]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/ext4/super.c
ext4: Fix fsync error handling after filesystem abort
[mirror_ubuntu-bionic-kernel.git] / fs / ext4 / super.c
1 /*
2 * linux/fs/ext4/super.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * Big-endian to little-endian byte-swapping/bitmaps by
16 * David S. Miller (davem@caip.rutgers.edu), 1995
17 */
18
19 #include <linux/module.h>
20 #include <linux/string.h>
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/vmalloc.h>
24 #include <linux/jbd2.h>
25 #include <linux/slab.h>
26 #include <linux/init.h>
27 #include <linux/blkdev.h>
28 #include <linux/parser.h>
29 #include <linux/buffer_head.h>
30 #include <linux/exportfs.h>
31 #include <linux/vfs.h>
32 #include <linux/random.h>
33 #include <linux/mount.h>
34 #include <linux/namei.h>
35 #include <linux/quotaops.h>
36 #include <linux/seq_file.h>
37 #include <linux/proc_fs.h>
38 #include <linux/ctype.h>
39 #include <linux/log2.h>
40 #include <linux/crc16.h>
41 #include <linux/cleancache.h>
42 #include <asm/uaccess.h>
43
44 #include <linux/kthread.h>
45 #include <linux/freezer.h>
46
47 #include "ext4.h"
48 #include "ext4_extents.h" /* Needed for trace points definition */
49 #include "ext4_jbd2.h"
50 #include "xattr.h"
51 #include "acl.h"
52 #include "mballoc.h"
53
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/ext4.h>
56
57 static struct proc_dir_entry *ext4_proc_root;
58 static struct kset *ext4_kset;
59 static struct ext4_lazy_init *ext4_li_info;
60 static struct mutex ext4_li_mtx;
61 static struct ext4_features *ext4_feat;
62
63 static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
64 unsigned long journal_devnum);
65 static int ext4_show_options(struct seq_file *seq, struct dentry *root);
66 static int ext4_commit_super(struct super_block *sb, int sync);
67 static void ext4_mark_recovery_complete(struct super_block *sb,
68 struct ext4_super_block *es);
69 static void ext4_clear_journal_err(struct super_block *sb,
70 struct ext4_super_block *es);
71 static int ext4_sync_fs(struct super_block *sb, int wait);
72 static int ext4_sync_fs_nojournal(struct super_block *sb, int wait);
73 static int ext4_remount(struct super_block *sb, int *flags, char *data);
74 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
75 static int ext4_unfreeze(struct super_block *sb);
76 static int ext4_freeze(struct super_block *sb);
77 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
78 const char *dev_name, void *data);
79 static inline int ext2_feature_set_ok(struct super_block *sb);
80 static inline int ext3_feature_set_ok(struct super_block *sb);
81 static int ext4_feature_set_ok(struct super_block *sb, int readonly);
82 static void ext4_destroy_lazyinit_thread(void);
83 static void ext4_unregister_li_request(struct super_block *sb);
84 static void ext4_clear_request_list(void);
85 static int ext4_reserve_clusters(struct ext4_sb_info *, ext4_fsblk_t);
86
87 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
88 static struct file_system_type ext2_fs_type = {
89 .owner = THIS_MODULE,
90 .name = "ext2",
91 .mount = ext4_mount,
92 .kill_sb = kill_block_super,
93 .fs_flags = FS_REQUIRES_DEV,
94 };
95 MODULE_ALIAS_FS("ext2");
96 MODULE_ALIAS("ext2");
97 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type)
98 #else
99 #define IS_EXT2_SB(sb) (0)
100 #endif
101
102
103 #if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
104 static struct file_system_type ext3_fs_type = {
105 .owner = THIS_MODULE,
106 .name = "ext3",
107 .mount = ext4_mount,
108 .kill_sb = kill_block_super,
109 .fs_flags = FS_REQUIRES_DEV,
110 };
111 MODULE_ALIAS_FS("ext3");
112 MODULE_ALIAS("ext3");
113 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type)
114 #else
115 #define IS_EXT3_SB(sb) (0)
116 #endif
117
118 static int ext4_verify_csum_type(struct super_block *sb,
119 struct ext4_super_block *es)
120 {
121 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
122 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
123 return 1;
124
125 return es->s_checksum_type == EXT4_CRC32C_CHKSUM;
126 }
127
128 static __le32 ext4_superblock_csum(struct super_block *sb,
129 struct ext4_super_block *es)
130 {
131 struct ext4_sb_info *sbi = EXT4_SB(sb);
132 int offset = offsetof(struct ext4_super_block, s_checksum);
133 __u32 csum;
134
135 csum = ext4_chksum(sbi, ~0, (char *)es, offset);
136
137 return cpu_to_le32(csum);
138 }
139
140 int ext4_superblock_csum_verify(struct super_block *sb,
141 struct ext4_super_block *es)
142 {
143 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
144 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
145 return 1;
146
147 return es->s_checksum == ext4_superblock_csum(sb, es);
148 }
149
150 void ext4_superblock_csum_set(struct super_block *sb)
151 {
152 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
153
154 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
155 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
156 return;
157
158 es->s_checksum = ext4_superblock_csum(sb, es);
159 }
160
161 void *ext4_kvmalloc(size_t size, gfp_t flags)
162 {
163 void *ret;
164
165 ret = kmalloc(size, flags);
166 if (!ret)
167 ret = __vmalloc(size, flags, PAGE_KERNEL);
168 return ret;
169 }
170
171 void *ext4_kvzalloc(size_t size, gfp_t flags)
172 {
173 void *ret;
174
175 ret = kzalloc(size, flags);
176 if (!ret)
177 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL);
178 return ret;
179 }
180
181 void ext4_kvfree(void *ptr)
182 {
183 if (is_vmalloc_addr(ptr))
184 vfree(ptr);
185 else
186 kfree(ptr);
187
188 }
189
190 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
191 struct ext4_group_desc *bg)
192 {
193 return le32_to_cpu(bg->bg_block_bitmap_lo) |
194 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
195 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
196 }
197
198 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
199 struct ext4_group_desc *bg)
200 {
201 return le32_to_cpu(bg->bg_inode_bitmap_lo) |
202 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
203 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
204 }
205
206 ext4_fsblk_t ext4_inode_table(struct super_block *sb,
207 struct ext4_group_desc *bg)
208 {
209 return le32_to_cpu(bg->bg_inode_table_lo) |
210 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
211 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
212 }
213
214 __u32 ext4_free_group_clusters(struct super_block *sb,
215 struct ext4_group_desc *bg)
216 {
217 return le16_to_cpu(bg->bg_free_blocks_count_lo) |
218 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
219 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
220 }
221
222 __u32 ext4_free_inodes_count(struct super_block *sb,
223 struct ext4_group_desc *bg)
224 {
225 return le16_to_cpu(bg->bg_free_inodes_count_lo) |
226 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
227 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
228 }
229
230 __u32 ext4_used_dirs_count(struct super_block *sb,
231 struct ext4_group_desc *bg)
232 {
233 return le16_to_cpu(bg->bg_used_dirs_count_lo) |
234 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
235 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
236 }
237
238 __u32 ext4_itable_unused_count(struct super_block *sb,
239 struct ext4_group_desc *bg)
240 {
241 return le16_to_cpu(bg->bg_itable_unused_lo) |
242 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
243 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
244 }
245
246 void ext4_block_bitmap_set(struct super_block *sb,
247 struct ext4_group_desc *bg, ext4_fsblk_t blk)
248 {
249 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
250 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
251 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
252 }
253
254 void ext4_inode_bitmap_set(struct super_block *sb,
255 struct ext4_group_desc *bg, ext4_fsblk_t blk)
256 {
257 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk);
258 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
259 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
260 }
261
262 void ext4_inode_table_set(struct super_block *sb,
263 struct ext4_group_desc *bg, ext4_fsblk_t blk)
264 {
265 bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
266 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
267 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
268 }
269
270 void ext4_free_group_clusters_set(struct super_block *sb,
271 struct ext4_group_desc *bg, __u32 count)
272 {
273 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
274 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
275 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
276 }
277
278 void ext4_free_inodes_set(struct super_block *sb,
279 struct ext4_group_desc *bg, __u32 count)
280 {
281 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
282 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
283 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
284 }
285
286 void ext4_used_dirs_set(struct super_block *sb,
287 struct ext4_group_desc *bg, __u32 count)
288 {
289 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
290 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
291 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
292 }
293
294 void ext4_itable_unused_set(struct super_block *sb,
295 struct ext4_group_desc *bg, __u32 count)
296 {
297 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
298 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
299 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
300 }
301
302
303 static void __save_error_info(struct super_block *sb, const char *func,
304 unsigned int line)
305 {
306 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
307
308 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
309 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
310 es->s_last_error_time = cpu_to_le32(get_seconds());
311 strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func));
312 es->s_last_error_line = cpu_to_le32(line);
313 if (!es->s_first_error_time) {
314 es->s_first_error_time = es->s_last_error_time;
315 strncpy(es->s_first_error_func, func,
316 sizeof(es->s_first_error_func));
317 es->s_first_error_line = cpu_to_le32(line);
318 es->s_first_error_ino = es->s_last_error_ino;
319 es->s_first_error_block = es->s_last_error_block;
320 }
321 /*
322 * Start the daily error reporting function if it hasn't been
323 * started already
324 */
325 if (!es->s_error_count)
326 mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ);
327 le32_add_cpu(&es->s_error_count, 1);
328 }
329
330 static void save_error_info(struct super_block *sb, const char *func,
331 unsigned int line)
332 {
333 __save_error_info(sb, func, line);
334 ext4_commit_super(sb, 1);
335 }
336
337 /*
338 * The del_gendisk() function uninitializes the disk-specific data
339 * structures, including the bdi structure, without telling anyone
340 * else. Once this happens, any attempt to call mark_buffer_dirty()
341 * (for example, by ext4_commit_super), will cause a kernel OOPS.
342 * This is a kludge to prevent these oops until we can put in a proper
343 * hook in del_gendisk() to inform the VFS and file system layers.
344 */
345 static int block_device_ejected(struct super_block *sb)
346 {
347 struct inode *bd_inode = sb->s_bdev->bd_inode;
348 struct backing_dev_info *bdi = bd_inode->i_mapping->backing_dev_info;
349
350 return bdi->dev == NULL;
351 }
352
353 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn)
354 {
355 struct super_block *sb = journal->j_private;
356 struct ext4_sb_info *sbi = EXT4_SB(sb);
357 int error = is_journal_aborted(journal);
358 struct ext4_journal_cb_entry *jce;
359
360 BUG_ON(txn->t_state == T_FINISHED);
361 spin_lock(&sbi->s_md_lock);
362 while (!list_empty(&txn->t_private_list)) {
363 jce = list_entry(txn->t_private_list.next,
364 struct ext4_journal_cb_entry, jce_list);
365 list_del_init(&jce->jce_list);
366 spin_unlock(&sbi->s_md_lock);
367 jce->jce_func(sb, jce, error);
368 spin_lock(&sbi->s_md_lock);
369 }
370 spin_unlock(&sbi->s_md_lock);
371 }
372
373 /* Deal with the reporting of failure conditions on a filesystem such as
374 * inconsistencies detected or read IO failures.
375 *
376 * On ext2, we can store the error state of the filesystem in the
377 * superblock. That is not possible on ext4, because we may have other
378 * write ordering constraints on the superblock which prevent us from
379 * writing it out straight away; and given that the journal is about to
380 * be aborted, we can't rely on the current, or future, transactions to
381 * write out the superblock safely.
382 *
383 * We'll just use the jbd2_journal_abort() error code to record an error in
384 * the journal instead. On recovery, the journal will complain about
385 * that error until we've noted it down and cleared it.
386 */
387
388 static void ext4_handle_error(struct super_block *sb)
389 {
390 if (sb->s_flags & MS_RDONLY)
391 return;
392
393 if (!test_opt(sb, ERRORS_CONT)) {
394 journal_t *journal = EXT4_SB(sb)->s_journal;
395
396 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
397 if (journal)
398 jbd2_journal_abort(journal, -EIO);
399 }
400 if (test_opt(sb, ERRORS_RO)) {
401 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
402 /*
403 * Make sure updated value of ->s_mount_flags will be visible
404 * before ->s_flags update
405 */
406 smp_wmb();
407 sb->s_flags |= MS_RDONLY;
408 }
409 if (test_opt(sb, ERRORS_PANIC))
410 panic("EXT4-fs (device %s): panic forced after error\n",
411 sb->s_id);
412 }
413
414 void __ext4_error(struct super_block *sb, const char *function,
415 unsigned int line, const char *fmt, ...)
416 {
417 struct va_format vaf;
418 va_list args;
419
420 va_start(args, fmt);
421 vaf.fmt = fmt;
422 vaf.va = &args;
423 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
424 sb->s_id, function, line, current->comm, &vaf);
425 va_end(args);
426 save_error_info(sb, function, line);
427
428 ext4_handle_error(sb);
429 }
430
431 void ext4_error_inode(struct inode *inode, const char *function,
432 unsigned int line, ext4_fsblk_t block,
433 const char *fmt, ...)
434 {
435 va_list args;
436 struct va_format vaf;
437 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
438
439 es->s_last_error_ino = cpu_to_le32(inode->i_ino);
440 es->s_last_error_block = cpu_to_le64(block);
441 save_error_info(inode->i_sb, function, line);
442 va_start(args, fmt);
443 vaf.fmt = fmt;
444 vaf.va = &args;
445 if (block)
446 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
447 "inode #%lu: block %llu: comm %s: %pV\n",
448 inode->i_sb->s_id, function, line, inode->i_ino,
449 block, current->comm, &vaf);
450 else
451 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
452 "inode #%lu: comm %s: %pV\n",
453 inode->i_sb->s_id, function, line, inode->i_ino,
454 current->comm, &vaf);
455 va_end(args);
456
457 ext4_handle_error(inode->i_sb);
458 }
459
460 void ext4_error_file(struct file *file, const char *function,
461 unsigned int line, ext4_fsblk_t block,
462 const char *fmt, ...)
463 {
464 va_list args;
465 struct va_format vaf;
466 struct ext4_super_block *es;
467 struct inode *inode = file_inode(file);
468 char pathname[80], *path;
469
470 es = EXT4_SB(inode->i_sb)->s_es;
471 es->s_last_error_ino = cpu_to_le32(inode->i_ino);
472 save_error_info(inode->i_sb, function, line);
473 path = d_path(&(file->f_path), pathname, sizeof(pathname));
474 if (IS_ERR(path))
475 path = "(unknown)";
476 va_start(args, fmt);
477 vaf.fmt = fmt;
478 vaf.va = &args;
479 if (block)
480 printk(KERN_CRIT
481 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
482 "block %llu: comm %s: path %s: %pV\n",
483 inode->i_sb->s_id, function, line, inode->i_ino,
484 block, current->comm, path, &vaf);
485 else
486 printk(KERN_CRIT
487 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
488 "comm %s: path %s: %pV\n",
489 inode->i_sb->s_id, function, line, inode->i_ino,
490 current->comm, path, &vaf);
491 va_end(args);
492
493 ext4_handle_error(inode->i_sb);
494 }
495
496 const char *ext4_decode_error(struct super_block *sb, int errno,
497 char nbuf[16])
498 {
499 char *errstr = NULL;
500
501 switch (errno) {
502 case -EIO:
503 errstr = "IO failure";
504 break;
505 case -ENOMEM:
506 errstr = "Out of memory";
507 break;
508 case -EROFS:
509 if (!sb || (EXT4_SB(sb)->s_journal &&
510 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
511 errstr = "Journal has aborted";
512 else
513 errstr = "Readonly filesystem";
514 break;
515 default:
516 /* If the caller passed in an extra buffer for unknown
517 * errors, textualise them now. Else we just return
518 * NULL. */
519 if (nbuf) {
520 /* Check for truncated error codes... */
521 if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
522 errstr = nbuf;
523 }
524 break;
525 }
526
527 return errstr;
528 }
529
530 /* __ext4_std_error decodes expected errors from journaling functions
531 * automatically and invokes the appropriate error response. */
532
533 void __ext4_std_error(struct super_block *sb, const char *function,
534 unsigned int line, int errno)
535 {
536 char nbuf[16];
537 const char *errstr;
538
539 /* Special case: if the error is EROFS, and we're not already
540 * inside a transaction, then there's really no point in logging
541 * an error. */
542 if (errno == -EROFS && journal_current_handle() == NULL &&
543 (sb->s_flags & MS_RDONLY))
544 return;
545
546 errstr = ext4_decode_error(sb, errno, nbuf);
547 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
548 sb->s_id, function, line, errstr);
549 save_error_info(sb, function, line);
550
551 ext4_handle_error(sb);
552 }
553
554 /*
555 * ext4_abort is a much stronger failure handler than ext4_error. The
556 * abort function may be used to deal with unrecoverable failures such
557 * as journal IO errors or ENOMEM at a critical moment in log management.
558 *
559 * We unconditionally force the filesystem into an ABORT|READONLY state,
560 * unless the error response on the fs has been set to panic in which
561 * case we take the easy way out and panic immediately.
562 */
563
564 void __ext4_abort(struct super_block *sb, const char *function,
565 unsigned int line, const char *fmt, ...)
566 {
567 va_list args;
568
569 save_error_info(sb, function, line);
570 va_start(args, fmt);
571 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: ", sb->s_id,
572 function, line);
573 vprintk(fmt, args);
574 printk("\n");
575 va_end(args);
576
577 if ((sb->s_flags & MS_RDONLY) == 0) {
578 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
579 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
580 /*
581 * Make sure updated value of ->s_mount_flags will be visible
582 * before ->s_flags update
583 */
584 smp_wmb();
585 sb->s_flags |= MS_RDONLY;
586 if (EXT4_SB(sb)->s_journal)
587 jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO);
588 save_error_info(sb, function, line);
589 }
590 if (test_opt(sb, ERRORS_PANIC))
591 panic("EXT4-fs panic from previous error\n");
592 }
593
594 void ext4_msg(struct super_block *sb, const char *prefix, const char *fmt, ...)
595 {
596 struct va_format vaf;
597 va_list args;
598
599 va_start(args, fmt);
600 vaf.fmt = fmt;
601 vaf.va = &args;
602 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
603 va_end(args);
604 }
605
606 void __ext4_warning(struct super_block *sb, const char *function,
607 unsigned int line, const char *fmt, ...)
608 {
609 struct va_format vaf;
610 va_list args;
611
612 va_start(args, fmt);
613 vaf.fmt = fmt;
614 vaf.va = &args;
615 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
616 sb->s_id, function, line, &vaf);
617 va_end(args);
618 }
619
620 void __ext4_grp_locked_error(const char *function, unsigned int line,
621 struct super_block *sb, ext4_group_t grp,
622 unsigned long ino, ext4_fsblk_t block,
623 const char *fmt, ...)
624 __releases(bitlock)
625 __acquires(bitlock)
626 {
627 struct va_format vaf;
628 va_list args;
629 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
630
631 es->s_last_error_ino = cpu_to_le32(ino);
632 es->s_last_error_block = cpu_to_le64(block);
633 __save_error_info(sb, function, line);
634
635 va_start(args, fmt);
636
637 vaf.fmt = fmt;
638 vaf.va = &args;
639 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
640 sb->s_id, function, line, grp);
641 if (ino)
642 printk(KERN_CONT "inode %lu: ", ino);
643 if (block)
644 printk(KERN_CONT "block %llu:", (unsigned long long) block);
645 printk(KERN_CONT "%pV\n", &vaf);
646 va_end(args);
647
648 if (test_opt(sb, ERRORS_CONT)) {
649 ext4_commit_super(sb, 0);
650 return;
651 }
652
653 ext4_unlock_group(sb, grp);
654 ext4_handle_error(sb);
655 /*
656 * We only get here in the ERRORS_RO case; relocking the group
657 * may be dangerous, but nothing bad will happen since the
658 * filesystem will have already been marked read/only and the
659 * journal has been aborted. We return 1 as a hint to callers
660 * who might what to use the return value from
661 * ext4_grp_locked_error() to distinguish between the
662 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
663 * aggressively from the ext4 function in question, with a
664 * more appropriate error code.
665 */
666 ext4_lock_group(sb, grp);
667 return;
668 }
669
670 void ext4_update_dynamic_rev(struct super_block *sb)
671 {
672 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
673
674 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
675 return;
676
677 ext4_warning(sb,
678 "updating to rev %d because of new feature flag, "
679 "running e2fsck is recommended",
680 EXT4_DYNAMIC_REV);
681
682 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
683 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
684 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
685 /* leave es->s_feature_*compat flags alone */
686 /* es->s_uuid will be set by e2fsck if empty */
687
688 /*
689 * The rest of the superblock fields should be zero, and if not it
690 * means they are likely already in use, so leave them alone. We
691 * can leave it up to e2fsck to clean up any inconsistencies there.
692 */
693 }
694
695 /*
696 * Open the external journal device
697 */
698 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb)
699 {
700 struct block_device *bdev;
701 char b[BDEVNAME_SIZE];
702
703 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb);
704 if (IS_ERR(bdev))
705 goto fail;
706 return bdev;
707
708 fail:
709 ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld",
710 __bdevname(dev, b), PTR_ERR(bdev));
711 return NULL;
712 }
713
714 /*
715 * Release the journal device
716 */
717 static void ext4_blkdev_put(struct block_device *bdev)
718 {
719 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
720 }
721
722 static void ext4_blkdev_remove(struct ext4_sb_info *sbi)
723 {
724 struct block_device *bdev;
725 bdev = sbi->journal_bdev;
726 if (bdev) {
727 ext4_blkdev_put(bdev);
728 sbi->journal_bdev = NULL;
729 }
730 }
731
732 static inline struct inode *orphan_list_entry(struct list_head *l)
733 {
734 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
735 }
736
737 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
738 {
739 struct list_head *l;
740
741 ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
742 le32_to_cpu(sbi->s_es->s_last_orphan));
743
744 printk(KERN_ERR "sb_info orphan list:\n");
745 list_for_each(l, &sbi->s_orphan) {
746 struct inode *inode = orphan_list_entry(l);
747 printk(KERN_ERR " "
748 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
749 inode->i_sb->s_id, inode->i_ino, inode,
750 inode->i_mode, inode->i_nlink,
751 NEXT_ORPHAN(inode));
752 }
753 }
754
755 static void ext4_put_super(struct super_block *sb)
756 {
757 struct ext4_sb_info *sbi = EXT4_SB(sb);
758 struct ext4_super_block *es = sbi->s_es;
759 int i, err;
760
761 ext4_unregister_li_request(sb);
762 dquot_disable(sb, -1, DQUOT_USAGE_ENABLED | DQUOT_LIMITS_ENABLED);
763
764 flush_workqueue(sbi->unrsv_conversion_wq);
765 flush_workqueue(sbi->rsv_conversion_wq);
766 destroy_workqueue(sbi->unrsv_conversion_wq);
767 destroy_workqueue(sbi->rsv_conversion_wq);
768
769 if (sbi->s_journal) {
770 err = jbd2_journal_destroy(sbi->s_journal);
771 sbi->s_journal = NULL;
772 if (err < 0)
773 ext4_abort(sb, "Couldn't clean up the journal");
774 }
775
776 ext4_es_unregister_shrinker(sb);
777 del_timer(&sbi->s_err_report);
778 ext4_release_system_zone(sb);
779 ext4_mb_release(sb);
780 ext4_ext_release(sb);
781 ext4_xattr_put_super(sb);
782
783 if (!(sb->s_flags & MS_RDONLY)) {
784 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
785 es->s_state = cpu_to_le16(sbi->s_mount_state);
786 }
787 if (!(sb->s_flags & MS_RDONLY))
788 ext4_commit_super(sb, 1);
789
790 if (sbi->s_proc) {
791 remove_proc_entry("options", sbi->s_proc);
792 remove_proc_entry(sb->s_id, ext4_proc_root);
793 }
794 kobject_del(&sbi->s_kobj);
795
796 for (i = 0; i < sbi->s_gdb_count; i++)
797 brelse(sbi->s_group_desc[i]);
798 ext4_kvfree(sbi->s_group_desc);
799 ext4_kvfree(sbi->s_flex_groups);
800 percpu_counter_destroy(&sbi->s_freeclusters_counter);
801 percpu_counter_destroy(&sbi->s_freeinodes_counter);
802 percpu_counter_destroy(&sbi->s_dirs_counter);
803 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
804 percpu_counter_destroy(&sbi->s_extent_cache_cnt);
805 brelse(sbi->s_sbh);
806 #ifdef CONFIG_QUOTA
807 for (i = 0; i < MAXQUOTAS; i++)
808 kfree(sbi->s_qf_names[i]);
809 #endif
810
811 /* Debugging code just in case the in-memory inode orphan list
812 * isn't empty. The on-disk one can be non-empty if we've
813 * detected an error and taken the fs readonly, but the
814 * in-memory list had better be clean by this point. */
815 if (!list_empty(&sbi->s_orphan))
816 dump_orphan_list(sb, sbi);
817 J_ASSERT(list_empty(&sbi->s_orphan));
818
819 invalidate_bdev(sb->s_bdev);
820 if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) {
821 /*
822 * Invalidate the journal device's buffers. We don't want them
823 * floating about in memory - the physical journal device may
824 * hotswapped, and it breaks the `ro-after' testing code.
