable_unused_count(struct super_block *sb,
345 struct ext4_group_desc *bg)
346 {
347 return le16_to_cpu(bg->bg_itable_unused_lo) |
348 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
349 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
350 }
351
352 void ext4_block_bitmap_set(struct super_block *sb,
353 struct ext4_group_desc *bg, ext4_fsblk_t blk)
354 {
355 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
356 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
357 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
358 }
359
360 void ext4_inode_bitmap_set(struct super_block *sb,
361 struct ext4_group_desc *bg, ext4_fsblk_t blk)
362 {
363 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk);
364 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
365 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
366 }
367
368 void ext4_inode_table_set(struct super_block *sb,
369 struct ext4_group_desc *bg, ext4_fsblk_t blk)
370 {
371 bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
372 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
373 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
374 }
375
376 void ext4_free_group_clusters_set(struct super_block *sb,
377 struct ext4_group_desc *bg, __u32 count)
378 {
379 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
380 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
381 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
382 }
383
384 void ext4_free_inodes_set(struct super_block *sb,
385 struct ext4_group_desc *bg, __u32 count)
386 {
387 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
388 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
389 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
390 }
391
392 void ext4_used_dirs_set(struct super_block *sb,
393 struct ext4_group_desc *bg, __u32 count)
394 {
395 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
396 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
397 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
398 }
399
400 void ext4_itable_unused_set(struct super_block *sb,
401 struct ext4_group_desc *bg, __u32 count)
402 {
403 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
404 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
405 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
406 }
407
408 static void __ext4_update_tstamp(__le32 *lo, __u8 *hi, time64_t now)
409 {
410 now = clamp_val(now, 0, (1ull << 40) - 1);
411
412 *lo = cpu_to_le32(lower_32_bits(now));
413 *hi = upper_32_bits(now);
414 }
415
416 static time64_t __ext4_get_tstamp(__le32 *lo, __u8 *hi)
417 {
418 return ((time64_t)(*hi) << 32) + le32_to_cpu(*lo);
419 }
420 #define ext4_update_tstamp(es, tstamp) \
421 __ext4_update_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi, \
422 ktime_get_real_seconds())
423 #define ext4_get_tstamp(es, tstamp) \
424 __ext4_get_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi)
425
426 /*
427 * The del_gendisk() function uninitializes the disk-specific data
428 * structures, including the bdi structure, without telling anyone
429 * else. Once this happens, any attempt to call mark_buffer_dirty()
430 * (for example, by ext4_commit_super), will cause a kernel OOPS.
431 * This is a kludge to prevent these oops until we can put in a proper
432 * hook in del_gendisk() to inform the VFS and file system layers.
433 */
434 static int block_device_ejected(struct super_block *sb)
435 {
436 struct inode *bd_inode = sb->s_bdev->bd_inode;
437 struct backing_dev_info *bdi = inode_to_bdi(bd_inode);
438
439 return bdi->dev == NULL;
440 }
441
442 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn)
443 {
444 struct super_block *sb = journal->j_private;
445 struct ext4_sb_info *sbi = EXT4_SB(sb);
446 int error = is_journal_aborted(journal);
447 struct ext4_journal_cb_entry *jce;
448
449 BUG_ON(txn->t_state == T_FINISHED);
450
451 ext4_process_freed_data(sb, txn->t_tid);
452
453 spin_lock(&sbi->s_md_lock);
454 while (!list_empty(&txn->t_private_list)) {
455 jce = list_entry(txn->t_private_list.next,
456 struct ext4_journal_cb_entry, jce_list);
457 list_del_init(&jce->jce_list);
458 spin_unlock(&sbi->s_md_lock);
459 jce->jce_func(sb, jce, error);
460 spin_lock(&sbi->s_md_lock);
461 }
462 spin_unlock(&sbi->s_md_lock);
463 }
464
465 /*
466 * This writepage callback for write_cache_pages()
467 * takes care of a few cases after page cleaning.
468 *
469 * write_cache_pages() already checks for dirty pages
470 * and calls clear_page_dirty_for_io(), which we want,
471 * to write protect the pages.
472 *
473 * However, we may have to redirty a page (see below.)
474 */
475 static int ext4_journalled_writepage_callback(struct page *page,
476 struct writeback_control *wbc,
477 void *data)
478 {
479 transaction_t *transaction = (transaction_t *) data;
480 struct buffer_head *bh, *head;
481 struct journal_head *jh;
482
483 bh = head = page_buffers(page);
484 do {
485 /*
486 * We have to redirty a page in these cases:
487 * 1) If buffer is dirty, it means the page was dirty because it
488 * contains a buffer that needs checkpointing. So the dirty bit
489 * needs to be preserved so that checkpointing writes the buffer
490 * properly.
491 * 2) If buffer is not part of the committing transaction
492 * (we may have just accidentally come across this buffer because
493 * inode range tracking is not exact) or if the currently running
494 * transaction already contains this buffer as well, dirty bit
495 * needs to be preserved so that the buffer gets writeprotected
496 * properly on running transaction's commit.
497 */
498 jh = bh2jh(bh);
499 if (buffer_dirty(bh) ||
500 (jh && (jh->b_transaction != transaction ||
501 jh->b_next_transaction))) {
502 redirty_page_for_writepage(wbc, page);
503 goto out;
504 }
505 } while ((bh = bh->b_this_page) != head);
506
507 out:
508 return AOP_WRITEPAGE_ACTIVATE;
509 }
510
511 static int ext4_journalled_submit_inode_data_buffers(struct jbd2_inode *jinode)
512 {
513 struct address_space *mapping = jinode->i_vfs_inode->i_mapping;
514 struct writeback_control wbc = {
515 .sync_mode = WB_SYNC_ALL,
516 .nr_to_write = LONG_MAX,
517 .range_start = jinode->i_dirty_start,
518 .range_end = jinode->i_dirty_end,
519 };
520
521 return write_cache_pages(mapping, &wbc,
522 ext4_journalled_writepage_callback,
523 jinode->i_transaction);
524 }
525
526 static int ext4_journal_submit_inode_data_buffers(struct jbd2_inode *jinode)
527 {
528 int ret;
529
530 if (ext4_should_journal_data(jinode->i_vfs_inode))
531 ret = ext4_journalled_submit_inode_data_buffers(jinode);
532 else
533 ret = jbd2_journal_submit_inode_data_buffers(jinode);
534
535 return ret;
536 }
537
538 static int ext4_journal_finish_inode_data_buffers(struct jbd2_inode *jinode)
539 {
540 int ret = 0;
541
542 if (!ext4_should_journal_data(jinode->i_vfs_inode))
543 ret = jbd2_journal_finish_inode_data_buffers(jinode);
544
545 return ret;
546 }
547
548 static bool system_going_down(void)
549 {
550 return system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF
551 || system_state == SYSTEM_RESTART;
552 }
553
554 struct ext4_err_translation {
555 int code;
556 int errno;
557 };
558
559 #define EXT4_ERR_TRANSLATE(err) { .code = EXT4_ERR_##err, .errno = err }
560
561 static struct ext4_err_translation err_translation[] = {
562 EXT4_ERR_TRANSLATE(EIO),
563 EXT4_ERR_TRANSLATE(ENOMEM),
564 EXT4_ERR_TRANSLATE(EFSBADCRC),
565 EXT4_ERR_TRANSLATE(EFSCORRUPTED),
566 EXT4_ERR_TRANSLATE(ENOSPC),
567 EXT4_ERR_TRANSLATE(ENOKEY),
568 EXT4_ERR_TRANSLATE(EROFS),
569 EXT4_ERR_TRANSLATE(EFBIG),
570 EXT4_ERR_TRANSLATE(EEXIST),
571 EXT4_ERR_TRANSLATE(ERANGE),
572 EXT4_ERR_TRANSLATE(EOVERFLOW),
573 EXT4_ERR_TRANSLATE(EBUSY),
574 EXT4_ERR_TRANSLATE(ENOTDIR),
575 EXT4_ERR_TRANSLATE(ENOTEMPTY),
576 EXT4_ERR_TRANSLATE(ESHUTDOWN),
577 EXT4_ERR_TRANSLATE(EFAULT),
578 };
579
580 static int ext4_errno_to_code(int errno)
581 {
582 int i;
583
584 for (i = 0; i < ARRAY_SIZE(err_translation); i++)
585 if (err_translation[i].errno == errno)
586 return err_translation[i].code;
587 return EXT4_ERR_UNKNOWN;
588 }
589
590 static void save_error_info(struct super_block *sb, int error,
591 __u32 ino, __u64 block,
592 const char *func, unsigned int line)
593 {
594 struct ext4_sb_info *sbi = EXT4_SB(sb);
595
596 /* We default to EFSCORRUPTED error... */
597 if (error == 0)
598 error = EFSCORRUPTED;
599
600 spin_lock(&sbi->s_error_lock);
601 sbi->s_add_error_count++;
602 sbi->s_last_error_code = error;
603 sbi->s_last_error_line = line;
604 sbi->s_last_error_ino = ino;
605 sbi->s_last_error_block = block;
606 sbi->s_last_error_func = func;
607 sbi->s_last_error_time = ktime_get_real_seconds();
608 if (!sbi->s_first_error_time) {
609 sbi->s_first_error_code = error;
610 sbi->s_first_error_line = line;
611 sbi->s_first_error_ino = ino;
612 sbi->s_first_error_block = block;
613 sbi->s_first_error_func = func;
614 sbi->s_first_error_time = sbi->s_last_error_time;
615 }
616 spin_unlock(&sbi->s_error_lock);
617 }
618
619 /* Deal with the reporting of failure conditions on a filesystem such as
620 * inconsistencies detected or read IO failures.
621 *
622 * On ext2, we can store the error state of the filesystem in the
623 * superblock. That is not possible on ext4, because we may have other
624 * write ordering constraints on the superblock which prevent us from
625 * writing it out straight away; and given that the journal is about to
626 * be aborted, we can't rely on the current, or future, transactions to
627 * write out the superblock safely.
628 *
629 * We'll just use the jbd2_journal_abort() error code to record an error in
630 * the journal instead. On recovery, the journal will complain about
631 * that error until we've noted it down and cleared it.
632 *
633 * If force_ro is set, we unconditionally force the filesystem into an
634 * ABORT|READONLY state, unless the error response on the fs has been set to
635 * panic in which case we take the easy way out and panic immediately. This is
636 * used to deal with unrecoverable failures such as journal IO errors or ENOMEM
637 * at a critical moment in log management.
638 */
639 static void ext4_handle_error(struct super_block *sb, bool force_ro, int error,
640 __u32 ino, __u64 block,
641 const char *func, unsigned int line)
642 {
643 journal_t *journal = EXT4_SB(sb)->s_journal;
644 bool continue_fs = !force_ro && test_opt(sb, ERRORS_CONT);
645
646 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
647 if (test_opt(sb, WARN_ON_ERROR))
648 WARN_ON_ONCE(1);
649
650 if (!continue_fs && !sb_rdonly(sb)) {
651 ext4_set_mount_flag(sb, EXT4_MF_FS_ABORTED);
652 if (journal)
653 jbd2_journal_abort(journal, -EIO);
654 }
655
656 if (!bdev_read_only(sb->s_bdev)) {
657 save_error_info(sb, error, ino, block, func, line);
658 /*
659 * In case the fs should keep running, we need to writeout
660 * superblock through the journal. Due to lock ordering
661 * constraints, it may not be safe to do it right here so we
662 * defer superblock flushing to a workqueue.
663 */
664 if (continue_fs)
665 schedule_work(&EXT4_SB(sb)->s_error_work);
666 else
667 ext4_commit_super(sb);
668 }
669
670 if (sb_rdonly(sb) || continue_fs)
671 return;
672
673 /*
674 * We force ERRORS_RO behavior when system is rebooting. Otherwise we
675 * could panic during 'reboot -f' as the underlying device got already
676 * disabled.
677 */
678 if (test_opt(sb, ERRORS_PANIC) && !system_going_down()) {
679 panic("EXT4-fs (device %s): panic forced after error\n",
680 sb->s_id);
681 }
682 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
683 /*
684 * Make sure updated value of ->s_mount_flags will be visible before
685 * ->s_flags update
686 */
687 smp_wmb();
688 sb->s_flags |= SB_RDONLY;
689 }
690
691 static void flush_stashed_error_work(struct work_struct *work)
692 {
693 struct ext4_sb_info *sbi = container_of(work, struct ext4_sb_info,
694 s_error_work);
695 journal_t *journal = sbi->s_journal;
696 handle_t *handle;
697
698 /*
699 * If the journal is still running, we have to write out superblock
700 * through the journal to avoid collisions of other journalled sb
701 * updates.
702 *
703 * We use directly jbd2 functions here to avoid recursing back into
704 * ext4 error handling code during handling of previous errors.
705 */
706 if (!sb_rdonly(sbi->s_sb) && journal) {
707 handle = jbd2_journal_start(journal, 1);
708 if (IS_ERR(handle))
709 goto write_directly;
710 if (jbd2_journal_get_write_access(handle, sbi->s_sbh)) {
711 jbd2_journal_stop(handle);
712 goto write_directly;
713 }
714 ext4_update_super(sbi->s_sb);
715 if (jbd2_journal_dirty_metadata(handle, sbi->s_sbh)) {
716 jbd2_journal_stop(handle);
717 goto write_directly;
718 }
719 jbd2_journal_stop(handle);
720 return;
721 }
722 write_directly:
723 /*
724 * Write through journal failed. Write sb directly to get error info
725 * out and hope for the best.
726 */
727 ext4_commit_super(sbi->s_sb);
728 }
729
730 #define ext4_error_ratelimit(sb) \
731 ___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state), \
732 "EXT4-fs error")
733
734 void __ext4_error(struct super_block *sb, const char *function,
735 unsigned int line, bool force_ro, int error, __u64 block,
736 const char *fmt, ...)
737 {
738 struct va_format vaf;
739 va_list args;
740
741 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
742 return;
743
744 trace_ext4_error(sb, function, line);
745 if (ext4_error_ratelimit(sb)) {
746 va_start(args, fmt);
747 vaf.fmt = fmt;
748 vaf.va = &args;
749 printk(KERN_CRIT
750 "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
751 sb->s_id, function, line, current->comm, &vaf);
752 va_end(args);
753 }
754 ext4_handle_error(sb, force_ro, error, 0, block, function, line);
755 }
756
757 void __ext4_error_inode(struct inode *inode, const char *function,
758 unsigned int line, ext4_fsblk_t block, int error,
759 const char *fmt, ...)
760 {
761 va_list args;
762 struct va_format vaf;
763
764 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
765 return;
766
767 trace_ext4_error(inode->i_sb, function, line);
768 if (ext4_error_ratelimit(inode->i_sb)) {
769 va_start(args, fmt);
770 vaf.fmt = fmt;
771 vaf.va = &args;
772 if (block)
773 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
774 "inode #%lu: block %llu: comm %s: %pV\n",
775 inode->i_sb->s_id, function, line, inode->i_ino,
776 block, current->comm, &vaf);
777 else
778 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
779 "inode #%lu: comm %s: %pV\n",
780 inode->i_sb->s_id, function, line, inode->i_ino,
781 current->comm, &vaf);
782 va_end(args);
783 }
784 ext4_handle_error(inode->i_sb, false, error, inode->i_ino, block,
785 function, line);
786 }
787
788 void __ext4_error_file(struct file *file, const char *function,
789 unsigned int line, ext4_fsblk_t block,
790 const char *fmt, ...)
791 {
792 va_list args;
793 struct va_format vaf;
794 struct inode *inode = file_inode(file);
795 char pathname[80], *path;
796
797 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
798 return;
799
800 trace_ext4_error(inode->i_sb, function, line);
801 if (ext4_error_ratelimit(inode->i_sb)) {
802 path = file_path(file, pathname, sizeof(pathname));
803 if (IS_ERR(path))
804 path = "(unknown)";
805 va_start(args, fmt);
806 vaf.fmt = fmt;
807 vaf.va = &args;
808 if (block)
809 printk(KERN_CRIT
810 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
811 "block %llu: comm %s: path %s: %pV\n",
812 inode->i_sb->s_id, function, line, inode->i_ino,
813 block, current->comm, path, &vaf);
814 else
815 printk(KERN_CRIT
816 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
817 "comm %s: path %s: %pV\n",
818 inode->i_sb->s_id, function, line, inode->i_ino,
819 current->comm, path, &vaf);
820 va_end(args);
821 }
822 ext4_handle_error(inode->i_sb, false, EFSCORRUPTED, inode->i_ino, block,
823 function, line);
824 }
825
826 const char *ext4_decode_error(struct super_block *sb, int errno,
827 char nbuf[16])
828 {
829 char *errstr = NULL;
830
831 switch (errno) {
832 case -EFSCORRUPTED:
833 errstr = "Corrupt filesystem";
834 break;
835 case -EFSBADCRC:
836 errstr = "Filesystem failed CRC";
837 break;
838 case -EIO:
839 errstr = "IO failure";
840 break;
841 case -ENOMEM:
842 errstr = "Out of memory";
843 break;
844 case -EROFS:
845 if (!sb || (EXT4_SB(sb)->s_journal &&
846 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
847 errstr = "Journal has aborted";
848 else
849 errstr = "Readonly filesystem";
850 break;
851 default:
852 /* If the caller passed in an extra buffer for unknown
853 * errors, textualise them now. Else we just return
854 * NULL. */
855 if (nbuf) {
856 /* Check for truncated error codes... */
857 if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
858 errstr = nbuf;
859 }
860 break;
861 }
862
863 return errstr;
864 }
865
866 /* __ext4_std_error decodes expected errors from journaling functions
867 * automatically and invokes the appropriate error response. */
868
869 void __ext4_std_error(struct super_block *sb, const char *function,
870 unsigned int line, int errno)
871 {
872 char nbuf[16];
873 const char *errstr;
874
875 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
876 return;
877
878 /* Special case: if the error is EROFS, and we're not already
879 * inside a transaction, then there's really no point in logging
880 * an error. */
881 if (errno == -EROFS && journal_current_handle() == NULL && sb_rdonly(sb))
882 return;
883
884 if (ext4_error_ratelimit(sb)) {
885 errstr = ext4_decode_error(sb, errno, nbuf);
886 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
887 sb->s_id, function, line, errstr);
888 }
889
890 ext4_handle_error(sb, false, -errno, 0, 0, function, line);
891 }
892
893 void __ext4_msg(struct super_block *sb,
894 const char *prefix, const char *fmt, ...)
895 {
896 struct va_format vaf;
897 va_list args;
898
899 atomic_inc(&EXT4_SB(sb)->s_msg_count);
900 if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state), "EXT4-fs"))
901 return;
902
903 va_start(args, fmt);
904 vaf.fmt = fmt;
905 vaf.va = &args;
906 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
907 va_end(args);
908 }
909
910 static int ext4_warning_ratelimit(struct super_block *sb)
911 {
912 atomic_inc(&EXT4_SB(sb)->s_warning_count);
913 return ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state),
914 "EXT4-fs warning");
915 }
916
917 void __ext4_warning(struct super_block *sb, const char *function,
918 unsigned int line, const char *fmt, ...)
919 {
920 struct va_format vaf;
921 va_list args;
922
923 if (!ext4_warning_ratelimit(sb))
924 return;
925
926 va_start(args, fmt);
927 vaf.fmt = fmt;
928 vaf.va = &args;
929 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
930 sb->s_id, function, line, &vaf);
931 va_end(args);
932 }
933
934 void __ext4_warning_inode(const struct inode *inode, const char *function,
935 unsigned int line, const char *fmt, ...)
936 {
937 struct va_format vaf;
938 va_list args;
939
940 if (!ext4_warning_ratelimit(inode->i_sb))
941 return;
942
943 va_start(args, fmt);
944 vaf.fmt = fmt;
945 vaf.va = &args;
946 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: "
947 "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id,
948 function, line, inode->i_ino, current->comm, &vaf);
949 va_end(args);
950 }
951
952 void __ext4_grp_locked_error(const char *function, unsigned int line,
953 struct super_block *sb, ext4_group_t grp,
954 unsigned long ino, ext4_fsblk_t block,
955 const char *fmt, ...)
956 __releases(bitlock)
957 __acquires(bitlock)
958 {
959 struct va_format vaf;
960 va_list args;
961
962 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
963 return;
964
965 trace_ext4_error(sb, function, line);
966 if (ext4_error_ratelimit(sb)) {
967 va_start(args, fmt);
968 vaf.fmt = fmt;
969 vaf.va = &args;
970 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
971 sb->s_id, function, line, grp);
972 if (ino)
973 printk(KERN_CONT "inode %lu: ", ino);
974 if (block)
975 printk(KERN_CONT "block %llu:",
976 (unsigned long long) block);
977 printk(KERN_CONT "%pV\n", &vaf);
978 va_end(args);
979 }
980
981 if (test_opt(sb, ERRORS_CONT)) {
982 if (test_opt(sb, WARN_ON_ERROR))
983 WARN_ON_ONCE(1);
984 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
985 if (!bdev_read_only(sb->s_bdev)) {
986 save_error_info(sb, EFSCORRUPTED, ino, block, function,
987 line);
988 schedule_work(&EXT4_SB(sb)->s_error_work);
989 }
990 return;
991 }
992 ext4_unlock_group(sb, grp);
993 ext4_handle_error(sb, false, EFSCORRUPTED, ino, block, function, line);
994 /*
995 * We only get here in the ERRORS_RO case; relocking the group
996 * may be dangerous, but nothing bad will happen since the
997 * filesystem will have already been marked read/only and the
998 * journal has been aborted. We return 1 as a hint to callers
999 * who might what to use the return value from
1000 * ext4_grp_locked_error() to distinguish between the
1001 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
1002 * aggressively from the ext4 function in question, with a
1003 * more appropriate error code.
1004 */
1005 ext4_lock_group(sb, grp);
1006 return;
1007 }
1008
1009 void ext4_mark_group_bitmap_corrupted(struct super_block *sb,
1010 ext4_group_t group,
1011 unsigned int flags)
1012 {
1013 struct ext4_sb_info *sbi = EXT4_SB(sb);
1014 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
1015 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group, NULL);
1016 int ret;
1017
1018 if (flags & EXT4_GROUP_INFO_BBITMAP_CORRUPT) {
1019 ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT,
1020 &grp->bb_state);
1021 if (!ret)
1022 percpu_counter_sub(&sbi->s_freeclusters_counter,
1023 grp->bb_free);
1024 }
1025
1026 if (flags & EXT4_GROUP_INFO_IBITMAP_CORRUPT) {
1027 ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT,
1028 &grp->bb_state);
1029 if (!ret && gdp) {
1030 int count;
1031
1032 count = ext4_free_inodes_count(sb, gdp);
1033 percpu_counter_sub(&sbi->s_freeinodes_counter,
1034 count);
1035 }
1036 }
1037 }
1038
1039 void ext4_update_dynamic_rev(struct super_block *sb)
1040 {
1041 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
1042
1043 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
1044 return;
1045
1046 ext4_warning(sb,
1047 "updating to rev %d because of new feature flag, "
1048 "running e2fsck is recommended",
1049 EXT4_DYNAMIC_REV);
1050
1051 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
1052 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
1053 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
1054 /* leave es->s_feature_*compat flags alone */
1055 /* es->s_uuid will be set by e2fsck if empty */
1056
1057 /*
1058 * The rest of the superblock fields should be zero, and if not it
1059 * means they are likely already in use, so leave them alone. We
1060 * can leave it up to e2fsck to clean up any inconsistencies there.
1061 */
1062 }
1063
1064 /*
1065 * Open the external journal device
1066 */
1067 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb)
1068 {
1069 struct block_device *bdev;
1070
1071 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb);
1072 if (IS_ERR(bdev))
1073 goto fail;
1074 return bdev;
1075
1076 fail:
1077 ext4_msg(sb, KERN_ERR,
1078 "failed to open journal device unknown-block(%u,%u) %ld",
1079 MAJOR(dev), MINOR(dev), PTR_ERR(bdev));
1080 return NULL;
1081 }
1082
1083 /*
1084 * Release the journal device
1085 */
1086 static void ext4_blkdev_put(struct block_device *bdev)
1087 {
1088 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
1089 }
1090
1091 static void ext4_blkdev_remove(struct ext4_sb_info *sbi)
1092 {
1093 struct block_device *bdev;
1094 bdev = sbi->s_journal_bdev;
1095 if (bdev) {
1096 ext4_blkdev_put(bdev);
1097 sbi->s_journal_bdev = NULL;
1098 }
1099 }
1100
1101 static inline struct inode *orphan_list_entry(struct list_head *l)
1102 {
1103 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
1104 }
1105
1106 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
1107 {
1108 struct list_head *l;
1109
1110 ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
1111 le32_to_cpu(sbi->s_es->s_last_orphan));
1112
1113 printk(KERN_ERR "sb_info orphan list:\n");
1114 list_for_each(l, &sbi->s_orphan) {
1115 struct inode *inode = orphan_list_entry(l);
1116 printk(KERN_ERR " "
1117 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
1118 inode->i_sb->s_id, inode->i_ino, inode,
1119 inode->i_mode, inode->i_nlink,
1120 NEXT_ORPHAN(inode));
1121 }
1122 }
1123
1124 #ifdef CONFIG_QUOTA
1125 static int ext4_quota_off(struct super_block *sb, int type);
1126
1127 static inline void ext4_quota_off_umount(struct super_block *sb)
1128 {
1129 int type;
1130
1131 /* Use our quota_off function to clear inode flags etc. */
1132 for (type = 0; type < EXT4_MAXQUOTAS; type++)
1133 ext4_quota_off(sb, type);
1134 }
1135
1136 /*
1137 * This is a helper function which is used in the mount/remount
1138 * codepaths (which holds s_umount) to fetch the quota file name.
1139 */
1140 static inline char *get_qf_name(struct super_block *sb,
1141 struct ext4_sb_info *sbi,
1142 int type)
1143 {
1144 return rcu_dereference_protected(sbi->s_qf_names[type],
1145 lockdep_is_held(&sb->s_umount));
1146 }
1147 #else
1148 static inline void ext4_quota_off_umount(struct super_block *sb)
1149 {
1150 }
1151 #endif
1152
1153 static void ext4_put_super(struct super_block *sb)
1154 {
1155 struct ext4_sb_info *sbi = EXT4_SB(sb);
1156 struct ext4_super_block *es = sbi->s_es;
1157 struct buffer_head **group_desc;
1158 struct flex_groups **flex_groups;
1159 int aborted = 0;
1160 int i, err;
1161
1162 ext4_unregister_li_request(sb);
1163 ext4_quota_off_umount(sb);
1164
1165 flush_work(&sbi->s_error_work);
1166 destroy_workqueue(sbi->rsv_conversion_wq);
1167
1168 /*
1169 * Unregister sysfs before destroying jbd2 journal.
1170 * Since we could still access attr_journal_task attribute via sysfs
1171 * path which could have sbi->s_journal->j_task as NULL
1172 */
1173 ext4_unregister_sysfs(sb);
1174
1175 if (sbi->s_journal) {
1176 aborted = is_journal_aborted(sbi->s_journal);
1177 err = jbd2_journal_destroy(sbi->s_journal);
1178 sbi->s_journal = NULL;
1179 if ((err < 0) && !aborted) {
1180 ext4_abort(sb, -err, "Couldn't clean up the journal");
1181 }
1182 }
1183
1184 ext4_es_unregister_shrinker(sbi);
1185 del_timer_sync(&sbi->s_err_report);
1186 ext4_release_system_zone(sb);
1187 ext4_mb_release(sb);
1188 ext4_ext_release(sb);
1189
1190 if (!sb_rdonly(sb) && !aborted) {
1191 ext4_clear_feature_journal_needs_recovery(sb);
1192 es->s_state = cpu_to_le16(sbi->s_mount_state);
1193 }
1194 if (!sb_rdonly(sb))
1195 ext4_commit_super(sb);
1196
1197 rcu_read_lock();
1198 group_desc = rcu_dereference(sbi->s_group_desc);
1199 for (i = 0; i < sbi->s_gdb_count; i++)
1200 brelse(group_desc[i]);
1201 kvfree(group_desc);
1202 flex_groups = rcu_dereference(sbi->s_flex_groups);
1203 if (flex_groups) {
1204 for (i = 0; i < sbi->s_flex_groups_allocated; i++)
1205 kvfree(flex_groups[i]);
1206 kvfree(flex_groups);
1207 }
1208 rcu_read_unlock();
1209 percpu_counter_destroy(&sbi->s_freeclusters_counter);
1210 percpu_counter_destroy(&sbi->s_freeinodes_counter);
1211 percpu_counter_destroy(&sbi->s_dirs_counter);
1212 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
1213 percpu_free_rwsem(&sbi->s_writepages_rwsem);
1214 #ifdef CONFIG_QUOTA
1215 for (i = 0; i < EXT4_MAXQUOTAS; i++)
1216 kfree(get_qf_name(sb, sbi, i));
1217 #endif
1218
1219 /* Debugging code just in case the in-memory inode orphan list
1220 * isn't empty. The on-disk one can be non-empty if we've
1221 * detected an error and taken the fs readonly, but the
1222 * in-memory list had better be clean by this point. */
1223 if (!list_empty(&sbi->s_orphan))
1224 dump_orphan_list(sb, sbi);
1225 ASSERT(list_empty(&sbi->s_orphan));
1226
1227 sync_blockdev(sb->s_bdev);
1228 invalidate_bdev(sb->s_bdev);
1229 if (sbi->s_journal_bdev && sbi->s_journal_bdev != sb->s_bdev) {
1230 /*
1231 * Invalidate the journal device's buffers. We don't want them
1232 * floating about in memory - the physical journal device may
1233 * hotswapped, and it breaks the `ro-after' testing code.
