]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/ext4/super.c
Merge remote-tracking branch 'asoc/fix/cirrus' into asoc-linus
[mirror_ubuntu-bionic-kernel.git] / fs / ext4 / super.c
1 /*
2 * linux/fs/ext4/super.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * Big-endian to little-endian byte-swapping/bitmaps by
16 * David S. Miller (davem@caip.rutgers.edu), 1995
17 */
18
19 #include <linux/module.h>
20 #include <linux/string.h>
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/vmalloc.h>
24 #include <linux/jbd2.h>
25 #include <linux/slab.h>
26 #include <linux/init.h>
27 #include <linux/blkdev.h>
28 #include <linux/parser.h>
29 #include <linux/buffer_head.h>
30 #include <linux/exportfs.h>
31 #include <linux/vfs.h>
32 #include <linux/random.h>
33 #include <linux/mount.h>
34 #include <linux/namei.h>
35 #include <linux/quotaops.h>
36 #include <linux/seq_file.h>
37 #include <linux/proc_fs.h>
38 #include <linux/ctype.h>
39 #include <linux/log2.h>
40 #include <linux/crc16.h>
41 #include <linux/cleancache.h>
42 #include <asm/uaccess.h>
43
44 #include <linux/kthread.h>
45 #include <linux/freezer.h>
46
47 #include "ext4.h"
48 #include "ext4_extents.h" /* Needed for trace points definition */
49 #include "ext4_jbd2.h"
50 #include "xattr.h"
51 #include "acl.h"
52 #include "mballoc.h"
53
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/ext4.h>
56
57 static struct proc_dir_entry *ext4_proc_root;
58 static struct kset *ext4_kset;
59 static struct ext4_lazy_init *ext4_li_info;
60 static struct mutex ext4_li_mtx;
61 static struct ext4_features *ext4_feat;
62 static int ext4_mballoc_ready;
63
64 static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
65 unsigned long journal_devnum);
66 static int ext4_show_options(struct seq_file *seq, struct dentry *root);
67 static int ext4_commit_super(struct super_block *sb, int sync);
68 static void ext4_mark_recovery_complete(struct super_block *sb,
69 struct ext4_super_block *es);
70 static void ext4_clear_journal_err(struct super_block *sb,
71 struct ext4_super_block *es);
72 static int ext4_sync_fs(struct super_block *sb, int wait);
73 static int ext4_remount(struct super_block *sb, int *flags, char *data);
74 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
75 static int ext4_unfreeze(struct super_block *sb);
76 static int ext4_freeze(struct super_block *sb);
77 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
78 const char *dev_name, void *data);
79 static inline int ext2_feature_set_ok(struct super_block *sb);
80 static inline int ext3_feature_set_ok(struct super_block *sb);
81 static int ext4_feature_set_ok(struct super_block *sb, int readonly);
82 static void ext4_destroy_lazyinit_thread(void);
83 static void ext4_unregister_li_request(struct super_block *sb);
84 static void ext4_clear_request_list(void);
85 static int ext4_reserve_clusters(struct ext4_sb_info *, ext4_fsblk_t);
86
87 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
88 static struct file_system_type ext2_fs_type = {
89 .owner = THIS_MODULE,
90 .name = "ext2",
91 .mount = ext4_mount,
92 .kill_sb = kill_block_super,
93 .fs_flags = FS_REQUIRES_DEV,
94 };
95 MODULE_ALIAS_FS("ext2");
96 MODULE_ALIAS("ext2");
97 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type)
98 #else
99 #define IS_EXT2_SB(sb) (0)
100 #endif
101
102
103 #if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
104 static struct file_system_type ext3_fs_type = {
105 .owner = THIS_MODULE,
106 .name = "ext3",
107 .mount = ext4_mount,
108 .kill_sb = kill_block_super,
109 .fs_flags = FS_REQUIRES_DEV,
110 };
111 MODULE_ALIAS_FS("ext3");
112 MODULE_ALIAS("ext3");
113 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type)
114 #else
115 #define IS_EXT3_SB(sb) (0)
116 #endif
117
118 static int ext4_verify_csum_type(struct super_block *sb,
119 struct ext4_super_block *es)
120 {
121 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
122 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
123 return 1;
124
125 return es->s_checksum_type == EXT4_CRC32C_CHKSUM;
126 }
127
128 static __le32 ext4_superblock_csum(struct super_block *sb,
129 struct ext4_super_block *es)
130 {
131 struct ext4_sb_info *sbi = EXT4_SB(sb);
132 int offset = offsetof(struct ext4_super_block, s_checksum);
133 __u32 csum;
134
135 csum = ext4_chksum(sbi, ~0, (char *)es, offset);
136
137 return cpu_to_le32(csum);
138 }
139
140 static int ext4_superblock_csum_verify(struct super_block *sb,
141 struct ext4_super_block *es)
142 {
143 if (!ext4_has_metadata_csum(sb))
144 return 1;
145
146 return es->s_checksum == ext4_superblock_csum(sb, es);
147 }
148
149 void ext4_superblock_csum_set(struct super_block *sb)
150 {
151 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
152
153 if (!ext4_has_metadata_csum(sb))
154 return;
155
156 es->s_checksum = ext4_superblock_csum(sb, es);
157 }
158
159 void *ext4_kvmalloc(size_t size, gfp_t flags)
160 {
161 void *ret;
162
163 ret = kmalloc(size, flags | __GFP_NOWARN);
164 if (!ret)
165 ret = __vmalloc(size, flags, PAGE_KERNEL);
166 return ret;
167 }
168
169 void *ext4_kvzalloc(size_t size, gfp_t flags)
170 {
171 void *ret;
172
173 ret = kzalloc(size, flags | __GFP_NOWARN);
174 if (!ret)
175 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL);
176 return ret;
177 }
178
179 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
180 struct ext4_group_desc *bg)
181 {
182 return le32_to_cpu(bg->bg_block_bitmap_lo) |
183 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
184 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
185 }
186
187 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
188 struct ext4_group_desc *bg)
189 {
190 return le32_to_cpu(bg->bg_inode_bitmap_lo) |
191 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
192 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
193 }
194
195 ext4_fsblk_t ext4_inode_table(struct super_block *sb,
196 struct ext4_group_desc *bg)
197 {
198 return le32_to_cpu(bg->bg_inode_table_lo) |
199 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
200 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
201 }
202
203 __u32 ext4_free_group_clusters(struct super_block *sb,
204 struct ext4_group_desc *bg)
205 {
206 return le16_to_cpu(bg->bg_free_blocks_count_lo) |
207 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
208 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
209 }
210
211 __u32 ext4_free_inodes_count(struct super_block *sb,
212 struct ext4_group_desc *bg)
213 {
214 return le16_to_cpu(bg->bg_free_inodes_count_lo) |
215 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
216 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
217 }
218
219 __u32 ext4_used_dirs_count(struct super_block *sb,
220 struct ext4_group_desc *bg)
221 {
222 return le16_to_cpu(bg->bg_used_dirs_count_lo) |
223 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
224 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
225 }
226
227 __u32 ext4_itable_unused_count(struct super_block *sb,
228 struct ext4_group_desc *bg)
229 {
230 return le16_to_cpu(bg->bg_itable_unused_lo) |
231 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
232 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
233 }
234
235 void ext4_block_bitmap_set(struct super_block *sb,
236 struct ext4_group_desc *bg, ext4_fsblk_t blk)
237 {
238 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
239 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
240 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
241 }
242
243 void ext4_inode_bitmap_set(struct super_block *sb,
244 struct ext4_group_desc *bg, ext4_fsblk_t blk)
245 {
246 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk);
247 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
248 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
249 }
250
251 void ext4_inode_table_set(struct super_block *sb,
252 struct ext4_group_desc *bg, ext4_fsblk_t blk)
253 {
254 bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
255 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
256 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
257 }
258
259 void ext4_free_group_clusters_set(struct super_block *sb,
260 struct ext4_group_desc *bg, __u32 count)
261 {
262 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
263 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
264 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
265 }
266
267 void ext4_free_inodes_set(struct super_block *sb,
268 struct ext4_group_desc *bg, __u32 count)
269 {
270 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
271 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
272 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
273 }
274
275 void ext4_used_dirs_set(struct super_block *sb,
276 struct ext4_group_desc *bg, __u32 count)
277 {
278 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
279 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
280 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
281 }
282
283 void ext4_itable_unused_set(struct super_block *sb,
284 struct ext4_group_desc *bg, __u32 count)
285 {
286 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
287 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
288 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
289 }
290
291
292 static void __save_error_info(struct super_block *sb, const char *func,
293 unsigned int line)
294 {
295 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
296
297 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
298 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
299 es->s_last_error_time = cpu_to_le32(get_seconds());
300 strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func));
301 es->s_last_error_line = cpu_to_le32(line);
302 if (!es->s_first_error_time) {
303 es->s_first_error_time = es->s_last_error_time;
304 strncpy(es->s_first_error_func, func,
305 sizeof(es->s_first_error_func));
306 es->s_first_error_line = cpu_to_le32(line);
307 es->s_first_error_ino = es->s_last_error_ino;
308 es->s_first_error_block = es->s_last_error_block;
309 }
310 /*
311 * Start the daily error reporting function if it hasn't been
312 * started already
313 */
314 if (!es->s_error_count)
315 mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ);
316 le32_add_cpu(&es->s_error_count, 1);
317 }
318
319 static void save_error_info(struct super_block *sb, const char *func,
320 unsigned int line)
321 {
322 __save_error_info(sb, func, line);
323 ext4_commit_super(sb, 1);
324 }
325
326 /*
327 * The del_gendisk() function uninitializes the disk-specific data
328 * structures, including the bdi structure, without telling anyone
329 * else. Once this happens, any attempt to call mark_buffer_dirty()
330 * (for example, by ext4_commit_super), will cause a kernel OOPS.
331 * This is a kludge to prevent these oops until we can put in a proper
332 * hook in del_gendisk() to inform the VFS and file system layers.
333 */
334 static int block_device_ejected(struct super_block *sb)
335 {
336 struct inode *bd_inode = sb->s_bdev->bd_inode;
337 struct backing_dev_info *bdi = inode_to_bdi(bd_inode);
338
339 return bdi->dev == NULL;
340 }
341
342 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn)
343 {
344 struct super_block *sb = journal->j_private;
345 struct ext4_sb_info *sbi = EXT4_SB(sb);
346 int error = is_journal_aborted(journal);
347 struct ext4_journal_cb_entry *jce;
348
349 BUG_ON(txn->t_state == T_FINISHED);
350 spin_lock(&sbi->s_md_lock);
351 while (!list_empty(&txn->t_private_list)) {
352 jce = list_entry(txn->t_private_list.next,
353 struct ext4_journal_cb_entry, jce_list);
354 list_del_init(&jce->jce_list);
355 spin_unlock(&sbi->s_md_lock);
356 jce->jce_func(sb, jce, error);
357 spin_lock(&sbi->s_md_lock);
358 }
359 spin_unlock(&sbi->s_md_lock);
360 }
361
362 /* Deal with the reporting of failure conditions on a filesystem such as
363 * inconsistencies detected or read IO failures.
364 *
365 * On ext2, we can store the error state of the filesystem in the
366 * superblock. That is not possible on ext4, because we may have other
367 * write ordering constraints on the superblock which prevent us from
368 * writing it out straight away; and given that the journal is about to
369 * be aborted, we can't rely on the current, or future, transactions to
370 * write out the superblock safely.
371 *
372 * We'll just use the jbd2_journal_abort() error code to record an error in
373 * the journal instead. On recovery, the journal will complain about
374 * that error until we've noted it down and cleared it.
375 */
376
377 static void ext4_handle_error(struct super_block *sb)
378 {
379 if (sb->s_flags & MS_RDONLY)
380 return;
381
382 if (!test_opt(sb, ERRORS_CONT)) {
383 journal_t *journal = EXT4_SB(sb)->s_journal;
384
385 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
386 if (journal)
387 jbd2_journal_abort(journal, -EIO);
388 }
389 if (test_opt(sb, ERRORS_RO)) {
390 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
391 /*
392 * Make sure updated value of ->s_mount_flags will be visible
393 * before ->s_flags update
394 */
395 smp_wmb();
396 sb->s_flags |= MS_RDONLY;
397 }
398 if (test_opt(sb, ERRORS_PANIC))
399 panic("EXT4-fs (device %s): panic forced after error\n",
400 sb->s_id);
401 }
402
403 #define ext4_error_ratelimit(sb) \
404 ___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state), \
405 "EXT4-fs error")
406
407 void __ext4_error(struct super_block *sb, const char *function,
408 unsigned int line, const char *fmt, ...)
409 {
410 struct va_format vaf;
411 va_list args;
412
413 if (ext4_error_ratelimit(sb)) {
414 va_start(args, fmt);
415 vaf.fmt = fmt;
416 vaf.va = &args;
417 printk(KERN_CRIT
418 "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
419 sb->s_id, function, line, current->comm, &vaf);
420 va_end(args);
421 }
422 save_error_info(sb, function, line);
423 ext4_handle_error(sb);
424 }
425
426 void __ext4_error_inode(struct inode *inode, const char *function,
427 unsigned int line, ext4_fsblk_t block,
428 const char *fmt, ...)
429 {
430 va_list args;
431 struct va_format vaf;
432 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
433
434 es->s_last_error_ino = cpu_to_le32(inode->i_ino);
435 es->s_last_error_block = cpu_to_le64(block);
436 if (ext4_error_ratelimit(inode->i_sb)) {
437 va_start(args, fmt);
438 vaf.fmt = fmt;
439 vaf.va = &args;
440 if (block)
441 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
442 "inode #%lu: block %llu: comm %s: %pV\n",
443 inode->i_sb->s_id, function, line, inode->i_ino,
444 block, current->comm, &vaf);
445 else
446 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
447 "inode #%lu: comm %s: %pV\n",
448 inode->i_sb->s_id, function, line, inode->i_ino,
449 current->comm, &vaf);
450 va_end(args);
451 }
452 save_error_info(inode->i_sb, function, line);
453 ext4_handle_error(inode->i_sb);
454 }
455
456 void __ext4_error_file(struct file *file, const char *function,
457 unsigned int line, ext4_fsblk_t block,
458 const char *fmt, ...)
459 {
460 va_list args;
461 struct va_format vaf;
462 struct ext4_super_block *es;
463 struct inode *inode = file_inode(file);
464 char pathname[80], *path;
465
466 es = EXT4_SB(inode->i_sb)->s_es;
467 es->s_last_error_ino = cpu_to_le32(inode->i_ino);
468 if (ext4_error_ratelimit(inode->i_sb)) {
469 path = d_path(&(file->f_path), pathname, sizeof(pathname));
470 if (IS_ERR(path))
471 path = "(unknown)";
472 va_start(args, fmt);
473 vaf.fmt = fmt;
474 vaf.va = &args;
475 if (block)
476 printk(KERN_CRIT
477 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
478 "block %llu: comm %s: path %s: %pV\n",
479 inode->i_sb->s_id, function, line, inode->i_ino,
480 block, current->comm, path, &vaf);
481 else
482 printk(KERN_CRIT
483 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
484 "comm %s: path %s: %pV\n",
485 inode->i_sb->s_id, function, line, inode->i_ino,
486 current->comm, path, &vaf);
487 va_end(args);
488 }
489 save_error_info(inode->i_sb, function, line);
490 ext4_handle_error(inode->i_sb);
491 }
492
493 const char *ext4_decode_error(struct super_block *sb, int errno,
494 char nbuf[16])
495 {
496 char *errstr = NULL;
497
498 switch (errno) {
499 case -EIO:
500 errstr = "IO failure";
501 break;
502 case -ENOMEM:
503 errstr = "Out of memory";
504 break;
505 case -EROFS:
506 if (!sb || (EXT4_SB(sb)->s_journal &&
507 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
508 errstr = "Journal has aborted";
509 else
510 errstr = "Readonly filesystem";
511 break;
512 default:
513 /* If the caller passed in an extra buffer for unknown
514 * errors, textualise them now. Else we just return
515 * NULL. */
516 if (nbuf) {
517 /* Check for truncated error codes... */
518 if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
519 errstr = nbuf;
520 }
521 break;
522 }
523
524 return errstr;
525 }
526
527 /* __ext4_std_error decodes expected errors from journaling functions
528 * automatically and invokes the appropriate error response. */
529
530 void __ext4_std_error(struct super_block *sb, const char *function,
531 unsigned int line, int errno)
532 {
533 char nbuf[16];
534 const char *errstr;
535
536 /* Special case: if the error is EROFS, and we're not already
537 * inside a transaction, then there's really no point in logging
538 * an error. */
539 if (errno == -EROFS && journal_current_handle() == NULL &&
540 (sb->s_flags & MS_RDONLY))
541 return;
542
543 if (ext4_error_ratelimit(sb)) {
544 errstr = ext4_decode_error(sb, errno, nbuf);
545 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
546 sb->s_id, function, line, errstr);
547 }
548
549 save_error_info(sb, function, line);
550 ext4_handle_error(sb);
551 }
552
553 /*
554 * ext4_abort is a much stronger failure handler than ext4_error. The
555 * abort function may be used to deal with unrecoverable failures such
556 * as journal IO errors or ENOMEM at a critical moment in log management.
557 *
558 * We unconditionally force the filesystem into an ABORT|READONLY state,
559 * unless the error response on the fs has been set to panic in which
560 * case we take the easy way out and panic immediately.
561 */
562
563 void __ext4_abort(struct super_block *sb, const char *function,
564 unsigned int line, const char *fmt, ...)
565 {
566 va_list args;
567
568 save_error_info(sb, function, line);
569 va_start(args, fmt);
570 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: ", sb->s_id,
571 function, line);
572 vprintk(fmt, args);
573 printk("\n");
574 va_end(args);
575
576 if ((sb->s_flags & MS_RDONLY) == 0) {
577 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
578 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
579 /*
580 * Make sure updated value of ->s_mount_flags will be visible
581 * before ->s_flags update
582 */
583 smp_wmb();
584 sb->s_flags |= MS_RDONLY;
585 if (EXT4_SB(sb)->s_journal)
586 jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO);
587 save_error_info(sb, function, line);
588 }
589 if (test_opt(sb, ERRORS_PANIC))
590 panic("EXT4-fs panic from previous error\n");
591 }
592
593 void __ext4_msg(struct super_block *sb,
594 const char *prefix, const char *fmt, ...)
595 {
596 struct va_format vaf;
597 va_list args;
598
599 if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state), "EXT4-fs"))
600 return;
601
602 va_start(args, fmt);
603 vaf.fmt = fmt;
604 vaf.va = &args;
605 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
606 va_end(args);
607 }
608
609 void __ext4_warning(struct super_block *sb, const char *function,
610 unsigned int line, const char *fmt, ...)
611 {
612 struct va_format vaf;
613 va_list args;
614
615 if (!___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state),
616 "EXT4-fs warning"))
617 return;
618
619 va_start(args, fmt);
620 vaf.fmt = fmt;
621 vaf.va = &args;
622 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
623 sb->s_id, function, line, &vaf);
624 va_end(args);
625 }
626
627 void __ext4_grp_locked_error(const char *function, unsigned int line,
628 struct super_block *sb, ext4_group_t grp,
629 unsigned long ino, ext4_fsblk_t block,
630 const char *fmt, ...)
631 __releases(bitlock)
632 __acquires(bitlock)
633 {
634 struct va_format vaf;
635 va_list args;
636 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
637
638 es->s_last_error_ino = cpu_to_le32(ino);
639 es->s_last_error_block = cpu_to_le64(block);
640 __save_error_info(sb, function, line);
641
642 if (ext4_error_ratelimit(sb)) {
643 va_start(args, fmt);
644 vaf.fmt = fmt;
645 vaf.va = &args;
646 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
647 sb->s_id, function, line, grp);
648 if (ino)
649 printk(KERN_CONT "inode %lu: ", ino);
650 if (block)
651 printk(KERN_CONT "block %llu:",
652 (unsigned long long) block);
653 printk(KERN_CONT "%pV\n", &vaf);
654 va_end(args);
655 }
656
657 if (test_opt(sb, ERRORS_CONT)) {
658 ext4_commit_super(sb, 0);
659 return;
660 }
661
662 ext4_unlock_group(sb, grp);
663 ext4_handle_error(sb);
664 /*
665 * We only get here in the ERRORS_RO case; relocking the group
666 * may be dangerous, but nothing bad will happen since the
667 * filesystem will have already been marked read/only and the
668 * journal has been aborted. We return 1 as a hint to callers
669 * who might what to use the return value from
670 * ext4_grp_locked_error() to distinguish between the
671 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
672 * aggressively from the ext4 function in question, with a
673 * more appropriate error code.
674 */
675 ext4_lock_group(sb, grp);
676 return;
677 }
678
679 void ext4_update_dynamic_rev(struct super_block *sb)
680 {
681 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
682
683 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
684 return;
685
686 ext4_warning(sb,
687 "updating to rev %d because of new feature flag, "
688 "running e2fsck is recommended",
689 EXT4_DYNAMIC_REV);
690
691 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
692 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
693 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
694 /* leave es->s_feature_*compat flags alone */
695 /* es->s_uuid will be set by e2fsck if empty */
696
697 /*
698 * The rest of the superblock fields should be zero, and if not it
699 * means they are likely already in use, so leave them alone. We
700 * can leave it up to e2fsck to clean up any inconsistencies there.
701 */
702 }
703
704 /*
705 * Open the external journal device
706 */
707 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb)
708 {
709 struct block_device *bdev;
710 char b[BDEVNAME_SIZE];
711
712 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb);
713 if (IS_ERR(bdev))
714 goto fail;
715 return bdev;
716
717 fail:
718 ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld",
719 __bdevname(dev, b), PTR_ERR(bdev));
720 return NULL;
721 }
722
723 /*
724 * Release the journal device
725 */
726 static void ext4_blkdev_put(struct block_device *bdev)
727 {
728 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
729 }
730
731 static void ext4_blkdev_remove(struct ext4_sb_info *sbi)
732 {
733 struct block_device *bdev;
734 bdev = sbi->journal_bdev;
735 if (bdev) {
736 ext4_blkdev_put(bdev);
737 sbi->journal_bdev = NULL;
738 }
739 }
740
741 static inline struct inode *orphan_list_entry(struct list_head *l)
742 {
743 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
744 }
745
746 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
747 {
748 struct list_head *l;
749
750 ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
751 le32_to_cpu(sbi->s_es->s_last_orphan));
752
753 printk(KERN_ERR "sb_info orphan list:\n");
754 list_for_each(l, &sbi->s_orphan) {
755 struct inode *inode = orphan_list_entry(l);
756 printk(KERN_ERR " "
757 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
758 inode->i_sb->s_id, inode->i_ino, inode,
759 inode->i_mode, inode->i_nlink,
760 NEXT_ORPHAN(inode));
761 }
762 }
763
764 static void ext4_put_super(struct super_block *sb)
765 {
766 struct ext4_sb_info *sbi = EXT4_SB(sb);
767 struct ext4_super_block *es = sbi->s_es;
768 int i, err;
769
770 ext4_unregister_li_request(sb);
771 dquot_disable(sb, -1, DQUOT_USAGE_ENABLED | DQUOT_LIMITS_ENABLED);
772
773 flush_workqueue(sbi->rsv_conversion_wq);
774 destroy_workqueue(sbi->rsv_conversion_wq);
775
776 if (sbi->s_journal) {
777 err = jbd2_journal_destroy(sbi->s_journal);
778 sbi->s_journal = NULL;
779 if (err < 0)
780 ext4_abort(sb, "Couldn't clean up the journal");
781 }
782
783 ext4_es_unregister_shrinker(sbi);
784 del_timer_sync(&sbi->s_err_report);
785 ext4_release_system_zone(sb);
786 ext4_mb_release(sb);
787 ext4_ext_release(sb);
788 ext4_xattr_put_super(sb);
789
790 if (!(sb->s_flags & MS_RDONLY)) {
791 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
792 es->s_state = cpu_to_le16(sbi->s_mount_state);
793 }
794 if (!(sb->s_flags & MS_RDONLY))
795 ext4_commit_super(sb, 1);
796
797 if (sbi->s_proc) {
798 remove_proc_entry("options", sbi->s_proc);
799 remove_proc_entry(sb->s_id, ext4_proc_root);
800 }
801 kobject_del(&sbi->s_kobj);
802
803 for (i = 0; i < sbi->s_gdb_count; i++)
804 brelse(sbi->s_group_desc[i]);
805 kvfree(sbi->s_group_desc);
806 kvfree(sbi->s_flex_groups);
807 percpu_counter_destroy(&sbi->s_freeclusters_counter);
808 percpu_counter_destroy(&sbi->s_freeinodes_counter);
809 percpu_counter_destroy(&sbi->s_dirs_counter);
810 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
811 brelse(sbi->s_sbh);
812 #ifdef CONFIG_QUOTA
813 for (i = 0; i < EXT4_MAXQUOTAS; i++)
814 kfree(sbi->s_qf_names[i]);
815 #endif
816
817 /* Debugging code just in case the in-memory inode orphan list
818 * isn't empty. The on-disk one can be non-empty if we've
819 * detected an error and taken the fs readonly, but the
820 * in-memory list had better be clean by this point. */
821 if (!list_empty(&sbi->s_orphan))
822 dump_orphan_list(sb, sbi);
823 J_ASSERT(list_empty(&sbi->s_orphan));
824
825 invalidate_bdev(sb->s_bdev);
826 if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) {
827 /*
828 * Invalidate the journal device's buffers. We don't want them
829 * floating about in memory - the physical journal device may
830 * hotswapped, and it breaks the `ro-after' testing code.
