]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/ext4/super.c
procfs: new helper - PDE_DATA(inode)
[mirror_ubuntu-bionic-kernel.git] / fs / ext4 / super.c
1 /*
2 * linux/fs/ext4/super.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * Big-endian to little-endian byte-swapping/bitmaps by
16 * David S. Miller (davem@caip.rutgers.edu), 1995
17 */
18
19 #include <linux/module.h>
20 #include <linux/string.h>
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/vmalloc.h>
24 #include <linux/jbd2.h>
25 #include <linux/slab.h>
26 #include <linux/init.h>
27 #include <linux/blkdev.h>
28 #include <linux/parser.h>
29 #include <linux/buffer_head.h>
30 #include <linux/exportfs.h>
31 #include <linux/vfs.h>
32 #include <linux/random.h>
33 #include <linux/mount.h>
34 #include <linux/namei.h>
35 #include <linux/quotaops.h>
36 #include <linux/seq_file.h>
37 #include <linux/proc_fs.h>
38 #include <linux/ctype.h>
39 #include <linux/log2.h>
40 #include <linux/crc16.h>
41 #include <linux/cleancache.h>
42 #include <asm/uaccess.h>
43
44 #include <linux/kthread.h>
45 #include <linux/freezer.h>
46
47 #include "ext4.h"
48 #include "ext4_extents.h" /* Needed for trace points definition */
49 #include "ext4_jbd2.h"
50 #include "xattr.h"
51 #include "acl.h"
52 #include "mballoc.h"
53
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/ext4.h>
56
57 static struct proc_dir_entry *ext4_proc_root;
58 static struct kset *ext4_kset;
59 static struct ext4_lazy_init *ext4_li_info;
60 static struct mutex ext4_li_mtx;
61 static struct ext4_features *ext4_feat;
62
63 static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
64 unsigned long journal_devnum);
65 static int ext4_show_options(struct seq_file *seq, struct dentry *root);
66 static int ext4_commit_super(struct super_block *sb, int sync);
67 static void ext4_mark_recovery_complete(struct super_block *sb,
68 struct ext4_super_block *es);
69 static void ext4_clear_journal_err(struct super_block *sb,
70 struct ext4_super_block *es);
71 static int ext4_sync_fs(struct super_block *sb, int wait);
72 static int ext4_remount(struct super_block *sb, int *flags, char *data);
73 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
74 static int ext4_unfreeze(struct super_block *sb);
75 static int ext4_freeze(struct super_block *sb);
76 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
77 const char *dev_name, void *data);
78 static inline int ext2_feature_set_ok(struct super_block *sb);
79 static inline int ext3_feature_set_ok(struct super_block *sb);
80 static int ext4_feature_set_ok(struct super_block *sb, int readonly);
81 static void ext4_destroy_lazyinit_thread(void);
82 static void ext4_unregister_li_request(struct super_block *sb);
83 static void ext4_clear_request_list(void);
84
85 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
86 static struct file_system_type ext2_fs_type = {
87 .owner = THIS_MODULE,
88 .name = "ext2",
89 .mount = ext4_mount,
90 .kill_sb = kill_block_super,
91 .fs_flags = FS_REQUIRES_DEV,
92 };
93 MODULE_ALIAS_FS("ext2");
94 MODULE_ALIAS("ext2");
95 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type)
96 #else
97 #define IS_EXT2_SB(sb) (0)
98 #endif
99
100
101 #if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
102 static struct file_system_type ext3_fs_type = {
103 .owner = THIS_MODULE,
104 .name = "ext3",
105 .mount = ext4_mount,
106 .kill_sb = kill_block_super,
107 .fs_flags = FS_REQUIRES_DEV,
108 };
109 MODULE_ALIAS_FS("ext3");
110 MODULE_ALIAS("ext3");
111 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type)
112 #else
113 #define IS_EXT3_SB(sb) (0)
114 #endif
115
116 static int ext4_verify_csum_type(struct super_block *sb,
117 struct ext4_super_block *es)
118 {
119 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
120 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
121 return 1;
122
123 return es->s_checksum_type == EXT4_CRC32C_CHKSUM;
124 }
125
126 static __le32 ext4_superblock_csum(struct super_block *sb,
127 struct ext4_super_block *es)
128 {
129 struct ext4_sb_info *sbi = EXT4_SB(sb);
130 int offset = offsetof(struct ext4_super_block, s_checksum);
131 __u32 csum;
132
133 csum = ext4_chksum(sbi, ~0, (char *)es, offset);
134
135 return cpu_to_le32(csum);
136 }
137
138 int ext4_superblock_csum_verify(struct super_block *sb,
139 struct ext4_super_block *es)
140 {
141 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
142 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
143 return 1;
144
145 return es->s_checksum == ext4_superblock_csum(sb, es);
146 }
147
148 void ext4_superblock_csum_set(struct super_block *sb)
149 {
150 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
151
152 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
153 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
154 return;
155
156 es->s_checksum = ext4_superblock_csum(sb, es);
157 }
158
159 void *ext4_kvmalloc(size_t size, gfp_t flags)
160 {
161 void *ret;
162
163 ret = kmalloc(size, flags);
164 if (!ret)
165 ret = __vmalloc(size, flags, PAGE_KERNEL);
166 return ret;
167 }
168
169 void *ext4_kvzalloc(size_t size, gfp_t flags)
170 {
171 void *ret;
172
173 ret = kzalloc(size, flags);
174 if (!ret)
175 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL);
176 return ret;
177 }
178
179 void ext4_kvfree(void *ptr)
180 {
181 if (is_vmalloc_addr(ptr))
182 vfree(ptr);
183 else
184 kfree(ptr);
185
186 }
187
188 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
189 struct ext4_group_desc *bg)
190 {
191 return le32_to_cpu(bg->bg_block_bitmap_lo) |
192 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
193 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
194 }
195
196 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
197 struct ext4_group_desc *bg)
198 {
199 return le32_to_cpu(bg->bg_inode_bitmap_lo) |
200 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
201 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
202 }
203
204 ext4_fsblk_t ext4_inode_table(struct super_block *sb,
205 struct ext4_group_desc *bg)
206 {
207 return le32_to_cpu(bg->bg_inode_table_lo) |
208 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
209 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
210 }
211
212 __u32 ext4_free_group_clusters(struct super_block *sb,
213 struct ext4_group_desc *bg)
214 {
215 return le16_to_cpu(bg->bg_free_blocks_count_lo) |
216 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
217 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
218 }
219
220 __u32 ext4_free_inodes_count(struct super_block *sb,
221 struct ext4_group_desc *bg)
222 {
223 return le16_to_cpu(bg->bg_free_inodes_count_lo) |
224 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
225 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
226 }
227
228 __u32 ext4_used_dirs_count(struct super_block *sb,
229 struct ext4_group_desc *bg)
230 {
231 return le16_to_cpu(bg->bg_used_dirs_count_lo) |
232 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
233 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
234 }
235
236 __u32 ext4_itable_unused_count(struct super_block *sb,
237 struct ext4_group_desc *bg)
238 {
239 return le16_to_cpu(bg->bg_itable_unused_lo) |
240 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
241 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
242 }
243
244 void ext4_block_bitmap_set(struct super_block *sb,
245 struct ext4_group_desc *bg, ext4_fsblk_t blk)
246 {
247 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
248 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
249 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
250 }
251
252 void ext4_inode_bitmap_set(struct super_block *sb,
253 struct ext4_group_desc *bg, ext4_fsblk_t blk)
254 {
255 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk);
256 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
257 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
258 }
259
260 void ext4_inode_table_set(struct super_block *sb,
261 struct ext4_group_desc *bg, ext4_fsblk_t blk)
262 {
263 bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
264 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
265 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
266 }
267
268 void ext4_free_group_clusters_set(struct super_block *sb,
269 struct ext4_group_desc *bg, __u32 count)
270 {
271 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
272 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
273 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
274 }
275
276 void ext4_free_inodes_set(struct super_block *sb,
277 struct ext4_group_desc *bg, __u32 count)
278 {
279 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
280 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
281 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
282 }
283
284 void ext4_used_dirs_set(struct super_block *sb,
285 struct ext4_group_desc *bg, __u32 count)
286 {
287 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
288 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
289 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
290 }
291
292 void ext4_itable_unused_set(struct super_block *sb,
293 struct ext4_group_desc *bg, __u32 count)
294 {
295 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
296 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
297 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
298 }
299
300
301 static void __save_error_info(struct super_block *sb, const char *func,
302 unsigned int line)
303 {
304 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
305
306 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
307 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
308 es->s_last_error_time = cpu_to_le32(get_seconds());
309 strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func));
310 es->s_last_error_line = cpu_to_le32(line);
311 if (!es->s_first_error_time) {
312 es->s_first_error_time = es->s_last_error_time;
313 strncpy(es->s_first_error_func, func,
314 sizeof(es->s_first_error_func));
315 es->s_first_error_line = cpu_to_le32(line);
316 es->s_first_error_ino = es->s_last_error_ino;
317 es->s_first_error_block = es->s_last_error_block;
318 }
319 /*
320 * Start the daily error reporting function if it hasn't been
321 * started already
322 */
323 if (!es->s_error_count)
324 mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ);
325 le32_add_cpu(&es->s_error_count, 1);
326 }
327
328 static void save_error_info(struct super_block *sb, const char *func,
329 unsigned int line)
330 {
331 __save_error_info(sb, func, line);
332 ext4_commit_super(sb, 1);
333 }
334
335 /*
336 * The del_gendisk() function uninitializes the disk-specific data
337 * structures, including the bdi structure, without telling anyone
338 * else. Once this happens, any attempt to call mark_buffer_dirty()
339 * (for example, by ext4_commit_super), will cause a kernel OOPS.
340 * This is a kludge to prevent these oops until we can put in a proper
341 * hook in del_gendisk() to inform the VFS and file system layers.
342 */
343 static int block_device_ejected(struct super_block *sb)
344 {
345 struct inode *bd_inode = sb->s_bdev->bd_inode;
346 struct backing_dev_info *bdi = bd_inode->i_mapping->backing_dev_info;
347
348 return bdi->dev == NULL;
349 }
350
351 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn)
352 {
353 struct super_block *sb = journal->j_private;
354 struct ext4_sb_info *sbi = EXT4_SB(sb);
355 int error = is_journal_aborted(journal);
356 struct ext4_journal_cb_entry *jce, *tmp;
357
358 spin_lock(&sbi->s_md_lock);
359 list_for_each_entry_safe(jce, tmp, &txn->t_private_list, jce_list) {
360 list_del_init(&jce->jce_list);
361 spin_unlock(&sbi->s_md_lock);
362 jce->jce_func(sb, jce, error);
363 spin_lock(&sbi->s_md_lock);
364 }
365 spin_unlock(&sbi->s_md_lock);
366 }
367
368 /* Deal with the reporting of failure conditions on a filesystem such as
369 * inconsistencies detected or read IO failures.
370 *
371 * On ext2, we can store the error state of the filesystem in the
372 * superblock. That is not possible on ext4, because we may have other
373 * write ordering constraints on the superblock which prevent us from
374 * writing it out straight away; and given that the journal is about to
375 * be aborted, we can't rely on the current, or future, transactions to
376 * write out the superblock safely.
377 *
378 * We'll just use the jbd2_journal_abort() error code to record an error in
379 * the journal instead. On recovery, the journal will complain about
380 * that error until we've noted it down and cleared it.
381 */
382
383 static void ext4_handle_error(struct super_block *sb)
384 {
385 if (sb->s_flags & MS_RDONLY)
386 return;
387
388 if (!test_opt(sb, ERRORS_CONT)) {
389 journal_t *journal = EXT4_SB(sb)->s_journal;
390
391 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
392 if (journal)
393 jbd2_journal_abort(journal, -EIO);
394 }
395 if (test_opt(sb, ERRORS_RO)) {
396 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
397 sb->s_flags |= MS_RDONLY;
398 }
399 if (test_opt(sb, ERRORS_PANIC))
400 panic("EXT4-fs (device %s): panic forced after error\n",
401 sb->s_id);
402 }
403
404 void __ext4_error(struct super_block *sb, const char *function,
405 unsigned int line, const char *fmt, ...)
406 {
407 struct va_format vaf;
408 va_list args;
409
410 va_start(args, fmt);
411 vaf.fmt = fmt;
412 vaf.va = &args;
413 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
414 sb->s_id, function, line, current->comm, &vaf);
415 va_end(args);
416 save_error_info(sb, function, line);
417
418 ext4_handle_error(sb);
419 }
420
421 void ext4_error_inode(struct inode *inode, const char *function,
422 unsigned int line, ext4_fsblk_t block,
423 const char *fmt, ...)
424 {
425 va_list args;
426 struct va_format vaf;
427 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
428
429 es->s_last_error_ino = cpu_to_le32(inode->i_ino);
430 es->s_last_error_block = cpu_to_le64(block);
431 save_error_info(inode->i_sb, function, line);
432 va_start(args, fmt);
433 vaf.fmt = fmt;
434 vaf.va = &args;
435 if (block)
436 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
437 "inode #%lu: block %llu: comm %s: %pV\n",
438 inode->i_sb->s_id, function, line, inode->i_ino,
439 block, current->comm, &vaf);
440 else
441 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
442 "inode #%lu: comm %s: %pV\n",
443 inode->i_sb->s_id, function, line, inode->i_ino,
444 current->comm, &vaf);
445 va_end(args);
446
447 ext4_handle_error(inode->i_sb);
448 }
449
450 void ext4_error_file(struct file *file, const char *function,
451 unsigned int line, ext4_fsblk_t block,
452 const char *fmt, ...)
453 {
454 va_list args;
455 struct va_format vaf;
456 struct ext4_super_block *es;
457 struct inode *inode = file_inode(file);
458 char pathname[80], *path;
459
460 es = EXT4_SB(inode->i_sb)->s_es;
461 es->s_last_error_ino = cpu_to_le32(inode->i_ino);
462 save_error_info(inode->i_sb, function, line);
463 path = d_path(&(file->f_path), pathname, sizeof(pathname));
464 if (IS_ERR(path))
465 path = "(unknown)";
466 va_start(args, fmt);
467 vaf.fmt = fmt;
468 vaf.va = &args;
469 if (block)
470 printk(KERN_CRIT
471 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
472 "block %llu: comm %s: path %s: %pV\n",
473 inode->i_sb->s_id, function, line, inode->i_ino,
474 block, current->comm, path, &vaf);
475 else
476 printk(KERN_CRIT
477 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
478 "comm %s: path %s: %pV\n",
479 inode->i_sb->s_id, function, line, inode->i_ino,
480 current->comm, path, &vaf);
481 va_end(args);
482
483 ext4_handle_error(inode->i_sb);
484 }
485
486 const char *ext4_decode_error(struct super_block *sb, int errno,
487 char nbuf[16])
488 {
489 char *errstr = NULL;
490
491 switch (errno) {
492 case -EIO:
493 errstr = "IO failure";
494 break;
495 case -ENOMEM:
496 errstr = "Out of memory";
497 break;
498 case -EROFS:
499 if (!sb || (EXT4_SB(sb)->s_journal &&
500 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
501 errstr = "Journal has aborted";
502 else
503 errstr = "Readonly filesystem";
504 break;
505 default:
506 /* If the caller passed in an extra buffer for unknown
507 * errors, textualise them now. Else we just return
508 * NULL. */
509 if (nbuf) {
510 /* Check for truncated error codes... */
511 if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
512 errstr = nbuf;
513 }
514 break;
515 }
516
517 return errstr;
518 }
519
520 /* __ext4_std_error decodes expected errors from journaling functions
521 * automatically and invokes the appropriate error response. */
522
523 void __ext4_std_error(struct super_block *sb, const char *function,
524 unsigned int line, int errno)
525 {
526 char nbuf[16];
527 const char *errstr;
528
529 /* Special case: if the error is EROFS, and we're not already
530 * inside a transaction, then there's really no point in logging
531 * an error. */
532 if (errno == -EROFS && journal_current_handle() == NULL &&
533 (sb->s_flags & MS_RDONLY))
534 return;
535
536 errstr = ext4_decode_error(sb, errno, nbuf);
537 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
538 sb->s_id, function, line, errstr);
539 save_error_info(sb, function, line);
540
541 ext4_handle_error(sb);
542 }
543
544 /*
545 * ext4_abort is a much stronger failure handler than ext4_error. The
546 * abort function may be used to deal with unrecoverable failures such
547 * as journal IO errors or ENOMEM at a critical moment in log management.
548 *
549 * We unconditionally force the filesystem into an ABORT|READONLY state,
550 * unless the error response on the fs has been set to panic in which
551 * case we take the easy way out and panic immediately.
552 */
553
554 void __ext4_abort(struct super_block *sb, const char *function,
555 unsigned int line, const char *fmt, ...)
556 {
557 va_list args;
558
559 save_error_info(sb, function, line);
560 va_start(args, fmt);
561 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: ", sb->s_id,
562 function, line);
563 vprintk(fmt, args);
564 printk("\n");
565 va_end(args);
566
567 if ((sb->s_flags & MS_RDONLY) == 0) {
568 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
569 sb->s_flags |= MS_RDONLY;
570 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
571 if (EXT4_SB(sb)->s_journal)
572 jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO);
573 save_error_info(sb, function, line);
574 }
575 if (test_opt(sb, ERRORS_PANIC))
576 panic("EXT4-fs panic from previous error\n");
577 }
578
579 void ext4_msg(struct super_block *sb, const char *prefix, const char *fmt, ...)
580 {
581 struct va_format vaf;
582 va_list args;
583
584 va_start(args, fmt);
585 vaf.fmt = fmt;
586 vaf.va = &args;
587 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
588 va_end(args);
589 }
590
591 void __ext4_warning(struct super_block *sb, const char *function,
592 unsigned int line, const char *fmt, ...)
593 {
594 struct va_format vaf;
595 va_list args;
596
597 va_start(args, fmt);
598 vaf.fmt = fmt;
599 vaf.va = &args;
600 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
601 sb->s_id, function, line, &vaf);
602 va_end(args);
603 }
604
605 void __ext4_grp_locked_error(const char *function, unsigned int line,
606 struct super_block *sb, ext4_group_t grp,
607 unsigned long ino, ext4_fsblk_t block,
608 const char *fmt, ...)
609 __releases(bitlock)
610 __acquires(bitlock)
611 {
612 struct va_format vaf;
613 va_list args;
614 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
615
616 es->s_last_error_ino = cpu_to_le32(ino);
617 es->s_last_error_block = cpu_to_le64(block);
618 __save_error_info(sb, function, line);
619
620 va_start(args, fmt);
621
622 vaf.fmt = fmt;
623 vaf.va = &args;
624 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
625 sb->s_id, function, line, grp);
626 if (ino)
627 printk(KERN_CONT "inode %lu: ", ino);
628 if (block)
629 printk(KERN_CONT "block %llu:", (unsigned long long) block);
630 printk(KERN_CONT "%pV\n", &vaf);
631 va_end(args);
632
633 if (test_opt(sb, ERRORS_CONT)) {
634 ext4_commit_super(sb, 0);
635 return;
636 }
637
638 ext4_unlock_group(sb, grp);
639 ext4_handle_error(sb);
640 /*
641 * We only get here in the ERRORS_RO case; relocking the group
642 * may be dangerous, but nothing bad will happen since the
643 * filesystem will have already been marked read/only and the
644 * journal has been aborted. We return 1 as a hint to callers
645 * who might what to use the return value from
646 * ext4_grp_locked_error() to distinguish between the
647 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
648 * aggressively from the ext4 function in question, with a
649 * more appropriate error code.
650 */
651 ext4_lock_group(sb, grp);
652 return;
653 }
654
655 void ext4_update_dynamic_rev(struct super_block *sb)
656 {
657 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
658
659 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
660 return;
661
662 ext4_warning(sb,
663 "updating to rev %d because of new feature flag, "
664 "running e2fsck is recommended",
665 EXT4_DYNAMIC_REV);
666
667 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
668 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
669 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
670 /* leave es->s_feature_*compat flags alone */
671 /* es->s_uuid will be set by e2fsck if empty */
672
673 /*
674 * The rest of the superblock fields should be zero, and if not it
675 * means they are likely already in use, so leave them alone. We
676 * can leave it up to e2fsck to clean up any inconsistencies there.
677 */
678 }
679
680 /*
681 * Open the external journal device
682 */
683 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb)
684 {
685 struct block_device *bdev;
686 char b[BDEVNAME_SIZE];
687
688 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb);
689 if (IS_ERR(bdev))
690 goto fail;
691 return bdev;
692
693 fail:
694 ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld",
695 __bdevname(dev, b), PTR_ERR(bdev));
696 return NULL;
697 }
698
699 /*
700 * Release the journal device
701 */
702 static int ext4_blkdev_put(struct block_device *bdev)
703 {
704 return blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
705 }
706
707 static int ext4_blkdev_remove(struct ext4_sb_info *sbi)
708 {
709 struct block_device *bdev;
710 int ret = -ENODEV;
711
712 bdev = sbi->journal_bdev;
713 if (bdev) {
714 ret = ext4_blkdev_put(bdev);
715 sbi->journal_bdev = NULL;
716 }
717 return ret;
718 }
719
720 static inline struct inode *orphan_list_entry(struct list_head *l)
721 {
722 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
723 }
724
725 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
726 {
727 struct list_head *l;
728
729 ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
730 le32_to_cpu(sbi->s_es->s_last_orphan));
731
732 printk(KERN_ERR "sb_info orphan list:\n");
733 list_for_each(l, &sbi->s_orphan) {
734 struct inode *inode = orphan_list_entry(l);
735 printk(KERN_ERR " "
736 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
737 inode->i_sb->s_id, inode->i_ino, inode,
738 inode->i_mode, inode->i_nlink,
739 NEXT_ORPHAN(inode));
740 }
741 }
742
743 static void ext4_put_super(struct super_block *sb)
744 {
745 struct ext4_sb_info *sbi = EXT4_SB(sb);
746 struct ext4_super_block *es = sbi->s_es;
747 int i, err;
748
749 ext4_unregister_li_request(sb);
750 dquot_disable(sb, -1, DQUOT_USAGE_ENABLED | DQUOT_LIMITS_ENABLED);
751
752 flush_workqueue(sbi->dio_unwritten_wq);
753 destroy_workqueue(sbi->dio_unwritten_wq);
754
755 if (sbi->s_journal) {
756 err = jbd2_journal_destroy(sbi->s_journal);
757 sbi->s_journal = NULL;
758 if (err < 0)
759 ext4_abort(sb, "Couldn't clean up the journal");
760 }
761
762 ext4_es_unregister_shrinker(sb);
763 del_timer(&sbi->s_err_report);
764 ext4_release_system_zone(sb);
765 ext4_mb_release(sb);
766 ext4_ext_release(sb);
767 ext4_xattr_put_super(sb);
768
769 if (!(sb->s_flags & MS_RDONLY)) {
770 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
771 es->s_state = cpu_to_le16(sbi->s_mount_state);
772 }
773 if (!(sb->s_flags & MS_RDONLY))
774 ext4_commit_super(sb, 1);
775
776 if (sbi->s_proc) {
777 remove_proc_entry("options", sbi->s_proc);
778 remove_proc_entry(sb->s_id, ext4_proc_root);
779 }
780 kobject_del(&sbi->s_kobj);
781
782 for (i = 0; i < sbi->s_gdb_count; i++)
783 brelse(sbi->s_group_desc[i]);
784 ext4_kvfree(sbi->s_group_desc);
785 ext4_kvfree(sbi->s_flex_groups);
786 percpu_counter_destroy(&sbi->s_freeclusters_counter);
787 percpu_counter_destroy(&sbi->s_freeinodes_counter);
788 percpu_counter_destroy(&sbi->s_dirs_counter);
789 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
790 percpu_counter_destroy(&sbi->s_extent_cache_cnt);
791 brelse(sbi->s_sbh);
792 #ifdef CONFIG_QUOTA
793 for (i = 0; i < MAXQUOTAS; i++)
794 kfree(sbi->s_qf_names[i]);
795 #endif
796
797 /* Debugging code just in case the in-memory inode orphan list
798 * isn't empty. The on-disk one can be non-empty if we've
799 * detected an error and taken the fs readonly, but the
800 * in-memory list had better be clean by this point. */
801 if (!list_empty(&sbi->s_orphan))
802 dump_orphan_list(sb, sbi);
803 J_ASSERT(list_empty(&sbi->s_orphan));
804
805 invalidate_bdev(sb->s_bdev);
806 if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) {
807 /*
808 * Invalidate the journal device's buffers. We don't want them
809 * floating about in memory - the physical journal device may
810 * hotswapped, and it breaks the `ro-after' testing code.
