]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/ext4/super.c
ext4: remove useless condition in if statement.
[mirror_ubuntu-bionic-kernel.git] / fs / ext4 / super.c
1 /*
2 * linux/fs/ext4/super.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * Big-endian to little-endian byte-swapping/bitmaps by
16 * David S. Miller (davem@caip.rutgers.edu), 1995
17 */
18
19 #include <linux/module.h>
20 #include <linux/string.h>
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/vmalloc.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/blkdev.h>
27 #include <linux/parser.h>
28 #include <linux/buffer_head.h>
29 #include <linux/exportfs.h>
30 #include <linux/vfs.h>
31 #include <linux/random.h>
32 #include <linux/mount.h>
33 #include <linux/namei.h>
34 #include <linux/quotaops.h>
35 #include <linux/seq_file.h>
36 #include <linux/proc_fs.h>
37 #include <linux/ctype.h>
38 #include <linux/log2.h>
39 #include <linux/crc16.h>
40 #include <linux/cleancache.h>
41 #include <asm/uaccess.h>
42
43 #include <linux/kthread.h>
44 #include <linux/freezer.h>
45
46 #include "ext4.h"
47 #include "ext4_extents.h" /* Needed for trace points definition */
48 #include "ext4_jbd2.h"
49 #include "xattr.h"
50 #include "acl.h"
51 #include "mballoc.h"
52
53 #define CREATE_TRACE_POINTS
54 #include <trace/events/ext4.h>
55
56 static struct proc_dir_entry *ext4_proc_root;
57 static struct kset *ext4_kset;
58 static struct ext4_lazy_init *ext4_li_info;
59 static struct mutex ext4_li_mtx;
60 static struct ext4_features *ext4_feat;
61 static int ext4_mballoc_ready;
62
63 static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
64 unsigned long journal_devnum);
65 static int ext4_show_options(struct seq_file *seq, struct dentry *root);
66 static int ext4_commit_super(struct super_block *sb, int sync);
67 static void ext4_mark_recovery_complete(struct super_block *sb,
68 struct ext4_super_block *es);
69 static void ext4_clear_journal_err(struct super_block *sb,
70 struct ext4_super_block *es);
71 static int ext4_sync_fs(struct super_block *sb, int wait);
72 static int ext4_remount(struct super_block *sb, int *flags, char *data);
73 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
74 static int ext4_unfreeze(struct super_block *sb);
75 static int ext4_freeze(struct super_block *sb);
76 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
77 const char *dev_name, void *data);
78 static inline int ext2_feature_set_ok(struct super_block *sb);
79 static inline int ext3_feature_set_ok(struct super_block *sb);
80 static int ext4_feature_set_ok(struct super_block *sb, int readonly);
81 static void ext4_destroy_lazyinit_thread(void);
82 static void ext4_unregister_li_request(struct super_block *sb);
83 static void ext4_clear_request_list(void);
84 static int ext4_reserve_clusters(struct ext4_sb_info *, ext4_fsblk_t);
85
86 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
87 static struct file_system_type ext2_fs_type = {
88 .owner = THIS_MODULE,
89 .name = "ext2",
90 .mount = ext4_mount,
91 .kill_sb = kill_block_super,
92 .fs_flags = FS_REQUIRES_DEV,
93 };
94 MODULE_ALIAS_FS("ext2");
95 MODULE_ALIAS("ext2");
96 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type)
97 #else
98 #define IS_EXT2_SB(sb) (0)
99 #endif
100
101
102 #if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
103 static struct file_system_type ext3_fs_type = {
104 .owner = THIS_MODULE,
105 .name = "ext3",
106 .mount = ext4_mount,
107 .kill_sb = kill_block_super,
108 .fs_flags = FS_REQUIRES_DEV,
109 };
110 MODULE_ALIAS_FS("ext3");
111 MODULE_ALIAS("ext3");
112 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type)
113 #else
114 #define IS_EXT3_SB(sb) (0)
115 #endif
116
117 static int ext4_verify_csum_type(struct super_block *sb,
118 struct ext4_super_block *es)
119 {
120 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
121 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
122 return 1;
123
124 return es->s_checksum_type == EXT4_CRC32C_CHKSUM;
125 }
126
127 static __le32 ext4_superblock_csum(struct super_block *sb,
128 struct ext4_super_block *es)
129 {
130 struct ext4_sb_info *sbi = EXT4_SB(sb);
131 int offset = offsetof(struct ext4_super_block, s_checksum);
132 __u32 csum;
133
134 csum = ext4_chksum(sbi, ~0, (char *)es, offset);
135
136 return cpu_to_le32(csum);
137 }
138
139 static int ext4_superblock_csum_verify(struct super_block *sb,
140 struct ext4_super_block *es)
141 {
142 if (!ext4_has_metadata_csum(sb))
143 return 1;
144
145 return es->s_checksum == ext4_superblock_csum(sb, es);
146 }
147
148 void ext4_superblock_csum_set(struct super_block *sb)
149 {
150 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
151
152 if (!ext4_has_metadata_csum(sb))
153 return;
154
155 es->s_checksum = ext4_superblock_csum(sb, es);
156 }
157
158 void *ext4_kvmalloc(size_t size, gfp_t flags)
159 {
160 void *ret;
161
162 ret = kmalloc(size, flags | __GFP_NOWARN);
163 if (!ret)
164 ret = __vmalloc(size, flags, PAGE_KERNEL);
165 return ret;
166 }
167
168 void *ext4_kvzalloc(size_t size, gfp_t flags)
169 {
170 void *ret;
171
172 ret = kzalloc(size, flags | __GFP_NOWARN);
173 if (!ret)
174 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL);
175 return ret;
176 }
177
178 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
179 struct ext4_group_desc *bg)
180 {
181 return le32_to_cpu(bg->bg_block_bitmap_lo) |
182 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
183 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
184 }
185
186 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
187 struct ext4_group_desc *bg)
188 {
189 return le32_to_cpu(bg->bg_inode_bitmap_lo) |
190 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
191 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
192 }
193
194 ext4_fsblk_t ext4_inode_table(struct super_block *sb,
195 struct ext4_group_desc *bg)
196 {
197 return le32_to_cpu(bg->bg_inode_table_lo) |
198 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
199 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
200 }
201
202 __u32 ext4_free_group_clusters(struct super_block *sb,
203 struct ext4_group_desc *bg)
204 {
205 return le16_to_cpu(bg->bg_free_blocks_count_lo) |
206 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
207 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
208 }
209
210 __u32 ext4_free_inodes_count(struct super_block *sb,
211 struct ext4_group_desc *bg)
212 {
213 return le16_to_cpu(bg->bg_free_inodes_count_lo) |
214 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
215 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
216 }
217
218 __u32 ext4_used_dirs_count(struct super_block *sb,
219 struct ext4_group_desc *bg)
220 {
221 return le16_to_cpu(bg->bg_used_dirs_count_lo) |
222 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
223 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
224 }
225
226 __u32 ext4_itable_unused_count(struct super_block *sb,
227 struct ext4_group_desc *bg)
228 {
229 return le16_to_cpu(bg->bg_itable_unused_lo) |
230 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
231 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
232 }
233
234 void ext4_block_bitmap_set(struct super_block *sb,
235 struct ext4_group_desc *bg, ext4_fsblk_t blk)
236 {
237 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
238 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
239 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
240 }
241
242 void ext4_inode_bitmap_set(struct super_block *sb,
243 struct ext4_group_desc *bg, ext4_fsblk_t blk)
244 {
245 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk);
246 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
247 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
248 }
249
250 void ext4_inode_table_set(struct super_block *sb,
251 struct ext4_group_desc *bg, ext4_fsblk_t blk)
252 {
253 bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
254 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
255 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
256 }
257
258 void ext4_free_group_clusters_set(struct super_block *sb,
259 struct ext4_group_desc *bg, __u32 count)
260 {
261 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
262 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
263 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
264 }
265
266 void ext4_free_inodes_set(struct super_block *sb,
267 struct ext4_group_desc *bg, __u32 count)
268 {
269 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
270 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
271 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
272 }
273
274 void ext4_used_dirs_set(struct super_block *sb,
275 struct ext4_group_desc *bg, __u32 count)
276 {
277 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
278 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
279 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
280 }
281
282 void ext4_itable_unused_set(struct super_block *sb,
283 struct ext4_group_desc *bg, __u32 count)
284 {
285 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
286 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
287 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
288 }
289
290
291 static void __save_error_info(struct super_block *sb, const char *func,
292 unsigned int line)
293 {
294 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
295
296 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
297 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
298 es->s_last_error_time = cpu_to_le32(get_seconds());
299 strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func));
300 es->s_last_error_line = cpu_to_le32(line);
301 if (!es->s_first_error_time) {
302 es->s_first_error_time = es->s_last_error_time;
303 strncpy(es->s_first_error_func, func,
304 sizeof(es->s_first_error_func));
305 es->s_first_error_line = cpu_to_le32(line);
306 es->s_first_error_ino = es->s_last_error_ino;
307 es->s_first_error_block = es->s_last_error_block;
308 }
309 /*
310 * Start the daily error reporting function if it hasn't been
311 * started already
312 */
313 if (!es->s_error_count)
314 mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ);
315 le32_add_cpu(&es->s_error_count, 1);
316 }
317
318 static void save_error_info(struct super_block *sb, const char *func,
319 unsigned int line)
320 {
321 __save_error_info(sb, func, line);
322 ext4_commit_super(sb, 1);
323 }
324
325 /*
326 * The del_gendisk() function uninitializes the disk-specific data
327 * structures, including the bdi structure, without telling anyone
328 * else. Once this happens, any attempt to call mark_buffer_dirty()
329 * (for example, by ext4_commit_super), will cause a kernel OOPS.
330 * This is a kludge to prevent these oops until we can put in a proper
331 * hook in del_gendisk() to inform the VFS and file system layers.
332 */
333 static int block_device_ejected(struct super_block *sb)
334 {
335 struct inode *bd_inode = sb->s_bdev->bd_inode;
336 struct backing_dev_info *bdi = inode_to_bdi(bd_inode);
337
338 return bdi->dev == NULL;
339 }
340
341 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn)
342 {
343 struct super_block *sb = journal->j_private;
344 struct ext4_sb_info *sbi = EXT4_SB(sb);
345 int error = is_journal_aborted(journal);
346 struct ext4_journal_cb_entry *jce;
347
348 BUG_ON(txn->t_state == T_FINISHED);
349 spin_lock(&sbi->s_md_lock);
350 while (!list_empty(&txn->t_private_list)) {
351 jce = list_entry(txn->t_private_list.next,
352 struct ext4_journal_cb_entry, jce_list);
353 list_del_init(&jce->jce_list);
354 spin_unlock(&sbi->s_md_lock);
355 jce->jce_func(sb, jce, error);
356 spin_lock(&sbi->s_md_lock);
357 }
358 spin_unlock(&sbi->s_md_lock);
359 }
360
361 /* Deal with the reporting of failure conditions on a filesystem such as
362 * inconsistencies detected or read IO failures.
363 *
364 * On ext2, we can store the error state of the filesystem in the
365 * superblock. That is not possible on ext4, because we may have other
366 * write ordering constraints on the superblock which prevent us from
367 * writing it out straight away; and given that the journal is about to
368 * be aborted, we can't rely on the current, or future, transactions to
369 * write out the superblock safely.
370 *
371 * We'll just use the jbd2_journal_abort() error code to record an error in
372 * the journal instead. On recovery, the journal will complain about
373 * that error until we've noted it down and cleared it.
374 */
375
376 static void ext4_handle_error(struct super_block *sb)
377 {
378 if (sb->s_flags & MS_RDONLY)
379 return;
380
381 if (!test_opt(sb, ERRORS_CONT)) {
382 journal_t *journal = EXT4_SB(sb)->s_journal;
383
384 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
385 if (journal)
386 jbd2_journal_abort(journal, -EIO);
387 }
388 if (test_opt(sb, ERRORS_RO)) {
389 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
390 /*
391 * Make sure updated value of ->s_mount_flags will be visible
392 * before ->s_flags update
393 */
394 smp_wmb();
395 sb->s_flags |= MS_RDONLY;
396 }
397 if (test_opt(sb, ERRORS_PANIC))
398 panic("EXT4-fs (device %s): panic forced after error\n",
399 sb->s_id);
400 }
401
402 #define ext4_error_ratelimit(sb) \
403 ___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state), \
404 "EXT4-fs error")
405
406 void __ext4_error(struct super_block *sb, const char *function,
407 unsigned int line, const char *fmt, ...)
408 {
409 struct va_format vaf;
410 va_list args;
411
412 if (ext4_error_ratelimit(sb)) {
413 va_start(args, fmt);
414 vaf.fmt = fmt;
415 vaf.va = &args;
416 printk(KERN_CRIT
417 "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
418 sb->s_id, function, line, current->comm, &vaf);
419 va_end(args);
420 }
421 save_error_info(sb, function, line);
422 ext4_handle_error(sb);
423 }
424
425 void __ext4_error_inode(struct inode *inode, const char *function,
426 unsigned int line, ext4_fsblk_t block,
427 const char *fmt, ...)
428 {
429 va_list args;
430 struct va_format vaf;
431 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
432
433 es->s_last_error_ino = cpu_to_le32(inode->i_ino);
434 es->s_last_error_block = cpu_to_le64(block);
435 if (ext4_error_ratelimit(inode->i_sb)) {
436 va_start(args, fmt);
437 vaf.fmt = fmt;
438 vaf.va = &args;
439 if (block)
440 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
441 "inode #%lu: block %llu: comm %s: %pV\n",
442 inode->i_sb->s_id, function, line, inode->i_ino,
443 block, current->comm, &vaf);
444 else
445 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
446 "inode #%lu: comm %s: %pV\n",
447 inode->i_sb->s_id, function, line, inode->i_ino,
448 current->comm, &vaf);
449 va_end(args);
450 }
451 save_error_info(inode->i_sb, function, line);
452 ext4_handle_error(inode->i_sb);
453 }
454
455 void __ext4_error_file(struct file *file, const char *function,
456 unsigned int line, ext4_fsblk_t block,
457 const char *fmt, ...)
458 {
459 va_list args;
460 struct va_format vaf;
461 struct ext4_super_block *es;
462 struct inode *inode = file_inode(file);
463 char pathname[80], *path;
464
465 es = EXT4_SB(inode->i_sb)->s_es;
466 es->s_last_error_ino = cpu_to_le32(inode->i_ino);
467 if (ext4_error_ratelimit(inode->i_sb)) {
468 path = d_path(&(file->f_path), pathname, sizeof(pathname));
469 if (IS_ERR(path))
470 path = "(unknown)";
471 va_start(args, fmt);
472 vaf.fmt = fmt;
473 vaf.va = &args;
474 if (block)
475 printk(KERN_CRIT
476 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
477 "block %llu: comm %s: path %s: %pV\n",
478 inode->i_sb->s_id, function, line, inode->i_ino,
479 block, current->comm, path, &vaf);
480 else
481 printk(KERN_CRIT
482 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
483 "comm %s: path %s: %pV\n",
484 inode->i_sb->s_id, function, line, inode->i_ino,
485 current->comm, path, &vaf);
486 va_end(args);
487 }
488 save_error_info(inode->i_sb, function, line);
489 ext4_handle_error(inode->i_sb);
490 }
491
492 const char *ext4_decode_error(struct super_block *sb, int errno,
493 char nbuf[16])
494 {
495 char *errstr = NULL;
496
497 switch (errno) {
498 case -EIO:
499 errstr = "IO failure";
500 break;
501 case -ENOMEM:
502 errstr = "Out of memory";
503 break;
504 case -EROFS:
505 if (!sb || (EXT4_SB(sb)->s_journal &&
506 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
507 errstr = "Journal has aborted";
508 else
509 errstr = "Readonly filesystem";
510 break;
511 default:
512 /* If the caller passed in an extra buffer for unknown
513 * errors, textualise them now. Else we just return
514 * NULL. */
515 if (nbuf) {
516 /* Check for truncated error codes... */
517 if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
518 errstr = nbuf;
519 }
520 break;
521 }
522
523 return errstr;
524 }
525
526 /* __ext4_std_error decodes expected errors from journaling functions
527 * automatically and invokes the appropriate error response. */
528
529 void __ext4_std_error(struct super_block *sb, const char *function,
530 unsigned int line, int errno)
531 {
532 char nbuf[16];
533 const char *errstr;
534
535 /* Special case: if the error is EROFS, and we're not already
536 * inside a transaction, then there's really no point in logging
537 * an error. */
538 if (errno == -EROFS && journal_current_handle() == NULL &&
539 (sb->s_flags & MS_RDONLY))
540 return;
541
542 if (ext4_error_ratelimit(sb)) {
543 errstr = ext4_decode_error(sb, errno, nbuf);
544 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
545 sb->s_id, function, line, errstr);
546 }
547
548 save_error_info(sb, function, line);
549 ext4_handle_error(sb);
550 }
551
552 /*
553 * ext4_abort is a much stronger failure handler than ext4_error. The
554 * abort function may be used to deal with unrecoverable failures such
555 * as journal IO errors or ENOMEM at a critical moment in log management.
556 *
557 * We unconditionally force the filesystem into an ABORT|READONLY state,
558 * unless the error response on the fs has been set to panic in which
559 * case we take the easy way out and panic immediately.
560 */
561
562 void __ext4_abort(struct super_block *sb, const char *function,
563 unsigned int line, const char *fmt, ...)
564 {
565 va_list args;
566
567 save_error_info(sb, function, line);
568 va_start(args, fmt);
569 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: ", sb->s_id,
570 function, line);
571 vprintk(fmt, args);
572 printk("\n");
573 va_end(args);
574
575 if ((sb->s_flags & MS_RDONLY) == 0) {
576 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
577 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
578 /*
579 * Make sure updated value of ->s_mount_flags will be visible
580 * before ->s_flags update
581 */
582 smp_wmb();
583 sb->s_flags |= MS_RDONLY;
584 if (EXT4_SB(sb)->s_journal)
585 jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO);
586 save_error_info(sb, function, line);
587 }
588 if (test_opt(sb, ERRORS_PANIC))
589 panic("EXT4-fs panic from previous error\n");
590 }
591
592 void __ext4_msg(struct super_block *sb,
593 const char *prefix, const char *fmt, ...)
594 {
595 struct va_format vaf;
596 va_list args;
597
598 if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state), "EXT4-fs"))
599 return;
600
601 va_start(args, fmt);
602 vaf.fmt = fmt;
603 vaf.va = &args;
604 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
605 va_end(args);
606 }
607
608 void __ext4_warning(struct super_block *sb, const char *function,
609 unsigned int line, const char *fmt, ...)
610 {
611 struct va_format vaf;
612 va_list args;
613
614 if (!___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state),
615 "EXT4-fs warning"))
616 return;
617
618 va_start(args, fmt);
619 vaf.fmt = fmt;
620 vaf.va = &args;
621 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
622 sb->s_id, function, line, &vaf);
623 va_end(args);
624 }
625
626 void __ext4_grp_locked_error(const char *function, unsigned int line,
627 struct super_block *sb, ext4_group_t grp,
628 unsigned long ino, ext4_fsblk_t block,
629 const char *fmt, ...)
630 __releases(bitlock)
631 __acquires(bitlock)
632 {
633 struct va_format vaf;
634 va_list args;
635 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
636
637 es->s_last_error_ino = cpu_to_le32(ino);
638 es->s_last_error_block = cpu_to_le64(block);
639 __save_error_info(sb, function, line);
640
641 if (ext4_error_ratelimit(sb)) {
642 va_start(args, fmt);
643 vaf.fmt = fmt;
644 vaf.va = &args;
645 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
646 sb->s_id, function, line, grp);
647 if (ino)
648 printk(KERN_CONT "inode %lu: ", ino);
649 if (block)
650 printk(KERN_CONT "block %llu:",
651 (unsigned long long) block);
652 printk(KERN_CONT "%pV\n", &vaf);
653 va_end(args);
654 }
655
656 if (test_opt(sb, ERRORS_CONT)) {
657 ext4_commit_super(sb, 0);
658 return;
659 }
660
661 ext4_unlock_group(sb, grp);
662 ext4_handle_error(sb);
663 /*
664 * We only get here in the ERRORS_RO case; relocking the group
665 * may be dangerous, but nothing bad will happen since the
666 * filesystem will have already been marked read/only and the
667 * journal has been aborted. We return 1 as a hint to callers
668 * who might what to use the return value from
669 * ext4_grp_locked_error() to distinguish between the
670 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
671 * aggressively from the ext4 function in question, with a
672 * more appropriate error code.
673 */
674 ext4_lock_group(sb, grp);
675 return;
676 }
677
678 void ext4_update_dynamic_rev(struct super_block *sb)
679 {
680 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
681
682 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
683 return;
684
685 ext4_warning(sb,
686 "updating to rev %d because of new feature flag, "
687 "running e2fsck is recommended",
688 EXT4_DYNAMIC_REV);
689
690 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
691 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
692 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
693 /* leave es->s_feature_*compat flags alone */
694 /* es->s_uuid will be set by e2fsck if empty */
695
696 /*
697 * The rest of the superblock fields should be zero, and if not it
698 * means they are likely already in use, so leave them alone. We
699 * can leave it up to e2fsck to clean up any inconsistencies there.
700 */
701 }
702
703 /*
704 * Open the external journal device
705 */
706 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb)
707 {
708 struct block_device *bdev;
709 char b[BDEVNAME_SIZE];
710
711 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb);
712 if (IS_ERR(bdev))
713 goto fail;
714 return bdev;
715
716 fail:
717 ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld",
718 __bdevname(dev, b), PTR_ERR(bdev));
719 return NULL;
720 }
721
722 /*
723 * Release the journal device
724 */
725 static void ext4_blkdev_put(struct block_device *bdev)
726 {
727 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
728 }
729
730 static void ext4_blkdev_remove(struct ext4_sb_info *sbi)
731 {
732 struct block_device *bdev;
733 bdev = sbi->journal_bdev;
734 if (bdev) {
735 ext4_blkdev_put(bdev);
736 sbi->journal_bdev = NULL;
737 }
738 }
739
740 static inline struct inode *orphan_list_entry(struct list_head *l)
741 {
742 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
743 }
744
745 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
746 {
747 struct list_head *l;
748
749 ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
750 le32_to_cpu(sbi->s_es->s_last_orphan));
751
752 printk(KERN_ERR "sb_info orphan list:\n");
753 list_for_each(l, &sbi->s_orphan) {
754 struct inode *inode = orphan_list_entry(l);
755 printk(KERN_ERR " "
756 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
757 inode->i_sb->s_id, inode->i_ino, inode,
758 inode->i_mode, inode->i_nlink,
759 NEXT_ORPHAN(inode));
760 }
761 }
762
763 static void ext4_put_super(struct super_block *sb)
764 {
765 struct ext4_sb_info *sbi = EXT4_SB(sb);
766 struct ext4_super_block *es = sbi->s_es;
767 int i, err;
768
769 ext4_unregister_li_request(sb);
770 dquot_disable(sb, -1, DQUOT_USAGE_ENABLED | DQUOT_LIMITS_ENABLED);
771
772 flush_workqueue(sbi->rsv_conversion_wq);
773 destroy_workqueue(sbi->rsv_conversion_wq);
774
775 if (sbi->s_journal) {
776 err = jbd2_journal_destroy(sbi->s_journal);
777 sbi->s_journal = NULL;
778 if (err < 0)
779 ext4_abort(sb, "Couldn't clean up the journal");
780 }
781
782 ext4_es_unregister_shrinker(sbi);
783 del_timer_sync(&sbi->s_err_report);
784 ext4_release_system_zone(sb);
785 ext4_mb_release(sb);
786 ext4_ext_release(sb);
787 ext4_xattr_put_super(sb);
788
789 if (!(sb->s_flags & MS_RDONLY)) {
790 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
791 es->s_state = cpu_to_le16(sbi->s_mount_state);
792 }
793 if (!(sb->s_flags & MS_RDONLY))
794 ext4_commit_super(sb, 1);
795
796 if (sbi->s_proc) {
797 remove_proc_entry("options", sbi->s_proc);
798 remove_proc_entry(sb->s_id, ext4_proc_root);
799 }
800 kobject_del(&sbi->s_kobj);
801
802 for (i = 0; i < sbi->s_gdb_count; i++)
803 brelse(sbi->s_group_desc[i]);
804 kvfree(sbi->s_group_desc);
805 kvfree(sbi->s_flex_groups);
806 percpu_counter_destroy(&sbi->s_freeclusters_counter);
807 percpu_counter_destroy(&sbi->s_freeinodes_counter);
808 percpu_counter_destroy(&sbi->s_dirs_counter);
809 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
810 brelse(sbi->s_sbh);
811 #ifdef CONFIG_QUOTA
812 for (i = 0; i < EXT4_MAXQUOTAS; i++)
813 kfree(sbi->s_qf_names[i]);
814 #endif
815
816 /* Debugging code just in case the in-memory inode orphan list
817 * isn't empty. The on-disk one can be non-empty if we've
818 * detected an error and taken the fs readonly, but the
819 * in-memory list had better be clean by this point. */
820 if (!list_empty(&sbi->s_orphan))
821 dump_orphan_list(sb, sbi);
822 J_ASSERT(list_empty(&sbi->s_orphan));
823
824 invalidate_bdev(sb->s_bdev);
825 if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) {
826 /*
827 * Invalidate the journal device's buffers. We don't want them
828 * floating about in memory - the physical journal device may
829 * hotswapped, and it breaks the `ro-after' testing code.
