]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - fs/ext4/super.c
fscrypt: remove ->is_encrypted()
[mirror_ubuntu-hirsute-kernel.git] / fs / ext4 / super.c
1 /*
2 * linux/fs/ext4/super.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * Big-endian to little-endian byte-swapping/bitmaps by
16 * David S. Miller (davem@caip.rutgers.edu), 1995
17 */
18
19 #include <linux/module.h>
20 #include <linux/string.h>
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/vmalloc.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/parser.h>
29 #include <linux/buffer_head.h>
30 #include <linux/exportfs.h>
31 #include <linux/vfs.h>
32 #include <linux/random.h>
33 #include <linux/mount.h>
34 #include <linux/namei.h>
35 #include <linux/quotaops.h>
36 #include <linux/seq_file.h>
37 #include <linux/ctype.h>
38 #include <linux/log2.h>
39 #include <linux/crc16.h>
40 #include <linux/dax.h>
41 #include <linux/cleancache.h>
42 #include <linux/uaccess.h>
43
44 #include <linux/kthread.h>
45 #include <linux/freezer.h>
46
47 #include "ext4.h"
48 #include "ext4_extents.h" /* Needed for trace points definition */
49 #include "ext4_jbd2.h"
50 #include "xattr.h"
51 #include "acl.h"
52 #include "mballoc.h"
53 #include "fsmap.h"
54
55 #define CREATE_TRACE_POINTS
56 #include <trace/events/ext4.h>
57
58 static struct ext4_lazy_init *ext4_li_info;
59 static struct mutex ext4_li_mtx;
60 static struct ratelimit_state ext4_mount_msg_ratelimit;
61
62 static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
63 unsigned long journal_devnum);
64 static int ext4_show_options(struct seq_file *seq, struct dentry *root);
65 static int ext4_commit_super(struct super_block *sb, int sync);
66 static void ext4_mark_recovery_complete(struct super_block *sb,
67 struct ext4_super_block *es);
68 static void ext4_clear_journal_err(struct super_block *sb,
69 struct ext4_super_block *es);
70 static int ext4_sync_fs(struct super_block *sb, int wait);
71 static int ext4_remount(struct super_block *sb, int *flags, char *data);
72 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
73 static int ext4_unfreeze(struct super_block *sb);
74 static int ext4_freeze(struct super_block *sb);
75 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
76 const char *dev_name, void *data);
77 static inline int ext2_feature_set_ok(struct super_block *sb);
78 static inline int ext3_feature_set_ok(struct super_block *sb);
79 static int ext4_feature_set_ok(struct super_block *sb, int readonly);
80 static void ext4_destroy_lazyinit_thread(void);
81 static void ext4_unregister_li_request(struct super_block *sb);
82 static void ext4_clear_request_list(void);
83 static struct inode *ext4_get_journal_inode(struct super_block *sb,
84 unsigned int journal_inum);
85
86 /*
87 * Lock ordering
88 *
89 * Note the difference between i_mmap_sem (EXT4_I(inode)->i_mmap_sem) and
90 * i_mmap_rwsem (inode->i_mmap_rwsem)!
91 *
92 * page fault path:
93 * mmap_sem -> sb_start_pagefault -> i_mmap_sem (r) -> transaction start ->
94 * page lock -> i_data_sem (rw)
95 *
96 * buffered write path:
97 * sb_start_write -> i_mutex -> mmap_sem
98 * sb_start_write -> i_mutex -> transaction start -> page lock ->
99 * i_data_sem (rw)
100 *
101 * truncate:
102 * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (w) -> i_mmap_sem (w) ->
103 * i_mmap_rwsem (w) -> page lock
104 * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (w) -> i_mmap_sem (w) ->
105 * transaction start -> i_data_sem (rw)
106 *
107 * direct IO:
108 * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (r) -> mmap_sem
109 * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (r) ->
110 * transaction start -> i_data_sem (rw)
111 *
112 * writepages:
113 * transaction start -> page lock(s) -> i_data_sem (rw)
114 */
115
116 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
117 static struct file_system_type ext2_fs_type = {
118 .owner = THIS_MODULE,
119 .name = "ext2",
120 .mount = ext4_mount,
121 .kill_sb = kill_block_super,
122 .fs_flags = FS_REQUIRES_DEV,
123 };
124 MODULE_ALIAS_FS("ext2");
125 MODULE_ALIAS("ext2");
126 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type)
127 #else
128 #define IS_EXT2_SB(sb) (0)
129 #endif
130
131
132 static struct file_system_type ext3_fs_type = {
133 .owner = THIS_MODULE,
134 .name = "ext3",
135 .mount = ext4_mount,
136 .kill_sb = kill_block_super,
137 .fs_flags = FS_REQUIRES_DEV,
138 };
139 MODULE_ALIAS_FS("ext3");
140 MODULE_ALIAS("ext3");
141 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type)
142
143 static int ext4_verify_csum_type(struct super_block *sb,
144 struct ext4_super_block *es)
145 {
146 if (!ext4_has_feature_metadata_csum(sb))
147 return 1;
148
149 return es->s_checksum_type == EXT4_CRC32C_CHKSUM;
150 }
151
152 static __le32 ext4_superblock_csum(struct super_block *sb,
153 struct ext4_super_block *es)
154 {
155 struct ext4_sb_info *sbi = EXT4_SB(sb);
156 int offset = offsetof(struct ext4_super_block, s_checksum);
157 __u32 csum;
158
159 csum = ext4_chksum(sbi, ~0, (char *)es, offset);
160
161 return cpu_to_le32(csum);
162 }
163
164 static int ext4_superblock_csum_verify(struct super_block *sb,
165 struct ext4_super_block *es)
166 {
167 if (!ext4_has_metadata_csum(sb))
168 return 1;
169
170 return es->s_checksum == ext4_superblock_csum(sb, es);
171 }
172
173 void ext4_superblock_csum_set(struct super_block *sb)
174 {
175 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
176
177 if (!ext4_has_metadata_csum(sb))
178 return;
179
180 es->s_checksum = ext4_superblock_csum(sb, es);
181 }
182
183 void *ext4_kvmalloc(size_t size, gfp_t flags)
184 {
185 void *ret;
186
187 ret = kmalloc(size, flags | __GFP_NOWARN);
188 if (!ret)
189 ret = __vmalloc(size, flags, PAGE_KERNEL);
190 return ret;
191 }
192
193 void *ext4_kvzalloc(size_t size, gfp_t flags)
194 {
195 void *ret;
196
197 ret = kzalloc(size, flags | __GFP_NOWARN);
198 if (!ret)
199 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL);
200 return ret;
201 }
202
203 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
204 struct ext4_group_desc *bg)
205 {
206 return le32_to_cpu(bg->bg_block_bitmap_lo) |
207 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
208 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
209 }
210
211 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
212 struct ext4_group_desc *bg)
213 {
214 return le32_to_cpu(bg->bg_inode_bitmap_lo) |
215 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
216 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
217 }
218
219 ext4_fsblk_t ext4_inode_table(struct super_block *sb,
220 struct ext4_group_desc *bg)
221 {
222 return le32_to_cpu(bg->bg_inode_table_lo) |
223 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
224 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
225 }
226
227 __u32 ext4_free_group_clusters(struct super_block *sb,
228 struct ext4_group_desc *bg)
229 {
230 return le16_to_cpu(bg->bg_free_blocks_count_lo) |
231 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
232 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
233 }
234
235 __u32 ext4_free_inodes_count(struct super_block *sb,
236 struct ext4_group_desc *bg)
237 {
238 return le16_to_cpu(bg->bg_free_inodes_count_lo) |
239 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
240 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
241 }
242
243 __u32 ext4_used_dirs_count(struct super_block *sb,
244 struct ext4_group_desc *bg)
245 {
246 return le16_to_cpu(bg->bg_used_dirs_count_lo) |
247 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
248 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
249 }
250
251 __u32 ext4_itable_unused_count(struct super_block *sb,
252 struct ext4_group_desc *bg)
253 {
254 return le16_to_cpu(bg->bg_itable_unused_lo) |
255 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
256 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
257 }
258
259 void ext4_block_bitmap_set(struct super_block *sb,
260 struct ext4_group_desc *bg, ext4_fsblk_t blk)
261 {
262 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
263 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
264 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
265 }
266
267 void ext4_inode_bitmap_set(struct super_block *sb,
268 struct ext4_group_desc *bg, ext4_fsblk_t blk)
269 {
270 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk);
271 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
272 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
273 }
274
275 void ext4_inode_table_set(struct super_block *sb,
276 struct ext4_group_desc *bg, ext4_fsblk_t blk)
277 {
278 bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
279 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
280 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
281 }
282
283 void ext4_free_group_clusters_set(struct super_block *sb,
284 struct ext4_group_desc *bg, __u32 count)
285 {
286 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
287 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
288 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
289 }
290
291 void ext4_free_inodes_set(struct super_block *sb,
292 struct ext4_group_desc *bg, __u32 count)
293 {
294 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
295 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
296 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
297 }
298
299 void ext4_used_dirs_set(struct super_block *sb,
300 struct ext4_group_desc *bg, __u32 count)
301 {
302 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
303 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
304 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
305 }
306
307 void ext4_itable_unused_set(struct super_block *sb,
308 struct ext4_group_desc *bg, __u32 count)
309 {
310 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
311 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
312 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
313 }
314
315
316 static void __save_error_info(struct super_block *sb, const char *func,
317 unsigned int line)
318 {
319 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
320
321 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
322 if (bdev_read_only(sb->s_bdev))
323 return;
324 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
325 es->s_last_error_time = cpu_to_le32(get_seconds());
326 strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func));
327 es->s_last_error_line = cpu_to_le32(line);
328 if (!es->s_first_error_time) {
329 es->s_first_error_time = es->s_last_error_time;
330 strncpy(es->s_first_error_func, func,
331 sizeof(es->s_first_error_func));
332 es->s_first_error_line = cpu_to_le32(line);
333 es->s_first_error_ino = es->s_last_error_ino;
334 es->s_first_error_block = es->s_last_error_block;
335 }
336 /*
337 * Start the daily error reporting function if it hasn't been
338 * started already
339 */
340 if (!es->s_error_count)
341 mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ);
342 le32_add_cpu(&es->s_error_count, 1);
343 }
344
345 static void save_error_info(struct super_block *sb, const char *func,
346 unsigned int line)
347 {
348 __save_error_info(sb, func, line);
349 ext4_commit_super(sb, 1);
350 }
351
352 /*
353 * The del_gendisk() function uninitializes the disk-specific data
354 * structures, including the bdi structure, without telling anyone
355 * else. Once this happens, any attempt to call mark_buffer_dirty()
356 * (for example, by ext4_commit_super), will cause a kernel OOPS.
357 * This is a kludge to prevent these oops until we can put in a proper
358 * hook in del_gendisk() to inform the VFS and file system layers.
359 */
360 static int block_device_ejected(struct super_block *sb)
361 {
362 struct inode *bd_inode = sb->s_bdev->bd_inode;
363 struct backing_dev_info *bdi = inode_to_bdi(bd_inode);
364
365 return bdi->dev == NULL;
366 }
367
368 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn)
369 {
370 struct super_block *sb = journal->j_private;
371 struct ext4_sb_info *sbi = EXT4_SB(sb);
372 int error = is_journal_aborted(journal);
373 struct ext4_journal_cb_entry *jce;
374
375 BUG_ON(txn->t_state == T_FINISHED);
376
377 ext4_process_freed_data(sb, txn->t_tid);
378
379 spin_lock(&sbi->s_md_lock);
380 while (!list_empty(&txn->t_private_list)) {
381 jce = list_entry(txn->t_private_list.next,
382 struct ext4_journal_cb_entry, jce_list);
383 list_del_init(&jce->jce_list);
384 spin_unlock(&sbi->s_md_lock);
385 jce->jce_func(sb, jce, error);
386 spin_lock(&sbi->s_md_lock);
387 }
388 spin_unlock(&sbi->s_md_lock);
389 }
390
391 /* Deal with the reporting of failure conditions on a filesystem such as
392 * inconsistencies detected or read IO failures.
393 *
394 * On ext2, we can store the error state of the filesystem in the
395 * superblock. That is not possible on ext4, because we may have other
396 * write ordering constraints on the superblock which prevent us from
397 * writing it out straight away; and given that the journal is about to
398 * be aborted, we can't rely on the current, or future, transactions to
399 * write out the superblock safely.
400 *
401 * We'll just use the jbd2_journal_abort() error code to record an error in
402 * the journal instead. On recovery, the journal will complain about
403 * that error until we've noted it down and cleared it.
404 */
405
406 static void ext4_handle_error(struct super_block *sb)
407 {
408 if (sb_rdonly(sb))
409 return;
410
411 if (!test_opt(sb, ERRORS_CONT)) {
412 journal_t *journal = EXT4_SB(sb)->s_journal;
413
414 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
415 if (journal)
416 jbd2_journal_abort(journal, -EIO);
417 }
418 if (test_opt(sb, ERRORS_RO)) {
419 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
420 /*
421 * Make sure updated value of ->s_mount_flags will be visible
422 * before ->s_flags update
423 */
424 smp_wmb();
425 sb->s_flags |= MS_RDONLY;
426 }
427 if (test_opt(sb, ERRORS_PANIC)) {
428 if (EXT4_SB(sb)->s_journal &&
429 !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR))
430 return;
431 panic("EXT4-fs (device %s): panic forced after error\n",
432 sb->s_id);
433 }
434 }
435
436 #define ext4_error_ratelimit(sb) \
437 ___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state), \
438 "EXT4-fs error")
439
440 void __ext4_error(struct super_block *sb, const char *function,
441 unsigned int line, const char *fmt, ...)
442 {
443 struct va_format vaf;
444 va_list args;
445
446 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
447 return;
448
449 if (ext4_error_ratelimit(sb)) {
450 va_start(args, fmt);
451 vaf.fmt = fmt;
452 vaf.va = &args;
453 printk(KERN_CRIT
454 "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
455 sb->s_id, function, line, current->comm, &vaf);
456 va_end(args);
457 }
458 save_error_info(sb, function, line);
459 ext4_handle_error(sb);
460 }
461
462 void __ext4_error_inode(struct inode *inode, const char *function,
463 unsigned int line, ext4_fsblk_t block,
464 const char *fmt, ...)
465 {
466 va_list args;
467 struct va_format vaf;
468 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
469
470 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
471 return;
472
473 es->s_last_error_ino = cpu_to_le32(inode->i_ino);
474 es->s_last_error_block = cpu_to_le64(block);
475 if (ext4_error_ratelimit(inode->i_sb)) {
476 va_start(args, fmt);
477 vaf.fmt = fmt;
478 vaf.va = &args;
479 if (block)
480 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
481 "inode #%lu: block %llu: comm %s: %pV\n",
482 inode->i_sb->s_id, function, line, inode->i_ino,
483 block, current->comm, &vaf);
484 else
485 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
486 "inode #%lu: comm %s: %pV\n",
487 inode->i_sb->s_id, function, line, inode->i_ino,
488 current->comm, &vaf);
489 va_end(args);
490 }
491 save_error_info(inode->i_sb, function, line);
492 ext4_handle_error(inode->i_sb);
493 }
494
495 void __ext4_error_file(struct file *file, const char *function,
496 unsigned int line, ext4_fsblk_t block,
497 const char *fmt, ...)
498 {
499 va_list args;
500 struct va_format vaf;
501 struct ext4_super_block *es;
502 struct inode *inode = file_inode(file);
503 char pathname[80], *path;
504
505 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
506 return;
507
508 es = EXT4_SB(inode->i_sb)->s_es;
509 es->s_last_error_ino = cpu_to_le32(inode->i_ino);
510 if (ext4_error_ratelimit(inode->i_sb)) {
511 path = file_path(file, pathname, sizeof(pathname));
512 if (IS_ERR(path))
513 path = "(unknown)";
514 va_start(args, fmt);
515 vaf.fmt = fmt;
516 vaf.va = &args;
517 if (block)
518 printk(KERN_CRIT
519 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
520 "block %llu: comm %s: path %s: %pV\n",
521 inode->i_sb->s_id, function, line, inode->i_ino,
522 block, current->comm, path, &vaf);
523 else
524 printk(KERN_CRIT
525 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
526 "comm %s: path %s: %pV\n",
527 inode->i_sb->s_id, function, line, inode->i_ino,
528 current->comm, path, &vaf);
529 va_end(args);
530 }
531 save_error_info(inode->i_sb, function, line);
532 ext4_handle_error(inode->i_sb);
533 }
534
535 const char *ext4_decode_error(struct super_block *sb, int errno,
536 char nbuf[16])
537 {
538 char *errstr = NULL;
539
540 switch (errno) {
541 case -EFSCORRUPTED:
542 errstr = "Corrupt filesystem";
543 break;
544 case -EFSBADCRC:
545 errstr = "Filesystem failed CRC";
546 break;
547 case -EIO:
548 errstr = "IO failure";
549 break;
550 case -ENOMEM:
551 errstr = "Out of memory";
552 break;
553 case -EROFS:
554 if (!sb || (EXT4_SB(sb)->s_journal &&
555 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
556 errstr = "Journal has aborted";
557 else
558 errstr = "Readonly filesystem";
559 break;
560 default:
561 /* If the caller passed in an extra buffer for unknown
562 * errors, textualise them now. Else we just return
563 * NULL. */
564 if (nbuf) {
565 /* Check for truncated error codes... */
566 if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
567 errstr = nbuf;
568 }
569 break;
570 }
571
572 return errstr;
573 }
574
575 /* __ext4_std_error decodes expected errors from journaling functions
576 * automatically and invokes the appropriate error response. */
577
578 void __ext4_std_error(struct super_block *sb, const char *function,
579 unsigned int line, int errno)
580 {
581 char nbuf[16];
582 const char *errstr;
583
584 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
585 return;
586
587 /* Special case: if the error is EROFS, and we're not already
588 * inside a transaction, then there's really no point in logging
589 * an error. */
590 if (errno == -EROFS && journal_current_handle() == NULL && sb_rdonly(sb))
591 return;
592
593 if (ext4_error_ratelimit(sb)) {
594 errstr = ext4_decode_error(sb, errno, nbuf);
595 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
596 sb->s_id, function, line, errstr);
597 }
598
599 save_error_info(sb, function, line);
600 ext4_handle_error(sb);
601 }
602
603 /*
604 * ext4_abort is a much stronger failure handler than ext4_error. The
605 * abort function may be used to deal with unrecoverable failures such
606 * as journal IO errors or ENOMEM at a critical moment in log management.
607 *
608 * We unconditionally force the filesystem into an ABORT|READONLY state,
609 * unless the error response on the fs has been set to panic in which
610 * case we take the easy way out and panic immediately.
611 */
612
613 void __ext4_abort(struct super_block *sb, const char *function,
614 unsigned int line, const char *fmt, ...)
615 {
616 struct va_format vaf;
617 va_list args;
618
619 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
620 return;
621
622 save_error_info(sb, function, line);
623 va_start(args, fmt);
624 vaf.fmt = fmt;
625 vaf.va = &args;
626 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: %pV\n",
627 sb->s_id, function, line, &vaf);
628 va_end(args);
629
630 if (sb_rdonly(sb) == 0) {
631 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
632 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
633 /*
634 * Make sure updated value of ->s_mount_flags will be visible
635 * before ->s_flags update
636 */
637 smp_wmb();
638 sb->s_flags |= MS_RDONLY;
639 if (EXT4_SB(sb)->s_journal)
640 jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO);
641 save_error_info(sb, function, line);
642 }
643 if (test_opt(sb, ERRORS_PANIC)) {
644 if (EXT4_SB(sb)->s_journal &&
645 !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR))
646 return;
647 panic("EXT4-fs panic from previous error\n");
648 }
649 }
650
651 void __ext4_msg(struct super_block *sb,
652 const char *prefix, const char *fmt, ...)
653 {
654 struct va_format vaf;
655 va_list args;
656
657 if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state), "EXT4-fs"))
658 return;
659
660 va_start(args, fmt);
661 vaf.fmt = fmt;
662 vaf.va = &args;
663 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
664 va_end(args);
665 }
666
667 #define ext4_warning_ratelimit(sb) \
668 ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state), \
669 "EXT4-fs warning")
670
671 void __ext4_warning(struct super_block *sb, const char *function,
672 unsigned int line, const char *fmt, ...)
673 {
674 struct va_format vaf;
675 va_list args;
676
677 if (!ext4_warning_ratelimit(sb))
678 return;
679
680 va_start(args, fmt);
681 vaf.fmt = fmt;
682 vaf.va = &args;
683 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
684 sb->s_id, function, line, &vaf);
685 va_end(args);
686 }
687
688 void __ext4_warning_inode(const struct inode *inode, const char *function,
689 unsigned int line, const char *fmt, ...)
690 {
691 struct va_format vaf;
692 va_list args;
693
694 if (!ext4_warning_ratelimit(inode->i_sb))
695 return;
696
697 va_start(args, fmt);
698 vaf.fmt = fmt;
699 vaf.va = &args;
700 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: "
701 "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id,
702 function, line, inode->i_ino, current->comm, &vaf);
703 va_end(args);
704 }
705
706 void __ext4_grp_locked_error(const char *function, unsigned int line,
707 struct super_block *sb, ext4_group_t grp,
708 unsigned long ino, ext4_fsblk_t block,
709 const char *fmt, ...)
710 __releases(bitlock)
711 __acquires(bitlock)
712 {
713 struct va_format vaf;
714 va_list args;
715 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
716
717 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
718 return;
719
720 es->s_last_error_ino = cpu_to_le32(ino);
721 es->s_last_error_block = cpu_to_le64(block);
722 __save_error_info(sb, function, line);
723
724 if (ext4_error_ratelimit(sb)) {
725 va_start(args, fmt);
726 vaf.fmt = fmt;
727 vaf.va = &args;
728 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
729 sb->s_id, function, line, grp);
730 if (ino)
731 printk(KERN_CONT "inode %lu: ", ino);
732 if (block)
733 printk(KERN_CONT "block %llu:",
734 (unsigned long long) block);
735 printk(KERN_CONT "%pV\n", &vaf);
736 va_end(args);
737 }
738
739 if (test_opt(sb, ERRORS_CONT)) {
740 ext4_commit_super(sb, 0);
741 return;
742 }
743
744 ext4_unlock_group(sb, grp);
745 ext4_handle_error(sb);
746 /*
747 * We only get here in the ERRORS_RO case; relocking the group
748 * may be dangerous, but nothing bad will happen since the
749 * filesystem will have already been marked read/only and the
750 * journal has been aborted. We return 1 as a hint to callers
751 * who might what to use the return value from
752 * ext4_grp_locked_error() to distinguish between the
753 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
754 * aggressively from the ext4 function in question, with a
755 * more appropriate error code.
756 */
757 ext4_lock_group(sb, grp);
758 return;
759 }
760
761 void ext4_update_dynamic_rev(struct super_block *sb)
762 {
763 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
764
765 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
766 return;
767
768 ext4_warning(sb,
769 "updating to rev %d because of new feature flag, "
770 "running e2fsck is recommended",
771 EXT4_DYNAMIC_REV);
772
773 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
774 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
775 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
776 /* leave es->s_feature_*compat flags alone */
777 /* es->s_uuid will be set by e2fsck if empty */
778
779 /*
780 * The rest of the superblock fields should be zero, and if not it
781 * means they are likely already in use, so leave them alone. We
782 * can leave it up to e2fsck to clean up any inconsistencies there.
