]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/ext4/super.c
Merge tag 'iio-for-4.13b' of git://git.kernel.org/pub/scm/linux/kernel/git/jic23...
[mirror_ubuntu-artful-kernel.git] / fs / ext4 / super.c
1 /*
2 * linux/fs/ext4/super.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * Big-endian to little-endian byte-swapping/bitmaps by
16 * David S. Miller (davem@caip.rutgers.edu), 1995
17 */
18
19 #include <linux/module.h>
20 #include <linux/string.h>
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/vmalloc.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/parser.h>
29 #include <linux/buffer_head.h>
30 #include <linux/exportfs.h>
31 #include <linux/vfs.h>
32 #include <linux/random.h>
33 #include <linux/mount.h>
34 #include <linux/namei.h>
35 #include <linux/quotaops.h>
36 #include <linux/seq_file.h>
37 #include <linux/ctype.h>
38 #include <linux/log2.h>
39 #include <linux/crc16.h>
40 #include <linux/dax.h>
41 #include <linux/cleancache.h>
42 #include <linux/uaccess.h>
43
44 #include <linux/kthread.h>
45 #include <linux/freezer.h>
46
47 #include "ext4.h"
48 #include "ext4_extents.h" /* Needed for trace points definition */
49 #include "ext4_jbd2.h"
50 #include "xattr.h"
51 #include "acl.h"
52 #include "mballoc.h"
53 #include "fsmap.h"
54
55 #define CREATE_TRACE_POINTS
56 #include <trace/events/ext4.h>
57
58 static struct ext4_lazy_init *ext4_li_info;
59 static struct mutex ext4_li_mtx;
60 static struct ratelimit_state ext4_mount_msg_ratelimit;
61
62 static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
63 unsigned long journal_devnum);
64 static int ext4_show_options(struct seq_file *seq, struct dentry *root);
65 static int ext4_commit_super(struct super_block *sb, int sync);
66 static void ext4_mark_recovery_complete(struct super_block *sb,
67 struct ext4_super_block *es);
68 static void ext4_clear_journal_err(struct super_block *sb,
69 struct ext4_super_block *es);
70 static int ext4_sync_fs(struct super_block *sb, int wait);
71 static int ext4_remount(struct super_block *sb, int *flags, char *data);
72 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
73 static int ext4_unfreeze(struct super_block *sb);
74 static int ext4_freeze(struct super_block *sb);
75 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
76 const char *dev_name, void *data);
77 static inline int ext2_feature_set_ok(struct super_block *sb);
78 static inline int ext3_feature_set_ok(struct super_block *sb);
79 static int ext4_feature_set_ok(struct super_block *sb, int readonly);
80 static void ext4_destroy_lazyinit_thread(void);
81 static void ext4_unregister_li_request(struct super_block *sb);
82 static void ext4_clear_request_list(void);
83 static struct inode *ext4_get_journal_inode(struct super_block *sb,
84 unsigned int journal_inum);
85
86 /*
87 * Lock ordering
88 *
89 * Note the difference between i_mmap_sem (EXT4_I(inode)->i_mmap_sem) and
90 * i_mmap_rwsem (inode->i_mmap_rwsem)!
91 *
92 * page fault path:
93 * mmap_sem -> sb_start_pagefault -> i_mmap_sem (r) -> transaction start ->
94 * page lock -> i_data_sem (rw)
95 *
96 * buffered write path:
97 * sb_start_write -> i_mutex -> mmap_sem
98 * sb_start_write -> i_mutex -> transaction start -> page lock ->
99 * i_data_sem (rw)
100 *
101 * truncate:
102 * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (w) -> i_mmap_sem (w) ->
103 * i_mmap_rwsem (w) -> page lock
104 * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (w) -> i_mmap_sem (w) ->
105 * transaction start -> i_data_sem (rw)
106 *
107 * direct IO:
108 * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (r) -> mmap_sem
109 * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (r) ->
110 * transaction start -> i_data_sem (rw)
111 *
112 * writepages:
113 * transaction start -> page lock(s) -> i_data_sem (rw)
114 */
115
116 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
117 static struct file_system_type ext2_fs_type = {
118 .owner = THIS_MODULE,
119 .name = "ext2",
120 .mount = ext4_mount,
121 .kill_sb = kill_block_super,
122 .fs_flags = FS_REQUIRES_DEV,
123 };
124 MODULE_ALIAS_FS("ext2");
125 MODULE_ALIAS("ext2");
126 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type)
127 #else
128 #define IS_EXT2_SB(sb) (0)
129 #endif
130
131
132 static struct file_system_type ext3_fs_type = {
133 .owner = THIS_MODULE,
134 .name = "ext3",
135 .mount = ext4_mount,
136 .kill_sb = kill_block_super,
137 .fs_flags = FS_REQUIRES_DEV,
138 };
139 MODULE_ALIAS_FS("ext3");
140 MODULE_ALIAS("ext3");
141 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type)
142
143 static int ext4_verify_csum_type(struct super_block *sb,
144 struct ext4_super_block *es)
145 {
146 if (!ext4_has_feature_metadata_csum(sb))
147 return 1;
148
149 return es->s_checksum_type == EXT4_CRC32C_CHKSUM;
150 }
151
152 static __le32 ext4_superblock_csum(struct super_block *sb,
153 struct ext4_super_block *es)
154 {
155 struct ext4_sb_info *sbi = EXT4_SB(sb);
156 int offset = offsetof(struct ext4_super_block, s_checksum);
157 __u32 csum;
158
159 csum = ext4_chksum(sbi, ~0, (char *)es, offset);
160
161 return cpu_to_le32(csum);
162 }
163
164 static int ext4_superblock_csum_verify(struct super_block *sb,
165 struct ext4_super_block *es)
166 {
167 if (!ext4_has_metadata_csum(sb))
168 return 1;
169
170 return es->s_checksum == ext4_superblock_csum(sb, es);
171 }
172
173 void ext4_superblock_csum_set(struct super_block *sb)
174 {
175 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
176
177 if (!ext4_has_metadata_csum(sb))
178 return;
179
180 es->s_checksum = ext4_superblock_csum(sb, es);
181 }
182
183 void *ext4_kvmalloc(size_t size, gfp_t flags)
184 {
185 void *ret;
186
187 ret = kmalloc(size, flags | __GFP_NOWARN);
188 if (!ret)
189 ret = __vmalloc(size, flags, PAGE_KERNEL);
190 return ret;
191 }
192
193 void *ext4_kvzalloc(size_t size, gfp_t flags)
194 {
195 void *ret;
196
197 ret = kzalloc(size, flags | __GFP_NOWARN);
198 if (!ret)
199 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL);
200 return ret;
201 }
202
203 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
204 struct ext4_group_desc *bg)
205 {
206 return le32_to_cpu(bg->bg_block_bitmap_lo) |
207 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
208 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
209 }
210
211 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
212 struct ext4_group_desc *bg)
213 {
214 return le32_to_cpu(bg->bg_inode_bitmap_lo) |
215 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
216 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
217 }
218
219 ext4_fsblk_t ext4_inode_table(struct super_block *sb,
220 struct ext4_group_desc *bg)
221 {
222 return le32_to_cpu(bg->bg_inode_table_lo) |
223 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
224 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
225 }
226
227 __u32 ext4_free_group_clusters(struct super_block *sb,
228 struct ext4_group_desc *bg)
229 {
230 return le16_to_cpu(bg->bg_free_blocks_count_lo) |
231 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
232 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
233 }
234
235 __u32 ext4_free_inodes_count(struct super_block *sb,
236 struct ext4_group_desc *bg)
237 {
238 return le16_to_cpu(bg->bg_free_inodes_count_lo) |
239 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
240 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
241 }
242
243 __u32 ext4_used_dirs_count(struct super_block *sb,
244 struct ext4_group_desc *bg)
245 {
246 return le16_to_cpu(bg->bg_used_dirs_count_lo) |
247 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
248 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
249 }
250
251 __u32 ext4_itable_unused_count(struct super_block *sb,
252 struct ext4_group_desc *bg)
253 {
254 return le16_to_cpu(bg->bg_itable_unused_lo) |
255 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
256 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
257 }
258
259 void ext4_block_bitmap_set(struct super_block *sb,
260 struct ext4_group_desc *bg, ext4_fsblk_t blk)
261 {
262 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
263 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
264 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
265 }
266
267 void ext4_inode_bitmap_set(struct super_block *sb,
268 struct ext4_group_desc *bg, ext4_fsblk_t blk)
269 {
270 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk);
271 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
272 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
273 }
274
275 void ext4_inode_table_set(struct super_block *sb,
276 struct ext4_group_desc *bg, ext4_fsblk_t blk)
277 {
278 bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
279 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
280 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
281 }
282
283 void ext4_free_group_clusters_set(struct super_block *sb,
284 struct ext4_group_desc *bg, __u32 count)
285 {
286 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
287 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
288 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
289 }
290
291 void ext4_free_inodes_set(struct super_block *sb,
292 struct ext4_group_desc *bg, __u32 count)
293 {
294 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
295 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
296 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
297 }
298
299 void ext4_used_dirs_set(struct super_block *sb,
300 struct ext4_group_desc *bg, __u32 count)
301 {
302 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
303 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
304 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
305 }
306
307 void ext4_itable_unused_set(struct super_block *sb,
308 struct ext4_group_desc *bg, __u32 count)
309 {
310 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
311 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
312 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
313 }
314
315
316 static void __save_error_info(struct super_block *sb, const char *func,
317 unsigned int line)
318 {
319 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
320
321 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
322 if (bdev_read_only(sb->s_bdev))
323 return;
324 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
325 es->s_last_error_time = cpu_to_le32(get_seconds());
326 strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func));
327 es->s_last_error_line = cpu_to_le32(line);
328 if (!es->s_first_error_time) {
329 es->s_first_error_time = es->s_last_error_time;
330 strncpy(es->s_first_error_func, func,
331 sizeof(es->s_first_error_func));
332 es->s_first_error_line = cpu_to_le32(line);
333 es->s_first_error_ino = es->s_last_error_ino;
334 es->s_first_error_block = es->s_last_error_block;
335 }
336 /*
337 * Start the daily error reporting function if it hasn't been
338 * started already
339 */
340 if (!es->s_error_count)
341 mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ);
342 le32_add_cpu(&es->s_error_count, 1);
343 }
344
345 static void save_error_info(struct super_block *sb, const char *func,
346 unsigned int line)
347 {
348 __save_error_info(sb, func, line);
349 ext4_commit_super(sb, 1);
350 }
351
352 /*
353 * The del_gendisk() function uninitializes the disk-specific data
354 * structures, including the bdi structure, without telling anyone
355 * else. Once this happens, any attempt to call mark_buffer_dirty()
356 * (for example, by ext4_commit_super), will cause a kernel OOPS.
357 * This is a kludge to prevent these oops until we can put in a proper
358 * hook in del_gendisk() to inform the VFS and file system layers.
359 */
360 static int block_device_ejected(struct super_block *sb)
361 {
362 struct inode *bd_inode = sb->s_bdev->bd_inode;
363 struct backing_dev_info *bdi = inode_to_bdi(bd_inode);
364
365 return bdi->dev == NULL;
366 }
367
368 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn)
369 {
370 struct super_block *sb = journal->j_private;
371 struct ext4_sb_info *sbi = EXT4_SB(sb);
372 int error = is_journal_aborted(journal);
373 struct ext4_journal_cb_entry *jce;
374
375 BUG_ON(txn->t_state == T_FINISHED);
376 spin_lock(&sbi->s_md_lock);
377 while (!list_empty(&txn->t_private_list)) {
378 jce = list_entry(txn->t_private_list.next,
379 struct ext4_journal_cb_entry, jce_list);
380 list_del_init(&jce->jce_list);
381 spin_unlock(&sbi->s_md_lock);
382 jce->jce_func(sb, jce, error);
383 spin_lock(&sbi->s_md_lock);
384 }
385 spin_unlock(&sbi->s_md_lock);
386 }
387
388 /* Deal with the reporting of failure conditions on a filesystem such as
389 * inconsistencies detected or read IO failures.
390 *
391 * On ext2, we can store the error state of the filesystem in the
392 * superblock. That is not possible on ext4, because we may have other
393 * write ordering constraints on the superblock which prevent us from
394 * writing it out straight away; and given that the journal is about to
395 * be aborted, we can't rely on the current, or future, transactions to
396 * write out the superblock safely.
397 *
398 * We'll just use the jbd2_journal_abort() error code to record an error in
399 * the journal instead. On recovery, the journal will complain about
400 * that error until we've noted it down and cleared it.
401 */
402
403 static void ext4_handle_error(struct super_block *sb)
404 {
405 if (sb->s_flags & MS_RDONLY)
406 return;
407
408 if (!test_opt(sb, ERRORS_CONT)) {
409 journal_t *journal = EXT4_SB(sb)->s_journal;
410
411 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
412 if (journal)
413 jbd2_journal_abort(journal, -EIO);
414 }
415 if (test_opt(sb, ERRORS_RO)) {
416 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
417 /*
418 * Make sure updated value of ->s_mount_flags will be visible
419 * before ->s_flags update
420 */
421 smp_wmb();
422 sb->s_flags |= MS_RDONLY;
423 }
424 if (test_opt(sb, ERRORS_PANIC)) {
425 if (EXT4_SB(sb)->s_journal &&
426 !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR))
427 return;
428 panic("EXT4-fs (device %s): panic forced after error\n",
429 sb->s_id);
430 }
431 }
432
433 #define ext4_error_ratelimit(sb) \
434 ___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state), \
435 "EXT4-fs error")
436
437 void __ext4_error(struct super_block *sb, const char *function,
438 unsigned int line, const char *fmt, ...)
439 {
440 struct va_format vaf;
441 va_list args;
442
443 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
444 return;
445
446 if (ext4_error_ratelimit(sb)) {
447 va_start(args, fmt);
448 vaf.fmt = fmt;
449 vaf.va = &args;
450 printk(KERN_CRIT
451 "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
452 sb->s_id, function, line, current->comm, &vaf);
453 va_end(args);
454 }
455 save_error_info(sb, function, line);
456 ext4_handle_error(sb);
457 }
458
459 void __ext4_error_inode(struct inode *inode, const char *function,
460 unsigned int line, ext4_fsblk_t block,
461 const char *fmt, ...)
462 {
463 va_list args;
464 struct va_format vaf;
465 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
466
467 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
468 return;
469
470 es->s_last_error_ino = cpu_to_le32(inode->i_ino);
471 es->s_last_error_block = cpu_to_le64(block);
472 if (ext4_error_ratelimit(inode->i_sb)) {
473 va_start(args, fmt);
474 vaf.fmt = fmt;
475 vaf.va = &args;
476 if (block)
477 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
478 "inode #%lu: block %llu: comm %s: %pV\n",
479 inode->i_sb->s_id, function, line, inode->i_ino,
480 block, current->comm, &vaf);
481 else
482 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
483 "inode #%lu: comm %s: %pV\n",
484 inode->i_sb->s_id, function, line, inode->i_ino,
485 current->comm, &vaf);
486 va_end(args);
487 }
488 save_error_info(inode->i_sb, function, line);
489 ext4_handle_error(inode->i_sb);
490 }
491
492 void __ext4_error_file(struct file *file, const char *function,
493 unsigned int line, ext4_fsblk_t block,
494 const char *fmt, ...)
495 {
496 va_list args;
497 struct va_format vaf;
498 struct ext4_super_block *es;
499 struct inode *inode = file_inode(file);
500 char pathname[80], *path;
501
502 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
503 return;
504
505 es = EXT4_SB(inode->i_sb)->s_es;
506 es->s_last_error_ino = cpu_to_le32(inode->i_ino);
507 if (ext4_error_ratelimit(inode->i_sb)) {
508 path = file_path(file, pathname, sizeof(pathname));
509 if (IS_ERR(path))
510 path = "(unknown)";
511 va_start(args, fmt);
512 vaf.fmt = fmt;
513 vaf.va = &args;
514 if (block)
515 printk(KERN_CRIT
516 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
517 "block %llu: comm %s: path %s: %pV\n",
518 inode->i_sb->s_id, function, line, inode->i_ino,
519 block, current->comm, path, &vaf);
520 else
521 printk(KERN_CRIT
522 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
523 "comm %s: path %s: %pV\n",
524 inode->i_sb->s_id, function, line, inode->i_ino,
525 current->comm, path, &vaf);
526 va_end(args);
527 }
528 save_error_info(inode->i_sb, function, line);
529 ext4_handle_error(inode->i_sb);
530 }
531
532 const char *ext4_decode_error(struct super_block *sb, int errno,
533 char nbuf[16])
534 {
535 char *errstr = NULL;
536
537 switch (errno) {
538 case -EFSCORRUPTED:
539 errstr = "Corrupt filesystem";
540 break;
541 case -EFSBADCRC:
542 errstr = "Filesystem failed CRC";
543 break;
544 case -EIO:
545 errstr = "IO failure";
546 break;
547 case -ENOMEM:
548 errstr = "Out of memory";
549 break;
550 case -EROFS:
551 if (!sb || (EXT4_SB(sb)->s_journal &&
552 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
553 errstr = "Journal has aborted";
554 else
555 errstr = "Readonly filesystem";
556 break;
557 default:
558 /* If the caller passed in an extra buffer for unknown
559 * errors, textualise them now. Else we just return
560 * NULL. */
561 if (nbuf) {
562 /* Check for truncated error codes... */
563 if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
564 errstr = nbuf;
565 }
566 break;
567 }
568
569 return errstr;
570 }
571
572 /* __ext4_std_error decodes expected errors from journaling functions
573 * automatically and invokes the appropriate error response. */
574
575 void __ext4_std_error(struct super_block *sb, const char *function,
576 unsigned int line, int errno)
577 {
578 char nbuf[16];
579 const char *errstr;
580
581 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
582 return;
583
584 /* Special case: if the error is EROFS, and we're not already
585 * inside a transaction, then there's really no point in logging
586 * an error. */
587 if (errno == -EROFS && journal_current_handle() == NULL &&
588 (sb->s_flags & MS_RDONLY))
589 return;
590
591 if (ext4_error_ratelimit(sb)) {
592 errstr = ext4_decode_error(sb, errno, nbuf);
593 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
594 sb->s_id, function, line, errstr);
595 }
596
597 save_error_info(sb, function, line);
598 ext4_handle_error(sb);
599 }
600
601 /*
602 * ext4_abort is a much stronger failure handler than ext4_error. The
603 * abort function may be used to deal with unrecoverable failures such
604 * as journal IO errors or ENOMEM at a critical moment in log management.
605 *
606 * We unconditionally force the filesystem into an ABORT|READONLY state,
607 * unless the error response on the fs has been set to panic in which
608 * case we take the easy way out and panic immediately.
609 */
610
611 void __ext4_abort(struct super_block *sb, const char *function,
612 unsigned int line, const char *fmt, ...)
613 {
614 struct va_format vaf;
615 va_list args;
616
617 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
618 return;
619
620 save_error_info(sb, function, line);
621 va_start(args, fmt);
622 vaf.fmt = fmt;
623 vaf.va = &args;
624 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: %pV\n",
625 sb->s_id, function, line, &vaf);
626 va_end(args);
627
628 if ((sb->s_flags & MS_RDONLY) == 0) {
629 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
630 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
631 /*
632 * Make sure updated value of ->s_mount_flags will be visible
633 * before ->s_flags update
634 */
635 smp_wmb();
636 sb->s_flags |= MS_RDONLY;
637 if (EXT4_SB(sb)->s_journal)
638 jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO);
639 save_error_info(sb, function, line);
640 }
641 if (test_opt(sb, ERRORS_PANIC)) {
642 if (EXT4_SB(sb)->s_journal &&
643 !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR))
644 return;
645 panic("EXT4-fs panic from previous error\n");
646 }
647 }
648
649 void __ext4_msg(struct super_block *sb,
650 const char *prefix, const char *fmt, ...)
651 {
652 struct va_format vaf;
653 va_list args;
654
655 if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state), "EXT4-fs"))
656 return;
657
658 va_start(args, fmt);
659 vaf.fmt = fmt;
660 vaf.va = &args;
661 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
662 va_end(args);
663 }
664
665 #define ext4_warning_ratelimit(sb) \
666 ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state), \
667 "EXT4-fs warning")
668
669 void __ext4_warning(struct super_block *sb, const char *function,
670 unsigned int line, const char *fmt, ...)
671 {
672 struct va_format vaf;
673 va_list args;
674
675 if (!ext4_warning_ratelimit(sb))
676 return;
677
678 va_start(args, fmt);
679 vaf.fmt = fmt;
680 vaf.va = &args;
681 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
682 sb->s_id, function, line, &vaf);
683 va_end(args);
684 }
685
686 void __ext4_warning_inode(const struct inode *inode, const char *function,
687 unsigned int line, const char *fmt, ...)
688 {
689 struct va_format vaf;
690 va_list args;
691
692 if (!ext4_warning_ratelimit(inode->i_sb))
693 return;
694
695 va_start(args, fmt);
696 vaf.fmt = fmt;
697 vaf.va = &args;
698 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: "
699 "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id,
700 function, line, inode->i_ino, current->comm, &vaf);
701 va_end(args);
702 }
703
704 void __ext4_grp_locked_error(const char *function, unsigned int line,
705 struct super_block *sb, ext4_group_t grp,
706 unsigned long ino, ext4_fsblk_t block,
707 const char *fmt, ...)
708 __releases(bitlock)
709 __acquires(bitlock)
710 {
711 struct va_format vaf;
712 va_list args;
713 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
714
715 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
716 return;
717
718 es->s_last_error_ino = cpu_to_le32(ino);
719 es->s_last_error_block = cpu_to_le64(block);
720 __save_error_info(sb, function, line);
721
722 if (ext4_error_ratelimit(sb)) {
723 va_start(args, fmt);
724 vaf.fmt = fmt;
725 vaf.va = &args;
726 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
727 sb->s_id, function, line, grp);
728 if (ino)
729 printk(KERN_CONT "inode %lu: ", ino);
730 if (block)
731 printk(KERN_CONT "block %llu:",
732 (unsigned long long) block);
733 printk(KERN_CONT "%pV\n", &vaf);
734 va_end(args);
735 }
736
737 if (test_opt(sb, ERRORS_CONT)) {
738 ext4_commit_super(sb, 0);
739 return;
740 }
741
742 ext4_unlock_group(sb, grp);
743 ext4_handle_error(sb);
744 /*
745 * We only get here in the ERRORS_RO case; relocking the group
746 * may be dangerous, but nothing bad will happen since the
747 * filesystem will have already been marked read/only and the
748 * journal has been aborted. We return 1 as a hint to callers
749 * who might what to use the return value from
750 * ext4_grp_locked_error() to distinguish between the
751 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
752 * aggressively from the ext4 function in question, with a
753 * more appropriate error code.
754 */
755 ext4_lock_group(sb, grp);
756 return;
757 }
758
759 void ext4_update_dynamic_rev(struct super_block *sb)
760 {
761 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
762
763 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
764 return;
765
766 ext4_warning(sb,
767 "updating to rev %d because of new feature flag, "
768 "running e2fsck is recommended",
769 EXT4_DYNAMIC_REV);
770
771 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
772 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
773 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
774 /* leave es->s_feature_*compat flags alone */
775 /* es->s_uuid will be set by e2fsck if empty */
776
777 /*
778 * The rest of the superblock fields should be zero, and if not it
779 * means they are likely already in use, so leave them alone. We
780 * can leave it up to e2fsck to clean up any inconsistencies there.