830 */
831 sync_blockdev(sbi->journal_bdev);
832 invalidate_bdev(sbi->journal_bdev);
833 ext4_blkdev_remove(sbi);
834 }
835 if (sbi->s_mb_cache) {
836 ext4_xattr_destroy_cache(sbi->s_mb_cache);
837 sbi->s_mb_cache = NULL;
838 }
839 if (sbi->s_mmp_tsk)
840 kthread_stop(sbi->s_mmp_tsk);
841 sb->s_fs_info = NULL;
842 /*
843 * Now that we are completely done shutting down the
844 * superblock, we need to actually destroy the kobject.
845 */
846 kobject_put(&sbi->s_kobj);
847 wait_for_completion(&sbi->s_kobj_unregister);
848 if (sbi->s_chksum_driver)
849 crypto_free_shash(sbi->s_chksum_driver);
850 kfree(sbi->s_blockgroup_lock);
851 kfree(sbi);
852 }
853
854 static struct kmem_cache *ext4_inode_cachep;
855
856 /*
857 * Called inside transaction, so use GFP_NOFS
858 */
859 static struct inode *ext4_alloc_inode(struct super_block *sb)
860 {
861 struct ext4_inode_info *ei;
862
863 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS);
864 if (!ei)
865 return NULL;
866
867 ei->vfs_inode.i_version = 1;
868 spin_lock_init(&ei->i_raw_lock);
869 INIT_LIST_HEAD(&ei->i_prealloc_list);
870 spin_lock_init(&ei->i_prealloc_lock);
871 ext4_es_init_tree(&ei->i_es_tree);
872 rwlock_init(&ei->i_es_lock);
873 INIT_LIST_HEAD(&ei->i_es_list);
874 ei->i_es_all_nr = 0;
875 ei->i_es_shk_nr = 0;
876 ei->i_es_shrink_lblk = 0;
877 ei->i_reserved_data_blocks = 0;
878 ei->i_reserved_meta_blocks = 0;
879 ei->i_allocated_meta_blocks = 0;
880 ei->i_da_metadata_calc_len = 0;
881 ei->i_da_metadata_calc_last_lblock = 0;
882 spin_lock_init(&(ei->i_block_reservation_lock));
883 #ifdef CONFIG_QUOTA
884 ei->i_reserved_quota = 0;
885 memset(&ei->i_dquot, 0, sizeof(ei->i_dquot));
886 #endif
887 ei->jinode = NULL;
888 INIT_LIST_HEAD(&ei->i_rsv_conversion_list);
889 spin_lock_init(&ei->i_completed_io_lock);
890 ei->i_sync_tid = 0;
891 ei->i_datasync_tid = 0;
892 atomic_set(&ei->i_ioend_count, 0);
893 atomic_set(&ei->i_unwritten, 0);
894 INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work);
895
896 return &ei->vfs_inode;
897 }
898
899 static int ext4_drop_inode(struct inode *inode)
900 {
901 int drop = generic_drop_inode(inode);
902
903 trace_ext4_drop_inode(inode, drop);
904 return drop;
905 }
906
907 static void ext4_i_callback(struct rcu_head *head)
908 {
909 struct inode *inode = container_of(head, struct inode, i_rcu);
910 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
911 }
912
913 static void ext4_destroy_inode(struct inode *inode)
914 {
915 if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
916 ext4_msg(inode->i_sb, KERN_ERR,
917 "Inode %lu (%p): orphan list check failed!",
918 inode->i_ino, EXT4_I(inode));
919 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
920 EXT4_I(inode), sizeof(struct ext4_inode_info),
921 true);
922 dump_stack();
923 }
924 call_rcu(&inode->i_rcu, ext4_i_callback);
925 }
926
927 static void init_once(void *foo)
928 {
929 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo;
930
931 INIT_LIST_HEAD(&ei->i_orphan);
932 init_rwsem(&ei->xattr_sem);
933 init_rwsem(&ei->i_data_sem);
934 inode_init_once(&ei->vfs_inode);
935 }
936
937 static int __init init_inodecache(void)
938 {
939 ext4_inode_cachep = kmem_cache_create("ext4_inode_cache",
940 sizeof(struct ext4_inode_info),
941 0, (SLAB_RECLAIM_ACCOUNT|
942 SLAB_MEM_SPREAD),
943 init_once);
944 if (ext4_inode_cachep == NULL)
945 return -ENOMEM;
946 return 0;
947 }
948
949 static void destroy_inodecache(void)
950 {
951 /*
952 * Make sure all delayed rcu free inodes are flushed before we
953 * destroy cache.
954 */
955 rcu_barrier();
956 kmem_cache_destroy(ext4_inode_cachep);
957 }
958
959 void ext4_clear_inode(struct inode *inode)
960 {
961 invalidate_inode_buffers(inode);
962 clear_inode(inode);
963 dquot_drop(inode);
964 ext4_discard_preallocations(inode);
965 ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS);
966 if (EXT4_I(inode)->jinode) {
967 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
968 EXT4_I(inode)->jinode);
969 jbd2_free_inode(EXT4_I(inode)->jinode);
970 EXT4_I(inode)->jinode = NULL;
971 }
972 }
973
974 static struct inode *ext4_nfs_get_inode(struct super_block *sb,
975 u64 ino, u32 generation)
976 {
977 struct inode *inode;
978
979 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
980 return ERR_PTR(-ESTALE);
981 if (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
982 return ERR_PTR(-ESTALE);
983
984 /* iget isn't really right if the inode is currently unallocated!!
985 *
986 * ext4_read_inode will return a bad_inode if the inode had been
987 * deleted, so we should be safe.
988 *
989 * Currently we don't know the generation for parent directory, so
990 * a generation of 0 means "accept any"
991 */
992 inode = ext4_iget_normal(sb, ino);
993 if (IS_ERR(inode))
994 return ERR_CAST(inode);
995 if (generation && inode->i_generation != generation) {
996 iput(inode);
997 return ERR_PTR(-ESTALE);
998 }
999
1000 return inode;
1001 }
1002
1003 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
1004 int fh_len, int fh_type)
1005 {
1006 return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1007 ext4_nfs_get_inode);
1008 }
1009
1010 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
1011 int fh_len, int fh_type)
1012 {
1013 return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1014 ext4_nfs_get_inode);
1015 }
1016
1017 /*
1018 * Try to release metadata pages (indirect blocks, directories) which are
1019 * mapped via the block device. Since these pages could have journal heads
1020 * which would prevent try_to_free_buffers() from freeing them, we must use
1021 * jbd2 layer's try_to_free_buffers() function to release them.
1022 */
1023 static int bdev_try_to_free_page(struct super_block *sb, struct page *page,
1024 gfp_t wait)
1025 {
1026 journal_t *journal = EXT4_SB(sb)->s_journal;
1027
1028 WARN_ON(PageChecked(page));
1029 if (!page_has_buffers(page))
1030 return 0;
1031 if (journal)
1032 return jbd2_journal_try_to_free_buffers(journal, page,
1033 wait & ~__GFP_WAIT);
1034 return try_to_free_buffers(page);
1035 }
1036
1037 #ifdef CONFIG_QUOTA
1038 #define QTYPE2NAME(t) ((t) == USRQUOTA ? "user" : "group")
1039 #define QTYPE2MOPT(on, t) ((t) == USRQUOTA?((on)##USRJQUOTA):((on)##GRPJQUOTA))
1040
1041 static int ext4_write_dquot(struct dquot *dquot);
1042 static int ext4_acquire_dquot(struct dquot *dquot);
1043 static int ext4_release_dquot(struct dquot *dquot);
1044 static int ext4_mark_dquot_dirty(struct dquot *dquot);
1045 static int ext4_write_info(struct super_block *sb, int type);
1046 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1047 struct path *path);
1048 static int ext4_quota_off(struct super_block *sb, int type);
1049 static int ext4_quota_on_mount(struct super_block *sb, int type);
1050 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1051 size_t len, loff_t off);
1052 static ssize_t ext4_quota_write(struct super_block *sb, int type,
1053 const char *data, size_t len, loff_t off);
1054 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
1055 unsigned int flags);
1056 static int ext4_enable_quotas(struct super_block *sb);
1057
1058 static struct dquot **ext4_get_dquots(struct inode *inode)
1059 {
1060 return EXT4_I(inode)->i_dquot;
1061 }
1062
1063 static const struct dquot_operations ext4_quota_operations = {
1064 .get_reserved_space = ext4_get_reserved_space,
1065 .write_dquot = ext4_write_dquot,
1066 .acquire_dquot = ext4_acquire_dquot,
1067 .release_dquot = ext4_release_dquot,
1068 .mark_dirty = ext4_mark_dquot_dirty,
1069 .write_info = ext4_write_info,
1070 .alloc_dquot = dquot_alloc,
1071 .destroy_dquot = dquot_destroy,
1072 };
1073
1074 static const struct quotactl_ops ext4_qctl_operations = {
1075 .quota_on = ext4_quota_on,
1076 .quota_off = ext4_quota_off,
1077 .quota_sync = dquot_quota_sync,
1078 .get_info = dquot_get_dqinfo,
1079 .set_info = dquot_set_dqinfo,
1080 .get_dqblk = dquot_get_dqblk,
1081 .set_dqblk = dquot_set_dqblk
1082 };
1083 #endif
1084
1085 static const struct super_operations ext4_sops = {
1086 .alloc_inode = ext4_alloc_inode,
1087 .destroy_inode = ext4_destroy_inode,
1088 .write_inode = ext4_write_inode,
1089 .dirty_inode = ext4_dirty_inode,
1090 .drop_inode = ext4_drop_inode,
1091 .evict_inode = ext4_evict_inode,
1092 .put_super = ext4_put_super,
1093 .sync_fs = ext4_sync_fs,
1094 .freeze_fs = ext4_freeze,
1095 .unfreeze_fs = ext4_unfreeze,
1096 .statfs = ext4_statfs,
1097 .remount_fs = ext4_remount,
1098 .show_options = ext4_show_options,
1099 #ifdef CONFIG_QUOTA
1100 .quota_read = ext4_quota_read,
1101 .quota_write = ext4_quota_write,
1102 .get_dquots = ext4_get_dquots,
1103 #endif
1104 .bdev_try_to_free_page = bdev_try_to_free_page,
1105 };
1106
1107 static const struct export_operations ext4_export_ops = {
1108 .fh_to_dentry = ext4_fh_to_dentry,
1109 .fh_to_parent = ext4_fh_to_parent,
1110 .get_parent = ext4_get_parent,
1111 };
1112
1113 enum {
1114 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1115 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro,
1116 Opt_nouid32, Opt_debug, Opt_removed,
1117 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl,
1118 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload,
1119 Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev,
1120 Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit,
1121 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1122 Opt_data_err_abort, Opt_data_err_ignore,
1123 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota,
1124 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota,
1125 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err,
1126 Opt_usrquota, Opt_grpquota, Opt_i_version, Opt_dax,
1127 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_mblk_io_submit,
1128 Opt_lazytime, Opt_nolazytime,
1129 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1130 Opt_inode_readahead_blks, Opt_journal_ioprio,
1131 Opt_dioread_nolock, Opt_dioread_lock,
1132 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable,
1133 Opt_max_dir_size_kb, Opt_nojournal_checksum,
1134 };
1135
1136 static const match_table_t tokens = {
1137 {Opt_bsd_df, "bsddf"},
1138 {Opt_minix_df, "minixdf"},
1139 {Opt_grpid, "grpid"},
1140 {Opt_grpid, "bsdgroups"},
1141 {Opt_nogrpid, "nogrpid"},
1142 {Opt_nogrpid, "sysvgroups"},
1143 {Opt_resgid, "resgid=%u"},
1144 {Opt_resuid, "resuid=%u"},
1145 {Opt_sb, "sb=%u"},
1146 {Opt_err_cont, "errors=continue"},
1147 {Opt_err_panic, "errors=panic"},
1148 {Opt_err_ro, "errors=remount-ro"},
1149 {Opt_nouid32, "nouid32"},
1150 {Opt_debug, "debug"},
1151 {Opt_removed, "oldalloc"},
1152 {Opt_removed, "orlov"},
1153 {Opt_user_xattr, "user_xattr"},
1154 {Opt_nouser_xattr, "nouser_xattr"},
1155 {Opt_acl, "acl"},
1156 {Opt_noacl, "noacl"},
1157 {Opt_noload, "norecovery"},
1158 {Opt_noload, "noload"},
1159 {Opt_removed, "nobh"},
1160 {Opt_removed, "bh"},
1161 {Opt_commit, "commit=%u"},
1162 {Opt_min_batch_time, "min_batch_time=%u"},
1163 {Opt_max_batch_time, "max_batch_time=%u"},
1164 {Opt_journal_dev, "journal_dev=%u"},
1165 {Opt_journal_path, "journal_path=%s"},
1166 {Opt_journal_checksum, "journal_checksum"},
1167 {Opt_nojournal_checksum, "nojournal_checksum"},
1168 {Opt_journal_async_commit, "journal_async_commit"},
1169 {Opt_abort, "abort"},
1170 {Opt_data_journal, "data=journal"},
1171 {Opt_data_ordered, "data=ordered"},
1172 {Opt_data_writeback, "data=writeback"},
1173 {Opt_data_err_abort, "data_err=abort"},
1174 {Opt_data_err_ignore, "data_err=ignore"},
1175 {Opt_offusrjquota, "usrjquota="},
1176 {Opt_usrjquota, "usrjquota=%s"},
1177 {Opt_offgrpjquota, "grpjquota="},
1178 {Opt_grpjquota, "grpjquota=%s"},
1179 {Opt_jqfmt_vfsold, "jqfmt=vfsold"},
1180 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
1181 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
1182 {Opt_grpquota, "grpquota"},
1183 {Opt_noquota, "noquota"},
1184 {Opt_quota, "quota"},
1185 {Opt_usrquota, "usrquota"},
1186 {Opt_barrier, "barrier=%u"},
1187 {Opt_barrier, "barrier"},
1188 {Opt_nobarrier, "nobarrier"},
1189 {Opt_i_version, "i_version"},
1190 {Opt_dax, "dax"},
1191 {Opt_stripe, "stripe=%u"},
1192 {Opt_delalloc, "delalloc"},
1193 {Opt_lazytime, "lazytime"},
1194 {Opt_nolazytime, "nolazytime"},
1195 {Opt_nodelalloc, "nodelalloc"},
1196 {Opt_removed, "mblk_io_submit"},
1197 {Opt_removed, "nomblk_io_submit"},
1198 {Opt_block_validity, "block_validity"},
1199 {Opt_noblock_validity, "noblock_validity"},
1200 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"},
1201 {Opt_journal_ioprio, "journal_ioprio=%u"},
1202 {Opt_auto_da_alloc, "auto_da_alloc=%u"},
1203 {Opt_auto_da_alloc, "auto_da_alloc"},
1204 {Opt_noauto_da_alloc, "noauto_da_alloc"},
1205 {Opt_dioread_nolock, "dioread_nolock"},
1206 {Opt_dioread_lock, "dioread_lock"},
1207 {Opt_discard, "discard"},
1208 {Opt_nodiscard, "nodiscard"},
1209 {Opt_init_itable, "init_itable=%u"},
1210 {Opt_init_itable, "init_itable"},
1211 {Opt_noinit_itable, "noinit_itable"},
1212 {Opt_max_dir_size_kb, "max_dir_size_kb=%u"},
1213 {Opt_removed, "check=none"}, /* mount option from ext2/3 */
1214 {Opt_removed, "nocheck"}, /* mount option from ext2/3 */
1215 {Opt_removed, "reservation"}, /* mount option from ext2/3 */
1216 {Opt_removed, "noreservation"}, /* mount option from ext2/3 */
1217 {Opt_removed, "journal=%u"}, /* mount option from ext2/3 */
1218 {Opt_err, NULL},
1219 };
1220
1221 static ext4_fsblk_t get_sb_block(void **data)
1222 {
1223 ext4_fsblk_t sb_block;
1224 char *options = (char *) *data;
1225
1226 if (!options || strncmp(options, "sb=", 3) != 0)
1227 return 1; /* Default location */
1228
1229 options += 3;
1230 /* TODO: use simple_strtoll with >32bit ext4 */
1231 sb_block = simple_strtoul(options, &options, 0);
1232 if (*options && *options != ',') {
1233 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n",
1234 (char *) *data);
1235 return 1;
1236 }
1237 if (*options == ',')
1238 options++;
1239 *data = (void *) options;
1240
1241 return sb_block;
1242 }
1243
1244 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1245 static char deprecated_msg[] = "Mount option \"%s\" will be removed by %s\n"
1246 "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n";
1247
1248 #ifdef CONFIG_QUOTA
1249 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args)
1250 {
1251 struct ext4_sb_info *sbi = EXT4_SB(sb);
1252 char *qname;
1253 int ret = -1;
1254
1255 if (sb_any_quota_loaded(sb) &&
1256 !sbi->s_qf_names[qtype]) {
1257 ext4_msg(sb, KERN_ERR,
1258 "Cannot change journaled "
1259 "quota options when quota turned on");
1260 return -1;
1261 }
1262 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA)) {
1263 ext4_msg(sb, KERN_ERR, "Cannot set journaled quota options "
1264 "when QUOTA feature is enabled");
1265 return -1;
1266 }
1267 qname = match_strdup(args);
1268 if (!qname) {
1269 ext4_msg(sb, KERN_ERR,
1270 "Not enough memory for storing quotafile name");
1271 return -1;
1272 }
1273 if (sbi->s_qf_names[qtype]) {
1274 if (strcmp(sbi->s_qf_names[qtype], qname) == 0)
1275 ret = 1;
1276 else
1277 ext4_msg(sb, KERN_ERR,
1278 "%s quota file already specified",
1279 QTYPE2NAME(qtype));
1280 goto errout;
1281 }
1282 if (strchr(qname, '/')) {
1283 ext4_msg(sb, KERN_ERR,
1284 "quotafile must be on filesystem root");
1285 goto errout;
1286 }
1287 sbi->s_qf_names[qtype] = qname;
1288 set_opt(sb, QUOTA);
1289 return 1;
1290 errout:
1291 kfree(qname);
1292 return ret;
1293 }
1294
1295 static int clear_qf_name(struct super_block *sb, int qtype)
1296 {
1297
1298 struct ext4_sb_info *sbi = EXT4_SB(sb);
1299
1300 if (sb_any_quota_loaded(sb) &&
1301 sbi->s_qf_names[qtype]) {
1302 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options"
1303 " when quota turned on");
1304 return -1;
1305 }
1306 kfree(sbi->s_qf_names[qtype]);
1307 sbi->s_qf_names[qtype] = NULL;
1308 return 1;
1309 }
1310 #endif
1311
1312 #define MOPT_SET 0x0001
1313 #define MOPT_CLEAR 0x0002
1314 #define MOPT_NOSUPPORT 0x0004
1315 #define MOPT_EXPLICIT 0x0008
1316 #define MOPT_CLEAR_ERR 0x0010
1317 #define MOPT_GTE0 0x0020
1318 #ifdef CONFIG_QUOTA
1319 #define MOPT_Q 0
1320 #define MOPT_QFMT 0x0040
1321 #else
1322 #define MOPT_Q MOPT_NOSUPPORT
1323 #define MOPT_QFMT MOPT_NOSUPPORT
1324 #endif
1325 #define MOPT_DATAJ 0x0080
1326 #define MOPT_NO_EXT2 0x0100
1327 #define MOPT_NO_EXT3 0x0200
1328 #define MOPT_EXT4_ONLY (MOPT_NO_EXT2 | MOPT_NO_EXT3)
1329 #define MOPT_STRING 0x0400
1330
1331 static const struct mount_opts {
1332 int token;
1333 int mount_opt;
1334 int flags;
1335 } ext4_mount_opts[] = {
1336 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET},
1337 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR},
1338 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET},
1339 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR},
1340 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET},
1341 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR},
1342 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK,
1343 MOPT_EXT4_ONLY | MOPT_SET},
1344 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK,
1345 MOPT_EXT4_ONLY | MOPT_CLEAR},
1346 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET},
1347 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR},
1348 {Opt_delalloc, EXT4_MOUNT_DELALLOC,
1349 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1350 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC,
1351 MOPT_EXT4_ONLY | MOPT_CLEAR},
1352 {Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1353 MOPT_EXT4_ONLY | MOPT_CLEAR},
1354 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1355 MOPT_EXT4_ONLY | MOPT_SET},
1356 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT |
1357 EXT4_MOUNT_JOURNAL_CHECKSUM),
1358 MOPT_EXT4_ONLY | MOPT_SET},
1359 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET},
1360 {Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR},
1361 {Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR},
1362 {Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR},
1363 {Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT,
1364 MOPT_NO_EXT2 | MOPT_SET},
1365 {Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT,
1366 MOPT_NO_EXT2 | MOPT_CLEAR},
1367 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET},
1368 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR},
1369 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET},
1370 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR},
1371 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR},
1372 {Opt_commit, 0, MOPT_GTE0},
1373 {Opt_max_batch_time, 0, MOPT_GTE0},
1374 {Opt_min_batch_time, 0, MOPT_GTE0},
1375 {Opt_inode_readahead_blks, 0, MOPT_GTE0},
1376 {Opt_init_itable, 0, MOPT_GTE0},
1377 {Opt_dax, EXT4_MOUNT_DAX, MOPT_SET},
1378 {Opt_stripe, 0, MOPT_GTE0},
1379 {Opt_resuid, 0, MOPT_GTE0},
1380 {Opt_resgid, 0, MOPT_GTE0},
1381 {Opt_journal_dev, 0, MOPT_GTE0},
1382 {Opt_journal_path, 0, MOPT_STRING},
1383 {Opt_journal_ioprio, 0, MOPT_GTE0},
1384 {Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1385 {Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1386 {Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA,
1387 MOPT_NO_EXT2 | MOPT_DATAJ},
1388 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET},
1389 {Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR},
1390 #ifdef CONFIG_EXT4_FS_POSIX_ACL
1391 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET},
1392 {Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR},
1393 #else
1394 {Opt_acl, 0, MOPT_NOSUPPORT},
1395 {Opt_noacl, 0, MOPT_NOSUPPORT},
1396 #endif
1397 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET},
1398 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET},
1399 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q},
1400 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA,
1401 MOPT_SET | MOPT_Q},
1402 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA,
1403 MOPT_SET | MOPT_Q},
1404 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
1405 EXT4_MOUNT_GRPQUOTA), MOPT_CLEAR | MOPT_Q},
1406 {Opt_usrjquota, 0, MOPT_Q},
1407 {Opt_grpjquota, 0, MOPT_Q},
1408 {Opt_offusrjquota, 0, MOPT_Q},
1409 {Opt_offgrpjquota, 0, MOPT_Q},
1410 {Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT},
1411 {Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT},
1412 {Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT},
1413 {Opt_max_dir_size_kb, 0, MOPT_GTE0},
1414 {Opt_err, 0, 0}
1415 };
1416
1417 static int handle_mount_opt(struct super_block *sb, char *opt, int token,
1418 substring_t *args, unsigned long *journal_devnum,
1419 unsigned int *journal_ioprio, int is_remount)
1420 {
1421 struct ext4_sb_info *sbi = EXT4_SB(sb);
1422 const struct mount_opts *m;
1423 kuid_t uid;
1424 kgid_t gid;
1425 int arg = 0;
1426
1427 #ifdef CONFIG_QUOTA
1428 if (token == Opt_usrjquota)
1429 return set_qf_name(sb, USRQUOTA, &args[0]);
1430 else if (token == Opt_grpjquota)
1431 return set_qf_name(sb, GRPQUOTA, &args[0]);
1432 else if (token == Opt_offusrjquota)
1433 return clear_qf_name(sb, USRQUOTA);
1434 else if (token == Opt_offgrpjquota)
1435 return clear_qf_name(sb, GRPQUOTA);
1436 #endif
1437 switch (token) {
1438 case Opt_noacl:
1439 case Opt_nouser_xattr:
1440 ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5");
1441 break;
1442 case Opt_sb:
1443 return 1; /* handled by get_sb_block() */
1444 case Opt_removed:
1445 ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt);
1446 return 1;
1447 case Opt_abort:
1448 sbi->s_mount_flags |= EXT4_MF_FS_ABORTED;
1449 return 1;
1450 case Opt_i_version:
1451 sb->s_flags |= MS_I_VERSION;
1452 return 1;
1453 case Opt_lazytime:
1454 sb->s_flags |= MS_LAZYTIME;
1455 return 1;
1456 case Opt_nolazytime:
1457 sb->s_flags &= ~MS_LAZYTIME;
1458 return 1;
1459 }
1460
1461 for (m = ext4_mount_opts; m->token != Opt_err; m++)