783 */
784 }
785
786 /*
787 * Open the external journal device
788 */
789 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb)
790 {
791 struct block_device *bdev;
792 char b[BDEVNAME_SIZE];
793
794 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb);
795 if (IS_ERR(bdev))
796 goto fail;
797 return bdev;
798
799 fail:
800 ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld",
801 __bdevname(dev, b), PTR_ERR(bdev));
802 return NULL;
803 }
804
805 /*
806 * Release the journal device
807 */
808 static void ext4_blkdev_put(struct block_device *bdev)
809 {
810 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
811 }
812
813 static void ext4_blkdev_remove(struct ext4_sb_info *sbi)
814 {
815 struct block_device *bdev;
816 bdev = sbi->journal_bdev;
817 if (bdev) {
818 ext4_blkdev_put(bdev);
819 sbi->journal_bdev = NULL;
820 }
821 }
822
823 static inline struct inode *orphan_list_entry(struct list_head *l)
824 {
825 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
826 }
827
828 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
829 {
830 struct list_head *l;
831
832 ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
833 le32_to_cpu(sbi->s_es->s_last_orphan));
834
835 printk(KERN_ERR "sb_info orphan list:\n");
836 list_for_each(l, &sbi->s_orphan) {
837 struct inode *inode = orphan_list_entry(l);
838 printk(KERN_ERR " "
839 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
840 inode->i_sb->s_id, inode->i_ino, inode,
841 inode->i_mode, inode->i_nlink,
842 NEXT_ORPHAN(inode));
843 }
844 }
845
846 #ifdef CONFIG_QUOTA
847 static int ext4_quota_off(struct super_block *sb, int type);
848
849 static inline void ext4_quota_off_umount(struct super_block *sb)
850 {
851 int type;
852
853 /* Use our quota_off function to clear inode flags etc. */
854 for (type = 0; type < EXT4_MAXQUOTAS; type++)
855 ext4_quota_off(sb, type);
856 }
857 #else
858 static inline void ext4_quota_off_umount(struct super_block *sb)
859 {
860 }
861 #endif
862
863 static void ext4_put_super(struct super_block *sb)
864 {
865 struct ext4_sb_info *sbi = EXT4_SB(sb);
866 struct ext4_super_block *es = sbi->s_es;
867 int aborted = 0;
868 int i, err;
869
870 ext4_unregister_li_request(sb);
871 ext4_quota_off_umount(sb);
872
873 flush_workqueue(sbi->rsv_conversion_wq);
874 destroy_workqueue(sbi->rsv_conversion_wq);
875
876 if (sbi->s_journal) {
877 aborted = is_journal_aborted(sbi->s_journal);
878 err = jbd2_journal_destroy(sbi->s_journal);
879 sbi->s_journal = NULL;
880 if ((err < 0) && !aborted)
881 ext4_abort(sb, "Couldn't clean up the journal");
882 }
883
884 ext4_unregister_sysfs(sb);
885 ext4_es_unregister_shrinker(sbi);
886 del_timer_sync(&sbi->s_err_report);
887 ext4_release_system_zone(sb);
888 ext4_mb_release(sb);
889 ext4_ext_release(sb);
890
891 if (!sb_rdonly(sb) && !aborted) {
892 ext4_clear_feature_journal_needs_recovery(sb);
893 es->s_state = cpu_to_le16(sbi->s_mount_state);
894 }
895 if (!sb_rdonly(sb))
896 ext4_commit_super(sb, 1);
897
898 for (i = 0; i < sbi->s_gdb_count; i++)
899 brelse(sbi->s_group_desc[i]);
900 kvfree(sbi->s_group_desc);
901 kvfree(sbi->s_flex_groups);
902 percpu_counter_destroy(&sbi->s_freeclusters_counter);
903 percpu_counter_destroy(&sbi->s_freeinodes_counter);
904 percpu_counter_destroy(&sbi->s_dirs_counter);
905 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
906 percpu_free_rwsem(&sbi->s_journal_flag_rwsem);
907 #ifdef CONFIG_QUOTA
908 for (i = 0; i < EXT4_MAXQUOTAS; i++)
909 kfree(sbi->s_qf_names[i]);
910 #endif
911
912 /* Debugging code just in case the in-memory inode orphan list
913 * isn't empty. The on-disk one can be non-empty if we've
914 * detected an error and taken the fs readonly, but the
915 * in-memory list had better be clean by this point. */
916 if (!list_empty(&sbi->s_orphan))
917 dump_orphan_list(sb, sbi);
918 J_ASSERT(list_empty(&sbi->s_orphan));
919
920 sync_blockdev(sb->s_bdev);
921 invalidate_bdev(sb->s_bdev);
922 if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) {
923 /*
924 * Invalidate the journal device's buffers. We don't want them
925 * floating about in memory - the physical journal device may
926 * hotswapped, and it breaks the `ro-after' testing code.
927 */
928 sync_blockdev(sbi->journal_bdev);
929 invalidate_bdev(sbi->journal_bdev);
930 ext4_blkdev_remove(sbi);
931 }
932 if (sbi->s_ea_inode_cache) {
933 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
934 sbi->s_ea_inode_cache = NULL;
935 }
936 if (sbi->s_ea_block_cache) {
937 ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
938 sbi->s_ea_block_cache = NULL;
939 }
940 if (sbi->s_mmp_tsk)
941 kthread_stop(sbi->s_mmp_tsk);
942 brelse(sbi->s_sbh);
943 sb->s_fs_info = NULL;
944 /*
945 * Now that we are completely done shutting down the
946 * superblock, we need to actually destroy the kobject.
947 */
948 kobject_put(&sbi->s_kobj);
949 wait_for_completion(&sbi->s_kobj_unregister);
950 if (sbi->s_chksum_driver)
951 crypto_free_shash(sbi->s_chksum_driver);
952 kfree(sbi->s_blockgroup_lock);
953 fs_put_dax(sbi->s_daxdev);
954 kfree(sbi);
955 }
956
957 static struct kmem_cache *ext4_inode_cachep;
958
959 /*
960 * Called inside transaction, so use GFP_NOFS
961 */
962 static struct inode *ext4_alloc_inode(struct super_block *sb)
963 {
964 struct ext4_inode_info *ei;
965
966 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS);
967 if (!ei)
968 return NULL;
969
970 ei->vfs_inode.i_version = 1;
971 spin_lock_init(&ei->i_raw_lock);
972 INIT_LIST_HEAD(&ei->i_prealloc_list);
973 spin_lock_init(&ei->i_prealloc_lock);
974 ext4_es_init_tree(&ei->i_es_tree);
975 rwlock_init(&ei->i_es_lock);
976 INIT_LIST_HEAD(&ei->i_es_list);
977 ei->i_es_all_nr = 0;
978 ei->i_es_shk_nr = 0;
979 ei->i_es_shrink_lblk = 0;
980 ei->i_reserved_data_blocks = 0;
981 ei->i_da_metadata_calc_len = 0;
982 ei->i_da_metadata_calc_last_lblock = 0;
983 spin_lock_init(&(ei->i_block_reservation_lock));
984 #ifdef CONFIG_QUOTA
985 ei->i_reserved_quota = 0;
986 memset(&ei->i_dquot, 0, sizeof(ei->i_dquot));
987 #endif
988 ei->jinode = NULL;
989 INIT_LIST_HEAD(&ei->i_rsv_conversion_list);
990 spin_lock_init(&ei->i_completed_io_lock);
991 ei->i_sync_tid = 0;
992 ei->i_datasync_tid = 0;
993 atomic_set(&ei->i_unwritten, 0);
994 INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work);
995 return &ei->vfs_inode;
996 }
997
998 static int ext4_drop_inode(struct inode *inode)
999 {
1000 int drop = generic_drop_inode(inode);
1001
1002 trace_ext4_drop_inode(inode, drop);
1003 return drop;
1004 }
1005
1006 static void ext4_i_callback(struct rcu_head *head)
1007 {
1008 struct inode *inode = container_of(head, struct inode, i_rcu);
1009 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
1010 }
1011
1012 static void ext4_destroy_inode(struct inode *inode)
1013 {
1014 if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
1015 ext4_msg(inode->i_sb, KERN_ERR,
1016 "Inode %lu (%p): orphan list check failed!",
1017 inode->i_ino, EXT4_I(inode));
1018 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
1019 EXT4_I(inode), sizeof(struct ext4_inode_info),
1020 true);
1021 dump_stack();
1022 }
1023 call_rcu(&inode->i_rcu, ext4_i_callback);
1024 }
1025
1026 static void init_once(void *foo)
1027 {
1028 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo;
1029
1030 INIT_LIST_HEAD(&ei->i_orphan);
1031 init_rwsem(&ei->xattr_sem);
1032 init_rwsem(&ei->i_data_sem);
1033 init_rwsem(&ei->i_mmap_sem);
1034 inode_init_once(&ei->vfs_inode);
1035 }
1036
1037 static int __init init_inodecache(void)
1038 {
1039 ext4_inode_cachep = kmem_cache_create("ext4_inode_cache",
1040 sizeof(struct ext4_inode_info),
1041 0, (SLAB_RECLAIM_ACCOUNT|
1042 SLAB_MEM_SPREAD|SLAB_ACCOUNT),
1043 init_once);
1044 if (ext4_inode_cachep == NULL)
1045 return -ENOMEM;
1046 return 0;
1047 }
1048
1049 static void destroy_inodecache(void)
1050 {
1051 /*
1052 * Make sure all delayed rcu free inodes are flushed before we
1053 * destroy cache.
1054 */
1055 rcu_barrier();
1056 kmem_cache_destroy(ext4_inode_cachep);
1057 }
1058
1059 void ext4_clear_inode(struct inode *inode)
1060 {
1061 invalidate_inode_buffers(inode);
1062 clear_inode(inode);
1063 dquot_drop(inode);
1064 ext4_discard_preallocations(inode);
1065 ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS);
1066 if (EXT4_I(inode)->jinode) {
1067 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
1068 EXT4_I(inode)->jinode);
1069 jbd2_free_inode(EXT4_I(inode)->jinode);
1070 EXT4_I(inode)->jinode = NULL;
1071 }
1072 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1073 fscrypt_put_encryption_info(inode, NULL);
1074 #endif
1075 }
1076
1077 static struct inode *ext4_nfs_get_inode(struct super_block *sb,
1078 u64 ino, u32 generation)
1079 {
1080 struct inode *inode;
1081
1082 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
1083 return ERR_PTR(-ESTALE);
1084 if (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
1085 return ERR_PTR(-ESTALE);
1086
1087 /* iget isn't really right if the inode is currently unallocated!!
1088 *
1089 * ext4_read_inode will return a bad_inode if the inode had been
1090 * deleted, so we should be safe.
1091 *
1092 * Currently we don't know the generation for parent directory, so
1093 * a generation of 0 means "accept any"
1094 */
1095 inode = ext4_iget_normal(sb, ino);
1096 if (IS_ERR(inode))
1097 return ERR_CAST(inode);
1098 if (generation && inode->i_generation != generation) {
1099 iput(inode);
1100 return ERR_PTR(-ESTALE);
1101 }
1102
1103 return inode;
1104 }
1105
1106 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
1107 int fh_len, int fh_type)
1108 {
1109 return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1110 ext4_nfs_get_inode);
1111 }
1112
1113 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
1114 int fh_len, int fh_type)
1115 {
1116 return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1117 ext4_nfs_get_inode);
1118 }
1119
1120 /*
1121 * Try to release metadata pages (indirect blocks, directories) which are
1122 * mapped via the block device. Since these pages could have journal heads
1123 * which would prevent try_to_free_buffers() from freeing them, we must use
1124 * jbd2 layer's try_to_free_buffers() function to release them.
1125 */
1126 static int bdev_try_to_free_page(struct super_block *sb, struct page *page,
1127 gfp_t wait)
1128 {
1129 journal_t *journal = EXT4_SB(sb)->s_journal;
1130
1131 WARN_ON(PageChecked(page));
1132 if (!page_has_buffers(page))
1133 return 0;
1134 if (journal)
1135 return jbd2_journal_try_to_free_buffers(journal, page,
1136 wait & ~__GFP_DIRECT_RECLAIM);
1137 return try_to_free_buffers(page);
1138 }
1139
1140 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1141 static int ext4_get_context(struct inode *inode, void *ctx, size_t len)
1142 {
1143 return ext4_xattr_get(inode, EXT4_XATTR_INDEX_ENCRYPTION,
1144 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, ctx, len);
1145 }
1146
1147 static int ext4_set_context(struct inode *inode, const void *ctx, size_t len,
1148 void *fs_data)
1149 {
1150 handle_t *handle = fs_data;
1151 int res, res2, credits, retries = 0;
1152
1153 /*
1154 * Encrypting the root directory is not allowed because e2fsck expects
1155 * lost+found to exist and be unencrypted, and encrypting the root
1156 * directory would imply encrypting the lost+found directory as well as
1157 * the filename "lost+found" itself.
1158 */
1159 if (inode->i_ino == EXT4_ROOT_INO)
1160 return -EPERM;
1161
1162 res = ext4_convert_inline_data(inode);
1163 if (res)
1164 return res;
1165
1166 /*
1167 * If a journal handle was specified, then the encryption context is
1168 * being set on a new inode via inheritance and is part of a larger
1169 * transaction to create the inode. Otherwise the encryption context is
1170 * being set on an existing inode in its own transaction. Only in the
1171 * latter case should the "retry on ENOSPC" logic be used.
1172 */
1173
1174 if (handle) {
1175 res = ext4_xattr_set_handle(handle, inode,
1176 EXT4_XATTR_INDEX_ENCRYPTION,
1177 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT,
1178 ctx, len, 0);
1179 if (!res) {
1180 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT);
1181 ext4_clear_inode_state(inode,
1182 EXT4_STATE_MAY_INLINE_DATA);
1183 /*
1184 * Update inode->i_flags - S_ENCRYPTED will be enabled,
1185 * S_DAX may be disabled
1186 */
1187 ext4_set_inode_flags(inode);
1188 }
1189 return res;
1190 }
1191
1192 res = dquot_initialize(inode);
1193 if (res)
1194 return res;
1195 retry:
1196 res = ext4_xattr_set_credits(inode, len, false /* is_create */,
1197 &credits);
1198 if (res)
1199 return res;
1200
1201 handle = ext4_journal_start(inode, EXT4_HT_MISC, credits);
1202 if (IS_ERR(handle))
1203 return PTR_ERR(handle);
1204
1205 res = ext4_xattr_set_handle(handle, inode, EXT4_XATTR_INDEX_ENCRYPTION,
1206 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT,
1207 ctx, len, 0);
1208 if (!res) {
1209 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT);
1210 /*
1211 * Update inode->i_flags - S_ENCRYPTED will be enabled,
1212 * S_DAX may be disabled
1213 */
1214 ext4_set_inode_flags(inode);
1215 res = ext4_mark_inode_dirty(handle, inode);
1216 if (res)
1217 EXT4_ERROR_INODE(inode, "Failed to mark inode dirty");
1218 }
1219 res2 = ext4_journal_stop(handle);
1220
1221 if (res == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1222 goto retry;
1223 if (!res)
1224 res = res2;
1225 return res;
1226 }
1227
1228 static bool ext4_dummy_context(struct inode *inode)
1229 {
1230 return DUMMY_ENCRYPTION_ENABLED(EXT4_SB(inode->i_sb));
1231 }
1232
1233 static unsigned ext4_max_namelen(struct inode *inode)
1234 {
1235 return S_ISLNK(inode->i_mode) ? inode->i_sb->s_blocksize :
1236 EXT4_NAME_LEN;
1237 }
1238
1239 static const struct fscrypt_operations ext4_cryptops = {
1240 .key_prefix = "ext4:",
1241 .get_context = ext4_get_context,
1242 .set_context = ext4_set_context,
1243 .dummy_context = ext4_dummy_context,
1244 .empty_dir = ext4_empty_dir,
1245 .max_namelen = ext4_max_namelen,
1246 };
1247 #else
1248 static const struct fscrypt_operations ext4_cryptops = {
1249 };
1250 #endif
1251
1252 #ifdef CONFIG_QUOTA
1253 static const char * const quotatypes[] = INITQFNAMES;
1254 #define QTYPE2NAME(t) (quotatypes[t])
1255
1256 static int ext4_write_dquot(struct dquot *dquot);
1257 static int ext4_acquire_dquot(struct dquot *dquot);
1258 static int ext4_release_dquot(struct dquot *dquot);
1259 static int ext4_mark_dquot_dirty(struct dquot *dquot);
1260 static int ext4_write_info(struct super_block *sb, int type);
1261 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1262 const struct path *path);
1263 static int ext4_quota_on_mount(struct super_block *sb, int type);
1264 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1265 size_t len, loff_t off);
1266 static ssize_t ext4_quota_write(struct super_block *sb, int type,
1267 const char *data, size_t len, loff_t off);
1268 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
1269 unsigned int flags);
1270 static int ext4_enable_quotas(struct super_block *sb);
1271 static int ext4_get_next_id(struct super_block *sb, struct kqid *qid);
1272
1273 static struct dquot **ext4_get_dquots(struct inode *inode)
1274 {
1275 return EXT4_I(inode)->i_dquot;
1276 }
1277
1278 static const struct dquot_operations ext4_quota_operations = {
1279 .get_reserved_space = ext4_get_reserved_space,
1280 .write_dquot = ext4_write_dquot,
1281 .acquire_dquot = ext4_acquire_dquot,
1282 .release_dquot = ext4_release_dquot,
1283 .mark_dirty = ext4_mark_dquot_dirty,
1284 .write_info = ext4_write_info,
1285 .alloc_dquot = dquot_alloc,
1286 .destroy_dquot = dquot_destroy,
1287 .get_projid = ext4_get_projid,
1288 .get_inode_usage = ext4_get_inode_usage,
1289 .get_next_id = ext4_get_next_id,
1290 };
1291
1292 static const struct quotactl_ops ext4_qctl_operations = {
1293 .quota_on = ext4_quota_on,
1294 .quota_off = ext4_quota_off,
1295 .quota_sync = dquot_quota_sync,
1296 .get_state = dquot_get_state,
1297 .set_info = dquot_set_dqinfo,
1298 .get_dqblk = dquot_get_dqblk,
1299 .set_dqblk = dquot_set_dqblk,
1300 .get_nextdqblk = dquot_get_next_dqblk,
1301 };
1302 #endif
1303
1304 static const struct super_operations ext4_sops = {
1305 .alloc_inode = ext4_alloc_inode,
1306 .destroy_inode = ext4_destroy_inode,
1307 .write_inode = ext4_write_inode,
1308 .dirty_inode = ext4_dirty_inode,
1309 .drop_inode = ext4_drop_inode,
1310 .evict_inode = ext4_evict_inode,
1311 .put_super = ext4_put_super,
1312 .sync_fs = ext4_sync_fs,
1313 .freeze_fs = ext4_freeze,
1314 .unfreeze_fs = ext4_unfreeze,
1315 .statfs = ext4_statfs,
1316 .remount_fs = ext4_remount,
1317 .show_options = ext4_show_options,
1318 #ifdef CONFIG_QUOTA
1319 .quota_read = ext4_quota_read,
1320 .quota_write = ext4_quota_write,
1321 .get_dquots = ext4_get_dquots,
1322 #endif
1323 .bdev_try_to_free_page = bdev_try_to_free_page,
1324 };
1325
1326 static const struct export_operations ext4_export_ops = {
1327 .fh_to_dentry = ext4_fh_to_dentry,
1328 .fh_to_parent = ext4_fh_to_parent,
1329 .get_parent = ext4_get_parent,
1330 };
1331
1332 enum {
1333 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1334 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro,
1335 Opt_nouid32, Opt_debug, Opt_removed,
1336 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl,
1337 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload,
1338 Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev,
1339 Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit,
1340 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1341 Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption,
1342 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota,
1343 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota,
1344 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err,
1345 Opt_usrquota, Opt_grpquota, Opt_prjquota, Opt_i_version, Opt_dax,
1346 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_mblk_io_submit,
1347 Opt_lazytime, Opt_nolazytime, Opt_debug_want_extra_isize,
1348 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1349 Opt_inode_readahead_blks, Opt_journal_ioprio,
1350 Opt_dioread_nolock, Opt_dioread_lock,
1351 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable,
1352 Opt_max_dir_size_kb, Opt_nojournal_checksum, Opt_nombcache,
1353 };
1354
1355 static const match_table_t tokens = {
1356 {Opt_bsd_df, "bsddf"},
1357 {Opt_minix_df, "minixdf"},
1358 {Opt_grpid, "grpid"},
1359 {Opt_grpid, "bsdgroups"},
1360 {Opt_nogrpid, "nogrpid"},
1361 {Opt_nogrpid, "sysvgroups"},
1362 {Opt_resgid, "resgid=%u"},
1363 {Opt_resuid, "resuid=%u"},
1364 {Opt_sb, "sb=%u"},
1365 {Opt_err_cont, "errors=continue"},
1366 {Opt_err_panic, "errors=panic"},
1367 {Opt_err_ro, "errors=remount-ro"},
1368 {Opt_nouid32, "nouid32"},
1369 {Opt_debug, "debug"},
1370 {Opt_removed, "oldalloc"},
1371 {Opt_removed, "orlov"},
1372 {Opt_user_xattr, "user_xattr"},
1373 {Opt_nouser_xattr, "nouser_xattr"},
1374 {Opt_acl, "acl"},
1375 {Opt_noacl, "noacl"},
1376 {Opt_noload, "norecovery"},
1377 {Opt_noload, "noload"},
1378 {Opt_removed, "nobh"},
1379 {Opt_removed, "bh"},
1380 {Opt_commit, "commit=%u"},
1381 {Opt_min_batch_time, "min_batch_time=%u"},
1382 {Opt_max_batch_time, "max_batch_time=%u"},
1383 {Opt_journal_dev, "journal_dev=%u"},
1384 {Opt_journal_path, "journal_path=%s"},
1385 {Opt_journal_checksum, "journal_checksum"},
1386 {Opt_nojournal_checksum, "nojournal_checksum"},
1387 {Opt_journal_async_commit, "journal_async_commit"},
1388 {Opt_abort, "abort"},
1389 {Opt_data_journal, "data=journal"},
1390 {Opt_data_ordered, "data=ordered"},
1391 {Opt_data_writeback, "data=writeback"},
1392 {Opt_data_err_abort, "data_err=abort"},
1393 {Opt_data_err_ignore, "data_err=ignore"},
1394 {Opt_offusrjquota, "usrjquota="},
1395 {Opt_usrjquota, "usrjquota=%s"},
1396 {Opt_offgrpjquota, "grpjquota="},
1397 {Opt_grpjquota, "grpjquota=%s"},
1398 {Opt_jqfmt_vfsold, "jqfmt=vfsold"},
1399 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
1400 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
1401 {Opt_grpquota, "grpquota"},
1402 {Opt_noquota, "noquota"},
1403 {Opt_quota, "quota"},
1404 {Opt_usrquota, "usrquota"},
1405 {Opt_prjquota, "prjquota"},
1406 {Opt_barrier, "barrier=%u"},
1407 {Opt_barrier, "barrier"},
1408 {Opt_nobarrier, "nobarrier"},
1409 {Opt_i_version, "i_version"},
1410 {Opt_dax, "dax"},
1411 {Opt_stripe, "stripe=%u"},
1412 {Opt_delalloc, "delalloc"},
1413 {Opt_lazytime, "lazytime"},
1414 {Opt_nolazytime, "nolazytime"},
1415 {Opt_debug_want_extra_isize, "debug_want_extra_isize=%u"},
1416 {Opt_nodelalloc, "nodelalloc"},
1417 {Opt_removed, "mblk_io_submit"},
1418 {Opt_removed, "nomblk_io_submit"},
1419 {Opt_block_validity, "block_validity"},
1420 {Opt_noblock_validity, "noblock_validity"},
1421 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"},
1422 {Opt_journal_ioprio, "journal_ioprio=%u"},
1423 {Opt_auto_da_alloc, "auto_da_alloc=%u"},
1424 {Opt_auto_da_alloc, "auto_da_alloc"},
1425 {Opt_noauto_da_alloc, "noauto_da_alloc"},
1426 {Opt_dioread_nolock, "dioread_nolock"},
1427 {Opt_dioread_lock, "dioread_lock"},
1428 {Opt_discard, "discard"},
1429 {Opt_nodiscard, "nodiscard"},
1430 {Opt_init_itable, "init_itable=%u"},
1431 {Opt_init_itable, "init_itable"},
1432 {Opt_noinit_itable, "noinit_itable"},
1433 {Opt_max_dir_size_kb, "max_dir_size_kb=%u"},
1434 {Opt_test_dummy_encryption, "test_dummy_encryption"},
1435 {Opt_nombcache, "nombcache"},
1436 {Opt_nombcache, "no_mbcache"}, /* for backward compatibility */
1437 {Opt_removed, "check=none"}, /* mount option from ext2/3 */
1438 {Opt_removed, "nocheck"}, /* mount option from ext2/3 */
1439 {Opt_removed, "reservation"}, /* mount option from ext2/3 */
1440 {Opt_removed, "noreservation"}, /* mount option from ext2/3 */
1441 {Opt_removed, "journal=%u"}, /* mount option from ext2/3 */
1442 {Opt_err, NULL},
1443 };
1444
1445 static ext4_fsblk_t get_sb_block(void **data)
1446 {
1447 ext4_fsblk_t sb_block;
1448 char *options = (char *) *data;
1449
1450 if (!options || strncmp(options, "sb=", 3) != 0)
1451 return 1; /* Default location */
1452
1453 options += 3;
1454 /* TODO: use simple_strtoll with >32bit ext4 */
1455 sb_block = simple_strtoul(options, &options, 0);
1456 if (*options && *options != ',') {
1457 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n",
1458 (char *) *data);
1459 return 1;
1460 }
1461 if (*options == ',')
1462 options++;
1463 *data = (void *) options;
1464
1465 return sb_block;
1466 }
1467
1468 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1469 static const char deprecated_msg[] =
1470 "Mount option \"%s\" will be removed by %s\n"
1471 "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n";
1472
1473 #ifdef CONFIG_QUOTA
1474 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args)
1475 {
1476 struct ext4_sb_info *sbi = EXT4_SB(sb);
1477 char *qname;
1478 int ret = -1;
1479
1480 if (sb_any_quota_loaded(sb) &&
1481 !sbi->s_qf_names[qtype]) {
1482 ext4_msg(sb, KERN_ERR,
1483 "Cannot change journaled "
1484 "quota options when quota turned on");
1485 return -1;
1486 }
1487 if (ext4_has_feature_quota(sb)) {
1488 ext4_msg(sb, KERN_INFO, "Journaled quota options "
1489 "ignored when QUOTA feature is enabled");
1490 return 1;
1491 }
1492 qname = match_strdup(args);
1493 if (!qname) {
1494 ext4_msg(sb, KERN_ERR,
1495 "Not enough memory for storing quotafile name");
1496 return -1;
1497 }
1498 if (sbi->s_qf_names[qtype]) {
1499 if (strcmp(sbi->s_qf_names[qtype], qname) == 0)
1500 ret = 1;
1501 else
1502 ext4_msg(sb, KERN_ERR,
1503 "%s quota file already specified",
1504 QTYPE2NAME(qtype));
1505 goto errout;
1506 }
1507 if (strchr(qname, '/')) {
1508 ext4_msg(sb, KERN_ERR,
1509 "quotafile must be on filesystem root");
1510 goto errout;
1511 }
1512 sbi->s_qf_names[qtype] = qname;
1513 set_opt(sb, QUOTA);
1514 return 1;
1515 errout:
1516 kfree(qname);
1517 return ret;
1518 }
1519
1520 static int clear_qf_name(struct super_block *sb, int qtype)
1521 {
1522
1523 struct ext4_sb_info *sbi = EXT4_SB(sb);
1524
1525 if (sb_any_quota_loaded(sb) &&
1526 sbi->s_qf_names[qtype]) {
1527 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options"
1528 " when quota turned on");
1529 return -1;
1530 }
1531 kfree(sbi->s_qf_names[qtype]);
1532 sbi->s_qf_names[qtype] = NULL;
1533 return 1;
1534 }
1535 #endif
1536
1537 #define MOPT_SET 0x0001
1538 #define MOPT_CLEAR 0x0002
1539 #define MOPT_NOSUPPORT 0x0004
1540 #define MOPT_EXPLICIT 0x0008
1541 #define MOPT_CLEAR_ERR 0x0010
1542 #define MOPT_GTE0 0x0020
1543 #ifdef CONFIG_QUOTA
1544 #define MOPT_Q 0
1545 #define MOPT_QFMT 0x0040
1546 #else
1547 #define MOPT_Q MOPT_NOSUPPORT
1548 #define MOPT_QFMT MOPT_NOSUPPORT
1549 #endif
1550 #define MOPT_DATAJ 0x0080
1551 #define MOPT_NO_EXT2 0x0100
1552 #define MOPT_NO_EXT3 0x0200
1553 #define MOPT_EXT4_ONLY (MOPT_NO_EXT2 | MOPT_NO_EXT3)
1554 #define MOPT_STRING 0x0400
1555
1556 static const struct mount_opts {
1557 int token;
1558 int mount_opt;
1559 int flags;
1560 } ext4_mount_opts[] = {
1561 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET},
1562 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR},
1563 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET},
1564 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR},
1565 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET},
1566 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR},
1567 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK,
1568 MOPT_EXT4_ONLY | MOPT_SET},
1569 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK,
1570 MOPT_EXT4_ONLY | MOPT_CLEAR},
1571 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET},
1572 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR},
1573 {Opt_delalloc, EXT4_MOUNT_DELALLOC,
1574 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1575 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC,
1576 MOPT_EXT4_ONLY | MOPT_CLEAR},
1577 {Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1578 MOPT_EXT4_ONLY | MOPT_CLEAR},
1579 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1580 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1581 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT |
1582 EXT4_MOUNT_JOURNAL_CHECKSUM),
1583 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1584 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET},
1585 {Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR},
1586 {Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR},
1587 {Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR},
1588 {Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT,
1589 MOPT_NO_EXT2},
1590 {Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT,
1591 MOPT_NO_EXT2},
1592 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET},