831 */
832 sync_blockdev(sbi->journal_bdev);
833 invalidate_bdev(sbi->journal_bdev);
834 ext4_blkdev_remove(sbi);
835 }
836 if (sbi->s_mb_cache) {
837 ext4_xattr_destroy_cache(sbi->s_mb_cache);
838 sbi->s_mb_cache = NULL;
839 }
840 if (sbi->s_mmp_tsk)
841 kthread_stop(sbi->s_mmp_tsk);
842 sb->s_fs_info = NULL;
843 /*
844 * Now that we are completely done shutting down the
845 * superblock, we need to actually destroy the kobject.
846 */
847 kobject_put(&sbi->s_kobj);
848 wait_for_completion(&sbi->s_kobj_unregister);
849 if (sbi->s_chksum_driver)
850 crypto_free_shash(sbi->s_chksum_driver);
851 kfree(sbi->s_blockgroup_lock);
852 kfree(sbi);
853 }
854
855 static struct kmem_cache *ext4_inode_cachep;
856
857 /*
858 * Called inside transaction, so use GFP_NOFS
859 */
860 static struct inode *ext4_alloc_inode(struct super_block *sb)
861 {
862 struct ext4_inode_info *ei;
863
864 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS);
865 if (!ei)
866 return NULL;
867
868 ei->vfs_inode.i_version = 1;
869 spin_lock_init(&ei->i_raw_lock);
870 INIT_LIST_HEAD(&ei->i_prealloc_list);
871 spin_lock_init(&ei->i_prealloc_lock);
872 ext4_es_init_tree(&ei->i_es_tree);
873 rwlock_init(&ei->i_es_lock);
874 INIT_LIST_HEAD(&ei->i_es_list);
875 ei->i_es_all_nr = 0;
876 ei->i_es_shk_nr = 0;
877 ei->i_es_shrink_lblk = 0;
878 ei->i_reserved_data_blocks = 0;
879 ei->i_reserved_meta_blocks = 0;
880 ei->i_allocated_meta_blocks = 0;
881 ei->i_da_metadata_calc_len = 0;
882 ei->i_da_metadata_calc_last_lblock = 0;
883 spin_lock_init(&(ei->i_block_reservation_lock));
884 #ifdef CONFIG_QUOTA
885 ei->i_reserved_quota = 0;
886 memset(&ei->i_dquot, 0, sizeof(ei->i_dquot));
887 #endif
888 ei->jinode = NULL;
889 INIT_LIST_HEAD(&ei->i_rsv_conversion_list);
890 spin_lock_init(&ei->i_completed_io_lock);
891 ei->i_sync_tid = 0;
892 ei->i_datasync_tid = 0;
893 atomic_set(&ei->i_ioend_count, 0);
894 atomic_set(&ei->i_unwritten, 0);
895 INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work);
896
897 return &ei->vfs_inode;
898 }
899
900 static int ext4_drop_inode(struct inode *inode)
901 {
902 int drop = generic_drop_inode(inode);
903
904 trace_ext4_drop_inode(inode, drop);
905 return drop;
906 }
907
908 static void ext4_i_callback(struct rcu_head *head)
909 {
910 struct inode *inode = container_of(head, struct inode, i_rcu);
911 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
912 }
913
914 static void ext4_destroy_inode(struct inode *inode)
915 {
916 if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
917 ext4_msg(inode->i_sb, KERN_ERR,
918 "Inode %lu (%p): orphan list check failed!",
919 inode->i_ino, EXT4_I(inode));
920 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
921 EXT4_I(inode), sizeof(struct ext4_inode_info),
922 true);
923 dump_stack();
924 }
925 call_rcu(&inode->i_rcu, ext4_i_callback);
926 }
927
928 static void init_once(void *foo)
929 {
930 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo;
931
932 INIT_LIST_HEAD(&ei->i_orphan);
933 init_rwsem(&ei->xattr_sem);
934 init_rwsem(&ei->i_data_sem);
935 inode_init_once(&ei->vfs_inode);
936 }
937
938 static int __init init_inodecache(void)
939 {
940 ext4_inode_cachep = kmem_cache_create("ext4_inode_cache",
941 sizeof(struct ext4_inode_info),
942 0, (SLAB_RECLAIM_ACCOUNT|
943 SLAB_MEM_SPREAD),
944 init_once);
945 if (ext4_inode_cachep == NULL)
946 return -ENOMEM;
947 return 0;
948 }
949
950 static void destroy_inodecache(void)
951 {
952 /*
953 * Make sure all delayed rcu free inodes are flushed before we
954 * destroy cache.
955 */
956 rcu_barrier();
957 kmem_cache_destroy(ext4_inode_cachep);
958 }
959
960 void ext4_clear_inode(struct inode *inode)
961 {
962 invalidate_inode_buffers(inode);
963 clear_inode(inode);
964 dquot_drop(inode);
965 ext4_discard_preallocations(inode);
966 ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS);
967 if (EXT4_I(inode)->jinode) {
968 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
969 EXT4_I(inode)->jinode);
970 jbd2_free_inode(EXT4_I(inode)->jinode);
971 EXT4_I(inode)->jinode = NULL;
972 }
973 }
974
975 static struct inode *ext4_nfs_get_inode(struct super_block *sb,
976 u64 ino, u32 generation)
977 {
978 struct inode *inode;
979
980 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
981 return ERR_PTR(-ESTALE);
982 if (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
983 return ERR_PTR(-ESTALE);
984
985 /* iget isn't really right if the inode is currently unallocated!!
986 *
987 * ext4_read_inode will return a bad_inode if the inode had been
988 * deleted, so we should be safe.
989 *
990 * Currently we don't know the generation for parent directory, so
991 * a generation of 0 means "accept any"
992 */
993 inode = ext4_iget_normal(sb, ino);
994 if (IS_ERR(inode))
995 return ERR_CAST(inode);
996 if (generation && inode->i_generation != generation) {
997 iput(inode);
998 return ERR_PTR(-ESTALE);
999 }
1000
1001 return inode;
1002 }
1003
1004 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
1005 int fh_len, int fh_type)
1006 {
1007 return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1008 ext4_nfs_get_inode);
1009 }
1010
1011 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
1012 int fh_len, int fh_type)
1013 {
1014 return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1015 ext4_nfs_get_inode);
1016 }
1017
1018 /*
1019 * Try to release metadata pages (indirect blocks, directories) which are
1020 * mapped via the block device. Since these pages could have journal heads
1021 * which would prevent try_to_free_buffers() from freeing them, we must use
1022 * jbd2 layer's try_to_free_buffers() function to release them.
1023 */
1024 static int bdev_try_to_free_page(struct super_block *sb, struct page *page,
1025 gfp_t wait)
1026 {
1027 journal_t *journal = EXT4_SB(sb)->s_journal;
1028
1029 WARN_ON(PageChecked(page));
1030 if (!page_has_buffers(page))
1031 return 0;
1032 if (journal)
1033 return jbd2_journal_try_to_free_buffers(journal, page,
1034 wait & ~__GFP_WAIT);
1035 return try_to_free_buffers(page);
1036 }
1037
1038 #ifdef CONFIG_QUOTA
1039 #define QTYPE2NAME(t) ((t) == USRQUOTA ? "user" : "group")
1040 #define QTYPE2MOPT(on, t) ((t) == USRQUOTA?((on)##USRJQUOTA):((on)##GRPJQUOTA))
1041
1042 static int ext4_write_dquot(struct dquot *dquot);
1043 static int ext4_acquire_dquot(struct dquot *dquot);
1044 static int ext4_release_dquot(struct dquot *dquot);
1045 static int ext4_mark_dquot_dirty(struct dquot *dquot);
1046 static int ext4_write_info(struct super_block *sb, int type);
1047 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1048 struct path *path);
1049 static int ext4_quota_off(struct super_block *sb, int type);
1050 static int ext4_quota_on_mount(struct super_block *sb, int type);
1051 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1052 size_t len, loff_t off);
1053 static ssize_t ext4_quota_write(struct super_block *sb, int type,
1054 const char *data, size_t len, loff_t off);
1055 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
1056 unsigned int flags);
1057 static int ext4_enable_quotas(struct super_block *sb);
1058
1059 static struct dquot **ext4_get_dquots(struct inode *inode)
1060 {
1061 return EXT4_I(inode)->i_dquot;
1062 }
1063
1064 static const struct dquot_operations ext4_quota_operations = {
1065 .get_reserved_space = ext4_get_reserved_space,
1066 .write_dquot = ext4_write_dquot,
1067 .acquire_dquot = ext4_acquire_dquot,
1068 .release_dquot = ext4_release_dquot,
1069 .mark_dirty = ext4_mark_dquot_dirty,
1070 .write_info = ext4_write_info,
1071 .alloc_dquot = dquot_alloc,
1072 .destroy_dquot = dquot_destroy,
1073 };
1074
1075 static const struct quotactl_ops ext4_qctl_operations = {
1076 .quota_on = ext4_quota_on,
1077 .quota_off = ext4_quota_off,
1078 .quota_sync = dquot_quota_sync,
1079 .get_info = dquot_get_dqinfo,
1080 .set_info = dquot_set_dqinfo,
1081 .get_dqblk = dquot_get_dqblk,
1082 .set_dqblk = dquot_set_dqblk
1083 };
1084 #endif
1085
1086 static const struct super_operations ext4_sops = {
1087 .alloc_inode = ext4_alloc_inode,
1088 .destroy_inode = ext4_destroy_inode,
1089 .write_inode = ext4_write_inode,
1090 .dirty_inode = ext4_dirty_inode,
1091 .drop_inode = ext4_drop_inode,
1092 .evict_inode = ext4_evict_inode,
1093 .put_super = ext4_put_super,
1094 .sync_fs = ext4_sync_fs,
1095 .freeze_fs = ext4_freeze,
1096 .unfreeze_fs = ext4_unfreeze,
1097 .statfs = ext4_statfs,
1098 .remount_fs = ext4_remount,
1099 .show_options = ext4_show_options,
1100 #ifdef CONFIG_QUOTA
1101 .quota_read = ext4_quota_read,
1102 .quota_write = ext4_quota_write,
1103 .get_dquots = ext4_get_dquots,
1104 #endif
1105 .bdev_try_to_free_page = bdev_try_to_free_page,
1106 };
1107
1108 static const struct export_operations ext4_export_ops = {
1109 .fh_to_dentry = ext4_fh_to_dentry,
1110 .fh_to_parent = ext4_fh_to_parent,
1111 .get_parent = ext4_get_parent,
1112 };
1113
1114 enum {
1115 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1116 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro,
1117 Opt_nouid32, Opt_debug, Opt_removed,
1118 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl,
1119 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload,
1120 Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev,
1121 Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit,
1122 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1123 Opt_data_err_abort, Opt_data_err_ignore,
1124 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota,
1125 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota,
1126 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err,
1127 Opt_usrquota, Opt_grpquota, Opt_i_version, Opt_dax,
1128 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_mblk_io_submit,
1129 Opt_lazytime, Opt_nolazytime,
1130 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1131 Opt_inode_readahead_blks, Opt_journal_ioprio,
1132 Opt_dioread_nolock, Opt_dioread_lock,
1133 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable,
1134 Opt_max_dir_size_kb, Opt_nojournal_checksum,
1135 };
1136
1137 static const match_table_t tokens = {
1138 {Opt_bsd_df, "bsddf"},
1139 {Opt_minix_df, "minixdf"},
1140 {Opt_grpid, "grpid"},
1141 {Opt_grpid, "bsdgroups"},
1142 {Opt_nogrpid, "nogrpid"},
1143 {Opt_nogrpid, "sysvgroups"},
1144 {Opt_resgid, "resgid=%u"},
1145 {Opt_resuid, "resuid=%u"},
1146 {Opt_sb, "sb=%u"},
1147 {Opt_err_cont, "errors=continue"},
1148 {Opt_err_panic, "errors=panic"},
1149 {Opt_err_ro, "errors=remount-ro"},
1150 {Opt_nouid32, "nouid32"},
1151 {Opt_debug, "debug"},
1152 {Opt_removed, "oldalloc"},
1153 {Opt_removed, "orlov"},
1154 {Opt_user_xattr, "user_xattr"},
1155 {Opt_nouser_xattr, "nouser_xattr"},
1156 {Opt_acl, "acl"},
1157 {Opt_noacl, "noacl"},
1158 {Opt_noload, "norecovery"},
1159 {Opt_noload, "noload"},
1160 {Opt_removed, "nobh"},
1161 {Opt_removed, "bh"},
1162 {Opt_commit, "commit=%u"},
1163 {Opt_min_batch_time, "min_batch_time=%u"},
1164 {Opt_max_batch_time, "max_batch_time=%u"},
1165 {Opt_journal_dev, "journal_dev=%u"},
1166 {Opt_journal_path, "journal_path=%s"},
1167 {Opt_journal_checksum, "journal_checksum"},
1168 {Opt_nojournal_checksum, "nojournal_checksum"},
1169 {Opt_journal_async_commit, "journal_async_commit"},
1170 {Opt_abort, "abort"},
1171 {Opt_data_journal, "data=journal"},
1172 {Opt_data_ordered, "data=ordered"},
1173 {Opt_data_writeback, "data=writeback"},
1174 {Opt_data_err_abort, "data_err=abort"},
1175 {Opt_data_err_ignore, "data_err=ignore"},
1176 {Opt_offusrjquota, "usrjquota="},
1177 {Opt_usrjquota, "usrjquota=%s"},
1178 {Opt_offgrpjquota, "grpjquota="},
1179 {Opt_grpjquota, "grpjquota=%s"},
1180 {Opt_jqfmt_vfsold, "jqfmt=vfsold"},
1181 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
1182 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
1183 {Opt_grpquota, "grpquota"},
1184 {Opt_noquota, "noquota"},
1185 {Opt_quota, "quota"},
1186 {Opt_usrquota, "usrquota"},
1187 {Opt_barrier, "barrier=%u"},
1188 {Opt_barrier, "barrier"},
1189 {Opt_nobarrier, "nobarrier"},
1190 {Opt_i_version, "i_version"},
1191 {Opt_dax, "dax"},
1192 {Opt_stripe, "stripe=%u"},
1193 {Opt_delalloc, "delalloc"},
1194 {Opt_lazytime, "lazytime"},
1195 {Opt_nolazytime, "nolazytime"},
1196 {Opt_nodelalloc, "nodelalloc"},
1197 {Opt_removed, "mblk_io_submit"},
1198 {Opt_removed, "nomblk_io_submit"},
1199 {Opt_block_validity, "block_validity"},
1200 {Opt_noblock_validity, "noblock_validity"},
1201 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"},
1202 {Opt_journal_ioprio, "journal_ioprio=%u"},
1203 {Opt_auto_da_alloc, "auto_da_alloc=%u"},
1204 {Opt_auto_da_alloc, "auto_da_alloc"},
1205 {Opt_noauto_da_alloc, "noauto_da_alloc"},
1206 {Opt_dioread_nolock, "dioread_nolock"},
1207 {Opt_dioread_lock, "dioread_lock"},
1208 {Opt_discard, "discard"},
1209 {Opt_nodiscard, "nodiscard"},
1210 {Opt_init_itable, "init_itable=%u"},
1211 {Opt_init_itable, "init_itable"},
1212 {Opt_noinit_itable, "noinit_itable"},
1213 {Opt_max_dir_size_kb, "max_dir_size_kb=%u"},
1214 {Opt_removed, "check=none"}, /* mount option from ext2/3 */
1215 {Opt_removed, "nocheck"}, /* mount option from ext2/3 */
1216 {Opt_removed, "reservation"}, /* mount option from ext2/3 */
1217 {Opt_removed, "noreservation"}, /* mount option from ext2/3 */
1218 {Opt_removed, "journal=%u"}, /* mount option from ext2/3 */
1219 {Opt_err, NULL},
1220 };
1221
1222 static ext4_fsblk_t get_sb_block(void **data)
1223 {
1224 ext4_fsblk_t sb_block;
1225 char *options = (char *) *data;
1226
1227 if (!options || strncmp(options, "sb=", 3) != 0)
1228 return 1; /* Default location */
1229
1230 options += 3;
1231 /* TODO: use simple_strtoll with >32bit ext4 */
1232 sb_block = simple_strtoul(options, &options, 0);
1233 if (*options && *options != ',') {
1234 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n",
1235 (char *) *data);
1236 return 1;
1237 }
1238 if (*options == ',')
1239 options++;
1240 *data = (void *) options;
1241
1242 return sb_block;
1243 }
1244
1245 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1246 static char deprecated_msg[] = "Mount option \"%s\" will be removed by %s\n"
1247 "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n";
1248
1249 #ifdef CONFIG_QUOTA
1250 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args)
1251 {
1252 struct ext4_sb_info *sbi = EXT4_SB(sb);
1253 char *qname;
1254 int ret = -1;
1255
1256 if (sb_any_quota_loaded(sb) &&
1257 !sbi->s_qf_names[qtype]) {
1258 ext4_msg(sb, KERN_ERR,
1259 "Cannot change journaled "
1260 "quota options when quota turned on");
1261 return -1;
1262 }
1263 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA)) {
1264 ext4_msg(sb, KERN_ERR, "Cannot set journaled quota options "
1265 "when QUOTA feature is enabled");
1266 return -1;
1267 }
1268 qname = match_strdup(args);
1269 if (!qname) {
1270 ext4_msg(sb, KERN_ERR,
1271 "Not enough memory for storing quotafile name");
1272 return -1;
1273 }
1274 if (sbi->s_qf_names[qtype]) {
1275 if (strcmp(sbi->s_qf_names[qtype], qname) == 0)
1276 ret = 1;
1277 else
1278 ext4_msg(sb, KERN_ERR,
1279 "%s quota file already specified",
1280 QTYPE2NAME(qtype));
1281 goto errout;
1282 }
1283 if (strchr(qname, '/')) {
1284 ext4_msg(sb, KERN_ERR,
1285 "quotafile must be on filesystem root");
1286 goto errout;
1287 }
1288 sbi->s_qf_names[qtype] = qname;
1289 set_opt(sb, QUOTA);
1290 return 1;
1291 errout:
1292 kfree(qname);
1293 return ret;
1294 }
1295
1296 static int clear_qf_name(struct super_block *sb, int qtype)
1297 {
1298
1299 struct ext4_sb_info *sbi = EXT4_SB(sb);
1300
1301 if (sb_any_quota_loaded(sb) &&
1302 sbi->s_qf_names[qtype]) {
1303 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options"
1304 " when quota turned on");
1305 return -1;
1306 }
1307 kfree(sbi->s_qf_names[qtype]);
1308 sbi->s_qf_names[qtype] = NULL;
1309 return 1;
1310 }
1311 #endif
1312
1313 #define MOPT_SET 0x0001
1314 #define MOPT_CLEAR 0x0002
1315 #define MOPT_NOSUPPORT 0x0004
1316 #define MOPT_EXPLICIT 0x0008
1317 #define MOPT_CLEAR_ERR 0x0010
1318 #define MOPT_GTE0 0x0020
1319 #ifdef CONFIG_QUOTA
1320 #define MOPT_Q 0
1321 #define MOPT_QFMT 0x0040
1322 #else
1323 #define MOPT_Q MOPT_NOSUPPORT
1324 #define MOPT_QFMT MOPT_NOSUPPORT
1325 #endif
1326 #define MOPT_DATAJ 0x0080
1327 #define MOPT_NO_EXT2 0x0100
1328 #define MOPT_NO_EXT3 0x0200
1329 #define MOPT_EXT4_ONLY (MOPT_NO_EXT2 | MOPT_NO_EXT3)
1330 #define MOPT_STRING 0x0400
1331
1332 static const struct mount_opts {
1333 int token;
1334 int mount_opt;
1335 int flags;
1336 } ext4_mount_opts[] = {
1337 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET},
1338 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR},
1339 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET},
1340 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR},
1341 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET},
1342 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR},
1343 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK,
1344 MOPT_EXT4_ONLY | MOPT_SET},
1345 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK,
1346 MOPT_EXT4_ONLY | MOPT_CLEAR},
1347 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET},
1348 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR},
1349 {Opt_delalloc, EXT4_MOUNT_DELALLOC,
1350 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1351 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC,
1352 MOPT_EXT4_ONLY | MOPT_CLEAR},
1353 {Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1354 MOPT_EXT4_ONLY | MOPT_CLEAR},
1355 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1356 MOPT_EXT4_ONLY | MOPT_SET},
1357 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT |
1358 EXT4_MOUNT_JOURNAL_CHECKSUM),
1359 MOPT_EXT4_ONLY | MOPT_SET},
1360 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET},
1361 {Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR},
1362 {Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR},
1363 {Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR},
1364 {Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT,
1365 MOPT_NO_EXT2 | MOPT_SET},
1366 {Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT,
1367 MOPT_NO_EXT2 | MOPT_CLEAR},
1368 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET},
1369 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR},
1370 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET},
1371 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR},
1372 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR},
1373 {Opt_commit, 0, MOPT_GTE0},
1374 {Opt_max_batch_time, 0, MOPT_GTE0},
1375 {Opt_min_batch_time, 0, MOPT_GTE0},
1376 {Opt_inode_readahead_blks, 0, MOPT_GTE0},
1377 {Opt_init_itable, 0, MOPT_GTE0},
1378 {Opt_dax, EXT4_MOUNT_DAX, MOPT_SET},
1379 {Opt_stripe, 0, MOPT_GTE0},
1380 {Opt_resuid, 0, MOPT_GTE0},
1381 {Opt_resgid, 0, MOPT_GTE0},
1382 {Opt_journal_dev, 0, MOPT_GTE0},
1383 {Opt_journal_path, 0, MOPT_STRING},
1384 {Opt_journal_ioprio, 0, MOPT_GTE0},
1385 {Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1386 {Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1387 {Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA,
1388 MOPT_NO_EXT2 | MOPT_DATAJ},
1389 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET},
1390 {Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR},
1391 #ifdef CONFIG_EXT4_FS_POSIX_ACL
1392 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET},
1393 {Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR},
1394 #else
1395 {Opt_acl, 0, MOPT_NOSUPPORT},
1396 {Opt_noacl, 0, MOPT_NOSUPPORT},
1397 #endif
1398 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET},
1399 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET},
1400 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q},
1401 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA,
1402 MOPT_SET | MOPT_Q},
1403 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA,
1404 MOPT_SET | MOPT_Q},
1405 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
1406 EXT4_MOUNT_GRPQUOTA), MOPT_CLEAR | MOPT_Q},
1407 {Opt_usrjquota, 0, MOPT_Q},
1408 {Opt_grpjquota, 0, MOPT_Q},
1409 {Opt_offusrjquota, 0, MOPT_Q},
1410 {Opt_offgrpjquota, 0, MOPT_Q},
1411 {Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT},
1412 {Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT},
1413 {Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT},
1414 {Opt_max_dir_size_kb, 0, MOPT_GTE0},
1415 {Opt_err, 0, 0}
1416 };
1417
1418 static int handle_mount_opt(struct super_block *sb, char *opt, int token,
1419 substring_t *args, unsigned long *journal_devnum,
1420 unsigned int *journal_ioprio, int is_remount)
1421 {
1422 struct ext4_sb_info *sbi = EXT4_SB(sb);
1423 const struct mount_opts *m;
1424 kuid_t uid;
1425 kgid_t gid;
1426 int arg = 0;
1427
1428 #ifdef CONFIG_QUOTA
1429 if (token == Opt_usrjquota)
1430 return set_qf_name(sb, USRQUOTA, &args[0]);
1431 else if (token == Opt_grpjquota)
1432 return set_qf_name(sb, GRPQUOTA, &args[0]);
1433 else if (token == Opt_offusrjquota)
1434 return clear_qf_name(sb, USRQUOTA);
1435 else if (token == Opt_offgrpjquota)
1436 return clear_qf_name(sb, GRPQUOTA);
1437 #endif
1438 switch (token) {
1439 case Opt_noacl:
1440 case Opt_nouser_xattr:
1441 ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5");
1442 break;
1443 case Opt_sb:
1444 return 1; /* handled by get_sb_block() */
1445 case Opt_removed:
1446 ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt);
1447 return 1;
1448 case Opt_abort:
1449 sbi->s_mount_flags |= EXT4_MF_FS_ABORTED;
1450 return 1;
1451 case Opt_i_version:
1452 sb->s_flags |= MS_I_VERSION;
1453 return 1;
1454 case Opt_lazytime:
1455 sb->s_flags |= MS_LAZYTIME;
1456 return 1;
1457 case Opt_nolazytime:
1458 sb->s_flags &= ~MS_LAZYTIME;
1459 return 1;
1460 }
1461
1462 for (m = ext4_mount_opts; m->token != Opt_err; m++)