1234 */
1235 sync_blockdev(sbi->s_journal_bdev);
1236 invalidate_bdev(sbi->s_journal_bdev);
1237 ext4_blkdev_remove(sbi);
1238 }
1239
1240 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
1241 sbi->s_ea_inode_cache = NULL;
1242
1243 ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
1244 sbi->s_ea_block_cache = NULL;
1245
1246 if (sbi->s_mmp_tsk)
1247 kthread_stop(sbi->s_mmp_tsk);
1248 brelse(sbi->s_sbh);
1249 sb->s_fs_info = NULL;
1250 /*
1251 * Now that we are completely done shutting down the
1252 * superblock, we need to actually destroy the kobject.
1253 */
1254 kobject_put(&sbi->s_kobj);
1255 wait_for_completion(&sbi->s_kobj_unregister);
1256 if (sbi->s_chksum_driver)
1257 crypto_free_shash(sbi->s_chksum_driver);
1258 kfree(sbi->s_blockgroup_lock);
1259 fs_put_dax(sbi->s_daxdev);
1260 fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy);
1261 #ifdef CONFIG_UNICODE
1262 utf8_unload(sb->s_encoding);
1263 #endif
1264 kfree(sbi);
1265 }
1266
1267 static struct kmem_cache *ext4_inode_cachep;
1268
1269 /*
1270 * Called inside transaction, so use GFP_NOFS
1271 */
1272 static struct inode *ext4_alloc_inode(struct super_block *sb)
1273 {
1274 struct ext4_inode_info *ei;
1275
1276 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS);
1277 if (!ei)
1278 return NULL;
1279
1280 inode_set_iversion(&ei->vfs_inode, 1);
1281 spin_lock_init(&ei->i_raw_lock);
1282 INIT_LIST_HEAD(&ei->i_prealloc_list);
1283 atomic_set(&ei->i_prealloc_active, 0);
1284 spin_lock_init(&ei->i_prealloc_lock);
1285 ext4_es_init_tree(&ei->i_es_tree);
1286 rwlock_init(&ei->i_es_lock);
1287 INIT_LIST_HEAD(&ei->i_es_list);
1288 ei->i_es_all_nr = 0;
1289 ei->i_es_shk_nr = 0;
1290 ei->i_es_shrink_lblk = 0;
1291 ei->i_reserved_data_blocks = 0;
1292 spin_lock_init(&(ei->i_block_reservation_lock));
1293 ext4_init_pending_tree(&ei->i_pending_tree);
1294 #ifdef CONFIG_QUOTA
1295 ei->i_reserved_quota = 0;
1296 memset(&ei->i_dquot, 0, sizeof(ei->i_dquot));
1297 #endif
1298 ei->jinode = NULL;
1299 INIT_LIST_HEAD(&ei->i_rsv_conversion_list);
1300 spin_lock_init(&ei->i_completed_io_lock);
1301 ei->i_sync_tid = 0;
1302 ei->i_datasync_tid = 0;
1303 atomic_set(&ei->i_unwritten, 0);
1304 INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work);
1305 ext4_fc_init_inode(&ei->vfs_inode);
1306 mutex_init(&ei->i_fc_lock);
1307 return &ei->vfs_inode;
1308 }
1309
1310 static int ext4_drop_inode(struct inode *inode)
1311 {
1312 int drop = generic_drop_inode(inode);
1313
1314 if (!drop)
1315 drop = fscrypt_drop_inode(inode);
1316
1317 trace_ext4_drop_inode(inode, drop);
1318 return drop;
1319 }
1320
1321 static void ext4_free_in_core_inode(struct inode *inode)
1322 {
1323 fscrypt_free_inode(inode);
1324 if (!list_empty(&(EXT4_I(inode)->i_fc_list))) {
1325 pr_warn("%s: inode %ld still in fc list",
1326 __func__, inode->i_ino);
1327 }
1328 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
1329 }
1330
1331 static void ext4_destroy_inode(struct inode *inode)
1332 {
1333 if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
1334 ext4_msg(inode->i_sb, KERN_ERR,
1335 "Inode %lu (%p): orphan list check failed!",
1336 inode->i_ino, EXT4_I(inode));
1337 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
1338 EXT4_I(inode), sizeof(struct ext4_inode_info),
1339 true);
1340 dump_stack();
1341 }
1342 }
1343
1344 static void init_once(void *foo)
1345 {
1346 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo;
1347
1348 INIT_LIST_HEAD(&ei->i_orphan);
1349 init_rwsem(&ei->xattr_sem);
1350 init_rwsem(&ei->i_data_sem);
1351 init_rwsem(&ei->i_mmap_sem);
1352 inode_init_once(&ei->vfs_inode);
1353 ext4_fc_init_inode(&ei->vfs_inode);
1354 }
1355
1356 static int __init init_inodecache(void)
1357 {
1358 ext4_inode_cachep = kmem_cache_create_usercopy("ext4_inode_cache",
1359 sizeof(struct ext4_inode_info), 0,
1360 (SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD|
1361 SLAB_ACCOUNT),
1362 offsetof(struct ext4_inode_info, i_data),
1363 sizeof_field(struct ext4_inode_info, i_data),
1364 init_once);
1365 if (ext4_inode_cachep == NULL)
1366 return -ENOMEM;
1367 return 0;
1368 }
1369
1370 static void destroy_inodecache(void)
1371 {
1372 /*
1373 * Make sure all delayed rcu free inodes are flushed before we
1374 * destroy cache.
1375 */
1376 rcu_barrier();
1377 kmem_cache_destroy(ext4_inode_cachep);
1378 }
1379
1380 void ext4_clear_inode(struct inode *inode)
1381 {
1382 ext4_fc_del(inode);
1383 invalidate_inode_buffers(inode);
1384 clear_inode(inode);
1385 ext4_discard_preallocations(inode, 0);
1386 ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS);
1387 dquot_drop(inode);
1388 if (EXT4_I(inode)->jinode) {
1389 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
1390 EXT4_I(inode)->jinode);
1391 jbd2_free_inode(EXT4_I(inode)->jinode);
1392 EXT4_I(inode)->jinode = NULL;
1393 }
1394 fscrypt_put_encryption_info(inode);
1395 fsverity_cleanup_inode(inode);
1396 }
1397
1398 static struct inode *ext4_nfs_get_inode(struct super_block *sb,
1399 u64 ino, u32 generation)
1400 {
1401 struct inode *inode;
1402
1403 /*
1404 * Currently we don't know the generation for parent directory, so
1405 * a generation of 0 means "accept any"
1406 */
1407 inode = ext4_iget(sb, ino, EXT4_IGET_HANDLE);
1408 if (IS_ERR(inode))
1409 return ERR_CAST(inode);
1410 if (generation && inode->i_generation != generation) {
1411 iput(inode);
1412 return ERR_PTR(-ESTALE);
1413 }
1414
1415 return inode;
1416 }
1417
1418 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
1419 int fh_len, int fh_type)
1420 {
1421 return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1422 ext4_nfs_get_inode);
1423 }
1424
1425 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
1426 int fh_len, int fh_type)
1427 {
1428 return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1429 ext4_nfs_get_inode);
1430 }
1431
1432 static int ext4_nfs_commit_metadata(struct inode *inode)
1433 {
1434 struct writeback_control wbc = {
1435 .sync_mode = WB_SYNC_ALL
1436 };
1437
1438 trace_ext4_nfs_commit_metadata(inode);
1439 return ext4_write_inode(inode, &wbc);
1440 }
1441
1442 /*
1443 * Try to release metadata pages (indirect blocks, directories) which are
1444 * mapped via the block device. Since these pages could have journal heads
1445 * which would prevent try_to_free_buffers() from freeing them, we must use
1446 * jbd2 layer's try_to_free_buffers() function to release them.
1447 */
1448 static int bdev_try_to_free_page(struct super_block *sb, struct page *page,
1449 gfp_t wait)
1450 {
1451 journal_t *journal = EXT4_SB(sb)->s_journal;
1452
1453 WARN_ON(PageChecked(page));
1454 if (!page_has_buffers(page))
1455 return 0;
1456 if (journal)
1457 return jbd2_journal_try_to_free_buffers(journal, page);
1458
1459 return try_to_free_buffers(page);
1460 }
1461
1462 #ifdef CONFIG_FS_ENCRYPTION
1463 static int ext4_get_context(struct inode *inode, void *ctx, size_t len)
1464 {
1465 return ext4_xattr_get(inode, EXT4_XATTR_INDEX_ENCRYPTION,
1466 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, ctx, len);
1467 }
1468
1469 static int ext4_set_context(struct inode *inode, const void *ctx, size_t len,
1470 void *fs_data)
1471 {
1472 handle_t *handle = fs_data;
1473 int res, res2, credits, retries = 0;
1474
1475 /*
1476 * Encrypting the root directory is not allowed because e2fsck expects
1477 * lost+found to exist and be unencrypted, and encrypting the root
1478 * directory would imply encrypting the lost+found directory as well as
1479 * the filename "lost+found" itself.
1480 */
1481 if (inode->i_ino == EXT4_ROOT_INO)
1482 return -EPERM;
1483
1484 if (WARN_ON_ONCE(IS_DAX(inode) && i_size_read(inode)))
1485 return -EINVAL;
1486
1487 if (ext4_test_inode_flag(inode, EXT4_INODE_DAX))
1488 return -EOPNOTSUPP;
1489
1490 res = ext4_convert_inline_data(inode);
1491 if (res)
1492 return res;
1493
1494 /*
1495 * If a journal handle was specified, then the encryption context is
1496 * being set on a new inode via inheritance and is part of a larger
1497 * transaction to create the inode. Otherwise the encryption context is
1498 * being set on an existing inode in its own transaction. Only in the
1499 * latter case should the "retry on ENOSPC" logic be used.
1500 */
1501
1502 if (handle) {
1503 res = ext4_xattr_set_handle(handle, inode,
1504 EXT4_XATTR_INDEX_ENCRYPTION,
1505 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT,
1506 ctx, len, 0);
1507 if (!res) {
1508 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT);
1509 ext4_clear_inode_state(inode,
1510 EXT4_STATE_MAY_INLINE_DATA);
1511 /*
1512 * Update inode->i_flags - S_ENCRYPTED will be enabled,
1513 * S_DAX may be disabled
1514 */
1515 ext4_set_inode_flags(inode, false);
1516 }
1517 return res;
1518 }
1519
1520 res = dquot_initialize(inode);
1521 if (res)
1522 return res;
1523 retry:
1524 res = ext4_xattr_set_credits(inode, len, false /* is_create */,
1525 &credits);
1526 if (res)
1527 return res;
1528
1529 handle = ext4_journal_start(inode, EXT4_HT_MISC, credits);
1530 if (IS_ERR(handle))
1531 return PTR_ERR(handle);
1532
1533 res = ext4_xattr_set_handle(handle, inode, EXT4_XATTR_INDEX_ENCRYPTION,
1534 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT,
1535 ctx, len, 0);
1536 if (!res) {
1537 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT);
1538 /*
1539 * Update inode->i_flags - S_ENCRYPTED will be enabled,
1540 * S_DAX may be disabled
1541 */
1542 ext4_set_inode_flags(inode, false);
1543 res = ext4_mark_inode_dirty(handle, inode);
1544 if (res)
1545 EXT4_ERROR_INODE(inode, "Failed to mark inode dirty");
1546 }
1547 res2 = ext4_journal_stop(handle);
1548
1549 if (res == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1550 goto retry;
1551 if (!res)
1552 res = res2;
1553 return res;
1554 }
1555
1556 static const union fscrypt_policy *ext4_get_dummy_policy(struct super_block *sb)
1557 {
1558 return EXT4_SB(sb)->s_dummy_enc_policy.policy;
1559 }
1560
1561 static bool ext4_has_stable_inodes(struct super_block *sb)
1562 {
1563 return ext4_has_feature_stable_inodes(sb);
1564 }
1565
1566 static void ext4_get_ino_and_lblk_bits(struct super_block *sb,
1567 int *ino_bits_ret, int *lblk_bits_ret)
1568 {
1569 *ino_bits_ret = 8 * sizeof(EXT4_SB(sb)->s_es->s_inodes_count);
1570 *lblk_bits_ret = 8 * sizeof(ext4_lblk_t);
1571 }
1572
1573 static const struct fscrypt_operations ext4_cryptops = {
1574 .key_prefix = "ext4:",
1575 .get_context = ext4_get_context,
1576 .set_context = ext4_set_context,
1577 .get_dummy_policy = ext4_get_dummy_policy,
1578 .empty_dir = ext4_empty_dir,
1579 .max_namelen = EXT4_NAME_LEN,
1580 .has_stable_inodes = ext4_has_stable_inodes,
1581 .get_ino_and_lblk_bits = ext4_get_ino_and_lblk_bits,
1582 };
1583 #endif
1584
1585 #ifdef CONFIG_QUOTA
1586 static const char * const quotatypes[] = INITQFNAMES;
1587 #define QTYPE2NAME(t) (quotatypes[t])
1588
1589 static int ext4_write_dquot(struct dquot *dquot);
1590 static int ext4_acquire_dquot(struct dquot *dquot);
1591 static int ext4_release_dquot(struct dquot *dquot);
1592 static int ext4_mark_dquot_dirty(struct dquot *dquot);
1593 static int ext4_write_info(struct super_block *sb, int type);
1594 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1595 const struct path *path);
1596 static int ext4_quota_on_mount(struct super_block *sb, int type);
1597 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1598 size_t len, loff_t off);
1599 static ssize_t ext4_quota_write(struct super_block *sb, int type,
1600 const char *data, size_t len, loff_t off);
1601 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
1602 unsigned int flags);
1603 static int ext4_enable_quotas(struct super_block *sb);
1604
1605 static struct dquot **ext4_get_dquots(struct inode *inode)
1606 {
1607 return EXT4_I(inode)->i_dquot;
1608 }
1609
1610 static const struct dquot_operations ext4_quota_operations = {
1611 .get_reserved_space = ext4_get_reserved_space,
1612 .write_dquot = ext4_write_dquot,
1613 .acquire_dquot = ext4_acquire_dquot,
1614 .release_dquot = ext4_release_dquot,
1615 .mark_dirty = ext4_mark_dquot_dirty,
1616 .write_info = ext4_write_info,
1617 .alloc_dquot = dquot_alloc,
1618 .destroy_dquot = dquot_destroy,
1619 .get_projid = ext4_get_projid,
1620 .get_inode_usage = ext4_get_inode_usage,
1621 .get_next_id = dquot_get_next_id,
1622 };
1623
1624 static const struct quotactl_ops ext4_qctl_operations = {
1625 .quota_on = ext4_quota_on,
1626 .quota_off = ext4_quota_off,
1627 .quota_sync = dquot_quota_sync,
1628 .get_state = dquot_get_state,
1629 .set_info = dquot_set_dqinfo,
1630 .get_dqblk = dquot_get_dqblk,
1631 .set_dqblk = dquot_set_dqblk,
1632 .get_nextdqblk = dquot_get_next_dqblk,
1633 };
1634 #endif
1635
1636 static const struct super_operations ext4_sops = {
1637 .alloc_inode = ext4_alloc_inode,
1638 .free_inode = ext4_free_in_core_inode,
1639 .destroy_inode = ext4_destroy_inode,
1640 .write_inode = ext4_write_inode,
1641 .dirty_inode = ext4_dirty_inode,
1642 .drop_inode = ext4_drop_inode,
1643 .evict_inode = ext4_evict_inode,
1644 .put_super = ext4_put_super,
1645 .sync_fs = ext4_sync_fs,
1646 .freeze_fs = ext4_freeze,
1647 .unfreeze_fs = ext4_unfreeze,
1648 .statfs = ext4_statfs,
1649 .remount_fs = ext4_remount,
1650 .show_options = ext4_show_options,
1651 #ifdef CONFIG_QUOTA
1652 .quota_read = ext4_quota_read,
1653 .quota_write = ext4_quota_write,
1654 .get_dquots = ext4_get_dquots,
1655 #endif
1656 .bdev_try_to_free_page = bdev_try_to_free_page,
1657 };
1658
1659 static const struct export_operations ext4_export_ops = {
1660 .fh_to_dentry = ext4_fh_to_dentry,
1661 .fh_to_parent = ext4_fh_to_parent,
1662 .get_parent = ext4_get_parent,
1663 .commit_metadata = ext4_nfs_commit_metadata,
1664 };
1665
1666 enum {
1667 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1668 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro,
1669 Opt_nouid32, Opt_debug, Opt_removed,
1670 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl,
1671 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload,
1672 Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev,
1673 Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit,
1674 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1675 Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption,
1676 Opt_inlinecrypt,
1677 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota,
1678 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota,
1679 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err,
1680 Opt_usrquota, Opt_grpquota, Opt_prjquota, Opt_i_version,
1681 Opt_dax, Opt_dax_always, Opt_dax_inode, Opt_dax_never,
1682 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_warn_on_error,
1683 Opt_nowarn_on_error, Opt_mblk_io_submit,
1684 Opt_lazytime, Opt_nolazytime, Opt_debug_want_extra_isize,
1685 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1686 Opt_inode_readahead_blks, Opt_journal_ioprio,
1687 Opt_dioread_nolock, Opt_dioread_lock,
1688 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable,
1689 Opt_max_dir_size_kb, Opt_nojournal_checksum, Opt_nombcache,
1690 Opt_prefetch_block_bitmaps,
1691 #ifdef CONFIG_EXT4_DEBUG
1692 Opt_fc_debug_max_replay, Opt_fc_debug_force
1693 #endif
1694 };
1695
1696 static const match_table_t tokens = {
1697 {Opt_bsd_df, "bsddf"},
1698 {Opt_minix_df, "minixdf"},
1699 {Opt_grpid, "grpid"},
1700 {Opt_grpid, "bsdgroups"},
1701 {Opt_nogrpid, "nogrpid"},
1702 {Opt_nogrpid, "sysvgroups"},
1703 {Opt_resgid, "resgid=%u"},
1704 {Opt_resuid, "resuid=%u"},
1705 {Opt_sb, "sb=%u"},
1706 {Opt_err_cont, "errors=continue"},
1707 {Opt_err_panic, "errors=panic"},
1708 {Opt_err_ro, "errors=remount-ro"},
1709 {Opt_nouid32, "nouid32"},
1710 {Opt_debug, "debug"},
1711 {Opt_removed, "oldalloc"},
1712 {Opt_removed, "orlov"},
1713 {Opt_user_xattr, "user_xattr"},
1714 {Opt_nouser_xattr, "nouser_xattr"},
1715 {Opt_acl, "acl"},
1716 {Opt_noacl, "noacl"},
1717 {Opt_noload, "norecovery"},
1718 {Opt_noload, "noload"},
1719 {Opt_removed, "nobh"},
1720 {Opt_removed, "bh"},
1721 {Opt_commit, "commit=%u"},
1722 {Opt_min_batch_time, "min_batch_time=%u"},
1723 {Opt_max_batch_time, "max_batch_time=%u"},
1724 {Opt_journal_dev, "journal_dev=%u"},
1725 {Opt_journal_path, "journal_path=%s"},
1726 {Opt_journal_checksum, "journal_checksum"},
1727 {Opt_nojournal_checksum, "nojournal_checksum"},
1728 {Opt_journal_async_commit, "journal_async_commit"},
1729 {Opt_abort, "abort"},
1730 {Opt_data_journal, "data=journal"},
1731 {Opt_data_ordered, "data=ordered"},
1732 {Opt_data_writeback, "data=writeback"},
1733 {Opt_data_err_abort, "data_err=abort"},
1734 {Opt_data_err_ignore, "data_err=ignore"},
1735 {Opt_offusrjquota, "usrjquota="},
1736 {Opt_usrjquota, "usrjquota=%s"},
1737 {Opt_offgrpjquota, "grpjquota="},
1738 {Opt_grpjquota, "grpjquota=%s"},
1739 {Opt_jqfmt_vfsold, "jqfmt=vfsold"},
1740 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
1741 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
1742 {Opt_grpquota, "grpquota"},
1743 {Opt_noquota, "noquota"},
1744 {Opt_quota, "quota"},
1745 {Opt_usrquota, "usrquota"},
1746 {Opt_prjquota, "prjquota"},
1747 {Opt_barrier, "barrier=%u"},
1748 {Opt_barrier, "barrier"},
1749 {Opt_nobarrier, "nobarrier"},
1750 {Opt_i_version, "i_version"},
1751 {Opt_dax, "dax"},
1752 {Opt_dax_always, "dax=always"},
1753 {Opt_dax_inode, "dax=inode"},
1754 {Opt_dax_never, "dax=never"},
1755 {Opt_stripe, "stripe=%u"},
1756 {Opt_delalloc, "delalloc"},
1757 {Opt_warn_on_error, "warn_on_error"},
1758 {Opt_nowarn_on_error, "nowarn_on_error"},
1759 {Opt_lazytime, "lazytime"},
1760 {Opt_nolazytime, "nolazytime"},
1761 {Opt_debug_want_extra_isize, "debug_want_extra_isize=%u"},
1762 {Opt_nodelalloc, "nodelalloc"},
1763 {Opt_removed, "mblk_io_submit"},
1764 {Opt_removed, "nomblk_io_submit"},
1765 {Opt_block_validity, "block_validity"},
1766 {Opt_noblock_validity, "noblock_validity"},
1767 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"},
1768 {Opt_journal_ioprio, "journal_ioprio=%u"},
1769 {Opt_auto_da_alloc, "auto_da_alloc=%u"},
1770 {Opt_auto_da_alloc, "auto_da_alloc"},
1771 {Opt_noauto_da_alloc, "noauto_da_alloc"},
1772 {Opt_dioread_nolock, "dioread_nolock"},
1773 {Opt_dioread_lock, "nodioread_nolock"},
1774 {Opt_dioread_lock, "dioread_lock"},
1775 {Opt_discard, "discard"},
1776 {Opt_nodiscard, "nodiscard"},
1777 {Opt_init_itable, "init_itable=%u"},
1778 {Opt_init_itable, "init_itable"},
1779 {Opt_noinit_itable, "noinit_itable"},
1780 #ifdef CONFIG_EXT4_DEBUG
1781 {Opt_fc_debug_force, "fc_debug_force"},
1782 {Opt_fc_debug_max_replay, "fc_debug_max_replay=%u"},
1783 #endif
1784 {Opt_max_dir_size_kb, "max_dir_size_kb=%u"},
1785 {Opt_test_dummy_encryption, "test_dummy_encryption=%s"},
1786 {Opt_test_dummy_encryption, "test_dummy_encryption"},
1787 {Opt_inlinecrypt, "inlinecrypt"},
1788 {Opt_nombcache, "nombcache"},
1789 {Opt_nombcache, "no_mbcache"}, /* for backward compatibility */
1790 {Opt_prefetch_block_bitmaps, "prefetch_block_bitmaps"},
1791 {Opt_removed, "check=none"}, /* mount option from ext2/3 */
1792 {Opt_removed, "nocheck"}, /* mount option from ext2/3 */
1793 {Opt_removed, "reservation"}, /* mount option from ext2/3 */
1794 {Opt_removed, "noreservation"}, /* mount option from ext2/3 */
1795 {Opt_removed, "journal=%u"}, /* mount option from ext2/3 */
1796 {Opt_err, NULL},
1797 };
1798
1799 static ext4_fsblk_t get_sb_block(void **data)
1800 {
1801 ext4_fsblk_t sb_block;
1802 char *options = (char *) *data;
1803
1804 if (!options || strncmp(options, "sb=", 3) != 0)
1805 return 1; /* Default location */
1806
1807 options += 3;
1808 /* TODO: use simple_strtoll with >32bit ext4 */
1809 sb_block = simple_strtoul(options, &options, 0);
1810 if (*options && *options != ',') {
1811 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n",
1812 (char *) *data);
1813 return 1;
1814 }
1815 if (*options == ',')
1816 options++;
1817 *data = (void *) options;
1818
1819 return sb_block;
1820 }
1821
1822 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1823 static const char deprecated_msg[] =
1824 "Mount option \"%s\" will be removed by %s\n"
1825 "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n";
1826
1827 #ifdef CONFIG_QUOTA
1828 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args)
1829 {
1830 struct ext4_sb_info *sbi = EXT4_SB(sb);
1831 char *qname, *old_qname = get_qf_name(sb, sbi, qtype);
1832 int ret = -1;
1833
1834 if (sb_any_quota_loaded(sb) && !old_qname) {
1835 ext4_msg(sb, KERN_ERR,
1836 "Cannot change journaled "
1837 "quota options when quota turned on");
1838 return -1;
1839 }
1840 if (ext4_has_feature_quota(sb)) {
1841 ext4_msg(sb, KERN_INFO, "Journaled quota options "
1842 "ignored when QUOTA feature is enabled");
1843 return 1;
1844 }
1845 qname = match_strdup(args);
1846 if (!qname) {
1847 ext4_msg(sb, KERN_ERR,
1848 "Not enough memory for storing quotafile name");
1849 return -1;
1850 }
1851 if (old_qname) {
1852 if (strcmp(old_qname, qname) == 0)
1853 ret = 1;
1854 else
1855 ext4_msg(sb, KERN_ERR,
1856 "%s quota file already specified",
1857 QTYPE2NAME(qtype));
1858 goto errout;
1859 }
1860 if (strchr(qname, '/')) {
1861 ext4_msg(sb, KERN_ERR,
1862 "quotafile must be on filesystem root");
1863 goto errout;
1864 }
1865 rcu_assign_pointer(sbi->s_qf_names[qtype], qname);
1866 set_opt(sb, QUOTA);
1867 return 1;
1868 errout:
1869 kfree(qname);
1870 return ret;
1871 }
1872
1873 static int clear_qf_name(struct super_block *sb, int qtype)
1874 {
1875
1876 struct ext4_sb_info *sbi = EXT4_SB(sb);
1877 char *old_qname = get_qf_name(sb, sbi, qtype);
1878
1879 if (sb_any_quota_loaded(sb) && old_qname) {
1880 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options"
1881 " when quota turned on");
1882 return -1;
1883 }
1884 rcu_assign_pointer(sbi->s_qf_names[qtype], NULL);
1885 synchronize_rcu();
1886 kfree(old_qname);
1887 return 1;
1888 }
1889 #endif
1890
1891 #define MOPT_SET 0x0001
1892 #define MOPT_CLEAR 0x0002
1893 #define MOPT_NOSUPPORT 0x0004
1894 #define MOPT_EXPLICIT 0x0008
1895 #define MOPT_CLEAR_ERR 0x0010
1896 #define MOPT_GTE0 0x0020
1897 #ifdef CONFIG_QUOTA
1898 #define MOPT_Q 0
1899 #define MOPT_QFMT 0x0040
1900 #else
1901 #define MOPT_Q MOPT_NOSUPPORT
1902 #define MOPT_QFMT MOPT_NOSUPPORT
1903 #endif
1904 #define MOPT_DATAJ 0x0080
1905 #define MOPT_NO_EXT2 0x0100
1906 #define MOPT_NO_EXT3 0x0200
1907 #define MOPT_EXT4_ONLY (MOPT_NO_EXT2 | MOPT_NO_EXT3)
1908 #define MOPT_STRING 0x0400
1909 #define MOPT_SKIP 0x0800
1910 #define MOPT_2 0x1000
1911
1912 static const struct mount_opts {
1913 int token;
1914 int mount_opt;
1915 int flags;
1916 } ext4_mount_opts[] = {
1917 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET},
1918 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR},
1919 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET},
1920 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR},
1921 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET},
1922 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR},
1923 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK,
1924 MOPT_EXT4_ONLY | MOPT_SET},
1925 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK,
1926 MOPT_EXT4_ONLY | MOPT_CLEAR},
1927 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET},
1928 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR},
1929 {Opt_delalloc, EXT4_MOUNT_DELALLOC,
1930 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1931 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC,
1932 MOPT_EXT4_ONLY | MOPT_CLEAR},
1933 {Opt_warn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_SET},
1934 {Opt_nowarn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_CLEAR},
1935 {Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1936 MOPT_EXT4_ONLY | MOPT_CLEAR},
1937 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1938 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1939 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT |
1940 EXT4_MOUNT_JOURNAL_CHECKSUM),
1941 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1942 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET},
1943 {Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR},
1944 {Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR},
1945 {Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR},
1946 {Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT,
1947 MOPT_NO_EXT2},
1948 {Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT,
1949 MOPT_NO_EXT2},
1950 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET},
1951 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR},
1952 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET},
1953 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR},
1954 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR},
1955 {Opt_commit, 0, MOPT_GTE0},
1956 {Opt_max_batch_time, 0, MOPT_GTE0},
1957 {Opt_min_batch_time, 0, MOPT_GTE0},
1958 {Opt_inode_readahead_blks, 0, MOPT_GTE0},
1959 {Opt_init_itable, 0, MOPT_GTE0},
1960 {Opt_dax, EXT4_MOUNT_DAX_ALWAYS, MOPT_SET | MOPT_SKIP},
1961 {Opt_dax_always, EXT4_MOUNT_DAX_ALWAYS,
1962 MOPT_EXT4_ONLY | MOPT_SET | MOPT_SKIP},
1963 {Opt_dax_inode, EXT4_MOUNT2_DAX_INODE,
1964 MOPT_EXT4_ONLY | MOPT_SET | MOPT_SKIP},
1965 {Opt_dax_never, EXT4_MOUNT2_DAX_NEVER,
1966 MOPT_EXT4_ONLY | MOPT_SET | MOPT_SKIP},
1967 {Opt_stripe, 0, MOPT_GTE0},
1968 {Opt_resuid, 0, MOPT_GTE0},
1969 {Opt_resgid, 0, MOPT_GTE0},
1970 {Opt_journal_dev, 0, MOPT_NO_EXT2 | MOPT_GTE0},
1971 {Opt_journal_path, 0, MOPT_NO_EXT2 | MOPT_STRING},
1972 {Opt_journal_ioprio, 0, MOPT_NO_EXT2 | MOPT_GTE0},
1973 {Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1974 {Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1975 {Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA,
1976 MOPT_NO_EXT2 | MOPT_DATAJ},
1977 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET},
1978 {Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR},
1979 #ifdef CONFIG_EXT4_FS_POSIX_ACL
1980 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET},
1981 {Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR},
1982 #else
1983 {Opt_acl, 0, MOPT_NOSUPPORT},
1984 {Opt_noacl, 0, MOPT_NOSUPPORT},
1985 #endif
1986 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET},
1987 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET},
1988 {Opt_debug_want_extra_isize, 0, MOPT_GTE0},
1989 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q},
1990 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA,
1991 MOPT_SET | MOPT_Q},
1992 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA,
1993 MOPT_SET | MOPT_Q},
1994 {Opt_prjquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_PRJQUOTA,
1995 MOPT_SET | MOPT_Q},
1996 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
1997 EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA),
1998 MOPT_CLEAR | MOPT_Q},
1999 {Opt_usrjquota, 0, MOPT_Q | MOPT_STRING},
2000 {Opt_grpjquota, 0, MOPT_Q | MOPT_STRING},
2001 {Opt_offusrjquota, 0, MOPT_Q},
2002 {Opt_offgrpjquota, 0, MOPT_Q},
2003 {Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT},
2004 {Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT},
2005 {Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT},
2006 {Opt_max_dir_size_kb, 0, MOPT_GTE0},
2007 {Opt_test_dummy_encryption, 0, MOPT_STRING},
2008 {Opt_nombcache, EXT4_MOUNT_NO_MBCACHE, MOPT_SET},
2009 {Opt_prefetch_block_bitmaps, EXT4_MOUNT_PREFETCH_BLOCK_BITMAPS,
2010 MOPT_SET},
2011 #ifdef CONFIG_EXT4_DEBUG
2012 {Opt_fc_debug_force, EXT4_MOUNT2_JOURNAL_FAST_COMMIT,
2013 MOPT_SET | MOPT_2 | MOPT_EXT4_ONLY},
2014 {Opt_fc_debug_max_replay, 0, MOPT_GTE0},
2015 #endif
2016 {Opt_err, 0, 0}
2017 };
2018
2019 #ifdef CONFIG_UNICODE
2020 static const struct ext4_sb_encodings {
2021 __u16 magic;
2022 char *name;
2023 char *version;
2024 } ext4_sb_encoding_map[] = {
2025 {EXT4_ENC_UTF8_12_1, "utf8", "12.1.0"},
2026 };
2027
2028 static int ext4_sb_read_encoding(const struct ext4_super_block *es,
2029 const struct ext4_sb_encodings **encoding,
2030 __u16 *flags)
2031 {
2032 __u16 magic = le16_to_cpu(es->s_encoding);
2033 int i;
2034
2035 for (i = 0; i < ARRAY_SIZE(ext4_sb_encoding_map); i++)
2036 if (magic == ext4_sb_encoding_map[i].magic)
2037 break;
2038
2039 if (i >= ARRAY_SIZE(ext4_sb_encoding_map))
2040 return -EINVAL;
2041
2042 *encoding = &ext4_sb_encoding_map[i];
2043 *flags = le16_to_cpu(es->s_encoding_flags);
2044
2045 return 0;
2046 }
2047 #endif
2048
2049 static int ext4_set_test_dummy_encryption(struct super_block *sb,
2050 const char *opt,
2051 const substring_t *arg,
2052 bool is_remount)
2053 {
2054 #ifdef CONFIG_FS_ENCRYPTION
2055 struct ext4_sb_info *sbi = EXT4_SB(sb);
2056 int err;
2057
2058 /*
2059 * This mount option is just for testing, and it's not worthwhile to
2060 * implement the extra complexity (e.g. RCU protection) that would be
2061 * needed to allow it to be set or changed during remount. We do allow
2062 * it to be specified during remount, but only if there is no change.