1593 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR},
1594 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET},
1595 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR},
1596 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR},
1597 {Opt_commit, 0, MOPT_GTE0},
1598 {Opt_max_batch_time, 0, MOPT_GTE0},
1599 {Opt_min_batch_time, 0, MOPT_GTE0},
1600 {Opt_inode_readahead_blks, 0, MOPT_GTE0},
1601 {Opt_init_itable, 0, MOPT_GTE0},
1602 {Opt_dax, EXT4_MOUNT_DAX, MOPT_SET},
1603 {Opt_stripe, 0, MOPT_GTE0},
1604 {Opt_resuid, 0, MOPT_GTE0},
1605 {Opt_resgid, 0, MOPT_GTE0},
1606 {Opt_journal_dev, 0, MOPT_NO_EXT2 | MOPT_GTE0},
1607 {Opt_journal_path, 0, MOPT_NO_EXT2 | MOPT_STRING},
1608 {Opt_journal_ioprio, 0, MOPT_NO_EXT2 | MOPT_GTE0},
1609 {Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1610 {Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1611 {Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA,
1612 MOPT_NO_EXT2 | MOPT_DATAJ},
1613 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET},
1614 {Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR},
1615 #ifdef CONFIG_EXT4_FS_POSIX_ACL
1616 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET},
1617 {Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR},
1618 #else
1619 {Opt_acl, 0, MOPT_NOSUPPORT},
1620 {Opt_noacl, 0, MOPT_NOSUPPORT},
1621 #endif
1622 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET},
1623 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET},
1624 {Opt_debug_want_extra_isize, 0, MOPT_GTE0},
1625 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q},
1626 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA,
1627 MOPT_SET | MOPT_Q},
1628 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA,
1629 MOPT_SET | MOPT_Q},
1630 {Opt_prjquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_PRJQUOTA,
1631 MOPT_SET | MOPT_Q},
1632 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
1633 EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA),
1634 MOPT_CLEAR | MOPT_Q},
1635 {Opt_usrjquota, 0, MOPT_Q},
1636 {Opt_grpjquota, 0, MOPT_Q},
1637 {Opt_offusrjquota, 0, MOPT_Q},
1638 {Opt_offgrpjquota, 0, MOPT_Q},
1639 {Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT},
1640 {Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT},
1641 {Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT},
1642 {Opt_max_dir_size_kb, 0, MOPT_GTE0},
1643 {Opt_test_dummy_encryption, 0, MOPT_GTE0},
1644 {Opt_nombcache, EXT4_MOUNT_NO_MBCACHE, MOPT_SET},
1645 {Opt_err, 0, 0}
1646 };
1647
1648 static int handle_mount_opt(struct super_block *sb, char *opt, int token,
1649 substring_t *args, unsigned long *journal_devnum,
1650 unsigned int *journal_ioprio, int is_remount)
1651 {
1652 struct ext4_sb_info *sbi = EXT4_SB(sb);
1653 const struct mount_opts *m;
1654 kuid_t uid;
1655 kgid_t gid;
1656 int arg = 0;
1657
1658 #ifdef CONFIG_QUOTA
1659 if (token == Opt_usrjquota)
1660 return set_qf_name(sb, USRQUOTA, &args[0]);
1661 else if (token == Opt_grpjquota)
1662 return set_qf_name(sb, GRPQUOTA, &args[0]);
1663 else if (token == Opt_offusrjquota)
1664 return clear_qf_name(sb, USRQUOTA);
1665 else if (token == Opt_offgrpjquota)
1666 return clear_qf_name(sb, GRPQUOTA);
1667 #endif
1668 switch (token) {
1669 case Opt_noacl:
1670 case Opt_nouser_xattr:
1671 ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5");
1672 break;
1673 case Opt_sb:
1674 return 1; /* handled by get_sb_block() */
1675 case Opt_removed:
1676 ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt);
1677 return 1;
1678 case Opt_abort:
1679 sbi->s_mount_flags |= EXT4_MF_FS_ABORTED;
1680 return 1;
1681 case Opt_i_version:
1682 sb->s_flags |= MS_I_VERSION;
1683 return 1;
1684 case Opt_lazytime:
1685 sb->s_flags |= MS_LAZYTIME;
1686 return 1;
1687 case Opt_nolazytime:
1688 sb->s_flags &= ~MS_LAZYTIME;
1689 return 1;
1690 }
1691
1692 for (m = ext4_mount_opts; m->token != Opt_err; m++)
1693 if (token == m->token)
1694 break;
1695
1696 if (m->token == Opt_err) {
1697 ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" "
1698 "or missing value", opt);
1699 return -1;
1700 }
1701
1702 if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) {
1703 ext4_msg(sb, KERN_ERR,
1704 "Mount option \"%s\" incompatible with ext2", opt);
1705 return -1;
1706 }
1707 if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) {
1708 ext4_msg(sb, KERN_ERR,
1709 "Mount option \"%s\" incompatible with ext3", opt);
1710 return -1;
1711 }
1712
1713 if (args->from && !(m->flags & MOPT_STRING) && match_int(args, &arg))
1714 return -1;
1715 if (args->from && (m->flags & MOPT_GTE0) && (arg < 0))
1716 return -1;
1717 if (m->flags & MOPT_EXPLICIT) {
1718 if (m->mount_opt & EXT4_MOUNT_DELALLOC) {
1719 set_opt2(sb, EXPLICIT_DELALLOC);
1720 } else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) {
1721 set_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM);
1722 } else
1723 return -1;
1724 }
1725 if (m->flags & MOPT_CLEAR_ERR)
1726 clear_opt(sb, ERRORS_MASK);
1727 if (token == Opt_noquota && sb_any_quota_loaded(sb)) {
1728 ext4_msg(sb, KERN_ERR, "Cannot change quota "
1729 "options when quota turned on");
1730 return -1;
1731 }
1732
1733 if (m->flags & MOPT_NOSUPPORT) {
1734 ext4_msg(sb, KERN_ERR, "%s option not supported", opt);
1735 } else if (token == Opt_commit) {
1736 if (arg == 0)
1737 arg = JBD2_DEFAULT_MAX_COMMIT_AGE;
1738 sbi->s_commit_interval = HZ * arg;
1739 } else if (token == Opt_debug_want_extra_isize) {
1740 sbi->s_want_extra_isize = arg;
1741 } else if (token == Opt_max_batch_time) {
1742 sbi->s_max_batch_time = arg;
1743 } else if (token == Opt_min_batch_time) {
1744 sbi->s_min_batch_time = arg;
1745 } else if (token == Opt_inode_readahead_blks) {
1746 if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) {
1747 ext4_msg(sb, KERN_ERR,
1748 "EXT4-fs: inode_readahead_blks must be "
1749 "0 or a power of 2 smaller than 2^31");
1750 return -1;
1751 }
1752 sbi->s_inode_readahead_blks = arg;
1753 } else if (token == Opt_init_itable) {
1754 set_opt(sb, INIT_INODE_TABLE);
1755 if (!args->from)
1756 arg = EXT4_DEF_LI_WAIT_MULT;
1757 sbi->s_li_wait_mult = arg;
1758 } else if (token == Opt_max_dir_size_kb) {
1759 sbi->s_max_dir_size_kb = arg;
1760 } else if (token == Opt_stripe) {
1761 sbi->s_stripe = arg;
1762 } else if (token == Opt_resuid) {
1763 uid = make_kuid(current_user_ns(), arg);
1764 if (!uid_valid(uid)) {
1765 ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg);
1766 return -1;
1767 }
1768 sbi->s_resuid = uid;
1769 } else if (token == Opt_resgid) {
1770 gid = make_kgid(current_user_ns(), arg);
1771 if (!gid_valid(gid)) {
1772 ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg);
1773 return -1;
1774 }
1775 sbi->s_resgid = gid;
1776 } else if (token == Opt_journal_dev) {
1777 if (is_remount) {
1778 ext4_msg(sb, KERN_ERR,
1779 "Cannot specify journal on remount");
1780 return -1;
1781 }
1782 *journal_devnum = arg;
1783 } else if (token == Opt_journal_path) {
1784 char *journal_path;
1785 struct inode *journal_inode;
1786 struct path path;
1787 int error;
1788
1789 if (is_remount) {
1790 ext4_msg(sb, KERN_ERR,
1791 "Cannot specify journal on remount");
1792 return -1;
1793 }
1794 journal_path = match_strdup(&args[0]);
1795 if (!journal_path) {
1796 ext4_msg(sb, KERN_ERR, "error: could not dup "
1797 "journal device string");
1798 return -1;
1799 }
1800
1801 error = kern_path(journal_path, LOOKUP_FOLLOW, &path);
1802 if (error) {
1803 ext4_msg(sb, KERN_ERR, "error: could not find "
1804 "journal device path: error %d", error);
1805 kfree(journal_path);
1806 return -1;
1807 }
1808
1809 journal_inode = d_inode(path.dentry);
1810 if (!S_ISBLK(journal_inode->i_mode)) {
1811 ext4_msg(sb, KERN_ERR, "error: journal path %s "
1812 "is not a block device", journal_path);
1813 path_put(&path);
1814 kfree(journal_path);
1815 return -1;
1816 }
1817
1818 *journal_devnum = new_encode_dev(journal_inode->i_rdev);
1819 path_put(&path);
1820 kfree(journal_path);
1821 } else if (token == Opt_journal_ioprio) {
1822 if (arg > 7) {
1823 ext4_msg(sb, KERN_ERR, "Invalid journal IO priority"
1824 " (must be 0-7)");
1825 return -1;
1826 }
1827 *journal_ioprio =
1828 IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg);
1829 } else if (token == Opt_test_dummy_encryption) {
1830 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1831 sbi->s_mount_flags |= EXT4_MF_TEST_DUMMY_ENCRYPTION;
1832 ext4_msg(sb, KERN_WARNING,
1833 "Test dummy encryption mode enabled");
1834 #else
1835 ext4_msg(sb, KERN_WARNING,
1836 "Test dummy encryption mount option ignored");
1837 #endif
1838 } else if (m->flags & MOPT_DATAJ) {
1839 if (is_remount) {
1840 if (!sbi->s_journal)
1841 ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option");
1842 else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) {
1843 ext4_msg(sb, KERN_ERR,
1844 "Cannot change data mode on remount");
1845 return -1;
1846 }
1847 } else {
1848 clear_opt(sb, DATA_FLAGS);
1849 sbi->s_mount_opt |= m->mount_opt;
1850 }
1851 #ifdef CONFIG_QUOTA
1852 } else if (m->flags & MOPT_QFMT) {
1853 if (sb_any_quota_loaded(sb) &&
1854 sbi->s_jquota_fmt != m->mount_opt) {
1855 ext4_msg(sb, KERN_ERR, "Cannot change journaled "
1856 "quota options when quota turned on");
1857 return -1;
1858 }
1859 if (ext4_has_feature_quota(sb)) {
1860 ext4_msg(sb, KERN_INFO,
1861 "Quota format mount options ignored "
1862 "when QUOTA feature is enabled");
1863 return 1;
1864 }
1865 sbi->s_jquota_fmt = m->mount_opt;
1866 #endif
1867 } else if (token == Opt_dax) {
1868 #ifdef CONFIG_FS_DAX
1869 ext4_msg(sb, KERN_WARNING,
1870 "DAX enabled. Warning: EXPERIMENTAL, use at your own risk");
1871 sbi->s_mount_opt |= m->mount_opt;
1872 #else
1873 ext4_msg(sb, KERN_INFO, "dax option not supported");
1874 return -1;
1875 #endif
1876 } else if (token == Opt_data_err_abort) {
1877 sbi->s_mount_opt |= m->mount_opt;
1878 } else if (token == Opt_data_err_ignore) {
1879 sbi->s_mount_opt &= ~m->mount_opt;
1880 } else {
1881 if (!args->from)
1882 arg = 1;
1883 if (m->flags & MOPT_CLEAR)
1884 arg = !arg;
1885 else if (unlikely(!(m->flags & MOPT_SET))) {
1886 ext4_msg(sb, KERN_WARNING,
1887 "buggy handling of option %s", opt);
1888 WARN_ON(1);
1889 return -1;
1890 }
1891 if (arg != 0)
1892 sbi->s_mount_opt |= m->mount_opt;
1893 else
1894 sbi->s_mount_opt &= ~m->mount_opt;
1895 }
1896 return 1;
1897 }
1898
1899 static int parse_options(char *options, struct super_block *sb,
1900 unsigned long *journal_devnum,
1901 unsigned int *journal_ioprio,
1902 int is_remount)
1903 {
1904 struct ext4_sb_info *sbi = EXT4_SB(sb);
1905 char *p;
1906 substring_t args[MAX_OPT_ARGS];
1907 int token;
1908
1909 if (!options)
1910 return 1;
1911
1912 while ((p = strsep(&options, ",")) != NULL) {
1913 if (!*p)
1914 continue;
1915 /*
1916 * Initialize args struct so we know whether arg was
1917 * found; some options take optional arguments.
1918 */
1919 args[0].to = args[0].from = NULL;
1920 token = match_token(p, tokens, args);
1921 if (handle_mount_opt(sb, p, token, args, journal_devnum,
1922 journal_ioprio, is_remount) < 0)
1923 return 0;
1924 }
1925 #ifdef CONFIG_QUOTA
1926 /*
1927 * We do the test below only for project quotas. 'usrquota' and
1928 * 'grpquota' mount options are allowed even without quota feature
1929 * to support legacy quotas in quota files.
1930 */
1931 if (test_opt(sb, PRJQUOTA) && !ext4_has_feature_project(sb)) {
1932 ext4_msg(sb, KERN_ERR, "Project quota feature not enabled. "
1933 "Cannot enable project quota enforcement.");
1934 return 0;
1935 }
1936 if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
1937 if (test_opt(sb, USRQUOTA) && sbi->s_qf_names[USRQUOTA])
1938 clear_opt(sb, USRQUOTA);
1939
1940 if (test_opt(sb, GRPQUOTA) && sbi->s_qf_names[GRPQUOTA])
1941 clear_opt(sb, GRPQUOTA);
1942
1943 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) {
1944 ext4_msg(sb, KERN_ERR, "old and new quota "
1945 "format mixing");
1946 return 0;
1947 }
1948
1949 if (!sbi->s_jquota_fmt) {
1950 ext4_msg(sb, KERN_ERR, "journaled quota format "
1951 "not specified");
1952 return 0;
1953 }
1954 }
1955 #endif
1956 if (test_opt(sb, DIOREAD_NOLOCK)) {
1957 int blocksize =
1958 BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size);
1959
1960 if (blocksize < PAGE_SIZE) {
1961 ext4_msg(sb, KERN_ERR, "can't mount with "
1962 "dioread_nolock if block size != PAGE_SIZE");
1963 return 0;
1964 }
1965 }
1966 return 1;
1967 }
1968
1969 static inline void ext4_show_quota_options(struct seq_file *seq,
1970 struct super_block *sb)
1971 {
1972 #if defined(CONFIG_QUOTA)
1973 struct ext4_sb_info *sbi = EXT4_SB(sb);
1974
1975 if (sbi->s_jquota_fmt) {
1976 char *fmtname = "";
1977
1978 switch (sbi->s_jquota_fmt) {
1979 case QFMT_VFS_OLD:
1980 fmtname = "vfsold";
1981 break;
1982 case QFMT_VFS_V0:
1983 fmtname = "vfsv0";
1984 break;
1985 case QFMT_VFS_V1:
1986 fmtname = "vfsv1";
1987 break;
1988 }
1989 seq_printf(seq, ",jqfmt=%s", fmtname);
1990 }
1991
1992 if (sbi->s_qf_names[USRQUOTA])
1993 seq_show_option(seq, "usrjquota", sbi->s_qf_names[USRQUOTA]);
1994
1995 if (sbi->s_qf_names[GRPQUOTA])
1996 seq_show_option(seq, "grpjquota", sbi->s_qf_names[GRPQUOTA]);
1997 #endif
1998 }
1999
2000 static const char *token2str(int token)
2001 {
2002 const struct match_token *t;
2003
2004 for (t = tokens; t->token != Opt_err; t++)
2005 if (t->token == token && !strchr(t->pattern, '='))
2006 break;
2007 return t->pattern;
2008 }
2009
2010 /*
2011 * Show an option if
2012 * - it's set to a non-default value OR
2013 * - if the per-sb default is different from the global default
2014 */
2015 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb,
2016 int nodefs)
2017 {
2018 struct ext4_sb_info *sbi = EXT4_SB(sb);
2019 struct ext4_super_block *es = sbi->s_es;
2020 int def_errors, def_mount_opt = nodefs ? 0 : sbi->s_def_mount_opt;
2021 const struct mount_opts *m;
2022 char sep = nodefs ? '\n' : ',';
2023
2024 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep)
2025 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg)
2026
2027 if (sbi->s_sb_block != 1)
2028 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block);
2029
2030 for (m = ext4_mount_opts; m->token != Opt_err; m++) {
2031 int want_set = m->flags & MOPT_SET;
2032 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) ||
2033 (m->flags & MOPT_CLEAR_ERR))
2034 continue;
2035 if (!(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt)))
2036 continue; /* skip if same as the default */
2037 if ((want_set &&
2038 (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) ||
2039 (!want_set && (sbi->s_mount_opt & m->mount_opt)))
2040 continue; /* select Opt_noFoo vs Opt_Foo */
2041 SEQ_OPTS_PRINT("%s", token2str(m->token));
2042 }
2043
2044 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) ||
2045 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID)
2046 SEQ_OPTS_PRINT("resuid=%u",
2047 from_kuid_munged(&init_user_ns, sbi->s_resuid));
2048 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) ||
2049 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID)
2050 SEQ_OPTS_PRINT("resgid=%u",
2051 from_kgid_munged(&init_user_ns, sbi->s_resgid));
2052 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors);
2053 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO)
2054 SEQ_OPTS_PUTS("errors=remount-ro");
2055 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
2056 SEQ_OPTS_PUTS("errors=continue");
2057 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
2058 SEQ_OPTS_PUTS("errors=panic");
2059 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
2060 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ);
2061 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME)
2062 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time);
2063 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME)
2064 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time);
2065 if (sb->s_flags & MS_I_VERSION)
2066 SEQ_OPTS_PUTS("i_version");
2067 if (nodefs || sbi->s_stripe)
2068 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe);
2069 if (EXT4_MOUNT_DATA_FLAGS & (sbi->s_mount_opt ^ def_mount_opt)) {
2070 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
2071 SEQ_OPTS_PUTS("data=journal");
2072 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
2073 SEQ_OPTS_PUTS("data=ordered");
2074 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
2075 SEQ_OPTS_PUTS("data=writeback");
2076 }
2077 if (nodefs ||
2078 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
2079 SEQ_OPTS_PRINT("inode_readahead_blks=%u",
2080 sbi->s_inode_readahead_blks);
2081
2082 if (nodefs || (test_opt(sb, INIT_INODE_TABLE) &&
2083 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)))
2084 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult);
2085 if (nodefs || sbi->s_max_dir_size_kb)
2086 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb);
2087 if (test_opt(sb, DATA_ERR_ABORT))
2088 SEQ_OPTS_PUTS("data_err=abort");
2089
2090 ext4_show_quota_options(seq, sb);
2091 return 0;
2092 }
2093
2094 static int ext4_show_options(struct seq_file *seq, struct dentry *root)
2095 {
2096 return _ext4_show_options(seq, root->d_sb, 0);
2097 }
2098
2099 int ext4_seq_options_show(struct seq_file *seq, void *offset)
2100 {
2101 struct super_block *sb = seq->private;
2102 int rc;
2103
2104 seq_puts(seq, sb_rdonly(sb) ? "ro" : "rw");
2105 rc = _ext4_show_options(seq, sb, 1);
2106 seq_puts(seq, "\n");
2107 return rc;
2108 }
2109
2110 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
2111 int read_only)
2112 {
2113 struct ext4_sb_info *sbi = EXT4_SB(sb);
2114 int res = 0;
2115
2116 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
2117 ext4_msg(sb, KERN_ERR, "revision level too high, "
2118 "forcing read-only mode");
2119 res = MS_RDONLY;
2120 }
2121 if (read_only)
2122 goto done;
2123 if (!(sbi->s_mount_state & EXT4_VALID_FS))
2124 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
2125 "running e2fsck is recommended");
2126 else if (sbi->s_mount_state & EXT4_ERROR_FS)
2127 ext4_msg(sb, KERN_WARNING,
2128 "warning: mounting fs with errors, "
2129 "running e2fsck is recommended");
2130 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
2131 le16_to_cpu(es->s_mnt_count) >=
2132 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
2133 ext4_msg(sb, KERN_WARNING,
2134 "warning: maximal mount count reached, "
2135 "running e2fsck is recommended");
2136 else if (le32_to_cpu(es->s_checkinterval) &&
2137 (le32_to_cpu(es->s_lastcheck) +
2138 le32_to_cpu(es->s_checkinterval) <= get_seconds()))
2139 ext4_msg(sb, KERN_WARNING,
2140 "warning: checktime reached, "
2141 "running e2fsck is recommended");
2142 if (!sbi->s_journal)
2143 es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
2144 if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
2145 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
2146 le16_add_cpu(&es->s_mnt_count, 1);
2147 es->s_mtime = cpu_to_le32(get_seconds());
2148 ext4_update_dynamic_rev(sb);
2149 if (sbi->s_journal)
2150 ext4_set_feature_journal_needs_recovery(sb);
2151
2152 ext4_commit_super(sb, 1);
2153 done:
2154 if (test_opt(sb, DEBUG))
2155 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
2156 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
2157 sb->s_blocksize,
2158 sbi->s_groups_count,
2159 EXT4_BLOCKS_PER_GROUP(sb),
2160 EXT4_INODES_PER_GROUP(sb),
2161 sbi->s_mount_opt, sbi->s_mount_opt2);
2162
2163 cleancache_init_fs(sb);
2164 return res;
2165 }
2166
2167 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup)
2168 {
2169 struct ext4_sb_info *sbi = EXT4_SB(sb);
2170 struct flex_groups *new_groups;
2171 int size;
2172
2173 if (!sbi->s_log_groups_per_flex)
2174 return 0;
2175
2176 size = ext4_flex_group(sbi, ngroup - 1) + 1;
2177 if (size <= sbi->s_flex_groups_allocated)
2178 return 0;
2179
2180 size = roundup_pow_of_two(size * sizeof(struct flex_groups));
2181 new_groups = kvzalloc(size, GFP_KERNEL);
2182 if (!new_groups) {
2183 ext4_msg(sb, KERN_ERR, "not enough memory for %d flex groups",
2184 size / (int) sizeof(struct flex_groups));
2185 return -ENOMEM;
2186 }
2187
2188 if (sbi->s_flex_groups) {
2189 memcpy(new_groups, sbi->s_flex_groups,
2190 (sbi->s_flex_groups_allocated *
2191 sizeof(struct flex_groups)));
2192 kvfree(sbi->s_flex_groups);
2193 }
2194 sbi->s_flex_groups = new_groups;
2195 sbi->s_flex_groups_allocated = size / sizeof(struct flex_groups);
2196 return 0;
2197 }
2198
2199 static int ext4_fill_flex_info(struct super_block *sb)
2200 {
2201 struct ext4_sb_info *sbi = EXT4_SB(sb);
2202 struct ext4_group_desc *gdp = NULL;
2203 ext4_group_t flex_group;
2204 int i, err;
2205
2206 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
2207 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) {
2208 sbi->s_log_groups_per_flex = 0;
2209 return 1;
2210 }
2211
2212 err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count);
2213 if (err)
2214 goto failed;
2215
2216 for (i = 0; i < sbi->s_groups_count; i++) {
2217 gdp = ext4_get_group_desc(sb, i, NULL);
2218
2219 flex_group = ext4_flex_group(sbi, i);
2220 atomic_add(ext4_free_inodes_count(sb, gdp),
2221 &sbi->s_flex_groups[flex_group].free_inodes);
2222 atomic64_add(ext4_free_group_clusters(sb, gdp),
2223 &sbi->s_flex_groups[flex_group].free_clusters);
2224 atomic_add(ext4_used_dirs_count(sb, gdp),
2225 &sbi->s_flex_groups[flex_group].used_dirs);
2226 }
2227
2228 return 1;
2229 failed:
2230 return 0;
2231 }
2232
2233 static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group,
2234 struct ext4_group_desc *gdp)
2235 {
2236 int offset = offsetof(struct ext4_group_desc, bg_checksum);
2237 __u16 crc = 0;
2238 __le32 le_group = cpu_to_le32(block_group);
2239 struct ext4_sb_info *sbi = EXT4_SB(sb);
2240
2241 if (ext4_has_metadata_csum(sbi->s_sb)) {
2242 /* Use new metadata_csum algorithm */
2243 __u32 csum32;
2244 __u16 dummy_csum = 0;
2245
2246 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group,
2247 sizeof(le_group));
2248 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, offset);
2249 csum32 = ext4_chksum(sbi, csum32, (__u8 *)&dummy_csum,
2250 sizeof(dummy_csum));
2251 offset += sizeof(dummy_csum);
2252 if (offset < sbi->s_desc_size)
2253 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp + offset,
2254 sbi->s_desc_size - offset);
2255
2256 crc = csum32 & 0xFFFF;
2257 goto out;
2258 }
2259
2260 /* old crc16 code */
2261 if (!ext4_has_feature_gdt_csum(sb))
2262 return 0;
2263
2264 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
2265 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
2266 crc = crc16(crc, (__u8 *)gdp, offset);
2267 offset += sizeof(gdp->bg_checksum); /* skip checksum */
2268 /* for checksum of struct ext4_group_desc do the rest...*/
2269 if (ext4_has_feature_64bit(sb) &&
2270 offset < le16_to_cpu(sbi->s_es->s_desc_size))
2271 crc = crc16(crc, (__u8 *)gdp + offset,
2272 le16_to_cpu(sbi->s_es->s_desc_size) -
2273 offset);
2274
2275 out:
2276 return cpu_to_le16(crc);
2277 }
2278
2279 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group,
2280 struct ext4_group_desc *gdp)
2281 {
2282 if (ext4_has_group_desc_csum(sb) &&
2283 (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp)))
2284 return 0;
2285
2286 return 1;
2287 }
2288
2289 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group,
2290 struct ext4_group_desc *gdp)
2291 {
2292 if (!ext4_has_group_desc_csum(sb))
2293 return;
2294 gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp);
2295 }
2296
2297 /* Called at mount-time, super-block is locked */
2298 static int ext4_check_descriptors(struct super_block *sb,
2299 ext4_fsblk_t sb_block,
2300 ext4_group_t *first_not_zeroed)
2301 {
2302 struct ext4_sb_info *sbi = EXT4_SB(sb);
2303 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
2304 ext4_fsblk_t last_block;
2305 ext4_fsblk_t block_bitmap;
2306 ext4_fsblk_t inode_bitmap;
2307 ext4_fsblk_t inode_table;
2308 int flexbg_flag = 0;
2309 ext4_group_t i, grp = sbi->s_groups_count;
2310
2311 if (ext4_has_feature_flex_bg(sb))
2312 flexbg_flag = 1;
2313
2314 ext4_debug("Checking group descriptors");
2315
2316 for (i = 0; i < sbi->s_groups_count; i++) {
2317 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
2318
2319 if (i == sbi->s_groups_count - 1 || flexbg_flag)
2320 last_block = ext4_blocks_count(sbi->s_es) - 1;
2321 else
2322 last_block = first_block +
2323 (EXT4_BLOCKS_PER_GROUP(sb) - 1);
2324
2325 if ((grp == sbi->s_groups_count) &&
2326 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2327 grp = i;
2328
2329 block_bitmap = ext4_block_bitmap(sb, gdp);
2330 if (block_bitmap == sb_block) {
2331 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2332 "Block bitmap for group %u overlaps "
2333 "superblock", i);
2334 }
2335 if (block_bitmap < first_block || block_bitmap > last_block) {
2336 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2337 "Block bitmap for group %u not in group "
2338 "(block %llu)!", i, block_bitmap);
2339 return 0;
2340 }
2341 inode_bitmap = ext4_inode_bitmap(sb, gdp);
2342 if (inode_bitmap == sb_block) {
2343 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2344 "Inode bitmap for group %u overlaps "
2345 "superblock", i);
2346 }
2347 if (inode_bitmap < first_block || inode_bitmap > last_block) {
2348 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2349 "Inode bitmap for group %u not in group "
2350 "(block %llu)!", i, inode_bitmap);
2351 return 0;
2352 }
2353 inode_table = ext4_inode_table(sb, gdp);
2354 if (inode_table == sb_block) {
2355 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2356 "Inode table for group %u overlaps "
2357 "superblock", i);
2358 }
2359 if (inode_table < first_block ||
2360 inode_table + sbi->s_itb_per_group - 1 > last_block) {
2361 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2362 "Inode table for group %u not in group "
2363 "(block %llu)!", i, inode_table);
2364 return 0;
2365 }
2366 ext4_lock_group(sb, i);
2367 if (!ext4_group_desc_csum_verify(sb, i, gdp)) {
2368 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2369 "Checksum for group %u failed (%u!=%u)",
2370 i, le16_to_cpu(ext4_group_desc_csum(sb, i,
2371 gdp)), le16_to_cpu(gdp->bg_checksum));
2372 if (!sb_rdonly(sb)) {
2373 ext4_unlock_group(sb, i);
2374 return 0;
2375 }
2376 }
2377 ext4_unlock_group(sb, i);
2378 if (!flexbg_flag)
2379 first_block += EXT4_BLOCKS_PER_GROUP(sb);
2380 }
2381 if (NULL != first_not_zeroed)
2382 *first_not_zeroed = grp;
2383 return 1;
2384 }
2385
2386 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at
2387 * the superblock) which were deleted from all directories, but held open by
2388 * a process at the time of a crash. We walk the list and try to delete these
2389 * inodes at recovery time (only with a read-write filesystem).
