]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/ext4/super.c
c9e06c647ce878711d8bea70209d73e162e1c983
[mirror_ubuntu-artful-kernel.git] / fs / ext4 / super.c
1 /*
2 * linux/fs/ext4/super.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * Big-endian to little-endian byte-swapping/bitmaps by
16 * David S. Miller (davem@caip.rutgers.edu), 1995
17 */
18
19 #include <linux/module.h>
20 #include <linux/string.h>
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/vmalloc.h>
24 #include <linux/jbd2.h>
25 #include <linux/slab.h>
26 #include <linux/init.h>
27 #include <linux/blkdev.h>
28 #include <linux/parser.h>
29 #include <linux/smp_lock.h>
30 #include <linux/buffer_head.h>
31 #include <linux/exportfs.h>
32 #include <linux/vfs.h>
33 #include <linux/random.h>
34 #include <linux/mount.h>
35 #include <linux/namei.h>
36 #include <linux/quotaops.h>
37 #include <linux/seq_file.h>
38 #include <linux/proc_fs.h>
39 #include <linux/ctype.h>
40 #include <linux/log2.h>
41 #include <linux/crc16.h>
42 #include <asm/uaccess.h>
43
44 #include <linux/kthread.h>
45 #include <linux/freezer.h>
46
47 #include "ext4.h"
48 #include "ext4_jbd2.h"
49 #include "xattr.h"
50 #include "acl.h"
51 #include "mballoc.h"
52
53 #define CREATE_TRACE_POINTS
54 #include <trace/events/ext4.h>
55
56 struct proc_dir_entry *ext4_proc_root;
57 static struct kset *ext4_kset;
58 struct ext4_lazy_init *ext4_li_info;
59 struct mutex ext4_li_mtx;
60 struct ext4_features *ext4_feat;
61
62 static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
63 unsigned long journal_devnum);
64 static int ext4_commit_super(struct super_block *sb, int sync);
65 static void ext4_mark_recovery_complete(struct super_block *sb,
66 struct ext4_super_block *es);
67 static void ext4_clear_journal_err(struct super_block *sb,
68 struct ext4_super_block *es);
69 static int ext4_sync_fs(struct super_block *sb, int wait);
70 static const char *ext4_decode_error(struct super_block *sb, int errno,
71 char nbuf[16]);
72 static int ext4_remount(struct super_block *sb, int *flags, char *data);
73 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
74 static int ext4_unfreeze(struct super_block *sb);
75 static void ext4_write_super(struct super_block *sb);
76 static int ext4_freeze(struct super_block *sb);
77 static int ext4_get_sb(struct file_system_type *fs_type, int flags,
78 const char *dev_name, void *data, struct vfsmount *mnt);
79 static void ext4_destroy_lazyinit_thread(void);
80 static void ext4_unregister_li_request(struct super_block *sb);
81
82 #if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
83 static struct file_system_type ext3_fs_type = {
84 .owner = THIS_MODULE,
85 .name = "ext3",
86 .get_sb = ext4_get_sb,
87 .kill_sb = kill_block_super,
88 .fs_flags = FS_REQUIRES_DEV,
89 };
90 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type)
91 #else
92 #define IS_EXT3_SB(sb) (0)
93 #endif
94
95 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
96 struct ext4_group_desc *bg)
97 {
98 return le32_to_cpu(bg->bg_block_bitmap_lo) |
99 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
100 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
101 }
102
103 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
104 struct ext4_group_desc *bg)
105 {
106 return le32_to_cpu(bg->bg_inode_bitmap_lo) |
107 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
108 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
109 }
110
111 ext4_fsblk_t ext4_inode_table(struct super_block *sb,
112 struct ext4_group_desc *bg)
113 {
114 return le32_to_cpu(bg->bg_inode_table_lo) |
115 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
116 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
117 }
118
119 __u32 ext4_free_blks_count(struct super_block *sb,
120 struct ext4_group_desc *bg)
121 {
122 return le16_to_cpu(bg->bg_free_blocks_count_lo) |
123 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
124 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
125 }
126
127 __u32 ext4_free_inodes_count(struct super_block *sb,
128 struct ext4_group_desc *bg)
129 {
130 return le16_to_cpu(bg->bg_free_inodes_count_lo) |
131 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
132 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
133 }
134
135 __u32 ext4_used_dirs_count(struct super_block *sb,
136 struct ext4_group_desc *bg)
137 {
138 return le16_to_cpu(bg->bg_used_dirs_count_lo) |
139 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
140 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
141 }
142
143 __u32 ext4_itable_unused_count(struct super_block *sb,
144 struct ext4_group_desc *bg)
145 {
146 return le16_to_cpu(bg->bg_itable_unused_lo) |
147 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
148 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
149 }
150
151 void ext4_block_bitmap_set(struct super_block *sb,
152 struct ext4_group_desc *bg, ext4_fsblk_t blk)
153 {
154 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
155 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
156 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
157 }
158
159 void ext4_inode_bitmap_set(struct super_block *sb,
160 struct ext4_group_desc *bg, ext4_fsblk_t blk)
161 {
162 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk);
163 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
164 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
165 }
166
167 void ext4_inode_table_set(struct super_block *sb,
168 struct ext4_group_desc *bg, ext4_fsblk_t blk)
169 {
170 bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
171 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
172 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
173 }
174
175 void ext4_free_blks_set(struct super_block *sb,
176 struct ext4_group_desc *bg, __u32 count)
177 {
178 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
179 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
180 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
181 }
182
183 void ext4_free_inodes_set(struct super_block *sb,
184 struct ext4_group_desc *bg, __u32 count)
185 {
186 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
187 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
188 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
189 }
190
191 void ext4_used_dirs_set(struct super_block *sb,
192 struct ext4_group_desc *bg, __u32 count)
193 {
194 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
195 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
196 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
197 }
198
199 void ext4_itable_unused_set(struct super_block *sb,
200 struct ext4_group_desc *bg, __u32 count)
201 {
202 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
203 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
204 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
205 }
206
207
208 /* Just increment the non-pointer handle value */
209 static handle_t *ext4_get_nojournal(void)
210 {
211 handle_t *handle = current->journal_info;
212 unsigned long ref_cnt = (unsigned long)handle;
213
214 BUG_ON(ref_cnt >= EXT4_NOJOURNAL_MAX_REF_COUNT);
215
216 ref_cnt++;
217 handle = (handle_t *)ref_cnt;
218
219 current->journal_info = handle;
220 return handle;
221 }
222
223
224 /* Decrement the non-pointer handle value */
225 static void ext4_put_nojournal(handle_t *handle)
226 {
227 unsigned long ref_cnt = (unsigned long)handle;
228
229 BUG_ON(ref_cnt == 0);
230
231 ref_cnt--;
232 handle = (handle_t *)ref_cnt;
233
234 current->journal_info = handle;
235 }
236
237 /*
238 * Wrappers for jbd2_journal_start/end.
239 *
240 * The only special thing we need to do here is to make sure that all
241 * journal_end calls result in the superblock being marked dirty, so
242 * that sync() will call the filesystem's write_super callback if
243 * appropriate.
244 */
245 handle_t *ext4_journal_start_sb(struct super_block *sb, int nblocks)
246 {
247 journal_t *journal;
248
249 if (sb->s_flags & MS_RDONLY)
250 return ERR_PTR(-EROFS);
251
252 vfs_check_frozen(sb, SB_FREEZE_TRANS);
253 /* Special case here: if the journal has aborted behind our
254 * backs (eg. EIO in the commit thread), then we still need to
255 * take the FS itself readonly cleanly. */
256 journal = EXT4_SB(sb)->s_journal;
257 if (journal) {
258 if (is_journal_aborted(journal)) {
259 ext4_abort(sb, "Detected aborted journal");
260 return ERR_PTR(-EROFS);
261 }
262 return jbd2_journal_start(journal, nblocks);
263 }
264 return ext4_get_nojournal();
265 }
266
267 /*
268 * The only special thing we need to do here is to make sure that all
269 * jbd2_journal_stop calls result in the superblock being marked dirty, so
270 * that sync() will call the filesystem's write_super callback if
271 * appropriate.
272 */
273 int __ext4_journal_stop(const char *where, unsigned int line, handle_t *handle)
274 {
275 struct super_block *sb;
276 int err;
277 int rc;
278
279 if (!ext4_handle_valid(handle)) {
280 ext4_put_nojournal(handle);
281 return 0;
282 }
283 sb = handle->h_transaction->t_journal->j_private;
284 err = handle->h_err;
285 rc = jbd2_journal_stop(handle);
286
287 if (!err)
288 err = rc;
289 if (err)
290 __ext4_std_error(sb, where, line, err);
291 return err;
292 }
293
294 void ext4_journal_abort_handle(const char *caller, unsigned int line,
295 const char *err_fn, struct buffer_head *bh,
296 handle_t *handle, int err)
297 {
298 char nbuf[16];
299 const char *errstr = ext4_decode_error(NULL, err, nbuf);
300
301 BUG_ON(!ext4_handle_valid(handle));
302
303 if (bh)
304 BUFFER_TRACE(bh, "abort");
305
306 if (!handle->h_err)
307 handle->h_err = err;
308
309 if (is_handle_aborted(handle))
310 return;
311
312 printk(KERN_ERR "%s:%d: aborting transaction: %s in %s\n",
313 caller, line, errstr, err_fn);
314
315 jbd2_journal_abort_handle(handle);
316 }
317
318 static void __save_error_info(struct super_block *sb, const char *func,
319 unsigned int line)
320 {
321 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
322
323 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
324 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
325 es->s_last_error_time = cpu_to_le32(get_seconds());
326 strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func));
327 es->s_last_error_line = cpu_to_le32(line);
328 if (!es->s_first_error_time) {
329 es->s_first_error_time = es->s_last_error_time;
330 strncpy(es->s_first_error_func, func,
331 sizeof(es->s_first_error_func));
332 es->s_first_error_line = cpu_to_le32(line);
333 es->s_first_error_ino = es->s_last_error_ino;
334 es->s_first_error_block = es->s_last_error_block;
335 }
336 /*
337 * Start the daily error reporting function if it hasn't been
338 * started already
339 */
340 if (!es->s_error_count)
341 mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ);
342 es->s_error_count = cpu_to_le32(le32_to_cpu(es->s_error_count) + 1);
343 }
344
345 static void save_error_info(struct super_block *sb, const char *func,
346 unsigned int line)
347 {
348 __save_error_info(sb, func, line);
349 ext4_commit_super(sb, 1);
350 }
351
352
353 /* Deal with the reporting of failure conditions on a filesystem such as
354 * inconsistencies detected or read IO failures.
355 *
356 * On ext2, we can store the error state of the filesystem in the
357 * superblock. That is not possible on ext4, because we may have other
358 * write ordering constraints on the superblock which prevent us from
359 * writing it out straight away; and given that the journal is about to
360 * be aborted, we can't rely on the current, or future, transactions to
361 * write out the superblock safely.
362 *
363 * We'll just use the jbd2_journal_abort() error code to record an error in
364 * the journal instead. On recovery, the journal will complain about
365 * that error until we've noted it down and cleared it.
366 */
367
368 static void ext4_handle_error(struct super_block *sb)
369 {
370 if (sb->s_flags & MS_RDONLY)
371 return;
372
373 if (!test_opt(sb, ERRORS_CONT)) {
374 journal_t *journal = EXT4_SB(sb)->s_journal;
375
376 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
377 if (journal)
378 jbd2_journal_abort(journal, -EIO);
379 }
380 if (test_opt(sb, ERRORS_RO)) {
381 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
382 sb->s_flags |= MS_RDONLY;
383 }
384 if (test_opt(sb, ERRORS_PANIC))
385 panic("EXT4-fs (device %s): panic forced after error\n",
386 sb->s_id);
387 }
388
389 void __ext4_error(struct super_block *sb, const char *function,
390 unsigned int line, const char *fmt, ...)
391 {
392 va_list args;
393
394 va_start(args, fmt);
395 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: comm %s: ",
396 sb->s_id, function, line, current->comm);
397 vprintk(fmt, args);
398 printk("\n");
399 va_end(args);
400
401 ext4_handle_error(sb);
402 }
403
404 void ext4_error_inode(struct inode *inode, const char *function,
405 unsigned int line, ext4_fsblk_t block,
406 const char *fmt, ...)
407 {
408 va_list args;
409 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
410
411 es->s_last_error_ino = cpu_to_le32(inode->i_ino);
412 es->s_last_error_block = cpu_to_le64(block);
413 save_error_info(inode->i_sb, function, line);
414 va_start(args, fmt);
415 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: inode #%lu: ",
416 inode->i_sb->s_id, function, line, inode->i_ino);
417 if (block)
418 printk("block %llu: ", block);
419 printk("comm %s: ", current->comm);
420 vprintk(fmt, args);
421 printk("\n");
422 va_end(args);
423
424 ext4_handle_error(inode->i_sb);
425 }
426
427 void ext4_error_file(struct file *file, const char *function,
428 unsigned int line, const char *fmt, ...)
429 {
430 va_list args;
431 struct ext4_super_block *es;
432 struct inode *inode = file->f_dentry->d_inode;
433 char pathname[80], *path;
434
435 es = EXT4_SB(inode->i_sb)->s_es;
436 es->s_last_error_ino = cpu_to_le32(inode->i_ino);
437 save_error_info(inode->i_sb, function, line);
438 va_start(args, fmt);
439 path = d_path(&(file->f_path), pathname, sizeof(pathname));
440 if (!path)
441 path = "(unknown)";
442 printk(KERN_CRIT
443 "EXT4-fs error (device %s): %s:%d: inode #%lu "
444 "(comm %s path %s): ",
445 inode->i_sb->s_id, function, line, inode->i_ino,
446 current->comm, path);
447 vprintk(fmt, args);
448 printk("\n");
449 va_end(args);
450
451 ext4_handle_error(inode->i_sb);
452 }
453
454 static const char *ext4_decode_error(struct super_block *sb, int errno,
455 char nbuf[16])
456 {
457 char *errstr = NULL;
458
459 switch (errno) {
460 case -EIO:
461 errstr = "IO failure";
462 break;
463 case -ENOMEM:
464 errstr = "Out of memory";
465 break;
466 case -EROFS:
467 if (!sb || (EXT4_SB(sb)->s_journal &&
468 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
469 errstr = "Journal has aborted";
470 else
471 errstr = "Readonly filesystem";
472 break;
473 default:
474 /* If the caller passed in an extra buffer for unknown
475 * errors, textualise them now. Else we just return
476 * NULL. */
477 if (nbuf) {
478 /* Check for truncated error codes... */
479 if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
480 errstr = nbuf;
481 }
482 break;
483 }
484
485 return errstr;
486 }
487
488 /* __ext4_std_error decodes expected errors from journaling functions
489 * automatically and invokes the appropriate error response. */
490
491 void __ext4_std_error(struct super_block *sb, const char *function,
492 unsigned int line, int errno)
493 {
494 char nbuf[16];
495 const char *errstr;
496
497 /* Special case: if the error is EROFS, and we're not already
498 * inside a transaction, then there's really no point in logging
499 * an error. */
500 if (errno == -EROFS && journal_current_handle() == NULL &&
501 (sb->s_flags & MS_RDONLY))
502 return;
503
504 errstr = ext4_decode_error(sb, errno, nbuf);
505 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
506 sb->s_id, function, line, errstr);
507 save_error_info(sb, function, line);
508
509 ext4_handle_error(sb);
510 }
511
512 /*
513 * ext4_abort is a much stronger failure handler than ext4_error. The
514 * abort function may be used to deal with unrecoverable failures such
515 * as journal IO errors or ENOMEM at a critical moment in log management.
516 *
517 * We unconditionally force the filesystem into an ABORT|READONLY state,
518 * unless the error response on the fs has been set to panic in which
519 * case we take the easy way out and panic immediately.
520 */
521
522 void __ext4_abort(struct super_block *sb, const char *function,
523 unsigned int line, const char *fmt, ...)
524 {
525 va_list args;
526
527 save_error_info(sb, function, line);
528 va_start(args, fmt);
529 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: ", sb->s_id,
530 function, line);
531 vprintk(fmt, args);
532 printk("\n");
533 va_end(args);
534
535 if ((sb->s_flags & MS_RDONLY) == 0) {
536 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
537 sb->s_flags |= MS_RDONLY;
538 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
539 if (EXT4_SB(sb)->s_journal)
540 jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO);
541 save_error_info(sb, function, line);
542 }
543 if (test_opt(sb, ERRORS_PANIC))
544 panic("EXT4-fs panic from previous error\n");
545 }
546
547 void ext4_msg (struct super_block * sb, const char *prefix,
548 const char *fmt, ...)
549 {
550 va_list args;
551
552 va_start(args, fmt);
553 printk("%sEXT4-fs (%s): ", prefix, sb->s_id);
554 vprintk(fmt, args);
555 printk("\n");
556 va_end(args);
557 }
558
559 void __ext4_warning(struct super_block *sb, const char *function,
560 unsigned int line, const char *fmt, ...)
561 {
562 va_list args;
563
564 va_start(args, fmt);
565 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: ",
566 sb->s_id, function, line);
567 vprintk(fmt, args);
568 printk("\n");
569 va_end(args);
570 }
571
572 void __ext4_grp_locked_error(const char *function, unsigned int line,
573 struct super_block *sb, ext4_group_t grp,
574 unsigned long ino, ext4_fsblk_t block,
575 const char *fmt, ...)
576 __releases(bitlock)
577 __acquires(bitlock)
578 {
579 va_list args;
580 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
581
582 es->s_last_error_ino = cpu_to_le32(ino);
583 es->s_last_error_block = cpu_to_le64(block);
584 __save_error_info(sb, function, line);
585 va_start(args, fmt);
586 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u",
587 sb->s_id, function, line, grp);
588 if (ino)
589 printk("inode %lu: ", ino);
590 if (block)
591 printk("block %llu:", (unsigned long long) block);
592 vprintk(fmt, args);
593 printk("\n");
594 va_end(args);
595
596 if (test_opt(sb, ERRORS_CONT)) {
597 ext4_commit_super(sb, 0);
598 return;
599 }
600
601 ext4_unlock_group(sb, grp);
602 ext4_handle_error(sb);
603 /*
604 * We only get here in the ERRORS_RO case; relocking the group
605 * may be dangerous, but nothing bad will happen since the
606 * filesystem will have already been marked read/only and the
607 * journal has been aborted. We return 1 as a hint to callers
608 * who might what to use the return value from
609 * ext4_grp_locked_error() to distinguish beween the
610 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
611 * aggressively from the ext4 function in question, with a
612 * more appropriate error code.
613 */
614 ext4_lock_group(sb, grp);
615 return;
616 }
617
618 void ext4_update_dynamic_rev(struct super_block *sb)
619 {
620 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
621
622 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
623 return;
624
625 ext4_warning(sb,
626 "updating to rev %d because of new feature flag, "
627 "running e2fsck is recommended",
628 EXT4_DYNAMIC_REV);
629
630 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
631 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
632 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
633 /* leave es->s_feature_*compat flags alone */
634 /* es->s_uuid will be set by e2fsck if empty */
635
636 /*
637 * The rest of the superblock fields should be zero, and if not it
638 * means they are likely already in use, so leave them alone. We
639 * can leave it up to e2fsck to clean up any inconsistencies there.
640 */
641 }
642
643 /*
644 * Open the external journal device
645 */
646 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb)
647 {
648 struct block_device *bdev;
649 char b[BDEVNAME_SIZE];
650
651 bdev = open_by_devnum(dev, FMODE_READ|FMODE_WRITE);
652 if (IS_ERR(bdev))
653 goto fail;
654 return bdev;
655
656 fail:
657 ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld",
658 __bdevname(dev, b), PTR_ERR(bdev));
659 return NULL;
660 }
661
662 /*
663 * Release the journal device
664 */
665 static int ext4_blkdev_put(struct block_device *bdev)
666 {
667 bd_release(bdev);
668 return blkdev_put(bdev, FMODE_READ|FMODE_WRITE);
669 }
670
671 static int ext4_blkdev_remove(struct ext4_sb_info *sbi)
672 {
673 struct block_device *bdev;
674 int ret = -ENODEV;
675
676 bdev = sbi->journal_bdev;
677 if (bdev) {
678 ret = ext4_blkdev_put(bdev);
679 sbi->journal_bdev = NULL;
680 }
681 return ret;
682 }
683
684 static inline struct inode *orphan_list_entry(struct list_head *l)
685 {
686 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
687 }
688
689 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
690 {
691 struct list_head *l;
692
693 ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
694 le32_to_cpu(sbi->s_es->s_last_orphan));
695
696 printk(KERN_ERR "sb_info orphan list:\n");
697 list_for_each(l, &sbi->s_orphan) {
698 struct inode *inode = orphan_list_entry(l);
699 printk(KERN_ERR " "
700 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
701 inode->i_sb->s_id, inode->i_ino, inode,
702 inode->i_mode, inode->i_nlink,
703 NEXT_ORPHAN(inode));
704 }
705 }
706
707 static void ext4_put_super(struct super_block *sb)
708 {
709 struct ext4_sb_info *sbi = EXT4_SB(sb);
710 struct ext4_super_block *es = sbi->s_es;
711 int i, err;
712
713 ext4_unregister_li_request(sb);
714 dquot_disable(sb, -1, DQUOT_USAGE_ENABLED | DQUOT_LIMITS_ENABLED);
715
716 flush_workqueue(sbi->dio_unwritten_wq);
717 destroy_workqueue(sbi->dio_unwritten_wq);
718
719 lock_super(sb);
720 lock_kernel();
721 if (sb->s_dirt)
722 ext4_commit_super(sb, 1);
723
724 if (sbi->s_journal) {
725 err = jbd2_journal_destroy(sbi->s_journal);
726 sbi->s_journal = NULL;
727 if (err < 0)
728 ext4_abort(sb, "Couldn't clean up the journal");
729 }
730
731 del_timer(&sbi->s_err_report);
732 ext4_release_system_zone(sb);
733 ext4_mb_release(sb);
734 ext4_ext_release(sb);
735 ext4_xattr_put_super(sb);
736
737 if (!(sb->s_flags & MS_RDONLY)) {
738 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
739 es->s_state = cpu_to_le16(sbi->s_mount_state);
740 ext4_commit_super(sb, 1);
741 }
742 if (sbi->s_proc) {
743 remove_proc_entry(sb->s_id, ext4_proc_root);
744 }
745 kobject_del(&sbi->s_kobj);
746
747 for (i = 0; i < sbi->s_gdb_count; i++)
748 brelse(sbi->s_group_desc[i]);
749 kfree(sbi->s_group_desc);
750 if (is_vmalloc_addr(sbi->s_flex_groups))
751 vfree(sbi->s_flex_groups);
752 else
753 kfree(sbi->s_flex_groups);
754 percpu_counter_destroy(&sbi->s_freeblocks_counter);
755 percpu_counter_destroy(&sbi->s_freeinodes_counter);
756 percpu_counter_destroy(&sbi->s_dirs_counter);
757 percpu_counter_destroy(&sbi->s_dirtyblocks_counter);
758 brelse(sbi->s_sbh);
759 #ifdef CONFIG_QUOTA
760 for (i = 0; i < MAXQUOTAS; i++)
761 kfree(sbi->s_qf_names[i]);
762 #endif
763
764 /* Debugging code just in case the in-memory inode orphan list
765 * isn't empty. The on-disk one can be non-empty if we've
766 * detected an error and taken the fs readonly, but the
767 * in-memory list had better be clean by this point. */
768 if (!list_empty(&sbi->s_orphan))
769 dump_orphan_list(sb, sbi);
770 J_ASSERT(list_empty(&sbi->s_orphan));
771
772 invalidate_bdev(sb->s_bdev);
773 if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) {
774 /*
775 * Invalidate the journal device's buffers. We don't want them
776 * floating about in memory - the physical journal device may
777 * hotswapped, and it breaks the `ro-after' testing code.