811 */
812 sync_blockdev(sbi->journal_bdev);
813 invalidate_bdev(sbi->journal_bdev);
814 ext4_blkdev_remove(sbi);
815 }
816 if (sbi->s_mmp_tsk)
817 kthread_stop(sbi->s_mmp_tsk);
818 sb->s_fs_info = NULL;
819 /*
820 * Now that we are completely done shutting down the
821 * superblock, we need to actually destroy the kobject.
822 */
823 kobject_put(&sbi->s_kobj);
824 wait_for_completion(&sbi->s_kobj_unregister);
825 if (sbi->s_chksum_driver)
826 crypto_free_shash(sbi->s_chksum_driver);
827 kfree(sbi->s_blockgroup_lock);
828 kfree(sbi);
829 }
830
831 static struct kmem_cache *ext4_inode_cachep;
832
833 /*
834 * Called inside transaction, so use GFP_NOFS
835 */
836 static struct inode *ext4_alloc_inode(struct super_block *sb)
837 {
838 struct ext4_inode_info *ei;
839
840 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS);
841 if (!ei)
842 return NULL;
843
844 ei->vfs_inode.i_version = 1;
845 INIT_LIST_HEAD(&ei->i_prealloc_list);
846 spin_lock_init(&ei->i_prealloc_lock);
847 ext4_es_init_tree(&ei->i_es_tree);
848 rwlock_init(&ei->i_es_lock);
849 INIT_LIST_HEAD(&ei->i_es_lru);
850 ei->i_es_lru_nr = 0;
851 ei->i_reserved_data_blocks = 0;
852 ei->i_reserved_meta_blocks = 0;
853 ei->i_allocated_meta_blocks = 0;
854 ei->i_da_metadata_calc_len = 0;
855 ei->i_da_metadata_calc_last_lblock = 0;
856 spin_lock_init(&(ei->i_block_reservation_lock));
857 #ifdef CONFIG_QUOTA
858 ei->i_reserved_quota = 0;
859 #endif
860 ei->jinode = NULL;
861 INIT_LIST_HEAD(&ei->i_completed_io_list);
862 spin_lock_init(&ei->i_completed_io_lock);
863 ei->i_sync_tid = 0;
864 ei->i_datasync_tid = 0;
865 atomic_set(&ei->i_ioend_count, 0);
866 atomic_set(&ei->i_unwritten, 0);
867 INIT_WORK(&ei->i_unwritten_work, ext4_end_io_work);
868
869 return &ei->vfs_inode;
870 }
871
872 static int ext4_drop_inode(struct inode *inode)
873 {
874 int drop = generic_drop_inode(inode);
875
876 trace_ext4_drop_inode(inode, drop);
877 return drop;
878 }
879
880 static void ext4_i_callback(struct rcu_head *head)
881 {
882 struct inode *inode = container_of(head, struct inode, i_rcu);
883 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
884 }
885
886 static void ext4_destroy_inode(struct inode *inode)
887 {
888 if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
889 ext4_msg(inode->i_sb, KERN_ERR,
890 "Inode %lu (%p): orphan list check failed!",
891 inode->i_ino, EXT4_I(inode));
892 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
893 EXT4_I(inode), sizeof(struct ext4_inode_info),
894 true);
895 dump_stack();
896 }
897 call_rcu(&inode->i_rcu, ext4_i_callback);
898 }
899
900 static void init_once(void *foo)
901 {
902 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo;
903
904 INIT_LIST_HEAD(&ei->i_orphan);
905 init_rwsem(&ei->xattr_sem);
906 init_rwsem(&ei->i_data_sem);
907 inode_init_once(&ei->vfs_inode);
908 }
909
910 static int init_inodecache(void)
911 {
912 ext4_inode_cachep = kmem_cache_create("ext4_inode_cache",
913 sizeof(struct ext4_inode_info),
914 0, (SLAB_RECLAIM_ACCOUNT|
915 SLAB_MEM_SPREAD),
916 init_once);
917 if (ext4_inode_cachep == NULL)
918 return -ENOMEM;
919 return 0;
920 }
921
922 static void destroy_inodecache(void)
923 {
924 /*
925 * Make sure all delayed rcu free inodes are flushed before we
926 * destroy cache.
927 */
928 rcu_barrier();
929 kmem_cache_destroy(ext4_inode_cachep);
930 }
931
932 void ext4_clear_inode(struct inode *inode)
933 {
934 invalidate_inode_buffers(inode);
935 clear_inode(inode);
936 dquot_drop(inode);
937 ext4_discard_preallocations(inode);
938 ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS);
939 ext4_es_lru_del(inode);
940 if (EXT4_I(inode)->jinode) {
941 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
942 EXT4_I(inode)->jinode);
943 jbd2_free_inode(EXT4_I(inode)->jinode);
944 EXT4_I(inode)->jinode = NULL;
945 }
946 }
947
948 static struct inode *ext4_nfs_get_inode(struct super_block *sb,
949 u64 ino, u32 generation)
950 {
951 struct inode *inode;
952
953 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
954 return ERR_PTR(-ESTALE);
955 if (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
956 return ERR_PTR(-ESTALE);
957
958 /* iget isn't really right if the inode is currently unallocated!!
959 *
960 * ext4_read_inode will return a bad_inode if the inode had been
961 * deleted, so we should be safe.
962 *
963 * Currently we don't know the generation for parent directory, so
964 * a generation of 0 means "accept any"
965 */
966 inode = ext4_iget(sb, ino);
967 if (IS_ERR(inode))
968 return ERR_CAST(inode);
969 if (generation && inode->i_generation != generation) {
970 iput(inode);
971 return ERR_PTR(-ESTALE);
972 }
973
974 return inode;
975 }
976
977 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
978 int fh_len, int fh_type)
979 {
980 return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
981 ext4_nfs_get_inode);
982 }
983
984 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
985 int fh_len, int fh_type)
986 {
987 return generic_fh_to_parent(sb, fid, fh_len, fh_type,
988 ext4_nfs_get_inode);
989 }
990
991 /*
992 * Try to release metadata pages (indirect blocks, directories) which are
993 * mapped via the block device. Since these pages could have journal heads
994 * which would prevent try_to_free_buffers() from freeing them, we must use
995 * jbd2 layer's try_to_free_buffers() function to release them.
996 */
997 static int bdev_try_to_free_page(struct super_block *sb, struct page *page,
998 gfp_t wait)
999 {
1000 journal_t *journal = EXT4_SB(sb)->s_journal;
1001
1002 WARN_ON(PageChecked(page));
1003 if (!page_has_buffers(page))
1004 return 0;
1005 if (journal)
1006 return jbd2_journal_try_to_free_buffers(journal, page,
1007 wait & ~__GFP_WAIT);
1008 return try_to_free_buffers(page);
1009 }
1010
1011 #ifdef CONFIG_QUOTA
1012 #define QTYPE2NAME(t) ((t) == USRQUOTA ? "user" : "group")
1013 #define QTYPE2MOPT(on, t) ((t) == USRQUOTA?((on)##USRJQUOTA):((on)##GRPJQUOTA))
1014
1015 static int ext4_write_dquot(struct dquot *dquot);
1016 static int ext4_acquire_dquot(struct dquot *dquot);
1017 static int ext4_release_dquot(struct dquot *dquot);
1018 static int ext4_mark_dquot_dirty(struct dquot *dquot);
1019 static int ext4_write_info(struct super_block *sb, int type);
1020 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1021 struct path *path);
1022 static int ext4_quota_on_sysfile(struct super_block *sb, int type,
1023 int format_id);
1024 static int ext4_quota_off(struct super_block *sb, int type);
1025 static int ext4_quota_off_sysfile(struct super_block *sb, int type);
1026 static int ext4_quota_on_mount(struct super_block *sb, int type);
1027 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1028 size_t len, loff_t off);
1029 static ssize_t ext4_quota_write(struct super_block *sb, int type,
1030 const char *data, size_t len, loff_t off);
1031 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
1032 unsigned int flags);
1033 static int ext4_enable_quotas(struct super_block *sb);
1034
1035 static const struct dquot_operations ext4_quota_operations = {
1036 .get_reserved_space = ext4_get_reserved_space,
1037 .write_dquot = ext4_write_dquot,
1038 .acquire_dquot = ext4_acquire_dquot,
1039 .release_dquot = ext4_release_dquot,
1040 .mark_dirty = ext4_mark_dquot_dirty,
1041 .write_info = ext4_write_info,
1042 .alloc_dquot = dquot_alloc,
1043 .destroy_dquot = dquot_destroy,
1044 };
1045
1046 static const struct quotactl_ops ext4_qctl_operations = {
1047 .quota_on = ext4_quota_on,
1048 .quota_off = ext4_quota_off,
1049 .quota_sync = dquot_quota_sync,
1050 .get_info = dquot_get_dqinfo,
1051 .set_info = dquot_set_dqinfo,
1052 .get_dqblk = dquot_get_dqblk,
1053 .set_dqblk = dquot_set_dqblk
1054 };
1055
1056 static const struct quotactl_ops ext4_qctl_sysfile_operations = {
1057 .quota_on_meta = ext4_quota_on_sysfile,
1058 .quota_off = ext4_quota_off_sysfile,
1059 .quota_sync = dquot_quota_sync,
1060 .get_info = dquot_get_dqinfo,
1061 .set_info = dquot_set_dqinfo,
1062 .get_dqblk = dquot_get_dqblk,
1063 .set_dqblk = dquot_set_dqblk
1064 };
1065 #endif
1066
1067 static const struct super_operations ext4_sops = {
1068 .alloc_inode = ext4_alloc_inode,
1069 .destroy_inode = ext4_destroy_inode,
1070 .write_inode = ext4_write_inode,
1071 .dirty_inode = ext4_dirty_inode,
1072 .drop_inode = ext4_drop_inode,
1073 .evict_inode = ext4_evict_inode,
1074 .put_super = ext4_put_super,
1075 .sync_fs = ext4_sync_fs,
1076 .freeze_fs = ext4_freeze,
1077 .unfreeze_fs = ext4_unfreeze,
1078 .statfs = ext4_statfs,
1079 .remount_fs = ext4_remount,
1080 .show_options = ext4_show_options,
1081 #ifdef CONFIG_QUOTA
1082 .quota_read = ext4_quota_read,
1083 .quota_write = ext4_quota_write,
1084 #endif
1085 .bdev_try_to_free_page = bdev_try_to_free_page,
1086 };
1087
1088 static const struct super_operations ext4_nojournal_sops = {
1089 .alloc_inode = ext4_alloc_inode,
1090 .destroy_inode = ext4_destroy_inode,
1091 .write_inode = ext4_write_inode,
1092 .dirty_inode = ext4_dirty_inode,
1093 .drop_inode = ext4_drop_inode,
1094 .evict_inode = ext4_evict_inode,
1095 .put_super = ext4_put_super,
1096 .statfs = ext4_statfs,
1097 .remount_fs = ext4_remount,
1098 .show_options = ext4_show_options,
1099 #ifdef CONFIG_QUOTA
1100 .quota_read = ext4_quota_read,
1101 .quota_write = ext4_quota_write,
1102 #endif
1103 .bdev_try_to_free_page = bdev_try_to_free_page,
1104 };
1105
1106 static const struct export_operations ext4_export_ops = {
1107 .fh_to_dentry = ext4_fh_to_dentry,
1108 .fh_to_parent = ext4_fh_to_parent,
1109 .get_parent = ext4_get_parent,
1110 };
1111
1112 enum {
1113 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1114 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro,
1115 Opt_nouid32, Opt_debug, Opt_removed,
1116 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl,
1117 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload,
1118 Opt_commit, Opt_min_batch_time, Opt_max_batch_time,
1119 Opt_journal_dev, Opt_journal_checksum, Opt_journal_async_commit,
1120 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1121 Opt_data_err_abort, Opt_data_err_ignore,
1122 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota,
1123 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota,
1124 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err,
1125 Opt_usrquota, Opt_grpquota, Opt_i_version,
1126 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_mblk_io_submit,
1127 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1128 Opt_inode_readahead_blks, Opt_journal_ioprio,
1129 Opt_dioread_nolock, Opt_dioread_lock,
1130 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable,
1131 Opt_max_dir_size_kb,
1132 };
1133
1134 static const match_table_t tokens = {
1135 {Opt_bsd_df, "bsddf"},
1136 {Opt_minix_df, "minixdf"},
1137 {Opt_grpid, "grpid"},
1138 {Opt_grpid, "bsdgroups"},
1139 {Opt_nogrpid, "nogrpid"},
1140 {Opt_nogrpid, "sysvgroups"},
1141 {Opt_resgid, "resgid=%u"},
1142 {Opt_resuid, "resuid=%u"},
1143 {Opt_sb, "sb=%u"},
1144 {Opt_err_cont, "errors=continue"},
1145 {Opt_err_panic, "errors=panic"},
1146 {Opt_err_ro, "errors=remount-ro"},
1147 {Opt_nouid32, "nouid32"},
1148 {Opt_debug, "debug"},
1149 {Opt_removed, "oldalloc"},
1150 {Opt_removed, "orlov"},
1151 {Opt_user_xattr, "user_xattr"},
1152 {Opt_nouser_xattr, "nouser_xattr"},
1153 {Opt_acl, "acl"},
1154 {Opt_noacl, "noacl"},
1155 {Opt_noload, "norecovery"},
1156 {Opt_noload, "noload"},
1157 {Opt_removed, "nobh"},
1158 {Opt_removed, "bh"},
1159 {Opt_commit, "commit=%u"},
1160 {Opt_min_batch_time, "min_batch_time=%u"},
1161 {Opt_max_batch_time, "max_batch_time=%u"},
1162 {Opt_journal_dev, "journal_dev=%u"},
1163 {Opt_journal_checksum, "journal_checksum"},
1164 {Opt_journal_async_commit, "journal_async_commit"},
1165 {Opt_abort, "abort"},
1166 {Opt_data_journal, "data=journal"},
1167 {Opt_data_ordered, "data=ordered"},
1168 {Opt_data_writeback, "data=writeback"},
1169 {Opt_data_err_abort, "data_err=abort"},
1170 {Opt_data_err_ignore, "data_err=ignore"},
1171 {Opt_offusrjquota, "usrjquota="},
1172 {Opt_usrjquota, "usrjquota=%s"},
1173 {Opt_offgrpjquota, "grpjquota="},
1174 {Opt_grpjquota, "grpjquota=%s"},
1175 {Opt_jqfmt_vfsold, "jqfmt=vfsold"},
1176 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
1177 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
1178 {Opt_grpquota, "grpquota"},
1179 {Opt_noquota, "noquota"},
1180 {Opt_quota, "quota"},
1181 {Opt_usrquota, "usrquota"},
1182 {Opt_barrier, "barrier=%u"},
1183 {Opt_barrier, "barrier"},
1184 {Opt_nobarrier, "nobarrier"},
1185 {Opt_i_version, "i_version"},
1186 {Opt_stripe, "stripe=%u"},
1187 {Opt_delalloc, "delalloc"},
1188 {Opt_nodelalloc, "nodelalloc"},
1189 {Opt_removed, "mblk_io_submit"},
1190 {Opt_removed, "nomblk_io_submit"},
1191 {Opt_block_validity, "block_validity"},
1192 {Opt_noblock_validity, "noblock_validity"},
1193 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"},
1194 {Opt_journal_ioprio, "journal_ioprio=%u"},
1195 {Opt_auto_da_alloc, "auto_da_alloc=%u"},
1196 {Opt_auto_da_alloc, "auto_da_alloc"},
1197 {Opt_noauto_da_alloc, "noauto_da_alloc"},
1198 {Opt_dioread_nolock, "dioread_nolock"},
1199 {Opt_dioread_lock, "dioread_lock"},
1200 {Opt_discard, "discard"},
1201 {Opt_nodiscard, "nodiscard"},
1202 {Opt_init_itable, "init_itable=%u"},
1203 {Opt_init_itable, "init_itable"},
1204 {Opt_noinit_itable, "noinit_itable"},
1205 {Opt_max_dir_size_kb, "max_dir_size_kb=%u"},
1206 {Opt_removed, "check=none"}, /* mount option from ext2/3 */
1207 {Opt_removed, "nocheck"}, /* mount option from ext2/3 */
1208 {Opt_removed, "reservation"}, /* mount option from ext2/3 */
1209 {Opt_removed, "noreservation"}, /* mount option from ext2/3 */
1210 {Opt_removed, "journal=%u"}, /* mount option from ext2/3 */
1211 {Opt_err, NULL},
1212 };
1213
1214 static ext4_fsblk_t get_sb_block(void **data)
1215 {
1216 ext4_fsblk_t sb_block;
1217 char *options = (char *) *data;
1218
1219 if (!options || strncmp(options, "sb=", 3) != 0)
1220 return 1; /* Default location */
1221
1222 options += 3;
1223 /* TODO: use simple_strtoll with >32bit ext4 */
1224 sb_block = simple_strtoul(options, &options, 0);
1225 if (*options && *options != ',') {
1226 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n",
1227 (char *) *data);
1228 return 1;
1229 }
1230 if (*options == ',')
1231 options++;
1232 *data = (void *) options;
1233
1234 return sb_block;
1235 }
1236
1237 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1238 static char deprecated_msg[] = "Mount option \"%s\" will be removed by %s\n"
1239 "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n";
1240
1241 #ifdef CONFIG_QUOTA
1242 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args)
1243 {
1244 struct ext4_sb_info *sbi = EXT4_SB(sb);
1245 char *qname;
1246 int ret = -1;
1247
1248 if (sb_any_quota_loaded(sb) &&
1249 !sbi->s_qf_names[qtype]) {
1250 ext4_msg(sb, KERN_ERR,
1251 "Cannot change journaled "
1252 "quota options when quota turned on");
1253 return -1;
1254 }
1255 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA)) {
1256 ext4_msg(sb, KERN_ERR, "Cannot set journaled quota options "
1257 "when QUOTA feature is enabled");
1258 return -1;
1259 }
1260 qname = match_strdup(args);
1261 if (!qname) {
1262 ext4_msg(sb, KERN_ERR,
1263 "Not enough memory for storing quotafile name");
1264 return -1;
1265 }
1266 if (sbi->s_qf_names[qtype]) {
1267 if (strcmp(sbi->s_qf_names[qtype], qname) == 0)
1268 ret = 1;
1269 else
1270 ext4_msg(sb, KERN_ERR,
1271 "%s quota file already specified",
1272 QTYPE2NAME(qtype));
1273 goto errout;
1274 }
1275 if (strchr(qname, '/')) {
1276 ext4_msg(sb, KERN_ERR,
1277 "quotafile must be on filesystem root");
1278 goto errout;
1279 }
1280 sbi->s_qf_names[qtype] = qname;
1281 set_opt(sb, QUOTA);
1282 return 1;
1283 errout:
1284 kfree(qname);
1285 return ret;
1286 }
1287
1288 static int clear_qf_name(struct super_block *sb, int qtype)
1289 {
1290
1291 struct ext4_sb_info *sbi = EXT4_SB(sb);
1292
1293 if (sb_any_quota_loaded(sb) &&
1294 sbi->s_qf_names[qtype]) {
1295 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options"
1296 " when quota turned on");
1297 return -1;
1298 }
1299 kfree(sbi->s_qf_names[qtype]);
1300 sbi->s_qf_names[qtype] = NULL;
1301 return 1;
1302 }
1303 #endif
1304
1305 #define MOPT_SET 0x0001
1306 #define MOPT_CLEAR 0x0002
1307 #define MOPT_NOSUPPORT 0x0004
1308 #define MOPT_EXPLICIT 0x0008
1309 #define MOPT_CLEAR_ERR 0x0010
1310 #define MOPT_GTE0 0x0020
1311 #ifdef CONFIG_QUOTA
1312 #define MOPT_Q 0
1313 #define MOPT_QFMT 0x0040
1314 #else
1315 #define MOPT_Q MOPT_NOSUPPORT
1316 #define MOPT_QFMT MOPT_NOSUPPORT
1317 #endif
1318 #define MOPT_DATAJ 0x0080
1319 #define MOPT_NO_EXT2 0x0100
1320 #define MOPT_NO_EXT3 0x0200
1321 #define MOPT_EXT4_ONLY (MOPT_NO_EXT2 | MOPT_NO_EXT3)
1322
1323 static const struct mount_opts {
1324 int token;
1325 int mount_opt;
1326 int flags;
1327 } ext4_mount_opts[] = {
1328 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET},
1329 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR},
1330 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET},
1331 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR},
1332 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET},
1333 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR},
1334 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK,
1335 MOPT_EXT4_ONLY | MOPT_SET},
1336 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK,
1337 MOPT_EXT4_ONLY | MOPT_CLEAR},
1338 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET},
1339 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR},
1340 {Opt_delalloc, EXT4_MOUNT_DELALLOC,
1341 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1342 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC,
1343 MOPT_EXT4_ONLY | MOPT_CLEAR | MOPT_EXPLICIT},
1344 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1345 MOPT_EXT4_ONLY | MOPT_SET},
1346 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT |
1347 EXT4_MOUNT_JOURNAL_CHECKSUM),
1348 MOPT_EXT4_ONLY | MOPT_SET},
1349 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET},
1350 {Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR},
1351 {Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR},
1352 {Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR},
1353 {Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT,
1354 MOPT_NO_EXT2 | MOPT_SET},
1355 {Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT,
1356 MOPT_NO_EXT2 | MOPT_CLEAR},
1357 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET},
1358 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR},
1359 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET},
1360 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR},
1361 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR},
1362 {Opt_commit, 0, MOPT_GTE0},
1363 {Opt_max_batch_time, 0, MOPT_GTE0},
1364 {Opt_min_batch_time, 0, MOPT_GTE0},
1365 {Opt_inode_readahead_blks, 0, MOPT_GTE0},
1366 {Opt_init_itable, 0, MOPT_GTE0},
1367 {Opt_stripe, 0, MOPT_GTE0},
1368 {Opt_resuid, 0, MOPT_GTE0},
1369 {Opt_resgid, 0, MOPT_GTE0},
1370 {Opt_journal_dev, 0, MOPT_GTE0},
1371 {Opt_journal_ioprio, 0, MOPT_GTE0},
1372 {Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1373 {Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1374 {Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA,
1375 MOPT_NO_EXT2 | MOPT_DATAJ},
1376 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET},
1377 {Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR},
1378 #ifdef CONFIG_EXT4_FS_POSIX_ACL
1379 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET},
1380 {Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR},
1381 #else
1382 {Opt_acl, 0, MOPT_NOSUPPORT},
1383 {Opt_noacl, 0, MOPT_NOSUPPORT},
1384 #endif
1385 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET},
1386 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET},
1387 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q},
1388 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA,
1389 MOPT_SET | MOPT_Q},
1390 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA,
1391 MOPT_SET | MOPT_Q},
1392 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
1393 EXT4_MOUNT_GRPQUOTA), MOPT_CLEAR | MOPT_Q},
1394 {Opt_usrjquota, 0, MOPT_Q},
1395 {Opt_grpjquota, 0, MOPT_Q},
1396 {Opt_offusrjquota, 0, MOPT_Q},
1397 {Opt_offgrpjquota, 0, MOPT_Q},
1398 {Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT},
1399 {Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT},
1400 {Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT},
1401 {Opt_max_dir_size_kb, 0, MOPT_GTE0},
1402 {Opt_err, 0, 0}
1403 };
1404
1405 static int handle_mount_opt(struct super_block *sb, char *opt, int token,
1406 substring_t *args, unsigned long *journal_devnum,
1407 unsigned int *journal_ioprio, int is_remount)
1408 {
1409 struct ext4_sb_info *sbi = EXT4_SB(sb);
1410 const struct mount_opts *m;
1411 kuid_t uid;
1412 kgid_t gid;
1413 int arg = 0;
1414
1415 #ifdef CONFIG_QUOTA
1416 if (token == Opt_usrjquota)
1417 return set_qf_name(sb, USRQUOTA, &args[0]);
1418 else if (token == Opt_grpjquota)
1419 return set_qf_name(sb, GRPQUOTA, &args[0]);
1420 else if (token == Opt_offusrjquota)
1421 return clear_qf_name(sb, USRQUOTA);
1422 else if (token == Opt_offgrpjquota)
1423 return clear_qf_name(sb, GRPQUOTA);
1424 #endif
1425 switch (token) {
1426 case Opt_noacl:
1427 case Opt_nouser_xattr:
1428 ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5");
1429 break;
1430 case Opt_sb:
1431 return 1; /* handled by get_sb_block() */
1432 case Opt_removed:
1433 ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt);
1434 return 1;
1435 case Opt_abort:
1436 sbi->s_mount_flags |= EXT4_MF_FS_ABORTED;
1437 return 1;
1438 case Opt_i_version:
1439 sb->s_flags |= MS_I_VERSION;
1440 return 1;
1441 }
1442
1443 for (m = ext4_mount_opts; m->token != Opt_err; m++)
1444 if (token == m->token)
1445 break;
1446
1447 if (m->token == Opt_err) {
1448 ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" "
1449 "or missing value", opt);
1450 return -1;
1451 }
1452
1453 if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) {
1454 ext4_msg(sb, KERN_ERR,
1455 "Mount option \"%s\" incompatible with ext2", opt);
1456 return -1;
1457 }
1458 if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) {
1459 ext4_msg(sb, KERN_ERR,
1460 "Mount option \"%s\" incompatible with ext3", opt);
1461 return -1;
1462 }
1463
1464 if (args->from && match_int(args, &arg))
1465 return -1;
1466 if (args->from && (m->flags & MOPT_GTE0) && (arg < 0))
1467 return -1;
1468 if (m->flags & MOPT_EXPLICIT)
1469 set_opt2(sb, EXPLICIT_DELALLOC);
1470 if (m->flags & MOPT_CLEAR_ERR)
1471 clear_opt(sb, ERRORS_MASK);
1472 if (token == Opt_noquota && sb_any_quota_loaded(sb)) {
1473 ext4_msg(sb, KERN_ERR, "Cannot change quota "
1474 "options when quota turned on");
1475 return -1;
1476 }
1477
1478 if (m->flags & MOPT_NOSUPPORT) {
1479 ext4_msg(sb, KERN_ERR, "%s option not supported", opt);
1480 } else if (token == Opt_commit) {
1481 if (arg == 0)
1482 arg = JBD2_DEFAULT_MAX_COMMIT_AGE;
1483 sbi->s_commit_interval = HZ * arg;
1484 } else if (token == Opt_max_batch_time) {
1485 if (arg == 0)
1486 arg = EXT4_DEF_MAX_BATCH_TIME;
1487 sbi->s_max_batch_time = arg;
1488 } else if (token == Opt_min_batch_time) {
1489 sbi->s_min_batch_time = arg;
1490 } else if (token == Opt_inode_readahead_blks) {
1491 if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) {
1492 ext4_msg(sb, KERN_ERR,
1493 "EXT4-fs: inode_readahead_blks must be "
1494 "0 or a power of 2 smaller than 2^31");
1495 return -1;
1496 }
1497 sbi->s_inode_readahead_blks = arg;
1498 } else if (token == Opt_init_itable) {
1499 set_opt(sb, INIT_INODE_TABLE);
1500 if (!args->from)
1501 arg = EXT4_DEF_LI_WAIT_MULT;
1502 sbi->s_li_wait_mult = arg;
1503 } else if (token == Opt_max_dir_size_kb) {
1504 sbi->s_max_dir_size_kb = arg;
1505 } else if (token == Opt_stripe) {
1506 sbi->s_stripe = arg;
1507 } else if (token == Opt_resuid) {
1508 uid = make_kuid(current_user_ns(), arg);
1509 if (!uid_valid(uid)) {
1510 ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg);
1511 return -1;
1512 }
1513 sbi->s_resuid = uid;
1514 } else if (token == Opt_resgid) {
1515 gid = make_kgid(current_user_ns(), arg);
1516 if (!gid_valid(gid)) {
1517 ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg);
1518 return -1;
1519 }
1520 sbi->s_resgid = gid;
1521 } else if (token == Opt_journal_dev) {
1522 if (is_remount) {
1523 ext4_msg(sb, KERN_ERR,
1524 "Cannot specify journal on remount");
1525 return -1;
1526 }
1527 *journal_devnum = arg;
1528 } else if (token == Opt_journal_ioprio) {
1529 if (arg > 7) {
1530 ext4_msg(sb, KERN_ERR, "Invalid journal IO priority"
1531 " (must be 0-7)");
1532 return -1;
1533 }
1534 *journal_ioprio =
1535 IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg);
1536 } else if (m->flags & MOPT_DATAJ) {
1537 if (is_remount) {
1538 if (!sbi->s_journal)
1539 ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option");
1540 else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) {
1541 ext4_msg(sb, KERN_ERR,
1542 "Cannot change data mode on remount");
1543 return -1;
1544 }
1545 } else {
1546 clear_opt(sb, DATA_FLAGS);
1547 sbi->s_mount_opt |= m->mount_opt;
1548 }
1549 #ifdef CONFIG_QUOTA
1550 } else if (m->flags & MOPT_QFMT) {
1551 if (sb_any_quota_loaded(sb) &&
1552 sbi->s_jquota_fmt != m->mount_opt) {
1553 ext4_msg(sb, KERN_ERR, "Cannot change journaled "
1554 "quota options when quota turned on");
1555 return -1;
1556 }
1557 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
1558 EXT4_FEATURE_RO_COMPAT_QUOTA)) {
1559 ext4_msg(sb, KERN_ERR,
1560 "Cannot set journaled quota options "
1561 "when QUOTA feature is enabled");
1562 return -1;
1563 }
1564 sbi->s_jquota_fmt = m->mount_opt;
1565 #endif
1566 } else {
1567 if (!args->from)
1568 arg = 1;
1569 if (m->flags & MOPT_CLEAR)
1570 arg = !arg;
1571 else if (unlikely(!(m->flags & MOPT_SET))) {
1572 ext4_msg(sb, KERN_WARNING,
1573 "buggy handling of option %s", opt);
1574 WARN_ON(1);
1575 return -1;
1576 }
1577 if (arg != 0)
1578 sbi->s_mount_opt |= m->mount_opt;
1579 else
1580 sbi->s_mount_opt &= ~m->mount_opt;
1581 }
1582 return 1;
1583 }
1584
1585 static int parse_options(char *options, struct super_block *sb,
1586 unsigned long *journal_devnum,
1587 unsigned int *journal_ioprio,
1588 int is_remount)
1589 {
1590 struct ext4_sb_info *sbi = EXT4_SB(sb);
1591 char *p;
1592 substring_t args[MAX_OPT_ARGS];
1593 int token;
1594
1595 if (!options)
1596 return 1;
1597
1598 while ((p = strsep(&options, ",")) != NULL) {
1599 if (!*p)
1600 continue;
1601 /*
1602 * Initialize args struct so we know whether arg was
1603 * found; some options take optional arguments.
1604 */
1605 args[0].to = args[0].from = NULL;
1606 token = match_token(p, tokens, args);
1607 if (handle_mount_opt(sb, p, token, args, journal_devnum,
1608 journal_ioprio, is_remount) < 0)
1609 return 0;
1610 }
1611 #ifdef CONFIG_QUOTA
1612 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) &&
1613 (test_opt(sb, USRQUOTA) || test_opt(sb, GRPQUOTA))) {
1614 ext4_msg(sb, KERN_ERR, "Cannot set quota options when QUOTA "
1615 "feature is enabled");
1616 return 0;
1617 }
1618 if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
1619 if (test_opt(sb, USRQUOTA) && sbi->s_qf_names[USRQUOTA])
1620 clear_opt(sb, USRQUOTA);
1621
1622 if (test_opt(sb, GRPQUOTA) && sbi->s_qf_names[GRPQUOTA])
1623 clear_opt(sb, GRPQUOTA);
1624
1625 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) {
1626 ext4_msg(sb, KERN_ERR, "old and new quota "
1627 "format mixing");
1628 return 0;
1629 }
1630
1631 if (!sbi->s_jquota_fmt) {
1632 ext4_msg(sb, KERN_ERR, "journaled quota format "
1633 "not specified");
1634 return 0;
1635 }
1636 } else {
1637 if (sbi->s_jquota_fmt) {
1638 ext4_msg(sb, KERN_ERR, "journaled quota format "
1639 "specified with no journaling "
1640 "enabled");
1641 return 0;
1642 }
1643 }
1644 #endif
1645 if (test_opt(sb, DIOREAD_NOLOCK)) {
1646 int blocksize =
1647 BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size);
1648
1649 if (blocksize < PAGE_CACHE_SIZE) {
1650 ext4_msg(sb, KERN_ERR, "can't mount with "
1651 "dioread_nolock if block size != PAGE_SIZE");
1652 return 0;
1653 }
1654 }
1655 return 1;
1656 }
1657
1658 static inline void ext4_show_quota_options(struct seq_file *seq,
1659 struct super_block *sb)
1660 {
1661 #if defined(CONFIG_QUOTA)
1662 struct ext4_sb_info *sbi = EXT4_SB(sb);
1663
1664 if (sbi->s_jquota_fmt) {
1665 char *fmtname = "";
1666
1667 switch (sbi->s_jquota_fmt) {
1668 case QFMT_VFS_OLD:
1669 fmtname = "vfsold";
1670 break;
1671 case QFMT_VFS_V0:
1672 fmtname = "vfsv0";
1673 break;
1674 case QFMT_VFS_V1:
1675 fmtname = "vfsv1";
1676 break;
1677 }
1678 seq_printf(seq, ",jqfmt=%s", fmtname);
1679 }
1680
1681 if (sbi->s_qf_names[USRQUOTA])
1682 seq_printf(seq, ",usrjquota=%s", sbi->s_qf_names[USRQUOTA]);
1683
1684 if (sbi->s_qf_names[GRPQUOTA])
1685 seq_printf(seq, ",grpjquota=%s", sbi->s_qf_names[GRPQUOTA]);
1686
1687 if (test_opt(sb, USRQUOTA))
1688 seq_puts(seq, ",usrquota");
1689
1690 if (test_opt(sb, GRPQUOTA))
1691 seq_puts(seq, ",grpquota");
1692 #endif
1693 }
1694
1695 static const char *token2str(int token)
1696 {
1697 const struct match_token *t;
1698
1699 for (t = tokens; t->token != Opt_err; t++)
1700 if (t->token == token && !strchr(t->pattern, '='))
1701 break;
1702 return t->pattern;
1703 }
1704
1705 /*
1706 * Show an option if
1707 * - it's set to a non-default value OR
1708 * - if the per-sb default is different from the global default
1709 */
1710 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb,
1711 int nodefs)
1712 {
1713 struct ext4_sb_info *sbi = EXT4_SB(sb);
1714 struct ext4_super_block *es = sbi->s_es;
1715 int def_errors, def_mount_opt = nodefs ? 0 : sbi->s_def_mount_opt;
1716 const struct mount_opts *m;
1717 char sep = nodefs ? '\n' : ',';
1718
1719 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep)
1720 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg)
1721
1722 if (sbi->s_sb_block != 1)
1723 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block);
1724
1725 for (m = ext4_mount_opts; m->token != Opt_err; m++) {
1726 int want_set = m->flags & MOPT_SET;
1727 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) ||
1728 (m->flags & MOPT_CLEAR_ERR))
1729 continue;
1730 if (!(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt)))
1731 continue; /* skip if same as the default */
1732 if ((want_set &&
1733 (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) ||
1734 (!want_set && (sbi->s_mount_opt & m->mount_opt)))
1735 continue; /* select Opt_noFoo vs Opt_Foo */
1736 SEQ_OPTS_PRINT("%s", token2str(m->token));
1737 }
1738
1739 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) ||
1740 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID)
1741 SEQ_OPTS_PRINT("resuid=%u",
1742 from_kuid_munged(&init_user_ns, sbi->s_resuid));
1743 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) ||
1744 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID)
1745 SEQ_OPTS_PRINT("resgid=%u",
1746 from_kgid_munged(&init_user_ns, sbi->s_resgid));
1747 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors);
1748 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO)
1749 SEQ_OPTS_PUTS("errors=remount-ro");
1750 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
1751 SEQ_OPTS_PUTS("errors=continue");
1752 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
1753 SEQ_OPTS_PUTS("errors=panic");
1754 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
1755 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ);
1756 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME)
1757 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time);
1758 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME)
1759 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time);
1760 if (sb->s_flags & MS_I_VERSION)
1761 SEQ_OPTS_PUTS("i_version");
1762 if (nodefs || sbi->s_stripe)
1763 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe);
1764 if (EXT4_MOUNT_DATA_FLAGS & (sbi->s_mount_opt ^ def_mount_opt)) {
1765 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
1766 SEQ_OPTS_PUTS("data=journal");
1767 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
1768 SEQ_OPTS_PUTS("data=ordered");
1769 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
1770 SEQ_OPTS_PUTS("data=writeback");
1771 }
1772 if (nodefs ||
1773 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
1774 SEQ_OPTS_PRINT("inode_readahead_blks=%u",
1775 sbi->s_inode_readahead_blks);
1776
1777 if (nodefs || (test_opt(sb, INIT_INODE_TABLE) &&
1778 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)))
1779 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult);
1780 if (nodefs || sbi->s_max_dir_size_kb)
1781 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb);
1782
1783 ext4_show_quota_options(seq, sb);
1784 return 0;
1785 }
1786
1787 static int ext4_show_options(struct seq_file *seq, struct dentry *root)
1788 {
1789 return _ext4_show_options(seq, root->d_sb, 0);
1790 }
1791
1792 static int options_seq_show(struct seq_file *seq, void *offset)
1793 {
1794 struct super_block *sb = seq->private;
1795 int rc;
1796
1797 seq_puts(seq, (sb->s_flags & MS_RDONLY) ? "ro" : "rw");
1798 rc = _ext4_show_options(seq, sb, 1);
1799 seq_puts(seq, "\n");
1800 return rc;
1801 }
1802
1803 static int options_open_fs(struct inode *inode, struct file *file)
1804 {
1805 return single_open(file, options_seq_show, PDE_DATA(inode));
1806 }
1807
1808 static const struct file_operations ext4_seq_options_fops = {
1809 .owner = THIS_MODULE,
1810 .open = options_open_fs,
1811 .read = seq_read,
1812 .llseek = seq_lseek,
1813 .release = single_release,
1814 };
1815
1816 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
1817 int read_only)
1818 {
1819 struct ext4_sb_info *sbi = EXT4_SB(sb);
1820 int res = 0;
1821
1822 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
1823 ext4_msg(sb, KERN_ERR, "revision level too high, "
1824 "forcing read-only mode");
1825 res = MS_RDONLY;
1826 }
1827 if (read_only)
1828 goto done;
1829 if (!(sbi->s_mount_state & EXT4_VALID_FS))
1830 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
1831 "running e2fsck is recommended");
1832 else if ((sbi->s_mount_state & EXT4_ERROR_FS))
1833 ext4_msg(sb, KERN_WARNING,
1834 "warning: mounting fs with errors, "
1835 "running e2fsck is recommended");
1836 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
1837 le16_to_cpu(es->s_mnt_count) >=
1838 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
1839 ext4_msg(sb, KERN_WARNING,
1840 "warning: maximal mount count reached, "
1841 "running e2fsck is recommended");
1842 else if (le32_to_cpu(es->s_checkinterval) &&
1843 (le32_to_cpu(es->s_lastcheck) +
1844 le32_to_cpu(es->s_checkinterval) <= get_seconds()))
1845 ext4_msg(sb, KERN_WARNING,
1846 "warning: checktime reached, "
1847 "running e2fsck is recommended");
1848 if (!sbi->s_journal)
1849 es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
1850 if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
1851 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
1852 le16_add_cpu(&es->s_mnt_count, 1);
1853 es->s_mtime = cpu_to_le32(get_seconds());
1854 ext4_update_dynamic_rev(sb);
1855 if (sbi->s_journal)
1856 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
1857
1858 ext4_commit_super(sb, 1);
1859 done:
1860 if (test_opt(sb, DEBUG))
1861 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
1862 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
1863 sb->s_blocksize,
1864 sbi->s_groups_count,
1865 EXT4_BLOCKS_PER_GROUP(sb),
1866 EXT4_INODES_PER_GROUP(sb),
1867 sbi->s_mount_opt, sbi->s_mount_opt2);
1868
1869 cleancache_init_fs(sb);
1870 return res;
1871 }
1872
1873 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup)
1874 {
1875 struct ext4_sb_info *sbi = EXT4_SB(sb);
1876 struct flex_groups *new_groups;
1877 int size;
1878
1879 if (!sbi->s_log_groups_per_flex)
1880 return 0;
1881
1882 size = ext4_flex_group(sbi, ngroup - 1) + 1;
1883 if (size <= sbi->s_flex_groups_allocated)
1884 return 0;
1885
1886 size = roundup_pow_of_two(size * sizeof(struct flex_groups));
1887 new_groups = ext4_kvzalloc(size, GFP_KERNEL);
1888 if (!new_groups) {
1889 ext4_msg(sb, KERN_ERR, "not enough memory for %d flex groups",
1890 size / (int) sizeof(struct flex_groups));
1891 return -ENOMEM;
1892 }
1893
1894 if (sbi->s_flex_groups) {
1895 memcpy(new_groups, sbi->s_flex_groups,
1896 (sbi->s_flex_groups_allocated *
1897 sizeof(struct flex_groups)));
1898 ext4_kvfree(sbi->s_flex_groups);
1899 }
1900 sbi->s_flex_groups = new_groups;
1901 sbi->s_flex_groups_allocated = size / sizeof(struct flex_groups);
1902 return 0;
1903 }
1904
1905 static int ext4_fill_flex_info(struct super_block *sb)
1906 {
1907 struct ext4_sb_info *sbi = EXT4_SB(sb);
1908 struct ext4_group_desc *gdp = NULL;
1909 ext4_group_t flex_group;
1910 unsigned int groups_per_flex = 0;
1911 int i, err;
1912
1913 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
1914 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) {
1915 sbi->s_log_groups_per_flex = 0;
1916 return 1;
1917 }
1918 groups_per_flex = 1U << sbi->s_log_groups_per_flex;
1919
1920 err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count);
1921 if (err)
1922 goto failed;
1923
1924 for (i = 0; i < sbi->s_groups_count; i++) {
1925 gdp = ext4_get_group_desc(sb, i, NULL);
1926
1927 flex_group = ext4_flex_group(sbi, i);
1928 atomic_add(ext4_free_inodes_count(sb, gdp),
1929 &sbi->s_flex_groups[flex_group].free_inodes);
1930 atomic64_add(ext4_free_group_clusters(sb, gdp),
1931 &sbi->s_flex_groups[flex_group].free_clusters);
1932 atomic_add(ext4_used_dirs_count(sb, gdp),
1933 &sbi->s_flex_groups[flex_group].used_dirs);
1934 }
1935
1936 return 1;
1937 failed:
1938 return 0;
1939 }
1940
1941 static __le16 ext4_group_desc_csum(struct ext4_sb_info *sbi, __u32 block_group,
1942 struct ext4_group_desc *gdp)
1943 {
1944 int offset;
1945 __u16 crc = 0;
1946 __le32 le_group = cpu_to_le32(block_group);
1947
1948 if ((sbi->s_es->s_feature_ro_compat &
1949 cpu_to_le32(EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))) {
1950 /* Use new metadata_csum algorithm */
1951 __u16 old_csum;
1952 __u32 csum32;
1953
1954 old_csum = gdp->bg_checksum;
1955 gdp->bg_checksum = 0;
1956 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group,
1957 sizeof(le_group));
1958 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp,
1959 sbi->s_desc_size);
1960 gdp->bg_checksum = old_csum;
1961
1962 crc = csum32 & 0xFFFF;
1963 goto out;
1964 }
1965
1966 /* old crc16 code */
1967 offset = offsetof(struct ext4_group_desc, bg_checksum);
1968
1969 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
1970 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
1971 crc = crc16(crc, (__u8 *)gdp, offset);
1972 offset += sizeof(gdp->bg_checksum); /* skip checksum */
1973 /* for checksum of struct ext4_group_desc do the rest...*/
1974 if ((sbi->s_es->s_feature_incompat &
1975 cpu_to_le32(EXT4_FEATURE_INCOMPAT_64BIT)) &&
1976 offset < le16_to_cpu(sbi->s_es->s_desc_size))
1977 crc = crc16(crc, (__u8 *)gdp + offset,
1978 le16_to_cpu(sbi->s_es->s_desc_size) -
1979 offset);
1980
1981 out:
1982 return cpu_to_le16(crc);
1983 }
1984
1985 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group,
1986 struct ext4_group_desc *gdp)
1987 {
1988 if (ext4_has_group_desc_csum(sb) &&
1989 (gdp->bg_checksum != ext4_group_desc_csum(EXT4_SB(sb),
1990 block_group, gdp)))
1991 return 0;
1992
1993 return 1;
1994 }
1995
1996 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group,
1997 struct ext4_group_desc *gdp)
1998 {
1999 if (!ext4_has_group_desc_csum(sb))
2000 return;
2001 gdp->bg_checksum = ext4_group_desc_csum(EXT4_SB(sb), block_group, gdp);
2002 }
2003
2004 /* Called at mount-time, super-block is locked */
2005 static int ext4_check_descriptors(struct super_block *sb,
2006 ext4_group_t *first_not_zeroed)
2007 {
2008 struct ext4_sb_info *sbi = EXT4_SB(sb);
2009 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
2010 ext4_fsblk_t last_block;
2011 ext4_fsblk_t block_bitmap;
2012 ext4_fsblk_t inode_bitmap;
2013 ext4_fsblk_t inode_table;
2014 int flexbg_flag = 0;
2015 ext4_group_t i, grp = sbi->s_groups_count;
2016
2017 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG))
2018 flexbg_flag = 1;
2019
2020 ext4_debug("Checking group descriptors");
2021
2022 for (i = 0; i < sbi->s_groups_count; i++) {
2023 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
2024
2025 if (i == sbi->s_groups_count - 1 || flexbg_flag)
2026 last_block = ext4_blocks_count(sbi->s_es) - 1;
2027 else
2028 last_block = first_block +
2029 (EXT4_BLOCKS_PER_GROUP(sb) - 1);
2030
2031 if ((grp == sbi->s_groups_count) &&
2032 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2033 grp = i;
2034
2035 block_bitmap = ext4_block_bitmap(sb, gdp);
2036 if (block_bitmap < first_block || block_bitmap > last_block) {
2037 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2038 "Block bitmap for group %u not in group "
2039 "(block %llu)!", i, block_bitmap);
2040 return 0;
2041 }
2042 inode_bitmap = ext4_inode_bitmap(sb, gdp);
2043 if (inode_bitmap < first_block || inode_bitmap > last_block) {
2044 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2045 "Inode bitmap for group %u not in group "
2046 "(block %llu)!", i, inode_bitmap);
2047 return 0;
2048 }
2049 inode_table = ext4_inode_table(sb, gdp);
2050 if (inode_table < first_block ||
2051 inode_table + sbi->s_itb_per_group - 1 > last_block) {
2052 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2053 "Inode table for group %u not in group "
2054 "(block %llu)!", i, inode_table);
2055 return 0;
2056 }
2057 ext4_lock_group(sb, i);
2058 if (!ext4_group_desc_csum_verify(sb, i, gdp)) {
2059 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2060 "Checksum for group %u failed (%u!=%u)",
2061 i, le16_to_cpu(ext4_group_desc_csum(sbi, i,
2062 gdp)), le16_to_cpu(gdp->bg_checksum));
2063 if (!(sb->s_flags & MS_RDONLY)) {
2064 ext4_unlock_group(sb, i);
2065 return 0;
2066 }
2067 }
2068 ext4_unlock_group(sb, i);
2069 if (!flexbg_flag)
2070 first_block += EXT4_BLOCKS_PER_GROUP(sb);
2071 }
2072 if (NULL != first_not_zeroed)
2073 *first_not_zeroed = grp;
2074
2075 ext4_free_blocks_count_set(sbi->s_es,
2076 EXT4_C2B(sbi, ext4_count_free_clusters(sb)));
2077 sbi->s_es->s_free_inodes_count =cpu_to_le32(ext4_count_free_inodes(sb));
2078 return 1;
2079 }
2080
2081 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at
2082 * the superblock) which were deleted from all directories, but held open by
2083 * a process at the time of a crash. We walk the list and try to delete these
2084 * inodes at recovery time (only with a read-write filesystem).