2063 */
2064 if (is_remount && !sbi->s_dummy_enc_policy.policy) {
2065 ext4_msg(sb, KERN_WARNING,
2066 "Can't set test_dummy_encryption on remount");
2067 return -1;
2068 }
2069 err = fscrypt_set_test_dummy_encryption(sb, arg->from,
2070 &sbi->s_dummy_enc_policy);
2071 if (err) {
2072 if (err == -EEXIST)
2073 ext4_msg(sb, KERN_WARNING,
2074 "Can't change test_dummy_encryption on remount");
2075 else if (err == -EINVAL)
2076 ext4_msg(sb, KERN_WARNING,
2077 "Value of option \"%s\" is unrecognized", opt);
2078 else
2079 ext4_msg(sb, KERN_WARNING,
2080 "Error processing option \"%s\" [%d]",
2081 opt, err);
2082 return -1;
2083 }
2084 ext4_msg(sb, KERN_WARNING, "Test dummy encryption mode enabled");
2085 #else
2086 ext4_msg(sb, KERN_WARNING,
2087 "Test dummy encryption mount option ignored");
2088 #endif
2089 return 1;
2090 }
2091
2092 static int handle_mount_opt(struct super_block *sb, char *opt, int token,
2093 substring_t *args, unsigned long *journal_devnum,
2094 unsigned int *journal_ioprio, int is_remount)
2095 {
2096 struct ext4_sb_info *sbi = EXT4_SB(sb);
2097 const struct mount_opts *m;
2098 kuid_t uid;
2099 kgid_t gid;
2100 int arg = 0;
2101
2102 #ifdef CONFIG_QUOTA
2103 if (token == Opt_usrjquota)
2104 return set_qf_name(sb, USRQUOTA, &args[0]);
2105 else if (token == Opt_grpjquota)
2106 return set_qf_name(sb, GRPQUOTA, &args[0]);
2107 else if (token == Opt_offusrjquota)
2108 return clear_qf_name(sb, USRQUOTA);
2109 else if (token == Opt_offgrpjquota)
2110 return clear_qf_name(sb, GRPQUOTA);
2111 #endif
2112 switch (token) {
2113 case Opt_noacl:
2114 case Opt_nouser_xattr:
2115 ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5");
2116 break;
2117 case Opt_sb:
2118 return 1; /* handled by get_sb_block() */
2119 case Opt_removed:
2120 ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt);
2121 return 1;
2122 case Opt_abort:
2123 ext4_set_mount_flag(sb, EXT4_MF_FS_ABORTED);
2124 return 1;
2125 case Opt_i_version:
2126 sb->s_flags |= SB_I_VERSION;
2127 return 1;
2128 case Opt_lazytime:
2129 sb->s_flags |= SB_LAZYTIME;
2130 return 1;
2131 case Opt_nolazytime:
2132 sb->s_flags &= ~SB_LAZYTIME;
2133 return 1;
2134 case Opt_inlinecrypt:
2135 #ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT
2136 sb->s_flags |= SB_INLINECRYPT;
2137 #else
2138 ext4_msg(sb, KERN_ERR, "inline encryption not supported");
2139 #endif
2140 return 1;
2141 }
2142
2143 for (m = ext4_mount_opts; m->token != Opt_err; m++)
2144 if (token == m->token)
2145 break;
2146
2147 if (m->token == Opt_err) {
2148 ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" "
2149 "or missing value", opt);
2150 return -1;
2151 }
2152
2153 if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) {
2154 ext4_msg(sb, KERN_ERR,
2155 "Mount option \"%s\" incompatible with ext2", opt);
2156 return -1;
2157 }
2158 if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) {
2159 ext4_msg(sb, KERN_ERR,
2160 "Mount option \"%s\" incompatible with ext3", opt);
2161 return -1;
2162 }
2163
2164 if (args->from && !(m->flags & MOPT_STRING) && match_int(args, &arg))
2165 return -1;
2166 if (args->from && (m->flags & MOPT_GTE0) && (arg < 0))
2167 return -1;
2168 if (m->flags & MOPT_EXPLICIT) {
2169 if (m->mount_opt & EXT4_MOUNT_DELALLOC) {
2170 set_opt2(sb, EXPLICIT_DELALLOC);
2171 } else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) {
2172 set_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM);
2173 } else
2174 return -1;
2175 }
2176 if (m->flags & MOPT_CLEAR_ERR)
2177 clear_opt(sb, ERRORS_MASK);
2178 if (token == Opt_noquota && sb_any_quota_loaded(sb)) {
2179 ext4_msg(sb, KERN_ERR, "Cannot change quota "
2180 "options when quota turned on");
2181 return -1;
2182 }
2183
2184 if (m->flags & MOPT_NOSUPPORT) {
2185 ext4_msg(sb, KERN_ERR, "%s option not supported", opt);
2186 } else if (token == Opt_commit) {
2187 if (arg == 0)
2188 arg = JBD2_DEFAULT_MAX_COMMIT_AGE;
2189 else if (arg > INT_MAX / HZ) {
2190 ext4_msg(sb, KERN_ERR,
2191 "Invalid commit interval %d, "
2192 "must be smaller than %d",
2193 arg, INT_MAX / HZ);
2194 return -1;
2195 }
2196 sbi->s_commit_interval = HZ * arg;
2197 } else if (token == Opt_debug_want_extra_isize) {
2198 if ((arg & 1) ||
2199 (arg < 4) ||
2200 (arg > (sbi->s_inode_size - EXT4_GOOD_OLD_INODE_SIZE))) {
2201 ext4_msg(sb, KERN_ERR,
2202 "Invalid want_extra_isize %d", arg);
2203 return -1;
2204 }
2205 sbi->s_want_extra_isize = arg;
2206 } else if (token == Opt_max_batch_time) {
2207 sbi->s_max_batch_time = arg;
2208 } else if (token == Opt_min_batch_time) {
2209 sbi->s_min_batch_time = arg;
2210 } else if (token == Opt_inode_readahead_blks) {
2211 if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) {
2212 ext4_msg(sb, KERN_ERR,
2213 "EXT4-fs: inode_readahead_blks must be "
2214 "0 or a power of 2 smaller than 2^31");
2215 return -1;
2216 }
2217 sbi->s_inode_readahead_blks = arg;
2218 } else if (token == Opt_init_itable) {
2219 set_opt(sb, INIT_INODE_TABLE);
2220 if (!args->from)
2221 arg = EXT4_DEF_LI_WAIT_MULT;
2222 sbi->s_li_wait_mult = arg;
2223 } else if (token == Opt_max_dir_size_kb) {
2224 sbi->s_max_dir_size_kb = arg;
2225 #ifdef CONFIG_EXT4_DEBUG
2226 } else if (token == Opt_fc_debug_max_replay) {
2227 sbi->s_fc_debug_max_replay = arg;
2228 #endif
2229 } else if (token == Opt_stripe) {
2230 sbi->s_stripe = arg;
2231 } else if (token == Opt_resuid) {
2232 uid = make_kuid(current_user_ns(), arg);
2233 if (!uid_valid(uid)) {
2234 ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg);
2235 return -1;
2236 }
2237 sbi->s_resuid = uid;
2238 } else if (token == Opt_resgid) {
2239 gid = make_kgid(current_user_ns(), arg);
2240 if (!gid_valid(gid)) {
2241 ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg);
2242 return -1;
2243 }
2244 sbi->s_resgid = gid;
2245 } else if (token == Opt_journal_dev) {
2246 if (is_remount) {
2247 ext4_msg(sb, KERN_ERR,
2248 "Cannot specify journal on remount");
2249 return -1;
2250 }
2251 *journal_devnum = arg;
2252 } else if (token == Opt_journal_path) {
2253 char *journal_path;
2254 struct inode *journal_inode;
2255 struct path path;
2256 int error;
2257
2258 if (is_remount) {
2259 ext4_msg(sb, KERN_ERR,
2260 "Cannot specify journal on remount");
2261 return -1;
2262 }
2263 journal_path = match_strdup(&args[0]);
2264 if (!journal_path) {
2265 ext4_msg(sb, KERN_ERR, "error: could not dup "
2266 "journal device string");
2267 return -1;
2268 }
2269
2270 error = kern_path(journal_path, LOOKUP_FOLLOW, &path);
2271 if (error) {
2272 ext4_msg(sb, KERN_ERR, "error: could not find "
2273 "journal device path: error %d", error);
2274 kfree(journal_path);
2275 return -1;
2276 }
2277
2278 journal_inode = d_inode(path.dentry);
2279 if (!S_ISBLK(journal_inode->i_mode)) {
2280 ext4_msg(sb, KERN_ERR, "error: journal path %s "
2281 "is not a block device", journal_path);
2282 path_put(&path);
2283 kfree(journal_path);
2284 return -1;
2285 }
2286
2287 *journal_devnum = new_encode_dev(journal_inode->i_rdev);
2288 path_put(&path);
2289 kfree(journal_path);
2290 } else if (token == Opt_journal_ioprio) {
2291 if (arg > 7) {
2292 ext4_msg(sb, KERN_ERR, "Invalid journal IO priority"
2293 " (must be 0-7)");
2294 return -1;
2295 }
2296 *journal_ioprio =
2297 IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg);
2298 } else if (token == Opt_test_dummy_encryption) {
2299 return ext4_set_test_dummy_encryption(sb, opt, &args[0],
2300 is_remount);
2301 } else if (m->flags & MOPT_DATAJ) {
2302 if (is_remount) {
2303 if (!sbi->s_journal)
2304 ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option");
2305 else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) {
2306 ext4_msg(sb, KERN_ERR,
2307 "Cannot change data mode on remount");
2308 return -1;
2309 }
2310 } else {
2311 clear_opt(sb, DATA_FLAGS);
2312 sbi->s_mount_opt |= m->mount_opt;
2313 }
2314 #ifdef CONFIG_QUOTA
2315 } else if (m->flags & MOPT_QFMT) {
2316 if (sb_any_quota_loaded(sb) &&
2317 sbi->s_jquota_fmt != m->mount_opt) {
2318 ext4_msg(sb, KERN_ERR, "Cannot change journaled "
2319 "quota options when quota turned on");
2320 return -1;
2321 }
2322 if (ext4_has_feature_quota(sb)) {
2323 ext4_msg(sb, KERN_INFO,
2324 "Quota format mount options ignored "
2325 "when QUOTA feature is enabled");
2326 return 1;
2327 }
2328 sbi->s_jquota_fmt = m->mount_opt;
2329 #endif
2330 } else if (token == Opt_dax || token == Opt_dax_always ||
2331 token == Opt_dax_inode || token == Opt_dax_never) {
2332 #ifdef CONFIG_FS_DAX
2333 switch (token) {
2334 case Opt_dax:
2335 case Opt_dax_always:
2336 if (is_remount &&
2337 (!(sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) ||
2338 (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER))) {
2339 fail_dax_change_remount:
2340 ext4_msg(sb, KERN_ERR, "can't change "
2341 "dax mount option while remounting");
2342 return -1;
2343 }
2344 if (is_remount &&
2345 (test_opt(sb, DATA_FLAGS) ==
2346 EXT4_MOUNT_JOURNAL_DATA)) {
2347 ext4_msg(sb, KERN_ERR, "can't mount with "
2348 "both data=journal and dax");
2349 return -1;
2350 }
2351 ext4_msg(sb, KERN_WARNING,
2352 "DAX enabled. Warning: EXPERIMENTAL, use at your own risk");
2353 sbi->s_mount_opt |= EXT4_MOUNT_DAX_ALWAYS;
2354 sbi->s_mount_opt2 &= ~EXT4_MOUNT2_DAX_NEVER;
2355 break;
2356 case Opt_dax_never:
2357 if (is_remount &&
2358 (!(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) ||
2359 (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS)))
2360 goto fail_dax_change_remount;
2361 sbi->s_mount_opt2 |= EXT4_MOUNT2_DAX_NEVER;
2362 sbi->s_mount_opt &= ~EXT4_MOUNT_DAX_ALWAYS;
2363 break;
2364 case Opt_dax_inode:
2365 if (is_remount &&
2366 ((sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) ||
2367 (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) ||
2368 !(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_INODE)))
2369 goto fail_dax_change_remount;
2370 sbi->s_mount_opt &= ~EXT4_MOUNT_DAX_ALWAYS;
2371 sbi->s_mount_opt2 &= ~EXT4_MOUNT2_DAX_NEVER;
2372 /* Strictly for printing options */
2373 sbi->s_mount_opt2 |= EXT4_MOUNT2_DAX_INODE;
2374 break;
2375 }
2376 #else
2377 ext4_msg(sb, KERN_INFO, "dax option not supported");
2378 sbi->s_mount_opt2 |= EXT4_MOUNT2_DAX_NEVER;
2379 sbi->s_mount_opt &= ~EXT4_MOUNT_DAX_ALWAYS;
2380 return -1;
2381 #endif
2382 } else if (token == Opt_data_err_abort) {
2383 sbi->s_mount_opt |= m->mount_opt;
2384 } else if (token == Opt_data_err_ignore) {
2385 sbi->s_mount_opt &= ~m->mount_opt;
2386 } else {
2387 if (!args->from)
2388 arg = 1;
2389 if (m->flags & MOPT_CLEAR)
2390 arg = !arg;
2391 else if (unlikely(!(m->flags & MOPT_SET))) {
2392 ext4_msg(sb, KERN_WARNING,
2393 "buggy handling of option %s", opt);
2394 WARN_ON(1);
2395 return -1;
2396 }
2397 if (m->flags & MOPT_2) {
2398 if (arg != 0)
2399 sbi->s_mount_opt2 |= m->mount_opt;
2400 else
2401 sbi->s_mount_opt2 &= ~m->mount_opt;
2402 } else {
2403 if (arg != 0)
2404 sbi->s_mount_opt |= m->mount_opt;
2405 else
2406 sbi->s_mount_opt &= ~m->mount_opt;
2407 }
2408 }
2409 return 1;
2410 }
2411
2412 static int parse_options(char *options, struct super_block *sb,
2413 unsigned long *journal_devnum,
2414 unsigned int *journal_ioprio,
2415 int is_remount)
2416 {
2417 struct ext4_sb_info __maybe_unused *sbi = EXT4_SB(sb);
2418 char *p, __maybe_unused *usr_qf_name, __maybe_unused *grp_qf_name;
2419 substring_t args[MAX_OPT_ARGS];
2420 int token;
2421
2422 if (!options)
2423 return 1;
2424
2425 while ((p = strsep(&options, ",")) != NULL) {
2426 if (!*p)
2427 continue;
2428 /*
2429 * Initialize args struct so we know whether arg was
2430 * found; some options take optional arguments.
2431 */
2432 args[0].to = args[0].from = NULL;
2433 token = match_token(p, tokens, args);
2434 if (handle_mount_opt(sb, p, token, args, journal_devnum,
2435 journal_ioprio, is_remount) < 0)
2436 return 0;
2437 }
2438 #ifdef CONFIG_QUOTA
2439 /*
2440 * We do the test below only for project quotas. 'usrquota' and
2441 * 'grpquota' mount options are allowed even without quota feature
2442 * to support legacy quotas in quota files.
2443 */
2444 if (test_opt(sb, PRJQUOTA) && !ext4_has_feature_project(sb)) {
2445 ext4_msg(sb, KERN_ERR, "Project quota feature not enabled. "
2446 "Cannot enable project quota enforcement.");
2447 return 0;
2448 }
2449 usr_qf_name = get_qf_name(sb, sbi, USRQUOTA);
2450 grp_qf_name = get_qf_name(sb, sbi, GRPQUOTA);
2451 if (usr_qf_name || grp_qf_name) {
2452 if (test_opt(sb, USRQUOTA) && usr_qf_name)
2453 clear_opt(sb, USRQUOTA);
2454
2455 if (test_opt(sb, GRPQUOTA) && grp_qf_name)
2456 clear_opt(sb, GRPQUOTA);
2457
2458 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) {
2459 ext4_msg(sb, KERN_ERR, "old and new quota "
2460 "format mixing");
2461 return 0;
2462 }
2463
2464 if (!sbi->s_jquota_fmt) {
2465 ext4_msg(sb, KERN_ERR, "journaled quota format "
2466 "not specified");
2467 return 0;
2468 }
2469 }
2470 #endif
2471 if (test_opt(sb, DIOREAD_NOLOCK)) {
2472 int blocksize =
2473 BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size);
2474 if (blocksize < PAGE_SIZE)
2475 ext4_msg(sb, KERN_WARNING, "Warning: mounting with an "
2476 "experimental mount option 'dioread_nolock' "
2477 "for blocksize < PAGE_SIZE");
2478 }
2479 return 1;
2480 }
2481
2482 static inline void ext4_show_quota_options(struct seq_file *seq,
2483 struct super_block *sb)
2484 {
2485 #if defined(CONFIG_QUOTA)
2486 struct ext4_sb_info *sbi = EXT4_SB(sb);
2487 char *usr_qf_name, *grp_qf_name;
2488
2489 if (sbi->s_jquota_fmt) {
2490 char *fmtname = "";
2491
2492 switch (sbi->s_jquota_fmt) {
2493 case QFMT_VFS_OLD:
2494 fmtname = "vfsold";
2495 break;
2496 case QFMT_VFS_V0:
2497 fmtname = "vfsv0";
2498 break;
2499 case QFMT_VFS_V1:
2500 fmtname = "vfsv1";
2501 break;
2502 }
2503 seq_printf(seq, ",jqfmt=%s", fmtname);
2504 }
2505
2506 rcu_read_lock();
2507 usr_qf_name = rcu_dereference(sbi->s_qf_names[USRQUOTA]);
2508 grp_qf_name = rcu_dereference(sbi->s_qf_names[GRPQUOTA]);
2509 if (usr_qf_name)
2510 seq_show_option(seq, "usrjquota", usr_qf_name);
2511 if (grp_qf_name)
2512 seq_show_option(seq, "grpjquota", grp_qf_name);
2513 rcu_read_unlock();
2514 #endif
2515 }
2516
2517 static const char *token2str(int token)
2518 {
2519 const struct match_token *t;
2520
2521 for (t = tokens; t->token != Opt_err; t++)
2522 if (t->token == token && !strchr(t->pattern, '='))
2523 break;
2524 return t->pattern;
2525 }
2526
2527 /*
2528 * Show an option if
2529 * - it's set to a non-default value OR
2530 * - if the per-sb default is different from the global default
2531 */
2532 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb,
2533 int nodefs)
2534 {
2535 struct ext4_sb_info *sbi = EXT4_SB(sb);
2536 struct ext4_super_block *es = sbi->s_es;
2537 int def_errors, def_mount_opt = sbi->s_def_mount_opt;
2538 const struct mount_opts *m;
2539 char sep = nodefs ? '\n' : ',';
2540
2541 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep)
2542 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg)
2543
2544 if (sbi->s_sb_block != 1)
2545 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block);
2546
2547 for (m = ext4_mount_opts; m->token != Opt_err; m++) {
2548 int want_set = m->flags & MOPT_SET;
2549 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) ||
2550 (m->flags & MOPT_CLEAR_ERR) || m->flags & MOPT_SKIP)
2551 continue;
2552 if (!nodefs && !(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt)))
2553 continue; /* skip if same as the default */
2554 if ((want_set &&
2555 (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) ||
2556 (!want_set && (sbi->s_mount_opt & m->mount_opt)))
2557 continue; /* select Opt_noFoo vs Opt_Foo */
2558 SEQ_OPTS_PRINT("%s", token2str(m->token));
2559 }
2560
2561 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) ||
2562 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID)
2563 SEQ_OPTS_PRINT("resuid=%u",
2564 from_kuid_munged(&init_user_ns, sbi->s_resuid));
2565 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) ||
2566 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID)
2567 SEQ_OPTS_PRINT("resgid=%u",
2568 from_kgid_munged(&init_user_ns, sbi->s_resgid));
2569 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors);
2570 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO)
2571 SEQ_OPTS_PUTS("errors=remount-ro");
2572 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
2573 SEQ_OPTS_PUTS("errors=continue");
2574 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
2575 SEQ_OPTS_PUTS("errors=panic");
2576 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
2577 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ);
2578 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME)
2579 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time);
2580 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME)
2581 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time);
2582 if (sb->s_flags & SB_I_VERSION)
2583 SEQ_OPTS_PUTS("i_version");
2584 if (nodefs || sbi->s_stripe)
2585 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe);
2586 if (nodefs || EXT4_MOUNT_DATA_FLAGS &
2587 (sbi->s_mount_opt ^ def_mount_opt)) {
2588 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
2589 SEQ_OPTS_PUTS("data=journal");
2590 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
2591 SEQ_OPTS_PUTS("data=ordered");
2592 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
2593 SEQ_OPTS_PUTS("data=writeback");
2594 }
2595 if (nodefs ||
2596 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
2597 SEQ_OPTS_PRINT("inode_readahead_blks=%u",
2598 sbi->s_inode_readahead_blks);
2599
2600 if (test_opt(sb, INIT_INODE_TABLE) && (nodefs ||
2601 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)))
2602 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult);
2603 if (nodefs || sbi->s_max_dir_size_kb)
2604 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb);
2605 if (test_opt(sb, DATA_ERR_ABORT))
2606 SEQ_OPTS_PUTS("data_err=abort");
2607
2608 fscrypt_show_test_dummy_encryption(seq, sep, sb);
2609
2610 if (sb->s_flags & SB_INLINECRYPT)
2611 SEQ_OPTS_PUTS("inlinecrypt");
2612
2613 if (test_opt(sb, DAX_ALWAYS)) {
2614 if (IS_EXT2_SB(sb))
2615 SEQ_OPTS_PUTS("dax");
2616 else
2617 SEQ_OPTS_PUTS("dax=always");
2618 } else if (test_opt2(sb, DAX_NEVER)) {
2619 SEQ_OPTS_PUTS("dax=never");
2620 } else if (test_opt2(sb, DAX_INODE)) {
2621 SEQ_OPTS_PUTS("dax=inode");
2622 }
2623 ext4_show_quota_options(seq, sb);
2624 return 0;
2625 }
2626
2627 static int ext4_show_options(struct seq_file *seq, struct dentry *root)
2628 {
2629 return _ext4_show_options(seq, root->d_sb, 0);
2630 }
2631
2632 int ext4_seq_options_show(struct seq_file *seq, void *offset)
2633 {
2634 struct super_block *sb = seq->private;
2635 int rc;
2636
2637 seq_puts(seq, sb_rdonly(sb) ? "ro" : "rw");
2638 rc = _ext4_show_options(seq, sb, 1);
2639 seq_puts(seq, "\n");
2640 return rc;
2641 }
2642
2643 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
2644 int read_only)
2645 {
2646 struct ext4_sb_info *sbi = EXT4_SB(sb);
2647 int err = 0;
2648
2649 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
2650 ext4_msg(sb, KERN_ERR, "revision level too high, "
2651 "forcing read-only mode");
2652 err = -EROFS;
2653 goto done;
2654 }
2655 if (read_only)
2656 goto done;
2657 if (!(sbi->s_mount_state & EXT4_VALID_FS))
2658 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
2659 "running e2fsck is recommended");
2660 else if (sbi->s_mount_state & EXT4_ERROR_FS)
2661 ext4_msg(sb, KERN_WARNING,
2662 "warning: mounting fs with errors, "
2663 "running e2fsck is recommended");
2664 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
2665 le16_to_cpu(es->s_mnt_count) >=
2666 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
2667 ext4_msg(sb, KERN_WARNING,
2668 "warning: maximal mount count reached, "
2669 "running e2fsck is recommended");
2670 else if (le32_to_cpu(es->s_checkinterval) &&
2671 (ext4_get_tstamp(es, s_lastcheck) +
2672 le32_to_cpu(es->s_checkinterval) <= ktime_get_real_seconds()))
2673 ext4_msg(sb, KERN_WARNING,
2674 "warning: checktime reached, "
2675 "running e2fsck is recommended");
2676 if (!sbi->s_journal)
2677 es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
2678 if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
2679 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
2680 le16_add_cpu(&es->s_mnt_count, 1);
2681 ext4_update_tstamp(es, s_mtime);
2682 if (sbi->s_journal)
2683 ext4_set_feature_journal_needs_recovery(sb);
2684
2685 err = ext4_commit_super(sb);
2686 done:
2687 if (test_opt(sb, DEBUG))
2688 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
2689 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
2690 sb->s_blocksize,
2691 sbi->s_groups_count,
2692 EXT4_BLOCKS_PER_GROUP(sb),
2693 EXT4_INODES_PER_GROUP(sb),
2694 sbi->s_mount_opt, sbi->s_mount_opt2);
2695
2696 cleancache_init_fs(sb);
2697 return err;
2698 }
2699
2700 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup)
2701 {
2702 struct ext4_sb_info *sbi = EXT4_SB(sb);
2703 struct flex_groups **old_groups, **new_groups;
2704 int size, i, j;
2705
2706 if (!sbi->s_log_groups_per_flex)
2707 return 0;
2708
2709 size = ext4_flex_group(sbi, ngroup - 1) + 1;
2710 if (size <= sbi->s_flex_groups_allocated)
2711 return 0;
2712
2713 new_groups = kvzalloc(roundup_pow_of_two(size *
2714 sizeof(*sbi->s_flex_groups)), GFP_KERNEL);
2715 if (!new_groups) {
2716 ext4_msg(sb, KERN_ERR,
2717 "not enough memory for %d flex group pointers", size);
2718 return -ENOMEM;
2719 }
2720 for (i = sbi->s_flex_groups_allocated; i < size; i++) {
2721 new_groups[i] = kvzalloc(roundup_pow_of_two(
2722 sizeof(struct flex_groups)),
2723 GFP_KERNEL);
2724 if (!new_groups[i]) {
2725 for (j = sbi->s_flex_groups_allocated; j < i; j++)
2726 kvfree(new_groups[j]);
2727 kvfree(new_groups);
2728 ext4_msg(sb, KERN_ERR,
2729 "not enough memory for %d flex groups", size);
2730 return -ENOMEM;
2731 }
2732 }
2733 rcu_read_lock();
2734 old_groups = rcu_dereference(sbi->s_flex_groups);
2735 if (old_groups)
2736 memcpy(new_groups, old_groups,
2737 (sbi->s_flex_groups_allocated *
2738 sizeof(struct flex_groups *)));
2739 rcu_read_unlock();
2740 rcu_assign_pointer(sbi->s_flex_groups, new_groups);
2741 sbi->s_flex_groups_allocated = size;
2742 if (old_groups)
2743 ext4_kvfree_array_rcu(old_groups);
2744 return 0;
2745 }
2746
2747 static int ext4_fill_flex_info(struct super_block *sb)
2748 {
2749 struct ext4_sb_info *sbi = EXT4_SB(sb);
2750 struct ext4_group_desc *gdp = NULL;
2751 struct flex_groups *fg;
2752 ext4_group_t flex_group;
2753 int i, err;
2754
2755 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
2756 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) {
2757 sbi->s_log_groups_per_flex = 0;
2758 return 1;
2759 }
2760
2761 err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count);
2762 if (err)
2763 goto failed;
2764
2765 for (i = 0; i < sbi->s_groups_count; i++) {
2766 gdp = ext4_get_group_desc(sb, i, NULL);
2767
2768 flex_group = ext4_flex_group(sbi, i);
2769 fg = sbi_array_rcu_deref(sbi, s_flex_groups, flex_group);
2770 atomic_add(ext4_free_inodes_count(sb, gdp), &fg->free_inodes);
2771 atomic64_add(ext4_free_group_clusters(sb, gdp),
2772 &fg->free_clusters);
2773 atomic_add(ext4_used_dirs_count(sb, gdp), &fg->used_dirs);
2774 }
2775
2776 return 1;
2777 failed:
2778 return 0;
2779 }
2780
2781 static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group,
2782 struct ext4_group_desc *gdp)
