]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/ext4/super.c
Merge tag 'llvmlinux-for-v3.15' of git://git.linuxfoundation.org/llvmlinux/kernel
[mirror_ubuntu-bionic-kernel.git] / fs / ext4 / super.c
1 /*
2 * linux/fs/ext4/super.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * Big-endian to little-endian byte-swapping/bitmaps by
16 * David S. Miller (davem@caip.rutgers.edu), 1995
17 */
18
19 #include <linux/module.h>
20 #include <linux/string.h>
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/vmalloc.h>
24 #include <linux/jbd2.h>
25 #include <linux/slab.h>
26 #include <linux/init.h>
27 #include <linux/blkdev.h>
28 #include <linux/parser.h>
29 #include <linux/buffer_head.h>
30 #include <linux/exportfs.h>
31 #include <linux/vfs.h>
32 #include <linux/random.h>
33 #include <linux/mount.h>
34 #include <linux/namei.h>
35 #include <linux/quotaops.h>
36 #include <linux/seq_file.h>
37 #include <linux/proc_fs.h>
38 #include <linux/ctype.h>
39 #include <linux/log2.h>
40 #include <linux/crc16.h>
41 #include <linux/cleancache.h>
42 #include <asm/uaccess.h>
43
44 #include <linux/kthread.h>
45 #include <linux/freezer.h>
46
47 #include "ext4.h"
48 #include "ext4_extents.h" /* Needed for trace points definition */
49 #include "ext4_jbd2.h"
50 #include "xattr.h"
51 #include "acl.h"
52 #include "mballoc.h"
53
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/ext4.h>
56
57 static struct proc_dir_entry *ext4_proc_root;
58 static struct kset *ext4_kset;
59 static struct ext4_lazy_init *ext4_li_info;
60 static struct mutex ext4_li_mtx;
61 static struct ext4_features *ext4_feat;
62 static int ext4_mballoc_ready;
63
64 static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
65 unsigned long journal_devnum);
66 static int ext4_show_options(struct seq_file *seq, struct dentry *root);
67 static int ext4_commit_super(struct super_block *sb, int sync);
68 static void ext4_mark_recovery_complete(struct super_block *sb,
69 struct ext4_super_block *es);
70 static void ext4_clear_journal_err(struct super_block *sb,
71 struct ext4_super_block *es);
72 static int ext4_sync_fs(struct super_block *sb, int wait);
73 static int ext4_sync_fs_nojournal(struct super_block *sb, int wait);
74 static int ext4_remount(struct super_block *sb, int *flags, char *data);
75 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
76 static int ext4_unfreeze(struct super_block *sb);
77 static int ext4_freeze(struct super_block *sb);
78 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
79 const char *dev_name, void *data);
80 static inline int ext2_feature_set_ok(struct super_block *sb);
81 static inline int ext3_feature_set_ok(struct super_block *sb);
82 static int ext4_feature_set_ok(struct super_block *sb, int readonly);
83 static void ext4_destroy_lazyinit_thread(void);
84 static void ext4_unregister_li_request(struct super_block *sb);
85 static void ext4_clear_request_list(void);
86 static int ext4_reserve_clusters(struct ext4_sb_info *, ext4_fsblk_t);
87
88 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
89 static struct file_system_type ext2_fs_type = {
90 .owner = THIS_MODULE,
91 .name = "ext2",
92 .mount = ext4_mount,
93 .kill_sb = kill_block_super,
94 .fs_flags = FS_REQUIRES_DEV,
95 };
96 MODULE_ALIAS_FS("ext2");
97 MODULE_ALIAS("ext2");
98 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type)
99 #else
100 #define IS_EXT2_SB(sb) (0)
101 #endif
102
103
104 #if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
105 static struct file_system_type ext3_fs_type = {
106 .owner = THIS_MODULE,
107 .name = "ext3",
108 .mount = ext4_mount,
109 .kill_sb = kill_block_super,
110 .fs_flags = FS_REQUIRES_DEV,
111 };
112 MODULE_ALIAS_FS("ext3");
113 MODULE_ALIAS("ext3");
114 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type)
115 #else
116 #define IS_EXT3_SB(sb) (0)
117 #endif
118
119 static int ext4_verify_csum_type(struct super_block *sb,
120 struct ext4_super_block *es)
121 {
122 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
123 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
124 return 1;
125
126 return es->s_checksum_type == EXT4_CRC32C_CHKSUM;
127 }
128
129 static __le32 ext4_superblock_csum(struct super_block *sb,
130 struct ext4_super_block *es)
131 {
132 struct ext4_sb_info *sbi = EXT4_SB(sb);
133 int offset = offsetof(struct ext4_super_block, s_checksum);
134 __u32 csum;
135
136 csum = ext4_chksum(sbi, ~0, (char *)es, offset);
137
138 return cpu_to_le32(csum);
139 }
140
141 int ext4_superblock_csum_verify(struct super_block *sb,
142 struct ext4_super_block *es)
143 {
144 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
145 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
146 return 1;
147
148 return es->s_checksum == ext4_superblock_csum(sb, es);
149 }
150
151 void ext4_superblock_csum_set(struct super_block *sb)
152 {
153 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
154
155 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
156 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
157 return;
158
159 es->s_checksum = ext4_superblock_csum(sb, es);
160 }
161
162 void *ext4_kvmalloc(size_t size, gfp_t flags)
163 {
164 void *ret;
165
166 ret = kmalloc(size, flags | __GFP_NOWARN);
167 if (!ret)
168 ret = __vmalloc(size, flags, PAGE_KERNEL);
169 return ret;
170 }
171
172 void *ext4_kvzalloc(size_t size, gfp_t flags)
173 {
174 void *ret;
175
176 ret = kzalloc(size, flags | __GFP_NOWARN);
177 if (!ret)
178 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL);
179 return ret;
180 }
181
182 void ext4_kvfree(void *ptr)
183 {
184 if (is_vmalloc_addr(ptr))
185 vfree(ptr);
186 else
187 kfree(ptr);
188
189 }
190
191 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
192 struct ext4_group_desc *bg)
193 {
194 return le32_to_cpu(bg->bg_block_bitmap_lo) |
195 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
196 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
197 }
198
199 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
200 struct ext4_group_desc *bg)
201 {
202 return le32_to_cpu(bg->bg_inode_bitmap_lo) |
203 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
204 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
205 }
206
207 ext4_fsblk_t ext4_inode_table(struct super_block *sb,
208 struct ext4_group_desc *bg)
209 {
210 return le32_to_cpu(bg->bg_inode_table_lo) |
211 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
212 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
213 }
214
215 __u32 ext4_free_group_clusters(struct super_block *sb,
216 struct ext4_group_desc *bg)
217 {
218 return le16_to_cpu(bg->bg_free_blocks_count_lo) |
219 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
220 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
221 }
222
223 __u32 ext4_free_inodes_count(struct super_block *sb,
224 struct ext4_group_desc *bg)
225 {
226 return le16_to_cpu(bg->bg_free_inodes_count_lo) |
227 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
228 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
229 }
230
231 __u32 ext4_used_dirs_count(struct super_block *sb,
232 struct ext4_group_desc *bg)
233 {
234 return le16_to_cpu(bg->bg_used_dirs_count_lo) |
235 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
236 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
237 }
238
239 __u32 ext4_itable_unused_count(struct super_block *sb,
240 struct ext4_group_desc *bg)
241 {
242 return le16_to_cpu(bg->bg_itable_unused_lo) |
243 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
244 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
245 }
246
247 void ext4_block_bitmap_set(struct super_block *sb,
248 struct ext4_group_desc *bg, ext4_fsblk_t blk)
249 {
250 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
251 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
252 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
253 }
254
255 void ext4_inode_bitmap_set(struct super_block *sb,
256 struct ext4_group_desc *bg, ext4_fsblk_t blk)
257 {
258 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk);
259 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
260 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
261 }
262
263 void ext4_inode_table_set(struct super_block *sb,
264 struct ext4_group_desc *bg, ext4_fsblk_t blk)
265 {
266 bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
267 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
268 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
269 }
270
271 void ext4_free_group_clusters_set(struct super_block *sb,
272 struct ext4_group_desc *bg, __u32 count)
273 {
274 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
275 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
276 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
277 }
278
279 void ext4_free_inodes_set(struct super_block *sb,
280 struct ext4_group_desc *bg, __u32 count)
281 {
282 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
283 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
284 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
285 }
286
287 void ext4_used_dirs_set(struct super_block *sb,
288 struct ext4_group_desc *bg, __u32 count)
289 {
290 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
291 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
292 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
293 }
294
295 void ext4_itable_unused_set(struct super_block *sb,
296 struct ext4_group_desc *bg, __u32 count)
297 {
298 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
299 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
300 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
301 }
302
303
304 static void __save_error_info(struct super_block *sb, const char *func,
305 unsigned int line)
306 {
307 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
308
309 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
310 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
311 es->s_last_error_time = cpu_to_le32(get_seconds());
312 strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func));
313 es->s_last_error_line = cpu_to_le32(line);
314 if (!es->s_first_error_time) {
315 es->s_first_error_time = es->s_last_error_time;
316 strncpy(es->s_first_error_func, func,
317 sizeof(es->s_first_error_func));
318 es->s_first_error_line = cpu_to_le32(line);
319 es->s_first_error_ino = es->s_last_error_ino;
320 es->s_first_error_block = es->s_last_error_block;
321 }
322 /*
323 * Start the daily error reporting function if it hasn't been
324 * started already
325 */
326 if (!es->s_error_count)
327 mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ);
328 le32_add_cpu(&es->s_error_count, 1);
329 }
330
331 static void save_error_info(struct super_block *sb, const char *func,
332 unsigned int line)
333 {
334 __save_error_info(sb, func, line);
335 ext4_commit_super(sb, 1);
336 }
337
338 /*
339 * The del_gendisk() function uninitializes the disk-specific data
340 * structures, including the bdi structure, without telling anyone
341 * else. Once this happens, any attempt to call mark_buffer_dirty()
342 * (for example, by ext4_commit_super), will cause a kernel OOPS.
343 * This is a kludge to prevent these oops until we can put in a proper
344 * hook in del_gendisk() to inform the VFS and file system layers.
345 */
346 static int block_device_ejected(struct super_block *sb)
347 {
348 struct inode *bd_inode = sb->s_bdev->bd_inode;
349 struct backing_dev_info *bdi = bd_inode->i_mapping->backing_dev_info;
350
351 return bdi->dev == NULL;
352 }
353
354 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn)
355 {
356 struct super_block *sb = journal->j_private;
357 struct ext4_sb_info *sbi = EXT4_SB(sb);
358 int error = is_journal_aborted(journal);
359 struct ext4_journal_cb_entry *jce;
360
361 BUG_ON(txn->t_state == T_FINISHED);
362 spin_lock(&sbi->s_md_lock);
363 while (!list_empty(&txn->t_private_list)) {
364 jce = list_entry(txn->t_private_list.next,
365 struct ext4_journal_cb_entry, jce_list);
366 list_del_init(&jce->jce_list);
367 spin_unlock(&sbi->s_md_lock);
368 jce->jce_func(sb, jce, error);
369 spin_lock(&sbi->s_md_lock);
370 }
371 spin_unlock(&sbi->s_md_lock);
372 }
373
374 /* Deal with the reporting of failure conditions on a filesystem such as
375 * inconsistencies detected or read IO failures.
376 *
377 * On ext2, we can store the error state of the filesystem in the
378 * superblock. That is not possible on ext4, because we may have other
379 * write ordering constraints on the superblock which prevent us from
380 * writing it out straight away; and given that the journal is about to
381 * be aborted, we can't rely on the current, or future, transactions to
382 * write out the superblock safely.
383 *
384 * We'll just use the jbd2_journal_abort() error code to record an error in
385 * the journal instead. On recovery, the journal will complain about
386 * that error until we've noted it down and cleared it.
387 */
388
389 static void ext4_handle_error(struct super_block *sb)
390 {
391 if (sb->s_flags & MS_RDONLY)
392 return;
393
394 if (!test_opt(sb, ERRORS_CONT)) {
395 journal_t *journal = EXT4_SB(sb)->s_journal;
396
397 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
398 if (journal)
399 jbd2_journal_abort(journal, -EIO);
400 }
401 if (test_opt(sb, ERRORS_RO)) {
402 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
403 /*
404 * Make sure updated value of ->s_mount_flags will be visible
405 * before ->s_flags update
406 */
407 smp_wmb();
408 sb->s_flags |= MS_RDONLY;
409 }
410 if (test_opt(sb, ERRORS_PANIC))
411 panic("EXT4-fs (device %s): panic forced after error\n",
412 sb->s_id);
413 }
414
415 #define ext4_error_ratelimit(sb) \
416 ___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state), \
417 "EXT4-fs error")
418
419 void __ext4_error(struct super_block *sb, const char *function,
420 unsigned int line, const char *fmt, ...)
421 {
422 struct va_format vaf;
423 va_list args;
424
425 if (ext4_error_ratelimit(sb)) {
426 va_start(args, fmt);
427 vaf.fmt = fmt;
428 vaf.va = &args;
429 printk(KERN_CRIT
430 "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
431 sb->s_id, function, line, current->comm, &vaf);
432 va_end(args);
433 }
434 save_error_info(sb, function, line);
435 ext4_handle_error(sb);
436 }
437
438 void __ext4_error_inode(struct inode *inode, const char *function,
439 unsigned int line, ext4_fsblk_t block,
440 const char *fmt, ...)
441 {
442 va_list args;
443 struct va_format vaf;
444 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
445
446 es->s_last_error_ino = cpu_to_le32(inode->i_ino);
447 es->s_last_error_block = cpu_to_le64(block);
448 if (ext4_error_ratelimit(inode->i_sb)) {
449 va_start(args, fmt);
450 vaf.fmt = fmt;
451 vaf.va = &args;
452 if (block)
453 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
454 "inode #%lu: block %llu: comm %s: %pV\n",
455 inode->i_sb->s_id, function, line, inode->i_ino,
456 block, current->comm, &vaf);
457 else
458 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
459 "inode #%lu: comm %s: %pV\n",
460 inode->i_sb->s_id, function, line, inode->i_ino,
461 current->comm, &vaf);
462 va_end(args);
463 }
464 save_error_info(inode->i_sb, function, line);
465 ext4_handle_error(inode->i_sb);
466 }
467
468 void __ext4_error_file(struct file *file, const char *function,
469 unsigned int line, ext4_fsblk_t block,
470 const char *fmt, ...)
471 {
472 va_list args;
473 struct va_format vaf;
474 struct ext4_super_block *es;
475 struct inode *inode = file_inode(file);
476 char pathname[80], *path;
477
478 es = EXT4_SB(inode->i_sb)->s_es;
479 es->s_last_error_ino = cpu_to_le32(inode->i_ino);
480 if (ext4_error_ratelimit(inode->i_sb)) {
481 path = d_path(&(file->f_path), pathname, sizeof(pathname));
482 if (IS_ERR(path))
483 path = "(unknown)";
484 va_start(args, fmt);
485 vaf.fmt = fmt;
486 vaf.va = &args;
487 if (block)
488 printk(KERN_CRIT
489 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
490 "block %llu: comm %s: path %s: %pV\n",
491 inode->i_sb->s_id, function, line, inode->i_ino,
492 block, current->comm, path, &vaf);
493 else
494 printk(KERN_CRIT
495 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
496 "comm %s: path %s: %pV\n",
497 inode->i_sb->s_id, function, line, inode->i_ino,
498 current->comm, path, &vaf);
499 va_end(args);
500 }
501 save_error_info(inode->i_sb, function, line);
502 ext4_handle_error(inode->i_sb);
503 }
504
505 const char *ext4_decode_error(struct super_block *sb, int errno,
506 char nbuf[16])
507 {
508 char *errstr = NULL;
509
510 switch (errno) {
511 case -EIO:
512 errstr = "IO failure";
513 break;
514 case -ENOMEM:
515 errstr = "Out of memory";
516 break;
517 case -EROFS:
518 if (!sb || (EXT4_SB(sb)->s_journal &&
519 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
520 errstr = "Journal has aborted";
521 else
522 errstr = "Readonly filesystem";
523 break;
524 default:
525 /* If the caller passed in an extra buffer for unknown
526 * errors, textualise them now. Else we just return
527 * NULL. */
528 if (nbuf) {
529 /* Check for truncated error codes... */
530 if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
531 errstr = nbuf;
532 }
533 break;
534 }
535
536 return errstr;
537 }
538
539 /* __ext4_std_error decodes expected errors from journaling functions
540 * automatically and invokes the appropriate error response. */
541
542 void __ext4_std_error(struct super_block *sb, const char *function,
543 unsigned int line, int errno)
544 {
545 char nbuf[16];
546 const char *errstr;
547
548 /* Special case: if the error is EROFS, and we're not already
549 * inside a transaction, then there's really no point in logging
550 * an error. */
551 if (errno == -EROFS && journal_current_handle() == NULL &&
552 (sb->s_flags & MS_RDONLY))
553 return;
554
555 if (ext4_error_ratelimit(sb)) {
556 errstr = ext4_decode_error(sb, errno, nbuf);
557 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
558 sb->s_id, function, line, errstr);
559 }
560
561 save_error_info(sb, function, line);
562 ext4_handle_error(sb);
563 }
564
565 /*
566 * ext4_abort is a much stronger failure handler than ext4_error. The
567 * abort function may be used to deal with unrecoverable failures such
568 * as journal IO errors or ENOMEM at a critical moment in log management.
569 *
570 * We unconditionally force the filesystem into an ABORT|READONLY state,
571 * unless the error response on the fs has been set to panic in which
572 * case we take the easy way out and panic immediately.
573 */
574
575 void __ext4_abort(struct super_block *sb, const char *function,
576 unsigned int line, const char *fmt, ...)
577 {
578 va_list args;
579
580 save_error_info(sb, function, line);
581 va_start(args, fmt);
582 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: ", sb->s_id,
583 function, line);
584 vprintk(fmt, args);
585 printk("\n");
586 va_end(args);
587
588 if ((sb->s_flags & MS_RDONLY) == 0) {
589 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
590 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
591 /*
592 * Make sure updated value of ->s_mount_flags will be visible
593 * before ->s_flags update
594 */
595 smp_wmb();
596 sb->s_flags |= MS_RDONLY;
597 if (EXT4_SB(sb)->s_journal)
598 jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO);
599 save_error_info(sb, function, line);
600 }
601 if (test_opt(sb, ERRORS_PANIC))
602 panic("EXT4-fs panic from previous error\n");
603 }
604
605 void __ext4_msg(struct super_block *sb,
606 const char *prefix, const char *fmt, ...)
607 {
608 struct va_format vaf;
609 va_list args;
610
611 if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state), "EXT4-fs"))
612 return;
613
614 va_start(args, fmt);
615 vaf.fmt = fmt;
616 vaf.va = &args;
617 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
618 va_end(args);
619 }
620
621 void __ext4_warning(struct super_block *sb, const char *function,
622 unsigned int line, const char *fmt, ...)
623 {
624 struct va_format vaf;
625 va_list args;
626
627 if (!___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state),
628 "EXT4-fs warning"))
629 return;
630
631 va_start(args, fmt);
632 vaf.fmt = fmt;
633 vaf.va = &args;
634 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
635 sb->s_id, function, line, &vaf);
636 va_end(args);
637 }
638
639 void __ext4_grp_locked_error(const char *function, unsigned int line,
640 struct super_block *sb, ext4_group_t grp,
641 unsigned long ino, ext4_fsblk_t block,
642 const char *fmt, ...)
643 __releases(bitlock)
644 __acquires(bitlock)
645 {
646 struct va_format vaf;
647 va_list args;
648 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
649
650 es->s_last_error_ino = cpu_to_le32(ino);
651 es->s_last_error_block = cpu_to_le64(block);
652 __save_error_info(sb, function, line);
653
654 if (ext4_error_ratelimit(sb)) {
655 va_start(args, fmt);
656 vaf.fmt = fmt;
657 vaf.va = &args;
658 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
659 sb->s_id, function, line, grp);
660 if (ino)
661 printk(KERN_CONT "inode %lu: ", ino);
662 if (block)
663 printk(KERN_CONT "block %llu:",
664 (unsigned long long) block);
665 printk(KERN_CONT "%pV\n", &vaf);
666 va_end(args);
667 }
668
669 if (test_opt(sb, ERRORS_CONT)) {
670 ext4_commit_super(sb, 0);
671 return;
672 }
673
674 ext4_unlock_group(sb, grp);
675 ext4_handle_error(sb);
676 /*
677 * We only get here in the ERRORS_RO case; relocking the group
678 * may be dangerous, but nothing bad will happen since the
679 * filesystem will have already been marked read/only and the
680 * journal has been aborted. We return 1 as a hint to callers
681 * who might what to use the return value from
682 * ext4_grp_locked_error() to distinguish between the
683 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
684 * aggressively from the ext4 function in question, with a
685 * more appropriate error code.
686 */
687 ext4_lock_group(sb, grp);
688 return;
689 }
690
691 void ext4_update_dynamic_rev(struct super_block *sb)
692 {
693 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
694
695 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
696 return;
697
698 ext4_warning(sb,
699 "updating to rev %d because of new feature flag, "
700 "running e2fsck is recommended",
701 EXT4_DYNAMIC_REV);
702
703 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
704 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
705 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
706 /* leave es->s_feature_*compat flags alone */
707 /* es->s_uuid will be set by e2fsck if empty */
708
709 /*
710 * The rest of the superblock fields should be zero, and if not it
711 * means they are likely already in use, so leave them alone. We
712 * can leave it up to e2fsck to clean up any inconsistencies there.
713 */
714 }
715
716 /*
717 * Open the external journal device
718 */
719 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb)
720 {
721 struct block_device *bdev;
722 char b[BDEVNAME_SIZE];
723
724 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb);
725 if (IS_ERR(bdev))
726 goto fail;
727 return bdev;
728
729 fail:
730 ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld",
731 __bdevname(dev, b), PTR_ERR(bdev));
732 return NULL;
733 }
734
735 /*
736 * Release the journal device
737 */
738 static void ext4_blkdev_put(struct block_device *bdev)
739 {
740 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
741 }
742
743 static void ext4_blkdev_remove(struct ext4_sb_info *sbi)
744 {
745 struct block_device *bdev;
746 bdev = sbi->journal_bdev;
747 if (bdev) {
748 ext4_blkdev_put(bdev);
749 sbi->journal_bdev = NULL;
750 }
751 }
752
753 static inline struct inode *orphan_list_entry(struct list_head *l)
754 {
755 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
756 }
757
758 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
759 {
760 struct list_head *l;
761
762 ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
763 le32_to_cpu(sbi->s_es->s_last_orphan));
764
765 printk(KERN_ERR "sb_info orphan list:\n");
766 list_for_each(l, &sbi->s_orphan) {
767 struct inode *inode = orphan_list_entry(l);
768 printk(KERN_ERR " "
769 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
770 inode->i_sb->s_id, inode->i_ino, inode,
771 inode->i_mode, inode->i_nlink,
772 NEXT_ORPHAN(inode));
773 }
774 }
775
776 static void ext4_put_super(struct super_block *sb)
777 {
778 struct ext4_sb_info *sbi = EXT4_SB(sb);
779 struct ext4_super_block *es = sbi->s_es;
780 int i, err;
781
782 ext4_unregister_li_request(sb);
783 dquot_disable(sb, -1, DQUOT_USAGE_ENABLED | DQUOT_LIMITS_ENABLED);
784
785 flush_workqueue(sbi->rsv_conversion_wq);
786 destroy_workqueue(sbi->rsv_conversion_wq);
787
788 if (sbi->s_journal) {
789 err = jbd2_journal_destroy(sbi->s_journal);
790 sbi->s_journal = NULL;
791 if (err < 0)
792 ext4_abort(sb, "Couldn't clean up the journal");
793 }
794
795 ext4_es_unregister_shrinker(sbi);
796 del_timer_sync(&sbi->s_err_report);
797 ext4_release_system_zone(sb);
798 ext4_mb_release(sb);
799 ext4_ext_release(sb);
800 ext4_xattr_put_super(sb);
801
802 if (!(sb->s_flags & MS_RDONLY)) {
803 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
804 es->s_state = cpu_to_le16(sbi->s_mount_state);
805 }
806 if (!(sb->s_flags & MS_RDONLY))
807 ext4_commit_super(sb, 1);
808
809 if (sbi->s_proc) {
810 remove_proc_entry("options", sbi->s_proc);
811 remove_proc_entry(sb->s_id, ext4_proc_root);
812 }
813 kobject_del(&sbi->s_kobj);
814
815 for (i = 0; i < sbi->s_gdb_count; i++)
816 brelse(sbi->s_group_desc[i]);
817 ext4_kvfree(sbi->s_group_desc);
818 ext4_kvfree(sbi->s_flex_groups);
819 percpu_counter_destroy(&sbi->s_freeclusters_counter);
820 percpu_counter_destroy(&sbi->s_freeinodes_counter);
821 percpu_counter_destroy(&sbi->s_dirs_counter);
822 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
823 percpu_counter_destroy(&sbi->s_extent_cache_cnt);
824 brelse(sbi->s_sbh);
825 #ifdef CONFIG_QUOTA
826 for (i = 0; i < MAXQUOTAS; i++)
827 kfree(sbi->s_qf_names[i]);
828 #endif
829
830 /* Debugging code just in case the in-memory inode orphan list
831 * isn't empty. The on-disk one can be non-empty if we've
832 * detected an error and taken the fs readonly, but the
833 * in-memory list had better be clean by this point. */
834 if (!list_empty(&sbi->s_orphan))
835 dump_orphan_list(sb, sbi);
836 J_ASSERT(list_empty(&sbi->s_orphan));
837
838 invalidate_bdev(sb->s_bdev);
839 if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) {
840 /*
841 * Invalidate the journal device's buffers. We don't want them
842 * floating about in memory - the physical journal device may
843 * hotswapped, and it breaks the `ro-after' testing code.