2390 *
2391 * In order to keep the orphan inode chain consistent during traversal (in
2392 * case of crash during recovery), we link each inode into the superblock
2393 * orphan list_head and handle it the same way as an inode deletion during
2394 * normal operation (which journals the operations for us).
2395 *
2396 * We only do an iget() and an iput() on each inode, which is very safe if we
2397 * accidentally point at an in-use or already deleted inode. The worst that
2398 * can happen in this case is that we get a "bit already cleared" message from
2399 * ext4_free_inode(). The only reason we would point at a wrong inode is if
2400 * e2fsck was run on this filesystem, and it must have already done the orphan
2401 * inode cleanup for us, so we can safely abort without any further action.
2402 */
2403 static void ext4_orphan_cleanup(struct super_block *sb,
2404 struct ext4_super_block *es)
2405 {
2406 unsigned int s_flags = sb->s_flags;
2407 int ret, nr_orphans = 0, nr_truncates = 0;
2408 #ifdef CONFIG_QUOTA
2409 int quota_update = 0;
2410 int i;
2411 #endif
2412 if (!es->s_last_orphan) {
2413 jbd_debug(4, "no orphan inodes to clean up\n");
2414 return;
2415 }
2416
2417 if (bdev_read_only(sb->s_bdev)) {
2418 ext4_msg(sb, KERN_ERR, "write access "
2419 "unavailable, skipping orphan cleanup");
2420 return;
2421 }
2422
2423 /* Check if feature set would not allow a r/w mount */
2424 if (!ext4_feature_set_ok(sb, 0)) {
2425 ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to "
2426 "unknown ROCOMPAT features");
2427 return;
2428 }
2429
2430 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2431 /* don't clear list on RO mount w/ errors */
2432 if (es->s_last_orphan && !(s_flags & MS_RDONLY)) {
2433 ext4_msg(sb, KERN_INFO, "Errors on filesystem, "
2434 "clearing orphan list.\n");
2435 es->s_last_orphan = 0;
2436 }
2437 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2438 return;
2439 }
2440
2441 if (s_flags & MS_RDONLY) {
2442 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs");
2443 sb->s_flags &= ~MS_RDONLY;
2444 }
2445 #ifdef CONFIG_QUOTA
2446 /* Needed for iput() to work correctly and not trash data */
2447 sb->s_flags |= MS_ACTIVE;
2448
2449 /*
2450 * Turn on quotas which were not enabled for read-only mounts if
2451 * filesystem has quota feature, so that they are updated correctly.
2452 */
2453 if (ext4_has_feature_quota(sb) && (s_flags & MS_RDONLY)) {
2454 int ret = ext4_enable_quotas(sb);
2455
2456 if (!ret)
2457 quota_update = 1;
2458 else
2459 ext4_msg(sb, KERN_ERR,
2460 "Cannot turn on quotas: error %d", ret);
2461 }
2462
2463 /* Turn on journaled quotas used for old sytle */
2464 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2465 if (EXT4_SB(sb)->s_qf_names[i]) {
2466 int ret = ext4_quota_on_mount(sb, i);
2467
2468 if (!ret)
2469 quota_update = 1;
2470 else
2471 ext4_msg(sb, KERN_ERR,
2472 "Cannot turn on journaled "
2473 "quota: type %d: error %d", i, ret);
2474 }
2475 }
2476 #endif
2477
2478 while (es->s_last_orphan) {
2479 struct inode *inode;
2480
2481 /*
2482 * We may have encountered an error during cleanup; if
2483 * so, skip the rest.
2484 */
2485 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2486 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2487 es->s_last_orphan = 0;
2488 break;
2489 }
2490
2491 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan));
2492 if (IS_ERR(inode)) {
2493 es->s_last_orphan = 0;
2494 break;
2495 }
2496
2497 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan);
2498 dquot_initialize(inode);
2499 if (inode->i_nlink) {
2500 if (test_opt(sb, DEBUG))
2501 ext4_msg(sb, KERN_DEBUG,
2502 "%s: truncating inode %lu to %lld bytes",
2503 __func__, inode->i_ino, inode->i_size);
2504 jbd_debug(2, "truncating inode %lu to %lld bytes\n",
2505 inode->i_ino, inode->i_size);
2506 inode_lock(inode);
2507 truncate_inode_pages(inode->i_mapping, inode->i_size);
2508 ret = ext4_truncate(inode);
2509 if (ret)
2510 ext4_std_error(inode->i_sb, ret);
2511 inode_unlock(inode);
2512 nr_truncates++;
2513 } else {
2514 if (test_opt(sb, DEBUG))
2515 ext4_msg(sb, KERN_DEBUG,
2516 "%s: deleting unreferenced inode %lu",
2517 __func__, inode->i_ino);
2518 jbd_debug(2, "deleting unreferenced inode %lu\n",
2519 inode->i_ino);
2520 nr_orphans++;
2521 }
2522 iput(inode); /* The delete magic happens here! */
2523 }
2524
2525 #define PLURAL(x) (x), ((x) == 1) ? "" : "s"
2526
2527 if (nr_orphans)
2528 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted",
2529 PLURAL(nr_orphans));
2530 if (nr_truncates)
2531 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up",
2532 PLURAL(nr_truncates));
2533 #ifdef CONFIG_QUOTA
2534 /* Turn off quotas if they were enabled for orphan cleanup */
2535 if (quota_update) {
2536 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2537 if (sb_dqopt(sb)->files[i])
2538 dquot_quota_off(sb, i);
2539 }
2540 }
2541 #endif
2542 sb->s_flags = s_flags; /* Restore MS_RDONLY status */
2543 }
2544
2545 /*
2546 * Maximal extent format file size.
2547 * Resulting logical blkno at s_maxbytes must fit in our on-disk
2548 * extent format containers, within a sector_t, and within i_blocks
2549 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units,
2550 * so that won't be a limiting factor.
2551 *
2552 * However there is other limiting factor. We do store extents in the form
2553 * of starting block and length, hence the resulting length of the extent
2554 * covering maximum file size must fit into on-disk format containers as
2555 * well. Given that length is always by 1 unit bigger than max unit (because
2556 * we count 0 as well) we have to lower the s_maxbytes by one fs block.
2557 *
2558 * Note, this does *not* consider any metadata overhead for vfs i_blocks.
2559 */
2560 static loff_t ext4_max_size(int blkbits, int has_huge_files)
2561 {
2562 loff_t res;
2563 loff_t upper_limit = MAX_LFS_FILESIZE;
2564
2565 /* small i_blocks in vfs inode? */
2566 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2567 /*
2568 * CONFIG_LBDAF is not enabled implies the inode
2569 * i_block represent total blocks in 512 bytes
2570 * 32 == size of vfs inode i_blocks * 8
2571 */
2572 upper_limit = (1LL << 32) - 1;
2573
2574 /* total blocks in file system block size */
2575 upper_limit >>= (blkbits - 9);
2576 upper_limit <<= blkbits;
2577 }
2578
2579 /*
2580 * 32-bit extent-start container, ee_block. We lower the maxbytes
2581 * by one fs block, so ee_len can cover the extent of maximum file
2582 * size
2583 */
2584 res = (1LL << 32) - 1;
2585 res <<= blkbits;
2586
2587 /* Sanity check against vm- & vfs- imposed limits */
2588 if (res > upper_limit)
2589 res = upper_limit;
2590
2591 return res;
2592 }
2593
2594 /*
2595 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect
2596 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
2597 * We need to be 1 filesystem block less than the 2^48 sector limit.
2598 */
2599 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
2600 {
2601 loff_t res = EXT4_NDIR_BLOCKS;
2602 int meta_blocks;
2603 loff_t upper_limit;
2604 /* This is calculated to be the largest file size for a dense, block
2605 * mapped file such that the file's total number of 512-byte sectors,
2606 * including data and all indirect blocks, does not exceed (2^48 - 1).
2607 *
2608 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
2609 * number of 512-byte sectors of the file.
2610 */
2611
2612 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2613 /*
2614 * !has_huge_files or CONFIG_LBDAF not enabled implies that
2615 * the inode i_block field represents total file blocks in
2616 * 2^32 512-byte sectors == size of vfs inode i_blocks * 8
2617 */
2618 upper_limit = (1LL << 32) - 1;
2619
2620 /* total blocks in file system block size */
2621 upper_limit >>= (bits - 9);
2622
2623 } else {
2624 /*
2625 * We use 48 bit ext4_inode i_blocks
2626 * With EXT4_HUGE_FILE_FL set the i_blocks
2627 * represent total number of blocks in
2628 * file system block size
2629 */
2630 upper_limit = (1LL << 48) - 1;
2631
2632 }
2633
2634 /* indirect blocks */
2635 meta_blocks = 1;
2636 /* double indirect blocks */
2637 meta_blocks += 1 + (1LL << (bits-2));
2638 /* tripple indirect blocks */
2639 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2)));
2640
2641 upper_limit -= meta_blocks;
2642 upper_limit <<= bits;
2643
2644 res += 1LL << (bits-2);
2645 res += 1LL << (2*(bits-2));
2646 res += 1LL << (3*(bits-2));
2647 res <<= bits;
2648 if (res > upper_limit)
2649 res = upper_limit;
2650
2651 if (res > MAX_LFS_FILESIZE)
2652 res = MAX_LFS_FILESIZE;
2653
2654 return res;
2655 }
2656
2657 static ext4_fsblk_t descriptor_loc(struct super_block *sb,
2658 ext4_fsblk_t logical_sb_block, int nr)
2659 {
2660 struct ext4_sb_info *sbi = EXT4_SB(sb);
2661 ext4_group_t bg, first_meta_bg;
2662 int has_super = 0;
2663
2664 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
2665
2666 if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg)
2667 return logical_sb_block + nr + 1;
2668 bg = sbi->s_desc_per_block * nr;
2669 if (ext4_bg_has_super(sb, bg))
2670 has_super = 1;
2671
2672 /*
2673 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at
2674 * block 2, not 1. If s_first_data_block == 0 (bigalloc is enabled
2675 * on modern mke2fs or blksize > 1k on older mke2fs) then we must
2676 * compensate.
2677 */
2678 if (sb->s_blocksize == 1024 && nr == 0 &&
2679 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block) == 0)
2680 has_super++;
2681
2682 return (has_super + ext4_group_first_block_no(sb, bg));
2683 }
2684
2685 /**
2686 * ext4_get_stripe_size: Get the stripe size.
2687 * @sbi: In memory super block info
2688 *
2689 * If we have specified it via mount option, then
2690 * use the mount option value. If the value specified at mount time is
2691 * greater than the blocks per group use the super block value.
2692 * If the super block value is greater than blocks per group return 0.
2693 * Allocator needs it be less than blocks per group.
2694 *
2695 */
2696 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
2697 {
2698 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
2699 unsigned long stripe_width =
2700 le32_to_cpu(sbi->s_es->s_raid_stripe_width);
2701 int ret;
2702
2703 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
2704 ret = sbi->s_stripe;
2705 else if (stripe_width && stripe_width <= sbi->s_blocks_per_group)
2706 ret = stripe_width;
2707 else if (stride && stride <= sbi->s_blocks_per_group)
2708 ret = stride;
2709 else
2710 ret = 0;
2711
2712 /*
2713 * If the stripe width is 1, this makes no sense and
2714 * we set it to 0 to turn off stripe handling code.
2715 */
2716 if (ret <= 1)
2717 ret = 0;
2718
2719 return ret;
2720 }
2721
2722 /*
2723 * Check whether this filesystem can be mounted based on
2724 * the features present and the RDONLY/RDWR mount requested.
2725 * Returns 1 if this filesystem can be mounted as requested,
2726 * 0 if it cannot be.
2727 */
2728 static int ext4_feature_set_ok(struct super_block *sb, int readonly)
2729 {
2730 if (ext4_has_unknown_ext4_incompat_features(sb)) {
2731 ext4_msg(sb, KERN_ERR,
2732 "Couldn't mount because of "
2733 "unsupported optional features (%x)",
2734 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
2735 ~EXT4_FEATURE_INCOMPAT_SUPP));
2736 return 0;
2737 }
2738
2739 if (readonly)
2740 return 1;
2741
2742 if (ext4_has_feature_readonly(sb)) {
2743 ext4_msg(sb, KERN_INFO, "filesystem is read-only");
2744 sb->s_flags |= MS_RDONLY;
2745 return 1;
2746 }
2747
2748 /* Check that feature set is OK for a read-write mount */
2749 if (ext4_has_unknown_ext4_ro_compat_features(sb)) {
2750 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
2751 "unsupported optional features (%x)",
2752 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
2753 ~EXT4_FEATURE_RO_COMPAT_SUPP));
2754 return 0;
2755 }
2756 /*
2757 * Large file size enabled file system can only be mounted
2758 * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF
2759 */
2760 if (ext4_has_feature_huge_file(sb)) {
2761 if (sizeof(blkcnt_t) < sizeof(u64)) {
2762 ext4_msg(sb, KERN_ERR, "Filesystem with huge files "
2763 "cannot be mounted RDWR without "
2764 "CONFIG_LBDAF");
2765 return 0;
2766 }
2767 }
2768 if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) {
2769 ext4_msg(sb, KERN_ERR,
2770 "Can't support bigalloc feature without "
2771 "extents feature\n");
2772 return 0;
2773 }
2774
2775 #ifndef CONFIG_QUOTA
2776 if (ext4_has_feature_quota(sb) && !readonly) {
2777 ext4_msg(sb, KERN_ERR,
2778 "Filesystem with quota feature cannot be mounted RDWR "
2779 "without CONFIG_QUOTA");
2780 return 0;
2781 }
2782 if (ext4_has_feature_project(sb) && !readonly) {
2783 ext4_msg(sb, KERN_ERR,
2784 "Filesystem with project quota feature cannot be mounted RDWR "
2785 "without CONFIG_QUOTA");
2786 return 0;
2787 }
2788 #endif /* CONFIG_QUOTA */
2789 return 1;
2790 }
2791
2792 /*
2793 * This function is called once a day if we have errors logged
2794 * on the file system
2795 */
2796 static void print_daily_error_info(unsigned long arg)
2797 {
2798 struct super_block *sb = (struct super_block *) arg;
2799 struct ext4_sb_info *sbi;
2800 struct ext4_super_block *es;
2801
2802 sbi = EXT4_SB(sb);
2803 es = sbi->s_es;
2804
2805 if (es->s_error_count)
2806 /* fsck newer than v1.41.13 is needed to clean this condition. */
2807 ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u",
2808 le32_to_cpu(es->s_error_count));
2809 if (es->s_first_error_time) {
2810 printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %u: %.*s:%d",
2811 sb->s_id, le32_to_cpu(es->s_first_error_time),
2812 (int) sizeof(es->s_first_error_func),
2813 es->s_first_error_func,
2814 le32_to_cpu(es->s_first_error_line));
2815 if (es->s_first_error_ino)
2816 printk(KERN_CONT ": inode %u",
2817 le32_to_cpu(es->s_first_error_ino));
2818 if (es->s_first_error_block)
2819 printk(KERN_CONT ": block %llu", (unsigned long long)
2820 le64_to_cpu(es->s_first_error_block));
2821 printk(KERN_CONT "\n");
2822 }
2823 if (es->s_last_error_time) {
2824 printk(KERN_NOTICE "EXT4-fs (%s): last error at time %u: %.*s:%d",
2825 sb->s_id, le32_to_cpu(es->s_last_error_time),
2826 (int) sizeof(es->s_last_error_func),
2827 es->s_last_error_func,
2828 le32_to_cpu(es->s_last_error_line));
2829 if (es->s_last_error_ino)
2830 printk(KERN_CONT ": inode %u",
2831 le32_to_cpu(es->s_last_error_ino));
2832 if (es->s_last_error_block)
2833 printk(KERN_CONT ": block %llu", (unsigned long long)
2834 le64_to_cpu(es->s_last_error_block));
2835 printk(KERN_CONT "\n");
2836 }
2837 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */
2838 }
2839
2840 /* Find next suitable group and run ext4_init_inode_table */
2841 static int ext4_run_li_request(struct ext4_li_request *elr)
2842 {
2843 struct ext4_group_desc *gdp = NULL;
2844 ext4_group_t group, ngroups;
2845 struct super_block *sb;
2846 unsigned long timeout = 0;
2847 int ret = 0;
2848
2849 sb = elr->lr_super;
2850 ngroups = EXT4_SB(sb)->s_groups_count;
2851
2852 for (group = elr->lr_next_group; group < ngroups; group++) {
2853 gdp = ext4_get_group_desc(sb, group, NULL);
2854 if (!gdp) {
2855 ret = 1;
2856 break;
2857 }
2858
2859 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2860 break;
2861 }
2862
2863 if (group >= ngroups)
2864 ret = 1;
2865
2866 if (!ret) {
2867 timeout = jiffies;
2868 ret = ext4_init_inode_table(sb, group,
2869 elr->lr_timeout ? 0 : 1);
2870 if (elr->lr_timeout == 0) {
2871 timeout = (jiffies - timeout) *
2872 elr->lr_sbi->s_li_wait_mult;
2873 elr->lr_timeout = timeout;
2874 }
2875 elr->lr_next_sched = jiffies + elr->lr_timeout;
2876 elr->lr_next_group = group + 1;
2877 }
2878 return ret;
2879 }
2880
2881 /*
2882 * Remove lr_request from the list_request and free the
2883 * request structure. Should be called with li_list_mtx held
2884 */
2885 static void ext4_remove_li_request(struct ext4_li_request *elr)
2886 {
2887 struct ext4_sb_info *sbi;
2888
2889 if (!elr)
2890 return;
2891
2892 sbi = elr->lr_sbi;
2893
2894 list_del(&elr->lr_request);
2895 sbi->s_li_request = NULL;
2896 kfree(elr);
2897 }
2898
2899 static void ext4_unregister_li_request(struct super_block *sb)
2900 {
2901 mutex_lock(&ext4_li_mtx);
2902 if (!ext4_li_info) {
2903 mutex_unlock(&ext4_li_mtx);
2904 return;
2905 }
2906
2907 mutex_lock(&ext4_li_info->li_list_mtx);
2908 ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
2909 mutex_unlock(&ext4_li_info->li_list_mtx);
2910 mutex_unlock(&ext4_li_mtx);
2911 }
2912
2913 static struct task_struct *ext4_lazyinit_task;
2914
2915 /*
2916 * This is the function where ext4lazyinit thread lives. It walks
2917 * through the request list searching for next scheduled filesystem.
2918 * When such a fs is found, run the lazy initialization request
2919 * (ext4_rn_li_request) and keep track of the time spend in this
2920 * function. Based on that time we compute next schedule time of
2921 * the request. When walking through the list is complete, compute
2922 * next waking time and put itself into sleep.