825 */
826 sync_blockdev(sbi->journal_bdev);
827 invalidate_bdev(sbi->journal_bdev);
828 ext4_blkdev_remove(sbi);
829 }
830 if (sbi->s_mmp_tsk)
831 kthread_stop(sbi->s_mmp_tsk);
832 sb->s_fs_info = NULL;
833 /*
834 * Now that we are completely done shutting down the
835 * superblock, we need to actually destroy the kobject.
836 */
837 kobject_put(&sbi->s_kobj);
838 wait_for_completion(&sbi->s_kobj_unregister);
839 if (sbi->s_chksum_driver)
840 crypto_free_shash(sbi->s_chksum_driver);
841 kfree(sbi->s_blockgroup_lock);
842 kfree(sbi);
843 }
844
845 static struct kmem_cache *ext4_inode_cachep;
846
847 /*
848 * Called inside transaction, so use GFP_NOFS
849 */
850 static struct inode *ext4_alloc_inode(struct super_block *sb)
851 {
852 struct ext4_inode_info *ei;
853
854 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS);
855 if (!ei)
856 return NULL;
857
858 ei->vfs_inode.i_version = 1;
859 INIT_LIST_HEAD(&ei->i_prealloc_list);
860 spin_lock_init(&ei->i_prealloc_lock);
861 ext4_es_init_tree(&ei->i_es_tree);
862 rwlock_init(&ei->i_es_lock);
863 INIT_LIST_HEAD(&ei->i_es_lru);
864 ei->i_es_lru_nr = 0;
865 ei->i_reserved_data_blocks = 0;
866 ei->i_reserved_meta_blocks = 0;
867 ei->i_allocated_meta_blocks = 0;
868 ei->i_da_metadata_calc_len = 0;
869 ei->i_da_metadata_calc_last_lblock = 0;
870 spin_lock_init(&(ei->i_block_reservation_lock));
871 #ifdef CONFIG_QUOTA
872 ei->i_reserved_quota = 0;
873 #endif
874 ei->jinode = NULL;
875 INIT_LIST_HEAD(&ei->i_rsv_conversion_list);
876 INIT_LIST_HEAD(&ei->i_unrsv_conversion_list);
877 spin_lock_init(&ei->i_completed_io_lock);
878 ei->i_sync_tid = 0;
879 ei->i_datasync_tid = 0;
880 atomic_set(&ei->i_ioend_count, 0);
881 atomic_set(&ei->i_unwritten, 0);
882 INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work);
883 INIT_WORK(&ei->i_unrsv_conversion_work, ext4_end_io_unrsv_work);
884
885 return &ei->vfs_inode;
886 }
887
888 static int ext4_drop_inode(struct inode *inode)
889 {
890 int drop = generic_drop_inode(inode);
891
892 trace_ext4_drop_inode(inode, drop);
893 return drop;
894 }
895
896 static void ext4_i_callback(struct rcu_head *head)
897 {
898 struct inode *inode = container_of(head, struct inode, i_rcu);
899 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
900 }
901
902 static void ext4_destroy_inode(struct inode *inode)
903 {
904 if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
905 ext4_msg(inode->i_sb, KERN_ERR,
906 "Inode %lu (%p): orphan list check failed!",
907 inode->i_ino, EXT4_I(inode));
908 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
909 EXT4_I(inode), sizeof(struct ext4_inode_info),
910 true);
911 dump_stack();
912 }
913 call_rcu(&inode->i_rcu, ext4_i_callback);
914 }
915
916 static void init_once(void *foo)
917 {
918 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo;
919
920 INIT_LIST_HEAD(&ei->i_orphan);
921 init_rwsem(&ei->xattr_sem);
922 init_rwsem(&ei->i_data_sem);
923 inode_init_once(&ei->vfs_inode);
924 }
925
926 static int init_inodecache(void)
927 {
928 ext4_inode_cachep = kmem_cache_create("ext4_inode_cache",
929 sizeof(struct ext4_inode_info),
930 0, (SLAB_RECLAIM_ACCOUNT|
931 SLAB_MEM_SPREAD),
932 init_once);
933 if (ext4_inode_cachep == NULL)
934 return -ENOMEM;
935 return 0;
936 }
937
938 static void destroy_inodecache(void)
939 {
940 /*
941 * Make sure all delayed rcu free inodes are flushed before we
942 * destroy cache.
943 */
944 rcu_barrier();
945 kmem_cache_destroy(ext4_inode_cachep);
946 }
947
948 void ext4_clear_inode(struct inode *inode)
949 {
950 invalidate_inode_buffers(inode);
951 clear_inode(inode);
952 dquot_drop(inode);
953 ext4_discard_preallocations(inode);
954 ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS);
955 ext4_es_lru_del(inode);
956 if (EXT4_I(inode)->jinode) {
957 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
958 EXT4_I(inode)->jinode);
959 jbd2_free_inode(EXT4_I(inode)->jinode);
960 EXT4_I(inode)->jinode = NULL;
961 }
962 }
963
964 static struct inode *ext4_nfs_get_inode(struct super_block *sb,
965 u64 ino, u32 generation)
966 {
967 struct inode *inode;
968
969 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
970 return ERR_PTR(-ESTALE);
971 if (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
972 return ERR_PTR(-ESTALE);
973
974 /* iget isn't really right if the inode is currently unallocated!!
975 *
976 * ext4_read_inode will return a bad_inode if the inode had been
977 * deleted, so we should be safe.
978 *
979 * Currently we don't know the generation for parent directory, so
980 * a generation of 0 means "accept any"
981 */
982 inode = ext4_iget(sb, ino);
983 if (IS_ERR(inode))
984 return ERR_CAST(inode);
985 if (generation && inode->i_generation != generation) {
986 iput(inode);
987 return ERR_PTR(-ESTALE);
988 }
989
990 return inode;
991 }
992
993 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
994 int fh_len, int fh_type)
995 {
996 return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
997 ext4_nfs_get_inode);
998 }
999
1000 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
1001 int fh_len, int fh_type)
1002 {
1003 return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1004 ext4_nfs_get_inode);
1005 }
1006
1007 /*
1008 * Try to release metadata pages (indirect blocks, directories) which are
1009 * mapped via the block device. Since these pages could have journal heads
1010 * which would prevent try_to_free_buffers() from freeing them, we must use
1011 * jbd2 layer's try_to_free_buffers() function to release them.
1012 */
1013 static int bdev_try_to_free_page(struct super_block *sb, struct page *page,
1014 gfp_t wait)
1015 {
1016 journal_t *journal = EXT4_SB(sb)->s_journal;
1017
1018 WARN_ON(PageChecked(page));
1019 if (!page_has_buffers(page))
1020 return 0;
1021 if (journal)
1022 return jbd2_journal_try_to_free_buffers(journal, page,
1023 wait & ~__GFP_WAIT);
1024 return try_to_free_buffers(page);
1025 }
1026
1027 #ifdef CONFIG_QUOTA
1028 #define QTYPE2NAME(t) ((t) == USRQUOTA ? "user" : "group")
1029 #define QTYPE2MOPT(on, t) ((t) == USRQUOTA?((on)##USRJQUOTA):((on)##GRPJQUOTA))
1030
1031 static int ext4_write_dquot(struct dquot *dquot);
1032 static int ext4_acquire_dquot(struct dquot *dquot);
1033 static int ext4_release_dquot(struct dquot *dquot);
1034 static int ext4_mark_dquot_dirty(struct dquot *dquot);
1035 static int ext4_write_info(struct super_block *sb, int type);
1036 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1037 struct path *path);
1038 static int ext4_quota_on_sysfile(struct super_block *sb, int type,
1039 int format_id);
1040 static int ext4_quota_off(struct super_block *sb, int type);
1041 static int ext4_quota_off_sysfile(struct super_block *sb, int type);
1042 static int ext4_quota_on_mount(struct super_block *sb, int type);
1043 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1044 size_t len, loff_t off);
1045 static ssize_t ext4_quota_write(struct super_block *sb, int type,
1046 const char *data, size_t len, loff_t off);
1047 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
1048 unsigned int flags);
1049 static int ext4_enable_quotas(struct super_block *sb);
1050
1051 static const struct dquot_operations ext4_quota_operations = {
1052 .get_reserved_space = ext4_get_reserved_space,
1053 .write_dquot = ext4_write_dquot,
1054 .acquire_dquot = ext4_acquire_dquot,
1055 .release_dquot = ext4_release_dquot,
1056 .mark_dirty = ext4_mark_dquot_dirty,
1057 .write_info = ext4_write_info,
1058 .alloc_dquot = dquot_alloc,
1059 .destroy_dquot = dquot_destroy,
1060 };
1061
1062 static const struct quotactl_ops ext4_qctl_operations = {
1063 .quota_on = ext4_quota_on,
1064 .quota_off = ext4_quota_off,
1065 .quota_sync = dquot_quota_sync,
1066 .get_info = dquot_get_dqinfo,
1067 .set_info = dquot_set_dqinfo,
1068 .get_dqblk = dquot_get_dqblk,
1069 .set_dqblk = dquot_set_dqblk
1070 };
1071
1072 static const struct quotactl_ops ext4_qctl_sysfile_operations = {
1073 .quota_on_meta = ext4_quota_on_sysfile,
1074 .quota_off = ext4_quota_off_sysfile,
1075 .quota_sync = dquot_quota_sync,
1076 .get_info = dquot_get_dqinfo,
1077 .set_info = dquot_set_dqinfo,
1078 .get_dqblk = dquot_get_dqblk,
1079 .set_dqblk = dquot_set_dqblk
1080 };
1081 #endif
1082
1083 static const struct super_operations ext4_sops = {
1084 .alloc_inode = ext4_alloc_inode,
1085 .destroy_inode = ext4_destroy_inode,
1086 .write_inode = ext4_write_inode,
1087 .dirty_inode = ext4_dirty_inode,
1088 .drop_inode = ext4_drop_inode,
1089 .evict_inode = ext4_evict_inode,
1090 .put_super = ext4_put_super,
1091 .sync_fs = ext4_sync_fs,
1092 .freeze_fs = ext4_freeze,
1093 .unfreeze_fs = ext4_unfreeze,
1094 .statfs = ext4_statfs,
1095 .remount_fs = ext4_remount,
1096 .show_options = ext4_show_options,
1097 #ifdef CONFIG_QUOTA
1098 .quota_read = ext4_quota_read,
1099 .quota_write = ext4_quota_write,
1100 #endif
1101 .bdev_try_to_free_page = bdev_try_to_free_page,
1102 };
1103
1104 static const struct super_operations ext4_nojournal_sops = {
1105 .alloc_inode = ext4_alloc_inode,
1106 .destroy_inode = ext4_destroy_inode,
1107 .write_inode = ext4_write_inode,
1108 .dirty_inode = ext4_dirty_inode,
1109 .drop_inode = ext4_drop_inode,
1110 .evict_inode = ext4_evict_inode,
1111 .sync_fs = ext4_sync_fs_nojournal,
1112 .put_super = ext4_put_super,
1113 .statfs = ext4_statfs,
1114 .remount_fs = ext4_remount,
1115 .show_options = ext4_show_options,
1116 #ifdef CONFIG_QUOTA
1117 .quota_read = ext4_quota_read,
1118 .quota_write = ext4_quota_write,
1119 #endif
1120 .bdev_try_to_free_page = bdev_try_to_free_page,
1121 };
1122
1123 static const struct export_operations ext4_export_ops = {
1124 .fh_to_dentry = ext4_fh_to_dentry,
1125 .fh_to_parent = ext4_fh_to_parent,
1126 .get_parent = ext4_get_parent,
1127 };
1128
1129 enum {
1130 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1131 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro,
1132 Opt_nouid32, Opt_debug, Opt_removed,
1133 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl,
1134 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload,
1135 Opt_commit, Opt_min_batch_time, Opt_max_batch_time,
1136 Opt_journal_dev, Opt_journal_checksum, Opt_journal_async_commit,
1137 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1138 Opt_data_err_abort, Opt_data_err_ignore,
1139 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota,
1140 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota,
1141 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err,
1142 Opt_usrquota, Opt_grpquota, Opt_i_version,
1143 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_mblk_io_submit,
1144 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1145 Opt_inode_readahead_blks, Opt_journal_ioprio,
1146 Opt_dioread_nolock, Opt_dioread_lock,
1147 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable,
1148 Opt_max_dir_size_kb,
1149 };
1150
1151 static const match_table_t tokens = {
1152 {Opt_bsd_df, "bsddf"},
1153 {Opt_minix_df, "minixdf"},
1154 {Opt_grpid, "grpid"},
1155 {Opt_grpid, "bsdgroups"},
1156 {Opt_nogrpid, "nogrpid"},
1157 {Opt_nogrpid, "sysvgroups"},
1158 {Opt_resgid, "resgid=%u"},
1159 {Opt_resuid, "resuid=%u"},
1160 {Opt_sb, "sb=%u"},
1161 {Opt_err_cont, "errors=continue"},
1162 {Opt_err_panic, "errors=panic"},
1163 {Opt_err_ro, "errors=remount-ro"},
1164 {Opt_nouid32, "nouid32"},
1165 {Opt_debug, "debug"},
1166 {Opt_removed, "oldalloc"},
1167 {Opt_removed, "orlov"},
1168 {Opt_user_xattr, "user_xattr"},
1169 {Opt_nouser_xattr, "nouser_xattr"},
1170 {Opt_acl, "acl"},
1171 {Opt_noacl, "noacl"},
1172 {Opt_noload, "norecovery"},
1173 {Opt_noload, "noload"},
1174 {Opt_removed, "nobh"},
1175 {Opt_removed, "bh"},
1176 {Opt_commit, "commit=%u"},
1177 {Opt_min_batch_time, "min_batch_time=%u"},
1178 {Opt_max_batch_time, "max_batch_time=%u"},
1179 {Opt_journal_dev, "journal_dev=%u"},
1180 {Opt_journal_checksum, "journal_checksum"},
1181 {Opt_journal_async_commit, "journal_async_commit"},
1182 {Opt_abort, "abort"},
1183 {Opt_data_journal, "data=journal"},
1184 {Opt_data_ordered, "data=ordered"},
1185 {Opt_data_writeback, "data=writeback"},
1186 {Opt_data_err_abort, "data_err=abort"},
1187 {Opt_data_err_ignore, "data_err=ignore"},
1188 {Opt_offusrjquota, "usrjquota="},
1189 {Opt_usrjquota, "usrjquota=%s"},
1190 {Opt_offgrpjquota, "grpjquota="},
1191 {Opt_grpjquota, "grpjquota=%s"},
1192 {Opt_jqfmt_vfsold, "jqfmt=vfsold"},
1193 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
1194 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
1195 {Opt_grpquota, "grpquota"},
1196 {Opt_noquota, "noquota"},
1197 {Opt_quota, "quota"},
1198 {Opt_usrquota, "usrquota"},
1199 {Opt_barrier, "barrier=%u"},
1200 {Opt_barrier, "barrier"},
1201 {Opt_nobarrier, "nobarrier"},
1202 {Opt_i_version, "i_version"},
1203 {Opt_stripe, "stripe=%u"},
1204 {Opt_delalloc, "delalloc"},
1205 {Opt_nodelalloc, "nodelalloc"},
1206 {Opt_removed, "mblk_io_submit"},
1207 {Opt_removed, "nomblk_io_submit"},
1208 {Opt_block_validity, "block_validity"},
1209 {Opt_noblock_validity, "noblock_validity"},
1210 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"},
1211 {Opt_journal_ioprio, "journal_ioprio=%u"},
1212 {Opt_auto_da_alloc, "auto_da_alloc=%u"},
1213 {Opt_auto_da_alloc, "auto_da_alloc"},
1214 {Opt_noauto_da_alloc, "noauto_da_alloc"},
1215 {Opt_dioread_nolock, "dioread_nolock"},
1216 {Opt_dioread_lock, "dioread_lock"},
1217 {Opt_discard, "discard"},
1218 {Opt_nodiscard, "nodiscard"},
1219 {Opt_init_itable, "init_itable=%u"},
1220 {Opt_init_itable, "init_itable"},
1221 {Opt_noinit_itable, "noinit_itable"},
1222 {Opt_max_dir_size_kb, "max_dir_size_kb=%u"},
1223 {Opt_removed, "check=none"}, /* mount option from ext2/3 */
1224 {Opt_removed, "nocheck"}, /* mount option from ext2/3 */
1225 {Opt_removed, "reservation"}, /* mount option from ext2/3 */
1226 {Opt_removed, "noreservation"}, /* mount option from ext2/3 */
1227 {Opt_removed, "journal=%u"}, /* mount option from ext2/3 */
1228 {Opt_err, NULL},
1229 };
1230
1231 static ext4_fsblk_t get_sb_block(void **data)
1232 {
1233 ext4_fsblk_t sb_block;
1234 char *options = (char *) *data;
1235
1236 if (!options || strncmp(options, "sb=", 3) != 0)
1237 return 1; /* Default location */
1238
1239 options += 3;
1240 /* TODO: use simple_strtoll with >32bit ext4 */
1241 sb_block = simple_strtoul(options, &options, 0);
1242 if (*options && *options != ',') {
1243 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n",
1244 (char *) *data);
1245 return 1;
1246 }
1247 if (*options == ',')
1248 options++;
1249 *data = (void *) options;
1250
1251 return sb_block;
1252 }
1253
1254 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1255 static char deprecated_msg[] = "Mount option \"%s\" will be removed by %s\n"
1256 "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n";
1257
1258 #ifdef CONFIG_QUOTA
1259 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args)
1260 {
1261 struct ext4_sb_info *sbi = EXT4_SB(sb);
1262 char *qname;
1263 int ret = -1;
1264
1265 if (sb_any_quota_loaded(sb) &&
1266 !sbi->s_qf_names[qtype]) {
1267 ext4_msg(sb, KERN_ERR,
1268 "Cannot change journaled "
1269 "quota options when quota turned on");
1270 return -1;
1271 }
1272 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA)) {
1273 ext4_msg(sb, KERN_ERR, "Cannot set journaled quota options "
1274 "when QUOTA feature is enabled");
1275 return -1;
1276 }
1277 qname = match_strdup(args);
1278 if (!qname) {
1279 ext4_msg(sb, KERN_ERR,
1280 "Not enough memory for storing quotafile name");
1281 return -1;
1282 }
1283 if (sbi->s_qf_names[qtype]) {
1284 if (strcmp(sbi->s_qf_names[qtype], qname) == 0)
1285 ret = 1;
1286 else
1287 ext4_msg(sb, KERN_ERR,
1288 "%s quota file already specified",
1289 QTYPE2NAME(qtype));
1290 goto errout;
1291 }
1292 if (strchr(qname, '/')) {
1293 ext4_msg(sb, KERN_ERR,
1294 "quotafile must be on filesystem root");
1295 goto errout;
1296 }
1297 sbi->s_qf_names[qtype] = qname;
1298 set_opt(sb, QUOTA);
1299 return 1;
1300 errout:
1301 kfree(qname);
1302 return ret;
1303 }
1304
1305 static int clear_qf_name(struct super_block *sb, int qtype)
1306 {
1307
1308 struct ext4_sb_info *sbi = EXT4_SB(sb);
1309
1310 if (sb_any_quota_loaded(sb) &&
1311 sbi->s_qf_names[qtype]) {
1312 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options"
1313 " when quota turned on");
1314 return -1;
1315 }
1316 kfree(sbi->s_qf_names[qtype]);
1317 sbi->s_qf_names[qtype] = NULL;
1318 return 1;
1319 }
1320 #endif
1321
1322 #define MOPT_SET 0x0001
1323 #define MOPT_CLEAR 0x0002
1324 #define MOPT_NOSUPPORT 0x0004
1325 #define MOPT_EXPLICIT 0x0008
1326 #define MOPT_CLEAR_ERR 0x0010
1327 #define MOPT_GTE0 0x0020
1328 #ifdef CONFIG_QUOTA
1329 #define MOPT_Q 0
1330 #define MOPT_QFMT 0x0040
1331 #else
1332 #define MOPT_Q MOPT_NOSUPPORT
1333 #define MOPT_QFMT MOPT_NOSUPPORT
1334 #endif
1335 #define MOPT_DATAJ 0x0080
1336 #define MOPT_NO_EXT2 0x0100
1337 #define MOPT_NO_EXT3 0x0200
1338 #define MOPT_EXT4_ONLY (MOPT_NO_EXT2 | MOPT_NO_EXT3)
1339
1340 static const struct mount_opts {
1341 int token;
1342 int mount_opt;
1343 int flags;
1344 } ext4_mount_opts[] = {
1345 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET},
1346 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR},
1347 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET},
1348 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR},
1349 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET},
1350 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR},
1351 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK,
1352 MOPT_EXT4_ONLY | MOPT_SET},
1353 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK,
1354 MOPT_EXT4_ONLY | MOPT_CLEAR},
1355 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET},
1356 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR},
1357 {Opt_delalloc, EXT4_MOUNT_DELALLOC,
1358 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1359 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC,
1360 MOPT_EXT4_ONLY | MOPT_CLEAR | MOPT_EXPLICIT},
1361 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1362 MOPT_EXT4_ONLY | MOPT_SET},
1363 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT |
1364 EXT4_MOUNT_JOURNAL_CHECKSUM),
1365 MOPT_EXT4_ONLY | MOPT_SET},
1366 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET},
1367 {Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR},
1368 {Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR},
1369 {Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR},
1370 {Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT,
1371 MOPT_NO_EXT2 | MOPT_SET},
1372 {Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT,
1373 MOPT_NO_EXT2 | MOPT_CLEAR},
1374 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET},
1375 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR},
1376 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET},
1377 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR},
1378 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR},
1379 {Opt_commit, 0, MOPT_GTE0},
1380 {Opt_max_batch_time, 0, MOPT_GTE0},
1381 {Opt_min_batch_time, 0, MOPT_GTE0},
1382 {Opt_inode_readahead_blks, 0, MOPT_GTE0},
1383 {Opt_init_itable, 0, MOPT_GTE0},
1384 {Opt_stripe, 0, MOPT_GTE0},
1385 {Opt_resuid, 0, MOPT_GTE0},
1386 {Opt_resgid, 0, MOPT_GTE0},
1387 {Opt_journal_dev, 0, MOPT_GTE0},
1388 {Opt_journal_ioprio, 0, MOPT_GTE0},
1389 {Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1390 {Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1391 {Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA,
1392 MOPT_NO_EXT2 | MOPT_DATAJ},
1393 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET},
1394 {Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR},
1395 #ifdef CONFIG_EXT4_FS_POSIX_ACL
1396 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET},
1397 {Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR},
1398 #else
1399 {Opt_acl, 0, MOPT_NOSUPPORT},
1400 {Opt_noacl, 0, MOPT_NOSUPPORT},
1401 #endif
1402 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET},
1403 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET},
1404 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q},
1405 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA,
1406 MOPT_SET | MOPT_Q},
1407 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA,
1408 MOPT_SET | MOPT_Q},
1409 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
1410 EXT4_MOUNT_GRPQUOTA), MOPT_CLEAR | MOPT_Q},
1411 {Opt_usrjquota, 0, MOPT_Q},
1412 {Opt_grpjquota, 0, MOPT_Q},
1413 {Opt_offusrjquota, 0, MOPT_Q},
1414 {Opt_offgrpjquota, 0, MOPT_Q},
1415 {Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT},
1416 {Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT},
1417 {Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT},
1418 {Opt_max_dir_size_kb, 0, MOPT_GTE0},
1419 {Opt_err, 0, 0}
1420 };
1421
1422 static int handle_mount_opt(struct super_block *sb, char *opt, int token,
1423 substring_t *args, unsigned long *journal_devnum,
1424 unsigned int *journal_ioprio, int is_remount)
1425 {
1426 struct ext4_sb_info *sbi = EXT4_SB(sb);
1427 const struct mount_opts *m;
1428 kuid_t uid;
1429 kgid_t gid;
1430 int arg = 0;
1431
1432 #ifdef CONFIG_QUOTA
1433 if (token == Opt_usrjquota)
1434 return set_qf_name(sb, USRQUOTA, &args[0]);
1435 else if (token == Opt_grpjquota)
1436 return set_qf_name(sb, GRPQUOTA, &args[0]);
1437 else if (token == Opt_offusrjquota)
1438 return clear_qf_name(sb, USRQUOTA);
1439 else if (token == Opt_offgrpjquota)
1440 return clear_qf_name(sb, GRPQUOTA);