844 */
845 sync_blockdev(sbi->journal_bdev);
846 invalidate_bdev(sbi->journal_bdev);
847 ext4_blkdev_remove(sbi);
848 }
849 if (sbi->s_mb_cache) {
850 ext4_xattr_destroy_cache(sbi->s_mb_cache);
851 sbi->s_mb_cache = NULL;
852 }
853 if (sbi->s_mmp_tsk)
854 kthread_stop(sbi->s_mmp_tsk);
855 sb->s_fs_info = NULL;
856 /*
857 * Now that we are completely done shutting down the
858 * superblock, we need to actually destroy the kobject.
859 */
860 kobject_put(&sbi->s_kobj);
861 wait_for_completion(&sbi->s_kobj_unregister);
862 if (sbi->s_chksum_driver)
863 crypto_free_shash(sbi->s_chksum_driver);
864 kfree(sbi->s_blockgroup_lock);
865 kfree(sbi);
866 }
867
868 static struct kmem_cache *ext4_inode_cachep;
869
870 /*
871 * Called inside transaction, so use GFP_NOFS
872 */
873 static struct inode *ext4_alloc_inode(struct super_block *sb)
874 {
875 struct ext4_inode_info *ei;
876
877 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS);
878 if (!ei)
879 return NULL;
880
881 ei->vfs_inode.i_version = 1;
882 INIT_LIST_HEAD(&ei->i_prealloc_list);
883 spin_lock_init(&ei->i_prealloc_lock);
884 ext4_es_init_tree(&ei->i_es_tree);
885 rwlock_init(&ei->i_es_lock);
886 INIT_LIST_HEAD(&ei->i_es_lru);
887 ei->i_es_lru_nr = 0;
888 ei->i_touch_when = 0;
889 ei->i_reserved_data_blocks = 0;
890 ei->i_reserved_meta_blocks = 0;
891 ei->i_allocated_meta_blocks = 0;
892 ei->i_da_metadata_calc_len = 0;
893 ei->i_da_metadata_calc_last_lblock = 0;
894 spin_lock_init(&(ei->i_block_reservation_lock));
895 #ifdef CONFIG_QUOTA
896 ei->i_reserved_quota = 0;
897 #endif
898 ei->jinode = NULL;
899 INIT_LIST_HEAD(&ei->i_rsv_conversion_list);
900 spin_lock_init(&ei->i_completed_io_lock);
901 ei->i_sync_tid = 0;
902 ei->i_datasync_tid = 0;
903 atomic_set(&ei->i_ioend_count, 0);
904 atomic_set(&ei->i_unwritten, 0);
905 INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work);
906
907 return &ei->vfs_inode;
908 }
909
910 static int ext4_drop_inode(struct inode *inode)
911 {
912 int drop = generic_drop_inode(inode);
913
914 trace_ext4_drop_inode(inode, drop);
915 return drop;
916 }
917
918 static void ext4_i_callback(struct rcu_head *head)
919 {
920 struct inode *inode = container_of(head, struct inode, i_rcu);
921 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
922 }
923
924 static void ext4_destroy_inode(struct inode *inode)
925 {
926 if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
927 ext4_msg(inode->i_sb, KERN_ERR,
928 "Inode %lu (%p): orphan list check failed!",
929 inode->i_ino, EXT4_I(inode));
930 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
931 EXT4_I(inode), sizeof(struct ext4_inode_info),
932 true);
933 dump_stack();
934 }
935 call_rcu(&inode->i_rcu, ext4_i_callback);
936 }
937
938 static void init_once(void *foo)
939 {
940 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo;
941
942 INIT_LIST_HEAD(&ei->i_orphan);
943 init_rwsem(&ei->xattr_sem);
944 init_rwsem(&ei->i_data_sem);
945 inode_init_once(&ei->vfs_inode);
946 }
947
948 static int __init init_inodecache(void)
949 {
950 ext4_inode_cachep = kmem_cache_create("ext4_inode_cache",
951 sizeof(struct ext4_inode_info),
952 0, (SLAB_RECLAIM_ACCOUNT|
953 SLAB_MEM_SPREAD),
954 init_once);
955 if (ext4_inode_cachep == NULL)
956 return -ENOMEM;
957 return 0;
958 }
959
960 static void destroy_inodecache(void)
961 {
962 /*
963 * Make sure all delayed rcu free inodes are flushed before we
964 * destroy cache.
965 */
966 rcu_barrier();
967 kmem_cache_destroy(ext4_inode_cachep);
968 }
969
970 void ext4_clear_inode(struct inode *inode)
971 {
972 invalidate_inode_buffers(inode);
973 clear_inode(inode);
974 dquot_drop(inode);
975 ext4_discard_preallocations(inode);
976 ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS);
977 ext4_es_lru_del(inode);
978 if (EXT4_I(inode)->jinode) {
979 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
980 EXT4_I(inode)->jinode);
981 jbd2_free_inode(EXT4_I(inode)->jinode);
982 EXT4_I(inode)->jinode = NULL;
983 }
984 }
985
986 static struct inode *ext4_nfs_get_inode(struct super_block *sb,
987 u64 ino, u32 generation)
988 {
989 struct inode *inode;
990
991 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
992 return ERR_PTR(-ESTALE);
993 if (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
994 return ERR_PTR(-ESTALE);
995
996 /* iget isn't really right if the inode is currently unallocated!!
997 *
998 * ext4_read_inode will return a bad_inode if the inode had been
999 * deleted, so we should be safe.
1000 *
1001 * Currently we don't know the generation for parent directory, so
1002 * a generation of 0 means "accept any"
1003 */
1004 inode = ext4_iget(sb, ino);
1005 if (IS_ERR(inode))
1006 return ERR_CAST(inode);
1007 if (generation && inode->i_generation != generation) {
1008 iput(inode);
1009 return ERR_PTR(-ESTALE);
1010 }
1011
1012 return inode;
1013 }
1014
1015 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
1016 int fh_len, int fh_type)
1017 {
1018 return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1019 ext4_nfs_get_inode);
1020 }
1021
1022 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
1023 int fh_len, int fh_type)
1024 {
1025 return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1026 ext4_nfs_get_inode);
1027 }
1028
1029 /*
1030 * Try to release metadata pages (indirect blocks, directories) which are
1031 * mapped via the block device. Since these pages could have journal heads
1032 * which would prevent try_to_free_buffers() from freeing them, we must use
1033 * jbd2 layer's try_to_free_buffers() function to release them.
1034 */
1035 static int bdev_try_to_free_page(struct super_block *sb, struct page *page,
1036 gfp_t wait)
1037 {
1038 journal_t *journal = EXT4_SB(sb)->s_journal;
1039
1040 WARN_ON(PageChecked(page));
1041 if (!page_has_buffers(page))
1042 return 0;
1043 if (journal)
1044 return jbd2_journal_try_to_free_buffers(journal, page,
1045 wait & ~__GFP_WAIT);
1046 return try_to_free_buffers(page);
1047 }
1048
1049 #ifdef CONFIG_QUOTA
1050 #define QTYPE2NAME(t) ((t) == USRQUOTA ? "user" : "group")
1051 #define QTYPE2MOPT(on, t) ((t) == USRQUOTA?((on)##USRJQUOTA):((on)##GRPJQUOTA))
1052
1053 static int ext4_write_dquot(struct dquot *dquot);
1054 static int ext4_acquire_dquot(struct dquot *dquot);
1055 static int ext4_release_dquot(struct dquot *dquot);
1056 static int ext4_mark_dquot_dirty(struct dquot *dquot);
1057 static int ext4_write_info(struct super_block *sb, int type);
1058 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1059 struct path *path);
1060 static int ext4_quota_on_sysfile(struct super_block *sb, int type,
1061 int format_id);
1062 static int ext4_quota_off(struct super_block *sb, int type);
1063 static int ext4_quota_off_sysfile(struct super_block *sb, int type);
1064 static int ext4_quota_on_mount(struct super_block *sb, int type);
1065 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1066 size_t len, loff_t off);
1067 static ssize_t ext4_quota_write(struct super_block *sb, int type,
1068 const char *data, size_t len, loff_t off);
1069 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
1070 unsigned int flags);
1071 static int ext4_enable_quotas(struct super_block *sb);
1072
1073 static const struct dquot_operations ext4_quota_operations = {
1074 .get_reserved_space = ext4_get_reserved_space,
1075 .write_dquot = ext4_write_dquot,
1076 .acquire_dquot = ext4_acquire_dquot,
1077 .release_dquot = ext4_release_dquot,
1078 .mark_dirty = ext4_mark_dquot_dirty,
1079 .write_info = ext4_write_info,
1080 .alloc_dquot = dquot_alloc,
1081 .destroy_dquot = dquot_destroy,
1082 };
1083
1084 static const struct quotactl_ops ext4_qctl_operations = {
1085 .quota_on = ext4_quota_on,
1086 .quota_off = ext4_quota_off,
1087 .quota_sync = dquot_quota_sync,
1088 .get_info = dquot_get_dqinfo,
1089 .set_info = dquot_set_dqinfo,
1090 .get_dqblk = dquot_get_dqblk,
1091 .set_dqblk = dquot_set_dqblk
1092 };
1093
1094 static const struct quotactl_ops ext4_qctl_sysfile_operations = {
1095 .quota_on_meta = ext4_quota_on_sysfile,
1096 .quota_off = ext4_quota_off_sysfile,
1097 .quota_sync = dquot_quota_sync,
1098 .get_info = dquot_get_dqinfo,
1099 .set_info = dquot_set_dqinfo,
1100 .get_dqblk = dquot_get_dqblk,
1101 .set_dqblk = dquot_set_dqblk
1102 };
1103 #endif
1104
1105 static const struct super_operations ext4_sops = {
1106 .alloc_inode = ext4_alloc_inode,
1107 .destroy_inode = ext4_destroy_inode,
1108 .write_inode = ext4_write_inode,
1109 .dirty_inode = ext4_dirty_inode,
1110 .drop_inode = ext4_drop_inode,
1111 .evict_inode = ext4_evict_inode,
1112 .put_super = ext4_put_super,
1113 .sync_fs = ext4_sync_fs,
1114 .freeze_fs = ext4_freeze,
1115 .unfreeze_fs = ext4_unfreeze,
1116 .statfs = ext4_statfs,
1117 .remount_fs = ext4_remount,
1118 .show_options = ext4_show_options,
1119 #ifdef CONFIG_QUOTA
1120 .quota_read = ext4_quota_read,
1121 .quota_write = ext4_quota_write,
1122 #endif
1123 .bdev_try_to_free_page = bdev_try_to_free_page,
1124 };
1125
1126 static const struct super_operations ext4_nojournal_sops = {
1127 .alloc_inode = ext4_alloc_inode,
1128 .destroy_inode = ext4_destroy_inode,
1129 .write_inode = ext4_write_inode,
1130 .dirty_inode = ext4_dirty_inode,
1131 .drop_inode = ext4_drop_inode,
1132 .evict_inode = ext4_evict_inode,
1133 .sync_fs = ext4_sync_fs_nojournal,
1134 .put_super = ext4_put_super,
1135 .statfs = ext4_statfs,
1136 .remount_fs = ext4_remount,
1137 .show_options = ext4_show_options,
1138 #ifdef CONFIG_QUOTA
1139 .quota_read = ext4_quota_read,
1140 .quota_write = ext4_quota_write,
1141 #endif
1142 .bdev_try_to_free_page = bdev_try_to_free_page,
1143 };
1144
1145 static const struct export_operations ext4_export_ops = {
1146 .fh_to_dentry = ext4_fh_to_dentry,
1147 .fh_to_parent = ext4_fh_to_parent,
1148 .get_parent = ext4_get_parent,
1149 };
1150
1151 enum {
1152 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1153 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro,
1154 Opt_nouid32, Opt_debug, Opt_removed,
1155 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl,
1156 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload,
1157 Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev,
1158 Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit,
1159 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1160 Opt_data_err_abort, Opt_data_err_ignore,
1161 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota,
1162 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota,
1163 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err,
1164 Opt_usrquota, Opt_grpquota, Opt_i_version,
1165 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_mblk_io_submit,
1166 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1167 Opt_inode_readahead_blks, Opt_journal_ioprio,
1168 Opt_dioread_nolock, Opt_dioread_lock,
1169 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable,
1170 Opt_max_dir_size_kb,
1171 };
1172
1173 static const match_table_t tokens = {
1174 {Opt_bsd_df, "bsddf"},
1175 {Opt_minix_df, "minixdf"},
1176 {Opt_grpid, "grpid"},
1177 {Opt_grpid, "bsdgroups"},
1178 {Opt_nogrpid, "nogrpid"},
1179 {Opt_nogrpid, "sysvgroups"},
1180 {Opt_resgid, "resgid=%u"},
1181 {Opt_resuid, "resuid=%u"},
1182 {Opt_sb, "sb=%u"},
1183 {Opt_err_cont, "errors=continue"},
1184 {Opt_err_panic, "errors=panic"},
1185 {Opt_err_ro, "errors=remount-ro"},
1186 {Opt_nouid32, "nouid32"},
1187 {Opt_debug, "debug"},
1188 {Opt_removed, "oldalloc"},
1189 {Opt_removed, "orlov"},
1190 {Opt_user_xattr, "user_xattr"},
1191 {Opt_nouser_xattr, "nouser_xattr"},
1192 {Opt_acl, "acl"},
1193 {Opt_noacl, "noacl"},
1194 {Opt_noload, "norecovery"},
1195 {Opt_noload, "noload"},
1196 {Opt_removed, "nobh"},
1197 {Opt_removed, "bh"},
1198 {Opt_commit, "commit=%u"},
1199 {Opt_min_batch_time, "min_batch_time=%u"},
1200 {Opt_max_batch_time, "max_batch_time=%u"},
1201 {Opt_journal_dev, "journal_dev=%u"},
1202 {Opt_journal_path, "journal_path=%s"},
1203 {Opt_journal_checksum, "journal_checksum"},
1204 {Opt_journal_async_commit, "journal_async_commit"},
1205 {Opt_abort, "abort"},
1206 {Opt_data_journal, "data=journal"},
1207 {Opt_data_ordered, "data=ordered"},
1208 {Opt_data_writeback, "data=writeback"},
1209 {Opt_data_err_abort, "data_err=abort"},
1210 {Opt_data_err_ignore, "data_err=ignore"},
1211 {Opt_offusrjquota, "usrjquota="},
1212 {Opt_usrjquota, "usrjquota=%s"},
1213 {Opt_offgrpjquota, "grpjquota="},
1214 {Opt_grpjquota, "grpjquota=%s"},
1215 {Opt_jqfmt_vfsold, "jqfmt=vfsold"},
1216 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
1217 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
1218 {Opt_grpquota, "grpquota"},
1219 {Opt_noquota, "noquota"},
1220 {Opt_quota, "quota"},
1221 {Opt_usrquota, "usrquota"},
1222 {Opt_barrier, "barrier=%u"},
1223 {Opt_barrier, "barrier"},
1224 {Opt_nobarrier, "nobarrier"},
1225 {Opt_i_version, "i_version"},
1226 {Opt_stripe, "stripe=%u"},
1227 {Opt_delalloc, "delalloc"},
1228 {Opt_nodelalloc, "nodelalloc"},
1229 {Opt_removed, "mblk_io_submit"},
1230 {Opt_removed, "nomblk_io_submit"},
1231 {Opt_block_validity, "block_validity"},
1232 {Opt_noblock_validity, "noblock_validity"},
1233 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"},
1234 {Opt_journal_ioprio, "journal_ioprio=%u"},
1235 {Opt_auto_da_alloc, "auto_da_alloc=%u"},
1236 {Opt_auto_da_alloc, "auto_da_alloc"},
1237 {Opt_noauto_da_alloc, "noauto_da_alloc"},
1238 {Opt_dioread_nolock, "dioread_nolock"},
1239 {Opt_dioread_lock, "dioread_lock"},
1240 {Opt_discard, "discard"},
1241 {Opt_nodiscard, "nodiscard"},
1242 {Opt_init_itable, "init_itable=%u"},
1243 {Opt_init_itable, "init_itable"},
1244 {Opt_noinit_itable, "noinit_itable"},
1245 {Opt_max_dir_size_kb, "max_dir_size_kb=%u"},
1246 {Opt_removed, "check=none"}, /* mount option from ext2/3 */
1247 {Opt_removed, "nocheck"}, /* mount option from ext2/3 */
1248 {Opt_removed, "reservation"}, /* mount option from ext2/3 */
1249 {Opt_removed, "noreservation"}, /* mount option from ext2/3 */
1250 {Opt_removed, "journal=%u"}, /* mount option from ext2/3 */
1251 {Opt_err, NULL},
1252 };
1253
1254 static ext4_fsblk_t get_sb_block(void **data)
1255 {
1256 ext4_fsblk_t sb_block;
1257 char *options = (char *) *data;
1258
1259 if (!options || strncmp(options, "sb=", 3) != 0)
1260 return 1; /* Default location */
1261
1262 options += 3;
1263 /* TODO: use simple_strtoll with >32bit ext4 */
1264 sb_block = simple_strtoul(options, &options, 0);
1265 if (*options && *options != ',') {
1266 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n",
1267 (char *) *data);
1268 return 1;
1269 }
1270 if (*options == ',')
1271 options++;
1272 *data = (void *) options;
1273
1274 return sb_block;
1275 }
1276
1277 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1278 static char deprecated_msg[] = "Mount option \"%s\" will be removed by %s\n"
1279 "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n";
1280
1281 #ifdef CONFIG_QUOTA
1282 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args)
1283 {
1284 struct ext4_sb_info *sbi = EXT4_SB(sb);
1285 char *qname;
1286 int ret = -1;
1287
1288 if (sb_any_quota_loaded(sb) &&
1289 !sbi->s_qf_names[qtype]) {
1290 ext4_msg(sb, KERN_ERR,
1291 "Cannot change journaled "
1292 "quota options when quota turned on");
1293 return -1;
1294 }
1295 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA)) {
1296 ext4_msg(sb, KERN_ERR, "Cannot set journaled quota options "
1297 "when QUOTA feature is enabled");
1298 return -1;
1299 }
1300 qname = match_strdup(args);
1301 if (!qname) {
1302 ext4_msg(sb, KERN_ERR,
1303 "Not enough memory for storing quotafile name");
1304 return -1;
1305 }
1306 if (sbi->s_qf_names[qtype]) {
1307 if (strcmp(sbi->s_qf_names[qtype], qname) == 0)
1308 ret = 1;
1309 else
1310 ext4_msg(sb, KERN_ERR,
1311 "%s quota file already specified",
1312 QTYPE2NAME(qtype));
1313 goto errout;
1314 }
1315 if (strchr(qname, '/')) {
1316 ext4_msg(sb, KERN_ERR,
1317 "quotafile must be on filesystem root");
1318 goto errout;
1319 }
1320 sbi->s_qf_names[qtype] = qname;
1321 set_opt(sb, QUOTA);
1322 return 1;
1323 errout:
1324 kfree(qname);
1325 return ret;
1326 }
1327
1328 static int clear_qf_name(struct super_block *sb, int qtype)
1329 {
1330
1331 struct ext4_sb_info *sbi = EXT4_SB(sb);
1332
1333 if (sb_any_quota_loaded(sb) &&
1334 sbi->s_qf_names[qtype]) {
1335 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options"
1336 " when quota turned on");
1337 return -1;
1338 }
1339 kfree(sbi->s_qf_names[qtype]);
1340 sbi->s_qf_names[qtype] = NULL;
1341 return 1;
1342 }
1343 #endif
1344
1345 #define MOPT_SET 0x0001
1346 #define MOPT_CLEAR 0x0002
1347 #define MOPT_NOSUPPORT 0x0004
1348 #define MOPT_EXPLICIT 0x0008
1349 #define MOPT_CLEAR_ERR 0x0010
1350 #define MOPT_GTE0 0x0020
1351 #ifdef CONFIG_QUOTA
1352 #define MOPT_Q 0
1353 #define MOPT_QFMT 0x0040
1354 #else
1355 #define MOPT_Q MOPT_NOSUPPORT
1356 #define MOPT_QFMT MOPT_NOSUPPORT
1357 #endif
1358 #define MOPT_DATAJ 0x0080
1359 #define MOPT_NO_EXT2 0x0100
1360 #define MOPT_NO_EXT3 0x0200
1361 #define MOPT_EXT4_ONLY (MOPT_NO_EXT2 | MOPT_NO_EXT3)
1362 #define MOPT_STRING 0x0400
1363
1364 static const struct mount_opts {
1365 int token;
1366 int mount_opt;
1367 int flags;
1368 } ext4_mount_opts[] = {
1369 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET},
1370 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR},
1371 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET},
1372 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR},
1373 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET},
1374 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR},
1375 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK,
1376 MOPT_EXT4_ONLY | MOPT_SET},
1377 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK,
1378 MOPT_EXT4_ONLY | MOPT_CLEAR},
1379 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET},
1380 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR},
1381 {Opt_delalloc, EXT4_MOUNT_DELALLOC,
1382 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1383 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC,
1384 MOPT_EXT4_ONLY | MOPT_CLEAR},
1385 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1386 MOPT_EXT4_ONLY | MOPT_SET},
1387 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT |
1388 EXT4_MOUNT_JOURNAL_CHECKSUM),
1389 MOPT_EXT4_ONLY | MOPT_SET},
1390 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET},
1391 {Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR},
1392 {Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR},
1393 {Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR},
1394 {Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT,
1395 MOPT_NO_EXT2 | MOPT_SET},
1396 {Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT,
1397 MOPT_NO_EXT2 | MOPT_CLEAR},
1398 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET},
1399 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR},
1400 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET},
1401 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR},
1402 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR},
1403 {Opt_commit, 0, MOPT_GTE0},
1404 {Opt_max_batch_time, 0, MOPT_GTE0},
1405 {Opt_min_batch_time, 0, MOPT_GTE0},
1406 {Opt_inode_readahead_blks, 0, MOPT_GTE0},
1407 {Opt_init_itable, 0, MOPT_GTE0},
1408 {Opt_stripe, 0, MOPT_GTE0},
1409 {Opt_resuid, 0, MOPT_GTE0},
1410 {Opt_resgid, 0, MOPT_GTE0},
1411 {Opt_journal_dev, 0, MOPT_GTE0},
1412 {Opt_journal_path, 0, MOPT_STRING},
1413 {Opt_journal_ioprio, 0, MOPT_GTE0},
1414 {Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1415 {Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1416 {Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA,
1417 MOPT_NO_EXT2 | MOPT_DATAJ},
1418 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET},
1419 {Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR},
1420 #ifdef CONFIG_EXT4_FS_POSIX_ACL
1421 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET},
1422 {Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR},
1423 #else
1424 {Opt_acl, 0, MOPT_NOSUPPORT},
1425 {Opt_noacl, 0, MOPT_NOSUPPORT},
1426 #endif
1427 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET},
1428 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET},
1429 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q},
1430 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA,
1431 MOPT_SET | MOPT_Q},
1432 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA,
1433 MOPT_SET | MOPT_Q},
1434 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
1435 EXT4_MOUNT_GRPQUOTA), MOPT_CLEAR | MOPT_Q},
1436 {Opt_usrjquota, 0, MOPT_Q},
1437 {Opt_grpjquota, 0, MOPT_Q},
1438 {Opt_offusrjquota, 0, MOPT_Q},
1439 {Opt_offgrpjquota, 0, MOPT_Q},
1440 {Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT},
1441 {Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT},
1442 {Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT},
1443 {Opt_max_dir_size_kb, 0, MOPT_GTE0},
1444 {Opt_err, 0, 0}
1445 };
1446
1447 static int handle_mount_opt(struct super_block *sb, char *opt, int token,
1448 substring_t *args, unsigned long *journal_devnum,
1449 unsigned int *journal_ioprio, int is_remount)
1450 {
1451 struct ext4_sb_info *sbi = EXT4_SB(sb);
1452 const struct mount_opts *m;
1453 kuid_t uid;
1454 kgid_t gid;
1455 int arg = 0;
1456
1457 #ifdef CONFIG_QUOTA
1458 if (token == Opt_usrjquota)
1459 return set_qf_name(sb, USRQUOTA, &args[0]);
1460 else if (token == Opt_grpjquota)
1461 return set_qf_name(sb, GRPQUOTA, &args[0]);
1462 else if (token == Opt_offusrjquota)
1463 return clear_qf_name(sb, USRQUOTA);
1464 else if (token == Opt_offgrpjquota)
1465 return clear_qf_name(sb, GRPQUOTA);
1466 #endif
1467 switch (token) {
1468 case Opt_noacl:
1469 case Opt_nouser_xattr:
1470 ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5");
1471 break;
1472 case Opt_sb:
1473 return 1; /* handled by get_sb_block() */
1474 case Opt_removed:
1475 ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt);
1476 return 1;