781 */
782 }
783
784 /*
785 * Open the external journal device
786 */
787 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb)
788 {
789 struct block_device *bdev;
790 char b[BDEVNAME_SIZE];
791
792 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb);
793 if (IS_ERR(bdev))
794 goto fail;
795 return bdev;
796
797 fail:
798 ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld",
799 __bdevname(dev, b), PTR_ERR(bdev));
800 return NULL;
801 }
802
803 /*
804 * Release the journal device
805 */
806 static void ext4_blkdev_put(struct block_device *bdev)
807 {
808 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
809 }
810
811 static void ext4_blkdev_remove(struct ext4_sb_info *sbi)
812 {
813 struct block_device *bdev;
814 bdev = sbi->journal_bdev;
815 if (bdev) {
816 ext4_blkdev_put(bdev);
817 sbi->journal_bdev = NULL;
818 }
819 }
820
821 static inline struct inode *orphan_list_entry(struct list_head *l)
822 {
823 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
824 }
825
826 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
827 {
828 struct list_head *l;
829
830 ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
831 le32_to_cpu(sbi->s_es->s_last_orphan));
832
833 printk(KERN_ERR "sb_info orphan list:\n");
834 list_for_each(l, &sbi->s_orphan) {
835 struct inode *inode = orphan_list_entry(l);
836 printk(KERN_ERR " "
837 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
838 inode->i_sb->s_id, inode->i_ino, inode,
839 inode->i_mode, inode->i_nlink,
840 NEXT_ORPHAN(inode));
841 }
842 }
843
844 #ifdef CONFIG_QUOTA
845 static int ext4_quota_off(struct super_block *sb, int type);
846
847 static inline void ext4_quota_off_umount(struct super_block *sb)
848 {
849 int type;
850
851 /* Use our quota_off function to clear inode flags etc. */
852 for (type = 0; type < EXT4_MAXQUOTAS; type++)
853 ext4_quota_off(sb, type);
854 }
855 #else
856 static inline void ext4_quota_off_umount(struct super_block *sb)
857 {
858 }
859 #endif
860
861 static void ext4_put_super(struct super_block *sb)
862 {
863 struct ext4_sb_info *sbi = EXT4_SB(sb);
864 struct ext4_super_block *es = sbi->s_es;
865 int aborted = 0;
866 int i, err;
867
868 ext4_unregister_li_request(sb);
869 ext4_quota_off_umount(sb);
870
871 flush_workqueue(sbi->rsv_conversion_wq);
872 destroy_workqueue(sbi->rsv_conversion_wq);
873
874 if (sbi->s_journal) {
875 aborted = is_journal_aborted(sbi->s_journal);
876 err = jbd2_journal_destroy(sbi->s_journal);
877 sbi->s_journal = NULL;
878 if ((err < 0) && !aborted)
879 ext4_abort(sb, "Couldn't clean up the journal");
880 }
881
882 ext4_unregister_sysfs(sb);
883 ext4_es_unregister_shrinker(sbi);
884 del_timer_sync(&sbi->s_err_report);
885 ext4_release_system_zone(sb);
886 ext4_mb_release(sb);
887 ext4_ext_release(sb);
888
889 if (!(sb->s_flags & MS_RDONLY) && !aborted) {
890 ext4_clear_feature_journal_needs_recovery(sb);
891 es->s_state = cpu_to_le16(sbi->s_mount_state);
892 }
893 if (!(sb->s_flags & MS_RDONLY))
894 ext4_commit_super(sb, 1);
895
896 for (i = 0; i < sbi->s_gdb_count; i++)
897 brelse(sbi->s_group_desc[i]);
898 kvfree(sbi->s_group_desc);
899 kvfree(sbi->s_flex_groups);
900 percpu_counter_destroy(&sbi->s_freeclusters_counter);
901 percpu_counter_destroy(&sbi->s_freeinodes_counter);
902 percpu_counter_destroy(&sbi->s_dirs_counter);
903 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
904 percpu_free_rwsem(&sbi->s_journal_flag_rwsem);
905 #ifdef CONFIG_QUOTA
906 for (i = 0; i < EXT4_MAXQUOTAS; i++)
907 kfree(sbi->s_qf_names[i]);
908 #endif
909
910 /* Debugging code just in case the in-memory inode orphan list
911 * isn't empty. The on-disk one can be non-empty if we've
912 * detected an error and taken the fs readonly, but the
913 * in-memory list had better be clean by this point. */
914 if (!list_empty(&sbi->s_orphan))
915 dump_orphan_list(sb, sbi);
916 J_ASSERT(list_empty(&sbi->s_orphan));
917
918 sync_blockdev(sb->s_bdev);
919 invalidate_bdev(sb->s_bdev);
920 if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) {
921 /*
922 * Invalidate the journal device's buffers. We don't want them
923 * floating about in memory - the physical journal device may
924 * hotswapped, and it breaks the `ro-after' testing code.
925 */
926 sync_blockdev(sbi->journal_bdev);
927 invalidate_bdev(sbi->journal_bdev);
928 ext4_blkdev_remove(sbi);
929 }
930 if (sbi->s_mb_cache) {
931 ext4_xattr_destroy_cache(sbi->s_mb_cache);
932 sbi->s_mb_cache = NULL;
933 }
934 if (sbi->s_mmp_tsk)
935 kthread_stop(sbi->s_mmp_tsk);
936 brelse(sbi->s_sbh);
937 sb->s_fs_info = NULL;
938 /*
939 * Now that we are completely done shutting down the
940 * superblock, we need to actually destroy the kobject.
941 */
942 kobject_put(&sbi->s_kobj);
943 wait_for_completion(&sbi->s_kobj_unregister);
944 if (sbi->s_chksum_driver)
945 crypto_free_shash(sbi->s_chksum_driver);
946 kfree(sbi->s_blockgroup_lock);
947 kfree(sbi);
948 }
949
950 static struct kmem_cache *ext4_inode_cachep;
951
952 /*
953 * Called inside transaction, so use GFP_NOFS
954 */
955 static struct inode *ext4_alloc_inode(struct super_block *sb)
956 {
957 struct ext4_inode_info *ei;
958
959 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS);
960 if (!ei)
961 return NULL;
962
963 ei->vfs_inode.i_version = 1;
964 spin_lock_init(&ei->i_raw_lock);
965 INIT_LIST_HEAD(&ei->i_prealloc_list);
966 spin_lock_init(&ei->i_prealloc_lock);
967 ext4_es_init_tree(&ei->i_es_tree);
968 rwlock_init(&ei->i_es_lock);
969 INIT_LIST_HEAD(&ei->i_es_list);
970 ei->i_es_all_nr = 0;
971 ei->i_es_shk_nr = 0;
972 ei->i_es_shrink_lblk = 0;
973 ei->i_reserved_data_blocks = 0;
974 ei->i_reserved_meta_blocks = 0;
975 ei->i_allocated_meta_blocks = 0;
976 ei->i_da_metadata_calc_len = 0;
977 ei->i_da_metadata_calc_last_lblock = 0;
978 spin_lock_init(&(ei->i_block_reservation_lock));
979 #ifdef CONFIG_QUOTA
980 ei->i_reserved_quota = 0;
981 memset(&ei->i_dquot, 0, sizeof(ei->i_dquot));
982 #endif
983 ei->jinode = NULL;
984 INIT_LIST_HEAD(&ei->i_rsv_conversion_list);
985 spin_lock_init(&ei->i_completed_io_lock);
986 ei->i_sync_tid = 0;
987 ei->i_datasync_tid = 0;
988 atomic_set(&ei->i_unwritten, 0);
989 INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work);
990 return &ei->vfs_inode;
991 }
992
993 static int ext4_drop_inode(struct inode *inode)
994 {
995 int drop = generic_drop_inode(inode);
996
997 trace_ext4_drop_inode(inode, drop);
998 return drop;
999 }
1000
1001 static void ext4_i_callback(struct rcu_head *head)
1002 {
1003 struct inode *inode = container_of(head, struct inode, i_rcu);
1004 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
1005 }
1006
1007 static void ext4_destroy_inode(struct inode *inode)
1008 {
1009 if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
1010 ext4_msg(inode->i_sb, KERN_ERR,
1011 "Inode %lu (%p): orphan list check failed!",
1012 inode->i_ino, EXT4_I(inode));
1013 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
1014 EXT4_I(inode), sizeof(struct ext4_inode_info),
1015 true);
1016 dump_stack();
1017 }
1018 call_rcu(&inode->i_rcu, ext4_i_callback);
1019 }
1020
1021 static void init_once(void *foo)
1022 {
1023 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo;
1024
1025 INIT_LIST_HEAD(&ei->i_orphan);
1026 init_rwsem(&ei->xattr_sem);
1027 init_rwsem(&ei->i_data_sem);
1028 init_rwsem(&ei->i_mmap_sem);
1029 inode_init_once(&ei->vfs_inode);
1030 }
1031
1032 static int __init init_inodecache(void)
1033 {
1034 ext4_inode_cachep = kmem_cache_create("ext4_inode_cache",
1035 sizeof(struct ext4_inode_info),
1036 0, (SLAB_RECLAIM_ACCOUNT|
1037 SLAB_MEM_SPREAD|SLAB_ACCOUNT),
1038 init_once);
1039 if (ext4_inode_cachep == NULL)
1040 return -ENOMEM;
1041 return 0;
1042 }
1043
1044 static void destroy_inodecache(void)
1045 {
1046 /*
1047 * Make sure all delayed rcu free inodes are flushed before we
1048 * destroy cache.
1049 */
1050 rcu_barrier();
1051 kmem_cache_destroy(ext4_inode_cachep);
1052 }
1053
1054 void ext4_clear_inode(struct inode *inode)
1055 {
1056 invalidate_inode_buffers(inode);
1057 clear_inode(inode);
1058 dquot_drop(inode);
1059 ext4_discard_preallocations(inode);
1060 ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS);
1061 if (EXT4_I(inode)->jinode) {
1062 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
1063 EXT4_I(inode)->jinode);
1064 jbd2_free_inode(EXT4_I(inode)->jinode);
1065 EXT4_I(inode)->jinode = NULL;
1066 }
1067 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1068 fscrypt_put_encryption_info(inode, NULL);
1069 #endif
1070 }
1071
1072 static struct inode *ext4_nfs_get_inode(struct super_block *sb,
1073 u64 ino, u32 generation)
1074 {
1075 struct inode *inode;
1076
1077 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
1078 return ERR_PTR(-ESTALE);
1079 if (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
1080 return ERR_PTR(-ESTALE);
1081
1082 /* iget isn't really right if the inode is currently unallocated!!
1083 *
1084 * ext4_read_inode will return a bad_inode if the inode had been
1085 * deleted, so we should be safe.
1086 *
1087 * Currently we don't know the generation for parent directory, so
1088 * a generation of 0 means "accept any"
1089 */
1090 inode = ext4_iget_normal(sb, ino);
1091 if (IS_ERR(inode))
1092 return ERR_CAST(inode);
1093 if (generation && inode->i_generation != generation) {
1094 iput(inode);
1095 return ERR_PTR(-ESTALE);
1096 }
1097
1098 return inode;
1099 }
1100
1101 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
1102 int fh_len, int fh_type)
1103 {
1104 return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1105 ext4_nfs_get_inode);
1106 }
1107
1108 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
1109 int fh_len, int fh_type)
1110 {
1111 return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1112 ext4_nfs_get_inode);
1113 }
1114
1115 /*
1116 * Try to release metadata pages (indirect blocks, directories) which are
1117 * mapped via the block device. Since these pages could have journal heads
1118 * which would prevent try_to_free_buffers() from freeing them, we must use
1119 * jbd2 layer's try_to_free_buffers() function to release them.
1120 */
1121 static int bdev_try_to_free_page(struct super_block *sb, struct page *page,
1122 gfp_t wait)
1123 {
1124 journal_t *journal = EXT4_SB(sb)->s_journal;
1125
1126 WARN_ON(PageChecked(page));
1127 if (!page_has_buffers(page))
1128 return 0;
1129 if (journal)
1130 return jbd2_journal_try_to_free_buffers(journal, page,
1131 wait & ~__GFP_DIRECT_RECLAIM);
1132 return try_to_free_buffers(page);
1133 }
1134
1135 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1136 static int ext4_get_context(struct inode *inode, void *ctx, size_t len)
1137 {
1138 return ext4_xattr_get(inode, EXT4_XATTR_INDEX_ENCRYPTION,
1139 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, ctx, len);
1140 }
1141
1142 static int ext4_set_context(struct inode *inode, const void *ctx, size_t len,
1143 void *fs_data)
1144 {
1145 handle_t *handle = fs_data;
1146 int res, res2, retries = 0;
1147
1148 res = ext4_convert_inline_data(inode);
1149 if (res)
1150 return res;
1151
1152 /*
1153 * If a journal handle was specified, then the encryption context is
1154 * being set on a new inode via inheritance and is part of a larger
1155 * transaction to create the inode. Otherwise the encryption context is
1156 * being set on an existing inode in its own transaction. Only in the
1157 * latter case should the "retry on ENOSPC" logic be used.
1158 */
1159
1160 if (handle) {
1161 res = ext4_xattr_set_handle(handle, inode,
1162 EXT4_XATTR_INDEX_ENCRYPTION,
1163 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT,
1164 ctx, len, 0);
1165 if (!res) {
1166 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT);
1167 ext4_clear_inode_state(inode,
1168 EXT4_STATE_MAY_INLINE_DATA);
1169 /*
1170 * Update inode->i_flags - e.g. S_DAX may get disabled
1171 */
1172 ext4_set_inode_flags(inode);
1173 }
1174 return res;
1175 }
1176
1177 res = dquot_initialize(inode);
1178 if (res)
1179 return res;
1180 retry:
1181 handle = ext4_journal_start(inode, EXT4_HT_MISC,
1182 ext4_jbd2_credits_xattr(inode));
1183 if (IS_ERR(handle))
1184 return PTR_ERR(handle);
1185
1186 res = ext4_xattr_set_handle(handle, inode, EXT4_XATTR_INDEX_ENCRYPTION,
1187 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT,
1188 ctx, len, 0);
1189 if (!res) {
1190 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT);
1191 /* Update inode->i_flags - e.g. S_DAX may get disabled */
1192 ext4_set_inode_flags(inode);
1193 res = ext4_mark_inode_dirty(handle, inode);
1194 if (res)
1195 EXT4_ERROR_INODE(inode, "Failed to mark inode dirty");
1196 }
1197 res2 = ext4_journal_stop(handle);
1198
1199 if (res == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1200 goto retry;
1201 if (!res)
1202 res = res2;
1203 return res;
1204 }
1205
1206 static int ext4_dummy_context(struct inode *inode)
1207 {
1208 return DUMMY_ENCRYPTION_ENABLED(EXT4_SB(inode->i_sb));
1209 }
1210
1211 static unsigned ext4_max_namelen(struct inode *inode)
1212 {
1213 return S_ISLNK(inode->i_mode) ? inode->i_sb->s_blocksize :
1214 EXT4_NAME_LEN;
1215 }
1216
1217 static const struct fscrypt_operations ext4_cryptops = {
1218 .key_prefix = "ext4:",
1219 .get_context = ext4_get_context,
1220 .set_context = ext4_set_context,
1221 .dummy_context = ext4_dummy_context,
1222 .is_encrypted = ext4_encrypted_inode,
1223 .empty_dir = ext4_empty_dir,
1224 .max_namelen = ext4_max_namelen,
1225 };
1226 #else
1227 static const struct fscrypt_operations ext4_cryptops = {
1228 .is_encrypted = ext4_encrypted_inode,
1229 };
1230 #endif
1231
1232 #ifdef CONFIG_QUOTA
1233 static const char * const quotatypes[] = INITQFNAMES;
1234 #define QTYPE2NAME(t) (quotatypes[t])
1235
1236 static int ext4_write_dquot(struct dquot *dquot);
1237 static int ext4_acquire_dquot(struct dquot *dquot);
1238 static int ext4_release_dquot(struct dquot *dquot);
1239 static int ext4_mark_dquot_dirty(struct dquot *dquot);
1240 static int ext4_write_info(struct super_block *sb, int type);
1241 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1242 const struct path *path);
1243 static int ext4_quota_on_mount(struct super_block *sb, int type);
1244 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1245 size_t len, loff_t off);
1246 static ssize_t ext4_quota_write(struct super_block *sb, int type,
1247 const char *data, size_t len, loff_t off);
1248 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
1249 unsigned int flags);
1250 static int ext4_enable_quotas(struct super_block *sb);
1251 static int ext4_get_next_id(struct super_block *sb, struct kqid *qid);
1252
1253 static struct dquot **ext4_get_dquots(struct inode *inode)
1254 {
1255 return EXT4_I(inode)->i_dquot;
1256 }
1257
1258 static const struct dquot_operations ext4_quota_operations = {
1259 .get_reserved_space = ext4_get_reserved_space,
1260 .write_dquot = ext4_write_dquot,
1261 .acquire_dquot = ext4_acquire_dquot,
1262 .release_dquot = ext4_release_dquot,
1263 .mark_dirty = ext4_mark_dquot_dirty,
1264 .write_info = ext4_write_info,
1265 .alloc_dquot = dquot_alloc,
1266 .destroy_dquot = dquot_destroy,
1267 .get_projid = ext4_get_projid,
1268 .get_next_id = ext4_get_next_id,
1269 };
1270
1271 static const struct quotactl_ops ext4_qctl_operations = {
1272 .quota_on = ext4_quota_on,
1273 .quota_off = ext4_quota_off,
1274 .quota_sync = dquot_quota_sync,
1275 .get_state = dquot_get_state,
1276 .set_info = dquot_set_dqinfo,
1277 .get_dqblk = dquot_get_dqblk,
1278 .set_dqblk = dquot_set_dqblk,
1279 .get_nextdqblk = dquot_get_next_dqblk,
1280 };
1281 #endif
1282
1283 static const struct super_operations ext4_sops = {
1284 .alloc_inode = ext4_alloc_inode,
1285 .destroy_inode = ext4_destroy_inode,
1286 .write_inode = ext4_write_inode,
1287 .dirty_inode = ext4_dirty_inode,
1288 .drop_inode = ext4_drop_inode,
1289 .evict_inode = ext4_evict_inode,
1290 .put_super = ext4_put_super,
1291 .sync_fs = ext4_sync_fs,
1292 .freeze_fs = ext4_freeze,
1293 .unfreeze_fs = ext4_unfreeze,
1294 .statfs = ext4_statfs,
1295 .remount_fs = ext4_remount,
1296 .show_options = ext4_show_options,
1297 #ifdef CONFIG_QUOTA
1298 .quota_read = ext4_quota_read,
1299 .quota_write = ext4_quota_write,
1300 .get_dquots = ext4_get_dquots,
1301 #endif
1302 .bdev_try_to_free_page = bdev_try_to_free_page,
1303 };
1304
1305 static const struct export_operations ext4_export_ops = {
1306 .fh_to_dentry = ext4_fh_to_dentry,
1307 .fh_to_parent = ext4_fh_to_parent,
1308 .get_parent = ext4_get_parent,
1309 };
1310
1311 enum {
1312 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1313 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro,
1314 Opt_nouid32, Opt_debug, Opt_removed,
1315 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl,
1316 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload,
1317 Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev,
1318 Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit,
1319 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1320 Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption,
1321 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota,
1322 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota,
1323 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err,
1324 Opt_usrquota, Opt_grpquota, Opt_prjquota, Opt_i_version, Opt_dax,
1325 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_mblk_io_submit,
1326 Opt_lazytime, Opt_nolazytime, Opt_debug_want_extra_isize,
1327 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1328 Opt_inode_readahead_blks, Opt_journal_ioprio,
1329 Opt_dioread_nolock, Opt_dioread_lock,
1330 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable,
1331 Opt_max_dir_size_kb, Opt_nojournal_checksum,
1332 };
1333
1334 static const match_table_t tokens = {
1335 {Opt_bsd_df, "bsddf"},
1336 {Opt_minix_df, "minixdf"},
1337 {Opt_grpid, "grpid"},
1338 {Opt_grpid, "bsdgroups"},
1339 {Opt_nogrpid, "nogrpid"},
1340 {Opt_nogrpid, "sysvgroups"},
1341 {Opt_resgid, "resgid=%u"},
1342 {Opt_resuid, "resuid=%u"},
1343 {Opt_sb, "sb=%u"},
1344 {Opt_err_cont, "errors=continue"},
1345 {Opt_err_panic, "errors=panic"},
1346 {Opt_err_ro, "errors=remount-ro"},
1347 {Opt_nouid32, "nouid32"},
1348 {Opt_debug, "debug"},
1349 {Opt_removed, "oldalloc"},
1350 {Opt_removed, "orlov"},
1351 {Opt_user_xattr, "user_xattr"},
1352 {Opt_nouser_xattr, "nouser_xattr"},
1353 {Opt_acl, "acl"},
1354 {Opt_noacl, "noacl"},
1355 {Opt_noload, "norecovery"},
1356 {Opt_noload, "noload"},
1357 {Opt_removed, "nobh"},
1358 {Opt_removed, "bh"},
1359 {Opt_commit, "commit=%u"},
1360 {Opt_min_batch_time, "min_batch_time=%u"},
1361 {Opt_max_batch_time, "max_batch_time=%u"},
1362 {Opt_journal_dev, "journal_dev=%u"},
1363 {Opt_journal_path, "journal_path=%s"},
1364 {Opt_journal_checksum, "journal_checksum"},
1365 {Opt_nojournal_checksum, "nojournal_checksum"},
1366 {Opt_journal_async_commit, "journal_async_commit"},
1367 {Opt_abort, "abort"},
1368 {Opt_data_journal, "data=journal"},
1369 {Opt_data_ordered, "data=ordered"},
1370 {Opt_data_writeback, "data=writeback"},
1371 {Opt_data_err_abort, "data_err=abort"},
1372 {Opt_data_err_ignore, "data_err=ignore"},
1373 {Opt_offusrjquota, "usrjquota="},
1374 {Opt_usrjquota, "usrjquota=%s"},
1375 {Opt_offgrpjquota, "grpjquota="},
1376 {Opt_grpjquota, "grpjquota=%s"},
1377 {Opt_jqfmt_vfsold, "jqfmt=vfsold"},
1378 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
1379 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
1380 {Opt_grpquota, "grpquota"},
1381 {Opt_noquota, "noquota"},
1382 {Opt_quota, "quota"},
1383 {Opt_usrquota, "usrquota"},
1384 {Opt_prjquota, "prjquota"},
1385 {Opt_barrier, "barrier=%u"},
1386 {Opt_barrier, "barrier"},
1387 {Opt_nobarrier, "nobarrier"},
1388 {Opt_i_version, "i_version"},
1389 {Opt_dax, "dax"},
1390 {Opt_stripe, "stripe=%u"},
1391 {Opt_delalloc, "delalloc"},
1392 {Opt_lazytime, "lazytime"},
1393 {Opt_nolazytime, "nolazytime"},
1394 {Opt_debug_want_extra_isize, "debug_want_extra_isize=%u"},
1395 {Opt_nodelalloc, "nodelalloc"},
1396 {Opt_removed, "mblk_io_submit"},
1397 {Opt_removed, "nomblk_io_submit"},
1398 {Opt_block_validity, "block_validity"},
1399 {Opt_noblock_validity, "noblock_validity"},
1400 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"},
1401 {Opt_journal_ioprio, "journal_ioprio=%u"},
1402 {Opt_auto_da_alloc, "auto_da_alloc=%u"},
1403 {Opt_auto_da_alloc, "auto_da_alloc"},
1404 {Opt_noauto_da_alloc, "noauto_da_alloc"},
1405 {Opt_dioread_nolock, "dioread_nolock"},
1406 {Opt_dioread_lock, "dioread_lock"},
1407 {Opt_discard, "discard"},
1408 {Opt_nodiscard, "nodiscard"},
1409 {Opt_init_itable, "init_itable=%u"},
1410 {Opt_init_itable, "init_itable"},
1411 {Opt_noinit_itable, "noinit_itable"},
1412 {Opt_max_dir_size_kb, "max_dir_size_kb=%u"},
1413 {Opt_test_dummy_encryption, "test_dummy_encryption"},
1414 {Opt_removed, "check=none"}, /* mount option from ext2/3 */
1415 {Opt_removed, "nocheck"}, /* mount option from ext2/3 */
1416 {Opt_removed, "reservation"}, /* mount option from ext2/3 */
1417 {Opt_removed, "noreservation"}, /* mount option from ext2/3 */
1418 {Opt_removed, "journal=%u"}, /* mount option from ext2/3 */
1419 {Opt_err, NULL},
1420 };
1421
1422 static ext4_fsblk_t get_sb_block(void **data)
1423 {
1424 ext4_fsblk_t sb_block;
1425 char *options = (char *) *data;
1426
1427 if (!options || strncmp(options, "sb=", 3) != 0)
1428 return 1; /* Default location */
1429
1430 options += 3;
1431 /* TODO: use simple_strtoll with >32bit ext4 */
1432 sb_block = simple_strtoul(options, &options, 0);
1433 if (*options && *options != ',') {
1434 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n",
1435 (char *) *data);
1436 return 1;
1437 }
1438 if (*options == ',')
1439 options++;
1440 *data = (void *) options;
1441
1442 return sb_block;
1443 }
1444
1445 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1446 static const char deprecated_msg[] =
1447 "Mount option \"%s\" will be removed by %s\n"
1448 "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n";
1449
1450 #ifdef CONFIG_QUOTA
1451 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args)
1452 {
1453 struct ext4_sb_info *sbi = EXT4_SB(sb);
1454 char *qname;
1455 int ret = -1;
1456
1457 if (sb_any_quota_loaded(sb) &&
1458 !sbi->s_qf_names[qtype]) {
1459 ext4_msg(sb, KERN_ERR,
1460 "Cannot change journaled "
1461 "quota options when quota turned on");
1462 return -1;
1463 }
1464 if (ext4_has_feature_quota(sb)) {
1465 ext4_msg(sb, KERN_INFO, "Journaled quota options "
1466 "ignored when QUOTA feature is enabled");
1467 return 1;
1468 }
1469 qname = match_strdup(args);
1470 if (!qname) {
1471 ext4_msg(sb, KERN_ERR,
1472 "Not enough memory for storing quotafile name");
1473 return -1;
1474 }
1475 if (sbi->s_qf_names[qtype]) {
1476 if (strcmp(sbi->s_qf_names[qtype], qname) == 0)
1477 ret = 1;
1478 else
1479 ext4_msg(sb, KERN_ERR,
1480 "%s quota file already specified",
1481 QTYPE2NAME(qtype));
1482 goto errout;
1483 }
1484 if (strchr(qname, '/')) {
1485 ext4_msg(sb, KERN_ERR,
1486 "quotafile must be on filesystem root");
1487 goto errout;
1488 }
1489 sbi->s_qf_names[qtype] = qname;
1490 set_opt(sb, QUOTA);
1491 return 1;
1492 errout:
1493 kfree(qname);
1494 return ret;
1495 }
1496
1497 static int clear_qf_name(struct super_block *sb, int qtype)
1498 {
1499
1500 struct ext4_sb_info *sbi = EXT4_SB(sb);
1501
1502 if (sb_any_quota_loaded(sb) &&
1503 sbi->s_qf_names[qtype]) {
1504 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options"
1505 " when quota turned on");
1506 return -1;
1507 }
1508 kfree(sbi->s_qf_names[qtype]);
1509 sbi->s_qf_names[qtype] = NULL;
1510 return 1;
1511 }
1512 #endif
1513
1514 #define MOPT_SET 0x0001
1515 #define MOPT_CLEAR 0x0002
1516 #define MOPT_NOSUPPORT 0x0004
1517 #define MOPT_EXPLICIT 0x0008
1518 #define MOPT_CLEAR_ERR 0x0010
1519 #define MOPT_GTE0 0x0020
1520 #ifdef CONFIG_QUOTA
1521 #define MOPT_Q 0
1522 #define MOPT_QFMT 0x0040
1523 #else
1524 #define MOPT_Q MOPT_NOSUPPORT
1525 #define MOPT_QFMT MOPT_NOSUPPORT
1526 #endif
1527 #define MOPT_DATAJ 0x0080
1528 #define MOPT_NO_EXT2 0x0100
1529 #define MOPT_NO_EXT3 0x0200
1530 #define MOPT_EXT4_ONLY (MOPT_NO_EXT2 | MOPT_NO_EXT3)
1531 #define MOPT_STRING 0x0400
1532
1533 static const struct mount_opts {
1534 int token;
1535 int mount_opt;
1536 int flags;
1537 } ext4_mount_opts[] = {
1538 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET},
1539 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR},
1540 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET},
1541 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR},
1542 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET},
1543 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR},
1544 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK,
1545 MOPT_EXT4_ONLY | MOPT_SET},
1546 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK,
1547 MOPT_EXT4_ONLY | MOPT_CLEAR},
1548 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET},
1549 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR},
1550 {Opt_delalloc, EXT4_MOUNT_DELALLOC,
1551 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1552 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC,
1553 MOPT_EXT4_ONLY | MOPT_CLEAR},
1554 {Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1555 MOPT_EXT4_ONLY | MOPT_CLEAR},
1556 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1557 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1558 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT |
1559 EXT4_MOUNT_JOURNAL_CHECKSUM),
1560 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1561 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET},
1562 {Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR},
1563 {Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR},
1564 {Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR},
1565 {Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT,
1566 MOPT_NO_EXT2},
1567 {Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT,
1568 MOPT_NO_EXT2},
1569 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET},
1570 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR},
1571 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET},
1572 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR},
1573 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR},
1574 {Opt_commit, 0, MOPT_GTE0},
1575 {Opt_max_batch_time, 0, MOPT_GTE0},
