]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/ext4/super.c
Merge tag 'for-linus-20170825' of git://git.infradead.org/linux-mtd
[mirror_ubuntu-artful-kernel.git] / fs / ext4 / super.c
1 /*
2 * linux/fs/ext4/super.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * Big-endian to little-endian byte-swapping/bitmaps by
16 * David S. Miller (davem@caip.rutgers.edu), 1995
17 */
18
19 #include <linux/module.h>
20 #include <linux/string.h>
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/vmalloc.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/parser.h>
29 #include <linux/buffer_head.h>
30 #include <linux/exportfs.h>
31 #include <linux/vfs.h>
32 #include <linux/random.h>
33 #include <linux/mount.h>
34 #include <linux/namei.h>
35 #include <linux/quotaops.h>
36 #include <linux/seq_file.h>
37 #include <linux/ctype.h>
38 #include <linux/log2.h>
39 #include <linux/crc16.h>
40 #include <linux/dax.h>
41 #include <linux/cleancache.h>
42 #include <linux/uaccess.h>
43
44 #include <linux/kthread.h>
45 #include <linux/freezer.h>
46
47 #include "ext4.h"
48 #include "ext4_extents.h" /* Needed for trace points definition */
49 #include "ext4_jbd2.h"
50 #include "xattr.h"
51 #include "acl.h"
52 #include "mballoc.h"
53 #include "fsmap.h"
54
55 #define CREATE_TRACE_POINTS
56 #include <trace/events/ext4.h>
57
58 static struct ext4_lazy_init *ext4_li_info;
59 static struct mutex ext4_li_mtx;
60 static struct ratelimit_state ext4_mount_msg_ratelimit;
61
62 static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
63 unsigned long journal_devnum);
64 static int ext4_show_options(struct seq_file *seq, struct dentry *root);
65 static int ext4_commit_super(struct super_block *sb, int sync);
66 static void ext4_mark_recovery_complete(struct super_block *sb,
67 struct ext4_super_block *es);
68 static void ext4_clear_journal_err(struct super_block *sb,
69 struct ext4_super_block *es);
70 static int ext4_sync_fs(struct super_block *sb, int wait);
71 static int ext4_remount(struct super_block *sb, int *flags, char *data);
72 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
73 static int ext4_unfreeze(struct super_block *sb);
74 static int ext4_freeze(struct super_block *sb);
75 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
76 const char *dev_name, void *data);
77 static inline int ext2_feature_set_ok(struct super_block *sb);
78 static inline int ext3_feature_set_ok(struct super_block *sb);
79 static int ext4_feature_set_ok(struct super_block *sb, int readonly);
80 static void ext4_destroy_lazyinit_thread(void);
81 static void ext4_unregister_li_request(struct super_block *sb);
82 static void ext4_clear_request_list(void);
83 static struct inode *ext4_get_journal_inode(struct super_block *sb,
84 unsigned int journal_inum);
85
86 /*
87 * Lock ordering
88 *
89 * Note the difference between i_mmap_sem (EXT4_I(inode)->i_mmap_sem) and
90 * i_mmap_rwsem (inode->i_mmap_rwsem)!
91 *
92 * page fault path:
93 * mmap_sem -> sb_start_pagefault -> i_mmap_sem (r) -> transaction start ->
94 * page lock -> i_data_sem (rw)
95 *
96 * buffered write path:
97 * sb_start_write -> i_mutex -> mmap_sem
98 * sb_start_write -> i_mutex -> transaction start -> page lock ->
99 * i_data_sem (rw)
100 *
101 * truncate:
102 * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (w) -> i_mmap_sem (w) ->
103 * i_mmap_rwsem (w) -> page lock
104 * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (w) -> i_mmap_sem (w) ->
105 * transaction start -> i_data_sem (rw)
106 *
107 * direct IO:
108 * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (r) -> mmap_sem
109 * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (r) ->
110 * transaction start -> i_data_sem (rw)
111 *
112 * writepages:
113 * transaction start -> page lock(s) -> i_data_sem (rw)
114 */
115
116 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
117 static struct file_system_type ext2_fs_type = {
118 .owner = THIS_MODULE,
119 .name = "ext2",
120 .mount = ext4_mount,
121 .kill_sb = kill_block_super,
122 .fs_flags = FS_REQUIRES_DEV,
123 };
124 MODULE_ALIAS_FS("ext2");
125 MODULE_ALIAS("ext2");
126 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type)
127 #else
128 #define IS_EXT2_SB(sb) (0)
129 #endif
130
131
132 static struct file_system_type ext3_fs_type = {
133 .owner = THIS_MODULE,
134 .name = "ext3",
135 .mount = ext4_mount,
136 .kill_sb = kill_block_super,
137 .fs_flags = FS_REQUIRES_DEV,
138 };
139 MODULE_ALIAS_FS("ext3");
140 MODULE_ALIAS("ext3");
141 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type)
142
143 static int ext4_verify_csum_type(struct super_block *sb,
144 struct ext4_super_block *es)
145 {
146 if (!ext4_has_feature_metadata_csum(sb))
147 return 1;
148
149 return es->s_checksum_type == EXT4_CRC32C_CHKSUM;
150 }
151
152 static __le32 ext4_superblock_csum(struct super_block *sb,
153 struct ext4_super_block *es)
154 {
155 struct ext4_sb_info *sbi = EXT4_SB(sb);
156 int offset = offsetof(struct ext4_super_block, s_checksum);
157 __u32 csum;
158
159 csum = ext4_chksum(sbi, ~0, (char *)es, offset);
160
161 return cpu_to_le32(csum);
162 }
163
164 static int ext4_superblock_csum_verify(struct super_block *sb,
165 struct ext4_super_block *es)
166 {
167 if (!ext4_has_metadata_csum(sb))
168 return 1;
169
170 return es->s_checksum == ext4_superblock_csum(sb, es);
171 }
172
173 void ext4_superblock_csum_set(struct super_block *sb)
174 {
175 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
176
177 if (!ext4_has_metadata_csum(sb))
178 return;
179
180 es->s_checksum = ext4_superblock_csum(sb, es);
181 }
182
183 void *ext4_kvmalloc(size_t size, gfp_t flags)
184 {
185 void *ret;
186
187 ret = kmalloc(size, flags | __GFP_NOWARN);
188 if (!ret)
189 ret = __vmalloc(size, flags, PAGE_KERNEL);
190 return ret;
191 }
192
193 void *ext4_kvzalloc(size_t size, gfp_t flags)
194 {
195 void *ret;
196
197 ret = kzalloc(size, flags | __GFP_NOWARN);
198 if (!ret)
199 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL);
200 return ret;
201 }
202
203 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
204 struct ext4_group_desc *bg)
205 {
206 return le32_to_cpu(bg->bg_block_bitmap_lo) |
207 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
208 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
209 }
210
211 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
212 struct ext4_group_desc *bg)
213 {
214 return le32_to_cpu(bg->bg_inode_bitmap_lo) |
215 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
216 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
217 }
218
219 ext4_fsblk_t ext4_inode_table(struct super_block *sb,
220 struct ext4_group_desc *bg)
221 {
222 return le32_to_cpu(bg->bg_inode_table_lo) |
223 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
224 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
225 }
226
227 __u32 ext4_free_group_clusters(struct super_block *sb,
228 struct ext4_group_desc *bg)
229 {
230 return le16_to_cpu(bg->bg_free_blocks_count_lo) |
231 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
232 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
233 }
234
235 __u32 ext4_free_inodes_count(struct super_block *sb,
236 struct ext4_group_desc *bg)
237 {
238 return le16_to_cpu(bg->bg_free_inodes_count_lo) |
239 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
240 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
241 }
242
243 __u32 ext4_used_dirs_count(struct super_block *sb,
244 struct ext4_group_desc *bg)
245 {
246 return le16_to_cpu(bg->bg_used_dirs_count_lo) |
247 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
248 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
249 }
250
251 __u32 ext4_itable_unused_count(struct super_block *sb,
252 struct ext4_group_desc *bg)
253 {
254 return le16_to_cpu(bg->bg_itable_unused_lo) |
255 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
256 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
257 }
258
259 void ext4_block_bitmap_set(struct super_block *sb,
260 struct ext4_group_desc *bg, ext4_fsblk_t blk)
261 {
262 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
263 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
264 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
265 }
266
267 void ext4_inode_bitmap_set(struct super_block *sb,
268 struct ext4_group_desc *bg, ext4_fsblk_t blk)
269 {
270 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk);
271 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
272 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
273 }
274
275 void ext4_inode_table_set(struct super_block *sb,
276 struct ext4_group_desc *bg, ext4_fsblk_t blk)
277 {
278 bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
279 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
280 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
281 }
282
283 void ext4_free_group_clusters_set(struct super_block *sb,
284 struct ext4_group_desc *bg, __u32 count)
285 {
286 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
287 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
288 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
289 }
290
291 void ext4_free_inodes_set(struct super_block *sb,
292 struct ext4_group_desc *bg, __u32 count)
293 {
294 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
295 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
296 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
297 }
298
299 void ext4_used_dirs_set(struct super_block *sb,
300 struct ext4_group_desc *bg, __u32 count)
301 {
302 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
303 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
304 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
305 }
306
307 void ext4_itable_unused_set(struct super_block *sb,
308 struct ext4_group_desc *bg, __u32 count)
309 {
310 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
311 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
312 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
313 }
314
315
316 static void __save_error_info(struct super_block *sb, const char *func,
317 unsigned int line)
318 {
319 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
320
321 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
322 if (bdev_read_only(sb->s_bdev))
323 return;
324 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
325 es->s_last_error_time = cpu_to_le32(get_seconds());
326 strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func));
327 es->s_last_error_line = cpu_to_le32(line);
328 if (!es->s_first_error_time) {
329 es->s_first_error_time = es->s_last_error_time;
330 strncpy(es->s_first_error_func, func,
331 sizeof(es->s_first_error_func));
332 es->s_first_error_line = cpu_to_le32(line);
333 es->s_first_error_ino = es->s_last_error_ino;
334 es->s_first_error_block = es->s_last_error_block;
335 }
336 /*
337 * Start the daily error reporting function if it hasn't been
338 * started already
339 */
340 if (!es->s_error_count)
341 mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ);
342 le32_add_cpu(&es->s_error_count, 1);
343 }
344
345 static void save_error_info(struct super_block *sb, const char *func,
346 unsigned int line)
347 {
348 __save_error_info(sb, func, line);
349 ext4_commit_super(sb, 1);
350 }
351
352 /*
353 * The del_gendisk() function uninitializes the disk-specific data
354 * structures, including the bdi structure, without telling anyone
355 * else. Once this happens, any attempt to call mark_buffer_dirty()
356 * (for example, by ext4_commit_super), will cause a kernel OOPS.
357 * This is a kludge to prevent these oops until we can put in a proper
358 * hook in del_gendisk() to inform the VFS and file system layers.
359 */
360 static int block_device_ejected(struct super_block *sb)
361 {
362 struct inode *bd_inode = sb->s_bdev->bd_inode;
363 struct backing_dev_info *bdi = inode_to_bdi(bd_inode);
364
365 return bdi->dev == NULL;
366 }
367
368 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn)
369 {
370 struct super_block *sb = journal->j_private;
371 struct ext4_sb_info *sbi = EXT4_SB(sb);
372 int error = is_journal_aborted(journal);
373 struct ext4_journal_cb_entry *jce;
374
375 BUG_ON(txn->t_state == T_FINISHED);
376
377 ext4_process_freed_data(sb, txn->t_tid);
378
379 spin_lock(&sbi->s_md_lock);
380 while (!list_empty(&txn->t_private_list)) {
381 jce = list_entry(txn->t_private_list.next,
382 struct ext4_journal_cb_entry, jce_list);
383 list_del_init(&jce->jce_list);
384 spin_unlock(&sbi->s_md_lock);
385 jce->jce_func(sb, jce, error);
386 spin_lock(&sbi->s_md_lock);
387 }
388 spin_unlock(&sbi->s_md_lock);
389 }
390
391 /* Deal with the reporting of failure conditions on a filesystem such as
392 * inconsistencies detected or read IO failures.
393 *
394 * On ext2, we can store the error state of the filesystem in the
395 * superblock. That is not possible on ext4, because we may have other
396 * write ordering constraints on the superblock which prevent us from
397 * writing it out straight away; and given that the journal is about to
398 * be aborted, we can't rely on the current, or future, transactions to
399 * write out the superblock safely.
400 *
401 * We'll just use the jbd2_journal_abort() error code to record an error in
402 * the journal instead. On recovery, the journal will complain about
403 * that error until we've noted it down and cleared it.
404 */
405
406 static void ext4_handle_error(struct super_block *sb)
407 {
408 if (sb->s_flags & MS_RDONLY)
409 return;
410
411 if (!test_opt(sb, ERRORS_CONT)) {
412 journal_t *journal = EXT4_SB(sb)->s_journal;
413
414 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
415 if (journal)
416 jbd2_journal_abort(journal, -EIO);
417 }
418 if (test_opt(sb, ERRORS_RO)) {
419 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
420 /*
421 * Make sure updated value of ->s_mount_flags will be visible
422 * before ->s_flags update
423 */
424 smp_wmb();
425 sb->s_flags |= MS_RDONLY;
426 }
427 if (test_opt(sb, ERRORS_PANIC)) {
428 if (EXT4_SB(sb)->s_journal &&
429 !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR))
430 return;
431 panic("EXT4-fs (device %s): panic forced after error\n",
432 sb->s_id);
433 }
434 }
435
436 #define ext4_error_ratelimit(sb) \
437 ___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state), \
438 "EXT4-fs error")
439
440 void __ext4_error(struct super_block *sb, const char *function,
441 unsigned int line, const char *fmt, ...)
442 {
443 struct va_format vaf;
444 va_list args;
445
446 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
447 return;
448
449 if (ext4_error_ratelimit(sb)) {
450 va_start(args, fmt);
451 vaf.fmt = fmt;
452 vaf.va = &args;
453 printk(KERN_CRIT
454 "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
455 sb->s_id, function, line, current->comm, &vaf);
456 va_end(args);
457 }
458 save_error_info(sb, function, line);
459 ext4_handle_error(sb);
460 }
461
462 void __ext4_error_inode(struct inode *inode, const char *function,
463 unsigned int line, ext4_fsblk_t block,
464 const char *fmt, ...)
465 {
466 va_list args;
467 struct va_format vaf;
468 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
469
470 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
471 return;
472
473 es->s_last_error_ino = cpu_to_le32(inode->i_ino);
474 es->s_last_error_block = cpu_to_le64(block);
475 if (ext4_error_ratelimit(inode->i_sb)) {
476 va_start(args, fmt);
477 vaf.fmt = fmt;
478 vaf.va = &args;
479 if (block)
480 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
481 "inode #%lu: block %llu: comm %s: %pV\n",
482 inode->i_sb->s_id, function, line, inode->i_ino,
483 block, current->comm, &vaf);
484 else
485 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
486 "inode #%lu: comm %s: %pV\n",
487 inode->i_sb->s_id, function, line, inode->i_ino,
488 current->comm, &vaf);
489 va_end(args);
490 }
491 save_error_info(inode->i_sb, function, line);
492 ext4_handle_error(inode->i_sb);
493 }
494
495 void __ext4_error_file(struct file *file, const char *function,
496 unsigned int line, ext4_fsblk_t block,
497 const char *fmt, ...)
498 {
499 va_list args;
500 struct va_format vaf;
501 struct ext4_super_block *es;
502 struct inode *inode = file_inode(file);
503 char pathname[80], *path;
504
505 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
506 return;
507
508 es = EXT4_SB(inode->i_sb)->s_es;
509 es->s_last_error_ino = cpu_to_le32(inode->i_ino);
510 if (ext4_error_ratelimit(inode->i_sb)) {
511 path = file_path(file, pathname, sizeof(pathname));
512 if (IS_ERR(path))
513 path = "(unknown)";
514 va_start(args, fmt);
515 vaf.fmt = fmt;
516 vaf.va = &args;
517 if (block)
518 printk(KERN_CRIT
519 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
520 "block %llu: comm %s: path %s: %pV\n",
521 inode->i_sb->s_id, function, line, inode->i_ino,
522 block, current->comm, path, &vaf);
523 else
524 printk(KERN_CRIT
525 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
526 "comm %s: path %s: %pV\n",
527 inode->i_sb->s_id, function, line, inode->i_ino,
528 current->comm, path, &vaf);
529 va_end(args);
530 }
531 save_error_info(inode->i_sb, function, line);
532 ext4_handle_error(inode->i_sb);
533 }
534
535 const char *ext4_decode_error(struct super_block *sb, int errno,
536 char nbuf[16])
537 {
538 char *errstr = NULL;
539
540 switch (errno) {
541 case -EFSCORRUPTED:
542 errstr = "Corrupt filesystem";
543 break;
544 case -EFSBADCRC:
545 errstr = "Filesystem failed CRC";
546 break;
547 case -EIO:
548 errstr = "IO failure";
549 break;
550 case -ENOMEM:
551 errstr = "Out of memory";
552 break;
553 case -EROFS:
554 if (!sb || (EXT4_SB(sb)->s_journal &&
555 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
556 errstr = "Journal has aborted";
557 else
558 errstr = "Readonly filesystem";
559 break;
560 default:
561 /* If the caller passed in an extra buffer for unknown
562 * errors, textualise them now. Else we just return
563 * NULL. */
564 if (nbuf) {
565 /* Check for truncated error codes... */
566 if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
567 errstr = nbuf;
568 }
569 break;
570 }
571
572 return errstr;
573 }
574
575 /* __ext4_std_error decodes expected errors from journaling functions
576 * automatically and invokes the appropriate error response. */
577
578 void __ext4_std_error(struct super_block *sb, const char *function,
579 unsigned int line, int errno)
580 {
581 char nbuf[16];
582 const char *errstr;
583
584 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
585 return;
586
587 /* Special case: if the error is EROFS, and we're not already
588 * inside a transaction, then there's really no point in logging
589 * an error. */
590 if (errno == -EROFS && journal_current_handle() == NULL &&
591 (sb->s_flags & MS_RDONLY))
592 return;
593
594 if (ext4_error_ratelimit(sb)) {
595 errstr = ext4_decode_error(sb, errno, nbuf);
596 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
597 sb->s_id, function, line, errstr);
598 }
599
600 save_error_info(sb, function, line);
601 ext4_handle_error(sb);
602 }
603
604 /*
605 * ext4_abort is a much stronger failure handler than ext4_error. The
606 * abort function may be used to deal with unrecoverable failures such
607 * as journal IO errors or ENOMEM at a critical moment in log management.
608 *
609 * We unconditionally force the filesystem into an ABORT|READONLY state,
610 * unless the error response on the fs has been set to panic in which
611 * case we take the easy way out and panic immediately.
612 */
613
614 void __ext4_abort(struct super_block *sb, const char *function,
615 unsigned int line, const char *fmt, ...)
616 {
617 struct va_format vaf;
618 va_list args;
619
620 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
621 return;
622
623 save_error_info(sb, function, line);
624 va_start(args, fmt);
625 vaf.fmt = fmt;
626 vaf.va = &args;
627 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: %pV\n",
628 sb->s_id, function, line, &vaf);
629 va_end(args);
630
631 if ((sb->s_flags & MS_RDONLY) == 0) {
632 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
633 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
634 /*
635 * Make sure updated value of ->s_mount_flags will be visible
636 * before ->s_flags update
637 */
638 smp_wmb();
639 sb->s_flags |= MS_RDONLY;
640 if (EXT4_SB(sb)->s_journal)
641 jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO);
642 save_error_info(sb, function, line);
643 }
644 if (test_opt(sb, ERRORS_PANIC)) {
645 if (EXT4_SB(sb)->s_journal &&
646 !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR))
647 return;
648 panic("EXT4-fs panic from previous error\n");
649 }
650 }
651
652 void __ext4_msg(struct super_block *sb,
653 const char *prefix, const char *fmt, ...)
654 {
655 struct va_format vaf;
656 va_list args;
657
658 if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state), "EXT4-fs"))
659 return;
660
661 va_start(args, fmt);
662 vaf.fmt = fmt;
663 vaf.va = &args;
664 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
665 va_end(args);
666 }
667
668 #define ext4_warning_ratelimit(sb) \
669 ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state), \
670 "EXT4-fs warning")
671
672 void __ext4_warning(struct super_block *sb, const char *function,
673 unsigned int line, const char *fmt, ...)
674 {
675 struct va_format vaf;
676 va_list args;
677
678 if (!ext4_warning_ratelimit(sb))
679 return;
680
681 va_start(args, fmt);
682 vaf.fmt = fmt;
683 vaf.va = &args;
684 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
685 sb->s_id, function, line, &vaf);
686 va_end(args);
687 }
688
689 void __ext4_warning_inode(const struct inode *inode, const char *function,
690 unsigned int line, const char *fmt, ...)
691 {
692 struct va_format vaf;
693 va_list args;
694
695 if (!ext4_warning_ratelimit(inode->i_sb))
696 return;
697
698 va_start(args, fmt);
699 vaf.fmt = fmt;
700 vaf.va = &args;
701 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: "
702 "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id,
703 function, line, inode->i_ino, current->comm, &vaf);
704 va_end(args);
705 }
706
707 void __ext4_grp_locked_error(const char *function, unsigned int line,
708 struct super_block *sb, ext4_group_t grp,
709 unsigned long ino, ext4_fsblk_t block,
710 const char *fmt, ...)
711 __releases(bitlock)
712 __acquires(bitlock)
713 {
714 struct va_format vaf;
715 va_list args;
716 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
717
718 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
719 return;
720
721 es->s_last_error_ino = cpu_to_le32(ino);
722 es->s_last_error_block = cpu_to_le64(block);
723 __save_error_info(sb, function, line);
724
725 if (ext4_error_ratelimit(sb)) {
726 va_start(args, fmt);
727 vaf.fmt = fmt;
728 vaf.va = &args;
729 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
730 sb->s_id, function, line, grp);
731 if (ino)
732 printk(KERN_CONT "inode %lu: ", ino);
733 if (block)
734 printk(KERN_CONT "block %llu:",
735 (unsigned long long) block);
736 printk(KERN_CONT "%pV\n", &vaf);
737 va_end(args);
738 }
739
740 if (test_opt(sb, ERRORS_CONT)) {
741 ext4_commit_super(sb, 0);
742 return;
743 }
744
745 ext4_unlock_group(sb, grp);
746 ext4_handle_error(sb);
747 /*
748 * We only get here in the ERRORS_RO case; relocking the group
749 * may be dangerous, but nothing bad will happen since the
750 * filesystem will have already been marked read/only and the
751 * journal has been aborted. We return 1 as a hint to callers
752 * who might what to use the return value from
753 * ext4_grp_locked_error() to distinguish between the
754 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
755 * aggressively from the ext4 function in question, with a
756 * more appropriate error code.
757 */
758 ext4_lock_group(sb, grp);
759 return;
760 }
761
762 void ext4_update_dynamic_rev(struct super_block *sb)
763 {
764 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
765
766 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
767 return;
768
769 ext4_warning(sb,
770 "updating to rev %d because of new feature flag, "
771 "running e2fsck is recommended",
772 EXT4_DYNAMIC_REV);
773
774 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
775 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
776 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
777 /* leave es->s_feature_*compat flags alone */
778 /* es->s_uuid will be set by e2fsck if empty */
779
780 /*
781 * The rest of the superblock fields should be zero, and if not it
782 * means they are likely already in use, so leave them alone. We
783 * can leave it up to e2fsck to clean up any inconsistencies there.