1477 case Opt_abort:
1478 sbi->s_mount_flags |= EXT4_MF_FS_ABORTED;
1479 return 1;
1480 case Opt_i_version:
1481 sb->s_flags |= MS_I_VERSION;
1482 return 1;
1483 }
1484
1485 for (m = ext4_mount_opts; m->token != Opt_err; m++)
1486 if (token == m->token)
1487 break;
1488
1489 if (m->token == Opt_err) {
1490 ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" "
1491 "or missing value", opt);
1492 return -1;
1493 }
1494
1495 if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) {
1496 ext4_msg(sb, KERN_ERR,
1497 "Mount option \"%s\" incompatible with ext2", opt);
1498 return -1;
1499 }
1500 if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) {
1501 ext4_msg(sb, KERN_ERR,
1502 "Mount option \"%s\" incompatible with ext3", opt);
1503 return -1;
1504 }
1505
1506 if (args->from && !(m->flags & MOPT_STRING) && match_int(args, &arg))
1507 return -1;
1508 if (args->from && (m->flags & MOPT_GTE0) && (arg < 0))
1509 return -1;
1510 if (m->flags & MOPT_EXPLICIT)
1511 set_opt2(sb, EXPLICIT_DELALLOC);
1512 if (m->flags & MOPT_CLEAR_ERR)
1513 clear_opt(sb, ERRORS_MASK);
1514 if (token == Opt_noquota && sb_any_quota_loaded(sb)) {
1515 ext4_msg(sb, KERN_ERR, "Cannot change quota "
1516 "options when quota turned on");
1517 return -1;
1518 }
1519
1520 if (m->flags & MOPT_NOSUPPORT) {
1521 ext4_msg(sb, KERN_ERR, "%s option not supported", opt);
1522 } else if (token == Opt_commit) {
1523 if (arg == 0)
1524 arg = JBD2_DEFAULT_MAX_COMMIT_AGE;
1525 sbi->s_commit_interval = HZ * arg;
1526 } else if (token == Opt_max_batch_time) {
1527 if (arg == 0)
1528 arg = EXT4_DEF_MAX_BATCH_TIME;
1529 sbi->s_max_batch_time = arg;
1530 } else if (token == Opt_min_batch_time) {
1531 sbi->s_min_batch_time = arg;
1532 } else if (token == Opt_inode_readahead_blks) {
1533 if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) {
1534 ext4_msg(sb, KERN_ERR,
1535 "EXT4-fs: inode_readahead_blks must be "
1536 "0 or a power of 2 smaller than 2^31");
1537 return -1;
1538 }
1539 sbi->s_inode_readahead_blks = arg;
1540 } else if (token == Opt_init_itable) {
1541 set_opt(sb, INIT_INODE_TABLE);
1542 if (!args->from)
1543 arg = EXT4_DEF_LI_WAIT_MULT;
1544 sbi->s_li_wait_mult = arg;
1545 } else if (token == Opt_max_dir_size_kb) {
1546 sbi->s_max_dir_size_kb = arg;
1547 } else if (token == Opt_stripe) {
1548 sbi->s_stripe = arg;
1549 } else if (token == Opt_resuid) {
1550 uid = make_kuid(current_user_ns(), arg);
1551 if (!uid_valid(uid)) {
1552 ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg);
1553 return -1;
1554 }
1555 sbi->s_resuid = uid;
1556 } else if (token == Opt_resgid) {
1557 gid = make_kgid(current_user_ns(), arg);
1558 if (!gid_valid(gid)) {
1559 ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg);
1560 return -1;
1561 }
1562 sbi->s_resgid = gid;
1563 } else if (token == Opt_journal_dev) {
1564 if (is_remount) {
1565 ext4_msg(sb, KERN_ERR,
1566 "Cannot specify journal on remount");
1567 return -1;
1568 }
1569 *journal_devnum = arg;
1570 } else if (token == Opt_journal_path) {
1571 char *journal_path;
1572 struct inode *journal_inode;
1573 struct path path;
1574 int error;
1575
1576 if (is_remount) {
1577 ext4_msg(sb, KERN_ERR,
1578 "Cannot specify journal on remount");
1579 return -1;
1580 }
1581 journal_path = match_strdup(&args[0]);
1582 if (!journal_path) {
1583 ext4_msg(sb, KERN_ERR, "error: could not dup "
1584 "journal device string");
1585 return -1;
1586 }
1587
1588 error = kern_path(journal_path, LOOKUP_FOLLOW, &path);
1589 if (error) {
1590 ext4_msg(sb, KERN_ERR, "error: could not find "
1591 "journal device path: error %d", error);
1592 kfree(journal_path);
1593 return -1;
1594 }
1595
1596 journal_inode = path.dentry->d_inode;
1597 if (!S_ISBLK(journal_inode->i_mode)) {
1598 ext4_msg(sb, KERN_ERR, "error: journal path %s "
1599 "is not a block device", journal_path);
1600 path_put(&path);
1601 kfree(journal_path);
1602 return -1;
1603 }
1604
1605 *journal_devnum = new_encode_dev(journal_inode->i_rdev);
1606 path_put(&path);
1607 kfree(journal_path);
1608 } else if (token == Opt_journal_ioprio) {
1609 if (arg > 7) {
1610 ext4_msg(sb, KERN_ERR, "Invalid journal IO priority"
1611 " (must be 0-7)");
1612 return -1;
1613 }
1614 *journal_ioprio =
1615 IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg);
1616 } else if (m->flags & MOPT_DATAJ) {
1617 if (is_remount) {
1618 if (!sbi->s_journal)
1619 ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option");
1620 else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) {
1621 ext4_msg(sb, KERN_ERR,
1622 "Cannot change data mode on remount");
1623 return -1;
1624 }
1625 } else {
1626 clear_opt(sb, DATA_FLAGS);
1627 sbi->s_mount_opt |= m->mount_opt;
1628 }
1629 #ifdef CONFIG_QUOTA
1630 } else if (m->flags & MOPT_QFMT) {
1631 if (sb_any_quota_loaded(sb) &&
1632 sbi->s_jquota_fmt != m->mount_opt) {
1633 ext4_msg(sb, KERN_ERR, "Cannot change journaled "
1634 "quota options when quota turned on");
1635 return -1;
1636 }
1637 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
1638 EXT4_FEATURE_RO_COMPAT_QUOTA)) {
1639 ext4_msg(sb, KERN_ERR,
1640 "Cannot set journaled quota options "
1641 "when QUOTA feature is enabled");
1642 return -1;
1643 }
1644 sbi->s_jquota_fmt = m->mount_opt;
1645 #endif
1646 } else {
1647 if (!args->from)
1648 arg = 1;
1649 if (m->flags & MOPT_CLEAR)
1650 arg = !arg;
1651 else if (unlikely(!(m->flags & MOPT_SET))) {
1652 ext4_msg(sb, KERN_WARNING,
1653 "buggy handling of option %s", opt);
1654 WARN_ON(1);
1655 return -1;
1656 }
1657 if (arg != 0)
1658 sbi->s_mount_opt |= m->mount_opt;
1659 else
1660 sbi->s_mount_opt &= ~m->mount_opt;
1661 }
1662 return 1;
1663 }
1664
1665 static int parse_options(char *options, struct super_block *sb,
1666 unsigned long *journal_devnum,
1667 unsigned int *journal_ioprio,
1668 int is_remount)
1669 {
1670 struct ext4_sb_info *sbi = EXT4_SB(sb);
1671 char *p;
1672 substring_t args[MAX_OPT_ARGS];
1673 int token;
1674
1675 if (!options)
1676 return 1;
1677
1678 while ((p = strsep(&options, ",")) != NULL) {
1679 if (!*p)
1680 continue;
1681 /*
1682 * Initialize args struct so we know whether arg was
1683 * found; some options take optional arguments.
1684 */
1685 args[0].to = args[0].from = NULL;
1686 token = match_token(p, tokens, args);
1687 if (handle_mount_opt(sb, p, token, args, journal_devnum,
1688 journal_ioprio, is_remount) < 0)
1689 return 0;
1690 }
1691 #ifdef CONFIG_QUOTA
1692 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) &&
1693 (test_opt(sb, USRQUOTA) || test_opt(sb, GRPQUOTA))) {
1694 ext4_msg(sb, KERN_ERR, "Cannot set quota options when QUOTA "
1695 "feature is enabled");
1696 return 0;
1697 }
1698 if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
1699 if (test_opt(sb, USRQUOTA) && sbi->s_qf_names[USRQUOTA])
1700 clear_opt(sb, USRQUOTA);
1701
1702 if (test_opt(sb, GRPQUOTA) && sbi->s_qf_names[GRPQUOTA])
1703 clear_opt(sb, GRPQUOTA);
1704
1705 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) {
1706 ext4_msg(sb, KERN_ERR, "old and new quota "
1707 "format mixing");
1708 return 0;
1709 }
1710
1711 if (!sbi->s_jquota_fmt) {
1712 ext4_msg(sb, KERN_ERR, "journaled quota format "
1713 "not specified");
1714 return 0;
1715 }
1716 } else {
1717 if (sbi->s_jquota_fmt) {
1718 ext4_msg(sb, KERN_ERR, "journaled quota format "
1719 "specified with no journaling "
1720 "enabled");
1721 return 0;
1722 }
1723 }
1724 #endif
1725 if (test_opt(sb, DIOREAD_NOLOCK)) {
1726 int blocksize =
1727 BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size);
1728
1729 if (blocksize < PAGE_CACHE_SIZE) {
1730 ext4_msg(sb, KERN_ERR, "can't mount with "
1731 "dioread_nolock if block size != PAGE_SIZE");
1732 return 0;
1733 }
1734 }
1735 return 1;
1736 }
1737
1738 static inline void ext4_show_quota_options(struct seq_file *seq,
1739 struct super_block *sb)
1740 {
1741 #if defined(CONFIG_QUOTA)
1742 struct ext4_sb_info *sbi = EXT4_SB(sb);
1743
1744 if (sbi->s_jquota_fmt) {
1745 char *fmtname = "";
1746
1747 switch (sbi->s_jquota_fmt) {
1748 case QFMT_VFS_OLD:
1749 fmtname = "vfsold";
1750 break;
1751 case QFMT_VFS_V0:
1752 fmtname = "vfsv0";
1753 break;
1754 case QFMT_VFS_V1:
1755 fmtname = "vfsv1";
1756 break;
1757 }
1758 seq_printf(seq, ",jqfmt=%s", fmtname);
1759 }
1760
1761 if (sbi->s_qf_names[USRQUOTA])
1762 seq_printf(seq, ",usrjquota=%s", sbi->s_qf_names[USRQUOTA]);
1763
1764 if (sbi->s_qf_names[GRPQUOTA])
1765 seq_printf(seq, ",grpjquota=%s", sbi->s_qf_names[GRPQUOTA]);
1766 #endif
1767 }
1768
1769 static const char *token2str(int token)
1770 {
1771 const struct match_token *t;
1772
1773 for (t = tokens; t->token != Opt_err; t++)
1774 if (t->token == token && !strchr(t->pattern, '='))
1775 break;
1776 return t->pattern;
1777 }
1778
1779 /*
1780 * Show an option if
1781 * - it's set to a non-default value OR
1782 * - if the per-sb default is different from the global default
1783 */
1784 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb,
1785 int nodefs)
1786 {
1787 struct ext4_sb_info *sbi = EXT4_SB(sb);
1788 struct ext4_super_block *es = sbi->s_es;
1789 int def_errors, def_mount_opt = nodefs ? 0 : sbi->s_def_mount_opt;
1790 const struct mount_opts *m;
1791 char sep = nodefs ? '\n' : ',';
1792
1793 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep)
1794 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg)
1795
1796 if (sbi->s_sb_block != 1)
1797 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block);
1798
1799 for (m = ext4_mount_opts; m->token != Opt_err; m++) {
1800 int want_set = m->flags & MOPT_SET;
1801 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) ||
1802 (m->flags & MOPT_CLEAR_ERR))
1803 continue;
1804 if (!(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt)))
1805 continue; /* skip if same as the default */
1806 if ((want_set &&
1807 (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) ||
1808 (!want_set && (sbi->s_mount_opt & m->mount_opt)))
1809 continue; /* select Opt_noFoo vs Opt_Foo */
1810 SEQ_OPTS_PRINT("%s", token2str(m->token));
1811 }
1812
1813 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) ||
1814 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID)
1815 SEQ_OPTS_PRINT("resuid=%u",
1816 from_kuid_munged(&init_user_ns, sbi->s_resuid));
1817 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) ||
1818 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID)
1819 SEQ_OPTS_PRINT("resgid=%u",
1820 from_kgid_munged(&init_user_ns, sbi->s_resgid));
1821 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors);
1822 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO)
1823 SEQ_OPTS_PUTS("errors=remount-ro");
1824 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
1825 SEQ_OPTS_PUTS("errors=continue");
1826 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
1827 SEQ_OPTS_PUTS("errors=panic");
1828 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
1829 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ);
1830 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME)
1831 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time);
1832 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME)
1833 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time);
1834 if (sb->s_flags & MS_I_VERSION)
1835 SEQ_OPTS_PUTS("i_version");
1836 if (nodefs || sbi->s_stripe)
1837 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe);
1838 if (EXT4_MOUNT_DATA_FLAGS & (sbi->s_mount_opt ^ def_mount_opt)) {
1839 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
1840 SEQ_OPTS_PUTS("data=journal");
1841 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
1842 SEQ_OPTS_PUTS("data=ordered");
1843 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
1844 SEQ_OPTS_PUTS("data=writeback");
1845 }
1846 if (nodefs ||
1847 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
1848 SEQ_OPTS_PRINT("inode_readahead_blks=%u",
1849 sbi->s_inode_readahead_blks);
1850
1851 if (nodefs || (test_opt(sb, INIT_INODE_TABLE) &&
1852 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)))
1853 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult);
1854 if (nodefs || sbi->s_max_dir_size_kb)
1855 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb);
1856
1857 ext4_show_quota_options(seq, sb);
1858 return 0;
1859 }
1860
1861 static int ext4_show_options(struct seq_file *seq, struct dentry *root)
1862 {
1863 return _ext4_show_options(seq, root->d_sb, 0);
1864 }
1865
1866 static int options_seq_show(struct seq_file *seq, void *offset)
1867 {
1868 struct super_block *sb = seq->private;
1869 int rc;
1870
1871 seq_puts(seq, (sb->s_flags & MS_RDONLY) ? "ro" : "rw");
1872 rc = _ext4_show_options(seq, sb, 1);
1873 seq_puts(seq, "\n");
1874 return rc;
1875 }
1876
1877 static int options_open_fs(struct inode *inode, struct file *file)
1878 {
1879 return single_open(file, options_seq_show, PDE_DATA(inode));
1880 }
1881
1882 static const struct file_operations ext4_seq_options_fops = {
1883 .owner = THIS_MODULE,
1884 .open = options_open_fs,
1885 .read = seq_read,
1886 .llseek = seq_lseek,
1887 .release = single_release,
1888 };
1889
1890 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
1891 int read_only)
1892 {
1893 struct ext4_sb_info *sbi = EXT4_SB(sb);
1894 int res = 0;
1895
1896 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
1897 ext4_msg(sb, KERN_ERR, "revision level too high, "
1898 "forcing read-only mode");
1899 res = MS_RDONLY;
1900 }
1901 if (read_only)
1902 goto done;
1903 if (!(sbi->s_mount_state & EXT4_VALID_FS))
1904 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
1905 "running e2fsck is recommended");
1906 else if ((sbi->s_mount_state & EXT4_ERROR_FS))
1907 ext4_msg(sb, KERN_WARNING,
1908 "warning: mounting fs with errors, "
1909 "running e2fsck is recommended");
1910 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
1911 le16_to_cpu(es->s_mnt_count) >=
1912 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
1913 ext4_msg(sb, KERN_WARNING,
1914 "warning: maximal mount count reached, "
1915 "running e2fsck is recommended");
1916 else if (le32_to_cpu(es->s_checkinterval) &&
1917 (le32_to_cpu(es->s_lastcheck) +
1918 le32_to_cpu(es->s_checkinterval) <= get_seconds()))
1919 ext4_msg(sb, KERN_WARNING,
1920 "warning: checktime reached, "
1921 "running e2fsck is recommended");
1922 if (!sbi->s_journal)
1923 es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
1924 if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
1925 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
1926 le16_add_cpu(&es->s_mnt_count, 1);
1927 es->s_mtime = cpu_to_le32(get_seconds());
1928 ext4_update_dynamic_rev(sb);
1929 if (sbi->s_journal)
1930 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
1931
1932 ext4_commit_super(sb, 1);
1933 done:
1934 if (test_opt(sb, DEBUG))
1935 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
1936 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
1937 sb->s_blocksize,
1938 sbi->s_groups_count,
1939 EXT4_BLOCKS_PER_GROUP(sb),
1940 EXT4_INODES_PER_GROUP(sb),
1941 sbi->s_mount_opt, sbi->s_mount_opt2);
1942
1943 cleancache_init_fs(sb);
1944 return res;
1945 }
1946
1947 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup)
1948 {
1949 struct ext4_sb_info *sbi = EXT4_SB(sb);
1950 struct flex_groups *new_groups;
1951 int size;
1952
1953 if (!sbi->s_log_groups_per_flex)
1954 return 0;
1955
1956 size = ext4_flex_group(sbi, ngroup - 1) + 1;
1957 if (size <= sbi->s_flex_groups_allocated)
1958 return 0;
1959
1960 size = roundup_pow_of_two(size * sizeof(struct flex_groups));
1961 new_groups = ext4_kvzalloc(size, GFP_KERNEL);
1962 if (!new_groups) {
1963 ext4_msg(sb, KERN_ERR, "not enough memory for %d flex groups",
1964 size / (int) sizeof(struct flex_groups));
1965 return -ENOMEM;
1966 }
1967
1968 if (sbi->s_flex_groups) {
1969 memcpy(new_groups, sbi->s_flex_groups,
1970 (sbi->s_flex_groups_allocated *
1971 sizeof(struct flex_groups)));
1972 ext4_kvfree(sbi->s_flex_groups);
1973 }
1974 sbi->s_flex_groups = new_groups;
1975 sbi->s_flex_groups_allocated = size / sizeof(struct flex_groups);
1976 return 0;
1977 }
1978
1979 static int ext4_fill_flex_info(struct super_block *sb)
1980 {
1981 struct ext4_sb_info *sbi = EXT4_SB(sb);
1982 struct ext4_group_desc *gdp = NULL;
1983 ext4_group_t flex_group;
1984 int i, err;
1985
1986 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
1987 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) {
1988 sbi->s_log_groups_per_flex = 0;
1989 return 1;
1990 }
1991
1992 err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count);
1993 if (err)
1994 goto failed;
1995
1996 for (i = 0; i < sbi->s_groups_count; i++) {
1997 gdp = ext4_get_group_desc(sb, i, NULL);
1998
1999 flex_group = ext4_flex_group(sbi, i);
2000 atomic_add(ext4_free_inodes_count(sb, gdp),
2001 &sbi->s_flex_groups[flex_group].free_inodes);
2002 atomic64_add(ext4_free_group_clusters(sb, gdp),
2003 &sbi->s_flex_groups[flex_group].free_clusters);
2004 atomic_add(ext4_used_dirs_count(sb, gdp),
2005 &sbi->s_flex_groups[flex_group].used_dirs);
2006 }
2007
2008 return 1;
2009 failed:
2010 return 0;
2011 }
2012
2013 static __le16 ext4_group_desc_csum(struct ext4_sb_info *sbi, __u32 block_group,
2014 struct ext4_group_desc *gdp)
2015 {
2016 int offset;
2017 __u16 crc = 0;
2018 __le32 le_group = cpu_to_le32(block_group);
2019
2020 if ((sbi->s_es->s_feature_ro_compat &
2021 cpu_to_le32(EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))) {
2022 /* Use new metadata_csum algorithm */
2023 __le16 save_csum;
2024 __u32 csum32;
2025
2026 save_csum = gdp->bg_checksum;
2027 gdp->bg_checksum = 0;
2028 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group,
2029 sizeof(le_group));
2030 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp,
2031 sbi->s_desc_size);
2032 gdp->bg_checksum = save_csum;
2033
2034 crc = csum32 & 0xFFFF;
2035 goto out;
2036 }
2037
2038 /* old crc16 code */
2039 offset = offsetof(struct ext4_group_desc, bg_checksum);
2040
2041 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
2042 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
2043 crc = crc16(crc, (__u8 *)gdp, offset);
2044 offset += sizeof(gdp->bg_checksum); /* skip checksum */
2045 /* for checksum of struct ext4_group_desc do the rest...*/
2046 if ((sbi->s_es->s_feature_incompat &
2047 cpu_to_le32(EXT4_FEATURE_INCOMPAT_64BIT)) &&
2048 offset < le16_to_cpu(sbi->s_es->s_desc_size))
2049 crc = crc16(crc, (__u8 *)gdp + offset,
2050 le16_to_cpu(sbi->s_es->s_desc_size) -
2051 offset);
2052
2053 out:
2054 return cpu_to_le16(crc);
2055 }
2056
2057 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group,
2058 struct ext4_group_desc *gdp)
2059 {
2060 if (ext4_has_group_desc_csum(sb) &&
2061 (gdp->bg_checksum != ext4_group_desc_csum(EXT4_SB(sb),
2062 block_group, gdp)))
2063 return 0;
2064
2065 return 1;
2066 }
2067
2068 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group,
2069 struct ext4_group_desc *gdp)
2070 {
2071 if (!ext4_has_group_desc_csum(sb))
2072 return;
2073 gdp->bg_checksum = ext4_group_desc_csum(EXT4_SB(sb), block_group, gdp);
2074 }
2075
2076 /* Called at mount-time, super-block is locked */
2077 static int ext4_check_descriptors(struct super_block *sb,
2078 ext4_group_t *first_not_zeroed)
2079 {
2080 struct ext4_sb_info *sbi = EXT4_SB(sb);
2081 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
2082 ext4_fsblk_t last_block;
2083 ext4_fsblk_t block_bitmap;
2084 ext4_fsblk_t inode_bitmap;
2085 ext4_fsblk_t inode_table;
2086 int flexbg_flag = 0;
2087 ext4_group_t i, grp = sbi->s_groups_count;
2088
2089 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG))
2090 flexbg_flag = 1;
2091
2092 ext4_debug("Checking group descriptors");
2093
2094 for (i = 0; i < sbi->s_groups_count; i++) {
2095 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
2096
2097 if (i == sbi->s_groups_count - 1 || flexbg_flag)
2098 last_block = ext4_blocks_count(sbi->s_es) - 1;
2099 else
2100 last_block = first_block +
2101 (EXT4_BLOCKS_PER_GROUP(sb) - 1);
2102
2103 if ((grp == sbi->s_groups_count) &&
2104 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2105 grp = i;
2106
2107 block_bitmap = ext4_block_bitmap(sb, gdp);
2108 if (block_bitmap < first_block || block_bitmap > last_block) {
2109 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2110 "Block bitmap for group %u not in group "
2111 "(block %llu)!", i, block_bitmap);
2112 return 0;
2113 }
2114 inode_bitmap = ext4_inode_bitmap(sb, gdp);
2115 if (inode_bitmap < first_block || inode_bitmap > last_block) {
2116 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2117 "Inode bitmap for group %u not in group "
2118 "(block %llu)!", i, inode_bitmap);
2119 return 0;
2120 }
2121 inode_table = ext4_inode_table(sb, gdp);
2122 if (inode_table < first_block ||
2123 inode_table + sbi->s_itb_per_group - 1 > last_block) {
2124 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2125 "Inode table for group %u not in group "
2126 "(block %llu)!", i, inode_table);
2127 return 0;
2128 }
2129 ext4_lock_group(sb, i);
2130 if (!ext4_group_desc_csum_verify(sb, i, gdp)) {
2131 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2132 "Checksum for group %u failed (%u!=%u)",
2133 i, le16_to_cpu(ext4_group_desc_csum(sbi, i,
2134 gdp)), le16_to_cpu(gdp->bg_checksum));
2135 if (!(sb->s_flags & MS_RDONLY)) {
2136 ext4_unlock_group(sb, i);
2137 return 0;
2138 }
2139 }
2140 ext4_unlock_group(sb, i);
2141 if (!flexbg_flag)
2142 first_block += EXT4_BLOCKS_PER_GROUP(sb);
2143 }
2144 if (NULL != first_not_zeroed)
2145 *first_not_zeroed = grp;
2146
2147 ext4_free_blocks_count_set(sbi->s_es,
2148 EXT4_C2B(sbi, ext4_count_free_clusters(sb)));
2149 sbi->s_es->s_free_inodes_count =cpu_to_le32(ext4_count_free_inodes(sb));
2150 return 1;
2151 }
2152
2153 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at
2154 * the superblock) which were deleted from all directories, but held open by
2155 * a process at the time of a crash. We walk the list and try to delete these
2156 * inodes at recovery time (only with a read-write filesystem).