1576 {Opt_min_batch_time, 0, MOPT_GTE0},
1577 {Opt_inode_readahead_blks, 0, MOPT_GTE0},
1578 {Opt_init_itable, 0, MOPT_GTE0},
1579 {Opt_dax, EXT4_MOUNT_DAX, MOPT_SET},
1580 {Opt_stripe, 0, MOPT_GTE0},
1581 {Opt_resuid, 0, MOPT_GTE0},
1582 {Opt_resgid, 0, MOPT_GTE0},
1583 {Opt_journal_dev, 0, MOPT_NO_EXT2 | MOPT_GTE0},
1584 {Opt_journal_path, 0, MOPT_NO_EXT2 | MOPT_STRING},
1585 {Opt_journal_ioprio, 0, MOPT_NO_EXT2 | MOPT_GTE0},
1586 {Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1587 {Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1588 {Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA,
1589 MOPT_NO_EXT2 | MOPT_DATAJ},
1590 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET},
1591 {Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR},
1592 #ifdef CONFIG_EXT4_FS_POSIX_ACL
1593 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET},
1594 {Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR},
1595 #else
1596 {Opt_acl, 0, MOPT_NOSUPPORT},
1597 {Opt_noacl, 0, MOPT_NOSUPPORT},
1598 #endif
1599 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET},
1600 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET},
1601 {Opt_debug_want_extra_isize, 0, MOPT_GTE0},
1602 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q},
1603 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA,
1604 MOPT_SET | MOPT_Q},
1605 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA,
1606 MOPT_SET | MOPT_Q},
1607 {Opt_prjquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_PRJQUOTA,
1608 MOPT_SET | MOPT_Q},
1609 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
1610 EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA),
1611 MOPT_CLEAR | MOPT_Q},
1612 {Opt_usrjquota, 0, MOPT_Q},
1613 {Opt_grpjquota, 0, MOPT_Q},
1614 {Opt_offusrjquota, 0, MOPT_Q},
1615 {Opt_offgrpjquota, 0, MOPT_Q},
1616 {Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT},
1617 {Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT},
1618 {Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT},
1619 {Opt_max_dir_size_kb, 0, MOPT_GTE0},
1620 {Opt_test_dummy_encryption, 0, MOPT_GTE0},
1621 {Opt_err, 0, 0}
1622 };
1623
1624 static int handle_mount_opt(struct super_block *sb, char *opt, int token,
1625 substring_t *args, unsigned long *journal_devnum,
1626 unsigned int *journal_ioprio, int is_remount)
1627 {
1628 struct ext4_sb_info *sbi = EXT4_SB(sb);
1629 const struct mount_opts *m;
1630 kuid_t uid;
1631 kgid_t gid;
1632 int arg = 0;
1633
1634 #ifdef CONFIG_QUOTA
1635 if (token == Opt_usrjquota)
1636 return set_qf_name(sb, USRQUOTA, &args[0]);
1637 else if (token == Opt_grpjquota)
1638 return set_qf_name(sb, GRPQUOTA, &args[0]);
1639 else if (token == Opt_offusrjquota)
1640 return clear_qf_name(sb, USRQUOTA);
1641 else if (token == Opt_offgrpjquota)
1642 return clear_qf_name(sb, GRPQUOTA);
1643 #endif
1644 switch (token) {
1645 case Opt_noacl:
1646 case Opt_nouser_xattr:
1647 ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5");
1648 break;
1649 case Opt_sb:
1650 return 1; /* handled by get_sb_block() */
1651 case Opt_removed:
1652 ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt);
1653 return 1;
1654 case Opt_abort:
1655 sbi->s_mount_flags |= EXT4_MF_FS_ABORTED;
1656 return 1;
1657 case Opt_i_version:
1658 sb->s_flags |= MS_I_VERSION;
1659 return 1;
1660 case Opt_lazytime:
1661 sb->s_flags |= MS_LAZYTIME;
1662 return 1;
1663 case Opt_nolazytime:
1664 sb->s_flags &= ~MS_LAZYTIME;
1665 return 1;
1666 }
1667
1668 for (m = ext4_mount_opts; m->token != Opt_err; m++)
1669 if (token == m->token)
1670 break;
1671
1672 if (m->token == Opt_err) {
1673 ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" "
1674 "or missing value", opt);
1675 return -1;
1676 }
1677
1678 if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) {
1679 ext4_msg(sb, KERN_ERR,
1680 "Mount option \"%s\" incompatible with ext2", opt);
1681 return -1;
1682 }
1683 if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) {
1684 ext4_msg(sb, KERN_ERR,
1685 "Mount option \"%s\" incompatible with ext3", opt);
1686 return -1;
1687 }
1688
1689 if (args->from && !(m->flags & MOPT_STRING) && match_int(args, &arg))
1690 return -1;
1691 if (args->from && (m->flags & MOPT_GTE0) && (arg < 0))
1692 return -1;
1693 if (m->flags & MOPT_EXPLICIT) {
1694 if (m->mount_opt & EXT4_MOUNT_DELALLOC) {
1695 set_opt2(sb, EXPLICIT_DELALLOC);
1696 } else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) {
1697 set_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM);
1698 } else
1699 return -1;
1700 }
1701 if (m->flags & MOPT_CLEAR_ERR)
1702 clear_opt(sb, ERRORS_MASK);
1703 if (token == Opt_noquota && sb_any_quota_loaded(sb)) {
1704 ext4_msg(sb, KERN_ERR, "Cannot change quota "
1705 "options when quota turned on");
1706 return -1;
1707 }
1708
1709 if (m->flags & MOPT_NOSUPPORT) {
1710 ext4_msg(sb, KERN_ERR, "%s option not supported", opt);
1711 } else if (token == Opt_commit) {
1712 if (arg == 0)
1713 arg = JBD2_DEFAULT_MAX_COMMIT_AGE;
1714 sbi->s_commit_interval = HZ * arg;
1715 } else if (token == Opt_debug_want_extra_isize) {
1716 sbi->s_want_extra_isize = arg;
1717 } else if (token == Opt_max_batch_time) {
1718 sbi->s_max_batch_time = arg;
1719 } else if (token == Opt_min_batch_time) {
1720 sbi->s_min_batch_time = arg;
1721 } else if (token == Opt_inode_readahead_blks) {
1722 if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) {
1723 ext4_msg(sb, KERN_ERR,
1724 "EXT4-fs: inode_readahead_blks must be "
1725 "0 or a power of 2 smaller than 2^31");
1726 return -1;
1727 }
1728 sbi->s_inode_readahead_blks = arg;
1729 } else if (token == Opt_init_itable) {
1730 set_opt(sb, INIT_INODE_TABLE);
1731 if (!args->from)
1732 arg = EXT4_DEF_LI_WAIT_MULT;
1733 sbi->s_li_wait_mult = arg;
1734 } else if (token == Opt_max_dir_size_kb) {
1735 sbi->s_max_dir_size_kb = arg;
1736 } else if (token == Opt_stripe) {
1737 sbi->s_stripe = arg;
1738 } else if (token == Opt_resuid) {
1739 uid = make_kuid(current_user_ns(), arg);
1740 if (!uid_valid(uid)) {
1741 ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg);
1742 return -1;
1743 }
1744 sbi->s_resuid = uid;
1745 } else if (token == Opt_resgid) {
1746 gid = make_kgid(current_user_ns(), arg);
1747 if (!gid_valid(gid)) {
1748 ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg);
1749 return -1;
1750 }
1751 sbi->s_resgid = gid;
1752 } else if (token == Opt_journal_dev) {
1753 if (is_remount) {
1754 ext4_msg(sb, KERN_ERR,
1755 "Cannot specify journal on remount");
1756 return -1;
1757 }
1758 *journal_devnum = arg;
1759 } else if (token == Opt_journal_path) {
1760 char *journal_path;
1761 struct inode *journal_inode;
1762 struct path path;
1763 int error;
1764
1765 if (is_remount) {
1766 ext4_msg(sb, KERN_ERR,
1767 "Cannot specify journal on remount");
1768 return -1;
1769 }
1770 journal_path = match_strdup(&args[0]);
1771 if (!journal_path) {
1772 ext4_msg(sb, KERN_ERR, "error: could not dup "
1773 "journal device string");
1774 return -1;
1775 }
1776
1777 error = kern_path(journal_path, LOOKUP_FOLLOW, &path);
1778 if (error) {
1779 ext4_msg(sb, KERN_ERR, "error: could not find "
1780 "journal device path: error %d", error);
1781 kfree(journal_path);
1782 return -1;
1783 }
1784
1785 journal_inode = d_inode(path.dentry);
1786 if (!S_ISBLK(journal_inode->i_mode)) {
1787 ext4_msg(sb, KERN_ERR, "error: journal path %s "
1788 "is not a block device", journal_path);
1789 path_put(&path);
1790 kfree(journal_path);
1791 return -1;
1792 }
1793
1794 *journal_devnum = new_encode_dev(journal_inode->i_rdev);
1795 path_put(&path);
1796 kfree(journal_path);
1797 } else if (token == Opt_journal_ioprio) {
1798 if (arg > 7) {
1799 ext4_msg(sb, KERN_ERR, "Invalid journal IO priority"
1800 " (must be 0-7)");
1801 return -1;
1802 }
1803 *journal_ioprio =
1804 IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg);
1805 } else if (token == Opt_test_dummy_encryption) {
1806 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1807 sbi->s_mount_flags |= EXT4_MF_TEST_DUMMY_ENCRYPTION;
1808 ext4_msg(sb, KERN_WARNING,
1809 "Test dummy encryption mode enabled");
1810 #else
1811 ext4_msg(sb, KERN_WARNING,
1812 "Test dummy encryption mount option ignored");
1813 #endif
1814 } else if (m->flags & MOPT_DATAJ) {
1815 if (is_remount) {
1816 if (!sbi->s_journal)
1817 ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option");
1818 else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) {
1819 ext4_msg(sb, KERN_ERR,
1820 "Cannot change data mode on remount");
1821 return -1;
1822 }
1823 } else {
1824 clear_opt(sb, DATA_FLAGS);
1825 sbi->s_mount_opt |= m->mount_opt;
1826 }
1827 #ifdef CONFIG_QUOTA
1828 } else if (m->flags & MOPT_QFMT) {
1829 if (sb_any_quota_loaded(sb) &&
1830 sbi->s_jquota_fmt != m->mount_opt) {
1831 ext4_msg(sb, KERN_ERR, "Cannot change journaled "
1832 "quota options when quota turned on");
1833 return -1;
1834 }
1835 if (ext4_has_feature_quota(sb)) {
1836 ext4_msg(sb, KERN_INFO,
1837 "Quota format mount options ignored "
1838 "when QUOTA feature is enabled");
1839 return 1;
1840 }
1841 sbi->s_jquota_fmt = m->mount_opt;
1842 #endif
1843 } else if (token == Opt_dax) {
1844 #ifdef CONFIG_FS_DAX
1845 ext4_msg(sb, KERN_WARNING,
1846 "DAX enabled. Warning: EXPERIMENTAL, use at your own risk");
1847 sbi->s_mount_opt |= m->mount_opt;
1848 #else
1849 ext4_msg(sb, KERN_INFO, "dax option not supported");
1850 return -1;
1851 #endif
1852 } else if (token == Opt_data_err_abort) {
1853 sbi->s_mount_opt |= m->mount_opt;
1854 } else if (token == Opt_data_err_ignore) {
1855 sbi->s_mount_opt &= ~m->mount_opt;
1856 } else {
1857 if (!args->from)
1858 arg = 1;
1859 if (m->flags & MOPT_CLEAR)
1860 arg = !arg;
1861 else if (unlikely(!(m->flags & MOPT_SET))) {
1862 ext4_msg(sb, KERN_WARNING,
1863 "buggy handling of option %s", opt);
1864 WARN_ON(1);
1865 return -1;
1866 }
1867 if (arg != 0)
1868 sbi->s_mount_opt |= m->mount_opt;
1869 else
1870 sbi->s_mount_opt &= ~m->mount_opt;
1871 }
1872 return 1;
1873 }
1874
1875 static int parse_options(char *options, struct super_block *sb,
1876 unsigned long *journal_devnum,
1877 unsigned int *journal_ioprio,
1878 int is_remount)
1879 {
1880 struct ext4_sb_info *sbi = EXT4_SB(sb);
1881 char *p;
1882 substring_t args[MAX_OPT_ARGS];
1883 int token;
1884
1885 if (!options)
1886 return 1;
1887
1888 while ((p = strsep(&options, ",")) != NULL) {
1889 if (!*p)
1890 continue;
1891 /*
1892 * Initialize args struct so we know whether arg was
1893 * found; some options take optional arguments.
1894 */
1895 args[0].to = args[0].from = NULL;
1896 token = match_token(p, tokens, args);
1897 if (handle_mount_opt(sb, p, token, args, journal_devnum,
1898 journal_ioprio, is_remount) < 0)
1899 return 0;
1900 }
1901 #ifdef CONFIG_QUOTA
1902 /*
1903 * We do the test below only for project quotas. 'usrquota' and
1904 * 'grpquota' mount options are allowed even without quota feature
1905 * to support legacy quotas in quota files.
1906 */
1907 if (test_opt(sb, PRJQUOTA) && !ext4_has_feature_project(sb)) {
1908 ext4_msg(sb, KERN_ERR, "Project quota feature not enabled. "
1909 "Cannot enable project quota enforcement.");
1910 return 0;
1911 }
1912 if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
1913 if (test_opt(sb, USRQUOTA) && sbi->s_qf_names[USRQUOTA])
1914 clear_opt(sb, USRQUOTA);
1915
1916 if (test_opt(sb, GRPQUOTA) && sbi->s_qf_names[GRPQUOTA])
1917 clear_opt(sb, GRPQUOTA);
1918
1919 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) {
1920 ext4_msg(sb, KERN_ERR, "old and new quota "
1921 "format mixing");
1922 return 0;
1923 }
1924
1925 if (!sbi->s_jquota_fmt) {
1926 ext4_msg(sb, KERN_ERR, "journaled quota format "
1927 "not specified");
1928 return 0;
1929 }
1930 }
1931 #endif
1932 if (test_opt(sb, DIOREAD_NOLOCK)) {
1933 int blocksize =
1934 BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size);
1935
1936 if (blocksize < PAGE_SIZE) {
1937 ext4_msg(sb, KERN_ERR, "can't mount with "
1938 "dioread_nolock if block size != PAGE_SIZE");
1939 return 0;
1940 }
1941 }
1942 return 1;
1943 }
1944
1945 static inline void ext4_show_quota_options(struct seq_file *seq,
1946 struct super_block *sb)
1947 {
1948 #if defined(CONFIG_QUOTA)
1949 struct ext4_sb_info *sbi = EXT4_SB(sb);
1950
1951 if (sbi->s_jquota_fmt) {
1952 char *fmtname = "";
1953
1954 switch (sbi->s_jquota_fmt) {
1955 case QFMT_VFS_OLD:
1956 fmtname = "vfsold";
1957 break;
1958 case QFMT_VFS_V0:
1959 fmtname = "vfsv0";
1960 break;
1961 case QFMT_VFS_V1:
1962 fmtname = "vfsv1";
1963 break;
1964 }
1965 seq_printf(seq, ",jqfmt=%s", fmtname);
1966 }
1967
1968 if (sbi->s_qf_names[USRQUOTA])
1969 seq_show_option(seq, "usrjquota", sbi->s_qf_names[USRQUOTA]);
1970
1971 if (sbi->s_qf_names[GRPQUOTA])
1972 seq_show_option(seq, "grpjquota", sbi->s_qf_names[GRPQUOTA]);
1973 #endif
1974 }
1975
1976 static const char *token2str(int token)
1977 {
1978 const struct match_token *t;
1979
1980 for (t = tokens; t->token != Opt_err; t++)
1981 if (t->token == token && !strchr(t->pattern, '='))
1982 break;
1983 return t->pattern;
1984 }
1985
1986 /*
1987 * Show an option if
1988 * - it's set to a non-default value OR
1989 * - if the per-sb default is different from the global default
1990 */
1991 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb,
1992 int nodefs)
1993 {
1994 struct ext4_sb_info *sbi = EXT4_SB(sb);
1995 struct ext4_super_block *es = sbi->s_es;
1996 int def_errors, def_mount_opt = nodefs ? 0 : sbi->s_def_mount_opt;
1997 const struct mount_opts *m;
1998 char sep = nodefs ? '\n' : ',';
1999
2000 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep)
2001 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg)
2002
2003 if (sbi->s_sb_block != 1)
2004 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block);
2005
2006 for (m = ext4_mount_opts; m->token != Opt_err; m++) {
2007 int want_set = m->flags & MOPT_SET;
2008 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) ||
2009 (m->flags & MOPT_CLEAR_ERR))
2010 continue;
2011 if (!(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt)))
2012 continue; /* skip if same as the default */
2013 if ((want_set &&
2014 (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) ||
2015 (!want_set && (sbi->s_mount_opt & m->mount_opt)))
2016 continue; /* select Opt_noFoo vs Opt_Foo */
2017 SEQ_OPTS_PRINT("%s", token2str(m->token));
2018 }
2019
2020 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) ||
2021 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID)
2022 SEQ_OPTS_PRINT("resuid=%u",
2023 from_kuid_munged(&init_user_ns, sbi->s_resuid));
2024 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) ||
2025 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID)
2026 SEQ_OPTS_PRINT("resgid=%u",
2027 from_kgid_munged(&init_user_ns, sbi->s_resgid));
2028 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors);
2029 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO)
2030 SEQ_OPTS_PUTS("errors=remount-ro");
2031 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
2032 SEQ_OPTS_PUTS("errors=continue");
2033 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
2034 SEQ_OPTS_PUTS("errors=panic");
2035 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
2036 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ);
2037 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME)
2038 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time);
2039 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME)
2040 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time);
2041 if (sb->s_flags & MS_I_VERSION)
2042 SEQ_OPTS_PUTS("i_version");
2043 if (nodefs || sbi->s_stripe)
2044 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe);
2045 if (EXT4_MOUNT_DATA_FLAGS & (sbi->s_mount_opt ^ def_mount_opt)) {
2046 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
2047 SEQ_OPTS_PUTS("data=journal");
2048 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
2049 SEQ_OPTS_PUTS("data=ordered");
2050 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
2051 SEQ_OPTS_PUTS("data=writeback");
2052 }
2053 if (nodefs ||
2054 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
2055 SEQ_OPTS_PRINT("inode_readahead_blks=%u",
2056 sbi->s_inode_readahead_blks);
2057
2058 if (nodefs || (test_opt(sb, INIT_INODE_TABLE) &&
2059 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)))
2060 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult);
2061 if (nodefs || sbi->s_max_dir_size_kb)
2062 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb);
2063 if (test_opt(sb, DATA_ERR_ABORT))
2064 SEQ_OPTS_PUTS("data_err=abort");
2065
2066 ext4_show_quota_options(seq, sb);
2067 return 0;
2068 }
2069
2070 static int ext4_show_options(struct seq_file *seq, struct dentry *root)
2071 {
2072 return _ext4_show_options(seq, root->d_sb, 0);
2073 }
2074
2075 int ext4_seq_options_show(struct seq_file *seq, void *offset)
2076 {
2077 struct super_block *sb = seq->private;
2078 int rc;
2079
2080 seq_puts(seq, (sb->s_flags & MS_RDONLY) ? "ro" : "rw");
2081 rc = _ext4_show_options(seq, sb, 1);
2082 seq_puts(seq, "\n");
2083 return rc;
2084 }
2085
2086 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
2087 int read_only)
2088 {
2089 struct ext4_sb_info *sbi = EXT4_SB(sb);
2090 int res = 0;
2091
2092 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
2093 ext4_msg(sb, KERN_ERR, "revision level too high, "
2094 "forcing read-only mode");
2095 res = MS_RDONLY;
2096 }
2097 if (read_only)
2098 goto done;
2099 if (!(sbi->s_mount_state & EXT4_VALID_FS))
2100 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
2101 "running e2fsck is recommended");
2102 else if (sbi->s_mount_state & EXT4_ERROR_FS)
2103 ext4_msg(sb, KERN_WARNING,
2104 "warning: mounting fs with errors, "
2105 "running e2fsck is recommended");
2106 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
2107 le16_to_cpu(es->s_mnt_count) >=
2108 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
2109 ext4_msg(sb, KERN_WARNING,
2110 "warning: maximal mount count reached, "
2111 "running e2fsck is recommended");
2112 else if (le32_to_cpu(es->s_checkinterval) &&
2113 (le32_to_cpu(es->s_lastcheck) +
2114 le32_to_cpu(es->s_checkinterval) <= get_seconds()))
2115 ext4_msg(sb, KERN_WARNING,
2116 "warning: checktime reached, "
2117 "running e2fsck is recommended");
2118 if (!sbi->s_journal)
2119 es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
2120 if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
2121 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
2122 le16_add_cpu(&es->s_mnt_count, 1);
2123 es->s_mtime = cpu_to_le32(get_seconds());
2124 ext4_update_dynamic_rev(sb);
2125 if (sbi->s_journal)
2126 ext4_set_feature_journal_needs_recovery(sb);
2127
2128 ext4_commit_super(sb, 1);
2129 done:
2130 if (test_opt(sb, DEBUG))
2131 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
2132 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
2133 sb->s_blocksize,
2134 sbi->s_groups_count,
2135 EXT4_BLOCKS_PER_GROUP(sb),
2136 EXT4_INODES_PER_GROUP(sb),
2137 sbi->s_mount_opt, sbi->s_mount_opt2);
2138
2139 cleancache_init_fs(sb);
2140 return res;
2141 }
2142
2143 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup)
2144 {
2145 struct ext4_sb_info *sbi = EXT4_SB(sb);
2146 struct flex_groups *new_groups;
2147 int size;
2148
2149 if (!sbi->s_log_groups_per_flex)
2150 return 0;
2151
2152 size = ext4_flex_group(sbi, ngroup - 1) + 1;
2153 if (size <= sbi->s_flex_groups_allocated)
2154 return 0;
2155
2156 size = roundup_pow_of_two(size * sizeof(struct flex_groups));
2157 new_groups = kvzalloc(size, GFP_KERNEL);
2158 if (!new_groups) {
2159 ext4_msg(sb, KERN_ERR, "not enough memory for %d flex groups",
2160 size / (int) sizeof(struct flex_groups));
2161 return -ENOMEM;
2162 }
2163
2164 if (sbi->s_flex_groups) {
2165 memcpy(new_groups, sbi->s_flex_groups,
2166 (sbi->s_flex_groups_allocated *
2167 sizeof(struct flex_groups)));
2168 kvfree(sbi->s_flex_groups);
2169 }
2170 sbi->s_flex_groups = new_groups;
2171 sbi->s_flex_groups_allocated = size / sizeof(struct flex_groups);
2172 return 0;
2173 }
2174
2175 static int ext4_fill_flex_info(struct super_block *sb)
2176 {
2177 struct ext4_sb_info *sbi = EXT4_SB(sb);
2178 struct ext4_group_desc *gdp = NULL;
2179 ext4_group_t flex_group;
2180 int i, err;
2181
2182 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
2183 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) {
2184 sbi->s_log_groups_per_flex = 0;
2185 return 1;
2186 }
2187
2188 err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count);
2189 if (err)
2190 goto failed;
2191
2192 for (i = 0; i < sbi->s_groups_count; i++) {
2193 gdp = ext4_get_group_desc(sb, i, NULL);
2194
2195 flex_group = ext4_flex_group(sbi, i);
2196 atomic_add(ext4_free_inodes_count(sb, gdp),
2197 &sbi->s_flex_groups[flex_group].free_inodes);
2198 atomic64_add(ext4_free_group_clusters(sb, gdp),
2199 &sbi->s_flex_groups[flex_group].free_clusters);
2200 atomic_add(ext4_used_dirs_count(sb, gdp),
2201 &sbi->s_flex_groups[flex_group].used_dirs);
2202 }
2203
2204 return 1;
2205 failed:
2206 return 0;
2207 }
2208
2209 static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group,
2210 struct ext4_group_desc *gdp)
2211 {
2212 int offset = offsetof(struct ext4_group_desc, bg_checksum);
2213 __u16 crc = 0;
2214 __le32 le_group = cpu_to_le32(block_group);
2215 struct ext4_sb_info *sbi = EXT4_SB(sb);
2216
2217 if (ext4_has_metadata_csum(sbi->s_sb)) {
2218 /* Use new metadata_csum algorithm */
2219 __u32 csum32;
2220 __u16 dummy_csum = 0;
2221
2222 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group,
2223 sizeof(le_group));
2224 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, offset);
2225 csum32 = ext4_chksum(sbi, csum32, (__u8 *)&dummy_csum,
2226 sizeof(dummy_csum));
2227 offset += sizeof(dummy_csum);
2228 if (offset < sbi->s_desc_size)
2229 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp + offset,
2230 sbi->s_desc_size - offset);
2231
2232 crc = csum32 & 0xFFFF;
2233 goto out;
2234 }
2235
2236 /* old crc16 code */
2237 if (!ext4_has_feature_gdt_csum(sb))
2238 return 0;
2239
2240 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
2241 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
2242 crc = crc16(crc, (__u8 *)gdp, offset);
2243 offset += sizeof(gdp->bg_checksum); /* skip checksum */
2244 /* for checksum of struct ext4_group_desc do the rest...*/
2245 if (ext4_has_feature_64bit(sb) &&
2246 offset < le16_to_cpu(sbi->s_es->s_desc_size))
2247 crc = crc16(crc, (__u8 *)gdp + offset,
2248 le16_to_cpu(sbi->s_es->s_desc_size) -
2249 offset);
2250
2251 out:
2252 return cpu_to_le16(crc);
2253 }
2254
2255 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group,
2256 struct ext4_group_desc *gdp)
2257 {
2258 if (ext4_has_group_desc_csum(sb) &&
2259 (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp)))
2260 return 0;
2261
2262 return 1;
2263 }
2264
2265 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group,
2266 struct ext4_group_desc *gdp)
2267 {
2268 if (!ext4_has_group_desc_csum(sb))
2269 return;
2270 gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp);
2271 }
2272
2273 /* Called at mount-time, super-block is locked */
2274 static int ext4_check_descriptors(struct super_block *sb,
2275 ext4_fsblk_t sb_block,
2276 ext4_group_t *first_not_zeroed)
2277 {
2278 struct ext4_sb_info *sbi = EXT4_SB(sb);
2279 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
2280 ext4_fsblk_t last_block;
2281 ext4_fsblk_t block_bitmap;
2282 ext4_fsblk_t inode_bitmap;
2283 ext4_fsblk_t inode_table;
2284 int flexbg_flag = 0;
2285 ext4_group_t i, grp = sbi->s_groups_count;
2286
2287 if (ext4_has_feature_flex_bg(sb))
2288 flexbg_flag = 1;
2289
2290 ext4_debug("Checking group descriptors");
2291
2292 for (i = 0; i < sbi->s_groups_count; i++) {
2293 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
2294
2295 if (i == sbi->s_groups_count - 1 || flexbg_flag)
2296 last_block = ext4_blocks_count(sbi->s_es) - 1;
2297 else
2298 last_block = first_block +
2299 (EXT4_BLOCKS_PER_GROUP(sb) - 1);
2300
2301 if ((grp == sbi->s_groups_count) &&
2302 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2303 grp = i;
2304
2305 block_bitmap = ext4_block_bitmap(sb, gdp);
2306 if (block_bitmap == sb_block) {
2307 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2308 "Block bitmap for group %u overlaps "
2309 "superblock", i);
2310 }
2311 if (block_bitmap < first_block || block_bitmap > last_block) {
2312 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2313 "Block bitmap for group %u not in group "
2314 "(block %llu)!", i, block_bitmap);
2315 return 0;
2316 }
2317 inode_bitmap = ext4_inode_bitmap(sb, gdp);
2318 if (inode_bitmap == sb_block) {
2319 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2320 "Inode bitmap for group %u overlaps "
2321 "superblock", i);
2322 }
2323 if (inode_bitmap < first_block || inode_bitmap > last_block) {
2324 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2325 "Inode bitmap for group %u not in group "
2326 "(block %llu)!", i, inode_bitmap);
2327 return 0;
2328 }
2329 inode_table = ext4_inode_table(sb, gdp);
2330 if (inode_table == sb_block) {
2331 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2332 "Inode table for group %u overlaps "
2333 "superblock", i);
2334 }
2335 if (inode_table < first_block ||
2336 inode_table + sbi->s_itb_per_group - 1 > last_block) {
2337 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2338 "Inode table for group %u not in group "
2339 "(block %llu)!", i, inode_table);
2340 return 0;
2341 }
2342 ext4_lock_group(sb, i);
2343 if (!ext4_group_desc_csum_verify(sb, i, gdp)) {
2344 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2345 "Checksum for group %u failed (%u!=%u)",
2346 i, le16_to_cpu(ext4_group_desc_csum(sb, i,
2347 gdp)), le16_to_cpu(gdp->bg_checksum));
2348 if (!(sb->s_flags & MS_RDONLY)) {
2349 ext4_unlock_group(sb, i);
2350 return 0;
2351 }
2352 }
2353 ext4_unlock_group(sb, i);
2354 if (!flexbg_flag)
2355 first_block += EXT4_BLOCKS_PER_GROUP(sb);
2356 }
2357 if (NULL != first_not_zeroed)
2358 *first_not_zeroed = grp;
2359 return 1;
2360 }
2361
2362 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at
2363 * the superblock) which were deleted from all directories, but held open by
2364 * a process at the time of a crash. We walk the list and try to delete these
2365 * inodes at recovery time (only with a read-write filesystem).