784 */
785 }
786
787 /*
788 * Open the external journal device
789 */
790 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb)
791 {
792 struct block_device *bdev;
793 char b[BDEVNAME_SIZE];
794
795 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb);
796 if (IS_ERR(bdev))
797 goto fail;
798 return bdev;
799
800 fail:
801 ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld",
802 __bdevname(dev, b), PTR_ERR(bdev));
803 return NULL;
804 }
805
806 /*
807 * Release the journal device
808 */
809 static void ext4_blkdev_put(struct block_device *bdev)
810 {
811 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
812 }
813
814 static void ext4_blkdev_remove(struct ext4_sb_info *sbi)
815 {
816 struct block_device *bdev;
817 bdev = sbi->journal_bdev;
818 if (bdev) {
819 ext4_blkdev_put(bdev);
820 sbi->journal_bdev = NULL;
821 }
822 }
823
824 static inline struct inode *orphan_list_entry(struct list_head *l)
825 {
826 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
827 }
828
829 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
830 {
831 struct list_head *l;
832
833 ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
834 le32_to_cpu(sbi->s_es->s_last_orphan));
835
836 printk(KERN_ERR "sb_info orphan list:\n");
837 list_for_each(l, &sbi->s_orphan) {
838 struct inode *inode = orphan_list_entry(l);
839 printk(KERN_ERR " "
840 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
841 inode->i_sb->s_id, inode->i_ino, inode,
842 inode->i_mode, inode->i_nlink,
843 NEXT_ORPHAN(inode));
844 }
845 }
846
847 #ifdef CONFIG_QUOTA
848 static int ext4_quota_off(struct super_block *sb, int type);
849
850 static inline void ext4_quota_off_umount(struct super_block *sb)
851 {
852 int type;
853
854 /* Use our quota_off function to clear inode flags etc. */
855 for (type = 0; type < EXT4_MAXQUOTAS; type++)
856 ext4_quota_off(sb, type);
857 }
858 #else
859 static inline void ext4_quota_off_umount(struct super_block *sb)
860 {
861 }
862 #endif
863
864 static void ext4_put_super(struct super_block *sb)
865 {
866 struct ext4_sb_info *sbi = EXT4_SB(sb);
867 struct ext4_super_block *es = sbi->s_es;
868 int aborted = 0;
869 int i, err;
870
871 ext4_unregister_li_request(sb);
872 ext4_quota_off_umount(sb);
873
874 flush_workqueue(sbi->rsv_conversion_wq);
875 destroy_workqueue(sbi->rsv_conversion_wq);
876
877 if (sbi->s_journal) {
878 aborted = is_journal_aborted(sbi->s_journal);
879 err = jbd2_journal_destroy(sbi->s_journal);
880 sbi->s_journal = NULL;
881 if ((err < 0) && !aborted)
882 ext4_abort(sb, "Couldn't clean up the journal");
883 }
884
885 ext4_unregister_sysfs(sb);
886 ext4_es_unregister_shrinker(sbi);
887 del_timer_sync(&sbi->s_err_report);
888 ext4_release_system_zone(sb);
889 ext4_mb_release(sb);
890 ext4_ext_release(sb);
891
892 if (!(sb->s_flags & MS_RDONLY) && !aborted) {
893 ext4_clear_feature_journal_needs_recovery(sb);
894 es->s_state = cpu_to_le16(sbi->s_mount_state);
895 }
896 if (!(sb->s_flags & MS_RDONLY))
897 ext4_commit_super(sb, 1);
898
899 for (i = 0; i < sbi->s_gdb_count; i++)
900 brelse(sbi->s_group_desc[i]);
901 kvfree(sbi->s_group_desc);
902 kvfree(sbi->s_flex_groups);
903 percpu_counter_destroy(&sbi->s_freeclusters_counter);
904 percpu_counter_destroy(&sbi->s_freeinodes_counter);
905 percpu_counter_destroy(&sbi->s_dirs_counter);
906 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
907 percpu_free_rwsem(&sbi->s_journal_flag_rwsem);
908 #ifdef CONFIG_QUOTA
909 for (i = 0; i < EXT4_MAXQUOTAS; i++)
910 kfree(sbi->s_qf_names[i]);
911 #endif
912
913 /* Debugging code just in case the in-memory inode orphan list
914 * isn't empty. The on-disk one can be non-empty if we've
915 * detected an error and taken the fs readonly, but the
916 * in-memory list had better be clean by this point. */
917 if (!list_empty(&sbi->s_orphan))
918 dump_orphan_list(sb, sbi);
919 J_ASSERT(list_empty(&sbi->s_orphan));
920
921 sync_blockdev(sb->s_bdev);
922 invalidate_bdev(sb->s_bdev);
923 if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) {
924 /*
925 * Invalidate the journal device's buffers. We don't want them
926 * floating about in memory - the physical journal device may
927 * hotswapped, and it breaks the `ro-after' testing code.
928 */
929 sync_blockdev(sbi->journal_bdev);
930 invalidate_bdev(sbi->journal_bdev);
931 ext4_blkdev_remove(sbi);
932 }
933 if (sbi->s_ea_inode_cache) {
934 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
935 sbi->s_ea_inode_cache = NULL;
936 }
937 if (sbi->s_ea_block_cache) {
938 ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
939 sbi->s_ea_block_cache = NULL;
940 }
941 if (sbi->s_mmp_tsk)
942 kthread_stop(sbi->s_mmp_tsk);
943 brelse(sbi->s_sbh);
944 sb->s_fs_info = NULL;
945 /*
946 * Now that we are completely done shutting down the
947 * superblock, we need to actually destroy the kobject.
948 */
949 kobject_put(&sbi->s_kobj);
950 wait_for_completion(&sbi->s_kobj_unregister);
951 if (sbi->s_chksum_driver)
952 crypto_free_shash(sbi->s_chksum_driver);
953 kfree(sbi->s_blockgroup_lock);
954 kfree(sbi);
955 }
956
957 static struct kmem_cache *ext4_inode_cachep;
958
959 /*
960 * Called inside transaction, so use GFP_NOFS
961 */
962 static struct inode *ext4_alloc_inode(struct super_block *sb)
963 {
964 struct ext4_inode_info *ei;
965
966 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS);
967 if (!ei)
968 return NULL;
969
970 ei->vfs_inode.i_version = 1;
971 spin_lock_init(&ei->i_raw_lock);
972 INIT_LIST_HEAD(&ei->i_prealloc_list);
973 spin_lock_init(&ei->i_prealloc_lock);
974 ext4_es_init_tree(&ei->i_es_tree);
975 rwlock_init(&ei->i_es_lock);
976 INIT_LIST_HEAD(&ei->i_es_list);
977 ei->i_es_all_nr = 0;
978 ei->i_es_shk_nr = 0;
979 ei->i_es_shrink_lblk = 0;
980 ei->i_reserved_data_blocks = 0;
981 ei->i_da_metadata_calc_len = 0;
982 ei->i_da_metadata_calc_last_lblock = 0;
983 spin_lock_init(&(ei->i_block_reservation_lock));
984 #ifdef CONFIG_QUOTA
985 ei->i_reserved_quota = 0;
986 memset(&ei->i_dquot, 0, sizeof(ei->i_dquot));
987 #endif
988 ei->jinode = NULL;
989 INIT_LIST_HEAD(&ei->i_rsv_conversion_list);
990 spin_lock_init(&ei->i_completed_io_lock);
991 ei->i_sync_tid = 0;
992 ei->i_datasync_tid = 0;
993 atomic_set(&ei->i_unwritten, 0);
994 INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work);
995 return &ei->vfs_inode;
996 }
997
998 static int ext4_drop_inode(struct inode *inode)
999 {
1000 int drop = generic_drop_inode(inode);
1001
1002 trace_ext4_drop_inode(inode, drop);
1003 return drop;
1004 }
1005
1006 static void ext4_i_callback(struct rcu_head *head)
1007 {
1008 struct inode *inode = container_of(head, struct inode, i_rcu);
1009 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
1010 }
1011
1012 static void ext4_destroy_inode(struct inode *inode)
1013 {
1014 if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
1015 ext4_msg(inode->i_sb, KERN_ERR,
1016 "Inode %lu (%p): orphan list check failed!",
1017 inode->i_ino, EXT4_I(inode));
1018 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
1019 EXT4_I(inode), sizeof(struct ext4_inode_info),
1020 true);
1021 dump_stack();
1022 }
1023 call_rcu(&inode->i_rcu, ext4_i_callback);
1024 }
1025
1026 static void init_once(void *foo)
1027 {
1028 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo;
1029
1030 INIT_LIST_HEAD(&ei->i_orphan);
1031 init_rwsem(&ei->xattr_sem);
1032 init_rwsem(&ei->i_data_sem);
1033 init_rwsem(&ei->i_mmap_sem);
1034 inode_init_once(&ei->vfs_inode);
1035 }
1036
1037 static int __init init_inodecache(void)
1038 {
1039 ext4_inode_cachep = kmem_cache_create("ext4_inode_cache",
1040 sizeof(struct ext4_inode_info),
1041 0, (SLAB_RECLAIM_ACCOUNT|
1042 SLAB_MEM_SPREAD|SLAB_ACCOUNT),
1043 init_once);
1044 if (ext4_inode_cachep == NULL)
1045 return -ENOMEM;
1046 return 0;
1047 }
1048
1049 static void destroy_inodecache(void)
1050 {
1051 /*
1052 * Make sure all delayed rcu free inodes are flushed before we
1053 * destroy cache.
1054 */
1055 rcu_barrier();
1056 kmem_cache_destroy(ext4_inode_cachep);
1057 }
1058
1059 void ext4_clear_inode(struct inode *inode)
1060 {
1061 invalidate_inode_buffers(inode);
1062 clear_inode(inode);
1063 dquot_drop(inode);
1064 ext4_discard_preallocations(inode);
1065 ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS);
1066 if (EXT4_I(inode)->jinode) {
1067 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
1068 EXT4_I(inode)->jinode);
1069 jbd2_free_inode(EXT4_I(inode)->jinode);
1070 EXT4_I(inode)->jinode = NULL;
1071 }
1072 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1073 fscrypt_put_encryption_info(inode, NULL);
1074 #endif
1075 }
1076
1077 static struct inode *ext4_nfs_get_inode(struct super_block *sb,
1078 u64 ino, u32 generation)
1079 {
1080 struct inode *inode;
1081
1082 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
1083 return ERR_PTR(-ESTALE);
1084 if (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
1085 return ERR_PTR(-ESTALE);
1086
1087 /* iget isn't really right if the inode is currently unallocated!!
1088 *
1089 * ext4_read_inode will return a bad_inode if the inode had been
1090 * deleted, so we should be safe.
1091 *
1092 * Currently we don't know the generation for parent directory, so
1093 * a generation of 0 means "accept any"
1094 */
1095 inode = ext4_iget_normal(sb, ino);
1096 if (IS_ERR(inode))
1097 return ERR_CAST(inode);
1098 if (generation && inode->i_generation != generation) {
1099 iput(inode);
1100 return ERR_PTR(-ESTALE);
1101 }
1102
1103 return inode;
1104 }
1105
1106 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
1107 int fh_len, int fh_type)
1108 {
1109 return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1110 ext4_nfs_get_inode);
1111 }
1112
1113 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
1114 int fh_len, int fh_type)
1115 {
1116 return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1117 ext4_nfs_get_inode);
1118 }
1119
1120 /*
1121 * Try to release metadata pages (indirect blocks, directories) which are
1122 * mapped via the block device. Since these pages could have journal heads
1123 * which would prevent try_to_free_buffers() from freeing them, we must use
1124 * jbd2 layer's try_to_free_buffers() function to release them.
1125 */
1126 static int bdev_try_to_free_page(struct super_block *sb, struct page *page,
1127 gfp_t wait)
1128 {
1129 journal_t *journal = EXT4_SB(sb)->s_journal;
1130
1131 WARN_ON(PageChecked(page));
1132 if (!page_has_buffers(page))
1133 return 0;
1134 if (journal)
1135 return jbd2_journal_try_to_free_buffers(journal, page,
1136 wait & ~__GFP_DIRECT_RECLAIM);
1137 return try_to_free_buffers(page);
1138 }
1139
1140 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1141 static int ext4_get_context(struct inode *inode, void *ctx, size_t len)
1142 {
1143 return ext4_xattr_get(inode, EXT4_XATTR_INDEX_ENCRYPTION,
1144 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, ctx, len);
1145 }
1146
1147 static int ext4_set_context(struct inode *inode, const void *ctx, size_t len,
1148 void *fs_data)
1149 {
1150 handle_t *handle = fs_data;
1151 int res, res2, credits, retries = 0;
1152
1153 /*
1154 * Encrypting the root directory is not allowed because e2fsck expects
1155 * lost+found to exist and be unencrypted, and encrypting the root
1156 * directory would imply encrypting the lost+found directory as well as
1157 * the filename "lost+found" itself.
1158 */
1159 if (inode->i_ino == EXT4_ROOT_INO)
1160 return -EPERM;
1161
1162 res = ext4_convert_inline_data(inode);
1163 if (res)
1164 return res;
1165
1166 /*
1167 * If a journal handle was specified, then the encryption context is
1168 * being set on a new inode via inheritance and is part of a larger
1169 * transaction to create the inode. Otherwise the encryption context is
1170 * being set on an existing inode in its own transaction. Only in the
1171 * latter case should the "retry on ENOSPC" logic be used.
1172 */
1173
1174 if (handle) {
1175 res = ext4_xattr_set_handle(handle, inode,
1176 EXT4_XATTR_INDEX_ENCRYPTION,
1177 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT,
1178 ctx, len, 0);
1179 if (!res) {
1180 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT);
1181 ext4_clear_inode_state(inode,
1182 EXT4_STATE_MAY_INLINE_DATA);
1183 /*
1184 * Update inode->i_flags - e.g. S_DAX may get disabled
1185 */
1186 ext4_set_inode_flags(inode);
1187 }
1188 return res;
1189 }
1190
1191 res = dquot_initialize(inode);
1192 if (res)
1193 return res;
1194 retry:
1195 res = ext4_xattr_set_credits(inode, len, false /* is_create */,
1196 &credits);
1197 if (res)
1198 return res;
1199
1200 handle = ext4_journal_start(inode, EXT4_HT_MISC, credits);
1201 if (IS_ERR(handle))
1202 return PTR_ERR(handle);
1203
1204 res = ext4_xattr_set_handle(handle, inode, EXT4_XATTR_INDEX_ENCRYPTION,
1205 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT,
1206 ctx, len, 0);
1207 if (!res) {
1208 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT);
1209 /* Update inode->i_flags - e.g. S_DAX may get disabled */
1210 ext4_set_inode_flags(inode);
1211 res = ext4_mark_inode_dirty(handle, inode);
1212 if (res)
1213 EXT4_ERROR_INODE(inode, "Failed to mark inode dirty");
1214 }
1215 res2 = ext4_journal_stop(handle);
1216
1217 if (res == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1218 goto retry;
1219 if (!res)
1220 res = res2;
1221 return res;
1222 }
1223
1224 static bool ext4_dummy_context(struct inode *inode)
1225 {
1226 return DUMMY_ENCRYPTION_ENABLED(EXT4_SB(inode->i_sb));
1227 }
1228
1229 static unsigned ext4_max_namelen(struct inode *inode)
1230 {
1231 return S_ISLNK(inode->i_mode) ? inode->i_sb->s_blocksize :
1232 EXT4_NAME_LEN;
1233 }
1234
1235 static const struct fscrypt_operations ext4_cryptops = {
1236 .key_prefix = "ext4:",
1237 .get_context = ext4_get_context,
1238 .set_context = ext4_set_context,
1239 .dummy_context = ext4_dummy_context,
1240 .is_encrypted = ext4_encrypted_inode,
1241 .empty_dir = ext4_empty_dir,
1242 .max_namelen = ext4_max_namelen,
1243 };
1244 #else
1245 static const struct fscrypt_operations ext4_cryptops = {
1246 .is_encrypted = ext4_encrypted_inode,
1247 };
1248 #endif
1249
1250 #ifdef CONFIG_QUOTA
1251 static const char * const quotatypes[] = INITQFNAMES;
1252 #define QTYPE2NAME(t) (quotatypes[t])
1253
1254 static int ext4_write_dquot(struct dquot *dquot);
1255 static int ext4_acquire_dquot(struct dquot *dquot);
1256 static int ext4_release_dquot(struct dquot *dquot);
1257 static int ext4_mark_dquot_dirty(struct dquot *dquot);
1258 static int ext4_write_info(struct super_block *sb, int type);
1259 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1260 const struct path *path);
1261 static int ext4_quota_on_mount(struct super_block *sb, int type);
1262 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1263 size_t len, loff_t off);
1264 static ssize_t ext4_quota_write(struct super_block *sb, int type,
1265 const char *data, size_t len, loff_t off);
1266 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
1267 unsigned int flags);
1268 static int ext4_enable_quotas(struct super_block *sb);
1269 static int ext4_get_next_id(struct super_block *sb, struct kqid *qid);
1270
1271 static struct dquot **ext4_get_dquots(struct inode *inode)
1272 {
1273 return EXT4_I(inode)->i_dquot;
1274 }
1275
1276 static const struct dquot_operations ext4_quota_operations = {
1277 .get_reserved_space = ext4_get_reserved_space,
1278 .write_dquot = ext4_write_dquot,
1279 .acquire_dquot = ext4_acquire_dquot,
1280 .release_dquot = ext4_release_dquot,
1281 .mark_dirty = ext4_mark_dquot_dirty,
1282 .write_info = ext4_write_info,
1283 .alloc_dquot = dquot_alloc,
1284 .destroy_dquot = dquot_destroy,
1285 .get_projid = ext4_get_projid,
1286 .get_inode_usage = ext4_get_inode_usage,
1287 .get_next_id = ext4_get_next_id,
1288 };
1289
1290 static const struct quotactl_ops ext4_qctl_operations = {
1291 .quota_on = ext4_quota_on,
1292 .quota_off = ext4_quota_off,
1293 .quota_sync = dquot_quota_sync,
1294 .get_state = dquot_get_state,
1295 .set_info = dquot_set_dqinfo,
1296 .get_dqblk = dquot_get_dqblk,
1297 .set_dqblk = dquot_set_dqblk,
1298 .get_nextdqblk = dquot_get_next_dqblk,
1299 };
1300 #endif
1301
1302 static const struct super_operations ext4_sops = {
1303 .alloc_inode = ext4_alloc_inode,
1304 .destroy_inode = ext4_destroy_inode,
1305 .write_inode = ext4_write_inode,
1306 .dirty_inode = ext4_dirty_inode,
1307 .drop_inode = ext4_drop_inode,
1308 .evict_inode = ext4_evict_inode,
1309 .put_super = ext4_put_super,
1310 .sync_fs = ext4_sync_fs,
1311 .freeze_fs = ext4_freeze,
1312 .unfreeze_fs = ext4_unfreeze,
1313 .statfs = ext4_statfs,
1314 .remount_fs = ext4_remount,
1315 .show_options = ext4_show_options,
1316 #ifdef CONFIG_QUOTA
1317 .quota_read = ext4_quota_read,
1318 .quota_write = ext4_quota_write,
1319 .get_dquots = ext4_get_dquots,
1320 #endif
1321 .bdev_try_to_free_page = bdev_try_to_free_page,
1322 };
1323
1324 static const struct export_operations ext4_export_ops = {
1325 .fh_to_dentry = ext4_fh_to_dentry,
1326 .fh_to_parent = ext4_fh_to_parent,
1327 .get_parent = ext4_get_parent,
1328 };
1329
1330 enum {
1331 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1332 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro,
1333 Opt_nouid32, Opt_debug, Opt_removed,
1334 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl,
1335 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload,
1336 Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev,
1337 Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit,
1338 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1339 Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption,
1340 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota,
1341 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota,
1342 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err,
1343 Opt_usrquota, Opt_grpquota, Opt_prjquota, Opt_i_version, Opt_dax,
1344 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_mblk_io_submit,
1345 Opt_lazytime, Opt_nolazytime, Opt_debug_want_extra_isize,
1346 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1347 Opt_inode_readahead_blks, Opt_journal_ioprio,
1348 Opt_dioread_nolock, Opt_dioread_lock,
1349 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable,
1350 Opt_max_dir_size_kb, Opt_nojournal_checksum, Opt_nombcache,
1351 };
1352
1353 static const match_table_t tokens = {
1354 {Opt_bsd_df, "bsddf"},
1355 {Opt_minix_df, "minixdf"},
1356 {Opt_grpid, "grpid"},
1357 {Opt_grpid, "bsdgroups"},
1358 {Opt_nogrpid, "nogrpid"},
1359 {Opt_nogrpid, "sysvgroups"},
1360 {Opt_resgid, "resgid=%u"},
1361 {Opt_resuid, "resuid=%u"},
1362 {Opt_sb, "sb=%u"},
1363 {Opt_err_cont, "errors=continue"},
1364 {Opt_err_panic, "errors=panic"},
1365 {Opt_err_ro, "errors=remount-ro"},
1366 {Opt_nouid32, "nouid32"},
1367 {Opt_debug, "debug"},
1368 {Opt_removed, "oldalloc"},
1369 {Opt_removed, "orlov"},
1370 {Opt_user_xattr, "user_xattr"},
1371 {Opt_nouser_xattr, "nouser_xattr"},
1372 {Opt_acl, "acl"},
1373 {Opt_noacl, "noacl"},
1374 {Opt_noload, "norecovery"},
1375 {Opt_noload, "noload"},
1376 {Opt_removed, "nobh"},
1377 {Opt_removed, "bh"},
1378 {Opt_commit, "commit=%u"},
1379 {Opt_min_batch_time, "min_batch_time=%u"},
1380 {Opt_max_batch_time, "max_batch_time=%u"},
1381 {Opt_journal_dev, "journal_dev=%u"},
1382 {Opt_journal_path, "journal_path=%s"},
1383 {Opt_journal_checksum, "journal_checksum"},
1384 {Opt_nojournal_checksum, "nojournal_checksum"},
1385 {Opt_journal_async_commit, "journal_async_commit"},
1386 {Opt_abort, "abort"},
1387 {Opt_data_journal, "data=journal"},
1388 {Opt_data_ordered, "data=ordered"},
1389 {Opt_data_writeback, "data=writeback"},
1390 {Opt_data_err_abort, "data_err=abort"},
1391 {Opt_data_err_ignore, "data_err=ignore"},
1392 {Opt_offusrjquota, "usrjquota="},
1393 {Opt_usrjquota, "usrjquota=%s"},
1394 {Opt_offgrpjquota, "grpjquota="},
1395 {Opt_grpjquota, "grpjquota=%s"},
1396 {Opt_jqfmt_vfsold, "jqfmt=vfsold"},
1397 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
1398 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
1399 {Opt_grpquota, "grpquota"},
1400 {Opt_noquota, "noquota"},
1401 {Opt_quota, "quota"},
1402 {Opt_usrquota, "usrquota"},
1403 {Opt_prjquota, "prjquota"},
1404 {Opt_barrier, "barrier=%u"},
1405 {Opt_barrier, "barrier"},
1406 {Opt_nobarrier, "nobarrier"},
1407 {Opt_i_version, "i_version"},
1408 {Opt_dax, "dax"},
1409 {Opt_stripe, "stripe=%u"},
1410 {Opt_delalloc, "delalloc"},
1411 {Opt_lazytime, "lazytime"},
1412 {Opt_nolazytime, "nolazytime"},
1413 {Opt_debug_want_extra_isize, "debug_want_extra_isize=%u"},
1414 {Opt_nodelalloc, "nodelalloc"},
1415 {Opt_removed, "mblk_io_submit"},
1416 {Opt_removed, "nomblk_io_submit"},
1417 {Opt_block_validity, "block_validity"},
1418 {Opt_noblock_validity, "noblock_validity"},
1419 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"},
1420 {Opt_journal_ioprio, "journal_ioprio=%u"},
1421 {Opt_auto_da_alloc, "auto_da_alloc=%u"},
1422 {Opt_auto_da_alloc, "auto_da_alloc"},
1423 {Opt_noauto_da_alloc, "noauto_da_alloc"},
1424 {Opt_dioread_nolock, "dioread_nolock"},
1425 {Opt_dioread_lock, "dioread_lock"},
1426 {Opt_discard, "discard"},
1427 {Opt_nodiscard, "nodiscard"},
1428 {Opt_init_itable, "init_itable=%u"},
1429 {Opt_init_itable, "init_itable"},
1430 {Opt_noinit_itable, "noinit_itable"},
1431 {Opt_max_dir_size_kb, "max_dir_size_kb=%u"},
1432 {Opt_test_dummy_encryption, "test_dummy_encryption"},
1433 {Opt_nombcache, "nombcache"},
1434 {Opt_nombcache, "no_mbcache"}, /* for backward compatibility */
1435 {Opt_removed, "check=none"}, /* mount option from ext2/3 */
1436 {Opt_removed, "nocheck"}, /* mount option from ext2/3 */
1437 {Opt_removed, "reservation"}, /* mount option from ext2/3 */
1438 {Opt_removed, "noreservation"}, /* mount option from ext2/3 */
1439 {Opt_removed, "journal=%u"}, /* mount option from ext2/3 */
1440 {Opt_err, NULL},
1441 };
1442
1443 static ext4_fsblk_t get_sb_block(void **data)
1444 {
1445 ext4_fsblk_t sb_block;
1446 char *options = (char *) *data;
1447
1448 if (!options || strncmp(options, "sb=", 3) != 0)
1449 return 1; /* Default location */
1450
1451 options += 3;
1452 /* TODO: use simple_strtoll with >32bit ext4 */
1453 sb_block = simple_strtoul(options, &options, 0);
1454 if (*options && *options != ',') {
1455 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n",
1456 (char *) *data);
1457 return 1;
1458 }
1459 if (*options == ',')
1460 options++;
1461 *data = (void *) options;
1462
1463 return sb_block;
1464 }
1465
1466 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1467 static const char deprecated_msg[] =
1468 "Mount option \"%s\" will be removed by %s\n"
1469 "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n";
1470
1471 #ifdef CONFIG_QUOTA
1472 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args)
1473 {
1474 struct ext4_sb_info *sbi = EXT4_SB(sb);
1475 char *qname;
1476 int ret = -1;
1477
1478 if (sb_any_quota_loaded(sb) &&
1479 !sbi->s_qf_names[qtype]) {
1480 ext4_msg(sb, KERN_ERR,
1481 "Cannot change journaled "
1482 "quota options when quota turned on");
1483 return -1;
1484 }
1485 if (ext4_has_feature_quota(sb)) {
1486 ext4_msg(sb, KERN_INFO, "Journaled quota options "
1487 "ignored when QUOTA feature is enabled");
1488 return 1;
1489 }
1490 qname = match_strdup(args);
1491 if (!qname) {
1492 ext4_msg(sb, KERN_ERR,
1493 "Not enough memory for storing quotafile name");
1494 return -1;
1495 }
1496 if (sbi->s_qf_names[qtype]) {
1497 if (strcmp(sbi->s_qf_names[qtype], qname) == 0)
1498 ret = 1;
1499 else
1500 ext4_msg(sb, KERN_ERR,
1501 "%s quota file already specified",
1502 QTYPE2NAME(qtype));
1503 goto errout;
1504 }
1505 if (strchr(qname, '/')) {
1506 ext4_msg(sb, KERN_ERR,
1507 "quotafile must be on filesystem root");
1508 goto errout;
1509 }
1510 sbi->s_qf_names[qtype] = qname;
1511 set_opt(sb, QUOTA);
1512 return 1;
1513 errout:
1514 kfree(qname);
1515 return ret;
1516 }
1517
1518 static int clear_qf_name(struct super_block *sb, int qtype)
1519 {
1520
1521 struct ext4_sb_info *sbi = EXT4_SB(sb);
1522
1523 if (sb_any_quota_loaded(sb) &&
1524 sbi->s_qf_names[qtype]) {
1525 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options"
1526 " when quota turned on");
1527 return -1;
1528 }
1529 kfree(sbi->s_qf_names[qtype]);
1530 sbi->s_qf_names[qtype] = NULL;
1531 return 1;
1532 }
1533 #endif
1534
1535 #define MOPT_SET 0x0001
1536 #define MOPT_CLEAR 0x0002
1537 #define MOPT_NOSUPPORT 0x0004
1538 #define MOPT_EXPLICIT 0x0008
1539 #define MOPT_CLEAR_ERR 0x0010
1540 #define MOPT_GTE0 0x0020
1541 #ifdef CONFIG_QUOTA
1542 #define MOPT_Q 0
1543 #define MOPT_QFMT 0x0040
1544 #else
1545 #define MOPT_Q MOPT_NOSUPPORT
1546 #define MOPT_QFMT MOPT_NOSUPPORT
1547 #endif
1548 #define MOPT_DATAJ 0x0080
1549 #define MOPT_NO_EXT2 0x0100
1550 #define MOPT_NO_EXT3 0x0200
1551 #define MOPT_EXT4_ONLY (MOPT_NO_EXT2 | MOPT_NO_EXT3)
1552 #define MOPT_STRING 0x0400
1553
1554 static const struct mount_opts {
1555 int token;
1556 int mount_opt;
1557 int flags;
1558 } ext4_mount_opts[] = {
1559 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET},
1560 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR},
1561 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET},
1562 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR},
1563 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET},
1564 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR},
1565 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK,
1566 MOPT_EXT4_ONLY | MOPT_SET},
1567 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK,
1568 MOPT_EXT4_ONLY | MOPT_CLEAR},
1569 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET},
1570 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR},
1571 {Opt_delalloc, EXT4_MOUNT_DELALLOC,
1572 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1573 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC,
1574 MOPT_EXT4_ONLY | MOPT_CLEAR},
1575 {Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1576 MOPT_EXT4_ONLY | MOPT_CLEAR},
1577 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1578 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1579 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT |
1580 EXT4_MOUNT_JOURNAL_CHECKSUM),
1581 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1582 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET},
1583 {Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR},
1584 {Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR},
1585 {Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR},
1586 {Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT,
1587 MOPT_NO_EXT2},
1588 {Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT,
1589 MOPT_NO_EXT2},
1590 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET},