2157 *
2158 * In order to keep the orphan inode chain consistent during traversal (in
2159 * case of crash during recovery), we link each inode into the superblock
2160 * orphan list_head and handle it the same way as an inode deletion during
2161 * normal operation (which journals the operations for us).
2162 *
2163 * We only do an iget() and an iput() on each inode, which is very safe if we
2164 * accidentally point at an in-use or already deleted inode. The worst that
2165 * can happen in this case is that we get a "bit already cleared" message from
2166 * ext4_free_inode(). The only reason we would point at a wrong inode is if
2167 * e2fsck was run on this filesystem, and it must have already done the orphan
2168 * inode cleanup for us, so we can safely abort without any further action.
2169 */
2170 static void ext4_orphan_cleanup(struct super_block *sb,
2171 struct ext4_super_block *es)
2172 {
2173 unsigned int s_flags = sb->s_flags;
2174 int nr_orphans = 0, nr_truncates = 0;
2175 #ifdef CONFIG_QUOTA
2176 int i;
2177 #endif
2178 if (!es->s_last_orphan) {
2179 jbd_debug(4, "no orphan inodes to clean up\n");
2180 return;
2181 }
2182
2183 if (bdev_read_only(sb->s_bdev)) {
2184 ext4_msg(sb, KERN_ERR, "write access "
2185 "unavailable, skipping orphan cleanup");
2186 return;
2187 }
2188
2189 /* Check if feature set would not allow a r/w mount */
2190 if (!ext4_feature_set_ok(sb, 0)) {
2191 ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to "
2192 "unknown ROCOMPAT features");
2193 return;
2194 }
2195
2196 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2197 /* don't clear list on RO mount w/ errors */
2198 if (es->s_last_orphan && !(s_flags & MS_RDONLY)) {
2199 jbd_debug(1, "Errors on filesystem, "
2200 "clearing orphan list.\n");
2201 es->s_last_orphan = 0;
2202 }
2203 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2204 return;
2205 }
2206
2207 if (s_flags & MS_RDONLY) {
2208 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs");
2209 sb->s_flags &= ~MS_RDONLY;
2210 }
2211 #ifdef CONFIG_QUOTA
2212 /* Needed for iput() to work correctly and not trash data */
2213 sb->s_flags |= MS_ACTIVE;
2214 /* Turn on quotas so that they are updated correctly */
2215 for (i = 0; i < MAXQUOTAS; i++) {
2216 if (EXT4_SB(sb)->s_qf_names[i]) {
2217 int ret = ext4_quota_on_mount(sb, i);
2218 if (ret < 0)
2219 ext4_msg(sb, KERN_ERR,
2220 "Cannot turn on journaled "
2221 "quota: error %d", ret);
2222 }
2223 }
2224 #endif
2225
2226 while (es->s_last_orphan) {
2227 struct inode *inode;
2228
2229 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan));
2230 if (IS_ERR(inode)) {
2231 es->s_last_orphan = 0;
2232 break;
2233 }
2234
2235 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan);
2236 dquot_initialize(inode);
2237 if (inode->i_nlink) {
2238 if (test_opt(sb, DEBUG))
2239 ext4_msg(sb, KERN_DEBUG,
2240 "%s: truncating inode %lu to %lld bytes",
2241 __func__, inode->i_ino, inode->i_size);
2242 jbd_debug(2, "truncating inode %lu to %lld bytes\n",
2243 inode->i_ino, inode->i_size);
2244 mutex_lock(&inode->i_mutex);
2245 truncate_inode_pages(inode->i_mapping, inode->i_size);
2246 ext4_truncate(inode);
2247 mutex_unlock(&inode->i_mutex);
2248 nr_truncates++;
2249 } else {
2250 if (test_opt(sb, DEBUG))
2251 ext4_msg(sb, KERN_DEBUG,
2252 "%s: deleting unreferenced inode %lu",
2253 __func__, inode->i_ino);
2254 jbd_debug(2, "deleting unreferenced inode %lu\n",
2255 inode->i_ino);
2256 nr_orphans++;
2257 }
2258 iput(inode); /* The delete magic happens here! */
2259 }
2260
2261 #define PLURAL(x) (x), ((x) == 1) ? "" : "s"
2262
2263 if (nr_orphans)
2264 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted",
2265 PLURAL(nr_orphans));
2266 if (nr_truncates)
2267 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up",
2268 PLURAL(nr_truncates));
2269 #ifdef CONFIG_QUOTA
2270 /* Turn quotas off */
2271 for (i = 0; i < MAXQUOTAS; i++) {
2272 if (sb_dqopt(sb)->files[i])
2273 dquot_quota_off(sb, i);
2274 }
2275 #endif
2276 sb->s_flags = s_flags; /* Restore MS_RDONLY status */
2277 }
2278
2279 /*
2280 * Maximal extent format file size.
2281 * Resulting logical blkno at s_maxbytes must fit in our on-disk
2282 * extent format containers, within a sector_t, and within i_blocks
2283 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units,
2284 * so that won't be a limiting factor.
2285 *
2286 * However there is other limiting factor. We do store extents in the form
2287 * of starting block and length, hence the resulting length of the extent
2288 * covering maximum file size must fit into on-disk format containers as
2289 * well. Given that length is always by 1 unit bigger than max unit (because
2290 * we count 0 as well) we have to lower the s_maxbytes by one fs block.
2291 *
2292 * Note, this does *not* consider any metadata overhead for vfs i_blocks.
2293 */
2294 static loff_t ext4_max_size(int blkbits, int has_huge_files)
2295 {
2296 loff_t res;
2297 loff_t upper_limit = MAX_LFS_FILESIZE;
2298
2299 /* small i_blocks in vfs inode? */
2300 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2301 /*
2302 * CONFIG_LBDAF is not enabled implies the inode
2303 * i_block represent total blocks in 512 bytes
2304 * 32 == size of vfs inode i_blocks * 8
2305 */
2306 upper_limit = (1LL << 32) - 1;
2307
2308 /* total blocks in file system block size */
2309 upper_limit >>= (blkbits - 9);
2310 upper_limit <<= blkbits;
2311 }
2312
2313 /*
2314 * 32-bit extent-start container, ee_block. We lower the maxbytes
2315 * by one fs block, so ee_len can cover the extent of maximum file
2316 * size
2317 */
2318 res = (1LL << 32) - 1;
2319 res <<= blkbits;
2320
2321 /* Sanity check against vm- & vfs- imposed limits */
2322 if (res > upper_limit)
2323 res = upper_limit;
2324
2325 return res;
2326 }
2327
2328 /*
2329 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect
2330 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
2331 * We need to be 1 filesystem block less than the 2^48 sector limit.
2332 */
2333 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
2334 {
2335 loff_t res = EXT4_NDIR_BLOCKS;
2336 int meta_blocks;
2337 loff_t upper_limit;
2338 /* This is calculated to be the largest file size for a dense, block
2339 * mapped file such that the file's total number of 512-byte sectors,
2340 * including data and all indirect blocks, does not exceed (2^48 - 1).
2341 *
2342 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
2343 * number of 512-byte sectors of the file.
2344 */
2345
2346 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2347 /*
2348 * !has_huge_files or CONFIG_LBDAF not enabled implies that
2349 * the inode i_block field represents total file blocks in
2350 * 2^32 512-byte sectors == size of vfs inode i_blocks * 8
2351 */
2352 upper_limit = (1LL << 32) - 1;
2353
2354 /* total blocks in file system block size */
2355 upper_limit >>= (bits - 9);
2356
2357 } else {
2358 /*
2359 * We use 48 bit ext4_inode i_blocks
2360 * With EXT4_HUGE_FILE_FL set the i_blocks
2361 * represent total number of blocks in
2362 * file system block size
2363 */
2364 upper_limit = (1LL << 48) - 1;
2365
2366 }
2367
2368 /* indirect blocks */
2369 meta_blocks = 1;
2370 /* double indirect blocks */
2371 meta_blocks += 1 + (1LL << (bits-2));
2372 /* tripple indirect blocks */
2373 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2)));
2374
2375 upper_limit -= meta_blocks;
2376 upper_limit <<= bits;
2377
2378 res += 1LL << (bits-2);
2379 res += 1LL << (2*(bits-2));
2380 res += 1LL << (3*(bits-2));
2381 res <<= bits;
2382 if (res > upper_limit)
2383 res = upper_limit;
2384
2385 if (res > MAX_LFS_FILESIZE)
2386 res = MAX_LFS_FILESIZE;
2387
2388 return res;
2389 }
2390
2391 static ext4_fsblk_t descriptor_loc(struct super_block *sb,
2392 ext4_fsblk_t logical_sb_block, int nr)
2393 {
2394 struct ext4_sb_info *sbi = EXT4_SB(sb);
2395 ext4_group_t bg, first_meta_bg;
2396 int has_super = 0;
2397
2398 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
2399
2400 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_META_BG) ||
2401 nr < first_meta_bg)
2402 return logical_sb_block + nr + 1;
2403 bg = sbi->s_desc_per_block * nr;
2404 if (ext4_bg_has_super(sb, bg))
2405 has_super = 1;
2406
2407 return (has_super + ext4_group_first_block_no(sb, bg));
2408 }
2409
2410 /**
2411 * ext4_get_stripe_size: Get the stripe size.
2412 * @sbi: In memory super block info
2413 *
2414 * If we have specified it via mount option, then
2415 * use the mount option value. If the value specified at mount time is
2416 * greater than the blocks per group use the super block value.
2417 * If the super block value is greater than blocks per group return 0.
2418 * Allocator needs it be less than blocks per group.
2419 *
2420 */
2421 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
2422 {
2423 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
2424 unsigned long stripe_width =
2425 le32_to_cpu(sbi->s_es->s_raid_stripe_width);
2426 int ret;
2427
2428 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
2429 ret = sbi->s_stripe;
2430 else if (stripe_width <= sbi->s_blocks_per_group)
2431 ret = stripe_width;
2432 else if (stride <= sbi->s_blocks_per_group)
2433 ret = stride;
2434 else
2435 ret = 0;
2436
2437 /*
2438 * If the stripe width is 1, this makes no sense and
2439 * we set it to 0 to turn off stripe handling code.
2440 */
2441 if (ret <= 1)
2442 ret = 0;
2443
2444 return ret;
2445 }
2446
2447 /* sysfs supprt */
2448
2449 struct ext4_attr {
2450 struct attribute attr;
2451 ssize_t (*show)(struct ext4_attr *, struct ext4_sb_info *, char *);
2452 ssize_t (*store)(struct ext4_attr *, struct ext4_sb_info *,
2453 const char *, size_t);
2454 union {
2455 int offset;
2456 int deprecated_val;
2457 } u;
2458 };
2459
2460 static int parse_strtoull(const char *buf,
2461 unsigned long long max, unsigned long long *value)
2462 {
2463 int ret;
2464
2465 ret = kstrtoull(skip_spaces(buf), 0, value);
2466 if (!ret && *value > max)
2467 ret = -EINVAL;
2468 return ret;
2469 }
2470
2471 static ssize_t delayed_allocation_blocks_show(struct ext4_attr *a,
2472 struct ext4_sb_info *sbi,
2473 char *buf)
2474 {
2475 return snprintf(buf, PAGE_SIZE, "%llu\n",
2476 (s64) EXT4_C2B(sbi,
2477 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
2478 }
2479
2480 static ssize_t session_write_kbytes_show(struct ext4_attr *a,
2481 struct ext4_sb_info *sbi, char *buf)
2482 {
2483 struct super_block *sb = sbi->s_buddy_cache->i_sb;
2484
2485 if (!sb->s_bdev->bd_part)
2486 return snprintf(buf, PAGE_SIZE, "0\n");
2487 return snprintf(buf, PAGE_SIZE, "%lu\n",
2488 (part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
2489 sbi->s_sectors_written_start) >> 1);
2490 }
2491
2492 static ssize_t lifetime_write_kbytes_show(struct ext4_attr *a,
2493 struct ext4_sb_info *sbi, char *buf)
2494 {
2495 struct super_block *sb = sbi->s_buddy_cache->i_sb;
2496
2497 if (!sb->s_bdev->bd_part)
2498 return snprintf(buf, PAGE_SIZE, "0\n");
2499 return snprintf(buf, PAGE_SIZE, "%llu\n",
2500 (unsigned long long)(sbi->s_kbytes_written +
2501 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
2502 EXT4_SB(sb)->s_sectors_written_start) >> 1)));
2503 }
2504
2505 static ssize_t inode_readahead_blks_store(struct ext4_attr *a,
2506 struct ext4_sb_info *sbi,
2507 const char *buf, size_t count)
2508 {
2509 unsigned long t;
2510 int ret;
2511
2512 ret = kstrtoul(skip_spaces(buf), 0, &t);
2513 if (ret)
2514 return ret;
2515
2516 if (t && (!is_power_of_2(t) || t > 0x40000000))
2517 return -EINVAL;
2518
2519 sbi->s_inode_readahead_blks = t;
2520 return count;
2521 }
2522
2523 static ssize_t sbi_ui_show(struct ext4_attr *a,
2524 struct ext4_sb_info *sbi, char *buf)
2525 {
2526 unsigned int *ui = (unsigned int *) (((char *) sbi) + a->u.offset);
2527
2528 return snprintf(buf, PAGE_SIZE, "%u\n", *ui);
2529 }
2530
2531 static ssize_t sbi_ui_store(struct ext4_attr *a,
2532 struct ext4_sb_info *sbi,
2533 const char *buf, size_t count)
2534 {
2535 unsigned int *ui = (unsigned int *) (((char *) sbi) + a->u.offset);
2536 unsigned long t;
2537 int ret;
2538
2539 ret = kstrtoul(skip_spaces(buf), 0, &t);
2540 if (ret)
2541 return ret;
2542 *ui = t;
2543 return count;
2544 }
2545
2546 static ssize_t reserved_clusters_show(struct ext4_attr *a,
2547 struct ext4_sb_info *sbi, char *buf)
2548 {
2549 return snprintf(buf, PAGE_SIZE, "%llu\n",
2550 (unsigned long long) atomic64_read(&sbi->s_resv_clusters));
2551 }
2552
2553 static ssize_t reserved_clusters_store(struct ext4_attr *a,
2554 struct ext4_sb_info *sbi,
2555 const char *buf, size_t count)
2556 {
2557 unsigned long long val;
2558 int ret;
2559
2560 if (parse_strtoull(buf, -1ULL, &val))
2561 return -EINVAL;
2562 ret = ext4_reserve_clusters(sbi, val);
2563
2564 return ret ? ret : count;
2565 }
2566
2567 static ssize_t trigger_test_error(struct ext4_attr *a,
2568 struct ext4_sb_info *sbi,
2569 const char *buf, size_t count)
2570 {
2571 int len = count;
2572
2573 if (!capable(CAP_SYS_ADMIN))
2574 return -EPERM;
2575
2576 if (len && buf[len-1] == '\n')
2577 len--;
2578
2579 if (len)
2580 ext4_error(sbi->s_sb, "%.*s", len, buf);
2581 return count;
2582 }
2583
2584 static ssize_t sbi_deprecated_show(struct ext4_attr *a,
2585 struct ext4_sb_info *sbi, char *buf)
2586 {
2587 return snprintf(buf, PAGE_SIZE, "%d\n", a->u.deprecated_val);
2588 }
2589
2590 #define EXT4_ATTR_OFFSET(_name,_mode,_show,_store,_elname) \
2591 static struct ext4_attr ext4_attr_##_name = { \
2592 .attr = {.name = __stringify(_name), .mode = _mode }, \
2593 .show = _show, \
2594 .store = _store, \
2595 .u = { \
2596 .offset = offsetof(struct ext4_sb_info, _elname),\
2597 }, \
2598 }
2599 #define EXT4_ATTR(name, mode, show, store) \
2600 static struct ext4_attr ext4_attr_##name = __ATTR(name, mode, show, store)
2601
2602 #define EXT4_INFO_ATTR(name) EXT4_ATTR(name, 0444, NULL, NULL)
2603 #define EXT4_RO_ATTR(name) EXT4_ATTR(name, 0444, name##_show, NULL)
2604 #define EXT4_RW_ATTR(name) EXT4_ATTR(name, 0644, name##_show, name##_store)
2605 #define EXT4_RW_ATTR_SBI_UI(name, elname) \
2606 EXT4_ATTR_OFFSET(name, 0644, sbi_ui_show, sbi_ui_store, elname)
2607 #define ATTR_LIST(name) &ext4_attr_##name.attr
2608 #define EXT4_DEPRECATED_ATTR(_name, _val) \
2609 static struct ext4_attr ext4_attr_##_name = { \
2610 .attr = {.name = __stringify(_name), .mode = 0444 }, \
2611 .show = sbi_deprecated_show, \
2612 .u = { \
2613 .deprecated_val = _val, \
2614 }, \
2615 }
2616
2617 EXT4_RO_ATTR(delayed_allocation_blocks);
2618 EXT4_RO_ATTR(session_write_kbytes);
2619 EXT4_RO_ATTR(lifetime_write_kbytes);
2620 EXT4_RW_ATTR(reserved_clusters);
2621 EXT4_ATTR_OFFSET(inode_readahead_blks, 0644, sbi_ui_show,
2622 inode_readahead_blks_store, s_inode_readahead_blks);
2623 EXT4_RW_ATTR_SBI_UI(inode_goal, s_inode_goal);
2624 EXT4_RW_ATTR_SBI_UI(mb_stats, s_mb_stats);
2625 EXT4_RW_ATTR_SBI_UI(mb_max_to_scan, s_mb_max_to_scan);
2626 EXT4_RW_ATTR_SBI_UI(mb_min_to_scan, s_mb_min_to_scan);
2627 EXT4_RW_ATTR_SBI_UI(mb_order2_req, s_mb_order2_reqs);
2628 EXT4_RW_ATTR_SBI_UI(mb_stream_req, s_mb_stream_request);
2629 EXT4_RW_ATTR_SBI_UI(mb_group_prealloc, s_mb_group_prealloc);
2630 EXT4_DEPRECATED_ATTR(max_writeback_mb_bump, 128);
2631 EXT4_RW_ATTR_SBI_UI(extent_max_zeroout_kb, s_extent_max_zeroout_kb);
2632 EXT4_ATTR(trigger_fs_error, 0200, NULL, trigger_test_error);
2633 EXT4_RW_ATTR_SBI_UI(err_ratelimit_interval_ms, s_err_ratelimit_state.interval);
2634 EXT4_RW_ATTR_SBI_UI(err_ratelimit_burst, s_err_ratelimit_state.burst);
2635 EXT4_RW_ATTR_SBI_UI(warning_ratelimit_interval_ms, s_warning_ratelimit_state.interval);
2636 EXT4_RW_ATTR_SBI_UI(warning_ratelimit_burst, s_warning_ratelimit_state.burst);
2637 EXT4_RW_ATTR_SBI_UI(msg_ratelimit_interval_ms, s_msg_ratelimit_state.interval);
2638 EXT4_RW_ATTR_SBI_UI(msg_ratelimit_burst, s_msg_ratelimit_state.burst);
2639
2640 static struct attribute *ext4_attrs[] = {
2641 ATTR_LIST(delayed_allocation_blocks),
2642 ATTR_LIST(session_write_kbytes),
2643 ATTR_LIST(lifetime_write_kbytes),
2644 ATTR_LIST(reserved_clusters),
2645 ATTR_LIST(inode_readahead_blks),
2646 ATTR_LIST(inode_goal),
2647 ATTR_LIST(mb_stats),
2648 ATTR_LIST(mb_max_to_scan),
2649 ATTR_LIST(mb_min_to_scan),
2650 ATTR_LIST(mb_order2_req),
2651 ATTR_LIST(mb_stream_req),
2652 ATTR_LIST(mb_group_prealloc),
2653 ATTR_LIST(max_writeback_mb_bump),
2654 ATTR_LIST(extent_max_zeroout_kb),
2655 ATTR_LIST(trigger_fs_error),
2656 ATTR_LIST(err_ratelimit_interval_ms),
2657 ATTR_LIST(err_ratelimit_burst),
2658 ATTR_LIST(warning_ratelimit_interval_ms),
2659 ATTR_LIST(warning_ratelimit_burst),
2660 ATTR_LIST(msg_ratelimit_interval_ms),
2661 ATTR_LIST(msg_ratelimit_burst),
2662 NULL,
2663 };
2664
2665 /* Features this copy of ext4 supports */
2666 EXT4_INFO_ATTR(lazy_itable_init);
2667 EXT4_INFO_ATTR(batched_discard);
2668 EXT4_INFO_ATTR(meta_bg_resize);
2669
2670 static struct attribute *ext4_feat_attrs[] = {
2671 ATTR_LIST(lazy_itable_init),
2672 ATTR_LIST(batched_discard),
2673 ATTR_LIST(meta_bg_resize),
2674 NULL,
2675 };
2676
2677 static ssize_t ext4_attr_show(struct kobject *kobj,
2678 struct attribute *attr, char *buf)
2679 {
2680 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2681 s_kobj);
2682 struct ext4_attr *a = container_of(attr, struct ext4_attr, attr);
2683
2684 return a->show ? a->show(a, sbi, buf) : 0;
2685 }
2686
2687 static ssize_t ext4_attr_store(struct kobject *kobj,
2688 struct attribute *attr,
2689 const char *buf, size_t len)
2690 {
2691 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2692 s_kobj);
2693 struct ext4_attr *a = container_of(attr, struct ext4_attr, attr);
2694
2695 return a->store ? a->store(a, sbi, buf, len) : 0;
2696 }
2697
2698 static void ext4_sb_release(struct kobject *kobj)
2699 {
2700 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2701 s_kobj);
2702 complete(&sbi->s_kobj_unregister);
2703 }
2704
2705 static const struct sysfs_ops ext4_attr_ops = {
2706 .show = ext4_attr_show,
2707 .store = ext4_attr_store,
2708 };
2709
2710 static struct kobj_type ext4_ktype = {
2711 .default_attrs = ext4_attrs,
2712 .sysfs_ops = &ext4_attr_ops,
2713 .release = ext4_sb_release,
2714 };
2715
2716 static void ext4_feat_release(struct kobject *kobj)
2717 {
2718 complete(&ext4_feat->f_kobj_unregister);
2719 }
2720
2721 static struct kobj_type ext4_feat_ktype = {
2722 .default_attrs = ext4_feat_attrs,
2723 .sysfs_ops = &ext4_attr_ops,
2724 .release = ext4_feat_release,
2725 };
2726
2727 /*
2728 * Check whether this filesystem can be mounted based on
2729 * the features present and the RDONLY/RDWR mount requested.
2730 * Returns 1 if this filesystem can be mounted as requested,
2731 * 0 if it cannot be.