1463 if (token == m->token)
1464 break;
1465
1466 if (m->token == Opt_err) {
1467 ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" "
1468 "or missing value", opt);
1469 return -1;
1470 }
1471
1472 if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) {
1473 ext4_msg(sb, KERN_ERR,
1474 "Mount option \"%s\" incompatible with ext2", opt);
1475 return -1;
1476 }
1477 if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) {
1478 ext4_msg(sb, KERN_ERR,
1479 "Mount option \"%s\" incompatible with ext3", opt);
1480 return -1;
1481 }
1482
1483 if (args->from && !(m->flags & MOPT_STRING) && match_int(args, &arg))
1484 return -1;
1485 if (args->from && (m->flags & MOPT_GTE0) && (arg < 0))
1486 return -1;
1487 if (m->flags & MOPT_EXPLICIT)
1488 set_opt2(sb, EXPLICIT_DELALLOC);
1489 if (m->flags & MOPT_CLEAR_ERR)
1490 clear_opt(sb, ERRORS_MASK);
1491 if (token == Opt_noquota && sb_any_quota_loaded(sb)) {
1492 ext4_msg(sb, KERN_ERR, "Cannot change quota "
1493 "options when quota turned on");
1494 return -1;
1495 }
1496
1497 if (m->flags & MOPT_NOSUPPORT) {
1498 ext4_msg(sb, KERN_ERR, "%s option not supported", opt);
1499 } else if (token == Opt_commit) {
1500 if (arg == 0)
1501 arg = JBD2_DEFAULT_MAX_COMMIT_AGE;
1502 sbi->s_commit_interval = HZ * arg;
1503 } else if (token == Opt_max_batch_time) {
1504 sbi->s_max_batch_time = arg;
1505 } else if (token == Opt_min_batch_time) {
1506 sbi->s_min_batch_time = arg;
1507 } else if (token == Opt_inode_readahead_blks) {
1508 if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) {
1509 ext4_msg(sb, KERN_ERR,
1510 "EXT4-fs: inode_readahead_blks must be "
1511 "0 or a power of 2 smaller than 2^31");
1512 return -1;
1513 }
1514 sbi->s_inode_readahead_blks = arg;
1515 } else if (token == Opt_init_itable) {
1516 set_opt(sb, INIT_INODE_TABLE);
1517 if (!args->from)
1518 arg = EXT4_DEF_LI_WAIT_MULT;
1519 sbi->s_li_wait_mult = arg;
1520 } else if (token == Opt_max_dir_size_kb) {
1521 sbi->s_max_dir_size_kb = arg;
1522 } else if (token == Opt_stripe) {
1523 sbi->s_stripe = arg;
1524 } else if (token == Opt_resuid) {
1525 uid = make_kuid(current_user_ns(), arg);
1526 if (!uid_valid(uid)) {
1527 ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg);
1528 return -1;
1529 }
1530 sbi->s_resuid = uid;
1531 } else if (token == Opt_resgid) {
1532 gid = make_kgid(current_user_ns(), arg);
1533 if (!gid_valid(gid)) {
1534 ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg);
1535 return -1;
1536 }
1537 sbi->s_resgid = gid;
1538 } else if (token == Opt_journal_dev) {
1539 if (is_remount) {
1540 ext4_msg(sb, KERN_ERR,
1541 "Cannot specify journal on remount");
1542 return -1;
1543 }
1544 *journal_devnum = arg;
1545 } else if (token == Opt_journal_path) {
1546 char *journal_path;
1547 struct inode *journal_inode;
1548 struct path path;
1549 int error;
1550
1551 if (is_remount) {
1552 ext4_msg(sb, KERN_ERR,
1553 "Cannot specify journal on remount");
1554 return -1;
1555 }
1556 journal_path = match_strdup(&args[0]);
1557 if (!journal_path) {
1558 ext4_msg(sb, KERN_ERR, "error: could not dup "
1559 "journal device string");
1560 return -1;
1561 }
1562
1563 error = kern_path(journal_path, LOOKUP_FOLLOW, &path);
1564 if (error) {
1565 ext4_msg(sb, KERN_ERR, "error: could not find "
1566 "journal device path: error %d", error);
1567 kfree(journal_path);
1568 return -1;
1569 }
1570
1571 journal_inode = path.dentry->d_inode;
1572 if (!S_ISBLK(journal_inode->i_mode)) {
1573 ext4_msg(sb, KERN_ERR, "error: journal path %s "
1574 "is not a block device", journal_path);
1575 path_put(&path);
1576 kfree(journal_path);
1577 return -1;
1578 }
1579
1580 *journal_devnum = new_encode_dev(journal_inode->i_rdev);
1581 path_put(&path);
1582 kfree(journal_path);
1583 } else if (token == Opt_journal_ioprio) {
1584 if (arg > 7) {
1585 ext4_msg(sb, KERN_ERR, "Invalid journal IO priority"
1586 " (must be 0-7)");
1587 return -1;
1588 }
1589 *journal_ioprio =
1590 IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg);
1591 } else if (m->flags & MOPT_DATAJ) {
1592 if (is_remount) {
1593 if (!sbi->s_journal)
1594 ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option");
1595 else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) {
1596 ext4_msg(sb, KERN_ERR,
1597 "Cannot change data mode on remount");
1598 return -1;
1599 }
1600 } else {
1601 clear_opt(sb, DATA_FLAGS);
1602 sbi->s_mount_opt |= m->mount_opt;
1603 }
1604 #ifdef CONFIG_QUOTA
1605 } else if (m->flags & MOPT_QFMT) {
1606 if (sb_any_quota_loaded(sb) &&
1607 sbi->s_jquota_fmt != m->mount_opt) {
1608 ext4_msg(sb, KERN_ERR, "Cannot change journaled "
1609 "quota options when quota turned on");
1610 return -1;
1611 }
1612 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
1613 EXT4_FEATURE_RO_COMPAT_QUOTA)) {
1614 ext4_msg(sb, KERN_ERR,
1615 "Cannot set journaled quota options "
1616 "when QUOTA feature is enabled");
1617 return -1;
1618 }
1619 sbi->s_jquota_fmt = m->mount_opt;
1620 #endif
1621 #ifndef CONFIG_FS_DAX
1622 } else if (token == Opt_dax) {
1623 ext4_msg(sb, KERN_INFO, "dax option not supported");
1624 return -1;
1625 #endif
1626 } else {
1627 if (!args->from)
1628 arg = 1;
1629 if (m->flags & MOPT_CLEAR)
1630 arg = !arg;
1631 else if (unlikely(!(m->flags & MOPT_SET))) {
1632 ext4_msg(sb, KERN_WARNING,
1633 "buggy handling of option %s", opt);
1634 WARN_ON(1);
1635 return -1;
1636 }
1637 if (arg != 0)
1638 sbi->s_mount_opt |= m->mount_opt;
1639 else
1640 sbi->s_mount_opt &= ~m->mount_opt;
1641 }
1642 return 1;
1643 }
1644
1645 static int parse_options(char *options, struct super_block *sb,
1646 unsigned long *journal_devnum,
1647 unsigned int *journal_ioprio,
1648 int is_remount)
1649 {
1650 struct ext4_sb_info *sbi = EXT4_SB(sb);
1651 char *p;
1652 substring_t args[MAX_OPT_ARGS];
1653 int token;
1654
1655 if (!options)
1656 return 1;
1657
1658 while ((p = strsep(&options, ",")) != NULL) {
1659 if (!*p)
1660 continue;
1661 /*
1662 * Initialize args struct so we know whether arg was
1663 * found; some options take optional arguments.
1664 */
1665 args[0].to = args[0].from = NULL;
1666 token = match_token(p, tokens, args);
1667 if (handle_mount_opt(sb, p, token, args, journal_devnum,
1668 journal_ioprio, is_remount) < 0)
1669 return 0;
1670 }
1671 #ifdef CONFIG_QUOTA
1672 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) &&
1673 (test_opt(sb, USRQUOTA) || test_opt(sb, GRPQUOTA))) {
1674 ext4_msg(sb, KERN_ERR, "Cannot set quota options when QUOTA "
1675 "feature is enabled");
1676 return 0;
1677 }
1678 if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
1679 if (test_opt(sb, USRQUOTA) && sbi->s_qf_names[USRQUOTA])
1680 clear_opt(sb, USRQUOTA);
1681
1682 if (test_opt(sb, GRPQUOTA) && sbi->s_qf_names[GRPQUOTA])
1683 clear_opt(sb, GRPQUOTA);
1684
1685 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) {
1686 ext4_msg(sb, KERN_ERR, "old and new quota "
1687 "format mixing");
1688 return 0;
1689 }
1690
1691 if (!sbi->s_jquota_fmt) {
1692 ext4_msg(sb, KERN_ERR, "journaled quota format "
1693 "not specified");
1694 return 0;
1695 }
1696 }
1697 #endif
1698 if (test_opt(sb, DIOREAD_NOLOCK)) {
1699 int blocksize =
1700 BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size);
1701
1702 if (blocksize < PAGE_CACHE_SIZE) {
1703 ext4_msg(sb, KERN_ERR, "can't mount with "
1704 "dioread_nolock if block size != PAGE_SIZE");
1705 return 0;
1706 }
1707 }
1708 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA &&
1709 test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
1710 ext4_msg(sb, KERN_ERR, "can't mount with journal_async_commit "
1711 "in data=ordered mode");
1712 return 0;
1713 }
1714 return 1;
1715 }
1716
1717 static inline void ext4_show_quota_options(struct seq_file *seq,
1718 struct super_block *sb)
1719 {
1720 #if defined(CONFIG_QUOTA)
1721 struct ext4_sb_info *sbi = EXT4_SB(sb);
1722
1723 if (sbi->s_jquota_fmt) {
1724 char *fmtname = "";
1725
1726 switch (sbi->s_jquota_fmt) {
1727 case QFMT_VFS_OLD:
1728 fmtname = "vfsold";
1729 break;
1730 case QFMT_VFS_V0:
1731 fmtname = "vfsv0";
1732 break;
1733 case QFMT_VFS_V1:
1734 fmtname = "vfsv1";
1735 break;
1736 }
1737 seq_printf(seq, ",jqfmt=%s", fmtname);
1738 }
1739
1740 if (sbi->s_qf_names[USRQUOTA])
1741 seq_printf(seq, ",usrjquota=%s", sbi->s_qf_names[USRQUOTA]);
1742
1743 if (sbi->s_qf_names[GRPQUOTA])
1744 seq_printf(seq, ",grpjquota=%s", sbi->s_qf_names[GRPQUOTA]);
1745 #endif
1746 }
1747
1748 static const char *token2str(int token)
1749 {
1750 const struct match_token *t;
1751
1752 for (t = tokens; t->token != Opt_err; t++)
1753 if (t->token == token && !strchr(t->pattern, '='))
1754 break;
1755 return t->pattern;
1756 }
1757
1758 /*
1759 * Show an option if
1760 * - it's set to a non-default value OR
1761 * - if the per-sb default is different from the global default
1762 */
1763 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb,
1764 int nodefs)
1765 {
1766 struct ext4_sb_info *sbi = EXT4_SB(sb);
1767 struct ext4_super_block *es = sbi->s_es;
1768 int def_errors, def_mount_opt = nodefs ? 0 : sbi->s_def_mount_opt;
1769 const struct mount_opts *m;
1770 char sep = nodefs ? '\n' : ',';
1771
1772 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep)
1773 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg)
1774
1775 if (sbi->s_sb_block != 1)
1776 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block);
1777
1778 for (m = ext4_mount_opts; m->token != Opt_err; m++) {
1779 int want_set = m->flags & MOPT_SET;
1780 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) ||
1781 (m->flags & MOPT_CLEAR_ERR))
1782 continue;
1783 if (!(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt)))
1784 continue; /* skip if same as the default */
1785 if ((want_set &&
1786 (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) ||
1787 (!want_set && (sbi->s_mount_opt & m->mount_opt)))
1788 continue; /* select Opt_noFoo vs Opt_Foo */
1789 SEQ_OPTS_PRINT("%s", token2str(m->token));
1790 }
1791
1792 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) ||
1793 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID)
1794 SEQ_OPTS_PRINT("resuid=%u",
1795 from_kuid_munged(&init_user_ns, sbi->s_resuid));
1796 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) ||
1797 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID)
1798 SEQ_OPTS_PRINT("resgid=%u",
1799 from_kgid_munged(&init_user_ns, sbi->s_resgid));
1800 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors);
1801 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO)
1802 SEQ_OPTS_PUTS("errors=remount-ro");
1803 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
1804 SEQ_OPTS_PUTS("errors=continue");
1805 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
1806 SEQ_OPTS_PUTS("errors=panic");
1807 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
1808 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ);
1809 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME)
1810 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time);
1811 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME)
1812 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time);
1813 if (sb->s_flags & MS_I_VERSION)
1814 SEQ_OPTS_PUTS("i_version");
1815 if (nodefs || sbi->s_stripe)
1816 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe);
1817 if (EXT4_MOUNT_DATA_FLAGS & (sbi->s_mount_opt ^ def_mount_opt)) {
1818 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
1819 SEQ_OPTS_PUTS("data=journal");
1820 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
1821 SEQ_OPTS_PUTS("data=ordered");
1822 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
1823 SEQ_OPTS_PUTS("data=writeback");
1824 }
1825 if (nodefs ||
1826 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
1827 SEQ_OPTS_PRINT("inode_readahead_blks=%u",
1828 sbi->s_inode_readahead_blks);
1829
1830 if (nodefs || (test_opt(sb, INIT_INODE_TABLE) &&
1831 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)))
1832 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult);
1833 if (nodefs || sbi->s_max_dir_size_kb)
1834 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb);
1835
1836 ext4_show_quota_options(seq, sb);
1837 return 0;
1838 }
1839
1840 static int ext4_show_options(struct seq_file *seq, struct dentry *root)
1841 {
1842 return _ext4_show_options(seq, root->d_sb, 0);
1843 }
1844
1845 static int options_seq_show(struct seq_file *seq, void *offset)
1846 {
1847 struct super_block *sb = seq->private;
1848 int rc;
1849
1850 seq_puts(seq, (sb->s_flags & MS_RDONLY) ? "ro" : "rw");
1851 rc = _ext4_show_options(seq, sb, 1);
1852 seq_puts(seq, "\n");
1853 return rc;
1854 }
1855
1856 static int options_open_fs(struct inode *inode, struct file *file)
1857 {
1858 return single_open(file, options_seq_show, PDE_DATA(inode));
1859 }
1860
1861 static const struct file_operations ext4_seq_options_fops = {
1862 .owner = THIS_MODULE,
1863 .open = options_open_fs,
1864 .read = seq_read,
1865 .llseek = seq_lseek,
1866 .release = single_release,
1867 };
1868
1869 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
1870 int read_only)
1871 {
1872 struct ext4_sb_info *sbi = EXT4_SB(sb);
1873 int res = 0;
1874
1875 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
1876 ext4_msg(sb, KERN_ERR, "revision level too high, "
1877 "forcing read-only mode");
1878 res = MS_RDONLY;
1879 }
1880 if (read_only)
1881 goto done;
1882 if (!(sbi->s_mount_state & EXT4_VALID_FS))
1883 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
1884 "running e2fsck is recommended");
1885 else if (sbi->s_mount_state & EXT4_ERROR_FS)
1886 ext4_msg(sb, KERN_WARNING,
1887 "warning: mounting fs with errors, "
1888 "running e2fsck is recommended");
1889 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
1890 le16_to_cpu(es->s_mnt_count) >=
1891 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
1892 ext4_msg(sb, KERN_WARNING,
1893 "warning: maximal mount count reached, "
1894 "running e2fsck is recommended");
1895 else if (le32_to_cpu(es->s_checkinterval) &&
1896 (le32_to_cpu(es->s_lastcheck) +
1897 le32_to_cpu(es->s_checkinterval) <= get_seconds()))
1898 ext4_msg(sb, KERN_WARNING,
1899 "warning: checktime reached, "
1900 "running e2fsck is recommended");
1901 if (!sbi->s_journal)
1902 es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
1903 if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
1904 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
1905 le16_add_cpu(&es->s_mnt_count, 1);
1906 es->s_mtime = cpu_to_le32(get_seconds());
1907 ext4_update_dynamic_rev(sb);
1908 if (sbi->s_journal)
1909 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
1910
1911 ext4_commit_super(sb, 1);
1912 done:
1913 if (test_opt(sb, DEBUG))
1914 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
1915 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
1916 sb->s_blocksize,
1917 sbi->s_groups_count,
1918 EXT4_BLOCKS_PER_GROUP(sb),
1919 EXT4_INODES_PER_GROUP(sb),
1920 sbi->s_mount_opt, sbi->s_mount_opt2);
1921
1922 cleancache_init_fs(sb);
1923 return res;
1924 }
1925
1926 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup)
1927 {
1928 struct ext4_sb_info *sbi = EXT4_SB(sb);
1929 struct flex_groups *new_groups;
1930 int size;
1931
1932 if (!sbi->s_log_groups_per_flex)
1933 return 0;
1934
1935 size = ext4_flex_group(sbi, ngroup - 1) + 1;
1936 if (size <= sbi->s_flex_groups_allocated)
1937 return 0;
1938
1939 size = roundup_pow_of_two(size * sizeof(struct flex_groups));
1940 new_groups = ext4_kvzalloc(size, GFP_KERNEL);
1941 if (!new_groups) {
1942 ext4_msg(sb, KERN_ERR, "not enough memory for %d flex groups",
1943 size / (int) sizeof(struct flex_groups));
1944 return -ENOMEM;
1945 }
1946
1947 if (sbi->s_flex_groups) {
1948 memcpy(new_groups, sbi->s_flex_groups,
1949 (sbi->s_flex_groups_allocated *
1950 sizeof(struct flex_groups)));
1951 kvfree(sbi->s_flex_groups);
1952 }
1953 sbi->s_flex_groups = new_groups;
1954 sbi->s_flex_groups_allocated = size / sizeof(struct flex_groups);
1955 return 0;
1956 }
1957
1958 static int ext4_fill_flex_info(struct super_block *sb)
1959 {
1960 struct ext4_sb_info *sbi = EXT4_SB(sb);
1961 struct ext4_group_desc *gdp = NULL;
1962 ext4_group_t flex_group;
1963 int i, err;
1964
1965 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
1966 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) {
1967 sbi->s_log_groups_per_flex = 0;
1968 return 1;
1969 }
1970
1971 err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count);
1972 if (err)
1973 goto failed;
1974
1975 for (i = 0; i < sbi->s_groups_count; i++) {
1976 gdp = ext4_get_group_desc(sb, i, NULL);
1977
1978 flex_group = ext4_flex_group(sbi, i);
1979 atomic_add(ext4_free_inodes_count(sb, gdp),
1980 &sbi->s_flex_groups[flex_group].free_inodes);
1981 atomic64_add(ext4_free_group_clusters(sb, gdp),
1982 &sbi->s_flex_groups[flex_group].free_clusters);
1983 atomic_add(ext4_used_dirs_count(sb, gdp),
1984 &sbi->s_flex_groups[flex_group].used_dirs);
1985 }
1986
1987 return 1;
1988 failed:
1989 return 0;
1990 }
1991
1992 static __le16 ext4_group_desc_csum(struct ext4_sb_info *sbi, __u32 block_group,
1993 struct ext4_group_desc *gdp)
1994 {
1995 int offset;
1996 __u16 crc = 0;
1997 __le32 le_group = cpu_to_le32(block_group);
1998
1999 if (ext4_has_metadata_csum(sbi->s_sb)) {
2000 /* Use new metadata_csum algorithm */
2001 __le16 save_csum;
2002 __u32 csum32;
2003
2004 save_csum = gdp->bg_checksum;
2005 gdp->bg_checksum = 0;
2006 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group,
2007 sizeof(le_group));
2008 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp,
2009 sbi->s_desc_size);
2010 gdp->bg_checksum = save_csum;
2011
2012 crc = csum32 & 0xFFFF;
2013 goto out;
2014 }
2015
2016 /* old crc16 code */
2017 if (!(sbi->s_es->s_feature_ro_compat &
2018 cpu_to_le32(EXT4_FEATURE_RO_COMPAT_GDT_CSUM)))
2019 return 0;
2020
2021 offset = offsetof(struct ext4_group_desc, bg_checksum);
2022
2023 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
2024 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
2025 crc = crc16(crc, (__u8 *)gdp, offset);
2026 offset += sizeof(gdp->bg_checksum); /* skip checksum */
2027 /* for checksum of struct ext4_group_desc do the rest...*/
2028 if ((sbi->s_es->s_feature_incompat &
2029 cpu_to_le32(EXT4_FEATURE_INCOMPAT_64BIT)) &&
2030 offset < le16_to_cpu(sbi->s_es->s_desc_size))
2031 crc = crc16(crc, (__u8 *)gdp + offset,
2032 le16_to_cpu(sbi->s_es->s_desc_size) -
2033 offset);
2034
2035 out:
2036 return cpu_to_le16(crc);
2037 }
2038
2039 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group,
2040 struct ext4_group_desc *gdp)
2041 {
2042 if (ext4_has_group_desc_csum(sb) &&
2043 (gdp->bg_checksum != ext4_group_desc_csum(EXT4_SB(sb),
2044 block_group, gdp)))
2045 return 0;
2046
2047 return 1;
2048 }
2049
2050 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group,
2051 struct ext4_group_desc *gdp)
2052 {
2053 if (!ext4_has_group_desc_csum(sb))
2054 return;
2055 gdp->bg_checksum = ext4_group_desc_csum(EXT4_SB(sb), block_group, gdp);
2056 }
2057
2058 /* Called at mount-time, super-block is locked */
2059 static int ext4_check_descriptors(struct super_block *sb,
2060 ext4_group_t *first_not_zeroed)
2061 {
2062 struct ext4_sb_info *sbi = EXT4_SB(sb);
2063 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
2064 ext4_fsblk_t last_block;
2065 ext4_fsblk_t block_bitmap;
2066 ext4_fsblk_t inode_bitmap;
2067 ext4_fsblk_t inode_table;
2068 int flexbg_flag = 0;
2069 ext4_group_t i, grp = sbi->s_groups_count;
2070
2071 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG))
2072 flexbg_flag = 1;
2073
2074 ext4_debug("Checking group descriptors");
2075
2076 for (i = 0; i < sbi->s_groups_count; i++) {
2077 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
2078
2079 if (i == sbi->s_groups_count - 1 || flexbg_flag)
2080 last_block = ext4_blocks_count(sbi->s_es) - 1;
2081 else
2082 last_block = first_block +
2083 (EXT4_BLOCKS_PER_GROUP(sb) - 1);
2084
2085 if ((grp == sbi->s_groups_count) &&
2086 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2087 grp = i;
2088
2089 block_bitmap = ext4_block_bitmap(sb, gdp);
2090 if (block_bitmap < first_block || block_bitmap > last_block) {
2091 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2092 "Block bitmap for group %u not in group "
2093 "(block %llu)!", i, block_bitmap);
2094 return 0;
2095 }
2096 inode_bitmap = ext4_inode_bitmap(sb, gdp);
2097 if (inode_bitmap < first_block || inode_bitmap > last_block) {
2098 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2099 "Inode bitmap for group %u not in group "
2100 "(block %llu)!", i, inode_bitmap);
2101 return 0;
2102 }
2103 inode_table = ext4_inode_table(sb, gdp);
2104 if (inode_table < first_block ||
2105 inode_table + sbi->s_itb_per_group - 1 > last_block) {
2106 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2107 "Inode table for group %u not in group "
2108 "(block %llu)!", i, inode_table);
2109 return 0;
2110 }
2111 ext4_lock_group(sb, i);
2112 if (!ext4_group_desc_csum_verify(sb, i, gdp)) {
2113 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2114 "Checksum for group %u failed (%u!=%u)",
2115 i, le16_to_cpu(ext4_group_desc_csum(sbi, i,
2116 gdp)), le16_to_cpu(gdp->bg_checksum));
2117 if (!(sb->s_flags & MS_RDONLY)) {
2118 ext4_unlock_group(sb, i);
2119 return 0;
2120 }
2121 }
2122 ext4_unlock_group(sb, i);
2123 if (!flexbg_flag)
2124 first_block += EXT4_BLOCKS_PER_GROUP(sb);
2125 }
2126 if (NULL != first_not_zeroed)
2127 *first_not_zeroed = grp;
2128 return 1;
2129 }
2130
2131 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at
2132 * the superblock) which were deleted from all directories, but held open by
2133 * a process at the time of a crash. We walk the list and try to delete these
2134 * inodes at recovery time (only with a read-write filesystem).