1591 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR},
1592 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET},
1593 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR},
1594 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR},
1595 {Opt_commit, 0, MOPT_GTE0},
1596 {Opt_max_batch_time, 0, MOPT_GTE0},
1597 {Opt_min_batch_time, 0, MOPT_GTE0},
1598 {Opt_inode_readahead_blks, 0, MOPT_GTE0},
1599 {Opt_init_itable, 0, MOPT_GTE0},
1600 {Opt_dax, EXT4_MOUNT_DAX, MOPT_SET},
1601 {Opt_stripe, 0, MOPT_GTE0},
1602 {Opt_resuid, 0, MOPT_GTE0},
1603 {Opt_resgid, 0, MOPT_GTE0},
1604 {Opt_journal_dev, 0, MOPT_NO_EXT2 | MOPT_GTE0},
1605 {Opt_journal_path, 0, MOPT_NO_EXT2 | MOPT_STRING},
1606 {Opt_journal_ioprio, 0, MOPT_NO_EXT2 | MOPT_GTE0},
1607 {Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1608 {Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1609 {Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA,
1610 MOPT_NO_EXT2 | MOPT_DATAJ},
1611 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET},
1612 {Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR},
1613 #ifdef CONFIG_EXT4_FS_POSIX_ACL
1614 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET},
1615 {Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR},
1616 #else
1617 {Opt_acl, 0, MOPT_NOSUPPORT},
1618 {Opt_noacl, 0, MOPT_NOSUPPORT},
1619 #endif
1620 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET},
1621 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET},
1622 {Opt_debug_want_extra_isize, 0, MOPT_GTE0},
1623 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q},
1624 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA,
1625 MOPT_SET | MOPT_Q},
1626 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA,
1627 MOPT_SET | MOPT_Q},
1628 {Opt_prjquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_PRJQUOTA,
1629 MOPT_SET | MOPT_Q},
1630 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
1631 EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA),
1632 MOPT_CLEAR | MOPT_Q},
1633 {Opt_usrjquota, 0, MOPT_Q},
1634 {Opt_grpjquota, 0, MOPT_Q},
1635 {Opt_offusrjquota, 0, MOPT_Q},
1636 {Opt_offgrpjquota, 0, MOPT_Q},
1637 {Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT},
1638 {Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT},
1639 {Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT},
1640 {Opt_max_dir_size_kb, 0, MOPT_GTE0},
1641 {Opt_test_dummy_encryption, 0, MOPT_GTE0},
1642 {Opt_nombcache, EXT4_MOUNT_NO_MBCACHE, MOPT_SET},
1643 {Opt_err, 0, 0}
1644 };
1645
1646 static int handle_mount_opt(struct super_block *sb, char *opt, int token,
1647 substring_t *args, unsigned long *journal_devnum,
1648 unsigned int *journal_ioprio, int is_remount)
1649 {
1650 struct ext4_sb_info *sbi = EXT4_SB(sb);
1651 const struct mount_opts *m;
1652 kuid_t uid;
1653 kgid_t gid;
1654 int arg = 0;
1655
1656 #ifdef CONFIG_QUOTA
1657 if (token == Opt_usrjquota)
1658 return set_qf_name(sb, USRQUOTA, &args[0]);
1659 else if (token == Opt_grpjquota)
1660 return set_qf_name(sb, GRPQUOTA, &args[0]);
1661 else if (token == Opt_offusrjquota)
1662 return clear_qf_name(sb, USRQUOTA);
1663 else if (token == Opt_offgrpjquota)
1664 return clear_qf_name(sb, GRPQUOTA);
1665 #endif
1666 switch (token) {
1667 case Opt_noacl:
1668 case Opt_nouser_xattr:
1669 ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5");
1670 break;
1671 case Opt_sb:
1672 return 1; /* handled by get_sb_block() */
1673 case Opt_removed:
1674 ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt);
1675 return 1;
1676 case Opt_abort:
1677 sbi->s_mount_flags |= EXT4_MF_FS_ABORTED;
1678 return 1;
1679 case Opt_i_version:
1680 sb->s_flags |= MS_I_VERSION;
1681 return 1;
1682 case Opt_lazytime:
1683 sb->s_flags |= MS_LAZYTIME;
1684 return 1;
1685 case Opt_nolazytime:
1686 sb->s_flags &= ~MS_LAZYTIME;
1687 return 1;
1688 }
1689
1690 for (m = ext4_mount_opts; m->token != Opt_err; m++)
1691 if (token == m->token)
1692 break;
1693
1694 if (m->token == Opt_err) {
1695 ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" "
1696 "or missing value", opt);
1697 return -1;
1698 }
1699
1700 if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) {
1701 ext4_msg(sb, KERN_ERR,
1702 "Mount option \"%s\" incompatible with ext2", opt);
1703 return -1;
1704 }
1705 if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) {
1706 ext4_msg(sb, KERN_ERR,
1707 "Mount option \"%s\" incompatible with ext3", opt);
1708 return -1;
1709 }
1710
1711 if (args->from && !(m->flags & MOPT_STRING) && match_int(args, &arg))
1712 return -1;
1713 if (args->from && (m->flags & MOPT_GTE0) && (arg < 0))
1714 return -1;
1715 if (m->flags & MOPT_EXPLICIT) {
1716 if (m->mount_opt & EXT4_MOUNT_DELALLOC) {
1717 set_opt2(sb, EXPLICIT_DELALLOC);
1718 } else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) {
1719 set_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM);
1720 } else
1721 return -1;
1722 }
1723 if (m->flags & MOPT_CLEAR_ERR)
1724 clear_opt(sb, ERRORS_MASK);
1725 if (token == Opt_noquota && sb_any_quota_loaded(sb)) {
1726 ext4_msg(sb, KERN_ERR, "Cannot change quota "
1727 "options when quota turned on");
1728 return -1;
1729 }
1730
1731 if (m->flags & MOPT_NOSUPPORT) {
1732 ext4_msg(sb, KERN_ERR, "%s option not supported", opt);
1733 } else if (token == Opt_commit) {
1734 if (arg == 0)
1735 arg = JBD2_DEFAULT_MAX_COMMIT_AGE;
1736 sbi->s_commit_interval = HZ * arg;
1737 } else if (token == Opt_debug_want_extra_isize) {
1738 sbi->s_want_extra_isize = arg;
1739 } else if (token == Opt_max_batch_time) {
1740 sbi->s_max_batch_time = arg;
1741 } else if (token == Opt_min_batch_time) {
1742 sbi->s_min_batch_time = arg;
1743 } else if (token == Opt_inode_readahead_blks) {
1744 if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) {
1745 ext4_msg(sb, KERN_ERR,
1746 "EXT4-fs: inode_readahead_blks must be "
1747 "0 or a power of 2 smaller than 2^31");
1748 return -1;
1749 }
1750 sbi->s_inode_readahead_blks = arg;
1751 } else if (token == Opt_init_itable) {
1752 set_opt(sb, INIT_INODE_TABLE);
1753 if (!args->from)
1754 arg = EXT4_DEF_LI_WAIT_MULT;
1755 sbi->s_li_wait_mult = arg;
1756 } else if (token == Opt_max_dir_size_kb) {
1757 sbi->s_max_dir_size_kb = arg;
1758 } else if (token == Opt_stripe) {
1759 sbi->s_stripe = arg;
1760 } else if (token == Opt_resuid) {
1761 uid = make_kuid(current_user_ns(), arg);
1762 if (!uid_valid(uid)) {
1763 ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg);
1764 return -1;
1765 }
1766 sbi->s_resuid = uid;
1767 } else if (token == Opt_resgid) {
1768 gid = make_kgid(current_user_ns(), arg);
1769 if (!gid_valid(gid)) {
1770 ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg);
1771 return -1;
1772 }
1773 sbi->s_resgid = gid;
1774 } else if (token == Opt_journal_dev) {
1775 if (is_remount) {
1776 ext4_msg(sb, KERN_ERR,
1777 "Cannot specify journal on remount");
1778 return -1;
1779 }
1780 *journal_devnum = arg;
1781 } else if (token == Opt_journal_path) {
1782 char *journal_path;
1783 struct inode *journal_inode;
1784 struct path path;
1785 int error;
1786
1787 if (is_remount) {
1788 ext4_msg(sb, KERN_ERR,
1789 "Cannot specify journal on remount");
1790 return -1;
1791 }
1792 journal_path = match_strdup(&args[0]);
1793 if (!journal_path) {
1794 ext4_msg(sb, KERN_ERR, "error: could not dup "
1795 "journal device string");
1796 return -1;
1797 }
1798
1799 error = kern_path(journal_path, LOOKUP_FOLLOW, &path);
1800 if (error) {
1801 ext4_msg(sb, KERN_ERR, "error: could not find "
1802 "journal device path: error %d", error);
1803 kfree(journal_path);
1804 return -1;
1805 }
1806
1807 journal_inode = d_inode(path.dentry);
1808 if (!S_ISBLK(journal_inode->i_mode)) {
1809 ext4_msg(sb, KERN_ERR, "error: journal path %s "
1810 "is not a block device", journal_path);
1811 path_put(&path);
1812 kfree(journal_path);
1813 return -1;
1814 }
1815
1816 *journal_devnum = new_encode_dev(journal_inode->i_rdev);
1817 path_put(&path);
1818 kfree(journal_path);
1819 } else if (token == Opt_journal_ioprio) {
1820 if (arg > 7) {
1821 ext4_msg(sb, KERN_ERR, "Invalid journal IO priority"
1822 " (must be 0-7)");
1823 return -1;
1824 }
1825 *journal_ioprio =
1826 IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg);
1827 } else if (token == Opt_test_dummy_encryption) {
1828 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1829 sbi->s_mount_flags |= EXT4_MF_TEST_DUMMY_ENCRYPTION;
1830 ext4_msg(sb, KERN_WARNING,
1831 "Test dummy encryption mode enabled");
1832 #else
1833 ext4_msg(sb, KERN_WARNING,
1834 "Test dummy encryption mount option ignored");
1835 #endif
1836 } else if (m->flags & MOPT_DATAJ) {
1837 if (is_remount) {
1838 if (!sbi->s_journal)
1839 ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option");
1840 else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) {
1841 ext4_msg(sb, KERN_ERR,
1842 "Cannot change data mode on remount");
1843 return -1;
1844 }
1845 } else {
1846 clear_opt(sb, DATA_FLAGS);
1847 sbi->s_mount_opt |= m->mount_opt;
1848 }
1849 #ifdef CONFIG_QUOTA
1850 } else if (m->flags & MOPT_QFMT) {
1851 if (sb_any_quota_loaded(sb) &&
1852 sbi->s_jquota_fmt != m->mount_opt) {
1853 ext4_msg(sb, KERN_ERR, "Cannot change journaled "
1854 "quota options when quota turned on");
1855 return -1;
1856 }
1857 if (ext4_has_feature_quota(sb)) {
1858 ext4_msg(sb, KERN_INFO,
1859 "Quota format mount options ignored "
1860 "when QUOTA feature is enabled");
1861 return 1;
1862 }
1863 sbi->s_jquota_fmt = m->mount_opt;
1864 #endif
1865 } else if (token == Opt_dax) {
1866 #ifdef CONFIG_FS_DAX
1867 ext4_msg(sb, KERN_WARNING,
1868 "DAX enabled. Warning: EXPERIMENTAL, use at your own risk");
1869 sbi->s_mount_opt |= m->mount_opt;
1870 #else
1871 ext4_msg(sb, KERN_INFO, "dax option not supported");
1872 return -1;
1873 #endif
1874 } else if (token == Opt_data_err_abort) {
1875 sbi->s_mount_opt |= m->mount_opt;
1876 } else if (token == Opt_data_err_ignore) {
1877 sbi->s_mount_opt &= ~m->mount_opt;
1878 } else {
1879 if (!args->from)
1880 arg = 1;
1881 if (m->flags & MOPT_CLEAR)
1882 arg = !arg;
1883 else if (unlikely(!(m->flags & MOPT_SET))) {
1884 ext4_msg(sb, KERN_WARNING,
1885 "buggy handling of option %s", opt);
1886 WARN_ON(1);
1887 return -1;
1888 }
1889 if (arg != 0)
1890 sbi->s_mount_opt |= m->mount_opt;
1891 else
1892 sbi->s_mount_opt &= ~m->mount_opt;
1893 }
1894 return 1;
1895 }
1896
1897 static int parse_options(char *options, struct super_block *sb,
1898 unsigned long *journal_devnum,
1899 unsigned int *journal_ioprio,
1900 int is_remount)
1901 {
1902 struct ext4_sb_info *sbi = EXT4_SB(sb);
1903 char *p;
1904 substring_t args[MAX_OPT_ARGS];
1905 int token;
1906
1907 if (!options)
1908 return 1;
1909
1910 while ((p = strsep(&options, ",")) != NULL) {
1911 if (!*p)
1912 continue;
1913 /*
1914 * Initialize args struct so we know whether arg was
1915 * found; some options take optional arguments.
1916 */
1917 args[0].to = args[0].from = NULL;
1918 token = match_token(p, tokens, args);
1919 if (handle_mount_opt(sb, p, token, args, journal_devnum,
1920 journal_ioprio, is_remount) < 0)
1921 return 0;
1922 }
1923 #ifdef CONFIG_QUOTA
1924 /*
1925 * We do the test below only for project quotas. 'usrquota' and
1926 * 'grpquota' mount options are allowed even without quota feature
1927 * to support legacy quotas in quota files.
1928 */
1929 if (test_opt(sb, PRJQUOTA) && !ext4_has_feature_project(sb)) {
1930 ext4_msg(sb, KERN_ERR, "Project quota feature not enabled. "
1931 "Cannot enable project quota enforcement.");
1932 return 0;
1933 }
1934 if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
1935 if (test_opt(sb, USRQUOTA) && sbi->s_qf_names[USRQUOTA])
1936 clear_opt(sb, USRQUOTA);
1937
1938 if (test_opt(sb, GRPQUOTA) && sbi->s_qf_names[GRPQUOTA])
1939 clear_opt(sb, GRPQUOTA);
1940
1941 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) {
1942 ext4_msg(sb, KERN_ERR, "old and new quota "
1943 "format mixing");
1944 return 0;
1945 }
1946
1947 if (!sbi->s_jquota_fmt) {
1948 ext4_msg(sb, KERN_ERR, "journaled quota format "
1949 "not specified");
1950 return 0;
1951 }
1952 }
1953 #endif
1954 if (test_opt(sb, DIOREAD_NOLOCK)) {
1955 int blocksize =
1956 BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size);
1957
1958 if (blocksize < PAGE_SIZE) {
1959 ext4_msg(sb, KERN_ERR, "can't mount with "
1960 "dioread_nolock if block size != PAGE_SIZE");
1961 return 0;
1962 }
1963 }
1964 return 1;
1965 }
1966
1967 static inline void ext4_show_quota_options(struct seq_file *seq,
1968 struct super_block *sb)
1969 {
1970 #if defined(CONFIG_QUOTA)
1971 struct ext4_sb_info *sbi = EXT4_SB(sb);
1972
1973 if (sbi->s_jquota_fmt) {
1974 char *fmtname = "";
1975
1976 switch (sbi->s_jquota_fmt) {
1977 case QFMT_VFS_OLD:
1978 fmtname = "vfsold";
1979 break;
1980 case QFMT_VFS_V0:
1981 fmtname = "vfsv0";
1982 break;
1983 case QFMT_VFS_V1:
1984 fmtname = "vfsv1";
1985 break;
1986 }
1987 seq_printf(seq, ",jqfmt=%s", fmtname);
1988 }
1989
1990 if (sbi->s_qf_names[USRQUOTA])
1991 seq_show_option(seq, "usrjquota", sbi->s_qf_names[USRQUOTA]);
1992
1993 if (sbi->s_qf_names[GRPQUOTA])
1994 seq_show_option(seq, "grpjquota", sbi->s_qf_names[GRPQUOTA]);
1995 #endif
1996 }
1997
1998 static const char *token2str(int token)
1999 {
2000 const struct match_token *t;
2001
2002 for (t = tokens; t->token != Opt_err; t++)
2003 if (t->token == token && !strchr(t->pattern, '='))
2004 break;
2005 return t->pattern;
2006 }
2007
2008 /*
2009 * Show an option if
2010 * - it's set to a non-default value OR
2011 * - if the per-sb default is different from the global default
2012 */
2013 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb,
2014 int nodefs)
2015 {
2016 struct ext4_sb_info *sbi = EXT4_SB(sb);
2017 struct ext4_super_block *es = sbi->s_es;
2018 int def_errors, def_mount_opt = nodefs ? 0 : sbi->s_def_mount_opt;
2019 const struct mount_opts *m;
2020 char sep = nodefs ? '\n' : ',';
2021
2022 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep)
2023 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg)
2024
2025 if (sbi->s_sb_block != 1)
2026 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block);
2027
2028 for (m = ext4_mount_opts; m->token != Opt_err; m++) {
2029 int want_set = m->flags & MOPT_SET;
2030 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) ||
2031 (m->flags & MOPT_CLEAR_ERR))
2032 continue;
2033 if (!(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt)))
2034 continue; /* skip if same as the default */
2035 if ((want_set &&
2036 (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) ||
2037 (!want_set && (sbi->s_mount_opt & m->mount_opt)))
2038 continue; /* select Opt_noFoo vs Opt_Foo */
2039 SEQ_OPTS_PRINT("%s", token2str(m->token));
2040 }
2041
2042 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) ||
2043 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID)
2044 SEQ_OPTS_PRINT("resuid=%u",
2045 from_kuid_munged(&init_user_ns, sbi->s_resuid));
2046 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) ||
2047 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID)
2048 SEQ_OPTS_PRINT("resgid=%u",
2049 from_kgid_munged(&init_user_ns, sbi->s_resgid));
2050 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors);
2051 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO)
2052 SEQ_OPTS_PUTS("errors=remount-ro");
2053 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
2054 SEQ_OPTS_PUTS("errors=continue");
2055 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
2056 SEQ_OPTS_PUTS("errors=panic");
2057 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
2058 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ);
2059 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME)
2060 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time);
2061 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME)
2062 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time);
2063 if (sb->s_flags & MS_I_VERSION)
2064 SEQ_OPTS_PUTS("i_version");
2065 if (nodefs || sbi->s_stripe)
2066 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe);
2067 if (EXT4_MOUNT_DATA_FLAGS & (sbi->s_mount_opt ^ def_mount_opt)) {
2068 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
2069 SEQ_OPTS_PUTS("data=journal");
2070 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
2071 SEQ_OPTS_PUTS("data=ordered");
2072 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
2073 SEQ_OPTS_PUTS("data=writeback");
2074 }
2075 if (nodefs ||
2076 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
2077 SEQ_OPTS_PRINT("inode_readahead_blks=%u",
2078 sbi->s_inode_readahead_blks);
2079
2080 if (nodefs || (test_opt(sb, INIT_INODE_TABLE) &&
2081 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)))
2082 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult);
2083 if (nodefs || sbi->s_max_dir_size_kb)
2084 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb);
2085 if (test_opt(sb, DATA_ERR_ABORT))
2086 SEQ_OPTS_PUTS("data_err=abort");
2087
2088 ext4_show_quota_options(seq, sb);
2089 return 0;
2090 }
2091
2092 static int ext4_show_options(struct seq_file *seq, struct dentry *root)
2093 {
2094 return _ext4_show_options(seq, root->d_sb, 0);
2095 }
2096
2097 int ext4_seq_options_show(struct seq_file *seq, void *offset)
2098 {
2099 struct super_block *sb = seq->private;
2100 int rc;
2101
2102 seq_puts(seq, (sb->s_flags & MS_RDONLY) ? "ro" : "rw");
2103 rc = _ext4_show_options(seq, sb, 1);
2104 seq_puts(seq, "\n");
2105 return rc;
2106 }
2107
2108 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
2109 int read_only)
2110 {
2111 struct ext4_sb_info *sbi = EXT4_SB(sb);
2112 int res = 0;
2113
2114 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
2115 ext4_msg(sb, KERN_ERR, "revision level too high, "
2116 "forcing read-only mode");
2117 res = MS_RDONLY;
2118 }
2119 if (read_only)
2120 goto done;
2121 if (!(sbi->s_mount_state & EXT4_VALID_FS))
2122 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
2123 "running e2fsck is recommended");
2124 else if (sbi->s_mount_state & EXT4_ERROR_FS)
2125 ext4_msg(sb, KERN_WARNING,
2126 "warning: mounting fs with errors, "
2127 "running e2fsck is recommended");
2128 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
2129 le16_to_cpu(es->s_mnt_count) >=
2130 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
2131 ext4_msg(sb, KERN_WARNING,
2132 "warning: maximal mount count reached, "
2133 "running e2fsck is recommended");
2134 else if (le32_to_cpu(es->s_checkinterval) &&
2135 (le32_to_cpu(es->s_lastcheck) +
2136 le32_to_cpu(es->s_checkinterval) <= get_seconds()))
2137 ext4_msg(sb, KERN_WARNING,
2138 "warning: checktime reached, "
2139 "running e2fsck is recommended");
2140 if (!sbi->s_journal)
2141 es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
2142 if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
2143 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
2144 le16_add_cpu(&es->s_mnt_count, 1);
2145 es->s_mtime = cpu_to_le32(get_seconds());
2146 ext4_update_dynamic_rev(sb);
2147 if (sbi->s_journal)
2148 ext4_set_feature_journal_needs_recovery(sb);
2149
2150 ext4_commit_super(sb, 1);
2151 done:
2152 if (test_opt(sb, DEBUG))
2153 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
2154 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
2155 sb->s_blocksize,
2156 sbi->s_groups_count,
2157 EXT4_BLOCKS_PER_GROUP(sb),
2158 EXT4_INODES_PER_GROUP(sb),
2159 sbi->s_mount_opt, sbi->s_mount_opt2);
2160
2161 cleancache_init_fs(sb);
2162 return res;
2163 }
2164
2165 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup)
2166 {
2167 struct ext4_sb_info *sbi = EXT4_SB(sb);
2168 struct flex_groups *new_groups;
2169 int size;
2170
2171 if (!sbi->s_log_groups_per_flex)
2172 return 0;
2173
2174 size = ext4_flex_group(sbi, ngroup - 1) + 1;
2175 if (size <= sbi->s_flex_groups_allocated)
2176 return 0;
2177
2178 size = roundup_pow_of_two(size * sizeof(struct flex_groups));
2179 new_groups = kvzalloc(size, GFP_KERNEL);
2180 if (!new_groups) {
2181 ext4_msg(sb, KERN_ERR, "not enough memory for %d flex groups",
2182 size / (int) sizeof(struct flex_groups));
2183 return -ENOMEM;
2184 }
2185
2186 if (sbi->s_flex_groups) {
2187 memcpy(new_groups, sbi->s_flex_groups,
2188 (sbi->s_flex_groups_allocated *
2189 sizeof(struct flex_groups)));
2190 kvfree(sbi->s_flex_groups);
2191 }
2192 sbi->s_flex_groups = new_groups;
2193 sbi->s_flex_groups_allocated = size / sizeof(struct flex_groups);
2194 return 0;
2195 }
2196
2197 static int ext4_fill_flex_info(struct super_block *sb)
2198 {
2199 struct ext4_sb_info *sbi = EXT4_SB(sb);
2200 struct ext4_group_desc *gdp = NULL;
2201 ext4_group_t flex_group;
2202 int i, err;
2203
2204 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
2205 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) {
2206 sbi->s_log_groups_per_flex = 0;
2207 return 1;
2208 }
2209
2210 err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count);
2211 if (err)
2212 goto failed;
2213
2214 for (i = 0; i < sbi->s_groups_count; i++) {
2215 gdp = ext4_get_group_desc(sb, i, NULL);
2216
2217 flex_group = ext4_flex_group(sbi, i);
2218 atomic_add(ext4_free_inodes_count(sb, gdp),
2219 &sbi->s_flex_groups[flex_group].free_inodes);
2220 atomic64_add(ext4_free_group_clusters(sb, gdp),
2221 &sbi->s_flex_groups[flex_group].free_clusters);
2222 atomic_add(ext4_used_dirs_count(sb, gdp),
2223 &sbi->s_flex_groups[flex_group].used_dirs);
2224 }
2225
2226 return 1;
2227 failed:
2228 return 0;
2229 }
2230
2231 static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group,
2232 struct ext4_group_desc *gdp)
2233 {
2234 int offset = offsetof(struct ext4_group_desc, bg_checksum);
2235 __u16 crc = 0;
2236 __le32 le_group = cpu_to_le32(block_group);
2237 struct ext4_sb_info *sbi = EXT4_SB(sb);
2238
2239 if (ext4_has_metadata_csum(sbi->s_sb)) {
2240 /* Use new metadata_csum algorithm */
2241 __u32 csum32;
2242 __u16 dummy_csum = 0;
2243
2244 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group,
2245 sizeof(le_group));
2246 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, offset);
2247 csum32 = ext4_chksum(sbi, csum32, (__u8 *)&dummy_csum,
2248 sizeof(dummy_csum));
2249 offset += sizeof(dummy_csum);
2250 if (offset < sbi->s_desc_size)
2251 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp + offset,
2252 sbi->s_desc_size - offset);
2253
2254 crc = csum32 & 0xFFFF;
2255 goto out;
2256 }
2257
2258 /* old crc16 code */
2259 if (!ext4_has_feature_gdt_csum(sb))
2260 return 0;
2261
2262 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
2263 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
2264 crc = crc16(crc, (__u8 *)gdp, offset);
2265 offset += sizeof(gdp->bg_checksum); /* skip checksum */
2266 /* for checksum of struct ext4_group_desc do the rest...*/
2267 if (ext4_has_feature_64bit(sb) &&
2268 offset < le16_to_cpu(sbi->s_es->s_desc_size))
2269 crc = crc16(crc, (__u8 *)gdp + offset,
2270 le16_to_cpu(sbi->s_es->s_desc_size) -
2271 offset);
2272
2273 out:
2274 return cpu_to_le16(crc);
2275 }
2276
2277 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group,
2278 struct ext4_group_desc *gdp)
2279 {
2280 if (ext4_has_group_desc_csum(sb) &&
2281 (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp)))
2282 return 0;
2283
2284 return 1;
2285 }
2286
2287 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group,
2288 struct ext4_group_desc *gdp)
2289 {
2290 if (!ext4_has_group_desc_csum(sb))
2291 return;
2292 gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp);
2293 }
2294
2295 /* Called at mount-time, super-block is locked */
2296 static int ext4_check_descriptors(struct super_block *sb,
2297 ext4_fsblk_t sb_block,
2298 ext4_group_t *first_not_zeroed)
2299 {
2300 struct ext4_sb_info *sbi = EXT4_SB(sb);
2301 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
2302 ext4_fsblk_t last_block;
2303 ext4_fsblk_t block_bitmap;
2304 ext4_fsblk_t inode_bitmap;
2305 ext4_fsblk_t inode_table;
2306 int flexbg_flag = 0;
2307 ext4_group_t i, grp = sbi->s_groups_count;
2308
2309 if (ext4_has_feature_flex_bg(sb))
2310 flexbg_flag = 1;
2311
2312 ext4_debug("Checking group descriptors");
2313
2314 for (i = 0; i < sbi->s_groups_count; i++) {
2315 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
2316
2317 if (i == sbi->s_groups_count - 1 || flexbg_flag)
2318 last_block = ext4_blocks_count(sbi->s_es) - 1;
2319 else
2320 last_block = first_block +
2321 (EXT4_BLOCKS_PER_GROUP(sb) - 1);
2322
2323 if ((grp == sbi->s_groups_count) &&
2324 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2325 grp = i;
2326
2327 block_bitmap = ext4_block_bitmap(sb, gdp);
2328 if (block_bitmap == sb_block) {
2329 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2330 "Block bitmap for group %u overlaps "
2331 "superblock", i);
2332 }
2333 if (block_bitmap < first_block || block_bitmap > last_block) {
2334 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2335 "Block bitmap for group %u not in group "
2336 "(block %llu)!", i, block_bitmap);
2337 return 0;
2338 }
2339 inode_bitmap = ext4_inode_bitmap(sb, gdp);
2340 if (inode_bitmap == sb_block) {
2341 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2342 "Inode bitmap for group %u overlaps "
2343 "superblock", i);
2344 }
2345 if (inode_bitmap < first_block || inode_bitmap > last_block) {
2346 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2347 "Inode bitmap for group %u not in group "
2348 "(block %llu)!", i, inode_bitmap);
2349 return 0;
2350 }
2351 inode_table = ext4_inode_table(sb, gdp);
2352 if (inode_table == sb_block) {
2353 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2354 "Inode table for group %u overlaps "
2355 "superblock", i);
2356 }
2357 if (inode_table < first_block ||
2358 inode_table + sbi->s_itb_per_group - 1 > last_block) {
2359 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2360 "Inode table for group %u not in group "
2361 "(block %llu)!", i, inode_table);
2362 return 0;
2363 }
2364 ext4_lock_group(sb, i);
2365 if (!ext4_group_desc_csum_verify(sb, i, gdp)) {
2366 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2367 "Checksum for group %u failed (%u!=%u)",
2368 i, le16_to_cpu(ext4_group_desc_csum(sb, i,
2369 gdp)), le16_to_cpu(gdp->bg_checksum));
2370 if (!(sb->s_flags & MS_RDONLY)) {
2371 ext4_unlock_group(sb, i);
2372 return 0;
2373 }
2374 }
2375 ext4_unlock_group(sb, i);
2376 if (!flexbg_flag)
2377 first_block += EXT4_BLOCKS_PER_GROUP(sb);
2378 }
2379 if (NULL != first_not_zeroed)
2380 *first_not_zeroed = grp;
2381 return 1;
2382 }
2383
2384 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at
2385 * the superblock) which were deleted from all directories, but held open by
2386 * a process at the time of a crash. We walk the list and try to delete these
2387 * inodes at recovery time (only with a read-write filesystem).