2732 */
2733 static int ext4_feature_set_ok(struct super_block *sb, int readonly)
2734 {
2735 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT4_FEATURE_INCOMPAT_SUPP)) {
2736 ext4_msg(sb, KERN_ERR,
2737 "Couldn't mount because of "
2738 "unsupported optional features (%x)",
2739 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
2740 ~EXT4_FEATURE_INCOMPAT_SUPP));
2741 return 0;
2742 }
2743
2744 if (readonly)
2745 return 1;
2746
2747 /* Check that feature set is OK for a read-write mount */
2748 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT4_FEATURE_RO_COMPAT_SUPP)) {
2749 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
2750 "unsupported optional features (%x)",
2751 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
2752 ~EXT4_FEATURE_RO_COMPAT_SUPP));
2753 return 0;
2754 }
2755 /*
2756 * Large file size enabled file system can only be mounted
2757 * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF
2758 */
2759 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
2760 if (sizeof(blkcnt_t) < sizeof(u64)) {
2761 ext4_msg(sb, KERN_ERR, "Filesystem with huge files "
2762 "cannot be mounted RDWR without "
2763 "CONFIG_LBDAF");
2764 return 0;
2765 }
2766 }
2767 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_BIGALLOC) &&
2768 !EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) {
2769 ext4_msg(sb, KERN_ERR,
2770 "Can't support bigalloc feature without "
2771 "extents feature\n");
2772 return 0;
2773 }
2774
2775 #ifndef CONFIG_QUOTA
2776 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) &&
2777 !readonly) {
2778 ext4_msg(sb, KERN_ERR,
2779 "Filesystem with quota feature cannot be mounted RDWR "
2780 "without CONFIG_QUOTA");
2781 return 0;
2782 }
2783 #endif /* CONFIG_QUOTA */
2784 return 1;
2785 }
2786
2787 /*
2788 * This function is called once a day if we have errors logged
2789 * on the file system
2790 */
2791 static void print_daily_error_info(unsigned long arg)
2792 {
2793 struct super_block *sb = (struct super_block *) arg;
2794 struct ext4_sb_info *sbi;
2795 struct ext4_super_block *es;
2796
2797 sbi = EXT4_SB(sb);
2798 es = sbi->s_es;
2799
2800 if (es->s_error_count)
2801 ext4_msg(sb, KERN_NOTICE, "error count: %u",
2802 le32_to_cpu(es->s_error_count));
2803 if (es->s_first_error_time) {
2804 printk(KERN_NOTICE "EXT4-fs (%s): initial error at %u: %.*s:%d",
2805 sb->s_id, le32_to_cpu(es->s_first_error_time),
2806 (int) sizeof(es->s_first_error_func),
2807 es->s_first_error_func,
2808 le32_to_cpu(es->s_first_error_line));
2809 if (es->s_first_error_ino)
2810 printk(": inode %u",
2811 le32_to_cpu(es->s_first_error_ino));
2812 if (es->s_first_error_block)
2813 printk(": block %llu", (unsigned long long)
2814 le64_to_cpu(es->s_first_error_block));
2815 printk("\n");
2816 }
2817 if (es->s_last_error_time) {
2818 printk(KERN_NOTICE "EXT4-fs (%s): last error at %u: %.*s:%d",
2819 sb->s_id, le32_to_cpu(es->s_last_error_time),
2820 (int) sizeof(es->s_last_error_func),
2821 es->s_last_error_func,
2822 le32_to_cpu(es->s_last_error_line));
2823 if (es->s_last_error_ino)
2824 printk(": inode %u",
2825 le32_to_cpu(es->s_last_error_ino));
2826 if (es->s_last_error_block)
2827 printk(": block %llu", (unsigned long long)
2828 le64_to_cpu(es->s_last_error_block));
2829 printk("\n");
2830 }
2831 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */
2832 }
2833
2834 /* Find next suitable group and run ext4_init_inode_table */
2835 static int ext4_run_li_request(struct ext4_li_request *elr)
2836 {
2837 struct ext4_group_desc *gdp = NULL;
2838 ext4_group_t group, ngroups;
2839 struct super_block *sb;
2840 unsigned long timeout = 0;
2841 int ret = 0;
2842
2843 sb = elr->lr_super;
2844 ngroups = EXT4_SB(sb)->s_groups_count;
2845
2846 sb_start_write(sb);
2847 for (group = elr->lr_next_group; group < ngroups; group++) {
2848 gdp = ext4_get_group_desc(sb, group, NULL);
2849 if (!gdp) {
2850 ret = 1;
2851 break;
2852 }
2853
2854 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2855 break;
2856 }
2857
2858 if (group >= ngroups)
2859 ret = 1;
2860
2861 if (!ret) {
2862 timeout = jiffies;
2863 ret = ext4_init_inode_table(sb, group,
2864 elr->lr_timeout ? 0 : 1);
2865 if (elr->lr_timeout == 0) {
2866 timeout = (jiffies - timeout) *
2867 elr->lr_sbi->s_li_wait_mult;
2868 elr->lr_timeout = timeout;
2869 }
2870 elr->lr_next_sched = jiffies + elr->lr_timeout;
2871 elr->lr_next_group = group + 1;
2872 }
2873 sb_end_write(sb);
2874
2875 return ret;
2876 }
2877
2878 /*
2879 * Remove lr_request from the list_request and free the
2880 * request structure. Should be called with li_list_mtx held
2881 */
2882 static void ext4_remove_li_request(struct ext4_li_request *elr)
2883 {
2884 struct ext4_sb_info *sbi;
2885
2886 if (!elr)
2887 return;
2888
2889 sbi = elr->lr_sbi;
2890
2891 list_del(&elr->lr_request);
2892 sbi->s_li_request = NULL;
2893 kfree(elr);
2894 }
2895
2896 static void ext4_unregister_li_request(struct super_block *sb)
2897 {
2898 mutex_lock(&ext4_li_mtx);
2899 if (!ext4_li_info) {
2900 mutex_unlock(&ext4_li_mtx);
2901 return;
2902 }
2903
2904 mutex_lock(&ext4_li_info->li_list_mtx);
2905 ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
2906 mutex_unlock(&ext4_li_info->li_list_mtx);
2907 mutex_unlock(&ext4_li_mtx);
2908 }
2909
2910 static struct task_struct *ext4_lazyinit_task;
2911
2912 /*
2913 * This is the function where ext4lazyinit thread lives. It walks
2914 * through the request list searching for next scheduled filesystem.
2915 * When such a fs is found, run the lazy initialization request
2916 * (ext4_rn_li_request) and keep track of the time spend in this
2917 * function. Based on that time we compute next schedule time of
2918 * the request. When walking through the list is complete, compute
2919 * next waking time and put itself into sleep.
2920 */
2921 static int ext4_lazyinit_thread(void *arg)
2922 {
2923 struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg;
2924 struct list_head *pos, *n;
2925 struct ext4_li_request *elr;
2926 unsigned long next_wakeup, cur;
2927
2928 BUG_ON(NULL == eli);
2929
2930 cont_thread:
2931 while (true) {
2932 next_wakeup = MAX_JIFFY_OFFSET;
2933
2934 mutex_lock(&eli->li_list_mtx);
2935 if (list_empty(&eli->li_request_list)) {
2936 mutex_unlock(&eli->li_list_mtx);
2937 goto exit_thread;
2938 }
2939
2940 list_for_each_safe(pos, n, &eli->li_request_list) {
2941 elr = list_entry(pos, struct ext4_li_request,
2942 lr_request);
2943
2944 if (time_after_eq(jiffies, elr->lr_next_sched)) {
2945 if (ext4_run_li_request(elr) != 0) {
2946 /* error, remove the lazy_init job */
2947 ext4_remove_li_request(elr);
2948 continue;
2949 }
2950 }
2951
2952 if (time_before(elr->lr_next_sched, next_wakeup))
2953 next_wakeup = elr->lr_next_sched;
2954 }
2955 mutex_unlock(&eli->li_list_mtx);
2956
2957 try_to_freeze();
2958
2959 cur = jiffies;
2960 if ((time_after_eq(cur, next_wakeup)) ||
2961 (MAX_JIFFY_OFFSET == next_wakeup)) {
2962 cond_resched();
2963 continue;
2964 }
2965
2966 schedule_timeout_interruptible(next_wakeup - cur);
2967
2968 if (kthread_should_stop()) {
2969 ext4_clear_request_list();
2970 goto exit_thread;
2971 }
2972 }
2973
2974 exit_thread:
2975 /*
2976 * It looks like the request list is empty, but we need
2977 * to check it under the li_list_mtx lock, to prevent any
2978 * additions into it, and of course we should lock ext4_li_mtx
2979 * to atomically free the list and ext4_li_info, because at
2980 * this point another ext4 filesystem could be registering
2981 * new one.
2982 */
2983 mutex_lock(&ext4_li_mtx);
2984 mutex_lock(&eli->li_list_mtx);
2985 if (!list_empty(&eli->li_request_list)) {
2986 mutex_unlock(&eli->li_list_mtx);
2987 mutex_unlock(&ext4_li_mtx);
2988 goto cont_thread;
2989 }
2990 mutex_unlock(&eli->li_list_mtx);
2991 kfree(ext4_li_info);
2992 ext4_li_info = NULL;
2993 mutex_unlock(&ext4_li_mtx);
2994
2995 return 0;
2996 }
2997
2998 static void ext4_clear_request_list(void)
2999 {
3000 struct list_head *pos, *n;
3001 struct ext4_li_request *elr;
3002
3003 mutex_lock(&ext4_li_info->li_list_mtx);
3004 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
3005 elr = list_entry(pos, struct ext4_li_request,
3006 lr_request);
3007 ext4_remove_li_request(elr);
3008 }
3009 mutex_unlock(&ext4_li_info->li_list_mtx);
3010 }
3011
3012 static int ext4_run_lazyinit_thread(void)
3013 {
3014 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
3015 ext4_li_info, "ext4lazyinit");
3016 if (IS_ERR(ext4_lazyinit_task)) {
3017 int err = PTR_ERR(ext4_lazyinit_task);
3018 ext4_clear_request_list();
3019 kfree(ext4_li_info);
3020 ext4_li_info = NULL;
3021 printk(KERN_CRIT "EXT4-fs: error %d creating inode table "
3022 "initialization thread\n",
3023 err);
3024 return err;
3025 }
3026 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
3027 return 0;
3028 }
3029
3030 /*
3031 * Check whether it make sense to run itable init. thread or not.
3032 * If there is at least one uninitialized inode table, return
3033 * corresponding group number, else the loop goes through all
3034 * groups and return total number of groups.
3035 */
3036 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
3037 {
3038 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
3039 struct ext4_group_desc *gdp = NULL;
3040
3041 for (group = 0; group < ngroups; group++) {
3042 gdp = ext4_get_group_desc(sb, group, NULL);
3043 if (!gdp)
3044 continue;
3045
3046 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3047 break;
3048 }
3049
3050 return group;
3051 }
3052
3053 static int ext4_li_info_new(void)
3054 {
3055 struct ext4_lazy_init *eli = NULL;
3056
3057 eli = kzalloc(sizeof(*eli), GFP_KERNEL);
3058 if (!eli)
3059 return -ENOMEM;
3060
3061 INIT_LIST_HEAD(&eli->li_request_list);
3062 mutex_init(&eli->li_list_mtx);
3063
3064 eli->li_state |= EXT4_LAZYINIT_QUIT;
3065
3066 ext4_li_info = eli;
3067
3068 return 0;
3069 }
3070
3071 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
3072 ext4_group_t start)
3073 {
3074 struct ext4_sb_info *sbi = EXT4_SB(sb);
3075 struct ext4_li_request *elr;
3076
3077 elr = kzalloc(sizeof(*elr), GFP_KERNEL);
3078 if (!elr)
3079 return NULL;
3080
3081 elr->lr_super = sb;
3082 elr->lr_sbi = sbi;
3083 elr->lr_next_group = start;
3084
3085 /*
3086 * Randomize first schedule time of the request to
3087 * spread the inode table initialization requests
3088 * better.
3089 */
3090 elr->lr_next_sched = jiffies + (prandom_u32() %
3091 (EXT4_DEF_LI_MAX_START_DELAY * HZ));
3092 return elr;
3093 }
3094
3095 int ext4_register_li_request(struct super_block *sb,
3096 ext4_group_t first_not_zeroed)
3097 {
3098 struct ext4_sb_info *sbi = EXT4_SB(sb);
3099 struct ext4_li_request *elr = NULL;
3100 ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count;
3101 int ret = 0;
3102
3103 mutex_lock(&ext4_li_mtx);
3104 if (sbi->s_li_request != NULL) {
3105 /*
3106 * Reset timeout so it can be computed again, because
3107 * s_li_wait_mult might have changed.
3108 */
3109 sbi->s_li_request->lr_timeout = 0;
3110 goto out;
3111 }
3112
3113 if (first_not_zeroed == ngroups ||
3114 (sb->s_flags & MS_RDONLY) ||
3115 !test_opt(sb, INIT_INODE_TABLE))
3116 goto out;
3117
3118 elr = ext4_li_request_new(sb, first_not_zeroed);
3119 if (!elr) {
3120 ret = -ENOMEM;
3121 goto out;
3122 }
3123
3124 if (NULL == ext4_li_info) {
3125 ret = ext4_li_info_new();
3126 if (ret)
3127 goto out;
3128 }
3129
3130 mutex_lock(&ext4_li_info->li_list_mtx);
3131 list_add(&elr->lr_request, &ext4_li_info->li_request_list);
3132 mutex_unlock(&ext4_li_info->li_list_mtx);
3133
3134 sbi->s_li_request = elr;
3135 /*
3136 * set elr to NULL here since it has been inserted to
3137 * the request_list and the removal and free of it is
3138 * handled by ext4_clear_request_list from now on.
3139 */
3140 elr = NULL;
3141
3142 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
3143 ret = ext4_run_lazyinit_thread();
3144 if (ret)
3145 goto out;
3146 }
3147 out:
3148 mutex_unlock(&ext4_li_mtx);
3149 if (ret)
3150 kfree(elr);
3151 return ret;
3152 }
3153
3154 /*
3155 * We do not need to lock anything since this is called on
3156 * module unload.
3157 */
3158 static void ext4_destroy_lazyinit_thread(void)
3159 {
3160 /*
3161 * If thread exited earlier
3162 * there's nothing to be done.
3163 */
3164 if (!ext4_li_info || !ext4_lazyinit_task)
3165 return;
3166
3167 kthread_stop(ext4_lazyinit_task);
3168 }
3169
3170 static int set_journal_csum_feature_set(struct super_block *sb)
3171 {
3172 int ret = 1;
3173 int compat, incompat;
3174 struct ext4_sb_info *sbi = EXT4_SB(sb);
3175
3176 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3177 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
3178 /* journal checksum v2 */
3179 compat = 0;
3180 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V2;
3181 } else {
3182 /* journal checksum v1 */
3183 compat = JBD2_FEATURE_COMPAT_CHECKSUM;
3184 incompat = 0;
3185 }
3186
3187 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
3188 ret = jbd2_journal_set_features(sbi->s_journal,
3189 compat, 0,
3190 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
3191 incompat);
3192 } else if (test_opt(sb, JOURNAL_CHECKSUM)) {
3193 ret = jbd2_journal_set_features(sbi->s_journal,
3194 compat, 0,
3195 incompat);
3196 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3197 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3198 } else {
3199 jbd2_journal_clear_features(sbi->s_journal,
3200 JBD2_FEATURE_COMPAT_CHECKSUM, 0,
3201 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
3202 JBD2_FEATURE_INCOMPAT_CSUM_V2);
3203 }
3204
3205 return ret;
3206 }
3207
3208 /*
3209 * Note: calculating the overhead so we can be compatible with
3210 * historical BSD practice is quite difficult in the face of
3211 * clusters/bigalloc. This is because multiple metadata blocks from
3212 * different block group can end up in the same allocation cluster.
3213 * Calculating the exact overhead in the face of clustered allocation
3214 * requires either O(all block bitmaps) in memory or O(number of block
3215 * groups**2) in time. We will still calculate the superblock for
3216 * older file systems --- and if we come across with a bigalloc file
3217 * system with zero in s_overhead_clusters the estimate will be close to
3218 * correct especially for very large cluster sizes --- but for newer
3219 * file systems, it's better to calculate this figure once at mkfs
3220 * time, and store it in the superblock. If the superblock value is
3221 * present (even for non-bigalloc file systems), we will use it.
3222 */
3223 static int count_overhead(struct super_block *sb, ext4_group_t grp,
3224 char *buf)
3225 {
3226 struct ext4_sb_info *sbi = EXT4_SB(sb);
3227 struct ext4_group_desc *gdp;
3228 ext4_fsblk_t first_block, last_block, b;
3229 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3230 int s, j, count = 0;
3231
3232 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_BIGALLOC))
3233 return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) +
3234 sbi->s_itb_per_group + 2);
3235
3236 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) +
3237 (grp * EXT4_BLOCKS_PER_GROUP(sb));
3238 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1;
3239 for (i = 0; i < ngroups; i++) {
3240 gdp = ext4_get_group_desc(sb, i, NULL);
3241 b = ext4_block_bitmap(sb, gdp);
3242 if (b >= first_block && b <= last_block) {
3243 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3244 count++;
3245 }
3246 b = ext4_inode_bitmap(sb, gdp);
3247 if (b >= first_block && b <= last_block) {
3248 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3249 count++;
3250 }
3251 b = ext4_inode_table(sb, gdp);
3252 if (b >= first_block && b + sbi->s_itb_per_group <= last_block)
3253 for (j = 0; j < sbi->s_itb_per_group; j++, b++) {
3254 int c = EXT4_B2C(sbi, b - first_block);
3255 ext4_set_bit(c, buf);
3256 count++;
3257 }
3258 if (i != grp)
3259 continue;
3260 s = 0;
3261 if (ext4_bg_has_super(sb, grp)) {
3262 ext4_set_bit(s++, buf);
3263 count++;
3264 }
3265 for (j = ext4_bg_num_gdb(sb, grp); j > 0; j--) {
3266 ext4_set_bit(EXT4_B2C(sbi, s++), buf);
3267 count++;
3268 }
3269 }
3270 if (!count)
3271 return 0;
3272 return EXT4_CLUSTERS_PER_GROUP(sb) -
3273 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8);
3274 }
3275
3276 /*
3277 * Compute the overhead and stash it in sbi->s_overhead
3278 */
3279 int ext4_calculate_overhead(struct super_block *sb)
3280 {
3281 struct ext4_sb_info *sbi = EXT4_SB(sb);
3282 struct ext4_super_block *es = sbi->s_es;
3283 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3284 ext4_fsblk_t overhead = 0;
3285 char *buf = (char *) get_zeroed_page(GFP_KERNEL);
3286
3287 if (!buf)
3288 return -ENOMEM;
3289
3290 /*
3291 * Compute the overhead (FS structures). This is constant
3292 * for a given filesystem unless the number of block groups
3293 * changes so we cache the previous value until it does.
3294 */
3295
3296 /*
3297 * All of the blocks before first_data_block are overhead
3298 */
3299 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
3300
3301 /*
3302 * Add the overhead found in each block group
3303 */
3304 for (i = 0; i < ngroups; i++) {
3305 int blks;
3306
3307 blks = count_overhead(sb, i, buf);
3308 overhead += blks;
3309 if (blks)
3310 memset(buf, 0, PAGE_SIZE);
3311 cond_resched();
3312 }
3313 /* Add the journal blocks as well */
3314 if (sbi->s_journal)
3315 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_maxlen);
3316
3317 sbi->s_overhead = overhead;
3318 smp_wmb();
3319 free_page((unsigned long) buf);
3320 return 0;
3321 }
3322
3323
3324 static ext4_fsblk_t ext4_calculate_resv_clusters(struct super_block *sb)
3325 {
3326 ext4_fsblk_t resv_clusters;
3327
3328 /*
3329 * There's no need to reserve anything when we aren't using extents.
3330 * The space estimates are exact, there are no unwritten extents,
3331 * hole punching doesn't need new metadata... This is needed especially
3332 * to keep ext2/3 backward compatibility.
3333 */
3334 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS))
3335 return 0;
3336 /*
3337 * By default we reserve 2% or 4096 clusters, whichever is smaller.
3338 * This should cover the situations where we can not afford to run
3339 * out of space like for example punch hole, or converting
3340 * uninitialized extents in delalloc path. In most cases such
3341 * allocation would require 1, or 2 blocks, higher numbers are
3342 * very rare.
3343 */
3344 resv_clusters = ext4_blocks_count(EXT4_SB(sb)->s_es) >>
3345 EXT4_SB(sb)->s_cluster_bits;
3346
3347 do_div(resv_clusters, 50);
3348 resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096);
3349
3350 return resv_clusters;
3351 }
3352
3353
3354 static int ext4_reserve_clusters(struct ext4_sb_info *sbi, ext4_fsblk_t count)
3355 {
3356 ext4_fsblk_t clusters = ext4_blocks_count(sbi->s_es) >>
3357 sbi->s_cluster_bits;
3358
3359 if (count >= clusters)
3360 return -EINVAL;
3361
3362 atomic64_set(&sbi->s_resv_clusters, count);
3363 return 0;
3364 }
3365
3366 static int ext4_fill_super(struct super_block *sb, void *data, int silent)
3367 {
3368 char *orig_data = kstrdup(data, GFP_KERNEL);
3369 struct buffer_head *bh;
3370 struct ext4_super_block *es = NULL;
3371 struct ext4_sb_info *sbi;
3372 ext4_fsblk_t block;
3373 ext4_fsblk_t sb_block = get_sb_block(&data);
3374 ext4_fsblk_t logical_sb_block;
3375 unsigned long offset = 0;
3376 unsigned long journal_devnum = 0;
3377 unsigned long def_mount_opts;
3378 struct inode *root;
3379 char *cp;
3380 const char *descr;
3381 int ret = -ENOMEM;
3382 int blocksize, clustersize;
3383 unsigned int db_count;
3384 unsigned int i;
3385 int needs_recovery, has_huge_files, has_bigalloc;
3386 __u64 blocks_count;
3387 int err = 0;
3388 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
3389 ext4_group_t first_not_zeroed;
3390
3391 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
3392 if (!sbi)
3393 goto out_free_orig;
3394
3395 sbi->s_blockgroup_lock =
3396 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
3397 if (!sbi->s_blockgroup_lock) {
3398 kfree(sbi);
3399 goto out_free_orig;
3400 }
3401 sb->s_fs_info = sbi;
3402 sbi->s_sb = sb;
3403 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
3404 sbi->s_sb_block = sb_block;
3405 if (sb->s_bdev->bd_part)
3406 sbi->s_sectors_written_start =
3407 part_stat_read(sb->s_bdev->bd_part, sectors[1]);
3408
3409 /* Cleanup superblock name */
3410 for (cp = sb->s_id; (cp = strchr(cp, '/'));)
3411 *cp = '!';
3412
3413 /* -EINVAL is default */
3414 ret = -EINVAL;
3415 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
3416 if (!blocksize) {
3417 ext4_msg(sb, KERN_ERR, "unable to set blocksize");
3418 goto out_fail;
3419 }
3420
3421 /*
3422 * The ext4 superblock will not be buffer aligned for other than 1kB
3423 * block sizes. We need to calculate the offset from buffer start.