2366 *
2367 * In order to keep the orphan inode chain consistent during traversal (in
2368 * case of crash during recovery), we link each inode into the superblock
2369 * orphan list_head and handle it the same way as an inode deletion during
2370 * normal operation (which journals the operations for us).
2371 *
2372 * We only do an iget() and an iput() on each inode, which is very safe if we
2373 * accidentally point at an in-use or already deleted inode. The worst that
2374 * can happen in this case is that we get a "bit already cleared" message from
2375 * ext4_free_inode(). The only reason we would point at a wrong inode is if
2376 * e2fsck was run on this filesystem, and it must have already done the orphan
2377 * inode cleanup for us, so we can safely abort without any further action.
2378 */
2379 static void ext4_orphan_cleanup(struct super_block *sb,
2380 struct ext4_super_block *es)
2381 {
2382 unsigned int s_flags = sb->s_flags;
2383 int ret, nr_orphans = 0, nr_truncates = 0;
2384 #ifdef CONFIG_QUOTA
2385 int i;
2386 #endif
2387 if (!es->s_last_orphan) {
2388 jbd_debug(4, "no orphan inodes to clean up\n");
2389 return;
2390 }
2391
2392 if (bdev_read_only(sb->s_bdev)) {
2393 ext4_msg(sb, KERN_ERR, "write access "
2394 "unavailable, skipping orphan cleanup");
2395 return;
2396 }
2397
2398 /* Check if feature set would not allow a r/w mount */
2399 if (!ext4_feature_set_ok(sb, 0)) {
2400 ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to "
2401 "unknown ROCOMPAT features");
2402 return;
2403 }
2404
2405 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2406 /* don't clear list on RO mount w/ errors */
2407 if (es->s_last_orphan && !(s_flags & MS_RDONLY)) {
2408 ext4_msg(sb, KERN_INFO, "Errors on filesystem, "
2409 "clearing orphan list.\n");
2410 es->s_last_orphan = 0;
2411 }
2412 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2413 return;
2414 }
2415
2416 if (s_flags & MS_RDONLY) {
2417 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs");
2418 sb->s_flags &= ~MS_RDONLY;
2419 }
2420 #ifdef CONFIG_QUOTA
2421 /* Needed for iput() to work correctly and not trash data */
2422 sb->s_flags |= MS_ACTIVE;
2423 /* Turn on quotas so that they are updated correctly */
2424 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2425 if (EXT4_SB(sb)->s_qf_names[i]) {
2426 int ret = ext4_quota_on_mount(sb, i);
2427 if (ret < 0)
2428 ext4_msg(sb, KERN_ERR,
2429 "Cannot turn on journaled "
2430 "quota: error %d", ret);
2431 }
2432 }
2433 #endif
2434
2435 while (es->s_last_orphan) {
2436 struct inode *inode;
2437
2438 /*
2439 * We may have encountered an error during cleanup; if
2440 * so, skip the rest.
2441 */
2442 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2443 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2444 es->s_last_orphan = 0;
2445 break;
2446 }
2447
2448 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan));
2449 if (IS_ERR(inode)) {
2450 es->s_last_orphan = 0;
2451 break;
2452 }
2453
2454 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan);
2455 dquot_initialize(inode);
2456 if (inode->i_nlink) {
2457 if (test_opt(sb, DEBUG))
2458 ext4_msg(sb, KERN_DEBUG,
2459 "%s: truncating inode %lu to %lld bytes",
2460 __func__, inode->i_ino, inode->i_size);
2461 jbd_debug(2, "truncating inode %lu to %lld bytes\n",
2462 inode->i_ino, inode->i_size);
2463 inode_lock(inode);
2464 truncate_inode_pages(inode->i_mapping, inode->i_size);
2465 ret = ext4_truncate(inode);
2466 if (ret)
2467 ext4_std_error(inode->i_sb, ret);
2468 inode_unlock(inode);
2469 nr_truncates++;
2470 } else {
2471 if (test_opt(sb, DEBUG))
2472 ext4_msg(sb, KERN_DEBUG,
2473 "%s: deleting unreferenced inode %lu",
2474 __func__, inode->i_ino);
2475 jbd_debug(2, "deleting unreferenced inode %lu\n",
2476 inode->i_ino);
2477 nr_orphans++;
2478 }
2479 iput(inode); /* The delete magic happens here! */
2480 }
2481
2482 #define PLURAL(x) (x), ((x) == 1) ? "" : "s"
2483
2484 if (nr_orphans)
2485 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted",
2486 PLURAL(nr_orphans));
2487 if (nr_truncates)
2488 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up",
2489 PLURAL(nr_truncates));
2490 #ifdef CONFIG_QUOTA
2491 /* Turn quotas off */
2492 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2493 if (sb_dqopt(sb)->files[i])
2494 dquot_quota_off(sb, i);
2495 }
2496 #endif
2497 sb->s_flags = s_flags; /* Restore MS_RDONLY status */
2498 }
2499
2500 /*
2501 * Maximal extent format file size.
2502 * Resulting logical blkno at s_maxbytes must fit in our on-disk
2503 * extent format containers, within a sector_t, and within i_blocks
2504 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units,
2505 * so that won't be a limiting factor.
2506 *
2507 * However there is other limiting factor. We do store extents in the form
2508 * of starting block and length, hence the resulting length of the extent
2509 * covering maximum file size must fit into on-disk format containers as
2510 * well. Given that length is always by 1 unit bigger than max unit (because
2511 * we count 0 as well) we have to lower the s_maxbytes by one fs block.
2512 *
2513 * Note, this does *not* consider any metadata overhead for vfs i_blocks.
2514 */
2515 static loff_t ext4_max_size(int blkbits, int has_huge_files)
2516 {
2517 loff_t res;
2518 loff_t upper_limit = MAX_LFS_FILESIZE;
2519
2520 /* small i_blocks in vfs inode? */
2521 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2522 /*
2523 * CONFIG_LBDAF is not enabled implies the inode
2524 * i_block represent total blocks in 512 bytes
2525 * 32 == size of vfs inode i_blocks * 8
2526 */
2527 upper_limit = (1LL << 32) - 1;
2528
2529 /* total blocks in file system block size */
2530 upper_limit >>= (blkbits - 9);
2531 upper_limit <<= blkbits;
2532 }
2533
2534 /*
2535 * 32-bit extent-start container, ee_block. We lower the maxbytes
2536 * by one fs block, so ee_len can cover the extent of maximum file
2537 * size
2538 */
2539 res = (1LL << 32) - 1;
2540 res <<= blkbits;
2541
2542 /* Sanity check against vm- & vfs- imposed limits */
2543 if (res > upper_limit)
2544 res = upper_limit;
2545
2546 return res;
2547 }
2548
2549 /*
2550 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect
2551 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
2552 * We need to be 1 filesystem block less than the 2^48 sector limit.
2553 */
2554 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
2555 {
2556 loff_t res = EXT4_NDIR_BLOCKS;
2557 int meta_blocks;
2558 loff_t upper_limit;
2559 /* This is calculated to be the largest file size for a dense, block
2560 * mapped file such that the file's total number of 512-byte sectors,
2561 * including data and all indirect blocks, does not exceed (2^48 - 1).
2562 *
2563 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
2564 * number of 512-byte sectors of the file.
2565 */
2566
2567 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2568 /*
2569 * !has_huge_files or CONFIG_LBDAF not enabled implies that
2570 * the inode i_block field represents total file blocks in
2571 * 2^32 512-byte sectors == size of vfs inode i_blocks * 8
2572 */
2573 upper_limit = (1LL << 32) - 1;
2574
2575 /* total blocks in file system block size */
2576 upper_limit >>= (bits - 9);
2577
2578 } else {
2579 /*
2580 * We use 48 bit ext4_inode i_blocks
2581 * With EXT4_HUGE_FILE_FL set the i_blocks
2582 * represent total number of blocks in
2583 * file system block size
2584 */
2585 upper_limit = (1LL << 48) - 1;
2586
2587 }
2588
2589 /* indirect blocks */
2590 meta_blocks = 1;
2591 /* double indirect blocks */
2592 meta_blocks += 1 + (1LL << (bits-2));
2593 /* tripple indirect blocks */
2594 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2)));
2595
2596 upper_limit -= meta_blocks;
2597 upper_limit <<= bits;
2598
2599 res += 1LL << (bits-2);
2600 res += 1LL << (2*(bits-2));
2601 res += 1LL << (3*(bits-2));
2602 res <<= bits;
2603 if (res > upper_limit)
2604 res = upper_limit;
2605
2606 if (res > MAX_LFS_FILESIZE)
2607 res = MAX_LFS_FILESIZE;
2608
2609 return res;
2610 }
2611
2612 static ext4_fsblk_t descriptor_loc(struct super_block *sb,
2613 ext4_fsblk_t logical_sb_block, int nr)
2614 {
2615 struct ext4_sb_info *sbi = EXT4_SB(sb);
2616 ext4_group_t bg, first_meta_bg;
2617 int has_super = 0;
2618
2619 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
2620
2621 if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg)
2622 return logical_sb_block + nr + 1;
2623 bg = sbi->s_desc_per_block * nr;
2624 if (ext4_bg_has_super(sb, bg))
2625 has_super = 1;
2626
2627 /*
2628 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at
2629 * block 2, not 1. If s_first_data_block == 0 (bigalloc is enabled
2630 * on modern mke2fs or blksize > 1k on older mke2fs) then we must
2631 * compensate.
2632 */
2633 if (sb->s_blocksize == 1024 && nr == 0 &&
2634 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block) == 0)
2635 has_super++;
2636
2637 return (has_super + ext4_group_first_block_no(sb, bg));
2638 }
2639
2640 /**
2641 * ext4_get_stripe_size: Get the stripe size.
2642 * @sbi: In memory super block info
2643 *
2644 * If we have specified it via mount option, then
2645 * use the mount option value. If the value specified at mount time is
2646 * greater than the blocks per group use the super block value.
2647 * If the super block value is greater than blocks per group return 0.
2648 * Allocator needs it be less than blocks per group.
2649 *
2650 */
2651 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
2652 {
2653 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
2654 unsigned long stripe_width =
2655 le32_to_cpu(sbi->s_es->s_raid_stripe_width);
2656 int ret;
2657
2658 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
2659 ret = sbi->s_stripe;
2660 else if (stripe_width && stripe_width <= sbi->s_blocks_per_group)
2661 ret = stripe_width;
2662 else if (stride && stride <= sbi->s_blocks_per_group)
2663 ret = stride;
2664 else
2665 ret = 0;
2666
2667 /*
2668 * If the stripe width is 1, this makes no sense and
2669 * we set it to 0 to turn off stripe handling code.
2670 */
2671 if (ret <= 1)
2672 ret = 0;
2673
2674 return ret;
2675 }
2676
2677 /*
2678 * Check whether this filesystem can be mounted based on
2679 * the features present and the RDONLY/RDWR mount requested.
2680 * Returns 1 if this filesystem can be mounted as requested,
2681 * 0 if it cannot be.
2682 */
2683 static int ext4_feature_set_ok(struct super_block *sb, int readonly)
2684 {
2685 if (ext4_has_unknown_ext4_incompat_features(sb)) {
2686 ext4_msg(sb, KERN_ERR,
2687 "Couldn't mount because of "
2688 "unsupported optional features (%x)",
2689 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
2690 ~EXT4_FEATURE_INCOMPAT_SUPP));
2691 return 0;
2692 }
2693
2694 if (readonly)
2695 return 1;
2696
2697 if (ext4_has_feature_readonly(sb)) {
2698 ext4_msg(sb, KERN_INFO, "filesystem is read-only");
2699 sb->s_flags |= MS_RDONLY;
2700 return 1;
2701 }
2702
2703 /* Check that feature set is OK for a read-write mount */
2704 if (ext4_has_unknown_ext4_ro_compat_features(sb)) {
2705 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
2706 "unsupported optional features (%x)",
2707 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
2708 ~EXT4_FEATURE_RO_COMPAT_SUPP));
2709 return 0;
2710 }
2711 /*
2712 * Large file size enabled file system can only be mounted
2713 * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF
2714 */
2715 if (ext4_has_feature_huge_file(sb)) {
2716 if (sizeof(blkcnt_t) < sizeof(u64)) {
2717 ext4_msg(sb, KERN_ERR, "Filesystem with huge files "
2718 "cannot be mounted RDWR without "
2719 "CONFIG_LBDAF");
2720 return 0;
2721 }
2722 }
2723 if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) {
2724 ext4_msg(sb, KERN_ERR,
2725 "Can't support bigalloc feature without "
2726 "extents feature\n");
2727 return 0;
2728 }
2729
2730 #ifndef CONFIG_QUOTA
2731 if (ext4_has_feature_quota(sb) && !readonly) {
2732 ext4_msg(sb, KERN_ERR,
2733 "Filesystem with quota feature cannot be mounted RDWR "
2734 "without CONFIG_QUOTA");
2735 return 0;
2736 }
2737 if (ext4_has_feature_project(sb) && !readonly) {
2738 ext4_msg(sb, KERN_ERR,
2739 "Filesystem with project quota feature cannot be mounted RDWR "
2740 "without CONFIG_QUOTA");
2741 return 0;
2742 }
2743 #endif /* CONFIG_QUOTA */
2744 return 1;
2745 }
2746
2747 /*
2748 * This function is called once a day if we have errors logged
2749 * on the file system
2750 */
2751 static void print_daily_error_info(unsigned long arg)
2752 {
2753 struct super_block *sb = (struct super_block *) arg;
2754 struct ext4_sb_info *sbi;
2755 struct ext4_super_block *es;
2756
2757 sbi = EXT4_SB(sb);
2758 es = sbi->s_es;
2759
2760 if (es->s_error_count)
2761 /* fsck newer than v1.41.13 is needed to clean this condition. */
2762 ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u",
2763 le32_to_cpu(es->s_error_count));
2764 if (es->s_first_error_time) {
2765 printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %u: %.*s:%d",
2766 sb->s_id, le32_to_cpu(es->s_first_error_time),
2767 (int) sizeof(es->s_first_error_func),
2768 es->s_first_error_func,
2769 le32_to_cpu(es->s_first_error_line));
2770 if (es->s_first_error_ino)
2771 printk(KERN_CONT ": inode %u",
2772 le32_to_cpu(es->s_first_error_ino));
2773 if (es->s_first_error_block)
2774 printk(KERN_CONT ": block %llu", (unsigned long long)
2775 le64_to_cpu(es->s_first_error_block));
2776 printk(KERN_CONT "\n");
2777 }
2778 if (es->s_last_error_time) {
2779 printk(KERN_NOTICE "EXT4-fs (%s): last error at time %u: %.*s:%d",
2780 sb->s_id, le32_to_cpu(es->s_last_error_time),
2781 (int) sizeof(es->s_last_error_func),
2782 es->s_last_error_func,
2783 le32_to_cpu(es->s_last_error_line));
2784 if (es->s_last_error_ino)
2785 printk(KERN_CONT ": inode %u",
2786 le32_to_cpu(es->s_last_error_ino));
2787 if (es->s_last_error_block)
2788 printk(KERN_CONT ": block %llu", (unsigned long long)
2789 le64_to_cpu(es->s_last_error_block));
2790 printk(KERN_CONT "\n");
2791 }
2792 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */
2793 }
2794
2795 /* Find next suitable group and run ext4_init_inode_table */
2796 static int ext4_run_li_request(struct ext4_li_request *elr)
2797 {
2798 struct ext4_group_desc *gdp = NULL;
2799 ext4_group_t group, ngroups;
2800 struct super_block *sb;
2801 unsigned long timeout = 0;
2802 int ret = 0;
2803
2804 sb = elr->lr_super;
2805 ngroups = EXT4_SB(sb)->s_groups_count;
2806
2807 for (group = elr->lr_next_group; group < ngroups; group++) {
2808 gdp = ext4_get_group_desc(sb, group, NULL);
2809 if (!gdp) {
2810 ret = 1;
2811 break;
2812 }
2813
2814 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2815 break;
2816 }
2817
2818 if (group >= ngroups)
2819 ret = 1;
2820
2821 if (!ret) {
2822 timeout = jiffies;
2823 ret = ext4_init_inode_table(sb, group,
2824 elr->lr_timeout ? 0 : 1);
2825 if (elr->lr_timeout == 0) {
2826 timeout = (jiffies - timeout) *
2827 elr->lr_sbi->s_li_wait_mult;
2828 elr->lr_timeout = timeout;
2829 }
2830 elr->lr_next_sched = jiffies + elr->lr_timeout;
2831 elr->lr_next_group = group + 1;
2832 }
2833 return ret;
2834 }
2835
2836 /*
2837 * Remove lr_request from the list_request and free the
2838 * request structure. Should be called with li_list_mtx held
2839 */
2840 static void ext4_remove_li_request(struct ext4_li_request *elr)
2841 {
2842 struct ext4_sb_info *sbi;
2843
2844 if (!elr)
2845 return;
2846
2847 sbi = elr->lr_sbi;
2848
2849 list_del(&elr->lr_request);
2850 sbi->s_li_request = NULL;
2851 kfree(elr);
2852 }
2853
2854 static void ext4_unregister_li_request(struct super_block *sb)
2855 {
2856 mutex_lock(&ext4_li_mtx);
2857 if (!ext4_li_info) {
2858 mutex_unlock(&ext4_li_mtx);
2859 return;
2860 }
2861
2862 mutex_lock(&ext4_li_info->li_list_mtx);
2863 ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
2864 mutex_unlock(&ext4_li_info->li_list_mtx);
2865 mutex_unlock(&ext4_li_mtx);
2866 }
2867
2868 static struct task_struct *ext4_lazyinit_task;
2869
2870 /*
2871 * This is the function where ext4lazyinit thread lives. It walks
2872 * through the request list searching for next scheduled filesystem.
2873 * When such a fs is found, run the lazy initialization request
2874 * (ext4_rn_li_request) and keep track of the time spend in this
2875 * function. Based on that time we compute next schedule time of
2876 * the request. When walking through the list is complete, compute
2877 * next waking time and put itself into sleep.