2135 *
2136 * In order to keep the orphan inode chain consistent during traversal (in
2137 * case of crash during recovery), we link each inode into the superblock
2138 * orphan list_head and handle it the same way as an inode deletion during
2139 * normal operation (which journals the operations for us).
2140 *
2141 * We only do an iget() and an iput() on each inode, which is very safe if we
2142 * accidentally point at an in-use or already deleted inode. The worst that
2143 * can happen in this case is that we get a "bit already cleared" message from
2144 * ext4_free_inode(). The only reason we would point at a wrong inode is if
2145 * e2fsck was run on this filesystem, and it must have already done the orphan
2146 * inode cleanup for us, so we can safely abort without any further action.
2147 */
2148 static void ext4_orphan_cleanup(struct super_block *sb,
2149 struct ext4_super_block *es)
2150 {
2151 unsigned int s_flags = sb->s_flags;
2152 int nr_orphans = 0, nr_truncates = 0;
2153 #ifdef CONFIG_QUOTA
2154 int i;
2155 #endif
2156 if (!es->s_last_orphan) {
2157 jbd_debug(4, "no orphan inodes to clean up\n");
2158 return;
2159 }
2160
2161 if (bdev_read_only(sb->s_bdev)) {
2162 ext4_msg(sb, KERN_ERR, "write access "
2163 "unavailable, skipping orphan cleanup");
2164 return;
2165 }
2166
2167 /* Check if feature set would not allow a r/w mount */
2168 if (!ext4_feature_set_ok(sb, 0)) {
2169 ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to "
2170 "unknown ROCOMPAT features");
2171 return;
2172 }
2173
2174 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2175 /* don't clear list on RO mount w/ errors */
2176 if (es->s_last_orphan && !(s_flags & MS_RDONLY)) {
2177 ext4_msg(sb, KERN_INFO, "Errors on filesystem, "
2178 "clearing orphan list.\n");
2179 es->s_last_orphan = 0;
2180 }
2181 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2182 return;
2183 }
2184
2185 if (s_flags & MS_RDONLY) {
2186 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs");
2187 sb->s_flags &= ~MS_RDONLY;
2188 }
2189 #ifdef CONFIG_QUOTA
2190 /* Needed for iput() to work correctly and not trash data */
2191 sb->s_flags |= MS_ACTIVE;
2192 /* Turn on quotas so that they are updated correctly */
2193 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2194 if (EXT4_SB(sb)->s_qf_names[i]) {
2195 int ret = ext4_quota_on_mount(sb, i);
2196 if (ret < 0)
2197 ext4_msg(sb, KERN_ERR,
2198 "Cannot turn on journaled "
2199 "quota: error %d", ret);
2200 }
2201 }
2202 #endif
2203
2204 while (es->s_last_orphan) {
2205 struct inode *inode;
2206
2207 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan));
2208 if (IS_ERR(inode)) {
2209 es->s_last_orphan = 0;
2210 break;
2211 }
2212
2213 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan);
2214 dquot_initialize(inode);
2215 if (inode->i_nlink) {
2216 if (test_opt(sb, DEBUG))
2217 ext4_msg(sb, KERN_DEBUG,
2218 "%s: truncating inode %lu to %lld bytes",
2219 __func__, inode->i_ino, inode->i_size);
2220 jbd_debug(2, "truncating inode %lu to %lld bytes\n",
2221 inode->i_ino, inode->i_size);
2222 mutex_lock(&inode->i_mutex);
2223 truncate_inode_pages(inode->i_mapping, inode->i_size);
2224 ext4_truncate(inode);
2225 mutex_unlock(&inode->i_mutex);
2226 nr_truncates++;
2227 } else {
2228 if (test_opt(sb, DEBUG))
2229 ext4_msg(sb, KERN_DEBUG,
2230 "%s: deleting unreferenced inode %lu",
2231 __func__, inode->i_ino);
2232 jbd_debug(2, "deleting unreferenced inode %lu\n",
2233 inode->i_ino);
2234 nr_orphans++;
2235 }
2236 iput(inode); /* The delete magic happens here! */
2237 }
2238
2239 #define PLURAL(x) (x), ((x) == 1) ? "" : "s"
2240
2241 if (nr_orphans)
2242 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted",
2243 PLURAL(nr_orphans));
2244 if (nr_truncates)
2245 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up",
2246 PLURAL(nr_truncates));
2247 #ifdef CONFIG_QUOTA
2248 /* Turn quotas off */
2249 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2250 if (sb_dqopt(sb)->files[i])
2251 dquot_quota_off(sb, i);
2252 }
2253 #endif
2254 sb->s_flags = s_flags; /* Restore MS_RDONLY status */
2255 }
2256
2257 /*
2258 * Maximal extent format file size.
2259 * Resulting logical blkno at s_maxbytes must fit in our on-disk
2260 * extent format containers, within a sector_t, and within i_blocks
2261 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units,
2262 * so that won't be a limiting factor.
2263 *
2264 * However there is other limiting factor. We do store extents in the form
2265 * of starting block and length, hence the resulting length of the extent
2266 * covering maximum file size must fit into on-disk format containers as
2267 * well. Given that length is always by 1 unit bigger than max unit (because
2268 * we count 0 as well) we have to lower the s_maxbytes by one fs block.
2269 *
2270 * Note, this does *not* consider any metadata overhead for vfs i_blocks.
2271 */
2272 static loff_t ext4_max_size(int blkbits, int has_huge_files)
2273 {
2274 loff_t res;
2275 loff_t upper_limit = MAX_LFS_FILESIZE;
2276
2277 /* small i_blocks in vfs inode? */
2278 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2279 /*
2280 * CONFIG_LBDAF is not enabled implies the inode
2281 * i_block represent total blocks in 512 bytes
2282 * 32 == size of vfs inode i_blocks * 8
2283 */
2284 upper_limit = (1LL << 32) - 1;
2285
2286 /* total blocks in file system block size */
2287 upper_limit >>= (blkbits - 9);
2288 upper_limit <<= blkbits;
2289 }
2290
2291 /*
2292 * 32-bit extent-start container, ee_block. We lower the maxbytes
2293 * by one fs block, so ee_len can cover the extent of maximum file
2294 * size
2295 */
2296 res = (1LL << 32) - 1;
2297 res <<= blkbits;
2298
2299 /* Sanity check against vm- & vfs- imposed limits */
2300 if (res > upper_limit)
2301 res = upper_limit;
2302
2303 return res;
2304 }
2305
2306 /*
2307 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect
2308 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
2309 * We need to be 1 filesystem block less than the 2^48 sector limit.
2310 */
2311 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
2312 {
2313 loff_t res = EXT4_NDIR_BLOCKS;
2314 int meta_blocks;
2315 loff_t upper_limit;
2316 /* This is calculated to be the largest file size for a dense, block
2317 * mapped file such that the file's total number of 512-byte sectors,
2318 * including data and all indirect blocks, does not exceed (2^48 - 1).
2319 *
2320 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
2321 * number of 512-byte sectors of the file.
2322 */
2323
2324 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2325 /*
2326 * !has_huge_files or CONFIG_LBDAF not enabled implies that
2327 * the inode i_block field represents total file blocks in
2328 * 2^32 512-byte sectors == size of vfs inode i_blocks * 8
2329 */
2330 upper_limit = (1LL << 32) - 1;
2331
2332 /* total blocks in file system block size */
2333 upper_limit >>= (bits - 9);
2334
2335 } else {
2336 /*
2337 * We use 48 bit ext4_inode i_blocks
2338 * With EXT4_HUGE_FILE_FL set the i_blocks
2339 * represent total number of blocks in
2340 * file system block size
2341 */
2342 upper_limit = (1LL << 48) - 1;
2343
2344 }
2345
2346 /* indirect blocks */
2347 meta_blocks = 1;
2348 /* double indirect blocks */
2349 meta_blocks += 1 + (1LL << (bits-2));
2350 /* tripple indirect blocks */
2351 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2)));
2352
2353 upper_limit -= meta_blocks;
2354 upper_limit <<= bits;
2355
2356 res += 1LL << (bits-2);
2357 res += 1LL << (2*(bits-2));
2358 res += 1LL << (3*(bits-2));
2359 res <<= bits;
2360 if (res > upper_limit)
2361 res = upper_limit;
2362
2363 if (res > MAX_LFS_FILESIZE)
2364 res = MAX_LFS_FILESIZE;
2365
2366 return res;
2367 }
2368
2369 static ext4_fsblk_t descriptor_loc(struct super_block *sb,
2370 ext4_fsblk_t logical_sb_block, int nr)
2371 {
2372 struct ext4_sb_info *sbi = EXT4_SB(sb);
2373 ext4_group_t bg, first_meta_bg;
2374 int has_super = 0;
2375
2376 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
2377
2378 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_META_BG) ||
2379 nr < first_meta_bg)
2380 return logical_sb_block + nr + 1;
2381 bg = sbi->s_desc_per_block * nr;
2382 if (ext4_bg_has_super(sb, bg))
2383 has_super = 1;
2384
2385 /*
2386 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at
2387 * block 2, not 1. If s_first_data_block == 0 (bigalloc is enabled
2388 * on modern mke2fs or blksize > 1k on older mke2fs) then we must
2389 * compensate.
2390 */
2391 if (sb->s_blocksize == 1024 && nr == 0 &&
2392 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block) == 0)
2393 has_super++;
2394
2395 return (has_super + ext4_group_first_block_no(sb, bg));
2396 }
2397
2398 /**
2399 * ext4_get_stripe_size: Get the stripe size.
2400 * @sbi: In memory super block info
2401 *
2402 * If we have specified it via mount option, then
2403 * use the mount option value. If the value specified at mount time is
2404 * greater than the blocks per group use the super block value.
2405 * If the super block value is greater than blocks per group return 0.
2406 * Allocator needs it be less than blocks per group.
2407 *
2408 */
2409 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
2410 {
2411 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
2412 unsigned long stripe_width =
2413 le32_to_cpu(sbi->s_es->s_raid_stripe_width);
2414 int ret;
2415
2416 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
2417 ret = sbi->s_stripe;
2418 else if (stripe_width <= sbi->s_blocks_per_group)
2419 ret = stripe_width;
2420 else if (stride <= sbi->s_blocks_per_group)
2421 ret = stride;
2422 else
2423 ret = 0;
2424
2425 /*
2426 * If the stripe width is 1, this makes no sense and
2427 * we set it to 0 to turn off stripe handling code.
2428 */
2429 if (ret <= 1)
2430 ret = 0;
2431
2432 return ret;
2433 }
2434
2435 /* sysfs supprt */
2436
2437 struct ext4_attr {
2438 struct attribute attr;
2439 ssize_t (*show)(struct ext4_attr *, struct ext4_sb_info *, char *);
2440 ssize_t (*store)(struct ext4_attr *, struct ext4_sb_info *,
2441 const char *, size_t);
2442 union {
2443 int offset;
2444 int deprecated_val;
2445 } u;
2446 };
2447
2448 static int parse_strtoull(const char *buf,
2449 unsigned long long max, unsigned long long *value)
2450 {
2451 int ret;
2452
2453 ret = kstrtoull(skip_spaces(buf), 0, value);
2454 if (!ret && *value > max)
2455 ret = -EINVAL;
2456 return ret;
2457 }
2458
2459 static ssize_t delayed_allocation_blocks_show(struct ext4_attr *a,
2460 struct ext4_sb_info *sbi,
2461 char *buf)
2462 {
2463 return snprintf(buf, PAGE_SIZE, "%llu\n",
2464 (s64) EXT4_C2B(sbi,
2465 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
2466 }
2467
2468 static ssize_t session_write_kbytes_show(struct ext4_attr *a,
2469 struct ext4_sb_info *sbi, char *buf)
2470 {
2471 struct super_block *sb = sbi->s_buddy_cache->i_sb;
2472
2473 if (!sb->s_bdev->bd_part)
2474 return snprintf(buf, PAGE_SIZE, "0\n");
2475 return snprintf(buf, PAGE_SIZE, "%lu\n",
2476 (part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
2477 sbi->s_sectors_written_start) >> 1);
2478 }
2479
2480 static ssize_t lifetime_write_kbytes_show(struct ext4_attr *a,
2481 struct ext4_sb_info *sbi, char *buf)
2482 {
2483 struct super_block *sb = sbi->s_buddy_cache->i_sb;
2484
2485 if (!sb->s_bdev->bd_part)
2486 return snprintf(buf, PAGE_SIZE, "0\n");
2487 return snprintf(buf, PAGE_SIZE, "%llu\n",
2488 (unsigned long long)(sbi->s_kbytes_written +
2489 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
2490 EXT4_SB(sb)->s_sectors_written_start) >> 1)));
2491 }
2492
2493 static ssize_t inode_readahead_blks_store(struct ext4_attr *a,
2494 struct ext4_sb_info *sbi,
2495 const char *buf, size_t count)
2496 {
2497 unsigned long t;
2498 int ret;
2499
2500 ret = kstrtoul(skip_spaces(buf), 0, &t);
2501 if (ret)
2502 return ret;
2503
2504 if (t && (!is_power_of_2(t) || t > 0x40000000))
2505 return -EINVAL;
2506
2507 sbi->s_inode_readahead_blks = t;
2508 return count;
2509 }
2510
2511 static ssize_t sbi_ui_show(struct ext4_attr *a,
2512 struct ext4_sb_info *sbi, char *buf)
2513 {
2514 unsigned int *ui = (unsigned int *) (((char *) sbi) + a->u.offset);
2515
2516 return snprintf(buf, PAGE_SIZE, "%u\n", *ui);
2517 }
2518
2519 static ssize_t sbi_ui_store(struct ext4_attr *a,
2520 struct ext4_sb_info *sbi,
2521 const char *buf, size_t count)
2522 {
2523 unsigned int *ui = (unsigned int *) (((char *) sbi) + a->u.offset);
2524 unsigned long t;
2525 int ret;
2526
2527 ret = kstrtoul(skip_spaces(buf), 0, &t);
2528 if (ret)
2529 return ret;
2530 *ui = t;
2531 return count;
2532 }
2533
2534 static ssize_t es_ui_show(struct ext4_attr *a,
2535 struct ext4_sb_info *sbi, char *buf)
2536 {
2537
2538 unsigned int *ui = (unsigned int *) (((char *) sbi->s_es) +
2539 a->u.offset);
2540
2541 return snprintf(buf, PAGE_SIZE, "%u\n", *ui);
2542 }
2543
2544 static ssize_t reserved_clusters_show(struct ext4_attr *a,
2545 struct ext4_sb_info *sbi, char *buf)
2546 {
2547 return snprintf(buf, PAGE_SIZE, "%llu\n",
2548 (unsigned long long) atomic64_read(&sbi->s_resv_clusters));
2549 }
2550
2551 static ssize_t reserved_clusters_store(struct ext4_attr *a,
2552 struct ext4_sb_info *sbi,
2553 const char *buf, size_t count)
2554 {
2555 unsigned long long val;
2556 int ret;
2557
2558 if (parse_strtoull(buf, -1ULL, &val))
2559 return -EINVAL;
2560 ret = ext4_reserve_clusters(sbi, val);
2561
2562 return ret ? ret : count;
2563 }
2564
2565 static ssize_t trigger_test_error(struct ext4_attr *a,
2566 struct ext4_sb_info *sbi,
2567 const char *buf, size_t count)
2568 {
2569 int len = count;
2570
2571 if (!capable(CAP_SYS_ADMIN))
2572 return -EPERM;
2573
2574 if (len && buf[len-1] == '\n')
2575 len--;
2576
2577 if (len)
2578 ext4_error(sbi->s_sb, "%.*s", len, buf);
2579 return count;
2580 }
2581
2582 static ssize_t sbi_deprecated_show(struct ext4_attr *a,
2583 struct ext4_sb_info *sbi, char *buf)
2584 {
2585 return snprintf(buf, PAGE_SIZE, "%d\n", a->u.deprecated_val);
2586 }
2587
2588 #define EXT4_ATTR_OFFSET(_name,_mode,_show,_store,_elname) \
2589 static struct ext4_attr ext4_attr_##_name = { \
2590 .attr = {.name = __stringify(_name), .mode = _mode }, \
2591 .show = _show, \
2592 .store = _store, \
2593 .u = { \
2594 .offset = offsetof(struct ext4_sb_info, _elname),\
2595 }, \
2596 }
2597
2598 #define EXT4_ATTR_OFFSET_ES(_name,_mode,_show,_store,_elname) \
2599 static struct ext4_attr ext4_attr_##_name = { \
2600 .attr = {.name = __stringify(_name), .mode = _mode }, \
2601 .show = _show, \
2602 .store = _store, \
2603 .u = { \
2604 .offset = offsetof(struct ext4_super_block, _elname), \
2605 }, \
2606 }
2607
2608 #define EXT4_ATTR(name, mode, show, store) \
2609 static struct ext4_attr ext4_attr_##name = __ATTR(name, mode, show, store)
2610
2611 #define EXT4_INFO_ATTR(name) EXT4_ATTR(name, 0444, NULL, NULL)
2612 #define EXT4_RO_ATTR(name) EXT4_ATTR(name, 0444, name##_show, NULL)
2613 #define EXT4_RW_ATTR(name) EXT4_ATTR(name, 0644, name##_show, name##_store)
2614
2615 #define EXT4_RO_ATTR_ES_UI(name, elname) \
2616 EXT4_ATTR_OFFSET_ES(name, 0444, es_ui_show, NULL, elname)
2617 #define EXT4_RW_ATTR_SBI_UI(name, elname) \
2618 EXT4_ATTR_OFFSET(name, 0644, sbi_ui_show, sbi_ui_store, elname)
2619
2620 #define ATTR_LIST(name) &ext4_attr_##name.attr
2621 #define EXT4_DEPRECATED_ATTR(_name, _val) \
2622 static struct ext4_attr ext4_attr_##_name = { \
2623 .attr = {.name = __stringify(_name), .mode = 0444 }, \
2624 .show = sbi_deprecated_show, \
2625 .u = { \
2626 .deprecated_val = _val, \
2627 }, \
2628 }
2629
2630 EXT4_RO_ATTR(delayed_allocation_blocks);
2631 EXT4_RO_ATTR(session_write_kbytes);
2632 EXT4_RO_ATTR(lifetime_write_kbytes);
2633 EXT4_RW_ATTR(reserved_clusters);
2634 EXT4_ATTR_OFFSET(inode_readahead_blks, 0644, sbi_ui_show,
2635 inode_readahead_blks_store, s_inode_readahead_blks);
2636 EXT4_RW_ATTR_SBI_UI(inode_goal, s_inode_goal);
2637 EXT4_RW_ATTR_SBI_UI(mb_stats, s_mb_stats);
2638 EXT4_RW_ATTR_SBI_UI(mb_max_to_scan, s_mb_max_to_scan);
2639 EXT4_RW_ATTR_SBI_UI(mb_min_to_scan, s_mb_min_to_scan);
2640 EXT4_RW_ATTR_SBI_UI(mb_order2_req, s_mb_order2_reqs);
2641 EXT4_RW_ATTR_SBI_UI(mb_stream_req, s_mb_stream_request);
2642 EXT4_RW_ATTR_SBI_UI(mb_group_prealloc, s_mb_group_prealloc);
2643 EXT4_DEPRECATED_ATTR(max_writeback_mb_bump, 128);
2644 EXT4_RW_ATTR_SBI_UI(extent_max_zeroout_kb, s_extent_max_zeroout_kb);
2645 EXT4_ATTR(trigger_fs_error, 0200, NULL, trigger_test_error);
2646 EXT4_RW_ATTR_SBI_UI(err_ratelimit_interval_ms, s_err_ratelimit_state.interval);
2647 EXT4_RW_ATTR_SBI_UI(err_ratelimit_burst, s_err_ratelimit_state.burst);
2648 EXT4_RW_ATTR_SBI_UI(warning_ratelimit_interval_ms, s_warning_ratelimit_state.interval);
2649 EXT4_RW_ATTR_SBI_UI(warning_ratelimit_burst, s_warning_ratelimit_state.burst);
2650 EXT4_RW_ATTR_SBI_UI(msg_ratelimit_interval_ms, s_msg_ratelimit_state.interval);
2651 EXT4_RW_ATTR_SBI_UI(msg_ratelimit_burst, s_msg_ratelimit_state.burst);
2652 EXT4_RO_ATTR_ES_UI(errors_count, s_error_count);
2653 EXT4_RO_ATTR_ES_UI(first_error_time, s_first_error_time);
2654 EXT4_RO_ATTR_ES_UI(last_error_time, s_last_error_time);
2655
2656 static struct attribute *ext4_attrs[] = {
2657 ATTR_LIST(delayed_allocation_blocks),
2658 ATTR_LIST(session_write_kbytes),
2659 ATTR_LIST(lifetime_write_kbytes),
2660 ATTR_LIST(reserved_clusters),
2661 ATTR_LIST(inode_readahead_blks),
2662 ATTR_LIST(inode_goal),
2663 ATTR_LIST(mb_stats),
2664 ATTR_LIST(mb_max_to_scan),
2665 ATTR_LIST(mb_min_to_scan),
2666 ATTR_LIST(mb_order2_req),
2667 ATTR_LIST(mb_stream_req),
2668 ATTR_LIST(mb_group_prealloc),
2669 ATTR_LIST(max_writeback_mb_bump),
2670 ATTR_LIST(extent_max_zeroout_kb),
2671 ATTR_LIST(trigger_fs_error),
2672 ATTR_LIST(err_ratelimit_interval_ms),
2673 ATTR_LIST(err_ratelimit_burst),
2674 ATTR_LIST(warning_ratelimit_interval_ms),
2675 ATTR_LIST(warning_ratelimit_burst),
2676 ATTR_LIST(msg_ratelimit_interval_ms),
2677 ATTR_LIST(msg_ratelimit_burst),
2678 ATTR_LIST(errors_count),
2679 ATTR_LIST(first_error_time),
2680 ATTR_LIST(last_error_time),
2681 NULL,
2682 };
2683
2684 /* Features this copy of ext4 supports */
2685 EXT4_INFO_ATTR(lazy_itable_init);
2686 EXT4_INFO_ATTR(batched_discard);
2687 EXT4_INFO_ATTR(meta_bg_resize);
2688
2689 static struct attribute *ext4_feat_attrs[] = {
2690 ATTR_LIST(lazy_itable_init),
2691 ATTR_LIST(batched_discard),
2692 ATTR_LIST(meta_bg_resize),
2693 NULL,
2694 };
2695
2696 static ssize_t ext4_attr_show(struct kobject *kobj,
2697 struct attribute *attr, char *buf)
2698 {
2699 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2700 s_kobj);
2701 struct ext4_attr *a = container_of(attr, struct ext4_attr, attr);
2702
2703 return a->show ? a->show(a, sbi, buf) : 0;
2704 }
2705
2706 static ssize_t ext4_attr_store(struct kobject *kobj,
2707 struct attribute *attr,
2708 const char *buf, size_t len)
2709 {
2710 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2711 s_kobj);
2712 struct ext4_attr *a = container_of(attr, struct ext4_attr, attr);
2713
2714 return a->store ? a->store(a, sbi, buf, len) : 0;
2715 }
2716
2717 static void ext4_sb_release(struct kobject *kobj)
2718 {
2719 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2720 s_kobj);
2721 complete(&sbi->s_kobj_unregister);
2722 }
2723
2724 static const struct sysfs_ops ext4_attr_ops = {
2725 .show = ext4_attr_show,
2726 .store = ext4_attr_store,
2727 };
2728
2729 static struct kobj_type ext4_ktype = {
2730 .default_attrs = ext4_attrs,
2731 .sysfs_ops = &ext4_attr_ops,
2732 .release = ext4_sb_release,
2733 };
2734
2735 static void ext4_feat_release(struct kobject *kobj)
2736 {
2737 complete(&ext4_feat->f_kobj_unregister);
2738 }
2739
2740 static ssize_t ext4_feat_show(struct kobject *kobj,
2741 struct attribute *attr, char *buf)
2742 {
2743 return snprintf(buf, PAGE_SIZE, "supported\n");
2744 }
2745
2746 /*
2747 * We can not use ext4_attr_show/store because it relies on the kobject
2748 * being embedded in the ext4_sb_info structure which is definitely not
2749 * true in this case.
2750 */
2751 static const struct sysfs_ops ext4_feat_ops = {
2752 .show = ext4_feat_show,
2753 .store = NULL,
2754 };
2755
2756 static struct kobj_type ext4_feat_ktype = {
2757 .default_attrs = ext4_feat_attrs,
2758 .sysfs_ops = &ext4_feat_ops,
2759 .release = ext4_feat_release,
2760 };
2761
2762 /*
2763 * Check whether this filesystem can be mounted based on
2764 * the features present and the RDONLY/RDWR mount requested.