1441 #endif
1442 switch (token) {
1443 case Opt_noacl:
1444 case Opt_nouser_xattr:
1445 ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5");
1446 break;
1447 case Opt_sb:
1448 return 1; /* handled by get_sb_block() */
1449 case Opt_removed:
1450 ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt);
1451 return 1;
1452 case Opt_abort:
1453 sbi->s_mount_flags |= EXT4_MF_FS_ABORTED;
1454 return 1;
1455 case Opt_i_version:
1456 sb->s_flags |= MS_I_VERSION;
1457 return 1;
1458 }
1459
1460 for (m = ext4_mount_opts; m->token != Opt_err; m++)
1461 if (token == m->token)
1462 break;
1463
1464 if (m->token == Opt_err) {
1465 ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" "
1466 "or missing value", opt);
1467 return -1;
1468 }
1469
1470 if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) {
1471 ext4_msg(sb, KERN_ERR,
1472 "Mount option \"%s\" incompatible with ext2", opt);
1473 return -1;
1474 }
1475 if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) {
1476 ext4_msg(sb, KERN_ERR,
1477 "Mount option \"%s\" incompatible with ext3", opt);
1478 return -1;
1479 }
1480
1481 if (args->from && match_int(args, &arg))
1482 return -1;
1483 if (args->from && (m->flags & MOPT_GTE0) && (arg < 0))
1484 return -1;
1485 if (m->flags & MOPT_EXPLICIT)
1486 set_opt2(sb, EXPLICIT_DELALLOC);
1487 if (m->flags & MOPT_CLEAR_ERR)
1488 clear_opt(sb, ERRORS_MASK);
1489 if (token == Opt_noquota && sb_any_quota_loaded(sb)) {
1490 ext4_msg(sb, KERN_ERR, "Cannot change quota "
1491 "options when quota turned on");
1492 return -1;
1493 }
1494
1495 if (m->flags & MOPT_NOSUPPORT) {
1496 ext4_msg(sb, KERN_ERR, "%s option not supported", opt);
1497 } else if (token == Opt_commit) {
1498 if (arg == 0)
1499 arg = JBD2_DEFAULT_MAX_COMMIT_AGE;
1500 sbi->s_commit_interval = HZ * arg;
1501 } else if (token == Opt_max_batch_time) {
1502 if (arg == 0)
1503 arg = EXT4_DEF_MAX_BATCH_TIME;
1504 sbi->s_max_batch_time = arg;
1505 } else if (token == Opt_min_batch_time) {
1506 sbi->s_min_batch_time = arg;
1507 } else if (token == Opt_inode_readahead_blks) {
1508 if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) {
1509 ext4_msg(sb, KERN_ERR,
1510 "EXT4-fs: inode_readahead_blks must be "
1511 "0 or a power of 2 smaller than 2^31");
1512 return -1;
1513 }
1514 sbi->s_inode_readahead_blks = arg;
1515 } else if (token == Opt_init_itable) {
1516 set_opt(sb, INIT_INODE_TABLE);
1517 if (!args->from)
1518 arg = EXT4_DEF_LI_WAIT_MULT;
1519 sbi->s_li_wait_mult = arg;
1520 } else if (token == Opt_max_dir_size_kb) {
1521 sbi->s_max_dir_size_kb = arg;
1522 } else if (token == Opt_stripe) {
1523 sbi->s_stripe = arg;
1524 } else if (token == Opt_resuid) {
1525 uid = make_kuid(current_user_ns(), arg);
1526 if (!uid_valid(uid)) {
1527 ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg);
1528 return -1;
1529 }
1530 sbi->s_resuid = uid;
1531 } else if (token == Opt_resgid) {
1532 gid = make_kgid(current_user_ns(), arg);
1533 if (!gid_valid(gid)) {
1534 ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg);
1535 return -1;
1536 }
1537 sbi->s_resgid = gid;
1538 } else if (token == Opt_journal_dev) {
1539 if (is_remount) {
1540 ext4_msg(sb, KERN_ERR,
1541 "Cannot specify journal on remount");
1542 return -1;
1543 }
1544 *journal_devnum = arg;
1545 } else if (token == Opt_journal_ioprio) {
1546 if (arg > 7) {
1547 ext4_msg(sb, KERN_ERR, "Invalid journal IO priority"
1548 " (must be 0-7)");
1549 return -1;
1550 }
1551 *journal_ioprio =
1552 IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg);
1553 } else if (m->flags & MOPT_DATAJ) {
1554 if (is_remount) {
1555 if (!sbi->s_journal)
1556 ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option");
1557 else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) {
1558 ext4_msg(sb, KERN_ERR,
1559 "Cannot change data mode on remount");
1560 return -1;
1561 }
1562 } else {
1563 clear_opt(sb, DATA_FLAGS);
1564 sbi->s_mount_opt |= m->mount_opt;
1565 }
1566 #ifdef CONFIG_QUOTA
1567 } else if (m->flags & MOPT_QFMT) {
1568 if (sb_any_quota_loaded(sb) &&
1569 sbi->s_jquota_fmt != m->mount_opt) {
1570 ext4_msg(sb, KERN_ERR, "Cannot change journaled "
1571 "quota options when quota turned on");
1572 return -1;
1573 }
1574 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
1575 EXT4_FEATURE_RO_COMPAT_QUOTA)) {
1576 ext4_msg(sb, KERN_ERR,
1577 "Cannot set journaled quota options "
1578 "when QUOTA feature is enabled");
1579 return -1;
1580 }
1581 sbi->s_jquota_fmt = m->mount_opt;
1582 #endif
1583 } else {
1584 if (!args->from)
1585 arg = 1;
1586 if (m->flags & MOPT_CLEAR)
1587 arg = !arg;
1588 else if (unlikely(!(m->flags & MOPT_SET))) {
1589 ext4_msg(sb, KERN_WARNING,
1590 "buggy handling of option %s", opt);
1591 WARN_ON(1);
1592 return -1;
1593 }
1594 if (arg != 0)
1595 sbi->s_mount_opt |= m->mount_opt;
1596 else
1597 sbi->s_mount_opt &= ~m->mount_opt;
1598 }
1599 return 1;
1600 }
1601
1602 static int parse_options(char *options, struct super_block *sb,
1603 unsigned long *journal_devnum,
1604 unsigned int *journal_ioprio,
1605 int is_remount)
1606 {
1607 struct ext4_sb_info *sbi = EXT4_SB(sb);
1608 char *p;
1609 substring_t args[MAX_OPT_ARGS];
1610 int token;
1611
1612 if (!options)
1613 return 1;
1614
1615 while ((p = strsep(&options, ",")) != NULL) {
1616 if (!*p)
1617 continue;
1618 /*
1619 * Initialize args struct so we know whether arg was
1620 * found; some options take optional arguments.
1621 */
1622 args[0].to = args[0].from = NULL;
1623 token = match_token(p, tokens, args);
1624 if (handle_mount_opt(sb, p, token, args, journal_devnum,
1625 journal_ioprio, is_remount) < 0)
1626 return 0;
1627 }
1628 #ifdef CONFIG_QUOTA
1629 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) &&
1630 (test_opt(sb, USRQUOTA) || test_opt(sb, GRPQUOTA))) {
1631 ext4_msg(sb, KERN_ERR, "Cannot set quota options when QUOTA "
1632 "feature is enabled");
1633 return 0;
1634 }
1635 if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
1636 if (test_opt(sb, USRQUOTA) && sbi->s_qf_names[USRQUOTA])
1637 clear_opt(sb, USRQUOTA);
1638
1639 if (test_opt(sb, GRPQUOTA) && sbi->s_qf_names[GRPQUOTA])
1640 clear_opt(sb, GRPQUOTA);
1641
1642 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) {
1643 ext4_msg(sb, KERN_ERR, "old and new quota "
1644 "format mixing");
1645 return 0;
1646 }
1647
1648 if (!sbi->s_jquota_fmt) {
1649 ext4_msg(sb, KERN_ERR, "journaled quota format "
1650 "not specified");
1651 return 0;
1652 }
1653 } else {
1654 if (sbi->s_jquota_fmt) {
1655 ext4_msg(sb, KERN_ERR, "journaled quota format "
1656 "specified with no journaling "
1657 "enabled");
1658 return 0;
1659 }
1660 }
1661 #endif
1662 if (test_opt(sb, DIOREAD_NOLOCK)) {
1663 int blocksize =
1664 BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size);
1665
1666 if (blocksize < PAGE_CACHE_SIZE) {
1667 ext4_msg(sb, KERN_ERR, "can't mount with "
1668 "dioread_nolock if block size != PAGE_SIZE");
1669 return 0;
1670 }
1671 }
1672 return 1;
1673 }
1674
1675 static inline void ext4_show_quota_options(struct seq_file *seq,
1676 struct super_block *sb)
1677 {
1678 #if defined(CONFIG_QUOTA)
1679 struct ext4_sb_info *sbi = EXT4_SB(sb);
1680
1681 if (sbi->s_jquota_fmt) {
1682 char *fmtname = "";
1683
1684 switch (sbi->s_jquota_fmt) {
1685 case QFMT_VFS_OLD:
1686 fmtname = "vfsold";
1687 break;
1688 case QFMT_VFS_V0:
1689 fmtname = "vfsv0";
1690 break;
1691 case QFMT_VFS_V1:
1692 fmtname = "vfsv1";
1693 break;
1694 }
1695 seq_printf(seq, ",jqfmt=%s", fmtname);
1696 }
1697
1698 if (sbi->s_qf_names[USRQUOTA])
1699 seq_printf(seq, ",usrjquota=%s", sbi->s_qf_names[USRQUOTA]);
1700
1701 if (sbi->s_qf_names[GRPQUOTA])
1702 seq_printf(seq, ",grpjquota=%s", sbi->s_qf_names[GRPQUOTA]);
1703
1704 if (test_opt(sb, USRQUOTA))
1705 seq_puts(seq, ",usrquota");
1706
1707 if (test_opt(sb, GRPQUOTA))
1708 seq_puts(seq, ",grpquota");
1709 #endif
1710 }
1711
1712 static const char *token2str(int token)
1713 {
1714 const struct match_token *t;
1715
1716 for (t = tokens; t->token != Opt_err; t++)
1717 if (t->token == token && !strchr(t->pattern, '='))
1718 break;
1719 return t->pattern;
1720 }
1721
1722 /*
1723 * Show an option if
1724 * - it's set to a non-default value OR
1725 * - if the per-sb default is different from the global default
1726 */
1727 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb,
1728 int nodefs)
1729 {
1730 struct ext4_sb_info *sbi = EXT4_SB(sb);
1731 struct ext4_super_block *es = sbi->s_es;
1732 int def_errors, def_mount_opt = nodefs ? 0 : sbi->s_def_mount_opt;
1733 const struct mount_opts *m;
1734 char sep = nodefs ? '\n' : ',';
1735
1736 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep)
1737 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg)
1738
1739 if (sbi->s_sb_block != 1)
1740 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block);
1741
1742 for (m = ext4_mount_opts; m->token != Opt_err; m++) {
1743 int want_set = m->flags & MOPT_SET;
1744 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) ||
1745 (m->flags & MOPT_CLEAR_ERR))
1746 continue;
1747 if (!(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt)))
1748 continue; /* skip if same as the default */
1749 if ((want_set &&
1750 (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) ||
1751 (!want_set && (sbi->s_mount_opt & m->mount_opt)))
1752 continue; /* select Opt_noFoo vs Opt_Foo */
1753 SEQ_OPTS_PRINT("%s", token2str(m->token));
1754 }
1755
1756 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) ||
1757 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID)
1758 SEQ_OPTS_PRINT("resuid=%u",
1759 from_kuid_munged(&init_user_ns, sbi->s_resuid));
1760 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) ||
1761 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID)
1762 SEQ_OPTS_PRINT("resgid=%u",
1763 from_kgid_munged(&init_user_ns, sbi->s_resgid));
1764 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors);
1765 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO)
1766 SEQ_OPTS_PUTS("errors=remount-ro");
1767 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
1768 SEQ_OPTS_PUTS("errors=continue");
1769 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
1770 SEQ_OPTS_PUTS("errors=panic");
1771 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
1772 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ);
1773 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME)
1774 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time);
1775 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME)
1776 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time);
1777 if (sb->s_flags & MS_I_VERSION)
1778 SEQ_OPTS_PUTS("i_version");
1779 if (nodefs || sbi->s_stripe)
1780 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe);
1781 if (EXT4_MOUNT_DATA_FLAGS & (sbi->s_mount_opt ^ def_mount_opt)) {
1782 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
1783 SEQ_OPTS_PUTS("data=journal");
1784 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
1785 SEQ_OPTS_PUTS("data=ordered");
1786 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
1787 SEQ_OPTS_PUTS("data=writeback");
1788 }
1789 if (nodefs ||
1790 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
1791 SEQ_OPTS_PRINT("inode_readahead_blks=%u",
1792 sbi->s_inode_readahead_blks);
1793
1794 if (nodefs || (test_opt(sb, INIT_INODE_TABLE) &&
1795 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)))
1796 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult);
1797 if (nodefs || sbi->s_max_dir_size_kb)
1798 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb);
1799
1800 ext4_show_quota_options(seq, sb);
1801 return 0;
1802 }
1803
1804 static int ext4_show_options(struct seq_file *seq, struct dentry *root)
1805 {
1806 return _ext4_show_options(seq, root->d_sb, 0);
1807 }
1808
1809 static int options_seq_show(struct seq_file *seq, void *offset)
1810 {
1811 struct super_block *sb = seq->private;
1812 int rc;
1813
1814 seq_puts(seq, (sb->s_flags & MS_RDONLY) ? "ro" : "rw");
1815 rc = _ext4_show_options(seq, sb, 1);
1816 seq_puts(seq, "\n");
1817 return rc;
1818 }
1819
1820 static int options_open_fs(struct inode *inode, struct file *file)
1821 {
1822 return single_open(file, options_seq_show, PDE_DATA(inode));
1823 }
1824
1825 static const struct file_operations ext4_seq_options_fops = {
1826 .owner = THIS_MODULE,
1827 .open = options_open_fs,
1828 .read = seq_read,
1829 .llseek = seq_lseek,
1830 .release = single_release,
1831 };
1832
1833 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
1834 int read_only)
1835 {
1836 struct ext4_sb_info *sbi = EXT4_SB(sb);
1837 int res = 0;
1838
1839 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
1840 ext4_msg(sb, KERN_ERR, "revision level too high, "
1841 "forcing read-only mode");
1842 res = MS_RDONLY;
1843 }
1844 if (read_only)
1845 goto done;
1846 if (!(sbi->s_mount_state & EXT4_VALID_FS))
1847 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
1848 "running e2fsck is recommended");
1849 else if ((sbi->s_mount_state & EXT4_ERROR_FS))
1850 ext4_msg(sb, KERN_WARNING,
1851 "warning: mounting fs with errors, "
1852 "running e2fsck is recommended");
1853 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
1854 le16_to_cpu(es->s_mnt_count) >=
1855 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
1856 ext4_msg(sb, KERN_WARNING,
1857 "warning: maximal mount count reached, "
1858 "running e2fsck is recommended");
1859 else if (le32_to_cpu(es->s_checkinterval) &&
1860 (le32_to_cpu(es->s_lastcheck) +
1861 le32_to_cpu(es->s_checkinterval) <= get_seconds()))
1862 ext4_msg(sb, KERN_WARNING,
1863 "warning: checktime reached, "
1864 "running e2fsck is recommended");
1865 if (!sbi->s_journal)
1866 es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
1867 if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
1868 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
1869 le16_add_cpu(&es->s_mnt_count, 1);
1870 es->s_mtime = cpu_to_le32(get_seconds());
1871 ext4_update_dynamic_rev(sb);
1872 if (sbi->s_journal)
1873 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
1874
1875 ext4_commit_super(sb, 1);
1876 done:
1877 if (test_opt(sb, DEBUG))
1878 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
1879 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
1880 sb->s_blocksize,
1881 sbi->s_groups_count,
1882 EXT4_BLOCKS_PER_GROUP(sb),
1883 EXT4_INODES_PER_GROUP(sb),
1884 sbi->s_mount_opt, sbi->s_mount_opt2);
1885
1886 cleancache_init_fs(sb);
1887 return res;
1888 }
1889
1890 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup)
1891 {
1892 struct ext4_sb_info *sbi = EXT4_SB(sb);
1893 struct flex_groups *new_groups;
1894 int size;
1895
1896 if (!sbi->s_log_groups_per_flex)
1897 return 0;
1898
1899 size = ext4_flex_group(sbi, ngroup - 1) + 1;
1900 if (size <= sbi->s_flex_groups_allocated)
1901 return 0;
1902
1903 size = roundup_pow_of_two(size * sizeof(struct flex_groups));
1904 new_groups = ext4_kvzalloc(size, GFP_KERNEL);
1905 if (!new_groups) {
1906 ext4_msg(sb, KERN_ERR, "not enough memory for %d flex groups",
1907 size / (int) sizeof(struct flex_groups));
1908 return -ENOMEM;
1909 }
1910
1911 if (sbi->s_flex_groups) {
1912 memcpy(new_groups, sbi->s_flex_groups,
1913 (sbi->s_flex_groups_allocated *
1914 sizeof(struct flex_groups)));
1915 ext4_kvfree(sbi->s_flex_groups);
1916 }
1917 sbi->s_flex_groups = new_groups;
1918 sbi->s_flex_groups_allocated = size / sizeof(struct flex_groups);
1919 return 0;
1920 }
1921
1922 static int ext4_fill_flex_info(struct super_block *sb)
1923 {
1924 struct ext4_sb_info *sbi = EXT4_SB(sb);
1925 struct ext4_group_desc *gdp = NULL;
1926 ext4_group_t flex_group;
1927 unsigned int groups_per_flex = 0;
1928 int i, err;
1929
1930 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
1931 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) {
1932 sbi->s_log_groups_per_flex = 0;
1933 return 1;
1934 }
1935 groups_per_flex = 1U << sbi->s_log_groups_per_flex;
1936
1937 err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count);
1938 if (err)
1939 goto failed;
1940
1941 for (i = 0; i < sbi->s_groups_count; i++) {
1942 gdp = ext4_get_group_desc(sb, i, NULL);
1943
1944 flex_group = ext4_flex_group(sbi, i);
1945 atomic_add(ext4_free_inodes_count(sb, gdp),
1946 &sbi->s_flex_groups[flex_group].free_inodes);
1947 atomic64_add(ext4_free_group_clusters(sb, gdp),
1948 &sbi->s_flex_groups[flex_group].free_clusters);
1949 atomic_add(ext4_used_dirs_count(sb, gdp),
1950 &sbi->s_flex_groups[flex_group].used_dirs);
1951 }
1952
1953 return 1;
1954 failed:
1955 return 0;
1956 }
1957
1958 static __le16 ext4_group_desc_csum(struct ext4_sb_info *sbi, __u32 block_group,
1959 struct ext4_group_desc *gdp)
1960 {
1961 int offset;
1962 __u16 crc = 0;
1963 __le32 le_group = cpu_to_le32(block_group);
1964
1965 if ((sbi->s_es->s_feature_ro_compat &
1966 cpu_to_le32(EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))) {
1967 /* Use new metadata_csum algorithm */
1968 __le16 save_csum;
1969 __u32 csum32;
1970
1971 save_csum = gdp->bg_checksum;
1972 gdp->bg_checksum = 0;
1973 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group,
1974 sizeof(le_group));
1975 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp,
1976 sbi->s_desc_size);
1977 gdp->bg_checksum = save_csum;
1978
1979 crc = csum32 & 0xFFFF;
1980 goto out;
1981 }
1982
1983 /* old crc16 code */
1984 offset = offsetof(struct ext4_group_desc, bg_checksum);
1985
1986 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
1987 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
1988 crc = crc16(crc, (__u8 *)gdp, offset);
1989 offset += sizeof(gdp->bg_checksum); /* skip checksum */
1990 /* for checksum of struct ext4_group_desc do the rest...*/
1991 if ((sbi->s_es->s_feature_incompat &
1992 cpu_to_le32(EXT4_FEATURE_INCOMPAT_64BIT)) &&
1993 offset < le16_to_cpu(sbi->s_es->s_desc_size))
1994 crc = crc16(crc, (__u8 *)gdp + offset,
1995 le16_to_cpu(sbi->s_es->s_desc_size) -
1996 offset);
1997
1998 out:
1999 return cpu_to_le16(crc);
2000 }
2001
2002 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group,
2003 struct ext4_group_desc *gdp)
2004 {
2005 if (ext4_has_group_desc_csum(sb) &&
2006 (gdp->bg_checksum != ext4_group_desc_csum(EXT4_SB(sb),
2007 block_group, gdp)))
2008 return 0;
2009
2010 return 1;
2011 }
2012
2013 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group,
2014 struct ext4_group_desc *gdp)
2015 {
2016 if (!ext4_has_group_desc_csum(sb))
2017 return;
2018 gdp->bg_checksum = ext4_group_desc_csum(EXT4_SB(sb), block_group, gdp);
2019 }
2020
2021 /* Called at mount-time, super-block is locked */
2022 static int ext4_check_descriptors(struct super_block *sb,
2023 ext4_group_t *first_not_zeroed)
2024 {
2025 struct ext4_sb_info *sbi = EXT4_SB(sb);
2026 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
2027 ext4_fsblk_t last_block;
2028 ext4_fsblk_t block_bitmap;
2029 ext4_fsblk_t inode_bitmap;
2030 ext4_fsblk_t inode_table;
2031 int flexbg_flag = 0;
2032 ext4_group_t i, grp = sbi->s_groups_count;
2033
2034 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG))
2035 flexbg_flag = 1;
2036
2037 ext4_debug("Checking group descriptors");
2038
2039 for (i = 0; i < sbi->s_groups_count; i++) {
2040 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
2041
2042 if (i == sbi->s_groups_count - 1 || flexbg_flag)
2043 last_block = ext4_blocks_count(sbi->s_es) - 1;
2044 else
2045 last_block = first_block +
2046 (EXT4_BLOCKS_PER_GROUP(sb) - 1);
2047
2048 if ((grp == sbi->s_groups_count) &&
2049 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2050 grp = i;
2051
2052 block_bitmap = ext4_block_bitmap(sb, gdp);
2053 if (block_bitmap < first_block || block_bitmap > last_block) {
2054 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2055 "Block bitmap for group %u not in group "
2056 "(block %llu)!", i, block_bitmap);
2057 return 0;
2058 }
2059 inode_bitmap = ext4_inode_bitmap(sb, gdp);
2060 if (inode_bitmap < first_block || inode_bitmap > last_block) {
2061 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2062 "Inode bitmap for group %u not in group "
2063 "(block %llu)!", i, inode_bitmap);
2064 return 0;
2065 }
2066 inode_table = ext4_inode_table(sb, gdp);
2067 if (inode_table < first_block ||
2068 inode_table + sbi->s_itb_per_group - 1 > last_block) {
2069 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2070 "Inode table for group %u not in group "
2071 "(block %llu)!", i, inode_table);
2072 return 0;
2073 }
2074 ext4_lock_group(sb, i);
2075 if (!ext4_group_desc_csum_verify(sb, i, gdp)) {
2076 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2077 "Checksum for group %u failed (%u!=%u)",
2078 i, le16_to_cpu(ext4_group_desc_csum(sbi, i,
2079 gdp)), le16_to_cpu(gdp->bg_checksum));
2080 if (!(sb->s_flags & MS_RDONLY)) {
2081 ext4_unlock_group(sb, i);
2082 return 0;
2083 }
2084 }
2085 ext4_unlock_group(sb, i);
2086 if (!flexbg_flag)
2087 first_block += EXT4_BLOCKS_PER_GROUP(sb);
2088 }
2089 if (NULL != first_not_zeroed)
2090 *first_not_zeroed = grp;
2091
2092 ext4_free_blocks_count_set(sbi->s_es,
2093 EXT4_C2B(sbi, ext4_count_free_clusters(sb)));
2094 sbi->s_es->s_free_inodes_count =cpu_to_le32(ext4_count_free_inodes(sb));
2095 return 1;
2096 }
2097
2098 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at
2099 * the superblock) which were deleted from all directories, but held open by
2100 * a process at the time of a crash. We walk the list and try to delete these
2101 * inodes at recovery time (only with a read-write filesystem).