2085 *
2086 * In order to keep the orphan inode chain consistent during traversal (in
2087 * case of crash during recovery), we link each inode into the superblock
2088 * orphan list_head and handle it the same way as an inode deletion during
2089 * normal operation (which journals the operations for us).
2090 *
2091 * We only do an iget() and an iput() on each inode, which is very safe if we
2092 * accidentally point at an in-use or already deleted inode. The worst that
2093 * can happen in this case is that we get a "bit already cleared" message from
2094 * ext4_free_inode(). The only reason we would point at a wrong inode is if
2095 * e2fsck was run on this filesystem, and it must have already done the orphan
2096 * inode cleanup for us, so we can safely abort without any further action.
2097 */
2098 static void ext4_orphan_cleanup(struct super_block *sb,
2099 struct ext4_super_block *es)
2100 {
2101 unsigned int s_flags = sb->s_flags;
2102 int nr_orphans = 0, nr_truncates = 0;
2103 #ifdef CONFIG_QUOTA
2104 int i;
2105 #endif
2106 if (!es->s_last_orphan) {
2107 jbd_debug(4, "no orphan inodes to clean up\n");
2108 return;
2109 }
2110
2111 if (bdev_read_only(sb->s_bdev)) {
2112 ext4_msg(sb, KERN_ERR, "write access "
2113 "unavailable, skipping orphan cleanup");
2114 return;
2115 }
2116
2117 /* Check if feature set would not allow a r/w mount */
2118 if (!ext4_feature_set_ok(sb, 0)) {
2119 ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to "
2120 "unknown ROCOMPAT features");
2121 return;
2122 }
2123
2124 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2125 /* don't clear list on RO mount w/ errors */
2126 if (es->s_last_orphan && !(s_flags & MS_RDONLY)) {
2127 jbd_debug(1, "Errors on filesystem, "
2128 "clearing orphan list.\n");
2129 es->s_last_orphan = 0;
2130 }
2131 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2132 return;
2133 }
2134
2135 if (s_flags & MS_RDONLY) {
2136 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs");
2137 sb->s_flags &= ~MS_RDONLY;
2138 }
2139 #ifdef CONFIG_QUOTA
2140 /* Needed for iput() to work correctly and not trash data */
2141 sb->s_flags |= MS_ACTIVE;
2142 /* Turn on quotas so that they are updated correctly */
2143 for (i = 0; i < MAXQUOTAS; i++) {
2144 if (EXT4_SB(sb)->s_qf_names[i]) {
2145 int ret = ext4_quota_on_mount(sb, i);
2146 if (ret < 0)
2147 ext4_msg(sb, KERN_ERR,
2148 "Cannot turn on journaled "
2149 "quota: error %d", ret);
2150 }
2151 }
2152 #endif
2153
2154 while (es->s_last_orphan) {
2155 struct inode *inode;
2156
2157 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan));
2158 if (IS_ERR(inode)) {
2159 es->s_last_orphan = 0;
2160 break;
2161 }
2162
2163 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan);
2164 dquot_initialize(inode);
2165 if (inode->i_nlink) {
2166 ext4_msg(sb, KERN_DEBUG,
2167 "%s: truncating inode %lu to %lld bytes",
2168 __func__, inode->i_ino, inode->i_size);
2169 jbd_debug(2, "truncating inode %lu to %lld bytes\n",
2170 inode->i_ino, inode->i_size);
2171 mutex_lock(&inode->i_mutex);
2172 ext4_truncate(inode);
2173 mutex_unlock(&inode->i_mutex);
2174 nr_truncates++;
2175 } else {
2176 ext4_msg(sb, KERN_DEBUG,
2177 "%s: deleting unreferenced inode %lu",
2178 __func__, inode->i_ino);
2179 jbd_debug(2, "deleting unreferenced inode %lu\n",
2180 inode->i_ino);
2181 nr_orphans++;
2182 }
2183 iput(inode); /* The delete magic happens here! */
2184 }
2185
2186 #define PLURAL(x) (x), ((x) == 1) ? "" : "s"
2187
2188 if (nr_orphans)
2189 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted",
2190 PLURAL(nr_orphans));
2191 if (nr_truncates)
2192 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up",
2193 PLURAL(nr_truncates));
2194 #ifdef CONFIG_QUOTA
2195 /* Turn quotas off */
2196 for (i = 0; i < MAXQUOTAS; i++) {
2197 if (sb_dqopt(sb)->files[i])
2198 dquot_quota_off(sb, i);
2199 }
2200 #endif
2201 sb->s_flags = s_flags; /* Restore MS_RDONLY status */
2202 }
2203
2204 /*
2205 * Maximal extent format file size.
2206 * Resulting logical blkno at s_maxbytes must fit in our on-disk
2207 * extent format containers, within a sector_t, and within i_blocks
2208 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units,
2209 * so that won't be a limiting factor.
2210 *
2211 * However there is other limiting factor. We do store extents in the form
2212 * of starting block and length, hence the resulting length of the extent
2213 * covering maximum file size must fit into on-disk format containers as
2214 * well. Given that length is always by 1 unit bigger than max unit (because
2215 * we count 0 as well) we have to lower the s_maxbytes by one fs block.
2216 *
2217 * Note, this does *not* consider any metadata overhead for vfs i_blocks.
2218 */
2219 static loff_t ext4_max_size(int blkbits, int has_huge_files)
2220 {
2221 loff_t res;
2222 loff_t upper_limit = MAX_LFS_FILESIZE;
2223
2224 /* small i_blocks in vfs inode? */
2225 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2226 /*
2227 * CONFIG_LBDAF is not enabled implies the inode
2228 * i_block represent total blocks in 512 bytes
2229 * 32 == size of vfs inode i_blocks * 8
2230 */
2231 upper_limit = (1LL << 32) - 1;
2232
2233 /* total blocks in file system block size */
2234 upper_limit >>= (blkbits - 9);
2235 upper_limit <<= blkbits;
2236 }
2237
2238 /*
2239 * 32-bit extent-start container, ee_block. We lower the maxbytes
2240 * by one fs block, so ee_len can cover the extent of maximum file
2241 * size
2242 */
2243 res = (1LL << 32) - 1;
2244 res <<= blkbits;
2245
2246 /* Sanity check against vm- & vfs- imposed limits */
2247 if (res > upper_limit)
2248 res = upper_limit;
2249
2250 return res;
2251 }
2252
2253 /*
2254 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect
2255 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
2256 * We need to be 1 filesystem block less than the 2^48 sector limit.
2257 */
2258 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
2259 {
2260 loff_t res = EXT4_NDIR_BLOCKS;
2261 int meta_blocks;
2262 loff_t upper_limit;
2263 /* This is calculated to be the largest file size for a dense, block
2264 * mapped file such that the file's total number of 512-byte sectors,
2265 * including data and all indirect blocks, does not exceed (2^48 - 1).
2266 *
2267 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
2268 * number of 512-byte sectors of the file.
2269 */
2270
2271 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2272 /*
2273 * !has_huge_files or CONFIG_LBDAF not enabled implies that
2274 * the inode i_block field represents total file blocks in
2275 * 2^32 512-byte sectors == size of vfs inode i_blocks * 8
2276 */
2277 upper_limit = (1LL << 32) - 1;
2278
2279 /* total blocks in file system block size */
2280 upper_limit >>= (bits - 9);
2281
2282 } else {
2283 /*
2284 * We use 48 bit ext4_inode i_blocks
2285 * With EXT4_HUGE_FILE_FL set the i_blocks
2286 * represent total number of blocks in
2287 * file system block size
2288 */
2289 upper_limit = (1LL << 48) - 1;
2290
2291 }
2292
2293 /* indirect blocks */
2294 meta_blocks = 1;
2295 /* double indirect blocks */
2296 meta_blocks += 1 + (1LL << (bits-2));
2297 /* tripple indirect blocks */
2298 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2)));
2299
2300 upper_limit -= meta_blocks;
2301 upper_limit <<= bits;
2302
2303 res += 1LL << (bits-2);
2304 res += 1LL << (2*(bits-2));
2305 res += 1LL << (3*(bits-2));
2306 res <<= bits;
2307 if (res > upper_limit)
2308 res = upper_limit;
2309
2310 if (res > MAX_LFS_FILESIZE)
2311 res = MAX_LFS_FILESIZE;
2312
2313 return res;
2314 }
2315
2316 static ext4_fsblk_t descriptor_loc(struct super_block *sb,
2317 ext4_fsblk_t logical_sb_block, int nr)
2318 {
2319 struct ext4_sb_info *sbi = EXT4_SB(sb);
2320 ext4_group_t bg, first_meta_bg;
2321 int has_super = 0;
2322
2323 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
2324
2325 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_META_BG) ||
2326 nr < first_meta_bg)
2327 return logical_sb_block + nr + 1;
2328 bg = sbi->s_desc_per_block * nr;
2329 if (ext4_bg_has_super(sb, bg))
2330 has_super = 1;
2331
2332 return (has_super + ext4_group_first_block_no(sb, bg));
2333 }
2334
2335 /**
2336 * ext4_get_stripe_size: Get the stripe size.
2337 * @sbi: In memory super block info
2338 *
2339 * If we have specified it via mount option, then
2340 * use the mount option value. If the value specified at mount time is
2341 * greater than the blocks per group use the super block value.
2342 * If the super block value is greater than blocks per group return 0.
2343 * Allocator needs it be less than blocks per group.
2344 *
2345 */
2346 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
2347 {
2348 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
2349 unsigned long stripe_width =
2350 le32_to_cpu(sbi->s_es->s_raid_stripe_width);
2351 int ret;
2352
2353 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
2354 ret = sbi->s_stripe;
2355 else if (stripe_width <= sbi->s_blocks_per_group)
2356 ret = stripe_width;
2357 else if (stride <= sbi->s_blocks_per_group)
2358 ret = stride;
2359 else
2360 ret = 0;
2361
2362 /*
2363 * If the stripe width is 1, this makes no sense and
2364 * we set it to 0 to turn off stripe handling code.
2365 */
2366 if (ret <= 1)
2367 ret = 0;
2368
2369 return ret;
2370 }
2371
2372 /* sysfs supprt */
2373
2374 struct ext4_attr {
2375 struct attribute attr;
2376 ssize_t (*show)(struct ext4_attr *, struct ext4_sb_info *, char *);
2377 ssize_t (*store)(struct ext4_attr *, struct ext4_sb_info *,
2378 const char *, size_t);
2379 int offset;
2380 };
2381
2382 static int parse_strtoul(const char *buf,
2383 unsigned long max, unsigned long *value)
2384 {
2385 char *endp;
2386
2387 *value = simple_strtoul(skip_spaces(buf), &endp, 0);
2388 endp = skip_spaces(endp);
2389 if (*endp || *value > max)
2390 return -EINVAL;
2391
2392 return 0;
2393 }
2394
2395 static ssize_t delayed_allocation_blocks_show(struct ext4_attr *a,
2396 struct ext4_sb_info *sbi,
2397 char *buf)
2398 {
2399 return snprintf(buf, PAGE_SIZE, "%llu\n",
2400 (s64) EXT4_C2B(sbi,
2401 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
2402 }
2403
2404 static ssize_t session_write_kbytes_show(struct ext4_attr *a,
2405 struct ext4_sb_info *sbi, char *buf)
2406 {
2407 struct super_block *sb = sbi->s_buddy_cache->i_sb;
2408
2409 if (!sb->s_bdev->bd_part)
2410 return snprintf(buf, PAGE_SIZE, "0\n");
2411 return snprintf(buf, PAGE_SIZE, "%lu\n",
2412 (part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
2413 sbi->s_sectors_written_start) >> 1);
2414 }
2415
2416 static ssize_t lifetime_write_kbytes_show(struct ext4_attr *a,
2417 struct ext4_sb_info *sbi, char *buf)
2418 {
2419 struct super_block *sb = sbi->s_buddy_cache->i_sb;
2420
2421 if (!sb->s_bdev->bd_part)
2422 return snprintf(buf, PAGE_SIZE, "0\n");
2423 return snprintf(buf, PAGE_SIZE, "%llu\n",
2424 (unsigned long long)(sbi->s_kbytes_written +
2425 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
2426 EXT4_SB(sb)->s_sectors_written_start) >> 1)));
2427 }
2428
2429 static ssize_t inode_readahead_blks_store(struct ext4_attr *a,
2430 struct ext4_sb_info *sbi,
2431 const char *buf, size_t count)
2432 {
2433 unsigned long t;
2434
2435 if (parse_strtoul(buf, 0x40000000, &t))
2436 return -EINVAL;
2437
2438 if (t && !is_power_of_2(t))
2439 return -EINVAL;
2440
2441 sbi->s_inode_readahead_blks = t;
2442 return count;
2443 }
2444
2445 static ssize_t sbi_ui_show(struct ext4_attr *a,
2446 struct ext4_sb_info *sbi, char *buf)
2447 {
2448 unsigned int *ui = (unsigned int *) (((char *) sbi) + a->offset);
2449
2450 return snprintf(buf, PAGE_SIZE, "%u\n", *ui);
2451 }
2452
2453 static ssize_t sbi_ui_store(struct ext4_attr *a,
2454 struct ext4_sb_info *sbi,
2455 const char *buf, size_t count)
2456 {
2457 unsigned int *ui = (unsigned int *) (((char *) sbi) + a->offset);
2458 unsigned long t;
2459
2460 if (parse_strtoul(buf, 0xffffffff, &t))
2461 return -EINVAL;
2462 *ui = t;
2463 return count;
2464 }
2465
2466 static ssize_t trigger_test_error(struct ext4_attr *a,
2467 struct ext4_sb_info *sbi,
2468 const char *buf, size_t count)
2469 {
2470 int len = count;
2471
2472 if (!capable(CAP_SYS_ADMIN))
2473 return -EPERM;
2474
2475 if (len && buf[len-1] == '\n')
2476 len--;
2477
2478 if (len)
2479 ext4_error(sbi->s_sb, "%.*s", len, buf);
2480 return count;
2481 }
2482
2483 #define EXT4_ATTR_OFFSET(_name,_mode,_show,_store,_elname) \
2484 static struct ext4_attr ext4_attr_##_name = { \
2485 .attr = {.name = __stringify(_name), .mode = _mode }, \
2486 .show = _show, \
2487 .store = _store, \
2488 .offset = offsetof(struct ext4_sb_info, _elname), \
2489 }
2490 #define EXT4_ATTR(name, mode, show, store) \
2491 static struct ext4_attr ext4_attr_##name = __ATTR(name, mode, show, store)
2492
2493 #define EXT4_INFO_ATTR(name) EXT4_ATTR(name, 0444, NULL, NULL)
2494 #define EXT4_RO_ATTR(name) EXT4_ATTR(name, 0444, name##_show, NULL)
2495 #define EXT4_RW_ATTR(name) EXT4_ATTR(name, 0644, name##_show, name##_store)
2496 #define EXT4_RW_ATTR_SBI_UI(name, elname) \
2497 EXT4_ATTR_OFFSET(name, 0644, sbi_ui_show, sbi_ui_store, elname)
2498 #define ATTR_LIST(name) &ext4_attr_##name.attr
2499
2500 EXT4_RO_ATTR(delayed_allocation_blocks);
2501 EXT4_RO_ATTR(session_write_kbytes);
2502 EXT4_RO_ATTR(lifetime_write_kbytes);
2503 EXT4_ATTR_OFFSET(inode_readahead_blks, 0644, sbi_ui_show,
2504 inode_readahead_blks_store, s_inode_readahead_blks);
2505 EXT4_RW_ATTR_SBI_UI(inode_goal, s_inode_goal);
2506 EXT4_RW_ATTR_SBI_UI(mb_stats, s_mb_stats);
2507 EXT4_RW_ATTR_SBI_UI(mb_max_to_scan, s_mb_max_to_scan);
2508 EXT4_RW_ATTR_SBI_UI(mb_min_to_scan, s_mb_min_to_scan);
2509 EXT4_RW_ATTR_SBI_UI(mb_order2_req, s_mb_order2_reqs);
2510 EXT4_RW_ATTR_SBI_UI(mb_stream_req, s_mb_stream_request);
2511 EXT4_RW_ATTR_SBI_UI(mb_group_prealloc, s_mb_group_prealloc);
2512 EXT4_RW_ATTR_SBI_UI(max_writeback_mb_bump, s_max_writeback_mb_bump);
2513 EXT4_RW_ATTR_SBI_UI(extent_max_zeroout_kb, s_extent_max_zeroout_kb);
2514 EXT4_ATTR(trigger_fs_error, 0200, NULL, trigger_test_error);
2515
2516 static struct attribute *ext4_attrs[] = {
2517 ATTR_LIST(delayed_allocation_blocks),
2518 ATTR_LIST(session_write_kbytes),
2519 ATTR_LIST(lifetime_write_kbytes),
2520 ATTR_LIST(inode_readahead_blks),
2521 ATTR_LIST(inode_goal),
2522 ATTR_LIST(mb_stats),
2523 ATTR_LIST(mb_max_to_scan),
2524 ATTR_LIST(mb_min_to_scan),
2525 ATTR_LIST(mb_order2_req),
2526 ATTR_LIST(mb_stream_req),
2527 ATTR_LIST(mb_group_prealloc),
2528 ATTR_LIST(max_writeback_mb_bump),
2529 ATTR_LIST(extent_max_zeroout_kb),
2530 ATTR_LIST(trigger_fs_error),
2531 NULL,
2532 };
2533
2534 /* Features this copy of ext4 supports */
2535 EXT4_INFO_ATTR(lazy_itable_init);
2536 EXT4_INFO_ATTR(batched_discard);
2537 EXT4_INFO_ATTR(meta_bg_resize);
2538
2539 static struct attribute *ext4_feat_attrs[] = {
2540 ATTR_LIST(lazy_itable_init),
2541 ATTR_LIST(batched_discard),
2542 ATTR_LIST(meta_bg_resize),
2543 NULL,
2544 };
2545
2546 static ssize_t ext4_attr_show(struct kobject *kobj,
2547 struct attribute *attr, char *buf)
2548 {
2549 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2550 s_kobj);
2551 struct ext4_attr *a = container_of(attr, struct ext4_attr, attr);
2552
2553 return a->show ? a->show(a, sbi, buf) : 0;
2554 }
2555
2556 static ssize_t ext4_attr_store(struct kobject *kobj,
2557 struct attribute *attr,
2558 const char *buf, size_t len)
2559 {
2560 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2561 s_kobj);
2562 struct ext4_attr *a = container_of(attr, struct ext4_attr, attr);
2563
2564 return a->store ? a->store(a, sbi, buf, len) : 0;
2565 }
2566
2567 static void ext4_sb_release(struct kobject *kobj)
2568 {
2569 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2570 s_kobj);
2571 complete(&sbi->s_kobj_unregister);
2572 }
2573
2574 static const struct sysfs_ops ext4_attr_ops = {
2575 .show = ext4_attr_show,
2576 .store = ext4_attr_store,
2577 };
2578
2579 static struct kobj_type ext4_ktype = {
2580 .default_attrs = ext4_attrs,
2581 .sysfs_ops = &ext4_attr_ops,
2582 .release = ext4_sb_release,
2583 };
2584
2585 static void ext4_feat_release(struct kobject *kobj)
2586 {
2587 complete(&ext4_feat->f_kobj_unregister);
2588 }
2589
2590 static struct kobj_type ext4_feat_ktype = {
2591 .default_attrs = ext4_feat_attrs,
2592 .sysfs_ops = &ext4_attr_ops,
2593 .release = ext4_feat_release,
2594 };
2595
2596 /*
2597 * Check whether this filesystem can be mounted based on
2598 * the features present and the RDONLY/RDWR mount requested.
2599 * Returns 1 if this filesystem can be mounted as requested,
2600 * 0 if it cannot be.