2783 {
2784 int offset = offsetof(struct ext4_group_desc, bg_checksum);
2785 __u16 crc = 0;
2786 __le32 le_group = cpu_to_le32(block_group);
2787 struct ext4_sb_info *sbi = EXT4_SB(sb);
2788
2789 if (ext4_has_metadata_csum(sbi->s_sb)) {
2790 /* Use new metadata_csum algorithm */
2791 __u32 csum32;
2792 __u16 dummy_csum = 0;
2793
2794 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group,
2795 sizeof(le_group));
2796 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, offset);
2797 csum32 = ext4_chksum(sbi, csum32, (__u8 *)&dummy_csum,
2798 sizeof(dummy_csum));
2799 offset += sizeof(dummy_csum);
2800 if (offset < sbi->s_desc_size)
2801 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp + offset,
2802 sbi->s_desc_size - offset);
2803
2804 crc = csum32 & 0xFFFF;
2805 goto out;
2806 }
2807
2808 /* old crc16 code */
2809 if (!ext4_has_feature_gdt_csum(sb))
2810 return 0;
2811
2812 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
2813 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
2814 crc = crc16(crc, (__u8 *)gdp, offset);
2815 offset += sizeof(gdp->bg_checksum); /* skip checksum */
2816 /* for checksum of struct ext4_group_desc do the rest...*/
2817 if (ext4_has_feature_64bit(sb) &&
2818 offset < le16_to_cpu(sbi->s_es->s_desc_size))
2819 crc = crc16(crc, (__u8 *)gdp + offset,
2820 le16_to_cpu(sbi->s_es->s_desc_size) -
2821 offset);
2822
2823 out:
2824 return cpu_to_le16(crc);
2825 }
2826
2827 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group,
2828 struct ext4_group_desc *gdp)
2829 {
2830 if (ext4_has_group_desc_csum(sb) &&
2831 (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp)))
2832 return 0;
2833
2834 return 1;
2835 }
2836
2837 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group,
2838 struct ext4_group_desc *gdp)
2839 {
2840 if (!ext4_has_group_desc_csum(sb))
2841 return;
2842 gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp);
2843 }
2844
2845 /* Called at mount-time, super-block is locked */
2846 static int ext4_check_descriptors(struct super_block *sb,
2847 ext4_fsblk_t sb_block,
2848 ext4_group_t *first_not_zeroed)
2849 {
2850 struct ext4_sb_info *sbi = EXT4_SB(sb);
2851 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
2852 ext4_fsblk_t last_block;
2853 ext4_fsblk_t last_bg_block = sb_block + ext4_bg_num_gdb(sb, 0);
2854 ext4_fsblk_t block_bitmap;
2855 ext4_fsblk_t inode_bitmap;
2856 ext4_fsblk_t inode_table;
2857 int flexbg_flag = 0;
2858 ext4_group_t i, grp = sbi->s_groups_count;
2859
2860 if (ext4_has_feature_flex_bg(sb))
2861 flexbg_flag = 1;
2862
2863 ext4_debug("Checking group descriptors");
2864
2865 for (i = 0; i < sbi->s_groups_count; i++) {
2866 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
2867
2868 if (i == sbi->s_groups_count - 1 || flexbg_flag)
2869 last_block = ext4_blocks_count(sbi->s_es) - 1;
2870 else
2871 last_block = first_block +
2872 (EXT4_BLOCKS_PER_GROUP(sb) - 1);
2873
2874 if ((grp == sbi->s_groups_count) &&
2875 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2876 grp = i;
2877
2878 block_bitmap = ext4_block_bitmap(sb, gdp);
2879 if (block_bitmap == sb_block) {
2880 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2881 "Block bitmap for group %u overlaps "
2882 "superblock", i);
2883 if (!sb_rdonly(sb))
2884 return 0;
2885 }
2886 if (block_bitmap >= sb_block + 1 &&
2887 block_bitmap <= last_bg_block) {
2888 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2889 "Block bitmap for group %u overlaps "
2890 "block group descriptors", i);
2891 if (!sb_rdonly(sb))
2892 return 0;
2893 }
2894 if (block_bitmap < first_block || block_bitmap > last_block) {
2895 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2896 "Block bitmap for group %u not in group "
2897 "(block %llu)!", i, block_bitmap);
2898 return 0;
2899 }
2900 inode_bitmap = ext4_inode_bitmap(sb, gdp);
2901 if (inode_bitmap == sb_block) {
2902 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2903 "Inode bitmap for group %u overlaps "
2904 "superblock", i);
2905 if (!sb_rdonly(sb))
2906 return 0;
2907 }
2908 if (inode_bitmap >= sb_block + 1 &&
2909 inode_bitmap <= last_bg_block) {
2910 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2911 "Inode bitmap for group %u overlaps "
2912 "block group descriptors", i);
2913 if (!sb_rdonly(sb))
2914 return 0;
2915 }
2916 if (inode_bitmap < first_block || inode_bitmap > last_block) {
2917 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2918 "Inode bitmap for group %u not in group "
2919 "(block %llu)!", i, inode_bitmap);
2920 return 0;
2921 }
2922 inode_table = ext4_inode_table(sb, gdp);
2923 if (inode_table == sb_block) {
2924 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2925 "Inode table for group %u overlaps "
2926 "superblock", i);
2927 if (!sb_rdonly(sb))
2928 return 0;
2929 }
2930 if (inode_table >= sb_block + 1 &&
2931 inode_table <= last_bg_block) {
2932 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2933 "Inode table for group %u overlaps "
2934 "block group descriptors", i);
2935 if (!sb_rdonly(sb))
2936 return 0;
2937 }
2938 if (inode_table < first_block ||
2939 inode_table + sbi->s_itb_per_group - 1 > last_block) {
2940 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2941 "Inode table for group %u not in group "
2942 "(block %llu)!", i, inode_table);
2943 return 0;
2944 }
2945 ext4_lock_group(sb, i);
2946 if (!ext4_group_desc_csum_verify(sb, i, gdp)) {
2947 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2948 "Checksum for group %u failed (%u!=%u)",
2949 i, le16_to_cpu(ext4_group_desc_csum(sb, i,
2950 gdp)), le16_to_cpu(gdp->bg_checksum));
2951 if (!sb_rdonly(sb)) {
2952 ext4_unlock_group(sb, i);
2953 return 0;
2954 }
2955 }
2956 ext4_unlock_group(sb, i);
2957 if (!flexbg_flag)
2958 first_block += EXT4_BLOCKS_PER_GROUP(sb);
2959 }
2960 if (NULL != first_not_zeroed)
2961 *first_not_zeroed = grp;
2962 return 1;
2963 }
2964
2965 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at
2966 * the superblock) which were deleted from all directories, but held open by
2967 * a process at the time of a crash. We walk the list and try to delete these
2968 * inodes at recovery time (only with a read-write filesystem).
2969 *
2970 * In order to keep the orphan inode chain consistent during traversal (in
2971 * case of crash during recovery), we link each inode into the superblock
2972 * orphan list_head and handle it the same way as an inode deletion during
2973 * normal operation (which journals the operations for us).
2974 *
2975 * We only do an iget() and an iput() on each inode, which is very safe if we
2976 * accidentally point at an in-use or already deleted inode. The worst that
2977 * can happen in this case is that we get a "bit already cleared" message from
2978 * ext4_free_inode(). The only reason we would point at a wrong inode is if
2979 * e2fsck was run on this filesystem, and it must have already done the orphan
2980 * inode cleanup for us, so we can safely abort without any further action.
2981 */
2982 static void ext4_orphan_cleanup(struct super_block *sb,
2983 struct ext4_super_block *es)
2984 {
2985 unsigned int s_flags = sb->s_flags;
2986 int ret, nr_orphans = 0, nr_truncates = 0;
2987 #ifdef CONFIG_QUOTA
2988 int quota_update = 0;
2989 int i;
2990 #endif
2991 if (!es->s_last_orphan) {
2992 jbd_debug(4, "no orphan inodes to clean up\n");
2993 return;
2994 }
2995
2996 if (bdev_read_only(sb->s_bdev)) {
2997 ext4_msg(sb, KERN_ERR, "write access "
2998 "unavailable, skipping orphan cleanup");
2999 return;
3000 }
3001
3002 /* Check if feature set would not allow a r/w mount */
3003 if (!ext4_feature_set_ok(sb, 0)) {
3004 ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to "
3005 "unknown ROCOMPAT features");
3006 return;
3007 }
3008
3009 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
3010 /* don't clear list on RO mount w/ errors */
3011 if (es->s_last_orphan && !(s_flags & SB_RDONLY)) {
3012 ext4_msg(sb, KERN_INFO, "Errors on filesystem, "
3013 "clearing orphan list.\n");
3014 es->s_last_orphan = 0;
3015 }
3016 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
3017 return;
3018 }
3019
3020 if (s_flags & SB_RDONLY) {
3021 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs");
3022 sb->s_flags &= ~SB_RDONLY;
3023 }
3024 #ifdef CONFIG_QUOTA
3025 /* Needed for iput() to work correctly and not trash data */
3026 sb->s_flags |= SB_ACTIVE;
3027
3028 /*
3029 * Turn on quotas which were not enabled for read-only mounts if
3030 * filesystem has quota feature, so that they are updated correctly.
3031 */
3032 if (ext4_has_feature_quota(sb) && (s_flags & SB_RDONLY)) {
3033 int ret = ext4_enable_quotas(sb);
3034
3035 if (!ret)
3036 quota_update = 1;
3037 else
3038 ext4_msg(sb, KERN_ERR,
3039 "Cannot turn on quotas: error %d", ret);
3040 }
3041
3042 /* Turn on journaled quotas used for old sytle */
3043 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
3044 if (EXT4_SB(sb)->s_qf_names[i]) {
3045 int ret = ext4_quota_on_mount(sb, i);
3046
3047 if (!ret)
3048 quota_update = 1;
3049 else
3050 ext4_msg(sb, KERN_ERR,
3051 "Cannot turn on journaled "
3052 "quota: type %d: error %d", i, ret);
3053 }
3054 }
3055 #endif
3056
3057 while (es->s_last_orphan) {
3058 struct inode *inode;
3059
3060 /*
3061 * We may have encountered an error during cleanup; if
3062 * so, skip the rest.
3063 */
3064 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
3065 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
3066 es->s_last_orphan = 0;
3067 break;
3068 }
3069
3070 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan));
3071 if (IS_ERR(inode)) {
3072 es->s_last_orphan = 0;
3073 break;
3074 }
3075
3076 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan);
3077 dquot_initialize(inode);
3078 if (inode->i_nlink) {
3079 if (test_opt(sb, DEBUG))
3080 ext4_msg(sb, KERN_DEBUG,
3081 "%s: truncating inode %lu to %lld bytes",
3082 __func__, inode->i_ino, inode->i_size);
3083 jbd_debug(2, "truncating inode %lu to %lld bytes\n",
3084 inode->i_ino, inode->i_size);
3085 inode_lock(inode);
3086 truncate_inode_pages(inode->i_mapping, inode->i_size);
3087 ret = ext4_truncate(inode);
3088 if (ret)
3089 ext4_std_error(inode->i_sb, ret);
3090 inode_unlock(inode);
3091 nr_truncates++;
3092 } else {
3093 if (test_opt(sb, DEBUG))
3094 ext4_msg(sb, KERN_DEBUG,
3095 "%s: deleting unreferenced inode %lu",
3096 __func__, inode->i_ino);
3097 jbd_debug(2, "deleting unreferenced inode %lu\n",
3098 inode->i_ino);
3099 nr_orphans++;
3100 }
3101 iput(inode); /* The delete magic happens here! */
3102 }
3103
3104 #define PLURAL(x) (x), ((x) == 1) ? "" : "s"
3105
3106 if (nr_orphans)
3107 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted",
3108 PLURAL(nr_orphans));
3109 if (nr_truncates)
3110 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up",
3111 PLURAL(nr_truncates));
3112 #ifdef CONFIG_QUOTA
3113 /* Turn off quotas if they were enabled for orphan cleanup */
3114 if (quota_update) {
3115 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
3116 if (sb_dqopt(sb)->files[i])
3117 dquot_quota_off(sb, i);
3118 }
3119 }
3120 #endif
3121 sb->s_flags = s_flags; /* Restore SB_RDONLY status */
3122 }
3123
3124 /*
3125 * Maximal extent format file size.
3126 * Resulting logical blkno at s_maxbytes must fit in our on-disk
3127 * extent format containers, within a sector_t, and within i_blocks
3128 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units,
3129 * so that won't be a limiting factor.
3130 *
3131 * However there is other limiting factor. We do store extents in the form
3132 * of starting block and length, hence the resulting length of the extent
3133 * covering maximum file size must fit into on-disk format containers as
3134 * well. Given that length is always by 1 unit bigger than max unit (because
3135 * we count 0 as well) we have to lower the s_maxbytes by one fs block.
3136 *
3137 * Note, this does *not* consider any metadata overhead for vfs i_blocks.
3138 */
3139 static loff_t ext4_max_size(int blkbits, int has_huge_files)
3140 {
3141 loff_t res;
3142 loff_t upper_limit = MAX_LFS_FILESIZE;
3143
3144 BUILD_BUG_ON(sizeof(blkcnt_t) < sizeof(u64));
3145
3146 if (!has_huge_files) {
3147 upper_limit = (1LL << 32) - 1;
3148
3149 /* total blocks in file system block size */
3150 upper_limit >>= (blkbits - 9);
3151 upper_limit <<= blkbits;
3152 }
3153
3154 /*
3155 * 32-bit extent-start container, ee_block. We lower the maxbytes
3156 * by one fs block, so ee_len can cover the extent of maximum file
3157 * size
3158 */
3159 res = (1LL << 32) - 1;
3160 res <<= blkbits;
3161
3162 /* Sanity check against vm- & vfs- imposed limits */
3163 if (res > upper_limit)
3164 res = upper_limit;
3165
3166 return res;
3167 }
3168
3169 /*
3170 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect
3171 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
3172 * We need to be 1 filesystem block less than the 2^48 sector limit.
3173 */
3174 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
3175 {
3176 loff_t res = EXT4_NDIR_BLOCKS;
3177 int meta_blocks;
3178 loff_t upper_limit;
3179 /* This is calculated to be the largest file size for a dense, block
3180 * mapped file such that the file's total number of 512-byte sectors,
3181 * including data and all indirect blocks, does not exceed (2^48 - 1).
3182 *
3183 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
3184 * number of 512-byte sectors of the file.
3185 */
3186
3187 if (!has_huge_files) {
3188 /*
3189 * !has_huge_files or implies that the inode i_block field
3190 * represents total file blocks in 2^32 512-byte sectors ==
3191 * size of vfs inode i_blocks * 8
3192 */
3193 upper_limit = (1LL << 32) - 1;
3194
3195 /* total blocks in file system block size */
3196 upper_limit >>= (bits - 9);
3197
3198 } else {
3199 /*
3200 * We use 48 bit ext4_inode i_blocks
3201 * With EXT4_HUGE_FILE_FL set the i_blocks
3202 * represent total number of blocks in
3203 * file system block size
3204 */
3205 upper_limit = (1LL << 48) - 1;
3206
3207 }
3208
3209 /* indirect blocks */
3210 meta_blocks = 1;
3211 /* double indirect blocks */
3212 meta_blocks += 1 + (1LL << (bits-2));
3213 /* tripple indirect blocks */
3214 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2)));
3215
3216 upper_limit -= meta_blocks;
3217 upper_limit <<= bits;
3218
3219 res += 1LL << (bits-2);
3220 res += 1LL << (2*(bits-2));
3221 res += 1LL << (3*(bits-2));
3222 res <<= bits;
3223 if (res > upper_limit)
3224 res = upper_limit;
3225
3226 if (res > MAX_LFS_FILESIZE)
3227 res = MAX_LFS_FILESIZE;
3228
3229 return res;
3230 }
3231
3232 static ext4_fsblk_t descriptor_loc(struct super_block *sb,
3233 ext4_fsblk_t logical_sb_block, int nr)
3234 {
3235 struct ext4_sb_info *sbi = EXT4_SB(sb);
3236 ext4_group_t bg, first_meta_bg;
3237 int has_super = 0;
3238
3239 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
3240
3241 if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg)
3242 return logical_sb_block + nr + 1;
3243 bg = sbi->s_desc_per_block * nr;
3244 if (ext4_bg_has_super(sb, bg))
3245 has_super = 1;
3246
3247 /*
3248 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at
3249 * block 2, not 1. If s_first_data_block == 0 (bigalloc is enabled
3250 * on modern mke2fs or blksize > 1k on older mke2fs) then we must
3251 * compensate.
3252 */
3253 if (sb->s_blocksize == 1024 && nr == 0 &&
3254 le32_to_cpu(sbi->s_es->s_first_data_block) == 0)
3255 has_super++;
3256
3257 return (has_super + ext4_group_first_block_no(sb, bg));
3258 }
3259
3260 /**
3261 * ext4_get_stripe_size: Get the stripe size.
3262 * @sbi: In memory super block info
3263 *
3264 * If we have specified it via mount option, then
3265 * use the mount option value. If the value specified at mount time is
3266 * greater than the blocks per group use the super block value.
3267 * If the super block value is greater than blocks per group return 0.
3268 * Allocator needs it be less than blocks per group.
3269 *
3270 */
3271 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
3272 {
3273 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
3274 unsigned long stripe_width =
3275 le32_to_cpu(sbi->s_es->s_raid_stripe_width);
3276 int ret;
3277
3278 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
3279 ret = sbi->s_stripe;
3280 else if (stripe_width && stripe_width <= sbi->s_blocks_per_group)
3281 ret = stripe_width;
3282 else if (stride && stride <= sbi->s_blocks_per_group)
3283 ret = stride;
3284 else
3285 ret = 0;
3286
3287 /*
3288 * If the stripe width is 1, this makes no sense and
3289 * we set it to 0 to turn off stripe handling code.
3290 */
3291 if (ret <= 1)
3292 ret = 0;
3293
3294 return ret;
3295 }
3296
3297 /*
3298 * Check whether this filesystem can be mounted based on
3299 * the features present and the RDONLY/RDWR mount requested.
3300 * Returns 1 if this filesystem can be mounted as requested,
3301 * 0 if it cannot be.
3302 */
3303 static int ext4_feature_set_ok(struct super_block *sb, int readonly)
3304 {
3305 if (ext4_has_unknown_ext4_incompat_features(sb)) {
3306 ext4_msg(sb, KERN_ERR,
3307 "Couldn't mount because of "
3308 "unsupported optional features (%x)",
3309 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
3310 ~EXT4_FEATURE_INCOMPAT_SUPP));
3311 return 0;
3312 }
3313
3314 #ifndef CONFIG_UNICODE
3315 if (ext4_has_feature_casefold(sb)) {
3316 ext4_msg(sb, KERN_ERR,
3317 "Filesystem with casefold feature cannot be "
3318 "mounted without CONFIG_UNICODE");
3319 return 0;
3320 }
3321 #endif
3322
3323 if (readonly)
3324 return 1;
3325
3326 if (ext4_has_feature_readonly(sb)) {
3327 ext4_msg(sb, KERN_INFO, "filesystem is read-only");
3328 sb->s_flags |= SB_RDONLY;
3329 return 1;
3330 }
3331
3332 /* Check that feature set is OK for a read-write mount */
3333 if (ext4_has_unknown_ext4_ro_compat_features(sb)) {
3334 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
3335 "unsupported optional features (%x)",
3336 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
3337 ~EXT4_FEATURE_RO_COMPAT_SUPP));
3338 return 0;
3339 }
3340 if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) {
3341 ext4_msg(sb, KERN_ERR,
3342 "Can't support bigalloc feature without "
3343 "extents feature\n");
3344 return 0;
3345 }
3346
3347 #if !IS_ENABLED(CONFIG_QUOTA) || !IS_ENABLED(CONFIG_QFMT_V2)
3348 if (!readonly && (ext4_has_feature_quota(sb) ||
3349 ext4_has_feature_project(sb))) {
3350 ext4_msg(sb, KERN_ERR,
3351 "The kernel was not built with CONFIG_QUOTA and CONFIG_QFMT_V2");
3352 return 0;
3353 }
3354 #endif /* CONFIG_QUOTA */
3355 return 1;
3356 }
3357
3358 /*
3359 * This function is called once a day if we have errors logged
3360 * on the file system
3361 */
3362 static void print_daily_error_info(struct timer_list *t)
3363 {
3364 struct ext4_sb_info *sbi = from_timer(sbi, t, s_err_report);
3365 struct super_block *sb = sbi->s_sb;
3366 struct ext4_super_block *es = sbi->s_es;
3367
3368 if (es->s_error_count)
3369 /* fsck newer than v1.41.13 is needed to clean this condition. */
3370 ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u",
3371 le32_to_cpu(es->s_error_count));
3372 if (es->s_first_error_time) {
3373 printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %llu: %.*s:%d",
3374 sb->s_id,
3375 ext4_get_tstamp(es, s_first_error_time),
3376 (int) sizeof(es->s_first_error_func),
3377 es->s_first_error_func,
3378 le32_to_cpu(es->s_first_error_line));
3379 if (es->s_first_error_ino)
3380 printk(KERN_CONT ": inode %u",
3381 le32_to_cpu(es->s_first_error_ino));
3382 if (es->s_first_error_block)
3383 printk(KERN_CONT ": block %llu", (unsigned long long)
3384 le64_to_cpu(es->s_first_error_block));
3385 printk(KERN_CONT "\n");
3386 }
3387 if (es->s_last_error_time) {
3388 printk(KERN_NOTICE "EXT4-fs (%s): last error at time %llu: %.*s:%d",
3389 sb->s_id,
3390 ext4_get_tstamp(es, s_last_error_time),
3391 (int) sizeof(es->s_last_error_func),
3392 es->s_last_error_func,
3393 le32_to_cpu(es->s_last_error_line));
3394 if (es->s_last_error_ino)
3395 printk(KERN_CONT ": inode %u",
3396 le32_to_cpu(es->s_last_error_ino));
3397 if (es->s_last_error_block)
3398 printk(KERN_CONT ": block %llu", (unsigned long long)
3399 le64_to_cpu(es->s_last_error_block));
3400 printk(KERN_CONT "\n");
3401 }
3402 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */
3403 }
3404
3405 /* Find next suitable group and run ext4_init_inode_table */
3406 static int ext4_run_li_request(struct ext4_li_request *elr)
3407 {
3408 struct ext4_group_desc *gdp = NULL;
3409 struct super_block *sb = elr->lr_super;
3410 ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count;
3411 ext4_group_t group = elr->lr_next_group;
3412 unsigned long timeout = 0;
3413 unsigned int prefetch_ios = 0;
3414 int ret = 0;
3415
3416 if (elr->lr_mode == EXT4_LI_MODE_PREFETCH_BBITMAP) {
3417 elr->lr_next_group = ext4_mb_prefetch(sb, group,
3418 EXT4_SB(sb)->s_mb_prefetch, &prefetch_ios);
3419 if (prefetch_ios)
3420 ext4_mb_prefetch_fini(sb, elr->lr_next_group,
3421 prefetch_ios);
3422 trace_ext4_prefetch_bitmaps(sb, group, elr->lr_next_group,
3423 prefetch_ios);
3424 if (group >= elr->lr_next_group) {
3425 ret = 1;
3426 if (elr->lr_first_not_zeroed != ngroups &&
3427 !sb_rdonly(sb) && test_opt(sb, INIT_INODE_TABLE)) {
3428 elr->lr_next_group = elr->lr_first_not_zeroed;
3429 elr->lr_mode = EXT4_LI_MODE_ITABLE;
3430 ret = 0;
3431 }
3432 }
3433 return ret;
3434 }
3435
3436 for (; group < ngroups; group++) {
3437 gdp = ext4_get_group_desc(sb, group, NULL);
3438 if (!gdp) {
3439 ret = 1;
3440 break;
3441 }
3442
3443 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3444 break;
3445 }
3446
3447 if (group >= ngroups)
3448 ret = 1;
3449
3450 if (!ret) {
3451 timeout = jiffies;
3452 ret = ext4_init_inode_table(sb, group,
3453 elr->lr_timeout ? 0 : 1);
3454 trace_ext4_lazy_itable_init(sb, group);
3455 if (elr->lr_timeout == 0) {
3456 timeout = (jiffies - timeout) *
3457 EXT4_SB(elr->lr_super)->s_li_wait_mult;
3458 elr->lr_timeout = timeout;
3459 }
3460 elr->lr_next_sched = jiffies + elr->lr_timeout;
3461 elr->lr_next_group = group + 1;
3462 }
3463 return ret;
3464 }
3465
3466 /*
3467 * Remove lr_request from the list_request and free the
3468 * request structure. Should be called with li_list_mtx held
3469 */
3470 static void ext4_remove_li_request(struct ext4_li_request *elr)
3471 {
3472 if (!elr)
3473 return;
3474
3475 list_del(&elr->lr_request);
3476 EXT4_SB(elr->lr_super)->s_li_request = NULL;
3477 kfree(elr);
3478 }
3479
3480 static void ext4_unregister_li_request(struct super_block *sb)
3481 {
3482 mutex_lock(&ext4_li_mtx);
3483 if (!ext4_li_info) {
3484 mutex_unlock(&ext4_li_mtx);
3485 return;
3486 }
3487
3488 mutex_lock(&ext4_li_info->li_list_mtx);
3489 ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
3490 mutex_unlock(&ext4_li_info->li_list_mtx);
3491 mutex_unlock(&ext4_li_mtx);
3492 }
3493
3494 static struct task_struct *ext4_lazyinit_task;
3495
3496 /*
3497 * This is the function where ext4lazyinit thread lives. It walks
3498 * through the request list searching for next scheduled filesystem.
3499 * When such a fs is found, run the lazy initialization request
3500 * (ext4_rn_li_request) and keep track of the time spend in this
3501 * function. Based on that time we compute next schedule time of
3502 * the request. When walking through the list is complete, compute
3503 * next waking time and put itself into sleep.