2388 *
2389 * In order to keep the orphan inode chain consistent during traversal (in
2390 * case of crash during recovery), we link each inode into the superblock
2391 * orphan list_head and handle it the same way as an inode deletion during
2392 * normal operation (which journals the operations for us).
2393 *
2394 * We only do an iget() and an iput() on each inode, which is very safe if we
2395 * accidentally point at an in-use or already deleted inode. The worst that
2396 * can happen in this case is that we get a "bit already cleared" message from
2397 * ext4_free_inode(). The only reason we would point at a wrong inode is if
2398 * e2fsck was run on this filesystem, and it must have already done the orphan
2399 * inode cleanup for us, so we can safely abort without any further action.
2400 */
2401 static void ext4_orphan_cleanup(struct super_block *sb,
2402 struct ext4_super_block *es)
2403 {
2404 unsigned int s_flags = sb->s_flags;
2405 int ret, nr_orphans = 0, nr_truncates = 0;
2406 #ifdef CONFIG_QUOTA
2407 int i;
2408 #endif
2409 if (!es->s_last_orphan) {
2410 jbd_debug(4, "no orphan inodes to clean up\n");
2411 return;
2412 }
2413
2414 if (bdev_read_only(sb->s_bdev)) {
2415 ext4_msg(sb, KERN_ERR, "write access "
2416 "unavailable, skipping orphan cleanup");
2417 return;
2418 }
2419
2420 /* Check if feature set would not allow a r/w mount */
2421 if (!ext4_feature_set_ok(sb, 0)) {
2422 ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to "
2423 "unknown ROCOMPAT features");
2424 return;
2425 }
2426
2427 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2428 /* don't clear list on RO mount w/ errors */
2429 if (es->s_last_orphan && !(s_flags & MS_RDONLY)) {
2430 ext4_msg(sb, KERN_INFO, "Errors on filesystem, "
2431 "clearing orphan list.\n");
2432 es->s_last_orphan = 0;
2433 }
2434 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2435 return;
2436 }
2437
2438 if (s_flags & MS_RDONLY) {
2439 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs");
2440 sb->s_flags &= ~MS_RDONLY;
2441 }
2442 #ifdef CONFIG_QUOTA
2443 /* Needed for iput() to work correctly and not trash data */
2444 sb->s_flags |= MS_ACTIVE;
2445 /* Turn on quotas so that they are updated correctly */
2446 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2447 if (EXT4_SB(sb)->s_qf_names[i]) {
2448 int ret = ext4_quota_on_mount(sb, i);
2449 if (ret < 0)
2450 ext4_msg(sb, KERN_ERR,
2451 "Cannot turn on journaled "
2452 "quota: error %d", ret);
2453 }
2454 }
2455 #endif
2456
2457 while (es->s_last_orphan) {
2458 struct inode *inode;
2459
2460 /*
2461 * We may have encountered an error during cleanup; if
2462 * so, skip the rest.
2463 */
2464 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2465 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2466 es->s_last_orphan = 0;
2467 break;
2468 }
2469
2470 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan));
2471 if (IS_ERR(inode)) {
2472 es->s_last_orphan = 0;
2473 break;
2474 }
2475
2476 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan);
2477 dquot_initialize(inode);
2478 if (inode->i_nlink) {
2479 if (test_opt(sb, DEBUG))
2480 ext4_msg(sb, KERN_DEBUG,
2481 "%s: truncating inode %lu to %lld bytes",
2482 __func__, inode->i_ino, inode->i_size);
2483 jbd_debug(2, "truncating inode %lu to %lld bytes\n",
2484 inode->i_ino, inode->i_size);
2485 inode_lock(inode);
2486 truncate_inode_pages(inode->i_mapping, inode->i_size);
2487 ret = ext4_truncate(inode);
2488 if (ret)
2489 ext4_std_error(inode->i_sb, ret);
2490 inode_unlock(inode);
2491 nr_truncates++;
2492 } else {
2493 if (test_opt(sb, DEBUG))
2494 ext4_msg(sb, KERN_DEBUG,
2495 "%s: deleting unreferenced inode %lu",
2496 __func__, inode->i_ino);
2497 jbd_debug(2, "deleting unreferenced inode %lu\n",
2498 inode->i_ino);
2499 nr_orphans++;
2500 }
2501 iput(inode); /* The delete magic happens here! */
2502 }
2503
2504 #define PLURAL(x) (x), ((x) == 1) ? "" : "s"
2505
2506 if (nr_orphans)
2507 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted",
2508 PLURAL(nr_orphans));
2509 if (nr_truncates)
2510 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up",
2511 PLURAL(nr_truncates));
2512 #ifdef CONFIG_QUOTA
2513 /* Turn quotas off */
2514 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2515 if (sb_dqopt(sb)->files[i])
2516 dquot_quota_off(sb, i);
2517 }
2518 #endif
2519 sb->s_flags = s_flags; /* Restore MS_RDONLY status */
2520 }
2521
2522 /*
2523 * Maximal extent format file size.
2524 * Resulting logical blkno at s_maxbytes must fit in our on-disk
2525 * extent format containers, within a sector_t, and within i_blocks
2526 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units,
2527 * so that won't be a limiting factor.
2528 *
2529 * However there is other limiting factor. We do store extents in the form
2530 * of starting block and length, hence the resulting length of the extent
2531 * covering maximum file size must fit into on-disk format containers as
2532 * well. Given that length is always by 1 unit bigger than max unit (because
2533 * we count 0 as well) we have to lower the s_maxbytes by one fs block.
2534 *
2535 * Note, this does *not* consider any metadata overhead for vfs i_blocks.
2536 */
2537 static loff_t ext4_max_size(int blkbits, int has_huge_files)
2538 {
2539 loff_t res;
2540 loff_t upper_limit = MAX_LFS_FILESIZE;
2541
2542 /* small i_blocks in vfs inode? */
2543 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2544 /*
2545 * CONFIG_LBDAF is not enabled implies the inode
2546 * i_block represent total blocks in 512 bytes
2547 * 32 == size of vfs inode i_blocks * 8
2548 */
2549 upper_limit = (1LL << 32) - 1;
2550
2551 /* total blocks in file system block size */
2552 upper_limit >>= (blkbits - 9);
2553 upper_limit <<= blkbits;
2554 }
2555
2556 /*
2557 * 32-bit extent-start container, ee_block. We lower the maxbytes
2558 * by one fs block, so ee_len can cover the extent of maximum file
2559 * size
2560 */
2561 res = (1LL << 32) - 1;
2562 res <<= blkbits;
2563
2564 /* Sanity check against vm- & vfs- imposed limits */
2565 if (res > upper_limit)
2566 res = upper_limit;
2567
2568 return res;
2569 }
2570
2571 /*
2572 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect
2573 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
2574 * We need to be 1 filesystem block less than the 2^48 sector limit.
2575 */
2576 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
2577 {
2578 loff_t res = EXT4_NDIR_BLOCKS;
2579 int meta_blocks;
2580 loff_t upper_limit;
2581 /* This is calculated to be the largest file size for a dense, block
2582 * mapped file such that the file's total number of 512-byte sectors,
2583 * including data and all indirect blocks, does not exceed (2^48 - 1).
2584 *
2585 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
2586 * number of 512-byte sectors of the file.
2587 */
2588
2589 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2590 /*
2591 * !has_huge_files or CONFIG_LBDAF not enabled implies that
2592 * the inode i_block field represents total file blocks in
2593 * 2^32 512-byte sectors == size of vfs inode i_blocks * 8
2594 */
2595 upper_limit = (1LL << 32) - 1;
2596
2597 /* total blocks in file system block size */
2598 upper_limit >>= (bits - 9);
2599
2600 } else {
2601 /*
2602 * We use 48 bit ext4_inode i_blocks
2603 * With EXT4_HUGE_FILE_FL set the i_blocks
2604 * represent total number of blocks in
2605 * file system block size
2606 */
2607 upper_limit = (1LL << 48) - 1;
2608
2609 }
2610
2611 /* indirect blocks */
2612 meta_blocks = 1;
2613 /* double indirect blocks */
2614 meta_blocks += 1 + (1LL << (bits-2));
2615 /* tripple indirect blocks */
2616 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2)));
2617
2618 upper_limit -= meta_blocks;
2619 upper_limit <<= bits;
2620
2621 res += 1LL << (bits-2);
2622 res += 1LL << (2*(bits-2));
2623 res += 1LL << (3*(bits-2));
2624 res <<= bits;
2625 if (res > upper_limit)
2626 res = upper_limit;
2627
2628 if (res > MAX_LFS_FILESIZE)
2629 res = MAX_LFS_FILESIZE;
2630
2631 return res;
2632 }
2633
2634 static ext4_fsblk_t descriptor_loc(struct super_block *sb,
2635 ext4_fsblk_t logical_sb_block, int nr)
2636 {
2637 struct ext4_sb_info *sbi = EXT4_SB(sb);
2638 ext4_group_t bg, first_meta_bg;
2639 int has_super = 0;
2640
2641 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
2642
2643 if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg)
2644 return logical_sb_block + nr + 1;
2645 bg = sbi->s_desc_per_block * nr;
2646 if (ext4_bg_has_super(sb, bg))
2647 has_super = 1;
2648
2649 /*
2650 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at
2651 * block 2, not 1. If s_first_data_block == 0 (bigalloc is enabled
2652 * on modern mke2fs or blksize > 1k on older mke2fs) then we must
2653 * compensate.
2654 */
2655 if (sb->s_blocksize == 1024 && nr == 0 &&
2656 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block) == 0)
2657 has_super++;
2658
2659 return (has_super + ext4_group_first_block_no(sb, bg));
2660 }
2661
2662 /**
2663 * ext4_get_stripe_size: Get the stripe size.
2664 * @sbi: In memory super block info
2665 *
2666 * If we have specified it via mount option, then
2667 * use the mount option value. If the value specified at mount time is
2668 * greater than the blocks per group use the super block value.
2669 * If the super block value is greater than blocks per group return 0.
2670 * Allocator needs it be less than blocks per group.
2671 *
2672 */
2673 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
2674 {
2675 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
2676 unsigned long stripe_width =
2677 le32_to_cpu(sbi->s_es->s_raid_stripe_width);
2678 int ret;
2679
2680 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
2681 ret = sbi->s_stripe;
2682 else if (stripe_width && stripe_width <= sbi->s_blocks_per_group)
2683 ret = stripe_width;
2684 else if (stride && stride <= sbi->s_blocks_per_group)
2685 ret = stride;
2686 else
2687 ret = 0;
2688
2689 /*
2690 * If the stripe width is 1, this makes no sense and
2691 * we set it to 0 to turn off stripe handling code.
2692 */
2693 if (ret <= 1)
2694 ret = 0;
2695
2696 return ret;
2697 }
2698
2699 /*
2700 * Check whether this filesystem can be mounted based on
2701 * the features present and the RDONLY/RDWR mount requested.
2702 * Returns 1 if this filesystem can be mounted as requested,
2703 * 0 if it cannot be.
2704 */
2705 static int ext4_feature_set_ok(struct super_block *sb, int readonly)
2706 {
2707 if (ext4_has_unknown_ext4_incompat_features(sb)) {
2708 ext4_msg(sb, KERN_ERR,
2709 "Couldn't mount because of "
2710 "unsupported optional features (%x)",
2711 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
2712 ~EXT4_FEATURE_INCOMPAT_SUPP));
2713 return 0;
2714 }
2715
2716 if (readonly)
2717 return 1;
2718
2719 if (ext4_has_feature_readonly(sb)) {
2720 ext4_msg(sb, KERN_INFO, "filesystem is read-only");
2721 sb->s_flags |= MS_RDONLY;
2722 return 1;
2723 }
2724
2725 /* Check that feature set is OK for a read-write mount */
2726 if (ext4_has_unknown_ext4_ro_compat_features(sb)) {
2727 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
2728 "unsupported optional features (%x)",
2729 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
2730 ~EXT4_FEATURE_RO_COMPAT_SUPP));
2731 return 0;
2732 }
2733 /*
2734 * Large file size enabled file system can only be mounted
2735 * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF
2736 */
2737 if (ext4_has_feature_huge_file(sb)) {
2738 if (sizeof(blkcnt_t) < sizeof(u64)) {
2739 ext4_msg(sb, KERN_ERR, "Filesystem with huge files "
2740 "cannot be mounted RDWR without "
2741 "CONFIG_LBDAF");
2742 return 0;
2743 }
2744 }
2745 if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) {
2746 ext4_msg(sb, KERN_ERR,
2747 "Can't support bigalloc feature without "
2748 "extents feature\n");
2749 return 0;
2750 }
2751
2752 #ifndef CONFIG_QUOTA
2753 if (ext4_has_feature_quota(sb) && !readonly) {
2754 ext4_msg(sb, KERN_ERR,
2755 "Filesystem with quota feature cannot be mounted RDWR "
2756 "without CONFIG_QUOTA");
2757 return 0;
2758 }
2759 if (ext4_has_feature_project(sb) && !readonly) {
2760 ext4_msg(sb, KERN_ERR,
2761 "Filesystem with project quota feature cannot be mounted RDWR "
2762 "without CONFIG_QUOTA");
2763 return 0;
2764 }
2765 #endif /* CONFIG_QUOTA */
2766 return 1;
2767 }
2768
2769 /*
2770 * This function is called once a day if we have errors logged
2771 * on the file system
2772 */
2773 static void print_daily_error_info(unsigned long arg)
2774 {
2775 struct super_block *sb = (struct super_block *) arg;
2776 struct ext4_sb_info *sbi;
2777 struct ext4_super_block *es;
2778
2779 sbi = EXT4_SB(sb);
2780 es = sbi->s_es;
2781
2782 if (es->s_error_count)
2783 /* fsck newer than v1.41.13 is needed to clean this condition. */
2784 ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u",
2785 le32_to_cpu(es->s_error_count));
2786 if (es->s_first_error_time) {
2787 printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %u: %.*s:%d",
2788 sb->s_id, le32_to_cpu(es->s_first_error_time),
2789 (int) sizeof(es->s_first_error_func),
2790 es->s_first_error_func,
2791 le32_to_cpu(es->s_first_error_line));
2792 if (es->s_first_error_ino)
2793 printk(KERN_CONT ": inode %u",
2794 le32_to_cpu(es->s_first_error_ino));
2795 if (es->s_first_error_block)
2796 printk(KERN_CONT ": block %llu", (unsigned long long)
2797 le64_to_cpu(es->s_first_error_block));
2798 printk(KERN_CONT "\n");
2799 }
2800 if (es->s_last_error_time) {
2801 printk(KERN_NOTICE "EXT4-fs (%s): last error at time %u: %.*s:%d",
2802 sb->s_id, le32_to_cpu(es->s_last_error_time),
2803 (int) sizeof(es->s_last_error_func),
2804 es->s_last_error_func,
2805 le32_to_cpu(es->s_last_error_line));
2806 if (es->s_last_error_ino)
2807 printk(KERN_CONT ": inode %u",
2808 le32_to_cpu(es->s_last_error_ino));
2809 if (es->s_last_error_block)
2810 printk(KERN_CONT ": block %llu", (unsigned long long)
2811 le64_to_cpu(es->s_last_error_block));
2812 printk(KERN_CONT "\n");
2813 }
2814 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */
2815 }
2816
2817 /* Find next suitable group and run ext4_init_inode_table */
2818 static int ext4_run_li_request(struct ext4_li_request *elr)
2819 {
2820 struct ext4_group_desc *gdp = NULL;
2821 ext4_group_t group, ngroups;
2822 struct super_block *sb;
2823 unsigned long timeout = 0;
2824 int ret = 0;
2825
2826 sb = elr->lr_super;
2827 ngroups = EXT4_SB(sb)->s_groups_count;
2828
2829 for (group = elr->lr_next_group; group < ngroups; group++) {
2830 gdp = ext4_get_group_desc(sb, group, NULL);
2831 if (!gdp) {
2832 ret = 1;
2833 break;
2834 }
2835
2836 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2837 break;
2838 }
2839
2840 if (group >= ngroups)
2841 ret = 1;
2842
2843 if (!ret) {
2844 timeout = jiffies;
2845 ret = ext4_init_inode_table(sb, group,
2846 elr->lr_timeout ? 0 : 1);
2847 if (elr->lr_timeout == 0) {
2848 timeout = (jiffies - timeout) *
2849 elr->lr_sbi->s_li_wait_mult;
2850 elr->lr_timeout = timeout;
2851 }
2852 elr->lr_next_sched = jiffies + elr->lr_timeout;
2853 elr->lr_next_group = group + 1;
2854 }
2855 return ret;
2856 }
2857
2858 /*
2859 * Remove lr_request from the list_request and free the
2860 * request structure. Should be called with li_list_mtx held
2861 */
2862 static void ext4_remove_li_request(struct ext4_li_request *elr)
2863 {
2864 struct ext4_sb_info *sbi;
2865
2866 if (!elr)
2867 return;
2868
2869 sbi = elr->lr_sbi;
2870
2871 list_del(&elr->lr_request);
2872 sbi->s_li_request = NULL;
2873 kfree(elr);
2874 }
2875
2876 static void ext4_unregister_li_request(struct super_block *sb)
2877 {
2878 mutex_lock(&ext4_li_mtx);
2879 if (!ext4_li_info) {
2880 mutex_unlock(&ext4_li_mtx);
2881 return;
2882 }
2883
2884 mutex_lock(&ext4_li_info->li_list_mtx);
2885 ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
2886 mutex_unlock(&ext4_li_info->li_list_mtx);
2887 mutex_unlock(&ext4_li_mtx);
2888 }
2889
2890 static struct task_struct *ext4_lazyinit_task;
2891
2892 /*
2893 * This is the function where ext4lazyinit thread lives. It walks
2894 * through the request list searching for next scheduled filesystem.
2895 * When such a fs is found, run the lazy initialization request
2896 * (ext4_rn_li_request) and keep track of the time spend in this
2897 * function. Based on that time we compute next schedule time of
2898 * the request. When walking through the list is complete, compute
2899 * next waking time and put itself into sleep.