2765 * Returns 1 if this filesystem can be mounted as requested,
2766 * 0 if it cannot be.
2767 */
2768 static int ext4_feature_set_ok(struct super_block *sb, int readonly)
2769 {
2770 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT4_FEATURE_INCOMPAT_SUPP)) {
2771 ext4_msg(sb, KERN_ERR,
2772 "Couldn't mount because of "
2773 "unsupported optional features (%x)",
2774 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
2775 ~EXT4_FEATURE_INCOMPAT_SUPP));
2776 return 0;
2777 }
2778
2779 if (readonly)
2780 return 1;
2781
2782 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_READONLY)) {
2783 ext4_msg(sb, KERN_INFO, "filesystem is read-only");
2784 sb->s_flags |= MS_RDONLY;
2785 return 1;
2786 }
2787
2788 /* Check that feature set is OK for a read-write mount */
2789 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT4_FEATURE_RO_COMPAT_SUPP)) {
2790 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
2791 "unsupported optional features (%x)",
2792 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
2793 ~EXT4_FEATURE_RO_COMPAT_SUPP));
2794 return 0;
2795 }
2796 /*
2797 * Large file size enabled file system can only be mounted
2798 * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF
2799 */
2800 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
2801 if (sizeof(blkcnt_t) < sizeof(u64)) {
2802 ext4_msg(sb, KERN_ERR, "Filesystem with huge files "
2803 "cannot be mounted RDWR without "
2804 "CONFIG_LBDAF");
2805 return 0;
2806 }
2807 }
2808 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_BIGALLOC) &&
2809 !EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) {
2810 ext4_msg(sb, KERN_ERR,
2811 "Can't support bigalloc feature without "
2812 "extents feature\n");
2813 return 0;
2814 }
2815
2816 #ifndef CONFIG_QUOTA
2817 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) &&
2818 !readonly) {
2819 ext4_msg(sb, KERN_ERR,
2820 "Filesystem with quota feature cannot be mounted RDWR "
2821 "without CONFIG_QUOTA");
2822 return 0;
2823 }
2824 #endif /* CONFIG_QUOTA */
2825 return 1;
2826 }
2827
2828 /*
2829 * This function is called once a day if we have errors logged
2830 * on the file system
2831 */
2832 static void print_daily_error_info(unsigned long arg)
2833 {
2834 struct super_block *sb = (struct super_block *) arg;
2835 struct ext4_sb_info *sbi;
2836 struct ext4_super_block *es;
2837
2838 sbi = EXT4_SB(sb);
2839 es = sbi->s_es;
2840
2841 if (es->s_error_count)
2842 /* fsck newer than v1.41.13 is needed to clean this condition. */
2843 ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u",
2844 le32_to_cpu(es->s_error_count));
2845 if (es->s_first_error_time) {
2846 printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %u: %.*s:%d",
2847 sb->s_id, le32_to_cpu(es->s_first_error_time),
2848 (int) sizeof(es->s_first_error_func),
2849 es->s_first_error_func,
2850 le32_to_cpu(es->s_first_error_line));
2851 if (es->s_first_error_ino)
2852 printk(": inode %u",
2853 le32_to_cpu(es->s_first_error_ino));
2854 if (es->s_first_error_block)
2855 printk(": block %llu", (unsigned long long)
2856 le64_to_cpu(es->s_first_error_block));
2857 printk("\n");
2858 }
2859 if (es->s_last_error_time) {
2860 printk(KERN_NOTICE "EXT4-fs (%s): last error at time %u: %.*s:%d",
2861 sb->s_id, le32_to_cpu(es->s_last_error_time),
2862 (int) sizeof(es->s_last_error_func),
2863 es->s_last_error_func,
2864 le32_to_cpu(es->s_last_error_line));
2865 if (es->s_last_error_ino)
2866 printk(": inode %u",
2867 le32_to_cpu(es->s_last_error_ino));
2868 if (es->s_last_error_block)
2869 printk(": block %llu", (unsigned long long)
2870 le64_to_cpu(es->s_last_error_block));
2871 printk("\n");
2872 }
2873 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */
2874 }
2875
2876 /* Find next suitable group and run ext4_init_inode_table */
2877 static int ext4_run_li_request(struct ext4_li_request *elr)
2878 {
2879 struct ext4_group_desc *gdp = NULL;
2880 ext4_group_t group, ngroups;
2881 struct super_block *sb;
2882 unsigned long timeout = 0;
2883 int ret = 0;
2884
2885 sb = elr->lr_super;
2886 ngroups = EXT4_SB(sb)->s_groups_count;
2887
2888 sb_start_write(sb);
2889 for (group = elr->lr_next_group; group < ngroups; group++) {
2890 gdp = ext4_get_group_desc(sb, group, NULL);
2891 if (!gdp) {
2892 ret = 1;
2893 break;
2894 }
2895
2896 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2897 break;
2898 }
2899
2900 if (group >= ngroups)
2901 ret = 1;
2902
2903 if (!ret) {
2904 timeout = jiffies;
2905 ret = ext4_init_inode_table(sb, group,
2906 elr->lr_timeout ? 0 : 1);
2907 if (elr->lr_timeout == 0) {
2908 timeout = (jiffies - timeout) *
2909 elr->lr_sbi->s_li_wait_mult;
2910 elr->lr_timeout = timeout;
2911 }
2912 elr->lr_next_sched = jiffies + elr->lr_timeout;
2913 elr->lr_next_group = group + 1;
2914 }
2915 sb_end_write(sb);
2916
2917 return ret;
2918 }
2919
2920 /*
2921 * Remove lr_request from the list_request and free the
2922 * request structure. Should be called with li_list_mtx held
2923 */
2924 static void ext4_remove_li_request(struct ext4_li_request *elr)
2925 {
2926 struct ext4_sb_info *sbi;
2927
2928 if (!elr)
2929 return;
2930
2931 sbi = elr->lr_sbi;
2932
2933 list_del(&elr->lr_request);
2934 sbi->s_li_request = NULL;
2935 kfree(elr);
2936 }
2937
2938 static void ext4_unregister_li_request(struct super_block *sb)
2939 {
2940 mutex_lock(&ext4_li_mtx);
2941 if (!ext4_li_info) {
2942 mutex_unlock(&ext4_li_mtx);
2943 return;
2944 }
2945
2946 mutex_lock(&ext4_li_info->li_list_mtx);
2947 ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
2948 mutex_unlock(&ext4_li_info->li_list_mtx);
2949 mutex_unlock(&ext4_li_mtx);
2950 }
2951
2952 static struct task_struct *ext4_lazyinit_task;
2953
2954 /*
2955 * This is the function where ext4lazyinit thread lives. It walks
2956 * through the request list searching for next scheduled filesystem.
2957 * When such a fs is found, run the lazy initialization request
2958 * (ext4_rn_li_request) and keep track of the time spend in this
2959 * function. Based on that time we compute next schedule time of
2960 * the request. When walking through the list is complete, compute
2961 * next waking time and put itself into sleep.
2962 */
2963 static int ext4_lazyinit_thread(void *arg)
2964 {
2965 struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg;
2966 struct list_head *pos, *n;
2967 struct ext4_li_request *elr;
2968 unsigned long next_wakeup, cur;
2969
2970 BUG_ON(NULL == eli);
2971
2972 cont_thread:
2973 while (true) {
2974 next_wakeup = MAX_JIFFY_OFFSET;
2975
2976 mutex_lock(&eli->li_list_mtx);
2977 if (list_empty(&eli->li_request_list)) {
2978 mutex_unlock(&eli->li_list_mtx);
2979 goto exit_thread;
2980 }
2981
2982 list_for_each_safe(pos, n, &eli->li_request_list) {
2983 elr = list_entry(pos, struct ext4_li_request,
2984 lr_request);
2985
2986 if (time_after_eq(jiffies, elr->lr_next_sched)) {
2987 if (ext4_run_li_request(elr) != 0) {
2988 /* error, remove the lazy_init job */
2989 ext4_remove_li_request(elr);
2990 continue;
2991 }
2992 }
2993
2994 if (time_before(elr->lr_next_sched, next_wakeup))
2995 next_wakeup = elr->lr_next_sched;
2996 }
2997 mutex_unlock(&eli->li_list_mtx);
2998
2999 try_to_freeze();
3000
3001 cur = jiffies;
3002 if ((time_after_eq(cur, next_wakeup)) ||
3003 (MAX_JIFFY_OFFSET == next_wakeup)) {
3004 cond_resched();
3005 continue;
3006 }
3007
3008 schedule_timeout_interruptible(next_wakeup - cur);
3009
3010 if (kthread_should_stop()) {
3011 ext4_clear_request_list();
3012 goto exit_thread;
3013 }
3014 }
3015
3016 exit_thread:
3017 /*
3018 * It looks like the request list is empty, but we need
3019 * to check it under the li_list_mtx lock, to prevent any
3020 * additions into it, and of course we should lock ext4_li_mtx
3021 * to atomically free the list and ext4_li_info, because at
3022 * this point another ext4 filesystem could be registering
3023 * new one.
3024 */
3025 mutex_lock(&ext4_li_mtx);
3026 mutex_lock(&eli->li_list_mtx);
3027 if (!list_empty(&eli->li_request_list)) {
3028 mutex_unlock(&eli->li_list_mtx);
3029 mutex_unlock(&ext4_li_mtx);
3030 goto cont_thread;
3031 }
3032 mutex_unlock(&eli->li_list_mtx);
3033 kfree(ext4_li_info);
3034 ext4_li_info = NULL;
3035 mutex_unlock(&ext4_li_mtx);
3036
3037 return 0;
3038 }
3039
3040 static void ext4_clear_request_list(void)
3041 {
3042 struct list_head *pos, *n;
3043 struct ext4_li_request *elr;
3044
3045 mutex_lock(&ext4_li_info->li_list_mtx);
3046 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
3047 elr = list_entry(pos, struct ext4_li_request,
3048 lr_request);
3049 ext4_remove_li_request(elr);
3050 }
3051 mutex_unlock(&ext4_li_info->li_list_mtx);
3052 }
3053
3054 static int ext4_run_lazyinit_thread(void)
3055 {
3056 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
3057 ext4_li_info, "ext4lazyinit");
3058 if (IS_ERR(ext4_lazyinit_task)) {
3059 int err = PTR_ERR(ext4_lazyinit_task);
3060 ext4_clear_request_list();
3061 kfree(ext4_li_info);
3062 ext4_li_info = NULL;
3063 printk(KERN_CRIT "EXT4-fs: error %d creating inode table "
3064 "initialization thread\n",
3065 err);
3066 return err;
3067 }
3068 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
3069 return 0;
3070 }
3071
3072 /*
3073 * Check whether it make sense to run itable init. thread or not.
3074 * If there is at least one uninitialized inode table, return
3075 * corresponding group number, else the loop goes through all
3076 * groups and return total number of groups.
3077 */
3078 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
3079 {
3080 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
3081 struct ext4_group_desc *gdp = NULL;
3082
3083 for (group = 0; group < ngroups; group++) {
3084 gdp = ext4_get_group_desc(sb, group, NULL);
3085 if (!gdp)
3086 continue;
3087
3088 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3089 break;
3090 }
3091
3092 return group;
3093 }
3094
3095 static int ext4_li_info_new(void)
3096 {
3097 struct ext4_lazy_init *eli = NULL;
3098
3099 eli = kzalloc(sizeof(*eli), GFP_KERNEL);
3100 if (!eli)
3101 return -ENOMEM;
3102
3103 INIT_LIST_HEAD(&eli->li_request_list);
3104 mutex_init(&eli->li_list_mtx);
3105
3106 eli->li_state |= EXT4_LAZYINIT_QUIT;
3107
3108 ext4_li_info = eli;
3109
3110 return 0;
3111 }
3112
3113 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
3114 ext4_group_t start)
3115 {
3116 struct ext4_sb_info *sbi = EXT4_SB(sb);
3117 struct ext4_li_request *elr;
3118
3119 elr = kzalloc(sizeof(*elr), GFP_KERNEL);
3120 if (!elr)
3121 return NULL;
3122
3123 elr->lr_super = sb;
3124 elr->lr_sbi = sbi;
3125 elr->lr_next_group = start;
3126
3127 /*
3128 * Randomize first schedule time of the request to
3129 * spread the inode table initialization requests
3130 * better.
3131 */
3132 elr->lr_next_sched = jiffies + (prandom_u32() %
3133 (EXT4_DEF_LI_MAX_START_DELAY * HZ));
3134 return elr;
3135 }
3136
3137 int ext4_register_li_request(struct super_block *sb,
3138 ext4_group_t first_not_zeroed)
3139 {
3140 struct ext4_sb_info *sbi = EXT4_SB(sb);
3141 struct ext4_li_request *elr = NULL;
3142 ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count;
3143 int ret = 0;
3144
3145 mutex_lock(&ext4_li_mtx);
3146 if (sbi->s_li_request != NULL) {
3147 /*
3148 * Reset timeout so it can be computed again, because
3149 * s_li_wait_mult might have changed.
3150 */
3151 sbi->s_li_request->lr_timeout = 0;
3152 goto out;
3153 }
3154
3155 if (first_not_zeroed == ngroups ||
3156 (sb->s_flags & MS_RDONLY) ||
3157 !test_opt(sb, INIT_INODE_TABLE))
3158 goto out;
3159
3160 elr = ext4_li_request_new(sb, first_not_zeroed);
3161 if (!elr) {
3162 ret = -ENOMEM;
3163 goto out;
3164 }
3165
3166 if (NULL == ext4_li_info) {
3167 ret = ext4_li_info_new();
3168 if (ret)
3169 goto out;
3170 }
3171
3172 mutex_lock(&ext4_li_info->li_list_mtx);
3173 list_add(&elr->lr_request, &ext4_li_info->li_request_list);
3174 mutex_unlock(&ext4_li_info->li_list_mtx);
3175
3176 sbi->s_li_request = elr;
3177 /*
3178 * set elr to NULL here since it has been inserted to
3179 * the request_list and the removal and free of it is
3180 * handled by ext4_clear_request_list from now on.
3181 */
3182 elr = NULL;
3183
3184 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
3185 ret = ext4_run_lazyinit_thread();
3186 if (ret)
3187 goto out;
3188 }
3189 out:
3190 mutex_unlock(&ext4_li_mtx);
3191 if (ret)
3192 kfree(elr);
3193 return ret;
3194 }
3195
3196 /*
3197 * We do not need to lock anything since this is called on
3198 * module unload.
3199 */
3200 static void ext4_destroy_lazyinit_thread(void)
3201 {
3202 /*
3203 * If thread exited earlier
3204 * there's nothing to be done.
3205 */
3206 if (!ext4_li_info || !ext4_lazyinit_task)
3207 return;
3208
3209 kthread_stop(ext4_lazyinit_task);
3210 }
3211
3212 static int set_journal_csum_feature_set(struct super_block *sb)
3213 {
3214 int ret = 1;
3215 int compat, incompat;
3216 struct ext4_sb_info *sbi = EXT4_SB(sb);
3217
3218 if (ext4_has_metadata_csum(sb)) {
3219 /* journal checksum v3 */
3220 compat = 0;
3221 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3;
3222 } else {
3223 /* journal checksum v1 */
3224 compat = JBD2_FEATURE_COMPAT_CHECKSUM;
3225 incompat = 0;
3226 }
3227
3228 jbd2_journal_clear_features(sbi->s_journal,
3229 JBD2_FEATURE_COMPAT_CHECKSUM, 0,
3230 JBD2_FEATURE_INCOMPAT_CSUM_V3 |
3231 JBD2_FEATURE_INCOMPAT_CSUM_V2);
3232 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
3233 ret = jbd2_journal_set_features(sbi->s_journal,
3234 compat, 0,
3235 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
3236 incompat);
3237 } else if (test_opt(sb, JOURNAL_CHECKSUM)) {
3238 ret = jbd2_journal_set_features(sbi->s_journal,
3239 compat, 0,
3240 incompat);
3241 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3242 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3243 } else {
3244 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3245 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3246 }
3247
3248 return ret;
3249 }
3250
3251 /*
3252 * Note: calculating the overhead so we can be compatible with
3253 * historical BSD practice is quite difficult in the face of
3254 * clusters/bigalloc. This is because multiple metadata blocks from
3255 * different block group can end up in the same allocation cluster.
3256 * Calculating the exact overhead in the face of clustered allocation
3257 * requires either O(all block bitmaps) in memory or O(number of block
3258 * groups**2) in time. We will still calculate the superblock for
3259 * older file systems --- and if we come across with a bigalloc file
3260 * system with zero in s_overhead_clusters the estimate will be close to
3261 * correct especially for very large cluster sizes --- but for newer
3262 * file systems, it's better to calculate this figure once at mkfs
3263 * time, and store it in the superblock. If the superblock value is
3264 * present (even for non-bigalloc file systems), we will use it.
3265 */
3266 static int count_overhead(struct super_block *sb, ext4_group_t grp,
3267 char *buf)
3268 {
3269 struct ext4_sb_info *sbi = EXT4_SB(sb);
3270 struct ext4_group_desc *gdp;
3271 ext4_fsblk_t first_block, last_block, b;
3272 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3273 int s, j, count = 0;
3274
3275 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_BIGALLOC))
3276 return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) +
3277 sbi->s_itb_per_group + 2);
3278
3279 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) +
3280 (grp * EXT4_BLOCKS_PER_GROUP(sb));
3281 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1;
3282 for (i = 0; i < ngroups; i++) {
3283 gdp = ext4_get_group_desc(sb, i, NULL);
3284 b = ext4_block_bitmap(sb, gdp);
3285 if (b >= first_block && b <= last_block) {
3286 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3287 count++;
3288 }
3289 b = ext4_inode_bitmap(sb, gdp);
3290 if (b >= first_block && b <= last_block) {
3291 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3292 count++;
3293 }
3294 b = ext4_inode_table(sb, gdp);
3295 if (b >= first_block && b + sbi->s_itb_per_group <= last_block)
3296 for (j = 0; j < sbi->s_itb_per_group; j++, b++) {
3297 int c = EXT4_B2C(sbi, b - first_block);
3298 ext4_set_bit(c, buf);
3299 count++;
3300 }
3301 if (i != grp)
3302 continue;
3303 s = 0;
3304 if (ext4_bg_has_super(sb, grp)) {
3305 ext4_set_bit(s++, buf);
3306 count++;
3307 }
3308 for (j = ext4_bg_num_gdb(sb, grp); j > 0; j--) {
3309 ext4_set_bit(EXT4_B2C(sbi, s++), buf);
3310 count++;
3311 }
3312 }
3313 if (!count)
3314 return 0;
3315 return EXT4_CLUSTERS_PER_GROUP(sb) -
3316 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8);
3317 }
3318
3319 /*
3320 * Compute the overhead and stash it in sbi->s_overhead
3321 */
3322 int ext4_calculate_overhead(struct super_block *sb)
3323 {
3324 struct ext4_sb_info *sbi = EXT4_SB(sb);
3325 struct ext4_super_block *es = sbi->s_es;
3326 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3327 ext4_fsblk_t overhead = 0;
3328 char *buf = (char *) get_zeroed_page(GFP_NOFS);
3329
3330 if (!buf)
3331 return -ENOMEM;
3332
3333 /*
3334 * Compute the overhead (FS structures). This is constant
3335 * for a given filesystem unless the number of block groups
3336 * changes so we cache the previous value until it does.
3337 */
3338
3339 /*
3340 * All of the blocks before first_data_block are overhead
3341 */
3342 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
3343
3344 /*
3345 * Add the overhead found in each block group
3346 */
3347 for (i = 0; i < ngroups; i++) {
3348 int blks;
3349
3350 blks = count_overhead(sb, i, buf);
3351 overhead += blks;
3352 if (blks)
3353 memset(buf, 0, PAGE_SIZE);
3354 cond_resched();
3355 }
3356 /* Add the internal journal blocks as well */
3357 if (sbi->s_journal && !sbi->journal_bdev)
3358 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_maxlen);
3359
3360 sbi->s_overhead = overhead;
3361 smp_wmb();
3362 free_page((unsigned long) buf);
3363 return 0;
3364 }
3365
3366
3367 static ext4_fsblk_t ext4_calculate_resv_clusters(struct super_block *sb)
3368 {
3369 ext4_fsblk_t resv_clusters;
3370
3371 /*
3372 * There's no need to reserve anything when we aren't using extents.
3373 * The space estimates are exact, there are no unwritten extents,
3374 * hole punching doesn't need new metadata... This is needed especially
3375 * to keep ext2/3 backward compatibility.
3376 */
3377 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS))
3378 return 0;
3379 /*
3380 * By default we reserve 2% or 4096 clusters, whichever is smaller.
3381 * This should cover the situations where we can not afford to run
3382 * out of space like for example punch hole, or converting
3383 * unwritten extents in delalloc path. In most cases such
3384 * allocation would require 1, or 2 blocks, higher numbers are
3385 * very rare.
3386 */
3387 resv_clusters = ext4_blocks_count(EXT4_SB(sb)->s_es) >>
3388 EXT4_SB(sb)->s_cluster_bits;
3389
3390 do_div(resv_clusters, 50);
3391 resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096);
3392
3393 return resv_clusters;
3394 }
3395
3396
3397 static int ext4_reserve_clusters(struct ext4_sb_info *sbi, ext4_fsblk_t count)
3398 {
3399 ext4_fsblk_t clusters = ext4_blocks_count(sbi->s_es) >>
3400 sbi->s_cluster_bits;
3401
3402 if (count >= clusters)
3403 return -EINVAL;
3404
3405 atomic64_set(&sbi->s_resv_clusters, count);
3406 return 0;
3407 }
3408
3409 static int ext4_fill_super(struct super_block *sb, void *data, int silent)
3410 {
3411 char *orig_data = kstrdup(data, GFP_KERNEL);
3412 struct buffer_head *bh;
3413 struct ext4_super_block *es = NULL;
3414 struct ext4_sb_info *sbi;
3415 ext4_fsblk_t block;
3416 ext4_fsblk_t sb_block = get_sb_block(&data);
3417 ext4_fsblk_t logical_sb_block;
3418 unsigned long offset = 0;
3419 unsigned long journal_devnum = 0;
3420 unsigned long def_mount_opts;
3421 struct inode *root;
3422 char *cp;
3423 const char *descr;
3424 int ret = -ENOMEM;
3425 int blocksize, clustersize;
3426 unsigned int db_count;
3427 unsigned int i;
3428 int needs_recovery, has_huge_files, has_bigalloc;
3429 __u64 blocks_count;
3430 int err = 0;
3431 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
3432 ext4_group_t first_not_zeroed;
3433
3434 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
3435 if (!sbi)
3436 goto out_free_orig;
3437
3438 sbi->s_blockgroup_lock =
3439 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
3440 if (!sbi->s_blockgroup_lock) {
3441 kfree(sbi);
3442 goto out_free_orig;
3443 }
3444 sb->s_fs_info = sbi;
3445 sbi->s_sb = sb;
3446 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
3447 sbi->s_sb_block = sb_block;
3448 if (sb->s_bdev->bd_part)
3449 sbi->s_sectors_written_start =
3450 part_stat_read(sb->s_bdev->bd_part, sectors[1]);
3451
3452 /* Cleanup superblock name */
3453 for (cp = sb->s_id; (cp = strchr(cp, '/'));)
3454 *cp = '!';
3455
3456 /* -EINVAL is default */
3457 ret = -EINVAL;
3458 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
3459 if (!blocksize) {
3460 ext4_msg(sb, KERN_ERR, "unable to set blocksize");
3461 goto out_fail;
3462 }
3463
3464 /*
3465 * The ext4 superblock will not be buffer aligned for other than 1kB
3466 * block sizes. We need to calculate the offset from buffer start.