3424 */
3425 if (blocksize != EXT4_MIN_BLOCK_SIZE) {
3426 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3427 offset = do_div(logical_sb_block, blocksize);
3428 } else {
3429 logical_sb_block = sb_block;
3430 }
3431
3432 if (!(bh = sb_bread(sb, logical_sb_block))) {
3433 ext4_msg(sb, KERN_ERR, "unable to read superblock");
3434 goto out_fail;
3435 }
3436 /*
3437 * Note: s_es must be initialized as soon as possible because
3438 * some ext4 macro-instructions depend on its value
3439 */
3440 es = (struct ext4_super_block *) (bh->b_data + offset);
3441 sbi->s_es = es;
3442 sb->s_magic = le16_to_cpu(es->s_magic);
3443 if (sb->s_magic != EXT4_SUPER_MAGIC)
3444 goto cantfind_ext4;
3445 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
3446
3447 /* Warn if metadata_csum and gdt_csum are both set. */
3448 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3449 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
3450 EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
3451 ext4_warning(sb, KERN_INFO "metadata_csum and uninit_bg are "
3452 "redundant flags; please run fsck.");
3453
3454 /* Check for a known checksum algorithm */
3455 if (!ext4_verify_csum_type(sb, es)) {
3456 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3457 "unknown checksum algorithm.");
3458 silent = 1;
3459 goto cantfind_ext4;
3460 }
3461
3462 /* Load the checksum driver */
3463 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3464 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
3465 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
3466 if (IS_ERR(sbi->s_chksum_driver)) {
3467 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver.");
3468 ret = PTR_ERR(sbi->s_chksum_driver);
3469 sbi->s_chksum_driver = NULL;
3470 goto failed_mount;
3471 }
3472 }
3473
3474 /* Check superblock checksum */
3475 if (!ext4_superblock_csum_verify(sb, es)) {
3476 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3477 "invalid superblock checksum. Run e2fsck?");
3478 silent = 1;
3479 goto cantfind_ext4;
3480 }
3481
3482 /* Precompute checksum seed for all metadata */
3483 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3484 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
3485 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid,
3486 sizeof(es->s_uuid));
3487
3488 /* Set defaults before we parse the mount options */
3489 def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
3490 set_opt(sb, INIT_INODE_TABLE);
3491 if (def_mount_opts & EXT4_DEFM_DEBUG)
3492 set_opt(sb, DEBUG);
3493 if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
3494 set_opt(sb, GRPID);
3495 if (def_mount_opts & EXT4_DEFM_UID16)
3496 set_opt(sb, NO_UID32);
3497 /* xattr user namespace & acls are now defaulted on */
3498 set_opt(sb, XATTR_USER);
3499 #ifdef CONFIG_EXT4_FS_POSIX_ACL
3500 set_opt(sb, POSIX_ACL);
3501 #endif
3502 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
3503 set_opt(sb, JOURNAL_DATA);
3504 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
3505 set_opt(sb, ORDERED_DATA);
3506 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
3507 set_opt(sb, WRITEBACK_DATA);
3508
3509 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC)
3510 set_opt(sb, ERRORS_PANIC);
3511 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE)
3512 set_opt(sb, ERRORS_CONT);
3513 else
3514 set_opt(sb, ERRORS_RO);
3515 if (def_mount_opts & EXT4_DEFM_BLOCK_VALIDITY)
3516 set_opt(sb, BLOCK_VALIDITY);
3517 if (def_mount_opts & EXT4_DEFM_DISCARD)
3518 set_opt(sb, DISCARD);
3519
3520 sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid));
3521 sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid));
3522 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
3523 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
3524 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
3525
3526 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
3527 set_opt(sb, BARRIER);
3528
3529 /*
3530 * enable delayed allocation by default
3531 * Use -o nodelalloc to turn it off
3532 */
3533 if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) &&
3534 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
3535 set_opt(sb, DELALLOC);
3536
3537 /*
3538 * set default s_li_wait_mult for lazyinit, for the case there is
3539 * no mount option specified.
3540 */
3541 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
3542
3543 if (!parse_options((char *) sbi->s_es->s_mount_opts, sb,
3544 &journal_devnum, &journal_ioprio, 0)) {
3545 ext4_msg(sb, KERN_WARNING,
3546 "failed to parse options in superblock: %s",
3547 sbi->s_es->s_mount_opts);
3548 }
3549 sbi->s_def_mount_opt = sbi->s_mount_opt;
3550 if (!parse_options((char *) data, sb, &journal_devnum,
3551 &journal_ioprio, 0))
3552 goto failed_mount;
3553
3554 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
3555 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting "
3556 "with data=journal disables delayed "
3557 "allocation and O_DIRECT support!\n");
3558 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
3559 ext4_msg(sb, KERN_ERR, "can't mount with "
3560 "both data=journal and delalloc");
3561 goto failed_mount;
3562 }
3563 if (test_opt(sb, DIOREAD_NOLOCK)) {
3564 ext4_msg(sb, KERN_ERR, "can't mount with "
3565 "both data=journal and dioread_nolock");
3566 goto failed_mount;
3567 }
3568 if (test_opt(sb, DELALLOC))
3569 clear_opt(sb, DELALLOC);
3570 }
3571
3572 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
3573 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
3574
3575 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
3576 (EXT4_HAS_COMPAT_FEATURE(sb, ~0U) ||
3577 EXT4_HAS_RO_COMPAT_FEATURE(sb, ~0U) ||
3578 EXT4_HAS_INCOMPAT_FEATURE(sb, ~0U)))
3579 ext4_msg(sb, KERN_WARNING,
3580 "feature flags set on rev 0 fs, "
3581 "running e2fsck is recommended");
3582
3583 if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) {
3584 set_opt2(sb, HURD_COMPAT);
3585 if (EXT4_HAS_INCOMPAT_FEATURE(sb,
3586 EXT4_FEATURE_INCOMPAT_64BIT)) {
3587 ext4_msg(sb, KERN_ERR,
3588 "The Hurd can't support 64-bit file systems");
3589 goto failed_mount;
3590 }
3591 }
3592
3593 if (IS_EXT2_SB(sb)) {
3594 if (ext2_feature_set_ok(sb))
3595 ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
3596 "using the ext4 subsystem");
3597 else {
3598 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
3599 "to feature incompatibilities");
3600 goto failed_mount;
3601 }
3602 }
3603
3604 if (IS_EXT3_SB(sb)) {
3605 if (ext3_feature_set_ok(sb))
3606 ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
3607 "using the ext4 subsystem");
3608 else {
3609 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
3610 "to feature incompatibilities");
3611 goto failed_mount;
3612 }
3613 }
3614
3615 /*
3616 * Check feature flags regardless of the revision level, since we
3617 * previously didn't change the revision level when setting the flags,
3618 * so there is a chance incompat flags are set on a rev 0 filesystem.
3619 */
3620 if (!ext4_feature_set_ok(sb, (sb->s_flags & MS_RDONLY)))
3621 goto failed_mount;
3622
3623 blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
3624 if (blocksize < EXT4_MIN_BLOCK_SIZE ||
3625 blocksize > EXT4_MAX_BLOCK_SIZE) {
3626 ext4_msg(sb, KERN_ERR,
3627 "Unsupported filesystem blocksize %d", blocksize);
3628 goto failed_mount;
3629 }
3630
3631 if (sb->s_blocksize != blocksize) {
3632 /* Validate the filesystem blocksize */
3633 if (!sb_set_blocksize(sb, blocksize)) {
3634 ext4_msg(sb, KERN_ERR, "bad block size %d",
3635 blocksize);
3636 goto failed_mount;
3637 }
3638
3639 brelse(bh);
3640 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3641 offset = do_div(logical_sb_block, blocksize);
3642 bh = sb_bread(sb, logical_sb_block);
3643 if (!bh) {
3644 ext4_msg(sb, KERN_ERR,
3645 "Can't read superblock on 2nd try");
3646 goto failed_mount;
3647 }
3648 es = (struct ext4_super_block *)(bh->b_data + offset);
3649 sbi->s_es = es;
3650 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
3651 ext4_msg(sb, KERN_ERR,
3652 "Magic mismatch, very weird!");
3653 goto failed_mount;
3654 }
3655 }
3656
3657 has_huge_files = EXT4_HAS_RO_COMPAT_FEATURE(sb,
3658 EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
3659 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
3660 has_huge_files);
3661 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
3662
3663 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
3664 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
3665 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
3666 } else {
3667 sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
3668 sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
3669 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
3670 (!is_power_of_2(sbi->s_inode_size)) ||
3671 (sbi->s_inode_size > blocksize)) {
3672 ext4_msg(sb, KERN_ERR,
3673 "unsupported inode size: %d",
3674 sbi->s_inode_size);
3675 goto failed_mount;
3676 }
3677 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE)
3678 sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2);
3679 }
3680
3681 sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
3682 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT)) {
3683 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
3684 sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
3685 !is_power_of_2(sbi->s_desc_size)) {
3686 ext4_msg(sb, KERN_ERR,
3687 "unsupported descriptor size %lu",
3688 sbi->s_desc_size);
3689 goto failed_mount;
3690 }
3691 } else
3692 sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
3693
3694 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
3695 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
3696 if (EXT4_INODE_SIZE(sb) == 0 || EXT4_INODES_PER_GROUP(sb) == 0)
3697 goto cantfind_ext4;
3698
3699 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb);
3700 if (sbi->s_inodes_per_block == 0)
3701 goto cantfind_ext4;
3702 sbi->s_itb_per_group = sbi->s_inodes_per_group /
3703 sbi->s_inodes_per_block;
3704 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb);
3705 sbi->s_sbh = bh;
3706 sbi->s_mount_state = le16_to_cpu(es->s_state);
3707 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
3708 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
3709
3710 for (i = 0; i < 4; i++)
3711 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
3712 sbi->s_def_hash_version = es->s_def_hash_version;
3713 if (EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_DIR_INDEX)) {
3714 i = le32_to_cpu(es->s_flags);
3715 if (i & EXT2_FLAGS_UNSIGNED_HASH)
3716 sbi->s_hash_unsigned = 3;
3717 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
3718 #ifdef __CHAR_UNSIGNED__
3719 if (!(sb->s_flags & MS_RDONLY))
3720 es->s_flags |=
3721 cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
3722 sbi->s_hash_unsigned = 3;
3723 #else
3724 if (!(sb->s_flags & MS_RDONLY))
3725 es->s_flags |=
3726 cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
3727 #endif
3728 }
3729 }
3730
3731 /* Handle clustersize */
3732 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size);
3733 has_bigalloc = EXT4_HAS_RO_COMPAT_FEATURE(sb,
3734 EXT4_FEATURE_RO_COMPAT_BIGALLOC);
3735 if (has_bigalloc) {
3736 if (clustersize < blocksize) {
3737 ext4_msg(sb, KERN_ERR,
3738 "cluster size (%d) smaller than "
3739 "block size (%d)", clustersize, blocksize);
3740 goto failed_mount;
3741 }
3742 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) -
3743 le32_to_cpu(es->s_log_block_size);
3744 sbi->s_clusters_per_group =
3745 le32_to_cpu(es->s_clusters_per_group);
3746 if (sbi->s_clusters_per_group > blocksize * 8) {
3747 ext4_msg(sb, KERN_ERR,
3748 "#clusters per group too big: %lu",
3749 sbi->s_clusters_per_group);
3750 goto failed_mount;
3751 }
3752 if (sbi->s_blocks_per_group !=
3753 (sbi->s_clusters_per_group * (clustersize / blocksize))) {
3754 ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and "
3755 "clusters per group (%lu) inconsistent",
3756 sbi->s_blocks_per_group,
3757 sbi->s_clusters_per_group);
3758 goto failed_mount;
3759 }
3760 } else {
3761 if (clustersize != blocksize) {
3762 ext4_warning(sb, "fragment/cluster size (%d) != "
3763 "block size (%d)", clustersize,
3764 blocksize);
3765 clustersize = blocksize;
3766 }
3767 if (sbi->s_blocks_per_group > blocksize * 8) {
3768 ext4_msg(sb, KERN_ERR,
3769 "#blocks per group too big: %lu",
3770 sbi->s_blocks_per_group);
3771 goto failed_mount;
3772 }
3773 sbi->s_clusters_per_group = sbi->s_blocks_per_group;
3774 sbi->s_cluster_bits = 0;
3775 }
3776 sbi->s_cluster_ratio = clustersize / blocksize;
3777
3778 if (sbi->s_inodes_per_group > blocksize * 8) {
3779 ext4_msg(sb, KERN_ERR,
3780 "#inodes per group too big: %lu",
3781 sbi->s_inodes_per_group);
3782 goto failed_mount;
3783 }
3784
3785 /* Do we have standard group size of clustersize * 8 blocks ? */
3786 if (sbi->s_blocks_per_group == clustersize << 3)
3787 set_opt2(sb, STD_GROUP_SIZE);
3788
3789 /*
3790 * Test whether we have more sectors than will fit in sector_t,
3791 * and whether the max offset is addressable by the page cache.
3792 */
3793 err = generic_check_addressable(sb->s_blocksize_bits,
3794 ext4_blocks_count(es));
3795 if (err) {
3796 ext4_msg(sb, KERN_ERR, "filesystem"
3797 " too large to mount safely on this system");
3798 if (sizeof(sector_t) < 8)
3799 ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled");
3800 goto failed_mount;
3801 }
3802
3803 if (EXT4_BLOCKS_PER_GROUP(sb) == 0)
3804 goto cantfind_ext4;
3805
3806 /* check blocks count against device size */
3807 blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
3808 if (blocks_count && ext4_blocks_count(es) > blocks_count) {
3809 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
3810 "exceeds size of device (%llu blocks)",
3811 ext4_blocks_count(es), blocks_count);
3812 goto failed_mount;
3813 }
3814
3815 /*
3816 * It makes no sense for the first data block to be beyond the end
3817 * of the filesystem.
3818 */
3819 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
3820 ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
3821 "block %u is beyond end of filesystem (%llu)",
3822 le32_to_cpu(es->s_first_data_block),
3823 ext4_blocks_count(es));
3824 goto failed_mount;
3825 }
3826 blocks_count = (ext4_blocks_count(es) -
3827 le32_to_cpu(es->s_first_data_block) +
3828 EXT4_BLOCKS_PER_GROUP(sb) - 1);
3829 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
3830 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
3831 ext4_msg(sb, KERN_WARNING, "groups count too large: %u "
3832 "(block count %llu, first data block %u, "
3833 "blocks per group %lu)", sbi->s_groups_count,
3834 ext4_blocks_count(es),
3835 le32_to_cpu(es->s_first_data_block),
3836 EXT4_BLOCKS_PER_GROUP(sb));
3837 goto failed_mount;
3838 }
3839 sbi->s_groups_count = blocks_count;
3840 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
3841 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
3842 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
3843 EXT4_DESC_PER_BLOCK(sb);
3844 sbi->s_group_desc = ext4_kvmalloc(db_count *
3845 sizeof(struct buffer_head *),
3846 GFP_KERNEL);
3847 if (sbi->s_group_desc == NULL) {
3848 ext4_msg(sb, KERN_ERR, "not enough memory");
3849 ret = -ENOMEM;
3850 goto failed_mount;
3851 }
3852
3853 if (ext4_proc_root)
3854 sbi->s_proc = proc_mkdir(sb->s_id, ext4_proc_root);
3855
3856 if (sbi->s_proc)
3857 proc_create_data("options", S_IRUGO, sbi->s_proc,
3858 &ext4_seq_options_fops, sb);
3859
3860 bgl_lock_init(sbi->s_blockgroup_lock);
3861
3862 for (i = 0; i < db_count; i++) {
3863 block = descriptor_loc(sb, logical_sb_block, i);
3864 sbi->s_group_desc[i] = sb_bread(sb, block);
3865 if (!sbi->s_group_desc[i]) {
3866 ext4_msg(sb, KERN_ERR,
3867 "can't read group descriptor %d", i);
3868 db_count = i;
3869 goto failed_mount2;
3870 }
3871 }
3872 if (!ext4_check_descriptors(sb, &first_not_zeroed)) {
3873 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
3874 goto failed_mount2;
3875 }
3876 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG))
3877 if (!ext4_fill_flex_info(sb)) {
3878 ext4_msg(sb, KERN_ERR,
3879 "unable to initialize "
3880 "flex_bg meta info!");
3881 goto failed_mount2;
3882 }
3883
3884 sbi->s_gdb_count = db_count;
3885 get_random_bytes(&sbi->s_next_generation, sizeof(u32));
3886 spin_lock_init(&sbi->s_next_gen_lock);
3887
3888 init_timer(&sbi->s_err_report);
3889 sbi->s_err_report.function = print_daily_error_info;
3890 sbi->s_err_report.data = (unsigned long) sb;
3891
3892 /* Register extent status tree shrinker */
3893 ext4_es_register_shrinker(sbi);
3894
3895 err = percpu_counter_init(&sbi->s_freeclusters_counter,
3896 ext4_count_free_clusters(sb));
3897 if (!err) {
3898 err = percpu_counter_init(&sbi->s_freeinodes_counter,
3899 ext4_count_free_inodes(sb));
3900 }
3901 if (!err) {
3902 err = percpu_counter_init(&sbi->s_dirs_counter,
3903 ext4_count_dirs(sb));
3904 }
3905 if (!err) {
3906 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0);
3907 }
3908 if (!err) {
3909 err = percpu_counter_init(&sbi->s_extent_cache_cnt, 0);
3910 }
3911 if (err) {
3912 ext4_msg(sb, KERN_ERR, "insufficient memory");
3913 goto failed_mount3;
3914 }
3915
3916 sbi->s_stripe = ext4_get_stripe_size(sbi);
3917 sbi->s_extent_max_zeroout_kb = 32;
3918
3919 /*
3920 * set up enough so that it can read an inode
3921 */
3922 if (!test_opt(sb, NOLOAD) &&
3923 EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL))
3924 sb->s_op = &ext4_sops;
3925 else
3926 sb->s_op = &ext4_nojournal_sops;
3927 sb->s_export_op = &ext4_export_ops;
3928 sb->s_xattr = ext4_xattr_handlers;
3929 #ifdef CONFIG_QUOTA
3930 sb->dq_op = &ext4_quota_operations;
3931 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA))
3932 sb->s_qcop = &ext4_qctl_sysfile_operations;
3933 else
3934 sb->s_qcop = &ext4_qctl_operations;
3935 #endif
3936 memcpy(sb->s_uuid, es->s_uuid, sizeof(es->s_uuid));
3937
3938 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
3939 mutex_init(&sbi->s_orphan_lock);
3940
3941 sb->s_root = NULL;
3942
3943 needs_recovery = (es->s_last_orphan != 0 ||
3944 EXT4_HAS_INCOMPAT_FEATURE(sb,
3945 EXT4_FEATURE_INCOMPAT_RECOVER));
3946
3947 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_MMP) &&
3948 !(sb->s_flags & MS_RDONLY))
3949 if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block)))
3950 goto failed_mount3;
3951
3952 /*
3953 * The first inode we look at is the journal inode. Don't try
3954 * root first: it may be modified in the journal!
3955 */
3956 if (!test_opt(sb, NOLOAD) &&
3957 EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) {
3958 if (ext4_load_journal(sb, es, journal_devnum))
3959 goto failed_mount3;
3960 } else if (test_opt(sb, NOLOAD) && !(sb->s_flags & MS_RDONLY) &&
3961 EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) {
3962 ext4_msg(sb, KERN_ERR, "required journal recovery "
3963 "suppressed and not mounted read-only");
3964 goto failed_mount_wq;
3965 } else {
3966 clear_opt(sb, DATA_FLAGS);
3967 sbi->s_journal = NULL;
3968 needs_recovery = 0;
3969 goto no_journal;
3970 }
3971
3972 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT) &&
3973 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
3974 JBD2_FEATURE_INCOMPAT_64BIT)) {
3975 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
3976 goto failed_mount_wq;
3977 }
3978
3979 if (!set_journal_csum_feature_set(sb)) {
3980 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum "
3981 "feature set");
3982 goto failed_mount_wq;
3983 }
3984
3985 /* We have now updated the journal if required, so we can
3986 * validate the data journaling mode. */
3987 switch (test_opt(sb, DATA_FLAGS)) {
3988 case 0:
3989 /* No mode set, assume a default based on the journal
3990 * capabilities: ORDERED_DATA if the journal can
3991 * cope, else JOURNAL_DATA
3992 */
3993 if (jbd2_journal_check_available_features
3994 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE))
3995 set_opt(sb, ORDERED_DATA);
3996 else
3997 set_opt(sb, JOURNAL_DATA);
3998 break;
3999
4000 case EXT4_MOUNT_ORDERED_DATA:
4001 case EXT4_MOUNT_WRITEBACK_DATA:
4002 if (!jbd2_journal_check_available_features
4003 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4004 ext4_msg(sb, KERN_ERR, "Journal does not support "
4005 "requested data journaling mode");
4006 goto failed_mount_wq;
4007 }
4008 default:
4009 break;
4010 }
4011 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
4012
4013 sbi->s_journal->j_commit_callback = ext4_journal_commit_callback;
4014
4015 /*
4016 * The journal may have updated the bg summary counts, so we
4017 * need to update the global counters.
4018 */
4019 percpu_counter_set(&sbi->s_freeclusters_counter,
4020 ext4_count_free_clusters(sb));
4021 percpu_counter_set(&sbi->s_freeinodes_counter,
4022 ext4_count_free_inodes(sb));
4023 percpu_counter_set(&sbi->s_dirs_counter,
4024 ext4_count_dirs(sb));
4025 percpu_counter_set(&sbi->s_dirtyclusters_counter, 0);
4026
4027 no_journal:
4028 if (ext4_mballoc_ready) {
4029 sbi->s_mb_cache = ext4_xattr_create_cache(sb->s_id);
4030 if (!sbi->s_mb_cache) {
4031 ext4_msg(sb, KERN_ERR, "Failed to create an mb_cache");
4032 goto failed_mount_wq;
4033 }
4034 }
4035
4036 /*
4037 * Get the # of file system overhead blocks from the
4038 * superblock if present.
4039 */
4040 if (es->s_overhead_clusters)
4041 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters);
4042 else {
4043 err = ext4_calculate_overhead(sb);
4044 if (err)
4045 goto failed_mount_wq;
4046 }
4047
4048 /*
4049 * The maximum number of concurrent works can be high and
4050 * concurrency isn't really necessary. Limit it to 1.
4051 */
4052 EXT4_SB(sb)->rsv_conversion_wq =
4053 alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
4054 if (!EXT4_SB(sb)->rsv_conversion_wq) {
4055 printk(KERN_ERR "EXT4-fs: failed to create workqueue\n");
4056 ret = -ENOMEM;
4057 goto failed_mount4;
4058 }
4059
4060 /*
4061 * The jbd2_journal_load will have done any necessary log recovery,
4062 * so we can safely mount the rest of the filesystem now.