1462 if (token == m->token)
1463 break;
1464
1465 if (m->token == Opt_err) {
1466 ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" "
1467 "or missing value", opt);
1468 return -1;
1469 }
1470
1471 if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) {
1472 ext4_msg(sb, KERN_ERR,
1473 "Mount option \"%s\" incompatible with ext2", opt);
1474 return -1;
1475 }
1476 if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) {
1477 ext4_msg(sb, KERN_ERR,
1478 "Mount option \"%s\" incompatible with ext3", opt);
1479 return -1;
1480 }
1481
1482 if (args->from && !(m->flags & MOPT_STRING) && match_int(args, &arg))
1483 return -1;
1484 if (args->from && (m->flags & MOPT_GTE0) && (arg < 0))
1485 return -1;
1486 if (m->flags & MOPT_EXPLICIT)
1487 set_opt2(sb, EXPLICIT_DELALLOC);
1488 if (m->flags & MOPT_CLEAR_ERR)
1489 clear_opt(sb, ERRORS_MASK);
1490 if (token == Opt_noquota && sb_any_quota_loaded(sb)) {
1491 ext4_msg(sb, KERN_ERR, "Cannot change quota "
1492 "options when quota turned on");
1493 return -1;
1494 }
1495
1496 if (m->flags & MOPT_NOSUPPORT) {
1497 ext4_msg(sb, KERN_ERR, "%s option not supported", opt);
1498 } else if (token == Opt_commit) {
1499 if (arg == 0)
1500 arg = JBD2_DEFAULT_MAX_COMMIT_AGE;
1501 sbi->s_commit_interval = HZ * arg;
1502 } else if (token == Opt_max_batch_time) {
1503 sbi->s_max_batch_time = arg;
1504 } else if (token == Opt_min_batch_time) {
1505 sbi->s_min_batch_time = arg;
1506 } else if (token == Opt_inode_readahead_blks) {
1507 if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) {
1508 ext4_msg(sb, KERN_ERR,
1509 "EXT4-fs: inode_readahead_blks must be "
1510 "0 or a power of 2 smaller than 2^31");
1511 return -1;
1512 }
1513 sbi->s_inode_readahead_blks = arg;
1514 } else if (token == Opt_init_itable) {
1515 set_opt(sb, INIT_INODE_TABLE);
1516 if (!args->from)
1517 arg = EXT4_DEF_LI_WAIT_MULT;
1518 sbi->s_li_wait_mult = arg;
1519 } else if (token == Opt_max_dir_size_kb) {
1520 sbi->s_max_dir_size_kb = arg;
1521 } else if (token == Opt_stripe) {
1522 sbi->s_stripe = arg;
1523 } else if (token == Opt_resuid) {
1524 uid = make_kuid(current_user_ns(), arg);
1525 if (!uid_valid(uid)) {
1526 ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg);
1527 return -1;
1528 }
1529 sbi->s_resuid = uid;
1530 } else if (token == Opt_resgid) {
1531 gid = make_kgid(current_user_ns(), arg);
1532 if (!gid_valid(gid)) {
1533 ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg);
1534 return -1;
1535 }
1536 sbi->s_resgid = gid;
1537 } else if (token == Opt_journal_dev) {
1538 if (is_remount) {
1539 ext4_msg(sb, KERN_ERR,
1540 "Cannot specify journal on remount");
1541 return -1;
1542 }
1543 *journal_devnum = arg;
1544 } else if (token == Opt_journal_path) {
1545 char *journal_path;
1546 struct inode *journal_inode;
1547 struct path path;
1548 int error;
1549
1550 if (is_remount) {
1551 ext4_msg(sb, KERN_ERR,
1552 "Cannot specify journal on remount");
1553 return -1;
1554 }
1555 journal_path = match_strdup(&args[0]);
1556 if (!journal_path) {
1557 ext4_msg(sb, KERN_ERR, "error: could not dup "
1558 "journal device string");
1559 return -1;
1560 }
1561
1562 error = kern_path(journal_path, LOOKUP_FOLLOW, &path);
1563 if (error) {
1564 ext4_msg(sb, KERN_ERR, "error: could not find "
1565 "journal device path: error %d", error);
1566 kfree(journal_path);
1567 return -1;
1568 }
1569
1570 journal_inode = path.dentry->d_inode;
1571 if (!S_ISBLK(journal_inode->i_mode)) {
1572 ext4_msg(sb, KERN_ERR, "error: journal path %s "
1573 "is not a block device", journal_path);
1574 path_put(&path);
1575 kfree(journal_path);
1576 return -1;
1577 }
1578
1579 *journal_devnum = new_encode_dev(journal_inode->i_rdev);
1580 path_put(&path);
1581 kfree(journal_path);
1582 } else if (token == Opt_journal_ioprio) {
1583 if (arg > 7) {
1584 ext4_msg(sb, KERN_ERR, "Invalid journal IO priority"
1585 " (must be 0-7)");
1586 return -1;
1587 }
1588 *journal_ioprio =
1589 IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg);
1590 } else if (m->flags & MOPT_DATAJ) {
1591 if (is_remount) {
1592 if (!sbi->s_journal)
1593 ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option");
1594 else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) {
1595 ext4_msg(sb, KERN_ERR,
1596 "Cannot change data mode on remount");
1597 return -1;
1598 }
1599 } else {
1600 clear_opt(sb, DATA_FLAGS);
1601 sbi->s_mount_opt |= m->mount_opt;
1602 }
1603 #ifdef CONFIG_QUOTA
1604 } else if (m->flags & MOPT_QFMT) {
1605 if (sb_any_quota_loaded(sb) &&
1606 sbi->s_jquota_fmt != m->mount_opt) {
1607 ext4_msg(sb, KERN_ERR, "Cannot change journaled "
1608 "quota options when quota turned on");
1609 return -1;
1610 }
1611 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
1612 EXT4_FEATURE_RO_COMPAT_QUOTA)) {
1613 ext4_msg(sb, KERN_ERR,
1614 "Cannot set journaled quota options "
1615 "when QUOTA feature is enabled");
1616 return -1;
1617 }
1618 sbi->s_jquota_fmt = m->mount_opt;
1619 #endif
1620 #ifndef CONFIG_FS_DAX
1621 } else if (token == Opt_dax) {
1622 ext4_msg(sb, KERN_INFO, "dax option not supported");
1623 return -1;
1624 #endif
1625 } else {
1626 if (!args->from)
1627 arg = 1;
1628 if (m->flags & MOPT_CLEAR)
1629 arg = !arg;
1630 else if (unlikely(!(m->flags & MOPT_SET))) {
1631 ext4_msg(sb, KERN_WARNING,
1632 "buggy handling of option %s", opt);
1633 WARN_ON(1);
1634 return -1;
1635 }
1636 if (arg != 0)
1637 sbi->s_mount_opt |= m->mount_opt;
1638 else
1639 sbi->s_mount_opt &= ~m->mount_opt;
1640 }
1641 return 1;
1642 }
1643
1644 static int parse_options(char *options, struct super_block *sb,
1645 unsigned long *journal_devnum,
1646 unsigned int *journal_ioprio,
1647 int is_remount)
1648 {
1649 struct ext4_sb_info *sbi = EXT4_SB(sb);
1650 char *p;
1651 substring_t args[MAX_OPT_ARGS];
1652 int token;
1653
1654 if (!options)
1655 return 1;
1656
1657 while ((p = strsep(&options, ",")) != NULL) {
1658 if (!*p)
1659 continue;
1660 /*
1661 * Initialize args struct so we know whether arg was
1662 * found; some options take optional arguments.
1663 */
1664 args[0].to = args[0].from = NULL;
1665 token = match_token(p, tokens, args);
1666 if (handle_mount_opt(sb, p, token, args, journal_devnum,
1667 journal_ioprio, is_remount) < 0)
1668 return 0;
1669 }
1670 #ifdef CONFIG_QUOTA
1671 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) &&
1672 (test_opt(sb, USRQUOTA) || test_opt(sb, GRPQUOTA))) {
1673 ext4_msg(sb, KERN_ERR, "Cannot set quota options when QUOTA "
1674 "feature is enabled");
1675 return 0;
1676 }
1677 if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
1678 if (test_opt(sb, USRQUOTA) && sbi->s_qf_names[USRQUOTA])
1679 clear_opt(sb, USRQUOTA);
1680
1681 if (test_opt(sb, GRPQUOTA) && sbi->s_qf_names[GRPQUOTA])
1682 clear_opt(sb, GRPQUOTA);
1683
1684 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) {
1685 ext4_msg(sb, KERN_ERR, "old and new quota "
1686 "format mixing");
1687 return 0;
1688 }
1689
1690 if (!sbi->s_jquota_fmt) {
1691 ext4_msg(sb, KERN_ERR, "journaled quota format "
1692 "not specified");
1693 return 0;
1694 }
1695 }
1696 #endif
1697 if (test_opt(sb, DIOREAD_NOLOCK)) {
1698 int blocksize =
1699 BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size);
1700
1701 if (blocksize < PAGE_CACHE_SIZE) {
1702 ext4_msg(sb, KERN_ERR, "can't mount with "
1703 "dioread_nolock if block size != PAGE_SIZE");
1704 return 0;
1705 }
1706 }
1707 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA &&
1708 test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
1709 ext4_msg(sb, KERN_ERR, "can't mount with journal_async_commit "
1710 "in data=ordered mode");
1711 return 0;
1712 }
1713 return 1;
1714 }
1715
1716 static inline void ext4_show_quota_options(struct seq_file *seq,
1717 struct super_block *sb)
1718 {
1719 #if defined(CONFIG_QUOTA)
1720 struct ext4_sb_info *sbi = EXT4_SB(sb);
1721
1722 if (sbi->s_jquota_fmt) {
1723 char *fmtname = "";
1724
1725 switch (sbi->s_jquota_fmt) {
1726 case QFMT_VFS_OLD:
1727 fmtname = "vfsold";
1728 break;
1729 case QFMT_VFS_V0:
1730 fmtname = "vfsv0";
1731 break;
1732 case QFMT_VFS_V1:
1733 fmtname = "vfsv1";
1734 break;
1735 }
1736 seq_printf(seq, ",jqfmt=%s", fmtname);
1737 }
1738
1739 if (sbi->s_qf_names[USRQUOTA])
1740 seq_printf(seq, ",usrjquota=%s", sbi->s_qf_names[USRQUOTA]);
1741
1742 if (sbi->s_qf_names[GRPQUOTA])
1743 seq_printf(seq, ",grpjquota=%s", sbi->s_qf_names[GRPQUOTA]);
1744 #endif
1745 }
1746
1747 static const char *token2str(int token)
1748 {
1749 const struct match_token *t;
1750
1751 for (t = tokens; t->token != Opt_err; t++)
1752 if (t->token == token && !strchr(t->pattern, '='))
1753 break;
1754 return t->pattern;
1755 }
1756
1757 /*
1758 * Show an option if
1759 * - it's set to a non-default value OR
1760 * - if the per-sb default is different from the global default
1761 */
1762 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb,
1763 int nodefs)
1764 {
1765 struct ext4_sb_info *sbi = EXT4_SB(sb);
1766 struct ext4_super_block *es = sbi->s_es;
1767 int def_errors, def_mount_opt = nodefs ? 0 : sbi->s_def_mount_opt;
1768 const struct mount_opts *m;
1769 char sep = nodefs ? '\n' : ',';
1770
1771 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep)
1772 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg)
1773
1774 if (sbi->s_sb_block != 1)
1775 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block);
1776
1777 for (m = ext4_mount_opts; m->token != Opt_err; m++) {
1778 int want_set = m->flags & MOPT_SET;
1779 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) ||
1780 (m->flags & MOPT_CLEAR_ERR))
1781 continue;
1782 if (!(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt)))
1783 continue; /* skip if same as the default */
1784 if ((want_set &&
1785 (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) ||
1786 (!want_set && (sbi->s_mount_opt & m->mount_opt)))
1787 continue; /* select Opt_noFoo vs Opt_Foo */
1788 SEQ_OPTS_PRINT("%s", token2str(m->token));
1789 }
1790
1791 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) ||
1792 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID)
1793 SEQ_OPTS_PRINT("resuid=%u",
1794 from_kuid_munged(&init_user_ns, sbi->s_resuid));
1795 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) ||
1796 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID)
1797 SEQ_OPTS_PRINT("resgid=%u",
1798 from_kgid_munged(&init_user_ns, sbi->s_resgid));
1799 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors);
1800 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO)
1801 SEQ_OPTS_PUTS("errors=remount-ro");
1802 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
1803 SEQ_OPTS_PUTS("errors=continue");
1804 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
1805 SEQ_OPTS_PUTS("errors=panic");
1806 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
1807 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ);
1808 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME)
1809 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time);
1810 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME)
1811 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time);
1812 if (sb->s_flags & MS_I_VERSION)
1813 SEQ_OPTS_PUTS("i_version");
1814 if (nodefs || sbi->s_stripe)
1815 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe);
1816 if (EXT4_MOUNT_DATA_FLAGS & (sbi->s_mount_opt ^ def_mount_opt)) {
1817 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
1818 SEQ_OPTS_PUTS("data=journal");
1819 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
1820 SEQ_OPTS_PUTS("data=ordered");
1821 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
1822 SEQ_OPTS_PUTS("data=writeback");
1823 }
1824 if (nodefs ||
1825 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
1826 SEQ_OPTS_PRINT("inode_readahead_blks=%u",
1827 sbi->s_inode_readahead_blks);
1828
1829 if (nodefs || (test_opt(sb, INIT_INODE_TABLE) &&
1830 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)))
1831 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult);
1832 if (nodefs || sbi->s_max_dir_size_kb)
1833 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb);
1834
1835 ext4_show_quota_options(seq, sb);
1836 return 0;
1837 }
1838
1839 static int ext4_show_options(struct seq_file *seq, struct dentry *root)
1840 {
1841 return _ext4_show_options(seq, root->d_sb, 0);
1842 }
1843
1844 static int options_seq_show(struct seq_file *seq, void *offset)
1845 {
1846 struct super_block *sb = seq->private;
1847 int rc;
1848
1849 seq_puts(seq, (sb->s_flags & MS_RDONLY) ? "ro" : "rw");
1850 rc = _ext4_show_options(seq, sb, 1);
1851 seq_puts(seq, "\n");
1852 return rc;
1853 }
1854
1855 static int options_open_fs(struct inode *inode, struct file *file)
1856 {
1857 return single_open(file, options_seq_show, PDE_DATA(inode));
1858 }
1859
1860 static const struct file_operations ext4_seq_options_fops = {
1861 .owner = THIS_MODULE,
1862 .open = options_open_fs,
1863 .read = seq_read,
1864 .llseek = seq_lseek,
1865 .release = single_release,
1866 };
1867
1868 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
1869 int read_only)
1870 {
1871 struct ext4_sb_info *sbi = EXT4_SB(sb);
1872 int res = 0;
1873
1874 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
1875 ext4_msg(sb, KERN_ERR, "revision level too high, "
1876 "forcing read-only mode");
1877 res = MS_RDONLY;
1878 }
1879 if (read_only)
1880 goto done;
1881 if (!(sbi->s_mount_state & EXT4_VALID_FS))
1882 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
1883 "running e2fsck is recommended");
1884 else if (sbi->s_mount_state & EXT4_ERROR_FS)
1885 ext4_msg(sb, KERN_WARNING,
1886 "warning: mounting fs with errors, "
1887 "running e2fsck is recommended");
1888 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
1889 le16_to_cpu(es->s_mnt_count) >=
1890 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
1891 ext4_msg(sb, KERN_WARNING,
1892 "warning: maximal mount count reached, "
1893 "running e2fsck is recommended");
1894 else if (le32_to_cpu(es->s_checkinterval) &&
1895 (le32_to_cpu(es->s_lastcheck) +
1896 le32_to_cpu(es->s_checkinterval) <= get_seconds()))
1897 ext4_msg(sb, KERN_WARNING,
1898 "warning: checktime reached, "
1899 "running e2fsck is recommended");
1900 if (!sbi->s_journal)
1901 es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
1902 if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
1903 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
1904 le16_add_cpu(&es->s_mnt_count, 1);
1905 es->s_mtime = cpu_to_le32(get_seconds());
1906 ext4_update_dynamic_rev(sb);
1907 if (sbi->s_journal)
1908 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
1909
1910 ext4_commit_super(sb, 1);
1911 done:
1912 if (test_opt(sb, DEBUG))
1913 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
1914 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
1915 sb->s_blocksize,
1916 sbi->s_groups_count,
1917 EXT4_BLOCKS_PER_GROUP(sb),
1918 EXT4_INODES_PER_GROUP(sb),
1919 sbi->s_mount_opt, sbi->s_mount_opt2);
1920
1921 cleancache_init_fs(sb);
1922 return res;
1923 }
1924
1925 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup)
1926 {
1927 struct ext4_sb_info *sbi = EXT4_SB(sb);
1928 struct flex_groups *new_groups;
1929 int size;
1930
1931 if (!sbi->s_log_groups_per_flex)
1932 return 0;
1933
1934 size = ext4_flex_group(sbi, ngroup - 1) + 1;
1935 if (size <= sbi->s_flex_groups_allocated)
1936 return 0;
1937
1938 size = roundup_pow_of_two(size * sizeof(struct flex_groups));
1939 new_groups = ext4_kvzalloc(size, GFP_KERNEL);
1940 if (!new_groups) {
1941 ext4_msg(sb, KERN_ERR, "not enough memory for %d flex groups",
1942 size / (int) sizeof(struct flex_groups));
1943 return -ENOMEM;
1944 }
1945
1946 if (sbi->s_flex_groups) {
1947 memcpy(new_groups, sbi->s_flex_groups,
1948 (sbi->s_flex_groups_allocated *
1949 sizeof(struct flex_groups)));
1950 kvfree(sbi->s_flex_groups);
1951 }
1952 sbi->s_flex_groups = new_groups;
1953 sbi->s_flex_groups_allocated = size / sizeof(struct flex_groups);
1954 return 0;
1955 }
1956
1957 static int ext4_fill_flex_info(struct super_block *sb)
1958 {
1959 struct ext4_sb_info *sbi = EXT4_SB(sb);
1960 struct ext4_group_desc *gdp = NULL;
1961 ext4_group_t flex_group;
1962 int i, err;
1963
1964 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
1965 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) {
1966 sbi->s_log_groups_per_flex = 0;
1967 return 1;
1968 }
1969
1970 err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count);
1971 if (err)
1972 goto failed;
1973
1974 for (i = 0; i < sbi->s_groups_count; i++) {
1975 gdp = ext4_get_group_desc(sb, i, NULL);
1976
1977 flex_group = ext4_flex_group(sbi, i);
1978 atomic_add(ext4_free_inodes_count(sb, gdp),
1979 &sbi->s_flex_groups[flex_group].free_inodes);
1980 atomic64_add(ext4_free_group_clusters(sb, gdp),
1981 &sbi->s_flex_groups[flex_group].free_clusters);
1982 atomic_add(ext4_used_dirs_count(sb, gdp),
1983 &sbi->s_flex_groups[flex_group].used_dirs);
1984 }
1985
1986 return 1;
1987 failed:
1988 return 0;
1989 }
1990
1991 static __le16 ext4_group_desc_csum(struct ext4_sb_info *sbi, __u32 block_group,
1992 struct ext4_group_desc *gdp)
1993 {
1994 int offset;
1995 __u16 crc = 0;
1996 __le32 le_group = cpu_to_le32(block_group);
1997
1998 if (ext4_has_metadata_csum(sbi->s_sb)) {
1999 /* Use new metadata_csum algorithm */
2000 __le16 save_csum;
2001 __u32 csum32;
2002
2003 save_csum = gdp->bg_checksum;
2004 gdp->bg_checksum = 0;
2005 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group,
2006 sizeof(le_group));
2007 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp,
2008 sbi->s_desc_size);
2009 gdp->bg_checksum = save_csum;
2010
2011 crc = csum32 & 0xFFFF;
2012 goto out;
2013 }
2014
2015 /* old crc16 code */
2016 if (!(sbi->s_es->s_feature_ro_compat &
2017 cpu_to_le32(EXT4_FEATURE_RO_COMPAT_GDT_CSUM)))
2018 return 0;
2019
2020 offset = offsetof(struct ext4_group_desc, bg_checksum);
2021
2022 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
2023 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
2024 crc = crc16(crc, (__u8 *)gdp, offset);
2025 offset += sizeof(gdp->bg_checksum); /* skip checksum */
2026 /* for checksum of struct ext4_group_desc do the rest...*/
2027 if ((sbi->s_es->s_feature_incompat &
2028 cpu_to_le32(EXT4_FEATURE_INCOMPAT_64BIT)) &&
2029 offset < le16_to_cpu(sbi->s_es->s_desc_size))
2030 crc = crc16(crc, (__u8 *)gdp + offset,
2031 le16_to_cpu(sbi->s_es->s_desc_size) -
2032 offset);
2033
2034 out:
2035 return cpu_to_le16(crc);
2036 }
2037
2038 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group,
2039 struct ext4_group_desc *gdp)
2040 {
2041 if (ext4_has_group_desc_csum(sb) &&
2042 (gdp->bg_checksum != ext4_group_desc_csum(EXT4_SB(sb),
2043 block_group, gdp)))
2044 return 0;
2045
2046 return 1;
2047 }
2048
2049 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group,
2050 struct ext4_group_desc *gdp)
2051 {
2052 if (!ext4_has_group_desc_csum(sb))
2053 return;
2054 gdp->bg_checksum = ext4_group_desc_csum(EXT4_SB(sb), block_group, gdp);
2055 }
2056
2057 /* Called at mount-time, super-block is locked */
2058 static int ext4_check_descriptors(struct super_block *sb,
2059 ext4_group_t *first_not_zeroed)
2060 {
2061 struct ext4_sb_info *sbi = EXT4_SB(sb);
2062 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
2063 ext4_fsblk_t last_block;
2064 ext4_fsblk_t block_bitmap;
2065 ext4_fsblk_t inode_bitmap;
2066 ext4_fsblk_t inode_table;
2067 int flexbg_flag = 0;
2068 ext4_group_t i, grp = sbi->s_groups_count;
2069
2070 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG))
2071 flexbg_flag = 1;
2072
2073 ext4_debug("Checking group descriptors");
2074
2075 for (i = 0; i < sbi->s_groups_count; i++) {
2076 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
2077
2078 if (i == sbi->s_groups_count - 1 || flexbg_flag)
2079 last_block = ext4_blocks_count(sbi->s_es) - 1;
2080 else
2081 last_block = first_block +
2082 (EXT4_BLOCKS_PER_GROUP(sb) - 1);
2083
2084 if ((grp == sbi->s_groups_count) &&
2085 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2086 grp = i;
2087
2088 block_bitmap = ext4_block_bitmap(sb, gdp);
2089 if (block_bitmap < first_block || block_bitmap > last_block) {
2090 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2091 "Block bitmap for group %u not in group "
2092 "(block %llu)!", i, block_bitmap);
2093 return 0;
2094 }
2095 inode_bitmap = ext4_inode_bitmap(sb, gdp);
2096 if (inode_bitmap < first_block || inode_bitmap > last_block) {
2097 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2098 "Inode bitmap for group %u not in group "
2099 "(block %llu)!", i, inode_bitmap);
2100 return 0;
2101 }
2102 inode_table = ext4_inode_table(sb, gdp);
2103 if (inode_table < first_block ||
2104 inode_table + sbi->s_itb_per_group - 1 > last_block) {
2105 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2106 "Inode table for group %u not in group "
2107 "(block %llu)!", i, inode_table);
2108 return 0;
2109 }
2110 ext4_lock_group(sb, i);
2111 if (!ext4_group_desc_csum_verify(sb, i, gdp)) {
2112 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2113 "Checksum for group %u failed (%u!=%u)",
2114 i, le16_to_cpu(ext4_group_desc_csum(sbi, i,
2115 gdp)), le16_to_cpu(gdp->bg_checksum));
2116 if (!(sb->s_flags & MS_RDONLY)) {
2117 ext4_unlock_group(sb, i);
2118 return 0;
2119 }
2120 }
2121 ext4_unlock_group(sb, i);
2122 if (!flexbg_flag)
2123 first_block += EXT4_BLOCKS_PER_GROUP(sb);
2124 }
2125 if (NULL != first_not_zeroed)
2126 *first_not_zeroed = grp;
2127 return 1;
2128 }
2129
2130 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at
2131 * the superblock) which were deleted from all directories, but held open by
2132 * a process at the time of a crash. We walk the list and try to delete these
2133 * inodes at recovery time (only with a read-write filesystem).