2601 */
2602 static int ext4_feature_set_ok(struct super_block *sb, int readonly)
2603 {
2604 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT4_FEATURE_INCOMPAT_SUPP)) {
2605 ext4_msg(sb, KERN_ERR,
2606 "Couldn't mount because of "
2607 "unsupported optional features (%x)",
2608 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
2609 ~EXT4_FEATURE_INCOMPAT_SUPP));
2610 return 0;
2611 }
2612
2613 if (readonly)
2614 return 1;
2615
2616 /* Check that feature set is OK for a read-write mount */
2617 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT4_FEATURE_RO_COMPAT_SUPP)) {
2618 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
2619 "unsupported optional features (%x)",
2620 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
2621 ~EXT4_FEATURE_RO_COMPAT_SUPP));
2622 return 0;
2623 }
2624 /*
2625 * Large file size enabled file system can only be mounted
2626 * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF
2627 */
2628 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
2629 if (sizeof(blkcnt_t) < sizeof(u64)) {
2630 ext4_msg(sb, KERN_ERR, "Filesystem with huge files "
2631 "cannot be mounted RDWR without "
2632 "CONFIG_LBDAF");
2633 return 0;
2634 }
2635 }
2636 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_BIGALLOC) &&
2637 !EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) {
2638 ext4_msg(sb, KERN_ERR,
2639 "Can't support bigalloc feature without "
2640 "extents feature\n");
2641 return 0;
2642 }
2643
2644 #ifndef CONFIG_QUOTA
2645 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) &&
2646 !readonly) {
2647 ext4_msg(sb, KERN_ERR,
2648 "Filesystem with quota feature cannot be mounted RDWR "
2649 "without CONFIG_QUOTA");
2650 return 0;
2651 }
2652 #endif /* CONFIG_QUOTA */
2653 return 1;
2654 }
2655
2656 /*
2657 * This function is called once a day if we have errors logged
2658 * on the file system
2659 */
2660 static void print_daily_error_info(unsigned long arg)
2661 {
2662 struct super_block *sb = (struct super_block *) arg;
2663 struct ext4_sb_info *sbi;
2664 struct ext4_super_block *es;
2665
2666 sbi = EXT4_SB(sb);
2667 es = sbi->s_es;
2668
2669 if (es->s_error_count)
2670 ext4_msg(sb, KERN_NOTICE, "error count: %u",
2671 le32_to_cpu(es->s_error_count));
2672 if (es->s_first_error_time) {
2673 printk(KERN_NOTICE "EXT4-fs (%s): initial error at %u: %.*s:%d",
2674 sb->s_id, le32_to_cpu(es->s_first_error_time),
2675 (int) sizeof(es->s_first_error_func),
2676 es->s_first_error_func,
2677 le32_to_cpu(es->s_first_error_line));
2678 if (es->s_first_error_ino)
2679 printk(": inode %u",
2680 le32_to_cpu(es->s_first_error_ino));
2681 if (es->s_first_error_block)
2682 printk(": block %llu", (unsigned long long)
2683 le64_to_cpu(es->s_first_error_block));
2684 printk("\n");
2685 }
2686 if (es->s_last_error_time) {
2687 printk(KERN_NOTICE "EXT4-fs (%s): last error at %u: %.*s:%d",
2688 sb->s_id, le32_to_cpu(es->s_last_error_time),
2689 (int) sizeof(es->s_last_error_func),
2690 es->s_last_error_func,
2691 le32_to_cpu(es->s_last_error_line));
2692 if (es->s_last_error_ino)
2693 printk(": inode %u",
2694 le32_to_cpu(es->s_last_error_ino));
2695 if (es->s_last_error_block)
2696 printk(": block %llu", (unsigned long long)
2697 le64_to_cpu(es->s_last_error_block));
2698 printk("\n");
2699 }
2700 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */
2701 }
2702
2703 /* Find next suitable group and run ext4_init_inode_table */
2704 static int ext4_run_li_request(struct ext4_li_request *elr)
2705 {
2706 struct ext4_group_desc *gdp = NULL;
2707 ext4_group_t group, ngroups;
2708 struct super_block *sb;
2709 unsigned long timeout = 0;
2710 int ret = 0;
2711
2712 sb = elr->lr_super;
2713 ngroups = EXT4_SB(sb)->s_groups_count;
2714
2715 sb_start_write(sb);
2716 for (group = elr->lr_next_group; group < ngroups; group++) {
2717 gdp = ext4_get_group_desc(sb, group, NULL);
2718 if (!gdp) {
2719 ret = 1;
2720 break;
2721 }
2722
2723 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2724 break;
2725 }
2726
2727 if (group >= ngroups)
2728 ret = 1;
2729
2730 if (!ret) {
2731 timeout = jiffies;
2732 ret = ext4_init_inode_table(sb, group,
2733 elr->lr_timeout ? 0 : 1);
2734 if (elr->lr_timeout == 0) {
2735 timeout = (jiffies - timeout) *
2736 elr->lr_sbi->s_li_wait_mult;
2737 elr->lr_timeout = timeout;
2738 }
2739 elr->lr_next_sched = jiffies + elr->lr_timeout;
2740 elr->lr_next_group = group + 1;
2741 }
2742 sb_end_write(sb);
2743
2744 return ret;
2745 }
2746
2747 /*
2748 * Remove lr_request from the list_request and free the
2749 * request structure. Should be called with li_list_mtx held
2750 */
2751 static void ext4_remove_li_request(struct ext4_li_request *elr)
2752 {
2753 struct ext4_sb_info *sbi;
2754
2755 if (!elr)
2756 return;
2757
2758 sbi = elr->lr_sbi;
2759
2760 list_del(&elr->lr_request);
2761 sbi->s_li_request = NULL;
2762 kfree(elr);
2763 }
2764
2765 static void ext4_unregister_li_request(struct super_block *sb)
2766 {
2767 mutex_lock(&ext4_li_mtx);
2768 if (!ext4_li_info) {
2769 mutex_unlock(&ext4_li_mtx);
2770 return;
2771 }
2772
2773 mutex_lock(&ext4_li_info->li_list_mtx);
2774 ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
2775 mutex_unlock(&ext4_li_info->li_list_mtx);
2776 mutex_unlock(&ext4_li_mtx);
2777 }
2778
2779 static struct task_struct *ext4_lazyinit_task;
2780
2781 /*
2782 * This is the function where ext4lazyinit thread lives. It walks
2783 * through the request list searching for next scheduled filesystem.
2784 * When such a fs is found, run the lazy initialization request
2785 * (ext4_rn_li_request) and keep track of the time spend in this
2786 * function. Based on that time we compute next schedule time of
2787 * the request. When walking through the list is complete, compute
2788 * next waking time and put itself into sleep.
2789 */
2790 static int ext4_lazyinit_thread(void *arg)
2791 {
2792 struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg;
2793 struct list_head *pos, *n;
2794 struct ext4_li_request *elr;
2795 unsigned long next_wakeup, cur;
2796
2797 BUG_ON(NULL == eli);
2798
2799 cont_thread:
2800 while (true) {
2801 next_wakeup = MAX_JIFFY_OFFSET;
2802
2803 mutex_lock(&eli->li_list_mtx);
2804 if (list_empty(&eli->li_request_list)) {
2805 mutex_unlock(&eli->li_list_mtx);
2806 goto exit_thread;
2807 }
2808
2809 list_for_each_safe(pos, n, &eli->li_request_list) {
2810 elr = list_entry(pos, struct ext4_li_request,
2811 lr_request);
2812
2813 if (time_after_eq(jiffies, elr->lr_next_sched)) {
2814 if (ext4_run_li_request(elr) != 0) {
2815 /* error, remove the lazy_init job */
2816 ext4_remove_li_request(elr);
2817 continue;
2818 }
2819 }
2820
2821 if (time_before(elr->lr_next_sched, next_wakeup))
2822 next_wakeup = elr->lr_next_sched;
2823 }
2824 mutex_unlock(&eli->li_list_mtx);
2825
2826 try_to_freeze();
2827
2828 cur = jiffies;
2829 if ((time_after_eq(cur, next_wakeup)) ||
2830 (MAX_JIFFY_OFFSET == next_wakeup)) {
2831 cond_resched();
2832 continue;
2833 }
2834
2835 schedule_timeout_interruptible(next_wakeup - cur);
2836
2837 if (kthread_should_stop()) {
2838 ext4_clear_request_list();
2839 goto exit_thread;
2840 }
2841 }
2842
2843 exit_thread:
2844 /*
2845 * It looks like the request list is empty, but we need
2846 * to check it under the li_list_mtx lock, to prevent any
2847 * additions into it, and of course we should lock ext4_li_mtx
2848 * to atomically free the list and ext4_li_info, because at
2849 * this point another ext4 filesystem could be registering
2850 * new one.
2851 */
2852 mutex_lock(&ext4_li_mtx);
2853 mutex_lock(&eli->li_list_mtx);
2854 if (!list_empty(&eli->li_request_list)) {
2855 mutex_unlock(&eli->li_list_mtx);
2856 mutex_unlock(&ext4_li_mtx);
2857 goto cont_thread;
2858 }
2859 mutex_unlock(&eli->li_list_mtx);
2860 kfree(ext4_li_info);
2861 ext4_li_info = NULL;
2862 mutex_unlock(&ext4_li_mtx);
2863
2864 return 0;
2865 }
2866
2867 static void ext4_clear_request_list(void)
2868 {
2869 struct list_head *pos, *n;
2870 struct ext4_li_request *elr;
2871
2872 mutex_lock(&ext4_li_info->li_list_mtx);
2873 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
2874 elr = list_entry(pos, struct ext4_li_request,
2875 lr_request);
2876 ext4_remove_li_request(elr);
2877 }
2878 mutex_unlock(&ext4_li_info->li_list_mtx);
2879 }
2880
2881 static int ext4_run_lazyinit_thread(void)
2882 {
2883 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
2884 ext4_li_info, "ext4lazyinit");
2885 if (IS_ERR(ext4_lazyinit_task)) {
2886 int err = PTR_ERR(ext4_lazyinit_task);
2887 ext4_clear_request_list();
2888 kfree(ext4_li_info);
2889 ext4_li_info = NULL;
2890 printk(KERN_CRIT "EXT4-fs: error %d creating inode table "
2891 "initialization thread\n",
2892 err);
2893 return err;
2894 }
2895 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
2896 return 0;
2897 }
2898
2899 /*
2900 * Check whether it make sense to run itable init. thread or not.
2901 * If there is at least one uninitialized inode table, return
2902 * corresponding group number, else the loop goes through all
2903 * groups and return total number of groups.
2904 */
2905 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
2906 {
2907 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
2908 struct ext4_group_desc *gdp = NULL;
2909
2910 for (group = 0; group < ngroups; group++) {
2911 gdp = ext4_get_group_desc(sb, group, NULL);
2912 if (!gdp)
2913 continue;
2914
2915 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2916 break;
2917 }
2918
2919 return group;
2920 }
2921
2922 static int ext4_li_info_new(void)
2923 {
2924 struct ext4_lazy_init *eli = NULL;
2925
2926 eli = kzalloc(sizeof(*eli), GFP_KERNEL);
2927 if (!eli)
2928 return -ENOMEM;
2929
2930 INIT_LIST_HEAD(&eli->li_request_list);
2931 mutex_init(&eli->li_list_mtx);
2932
2933 eli->li_state |= EXT4_LAZYINIT_QUIT;
2934
2935 ext4_li_info = eli;
2936
2937 return 0;
2938 }
2939
2940 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
2941 ext4_group_t start)
2942 {
2943 struct ext4_sb_info *sbi = EXT4_SB(sb);
2944 struct ext4_li_request *elr;
2945 unsigned long rnd;
2946
2947 elr = kzalloc(sizeof(*elr), GFP_KERNEL);
2948 if (!elr)
2949 return NULL;
2950
2951 elr->lr_super = sb;
2952 elr->lr_sbi = sbi;
2953 elr->lr_next_group = start;
2954
2955 /*
2956 * Randomize first schedule time of the request to
2957 * spread the inode table initialization requests
2958 * better.
2959 */
2960 get_random_bytes(&rnd, sizeof(rnd));
2961 elr->lr_next_sched = jiffies + (unsigned long)rnd %
2962 (EXT4_DEF_LI_MAX_START_DELAY * HZ);
2963
2964 return elr;
2965 }
2966
2967 int ext4_register_li_request(struct super_block *sb,
2968 ext4_group_t first_not_zeroed)
2969 {
2970 struct ext4_sb_info *sbi = EXT4_SB(sb);
2971 struct ext4_li_request *elr = NULL;
2972 ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count;
2973 int ret = 0;
2974
2975 mutex_lock(&ext4_li_mtx);
2976 if (sbi->s_li_request != NULL) {
2977 /*
2978 * Reset timeout so it can be computed again, because
2979 * s_li_wait_mult might have changed.
2980 */
2981 sbi->s_li_request->lr_timeout = 0;
2982 goto out;
2983 }
2984
2985 if (first_not_zeroed == ngroups ||
2986 (sb->s_flags & MS_RDONLY) ||
2987 !test_opt(sb, INIT_INODE_TABLE))
2988 goto out;
2989
2990 elr = ext4_li_request_new(sb, first_not_zeroed);
2991 if (!elr) {
2992 ret = -ENOMEM;
2993 goto out;
2994 }
2995
2996 if (NULL == ext4_li_info) {
2997 ret = ext4_li_info_new();
2998 if (ret)
2999 goto out;
3000 }
3001
3002 mutex_lock(&ext4_li_info->li_list_mtx);
3003 list_add(&elr->lr_request, &ext4_li_info->li_request_list);
3004 mutex_unlock(&ext4_li_info->li_list_mtx);
3005
3006 sbi->s_li_request = elr;
3007 /*
3008 * set elr to NULL here since it has been inserted to
3009 * the request_list and the removal and free of it is
3010 * handled by ext4_clear_request_list from now on.
3011 */
3012 elr = NULL;
3013
3014 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
3015 ret = ext4_run_lazyinit_thread();
3016 if (ret)
3017 goto out;
3018 }
3019 out:
3020 mutex_unlock(&ext4_li_mtx);
3021 if (ret)
3022 kfree(elr);
3023 return ret;
3024 }
3025
3026 /*
3027 * We do not need to lock anything since this is called on
3028 * module unload.
3029 */
3030 static void ext4_destroy_lazyinit_thread(void)
3031 {
3032 /*
3033 * If thread exited earlier
3034 * there's nothing to be done.
3035 */
3036 if (!ext4_li_info || !ext4_lazyinit_task)
3037 return;
3038
3039 kthread_stop(ext4_lazyinit_task);
3040 }
3041
3042 static int set_journal_csum_feature_set(struct super_block *sb)
3043 {
3044 int ret = 1;
3045 int compat, incompat;
3046 struct ext4_sb_info *sbi = EXT4_SB(sb);
3047
3048 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3049 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
3050 /* journal checksum v2 */
3051 compat = 0;
3052 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V2;
3053 } else {
3054 /* journal checksum v1 */
3055 compat = JBD2_FEATURE_COMPAT_CHECKSUM;
3056 incompat = 0;
3057 }
3058
3059 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
3060 ret = jbd2_journal_set_features(sbi->s_journal,
3061 compat, 0,
3062 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
3063 incompat);
3064 } else if (test_opt(sb, JOURNAL_CHECKSUM)) {
3065 ret = jbd2_journal_set_features(sbi->s_journal,
3066 compat, 0,
3067 incompat);
3068 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3069 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3070 } else {
3071 jbd2_journal_clear_features(sbi->s_journal,
3072 JBD2_FEATURE_COMPAT_CHECKSUM, 0,
3073 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
3074 JBD2_FEATURE_INCOMPAT_CSUM_V2);
3075 }
3076
3077 return ret;
3078 }
3079
3080 /*
3081 * Note: calculating the overhead so we can be compatible with
3082 * historical BSD practice is quite difficult in the face of
3083 * clusters/bigalloc. This is because multiple metadata blocks from
3084 * different block group can end up in the same allocation cluster.
3085 * Calculating the exact overhead in the face of clustered allocation
3086 * requires either O(all block bitmaps) in memory or O(number of block
3087 * groups**2) in time. We will still calculate the superblock for
3088 * older file systems --- and if we come across with a bigalloc file
3089 * system with zero in s_overhead_clusters the estimate will be close to
3090 * correct especially for very large cluster sizes --- but for newer
3091 * file systems, it's better to calculate this figure once at mkfs
3092 * time, and store it in the superblock. If the superblock value is
3093 * present (even for non-bigalloc file systems), we will use it.
3094 */
3095 static int count_overhead(struct super_block *sb, ext4_group_t grp,
3096 char *buf)
3097 {
3098 struct ext4_sb_info *sbi = EXT4_SB(sb);
3099 struct ext4_group_desc *gdp;
3100 ext4_fsblk_t first_block, last_block, b;
3101 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3102 int s, j, count = 0;
3103
3104 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_BIGALLOC))
3105 return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) +
3106 sbi->s_itb_per_group + 2);
3107
3108 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) +
3109 (grp * EXT4_BLOCKS_PER_GROUP(sb));
3110 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1;
3111 for (i = 0; i < ngroups; i++) {
3112 gdp = ext4_get_group_desc(sb, i, NULL);
3113 b = ext4_block_bitmap(sb, gdp);
3114 if (b >= first_block && b <= last_block) {
3115 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3116 count++;
3117 }
3118 b = ext4_inode_bitmap(sb, gdp);
3119 if (b >= first_block && b <= last_block) {
3120 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3121 count++;
3122 }
3123 b = ext4_inode_table(sb, gdp);
3124 if (b >= first_block && b + sbi->s_itb_per_group <= last_block)
3125 for (j = 0; j < sbi->s_itb_per_group; j++, b++) {
3126 int c = EXT4_B2C(sbi, b - first_block);
3127 ext4_set_bit(c, buf);
3128 count++;
3129 }
3130 if (i != grp)
3131 continue;
3132 s = 0;
3133 if (ext4_bg_has_super(sb, grp)) {
3134 ext4_set_bit(s++, buf);
3135 count++;
3136 }
3137 for (j = ext4_bg_num_gdb(sb, grp); j > 0; j--) {
3138 ext4_set_bit(EXT4_B2C(sbi, s++), buf);
3139 count++;
3140 }
3141 }
3142 if (!count)
3143 return 0;
3144 return EXT4_CLUSTERS_PER_GROUP(sb) -
3145 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8);
3146 }
3147
3148 /*
3149 * Compute the overhead and stash it in sbi->s_overhead
3150 */
3151 int ext4_calculate_overhead(struct super_block *sb)
3152 {
3153 struct ext4_sb_info *sbi = EXT4_SB(sb);
3154 struct ext4_super_block *es = sbi->s_es;
3155 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3156 ext4_fsblk_t overhead = 0;
3157 char *buf = (char *) get_zeroed_page(GFP_KERNEL);
3158
3159 if (!buf)
3160 return -ENOMEM;
3161
3162 /*
3163 * Compute the overhead (FS structures). This is constant
3164 * for a given filesystem unless the number of block groups
3165 * changes so we cache the previous value until it does.
3166 */
3167
3168 /*
3169 * All of the blocks before first_data_block are overhead
3170 */
3171 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
3172
3173 /*
3174 * Add the overhead found in each block group
3175 */
3176 for (i = 0; i < ngroups; i++) {
3177 int blks;
3178
3179 blks = count_overhead(sb, i, buf);
3180 overhead += blks;
3181 if (blks)
3182 memset(buf, 0, PAGE_SIZE);
3183 cond_resched();
3184 }
3185 /* Add the journal blocks as well */
3186 if (sbi->s_journal)
3187 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_maxlen);
3188
3189 sbi->s_overhead = overhead;
3190 smp_wmb();
3191 free_page((unsigned long) buf);
3192 return 0;
3193 }
3194
3195 static int ext4_fill_super(struct super_block *sb, void *data, int silent)
3196 {
3197 char *orig_data = kstrdup(data, GFP_KERNEL);
3198 struct buffer_head *bh;
3199 struct ext4_super_block *es = NULL;
3200 struct ext4_sb_info *sbi;
3201 ext4_fsblk_t block;
3202 ext4_fsblk_t sb_block = get_sb_block(&data);
3203 ext4_fsblk_t logical_sb_block;
3204 unsigned long offset = 0;
3205 unsigned long journal_devnum = 0;
3206 unsigned long def_mount_opts;
3207 struct inode *root;
3208 char *cp;
3209 const char *descr;
3210 int ret = -ENOMEM;
3211 int blocksize, clustersize;
3212 unsigned int db_count;
3213 unsigned int i;
3214 int needs_recovery, has_huge_files, has_bigalloc;
3215 __u64 blocks_count;
3216 int err = 0;
3217 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
3218 ext4_group_t first_not_zeroed;
3219
3220 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
3221 if (!sbi)
3222 goto out_free_orig;
3223
3224 sbi->s_blockgroup_lock =
3225 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
3226 if (!sbi->s_blockgroup_lock) {
3227 kfree(sbi);
3228 goto out_free_orig;
3229 }
3230 sb->s_fs_info = sbi;
3231 sbi->s_sb = sb;
3232 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
3233 sbi->s_sb_block = sb_block;
3234 if (sb->s_bdev->bd_part)
3235 sbi->s_sectors_written_start =
3236 part_stat_read(sb->s_bdev->bd_part, sectors[1]);
3237
3238 /* Cleanup superblock name */
3239 for (cp = sb->s_id; (cp = strchr(cp, '/'));)
3240 *cp = '!';
3241
3242 /* -EINVAL is default */
3243 ret = -EINVAL;
3244 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
3245 if (!blocksize) {
3246 ext4_msg(sb, KERN_ERR, "unable to set blocksize");
3247 goto out_fail;
3248 }
3249
3250 /*
3251 * The ext4 superblock will not be buffer aligned for other than 1kB
3252 * block sizes. We need to calculate the offset from buffer start.