4063 */
4064
4065 root = ext4_iget(sb, EXT4_ROOT_INO);
4066 if (IS_ERR(root)) {
4067 ext4_msg(sb, KERN_ERR, "get root inode failed");
4068 ret = PTR_ERR(root);
4069 root = NULL;
4070 goto failed_mount4;
4071 }
4072 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
4073 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
4074 iput(root);
4075 goto failed_mount4;
4076 }
4077 sb->s_root = d_make_root(root);
4078 if (!sb->s_root) {
4079 ext4_msg(sb, KERN_ERR, "get root dentry failed");
4080 ret = -ENOMEM;
4081 goto failed_mount4;
4082 }
4083
4084 if (ext4_setup_super(sb, es, sb->s_flags & MS_RDONLY))
4085 sb->s_flags |= MS_RDONLY;
4086
4087 /* determine the minimum size of new large inodes, if present */
4088 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) {
4089 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
4090 EXT4_GOOD_OLD_INODE_SIZE;
4091 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4092 EXT4_FEATURE_RO_COMPAT_EXTRA_ISIZE)) {
4093 if (sbi->s_want_extra_isize <
4094 le16_to_cpu(es->s_want_extra_isize))
4095 sbi->s_want_extra_isize =
4096 le16_to_cpu(es->s_want_extra_isize);
4097 if (sbi->s_want_extra_isize <
4098 le16_to_cpu(es->s_min_extra_isize))
4099 sbi->s_want_extra_isize =
4100 le16_to_cpu(es->s_min_extra_isize);
4101 }
4102 }
4103 /* Check if enough inode space is available */
4104 if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize >
4105 sbi->s_inode_size) {
4106 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
4107 EXT4_GOOD_OLD_INODE_SIZE;
4108 ext4_msg(sb, KERN_INFO, "required extra inode space not"
4109 "available");
4110 }
4111
4112 err = ext4_reserve_clusters(sbi, ext4_calculate_resv_clusters(sb));
4113 if (err) {
4114 ext4_msg(sb, KERN_ERR, "failed to reserve %llu clusters for "
4115 "reserved pool", ext4_calculate_resv_clusters(sb));
4116 goto failed_mount4a;
4117 }
4118
4119 err = ext4_setup_system_zone(sb);
4120 if (err) {
4121 ext4_msg(sb, KERN_ERR, "failed to initialize system "
4122 "zone (%d)", err);
4123 goto failed_mount4a;
4124 }
4125
4126 ext4_ext_init(sb);
4127 err = ext4_mb_init(sb);
4128 if (err) {
4129 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
4130 err);
4131 goto failed_mount5;
4132 }
4133
4134 err = ext4_register_li_request(sb, first_not_zeroed);
4135 if (err)
4136 goto failed_mount6;
4137
4138 sbi->s_kobj.kset = ext4_kset;
4139 init_completion(&sbi->s_kobj_unregister);
4140 err = kobject_init_and_add(&sbi->s_kobj, &ext4_ktype, NULL,
4141 "%s", sb->s_id);
4142 if (err)
4143 goto failed_mount7;
4144
4145 #ifdef CONFIG_QUOTA
4146 /* Enable quota usage during mount. */
4147 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) &&
4148 !(sb->s_flags & MS_RDONLY)) {
4149 err = ext4_enable_quotas(sb);
4150 if (err)
4151 goto failed_mount8;
4152 }
4153 #endif /* CONFIG_QUOTA */
4154
4155 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
4156 ext4_orphan_cleanup(sb, es);
4157 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
4158 if (needs_recovery) {
4159 ext4_msg(sb, KERN_INFO, "recovery complete");
4160 ext4_mark_recovery_complete(sb, es);
4161 }
4162 if (EXT4_SB(sb)->s_journal) {
4163 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
4164 descr = " journalled data mode";
4165 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
4166 descr = " ordered data mode";
4167 else
4168 descr = " writeback data mode";
4169 } else
4170 descr = "out journal";
4171
4172 if (test_opt(sb, DISCARD)) {
4173 struct request_queue *q = bdev_get_queue(sb->s_bdev);
4174 if (!blk_queue_discard(q))
4175 ext4_msg(sb, KERN_WARNING,
4176 "mounting with \"discard\" option, but "
4177 "the device does not support discard");
4178 }
4179
4180 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. "
4181 "Opts: %s%s%s", descr, sbi->s_es->s_mount_opts,
4182 *sbi->s_es->s_mount_opts ? "; " : "", orig_data);
4183
4184 if (es->s_error_count)
4185 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
4186
4187 /* Enable message ratelimiting. Default is 10 messages per 5 secs. */
4188 ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10);
4189 ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10);
4190 ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10);
4191
4192 kfree(orig_data);
4193 return 0;
4194
4195 cantfind_ext4:
4196 if (!silent)
4197 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
4198 goto failed_mount;
4199
4200 #ifdef CONFIG_QUOTA
4201 failed_mount8:
4202 kobject_del(&sbi->s_kobj);
4203 #endif
4204 failed_mount7:
4205 ext4_unregister_li_request(sb);
4206 failed_mount6:
4207 ext4_mb_release(sb);
4208 failed_mount5:
4209 ext4_ext_release(sb);
4210 ext4_release_system_zone(sb);
4211 failed_mount4a:
4212 dput(sb->s_root);
4213 sb->s_root = NULL;
4214 failed_mount4:
4215 ext4_msg(sb, KERN_ERR, "mount failed");
4216 if (EXT4_SB(sb)->rsv_conversion_wq)
4217 destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq);
4218 failed_mount_wq:
4219 if (sbi->s_journal) {
4220 jbd2_journal_destroy(sbi->s_journal);
4221 sbi->s_journal = NULL;
4222 }
4223 failed_mount3:
4224 ext4_es_unregister_shrinker(sbi);
4225 del_timer_sync(&sbi->s_err_report);
4226 if (sbi->s_flex_groups)
4227 ext4_kvfree(sbi->s_flex_groups);
4228 percpu_counter_destroy(&sbi->s_freeclusters_counter);
4229 percpu_counter_destroy(&sbi->s_freeinodes_counter);
4230 percpu_counter_destroy(&sbi->s_dirs_counter);
4231 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
4232 percpu_counter_destroy(&sbi->s_extent_cache_cnt);
4233 if (sbi->s_mmp_tsk)
4234 kthread_stop(sbi->s_mmp_tsk);
4235 failed_mount2:
4236 for (i = 0; i < db_count; i++)
4237 brelse(sbi->s_group_desc[i]);
4238 ext4_kvfree(sbi->s_group_desc);
4239 failed_mount:
4240 if (sbi->s_chksum_driver)
4241 crypto_free_shash(sbi->s_chksum_driver);
4242 if (sbi->s_proc) {
4243 remove_proc_entry("options", sbi->s_proc);
4244 remove_proc_entry(sb->s_id, ext4_proc_root);
4245 }
4246 #ifdef CONFIG_QUOTA
4247 for (i = 0; i < MAXQUOTAS; i++)
4248 kfree(sbi->s_qf_names[i]);
4249 #endif
4250 ext4_blkdev_remove(sbi);
4251 brelse(bh);
4252 out_fail:
4253 sb->s_fs_info = NULL;
4254 kfree(sbi->s_blockgroup_lock);
4255 kfree(sbi);
4256 out_free_orig:
4257 kfree(orig_data);
4258 return err ? err : ret;
4259 }
4260
4261 /*
4262 * Setup any per-fs journal parameters now. We'll do this both on
4263 * initial mount, once the journal has been initialised but before we've
4264 * done any recovery; and again on any subsequent remount.
4265 */
4266 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
4267 {
4268 struct ext4_sb_info *sbi = EXT4_SB(sb);
4269
4270 journal->j_commit_interval = sbi->s_commit_interval;
4271 journal->j_min_batch_time = sbi->s_min_batch_time;
4272 journal->j_max_batch_time = sbi->s_max_batch_time;
4273
4274 write_lock(&journal->j_state_lock);
4275 if (test_opt(sb, BARRIER))
4276 journal->j_flags |= JBD2_BARRIER;
4277 else
4278 journal->j_flags &= ~JBD2_BARRIER;
4279 if (test_opt(sb, DATA_ERR_ABORT))
4280 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
4281 else
4282 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
4283 write_unlock(&journal->j_state_lock);
4284 }
4285
4286 static journal_t *ext4_get_journal(struct super_block *sb,
4287 unsigned int journal_inum)
4288 {
4289 struct inode *journal_inode;
4290 journal_t *journal;
4291
4292 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
4293
4294 /* First, test for the existence of a valid inode on disk. Bad
4295 * things happen if we iget() an unused inode, as the subsequent
4296 * iput() will try to delete it. */
4297
4298 journal_inode = ext4_iget(sb, journal_inum);
4299 if (IS_ERR(journal_inode)) {
4300 ext4_msg(sb, KERN_ERR, "no journal found");
4301 return NULL;
4302 }
4303 if (!journal_inode->i_nlink) {
4304 make_bad_inode(journal_inode);
4305 iput(journal_inode);
4306 ext4_msg(sb, KERN_ERR, "journal inode is deleted");
4307 return NULL;
4308 }
4309
4310 jbd_debug(2, "Journal inode found at %p: %lld bytes\n",
4311 journal_inode, journal_inode->i_size);
4312 if (!S_ISREG(journal_inode->i_mode)) {
4313 ext4_msg(sb, KERN_ERR, "invalid journal inode");
4314 iput(journal_inode);
4315 return NULL;
4316 }
4317
4318 journal = jbd2_journal_init_inode(journal_inode);
4319 if (!journal) {
4320 ext4_msg(sb, KERN_ERR, "Could not load journal inode");
4321 iput(journal_inode);
4322 return NULL;
4323 }
4324 journal->j_private = sb;
4325 ext4_init_journal_params(sb, journal);
4326 return journal;
4327 }
4328
4329 static journal_t *ext4_get_dev_journal(struct super_block *sb,
4330 dev_t j_dev)
4331 {
4332 struct buffer_head *bh;
4333 journal_t *journal;
4334 ext4_fsblk_t start;
4335 ext4_fsblk_t len;
4336 int hblock, blocksize;
4337 ext4_fsblk_t sb_block;
4338 unsigned long offset;
4339 struct ext4_super_block *es;
4340 struct block_device *bdev;
4341
4342 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
4343
4344 bdev = ext4_blkdev_get(j_dev, sb);
4345 if (bdev == NULL)
4346 return NULL;
4347
4348 blocksize = sb->s_blocksize;
4349 hblock = bdev_logical_block_size(bdev);
4350 if (blocksize < hblock) {
4351 ext4_msg(sb, KERN_ERR,
4352 "blocksize too small for journal device");
4353 goto out_bdev;
4354 }
4355
4356 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
4357 offset = EXT4_MIN_BLOCK_SIZE % blocksize;
4358 set_blocksize(bdev, blocksize);
4359 if (!(bh = __bread(bdev, sb_block, blocksize))) {
4360 ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
4361 "external journal");
4362 goto out_bdev;
4363 }
4364
4365 es = (struct ext4_super_block *) (bh->b_data + offset);
4366 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
4367 !(le32_to_cpu(es->s_feature_incompat) &
4368 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
4369 ext4_msg(sb, KERN_ERR, "external journal has "
4370 "bad superblock");
4371 brelse(bh);
4372 goto out_bdev;
4373 }
4374
4375 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
4376 ext4_msg(sb, KERN_ERR, "journal UUID does not match");
4377 brelse(bh);
4378 goto out_bdev;
4379 }
4380
4381 len = ext4_blocks_count(es);
4382 start = sb_block + 1;
4383 brelse(bh); /* we're done with the superblock */
4384
4385 journal = jbd2_journal_init_dev(bdev, sb->s_bdev,
4386 start, len, blocksize);
4387 if (!journal) {
4388 ext4_msg(sb, KERN_ERR, "failed to create device journal");
4389 goto out_bdev;
4390 }
4391 journal->j_private = sb;
4392 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &journal->j_sb_buffer);
4393 wait_on_buffer(journal->j_sb_buffer);
4394 if (!buffer_uptodate(journal->j_sb_buffer)) {
4395 ext4_msg(sb, KERN_ERR, "I/O error on journal device");
4396 goto out_journal;
4397 }
4398 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
4399 ext4_msg(sb, KERN_ERR, "External journal has more than one "
4400 "user (unsupported) - %d",
4401 be32_to_cpu(journal->j_superblock->s_nr_users));
4402 goto out_journal;
4403 }
4404 EXT4_SB(sb)->journal_bdev = bdev;
4405 ext4_init_journal_params(sb, journal);
4406 return journal;
4407
4408 out_journal:
4409 jbd2_journal_destroy(journal);
4410 out_bdev:
4411 ext4_blkdev_put(bdev);
4412 return NULL;
4413 }
4414
4415 static int ext4_load_journal(struct super_block *sb,
4416 struct ext4_super_block *es,
4417 unsigned long journal_devnum)
4418 {
4419 journal_t *journal;
4420 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
4421 dev_t journal_dev;
4422 int err = 0;
4423 int really_read_only;
4424
4425 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
4426
4427 if (journal_devnum &&
4428 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4429 ext4_msg(sb, KERN_INFO, "external journal device major/minor "
4430 "numbers have changed");
4431 journal_dev = new_decode_dev(journal_devnum);
4432 } else
4433 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
4434
4435 really_read_only = bdev_read_only(sb->s_bdev);
4436
4437 /*
4438 * Are we loading a blank journal or performing recovery after a
4439 * crash? For recovery, we need to check in advance whether we
4440 * can get read-write access to the device.
4441 */
4442 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) {
4443 if (sb->s_flags & MS_RDONLY) {
4444 ext4_msg(sb, KERN_INFO, "INFO: recovery "
4445 "required on readonly filesystem");
4446 if (really_read_only) {
4447 ext4_msg(sb, KERN_ERR, "write access "
4448 "unavailable, cannot proceed");
4449 return -EROFS;
4450 }
4451 ext4_msg(sb, KERN_INFO, "write access will "
4452 "be enabled during recovery");
4453 }
4454 }
4455
4456 if (journal_inum && journal_dev) {
4457 ext4_msg(sb, KERN_ERR, "filesystem has both journal "
4458 "and inode journals!");
4459 return -EINVAL;
4460 }
4461
4462 if (journal_inum) {
4463 if (!(journal = ext4_get_journal(sb, journal_inum)))
4464 return -EINVAL;
4465 } else {
4466 if (!(journal = ext4_get_dev_journal(sb, journal_dev)))
4467 return -EINVAL;
4468 }
4469
4470 if (!(journal->j_flags & JBD2_BARRIER))
4471 ext4_msg(sb, KERN_INFO, "barriers disabled");
4472
4473 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER))
4474 err = jbd2_journal_wipe(journal, !really_read_only);
4475 if (!err) {
4476 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
4477 if (save)
4478 memcpy(save, ((char *) es) +
4479 EXT4_S_ERR_START, EXT4_S_ERR_LEN);
4480 err = jbd2_journal_load(journal);
4481 if (save)
4482 memcpy(((char *) es) + EXT4_S_ERR_START,
4483 save, EXT4_S_ERR_LEN);
4484 kfree(save);
4485 }
4486
4487 if (err) {
4488 ext4_msg(sb, KERN_ERR, "error loading journal");
4489 jbd2_journal_destroy(journal);
4490 return err;
4491 }
4492
4493 EXT4_SB(sb)->s_journal = journal;
4494 ext4_clear_journal_err(sb, es);
4495
4496 if (!really_read_only && journal_devnum &&
4497 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4498 es->s_journal_dev = cpu_to_le32(journal_devnum);
4499
4500 /* Make sure we flush the recovery flag to disk. */
4501 ext4_commit_super(sb, 1);
4502 }
4503
4504 return 0;
4505 }
4506
4507 static int ext4_commit_super(struct super_block *sb, int sync)
4508 {
4509 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
4510 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
4511 int error = 0;
4512
4513 if (!sbh || block_device_ejected(sb))
4514 return error;
4515 if (buffer_write_io_error(sbh)) {
4516 /*
4517 * Oh, dear. A previous attempt to write the
4518 * superblock failed. This could happen because the
4519 * USB device was yanked out. Or it could happen to
4520 * be a transient write error and maybe the block will
4521 * be remapped. Nothing we can do but to retry the
4522 * write and hope for the best.
4523 */
4524 ext4_msg(sb, KERN_ERR, "previous I/O error to "
4525 "superblock detected");
4526 clear_buffer_write_io_error(sbh);
4527 set_buffer_uptodate(sbh);
4528 }
4529 /*
4530 * If the file system is mounted read-only, don't update the
4531 * superblock write time. This avoids updating the superblock
4532 * write time when we are mounting the root file system
4533 * read/only but we need to replay the journal; at that point,
4534 * for people who are east of GMT and who make their clock
4535 * tick in localtime for Windows bug-for-bug compatibility,
4536 * the clock is set in the future, and this will cause e2fsck
4537 * to complain and force a full file system check.
4538 */
4539 if (!(sb->s_flags & MS_RDONLY))
4540 es->s_wtime = cpu_to_le32(get_seconds());
4541 if (sb->s_bdev->bd_part)
4542 es->s_kbytes_written =
4543 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written +
4544 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
4545 EXT4_SB(sb)->s_sectors_written_start) >> 1));
4546 else
4547 es->s_kbytes_written =
4548 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written);
4549 ext4_free_blocks_count_set(es,
4550 EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive(
4551 &EXT4_SB(sb)->s_freeclusters_counter)));
4552 es->s_free_inodes_count =
4553 cpu_to_le32(percpu_counter_sum_positive(
4554 &EXT4_SB(sb)->s_freeinodes_counter));
4555 BUFFER_TRACE(sbh, "marking dirty");
4556 ext4_superblock_csum_set(sb);
4557 mark_buffer_dirty(sbh);
4558 if (sync) {
4559 error = sync_dirty_buffer(sbh);
4560 if (error)
4561 return error;
4562
4563 error = buffer_write_io_error(sbh);
4564 if (error) {
4565 ext4_msg(sb, KERN_ERR, "I/O error while writing "
4566 "superblock");
4567 clear_buffer_write_io_error(sbh);
4568 set_buffer_uptodate(sbh);
4569 }
4570 }
4571 return error;
4572 }
4573
4574 /*
4575 * Have we just finished recovery? If so, and if we are mounting (or
4576 * remounting) the filesystem readonly, then we will end up with a
4577 * consistent fs on disk. Record that fact.
4578 */
4579 static void ext4_mark_recovery_complete(struct super_block *sb,
4580 struct ext4_super_block *es)
4581 {
4582 journal_t *journal = EXT4_SB(sb)->s_journal;
4583
4584 if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) {
4585 BUG_ON(journal != NULL);
4586 return;
4587 }
4588 jbd2_journal_lock_updates(journal);
4589 if (jbd2_journal_flush(journal) < 0)
4590 goto out;
4591
4592 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER) &&
4593 sb->s_flags & MS_RDONLY) {
4594 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4595 ext4_commit_super(sb, 1);
4596 }
4597
4598 out:
4599 jbd2_journal_unlock_updates(journal);
4600 }
4601
4602 /*
4603 * If we are mounting (or read-write remounting) a filesystem whose journal
4604 * has recorded an error from a previous lifetime, move that error to the
4605 * main filesystem now.
4606 */
4607 static void ext4_clear_journal_err(struct super_block *sb,
4608 struct ext4_super_block *es)
4609 {
4610 journal_t *journal;
4611 int j_errno;
4612 const char *errstr;
4613
4614 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
4615
4616 journal = EXT4_SB(sb)->s_journal;
4617
4618 /*
4619 * Now check for any error status which may have been recorded in the
4620 * journal by a prior ext4_error() or ext4_abort()
4621 */
4622
4623 j_errno = jbd2_journal_errno(journal);
4624 if (j_errno) {
4625 char nbuf[16];
4626
4627 errstr = ext4_decode_error(sb, j_errno, nbuf);
4628 ext4_warning(sb, "Filesystem error recorded "
4629 "from previous mount: %s", errstr);
4630 ext4_warning(sb, "Marking fs in need of filesystem check.");
4631
4632 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
4633 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
4634 ext4_commit_super(sb, 1);
4635
4636 jbd2_journal_clear_err(journal);
4637 jbd2_journal_update_sb_errno(journal);
4638 }
4639 }
4640
4641 /*
4642 * Force the running and committing transactions to commit,
4643 * and wait on the commit.
4644 */
4645 int ext4_force_commit(struct super_block *sb)
4646 {
4647 journal_t *journal;
4648
4649 if (sb->s_flags & MS_RDONLY)
4650 return 0;
4651
4652 journal = EXT4_SB(sb)->s_journal;
4653 return ext4_journal_force_commit(journal);
4654 }
4655
4656 static int ext4_sync_fs(struct super_block *sb, int wait)
4657 {
4658 int ret = 0;
4659 tid_t target;
4660 bool needs_barrier = false;
4661 struct ext4_sb_info *sbi = EXT4_SB(sb);
4662
4663 trace_ext4_sync_fs(sb, wait);
4664 flush_workqueue(sbi->rsv_conversion_wq);
4665 /*
4666 * Writeback quota in non-journalled quota case - journalled quota has
4667 * no dirty dquots
4668 */
4669 dquot_writeback_dquots(sb, -1);
4670 /*
4671 * Data writeback is possible w/o journal transaction, so barrier must
4672 * being sent at the end of the function. But we can skip it if
4673 * transaction_commit will do it for us.
4674 */
4675 target = jbd2_get_latest_transaction(sbi->s_journal);
4676 if (wait && sbi->s_journal->j_flags & JBD2_BARRIER &&
4677 !jbd2_trans_will_send_data_barrier(sbi->s_journal, target))
4678 needs_barrier = true;
4679
4680 if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
4681 if (wait)
4682 ret = jbd2_log_wait_commit(sbi->s_journal, target);
4683 }
4684 if (needs_barrier) {
4685 int err;
4686 err = blkdev_issue_flush(sb->s_bdev, GFP_KERNEL, NULL);
4687 if (!ret)
4688 ret = err;
4689 }
4690
4691 return ret;
4692 }
4693
4694 static int ext4_sync_fs_nojournal(struct super_block *sb, int wait)
4695 {
4696 int ret = 0;
4697
4698 trace_ext4_sync_fs(sb, wait);
4699 flush_workqueue(EXT4_SB(sb)->rsv_conversion_wq);
4700 dquot_writeback_dquots(sb, -1);
4701 if (wait && test_opt(sb, BARRIER))
4702 ret = blkdev_issue_flush(sb->s_bdev, GFP_KERNEL, NULL);
4703
4704 return ret;
4705 }
4706
4707 /*
4708 * LVM calls this function before a (read-only) snapshot is created. This
4709 * gives us a chance to flush the journal completely and mark the fs clean.
4710 *
4711 * Note that only this function cannot bring a filesystem to be in a clean
4712 * state independently. It relies on upper layer to stop all data & metadata
4713 * modifications.
4714 */
4715 static int ext4_freeze(struct super_block *sb)
4716 {
4717 int error = 0;
4718 journal_t *journal;
4719
4720 if (sb->s_flags & MS_RDONLY)
4721 return 0;
4722
4723 journal = EXT4_SB(sb)->s_journal;
4724
4725 /* Now we set up the journal barrier. */
4726 jbd2_journal_lock_updates(journal);
4727
4728 /*
4729 * Don't clear the needs_recovery flag if we failed to flush
4730 * the journal.
4731 */
4732 error = jbd2_journal_flush(journal);
4733 if (error < 0)
4734 goto out;
4735
4736 /* Journal blocked and flushed, clear needs_recovery flag. */
4737 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4738 error = ext4_commit_super(sb, 1);
4739 out:
4740 /* we rely on upper layer to stop further updates */
4741 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
4742 return error;
4743 }
4744
4745 /*
4746 * Called by LVM after the snapshot is done. We need to reset the RECOVER
4747 * flag here, even though the filesystem is not technically dirty yet.
4748 */
4749 static int ext4_unfreeze(struct super_block *sb)
4750 {
4751 if (sb->s_flags & MS_RDONLY)
4752 return 0;
4753
4754 /* Reset the needs_recovery flag before the fs is unlocked. */
4755 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4756 ext4_commit_super(sb, 1);
4757 return 0;
4758 }
4759
4760 /*
4761 * Structure to save mount options for ext4_remount's benefit
4762 */
4763 struct ext4_mount_options {
4764 unsigned long s_mount_opt;
4765 unsigned long s_mount_opt2;
4766 kuid_t s_resuid;
4767 kgid_t s_resgid;
4768 unsigned long s_commit_interval;
4769 u32 s_min_batch_time, s_max_batch_time;
4770 #ifdef CONFIG_QUOTA
4771 int s_jquota_fmt;
4772 char *s_qf_names[MAXQUOTAS];
4773 #endif
4774 };
4775
4776 static int ext4_remount(struct super_block *sb, int *flags, char *data)
4777 {
4778 struct ext4_super_block *es;
4779 struct ext4_sb_info *sbi = EXT4_SB(sb);
4780 unsigned long old_sb_flags;
4781 struct ext4_mount_options old_opts;
4782 int enable_quota = 0;
4783 ext4_group_t g;
4784 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
4785 int err = 0;
4786 #ifdef CONFIG_QUOTA
4787 int i, j;
4788 #endif
4789 char *orig_data = kstrdup(data, GFP_KERNEL);
4790
4791 /* Store the original options */
4792 old_sb_flags = sb->s_flags;
4793 old_opts.s_mount_opt = sbi->s_mount_opt;
4794 old_opts.s_mount_opt2 = sbi->s_mount_opt2;
4795 old_opts.s_resuid = sbi->s_resuid;
4796 old_opts.s_resgid = sbi->s_resgid;
4797 old_opts.s_commit_interval = sbi->s_commit_interval;
4798 old_opts.s_min_batch_time = sbi->s_min_batch_time;
4799 old_opts.s_max_batch_time = sbi->s_max_batch_time;
4800 #ifdef CONFIG_QUOTA
4801 old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
4802 for (i = 0; i < MAXQUOTAS; i++)
4803 if (sbi->s_qf_names[i]) {
4804 old_opts.s_qf_names[i] = kstrdup(sbi->s_qf_names[i],
4805 GFP_KERNEL);
4806 if (!old_opts.s_qf_names[i]) {
4807 for (j = 0; j < i; j++)
4808 kfree(old_opts.s_qf_names[j]);
4809 kfree(orig_data);
4810 return -ENOMEM;
4811 }
4812 } else
4813 old_opts.s_qf_names[i] = NULL;
4814 #endif
4815 if (sbi->s_journal && sbi->s_journal->j_task->io_context)
4816 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio;
4817
4818 /*
4819 * Allow the "check" option to be passed as a remount option.
4820 */
4821 if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) {
4822 err = -EINVAL;
4823 goto restore_opts;
4824 }
4825
4826 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
4827 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
4828 ext4_msg(sb, KERN_ERR, "can't mount with "
4829 "both data=journal and delalloc");
4830 err = -EINVAL;
4831 goto restore_opts;
4832 }
4833 if (test_opt(sb, DIOREAD_NOLOCK)) {
4834 ext4_msg(sb, KERN_ERR, "can't mount with "
4835 "both data=journal and dioread_nolock");
4836 err = -EINVAL;
4837 goto restore_opts;
4838 }
4839 }
4840
4841 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED)
4842 ext4_abort(sb, "Abort forced by user");
4843
4844 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
4845 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
4846
4847 es = sbi->s_es;
4848
4849 if (sbi->s_journal) {
4850 ext4_init_journal_params(sb, sbi->s_journal);
4851 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
4852 }
4853
4854 if ((*flags & MS_RDONLY) != (sb->s_flags & MS_RDONLY)) {
4855 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) {
4856 err = -EROFS;
4857 goto restore_opts;
4858 }
4859
4860 if (*flags & MS_RDONLY) {
4861 err = sync_filesystem(sb);
4862 if (err < 0)
4863 goto restore_opts;
4864 err = dquot_suspend(sb, -1);
4865 if (err < 0)
4866 goto restore_opts;
4867
4868 /*
4869 * First of all, the unconditional stuff we have to do
4870 * to disable replay of the journal when we next remount
4871 */
4872 sb->s_flags |= MS_RDONLY;
4873
4874 /*
4875 * OK, test if we are remounting a valid rw partition
4876 * readonly, and if so set the rdonly flag and then
4877 * mark the partition as valid again.