2878 */
2879 static int ext4_lazyinit_thread(void *arg)
2880 {
2881 struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg;
2882 struct list_head *pos, *n;
2883 struct ext4_li_request *elr;
2884 unsigned long next_wakeup, cur;
2885
2886 BUG_ON(NULL == eli);
2887
2888 cont_thread:
2889 while (true) {
2890 next_wakeup = MAX_JIFFY_OFFSET;
2891
2892 mutex_lock(&eli->li_list_mtx);
2893 if (list_empty(&eli->li_request_list)) {
2894 mutex_unlock(&eli->li_list_mtx);
2895 goto exit_thread;
2896 }
2897 list_for_each_safe(pos, n, &eli->li_request_list) {
2898 int err = 0;
2899 int progress = 0;
2900 elr = list_entry(pos, struct ext4_li_request,
2901 lr_request);
2902
2903 if (time_before(jiffies, elr->lr_next_sched)) {
2904 if (time_before(elr->lr_next_sched, next_wakeup))
2905 next_wakeup = elr->lr_next_sched;
2906 continue;
2907 }
2908 if (down_read_trylock(&elr->lr_super->s_umount)) {
2909 if (sb_start_write_trylock(elr->lr_super)) {
2910 progress = 1;
2911 /*
2912 * We hold sb->s_umount, sb can not
2913 * be removed from the list, it is
2914 * now safe to drop li_list_mtx
2915 */
2916 mutex_unlock(&eli->li_list_mtx);
2917 err = ext4_run_li_request(elr);
2918 sb_end_write(elr->lr_super);
2919 mutex_lock(&eli->li_list_mtx);
2920 n = pos->next;
2921 }
2922 up_read((&elr->lr_super->s_umount));
2923 }
2924 /* error, remove the lazy_init job */
2925 if (err) {
2926 ext4_remove_li_request(elr);
2927 continue;
2928 }
2929 if (!progress) {
2930 elr->lr_next_sched = jiffies +
2931 (prandom_u32()
2932 % (EXT4_DEF_LI_MAX_START_DELAY * HZ));
2933 }
2934 if (time_before(elr->lr_next_sched, next_wakeup))
2935 next_wakeup = elr->lr_next_sched;
2936 }
2937 mutex_unlock(&eli->li_list_mtx);
2938
2939 try_to_freeze();
2940
2941 cur = jiffies;
2942 if ((time_after_eq(cur, next_wakeup)) ||
2943 (MAX_JIFFY_OFFSET == next_wakeup)) {
2944 cond_resched();
2945 continue;
2946 }
2947
2948 schedule_timeout_interruptible(next_wakeup - cur);
2949
2950 if (kthread_should_stop()) {
2951 ext4_clear_request_list();
2952 goto exit_thread;
2953 }
2954 }
2955
2956 exit_thread:
2957 /*
2958 * It looks like the request list is empty, but we need
2959 * to check it under the li_list_mtx lock, to prevent any
2960 * additions into it, and of course we should lock ext4_li_mtx
2961 * to atomically free the list and ext4_li_info, because at
2962 * this point another ext4 filesystem could be registering
2963 * new one.
2964 */
2965 mutex_lock(&ext4_li_mtx);
2966 mutex_lock(&eli->li_list_mtx);
2967 if (!list_empty(&eli->li_request_list)) {
2968 mutex_unlock(&eli->li_list_mtx);
2969 mutex_unlock(&ext4_li_mtx);
2970 goto cont_thread;
2971 }
2972 mutex_unlock(&eli->li_list_mtx);
2973 kfree(ext4_li_info);
2974 ext4_li_info = NULL;
2975 mutex_unlock(&ext4_li_mtx);
2976
2977 return 0;
2978 }
2979
2980 static void ext4_clear_request_list(void)
2981 {
2982 struct list_head *pos, *n;
2983 struct ext4_li_request *elr;
2984
2985 mutex_lock(&ext4_li_info->li_list_mtx);
2986 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
2987 elr = list_entry(pos, struct ext4_li_request,
2988 lr_request);
2989 ext4_remove_li_request(elr);
2990 }
2991 mutex_unlock(&ext4_li_info->li_list_mtx);
2992 }
2993
2994 static int ext4_run_lazyinit_thread(void)
2995 {
2996 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
2997 ext4_li_info, "ext4lazyinit");
2998 if (IS_ERR(ext4_lazyinit_task)) {
2999 int err = PTR_ERR(ext4_lazyinit_task);
3000 ext4_clear_request_list();
3001 kfree(ext4_li_info);
3002 ext4_li_info = NULL;
3003 printk(KERN_CRIT "EXT4-fs: error %d creating inode table "
3004 "initialization thread\n",
3005 err);
3006 return err;
3007 }
3008 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
3009 return 0;
3010 }
3011
3012 /*
3013 * Check whether it make sense to run itable init. thread or not.
3014 * If there is at least one uninitialized inode table, return
3015 * corresponding group number, else the loop goes through all
3016 * groups and return total number of groups.
3017 */
3018 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
3019 {
3020 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
3021 struct ext4_group_desc *gdp = NULL;
3022
3023 for (group = 0; group < ngroups; group++) {
3024 gdp = ext4_get_group_desc(sb, group, NULL);
3025 if (!gdp)
3026 continue;
3027
3028 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3029 break;
3030 }
3031
3032 return group;
3033 }
3034
3035 static int ext4_li_info_new(void)
3036 {
3037 struct ext4_lazy_init *eli = NULL;
3038
3039 eli = kzalloc(sizeof(*eli), GFP_KERNEL);
3040 if (!eli)
3041 return -ENOMEM;
3042
3043 INIT_LIST_HEAD(&eli->li_request_list);
3044 mutex_init(&eli->li_list_mtx);
3045
3046 eli->li_state |= EXT4_LAZYINIT_QUIT;
3047
3048 ext4_li_info = eli;
3049
3050 return 0;
3051 }
3052
3053 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
3054 ext4_group_t start)
3055 {
3056 struct ext4_sb_info *sbi = EXT4_SB(sb);
3057 struct ext4_li_request *elr;
3058
3059 elr = kzalloc(sizeof(*elr), GFP_KERNEL);
3060 if (!elr)
3061 return NULL;
3062
3063 elr->lr_super = sb;
3064 elr->lr_sbi = sbi;
3065 elr->lr_next_group = start;
3066
3067 /*
3068 * Randomize first schedule time of the request to
3069 * spread the inode table initialization requests
3070 * better.
3071 */
3072 elr->lr_next_sched = jiffies + (prandom_u32() %
3073 (EXT4_DEF_LI_MAX_START_DELAY * HZ));
3074 return elr;
3075 }
3076
3077 int ext4_register_li_request(struct super_block *sb,
3078 ext4_group_t first_not_zeroed)
3079 {
3080 struct ext4_sb_info *sbi = EXT4_SB(sb);
3081 struct ext4_li_request *elr = NULL;
3082 ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count;
3083 int ret = 0;
3084
3085 mutex_lock(&ext4_li_mtx);
3086 if (sbi->s_li_request != NULL) {
3087 /*
3088 * Reset timeout so it can be computed again, because
3089 * s_li_wait_mult might have changed.
3090 */
3091 sbi->s_li_request->lr_timeout = 0;
3092 goto out;
3093 }
3094
3095 if (first_not_zeroed == ngroups ||
3096 (sb->s_flags & MS_RDONLY) ||
3097 !test_opt(sb, INIT_INODE_TABLE))
3098 goto out;
3099
3100 elr = ext4_li_request_new(sb, first_not_zeroed);
3101 if (!elr) {
3102 ret = -ENOMEM;
3103 goto out;
3104 }
3105
3106 if (NULL == ext4_li_info) {
3107 ret = ext4_li_info_new();
3108 if (ret)
3109 goto out;
3110 }
3111
3112 mutex_lock(&ext4_li_info->li_list_mtx);
3113 list_add(&elr->lr_request, &ext4_li_info->li_request_list);
3114 mutex_unlock(&ext4_li_info->li_list_mtx);
3115
3116 sbi->s_li_request = elr;
3117 /*
3118 * set elr to NULL here since it has been inserted to
3119 * the request_list and the removal and free of it is
3120 * handled by ext4_clear_request_list from now on.
3121 */
3122 elr = NULL;
3123
3124 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
3125 ret = ext4_run_lazyinit_thread();
3126 if (ret)
3127 goto out;
3128 }
3129 out:
3130 mutex_unlock(&ext4_li_mtx);
3131 if (ret)
3132 kfree(elr);
3133 return ret;
3134 }
3135
3136 /*
3137 * We do not need to lock anything since this is called on
3138 * module unload.
3139 */
3140 static void ext4_destroy_lazyinit_thread(void)
3141 {
3142 /*
3143 * If thread exited earlier
3144 * there's nothing to be done.
3145 */
3146 if (!ext4_li_info || !ext4_lazyinit_task)
3147 return;
3148
3149 kthread_stop(ext4_lazyinit_task);
3150 }
3151
3152 static int set_journal_csum_feature_set(struct super_block *sb)
3153 {
3154 int ret = 1;
3155 int compat, incompat;
3156 struct ext4_sb_info *sbi = EXT4_SB(sb);
3157
3158 if (ext4_has_metadata_csum(sb)) {
3159 /* journal checksum v3 */
3160 compat = 0;
3161 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3;
3162 } else {
3163 /* journal checksum v1 */
3164 compat = JBD2_FEATURE_COMPAT_CHECKSUM;
3165 incompat = 0;
3166 }
3167
3168 jbd2_journal_clear_features(sbi->s_journal,
3169 JBD2_FEATURE_COMPAT_CHECKSUM, 0,
3170 JBD2_FEATURE_INCOMPAT_CSUM_V3 |
3171 JBD2_FEATURE_INCOMPAT_CSUM_V2);
3172 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
3173 ret = jbd2_journal_set_features(sbi->s_journal,
3174 compat, 0,
3175 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
3176 incompat);
3177 } else if (test_opt(sb, JOURNAL_CHECKSUM)) {
3178 ret = jbd2_journal_set_features(sbi->s_journal,
3179 compat, 0,
3180 incompat);
3181 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3182 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3183 } else {
3184 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3185 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3186 }
3187
3188 return ret;
3189 }
3190
3191 /*
3192 * Note: calculating the overhead so we can be compatible with
3193 * historical BSD practice is quite difficult in the face of
3194 * clusters/bigalloc. This is because multiple metadata blocks from
3195 * different block group can end up in the same allocation cluster.
3196 * Calculating the exact overhead in the face of clustered allocation
3197 * requires either O(all block bitmaps) in memory or O(number of block
3198 * groups**2) in time. We will still calculate the superblock for
3199 * older file systems --- and if we come across with a bigalloc file
3200 * system with zero in s_overhead_clusters the estimate will be close to
3201 * correct especially for very large cluster sizes --- but for newer
3202 * file systems, it's better to calculate this figure once at mkfs
3203 * time, and store it in the superblock. If the superblock value is
3204 * present (even for non-bigalloc file systems), we will use it.
3205 */
3206 static int count_overhead(struct super_block *sb, ext4_group_t grp,
3207 char *buf)
3208 {
3209 struct ext4_sb_info *sbi = EXT4_SB(sb);
3210 struct ext4_group_desc *gdp;
3211 ext4_fsblk_t first_block, last_block, b;
3212 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3213 int s, j, count = 0;
3214
3215 if (!ext4_has_feature_bigalloc(sb))
3216 return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) +
3217 sbi->s_itb_per_group + 2);
3218
3219 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) +
3220 (grp * EXT4_BLOCKS_PER_GROUP(sb));
3221 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1;
3222 for (i = 0; i < ngroups; i++) {
3223 gdp = ext4_get_group_desc(sb, i, NULL);
3224 b = ext4_block_bitmap(sb, gdp);
3225 if (b >= first_block && b <= last_block) {
3226 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3227 count++;
3228 }
3229 b = ext4_inode_bitmap(sb, gdp);
3230 if (b >= first_block && b <= last_block) {
3231 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3232 count++;
3233 }
3234 b = ext4_inode_table(sb, gdp);
3235 if (b >= first_block && b + sbi->s_itb_per_group <= last_block)
3236 for (j = 0; j < sbi->s_itb_per_group; j++, b++) {
3237 int c = EXT4_B2C(sbi, b - first_block);
3238 ext4_set_bit(c, buf);
3239 count++;
3240 }
3241 if (i != grp)
3242 continue;
3243 s = 0;
3244 if (ext4_bg_has_super(sb, grp)) {
3245 ext4_set_bit(s++, buf);
3246 count++;
3247 }
3248 j = ext4_bg_num_gdb(sb, grp);
3249 if (s + j > EXT4_BLOCKS_PER_GROUP(sb)) {
3250 ext4_error(sb, "Invalid number of block group "
3251 "descriptor blocks: %d", j);
3252 j = EXT4_BLOCKS_PER_GROUP(sb) - s;
3253 }
3254 count += j;
3255 for (; j > 0; j--)
3256 ext4_set_bit(EXT4_B2C(sbi, s++), buf);
3257 }
3258 if (!count)
3259 return 0;
3260 return EXT4_CLUSTERS_PER_GROUP(sb) -
3261 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8);
3262 }
3263
3264 /*
3265 * Compute the overhead and stash it in sbi->s_overhead
3266 */
3267 int ext4_calculate_overhead(struct super_block *sb)
3268 {
3269 struct ext4_sb_info *sbi = EXT4_SB(sb);
3270 struct ext4_super_block *es = sbi->s_es;
3271 struct inode *j_inode;
3272 unsigned int j_blocks, j_inum = le32_to_cpu(es->s_journal_inum);
3273 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3274 ext4_fsblk_t overhead = 0;
3275 char *buf = (char *) get_zeroed_page(GFP_NOFS);
3276
3277 if (!buf)
3278 return -ENOMEM;
3279
3280 /*
3281 * Compute the overhead (FS structures). This is constant
3282 * for a given filesystem unless the number of block groups
3283 * changes so we cache the previous value until it does.
3284 */
3285
3286 /*
3287 * All of the blocks before first_data_block are overhead
3288 */
3289 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
3290
3291 /*
3292 * Add the overhead found in each block group
3293 */
3294 for (i = 0; i < ngroups; i++) {
3295 int blks;
3296
3297 blks = count_overhead(sb, i, buf);
3298 overhead += blks;
3299 if (blks)
3300 memset(buf, 0, PAGE_SIZE);
3301 cond_resched();
3302 }
3303
3304 /*
3305 * Add the internal journal blocks whether the journal has been
3306 * loaded or not
3307 */
3308 if (sbi->s_journal && !sbi->journal_bdev)
3309 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_maxlen);
3310 else if (ext4_has_feature_journal(sb) && !sbi->s_journal) {
3311 j_inode = ext4_get_journal_inode(sb, j_inum);
3312 if (j_inode) {
3313 j_blocks = j_inode->i_size >> sb->s_blocksize_bits;
3314 overhead += EXT4_NUM_B2C(sbi, j_blocks);
3315 iput(j_inode);
3316 } else {
3317 ext4_msg(sb, KERN_ERR, "can't get journal size");
3318 }
3319 }
3320 sbi->s_overhead = overhead;
3321 smp_wmb();
3322 free_page((unsigned long) buf);
3323 return 0;
3324 }
3325
3326 static void ext4_set_resv_clusters(struct super_block *sb)
3327 {
3328 ext4_fsblk_t resv_clusters;
3329 struct ext4_sb_info *sbi = EXT4_SB(sb);
3330
3331 /*
3332 * There's no need to reserve anything when we aren't using extents.
3333 * The space estimates are exact, there are no unwritten extents,
3334 * hole punching doesn't need new metadata... This is needed especially
3335 * to keep ext2/3 backward compatibility.
3336 */
3337 if (!ext4_has_feature_extents(sb))
3338 return;
3339 /*
3340 * By default we reserve 2% or 4096 clusters, whichever is smaller.
3341 * This should cover the situations where we can not afford to run
3342 * out of space like for example punch hole, or converting
3343 * unwritten extents in delalloc path. In most cases such
3344 * allocation would require 1, or 2 blocks, higher numbers are
3345 * very rare.
3346 */
3347 resv_clusters = (ext4_blocks_count(sbi->s_es) >>
3348 sbi->s_cluster_bits);
3349
3350 do_div(resv_clusters, 50);
3351 resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096);
3352
3353 atomic64_set(&sbi->s_resv_clusters, resv_clusters);
3354 }
3355
3356 static int ext4_fill_super(struct super_block *sb, void *data, int silent)
3357 {
3358 char *orig_data = kstrdup(data, GFP_KERNEL);
3359 struct buffer_head *bh;
3360 struct ext4_super_block *es = NULL;
3361 struct ext4_sb_info *sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
3362 ext4_fsblk_t block;
3363 ext4_fsblk_t sb_block = get_sb_block(&data);
3364 ext4_fsblk_t logical_sb_block;
3365 unsigned long offset = 0;
3366 unsigned long journal_devnum = 0;
3367 unsigned long def_mount_opts;
3368 struct inode *root;
3369 const char *descr;
3370 int ret = -ENOMEM;
3371 int blocksize, clustersize;
3372 unsigned int db_count;
3373 unsigned int i;
3374 int needs_recovery, has_huge_files, has_bigalloc;
3375 __u64 blocks_count;
3376 int err = 0;
3377 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
3378 ext4_group_t first_not_zeroed;
3379
3380 if ((data && !orig_data) || !sbi)
3381 goto out_free_base;
3382
3383 sbi->s_blockgroup_lock =
3384 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
3385 if (!sbi->s_blockgroup_lock)
3386 goto out_free_base;
3387
3388 sb->s_fs_info = sbi;
3389 sbi->s_sb = sb;
3390 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
3391 sbi->s_sb_block = sb_block;
3392 if (sb->s_bdev->bd_part)
3393 sbi->s_sectors_written_start =
3394 part_stat_read(sb->s_bdev->bd_part, sectors[1]);
3395
3396 /* Cleanup superblock name */
3397 strreplace(sb->s_id, '/', '!');
3398
3399 /* -EINVAL is default */
3400 ret = -EINVAL;
3401 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
3402 if (!blocksize) {
3403 ext4_msg(sb, KERN_ERR, "unable to set blocksize");
3404 goto out_fail;
3405 }
3406
3407 /*
3408 * The ext4 superblock will not be buffer aligned for other than 1kB
3409 * block sizes. We need to calculate the offset from buffer start.
3410 */
3411 if (blocksize != EXT4_MIN_BLOCK_SIZE) {
3412 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3413 offset = do_div(logical_sb_block, blocksize);
3414 } else {
3415 logical_sb_block = sb_block;
3416 }
3417
3418 if (!(bh = sb_bread_unmovable(sb, logical_sb_block))) {
3419 ext4_msg(sb, KERN_ERR, "unable to read superblock");
3420 goto out_fail;
3421 }
3422 /*
3423 * Note: s_es must be initialized as soon as possible because
3424 * some ext4 macro-instructions depend on its value
3425 */
3426 es = (struct ext4_super_block *) (bh->b_data + offset);
3427 sbi->s_es = es;
3428 sb->s_magic = le16_to_cpu(es->s_magic);
3429 if (sb->s_magic != EXT4_SUPER_MAGIC)
3430 goto cantfind_ext4;
3431 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
3432
3433 /* Warn if metadata_csum and gdt_csum are both set. */
3434 if (ext4_has_feature_metadata_csum(sb) &&
3435 ext4_has_feature_gdt_csum(sb))
3436 ext4_warning(sb, "metadata_csum and uninit_bg are "
3437 "redundant flags; please run fsck.");
3438
3439 /* Check for a known checksum algorithm */
3440 if (!ext4_verify_csum_type(sb, es)) {
3441 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3442 "unknown checksum algorithm.");
3443 silent = 1;
3444 goto cantfind_ext4;
3445 }
3446
3447 /* Load the checksum driver */
3448 if (ext4_has_feature_metadata_csum(sb)) {
3449 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
3450 if (IS_ERR(sbi->s_chksum_driver)) {
3451 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver.");
3452 ret = PTR_ERR(sbi->s_chksum_driver);
3453 sbi->s_chksum_driver = NULL;
3454 goto failed_mount;
3455 }
3456 }
3457
3458 /* Check superblock checksum */
3459 if (!ext4_superblock_csum_verify(sb, es)) {
3460 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3461 "invalid superblock checksum. Run e2fsck?");
3462 silent = 1;
3463 ret = -EFSBADCRC;
3464 goto cantfind_ext4;
3465 }
3466
3467 /* Precompute checksum seed for all metadata */
3468 if (ext4_has_feature_csum_seed(sb))
3469 sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed);
3470 else if (ext4_has_metadata_csum(sb))
3471 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid,
3472 sizeof(es->s_uuid));
3473
3474 /* Set defaults before we parse the mount options */
3475 def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
3476 set_opt(sb, INIT_INODE_TABLE);
3477 if (def_mount_opts & EXT4_DEFM_DEBUG)
3478 set_opt(sb, DEBUG);
3479 if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
3480 set_opt(sb, GRPID);
3481 if (def_mount_opts & EXT4_DEFM_UID16)
3482 set_opt(sb, NO_UID32);
3483 /* xattr user namespace & acls are now defaulted on */
3484 set_opt(sb, XATTR_USER);
3485 #ifdef CONFIG_EXT4_FS_POSIX_ACL
3486 set_opt(sb, POSIX_ACL);
3487 #endif
3488 /* don't forget to enable journal_csum when metadata_csum is enabled. */
3489 if (ext4_has_metadata_csum(sb))
3490 set_opt(sb, JOURNAL_CHECKSUM);
3491
3492 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
3493 set_opt(sb, JOURNAL_DATA);
3494 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
3495 set_opt(sb, ORDERED_DATA);
3496 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
3497 set_opt(sb, WRITEBACK_DATA);
3498
3499 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC)
3500 set_opt(sb, ERRORS_PANIC);
3501 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE)
3502 set_opt(sb, ERRORS_CONT);
3503 else
3504 set_opt(sb, ERRORS_RO);
3505 /* block_validity enabled by default; disable with noblock_validity */
3506 set_opt(sb, BLOCK_VALIDITY);
3507 if (def_mount_opts & EXT4_DEFM_DISCARD)
3508 set_opt(sb, DISCARD);
3509
3510 sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid));
3511 sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid));
3512 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
3513 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
3514 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
3515
3516 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
3517 set_opt(sb, BARRIER);
3518
3519 /*
3520 * enable delayed allocation by default
3521 * Use -o nodelalloc to turn it off
3522 */
3523 if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) &&
3524 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
3525 set_opt(sb, DELALLOC);
3526
3527 /*
3528 * set default s_li_wait_mult for lazyinit, for the case there is
3529 * no mount option specified.
3530 */
3531 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
3532
3533 if (sbi->s_es->s_mount_opts[0]) {
3534 char *s_mount_opts = kstrndup(sbi->s_es->s_mount_opts,
3535 sizeof(sbi->s_es->s_mount_opts),
3536 GFP_KERNEL);
3537 if (!s_mount_opts)
3538 goto failed_mount;
3539 if (!parse_options(s_mount_opts, sb, &journal_devnum,
3540 &journal_ioprio, 0)) {
3541 ext4_msg(sb, KERN_WARNING,
3542 "failed to parse options in superblock: %s",
3543 s_mount_opts);
3544 }
3545 kfree(s_mount_opts);
3546 }
3547 sbi->s_def_mount_opt = sbi->s_mount_opt;
3548 if (!parse_options((char *) data, sb, &journal_devnum,
3549 &journal_ioprio, 0))
3550 goto failed_mount;
3551
3552 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
3553 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting "
3554 "with data=journal disables delayed "
3555 "allocation and O_DIRECT support!\n");
3556 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
3557 ext4_msg(sb, KERN_ERR, "can't mount with "
3558 "both data=journal and delalloc");
3559 goto failed_mount;
3560 }
3561 if (test_opt(sb, DIOREAD_NOLOCK)) {
3562 ext4_msg(sb, KERN_ERR, "can't mount with "
3563 "both data=journal and dioread_nolock");
3564 goto failed_mount;
3565 }
3566 if (test_opt(sb, DAX)) {
3567 ext4_msg(sb, KERN_ERR, "can't mount with "
3568 "both data=journal and dax");
3569 goto failed_mount;
3570 }
3571 if (ext4_has_feature_encrypt(sb)) {
3572 ext4_msg(sb, KERN_WARNING,
3573 "encrypted files will use data=ordered "
3574 "instead of data journaling mode");
3575 }
3576 if (test_opt(sb, DELALLOC))
3577 clear_opt(sb, DELALLOC);
3578 } else {
3579 sb->s_iflags |= SB_I_CGROUPWB;
3580 }
3581
3582 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
3583 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
3584
3585 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
3586 (ext4_has_compat_features(sb) ||
3587 ext4_has_ro_compat_features(sb) ||
3588 ext4_has_incompat_features(sb)))
3589 ext4_msg(sb, KERN_WARNING,
3590 "feature flags set on rev 0 fs, "
3591 "running e2fsck is recommended");
3592
3593 if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) {
3594 set_opt2(sb, HURD_COMPAT);
3595 if (ext4_has_feature_64bit(sb)) {
3596 ext4_msg(sb, KERN_ERR,
3597 "The Hurd can't support 64-bit file systems");
3598 goto failed_mount;
3599 }
3600 }
3601
3602 if (IS_EXT2_SB(sb)) {
3603 if (ext2_feature_set_ok(sb))
3604 ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
3605 "using the ext4 subsystem");
3606 else {
3607 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
3608 "to feature incompatibilities");
3609 goto failed_mount;
3610 }
3611 }
3612
3613 if (IS_EXT3_SB(sb)) {
3614 if (ext3_feature_set_ok(sb))
3615 ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
3616 "using the ext4 subsystem");
3617 else {
3618 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
3619 "to feature incompatibilities");
3620 goto failed_mount;
3621 }
3622 }
3623
3624 /*
3625 * Check feature flags regardless of the revision level, since we
3626 * previously didn't change the revision level when setting the flags,
3627 * so there is a chance incompat flags are set on a rev 0 filesystem.