3253 */
3254 if (blocksize != EXT4_MIN_BLOCK_SIZE) {
3255 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3256 offset = do_div(logical_sb_block, blocksize);
3257 } else {
3258 logical_sb_block = sb_block;
3259 }
3260
3261 if (!(bh = sb_bread(sb, logical_sb_block))) {
3262 ext4_msg(sb, KERN_ERR, "unable to read superblock");
3263 goto out_fail;
3264 }
3265 /*
3266 * Note: s_es must be initialized as soon as possible because
3267 * some ext4 macro-instructions depend on its value
3268 */
3269 es = (struct ext4_super_block *) (bh->b_data + offset);
3270 sbi->s_es = es;
3271 sb->s_magic = le16_to_cpu(es->s_magic);
3272 if (sb->s_magic != EXT4_SUPER_MAGIC)
3273 goto cantfind_ext4;
3274 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
3275
3276 /* Warn if metadata_csum and gdt_csum are both set. */
3277 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3278 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
3279 EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
3280 ext4_warning(sb, KERN_INFO "metadata_csum and uninit_bg are "
3281 "redundant flags; please run fsck.");
3282
3283 /* Check for a known checksum algorithm */
3284 if (!ext4_verify_csum_type(sb, es)) {
3285 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3286 "unknown checksum algorithm.");
3287 silent = 1;
3288 goto cantfind_ext4;
3289 }
3290
3291 /* Load the checksum driver */
3292 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3293 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
3294 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
3295 if (IS_ERR(sbi->s_chksum_driver)) {
3296 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver.");
3297 ret = PTR_ERR(sbi->s_chksum_driver);
3298 sbi->s_chksum_driver = NULL;
3299 goto failed_mount;
3300 }
3301 }
3302
3303 /* Check superblock checksum */
3304 if (!ext4_superblock_csum_verify(sb, es)) {
3305 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3306 "invalid superblock checksum. Run e2fsck?");
3307 silent = 1;
3308 goto cantfind_ext4;
3309 }
3310
3311 /* Precompute checksum seed for all metadata */
3312 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3313 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
3314 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid,
3315 sizeof(es->s_uuid));
3316
3317 /* Set defaults before we parse the mount options */
3318 def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
3319 set_opt(sb, INIT_INODE_TABLE);
3320 if (def_mount_opts & EXT4_DEFM_DEBUG)
3321 set_opt(sb, DEBUG);
3322 if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
3323 set_opt(sb, GRPID);
3324 if (def_mount_opts & EXT4_DEFM_UID16)
3325 set_opt(sb, NO_UID32);
3326 /* xattr user namespace & acls are now defaulted on */
3327 set_opt(sb, XATTR_USER);
3328 #ifdef CONFIG_EXT4_FS_POSIX_ACL
3329 set_opt(sb, POSIX_ACL);
3330 #endif
3331 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
3332 set_opt(sb, JOURNAL_DATA);
3333 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
3334 set_opt(sb, ORDERED_DATA);
3335 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
3336 set_opt(sb, WRITEBACK_DATA);
3337
3338 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC)
3339 set_opt(sb, ERRORS_PANIC);
3340 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE)
3341 set_opt(sb, ERRORS_CONT);
3342 else
3343 set_opt(sb, ERRORS_RO);
3344 if (def_mount_opts & EXT4_DEFM_BLOCK_VALIDITY)
3345 set_opt(sb, BLOCK_VALIDITY);
3346 if (def_mount_opts & EXT4_DEFM_DISCARD)
3347 set_opt(sb, DISCARD);
3348
3349 sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid));
3350 sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid));
3351 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
3352 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
3353 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
3354
3355 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
3356 set_opt(sb, BARRIER);
3357
3358 /*
3359 * enable delayed allocation by default
3360 * Use -o nodelalloc to turn it off
3361 */
3362 if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) &&
3363 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
3364 set_opt(sb, DELALLOC);
3365
3366 /*
3367 * set default s_li_wait_mult for lazyinit, for the case there is
3368 * no mount option specified.
3369 */
3370 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
3371
3372 if (!parse_options((char *) sbi->s_es->s_mount_opts, sb,
3373 &journal_devnum, &journal_ioprio, 0)) {
3374 ext4_msg(sb, KERN_WARNING,
3375 "failed to parse options in superblock: %s",
3376 sbi->s_es->s_mount_opts);
3377 }
3378 sbi->s_def_mount_opt = sbi->s_mount_opt;
3379 if (!parse_options((char *) data, sb, &journal_devnum,
3380 &journal_ioprio, 0))
3381 goto failed_mount;
3382
3383 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
3384 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting "
3385 "with data=journal disables delayed "
3386 "allocation and O_DIRECT support!\n");
3387 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
3388 ext4_msg(sb, KERN_ERR, "can't mount with "
3389 "both data=journal and delalloc");
3390 goto failed_mount;
3391 }
3392 if (test_opt(sb, DIOREAD_NOLOCK)) {
3393 ext4_msg(sb, KERN_ERR, "can't mount with "
3394 "both data=journal and delalloc");
3395 goto failed_mount;
3396 }
3397 if (test_opt(sb, DELALLOC))
3398 clear_opt(sb, DELALLOC);
3399 }
3400
3401 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
3402 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
3403
3404 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
3405 (EXT4_HAS_COMPAT_FEATURE(sb, ~0U) ||
3406 EXT4_HAS_RO_COMPAT_FEATURE(sb, ~0U) ||
3407 EXT4_HAS_INCOMPAT_FEATURE(sb, ~0U)))
3408 ext4_msg(sb, KERN_WARNING,
3409 "feature flags set on rev 0 fs, "
3410 "running e2fsck is recommended");
3411
3412 if (IS_EXT2_SB(sb)) {
3413 if (ext2_feature_set_ok(sb))
3414 ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
3415 "using the ext4 subsystem");
3416 else {
3417 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
3418 "to feature incompatibilities");
3419 goto failed_mount;
3420 }
3421 }
3422
3423 if (IS_EXT3_SB(sb)) {
3424 if (ext3_feature_set_ok(sb))
3425 ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
3426 "using the ext4 subsystem");
3427 else {
3428 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
3429 "to feature incompatibilities");
3430 goto failed_mount;
3431 }
3432 }
3433
3434 /*
3435 * Check feature flags regardless of the revision level, since we
3436 * previously didn't change the revision level when setting the flags,
3437 * so there is a chance incompat flags are set on a rev 0 filesystem.
3438 */
3439 if (!ext4_feature_set_ok(sb, (sb->s_flags & MS_RDONLY)))
3440 goto failed_mount;
3441
3442 blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
3443 if (blocksize < EXT4_MIN_BLOCK_SIZE ||
3444 blocksize > EXT4_MAX_BLOCK_SIZE) {
3445 ext4_msg(sb, KERN_ERR,
3446 "Unsupported filesystem blocksize %d", blocksize);
3447 goto failed_mount;
3448 }
3449
3450 if (sb->s_blocksize != blocksize) {
3451 /* Validate the filesystem blocksize */
3452 if (!sb_set_blocksize(sb, blocksize)) {
3453 ext4_msg(sb, KERN_ERR, "bad block size %d",
3454 blocksize);
3455 goto failed_mount;
3456 }
3457
3458 brelse(bh);
3459 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3460 offset = do_div(logical_sb_block, blocksize);
3461 bh = sb_bread(sb, logical_sb_block);
3462 if (!bh) {
3463 ext4_msg(sb, KERN_ERR,
3464 "Can't read superblock on 2nd try");
3465 goto failed_mount;
3466 }
3467 es = (struct ext4_super_block *)(bh->b_data + offset);
3468 sbi->s_es = es;
3469 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
3470 ext4_msg(sb, KERN_ERR,
3471 "Magic mismatch, very weird!");
3472 goto failed_mount;
3473 }
3474 }
3475
3476 has_huge_files = EXT4_HAS_RO_COMPAT_FEATURE(sb,
3477 EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
3478 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
3479 has_huge_files);
3480 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
3481
3482 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
3483 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
3484 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
3485 } else {
3486 sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
3487 sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
3488 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
3489 (!is_power_of_2(sbi->s_inode_size)) ||
3490 (sbi->s_inode_size > blocksize)) {
3491 ext4_msg(sb, KERN_ERR,
3492 "unsupported inode size: %d",
3493 sbi->s_inode_size);
3494 goto failed_mount;
3495 }
3496 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE)
3497 sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2);
3498 }
3499
3500 sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
3501 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT)) {
3502 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
3503 sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
3504 !is_power_of_2(sbi->s_desc_size)) {
3505 ext4_msg(sb, KERN_ERR,
3506 "unsupported descriptor size %lu",
3507 sbi->s_desc_size);
3508 goto failed_mount;
3509 }
3510 } else
3511 sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
3512
3513 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
3514 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
3515 if (EXT4_INODE_SIZE(sb) == 0 || EXT4_INODES_PER_GROUP(sb) == 0)
3516 goto cantfind_ext4;
3517
3518 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb);
3519 if (sbi->s_inodes_per_block == 0)
3520 goto cantfind_ext4;
3521 sbi->s_itb_per_group = sbi->s_inodes_per_group /
3522 sbi->s_inodes_per_block;
3523 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb);
3524 sbi->s_sbh = bh;
3525 sbi->s_mount_state = le16_to_cpu(es->s_state);
3526 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
3527 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
3528
3529 for (i = 0; i < 4; i++)
3530 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
3531 sbi->s_def_hash_version = es->s_def_hash_version;
3532 i = le32_to_cpu(es->s_flags);
3533 if (i & EXT2_FLAGS_UNSIGNED_HASH)
3534 sbi->s_hash_unsigned = 3;
3535 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
3536 #ifdef __CHAR_UNSIGNED__
3537 es->s_flags |= cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
3538 sbi->s_hash_unsigned = 3;
3539 #else
3540 es->s_flags |= cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
3541 #endif
3542 }
3543
3544 /* Handle clustersize */
3545 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size);
3546 has_bigalloc = EXT4_HAS_RO_COMPAT_FEATURE(sb,
3547 EXT4_FEATURE_RO_COMPAT_BIGALLOC);
3548 if (has_bigalloc) {
3549 if (clustersize < blocksize) {
3550 ext4_msg(sb, KERN_ERR,
3551 "cluster size (%d) smaller than "
3552 "block size (%d)", clustersize, blocksize);
3553 goto failed_mount;
3554 }
3555 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) -
3556 le32_to_cpu(es->s_log_block_size);
3557 sbi->s_clusters_per_group =
3558 le32_to_cpu(es->s_clusters_per_group);
3559 if (sbi->s_clusters_per_group > blocksize * 8) {
3560 ext4_msg(sb, KERN_ERR,
3561 "#clusters per group too big: %lu",
3562 sbi->s_clusters_per_group);
3563 goto failed_mount;
3564 }
3565 if (sbi->s_blocks_per_group !=
3566 (sbi->s_clusters_per_group * (clustersize / blocksize))) {
3567 ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and "
3568 "clusters per group (%lu) inconsistent",
3569 sbi->s_blocks_per_group,
3570 sbi->s_clusters_per_group);
3571 goto failed_mount;
3572 }
3573 } else {
3574 if (clustersize != blocksize) {
3575 ext4_warning(sb, "fragment/cluster size (%d) != "
3576 "block size (%d)", clustersize,
3577 blocksize);
3578 clustersize = blocksize;
3579 }
3580 if (sbi->s_blocks_per_group > blocksize * 8) {
3581 ext4_msg(sb, KERN_ERR,
3582 "#blocks per group too big: %lu",
3583 sbi->s_blocks_per_group);
3584 goto failed_mount;
3585 }
3586 sbi->s_clusters_per_group = sbi->s_blocks_per_group;
3587 sbi->s_cluster_bits = 0;
3588 }
3589 sbi->s_cluster_ratio = clustersize / blocksize;
3590
3591 if (sbi->s_inodes_per_group > blocksize * 8) {
3592 ext4_msg(sb, KERN_ERR,
3593 "#inodes per group too big: %lu",
3594 sbi->s_inodes_per_group);
3595 goto failed_mount;
3596 }
3597
3598 /*
3599 * Test whether we have more sectors than will fit in sector_t,
3600 * and whether the max offset is addressable by the page cache.
3601 */
3602 err = generic_check_addressable(sb->s_blocksize_bits,
3603 ext4_blocks_count(es));
3604 if (err) {
3605 ext4_msg(sb, KERN_ERR, "filesystem"
3606 " too large to mount safely on this system");
3607 if (sizeof(sector_t) < 8)
3608 ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled");
3609 goto failed_mount;
3610 }
3611
3612 if (EXT4_BLOCKS_PER_GROUP(sb) == 0)
3613 goto cantfind_ext4;
3614
3615 /* check blocks count against device size */
3616 blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
3617 if (blocks_count && ext4_blocks_count(es) > blocks_count) {
3618 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
3619 "exceeds size of device (%llu blocks)",
3620 ext4_blocks_count(es), blocks_count);
3621 goto failed_mount;
3622 }
3623
3624 /*
3625 * It makes no sense for the first data block to be beyond the end
3626 * of the filesystem.
3627 */
3628 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
3629 ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
3630 "block %u is beyond end of filesystem (%llu)",
3631 le32_to_cpu(es->s_first_data_block),
3632 ext4_blocks_count(es));
3633 goto failed_mount;
3634 }
3635 blocks_count = (ext4_blocks_count(es) -
3636 le32_to_cpu(es->s_first_data_block) +
3637 EXT4_BLOCKS_PER_GROUP(sb) - 1);
3638 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
3639 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
3640 ext4_msg(sb, KERN_WARNING, "groups count too large: %u "
3641 "(block count %llu, first data block %u, "
3642 "blocks per group %lu)", sbi->s_groups_count,
3643 ext4_blocks_count(es),
3644 le32_to_cpu(es->s_first_data_block),
3645 EXT4_BLOCKS_PER_GROUP(sb));
3646 goto failed_mount;
3647 }
3648 sbi->s_groups_count = blocks_count;
3649 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
3650 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
3651 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
3652 EXT4_DESC_PER_BLOCK(sb);
3653 sbi->s_group_desc = ext4_kvmalloc(db_count *
3654 sizeof(struct buffer_head *),
3655 GFP_KERNEL);
3656 if (sbi->s_group_desc == NULL) {
3657 ext4_msg(sb, KERN_ERR, "not enough memory");
3658 ret = -ENOMEM;
3659 goto failed_mount;
3660 }
3661
3662 if (ext4_proc_root)
3663 sbi->s_proc = proc_mkdir(sb->s_id, ext4_proc_root);
3664
3665 if (sbi->s_proc)
3666 proc_create_data("options", S_IRUGO, sbi->s_proc,
3667 &ext4_seq_options_fops, sb);
3668
3669 bgl_lock_init(sbi->s_blockgroup_lock);
3670
3671 for (i = 0; i < db_count; i++) {
3672 block = descriptor_loc(sb, logical_sb_block, i);
3673 sbi->s_group_desc[i] = sb_bread(sb, block);
3674 if (!sbi->s_group_desc[i]) {
3675 ext4_msg(sb, KERN_ERR,
3676 "can't read group descriptor %d", i);
3677 db_count = i;
3678 goto failed_mount2;
3679 }
3680 }
3681 if (!ext4_check_descriptors(sb, &first_not_zeroed)) {
3682 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
3683 goto failed_mount2;
3684 }
3685 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG))
3686 if (!ext4_fill_flex_info(sb)) {
3687 ext4_msg(sb, KERN_ERR,
3688 "unable to initialize "
3689 "flex_bg meta info!");
3690 goto failed_mount2;
3691 }
3692
3693 sbi->s_gdb_count = db_count;
3694 get_random_bytes(&sbi->s_next_generation, sizeof(u32));
3695 spin_lock_init(&sbi->s_next_gen_lock);
3696
3697 init_timer(&sbi->s_err_report);
3698 sbi->s_err_report.function = print_daily_error_info;
3699 sbi->s_err_report.data = (unsigned long) sb;
3700
3701 err = percpu_counter_init(&sbi->s_freeclusters_counter,
3702 ext4_count_free_clusters(sb));
3703 if (!err) {
3704 err = percpu_counter_init(&sbi->s_freeinodes_counter,
3705 ext4_count_free_inodes(sb));
3706 }
3707 if (!err) {
3708 err = percpu_counter_init(&sbi->s_dirs_counter,
3709 ext4_count_dirs(sb));
3710 }
3711 if (!err) {
3712 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0);
3713 }
3714 if (!err) {
3715 err = percpu_counter_init(&sbi->s_extent_cache_cnt, 0);
3716 }
3717 if (err) {
3718 ext4_msg(sb, KERN_ERR, "insufficient memory");
3719 goto failed_mount3;
3720 }
3721
3722 sbi->s_stripe = ext4_get_stripe_size(sbi);
3723 sbi->s_max_writeback_mb_bump = 128;
3724 sbi->s_extent_max_zeroout_kb = 32;
3725
3726 /* Register extent status tree shrinker */
3727 ext4_es_register_shrinker(sb);
3728
3729 /*
3730 * set up enough so that it can read an inode
3731 */
3732 if (!test_opt(sb, NOLOAD) &&
3733 EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL))
3734 sb->s_op = &ext4_sops;
3735 else
3736 sb->s_op = &ext4_nojournal_sops;
3737 sb->s_export_op = &ext4_export_ops;
3738 sb->s_xattr = ext4_xattr_handlers;
3739 #ifdef CONFIG_QUOTA
3740 sb->dq_op = &ext4_quota_operations;
3741 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA))
3742 sb->s_qcop = &ext4_qctl_sysfile_operations;
3743 else
3744 sb->s_qcop = &ext4_qctl_operations;
3745 #endif
3746 memcpy(sb->s_uuid, es->s_uuid, sizeof(es->s_uuid));
3747
3748 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
3749 mutex_init(&sbi->s_orphan_lock);
3750
3751 sb->s_root = NULL;
3752
3753 needs_recovery = (es->s_last_orphan != 0 ||
3754 EXT4_HAS_INCOMPAT_FEATURE(sb,
3755 EXT4_FEATURE_INCOMPAT_RECOVER));
3756
3757 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_MMP) &&
3758 !(sb->s_flags & MS_RDONLY))
3759 if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block)))
3760 goto failed_mount3;
3761
3762 /*
3763 * The first inode we look at is the journal inode. Don't try
3764 * root first: it may be modified in the journal!
3765 */
3766 if (!test_opt(sb, NOLOAD) &&
3767 EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) {
3768 if (ext4_load_journal(sb, es, journal_devnum))
3769 goto failed_mount3;
3770 } else if (test_opt(sb, NOLOAD) && !(sb->s_flags & MS_RDONLY) &&
3771 EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) {
3772 ext4_msg(sb, KERN_ERR, "required journal recovery "
3773 "suppressed and not mounted read-only");
3774 goto failed_mount_wq;
3775 } else {
3776 clear_opt(sb, DATA_FLAGS);
3777 sbi->s_journal = NULL;
3778 needs_recovery = 0;
3779 goto no_journal;
3780 }
3781
3782 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT) &&
3783 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
3784 JBD2_FEATURE_INCOMPAT_64BIT)) {
3785 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
3786 goto failed_mount_wq;
3787 }
3788
3789 if (!set_journal_csum_feature_set(sb)) {
3790 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum "
3791 "feature set");
3792 goto failed_mount_wq;
3793 }
3794
3795 /* We have now updated the journal if required, so we can
3796 * validate the data journaling mode. */
3797 switch (test_opt(sb, DATA_FLAGS)) {
3798 case 0:
3799 /* No mode set, assume a default based on the journal
3800 * capabilities: ORDERED_DATA if the journal can
3801 * cope, else JOURNAL_DATA
3802 */
3803 if (jbd2_journal_check_available_features
3804 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE))
3805 set_opt(sb, ORDERED_DATA);
3806 else
3807 set_opt(sb, JOURNAL_DATA);
3808 break;
3809
3810 case EXT4_MOUNT_ORDERED_DATA:
3811 case EXT4_MOUNT_WRITEBACK_DATA:
3812 if (!jbd2_journal_check_available_features
3813 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
3814 ext4_msg(sb, KERN_ERR, "Journal does not support "
3815 "requested data journaling mode");
3816 goto failed_mount_wq;
3817 }
3818 default:
3819 break;
3820 }
3821 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
3822
3823 sbi->s_journal->j_commit_callback = ext4_journal_commit_callback;
3824
3825 /*
3826 * The journal may have updated the bg summary counts, so we
3827 * need to update the global counters.
3828 */
3829 percpu_counter_set(&sbi->s_freeclusters_counter,
3830 ext4_count_free_clusters(sb));
3831 percpu_counter_set(&sbi->s_freeinodes_counter,
3832 ext4_count_free_inodes(sb));
3833 percpu_counter_set(&sbi->s_dirs_counter,
3834 ext4_count_dirs(sb));
3835 percpu_counter_set(&sbi->s_dirtyclusters_counter, 0);
3836
3837 no_journal:
3838 /*
3839 * Get the # of file system overhead blocks from the
3840 * superblock if present.
3841 */
3842 if (es->s_overhead_clusters)
3843 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters);
3844 else {
3845 err = ext4_calculate_overhead(sb);
3846 if (err)
3847 goto failed_mount_wq;
3848 }
3849
3850 /*
3851 * The maximum number of concurrent works can be high and
3852 * concurrency isn't really necessary. Limit it to 1.
3853 */
3854 EXT4_SB(sb)->dio_unwritten_wq =
3855 alloc_workqueue("ext4-dio-unwritten", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
3856 if (!EXT4_SB(sb)->dio_unwritten_wq) {
3857 printk(KERN_ERR "EXT4-fs: failed to create DIO workqueue\n");
3858 ret = -ENOMEM;
3859 goto failed_mount_wq;
3860 }
3861
3862 /*
3863 * The jbd2_journal_load will have done any necessary log recovery,
3864 * so we can safely mount the rest of the filesystem now.