4878 */
4879 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
4880 (sbi->s_mount_state & EXT4_VALID_FS))
4881 es->s_state = cpu_to_le16(sbi->s_mount_state);
4882
4883 if (sbi->s_journal)
4884 ext4_mark_recovery_complete(sb, es);
4885 } else {
4886 /* Make sure we can mount this feature set readwrite */
4887 if (!ext4_feature_set_ok(sb, 0)) {
4888 err = -EROFS;
4889 goto restore_opts;
4890 }
4891 /*
4892 * Make sure the group descriptor checksums
4893 * are sane. If they aren't, refuse to remount r/w.
4894 */
4895 for (g = 0; g < sbi->s_groups_count; g++) {
4896 struct ext4_group_desc *gdp =
4897 ext4_get_group_desc(sb, g, NULL);
4898
4899 if (!ext4_group_desc_csum_verify(sb, g, gdp)) {
4900 ext4_msg(sb, KERN_ERR,
4901 "ext4_remount: Checksum for group %u failed (%u!=%u)",
4902 g, le16_to_cpu(ext4_group_desc_csum(sbi, g, gdp)),
4903 le16_to_cpu(gdp->bg_checksum));
4904 err = -EINVAL;
4905 goto restore_opts;
4906 }
4907 }
4908
4909 /*
4910 * If we have an unprocessed orphan list hanging
4911 * around from a previously readonly bdev mount,
4912 * require a full umount/remount for now.
4913 */
4914 if (es->s_last_orphan) {
4915 ext4_msg(sb, KERN_WARNING, "Couldn't "
4916 "remount RDWR because of unprocessed "
4917 "orphan inode list. Please "
4918 "umount/remount instead");
4919 err = -EINVAL;
4920 goto restore_opts;
4921 }
4922
4923 /*
4924 * Mounting a RDONLY partition read-write, so reread
4925 * and store the current valid flag. (It may have
4926 * been changed by e2fsck since we originally mounted
4927 * the partition.)
4928 */
4929 if (sbi->s_journal)
4930 ext4_clear_journal_err(sb, es);
4931 sbi->s_mount_state = le16_to_cpu(es->s_state);
4932 if (!ext4_setup_super(sb, es, 0))
4933 sb->s_flags &= ~MS_RDONLY;
4934 if (EXT4_HAS_INCOMPAT_FEATURE(sb,
4935 EXT4_FEATURE_INCOMPAT_MMP))
4936 if (ext4_multi_mount_protect(sb,
4937 le64_to_cpu(es->s_mmp_block))) {
4938 err = -EROFS;
4939 goto restore_opts;
4940 }
4941 enable_quota = 1;
4942 }
4943 }
4944
4945 /*
4946 * Reinitialize lazy itable initialization thread based on
4947 * current settings
4948 */
4949 if ((sb->s_flags & MS_RDONLY) || !test_opt(sb, INIT_INODE_TABLE))
4950 ext4_unregister_li_request(sb);
4951 else {
4952 ext4_group_t first_not_zeroed;
4953 first_not_zeroed = ext4_has_uninit_itable(sb);
4954 ext4_register_li_request(sb, first_not_zeroed);
4955 }
4956
4957 ext4_setup_system_zone(sb);
4958 if (sbi->s_journal == NULL && !(old_sb_flags & MS_RDONLY))
4959 ext4_commit_super(sb, 1);
4960
4961 #ifdef CONFIG_QUOTA
4962 /* Release old quota file names */
4963 for (i = 0; i < MAXQUOTAS; i++)
4964 kfree(old_opts.s_qf_names[i]);
4965 if (enable_quota) {
4966 if (sb_any_quota_suspended(sb))
4967 dquot_resume(sb, -1);
4968 else if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4969 EXT4_FEATURE_RO_COMPAT_QUOTA)) {
4970 err = ext4_enable_quotas(sb);
4971 if (err)
4972 goto restore_opts;
4973 }
4974 }
4975 #endif
4976
4977 ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data);
4978 kfree(orig_data);
4979 return 0;
4980
4981 restore_opts:
4982 sb->s_flags = old_sb_flags;
4983 sbi->s_mount_opt = old_opts.s_mount_opt;
4984 sbi->s_mount_opt2 = old_opts.s_mount_opt2;
4985 sbi->s_resuid = old_opts.s_resuid;
4986 sbi->s_resgid = old_opts.s_resgid;
4987 sbi->s_commit_interval = old_opts.s_commit_interval;
4988 sbi->s_min_batch_time = old_opts.s_min_batch_time;
4989 sbi->s_max_batch_time = old_opts.s_max_batch_time;
4990 #ifdef CONFIG_QUOTA
4991 sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
4992 for (i = 0; i < MAXQUOTAS; i++) {
4993 kfree(sbi->s_qf_names[i]);
4994 sbi->s_qf_names[i] = old_opts.s_qf_names[i];
4995 }
4996 #endif
4997 kfree(orig_data);
4998 return err;
4999 }
5000
5001 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
5002 {
5003 struct super_block *sb = dentry->d_sb;
5004 struct ext4_sb_info *sbi = EXT4_SB(sb);
5005 struct ext4_super_block *es = sbi->s_es;
5006 ext4_fsblk_t overhead = 0, resv_blocks;
5007 u64 fsid;
5008 s64 bfree;
5009 resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters));
5010
5011 if (!test_opt(sb, MINIX_DF))
5012 overhead = sbi->s_overhead;
5013
5014 buf->f_type = EXT4_SUPER_MAGIC;
5015 buf->f_bsize = sb->s_blocksize;
5016 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead);
5017 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
5018 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
5019 /* prevent underflow in case that few free space is available */
5020 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0));
5021 buf->f_bavail = buf->f_bfree -
5022 (ext4_r_blocks_count(es) + resv_blocks);
5023 if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks))
5024 buf->f_bavail = 0;
5025 buf->f_files = le32_to_cpu(es->s_inodes_count);
5026 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
5027 buf->f_namelen = EXT4_NAME_LEN;
5028 fsid = le64_to_cpup((void *)es->s_uuid) ^
5029 le64_to_cpup((void *)es->s_uuid + sizeof(u64));
5030 buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL;
5031 buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL;
5032
5033 return 0;
5034 }
5035
5036 /* Helper function for writing quotas on sync - we need to start transaction
5037 * before quota file is locked for write. Otherwise the are possible deadlocks:
5038 * Process 1 Process 2
5039 * ext4_create() quota_sync()
5040 * jbd2_journal_start() write_dquot()
5041 * dquot_initialize() down(dqio_mutex)
5042 * down(dqio_mutex) jbd2_journal_start()
5043 *
5044 */
5045
5046 #ifdef CONFIG_QUOTA
5047
5048 static inline struct inode *dquot_to_inode(struct dquot *dquot)
5049 {
5050 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type];
5051 }
5052
5053 static int ext4_write_dquot(struct dquot *dquot)
5054 {
5055 int ret, err;
5056 handle_t *handle;
5057 struct inode *inode;
5058
5059 inode = dquot_to_inode(dquot);
5060 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5061 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
5062 if (IS_ERR(handle))
5063 return PTR_ERR(handle);
5064 ret = dquot_commit(dquot);
5065 err = ext4_journal_stop(handle);
5066 if (!ret)
5067 ret = err;
5068 return ret;
5069 }
5070
5071 static int ext4_acquire_dquot(struct dquot *dquot)
5072 {
5073 int ret, err;
5074 handle_t *handle;
5075
5076 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
5077 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
5078 if (IS_ERR(handle))
5079 return PTR_ERR(handle);
5080 ret = dquot_acquire(dquot);
5081 err = ext4_journal_stop(handle);
5082 if (!ret)
5083 ret = err;
5084 return ret;
5085 }
5086
5087 static int ext4_release_dquot(struct dquot *dquot)
5088 {
5089 int ret, err;
5090 handle_t *handle;
5091
5092 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
5093 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
5094 if (IS_ERR(handle)) {
5095 /* Release dquot anyway to avoid endless cycle in dqput() */
5096 dquot_release(dquot);
5097 return PTR_ERR(handle);
5098 }
5099 ret = dquot_release(dquot);
5100 err = ext4_journal_stop(handle);
5101 if (!ret)
5102 ret = err;
5103 return ret;
5104 }
5105
5106 static int ext4_mark_dquot_dirty(struct dquot *dquot)
5107 {
5108 struct super_block *sb = dquot->dq_sb;
5109 struct ext4_sb_info *sbi = EXT4_SB(sb);
5110
5111 /* Are we journaling quotas? */
5112 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) ||
5113 sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
5114 dquot_mark_dquot_dirty(dquot);
5115 return ext4_write_dquot(dquot);
5116 } else {
5117 return dquot_mark_dquot_dirty(dquot);
5118 }
5119 }
5120
5121 static int ext4_write_info(struct super_block *sb, int type)
5122 {
5123 int ret, err;
5124 handle_t *handle;
5125
5126 /* Data block + inode block */
5127 handle = ext4_journal_start(sb->s_root->d_inode, EXT4_HT_QUOTA, 2);
5128 if (IS_ERR(handle))
5129 return PTR_ERR(handle);
5130 ret = dquot_commit_info(sb, type);
5131 err = ext4_journal_stop(handle);
5132 if (!ret)
5133 ret = err;
5134 return ret;
5135 }
5136
5137 /*
5138 * Turn on quotas during mount time - we need to find
5139 * the quota file and such...
5140 */
5141 static int ext4_quota_on_mount(struct super_block *sb, int type)
5142 {
5143 return dquot_quota_on_mount(sb, EXT4_SB(sb)->s_qf_names[type],
5144 EXT4_SB(sb)->s_jquota_fmt, type);
5145 }
5146
5147 /*
5148 * Standard function to be called on quota_on
5149 */
5150 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
5151 struct path *path)
5152 {
5153 int err;
5154
5155 if (!test_opt(sb, QUOTA))
5156 return -EINVAL;
5157
5158 /* Quotafile not on the same filesystem? */
5159 if (path->dentry->d_sb != sb)
5160 return -EXDEV;
5161 /* Journaling quota? */
5162 if (EXT4_SB(sb)->s_qf_names[type]) {
5163 /* Quotafile not in fs root? */
5164 if (path->dentry->d_parent != sb->s_root)
5165 ext4_msg(sb, KERN_WARNING,
5166 "Quota file not on filesystem root. "
5167 "Journaled quota will not work");
5168 }
5169
5170 /*
5171 * When we journal data on quota file, we have to flush journal to see
5172 * all updates to the file when we bypass pagecache...
5173 */
5174 if (EXT4_SB(sb)->s_journal &&
5175 ext4_should_journal_data(path->dentry->d_inode)) {
5176 /*
5177 * We don't need to lock updates but journal_flush() could
5178 * otherwise be livelocked...
5179 */
5180 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal);
5181 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal);
5182 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
5183 if (err)
5184 return err;
5185 }
5186
5187 return dquot_quota_on(sb, type, format_id, path);
5188 }
5189
5190 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
5191 unsigned int flags)
5192 {
5193 int err;
5194 struct inode *qf_inode;
5195 unsigned long qf_inums[MAXQUOTAS] = {
5196 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
5197 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum)
5198 };
5199
5200 BUG_ON(!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA));
5201
5202 if (!qf_inums[type])
5203 return -EPERM;
5204
5205 qf_inode = ext4_iget(sb, qf_inums[type]);
5206 if (IS_ERR(qf_inode)) {
5207 ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]);
5208 return PTR_ERR(qf_inode);
5209 }
5210
5211 /* Don't account quota for quota files to avoid recursion */
5212 qf_inode->i_flags |= S_NOQUOTA;
5213 err = dquot_enable(qf_inode, type, format_id, flags);
5214 iput(qf_inode);
5215
5216 return err;
5217 }
5218
5219 /* Enable usage tracking for all quota types. */
5220 static int ext4_enable_quotas(struct super_block *sb)
5221 {
5222 int type, err = 0;
5223 unsigned long qf_inums[MAXQUOTAS] = {
5224 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
5225 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum)
5226 };
5227
5228 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE;
5229 for (type = 0; type < MAXQUOTAS; type++) {
5230 if (qf_inums[type]) {
5231 err = ext4_quota_enable(sb, type, QFMT_VFS_V1,
5232 DQUOT_USAGE_ENABLED);
5233 if (err) {
5234 ext4_warning(sb,
5235 "Failed to enable quota tracking "
5236 "(type=%d, err=%d). Please run "
5237 "e2fsck to fix.", type, err);
5238 return err;
5239 }
5240 }
5241 }
5242 return 0;
5243 }
5244
5245 /*
5246 * quota_on function that is used when QUOTA feature is set.
5247 */
5248 static int ext4_quota_on_sysfile(struct super_block *sb, int type,
5249 int format_id)
5250 {
5251 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA))
5252 return -EINVAL;
5253
5254 /*
5255 * USAGE was enabled at mount time. Only need to enable LIMITS now.
5256 */
5257 return ext4_quota_enable(sb, type, format_id, DQUOT_LIMITS_ENABLED);
5258 }
5259
5260 static int ext4_quota_off(struct super_block *sb, int type)
5261 {
5262 struct inode *inode = sb_dqopt(sb)->files[type];
5263 handle_t *handle;
5264
5265 /* Force all delayed allocation blocks to be allocated.
5266 * Caller already holds s_umount sem */
5267 if (test_opt(sb, DELALLOC))
5268 sync_filesystem(sb);
5269
5270 if (!inode)
5271 goto out;
5272
5273 /* Update modification times of quota files when userspace can
5274 * start looking at them */
5275 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
5276 if (IS_ERR(handle))
5277 goto out;
5278 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
5279 ext4_mark_inode_dirty(handle, inode);
5280 ext4_journal_stop(handle);
5281
5282 out:
5283 return dquot_quota_off(sb, type);
5284 }
5285
5286 /*
5287 * quota_off function that is used when QUOTA feature is set.
5288 */
5289 static int ext4_quota_off_sysfile(struct super_block *sb, int type)
5290 {
5291 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA))
5292 return -EINVAL;
5293
5294 /* Disable only the limits. */
5295 return dquot_disable(sb, type, DQUOT_LIMITS_ENABLED);
5296 }
5297
5298 /* Read data from quotafile - avoid pagecache and such because we cannot afford
5299 * acquiring the locks... As quota files are never truncated and quota code
5300 * itself serializes the operations (and no one else should touch the files)
5301 * we don't have to be afraid of races */
5302 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
5303 size_t len, loff_t off)
5304 {
5305 struct inode *inode = sb_dqopt(sb)->files[type];
5306 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5307 int err = 0;
5308 int offset = off & (sb->s_blocksize - 1);
5309 int tocopy;
5310 size_t toread;
5311 struct buffer_head *bh;
5312 loff_t i_size = i_size_read(inode);
5313
5314 if (off > i_size)
5315 return 0;
5316 if (off+len > i_size)
5317 len = i_size-off;
5318 toread = len;
5319 while (toread > 0) {
5320 tocopy = sb->s_blocksize - offset < toread ?
5321 sb->s_blocksize - offset : toread;
5322 bh = ext4_bread(NULL, inode, blk, 0, &err);
5323 if (err)
5324 return err;
5325 if (!bh) /* A hole? */
5326 memset(data, 0, tocopy);
5327 else
5328 memcpy(data, bh->b_data+offset, tocopy);
5329 brelse(bh);
5330 offset = 0;
5331 toread -= tocopy;
5332 data += tocopy;
5333 blk++;
5334 }
5335 return len;
5336 }
5337
5338 /* Write to quotafile (we know the transaction is already started and has
5339 * enough credits) */
5340 static ssize_t ext4_quota_write(struct super_block *sb, int type,
5341 const char *data, size_t len, loff_t off)
5342 {
5343 struct inode *inode = sb_dqopt(sb)->files[type];
5344 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5345 int err = 0;
5346 int offset = off & (sb->s_blocksize - 1);
5347 struct buffer_head *bh;
5348 handle_t *handle = journal_current_handle();
5349
5350 if (EXT4_SB(sb)->s_journal && !handle) {
5351 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5352 " cancelled because transaction is not started",
5353 (unsigned long long)off, (unsigned long long)len);
5354 return -EIO;
5355 }
5356 /*
5357 * Since we account only one data block in transaction credits,
5358 * then it is impossible to cross a block boundary.
5359 */
5360 if (sb->s_blocksize - offset < len) {
5361 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5362 " cancelled because not block aligned",
5363 (unsigned long long)off, (unsigned long long)len);
5364 return -EIO;
5365 }
5366
5367 bh = ext4_bread(handle, inode, blk, 1, &err);
5368 if (!bh)
5369 goto out;
5370 err = ext4_journal_get_write_access(handle, bh);
5371 if (err) {
5372 brelse(bh);
5373 goto out;
5374 }
5375 lock_buffer(bh);
5376 memcpy(bh->b_data+offset, data, len);
5377 flush_dcache_page(bh->b_page);
5378 unlock_buffer(bh);
5379 err = ext4_handle_dirty_metadata(handle, NULL, bh);
5380 brelse(bh);
5381 out:
5382 if (err)
5383 return err;
5384 if (inode->i_size < off + len) {
5385 i_size_write(inode, off + len);
5386 EXT4_I(inode)->i_disksize = inode->i_size;
5387 ext4_mark_inode_dirty(handle, inode);
5388 }
5389 return len;
5390 }
5391
5392 #endif
5393
5394 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
5395 const char *dev_name, void *data)
5396 {
5397 return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super);
5398 }
5399
5400 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
5401 static inline void register_as_ext2(void)
5402 {
5403 int err = register_filesystem(&ext2_fs_type);
5404 if (err)
5405 printk(KERN_WARNING
5406 "EXT4-fs: Unable to register as ext2 (%d)\n", err);
5407 }
5408
5409 static inline void unregister_as_ext2(void)
5410 {
5411 unregister_filesystem(&ext2_fs_type);
5412 }
5413
5414 static inline int ext2_feature_set_ok(struct super_block *sb)
5415 {
5416 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT2_FEATURE_INCOMPAT_SUPP))
5417 return 0;
5418 if (sb->s_flags & MS_RDONLY)
5419 return 1;
5420 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT2_FEATURE_RO_COMPAT_SUPP))
5421 return 0;
5422 return 1;
5423 }
5424 #else
5425 static inline void register_as_ext2(void) { }
5426 static inline void unregister_as_ext2(void) { }
5427 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
5428 #endif
5429
5430 #if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
5431 static inline void register_as_ext3(void)
5432 {
5433 int err = register_filesystem(&ext3_fs_type);
5434 if (err)
5435 printk(KERN_WARNING
5436 "EXT4-fs: Unable to register as ext3 (%d)\n", err);
5437 }
5438
5439 static inline void unregister_as_ext3(void)
5440 {
5441 unregister_filesystem(&ext3_fs_type);
5442 }
5443
5444 static inline int ext3_feature_set_ok(struct super_block *sb)
5445 {
5446 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT3_FEATURE_INCOMPAT_SUPP))
5447 return 0;
5448 if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL))
5449 return 0;
5450 if (sb->s_flags & MS_RDONLY)
5451 return 1;
5452 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT3_FEATURE_RO_COMPAT_SUPP))
5453 return 0;
5454 return 1;
5455 }
5456 #else
5457 static inline void register_as_ext3(void) { }
5458 static inline void unregister_as_ext3(void) { }
5459 static inline int ext3_feature_set_ok(struct super_block *sb) { return 0; }
5460 #endif
5461
5462 static struct file_system_type ext4_fs_type = {
5463 .owner = THIS_MODULE,
5464 .name = "ext4",
5465 .mount = ext4_mount,
5466 .kill_sb = kill_block_super,
5467 .fs_flags = FS_REQUIRES_DEV,
5468 };
5469 MODULE_ALIAS_FS("ext4");
5470
5471 static int __init ext4_init_feat_adverts(void)
5472 {
5473 struct ext4_features *ef;
5474 int ret = -ENOMEM;
5475
5476 ef = kzalloc(sizeof(struct ext4_features), GFP_KERNEL);
5477 if (!ef)
5478 goto out;
5479
5480 ef->f_kobj.kset = ext4_kset;
5481 init_completion(&ef->f_kobj_unregister);
5482 ret = kobject_init_and_add(&ef->f_kobj, &ext4_feat_ktype, NULL,
5483 "features");
5484 if (ret) {
5485 kfree(ef);
5486 goto out;
5487 }
5488
5489 ext4_feat = ef;
5490 ret = 0;
5491 out:
5492 return ret;
5493 }
5494
5495 static void ext4_exit_feat_adverts(void)
5496 {
5497 kobject_put(&ext4_feat->f_kobj);
5498 wait_for_completion(&ext4_feat->f_kobj_unregister);
5499 kfree(ext4_feat);
5500 }
5501
5502 /* Shared across all ext4 file systems */
5503 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ];
5504 struct mutex ext4__aio_mutex[EXT4_WQ_HASH_SZ];
5505
5506 static int __init ext4_init_fs(void)
5507 {
5508 int i, err;
5509
5510 ext4_li_info = NULL;
5511 mutex_init(&ext4_li_mtx);
5512
5513 /* Build-time check for flags consistency */
5514 ext4_check_flag_values();
5515
5516 for (i = 0; i < EXT4_WQ_HASH_SZ; i++) {
5517 mutex_init(&ext4__aio_mutex[i]);
5518 init_waitqueue_head(&ext4__ioend_wq[i]);
5519 }
5520
5521 err = ext4_init_es();
5522 if (err)
5523 return err;
5524
5525 err = ext4_init_pageio();
5526 if (err)
5527 goto out7;
5528
5529 err = ext4_init_system_zone();
5530 if (err)
5531 goto out6;
5532 ext4_kset = kset_create_and_add("ext4", NULL, fs_kobj);
5533 if (!ext4_kset) {
5534 err = -ENOMEM;
5535 goto out5;
5536 }
5537 ext4_proc_root = proc_mkdir("fs/ext4", NULL);
5538
5539 err = ext4_init_feat_adverts();
5540 if (err)
5541 goto out4;
5542
5543 err = ext4_init_mballoc();
5544 if (err)
5545 goto out2;
5546 else
5547 ext4_mballoc_ready = 1;
5548 err = init_inodecache();
5549 if (err)
5550 goto out1;
5551 register_as_ext3();
5552 register_as_ext2();
5553 err = register_filesystem(&ext4_fs_type);
5554 if (err)
5555 goto out;
5556
5557 return 0;
5558 out:
5559 unregister_as_ext2();
5560 unregister_as_ext3();
5561 destroy_inodecache();
5562 out1:
5563 ext4_mballoc_ready = 0;
5564 ext4_exit_mballoc();
5565 out2:
5566 ext4_exit_feat_adverts();
5567 out4:
5568 if (ext4_proc_root)
5569 remove_proc_entry("fs/ext4", NULL);
5570 kset_unregister(ext4_kset);
5571 out5:
5572 ext4_exit_system_zone();
5573 out6:
5574 ext4_exit_pageio();
5575 out7:
5576 ext4_exit_es();
5577
5578 return err;
5579 }
5580
5581 static void __exit ext4_exit_fs(void)
5582 {
5583 ext4_destroy_lazyinit_thread();
5584 unregister_as_ext2();
5585 unregister_as_ext3();
5586 unregister_filesystem(&ext4_fs_type);
5587 destroy_inodecache();
5588 ext4_exit_mballoc();
5589 ext4_exit_feat_adverts();
5590 remove_proc_entry("fs/ext4", NULL);
5591 kset_unregister(ext4_kset);
5592 ext4_exit_system_zone();
5593 ext4_exit_pageio();
5594 ext4_exit_es();
5595 }
5596
5597 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
5598 MODULE_DESCRIPTION("Fourth Extended Filesystem");
5599 MODULE_LICENSE("GPL");
5600 module_init(ext4_init_fs)
5601 module_exit(ext4_exit_fs)