3504 */
3505 static int ext4_lazyinit_thread(void *arg)
3506 {
3507 struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg;
3508 struct list_head *pos, *n;
3509 struct ext4_li_request *elr;
3510 unsigned long next_wakeup, cur;
3511
3512 BUG_ON(NULL == eli);
3513
3514 cont_thread:
3515 while (true) {
3516 next_wakeup = MAX_JIFFY_OFFSET;
3517
3518 mutex_lock(&eli->li_list_mtx);
3519 if (list_empty(&eli->li_request_list)) {
3520 mutex_unlock(&eli->li_list_mtx);
3521 goto exit_thread;
3522 }
3523 list_for_each_safe(pos, n, &eli->li_request_list) {
3524 int err = 0;
3525 int progress = 0;
3526 elr = list_entry(pos, struct ext4_li_request,
3527 lr_request);
3528
3529 if (time_before(jiffies, elr->lr_next_sched)) {
3530 if (time_before(elr->lr_next_sched, next_wakeup))
3531 next_wakeup = elr->lr_next_sched;
3532 continue;
3533 }
3534 if (down_read_trylock(&elr->lr_super->s_umount)) {
3535 if (sb_start_write_trylock(elr->lr_super)) {
3536 progress = 1;
3537 /*
3538 * We hold sb->s_umount, sb can not
3539 * be removed from the list, it is
3540 * now safe to drop li_list_mtx
3541 */
3542 mutex_unlock(&eli->li_list_mtx);
3543 err = ext4_run_li_request(elr);
3544 sb_end_write(elr->lr_super);
3545 mutex_lock(&eli->li_list_mtx);
3546 n = pos->next;
3547 }
3548 up_read((&elr->lr_super->s_umount));
3549 }
3550 /* error, remove the lazy_init job */
3551 if (err) {
3552 ext4_remove_li_request(elr);
3553 continue;
3554 }
3555 if (!progress) {
3556 elr->lr_next_sched = jiffies +
3557 (prandom_u32()
3558 % (EXT4_DEF_LI_MAX_START_DELAY * HZ));
3559 }
3560 if (time_before(elr->lr_next_sched, next_wakeup))
3561 next_wakeup = elr->lr_next_sched;
3562 }
3563 mutex_unlock(&eli->li_list_mtx);
3564
3565 try_to_freeze();
3566
3567 cur = jiffies;
3568 if ((time_after_eq(cur, next_wakeup)) ||
3569 (MAX_JIFFY_OFFSET == next_wakeup)) {
3570 cond_resched();
3571 continue;
3572 }
3573
3574 schedule_timeout_interruptible(next_wakeup - cur);
3575
3576 if (kthread_should_stop()) {
3577 ext4_clear_request_list();
3578 goto exit_thread;
3579 }
3580 }
3581
3582 exit_thread:
3583 /*
3584 * It looks like the request list is empty, but we need
3585 * to check it under the li_list_mtx lock, to prevent any
3586 * additions into it, and of course we should lock ext4_li_mtx
3587 * to atomically free the list and ext4_li_info, because at
3588 * this point another ext4 filesystem could be registering
3589 * new one.
3590 */
3591 mutex_lock(&ext4_li_mtx);
3592 mutex_lock(&eli->li_list_mtx);
3593 if (!list_empty(&eli->li_request_list)) {
3594 mutex_unlock(&eli->li_list_mtx);
3595 mutex_unlock(&ext4_li_mtx);
3596 goto cont_thread;
3597 }
3598 mutex_unlock(&eli->li_list_mtx);
3599 kfree(ext4_li_info);
3600 ext4_li_info = NULL;
3601 mutex_unlock(&ext4_li_mtx);
3602
3603 return 0;
3604 }
3605
3606 static void ext4_clear_request_list(void)
3607 {
3608 struct list_head *pos, *n;
3609 struct ext4_li_request *elr;
3610
3611 mutex_lock(&ext4_li_info->li_list_mtx);
3612 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
3613 elr = list_entry(pos, struct ext4_li_request,
3614 lr_request);
3615 ext4_remove_li_request(elr);
3616 }
3617 mutex_unlock(&ext4_li_info->li_list_mtx);
3618 }
3619
3620 static int ext4_run_lazyinit_thread(void)
3621 {
3622 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
3623 ext4_li_info, "ext4lazyinit");
3624 if (IS_ERR(ext4_lazyinit_task)) {
3625 int err = PTR_ERR(ext4_lazyinit_task);
3626 ext4_clear_request_list();
3627 kfree(ext4_li_info);
3628 ext4_li_info = NULL;
3629 printk(KERN_CRIT "EXT4-fs: error %d creating inode table "
3630 "initialization thread\n",
3631 err);
3632 return err;
3633 }
3634 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
3635 return 0;
3636 }
3637
3638 /*
3639 * Check whether it make sense to run itable init. thread or not.
3640 * If there is at least one uninitialized inode table, return
3641 * corresponding group number, else the loop goes through all
3642 * groups and return total number of groups.
3643 */
3644 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
3645 {
3646 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
3647 struct ext4_group_desc *gdp = NULL;
3648
3649 if (!ext4_has_group_desc_csum(sb))
3650 return ngroups;
3651
3652 for (group = 0; group < ngroups; group++) {
3653 gdp = ext4_get_group_desc(sb, group, NULL);
3654 if (!gdp)
3655 continue;
3656
3657 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3658 break;
3659 }
3660
3661 return group;
3662 }
3663
3664 static int ext4_li_info_new(void)
3665 {
3666 struct ext4_lazy_init *eli = NULL;
3667
3668 eli = kzalloc(sizeof(*eli), GFP_KERNEL);
3669 if (!eli)
3670 return -ENOMEM;
3671
3672 INIT_LIST_HEAD(&eli->li_request_list);
3673 mutex_init(&eli->li_list_mtx);
3674
3675 eli->li_state |= EXT4_LAZYINIT_QUIT;
3676
3677 ext4_li_info = eli;
3678
3679 return 0;
3680 }
3681
3682 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
3683 ext4_group_t start)
3684 {
3685 struct ext4_li_request *elr;
3686
3687 elr = kzalloc(sizeof(*elr), GFP_KERNEL);
3688 if (!elr)
3689 return NULL;
3690
3691 elr->lr_super = sb;
3692 elr->lr_first_not_zeroed = start;
3693 if (test_opt(sb, PREFETCH_BLOCK_BITMAPS))
3694 elr->lr_mode = EXT4_LI_MODE_PREFETCH_BBITMAP;
3695 else {
3696 elr->lr_mode = EXT4_LI_MODE_ITABLE;
3697 elr->lr_next_group = start;
3698 }
3699
3700 /*
3701 * Randomize first schedule time of the request to
3702 * spread the inode table initialization requests
3703 * better.
3704 */
3705 elr->lr_next_sched = jiffies + (prandom_u32() %
3706 (EXT4_DEF_LI_MAX_START_DELAY * HZ));
3707 return elr;
3708 }
3709
3710 int ext4_register_li_request(struct super_block *sb,
3711 ext4_group_t first_not_zeroed)
3712 {
3713 struct ext4_sb_info *sbi = EXT4_SB(sb);
3714 struct ext4_li_request *elr = NULL;
3715 ext4_group_t ngroups = sbi->s_groups_count;
3716 int ret = 0;
3717
3718 mutex_lock(&ext4_li_mtx);
3719 if (sbi->s_li_request != NULL) {
3720 /*
3721 * Reset timeout so it can be computed again, because
3722 * s_li_wait_mult might have changed.
3723 */
3724 sbi->s_li_request->lr_timeout = 0;
3725 goto out;
3726 }
3727
3728 if (!test_opt(sb, PREFETCH_BLOCK_BITMAPS) &&
3729 (first_not_zeroed == ngroups || sb_rdonly(sb) ||
3730 !test_opt(sb, INIT_INODE_TABLE)))
3731 goto out;
3732
3733 elr = ext4_li_request_new(sb, first_not_zeroed);
3734 if (!elr) {
3735 ret = -ENOMEM;
3736 goto out;
3737 }
3738
3739 if (NULL == ext4_li_info) {
3740 ret = ext4_li_info_new();
3741 if (ret)
3742 goto out;
3743 }
3744
3745 mutex_lock(&ext4_li_info->li_list_mtx);
3746 list_add(&elr->lr_request, &ext4_li_info->li_request_list);
3747 mutex_unlock(&ext4_li_info->li_list_mtx);
3748
3749 sbi->s_li_request = elr;
3750 /*
3751 * set elr to NULL here since it has been inserted to
3752 * the request_list and the removal and free of it is
3753 * handled by ext4_clear_request_list from now on.
3754 */
3755 elr = NULL;
3756
3757 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
3758 ret = ext4_run_lazyinit_thread();
3759 if (ret)
3760 goto out;
3761 }
3762 out:
3763 mutex_unlock(&ext4_li_mtx);
3764 if (ret)
3765 kfree(elr);
3766 return ret;
3767 }
3768
3769 /*
3770 * We do not need to lock anything since this is called on
3771 * module unload.
3772 */
3773 static void ext4_destroy_lazyinit_thread(void)
3774 {
3775 /*
3776 * If thread exited earlier
3777 * there's nothing to be done.
3778 */
3779 if (!ext4_li_info || !ext4_lazyinit_task)
3780 return;
3781
3782 kthread_stop(ext4_lazyinit_task);
3783 }
3784
3785 static int set_journal_csum_feature_set(struct super_block *sb)
3786 {
3787 int ret = 1;
3788 int compat, incompat;
3789 struct ext4_sb_info *sbi = EXT4_SB(sb);
3790
3791 if (ext4_has_metadata_csum(sb)) {
3792 /* journal checksum v3 */
3793 compat = 0;
3794 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3;
3795 } else {
3796 /* journal checksum v1 */
3797 compat = JBD2_FEATURE_COMPAT_CHECKSUM;
3798 incompat = 0;
3799 }
3800
3801 jbd2_journal_clear_features(sbi->s_journal,
3802 JBD2_FEATURE_COMPAT_CHECKSUM, 0,
3803 JBD2_FEATURE_INCOMPAT_CSUM_V3 |
3804 JBD2_FEATURE_INCOMPAT_CSUM_V2);
3805 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
3806 ret = jbd2_journal_set_features(sbi->s_journal,
3807 compat, 0,
3808 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
3809 incompat);
3810 } else if (test_opt(sb, JOURNAL_CHECKSUM)) {
3811 ret = jbd2_journal_set_features(sbi->s_journal,
3812 compat, 0,
3813 incompat);
3814 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3815 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3816 } else {
3817 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3818 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3819 }
3820
3821 return ret;
3822 }
3823
3824 /*
3825 * Note: calculating the overhead so we can be compatible with
3826 * historical BSD practice is quite difficult in the face of
3827 * clusters/bigalloc. This is because multiple metadata blocks from
3828 * different block group can end up in the same allocation cluster.
3829 * Calculating the exact overhead in the face of clustered allocation
3830 * requires either O(all block bitmaps) in memory or O(number of block
3831 * groups**2) in time. We will still calculate the superblock for
3832 * older file systems --- and if we come across with a bigalloc file
3833 * system with zero in s_overhead_clusters the estimate will be close to
3834 * correct especially for very large cluster sizes --- but for newer
3835 * file systems, it's better to calculate this figure once at mkfs
3836 * time, and store it in the superblock. If the superblock value is
3837 * present (even for non-bigalloc file systems), we will use it.
3838 */
3839 static int count_overhead(struct super_block *sb, ext4_group_t grp,
3840 char *buf)
3841 {
3842 struct ext4_sb_info *sbi = EXT4_SB(sb);
3843 struct ext4_group_desc *gdp;
3844 ext4_fsblk_t first_block, last_block, b;
3845 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3846 int s, j, count = 0;
3847
3848 if (!ext4_has_feature_bigalloc(sb))
3849 return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) +
3850 sbi->s_itb_per_group + 2);
3851
3852 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) +
3853 (grp * EXT4_BLOCKS_PER_GROUP(sb));
3854 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1;
3855 for (i = 0; i < ngroups; i++) {
3856 gdp = ext4_get_group_desc(sb, i, NULL);
3857 b = ext4_block_bitmap(sb, gdp);
3858 if (b >= first_block && b <= last_block) {
3859 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3860 count++;
3861 }
3862 b = ext4_inode_bitmap(sb, gdp);
3863 if (b >= first_block && b <= last_block) {
3864 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3865 count++;
3866 }
3867 b = ext4_inode_table(sb, gdp);
3868 if (b >= first_block && b + sbi->s_itb_per_group <= last_block)
3869 for (j = 0; j < sbi->s_itb_per_group; j++, b++) {
3870 int c = EXT4_B2C(sbi, b - first_block);
3871 ext4_set_bit(c, buf);
3872 count++;
3873 }
3874 if (i != grp)
3875 continue;
3876 s = 0;
3877 if (ext4_bg_has_super(sb, grp)) {
3878 ext4_set_bit(s++, buf);
3879 count++;
3880 }
3881 j = ext4_bg_num_gdb(sb, grp);
3882 if (s + j > EXT4_BLOCKS_PER_GROUP(sb)) {
3883 ext4_error(sb, "Invalid number of block group "
3884 "descriptor blocks: %d", j);
3885 j = EXT4_BLOCKS_PER_GROUP(sb) - s;
3886 }
3887 count += j;
3888 for (; j > 0; j--)
3889 ext4_set_bit(EXT4_B2C(sbi, s++), buf);
3890 }
3891 if (!count)
3892 return 0;
3893 return EXT4_CLUSTERS_PER_GROUP(sb) -
3894 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8);
3895 }
3896
3897 /*
3898 * Compute the overhead and stash it in sbi->s_overhead
3899 */
3900 int ext4_calculate_overhead(struct super_block *sb)
3901 {
3902 struct ext4_sb_info *sbi = EXT4_SB(sb);
3903 struct ext4_super_block *es = sbi->s_es;
3904 struct inode *j_inode;
3905 unsigned int j_blocks, j_inum = le32_to_cpu(es->s_journal_inum);
3906 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3907 ext4_fsblk_t overhead = 0;
3908 char *buf = (char *) get_zeroed_page(GFP_NOFS);
3909
3910 if (!buf)
3911 return -ENOMEM;
3912
3913 /*
3914 * Compute the overhead (FS structures). This is constant
3915 * for a given filesystem unless the number of block groups
3916 * changes so we cache the previous value until it does.
3917 */
3918
3919 /*
3920 * All of the blocks before first_data_block are overhead
3921 */
3922 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
3923
3924 /*
3925 * Add the overhead found in each block group
3926 */
3927 for (i = 0; i < ngroups; i++) {
3928 int blks;
3929
3930 blks = count_overhead(sb, i, buf);
3931 overhead += blks;
3932 if (blks)
3933 memset(buf, 0, PAGE_SIZE);
3934 cond_resched();
3935 }
3936
3937 /*
3938 * Add the internal journal blocks whether the journal has been
3939 * loaded or not
3940 */
3941 if (sbi->s_journal && !sbi->s_journal_bdev)
3942 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_total_len);
3943 else if (ext4_has_feature_journal(sb) && !sbi->s_journal && j_inum) {
3944 /* j_inum for internal journal is non-zero */
3945 j_inode = ext4_get_journal_inode(sb, j_inum);
3946 if (j_inode) {
3947 j_blocks = j_inode->i_size >> sb->s_blocksize_bits;
3948 overhead += EXT4_NUM_B2C(sbi, j_blocks);
3949 iput(j_inode);
3950 } else {
3951 ext4_msg(sb, KERN_ERR, "can't get journal size");
3952 }
3953 }
3954 sbi->s_overhead = overhead;
3955 smp_wmb();
3956 free_page((unsigned long) buf);
3957 return 0;
3958 }
3959
3960 static void ext4_set_resv_clusters(struct super_block *sb)
3961 {
3962 ext4_fsblk_t resv_clusters;
3963 struct ext4_sb_info *sbi = EXT4_SB(sb);
3964
3965 /*
3966 * There's no need to reserve anything when we aren't using extents.
3967 * The space estimates are exact, there are no unwritten extents,
3968 * hole punching doesn't need new metadata... This is needed especially
3969 * to keep ext2/3 backward compatibility.
3970 */
3971 if (!ext4_has_feature_extents(sb))
3972 return;
3973 /*
3974 * By default we reserve 2% or 4096 clusters, whichever is smaller.
3975 * This should cover the situations where we can not afford to run
3976 * out of space like for example punch hole, or converting
3977 * unwritten extents in delalloc path. In most cases such
3978 * allocation would require 1, or 2 blocks, higher numbers are
3979 * very rare.
3980 */
3981 resv_clusters = (ext4_blocks_count(sbi->s_es) >>
3982 sbi->s_cluster_bits);
3983
3984 do_div(resv_clusters, 50);
3985 resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096);
3986
3987 atomic64_set(&sbi->s_resv_clusters, resv_clusters);
3988 }
3989
3990 static const char *ext4_quota_mode(struct super_block *sb)
3991 {
3992 #ifdef CONFIG_QUOTA
3993 if (!ext4_quota_capable(sb))
3994 return "none";
3995
3996 if (EXT4_SB(sb)->s_journal && ext4_is_quota_journalled(sb))
3997 return "journalled";
3998 else
3999 return "writeback";
4000 #else
4001 return "disabled";
4002 #endif
4003 }
4004
4005 static int ext4_fill_super(struct super_block *sb, void *data, int silent)
4006 {
4007 struct dax_device *dax_dev = fs_dax_get_by_bdev(sb->s_bdev);
4008 char *orig_data = kstrdup(data, GFP_KERNEL);
4009 struct buffer_head *bh, **group_desc;
4010 struct ext4_super_block *es = NULL;
4011 struct ext4_sb_info *sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
4012 struct flex_groups **flex_groups;
4013 ext4_fsblk_t block;
4014 ext4_fsblk_t sb_block = get_sb_block(&data);
4015 ext4_fsblk_t logical_sb_block;
4016 unsigned long offset = 0;
4017 unsigned long journal_devnum = 0;
4018 unsigned long def_mount_opts;
4019 struct inode *root;
4020 const char *descr;
4021 int ret = -ENOMEM;
4022 int blocksize, clustersize;
4023 unsigned int db_count;
4024 unsigned int i;
4025 int needs_recovery, has_huge_files;
4026 __u64 blocks_count;
4027 int err = 0;
4028 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
4029 ext4_group_t first_not_zeroed;
4030
4031 if ((data && !orig_data) || !sbi)
4032 goto out_free_base;
4033
4034 sbi->s_daxdev = dax_dev;
4035 sbi->s_blockgroup_lock =
4036 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
4037 if (!sbi->s_blockgroup_lock)
4038 goto out_free_base;
4039
4040 sb->s_fs_info = sbi;
4041 sbi->s_sb = sb;
4042 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
4043 sbi->s_sb_block = sb_block;
4044 sbi->s_sectors_written_start =
4045 part_stat_read(sb->s_bdev, sectors[STAT_WRITE]);
4046
4047 /* Cleanup superblock name */
4048 strreplace(sb->s_id, '/', '!');
4049
4050 /* -EINVAL is default */
4051 ret = -EINVAL;
4052 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
4053 if (!blocksize) {
4054 ext4_msg(sb, KERN_ERR, "unable to set blocksize");
4055 goto out_fail;
4056 }
4057
4058 /*
4059 * The ext4 superblock will not be buffer aligned for other than 1kB
4060 * block sizes. We need to calculate the offset from buffer start.
4061 */
4062 if (blocksize != EXT4_MIN_BLOCK_SIZE) {
4063 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
4064 offset = do_div(logical_sb_block, blocksize);
4065 } else {
4066 logical_sb_block = sb_block;
4067 }
4068
4069 bh = ext4_sb_bread_unmovable(sb, logical_sb_block);
4070 if (IS_ERR(bh)) {
4071 ext4_msg(sb, KERN_ERR, "unable to read superblock");
4072 ret = PTR_ERR(bh);
4073 goto out_fail;
4074 }
4075 /*
4076 * Note: s_es must be initialized as soon as possible because
4077 * some ext4 macro-instructions depend on its value
4078 */
4079 es = (struct ext4_super_block *) (bh->b_data + offset);
4080 sbi->s_es = es;
4081 sb->s_magic = le16_to_cpu(es->s_magic);
4082 if (sb->s_magic != EXT4_SUPER_MAGIC)
4083 goto cantfind_ext4;
4084 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
4085
4086 /* Warn if metadata_csum and gdt_csum are both set. */
4087 if (ext4_has_feature_metadata_csum(sb) &&
4088 ext4_has_feature_gdt_csum(sb))
4089 ext4_warning(sb, "metadata_csum and uninit_bg are "
4090 "redundant flags; please run fsck.");
4091
4092 /* Check for a known checksum algorithm */
4093 if (!ext4_verify_csum_type(sb, es)) {
4094 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
4095 "unknown checksum algorithm.");
4096 silent = 1;
4097 goto cantfind_ext4;
4098 }
4099
4100 /* Load the checksum driver */
4101 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
4102 if (IS_ERR(sbi->s_chksum_driver)) {
4103 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver.");
4104 ret = PTR_ERR(sbi->s_chksum_driver);
4105 sbi->s_chksum_driver = NULL;
4106 goto failed_mount;
4107 }
4108
4109 /* Check superblock checksum */
4110 if (!ext4_superblock_csum_verify(sb, es)) {
4111 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
4112 "invalid superblock checksum. Run e2fsck?");
4113 silent = 1;
4114 ret = -EFSBADCRC;
4115 goto cantfind_ext4;
4116 }
4117
4118 /* Precompute checksum seed for all metadata */
4119 if (ext4_has_feature_csum_seed(sb))
4120 sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed);
4121 else if (ext4_has_metadata_csum(sb) || ext4_has_feature_ea_inode(sb))
4122 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid,
4123 sizeof(es->s_uuid));
4124
4125 /* Set defaults before we parse the mount options */
4126 def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
4127 set_opt(sb, INIT_INODE_TABLE);
4128 if (def_mount_opts & EXT4_DEFM_DEBUG)
4129 set_opt(sb, DEBUG);
4130 if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
4131 set_opt(sb, GRPID);
4132 if (def_mount_opts & EXT4_DEFM_UID16)
4133 set_opt(sb, NO_UID32);
4134 /* xattr user namespace & acls are now defaulted on */
4135 set_opt(sb, XATTR_USER);
4136 #ifdef CONFIG_EXT4_FS_POSIX_ACL
4137 set_opt(sb, POSIX_ACL);
4138 #endif
4139 if (ext4_has_feature_fast_commit(sb))
4140 set_opt2(sb, JOURNAL_FAST_COMMIT);
4141 /* don't forget to enable journal_csum when metadata_csum is enabled. */
4142 if (ext4_has_metadata_csum(sb))
4143 set_opt(sb, JOURNAL_CHECKSUM);
4144
4145 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
4146 set_opt(sb, JOURNAL_DATA);
4147 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
4148 set_opt(sb, ORDERED_DATA);
4149 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
4150 set_opt(sb, WRITEBACK_DATA);
4151
4152 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC)
4153 set_opt(sb, ERRORS_PANIC);
4154 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE)
4155 set_opt(sb, ERRORS_CONT);
4156 else
4157 set_opt(sb, ERRORS_RO);
4158 /* block_validity enabled by default; disable with noblock_validity */
4159 set_opt(sb, BLOCK_VALIDITY);
4160 if (def_mount_opts & EXT4_DEFM_DISCARD)
4161 set_opt(sb, DISCARD);
4162
4163 sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid));
4164 sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid));
4165 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
4166 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
4167 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
4168
4169 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
4170 set_opt(sb, BARRIER);
4171
4172 /*
4173 * enable delayed allocation by default
4174 * Use -o nodelalloc to turn it off
4175 */
4176 if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) &&
4177 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
4178 set_opt(sb, DELALLOC);
4179
4180 /*
4181 * set default s_li_wait_mult for lazyinit, for the case there is
4182 * no mount option specified.
4183 */
4184 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
4185
4186 if (le32_to_cpu(es->s_log_block_size) >
4187 (EXT4_MAX_BLOCK_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
4188 ext4_msg(sb, KERN_ERR,
4189 "Invalid log block size: %u",
4190 le32_to_cpu(es->s_log_block_size));
4191 goto failed_mount;
4192 }
4193 if (le32_to_cpu(es->s_log_cluster_size) >
4194 (EXT4_MAX_CLUSTER_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
4195 ext4_msg(sb, KERN_ERR,
4196 "Invalid log cluster size: %u",
4197 le32_to_cpu(es->s_log_cluster_size));
4198 goto failed_mount;
4199 }
4200
4201 blocksize = EXT4_MIN_BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
4202
4203 if (blocksize == PAGE_SIZE)
4204 set_opt(sb, DIOREAD_NOLOCK);
4205
4206 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
4207 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
4208 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
4209 } else {
4210 sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
4211 sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
4212 if (sbi->s_first_ino < EXT4_GOOD_OLD_FIRST_INO) {
4213 ext4_msg(sb, KERN_ERR, "invalid first ino: %u",
4214 sbi->s_first_ino);
4215 goto failed_mount;
4216 }
4217 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
4218 (!is_power_of_2(sbi->s_inode_size)) ||
4219 (sbi->s_inode_size > blocksize)) {
4220 ext4_msg(sb, KERN_ERR,
4221 "unsupported inode size: %d",
4222 sbi->s_inode_size);
4223 ext4_msg(sb, KERN_ERR, "blocksize: %d", blocksize);
4224 goto failed_mount;
4225 }
4226 /*
4227 * i_atime_extra is the last extra field available for
4228 * [acm]times in struct ext4_inode. Checking for that
4229 * field should suffice to ensure we have extra space
4230 * for all three.
4231 */
4232 if (sbi->s_inode_size >= offsetof(struct ext4_inode, i_atime_extra) +
4233 sizeof(((struct ext4_inode *)0)->i_atime_extra)) {
4234 sb->s_time_gran = 1;
4235 sb->s_time_max = EXT4_EXTRA_TIMESTAMP_MAX;
4236 } else {
4237 sb->s_time_gran = NSEC_PER_SEC;
4238 sb->s_time_max = EXT4_NON_EXTRA_TIMESTAMP_MAX;
4239 }
4240 sb->s_time_min = EXT4_TIMESTAMP_MIN;
4241 }
4242 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) {
4243 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
4244 EXT4_GOOD_OLD_INODE_SIZE;
4245 if (ext4_has_feature_extra_isize(sb)) {
4246 unsigned v, max = (sbi->s_inode_size -
4247 EXT4_GOOD_OLD_INODE_SIZE);
4248
4249 v = le16_to_cpu(es->s_want_extra_isize);
4250 if (v > max) {
4251 ext4_msg(sb, KERN_ERR,
4252 "bad s_want_extra_isize: %d", v);
4253 goto failed_mount;
4254 }
4255 if (sbi->s_want_extra_isize < v)
4256 sbi->s_want_extra_isize = v;
4257
4258 v = le16_to_cpu(es->s_min_extra_isize);
4259 if (v > max) {
4260 ext4_msg(sb, KERN_ERR,
4261 "bad s_min_extra_isize: %d", v);
4262 goto failed_mount;
4263 }
4264 if (sbi->s_want_extra_isize < v)
4265 sbi->s_want_extra_isize = v;
4266 }
4267 }
4268
4269 if (sbi->s_es->s_mount_opts[0]) {
4270 char *s_mount_opts = kstrndup(sbi->s_es->s_mount_opts,
4271 sizeof(sbi->s_es->s_mount_opts),
4272 GFP_KERNEL);
4273 if (!s_mount_opts)
4274 goto failed_mount;
4275 if (!parse_options(s_mount_opts, sb, &journal_devnum,
4276 &journal_ioprio, 0)) {
4277 ext4_msg(sb, KERN_WARNING,
4278 "failed to parse options in superblock: %s",
4279 s_mount_opts);
4280 }
4281 kfree(s_mount_opts);
4282 }
4283 sbi->s_def_mount_opt = sbi->s_mount_opt;
4284 if (!parse_options((char *) data, sb, &journal_devnum,
4285 &journal_ioprio, 0))
4286 goto failed_mount;
4287
4288 #ifdef CONFIG_UNICODE
4289 if (ext4_has_feature_casefold(sb) && !sb->s_encoding) {
4290 const struct ext4_sb_encodings *encoding_info;
4291 struct unicode_map *encoding;
4292 __u16 encoding_flags;
4293
4294 if (ext4_has_feature_encrypt(sb)) {
4295 ext4_msg(sb, KERN_ERR,
4296 "Can't mount with encoding and encryption");
4297 goto failed_mount;
4298 }
4299
4300 if (ext4_sb_read_encoding(es, &encoding_info,
4301 &encoding_flags)) {
4302 ext4_msg(sb, KERN_ERR,
4303 "Encoding requested by superblock is unknown");
4304 goto failed_mount;
4305 }
4306
4307 encoding = utf8_load(encoding_info->version);
4308 if (IS_ERR(encoding)) {
4309 ext4_msg(sb, KERN_ERR,
4310 "can't mount with superblock charset: %s-%s "
4311 "not supported by the kernel. flags: 0x%x.",
4312 encoding_info->name, encoding_info->version,
4313 encoding_flags);
4314 goto failed_mount;
4315 }
4316 ext4_msg(sb, KERN_INFO,"Using encoding defined by superblock: "
4317 "%s-%s with flags 0x%hx", encoding_info->name,
4318 encoding_info->version?:"\b", encoding_flags);
4319
4320 sb->s_encoding = encoding;
4321 sb->s_encoding_flags = encoding_flags;
4322 }
4323 #endif
4324
4325 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
4326 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting with data=journal disables delayed allocation, dioread_nolock, O_DIRECT and fast_commit support!\n");
4327 /* can't mount with both data=journal and dioread_nolock. */
4328 clear_opt(sb, DIOREAD_NOLOCK);
4329 clear_opt2(sb, JOURNAL_FAST_COMMIT);
4330 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
4331 ext4_msg(sb, KERN_ERR, "can't mount with "
4332 "both data=journal and delalloc");
4333 goto failed_mount;
4334 }
4335 if (test_opt(sb, DAX_ALWAYS)) {
4336 ext4_msg(sb, KERN_ERR, "can't mount with "
4337 "both data=journal and dax");
4338 goto failed_mount;
4339 }
4340 if (ext4_has_feature_encrypt(sb)) {
4341 ext4_msg(sb, KERN_WARNING,
4342 "encrypted files will use data=ordered "
4343 "instead of data journaling mode");
4344 }
4345 if (test_opt(sb, DELALLOC))
4346 clear_opt(sb, DELALLOC);
4347 } else {
4348 sb->s_iflags |= SB_I_CGROUPWB;
4349 }
4350
4351 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
4352 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
4353
4354 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
4355 (ext4_has_compat_features(sb) ||
4356 ext4_has_ro_compat_features(sb) ||
4357 ext4_has_incompat_features(sb)))
4358 ext4_msg(sb, KERN_WARNING,
4359 "feature flags set on rev 0 fs, "
4360 "running e2fsck is recommended");
4361
4362 if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) {
4363 set_opt2(sb, HURD_COMPAT);
4364 if (ext4_has_feature_64bit(sb)) {
4365 ext4_msg(sb, KERN_ERR,
4366 "The Hurd can't support 64-bit file systems");
4367 goto failed_mount;
4368 }
4369
4370 /*
4371 * ea_inode feature uses l_i_version field which is not
4372 * available in HURD_COMPAT mode.