2102 *
2103 * In order to keep the orphan inode chain consistent during traversal (in
2104 * case of crash during recovery), we link each inode into the superblock
2105 * orphan list_head and handle it the same way as an inode deletion during
2106 * normal operation (which journals the operations for us).
2107 *
2108 * We only do an iget() and an iput() on each inode, which is very safe if we
2109 * accidentally point at an in-use or already deleted inode. The worst that
2110 * can happen in this case is that we get a "bit already cleared" message from
2111 * ext4_free_inode(). The only reason we would point at a wrong inode is if
2112 * e2fsck was run on this filesystem, and it must have already done the orphan
2113 * inode cleanup for us, so we can safely abort without any further action.
2114 */
2115 static void ext4_orphan_cleanup(struct super_block *sb,
2116 struct ext4_super_block *es)
2117 {
2118 unsigned int s_flags = sb->s_flags;
2119 int nr_orphans = 0, nr_truncates = 0;
2120 #ifdef CONFIG_QUOTA
2121 int i;
2122 #endif
2123 if (!es->s_last_orphan) {
2124 jbd_debug(4, "no orphan inodes to clean up\n");
2125 return;
2126 }
2127
2128 if (bdev_read_only(sb->s_bdev)) {
2129 ext4_msg(sb, KERN_ERR, "write access "
2130 "unavailable, skipping orphan cleanup");
2131 return;
2132 }
2133
2134 /* Check if feature set would not allow a r/w mount */
2135 if (!ext4_feature_set_ok(sb, 0)) {
2136 ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to "
2137 "unknown ROCOMPAT features");
2138 return;
2139 }
2140
2141 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2142 /* don't clear list on RO mount w/ errors */
2143 if (es->s_last_orphan && !(s_flags & MS_RDONLY)) {
2144 jbd_debug(1, "Errors on filesystem, "
2145 "clearing orphan list.\n");
2146 es->s_last_orphan = 0;
2147 }
2148 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2149 return;
2150 }
2151
2152 if (s_flags & MS_RDONLY) {
2153 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs");
2154 sb->s_flags &= ~MS_RDONLY;
2155 }
2156 #ifdef CONFIG_QUOTA
2157 /* Needed for iput() to work correctly and not trash data */
2158 sb->s_flags |= MS_ACTIVE;
2159 /* Turn on quotas so that they are updated correctly */
2160 for (i = 0; i < MAXQUOTAS; i++) {
2161 if (EXT4_SB(sb)->s_qf_names[i]) {
2162 int ret = ext4_quota_on_mount(sb, i);
2163 if (ret < 0)
2164 ext4_msg(sb, KERN_ERR,
2165 "Cannot turn on journaled "
2166 "quota: error %d", ret);
2167 }
2168 }
2169 #endif
2170
2171 while (es->s_last_orphan) {
2172 struct inode *inode;
2173
2174 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan));
2175 if (IS_ERR(inode)) {
2176 es->s_last_orphan = 0;
2177 break;
2178 }
2179
2180 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan);
2181 dquot_initialize(inode);
2182 if (inode->i_nlink) {
2183 if (test_opt(sb, DEBUG))
2184 ext4_msg(sb, KERN_DEBUG,
2185 "%s: truncating inode %lu to %lld bytes",
2186 __func__, inode->i_ino, inode->i_size);
2187 jbd_debug(2, "truncating inode %lu to %lld bytes\n",
2188 inode->i_ino, inode->i_size);
2189 mutex_lock(&inode->i_mutex);
2190 truncate_inode_pages(inode->i_mapping, inode->i_size);
2191 ext4_truncate(inode);
2192 mutex_unlock(&inode->i_mutex);
2193 nr_truncates++;
2194 } else {
2195 if (test_opt(sb, DEBUG))
2196 ext4_msg(sb, KERN_DEBUG,
2197 "%s: deleting unreferenced inode %lu",
2198 __func__, inode->i_ino);
2199 jbd_debug(2, "deleting unreferenced inode %lu\n",
2200 inode->i_ino);
2201 nr_orphans++;
2202 }
2203 iput(inode); /* The delete magic happens here! */
2204 }
2205
2206 #define PLURAL(x) (x), ((x) == 1) ? "" : "s"
2207
2208 if (nr_orphans)
2209 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted",
2210 PLURAL(nr_orphans));
2211 if (nr_truncates)
2212 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up",
2213 PLURAL(nr_truncates));
2214 #ifdef CONFIG_QUOTA
2215 /* Turn quotas off */
2216 for (i = 0; i < MAXQUOTAS; i++) {
2217 if (sb_dqopt(sb)->files[i])
2218 dquot_quota_off(sb, i);
2219 }
2220 #endif
2221 sb->s_flags = s_flags; /* Restore MS_RDONLY status */
2222 }
2223
2224 /*
2225 * Maximal extent format file size.
2226 * Resulting logical blkno at s_maxbytes must fit in our on-disk
2227 * extent format containers, within a sector_t, and within i_blocks
2228 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units,
2229 * so that won't be a limiting factor.
2230 *
2231 * However there is other limiting factor. We do store extents in the form
2232 * of starting block and length, hence the resulting length of the extent
2233 * covering maximum file size must fit into on-disk format containers as
2234 * well. Given that length is always by 1 unit bigger than max unit (because
2235 * we count 0 as well) we have to lower the s_maxbytes by one fs block.
2236 *
2237 * Note, this does *not* consider any metadata overhead for vfs i_blocks.
2238 */
2239 static loff_t ext4_max_size(int blkbits, int has_huge_files)
2240 {
2241 loff_t res;
2242 loff_t upper_limit = MAX_LFS_FILESIZE;
2243
2244 /* small i_blocks in vfs inode? */
2245 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2246 /*
2247 * CONFIG_LBDAF is not enabled implies the inode
2248 * i_block represent total blocks in 512 bytes
2249 * 32 == size of vfs inode i_blocks * 8
2250 */
2251 upper_limit = (1LL << 32) - 1;
2252
2253 /* total blocks in file system block size */
2254 upper_limit >>= (blkbits - 9);
2255 upper_limit <<= blkbits;
2256 }
2257
2258 /*
2259 * 32-bit extent-start container, ee_block. We lower the maxbytes
2260 * by one fs block, so ee_len can cover the extent of maximum file
2261 * size
2262 */
2263 res = (1LL << 32) - 1;
2264 res <<= blkbits;
2265
2266 /* Sanity check against vm- & vfs- imposed limits */
2267 if (res > upper_limit)
2268 res = upper_limit;
2269
2270 return res;
2271 }
2272
2273 /*
2274 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect
2275 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
2276 * We need to be 1 filesystem block less than the 2^48 sector limit.
2277 */
2278 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
2279 {
2280 loff_t res = EXT4_NDIR_BLOCKS;
2281 int meta_blocks;
2282 loff_t upper_limit;
2283 /* This is calculated to be the largest file size for a dense, block
2284 * mapped file such that the file's total number of 512-byte sectors,
2285 * including data and all indirect blocks, does not exceed (2^48 - 1).
2286 *
2287 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
2288 * number of 512-byte sectors of the file.
2289 */
2290
2291 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2292 /*
2293 * !has_huge_files or CONFIG_LBDAF not enabled implies that
2294 * the inode i_block field represents total file blocks in
2295 * 2^32 512-byte sectors == size of vfs inode i_blocks * 8
2296 */
2297 upper_limit = (1LL << 32) - 1;
2298
2299 /* total blocks in file system block size */
2300 upper_limit >>= (bits - 9);
2301
2302 } else {
2303 /*
2304 * We use 48 bit ext4_inode i_blocks
2305 * With EXT4_HUGE_FILE_FL set the i_blocks
2306 * represent total number of blocks in
2307 * file system block size
2308 */
2309 upper_limit = (1LL << 48) - 1;
2310
2311 }
2312
2313 /* indirect blocks */
2314 meta_blocks = 1;
2315 /* double indirect blocks */
2316 meta_blocks += 1 + (1LL << (bits-2));
2317 /* tripple indirect blocks */
2318 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2)));
2319
2320 upper_limit -= meta_blocks;
2321 upper_limit <<= bits;
2322
2323 res += 1LL << (bits-2);
2324 res += 1LL << (2*(bits-2));
2325 res += 1LL << (3*(bits-2));
2326 res <<= bits;
2327 if (res > upper_limit)
2328 res = upper_limit;
2329
2330 if (res > MAX_LFS_FILESIZE)
2331 res = MAX_LFS_FILESIZE;
2332
2333 return res;
2334 }
2335
2336 static ext4_fsblk_t descriptor_loc(struct super_block *sb,
2337 ext4_fsblk_t logical_sb_block, int nr)
2338 {
2339 struct ext4_sb_info *sbi = EXT4_SB(sb);
2340 ext4_group_t bg, first_meta_bg;
2341 int has_super = 0;
2342
2343 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
2344
2345 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_META_BG) ||
2346 nr < first_meta_bg)
2347 return logical_sb_block + nr + 1;
2348 bg = sbi->s_desc_per_block * nr;
2349 if (ext4_bg_has_super(sb, bg))
2350 has_super = 1;
2351
2352 return (has_super + ext4_group_first_block_no(sb, bg));
2353 }
2354
2355 /**
2356 * ext4_get_stripe_size: Get the stripe size.
2357 * @sbi: In memory super block info
2358 *
2359 * If we have specified it via mount option, then
2360 * use the mount option value. If the value specified at mount time is
2361 * greater than the blocks per group use the super block value.
2362 * If the super block value is greater than blocks per group return 0.
2363 * Allocator needs it be less than blocks per group.
2364 *
2365 */
2366 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
2367 {
2368 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
2369 unsigned long stripe_width =
2370 le32_to_cpu(sbi->s_es->s_raid_stripe_width);
2371 int ret;
2372
2373 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
2374 ret = sbi->s_stripe;
2375 else if (stripe_width <= sbi->s_blocks_per_group)
2376 ret = stripe_width;
2377 else if (stride <= sbi->s_blocks_per_group)
2378 ret = stride;
2379 else
2380 ret = 0;
2381
2382 /*
2383 * If the stripe width is 1, this makes no sense and
2384 * we set it to 0 to turn off stripe handling code.
2385 */
2386 if (ret <= 1)
2387 ret = 0;
2388
2389 return ret;
2390 }
2391
2392 /* sysfs supprt */
2393
2394 struct ext4_attr {
2395 struct attribute attr;
2396 ssize_t (*show)(struct ext4_attr *, struct ext4_sb_info *, char *);
2397 ssize_t (*store)(struct ext4_attr *, struct ext4_sb_info *,
2398 const char *, size_t);
2399 union {
2400 int offset;
2401 int deprecated_val;
2402 } u;
2403 };
2404
2405 static int parse_strtoull(const char *buf,
2406 unsigned long long max, unsigned long long *value)
2407 {
2408 int ret;
2409
2410 ret = kstrtoull(skip_spaces(buf), 0, value);
2411 if (!ret && *value > max)
2412 ret = -EINVAL;
2413 return ret;
2414 }
2415
2416 static ssize_t delayed_allocation_blocks_show(struct ext4_attr *a,
2417 struct ext4_sb_info *sbi,
2418 char *buf)
2419 {
2420 return snprintf(buf, PAGE_SIZE, "%llu\n",
2421 (s64) EXT4_C2B(sbi,
2422 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
2423 }
2424
2425 static ssize_t session_write_kbytes_show(struct ext4_attr *a,
2426 struct ext4_sb_info *sbi, char *buf)
2427 {
2428 struct super_block *sb = sbi->s_buddy_cache->i_sb;
2429
2430 if (!sb->s_bdev->bd_part)
2431 return snprintf(buf, PAGE_SIZE, "0\n");
2432 return snprintf(buf, PAGE_SIZE, "%lu\n",
2433 (part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
2434 sbi->s_sectors_written_start) >> 1);
2435 }
2436
2437 static ssize_t lifetime_write_kbytes_show(struct ext4_attr *a,
2438 struct ext4_sb_info *sbi, char *buf)
2439 {
2440 struct super_block *sb = sbi->s_buddy_cache->i_sb;
2441
2442 if (!sb->s_bdev->bd_part)
2443 return snprintf(buf, PAGE_SIZE, "0\n");
2444 return snprintf(buf, PAGE_SIZE, "%llu\n",
2445 (unsigned long long)(sbi->s_kbytes_written +
2446 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
2447 EXT4_SB(sb)->s_sectors_written_start) >> 1)));
2448 }
2449
2450 static ssize_t inode_readahead_blks_store(struct ext4_attr *a,
2451 struct ext4_sb_info *sbi,
2452 const char *buf, size_t count)
2453 {
2454 unsigned long t;
2455 int ret;
2456
2457 ret = kstrtoul(skip_spaces(buf), 0, &t);
2458 if (ret)
2459 return ret;
2460
2461 if (t && (!is_power_of_2(t) || t > 0x40000000))
2462 return -EINVAL;
2463
2464 sbi->s_inode_readahead_blks = t;
2465 return count;
2466 }
2467
2468 static ssize_t sbi_ui_show(struct ext4_attr *a,
2469 struct ext4_sb_info *sbi, char *buf)
2470 {
2471 unsigned int *ui = (unsigned int *) (((char *) sbi) + a->u.offset);
2472
2473 return snprintf(buf, PAGE_SIZE, "%u\n", *ui);
2474 }
2475
2476 static ssize_t sbi_ui_store(struct ext4_attr *a,
2477 struct ext4_sb_info *sbi,
2478 const char *buf, size_t count)
2479 {
2480 unsigned int *ui = (unsigned int *) (((char *) sbi) + a->u.offset);
2481 unsigned long t;
2482 int ret;
2483
2484 ret = kstrtoul(skip_spaces(buf), 0, &t);
2485 if (ret)
2486 return ret;
2487 *ui = t;
2488 return count;
2489 }
2490
2491 static ssize_t reserved_clusters_show(struct ext4_attr *a,
2492 struct ext4_sb_info *sbi, char *buf)
2493 {
2494 return snprintf(buf, PAGE_SIZE, "%llu\n",
2495 (unsigned long long) atomic64_read(&sbi->s_resv_clusters));
2496 }
2497
2498 static ssize_t reserved_clusters_store(struct ext4_attr *a,
2499 struct ext4_sb_info *sbi,
2500 const char *buf, size_t count)
2501 {
2502 unsigned long long val;
2503 int ret;
2504
2505 if (parse_strtoull(buf, -1ULL, &val))
2506 return -EINVAL;
2507 ret = ext4_reserve_clusters(sbi, val);
2508
2509 return ret ? ret : count;
2510 }
2511
2512 static ssize_t trigger_test_error(struct ext4_attr *a,
2513 struct ext4_sb_info *sbi,
2514 const char *buf, size_t count)
2515 {
2516 int len = count;
2517
2518 if (!capable(CAP_SYS_ADMIN))
2519 return -EPERM;
2520
2521 if (len && buf[len-1] == '\n')
2522 len--;
2523
2524 if (len)
2525 ext4_error(sbi->s_sb, "%.*s", len, buf);
2526 return count;
2527 }
2528
2529 static ssize_t sbi_deprecated_show(struct ext4_attr *a,
2530 struct ext4_sb_info *sbi, char *buf)
2531 {
2532 return snprintf(buf, PAGE_SIZE, "%d\n", a->u.deprecated_val);
2533 }
2534
2535 #define EXT4_ATTR_OFFSET(_name,_mode,_show,_store,_elname) \
2536 static struct ext4_attr ext4_attr_##_name = { \
2537 .attr = {.name = __stringify(_name), .mode = _mode }, \
2538 .show = _show, \
2539 .store = _store, \
2540 .u = { \
2541 .offset = offsetof(struct ext4_sb_info, _elname),\
2542 }, \
2543 }
2544 #define EXT4_ATTR(name, mode, show, store) \
2545 static struct ext4_attr ext4_attr_##name = __ATTR(name, mode, show, store)
2546
2547 #define EXT4_INFO_ATTR(name) EXT4_ATTR(name, 0444, NULL, NULL)
2548 #define EXT4_RO_ATTR(name) EXT4_ATTR(name, 0444, name##_show, NULL)
2549 #define EXT4_RW_ATTR(name) EXT4_ATTR(name, 0644, name##_show, name##_store)
2550 #define EXT4_RW_ATTR_SBI_UI(name, elname) \
2551 EXT4_ATTR_OFFSET(name, 0644, sbi_ui_show, sbi_ui_store, elname)
2552 #define ATTR_LIST(name) &ext4_attr_##name.attr
2553 #define EXT4_DEPRECATED_ATTR(_name, _val) \
2554 static struct ext4_attr ext4_attr_##_name = { \
2555 .attr = {.name = __stringify(_name), .mode = 0444 }, \
2556 .show = sbi_deprecated_show, \
2557 .u = { \
2558 .deprecated_val = _val, \
2559 }, \
2560 }
2561
2562 EXT4_RO_ATTR(delayed_allocation_blocks);
2563 EXT4_RO_ATTR(session_write_kbytes);
2564 EXT4_RO_ATTR(lifetime_write_kbytes);
2565 EXT4_RW_ATTR(reserved_clusters);
2566 EXT4_ATTR_OFFSET(inode_readahead_blks, 0644, sbi_ui_show,
2567 inode_readahead_blks_store, s_inode_readahead_blks);
2568 EXT4_RW_ATTR_SBI_UI(inode_goal, s_inode_goal);
2569 EXT4_RW_ATTR_SBI_UI(mb_stats, s_mb_stats);
2570 EXT4_RW_ATTR_SBI_UI(mb_max_to_scan, s_mb_max_to_scan);
2571 EXT4_RW_ATTR_SBI_UI(mb_min_to_scan, s_mb_min_to_scan);
2572 EXT4_RW_ATTR_SBI_UI(mb_order2_req, s_mb_order2_reqs);
2573 EXT4_RW_ATTR_SBI_UI(mb_stream_req, s_mb_stream_request);
2574 EXT4_RW_ATTR_SBI_UI(mb_group_prealloc, s_mb_group_prealloc);
2575 EXT4_DEPRECATED_ATTR(max_writeback_mb_bump, 128);
2576 EXT4_RW_ATTR_SBI_UI(extent_max_zeroout_kb, s_extent_max_zeroout_kb);
2577 EXT4_ATTR(trigger_fs_error, 0200, NULL, trigger_test_error);
2578
2579 static struct attribute *ext4_attrs[] = {
2580 ATTR_LIST(delayed_allocation_blocks),
2581 ATTR_LIST(session_write_kbytes),
2582 ATTR_LIST(lifetime_write_kbytes),
2583 ATTR_LIST(reserved_clusters),
2584 ATTR_LIST(inode_readahead_blks),
2585 ATTR_LIST(inode_goal),
2586 ATTR_LIST(mb_stats),
2587 ATTR_LIST(mb_max_to_scan),
2588 ATTR_LIST(mb_min_to_scan),
2589 ATTR_LIST(mb_order2_req),
2590 ATTR_LIST(mb_stream_req),
2591 ATTR_LIST(mb_group_prealloc),
2592 ATTR_LIST(max_writeback_mb_bump),
2593 ATTR_LIST(extent_max_zeroout_kb),
2594 ATTR_LIST(trigger_fs_error),
2595 NULL,
2596 };
2597
2598 /* Features this copy of ext4 supports */
2599 EXT4_INFO_ATTR(lazy_itable_init);
2600 EXT4_INFO_ATTR(batched_discard);
2601 EXT4_INFO_ATTR(meta_bg_resize);
2602
2603 static struct attribute *ext4_feat_attrs[] = {
2604 ATTR_LIST(lazy_itable_init),
2605 ATTR_LIST(batched_discard),
2606 ATTR_LIST(meta_bg_resize),
2607 NULL,
2608 };
2609
2610 static ssize_t ext4_attr_show(struct kobject *kobj,
2611 struct attribute *attr, char *buf)
2612 {
2613 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2614 s_kobj);
2615 struct ext4_attr *a = container_of(attr, struct ext4_attr, attr);
2616
2617 return a->show ? a->show(a, sbi, buf) : 0;
2618 }
2619
2620 static ssize_t ext4_attr_store(struct kobject *kobj,
2621 struct attribute *attr,
2622 const char *buf, size_t len)
2623 {
2624 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2625 s_kobj);
2626 struct ext4_attr *a = container_of(attr, struct ext4_attr, attr);
2627
2628 return a->store ? a->store(a, sbi, buf, len) : 0;
2629 }
2630
2631 static void ext4_sb_release(struct kobject *kobj)
2632 {
2633 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2634 s_kobj);
2635 complete(&sbi->s_kobj_unregister);
2636 }
2637
2638 static const struct sysfs_ops ext4_attr_ops = {
2639 .show = ext4_attr_show,
2640 .store = ext4_attr_store,
2641 };
2642
2643 static struct kobj_type ext4_ktype = {
2644 .default_attrs = ext4_attrs,
2645 .sysfs_ops = &ext4_attr_ops,
2646 .release = ext4_sb_release,
2647 };
2648
2649 static void ext4_feat_release(struct kobject *kobj)
2650 {
2651 complete(&ext4_feat->f_kobj_unregister);
2652 }
2653
2654 static struct kobj_type ext4_feat_ktype = {
2655 .default_attrs = ext4_feat_attrs,
2656 .sysfs_ops = &ext4_attr_ops,
2657 .release = ext4_feat_release,
2658 };
2659
2660 /*
2661 * Check whether this filesystem can be mounted based on
2662 * the features present and the RDONLY/RDWR mount requested.
2663 * Returns 1 if this filesystem can be mounted as requested,
2664 * 0 if it cannot be.