2923 */
2924 static int ext4_lazyinit_thread(void *arg)
2925 {
2926 struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg;
2927 struct list_head *pos, *n;
2928 struct ext4_li_request *elr;
2929 unsigned long next_wakeup, cur;
2930
2931 BUG_ON(NULL == eli);
2932
2933 cont_thread:
2934 while (true) {
2935 next_wakeup = MAX_JIFFY_OFFSET;
2936
2937 mutex_lock(&eli->li_list_mtx);
2938 if (list_empty(&eli->li_request_list)) {
2939 mutex_unlock(&eli->li_list_mtx);
2940 goto exit_thread;
2941 }
2942 list_for_each_safe(pos, n, &eli->li_request_list) {
2943 int err = 0;
2944 int progress = 0;
2945 elr = list_entry(pos, struct ext4_li_request,
2946 lr_request);
2947
2948 if (time_before(jiffies, elr->lr_next_sched)) {
2949 if (time_before(elr->lr_next_sched, next_wakeup))
2950 next_wakeup = elr->lr_next_sched;
2951 continue;
2952 }
2953 if (down_read_trylock(&elr->lr_super->s_umount)) {
2954 if (sb_start_write_trylock(elr->lr_super)) {
2955 progress = 1;
2956 /*
2957 * We hold sb->s_umount, sb can not
2958 * be removed from the list, it is
2959 * now safe to drop li_list_mtx
2960 */
2961 mutex_unlock(&eli->li_list_mtx);
2962 err = ext4_run_li_request(elr);
2963 sb_end_write(elr->lr_super);
2964 mutex_lock(&eli->li_list_mtx);
2965 n = pos->next;
2966 }
2967 up_read((&elr->lr_super->s_umount));
2968 }
2969 /* error, remove the lazy_init job */
2970 if (err) {
2971 ext4_remove_li_request(elr);
2972 continue;
2973 }
2974 if (!progress) {
2975 elr->lr_next_sched = jiffies +
2976 (prandom_u32()
2977 % (EXT4_DEF_LI_MAX_START_DELAY * HZ));
2978 }
2979 if (time_before(elr->lr_next_sched, next_wakeup))
2980 next_wakeup = elr->lr_next_sched;
2981 }
2982 mutex_unlock(&eli->li_list_mtx);
2983
2984 try_to_freeze();
2985
2986 cur = jiffies;
2987 if ((time_after_eq(cur, next_wakeup)) ||
2988 (MAX_JIFFY_OFFSET == next_wakeup)) {
2989 cond_resched();
2990 continue;
2991 }
2992
2993 schedule_timeout_interruptible(next_wakeup - cur);
2994
2995 if (kthread_should_stop()) {
2996 ext4_clear_request_list();
2997 goto exit_thread;
2998 }
2999 }
3000
3001 exit_thread:
3002 /*
3003 * It looks like the request list is empty, but we need
3004 * to check it under the li_list_mtx lock, to prevent any
3005 * additions into it, and of course we should lock ext4_li_mtx
3006 * to atomically free the list and ext4_li_info, because at
3007 * this point another ext4 filesystem could be registering
3008 * new one.
3009 */
3010 mutex_lock(&ext4_li_mtx);
3011 mutex_lock(&eli->li_list_mtx);
3012 if (!list_empty(&eli->li_request_list)) {
3013 mutex_unlock(&eli->li_list_mtx);
3014 mutex_unlock(&ext4_li_mtx);
3015 goto cont_thread;
3016 }
3017 mutex_unlock(&eli->li_list_mtx);
3018 kfree(ext4_li_info);
3019 ext4_li_info = NULL;
3020 mutex_unlock(&ext4_li_mtx);
3021
3022 return 0;
3023 }
3024
3025 static void ext4_clear_request_list(void)
3026 {
3027 struct list_head *pos, *n;
3028 struct ext4_li_request *elr;
3029
3030 mutex_lock(&ext4_li_info->li_list_mtx);
3031 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
3032 elr = list_entry(pos, struct ext4_li_request,
3033 lr_request);
3034 ext4_remove_li_request(elr);
3035 }
3036 mutex_unlock(&ext4_li_info->li_list_mtx);
3037 }
3038
3039 static int ext4_run_lazyinit_thread(void)
3040 {
3041 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
3042 ext4_li_info, "ext4lazyinit");
3043 if (IS_ERR(ext4_lazyinit_task)) {
3044 int err = PTR_ERR(ext4_lazyinit_task);
3045 ext4_clear_request_list();
3046 kfree(ext4_li_info);
3047 ext4_li_info = NULL;
3048 printk(KERN_CRIT "EXT4-fs: error %d creating inode table "
3049 "initialization thread\n",
3050 err);
3051 return err;
3052 }
3053 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
3054 return 0;
3055 }
3056
3057 /*
3058 * Check whether it make sense to run itable init. thread or not.
3059 * If there is at least one uninitialized inode table, return
3060 * corresponding group number, else the loop goes through all
3061 * groups and return total number of groups.
3062 */
3063 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
3064 {
3065 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
3066 struct ext4_group_desc *gdp = NULL;
3067
3068 for (group = 0; group < ngroups; group++) {
3069 gdp = ext4_get_group_desc(sb, group, NULL);
3070 if (!gdp)
3071 continue;
3072
3073 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3074 break;
3075 }
3076
3077 return group;
3078 }
3079
3080 static int ext4_li_info_new(void)
3081 {
3082 struct ext4_lazy_init *eli = NULL;
3083
3084 eli = kzalloc(sizeof(*eli), GFP_KERNEL);
3085 if (!eli)
3086 return -ENOMEM;
3087
3088 INIT_LIST_HEAD(&eli->li_request_list);
3089 mutex_init(&eli->li_list_mtx);
3090
3091 eli->li_state |= EXT4_LAZYINIT_QUIT;
3092
3093 ext4_li_info = eli;
3094
3095 return 0;
3096 }
3097
3098 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
3099 ext4_group_t start)
3100 {
3101 struct ext4_sb_info *sbi = EXT4_SB(sb);
3102 struct ext4_li_request *elr;
3103
3104 elr = kzalloc(sizeof(*elr), GFP_KERNEL);
3105 if (!elr)
3106 return NULL;
3107
3108 elr->lr_super = sb;
3109 elr->lr_sbi = sbi;
3110 elr->lr_next_group = start;
3111
3112 /*
3113 * Randomize first schedule time of the request to
3114 * spread the inode table initialization requests
3115 * better.
3116 */
3117 elr->lr_next_sched = jiffies + (prandom_u32() %
3118 (EXT4_DEF_LI_MAX_START_DELAY * HZ));
3119 return elr;
3120 }
3121
3122 int ext4_register_li_request(struct super_block *sb,
3123 ext4_group_t first_not_zeroed)
3124 {
3125 struct ext4_sb_info *sbi = EXT4_SB(sb);
3126 struct ext4_li_request *elr = NULL;
3127 ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count;
3128 int ret = 0;
3129
3130 mutex_lock(&ext4_li_mtx);
3131 if (sbi->s_li_request != NULL) {
3132 /*
3133 * Reset timeout so it can be computed again, because
3134 * s_li_wait_mult might have changed.
3135 */
3136 sbi->s_li_request->lr_timeout = 0;
3137 goto out;
3138 }
3139
3140 if (first_not_zeroed == ngroups || sb_rdonly(sb) ||
3141 !test_opt(sb, INIT_INODE_TABLE))
3142 goto out;
3143
3144 elr = ext4_li_request_new(sb, first_not_zeroed);
3145 if (!elr) {
3146 ret = -ENOMEM;
3147 goto out;
3148 }
3149
3150 if (NULL == ext4_li_info) {
3151 ret = ext4_li_info_new();
3152 if (ret)
3153 goto out;
3154 }
3155
3156 mutex_lock(&ext4_li_info->li_list_mtx);
3157 list_add(&elr->lr_request, &ext4_li_info->li_request_list);
3158 mutex_unlock(&ext4_li_info->li_list_mtx);
3159
3160 sbi->s_li_request = elr;
3161 /*
3162 * set elr to NULL here since it has been inserted to
3163 * the request_list and the removal and free of it is
3164 * handled by ext4_clear_request_list from now on.
3165 */
3166 elr = NULL;
3167
3168 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
3169 ret = ext4_run_lazyinit_thread();
3170 if (ret)
3171 goto out;
3172 }
3173 out:
3174 mutex_unlock(&ext4_li_mtx);
3175 if (ret)
3176 kfree(elr);
3177 return ret;
3178 }
3179
3180 /*
3181 * We do not need to lock anything since this is called on
3182 * module unload.
3183 */
3184 static void ext4_destroy_lazyinit_thread(void)
3185 {
3186 /*
3187 * If thread exited earlier
3188 * there's nothing to be done.
3189 */
3190 if (!ext4_li_info || !ext4_lazyinit_task)
3191 return;
3192
3193 kthread_stop(ext4_lazyinit_task);
3194 }
3195
3196 static int set_journal_csum_feature_set(struct super_block *sb)
3197 {
3198 int ret = 1;
3199 int compat, incompat;
3200 struct ext4_sb_info *sbi = EXT4_SB(sb);
3201
3202 if (ext4_has_metadata_csum(sb)) {
3203 /* journal checksum v3 */
3204 compat = 0;
3205 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3;
3206 } else {
3207 /* journal checksum v1 */
3208 compat = JBD2_FEATURE_COMPAT_CHECKSUM;
3209 incompat = 0;
3210 }
3211
3212 jbd2_journal_clear_features(sbi->s_journal,
3213 JBD2_FEATURE_COMPAT_CHECKSUM, 0,
3214 JBD2_FEATURE_INCOMPAT_CSUM_V3 |
3215 JBD2_FEATURE_INCOMPAT_CSUM_V2);
3216 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
3217 ret = jbd2_journal_set_features(sbi->s_journal,
3218 compat, 0,
3219 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
3220 incompat);
3221 } else if (test_opt(sb, JOURNAL_CHECKSUM)) {
3222 ret = jbd2_journal_set_features(sbi->s_journal,
3223 compat, 0,
3224 incompat);
3225 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3226 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3227 } else {
3228 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3229 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3230 }
3231
3232 return ret;
3233 }
3234
3235 /*
3236 * Note: calculating the overhead so we can be compatible with
3237 * historical BSD practice is quite difficult in the face of
3238 * clusters/bigalloc. This is because multiple metadata blocks from
3239 * different block group can end up in the same allocation cluster.
3240 * Calculating the exact overhead in the face of clustered allocation
3241 * requires either O(all block bitmaps) in memory or O(number of block
3242 * groups**2) in time. We will still calculate the superblock for
3243 * older file systems --- and if we come across with a bigalloc file
3244 * system with zero in s_overhead_clusters the estimate will be close to
3245 * correct especially for very large cluster sizes --- but for newer
3246 * file systems, it's better to calculate this figure once at mkfs
3247 * time, and store it in the superblock. If the superblock value is
3248 * present (even for non-bigalloc file systems), we will use it.
3249 */
3250 static int count_overhead(struct super_block *sb, ext4_group_t grp,
3251 char *buf)
3252 {
3253 struct ext4_sb_info *sbi = EXT4_SB(sb);
3254 struct ext4_group_desc *gdp;
3255 ext4_fsblk_t first_block, last_block, b;
3256 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3257 int s, j, count = 0;
3258
3259 if (!ext4_has_feature_bigalloc(sb))
3260 return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) +
3261 sbi->s_itb_per_group + 2);
3262
3263 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) +
3264 (grp * EXT4_BLOCKS_PER_GROUP(sb));
3265 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1;
3266 for (i = 0; i < ngroups; i++) {
3267 gdp = ext4_get_group_desc(sb, i, NULL);
3268 b = ext4_block_bitmap(sb, gdp);
3269 if (b >= first_block && b <= last_block) {
3270 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3271 count++;
3272 }
3273 b = ext4_inode_bitmap(sb, gdp);
3274 if (b >= first_block && b <= last_block) {
3275 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3276 count++;
3277 }
3278 b = ext4_inode_table(sb, gdp);
3279 if (b >= first_block && b + sbi->s_itb_per_group <= last_block)
3280 for (j = 0; j < sbi->s_itb_per_group; j++, b++) {
3281 int c = EXT4_B2C(sbi, b - first_block);
3282 ext4_set_bit(c, buf);
3283 count++;
3284 }
3285 if (i != grp)
3286 continue;
3287 s = 0;
3288 if (ext4_bg_has_super(sb, grp)) {
3289 ext4_set_bit(s++, buf);
3290 count++;
3291 }
3292 j = ext4_bg_num_gdb(sb, grp);
3293 if (s + j > EXT4_BLOCKS_PER_GROUP(sb)) {
3294 ext4_error(sb, "Invalid number of block group "
3295 "descriptor blocks: %d", j);
3296 j = EXT4_BLOCKS_PER_GROUP(sb) - s;
3297 }
3298 count += j;
3299 for (; j > 0; j--)
3300 ext4_set_bit(EXT4_B2C(sbi, s++), buf);
3301 }
3302 if (!count)
3303 return 0;
3304 return EXT4_CLUSTERS_PER_GROUP(sb) -
3305 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8);
3306 }
3307
3308 /*
3309 * Compute the overhead and stash it in sbi->s_overhead
3310 */
3311 int ext4_calculate_overhead(struct super_block *sb)
3312 {
3313 struct ext4_sb_info *sbi = EXT4_SB(sb);
3314 struct ext4_super_block *es = sbi->s_es;
3315 struct inode *j_inode;
3316 unsigned int j_blocks, j_inum = le32_to_cpu(es->s_journal_inum);
3317 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3318 ext4_fsblk_t overhead = 0;
3319 char *buf = (char *) get_zeroed_page(GFP_NOFS);
3320
3321 if (!buf)
3322 return -ENOMEM;
3323
3324 /*
3325 * Compute the overhead (FS structures). This is constant
3326 * for a given filesystem unless the number of block groups
3327 * changes so we cache the previous value until it does.
3328 */
3329
3330 /*
3331 * All of the blocks before first_data_block are overhead
3332 */
3333 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
3334
3335 /*
3336 * Add the overhead found in each block group
3337 */
3338 for (i = 0; i < ngroups; i++) {
3339 int blks;
3340
3341 blks = count_overhead(sb, i, buf);
3342 overhead += blks;
3343 if (blks)
3344 memset(buf, 0, PAGE_SIZE);
3345 cond_resched();
3346 }
3347
3348 /*
3349 * Add the internal journal blocks whether the journal has been
3350 * loaded or not
3351 */
3352 if (sbi->s_journal && !sbi->journal_bdev)
3353 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_maxlen);
3354 else if (ext4_has_feature_journal(sb) && !sbi->s_journal) {
3355 j_inode = ext4_get_journal_inode(sb, j_inum);
3356 if (j_inode) {
3357 j_blocks = j_inode->i_size >> sb->s_blocksize_bits;
3358 overhead += EXT4_NUM_B2C(sbi, j_blocks);
3359 iput(j_inode);
3360 } else {
3361 ext4_msg(sb, KERN_ERR, "can't get journal size");
3362 }
3363 }
3364 sbi->s_overhead = overhead;
3365 smp_wmb();
3366 free_page((unsigned long) buf);
3367 return 0;
3368 }
3369
3370 static void ext4_set_resv_clusters(struct super_block *sb)
3371 {
3372 ext4_fsblk_t resv_clusters;
3373 struct ext4_sb_info *sbi = EXT4_SB(sb);
3374
3375 /*
3376 * There's no need to reserve anything when we aren't using extents.
3377 * The space estimates are exact, there are no unwritten extents,
3378 * hole punching doesn't need new metadata... This is needed especially
3379 * to keep ext2/3 backward compatibility.
3380 */
3381 if (!ext4_has_feature_extents(sb))
3382 return;
3383 /*
3384 * By default we reserve 2% or 4096 clusters, whichever is smaller.
3385 * This should cover the situations where we can not afford to run
3386 * out of space like for example punch hole, or converting
3387 * unwritten extents in delalloc path. In most cases such
3388 * allocation would require 1, or 2 blocks, higher numbers are
3389 * very rare.
3390 */
3391 resv_clusters = (ext4_blocks_count(sbi->s_es) >>
3392 sbi->s_cluster_bits);
3393
3394 do_div(resv_clusters, 50);
3395 resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096);
3396
3397 atomic64_set(&sbi->s_resv_clusters, resv_clusters);
3398 }
3399
3400 static int ext4_fill_super(struct super_block *sb, void *data, int silent)
3401 {
3402 struct dax_device *dax_dev = fs_dax_get_by_bdev(sb->s_bdev);
3403 char *orig_data = kstrdup(data, GFP_KERNEL);
3404 struct buffer_head *bh;
3405 struct ext4_super_block *es = NULL;
3406 struct ext4_sb_info *sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
3407 ext4_fsblk_t block;
3408 ext4_fsblk_t sb_block = get_sb_block(&data);
3409 ext4_fsblk_t logical_sb_block;
3410 unsigned long offset = 0;
3411 unsigned long journal_devnum = 0;
3412 unsigned long def_mount_opts;
3413 struct inode *root;
3414 const char *descr;
3415 int ret = -ENOMEM;
3416 int blocksize, clustersize;
3417 unsigned int db_count;
3418 unsigned int i;
3419 int needs_recovery, has_huge_files, has_bigalloc;
3420 __u64 blocks_count;
3421 int err = 0;
3422 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
3423 ext4_group_t first_not_zeroed;
3424
3425 if ((data && !orig_data) || !sbi)
3426 goto out_free_base;
3427
3428 sbi->s_daxdev = dax_dev;
3429 sbi->s_blockgroup_lock =
3430 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
3431 if (!sbi->s_blockgroup_lock)
3432 goto out_free_base;
3433
3434 sb->s_fs_info = sbi;
3435 sbi->s_sb = sb;
3436 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
3437 sbi->s_sb_block = sb_block;
3438 if (sb->s_bdev->bd_part)
3439 sbi->s_sectors_written_start =
3440 part_stat_read(sb->s_bdev->bd_part, sectors[1]);
3441
3442 /* Cleanup superblock name */
3443 strreplace(sb->s_id, '/', '!');
3444
3445 /* -EINVAL is default */
3446 ret = -EINVAL;
3447 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
3448 if (!blocksize) {
3449 ext4_msg(sb, KERN_ERR, "unable to set blocksize");
3450 goto out_fail;
3451 }
3452
3453 /*
3454 * The ext4 superblock will not be buffer aligned for other than 1kB
3455 * block sizes. We need to calculate the offset from buffer start.
3456 */
3457 if (blocksize != EXT4_MIN_BLOCK_SIZE) {
3458 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3459 offset = do_div(logical_sb_block, blocksize);
3460 } else {
3461 logical_sb_block = sb_block;
3462 }
3463
3464 if (!(bh = sb_bread_unmovable(sb, logical_sb_block))) {
3465 ext4_msg(sb, KERN_ERR, "unable to read superblock");
3466 goto out_fail;
3467 }
3468 /*
3469 * Note: s_es must be initialized as soon as possible because
3470 * some ext4 macro-instructions depend on its value
3471 */
3472 es = (struct ext4_super_block *) (bh->b_data + offset);
3473 sbi->s_es = es;
3474 sb->s_magic = le16_to_cpu(es->s_magic);
3475 if (sb->s_magic != EXT4_SUPER_MAGIC)
3476 goto cantfind_ext4;
3477 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
3478
3479 /* Warn if metadata_csum and gdt_csum are both set. */
3480 if (ext4_has_feature_metadata_csum(sb) &&
3481 ext4_has_feature_gdt_csum(sb))
3482 ext4_warning(sb, "metadata_csum and uninit_bg are "
3483 "redundant flags; please run fsck.");
3484
3485 /* Check for a known checksum algorithm */
3486 if (!ext4_verify_csum_type(sb, es)) {
3487 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3488 "unknown checksum algorithm.");
3489 silent = 1;
3490 goto cantfind_ext4;
3491 }
3492
3493 /* Load the checksum driver */
3494 if (ext4_has_feature_metadata_csum(sb) ||
3495 ext4_has_feature_ea_inode(sb)) {
3496 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
3497 if (IS_ERR(sbi->s_chksum_driver)) {
3498 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver.");
3499 ret = PTR_ERR(sbi->s_chksum_driver);
3500 sbi->s_chksum_driver = NULL;
3501 goto failed_mount;
3502 }
3503 }
3504
3505 /* Check superblock checksum */
3506 if (!ext4_superblock_csum_verify(sb, es)) {
3507 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3508 "invalid superblock checksum. Run e2fsck?");
3509 silent = 1;
3510 ret = -EFSBADCRC;
3511 goto cantfind_ext4;
3512 }
3513
3514 /* Precompute checksum seed for all metadata */
3515 if (ext4_has_feature_csum_seed(sb))
3516 sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed);
3517 else if (ext4_has_metadata_csum(sb) || ext4_has_feature_ea_inode(sb))
3518 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid,
3519 sizeof(es->s_uuid));
3520
3521 /* Set defaults before we parse the mount options */
3522 def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
3523 set_opt(sb, INIT_INODE_TABLE);
3524 if (def_mount_opts & EXT4_DEFM_DEBUG)
3525 set_opt(sb, DEBUG);
3526 if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
3527 set_opt(sb, GRPID);
3528 if (def_mount_opts & EXT4_DEFM_UID16)
3529 set_opt(sb, NO_UID32);
3530 /* xattr user namespace & acls are now defaulted on */
3531 set_opt(sb, XATTR_USER);
3532 #ifdef CONFIG_EXT4_FS_POSIX_ACL
3533 set_opt(sb, POSIX_ACL);
3534 #endif
3535 /* don't forget to enable journal_csum when metadata_csum is enabled. */
3536 if (ext4_has_metadata_csum(sb))
3537 set_opt(sb, JOURNAL_CHECKSUM);
3538
3539 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
3540 set_opt(sb, JOURNAL_DATA);
3541 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
3542 set_opt(sb, ORDERED_DATA);
3543 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
3544 set_opt(sb, WRITEBACK_DATA);
3545
3546 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC)
3547 set_opt(sb, ERRORS_PANIC);
3548 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE)
3549 set_opt(sb, ERRORS_CONT);
3550 else
3551 set_opt(sb, ERRORS_RO);
3552 /* block_validity enabled by default; disable with noblock_validity */
3553 set_opt(sb, BLOCK_VALIDITY);
3554 if (def_mount_opts & EXT4_DEFM_DISCARD)
3555 set_opt(sb, DISCARD);
3556
3557 sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid));
3558 sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid));
3559 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
3560 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
3561 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
3562
3563 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
3564 set_opt(sb, BARRIER);
3565
3566 /*
3567 * enable delayed allocation by default
3568 * Use -o nodelalloc to turn it off
3569 */
3570 if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) &&
3571 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
3572 set_opt(sb, DELALLOC);
3573
3574 /*
3575 * set default s_li_wait_mult for lazyinit, for the case there is
3576 * no mount option specified.
3577 */
3578 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
3579
3580 if (sbi->s_es->s_mount_opts[0]) {
3581 char *s_mount_opts = kstrndup(sbi->s_es->s_mount_opts,
3582 sizeof(sbi->s_es->s_mount_opts),
3583 GFP_KERNEL);
3584 if (!s_mount_opts)
3585 goto failed_mount;
3586 if (!parse_options(s_mount_opts, sb, &journal_devnum,
3587 &journal_ioprio, 0)) {
3588 ext4_msg(sb, KERN_WARNING,
3589 "failed to parse options in superblock: %s",
3590 s_mount_opts);
3591 }
3592 kfree(s_mount_opts);
3593 }
3594 sbi->s_def_mount_opt = sbi->s_mount_opt;
3595 if (!parse_options((char *) data, sb, &journal_devnum,
3596 &journal_ioprio, 0))
3597 goto failed_mount;
3598
3599 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
3600 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting "
3601 "with data=journal disables delayed "
3602 "allocation and O_DIRECT support!\n");
3603 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
3604 ext4_msg(sb, KERN_ERR, "can't mount with "
3605 "both data=journal and delalloc");
3606 goto failed_mount;
3607 }
3608 if (test_opt(sb, DIOREAD_NOLOCK)) {
3609 ext4_msg(sb, KERN_ERR, "can't mount with "
3610 "both data=journal and dioread_nolock");
3611 goto failed_mount;
3612 }
3613 if (test_opt(sb, DAX)) {
3614 ext4_msg(sb, KERN_ERR, "can't mount with "
3615 "both data=journal and dax");
3616 goto failed_mount;
3617 }
3618 if (ext4_has_feature_encrypt(sb)) {
3619 ext4_msg(sb, KERN_WARNING,
3620 "encrypted files will use data=ordered "
3621 "instead of data journaling mode");
3622 }
3623 if (test_opt(sb, DELALLOC))
3624 clear_opt(sb, DELALLOC);
3625 } else {
3626 sb->s_iflags |= SB_I_CGROUPWB;
3627 }
3628
3629 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
3630 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
3631
3632 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
3633 (ext4_has_compat_features(sb) ||
3634 ext4_has_ro_compat_features(sb) ||
3635 ext4_has_incompat_features(sb)))
3636 ext4_msg(sb, KERN_WARNING,
3637 "feature flags set on rev 0 fs, "
3638 "running e2fsck is recommended");
3639
3640 if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) {
3641 set_opt2(sb, HURD_COMPAT);
3642 if (ext4_has_feature_64bit(sb)) {
3643 ext4_msg(sb, KERN_ERR,
3644 "The Hurd can't support 64-bit file systems");
3645 goto failed_mount;
3646 }
3647
3648 /*
3649 * ea_inode feature uses l_i_version field which is not
3650 * available in HURD_COMPAT mode.
3651 */
3652 if (ext4_has_feature_ea_inode(sb)) {
3653 ext4_msg(sb, KERN_ERR,
3654 "ea_inode feature is not supported for Hurd");
3655 goto failed_mount;
3656 }
3657 }
3658
3659 if (IS_EXT2_SB(sb)) {
3660 if (ext2_feature_set_ok(sb))
3661 ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
3662 "using the ext4 subsystem");
3663 else {
3664 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
3665 "to feature incompatibilities");
3666 goto failed_mount;
3667 }
3668 }
3669
3670 if (IS_EXT3_SB(sb)) {
3671 if (ext3_feature_set_ok(sb))
3672 ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
3673 "using the ext4 subsystem");
3674 else {
3675 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
3676 "to feature incompatibilities");
3677 goto failed_mount;
3678 }
3679 }
3680
3681 /*
3682 * Check feature flags regardless of the revision level, since we
3683 * previously didn't change the revision level when setting the flags,
3684 * so there is a chance incompat flags are set on a rev 0 filesystem.