2134 *
2135 * In order to keep the orphan inode chain consistent during traversal (in
2136 * case of crash during recovery), we link each inode into the superblock
2137 * orphan list_head and handle it the same way as an inode deletion during
2138 * normal operation (which journals the operations for us).
2139 *
2140 * We only do an iget() and an iput() on each inode, which is very safe if we
2141 * accidentally point at an in-use or already deleted inode. The worst that
2142 * can happen in this case is that we get a "bit already cleared" message from
2143 * ext4_free_inode(). The only reason we would point at a wrong inode is if
2144 * e2fsck was run on this filesystem, and it must have already done the orphan
2145 * inode cleanup for us, so we can safely abort without any further action.
2146 */
2147 static void ext4_orphan_cleanup(struct super_block *sb,
2148 struct ext4_super_block *es)
2149 {
2150 unsigned int s_flags = sb->s_flags;
2151 int nr_orphans = 0, nr_truncates = 0;
2152 #ifdef CONFIG_QUOTA
2153 int i;
2154 #endif
2155 if (!es->s_last_orphan) {
2156 jbd_debug(4, "no orphan inodes to clean up\n");
2157 return;
2158 }
2159
2160 if (bdev_read_only(sb->s_bdev)) {
2161 ext4_msg(sb, KERN_ERR, "write access "
2162 "unavailable, skipping orphan cleanup");
2163 return;
2164 }
2165
2166 /* Check if feature set would not allow a r/w mount */
2167 if (!ext4_feature_set_ok(sb, 0)) {
2168 ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to "
2169 "unknown ROCOMPAT features");
2170 return;
2171 }
2172
2173 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2174 /* don't clear list on RO mount w/ errors */
2175 if (es->s_last_orphan && !(s_flags & MS_RDONLY)) {
2176 ext4_msg(sb, KERN_INFO, "Errors on filesystem, "
2177 "clearing orphan list.\n");
2178 es->s_last_orphan = 0;
2179 }
2180 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2181 return;
2182 }
2183
2184 if (s_flags & MS_RDONLY) {
2185 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs");
2186 sb->s_flags &= ~MS_RDONLY;
2187 }
2188 #ifdef CONFIG_QUOTA
2189 /* Needed for iput() to work correctly and not trash data */
2190 sb->s_flags |= MS_ACTIVE;
2191 /* Turn on quotas so that they are updated correctly */
2192 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2193 if (EXT4_SB(sb)->s_qf_names[i]) {
2194 int ret = ext4_quota_on_mount(sb, i);
2195 if (ret < 0)
2196 ext4_msg(sb, KERN_ERR,
2197 "Cannot turn on journaled "
2198 "quota: error %d", ret);
2199 }
2200 }
2201 #endif
2202
2203 while (es->s_last_orphan) {
2204 struct inode *inode;
2205
2206 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan));
2207 if (IS_ERR(inode)) {
2208 es->s_last_orphan = 0;
2209 break;
2210 }
2211
2212 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan);
2213 dquot_initialize(inode);
2214 if (inode->i_nlink) {
2215 if (test_opt(sb, DEBUG))
2216 ext4_msg(sb, KERN_DEBUG,
2217 "%s: truncating inode %lu to %lld bytes",
2218 __func__, inode->i_ino, inode->i_size);
2219 jbd_debug(2, "truncating inode %lu to %lld bytes\n",
2220 inode->i_ino, inode->i_size);
2221 mutex_lock(&inode->i_mutex);
2222 truncate_inode_pages(inode->i_mapping, inode->i_size);
2223 ext4_truncate(inode);
2224 mutex_unlock(&inode->i_mutex);
2225 nr_truncates++;
2226 } else {
2227 if (test_opt(sb, DEBUG))
2228 ext4_msg(sb, KERN_DEBUG,
2229 "%s: deleting unreferenced inode %lu",
2230 __func__, inode->i_ino);
2231 jbd_debug(2, "deleting unreferenced inode %lu\n",
2232 inode->i_ino);
2233 nr_orphans++;
2234 }
2235 iput(inode); /* The delete magic happens here! */
2236 }
2237
2238 #define PLURAL(x) (x), ((x) == 1) ? "" : "s"
2239
2240 if (nr_orphans)
2241 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted",
2242 PLURAL(nr_orphans));
2243 if (nr_truncates)
2244 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up",
2245 PLURAL(nr_truncates));
2246 #ifdef CONFIG_QUOTA
2247 /* Turn quotas off */
2248 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2249 if (sb_dqopt(sb)->files[i])
2250 dquot_quota_off(sb, i);
2251 }
2252 #endif
2253 sb->s_flags = s_flags; /* Restore MS_RDONLY status */
2254 }
2255
2256 /*
2257 * Maximal extent format file size.
2258 * Resulting logical blkno at s_maxbytes must fit in our on-disk
2259 * extent format containers, within a sector_t, and within i_blocks
2260 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units,
2261 * so that won't be a limiting factor.
2262 *
2263 * However there is other limiting factor. We do store extents in the form
2264 * of starting block and length, hence the resulting length of the extent
2265 * covering maximum file size must fit into on-disk format containers as
2266 * well. Given that length is always by 1 unit bigger than max unit (because
2267 * we count 0 as well) we have to lower the s_maxbytes by one fs block.
2268 *
2269 * Note, this does *not* consider any metadata overhead for vfs i_blocks.
2270 */
2271 static loff_t ext4_max_size(int blkbits, int has_huge_files)
2272 {
2273 loff_t res;
2274 loff_t upper_limit = MAX_LFS_FILESIZE;
2275
2276 /* small i_blocks in vfs inode? */
2277 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2278 /*
2279 * CONFIG_LBDAF is not enabled implies the inode
2280 * i_block represent total blocks in 512 bytes
2281 * 32 == size of vfs inode i_blocks * 8
2282 */
2283 upper_limit = (1LL << 32) - 1;
2284
2285 /* total blocks in file system block size */
2286 upper_limit >>= (blkbits - 9);
2287 upper_limit <<= blkbits;
2288 }
2289
2290 /*
2291 * 32-bit extent-start container, ee_block. We lower the maxbytes
2292 * by one fs block, so ee_len can cover the extent of maximum file
2293 * size
2294 */
2295 res = (1LL << 32) - 1;
2296 res <<= blkbits;
2297
2298 /* Sanity check against vm- & vfs- imposed limits */
2299 if (res > upper_limit)
2300 res = upper_limit;
2301
2302 return res;
2303 }
2304
2305 /*
2306 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect
2307 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
2308 * We need to be 1 filesystem block less than the 2^48 sector limit.
2309 */
2310 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
2311 {
2312 loff_t res = EXT4_NDIR_BLOCKS;
2313 int meta_blocks;
2314 loff_t upper_limit;
2315 /* This is calculated to be the largest file size for a dense, block
2316 * mapped file such that the file's total number of 512-byte sectors,
2317 * including data and all indirect blocks, does not exceed (2^48 - 1).
2318 *
2319 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
2320 * number of 512-byte sectors of the file.
2321 */
2322
2323 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2324 /*
2325 * !has_huge_files or CONFIG_LBDAF not enabled implies that
2326 * the inode i_block field represents total file blocks in
2327 * 2^32 512-byte sectors == size of vfs inode i_blocks * 8
2328 */
2329 upper_limit = (1LL << 32) - 1;
2330
2331 /* total blocks in file system block size */
2332 upper_limit >>= (bits - 9);
2333
2334 } else {
2335 /*
2336 * We use 48 bit ext4_inode i_blocks
2337 * With EXT4_HUGE_FILE_FL set the i_blocks
2338 * represent total number of blocks in
2339 * file system block size
2340 */
2341 upper_limit = (1LL << 48) - 1;
2342
2343 }
2344
2345 /* indirect blocks */
2346 meta_blocks = 1;
2347 /* double indirect blocks */
2348 meta_blocks += 1 + (1LL << (bits-2));
2349 /* tripple indirect blocks */
2350 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2)));
2351
2352 upper_limit -= meta_blocks;
2353 upper_limit <<= bits;
2354
2355 res += 1LL << (bits-2);
2356 res += 1LL << (2*(bits-2));
2357 res += 1LL << (3*(bits-2));
2358 res <<= bits;
2359 if (res > upper_limit)
2360 res = upper_limit;
2361
2362 if (res > MAX_LFS_FILESIZE)
2363 res = MAX_LFS_FILESIZE;
2364
2365 return res;
2366 }
2367
2368 static ext4_fsblk_t descriptor_loc(struct super_block *sb,
2369 ext4_fsblk_t logical_sb_block, int nr)
2370 {
2371 struct ext4_sb_info *sbi = EXT4_SB(sb);
2372 ext4_group_t bg, first_meta_bg;
2373 int has_super = 0;
2374
2375 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
2376
2377 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_META_BG) ||
2378 nr < first_meta_bg)
2379 return logical_sb_block + nr + 1;
2380 bg = sbi->s_desc_per_block * nr;
2381 if (ext4_bg_has_super(sb, bg))
2382 has_super = 1;
2383
2384 /*
2385 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at
2386 * block 2, not 1. If s_first_data_block == 0 (bigalloc is enabled
2387 * on modern mke2fs or blksize > 1k on older mke2fs) then we must
2388 * compensate.
2389 */
2390 if (sb->s_blocksize == 1024 && nr == 0 &&
2391 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block) == 0)
2392 has_super++;
2393
2394 return (has_super + ext4_group_first_block_no(sb, bg));
2395 }
2396
2397 /**
2398 * ext4_get_stripe_size: Get the stripe size.
2399 * @sbi: In memory super block info
2400 *
2401 * If we have specified it via mount option, then
2402 * use the mount option value. If the value specified at mount time is
2403 * greater than the blocks per group use the super block value.
2404 * If the super block value is greater than blocks per group return 0.
2405 * Allocator needs it be less than blocks per group.
2406 *
2407 */
2408 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
2409 {
2410 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
2411 unsigned long stripe_width =
2412 le32_to_cpu(sbi->s_es->s_raid_stripe_width);
2413 int ret;
2414
2415 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
2416 ret = sbi->s_stripe;
2417 else if (stripe_width <= sbi->s_blocks_per_group)
2418 ret = stripe_width;
2419 else if (stride <= sbi->s_blocks_per_group)
2420 ret = stride;
2421 else
2422 ret = 0;
2423
2424 /*
2425 * If the stripe width is 1, this makes no sense and
2426 * we set it to 0 to turn off stripe handling code.
2427 */
2428 if (ret <= 1)
2429 ret = 0;
2430
2431 return ret;
2432 }
2433
2434 /* sysfs supprt */
2435
2436 struct ext4_attr {
2437 struct attribute attr;
2438 ssize_t (*show)(struct ext4_attr *, struct ext4_sb_info *, char *);
2439 ssize_t (*store)(struct ext4_attr *, struct ext4_sb_info *,
2440 const char *, size_t);
2441 union {
2442 int offset;
2443 int deprecated_val;
2444 } u;
2445 };
2446
2447 static int parse_strtoull(const char *buf,
2448 unsigned long long max, unsigned long long *value)
2449 {
2450 int ret;
2451
2452 ret = kstrtoull(skip_spaces(buf), 0, value);
2453 if (!ret && *value > max)
2454 ret = -EINVAL;
2455 return ret;
2456 }
2457
2458 static ssize_t delayed_allocation_blocks_show(struct ext4_attr *a,
2459 struct ext4_sb_info *sbi,
2460 char *buf)
2461 {
2462 return snprintf(buf, PAGE_SIZE, "%llu\n",
2463 (s64) EXT4_C2B(sbi,
2464 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
2465 }
2466
2467 static ssize_t session_write_kbytes_show(struct ext4_attr *a,
2468 struct ext4_sb_info *sbi, char *buf)
2469 {
2470 struct super_block *sb = sbi->s_buddy_cache->i_sb;
2471
2472 if (!sb->s_bdev->bd_part)
2473 return snprintf(buf, PAGE_SIZE, "0\n");
2474 return snprintf(buf, PAGE_SIZE, "%lu\n",
2475 (part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
2476 sbi->s_sectors_written_start) >> 1);
2477 }
2478
2479 static ssize_t lifetime_write_kbytes_show(struct ext4_attr *a,
2480 struct ext4_sb_info *sbi, char *buf)
2481 {
2482 struct super_block *sb = sbi->s_buddy_cache->i_sb;
2483
2484 if (!sb->s_bdev->bd_part)
2485 return snprintf(buf, PAGE_SIZE, "0\n");
2486 return snprintf(buf, PAGE_SIZE, "%llu\n",
2487 (unsigned long long)(sbi->s_kbytes_written +
2488 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
2489 EXT4_SB(sb)->s_sectors_written_start) >> 1)));
2490 }
2491
2492 static ssize_t inode_readahead_blks_store(struct ext4_attr *a,
2493 struct ext4_sb_info *sbi,
2494 const char *buf, size_t count)
2495 {
2496 unsigned long t;
2497 int ret;
2498
2499 ret = kstrtoul(skip_spaces(buf), 0, &t);
2500 if (ret)
2501 return ret;
2502
2503 if (t && (!is_power_of_2(t) || t > 0x40000000))
2504 return -EINVAL;
2505
2506 sbi->s_inode_readahead_blks = t;
2507 return count;
2508 }
2509
2510 static ssize_t sbi_ui_show(struct ext4_attr *a,
2511 struct ext4_sb_info *sbi, char *buf)
2512 {
2513 unsigned int *ui = (unsigned int *) (((char *) sbi) + a->u.offset);
2514
2515 return snprintf(buf, PAGE_SIZE, "%u\n", *ui);
2516 }
2517
2518 static ssize_t sbi_ui_store(struct ext4_attr *a,
2519 struct ext4_sb_info *sbi,
2520 const char *buf, size_t count)
2521 {
2522 unsigned int *ui = (unsigned int *) (((char *) sbi) + a->u.offset);
2523 unsigned long t;
2524 int ret;
2525
2526 ret = kstrtoul(skip_spaces(buf), 0, &t);
2527 if (ret)
2528 return ret;
2529 *ui = t;
2530 return count;
2531 }
2532
2533 static ssize_t es_ui_show(struct ext4_attr *a,
2534 struct ext4_sb_info *sbi, char *buf)
2535 {
2536
2537 unsigned int *ui = (unsigned int *) (((char *) sbi->s_es) +
2538 a->u.offset);
2539
2540 return snprintf(buf, PAGE_SIZE, "%u\n", *ui);
2541 }
2542
2543 static ssize_t reserved_clusters_show(struct ext4_attr *a,
2544 struct ext4_sb_info *sbi, char *buf)
2545 {
2546 return snprintf(buf, PAGE_SIZE, "%llu\n",
2547 (unsigned long long) atomic64_read(&sbi->s_resv_clusters));
2548 }
2549
2550 static ssize_t reserved_clusters_store(struct ext4_attr *a,
2551 struct ext4_sb_info *sbi,
2552 const char *buf, size_t count)
2553 {
2554 unsigned long long val;
2555 int ret;
2556
2557 if (parse_strtoull(buf, -1ULL, &val))
2558 return -EINVAL;
2559 ret = ext4_reserve_clusters(sbi, val);
2560
2561 return ret ? ret : count;
2562 }
2563
2564 static ssize_t trigger_test_error(struct ext4_attr *a,
2565 struct ext4_sb_info *sbi,
2566 const char *buf, size_t count)
2567 {
2568 int len = count;
2569
2570 if (!capable(CAP_SYS_ADMIN))
2571 return -EPERM;
2572
2573 if (len && buf[len-1] == '\n')
2574 len--;
2575
2576 if (len)
2577 ext4_error(sbi->s_sb, "%.*s", len, buf);
2578 return count;
2579 }
2580
2581 static ssize_t sbi_deprecated_show(struct ext4_attr *a,
2582 struct ext4_sb_info *sbi, char *buf)
2583 {
2584 return snprintf(buf, PAGE_SIZE, "%d\n", a->u.deprecated_val);
2585 }
2586
2587 #define EXT4_ATTR_OFFSET(_name,_mode,_show,_store,_elname) \
2588 static struct ext4_attr ext4_attr_##_name = { \
2589 .attr = {.name = __stringify(_name), .mode = _mode }, \
2590 .show = _show, \
2591 .store = _store, \
2592 .u = { \
2593 .offset = offsetof(struct ext4_sb_info, _elname),\
2594 }, \
2595 }
2596
2597 #define EXT4_ATTR_OFFSET_ES(_name,_mode,_show,_store,_elname) \
2598 static struct ext4_attr ext4_attr_##_name = { \
2599 .attr = {.name = __stringify(_name), .mode = _mode }, \
2600 .show = _show, \
2601 .store = _store, \
2602 .u = { \
2603 .offset = offsetof(struct ext4_super_block, _elname), \
2604 }, \
2605 }
2606
2607 #define EXT4_ATTR(name, mode, show, store) \
2608 static struct ext4_attr ext4_attr_##name = __ATTR(name, mode, show, store)
2609
2610 #define EXT4_INFO_ATTR(name) EXT4_ATTR(name, 0444, NULL, NULL)
2611 #define EXT4_RO_ATTR(name) EXT4_ATTR(name, 0444, name##_show, NULL)
2612 #define EXT4_RW_ATTR(name) EXT4_ATTR(name, 0644, name##_show, name##_store)
2613
2614 #define EXT4_RO_ATTR_ES_UI(name, elname) \
2615 EXT4_ATTR_OFFSET_ES(name, 0444, es_ui_show, NULL, elname)
2616 #define EXT4_RW_ATTR_SBI_UI(name, elname) \
2617 EXT4_ATTR_OFFSET(name, 0644, sbi_ui_show, sbi_ui_store, elname)
2618
2619 #define ATTR_LIST(name) &ext4_attr_##name.attr
2620 #define EXT4_DEPRECATED_ATTR(_name, _val) \
2621 static struct ext4_attr ext4_attr_##_name = { \
2622 .attr = {.name = __stringify(_name), .mode = 0444 }, \
2623 .show = sbi_deprecated_show, \
2624 .u = { \
2625 .deprecated_val = _val, \
2626 }, \
2627 }
2628
2629 EXT4_RO_ATTR(delayed_allocation_blocks);
2630 EXT4_RO_ATTR(session_write_kbytes);
2631 EXT4_RO_ATTR(lifetime_write_kbytes);
2632 EXT4_RW_ATTR(reserved_clusters);
2633 EXT4_ATTR_OFFSET(inode_readahead_blks, 0644, sbi_ui_show,
2634 inode_readahead_blks_store, s_inode_readahead_blks);
2635 EXT4_RW_ATTR_SBI_UI(inode_goal, s_inode_goal);
2636 EXT4_RW_ATTR_SBI_UI(mb_stats, s_mb_stats);
2637 EXT4_RW_ATTR_SBI_UI(mb_max_to_scan, s_mb_max_to_scan);
2638 EXT4_RW_ATTR_SBI_UI(mb_min_to_scan, s_mb_min_to_scan);
2639 EXT4_RW_ATTR_SBI_UI(mb_order2_req, s_mb_order2_reqs);
2640 EXT4_RW_ATTR_SBI_UI(mb_stream_req, s_mb_stream_request);
2641 EXT4_RW_ATTR_SBI_UI(mb_group_prealloc, s_mb_group_prealloc);
2642 EXT4_DEPRECATED_ATTR(max_writeback_mb_bump, 128);
2643 EXT4_RW_ATTR_SBI_UI(extent_max_zeroout_kb, s_extent_max_zeroout_kb);
2644 EXT4_ATTR(trigger_fs_error, 0200, NULL, trigger_test_error);
2645 EXT4_RW_ATTR_SBI_UI(err_ratelimit_interval_ms, s_err_ratelimit_state.interval);
2646 EXT4_RW_ATTR_SBI_UI(err_ratelimit_burst, s_err_ratelimit_state.burst);
2647 EXT4_RW_ATTR_SBI_UI(warning_ratelimit_interval_ms, s_warning_ratelimit_state.interval);
2648 EXT4_RW_ATTR_SBI_UI(warning_ratelimit_burst, s_warning_ratelimit_state.burst);
2649 EXT4_RW_ATTR_SBI_UI(msg_ratelimit_interval_ms, s_msg_ratelimit_state.interval);
2650 EXT4_RW_ATTR_SBI_UI(msg_ratelimit_burst, s_msg_ratelimit_state.burst);
2651 EXT4_RO_ATTR_ES_UI(errors_count, s_error_count);
2652 EXT4_RO_ATTR_ES_UI(first_error_time, s_first_error_time);
2653 EXT4_RO_ATTR_ES_UI(last_error_time, s_last_error_time);
2654
2655 static struct attribute *ext4_attrs[] = {
2656 ATTR_LIST(delayed_allocation_blocks),
2657 ATTR_LIST(session_write_kbytes),
2658 ATTR_LIST(lifetime_write_kbytes),
2659 ATTR_LIST(reserved_clusters),
2660 ATTR_LIST(inode_readahead_blks),
2661 ATTR_LIST(inode_goal),
2662 ATTR_LIST(mb_stats),
2663 ATTR_LIST(mb_max_to_scan),
2664 ATTR_LIST(mb_min_to_scan),
2665 ATTR_LIST(mb_order2_req),
2666 ATTR_LIST(mb_stream_req),
2667 ATTR_LIST(mb_group_prealloc),
2668 ATTR_LIST(max_writeback_mb_bump),
2669 ATTR_LIST(extent_max_zeroout_kb),
2670 ATTR_LIST(trigger_fs_error),
2671 ATTR_LIST(err_ratelimit_interval_ms),
2672 ATTR_LIST(err_ratelimit_burst),
2673 ATTR_LIST(warning_ratelimit_interval_ms),
2674 ATTR_LIST(warning_ratelimit_burst),
2675 ATTR_LIST(msg_ratelimit_interval_ms),
2676 ATTR_LIST(msg_ratelimit_burst),
2677 ATTR_LIST(errors_count),
2678 ATTR_LIST(first_error_time),
2679 ATTR_LIST(last_error_time),
2680 NULL,
2681 };
2682
2683 /* Features this copy of ext4 supports */
2684 EXT4_INFO_ATTR(lazy_itable_init);
2685 EXT4_INFO_ATTR(batched_discard);
2686 EXT4_INFO_ATTR(meta_bg_resize);
2687
2688 static struct attribute *ext4_feat_attrs[] = {
2689 ATTR_LIST(lazy_itable_init),
2690 ATTR_LIST(batched_discard),
2691 ATTR_LIST(meta_bg_resize),
2692 NULL,
2693 };
2694
2695 static ssize_t ext4_attr_show(struct kobject *kobj,
2696 struct attribute *attr, char *buf)
2697 {
2698 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2699 s_kobj);
2700 struct ext4_attr *a = container_of(attr, struct ext4_attr, attr);
2701
2702 return a->show ? a->show(a, sbi, buf) : 0;
2703 }
2704
2705 static ssize_t ext4_attr_store(struct kobject *kobj,
2706 struct attribute *attr,
2707 const char *buf, size_t len)
2708 {
2709 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2710 s_kobj);
2711 struct ext4_attr *a = container_of(attr, struct ext4_attr, attr);
2712
2713 return a->store ? a->store(a, sbi, buf, len) : 0;
2714 }
2715
2716 static void ext4_sb_release(struct kobject *kobj)
2717 {
2718 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2719 s_kobj);
2720 complete(&sbi->s_kobj_unregister);
2721 }
2722
2723 static const struct sysfs_ops ext4_attr_ops = {
2724 .show = ext4_attr_show,
2725 .store = ext4_attr_store,
2726 };
2727
2728 static struct kobj_type ext4_ktype = {
2729 .default_attrs = ext4_attrs,
2730 .sysfs_ops = &ext4_attr_ops,
2731 .release = ext4_sb_release,
2732 };
2733
2734 static void ext4_feat_release(struct kobject *kobj)
2735 {
2736 complete(&ext4_feat->f_kobj_unregister);
2737 }
2738
2739 static ssize_t ext4_feat_show(struct kobject *kobj,
2740 struct attribute *attr, char *buf)
2741 {
2742 return snprintf(buf, PAGE_SIZE, "supported\n");
2743 }
2744
2745 /*
2746 * We can not use ext4_attr_show/store because it relies on the kobject
2747 * being embedded in the ext4_sb_info structure which is definitely not
2748 * true in this case.
2749 */
2750 static const struct sysfs_ops ext4_feat_ops = {
2751 .show = ext4_feat_show,
2752 .store = NULL,
2753 };
2754
2755 static struct kobj_type ext4_feat_ktype = {
2756 .default_attrs = ext4_feat_attrs,
2757 .sysfs_ops = &ext4_feat_ops,
2758 .release = ext4_feat_release,
2759 };
2760
2761 /*
2762 * Check whether this filesystem can be mounted based on
2763 * the features present and the RDONLY/RDWR mount requested.