778 */
779 sync_blockdev(sbi->journal_bdev);
780 invalidate_bdev(sbi->journal_bdev);
781 ext4_blkdev_remove(sbi);
782 }
783 sb->s_fs_info = NULL;
784 /*
785 * Now that we are completely done shutting down the
786 * superblock, we need to actually destroy the kobject.
787 */
788 unlock_kernel();
789 unlock_super(sb);
790 kobject_put(&sbi->s_kobj);
791 wait_for_completion(&sbi->s_kobj_unregister);
792 kfree(sbi->s_blockgroup_lock);
793 kfree(sbi);
794 }
795
796 static struct kmem_cache *ext4_inode_cachep;
797
798 /*
799 * Called inside transaction, so use GFP_NOFS
800 */
801 static struct inode *ext4_alloc_inode(struct super_block *sb)
802 {
803 struct ext4_inode_info *ei;
804
805 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS);
806 if (!ei)
807 return NULL;
808
809 ei->vfs_inode.i_version = 1;
810 ei->vfs_inode.i_data.writeback_index = 0;
811 memset(&ei->i_cached_extent, 0, sizeof(struct ext4_ext_cache));
812 INIT_LIST_HEAD(&ei->i_prealloc_list);
813 spin_lock_init(&ei->i_prealloc_lock);
814 /*
815 * Note: We can be called before EXT4_SB(sb)->s_journal is set,
816 * therefore it can be null here. Don't check it, just initialize
817 * jinode.
818 */
819 jbd2_journal_init_jbd_inode(&ei->jinode, &ei->vfs_inode);
820 ei->i_reserved_data_blocks = 0;
821 ei->i_reserved_meta_blocks = 0;
822 ei->i_allocated_meta_blocks = 0;
823 ei->i_da_metadata_calc_len = 0;
824 ei->i_delalloc_reserved_flag = 0;
825 spin_lock_init(&(ei->i_block_reservation_lock));
826 #ifdef CONFIG_QUOTA
827 ei->i_reserved_quota = 0;
828 #endif
829 INIT_LIST_HEAD(&ei->i_completed_io_list);
830 spin_lock_init(&ei->i_completed_io_lock);
831 ei->cur_aio_dio = NULL;
832 ei->i_sync_tid = 0;
833 ei->i_datasync_tid = 0;
834
835 return &ei->vfs_inode;
836 }
837
838 static void ext4_destroy_inode(struct inode *inode)
839 {
840 if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
841 ext4_msg(inode->i_sb, KERN_ERR,
842 "Inode %lu (%p): orphan list check failed!",
843 inode->i_ino, EXT4_I(inode));
844 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
845 EXT4_I(inode), sizeof(struct ext4_inode_info),
846 true);
847 dump_stack();
848 }
849 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
850 }
851
852 static void init_once(void *foo)
853 {
854 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo;
855
856 INIT_LIST_HEAD(&ei->i_orphan);
857 #ifdef CONFIG_EXT4_FS_XATTR
858 init_rwsem(&ei->xattr_sem);
859 #endif
860 init_rwsem(&ei->i_data_sem);
861 inode_init_once(&ei->vfs_inode);
862 }
863
864 static int init_inodecache(void)
865 {
866 ext4_inode_cachep = kmem_cache_create("ext4_inode_cache",
867 sizeof(struct ext4_inode_info),
868 0, (SLAB_RECLAIM_ACCOUNT|
869 SLAB_MEM_SPREAD),
870 init_once);
871 if (ext4_inode_cachep == NULL)
872 return -ENOMEM;
873 return 0;
874 }
875
876 static void destroy_inodecache(void)
877 {
878 kmem_cache_destroy(ext4_inode_cachep);
879 }
880
881 void ext4_clear_inode(struct inode *inode)
882 {
883 invalidate_inode_buffers(inode);
884 end_writeback(inode);
885 dquot_drop(inode);
886 ext4_discard_preallocations(inode);
887 if (EXT4_JOURNAL(inode))
888 jbd2_journal_release_jbd_inode(EXT4_SB(inode->i_sb)->s_journal,
889 &EXT4_I(inode)->jinode);
890 }
891
892 static inline void ext4_show_quota_options(struct seq_file *seq,
893 struct super_block *sb)
894 {
895 #if defined(CONFIG_QUOTA)
896 struct ext4_sb_info *sbi = EXT4_SB(sb);
897
898 if (sbi->s_jquota_fmt) {
899 char *fmtname = "";
900
901 switch (sbi->s_jquota_fmt) {
902 case QFMT_VFS_OLD:
903 fmtname = "vfsold";
904 break;
905 case QFMT_VFS_V0:
906 fmtname = "vfsv0";
907 break;
908 case QFMT_VFS_V1:
909 fmtname = "vfsv1";
910 break;
911 }
912 seq_printf(seq, ",jqfmt=%s", fmtname);
913 }
914
915 if (sbi->s_qf_names[USRQUOTA])
916 seq_printf(seq, ",usrjquota=%s", sbi->s_qf_names[USRQUOTA]);
917
918 if (sbi->s_qf_names[GRPQUOTA])
919 seq_printf(seq, ",grpjquota=%s", sbi->s_qf_names[GRPQUOTA]);
920
921 if (test_opt(sb, USRQUOTA))
922 seq_puts(seq, ",usrquota");
923
924 if (test_opt(sb, GRPQUOTA))
925 seq_puts(seq, ",grpquota");
926 #endif
927 }
928
929 /*
930 * Show an option if
931 * - it's set to a non-default value OR
932 * - if the per-sb default is different from the global default
933 */
934 static int ext4_show_options(struct seq_file *seq, struct vfsmount *vfs)
935 {
936 int def_errors;
937 unsigned long def_mount_opts;
938 struct super_block *sb = vfs->mnt_sb;
939 struct ext4_sb_info *sbi = EXT4_SB(sb);
940 struct ext4_super_block *es = sbi->s_es;
941
942 def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
943 def_errors = le16_to_cpu(es->s_errors);
944
945 if (sbi->s_sb_block != 1)
946 seq_printf(seq, ",sb=%llu", sbi->s_sb_block);
947 if (test_opt(sb, MINIX_DF))
948 seq_puts(seq, ",minixdf");
949 if (test_opt(sb, GRPID) && !(def_mount_opts & EXT4_DEFM_BSDGROUPS))
950 seq_puts(seq, ",grpid");
951 if (!test_opt(sb, GRPID) && (def_mount_opts & EXT4_DEFM_BSDGROUPS))
952 seq_puts(seq, ",nogrpid");
953 if (sbi->s_resuid != EXT4_DEF_RESUID ||
954 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID) {
955 seq_printf(seq, ",resuid=%u", sbi->s_resuid);
956 }
957 if (sbi->s_resgid != EXT4_DEF_RESGID ||
958 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID) {
959 seq_printf(seq, ",resgid=%u", sbi->s_resgid);
960 }
961 if (test_opt(sb, ERRORS_RO)) {
962 if (def_errors == EXT4_ERRORS_PANIC ||
963 def_errors == EXT4_ERRORS_CONTINUE) {
964 seq_puts(seq, ",errors=remount-ro");
965 }
966 }
967 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
968 seq_puts(seq, ",errors=continue");
969 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
970 seq_puts(seq, ",errors=panic");
971 if (test_opt(sb, NO_UID32) && !(def_mount_opts & EXT4_DEFM_UID16))
972 seq_puts(seq, ",nouid32");
973 if (test_opt(sb, DEBUG) && !(def_mount_opts & EXT4_DEFM_DEBUG))
974 seq_puts(seq, ",debug");
975 if (test_opt(sb, OLDALLOC))
976 seq_puts(seq, ",oldalloc");
977 #ifdef CONFIG_EXT4_FS_XATTR
978 if (test_opt(sb, XATTR_USER) &&
979 !(def_mount_opts & EXT4_DEFM_XATTR_USER))
980 seq_puts(seq, ",user_xattr");
981 if (!test_opt(sb, XATTR_USER) &&
982 (def_mount_opts & EXT4_DEFM_XATTR_USER)) {
983 seq_puts(seq, ",nouser_xattr");
984 }
985 #endif
986 #ifdef CONFIG_EXT4_FS_POSIX_ACL
987 if (test_opt(sb, POSIX_ACL) && !(def_mount_opts & EXT4_DEFM_ACL))
988 seq_puts(seq, ",acl");
989 if (!test_opt(sb, POSIX_ACL) && (def_mount_opts & EXT4_DEFM_ACL))
990 seq_puts(seq, ",noacl");
991 #endif
992 if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) {
993 seq_printf(seq, ",commit=%u",
994 (unsigned) (sbi->s_commit_interval / HZ));
995 }
996 if (sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME) {
997 seq_printf(seq, ",min_batch_time=%u",
998 (unsigned) sbi->s_min_batch_time);
999 }
1000 if (sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME) {
1001 seq_printf(seq, ",max_batch_time=%u",
1002 (unsigned) sbi->s_min_batch_time);
1003 }
1004
1005 /*
1006 * We're changing the default of barrier mount option, so
1007 * let's always display its mount state so it's clear what its
1008 * status is.
1009 */
1010 seq_puts(seq, ",barrier=");
1011 seq_puts(seq, test_opt(sb, BARRIER) ? "1" : "0");
1012 if (test_opt(sb, JOURNAL_ASYNC_COMMIT))
1013 seq_puts(seq, ",journal_async_commit");
1014 else if (test_opt(sb, JOURNAL_CHECKSUM))
1015 seq_puts(seq, ",journal_checksum");
1016 if (test_opt(sb, I_VERSION))
1017 seq_puts(seq, ",i_version");
1018 if (!test_opt(sb, DELALLOC) &&
1019 !(def_mount_opts & EXT4_DEFM_NODELALLOC))
1020 seq_puts(seq, ",nodelalloc");
1021
1022 if (sbi->s_stripe)
1023 seq_printf(seq, ",stripe=%lu", sbi->s_stripe);
1024 /*
1025 * journal mode get enabled in different ways
1026 * So just print the value even if we didn't specify it
1027 */
1028 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
1029 seq_puts(seq, ",data=journal");
1030 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
1031 seq_puts(seq, ",data=ordered");
1032 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
1033 seq_puts(seq, ",data=writeback");
1034
1035 if (sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
1036 seq_printf(seq, ",inode_readahead_blks=%u",
1037 sbi->s_inode_readahead_blks);
1038
1039 if (test_opt(sb, DATA_ERR_ABORT))
1040 seq_puts(seq, ",data_err=abort");
1041
1042 if (test_opt(sb, NO_AUTO_DA_ALLOC))
1043 seq_puts(seq, ",noauto_da_alloc");
1044
1045 if (test_opt(sb, DISCARD) && !(def_mount_opts & EXT4_DEFM_DISCARD))
1046 seq_puts(seq, ",discard");
1047
1048 if (test_opt(sb, NOLOAD))
1049 seq_puts(seq, ",norecovery");
1050
1051 if (test_opt(sb, DIOREAD_NOLOCK))
1052 seq_puts(seq, ",dioread_nolock");
1053
1054 if (test_opt(sb, BLOCK_VALIDITY) &&
1055 !(def_mount_opts & EXT4_DEFM_BLOCK_VALIDITY))
1056 seq_puts(seq, ",block_validity");
1057
1058 if (!test_opt(sb, INIT_INODE_TABLE))
1059 seq_puts(seq, ",noinit_inode_table");
1060 else if (sbi->s_li_wait_mult)
1061 seq_printf(seq, ",init_inode_table=%u",
1062 (unsigned) sbi->s_li_wait_mult);
1063
1064 ext4_show_quota_options(seq, sb);
1065
1066 return 0;
1067 }
1068
1069 static struct inode *ext4_nfs_get_inode(struct super_block *sb,
1070 u64 ino, u32 generation)
1071 {
1072 struct inode *inode;
1073
1074 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
1075 return ERR_PTR(-ESTALE);
1076 if (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
1077 return ERR_PTR(-ESTALE);
1078
1079 /* iget isn't really right if the inode is currently unallocated!!
1080 *
1081 * ext4_read_inode will return a bad_inode if the inode had been
1082 * deleted, so we should be safe.
1083 *
1084 * Currently we don't know the generation for parent directory, so
1085 * a generation of 0 means "accept any"
1086 */
1087 inode = ext4_iget(sb, ino);
1088 if (IS_ERR(inode))
1089 return ERR_CAST(inode);
1090 if (generation && inode->i_generation != generation) {
1091 iput(inode);
1092 return ERR_PTR(-ESTALE);
1093 }
1094
1095 return inode;
1096 }
1097
1098 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
1099 int fh_len, int fh_type)
1100 {
1101 return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1102 ext4_nfs_get_inode);
1103 }
1104
1105 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
1106 int fh_len, int fh_type)
1107 {
1108 return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1109 ext4_nfs_get_inode);
1110 }
1111
1112 /*
1113 * Try to release metadata pages (indirect blocks, directories) which are
1114 * mapped via the block device. Since these pages could have journal heads
1115 * which would prevent try_to_free_buffers() from freeing them, we must use
1116 * jbd2 layer's try_to_free_buffers() function to release them.
1117 */
1118 static int bdev_try_to_free_page(struct super_block *sb, struct page *page,
1119 gfp_t wait)
1120 {
1121 journal_t *journal = EXT4_SB(sb)->s_journal;
1122
1123 WARN_ON(PageChecked(page));
1124 if (!page_has_buffers(page))
1125 return 0;
1126 if (journal)
1127 return jbd2_journal_try_to_free_buffers(journal, page,
1128 wait & ~__GFP_WAIT);
1129 return try_to_free_buffers(page);
1130 }
1131
1132 #ifdef CONFIG_QUOTA
1133 #define QTYPE2NAME(t) ((t) == USRQUOTA ? "user" : "group")
1134 #define QTYPE2MOPT(on, t) ((t) == USRQUOTA?((on)##USRJQUOTA):((on)##GRPJQUOTA))
1135
1136 static int ext4_write_dquot(struct dquot *dquot);
1137 static int ext4_acquire_dquot(struct dquot *dquot);
1138 static int ext4_release_dquot(struct dquot *dquot);
1139 static int ext4_mark_dquot_dirty(struct dquot *dquot);
1140 static int ext4_write_info(struct super_block *sb, int type);
1141 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1142 char *path);
1143 static int ext4_quota_off(struct super_block *sb, int type);
1144 static int ext4_quota_on_mount(struct super_block *sb, int type);
1145 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1146 size_t len, loff_t off);
1147 static ssize_t ext4_quota_write(struct super_block *sb, int type,
1148 const char *data, size_t len, loff_t off);
1149
1150 static const struct dquot_operations ext4_quota_operations = {
1151 #ifdef CONFIG_QUOTA
1152 .get_reserved_space = ext4_get_reserved_space,
1153 #endif
1154 .write_dquot = ext4_write_dquot,
1155 .acquire_dquot = ext4_acquire_dquot,
1156 .release_dquot = ext4_release_dquot,
1157 .mark_dirty = ext4_mark_dquot_dirty,
1158 .write_info = ext4_write_info,
1159 .alloc_dquot = dquot_alloc,
1160 .destroy_dquot = dquot_destroy,
1161 };
1162
1163 static const struct quotactl_ops ext4_qctl_operations = {
1164 .quota_on = ext4_quota_on,
1165 .quota_off = ext4_quota_off,
1166 .quota_sync = dquot_quota_sync,
1167 .get_info = dquot_get_dqinfo,
1168 .set_info = dquot_set_dqinfo,
1169 .get_dqblk = dquot_get_dqblk,
1170 .set_dqblk = dquot_set_dqblk
1171 };
1172 #endif
1173
1174 static const struct super_operations ext4_sops = {
1175 .alloc_inode = ext4_alloc_inode,
1176 .destroy_inode = ext4_destroy_inode,
1177 .write_inode = ext4_write_inode,
1178 .dirty_inode = ext4_dirty_inode,
1179 .evict_inode = ext4_evict_inode,
1180 .put_super = ext4_put_super,
1181 .sync_fs = ext4_sync_fs,
1182 .freeze_fs = ext4_freeze,
1183 .unfreeze_fs = ext4_unfreeze,
1184 .statfs = ext4_statfs,
1185 .remount_fs = ext4_remount,
1186 .show_options = ext4_show_options,
1187 #ifdef CONFIG_QUOTA
1188 .quota_read = ext4_quota_read,
1189 .quota_write = ext4_quota_write,
1190 #endif
1191 .bdev_try_to_free_page = bdev_try_to_free_page,
1192 .trim_fs = ext4_trim_fs
1193 };
1194
1195 static const struct super_operations ext4_nojournal_sops = {
1196 .alloc_inode = ext4_alloc_inode,
1197 .destroy_inode = ext4_destroy_inode,
1198 .write_inode = ext4_write_inode,
1199 .dirty_inode = ext4_dirty_inode,
1200 .evict_inode = ext4_evict_inode,
1201 .write_super = ext4_write_super,
1202 .put_super = ext4_put_super,
1203 .statfs = ext4_statfs,
1204 .remount_fs = ext4_remount,
1205 .show_options = ext4_show_options,
1206 #ifdef CONFIG_QUOTA
1207 .quota_read = ext4_quota_read,
1208 .quota_write = ext4_quota_write,
1209 #endif
1210 .bdev_try_to_free_page = bdev_try_to_free_page,
1211 };
1212
1213 static const struct export_operations ext4_export_ops = {
1214 .fh_to_dentry = ext4_fh_to_dentry,
1215 .fh_to_parent = ext4_fh_to_parent,
1216 .get_parent = ext4_get_parent,
1217 };
1218
1219 enum {
1220 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1221 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro,
1222 Opt_nouid32, Opt_debug, Opt_oldalloc, Opt_orlov,
1223 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl,
1224 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload, Opt_nobh, Opt_bh,
1225 Opt_commit, Opt_min_batch_time, Opt_max_batch_time,
1226 Opt_journal_update, Opt_journal_dev,
1227 Opt_journal_checksum, Opt_journal_async_commit,
1228 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1229 Opt_data_err_abort, Opt_data_err_ignore,
1230 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota,
1231 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota,
1232 Opt_noquota, Opt_ignore, Opt_barrier, Opt_nobarrier, Opt_err,
1233 Opt_resize, Opt_usrquota, Opt_grpquota, Opt_i_version,
1234 Opt_stripe, Opt_delalloc, Opt_nodelalloc,
1235 Opt_block_validity, Opt_noblock_validity,
1236 Opt_inode_readahead_blks, Opt_journal_ioprio,
1237 Opt_dioread_nolock, Opt_dioread_lock,
1238 Opt_discard, Opt_nodiscard,
1239 Opt_init_inode_table, Opt_noinit_inode_table,
1240 };
1241
1242 static const match_table_t tokens = {
1243 {Opt_bsd_df, "bsddf"},
1244 {Opt_minix_df, "minixdf"},
1245 {Opt_grpid, "grpid"},
1246 {Opt_grpid, "bsdgroups"},
1247 {Opt_nogrpid, "nogrpid"},
1248 {Opt_nogrpid, "sysvgroups"},
1249 {Opt_resgid, "resgid=%u"},
1250 {Opt_resuid, "resuid=%u"},
1251 {Opt_sb, "sb=%u"},
1252 {Opt_err_cont, "errors=continue"},
1253 {Opt_err_panic, "errors=panic"},
1254 {Opt_err_ro, "errors=remount-ro"},
1255 {Opt_nouid32, "nouid32"},
1256 {Opt_debug, "debug"},
1257 {Opt_oldalloc, "oldalloc"},
1258 {Opt_orlov, "orlov"},
1259 {Opt_user_xattr, "user_xattr"},
1260 {Opt_nouser_xattr, "nouser_xattr"},
1261 {Opt_acl, "acl"},
1262 {Opt_noacl, "noacl"},
1263 {Opt_noload, "noload"},
1264 {Opt_noload, "norecovery"},
1265 {Opt_nobh, "nobh"},
1266 {Opt_bh, "bh"},
1267 {Opt_commit, "commit=%u"},
1268 {Opt_min_batch_time, "min_batch_time=%u"},
1269 {Opt_max_batch_time, "max_batch_time=%u"},
1270 {Opt_journal_update, "journal=update"},
1271 {Opt_journal_dev, "journal_dev=%u"},
1272 {Opt_journal_checksum, "journal_checksum"},
1273 {Opt_journal_async_commit, "journal_async_commit"},
1274 {Opt_abort, "abort"},
1275 {Opt_data_journal, "data=journal"},
1276 {Opt_data_ordered, "data=ordered"},
1277 {Opt_data_writeback, "data=writeback"},
1278 {Opt_data_err_abort, "data_err=abort"},
1279 {Opt_data_err_ignore, "data_err=ignore"},
1280 {Opt_offusrjquota, "usrjquota="},
1281 {Opt_usrjquota, "usrjquota=%s"},
1282 {Opt_offgrpjquota, "grpjquota="},
1283 {Opt_grpjquota, "grpjquota=%s"},
1284 {Opt_jqfmt_vfsold, "jqfmt=vfsold"},
1285 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
1286 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
1287 {Opt_grpquota, "grpquota"},
1288 {Opt_noquota, "noquota"},
1289 {Opt_quota, "quota"},
1290 {Opt_usrquota, "usrquota"},
1291 {Opt_barrier, "barrier=%u"},
1292 {Opt_barrier, "barrier"},
1293 {Opt_nobarrier, "nobarrier"},
1294 {Opt_i_version, "i_version"},
1295 {Opt_stripe, "stripe=%u"},
1296 {Opt_resize, "resize"},
1297 {Opt_delalloc, "delalloc"},
1298 {Opt_nodelalloc, "nodelalloc"},
1299 {Opt_block_validity, "block_validity"},
1300 {Opt_noblock_validity, "noblock_validity"},
1301 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"},
1302 {Opt_journal_ioprio, "journal_ioprio=%u"},
1303 {Opt_auto_da_alloc, "auto_da_alloc=%u"},
1304 {Opt_auto_da_alloc, "auto_da_alloc"},
1305 {Opt_noauto_da_alloc, "noauto_da_alloc"},
1306 {Opt_dioread_nolock, "dioread_nolock"},
1307 {Opt_dioread_lock, "dioread_lock"},
1308 {Opt_discard, "discard"},
1309 {Opt_nodiscard, "nodiscard"},
1310 {Opt_init_inode_table, "init_itable=%u"},
1311 {Opt_init_inode_table, "init_itable"},
1312 {Opt_noinit_inode_table, "noinit_itable"},
1313 {Opt_err, NULL},
1314 };
1315
1316 static ext4_fsblk_t get_sb_block(void **data)
1317 {
1318 ext4_fsblk_t sb_block;
1319 char *options = (char *) *data;
1320
1321 if (!options || strncmp(options, "sb=", 3) != 0)
1322 return 1; /* Default location */
1323
1324 options += 3;
1325 /* TODO: use simple_strtoll with >32bit ext4 */
1326 sb_block = simple_strtoul(options, &options, 0);
1327 if (*options && *options != ',') {
1328 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n",
1329 (char *) *data);
1330 return 1;
1331 }
1332 if (*options == ',')
1333 options++;
1334 *data = (void *) options;
1335
1336 return sb_block;
1337 }
1338
1339 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1340 static char deprecated_msg[] = "Mount option \"%s\" will be removed by %s\n"
1341 "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n";
1342
1343 #ifdef CONFIG_QUOTA
1344 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args)
1345 {
1346 struct ext4_sb_info *sbi = EXT4_SB(sb);
1347 char *qname;
1348
1349 if (sb_any_quota_loaded(sb) &&
1350 !sbi->s_qf_names[qtype]) {
1351 ext4_msg(sb, KERN_ERR,
1352 "Cannot change journaled "
1353 "quota options when quota turned on");
1354 return 0;
1355 }
1356 qname = match_strdup(args);
1357 if (!qname) {
1358 ext4_msg(sb, KERN_ERR,
1359 "Not enough memory for storing quotafile name");
1360 return 0;
1361 }
1362 if (sbi->s_qf_names[qtype] &&
1363 strcmp(sbi->s_qf_names[qtype], qname)) {
1364 ext4_msg(sb, KERN_ERR,
1365 "%s quota file already specified", QTYPE2NAME(qtype));
1366 kfree(qname);
1367 return 0;
1368 }
1369 sbi->s_qf_names[qtype] = qname;
1370 if (strchr(sbi->s_qf_names[qtype], '/')) {
1371 ext4_msg(sb, KERN_ERR,
1372 "quotafile must be on filesystem root");
1373 kfree(sbi->s_qf_names[qtype]);
1374 sbi->s_qf_names[qtype] = NULL;
1375 return 0;
1376 }
1377 set_opt(sbi->s_mount_opt, QUOTA);
1378 return 1;
1379 }
1380
1381 static int clear_qf_name(struct super_block *sb, int qtype)
1382 {
1383
1384 struct ext4_sb_info *sbi = EXT4_SB(sb);
1385
1386 if (sb_any_quota_loaded(sb) &&
1387 sbi->s_qf_names[qtype]) {
1388 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options"
1389 " when quota turned on");
1390 return 0;
1391 }
1392 /*
1393 * The space will be released later when all options are confirmed
1394 * to be correct
1395 */
1396 sbi->s_qf_names[qtype] = NULL;
1397 return 1;
1398 }
1399 #endif
1400
1401 static int parse_options(char *options, struct super_block *sb,
1402 unsigned long *journal_devnum,
1403 unsigned int *journal_ioprio,
1404 ext4_fsblk_t *n_blocks_count, int is_remount)
1405 {
1406 struct ext4_sb_info *sbi = EXT4_SB(sb);
1407 char *p;
1408 substring_t args[MAX_OPT_ARGS];
1409 int data_opt = 0;
1410 int option;
1411 #ifdef CONFIG_QUOTA
1412 int qfmt;
1413 #endif
1414
1415 if (!options)
1416 return 1;
1417
1418 while ((p = strsep(&options, ",")) != NULL) {
1419 int token;
1420 if (!*p)
1421 continue;
1422
1423 /*
1424 * Initialize args struct so we know whether arg was
1425 * found; some options take optional arguments.