3467 */
3468 if (blocksize != EXT4_MIN_BLOCK_SIZE) {
3469 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3470 offset = do_div(logical_sb_block, blocksize);
3471 } else {
3472 logical_sb_block = sb_block;
3473 }
3474
3475 if (!(bh = sb_bread_unmovable(sb, logical_sb_block))) {
3476 ext4_msg(sb, KERN_ERR, "unable to read superblock");
3477 goto out_fail;
3478 }
3479 /*
3480 * Note: s_es must be initialized as soon as possible because
3481 * some ext4 macro-instructions depend on its value
3482 */
3483 es = (struct ext4_super_block *) (bh->b_data + offset);
3484 sbi->s_es = es;
3485 sb->s_magic = le16_to_cpu(es->s_magic);
3486 if (sb->s_magic != EXT4_SUPER_MAGIC)
3487 goto cantfind_ext4;
3488 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
3489
3490 /* Warn if metadata_csum and gdt_csum are both set. */
3491 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3492 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
3493 EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
3494 ext4_warning(sb, "metadata_csum and uninit_bg are "
3495 "redundant flags; please run fsck.");
3496
3497 /* Check for a known checksum algorithm */
3498 if (!ext4_verify_csum_type(sb, es)) {
3499 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3500 "unknown checksum algorithm.");
3501 silent = 1;
3502 goto cantfind_ext4;
3503 }
3504
3505 /* Load the checksum driver */
3506 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3507 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
3508 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
3509 if (IS_ERR(sbi->s_chksum_driver)) {
3510 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver.");
3511 ret = PTR_ERR(sbi->s_chksum_driver);
3512 sbi->s_chksum_driver = NULL;
3513 goto failed_mount;
3514 }
3515 }
3516
3517 /* Check superblock checksum */
3518 if (!ext4_superblock_csum_verify(sb, es)) {
3519 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3520 "invalid superblock checksum. Run e2fsck?");
3521 silent = 1;
3522 goto cantfind_ext4;
3523 }
3524
3525 /* Precompute checksum seed for all metadata */
3526 if (ext4_has_metadata_csum(sb))
3527 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid,
3528 sizeof(es->s_uuid));
3529
3530 /* Set defaults before we parse the mount options */
3531 def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
3532 set_opt(sb, INIT_INODE_TABLE);
3533 if (def_mount_opts & EXT4_DEFM_DEBUG)
3534 set_opt(sb, DEBUG);
3535 if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
3536 set_opt(sb, GRPID);
3537 if (def_mount_opts & EXT4_DEFM_UID16)
3538 set_opt(sb, NO_UID32);
3539 /* xattr user namespace & acls are now defaulted on */
3540 set_opt(sb, XATTR_USER);
3541 #ifdef CONFIG_EXT4_FS_POSIX_ACL
3542 set_opt(sb, POSIX_ACL);
3543 #endif
3544 /* don't forget to enable journal_csum when metadata_csum is enabled. */
3545 if (ext4_has_metadata_csum(sb))
3546 set_opt(sb, JOURNAL_CHECKSUM);
3547
3548 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
3549 set_opt(sb, JOURNAL_DATA);
3550 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
3551 set_opt(sb, ORDERED_DATA);
3552 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
3553 set_opt(sb, WRITEBACK_DATA);
3554
3555 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC)
3556 set_opt(sb, ERRORS_PANIC);
3557 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE)
3558 set_opt(sb, ERRORS_CONT);
3559 else
3560 set_opt(sb, ERRORS_RO);
3561 /* block_validity enabled by default; disable with noblock_validity */
3562 set_opt(sb, BLOCK_VALIDITY);
3563 if (def_mount_opts & EXT4_DEFM_DISCARD)
3564 set_opt(sb, DISCARD);
3565
3566 sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid));
3567 sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid));
3568 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
3569 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
3570 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
3571
3572 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
3573 set_opt(sb, BARRIER);
3574
3575 /*
3576 * enable delayed allocation by default
3577 * Use -o nodelalloc to turn it off
3578 */
3579 if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) &&
3580 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
3581 set_opt(sb, DELALLOC);
3582
3583 /*
3584 * set default s_li_wait_mult for lazyinit, for the case there is
3585 * no mount option specified.
3586 */
3587 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
3588
3589 if (!parse_options((char *) sbi->s_es->s_mount_opts, sb,
3590 &journal_devnum, &journal_ioprio, 0)) {
3591 ext4_msg(sb, KERN_WARNING,
3592 "failed to parse options in superblock: %s",
3593 sbi->s_es->s_mount_opts);
3594 }
3595 sbi->s_def_mount_opt = sbi->s_mount_opt;
3596 if (!parse_options((char *) data, sb, &journal_devnum,
3597 &journal_ioprio, 0))
3598 goto failed_mount;
3599
3600 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
3601 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting "
3602 "with data=journal disables delayed "
3603 "allocation and O_DIRECT support!\n");
3604 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
3605 ext4_msg(sb, KERN_ERR, "can't mount with "
3606 "both data=journal and delalloc");
3607 goto failed_mount;
3608 }
3609 if (test_opt(sb, DIOREAD_NOLOCK)) {
3610 ext4_msg(sb, KERN_ERR, "can't mount with "
3611 "both data=journal and dioread_nolock");
3612 goto failed_mount;
3613 }
3614 if (test_opt(sb, DAX)) {
3615 ext4_msg(sb, KERN_ERR, "can't mount with "
3616 "both data=journal and dax");
3617 goto failed_mount;
3618 }
3619 if (test_opt(sb, DELALLOC))
3620 clear_opt(sb, DELALLOC);
3621 }
3622
3623 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
3624 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
3625
3626 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
3627 (EXT4_HAS_COMPAT_FEATURE(sb, ~0U) ||
3628 EXT4_HAS_RO_COMPAT_FEATURE(sb, ~0U) ||
3629 EXT4_HAS_INCOMPAT_FEATURE(sb, ~0U)))
3630 ext4_msg(sb, KERN_WARNING,
3631 "feature flags set on rev 0 fs, "
3632 "running e2fsck is recommended");
3633
3634 if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) {
3635 set_opt2(sb, HURD_COMPAT);
3636 if (EXT4_HAS_INCOMPAT_FEATURE(sb,
3637 EXT4_FEATURE_INCOMPAT_64BIT)) {
3638 ext4_msg(sb, KERN_ERR,
3639 "The Hurd can't support 64-bit file systems");
3640 goto failed_mount;
3641 }
3642 }
3643
3644 if (IS_EXT2_SB(sb)) {
3645 if (ext2_feature_set_ok(sb))
3646 ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
3647 "using the ext4 subsystem");
3648 else {
3649 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
3650 "to feature incompatibilities");
3651 goto failed_mount;
3652 }
3653 }
3654
3655 if (IS_EXT3_SB(sb)) {
3656 if (ext3_feature_set_ok(sb))
3657 ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
3658 "using the ext4 subsystem");
3659 else {
3660 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
3661 "to feature incompatibilities");
3662 goto failed_mount;
3663 }
3664 }
3665
3666 /*
3667 * Check feature flags regardless of the revision level, since we
3668 * previously didn't change the revision level when setting the flags,
3669 * so there is a chance incompat flags are set on a rev 0 filesystem.
3670 */
3671 if (!ext4_feature_set_ok(sb, (sb->s_flags & MS_RDONLY)))
3672 goto failed_mount;
3673
3674 blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
3675 if (blocksize < EXT4_MIN_BLOCK_SIZE ||
3676 blocksize > EXT4_MAX_BLOCK_SIZE) {
3677 ext4_msg(sb, KERN_ERR,
3678 "Unsupported filesystem blocksize %d", blocksize);
3679 goto failed_mount;
3680 }
3681
3682 if (sbi->s_mount_opt & EXT4_MOUNT_DAX) {
3683 if (blocksize != PAGE_SIZE) {
3684 ext4_msg(sb, KERN_ERR,
3685 "error: unsupported blocksize for dax");
3686 goto failed_mount;
3687 }
3688 if (!sb->s_bdev->bd_disk->fops->direct_access) {
3689 ext4_msg(sb, KERN_ERR,
3690 "error: device does not support dax");
3691 goto failed_mount;
3692 }
3693 }
3694
3695 if (sb->s_blocksize != blocksize) {
3696 /* Validate the filesystem blocksize */
3697 if (!sb_set_blocksize(sb, blocksize)) {
3698 ext4_msg(sb, KERN_ERR, "bad block size %d",
3699 blocksize);
3700 goto failed_mount;
3701 }
3702
3703 brelse(bh);
3704 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3705 offset = do_div(logical_sb_block, blocksize);
3706 bh = sb_bread_unmovable(sb, logical_sb_block);
3707 if (!bh) {
3708 ext4_msg(sb, KERN_ERR,
3709 "Can't read superblock on 2nd try");
3710 goto failed_mount;
3711 }
3712 es = (struct ext4_super_block *)(bh->b_data + offset);
3713 sbi->s_es = es;
3714 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
3715 ext4_msg(sb, KERN_ERR,
3716 "Magic mismatch, very weird!");
3717 goto failed_mount;
3718 }
3719 }
3720
3721 has_huge_files = EXT4_HAS_RO_COMPAT_FEATURE(sb,
3722 EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
3723 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
3724 has_huge_files);
3725 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
3726
3727 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
3728 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
3729 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
3730 } else {
3731 sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
3732 sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
3733 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
3734 (!is_power_of_2(sbi->s_inode_size)) ||
3735 (sbi->s_inode_size > blocksize)) {
3736 ext4_msg(sb, KERN_ERR,
3737 "unsupported inode size: %d",
3738 sbi->s_inode_size);
3739 goto failed_mount;
3740 }
3741 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE)
3742 sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2);
3743 }
3744
3745 sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
3746 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT)) {
3747 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
3748 sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
3749 !is_power_of_2(sbi->s_desc_size)) {
3750 ext4_msg(sb, KERN_ERR,
3751 "unsupported descriptor size %lu",
3752 sbi->s_desc_size);
3753 goto failed_mount;
3754 }
3755 } else
3756 sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
3757
3758 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
3759 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
3760 if (EXT4_INODE_SIZE(sb) == 0 || EXT4_INODES_PER_GROUP(sb) == 0)
3761 goto cantfind_ext4;
3762
3763 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb);
3764 if (sbi->s_inodes_per_block == 0)
3765 goto cantfind_ext4;
3766 sbi->s_itb_per_group = sbi->s_inodes_per_group /
3767 sbi->s_inodes_per_block;
3768 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb);
3769 sbi->s_sbh = bh;
3770 sbi->s_mount_state = le16_to_cpu(es->s_state);
3771 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
3772 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
3773
3774 for (i = 0; i < 4; i++)
3775 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
3776 sbi->s_def_hash_version = es->s_def_hash_version;
3777 if (EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_DIR_INDEX)) {
3778 i = le32_to_cpu(es->s_flags);
3779 if (i & EXT2_FLAGS_UNSIGNED_HASH)
3780 sbi->s_hash_unsigned = 3;
3781 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
3782 #ifdef __CHAR_UNSIGNED__
3783 if (!(sb->s_flags & MS_RDONLY))
3784 es->s_flags |=
3785 cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
3786 sbi->s_hash_unsigned = 3;
3787 #else
3788 if (!(sb->s_flags & MS_RDONLY))
3789 es->s_flags |=
3790 cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
3791 #endif
3792 }
3793 }
3794
3795 /* Handle clustersize */
3796 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size);
3797 has_bigalloc = EXT4_HAS_RO_COMPAT_FEATURE(sb,
3798 EXT4_FEATURE_RO_COMPAT_BIGALLOC);
3799 if (has_bigalloc) {
3800 if (clustersize < blocksize) {
3801 ext4_msg(sb, KERN_ERR,
3802 "cluster size (%d) smaller than "
3803 "block size (%d)", clustersize, blocksize);
3804 goto failed_mount;
3805 }
3806 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) -
3807 le32_to_cpu(es->s_log_block_size);
3808 sbi->s_clusters_per_group =
3809 le32_to_cpu(es->s_clusters_per_group);
3810 if (sbi->s_clusters_per_group > blocksize * 8) {
3811 ext4_msg(sb, KERN_ERR,
3812 "#clusters per group too big: %lu",
3813 sbi->s_clusters_per_group);
3814 goto failed_mount;
3815 }
3816 if (sbi->s_blocks_per_group !=
3817 (sbi->s_clusters_per_group * (clustersize / blocksize))) {
3818 ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and "
3819 "clusters per group (%lu) inconsistent",
3820 sbi->s_blocks_per_group,
3821 sbi->s_clusters_per_group);
3822 goto failed_mount;
3823 }
3824 } else {
3825 if (clustersize != blocksize) {
3826 ext4_warning(sb, "fragment/cluster size (%d) != "
3827 "block size (%d)", clustersize,
3828 blocksize);
3829 clustersize = blocksize;
3830 }
3831 if (sbi->s_blocks_per_group > blocksize * 8) {
3832 ext4_msg(sb, KERN_ERR,
3833 "#blocks per group too big: %lu",
3834 sbi->s_blocks_per_group);
3835 goto failed_mount;
3836 }
3837 sbi->s_clusters_per_group = sbi->s_blocks_per_group;
3838 sbi->s_cluster_bits = 0;
3839 }
3840 sbi->s_cluster_ratio = clustersize / blocksize;
3841
3842 if (sbi->s_inodes_per_group > blocksize * 8) {
3843 ext4_msg(sb, KERN_ERR,
3844 "#inodes per group too big: %lu",
3845 sbi->s_inodes_per_group);
3846 goto failed_mount;
3847 }
3848
3849 /* Do we have standard group size of clustersize * 8 blocks ? */
3850 if (sbi->s_blocks_per_group == clustersize << 3)
3851 set_opt2(sb, STD_GROUP_SIZE);
3852
3853 /*
3854 * Test whether we have more sectors than will fit in sector_t,
3855 * and whether the max offset is addressable by the page cache.
3856 */
3857 err = generic_check_addressable(sb->s_blocksize_bits,
3858 ext4_blocks_count(es));
3859 if (err) {
3860 ext4_msg(sb, KERN_ERR, "filesystem"
3861 " too large to mount safely on this system");
3862 if (sizeof(sector_t) < 8)
3863 ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled");
3864 goto failed_mount;
3865 }
3866
3867 if (EXT4_BLOCKS_PER_GROUP(sb) == 0)
3868 goto cantfind_ext4;
3869
3870 /* check blocks count against device size */
3871 blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
3872 if (blocks_count && ext4_blocks_count(es) > blocks_count) {
3873 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
3874 "exceeds size of device (%llu blocks)",
3875 ext4_blocks_count(es), blocks_count);
3876 goto failed_mount;
3877 }
3878
3879 /*
3880 * It makes no sense for the first data block to be beyond the end
3881 * of the filesystem.
3882 */
3883 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
3884 ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
3885 "block %u is beyond end of filesystem (%llu)",
3886 le32_to_cpu(es->s_first_data_block),
3887 ext4_blocks_count(es));
3888 goto failed_mount;
3889 }
3890 blocks_count = (ext4_blocks_count(es) -
3891 le32_to_cpu(es->s_first_data_block) +
3892 EXT4_BLOCKS_PER_GROUP(sb) - 1);
3893 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
3894 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
3895 ext4_msg(sb, KERN_WARNING, "groups count too large: %u "
3896 "(block count %llu, first data block %u, "
3897 "blocks per group %lu)", sbi->s_groups_count,
3898 ext4_blocks_count(es),
3899 le32_to_cpu(es->s_first_data_block),
3900 EXT4_BLOCKS_PER_GROUP(sb));
3901 goto failed_mount;
3902 }
3903 sbi->s_groups_count = blocks_count;
3904 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
3905 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
3906 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
3907 EXT4_DESC_PER_BLOCK(sb);
3908 sbi->s_group_desc = ext4_kvmalloc(db_count *
3909 sizeof(struct buffer_head *),
3910 GFP_KERNEL);
3911 if (sbi->s_group_desc == NULL) {
3912 ext4_msg(sb, KERN_ERR, "not enough memory");
3913 ret = -ENOMEM;
3914 goto failed_mount;
3915 }
3916
3917 if (ext4_proc_root)
3918 sbi->s_proc = proc_mkdir(sb->s_id, ext4_proc_root);
3919
3920 if (sbi->s_proc)
3921 proc_create_data("options", S_IRUGO, sbi->s_proc,
3922 &ext4_seq_options_fops, sb);
3923
3924 bgl_lock_init(sbi->s_blockgroup_lock);
3925
3926 for (i = 0; i < db_count; i++) {
3927 block = descriptor_loc(sb, logical_sb_block, i);
3928 sbi->s_group_desc[i] = sb_bread_unmovable(sb, block);
3929 if (!sbi->s_group_desc[i]) {
3930 ext4_msg(sb, KERN_ERR,
3931 "can't read group descriptor %d", i);
3932 db_count = i;
3933 goto failed_mount2;
3934 }
3935 }
3936 if (!ext4_check_descriptors(sb, &first_not_zeroed)) {
3937 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
3938 goto failed_mount2;
3939 }
3940
3941 sbi->s_gdb_count = db_count;
3942 get_random_bytes(&sbi->s_next_generation, sizeof(u32));
3943 spin_lock_init(&sbi->s_next_gen_lock);
3944
3945 setup_timer(&sbi->s_err_report, print_daily_error_info,
3946 (unsigned long) sb);
3947
3948 /* Register extent status tree shrinker */
3949 if (ext4_es_register_shrinker(sbi))
3950 goto failed_mount3;
3951
3952 sbi->s_stripe = ext4_get_stripe_size(sbi);
3953 sbi->s_extent_max_zeroout_kb = 32;
3954
3955 /*
3956 * set up enough so that it can read an inode
3957 */
3958 sb->s_op = &ext4_sops;
3959 sb->s_export_op = &ext4_export_ops;
3960 sb->s_xattr = ext4_xattr_handlers;
3961 #ifdef CONFIG_QUOTA
3962 sb->dq_op = &ext4_quota_operations;
3963 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA))
3964 sb->s_qcop = &dquot_quotactl_sysfile_ops;
3965 else
3966 sb->s_qcop = &ext4_qctl_operations;
3967 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP;
3968 #endif
3969 memcpy(sb->s_uuid, es->s_uuid, sizeof(es->s_uuid));
3970
3971 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
3972 mutex_init(&sbi->s_orphan_lock);
3973
3974 sb->s_root = NULL;
3975
3976 needs_recovery = (es->s_last_orphan != 0 ||
3977 EXT4_HAS_INCOMPAT_FEATURE(sb,
3978 EXT4_FEATURE_INCOMPAT_RECOVER));
3979
3980 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_MMP) &&
3981 !(sb->s_flags & MS_RDONLY))
3982 if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block)))
3983 goto failed_mount3a;
3984
3985 /*
3986 * The first inode we look at is the journal inode. Don't try
3987 * root first: it may be modified in the journal!
3988 */
3989 if (!test_opt(sb, NOLOAD) &&
3990 EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) {
3991 if (ext4_load_journal(sb, es, journal_devnum))
3992 goto failed_mount3a;
3993 } else if (test_opt(sb, NOLOAD) && !(sb->s_flags & MS_RDONLY) &&
3994 EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) {
3995 ext4_msg(sb, KERN_ERR, "required journal recovery "
3996 "suppressed and not mounted read-only");
3997 goto failed_mount_wq;
3998 } else {
3999 clear_opt(sb, DATA_FLAGS);
4000 sbi->s_journal = NULL;
4001 needs_recovery = 0;
4002 goto no_journal;
4003 }
4004
4005 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT) &&
4006 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
4007 JBD2_FEATURE_INCOMPAT_64BIT)) {
4008 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
4009 goto failed_mount_wq;
4010 }
4011
4012 if (!set_journal_csum_feature_set(sb)) {
4013 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum "
4014 "feature set");
4015 goto failed_mount_wq;
4016 }
4017
4018 /* We have now updated the journal if required, so we can
4019 * validate the data journaling mode. */
4020 switch (test_opt(sb, DATA_FLAGS)) {
4021 case 0:
4022 /* No mode set, assume a default based on the journal
4023 * capabilities: ORDERED_DATA if the journal can
4024 * cope, else JOURNAL_DATA
4025 */
4026 if (jbd2_journal_check_available_features
4027 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE))
4028 set_opt(sb, ORDERED_DATA);
4029 else
4030 set_opt(sb, JOURNAL_DATA);
4031 break;
4032
4033 case EXT4_MOUNT_ORDERED_DATA:
4034 case EXT4_MOUNT_WRITEBACK_DATA:
4035 if (!jbd2_journal_check_available_features
4036 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4037 ext4_msg(sb, KERN_ERR, "Journal does not support "
4038 "requested data journaling mode");
4039 goto failed_mount_wq;
4040 }
4041 default:
4042 break;
4043 }
4044 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
4045
4046 sbi->s_journal->j_commit_callback = ext4_journal_commit_callback;
4047
4048 no_journal:
4049 if (ext4_mballoc_ready) {
4050 sbi->s_mb_cache = ext4_xattr_create_cache(sb->s_id);
4051 if (!sbi->s_mb_cache) {
4052 ext4_msg(sb, KERN_ERR, "Failed to create an mb_cache");
4053 goto failed_mount_wq;
4054 }
4055 }
4056
4057 /*
4058 * Get the # of file system overhead blocks from the
4059 * superblock if present.
4060 */
4061 if (es->s_overhead_clusters)
4062 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters);
4063 else {
4064 err = ext4_calculate_overhead(sb);
4065 if (err)
4066 goto failed_mount_wq;
4067 }
4068
4069 /*
4070 * The maximum number of concurrent works can be high and
4071 * concurrency isn't really necessary. Limit it to 1.
4072 */
4073 EXT4_SB(sb)->rsv_conversion_wq =
4074 alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
4075 if (!EXT4_SB(sb)->rsv_conversion_wq) {
4076 printk(KERN_ERR "EXT4-fs: failed to create workqueue\n");
4077 ret = -ENOMEM;
4078 goto failed_mount4;
4079 }
4080
4081 /*
4082 * The jbd2_journal_load will have done any necessary log recovery,
4083 * so we can safely mount the rest of the filesystem now.