3685 */
3686 if (!ext4_feature_set_ok(sb, (sb_rdonly(sb))))
3687 goto failed_mount;
3688
3689 blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
3690 if (blocksize < EXT4_MIN_BLOCK_SIZE ||
3691 blocksize > EXT4_MAX_BLOCK_SIZE) {
3692 ext4_msg(sb, KERN_ERR,
3693 "Unsupported filesystem blocksize %d (%d log_block_size)",
3694 blocksize, le32_to_cpu(es->s_log_block_size));
3695 goto failed_mount;
3696 }
3697 if (le32_to_cpu(es->s_log_block_size) >
3698 (EXT4_MAX_BLOCK_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
3699 ext4_msg(sb, KERN_ERR,
3700 "Invalid log block size: %u",
3701 le32_to_cpu(es->s_log_block_size));
3702 goto failed_mount;
3703 }
3704
3705 if (le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) > (blocksize / 4)) {
3706 ext4_msg(sb, KERN_ERR,
3707 "Number of reserved GDT blocks insanely large: %d",
3708 le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks));
3709 goto failed_mount;
3710 }
3711
3712 if (sbi->s_mount_opt & EXT4_MOUNT_DAX) {
3713 err = bdev_dax_supported(sb, blocksize);
3714 if (err)
3715 goto failed_mount;
3716 }
3717
3718 if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) {
3719 ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d",
3720 es->s_encryption_level);
3721 goto failed_mount;
3722 }
3723
3724 if (sb->s_blocksize != blocksize) {
3725 /* Validate the filesystem blocksize */
3726 if (!sb_set_blocksize(sb, blocksize)) {
3727 ext4_msg(sb, KERN_ERR, "bad block size %d",
3728 blocksize);
3729 goto failed_mount;
3730 }
3731
3732 brelse(bh);
3733 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3734 offset = do_div(logical_sb_block, blocksize);
3735 bh = sb_bread_unmovable(sb, logical_sb_block);
3736 if (!bh) {
3737 ext4_msg(sb, KERN_ERR,
3738 "Can't read superblock on 2nd try");
3739 goto failed_mount;
3740 }
3741 es = (struct ext4_super_block *)(bh->b_data + offset);
3742 sbi->s_es = es;
3743 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
3744 ext4_msg(sb, KERN_ERR,
3745 "Magic mismatch, very weird!");
3746 goto failed_mount;
3747 }
3748 }
3749
3750 has_huge_files = ext4_has_feature_huge_file(sb);
3751 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
3752 has_huge_files);
3753 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
3754
3755 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
3756 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
3757 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
3758 } else {
3759 sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
3760 sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
3761 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
3762 (!is_power_of_2(sbi->s_inode_size)) ||
3763 (sbi->s_inode_size > blocksize)) {
3764 ext4_msg(sb, KERN_ERR,
3765 "unsupported inode size: %d",
3766 sbi->s_inode_size);
3767 goto failed_mount;
3768 }
3769 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE)
3770 sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2);
3771 }
3772
3773 sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
3774 if (ext4_has_feature_64bit(sb)) {
3775 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
3776 sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
3777 !is_power_of_2(sbi->s_desc_size)) {
3778 ext4_msg(sb, KERN_ERR,
3779 "unsupported descriptor size %lu",
3780 sbi->s_desc_size);
3781 goto failed_mount;
3782 }
3783 } else
3784 sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
3785
3786 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
3787 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
3788
3789 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb);
3790 if (sbi->s_inodes_per_block == 0)
3791 goto cantfind_ext4;
3792 if (sbi->s_inodes_per_group < sbi->s_inodes_per_block ||
3793 sbi->s_inodes_per_group > blocksize * 8) {
3794 ext4_msg(sb, KERN_ERR, "invalid inodes per group: %lu\n",
3795 sbi->s_blocks_per_group);
3796 goto failed_mount;
3797 }
3798 sbi->s_itb_per_group = sbi->s_inodes_per_group /
3799 sbi->s_inodes_per_block;
3800 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb);
3801 sbi->s_sbh = bh;
3802 sbi->s_mount_state = le16_to_cpu(es->s_state);
3803 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
3804 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
3805
3806 for (i = 0; i < 4; i++)
3807 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
3808 sbi->s_def_hash_version = es->s_def_hash_version;
3809 if (ext4_has_feature_dir_index(sb)) {
3810 i = le32_to_cpu(es->s_flags);
3811 if (i & EXT2_FLAGS_UNSIGNED_HASH)
3812 sbi->s_hash_unsigned = 3;
3813 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
3814 #ifdef __CHAR_UNSIGNED__
3815 if (!sb_rdonly(sb))
3816 es->s_flags |=
3817 cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
3818 sbi->s_hash_unsigned = 3;
3819 #else
3820 if (!sb_rdonly(sb))
3821 es->s_flags |=
3822 cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
3823 #endif
3824 }
3825 }
3826
3827 /* Handle clustersize */
3828 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size);
3829 has_bigalloc = ext4_has_feature_bigalloc(sb);
3830 if (has_bigalloc) {
3831 if (clustersize < blocksize) {
3832 ext4_msg(sb, KERN_ERR,
3833 "cluster size (%d) smaller than "
3834 "block size (%d)", clustersize, blocksize);
3835 goto failed_mount;
3836 }
3837 if (le32_to_cpu(es->s_log_cluster_size) >
3838 (EXT4_MAX_CLUSTER_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
3839 ext4_msg(sb, KERN_ERR,
3840 "Invalid log cluster size: %u",
3841 le32_to_cpu(es->s_log_cluster_size));
3842 goto failed_mount;
3843 }
3844 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) -
3845 le32_to_cpu(es->s_log_block_size);
3846 sbi->s_clusters_per_group =
3847 le32_to_cpu(es->s_clusters_per_group);
3848 if (sbi->s_clusters_per_group > blocksize * 8) {
3849 ext4_msg(sb, KERN_ERR,
3850 "#clusters per group too big: %lu",
3851 sbi->s_clusters_per_group);
3852 goto failed_mount;
3853 }
3854 if (sbi->s_blocks_per_group !=
3855 (sbi->s_clusters_per_group * (clustersize / blocksize))) {
3856 ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and "
3857 "clusters per group (%lu) inconsistent",
3858 sbi->s_blocks_per_group,
3859 sbi->s_clusters_per_group);
3860 goto failed_mount;
3861 }
3862 } else {
3863 if (clustersize != blocksize) {
3864 ext4_warning(sb, "fragment/cluster size (%d) != "
3865 "block size (%d)", clustersize,
3866 blocksize);
3867 clustersize = blocksize;
3868 }
3869 if (sbi->s_blocks_per_group > blocksize * 8) {
3870 ext4_msg(sb, KERN_ERR,
3871 "#blocks per group too big: %lu",
3872 sbi->s_blocks_per_group);
3873 goto failed_mount;
3874 }
3875 sbi->s_clusters_per_group = sbi->s_blocks_per_group;
3876 sbi->s_cluster_bits = 0;
3877 }
3878 sbi->s_cluster_ratio = clustersize / blocksize;
3879
3880 /* Do we have standard group size of clustersize * 8 blocks ? */
3881 if (sbi->s_blocks_per_group == clustersize << 3)
3882 set_opt2(sb, STD_GROUP_SIZE);
3883
3884 /*
3885 * Test whether we have more sectors than will fit in sector_t,
3886 * and whether the max offset is addressable by the page cache.
3887 */
3888 err = generic_check_addressable(sb->s_blocksize_bits,
3889 ext4_blocks_count(es));
3890 if (err) {
3891 ext4_msg(sb, KERN_ERR, "filesystem"
3892 " too large to mount safely on this system");
3893 if (sizeof(sector_t) < 8)
3894 ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled");
3895 goto failed_mount;
3896 }
3897
3898 if (EXT4_BLOCKS_PER_GROUP(sb) == 0)
3899 goto cantfind_ext4;
3900
3901 /* check blocks count against device size */
3902 blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
3903 if (blocks_count && ext4_blocks_count(es) > blocks_count) {
3904 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
3905 "exceeds size of device (%llu blocks)",
3906 ext4_blocks_count(es), blocks_count);
3907 goto failed_mount;
3908 }
3909
3910 /*
3911 * It makes no sense for the first data block to be beyond the end
3912 * of the filesystem.
3913 */
3914 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
3915 ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
3916 "block %u is beyond end of filesystem (%llu)",
3917 le32_to_cpu(es->s_first_data_block),
3918 ext4_blocks_count(es));
3919 goto failed_mount;
3920 }
3921 blocks_count = (ext4_blocks_count(es) -
3922 le32_to_cpu(es->s_first_data_block) +
3923 EXT4_BLOCKS_PER_GROUP(sb) - 1);
3924 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
3925 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
3926 ext4_msg(sb, KERN_WARNING, "groups count too large: %u "
3927 "(block count %llu, first data block %u, "
3928 "blocks per group %lu)", sbi->s_groups_count,
3929 ext4_blocks_count(es),
3930 le32_to_cpu(es->s_first_data_block),
3931 EXT4_BLOCKS_PER_GROUP(sb));
3932 goto failed_mount;
3933 }
3934 sbi->s_groups_count = blocks_count;
3935 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
3936 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
3937 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
3938 EXT4_DESC_PER_BLOCK(sb);
3939 if (ext4_has_feature_meta_bg(sb)) {
3940 if (le32_to_cpu(es->s_first_meta_bg) > db_count) {
3941 ext4_msg(sb, KERN_WARNING,
3942 "first meta block group too large: %u "
3943 "(group descriptor block count %u)",
3944 le32_to_cpu(es->s_first_meta_bg), db_count);
3945 goto failed_mount;
3946 }
3947 }
3948 sbi->s_group_desc = kvmalloc(db_count *
3949 sizeof(struct buffer_head *),
3950 GFP_KERNEL);
3951 if (sbi->s_group_desc == NULL) {
3952 ext4_msg(sb, KERN_ERR, "not enough memory");
3953 ret = -ENOMEM;
3954 goto failed_mount;
3955 }
3956
3957 bgl_lock_init(sbi->s_blockgroup_lock);
3958
3959 /* Pre-read the descriptors into the buffer cache */
3960 for (i = 0; i < db_count; i++) {
3961 block = descriptor_loc(sb, logical_sb_block, i);
3962 sb_breadahead(sb, block);
3963 }
3964
3965 for (i = 0; i < db_count; i++) {
3966 block = descriptor_loc(sb, logical_sb_block, i);
3967 sbi->s_group_desc[i] = sb_bread_unmovable(sb, block);
3968 if (!sbi->s_group_desc[i]) {
3969 ext4_msg(sb, KERN_ERR,
3970 "can't read group descriptor %d", i);
3971 db_count = i;
3972 goto failed_mount2;
3973 }
3974 }
3975 if (!ext4_check_descriptors(sb, logical_sb_block, &first_not_zeroed)) {
3976 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
3977 ret = -EFSCORRUPTED;
3978 goto failed_mount2;
3979 }
3980
3981 sbi->s_gdb_count = db_count;
3982 get_random_bytes(&sbi->s_next_generation, sizeof(u32));
3983 spin_lock_init(&sbi->s_next_gen_lock);
3984
3985 setup_timer(&sbi->s_err_report, print_daily_error_info,
3986 (unsigned long) sb);
3987
3988 /* Register extent status tree shrinker */
3989 if (ext4_es_register_shrinker(sbi))
3990 goto failed_mount3;
3991
3992 sbi->s_stripe = ext4_get_stripe_size(sbi);
3993 sbi->s_extent_max_zeroout_kb = 32;
3994
3995 /*
3996 * set up enough so that it can read an inode
3997 */
3998 sb->s_op = &ext4_sops;
3999 sb->s_export_op = &ext4_export_ops;
4000 sb->s_xattr = ext4_xattr_handlers;
4001 sb->s_cop = &ext4_cryptops;
4002 #ifdef CONFIG_QUOTA
4003 sb->dq_op = &ext4_quota_operations;
4004 if (ext4_has_feature_quota(sb))
4005 sb->s_qcop = &dquot_quotactl_sysfile_ops;
4006 else
4007 sb->s_qcop = &ext4_qctl_operations;
4008 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
4009 #endif
4010 memcpy(&sb->s_uuid, es->s_uuid, sizeof(es->s_uuid));
4011
4012 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
4013 mutex_init(&sbi->s_orphan_lock);
4014
4015 sb->s_root = NULL;
4016
4017 needs_recovery = (es->s_last_orphan != 0 ||
4018 ext4_has_feature_journal_needs_recovery(sb));
4019
4020 if (ext4_has_feature_mmp(sb) && !sb_rdonly(sb))
4021 if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block)))
4022 goto failed_mount3a;
4023
4024 /*
4025 * The first inode we look at is the journal inode. Don't try
4026 * root first: it may be modified in the journal!
4027 */
4028 if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) {
4029 err = ext4_load_journal(sb, es, journal_devnum);
4030 if (err)
4031 goto failed_mount3a;
4032 } else if (test_opt(sb, NOLOAD) && !sb_rdonly(sb) &&
4033 ext4_has_feature_journal_needs_recovery(sb)) {
4034 ext4_msg(sb, KERN_ERR, "required journal recovery "
4035 "suppressed and not mounted read-only");
4036 goto failed_mount_wq;
4037 } else {
4038 /* Nojournal mode, all journal mount options are illegal */
4039 if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) {
4040 ext4_msg(sb, KERN_ERR, "can't mount with "
4041 "journal_checksum, fs mounted w/o journal");
4042 goto failed_mount_wq;
4043 }
4044 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4045 ext4_msg(sb, KERN_ERR, "can't mount with "
4046 "journal_async_commit, fs mounted w/o journal");
4047 goto failed_mount_wq;
4048 }
4049 if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) {
4050 ext4_msg(sb, KERN_ERR, "can't mount with "
4051 "commit=%lu, fs mounted w/o journal",
4052 sbi->s_commit_interval / HZ);
4053 goto failed_mount_wq;
4054 }
4055 if (EXT4_MOUNT_DATA_FLAGS &
4056 (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) {
4057 ext4_msg(sb, KERN_ERR, "can't mount with "
4058 "data=, fs mounted w/o journal");
4059 goto failed_mount_wq;
4060 }
4061 sbi->s_def_mount_opt &= EXT4_MOUNT_JOURNAL_CHECKSUM;
4062 clear_opt(sb, JOURNAL_CHECKSUM);
4063 clear_opt(sb, DATA_FLAGS);
4064 sbi->s_journal = NULL;
4065 needs_recovery = 0;
4066 goto no_journal;
4067 }
4068
4069 if (ext4_has_feature_64bit(sb) &&
4070 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
4071 JBD2_FEATURE_INCOMPAT_64BIT)) {
4072 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
4073 goto failed_mount_wq;
4074 }
4075
4076 if (!set_journal_csum_feature_set(sb)) {
4077 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum "
4078 "feature set");
4079 goto failed_mount_wq;
4080 }
4081
4082 /* We have now updated the journal if required, so we can
4083 * validate the data journaling mode. */
4084 switch (test_opt(sb, DATA_FLAGS)) {
4085 case 0:
4086 /* No mode set, assume a default based on the journal
4087 * capabilities: ORDERED_DATA if the journal can
4088 * cope, else JOURNAL_DATA
4089 */
4090 if (jbd2_journal_check_available_features
4091 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE))
4092 set_opt(sb, ORDERED_DATA);
4093 else
4094 set_opt(sb, JOURNAL_DATA);
4095 break;
4096
4097 case EXT4_MOUNT_ORDERED_DATA:
4098 case EXT4_MOUNT_WRITEBACK_DATA:
4099 if (!jbd2_journal_check_available_features
4100 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4101 ext4_msg(sb, KERN_ERR, "Journal does not support "
4102 "requested data journaling mode");
4103 goto failed_mount_wq;
4104 }
4105 default:
4106 break;
4107 }
4108
4109 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA &&
4110 test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4111 ext4_msg(sb, KERN_ERR, "can't mount with "
4112 "journal_async_commit in data=ordered mode");
4113 goto failed_mount_wq;
4114 }
4115
4116 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
4117
4118 sbi->s_journal->j_commit_callback = ext4_journal_commit_callback;
4119
4120 no_journal:
4121 if (!test_opt(sb, NO_MBCACHE)) {
4122 sbi->s_ea_block_cache = ext4_xattr_create_cache();
4123 if (!sbi->s_ea_block_cache) {
4124 ext4_msg(sb, KERN_ERR,
4125 "Failed to create ea_block_cache");
4126 goto failed_mount_wq;
4127 }
4128
4129 if (ext4_has_feature_ea_inode(sb)) {
4130 sbi->s_ea_inode_cache = ext4_xattr_create_cache();
4131 if (!sbi->s_ea_inode_cache) {
4132 ext4_msg(sb, KERN_ERR,
4133 "Failed to create ea_inode_cache");
4134 goto failed_mount_wq;
4135 }
4136 }
4137 }
4138
4139 if ((DUMMY_ENCRYPTION_ENABLED(sbi) || ext4_has_feature_encrypt(sb)) &&
4140 (blocksize != PAGE_SIZE)) {
4141 ext4_msg(sb, KERN_ERR,
4142 "Unsupported blocksize for fs encryption");
4143 goto failed_mount_wq;
4144 }
4145
4146 if (DUMMY_ENCRYPTION_ENABLED(sbi) && !sb_rdonly(sb) &&
4147 !ext4_has_feature_encrypt(sb)) {
4148 ext4_set_feature_encrypt(sb);
4149 ext4_commit_super(sb, 1);
4150 }
4151
4152 /*
4153 * Get the # of file system overhead blocks from the
4154 * superblock if present.
4155 */
4156 if (es->s_overhead_clusters)
4157 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters);
4158 else {
4159 err = ext4_calculate_overhead(sb);
4160 if (err)
4161 goto failed_mount_wq;
4162 }
4163
4164 /*
4165 * The maximum number of concurrent works can be high and
4166 * concurrency isn't really necessary. Limit it to 1.
4167 */
4168 EXT4_SB(sb)->rsv_conversion_wq =
4169 alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
4170 if (!EXT4_SB(sb)->rsv_conversion_wq) {
4171 printk(KERN_ERR "EXT4-fs: failed to create workqueue\n");
4172 ret = -ENOMEM;
4173 goto failed_mount4;
4174 }
4175
4176 /*
4177 * The jbd2_journal_load will have done any necessary log recovery,
4178 * so we can safely mount the rest of the filesystem now.
4179 */
4180
4181 root = ext4_iget(sb, EXT4_ROOT_INO);
4182 if (IS_ERR(root)) {
4183 ext4_msg(sb, KERN_ERR, "get root inode failed");
4184 ret = PTR_ERR(root);
4185 root = NULL;
4186 goto failed_mount4;
4187 }
4188 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
4189 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
4190 iput(root);
4191 goto failed_mount4;
4192 }
4193 sb->s_root = d_make_root(root);
4194 if (!sb->s_root) {
4195 ext4_msg(sb, KERN_ERR, "get root dentry failed");
4196 ret = -ENOMEM;
4197 goto failed_mount4;
4198 }
4199
4200 if (ext4_setup_super(sb, es, sb_rdonly(sb)))
4201 sb->s_flags |= MS_RDONLY;
4202
4203 /* determine the minimum size of new large inodes, if present */
4204 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE &&
4205 sbi->s_want_extra_isize == 0) {
4206 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
4207 EXT4_GOOD_OLD_INODE_SIZE;
4208 if (ext4_has_feature_extra_isize(sb)) {
4209 if (sbi->s_want_extra_isize <
4210 le16_to_cpu(es->s_want_extra_isize))
4211 sbi->s_want_extra_isize =
4212 le16_to_cpu(es->s_want_extra_isize);
4213 if (sbi->s_want_extra_isize <
4214 le16_to_cpu(es->s_min_extra_isize))
4215 sbi->s_want_extra_isize =
4216 le16_to_cpu(es->s_min_extra_isize);
4217 }
4218 }
4219 /* Check if enough inode space is available */
4220 if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize >
4221 sbi->s_inode_size) {
4222 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
4223 EXT4_GOOD_OLD_INODE_SIZE;
4224 ext4_msg(sb, KERN_INFO, "required extra inode space not"
4225 "available");
4226 }
4227
4228 ext4_set_resv_clusters(sb);
4229
4230 err = ext4_setup_system_zone(sb);
4231 if (err) {
4232 ext4_msg(sb, KERN_ERR, "failed to initialize system "
4233 "zone (%d)", err);
4234 goto failed_mount4a;
4235 }
4236
4237 ext4_ext_init(sb);
4238 err = ext4_mb_init(sb);
4239 if (err) {
4240 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
4241 err);
4242 goto failed_mount5;
4243 }
4244
4245 block = ext4_count_free_clusters(sb);
4246 ext4_free_blocks_count_set(sbi->s_es,
4247 EXT4_C2B(sbi, block));
4248 err = percpu_counter_init(&sbi->s_freeclusters_counter, block,
4249 GFP_KERNEL);
4250 if (!err) {
4251 unsigned long freei = ext4_count_free_inodes(sb);
4252 sbi->s_es->s_free_inodes_count = cpu_to_le32(freei);
4253 err = percpu_counter_init(&sbi->s_freeinodes_counter, freei,
4254 GFP_KERNEL);
4255 }
4256 if (!err)
4257 err = percpu_counter_init(&sbi->s_dirs_counter,
4258 ext4_count_dirs(sb), GFP_KERNEL);
4259 if (!err)
4260 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0,
4261 GFP_KERNEL);
4262 if (!err)
4263 err = percpu_init_rwsem(&sbi->s_journal_flag_rwsem);
4264
4265 if (err) {
4266 ext4_msg(sb, KERN_ERR, "insufficient memory");
4267 goto failed_mount6;
4268 }
4269
4270 if (ext4_has_feature_flex_bg(sb))
4271 if (!ext4_fill_flex_info(sb)) {
4272 ext4_msg(sb, KERN_ERR,
4273 "unable to initialize "
4274 "flex_bg meta info!");
4275 goto failed_mount6;
4276 }
4277
4278 err = ext4_register_li_request(sb, first_not_zeroed);
4279 if (err)
4280 goto failed_mount6;
4281
4282 err = ext4_register_sysfs(sb);
4283 if (err)
4284 goto failed_mount7;
4285
4286 #ifdef CONFIG_QUOTA
4287 /* Enable quota usage during mount. */
4288 if (ext4_has_feature_quota(sb) && !sb_rdonly(sb)) {
4289 err = ext4_enable_quotas(sb);
4290 if (err)
4291 goto failed_mount8;
4292 }
4293 #endif /* CONFIG_QUOTA */
4294
4295 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
4296 ext4_orphan_cleanup(sb, es);
4297 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
4298 if (needs_recovery) {
4299 ext4_msg(sb, KERN_INFO, "recovery complete");
4300 ext4_mark_recovery_complete(sb, es);
4301 }
4302 if (EXT4_SB(sb)->s_journal) {
4303 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
4304 descr = " journalled data mode";
4305 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
4306 descr = " ordered data mode";
4307 else
4308 descr = " writeback data mode";
4309 } else
4310 descr = "out journal";
4311
4312 if (test_opt(sb, DISCARD)) {
4313 struct request_queue *q = bdev_get_queue(sb->s_bdev);
4314 if (!blk_queue_discard(q))
4315 ext4_msg(sb, KERN_WARNING,
4316 "mounting with \"discard\" option, but "
4317 "the device does not support discard");
4318 }
4319
4320 if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount"))
4321 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. "
4322 "Opts: %.*s%s%s", descr,
4323 (int) sizeof(sbi->s_es->s_mount_opts),
4324 sbi->s_es->s_mount_opts,
4325 *sbi->s_es->s_mount_opts ? "; " : "", orig_data);
4326
4327 if (es->s_error_count)
4328 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
4329
4330 /* Enable message ratelimiting. Default is 10 messages per 5 secs. */
4331 ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10);
4332 ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10);
4333 ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10);
4334
4335 kfree(orig_data);
4336 return 0;
4337
4338 cantfind_ext4:
4339 if (!silent)
4340 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
4341 goto failed_mount;
4342
4343 #ifdef CONFIG_QUOTA
4344 failed_mount8:
4345 ext4_unregister_sysfs(sb);
4346 #endif
4347 failed_mount7:
4348 ext4_unregister_li_request(sb);
4349 failed_mount6:
4350 ext4_mb_release(sb);
4351 if (sbi->s_flex_groups)
4352 kvfree(sbi->s_flex_groups);
4353 percpu_counter_destroy(&sbi->s_freeclusters_counter);
4354 percpu_counter_destroy(&sbi->s_freeinodes_counter);
4355 percpu_counter_destroy(&sbi->s_dirs_counter);
4356 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
4357 failed_mount5:
4358 ext4_ext_release(sb);
4359 ext4_release_system_zone(sb);
4360 failed_mount4a:
4361 dput(sb->s_root);
4362 sb->s_root = NULL;
4363 failed_mount4:
4364 ext4_msg(sb, KERN_ERR, "mount failed");
4365 if (EXT4_SB(sb)->rsv_conversion_wq)
4366 destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq);
4367 failed_mount_wq:
4368 if (sbi->s_ea_inode_cache) {
4369 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
4370 sbi->s_ea_inode_cache = NULL;
4371 }
4372 if (sbi->s_ea_block_cache) {
4373 ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
4374 sbi->s_ea_block_cache = NULL;
4375 }
4376 if (sbi->s_journal) {
4377 jbd2_journal_destroy(sbi->s_journal);
4378 sbi->s_journal = NULL;
4379 }
4380 failed_mount3a:
4381 ext4_es_unregister_shrinker(sbi);
4382 failed_mount3:
4383 del_timer_sync(&sbi->s_err_report);
4384 if (sbi->s_mmp_tsk)
4385 kthread_stop(sbi->s_mmp_tsk);
4386 failed_mount2:
4387 for (i = 0; i < db_count; i++)
4388 brelse(sbi->s_group_desc[i]);
4389 kvfree(sbi->s_group_desc);
4390 failed_mount:
4391 if (sbi->s_chksum_driver)
4392 crypto_free_shash(sbi->s_chksum_driver);
4393 #ifdef CONFIG_QUOTA
4394 for (i = 0; i < EXT4_MAXQUOTAS; i++)
4395 kfree(sbi->s_qf_names[i]);
4396 #endif
4397 ext4_blkdev_remove(sbi);
4398 brelse(bh);
4399 out_fail:
4400 sb->s_fs_info = NULL;
4401 kfree(sbi->s_blockgroup_lock);
4402 out_free_base:
4403 kfree(sbi);
4404 kfree(orig_data);
4405 fs_put_dax(dax_dev);
4406 return err ? err : ret;
4407 }
4408
4409 /*
4410 * Setup any per-fs journal parameters now. We'll do this both on
4411 * initial mount, once the journal has been initialised but before we've
4412 * done any recovery; and again on any subsequent remount.