1426 */
1427 args[0].to = args[0].from = 0;
1428 token = match_token(p, tokens, args);
1429 switch (token) {
1430 case Opt_bsd_df:
1431 ext4_msg(sb, KERN_WARNING, deprecated_msg, p, "2.6.38");
1432 clear_opt(sbi->s_mount_opt, MINIX_DF);
1433 break;
1434 case Opt_minix_df:
1435 ext4_msg(sb, KERN_WARNING, deprecated_msg, p, "2.6.38");
1436 set_opt(sbi->s_mount_opt, MINIX_DF);
1437
1438 break;
1439 case Opt_grpid:
1440 ext4_msg(sb, KERN_WARNING, deprecated_msg, p, "2.6.38");
1441 set_opt(sbi->s_mount_opt, GRPID);
1442
1443 break;
1444 case Opt_nogrpid:
1445 ext4_msg(sb, KERN_WARNING, deprecated_msg, p, "2.6.38");
1446 clear_opt(sbi->s_mount_opt, GRPID);
1447
1448 break;
1449 case Opt_resuid:
1450 if (match_int(&args[0], &option))
1451 return 0;
1452 sbi->s_resuid = option;
1453 break;
1454 case Opt_resgid:
1455 if (match_int(&args[0], &option))
1456 return 0;
1457 sbi->s_resgid = option;
1458 break;
1459 case Opt_sb:
1460 /* handled by get_sb_block() instead of here */
1461 /* *sb_block = match_int(&args[0]); */
1462 break;
1463 case Opt_err_panic:
1464 clear_opt(sbi->s_mount_opt, ERRORS_CONT);
1465 clear_opt(sbi->s_mount_opt, ERRORS_RO);
1466 set_opt(sbi->s_mount_opt, ERRORS_PANIC);
1467 break;
1468 case Opt_err_ro:
1469 clear_opt(sbi->s_mount_opt, ERRORS_CONT);
1470 clear_opt(sbi->s_mount_opt, ERRORS_PANIC);
1471 set_opt(sbi->s_mount_opt, ERRORS_RO);
1472 break;
1473 case Opt_err_cont:
1474 clear_opt(sbi->s_mount_opt, ERRORS_RO);
1475 clear_opt(sbi->s_mount_opt, ERRORS_PANIC);
1476 set_opt(sbi->s_mount_opt, ERRORS_CONT);
1477 break;
1478 case Opt_nouid32:
1479 set_opt(sbi->s_mount_opt, NO_UID32);
1480 break;
1481 case Opt_debug:
1482 set_opt(sbi->s_mount_opt, DEBUG);
1483 break;
1484 case Opt_oldalloc:
1485 set_opt(sbi->s_mount_opt, OLDALLOC);
1486 break;
1487 case Opt_orlov:
1488 clear_opt(sbi->s_mount_opt, OLDALLOC);
1489 break;
1490 #ifdef CONFIG_EXT4_FS_XATTR
1491 case Opt_user_xattr:
1492 set_opt(sbi->s_mount_opt, XATTR_USER);
1493 break;
1494 case Opt_nouser_xattr:
1495 clear_opt(sbi->s_mount_opt, XATTR_USER);
1496 break;
1497 #else
1498 case Opt_user_xattr:
1499 case Opt_nouser_xattr:
1500 ext4_msg(sb, KERN_ERR, "(no)user_xattr options not supported");
1501 break;
1502 #endif
1503 #ifdef CONFIG_EXT4_FS_POSIX_ACL
1504 case Opt_acl:
1505 set_opt(sbi->s_mount_opt, POSIX_ACL);
1506 break;
1507 case Opt_noacl:
1508 clear_opt(sbi->s_mount_opt, POSIX_ACL);
1509 break;
1510 #else
1511 case Opt_acl:
1512 case Opt_noacl:
1513 ext4_msg(sb, KERN_ERR, "(no)acl options not supported");
1514 break;
1515 #endif
1516 case Opt_journal_update:
1517 /* @@@ FIXME */
1518 /* Eventually we will want to be able to create
1519 a journal file here. For now, only allow the
1520 user to specify an existing inode to be the
1521 journal file. */
1522 if (is_remount) {
1523 ext4_msg(sb, KERN_ERR,
1524 "Cannot specify journal on remount");
1525 return 0;
1526 }
1527 set_opt(sbi->s_mount_opt, UPDATE_JOURNAL);
1528 break;
1529 case Opt_journal_dev:
1530 if (is_remount) {
1531 ext4_msg(sb, KERN_ERR,
1532 "Cannot specify journal on remount");
1533 return 0;
1534 }
1535 if (match_int(&args[0], &option))
1536 return 0;
1537 *journal_devnum = option;
1538 break;
1539 case Opt_journal_checksum:
1540 set_opt(sbi->s_mount_opt, JOURNAL_CHECKSUM);
1541 break;
1542 case Opt_journal_async_commit:
1543 set_opt(sbi->s_mount_opt, JOURNAL_ASYNC_COMMIT);
1544 set_opt(sbi->s_mount_opt, JOURNAL_CHECKSUM);
1545 break;
1546 case Opt_noload:
1547 set_opt(sbi->s_mount_opt, NOLOAD);
1548 break;
1549 case Opt_commit:
1550 if (match_int(&args[0], &option))
1551 return 0;
1552 if (option < 0)
1553 return 0;
1554 if (option == 0)
1555 option = JBD2_DEFAULT_MAX_COMMIT_AGE;
1556 sbi->s_commit_interval = HZ * option;
1557 break;
1558 case Opt_max_batch_time:
1559 if (match_int(&args[0], &option))
1560 return 0;
1561 if (option < 0)
1562 return 0;
1563 if (option == 0)
1564 option = EXT4_DEF_MAX_BATCH_TIME;
1565 sbi->s_max_batch_time = option;
1566 break;
1567 case Opt_min_batch_time:
1568 if (match_int(&args[0], &option))
1569 return 0;
1570 if (option < 0)
1571 return 0;
1572 sbi->s_min_batch_time = option;
1573 break;
1574 case Opt_data_journal:
1575 data_opt = EXT4_MOUNT_JOURNAL_DATA;
1576 goto datacheck;
1577 case Opt_data_ordered:
1578 data_opt = EXT4_MOUNT_ORDERED_DATA;
1579 goto datacheck;
1580 case Opt_data_writeback:
1581 data_opt = EXT4_MOUNT_WRITEBACK_DATA;
1582 datacheck:
1583 if (is_remount) {
1584 if (test_opt(sb, DATA_FLAGS) != data_opt) {
1585 ext4_msg(sb, KERN_ERR,
1586 "Cannot change data mode on remount");
1587 return 0;
1588 }
1589 } else {
1590 clear_opt(sbi->s_mount_opt, DATA_FLAGS);
1591 sbi->s_mount_opt |= data_opt;
1592 }
1593 break;
1594 case Opt_data_err_abort:
1595 set_opt(sbi->s_mount_opt, DATA_ERR_ABORT);
1596 break;
1597 case Opt_data_err_ignore:
1598 clear_opt(sbi->s_mount_opt, DATA_ERR_ABORT);
1599 break;
1600 #ifdef CONFIG_QUOTA
1601 case Opt_usrjquota:
1602 if (!set_qf_name(sb, USRQUOTA, &args[0]))
1603 return 0;
1604 break;
1605 case Opt_grpjquota:
1606 if (!set_qf_name(sb, GRPQUOTA, &args[0]))
1607 return 0;
1608 break;
1609 case Opt_offusrjquota:
1610 if (!clear_qf_name(sb, USRQUOTA))
1611 return 0;
1612 break;
1613 case Opt_offgrpjquota:
1614 if (!clear_qf_name(sb, GRPQUOTA))
1615 return 0;
1616 break;
1617
1618 case Opt_jqfmt_vfsold:
1619 qfmt = QFMT_VFS_OLD;
1620 goto set_qf_format;
1621 case Opt_jqfmt_vfsv0:
1622 qfmt = QFMT_VFS_V0;
1623 goto set_qf_format;
1624 case Opt_jqfmt_vfsv1:
1625 qfmt = QFMT_VFS_V1;
1626 set_qf_format:
1627 if (sb_any_quota_loaded(sb) &&
1628 sbi->s_jquota_fmt != qfmt) {
1629 ext4_msg(sb, KERN_ERR, "Cannot change "
1630 "journaled quota options when "
1631 "quota turned on");
1632 return 0;
1633 }
1634 sbi->s_jquota_fmt = qfmt;
1635 break;
1636 case Opt_quota:
1637 case Opt_usrquota:
1638 set_opt(sbi->s_mount_opt, QUOTA);
1639 set_opt(sbi->s_mount_opt, USRQUOTA);
1640 break;
1641 case Opt_grpquota:
1642 set_opt(sbi->s_mount_opt, QUOTA);
1643 set_opt(sbi->s_mount_opt, GRPQUOTA);
1644 break;
1645 case Opt_noquota:
1646 if (sb_any_quota_loaded(sb)) {
1647 ext4_msg(sb, KERN_ERR, "Cannot change quota "
1648 "options when quota turned on");
1649 return 0;
1650 }
1651 clear_opt(sbi->s_mount_opt, QUOTA);
1652 clear_opt(sbi->s_mount_opt, USRQUOTA);
1653 clear_opt(sbi->s_mount_opt, GRPQUOTA);
1654 break;
1655 #else
1656 case Opt_quota:
1657 case Opt_usrquota:
1658 case Opt_grpquota:
1659 ext4_msg(sb, KERN_ERR,
1660 "quota options not supported");
1661 break;
1662 case Opt_usrjquota:
1663 case Opt_grpjquota:
1664 case Opt_offusrjquota:
1665 case Opt_offgrpjquota:
1666 case Opt_jqfmt_vfsold:
1667 case Opt_jqfmt_vfsv0:
1668 case Opt_jqfmt_vfsv1:
1669 ext4_msg(sb, KERN_ERR,
1670 "journaled quota options not supported");
1671 break;
1672 case Opt_noquota:
1673 break;
1674 #endif
1675 case Opt_abort:
1676 sbi->s_mount_flags |= EXT4_MF_FS_ABORTED;
1677 break;
1678 case Opt_nobarrier:
1679 clear_opt(sbi->s_mount_opt, BARRIER);
1680 break;
1681 case Opt_barrier:
1682 if (args[0].from) {
1683 if (match_int(&args[0], &option))
1684 return 0;
1685 } else
1686 option = 1; /* No argument, default to 1 */
1687 if (option)
1688 set_opt(sbi->s_mount_opt, BARRIER);
1689 else
1690 clear_opt(sbi->s_mount_opt, BARRIER);
1691 break;
1692 case Opt_ignore:
1693 break;
1694 case Opt_resize:
1695 if (!is_remount) {
1696 ext4_msg(sb, KERN_ERR,
1697 "resize option only available "
1698 "for remount");
1699 return 0;
1700 }
1701 if (match_int(&args[0], &option) != 0)
1702 return 0;
1703 *n_blocks_count = option;
1704 break;
1705 case Opt_nobh:
1706 ext4_msg(sb, KERN_WARNING,
1707 "Ignoring deprecated nobh option");
1708 break;
1709 case Opt_bh:
1710 ext4_msg(sb, KERN_WARNING,
1711 "Ignoring deprecated bh option");
1712 break;
1713 case Opt_i_version:
1714 set_opt(sbi->s_mount_opt, I_VERSION);
1715 sb->s_flags |= MS_I_VERSION;
1716 break;
1717 case Opt_nodelalloc:
1718 clear_opt(sbi->s_mount_opt, DELALLOC);
1719 break;
1720 case Opt_stripe:
1721 if (match_int(&args[0], &option))
1722 return 0;
1723 if (option < 0)
1724 return 0;
1725 sbi->s_stripe = option;
1726 break;
1727 case Opt_delalloc:
1728 set_opt(sbi->s_mount_opt, DELALLOC);
1729 break;
1730 case Opt_block_validity:
1731 set_opt(sbi->s_mount_opt, BLOCK_VALIDITY);
1732 break;
1733 case Opt_noblock_validity:
1734 clear_opt(sbi->s_mount_opt, BLOCK_VALIDITY);
1735 break;
1736 case Opt_inode_readahead_blks:
1737 if (match_int(&args[0], &option))
1738 return 0;
1739 if (option < 0 || option > (1 << 30))
1740 return 0;
1741 if (!is_power_of_2(option)) {
1742 ext4_msg(sb, KERN_ERR,
1743 "EXT4-fs: inode_readahead_blks"
1744 " must be a power of 2");
1745 return 0;
1746 }
1747 sbi->s_inode_readahead_blks = option;
1748 break;
1749 case Opt_journal_ioprio:
1750 if (match_int(&args[0], &option))
1751 return 0;
1752 if (option < 0 || option > 7)
1753 break;
1754 *journal_ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE,
1755 option);
1756 break;
1757 case Opt_noauto_da_alloc:
1758 set_opt(sbi->s_mount_opt,NO_AUTO_DA_ALLOC);
1759 break;
1760 case Opt_auto_da_alloc:
1761 if (args[0].from) {
1762 if (match_int(&args[0], &option))
1763 return 0;
1764 } else
1765 option = 1; /* No argument, default to 1 */
1766 if (option)
1767 clear_opt(sbi->s_mount_opt, NO_AUTO_DA_ALLOC);
1768 else
1769 set_opt(sbi->s_mount_opt,NO_AUTO_DA_ALLOC);
1770 break;
1771 case Opt_discard:
1772 set_opt(sbi->s_mount_opt, DISCARD);
1773 break;
1774 case Opt_nodiscard:
1775 clear_opt(sbi->s_mount_opt, DISCARD);
1776 break;
1777 case Opt_dioread_nolock:
1778 set_opt(sbi->s_mount_opt, DIOREAD_NOLOCK);
1779 break;
1780 case Opt_dioread_lock:
1781 clear_opt(sbi->s_mount_opt, DIOREAD_NOLOCK);
1782 break;
1783 case Opt_init_inode_table:
1784 set_opt(sbi->s_mount_opt, INIT_INODE_TABLE);
1785 if (args[0].from) {
1786 if (match_int(&args[0], &option))
1787 return 0;
1788 } else
1789 option = EXT4_DEF_LI_WAIT_MULT;
1790 if (option < 0)
1791 return 0;
1792 sbi->s_li_wait_mult = option;
1793 break;
1794 case Opt_noinit_inode_table:
1795 clear_opt(sbi->s_mount_opt, INIT_INODE_TABLE);
1796 break;
1797 default:
1798 ext4_msg(sb, KERN_ERR,
1799 "Unrecognized mount option \"%s\" "
1800 "or missing value", p);
1801 return 0;
1802 }
1803 }
1804 #ifdef CONFIG_QUOTA
1805 if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
1806 if (test_opt(sb, USRQUOTA) && sbi->s_qf_names[USRQUOTA])
1807 clear_opt(sbi->s_mount_opt, USRQUOTA);
1808
1809 if (test_opt(sb, GRPQUOTA) && sbi->s_qf_names[GRPQUOTA])
1810 clear_opt(sbi->s_mount_opt, GRPQUOTA);
1811
1812 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) {
1813 ext4_msg(sb, KERN_ERR, "old and new quota "
1814 "format mixing");
1815 return 0;
1816 }
1817
1818 if (!sbi->s_jquota_fmt) {
1819 ext4_msg(sb, KERN_ERR, "journaled quota format "
1820 "not specified");
1821 return 0;
1822 }
1823 } else {
1824 if (sbi->s_jquota_fmt) {
1825 ext4_msg(sb, KERN_ERR, "journaled quota format "
1826 "specified with no journaling "
1827 "enabled");
1828 return 0;
1829 }
1830 }
1831 #endif
1832 return 1;
1833 }
1834
1835 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
1836 int read_only)
1837 {
1838 struct ext4_sb_info *sbi = EXT4_SB(sb);
1839 int res = 0;
1840
1841 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
1842 ext4_msg(sb, KERN_ERR, "revision level too high, "
1843 "forcing read-only mode");
1844 res = MS_RDONLY;
1845 }
1846 if (read_only)
1847 return res;
1848 if (!(sbi->s_mount_state & EXT4_VALID_FS))
1849 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
1850 "running e2fsck is recommended");
1851 else if ((sbi->s_mount_state & EXT4_ERROR_FS))
1852 ext4_msg(sb, KERN_WARNING,
1853 "warning: mounting fs with errors, "
1854 "running e2fsck is recommended");
1855 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) >= 0 &&
1856 le16_to_cpu(es->s_mnt_count) >=
1857 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
1858 ext4_msg(sb, KERN_WARNING,
1859 "warning: maximal mount count reached, "
1860 "running e2fsck is recommended");
1861 else if (le32_to_cpu(es->s_checkinterval) &&
1862 (le32_to_cpu(es->s_lastcheck) +
1863 le32_to_cpu(es->s_checkinterval) <= get_seconds()))
1864 ext4_msg(sb, KERN_WARNING,
1865 "warning: checktime reached, "
1866 "running e2fsck is recommended");
1867 if (!sbi->s_journal)
1868 es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
1869 if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
1870 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
1871 le16_add_cpu(&es->s_mnt_count, 1);
1872 es->s_mtime = cpu_to_le32(get_seconds());
1873 ext4_update_dynamic_rev(sb);
1874 if (sbi->s_journal)
1875 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
1876
1877 ext4_commit_super(sb, 1);
1878 if (test_opt(sb, DEBUG))
1879 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
1880 "bpg=%lu, ipg=%lu, mo=%04x]\n",
1881 sb->s_blocksize,
1882 sbi->s_groups_count,
1883 EXT4_BLOCKS_PER_GROUP(sb),
1884 EXT4_INODES_PER_GROUP(sb),
1885 sbi->s_mount_opt);
1886
1887 return res;
1888 }
1889
1890 static int ext4_fill_flex_info(struct super_block *sb)
1891 {
1892 struct ext4_sb_info *sbi = EXT4_SB(sb);
1893 struct ext4_group_desc *gdp = NULL;
1894 ext4_group_t flex_group_count;
1895 ext4_group_t flex_group;
1896 int groups_per_flex = 0;
1897 size_t size;
1898 int i;
1899
1900 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