3628 */
3629 if (!ext4_feature_set_ok(sb, (sb->s_flags & MS_RDONLY)))
3630 goto failed_mount;
3631
3632 blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
3633 if (blocksize < EXT4_MIN_BLOCK_SIZE ||
3634 blocksize > EXT4_MAX_BLOCK_SIZE) {
3635 ext4_msg(sb, KERN_ERR,
3636 "Unsupported filesystem blocksize %d (%d log_block_size)",
3637 blocksize, le32_to_cpu(es->s_log_block_size));
3638 goto failed_mount;
3639 }
3640 if (le32_to_cpu(es->s_log_block_size) >
3641 (EXT4_MAX_BLOCK_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
3642 ext4_msg(sb, KERN_ERR,
3643 "Invalid log block size: %u",
3644 le32_to_cpu(es->s_log_block_size));
3645 goto failed_mount;
3646 }
3647
3648 if (le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) > (blocksize / 4)) {
3649 ext4_msg(sb, KERN_ERR,
3650 "Number of reserved GDT blocks insanely large: %d",
3651 le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks));
3652 goto failed_mount;
3653 }
3654
3655 if (sbi->s_mount_opt & EXT4_MOUNT_DAX) {
3656 err = bdev_dax_supported(sb, blocksize);
3657 if (err)
3658 goto failed_mount;
3659 }
3660
3661 if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) {
3662 ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d",
3663 es->s_encryption_level);
3664 goto failed_mount;
3665 }
3666
3667 if (sb->s_blocksize != blocksize) {
3668 /* Validate the filesystem blocksize */
3669 if (!sb_set_blocksize(sb, blocksize)) {
3670 ext4_msg(sb, KERN_ERR, "bad block size %d",
3671 blocksize);
3672 goto failed_mount;
3673 }
3674
3675 brelse(bh);
3676 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3677 offset = do_div(logical_sb_block, blocksize);
3678 bh = sb_bread_unmovable(sb, logical_sb_block);
3679 if (!bh) {
3680 ext4_msg(sb, KERN_ERR,
3681 "Can't read superblock on 2nd try");
3682 goto failed_mount;
3683 }
3684 es = (struct ext4_super_block *)(bh->b_data + offset);
3685 sbi->s_es = es;
3686 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
3687 ext4_msg(sb, KERN_ERR,
3688 "Magic mismatch, very weird!");
3689 goto failed_mount;
3690 }
3691 }
3692
3693 has_huge_files = ext4_has_feature_huge_file(sb);
3694 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
3695 has_huge_files);
3696 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
3697
3698 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
3699 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
3700 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
3701 } else {
3702 sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
3703 sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
3704 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
3705 (!is_power_of_2(sbi->s_inode_size)) ||
3706 (sbi->s_inode_size > blocksize)) {
3707 ext4_msg(sb, KERN_ERR,
3708 "unsupported inode size: %d",
3709 sbi->s_inode_size);
3710 goto failed_mount;
3711 }
3712 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE)
3713 sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2);
3714 }
3715
3716 sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
3717 if (ext4_has_feature_64bit(sb)) {
3718 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
3719 sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
3720 !is_power_of_2(sbi->s_desc_size)) {
3721 ext4_msg(sb, KERN_ERR,
3722 "unsupported descriptor size %lu",
3723 sbi->s_desc_size);
3724 goto failed_mount;
3725 }
3726 } else
3727 sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
3728
3729 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
3730 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
3731
3732 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb);
3733 if (sbi->s_inodes_per_block == 0)
3734 goto cantfind_ext4;
3735 if (sbi->s_inodes_per_group < sbi->s_inodes_per_block ||
3736 sbi->s_inodes_per_group > blocksize * 8) {
3737 ext4_msg(sb, KERN_ERR, "invalid inodes per group: %lu\n",
3738 sbi->s_blocks_per_group);
3739 goto failed_mount;
3740 }
3741 sbi->s_itb_per_group = sbi->s_inodes_per_group /
3742 sbi->s_inodes_per_block;
3743 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb);
3744 sbi->s_sbh = bh;
3745 sbi->s_mount_state = le16_to_cpu(es->s_state);
3746 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
3747 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
3748
3749 for (i = 0; i < 4; i++)
3750 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
3751 sbi->s_def_hash_version = es->s_def_hash_version;
3752 if (ext4_has_feature_dir_index(sb)) {
3753 i = le32_to_cpu(es->s_flags);
3754 if (i & EXT2_FLAGS_UNSIGNED_HASH)
3755 sbi->s_hash_unsigned = 3;
3756 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
3757 #ifdef __CHAR_UNSIGNED__
3758 if (!(sb->s_flags & MS_RDONLY))
3759 es->s_flags |=
3760 cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
3761 sbi->s_hash_unsigned = 3;
3762 #else
3763 if (!(sb->s_flags & MS_RDONLY))
3764 es->s_flags |=
3765 cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
3766 #endif
3767 }
3768 }
3769
3770 /* Handle clustersize */
3771 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size);
3772 has_bigalloc = ext4_has_feature_bigalloc(sb);
3773 if (has_bigalloc) {
3774 if (clustersize < blocksize) {
3775 ext4_msg(sb, KERN_ERR,
3776 "cluster size (%d) smaller than "
3777 "block size (%d)", clustersize, blocksize);
3778 goto failed_mount;
3779 }
3780 if (le32_to_cpu(es->s_log_cluster_size) >
3781 (EXT4_MAX_CLUSTER_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
3782 ext4_msg(sb, KERN_ERR,
3783 "Invalid log cluster size: %u",
3784 le32_to_cpu(es->s_log_cluster_size));
3785 goto failed_mount;
3786 }
3787 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) -
3788 le32_to_cpu(es->s_log_block_size);
3789 sbi->s_clusters_per_group =
3790 le32_to_cpu(es->s_clusters_per_group);
3791 if (sbi->s_clusters_per_group > blocksize * 8) {
3792 ext4_msg(sb, KERN_ERR,
3793 "#clusters per group too big: %lu",
3794 sbi->s_clusters_per_group);
3795 goto failed_mount;
3796 }
3797 if (sbi->s_blocks_per_group !=
3798 (sbi->s_clusters_per_group * (clustersize / blocksize))) {
3799 ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and "
3800 "clusters per group (%lu) inconsistent",
3801 sbi->s_blocks_per_group,
3802 sbi->s_clusters_per_group);
3803 goto failed_mount;
3804 }
3805 } else {
3806 if (clustersize != blocksize) {
3807 ext4_warning(sb, "fragment/cluster size (%d) != "
3808 "block size (%d)", clustersize,
3809 blocksize);
3810 clustersize = blocksize;
3811 }
3812 if (sbi->s_blocks_per_group > blocksize * 8) {
3813 ext4_msg(sb, KERN_ERR,
3814 "#blocks per group too big: %lu",
3815 sbi->s_blocks_per_group);
3816 goto failed_mount;
3817 }
3818 sbi->s_clusters_per_group = sbi->s_blocks_per_group;
3819 sbi->s_cluster_bits = 0;
3820 }
3821 sbi->s_cluster_ratio = clustersize / blocksize;
3822
3823 /* Do we have standard group size of clustersize * 8 blocks ? */
3824 if (sbi->s_blocks_per_group == clustersize << 3)
3825 set_opt2(sb, STD_GROUP_SIZE);
3826
3827 /*
3828 * Test whether we have more sectors than will fit in sector_t,
3829 * and whether the max offset is addressable by the page cache.
3830 */
3831 err = generic_check_addressable(sb->s_blocksize_bits,
3832 ext4_blocks_count(es));
3833 if (err) {
3834 ext4_msg(sb, KERN_ERR, "filesystem"
3835 " too large to mount safely on this system");
3836 if (sizeof(sector_t) < 8)
3837 ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled");
3838 goto failed_mount;
3839 }
3840
3841 if (EXT4_BLOCKS_PER_GROUP(sb) == 0)
3842 goto cantfind_ext4;
3843
3844 /* check blocks count against device size */
3845 blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
3846 if (blocks_count && ext4_blocks_count(es) > blocks_count) {
3847 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
3848 "exceeds size of device (%llu blocks)",
3849 ext4_blocks_count(es), blocks_count);
3850 goto failed_mount;
3851 }
3852
3853 /*
3854 * It makes no sense for the first data block to be beyond the end
3855 * of the filesystem.
3856 */
3857 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
3858 ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
3859 "block %u is beyond end of filesystem (%llu)",
3860 le32_to_cpu(es->s_first_data_block),
3861 ext4_blocks_count(es));
3862 goto failed_mount;
3863 }
3864 blocks_count = (ext4_blocks_count(es) -
3865 le32_to_cpu(es->s_first_data_block) +
3866 EXT4_BLOCKS_PER_GROUP(sb) - 1);
3867 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
3868 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
3869 ext4_msg(sb, KERN_WARNING, "groups count too large: %u "
3870 "(block count %llu, first data block %u, "
3871 "blocks per group %lu)", sbi->s_groups_count,
3872 ext4_blocks_count(es),
3873 le32_to_cpu(es->s_first_data_block),
3874 EXT4_BLOCKS_PER_GROUP(sb));
3875 goto failed_mount;
3876 }
3877 sbi->s_groups_count = blocks_count;
3878 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
3879 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
3880 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
3881 EXT4_DESC_PER_BLOCK(sb);
3882 if (ext4_has_feature_meta_bg(sb)) {
3883 if (le32_to_cpu(es->s_first_meta_bg) > db_count) {
3884 ext4_msg(sb, KERN_WARNING,
3885 "first meta block group too large: %u "
3886 "(group descriptor block count %u)",
3887 le32_to_cpu(es->s_first_meta_bg), db_count);
3888 goto failed_mount;
3889 }
3890 }
3891 sbi->s_group_desc = kvmalloc(db_count *
3892 sizeof(struct buffer_head *),
3893 GFP_KERNEL);
3894 if (sbi->s_group_desc == NULL) {
3895 ext4_msg(sb, KERN_ERR, "not enough memory");
3896 ret = -ENOMEM;
3897 goto failed_mount;
3898 }
3899
3900 bgl_lock_init(sbi->s_blockgroup_lock);
3901
3902 /* Pre-read the descriptors into the buffer cache */
3903 for (i = 0; i < db_count; i++) {
3904 block = descriptor_loc(sb, logical_sb_block, i);
3905 sb_breadahead(sb, block);
3906 }
3907
3908 for (i = 0; i < db_count; i++) {
3909 block = descriptor_loc(sb, logical_sb_block, i);
3910 sbi->s_group_desc[i] = sb_bread_unmovable(sb, block);
3911 if (!sbi->s_group_desc[i]) {
3912 ext4_msg(sb, KERN_ERR,
3913 "can't read group descriptor %d", i);
3914 db_count = i;
3915 goto failed_mount2;
3916 }
3917 }
3918 if (!ext4_check_descriptors(sb, logical_sb_block, &first_not_zeroed)) {
3919 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
3920 ret = -EFSCORRUPTED;
3921 goto failed_mount2;
3922 }
3923
3924 sbi->s_gdb_count = db_count;
3925 get_random_bytes(&sbi->s_next_generation, sizeof(u32));
3926 spin_lock_init(&sbi->s_next_gen_lock);
3927
3928 setup_timer(&sbi->s_err_report, print_daily_error_info,
3929 (unsigned long) sb);
3930
3931 /* Register extent status tree shrinker */
3932 if (ext4_es_register_shrinker(sbi))
3933 goto failed_mount3;
3934
3935 sbi->s_stripe = ext4_get_stripe_size(sbi);
3936 sbi->s_extent_max_zeroout_kb = 32;
3937
3938 /*
3939 * set up enough so that it can read an inode
3940 */
3941 sb->s_op = &ext4_sops;
3942 sb->s_export_op = &ext4_export_ops;
3943 sb->s_xattr = ext4_xattr_handlers;
3944 sb->s_cop = &ext4_cryptops;
3945 #ifdef CONFIG_QUOTA
3946 sb->dq_op = &ext4_quota_operations;
3947 if (ext4_has_feature_quota(sb))
3948 sb->s_qcop = &dquot_quotactl_sysfile_ops;
3949 else
3950 sb->s_qcop = &ext4_qctl_operations;
3951 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
3952 #endif
3953 memcpy(sb->s_uuid, es->s_uuid, sizeof(es->s_uuid));
3954
3955 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
3956 mutex_init(&sbi->s_orphan_lock);
3957
3958 sb->s_root = NULL;
3959
3960 needs_recovery = (es->s_last_orphan != 0 ||
3961 ext4_has_feature_journal_needs_recovery(sb));
3962
3963 if (ext4_has_feature_mmp(sb) && !(sb->s_flags & MS_RDONLY))
3964 if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block)))
3965 goto failed_mount3a;
3966
3967 /*
3968 * The first inode we look at is the journal inode. Don't try
3969 * root first: it may be modified in the journal!
3970 */
3971 if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) {
3972 err = ext4_load_journal(sb, es, journal_devnum);
3973 if (err)
3974 goto failed_mount3a;
3975 } else if (test_opt(sb, NOLOAD) && !(sb->s_flags & MS_RDONLY) &&
3976 ext4_has_feature_journal_needs_recovery(sb)) {
3977 ext4_msg(sb, KERN_ERR, "required journal recovery "
3978 "suppressed and not mounted read-only");
3979 goto failed_mount_wq;
3980 } else {
3981 /* Nojournal mode, all journal mount options are illegal */
3982 if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) {
3983 ext4_msg(sb, KERN_ERR, "can't mount with "
3984 "journal_checksum, fs mounted w/o journal");
3985 goto failed_mount_wq;
3986 }
3987 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
3988 ext4_msg(sb, KERN_ERR, "can't mount with "
3989 "journal_async_commit, fs mounted w/o journal");
3990 goto failed_mount_wq;
3991 }
3992 if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) {
3993 ext4_msg(sb, KERN_ERR, "can't mount with "
3994 "commit=%lu, fs mounted w/o journal",
3995 sbi->s_commit_interval / HZ);
3996 goto failed_mount_wq;
3997 }
3998 if (EXT4_MOUNT_DATA_FLAGS &
3999 (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) {
4000 ext4_msg(sb, KERN_ERR, "can't mount with "
4001 "data=, fs mounted w/o journal");
4002 goto failed_mount_wq;
4003 }
4004 sbi->s_def_mount_opt &= EXT4_MOUNT_JOURNAL_CHECKSUM;
4005 clear_opt(sb, JOURNAL_CHECKSUM);
4006 clear_opt(sb, DATA_FLAGS);
4007 sbi->s_journal = NULL;
4008 needs_recovery = 0;
4009 goto no_journal;
4010 }
4011
4012 if (ext4_has_feature_64bit(sb) &&
4013 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
4014 JBD2_FEATURE_INCOMPAT_64BIT)) {
4015 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
4016 goto failed_mount_wq;
4017 }
4018
4019 if (!set_journal_csum_feature_set(sb)) {
4020 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum "
4021 "feature set");
4022 goto failed_mount_wq;
4023 }
4024
4025 /* We have now updated the journal if required, so we can
4026 * validate the data journaling mode. */
4027 switch (test_opt(sb, DATA_FLAGS)) {
4028 case 0:
4029 /* No mode set, assume a default based on the journal
4030 * capabilities: ORDERED_DATA if the journal can
4031 * cope, else JOURNAL_DATA
4032 */
4033 if (jbd2_journal_check_available_features
4034 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE))
4035 set_opt(sb, ORDERED_DATA);
4036 else
4037 set_opt(sb, JOURNAL_DATA);
4038 break;
4039
4040 case EXT4_MOUNT_ORDERED_DATA:
4041 case EXT4_MOUNT_WRITEBACK_DATA:
4042 if (!jbd2_journal_check_available_features
4043 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4044 ext4_msg(sb, KERN_ERR, "Journal does not support "
4045 "requested data journaling mode");
4046 goto failed_mount_wq;
4047 }
4048 default:
4049 break;
4050 }
4051
4052 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA &&
4053 test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4054 ext4_msg(sb, KERN_ERR, "can't mount with "
4055 "journal_async_commit in data=ordered mode");
4056 goto failed_mount_wq;
4057 }
4058
4059 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
4060
4061 sbi->s_journal->j_commit_callback = ext4_journal_commit_callback;
4062
4063 no_journal:
4064 sbi->s_mb_cache = ext4_xattr_create_cache();
4065 if (!sbi->s_mb_cache) {
4066 ext4_msg(sb, KERN_ERR, "Failed to create an mb_cache");
4067 goto failed_mount_wq;
4068 }
4069
4070 if ((DUMMY_ENCRYPTION_ENABLED(sbi) || ext4_has_feature_encrypt(sb)) &&
4071 (blocksize != PAGE_SIZE)) {
4072 ext4_msg(sb, KERN_ERR,
4073 "Unsupported blocksize for fs encryption");
4074 goto failed_mount_wq;
4075 }
4076
4077 if (DUMMY_ENCRYPTION_ENABLED(sbi) && !(sb->s_flags & MS_RDONLY) &&
4078 !ext4_has_feature_encrypt(sb)) {
4079 ext4_set_feature_encrypt(sb);
4080 ext4_commit_super(sb, 1);
4081 }
4082
4083 /*
4084 * Get the # of file system overhead blocks from the
4085 * superblock if present.
4086 */
4087 if (es->s_overhead_clusters)
4088 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters);
4089 else {
4090 err = ext4_calculate_overhead(sb);
4091 if (err)
4092 goto failed_mount_wq;
4093 }
4094
4095 /*
4096 * The maximum number of concurrent works can be high and
4097 * concurrency isn't really necessary. Limit it to 1.
4098 */
4099 EXT4_SB(sb)->rsv_conversion_wq =
4100 alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
4101 if (!EXT4_SB(sb)->rsv_conversion_wq) {
4102 printk(KERN_ERR "EXT4-fs: failed to create workqueue\n");
4103 ret = -ENOMEM;
4104 goto failed_mount4;
4105 }
4106
4107 /*
4108 * The jbd2_journal_load will have done any necessary log recovery,
4109 * so we can safely mount the rest of the filesystem now.
4110 */
4111
4112 root = ext4_iget(sb, EXT4_ROOT_INO);
4113 if (IS_ERR(root)) {
4114 ext4_msg(sb, KERN_ERR, "get root inode failed");
4115 ret = PTR_ERR(root);
4116 root = NULL;
4117 goto failed_mount4;
4118 }
4119 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
4120 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
4121 iput(root);
4122 goto failed_mount4;
4123 }
4124 sb->s_root = d_make_root(root);
4125 if (!sb->s_root) {
4126 ext4_msg(sb, KERN_ERR, "get root dentry failed");
4127 ret = -ENOMEM;
4128 goto failed_mount4;
4129 }
4130
4131 if (ext4_setup_super(sb, es, sb->s_flags & MS_RDONLY))
4132 sb->s_flags |= MS_RDONLY;
4133
4134 /* determine the minimum size of new large inodes, if present */
4135 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE &&
4136 sbi->s_want_extra_isize == 0) {
4137 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
4138 EXT4_GOOD_OLD_INODE_SIZE;
4139 if (ext4_has_feature_extra_isize(sb)) {
4140 if (sbi->s_want_extra_isize <
4141 le16_to_cpu(es->s_want_extra_isize))
4142 sbi->s_want_extra_isize =
4143 le16_to_cpu(es->s_want_extra_isize);
4144 if (sbi->s_want_extra_isize <
4145 le16_to_cpu(es->s_min_extra_isize))
4146 sbi->s_want_extra_isize =
4147 le16_to_cpu(es->s_min_extra_isize);
4148 }
4149 }
4150 /* Check if enough inode space is available */
4151 if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize >
4152 sbi->s_inode_size) {
4153 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
4154 EXT4_GOOD_OLD_INODE_SIZE;
4155 ext4_msg(sb, KERN_INFO, "required extra inode space not"
4156 "available");
4157 }
4158
4159 ext4_set_resv_clusters(sb);
4160
4161 err = ext4_setup_system_zone(sb);
4162 if (err) {
4163 ext4_msg(sb, KERN_ERR, "failed to initialize system "
4164 "zone (%d)", err);
4165 goto failed_mount4a;
4166 }
4167
4168 ext4_ext_init(sb);
4169 err = ext4_mb_init(sb);
4170 if (err) {
4171 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
4172 err);
4173 goto failed_mount5;
4174 }
4175
4176 block = ext4_count_free_clusters(sb);
4177 ext4_free_blocks_count_set(sbi->s_es,
4178 EXT4_C2B(sbi, block));
4179 err = percpu_counter_init(&sbi->s_freeclusters_counter, block,
4180 GFP_KERNEL);
4181 if (!err) {
4182 unsigned long freei = ext4_count_free_inodes(sb);
4183 sbi->s_es->s_free_inodes_count = cpu_to_le32(freei);
4184 err = percpu_counter_init(&sbi->s_freeinodes_counter, freei,
4185 GFP_KERNEL);
4186 }
4187 if (!err)
4188 err = percpu_counter_init(&sbi->s_dirs_counter,
4189 ext4_count_dirs(sb), GFP_KERNEL);
4190 if (!err)
4191 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0,
4192 GFP_KERNEL);
4193 if (!err)
4194 err = percpu_init_rwsem(&sbi->s_journal_flag_rwsem);
4195
4196 if (err) {
4197 ext4_msg(sb, KERN_ERR, "insufficient memory");
4198 goto failed_mount6;
4199 }
4200
4201 if (ext4_has_feature_flex_bg(sb))
4202 if (!ext4_fill_flex_info(sb)) {
4203 ext4_msg(sb, KERN_ERR,
4204 "unable to initialize "
4205 "flex_bg meta info!");
4206 goto failed_mount6;
4207 }
4208
4209 err = ext4_register_li_request(sb, first_not_zeroed);
4210 if (err)
4211 goto failed_mount6;
4212
4213 err = ext4_register_sysfs(sb);
4214 if (err)
4215 goto failed_mount7;
4216
4217 #ifdef CONFIG_QUOTA
4218 /* Enable quota usage during mount. */
4219 if (ext4_has_feature_quota(sb) && !(sb->s_flags & MS_RDONLY)) {
4220 err = ext4_enable_quotas(sb);
4221 if (err)
4222 goto failed_mount8;
4223 }
4224 #endif /* CONFIG_QUOTA */
4225
4226 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
4227 ext4_orphan_cleanup(sb, es);
4228 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
4229 if (needs_recovery) {
4230 ext4_msg(sb, KERN_INFO, "recovery complete");
4231 ext4_mark_recovery_complete(sb, es);
4232 }
4233 if (EXT4_SB(sb)->s_journal) {
4234 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
4235 descr = " journalled data mode";
4236 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
4237 descr = " ordered data mode";
4238 else
4239 descr = " writeback data mode";
4240 } else
4241 descr = "out journal";
4242
4243 if (test_opt(sb, DISCARD)) {
4244 struct request_queue *q = bdev_get_queue(sb->s_bdev);
4245 if (!blk_queue_discard(q))
4246 ext4_msg(sb, KERN_WARNING,
4247 "mounting with \"discard\" option, but "
4248 "the device does not support discard");
4249 }
4250
4251 if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount"))
4252 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. "
4253 "Opts: %.*s%s%s", descr,
4254 (int) sizeof(sbi->s_es->s_mount_opts),
4255 sbi->s_es->s_mount_opts,
4256 *sbi->s_es->s_mount_opts ? "; " : "", orig_data);
4257
4258 if (es->s_error_count)
4259 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
4260
4261 /* Enable message ratelimiting. Default is 10 messages per 5 secs. */
4262 ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10);
4263 ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10);
4264 ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10);
4265
4266 kfree(orig_data);
4267 return 0;
4268
4269 cantfind_ext4:
4270 if (!silent)
4271 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
4272 goto failed_mount;
4273
4274 #ifdef CONFIG_QUOTA
4275 failed_mount8:
4276 ext4_unregister_sysfs(sb);
4277 #endif
4278 failed_mount7:
4279 ext4_unregister_li_request(sb);
4280 failed_mount6:
4281 ext4_mb_release(sb);
4282 if (sbi->s_flex_groups)
4283 kvfree(sbi->s_flex_groups);
4284 percpu_counter_destroy(&sbi->s_freeclusters_counter);
4285 percpu_counter_destroy(&sbi->s_freeinodes_counter);
4286 percpu_counter_destroy(&sbi->s_dirs_counter);
4287 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
4288 failed_mount5:
4289 ext4_ext_release(sb);
4290 ext4_release_system_zone(sb);
4291 failed_mount4a:
4292 dput(sb->s_root);
4293 sb->s_root = NULL;
4294 failed_mount4:
4295 ext4_msg(sb, KERN_ERR, "mount failed");
4296 if (EXT4_SB(sb)->rsv_conversion_wq)
4297 destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq);
4298 failed_mount_wq:
4299 if (sbi->s_mb_cache) {
4300 ext4_xattr_destroy_cache(sbi->s_mb_cache);
4301 sbi->s_mb_cache = NULL;
4302 }
4303 if (sbi->s_journal) {
4304 jbd2_journal_destroy(sbi->s_journal);
4305 sbi->s_journal = NULL;
4306 }
4307 failed_mount3a:
4308 ext4_es_unregister_shrinker(sbi);
4309 failed_mount3:
4310 del_timer_sync(&sbi->s_err_report);
4311 if (sbi->s_mmp_tsk)
4312 kthread_stop(sbi->s_mmp_tsk);
4313 failed_mount2:
4314 for (i = 0; i < db_count; i++)
4315 brelse(sbi->s_group_desc[i]);
4316 kvfree(sbi->s_group_desc);
4317 failed_mount:
4318 if (sbi->s_chksum_driver)
4319 crypto_free_shash(sbi->s_chksum_driver);
4320 #ifdef CONFIG_QUOTA
4321 for (i = 0; i < EXT4_MAXQUOTAS; i++)
4322 kfree(sbi->s_qf_names[i]);
4323 #endif
4324 ext4_blkdev_remove(sbi);
4325 brelse(bh);
4326 out_fail:
4327 sb->s_fs_info = NULL;
4328 kfree(sbi->s_blockgroup_lock);
4329 out_free_base:
4330 kfree(sbi);
4331 kfree(orig_data);
4332 return err ? err : ret;
4333 }
4334
4335 /*
4336 * Setup any per-fs journal parameters now. We'll do this both on
4337 * initial mount, once the journal has been initialised but before we've
4338 * done any recovery; and again on any subsequent remount.