2665 */
2666 static int ext4_feature_set_ok(struct super_block *sb, int readonly)
2667 {
2668 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT4_FEATURE_INCOMPAT_SUPP)) {
2669 ext4_msg(sb, KERN_ERR,
2670 "Couldn't mount because of "
2671 "unsupported optional features (%x)",
2672 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
2673 ~EXT4_FEATURE_INCOMPAT_SUPP));
2674 return 0;
2675 }
2676
2677 if (readonly)
2678 return 1;
2679
2680 /* Check that feature set is OK for a read-write mount */
2681 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT4_FEATURE_RO_COMPAT_SUPP)) {
2682 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
2683 "unsupported optional features (%x)",
2684 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
2685 ~EXT4_FEATURE_RO_COMPAT_SUPP));
2686 return 0;
2687 }
2688 /*
2689 * Large file size enabled file system can only be mounted
2690 * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF
2691 */
2692 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
2693 if (sizeof(blkcnt_t) < sizeof(u64)) {
2694 ext4_msg(sb, KERN_ERR, "Filesystem with huge files "
2695 "cannot be mounted RDWR without "
2696 "CONFIG_LBDAF");
2697 return 0;
2698 }
2699 }
2700 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_BIGALLOC) &&
2701 !EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) {
2702 ext4_msg(sb, KERN_ERR,
2703 "Can't support bigalloc feature without "
2704 "extents feature\n");
2705 return 0;
2706 }
2707
2708 #ifndef CONFIG_QUOTA
2709 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) &&
2710 !readonly) {
2711 ext4_msg(sb, KERN_ERR,
2712 "Filesystem with quota feature cannot be mounted RDWR "
2713 "without CONFIG_QUOTA");
2714 return 0;
2715 }
2716 #endif /* CONFIG_QUOTA */
2717 return 1;
2718 }
2719
2720 /*
2721 * This function is called once a day if we have errors logged
2722 * on the file system
2723 */
2724 static void print_daily_error_info(unsigned long arg)
2725 {
2726 struct super_block *sb = (struct super_block *) arg;
2727 struct ext4_sb_info *sbi;
2728 struct ext4_super_block *es;
2729
2730 sbi = EXT4_SB(sb);
2731 es = sbi->s_es;
2732
2733 if (es->s_error_count)
2734 ext4_msg(sb, KERN_NOTICE, "error count: %u",
2735 le32_to_cpu(es->s_error_count));
2736 if (es->s_first_error_time) {
2737 printk(KERN_NOTICE "EXT4-fs (%s): initial error at %u: %.*s:%d",
2738 sb->s_id, le32_to_cpu(es->s_first_error_time),
2739 (int) sizeof(es->s_first_error_func),
2740 es->s_first_error_func,
2741 le32_to_cpu(es->s_first_error_line));
2742 if (es->s_first_error_ino)
2743 printk(": inode %u",
2744 le32_to_cpu(es->s_first_error_ino));
2745 if (es->s_first_error_block)
2746 printk(": block %llu", (unsigned long long)
2747 le64_to_cpu(es->s_first_error_block));
2748 printk("\n");
2749 }
2750 if (es->s_last_error_time) {
2751 printk(KERN_NOTICE "EXT4-fs (%s): last error at %u: %.*s:%d",
2752 sb->s_id, le32_to_cpu(es->s_last_error_time),
2753 (int) sizeof(es->s_last_error_func),
2754 es->s_last_error_func,
2755 le32_to_cpu(es->s_last_error_line));
2756 if (es->s_last_error_ino)
2757 printk(": inode %u",
2758 le32_to_cpu(es->s_last_error_ino));
2759 if (es->s_last_error_block)
2760 printk(": block %llu", (unsigned long long)
2761 le64_to_cpu(es->s_last_error_block));
2762 printk("\n");
2763 }
2764 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */
2765 }
2766
2767 /* Find next suitable group and run ext4_init_inode_table */
2768 static int ext4_run_li_request(struct ext4_li_request *elr)
2769 {
2770 struct ext4_group_desc *gdp = NULL;
2771 ext4_group_t group, ngroups;
2772 struct super_block *sb;
2773 unsigned long timeout = 0;
2774 int ret = 0;
2775
2776 sb = elr->lr_super;
2777 ngroups = EXT4_SB(sb)->s_groups_count;
2778
2779 sb_start_write(sb);
2780 for (group = elr->lr_next_group; group < ngroups; group++) {
2781 gdp = ext4_get_group_desc(sb, group, NULL);
2782 if (!gdp) {
2783 ret = 1;
2784 break;
2785 }
2786
2787 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2788 break;
2789 }
2790
2791 if (group >= ngroups)
2792 ret = 1;
2793
2794 if (!ret) {
2795 timeout = jiffies;
2796 ret = ext4_init_inode_table(sb, group,
2797 elr->lr_timeout ? 0 : 1);
2798 if (elr->lr_timeout == 0) {
2799 timeout = (jiffies - timeout) *
2800 elr->lr_sbi->s_li_wait_mult;
2801 elr->lr_timeout = timeout;
2802 }
2803 elr->lr_next_sched = jiffies + elr->lr_timeout;
2804 elr->lr_next_group = group + 1;
2805 }
2806 sb_end_write(sb);
2807
2808 return ret;
2809 }
2810
2811 /*
2812 * Remove lr_request from the list_request and free the
2813 * request structure. Should be called with li_list_mtx held
2814 */
2815 static void ext4_remove_li_request(struct ext4_li_request *elr)
2816 {
2817 struct ext4_sb_info *sbi;
2818
2819 if (!elr)
2820 return;
2821
2822 sbi = elr->lr_sbi;
2823
2824 list_del(&elr->lr_request);
2825 sbi->s_li_request = NULL;
2826 kfree(elr);
2827 }
2828
2829 static void ext4_unregister_li_request(struct super_block *sb)
2830 {
2831 mutex_lock(&ext4_li_mtx);
2832 if (!ext4_li_info) {
2833 mutex_unlock(&ext4_li_mtx);
2834 return;
2835 }
2836
2837 mutex_lock(&ext4_li_info->li_list_mtx);
2838 ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
2839 mutex_unlock(&ext4_li_info->li_list_mtx);
2840 mutex_unlock(&ext4_li_mtx);
2841 }
2842
2843 static struct task_struct *ext4_lazyinit_task;
2844
2845 /*
2846 * This is the function where ext4lazyinit thread lives. It walks
2847 * through the request list searching for next scheduled filesystem.
2848 * When such a fs is found, run the lazy initialization request
2849 * (ext4_rn_li_request) and keep track of the time spend in this
2850 * function. Based on that time we compute next schedule time of
2851 * the request. When walking through the list is complete, compute
2852 * next waking time and put itself into sleep.
2853 */
2854 static int ext4_lazyinit_thread(void *arg)
2855 {
2856 struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg;
2857 struct list_head *pos, *n;
2858 struct ext4_li_request *elr;
2859 unsigned long next_wakeup, cur;
2860
2861 BUG_ON(NULL == eli);
2862
2863 cont_thread:
2864 while (true) {
2865 next_wakeup = MAX_JIFFY_OFFSET;
2866
2867 mutex_lock(&eli->li_list_mtx);
2868 if (list_empty(&eli->li_request_list)) {
2869 mutex_unlock(&eli->li_list_mtx);
2870 goto exit_thread;
2871 }
2872
2873 list_for_each_safe(pos, n, &eli->li_request_list) {
2874 elr = list_entry(pos, struct ext4_li_request,
2875 lr_request);
2876
2877 if (time_after_eq(jiffies, elr->lr_next_sched)) {
2878 if (ext4_run_li_request(elr) != 0) {
2879 /* error, remove the lazy_init job */
2880 ext4_remove_li_request(elr);
2881 continue;
2882 }
2883 }
2884
2885 if (time_before(elr->lr_next_sched, next_wakeup))
2886 next_wakeup = elr->lr_next_sched;
2887 }
2888 mutex_unlock(&eli->li_list_mtx);
2889
2890 try_to_freeze();
2891
2892 cur = jiffies;
2893 if ((time_after_eq(cur, next_wakeup)) ||
2894 (MAX_JIFFY_OFFSET == next_wakeup)) {
2895 cond_resched();
2896 continue;
2897 }
2898
2899 schedule_timeout_interruptible(next_wakeup - cur);
2900
2901 if (kthread_should_stop()) {
2902 ext4_clear_request_list();
2903 goto exit_thread;
2904 }
2905 }
2906
2907 exit_thread:
2908 /*
2909 * It looks like the request list is empty, but we need
2910 * to check it under the li_list_mtx lock, to prevent any
2911 * additions into it, and of course we should lock ext4_li_mtx
2912 * to atomically free the list and ext4_li_info, because at
2913 * this point another ext4 filesystem could be registering
2914 * new one.
2915 */
2916 mutex_lock(&ext4_li_mtx);
2917 mutex_lock(&eli->li_list_mtx);
2918 if (!list_empty(&eli->li_request_list)) {
2919 mutex_unlock(&eli->li_list_mtx);
2920 mutex_unlock(&ext4_li_mtx);
2921 goto cont_thread;
2922 }
2923 mutex_unlock(&eli->li_list_mtx);
2924 kfree(ext4_li_info);
2925 ext4_li_info = NULL;
2926 mutex_unlock(&ext4_li_mtx);
2927
2928 return 0;
2929 }
2930
2931 static void ext4_clear_request_list(void)
2932 {
2933 struct list_head *pos, *n;
2934 struct ext4_li_request *elr;
2935
2936 mutex_lock(&ext4_li_info->li_list_mtx);
2937 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
2938 elr = list_entry(pos, struct ext4_li_request,
2939 lr_request);
2940 ext4_remove_li_request(elr);
2941 }
2942 mutex_unlock(&ext4_li_info->li_list_mtx);
2943 }
2944
2945 static int ext4_run_lazyinit_thread(void)
2946 {
2947 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
2948 ext4_li_info, "ext4lazyinit");
2949 if (IS_ERR(ext4_lazyinit_task)) {
2950 int err = PTR_ERR(ext4_lazyinit_task);
2951 ext4_clear_request_list();
2952 kfree(ext4_li_info);
2953 ext4_li_info = NULL;
2954 printk(KERN_CRIT "EXT4-fs: error %d creating inode table "
2955 "initialization thread\n",
2956 err);
2957 return err;
2958 }
2959 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
2960 return 0;
2961 }
2962
2963 /*
2964 * Check whether it make sense to run itable init. thread or not.
2965 * If there is at least one uninitialized inode table, return
2966 * corresponding group number, else the loop goes through all
2967 * groups and return total number of groups.
2968 */
2969 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
2970 {
2971 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
2972 struct ext4_group_desc *gdp = NULL;
2973
2974 for (group = 0; group < ngroups; group++) {
2975 gdp = ext4_get_group_desc(sb, group, NULL);
2976 if (!gdp)
2977 continue;
2978
2979 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2980 break;
2981 }
2982
2983 return group;
2984 }
2985
2986 static int ext4_li_info_new(void)
2987 {
2988 struct ext4_lazy_init *eli = NULL;
2989
2990 eli = kzalloc(sizeof(*eli), GFP_KERNEL);
2991 if (!eli)
2992 return -ENOMEM;
2993
2994 INIT_LIST_HEAD(&eli->li_request_list);
2995 mutex_init(&eli->li_list_mtx);
2996
2997 eli->li_state |= EXT4_LAZYINIT_QUIT;
2998
2999 ext4_li_info = eli;
3000
3001 return 0;
3002 }
3003
3004 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
3005 ext4_group_t start)
3006 {
3007 struct ext4_sb_info *sbi = EXT4_SB(sb);
3008 struct ext4_li_request *elr;
3009 unsigned long rnd;
3010
3011 elr = kzalloc(sizeof(*elr), GFP_KERNEL);
3012 if (!elr)
3013 return NULL;
3014
3015 elr->lr_super = sb;
3016 elr->lr_sbi = sbi;
3017 elr->lr_next_group = start;
3018
3019 /*
3020 * Randomize first schedule time of the request to
3021 * spread the inode table initialization requests
3022 * better.
3023 */
3024 get_random_bytes(&rnd, sizeof(rnd));
3025 elr->lr_next_sched = jiffies + (unsigned long)rnd %
3026 (EXT4_DEF_LI_MAX_START_DELAY * HZ);
3027
3028 return elr;
3029 }
3030
3031 int ext4_register_li_request(struct super_block *sb,
3032 ext4_group_t first_not_zeroed)
3033 {
3034 struct ext4_sb_info *sbi = EXT4_SB(sb);
3035 struct ext4_li_request *elr = NULL;
3036 ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count;
3037 int ret = 0;
3038
3039 mutex_lock(&ext4_li_mtx);
3040 if (sbi->s_li_request != NULL) {
3041 /*
3042 * Reset timeout so it can be computed again, because
3043 * s_li_wait_mult might have changed.
3044 */
3045 sbi->s_li_request->lr_timeout = 0;
3046 goto out;
3047 }
3048
3049 if (first_not_zeroed == ngroups ||
3050 (sb->s_flags & MS_RDONLY) ||
3051 !test_opt(sb, INIT_INODE_TABLE))
3052 goto out;
3053
3054 elr = ext4_li_request_new(sb, first_not_zeroed);
3055 if (!elr) {
3056 ret = -ENOMEM;
3057 goto out;
3058 }
3059
3060 if (NULL == ext4_li_info) {
3061 ret = ext4_li_info_new();
3062 if (ret)
3063 goto out;
3064 }
3065
3066 mutex_lock(&ext4_li_info->li_list_mtx);
3067 list_add(&elr->lr_request, &ext4_li_info->li_request_list);
3068 mutex_unlock(&ext4_li_info->li_list_mtx);
3069
3070 sbi->s_li_request = elr;
3071 /*
3072 * set elr to NULL here since it has been inserted to
3073 * the request_list and the removal and free of it is
3074 * handled by ext4_clear_request_list from now on.
3075 */
3076 elr = NULL;
3077
3078 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
3079 ret = ext4_run_lazyinit_thread();
3080 if (ret)
3081 goto out;
3082 }
3083 out:
3084 mutex_unlock(&ext4_li_mtx);
3085 if (ret)
3086 kfree(elr);
3087 return ret;
3088 }
3089
3090 /*
3091 * We do not need to lock anything since this is called on
3092 * module unload.
3093 */
3094 static void ext4_destroy_lazyinit_thread(void)
3095 {
3096 /*
3097 * If thread exited earlier
3098 * there's nothing to be done.
3099 */
3100 if (!ext4_li_info || !ext4_lazyinit_task)
3101 return;
3102
3103 kthread_stop(ext4_lazyinit_task);
3104 }
3105
3106 static int set_journal_csum_feature_set(struct super_block *sb)
3107 {
3108 int ret = 1;
3109 int compat, incompat;
3110 struct ext4_sb_info *sbi = EXT4_SB(sb);
3111
3112 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3113 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
3114 /* journal checksum v2 */
3115 compat = 0;
3116 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V2;
3117 } else {
3118 /* journal checksum v1 */
3119 compat = JBD2_FEATURE_COMPAT_CHECKSUM;
3120 incompat = 0;
3121 }
3122
3123 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
3124 ret = jbd2_journal_set_features(sbi->s_journal,
3125 compat, 0,
3126 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
3127 incompat);
3128 } else if (test_opt(sb, JOURNAL_CHECKSUM)) {
3129 ret = jbd2_journal_set_features(sbi->s_journal,
3130 compat, 0,
3131 incompat);
3132 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3133 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3134 } else {
3135 jbd2_journal_clear_features(sbi->s_journal,
3136 JBD2_FEATURE_COMPAT_CHECKSUM, 0,
3137 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
3138 JBD2_FEATURE_INCOMPAT_CSUM_V2);
3139 }
3140
3141 return ret;
3142 }
3143
3144 /*
3145 * Note: calculating the overhead so we can be compatible with
3146 * historical BSD practice is quite difficult in the face of
3147 * clusters/bigalloc. This is because multiple metadata blocks from
3148 * different block group can end up in the same allocation cluster.
3149 * Calculating the exact overhead in the face of clustered allocation
3150 * requires either O(all block bitmaps) in memory or O(number of block
3151 * groups**2) in time. We will still calculate the superblock for
3152 * older file systems --- and if we come across with a bigalloc file
3153 * system with zero in s_overhead_clusters the estimate will be close to
3154 * correct especially for very large cluster sizes --- but for newer
3155 * file systems, it's better to calculate this figure once at mkfs
3156 * time, and store it in the superblock. If the superblock value is
3157 * present (even for non-bigalloc file systems), we will use it.
3158 */
3159 static int count_overhead(struct super_block *sb, ext4_group_t grp,
3160 char *buf)
3161 {
3162 struct ext4_sb_info *sbi = EXT4_SB(sb);
3163 struct ext4_group_desc *gdp;
3164 ext4_fsblk_t first_block, last_block, b;
3165 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3166 int s, j, count = 0;
3167
3168 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_BIGALLOC))
3169 return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) +
3170 sbi->s_itb_per_group + 2);
3171
3172 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) +
3173 (grp * EXT4_BLOCKS_PER_GROUP(sb));
3174 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1;
3175 for (i = 0; i < ngroups; i++) {
3176 gdp = ext4_get_group_desc(sb, i, NULL);
3177 b = ext4_block_bitmap(sb, gdp);
3178 if (b >= first_block && b <= last_block) {
3179 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3180 count++;
3181 }
3182 b = ext4_inode_bitmap(sb, gdp);
3183 if (b >= first_block && b <= last_block) {
3184 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3185 count++;
3186 }
3187 b = ext4_inode_table(sb, gdp);
3188 if (b >= first_block && b + sbi->s_itb_per_group <= last_block)
3189 for (j = 0; j < sbi->s_itb_per_group; j++, b++) {
3190 int c = EXT4_B2C(sbi, b - first_block);
3191 ext4_set_bit(c, buf);
3192 count++;
3193 }
3194 if (i != grp)
3195 continue;
3196 s = 0;
3197 if (ext4_bg_has_super(sb, grp)) {
3198 ext4_set_bit(s++, buf);
3199 count++;
3200 }
3201 for (j = ext4_bg_num_gdb(sb, grp); j > 0; j--) {
3202 ext4_set_bit(EXT4_B2C(sbi, s++), buf);
3203 count++;
3204 }
3205 }
3206 if (!count)
3207 return 0;
3208 return EXT4_CLUSTERS_PER_GROUP(sb) -
3209 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8);
3210 }
3211
3212 /*
3213 * Compute the overhead and stash it in sbi->s_overhead
3214 */
3215 int ext4_calculate_overhead(struct super_block *sb)
3216 {
3217 struct ext4_sb_info *sbi = EXT4_SB(sb);
3218 struct ext4_super_block *es = sbi->s_es;
3219 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3220 ext4_fsblk_t overhead = 0;
3221 char *buf = (char *) get_zeroed_page(GFP_KERNEL);
3222
3223 if (!buf)
3224 return -ENOMEM;
3225
3226 /*
3227 * Compute the overhead (FS structures). This is constant
3228 * for a given filesystem unless the number of block groups
3229 * changes so we cache the previous value until it does.
3230 */
3231
3232 /*
3233 * All of the blocks before first_data_block are overhead
3234 */
3235 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
3236
3237 /*
3238 * Add the overhead found in each block group
3239 */
3240 for (i = 0; i < ngroups; i++) {
3241 int blks;
3242
3243 blks = count_overhead(sb, i, buf);
3244 overhead += blks;
3245 if (blks)
3246 memset(buf, 0, PAGE_SIZE);
3247 cond_resched();
3248 }
3249 /* Add the journal blocks as well */
3250 if (sbi->s_journal)
3251 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_maxlen);
3252
3253 sbi->s_overhead = overhead;
3254 smp_wmb();
3255 free_page((unsigned long) buf);
3256 return 0;
3257 }
3258
3259
3260 static ext4_fsblk_t ext4_calculate_resv_clusters(struct ext4_sb_info *sbi)
3261 {
3262 ext4_fsblk_t resv_clusters;
3263
3264 /*
3265 * By default we reserve 2% or 4096 clusters, whichever is smaller.
3266 * This should cover the situations where we can not afford to run
3267 * out of space like for example punch hole, or converting
3268 * uninitialized extents in delalloc path. In most cases such
3269 * allocation would require 1, or 2 blocks, higher numbers are
3270 * very rare.
3271 */
3272 resv_clusters = ext4_blocks_count(sbi->s_es) >> sbi->s_cluster_bits;
3273
3274 do_div(resv_clusters, 50);
3275 resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096);
3276
3277 return resv_clusters;
3278 }
3279
3280
3281 static int ext4_reserve_clusters(struct ext4_sb_info *sbi, ext4_fsblk_t count)
3282 {
3283 ext4_fsblk_t clusters = ext4_blocks_count(sbi->s_es) >>
3284 sbi->s_cluster_bits;
3285
3286 if (count >= clusters)
3287 return -EINVAL;
3288
3289 atomic64_set(&sbi->s_resv_clusters, count);
3290 return 0;
3291 }
3292
3293 static int ext4_fill_super(struct super_block *sb, void *data, int silent)
3294 {
3295 char *orig_data = kstrdup(data, GFP_KERNEL);
3296 struct buffer_head *bh;
3297 struct ext4_super_block *es = NULL;
3298 struct ext4_sb_info *sbi;
3299 ext4_fsblk_t block;
3300 ext4_fsblk_t sb_block = get_sb_block(&data);
3301 ext4_fsblk_t logical_sb_block;
3302 unsigned long offset = 0;
3303 unsigned long journal_devnum = 0;
3304 unsigned long def_mount_opts;
3305 struct inode *root;
3306 char *cp;
3307 const char *descr;
3308 int ret = -ENOMEM;
3309 int blocksize, clustersize;
3310 unsigned int db_count;
3311 unsigned int i;
3312 int needs_recovery, has_huge_files, has_bigalloc;
3313 __u64 blocks_count;
3314 int err = 0;
3315 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
3316 ext4_group_t first_not_zeroed;
3317
3318 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
3319 if (!sbi)
3320 goto out_free_orig;
3321
3322 sbi->s_blockgroup_lock =
3323 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
3324 if (!sbi->s_blockgroup_lock) {
3325 kfree(sbi);
3326 goto out_free_orig;
3327 }
3328 sb->s_fs_info = sbi;
3329 sbi->s_sb = sb;
3330 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
3331 sbi->s_sb_block = sb_block;
3332 if (sb->s_bdev->bd_part)
3333 sbi->s_sectors_written_start =
3334 part_stat_read(sb->s_bdev->bd_part, sectors[1]);
3335
3336 /* Cleanup superblock name */
3337 for (cp = sb->s_id; (cp = strchr(cp, '/'));)
3338 *cp = '!';
3339
3340 /* -EINVAL is default */
3341 ret = -EINVAL;
3342 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
3343 if (!blocksize) {
3344 ext4_msg(sb, KERN_ERR, "unable to set blocksize");
3345 goto out_fail;
3346 }
3347
3348 /*
3349 * The ext4 superblock will not be buffer aligned for other than 1kB
3350 * block sizes. We need to calculate the offset from buffer start.