2900 */
2901 static int ext4_lazyinit_thread(void *arg)
2902 {
2903 struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg;
2904 struct list_head *pos, *n;
2905 struct ext4_li_request *elr;
2906 unsigned long next_wakeup, cur;
2907
2908 BUG_ON(NULL == eli);
2909
2910 cont_thread:
2911 while (true) {
2912 next_wakeup = MAX_JIFFY_OFFSET;
2913
2914 mutex_lock(&eli->li_list_mtx);
2915 if (list_empty(&eli->li_request_list)) {
2916 mutex_unlock(&eli->li_list_mtx);
2917 goto exit_thread;
2918 }
2919 list_for_each_safe(pos, n, &eli->li_request_list) {
2920 int err = 0;
2921 int progress = 0;
2922 elr = list_entry(pos, struct ext4_li_request,
2923 lr_request);
2924
2925 if (time_before(jiffies, elr->lr_next_sched)) {
2926 if (time_before(elr->lr_next_sched, next_wakeup))
2927 next_wakeup = elr->lr_next_sched;
2928 continue;
2929 }
2930 if (down_read_trylock(&elr->lr_super->s_umount)) {
2931 if (sb_start_write_trylock(elr->lr_super)) {
2932 progress = 1;
2933 /*
2934 * We hold sb->s_umount, sb can not
2935 * be removed from the list, it is
2936 * now safe to drop li_list_mtx
2937 */
2938 mutex_unlock(&eli->li_list_mtx);
2939 err = ext4_run_li_request(elr);
2940 sb_end_write(elr->lr_super);
2941 mutex_lock(&eli->li_list_mtx);
2942 n = pos->next;
2943 }
2944 up_read((&elr->lr_super->s_umount));
2945 }
2946 /* error, remove the lazy_init job */
2947 if (err) {
2948 ext4_remove_li_request(elr);
2949 continue;
2950 }
2951 if (!progress) {
2952 elr->lr_next_sched = jiffies +
2953 (prandom_u32()
2954 % (EXT4_DEF_LI_MAX_START_DELAY * HZ));
2955 }
2956 if (time_before(elr->lr_next_sched, next_wakeup))
2957 next_wakeup = elr->lr_next_sched;
2958 }
2959 mutex_unlock(&eli->li_list_mtx);
2960
2961 try_to_freeze();
2962
2963 cur = jiffies;
2964 if ((time_after_eq(cur, next_wakeup)) ||
2965 (MAX_JIFFY_OFFSET == next_wakeup)) {
2966 cond_resched();
2967 continue;
2968 }
2969
2970 schedule_timeout_interruptible(next_wakeup - cur);
2971
2972 if (kthread_should_stop()) {
2973 ext4_clear_request_list();
2974 goto exit_thread;
2975 }
2976 }
2977
2978 exit_thread:
2979 /*
2980 * It looks like the request list is empty, but we need
2981 * to check it under the li_list_mtx lock, to prevent any
2982 * additions into it, and of course we should lock ext4_li_mtx
2983 * to atomically free the list and ext4_li_info, because at
2984 * this point another ext4 filesystem could be registering
2985 * new one.
2986 */
2987 mutex_lock(&ext4_li_mtx);
2988 mutex_lock(&eli->li_list_mtx);
2989 if (!list_empty(&eli->li_request_list)) {
2990 mutex_unlock(&eli->li_list_mtx);
2991 mutex_unlock(&ext4_li_mtx);
2992 goto cont_thread;
2993 }
2994 mutex_unlock(&eli->li_list_mtx);
2995 kfree(ext4_li_info);
2996 ext4_li_info = NULL;
2997 mutex_unlock(&ext4_li_mtx);
2998
2999 return 0;
3000 }
3001
3002 static void ext4_clear_request_list(void)
3003 {
3004 struct list_head *pos, *n;
3005 struct ext4_li_request *elr;
3006
3007 mutex_lock(&ext4_li_info->li_list_mtx);
3008 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
3009 elr = list_entry(pos, struct ext4_li_request,
3010 lr_request);
3011 ext4_remove_li_request(elr);
3012 }
3013 mutex_unlock(&ext4_li_info->li_list_mtx);
3014 }
3015
3016 static int ext4_run_lazyinit_thread(void)
3017 {
3018 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
3019 ext4_li_info, "ext4lazyinit");
3020 if (IS_ERR(ext4_lazyinit_task)) {
3021 int err = PTR_ERR(ext4_lazyinit_task);
3022 ext4_clear_request_list();
3023 kfree(ext4_li_info);
3024 ext4_li_info = NULL;
3025 printk(KERN_CRIT "EXT4-fs: error %d creating inode table "
3026 "initialization thread\n",
3027 err);
3028 return err;
3029 }
3030 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
3031 return 0;
3032 }
3033
3034 /*
3035 * Check whether it make sense to run itable init. thread or not.
3036 * If there is at least one uninitialized inode table, return
3037 * corresponding group number, else the loop goes through all
3038 * groups and return total number of groups.
3039 */
3040 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
3041 {
3042 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
3043 struct ext4_group_desc *gdp = NULL;
3044
3045 for (group = 0; group < ngroups; group++) {
3046 gdp = ext4_get_group_desc(sb, group, NULL);
3047 if (!gdp)
3048 continue;
3049
3050 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3051 break;
3052 }
3053
3054 return group;
3055 }
3056
3057 static int ext4_li_info_new(void)
3058 {
3059 struct ext4_lazy_init *eli = NULL;
3060
3061 eli = kzalloc(sizeof(*eli), GFP_KERNEL);
3062 if (!eli)
3063 return -ENOMEM;
3064
3065 INIT_LIST_HEAD(&eli->li_request_list);
3066 mutex_init(&eli->li_list_mtx);
3067
3068 eli->li_state |= EXT4_LAZYINIT_QUIT;
3069
3070 ext4_li_info = eli;
3071
3072 return 0;
3073 }
3074
3075 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
3076 ext4_group_t start)
3077 {
3078 struct ext4_sb_info *sbi = EXT4_SB(sb);
3079 struct ext4_li_request *elr;
3080
3081 elr = kzalloc(sizeof(*elr), GFP_KERNEL);
3082 if (!elr)
3083 return NULL;
3084
3085 elr->lr_super = sb;
3086 elr->lr_sbi = sbi;
3087 elr->lr_next_group = start;
3088
3089 /*
3090 * Randomize first schedule time of the request to
3091 * spread the inode table initialization requests
3092 * better.
3093 */
3094 elr->lr_next_sched = jiffies + (prandom_u32() %
3095 (EXT4_DEF_LI_MAX_START_DELAY * HZ));
3096 return elr;
3097 }
3098
3099 int ext4_register_li_request(struct super_block *sb,
3100 ext4_group_t first_not_zeroed)
3101 {
3102 struct ext4_sb_info *sbi = EXT4_SB(sb);
3103 struct ext4_li_request *elr = NULL;
3104 ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count;
3105 int ret = 0;
3106
3107 mutex_lock(&ext4_li_mtx);
3108 if (sbi->s_li_request != NULL) {
3109 /*
3110 * Reset timeout so it can be computed again, because
3111 * s_li_wait_mult might have changed.
3112 */
3113 sbi->s_li_request->lr_timeout = 0;
3114 goto out;
3115 }
3116
3117 if (first_not_zeroed == ngroups ||
3118 (sb->s_flags & MS_RDONLY) ||
3119 !test_opt(sb, INIT_INODE_TABLE))
3120 goto out;
3121
3122 elr = ext4_li_request_new(sb, first_not_zeroed);
3123 if (!elr) {
3124 ret = -ENOMEM;
3125 goto out;
3126 }
3127
3128 if (NULL == ext4_li_info) {
3129 ret = ext4_li_info_new();
3130 if (ret)
3131 goto out;
3132 }
3133
3134 mutex_lock(&ext4_li_info->li_list_mtx);
3135 list_add(&elr->lr_request, &ext4_li_info->li_request_list);
3136 mutex_unlock(&ext4_li_info->li_list_mtx);
3137
3138 sbi->s_li_request = elr;
3139 /*
3140 * set elr to NULL here since it has been inserted to
3141 * the request_list and the removal and free of it is
3142 * handled by ext4_clear_request_list from now on.
3143 */
3144 elr = NULL;
3145
3146 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
3147 ret = ext4_run_lazyinit_thread();
3148 if (ret)
3149 goto out;
3150 }
3151 out:
3152 mutex_unlock(&ext4_li_mtx);
3153 if (ret)
3154 kfree(elr);
3155 return ret;
3156 }
3157
3158 /*
3159 * We do not need to lock anything since this is called on
3160 * module unload.
3161 */
3162 static void ext4_destroy_lazyinit_thread(void)
3163 {
3164 /*
3165 * If thread exited earlier
3166 * there's nothing to be done.
3167 */
3168 if (!ext4_li_info || !ext4_lazyinit_task)
3169 return;
3170
3171 kthread_stop(ext4_lazyinit_task);
3172 }
3173
3174 static int set_journal_csum_feature_set(struct super_block *sb)
3175 {
3176 int ret = 1;
3177 int compat, incompat;
3178 struct ext4_sb_info *sbi = EXT4_SB(sb);
3179
3180 if (ext4_has_metadata_csum(sb)) {
3181 /* journal checksum v3 */
3182 compat = 0;
3183 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3;
3184 } else {
3185 /* journal checksum v1 */
3186 compat = JBD2_FEATURE_COMPAT_CHECKSUM;
3187 incompat = 0;
3188 }
3189
3190 jbd2_journal_clear_features(sbi->s_journal,
3191 JBD2_FEATURE_COMPAT_CHECKSUM, 0,
3192 JBD2_FEATURE_INCOMPAT_CSUM_V3 |
3193 JBD2_FEATURE_INCOMPAT_CSUM_V2);
3194 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
3195 ret = jbd2_journal_set_features(sbi->s_journal,
3196 compat, 0,
3197 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
3198 incompat);
3199 } else if (test_opt(sb, JOURNAL_CHECKSUM)) {
3200 ret = jbd2_journal_set_features(sbi->s_journal,
3201 compat, 0,
3202 incompat);
3203 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3204 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3205 } else {
3206 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3207 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3208 }
3209
3210 return ret;
3211 }
3212
3213 /*
3214 * Note: calculating the overhead so we can be compatible with
3215 * historical BSD practice is quite difficult in the face of
3216 * clusters/bigalloc. This is because multiple metadata blocks from
3217 * different block group can end up in the same allocation cluster.
3218 * Calculating the exact overhead in the face of clustered allocation
3219 * requires either O(all block bitmaps) in memory or O(number of block
3220 * groups**2) in time. We will still calculate the superblock for
3221 * older file systems --- and if we come across with a bigalloc file
3222 * system with zero in s_overhead_clusters the estimate will be close to
3223 * correct especially for very large cluster sizes --- but for newer
3224 * file systems, it's better to calculate this figure once at mkfs
3225 * time, and store it in the superblock. If the superblock value is
3226 * present (even for non-bigalloc file systems), we will use it.
3227 */
3228 static int count_overhead(struct super_block *sb, ext4_group_t grp,
3229 char *buf)
3230 {
3231 struct ext4_sb_info *sbi = EXT4_SB(sb);
3232 struct ext4_group_desc *gdp;
3233 ext4_fsblk_t first_block, last_block, b;
3234 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3235 int s, j, count = 0;
3236
3237 if (!ext4_has_feature_bigalloc(sb))
3238 return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) +
3239 sbi->s_itb_per_group + 2);
3240
3241 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) +
3242 (grp * EXT4_BLOCKS_PER_GROUP(sb));
3243 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1;
3244 for (i = 0; i < ngroups; i++) {
3245 gdp = ext4_get_group_desc(sb, i, NULL);
3246 b = ext4_block_bitmap(sb, gdp);
3247 if (b >= first_block && b <= last_block) {
3248 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3249 count++;
3250 }
3251 b = ext4_inode_bitmap(sb, gdp);
3252 if (b >= first_block && b <= last_block) {
3253 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3254 count++;
3255 }
3256 b = ext4_inode_table(sb, gdp);
3257 if (b >= first_block && b + sbi->s_itb_per_group <= last_block)
3258 for (j = 0; j < sbi->s_itb_per_group; j++, b++) {
3259 int c = EXT4_B2C(sbi, b - first_block);
3260 ext4_set_bit(c, buf);
3261 count++;
3262 }
3263 if (i != grp)
3264 continue;
3265 s = 0;
3266 if (ext4_bg_has_super(sb, grp)) {
3267 ext4_set_bit(s++, buf);
3268 count++;
3269 }
3270 j = ext4_bg_num_gdb(sb, grp);
3271 if (s + j > EXT4_BLOCKS_PER_GROUP(sb)) {
3272 ext4_error(sb, "Invalid number of block group "
3273 "descriptor blocks: %d", j);
3274 j = EXT4_BLOCKS_PER_GROUP(sb) - s;
3275 }
3276 count += j;
3277 for (; j > 0; j--)
3278 ext4_set_bit(EXT4_B2C(sbi, s++), buf);
3279 }
3280 if (!count)
3281 return 0;
3282 return EXT4_CLUSTERS_PER_GROUP(sb) -
3283 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8);
3284 }
3285
3286 /*
3287 * Compute the overhead and stash it in sbi->s_overhead
3288 */
3289 int ext4_calculate_overhead(struct super_block *sb)
3290 {
3291 struct ext4_sb_info *sbi = EXT4_SB(sb);
3292 struct ext4_super_block *es = sbi->s_es;
3293 struct inode *j_inode;
3294 unsigned int j_blocks, j_inum = le32_to_cpu(es->s_journal_inum);
3295 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3296 ext4_fsblk_t overhead = 0;
3297 char *buf = (char *) get_zeroed_page(GFP_NOFS);
3298
3299 if (!buf)
3300 return -ENOMEM;
3301
3302 /*
3303 * Compute the overhead (FS structures). This is constant
3304 * for a given filesystem unless the number of block groups
3305 * changes so we cache the previous value until it does.
3306 */
3307
3308 /*
3309 * All of the blocks before first_data_block are overhead
3310 */
3311 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
3312
3313 /*
3314 * Add the overhead found in each block group
3315 */
3316 for (i = 0; i < ngroups; i++) {
3317 int blks;
3318
3319 blks = count_overhead(sb, i, buf);
3320 overhead += blks;
3321 if (blks)
3322 memset(buf, 0, PAGE_SIZE);
3323 cond_resched();
3324 }
3325
3326 /*
3327 * Add the internal journal blocks whether the journal has been
3328 * loaded or not
3329 */
3330 if (sbi->s_journal && !sbi->journal_bdev)
3331 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_maxlen);
3332 else if (ext4_has_feature_journal(sb) && !sbi->s_journal) {
3333 j_inode = ext4_get_journal_inode(sb, j_inum);
3334 if (j_inode) {
3335 j_blocks = j_inode->i_size >> sb->s_blocksize_bits;
3336 overhead += EXT4_NUM_B2C(sbi, j_blocks);
3337 iput(j_inode);
3338 } else {
3339 ext4_msg(sb, KERN_ERR, "can't get journal size");
3340 }
3341 }
3342 sbi->s_overhead = overhead;
3343 smp_wmb();
3344 free_page((unsigned long) buf);
3345 return 0;
3346 }
3347
3348 static void ext4_set_resv_clusters(struct super_block *sb)
3349 {
3350 ext4_fsblk_t resv_clusters;
3351 struct ext4_sb_info *sbi = EXT4_SB(sb);
3352
3353 /*
3354 * There's no need to reserve anything when we aren't using extents.
3355 * The space estimates are exact, there are no unwritten extents,
3356 * hole punching doesn't need new metadata... This is needed especially
3357 * to keep ext2/3 backward compatibility.
3358 */
3359 if (!ext4_has_feature_extents(sb))
3360 return;
3361 /*
3362 * By default we reserve 2% or 4096 clusters, whichever is smaller.
3363 * This should cover the situations where we can not afford to run
3364 * out of space like for example punch hole, or converting
3365 * unwritten extents in delalloc path. In most cases such
3366 * allocation would require 1, or 2 blocks, higher numbers are
3367 * very rare.
3368 */
3369 resv_clusters = (ext4_blocks_count(sbi->s_es) >>
3370 sbi->s_cluster_bits);
3371
3372 do_div(resv_clusters, 50);
3373 resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096);
3374
3375 atomic64_set(&sbi->s_resv_clusters, resv_clusters);
3376 }
3377
3378 static int ext4_fill_super(struct super_block *sb, void *data, int silent)
3379 {
3380 char *orig_data = kstrdup(data, GFP_KERNEL);
3381 struct buffer_head *bh;
3382 struct ext4_super_block *es = NULL;
3383 struct ext4_sb_info *sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
3384 ext4_fsblk_t block;
3385 ext4_fsblk_t sb_block = get_sb_block(&data);
3386 ext4_fsblk_t logical_sb_block;
3387 unsigned long offset = 0;
3388 unsigned long journal_devnum = 0;
3389 unsigned long def_mount_opts;
3390 struct inode *root;
3391 const char *descr;
3392 int ret = -ENOMEM;
3393 int blocksize, clustersize;
3394 unsigned int db_count;
3395 unsigned int i;
3396 int needs_recovery, has_huge_files, has_bigalloc;
3397 __u64 blocks_count;
3398 int err = 0;
3399 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
3400 ext4_group_t first_not_zeroed;
3401
3402 if ((data && !orig_data) || !sbi)
3403 goto out_free_base;
3404
3405 sbi->s_blockgroup_lock =
3406 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
3407 if (!sbi->s_blockgroup_lock)
3408 goto out_free_base;
3409
3410 sb->s_fs_info = sbi;
3411 sbi->s_sb = sb;
3412 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
3413 sbi->s_sb_block = sb_block;
3414 if (sb->s_bdev->bd_part)
3415 sbi->s_sectors_written_start =
3416 part_stat_read(sb->s_bdev->bd_part, sectors[1]);
3417
3418 /* Cleanup superblock name */
3419 strreplace(sb->s_id, '/', '!');
3420
3421 /* -EINVAL is default */
3422 ret = -EINVAL;
3423 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
3424 if (!blocksize) {
3425 ext4_msg(sb, KERN_ERR, "unable to set blocksize");
3426 goto out_fail;
3427 }
3428
3429 /*
3430 * The ext4 superblock will not be buffer aligned for other than 1kB
3431 * block sizes. We need to calculate the offset from buffer start.
3432 */
3433 if (blocksize != EXT4_MIN_BLOCK_SIZE) {
3434 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3435 offset = do_div(logical_sb_block, blocksize);
3436 } else {
3437 logical_sb_block = sb_block;
3438 }
3439
3440 if (!(bh = sb_bread_unmovable(sb, logical_sb_block))) {
3441 ext4_msg(sb, KERN_ERR, "unable to read superblock");
3442 goto out_fail;
3443 }
3444 /*
3445 * Note: s_es must be initialized as soon as possible because
3446 * some ext4 macro-instructions depend on its value
3447 */
3448 es = (struct ext4_super_block *) (bh->b_data + offset);
3449 sbi->s_es = es;
3450 sb->s_magic = le16_to_cpu(es->s_magic);
3451 if (sb->s_magic != EXT4_SUPER_MAGIC)
3452 goto cantfind_ext4;
3453 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
3454
3455 /* Warn if metadata_csum and gdt_csum are both set. */
3456 if (ext4_has_feature_metadata_csum(sb) &&
3457 ext4_has_feature_gdt_csum(sb))
3458 ext4_warning(sb, "metadata_csum and uninit_bg are "
3459 "redundant flags; please run fsck.");
3460
3461 /* Check for a known checksum algorithm */
3462 if (!ext4_verify_csum_type(sb, es)) {
3463 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3464 "unknown checksum algorithm.");
3465 silent = 1;
3466 goto cantfind_ext4;
3467 }
3468
3469 /* Load the checksum driver */
3470 if (ext4_has_feature_metadata_csum(sb) ||
3471 ext4_has_feature_ea_inode(sb)) {
3472 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
3473 if (IS_ERR(sbi->s_chksum_driver)) {
3474 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver.");
3475 ret = PTR_ERR(sbi->s_chksum_driver);
3476 sbi->s_chksum_driver = NULL;
3477 goto failed_mount;
3478 }
3479 }
3480
3481 /* Check superblock checksum */
3482 if (!ext4_superblock_csum_verify(sb, es)) {
3483 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3484 "invalid superblock checksum. Run e2fsck?");
3485 silent = 1;
3486 ret = -EFSBADCRC;
3487 goto cantfind_ext4;
3488 }
3489
3490 /* Precompute checksum seed for all metadata */
3491 if (ext4_has_feature_csum_seed(sb))
3492 sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed);
3493 else if (ext4_has_metadata_csum(sb) || ext4_has_feature_ea_inode(sb))
3494 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid,
3495 sizeof(es->s_uuid));
3496
3497 /* Set defaults before we parse the mount options */
3498 def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
3499 set_opt(sb, INIT_INODE_TABLE);
3500 if (def_mount_opts & EXT4_DEFM_DEBUG)
3501 set_opt(sb, DEBUG);
3502 if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
3503 set_opt(sb, GRPID);
3504 if (def_mount_opts & EXT4_DEFM_UID16)
3505 set_opt(sb, NO_UID32);
3506 /* xattr user namespace & acls are now defaulted on */
3507 set_opt(sb, XATTR_USER);
3508 #ifdef CONFIG_EXT4_FS_POSIX_ACL
3509 set_opt(sb, POSIX_ACL);
3510 #endif
3511 /* don't forget to enable journal_csum when metadata_csum is enabled. */
3512 if (ext4_has_metadata_csum(sb))
3513 set_opt(sb, JOURNAL_CHECKSUM);
3514
3515 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
3516 set_opt(sb, JOURNAL_DATA);
3517 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
3518 set_opt(sb, ORDERED_DATA);
3519 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
3520 set_opt(sb, WRITEBACK_DATA);
3521
3522 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC)
3523 set_opt(sb, ERRORS_PANIC);
3524 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE)
3525 set_opt(sb, ERRORS_CONT);
3526 else
3527 set_opt(sb, ERRORS_RO);
3528 /* block_validity enabled by default; disable with noblock_validity */
3529 set_opt(sb, BLOCK_VALIDITY);
3530 if (def_mount_opts & EXT4_DEFM_DISCARD)
3531 set_opt(sb, DISCARD);
3532
3533 sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid));
3534 sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid));
3535 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
3536 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
3537 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
3538
3539 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
3540 set_opt(sb, BARRIER);
3541
3542 /*
3543 * enable delayed allocation by default
3544 * Use -o nodelalloc to turn it off
3545 */
3546 if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) &&
3547 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
3548 set_opt(sb, DELALLOC);
3549
3550 /*
3551 * set default s_li_wait_mult for lazyinit, for the case there is
3552 * no mount option specified.
3553 */
3554 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
3555
3556 if (sbi->s_es->s_mount_opts[0]) {
3557 char *s_mount_opts = kstrndup(sbi->s_es->s_mount_opts,
3558 sizeof(sbi->s_es->s_mount_opts),
3559 GFP_KERNEL);
3560 if (!s_mount_opts)
3561 goto failed_mount;
3562 if (!parse_options(s_mount_opts, sb, &journal_devnum,
3563 &journal_ioprio, 0)) {
3564 ext4_msg(sb, KERN_WARNING,
3565 "failed to parse options in superblock: %s",
3566 s_mount_opts);
3567 }
3568 kfree(s_mount_opts);
3569 }
3570 sbi->s_def_mount_opt = sbi->s_mount_opt;
3571 if (!parse_options((char *) data, sb, &journal_devnum,
3572 &journal_ioprio, 0))
3573 goto failed_mount;
3574
3575 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
3576 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting "
3577 "with data=journal disables delayed "
3578 "allocation and O_DIRECT support!\n");
3579 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
3580 ext4_msg(sb, KERN_ERR, "can't mount with "
3581 "both data=journal and delalloc");
3582 goto failed_mount;
3583 }
3584 if (test_opt(sb, DIOREAD_NOLOCK)) {
3585 ext4_msg(sb, KERN_ERR, "can't mount with "
3586 "both data=journal and dioread_nolock");
3587 goto failed_mount;
3588 }
3589 if (test_opt(sb, DAX)) {
3590 ext4_msg(sb, KERN_ERR, "can't mount with "
3591 "both data=journal and dax");
3592 goto failed_mount;
3593 }
3594 if (ext4_has_feature_encrypt(sb)) {
3595 ext4_msg(sb, KERN_WARNING,
3596 "encrypted files will use data=ordered "
3597 "instead of data journaling mode");
3598 }
3599 if (test_opt(sb, DELALLOC))
3600 clear_opt(sb, DELALLOC);
3601 } else {
3602 sb->s_iflags |= SB_I_CGROUPWB;
3603 }
3604
3605 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
3606 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
3607
3608 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
3609 (ext4_has_compat_features(sb) ||
3610 ext4_has_ro_compat_features(sb) ||
3611 ext4_has_incompat_features(sb)))
3612 ext4_msg(sb, KERN_WARNING,
3613 "feature flags set on rev 0 fs, "
3614 "running e2fsck is recommended");
3615
3616 if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) {
3617 set_opt2(sb, HURD_COMPAT);
3618 if (ext4_has_feature_64bit(sb)) {
3619 ext4_msg(sb, KERN_ERR,
3620 "The Hurd can't support 64-bit file systems");
3621 goto failed_mount;
3622 }
3623
3624 /*
3625 * ea_inode feature uses l_i_version field which is not
3626 * available in HURD_COMPAT mode.
3627 */
3628 if (ext4_has_feature_ea_inode(sb)) {
3629 ext4_msg(sb, KERN_ERR,
3630 "ea_inode feature is not supported for Hurd");
3631 goto failed_mount;
3632 }
3633 }
3634
3635 if (IS_EXT2_SB(sb)) {
3636 if (ext2_feature_set_ok(sb))
3637 ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
3638 "using the ext4 subsystem");
3639 else {
3640 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
3641 "to feature incompatibilities");
3642 goto failed_mount;
3643 }
3644 }
3645
3646 if (IS_EXT3_SB(sb)) {
3647 if (ext3_feature_set_ok(sb))
3648 ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
3649 "using the ext4 subsystem");
3650 else {
3651 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
3652 "to feature incompatibilities");
3653 goto failed_mount;
3654 }
3655 }
3656
3657 /*
3658 * Check feature flags regardless of the revision level, since we
3659 * previously didn't change the revision level when setting the flags,
3660 * so there is a chance incompat flags are set on a rev 0 filesystem.