4339 */
4340 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
4341 {
4342 struct ext4_sb_info *sbi = EXT4_SB(sb);
4343
4344 journal->j_commit_interval = sbi->s_commit_interval;
4345 journal->j_min_batch_time = sbi->s_min_batch_time;
4346 journal->j_max_batch_time = sbi->s_max_batch_time;
4347
4348 write_lock(&journal->j_state_lock);
4349 if (test_opt(sb, BARRIER))
4350 journal->j_flags |= JBD2_BARRIER;
4351 else
4352 journal->j_flags &= ~JBD2_BARRIER;
4353 if (test_opt(sb, DATA_ERR_ABORT))
4354 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
4355 else
4356 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
4357 write_unlock(&journal->j_state_lock);
4358 }
4359
4360 static struct inode *ext4_get_journal_inode(struct super_block *sb,
4361 unsigned int journal_inum)
4362 {
4363 struct inode *journal_inode;
4364
4365 /*
4366 * Test for the existence of a valid inode on disk. Bad things
4367 * happen if we iget() an unused inode, as the subsequent iput()
4368 * will try to delete it.
4369 */
4370 journal_inode = ext4_iget(sb, journal_inum);
4371 if (IS_ERR(journal_inode)) {
4372 ext4_msg(sb, KERN_ERR, "no journal found");
4373 return NULL;
4374 }
4375 if (!journal_inode->i_nlink) {
4376 make_bad_inode(journal_inode);
4377 iput(journal_inode);
4378 ext4_msg(sb, KERN_ERR, "journal inode is deleted");
4379 return NULL;
4380 }
4381
4382 jbd_debug(2, "Journal inode found at %p: %lld bytes\n",
4383 journal_inode, journal_inode->i_size);
4384 if (!S_ISREG(journal_inode->i_mode)) {
4385 ext4_msg(sb, KERN_ERR, "invalid journal inode");
4386 iput(journal_inode);
4387 return NULL;
4388 }
4389 return journal_inode;
4390 }
4391
4392 static journal_t *ext4_get_journal(struct super_block *sb,
4393 unsigned int journal_inum)
4394 {
4395 struct inode *journal_inode;
4396 journal_t *journal;
4397
4398 BUG_ON(!ext4_has_feature_journal(sb));
4399
4400 journal_inode = ext4_get_journal_inode(sb, journal_inum);
4401 if (!journal_inode)
4402 return NULL;
4403
4404 journal = jbd2_journal_init_inode(journal_inode);
4405 if (!journal) {
4406 ext4_msg(sb, KERN_ERR, "Could not load journal inode");
4407 iput(journal_inode);
4408 return NULL;
4409 }
4410 journal->j_private = sb;
4411 ext4_init_journal_params(sb, journal);
4412 return journal;
4413 }
4414
4415 static journal_t *ext4_get_dev_journal(struct super_block *sb,
4416 dev_t j_dev)
4417 {
4418 struct buffer_head *bh;
4419 journal_t *journal;
4420 ext4_fsblk_t start;
4421 ext4_fsblk_t len;
4422 int hblock, blocksize;
4423 ext4_fsblk_t sb_block;
4424 unsigned long offset;
4425 struct ext4_super_block *es;
4426 struct block_device *bdev;
4427
4428 BUG_ON(!ext4_has_feature_journal(sb));
4429
4430 bdev = ext4_blkdev_get(j_dev, sb);
4431 if (bdev == NULL)
4432 return NULL;
4433
4434 blocksize = sb->s_blocksize;
4435 hblock = bdev_logical_block_size(bdev);
4436 if (blocksize < hblock) {
4437 ext4_msg(sb, KERN_ERR,
4438 "blocksize too small for journal device");
4439 goto out_bdev;
4440 }
4441
4442 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
4443 offset = EXT4_MIN_BLOCK_SIZE % blocksize;
4444 set_blocksize(bdev, blocksize);
4445 if (!(bh = __bread(bdev, sb_block, blocksize))) {
4446 ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
4447 "external journal");
4448 goto out_bdev;
4449 }
4450
4451 es = (struct ext4_super_block *) (bh->b_data + offset);
4452 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
4453 !(le32_to_cpu(es->s_feature_incompat) &
4454 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
4455 ext4_msg(sb, KERN_ERR, "external journal has "
4456 "bad superblock");
4457 brelse(bh);
4458 goto out_bdev;
4459 }
4460
4461 if ((le32_to_cpu(es->s_feature_ro_compat) &
4462 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
4463 es->s_checksum != ext4_superblock_csum(sb, es)) {
4464 ext4_msg(sb, KERN_ERR, "external journal has "
4465 "corrupt superblock");
4466 brelse(bh);
4467 goto out_bdev;
4468 }
4469
4470 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
4471 ext4_msg(sb, KERN_ERR, "journal UUID does not match");
4472 brelse(bh);
4473 goto out_bdev;
4474 }
4475
4476 len = ext4_blocks_count(es);
4477 start = sb_block + 1;
4478 brelse(bh); /* we're done with the superblock */
4479
4480 journal = jbd2_journal_init_dev(bdev, sb->s_bdev,
4481 start, len, blocksize);
4482 if (!journal) {
4483 ext4_msg(sb, KERN_ERR, "failed to create device journal");
4484 goto out_bdev;
4485 }
4486 journal->j_private = sb;
4487 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &journal->j_sb_buffer);
4488 wait_on_buffer(journal->j_sb_buffer);
4489 if (!buffer_uptodate(journal->j_sb_buffer)) {
4490 ext4_msg(sb, KERN_ERR, "I/O error on journal device");
4491 goto out_journal;
4492 }
4493 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
4494 ext4_msg(sb, KERN_ERR, "External journal has more than one "
4495 "user (unsupported) - %d",
4496 be32_to_cpu(journal->j_superblock->s_nr_users));
4497 goto out_journal;
4498 }
4499 EXT4_SB(sb)->journal_bdev = bdev;
4500 ext4_init_journal_params(sb, journal);
4501 return journal;
4502
4503 out_journal:
4504 jbd2_journal_destroy(journal);
4505 out_bdev:
4506 ext4_blkdev_put(bdev);
4507 return NULL;
4508 }
4509
4510 static int ext4_load_journal(struct super_block *sb,
4511 struct ext4_super_block *es,
4512 unsigned long journal_devnum)
4513 {
4514 journal_t *journal;
4515 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
4516 dev_t journal_dev;
4517 int err = 0;
4518 int really_read_only;
4519
4520 BUG_ON(!ext4_has_feature_journal(sb));
4521
4522 if (journal_devnum &&
4523 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4524 ext4_msg(sb, KERN_INFO, "external journal device major/minor "
4525 "numbers have changed");
4526 journal_dev = new_decode_dev(journal_devnum);
4527 } else
4528 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
4529
4530 really_read_only = bdev_read_only(sb->s_bdev);
4531
4532 /*
4533 * Are we loading a blank journal or performing recovery after a
4534 * crash? For recovery, we need to check in advance whether we
4535 * can get read-write access to the device.
4536 */
4537 if (ext4_has_feature_journal_needs_recovery(sb)) {
4538 if (sb->s_flags & MS_RDONLY) {
4539 ext4_msg(sb, KERN_INFO, "INFO: recovery "
4540 "required on readonly filesystem");
4541 if (really_read_only) {
4542 ext4_msg(sb, KERN_ERR, "write access "
4543 "unavailable, cannot proceed");
4544 return -EROFS;
4545 }
4546 ext4_msg(sb, KERN_INFO, "write access will "
4547 "be enabled during recovery");
4548 }
4549 }
4550
4551 if (journal_inum && journal_dev) {
4552 ext4_msg(sb, KERN_ERR, "filesystem has both journal "
4553 "and inode journals!");
4554 return -EINVAL;
4555 }
4556
4557 if (journal_inum) {
4558 if (!(journal = ext4_get_journal(sb, journal_inum)))
4559 return -EINVAL;
4560 } else {
4561 if (!(journal = ext4_get_dev_journal(sb, journal_dev)))
4562 return -EINVAL;
4563 }
4564
4565 if (!(journal->j_flags & JBD2_BARRIER))
4566 ext4_msg(sb, KERN_INFO, "barriers disabled");
4567
4568 if (!ext4_has_feature_journal_needs_recovery(sb))
4569 err = jbd2_journal_wipe(journal, !really_read_only);
4570 if (!err) {
4571 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
4572 if (save)
4573 memcpy(save, ((char *) es) +
4574 EXT4_S_ERR_START, EXT4_S_ERR_LEN);
4575 err = jbd2_journal_load(journal);
4576 if (save)
4577 memcpy(((char *) es) + EXT4_S_ERR_START,
4578 save, EXT4_S_ERR_LEN);
4579 kfree(save);
4580 }
4581
4582 if (err) {
4583 ext4_msg(sb, KERN_ERR, "error loading journal");
4584 jbd2_journal_destroy(journal);
4585 return err;
4586 }
4587
4588 EXT4_SB(sb)->s_journal = journal;
4589 ext4_clear_journal_err(sb, es);
4590
4591 if (!really_read_only && journal_devnum &&
4592 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4593 es->s_journal_dev = cpu_to_le32(journal_devnum);
4594
4595 /* Make sure we flush the recovery flag to disk. */
4596 ext4_commit_super(sb, 1);
4597 }
4598
4599 return 0;
4600 }
4601
4602 static int ext4_commit_super(struct super_block *sb, int sync)
4603 {
4604 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
4605 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
4606 int error = 0;
4607
4608 if (!sbh || block_device_ejected(sb))
4609 return error;
4610 /*
4611 * If the file system is mounted read-only, don't update the
4612 * superblock write time. This avoids updating the superblock
4613 * write time when we are mounting the root file system
4614 * read/only but we need to replay the journal; at that point,
4615 * for people who are east of GMT and who make their clock
4616 * tick in localtime for Windows bug-for-bug compatibility,
4617 * the clock is set in the future, and this will cause e2fsck
4618 * to complain and force a full file system check.
4619 */
4620 if (!(sb->s_flags & MS_RDONLY))
4621 es->s_wtime = cpu_to_le32(get_seconds());
4622 if (sb->s_bdev->bd_part)
4623 es->s_kbytes_written =
4624 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written +
4625 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
4626 EXT4_SB(sb)->s_sectors_written_start) >> 1));
4627 else
4628 es->s_kbytes_written =
4629 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written);
4630 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeclusters_counter))
4631 ext4_free_blocks_count_set(es,
4632 EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive(
4633 &EXT4_SB(sb)->s_freeclusters_counter)));
4634 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeinodes_counter))
4635 es->s_free_inodes_count =
4636 cpu_to_le32(percpu_counter_sum_positive(
4637 &EXT4_SB(sb)->s_freeinodes_counter));
4638 BUFFER_TRACE(sbh, "marking dirty");
4639 ext4_superblock_csum_set(sb);
4640 if (sync)
4641 lock_buffer(sbh);
4642 if (buffer_write_io_error(sbh)) {
4643 /*
4644 * Oh, dear. A previous attempt to write the
4645 * superblock failed. This could happen because the
4646 * USB device was yanked out. Or it could happen to
4647 * be a transient write error and maybe the block will
4648 * be remapped. Nothing we can do but to retry the
4649 * write and hope for the best.
4650 */
4651 ext4_msg(sb, KERN_ERR, "previous I/O error to "
4652 "superblock detected");
4653 clear_buffer_write_io_error(sbh);
4654 set_buffer_uptodate(sbh);
4655 }
4656 mark_buffer_dirty(sbh);
4657 if (sync) {
4658 unlock_buffer(sbh);
4659 error = __sync_dirty_buffer(sbh,
4660 REQ_SYNC | (test_opt(sb, BARRIER) ? REQ_FUA : 0));
4661 if (error)
4662 return error;
4663
4664 error = buffer_write_io_error(sbh);
4665 if (error) {
4666 ext4_msg(sb, KERN_ERR, "I/O error while writing "
4667 "superblock");
4668 clear_buffer_write_io_error(sbh);
4669 set_buffer_uptodate(sbh);
4670 }
4671 }
4672 return error;
4673 }
4674
4675 /*
4676 * Have we just finished recovery? If so, and if we are mounting (or
4677 * remounting) the filesystem readonly, then we will end up with a
4678 * consistent fs on disk. Record that fact.
4679 */
4680 static void ext4_mark_recovery_complete(struct super_block *sb,
4681 struct ext4_super_block *es)
4682 {
4683 journal_t *journal = EXT4_SB(sb)->s_journal;
4684
4685 if (!ext4_has_feature_journal(sb)) {
4686 BUG_ON(journal != NULL);
4687 return;
4688 }
4689 jbd2_journal_lock_updates(journal);
4690 if (jbd2_journal_flush(journal) < 0)
4691 goto out;
4692
4693 if (ext4_has_feature_journal_needs_recovery(sb) &&
4694 sb->s_flags & MS_RDONLY) {
4695 ext4_clear_feature_journal_needs_recovery(sb);
4696 ext4_commit_super(sb, 1);
4697 }
4698
4699 out:
4700 jbd2_journal_unlock_updates(journal);
4701 }
4702
4703 /*
4704 * If we are mounting (or read-write remounting) a filesystem whose journal
4705 * has recorded an error from a previous lifetime, move that error to the
4706 * main filesystem now.
4707 */
4708 static void ext4_clear_journal_err(struct super_block *sb,
4709 struct ext4_super_block *es)
4710 {
4711 journal_t *journal;
4712 int j_errno;
4713 const char *errstr;
4714
4715 BUG_ON(!ext4_has_feature_journal(sb));
4716
4717 journal = EXT4_SB(sb)->s_journal;
4718
4719 /*
4720 * Now check for any error status which may have been recorded in the
4721 * journal by a prior ext4_error() or ext4_abort()
4722 */
4723
4724 j_errno = jbd2_journal_errno(journal);
4725 if (j_errno) {
4726 char nbuf[16];
4727
4728 errstr = ext4_decode_error(sb, j_errno, nbuf);
4729 ext4_warning(sb, "Filesystem error recorded "
4730 "from previous mount: %s", errstr);
4731 ext4_warning(sb, "Marking fs in need of filesystem check.");
4732
4733 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
4734 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
4735 ext4_commit_super(sb, 1);
4736
4737 jbd2_journal_clear_err(journal);
4738 jbd2_journal_update_sb_errno(journal);
4739 }
4740 }
4741
4742 /*
4743 * Force the running and committing transactions to commit,
4744 * and wait on the commit.
4745 */
4746 int ext4_force_commit(struct super_block *sb)
4747 {
4748 journal_t *journal;
4749
4750 if (sb->s_flags & MS_RDONLY)
4751 return 0;
4752
4753 journal = EXT4_SB(sb)->s_journal;
4754 return ext4_journal_force_commit(journal);
4755 }
4756
4757 static int ext4_sync_fs(struct super_block *sb, int wait)
4758 {
4759 int ret = 0;
4760 tid_t target;
4761 bool needs_barrier = false;
4762 struct ext4_sb_info *sbi = EXT4_SB(sb);
4763
4764 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
4765 return 0;
4766
4767 trace_ext4_sync_fs(sb, wait);
4768 flush_workqueue(sbi->rsv_conversion_wq);
4769 /*
4770 * Writeback quota in non-journalled quota case - journalled quota has
4771 * no dirty dquots
4772 */
4773 dquot_writeback_dquots(sb, -1);
4774 /*
4775 * Data writeback is possible w/o journal transaction, so barrier must
4776 * being sent at the end of the function. But we can skip it if
4777 * transaction_commit will do it for us.
4778 */
4779 if (sbi->s_journal) {
4780 target = jbd2_get_latest_transaction(sbi->s_journal);
4781 if (wait && sbi->s_journal->j_flags & JBD2_BARRIER &&
4782 !jbd2_trans_will_send_data_barrier(sbi->s_journal, target))
4783 needs_barrier = true;
4784
4785 if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
4786 if (wait)
4787 ret = jbd2_log_wait_commit(sbi->s_journal,
4788 target);
4789 }
4790 } else if (wait && test_opt(sb, BARRIER))
4791 needs_barrier = true;
4792 if (needs_barrier) {
4793 int err;
4794 err = blkdev_issue_flush(sb->s_bdev, GFP_KERNEL, NULL);
4795 if (!ret)
4796 ret = err;
4797 }
4798
4799 return ret;
4800 }
4801
4802 /*
4803 * LVM calls this function before a (read-only) snapshot is created. This
4804 * gives us a chance to flush the journal completely and mark the fs clean.
4805 *
4806 * Note that only this function cannot bring a filesystem to be in a clean
4807 * state independently. It relies on upper layer to stop all data & metadata
4808 * modifications.
4809 */
4810 static int ext4_freeze(struct super_block *sb)
4811 {
4812 int error = 0;
4813 journal_t *journal;
4814
4815 if (sb->s_flags & MS_RDONLY)
4816 return 0;
4817
4818 journal = EXT4_SB(sb)->s_journal;
4819
4820 if (journal) {
4821 /* Now we set up the journal barrier. */
4822 jbd2_journal_lock_updates(journal);
4823
4824 /*
4825 * Don't clear the needs_recovery flag if we failed to
4826 * flush the journal.
4827 */
4828 error = jbd2_journal_flush(journal);
4829 if (error < 0)
4830 goto out;
4831
4832 /* Journal blocked and flushed, clear needs_recovery flag. */
4833 ext4_clear_feature_journal_needs_recovery(sb);
4834 }
4835
4836 error = ext4_commit_super(sb, 1);
4837 out:
4838 if (journal)
4839 /* we rely on upper layer to stop further updates */
4840 jbd2_journal_unlock_updates(journal);
4841 return error;
4842 }
4843
4844 /*
4845 * Called by LVM after the snapshot is done. We need to reset the RECOVER
4846 * flag here, even though the filesystem is not technically dirty yet.
4847 */
4848 static int ext4_unfreeze(struct super_block *sb)
4849 {
4850 if ((sb->s_flags & MS_RDONLY) || ext4_forced_shutdown(EXT4_SB(sb)))
4851 return 0;
4852
4853 if (EXT4_SB(sb)->s_journal) {
4854 /* Reset the needs_recovery flag before the fs is unlocked. */
4855 ext4_set_feature_journal_needs_recovery(sb);
4856 }
4857
4858 ext4_commit_super(sb, 1);
4859 return 0;
4860 }
4861
4862 /*
4863 * Structure to save mount options for ext4_remount's benefit
4864 */
4865 struct ext4_mount_options {
4866 unsigned long s_mount_opt;
4867 unsigned long s_mount_opt2;
4868 kuid_t s_resuid;
4869 kgid_t s_resgid;
4870 unsigned long s_commit_interval;
4871 u32 s_min_batch_time, s_max_batch_time;
4872 #ifdef CONFIG_QUOTA
4873 int s_jquota_fmt;
4874 char *s_qf_names[EXT4_MAXQUOTAS];
4875 #endif
4876 };
4877
4878 static int ext4_remount(struct super_block *sb, int *flags, char *data)
4879 {
4880 struct ext4_super_block *es;
4881 struct ext4_sb_info *sbi = EXT4_SB(sb);
4882 unsigned long old_sb_flags;
4883 struct ext4_mount_options old_opts;
4884 int enable_quota = 0;
4885 ext4_group_t g;
4886 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
4887 int err = 0;
4888 #ifdef CONFIG_QUOTA
4889 int i, j;
4890 #endif
4891 char *orig_data = kstrdup(data, GFP_KERNEL);
4892
4893 /* Store the original options */
4894 old_sb_flags = sb->s_flags;
4895 old_opts.s_mount_opt = sbi->s_mount_opt;
4896 old_opts.s_mount_opt2 = sbi->s_mount_opt2;
4897 old_opts.s_resuid = sbi->s_resuid;
4898 old_opts.s_resgid = sbi->s_resgid;
4899 old_opts.s_commit_interval = sbi->s_commit_interval;
4900 old_opts.s_min_batch_time = sbi->s_min_batch_time;
4901 old_opts.s_max_batch_time = sbi->s_max_batch_time;
4902 #ifdef CONFIG_QUOTA
4903 old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
4904 for (i = 0; i < EXT4_MAXQUOTAS; i++)
4905 if (sbi->s_qf_names[i]) {
4906 old_opts.s_qf_names[i] = kstrdup(sbi->s_qf_names[i],
4907 GFP_KERNEL);
4908 if (!old_opts.s_qf_names[i]) {
4909 for (j = 0; j < i; j++)
4910 kfree(old_opts.s_qf_names[j]);
4911 kfree(orig_data);
4912 return -ENOMEM;
4913 }
4914 } else
4915 old_opts.s_qf_names[i] = NULL;
4916 #endif
4917 if (sbi->s_journal && sbi->s_journal->j_task->io_context)
4918 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio;
4919
4920 if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) {
4921 err = -EINVAL;
4922 goto restore_opts;
4923 }
4924
4925 if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^
4926 test_opt(sb, JOURNAL_CHECKSUM)) {
4927 ext4_msg(sb, KERN_ERR, "changing journal_checksum "
4928 "during remount not supported; ignoring");
4929 sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM;
4930 }
4931
4932 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
4933 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
4934 ext4_msg(sb, KERN_ERR, "can't mount with "
4935 "both data=journal and delalloc");
4936 err = -EINVAL;
4937 goto restore_opts;
4938 }
4939 if (test_opt(sb, DIOREAD_NOLOCK)) {
4940 ext4_msg(sb, KERN_ERR, "can't mount with "
4941 "both data=journal and dioread_nolock");
4942 err = -EINVAL;
4943 goto restore_opts;
4944 }
4945 if (test_opt(sb, DAX)) {
4946 ext4_msg(sb, KERN_ERR, "can't mount with "
4947 "both data=journal and dax");
4948 err = -EINVAL;
4949 goto restore_opts;
4950 }
4951 } else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) {
4952 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4953 ext4_msg(sb, KERN_ERR, "can't mount with "
4954 "journal_async_commit in data=ordered mode");
4955 err = -EINVAL;
4956 goto restore_opts;
4957 }
4958 }
4959
4960 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_DAX) {
4961 ext4_msg(sb, KERN_WARNING, "warning: refusing change of "
4962 "dax flag with busy inodes while remounting");
4963 sbi->s_mount_opt ^= EXT4_MOUNT_DAX;
4964 }
4965
4966 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED)
4967 ext4_abort(sb, "Abort forced by user");
4968
4969 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
4970 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
4971
4972 es = sbi->s_es;
4973
4974 if (sbi->s_journal) {
4975 ext4_init_journal_params(sb, sbi->s_journal);
4976 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
4977 }
4978
4979 if (*flags & MS_LAZYTIME)
4980 sb->s_flags |= MS_LAZYTIME;
4981
4982 if ((*flags & MS_RDONLY) != (sb->s_flags & MS_RDONLY)) {
4983 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) {
4984 err = -EROFS;
4985 goto restore_opts;
4986 }
4987
4988 if (*flags & MS_RDONLY) {
4989 err = sync_filesystem(sb);
4990 if (err < 0)
4991 goto restore_opts;
4992 err = dquot_suspend(sb, -1);
4993 if (err < 0)
4994 goto restore_opts;
4995
4996 /*
4997 * First of all, the unconditional stuff we have to do
4998 * to disable replay of the journal when we next remount
4999 */
5000 sb->s_flags |= MS_RDONLY;
5001
5002 /*
5003 * OK, test if we are remounting a valid rw partition
5004 * readonly, and if so set the rdonly flag and then
5005 * mark the partition as valid again.
5006 */
5007 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
5008 (sbi->s_mount_state & EXT4_VALID_FS))
5009 es->s_state = cpu_to_le16(sbi->s_mount_state);
5010
5011 if (sbi->s_journal)
5012 ext4_mark_recovery_complete(sb, es);
5013 } else {
5014 /* Make sure we can mount this feature set readwrite */
5015 if (ext4_has_feature_readonly(sb) ||
5016 !ext4_feature_set_ok(sb, 0)) {
5017 err = -EROFS;
5018 goto restore_opts;
5019 }
5020 /*
5021 * Make sure the group descriptor checksums
5022 * are sane. If they aren't, refuse to remount r/w.