3351 */
3352 if (blocksize != EXT4_MIN_BLOCK_SIZE) {
3353 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3354 offset = do_div(logical_sb_block, blocksize);
3355 } else {
3356 logical_sb_block = sb_block;
3357 }
3358
3359 if (!(bh = sb_bread(sb, logical_sb_block))) {
3360 ext4_msg(sb, KERN_ERR, "unable to read superblock");
3361 goto out_fail;
3362 }
3363 /*
3364 * Note: s_es must be initialized as soon as possible because
3365 * some ext4 macro-instructions depend on its value
3366 */
3367 es = (struct ext4_super_block *) (bh->b_data + offset);
3368 sbi->s_es = es;
3369 sb->s_magic = le16_to_cpu(es->s_magic);
3370 if (sb->s_magic != EXT4_SUPER_MAGIC)
3371 goto cantfind_ext4;
3372 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
3373
3374 /* Warn if metadata_csum and gdt_csum are both set. */
3375 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3376 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
3377 EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
3378 ext4_warning(sb, KERN_INFO "metadata_csum and uninit_bg are "
3379 "redundant flags; please run fsck.");
3380
3381 /* Check for a known checksum algorithm */
3382 if (!ext4_verify_csum_type(sb, es)) {
3383 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3384 "unknown checksum algorithm.");
3385 silent = 1;
3386 goto cantfind_ext4;
3387 }
3388
3389 /* Load the checksum driver */
3390 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3391 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
3392 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
3393 if (IS_ERR(sbi->s_chksum_driver)) {
3394 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver.");
3395 ret = PTR_ERR(sbi->s_chksum_driver);
3396 sbi->s_chksum_driver = NULL;
3397 goto failed_mount;
3398 }
3399 }
3400
3401 /* Check superblock checksum */
3402 if (!ext4_superblock_csum_verify(sb, es)) {
3403 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3404 "invalid superblock checksum. Run e2fsck?");
3405 silent = 1;
3406 goto cantfind_ext4;
3407 }
3408
3409 /* Precompute checksum seed for all metadata */
3410 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3411 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
3412 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid,
3413 sizeof(es->s_uuid));
3414
3415 /* Set defaults before we parse the mount options */
3416 def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
3417 set_opt(sb, INIT_INODE_TABLE);
3418 if (def_mount_opts & EXT4_DEFM_DEBUG)
3419 set_opt(sb, DEBUG);
3420 if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
3421 set_opt(sb, GRPID);
3422 if (def_mount_opts & EXT4_DEFM_UID16)
3423 set_opt(sb, NO_UID32);
3424 /* xattr user namespace & acls are now defaulted on */
3425 set_opt(sb, XATTR_USER);
3426 #ifdef CONFIG_EXT4_FS_POSIX_ACL
3427 set_opt(sb, POSIX_ACL);
3428 #endif
3429 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
3430 set_opt(sb, JOURNAL_DATA);
3431 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
3432 set_opt(sb, ORDERED_DATA);
3433 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
3434 set_opt(sb, WRITEBACK_DATA);
3435
3436 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC)
3437 set_opt(sb, ERRORS_PANIC);
3438 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE)
3439 set_opt(sb, ERRORS_CONT);
3440 else
3441 set_opt(sb, ERRORS_RO);
3442 if (def_mount_opts & EXT4_DEFM_BLOCK_VALIDITY)
3443 set_opt(sb, BLOCK_VALIDITY);
3444 if (def_mount_opts & EXT4_DEFM_DISCARD)
3445 set_opt(sb, DISCARD);
3446
3447 sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid));
3448 sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid));
3449 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
3450 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
3451 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
3452
3453 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
3454 set_opt(sb, BARRIER);
3455
3456 /*
3457 * enable delayed allocation by default
3458 * Use -o nodelalloc to turn it off
3459 */
3460 if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) &&
3461 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
3462 set_opt(sb, DELALLOC);
3463
3464 /*
3465 * set default s_li_wait_mult for lazyinit, for the case there is
3466 * no mount option specified.
3467 */
3468 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
3469
3470 if (!parse_options((char *) sbi->s_es->s_mount_opts, sb,
3471 &journal_devnum, &journal_ioprio, 0)) {
3472 ext4_msg(sb, KERN_WARNING,
3473 "failed to parse options in superblock: %s",
3474 sbi->s_es->s_mount_opts);
3475 }
3476 sbi->s_def_mount_opt = sbi->s_mount_opt;
3477 if (!parse_options((char *) data, sb, &journal_devnum,
3478 &journal_ioprio, 0))
3479 goto failed_mount;
3480
3481 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
3482 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting "
3483 "with data=journal disables delayed "
3484 "allocation and O_DIRECT support!\n");
3485 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
3486 ext4_msg(sb, KERN_ERR, "can't mount with "
3487 "both data=journal and delalloc");
3488 goto failed_mount;
3489 }
3490 if (test_opt(sb, DIOREAD_NOLOCK)) {
3491 ext4_msg(sb, KERN_ERR, "can't mount with "
3492 "both data=journal and delalloc");
3493 goto failed_mount;
3494 }
3495 if (test_opt(sb, DELALLOC))
3496 clear_opt(sb, DELALLOC);
3497 }
3498
3499 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
3500 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
3501
3502 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
3503 (EXT4_HAS_COMPAT_FEATURE(sb, ~0U) ||
3504 EXT4_HAS_RO_COMPAT_FEATURE(sb, ~0U) ||
3505 EXT4_HAS_INCOMPAT_FEATURE(sb, ~0U)))
3506 ext4_msg(sb, KERN_WARNING,
3507 "feature flags set on rev 0 fs, "
3508 "running e2fsck is recommended");
3509
3510 if (IS_EXT2_SB(sb)) {
3511 if (ext2_feature_set_ok(sb))
3512 ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
3513 "using the ext4 subsystem");
3514 else {
3515 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
3516 "to feature incompatibilities");
3517 goto failed_mount;
3518 }
3519 }
3520
3521 if (IS_EXT3_SB(sb)) {
3522 if (ext3_feature_set_ok(sb))
3523 ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
3524 "using the ext4 subsystem");
3525 else {
3526 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
3527 "to feature incompatibilities");
3528 goto failed_mount;
3529 }
3530 }
3531
3532 /*
3533 * Check feature flags regardless of the revision level, since we
3534 * previously didn't change the revision level when setting the flags,
3535 * so there is a chance incompat flags are set on a rev 0 filesystem.
3536 */
3537 if (!ext4_feature_set_ok(sb, (sb->s_flags & MS_RDONLY)))
3538 goto failed_mount;
3539
3540 blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
3541 if (blocksize < EXT4_MIN_BLOCK_SIZE ||
3542 blocksize > EXT4_MAX_BLOCK_SIZE) {
3543 ext4_msg(sb, KERN_ERR,
3544 "Unsupported filesystem blocksize %d", blocksize);
3545 goto failed_mount;
3546 }
3547
3548 if (sb->s_blocksize != blocksize) {
3549 /* Validate the filesystem blocksize */
3550 if (!sb_set_blocksize(sb, blocksize)) {
3551 ext4_msg(sb, KERN_ERR, "bad block size %d",
3552 blocksize);
3553 goto failed_mount;
3554 }
3555
3556 brelse(bh);
3557 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3558 offset = do_div(logical_sb_block, blocksize);
3559 bh = sb_bread(sb, logical_sb_block);
3560 if (!bh) {
3561 ext4_msg(sb, KERN_ERR,
3562 "Can't read superblock on 2nd try");
3563 goto failed_mount;
3564 }
3565 es = (struct ext4_super_block *)(bh->b_data + offset);
3566 sbi->s_es = es;
3567 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
3568 ext4_msg(sb, KERN_ERR,
3569 "Magic mismatch, very weird!");
3570 goto failed_mount;
3571 }
3572 }
3573
3574 has_huge_files = EXT4_HAS_RO_COMPAT_FEATURE(sb,
3575 EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
3576 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
3577 has_huge_files);
3578 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
3579
3580 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
3581 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
3582 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
3583 } else {
3584 sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
3585 sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
3586 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
3587 (!is_power_of_2(sbi->s_inode_size)) ||
3588 (sbi->s_inode_size > blocksize)) {
3589 ext4_msg(sb, KERN_ERR,
3590 "unsupported inode size: %d",
3591 sbi->s_inode_size);
3592 goto failed_mount;
3593 }
3594 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE)
3595 sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2);
3596 }
3597
3598 sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
3599 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT)) {
3600 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
3601 sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
3602 !is_power_of_2(sbi->s_desc_size)) {
3603 ext4_msg(sb, KERN_ERR,
3604 "unsupported descriptor size %lu",
3605 sbi->s_desc_size);
3606 goto failed_mount;
3607 }
3608 } else
3609 sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
3610
3611 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
3612 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
3613 if (EXT4_INODE_SIZE(sb) == 0 || EXT4_INODES_PER_GROUP(sb) == 0)
3614 goto cantfind_ext4;
3615
3616 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb);
3617 if (sbi->s_inodes_per_block == 0)
3618 goto cantfind_ext4;
3619 sbi->s_itb_per_group = sbi->s_inodes_per_group /
3620 sbi->s_inodes_per_block;
3621 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb);
3622 sbi->s_sbh = bh;
3623 sbi->s_mount_state = le16_to_cpu(es->s_state);
3624 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
3625 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
3626
3627 /* Do we have standard group size of blocksize * 8 blocks ? */
3628 if (sbi->s_blocks_per_group == blocksize << 3)
3629 set_opt2(sb, STD_GROUP_SIZE);
3630
3631 for (i = 0; i < 4; i++)
3632 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
3633 sbi->s_def_hash_version = es->s_def_hash_version;
3634 i = le32_to_cpu(es->s_flags);
3635 if (i & EXT2_FLAGS_UNSIGNED_HASH)
3636 sbi->s_hash_unsigned = 3;
3637 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
3638 #ifdef __CHAR_UNSIGNED__
3639 es->s_flags |= cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
3640 sbi->s_hash_unsigned = 3;
3641 #else
3642 es->s_flags |= cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
3643 #endif
3644 }
3645
3646 /* Handle clustersize */
3647 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size);
3648 has_bigalloc = EXT4_HAS_RO_COMPAT_FEATURE(sb,
3649 EXT4_FEATURE_RO_COMPAT_BIGALLOC);
3650 if (has_bigalloc) {
3651 if (clustersize < blocksize) {
3652 ext4_msg(sb, KERN_ERR,
3653 "cluster size (%d) smaller than "
3654 "block size (%d)", clustersize, blocksize);
3655 goto failed_mount;
3656 }
3657 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) -
3658 le32_to_cpu(es->s_log_block_size);
3659 sbi->s_clusters_per_group =
3660 le32_to_cpu(es->s_clusters_per_group);
3661 if (sbi->s_clusters_per_group > blocksize * 8) {
3662 ext4_msg(sb, KERN_ERR,
3663 "#clusters per group too big: %lu",
3664 sbi->s_clusters_per_group);
3665 goto failed_mount;
3666 }
3667 if (sbi->s_blocks_per_group !=
3668 (sbi->s_clusters_per_group * (clustersize / blocksize))) {
3669 ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and "
3670 "clusters per group (%lu) inconsistent",
3671 sbi->s_blocks_per_group,
3672 sbi->s_clusters_per_group);
3673 goto failed_mount;
3674 }
3675 } else {
3676 if (clustersize != blocksize) {
3677 ext4_warning(sb, "fragment/cluster size (%d) != "
3678 "block size (%d)", clustersize,
3679 blocksize);
3680 clustersize = blocksize;
3681 }
3682 if (sbi->s_blocks_per_group > blocksize * 8) {
3683 ext4_msg(sb, KERN_ERR,
3684 "#blocks per group too big: %lu",
3685 sbi->s_blocks_per_group);
3686 goto failed_mount;
3687 }
3688 sbi->s_clusters_per_group = sbi->s_blocks_per_group;
3689 sbi->s_cluster_bits = 0;
3690 }
3691 sbi->s_cluster_ratio = clustersize / blocksize;
3692
3693 if (sbi->s_inodes_per_group > blocksize * 8) {
3694 ext4_msg(sb, KERN_ERR,
3695 "#inodes per group too big: %lu",
3696 sbi->s_inodes_per_group);
3697 goto failed_mount;
3698 }
3699
3700 /*
3701 * Test whether we have more sectors than will fit in sector_t,
3702 * and whether the max offset is addressable by the page cache.
3703 */
3704 err = generic_check_addressable(sb->s_blocksize_bits,
3705 ext4_blocks_count(es));
3706 if (err) {
3707 ext4_msg(sb, KERN_ERR, "filesystem"
3708 " too large to mount safely on this system");
3709 if (sizeof(sector_t) < 8)
3710 ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled");
3711 goto failed_mount;
3712 }
3713
3714 if (EXT4_BLOCKS_PER_GROUP(sb) == 0)
3715 goto cantfind_ext4;
3716
3717 /* check blocks count against device size */
3718 blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
3719 if (blocks_count && ext4_blocks_count(es) > blocks_count) {
3720 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
3721 "exceeds size of device (%llu blocks)",
3722 ext4_blocks_count(es), blocks_count);
3723 goto failed_mount;
3724 }
3725
3726 /*
3727 * It makes no sense for the first data block to be beyond the end
3728 * of the filesystem.
3729 */
3730 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
3731 ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
3732 "block %u is beyond end of filesystem (%llu)",
3733 le32_to_cpu(es->s_first_data_block),
3734 ext4_blocks_count(es));
3735 goto failed_mount;
3736 }
3737 blocks_count = (ext4_blocks_count(es) -
3738 le32_to_cpu(es->s_first_data_block) +
3739 EXT4_BLOCKS_PER_GROUP(sb) - 1);
3740 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
3741 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
3742 ext4_msg(sb, KERN_WARNING, "groups count too large: %u "
3743 "(block count %llu, first data block %u, "
3744 "blocks per group %lu)", sbi->s_groups_count,
3745 ext4_blocks_count(es),
3746 le32_to_cpu(es->s_first_data_block),
3747 EXT4_BLOCKS_PER_GROUP(sb));
3748 goto failed_mount;
3749 }
3750 sbi->s_groups_count = blocks_count;
3751 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
3752 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
3753 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
3754 EXT4_DESC_PER_BLOCK(sb);
3755 sbi->s_group_desc = ext4_kvmalloc(db_count *
3756 sizeof(struct buffer_head *),
3757 GFP_KERNEL);
3758 if (sbi->s_group_desc == NULL) {
3759 ext4_msg(sb, KERN_ERR, "not enough memory");
3760 ret = -ENOMEM;
3761 goto failed_mount;
3762 }
3763
3764 if (ext4_proc_root)
3765 sbi->s_proc = proc_mkdir(sb->s_id, ext4_proc_root);
3766
3767 if (sbi->s_proc)
3768 proc_create_data("options", S_IRUGO, sbi->s_proc,
3769 &ext4_seq_options_fops, sb);
3770
3771 bgl_lock_init(sbi->s_blockgroup_lock);
3772
3773 for (i = 0; i < db_count; i++) {
3774 block = descriptor_loc(sb, logical_sb_block, i);
3775 sbi->s_group_desc[i] = sb_bread(sb, block);
3776 if (!sbi->s_group_desc[i]) {
3777 ext4_msg(sb, KERN_ERR,
3778 "can't read group descriptor %d", i);
3779 db_count = i;
3780 goto failed_mount2;
3781 }
3782 }
3783 if (!ext4_check_descriptors(sb, &first_not_zeroed)) {
3784 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
3785 goto failed_mount2;
3786 }
3787 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG))
3788 if (!ext4_fill_flex_info(sb)) {
3789 ext4_msg(sb, KERN_ERR,
3790 "unable to initialize "
3791 "flex_bg meta info!");
3792 goto failed_mount2;
3793 }
3794
3795 sbi->s_gdb_count = db_count;
3796 get_random_bytes(&sbi->s_next_generation, sizeof(u32));
3797 spin_lock_init(&sbi->s_next_gen_lock);
3798
3799 init_timer(&sbi->s_err_report);
3800 sbi->s_err_report.function = print_daily_error_info;
3801 sbi->s_err_report.data = (unsigned long) sb;
3802
3803 /* Register extent status tree shrinker */
3804 ext4_es_register_shrinker(sb);
3805
3806 err = percpu_counter_init(&sbi->s_freeclusters_counter,
3807 ext4_count_free_clusters(sb));
3808 if (!err) {
3809 err = percpu_counter_init(&sbi->s_freeinodes_counter,
3810 ext4_count_free_inodes(sb));
3811 }
3812 if (!err) {
3813 err = percpu_counter_init(&sbi->s_dirs_counter,
3814 ext4_count_dirs(sb));
3815 }
3816 if (!err) {
3817 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0);
3818 }
3819 if (!err) {
3820 err = percpu_counter_init(&sbi->s_extent_cache_cnt, 0);
3821 }
3822 if (err) {
3823 ext4_msg(sb, KERN_ERR, "insufficient memory");
3824 goto failed_mount3;
3825 }
3826
3827 sbi->s_stripe = ext4_get_stripe_size(sbi);
3828 sbi->s_extent_max_zeroout_kb = 32;
3829
3830 /*
3831 * set up enough so that it can read an inode
3832 */
3833 if (!test_opt(sb, NOLOAD) &&
3834 EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL))
3835 sb->s_op = &ext4_sops;
3836 else
3837 sb->s_op = &ext4_nojournal_sops;
3838 sb->s_export_op = &ext4_export_ops;
3839 sb->s_xattr = ext4_xattr_handlers;
3840 #ifdef CONFIG_QUOTA
3841 sb->dq_op = &ext4_quota_operations;
3842 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA))
3843 sb->s_qcop = &ext4_qctl_sysfile_operations;
3844 else
3845 sb->s_qcop = &ext4_qctl_operations;
3846 #endif
3847 memcpy(sb->s_uuid, es->s_uuid, sizeof(es->s_uuid));
3848
3849 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
3850 mutex_init(&sbi->s_orphan_lock);
3851
3852 sb->s_root = NULL;
3853
3854 needs_recovery = (es->s_last_orphan != 0 ||
3855 EXT4_HAS_INCOMPAT_FEATURE(sb,
3856 EXT4_FEATURE_INCOMPAT_RECOVER));
3857
3858 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_MMP) &&
3859 !(sb->s_flags & MS_RDONLY))
3860 if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block)))
3861 goto failed_mount3;
3862
3863 /*
3864 * The first inode we look at is the journal inode. Don't try
3865 * root first: it may be modified in the journal!
3866 */
3867 if (!test_opt(sb, NOLOAD) &&
3868 EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) {
3869 if (ext4_load_journal(sb, es, journal_devnum))
3870 goto failed_mount3;
3871 } else if (test_opt(sb, NOLOAD) && !(sb->s_flags & MS_RDONLY) &&
3872 EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) {
3873 ext4_msg(sb, KERN_ERR, "required journal recovery "
3874 "suppressed and not mounted read-only");
3875 goto failed_mount_wq;
3876 } else {
3877 clear_opt(sb, DATA_FLAGS);
3878 sbi->s_journal = NULL;
3879 needs_recovery = 0;
3880 goto no_journal;
3881 }
3882
3883 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT) &&
3884 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
3885 JBD2_FEATURE_INCOMPAT_64BIT)) {
3886 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
3887 goto failed_mount_wq;
3888 }
3889
3890 if (!set_journal_csum_feature_set(sb)) {
3891 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum "
3892 "feature set");
3893 goto failed_mount_wq;
3894 }
3895
3896 /* We have now updated the journal if required, so we can
3897 * validate the data journaling mode. */
3898 switch (test_opt(sb, DATA_FLAGS)) {
3899 case 0:
3900 /* No mode set, assume a default based on the journal
3901 * capabilities: ORDERED_DATA if the journal can
3902 * cope, else JOURNAL_DATA
3903 */
3904 if (jbd2_journal_check_available_features
3905 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE))
3906 set_opt(sb, ORDERED_DATA);
3907 else
3908 set_opt(sb, JOURNAL_DATA);
3909 break;
3910
3911 case EXT4_MOUNT_ORDERED_DATA:
3912 case EXT4_MOUNT_WRITEBACK_DATA:
3913 if (!jbd2_journal_check_available_features
3914 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
3915 ext4_msg(sb, KERN_ERR, "Journal does not support "
3916 "requested data journaling mode");
3917 goto failed_mount_wq;
3918 }
3919 default:
3920 break;
3921 }
3922 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
3923
3924 sbi->s_journal->j_commit_callback = ext4_journal_commit_callback;
3925
3926 /*
3927 * The journal may have updated the bg summary counts, so we
3928 * need to update the global counters.
3929 */
3930 percpu_counter_set(&sbi->s_freeclusters_counter,
3931 ext4_count_free_clusters(sb));
3932 percpu_counter_set(&sbi->s_freeinodes_counter,
3933 ext4_count_free_inodes(sb));
3934 percpu_counter_set(&sbi->s_dirs_counter,
3935 ext4_count_dirs(sb));
3936 percpu_counter_set(&sbi->s_dirtyclusters_counter, 0);
3937
3938 no_journal:
3939 /*
3940 * Get the # of file system overhead blocks from the
3941 * superblock if present.
3942 */
3943 if (es->s_overhead_clusters)
3944 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters);
3945 else {
3946 err = ext4_calculate_overhead(sb);
3947 if (err)
3948 goto failed_mount_wq;
3949 }
3950
3951 /*
3952 * The maximum number of concurrent works can be high and
3953 * concurrency isn't really necessary. Limit it to 1.
3954 */
3955 EXT4_SB(sb)->rsv_conversion_wq =
3956 alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
3957 if (!EXT4_SB(sb)->rsv_conversion_wq) {
3958 printk(KERN_ERR "EXT4-fs: failed to create workqueue\n");
3959 ret = -ENOMEM;
3960 goto failed_mount4;
3961 }
3962
3963 EXT4_SB(sb)->unrsv_conversion_wq =
3964 alloc_workqueue("ext4-unrsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
3965 if (!EXT4_SB(sb)->unrsv_conversion_wq) {
3966 printk(KERN_ERR "EXT4-fs: failed to create workqueue\n");
3967 ret = -ENOMEM;
3968 goto failed_mount4;
3969 }
3970
3971 /*
3972 * The jbd2_journal_load will have done any necessary log recovery,
3973 * so we can safely mount the rest of the filesystem now.