3661 */
3662 if (!ext4_feature_set_ok(sb, (sb->s_flags & MS_RDONLY)))
3663 goto failed_mount;
3664
3665 blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
3666 if (blocksize < EXT4_MIN_BLOCK_SIZE ||
3667 blocksize > EXT4_MAX_BLOCK_SIZE) {
3668 ext4_msg(sb, KERN_ERR,
3669 "Unsupported filesystem blocksize %d (%d log_block_size)",
3670 blocksize, le32_to_cpu(es->s_log_block_size));
3671 goto failed_mount;
3672 }
3673 if (le32_to_cpu(es->s_log_block_size) >
3674 (EXT4_MAX_BLOCK_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
3675 ext4_msg(sb, KERN_ERR,
3676 "Invalid log block size: %u",
3677 le32_to_cpu(es->s_log_block_size));
3678 goto failed_mount;
3679 }
3680
3681 if (le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) > (blocksize / 4)) {
3682 ext4_msg(sb, KERN_ERR,
3683 "Number of reserved GDT blocks insanely large: %d",
3684 le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks));
3685 goto failed_mount;
3686 }
3687
3688 if (sbi->s_mount_opt & EXT4_MOUNT_DAX) {
3689 err = bdev_dax_supported(sb, blocksize);
3690 if (err)
3691 goto failed_mount;
3692 }
3693
3694 if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) {
3695 ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d",
3696 es->s_encryption_level);
3697 goto failed_mount;
3698 }
3699
3700 if (sb->s_blocksize != blocksize) {
3701 /* Validate the filesystem blocksize */
3702 if (!sb_set_blocksize(sb, blocksize)) {
3703 ext4_msg(sb, KERN_ERR, "bad block size %d",
3704 blocksize);
3705 goto failed_mount;
3706 }
3707
3708 brelse(bh);
3709 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3710 offset = do_div(logical_sb_block, blocksize);
3711 bh = sb_bread_unmovable(sb, logical_sb_block);
3712 if (!bh) {
3713 ext4_msg(sb, KERN_ERR,
3714 "Can't read superblock on 2nd try");
3715 goto failed_mount;
3716 }
3717 es = (struct ext4_super_block *)(bh->b_data + offset);
3718 sbi->s_es = es;
3719 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
3720 ext4_msg(sb, KERN_ERR,
3721 "Magic mismatch, very weird!");
3722 goto failed_mount;
3723 }
3724 }
3725
3726 has_huge_files = ext4_has_feature_huge_file(sb);
3727 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
3728 has_huge_files);
3729 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
3730
3731 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
3732 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
3733 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
3734 } else {
3735 sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
3736 sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
3737 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
3738 (!is_power_of_2(sbi->s_inode_size)) ||
3739 (sbi->s_inode_size > blocksize)) {
3740 ext4_msg(sb, KERN_ERR,
3741 "unsupported inode size: %d",
3742 sbi->s_inode_size);
3743 goto failed_mount;
3744 }
3745 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE)
3746 sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2);
3747 }
3748
3749 sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
3750 if (ext4_has_feature_64bit(sb)) {
3751 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
3752 sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
3753 !is_power_of_2(sbi->s_desc_size)) {
3754 ext4_msg(sb, KERN_ERR,
3755 "unsupported descriptor size %lu",
3756 sbi->s_desc_size);
3757 goto failed_mount;
3758 }
3759 } else
3760 sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
3761
3762 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
3763 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
3764
3765 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb);
3766 if (sbi->s_inodes_per_block == 0)
3767 goto cantfind_ext4;
3768 if (sbi->s_inodes_per_group < sbi->s_inodes_per_block ||
3769 sbi->s_inodes_per_group > blocksize * 8) {
3770 ext4_msg(sb, KERN_ERR, "invalid inodes per group: %lu\n",
3771 sbi->s_blocks_per_group);
3772 goto failed_mount;
3773 }
3774 sbi->s_itb_per_group = sbi->s_inodes_per_group /
3775 sbi->s_inodes_per_block;
3776 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb);
3777 sbi->s_sbh = bh;
3778 sbi->s_mount_state = le16_to_cpu(es->s_state);
3779 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
3780 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
3781
3782 for (i = 0; i < 4; i++)
3783 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
3784 sbi->s_def_hash_version = es->s_def_hash_version;
3785 if (ext4_has_feature_dir_index(sb)) {
3786 i = le32_to_cpu(es->s_flags);
3787 if (i & EXT2_FLAGS_UNSIGNED_HASH)
3788 sbi->s_hash_unsigned = 3;
3789 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
3790 #ifdef __CHAR_UNSIGNED__
3791 if (!(sb->s_flags & MS_RDONLY))
3792 es->s_flags |=
3793 cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
3794 sbi->s_hash_unsigned = 3;
3795 #else
3796 if (!(sb->s_flags & MS_RDONLY))
3797 es->s_flags |=
3798 cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
3799 #endif
3800 }
3801 }
3802
3803 /* Handle clustersize */
3804 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size);
3805 has_bigalloc = ext4_has_feature_bigalloc(sb);
3806 if (has_bigalloc) {
3807 if (clustersize < blocksize) {
3808 ext4_msg(sb, KERN_ERR,
3809 "cluster size (%d) smaller than "
3810 "block size (%d)", clustersize, blocksize);
3811 goto failed_mount;
3812 }
3813 if (le32_to_cpu(es->s_log_cluster_size) >
3814 (EXT4_MAX_CLUSTER_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
3815 ext4_msg(sb, KERN_ERR,
3816 "Invalid log cluster size: %u",
3817 le32_to_cpu(es->s_log_cluster_size));
3818 goto failed_mount;
3819 }
3820 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) -
3821 le32_to_cpu(es->s_log_block_size);
3822 sbi->s_clusters_per_group =
3823 le32_to_cpu(es->s_clusters_per_group);
3824 if (sbi->s_clusters_per_group > blocksize * 8) {
3825 ext4_msg(sb, KERN_ERR,
3826 "#clusters per group too big: %lu",
3827 sbi->s_clusters_per_group);
3828 goto failed_mount;
3829 }
3830 if (sbi->s_blocks_per_group !=
3831 (sbi->s_clusters_per_group * (clustersize / blocksize))) {
3832 ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and "
3833 "clusters per group (%lu) inconsistent",
3834 sbi->s_blocks_per_group,
3835 sbi->s_clusters_per_group);
3836 goto failed_mount;
3837 }
3838 } else {
3839 if (clustersize != blocksize) {
3840 ext4_warning(sb, "fragment/cluster size (%d) != "
3841 "block size (%d)", clustersize,
3842 blocksize);
3843 clustersize = blocksize;
3844 }
3845 if (sbi->s_blocks_per_group > blocksize * 8) {
3846 ext4_msg(sb, KERN_ERR,
3847 "#blocks per group too big: %lu",
3848 sbi->s_blocks_per_group);
3849 goto failed_mount;
3850 }
3851 sbi->s_clusters_per_group = sbi->s_blocks_per_group;
3852 sbi->s_cluster_bits = 0;
3853 }
3854 sbi->s_cluster_ratio = clustersize / blocksize;
3855
3856 /* Do we have standard group size of clustersize * 8 blocks ? */
3857 if (sbi->s_blocks_per_group == clustersize << 3)
3858 set_opt2(sb, STD_GROUP_SIZE);
3859
3860 /*
3861 * Test whether we have more sectors than will fit in sector_t,
3862 * and whether the max offset is addressable by the page cache.
3863 */
3864 err = generic_check_addressable(sb->s_blocksize_bits,
3865 ext4_blocks_count(es));
3866 if (err) {
3867 ext4_msg(sb, KERN_ERR, "filesystem"
3868 " too large to mount safely on this system");
3869 if (sizeof(sector_t) < 8)
3870 ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled");
3871 goto failed_mount;
3872 }
3873
3874 if (EXT4_BLOCKS_PER_GROUP(sb) == 0)
3875 goto cantfind_ext4;
3876
3877 /* check blocks count against device size */
3878 blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
3879 if (blocks_count && ext4_blocks_count(es) > blocks_count) {
3880 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
3881 "exceeds size of device (%llu blocks)",
3882 ext4_blocks_count(es), blocks_count);
3883 goto failed_mount;
3884 }
3885
3886 /*
3887 * It makes no sense for the first data block to be beyond the end
3888 * of the filesystem.
3889 */
3890 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
3891 ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
3892 "block %u is beyond end of filesystem (%llu)",
3893 le32_to_cpu(es->s_first_data_block),
3894 ext4_blocks_count(es));
3895 goto failed_mount;
3896 }
3897 blocks_count = (ext4_blocks_count(es) -
3898 le32_to_cpu(es->s_first_data_block) +
3899 EXT4_BLOCKS_PER_GROUP(sb) - 1);
3900 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
3901 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
3902 ext4_msg(sb, KERN_WARNING, "groups count too large: %u "
3903 "(block count %llu, first data block %u, "
3904 "blocks per group %lu)", sbi->s_groups_count,
3905 ext4_blocks_count(es),
3906 le32_to_cpu(es->s_first_data_block),
3907 EXT4_BLOCKS_PER_GROUP(sb));
3908 goto failed_mount;
3909 }
3910 sbi->s_groups_count = blocks_count;
3911 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
3912 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
3913 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
3914 EXT4_DESC_PER_BLOCK(sb);
3915 if (ext4_has_feature_meta_bg(sb)) {
3916 if (le32_to_cpu(es->s_first_meta_bg) > db_count) {
3917 ext4_msg(sb, KERN_WARNING,
3918 "first meta block group too large: %u "
3919 "(group descriptor block count %u)",
3920 le32_to_cpu(es->s_first_meta_bg), db_count);
3921 goto failed_mount;
3922 }
3923 }
3924 sbi->s_group_desc = kvmalloc(db_count *
3925 sizeof(struct buffer_head *),
3926 GFP_KERNEL);
3927 if (sbi->s_group_desc == NULL) {
3928 ext4_msg(sb, KERN_ERR, "not enough memory");
3929 ret = -ENOMEM;
3930 goto failed_mount;
3931 }
3932
3933 bgl_lock_init(sbi->s_blockgroup_lock);
3934
3935 /* Pre-read the descriptors into the buffer cache */
3936 for (i = 0; i < db_count; i++) {
3937 block = descriptor_loc(sb, logical_sb_block, i);
3938 sb_breadahead(sb, block);
3939 }
3940
3941 for (i = 0; i < db_count; i++) {
3942 block = descriptor_loc(sb, logical_sb_block, i);
3943 sbi->s_group_desc[i] = sb_bread_unmovable(sb, block);
3944 if (!sbi->s_group_desc[i]) {
3945 ext4_msg(sb, KERN_ERR,
3946 "can't read group descriptor %d", i);
3947 db_count = i;
3948 goto failed_mount2;
3949 }
3950 }
3951 if (!ext4_check_descriptors(sb, logical_sb_block, &first_not_zeroed)) {
3952 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
3953 ret = -EFSCORRUPTED;
3954 goto failed_mount2;
3955 }
3956
3957 sbi->s_gdb_count = db_count;
3958 get_random_bytes(&sbi->s_next_generation, sizeof(u32));
3959 spin_lock_init(&sbi->s_next_gen_lock);
3960
3961 setup_timer(&sbi->s_err_report, print_daily_error_info,
3962 (unsigned long) sb);
3963
3964 /* Register extent status tree shrinker */
3965 if (ext4_es_register_shrinker(sbi))
3966 goto failed_mount3;
3967
3968 sbi->s_stripe = ext4_get_stripe_size(sbi);
3969 sbi->s_extent_max_zeroout_kb = 32;
3970
3971 /*
3972 * set up enough so that it can read an inode
3973 */
3974 sb->s_op = &ext4_sops;
3975 sb->s_export_op = &ext4_export_ops;
3976 sb->s_xattr = ext4_xattr_handlers;
3977 sb->s_cop = &ext4_cryptops;
3978 #ifdef CONFIG_QUOTA
3979 sb->dq_op = &ext4_quota_operations;
3980 if (ext4_has_feature_quota(sb))
3981 sb->s_qcop = &dquot_quotactl_sysfile_ops;
3982 else
3983 sb->s_qcop = &ext4_qctl_operations;
3984 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
3985 #endif
3986 memcpy(&sb->s_uuid, es->s_uuid, sizeof(es->s_uuid));
3987
3988 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
3989 mutex_init(&sbi->s_orphan_lock);
3990
3991 sb->s_root = NULL;
3992
3993 needs_recovery = (es->s_last_orphan != 0 ||
3994 ext4_has_feature_journal_needs_recovery(sb));
3995
3996 if (ext4_has_feature_mmp(sb) && !(sb->s_flags & MS_RDONLY))
3997 if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block)))
3998 goto failed_mount3a;
3999
4000 /*
4001 * The first inode we look at is the journal inode. Don't try
4002 * root first: it may be modified in the journal!
4003 */
4004 if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) {
4005 err = ext4_load_journal(sb, es, journal_devnum);
4006 if (err)
4007 goto failed_mount3a;
4008 } else if (test_opt(sb, NOLOAD) && !(sb->s_flags & MS_RDONLY) &&
4009 ext4_has_feature_journal_needs_recovery(sb)) {
4010 ext4_msg(sb, KERN_ERR, "required journal recovery "
4011 "suppressed and not mounted read-only");
4012 goto failed_mount_wq;
4013 } else {
4014 /* Nojournal mode, all journal mount options are illegal */
4015 if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) {
4016 ext4_msg(sb, KERN_ERR, "can't mount with "
4017 "journal_checksum, fs mounted w/o journal");
4018 goto failed_mount_wq;
4019 }
4020 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4021 ext4_msg(sb, KERN_ERR, "can't mount with "
4022 "journal_async_commit, fs mounted w/o journal");
4023 goto failed_mount_wq;
4024 }
4025 if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) {
4026 ext4_msg(sb, KERN_ERR, "can't mount with "
4027 "commit=%lu, fs mounted w/o journal",
4028 sbi->s_commit_interval / HZ);
4029 goto failed_mount_wq;
4030 }
4031 if (EXT4_MOUNT_DATA_FLAGS &
4032 (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) {
4033 ext4_msg(sb, KERN_ERR, "can't mount with "
4034 "data=, fs mounted w/o journal");
4035 goto failed_mount_wq;
4036 }
4037 sbi->s_def_mount_opt &= EXT4_MOUNT_JOURNAL_CHECKSUM;
4038 clear_opt(sb, JOURNAL_CHECKSUM);
4039 clear_opt(sb, DATA_FLAGS);
4040 sbi->s_journal = NULL;
4041 needs_recovery = 0;
4042 goto no_journal;
4043 }
4044
4045 if (ext4_has_feature_64bit(sb) &&
4046 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
4047 JBD2_FEATURE_INCOMPAT_64BIT)) {
4048 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
4049 goto failed_mount_wq;
4050 }
4051
4052 if (!set_journal_csum_feature_set(sb)) {
4053 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum "
4054 "feature set");
4055 goto failed_mount_wq;
4056 }
4057
4058 /* We have now updated the journal if required, so we can
4059 * validate the data journaling mode. */
4060 switch (test_opt(sb, DATA_FLAGS)) {
4061 case 0:
4062 /* No mode set, assume a default based on the journal
4063 * capabilities: ORDERED_DATA if the journal can
4064 * cope, else JOURNAL_DATA
4065 */
4066 if (jbd2_journal_check_available_features
4067 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE))
4068 set_opt(sb, ORDERED_DATA);
4069 else
4070 set_opt(sb, JOURNAL_DATA);
4071 break;
4072
4073 case EXT4_MOUNT_ORDERED_DATA:
4074 case EXT4_MOUNT_WRITEBACK_DATA:
4075 if (!jbd2_journal_check_available_features
4076 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4077 ext4_msg(sb, KERN_ERR, "Journal does not support "
4078 "requested data journaling mode");
4079 goto failed_mount_wq;
4080 }
4081 default:
4082 break;
4083 }
4084
4085 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA &&
4086 test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4087 ext4_msg(sb, KERN_ERR, "can't mount with "
4088 "journal_async_commit in data=ordered mode");
4089 goto failed_mount_wq;
4090 }
4091
4092 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
4093
4094 sbi->s_journal->j_commit_callback = ext4_journal_commit_callback;
4095
4096 no_journal:
4097 if (!test_opt(sb, NO_MBCACHE)) {
4098 sbi->s_ea_block_cache = ext4_xattr_create_cache();
4099 if (!sbi->s_ea_block_cache) {
4100 ext4_msg(sb, KERN_ERR,
4101 "Failed to create ea_block_cache");
4102 goto failed_mount_wq;
4103 }
4104
4105 if (ext4_has_feature_ea_inode(sb)) {
4106 sbi->s_ea_inode_cache = ext4_xattr_create_cache();
4107 if (!sbi->s_ea_inode_cache) {
4108 ext4_msg(sb, KERN_ERR,
4109 "Failed to create ea_inode_cache");
4110 goto failed_mount_wq;
4111 }
4112 }
4113 }
4114
4115 if ((DUMMY_ENCRYPTION_ENABLED(sbi) || ext4_has_feature_encrypt(sb)) &&
4116 (blocksize != PAGE_SIZE)) {
4117 ext4_msg(sb, KERN_ERR,
4118 "Unsupported blocksize for fs encryption");
4119 goto failed_mount_wq;
4120 }
4121
4122 if (DUMMY_ENCRYPTION_ENABLED(sbi) && !(sb->s_flags & MS_RDONLY) &&
4123 !ext4_has_feature_encrypt(sb)) {
4124 ext4_set_feature_encrypt(sb);
4125 ext4_commit_super(sb, 1);
4126 }
4127
4128 /*
4129 * Get the # of file system overhead blocks from the
4130 * superblock if present.
4131 */
4132 if (es->s_overhead_clusters)
4133 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters);
4134 else {
4135 err = ext4_calculate_overhead(sb);
4136 if (err)
4137 goto failed_mount_wq;
4138 }
4139
4140 /*
4141 * The maximum number of concurrent works can be high and
4142 * concurrency isn't really necessary. Limit it to 1.
4143 */
4144 EXT4_SB(sb)->rsv_conversion_wq =
4145 alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
4146 if (!EXT4_SB(sb)->rsv_conversion_wq) {
4147 printk(KERN_ERR "EXT4-fs: failed to create workqueue\n");
4148 ret = -ENOMEM;
4149 goto failed_mount4;
4150 }
4151
4152 /*
4153 * The jbd2_journal_load will have done any necessary log recovery,
4154 * so we can safely mount the rest of the filesystem now.
4155 */
4156
4157 root = ext4_iget(sb, EXT4_ROOT_INO);
4158 if (IS_ERR(root)) {
4159 ext4_msg(sb, KERN_ERR, "get root inode failed");
4160 ret = PTR_ERR(root);
4161 root = NULL;
4162 goto failed_mount4;
4163 }
4164 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
4165 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
4166 iput(root);
4167 goto failed_mount4;
4168 }
4169 sb->s_root = d_make_root(root);
4170 if (!sb->s_root) {
4171 ext4_msg(sb, KERN_ERR, "get root dentry failed");
4172 ret = -ENOMEM;
4173 goto failed_mount4;
4174 }
4175
4176 if (ext4_setup_super(sb, es, sb->s_flags & MS_RDONLY))
4177 sb->s_flags |= MS_RDONLY;
4178
4179 /* determine the minimum size of new large inodes, if present */
4180 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE &&
4181 sbi->s_want_extra_isize == 0) {
4182 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
4183 EXT4_GOOD_OLD_INODE_SIZE;
4184 if (ext4_has_feature_extra_isize(sb)) {
4185 if (sbi->s_want_extra_isize <
4186 le16_to_cpu(es->s_want_extra_isize))
4187 sbi->s_want_extra_isize =
4188 le16_to_cpu(es->s_want_extra_isize);
4189 if (sbi->s_want_extra_isize <
4190 le16_to_cpu(es->s_min_extra_isize))
4191 sbi->s_want_extra_isize =
4192 le16_to_cpu(es->s_min_extra_isize);
4193 }
4194 }
4195 /* Check if enough inode space is available */
4196 if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize >
4197 sbi->s_inode_size) {
4198 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
4199 EXT4_GOOD_OLD_INODE_SIZE;
4200 ext4_msg(sb, KERN_INFO, "required extra inode space not"
4201 "available");
4202 }
4203
4204 ext4_set_resv_clusters(sb);
4205
4206 err = ext4_setup_system_zone(sb);
4207 if (err) {
4208 ext4_msg(sb, KERN_ERR, "failed to initialize system "
4209 "zone (%d)", err);
4210 goto failed_mount4a;
4211 }
4212
4213 ext4_ext_init(sb);
4214 err = ext4_mb_init(sb);
4215 if (err) {
4216 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
4217 err);
4218 goto failed_mount5;
4219 }
4220
4221 block = ext4_count_free_clusters(sb);
4222 ext4_free_blocks_count_set(sbi->s_es,
4223 EXT4_C2B(sbi, block));
4224 err = percpu_counter_init(&sbi->s_freeclusters_counter, block,
4225 GFP_KERNEL);
4226 if (!err) {
4227 unsigned long freei = ext4_count_free_inodes(sb);
4228 sbi->s_es->s_free_inodes_count = cpu_to_le32(freei);
4229 err = percpu_counter_init(&sbi->s_freeinodes_counter, freei,
4230 GFP_KERNEL);
4231 }
4232 if (!err)
4233 err = percpu_counter_init(&sbi->s_dirs_counter,
4234 ext4_count_dirs(sb), GFP_KERNEL);
4235 if (!err)
4236 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0,
4237 GFP_KERNEL);
4238 if (!err)
4239 err = percpu_init_rwsem(&sbi->s_journal_flag_rwsem);
4240
4241 if (err) {
4242 ext4_msg(sb, KERN_ERR, "insufficient memory");
4243 goto failed_mount6;
4244 }
4245
4246 if (ext4_has_feature_flex_bg(sb))
4247 if (!ext4_fill_flex_info(sb)) {
4248 ext4_msg(sb, KERN_ERR,
4249 "unable to initialize "
4250 "flex_bg meta info!");
4251 goto failed_mount6;
4252 }
4253
4254 err = ext4_register_li_request(sb, first_not_zeroed);
4255 if (err)
4256 goto failed_mount6;
4257
4258 err = ext4_register_sysfs(sb);
4259 if (err)
4260 goto failed_mount7;
4261
4262 #ifdef CONFIG_QUOTA
4263 /* Enable quota usage during mount. */
4264 if (ext4_has_feature_quota(sb) && !(sb->s_flags & MS_RDONLY)) {
4265 err = ext4_enable_quotas(sb);
4266 if (err)
4267 goto failed_mount8;
4268 }
4269 #endif /* CONFIG_QUOTA */
4270
4271 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
4272 ext4_orphan_cleanup(sb, es);
4273 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
4274 if (needs_recovery) {
4275 ext4_msg(sb, KERN_INFO, "recovery complete");
4276 ext4_mark_recovery_complete(sb, es);
4277 }
4278 if (EXT4_SB(sb)->s_journal) {
4279 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
4280 descr = " journalled data mode";
4281 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
4282 descr = " ordered data mode";
4283 else
4284 descr = " writeback data mode";
4285 } else
4286 descr = "out journal";
4287
4288 if (test_opt(sb, DISCARD)) {
4289 struct request_queue *q = bdev_get_queue(sb->s_bdev);
4290 if (!blk_queue_discard(q))
4291 ext4_msg(sb, KERN_WARNING,
4292 "mounting with \"discard\" option, but "
4293 "the device does not support discard");
4294 }
4295
4296 if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount"))
4297 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. "
4298 "Opts: %.*s%s%s", descr,
4299 (int) sizeof(sbi->s_es->s_mount_opts),
4300 sbi->s_es->s_mount_opts,
4301 *sbi->s_es->s_mount_opts ? "; " : "", orig_data);
4302
4303 if (es->s_error_count)
4304 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
4305
4306 /* Enable message ratelimiting. Default is 10 messages per 5 secs. */
4307 ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10);
4308 ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10);
4309 ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10);
4310
4311 kfree(orig_data);
4312 return 0;
4313
4314 cantfind_ext4:
4315 if (!silent)
4316 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
4317 goto failed_mount;
4318
4319 #ifdef CONFIG_QUOTA
4320 failed_mount8:
4321 ext4_unregister_sysfs(sb);
4322 #endif
4323 failed_mount7:
4324 ext4_unregister_li_request(sb);
4325 failed_mount6:
4326 ext4_mb_release(sb);
4327 if (sbi->s_flex_groups)
4328 kvfree(sbi->s_flex_groups);
4329 percpu_counter_destroy(&sbi->s_freeclusters_counter);
4330 percpu_counter_destroy(&sbi->s_freeinodes_counter);
4331 percpu_counter_destroy(&sbi->s_dirs_counter);
4332 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
4333 failed_mount5:
4334 ext4_ext_release(sb);
4335 ext4_release_system_zone(sb);
4336 failed_mount4a:
4337 dput(sb->s_root);
4338 sb->s_root = NULL;
4339 failed_mount4:
4340 ext4_msg(sb, KERN_ERR, "mount failed");
4341 if (EXT4_SB(sb)->rsv_conversion_wq)
4342 destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq);
4343 failed_mount_wq:
4344 if (sbi->s_ea_inode_cache) {
4345 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
4346 sbi->s_ea_inode_cache = NULL;
4347 }
4348 if (sbi->s_ea_block_cache) {
4349 ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
4350 sbi->s_ea_block_cache = NULL;
4351 }
4352 if (sbi->s_journal) {
4353 jbd2_journal_destroy(sbi->s_journal);
4354 sbi->s_journal = NULL;
4355 }
4356 failed_mount3a:
4357 ext4_es_unregister_shrinker(sbi);
4358 failed_mount3:
4359 del_timer_sync(&sbi->s_err_report);
4360 if (sbi->s_mmp_tsk)
4361 kthread_stop(sbi->s_mmp_tsk);
4362 failed_mount2:
4363 for (i = 0; i < db_count; i++)
4364 brelse(sbi->s_group_desc[i]);
4365 kvfree(sbi->s_group_desc);
4366 failed_mount:
4367 if (sbi->s_chksum_driver)
4368 crypto_free_shash(sbi->s_chksum_driver);
4369 #ifdef CONFIG_QUOTA
4370 for (i = 0; i < EXT4_MAXQUOTAS; i++)
4371 kfree(sbi->s_qf_names[i]);
4372 #endif
4373 ext4_blkdev_remove(sbi);
4374 brelse(bh);
4375 out_fail:
4376 sb->s_fs_info = NULL;
4377 kfree(sbi->s_blockgroup_lock);
4378 out_free_base:
4379 kfree(sbi);
4380 kfree(orig_data);
4381 return err ? err : ret;
4382 }
4383
4384 /*
4385 * Setup any per-fs journal parameters now. We'll do this both on
4386 * initial mount, once the journal has been initialised but before we've
4387 * done any recovery; and again on any subsequent remount.