4413 */
4414 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
4415 {
4416 struct ext4_sb_info *sbi = EXT4_SB(sb);
4417
4418 journal->j_commit_interval = sbi->s_commit_interval;
4419 journal->j_min_batch_time = sbi->s_min_batch_time;
4420 journal->j_max_batch_time = sbi->s_max_batch_time;
4421
4422 write_lock(&journal->j_state_lock);
4423 if (test_opt(sb, BARRIER))
4424 journal->j_flags |= JBD2_BARRIER;
4425 else
4426 journal->j_flags &= ~JBD2_BARRIER;
4427 if (test_opt(sb, DATA_ERR_ABORT))
4428 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
4429 else
4430 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
4431 write_unlock(&journal->j_state_lock);
4432 }
4433
4434 static struct inode *ext4_get_journal_inode(struct super_block *sb,
4435 unsigned int journal_inum)
4436 {
4437 struct inode *journal_inode;
4438
4439 /*
4440 * Test for the existence of a valid inode on disk. Bad things
4441 * happen if we iget() an unused inode, as the subsequent iput()
4442 * will try to delete it.
4443 */
4444 journal_inode = ext4_iget(sb, journal_inum);
4445 if (IS_ERR(journal_inode)) {
4446 ext4_msg(sb, KERN_ERR, "no journal found");
4447 return NULL;
4448 }
4449 if (!journal_inode->i_nlink) {
4450 make_bad_inode(journal_inode);
4451 iput(journal_inode);
4452 ext4_msg(sb, KERN_ERR, "journal inode is deleted");
4453 return NULL;
4454 }
4455
4456 jbd_debug(2, "Journal inode found at %p: %lld bytes\n",
4457 journal_inode, journal_inode->i_size);
4458 if (!S_ISREG(journal_inode->i_mode)) {
4459 ext4_msg(sb, KERN_ERR, "invalid journal inode");
4460 iput(journal_inode);
4461 return NULL;
4462 }
4463 return journal_inode;
4464 }
4465
4466 static journal_t *ext4_get_journal(struct super_block *sb,
4467 unsigned int journal_inum)
4468 {
4469 struct inode *journal_inode;
4470 journal_t *journal;
4471
4472 BUG_ON(!ext4_has_feature_journal(sb));
4473
4474 journal_inode = ext4_get_journal_inode(sb, journal_inum);
4475 if (!journal_inode)
4476 return NULL;
4477
4478 journal = jbd2_journal_init_inode(journal_inode);
4479 if (!journal) {
4480 ext4_msg(sb, KERN_ERR, "Could not load journal inode");
4481 iput(journal_inode);
4482 return NULL;
4483 }
4484 journal->j_private = sb;
4485 ext4_init_journal_params(sb, journal);
4486 return journal;
4487 }
4488
4489 static journal_t *ext4_get_dev_journal(struct super_block *sb,
4490 dev_t j_dev)
4491 {
4492 struct buffer_head *bh;
4493 journal_t *journal;
4494 ext4_fsblk_t start;
4495 ext4_fsblk_t len;
4496 int hblock, blocksize;
4497 ext4_fsblk_t sb_block;
4498 unsigned long offset;
4499 struct ext4_super_block *es;
4500 struct block_device *bdev;
4501
4502 BUG_ON(!ext4_has_feature_journal(sb));
4503
4504 bdev = ext4_blkdev_get(j_dev, sb);
4505 if (bdev == NULL)
4506 return NULL;
4507
4508 blocksize = sb->s_blocksize;
4509 hblock = bdev_logical_block_size(bdev);
4510 if (blocksize < hblock) {
4511 ext4_msg(sb, KERN_ERR,
4512 "blocksize too small for journal device");
4513 goto out_bdev;
4514 }
4515
4516 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
4517 offset = EXT4_MIN_BLOCK_SIZE % blocksize;
4518 set_blocksize(bdev, blocksize);
4519 if (!(bh = __bread(bdev, sb_block, blocksize))) {
4520 ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
4521 "external journal");
4522 goto out_bdev;
4523 }
4524
4525 es = (struct ext4_super_block *) (bh->b_data + offset);
4526 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
4527 !(le32_to_cpu(es->s_feature_incompat) &
4528 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
4529 ext4_msg(sb, KERN_ERR, "external journal has "
4530 "bad superblock");
4531 brelse(bh);
4532 goto out_bdev;
4533 }
4534
4535 if ((le32_to_cpu(es->s_feature_ro_compat) &
4536 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
4537 es->s_checksum != ext4_superblock_csum(sb, es)) {
4538 ext4_msg(sb, KERN_ERR, "external journal has "
4539 "corrupt superblock");
4540 brelse(bh);
4541 goto out_bdev;
4542 }
4543
4544 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
4545 ext4_msg(sb, KERN_ERR, "journal UUID does not match");
4546 brelse(bh);
4547 goto out_bdev;
4548 }
4549
4550 len = ext4_blocks_count(es);
4551 start = sb_block + 1;
4552 brelse(bh); /* we're done with the superblock */
4553
4554 journal = jbd2_journal_init_dev(bdev, sb->s_bdev,
4555 start, len, blocksize);
4556 if (!journal) {
4557 ext4_msg(sb, KERN_ERR, "failed to create device journal");
4558 goto out_bdev;
4559 }
4560 journal->j_private = sb;
4561 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &journal->j_sb_buffer);
4562 wait_on_buffer(journal->j_sb_buffer);
4563 if (!buffer_uptodate(journal->j_sb_buffer)) {
4564 ext4_msg(sb, KERN_ERR, "I/O error on journal device");
4565 goto out_journal;
4566 }
4567 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
4568 ext4_msg(sb, KERN_ERR, "External journal has more than one "
4569 "user (unsupported) - %d",
4570 be32_to_cpu(journal->j_superblock->s_nr_users));
4571 goto out_journal;
4572 }
4573 EXT4_SB(sb)->journal_bdev = bdev;
4574 ext4_init_journal_params(sb, journal);
4575 return journal;
4576
4577 out_journal:
4578 jbd2_journal_destroy(journal);
4579 out_bdev:
4580 ext4_blkdev_put(bdev);
4581 return NULL;
4582 }
4583
4584 static int ext4_load_journal(struct super_block *sb,
4585 struct ext4_super_block *es,
4586 unsigned long journal_devnum)
4587 {
4588 journal_t *journal;
4589 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
4590 dev_t journal_dev;
4591 int err = 0;
4592 int really_read_only;
4593
4594 BUG_ON(!ext4_has_feature_journal(sb));
4595
4596 if (journal_devnum &&
4597 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4598 ext4_msg(sb, KERN_INFO, "external journal device major/minor "
4599 "numbers have changed");
4600 journal_dev = new_decode_dev(journal_devnum);
4601 } else
4602 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
4603
4604 really_read_only = bdev_read_only(sb->s_bdev);
4605
4606 /*
4607 * Are we loading a blank journal or performing recovery after a
4608 * crash? For recovery, we need to check in advance whether we
4609 * can get read-write access to the device.
4610 */
4611 if (ext4_has_feature_journal_needs_recovery(sb)) {
4612 if (sb_rdonly(sb)) {
4613 ext4_msg(sb, KERN_INFO, "INFO: recovery "
4614 "required on readonly filesystem");
4615 if (really_read_only) {
4616 ext4_msg(sb, KERN_ERR, "write access "
4617 "unavailable, cannot proceed");
4618 return -EROFS;
4619 }
4620 ext4_msg(sb, KERN_INFO, "write access will "
4621 "be enabled during recovery");
4622 }
4623 }
4624
4625 if (journal_inum && journal_dev) {
4626 ext4_msg(sb, KERN_ERR, "filesystem has both journal "
4627 "and inode journals!");
4628 return -EINVAL;
4629 }
4630
4631 if (journal_inum) {
4632 if (!(journal = ext4_get_journal(sb, journal_inum)))
4633 return -EINVAL;
4634 } else {
4635 if (!(journal = ext4_get_dev_journal(sb, journal_dev)))
4636 return -EINVAL;
4637 }
4638
4639 if (!(journal->j_flags & JBD2_BARRIER))
4640 ext4_msg(sb, KERN_INFO, "barriers disabled");
4641
4642 if (!ext4_has_feature_journal_needs_recovery(sb))
4643 err = jbd2_journal_wipe(journal, !really_read_only);
4644 if (!err) {
4645 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
4646 if (save)
4647 memcpy(save, ((char *) es) +
4648 EXT4_S_ERR_START, EXT4_S_ERR_LEN);
4649 err = jbd2_journal_load(journal);
4650 if (save)
4651 memcpy(((char *) es) + EXT4_S_ERR_START,
4652 save, EXT4_S_ERR_LEN);
4653 kfree(save);
4654 }
4655
4656 if (err) {
4657 ext4_msg(sb, KERN_ERR, "error loading journal");
4658 jbd2_journal_destroy(journal);
4659 return err;
4660 }
4661
4662 EXT4_SB(sb)->s_journal = journal;
4663 ext4_clear_journal_err(sb, es);
4664
4665 if (!really_read_only && journal_devnum &&
4666 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4667 es->s_journal_dev = cpu_to_le32(journal_devnum);
4668
4669 /* Make sure we flush the recovery flag to disk. */
4670 ext4_commit_super(sb, 1);
4671 }
4672
4673 return 0;
4674 }
4675
4676 static int ext4_commit_super(struct super_block *sb, int sync)
4677 {
4678 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
4679 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
4680 int error = 0;
4681
4682 if (!sbh || block_device_ejected(sb))
4683 return error;
4684 /*
4685 * If the file system is mounted read-only, don't update the
4686 * superblock write time. This avoids updating the superblock
4687 * write time when we are mounting the root file system
4688 * read/only but we need to replay the journal; at that point,
4689 * for people who are east of GMT and who make their clock
4690 * tick in localtime for Windows bug-for-bug compatibility,
4691 * the clock is set in the future, and this will cause e2fsck
4692 * to complain and force a full file system check.
4693 */
4694 if (!(sb->s_flags & MS_RDONLY))
4695 es->s_wtime = cpu_to_le32(get_seconds());
4696 if (sb->s_bdev->bd_part)
4697 es->s_kbytes_written =
4698 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written +
4699 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
4700 EXT4_SB(sb)->s_sectors_written_start) >> 1));
4701 else
4702 es->s_kbytes_written =
4703 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written);
4704 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeclusters_counter))
4705 ext4_free_blocks_count_set(es,
4706 EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive(
4707 &EXT4_SB(sb)->s_freeclusters_counter)));
4708 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeinodes_counter))
4709 es->s_free_inodes_count =
4710 cpu_to_le32(percpu_counter_sum_positive(
4711 &EXT4_SB(sb)->s_freeinodes_counter));
4712 BUFFER_TRACE(sbh, "marking dirty");
4713 ext4_superblock_csum_set(sb);
4714 if (sync)
4715 lock_buffer(sbh);
4716 if (buffer_write_io_error(sbh)) {
4717 /*
4718 * Oh, dear. A previous attempt to write the
4719 * superblock failed. This could happen because the
4720 * USB device was yanked out. Or it could happen to
4721 * be a transient write error and maybe the block will
4722 * be remapped. Nothing we can do but to retry the
4723 * write and hope for the best.
4724 */
4725 ext4_msg(sb, KERN_ERR, "previous I/O error to "
4726 "superblock detected");
4727 clear_buffer_write_io_error(sbh);
4728 set_buffer_uptodate(sbh);
4729 }
4730 mark_buffer_dirty(sbh);
4731 if (sync) {
4732 unlock_buffer(sbh);
4733 error = __sync_dirty_buffer(sbh,
4734 REQ_SYNC | (test_opt(sb, BARRIER) ? REQ_FUA : 0));
4735 if (error)
4736 return error;
4737
4738 error = buffer_write_io_error(sbh);
4739 if (error) {
4740 ext4_msg(sb, KERN_ERR, "I/O error while writing "
4741 "superblock");
4742 clear_buffer_write_io_error(sbh);
4743 set_buffer_uptodate(sbh);
4744 }
4745 }
4746 return error;
4747 }
4748
4749 /*
4750 * Have we just finished recovery? If so, and if we are mounting (or
4751 * remounting) the filesystem readonly, then we will end up with a
4752 * consistent fs on disk. Record that fact.
4753 */
4754 static void ext4_mark_recovery_complete(struct super_block *sb,
4755 struct ext4_super_block *es)
4756 {
4757 journal_t *journal = EXT4_SB(sb)->s_journal;
4758
4759 if (!ext4_has_feature_journal(sb)) {
4760 BUG_ON(journal != NULL);
4761 return;
4762 }
4763 jbd2_journal_lock_updates(journal);
4764 if (jbd2_journal_flush(journal) < 0)
4765 goto out;
4766
4767 if (ext4_has_feature_journal_needs_recovery(sb) && sb_rdonly(sb)) {
4768 ext4_clear_feature_journal_needs_recovery(sb);
4769 ext4_commit_super(sb, 1);
4770 }
4771
4772 out:
4773 jbd2_journal_unlock_updates(journal);
4774 }
4775
4776 /*
4777 * If we are mounting (or read-write remounting) a filesystem whose journal
4778 * has recorded an error from a previous lifetime, move that error to the
4779 * main filesystem now.
4780 */
4781 static void ext4_clear_journal_err(struct super_block *sb,
4782 struct ext4_super_block *es)
4783 {
4784 journal_t *journal;
4785 int j_errno;
4786 const char *errstr;
4787
4788 BUG_ON(!ext4_has_feature_journal(sb));
4789
4790 journal = EXT4_SB(sb)->s_journal;
4791
4792 /*
4793 * Now check for any error status which may have been recorded in the
4794 * journal by a prior ext4_error() or ext4_abort()
4795 */
4796
4797 j_errno = jbd2_journal_errno(journal);
4798 if (j_errno) {
4799 char nbuf[16];
4800
4801 errstr = ext4_decode_error(sb, j_errno, nbuf);
4802 ext4_warning(sb, "Filesystem error recorded "
4803 "from previous mount: %s", errstr);
4804 ext4_warning(sb, "Marking fs in need of filesystem check.");
4805
4806 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
4807 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
4808 ext4_commit_super(sb, 1);
4809
4810 jbd2_journal_clear_err(journal);
4811 jbd2_journal_update_sb_errno(journal);
4812 }
4813 }
4814
4815 /*
4816 * Force the running and committing transactions to commit,
4817 * and wait on the commit.
4818 */
4819 int ext4_force_commit(struct super_block *sb)
4820 {
4821 journal_t *journal;
4822
4823 if (sb_rdonly(sb))
4824 return 0;
4825
4826 journal = EXT4_SB(sb)->s_journal;
4827 return ext4_journal_force_commit(journal);
4828 }
4829
4830 static int ext4_sync_fs(struct super_block *sb, int wait)
4831 {
4832 int ret = 0;
4833 tid_t target;
4834 bool needs_barrier = false;
4835 struct ext4_sb_info *sbi = EXT4_SB(sb);
4836
4837 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
4838 return 0;
4839
4840 trace_ext4_sync_fs(sb, wait);
4841 flush_workqueue(sbi->rsv_conversion_wq);
4842 /*
4843 * Writeback quota in non-journalled quota case - journalled quota has
4844 * no dirty dquots
4845 */
4846 dquot_writeback_dquots(sb, -1);
4847 /*
4848 * Data writeback is possible w/o journal transaction, so barrier must
4849 * being sent at the end of the function. But we can skip it if
4850 * transaction_commit will do it for us.
4851 */
4852 if (sbi->s_journal) {
4853 target = jbd2_get_latest_transaction(sbi->s_journal);
4854 if (wait && sbi->s_journal->j_flags & JBD2_BARRIER &&
4855 !jbd2_trans_will_send_data_barrier(sbi->s_journal, target))
4856 needs_barrier = true;
4857
4858 if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
4859 if (wait)
4860 ret = jbd2_log_wait_commit(sbi->s_journal,
4861 target);
4862 }
4863 } else if (wait && test_opt(sb, BARRIER))
4864 needs_barrier = true;
4865 if (needs_barrier) {
4866 int err;
4867 err = blkdev_issue_flush(sb->s_bdev, GFP_KERNEL, NULL);
4868 if (!ret)
4869 ret = err;
4870 }
4871
4872 return ret;
4873 }
4874
4875 /*
4876 * LVM calls this function before a (read-only) snapshot is created. This
4877 * gives us a chance to flush the journal completely and mark the fs clean.
4878 *
4879 * Note that only this function cannot bring a filesystem to be in a clean
4880 * state independently. It relies on upper layer to stop all data & metadata
4881 * modifications.
4882 */
4883 static int ext4_freeze(struct super_block *sb)
4884 {
4885 int error = 0;
4886 journal_t *journal;
4887
4888 if (sb_rdonly(sb))
4889 return 0;
4890
4891 journal = EXT4_SB(sb)->s_journal;
4892
4893 if (journal) {
4894 /* Now we set up the journal barrier. */
4895 jbd2_journal_lock_updates(journal);
4896
4897 /*
4898 * Don't clear the needs_recovery flag if we failed to
4899 * flush the journal.
4900 */
4901 error = jbd2_journal_flush(journal);
4902 if (error < 0)
4903 goto out;
4904
4905 /* Journal blocked and flushed, clear needs_recovery flag. */
4906 ext4_clear_feature_journal_needs_recovery(sb);
4907 }
4908
4909 error = ext4_commit_super(sb, 1);
4910 out:
4911 if (journal)
4912 /* we rely on upper layer to stop further updates */
4913 jbd2_journal_unlock_updates(journal);
4914 return error;
4915 }
4916
4917 /*
4918 * Called by LVM after the snapshot is done. We need to reset the RECOVER
4919 * flag here, even though the filesystem is not technically dirty yet.
4920 */
4921 static int ext4_unfreeze(struct super_block *sb)
4922 {
4923 if (sb_rdonly(sb) || ext4_forced_shutdown(EXT4_SB(sb)))
4924 return 0;
4925
4926 if (EXT4_SB(sb)->s_journal) {
4927 /* Reset the needs_recovery flag before the fs is unlocked. */
4928 ext4_set_feature_journal_needs_recovery(sb);
4929 }
4930
4931 ext4_commit_super(sb, 1);
4932 return 0;
4933 }
4934
4935 /*
4936 * Structure to save mount options for ext4_remount's benefit
4937 */
4938 struct ext4_mount_options {
4939 unsigned long s_mount_opt;
4940 unsigned long s_mount_opt2;
4941 kuid_t s_resuid;
4942 kgid_t s_resgid;
4943 unsigned long s_commit_interval;
4944 u32 s_min_batch_time, s_max_batch_time;
4945 #ifdef CONFIG_QUOTA
4946 int s_jquota_fmt;
4947 char *s_qf_names[EXT4_MAXQUOTAS];
4948 #endif
4949 };
4950
4951 static int ext4_remount(struct super_block *sb, int *flags, char *data)
4952 {
4953 struct ext4_super_block *es;
4954 struct ext4_sb_info *sbi = EXT4_SB(sb);
4955 unsigned long old_sb_flags;
4956 struct ext4_mount_options old_opts;
4957 int enable_quota = 0;
4958 ext4_group_t g;
4959 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
4960 int err = 0;
4961 #ifdef CONFIG_QUOTA
4962 int i, j;
4963 #endif
4964 char *orig_data = kstrdup(data, GFP_KERNEL);
4965
4966 /* Store the original options */
4967 old_sb_flags = sb->s_flags;
4968 old_opts.s_mount_opt = sbi->s_mount_opt;
4969 old_opts.s_mount_opt2 = sbi->s_mount_opt2;
4970 old_opts.s_resuid = sbi->s_resuid;
4971 old_opts.s_resgid = sbi->s_resgid;
4972 old_opts.s_commit_interval = sbi->s_commit_interval;
4973 old_opts.s_min_batch_time = sbi->s_min_batch_time;
4974 old_opts.s_max_batch_time = sbi->s_max_batch_time;
4975 #ifdef CONFIG_QUOTA
4976 old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
4977 for (i = 0; i < EXT4_MAXQUOTAS; i++)
4978 if (sbi->s_qf_names[i]) {
4979 old_opts.s_qf_names[i] = kstrdup(sbi->s_qf_names[i],
4980 GFP_KERNEL);
4981 if (!old_opts.s_qf_names[i]) {
4982 for (j = 0; j < i; j++)
4983 kfree(old_opts.s_qf_names[j]);
4984 kfree(orig_data);
4985 return -ENOMEM;
4986 }
4987 } else
4988 old_opts.s_qf_names[i] = NULL;
4989 #endif
4990 if (sbi->s_journal && sbi->s_journal->j_task->io_context)
4991 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio;
4992
4993 if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) {
4994 err = -EINVAL;
4995 goto restore_opts;
4996 }
4997
4998 if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^
4999 test_opt(sb, JOURNAL_CHECKSUM)) {
5000 ext4_msg(sb, KERN_ERR, "changing journal_checksum "
5001 "during remount not supported; ignoring");
5002 sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM;
5003 }
5004
5005 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
5006 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
5007 ext4_msg(sb, KERN_ERR, "can't mount with "
5008 "both data=journal and delalloc");
5009 err = -EINVAL;
5010 goto restore_opts;
5011 }
5012 if (test_opt(sb, DIOREAD_NOLOCK)) {
5013 ext4_msg(sb, KERN_ERR, "can't mount with "
5014 "both data=journal and dioread_nolock");
5015 err = -EINVAL;
5016 goto restore_opts;
5017 }
5018 if (test_opt(sb, DAX)) {
5019 ext4_msg(sb, KERN_ERR, "can't mount with "
5020 "both data=journal and dax");
5021 err = -EINVAL;
5022 goto restore_opts;
5023 }
5024 } else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) {
5025 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
5026 ext4_msg(sb, KERN_ERR, "can't mount with "
5027 "journal_async_commit in data=ordered mode");
5028 err = -EINVAL;
5029 goto restore_opts;
5030 }
5031 }
5032
5033 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_NO_MBCACHE) {
5034 ext4_msg(sb, KERN_ERR, "can't enable nombcache during remount");
5035 err = -EINVAL;
5036 goto restore_opts;
5037 }
5038
5039 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_DAX) {
5040 ext4_msg(sb, KERN_WARNING, "warning: refusing change of "
5041 "dax flag with busy inodes while remounting");
5042 sbi->s_mount_opt ^= EXT4_MOUNT_DAX;
5043 }
5044
5045 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED)
5046 ext4_abort(sb, "Abort forced by user");
5047
5048 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
5049 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
5050
5051 es = sbi->s_es;
5052
5053 if (sbi->s_journal) {
5054 ext4_init_journal_params(sb, sbi->s_journal);
5055 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
5056 }
5057
5058 if (*flags & MS_LAZYTIME)
5059 sb->s_flags |= MS_LAZYTIME;
5060
5061 if ((bool)(*flags & MS_RDONLY) != sb_rdonly(sb)) {
5062 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) {
5063 err = -EROFS;
5064 goto restore_opts;
5065 }
5066
5067 if (*flags & MS_RDONLY) {
5068 err = sync_filesystem(sb);
5069 if (err < 0)
5070 goto restore_opts;
5071 err = dquot_suspend(sb, -1);
5072 if (err < 0)
5073 goto restore_opts;
5074
5075 /*
5076 * First of all, the unconditional stuff we have to do
5077 * to disable replay of the journal when we next remount
5078 */
5079 sb->s_flags |= MS_RDONLY;
5080
5081 /*
5082 * OK, test if we are remounting a valid rw partition
5083 * readonly, and if so set the rdonly flag and then
5084 * mark the partition as valid again.
5085 */
5086 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
5087 (sbi->s_mount_state & EXT4_VALID_FS))
5088 es->s_state = cpu_to_le16(sbi->s_mount_state);
5089
5090 if (sbi->s_journal)
5091 ext4_mark_recovery_complete(sb, es);
5092 } else {
5093 /* Make sure we can mount this feature set readwrite */
5094 if (ext4_has_feature_readonly(sb) ||
5095 !ext4_feature_set_ok(sb, 0)) {
5096 err = -EROFS;
5097 goto restore_opts;
5098 }
5099 /*
5100 * Make sure the group descriptor checksums
5101 * are sane. If they aren't, refuse to remount r/w.