2764 * Returns 1 if this filesystem can be mounted as requested,
2765 * 0 if it cannot be.
2766 */
2767 static int ext4_feature_set_ok(struct super_block *sb, int readonly)
2768 {
2769 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT4_FEATURE_INCOMPAT_SUPP)) {
2770 ext4_msg(sb, KERN_ERR,
2771 "Couldn't mount because of "
2772 "unsupported optional features (%x)",
2773 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
2774 ~EXT4_FEATURE_INCOMPAT_SUPP));
2775 return 0;
2776 }
2777
2778 if (readonly)
2779 return 1;
2780
2781 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_READONLY)) {
2782 ext4_msg(sb, KERN_INFO, "filesystem is read-only");
2783 sb->s_flags |= MS_RDONLY;
2784 return 1;
2785 }
2786
2787 /* Check that feature set is OK for a read-write mount */
2788 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT4_FEATURE_RO_COMPAT_SUPP)) {
2789 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
2790 "unsupported optional features (%x)",
2791 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
2792 ~EXT4_FEATURE_RO_COMPAT_SUPP));
2793 return 0;
2794 }
2795 /*
2796 * Large file size enabled file system can only be mounted
2797 * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF
2798 */
2799 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
2800 if (sizeof(blkcnt_t) < sizeof(u64)) {
2801 ext4_msg(sb, KERN_ERR, "Filesystem with huge files "
2802 "cannot be mounted RDWR without "
2803 "CONFIG_LBDAF");
2804 return 0;
2805 }
2806 }
2807 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_BIGALLOC) &&
2808 !EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) {
2809 ext4_msg(sb, KERN_ERR,
2810 "Can't support bigalloc feature without "
2811 "extents feature\n");
2812 return 0;
2813 }
2814
2815 #ifndef CONFIG_QUOTA
2816 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) &&
2817 !readonly) {
2818 ext4_msg(sb, KERN_ERR,
2819 "Filesystem with quota feature cannot be mounted RDWR "
2820 "without CONFIG_QUOTA");
2821 return 0;
2822 }
2823 #endif /* CONFIG_QUOTA */
2824 return 1;
2825 }
2826
2827 /*
2828 * This function is called once a day if we have errors logged
2829 * on the file system
2830 */
2831 static void print_daily_error_info(unsigned long arg)
2832 {
2833 struct super_block *sb = (struct super_block *) arg;
2834 struct ext4_sb_info *sbi;
2835 struct ext4_super_block *es;
2836
2837 sbi = EXT4_SB(sb);
2838 es = sbi->s_es;
2839
2840 if (es->s_error_count)
2841 /* fsck newer than v1.41.13 is needed to clean this condition. */
2842 ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u",
2843 le32_to_cpu(es->s_error_count));
2844 if (es->s_first_error_time) {
2845 printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %u: %.*s:%d",
2846 sb->s_id, le32_to_cpu(es->s_first_error_time),
2847 (int) sizeof(es->s_first_error_func),
2848 es->s_first_error_func,
2849 le32_to_cpu(es->s_first_error_line));
2850 if (es->s_first_error_ino)
2851 printk(": inode %u",
2852 le32_to_cpu(es->s_first_error_ino));
2853 if (es->s_first_error_block)
2854 printk(": block %llu", (unsigned long long)
2855 le64_to_cpu(es->s_first_error_block));
2856 printk("\n");
2857 }
2858 if (es->s_last_error_time) {
2859 printk(KERN_NOTICE "EXT4-fs (%s): last error at time %u: %.*s:%d",
2860 sb->s_id, le32_to_cpu(es->s_last_error_time),
2861 (int) sizeof(es->s_last_error_func),
2862 es->s_last_error_func,
2863 le32_to_cpu(es->s_last_error_line));
2864 if (es->s_last_error_ino)
2865 printk(": inode %u",
2866 le32_to_cpu(es->s_last_error_ino));
2867 if (es->s_last_error_block)
2868 printk(": block %llu", (unsigned long long)
2869 le64_to_cpu(es->s_last_error_block));
2870 printk("\n");
2871 }
2872 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */
2873 }
2874
2875 /* Find next suitable group and run ext4_init_inode_table */
2876 static int ext4_run_li_request(struct ext4_li_request *elr)
2877 {
2878 struct ext4_group_desc *gdp = NULL;
2879 ext4_group_t group, ngroups;
2880 struct super_block *sb;
2881 unsigned long timeout = 0;
2882 int ret = 0;
2883
2884 sb = elr->lr_super;
2885 ngroups = EXT4_SB(sb)->s_groups_count;
2886
2887 sb_start_write(sb);
2888 for (group = elr->lr_next_group; group < ngroups; group++) {
2889 gdp = ext4_get_group_desc(sb, group, NULL);
2890 if (!gdp) {
2891 ret = 1;
2892 break;
2893 }
2894
2895 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2896 break;
2897 }
2898
2899 if (group >= ngroups)
2900 ret = 1;
2901
2902 if (!ret) {
2903 timeout = jiffies;
2904 ret = ext4_init_inode_table(sb, group,
2905 elr->lr_timeout ? 0 : 1);
2906 if (elr->lr_timeout == 0) {
2907 timeout = (jiffies - timeout) *
2908 elr->lr_sbi->s_li_wait_mult;
2909 elr->lr_timeout = timeout;
2910 }
2911 elr->lr_next_sched = jiffies + elr->lr_timeout;
2912 elr->lr_next_group = group + 1;
2913 }
2914 sb_end_write(sb);
2915
2916 return ret;
2917 }
2918
2919 /*
2920 * Remove lr_request from the list_request and free the
2921 * request structure. Should be called with li_list_mtx held
2922 */
2923 static void ext4_remove_li_request(struct ext4_li_request *elr)
2924 {
2925 struct ext4_sb_info *sbi;
2926
2927 if (!elr)
2928 return;
2929
2930 sbi = elr->lr_sbi;
2931
2932 list_del(&elr->lr_request);
2933 sbi->s_li_request = NULL;
2934 kfree(elr);
2935 }
2936
2937 static void ext4_unregister_li_request(struct super_block *sb)
2938 {
2939 mutex_lock(&ext4_li_mtx);
2940 if (!ext4_li_info) {
2941 mutex_unlock(&ext4_li_mtx);
2942 return;
2943 }
2944
2945 mutex_lock(&ext4_li_info->li_list_mtx);
2946 ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
2947 mutex_unlock(&ext4_li_info->li_list_mtx);
2948 mutex_unlock(&ext4_li_mtx);
2949 }
2950
2951 static struct task_struct *ext4_lazyinit_task;
2952
2953 /*
2954 * This is the function where ext4lazyinit thread lives. It walks
2955 * through the request list searching for next scheduled filesystem.
2956 * When such a fs is found, run the lazy initialization request
2957 * (ext4_rn_li_request) and keep track of the time spend in this
2958 * function. Based on that time we compute next schedule time of
2959 * the request. When walking through the list is complete, compute
2960 * next waking time and put itself into sleep.
2961 */
2962 static int ext4_lazyinit_thread(void *arg)
2963 {
2964 struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg;
2965 struct list_head *pos, *n;
2966 struct ext4_li_request *elr;
2967 unsigned long next_wakeup, cur;
2968
2969 BUG_ON(NULL == eli);
2970
2971 cont_thread:
2972 while (true) {
2973 next_wakeup = MAX_JIFFY_OFFSET;
2974
2975 mutex_lock(&eli->li_list_mtx);
2976 if (list_empty(&eli->li_request_list)) {
2977 mutex_unlock(&eli->li_list_mtx);
2978 goto exit_thread;
2979 }
2980
2981 list_for_each_safe(pos, n, &eli->li_request_list) {
2982 elr = list_entry(pos, struct ext4_li_request,
2983 lr_request);
2984
2985 if (time_after_eq(jiffies, elr->lr_next_sched)) {
2986 if (ext4_run_li_request(elr) != 0) {
2987 /* error, remove the lazy_init job */
2988 ext4_remove_li_request(elr);
2989 continue;
2990 }
2991 }
2992
2993 if (time_before(elr->lr_next_sched, next_wakeup))
2994 next_wakeup = elr->lr_next_sched;
2995 }
2996 mutex_unlock(&eli->li_list_mtx);
2997
2998 try_to_freeze();
2999
3000 cur = jiffies;
3001 if ((time_after_eq(cur, next_wakeup)) ||
3002 (MAX_JIFFY_OFFSET == next_wakeup)) {
3003 cond_resched();
3004 continue;
3005 }
3006
3007 schedule_timeout_interruptible(next_wakeup - cur);
3008
3009 if (kthread_should_stop()) {
3010 ext4_clear_request_list();
3011 goto exit_thread;
3012 }
3013 }
3014
3015 exit_thread:
3016 /*
3017 * It looks like the request list is empty, but we need
3018 * to check it under the li_list_mtx lock, to prevent any
3019 * additions into it, and of course we should lock ext4_li_mtx
3020 * to atomically free the list and ext4_li_info, because at
3021 * this point another ext4 filesystem could be registering
3022 * new one.
3023 */
3024 mutex_lock(&ext4_li_mtx);
3025 mutex_lock(&eli->li_list_mtx);
3026 if (!list_empty(&eli->li_request_list)) {
3027 mutex_unlock(&eli->li_list_mtx);
3028 mutex_unlock(&ext4_li_mtx);
3029 goto cont_thread;
3030 }
3031 mutex_unlock(&eli->li_list_mtx);
3032 kfree(ext4_li_info);
3033 ext4_li_info = NULL;
3034 mutex_unlock(&ext4_li_mtx);
3035
3036 return 0;
3037 }
3038
3039 static void ext4_clear_request_list(void)
3040 {
3041 struct list_head *pos, *n;
3042 struct ext4_li_request *elr;
3043
3044 mutex_lock(&ext4_li_info->li_list_mtx);
3045 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
3046 elr = list_entry(pos, struct ext4_li_request,
3047 lr_request);
3048 ext4_remove_li_request(elr);
3049 }
3050 mutex_unlock(&ext4_li_info->li_list_mtx);
3051 }
3052
3053 static int ext4_run_lazyinit_thread(void)
3054 {
3055 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
3056 ext4_li_info, "ext4lazyinit");
3057 if (IS_ERR(ext4_lazyinit_task)) {
3058 int err = PTR_ERR(ext4_lazyinit_task);
3059 ext4_clear_request_list();
3060 kfree(ext4_li_info);
3061 ext4_li_info = NULL;
3062 printk(KERN_CRIT "EXT4-fs: error %d creating inode table "
3063 "initialization thread\n",
3064 err);
3065 return err;
3066 }
3067 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
3068 return 0;
3069 }
3070
3071 /*
3072 * Check whether it make sense to run itable init. thread or not.
3073 * If there is at least one uninitialized inode table, return
3074 * corresponding group number, else the loop goes through all
3075 * groups and return total number of groups.
3076 */
3077 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
3078 {
3079 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
3080 struct ext4_group_desc *gdp = NULL;
3081
3082 for (group = 0; group < ngroups; group++) {
3083 gdp = ext4_get_group_desc(sb, group, NULL);
3084 if (!gdp)
3085 continue;
3086
3087 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3088 break;
3089 }
3090
3091 return group;
3092 }
3093
3094 static int ext4_li_info_new(void)
3095 {
3096 struct ext4_lazy_init *eli = NULL;
3097
3098 eli = kzalloc(sizeof(*eli), GFP_KERNEL);
3099 if (!eli)
3100 return -ENOMEM;
3101
3102 INIT_LIST_HEAD(&eli->li_request_list);
3103 mutex_init(&eli->li_list_mtx);
3104
3105 eli->li_state |= EXT4_LAZYINIT_QUIT;
3106
3107 ext4_li_info = eli;
3108
3109 return 0;
3110 }
3111
3112 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
3113 ext4_group_t start)
3114 {
3115 struct ext4_sb_info *sbi = EXT4_SB(sb);
3116 struct ext4_li_request *elr;
3117
3118 elr = kzalloc(sizeof(*elr), GFP_KERNEL);
3119 if (!elr)
3120 return NULL;
3121
3122 elr->lr_super = sb;
3123 elr->lr_sbi = sbi;
3124 elr->lr_next_group = start;
3125
3126 /*
3127 * Randomize first schedule time of the request to
3128 * spread the inode table initialization requests
3129 * better.
3130 */
3131 elr->lr_next_sched = jiffies + (prandom_u32() %
3132 (EXT4_DEF_LI_MAX_START_DELAY * HZ));
3133 return elr;
3134 }
3135
3136 int ext4_register_li_request(struct super_block *sb,
3137 ext4_group_t first_not_zeroed)
3138 {
3139 struct ext4_sb_info *sbi = EXT4_SB(sb);
3140 struct ext4_li_request *elr = NULL;
3141 ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count;
3142 int ret = 0;
3143
3144 mutex_lock(&ext4_li_mtx);
3145 if (sbi->s_li_request != NULL) {
3146 /*
3147 * Reset timeout so it can be computed again, because
3148 * s_li_wait_mult might have changed.
3149 */
3150 sbi->s_li_request->lr_timeout = 0;
3151 goto out;
3152 }
3153
3154 if (first_not_zeroed == ngroups ||
3155 (sb->s_flags & MS_RDONLY) ||
3156 !test_opt(sb, INIT_INODE_TABLE))
3157 goto out;
3158
3159 elr = ext4_li_request_new(sb, first_not_zeroed);
3160 if (!elr) {
3161 ret = -ENOMEM;
3162 goto out;
3163 }
3164
3165 if (NULL == ext4_li_info) {
3166 ret = ext4_li_info_new();
3167 if (ret)
3168 goto out;
3169 }
3170
3171 mutex_lock(&ext4_li_info->li_list_mtx);
3172 list_add(&elr->lr_request, &ext4_li_info->li_request_list);
3173 mutex_unlock(&ext4_li_info->li_list_mtx);
3174
3175 sbi->s_li_request = elr;
3176 /*
3177 * set elr to NULL here since it has been inserted to
3178 * the request_list and the removal and free of it is
3179 * handled by ext4_clear_request_list from now on.
3180 */
3181 elr = NULL;
3182
3183 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
3184 ret = ext4_run_lazyinit_thread();
3185 if (ret)
3186 goto out;
3187 }
3188 out:
3189 mutex_unlock(&ext4_li_mtx);
3190 if (ret)
3191 kfree(elr);
3192 return ret;
3193 }
3194
3195 /*
3196 * We do not need to lock anything since this is called on
3197 * module unload.
3198 */
3199 static void ext4_destroy_lazyinit_thread(void)
3200 {
3201 /*
3202 * If thread exited earlier
3203 * there's nothing to be done.
3204 */
3205 if (!ext4_li_info || !ext4_lazyinit_task)
3206 return;
3207
3208 kthread_stop(ext4_lazyinit_task);
3209 }
3210
3211 static int set_journal_csum_feature_set(struct super_block *sb)
3212 {
3213 int ret = 1;
3214 int compat, incompat;
3215 struct ext4_sb_info *sbi = EXT4_SB(sb);
3216
3217 if (ext4_has_metadata_csum(sb)) {
3218 /* journal checksum v3 */
3219 compat = 0;
3220 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3;
3221 } else {
3222 /* journal checksum v1 */
3223 compat = JBD2_FEATURE_COMPAT_CHECKSUM;
3224 incompat = 0;
3225 }
3226
3227 jbd2_journal_clear_features(sbi->s_journal,
3228 JBD2_FEATURE_COMPAT_CHECKSUM, 0,
3229 JBD2_FEATURE_INCOMPAT_CSUM_V3 |
3230 JBD2_FEATURE_INCOMPAT_CSUM_V2);
3231 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
3232 ret = jbd2_journal_set_features(sbi->s_journal,
3233 compat, 0,
3234 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
3235 incompat);
3236 } else if (test_opt(sb, JOURNAL_CHECKSUM)) {
3237 ret = jbd2_journal_set_features(sbi->s_journal,
3238 compat, 0,
3239 incompat);
3240 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3241 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3242 } else {
3243 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3244 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3245 }
3246
3247 return ret;
3248 }
3249
3250 /*
3251 * Note: calculating the overhead so we can be compatible with
3252 * historical BSD practice is quite difficult in the face of
3253 * clusters/bigalloc. This is because multiple metadata blocks from
3254 * different block group can end up in the same allocation cluster.
3255 * Calculating the exact overhead in the face of clustered allocation
3256 * requires either O(all block bitmaps) in memory or O(number of block
3257 * groups**2) in time. We will still calculate the superblock for
3258 * older file systems --- and if we come across with a bigalloc file
3259 * system with zero in s_overhead_clusters the estimate will be close to
3260 * correct especially for very large cluster sizes --- but for newer
3261 * file systems, it's better to calculate this figure once at mkfs
3262 * time, and store it in the superblock. If the superblock value is
3263 * present (even for non-bigalloc file systems), we will use it.
3264 */
3265 static int count_overhead(struct super_block *sb, ext4_group_t grp,
3266 char *buf)
3267 {
3268 struct ext4_sb_info *sbi = EXT4_SB(sb);
3269 struct ext4_group_desc *gdp;
3270 ext4_fsblk_t first_block, last_block, b;
3271 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3272 int s, j, count = 0;
3273
3274 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_BIGALLOC))
3275 return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) +
3276 sbi->s_itb_per_group + 2);
3277
3278 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) +
3279 (grp * EXT4_BLOCKS_PER_GROUP(sb));
3280 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1;
3281 for (i = 0; i < ngroups; i++) {
3282 gdp = ext4_get_group_desc(sb, i, NULL);
3283 b = ext4_block_bitmap(sb, gdp);
3284 if (b >= first_block && b <= last_block) {
3285 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3286 count++;
3287 }
3288 b = ext4_inode_bitmap(sb, gdp);
3289 if (b >= first_block && b <= last_block) {
3290 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3291 count++;
3292 }
3293 b = ext4_inode_table(sb, gdp);
3294 if (b >= first_block && b + sbi->s_itb_per_group <= last_block)
3295 for (j = 0; j < sbi->s_itb_per_group; j++, b++) {
3296 int c = EXT4_B2C(sbi, b - first_block);
3297 ext4_set_bit(c, buf);
3298 count++;
3299 }
3300 if (i != grp)
3301 continue;
3302 s = 0;
3303 if (ext4_bg_has_super(sb, grp)) {
3304 ext4_set_bit(s++, buf);
3305 count++;
3306 }
3307 for (j = ext4_bg_num_gdb(sb, grp); j > 0; j--) {
3308 ext4_set_bit(EXT4_B2C(sbi, s++), buf);
3309 count++;
3310 }
3311 }
3312 if (!count)
3313 return 0;
3314 return EXT4_CLUSTERS_PER_GROUP(sb) -
3315 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8);
3316 }
3317
3318 /*
3319 * Compute the overhead and stash it in sbi->s_overhead
3320 */
3321 int ext4_calculate_overhead(struct super_block *sb)
3322 {
3323 struct ext4_sb_info *sbi = EXT4_SB(sb);
3324 struct ext4_super_block *es = sbi->s_es;
3325 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3326 ext4_fsblk_t overhead = 0;
3327 char *buf = (char *) get_zeroed_page(GFP_NOFS);
3328
3329 if (!buf)
3330 return -ENOMEM;
3331
3332 /*
3333 * Compute the overhead (FS structures). This is constant
3334 * for a given filesystem unless the number of block groups
3335 * changes so we cache the previous value until it does.
3336 */
3337
3338 /*
3339 * All of the blocks before first_data_block are overhead
3340 */
3341 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
3342
3343 /*
3344 * Add the overhead found in each block group
3345 */
3346 for (i = 0; i < ngroups; i++) {
3347 int blks;
3348
3349 blks = count_overhead(sb, i, buf);
3350 overhead += blks;
3351 if (blks)
3352 memset(buf, 0, PAGE_SIZE);
3353 cond_resched();
3354 }
3355 /* Add the internal journal blocks as well */
3356 if (sbi->s_journal && !sbi->journal_bdev)
3357 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_maxlen);
3358
3359 sbi->s_overhead = overhead;
3360 smp_wmb();
3361 free_page((unsigned long) buf);
3362 return 0;
3363 }
3364
3365
3366 static ext4_fsblk_t ext4_calculate_resv_clusters(struct super_block *sb)
3367 {
3368 ext4_fsblk_t resv_clusters;
3369
3370 /*
3371 * There's no need to reserve anything when we aren't using extents.
3372 * The space estimates are exact, there are no unwritten extents,
3373 * hole punching doesn't need new metadata... This is needed especially
3374 * to keep ext2/3 backward compatibility.
3375 */
3376 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS))
3377 return 0;
3378 /*
3379 * By default we reserve 2% or 4096 clusters, whichever is smaller.
3380 * This should cover the situations where we can not afford to run
3381 * out of space like for example punch hole, or converting
3382 * unwritten extents in delalloc path. In most cases such
3383 * allocation would require 1, or 2 blocks, higher numbers are
3384 * very rare.
3385 */
3386 resv_clusters = ext4_blocks_count(EXT4_SB(sb)->s_es) >>
3387 EXT4_SB(sb)->s_cluster_bits;
3388
3389 do_div(resv_clusters, 50);
3390 resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096);
3391
3392 return resv_clusters;
3393 }
3394
3395
3396 static int ext4_reserve_clusters(struct ext4_sb_info *sbi, ext4_fsblk_t count)
3397 {
3398 ext4_fsblk_t clusters = ext4_blocks_count(sbi->s_es) >>
3399 sbi->s_cluster_bits;
3400
3401 if (count >= clusters)
3402 return -EINVAL;
3403
3404 atomic64_set(&sbi->s_resv_clusters, count);
3405 return 0;
3406 }
3407
3408 static int ext4_fill_super(struct super_block *sb, void *data, int silent)
3409 {
3410 char *orig_data = kstrdup(data, GFP_KERNEL);
3411 struct buffer_head *bh;
3412 struct ext4_super_block *es = NULL;
3413 struct ext4_sb_info *sbi;
3414 ext4_fsblk_t block;
3415 ext4_fsblk_t sb_block = get_sb_block(&data);
3416 ext4_fsblk_t logical_sb_block;
3417 unsigned long offset = 0;
3418 unsigned long journal_devnum = 0;
3419 unsigned long def_mount_opts;
3420 struct inode *root;
3421 char *cp;
3422 const char *descr;
3423 int ret = -ENOMEM;
3424 int blocksize, clustersize;
3425 unsigned int db_count;
3426 unsigned int i;
3427 int needs_recovery, has_huge_files, has_bigalloc;
3428 __u64 blocks_count;
3429 int err = 0;
3430 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
3431 ext4_group_t first_not_zeroed;
3432
3433 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
3434 if (!sbi)
3435 goto out_free_orig;
3436
3437 sbi->s_blockgroup_lock =
3438 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
3439 if (!sbi->s_blockgroup_lock) {
3440 kfree(sbi);
3441 goto out_free_orig;
3442 }
3443 sb->s_fs_info = sbi;
3444 sbi->s_sb = sb;
3445 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
3446 sbi->s_sb_block = sb_block;
3447 if (sb->s_bdev->bd_part)
3448 sbi->s_sectors_written_start =
3449 part_stat_read(sb->s_bdev->bd_part, sectors[1]);
3450
3451 /* Cleanup superblock name */
3452 for (cp = sb->s_id; (cp = strchr(cp, '/'));)
3453 *cp = '!';
3454
3455 /* -EINVAL is default */
3456 ret = -EINVAL;
3457 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
3458 if (!blocksize) {
3459 ext4_msg(sb, KERN_ERR, "unable to set blocksize");
3460 goto out_fail;
3461 }
3462
3463 /*
3464 * The ext4 superblock will not be buffer aligned for other than 1kB
3465 * block sizes. We need to calculate the offset from buffer start.