4373 */
4374 if (ext4_has_feature_ea_inode(sb)) {
4375 ext4_msg(sb, KERN_ERR,
4376 "ea_inode feature is not supported for Hurd");
4377 goto failed_mount;
4378 }
4379 }
4380
4381 if (IS_EXT2_SB(sb)) {
4382 if (ext2_feature_set_ok(sb))
4383 ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
4384 "using the ext4 subsystem");
4385 else {
4386 /*
4387 * If we're probing be silent, if this looks like
4388 * it's actually an ext[34] filesystem.
4389 */
4390 if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
4391 goto failed_mount;
4392 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
4393 "to feature incompatibilities");
4394 goto failed_mount;
4395 }
4396 }
4397
4398 if (IS_EXT3_SB(sb)) {
4399 if (ext3_feature_set_ok(sb))
4400 ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
4401 "using the ext4 subsystem");
4402 else {
4403 /*
4404 * If we're probing be silent, if this looks like
4405 * it's actually an ext4 filesystem.
4406 */
4407 if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
4408 goto failed_mount;
4409 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
4410 "to feature incompatibilities");
4411 goto failed_mount;
4412 }
4413 }
4414
4415 /*
4416 * Check feature flags regardless of the revision level, since we
4417 * previously didn't change the revision level when setting the flags,
4418 * so there is a chance incompat flags are set on a rev 0 filesystem.
4419 */
4420 if (!ext4_feature_set_ok(sb, (sb_rdonly(sb))))
4421 goto failed_mount;
4422
4423 if (le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) > (blocksize / 4)) {
4424 ext4_msg(sb, KERN_ERR,
4425 "Number of reserved GDT blocks insanely large: %d",
4426 le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks));
4427 goto failed_mount;
4428 }
4429
4430 if (bdev_dax_supported(sb->s_bdev, blocksize))
4431 set_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags);
4432
4433 if (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) {
4434 if (ext4_has_feature_inline_data(sb)) {
4435 ext4_msg(sb, KERN_ERR, "Cannot use DAX on a filesystem"
4436 " that may contain inline data");
4437 goto failed_mount;
4438 }
4439 if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags)) {
4440 ext4_msg(sb, KERN_ERR,
4441 "DAX unsupported by block device.");
4442 goto failed_mount;
4443 }
4444 }
4445
4446 if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) {
4447 ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d",
4448 es->s_encryption_level);
4449 goto failed_mount;
4450 }
4451
4452 if (sb->s_blocksize != blocksize) {
4453 /* Validate the filesystem blocksize */
4454 if (!sb_set_blocksize(sb, blocksize)) {
4455 ext4_msg(sb, KERN_ERR, "bad block size %d",
4456 blocksize);
4457 goto failed_mount;
4458 }
4459
4460 brelse(bh);
4461 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
4462 offset = do_div(logical_sb_block, blocksize);
4463 bh = ext4_sb_bread_unmovable(sb, logical_sb_block);
4464 if (IS_ERR(bh)) {
4465 ext4_msg(sb, KERN_ERR,
4466 "Can't read superblock on 2nd try");
4467 ret = PTR_ERR(bh);
4468 bh = NULL;
4469 goto failed_mount;
4470 }
4471 es = (struct ext4_super_block *)(bh->b_data + offset);
4472 sbi->s_es = es;
4473 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
4474 ext4_msg(sb, KERN_ERR,
4475 "Magic mismatch, very weird!");
4476 goto failed_mount;
4477 }
4478 }
4479
4480 has_huge_files = ext4_has_feature_huge_file(sb);
4481 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
4482 has_huge_files);
4483 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
4484
4485 sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
4486 if (ext4_has_feature_64bit(sb)) {
4487 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
4488 sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
4489 !is_power_of_2(sbi->s_desc_size)) {
4490 ext4_msg(sb, KERN_ERR,
4491 "unsupported descriptor size %lu",
4492 sbi->s_desc_size);
4493 goto failed_mount;
4494 }
4495 } else
4496 sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
4497
4498 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
4499 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
4500
4501 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb);
4502 if (sbi->s_inodes_per_block == 0)
4503 goto cantfind_ext4;
4504 if (sbi->s_inodes_per_group < sbi->s_inodes_per_block ||
4505 sbi->s_inodes_per_group > blocksize * 8) {
4506 ext4_msg(sb, KERN_ERR, "invalid inodes per group: %lu\n",
4507 sbi->s_inodes_per_group);
4508 goto failed_mount;
4509 }
4510 sbi->s_itb_per_group = sbi->s_inodes_per_group /
4511 sbi->s_inodes_per_block;
4512 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb);
4513 sbi->s_sbh = bh;
4514 sbi->s_mount_state = le16_to_cpu(es->s_state);
4515 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
4516 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
4517
4518 for (i = 0; i < 4; i++)
4519 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
4520 sbi->s_def_hash_version = es->s_def_hash_version;
4521 if (ext4_has_feature_dir_index(sb)) {
4522 i = le32_to_cpu(es->s_flags);
4523 if (i & EXT2_FLAGS_UNSIGNED_HASH)
4524 sbi->s_hash_unsigned = 3;
4525 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
4526 #ifdef __CHAR_UNSIGNED__
4527 if (!sb_rdonly(sb))
4528 es->s_flags |=
4529 cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
4530 sbi->s_hash_unsigned = 3;
4531 #else
4532 if (!sb_rdonly(sb))
4533 es->s_flags |=
4534 cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
4535 #endif
4536 }
4537 }
4538
4539 /* Handle clustersize */
4540 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size);
4541 if (ext4_has_feature_bigalloc(sb)) {
4542 if (clustersize < blocksize) {
4543 ext4_msg(sb, KERN_ERR,
4544 "cluster size (%d) smaller than "
4545 "block size (%d)", clustersize, blocksize);
4546 goto failed_mount;
4547 }
4548 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) -
4549 le32_to_cpu(es->s_log_block_size);
4550 sbi->s_clusters_per_group =
4551 le32_to_cpu(es->s_clusters_per_group);
4552 if (sbi->s_clusters_per_group > blocksize * 8) {
4553 ext4_msg(sb, KERN_ERR,
4554 "#clusters per group too big: %lu",
4555 sbi->s_clusters_per_group);
4556 goto failed_mount;
4557 }
4558 if (sbi->s_blocks_per_group !=
4559 (sbi->s_clusters_per_group * (clustersize / blocksize))) {
4560 ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and "
4561 "clusters per group (%lu) inconsistent",
4562 sbi->s_blocks_per_group,
4563 sbi->s_clusters_per_group);
4564 goto failed_mount;
4565 }
4566 } else {
4567 if (clustersize != blocksize) {
4568 ext4_msg(sb, KERN_ERR,
4569 "fragment/cluster size (%d) != "
4570 "block size (%d)", clustersize, blocksize);
4571 goto failed_mount;
4572 }
4573 if (sbi->s_blocks_per_group > blocksize * 8) {
4574 ext4_msg(sb, KERN_ERR,
4575 "#blocks per group too big: %lu",
4576 sbi->s_blocks_per_group);
4577 goto failed_mount;
4578 }
4579 sbi->s_clusters_per_group = sbi->s_blocks_per_group;
4580 sbi->s_cluster_bits = 0;
4581 }
4582 sbi->s_cluster_ratio = clustersize / blocksize;
4583
4584 /* Do we have standard group size of clustersize * 8 blocks ? */
4585 if (sbi->s_blocks_per_group == clustersize << 3)
4586 set_opt2(sb, STD_GROUP_SIZE);
4587
4588 /*
4589 * Test whether we have more sectors than will fit in sector_t,
4590 * and whether the max offset is addressable by the page cache.
4591 */
4592 err = generic_check_addressable(sb->s_blocksize_bits,
4593 ext4_blocks_count(es));
4594 if (err) {
4595 ext4_msg(sb, KERN_ERR, "filesystem"
4596 " too large to mount safely on this system");
4597 goto failed_mount;
4598 }
4599
4600 if (EXT4_BLOCKS_PER_GROUP(sb) == 0)
4601 goto cantfind_ext4;
4602
4603 /* check blocks count against device size */
4604 blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
4605 if (blocks_count && ext4_blocks_count(es) > blocks_count) {
4606 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
4607 "exceeds size of device (%llu blocks)",
4608 ext4_blocks_count(es), blocks_count);
4609 goto failed_mount;
4610 }
4611
4612 /*
4613 * It makes no sense for the first data block to be beyond the end
4614 * of the filesystem.
4615 */
4616 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
4617 ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
4618 "block %u is beyond end of filesystem (%llu)",
4619 le32_to_cpu(es->s_first_data_block),
4620 ext4_blocks_count(es));
4621 goto failed_mount;
4622 }
4623 if ((es->s_first_data_block == 0) && (es->s_log_block_size == 0) &&
4624 (sbi->s_cluster_ratio == 1)) {
4625 ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
4626 "block is 0 with a 1k block and cluster size");
4627 goto failed_mount;
4628 }
4629
4630 blocks_count = (ext4_blocks_count(es) -
4631 le32_to_cpu(es->s_first_data_block) +
4632 EXT4_BLOCKS_PER_GROUP(sb) - 1);
4633 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
4634 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
4635 ext4_msg(sb, KERN_WARNING, "groups count too large: %llu "
4636 "(block count %llu, first data block %u, "
4637 "blocks per group %lu)", blocks_count,
4638 ext4_blocks_count(es),
4639 le32_to_cpu(es->s_first_data_block),
4640 EXT4_BLOCKS_PER_GROUP(sb));
4641 goto failed_mount;
4642 }
4643 sbi->s_groups_count = blocks_count;
4644 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
4645 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
4646 if (((u64)sbi->s_groups_count * sbi->s_inodes_per_group) !=
4647 le32_to_cpu(es->s_inodes_count)) {
4648 ext4_msg(sb, KERN_ERR, "inodes count not valid: %u vs %llu",
4649 le32_to_cpu(es->s_inodes_count),
4650 ((u64)sbi->s_groups_count * sbi->s_inodes_per_group));
4651 ret = -EINVAL;
4652 goto failed_mount;
4653 }
4654 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
4655 EXT4_DESC_PER_BLOCK(sb);
4656 if (ext4_has_feature_meta_bg(sb)) {
4657 if (le32_to_cpu(es->s_first_meta_bg) > db_count) {
4658 ext4_msg(sb, KERN_WARNING,
4659 "first meta block group too large: %u "
4660 "(group descriptor block count %u)",
4661 le32_to_cpu(es->s_first_meta_bg), db_count);
4662 goto failed_mount;
4663 }
4664 }
4665 rcu_assign_pointer(sbi->s_group_desc,
4666 kvmalloc_array(db_count,
4667 sizeof(struct buffer_head *),
4668 GFP_KERNEL));
4669 if (sbi->s_group_desc == NULL) {
4670 ext4_msg(sb, KERN_ERR, "not enough memory");
4671 ret = -ENOMEM;
4672 goto failed_mount;
4673 }
4674
4675 bgl_lock_init(sbi->s_blockgroup_lock);
4676
4677 /* Pre-read the descriptors into the buffer cache */
4678 for (i = 0; i < db_count; i++) {
4679 block = descriptor_loc(sb, logical_sb_block, i);
4680 ext4_sb_breadahead_unmovable(sb, block);
4681 }
4682
4683 for (i = 0; i < db_count; i++) {
4684 struct buffer_head *bh;
4685
4686 block = descriptor_loc(sb, logical_sb_block, i);
4687 bh = ext4_sb_bread_unmovable(sb, block);
4688 if (IS_ERR(bh)) {
4689 ext4_msg(sb, KERN_ERR,
4690 "can't read group descriptor %d", i);
4691 db_count = i;
4692 ret = PTR_ERR(bh);
4693 goto failed_mount2;
4694 }
4695 rcu_read_lock();
4696 rcu_dereference(sbi->s_group_desc)[i] = bh;
4697 rcu_read_unlock();
4698 }
4699 sbi->s_gdb_count = db_count;
4700 if (!ext4_check_descriptors(sb, logical_sb_block, &first_not_zeroed)) {
4701 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
4702 ret = -EFSCORRUPTED;
4703 goto failed_mount2;
4704 }
4705
4706 timer_setup(&sbi->s_err_report, print_daily_error_info, 0);
4707 spin_lock_init(&sbi->s_error_lock);
4708 INIT_WORK(&sbi->s_error_work, flush_stashed_error_work);
4709
4710 /* Register extent status tree shrinker */
4711 if (ext4_es_register_shrinker(sbi))
4712 goto failed_mount3;
4713
4714 sbi->s_stripe = ext4_get_stripe_size(sbi);
4715 sbi->s_extent_max_zeroout_kb = 32;
4716
4717 /*
4718 * set up enough so that it can read an inode
4719 */
4720 sb->s_op = &ext4_sops;
4721 sb->s_export_op = &ext4_export_ops;
4722 sb->s_xattr = ext4_xattr_handlers;
4723 #ifdef CONFIG_FS_ENCRYPTION
4724 sb->s_cop = &ext4_cryptops;
4725 #endif
4726 #ifdef CONFIG_FS_VERITY
4727 sb->s_vop = &ext4_verityops;
4728 #endif
4729 #ifdef CONFIG_QUOTA
4730 sb->dq_op = &ext4_quota_operations;
4731 if (ext4_has_feature_quota(sb))
4732 sb->s_qcop = &dquot_quotactl_sysfile_ops;
4733 else
4734 sb->s_qcop = &ext4_qctl_operations;
4735 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
4736 #endif
4737 memcpy(&sb->s_uuid, es->s_uuid, sizeof(es->s_uuid));
4738
4739 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
4740 mutex_init(&sbi->s_orphan_lock);
4741
4742 /* Initialize fast commit stuff */
4743 atomic_set(&sbi->s_fc_subtid, 0);
4744 atomic_set(&sbi->s_fc_ineligible_updates, 0);
4745 INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_MAIN]);
4746 INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_STAGING]);
4747 INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_MAIN]);
4748 INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_STAGING]);
4749 sbi->s_fc_bytes = 0;
4750 ext4_clear_mount_flag(sb, EXT4_MF_FC_INELIGIBLE);
4751 ext4_clear_mount_flag(sb, EXT4_MF_FC_COMMITTING);
4752 spin_lock_init(&sbi->s_fc_lock);
4753 memset(&sbi->s_fc_stats, 0, sizeof(sbi->s_fc_stats));
4754 sbi->s_fc_replay_state.fc_regions = NULL;
4755 sbi->s_fc_replay_state.fc_regions_size = 0;
4756 sbi->s_fc_replay_state.fc_regions_used = 0;
4757 sbi->s_fc_replay_state.fc_regions_valid = 0;
4758 sbi->s_fc_replay_state.fc_modified_inodes = NULL;
4759 sbi->s_fc_replay_state.fc_modified_inodes_size = 0;
4760 sbi->s_fc_replay_state.fc_modified_inodes_used = 0;
4761
4762 sb->s_root = NULL;
4763
4764 needs_recovery = (es->s_last_orphan != 0 ||
4765 ext4_has_feature_journal_needs_recovery(sb));
4766
4767 if (ext4_has_feature_mmp(sb) && !sb_rdonly(sb))
4768 if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block)))
4769 goto failed_mount3a;
4770
4771 /*
4772 * The first inode we look at is the journal inode. Don't try
4773 * root first: it may be modified in the journal!
4774 */
4775 if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) {
4776 err = ext4_load_journal(sb, es, journal_devnum);
4777 if (err)
4778 goto failed_mount3a;
4779 } else if (test_opt(sb, NOLOAD) && !sb_rdonly(sb) &&
4780 ext4_has_feature_journal_needs_recovery(sb)) {
4781 ext4_msg(sb, KERN_ERR, "required journal recovery "
4782 "suppressed and not mounted read-only");
4783 goto failed_mount_wq;
4784 } else {
4785 /* Nojournal mode, all journal mount options are illegal */
4786 if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) {
4787 ext4_msg(sb, KERN_ERR, "can't mount with "
4788 "journal_checksum, fs mounted w/o journal");
4789 goto failed_mount_wq;
4790 }
4791 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4792 ext4_msg(sb, KERN_ERR, "can't mount with "
4793 "journal_async_commit, fs mounted w/o journal");
4794 goto failed_mount_wq;
4795 }
4796 if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) {
4797 ext4_msg(sb, KERN_ERR, "can't mount with "
4798 "commit=%lu, fs mounted w/o journal",
4799 sbi->s_commit_interval / HZ);
4800 goto failed_mount_wq;
4801 }
4802 if (EXT4_MOUNT_DATA_FLAGS &
4803 (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) {
4804 ext4_msg(sb, KERN_ERR, "can't mount with "
4805 "data=, fs mounted w/o journal");
4806 goto failed_mount_wq;
4807 }
4808 sbi->s_def_mount_opt &= ~EXT4_MOUNT_JOURNAL_CHECKSUM;
4809 clear_opt(sb, JOURNAL_CHECKSUM);
4810 clear_opt(sb, DATA_FLAGS);
4811 clear_opt2(sb, JOURNAL_FAST_COMMIT);
4812 sbi->s_journal = NULL;
4813 needs_recovery = 0;
4814 goto no_journal;
4815 }
4816
4817 if (ext4_has_feature_64bit(sb) &&
4818 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
4819 JBD2_FEATURE_INCOMPAT_64BIT)) {
4820 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
4821 goto failed_mount_wq;
4822 }
4823
4824 if (!set_journal_csum_feature_set(sb)) {
4825 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum "
4826 "feature set");
4827 goto failed_mount_wq;
4828 }
4829
4830 if (test_opt2(sb, JOURNAL_FAST_COMMIT) &&
4831 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
4832 JBD2_FEATURE_INCOMPAT_FAST_COMMIT)) {
4833 ext4_msg(sb, KERN_ERR,
4834 "Failed to set fast commit journal feature");
4835 goto failed_mount_wq;
4836 }
4837
4838 /* We have now updated the journal if required, so we can
4839 * validate the data journaling mode. */
4840 switch (test_opt(sb, DATA_FLAGS)) {
4841 case 0:
4842 /* No mode set, assume a default based on the journal
4843 * capabilities: ORDERED_DATA if the journal can
4844 * cope, else JOURNAL_DATA
4845 */
4846 if (jbd2_journal_check_available_features
4847 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4848 set_opt(sb, ORDERED_DATA);
4849 sbi->s_def_mount_opt |= EXT4_MOUNT_ORDERED_DATA;
4850 } else {
4851 set_opt(sb, JOURNAL_DATA);
4852 sbi->s_def_mount_opt |= EXT4_MOUNT_JOURNAL_DATA;
4853 }
4854 break;
4855
4856 case EXT4_MOUNT_ORDERED_DATA:
4857 case EXT4_MOUNT_WRITEBACK_DATA:
4858 if (!jbd2_journal_check_available_features
4859 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4860 ext4_msg(sb, KERN_ERR, "Journal does not support "
4861 "requested data journaling mode");
4862 goto failed_mount_wq;
4863 }
4864 break;
4865 default:
4866 break;
4867 }
4868
4869 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA &&
4870 test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4871 ext4_msg(sb, KERN_ERR, "can't mount with "
4872 "journal_async_commit in data=ordered mode");
4873 goto failed_mount_wq;
4874 }
4875
4876 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
4877
4878 sbi->s_journal->j_commit_callback = ext4_journal_commit_callback;
4879 sbi->s_journal->j_submit_inode_data_buffers =
4880 ext4_journal_submit_inode_data_buffers;
4881 sbi->s_journal->j_finish_inode_data_buffers =
4882 ext4_journal_finish_inode_data_buffers;
4883
4884 no_journal:
4885 if (!test_opt(sb, NO_MBCACHE)) {
4886 sbi->s_ea_block_cache = ext4_xattr_create_cache();
4887 if (!sbi->s_ea_block_cache) {
4888 ext4_msg(sb, KERN_ERR,
4889 "Failed to create ea_block_cache");
4890 goto failed_mount_wq;
4891 }
4892
4893 if (ext4_has_feature_ea_inode(sb)) {
4894 sbi->s_ea_inode_cache = ext4_xattr_create_cache();
4895 if (!sbi->s_ea_inode_cache) {
4896 ext4_msg(sb, KERN_ERR,
4897 "Failed to create ea_inode_cache");
4898 goto failed_mount_wq;
4899 }
4900 }
4901 }
4902
4903 if (ext4_has_feature_verity(sb) && blocksize != PAGE_SIZE) {
4904 ext4_msg(sb, KERN_ERR, "Unsupported blocksize for fs-verity");
4905 goto failed_mount_wq;
4906 }
4907
4908 if (DUMMY_ENCRYPTION_ENABLED(sbi) && !sb_rdonly(sb) &&
4909 !ext4_has_feature_encrypt(sb)) {
4910 ext4_set_feature_encrypt(sb);
4911 ext4_commit_super(sb);
4912 }
4913
4914 /*
4915 * Get the # of file system overhead blocks from the
4916 * superblock if present.
4917 */
4918 if (es->s_overhead_clusters)
4919 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters);
4920 else {
4921 err = ext4_calculate_overhead(sb);
4922 if (err)
4923 goto failed_mount_wq;
4924 }
4925
4926 /*
4927 * The maximum number of concurrent works can be high and
4928 * concurrency isn't really necessary. Limit it to 1.
4929 */
4930 EXT4_SB(sb)->rsv_conversion_wq =
4931 alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
4932 if (!EXT4_SB(sb)->rsv_conversion_wq) {
4933 printk(KERN_ERR "EXT4-fs: failed to create workqueue\n");
4934 ret = -ENOMEM;
4935 goto failed_mount4;
4936 }
4937
4938 /*
4939 * The jbd2_journal_load will have done any necessary log recovery,
4940 * so we can safely mount the rest of the filesystem now.
4941 */
4942
4943 root = ext4_iget(sb, EXT4_ROOT_INO, EXT4_IGET_SPECIAL);
4944 if (IS_ERR(root)) {
4945 ext4_msg(sb, KERN_ERR, "get root inode failed");
4946 ret = PTR_ERR(root);
4947 root = NULL;
4948 goto failed_mount4;
4949 }
4950 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
4951 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
4952 iput(root);
4953 goto failed_mount4;
4954 }
4955
4956 sb->s_root = d_make_root(root);
4957 if (!sb->s_root) {
4958 ext4_msg(sb, KERN_ERR, "get root dentry failed");
4959 ret = -ENOMEM;
4960 goto failed_mount4;
4961 }
4962
4963 ret = ext4_setup_super(sb, es, sb_rdonly(sb));
4964 if (ret == -EROFS) {
4965 sb->s_flags |= SB_RDONLY;
4966 ret = 0;
4967 } else if (ret)
4968 goto failed_mount4a;
4969
4970 ext4_set_resv_clusters(sb);
4971
4972 if (test_opt(sb, BLOCK_VALIDITY)) {
4973 err = ext4_setup_system_zone(sb);
4974 if (err) {
4975 ext4_msg(sb, KERN_ERR, "failed to initialize system "
4976 "zone (%d)", err);
4977 goto failed_mount4a;
4978 }
4979 }
4980 ext4_fc_replay_cleanup(sb);
4981
4982 ext4_ext_init(sb);
4983 err = ext4_mb_init(sb);
4984 if (err) {
4985 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
4986 err);
4987 goto failed_mount5;
4988 }
4989
4990 block = ext4_count_free_clusters(sb);
4991 ext4_free_blocks_count_set(sbi->s_es,
4992 EXT4_C2B(sbi, block));
4993 err = percpu_counter_init(&sbi->s_freeclusters_counter, block,
4994 GFP_KERNEL);
4995 if (!err) {
4996 unsigned long freei = ext4_count_free_inodes(sb);
4997 sbi->s_es->s_free_inodes_count = cpu_to_le32(freei);
4998 err = percpu_counter_init(&sbi->s_freeinodes_counter, freei,
4999 GFP_KERNEL);
5000 }
5001 if (!err)
5002 err = percpu_counter_init(&sbi->s_dirs_counter,
5003 ext4_count_dirs(sb), GFP_KERNEL);
5004 if (!err)
5005 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0,
5006 GFP_KERNEL);
5007 if (!err)
5008 err = percpu_init_rwsem(&sbi->s_writepages_rwsem);
5009
5010 if (err) {
5011 ext4_msg(sb, KERN_ERR, "insufficient memory");
5012 goto failed_mount6;
5013 }
5014
5015 if (ext4_has_feature_flex_bg(sb))
5016 if (!ext4_fill_flex_info(sb)) {
5017 ext4_msg(sb, KERN_ERR,
5018 "unable to initialize "
5019 "flex_bg meta info!");
5020 goto failed_mount6;
5021 }
5022
5023 err = ext4_register_li_request(sb, first_not_zeroed);
5024 if (err)
5025 goto failed_mount6;
5026
5027 err = ext4_register_sysfs(sb);
5028 if (err)
5029 goto failed_mount7;
5030
5031 #ifdef CONFIG_QUOTA
5032 /* Enable quota usage during mount. */
5033 if (ext4_has_feature_quota(sb) && !sb_rdonly(sb)) {
5034 err = ext4_enable_quotas(sb);
5035 if (err)
5036 goto failed_mount8;
5037 }
5038 #endif /* CONFIG_QUOTA */
5039
5040 /*
5041 * Save the original bdev mapping's wb_err value which could be
5042 * used to detect the metadata async write error.