1901 groups_per_flex = 1 << sbi->s_log_groups_per_flex;
1902
1903 if (groups_per_flex < 2) {
1904 sbi->s_log_groups_per_flex = 0;
1905 return 1;
1906 }
1907
1908 /* We allocate both existing and potentially added groups */
1909 flex_group_count = ((sbi->s_groups_count + groups_per_flex - 1) +
1910 ((le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) + 1) <<
1911 EXT4_DESC_PER_BLOCK_BITS(sb))) / groups_per_flex;
1912 size = flex_group_count * sizeof(struct flex_groups);
1913 sbi->s_flex_groups = kzalloc(size, GFP_KERNEL);
1914 if (sbi->s_flex_groups == NULL) {
1915 sbi->s_flex_groups = vmalloc(size);
1916 if (sbi->s_flex_groups)
1917 memset(sbi->s_flex_groups, 0, size);
1918 }
1919 if (sbi->s_flex_groups == NULL) {
1920 ext4_msg(sb, KERN_ERR, "not enough memory for "
1921 "%u flex groups", flex_group_count);
1922 goto failed;
1923 }
1924
1925 for (i = 0; i < sbi->s_groups_count; i++) {
1926 gdp = ext4_get_group_desc(sb, i, NULL);
1927
1928 flex_group = ext4_flex_group(sbi, i);
1929 atomic_add(ext4_free_inodes_count(sb, gdp),
1930 &sbi->s_flex_groups[flex_group].free_inodes);
1931 atomic_add(ext4_free_blks_count(sb, gdp),
1932 &sbi->s_flex_groups[flex_group].free_blocks);
1933 atomic_add(ext4_used_dirs_count(sb, gdp),
1934 &sbi->s_flex_groups[flex_group].used_dirs);
1935 }
1936
1937 return 1;
1938 failed:
1939 return 0;
1940 }
1941
1942 __le16 ext4_group_desc_csum(struct ext4_sb_info *sbi, __u32 block_group,
1943 struct ext4_group_desc *gdp)
1944 {
1945 __u16 crc = 0;
1946
1947 if (sbi->s_es->s_feature_ro_compat &
1948 cpu_to_le32(EXT4_FEATURE_RO_COMPAT_GDT_CSUM)) {
1949 int offset = offsetof(struct ext4_group_desc, bg_checksum);
1950 __le32 le_group = cpu_to_le32(block_group);
1951
1952 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
1953 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
1954 crc = crc16(crc, (__u8 *)gdp, offset);
1955 offset += sizeof(gdp->bg_checksum); /* skip checksum */
1956 /* for checksum of struct ext4_group_desc do the rest...*/
1957 if ((sbi->s_es->s_feature_incompat &
1958 cpu_to_le32(EXT4_FEATURE_INCOMPAT_64BIT)) &&
1959 offset < le16_to_cpu(sbi->s_es->s_desc_size))
1960 crc = crc16(crc, (__u8 *)gdp + offset,
1961 le16_to_cpu(sbi->s_es->s_desc_size) -
1962 offset);
1963 }
1964
1965 return cpu_to_le16(crc);
1966 }
1967
1968 int ext4_group_desc_csum_verify(struct ext4_sb_info *sbi, __u32 block_group,
1969 struct ext4_group_desc *gdp)
1970 {
1971 if ((sbi->s_es->s_feature_ro_compat &
1972 cpu_to_le32(EXT4_FEATURE_RO_COMPAT_GDT_CSUM)) &&
1973 (gdp->bg_checksum != ext4_group_desc_csum(sbi, block_group, gdp)))
1974 return 0;
1975
1976 return 1;
1977 }
1978
1979 /* Called at mount-time, super-block is locked */
1980 static int ext4_check_descriptors(struct super_block *sb,
1981 ext4_group_t *first_not_zeroed)
1982 {
1983 struct ext4_sb_info *sbi = EXT4_SB(sb);
1984 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
1985 ext4_fsblk_t last_block;
1986 ext4_fsblk_t block_bitmap;
1987 ext4_fsblk_t inode_bitmap;
1988 ext4_fsblk_t inode_table;
1989 int flexbg_flag = 0;
1990 ext4_group_t i, grp = sbi->s_groups_count;
1991
1992 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG))
1993 flexbg_flag = 1;
1994
1995 ext4_debug("Checking group descriptors");
1996
1997 for (i = 0; i < sbi->s_groups_count; i++) {
1998 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
1999
2000 if (i == sbi->s_groups_count - 1 || flexbg_flag)
2001 last_block = ext4_blocks_count(sbi->s_es) - 1;
2002 else
2003 last_block = first_block +
2004 (EXT4_BLOCKS_PER_GROUP(sb) - 1);
2005
2006 if ((grp == sbi->s_groups_count) &&
2007 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2008 grp = i;
2009
2010 block_bitmap = ext4_block_bitmap(sb, gdp);
2011 if (block_bitmap < first_block || block_bitmap > last_block) {
2012 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2013 "Block bitmap for group %u not in group "
2014 "(block %llu)!", i, block_bitmap);
2015 return 0;
2016 }
2017 inode_bitmap = ext4_inode_bitmap(sb, gdp);
2018 if (inode_bitmap < first_block || inode_bitmap > last_block) {
2019 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2020 "Inode bitmap for group %u not in group "
2021 "(block %llu)!", i, inode_bitmap);
2022 return 0;
2023 }
2024 inode_table = ext4_inode_table(sb, gdp);
2025 if (inode_table < first_block ||
2026 inode_table + sbi->s_itb_per_group - 1 > last_block) {
2027 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2028 "Inode table for group %u not in group "
2029 "(block %llu)!", i, inode_table);
2030 return 0;
2031 }
2032 ext4_lock_group(sb, i);
2033 if (!ext4_group_desc_csum_verify(sbi, i, gdp)) {
2034 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2035 "Checksum for group %u failed (%u!=%u)",
2036 i, le16_to_cpu(ext4_group_desc_csum(sbi, i,
2037 gdp)), le16_to_cpu(gdp->bg_checksum));
2038 if (!(sb->s_flags & MS_RDONLY)) {
2039 ext4_unlock_group(sb, i);
2040 return 0;
2041 }
2042 }
2043 ext4_unlock_group(sb, i);
2044 if (!flexbg_flag)
2045 first_block += EXT4_BLOCKS_PER_GROUP(sb);
2046 }
2047 if (NULL != first_not_zeroed)
2048 *first_not_zeroed = grp;
2049
2050 ext4_free_blocks_count_set(sbi->s_es, ext4_count_free_blocks(sb));
2051 sbi->s_es->s_free_inodes_count =cpu_to_le32(ext4_count_free_inodes(sb));
2052 return 1;
2053 }
2054
2055 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at
2056 * the superblock) which were deleted from all directories, but held open by
2057 * a process at the time of a crash. We walk the list and try to delete these
2058 * inodes at recovery time (only with a read-write filesystem).
2059 *
2060 * In order to keep the orphan inode chain consistent during traversal (in
2061 * case of crash during recovery), we link each inode into the superblock
2062 * orphan list_head and handle it the same way as an inode deletion during
2063 * normal operation (which journals the operations for us).
2064 *
2065 * We only do an iget() and an iput() on each inode, which is very safe if we
2066 * accidentally point at an in-use or already deleted inode. The worst that
2067 * can happen in this case is that we get a "bit already cleared" message from
2068 * ext4_free_inode(). The only reason we would point at a wrong inode is if
2069 * e2fsck was run on this filesystem, and it must have already done the orphan
2070 * inode cleanup for us, so we can safely abort without any further action.
2071 */
2072 static void ext4_orphan_cleanup(struct super_block *sb,
2073 struct ext4_super_block *es)
2074 {
2075 unsigned int s_flags = sb->s_flags;
2076 int nr_orphans = 0, nr_truncates = 0;
2077 #ifdef CONFIG_QUOTA
2078 int i;
2079 #endif
2080 if (!es->s_last_orphan) {
2081 jbd_debug(4, "no orphan inodes to clean up\n");
2082 return;
2083 }
2084
2085 if (bdev_read_only(sb->s_bdev)) {
2086 ext4_msg(sb, KERN_ERR, "write access "
2087 "unavailable, skipping orphan cleanup");
2088 return;
2089 }
2090
2091 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2092 if (es->s_last_orphan)
2093 jbd_debug(1, "Errors on filesystem, "
2094 "clearing orphan list.\n");
2095 es->s_last_orphan = 0;
2096 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2097 return;
2098 }
2099
2100 if (s_flags & MS_RDONLY) {
2101 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs");
2102 sb->s_flags &= ~MS_RDONLY;
2103 }
2104 #ifdef CONFIG_QUOTA
2105 /* Needed for iput() to work correctly and not trash data */
2106 sb->s_flags |= MS_ACTIVE;
2107 /* Turn on quotas so that they are updated correctly */
2108 for (i = 0; i < MAXQUOTAS; i++) {
2109 if (EXT4_SB(sb)->s_qf_names[i]) {
2110 int ret = ext4_quota_on_mount(sb, i);
2111 if (ret < 0)
2112 ext4_msg(sb, KERN_ERR,
2113 "Cannot turn on journaled "
2114 "quota: error %d", ret);
2115 }
2116 }
2117 #endif
2118
2119 while (es->s_last_orphan) {
2120 struct inode *inode;
2121
2122 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan));
2123 if (IS_ERR(inode)) {
2124 es->s_last_orphan = 0;
2125 break;
2126 }
2127
2128 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan);
2129 dquot_initialize(inode);
2130 if (inode->i_nlink) {
2131 ext4_msg(sb, KERN_DEBUG,
2132 "%s: truncating inode %lu to %lld bytes",
2133 __func__, inode->i_ino, inode->i_size);
2134 jbd_debug(2, "truncating inode %lu to %lld bytes\n",
2135 inode->i_ino, inode->i_size);
2136 ext4_truncate(inode);
2137 nr_truncates++;
2138 } else {
2139 ext4_msg(sb, KERN_DEBUG,
2140 "%s: deleting unreferenced inode %lu",
2141 __func__, inode->i_ino);
2142 jbd_debug(2, "deleting unreferenced inode %lu\n",
2143 inode->i_ino);
2144 nr_orphans++;
2145 }
2146 iput(inode); /* The delete magic happens here! */
2147 }
2148
2149 #define PLURAL(x) (x), ((x) == 1) ? "" : "s"
2150
2151 if (nr_orphans)
2152 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted",
2153 PLURAL(nr_orphans));
2154 if (nr_truncates)
2155 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up",
2156 PLURAL(nr_truncates));
2157 #ifdef CONFIG_QUOTA
2158 /* Turn quotas off */
2159 for (i = 0; i < MAXQUOTAS; i++) {
2160 if (sb_dqopt(sb)->files[i])
2161 dquot_quota_off(sb, i);
2162 }
2163 #endif
2164 sb->s_flags = s_flags; /* Restore MS_RDONLY status */
2165 }
2166
2167 /*
2168 * Maximal extent format file size.
2169 * Resulting logical blkno at s_maxbytes must fit in our on-disk
2170 * extent format containers, within a sector_t, and within i_blocks
2171 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units,
2172 * so that won't be a limiting factor.
2173 *
2174 * Note, this does *not* consider any metadata overhead for vfs i_blocks.
2175 */
2176 static loff_t ext4_max_size(int blkbits, int has_huge_files)
2177 {
2178 loff_t res;
2179 loff_t upper_limit = MAX_LFS_FILESIZE;
2180
2181 /* small i_blocks in vfs inode? */
2182 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2183 /*
2184 * CONFIG_LBDAF is not enabled implies the inode
2185 * i_block represent total blocks in 512 bytes
2186 * 32 == size of vfs inode i_blocks * 8
2187 */
2188 upper_limit = (1LL << 32) - 1;
2189
2190 /* total blocks in file system block size */
2191 upper_limit >>= (blkbits - 9);
2192 upper_limit <<= blkbits;
2193 }
2194
2195 /* 32-bit extent-start container, ee_block */
2196 res = 1LL << 32;
2197 res <<= blkbits;
2198 res -= 1;
2199
2200 /* Sanity check against vm- & vfs- imposed limits */
2201 if (res > upper_limit)
2202 res = upper_limit;
2203
2204 return res;
2205 }
2206
2207 /*
2208 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect
2209 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
2210 * We need to be 1 filesystem block less than the 2^48 sector limit.
2211 */
2212 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
2213 {
2214 loff_t res = EXT4_NDIR_BLOCKS;
2215 int meta_blocks;
2216 loff_t upper_limit;
2217 /* This is calculated to be the largest file size for a dense, block
2218 * mapped file such that the file's total number of 512-byte sectors,
2219 * including data and all indirect blocks, does not exceed (2^48 - 1).
2220 *
2221 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
2222 * number of 512-byte sectors of the file.
2223 */
2224
2225 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2226 /*
2227 * !has_huge_files or CONFIG_LBDAF not enabled implies that
2228 * the inode i_block field represents total file blocks in
2229 * 2^32 512-byte sectors == size of vfs inode i_blocks * 8
2230 */
2231 upper_limit = (1LL << 32) - 1;
2232
2233 /* total blocks in file system block size */
2234 upper_limit >>= (bits - 9);
2235
2236 } else {
2237 /*
2238 * We use 48 bit ext4_inode i_blocks
2239 * With EXT4_HUGE_FILE_FL set the i_blocks
2240 * represent total number of blocks in
2241 * file system block size
2242 */
2243 upper_limit = (1LL << 48) - 1;
2244
2245 }
2246
2247 /* indirect blocks */
2248 meta_blocks = 1;
2249 /* double indirect blocks */
2250 meta_blocks += 1 + (1LL << (bits-2));
2251 /* tripple indirect blocks */
2252 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2)));
2253
2254 upper_limit -= meta_blocks;
2255 upper_limit <<= bits;
2256
2257 res += 1LL << (bits-2);
2258 res += 1LL << (2*(bits-2));
2259 res += 1LL << (3*(bits-2));
2260 res <<= bits;
2261 if (res > upper_limit)
2262 res = upper_limit;
2263
2264 if (res > MAX_LFS_FILESIZE)
2265 res = MAX_LFS_FILESIZE;
2266
2267 return res;
2268 }
2269
2270 static ext4_fsblk_t descriptor_loc(struct super_block *sb,
2271 ext4_fsblk_t logical_sb_block, int nr)
2272 {
2273 struct ext4_sb_info *sbi = EXT4_SB(sb);
2274 ext4_group_t bg, first_meta_bg;
2275 int has_super = 0;
2276
2277 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
2278
2279 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_META_BG) ||
2280 nr < first_meta_bg)
2281 return logical_sb_block + nr + 1;
2282 bg = sbi->s_desc_per_block * nr;
2283 if (ext4_bg_has_super(sb, bg))
2284 has_super = 1;
2285
2286 return (has_super + ext4_group_first_block_no(sb, bg));
2287 }
2288
2289 /**
2290 * ext4_get_stripe_size: Get the stripe size.
2291 * @sbi: In memory super block info
2292 *
2293 * If we have specified it via mount option, then
2294 * use the mount option value. If the value specified at mount time is
2295 * greater than the blocks per group use the super block value.
2296 * If the super block value is greater than blocks per group return 0.
2297 * Allocator needs it be less than blocks per group.