3865 */
3866
3867 root = ext4_iget(sb, EXT4_ROOT_INO);
3868 if (IS_ERR(root)) {
3869 ext4_msg(sb, KERN_ERR, "get root inode failed");
3870 ret = PTR_ERR(root);
3871 root = NULL;
3872 goto failed_mount4;
3873 }
3874 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
3875 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
3876 iput(root);
3877 goto failed_mount4;
3878 }
3879 sb->s_root = d_make_root(root);
3880 if (!sb->s_root) {
3881 ext4_msg(sb, KERN_ERR, "get root dentry failed");
3882 ret = -ENOMEM;
3883 goto failed_mount4;
3884 }
3885
3886 if (ext4_setup_super(sb, es, sb->s_flags & MS_RDONLY))
3887 sb->s_flags |= MS_RDONLY;
3888
3889 /* determine the minimum size of new large inodes, if present */
3890 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) {
3891 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
3892 EXT4_GOOD_OLD_INODE_SIZE;
3893 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3894 EXT4_FEATURE_RO_COMPAT_EXTRA_ISIZE)) {
3895 if (sbi->s_want_extra_isize <
3896 le16_to_cpu(es->s_want_extra_isize))
3897 sbi->s_want_extra_isize =
3898 le16_to_cpu(es->s_want_extra_isize);
3899 if (sbi->s_want_extra_isize <
3900 le16_to_cpu(es->s_min_extra_isize))
3901 sbi->s_want_extra_isize =
3902 le16_to_cpu(es->s_min_extra_isize);
3903 }
3904 }
3905 /* Check if enough inode space is available */
3906 if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize >
3907 sbi->s_inode_size) {
3908 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
3909 EXT4_GOOD_OLD_INODE_SIZE;
3910 ext4_msg(sb, KERN_INFO, "required extra inode space not"
3911 "available");
3912 }
3913
3914 err = ext4_setup_system_zone(sb);
3915 if (err) {
3916 ext4_msg(sb, KERN_ERR, "failed to initialize system "
3917 "zone (%d)", err);
3918 goto failed_mount4a;
3919 }
3920
3921 ext4_ext_init(sb);
3922 err = ext4_mb_init(sb);
3923 if (err) {
3924 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
3925 err);
3926 goto failed_mount5;
3927 }
3928
3929 err = ext4_register_li_request(sb, first_not_zeroed);
3930 if (err)
3931 goto failed_mount6;
3932
3933 sbi->s_kobj.kset = ext4_kset;
3934 init_completion(&sbi->s_kobj_unregister);
3935 err = kobject_init_and_add(&sbi->s_kobj, &ext4_ktype, NULL,
3936 "%s", sb->s_id);
3937 if (err)
3938 goto failed_mount7;
3939
3940 #ifdef CONFIG_QUOTA
3941 /* Enable quota usage during mount. */
3942 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) &&
3943 !(sb->s_flags & MS_RDONLY)) {
3944 err = ext4_enable_quotas(sb);
3945 if (err)
3946 goto failed_mount8;
3947 }
3948 #endif /* CONFIG_QUOTA */
3949
3950 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
3951 ext4_orphan_cleanup(sb, es);
3952 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
3953 if (needs_recovery) {
3954 ext4_msg(sb, KERN_INFO, "recovery complete");
3955 ext4_mark_recovery_complete(sb, es);
3956 }
3957 if (EXT4_SB(sb)->s_journal) {
3958 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
3959 descr = " journalled data mode";
3960 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
3961 descr = " ordered data mode";
3962 else
3963 descr = " writeback data mode";
3964 } else
3965 descr = "out journal";
3966
3967 if (test_opt(sb, DISCARD)) {
3968 struct request_queue *q = bdev_get_queue(sb->s_bdev);
3969 if (!blk_queue_discard(q))
3970 ext4_msg(sb, KERN_WARNING,
3971 "mounting with \"discard\" option, but "
3972 "the device does not support discard");
3973 }
3974
3975 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. "
3976 "Opts: %s%s%s", descr, sbi->s_es->s_mount_opts,
3977 *sbi->s_es->s_mount_opts ? "; " : "", orig_data);
3978
3979 if (es->s_error_count)
3980 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
3981
3982 kfree(orig_data);
3983 return 0;
3984
3985 cantfind_ext4:
3986 if (!silent)
3987 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
3988 goto failed_mount;
3989
3990 #ifdef CONFIG_QUOTA
3991 failed_mount8:
3992 kobject_del(&sbi->s_kobj);
3993 #endif
3994 failed_mount7:
3995 ext4_unregister_li_request(sb);
3996 failed_mount6:
3997 ext4_mb_release(sb);
3998 failed_mount5:
3999 ext4_ext_release(sb);
4000 ext4_release_system_zone(sb);
4001 failed_mount4a:
4002 dput(sb->s_root);
4003 sb->s_root = NULL;
4004 failed_mount4:
4005 ext4_msg(sb, KERN_ERR, "mount failed");
4006 destroy_workqueue(EXT4_SB(sb)->dio_unwritten_wq);
4007 failed_mount_wq:
4008 if (sbi->s_journal) {
4009 jbd2_journal_destroy(sbi->s_journal);
4010 sbi->s_journal = NULL;
4011 }
4012 failed_mount3:
4013 del_timer(&sbi->s_err_report);
4014 if (sbi->s_flex_groups)
4015 ext4_kvfree(sbi->s_flex_groups);
4016 percpu_counter_destroy(&sbi->s_freeclusters_counter);
4017 percpu_counter_destroy(&sbi->s_freeinodes_counter);
4018 percpu_counter_destroy(&sbi->s_dirs_counter);
4019 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
4020 percpu_counter_destroy(&sbi->s_extent_cache_cnt);
4021 if (sbi->s_mmp_tsk)
4022 kthread_stop(sbi->s_mmp_tsk);
4023 failed_mount2:
4024 for (i = 0; i < db_count; i++)
4025 brelse(sbi->s_group_desc[i]);
4026 ext4_kvfree(sbi->s_group_desc);
4027 failed_mount:
4028 if (sbi->s_chksum_driver)
4029 crypto_free_shash(sbi->s_chksum_driver);
4030 if (sbi->s_proc) {
4031 remove_proc_entry("options", sbi->s_proc);
4032 remove_proc_entry(sb->s_id, ext4_proc_root);
4033 }
4034 #ifdef CONFIG_QUOTA
4035 for (i = 0; i < MAXQUOTAS; i++)
4036 kfree(sbi->s_qf_names[i]);
4037 #endif
4038 ext4_blkdev_remove(sbi);
4039 brelse(bh);
4040 out_fail:
4041 sb->s_fs_info = NULL;
4042 kfree(sbi->s_blockgroup_lock);
4043 kfree(sbi);
4044 out_free_orig:
4045 kfree(orig_data);
4046 return err ? err : ret;
4047 }
4048
4049 /*
4050 * Setup any per-fs journal parameters now. We'll do this both on
4051 * initial mount, once the journal has been initialised but before we've
4052 * done any recovery; and again on any subsequent remount.
4053 */
4054 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
4055 {
4056 struct ext4_sb_info *sbi = EXT4_SB(sb);
4057
4058 journal->j_commit_interval = sbi->s_commit_interval;
4059 journal->j_min_batch_time = sbi->s_min_batch_time;
4060 journal->j_max_batch_time = sbi->s_max_batch_time;
4061
4062 write_lock(&journal->j_state_lock);
4063 if (test_opt(sb, BARRIER))
4064 journal->j_flags |= JBD2_BARRIER;
4065 else
4066 journal->j_flags &= ~JBD2_BARRIER;
4067 if (test_opt(sb, DATA_ERR_ABORT))
4068 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
4069 else
4070 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
4071 write_unlock(&journal->j_state_lock);
4072 }
4073
4074 static journal_t *ext4_get_journal(struct super_block *sb,
4075 unsigned int journal_inum)
4076 {
4077 struct inode *journal_inode;
4078 journal_t *journal;
4079
4080 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
4081
4082 /* First, test for the existence of a valid inode on disk. Bad
4083 * things happen if we iget() an unused inode, as the subsequent
4084 * iput() will try to delete it. */
4085
4086 journal_inode = ext4_iget(sb, journal_inum);
4087 if (IS_ERR(journal_inode)) {
4088 ext4_msg(sb, KERN_ERR, "no journal found");
4089 return NULL;
4090 }
4091 if (!journal_inode->i_nlink) {
4092 make_bad_inode(journal_inode);
4093 iput(journal_inode);
4094 ext4_msg(sb, KERN_ERR, "journal inode is deleted");
4095 return NULL;
4096 }
4097
4098 jbd_debug(2, "Journal inode found at %p: %lld bytes\n",
4099 journal_inode, journal_inode->i_size);
4100 if (!S_ISREG(journal_inode->i_mode)) {
4101 ext4_msg(sb, KERN_ERR, "invalid journal inode");
4102 iput(journal_inode);
4103 return NULL;
4104 }
4105
4106 journal = jbd2_journal_init_inode(journal_inode);
4107 if (!journal) {
4108 ext4_msg(sb, KERN_ERR, "Could not load journal inode");
4109 iput(journal_inode);
4110 return NULL;
4111 }
4112 journal->j_private = sb;
4113 ext4_init_journal_params(sb, journal);
4114 return journal;
4115 }
4116
4117 static journal_t *ext4_get_dev_journal(struct super_block *sb,
4118 dev_t j_dev)
4119 {
4120 struct buffer_head *bh;
4121 journal_t *journal;
4122 ext4_fsblk_t start;
4123 ext4_fsblk_t len;
4124 int hblock, blocksize;
4125 ext4_fsblk_t sb_block;
4126 unsigned long offset;
4127 struct ext4_super_block *es;
4128 struct block_device *bdev;
4129
4130 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
4131
4132 bdev = ext4_blkdev_get(j_dev, sb);
4133 if (bdev == NULL)
4134 return NULL;
4135
4136 blocksize = sb->s_blocksize;
4137 hblock = bdev_logical_block_size(bdev);
4138 if (blocksize < hblock) {
4139 ext4_msg(sb, KERN_ERR,
4140 "blocksize too small for journal device");
4141 goto out_bdev;
4142 }
4143
4144 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
4145 offset = EXT4_MIN_BLOCK_SIZE % blocksize;
4146 set_blocksize(bdev, blocksize);
4147 if (!(bh = __bread(bdev, sb_block, blocksize))) {
4148 ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
4149 "external journal");
4150 goto out_bdev;
4151 }
4152
4153 es = (struct ext4_super_block *) (bh->b_data + offset);
4154 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
4155 !(le32_to_cpu(es->s_feature_incompat) &
4156 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
4157 ext4_msg(sb, KERN_ERR, "external journal has "
4158 "bad superblock");
4159 brelse(bh);
4160 goto out_bdev;
4161 }
4162
4163 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
4164 ext4_msg(sb, KERN_ERR, "journal UUID does not match");
4165 brelse(bh);
4166 goto out_bdev;
4167 }
4168
4169 len = ext4_blocks_count(es);
4170 start = sb_block + 1;
4171 brelse(bh); /* we're done with the superblock */
4172
4173 journal = jbd2_journal_init_dev(bdev, sb->s_bdev,
4174 start, len, blocksize);
4175 if (!journal) {
4176 ext4_msg(sb, KERN_ERR, "failed to create device journal");
4177 goto out_bdev;
4178 }
4179 journal->j_private = sb;
4180 ll_rw_block(READ, 1, &journal->j_sb_buffer);
4181 wait_on_buffer(journal->j_sb_buffer);
4182 if (!buffer_uptodate(journal->j_sb_buffer)) {
4183 ext4_msg(sb, KERN_ERR, "I/O error on journal device");
4184 goto out_journal;
4185 }
4186 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
4187 ext4_msg(sb, KERN_ERR, "External journal has more than one "
4188 "user (unsupported) - %d",
4189 be32_to_cpu(journal->j_superblock->s_nr_users));
4190 goto out_journal;
4191 }
4192 EXT4_SB(sb)->journal_bdev = bdev;
4193 ext4_init_journal_params(sb, journal);
4194 return journal;
4195
4196 out_journal:
4197 jbd2_journal_destroy(journal);
4198 out_bdev:
4199 ext4_blkdev_put(bdev);
4200 return NULL;
4201 }
4202
4203 static int ext4_load_journal(struct super_block *sb,
4204 struct ext4_super_block *es,
4205 unsigned long journal_devnum)
4206 {
4207 journal_t *journal;
4208 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
4209 dev_t journal_dev;
4210 int err = 0;
4211 int really_read_only;
4212
4213 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
4214
4215 if (journal_devnum &&
4216 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4217 ext4_msg(sb, KERN_INFO, "external journal device major/minor "
4218 "numbers have changed");
4219 journal_dev = new_decode_dev(journal_devnum);
4220 } else
4221 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
4222
4223 really_read_only = bdev_read_only(sb->s_bdev);
4224
4225 /*
4226 * Are we loading a blank journal or performing recovery after a
4227 * crash? For recovery, we need to check in advance whether we
4228 * can get read-write access to the device.
4229 */
4230 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) {
4231 if (sb->s_flags & MS_RDONLY) {
4232 ext4_msg(sb, KERN_INFO, "INFO: recovery "
4233 "required on readonly filesystem");
4234 if (really_read_only) {
4235 ext4_msg(sb, KERN_ERR, "write access "
4236 "unavailable, cannot proceed");
4237 return -EROFS;
4238 }
4239 ext4_msg(sb, KERN_INFO, "write access will "
4240 "be enabled during recovery");
4241 }
4242 }
4243
4244 if (journal_inum && journal_dev) {
4245 ext4_msg(sb, KERN_ERR, "filesystem has both journal "
4246 "and inode journals!");
4247 return -EINVAL;
4248 }
4249
4250 if (journal_inum) {
4251 if (!(journal = ext4_get_journal(sb, journal_inum)))
4252 return -EINVAL;
4253 } else {
4254 if (!(journal = ext4_get_dev_journal(sb, journal_dev)))
4255 return -EINVAL;
4256 }
4257
4258 if (!(journal->j_flags & JBD2_BARRIER))
4259 ext4_msg(sb, KERN_INFO, "barriers disabled");
4260
4261 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER))
4262 err = jbd2_journal_wipe(journal, !really_read_only);
4263 if (!err) {
4264 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
4265 if (save)
4266 memcpy(save, ((char *) es) +
4267 EXT4_S_ERR_START, EXT4_S_ERR_LEN);
4268 err = jbd2_journal_load(journal);
4269 if (save)
4270 memcpy(((char *) es) + EXT4_S_ERR_START,
4271 save, EXT4_S_ERR_LEN);
4272 kfree(save);
4273 }
4274
4275 if (err) {
4276 ext4_msg(sb, KERN_ERR, "error loading journal");
4277 jbd2_journal_destroy(journal);
4278 return err;
4279 }
4280
4281 EXT4_SB(sb)->s_journal = journal;
4282 ext4_clear_journal_err(sb, es);
4283
4284 if (!really_read_only && journal_devnum &&
4285 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4286 es->s_journal_dev = cpu_to_le32(journal_devnum);
4287
4288 /* Make sure we flush the recovery flag to disk. */
4289 ext4_commit_super(sb, 1);
4290 }
4291
4292 return 0;
4293 }
4294
4295 static int ext4_commit_super(struct super_block *sb, int sync)
4296 {
4297 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
4298 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
4299 int error = 0;
4300
4301 if (!sbh || block_device_ejected(sb))
4302 return error;
4303 if (buffer_write_io_error(sbh)) {
4304 /*
4305 * Oh, dear. A previous attempt to write the
4306 * superblock failed. This could happen because the
4307 * USB device was yanked out. Or it could happen to
4308 * be a transient write error and maybe the block will
4309 * be remapped. Nothing we can do but to retry the
4310 * write and hope for the best.
4311 */
4312 ext4_msg(sb, KERN_ERR, "previous I/O error to "
4313 "superblock detected");
4314 clear_buffer_write_io_error(sbh);
4315 set_buffer_uptodate(sbh);
4316 }
4317 /*
4318 * If the file system is mounted read-only, don't update the
4319 * superblock write time. This avoids updating the superblock
4320 * write time when we are mounting the root file system
4321 * read/only but we need to replay the journal; at that point,
4322 * for people who are east of GMT and who make their clock
4323 * tick in localtime for Windows bug-for-bug compatibility,
4324 * the clock is set in the future, and this will cause e2fsck
4325 * to complain and force a full file system check.
4326 */
4327 if (!(sb->s_flags & MS_RDONLY))
4328 es->s_wtime = cpu_to_le32(get_seconds());
4329 if (sb->s_bdev->bd_part)
4330 es->s_kbytes_written =
4331 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written +
4332 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
4333 EXT4_SB(sb)->s_sectors_written_start) >> 1));
4334 else
4335 es->s_kbytes_written =
4336 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written);
4337 ext4_free_blocks_count_set(es,
4338 EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive(
4339 &EXT4_SB(sb)->s_freeclusters_counter)));
4340 es->s_free_inodes_count =
4341 cpu_to_le32(percpu_counter_sum_positive(
4342 &EXT4_SB(sb)->s_freeinodes_counter));
4343 BUFFER_TRACE(sbh, "marking dirty");
4344 ext4_superblock_csum_set(sb);
4345 mark_buffer_dirty(sbh);
4346 if (sync) {
4347 error = sync_dirty_buffer(sbh);
4348 if (error)
4349 return error;
4350
4351 error = buffer_write_io_error(sbh);
4352 if (error) {
4353 ext4_msg(sb, KERN_ERR, "I/O error while writing "
4354 "superblock");
4355 clear_buffer_write_io_error(sbh);
4356 set_buffer_uptodate(sbh);
4357 }
4358 }
4359 return error;
4360 }
4361
4362 /*
4363 * Have we just finished recovery? If so, and if we are mounting (or
4364 * remounting) the filesystem readonly, then we will end up with a
4365 * consistent fs on disk. Record that fact.
4366 */
4367 static void ext4_mark_recovery_complete(struct super_block *sb,
4368 struct ext4_super_block *es)
4369 {
4370 journal_t *journal = EXT4_SB(sb)->s_journal;
4371
4372 if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) {
4373 BUG_ON(journal != NULL);
4374 return;
4375 }
4376 jbd2_journal_lock_updates(journal);
4377 if (jbd2_journal_flush(journal) < 0)
4378 goto out;
4379
4380 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER) &&
4381 sb->s_flags & MS_RDONLY) {
4382 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4383 ext4_commit_super(sb, 1);
4384 }
4385
4386 out:
4387 jbd2_journal_unlock_updates(journal);
4388 }
4389
4390 /*
4391 * If we are mounting (or read-write remounting) a filesystem whose journal
4392 * has recorded an error from a previous lifetime, move that error to the
4393 * main filesystem now.
4394 */
4395 static void ext4_clear_journal_err(struct super_block *sb,
4396 struct ext4_super_block *es)
4397 {
4398 journal_t *journal;
4399 int j_errno;
4400 const char *errstr;
4401
4402 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
4403
4404 journal = EXT4_SB(sb)->s_journal;
4405
4406 /*
4407 * Now check for any error status which may have been recorded in the
4408 * journal by a prior ext4_error() or ext4_abort()
4409 */
4410
4411 j_errno = jbd2_journal_errno(journal);
4412 if (j_errno) {
4413 char nbuf[16];
4414
4415 errstr = ext4_decode_error(sb, j_errno, nbuf);
4416 ext4_warning(sb, "Filesystem error recorded "
4417 "from previous mount: %s", errstr);
4418 ext4_warning(sb, "Marking fs in need of filesystem check.");
4419
4420 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
4421 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
4422 ext4_commit_super(sb, 1);
4423
4424 jbd2_journal_clear_err(journal);
4425 jbd2_journal_update_sb_errno(journal);
4426 }
4427 }
4428
4429 /*
4430 * Force the running and committing transactions to commit,
4431 * and wait on the commit.
4432 */
4433 int ext4_force_commit(struct super_block *sb)
4434 {
4435 journal_t *journal;
4436
4437 if (sb->s_flags & MS_RDONLY)
4438 return 0;
4439
4440 journal = EXT4_SB(sb)->s_journal;
4441 return ext4_journal_force_commit(journal);
4442 }
4443
4444 static int ext4_sync_fs(struct super_block *sb, int wait)
4445 {
4446 int ret = 0;
4447 tid_t target;
4448 struct ext4_sb_info *sbi = EXT4_SB(sb);
4449
4450 trace_ext4_sync_fs(sb, wait);
4451 flush_workqueue(sbi->dio_unwritten_wq);
4452 /*
4453 * Writeback quota in non-journalled quota case - journalled quota has
4454 * no dirty dquots
4455 */
4456 dquot_writeback_dquots(sb, -1);
4457 if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
4458 if (wait)
4459 jbd2_log_wait_commit(sbi->s_journal, target);
4460 }
4461 return ret;
4462 }
4463
4464 /*
4465 * LVM calls this function before a (read-only) snapshot is created. This
4466 * gives us a chance to flush the journal completely and mark the fs clean.
4467 *
4468 * Note that only this function cannot bring a filesystem to be in a clean
4469 * state independently. It relies on upper layer to stop all data & metadata
4470 * modifications.
4471 */
4472 static int ext4_freeze(struct super_block *sb)
4473 {
4474 int error = 0;
4475 journal_t *journal;
4476
4477 if (sb->s_flags & MS_RDONLY)
4478 return 0;
4479
4480 journal = EXT4_SB(sb)->s_journal;
4481
4482 /* Now we set up the journal barrier. */
4483 jbd2_journal_lock_updates(journal);
4484
4485 /*
4486 * Don't clear the needs_recovery flag if we failed to flush
4487 * the journal.
4488 */
4489 error = jbd2_journal_flush(journal);
4490 if (error < 0)
4491 goto out;
4492
4493 /* Journal blocked and flushed, clear needs_recovery flag. */
4494 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4495 error = ext4_commit_super(sb, 1);
4496 out:
4497 /* we rely on upper layer to stop further updates */
4498 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
4499 return error;
4500 }
4501
4502 /*
4503 * Called by LVM after the snapshot is done. We need to reset the RECOVER
4504 * flag here, even though the filesystem is not technically dirty yet.
4505 */
4506 static int ext4_unfreeze(struct super_block *sb)
4507 {
4508 if (sb->s_flags & MS_RDONLY)
4509 return 0;
4510
4511 /* Reset the needs_recovery flag before the fs is unlocked. */
4512 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4513 ext4_commit_super(sb, 1);
4514 return 0;
4515 }
4516
4517 /*
4518 * Structure to save mount options for ext4_remount's benefit
4519 */
4520 struct ext4_mount_options {
4521 unsigned long s_mount_opt;
4522 unsigned long s_mount_opt2;
4523 kuid_t s_resuid;
4524 kgid_t s_resgid;
4525 unsigned long s_commit_interval;
4526 u32 s_min_batch_time, s_max_batch_time;
4527 #ifdef CONFIG_QUOTA
4528 int s_jquota_fmt;
4529 char *s_qf_names[MAXQUOTAS];
4530 #endif
4531 };
4532
4533 static int ext4_remount(struct super_block *sb, int *flags, char *data)
4534 {
4535 struct ext4_super_block *es;
4536 struct ext4_sb_info *sbi = EXT4_SB(sb);
4537 unsigned long old_sb_flags;
4538 struct ext4_mount_options old_opts;
4539 int enable_quota = 0;
4540 ext4_group_t g;
4541 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
4542 int err = 0;
4543 #ifdef CONFIG_QUOTA
4544 int i, j;
4545 #endif
4546 char *orig_data = kstrdup(data, GFP_KERNEL);
4547
4548 /* Store the original options */
4549 old_sb_flags = sb->s_flags;
4550 old_opts.s_mount_opt = sbi->s_mount_opt;
4551 old_opts.s_mount_opt2 = sbi->s_mount_opt2;
4552 old_opts.s_resuid = sbi->s_resuid;
4553 old_opts.s_resgid = sbi->s_resgid;
4554 old_opts.s_commit_interval = sbi->s_commit_interval;
4555 old_opts.s_min_batch_time = sbi->s_min_batch_time;
4556 old_opts.s_max_batch_time = sbi->s_max_batch_time;
4557 #ifdef CONFIG_QUOTA
4558 old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
4559 for (i = 0; i < MAXQUOTAS; i++)
4560 if (sbi->s_qf_names[i]) {
4561 old_opts.s_qf_names[i] = kstrdup(sbi->s_qf_names[i],
4562 GFP_KERNEL);
4563 if (!old_opts.s_qf_names[i]) {
4564 for (j = 0; j < i; j++)
4565 kfree(old_opts.s_qf_names[j]);
4566 kfree(orig_data);
4567 return -ENOMEM;
4568 }
4569 } else
4570 old_opts.s_qf_names[i] = NULL;
4571 #endif
4572 if (sbi->s_journal && sbi->s_journal->j_task->io_context)
4573 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio;
4574
4575 /*
4576 * Allow the "check" option to be passed as a remount option.
4577 */
4578 if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) {
4579 err = -EINVAL;
4580 goto restore_opts;
4581 }
4582
4583 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED)
4584 ext4_abort(sb, "Abort forced by user");
4585
4586 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
4587 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
4588
4589 es = sbi->s_es;
4590
4591 if (sbi->s_journal) {
4592 ext4_init_journal_params(sb, sbi->s_journal);
4593 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
4594 }
4595
4596 if ((*flags & MS_RDONLY) != (sb->s_flags & MS_RDONLY)) {
4597 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) {
4598 err = -EROFS;
4599 goto restore_opts;
4600 }
4601
4602 if (*flags & MS_RDONLY) {
4603 err = dquot_suspend(sb, -1);
4604 if (err < 0)
4605 goto restore_opts;
4606
4607 /*
4608 * First of all, the unconditional stuff we have to do
4609 * to disable replay of the journal when we next remount
4610 */
4611 sb->s_flags |= MS_RDONLY;
4612
4613 /*
4614 * OK, test if we are remounting a valid rw partition
4615 * readonly, and if so set the rdonly flag and then
4616 * mark the partition as valid again.
4617 */
4618 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
4619 (sbi->s_mount_state & EXT4_VALID_FS))
4620 es->s_state = cpu_to_le16(sbi->s_mount_state);
4621
4622 if (sbi->s_journal)
4623 ext4_mark_recovery_complete(sb, es);
4624 } else {
4625 /* Make sure we can mount this feature set readwrite */
4626 if (!ext4_feature_set_ok(sb, 0)) {
4627 err = -EROFS;
4628 goto restore_opts;
4629 }
4630 /*
4631 * Make sure the group descriptor checksums
4632 * are sane. If they aren't, refuse to remount r/w.