3974 */
3975
3976 root = ext4_iget(sb, EXT4_ROOT_INO);
3977 if (IS_ERR(root)) {
3978 ext4_msg(sb, KERN_ERR, "get root inode failed");
3979 ret = PTR_ERR(root);
3980 root = NULL;
3981 goto failed_mount4;
3982 }
3983 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
3984 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
3985 iput(root);
3986 goto failed_mount4;
3987 }
3988 sb->s_root = d_make_root(root);
3989 if (!sb->s_root) {
3990 ext4_msg(sb, KERN_ERR, "get root dentry failed");
3991 ret = -ENOMEM;
3992 goto failed_mount4;
3993 }
3994
3995 if (ext4_setup_super(sb, es, sb->s_flags & MS_RDONLY))
3996 sb->s_flags |= MS_RDONLY;
3997
3998 /* determine the minimum size of new large inodes, if present */
3999 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) {
4000 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
4001 EXT4_GOOD_OLD_INODE_SIZE;
4002 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4003 EXT4_FEATURE_RO_COMPAT_EXTRA_ISIZE)) {
4004 if (sbi->s_want_extra_isize <
4005 le16_to_cpu(es->s_want_extra_isize))
4006 sbi->s_want_extra_isize =
4007 le16_to_cpu(es->s_want_extra_isize);
4008 if (sbi->s_want_extra_isize <
4009 le16_to_cpu(es->s_min_extra_isize))
4010 sbi->s_want_extra_isize =
4011 le16_to_cpu(es->s_min_extra_isize);
4012 }
4013 }
4014 /* Check if enough inode space is available */
4015 if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize >
4016 sbi->s_inode_size) {
4017 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
4018 EXT4_GOOD_OLD_INODE_SIZE;
4019 ext4_msg(sb, KERN_INFO, "required extra inode space not"
4020 "available");
4021 }
4022
4023 err = ext4_reserve_clusters(sbi, ext4_calculate_resv_clusters(sbi));
4024 if (err) {
4025 ext4_msg(sb, KERN_ERR, "failed to reserve %llu clusters for "
4026 "reserved pool", ext4_calculate_resv_clusters(sbi));
4027 goto failed_mount4a;
4028 }
4029
4030 err = ext4_setup_system_zone(sb);
4031 if (err) {
4032 ext4_msg(sb, KERN_ERR, "failed to initialize system "
4033 "zone (%d)", err);
4034 goto failed_mount4a;
4035 }
4036
4037 ext4_ext_init(sb);
4038 err = ext4_mb_init(sb);
4039 if (err) {
4040 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
4041 err);
4042 goto failed_mount5;
4043 }
4044
4045 err = ext4_register_li_request(sb, first_not_zeroed);
4046 if (err)
4047 goto failed_mount6;
4048
4049 sbi->s_kobj.kset = ext4_kset;
4050 init_completion(&sbi->s_kobj_unregister);
4051 err = kobject_init_and_add(&sbi->s_kobj, &ext4_ktype, NULL,
4052 "%s", sb->s_id);
4053 if (err)
4054 goto failed_mount7;
4055
4056 #ifdef CONFIG_QUOTA
4057 /* Enable quota usage during mount. */
4058 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) &&
4059 !(sb->s_flags & MS_RDONLY)) {
4060 err = ext4_enable_quotas(sb);
4061 if (err)
4062 goto failed_mount8;
4063 }
4064 #endif /* CONFIG_QUOTA */
4065
4066 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
4067 ext4_orphan_cleanup(sb, es);
4068 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
4069 if (needs_recovery) {
4070 ext4_msg(sb, KERN_INFO, "recovery complete");
4071 ext4_mark_recovery_complete(sb, es);
4072 }
4073 if (EXT4_SB(sb)->s_journal) {
4074 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
4075 descr = " journalled data mode";
4076 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
4077 descr = " ordered data mode";
4078 else
4079 descr = " writeback data mode";
4080 } else
4081 descr = "out journal";
4082
4083 if (test_opt(sb, DISCARD)) {
4084 struct request_queue *q = bdev_get_queue(sb->s_bdev);
4085 if (!blk_queue_discard(q))
4086 ext4_msg(sb, KERN_WARNING,
4087 "mounting with \"discard\" option, but "
4088 "the device does not support discard");
4089 }
4090
4091 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. "
4092 "Opts: %s%s%s", descr, sbi->s_es->s_mount_opts,
4093 *sbi->s_es->s_mount_opts ? "; " : "", orig_data);
4094
4095 if (es->s_error_count)
4096 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
4097
4098 kfree(orig_data);
4099 return 0;
4100
4101 cantfind_ext4:
4102 if (!silent)
4103 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
4104 goto failed_mount;
4105
4106 #ifdef CONFIG_QUOTA
4107 failed_mount8:
4108 kobject_del(&sbi->s_kobj);
4109 #endif
4110 failed_mount7:
4111 ext4_unregister_li_request(sb);
4112 failed_mount6:
4113 ext4_mb_release(sb);
4114 failed_mount5:
4115 ext4_ext_release(sb);
4116 ext4_release_system_zone(sb);
4117 failed_mount4a:
4118 dput(sb->s_root);
4119 sb->s_root = NULL;
4120 failed_mount4:
4121 ext4_msg(sb, KERN_ERR, "mount failed");
4122 if (EXT4_SB(sb)->rsv_conversion_wq)
4123 destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq);
4124 if (EXT4_SB(sb)->unrsv_conversion_wq)
4125 destroy_workqueue(EXT4_SB(sb)->unrsv_conversion_wq);
4126 failed_mount_wq:
4127 if (sbi->s_journal) {
4128 jbd2_journal_destroy(sbi->s_journal);
4129 sbi->s_journal = NULL;
4130 }
4131 failed_mount3:
4132 ext4_es_unregister_shrinker(sb);
4133 del_timer(&sbi->s_err_report);
4134 if (sbi->s_flex_groups)
4135 ext4_kvfree(sbi->s_flex_groups);
4136 percpu_counter_destroy(&sbi->s_freeclusters_counter);
4137 percpu_counter_destroy(&sbi->s_freeinodes_counter);
4138 percpu_counter_destroy(&sbi->s_dirs_counter);
4139 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
4140 percpu_counter_destroy(&sbi->s_extent_cache_cnt);
4141 if (sbi->s_mmp_tsk)
4142 kthread_stop(sbi->s_mmp_tsk);
4143 failed_mount2:
4144 for (i = 0; i < db_count; i++)
4145 brelse(sbi->s_group_desc[i]);
4146 ext4_kvfree(sbi->s_group_desc);
4147 failed_mount:
4148 if (sbi->s_chksum_driver)
4149 crypto_free_shash(sbi->s_chksum_driver);
4150 if (sbi->s_proc) {
4151 remove_proc_entry("options", sbi->s_proc);
4152 remove_proc_entry(sb->s_id, ext4_proc_root);
4153 }
4154 #ifdef CONFIG_QUOTA
4155 for (i = 0; i < MAXQUOTAS; i++)
4156 kfree(sbi->s_qf_names[i]);
4157 #endif
4158 ext4_blkdev_remove(sbi);
4159 brelse(bh);
4160 out_fail:
4161 sb->s_fs_info = NULL;
4162 kfree(sbi->s_blockgroup_lock);
4163 kfree(sbi);
4164 out_free_orig:
4165 kfree(orig_data);
4166 return err ? err : ret;
4167 }
4168
4169 /*
4170 * Setup any per-fs journal parameters now. We'll do this both on
4171 * initial mount, once the journal has been initialised but before we've
4172 * done any recovery; and again on any subsequent remount.
4173 */
4174 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
4175 {
4176 struct ext4_sb_info *sbi = EXT4_SB(sb);
4177
4178 journal->j_commit_interval = sbi->s_commit_interval;
4179 journal->j_min_batch_time = sbi->s_min_batch_time;
4180 journal->j_max_batch_time = sbi->s_max_batch_time;
4181
4182 write_lock(&journal->j_state_lock);
4183 if (test_opt(sb, BARRIER))
4184 journal->j_flags |= JBD2_BARRIER;
4185 else
4186 journal->j_flags &= ~JBD2_BARRIER;
4187 if (test_opt(sb, DATA_ERR_ABORT))
4188 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
4189 else
4190 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
4191 write_unlock(&journal->j_state_lock);
4192 }
4193
4194 static journal_t *ext4_get_journal(struct super_block *sb,
4195 unsigned int journal_inum)
4196 {
4197 struct inode *journal_inode;
4198 journal_t *journal;
4199
4200 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
4201
4202 /* First, test for the existence of a valid inode on disk. Bad
4203 * things happen if we iget() an unused inode, as the subsequent
4204 * iput() will try to delete it. */
4205
4206 journal_inode = ext4_iget(sb, journal_inum);
4207 if (IS_ERR(journal_inode)) {
4208 ext4_msg(sb, KERN_ERR, "no journal found");
4209 return NULL;
4210 }
4211 if (!journal_inode->i_nlink) {
4212 make_bad_inode(journal_inode);
4213 iput(journal_inode);
4214 ext4_msg(sb, KERN_ERR, "journal inode is deleted");
4215 return NULL;
4216 }
4217
4218 jbd_debug(2, "Journal inode found at %p: %lld bytes\n",
4219 journal_inode, journal_inode->i_size);
4220 if (!S_ISREG(journal_inode->i_mode)) {
4221 ext4_msg(sb, KERN_ERR, "invalid journal inode");
4222 iput(journal_inode);
4223 return NULL;
4224 }
4225
4226 journal = jbd2_journal_init_inode(journal_inode);
4227 if (!journal) {
4228 ext4_msg(sb, KERN_ERR, "Could not load journal inode");
4229 iput(journal_inode);
4230 return NULL;
4231 }
4232 journal->j_private = sb;
4233 ext4_init_journal_params(sb, journal);
4234 return journal;
4235 }
4236
4237 static journal_t *ext4_get_dev_journal(struct super_block *sb,
4238 dev_t j_dev)
4239 {
4240 struct buffer_head *bh;
4241 journal_t *journal;
4242 ext4_fsblk_t start;
4243 ext4_fsblk_t len;
4244 int hblock, blocksize;
4245 ext4_fsblk_t sb_block;
4246 unsigned long offset;
4247 struct ext4_super_block *es;
4248 struct block_device *bdev;
4249
4250 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
4251
4252 bdev = ext4_blkdev_get(j_dev, sb);
4253 if (bdev == NULL)
4254 return NULL;
4255
4256 blocksize = sb->s_blocksize;
4257 hblock = bdev_logical_block_size(bdev);
4258 if (blocksize < hblock) {
4259 ext4_msg(sb, KERN_ERR,
4260 "blocksize too small for journal device");
4261 goto out_bdev;
4262 }
4263
4264 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
4265 offset = EXT4_MIN_BLOCK_SIZE % blocksize;
4266 set_blocksize(bdev, blocksize);
4267 if (!(bh = __bread(bdev, sb_block, blocksize))) {
4268 ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
4269 "external journal");
4270 goto out_bdev;
4271 }
4272
4273 es = (struct ext4_super_block *) (bh->b_data + offset);
4274 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
4275 !(le32_to_cpu(es->s_feature_incompat) &
4276 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
4277 ext4_msg(sb, KERN_ERR, "external journal has "
4278 "bad superblock");
4279 brelse(bh);
4280 goto out_bdev;
4281 }
4282
4283 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
4284 ext4_msg(sb, KERN_ERR, "journal UUID does not match");
4285 brelse(bh);
4286 goto out_bdev;
4287 }
4288
4289 len = ext4_blocks_count(es);
4290 start = sb_block + 1;
4291 brelse(bh); /* we're done with the superblock */
4292
4293 journal = jbd2_journal_init_dev(bdev, sb->s_bdev,
4294 start, len, blocksize);
4295 if (!journal) {
4296 ext4_msg(sb, KERN_ERR, "failed to create device journal");
4297 goto out_bdev;
4298 }
4299 journal->j_private = sb;
4300 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &journal->j_sb_buffer);
4301 wait_on_buffer(journal->j_sb_buffer);
4302 if (!buffer_uptodate(journal->j_sb_buffer)) {
4303 ext4_msg(sb, KERN_ERR, "I/O error on journal device");
4304 goto out_journal;
4305 }
4306 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
4307 ext4_msg(sb, KERN_ERR, "External journal has more than one "
4308 "user (unsupported) - %d",
4309 be32_to_cpu(journal->j_superblock->s_nr_users));
4310 goto out_journal;
4311 }
4312 EXT4_SB(sb)->journal_bdev = bdev;
4313 ext4_init_journal_params(sb, journal);
4314 return journal;
4315
4316 out_journal:
4317 jbd2_journal_destroy(journal);
4318 out_bdev:
4319 ext4_blkdev_put(bdev);
4320 return NULL;
4321 }
4322
4323 static int ext4_load_journal(struct super_block *sb,
4324 struct ext4_super_block *es,
4325 unsigned long journal_devnum)
4326 {
4327 journal_t *journal;
4328 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
4329 dev_t journal_dev;
4330 int err = 0;
4331 int really_read_only;
4332
4333 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
4334
4335 if (journal_devnum &&
4336 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4337 ext4_msg(sb, KERN_INFO, "external journal device major/minor "
4338 "numbers have changed");
4339 journal_dev = new_decode_dev(journal_devnum);
4340 } else
4341 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
4342
4343 really_read_only = bdev_read_only(sb->s_bdev);
4344
4345 /*
4346 * Are we loading a blank journal or performing recovery after a
4347 * crash? For recovery, we need to check in advance whether we
4348 * can get read-write access to the device.
4349 */
4350 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) {
4351 if (sb->s_flags & MS_RDONLY) {
4352 ext4_msg(sb, KERN_INFO, "INFO: recovery "
4353 "required on readonly filesystem");
4354 if (really_read_only) {
4355 ext4_msg(sb, KERN_ERR, "write access "
4356 "unavailable, cannot proceed");
4357 return -EROFS;
4358 }
4359 ext4_msg(sb, KERN_INFO, "write access will "
4360 "be enabled during recovery");
4361 }
4362 }
4363
4364 if (journal_inum && journal_dev) {
4365 ext4_msg(sb, KERN_ERR, "filesystem has both journal "
4366 "and inode journals!");
4367 return -EINVAL;
4368 }
4369
4370 if (journal_inum) {
4371 if (!(journal = ext4_get_journal(sb, journal_inum)))
4372 return -EINVAL;
4373 } else {
4374 if (!(journal = ext4_get_dev_journal(sb, journal_dev)))
4375 return -EINVAL;
4376 }
4377
4378 if (!(journal->j_flags & JBD2_BARRIER))
4379 ext4_msg(sb, KERN_INFO, "barriers disabled");
4380
4381 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER))
4382 err = jbd2_journal_wipe(journal, !really_read_only);
4383 if (!err) {
4384 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
4385 if (save)
4386 memcpy(save, ((char *) es) +
4387 EXT4_S_ERR_START, EXT4_S_ERR_LEN);
4388 err = jbd2_journal_load(journal);
4389 if (save)
4390 memcpy(((char *) es) + EXT4_S_ERR_START,
4391 save, EXT4_S_ERR_LEN);
4392 kfree(save);
4393 }
4394
4395 if (err) {
4396 ext4_msg(sb, KERN_ERR, "error loading journal");
4397 jbd2_journal_destroy(journal);
4398 return err;
4399 }
4400
4401 EXT4_SB(sb)->s_journal = journal;
4402 ext4_clear_journal_err(sb, es);
4403
4404 if (!really_read_only && journal_devnum &&
4405 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4406 es->s_journal_dev = cpu_to_le32(journal_devnum);
4407
4408 /* Make sure we flush the recovery flag to disk. */
4409 ext4_commit_super(sb, 1);
4410 }
4411
4412 return 0;
4413 }
4414
4415 static int ext4_commit_super(struct super_block *sb, int sync)
4416 {
4417 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
4418 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
4419 int error = 0;
4420
4421 if (!sbh || block_device_ejected(sb))
4422 return error;
4423 if (buffer_write_io_error(sbh)) {
4424 /*
4425 * Oh, dear. A previous attempt to write the
4426 * superblock failed. This could happen because the
4427 * USB device was yanked out. Or it could happen to
4428 * be a transient write error and maybe the block will
4429 * be remapped. Nothing we can do but to retry the
4430 * write and hope for the best.
4431 */
4432 ext4_msg(sb, KERN_ERR, "previous I/O error to "
4433 "superblock detected");
4434 clear_buffer_write_io_error(sbh);
4435 set_buffer_uptodate(sbh);
4436 }
4437 /*
4438 * If the file system is mounted read-only, don't update the
4439 * superblock write time. This avoids updating the superblock
4440 * write time when we are mounting the root file system
4441 * read/only but we need to replay the journal; at that point,
4442 * for people who are east of GMT and who make their clock
4443 * tick in localtime for Windows bug-for-bug compatibility,
4444 * the clock is set in the future, and this will cause e2fsck
4445 * to complain and force a full file system check.
4446 */
4447 if (!(sb->s_flags & MS_RDONLY))
4448 es->s_wtime = cpu_to_le32(get_seconds());
4449 if (sb->s_bdev->bd_part)
4450 es->s_kbytes_written =
4451 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written +
4452 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
4453 EXT4_SB(sb)->s_sectors_written_start) >> 1));
4454 else
4455 es->s_kbytes_written =
4456 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written);
4457 ext4_free_blocks_count_set(es,
4458 EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive(
4459 &EXT4_SB(sb)->s_freeclusters_counter)));
4460 es->s_free_inodes_count =
4461 cpu_to_le32(percpu_counter_sum_positive(
4462 &EXT4_SB(sb)->s_freeinodes_counter));
4463 BUFFER_TRACE(sbh, "marking dirty");
4464 ext4_superblock_csum_set(sb);
4465 mark_buffer_dirty(sbh);
4466 if (sync) {
4467 error = sync_dirty_buffer(sbh);
4468 if (error)
4469 return error;
4470
4471 error = buffer_write_io_error(sbh);
4472 if (error) {
4473 ext4_msg(sb, KERN_ERR, "I/O error while writing "
4474 "superblock");
4475 clear_buffer_write_io_error(sbh);
4476 set_buffer_uptodate(sbh);
4477 }
4478 }
4479 return error;
4480 }
4481
4482 /*
4483 * Have we just finished recovery? If so, and if we are mounting (or
4484 * remounting) the filesystem readonly, then we will end up with a
4485 * consistent fs on disk. Record that fact.
4486 */
4487 static void ext4_mark_recovery_complete(struct super_block *sb,
4488 struct ext4_super_block *es)
4489 {
4490 journal_t *journal = EXT4_SB(sb)->s_journal;
4491
4492 if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) {
4493 BUG_ON(journal != NULL);
4494 return;
4495 }
4496 jbd2_journal_lock_updates(journal);
4497 if (jbd2_journal_flush(journal) < 0)
4498 goto out;
4499
4500 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER) &&
4501 sb->s_flags & MS_RDONLY) {
4502 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4503 ext4_commit_super(sb, 1);
4504 }
4505
4506 out:
4507 jbd2_journal_unlock_updates(journal);
4508 }
4509
4510 /*
4511 * If we are mounting (or read-write remounting) a filesystem whose journal
4512 * has recorded an error from a previous lifetime, move that error to the
4513 * main filesystem now.
4514 */
4515 static void ext4_clear_journal_err(struct super_block *sb,
4516 struct ext4_super_block *es)
4517 {
4518 journal_t *journal;
4519 int j_errno;
4520 const char *errstr;
4521
4522 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
4523
4524 journal = EXT4_SB(sb)->s_journal;
4525
4526 /*
4527 * Now check for any error status which may have been recorded in the
4528 * journal by a prior ext4_error() or ext4_abort()
4529 */
4530
4531 j_errno = jbd2_journal_errno(journal);
4532 if (j_errno) {
4533 char nbuf[16];
4534
4535 errstr = ext4_decode_error(sb, j_errno, nbuf);
4536 ext4_warning(sb, "Filesystem error recorded "
4537 "from previous mount: %s", errstr);
4538 ext4_warning(sb, "Marking fs in need of filesystem check.");
4539
4540 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
4541 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
4542 ext4_commit_super(sb, 1);
4543
4544 jbd2_journal_clear_err(journal);
4545 jbd2_journal_update_sb_errno(journal);
4546 }
4547 }
4548
4549 /*
4550 * Force the running and committing transactions to commit,
4551 * and wait on the commit.
4552 */
4553 int ext4_force_commit(struct super_block *sb)
4554 {
4555 journal_t *journal;
4556
4557 if (sb->s_flags & MS_RDONLY)
4558 return 0;
4559
4560 journal = EXT4_SB(sb)->s_journal;
4561 return ext4_journal_force_commit(journal);
4562 }
4563
4564 static int ext4_sync_fs(struct super_block *sb, int wait)
4565 {
4566 int ret = 0;
4567 tid_t target;
4568 bool needs_barrier = false;
4569 struct ext4_sb_info *sbi = EXT4_SB(sb);
4570
4571 trace_ext4_sync_fs(sb, wait);
4572 flush_workqueue(sbi->rsv_conversion_wq);
4573 flush_workqueue(sbi->unrsv_conversion_wq);
4574 /*
4575 * Writeback quota in non-journalled quota case - journalled quota has
4576 * no dirty dquots
4577 */
4578 dquot_writeback_dquots(sb, -1);
4579 /*
4580 * Data writeback is possible w/o journal transaction, so barrier must
4581 * being sent at the end of the function. But we can skip it if
4582 * transaction_commit will do it for us.
4583 */
4584 target = jbd2_get_latest_transaction(sbi->s_journal);
4585 if (wait && sbi->s_journal->j_flags & JBD2_BARRIER &&
4586 !jbd2_trans_will_send_data_barrier(sbi->s_journal, target))
4587 needs_barrier = true;
4588
4589 if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
4590 if (wait)
4591 ret = jbd2_log_wait_commit(sbi->s_journal, target);
4592 }
4593 if (needs_barrier) {
4594 int err;
4595 err = blkdev_issue_flush(sb->s_bdev, GFP_KERNEL, NULL);
4596 if (!ret)
4597 ret = err;
4598 }
4599
4600 return ret;
4601 }
4602
4603 static int ext4_sync_fs_nojournal(struct super_block *sb, int wait)
4604 {
4605 int ret = 0;
4606
4607 trace_ext4_sync_fs(sb, wait);
4608 flush_workqueue(EXT4_SB(sb)->rsv_conversion_wq);
4609 flush_workqueue(EXT4_SB(sb)->unrsv_conversion_wq);
4610 dquot_writeback_dquots(sb, -1);
4611 if (wait && test_opt(sb, BARRIER))
4612 ret = blkdev_issue_flush(sb->s_bdev, GFP_KERNEL, NULL);
4613
4614 return ret;
4615 }
4616
4617 /*
4618 * LVM calls this function before a (read-only) snapshot is created. This
4619 * gives us a chance to flush the journal completely and mark the fs clean.
4620 *
4621 * Note that only this function cannot bring a filesystem to be in a clean
4622 * state independently. It relies on upper layer to stop all data & metadata
4623 * modifications.
4624 */
4625 static int ext4_freeze(struct super_block *sb)
4626 {
4627 int error = 0;
4628 journal_t *journal;
4629
4630 if (sb->s_flags & MS_RDONLY)
4631 return 0;
4632
4633 journal = EXT4_SB(sb)->s_journal;
4634
4635 /* Now we set up the journal barrier. */
4636 jbd2_journal_lock_updates(journal);
4637
4638 /*
4639 * Don't clear the needs_recovery flag if we failed to flush
4640 * the journal.
4641 */
4642 error = jbd2_journal_flush(journal);
4643 if (error < 0)
4644 goto out;
4645
4646 /* Journal blocked and flushed, clear needs_recovery flag. */
4647 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4648 error = ext4_commit_super(sb, 1);
4649 out:
4650 /* we rely on upper layer to stop further updates */
4651 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
4652 return error;
4653 }
4654
4655 /*
4656 * Called by LVM after the snapshot is done. We need to reset the RECOVER
4657 * flag here, even though the filesystem is not technically dirty yet.
4658 */
4659 static int ext4_unfreeze(struct super_block *sb)
4660 {
4661 if (sb->s_flags & MS_RDONLY)
4662 return 0;
4663
4664 /* Reset the needs_recovery flag before the fs is unlocked. */
4665 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4666 ext4_commit_super(sb, 1);
4667 return 0;
4668 }
4669
4670 /*
4671 * Structure to save mount options for ext4_remount's benefit
4672 */
4673 struct ext4_mount_options {
4674 unsigned long s_mount_opt;
4675 unsigned long s_mount_opt2;
4676 kuid_t s_resuid;
4677 kgid_t s_resgid;
4678 unsigned long s_commit_interval;
4679 u32 s_min_batch_time, s_max_batch_time;
4680 #ifdef CONFIG_QUOTA
4681 int s_jquota_fmt;
4682 char *s_qf_names[MAXQUOTAS];
4683 #endif
4684 };
4685
4686 static int ext4_remount(struct super_block *sb, int *flags, char *data)
4687 {
4688 struct ext4_super_block *es;
4689 struct ext4_sb_info *sbi = EXT4_SB(sb);
4690 unsigned long old_sb_flags;
4691 struct ext4_mount_options old_opts;
4692 int enable_quota = 0;
4693 ext4_group_t g;
4694 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
4695 int err = 0;
4696 #ifdef CONFIG_QUOTA
4697 int i, j;
4698 #endif
4699 char *orig_data = kstrdup(data, GFP_KERNEL);
4700
4701 /* Store the original options */
4702 old_sb_flags = sb->s_flags;
4703 old_opts.s_mount_opt = sbi->s_mount_opt;
4704 old_opts.s_mount_opt2 = sbi->s_mount_opt2;
4705 old_opts.s_resuid = sbi->s_resuid;
4706 old_opts.s_resgid = sbi->s_resgid;
4707 old_opts.s_commit_interval = sbi->s_commit_interval;
4708 old_opts.s_min_batch_time = sbi->s_min_batch_time;
4709 old_opts.s_max_batch_time = sbi->s_max_batch_time;
4710 #ifdef CONFIG_QUOTA
4711 old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
4712 for (i = 0; i < MAXQUOTAS; i++)
4713 if (sbi->s_qf_names[i]) {
4714 old_opts.s_qf_names[i] = kstrdup(sbi->s_qf_names[i],
4715 GFP_KERNEL);
4716 if (!old_opts.s_qf_names[i]) {
4717 for (j = 0; j < i; j++)
4718 kfree(old_opts.s_qf_names[j]);
4719 kfree(orig_data);
4720 return -ENOMEM;
4721 }
4722 } else
4723 old_opts.s_qf_names[i] = NULL;
4724 #endif
4725 if (sbi->s_journal && sbi->s_journal->j_task->io_context)
4726 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio;
4727
4728 /*
4729 * Allow the "check" option to be passed as a remount option.
4730 */
4731 if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) {
4732 err = -EINVAL;
4733 goto restore_opts;
4734 }
4735
4736 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED)
4737 ext4_abort(sb, "Abort forced by user");
4738
4739 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
4740 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
4741
4742 es = sbi->s_es;
4743
4744 if (sbi->s_journal) {
4745 ext4_init_journal_params(sb, sbi->s_journal);
4746 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
4747 }
4748
4749 if ((*flags & MS_RDONLY) != (sb->s_flags & MS_RDONLY)) {
4750 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) {
4751 err = -EROFS;
4752 goto restore_opts;
4753 }
4754
4755 if (*flags & MS_RDONLY) {
4756 err = dquot_suspend(sb, -1);
4757 if (err < 0)
4758 goto restore_opts;
4759
4760 /*
4761 * First of all, the unconditional stuff we have to do
4762 * to disable replay of the journal when we next remount
4763 */
4764 sb->s_flags |= MS_RDONLY;
4765
4766 /*
4767 * OK, test if we are remounting a valid rw partition
4768 * readonly, and if so set the rdonly flag and then
4769 * mark the partition as valid again.