4388 */
4389 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
4390 {
4391 struct ext4_sb_info *sbi = EXT4_SB(sb);
4392
4393 journal->j_commit_interval = sbi->s_commit_interval;
4394 journal->j_min_batch_time = sbi->s_min_batch_time;
4395 journal->j_max_batch_time = sbi->s_max_batch_time;
4396
4397 write_lock(&journal->j_state_lock);
4398 if (test_opt(sb, BARRIER))
4399 journal->j_flags |= JBD2_BARRIER;
4400 else
4401 journal->j_flags &= ~JBD2_BARRIER;
4402 if (test_opt(sb, DATA_ERR_ABORT))
4403 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
4404 else
4405 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
4406 write_unlock(&journal->j_state_lock);
4407 }
4408
4409 static struct inode *ext4_get_journal_inode(struct super_block *sb,
4410 unsigned int journal_inum)
4411 {
4412 struct inode *journal_inode;
4413
4414 /*
4415 * Test for the existence of a valid inode on disk. Bad things
4416 * happen if we iget() an unused inode, as the subsequent iput()
4417 * will try to delete it.
4418 */
4419 journal_inode = ext4_iget(sb, journal_inum);
4420 if (IS_ERR(journal_inode)) {
4421 ext4_msg(sb, KERN_ERR, "no journal found");
4422 return NULL;
4423 }
4424 if (!journal_inode->i_nlink) {
4425 make_bad_inode(journal_inode);
4426 iput(journal_inode);
4427 ext4_msg(sb, KERN_ERR, "journal inode is deleted");
4428 return NULL;
4429 }
4430
4431 jbd_debug(2, "Journal inode found at %p: %lld bytes\n",
4432 journal_inode, journal_inode->i_size);
4433 if (!S_ISREG(journal_inode->i_mode)) {
4434 ext4_msg(sb, KERN_ERR, "invalid journal inode");
4435 iput(journal_inode);
4436 return NULL;
4437 }
4438 return journal_inode;
4439 }
4440
4441 static journal_t *ext4_get_journal(struct super_block *sb,
4442 unsigned int journal_inum)
4443 {
4444 struct inode *journal_inode;
4445 journal_t *journal;
4446
4447 BUG_ON(!ext4_has_feature_journal(sb));
4448
4449 journal_inode = ext4_get_journal_inode(sb, journal_inum);
4450 if (!journal_inode)
4451 return NULL;
4452
4453 journal = jbd2_journal_init_inode(journal_inode);
4454 if (!journal) {
4455 ext4_msg(sb, KERN_ERR, "Could not load journal inode");
4456 iput(journal_inode);
4457 return NULL;
4458 }
4459 journal->j_private = sb;
4460 ext4_init_journal_params(sb, journal);
4461 return journal;
4462 }
4463
4464 static journal_t *ext4_get_dev_journal(struct super_block *sb,
4465 dev_t j_dev)
4466 {
4467 struct buffer_head *bh;
4468 journal_t *journal;
4469 ext4_fsblk_t start;
4470 ext4_fsblk_t len;
4471 int hblock, blocksize;
4472 ext4_fsblk_t sb_block;
4473 unsigned long offset;
4474 struct ext4_super_block *es;
4475 struct block_device *bdev;
4476
4477 BUG_ON(!ext4_has_feature_journal(sb));
4478
4479 bdev = ext4_blkdev_get(j_dev, sb);
4480 if (bdev == NULL)
4481 return NULL;
4482
4483 blocksize = sb->s_blocksize;
4484 hblock = bdev_logical_block_size(bdev);
4485 if (blocksize < hblock) {
4486 ext4_msg(sb, KERN_ERR,
4487 "blocksize too small for journal device");
4488 goto out_bdev;
4489 }
4490
4491 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
4492 offset = EXT4_MIN_BLOCK_SIZE % blocksize;
4493 set_blocksize(bdev, blocksize);
4494 if (!(bh = __bread(bdev, sb_block, blocksize))) {
4495 ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
4496 "external journal");
4497 goto out_bdev;
4498 }
4499
4500 es = (struct ext4_super_block *) (bh->b_data + offset);
4501 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
4502 !(le32_to_cpu(es->s_feature_incompat) &
4503 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
4504 ext4_msg(sb, KERN_ERR, "external journal has "
4505 "bad superblock");
4506 brelse(bh);
4507 goto out_bdev;
4508 }
4509
4510 if ((le32_to_cpu(es->s_feature_ro_compat) &
4511 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
4512 es->s_checksum != ext4_superblock_csum(sb, es)) {
4513 ext4_msg(sb, KERN_ERR, "external journal has "
4514 "corrupt superblock");
4515 brelse(bh);
4516 goto out_bdev;
4517 }
4518
4519 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
4520 ext4_msg(sb, KERN_ERR, "journal UUID does not match");
4521 brelse(bh);
4522 goto out_bdev;
4523 }
4524
4525 len = ext4_blocks_count(es);
4526 start = sb_block + 1;
4527 brelse(bh); /* we're done with the superblock */
4528
4529 journal = jbd2_journal_init_dev(bdev, sb->s_bdev,
4530 start, len, blocksize);
4531 if (!journal) {
4532 ext4_msg(sb, KERN_ERR, "failed to create device journal");
4533 goto out_bdev;
4534 }
4535 journal->j_private = sb;
4536 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &journal->j_sb_buffer);
4537 wait_on_buffer(journal->j_sb_buffer);
4538 if (!buffer_uptodate(journal->j_sb_buffer)) {
4539 ext4_msg(sb, KERN_ERR, "I/O error on journal device");
4540 goto out_journal;
4541 }
4542 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
4543 ext4_msg(sb, KERN_ERR, "External journal has more than one "
4544 "user (unsupported) - %d",
4545 be32_to_cpu(journal->j_superblock->s_nr_users));
4546 goto out_journal;
4547 }
4548 EXT4_SB(sb)->journal_bdev = bdev;
4549 ext4_init_journal_params(sb, journal);
4550 return journal;
4551
4552 out_journal:
4553 jbd2_journal_destroy(journal);
4554 out_bdev:
4555 ext4_blkdev_put(bdev);
4556 return NULL;
4557 }
4558
4559 static int ext4_load_journal(struct super_block *sb,
4560 struct ext4_super_block *es,
4561 unsigned long journal_devnum)
4562 {
4563 journal_t *journal;
4564 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
4565 dev_t journal_dev;
4566 int err = 0;
4567 int really_read_only;
4568
4569 BUG_ON(!ext4_has_feature_journal(sb));
4570
4571 if (journal_devnum &&
4572 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4573 ext4_msg(sb, KERN_INFO, "external journal device major/minor "
4574 "numbers have changed");
4575 journal_dev = new_decode_dev(journal_devnum);
4576 } else
4577 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
4578
4579 really_read_only = bdev_read_only(sb->s_bdev);
4580
4581 /*
4582 * Are we loading a blank journal or performing recovery after a
4583 * crash? For recovery, we need to check in advance whether we
4584 * can get read-write access to the device.
4585 */
4586 if (ext4_has_feature_journal_needs_recovery(sb)) {
4587 if (sb->s_flags & MS_RDONLY) {
4588 ext4_msg(sb, KERN_INFO, "INFO: recovery "
4589 "required on readonly filesystem");
4590 if (really_read_only) {
4591 ext4_msg(sb, KERN_ERR, "write access "
4592 "unavailable, cannot proceed");
4593 return -EROFS;
4594 }
4595 ext4_msg(sb, KERN_INFO, "write access will "
4596 "be enabled during recovery");
4597 }
4598 }
4599
4600 if (journal_inum && journal_dev) {
4601 ext4_msg(sb, KERN_ERR, "filesystem has both journal "
4602 "and inode journals!");
4603 return -EINVAL;
4604 }
4605
4606 if (journal_inum) {
4607 if (!(journal = ext4_get_journal(sb, journal_inum)))
4608 return -EINVAL;
4609 } else {
4610 if (!(journal = ext4_get_dev_journal(sb, journal_dev)))
4611 return -EINVAL;
4612 }
4613
4614 if (!(journal->j_flags & JBD2_BARRIER))
4615 ext4_msg(sb, KERN_INFO, "barriers disabled");
4616
4617 if (!ext4_has_feature_journal_needs_recovery(sb))
4618 err = jbd2_journal_wipe(journal, !really_read_only);
4619 if (!err) {
4620 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
4621 if (save)
4622 memcpy(save, ((char *) es) +
4623 EXT4_S_ERR_START, EXT4_S_ERR_LEN);
4624 err = jbd2_journal_load(journal);
4625 if (save)
4626 memcpy(((char *) es) + EXT4_S_ERR_START,
4627 save, EXT4_S_ERR_LEN);
4628 kfree(save);
4629 }
4630
4631 if (err) {
4632 ext4_msg(sb, KERN_ERR, "error loading journal");
4633 jbd2_journal_destroy(journal);
4634 return err;
4635 }
4636
4637 EXT4_SB(sb)->s_journal = journal;
4638 ext4_clear_journal_err(sb, es);
4639
4640 if (!really_read_only && journal_devnum &&
4641 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4642 es->s_journal_dev = cpu_to_le32(journal_devnum);
4643
4644 /* Make sure we flush the recovery flag to disk. */
4645 ext4_commit_super(sb, 1);
4646 }
4647
4648 return 0;
4649 }
4650
4651 static int ext4_commit_super(struct super_block *sb, int sync)
4652 {
4653 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
4654 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
4655 int error = 0;
4656
4657 if (!sbh || block_device_ejected(sb))
4658 return error;
4659 /*
4660 * If the file system is mounted read-only, don't update the
4661 * superblock write time. This avoids updating the superblock
4662 * write time when we are mounting the root file system
4663 * read/only but we need to replay the journal; at that point,
4664 * for people who are east of GMT and who make their clock
4665 * tick in localtime for Windows bug-for-bug compatibility,
4666 * the clock is set in the future, and this will cause e2fsck
4667 * to complain and force a full file system check.
4668 */
4669 if (!(sb->s_flags & MS_RDONLY))
4670 es->s_wtime = cpu_to_le32(get_seconds());
4671 if (sb->s_bdev->bd_part)
4672 es->s_kbytes_written =
4673 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written +
4674 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
4675 EXT4_SB(sb)->s_sectors_written_start) >> 1));
4676 else
4677 es->s_kbytes_written =
4678 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written);
4679 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeclusters_counter))
4680 ext4_free_blocks_count_set(es,
4681 EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive(
4682 &EXT4_SB(sb)->s_freeclusters_counter)));
4683 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeinodes_counter))
4684 es->s_free_inodes_count =
4685 cpu_to_le32(percpu_counter_sum_positive(
4686 &EXT4_SB(sb)->s_freeinodes_counter));
4687 BUFFER_TRACE(sbh, "marking dirty");
4688 ext4_superblock_csum_set(sb);
4689 if (sync)
4690 lock_buffer(sbh);
4691 if (buffer_write_io_error(sbh)) {
4692 /*
4693 * Oh, dear. A previous attempt to write the
4694 * superblock failed. This could happen because the
4695 * USB device was yanked out. Or it could happen to
4696 * be a transient write error and maybe the block will
4697 * be remapped. Nothing we can do but to retry the
4698 * write and hope for the best.
4699 */
4700 ext4_msg(sb, KERN_ERR, "previous I/O error to "
4701 "superblock detected");
4702 clear_buffer_write_io_error(sbh);
4703 set_buffer_uptodate(sbh);
4704 }
4705 mark_buffer_dirty(sbh);
4706 if (sync) {
4707 unlock_buffer(sbh);
4708 error = __sync_dirty_buffer(sbh,
4709 REQ_SYNC | (test_opt(sb, BARRIER) ? REQ_FUA : 0));
4710 if (error)
4711 return error;
4712
4713 error = buffer_write_io_error(sbh);
4714 if (error) {
4715 ext4_msg(sb, KERN_ERR, "I/O error while writing "
4716 "superblock");
4717 clear_buffer_write_io_error(sbh);
4718 set_buffer_uptodate(sbh);
4719 }
4720 }
4721 return error;
4722 }
4723
4724 /*
4725 * Have we just finished recovery? If so, and if we are mounting (or
4726 * remounting) the filesystem readonly, then we will end up with a
4727 * consistent fs on disk. Record that fact.
4728 */
4729 static void ext4_mark_recovery_complete(struct super_block *sb,
4730 struct ext4_super_block *es)
4731 {
4732 journal_t *journal = EXT4_SB(sb)->s_journal;
4733
4734 if (!ext4_has_feature_journal(sb)) {
4735 BUG_ON(journal != NULL);
4736 return;
4737 }
4738 jbd2_journal_lock_updates(journal);
4739 if (jbd2_journal_flush(journal) < 0)
4740 goto out;
4741
4742 if (ext4_has_feature_journal_needs_recovery(sb) &&
4743 sb->s_flags & MS_RDONLY) {
4744 ext4_clear_feature_journal_needs_recovery(sb);
4745 ext4_commit_super(sb, 1);
4746 }
4747
4748 out:
4749 jbd2_journal_unlock_updates(journal);
4750 }
4751
4752 /*
4753 * If we are mounting (or read-write remounting) a filesystem whose journal
4754 * has recorded an error from a previous lifetime, move that error to the
4755 * main filesystem now.
4756 */
4757 static void ext4_clear_journal_err(struct super_block *sb,
4758 struct ext4_super_block *es)
4759 {
4760 journal_t *journal;
4761 int j_errno;
4762 const char *errstr;
4763
4764 BUG_ON(!ext4_has_feature_journal(sb));
4765
4766 journal = EXT4_SB(sb)->s_journal;
4767
4768 /*
4769 * Now check for any error status which may have been recorded in the
4770 * journal by a prior ext4_error() or ext4_abort()
4771 */
4772
4773 j_errno = jbd2_journal_errno(journal);
4774 if (j_errno) {
4775 char nbuf[16];
4776
4777 errstr = ext4_decode_error(sb, j_errno, nbuf);
4778 ext4_warning(sb, "Filesystem error recorded "
4779 "from previous mount: %s", errstr);
4780 ext4_warning(sb, "Marking fs in need of filesystem check.");
4781
4782 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
4783 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
4784 ext4_commit_super(sb, 1);
4785
4786 jbd2_journal_clear_err(journal);
4787 jbd2_journal_update_sb_errno(journal);
4788 }
4789 }
4790
4791 /*
4792 * Force the running and committing transactions to commit,
4793 * and wait on the commit.
4794 */
4795 int ext4_force_commit(struct super_block *sb)
4796 {
4797 journal_t *journal;
4798
4799 if (sb->s_flags & MS_RDONLY)
4800 return 0;
4801
4802 journal = EXT4_SB(sb)->s_journal;
4803 return ext4_journal_force_commit(journal);
4804 }
4805
4806 static int ext4_sync_fs(struct super_block *sb, int wait)
4807 {
4808 int ret = 0;
4809 tid_t target;
4810 bool needs_barrier = false;
4811 struct ext4_sb_info *sbi = EXT4_SB(sb);
4812
4813 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
4814 return 0;
4815
4816 trace_ext4_sync_fs(sb, wait);
4817 flush_workqueue(sbi->rsv_conversion_wq);
4818 /*
4819 * Writeback quota in non-journalled quota case - journalled quota has
4820 * no dirty dquots
4821 */
4822 dquot_writeback_dquots(sb, -1);
4823 /*
4824 * Data writeback is possible w/o journal transaction, so barrier must
4825 * being sent at the end of the function. But we can skip it if
4826 * transaction_commit will do it for us.
4827 */
4828 if (sbi->s_journal) {
4829 target = jbd2_get_latest_transaction(sbi->s_journal);
4830 if (wait && sbi->s_journal->j_flags & JBD2_BARRIER &&
4831 !jbd2_trans_will_send_data_barrier(sbi->s_journal, target))
4832 needs_barrier = true;
4833
4834 if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
4835 if (wait)
4836 ret = jbd2_log_wait_commit(sbi->s_journal,
4837 target);
4838 }
4839 } else if (wait && test_opt(sb, BARRIER))
4840 needs_barrier = true;
4841 if (needs_barrier) {
4842 int err;
4843 err = blkdev_issue_flush(sb->s_bdev, GFP_KERNEL, NULL);
4844 if (!ret)
4845 ret = err;
4846 }
4847
4848 return ret;
4849 }
4850
4851 /*
4852 * LVM calls this function before a (read-only) snapshot is created. This
4853 * gives us a chance to flush the journal completely and mark the fs clean.
4854 *
4855 * Note that only this function cannot bring a filesystem to be in a clean
4856 * state independently. It relies on upper layer to stop all data & metadata
4857 * modifications.
4858 */
4859 static int ext4_freeze(struct super_block *sb)
4860 {
4861 int error = 0;
4862 journal_t *journal;
4863
4864 if (sb->s_flags & MS_RDONLY)
4865 return 0;
4866
4867 journal = EXT4_SB(sb)->s_journal;
4868
4869 if (journal) {
4870 /* Now we set up the journal barrier. */
4871 jbd2_journal_lock_updates(journal);
4872
4873 /*
4874 * Don't clear the needs_recovery flag if we failed to
4875 * flush the journal.
4876 */
4877 error = jbd2_journal_flush(journal);
4878 if (error < 0)
4879 goto out;
4880
4881 /* Journal blocked and flushed, clear needs_recovery flag. */
4882 ext4_clear_feature_journal_needs_recovery(sb);
4883 }
4884
4885 error = ext4_commit_super(sb, 1);
4886 out:
4887 if (journal)
4888 /* we rely on upper layer to stop further updates */
4889 jbd2_journal_unlock_updates(journal);
4890 return error;
4891 }
4892
4893 /*
4894 * Called by LVM after the snapshot is done. We need to reset the RECOVER
4895 * flag here, even though the filesystem is not technically dirty yet.
4896 */
4897 static int ext4_unfreeze(struct super_block *sb)
4898 {
4899 if ((sb->s_flags & MS_RDONLY) || ext4_forced_shutdown(EXT4_SB(sb)))
4900 return 0;
4901
4902 if (EXT4_SB(sb)->s_journal) {
4903 /* Reset the needs_recovery flag before the fs is unlocked. */
4904 ext4_set_feature_journal_needs_recovery(sb);
4905 }
4906
4907 ext4_commit_super(sb, 1);
4908 return 0;
4909 }
4910
4911 /*
4912 * Structure to save mount options for ext4_remount's benefit
4913 */
4914 struct ext4_mount_options {
4915 unsigned long s_mount_opt;
4916 unsigned long s_mount_opt2;
4917 kuid_t s_resuid;
4918 kgid_t s_resgid;
4919 unsigned long s_commit_interval;
4920 u32 s_min_batch_time, s_max_batch_time;
4921 #ifdef CONFIG_QUOTA
4922 int s_jquota_fmt;
4923 char *s_qf_names[EXT4_MAXQUOTAS];
4924 #endif
4925 };
4926
4927 static int ext4_remount(struct super_block *sb, int *flags, char *data)
4928 {
4929 struct ext4_super_block *es;
4930 struct ext4_sb_info *sbi = EXT4_SB(sb);
4931 unsigned long old_sb_flags;
4932 struct ext4_mount_options old_opts;
4933 int enable_quota = 0;
4934 ext4_group_t g;
4935 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
4936 int err = 0;
4937 #ifdef CONFIG_QUOTA
4938 int i, j;
4939 #endif
4940 char *orig_data = kstrdup(data, GFP_KERNEL);
4941
4942 /* Store the original options */
4943 old_sb_flags = sb->s_flags;
4944 old_opts.s_mount_opt = sbi->s_mount_opt;
4945 old_opts.s_mount_opt2 = sbi->s_mount_opt2;
4946 old_opts.s_resuid = sbi->s_resuid;
4947 old_opts.s_resgid = sbi->s_resgid;
4948 old_opts.s_commit_interval = sbi->s_commit_interval;
4949 old_opts.s_min_batch_time = sbi->s_min_batch_time;
4950 old_opts.s_max_batch_time = sbi->s_max_batch_time;
4951 #ifdef CONFIG_QUOTA
4952 old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
4953 for (i = 0; i < EXT4_MAXQUOTAS; i++)
4954 if (sbi->s_qf_names[i]) {
4955 old_opts.s_qf_names[i] = kstrdup(sbi->s_qf_names[i],
4956 GFP_KERNEL);
4957 if (!old_opts.s_qf_names[i]) {
4958 for (j = 0; j < i; j++)
4959 kfree(old_opts.s_qf_names[j]);
4960 kfree(orig_data);
4961 return -ENOMEM;
4962 }
4963 } else
4964 old_opts.s_qf_names[i] = NULL;
4965 #endif
4966 if (sbi->s_journal && sbi->s_journal->j_task->io_context)
4967 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio;
4968
4969 if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) {
4970 err = -EINVAL;
4971 goto restore_opts;
4972 }
4973
4974 if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^
4975 test_opt(sb, JOURNAL_CHECKSUM)) {
4976 ext4_msg(sb, KERN_ERR, "changing journal_checksum "
4977 "during remount not supported; ignoring");
4978 sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM;
4979 }
4980
4981 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
4982 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
4983 ext4_msg(sb, KERN_ERR, "can't mount with "
4984 "both data=journal and delalloc");
4985 err = -EINVAL;
4986 goto restore_opts;
4987 }
4988 if (test_opt(sb, DIOREAD_NOLOCK)) {
4989 ext4_msg(sb, KERN_ERR, "can't mount with "
4990 "both data=journal and dioread_nolock");
4991 err = -EINVAL;
4992 goto restore_opts;
4993 }
4994 if (test_opt(sb, DAX)) {
4995 ext4_msg(sb, KERN_ERR, "can't mount with "
4996 "both data=journal and dax");
4997 err = -EINVAL;
4998 goto restore_opts;
4999 }
5000 } else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) {
5001 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
5002 ext4_msg(sb, KERN_ERR, "can't mount with "
5003 "journal_async_commit in data=ordered mode");
5004 err = -EINVAL;
5005 goto restore_opts;
5006 }
5007 }
5008
5009 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_NO_MBCACHE) {
5010 ext4_msg(sb, KERN_ERR, "can't enable nombcache during remount");
5011 err = -EINVAL;
5012 goto restore_opts;
5013 }
5014
5015 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_DAX) {
5016 ext4_msg(sb, KERN_WARNING, "warning: refusing change of "
5017 "dax flag with busy inodes while remounting");
5018 sbi->s_mount_opt ^= EXT4_MOUNT_DAX;
5019 }
5020
5021 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED)
5022 ext4_abort(sb, "Abort forced by user");
5023
5024 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
5025 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
5026
5027 es = sbi->s_es;
5028
5029 if (sbi->s_journal) {
5030 ext4_init_journal_params(sb, sbi->s_journal);
5031 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
5032 }
5033
5034 if (*flags & MS_LAZYTIME)
5035 sb->s_flags |= MS_LAZYTIME;
5036
5037 if ((*flags & MS_RDONLY) != (sb->s_flags & MS_RDONLY)) {
5038 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) {
5039 err = -EROFS;
5040 goto restore_opts;
5041 }
5042
5043 if (*flags & MS_RDONLY) {
5044 err = sync_filesystem(sb);
5045 if (err < 0)
5046 goto restore_opts;
5047 err = dquot_suspend(sb, -1);
5048 if (err < 0)
5049 goto restore_opts;
5050
5051 /*
5052 * First of all, the unconditional stuff we have to do
5053 * to disable replay of the journal when we next remount
5054 */
5055 sb->s_flags |= MS_RDONLY;
5056
5057 /*
5058 * OK, test if we are remounting a valid rw partition
5059 * readonly, and if so set the rdonly flag and then
5060 * mark the partition as valid again.
5061 */
5062 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
5063 (sbi->s_mount_state & EXT4_VALID_FS))
5064 es->s_state = cpu_to_le16(sbi->s_mount_state);
5065
5066 if (sbi->s_journal)
5067 ext4_mark_recovery_complete(sb, es);
5068 } else {
5069 /* Make sure we can mount this feature set readwrite */
5070 if (ext4_has_feature_readonly(sb) ||
5071 !ext4_feature_set_ok(sb, 0)) {
5072 err = -EROFS;
5073 goto restore_opts;
5074 }
5075 /*
5076 * Make sure the group descriptor checksums
5077 * are sane. If they aren't, refuse to remount r/w.