5043 */
5044 spin_lock_init(&sbi->s_bdev_wb_lock);
5045 errseq_check_and_advance(&sb->s_bdev->bd_inode->i_mapping->wb_err,
5046 &sbi->s_bdev_wb_err);
5047 sb->s_bdev->bd_super = sb;
5048 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
5049 ext4_orphan_cleanup(sb, es);
5050 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
5051 if (needs_recovery) {
5052 ext4_msg(sb, KERN_INFO, "recovery complete");
5053 err = ext4_mark_recovery_complete(sb, es);
5054 if (err)
5055 goto failed_mount8;
5056 }
5057 if (EXT4_SB(sb)->s_journal) {
5058 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
5059 descr = " journalled data mode";
5060 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
5061 descr = " ordered data mode";
5062 else
5063 descr = " writeback data mode";
5064 } else
5065 descr = "out journal";
5066
5067 if (test_opt(sb, DISCARD)) {
5068 struct request_queue *q = bdev_get_queue(sb->s_bdev);
5069 if (!blk_queue_discard(q))
5070 ext4_msg(sb, KERN_WARNING,
5071 "mounting with \"discard\" option, but "
5072 "the device does not support discard");
5073 }
5074
5075 if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount"))
5076 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. "
5077 "Opts: %.*s%s%s. Quota mode: %s.", descr,
5078 (int) sizeof(sbi->s_es->s_mount_opts),
5079 sbi->s_es->s_mount_opts,
5080 *sbi->s_es->s_mount_opts ? "; " : "", orig_data,
5081 ext4_quota_mode(sb));
5082
5083 if (es->s_error_count)
5084 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
5085
5086 /* Enable message ratelimiting. Default is 10 messages per 5 secs. */
5087 ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10);
5088 ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10);
5089 ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10);
5090 atomic_set(&sbi->s_warning_count, 0);
5091 atomic_set(&sbi->s_msg_count, 0);
5092
5093 kfree(orig_data);
5094 return 0;
5095
5096 cantfind_ext4:
5097 if (!silent)
5098 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
5099 goto failed_mount;
5100
5101 failed_mount8:
5102 ext4_unregister_sysfs(sb);
5103 kobject_put(&sbi->s_kobj);
5104 failed_mount7:
5105 ext4_unregister_li_request(sb);
5106 failed_mount6:
5107 ext4_mb_release(sb);
5108 rcu_read_lock();
5109 flex_groups = rcu_dereference(sbi->s_flex_groups);
5110 if (flex_groups) {
5111 for (i = 0; i < sbi->s_flex_groups_allocated; i++)
5112 kvfree(flex_groups[i]);
5113 kvfree(flex_groups);
5114 }
5115 rcu_read_unlock();
5116 percpu_counter_destroy(&sbi->s_freeclusters_counter);
5117 percpu_counter_destroy(&sbi->s_freeinodes_counter);
5118 percpu_counter_destroy(&sbi->s_dirs_counter);
5119 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
5120 percpu_free_rwsem(&sbi->s_writepages_rwsem);
5121 failed_mount5:
5122 ext4_ext_release(sb);
5123 ext4_release_system_zone(sb);
5124 failed_mount4a:
5125 dput(sb->s_root);
5126 sb->s_root = NULL;
5127 failed_mount4:
5128 ext4_msg(sb, KERN_ERR, "mount failed");
5129 if (EXT4_SB(sb)->rsv_conversion_wq)
5130 destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq);
5131 failed_mount_wq:
5132 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
5133 sbi->s_ea_inode_cache = NULL;
5134
5135 ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
5136 sbi->s_ea_block_cache = NULL;
5137
5138 if (sbi->s_journal) {
5139 jbd2_journal_destroy(sbi->s_journal);
5140 sbi->s_journal = NULL;
5141 }
5142 failed_mount3a:
5143 ext4_es_unregister_shrinker(sbi);
5144 failed_mount3:
5145 del_timer_sync(&sbi->s_err_report);
5146 flush_work(&sbi->s_error_work);
5147 if (sbi->s_mmp_tsk)
5148 kthread_stop(sbi->s_mmp_tsk);
5149 failed_mount2:
5150 rcu_read_lock();
5151 group_desc = rcu_dereference(sbi->s_group_desc);
5152 for (i = 0; i < db_count; i++)
5153 brelse(group_desc[i]);
5154 kvfree(group_desc);
5155 rcu_read_unlock();
5156 failed_mount:
5157 if (sbi->s_chksum_driver)
5158 crypto_free_shash(sbi->s_chksum_driver);
5159
5160 #ifdef CONFIG_UNICODE
5161 utf8_unload(sb->s_encoding);
5162 #endif
5163
5164 #ifdef CONFIG_QUOTA
5165 for (i = 0; i < EXT4_MAXQUOTAS; i++)
5166 kfree(get_qf_name(sb, sbi, i));
5167 #endif
5168 fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy);
5169 ext4_blkdev_remove(sbi);
5170 brelse(bh);
5171 out_fail:
5172 sb->s_fs_info = NULL;
5173 kfree(sbi->s_blockgroup_lock);
5174 out_free_base:
5175 kfree(sbi);
5176 kfree(orig_data);
5177 fs_put_dax(dax_dev);
5178 return err ? err : ret;
5179 }
5180
5181 /*
5182 * Setup any per-fs journal parameters now. We'll do this both on
5183 * initial mount, once the journal has been initialised but before we've
5184 * done any recovery; and again on any subsequent remount.
5185 */
5186 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
5187 {
5188 struct ext4_sb_info *sbi = EXT4_SB(sb);
5189
5190 journal->j_commit_interval = sbi->s_commit_interval;
5191 journal->j_min_batch_time = sbi->s_min_batch_time;
5192 journal->j_max_batch_time = sbi->s_max_batch_time;
5193 ext4_fc_init(sb, journal);
5194
5195 write_lock(&journal->j_state_lock);
5196 if (test_opt(sb, BARRIER))
5197 journal->j_flags |= JBD2_BARRIER;
5198 else
5199 journal->j_flags &= ~JBD2_BARRIER;
5200 if (test_opt(sb, DATA_ERR_ABORT))
5201 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
5202 else
5203 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
5204 write_unlock(&journal->j_state_lock);
5205 }
5206
5207 static struct inode *ext4_get_journal_inode(struct super_block *sb,
5208 unsigned int journal_inum)
5209 {
5210 struct inode *journal_inode;
5211
5212 /*
5213 * Test for the existence of a valid inode on disk. Bad things
5214 * happen if we iget() an unused inode, as the subsequent iput()
5215 * will try to delete it.
5216 */
5217 journal_inode = ext4_iget(sb, journal_inum, EXT4_IGET_SPECIAL);
5218 if (IS_ERR(journal_inode)) {
5219 ext4_msg(sb, KERN_ERR, "no journal found");
5220 return NULL;
5221 }
5222 if (!journal_inode->i_nlink) {
5223 make_bad_inode(journal_inode);
5224 iput(journal_inode);
5225 ext4_msg(sb, KERN_ERR, "journal inode is deleted");
5226 return NULL;
5227 }
5228
5229 jbd_debug(2, "Journal inode found at %p: %lld bytes\n",
5230 journal_inode, journal_inode->i_size);
5231 if (!S_ISREG(journal_inode->i_mode)) {
5232 ext4_msg(sb, KERN_ERR, "invalid journal inode");
5233 iput(journal_inode);
5234 return NULL;
5235 }
5236 return journal_inode;
5237 }
5238
5239 static journal_t *ext4_get_journal(struct super_block *sb,
5240 unsigned int journal_inum)
5241 {
5242 struct inode *journal_inode;
5243 journal_t *journal;
5244
5245 if (WARN_ON_ONCE(!ext4_has_feature_journal(sb)))
5246 return NULL;
5247
5248 journal_inode = ext4_get_journal_inode(sb, journal_inum);
5249 if (!journal_inode)
5250 return NULL;
5251
5252 journal = jbd2_journal_init_inode(journal_inode);
5253 if (!journal) {
5254 ext4_msg(sb, KERN_ERR, "Could not load journal inode");
5255 iput(journal_inode);
5256 return NULL;
5257 }
5258 journal->j_private = sb;
5259 ext4_init_journal_params(sb, journal);
5260 return journal;
5261 }
5262
5263 static journal_t *ext4_get_dev_journal(struct super_block *sb,
5264 dev_t j_dev)
5265 {
5266 struct buffer_head *bh;
5267 journal_t *journal;
5268 ext4_fsblk_t start;
5269 ext4_fsblk_t len;
5270 int hblock, blocksize;
5271 ext4_fsblk_t sb_block;
5272 unsigned long offset;
5273 struct ext4_super_block *es;
5274 struct block_device *bdev;
5275
5276 if (WARN_ON_ONCE(!ext4_has_feature_journal(sb)))
5277 return NULL;
5278
5279 bdev = ext4_blkdev_get(j_dev, sb);
5280 if (bdev == NULL)
5281 return NULL;
5282
5283 blocksize = sb->s_blocksize;
5284 hblock = bdev_logical_block_size(bdev);
5285 if (blocksize < hblock) {
5286 ext4_msg(sb, KERN_ERR,
5287 "blocksize too small for journal device");
5288 goto out_bdev;
5289 }
5290
5291 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
5292 offset = EXT4_MIN_BLOCK_SIZE % blocksize;
5293 set_blocksize(bdev, blocksize);
5294 if (!(bh = __bread(bdev, sb_block, blocksize))) {
5295 ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
5296 "external journal");
5297 goto out_bdev;
5298 }
5299
5300 es = (struct ext4_super_block *) (bh->b_data + offset);
5301 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
5302 !(le32_to_cpu(es->s_feature_incompat) &
5303 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
5304 ext4_msg(sb, KERN_ERR, "external journal has "
5305 "bad superblock");
5306 brelse(bh);
5307 goto out_bdev;
5308 }
5309
5310 if ((le32_to_cpu(es->s_feature_ro_compat) &
5311 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
5312 es->s_checksum != ext4_superblock_csum(sb, es)) {
5313 ext4_msg(sb, KERN_ERR, "external journal has "
5314 "corrupt superblock");
5315 brelse(bh);
5316 goto out_bdev;
5317 }
5318
5319 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
5320 ext4_msg(sb, KERN_ERR, "journal UUID does not match");
5321 brelse(bh);
5322 goto out_bdev;
5323 }
5324
5325 len = ext4_blocks_count(es);
5326 start = sb_block + 1;
5327 brelse(bh); /* we're done with the superblock */
5328
5329 journal = jbd2_journal_init_dev(bdev, sb->s_bdev,
5330 start, len, blocksize);
5331 if (!journal) {
5332 ext4_msg(sb, KERN_ERR, "failed to create device journal");
5333 goto out_bdev;
5334 }
5335 journal->j_private = sb;
5336 if (ext4_read_bh_lock(journal->j_sb_buffer, REQ_META | REQ_PRIO, true)) {
5337 ext4_msg(sb, KERN_ERR, "I/O error on journal device");
5338 goto out_journal;
5339 }
5340 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
5341 ext4_msg(sb, KERN_ERR, "External journal has more than one "
5342 "user (unsupported) - %d",
5343 be32_to_cpu(journal->j_superblock->s_nr_users));
5344 goto out_journal;
5345 }
5346 EXT4_SB(sb)->s_journal_bdev = bdev;
5347 ext4_init_journal_params(sb, journal);
5348 return journal;
5349
5350 out_journal:
5351 jbd2_journal_destroy(journal);
5352 out_bdev:
5353 ext4_blkdev_put(bdev);
5354 return NULL;
5355 }
5356
5357 static int ext4_load_journal(struct super_block *sb,
5358 struct ext4_super_block *es,
5359 unsigned long journal_devnum)
5360 {
5361 journal_t *journal;
5362 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
5363 dev_t journal_dev;
5364 int err = 0;
5365 int really_read_only;
5366 int journal_dev_ro;
5367
5368 if (WARN_ON_ONCE(!ext4_has_feature_journal(sb)))
5369 return -EFSCORRUPTED;
5370
5371 if (journal_devnum &&
5372 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
5373 ext4_msg(sb, KERN_INFO, "external journal device major/minor "
5374 "numbers have changed");
5375 journal_dev = new_decode_dev(journal_devnum);
5376 } else
5377 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
5378
5379 if (journal_inum && journal_dev) {
5380 ext4_msg(sb, KERN_ERR,
5381 "filesystem has both journal inode and journal device!");
5382 return -EINVAL;
5383 }
5384
5385 if (journal_inum) {
5386 journal = ext4_get_journal(sb, journal_inum);
5387 if (!journal)
5388 return -EINVAL;
5389 } else {
5390 journal = ext4_get_dev_journal(sb, journal_dev);
5391 if (!journal)
5392 return -EINVAL;
5393 }
5394
5395 journal_dev_ro = bdev_read_only(journal->j_dev);
5396 really_read_only = bdev_read_only(sb->s_bdev) | journal_dev_ro;
5397
5398 if (journal_dev_ro && !sb_rdonly(sb)) {
5399 ext4_msg(sb, KERN_ERR,
5400 "journal device read-only, try mounting with '-o ro'");
5401 err = -EROFS;
5402 goto err_out;
5403 }
5404
5405 /*
5406 * Are we loading a blank journal or performing recovery after a
5407 * crash? For recovery, we need to check in advance whether we
5408 * can get read-write access to the device.
5409 */
5410 if (ext4_has_feature_journal_needs_recovery(sb)) {
5411 if (sb_rdonly(sb)) {
5412 ext4_msg(sb, KERN_INFO, "INFO: recovery "
5413 "required on readonly filesystem");
5414 if (really_read_only) {
5415 ext4_msg(sb, KERN_ERR, "write access "
5416 "unavailable, cannot proceed "
5417 "(try mounting with noload)");
5418 err = -EROFS;
5419 goto err_out;
5420 }
5421 ext4_msg(sb, KERN_INFO, "write access will "
5422 "be enabled during recovery");
5423 }
5424 }
5425
5426 if (!(journal->j_flags & JBD2_BARRIER))
5427 ext4_msg(sb, KERN_INFO, "barriers disabled");
5428
5429 if (!ext4_has_feature_journal_needs_recovery(sb))
5430 err = jbd2_journal_wipe(journal, !really_read_only);
5431 if (!err) {
5432 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
5433 if (save)
5434 memcpy(save, ((char *) es) +
5435 EXT4_S_ERR_START, EXT4_S_ERR_LEN);
5436 err = jbd2_journal_load(journal);
5437 if (save)
5438 memcpy(((char *) es) + EXT4_S_ERR_START,
5439 save, EXT4_S_ERR_LEN);
5440 kfree(save);
5441 }
5442
5443 if (err) {
5444 ext4_msg(sb, KERN_ERR, "error loading journal");
5445 goto err_out;
5446 }
5447
5448 EXT4_SB(sb)->s_journal = journal;
5449 err = ext4_clear_journal_err(sb, es);
5450 if (err) {
5451 EXT4_SB(sb)->s_journal = NULL;
5452 jbd2_journal_destroy(journal);
5453 return err;
5454 }
5455
5456 if (!really_read_only && journal_devnum &&
5457 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
5458 es->s_journal_dev = cpu_to_le32(journal_devnum);
5459
5460 /* Make sure we flush the recovery flag to disk. */
5461 ext4_commit_super(sb);
5462 }
5463
5464 return 0;
5465
5466 err_out:
5467 jbd2_journal_destroy(journal);
5468 return err;
5469 }
5470
5471 /* Copy state of EXT4_SB(sb) into buffer for on-disk superblock */
5472 static void ext4_update_super(struct super_block *sb)
5473 {
5474 struct ext4_sb_info *sbi = EXT4_SB(sb);
5475 struct ext4_super_block *es = sbi->s_es;
5476 struct buffer_head *sbh = sbi->s_sbh;
5477
5478 lock_buffer(sbh);
5479 /*
5480 * If the file system is mounted read-only, don't update the
5481 * superblock write time. This avoids updating the superblock
5482 * write time when we are mounting the root file system
5483 * read/only but we need to replay the journal; at that point,
5484 * for people who are east of GMT and who make their clock
5485 * tick in localtime for Windows bug-for-bug compatibility,
5486 * the clock is set in the future, and this will cause e2fsck
5487 * to complain and force a full file system check.
5488 */
5489 if (!(sb->s_flags & SB_RDONLY))
5490 ext4_update_tstamp(es, s_wtime);
5491 es->s_kbytes_written =
5492 cpu_to_le64(sbi->s_kbytes_written +
5493 ((part_stat_read(sb->s_bdev, sectors[STAT_WRITE]) -
5494 sbi->s_sectors_written_start) >> 1));
5495 if (percpu_counter_initialized(&sbi->s_freeclusters_counter))
5496 ext4_free_blocks_count_set(es,
5497 EXT4_C2B(sbi, percpu_counter_sum_positive(
5498 &sbi->s_freeclusters_counter)));
5499 if (percpu_counter_initialized(&sbi->s_freeinodes_counter))
5500 es->s_free_inodes_count =
5501 cpu_to_le32(percpu_counter_sum_positive(
5502 &sbi->s_freeinodes_counter));
5503 /* Copy error information to the on-disk superblock */
5504 spin_lock(&sbi->s_error_lock);
5505 if (sbi->s_add_error_count > 0) {
5506 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
5507 if (!es->s_first_error_time && !es->s_first_error_time_hi) {
5508 __ext4_update_tstamp(&es->s_first_error_time,
5509 &es->s_first_error_time_hi,
5510 sbi->s_first_error_time);
5511 strncpy(es->s_first_error_func, sbi->s_first_error_func,
5512 sizeof(es->s_first_error_func));
5513 es->s_first_error_line =
5514 cpu_to_le32(sbi->s_first_error_line);
5515 es->s_first_error_ino =
5516 cpu_to_le32(sbi->s_first_error_ino);
5517 es->s_first_error_block =
5518 cpu_to_le64(sbi->s_first_error_block);
5519 es->s_first_error_errcode =
5520 ext4_errno_to_code(sbi->s_first_error_code);
5521 }
5522 __ext4_update_tstamp(&es->s_last_error_time,
5523 &es->s_last_error_time_hi,
5524 sbi->s_last_error_time);
5525 strncpy(es->s_last_error_func, sbi->s_last_error_func,
5526 sizeof(es->s_last_error_func));
5527 es->s_last_error_line = cpu_to_le32(sbi->s_last_error_line);
5528 es->s_last_error_ino = cpu_to_le32(sbi->s_last_error_ino);
5529 es->s_last_error_block = cpu_to_le64(sbi->s_last_error_block);
5530 es->s_last_error_errcode =
5531 ext4_errno_to_code(sbi->s_last_error_code);
5532 /*
5533 * Start the daily error reporting function if it hasn't been
5534 * started already
5535 */
5536 if (!es->s_error_count)
5537 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ);
5538 le32_add_cpu(&es->s_error_count, sbi->s_add_error_count);
5539 sbi->s_add_error_count = 0;
5540 }
5541 spin_unlock(&sbi->s_error_lock);
5542
5543 ext4_superblock_csum_set(sb);
5544 unlock_buffer(sbh);
5545 }
5546
5547 static int ext4_commit_super(struct super_block *sb)
5548 {
5549 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
5550 int error = 0;
5551
5552 if (!sbh || block_device_ejected(sb))
5553 return error;
5554
5555 ext4_update_super(sb);
5556
5557 if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) {
5558 /*
5559 * Oh, dear. A previous attempt to write the
5560 * superblock failed. This could happen because the
5561 * USB device was yanked out. Or it could happen to
5562 * be a transient write error and maybe the block will
5563 * be remapped. Nothing we can do but to retry the
5564 * write and hope for the best.
5565 */
5566 ext4_msg(sb, KERN_ERR, "previous I/O error to "
5567 "superblock detected");
5568 clear_buffer_write_io_error(sbh);
5569 set_buffer_uptodate(sbh);
5570 }
5571 BUFFER_TRACE(sbh, "marking dirty");
5572 mark_buffer_dirty(sbh);
5573 error = __sync_dirty_buffer(sbh,
5574 REQ_SYNC | (test_opt(sb, BARRIER) ? REQ_FUA : 0));
5575 if (buffer_write_io_error(sbh)) {
5576 ext4_msg(sb, KERN_ERR, "I/O error while writing "
5577 "superblock");
5578 clear_buffer_write_io_error(sbh);
5579 set_buffer_uptodate(sbh);
5580 }
5581 return error;
5582 }
5583
5584 /*
5585 * Have we just finished recovery? If so, and if we are mounting (or
5586 * remounting) the filesystem readonly, then we will end up with a
5587 * consistent fs on disk. Record that fact.
5588 */
5589 static int ext4_mark_recovery_complete(struct super_block *sb,
5590 struct ext4_super_block *es)
5591 {
5592 int err;
5593 journal_t *journal = EXT4_SB(sb)->s_journal;
5594
5595 if (!ext4_has_feature_journal(sb)) {
5596 if (journal != NULL) {
5597 ext4_error(sb, "Journal got removed while the fs was "
5598 "mounted!");
5599 return -EFSCORRUPTED;
5600 }
5601 return 0;
5602 }
5603 jbd2_journal_lock_updates(journal);
5604 err = jbd2_journal_flush(journal);
5605 if (err < 0)
5606 goto out;
5607
5608 if (ext4_has_feature_journal_needs_recovery(sb) && sb_rdonly(sb)) {
5609 ext4_clear_feature_journal_needs_recovery(sb);
5610 ext4_commit_super(sb);
5611 }
5612 out:
5613 jbd2_journal_unlock_updates(journal);
5614 return err;
5615 }
5616
5617 /*
5618 * If we are mounting (or read-write remounting) a filesystem whose journal
5619 * has recorded an error from a previous lifetime, move that error to the
5620 * main filesystem now.
5621 */
5622 static int ext4_clear_journal_err(struct super_block *sb,
5623 struct ext4_super_block *es)
5624 {
5625 journal_t *journal;
5626 int j_errno;
5627 const char *errstr;
5628
5629 if (!ext4_has_feature_journal(sb)) {
5630 ext4_error(sb, "Journal got removed while the fs was mounted!");
5631 return -EFSCORRUPTED;
5632 }
5633
5634 journal = EXT4_SB(sb)->s_journal;
5635
5636 /*
5637 * Now check for any error status which may have been recorded in the
5638 * journal by a prior ext4_error() or ext4_abort()
5639 */
5640
5641 j_errno = jbd2_journal_errno(journal);
5642 if (j_errno) {
5643 char nbuf[16];
5644
5645 errstr = ext4_decode_error(sb, j_errno, nbuf);
5646 ext4_warning(sb, "Filesystem error recorded "
5647 "from previous mount: %s", errstr);
5648 ext4_warning(sb, "Marking fs in need of filesystem check.");
5649
5650 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
5651 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
5652 ext4_commit_super(sb);
5653
5654 jbd2_journal_clear_err(journal);
5655 jbd2_journal_update_sb_errno(journal);
5656 }
5657 return 0;
5658 }
5659
5660 /*
5661 * Force the running and committing transactions to commit,
5662 * and wait on the commit.
5663 */
5664 int ext4_force_commit(struct super_block *sb)
5665 {
5666 journal_t *journal;
5667
5668 if (sb_rdonly(sb))
5669 return 0;
5670
5671 journal = EXT4_SB(sb)->s_journal;
5672 return ext4_journal_force_commit(journal);
5673 }
5674
5675 static int ext4_sync_fs(struct super_block *sb, int wait)
5676 {
5677 int ret = 0;
5678 tid_t target;
5679 bool needs_barrier = false;
5680 struct ext4_sb_info *sbi = EXT4_SB(sb);
5681
5682 if (unlikely(ext4_forced_shutdown(sbi)))
5683 return 0;
5684
5685 trace_ext4_sync_fs(sb, wait);
5686 flush_workqueue(sbi->rsv_conversion_wq);
5687 /*
5688 * Writeback quota in non-journalled quota case - journalled quota has
5689 * no dirty dquots
5690 */
5691 dquot_writeback_dquots(sb, -1);
5692 /*
5693 * Data writeback is possible w/o journal transaction, so barrier must
5694 * being sent at the end of the function. But we can skip it if
5695 * transaction_commit will do it for us.
5696 */
5697 if (sbi->s_journal) {
5698 target = jbd2_get_latest_transaction(sbi->s_journal);
5699 if (wait && sbi->s_journal->j_flags & JBD2_BARRIER &&
5700 !jbd2_trans_will_send_data_barrier(sbi->s_journal, target))
5701 needs_barrier = true;
5702
5703 if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
5704 if (wait)
5705 ret = jbd2_log_wait_commit(sbi->s_journal,
5706 target);
5707 }
5708 } else if (wait && test_opt(sb, BARRIER))
5709 needs_barrier = true;
5710 if (needs_barrier) {
5711 int err;
5712 err = blkdev_issue_flush(sb->s_bdev, GFP_KERNEL);
5713 if (!ret)
5714 ret = err;
5715 }
5716
5717 return ret;
5718 }
5719
5720 /*
5721 * LVM calls this function before a (read-only) snapshot is created. This
5722 * gives us a chance to flush the journal completely and mark the fs clean.
5723 *
5724 * Note that only this function cannot bring a filesystem to be in a clean
5725 * state independently. It relies on upper layer to stop all data & metadata
5726 * modifications.
5727 */
5728 static int ext4_freeze(struct super_block *sb)
5729 {
5730 int error = 0;
5731 journal_t *journal;
5732
5733 if (sb_rdonly(sb))
5734 return 0;
5735
5736 journal = EXT4_SB(sb)->s_journal;
5737
5738 if (journal) {
5739 /* Now we set up the journal barrier. */
5740 jbd2_journal_lock_updates(journal);
5741
5742 /*
5743 * Don't clear the needs_recovery flag if we failed to
5744 * flush the journal.
5745 */
5746 error = jbd2_journal_flush(journal);
5747 if (error < 0)
5748 goto out;
5749
5750 /* Journal blocked and flushed, clear needs_recovery flag. */
5751 ext4_clear_feature_journal_needs_recovery(sb);
5752 }
5753
5754 error = ext4_commit_super(sb);
5755 out:
5756 if (journal)
5757 /* we rely on upper layer to stop further updates */
5758 jbd2_journal_unlock_updates(journal);
5759 return error;
5760 }
5761
5762 /*
5763 * Called by LVM after the snapshot is done. We need to reset the RECOVER
5764 * flag here, even though the filesystem is not technically dirty yet.
5765 */
5766 static int ext4_unfreeze(struct super_block *sb)
5767 {
5768 if (sb_rdonly(sb) || ext4_forced_shutdown(EXT4_SB(sb)))
5769 return 0;
5770
5771 if (EXT4_SB(sb)->s_journal) {
5772 /* Reset the needs_recovery flag before the fs is unlocked. */
5773 ext4_set_feature_journal_needs_recovery(sb);
5774 }
5775
5776 ext4_commit_super(sb);
5777 return 0;
5778 }
5779
5780 /*
5781 * Structure to save mount options for ext4_remount's benefit
5782 */
5783 struct ext4_mount_options {
5784 unsigned long s_mount_opt;
5785 unsigned long s_mount_opt2;
5786 kuid_t s_resuid;
5787 kgid_t s_resgid;
5788 unsigned long s_commit_interval;
5789 u32 s_min_batch_time, s_max_batch_time;
5790 #ifdef CONFIG_QUOTA
5791 int s_jquota_fmt;
5792 char *s_qf_names[EXT4_MAXQUOTAS];
5793 #endif
5794 };
5795
5796 static int ext4_remount(struct super_block *sb, int *flags, char *data)
5797 {
5798 struct ext4_super_block *es;
5799 struct ext4_sb_info *sbi = EXT4_SB(sb);
5800 unsigned long old_sb_flags, vfs_flags;
5801 struct ext4_mount_options old_opts;
5802 int enable_quota = 0;
5803 ext4_group_t g;
5804 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
5805 int err = 0;
5806 #ifdef CONFIG_QUOTA
5807 int i, j;
5808 char *to_free[EXT4_MAXQUOTAS];
5809 #endif
5810 char *orig_data = kstrdup(data, GFP_KERNEL);
5811
5812 if (data && !orig_data)
5813 return -ENOMEM;
5814
5815 /* Store the original options */
5816 old_sb_flags = sb->s_flags;
5817 old_opts.s_mount_opt = sbi->s_mount_opt;
5818 old_opts.s_mount_opt2 = sbi->s_mount_opt2;
5819 old_opts.s_resuid = sbi->s_resuid;
5820 old_opts.s_resgid = sbi->s_resgid;
5821 old_opts.s_commit_interval = sbi->s_commit_interval;
5822 old_opts.s_min_batch_time = sbi->s_min_batch_time;
5823 old_opts.s_max_batch_time = sbi->s_max_batch_time;
5824 #ifdef CONFIG_QUOTA
5825 old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
5826 for (i = 0; i < EXT4_MAXQUOTAS; i++)
5827 if (sbi->s_qf_names[i]) {
5828 char *qf_name = get_qf_name(sb, sbi, i);
5829
5830 old_opts.s_qf_names[i] = kstrdup(qf_name, GFP_KERNEL);
5831 if (!old_opts.s_qf_names[i]) {
5832 for (j = 0; j < i; j++)
5833 kfree(old_opts.s_qf_names[j]);
5834 kfree(orig_data);
5835 return -ENOMEM;
5836 }
5837 } else
5838 old_opts.s_qf_names[i] = NULL;
5839 #endif
5840 if (sbi->s_journal && sbi->s_journal->j_task->io_context)
5841 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio;
5842
5843 /*
5844 * Some options can be enabled by ext4 and/or by VFS mount flag
5845 * either way we need to make sure it matches in both *flags and
5846 * s_flags. Copy those selected flags from *flags to s_flags
5847 */
5848 vfs_flags = SB_LAZYTIME | SB_I_VERSION;
5849 sb->s_flags = (sb->s_flags & ~vfs_flags) | (*flags & vfs_flags);
5850
5851 if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) {
5852 err = -EINVAL;
5853 goto restore_opts;
5854 }
5855
5856 if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^
5857 test_opt(sb, JOURNAL_CHECKSUM)) {
5858 ext4_msg(sb, KERN_ERR, "changing journal_checksum "
5859 "during remount not supported; ignoring");
5860 sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM;
5861 }
5862
5863 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
5864 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
5865 ext4_msg(sb, KERN_ERR, "can't mount with "
5866 "both data=journal and delalloc");
5867 err = -EINVAL;
5868 goto restore_opts;
5869 }
5870 if (test_opt(sb, DIOREAD_NOLOCK)) {
5871 ext4_msg(sb, KERN_ERR, "can't mount with "
5872 "both data=journal and dioread_nolock");
5873 err = -EINVAL;
5874 goto restore_opts;
5875 }
5876 } else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) {
5877 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
5878 ext4_msg(sb, KERN_ERR, "can't mount with "
5879 "journal_async_commit in data=ordered mode");
5880 err = -EINVAL;
5881 goto restore_opts;
5882 }
5883 }
5884
5885 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_NO_MBCACHE) {
5886 ext4_msg(sb, KERN_ERR, "can't enable nombcache during remount");
5887 err = -EINVAL;
5888 goto restore_opts;
5889 }
5890
5891 if (ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED))
5892 ext4_abort(sb, EXT4_ERR_ESHUTDOWN, "Abort forced by user");
5893
5894 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
5895 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
5896
5897 es = sbi->s_es;
5898
5899 if (sbi->s_journal) {
5900 ext4_init_journal_params(sb, sbi->s_journal);
5901 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
5902 }
5903
5904 /* Flush outstanding errors before changing fs state */
5905 flush_work(&sbi->s_error_work);
5906
5907 if ((bool)(*flags & SB_RDONLY) != sb_rdonly(sb)) {
5908 if (ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED)) {
5909 err = -EROFS;
5910 goto restore_opts;
5911 }
5912
5913 if (*flags & SB_RDONLY) {
5914 err = sync_filesystem(sb);
5915 if (err < 0)
5916 goto restore_opts;
5917 err = dquot_suspend(sb, -1);
5918 if (err < 0)
5919 goto restore_opts;
5920
5921 /*
5922 * First of all, the unconditional stuff we have to do
5923 * to disable replay of the journal when we next remount
5924 */
5925 sb->s_flags |= SB_RDONLY;
5926
5927 /*
5928 * OK, test if we are remounting a valid rw partition
5929 * readonly, and if so set the rdonly flag and then
5930 * mark the partition as valid again.