4084 */
4085
4086 root = ext4_iget(sb, EXT4_ROOT_INO);
4087 if (IS_ERR(root)) {
4088 ext4_msg(sb, KERN_ERR, "get root inode failed");
4089 ret = PTR_ERR(root);
4090 root = NULL;
4091 goto failed_mount4;
4092 }
4093 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
4094 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
4095 iput(root);
4096 goto failed_mount4;
4097 }
4098 sb->s_root = d_make_root(root);
4099 if (!sb->s_root) {
4100 ext4_msg(sb, KERN_ERR, "get root dentry failed");
4101 ret = -ENOMEM;
4102 goto failed_mount4;
4103 }
4104
4105 if (ext4_setup_super(sb, es, sb->s_flags & MS_RDONLY))
4106 sb->s_flags |= MS_RDONLY;
4107
4108 /* determine the minimum size of new large inodes, if present */
4109 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) {
4110 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
4111 EXT4_GOOD_OLD_INODE_SIZE;
4112 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4113 EXT4_FEATURE_RO_COMPAT_EXTRA_ISIZE)) {
4114 if (sbi->s_want_extra_isize <
4115 le16_to_cpu(es->s_want_extra_isize))
4116 sbi->s_want_extra_isize =
4117 le16_to_cpu(es->s_want_extra_isize);
4118 if (sbi->s_want_extra_isize <
4119 le16_to_cpu(es->s_min_extra_isize))
4120 sbi->s_want_extra_isize =
4121 le16_to_cpu(es->s_min_extra_isize);
4122 }
4123 }
4124 /* Check if enough inode space is available */
4125 if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize >
4126 sbi->s_inode_size) {
4127 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
4128 EXT4_GOOD_OLD_INODE_SIZE;
4129 ext4_msg(sb, KERN_INFO, "required extra inode space not"
4130 "available");
4131 }
4132
4133 err = ext4_reserve_clusters(sbi, ext4_calculate_resv_clusters(sb));
4134 if (err) {
4135 ext4_msg(sb, KERN_ERR, "failed to reserve %llu clusters for "
4136 "reserved pool", ext4_calculate_resv_clusters(sb));
4137 goto failed_mount4a;
4138 }
4139
4140 err = ext4_setup_system_zone(sb);
4141 if (err) {
4142 ext4_msg(sb, KERN_ERR, "failed to initialize system "
4143 "zone (%d)", err);
4144 goto failed_mount4a;
4145 }
4146
4147 ext4_ext_init(sb);
4148 err = ext4_mb_init(sb);
4149 if (err) {
4150 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
4151 err);
4152 goto failed_mount5;
4153 }
4154
4155 block = ext4_count_free_clusters(sb);
4156 ext4_free_blocks_count_set(sbi->s_es,
4157 EXT4_C2B(sbi, block));
4158 err = percpu_counter_init(&sbi->s_freeclusters_counter, block,
4159 GFP_KERNEL);
4160 if (!err) {
4161 unsigned long freei = ext4_count_free_inodes(sb);
4162 sbi->s_es->s_free_inodes_count = cpu_to_le32(freei);
4163 err = percpu_counter_init(&sbi->s_freeinodes_counter, freei,
4164 GFP_KERNEL);
4165 }
4166 if (!err)
4167 err = percpu_counter_init(&sbi->s_dirs_counter,
4168 ext4_count_dirs(sb), GFP_KERNEL);
4169 if (!err)
4170 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0,
4171 GFP_KERNEL);
4172 if (err) {
4173 ext4_msg(sb, KERN_ERR, "insufficient memory");
4174 goto failed_mount6;
4175 }
4176
4177 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG))
4178 if (!ext4_fill_flex_info(sb)) {
4179 ext4_msg(sb, KERN_ERR,
4180 "unable to initialize "
4181 "flex_bg meta info!");
4182 goto failed_mount6;
4183 }
4184
4185 err = ext4_register_li_request(sb, first_not_zeroed);
4186 if (err)
4187 goto failed_mount6;
4188
4189 sbi->s_kobj.kset = ext4_kset;
4190 init_completion(&sbi->s_kobj_unregister);
4191 err = kobject_init_and_add(&sbi->s_kobj, &ext4_ktype, NULL,
4192 "%s", sb->s_id);
4193 if (err)
4194 goto failed_mount7;
4195
4196 #ifdef CONFIG_QUOTA
4197 /* Enable quota usage during mount. */
4198 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) &&
4199 !(sb->s_flags & MS_RDONLY)) {
4200 err = ext4_enable_quotas(sb);
4201 if (err)
4202 goto failed_mount8;
4203 }
4204 #endif /* CONFIG_QUOTA */
4205
4206 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
4207 ext4_orphan_cleanup(sb, es);
4208 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
4209 if (needs_recovery) {
4210 ext4_msg(sb, KERN_INFO, "recovery complete");
4211 ext4_mark_recovery_complete(sb, es);
4212 }
4213 if (EXT4_SB(sb)->s_journal) {
4214 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
4215 descr = " journalled data mode";
4216 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
4217 descr = " ordered data mode";
4218 else
4219 descr = " writeback data mode";
4220 } else
4221 descr = "out journal";
4222
4223 if (test_opt(sb, DISCARD)) {
4224 struct request_queue *q = bdev_get_queue(sb->s_bdev);
4225 if (!blk_queue_discard(q))
4226 ext4_msg(sb, KERN_WARNING,
4227 "mounting with \"discard\" option, but "
4228 "the device does not support discard");
4229 }
4230
4231 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. "
4232 "Opts: %s%s%s", descr, sbi->s_es->s_mount_opts,
4233 *sbi->s_es->s_mount_opts ? "; " : "", orig_data);
4234
4235 if (es->s_error_count)
4236 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
4237
4238 /* Enable message ratelimiting. Default is 10 messages per 5 secs. */
4239 ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10);
4240 ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10);
4241 ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10);
4242
4243 kfree(orig_data);
4244 return 0;
4245
4246 cantfind_ext4:
4247 if (!silent)
4248 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
4249 goto failed_mount;
4250
4251 #ifdef CONFIG_QUOTA
4252 failed_mount8:
4253 kobject_del(&sbi->s_kobj);
4254 #endif
4255 failed_mount7:
4256 ext4_unregister_li_request(sb);
4257 failed_mount6:
4258 ext4_mb_release(sb);
4259 if (sbi->s_flex_groups)
4260 kvfree(sbi->s_flex_groups);
4261 percpu_counter_destroy(&sbi->s_freeclusters_counter);
4262 percpu_counter_destroy(&sbi->s_freeinodes_counter);
4263 percpu_counter_destroy(&sbi->s_dirs_counter);
4264 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
4265 failed_mount5:
4266 ext4_ext_release(sb);
4267 ext4_release_system_zone(sb);
4268 failed_mount4a:
4269 dput(sb->s_root);
4270 sb->s_root = NULL;
4271 failed_mount4:
4272 ext4_msg(sb, KERN_ERR, "mount failed");
4273 if (EXT4_SB(sb)->rsv_conversion_wq)
4274 destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq);
4275 failed_mount_wq:
4276 if (sbi->s_journal) {
4277 jbd2_journal_destroy(sbi->s_journal);
4278 sbi->s_journal = NULL;
4279 }
4280 failed_mount3a:
4281 ext4_es_unregister_shrinker(sbi);
4282 failed_mount3:
4283 del_timer_sync(&sbi->s_err_report);
4284 if (sbi->s_mmp_tsk)
4285 kthread_stop(sbi->s_mmp_tsk);
4286 failed_mount2:
4287 for (i = 0; i < db_count; i++)
4288 brelse(sbi->s_group_desc[i]);
4289 kvfree(sbi->s_group_desc);
4290 failed_mount:
4291 if (sbi->s_chksum_driver)
4292 crypto_free_shash(sbi->s_chksum_driver);
4293 if (sbi->s_proc) {
4294 remove_proc_entry("options", sbi->s_proc);
4295 remove_proc_entry(sb->s_id, ext4_proc_root);
4296 }
4297 #ifdef CONFIG_QUOTA
4298 for (i = 0; i < EXT4_MAXQUOTAS; i++)
4299 kfree(sbi->s_qf_names[i]);
4300 #endif
4301 ext4_blkdev_remove(sbi);
4302 brelse(bh);
4303 out_fail:
4304 sb->s_fs_info = NULL;
4305 kfree(sbi->s_blockgroup_lock);
4306 kfree(sbi);
4307 out_free_orig:
4308 kfree(orig_data);
4309 return err ? err : ret;
4310 }
4311
4312 /*
4313 * Setup any per-fs journal parameters now. We'll do this both on
4314 * initial mount, once the journal has been initialised but before we've
4315 * done any recovery; and again on any subsequent remount.
4316 */
4317 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
4318 {
4319 struct ext4_sb_info *sbi = EXT4_SB(sb);
4320
4321 journal->j_commit_interval = sbi->s_commit_interval;
4322 journal->j_min_batch_time = sbi->s_min_batch_time;
4323 journal->j_max_batch_time = sbi->s_max_batch_time;
4324
4325 write_lock(&journal->j_state_lock);
4326 if (test_opt(sb, BARRIER))
4327 journal->j_flags |= JBD2_BARRIER;
4328 else
4329 journal->j_flags &= ~JBD2_BARRIER;
4330 if (test_opt(sb, DATA_ERR_ABORT))
4331 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
4332 else
4333 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
4334 write_unlock(&journal->j_state_lock);
4335 }
4336
4337 static journal_t *ext4_get_journal(struct super_block *sb,
4338 unsigned int journal_inum)
4339 {
4340 struct inode *journal_inode;
4341 journal_t *journal;
4342
4343 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
4344
4345 /* First, test for the existence of a valid inode on disk. Bad
4346 * things happen if we iget() an unused inode, as the subsequent
4347 * iput() will try to delete it. */
4348
4349 journal_inode = ext4_iget(sb, journal_inum);
4350 if (IS_ERR(journal_inode)) {
4351 ext4_msg(sb, KERN_ERR, "no journal found");
4352 return NULL;
4353 }
4354 if (!journal_inode->i_nlink) {
4355 make_bad_inode(journal_inode);
4356 iput(journal_inode);
4357 ext4_msg(sb, KERN_ERR, "journal inode is deleted");
4358 return NULL;
4359 }
4360
4361 jbd_debug(2, "Journal inode found at %p: %lld bytes\n",
4362 journal_inode, journal_inode->i_size);
4363 if (!S_ISREG(journal_inode->i_mode)) {
4364 ext4_msg(sb, KERN_ERR, "invalid journal inode");
4365 iput(journal_inode);
4366 return NULL;
4367 }
4368
4369 journal = jbd2_journal_init_inode(journal_inode);
4370 if (!journal) {
4371 ext4_msg(sb, KERN_ERR, "Could not load journal inode");
4372 iput(journal_inode);
4373 return NULL;
4374 }
4375 journal->j_private = sb;
4376 ext4_init_journal_params(sb, journal);
4377 return journal;
4378 }
4379
4380 static journal_t *ext4_get_dev_journal(struct super_block *sb,
4381 dev_t j_dev)
4382 {
4383 struct buffer_head *bh;
4384 journal_t *journal;
4385 ext4_fsblk_t start;
4386 ext4_fsblk_t len;
4387 int hblock, blocksize;
4388 ext4_fsblk_t sb_block;
4389 unsigned long offset;
4390 struct ext4_super_block *es;
4391 struct block_device *bdev;
4392
4393 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
4394
4395 bdev = ext4_blkdev_get(j_dev, sb);
4396 if (bdev == NULL)
4397 return NULL;
4398
4399 blocksize = sb->s_blocksize;
4400 hblock = bdev_logical_block_size(bdev);
4401 if (blocksize < hblock) {
4402 ext4_msg(sb, KERN_ERR,
4403 "blocksize too small for journal device");
4404 goto out_bdev;
4405 }
4406
4407 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
4408 offset = EXT4_MIN_BLOCK_SIZE % blocksize;
4409 set_blocksize(bdev, blocksize);
4410 if (!(bh = __bread(bdev, sb_block, blocksize))) {
4411 ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
4412 "external journal");
4413 goto out_bdev;
4414 }
4415
4416 es = (struct ext4_super_block *) (bh->b_data + offset);
4417 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
4418 !(le32_to_cpu(es->s_feature_incompat) &
4419 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
4420 ext4_msg(sb, KERN_ERR, "external journal has "
4421 "bad superblock");
4422 brelse(bh);
4423 goto out_bdev;
4424 }
4425
4426 if ((le32_to_cpu(es->s_feature_ro_compat) &
4427 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
4428 es->s_checksum != ext4_superblock_csum(sb, es)) {
4429 ext4_msg(sb, KERN_ERR, "external journal has "
4430 "corrupt superblock");
4431 brelse(bh);
4432 goto out_bdev;
4433 }
4434
4435 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
4436 ext4_msg(sb, KERN_ERR, "journal UUID does not match");
4437 brelse(bh);
4438 goto out_bdev;
4439 }
4440
4441 len = ext4_blocks_count(es);
4442 start = sb_block + 1;
4443 brelse(bh); /* we're done with the superblock */
4444
4445 journal = jbd2_journal_init_dev(bdev, sb->s_bdev,
4446 start, len, blocksize);
4447 if (!journal) {
4448 ext4_msg(sb, KERN_ERR, "failed to create device journal");
4449 goto out_bdev;
4450 }
4451 journal->j_private = sb;
4452 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &journal->j_sb_buffer);
4453 wait_on_buffer(journal->j_sb_buffer);
4454 if (!buffer_uptodate(journal->j_sb_buffer)) {
4455 ext4_msg(sb, KERN_ERR, "I/O error on journal device");
4456 goto out_journal;
4457 }
4458 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
4459 ext4_msg(sb, KERN_ERR, "External journal has more than one "
4460 "user (unsupported) - %d",
4461 be32_to_cpu(journal->j_superblock->s_nr_users));
4462 goto out_journal;
4463 }
4464 EXT4_SB(sb)->journal_bdev = bdev;
4465 ext4_init_journal_params(sb, journal);
4466 return journal;
4467
4468 out_journal:
4469 jbd2_journal_destroy(journal);
4470 out_bdev:
4471 ext4_blkdev_put(bdev);
4472 return NULL;
4473 }
4474
4475 static int ext4_load_journal(struct super_block *sb,
4476 struct ext4_super_block *es,
4477 unsigned long journal_devnum)
4478 {
4479 journal_t *journal;
4480 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
4481 dev_t journal_dev;
4482 int err = 0;
4483 int really_read_only;
4484
4485 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
4486
4487 if (journal_devnum &&
4488 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4489 ext4_msg(sb, KERN_INFO, "external journal device major/minor "
4490 "numbers have changed");
4491 journal_dev = new_decode_dev(journal_devnum);
4492 } else
4493 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
4494
4495 really_read_only = bdev_read_only(sb->s_bdev);
4496
4497 /*
4498 * Are we loading a blank journal or performing recovery after a
4499 * crash? For recovery, we need to check in advance whether we
4500 * can get read-write access to the device.
4501 */
4502 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) {
4503 if (sb->s_flags & MS_RDONLY) {
4504 ext4_msg(sb, KERN_INFO, "INFO: recovery "
4505 "required on readonly filesystem");
4506 if (really_read_only) {
4507 ext4_msg(sb, KERN_ERR, "write access "
4508 "unavailable, cannot proceed");
4509 return -EROFS;
4510 }
4511 ext4_msg(sb, KERN_INFO, "write access will "
4512 "be enabled during recovery");
4513 }
4514 }
4515
4516 if (journal_inum && journal_dev) {
4517 ext4_msg(sb, KERN_ERR, "filesystem has both journal "
4518 "and inode journals!");
4519 return -EINVAL;
4520 }
4521
4522 if (journal_inum) {
4523 if (!(journal = ext4_get_journal(sb, journal_inum)))
4524 return -EINVAL;
4525 } else {
4526 if (!(journal = ext4_get_dev_journal(sb, journal_dev)))
4527 return -EINVAL;
4528 }
4529
4530 if (!(journal->j_flags & JBD2_BARRIER))
4531 ext4_msg(sb, KERN_INFO, "barriers disabled");
4532
4533 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER))
4534 err = jbd2_journal_wipe(journal, !really_read_only);
4535 if (!err) {
4536 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
4537 if (save)
4538 memcpy(save, ((char *) es) +
4539 EXT4_S_ERR_START, EXT4_S_ERR_LEN);
4540 err = jbd2_journal_load(journal);
4541 if (save)
4542 memcpy(((char *) es) + EXT4_S_ERR_START,
4543 save, EXT4_S_ERR_LEN);
4544 kfree(save);
4545 }
4546
4547 if (err) {
4548 ext4_msg(sb, KERN_ERR, "error loading journal");
4549 jbd2_journal_destroy(journal);
4550 return err;
4551 }
4552
4553 EXT4_SB(sb)->s_journal = journal;
4554 ext4_clear_journal_err(sb, es);
4555
4556 if (!really_read_only && journal_devnum &&
4557 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4558 es->s_journal_dev = cpu_to_le32(journal_devnum);
4559
4560 /* Make sure we flush the recovery flag to disk. */
4561 ext4_commit_super(sb, 1);
4562 }
4563
4564 return 0;
4565 }
4566
4567 static int ext4_commit_super(struct super_block *sb, int sync)
4568 {
4569 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
4570 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
4571 int error = 0;
4572
4573 if (!sbh || block_device_ejected(sb))
4574 return error;
4575 if (buffer_write_io_error(sbh)) {
4576 /*
4577 * Oh, dear. A previous attempt to write the
4578 * superblock failed. This could happen because the
4579 * USB device was yanked out. Or it could happen to
4580 * be a transient write error and maybe the block will
4581 * be remapped. Nothing we can do but to retry the
4582 * write and hope for the best.
4583 */
4584 ext4_msg(sb, KERN_ERR, "previous I/O error to "
4585 "superblock detected");
4586 clear_buffer_write_io_error(sbh);
4587 set_buffer_uptodate(sbh);
4588 }
4589 /*
4590 * If the file system is mounted read-only, don't update the
4591 * superblock write time. This avoids updating the superblock
4592 * write time when we are mounting the root file system
4593 * read/only but we need to replay the journal; at that point,
4594 * for people who are east of GMT and who make their clock
4595 * tick in localtime for Windows bug-for-bug compatibility,
4596 * the clock is set in the future, and this will cause e2fsck
4597 * to complain and force a full file system check.
4598 */
4599 if (!(sb->s_flags & MS_RDONLY))
4600 es->s_wtime = cpu_to_le32(get_seconds());
4601 if (sb->s_bdev->bd_part)
4602 es->s_kbytes_written =
4603 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written +
4604 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
4605 EXT4_SB(sb)->s_sectors_written_start) >> 1));
4606 else
4607 es->s_kbytes_written =
4608 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written);
4609 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeclusters_counter))
4610 ext4_free_blocks_count_set(es,
4611 EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive(
4612 &EXT4_SB(sb)->s_freeclusters_counter)));
4613 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeinodes_counter))
4614 es->s_free_inodes_count =
4615 cpu_to_le32(percpu_counter_sum_positive(
4616 &EXT4_SB(sb)->s_freeinodes_counter));
4617 BUFFER_TRACE(sbh, "marking dirty");
4618 ext4_superblock_csum_set(sb);
4619 mark_buffer_dirty(sbh);
4620 if (sync) {
4621 error = sync_dirty_buffer(sbh);
4622 if (error)
4623 return error;
4624
4625 error = buffer_write_io_error(sbh);
4626 if (error) {
4627 ext4_msg(sb, KERN_ERR, "I/O error while writing "
4628 "superblock");
4629 clear_buffer_write_io_error(sbh);
4630 set_buffer_uptodate(sbh);
4631 }
4632 }
4633 return error;
4634 }
4635
4636 /*
4637 * Have we just finished recovery? If so, and if we are mounting (or
4638 * remounting) the filesystem readonly, then we will end up with a
4639 * consistent fs on disk. Record that fact.
4640 */
4641 static void ext4_mark_recovery_complete(struct super_block *sb,
4642 struct ext4_super_block *es)
4643 {
4644 journal_t *journal = EXT4_SB(sb)->s_journal;
4645
4646 if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) {
4647 BUG_ON(journal != NULL);
4648 return;
4649 }
4650 jbd2_journal_lock_updates(journal);
4651 if (jbd2_journal_flush(journal) < 0)
4652 goto out;
4653
4654 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER) &&
4655 sb->s_flags & MS_RDONLY) {
4656 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4657 ext4_commit_super(sb, 1);
4658 }
4659
4660 out:
4661 jbd2_journal_unlock_updates(journal);
4662 }
4663
4664 /*
4665 * If we are mounting (or read-write remounting) a filesystem whose journal
4666 * has recorded an error from a previous lifetime, move that error to the
4667 * main filesystem now.
4668 */
4669 static void ext4_clear_journal_err(struct super_block *sb,
4670 struct ext4_super_block *es)
4671 {
4672 journal_t *journal;
4673 int j_errno;
4674 const char *errstr;
4675
4676 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
4677
4678 journal = EXT4_SB(sb)->s_journal;
4679
4680 /*
4681 * Now check for any error status which may have been recorded in the
4682 * journal by a prior ext4_error() or ext4_abort()
4683 */
4684
4685 j_errno = jbd2_journal_errno(journal);
4686 if (j_errno) {
4687 char nbuf[16];
4688
4689 errstr = ext4_decode_error(sb, j_errno, nbuf);
4690 ext4_warning(sb, "Filesystem error recorded "
4691 "from previous mount: %s", errstr);
4692 ext4_warning(sb, "Marking fs in need of filesystem check.");
4693
4694 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
4695 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
4696 ext4_commit_super(sb, 1);
4697
4698 jbd2_journal_clear_err(journal);
4699 jbd2_journal_update_sb_errno(journal);
4700 }
4701 }
4702
4703 /*
4704 * Force the running and committing transactions to commit,
4705 * and wait on the commit.
4706 */
4707 int ext4_force_commit(struct super_block *sb)
4708 {
4709 journal_t *journal;
4710
4711 if (sb->s_flags & MS_RDONLY)
4712 return 0;
4713
4714 journal = EXT4_SB(sb)->s_journal;
4715 return ext4_journal_force_commit(journal);
4716 }
4717
4718 static int ext4_sync_fs(struct super_block *sb, int wait)
4719 {
4720 int ret = 0;
4721 tid_t target;
4722 bool needs_barrier = false;
4723 struct ext4_sb_info *sbi = EXT4_SB(sb);
4724
4725 trace_ext4_sync_fs(sb, wait);
4726 flush_workqueue(sbi->rsv_conversion_wq);
4727 /*
4728 * Writeback quota in non-journalled quota case - journalled quota has
4729 * no dirty dquots
4730 */
4731 dquot_writeback_dquots(sb, -1);
4732 /*
4733 * Data writeback is possible w/o journal transaction, so barrier must
4734 * being sent at the end of the function. But we can skip it if
4735 * transaction_commit will do it for us.
4736 */
4737 if (sbi->s_journal) {
4738 target = jbd2_get_latest_transaction(sbi->s_journal);
4739 if (wait && sbi->s_journal->j_flags & JBD2_BARRIER &&
4740 !jbd2_trans_will_send_data_barrier(sbi->s_journal, target))
4741 needs_barrier = true;
4742
4743 if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
4744 if (wait)
4745 ret = jbd2_log_wait_commit(sbi->s_journal,
4746 target);
4747 }
4748 } else if (wait && test_opt(sb, BARRIER))
4749 needs_barrier = true;
4750 if (needs_barrier) {
4751 int err;
4752 err = blkdev_issue_flush(sb->s_bdev, GFP_KERNEL, NULL);
4753 if (!ret)
4754 ret = err;
4755 }
4756
4757 return ret;
4758 }
4759
4760 /*
4761 * LVM calls this function before a (read-only) snapshot is created. This
4762 * gives us a chance to flush the journal completely and mark the fs clean.
4763 *
4764 * Note that only this function cannot bring a filesystem to be in a clean
4765 * state independently. It relies on upper layer to stop all data & metadata
4766 * modifications.
4767 */
4768 static int ext4_freeze(struct super_block *sb)
4769 {
4770 int error = 0;
4771 journal_t *journal;
4772
4773 if (sb->s_flags & MS_RDONLY)
4774 return 0;
4775
4776 journal = EXT4_SB(sb)->s_journal;
4777
4778 if (journal) {
4779 /* Now we set up the journal barrier. */
4780 jbd2_journal_lock_updates(journal);
4781
4782 /*
4783 * Don't clear the needs_recovery flag if we failed to
4784 * flush the journal.
4785 */
4786 error = jbd2_journal_flush(journal);
4787 if (error < 0)
4788 goto out;
4789 }
4790
4791 /* Journal blocked and flushed, clear needs_recovery flag. */
4792 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4793 error = ext4_commit_super(sb, 1);
4794 out:
4795 if (journal)
4796 /* we rely on upper layer to stop further updates */
4797 jbd2_journal_unlock_updates(journal);
4798 return error;
4799 }
4800
4801 /*
4802 * Called by LVM after the snapshot is done. We need to reset the RECOVER
4803 * flag here, even though the filesystem is not technically dirty yet.
4804 */
4805 static int ext4_unfreeze(struct super_block *sb)
4806 {
4807 if (sb->s_flags & MS_RDONLY)
4808 return 0;
4809
4810 /* Reset the needs_recovery flag before the fs is unlocked. */
4811 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4812 ext4_commit_super(sb, 1);
4813 return 0;
4814 }
4815
4816 /*
4817 * Structure to save mount options for ext4_remount's benefit
4818 */
4819 struct ext4_mount_options {
4820 unsigned long s_mount_opt;
4821 unsigned long s_mount_opt2;
4822 kuid_t s_resuid;
4823 kgid_t s_resgid;
4824 unsigned long s_commit_interval;
4825 u32 s_min_batch_time, s_max_batch_time;
4826 #ifdef CONFIG_QUOTA
4827 int s_jquota_fmt;
4828 char *s_qf_names[EXT4_MAXQUOTAS];
4829 #endif
4830 };
4831
4832 static int ext4_remount(struct super_block *sb, int *flags, char *data)
4833 {
4834 struct ext4_super_block *es;
4835 struct ext4_sb_info *sbi = EXT4_SB(sb);
4836 unsigned long old_sb_flags;
4837 struct ext4_mount_options old_opts;
4838 int enable_quota = 0;
4839 ext4_group_t g;
4840 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
4841 int err = 0;
4842 #ifdef CONFIG_QUOTA
4843 int i, j;
4844 #endif
4845 char *orig_data = kstrdup(data, GFP_KERNEL);
4846
4847 /* Store the original options */
4848 old_sb_flags = sb->s_flags;
4849 old_opts.s_mount_opt = sbi->s_mount_opt;
4850 old_opts.s_mount_opt2 = sbi->s_mount_opt2;
4851 old_opts.s_resuid = sbi->s_resuid;
4852 old_opts.s_resgid = sbi->s_resgid;
4853 old_opts.s_commit_interval = sbi->s_commit_interval;
4854 old_opts.s_min_batch_time = sbi->s_min_batch_time;
4855 old_opts.s_max_batch_time = sbi->s_max_batch_time;
4856 #ifdef CONFIG_QUOTA
4857 old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
4858 for (i = 0; i < EXT4_MAXQUOTAS; i++)
4859 if (sbi->s_qf_names[i]) {
4860 old_opts.s_qf_names[i] = kstrdup(sbi->s_qf_names[i],
4861 GFP_KERNEL);
4862 if (!old_opts.s_qf_names[i]) {
4863 for (j = 0; j < i; j++)
4864 kfree(old_opts.s_qf_names[j]);
4865 kfree(orig_data);
4866 return -ENOMEM;
4867 }
4868 } else
4869 old_opts.s_qf_names[i] = NULL;
4870 #endif
4871 if (sbi->s_journal && sbi->s_journal->j_task->io_context)
4872 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio;
4873
4874 if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) {
4875 err = -EINVAL;
4876 goto restore_opts;
4877 }
4878
4879 if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^
4880 test_opt(sb, JOURNAL_CHECKSUM)) {
4881 ext4_msg(sb, KERN_ERR, "changing journal_checksum "
4882 "during remount not supported; ignoring");
4883 sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM;
4884 }
4885
4886 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
4887 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
4888 ext4_msg(sb, KERN_ERR, "can't mount with "
4889 "both data=journal and delalloc");
4890 err = -EINVAL;
4891 goto restore_opts;
4892 }
4893 if (test_opt(sb, DIOREAD_NOLOCK)) {
4894 ext4_msg(sb, KERN_ERR, "can't mount with "
4895 "both data=journal and dioread_nolock");
4896 err = -EINVAL;
4897 goto restore_opts;
4898 }
4899 if (test_opt(sb, DAX)) {
4900 ext4_msg(sb, KERN_ERR, "can't mount with "
4901 "both data=journal and dax");
4902 err = -EINVAL;
4903 goto restore_opts;
4904 }
4905 }
4906
4907 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_DAX) {
4908 ext4_msg(sb, KERN_WARNING, "warning: refusing change of "
4909 "dax flag with busy inodes while remounting");
4910 sbi->s_mount_opt ^= EXT4_MOUNT_DAX;
4911 }
4912
4913 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED)
4914 ext4_abort(sb, "Abort forced by user");
4915
4916 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
4917 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
4918
4919 es = sbi->s_es;
4920
4921 if (sbi->s_journal) {
4922 ext4_init_journal_params(sb, sbi->s_journal);
4923 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
4924 }
4925
4926 if ((*flags & MS_RDONLY) != (sb->s_flags & MS_RDONLY)) {
4927 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) {
4928 err = -EROFS;
4929 goto restore_opts;
4930 }
4931
4932 if (*flags & MS_RDONLY) {
4933 err = sync_filesystem(sb);
4934 if (err < 0)
4935 goto restore_opts;
4936 err = dquot_suspend(sb, -1);
4937 if (err < 0)
4938 goto restore_opts;
4939
4940 /*
4941 * First of all, the unconditional stuff we have to do
4942 * to disable replay of the journal when we next remount
4943 */
4944 sb->s_flags |= MS_RDONLY;
4945
4946 /*
4947 * OK, test if we are remounting a valid rw partition
4948 * readonly, and if so set the rdonly flag and then
4949 * mark the partition as valid again.