2298 *
2299 */
2300 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
2301 {
2302 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
2303 unsigned long stripe_width =
2304 le32_to_cpu(sbi->s_es->s_raid_stripe_width);
2305
2306 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
2307 return sbi->s_stripe;
2308
2309 if (stripe_width <= sbi->s_blocks_per_group)
2310 return stripe_width;
2311
2312 if (stride <= sbi->s_blocks_per_group)
2313 return stride;
2314
2315 return 0;
2316 }
2317
2318 /* sysfs supprt */
2319
2320 struct ext4_attr {
2321 struct attribute attr;
2322 ssize_t (*show)(struct ext4_attr *, struct ext4_sb_info *, char *);
2323 ssize_t (*store)(struct ext4_attr *, struct ext4_sb_info *,
2324 const char *, size_t);
2325 int offset;
2326 };
2327
2328 static int parse_strtoul(const char *buf,
2329 unsigned long max, unsigned long *value)
2330 {
2331 char *endp;
2332
2333 *value = simple_strtoul(skip_spaces(buf), &endp, 0);
2334 endp = skip_spaces(endp);
2335 if (*endp || *value > max)
2336 return -EINVAL;
2337
2338 return 0;
2339 }
2340
2341 static ssize_t delayed_allocation_blocks_show(struct ext4_attr *a,
2342 struct ext4_sb_info *sbi,
2343 char *buf)
2344 {
2345 return snprintf(buf, PAGE_SIZE, "%llu\n",
2346 (s64) percpu_counter_sum(&sbi->s_dirtyblocks_counter));
2347 }
2348
2349 static ssize_t session_write_kbytes_show(struct ext4_attr *a,
2350 struct ext4_sb_info *sbi, char *buf)
2351 {
2352 struct super_block *sb = sbi->s_buddy_cache->i_sb;
2353
2354 if (!sb->s_bdev->bd_part)
2355 return snprintf(buf, PAGE_SIZE, "0\n");
2356 return snprintf(buf, PAGE_SIZE, "%lu\n",
2357 (part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
2358 sbi->s_sectors_written_start) >> 1);
2359 }
2360
2361 static ssize_t lifetime_write_kbytes_show(struct ext4_attr *a,
2362 struct ext4_sb_info *sbi, char *buf)
2363 {
2364 struct super_block *sb = sbi->s_buddy_cache->i_sb;
2365
2366 if (!sb->s_bdev->bd_part)
2367 return snprintf(buf, PAGE_SIZE, "0\n");
2368 return snprintf(buf, PAGE_SIZE, "%llu\n",
2369 (unsigned long long)(sbi->s_kbytes_written +
2370 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
2371 EXT4_SB(sb)->s_sectors_written_start) >> 1)));
2372 }
2373
2374 static ssize_t inode_readahead_blks_store(struct ext4_attr *a,
2375 struct ext4_sb_info *sbi,
2376 const char *buf, size_t count)
2377 {
2378 unsigned long t;
2379
2380 if (parse_strtoul(buf, 0x40000000, &t))
2381 return -EINVAL;
2382
2383 if (!is_power_of_2(t))
2384 return -EINVAL;
2385
2386 sbi->s_inode_readahead_blks = t;
2387 return count;
2388 }
2389
2390 static ssize_t sbi_ui_show(struct ext4_attr *a,
2391 struct ext4_sb_info *sbi, char *buf)
2392 {
2393 unsigned int *ui = (unsigned int *) (((char *) sbi) + a->offset);
2394
2395 return snprintf(buf, PAGE_SIZE, "%u\n", *ui);
2396 }
2397
2398 static ssize_t sbi_ui_store(struct ext4_attr *a,
2399 struct ext4_sb_info *sbi,
2400 const char *buf, size_t count)
2401 {
2402 unsigned int *ui = (unsigned int *) (((char *) sbi) + a->offset);
2403 unsigned long t;
2404
2405 if (parse_strtoul(buf, 0xffffffff, &t))
2406 return -EINVAL;
2407 *ui = t;
2408 return count;
2409 }
2410
2411 #define EXT4_ATTR_OFFSET(_name,_mode,_show,_store,_elname) \
2412 static struct ext4_attr ext4_attr_##_name = { \
2413 .attr = {.name = __stringify(_name), .mode = _mode }, \
2414 .show = _show, \
2415 .store = _store, \
2416 .offset = offsetof(struct ext4_sb_info, _elname), \
2417 }
2418 #define EXT4_ATTR(name, mode, show, store) \
2419 static struct ext4_attr ext4_attr_##name = __ATTR(name, mode, show, store)
2420
2421 #define EXT4_INFO_ATTR(name) EXT4_ATTR(name, 0444, NULL, NULL)
2422 #define EXT4_RO_ATTR(name) EXT4_ATTR(name, 0444, name##_show, NULL)
2423 #define EXT4_RW_ATTR(name) EXT4_ATTR(name, 0644, name##_show, name##_store)
2424 #define EXT4_RW_ATTR_SBI_UI(name, elname) \
2425 EXT4_ATTR_OFFSET(name, 0644, sbi_ui_show, sbi_ui_store, elname)
2426 #define ATTR_LIST(name) &ext4_attr_##name.attr
2427
2428 EXT4_RO_ATTR(delayed_allocation_blocks);
2429 EXT4_RO_ATTR(session_write_kbytes);
2430 EXT4_RO_ATTR(lifetime_write_kbytes);
2431 EXT4_ATTR_OFFSET(inode_readahead_blks, 0644, sbi_ui_show,
2432 inode_readahead_blks_store, s_inode_readahead_blks);
2433 EXT4_RW_ATTR_SBI_UI(inode_goal, s_inode_goal);
2434 EXT4_RW_ATTR_SBI_UI(mb_stats, s_mb_stats);
2435 EXT4_RW_ATTR_SBI_UI(mb_max_to_scan, s_mb_max_to_scan);
2436 EXT4_RW_ATTR_SBI_UI(mb_min_to_scan, s_mb_min_to_scan);
2437 EXT4_RW_ATTR_SBI_UI(mb_order2_req, s_mb_order2_reqs);
2438 EXT4_RW_ATTR_SBI_UI(mb_stream_req, s_mb_stream_request);
2439 EXT4_RW_ATTR_SBI_UI(mb_group_prealloc, s_mb_group_prealloc);
2440 EXT4_RW_ATTR_SBI_UI(max_writeback_mb_bump, s_max_writeback_mb_bump);
2441
2442 static struct attribute *ext4_attrs[] = {
2443 ATTR_LIST(delayed_allocation_blocks),
2444 ATTR_LIST(session_write_kbytes),
2445 ATTR_LIST(lifetime_write_kbytes),
2446 ATTR_LIST(inode_readahead_blks),
2447 ATTR_LIST(inode_goal),
2448 ATTR_LIST(mb_stats),
2449 ATTR_LIST(mb_max_to_scan),
2450 ATTR_LIST(mb_min_to_scan),
2451 ATTR_LIST(mb_order2_req),
2452 ATTR_LIST(mb_stream_req),
2453 ATTR_LIST(mb_group_prealloc),
2454 ATTR_LIST(max_writeback_mb_bump),
2455 NULL,
2456 };
2457
2458 /* Features this copy of ext4 supports */
2459 EXT4_INFO_ATTR(lazy_itable_init);
2460 EXT4_INFO_ATTR(batched_discard);
2461
2462 static struct attribute *ext4_feat_attrs[] = {
2463 ATTR_LIST(lazy_itable_init),
2464 ATTR_LIST(batched_discard),
2465 NULL,
2466 };
2467
2468 static ssize_t ext4_attr_show(struct kobject *kobj,
2469 struct attribute *attr, char *buf)
2470 {
2471 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2472 s_kobj);
2473 struct ext4_attr *a = container_of(attr, struct ext4_attr, attr);
2474
2475 return a->show ? a->show(a, sbi, buf) : 0;
2476 }
2477
2478 static ssize_t ext4_attr_store(struct kobject *kobj,
2479 struct attribute *attr,
2480 const char *buf, size_t len)
2481 {
2482 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2483 s_kobj);
2484 struct ext4_attr *a = container_of(attr, struct ext4_attr, attr);
2485
2486 return a->store ? a->store(a, sbi, buf, len) : 0;
2487 }
2488
2489 static void ext4_sb_release(struct kobject *kobj)
2490 {
2491 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2492 s_kobj);
2493 complete(&sbi->s_kobj_unregister);
2494 }
2495
2496 static const struct sysfs_ops ext4_attr_ops = {
2497 .show = ext4_attr_show,
2498 .store = ext4_attr_store,
2499 };
2500
2501 static struct kobj_type ext4_ktype = {
2502 .default_attrs = ext4_attrs,
2503 .sysfs_ops = &ext4_attr_ops,
2504 .release = ext4_sb_release,
2505 };
2506
2507 static void ext4_feat_release(struct kobject *kobj)
2508 {
2509 complete(&ext4_feat->f_kobj_unregister);
2510 }
2511
2512 static struct kobj_type ext4_feat_ktype = {
2513 .default_attrs = ext4_feat_attrs,
2514 .sysfs_ops = &ext4_attr_ops,
2515 .release = ext4_feat_release,
2516 };
2517
2518 /*
2519 * Check whether this filesystem can be mounted based on
2520 * the features present and the RDONLY/RDWR mount requested.
2521 * Returns 1 if this filesystem can be mounted as requested,
2522 * 0 if it cannot be.
2523 */
2524 static int ext4_feature_set_ok(struct super_block *sb, int readonly)
2525 {
2526 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT4_FEATURE_INCOMPAT_SUPP)) {
2527 ext4_msg(sb, KERN_ERR,
2528 "Couldn't mount because of "
2529 "unsupported optional features (%x)",
2530 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
2531 ~EXT4_FEATURE_INCOMPAT_SUPP));
2532 return 0;
2533 }
2534
2535 if (readonly)
2536 return 1;
2537
2538 /* Check that feature set is OK for a read-write mount */
2539 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT4_FEATURE_RO_COMPAT_SUPP)) {
2540 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
2541 "unsupported optional features (%x)",
2542 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
2543 ~EXT4_FEATURE_RO_COMPAT_SUPP));
2544 return 0;
2545 }
2546 /*
2547 * Large file size enabled file system can only be mounted
2548 * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF
2549 */
2550 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
2551 if (sizeof(blkcnt_t) < sizeof(u64)) {
2552 ext4_msg(sb, KERN_ERR, "Filesystem with huge files "
2553 "cannot be mounted RDWR without "
2554 "CONFIG_LBDAF");
2555 return 0;
2556 }
2557 }
2558 return 1;
2559 }
2560
2561 /*
2562 * This function is called once a day if we have errors logged
2563 * on the file system
2564 */
2565 static void print_daily_error_info(unsigned long arg)
2566 {
2567 struct super_block *sb = (struct super_block *) arg;
2568 struct ext4_sb_info *sbi;
2569 struct ext4_super_block *es;
2570
2571 sbi = EXT4_SB(sb);
2572 es = sbi->s_es;
2573
2574 if (es->s_error_count)
2575 ext4_msg(sb, KERN_NOTICE, "error count: %u",
2576 le32_to_cpu(es->s_error_count));
2577 if (es->s_first_error_time) {
2578 printk(KERN_NOTICE "EXT4-fs (%s): initial error at %u: %.*s:%d",
2579 sb->s_id, le32_to_cpu(es->s_first_error_time),
2580 (int) sizeof(es->s_first_error_func),
2581 es->s_first_error_func,
2582 le32_to_cpu(es->s_first_error_line));
2583 if (es->s_first_error_ino)
2584 printk(": inode %u",
2585 le32_to_cpu(es->s_first_error_ino));
2586 if (es->s_first_error_block)
2587 printk(": block %llu", (unsigned long long)
2588 le64_to_cpu(es->s_first_error_block));
2589 printk("\n");
2590 }
2591 if (es->s_last_error_time) {
2592 printk(KERN_NOTICE "EXT4-fs (%s): last error at %u: %.*s:%d",
2593 sb->s_id, le32_to_cpu(es->s_last_error_time),
2594 (int) sizeof(es->s_last_error_func),
2595 es->s_last_error_func,
2596 le32_to_cpu(es->s_last_error_line));
2597 if (es->s_last_error_ino)
2598 printk(": inode %u",
2599 le32_to_cpu(es->s_last_error_ino));
2600 if (es->s_last_error_block)
2601 printk(": block %llu", (unsigned long long)
2602 le64_to_cpu(es->s_last_error_block));
2603 printk("\n");
2604 }
2605 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */
2606 }
2607
2608 static void ext4_lazyinode_timeout(unsigned long data)
2609 {
2610 struct task_struct *p = (struct task_struct *)data;
2611 wake_up_process(p);
2612 }
2613
2614 /* Find next suitable group and run ext4_init_inode_table */
2615 static int ext4_run_li_request(struct ext4_li_request *elr)
2616 {
2617 struct ext4_group_desc *gdp = NULL;
2618 ext4_group_t group, ngroups;
2619 struct super_block *sb;
2620 unsigned long timeout = 0;
2621 int ret = 0;
2622
2623 sb = elr->lr_super;
2624 ngroups = EXT4_SB(sb)->s_groups_count;
2625
2626 for (group = elr->lr_next_group; group < ngroups; group++) {
2627 gdp = ext4_get_group_desc(sb, group, NULL);
2628 if (!gdp) {
2629 ret = 1;
2630 break;
2631 }
2632
2633 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2634 break;
2635 }
2636
2637 if (group == ngroups)
2638 ret = 1;
2639
2640 if (!ret) {
2641 timeout = jiffies;
2642 ret = ext4_init_inode_table(sb, group,
2643 elr->lr_timeout ? 0 : 1);
2644 if (elr->lr_timeout == 0) {
2645 timeout = jiffies - timeout;
2646 if (elr->lr_sbi->s_li_wait_mult)
2647 timeout *= elr->lr_sbi->s_li_wait_mult;
2648 else
2649 timeout *= 20;
2650 elr->lr_timeout = timeout;
2651 }
2652 elr->lr_next_sched = jiffies + elr->lr_timeout;
2653 elr->lr_next_group = group + 1;
2654 }
2655
2656 return ret;
2657 }
2658
2659 /*
2660 * Remove lr_request from the list_request and free the
2661 * request tructure. Should be called with li_list_mtx held
2662 */
2663 static void ext4_remove_li_request(struct ext4_li_request *elr)
2664 {
2665 struct ext4_sb_info *sbi;
2666
2667 if (!elr)
2668 return;
2669
2670 sbi = elr->lr_sbi;
2671
2672 list_del(&elr->lr_request);
2673 sbi->s_li_request = NULL;
2674 kfree(elr);
2675 }
2676
2677 static void ext4_unregister_li_request(struct super_block *sb)
2678 {
2679 struct ext4_li_request *elr = EXT4_SB(sb)->s_li_request;
2680
2681 if (!ext4_li_info)
2682 return;
2683
2684 mutex_lock(&ext4_li_info->li_list_mtx);
2685 ext4_remove_li_request(elr);
2686 mutex_unlock(&ext4_li_info->li_list_mtx);
2687 }
2688
2689 /*
2690 * This is the function where ext4lazyinit thread lives. It walks
2691 * through the request list searching for next scheduled filesystem.
2692 * When such a fs is found, run the lazy initialization request
2693 * (ext4_rn_li_request) and keep track of the time spend in this
2694 * function. Based on that time we compute next schedule time of
2695 * the request. When walking through the list is complete, compute
2696 * next waking time and put itself into sleep.
2697 */
2698 static int ext4_lazyinit_thread(void *arg)
2699 {
2700 struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg;
2701 struct list_head *pos, *n;
2702 struct ext4_li_request *elr;
2703 unsigned long next_wakeup;
2704 DEFINE_WAIT(wait);
2705 int ret;
2706
2707 BUG_ON(NULL == eli);
2708
2709 eli->li_timer.data = (unsigned long)current;
2710 eli->li_timer.function = ext4_lazyinode_timeout;
2711
2712 eli->li_task = current;
2713 wake_up(&eli->li_wait_task);
2714
2715 cont_thread:
2716 while (true) {
2717 next_wakeup = MAX_JIFFY_OFFSET;
2718
2719 mutex_lock(&eli->li_list_mtx);
2720 if (list_empty(&eli->li_request_list)) {
2721 mutex_unlock(&eli->li_list_mtx);
2722 goto exit_thread;
2723 }
2724
2725 list_for_each_safe(pos, n, &eli->li_request_list) {
2726 elr = list_entry(pos, struct ext4_li_request,
2727 lr_request);
2728
2729 if (time_after_eq(jiffies, elr->lr_next_sched))
2730 ret = ext4_run_li_request(elr);
2731
2732 if (ret) {
2733 ret = 0;
2734 ext4_remove_li_request(elr);
2735 continue;
2736 }
2737
2738 if (time_before(elr->lr_next_sched, next_wakeup))
2739 next_wakeup = elr->lr_next_sched;
2740 }
2741 mutex_unlock(&eli->li_list_mtx);
2742
2743 if (freezing(current))
2744 refrigerator();
2745
2746 if (time_after_eq(jiffies, next_wakeup)) {
2747 cond_resched();
2748 continue;
2749 }
2750
2751 eli->li_timer.expires = next_wakeup;
2752 add_timer(&eli->li_timer);
2753 prepare_to_wait(&eli->li_wait_daemon, &wait,
2754 TASK_INTERRUPTIBLE);
2755 if (time_before(jiffies, next_wakeup))
2756 schedule();
2757 finish_wait(&eli->li_wait_daemon, &wait);
2758 }
2759
2760 exit_thread:
2761 /*
2762 * It looks like the request list is empty, but we need
2763 * to check it under the li_list_mtx lock, to prevent any
2764 * additions into it, and of course we should lock ext4_li_mtx
2765 * to atomically free the list and ext4_li_info, because at
2766 * this point another ext4 filesystem could be registering
2767 * new one.
2768 */
2769 mutex_lock(&ext4_li_mtx);
2770 mutex_lock(&eli->li_list_mtx);
2771 if (!list_empty(&eli->li_request_list)) {
2772 mutex_unlock(&eli->li_list_mtx);
2773 mutex_unlock(&ext4_li_mtx);
2774 goto cont_thread;
2775 }
2776 mutex_unlock(&eli->li_list_mtx);
2777 del_timer_sync(&ext4_li_info->li_timer);
2778 eli->li_task = NULL;
2779 wake_up(&eli->li_wait_task);
2780
2781 kfree(ext4_li_info);
2782 ext4_li_info = NULL;
2783 mutex_unlock(&ext4_li_mtx);
2784
2785 return 0;
2786 }
2787
2788 static void ext4_clear_request_list(void)
2789 {
2790 struct list_head *pos, *n;
2791 struct ext4_li_request *elr;
2792
2793 mutex_lock(&ext4_li_info->li_list_mtx);
2794 if (list_empty(&ext4_li_info->li_request_list))
2795 return;
2796
2797 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
2798 elr = list_entry(pos, struct ext4_li_request,
2799 lr_request);
2800 ext4_remove_li_request(elr);
2801 }
2802 mutex_unlock(&ext4_li_info->li_list_mtx);
2803 }
2804
2805 static int ext4_run_lazyinit_thread(void)
2806 {
2807 struct task_struct *t;
2808
2809 t = kthread_run(ext4_lazyinit_thread, ext4_li_info, "ext4lazyinit");
2810 if (IS_ERR(t)) {
2811 int err = PTR_ERR(t);
2812 ext4_clear_request_list();
2813 del_timer_sync(&ext4_li_info->li_timer);
2814 kfree(ext4_li_info);
2815 ext4_li_info = NULL;
2816 printk(KERN_CRIT "EXT4: error %d creating inode table "
2817 "initialization thread\n",
2818 err);
2819 return err;
2820 }
2821 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
2822
2823 wait_event(ext4_li_info->li_wait_task, ext4_li_info->li_task != NULL);
2824 return 0;
2825 }
2826
2827 /*
2828 * Check whether it make sense to run itable init. thread or not.
2829 * If there is at least one uninitialized inode table, return
2830 * corresponding group number, else the loop goes through all
2831 * groups and return total number of groups.
2832 */
2833 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
2834 {
2835 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
2836 struct ext4_group_desc *gdp = NULL;
2837
2838 for (group = 0; group < ngroups; group++) {
2839 gdp = ext4_get_group_desc(sb, group, NULL);
2840 if (!gdp)
2841 continue;
2842
2843 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2844 break;
2845 }
2846
2847 return group;
2848 }
2849
2850 static int ext4_li_info_new(void)
2851 {
2852 struct ext4_lazy_init *eli = NULL;
2853
2854 eli = kzalloc(sizeof(*eli), GFP_KERNEL);
2855 if (!eli)
2856 return -ENOMEM;
2857
2858 eli->li_task = NULL;
2859 INIT_LIST_HEAD(&eli->li_request_list);
2860 mutex_init(&eli->li_list_mtx);
2861
2862 init_waitqueue_head(&eli->li_wait_daemon);
2863 init_waitqueue_head(&eli->li_wait_task);
2864 init_timer(&eli->li_timer);
2865 eli->li_state |= EXT4_LAZYINIT_QUIT;
2866
2867 ext4_li_info = eli;
2868
2869 return 0;
2870 }
2871
2872 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
2873 ext4_group_t start)
2874 {
2875 struct ext4_sb_info *sbi = EXT4_SB(sb);
2876 struct ext4_li_request *elr;
2877 unsigned long rnd;
2878
2879 elr = kzalloc(sizeof(*elr), GFP_KERNEL);
2880 if (!elr)
2881 return NULL;
2882
2883 elr->lr_super = sb;
2884 elr->lr_sbi = sbi;
2885 elr->lr_next_group = start;
2886
2887 /*
2888 * Randomize first schedule time of the request to
2889 * spread the inode table initialization requests
2890 * better.
2891 */
2892 get_random_bytes(&rnd, sizeof(rnd));
2893 elr->lr_next_sched = jiffies + (unsigned long)rnd %
2894 (EXT4_DEF_LI_MAX_START_DELAY * HZ);
2895
2896 return elr;
2897 }
2898
2899 static int ext4_register_li_request(struct super_block *sb,
2900 ext4_group_t first_not_zeroed)
2901 {
2902 struct ext4_sb_info *sbi = EXT4_SB(sb);
2903 struct ext4_li_request *elr;
2904 ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count;
2905 int ret = 0;
2906
2907 if (sbi->s_li_request != NULL)
2908 goto out;
2909
2910 if (first_not_zeroed == ngroups ||
2911 (sb->s_flags & MS_RDONLY) ||
2912 !test_opt(sb, INIT_INODE_TABLE)) {
2913 sbi->s_li_request = NULL;
2914 goto out;
2915 }
2916
2917 if (first_not_zeroed == ngroups) {
2918 sbi->s_li_request = NULL;
2919 goto out;
2920 }
2921
2922 elr = ext4_li_request_new(sb, first_not_zeroed);
2923 if (!elr) {
2924 ret = -ENOMEM;
2925 goto out;
2926 }
2927
2928 mutex_lock(&ext4_li_mtx);
2929
2930 if (NULL == ext4_li_info) {
2931 ret = ext4_li_info_new();
2932 if (ret)
2933 goto out;
2934 }
2935
2936 mutex_lock(&ext4_li_info->li_list_mtx);
2937 list_add(&elr->lr_request, &ext4_li_info->li_request_list);
2938 mutex_unlock(&ext4_li_info->li_list_mtx);
2939
2940 sbi->s_li_request = elr;
2941
2942 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
2943 ret = ext4_run_lazyinit_thread();
2944 if (ret)
2945 goto out;
2946 }
2947
2948 mutex_unlock(&ext4_li_mtx);
2949
2950 out:
2951 if (ret) {
2952 mutex_unlock(&ext4_li_mtx);
2953 kfree(elr);
2954 }
2955 return ret;
2956 }
2957
2958 /*
2959 * We do not need to lock anything since this is called on
2960 * module unload.
2961 */
2962 static void ext4_destroy_lazyinit_thread(void)
2963 {
2964 /*
2965 * If thread exited earlier
2966 * there's nothing to be done.
2967 */
2968 if (!ext4_li_info)
2969 return;
2970
2971 ext4_clear_request_list();
2972
2973 while (ext4_li_info->li_task) {
2974 wake_up(&ext4_li_info->li_wait_daemon);
2975 wait_event(ext4_li_info->li_wait_task,
2976 ext4_li_info->li_task == NULL);
2977 }
2978 }
2979
2980 static int ext4_fill_super(struct super_block *sb, void *data, int silent)
2981 __releases(kernel_lock)
2982 __acquires(kernel_lock)
2983 {
2984 char *orig_data = kstrdup(data, GFP_KERNEL);
2985 struct buffer_head *bh;
2986 struct ext4_super_block *es = NULL;
2987 struct ext4_sb_info *sbi;
2988 ext4_fsblk_t block;
2989 ext4_fsblk_t sb_block = get_sb_block(&data);
2990 ext4_fsblk_t logical_sb_block;
2991 unsigned long offset = 0;
2992 unsigned long journal_devnum = 0;
2993 unsigned long def_mount_opts;
2994 struct inode *root;
2995 char *cp;
2996 const char *descr;
2997 int ret = -ENOMEM;
2998 int blocksize;
2999 unsigned int db_count;
3000 unsigned int i;
3001 int needs_recovery, has_huge_files;
3002 __u64 blocks_count;
3003 int err;
3004 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
3005 ext4_group_t first_not_zeroed;
3006
3007 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
3008 if (!sbi)
3009 goto out_free_orig;
3010
3011 sbi->s_blockgroup_lock =
3012 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
3013 if (!sbi->s_blockgroup_lock) {
3014 kfree(sbi);
3015 goto out_free_orig;
3016 }
3017 sb->s_fs_info = sbi;
3018 sbi->s_mount_opt = 0;
3019 sbi->s_resuid = EXT4_DEF_RESUID;
3020 sbi->s_resgid = EXT4_DEF_RESGID;
3021 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
3022 sbi->s_sb_block = sb_block;
3023 if (sb->s_bdev->bd_part)
3024 sbi->s_sectors_written_start =
3025 part_stat_read(sb->s_bdev->bd_part, sectors[1]);
3026
3027 unlock_kernel();
3028
3029 /* Cleanup superblock name */
3030 for (cp = sb->s_id; (cp = strchr(cp, '/'));)
3031 *cp = '!';
3032
3033 ret = -EINVAL;
3034 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
3035 if (!blocksize) {
3036 ext4_msg(sb, KERN_ERR, "unable to set blocksize");
3037 goto out_fail;
3038 }
3039
3040 /*
3041 * The ext4 superblock will not be buffer aligned for other than 1kB
3042 * block sizes. We need to calculate the offset from buffer start.