5023 */
5024 for (g = 0; g < sbi->s_groups_count; g++) {
5025 struct ext4_group_desc *gdp =
5026 ext4_get_group_desc(sb, g, NULL);
5027
5028 if (!ext4_group_desc_csum_verify(sb, g, gdp)) {
5029 ext4_msg(sb, KERN_ERR,
5030 "ext4_remount: Checksum for group %u failed (%u!=%u)",
5031 g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)),
5032 le16_to_cpu(gdp->bg_checksum));
5033 err = -EFSBADCRC;
5034 goto restore_opts;
5035 }
5036 }
5037
5038 /*
5039 * If we have an unprocessed orphan list hanging
5040 * around from a previously readonly bdev mount,
5041 * require a full umount/remount for now.
5042 */
5043 if (es->s_last_orphan) {
5044 ext4_msg(sb, KERN_WARNING, "Couldn't "
5045 "remount RDWR because of unprocessed "
5046 "orphan inode list. Please "
5047 "umount/remount instead");
5048 err = -EINVAL;
5049 goto restore_opts;
5050 }
5051
5052 /*
5053 * Mounting a RDONLY partition read-write, so reread
5054 * and store the current valid flag. (It may have
5055 * been changed by e2fsck since we originally mounted
5056 * the partition.)
5057 */
5058 if (sbi->s_journal)
5059 ext4_clear_journal_err(sb, es);
5060 sbi->s_mount_state = le16_to_cpu(es->s_state);
5061 if (!ext4_setup_super(sb, es, 0))
5062 sb->s_flags &= ~MS_RDONLY;
5063 if (ext4_has_feature_mmp(sb))
5064 if (ext4_multi_mount_protect(sb,
5065 le64_to_cpu(es->s_mmp_block))) {
5066 err = -EROFS;
5067 goto restore_opts;
5068 }
5069 enable_quota = 1;
5070 }
5071 }
5072
5073 /*
5074 * Reinitialize lazy itable initialization thread based on
5075 * current settings
5076 */
5077 if ((sb->s_flags & MS_RDONLY) || !test_opt(sb, INIT_INODE_TABLE))
5078 ext4_unregister_li_request(sb);
5079 else {
5080 ext4_group_t first_not_zeroed;
5081 first_not_zeroed = ext4_has_uninit_itable(sb);
5082 ext4_register_li_request(sb, first_not_zeroed);
5083 }
5084
5085 ext4_setup_system_zone(sb);
5086 if (sbi->s_journal == NULL && !(old_sb_flags & MS_RDONLY))
5087 ext4_commit_super(sb, 1);
5088
5089 #ifdef CONFIG_QUOTA
5090 /* Release old quota file names */
5091 for (i = 0; i < EXT4_MAXQUOTAS; i++)
5092 kfree(old_opts.s_qf_names[i]);
5093 if (enable_quota) {
5094 if (sb_any_quota_suspended(sb))
5095 dquot_resume(sb, -1);
5096 else if (ext4_has_feature_quota(sb)) {
5097 err = ext4_enable_quotas(sb);
5098 if (err)
5099 goto restore_opts;
5100 }
5101 }
5102 #endif
5103
5104 *flags = (*flags & ~MS_LAZYTIME) | (sb->s_flags & MS_LAZYTIME);
5105 ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data);
5106 kfree(orig_data);
5107 return 0;
5108
5109 restore_opts:
5110 sb->s_flags = old_sb_flags;
5111 sbi->s_mount_opt = old_opts.s_mount_opt;
5112 sbi->s_mount_opt2 = old_opts.s_mount_opt2;
5113 sbi->s_resuid = old_opts.s_resuid;
5114 sbi->s_resgid = old_opts.s_resgid;
5115 sbi->s_commit_interval = old_opts.s_commit_interval;
5116 sbi->s_min_batch_time = old_opts.s_min_batch_time;
5117 sbi->s_max_batch_time = old_opts.s_max_batch_time;
5118 #ifdef CONFIG_QUOTA
5119 sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
5120 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
5121 kfree(sbi->s_qf_names[i]);
5122 sbi->s_qf_names[i] = old_opts.s_qf_names[i];
5123 }
5124 #endif
5125 kfree(orig_data);
5126 return err;
5127 }
5128
5129 #ifdef CONFIG_QUOTA
5130 static int ext4_statfs_project(struct super_block *sb,
5131 kprojid_t projid, struct kstatfs *buf)
5132 {
5133 struct kqid qid;
5134 struct dquot *dquot;
5135 u64 limit;
5136 u64 curblock;
5137
5138 qid = make_kqid_projid(projid);
5139 dquot = dqget(sb, qid);
5140 if (IS_ERR(dquot))
5141 return PTR_ERR(dquot);
5142 spin_lock(&dq_data_lock);
5143
5144 limit = (dquot->dq_dqb.dqb_bsoftlimit ?
5145 dquot->dq_dqb.dqb_bsoftlimit :
5146 dquot->dq_dqb.dqb_bhardlimit) >> sb->s_blocksize_bits;
5147 if (limit && buf->f_blocks > limit) {
5148 curblock = dquot->dq_dqb.dqb_curspace >> sb->s_blocksize_bits;
5149 buf->f_blocks = limit;
5150 buf->f_bfree = buf->f_bavail =
5151 (buf->f_blocks > curblock) ?
5152 (buf->f_blocks - curblock) : 0;
5153 }
5154
5155 limit = dquot->dq_dqb.dqb_isoftlimit ?
5156 dquot->dq_dqb.dqb_isoftlimit :
5157 dquot->dq_dqb.dqb_ihardlimit;
5158 if (limit && buf->f_files > limit) {
5159 buf->f_files = limit;
5160 buf->f_ffree =
5161 (buf->f_files > dquot->dq_dqb.dqb_curinodes) ?
5162 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0;
5163 }
5164
5165 spin_unlock(&dq_data_lock);
5166 dqput(dquot);
5167 return 0;
5168 }
5169 #endif
5170
5171 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
5172 {
5173 struct super_block *sb = dentry->d_sb;
5174 struct ext4_sb_info *sbi = EXT4_SB(sb);
5175 struct ext4_super_block *es = sbi->s_es;
5176 ext4_fsblk_t overhead = 0, resv_blocks;
5177 u64 fsid;
5178 s64 bfree;
5179 resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters));
5180
5181 if (!test_opt(sb, MINIX_DF))
5182 overhead = sbi->s_overhead;
5183
5184 buf->f_type = EXT4_SUPER_MAGIC;
5185 buf->f_bsize = sb->s_blocksize;
5186 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead);
5187 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
5188 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
5189 /* prevent underflow in case that few free space is available */
5190 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0));
5191 buf->f_bavail = buf->f_bfree -
5192 (ext4_r_blocks_count(es) + resv_blocks);
5193 if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks))
5194 buf->f_bavail = 0;
5195 buf->f_files = le32_to_cpu(es->s_inodes_count);
5196 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
5197 buf->f_namelen = EXT4_NAME_LEN;
5198 fsid = le64_to_cpup((void *)es->s_uuid) ^
5199 le64_to_cpup((void *)es->s_uuid + sizeof(u64));
5200 buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL;
5201 buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL;
5202
5203 #ifdef CONFIG_QUOTA
5204 if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) &&
5205 sb_has_quota_limits_enabled(sb, PRJQUOTA))
5206 ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf);
5207 #endif
5208 return 0;
5209 }
5210
5211 /* Helper function for writing quotas on sync - we need to start transaction
5212 * before quota file is locked for write. Otherwise the are possible deadlocks:
5213 * Process 1 Process 2
5214 * ext4_create() quota_sync()
5215 * jbd2_journal_start() write_dquot()
5216 * dquot_initialize() down(dqio_mutex)
5217 * down(dqio_mutex) jbd2_journal_start()
5218 *
5219 */
5220
5221 #ifdef CONFIG_QUOTA
5222
5223 static inline struct inode *dquot_to_inode(struct dquot *dquot)
5224 {
5225 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type];
5226 }
5227
5228 static int ext4_write_dquot(struct dquot *dquot)
5229 {
5230 int ret, err;
5231 handle_t *handle;
5232 struct inode *inode;
5233
5234 inode = dquot_to_inode(dquot);
5235 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5236 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
5237 if (IS_ERR(handle))
5238 return PTR_ERR(handle);
5239 ret = dquot_commit(dquot);
5240 err = ext4_journal_stop(handle);
5241 if (!ret)
5242 ret = err;
5243 return ret;
5244 }
5245
5246 static int ext4_acquire_dquot(struct dquot *dquot)
5247 {
5248 int ret, err;
5249 handle_t *handle;
5250
5251 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
5252 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
5253 if (IS_ERR(handle))
5254 return PTR_ERR(handle);
5255 ret = dquot_acquire(dquot);
5256 err = ext4_journal_stop(handle);
5257 if (!ret)
5258 ret = err;
5259 return ret;
5260 }
5261
5262 static int ext4_release_dquot(struct dquot *dquot)
5263 {
5264 int ret, err;
5265 handle_t *handle;
5266
5267 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
5268 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
5269 if (IS_ERR(handle)) {
5270 /* Release dquot anyway to avoid endless cycle in dqput() */
5271 dquot_release(dquot);
5272 return PTR_ERR(handle);
5273 }
5274 ret = dquot_release(dquot);
5275 err = ext4_journal_stop(handle);
5276 if (!ret)
5277 ret = err;
5278 return ret;
5279 }
5280
5281 static int ext4_mark_dquot_dirty(struct dquot *dquot)
5282 {
5283 struct super_block *sb = dquot->dq_sb;
5284 struct ext4_sb_info *sbi = EXT4_SB(sb);
5285
5286 /* Are we journaling quotas? */
5287 if (ext4_has_feature_quota(sb) ||
5288 sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
5289 dquot_mark_dquot_dirty(dquot);
5290 return ext4_write_dquot(dquot);
5291 } else {
5292 return dquot_mark_dquot_dirty(dquot);
5293 }
5294 }
5295
5296 static int ext4_write_info(struct super_block *sb, int type)
5297 {
5298 int ret, err;
5299 handle_t *handle;
5300
5301 /* Data block + inode block */
5302 handle = ext4_journal_start(d_inode(sb->s_root), EXT4_HT_QUOTA, 2);
5303 if (IS_ERR(handle))
5304 return PTR_ERR(handle);
5305 ret = dquot_commit_info(sb, type);
5306 err = ext4_journal_stop(handle);
5307 if (!ret)
5308 ret = err;
5309 return ret;
5310 }
5311
5312 /*
5313 * Turn on quotas during mount time - we need to find
5314 * the quota file and such...
5315 */
5316 static int ext4_quota_on_mount(struct super_block *sb, int type)
5317 {
5318 return dquot_quota_on_mount(sb, EXT4_SB(sb)->s_qf_names[type],
5319 EXT4_SB(sb)->s_jquota_fmt, type);
5320 }
5321
5322 static void lockdep_set_quota_inode(struct inode *inode, int subclass)
5323 {
5324 struct ext4_inode_info *ei = EXT4_I(inode);
5325
5326 /* The first argument of lockdep_set_subclass has to be
5327 * *exactly* the same as the argument to init_rwsem() --- in
5328 * this case, in init_once() --- or lockdep gets unhappy
5329 * because the name of the lock is set using the
5330 * stringification of the argument to init_rwsem().
5331 */
5332 (void) ei; /* shut up clang warning if !CONFIG_LOCKDEP */
5333 lockdep_set_subclass(&ei->i_data_sem, subclass);
5334 }
5335
5336 /*
5337 * Standard function to be called on quota_on
5338 */
5339 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
5340 const struct path *path)
5341 {
5342 int err;
5343
5344 if (!test_opt(sb, QUOTA))
5345 return -EINVAL;
5346
5347 /* Quotafile not on the same filesystem? */
5348 if (path->dentry->d_sb != sb)
5349 return -EXDEV;
5350 /* Journaling quota? */
5351 if (EXT4_SB(sb)->s_qf_names[type]) {
5352 /* Quotafile not in fs root? */
5353 if (path->dentry->d_parent != sb->s_root)
5354 ext4_msg(sb, KERN_WARNING,
5355 "Quota file not on filesystem root. "
5356 "Journaled quota will not work");
5357 }
5358
5359 /*
5360 * When we journal data on quota file, we have to flush journal to see
5361 * all updates to the file when we bypass pagecache...
5362 */
5363 if (EXT4_SB(sb)->s_journal &&
5364 ext4_should_journal_data(d_inode(path->dentry))) {
5365 /*
5366 * We don't need to lock updates but journal_flush() could
5367 * otherwise be livelocked...
5368 */
5369 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal);
5370 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal);
5371 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
5372 if (err)
5373 return err;
5374 }
5375
5376 lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA);
5377 err = dquot_quota_on(sb, type, format_id, path);
5378 if (err) {
5379 lockdep_set_quota_inode(path->dentry->d_inode,
5380 I_DATA_SEM_NORMAL);
5381 } else {
5382 struct inode *inode = d_inode(path->dentry);
5383 handle_t *handle;
5384
5385 /*
5386 * Set inode flags to prevent userspace from messing with quota
5387 * files. If this fails, we return success anyway since quotas
5388 * are already enabled and this is not a hard failure.
5389 */
5390 inode_lock(inode);
5391 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
5392 if (IS_ERR(handle))
5393 goto unlock_inode;
5394 EXT4_I(inode)->i_flags |= EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL;
5395 inode_set_flags(inode, S_NOATIME | S_IMMUTABLE,
5396 S_NOATIME | S_IMMUTABLE);
5397 ext4_mark_inode_dirty(handle, inode);
5398 ext4_journal_stop(handle);
5399 unlock_inode:
5400 inode_unlock(inode);
5401 }
5402 return err;
5403 }
5404
5405 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
5406 unsigned int flags)
5407 {
5408 int err;
5409 struct inode *qf_inode;
5410 unsigned long qf_inums[EXT4_MAXQUOTAS] = {
5411 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
5412 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
5413 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
5414 };
5415
5416 BUG_ON(!ext4_has_feature_quota(sb));
5417
5418 if (!qf_inums[type])
5419 return -EPERM;
5420
5421 qf_inode = ext4_iget(sb, qf_inums[type]);
5422 if (IS_ERR(qf_inode)) {
5423 ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]);
5424 return PTR_ERR(qf_inode);
5425 }
5426
5427 /* Don't account quota for quota files to avoid recursion */
5428 qf_inode->i_flags |= S_NOQUOTA;
5429 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA);
5430 err = dquot_enable(qf_inode, type, format_id, flags);
5431 iput(qf_inode);
5432 if (err)
5433 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL);
5434
5435 return err;
5436 }
5437
5438 /* Enable usage tracking for all quota types. */
5439 static int ext4_enable_quotas(struct super_block *sb)
5440 {
5441 int type, err = 0;
5442 unsigned long qf_inums[EXT4_MAXQUOTAS] = {
5443 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
5444 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
5445 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
5446 };
5447 bool quota_mopt[EXT4_MAXQUOTAS] = {
5448 test_opt(sb, USRQUOTA),
5449 test_opt(sb, GRPQUOTA),
5450 test_opt(sb, PRJQUOTA),
5451 };
5452
5453 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE;
5454 for (type = 0; type < EXT4_MAXQUOTAS; type++) {
5455 if (qf_inums[type]) {
5456 err = ext4_quota_enable(sb, type, QFMT_VFS_V1,
5457 DQUOT_USAGE_ENABLED |
5458 (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0));
5459 if (err) {
5460 ext4_warning(sb,
5461 "Failed to enable quota tracking "
5462 "(type=%d, err=%d). Please run "
5463 "e2fsck to fix.", type, err);
5464 return err;
5465 }
5466 }
5467 }
5468 return 0;
5469 }
5470
5471 static int ext4_quota_off(struct super_block *sb, int type)
5472 {
5473 struct inode *inode = sb_dqopt(sb)->files[type];
5474 handle_t *handle;
5475 int err;
5476
5477 /* Force all delayed allocation blocks to be allocated.
5478 * Caller already holds s_umount sem */
5479 if (test_opt(sb, DELALLOC))
5480 sync_filesystem(sb);
5481
5482 if (!inode || !igrab(inode))
5483 goto out;
5484
5485 err = dquot_quota_off(sb, type);
5486 if (err || ext4_has_feature_quota(sb))
5487 goto out_put;
5488
5489 inode_lock(inode);
5490 /*
5491 * Update modification times of quota files when userspace can
5492 * start looking at them. If we fail, we return success anyway since
5493 * this is not a hard failure and quotas are already disabled.
5494 */
5495 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
5496 if (IS_ERR(handle))
5497 goto out_unlock;
5498 EXT4_I(inode)->i_flags &= ~(EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL);
5499 inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE);
5500 inode->i_mtime = inode->i_ctime = current_time(inode);
5501 ext4_mark_inode_dirty(handle, inode);
5502 ext4_journal_stop(handle);
5503 out_unlock:
5504 inode_unlock(inode);
5505 out_put:
5506 lockdep_set_quota_inode(inode, I_DATA_SEM_NORMAL);
5507 iput(inode);
5508 return err;
5509 out:
5510 return dquot_quota_off(sb, type);
5511 }
5512
5513 /* Read data from quotafile - avoid pagecache and such because we cannot afford
5514 * acquiring the locks... As quota files are never truncated and quota code
5515 * itself serializes the operations (and no one else should touch the files)
5516 * we don't have to be afraid of races */
5517 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
5518 size_t len, loff_t off)
5519 {
5520 struct inode *inode = sb_dqopt(sb)->files[type];
5521 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5522 int offset = off & (sb->s_blocksize - 1);
5523 int tocopy;
5524 size_t toread;
5525 struct buffer_head *bh;
5526 loff_t i_size = i_size_read(inode);
5527
5528 if (off > i_size)
5529 return 0;
5530 if (off+len > i_size)
5531 len = i_size-off;
5532 toread = len;
5533 while (toread > 0) {
5534 tocopy = sb->s_blocksize - offset < toread ?
5535 sb->s_blocksize - offset : toread;
5536 bh = ext4_bread(NULL, inode, blk, 0);
5537 if (IS_ERR(bh))
5538 return PTR_ERR(bh);
5539 if (!bh) /* A hole? */
5540 memset(data, 0, tocopy);
5541 else
5542 memcpy(data, bh->b_data+offset, tocopy);
5543 brelse(bh);
5544 offset = 0;
5545 toread -= tocopy;
5546 data += tocopy;
5547 blk++;
5548 }
5549 return len;
5550 }
5551
5552 /* Write to quotafile (we know the transaction is already started and has
5553 * enough credits) */
5554 static ssize_t ext4_quota_write(struct super_block *sb, int type,
5555 const char *data, size_t len, loff_t off)
5556 {
5557 struct inode *inode = sb_dqopt(sb)->files[type];
5558 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5559 int err, offset = off & (sb->s_blocksize - 1);
5560 int retries = 0;
5561 struct buffer_head *bh;
5562 handle_t *handle = journal_current_handle();
5563
5564 if (EXT4_SB(sb)->s_journal && !handle) {
5565 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5566 " cancelled because transaction is not started",
5567 (unsigned long long)off, (unsigned long long)len);
5568 return -EIO;
5569 }
5570 /*
5571 * Since we account only one data block in transaction credits,
5572 * then it is impossible to cross a block boundary.
5573 */
5574 if (sb->s_blocksize - offset < len) {
5575 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5576 " cancelled because not block aligned",
5577 (unsigned long long)off, (unsigned long long)len);
5578 return -EIO;
5579 }
5580
5581 do {
5582 bh = ext4_bread(handle, inode, blk,
5583 EXT4_GET_BLOCKS_CREATE |
5584 EXT4_GET_BLOCKS_METADATA_NOFAIL);
5585 } while (IS_ERR(bh) && (PTR_ERR(bh) == -ENOSPC) &&
5586 ext4_should_retry_alloc(inode->i_sb, &retries));
5587 if (IS_ERR(bh))
5588 return PTR_ERR(bh);
5589 if (!bh)
5590 goto out;
5591 BUFFER_TRACE(bh, "get write access");
5592 err = ext4_journal_get_write_access(handle, bh);
5593 if (err) {
5594 brelse(bh);
5595 return err;
5596 }
5597 lock_buffer(bh);
5598 memcpy(bh->b_data+offset, data, len);
5599 flush_dcache_page(bh->b_page);
5600 unlock_buffer(bh);
5601 err = ext4_handle_dirty_metadata(handle, NULL, bh);
5602 brelse(bh);
5603 out:
5604 if (inode->i_size < off + len) {
5605 i_size_write(inode, off + len);
5606 EXT4_I(inode)->i_disksize = inode->i_size;
5607 ext4_mark_inode_dirty(handle, inode);
5608 }
5609 return len;
5610 }
5611
5612 static int ext4_get_next_id(struct super_block *sb, struct kqid *qid)
5613 {
5614 const struct quota_format_ops *ops;
5615
5616 if (!sb_has_quota_loaded(sb, qid->type))
5617 return -ESRCH;
5618 ops = sb_dqopt(sb)->ops[qid->type];
5619 if (!ops || !ops->get_next_id)
5620 return -ENOSYS;
5621 return dquot_get_next_id(sb, qid);
5622 }
5623 #endif
5624
5625 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
5626 const char *dev_name, void *data)
5627 {
5628 return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super);
5629 }
5630
5631 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
5632 static inline void register_as_ext2(void)
5633 {
5634 int err = register_filesystem(&ext2_fs_type);
5635 if (err)
5636 printk(KERN_WARNING
5637 "EXT4-fs: Unable to register as ext2 (%d)\n", err);
5638 }
5639
5640 static inline void unregister_as_ext2(void)
5641 {
5642 unregister_filesystem(&ext2_fs_type);
5643 }
5644
5645 static inline int ext2_feature_set_ok(struct super_block *sb)
5646 {
5647 if (ext4_has_unknown_ext2_incompat_features(sb))
5648 return 0;
5649 if (sb->s_flags & MS_RDONLY)
5650 return 1;
5651 if (ext4_has_unknown_ext2_ro_compat_features(sb))
5652 return 0;
5653 return 1;
5654 }
5655 #else
5656 static inline void register_as_ext2(void) { }
5657 static inline void unregister_as_ext2(void) { }
5658 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
5659 #endif
5660
5661 static inline void register_as_ext3(void)
5662 {
5663 int err = register_filesystem(&ext3_fs_type);
5664 if (err)
5665 printk(KERN_WARNING
5666 "EXT4-fs: Unable to register as ext3 (%d)\n", err);
5667 }
5668
5669 static inline void unregister_as_ext3(void)
5670 {
5671 unregister_filesystem(&ext3_fs_type);
5672 }
5673
5674 static inline int ext3_feature_set_ok(struct super_block *sb)
5675 {
5676 if (ext4_has_unknown_ext3_incompat_features(sb))
5677 return 0;
5678 if (!ext4_has_feature_journal(sb))
5679 return 0;
5680 if (sb->s_flags & MS_RDONLY)
5681 return 1;
5682 if (ext4_has_unknown_ext3_ro_compat_features(sb))
5683 return 0;
5684 return 1;
5685 }
5686
5687 static struct file_system_type ext4_fs_type = {
5688 .owner = THIS_MODULE,
5689 .name = "ext4",
5690 .mount = ext4_mount,
5691 .kill_sb = kill_block_super,
5692 .fs_flags = FS_REQUIRES_DEV,
5693 };
5694 MODULE_ALIAS_FS("ext4");
5695
5696 /* Shared across all ext4 file systems */
5697 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ];
5698
5699 static int __init ext4_init_fs(void)
5700 {
5701 int i, err;
5702
5703 ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64);
5704 ext4_li_info = NULL;
5705 mutex_init(&ext4_li_mtx);
5706
5707 /* Build-time check for flags consistency */
5708 ext4_check_flag_values();
5709
5710 for (i = 0; i < EXT4_WQ_HASH_SZ; i++)
5711 init_waitqueue_head(&ext4__ioend_wq[i]);
5712
5713 err = ext4_init_es();
5714 if (err)
5715 return err;
5716
5717 err = ext4_init_pageio();
5718 if (err)
5719 goto out5;
5720
5721 err = ext4_init_system_zone();
5722 if (err)
5723 goto out4;
5724
5725 err = ext4_init_sysfs();
5726 if (err)
5727 goto out3;
5728
5729 err = ext4_init_mballoc();
5730 if (err)
5731 goto out2;
5732 err = init_inodecache();
5733 if (err)
5734 goto out1;
5735 register_as_ext3();
5736 register_as_ext2();
5737 err = register_filesystem(&ext4_fs_type);
5738 if (err)
5739 goto out;
5740
5741 return 0;
5742 out:
5743 unregister_as_ext2();
5744 unregister_as_ext3();
5745 destroy_inodecache();
5746 out1:
5747 ext4_exit_mballoc();
5748 out2:
5749 ext4_exit_sysfs();
5750 out3:
5751 ext4_exit_system_zone();
5752 out4:
5753 ext4_exit_pageio();
5754 out5:
5755 ext4_exit_es();
5756
5757 return err;
5758 }
5759
5760 static void __exit ext4_exit_fs(void)
5761 {
5762 ext4_destroy_lazyinit_thread();
5763 unregister_as_ext2();
5764 unregister_as_ext3();
5765 unregister_filesystem(&ext4_fs_type);
5766 destroy_inodecache();
5767 ext4_exit_mballoc();
5768 ext4_exit_sysfs();
5769 ext4_exit_system_zone();
5770 ext4_exit_pageio();
5771 ext4_exit_es();
5772 }
5773
5774 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
5775 MODULE_DESCRIPTION("Fourth Extended Filesystem");
5776 MODULE_LICENSE("GPL");
5777 module_init(ext4_init_fs)
5778 module_exit(ext4_exit_fs)