4950 */
4951 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
4952 (sbi->s_mount_state & EXT4_VALID_FS))
4953 es->s_state = cpu_to_le16(sbi->s_mount_state);
4954
4955 if (sbi->s_journal)
4956 ext4_mark_recovery_complete(sb, es);
4957 } else {
4958 /* Make sure we can mount this feature set readwrite */
4959 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4960 EXT4_FEATURE_RO_COMPAT_READONLY) ||
4961 !ext4_feature_set_ok(sb, 0)) {
4962 err = -EROFS;
4963 goto restore_opts;
4964 }
4965 /*
4966 * Make sure the group descriptor checksums
4967 * are sane. If they aren't, refuse to remount r/w.
4968 */
4969 for (g = 0; g < sbi->s_groups_count; g++) {
4970 struct ext4_group_desc *gdp =
4971 ext4_get_group_desc(sb, g, NULL);
4972
4973 if (!ext4_group_desc_csum_verify(sb, g, gdp)) {
4974 ext4_msg(sb, KERN_ERR,
4975 "ext4_remount: Checksum for group %u failed (%u!=%u)",
4976 g, le16_to_cpu(ext4_group_desc_csum(sbi, g, gdp)),
4977 le16_to_cpu(gdp->bg_checksum));
4978 err = -EINVAL;
4979 goto restore_opts;
4980 }
4981 }
4982
4983 /*
4984 * If we have an unprocessed orphan list hanging
4985 * around from a previously readonly bdev mount,
4986 * require a full umount/remount for now.
4987 */
4988 if (es->s_last_orphan) {
4989 ext4_msg(sb, KERN_WARNING, "Couldn't "
4990 "remount RDWR because of unprocessed "
4991 "orphan inode list. Please "
4992 "umount/remount instead");
4993 err = -EINVAL;
4994 goto restore_opts;
4995 }
4996
4997 /*
4998 * Mounting a RDONLY partition read-write, so reread
4999 * and store the current valid flag. (It may have
5000 * been changed by e2fsck since we originally mounted
5001 * the partition.)
5002 */
5003 if (sbi->s_journal)
5004 ext4_clear_journal_err(sb, es);
5005 sbi->s_mount_state = le16_to_cpu(es->s_state);
5006 if (!ext4_setup_super(sb, es, 0))
5007 sb->s_flags &= ~MS_RDONLY;
5008 if (EXT4_HAS_INCOMPAT_FEATURE(sb,
5009 EXT4_FEATURE_INCOMPAT_MMP))
5010 if (ext4_multi_mount_protect(sb,
5011 le64_to_cpu(es->s_mmp_block))) {
5012 err = -EROFS;
5013 goto restore_opts;
5014 }
5015 enable_quota = 1;
5016 }
5017 }
5018
5019 /*
5020 * Reinitialize lazy itable initialization thread based on
5021 * current settings
5022 */
5023 if ((sb->s_flags & MS_RDONLY) || !test_opt(sb, INIT_INODE_TABLE))
5024 ext4_unregister_li_request(sb);
5025 else {
5026 ext4_group_t first_not_zeroed;
5027 first_not_zeroed = ext4_has_uninit_itable(sb);
5028 ext4_register_li_request(sb, first_not_zeroed);
5029 }
5030
5031 ext4_setup_system_zone(sb);
5032 if (sbi->s_journal == NULL && !(old_sb_flags & MS_RDONLY))
5033 ext4_commit_super(sb, 1);
5034
5035 #ifdef CONFIG_QUOTA
5036 /* Release old quota file names */
5037 for (i = 0; i < EXT4_MAXQUOTAS; i++)
5038 kfree(old_opts.s_qf_names[i]);
5039 if (enable_quota) {
5040 if (sb_any_quota_suspended(sb))
5041 dquot_resume(sb, -1);
5042 else if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
5043 EXT4_FEATURE_RO_COMPAT_QUOTA)) {
5044 err = ext4_enable_quotas(sb);
5045 if (err)
5046 goto restore_opts;
5047 }
5048 }
5049 #endif
5050
5051 *flags = (*flags & ~MS_LAZYTIME) | (sb->s_flags & MS_LAZYTIME);
5052 ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data);
5053 kfree(orig_data);
5054 return 0;
5055
5056 restore_opts:
5057 sb->s_flags = old_sb_flags;
5058 sbi->s_mount_opt = old_opts.s_mount_opt;
5059 sbi->s_mount_opt2 = old_opts.s_mount_opt2;
5060 sbi->s_resuid = old_opts.s_resuid;
5061 sbi->s_resgid = old_opts.s_resgid;
5062 sbi->s_commit_interval = old_opts.s_commit_interval;
5063 sbi->s_min_batch_time = old_opts.s_min_batch_time;
5064 sbi->s_max_batch_time = old_opts.s_max_batch_time;
5065 #ifdef CONFIG_QUOTA
5066 sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
5067 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
5068 kfree(sbi->s_qf_names[i]);
5069 sbi->s_qf_names[i] = old_opts.s_qf_names[i];
5070 }
5071 #endif
5072 kfree(orig_data);
5073 return err;
5074 }
5075
5076 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
5077 {
5078 struct super_block *sb = dentry->d_sb;
5079 struct ext4_sb_info *sbi = EXT4_SB(sb);
5080 struct ext4_super_block *es = sbi->s_es;
5081 ext4_fsblk_t overhead = 0, resv_blocks;
5082 u64 fsid;
5083 s64 bfree;
5084 resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters));
5085
5086 if (!test_opt(sb, MINIX_DF))
5087 overhead = sbi->s_overhead;
5088
5089 buf->f_type = EXT4_SUPER_MAGIC;
5090 buf->f_bsize = sb->s_blocksize;
5091 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead);
5092 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
5093 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
5094 /* prevent underflow in case that few free space is available */
5095 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0));
5096 buf->f_bavail = buf->f_bfree -
5097 (ext4_r_blocks_count(es) + resv_blocks);
5098 if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks))
5099 buf->f_bavail = 0;
5100 buf->f_files = le32_to_cpu(es->s_inodes_count);
5101 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
5102 buf->f_namelen = EXT4_NAME_LEN;
5103 fsid = le64_to_cpup((void *)es->s_uuid) ^
5104 le64_to_cpup((void *)es->s_uuid + sizeof(u64));
5105 buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL;
5106 buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL;
5107
5108 return 0;
5109 }
5110
5111 /* Helper function for writing quotas on sync - we need to start transaction
5112 * before quota file is locked for write. Otherwise the are possible deadlocks:
5113 * Process 1 Process 2
5114 * ext4_create() quota_sync()
5115 * jbd2_journal_start() write_dquot()
5116 * dquot_initialize() down(dqio_mutex)
5117 * down(dqio_mutex) jbd2_journal_start()
5118 *
5119 */
5120
5121 #ifdef CONFIG_QUOTA
5122
5123 static inline struct inode *dquot_to_inode(struct dquot *dquot)
5124 {
5125 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type];
5126 }
5127
5128 static int ext4_write_dquot(struct dquot *dquot)
5129 {
5130 int ret, err;
5131 handle_t *handle;
5132 struct inode *inode;
5133
5134 inode = dquot_to_inode(dquot);
5135 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5136 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
5137 if (IS_ERR(handle))
5138 return PTR_ERR(handle);
5139 ret = dquot_commit(dquot);
5140 err = ext4_journal_stop(handle);
5141 if (!ret)
5142 ret = err;
5143 return ret;
5144 }
5145
5146 static int ext4_acquire_dquot(struct dquot *dquot)
5147 {
5148 int ret, err;
5149 handle_t *handle;
5150
5151 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
5152 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
5153 if (IS_ERR(handle))
5154 return PTR_ERR(handle);
5155 ret = dquot_acquire(dquot);
5156 err = ext4_journal_stop(handle);
5157 if (!ret)
5158 ret = err;
5159 return ret;
5160 }
5161
5162 static int ext4_release_dquot(struct dquot *dquot)
5163 {
5164 int ret, err;
5165 handle_t *handle;
5166
5167 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
5168 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
5169 if (IS_ERR(handle)) {
5170 /* Release dquot anyway to avoid endless cycle in dqput() */
5171 dquot_release(dquot);
5172 return PTR_ERR(handle);
5173 }
5174 ret = dquot_release(dquot);
5175 err = ext4_journal_stop(handle);
5176 if (!ret)
5177 ret = err;
5178 return ret;
5179 }
5180
5181 static int ext4_mark_dquot_dirty(struct dquot *dquot)
5182 {
5183 struct super_block *sb = dquot->dq_sb;
5184 struct ext4_sb_info *sbi = EXT4_SB(sb);
5185
5186 /* Are we journaling quotas? */
5187 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) ||
5188 sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
5189 dquot_mark_dquot_dirty(dquot);
5190 return ext4_write_dquot(dquot);
5191 } else {
5192 return dquot_mark_dquot_dirty(dquot);
5193 }
5194 }
5195
5196 static int ext4_write_info(struct super_block *sb, int type)
5197 {
5198 int ret, err;
5199 handle_t *handle;
5200
5201 /* Data block + inode block */
5202 handle = ext4_journal_start(sb->s_root->d_inode, EXT4_HT_QUOTA, 2);
5203 if (IS_ERR(handle))
5204 return PTR_ERR(handle);
5205 ret = dquot_commit_info(sb, type);
5206 err = ext4_journal_stop(handle);
5207 if (!ret)
5208 ret = err;
5209 return ret;
5210 }
5211
5212 /*
5213 * Turn on quotas during mount time - we need to find
5214 * the quota file and such...
5215 */
5216 static int ext4_quota_on_mount(struct super_block *sb, int type)
5217 {
5218 return dquot_quota_on_mount(sb, EXT4_SB(sb)->s_qf_names[type],
5219 EXT4_SB(sb)->s_jquota_fmt, type);
5220 }
5221
5222 /*
5223 * Standard function to be called on quota_on
5224 */
5225 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
5226 struct path *path)
5227 {
5228 int err;
5229
5230 if (!test_opt(sb, QUOTA))
5231 return -EINVAL;
5232
5233 /* Quotafile not on the same filesystem? */
5234 if (path->dentry->d_sb != sb)
5235 return -EXDEV;
5236 /* Journaling quota? */
5237 if (EXT4_SB(sb)->s_qf_names[type]) {
5238 /* Quotafile not in fs root? */
5239 if (path->dentry->d_parent != sb->s_root)
5240 ext4_msg(sb, KERN_WARNING,
5241 "Quota file not on filesystem root. "
5242 "Journaled quota will not work");
5243 }
5244
5245 /*
5246 * When we journal data on quota file, we have to flush journal to see
5247 * all updates to the file when we bypass pagecache...
5248 */
5249 if (EXT4_SB(sb)->s_journal &&
5250 ext4_should_journal_data(path->dentry->d_inode)) {
5251 /*
5252 * We don't need to lock updates but journal_flush() could
5253 * otherwise be livelocked...
5254 */
5255 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal);
5256 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal);
5257 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
5258 if (err)
5259 return err;
5260 }
5261
5262 return dquot_quota_on(sb, type, format_id, path);
5263 }
5264
5265 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
5266 unsigned int flags)
5267 {
5268 int err;
5269 struct inode *qf_inode;
5270 unsigned long qf_inums[EXT4_MAXQUOTAS] = {
5271 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
5272 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum)
5273 };
5274
5275 BUG_ON(!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA));
5276
5277 if (!qf_inums[type])
5278 return -EPERM;
5279
5280 qf_inode = ext4_iget(sb, qf_inums[type]);
5281 if (IS_ERR(qf_inode)) {
5282 ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]);
5283 return PTR_ERR(qf_inode);
5284 }
5285
5286 /* Don't account quota for quota files to avoid recursion */
5287 qf_inode->i_flags |= S_NOQUOTA;
5288 err = dquot_enable(qf_inode, type, format_id, flags);
5289 iput(qf_inode);
5290
5291 return err;
5292 }
5293
5294 /* Enable usage tracking for all quota types. */
5295 static int ext4_enable_quotas(struct super_block *sb)
5296 {
5297 int type, err = 0;
5298 unsigned long qf_inums[EXT4_MAXQUOTAS] = {
5299 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
5300 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum)
5301 };
5302
5303 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE;
5304 for (type = 0; type < EXT4_MAXQUOTAS; type++) {
5305 if (qf_inums[type]) {
5306 err = ext4_quota_enable(sb, type, QFMT_VFS_V1,
5307 DQUOT_USAGE_ENABLED);
5308 if (err) {
5309 ext4_warning(sb,
5310 "Failed to enable quota tracking "
5311 "(type=%d, err=%d). Please run "
5312 "e2fsck to fix.", type, err);
5313 return err;
5314 }
5315 }
5316 }
5317 return 0;
5318 }
5319
5320 static int ext4_quota_off(struct super_block *sb, int type)
5321 {
5322 struct inode *inode = sb_dqopt(sb)->files[type];
5323 handle_t *handle;
5324
5325 /* Force all delayed allocation blocks to be allocated.
5326 * Caller already holds s_umount sem */
5327 if (test_opt(sb, DELALLOC))
5328 sync_filesystem(sb);
5329
5330 if (!inode)
5331 goto out;
5332
5333 /* Update modification times of quota files when userspace can
5334 * start looking at them */
5335 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
5336 if (IS_ERR(handle))
5337 goto out;
5338 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
5339 ext4_mark_inode_dirty(handle, inode);
5340 ext4_journal_stop(handle);
5341
5342 out:
5343 return dquot_quota_off(sb, type);
5344 }
5345
5346 /* Read data from quotafile - avoid pagecache and such because we cannot afford
5347 * acquiring the locks... As quota files are never truncated and quota code
5348 * itself serializes the operations (and no one else should touch the files)
5349 * we don't have to be afraid of races */
5350 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
5351 size_t len, loff_t off)
5352 {
5353 struct inode *inode = sb_dqopt(sb)->files[type];
5354 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5355 int offset = off & (sb->s_blocksize - 1);
5356 int tocopy;
5357 size_t toread;
5358 struct buffer_head *bh;
5359 loff_t i_size = i_size_read(inode);
5360
5361 if (off > i_size)
5362 return 0;
5363 if (off+len > i_size)
5364 len = i_size-off;
5365 toread = len;
5366 while (toread > 0) {
5367 tocopy = sb->s_blocksize - offset < toread ?
5368 sb->s_blocksize - offset : toread;
5369 bh = ext4_bread(NULL, inode, blk, 0);
5370 if (IS_ERR(bh))
5371 return PTR_ERR(bh);
5372 if (!bh) /* A hole? */
5373 memset(data, 0, tocopy);
5374 else
5375 memcpy(data, bh->b_data+offset, tocopy);
5376 brelse(bh);
5377 offset = 0;
5378 toread -= tocopy;
5379 data += tocopy;
5380 blk++;
5381 }
5382 return len;
5383 }
5384
5385 /* Write to quotafile (we know the transaction is already started and has
5386 * enough credits) */
5387 static ssize_t ext4_quota_write(struct super_block *sb, int type,
5388 const char *data, size_t len, loff_t off)
5389 {
5390 struct inode *inode = sb_dqopt(sb)->files[type];
5391 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5392 int err, offset = off & (sb->s_blocksize - 1);
5393 struct buffer_head *bh;
5394 handle_t *handle = journal_current_handle();
5395
5396 if (EXT4_SB(sb)->s_journal && !handle) {
5397 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5398 " cancelled because transaction is not started",
5399 (unsigned long long)off, (unsigned long long)len);
5400 return -EIO;
5401 }
5402 /*
5403 * Since we account only one data block in transaction credits,
5404 * then it is impossible to cross a block boundary.
5405 */
5406 if (sb->s_blocksize - offset < len) {
5407 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5408 " cancelled because not block aligned",
5409 (unsigned long long)off, (unsigned long long)len);
5410 return -EIO;
5411 }
5412
5413 bh = ext4_bread(handle, inode, blk, 1);
5414 if (IS_ERR(bh))
5415 return PTR_ERR(bh);
5416 if (!bh)
5417 goto out;
5418 BUFFER_TRACE(bh, "get write access");
5419 err = ext4_journal_get_write_access(handle, bh);
5420 if (err) {
5421 brelse(bh);
5422 return err;
5423 }
5424 lock_buffer(bh);
5425 memcpy(bh->b_data+offset, data, len);
5426 flush_dcache_page(bh->b_page);
5427 unlock_buffer(bh);
5428 err = ext4_handle_dirty_metadata(handle, NULL, bh);
5429 brelse(bh);
5430 out:
5431 if (inode->i_size < off + len) {
5432 i_size_write(inode, off + len);
5433 EXT4_I(inode)->i_disksize = inode->i_size;
5434 ext4_mark_inode_dirty(handle, inode);
5435 }
5436 return len;
5437 }
5438
5439 #endif
5440
5441 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
5442 const char *dev_name, void *data)
5443 {
5444 return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super);
5445 }
5446
5447 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
5448 static inline void register_as_ext2(void)
5449 {
5450 int err = register_filesystem(&ext2_fs_type);
5451 if (err)
5452 printk(KERN_WARNING
5453 "EXT4-fs: Unable to register as ext2 (%d)\n", err);
5454 }
5455
5456 static inline void unregister_as_ext2(void)
5457 {
5458 unregister_filesystem(&ext2_fs_type);
5459 }
5460
5461 static inline int ext2_feature_set_ok(struct super_block *sb)
5462 {
5463 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT2_FEATURE_INCOMPAT_SUPP))
5464 return 0;
5465 if (sb->s_flags & MS_RDONLY)
5466 return 1;
5467 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT2_FEATURE_RO_COMPAT_SUPP))
5468 return 0;
5469 return 1;
5470 }
5471 #else
5472 static inline void register_as_ext2(void) { }
5473 static inline void unregister_as_ext2(void) { }
5474 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
5475 #endif
5476
5477 #if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
5478 static inline void register_as_ext3(void)
5479 {
5480 int err = register_filesystem(&ext3_fs_type);
5481 if (err)
5482 printk(KERN_WARNING
5483 "EXT4-fs: Unable to register as ext3 (%d)\n", err);
5484 }
5485
5486 static inline void unregister_as_ext3(void)
5487 {
5488 unregister_filesystem(&ext3_fs_type);
5489 }
5490
5491 static inline int ext3_feature_set_ok(struct super_block *sb)
5492 {
5493 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT3_FEATURE_INCOMPAT_SUPP))
5494 return 0;
5495 if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL))
5496 return 0;
5497 if (sb->s_flags & MS_RDONLY)
5498 return 1;
5499 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT3_FEATURE_RO_COMPAT_SUPP))
5500 return 0;
5501 return 1;
5502 }
5503 #else
5504 static inline void register_as_ext3(void) { }
5505 static inline void unregister_as_ext3(void) { }
5506 static inline int ext3_feature_set_ok(struct super_block *sb) { return 0; }
5507 #endif
5508
5509 static struct file_system_type ext4_fs_type = {
5510 .owner = THIS_MODULE,
5511 .name = "ext4",
5512 .mount = ext4_mount,
5513 .kill_sb = kill_block_super,
5514 .fs_flags = FS_REQUIRES_DEV,
5515 };
5516 MODULE_ALIAS_FS("ext4");
5517
5518 static int __init ext4_init_feat_adverts(void)
5519 {
5520 struct ext4_features *ef;
5521 int ret = -ENOMEM;
5522
5523 ef = kzalloc(sizeof(struct ext4_features), GFP_KERNEL);
5524 if (!ef)
5525 goto out;
5526
5527 ef->f_kobj.kset = ext4_kset;
5528 init_completion(&ef->f_kobj_unregister);
5529 ret = kobject_init_and_add(&ef->f_kobj, &ext4_feat_ktype, NULL,
5530 "features");
5531 if (ret) {
5532 kfree(ef);
5533 goto out;
5534 }
5535
5536 ext4_feat = ef;
5537 ret = 0;
5538 out:
5539 return ret;
5540 }
5541
5542 static void ext4_exit_feat_adverts(void)
5543 {
5544 kobject_put(&ext4_feat->f_kobj);
5545 wait_for_completion(&ext4_feat->f_kobj_unregister);
5546 kfree(ext4_feat);
5547 }
5548
5549 /* Shared across all ext4 file systems */
5550 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ];
5551 struct mutex ext4__aio_mutex[EXT4_WQ_HASH_SZ];
5552
5553 static int __init ext4_init_fs(void)
5554 {
5555 int i, err;
5556
5557 ext4_li_info = NULL;
5558 mutex_init(&ext4_li_mtx);
5559
5560 /* Build-time check for flags consistency */
5561 ext4_check_flag_values();
5562
5563 for (i = 0; i < EXT4_WQ_HASH_SZ; i++) {
5564 mutex_init(&ext4__aio_mutex[i]);
5565 init_waitqueue_head(&ext4__ioend_wq[i]);
5566 }
5567
5568 err = ext4_init_es();
5569 if (err)
5570 return err;
5571
5572 err = ext4_init_pageio();
5573 if (err)
5574 goto out7;
5575
5576 err = ext4_init_system_zone();
5577 if (err)
5578 goto out6;
5579 ext4_kset = kset_create_and_add("ext4", NULL, fs_kobj);
5580 if (!ext4_kset) {
5581 err = -ENOMEM;
5582 goto out5;
5583 }
5584 ext4_proc_root = proc_mkdir("fs/ext4", NULL);
5585
5586 err = ext4_init_feat_adverts();
5587 if (err)
5588 goto out4;
5589
5590 err = ext4_init_mballoc();
5591 if (err)
5592 goto out2;
5593 else
5594 ext4_mballoc_ready = 1;
5595 err = init_inodecache();
5596 if (err)
5597 goto out1;
5598 register_as_ext3();
5599 register_as_ext2();
5600 err = register_filesystem(&ext4_fs_type);
5601 if (err)
5602 goto out;
5603
5604 return 0;
5605 out:
5606 unregister_as_ext2();
5607 unregister_as_ext3();
5608 destroy_inodecache();
5609 out1:
5610 ext4_mballoc_ready = 0;
5611 ext4_exit_mballoc();
5612 out2:
5613 ext4_exit_feat_adverts();
5614 out4:
5615 if (ext4_proc_root)
5616 remove_proc_entry("fs/ext4", NULL);
5617 kset_unregister(ext4_kset);
5618 out5:
5619 ext4_exit_system_zone();
5620 out6:
5621 ext4_exit_pageio();
5622 out7:
5623 ext4_exit_es();
5624
5625 return err;
5626 }
5627
5628 static void __exit ext4_exit_fs(void)
5629 {
5630 ext4_destroy_lazyinit_thread();
5631 unregister_as_ext2();
5632 unregister_as_ext3();
5633 unregister_filesystem(&ext4_fs_type);
5634 destroy_inodecache();
5635 ext4_exit_mballoc();
5636 ext4_exit_feat_adverts();
5637 remove_proc_entry("fs/ext4", NULL);
5638 kset_unregister(ext4_kset);
5639 ext4_exit_system_zone();
5640 ext4_exit_pageio();
5641 ext4_exit_es();
5642 }
5643
5644 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
5645 MODULE_DESCRIPTION("Fourth Extended Filesystem");
5646 MODULE_LICENSE("GPL");
5647 module_init(ext4_init_fs)
5648 module_exit(ext4_exit_fs)