3043 */
3044 if (blocksize != EXT4_MIN_BLOCK_SIZE) {
3045 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3046 offset = do_div(logical_sb_block, blocksize);
3047 } else {
3048 logical_sb_block = sb_block;
3049 }
3050
3051 if (!(bh = sb_bread(sb, logical_sb_block))) {
3052 ext4_msg(sb, KERN_ERR, "unable to read superblock");
3053 goto out_fail;
3054 }
3055 /*
3056 * Note: s_es must be initialized as soon as possible because
3057 * some ext4 macro-instructions depend on its value
3058 */
3059 es = (struct ext4_super_block *) (((char *)bh->b_data) + offset);
3060 sbi->s_es = es;
3061 sb->s_magic = le16_to_cpu(es->s_magic);
3062 if (sb->s_magic != EXT4_SUPER_MAGIC)
3063 goto cantfind_ext4;
3064 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
3065
3066 /* Set defaults before we parse the mount options */
3067 def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
3068 set_opt(sbi->s_mount_opt, INIT_INODE_TABLE);
3069 if (def_mount_opts & EXT4_DEFM_DEBUG)
3070 set_opt(sbi->s_mount_opt, DEBUG);
3071 if (def_mount_opts & EXT4_DEFM_BSDGROUPS) {
3072 ext4_msg(sb, KERN_WARNING, deprecated_msg, "bsdgroups",
3073 "2.6.38");
3074 set_opt(sbi->s_mount_opt, GRPID);
3075 }
3076 if (def_mount_opts & EXT4_DEFM_UID16)
3077 set_opt(sbi->s_mount_opt, NO_UID32);
3078 #ifdef CONFIG_EXT4_FS_XATTR
3079 if (def_mount_opts & EXT4_DEFM_XATTR_USER)
3080 set_opt(sbi->s_mount_opt, XATTR_USER);
3081 #endif
3082 #ifdef CONFIG_EXT4_FS_POSIX_ACL
3083 if (def_mount_opts & EXT4_DEFM_ACL)
3084 set_opt(sbi->s_mount_opt, POSIX_ACL);
3085 #endif
3086 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
3087 set_opt(sbi->s_mount_opt, JOURNAL_DATA);
3088 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
3089 set_opt(sbi->s_mount_opt, ORDERED_DATA);
3090 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
3091 set_opt(sbi->s_mount_opt, WRITEBACK_DATA);
3092
3093 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC)
3094 set_opt(sbi->s_mount_opt, ERRORS_PANIC);
3095 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE)
3096 set_opt(sbi->s_mount_opt, ERRORS_CONT);
3097 else
3098 set_opt(sbi->s_mount_opt, ERRORS_RO);
3099 if (def_mount_opts & EXT4_DEFM_BLOCK_VALIDITY)
3100 set_opt(sbi->s_mount_opt, BLOCK_VALIDITY);
3101 if (def_mount_opts & EXT4_DEFM_DISCARD)
3102 set_opt(sbi->s_mount_opt, DISCARD);
3103
3104 sbi->s_resuid = le16_to_cpu(es->s_def_resuid);
3105 sbi->s_resgid = le16_to_cpu(es->s_def_resgid);
3106 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
3107 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
3108 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
3109
3110 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
3111 set_opt(sbi->s_mount_opt, BARRIER);
3112
3113 /*
3114 * enable delayed allocation by default
3115 * Use -o nodelalloc to turn it off
3116 */
3117 if (!IS_EXT3_SB(sb) &&
3118 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
3119 set_opt(sbi->s_mount_opt, DELALLOC);
3120
3121 if (!parse_options((char *) sbi->s_es->s_mount_opts, sb,
3122 &journal_devnum, &journal_ioprio, NULL, 0)) {
3123 ext4_msg(sb, KERN_WARNING,
3124 "failed to parse options in superblock: %s",
3125 sbi->s_es->s_mount_opts);
3126 }
3127 if (!parse_options((char *) data, sb, &journal_devnum,
3128 &journal_ioprio, NULL, 0))
3129 goto failed_mount;
3130
3131 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
3132 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
3133
3134 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
3135 (EXT4_HAS_COMPAT_FEATURE(sb, ~0U) ||
3136 EXT4_HAS_RO_COMPAT_FEATURE(sb, ~0U) ||
3137 EXT4_HAS_INCOMPAT_FEATURE(sb, ~0U)))
3138 ext4_msg(sb, KERN_WARNING,
3139 "feature flags set on rev 0 fs, "
3140 "running e2fsck is recommended");
3141
3142 /*
3143 * Check feature flags regardless of the revision level, since we
3144 * previously didn't change the revision level when setting the flags,
3145 * so there is a chance incompat flags are set on a rev 0 filesystem.
3146 */
3147 if (!ext4_feature_set_ok(sb, (sb->s_flags & MS_RDONLY)))
3148 goto failed_mount;
3149
3150 blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
3151
3152 if (blocksize < EXT4_MIN_BLOCK_SIZE ||
3153 blocksize > EXT4_MAX_BLOCK_SIZE) {
3154 ext4_msg(sb, KERN_ERR,
3155 "Unsupported filesystem blocksize %d", blocksize);
3156 goto failed_mount;
3157 }
3158
3159 if (sb->s_blocksize != blocksize) {
3160 /* Validate the filesystem blocksize */
3161 if (!sb_set_blocksize(sb, blocksize)) {
3162 ext4_msg(sb, KERN_ERR, "bad block size %d",
3163 blocksize);
3164 goto failed_mount;
3165 }
3166
3167 brelse(bh);
3168 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3169 offset = do_div(logical_sb_block, blocksize);
3170 bh = sb_bread(sb, logical_sb_block);
3171 if (!bh) {
3172 ext4_msg(sb, KERN_ERR,
3173 "Can't read superblock on 2nd try");
3174 goto failed_mount;
3175 }
3176 es = (struct ext4_super_block *)(((char *)bh->b_data) + offset);
3177 sbi->s_es = es;
3178 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
3179 ext4_msg(sb, KERN_ERR,
3180 "Magic mismatch, very weird!");
3181 goto failed_mount;
3182 }
3183 }
3184
3185 has_huge_files = EXT4_HAS_RO_COMPAT_FEATURE(sb,
3186 EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
3187 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
3188 has_huge_files);
3189 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
3190
3191 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
3192 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
3193 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
3194 } else {
3195 sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
3196 sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
3197 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
3198 (!is_power_of_2(sbi->s_inode_size)) ||
3199 (sbi->s_inode_size > blocksize)) {
3200 ext4_msg(sb, KERN_ERR,
3201 "unsupported inode size: %d",
3202 sbi->s_inode_size);
3203 goto failed_mount;
3204 }
3205 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE)
3206 sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2);
3207 }
3208
3209 sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
3210 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT)) {
3211 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
3212 sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
3213 !is_power_of_2(sbi->s_desc_size)) {
3214 ext4_msg(sb, KERN_ERR,
3215 "unsupported descriptor size %lu",
3216 sbi->s_desc_size);
3217 goto failed_mount;
3218 }
3219 } else
3220 sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
3221
3222 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
3223 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
3224 if (EXT4_INODE_SIZE(sb) == 0 || EXT4_INODES_PER_GROUP(sb) == 0)
3225 goto cantfind_ext4;
3226
3227 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb);
3228 if (sbi->s_inodes_per_block == 0)
3229 goto cantfind_ext4;
3230 sbi->s_itb_per_group = sbi->s_inodes_per_group /
3231 sbi->s_inodes_per_block;
3232 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb);
3233 sbi->s_sbh = bh;
3234 sbi->s_mount_state = le16_to_cpu(es->s_state);
3235 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
3236 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
3237
3238 for (i = 0; i < 4; i++)
3239 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
3240 sbi->s_def_hash_version = es->s_def_hash_version;
3241 i = le32_to_cpu(es->s_flags);
3242 if (i & EXT2_FLAGS_UNSIGNED_HASH)
3243 sbi->s_hash_unsigned = 3;
3244 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
3245 #ifdef __CHAR_UNSIGNED__
3246 es->s_flags |= cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
3247 sbi->s_hash_unsigned = 3;
3248 #else
3249 es->s_flags |= cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
3250 #endif
3251 sb->s_dirt = 1;
3252 }
3253
3254 if (sbi->s_blocks_per_group > blocksize * 8) {
3255 ext4_msg(sb, KERN_ERR,
3256 "#blocks per group too big: %lu",
3257 sbi->s_blocks_per_group);
3258 goto failed_mount;
3259 }
3260 if (sbi->s_inodes_per_group > blocksize * 8) {
3261 ext4_msg(sb, KERN_ERR,
3262 "#inodes per group too big: %lu",
3263 sbi->s_inodes_per_group);
3264 goto failed_mount;
3265 }
3266
3267 /*
3268 * Test whether we have more sectors than will fit in sector_t,
3269 * and whether the max offset is addressable by the page cache.
3270 */
3271 if ((ext4_blocks_count(es) >
3272 (sector_t)(~0ULL) >> (sb->s_blocksize_bits - 9)) ||
3273 (ext4_blocks_count(es) >
3274 (pgoff_t)(~0ULL) >> (PAGE_CACHE_SHIFT - sb->s_blocksize_bits))) {
3275 ext4_msg(sb, KERN_ERR, "filesystem"
3276 " too large to mount safely on this system");
3277 if (sizeof(sector_t) < 8)
3278 ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled");
3279 ret = -EFBIG;
3280 goto failed_mount;
3281 }
3282
3283 if (EXT4_BLOCKS_PER_GROUP(sb) == 0)
3284 goto cantfind_ext4;
3285
3286 /* check blocks count against device size */
3287 blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
3288 if (blocks_count && ext4_blocks_count(es) > blocks_count) {
3289 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
3290 "exceeds size of device (%llu blocks)",
3291 ext4_blocks_count(es), blocks_count);
3292 goto failed_mount;
3293 }
3294
3295 /*
3296 * It makes no sense for the first data block to be beyond the end
3297 * of the filesystem.
3298 */
3299 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
3300 ext4_msg(sb, KERN_WARNING, "bad geometry: first data"
3301 "block %u is beyond end of filesystem (%llu)",
3302 le32_to_cpu(es->s_first_data_block),
3303 ext4_blocks_count(es));
3304 goto failed_mount;
3305 }
3306 blocks_count = (ext4_blocks_count(es) -
3307 le32_to_cpu(es->s_first_data_block) +
3308 EXT4_BLOCKS_PER_GROUP(sb) - 1);
3309 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
3310 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
3311 ext4_msg(sb, KERN_WARNING, "groups count too large: %u "
3312 "(block count %llu, first data block %u, "
3313 "blocks per group %lu)", sbi->s_groups_count,
3314 ext4_blocks_count(es),
3315 le32_to_cpu(es->s_first_data_block),
3316 EXT4_BLOCKS_PER_GROUP(sb));
3317 goto failed_mount;
3318 }
3319 sbi->s_groups_count = blocks_count;
3320 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
3321 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
3322 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
3323 EXT4_DESC_PER_BLOCK(sb);
3324 sbi->s_group_desc = kmalloc(db_count * sizeof(struct buffer_head *),
3325 GFP_KERNEL);
3326 if (sbi->s_group_desc == NULL) {
3327 ext4_msg(sb, KERN_ERR, "not enough memory");
3328 goto failed_mount;
3329 }
3330
3331 #ifdef CONFIG_PROC_FS
3332 if (ext4_proc_root)
3333 sbi->s_proc = proc_mkdir(sb->s_id, ext4_proc_root);
3334 #endif
3335
3336 bgl_lock_init(sbi->s_blockgroup_lock);
3337
3338 for (i = 0; i < db_count; i++) {
3339 block = descriptor_loc(sb, logical_sb_block, i);
3340 sbi->s_group_desc[i] = sb_bread(sb, block);
3341 if (!sbi->s_group_desc[i]) {
3342 ext4_msg(sb, KERN_ERR,
3343 "can't read group descriptor %d", i);
3344 db_count = i;
3345 goto failed_mount2;
3346 }
3347 }
3348 if (!ext4_check_descriptors(sb, &first_not_zeroed)) {
3349 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
3350 goto failed_mount2;
3351 }
3352 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG))
3353 if (!ext4_fill_flex_info(sb)) {
3354 ext4_msg(sb, KERN_ERR,
3355 "unable to initialize "
3356 "flex_bg meta info!");
3357 goto failed_mount2;
3358 }
3359
3360 sbi->s_gdb_count = db_count;
3361 get_random_bytes(&sbi->s_next_generation, sizeof(u32));
3362 spin_lock_init(&sbi->s_next_gen_lock);
3363
3364 sbi->s_stripe = ext4_get_stripe_size(sbi);
3365 sbi->s_max_writeback_mb_bump = 128;
3366
3367 /*
3368 * set up enough so that it can read an inode
3369 */
3370 if (!test_opt(sb, NOLOAD) &&
3371 EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL))
3372 sb->s_op = &ext4_sops;
3373 else
3374 sb->s_op = &ext4_nojournal_sops;
3375 sb->s_export_op = &ext4_export_ops;
3376 sb->s_xattr = ext4_xattr_handlers;
3377 #ifdef CONFIG_QUOTA
3378 sb->s_qcop = &ext4_qctl_operations;
3379 sb->dq_op = &ext4_quota_operations;
3380 #endif
3381 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
3382 mutex_init(&sbi->s_orphan_lock);
3383 mutex_init(&sbi->s_resize_lock);
3384
3385 sb->s_root = NULL;
3386
3387 needs_recovery = (es->s_last_orphan != 0 ||
3388 EXT4_HAS_INCOMPAT_FEATURE(sb,
3389 EXT4_FEATURE_INCOMPAT_RECOVER));
3390
3391 /*
3392 * The first inode we look at is the journal inode. Don't try
3393 * root first: it may be modified in the journal!
3394 */
3395 if (!test_opt(sb, NOLOAD) &&
3396 EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) {
3397 if (ext4_load_journal(sb, es, journal_devnum))
3398 goto failed_mount3;
3399 } else if (test_opt(sb, NOLOAD) && !(sb->s_flags & MS_RDONLY) &&
3400 EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) {
3401 ext4_msg(sb, KERN_ERR, "required journal recovery "
3402 "suppressed and not mounted read-only");
3403 goto failed_mount_wq;
3404 } else {
3405 clear_opt(sbi->s_mount_opt, DATA_FLAGS);
3406 set_opt(sbi->s_mount_opt, WRITEBACK_DATA);
3407 sbi->s_journal = NULL;
3408 needs_recovery = 0;
3409 goto no_journal;
3410 }
3411
3412 if (ext4_blocks_count(es) > 0xffffffffULL &&
3413 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
3414 JBD2_FEATURE_INCOMPAT_64BIT)) {
3415 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
3416 goto failed_mount_wq;
3417 }
3418
3419 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
3420 jbd2_journal_set_features(sbi->s_journal,
3421 JBD2_FEATURE_COMPAT_CHECKSUM, 0,
3422 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3423 } else if (test_opt(sb, JOURNAL_CHECKSUM)) {
3424 jbd2_journal_set_features(sbi->s_journal,
3425 JBD2_FEATURE_COMPAT_CHECKSUM, 0, 0);
3426 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3427 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3428 } else {
3429 jbd2_journal_clear_features(sbi->s_journal,
3430 JBD2_FEATURE_COMPAT_CHECKSUM, 0,
3431 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3432 }
3433
3434 /* We have now updated the journal if required, so we can
3435 * validate the data journaling mode. */
3436 switch (test_opt(sb, DATA_FLAGS)) {
3437 case 0:
3438 /* No mode set, assume a default based on the journal
3439 * capabilities: ORDERED_DATA if the journal can
3440 * cope, else JOURNAL_DATA
3441 */
3442 if (jbd2_journal_check_available_features
3443 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE))
3444 set_opt(sbi->s_mount_opt, ORDERED_DATA);
3445 else
3446 set_opt(sbi->s_mount_opt, JOURNAL_DATA);
3447 break;
3448
3449 case EXT4_MOUNT_ORDERED_DATA:
3450 case EXT4_MOUNT_WRITEBACK_DATA:
3451 if (!jbd2_journal_check_available_features
3452 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
3453 ext4_msg(sb, KERN_ERR, "Journal does not support "
3454 "requested data journaling mode");
3455 goto failed_mount_wq;
3456 }
3457 default:
3458 break;
3459 }
3460 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
3461
3462 no_journal:
3463 err = percpu_counter_init(&sbi->s_freeblocks_counter,
3464 ext4_count_free_blocks(sb));
3465 if (!err)
3466 err = percpu_counter_init(&sbi->s_freeinodes_counter,
3467 ext4_count_free_inodes(sb));
3468 if (!err)
3469 err = percpu_counter_init(&sbi->s_dirs_counter,
3470 ext4_count_dirs(sb));
3471 if (!err)
3472 err = percpu_counter_init(&sbi->s_dirtyblocks_counter, 0);
3473 if (err) {
3474 ext4_msg(sb, KERN_ERR, "insufficient memory");
3475 goto failed_mount_wq;
3476 }
3477
3478 EXT4_SB(sb)->dio_unwritten_wq = create_workqueue("ext4-dio-unwritten");
3479 if (!EXT4_SB(sb)->dio_unwritten_wq) {
3480 printk(KERN_ERR "EXT4-fs: failed to create DIO workqueue\n");
3481 goto failed_mount_wq;
3482 }
3483
3484 /*
3485 * The jbd2_journal_load will have done any necessary log recovery,
3486 * so we can safely mount the rest of the filesystem now.
3487 */
3488
3489 root = ext4_iget(sb, EXT4_ROOT_INO);
3490 if (IS_ERR(root)) {
3491 ext4_msg(sb, KERN_ERR, "get root inode failed");
3492 ret = PTR_ERR(root);
3493 goto failed_mount4;
3494 }
3495 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
3496 iput(root);
3497 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
3498 goto failed_mount4;
3499 }
3500 sb->s_root = d_alloc_root(root);
3501 if (!sb->s_root) {
3502 ext4_msg(sb, KERN_ERR, "get root dentry failed");
3503 iput(root);
3504 ret = -ENOMEM;
3505 goto failed_mount4;
3506 }
3507
3508 ext4_setup_super(sb, es, sb->s_flags & MS_RDONLY);
3509
3510 /* determine the minimum size of new large inodes, if present */
3511 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) {
3512 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
3513 EXT4_GOOD_OLD_INODE_SIZE;
3514 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3515 EXT4_FEATURE_RO_COMPAT_EXTRA_ISIZE)) {
3516 if (sbi->s_want_extra_isize <
3517 le16_to_cpu(es->s_want_extra_isize))
3518 sbi->s_want_extra_isize =
3519 le16_to_cpu(es->s_want_extra_isize);
3520 if (sbi->s_want_extra_isize <
3521 le16_to_cpu(es->s_min_extra_isize))
3522 sbi->s_want_extra_isize =
3523 le16_to_cpu(es->s_min_extra_isize);
3524 }
3525 }
3526 /* Check if enough inode space is available */
3527 if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize >
3528 sbi->s_inode_size) {
3529 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
3530 EXT4_GOOD_OLD_INODE_SIZE;
3531 ext4_msg(sb, KERN_INFO, "required extra inode space not"
3532 "available");
3533 }
3534
3535 if (test_opt(sb, DELALLOC) &&
3536 (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)) {
3537 ext4_msg(sb, KERN_WARNING, "Ignoring delalloc option - "
3538 "requested data journaling mode");
3539 clear_opt(sbi->s_mount_opt, DELALLOC);
3540 }
3541 if (test_opt(sb, DIOREAD_NOLOCK)) {
3542 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
3543 ext4_msg(sb, KERN_WARNING, "Ignoring dioread_nolock "
3544 "option - requested data journaling mode");
3545 clear_opt(sbi->s_mount_opt, DIOREAD_NOLOCK);
3546 }
3547 if (sb->s_blocksize < PAGE_SIZE) {
3548 ext4_msg(sb, KERN_WARNING, "Ignoring dioread_nolock "
3549 "option - block size is too small");
3550 clear_opt(sbi->s_mount_opt, DIOREAD_NOLOCK);
3551 }
3552 }
3553
3554 err = ext4_setup_system_zone(sb);
3555 if (err) {
3556 ext4_msg(sb, KERN_ERR, "failed to initialize system "
3557 "zone (%d)", err);
3558 goto failed_mount4;
3559 }
3560
3561 ext4_ext_init(sb);
3562 err = ext4_mb_init(sb, needs_recovery);
3563 if (err) {
3564 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
3565 err);
3566 goto failed_mount4;
3567 }
3568
3569 err = ext4_register_li_request(sb, first_not_zeroed);
3570 if (err)
3571 goto failed_mount4;
3572
3573 sbi->s_kobj.kset = ext4_kset;
3574 init_completion(&sbi->s_kobj_unregister);
3575 err = kobject_init_and_add(&sbi->s_kobj, &ext4_ktype, NULL,
3576 "%s", sb->s_id);
3577 if (err) {
3578 ext4_mb_release(sb);
3579 ext4_ext_release(sb);
3580 goto failed_mount4;
3581 };
3582
3583 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
3584 ext4_orphan_cleanup(sb, es);
3585 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
3586 if (needs_recovery) {
3587 ext4_msg(sb, KERN_INFO, "recovery complete");
3588 ext4_mark_recovery_complete(sb, es);
3589 }
3590 if (EXT4_SB(sb)->s_journal) {
3591 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
3592 descr = " journalled data mode";
3593 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
3594 descr = " ordered data mode";
3595 else
3596 descr = " writeback data mode";
3597 } else
3598 descr = "out journal";
3599
3600 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. "
3601 "Opts: %s%s%s", descr, sbi->s_es->s_mount_opts,
3602 *sbi->s_es->s_mount_opts ? "; " : "", orig_data);
3603
3604 init_timer(&sbi->s_err_report);
3605 sbi->s_err_report.function = print_daily_error_info;
3606 sbi->s_err_report.data = (unsigned long) sb;
3607 if (es->s_error_count)
3608 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
3609
3610 lock_kernel();
3611 kfree(orig_data);
3612 return 0;
3613
3614 cantfind_ext4:
3615 if (!silent)
3616 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
3617 goto failed_mount;
3618
3619 failed_mount4:
3620 ext4_msg(sb, KERN_ERR, "mount failed");
3621 destroy_workqueue(EXT4_SB(sb)->dio_unwritten_wq);
3622 failed_mount_wq:
3623 ext4_release_system_zone(sb);
3624 if (sbi->s_journal) {
3625 jbd2_journal_destroy(sbi->s_journal);
3626 sbi->s_journal = NULL;
3627 }
3628 percpu_counter_destroy(&sbi->s_freeblocks_counter);
3629 percpu_counter_destroy(&sbi->s_freeinodes_counter);
3630 percpu_counter_destroy(&sbi->s_dirs_counter);
3631 percpu_counter_destroy(&sbi->s_dirtyblocks_counter);
3632 failed_mount3:
3633 if (sbi->s_flex_groups) {
3634 if (is_vmalloc_addr(sbi->s_flex_groups))
3635 vfree(sbi->s_flex_groups);
3636 else
3637 kfree(sbi->s_flex_groups);
3638 }
3639 failed_mount2:
3640 for (i = 0; i < db_count; i++)
3641 brelse(sbi->s_group_desc[i]);
3642 kfree(sbi->s_group_desc);
3643 failed_mount:
3644 if (sbi->s_proc) {
3645 remove_proc_entry(sb->s_id, ext4_proc_root);
3646 }
3647 #ifdef CONFIG_QUOTA
3648 for (i = 0; i < MAXQUOTAS; i++)
3649 kfree(sbi->s_qf_names[i]);
3650 #endif
3651 ext4_blkdev_remove(sbi);
3652 brelse(bh);
3653 out_fail:
3654 sb->s_fs_info = NULL;
3655 kfree(sbi->s_blockgroup_lock);
3656 kfree(sbi);
3657 lock_kernel();
3658 out_free_orig:
3659 kfree(orig_data);
3660 return ret;
3661 }
3662
3663 /*
3664 * Setup any per-fs journal parameters now. We'll do this both on
3665 * initial mount, once the journal has been initialised but before we've
3666 * done any recovery; and again on any subsequent remount.