3466 */
3467 if (blocksize != EXT4_MIN_BLOCK_SIZE) {
3468 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3469 offset = do_div(logical_sb_block, blocksize);
3470 } else {
3471 logical_sb_block = sb_block;
3472 }
3473
3474 if (!(bh = sb_bread_unmovable(sb, logical_sb_block))) {
3475 ext4_msg(sb, KERN_ERR, "unable to read superblock");
3476 goto out_fail;
3477 }
3478 /*
3479 * Note: s_es must be initialized as soon as possible because
3480 * some ext4 macro-instructions depend on its value
3481 */
3482 es = (struct ext4_super_block *) (bh->b_data + offset);
3483 sbi->s_es = es;
3484 sb->s_magic = le16_to_cpu(es->s_magic);
3485 if (sb->s_magic != EXT4_SUPER_MAGIC)
3486 goto cantfind_ext4;
3487 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
3488
3489 /* Warn if metadata_csum and gdt_csum are both set. */
3490 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3491 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
3492 EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
3493 ext4_warning(sb, "metadata_csum and uninit_bg are "
3494 "redundant flags; please run fsck.");
3495
3496 /* Check for a known checksum algorithm */
3497 if (!ext4_verify_csum_type(sb, es)) {
3498 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3499 "unknown checksum algorithm.");
3500 silent = 1;
3501 goto cantfind_ext4;
3502 }
3503
3504 /* Load the checksum driver */
3505 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3506 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
3507 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
3508 if (IS_ERR(sbi->s_chksum_driver)) {
3509 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver.");
3510 ret = PTR_ERR(sbi->s_chksum_driver);
3511 sbi->s_chksum_driver = NULL;
3512 goto failed_mount;
3513 }
3514 }
3515
3516 /* Check superblock checksum */
3517 if (!ext4_superblock_csum_verify(sb, es)) {
3518 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3519 "invalid superblock checksum. Run e2fsck?");
3520 silent = 1;
3521 goto cantfind_ext4;
3522 }
3523
3524 /* Precompute checksum seed for all metadata */
3525 if (ext4_has_metadata_csum(sb))
3526 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid,
3527 sizeof(es->s_uuid));
3528
3529 /* Set defaults before we parse the mount options */
3530 def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
3531 set_opt(sb, INIT_INODE_TABLE);
3532 if (def_mount_opts & EXT4_DEFM_DEBUG)
3533 set_opt(sb, DEBUG);
3534 if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
3535 set_opt(sb, GRPID);
3536 if (def_mount_opts & EXT4_DEFM_UID16)
3537 set_opt(sb, NO_UID32);
3538 /* xattr user namespace & acls are now defaulted on */
3539 set_opt(sb, XATTR_USER);
3540 #ifdef CONFIG_EXT4_FS_POSIX_ACL
3541 set_opt(sb, POSIX_ACL);
3542 #endif
3543 /* don't forget to enable journal_csum when metadata_csum is enabled. */
3544 if (ext4_has_metadata_csum(sb))
3545 set_opt(sb, JOURNAL_CHECKSUM);
3546
3547 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
3548 set_opt(sb, JOURNAL_DATA);
3549 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
3550 set_opt(sb, ORDERED_DATA);
3551 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
3552 set_opt(sb, WRITEBACK_DATA);
3553
3554 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC)
3555 set_opt(sb, ERRORS_PANIC);
3556 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE)
3557 set_opt(sb, ERRORS_CONT);
3558 else
3559 set_opt(sb, ERRORS_RO);
3560 /* block_validity enabled by default; disable with noblock_validity */
3561 set_opt(sb, BLOCK_VALIDITY);
3562 if (def_mount_opts & EXT4_DEFM_DISCARD)
3563 set_opt(sb, DISCARD);
3564
3565 sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid));
3566 sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid));
3567 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
3568 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
3569 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
3570
3571 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
3572 set_opt(sb, BARRIER);
3573
3574 /*
3575 * enable delayed allocation by default
3576 * Use -o nodelalloc to turn it off
3577 */
3578 if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) &&
3579 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
3580 set_opt(sb, DELALLOC);
3581
3582 /*
3583 * set default s_li_wait_mult for lazyinit, for the case there is
3584 * no mount option specified.
3585 */
3586 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
3587
3588 if (!parse_options((char *) sbi->s_es->s_mount_opts, sb,
3589 &journal_devnum, &journal_ioprio, 0)) {
3590 ext4_msg(sb, KERN_WARNING,
3591 "failed to parse options in superblock: %s",
3592 sbi->s_es->s_mount_opts);
3593 }
3594 sbi->s_def_mount_opt = sbi->s_mount_opt;
3595 if (!parse_options((char *) data, sb, &journal_devnum,
3596 &journal_ioprio, 0))
3597 goto failed_mount;
3598
3599 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
3600 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting "
3601 "with data=journal disables delayed "
3602 "allocation and O_DIRECT support!\n");
3603 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
3604 ext4_msg(sb, KERN_ERR, "can't mount with "
3605 "both data=journal and delalloc");
3606 goto failed_mount;
3607 }
3608 if (test_opt(sb, DIOREAD_NOLOCK)) {
3609 ext4_msg(sb, KERN_ERR, "can't mount with "
3610 "both data=journal and dioread_nolock");
3611 goto failed_mount;
3612 }
3613 if (test_opt(sb, DAX)) {
3614 ext4_msg(sb, KERN_ERR, "can't mount with "
3615 "both data=journal and dax");
3616 goto failed_mount;
3617 }
3618 if (test_opt(sb, DELALLOC))
3619 clear_opt(sb, DELALLOC);
3620 }
3621
3622 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
3623 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
3624
3625 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
3626 (EXT4_HAS_COMPAT_FEATURE(sb, ~0U) ||
3627 EXT4_HAS_RO_COMPAT_FEATURE(sb, ~0U) ||
3628 EXT4_HAS_INCOMPAT_FEATURE(sb, ~0U)))
3629 ext4_msg(sb, KERN_WARNING,
3630 "feature flags set on rev 0 fs, "
3631 "running e2fsck is recommended");
3632
3633 if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) {
3634 set_opt2(sb, HURD_COMPAT);
3635 if (EXT4_HAS_INCOMPAT_FEATURE(sb,
3636 EXT4_FEATURE_INCOMPAT_64BIT)) {
3637 ext4_msg(sb, KERN_ERR,
3638 "The Hurd can't support 64-bit file systems");
3639 goto failed_mount;
3640 }
3641 }
3642
3643 if (IS_EXT2_SB(sb)) {
3644 if (ext2_feature_set_ok(sb))
3645 ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
3646 "using the ext4 subsystem");
3647 else {
3648 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
3649 "to feature incompatibilities");
3650 goto failed_mount;
3651 }
3652 }
3653
3654 if (IS_EXT3_SB(sb)) {
3655 if (ext3_feature_set_ok(sb))
3656 ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
3657 "using the ext4 subsystem");
3658 else {
3659 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
3660 "to feature incompatibilities");
3661 goto failed_mount;
3662 }
3663 }
3664
3665 /*
3666 * Check feature flags regardless of the revision level, since we
3667 * previously didn't change the revision level when setting the flags,
3668 * so there is a chance incompat flags are set on a rev 0 filesystem.
3669 */
3670 if (!ext4_feature_set_ok(sb, (sb->s_flags & MS_RDONLY)))
3671 goto failed_mount;
3672
3673 blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
3674 if (blocksize < EXT4_MIN_BLOCK_SIZE ||
3675 blocksize > EXT4_MAX_BLOCK_SIZE) {
3676 ext4_msg(sb, KERN_ERR,
3677 "Unsupported filesystem blocksize %d", blocksize);
3678 goto failed_mount;
3679 }
3680
3681 if (sbi->s_mount_opt & EXT4_MOUNT_DAX) {
3682 if (blocksize != PAGE_SIZE) {
3683 ext4_msg(sb, KERN_ERR,
3684 "error: unsupported blocksize for dax");
3685 goto failed_mount;
3686 }
3687 if (!sb->s_bdev->bd_disk->fops->direct_access) {
3688 ext4_msg(sb, KERN_ERR,
3689 "error: device does not support dax");
3690 goto failed_mount;
3691 }
3692 }
3693
3694 if (sb->s_blocksize != blocksize) {
3695 /* Validate the filesystem blocksize */
3696 if (!sb_set_blocksize(sb, blocksize)) {
3697 ext4_msg(sb, KERN_ERR, "bad block size %d",
3698 blocksize);
3699 goto failed_mount;
3700 }
3701
3702 brelse(bh);
3703 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3704 offset = do_div(logical_sb_block, blocksize);
3705 bh = sb_bread_unmovable(sb, logical_sb_block);
3706 if (!bh) {
3707 ext4_msg(sb, KERN_ERR,
3708 "Can't read superblock on 2nd try");
3709 goto failed_mount;
3710 }
3711 es = (struct ext4_super_block *)(bh->b_data + offset);
3712 sbi->s_es = es;
3713 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
3714 ext4_msg(sb, KERN_ERR,
3715 "Magic mismatch, very weird!");
3716 goto failed_mount;
3717 }
3718 }
3719
3720 has_huge_files = EXT4_HAS_RO_COMPAT_FEATURE(sb,
3721 EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
3722 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
3723 has_huge_files);
3724 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
3725
3726 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
3727 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
3728 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
3729 } else {
3730 sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
3731 sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
3732 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
3733 (!is_power_of_2(sbi->s_inode_size)) ||
3734 (sbi->s_inode_size > blocksize)) {
3735 ext4_msg(sb, KERN_ERR,
3736 "unsupported inode size: %d",
3737 sbi->s_inode_size);
3738 goto failed_mount;
3739 }
3740 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE)
3741 sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2);
3742 }
3743
3744 sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
3745 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT)) {
3746 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
3747 sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
3748 !is_power_of_2(sbi->s_desc_size)) {
3749 ext4_msg(sb, KERN_ERR,
3750 "unsupported descriptor size %lu",
3751 sbi->s_desc_size);
3752 goto failed_mount;
3753 }
3754 } else
3755 sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
3756
3757 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
3758 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
3759 if (EXT4_INODE_SIZE(sb) == 0 || EXT4_INODES_PER_GROUP(sb) == 0)
3760 goto cantfind_ext4;
3761
3762 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb);
3763 if (sbi->s_inodes_per_block == 0)
3764 goto cantfind_ext4;
3765 sbi->s_itb_per_group = sbi->s_inodes_per_group /
3766 sbi->s_inodes_per_block;
3767 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb);
3768 sbi->s_sbh = bh;
3769 sbi->s_mount_state = le16_to_cpu(es->s_state);
3770 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
3771 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
3772
3773 for (i = 0; i < 4; i++)
3774 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
3775 sbi->s_def_hash_version = es->s_def_hash_version;
3776 if (EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_DIR_INDEX)) {
3777 i = le32_to_cpu(es->s_flags);
3778 if (i & EXT2_FLAGS_UNSIGNED_HASH)
3779 sbi->s_hash_unsigned = 3;
3780 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
3781 #ifdef __CHAR_UNSIGNED__
3782 if (!(sb->s_flags & MS_RDONLY))
3783 es->s_flags |=
3784 cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
3785 sbi->s_hash_unsigned = 3;
3786 #else
3787 if (!(sb->s_flags & MS_RDONLY))
3788 es->s_flags |=
3789 cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
3790 #endif
3791 }
3792 }
3793
3794 /* Handle clustersize */
3795 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size);
3796 has_bigalloc = EXT4_HAS_RO_COMPAT_FEATURE(sb,
3797 EXT4_FEATURE_RO_COMPAT_BIGALLOC);
3798 if (has_bigalloc) {
3799 if (clustersize < blocksize) {
3800 ext4_msg(sb, KERN_ERR,
3801 "cluster size (%d) smaller than "
3802 "block size (%d)", clustersize, blocksize);
3803 goto failed_mount;
3804 }
3805 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) -
3806 le32_to_cpu(es->s_log_block_size);
3807 sbi->s_clusters_per_group =
3808 le32_to_cpu(es->s_clusters_per_group);
3809 if (sbi->s_clusters_per_group > blocksize * 8) {
3810 ext4_msg(sb, KERN_ERR,
3811 "#clusters per group too big: %lu",
3812 sbi->s_clusters_per_group);
3813 goto failed_mount;
3814 }
3815 if (sbi->s_blocks_per_group !=
3816 (sbi->s_clusters_per_group * (clustersize / blocksize))) {
3817 ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and "
3818 "clusters per group (%lu) inconsistent",
3819 sbi->s_blocks_per_group,
3820 sbi->s_clusters_per_group);
3821 goto failed_mount;
3822 }
3823 } else {
3824 if (clustersize != blocksize) {
3825 ext4_warning(sb, "fragment/cluster size (%d) != "
3826 "block size (%d)", clustersize,
3827 blocksize);
3828 clustersize = blocksize;
3829 }
3830 if (sbi->s_blocks_per_group > blocksize * 8) {
3831 ext4_msg(sb, KERN_ERR,
3832 "#blocks per group too big: %lu",
3833 sbi->s_blocks_per_group);
3834 goto failed_mount;
3835 }
3836 sbi->s_clusters_per_group = sbi->s_blocks_per_group;
3837 sbi->s_cluster_bits = 0;
3838 }
3839 sbi->s_cluster_ratio = clustersize / blocksize;
3840
3841 if (sbi->s_inodes_per_group > blocksize * 8) {
3842 ext4_msg(sb, KERN_ERR,
3843 "#inodes per group too big: %lu",
3844 sbi->s_inodes_per_group);
3845 goto failed_mount;
3846 }
3847
3848 /* Do we have standard group size of clustersize * 8 blocks ? */
3849 if (sbi->s_blocks_per_group == clustersize << 3)
3850 set_opt2(sb, STD_GROUP_SIZE);
3851
3852 /*
3853 * Test whether we have more sectors than will fit in sector_t,
3854 * and whether the max offset is addressable by the page cache.
3855 */
3856 err = generic_check_addressable(sb->s_blocksize_bits,
3857 ext4_blocks_count(es));
3858 if (err) {
3859 ext4_msg(sb, KERN_ERR, "filesystem"
3860 " too large to mount safely on this system");
3861 if (sizeof(sector_t) < 8)
3862 ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled");
3863 goto failed_mount;
3864 }
3865
3866 if (EXT4_BLOCKS_PER_GROUP(sb) == 0)
3867 goto cantfind_ext4;
3868
3869 /* check blocks count against device size */
3870 blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
3871 if (blocks_count && ext4_blocks_count(es) > blocks_count) {
3872 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
3873 "exceeds size of device (%llu blocks)",
3874 ext4_blocks_count(es), blocks_count);
3875 goto failed_mount;
3876 }
3877
3878 /*
3879 * It makes no sense for the first data block to be beyond the end
3880 * of the filesystem.
3881 */
3882 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
3883 ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
3884 "block %u is beyond end of filesystem (%llu)",
3885 le32_to_cpu(es->s_first_data_block),
3886 ext4_blocks_count(es));
3887 goto failed_mount;
3888 }
3889 blocks_count = (ext4_blocks_count(es) -
3890 le32_to_cpu(es->s_first_data_block) +
3891 EXT4_BLOCKS_PER_GROUP(sb) - 1);
3892 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
3893 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
3894 ext4_msg(sb, KERN_WARNING, "groups count too large: %u "
3895 "(block count %llu, first data block %u, "
3896 "blocks per group %lu)", sbi->s_groups_count,
3897 ext4_blocks_count(es),
3898 le32_to_cpu(es->s_first_data_block),
3899 EXT4_BLOCKS_PER_GROUP(sb));
3900 goto failed_mount;
3901 }
3902 sbi->s_groups_count = blocks_count;
3903 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
3904 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
3905 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
3906 EXT4_DESC_PER_BLOCK(sb);
3907 sbi->s_group_desc = ext4_kvmalloc(db_count *
3908 sizeof(struct buffer_head *),
3909 GFP_KERNEL);
3910 if (sbi->s_group_desc == NULL) {
3911 ext4_msg(sb, KERN_ERR, "not enough memory");
3912 ret = -ENOMEM;
3913 goto failed_mount;
3914 }
3915
3916 if (ext4_proc_root)
3917 sbi->s_proc = proc_mkdir(sb->s_id, ext4_proc_root);
3918
3919 if (sbi->s_proc)
3920 proc_create_data("options", S_IRUGO, sbi->s_proc,
3921 &ext4_seq_options_fops, sb);
3922
3923 bgl_lock_init(sbi->s_blockgroup_lock);
3924
3925 for (i = 0; i < db_count; i++) {
3926 block = descriptor_loc(sb, logical_sb_block, i);
3927 sbi->s_group_desc[i] = sb_bread_unmovable(sb, block);
3928 if (!sbi->s_group_desc[i]) {
3929 ext4_msg(sb, KERN_ERR,
3930 "can't read group descriptor %d", i);
3931 db_count = i;
3932 goto failed_mount2;
3933 }
3934 }
3935 if (!ext4_check_descriptors(sb, &first_not_zeroed)) {
3936 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
3937 goto failed_mount2;
3938 }
3939
3940 sbi->s_gdb_count = db_count;
3941 get_random_bytes(&sbi->s_next_generation, sizeof(u32));
3942 spin_lock_init(&sbi->s_next_gen_lock);
3943
3944 setup_timer(&sbi->s_err_report, print_daily_error_info,
3945 (unsigned long) sb);
3946
3947 /* Register extent status tree shrinker */
3948 if (ext4_es_register_shrinker(sbi))
3949 goto failed_mount3;
3950
3951 sbi->s_stripe = ext4_get_stripe_size(sbi);
3952 sbi->s_extent_max_zeroout_kb = 32;
3953
3954 /*
3955 * set up enough so that it can read an inode
3956 */
3957 sb->s_op = &ext4_sops;
3958 sb->s_export_op = &ext4_export_ops;
3959 sb->s_xattr = ext4_xattr_handlers;
3960 #ifdef CONFIG_QUOTA
3961 sb->dq_op = &ext4_quota_operations;
3962 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA))
3963 sb->s_qcop = &dquot_quotactl_sysfile_ops;
3964 else
3965 sb->s_qcop = &ext4_qctl_operations;
3966 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP;
3967 #endif
3968 memcpy(sb->s_uuid, es->s_uuid, sizeof(es->s_uuid));
3969
3970 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
3971 mutex_init(&sbi->s_orphan_lock);
3972
3973 sb->s_root = NULL;
3974
3975 needs_recovery = (es->s_last_orphan != 0 ||
3976 EXT4_HAS_INCOMPAT_FEATURE(sb,
3977 EXT4_FEATURE_INCOMPAT_RECOVER));
3978
3979 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_MMP) &&
3980 !(sb->s_flags & MS_RDONLY))
3981 if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block)))
3982 goto failed_mount3a;
3983
3984 /*
3985 * The first inode we look at is the journal inode. Don't try
3986 * root first: it may be modified in the journal!
3987 */
3988 if (!test_opt(sb, NOLOAD) &&
3989 EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) {
3990 if (ext4_load_journal(sb, es, journal_devnum))
3991 goto failed_mount3a;
3992 } else if (test_opt(sb, NOLOAD) && !(sb->s_flags & MS_RDONLY) &&
3993 EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) {
3994 ext4_msg(sb, KERN_ERR, "required journal recovery "
3995 "suppressed and not mounted read-only");
3996 goto failed_mount_wq;
3997 } else {
3998 clear_opt(sb, DATA_FLAGS);
3999 sbi->s_journal = NULL;
4000 needs_recovery = 0;
4001 goto no_journal;
4002 }
4003
4004 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT) &&
4005 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
4006 JBD2_FEATURE_INCOMPAT_64BIT)) {
4007 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
4008 goto failed_mount_wq;
4009 }
4010
4011 if (!set_journal_csum_feature_set(sb)) {
4012 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum "
4013 "feature set");
4014 goto failed_mount_wq;
4015 }
4016
4017 /* We have now updated the journal if required, so we can
4018 * validate the data journaling mode. */
4019 switch (test_opt(sb, DATA_FLAGS)) {
4020 case 0:
4021 /* No mode set, assume a default based on the journal
4022 * capabilities: ORDERED_DATA if the journal can
4023 * cope, else JOURNAL_DATA
4024 */
4025 if (jbd2_journal_check_available_features
4026 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE))
4027 set_opt(sb, ORDERED_DATA);
4028 else
4029 set_opt(sb, JOURNAL_DATA);
4030 break;
4031
4032 case EXT4_MOUNT_ORDERED_DATA:
4033 case EXT4_MOUNT_WRITEBACK_DATA:
4034 if (!jbd2_journal_check_available_features
4035 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4036 ext4_msg(sb, KERN_ERR, "Journal does not support "
4037 "requested data journaling mode");
4038 goto failed_mount_wq;
4039 }
4040 default:
4041 break;
4042 }
4043 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
4044
4045 sbi->s_journal->j_commit_callback = ext4_journal_commit_callback;
4046
4047 no_journal:
4048 if (ext4_mballoc_ready) {
4049 sbi->s_mb_cache = ext4_xattr_create_cache(sb->s_id);
4050 if (!sbi->s_mb_cache) {
4051 ext4_msg(sb, KERN_ERR, "Failed to create an mb_cache");
4052 goto failed_mount_wq;
4053 }
4054 }
4055
4056 /*
4057 * Get the # of file system overhead blocks from the
4058 * superblock if present.
4059 */
4060 if (es->s_overhead_clusters)
4061 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters);
4062 else {
4063 err = ext4_calculate_overhead(sb);
4064 if (err)
4065 goto failed_mount_wq;
4066 }
4067
4068 /*
4069 * The maximum number of concurrent works can be high and
4070 * concurrency isn't really necessary. Limit it to 1.
4071 */
4072 EXT4_SB(sb)->rsv_conversion_wq =
4073 alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
4074 if (!EXT4_SB(sb)->rsv_conversion_wq) {
4075 printk(KERN_ERR "EXT4-fs: failed to create workqueue\n");
4076 ret = -ENOMEM;
4077 goto failed_mount4;
4078 }
4079
4080 /*
4081 * The jbd2_journal_load will have done any necessary log recovery,
4082 * so we can safely mount the rest of the filesystem now.