5102 */
5103 for (g = 0; g < sbi->s_groups_count; g++) {
5104 struct ext4_group_desc *gdp =
5105 ext4_get_group_desc(sb, g, NULL);
5106
5107 if (!ext4_group_desc_csum_verify(sb, g, gdp)) {
5108 ext4_msg(sb, KERN_ERR,
5109 "ext4_remount: Checksum for group %u failed (%u!=%u)",
5110 g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)),
5111 le16_to_cpu(gdp->bg_checksum));
5112 err = -EFSBADCRC;
5113 goto restore_opts;
5114 }
5115 }
5116
5117 /*
5118 * If we have an unprocessed orphan list hanging
5119 * around from a previously readonly bdev mount,
5120 * require a full umount/remount for now.
5121 */
5122 if (es->s_last_orphan) {
5123 ext4_msg(sb, KERN_WARNING, "Couldn't "
5124 "remount RDWR because of unprocessed "
5125 "orphan inode list. Please "
5126 "umount/remount instead");
5127 err = -EINVAL;
5128 goto restore_opts;
5129 }
5130
5131 /*
5132 * Mounting a RDONLY partition read-write, so reread
5133 * and store the current valid flag. (It may have
5134 * been changed by e2fsck since we originally mounted
5135 * the partition.)
5136 */
5137 if (sbi->s_journal)
5138 ext4_clear_journal_err(sb, es);
5139 sbi->s_mount_state = le16_to_cpu(es->s_state);
5140 if (!ext4_setup_super(sb, es, 0))
5141 sb->s_flags &= ~MS_RDONLY;
5142 if (ext4_has_feature_mmp(sb))
5143 if (ext4_multi_mount_protect(sb,
5144 le64_to_cpu(es->s_mmp_block))) {
5145 err = -EROFS;
5146 goto restore_opts;
5147 }
5148 enable_quota = 1;
5149 }
5150 }
5151
5152 /*
5153 * Reinitialize lazy itable initialization thread based on
5154 * current settings
5155 */
5156 if (sb_rdonly(sb) || !test_opt(sb, INIT_INODE_TABLE))
5157 ext4_unregister_li_request(sb);
5158 else {
5159 ext4_group_t first_not_zeroed;
5160 first_not_zeroed = ext4_has_uninit_itable(sb);
5161 ext4_register_li_request(sb, first_not_zeroed);
5162 }
5163
5164 ext4_setup_system_zone(sb);
5165 if (sbi->s_journal == NULL && !(old_sb_flags & MS_RDONLY))
5166 ext4_commit_super(sb, 1);
5167
5168 #ifdef CONFIG_QUOTA
5169 /* Release old quota file names */
5170 for (i = 0; i < EXT4_MAXQUOTAS; i++)
5171 kfree(old_opts.s_qf_names[i]);
5172 if (enable_quota) {
5173 if (sb_any_quota_suspended(sb))
5174 dquot_resume(sb, -1);
5175 else if (ext4_has_feature_quota(sb)) {
5176 err = ext4_enable_quotas(sb);
5177 if (err)
5178 goto restore_opts;
5179 }
5180 }
5181 #endif
5182
5183 *flags = (*flags & ~MS_LAZYTIME) | (sb->s_flags & MS_LAZYTIME);
5184 ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data);
5185 kfree(orig_data);
5186 return 0;
5187
5188 restore_opts:
5189 sb->s_flags = old_sb_flags;
5190 sbi->s_mount_opt = old_opts.s_mount_opt;
5191 sbi->s_mount_opt2 = old_opts.s_mount_opt2;
5192 sbi->s_resuid = old_opts.s_resuid;
5193 sbi->s_resgid = old_opts.s_resgid;
5194 sbi->s_commit_interval = old_opts.s_commit_interval;
5195 sbi->s_min_batch_time = old_opts.s_min_batch_time;
5196 sbi->s_max_batch_time = old_opts.s_max_batch_time;
5197 #ifdef CONFIG_QUOTA
5198 sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
5199 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
5200 kfree(sbi->s_qf_names[i]);
5201 sbi->s_qf_names[i] = old_opts.s_qf_names[i];
5202 }
5203 #endif
5204 kfree(orig_data);
5205 return err;
5206 }
5207
5208 #ifdef CONFIG_QUOTA
5209 static int ext4_statfs_project(struct super_block *sb,
5210 kprojid_t projid, struct kstatfs *buf)
5211 {
5212 struct kqid qid;
5213 struct dquot *dquot;
5214 u64 limit;
5215 u64 curblock;
5216
5217 qid = make_kqid_projid(projid);
5218 dquot = dqget(sb, qid);
5219 if (IS_ERR(dquot))
5220 return PTR_ERR(dquot);
5221 spin_lock(&dquot->dq_dqb_lock);
5222
5223 limit = (dquot->dq_dqb.dqb_bsoftlimit ?
5224 dquot->dq_dqb.dqb_bsoftlimit :
5225 dquot->dq_dqb.dqb_bhardlimit) >> sb->s_blocksize_bits;
5226 if (limit && buf->f_blocks > limit) {
5227 curblock = dquot->dq_dqb.dqb_curspace >> sb->s_blocksize_bits;
5228 buf->f_blocks = limit;
5229 buf->f_bfree = buf->f_bavail =
5230 (buf->f_blocks > curblock) ?
5231 (buf->f_blocks - curblock) : 0;
5232 }
5233
5234 limit = dquot->dq_dqb.dqb_isoftlimit ?
5235 dquot->dq_dqb.dqb_isoftlimit :
5236 dquot->dq_dqb.dqb_ihardlimit;
5237 if (limit && buf->f_files > limit) {
5238 buf->f_files = limit;
5239 buf->f_ffree =
5240 (buf->f_files > dquot->dq_dqb.dqb_curinodes) ?
5241 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0;
5242 }
5243
5244 spin_unlock(&dquot->dq_dqb_lock);
5245 dqput(dquot);
5246 return 0;
5247 }
5248 #endif
5249
5250 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
5251 {
5252 struct super_block *sb = dentry->d_sb;
5253 struct ext4_sb_info *sbi = EXT4_SB(sb);
5254 struct ext4_super_block *es = sbi->s_es;
5255 ext4_fsblk_t overhead = 0, resv_blocks;
5256 u64 fsid;
5257 s64 bfree;
5258 resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters));
5259
5260 if (!test_opt(sb, MINIX_DF))
5261 overhead = sbi->s_overhead;
5262
5263 buf->f_type = EXT4_SUPER_MAGIC;
5264 buf->f_bsize = sb->s_blocksize;
5265 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead);
5266 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
5267 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
5268 /* prevent underflow in case that few free space is available */
5269 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0));
5270 buf->f_bavail = buf->f_bfree -
5271 (ext4_r_blocks_count(es) + resv_blocks);
5272 if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks))
5273 buf->f_bavail = 0;
5274 buf->f_files = le32_to_cpu(es->s_inodes_count);
5275 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
5276 buf->f_namelen = EXT4_NAME_LEN;
5277 fsid = le64_to_cpup((void *)es->s_uuid) ^
5278 le64_to_cpup((void *)es->s_uuid + sizeof(u64));
5279 buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL;
5280 buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL;
5281
5282 #ifdef CONFIG_QUOTA
5283 if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) &&
5284 sb_has_quota_limits_enabled(sb, PRJQUOTA))
5285 ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf);
5286 #endif
5287 return 0;
5288 }
5289
5290
5291 #ifdef CONFIG_QUOTA
5292
5293 /*
5294 * Helper functions so that transaction is started before we acquire dqio_sem
5295 * to keep correct lock ordering of transaction > dqio_sem
5296 */
5297 static inline struct inode *dquot_to_inode(struct dquot *dquot)
5298 {
5299 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type];
5300 }
5301
5302 static int ext4_write_dquot(struct dquot *dquot)
5303 {
5304 int ret, err;
5305 handle_t *handle;
5306 struct inode *inode;
5307
5308 inode = dquot_to_inode(dquot);
5309 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5310 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
5311 if (IS_ERR(handle))
5312 return PTR_ERR(handle);
5313 ret = dquot_commit(dquot);
5314 err = ext4_journal_stop(handle);
5315 if (!ret)
5316 ret = err;
5317 return ret;
5318 }
5319
5320 static int ext4_acquire_dquot(struct dquot *dquot)
5321 {
5322 int ret, err;
5323 handle_t *handle;
5324
5325 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
5326 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
5327 if (IS_ERR(handle))
5328 return PTR_ERR(handle);
5329 ret = dquot_acquire(dquot);
5330 err = ext4_journal_stop(handle);
5331 if (!ret)
5332 ret = err;
5333 return ret;
5334 }
5335
5336 static int ext4_release_dquot(struct dquot *dquot)
5337 {
5338 int ret, err;
5339 handle_t *handle;
5340
5341 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
5342 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
5343 if (IS_ERR(handle)) {
5344 /* Release dquot anyway to avoid endless cycle in dqput() */
5345 dquot_release(dquot);
5346 return PTR_ERR(handle);
5347 }
5348 ret = dquot_release(dquot);
5349 err = ext4_journal_stop(handle);
5350 if (!ret)
5351 ret = err;
5352 return ret;
5353 }
5354
5355 static int ext4_mark_dquot_dirty(struct dquot *dquot)
5356 {
5357 struct super_block *sb = dquot->dq_sb;
5358 struct ext4_sb_info *sbi = EXT4_SB(sb);
5359
5360 /* Are we journaling quotas? */
5361 if (ext4_has_feature_quota(sb) ||
5362 sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
5363 dquot_mark_dquot_dirty(dquot);
5364 return ext4_write_dquot(dquot);
5365 } else {
5366 return dquot_mark_dquot_dirty(dquot);
5367 }
5368 }
5369
5370 static int ext4_write_info(struct super_block *sb, int type)
5371 {
5372 int ret, err;
5373 handle_t *handle;
5374
5375 /* Data block + inode block */
5376 handle = ext4_journal_start(d_inode(sb->s_root), EXT4_HT_QUOTA, 2);
5377 if (IS_ERR(handle))
5378 return PTR_ERR(handle);
5379 ret = dquot_commit_info(sb, type);
5380 err = ext4_journal_stop(handle);
5381 if (!ret)
5382 ret = err;
5383 return ret;
5384 }
5385
5386 /*
5387 * Turn on quotas during mount time - we need to find
5388 * the quota file and such...
5389 */
5390 static int ext4_quota_on_mount(struct super_block *sb, int type)
5391 {
5392 return dquot_quota_on_mount(sb, EXT4_SB(sb)->s_qf_names[type],
5393 EXT4_SB(sb)->s_jquota_fmt, type);
5394 }
5395
5396 static void lockdep_set_quota_inode(struct inode *inode, int subclass)
5397 {
5398 struct ext4_inode_info *ei = EXT4_I(inode);
5399
5400 /* The first argument of lockdep_set_subclass has to be
5401 * *exactly* the same as the argument to init_rwsem() --- in
5402 * this case, in init_once() --- or lockdep gets unhappy
5403 * because the name of the lock is set using the
5404 * stringification of the argument to init_rwsem().
5405 */
5406 (void) ei; /* shut up clang warning if !CONFIG_LOCKDEP */
5407 lockdep_set_subclass(&ei->i_data_sem, subclass);
5408 }
5409
5410 /*
5411 * Standard function to be called on quota_on
5412 */
5413 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
5414 const struct path *path)
5415 {
5416 int err;
5417
5418 if (!test_opt(sb, QUOTA))
5419 return -EINVAL;
5420
5421 /* Quotafile not on the same filesystem? */
5422 if (path->dentry->d_sb != sb)
5423 return -EXDEV;
5424 /* Journaling quota? */
5425 if (EXT4_SB(sb)->s_qf_names[type]) {
5426 /* Quotafile not in fs root? */
5427 if (path->dentry->d_parent != sb->s_root)
5428 ext4_msg(sb, KERN_WARNING,
5429 "Quota file not on filesystem root. "
5430 "Journaled quota will not work");
5431 sb_dqopt(sb)->flags |= DQUOT_NOLIST_DIRTY;
5432 } else {
5433 /*
5434 * Clear the flag just in case mount options changed since
5435 * last time.
5436 */
5437 sb_dqopt(sb)->flags &= ~DQUOT_NOLIST_DIRTY;
5438 }
5439
5440 /*
5441 * When we journal data on quota file, we have to flush journal to see
5442 * all updates to the file when we bypass pagecache...
5443 */
5444 if (EXT4_SB(sb)->s_journal &&
5445 ext4_should_journal_data(d_inode(path->dentry))) {
5446 /*
5447 * We don't need to lock updates but journal_flush() could
5448 * otherwise be livelocked...
5449 */
5450 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal);
5451 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal);
5452 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
5453 if (err)
5454 return err;
5455 }
5456
5457 lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA);
5458 err = dquot_quota_on(sb, type, format_id, path);
5459 if (err) {
5460 lockdep_set_quota_inode(path->dentry->d_inode,
5461 I_DATA_SEM_NORMAL);
5462 } else {
5463 struct inode *inode = d_inode(path->dentry);
5464 handle_t *handle;
5465
5466 /*
5467 * Set inode flags to prevent userspace from messing with quota
5468 * files. If this fails, we return success anyway since quotas
5469 * are already enabled and this is not a hard failure.
5470 */
5471 inode_lock(inode);
5472 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
5473 if (IS_ERR(handle))
5474 goto unlock_inode;
5475 EXT4_I(inode)->i_flags |= EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL;
5476 inode_set_flags(inode, S_NOATIME | S_IMMUTABLE,
5477 S_NOATIME | S_IMMUTABLE);
5478 ext4_mark_inode_dirty(handle, inode);
5479 ext4_journal_stop(handle);
5480 unlock_inode:
5481 inode_unlock(inode);
5482 }
5483 return err;
5484 }
5485
5486 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
5487 unsigned int flags)
5488 {
5489 int err;
5490 struct inode *qf_inode;
5491 unsigned long qf_inums[EXT4_MAXQUOTAS] = {
5492 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
5493 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
5494 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
5495 };
5496
5497 BUG_ON(!ext4_has_feature_quota(sb));
5498
5499 if (!qf_inums[type])
5500 return -EPERM;
5501
5502 qf_inode = ext4_iget(sb, qf_inums[type]);
5503 if (IS_ERR(qf_inode)) {
5504 ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]);
5505 return PTR_ERR(qf_inode);
5506 }
5507
5508 /* Don't account quota for quota files to avoid recursion */
5509 qf_inode->i_flags |= S_NOQUOTA;
5510 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA);
5511 err = dquot_enable(qf_inode, type, format_id, flags);
5512 iput(qf_inode);
5513 if (err)
5514 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL);
5515
5516 return err;
5517 }
5518
5519 /* Enable usage tracking for all quota types. */
5520 static int ext4_enable_quotas(struct super_block *sb)
5521 {
5522 int type, err = 0;
5523 unsigned long qf_inums[EXT4_MAXQUOTAS] = {
5524 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
5525 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
5526 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
5527 };
5528 bool quota_mopt[EXT4_MAXQUOTAS] = {
5529 test_opt(sb, USRQUOTA),
5530 test_opt(sb, GRPQUOTA),
5531 test_opt(sb, PRJQUOTA),
5532 };
5533
5534 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY;
5535 for (type = 0; type < EXT4_MAXQUOTAS; type++) {
5536 if (qf_inums[type]) {
5537 err = ext4_quota_enable(sb, type, QFMT_VFS_V1,
5538 DQUOT_USAGE_ENABLED |
5539 (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0));
5540 if (err) {
5541 for (type--; type >= 0; type--)
5542 dquot_quota_off(sb, type);
5543
5544 ext4_warning(sb,
5545 "Failed to enable quota tracking "
5546 "(type=%d, err=%d). Please run "
5547 "e2fsck to fix.", type, err);
5548 return err;
5549 }
5550 }
5551 }
5552 return 0;
5553 }
5554
5555 static int ext4_quota_off(struct super_block *sb, int type)
5556 {
5557 struct inode *inode = sb_dqopt(sb)->files[type];
5558 handle_t *handle;
5559 int err;
5560
5561 /* Force all delayed allocation blocks to be allocated.
5562 * Caller already holds s_umount sem */
5563 if (test_opt(sb, DELALLOC))
5564 sync_filesystem(sb);
5565
5566 if (!inode || !igrab(inode))
5567 goto out;
5568
5569 err = dquot_quota_off(sb, type);
5570 if (err || ext4_has_feature_quota(sb))
5571 goto out_put;
5572
5573 inode_lock(inode);
5574 /*
5575 * Update modification times of quota files when userspace can
5576 * start looking at them. If we fail, we return success anyway since
5577 * this is not a hard failure and quotas are already disabled.
5578 */
5579 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
5580 if (IS_ERR(handle))
5581 goto out_unlock;
5582 EXT4_I(inode)->i_flags &= ~(EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL);
5583 inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE);
5584 inode->i_mtime = inode->i_ctime = current_time(inode);
5585 ext4_mark_inode_dirty(handle, inode);
5586 ext4_journal_stop(handle);
5587 out_unlock:
5588 inode_unlock(inode);
5589 out_put:
5590 lockdep_set_quota_inode(inode, I_DATA_SEM_NORMAL);
5591 iput(inode);
5592 return err;
5593 out:
5594 return dquot_quota_off(sb, type);
5595 }
5596
5597 /* Read data from quotafile - avoid pagecache and such because we cannot afford
5598 * acquiring the locks... As quota files are never truncated and quota code
5599 * itself serializes the operations (and no one else should touch the files)
5600 * we don't have to be afraid of races */
5601 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
5602 size_t len, loff_t off)
5603 {
5604 struct inode *inode = sb_dqopt(sb)->files[type];
5605 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5606 int offset = off & (sb->s_blocksize - 1);
5607 int tocopy;
5608 size_t toread;
5609 struct buffer_head *bh;
5610 loff_t i_size = i_size_read(inode);
5611
5612 if (off > i_size)
5613 return 0;
5614 if (off+len > i_size)
5615 len = i_size-off;
5616 toread = len;
5617 while (toread > 0) {
5618 tocopy = sb->s_blocksize - offset < toread ?
5619 sb->s_blocksize - offset : toread;
5620 bh = ext4_bread(NULL, inode, blk, 0);
5621 if (IS_ERR(bh))
5622 return PTR_ERR(bh);
5623 if (!bh) /* A hole? */
5624 memset(data, 0, tocopy);
5625 else
5626 memcpy(data, bh->b_data+offset, tocopy);
5627 brelse(bh);
5628 offset = 0;
5629 toread -= tocopy;
5630 data += tocopy;
5631 blk++;
5632 }
5633 return len;
5634 }
5635
5636 /* Write to quotafile (we know the transaction is already started and has
5637 * enough credits) */
5638 static ssize_t ext4_quota_write(struct super_block *sb, int type,
5639 const char *data, size_t len, loff_t off)
5640 {
5641 struct inode *inode = sb_dqopt(sb)->files[type];
5642 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5643 int err, offset = off & (sb->s_blocksize - 1);
5644 int retries = 0;
5645 struct buffer_head *bh;
5646 handle_t *handle = journal_current_handle();
5647
5648 if (EXT4_SB(sb)->s_journal && !handle) {
5649 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5650 " cancelled because transaction is not started",
5651 (unsigned long long)off, (unsigned long long)len);
5652 return -EIO;
5653 }
5654 /*
5655 * Since we account only one data block in transaction credits,
5656 * then it is impossible to cross a block boundary.
5657 */
5658 if (sb->s_blocksize - offset < len) {
5659 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5660 " cancelled because not block aligned",
5661 (unsigned long long)off, (unsigned long long)len);
5662 return -EIO;
5663 }
5664
5665 do {
5666 bh = ext4_bread(handle, inode, blk,
5667 EXT4_GET_BLOCKS_CREATE |
5668 EXT4_GET_BLOCKS_METADATA_NOFAIL);
5669 } while (IS_ERR(bh) && (PTR_ERR(bh) == -ENOSPC) &&
5670 ext4_should_retry_alloc(inode->i_sb, &retries));
5671 if (IS_ERR(bh))
5672 return PTR_ERR(bh);
5673 if (!bh)
5674 goto out;
5675 BUFFER_TRACE(bh, "get write access");
5676 err = ext4_journal_get_write_access(handle, bh);
5677 if (err) {
5678 brelse(bh);
5679 return err;
5680 }
5681 lock_buffer(bh);
5682 memcpy(bh->b_data+offset, data, len);
5683 flush_dcache_page(bh->b_page);
5684 unlock_buffer(bh);
5685 err = ext4_handle_dirty_metadata(handle, NULL, bh);
5686 brelse(bh);
5687 out:
5688 if (inode->i_size < off + len) {
5689 i_size_write(inode, off + len);
5690 EXT4_I(inode)->i_disksize = inode->i_size;
5691 ext4_mark_inode_dirty(handle, inode);
5692 }
5693 return len;
5694 }
5695
5696 static int ext4_get_next_id(struct super_block *sb, struct kqid *qid)
5697 {
5698 const struct quota_format_ops *ops;
5699
5700 if (!sb_has_quota_loaded(sb, qid->type))
5701 return -ESRCH;
5702 ops = sb_dqopt(sb)->ops[qid->type];
5703 if (!ops || !ops->get_next_id)
5704 return -ENOSYS;
5705 return dquot_get_next_id(sb, qid);
5706 }
5707 #endif
5708
5709 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
5710 const char *dev_name, void *data)
5711 {
5712 return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super);
5713 }
5714
5715 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
5716 static inline void register_as_ext2(void)
5717 {
5718 int err = register_filesystem(&ext2_fs_type);
5719 if (err)
5720 printk(KERN_WARNING
5721 "EXT4-fs: Unable to register as ext2 (%d)\n", err);
5722 }
5723
5724 static inline void unregister_as_ext2(void)
5725 {
5726 unregister_filesystem(&ext2_fs_type);
5727 }
5728
5729 static inline int ext2_feature_set_ok(struct super_block *sb)
5730 {
5731 if (ext4_has_unknown_ext2_incompat_features(sb))
5732 return 0;
5733 if (sb_rdonly(sb))
5734 return 1;
5735 if (ext4_has_unknown_ext2_ro_compat_features(sb))
5736 return 0;
5737 return 1;
5738 }
5739 #else
5740 static inline void register_as_ext2(void) { }
5741 static inline void unregister_as_ext2(void) { }
5742 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
5743 #endif
5744
5745 static inline void register_as_ext3(void)
5746 {
5747 int err = register_filesystem(&ext3_fs_type);
5748 if (err)
5749 printk(KERN_WARNING
5750 "EXT4-fs: Unable to register as ext3 (%d)\n", err);
5751 }
5752
5753 static inline void unregister_as_ext3(void)
5754 {
5755 unregister_filesystem(&ext3_fs_type);
5756 }
5757
5758 static inline int ext3_feature_set_ok(struct super_block *sb)
5759 {
5760 if (ext4_has_unknown_ext3_incompat_features(sb))
5761 return 0;
5762 if (!ext4_has_feature_journal(sb))
5763 return 0;
5764 if (sb_rdonly(sb))
5765 return 1;
5766 if (ext4_has_unknown_ext3_ro_compat_features(sb))
5767 return 0;
5768 return 1;
5769 }
5770
5771 static struct file_system_type ext4_fs_type = {
5772 .owner = THIS_MODULE,
5773 .name = "ext4",
5774 .mount = ext4_mount,
5775 .kill_sb = kill_block_super,
5776 .fs_flags = FS_REQUIRES_DEV,
5777 };
5778 MODULE_ALIAS_FS("ext4");
5779
5780 /* Shared across all ext4 file systems */
5781 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ];
5782
5783 static int __init ext4_init_fs(void)
5784 {
5785 int i, err;
5786
5787 ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64);
5788 ext4_li_info = NULL;
5789 mutex_init(&ext4_li_mtx);
5790
5791 /* Build-time check for flags consistency */
5792 ext4_check_flag_values();
5793
5794 for (i = 0; i < EXT4_WQ_HASH_SZ; i++)
5795 init_waitqueue_head(&ext4__ioend_wq[i]);
5796
5797 err = ext4_init_es();
5798 if (err)
5799 return err;
5800
5801 err = ext4_init_pageio();
5802 if (err)
5803 goto out5;
5804
5805 err = ext4_init_system_zone();
5806 if (err)
5807 goto out4;
5808
5809 err = ext4_init_sysfs();
5810 if (err)
5811 goto out3;
5812
5813 err = ext4_init_mballoc();
5814 if (err)
5815 goto out2;
5816 err = init_inodecache();
5817 if (err)
5818 goto out1;
5819 register_as_ext3();
5820 register_as_ext2();
5821 err = register_filesystem(&ext4_fs_type);
5822 if (err)
5823 goto out;
5824
5825 return 0;
5826 out:
5827 unregister_as_ext2();
5828 unregister_as_ext3();
5829 destroy_inodecache();
5830 out1:
5831 ext4_exit_mballoc();
5832 out2:
5833 ext4_exit_sysfs();
5834 out3:
5835 ext4_exit_system_zone();
5836 out4:
5837 ext4_exit_pageio();
5838 out5:
5839 ext4_exit_es();
5840
5841 return err;
5842 }
5843
5844 static void __exit ext4_exit_fs(void)
5845 {
5846 ext4_destroy_lazyinit_thread();
5847 unregister_as_ext2();
5848 unregister_as_ext3();
5849 unregister_filesystem(&ext4_fs_type);
5850 destroy_inodecache();
5851 ext4_exit_mballoc();
5852 ext4_exit_sysfs();
5853 ext4_exit_system_zone();
5854 ext4_exit_pageio();
5855 ext4_exit_es();
5856 }
5857
5858 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
5859 MODULE_DESCRIPTION("Fourth Extended Filesystem");
5860 MODULE_LICENSE("GPL");
5861 module_init(ext4_init_fs)
5862 module_exit(ext4_exit_fs)