5078 */
5079 for (g = 0; g < sbi->s_groups_count; g++) {
5080 struct ext4_group_desc *gdp =
5081 ext4_get_group_desc(sb, g, NULL);
5082
5083 if (!ext4_group_desc_csum_verify(sb, g, gdp)) {
5084 ext4_msg(sb, KERN_ERR,
5085 "ext4_remount: Checksum for group %u failed (%u!=%u)",
5086 g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)),
5087 le16_to_cpu(gdp->bg_checksum));
5088 err = -EFSBADCRC;
5089 goto restore_opts;
5090 }
5091 }
5092
5093 /*
5094 * If we have an unprocessed orphan list hanging
5095 * around from a previously readonly bdev mount,
5096 * require a full umount/remount for now.
5097 */
5098 if (es->s_last_orphan) {
5099 ext4_msg(sb, KERN_WARNING, "Couldn't "
5100 "remount RDWR because of unprocessed "
5101 "orphan inode list. Please "
5102 "umount/remount instead");
5103 err = -EINVAL;
5104 goto restore_opts;
5105 }
5106
5107 /*
5108 * Mounting a RDONLY partition read-write, so reread
5109 * and store the current valid flag. (It may have
5110 * been changed by e2fsck since we originally mounted
5111 * the partition.)
5112 */
5113 if (sbi->s_journal)
5114 ext4_clear_journal_err(sb, es);
5115 sbi->s_mount_state = le16_to_cpu(es->s_state);
5116 if (!ext4_setup_super(sb, es, 0))
5117 sb->s_flags &= ~MS_RDONLY;
5118 if (ext4_has_feature_mmp(sb))
5119 if (ext4_multi_mount_protect(sb,
5120 le64_to_cpu(es->s_mmp_block))) {
5121 err = -EROFS;
5122 goto restore_opts;
5123 }
5124 enable_quota = 1;
5125 }
5126 }
5127
5128 /*
5129 * Reinitialize lazy itable initialization thread based on
5130 * current settings
5131 */
5132 if ((sb->s_flags & MS_RDONLY) || !test_opt(sb, INIT_INODE_TABLE))
5133 ext4_unregister_li_request(sb);
5134 else {
5135 ext4_group_t first_not_zeroed;
5136 first_not_zeroed = ext4_has_uninit_itable(sb);
5137 ext4_register_li_request(sb, first_not_zeroed);
5138 }
5139
5140 ext4_setup_system_zone(sb);
5141 if (sbi->s_journal == NULL && !(old_sb_flags & MS_RDONLY))
5142 ext4_commit_super(sb, 1);
5143
5144 #ifdef CONFIG_QUOTA
5145 /* Release old quota file names */
5146 for (i = 0; i < EXT4_MAXQUOTAS; i++)
5147 kfree(old_opts.s_qf_names[i]);
5148 if (enable_quota) {
5149 if (sb_any_quota_suspended(sb))
5150 dquot_resume(sb, -1);
5151 else if (ext4_has_feature_quota(sb)) {
5152 err = ext4_enable_quotas(sb);
5153 if (err)
5154 goto restore_opts;
5155 }
5156 }
5157 #endif
5158
5159 *flags = (*flags & ~MS_LAZYTIME) | (sb->s_flags & MS_LAZYTIME);
5160 ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data);
5161 kfree(orig_data);
5162 return 0;
5163
5164 restore_opts:
5165 sb->s_flags = old_sb_flags;
5166 sbi->s_mount_opt = old_opts.s_mount_opt;
5167 sbi->s_mount_opt2 = old_opts.s_mount_opt2;
5168 sbi->s_resuid = old_opts.s_resuid;
5169 sbi->s_resgid = old_opts.s_resgid;
5170 sbi->s_commit_interval = old_opts.s_commit_interval;
5171 sbi->s_min_batch_time = old_opts.s_min_batch_time;
5172 sbi->s_max_batch_time = old_opts.s_max_batch_time;
5173 #ifdef CONFIG_QUOTA
5174 sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
5175 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
5176 kfree(sbi->s_qf_names[i]);
5177 sbi->s_qf_names[i] = old_opts.s_qf_names[i];
5178 }
5179 #endif
5180 kfree(orig_data);
5181 return err;
5182 }
5183
5184 #ifdef CONFIG_QUOTA
5185 static int ext4_statfs_project(struct super_block *sb,
5186 kprojid_t projid, struct kstatfs *buf)
5187 {
5188 struct kqid qid;
5189 struct dquot *dquot;
5190 u64 limit;
5191 u64 curblock;
5192
5193 qid = make_kqid_projid(projid);
5194 dquot = dqget(sb, qid);
5195 if (IS_ERR(dquot))
5196 return PTR_ERR(dquot);
5197 spin_lock(&dq_data_lock);
5198
5199 limit = (dquot->dq_dqb.dqb_bsoftlimit ?
5200 dquot->dq_dqb.dqb_bsoftlimit :
5201 dquot->dq_dqb.dqb_bhardlimit) >> sb->s_blocksize_bits;
5202 if (limit && buf->f_blocks > limit) {
5203 curblock = dquot->dq_dqb.dqb_curspace >> sb->s_blocksize_bits;
5204 buf->f_blocks = limit;
5205 buf->f_bfree = buf->f_bavail =
5206 (buf->f_blocks > curblock) ?
5207 (buf->f_blocks - curblock) : 0;
5208 }
5209
5210 limit = dquot->dq_dqb.dqb_isoftlimit ?
5211 dquot->dq_dqb.dqb_isoftlimit :
5212 dquot->dq_dqb.dqb_ihardlimit;
5213 if (limit && buf->f_files > limit) {
5214 buf->f_files = limit;
5215 buf->f_ffree =
5216 (buf->f_files > dquot->dq_dqb.dqb_curinodes) ?
5217 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0;
5218 }
5219
5220 spin_unlock(&dq_data_lock);
5221 dqput(dquot);
5222 return 0;
5223 }
5224 #endif
5225
5226 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
5227 {
5228 struct super_block *sb = dentry->d_sb;
5229 struct ext4_sb_info *sbi = EXT4_SB(sb);
5230 struct ext4_super_block *es = sbi->s_es;
5231 ext4_fsblk_t overhead = 0, resv_blocks;
5232 u64 fsid;
5233 s64 bfree;
5234 resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters));
5235
5236 if (!test_opt(sb, MINIX_DF))
5237 overhead = sbi->s_overhead;
5238
5239 buf->f_type = EXT4_SUPER_MAGIC;
5240 buf->f_bsize = sb->s_blocksize;
5241 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead);
5242 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
5243 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
5244 /* prevent underflow in case that few free space is available */
5245 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0));
5246 buf->f_bavail = buf->f_bfree -
5247 (ext4_r_blocks_count(es) + resv_blocks);
5248 if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks))
5249 buf->f_bavail = 0;
5250 buf->f_files = le32_to_cpu(es->s_inodes_count);
5251 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
5252 buf->f_namelen = EXT4_NAME_LEN;
5253 fsid = le64_to_cpup((void *)es->s_uuid) ^
5254 le64_to_cpup((void *)es->s_uuid + sizeof(u64));
5255 buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL;
5256 buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL;
5257
5258 #ifdef CONFIG_QUOTA
5259 if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) &&
5260 sb_has_quota_limits_enabled(sb, PRJQUOTA))
5261 ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf);
5262 #endif
5263 return 0;
5264 }
5265
5266 /* Helper function for writing quotas on sync - we need to start transaction
5267 * before quota file is locked for write. Otherwise the are possible deadlocks:
5268 * Process 1 Process 2
5269 * ext4_create() quota_sync()
5270 * jbd2_journal_start() write_dquot()
5271 * dquot_initialize() down(dqio_mutex)
5272 * down(dqio_mutex) jbd2_journal_start()
5273 *
5274 */
5275
5276 #ifdef CONFIG_QUOTA
5277
5278 static inline struct inode *dquot_to_inode(struct dquot *dquot)
5279 {
5280 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type];
5281 }
5282
5283 static int ext4_write_dquot(struct dquot *dquot)
5284 {
5285 int ret, err;
5286 handle_t *handle;
5287 struct inode *inode;
5288
5289 inode = dquot_to_inode(dquot);
5290 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5291 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
5292 if (IS_ERR(handle))
5293 return PTR_ERR(handle);
5294 ret = dquot_commit(dquot);
5295 err = ext4_journal_stop(handle);
5296 if (!ret)
5297 ret = err;
5298 return ret;
5299 }
5300
5301 static int ext4_acquire_dquot(struct dquot *dquot)
5302 {
5303 int ret, err;
5304 handle_t *handle;
5305
5306 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
5307 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
5308 if (IS_ERR(handle))
5309 return PTR_ERR(handle);
5310 ret = dquot_acquire(dquot);
5311 err = ext4_journal_stop(handle);
5312 if (!ret)
5313 ret = err;
5314 return ret;
5315 }
5316
5317 static int ext4_release_dquot(struct dquot *dquot)
5318 {
5319 int ret, err;
5320 handle_t *handle;
5321
5322 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
5323 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
5324 if (IS_ERR(handle)) {
5325 /* Release dquot anyway to avoid endless cycle in dqput() */
5326 dquot_release(dquot);
5327 return PTR_ERR(handle);
5328 }
5329 ret = dquot_release(dquot);
5330 err = ext4_journal_stop(handle);
5331 if (!ret)
5332 ret = err;
5333 return ret;
5334 }
5335
5336 static int ext4_mark_dquot_dirty(struct dquot *dquot)
5337 {
5338 struct super_block *sb = dquot->dq_sb;
5339 struct ext4_sb_info *sbi = EXT4_SB(sb);
5340
5341 /* Are we journaling quotas? */
5342 if (ext4_has_feature_quota(sb) ||
5343 sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
5344 dquot_mark_dquot_dirty(dquot);
5345 return ext4_write_dquot(dquot);
5346 } else {
5347 return dquot_mark_dquot_dirty(dquot);
5348 }
5349 }
5350
5351 static int ext4_write_info(struct super_block *sb, int type)
5352 {
5353 int ret, err;
5354 handle_t *handle;
5355
5356 /* Data block + inode block */
5357 handle = ext4_journal_start(d_inode(sb->s_root), EXT4_HT_QUOTA, 2);
5358 if (IS_ERR(handle))
5359 return PTR_ERR(handle);
5360 ret = dquot_commit_info(sb, type);
5361 err = ext4_journal_stop(handle);
5362 if (!ret)
5363 ret = err;
5364 return ret;
5365 }
5366
5367 /*
5368 * Turn on quotas during mount time - we need to find
5369 * the quota file and such...
5370 */
5371 static int ext4_quota_on_mount(struct super_block *sb, int type)
5372 {
5373 return dquot_quota_on_mount(sb, EXT4_SB(sb)->s_qf_names[type],
5374 EXT4_SB(sb)->s_jquota_fmt, type);
5375 }
5376
5377 static void lockdep_set_quota_inode(struct inode *inode, int subclass)
5378 {
5379 struct ext4_inode_info *ei = EXT4_I(inode);
5380
5381 /* The first argument of lockdep_set_subclass has to be
5382 * *exactly* the same as the argument to init_rwsem() --- in
5383 * this case, in init_once() --- or lockdep gets unhappy
5384 * because the name of the lock is set using the
5385 * stringification of the argument to init_rwsem().
5386 */
5387 (void) ei; /* shut up clang warning if !CONFIG_LOCKDEP */
5388 lockdep_set_subclass(&ei->i_data_sem, subclass);
5389 }
5390
5391 /*
5392 * Standard function to be called on quota_on
5393 */
5394 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
5395 const struct path *path)
5396 {
5397 int err;
5398
5399 if (!test_opt(sb, QUOTA))
5400 return -EINVAL;
5401
5402 /* Quotafile not on the same filesystem? */
5403 if (path->dentry->d_sb != sb)
5404 return -EXDEV;
5405 /* Journaling quota? */
5406 if (EXT4_SB(sb)->s_qf_names[type]) {
5407 /* Quotafile not in fs root? */
5408 if (path->dentry->d_parent != sb->s_root)
5409 ext4_msg(sb, KERN_WARNING,
5410 "Quota file not on filesystem root. "
5411 "Journaled quota will not work");
5412 }
5413
5414 /*
5415 * When we journal data on quota file, we have to flush journal to see
5416 * all updates to the file when we bypass pagecache...
5417 */
5418 if (EXT4_SB(sb)->s_journal &&
5419 ext4_should_journal_data(d_inode(path->dentry))) {
5420 /*
5421 * We don't need to lock updates but journal_flush() could
5422 * otherwise be livelocked...
5423 */
5424 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal);
5425 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal);
5426 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
5427 if (err)
5428 return err;
5429 }
5430
5431 lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA);
5432 err = dquot_quota_on(sb, type, format_id, path);
5433 if (err) {
5434 lockdep_set_quota_inode(path->dentry->d_inode,
5435 I_DATA_SEM_NORMAL);
5436 } else {
5437 struct inode *inode = d_inode(path->dentry);
5438 handle_t *handle;
5439
5440 /*
5441 * Set inode flags to prevent userspace from messing with quota
5442 * files. If this fails, we return success anyway since quotas
5443 * are already enabled and this is not a hard failure.
5444 */
5445 inode_lock(inode);
5446 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
5447 if (IS_ERR(handle))
5448 goto unlock_inode;
5449 EXT4_I(inode)->i_flags |= EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL;
5450 inode_set_flags(inode, S_NOATIME | S_IMMUTABLE,
5451 S_NOATIME | S_IMMUTABLE);
5452 ext4_mark_inode_dirty(handle, inode);
5453 ext4_journal_stop(handle);
5454 unlock_inode:
5455 inode_unlock(inode);
5456 }
5457 return err;
5458 }
5459
5460 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
5461 unsigned int flags)
5462 {
5463 int err;
5464 struct inode *qf_inode;
5465 unsigned long qf_inums[EXT4_MAXQUOTAS] = {
5466 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
5467 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
5468 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
5469 };
5470
5471 BUG_ON(!ext4_has_feature_quota(sb));
5472
5473 if (!qf_inums[type])
5474 return -EPERM;
5475
5476 qf_inode = ext4_iget(sb, qf_inums[type]);
5477 if (IS_ERR(qf_inode)) {
5478 ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]);
5479 return PTR_ERR(qf_inode);
5480 }
5481
5482 /* Don't account quota for quota files to avoid recursion */
5483 qf_inode->i_flags |= S_NOQUOTA;
5484 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA);
5485 err = dquot_enable(qf_inode, type, format_id, flags);
5486 iput(qf_inode);
5487 if (err)
5488 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL);
5489
5490 return err;
5491 }
5492
5493 /* Enable usage tracking for all quota types. */
5494 static int ext4_enable_quotas(struct super_block *sb)
5495 {
5496 int type, err = 0;
5497 unsigned long qf_inums[EXT4_MAXQUOTAS] = {
5498 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
5499 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
5500 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
5501 };
5502 bool quota_mopt[EXT4_MAXQUOTAS] = {
5503 test_opt(sb, USRQUOTA),
5504 test_opt(sb, GRPQUOTA),
5505 test_opt(sb, PRJQUOTA),
5506 };
5507
5508 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE;
5509 for (type = 0; type < EXT4_MAXQUOTAS; type++) {
5510 if (qf_inums[type]) {
5511 err = ext4_quota_enable(sb, type, QFMT_VFS_V1,
5512 DQUOT_USAGE_ENABLED |
5513 (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0));
5514 if (err) {
5515 ext4_warning(sb,
5516 "Failed to enable quota tracking "
5517 "(type=%d, err=%d). Please run "
5518 "e2fsck to fix.", type, err);
5519 return err;
5520 }
5521 }
5522 }
5523 return 0;
5524 }
5525
5526 static int ext4_quota_off(struct super_block *sb, int type)
5527 {
5528 struct inode *inode = sb_dqopt(sb)->files[type];
5529 handle_t *handle;
5530 int err;
5531
5532 /* Force all delayed allocation blocks to be allocated.
5533 * Caller already holds s_umount sem */
5534 if (test_opt(sb, DELALLOC))
5535 sync_filesystem(sb);
5536
5537 if (!inode || !igrab(inode))
5538 goto out;
5539
5540 err = dquot_quota_off(sb, type);
5541 if (err || ext4_has_feature_quota(sb))
5542 goto out_put;
5543
5544 inode_lock(inode);
5545 /*
5546 * Update modification times of quota files when userspace can
5547 * start looking at them. If we fail, we return success anyway since
5548 * this is not a hard failure and quotas are already disabled.
5549 */
5550 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
5551 if (IS_ERR(handle))
5552 goto out_unlock;
5553 EXT4_I(inode)->i_flags &= ~(EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL);
5554 inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE);
5555 inode->i_mtime = inode->i_ctime = current_time(inode);
5556 ext4_mark_inode_dirty(handle, inode);
5557 ext4_journal_stop(handle);
5558 out_unlock:
5559 inode_unlock(inode);
5560 out_put:
5561 lockdep_set_quota_inode(inode, I_DATA_SEM_NORMAL);
5562 iput(inode);
5563 return err;
5564 out:
5565 return dquot_quota_off(sb, type);
5566 }
5567
5568 /* Read data from quotafile - avoid pagecache and such because we cannot afford
5569 * acquiring the locks... As quota files are never truncated and quota code
5570 * itself serializes the operations (and no one else should touch the files)
5571 * we don't have to be afraid of races */
5572 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
5573 size_t len, loff_t off)
5574 {
5575 struct inode *inode = sb_dqopt(sb)->files[type];
5576 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5577 int offset = off & (sb->s_blocksize - 1);
5578 int tocopy;
5579 size_t toread;
5580 struct buffer_head *bh;
5581 loff_t i_size = i_size_read(inode);
5582
5583 if (off > i_size)
5584 return 0;
5585 if (off+len > i_size)
5586 len = i_size-off;
5587 toread = len;
5588 while (toread > 0) {
5589 tocopy = sb->s_blocksize - offset < toread ?
5590 sb->s_blocksize - offset : toread;
5591 bh = ext4_bread(NULL, inode, blk, 0);
5592 if (IS_ERR(bh))
5593 return PTR_ERR(bh);
5594 if (!bh) /* A hole? */
5595 memset(data, 0, tocopy);
5596 else
5597 memcpy(data, bh->b_data+offset, tocopy);
5598 brelse(bh);
5599 offset = 0;
5600 toread -= tocopy;
5601 data += tocopy;
5602 blk++;
5603 }
5604 return len;
5605 }
5606
5607 /* Write to quotafile (we know the transaction is already started and has
5608 * enough credits) */
5609 static ssize_t ext4_quota_write(struct super_block *sb, int type,
5610 const char *data, size_t len, loff_t off)
5611 {
5612 struct inode *inode = sb_dqopt(sb)->files[type];
5613 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5614 int err, offset = off & (sb->s_blocksize - 1);
5615 int retries = 0;
5616 struct buffer_head *bh;
5617 handle_t *handle = journal_current_handle();
5618
5619 if (EXT4_SB(sb)->s_journal && !handle) {
5620 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5621 " cancelled because transaction is not started",
5622 (unsigned long long)off, (unsigned long long)len);
5623 return -EIO;
5624 }
5625 /*
5626 * Since we account only one data block in transaction credits,
5627 * then it is impossible to cross a block boundary.
5628 */
5629 if (sb->s_blocksize - offset < len) {
5630 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5631 " cancelled because not block aligned",
5632 (unsigned long long)off, (unsigned long long)len);
5633 return -EIO;
5634 }
5635
5636 do {
5637 bh = ext4_bread(handle, inode, blk,
5638 EXT4_GET_BLOCKS_CREATE |
5639 EXT4_GET_BLOCKS_METADATA_NOFAIL);
5640 } while (IS_ERR(bh) && (PTR_ERR(bh) == -ENOSPC) &&
5641 ext4_should_retry_alloc(inode->i_sb, &retries));
5642 if (IS_ERR(bh))
5643 return PTR_ERR(bh);
5644 if (!bh)
5645 goto out;
5646 BUFFER_TRACE(bh, "get write access");
5647 err = ext4_journal_get_write_access(handle, bh);
5648 if (err) {
5649 brelse(bh);
5650 return err;
5651 }
5652 lock_buffer(bh);
5653 memcpy(bh->b_data+offset, data, len);
5654 flush_dcache_page(bh->b_page);
5655 unlock_buffer(bh);
5656 err = ext4_handle_dirty_metadata(handle, NULL, bh);
5657 brelse(bh);
5658 out:
5659 if (inode->i_size < off + len) {
5660 i_size_write(inode, off + len);
5661 EXT4_I(inode)->i_disksize = inode->i_size;
5662 ext4_mark_inode_dirty(handle, inode);
5663 }
5664 return len;
5665 }
5666
5667 static int ext4_get_next_id(struct super_block *sb, struct kqid *qid)
5668 {
5669 const struct quota_format_ops *ops;
5670
5671 if (!sb_has_quota_loaded(sb, qid->type))
5672 return -ESRCH;
5673 ops = sb_dqopt(sb)->ops[qid->type];
5674 if (!ops || !ops->get_next_id)
5675 return -ENOSYS;
5676 return dquot_get_next_id(sb, qid);
5677 }
5678 #endif
5679
5680 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
5681 const char *dev_name, void *data)
5682 {
5683 return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super);
5684 }
5685
5686 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
5687 static inline void register_as_ext2(void)
5688 {
5689 int err = register_filesystem(&ext2_fs_type);
5690 if (err)
5691 printk(KERN_WARNING
5692 "EXT4-fs: Unable to register as ext2 (%d)\n", err);
5693 }
5694
5695 static inline void unregister_as_ext2(void)
5696 {
5697 unregister_filesystem(&ext2_fs_type);
5698 }
5699
5700 static inline int ext2_feature_set_ok(struct super_block *sb)
5701 {
5702 if (ext4_has_unknown_ext2_incompat_features(sb))
5703 return 0;
5704 if (sb->s_flags & MS_RDONLY)
5705 return 1;
5706 if (ext4_has_unknown_ext2_ro_compat_features(sb))
5707 return 0;
5708 return 1;
5709 }
5710 #else
5711 static inline void register_as_ext2(void) { }
5712 static inline void unregister_as_ext2(void) { }
5713 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
5714 #endif
5715
5716 static inline void register_as_ext3(void)
5717 {
5718 int err = register_filesystem(&ext3_fs_type);
5719 if (err)
5720 printk(KERN_WARNING
5721 "EXT4-fs: Unable to register as ext3 (%d)\n", err);
5722 }
5723
5724 static inline void unregister_as_ext3(void)
5725 {
5726 unregister_filesystem(&ext3_fs_type);
5727 }
5728
5729 static inline int ext3_feature_set_ok(struct super_block *sb)
5730 {
5731 if (ext4_has_unknown_ext3_incompat_features(sb))
5732 return 0;
5733 if (!ext4_has_feature_journal(sb))
5734 return 0;
5735 if (sb->s_flags & MS_RDONLY)
5736 return 1;
5737 if (ext4_has_unknown_ext3_ro_compat_features(sb))
5738 return 0;
5739 return 1;
5740 }
5741
5742 static struct file_system_type ext4_fs_type = {
5743 .owner = THIS_MODULE,
5744 .name = "ext4",
5745 .mount = ext4_mount,
5746 .kill_sb = kill_block_super,
5747 .fs_flags = FS_REQUIRES_DEV,
5748 };
5749 MODULE_ALIAS_FS("ext4");
5750
5751 /* Shared across all ext4 file systems */
5752 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ];
5753
5754 static int __init ext4_init_fs(void)
5755 {
5756 int i, err;
5757
5758 ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64);
5759 ext4_li_info = NULL;
5760 mutex_init(&ext4_li_mtx);
5761
5762 /* Build-time check for flags consistency */
5763 ext4_check_flag_values();
5764
5765 for (i = 0; i < EXT4_WQ_HASH_SZ; i++)
5766 init_waitqueue_head(&ext4__ioend_wq[i]);
5767
5768 err = ext4_init_es();
5769 if (err)
5770 return err;
5771
5772 err = ext4_init_pageio();
5773 if (err)
5774 goto out5;
5775
5776 err = ext4_init_system_zone();
5777 if (err)
5778 goto out4;
5779
5780 err = ext4_init_sysfs();
5781 if (err)
5782 goto out3;
5783
5784 err = ext4_init_mballoc();
5785 if (err)
5786 goto out2;
5787 err = init_inodecache();
5788 if (err)
5789 goto out1;
5790 register_as_ext3();
5791 register_as_ext2();
5792 err = register_filesystem(&ext4_fs_type);
5793 if (err)
5794 goto out;
5795
5796 return 0;
5797 out:
5798 unregister_as_ext2();
5799 unregister_as_ext3();
5800 destroy_inodecache();
5801 out1:
5802 ext4_exit_mballoc();
5803 out2:
5804 ext4_exit_sysfs();
5805 out3:
5806 ext4_exit_system_zone();
5807 out4:
5808 ext4_exit_pageio();
5809 out5:
5810 ext4_exit_es();
5811
5812 return err;
5813 }
5814
5815 static void __exit ext4_exit_fs(void)
5816 {
5817 ext4_destroy_lazyinit_thread();
5818 unregister_as_ext2();
5819 unregister_as_ext3();
5820 unregister_filesystem(&ext4_fs_type);
5821 destroy_inodecache();
5822 ext4_exit_mballoc();
5823 ext4_exit_sysfs();
5824 ext4_exit_system_zone();
5825 ext4_exit_pageio();
5826 ext4_exit_es();
5827 }
5828
5829 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
5830 MODULE_DESCRIPTION("Fourth Extended Filesystem");
5831 MODULE_LICENSE("GPL");
5832 module_init(ext4_init_fs)
5833 module_exit(ext4_exit_fs)