4083 */
4084
4085 root = ext4_iget(sb, EXT4_ROOT_INO);
4086 if (IS_ERR(root)) {
4087 ext4_msg(sb, KERN_ERR, "get root inode failed");
4088 ret = PTR_ERR(root);
4089 root = NULL;
4090 goto failed_mount4;
4091 }
4092 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
4093 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
4094 iput(root);
4095 goto failed_mount4;
4096 }
4097 sb->s_root = d_make_root(root);
4098 if (!sb->s_root) {
4099 ext4_msg(sb, KERN_ERR, "get root dentry failed");
4100 ret = -ENOMEM;
4101 goto failed_mount4;
4102 }
4103
4104 if (ext4_setup_super(sb, es, sb->s_flags & MS_RDONLY))
4105 sb->s_flags |= MS_RDONLY;
4106
4107 /* determine the minimum size of new large inodes, if present */
4108 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) {
4109 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
4110 EXT4_GOOD_OLD_INODE_SIZE;
4111 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4112 EXT4_FEATURE_RO_COMPAT_EXTRA_ISIZE)) {
4113 if (sbi->s_want_extra_isize <
4114 le16_to_cpu(es->s_want_extra_isize))
4115 sbi->s_want_extra_isize =
4116 le16_to_cpu(es->s_want_extra_isize);
4117 if (sbi->s_want_extra_isize <
4118 le16_to_cpu(es->s_min_extra_isize))
4119 sbi->s_want_extra_isize =
4120 le16_to_cpu(es->s_min_extra_isize);
4121 }
4122 }
4123 /* Check if enough inode space is available */
4124 if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize >
4125 sbi->s_inode_size) {
4126 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
4127 EXT4_GOOD_OLD_INODE_SIZE;
4128 ext4_msg(sb, KERN_INFO, "required extra inode space not"
4129 "available");
4130 }
4131
4132 err = ext4_reserve_clusters(sbi, ext4_calculate_resv_clusters(sb));
4133 if (err) {
4134 ext4_msg(sb, KERN_ERR, "failed to reserve %llu clusters for "
4135 "reserved pool", ext4_calculate_resv_clusters(sb));
4136 goto failed_mount4a;
4137 }
4138
4139 err = ext4_setup_system_zone(sb);
4140 if (err) {
4141 ext4_msg(sb, KERN_ERR, "failed to initialize system "
4142 "zone (%d)", err);
4143 goto failed_mount4a;
4144 }
4145
4146 ext4_ext_init(sb);
4147 err = ext4_mb_init(sb);
4148 if (err) {
4149 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
4150 err);
4151 goto failed_mount5;
4152 }
4153
4154 block = ext4_count_free_clusters(sb);
4155 ext4_free_blocks_count_set(sbi->s_es,
4156 EXT4_C2B(sbi, block));
4157 err = percpu_counter_init(&sbi->s_freeclusters_counter, block,
4158 GFP_KERNEL);
4159 if (!err) {
4160 unsigned long freei = ext4_count_free_inodes(sb);
4161 sbi->s_es->s_free_inodes_count = cpu_to_le32(freei);
4162 err = percpu_counter_init(&sbi->s_freeinodes_counter, freei,
4163 GFP_KERNEL);
4164 }
4165 if (!err)
4166 err = percpu_counter_init(&sbi->s_dirs_counter,
4167 ext4_count_dirs(sb), GFP_KERNEL);
4168 if (!err)
4169 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0,
4170 GFP_KERNEL);
4171 if (err) {
4172 ext4_msg(sb, KERN_ERR, "insufficient memory");
4173 goto failed_mount6;
4174 }
4175
4176 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG))
4177 if (!ext4_fill_flex_info(sb)) {
4178 ext4_msg(sb, KERN_ERR,
4179 "unable to initialize "
4180 "flex_bg meta info!");
4181 goto failed_mount6;
4182 }
4183
4184 err = ext4_register_li_request(sb, first_not_zeroed);
4185 if (err)
4186 goto failed_mount6;
4187
4188 sbi->s_kobj.kset = ext4_kset;
4189 init_completion(&sbi->s_kobj_unregister);
4190 err = kobject_init_and_add(&sbi->s_kobj, &ext4_ktype, NULL,
4191 "%s", sb->s_id);
4192 if (err)
4193 goto failed_mount7;
4194
4195 #ifdef CONFIG_QUOTA
4196 /* Enable quota usage during mount. */
4197 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) &&
4198 !(sb->s_flags & MS_RDONLY)) {
4199 err = ext4_enable_quotas(sb);
4200 if (err)
4201 goto failed_mount8;
4202 }
4203 #endif /* CONFIG_QUOTA */
4204
4205 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
4206 ext4_orphan_cleanup(sb, es);
4207 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
4208 if (needs_recovery) {
4209 ext4_msg(sb, KERN_INFO, "recovery complete");
4210 ext4_mark_recovery_complete(sb, es);
4211 }
4212 if (EXT4_SB(sb)->s_journal) {
4213 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
4214 descr = " journalled data mode";
4215 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
4216 descr = " ordered data mode";
4217 else
4218 descr = " writeback data mode";
4219 } else
4220 descr = "out journal";
4221
4222 if (test_opt(sb, DISCARD)) {
4223 struct request_queue *q = bdev_get_queue(sb->s_bdev);
4224 if (!blk_queue_discard(q))
4225 ext4_msg(sb, KERN_WARNING,
4226 "mounting with \"discard\" option, but "
4227 "the device does not support discard");
4228 }
4229
4230 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. "
4231 "Opts: %s%s%s", descr, sbi->s_es->s_mount_opts,
4232 *sbi->s_es->s_mount_opts ? "; " : "", orig_data);
4233
4234 if (es->s_error_count)
4235 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
4236
4237 /* Enable message ratelimiting. Default is 10 messages per 5 secs. */
4238 ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10);
4239 ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10);
4240 ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10);
4241
4242 kfree(orig_data);
4243 return 0;
4244
4245 cantfind_ext4:
4246 if (!silent)
4247 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
4248 goto failed_mount;
4249
4250 #ifdef CONFIG_QUOTA
4251 failed_mount8:
4252 kobject_del(&sbi->s_kobj);
4253 #endif
4254 failed_mount7:
4255 ext4_unregister_li_request(sb);
4256 failed_mount6:
4257 ext4_mb_release(sb);
4258 if (sbi->s_flex_groups)
4259 kvfree(sbi->s_flex_groups);
4260 percpu_counter_destroy(&sbi->s_freeclusters_counter);
4261 percpu_counter_destroy(&sbi->s_freeinodes_counter);
4262 percpu_counter_destroy(&sbi->s_dirs_counter);
4263 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
4264 failed_mount5:
4265 ext4_ext_release(sb);
4266 ext4_release_system_zone(sb);
4267 failed_mount4a:
4268 dput(sb->s_root);
4269 sb->s_root = NULL;
4270 failed_mount4:
4271 ext4_msg(sb, KERN_ERR, "mount failed");
4272 if (EXT4_SB(sb)->rsv_conversion_wq)
4273 destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq);
4274 failed_mount_wq:
4275 if (sbi->s_journal) {
4276 jbd2_journal_destroy(sbi->s_journal);
4277 sbi->s_journal = NULL;
4278 }
4279 failed_mount3a:
4280 ext4_es_unregister_shrinker(sbi);
4281 failed_mount3:
4282 del_timer_sync(&sbi->s_err_report);
4283 if (sbi->s_mmp_tsk)
4284 kthread_stop(sbi->s_mmp_tsk);
4285 failed_mount2:
4286 for (i = 0; i < db_count; i++)
4287 brelse(sbi->s_group_desc[i]);
4288 kvfree(sbi->s_group_desc);
4289 failed_mount:
4290 if (sbi->s_chksum_driver)
4291 crypto_free_shash(sbi->s_chksum_driver);
4292 if (sbi->s_proc) {
4293 remove_proc_entry("options", sbi->s_proc);
4294 remove_proc_entry(sb->s_id, ext4_proc_root);
4295 }
4296 #ifdef CONFIG_QUOTA
4297 for (i = 0; i < EXT4_MAXQUOTAS; i++)
4298 kfree(sbi->s_qf_names[i]);
4299 #endif
4300 ext4_blkdev_remove(sbi);
4301 brelse(bh);
4302 out_fail:
4303 sb->s_fs_info = NULL;
4304 kfree(sbi->s_blockgroup_lock);
4305 kfree(sbi);
4306 out_free_orig:
4307 kfree(orig_data);
4308 return err ? err : ret;
4309 }
4310
4311 /*
4312 * Setup any per-fs journal parameters now. We'll do this both on
4313 * initial mount, once the journal has been initialised but before we've
4314 * done any recovery; and again on any subsequent remount.
4315 */
4316 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
4317 {
4318 struct ext4_sb_info *sbi = EXT4_SB(sb);
4319
4320 journal->j_commit_interval = sbi->s_commit_interval;
4321 journal->j_min_batch_time = sbi->s_min_batch_time;
4322 journal->j_max_batch_time = sbi->s_max_batch_time;
4323
4324 write_lock(&journal->j_state_lock);
4325 if (test_opt(sb, BARRIER))
4326 journal->j_flags |= JBD2_BARRIER;
4327 else
4328 journal->j_flags &= ~JBD2_BARRIER;
4329 if (test_opt(sb, DATA_ERR_ABORT))
4330 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
4331 else
4332 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
4333 write_unlock(&journal->j_state_lock);
4334 }
4335
4336 static journal_t *ext4_get_journal(struct super_block *sb,
4337 unsigned int journal_inum)
4338 {
4339 struct inode *journal_inode;
4340 journal_t *journal;
4341
4342 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
4343
4344 /* First, test for the existence of a valid inode on disk. Bad
4345 * things happen if we iget() an unused inode, as the subsequent
4346 * iput() will try to delete it. */
4347
4348 journal_inode = ext4_iget(sb, journal_inum);
4349 if (IS_ERR(journal_inode)) {
4350 ext4_msg(sb, KERN_ERR, "no journal found");
4351 return NULL;
4352 }
4353 if (!journal_inode->i_nlink) {
4354 make_bad_inode(journal_inode);
4355 iput(journal_inode);
4356 ext4_msg(sb, KERN_ERR, "journal inode is deleted");
4357 return NULL;
4358 }
4359
4360 jbd_debug(2, "Journal inode found at %p: %lld bytes\n",
4361 journal_inode, journal_inode->i_size);
4362 if (!S_ISREG(journal_inode->i_mode)) {
4363 ext4_msg(sb, KERN_ERR, "invalid journal inode");
4364 iput(journal_inode);
4365 return NULL;
4366 }
4367
4368 journal = jbd2_journal_init_inode(journal_inode);
4369 if (!journal) {
4370 ext4_msg(sb, KERN_ERR, "Could not load journal inode");
4371 iput(journal_inode);
4372 return NULL;
4373 }
4374 journal->j_private = sb;
4375 ext4_init_journal_params(sb, journal);
4376 return journal;
4377 }
4378
4379 static journal_t *ext4_get_dev_journal(struct super_block *sb,
4380 dev_t j_dev)
4381 {
4382 struct buffer_head *bh;
4383 journal_t *journal;
4384 ext4_fsblk_t start;
4385 ext4_fsblk_t len;
4386 int hblock, blocksize;
4387 ext4_fsblk_t sb_block;
4388 unsigned long offset;
4389 struct ext4_super_block *es;
4390 struct block_device *bdev;
4391
4392 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
4393
4394 bdev = ext4_blkdev_get(j_dev, sb);
4395 if (bdev == NULL)
4396 return NULL;
4397
4398 blocksize = sb->s_blocksize;
4399 hblock = bdev_logical_block_size(bdev);
4400 if (blocksize < hblock) {
4401 ext4_msg(sb, KERN_ERR,
4402 "blocksize too small for journal device");
4403 goto out_bdev;
4404 }
4405
4406 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
4407 offset = EXT4_MIN_BLOCK_SIZE % blocksize;
4408 set_blocksize(bdev, blocksize);
4409 if (!(bh = __bread(bdev, sb_block, blocksize))) {
4410 ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
4411 "external journal");
4412 goto out_bdev;
4413 }
4414
4415 es = (struct ext4_super_block *) (bh->b_data + offset);
4416 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
4417 !(le32_to_cpu(es->s_feature_incompat) &
4418 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
4419 ext4_msg(sb, KERN_ERR, "external journal has "
4420 "bad superblock");
4421 brelse(bh);
4422 goto out_bdev;
4423 }
4424
4425 if ((le32_to_cpu(es->s_feature_ro_compat) &
4426 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
4427 es->s_checksum != ext4_superblock_csum(sb, es)) {
4428 ext4_msg(sb, KERN_ERR, "external journal has "
4429 "corrupt superblock");
4430 brelse(bh);
4431 goto out_bdev;
4432 }
4433
4434 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
4435 ext4_msg(sb, KERN_ERR, "journal UUID does not match");
4436 brelse(bh);
4437 goto out_bdev;
4438 }
4439
4440 len = ext4_blocks_count(es);
4441 start = sb_block + 1;
4442 brelse(bh); /* we're done with the superblock */
4443
4444 journal = jbd2_journal_init_dev(bdev, sb->s_bdev,
4445 start, len, blocksize);
4446 if (!journal) {
4447 ext4_msg(sb, KERN_ERR, "failed to create device journal");
4448 goto out_bdev;
4449 }
4450 journal->j_private = sb;
4451 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &journal->j_sb_buffer);
4452 wait_on_buffer(journal->j_sb_buffer);
4453 if (!buffer_uptodate(journal->j_sb_buffer)) {
4454 ext4_msg(sb, KERN_ERR, "I/O error on journal device");
4455 goto out_journal;
4456 }
4457 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
4458 ext4_msg(sb, KERN_ERR, "External journal has more than one "
4459 "user (unsupported) - %d",
4460 be32_to_cpu(journal->j_superblock->s_nr_users));
4461 goto out_journal;
4462 }
4463 EXT4_SB(sb)->journal_bdev = bdev;
4464 ext4_init_journal_params(sb, journal);
4465 return journal;
4466
4467 out_journal:
4468 jbd2_journal_destroy(journal);
4469 out_bdev:
4470 ext4_blkdev_put(bdev);
4471 return NULL;
4472 }
4473
4474 static int ext4_load_journal(struct super_block *sb,
4475 struct ext4_super_block *es,
4476 unsigned long journal_devnum)
4477 {
4478 journal_t *journal;
4479 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
4480 dev_t journal_dev;
4481 int err = 0;
4482 int really_read_only;
4483
4484 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
4485
4486 if (journal_devnum &&
4487 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4488 ext4_msg(sb, KERN_INFO, "external journal device major/minor "
4489 "numbers have changed");
4490 journal_dev = new_decode_dev(journal_devnum);
4491 } else
4492 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
4493
4494 really_read_only = bdev_read_only(sb->s_bdev);
4495
4496 /*
4497 * Are we loading a blank journal or performing recovery after a
4498 * crash? For recovery, we need to check in advance whether we
4499 * can get read-write access to the device.
4500 */
4501 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) {
4502 if (sb->s_flags & MS_RDONLY) {
4503 ext4_msg(sb, KERN_INFO, "INFO: recovery "
4504 "required on readonly filesystem");
4505 if (really_read_only) {
4506 ext4_msg(sb, KERN_ERR, "write access "
4507 "unavailable, cannot proceed");
4508 return -EROFS;
4509 }
4510 ext4_msg(sb, KERN_INFO, "write access will "
4511 "be enabled during recovery");
4512 }
4513 }
4514
4515 if (journal_inum && journal_dev) {
4516 ext4_msg(sb, KERN_ERR, "filesystem has both journal "
4517 "and inode journals!");
4518 return -EINVAL;
4519 }
4520
4521 if (journal_inum) {
4522 if (!(journal = ext4_get_journal(sb, journal_inum)))
4523 return -EINVAL;
4524 } else {
4525 if (!(journal = ext4_get_dev_journal(sb, journal_dev)))
4526 return -EINVAL;
4527 }
4528
4529 if (!(journal->j_flags & JBD2_BARRIER))
4530 ext4_msg(sb, KERN_INFO, "barriers disabled");
4531
4532 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER))
4533 err = jbd2_journal_wipe(journal, !really_read_only);
4534 if (!err) {
4535 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
4536 if (save)
4537 memcpy(save, ((char *) es) +
4538 EXT4_S_ERR_START, EXT4_S_ERR_LEN);
4539 err = jbd2_journal_load(journal);
4540 if (save)
4541 memcpy(((char *) es) + EXT4_S_ERR_START,
4542 save, EXT4_S_ERR_LEN);
4543 kfree(save);
4544 }
4545
4546 if (err) {
4547 ext4_msg(sb, KERN_ERR, "error loading journal");
4548 jbd2_journal_destroy(journal);
4549 return err;
4550 }
4551
4552 EXT4_SB(sb)->s_journal = journal;
4553 ext4_clear_journal_err(sb, es);
4554
4555 if (!really_read_only && journal_devnum &&
4556 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4557 es->s_journal_dev = cpu_to_le32(journal_devnum);
4558
4559 /* Make sure we flush the recovery flag to disk. */
4560 ext4_commit_super(sb, 1);
4561 }
4562
4563 return 0;
4564 }
4565
4566 static int ext4_commit_super(struct super_block *sb, int sync)
4567 {
4568 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
4569 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
4570 int error = 0;
4571
4572 if (!sbh || block_device_ejected(sb))
4573 return error;
4574 if (buffer_write_io_error(sbh)) {
4575 /*
4576 * Oh, dear. A previous attempt to write the
4577 * superblock failed. This could happen because the
4578 * USB device was yanked out. Or it could happen to
4579 * be a transient write error and maybe the block will
4580 * be remapped. Nothing we can do but to retry the
4581 * write and hope for the best.
4582 */
4583 ext4_msg(sb, KERN_ERR, "previous I/O error to "
4584 "superblock detected");
4585 clear_buffer_write_io_error(sbh);
4586 set_buffer_uptodate(sbh);
4587 }
4588 /*
4589 * If the file system is mounted read-only, don't update the
4590 * superblock write time. This avoids updating the superblock
4591 * write time when we are mounting the root file system
4592 * read/only but we need to replay the journal; at that point,
4593 * for people who are east of GMT and who make their clock
4594 * tick in localtime for Windows bug-for-bug compatibility,
4595 * the clock is set in the future, and this will cause e2fsck
4596 * to complain and force a full file system check.
4597 */
4598 if (!(sb->s_flags & MS_RDONLY))
4599 es->s_wtime = cpu_to_le32(get_seconds());
4600 if (sb->s_bdev->bd_part)
4601 es->s_kbytes_written =
4602 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written +
4603 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
4604 EXT4_SB(sb)->s_sectors_written_start) >> 1));
4605 else
4606 es->s_kbytes_written =
4607 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written);
4608 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeclusters_counter))
4609 ext4_free_blocks_count_set(es,
4610 EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive(
4611 &EXT4_SB(sb)->s_freeclusters_counter)));
4612 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeinodes_counter))
4613 es->s_free_inodes_count =
4614 cpu_to_le32(percpu_counter_sum_positive(
4615 &EXT4_SB(sb)->s_freeinodes_counter));
4616 BUFFER_TRACE(sbh, "marking dirty");
4617 ext4_superblock_csum_set(sb);
4618 mark_buffer_dirty(sbh);
4619 if (sync) {
4620 error = sync_dirty_buffer(sbh);
4621 if (error)
4622 return error;
4623
4624 error = buffer_write_io_error(sbh);
4625 if (error) {
4626 ext4_msg(sb, KERN_ERR, "I/O error while writing "
4627 "superblock");
4628 clear_buffer_write_io_error(sbh);
4629 set_buffer_uptodate(sbh);
4630 }
4631 }
4632 return error;
4633 }
4634
4635 /*
4636 * Have we just finished recovery? If so, and if we are mounting (or
4637 * remounting) the filesystem readonly, then we will end up with a
4638 * consistent fs on disk. Record that fact.
4639 */
4640 static void ext4_mark_recovery_complete(struct super_block *sb,
4641 struct ext4_super_block *es)
4642 {
4643 journal_t *journal = EXT4_SB(sb)->s_journal;
4644
4645 if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) {
4646 BUG_ON(journal != NULL);
4647 return;
4648 }
4649 jbd2_journal_lock_updates(journal);
4650 if (jbd2_journal_flush(journal) < 0)
4651 goto out;
4652
4653 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER) &&
4654 sb->s_flags & MS_RDONLY) {
4655 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4656 ext4_commit_super(sb, 1);
4657 }
4658
4659 out:
4660 jbd2_journal_unlock_updates(journal);
4661 }
4662
4663 /*
4664 * If we are mounting (or read-write remounting) a filesystem whose journal
4665 * has recorded an error from a previous lifetime, move that error to the
4666 * main filesystem now.
4667 */
4668 static void ext4_clear_journal_err(struct super_block *sb,
4669 struct ext4_super_block *es)
4670 {
4671 journal_t *journal;
4672 int j_errno;
4673 const char *errstr;
4674
4675 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
4676
4677 journal = EXT4_SB(sb)->s_journal;
4678
4679 /*
4680 * Now check for any error status which may have been recorded in the
4681 * journal by a prior ext4_error() or ext4_abort()
4682 */
4683
4684 j_errno = jbd2_journal_errno(journal);
4685 if (j_errno) {
4686 char nbuf[16];
4687
4688 errstr = ext4_decode_error(sb, j_errno, nbuf);
4689 ext4_warning(sb, "Filesystem error recorded "
4690 "from previous mount: %s", errstr);
4691 ext4_warning(sb, "Marking fs in need of filesystem check.");
4692
4693 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
4694 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
4695 ext4_commit_super(sb, 1);
4696
4697 jbd2_journal_clear_err(journal);
4698 jbd2_journal_update_sb_errno(journal);
4699 }
4700 }
4701
4702 /*
4703 * Force the running and committing transactions to commit,
4704 * and wait on the commit.
4705 */
4706 int ext4_force_commit(struct super_block *sb)
4707 {
4708 journal_t *journal;
4709
4710 if (sb->s_flags & MS_RDONLY)
4711 return 0;
4712
4713 journal = EXT4_SB(sb)->s_journal;
4714 return ext4_journal_force_commit(journal);
4715 }
4716
4717 static int ext4_sync_fs(struct super_block *sb, int wait)
4718 {
4719 int ret = 0;
4720 tid_t target;
4721 bool needs_barrier = false;
4722 struct ext4_sb_info *sbi = EXT4_SB(sb);
4723
4724 trace_ext4_sync_fs(sb, wait);
4725 flush_workqueue(sbi->rsv_conversion_wq);
4726 /*
4727 * Writeback quota in non-journalled quota case - journalled quota has
4728 * no dirty dquots
4729 */
4730 dquot_writeback_dquots(sb, -1);
4731 /*
4732 * Data writeback is possible w/o journal transaction, so barrier must
4733 * being sent at the end of the function. But we can skip it if
4734 * transaction_commit will do it for us.
4735 */
4736 if (sbi->s_journal) {
4737 target = jbd2_get_latest_transaction(sbi->s_journal);
4738 if (wait && sbi->s_journal->j_flags & JBD2_BARRIER &&
4739 !jbd2_trans_will_send_data_barrier(sbi->s_journal, target))
4740 needs_barrier = true;
4741
4742 if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
4743 if (wait)
4744 ret = jbd2_log_wait_commit(sbi->s_journal,
4745 target);
4746 }
4747 } else if (wait && test_opt(sb, BARRIER))
4748 needs_barrier = true;
4749 if (needs_barrier) {
4750 int err;
4751 err = blkdev_issue_flush(sb->s_bdev, GFP_KERNEL, NULL);
4752 if (!ret)
4753 ret = err;
4754 }
4755
4756 return ret;
4757 }
4758
4759 /*
4760 * LVM calls this function before a (read-only) snapshot is created. This
4761 * gives us a chance to flush the journal completely and mark the fs clean.
4762 *
4763 * Note that only this function cannot bring a filesystem to be in a clean
4764 * state independently. It relies on upper layer to stop all data & metadata
4765 * modifications.
4766 */
4767 static int ext4_freeze(struct super_block *sb)
4768 {
4769 int error = 0;
4770 journal_t *journal;
4771
4772 if (sb->s_flags & MS_RDONLY)
4773 return 0;
4774
4775 journal = EXT4_SB(sb)->s_journal;
4776
4777 if (journal) {
4778 /* Now we set up the journal barrier. */
4779 jbd2_journal_lock_updates(journal);
4780
4781 /*
4782 * Don't clear the needs_recovery flag if we failed to
4783 * flush the journal.
4784 */
4785 error = jbd2_journal_flush(journal);
4786 if (error < 0)
4787 goto out;
4788 }
4789
4790 /* Journal blocked and flushed, clear needs_recovery flag. */
4791 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4792 error = ext4_commit_super(sb, 1);
4793 out:
4794 if (journal)
4795 /* we rely on upper layer to stop further updates */
4796 jbd2_journal_unlock_updates(journal);
4797 return error;
4798 }
4799
4800 /*
4801 * Called by LVM after the snapshot is done. We need to reset the RECOVER
4802 * flag here, even though the filesystem is not technically dirty yet.
4803 */
4804 static int ext4_unfreeze(struct super_block *sb)
4805 {
4806 if (sb->s_flags & MS_RDONLY)
4807 return 0;
4808
4809 /* Reset the needs_recovery flag before the fs is unlocked. */
4810 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4811 ext4_commit_super(sb, 1);
4812 return 0;
4813 }
4814
4815 /*
4816 * Structure to save mount options for ext4_remount's benefit
4817 */
4818 struct ext4_mount_options {
4819 unsigned long s_mount_opt;
4820 unsigned long s_mount_opt2;
4821 kuid_t s_resuid;
4822 kgid_t s_resgid;
4823 unsigned long s_commit_interval;
4824 u32 s_min_batch_time, s_max_batch_time;
4825 #ifdef CONFIG_QUOTA
4826 int s_jquota_fmt;
4827 char *s_qf_names[EXT4_MAXQUOTAS];
4828 #endif
4829 };
4830
4831 static int ext4_remount(struct super_block *sb, int *flags, char *data)
4832 {
4833 struct ext4_super_block *es;
4834 struct ext4_sb_info *sbi = EXT4_SB(sb);
4835 unsigned long old_sb_flags;
4836 struct ext4_mount_options old_opts;
4837 int enable_quota = 0;
4838 ext4_group_t g;
4839 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
4840 int err = 0;
4841 #ifdef CONFIG_QUOTA
4842 int i, j;
4843 #endif
4844 char *orig_data = kstrdup(data, GFP_KERNEL);
4845
4846 /* Store the original options */
4847 old_sb_flags = sb->s_flags;
4848 old_opts.s_mount_opt = sbi->s_mount_opt;
4849 old_opts.s_mount_opt2 = sbi->s_mount_opt2;
4850 old_opts.s_resuid = sbi->s_resuid;
4851 old_opts.s_resgid = sbi->s_resgid;
4852 old_opts.s_commit_interval = sbi->s_commit_interval;
4853 old_opts.s_min_batch_time = sbi->s_min_batch_time;
4854 old_opts.s_max_batch_time = sbi->s_max_batch_time;
4855 #ifdef CONFIG_QUOTA
4856 old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
4857 for (i = 0; i < EXT4_MAXQUOTAS; i++)
4858 if (sbi->s_qf_names[i]) {
4859 old_opts.s_qf_names[i] = kstrdup(sbi->s_qf_names[i],
4860 GFP_KERNEL);
4861 if (!old_opts.s_qf_names[i]) {
4862 for (j = 0; j < i; j++)
4863 kfree(old_opts.s_qf_names[j]);
4864 kfree(orig_data);
4865 return -ENOMEM;
4866 }
4867 } else
4868 old_opts.s_qf_names[i] = NULL;
4869 #endif
4870 if (sbi->s_journal && sbi->s_journal->j_task->io_context)
4871 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio;
4872
4873 if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) {
4874 err = -EINVAL;
4875 goto restore_opts;
4876 }
4877
4878 if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^
4879 test_opt(sb, JOURNAL_CHECKSUM)) {
4880 ext4_msg(sb, KERN_ERR, "changing journal_checksum "
4881 "during remount not supported; ignoring");
4882 sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM;
4883 }
4884
4885 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
4886 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
4887 ext4_msg(sb, KERN_ERR, "can't mount with "
4888 "both data=journal and delalloc");
4889 err = -EINVAL;
4890 goto restore_opts;
4891 }
4892 if (test_opt(sb, DIOREAD_NOLOCK)) {
4893 ext4_msg(sb, KERN_ERR, "can't mount with "
4894 "both data=journal and dioread_nolock");
4895 err = -EINVAL;
4896 goto restore_opts;
4897 }
4898 if (test_opt(sb, DAX)) {
4899 ext4_msg(sb, KERN_ERR, "can't mount with "
4900 "both data=journal and dax");
4901 err = -EINVAL;
4902 goto restore_opts;
4903 }
4904 }
4905
4906 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_DAX) {
4907 ext4_msg(sb, KERN_WARNING, "warning: refusing change of "
4908 "dax flag with busy inodes while remounting");
4909 sbi->s_mount_opt ^= EXT4_MOUNT_DAX;
4910 }
4911
4912 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED)
4913 ext4_abort(sb, "Abort forced by user");
4914
4915 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
4916 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
4917
4918 es = sbi->s_es;
4919
4920 if (sbi->s_journal) {
4921 ext4_init_journal_params(sb, sbi->s_journal);
4922 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
4923 }
4924
4925 if ((*flags & MS_RDONLY) != (sb->s_flags & MS_RDONLY)) {
4926 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) {
4927 err = -EROFS;
4928 goto restore_opts;
4929 }
4930
4931 if (*flags & MS_RDONLY) {
4932 err = sync_filesystem(sb);
4933 if (err < 0)
4934 goto restore_opts;
4935 err = dquot_suspend(sb, -1);
4936 if (err < 0)
4937 goto restore_opts;
4938
4939 /*
4940 * First of all, the unconditional stuff we have to do
4941 * to disable replay of the journal when we next remount
4942 */
4943 sb->s_flags |= MS_RDONLY;
4944
4945 /*
4946 * OK, test if we are remounting a valid rw partition
4947 * readonly, and if so set the rdonly flag and then
4948 * mark the partition as valid again.