3667 */
3668 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
3669 {
3670 struct ext4_sb_info *sbi = EXT4_SB(sb);
3671
3672 journal->j_commit_interval = sbi->s_commit_interval;
3673 journal->j_min_batch_time = sbi->s_min_batch_time;
3674 journal->j_max_batch_time = sbi->s_max_batch_time;
3675
3676 write_lock(&journal->j_state_lock);
3677 if (test_opt(sb, BARRIER))
3678 journal->j_flags |= JBD2_BARRIER;
3679 else
3680 journal->j_flags &= ~JBD2_BARRIER;
3681 if (test_opt(sb, DATA_ERR_ABORT))
3682 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
3683 else
3684 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
3685 write_unlock(&journal->j_state_lock);
3686 }
3687
3688 static journal_t *ext4_get_journal(struct super_block *sb,
3689 unsigned int journal_inum)
3690 {
3691 struct inode *journal_inode;
3692 journal_t *journal;
3693
3694 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
3695
3696 /* First, test for the existence of a valid inode on disk. Bad
3697 * things happen if we iget() an unused inode, as the subsequent
3698 * iput() will try to delete it. */
3699
3700 journal_inode = ext4_iget(sb, journal_inum);
3701 if (IS_ERR(journal_inode)) {
3702 ext4_msg(sb, KERN_ERR, "no journal found");
3703 return NULL;
3704 }
3705 if (!journal_inode->i_nlink) {
3706 make_bad_inode(journal_inode);
3707 iput(journal_inode);
3708 ext4_msg(sb, KERN_ERR, "journal inode is deleted");
3709 return NULL;
3710 }
3711
3712 jbd_debug(2, "Journal inode found at %p: %lld bytes\n",
3713 journal_inode, journal_inode->i_size);
3714 if (!S_ISREG(journal_inode->i_mode)) {
3715 ext4_msg(sb, KERN_ERR, "invalid journal inode");
3716 iput(journal_inode);
3717 return NULL;
3718 }
3719
3720 journal = jbd2_journal_init_inode(journal_inode);
3721 if (!journal) {
3722 ext4_msg(sb, KERN_ERR, "Could not load journal inode");
3723 iput(journal_inode);
3724 return NULL;
3725 }
3726 journal->j_private = sb;
3727 ext4_init_journal_params(sb, journal);
3728 return journal;
3729 }
3730
3731 static journal_t *ext4_get_dev_journal(struct super_block *sb,
3732 dev_t j_dev)
3733 {
3734 struct buffer_head *bh;
3735 journal_t *journal;
3736 ext4_fsblk_t start;
3737 ext4_fsblk_t len;
3738 int hblock, blocksize;
3739 ext4_fsblk_t sb_block;
3740 unsigned long offset;
3741 struct ext4_super_block *es;
3742 struct block_device *bdev;
3743
3744 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
3745
3746 bdev = ext4_blkdev_get(j_dev, sb);
3747 if (bdev == NULL)
3748 return NULL;
3749
3750 if (bd_claim(bdev, sb)) {
3751 ext4_msg(sb, KERN_ERR,
3752 "failed to claim external journal device");
3753 blkdev_put(bdev, FMODE_READ|FMODE_WRITE);
3754 return NULL;
3755 }
3756
3757 blocksize = sb->s_blocksize;
3758 hblock = bdev_logical_block_size(bdev);
3759 if (blocksize < hblock) {
3760 ext4_msg(sb, KERN_ERR,
3761 "blocksize too small for journal device");
3762 goto out_bdev;
3763 }
3764
3765 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
3766 offset = EXT4_MIN_BLOCK_SIZE % blocksize;
3767 set_blocksize(bdev, blocksize);
3768 if (!(bh = __bread(bdev, sb_block, blocksize))) {
3769 ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
3770 "external journal");
3771 goto out_bdev;
3772 }
3773
3774 es = (struct ext4_super_block *) (((char *)bh->b_data) + offset);
3775 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
3776 !(le32_to_cpu(es->s_feature_incompat) &
3777 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
3778 ext4_msg(sb, KERN_ERR, "external journal has "
3779 "bad superblock");
3780 brelse(bh);
3781 goto out_bdev;
3782 }
3783
3784 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
3785 ext4_msg(sb, KERN_ERR, "journal UUID does not match");
3786 brelse(bh);
3787 goto out_bdev;
3788 }
3789
3790 len = ext4_blocks_count(es);
3791 start = sb_block + 1;
3792 brelse(bh); /* we're done with the superblock */
3793
3794 journal = jbd2_journal_init_dev(bdev, sb->s_bdev,
3795 start, len, blocksize);
3796 if (!journal) {
3797 ext4_msg(sb, KERN_ERR, "failed to create device journal");
3798 goto out_bdev;
3799 }
3800 journal->j_private = sb;
3801 ll_rw_block(READ, 1, &journal->j_sb_buffer);
3802 wait_on_buffer(journal->j_sb_buffer);
3803 if (!buffer_uptodate(journal->j_sb_buffer)) {
3804 ext4_msg(sb, KERN_ERR, "I/O error on journal device");
3805 goto out_journal;
3806 }
3807 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
3808 ext4_msg(sb, KERN_ERR, "External journal has more than one "
3809 "user (unsupported) - %d",
3810 be32_to_cpu(journal->j_superblock->s_nr_users));
3811 goto out_journal;
3812 }
3813 EXT4_SB(sb)->journal_bdev = bdev;
3814 ext4_init_journal_params(sb, journal);
3815 return journal;
3816
3817 out_journal:
3818 jbd2_journal_destroy(journal);
3819 out_bdev:
3820 ext4_blkdev_put(bdev);
3821 return NULL;
3822 }
3823
3824 static int ext4_load_journal(struct super_block *sb,
3825 struct ext4_super_block *es,
3826 unsigned long journal_devnum)
3827 {
3828 journal_t *journal;
3829 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
3830 dev_t journal_dev;
3831 int err = 0;
3832 int really_read_only;
3833
3834 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
3835
3836 if (journal_devnum &&
3837 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
3838 ext4_msg(sb, KERN_INFO, "external journal device major/minor "
3839 "numbers have changed");
3840 journal_dev = new_decode_dev(journal_devnum);
3841 } else
3842 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
3843
3844 really_read_only = bdev_read_only(sb->s_bdev);
3845
3846 /*
3847 * Are we loading a blank journal or performing recovery after a
3848 * crash? For recovery, we need to check in advance whether we
3849 * can get read-write access to the device.
3850 */
3851 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) {
3852 if (sb->s_flags & MS_RDONLY) {
3853 ext4_msg(sb, KERN_INFO, "INFO: recovery "
3854 "required on readonly filesystem");
3855 if (really_read_only) {
3856 ext4_msg(sb, KERN_ERR, "write access "
3857 "unavailable, cannot proceed");
3858 return -EROFS;
3859 }
3860 ext4_msg(sb, KERN_INFO, "write access will "
3861 "be enabled during recovery");
3862 }
3863 }
3864
3865 if (journal_inum && journal_dev) {
3866 ext4_msg(sb, KERN_ERR, "filesystem has both journal "
3867 "and inode journals!");
3868 return -EINVAL;
3869 }
3870
3871 if (journal_inum) {
3872 if (!(journal = ext4_get_journal(sb, journal_inum)))
3873 return -EINVAL;
3874 } else {
3875 if (!(journal = ext4_get_dev_journal(sb, journal_dev)))
3876 return -EINVAL;
3877 }
3878
3879 if (!(journal->j_flags & JBD2_BARRIER))
3880 ext4_msg(sb, KERN_INFO, "barriers disabled");
3881
3882 if (!really_read_only && test_opt(sb, UPDATE_JOURNAL)) {
3883 err = jbd2_journal_update_format(journal);
3884 if (err) {
3885 ext4_msg(sb, KERN_ERR, "error updating journal");
3886 jbd2_journal_destroy(journal);
3887 return err;
3888 }
3889 }
3890
3891 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER))
3892 err = jbd2_journal_wipe(journal, !really_read_only);
3893 if (!err) {
3894 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
3895 if (save)
3896 memcpy(save, ((char *) es) +
3897 EXT4_S_ERR_START, EXT4_S_ERR_LEN);
3898 err = jbd2_journal_load(journal);
3899 if (save)
3900 memcpy(((char *) es) + EXT4_S_ERR_START,
3901 save, EXT4_S_ERR_LEN);
3902 kfree(save);
3903 }
3904
3905 if (err) {
3906 ext4_msg(sb, KERN_ERR, "error loading journal");
3907 jbd2_journal_destroy(journal);
3908 return err;
3909 }
3910
3911 EXT4_SB(sb)->s_journal = journal;
3912 ext4_clear_journal_err(sb, es);
3913
3914 if (!really_read_only && journal_devnum &&
3915 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
3916 es->s_journal_dev = cpu_to_le32(journal_devnum);
3917
3918 /* Make sure we flush the recovery flag to disk. */
3919 ext4_commit_super(sb, 1);
3920 }
3921
3922 return 0;
3923 }
3924
3925 static int ext4_commit_super(struct super_block *sb, int sync)
3926 {
3927 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
3928 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
3929 int error = 0;
3930
3931 if (!sbh)
3932 return error;
3933 if (buffer_write_io_error(sbh)) {
3934 /*
3935 * Oh, dear. A previous attempt to write the
3936 * superblock failed. This could happen because the
3937 * USB device was yanked out. Or it could happen to
3938 * be a transient write error and maybe the block will
3939 * be remapped. Nothing we can do but to retry the
3940 * write and hope for the best.
3941 */
3942 ext4_msg(sb, KERN_ERR, "previous I/O error to "
3943 "superblock detected");
3944 clear_buffer_write_io_error(sbh);
3945 set_buffer_uptodate(sbh);
3946 }
3947 /*
3948 * If the file system is mounted read-only, don't update the
3949 * superblock write time. This avoids updating the superblock
3950 * write time when we are mounting the root file system
3951 * read/only but we need to replay the journal; at that point,
3952 * for people who are east of GMT and who make their clock
3953 * tick in localtime for Windows bug-for-bug compatibility,
3954 * the clock is set in the future, and this will cause e2fsck
3955 * to complain and force a full file system check.
3956 */
3957 if (!(sb->s_flags & MS_RDONLY))
3958 es->s_wtime = cpu_to_le32(get_seconds());
3959 if (sb->s_bdev->bd_part)
3960 es->s_kbytes_written =
3961 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written +
3962 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
3963 EXT4_SB(sb)->s_sectors_written_start) >> 1));
3964 else
3965 es->s_kbytes_written =
3966 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written);
3967 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeblocks_counter))
3968 ext4_free_blocks_count_set(es, percpu_counter_sum_positive(
3969 &EXT4_SB(sb)->s_freeblocks_counter));
3970 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeinodes_counter))
3971 es->s_free_inodes_count =
3972 cpu_to_le32(percpu_counter_sum_positive(
3973 &EXT4_SB(sb)->s_freeinodes_counter));
3974 sb->s_dirt = 0;
3975 BUFFER_TRACE(sbh, "marking dirty");
3976 mark_buffer_dirty(sbh);
3977 if (sync) {
3978 error = sync_dirty_buffer(sbh);
3979 if (error)
3980 return error;
3981
3982 error = buffer_write_io_error(sbh);
3983 if (error) {
3984 ext4_msg(sb, KERN_ERR, "I/O error while writing "
3985 "superblock");
3986 clear_buffer_write_io_error(sbh);
3987 set_buffer_uptodate(sbh);
3988 }
3989 }
3990 return error;
3991 }
3992
3993 /*
3994 * Have we just finished recovery? If so, and if we are mounting (or
3995 * remounting) the filesystem readonly, then we will end up with a
3996 * consistent fs on disk. Record that fact.
3997 */
3998 static void ext4_mark_recovery_complete(struct super_block *sb,
3999 struct ext4_super_block *es)
4000 {
4001 journal_t *journal = EXT4_SB(sb)->s_journal;
4002
4003 if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) {
4004 BUG_ON(journal != NULL);
4005 return;
4006 }
4007 jbd2_journal_lock_updates(journal);
4008 if (jbd2_journal_flush(journal) < 0)
4009 goto out;
4010
4011 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER) &&
4012 sb->s_flags & MS_RDONLY) {
4013 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4014 ext4_commit_super(sb, 1);
4015 }
4016
4017 out:
4018 jbd2_journal_unlock_updates(journal);
4019 }
4020
4021 /*
4022 * If we are mounting (or read-write remounting) a filesystem whose journal
4023 * has recorded an error from a previous lifetime, move that error to the
4024 * main filesystem now.
4025 */
4026 static void ext4_clear_journal_err(struct super_block *sb,
4027 struct ext4_super_block *es)
4028 {
4029 journal_t *journal;
4030 int j_errno;
4031 const char *errstr;
4032
4033 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
4034
4035 journal = EXT4_SB(sb)->s_journal;
4036
4037 /*
4038 * Now check for any error status which may have been recorded in the
4039 * journal by a prior ext4_error() or ext4_abort()
4040 */
4041
4042 j_errno = jbd2_journal_errno(journal);
4043 if (j_errno) {
4044 char nbuf[16];
4045
4046 errstr = ext4_decode_error(sb, j_errno, nbuf);
4047 ext4_warning(sb, "Filesystem error recorded "
4048 "from previous mount: %s", errstr);
4049 ext4_warning(sb, "Marking fs in need of filesystem check.");
4050
4051 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
4052 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
4053 ext4_commit_super(sb, 1);
4054
4055 jbd2_journal_clear_err(journal);
4056 }
4057 }
4058
4059 /*
4060 * Force the running and committing transactions to commit,
4061 * and wait on the commit.
4062 */
4063 int ext4_force_commit(struct super_block *sb)
4064 {
4065 journal_t *journal;
4066 int ret = 0;
4067
4068 if (sb->s_flags & MS_RDONLY)
4069 return 0;
4070
4071 journal = EXT4_SB(sb)->s_journal;
4072 if (journal) {
4073 vfs_check_frozen(sb, SB_FREEZE_TRANS);
4074 ret = ext4_journal_force_commit(journal);
4075 }
4076
4077 return ret;
4078 }
4079
4080 static void ext4_write_super(struct super_block *sb)
4081 {
4082 lock_super(sb);
4083 ext4_commit_super(sb, 1);
4084 unlock_super(sb);
4085 }
4086
4087 static int ext4_sync_fs(struct super_block *sb, int wait)
4088 {
4089 int ret = 0;
4090 tid_t target;
4091 struct ext4_sb_info *sbi = EXT4_SB(sb);
4092
4093 trace_ext4_sync_fs(sb, wait);
4094 flush_workqueue(sbi->dio_unwritten_wq);
4095 if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
4096 if (wait)
4097 jbd2_log_wait_commit(sbi->s_journal, target);
4098 }
4099 return ret;
4100 }
4101
4102 /*
4103 * LVM calls this function before a (read-only) snapshot is created. This
4104 * gives us a chance to flush the journal completely and mark the fs clean.
4105 */
4106 static int ext4_freeze(struct super_block *sb)
4107 {
4108 int error = 0;
4109 journal_t *journal;
4110
4111 if (sb->s_flags & MS_RDONLY)
4112 return 0;
4113
4114 journal = EXT4_SB(sb)->s_journal;
4115
4116 /* Now we set up the journal barrier. */
4117 jbd2_journal_lock_updates(journal);
4118
4119 /*
4120 * Don't clear the needs_recovery flag if we failed to flush
4121 * the journal.
4122 */
4123 error = jbd2_journal_flush(journal);
4124 if (error < 0)
4125 goto out;
4126
4127 /* Journal blocked and flushed, clear needs_recovery flag. */
4128 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4129 error = ext4_commit_super(sb, 1);
4130 out:
4131 /* we rely on s_frozen to stop further updates */
4132 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
4133 return error;
4134 }
4135
4136 /*
4137 * Called by LVM after the snapshot is done. We need to reset the RECOVER
4138 * flag here, even though the filesystem is not technically dirty yet.
4139 */
4140 static int ext4_unfreeze(struct super_block *sb)
4141 {
4142 if (sb->s_flags & MS_RDONLY)
4143 return 0;
4144
4145 lock_super(sb);
4146 /* Reset the needs_recovery flag before the fs is unlocked. */
4147 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4148 ext4_commit_super(sb, 1);
4149 unlock_super(sb);
4150 return 0;
4151 }
4152
4153 static int ext4_remount(struct super_block *sb, int *flags, char *data)
4154 {
4155 struct ext4_super_block *es;
4156 struct ext4_sb_info *sbi = EXT4_SB(sb);
4157 ext4_fsblk_t n_blocks_count = 0;
4158 unsigned long old_sb_flags;
4159 struct ext4_mount_options old_opts;
4160 int enable_quota = 0;
4161 ext4_group_t g;
4162 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
4163 int err;
4164 #ifdef CONFIG_QUOTA
4165 int i;
4166 #endif
4167 char *orig_data = kstrdup(data, GFP_KERNEL);
4168
4169 lock_kernel();
4170
4171 /* Store the original options */
4172 lock_super(sb);
4173 old_sb_flags = sb->s_flags;
4174 old_opts.s_mount_opt = sbi->s_mount_opt;
4175 old_opts.s_resuid = sbi->s_resuid;
4176 old_opts.s_resgid = sbi->s_resgid;
4177 old_opts.s_commit_interval = sbi->s_commit_interval;
4178 old_opts.s_min_batch_time = sbi->s_min_batch_time;
4179 old_opts.s_max_batch_time = sbi->s_max_batch_time;
4180 #ifdef CONFIG_QUOTA
4181 old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
4182 for (i = 0; i < MAXQUOTAS; i++)
4183 old_opts.s_qf_names[i] = sbi->s_qf_names[i];
4184 #endif
4185 if (sbi->s_journal && sbi->s_journal->j_task->io_context)
4186 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio;
4187
4188 /*
4189 * Allow the "check" option to be passed as a remount option.
4190 */
4191 if (!parse_options(data, sb, NULL, &journal_ioprio,
4192 &n_blocks_count, 1)) {
4193 err = -EINVAL;
4194 goto restore_opts;
4195 }
4196
4197 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED)
4198 ext4_abort(sb, "Abort forced by user");
4199
4200 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
4201 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
4202
4203 es = sbi->s_es;
4204
4205 if (sbi->s_journal) {
4206 ext4_init_journal_params(sb, sbi->s_journal);
4207 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
4208 }
4209
4210 if ((*flags & MS_RDONLY) != (sb->s_flags & MS_RDONLY) ||
4211 n_blocks_count > ext4_blocks_count(es)) {
4212 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) {
4213 err = -EROFS;
4214 goto restore_opts;
4215 }
4216
4217 if (*flags & MS_RDONLY) {
4218 err = dquot_suspend(sb, -1);
4219 if (err < 0)
4220 goto restore_opts;
4221
4222 /*
4223 * First of all, the unconditional stuff we have to do
4224 * to disable replay of the journal when we next remount
4225 */
4226 sb->s_flags |= MS_RDONLY;
4227
4228 /*
4229 * OK, test if we are remounting a valid rw partition
4230 * readonly, and if so set the rdonly flag and then
4231 * mark the partition as valid again.