4633 */
4634 for (g = 0; g < sbi->s_groups_count; g++) {
4635 struct ext4_group_desc *gdp =
4636 ext4_get_group_desc(sb, g, NULL);
4637
4638 if (!ext4_group_desc_csum_verify(sb, g, gdp)) {
4639 ext4_msg(sb, KERN_ERR,
4640 "ext4_remount: Checksum for group %u failed (%u!=%u)",
4641 g, le16_to_cpu(ext4_group_desc_csum(sbi, g, gdp)),
4642 le16_to_cpu(gdp->bg_checksum));
4643 err = -EINVAL;
4644 goto restore_opts;
4645 }
4646 }
4647
4648 /*
4649 * If we have an unprocessed orphan list hanging
4650 * around from a previously readonly bdev mount,
4651 * require a full umount/remount for now.
4652 */
4653 if (es->s_last_orphan) {
4654 ext4_msg(sb, KERN_WARNING, "Couldn't "
4655 "remount RDWR because of unprocessed "
4656 "orphan inode list. Please "
4657 "umount/remount instead");
4658 err = -EINVAL;
4659 goto restore_opts;
4660 }
4661
4662 /*
4663 * Mounting a RDONLY partition read-write, so reread
4664 * and store the current valid flag. (It may have
4665 * been changed by e2fsck since we originally mounted
4666 * the partition.)
4667 */
4668 if (sbi->s_journal)
4669 ext4_clear_journal_err(sb, es);
4670 sbi->s_mount_state = le16_to_cpu(es->s_state);
4671 if (!ext4_setup_super(sb, es, 0))
4672 sb->s_flags &= ~MS_RDONLY;
4673 if (EXT4_HAS_INCOMPAT_FEATURE(sb,
4674 EXT4_FEATURE_INCOMPAT_MMP))
4675 if (ext4_multi_mount_protect(sb,
4676 le64_to_cpu(es->s_mmp_block))) {
4677 err = -EROFS;
4678 goto restore_opts;
4679 }
4680 enable_quota = 1;
4681 }
4682 }
4683
4684 /*
4685 * Reinitialize lazy itable initialization thread based on
4686 * current settings
4687 */
4688 if ((sb->s_flags & MS_RDONLY) || !test_opt(sb, INIT_INODE_TABLE))
4689 ext4_unregister_li_request(sb);
4690 else {
4691 ext4_group_t first_not_zeroed;
4692 first_not_zeroed = ext4_has_uninit_itable(sb);
4693 ext4_register_li_request(sb, first_not_zeroed);
4694 }
4695
4696 ext4_setup_system_zone(sb);
4697 if (sbi->s_journal == NULL && !(old_sb_flags & MS_RDONLY))
4698 ext4_commit_super(sb, 1);
4699
4700 #ifdef CONFIG_QUOTA
4701 /* Release old quota file names */
4702 for (i = 0; i < MAXQUOTAS; i++)
4703 kfree(old_opts.s_qf_names[i]);
4704 if (enable_quota) {
4705 if (sb_any_quota_suspended(sb))
4706 dquot_resume(sb, -1);
4707 else if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4708 EXT4_FEATURE_RO_COMPAT_QUOTA)) {
4709 err = ext4_enable_quotas(sb);
4710 if (err)
4711 goto restore_opts;
4712 }
4713 }
4714 #endif
4715
4716 ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data);
4717 kfree(orig_data);
4718 return 0;
4719
4720 restore_opts:
4721 sb->s_flags = old_sb_flags;
4722 sbi->s_mount_opt = old_opts.s_mount_opt;
4723 sbi->s_mount_opt2 = old_opts.s_mount_opt2;
4724 sbi->s_resuid = old_opts.s_resuid;
4725 sbi->s_resgid = old_opts.s_resgid;
4726 sbi->s_commit_interval = old_opts.s_commit_interval;
4727 sbi->s_min_batch_time = old_opts.s_min_batch_time;
4728 sbi->s_max_batch_time = old_opts.s_max_batch_time;
4729 #ifdef CONFIG_QUOTA
4730 sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
4731 for (i = 0; i < MAXQUOTAS; i++) {
4732 kfree(sbi->s_qf_names[i]);
4733 sbi->s_qf_names[i] = old_opts.s_qf_names[i];
4734 }
4735 #endif
4736 kfree(orig_data);
4737 return err;
4738 }
4739
4740 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
4741 {
4742 struct super_block *sb = dentry->d_sb;
4743 struct ext4_sb_info *sbi = EXT4_SB(sb);
4744 struct ext4_super_block *es = sbi->s_es;
4745 ext4_fsblk_t overhead = 0;
4746 u64 fsid;
4747 s64 bfree;
4748
4749 if (!test_opt(sb, MINIX_DF))
4750 overhead = sbi->s_overhead;
4751
4752 buf->f_type = EXT4_SUPER_MAGIC;
4753 buf->f_bsize = sb->s_blocksize;
4754 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead);
4755 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
4756 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
4757 /* prevent underflow in case that few free space is available */
4758 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0));
4759 buf->f_bavail = buf->f_bfree - ext4_r_blocks_count(es);
4760 if (buf->f_bfree < ext4_r_blocks_count(es))
4761 buf->f_bavail = 0;
4762 buf->f_files = le32_to_cpu(es->s_inodes_count);
4763 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
4764 buf->f_namelen = EXT4_NAME_LEN;
4765 fsid = le64_to_cpup((void *)es->s_uuid) ^
4766 le64_to_cpup((void *)es->s_uuid + sizeof(u64));
4767 buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL;
4768 buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL;
4769
4770 return 0;
4771 }
4772
4773 /* Helper function for writing quotas on sync - we need to start transaction
4774 * before quota file is locked for write. Otherwise the are possible deadlocks:
4775 * Process 1 Process 2
4776 * ext4_create() quota_sync()
4777 * jbd2_journal_start() write_dquot()
4778 * dquot_initialize() down(dqio_mutex)
4779 * down(dqio_mutex) jbd2_journal_start()
4780 *
4781 */
4782
4783 #ifdef CONFIG_QUOTA
4784
4785 static inline struct inode *dquot_to_inode(struct dquot *dquot)
4786 {
4787 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type];
4788 }
4789
4790 static int ext4_write_dquot(struct dquot *dquot)
4791 {
4792 int ret, err;
4793 handle_t *handle;
4794 struct inode *inode;
4795
4796 inode = dquot_to_inode(dquot);
4797 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4798 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
4799 if (IS_ERR(handle))
4800 return PTR_ERR(handle);
4801 ret = dquot_commit(dquot);
4802 err = ext4_journal_stop(handle);
4803 if (!ret)
4804 ret = err;
4805 return ret;
4806 }
4807
4808 static int ext4_acquire_dquot(struct dquot *dquot)
4809 {
4810 int ret, err;
4811 handle_t *handle;
4812
4813 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
4814 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
4815 if (IS_ERR(handle))
4816 return PTR_ERR(handle);
4817 ret = dquot_acquire(dquot);
4818 err = ext4_journal_stop(handle);
4819 if (!ret)
4820 ret = err;
4821 return ret;
4822 }
4823
4824 static int ext4_release_dquot(struct dquot *dquot)
4825 {
4826 int ret, err;
4827 handle_t *handle;
4828
4829 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
4830 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
4831 if (IS_ERR(handle)) {
4832 /* Release dquot anyway to avoid endless cycle in dqput() */
4833 dquot_release(dquot);
4834 return PTR_ERR(handle);
4835 }
4836 ret = dquot_release(dquot);
4837 err = ext4_journal_stop(handle);
4838 if (!ret)
4839 ret = err;
4840 return ret;
4841 }
4842
4843 static int ext4_mark_dquot_dirty(struct dquot *dquot)
4844 {
4845 struct super_block *sb = dquot->dq_sb;
4846 struct ext4_sb_info *sbi = EXT4_SB(sb);
4847
4848 /* Are we journaling quotas? */
4849 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) ||
4850 sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
4851 dquot_mark_dquot_dirty(dquot);
4852 return ext4_write_dquot(dquot);
4853 } else {
4854 return dquot_mark_dquot_dirty(dquot);
4855 }
4856 }
4857
4858 static int ext4_write_info(struct super_block *sb, int type)
4859 {
4860 int ret, err;
4861 handle_t *handle;
4862
4863 /* Data block + inode block */
4864 handle = ext4_journal_start(sb->s_root->d_inode, EXT4_HT_QUOTA, 2);
4865 if (IS_ERR(handle))
4866 return PTR_ERR(handle);
4867 ret = dquot_commit_info(sb, type);
4868 err = ext4_journal_stop(handle);
4869 if (!ret)
4870 ret = err;
4871 return ret;
4872 }
4873
4874 /*
4875 * Turn on quotas during mount time - we need to find
4876 * the quota file and such...
4877 */
4878 static int ext4_quota_on_mount(struct super_block *sb, int type)
4879 {
4880 return dquot_quota_on_mount(sb, EXT4_SB(sb)->s_qf_names[type],
4881 EXT4_SB(sb)->s_jquota_fmt, type);
4882 }
4883
4884 /*
4885 * Standard function to be called on quota_on
4886 */
4887 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
4888 struct path *path)
4889 {
4890 int err;
4891
4892 if (!test_opt(sb, QUOTA))
4893 return -EINVAL;
4894
4895 /* Quotafile not on the same filesystem? */
4896 if (path->dentry->d_sb != sb)
4897 return -EXDEV;
4898 /* Journaling quota? */
4899 if (EXT4_SB(sb)->s_qf_names[type]) {
4900 /* Quotafile not in fs root? */
4901 if (path->dentry->d_parent != sb->s_root)
4902 ext4_msg(sb, KERN_WARNING,
4903 "Quota file not on filesystem root. "
4904 "Journaled quota will not work");
4905 }
4906
4907 /*
4908 * When we journal data on quota file, we have to flush journal to see
4909 * all updates to the file when we bypass pagecache...
4910 */
4911 if (EXT4_SB(sb)->s_journal &&
4912 ext4_should_journal_data(path->dentry->d_inode)) {
4913 /*
4914 * We don't need to lock updates but journal_flush() could
4915 * otherwise be livelocked...
4916 */
4917 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal);
4918 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal);
4919 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
4920 if (err)
4921 return err;
4922 }
4923
4924 return dquot_quota_on(sb, type, format_id, path);
4925 }
4926
4927 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
4928 unsigned int flags)
4929 {
4930 int err;
4931 struct inode *qf_inode;
4932 unsigned long qf_inums[MAXQUOTAS] = {
4933 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
4934 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum)
4935 };
4936
4937 BUG_ON(!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA));
4938
4939 if (!qf_inums[type])
4940 return -EPERM;
4941
4942 qf_inode = ext4_iget(sb, qf_inums[type]);
4943 if (IS_ERR(qf_inode)) {
4944 ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]);
4945 return PTR_ERR(qf_inode);
4946 }
4947
4948 err = dquot_enable(qf_inode, type, format_id, flags);
4949 iput(qf_inode);
4950
4951 return err;
4952 }
4953
4954 /* Enable usage tracking for all quota types. */
4955 static int ext4_enable_quotas(struct super_block *sb)
4956 {
4957 int type, err = 0;
4958 unsigned long qf_inums[MAXQUOTAS] = {
4959 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
4960 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum)
4961 };
4962
4963 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE;
4964 for (type = 0; type < MAXQUOTAS; type++) {
4965 if (qf_inums[type]) {
4966 err = ext4_quota_enable(sb, type, QFMT_VFS_V1,
4967 DQUOT_USAGE_ENABLED);
4968 if (err) {
4969 ext4_warning(sb,
4970 "Failed to enable quota tracking "
4971 "(type=%d, err=%d). Please run "
4972 "e2fsck to fix.", type, err);
4973 return err;
4974 }
4975 }
4976 }
4977 return 0;
4978 }
4979
4980 /*
4981 * quota_on function that is used when QUOTA feature is set.
4982 */
4983 static int ext4_quota_on_sysfile(struct super_block *sb, int type,
4984 int format_id)
4985 {
4986 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA))
4987 return -EINVAL;
4988
4989 /*
4990 * USAGE was enabled at mount time. Only need to enable LIMITS now.
4991 */
4992 return ext4_quota_enable(sb, type, format_id, DQUOT_LIMITS_ENABLED);
4993 }
4994
4995 static int ext4_quota_off(struct super_block *sb, int type)
4996 {
4997 struct inode *inode = sb_dqopt(sb)->files[type];
4998 handle_t *handle;
4999
5000 /* Force all delayed allocation blocks to be allocated.
5001 * Caller already holds s_umount sem */
5002 if (test_opt(sb, DELALLOC))
5003 sync_filesystem(sb);
5004
5005 if (!inode)
5006 goto out;
5007
5008 /* Update modification times of quota files when userspace can
5009 * start looking at them */
5010 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
5011 if (IS_ERR(handle))
5012 goto out;
5013 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
5014 ext4_mark_inode_dirty(handle, inode);
5015 ext4_journal_stop(handle);
5016
5017 out:
5018 return dquot_quota_off(sb, type);
5019 }
5020
5021 /*
5022 * quota_off function that is used when QUOTA feature is set.
5023 */
5024 static int ext4_quota_off_sysfile(struct super_block *sb, int type)
5025 {
5026 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA))
5027 return -EINVAL;
5028
5029 /* Disable only the limits. */
5030 return dquot_disable(sb, type, DQUOT_LIMITS_ENABLED);
5031 }
5032
5033 /* Read data from quotafile - avoid pagecache and such because we cannot afford
5034 * acquiring the locks... As quota files are never truncated and quota code
5035 * itself serializes the operations (and no one else should touch the files)
5036 * we don't have to be afraid of races */
5037 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
5038 size_t len, loff_t off)
5039 {
5040 struct inode *inode = sb_dqopt(sb)->files[type];
5041 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5042 int err = 0;
5043 int offset = off & (sb->s_blocksize - 1);
5044 int tocopy;
5045 size_t toread;
5046 struct buffer_head *bh;
5047 loff_t i_size = i_size_read(inode);
5048
5049 if (off > i_size)
5050 return 0;
5051 if (off+len > i_size)
5052 len = i_size-off;
5053 toread = len;
5054 while (toread > 0) {
5055 tocopy = sb->s_blocksize - offset < toread ?
5056 sb->s_blocksize - offset : toread;
5057 bh = ext4_bread(NULL, inode, blk, 0, &err);
5058 if (err)
5059 return err;
5060 if (!bh) /* A hole? */
5061 memset(data, 0, tocopy);
5062 else
5063 memcpy(data, bh->b_data+offset, tocopy);
5064 brelse(bh);
5065 offset = 0;
5066 toread -= tocopy;
5067 data += tocopy;
5068 blk++;
5069 }
5070 return len;
5071 }
5072
5073 /* Write to quotafile (we know the transaction is already started and has
5074 * enough credits) */
5075 static ssize_t ext4_quota_write(struct super_block *sb, int type,
5076 const char *data, size_t len, loff_t off)
5077 {
5078 struct inode *inode = sb_dqopt(sb)->files[type];
5079 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5080 int err = 0;
5081 int offset = off & (sb->s_blocksize - 1);
5082 struct buffer_head *bh;
5083 handle_t *handle = journal_current_handle();
5084
5085 if (EXT4_SB(sb)->s_journal && !handle) {
5086 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5087 " cancelled because transaction is not started",
5088 (unsigned long long)off, (unsigned long long)len);
5089 return -EIO;
5090 }
5091 /*
5092 * Since we account only one data block in transaction credits,
5093 * then it is impossible to cross a block boundary.
5094 */
5095 if (sb->s_blocksize - offset < len) {
5096 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5097 " cancelled because not block aligned",
5098 (unsigned long long)off, (unsigned long long)len);
5099 return -EIO;
5100 }
5101
5102 bh = ext4_bread(handle, inode, blk, 1, &err);
5103 if (!bh)
5104 goto out;
5105 err = ext4_journal_get_write_access(handle, bh);
5106 if (err) {
5107 brelse(bh);
5108 goto out;
5109 }
5110 lock_buffer(bh);
5111 memcpy(bh->b_data+offset, data, len);
5112 flush_dcache_page(bh->b_page);
5113 unlock_buffer(bh);
5114 err = ext4_handle_dirty_metadata(handle, NULL, bh);
5115 brelse(bh);
5116 out:
5117 if (err)
5118 return err;
5119 if (inode->i_size < off + len) {
5120 i_size_write(inode, off + len);
5121 EXT4_I(inode)->i_disksize = inode->i_size;
5122 ext4_mark_inode_dirty(handle, inode);
5123 }
5124 return len;
5125 }
5126
5127 #endif
5128
5129 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
5130 const char *dev_name, void *data)
5131 {
5132 return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super);
5133 }
5134
5135 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
5136 static inline void register_as_ext2(void)
5137 {
5138 int err = register_filesystem(&ext2_fs_type);
5139 if (err)
5140 printk(KERN_WARNING
5141 "EXT4-fs: Unable to register as ext2 (%d)\n", err);
5142 }
5143
5144 static inline void unregister_as_ext2(void)
5145 {
5146 unregister_filesystem(&ext2_fs_type);
5147 }
5148
5149 static inline int ext2_feature_set_ok(struct super_block *sb)
5150 {
5151 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT2_FEATURE_INCOMPAT_SUPP))
5152 return 0;
5153 if (sb->s_flags & MS_RDONLY)
5154 return 1;
5155 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT2_FEATURE_RO_COMPAT_SUPP))
5156 return 0;
5157 return 1;
5158 }
5159 #else
5160 static inline void register_as_ext2(void) { }
5161 static inline void unregister_as_ext2(void) { }
5162 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
5163 #endif
5164
5165 #if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
5166 static inline void register_as_ext3(void)
5167 {
5168 int err = register_filesystem(&ext3_fs_type);
5169 if (err)
5170 printk(KERN_WARNING
5171 "EXT4-fs: Unable to register as ext3 (%d)\n", err);
5172 }
5173
5174 static inline void unregister_as_ext3(void)
5175 {
5176 unregister_filesystem(&ext3_fs_type);
5177 }
5178
5179 static inline int ext3_feature_set_ok(struct super_block *sb)
5180 {
5181 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT3_FEATURE_INCOMPAT_SUPP))
5182 return 0;
5183 if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL))
5184 return 0;
5185 if (sb->s_flags & MS_RDONLY)
5186 return 1;
5187 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT3_FEATURE_RO_COMPAT_SUPP))
5188 return 0;
5189 return 1;
5190 }
5191 #else
5192 static inline void register_as_ext3(void) { }
5193 static inline void unregister_as_ext3(void) { }
5194 static inline int ext3_feature_set_ok(struct super_block *sb) { return 0; }
5195 #endif
5196
5197 static struct file_system_type ext4_fs_type = {
5198 .owner = THIS_MODULE,
5199 .name = "ext4",
5200 .mount = ext4_mount,
5201 .kill_sb = kill_block_super,
5202 .fs_flags = FS_REQUIRES_DEV,
5203 };
5204 MODULE_ALIAS_FS("ext4");
5205
5206 static int __init ext4_init_feat_adverts(void)
5207 {
5208 struct ext4_features *ef;
5209 int ret = -ENOMEM;
5210
5211 ef = kzalloc(sizeof(struct ext4_features), GFP_KERNEL);
5212 if (!ef)
5213 goto out;
5214
5215 ef->f_kobj.kset = ext4_kset;
5216 init_completion(&ef->f_kobj_unregister);
5217 ret = kobject_init_and_add(&ef->f_kobj, &ext4_feat_ktype, NULL,
5218 "features");
5219 if (ret) {
5220 kfree(ef);
5221 goto out;
5222 }
5223
5224 ext4_feat = ef;
5225 ret = 0;
5226 out:
5227 return ret;
5228 }
5229
5230 static void ext4_exit_feat_adverts(void)
5231 {
5232 kobject_put(&ext4_feat->f_kobj);
5233 wait_for_completion(&ext4_feat->f_kobj_unregister);
5234 kfree(ext4_feat);
5235 }
5236
5237 /* Shared across all ext4 file systems */
5238 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ];
5239 struct mutex ext4__aio_mutex[EXT4_WQ_HASH_SZ];
5240
5241 static int __init ext4_init_fs(void)
5242 {
5243 int i, err;
5244
5245 ext4_li_info = NULL;
5246 mutex_init(&ext4_li_mtx);
5247
5248 /* Build-time check for flags consistency */
5249 ext4_check_flag_values();
5250
5251 for (i = 0; i < EXT4_WQ_HASH_SZ; i++) {
5252 mutex_init(&ext4__aio_mutex[i]);
5253 init_waitqueue_head(&ext4__ioend_wq[i]);
5254 }
5255
5256 err = ext4_init_es();
5257 if (err)
5258 return err;
5259
5260 err = ext4_init_pageio();
5261 if (err)
5262 goto out7;
5263
5264 err = ext4_init_system_zone();
5265 if (err)
5266 goto out6;
5267 ext4_kset = kset_create_and_add("ext4", NULL, fs_kobj);
5268 if (!ext4_kset) {
5269 err = -ENOMEM;
5270 goto out5;
5271 }
5272 ext4_proc_root = proc_mkdir("fs/ext4", NULL);
5273
5274 err = ext4_init_feat_adverts();
5275 if (err)
5276 goto out4;
5277
5278 err = ext4_init_mballoc();
5279 if (err)
5280 goto out3;
5281
5282 err = ext4_init_xattr();
5283 if (err)
5284 goto out2;
5285 err = init_inodecache();
5286 if (err)
5287 goto out1;
5288 register_as_ext3();
5289 register_as_ext2();
5290 err = register_filesystem(&ext4_fs_type);
5291 if (err)
5292 goto out;
5293
5294 return 0;
5295 out:
5296 unregister_as_ext2();
5297 unregister_as_ext3();
5298 destroy_inodecache();
5299 out1:
5300 ext4_exit_xattr();
5301 out2:
5302 ext4_exit_mballoc();
5303 out3:
5304 ext4_exit_feat_adverts();
5305 out4:
5306 if (ext4_proc_root)
5307 remove_proc_entry("fs/ext4", NULL);
5308 kset_unregister(ext4_kset);
5309 out5:
5310 ext4_exit_system_zone();
5311 out6:
5312 ext4_exit_pageio();
5313 out7:
5314 ext4_exit_es();
5315
5316 return err;
5317 }
5318
5319 static void __exit ext4_exit_fs(void)
5320 {
5321 ext4_destroy_lazyinit_thread();
5322 unregister_as_ext2();
5323 unregister_as_ext3();
5324 unregister_filesystem(&ext4_fs_type);
5325 destroy_inodecache();
5326 ext4_exit_xattr();
5327 ext4_exit_mballoc();
5328 ext4_exit_feat_adverts();
5329 remove_proc_entry("fs/ext4", NULL);
5330 kset_unregister(ext4_kset);
5331 ext4_exit_system_zone();
5332 ext4_exit_pageio();
5333 }
5334
5335 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
5336 MODULE_DESCRIPTION("Fourth Extended Filesystem");
5337 MODULE_LICENSE("GPL");
5338 module_init(ext4_init_fs)
5339 module_exit(ext4_exit_fs)