4949 */
4950 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
4951 (sbi->s_mount_state & EXT4_VALID_FS))
4952 es->s_state = cpu_to_le16(sbi->s_mount_state);
4953
4954 if (sbi->s_journal)
4955 ext4_mark_recovery_complete(sb, es);
4956 } else {
4957 /* Make sure we can mount this feature set readwrite */
4958 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4959 EXT4_FEATURE_RO_COMPAT_READONLY) ||
4960 !ext4_feature_set_ok(sb, 0)) {
4961 err = -EROFS;
4962 goto restore_opts;
4963 }
4964 /*
4965 * Make sure the group descriptor checksums
4966 * are sane. If they aren't, refuse to remount r/w.
4967 */
4968 for (g = 0; g < sbi->s_groups_count; g++) {
4969 struct ext4_group_desc *gdp =
4970 ext4_get_group_desc(sb, g, NULL);
4971
4972 if (!ext4_group_desc_csum_verify(sb, g, gdp)) {
4973 ext4_msg(sb, KERN_ERR,
4974 "ext4_remount: Checksum for group %u failed (%u!=%u)",
4975 g, le16_to_cpu(ext4_group_desc_csum(sbi, g, gdp)),
4976 le16_to_cpu(gdp->bg_checksum));
4977 err = -EINVAL;
4978 goto restore_opts;
4979 }
4980 }
4981
4982 /*
4983 * If we have an unprocessed orphan list hanging
4984 * around from a previously readonly bdev mount,
4985 * require a full umount/remount for now.
4986 */
4987 if (es->s_last_orphan) {
4988 ext4_msg(sb, KERN_WARNING, "Couldn't "
4989 "remount RDWR because of unprocessed "
4990 "orphan inode list. Please "
4991 "umount/remount instead");
4992 err = -EINVAL;
4993 goto restore_opts;
4994 }
4995
4996 /*
4997 * Mounting a RDONLY partition read-write, so reread
4998 * and store the current valid flag. (It may have
4999 * been changed by e2fsck since we originally mounted
5000 * the partition.)
5001 */
5002 if (sbi->s_journal)
5003 ext4_clear_journal_err(sb, es);
5004 sbi->s_mount_state = le16_to_cpu(es->s_state);
5005 if (!ext4_setup_super(sb, es, 0))
5006 sb->s_flags &= ~MS_RDONLY;
5007 if (EXT4_HAS_INCOMPAT_FEATURE(sb,
5008 EXT4_FEATURE_INCOMPAT_MMP))
5009 if (ext4_multi_mount_protect(sb,
5010 le64_to_cpu(es->s_mmp_block))) {
5011 err = -EROFS;
5012 goto restore_opts;
5013 }
5014 enable_quota = 1;
5015 }
5016 }
5017
5018 /*
5019 * Reinitialize lazy itable initialization thread based on
5020 * current settings
5021 */
5022 if ((sb->s_flags & MS_RDONLY) || !test_opt(sb, INIT_INODE_TABLE))
5023 ext4_unregister_li_request(sb);
5024 else {
5025 ext4_group_t first_not_zeroed;
5026 first_not_zeroed = ext4_has_uninit_itable(sb);
5027 ext4_register_li_request(sb, first_not_zeroed);
5028 }
5029
5030 ext4_setup_system_zone(sb);
5031 if (sbi->s_journal == NULL && !(old_sb_flags & MS_RDONLY))
5032 ext4_commit_super(sb, 1);
5033
5034 #ifdef CONFIG_QUOTA
5035 /* Release old quota file names */
5036 for (i = 0; i < EXT4_MAXQUOTAS; i++)
5037 kfree(old_opts.s_qf_names[i]);
5038 if (enable_quota) {
5039 if (sb_any_quota_suspended(sb))
5040 dquot_resume(sb, -1);
5041 else if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
5042 EXT4_FEATURE_RO_COMPAT_QUOTA)) {
5043 err = ext4_enable_quotas(sb);
5044 if (err)
5045 goto restore_opts;
5046 }
5047 }
5048 #endif
5049
5050 *flags = (*flags & ~MS_LAZYTIME) | (sb->s_flags & MS_LAZYTIME);
5051 ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data);
5052 kfree(orig_data);
5053 return 0;
5054
5055 restore_opts:
5056 sb->s_flags = old_sb_flags;
5057 sbi->s_mount_opt = old_opts.s_mount_opt;
5058 sbi->s_mount_opt2 = old_opts.s_mount_opt2;
5059 sbi->s_resuid = old_opts.s_resuid;
5060 sbi->s_resgid = old_opts.s_resgid;
5061 sbi->s_commit_interval = old_opts.s_commit_interval;
5062 sbi->s_min_batch_time = old_opts.s_min_batch_time;
5063 sbi->s_max_batch_time = old_opts.s_max_batch_time;
5064 #ifdef CONFIG_QUOTA
5065 sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
5066 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
5067 kfree(sbi->s_qf_names[i]);
5068 sbi->s_qf_names[i] = old_opts.s_qf_names[i];
5069 }
5070 #endif
5071 kfree(orig_data);
5072 return err;
5073 }
5074
5075 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
5076 {
5077 struct super_block *sb = dentry->d_sb;
5078 struct ext4_sb_info *sbi = EXT4_SB(sb);
5079 struct ext4_super_block *es = sbi->s_es;
5080 ext4_fsblk_t overhead = 0, resv_blocks;
5081 u64 fsid;
5082 s64 bfree;
5083 resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters));
5084
5085 if (!test_opt(sb, MINIX_DF))
5086 overhead = sbi->s_overhead;
5087
5088 buf->f_type = EXT4_SUPER_MAGIC;
5089 buf->f_bsize = sb->s_blocksize;
5090 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead);
5091 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
5092 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
5093 /* prevent underflow in case that few free space is available */
5094 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0));
5095 buf->f_bavail = buf->f_bfree -
5096 (ext4_r_blocks_count(es) + resv_blocks);
5097 if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks))
5098 buf->f_bavail = 0;
5099 buf->f_files = le32_to_cpu(es->s_inodes_count);
5100 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
5101 buf->f_namelen = EXT4_NAME_LEN;
5102 fsid = le64_to_cpup((void *)es->s_uuid) ^
5103 le64_to_cpup((void *)es->s_uuid + sizeof(u64));
5104 buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL;
5105 buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL;
5106
5107 return 0;
5108 }
5109
5110 /* Helper function for writing quotas on sync - we need to start transaction
5111 * before quota file is locked for write. Otherwise the are possible deadlocks:
5112 * Process 1 Process 2
5113 * ext4_create() quota_sync()
5114 * jbd2_journal_start() write_dquot()
5115 * dquot_initialize() down(dqio_mutex)
5116 * down(dqio_mutex) jbd2_journal_start()
5117 *
5118 */
5119
5120 #ifdef CONFIG_QUOTA
5121
5122 static inline struct inode *dquot_to_inode(struct dquot *dquot)
5123 {
5124 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type];
5125 }
5126
5127 static int ext4_write_dquot(struct dquot *dquot)
5128 {
5129 int ret, err;
5130 handle_t *handle;
5131 struct inode *inode;
5132
5133 inode = dquot_to_inode(dquot);
5134 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5135 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
5136 if (IS_ERR(handle))
5137 return PTR_ERR(handle);
5138 ret = dquot_commit(dquot);
5139 err = ext4_journal_stop(handle);
5140 if (!ret)
5141 ret = err;
5142 return ret;
5143 }
5144
5145 static int ext4_acquire_dquot(struct dquot *dquot)
5146 {
5147 int ret, err;
5148 handle_t *handle;
5149
5150 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
5151 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
5152 if (IS_ERR(handle))
5153 return PTR_ERR(handle);
5154 ret = dquot_acquire(dquot);
5155 err = ext4_journal_stop(handle);
5156 if (!ret)
5157 ret = err;
5158 return ret;
5159 }
5160
5161 static int ext4_release_dquot(struct dquot *dquot)
5162 {
5163 int ret, err;
5164 handle_t *handle;
5165
5166 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
5167 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
5168 if (IS_ERR(handle)) {
5169 /* Release dquot anyway to avoid endless cycle in dqput() */
5170 dquot_release(dquot);
5171 return PTR_ERR(handle);
5172 }
5173 ret = dquot_release(dquot);
5174 err = ext4_journal_stop(handle);
5175 if (!ret)
5176 ret = err;
5177 return ret;
5178 }
5179
5180 static int ext4_mark_dquot_dirty(struct dquot *dquot)
5181 {
5182 struct super_block *sb = dquot->dq_sb;
5183 struct ext4_sb_info *sbi = EXT4_SB(sb);
5184
5185 /* Are we journaling quotas? */
5186 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) ||
5187 sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
5188 dquot_mark_dquot_dirty(dquot);
5189 return ext4_write_dquot(dquot);
5190 } else {
5191 return dquot_mark_dquot_dirty(dquot);
5192 }
5193 }
5194
5195 static int ext4_write_info(struct super_block *sb, int type)
5196 {
5197 int ret, err;
5198 handle_t *handle;
5199
5200 /* Data block + inode block */
5201 handle = ext4_journal_start(sb->s_root->d_inode, EXT4_HT_QUOTA, 2);
5202 if (IS_ERR(handle))
5203 return PTR_ERR(handle);
5204 ret = dquot_commit_info(sb, type);
5205 err = ext4_journal_stop(handle);
5206 if (!ret)
5207 ret = err;
5208 return ret;
5209 }
5210
5211 /*
5212 * Turn on quotas during mount time - we need to find
5213 * the quota file and such...
5214 */
5215 static int ext4_quota_on_mount(struct super_block *sb, int type)
5216 {
5217 return dquot_quota_on_mount(sb, EXT4_SB(sb)->s_qf_names[type],
5218 EXT4_SB(sb)->s_jquota_fmt, type);
5219 }
5220
5221 /*
5222 * Standard function to be called on quota_on
5223 */
5224 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
5225 struct path *path)
5226 {
5227 int err;
5228
5229 if (!test_opt(sb, QUOTA))
5230 return -EINVAL;
5231
5232 /* Quotafile not on the same filesystem? */
5233 if (path->dentry->d_sb != sb)
5234 return -EXDEV;
5235 /* Journaling quota? */
5236 if (EXT4_SB(sb)->s_qf_names[type]) {
5237 /* Quotafile not in fs root? */
5238 if (path->dentry->d_parent != sb->s_root)
5239 ext4_msg(sb, KERN_WARNING,
5240 "Quota file not on filesystem root. "
5241 "Journaled quota will not work");
5242 }
5243
5244 /*
5245 * When we journal data on quota file, we have to flush journal to see
5246 * all updates to the file when we bypass pagecache...
5247 */
5248 if (EXT4_SB(sb)->s_journal &&
5249 ext4_should_journal_data(path->dentry->d_inode)) {
5250 /*
5251 * We don't need to lock updates but journal_flush() could
5252 * otherwise be livelocked...
5253 */
5254 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal);
5255 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal);
5256 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
5257 if (err)
5258 return err;
5259 }
5260
5261 return dquot_quota_on(sb, type, format_id, path);
5262 }
5263
5264 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
5265 unsigned int flags)
5266 {
5267 int err;
5268 struct inode *qf_inode;
5269 unsigned long qf_inums[EXT4_MAXQUOTAS] = {
5270 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
5271 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum)
5272 };
5273
5274 BUG_ON(!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA));
5275
5276 if (!qf_inums[type])
5277 return -EPERM;
5278
5279 qf_inode = ext4_iget(sb, qf_inums[type]);
5280 if (IS_ERR(qf_inode)) {
5281 ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]);
5282 return PTR_ERR(qf_inode);
5283 }
5284
5285 /* Don't account quota for quota files to avoid recursion */
5286 qf_inode->i_flags |= S_NOQUOTA;
5287 err = dquot_enable(qf_inode, type, format_id, flags);
5288 iput(qf_inode);
5289
5290 return err;
5291 }
5292
5293 /* Enable usage tracking for all quota types. */
5294 static int ext4_enable_quotas(struct super_block *sb)
5295 {
5296 int type, err = 0;
5297 unsigned long qf_inums[EXT4_MAXQUOTAS] = {
5298 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
5299 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum)
5300 };
5301
5302 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE;
5303 for (type = 0; type < EXT4_MAXQUOTAS; type++) {
5304 if (qf_inums[type]) {
5305 err = ext4_quota_enable(sb, type, QFMT_VFS_V1,
5306 DQUOT_USAGE_ENABLED);
5307 if (err) {
5308 ext4_warning(sb,
5309 "Failed to enable quota tracking "
5310 "(type=%d, err=%d). Please run "
5311 "e2fsck to fix.", type, err);
5312 return err;
5313 }
5314 }
5315 }
5316 return 0;
5317 }
5318
5319 static int ext4_quota_off(struct super_block *sb, int type)
5320 {
5321 struct inode *inode = sb_dqopt(sb)->files[type];
5322 handle_t *handle;
5323
5324 /* Force all delayed allocation blocks to be allocated.
5325 * Caller already holds s_umount sem */
5326 if (test_opt(sb, DELALLOC))
5327 sync_filesystem(sb);
5328
5329 if (!inode)
5330 goto out;
5331
5332 /* Update modification times of quota files when userspace can
5333 * start looking at them */
5334 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
5335 if (IS_ERR(handle))
5336 goto out;
5337 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
5338 ext4_mark_inode_dirty(handle, inode);
5339 ext4_journal_stop(handle);
5340
5341 out:
5342 return dquot_quota_off(sb, type);
5343 }
5344
5345 /* Read data from quotafile - avoid pagecache and such because we cannot afford
5346 * acquiring the locks... As quota files are never truncated and quota code
5347 * itself serializes the operations (and no one else should touch the files)
5348 * we don't have to be afraid of races */
5349 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
5350 size_t len, loff_t off)
5351 {
5352 struct inode *inode = sb_dqopt(sb)->files[type];
5353 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5354 int offset = off & (sb->s_blocksize - 1);
5355 int tocopy;
5356 size_t toread;
5357 struct buffer_head *bh;
5358 loff_t i_size = i_size_read(inode);
5359
5360 if (off > i_size)
5361 return 0;
5362 if (off+len > i_size)
5363 len = i_size-off;
5364 toread = len;
5365 while (toread > 0) {
5366 tocopy = sb->s_blocksize - offset < toread ?
5367 sb->s_blocksize - offset : toread;
5368 bh = ext4_bread(NULL, inode, blk, 0);
5369 if (IS_ERR(bh))
5370 return PTR_ERR(bh);
5371 if (!bh) /* A hole? */
5372 memset(data, 0, tocopy);
5373 else
5374 memcpy(data, bh->b_data+offset, tocopy);
5375 brelse(bh);
5376 offset = 0;
5377 toread -= tocopy;
5378 data += tocopy;
5379 blk++;
5380 }
5381 return len;
5382 }
5383
5384 /* Write to quotafile (we know the transaction is already started and has
5385 * enough credits) */
5386 static ssize_t ext4_quota_write(struct super_block *sb, int type,
5387 const char *data, size_t len, loff_t off)
5388 {
5389 struct inode *inode = sb_dqopt(sb)->files[type];
5390 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5391 int err, offset = off & (sb->s_blocksize - 1);
5392 struct buffer_head *bh;
5393 handle_t *handle = journal_current_handle();
5394
5395 if (EXT4_SB(sb)->s_journal && !handle) {
5396 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5397 " cancelled because transaction is not started",
5398 (unsigned long long)off, (unsigned long long)len);
5399 return -EIO;
5400 }
5401 /*
5402 * Since we account only one data block in transaction credits,
5403 * then it is impossible to cross a block boundary.
5404 */
5405 if (sb->s_blocksize - offset < len) {
5406 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5407 " cancelled because not block aligned",
5408 (unsigned long long)off, (unsigned long long)len);
5409 return -EIO;
5410 }
5411
5412 bh = ext4_bread(handle, inode, blk, 1);
5413 if (IS_ERR(bh))
5414 return PTR_ERR(bh);
5415 if (!bh)
5416 goto out;
5417 BUFFER_TRACE(bh, "get write access");
5418 err = ext4_journal_get_write_access(handle, bh);
5419 if (err) {
5420 brelse(bh);
5421 return err;
5422 }
5423 lock_buffer(bh);
5424 memcpy(bh->b_data+offset, data, len);
5425 flush_dcache_page(bh->b_page);
5426 unlock_buffer(bh);
5427 err = ext4_handle_dirty_metadata(handle, NULL, bh);
5428 brelse(bh);
5429 out:
5430 if (inode->i_size < off + len) {
5431 i_size_write(inode, off + len);
5432 EXT4_I(inode)->i_disksize = inode->i_size;
5433 ext4_mark_inode_dirty(handle, inode);
5434 }
5435 return len;
5436 }
5437
5438 #endif
5439
5440 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
5441 const char *dev_name, void *data)
5442 {
5443 return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super);
5444 }
5445
5446 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
5447 static inline void register_as_ext2(void)
5448 {
5449 int err = register_filesystem(&ext2_fs_type);
5450 if (err)
5451 printk(KERN_WARNING
5452 "EXT4-fs: Unable to register as ext2 (%d)\n", err);
5453 }
5454
5455 static inline void unregister_as_ext2(void)
5456 {
5457 unregister_filesystem(&ext2_fs_type);
5458 }
5459
5460 static inline int ext2_feature_set_ok(struct super_block *sb)
5461 {
5462 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT2_FEATURE_INCOMPAT_SUPP))
5463 return 0;
5464 if (sb->s_flags & MS_RDONLY)
5465 return 1;
5466 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT2_FEATURE_RO_COMPAT_SUPP))
5467 return 0;
5468 return 1;
5469 }
5470 #else
5471 static inline void register_as_ext2(void) { }
5472 static inline void unregister_as_ext2(void) { }
5473 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
5474 #endif
5475
5476 #if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
5477 static inline void register_as_ext3(void)
5478 {
5479 int err = register_filesystem(&ext3_fs_type);
5480 if (err)
5481 printk(KERN_WARNING
5482 "EXT4-fs: Unable to register as ext3 (%d)\n", err);
5483 }
5484
5485 static inline void unregister_as_ext3(void)
5486 {
5487 unregister_filesystem(&ext3_fs_type);
5488 }
5489
5490 static inline int ext3_feature_set_ok(struct super_block *sb)
5491 {
5492 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT3_FEATURE_INCOMPAT_SUPP))
5493 return 0;
5494 if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL))
5495 return 0;
5496 if (sb->s_flags & MS_RDONLY)
5497 return 1;
5498 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT3_FEATURE_RO_COMPAT_SUPP))
5499 return 0;
5500 return 1;
5501 }
5502 #else
5503 static inline void register_as_ext3(void) { }
5504 static inline void unregister_as_ext3(void) { }
5505 static inline int ext3_feature_set_ok(struct super_block *sb) { return 0; }
5506 #endif
5507
5508 static struct file_system_type ext4_fs_type = {
5509 .owner = THIS_MODULE,
5510 .name = "ext4",
5511 .mount = ext4_mount,
5512 .kill_sb = kill_block_super,
5513 .fs_flags = FS_REQUIRES_DEV,
5514 };
5515 MODULE_ALIAS_FS("ext4");
5516
5517 static int __init ext4_init_feat_adverts(void)
5518 {
5519 struct ext4_features *ef;
5520 int ret = -ENOMEM;
5521
5522 ef = kzalloc(sizeof(struct ext4_features), GFP_KERNEL);
5523 if (!ef)
5524 goto out;
5525
5526 ef->f_kobj.kset = ext4_kset;
5527 init_completion(&ef->f_kobj_unregister);
5528 ret = kobject_init_and_add(&ef->f_kobj, &ext4_feat_ktype, NULL,
5529 "features");
5530 if (ret) {
5531 kfree(ef);
5532 goto out;
5533 }
5534
5535 ext4_feat = ef;
5536 ret = 0;
5537 out:
5538 return ret;
5539 }
5540
5541 static void ext4_exit_feat_adverts(void)
5542 {
5543 kobject_put(&ext4_feat->f_kobj);
5544 wait_for_completion(&ext4_feat->f_kobj_unregister);
5545 kfree(ext4_feat);
5546 }
5547
5548 /* Shared across all ext4 file systems */
5549 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ];
5550 struct mutex ext4__aio_mutex[EXT4_WQ_HASH_SZ];
5551
5552 static int __init ext4_init_fs(void)
5553 {
5554 int i, err;
5555
5556 ext4_li_info = NULL;
5557 mutex_init(&ext4_li_mtx);
5558
5559 /* Build-time check for flags consistency */
5560 ext4_check_flag_values();
5561
5562 for (i = 0; i < EXT4_WQ_HASH_SZ; i++) {
5563 mutex_init(&ext4__aio_mutex[i]);
5564 init_waitqueue_head(&ext4__ioend_wq[i]);
5565 }
5566
5567 err = ext4_init_es();
5568 if (err)
5569 return err;
5570
5571 err = ext4_init_pageio();
5572 if (err)
5573 goto out7;
5574
5575 err = ext4_init_system_zone();
5576 if (err)
5577 goto out6;
5578 ext4_kset = kset_create_and_add("ext4", NULL, fs_kobj);
5579 if (!ext4_kset) {
5580 err = -ENOMEM;
5581 goto out5;
5582 }
5583 ext4_proc_root = proc_mkdir("fs/ext4", NULL);
5584
5585 err = ext4_init_feat_adverts();
5586 if (err)
5587 goto out4;
5588
5589 err = ext4_init_mballoc();
5590 if (err)
5591 goto out2;
5592 else
5593 ext4_mballoc_ready = 1;
5594 err = init_inodecache();
5595 if (err)
5596 goto out1;
5597 register_as_ext3();
5598 register_as_ext2();
5599 err = register_filesystem(&ext4_fs_type);
5600 if (err)
5601 goto out;
5602
5603 return 0;
5604 out:
5605 unregister_as_ext2();
5606 unregister_as_ext3();
5607 destroy_inodecache();
5608 out1:
5609 ext4_mballoc_ready = 0;
5610 ext4_exit_mballoc();
5611 out2:
5612 ext4_exit_feat_adverts();
5613 out4:
5614 if (ext4_proc_root)
5615 remove_proc_entry("fs/ext4", NULL);
5616 kset_unregister(ext4_kset);
5617 out5:
5618 ext4_exit_system_zone();
5619 out6:
5620 ext4_exit_pageio();
5621 out7:
5622 ext4_exit_es();
5623
5624 return err;
5625 }
5626
5627 static void __exit ext4_exit_fs(void)
5628 {
5629 ext4_destroy_lazyinit_thread();
5630 unregister_as_ext2();
5631 unregister_as_ext3();
5632 unregister_filesystem(&ext4_fs_type);
5633 destroy_inodecache();
5634 ext4_exit_mballoc();
5635 ext4_exit_feat_adverts();
5636 remove_proc_entry("fs/ext4", NULL);
5637 kset_unregister(ext4_kset);
5638 ext4_exit_system_zone();
5639 ext4_exit_pageio();
5640 ext4_exit_es();
5641 }
5642
5643 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
5644 MODULE_DESCRIPTION("Fourth Extended Filesystem");
5645 MODULE_LICENSE("GPL");
5646 module_init(ext4_init_fs)
5647 module_exit(ext4_exit_fs)