4232 */
4233 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
4234 (sbi->s_mount_state & EXT4_VALID_FS))
4235 es->s_state = cpu_to_le16(sbi->s_mount_state);
4236
4237 if (sbi->s_journal)
4238 ext4_mark_recovery_complete(sb, es);
4239 } else {
4240 /* Make sure we can mount this feature set readwrite */
4241 if (!ext4_feature_set_ok(sb, 0)) {
4242 err = -EROFS;
4243 goto restore_opts;
4244 }
4245 /*
4246 * Make sure the group descriptor checksums
4247 * are sane. If they aren't, refuse to remount r/w.
4248 */
4249 for (g = 0; g < sbi->s_groups_count; g++) {
4250 struct ext4_group_desc *gdp =
4251 ext4_get_group_desc(sb, g, NULL);
4252
4253 if (!ext4_group_desc_csum_verify(sbi, g, gdp)) {
4254 ext4_msg(sb, KERN_ERR,
4255 "ext4_remount: Checksum for group %u failed (%u!=%u)",
4256 g, le16_to_cpu(ext4_group_desc_csum(sbi, g, gdp)),
4257 le16_to_cpu(gdp->bg_checksum));
4258 err = -EINVAL;
4259 goto restore_opts;
4260 }
4261 }
4262
4263 /*
4264 * If we have an unprocessed orphan list hanging
4265 * around from a previously readonly bdev mount,
4266 * require a full umount/remount for now.
4267 */
4268 if (es->s_last_orphan) {
4269 ext4_msg(sb, KERN_WARNING, "Couldn't "
4270 "remount RDWR because of unprocessed "
4271 "orphan inode list. Please "
4272 "umount/remount instead");
4273 err = -EINVAL;
4274 goto restore_opts;
4275 }
4276
4277 /*
4278 * Mounting a RDONLY partition read-write, so reread
4279 * and store the current valid flag. (It may have
4280 * been changed by e2fsck since we originally mounted
4281 * the partition.)
4282 */
4283 if (sbi->s_journal)
4284 ext4_clear_journal_err(sb, es);
4285 sbi->s_mount_state = le16_to_cpu(es->s_state);
4286 if ((err = ext4_group_extend(sb, es, n_blocks_count)))
4287 goto restore_opts;
4288 if (!ext4_setup_super(sb, es, 0))
4289 sb->s_flags &= ~MS_RDONLY;
4290 enable_quota = 1;
4291 }
4292 }
4293
4294 /*
4295 * Reinitialize lazy itable initialization thread based on
4296 * current settings
4297 */
4298 if ((sb->s_flags & MS_RDONLY) || !test_opt(sb, INIT_INODE_TABLE))
4299 ext4_unregister_li_request(sb);
4300 else {
4301 ext4_group_t first_not_zeroed;
4302 first_not_zeroed = ext4_has_uninit_itable(sb);
4303 ext4_register_li_request(sb, first_not_zeroed);
4304 }
4305
4306 ext4_setup_system_zone(sb);
4307 if (sbi->s_journal == NULL)
4308 ext4_commit_super(sb, 1);
4309
4310 #ifdef CONFIG_QUOTA
4311 /* Release old quota file names */
4312 for (i = 0; i < MAXQUOTAS; i++)
4313 if (old_opts.s_qf_names[i] &&
4314 old_opts.s_qf_names[i] != sbi->s_qf_names[i])
4315 kfree(old_opts.s_qf_names[i]);
4316 #endif
4317 unlock_super(sb);
4318 unlock_kernel();
4319 if (enable_quota)
4320 dquot_resume(sb, -1);
4321
4322 ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data);
4323 kfree(orig_data);
4324 return 0;
4325
4326 restore_opts:
4327 sb->s_flags = old_sb_flags;
4328 sbi->s_mount_opt = old_opts.s_mount_opt;
4329 sbi->s_resuid = old_opts.s_resuid;
4330 sbi->s_resgid = old_opts.s_resgid;
4331 sbi->s_commit_interval = old_opts.s_commit_interval;
4332 sbi->s_min_batch_time = old_opts.s_min_batch_time;
4333 sbi->s_max_batch_time = old_opts.s_max_batch_time;
4334 #ifdef CONFIG_QUOTA
4335 sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
4336 for (i = 0; i < MAXQUOTAS; i++) {
4337 if (sbi->s_qf_names[i] &&
4338 old_opts.s_qf_names[i] != sbi->s_qf_names[i])
4339 kfree(sbi->s_qf_names[i]);
4340 sbi->s_qf_names[i] = old_opts.s_qf_names[i];
4341 }
4342 #endif
4343 unlock_super(sb);
4344 unlock_kernel();
4345 kfree(orig_data);
4346 return err;
4347 }
4348
4349 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
4350 {
4351 struct super_block *sb = dentry->d_sb;
4352 struct ext4_sb_info *sbi = EXT4_SB(sb);
4353 struct ext4_super_block *es = sbi->s_es;
4354 u64 fsid;
4355
4356 if (test_opt(sb, MINIX_DF)) {
4357 sbi->s_overhead_last = 0;
4358 } else if (sbi->s_blocks_last != ext4_blocks_count(es)) {
4359 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
4360 ext4_fsblk_t overhead = 0;
4361
4362 /*
4363 * Compute the overhead (FS structures). This is constant
4364 * for a given filesystem unless the number of block groups
4365 * changes so we cache the previous value until it does.
4366 */
4367
4368 /*
4369 * All of the blocks before first_data_block are
4370 * overhead
4371 */
4372 overhead = le32_to_cpu(es->s_first_data_block);
4373
4374 /*
4375 * Add the overhead attributed to the superblock and
4376 * block group descriptors. If the sparse superblocks
4377 * feature is turned on, then not all groups have this.
4378 */
4379 for (i = 0; i < ngroups; i++) {
4380 overhead += ext4_bg_has_super(sb, i) +
4381 ext4_bg_num_gdb(sb, i);
4382 cond_resched();
4383 }
4384
4385 /*
4386 * Every block group has an inode bitmap, a block
4387 * bitmap, and an inode table.
4388 */
4389 overhead += ngroups * (2 + sbi->s_itb_per_group);
4390 sbi->s_overhead_last = overhead;
4391 smp_wmb();
4392 sbi->s_blocks_last = ext4_blocks_count(es);
4393 }
4394
4395 buf->f_type = EXT4_SUPER_MAGIC;
4396 buf->f_bsize = sb->s_blocksize;
4397 buf->f_blocks = ext4_blocks_count(es) - sbi->s_overhead_last;
4398 buf->f_bfree = percpu_counter_sum_positive(&sbi->s_freeblocks_counter) -
4399 percpu_counter_sum_positive(&sbi->s_dirtyblocks_counter);
4400 buf->f_bavail = buf->f_bfree - ext4_r_blocks_count(es);
4401 if (buf->f_bfree < ext4_r_blocks_count(es))
4402 buf->f_bavail = 0;
4403 buf->f_files = le32_to_cpu(es->s_inodes_count);
4404 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
4405 buf->f_namelen = EXT4_NAME_LEN;
4406 fsid = le64_to_cpup((void *)es->s_uuid) ^
4407 le64_to_cpup((void *)es->s_uuid + sizeof(u64));
4408 buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL;
4409 buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL;
4410
4411 return 0;
4412 }
4413
4414 /* Helper function for writing quotas on sync - we need to start transaction
4415 * before quota file is locked for write. Otherwise the are possible deadlocks:
4416 * Process 1 Process 2
4417 * ext4_create() quota_sync()
4418 * jbd2_journal_start() write_dquot()
4419 * dquot_initialize() down(dqio_mutex)
4420 * down(dqio_mutex) jbd2_journal_start()
4421 *
4422 */
4423
4424 #ifdef CONFIG_QUOTA
4425
4426 static inline struct inode *dquot_to_inode(struct dquot *dquot)
4427 {
4428 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_type];
4429 }
4430
4431 static int ext4_write_dquot(struct dquot *dquot)
4432 {
4433 int ret, err;
4434 handle_t *handle;
4435 struct inode *inode;
4436
4437 inode = dquot_to_inode(dquot);
4438 handle = ext4_journal_start(inode,
4439 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
4440 if (IS_ERR(handle))
4441 return PTR_ERR(handle);
4442 ret = dquot_commit(dquot);
4443 err = ext4_journal_stop(handle);
4444 if (!ret)
4445 ret = err;
4446 return ret;
4447 }
4448
4449 static int ext4_acquire_dquot(struct dquot *dquot)
4450 {
4451 int ret, err;
4452 handle_t *handle;
4453
4454 handle = ext4_journal_start(dquot_to_inode(dquot),
4455 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
4456 if (IS_ERR(handle))
4457 return PTR_ERR(handle);
4458 ret = dquot_acquire(dquot);
4459 err = ext4_journal_stop(handle);
4460 if (!ret)
4461 ret = err;
4462 return ret;
4463 }
4464
4465 static int ext4_release_dquot(struct dquot *dquot)
4466 {
4467 int ret, err;
4468 handle_t *handle;
4469
4470 handle = ext4_journal_start(dquot_to_inode(dquot),
4471 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
4472 if (IS_ERR(handle)) {
4473 /* Release dquot anyway to avoid endless cycle in dqput() */
4474 dquot_release(dquot);
4475 return PTR_ERR(handle);
4476 }
4477 ret = dquot_release(dquot);
4478 err = ext4_journal_stop(handle);
4479 if (!ret)
4480 ret = err;
4481 return ret;
4482 }
4483
4484 static int ext4_mark_dquot_dirty(struct dquot *dquot)
4485 {
4486 /* Are we journaling quotas? */
4487 if (EXT4_SB(dquot->dq_sb)->s_qf_names[USRQUOTA] ||
4488 EXT4_SB(dquot->dq_sb)->s_qf_names[GRPQUOTA]) {
4489 dquot_mark_dquot_dirty(dquot);
4490 return ext4_write_dquot(dquot);
4491 } else {
4492 return dquot_mark_dquot_dirty(dquot);
4493 }
4494 }
4495
4496 static int ext4_write_info(struct super_block *sb, int type)
4497 {
4498 int ret, err;
4499 handle_t *handle;
4500
4501 /* Data block + inode block */
4502 handle = ext4_journal_start(sb->s_root->d_inode, 2);
4503 if (IS_ERR(handle))
4504 return PTR_ERR(handle);
4505 ret = dquot_commit_info(sb, type);
4506 err = ext4_journal_stop(handle);
4507 if (!ret)
4508 ret = err;
4509 return ret;
4510 }
4511
4512 /*
4513 * Turn on quotas during mount time - we need to find
4514 * the quota file and such...
4515 */
4516 static int ext4_quota_on_mount(struct super_block *sb, int type)
4517 {
4518 return dquot_quota_on_mount(sb, EXT4_SB(sb)->s_qf_names[type],
4519 EXT4_SB(sb)->s_jquota_fmt, type);
4520 }
4521
4522 /*
4523 * Standard function to be called on quota_on
4524 */
4525 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
4526 char *name)
4527 {
4528 int err;
4529 struct path path;
4530
4531 if (!test_opt(sb, QUOTA))
4532 return -EINVAL;
4533
4534 err = kern_path(name, LOOKUP_FOLLOW, &path);
4535 if (err)
4536 return err;
4537
4538 /* Quotafile not on the same filesystem? */
4539 if (path.mnt->mnt_sb != sb) {
4540 path_put(&path);
4541 return -EXDEV;
4542 }
4543 /* Journaling quota? */
4544 if (EXT4_SB(sb)->s_qf_names[type]) {
4545 /* Quotafile not in fs root? */
4546 if (path.dentry->d_parent != sb->s_root)
4547 ext4_msg(sb, KERN_WARNING,
4548 "Quota file not on filesystem root. "
4549 "Journaled quota will not work");
4550 }
4551
4552 /*
4553 * When we journal data on quota file, we have to flush journal to see
4554 * all updates to the file when we bypass pagecache...
4555 */
4556 if (EXT4_SB(sb)->s_journal &&
4557 ext4_should_journal_data(path.dentry->d_inode)) {
4558 /*
4559 * We don't need to lock updates but journal_flush() could
4560 * otherwise be livelocked...
4561 */
4562 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal);
4563 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal);
4564 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
4565 if (err) {
4566 path_put(&path);
4567 return err;
4568 }
4569 }
4570
4571 err = dquot_quota_on_path(sb, type, format_id, &path);
4572 path_put(&path);
4573 return err;
4574 }
4575
4576 static int ext4_quota_off(struct super_block *sb, int type)
4577 {
4578 /* Force all delayed allocation blocks to be allocated */
4579 if (test_opt(sb, DELALLOC)) {
4580 down_read(&sb->s_umount);
4581 sync_filesystem(sb);
4582 up_read(&sb->s_umount);
4583 }
4584
4585 return dquot_quota_off(sb, type);
4586 }
4587
4588 /* Read data from quotafile - avoid pagecache and such because we cannot afford
4589 * acquiring the locks... As quota files are never truncated and quota code
4590 * itself serializes the operations (and noone else should touch the files)
4591 * we don't have to be afraid of races */
4592 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
4593 size_t len, loff_t off)
4594 {
4595 struct inode *inode = sb_dqopt(sb)->files[type];
4596 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
4597 int err = 0;
4598 int offset = off & (sb->s_blocksize - 1);
4599 int tocopy;
4600 size_t toread;
4601 struct buffer_head *bh;
4602 loff_t i_size = i_size_read(inode);
4603
4604 if (off > i_size)
4605 return 0;
4606 if (off+len > i_size)
4607 len = i_size-off;
4608 toread = len;
4609 while (toread > 0) {
4610 tocopy = sb->s_blocksize - offset < toread ?
4611 sb->s_blocksize - offset : toread;
4612 bh = ext4_bread(NULL, inode, blk, 0, &err);
4613 if (err)
4614 return err;
4615 if (!bh) /* A hole? */
4616 memset(data, 0, tocopy);
4617 else
4618 memcpy(data, bh->b_data+offset, tocopy);
4619 brelse(bh);
4620 offset = 0;
4621 toread -= tocopy;
4622 data += tocopy;
4623 blk++;
4624 }
4625 return len;
4626 }
4627
4628 /* Write to quotafile (we know the transaction is already started and has
4629 * enough credits) */
4630 static ssize_t ext4_quota_write(struct super_block *sb, int type,
4631 const char *data, size_t len, loff_t off)
4632 {
4633 struct inode *inode = sb_dqopt(sb)->files[type];
4634 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
4635 int err = 0;
4636 int offset = off & (sb->s_blocksize - 1);
4637 struct buffer_head *bh;
4638 handle_t *handle = journal_current_handle();
4639
4640 if (EXT4_SB(sb)->s_journal && !handle) {
4641 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
4642 " cancelled because transaction is not started",
4643 (unsigned long long)off, (unsigned long long)len);
4644 return -EIO;
4645 }
4646 /*
4647 * Since we account only one data block in transaction credits,
4648 * then it is impossible to cross a block boundary.
4649 */
4650 if (sb->s_blocksize - offset < len) {
4651 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
4652 " cancelled because not block aligned",
4653 (unsigned long long)off, (unsigned long long)len);
4654 return -EIO;
4655 }
4656
4657 mutex_lock_nested(&inode->i_mutex, I_MUTEX_QUOTA);
4658 bh = ext4_bread(handle, inode, blk, 1, &err);
4659 if (!bh)
4660 goto out;
4661 err = ext4_journal_get_write_access(handle, bh);
4662 if (err) {
4663 brelse(bh);
4664 goto out;
4665 }
4666 lock_buffer(bh);
4667 memcpy(bh->b_data+offset, data, len);
4668 flush_dcache_page(bh->b_page);
4669 unlock_buffer(bh);
4670 err = ext4_handle_dirty_metadata(handle, NULL, bh);
4671 brelse(bh);
4672 out:
4673 if (err) {
4674 mutex_unlock(&inode->i_mutex);
4675 return err;
4676 }
4677 if (inode->i_size < off + len) {
4678 i_size_write(inode, off + len);
4679 EXT4_I(inode)->i_disksize = inode->i_size;
4680 }
4681 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
4682 ext4_mark_inode_dirty(handle, inode);
4683 mutex_unlock(&inode->i_mutex);
4684 return len;
4685 }
4686
4687 #endif
4688
4689 static int ext4_get_sb(struct file_system_type *fs_type, int flags,
4690 const char *dev_name, void *data, struct vfsmount *mnt)
4691 {
4692 return get_sb_bdev(fs_type, flags, dev_name, data, ext4_fill_super,mnt);
4693 }
4694
4695 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
4696 static struct file_system_type ext2_fs_type = {
4697 .owner = THIS_MODULE,
4698 .name = "ext2",
4699 .get_sb = ext4_get_sb,
4700 .kill_sb = kill_block_super,
4701 .fs_flags = FS_REQUIRES_DEV,
4702 };
4703
4704 static inline void register_as_ext2(void)
4705 {
4706 int err = register_filesystem(&ext2_fs_type);
4707 if (err)
4708 printk(KERN_WARNING
4709 "EXT4-fs: Unable to register as ext2 (%d)\n", err);
4710 }
4711
4712 static inline void unregister_as_ext2(void)
4713 {
4714 unregister_filesystem(&ext2_fs_type);
4715 }
4716 MODULE_ALIAS("ext2");
4717 #else
4718 static inline void register_as_ext2(void) { }
4719 static inline void unregister_as_ext2(void) { }
4720 #endif
4721
4722 #if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
4723 static inline void register_as_ext3(void)
4724 {
4725 int err = register_filesystem(&ext3_fs_type);
4726 if (err)
4727 printk(KERN_WARNING
4728 "EXT4-fs: Unable to register as ext3 (%d)\n", err);
4729 }
4730
4731 static inline void unregister_as_ext3(void)
4732 {
4733 unregister_filesystem(&ext3_fs_type);
4734 }
4735 MODULE_ALIAS("ext3");
4736 #else
4737 static inline void register_as_ext3(void) { }
4738 static inline void unregister_as_ext3(void) { }
4739 #endif
4740
4741 static struct file_system_type ext4_fs_type = {
4742 .owner = THIS_MODULE,
4743 .name = "ext4",
4744 .get_sb = ext4_get_sb,
4745 .kill_sb = kill_block_super,
4746 .fs_flags = FS_REQUIRES_DEV,
4747 };
4748
4749 int __init ext4_init_feat_adverts(void)
4750 {
4751 struct ext4_features *ef;
4752 int ret = -ENOMEM;
4753
4754 ef = kzalloc(sizeof(struct ext4_features), GFP_KERNEL);
4755 if (!ef)
4756 goto out;
4757
4758 ef->f_kobj.kset = ext4_kset;
4759 init_completion(&ef->f_kobj_unregister);
4760 ret = kobject_init_and_add(&ef->f_kobj, &ext4_feat_ktype, NULL,
4761 "features");
4762 if (ret) {
4763 kfree(ef);
4764 goto out;
4765 }
4766
4767 ext4_feat = ef;
4768 ret = 0;
4769 out:
4770 return ret;
4771 }
4772
4773 static int __init init_ext4_fs(void)
4774 {
4775 int err;
4776
4777 ext4_check_flag_values();
4778 err = init_ext4_pageio();
4779 if (err)
4780 return err;
4781 err = init_ext4_system_zone();
4782 if (err)
4783 goto out5;
4784 ext4_kset = kset_create_and_add("ext4", NULL, fs_kobj);
4785 if (!ext4_kset)
4786 goto out4;
4787 ext4_proc_root = proc_mkdir("fs/ext4", NULL);
4788
4789 err = ext4_init_feat_adverts();
4790
4791 err = init_ext4_mballoc();
4792 if (err)
4793 goto out3;
4794
4795 err = init_ext4_xattr();
4796 if (err)
4797 goto out2;
4798 err = init_inodecache();
4799 if (err)
4800 goto out1;
4801 register_as_ext2();
4802 register_as_ext3();
4803 err = register_filesystem(&ext4_fs_type);
4804 if (err)
4805 goto out;
4806
4807 ext4_li_info = NULL;
4808 mutex_init(&ext4_li_mtx);
4809 return 0;
4810 out:
4811 unregister_as_ext2();
4812 unregister_as_ext3();
4813 destroy_inodecache();
4814 out1:
4815 exit_ext4_xattr();
4816 out2:
4817 exit_ext4_mballoc();
4818 out3:
4819 kfree(ext4_feat);
4820 remove_proc_entry("fs/ext4", NULL);
4821 kset_unregister(ext4_kset);
4822 out4:
4823 exit_ext4_system_zone();
4824 out5:
4825 exit_ext4_pageio();
4826 return err;
4827 }
4828
4829 static void __exit exit_ext4_fs(void)
4830 {
4831 ext4_destroy_lazyinit_thread();
4832 unregister_as_ext2();
4833 unregister_as_ext3();
4834 unregister_filesystem(&ext4_fs_type);
4835 destroy_inodecache();
4836 exit_ext4_xattr();
4837 exit_ext4_mballoc();
4838 remove_proc_entry("fs/ext4", NULL);
4839 kset_unregister(ext4_kset);
4840 exit_ext4_system_zone();
4841 exit_ext4_pageio();
4842 }
4843
4844 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
4845 MODULE_DESCRIPTION("Fourth Extended Filesystem");
4846 MODULE_LICENSE("GPL");
4847 module_init(init_ext4_fs)
4848 module_exit(exit_ext4_fs)