5931 */
5932 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
5933 (sbi->s_mount_state & EXT4_VALID_FS))
5934 es->s_state = cpu_to_le16(sbi->s_mount_state);
5935
5936 if (sbi->s_journal) {
5937 /*
5938 * We let remount-ro finish even if marking fs
5939 * as clean failed...
5940 */
5941 ext4_mark_recovery_complete(sb, es);
5942 }
5943 if (sbi->s_mmp_tsk)
5944 kthread_stop(sbi->s_mmp_tsk);
5945 } else {
5946 /* Make sure we can mount this feature set readwrite */
5947 if (ext4_has_feature_readonly(sb) ||
5948 !ext4_feature_set_ok(sb, 0)) {
5949 err = -EROFS;
5950 goto restore_opts;
5951 }
5952 /*
5953 * Make sure the group descriptor checksums
5954 * are sane. If they aren't, refuse to remount r/w.
5955 */
5956 for (g = 0; g < sbi->s_groups_count; g++) {
5957 struct ext4_group_desc *gdp =
5958 ext4_get_group_desc(sb, g, NULL);
5959
5960 if (!ext4_group_desc_csum_verify(sb, g, gdp)) {
5961 ext4_msg(sb, KERN_ERR,
5962 "ext4_remount: Checksum for group %u failed (%u!=%u)",
5963 g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)),
5964 le16_to_cpu(gdp->bg_checksum));
5965 err = -EFSBADCRC;
5966 goto restore_opts;
5967 }
5968 }
5969
5970 /*
5971 * If we have an unprocessed orphan list hanging
5972 * around from a previously readonly bdev mount,
5973 * require a full umount/remount for now.
5974 */
5975 if (es->s_last_orphan) {
5976 ext4_msg(sb, KERN_WARNING, "Couldn't "
5977 "remount RDWR because of unprocessed "
5978 "orphan inode list. Please "
5979 "umount/remount instead");
5980 err = -EINVAL;
5981 goto restore_opts;
5982 }
5983
5984 /*
5985 * Mounting a RDONLY partition read-write, so reread
5986 * and store the current valid flag. (It may have
5987 * been changed by e2fsck since we originally mounted
5988 * the partition.)
5989 */
5990 if (sbi->s_journal) {
5991 err = ext4_clear_journal_err(sb, es);
5992 if (err)
5993 goto restore_opts;
5994 }
5995 sbi->s_mount_state = le16_to_cpu(es->s_state);
5996
5997 err = ext4_setup_super(sb, es, 0);
5998 if (err)
5999 goto restore_opts;
6000
6001 sb->s_flags &= ~SB_RDONLY;
6002 if (ext4_has_feature_mmp(sb))
6003 if (ext4_multi_mount_protect(sb,
6004 le64_to_cpu(es->s_mmp_block))) {
6005 err = -EROFS;
6006 goto restore_opts;
6007 }
6008 enable_quota = 1;
6009 }
6010 }
6011
6012 /*
6013 * Reinitialize lazy itable initialization thread based on
6014 * current settings
6015 */
6016 if (sb_rdonly(sb) || !test_opt(sb, INIT_INODE_TABLE))
6017 ext4_unregister_li_request(sb);
6018 else {
6019 ext4_group_t first_not_zeroed;
6020 first_not_zeroed = ext4_has_uninit_itable(sb);
6021 ext4_register_li_request(sb, first_not_zeroed);
6022 }
6023
6024 /*
6025 * Handle creation of system zone data early because it can fail.
6026 * Releasing of existing data is done when we are sure remount will
6027 * succeed.
6028 */
6029 if (test_opt(sb, BLOCK_VALIDITY) && !sbi->s_system_blks) {
6030 err = ext4_setup_system_zone(sb);
6031 if (err)
6032 goto restore_opts;
6033 }
6034
6035 if (sbi->s_journal == NULL && !(old_sb_flags & SB_RDONLY)) {
6036 err = ext4_commit_super(sb);
6037 if (err)
6038 goto restore_opts;
6039 }
6040
6041 #ifdef CONFIG_QUOTA
6042 /* Release old quota file names */
6043 for (i = 0; i < EXT4_MAXQUOTAS; i++)
6044 kfree(old_opts.s_qf_names[i]);
6045 if (enable_quota) {
6046 if (sb_any_quota_suspended(sb))
6047 dquot_resume(sb, -1);
6048 else if (ext4_has_feature_quota(sb)) {
6049 err = ext4_enable_quotas(sb);
6050 if (err)
6051 goto restore_opts;
6052 }
6053 }
6054 #endif
6055 if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks)
6056 ext4_release_system_zone(sb);
6057
6058 /*
6059 * Some options can be enabled by ext4 and/or by VFS mount flag
6060 * either way we need to make sure it matches in both *flags and
6061 * s_flags. Copy those selected flags from s_flags to *flags
6062 */
6063 *flags = (*flags & ~vfs_flags) | (sb->s_flags & vfs_flags);
6064
6065 ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s. Quota mode: %s.",
6066 orig_data, ext4_quota_mode(sb));
6067 kfree(orig_data);
6068 return 0;
6069
6070 restore_opts:
6071 sb->s_flags = old_sb_flags;
6072 sbi->s_mount_opt = old_opts.s_mount_opt;
6073 sbi->s_mount_opt2 = old_opts.s_mount_opt2;
6074 sbi->s_resuid = old_opts.s_resuid;
6075 sbi->s_resgid = old_opts.s_resgid;
6076 sbi->s_commit_interval = old_opts.s_commit_interval;
6077 sbi->s_min_batch_time = old_opts.s_min_batch_time;
6078 sbi->s_max_batch_time = old_opts.s_max_batch_time;
6079 if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks)
6080 ext4_release_system_zone(sb);
6081 #ifdef CONFIG_QUOTA
6082 sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
6083 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
6084 to_free[i] = get_qf_name(sb, sbi, i);
6085 rcu_assign_pointer(sbi->s_qf_names[i], old_opts.s_qf_names[i]);
6086 }
6087 synchronize_rcu();
6088 for (i = 0; i < EXT4_MAXQUOTAS; i++)
6089 kfree(to_free[i]);
6090 #endif
6091 kfree(orig_data);
6092 return err;
6093 }
6094
6095 #ifdef CONFIG_QUOTA
6096 static int ext4_statfs_project(struct super_block *sb,
6097 kprojid_t projid, struct kstatfs *buf)
6098 {
6099 struct kqid qid;
6100 struct dquot *dquot;
6101 u64 limit;
6102 u64 curblock;
6103
6104 qid = make_kqid_projid(projid);
6105 dquot = dqget(sb, qid);
6106 if (IS_ERR(dquot))
6107 return PTR_ERR(dquot);
6108 spin_lock(&dquot->dq_dqb_lock);
6109
6110 limit = min_not_zero(dquot->dq_dqb.dqb_bsoftlimit,
6111 dquot->dq_dqb.dqb_bhardlimit);
6112 limit >>= sb->s_blocksize_bits;
6113
6114 if (limit && buf->f_blocks > limit) {
6115 curblock = (dquot->dq_dqb.dqb_curspace +
6116 dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits;
6117 buf->f_blocks = limit;
6118 buf->f_bfree = buf->f_bavail =
6119 (buf->f_blocks > curblock) ?
6120 (buf->f_blocks - curblock) : 0;
6121 }
6122
6123 limit = min_not_zero(dquot->dq_dqb.dqb_isoftlimit,
6124 dquot->dq_dqb.dqb_ihardlimit);
6125 if (limit && buf->f_files > limit) {
6126 buf->f_files = limit;
6127 buf->f_ffree =
6128 (buf->f_files > dquot->dq_dqb.dqb_curinodes) ?
6129 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0;
6130 }
6131
6132 spin_unlock(&dquot->dq_dqb_lock);
6133 dqput(dquot);
6134 return 0;
6135 }
6136 #endif
6137
6138 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
6139 {
6140 struct super_block *sb = dentry->d_sb;
6141 struct ext4_sb_info *sbi = EXT4_SB(sb);
6142 struct ext4_super_block *es = sbi->s_es;
6143 ext4_fsblk_t overhead = 0, resv_blocks;
6144 u64 fsid;
6145 s64 bfree;
6146 resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters));
6147
6148 if (!test_opt(sb, MINIX_DF))
6149 overhead = sbi->s_overhead;
6150
6151 buf->f_type = EXT4_SUPER_MAGIC;
6152 buf->f_bsize = sb->s_blocksize;
6153 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead);
6154 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
6155 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
6156 /* prevent underflow in case that few free space is available */
6157 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0));
6158 buf->f_bavail = buf->f_bfree -
6159 (ext4_r_blocks_count(es) + resv_blocks);
6160 if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks))
6161 buf->f_bavail = 0;
6162 buf->f_files = le32_to_cpu(es->s_inodes_count);
6163 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
6164 buf->f_namelen = EXT4_NAME_LEN;
6165 fsid = le64_to_cpup((void *)es->s_uuid) ^
6166 le64_to_cpup((void *)es->s_uuid + sizeof(u64));
6167 buf->f_fsid = u64_to_fsid(fsid);
6168
6169 #ifdef CONFIG_QUOTA
6170 if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) &&
6171 sb_has_quota_limits_enabled(sb, PRJQUOTA))
6172 ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf);
6173 #endif
6174 return 0;
6175 }
6176
6177
6178 #ifdef CONFIG_QUOTA
6179
6180 /*
6181 * Helper functions so that transaction is started before we acquire dqio_sem
6182 * to keep correct lock ordering of transaction > dqio_sem
6183 */
6184 static inline struct inode *dquot_to_inode(struct dquot *dquot)
6185 {
6186 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type];
6187 }
6188
6189 static int ext4_write_dquot(struct dquot *dquot)
6190 {
6191 int ret, err;
6192 handle_t *handle;
6193 struct inode *inode;
6194
6195 inode = dquot_to_inode(dquot);
6196 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
6197 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
6198 if (IS_ERR(handle))
6199 return PTR_ERR(handle);
6200 ret = dquot_commit(dquot);
6201 err = ext4_journal_stop(handle);
6202 if (!ret)
6203 ret = err;
6204 return ret;
6205 }
6206
6207 static int ext4_acquire_dquot(struct dquot *dquot)
6208 {
6209 int ret, err;
6210 handle_t *handle;
6211
6212 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
6213 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
6214 if (IS_ERR(handle))
6215 return PTR_ERR(handle);
6216 ret = dquot_acquire(dquot);
6217 err = ext4_journal_stop(handle);
6218 if (!ret)
6219 ret = err;
6220 return ret;
6221 }
6222
6223 static int ext4_release_dquot(struct dquot *dquot)
6224 {
6225 int ret, err;
6226 handle_t *handle;
6227
6228 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
6229 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
6230 if (IS_ERR(handle)) {
6231 /* Release dquot anyway to avoid endless cycle in dqput() */
6232 dquot_release(dquot);
6233 return PTR_ERR(handle);
6234 }
6235 ret = dquot_release(dquot);
6236 err = ext4_journal_stop(handle);
6237 if (!ret)
6238 ret = err;
6239 return ret;
6240 }
6241
6242 static int ext4_mark_dquot_dirty(struct dquot *dquot)
6243 {
6244 struct super_block *sb = dquot->dq_sb;
6245
6246 if (ext4_is_quota_journalled(sb)) {
6247 dquot_mark_dquot_dirty(dquot);
6248 return ext4_write_dquot(dquot);
6249 } else {
6250 return dquot_mark_dquot_dirty(dquot);
6251 }
6252 }
6253
6254 static int ext4_write_info(struct super_block *sb, int type)
6255 {
6256 int ret, err;
6257 handle_t *handle;
6258
6259 /* Data block + inode block */
6260 handle = ext4_journal_start(d_inode(sb->s_root), EXT4_HT_QUOTA, 2);
6261 if (IS_ERR(handle))
6262 return PTR_ERR(handle);
6263 ret = dquot_commit_info(sb, type);
6264 err = ext4_journal_stop(handle);
6265 if (!ret)
6266 ret = err;
6267 return ret;
6268 }
6269
6270 /*
6271 * Turn on quotas during mount time - we need to find
6272 * the quota file and such...
6273 */
6274 static int ext4_quota_on_mount(struct super_block *sb, int type)
6275 {
6276 return dquot_quota_on_mount(sb, get_qf_name(sb, EXT4_SB(sb), type),
6277 EXT4_SB(sb)->s_jquota_fmt, type);
6278 }
6279
6280 static void lockdep_set_quota_inode(struct inode *inode, int subclass)
6281 {
6282 struct ext4_inode_info *ei = EXT4_I(inode);
6283
6284 /* The first argument of lockdep_set_subclass has to be
6285 * *exactly* the same as the argument to init_rwsem() --- in
6286 * this case, in init_once() --- or lockdep gets unhappy
6287 * because the name of the lock is set using the
6288 * stringification of the argument to init_rwsem().
6289 */
6290 (void) ei; /* shut up clang warning if !CONFIG_LOCKDEP */
6291 lockdep_set_subclass(&ei->i_data_sem, subclass);
6292 }
6293
6294 /*
6295 * Standard function to be called on quota_on
6296 */
6297 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
6298 const struct path *path)
6299 {
6300 int err;
6301
6302 if (!test_opt(sb, QUOTA))
6303 return -EINVAL;
6304
6305 /* Quotafile not on the same filesystem? */
6306 if (path->dentry->d_sb != sb)
6307 return -EXDEV;
6308
6309 /* Quota already enabled for this file? */
6310 if (IS_NOQUOTA(d_inode(path->dentry)))
6311 return -EBUSY;
6312
6313 /* Journaling quota? */
6314 if (EXT4_SB(sb)->s_qf_names[type]) {
6315 /* Quotafile not in fs root? */
6316 if (path->dentry->d_parent != sb->s_root)
6317 ext4_msg(sb, KERN_WARNING,
6318 "Quota file not on filesystem root. "
6319 "Journaled quota will not work");
6320 sb_dqopt(sb)->flags |= DQUOT_NOLIST_DIRTY;
6321 } else {
6322 /*
6323 * Clear the flag just in case mount options changed since
6324 * last time.
6325 */
6326 sb_dqopt(sb)->flags &= ~DQUOT_NOLIST_DIRTY;
6327 }
6328
6329 /*
6330 * When we journal data on quota file, we have to flush journal to see
6331 * all updates to the file when we bypass pagecache...
6332 */
6333 if (EXT4_SB(sb)->s_journal &&
6334 ext4_should_journal_data(d_inode(path->dentry))) {
6335 /*
6336 * We don't need to lock updates but journal_flush() could
6337 * otherwise be livelocked...
6338 */
6339 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal);
6340 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal);
6341 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
6342 if (err)
6343 return err;
6344 }
6345
6346 lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA);
6347 err = dquot_quota_on(sb, type, format_id, path);
6348 if (err) {
6349 lockdep_set_quota_inode(path->dentry->d_inode,
6350 I_DATA_SEM_NORMAL);
6351 } else {
6352 struct inode *inode = d_inode(path->dentry);
6353 handle_t *handle;
6354
6355 /*
6356 * Set inode flags to prevent userspace from messing with quota
6357 * files. If this fails, we return success anyway since quotas
6358 * are already enabled and this is not a hard failure.
6359 */
6360 inode_lock(inode);
6361 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
6362 if (IS_ERR(handle))
6363 goto unlock_inode;
6364 EXT4_I(inode)->i_flags |= EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL;
6365 inode_set_flags(inode, S_NOATIME | S_IMMUTABLE,
6366 S_NOATIME | S_IMMUTABLE);
6367 err = ext4_mark_inode_dirty(handle, inode);
6368 ext4_journal_stop(handle);
6369 unlock_inode:
6370 inode_unlock(inode);
6371 }
6372 return err;
6373 }
6374
6375 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
6376 unsigned int flags)
6377 {
6378 int err;
6379 struct inode *qf_inode;
6380 unsigned long qf_inums[EXT4_MAXQUOTAS] = {
6381 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
6382 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
6383 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
6384 };
6385
6386 BUG_ON(!ext4_has_feature_quota(sb));
6387
6388 if (!qf_inums[type])
6389 return -EPERM;
6390
6391 qf_inode = ext4_iget(sb, qf_inums[type], EXT4_IGET_SPECIAL);
6392 if (IS_ERR(qf_inode)) {
6393 ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]);
6394 return PTR_ERR(qf_inode);
6395 }
6396
6397 /* Don't account quota for quota files to avoid recursion */
6398 qf_inode->i_flags |= S_NOQUOTA;
6399 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA);
6400 err = dquot_load_quota_inode(qf_inode, type, format_id, flags);
6401 if (err)
6402 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL);
6403 iput(qf_inode);
6404
6405 return err;
6406 }
6407
6408 /* Enable usage tracking for all quota types. */
6409 static int ext4_enable_quotas(struct super_block *sb)
6410 {
6411 int type, err = 0;
6412 unsigned long qf_inums[EXT4_MAXQUOTAS] = {
6413 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
6414 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
6415 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
6416 };
6417 bool quota_mopt[EXT4_MAXQUOTAS] = {
6418 test_opt(sb, USRQUOTA),
6419 test_opt(sb, GRPQUOTA),
6420 test_opt(sb, PRJQUOTA),
6421 };
6422
6423 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY;
6424 for (type = 0; type < EXT4_MAXQUOTAS; type++) {
6425 if (qf_inums[type]) {
6426 err = ext4_quota_enable(sb, type, QFMT_VFS_V1,
6427 DQUOT_USAGE_ENABLED |
6428 (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0));
6429 if (err) {
6430 ext4_warning(sb,
6431 "Failed to enable quota tracking "
6432 "(type=%d, err=%d). Please run "
6433 "e2fsck to fix.", type, err);
6434 for (type--; type >= 0; type--)
6435 dquot_quota_off(sb, type);
6436
6437 return err;
6438 }
6439 }
6440 }
6441 return 0;
6442 }
6443
6444 static int ext4_quota_off(struct super_block *sb, int type)
6445 {
6446 struct inode *inode = sb_dqopt(sb)->files[type];
6447 handle_t *handle;
6448 int err;
6449
6450 /* Force all delayed allocation blocks to be allocated.
6451 * Caller already holds s_umount sem */
6452 if (test_opt(sb, DELALLOC))
6453 sync_filesystem(sb);
6454
6455 if (!inode || !igrab(inode))
6456 goto out;
6457
6458 err = dquot_quota_off(sb, type);
6459 if (err || ext4_has_feature_quota(sb))
6460 goto out_put;
6461
6462 inode_lock(inode);
6463 /*
6464 * Update modification times of quota files when userspace can
6465 * start looking at them. If we fail, we return success anyway since
6466 * this is not a hard failure and quotas are already disabled.
6467 */
6468 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
6469 if (IS_ERR(handle)) {
6470 err = PTR_ERR(handle);
6471 goto out_unlock;
6472 }
6473 EXT4_I(inode)->i_flags &= ~(EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL);
6474 inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE);
6475 inode->i_mtime = inode->i_ctime = current_time(inode);
6476 err = ext4_mark_inode_dirty(handle, inode);
6477 ext4_journal_stop(handle);
6478 out_unlock:
6479 inode_unlock(inode);
6480 out_put:
6481 lockdep_set_quota_inode(inode, I_DATA_SEM_NORMAL);
6482 iput(inode);
6483 return err;
6484 out:
6485 return dquot_quota_off(sb, type);
6486 }
6487
6488 /* Read data from quotafile - avoid pagecache and such because we cannot afford
6489 * acquiring the locks... As quota files are never truncated and quota code
6490 * itself serializes the operations (and no one else should touch the files)
6491 * we don't have to be afraid of races */
6492 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
6493 size_t len, loff_t off)
6494 {
6495 struct inode *inode = sb_dqopt(sb)->files[type];
6496 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
6497 int offset = off & (sb->s_blocksize - 1);
6498 int tocopy;
6499 size_t toread;
6500 struct buffer_head *bh;
6501 loff_t i_size = i_size_read(inode);
6502
6503 if (off > i_size)
6504 return 0;
6505 if (off+len > i_size)
6506 len = i_size-off;
6507 toread = len;
6508 while (toread > 0) {
6509 tocopy = sb->s_blocksize - offset < toread ?
6510 sb->s_blocksize - offset : toread;
6511 bh = ext4_bread(NULL, inode, blk, 0);
6512 if (IS_ERR(bh))
6513 return PTR_ERR(bh);
6514 if (!bh) /* A hole? */
6515 memset(data, 0, tocopy);
6516 else
6517 memcpy(data, bh->b_data+offset, tocopy);
6518 brelse(bh);
6519 offset = 0;
6520 toread -= tocopy;
6521 data += tocopy;
6522 blk++;
6523 }
6524 return len;
6525 }
6526
6527 /* Write to quotafile (we know the transaction is already started and has
6528 * enough credits) */
6529 static ssize_t ext4_quota_write(struct super_block *sb, int type,
6530 const char *data, size_t len, loff_t off)
6531 {
6532 struct inode *inode = sb_dqopt(sb)->files[type];
6533 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
6534 int err = 0, err2 = 0, offset = off & (sb->s_blocksize - 1);
6535 int retries = 0;
6536 struct buffer_head *bh;
6537 handle_t *handle = journal_current_handle();
6538
6539 if (EXT4_SB(sb)->s_journal && !handle) {
6540 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
6541 " cancelled because transaction is not started",
6542 (unsigned long long)off, (unsigned long long)len);
6543 return -EIO;
6544 }
6545 /*
6546 * Since we account only one data block in transaction credits,
6547 * then it is impossible to cross a block boundary.
6548 */
6549 if (sb->s_blocksize - offset < len) {
6550 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
6551 " cancelled because not block aligned",
6552 (unsigned long long)off, (unsigned long long)len);
6553 return -EIO;
6554 }
6555
6556 do {
6557 bh = ext4_bread(handle, inode, blk,
6558 EXT4_GET_BLOCKS_CREATE |
6559 EXT4_GET_BLOCKS_METADATA_NOFAIL);
6560 } while (PTR_ERR(bh) == -ENOSPC &&
6561 ext4_should_retry_alloc(inode->i_sb, &retries));
6562 if (IS_ERR(bh))
6563 return PTR_ERR(bh);
6564 if (!bh)
6565 goto out;
6566 BUFFER_TRACE(bh, "get write access");
6567 err = ext4_journal_get_write_access(handle, bh);
6568 if (err) {
6569 brelse(bh);
6570 return err;
6571 }
6572 lock_buffer(bh);
6573 memcpy(bh->b_data+offset, data, len);
6574 flush_dcache_page(bh->b_page);
6575 unlock_buffer(bh);
6576 err = ext4_handle_dirty_metadata(handle, NULL, bh);
6577 brelse(bh);
6578 out:
6579 if (inode->i_size < off + len) {
6580 i_size_write(inode, off + len);
6581 EXT4_I(inode)->i_disksize = inode->i_size;
6582 err2 = ext4_mark_inode_dirty(handle, inode);
6583 if (unlikely(err2 && !err))
6584 err = err2;
6585 }
6586 return err ? err : len;
6587 }
6588 #endif
6589
6590 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
6591 const char *dev_name, void *data)
6592 {
6593 return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super);
6594 }
6595
6596 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
6597 static inline void register_as_ext2(void)
6598 {
6599 int err = register_filesystem(&ext2_fs_type);
6600 if (err)
6601 printk(KERN_WARNING
6602 "EXT4-fs: Unable to register as ext2 (%d)\n", err);
6603 }
6604
6605 static inline void unregister_as_ext2(void)
6606 {
6607 unregister_filesystem(&ext2_fs_type);
6608 }
6609
6610 static inline int ext2_feature_set_ok(struct super_block *sb)
6611 {
6612 if (ext4_has_unknown_ext2_incompat_features(sb))
6613 return 0;
6614 if (sb_rdonly(sb))
6615 return 1;
6616 if (ext4_has_unknown_ext2_ro_compat_features(sb))
6617 return 0;
6618 return 1;
6619 }
6620 #else
6621 static inline void register_as_ext2(void) { }
6622 static inline void unregister_as_ext2(void) { }
6623 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
6624 #endif
6625
6626 static inline void register_as_ext3(void)
6627 {
6628 int err = register_filesystem(&ext3_fs_type);
6629 if (err)
6630 printk(KERN_WARNING
6631 "EXT4-fs: Unable to register as ext3 (%d)\n", err);
6632 }
6633
6634 static inline void unregister_as_ext3(void)
6635 {
6636 unregister_filesystem(&ext3_fs_type);
6637 }
6638
6639 static inline int ext3_feature_set_ok(struct super_block *sb)
6640 {
6641 if (ext4_has_unknown_ext3_incompat_features(sb))
6642 return 0;
6643 if (!ext4_has_feature_journal(sb))
6644 return 0;
6645 if (sb_rdonly(sb))
6646 return 1;
6647 if (ext4_has_unknown_ext3_ro_compat_features(sb))
6648 return 0;
6649 return 1;
6650 }
6651
6652 static struct file_system_type ext4_fs_type = {
6653 .owner = THIS_MODULE,
6654 .name = "ext4",
6655 .mount = ext4_mount,
6656 .kill_sb = kill_block_super,
6657 .fs_flags = FS_REQUIRES_DEV,
6658 };
6659 MODULE_ALIAS_FS("ext4");
6660
6661 /* Shared across all ext4 file systems */
6662 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ];
6663
6664 static int __init ext4_init_fs(void)
6665 {
6666 int i, err;
6667
6668 ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64);
6669 ext4_li_info = NULL;
6670 mutex_init(&ext4_li_mtx);
6671
6672 /* Build-time check for flags consistency */
6673 ext4_check_flag_values();
6674
6675 for (i = 0; i < EXT4_WQ_HASH_SZ; i++)
6676 init_waitqueue_head(&ext4__ioend_wq[i]);
6677
6678 err = ext4_init_es();
6679 if (err)
6680 return err;
6681
6682 err = ext4_init_pending();
6683 if (err)
6684 goto out7;
6685
6686 err = ext4_init_post_read_processing();
6687 if (err)
6688 goto out6;
6689
6690 err = ext4_init_pageio();
6691 if (err)
6692 goto out5;
6693
6694 err = ext4_init_system_zone();
6695 if (err)
6696 goto out4;
6697
6698 err = ext4_init_sysfs();
6699 if (err)
6700 goto out3;
6701
6702 err = ext4_init_mballoc();
6703 if (err)
6704 goto out2;
6705 err = init_inodecache();
6706 if (err)
6707 goto out1;
6708
6709 err = ext4_fc_init_dentry_cache();
6710 if (err)
6711 goto out05;
6712
6713 register_as_ext3();
6714 register_as_ext2();
6715 err = register_filesystem(&ext4_fs_type);
6716 if (err)
6717 goto out;
6718
6719 return 0;
6720 out:
6721 unregister_as_ext2();
6722 unregister_as_ext3();
6723 out05:
6724 destroy_inodecache();
6725 out1:
6726 ext4_exit_mballoc();
6727 out2:
6728 ext4_exit_sysfs();
6729 out3:
6730 ext4_exit_system_zone();
6731 out4:
6732 ext4_exit_pageio();
6733 out5:
6734 ext4_exit_post_read_processing();
6735 out6:
6736 ext4_exit_pending();
6737 out7:
6738 ext4_exit_es();
6739
6740 return err;
6741 }
6742
6743 static void __exit ext4_exit_fs(void)
6744 {
6745 ext4_destroy_lazyinit_thread();
6746 unregister_as_ext2();
6747 unregister_as_ext3();
6748 unregister_filesystem(&ext4_fs_type);
6749 destroy_inodecache();
6750 ext4_exit_mballoc();
6751 ext4_exit_sysfs();
6752 ext4_exit_system_zone();
6753 ext4_exit_pageio();
6754 ext4_exit_post_read_processing();
6755 ext4_exit_es();
6756 ext4_exit_pending();
6757 }
6758
6759 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
6760 MODULE_DESCRIPTION("Fourth Extended Filesystem");
6761 MODULE_LICENSE("GPL");
6762 MODULE_SOFTDEP("pre: crc32c");
6763 module_init(ext4_init_fs)
6764 module_exit(ext4_exit_fs)