4770 */
4771 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
4772 (sbi->s_mount_state & EXT4_VALID_FS))
4773 es->s_state = cpu_to_le16(sbi->s_mount_state);
4774
4775 if (sbi->s_journal)
4776 ext4_mark_recovery_complete(sb, es);
4777 } else {
4778 /* Make sure we can mount this feature set readwrite */
4779 if (!ext4_feature_set_ok(sb, 0)) {
4780 err = -EROFS;
4781 goto restore_opts;
4782 }
4783 /*
4784 * Make sure the group descriptor checksums
4785 * are sane. If they aren't, refuse to remount r/w.
4786 */
4787 for (g = 0; g < sbi->s_groups_count; g++) {
4788 struct ext4_group_desc *gdp =
4789 ext4_get_group_desc(sb, g, NULL);
4790
4791 if (!ext4_group_desc_csum_verify(sb, g, gdp)) {
4792 ext4_msg(sb, KERN_ERR,
4793 "ext4_remount: Checksum for group %u failed (%u!=%u)",
4794 g, le16_to_cpu(ext4_group_desc_csum(sbi, g, gdp)),
4795 le16_to_cpu(gdp->bg_checksum));
4796 err = -EINVAL;
4797 goto restore_opts;
4798 }
4799 }
4800
4801 /*
4802 * If we have an unprocessed orphan list hanging
4803 * around from a previously readonly bdev mount,
4804 * require a full umount/remount for now.
4805 */
4806 if (es->s_last_orphan) {
4807 ext4_msg(sb, KERN_WARNING, "Couldn't "
4808 "remount RDWR because of unprocessed "
4809 "orphan inode list. Please "
4810 "umount/remount instead");
4811 err = -EINVAL;
4812 goto restore_opts;
4813 }
4814
4815 /*
4816 * Mounting a RDONLY partition read-write, so reread
4817 * and store the current valid flag. (It may have
4818 * been changed by e2fsck since we originally mounted
4819 * the partition.)
4820 */
4821 if (sbi->s_journal)
4822 ext4_clear_journal_err(sb, es);
4823 sbi->s_mount_state = le16_to_cpu(es->s_state);
4824 if (!ext4_setup_super(sb, es, 0))
4825 sb->s_flags &= ~MS_RDONLY;
4826 if (EXT4_HAS_INCOMPAT_FEATURE(sb,
4827 EXT4_FEATURE_INCOMPAT_MMP))
4828 if (ext4_multi_mount_protect(sb,
4829 le64_to_cpu(es->s_mmp_block))) {
4830 err = -EROFS;
4831 goto restore_opts;
4832 }
4833 enable_quota = 1;
4834 }
4835 }
4836
4837 /*
4838 * Reinitialize lazy itable initialization thread based on
4839 * current settings
4840 */
4841 if ((sb->s_flags & MS_RDONLY) || !test_opt(sb, INIT_INODE_TABLE))
4842 ext4_unregister_li_request(sb);
4843 else {
4844 ext4_group_t first_not_zeroed;
4845 first_not_zeroed = ext4_has_uninit_itable(sb);
4846 ext4_register_li_request(sb, first_not_zeroed);
4847 }
4848
4849 ext4_setup_system_zone(sb);
4850 if (sbi->s_journal == NULL && !(old_sb_flags & MS_RDONLY))
4851 ext4_commit_super(sb, 1);
4852
4853 #ifdef CONFIG_QUOTA
4854 /* Release old quota file names */
4855 for (i = 0; i < MAXQUOTAS; i++)
4856 kfree(old_opts.s_qf_names[i]);
4857 if (enable_quota) {
4858 if (sb_any_quota_suspended(sb))
4859 dquot_resume(sb, -1);
4860 else if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4861 EXT4_FEATURE_RO_COMPAT_QUOTA)) {
4862 err = ext4_enable_quotas(sb);
4863 if (err)
4864 goto restore_opts;
4865 }
4866 }
4867 #endif
4868
4869 ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data);
4870 kfree(orig_data);
4871 return 0;
4872
4873 restore_opts:
4874 sb->s_flags = old_sb_flags;
4875 sbi->s_mount_opt = old_opts.s_mount_opt;
4876 sbi->s_mount_opt2 = old_opts.s_mount_opt2;
4877 sbi->s_resuid = old_opts.s_resuid;
4878 sbi->s_resgid = old_opts.s_resgid;
4879 sbi->s_commit_interval = old_opts.s_commit_interval;
4880 sbi->s_min_batch_time = old_opts.s_min_batch_time;
4881 sbi->s_max_batch_time = old_opts.s_max_batch_time;
4882 #ifdef CONFIG_QUOTA
4883 sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
4884 for (i = 0; i < MAXQUOTAS; i++) {
4885 kfree(sbi->s_qf_names[i]);
4886 sbi->s_qf_names[i] = old_opts.s_qf_names[i];
4887 }
4888 #endif
4889 kfree(orig_data);
4890 return err;
4891 }
4892
4893 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
4894 {
4895 struct super_block *sb = dentry->d_sb;
4896 struct ext4_sb_info *sbi = EXT4_SB(sb);
4897 struct ext4_super_block *es = sbi->s_es;
4898 ext4_fsblk_t overhead = 0, resv_blocks;
4899 u64 fsid;
4900 s64 bfree;
4901 resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters));
4902
4903 if (!test_opt(sb, MINIX_DF))
4904 overhead = sbi->s_overhead;
4905
4906 buf->f_type = EXT4_SUPER_MAGIC;
4907 buf->f_bsize = sb->s_blocksize;
4908 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead);
4909 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
4910 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
4911 /* prevent underflow in case that few free space is available */
4912 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0));
4913 buf->f_bavail = buf->f_bfree -
4914 (ext4_r_blocks_count(es) + resv_blocks);
4915 if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks))
4916 buf->f_bavail = 0;
4917 buf->f_files = le32_to_cpu(es->s_inodes_count);
4918 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
4919 buf->f_namelen = EXT4_NAME_LEN;
4920 fsid = le64_to_cpup((void *)es->s_uuid) ^
4921 le64_to_cpup((void *)es->s_uuid + sizeof(u64));
4922 buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL;
4923 buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL;
4924
4925 return 0;
4926 }
4927
4928 /* Helper function for writing quotas on sync - we need to start transaction
4929 * before quota file is locked for write. Otherwise the are possible deadlocks:
4930 * Process 1 Process 2
4931 * ext4_create() quota_sync()
4932 * jbd2_journal_start() write_dquot()
4933 * dquot_initialize() down(dqio_mutex)
4934 * down(dqio_mutex) jbd2_journal_start()
4935 *
4936 */
4937
4938 #ifdef CONFIG_QUOTA
4939
4940 static inline struct inode *dquot_to_inode(struct dquot *dquot)
4941 {
4942 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type];
4943 }
4944
4945 static int ext4_write_dquot(struct dquot *dquot)
4946 {
4947 int ret, err;
4948 handle_t *handle;
4949 struct inode *inode;
4950
4951 inode = dquot_to_inode(dquot);
4952 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4953 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
4954 if (IS_ERR(handle))
4955 return PTR_ERR(handle);
4956 ret = dquot_commit(dquot);
4957 err = ext4_journal_stop(handle);
4958 if (!ret)
4959 ret = err;
4960 return ret;
4961 }
4962
4963 static int ext4_acquire_dquot(struct dquot *dquot)
4964 {
4965 int ret, err;
4966 handle_t *handle;
4967
4968 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
4969 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
4970 if (IS_ERR(handle))
4971 return PTR_ERR(handle);
4972 ret = dquot_acquire(dquot);
4973 err = ext4_journal_stop(handle);
4974 if (!ret)
4975 ret = err;
4976 return ret;
4977 }
4978
4979 static int ext4_release_dquot(struct dquot *dquot)
4980 {
4981 int ret, err;
4982 handle_t *handle;
4983
4984 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
4985 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
4986 if (IS_ERR(handle)) {
4987 /* Release dquot anyway to avoid endless cycle in dqput() */
4988 dquot_release(dquot);
4989 return PTR_ERR(handle);
4990 }
4991 ret = dquot_release(dquot);
4992 err = ext4_journal_stop(handle);
4993 if (!ret)
4994 ret = err;
4995 return ret;
4996 }
4997
4998 static int ext4_mark_dquot_dirty(struct dquot *dquot)
4999 {
5000 struct super_block *sb = dquot->dq_sb;
5001 struct ext4_sb_info *sbi = EXT4_SB(sb);
5002
5003 /* Are we journaling quotas? */
5004 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) ||
5005 sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
5006 dquot_mark_dquot_dirty(dquot);
5007 return ext4_write_dquot(dquot);
5008 } else {
5009 return dquot_mark_dquot_dirty(dquot);
5010 }
5011 }
5012
5013 static int ext4_write_info(struct super_block *sb, int type)
5014 {
5015 int ret, err;
5016 handle_t *handle;
5017
5018 /* Data block + inode block */
5019 handle = ext4_journal_start(sb->s_root->d_inode, EXT4_HT_QUOTA, 2);
5020 if (IS_ERR(handle))
5021 return PTR_ERR(handle);
5022 ret = dquot_commit_info(sb, type);
5023 err = ext4_journal_stop(handle);
5024 if (!ret)
5025 ret = err;
5026 return ret;
5027 }
5028
5029 /*
5030 * Turn on quotas during mount time - we need to find
5031 * the quota file and such...
5032 */
5033 static int ext4_quota_on_mount(struct super_block *sb, int type)
5034 {
5035 return dquot_quota_on_mount(sb, EXT4_SB(sb)->s_qf_names[type],
5036 EXT4_SB(sb)->s_jquota_fmt, type);
5037 }
5038
5039 /*
5040 * Standard function to be called on quota_on
5041 */
5042 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
5043 struct path *path)
5044 {
5045 int err;
5046
5047 if (!test_opt(sb, QUOTA))
5048 return -EINVAL;
5049
5050 /* Quotafile not on the same filesystem? */
5051 if (path->dentry->d_sb != sb)
5052 return -EXDEV;
5053 /* Journaling quota? */
5054 if (EXT4_SB(sb)->s_qf_names[type]) {
5055 /* Quotafile not in fs root? */
5056 if (path->dentry->d_parent != sb->s_root)
5057 ext4_msg(sb, KERN_WARNING,
5058 "Quota file not on filesystem root. "
5059 "Journaled quota will not work");
5060 }
5061
5062 /*
5063 * When we journal data on quota file, we have to flush journal to see
5064 * all updates to the file when we bypass pagecache...
5065 */
5066 if (EXT4_SB(sb)->s_journal &&
5067 ext4_should_journal_data(path->dentry->d_inode)) {
5068 /*
5069 * We don't need to lock updates but journal_flush() could
5070 * otherwise be livelocked...
5071 */
5072 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal);
5073 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal);
5074 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
5075 if (err)
5076 return err;
5077 }
5078
5079 return dquot_quota_on(sb, type, format_id, path);
5080 }
5081
5082 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
5083 unsigned int flags)
5084 {
5085 int err;
5086 struct inode *qf_inode;
5087 unsigned long qf_inums[MAXQUOTAS] = {
5088 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
5089 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum)
5090 };
5091
5092 BUG_ON(!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA));
5093
5094 if (!qf_inums[type])
5095 return -EPERM;
5096
5097 qf_inode = ext4_iget(sb, qf_inums[type]);
5098 if (IS_ERR(qf_inode)) {
5099 ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]);
5100 return PTR_ERR(qf_inode);
5101 }
5102
5103 /* Don't account quota for quota files to avoid recursion */
5104 qf_inode->i_flags |= S_NOQUOTA;
5105 err = dquot_enable(qf_inode, type, format_id, flags);
5106 iput(qf_inode);
5107
5108 return err;
5109 }
5110
5111 /* Enable usage tracking for all quota types. */
5112 static int ext4_enable_quotas(struct super_block *sb)
5113 {
5114 int type, err = 0;
5115 unsigned long qf_inums[MAXQUOTAS] = {
5116 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
5117 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum)
5118 };
5119
5120 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE;
5121 for (type = 0; type < MAXQUOTAS; type++) {
5122 if (qf_inums[type]) {
5123 err = ext4_quota_enable(sb, type, QFMT_VFS_V1,
5124 DQUOT_USAGE_ENABLED);
5125 if (err) {
5126 ext4_warning(sb,
5127 "Failed to enable quota tracking "
5128 "(type=%d, err=%d). Please run "
5129 "e2fsck to fix.", type, err);
5130 return err;
5131 }
5132 }
5133 }
5134 return 0;
5135 }
5136
5137 /*
5138 * quota_on function that is used when QUOTA feature is set.
5139 */
5140 static int ext4_quota_on_sysfile(struct super_block *sb, int type,
5141 int format_id)
5142 {
5143 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA))
5144 return -EINVAL;
5145
5146 /*
5147 * USAGE was enabled at mount time. Only need to enable LIMITS now.
5148 */
5149 return ext4_quota_enable(sb, type, format_id, DQUOT_LIMITS_ENABLED);
5150 }
5151
5152 static int ext4_quota_off(struct super_block *sb, int type)
5153 {
5154 struct inode *inode = sb_dqopt(sb)->files[type];
5155 handle_t *handle;
5156
5157 /* Force all delayed allocation blocks to be allocated.
5158 * Caller already holds s_umount sem */
5159 if (test_opt(sb, DELALLOC))
5160 sync_filesystem(sb);
5161
5162 if (!inode)
5163 goto out;
5164
5165 /* Update modification times of quota files when userspace can
5166 * start looking at them */
5167 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
5168 if (IS_ERR(handle))
5169 goto out;
5170 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
5171 ext4_mark_inode_dirty(handle, inode);
5172 ext4_journal_stop(handle);
5173
5174 out:
5175 return dquot_quota_off(sb, type);
5176 }
5177
5178 /*
5179 * quota_off function that is used when QUOTA feature is set.
5180 */
5181 static int ext4_quota_off_sysfile(struct super_block *sb, int type)
5182 {
5183 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA))
5184 return -EINVAL;
5185
5186 /* Disable only the limits. */
5187 return dquot_disable(sb, type, DQUOT_LIMITS_ENABLED);
5188 }
5189
5190 /* Read data from quotafile - avoid pagecache and such because we cannot afford
5191 * acquiring the locks... As quota files are never truncated and quota code
5192 * itself serializes the operations (and no one else should touch the files)
5193 * we don't have to be afraid of races */
5194 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
5195 size_t len, loff_t off)
5196 {
5197 struct inode *inode = sb_dqopt(sb)->files[type];
5198 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5199 int err = 0;
5200 int offset = off & (sb->s_blocksize - 1);
5201 int tocopy;
5202 size_t toread;
5203 struct buffer_head *bh;
5204 loff_t i_size = i_size_read(inode);
5205
5206 if (off > i_size)
5207 return 0;
5208 if (off+len > i_size)
5209 len = i_size-off;
5210 toread = len;
5211 while (toread > 0) {
5212 tocopy = sb->s_blocksize - offset < toread ?
5213 sb->s_blocksize - offset : toread;
5214 bh = ext4_bread(NULL, inode, blk, 0, &err);
5215 if (err)
5216 return err;
5217 if (!bh) /* A hole? */
5218 memset(data, 0, tocopy);
5219 else
5220 memcpy(data, bh->b_data+offset, tocopy);
5221 brelse(bh);
5222 offset = 0;
5223 toread -= tocopy;
5224 data += tocopy;
5225 blk++;
5226 }
5227 return len;
5228 }
5229
5230 /* Write to quotafile (we know the transaction is already started and has
5231 * enough credits) */
5232 static ssize_t ext4_quota_write(struct super_block *sb, int type,
5233 const char *data, size_t len, loff_t off)
5234 {
5235 struct inode *inode = sb_dqopt(sb)->files[type];
5236 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5237 int err = 0;
5238 int offset = off & (sb->s_blocksize - 1);
5239 struct buffer_head *bh;
5240 handle_t *handle = journal_current_handle();
5241
5242 if (EXT4_SB(sb)->s_journal && !handle) {
5243 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5244 " cancelled because transaction is not started",
5245 (unsigned long long)off, (unsigned long long)len);
5246 return -EIO;
5247 }
5248 /*
5249 * Since we account only one data block in transaction credits,
5250 * then it is impossible to cross a block boundary.
5251 */
5252 if (sb->s_blocksize - offset < len) {
5253 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5254 " cancelled because not block aligned",
5255 (unsigned long long)off, (unsigned long long)len);
5256 return -EIO;
5257 }
5258
5259 bh = ext4_bread(handle, inode, blk, 1, &err);
5260 if (!bh)
5261 goto out;
5262 err = ext4_journal_get_write_access(handle, bh);
5263 if (err) {
5264 brelse(bh);
5265 goto out;
5266 }
5267 lock_buffer(bh);
5268 memcpy(bh->b_data+offset, data, len);
5269 flush_dcache_page(bh->b_page);
5270 unlock_buffer(bh);
5271 err = ext4_handle_dirty_metadata(handle, NULL, bh);
5272 brelse(bh);
5273 out:
5274 if (err)
5275 return err;
5276 if (inode->i_size < off + len) {
5277 i_size_write(inode, off + len);
5278 EXT4_I(inode)->i_disksize = inode->i_size;
5279 ext4_mark_inode_dirty(handle, inode);
5280 }
5281 return len;
5282 }
5283
5284 #endif
5285
5286 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
5287 const char *dev_name, void *data)
5288 {
5289 return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super);
5290 }
5291
5292 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
5293 static inline void register_as_ext2(void)
5294 {
5295 int err = register_filesystem(&ext2_fs_type);
5296 if (err)
5297 printk(KERN_WARNING
5298 "EXT4-fs: Unable to register as ext2 (%d)\n", err);
5299 }
5300
5301 static inline void unregister_as_ext2(void)
5302 {
5303 unregister_filesystem(&ext2_fs_type);
5304 }
5305
5306 static inline int ext2_feature_set_ok(struct super_block *sb)
5307 {
5308 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT2_FEATURE_INCOMPAT_SUPP))
5309 return 0;
5310 if (sb->s_flags & MS_RDONLY)
5311 return 1;
5312 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT2_FEATURE_RO_COMPAT_SUPP))
5313 return 0;
5314 return 1;
5315 }
5316 #else
5317 static inline void register_as_ext2(void) { }
5318 static inline void unregister_as_ext2(void) { }
5319 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
5320 #endif
5321
5322 #if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
5323 static inline void register_as_ext3(void)
5324 {
5325 int err = register_filesystem(&ext3_fs_type);
5326 if (err)
5327 printk(KERN_WARNING
5328 "EXT4-fs: Unable to register as ext3 (%d)\n", err);
5329 }
5330
5331 static inline void unregister_as_ext3(void)
5332 {
5333 unregister_filesystem(&ext3_fs_type);
5334 }
5335
5336 static inline int ext3_feature_set_ok(struct super_block *sb)
5337 {
5338 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT3_FEATURE_INCOMPAT_SUPP))
5339 return 0;
5340 if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL))
5341 return 0;
5342 if (sb->s_flags & MS_RDONLY)
5343 return 1;
5344 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT3_FEATURE_RO_COMPAT_SUPP))
5345 return 0;
5346 return 1;
5347 }
5348 #else
5349 static inline void register_as_ext3(void) { }
5350 static inline void unregister_as_ext3(void) { }
5351 static inline int ext3_feature_set_ok(struct super_block *sb) { return 0; }
5352 #endif
5353
5354 static struct file_system_type ext4_fs_type = {
5355 .owner = THIS_MODULE,
5356 .name = "ext4",
5357 .mount = ext4_mount,
5358 .kill_sb = kill_block_super,
5359 .fs_flags = FS_REQUIRES_DEV,
5360 };
5361 MODULE_ALIAS_FS("ext4");
5362
5363 static int __init ext4_init_feat_adverts(void)
5364 {
5365 struct ext4_features *ef;
5366 int ret = -ENOMEM;
5367
5368 ef = kzalloc(sizeof(struct ext4_features), GFP_KERNEL);
5369 if (!ef)
5370 goto out;
5371
5372 ef->f_kobj.kset = ext4_kset;
5373 init_completion(&ef->f_kobj_unregister);
5374 ret = kobject_init_and_add(&ef->f_kobj, &ext4_feat_ktype, NULL,
5375 "features");
5376 if (ret) {
5377 kfree(ef);
5378 goto out;
5379 }
5380
5381 ext4_feat = ef;
5382 ret = 0;
5383 out:
5384 return ret;
5385 }
5386
5387 static void ext4_exit_feat_adverts(void)
5388 {
5389 kobject_put(&ext4_feat->f_kobj);
5390 wait_for_completion(&ext4_feat->f_kobj_unregister);
5391 kfree(ext4_feat);
5392 }
5393
5394 /* Shared across all ext4 file systems */
5395 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ];
5396 struct mutex ext4__aio_mutex[EXT4_WQ_HASH_SZ];
5397
5398 static int __init ext4_init_fs(void)
5399 {
5400 int i, err;
5401
5402 ext4_li_info = NULL;
5403 mutex_init(&ext4_li_mtx);
5404
5405 /* Build-time check for flags consistency */
5406 ext4_check_flag_values();
5407
5408 for (i = 0; i < EXT4_WQ_HASH_SZ; i++) {
5409 mutex_init(&ext4__aio_mutex[i]);
5410 init_waitqueue_head(&ext4__ioend_wq[i]);
5411 }
5412
5413 err = ext4_init_es();
5414 if (err)
5415 return err;
5416
5417 err = ext4_init_pageio();
5418 if (err)
5419 goto out7;
5420
5421 err = ext4_init_system_zone();
5422 if (err)
5423 goto out6;
5424 ext4_kset = kset_create_and_add("ext4", NULL, fs_kobj);
5425 if (!ext4_kset) {
5426 err = -ENOMEM;
5427 goto out5;
5428 }
5429 ext4_proc_root = proc_mkdir("fs/ext4", NULL);
5430
5431 err = ext4_init_feat_adverts();
5432 if (err)
5433 goto out4;
5434
5435 err = ext4_init_mballoc();
5436 if (err)
5437 goto out3;
5438
5439 err = ext4_init_xattr();
5440 if (err)
5441 goto out2;
5442 err = init_inodecache();
5443 if (err)
5444 goto out1;
5445 register_as_ext3();
5446 register_as_ext2();
5447 err = register_filesystem(&ext4_fs_type);
5448 if (err)
5449 goto out;
5450
5451 return 0;
5452 out:
5453 unregister_as_ext2();
5454 unregister_as_ext3();
5455 destroy_inodecache();
5456 out1:
5457 ext4_exit_xattr();
5458 out2:
5459 ext4_exit_mballoc();
5460 out3:
5461 ext4_exit_feat_adverts();
5462 out4:
5463 if (ext4_proc_root)
5464 remove_proc_entry("fs/ext4", NULL);
5465 kset_unregister(ext4_kset);
5466 out5:
5467 ext4_exit_system_zone();
5468 out6:
5469 ext4_exit_pageio();
5470 out7:
5471 ext4_exit_es();
5472
5473 return err;
5474 }
5475
5476 static void __exit ext4_exit_fs(void)
5477 {
5478 ext4_destroy_lazyinit_thread();
5479 unregister_as_ext2();
5480 unregister_as_ext3();
5481 unregister_filesystem(&ext4_fs_type);
5482 destroy_inodecache();
5483 ext4_exit_xattr();
5484 ext4_exit_mballoc();
5485 ext4_exit_feat_adverts();
5486 remove_proc_entry("fs/ext4", NULL);
5487 kset_unregister(ext4_kset);
5488 ext4_exit_system_zone();
5489 ext4_exit_pageio();
5490 }
5491
5492 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
5493 MODULE_DESCRIPTION("Fourth Extended Filesystem");
5494 MODULE_LICENSE("GPL");
5495 module_init(ext4_init_fs)
5496 module_exit(ext4_exit_fs)