]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - fs/ext4/super.c
dquot: cleanup space allocation / freeing routines
[mirror_ubuntu-zesty-kernel.git] / fs / ext4 / super.c
1 /*
2 * linux/fs/ext4/super.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * Big-endian to little-endian byte-swapping/bitmaps by
16 * David S. Miller (davem@caip.rutgers.edu), 1995
17 */
18
19 #include <linux/module.h>
20 #include <linux/string.h>
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/vmalloc.h>
24 #include <linux/jbd2.h>
25 #include <linux/slab.h>
26 #include <linux/init.h>
27 #include <linux/blkdev.h>
28 #include <linux/parser.h>
29 #include <linux/smp_lock.h>
30 #include <linux/buffer_head.h>
31 #include <linux/exportfs.h>
32 #include <linux/vfs.h>
33 #include <linux/random.h>
34 #include <linux/mount.h>
35 #include <linux/namei.h>
36 #include <linux/quotaops.h>
37 #include <linux/seq_file.h>
38 #include <linux/proc_fs.h>
39 #include <linux/ctype.h>
40 #include <linux/log2.h>
41 #include <linux/crc16.h>
42 #include <asm/uaccess.h>
43
44 #include "ext4.h"
45 #include "ext4_jbd2.h"
46 #include "xattr.h"
47 #include "acl.h"
48 #include "mballoc.h"
49
50 #define CREATE_TRACE_POINTS
51 #include <trace/events/ext4.h>
52
53 struct proc_dir_entry *ext4_proc_root;
54 static struct kset *ext4_kset;
55
56 static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
57 unsigned long journal_devnum);
58 static int ext4_commit_super(struct super_block *sb, int sync);
59 static void ext4_mark_recovery_complete(struct super_block *sb,
60 struct ext4_super_block *es);
61 static void ext4_clear_journal_err(struct super_block *sb,
62 struct ext4_super_block *es);
63 static int ext4_sync_fs(struct super_block *sb, int wait);
64 static const char *ext4_decode_error(struct super_block *sb, int errno,
65 char nbuf[16]);
66 static int ext4_remount(struct super_block *sb, int *flags, char *data);
67 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
68 static int ext4_unfreeze(struct super_block *sb);
69 static void ext4_write_super(struct super_block *sb);
70 static int ext4_freeze(struct super_block *sb);
71
72
73 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
74 struct ext4_group_desc *bg)
75 {
76 return le32_to_cpu(bg->bg_block_bitmap_lo) |
77 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
78 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
79 }
80
81 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
82 struct ext4_group_desc *bg)
83 {
84 return le32_to_cpu(bg->bg_inode_bitmap_lo) |
85 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
86 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
87 }
88
89 ext4_fsblk_t ext4_inode_table(struct super_block *sb,
90 struct ext4_group_desc *bg)
91 {
92 return le32_to_cpu(bg->bg_inode_table_lo) |
93 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
94 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
95 }
96
97 __u32 ext4_free_blks_count(struct super_block *sb,
98 struct ext4_group_desc *bg)
99 {
100 return le16_to_cpu(bg->bg_free_blocks_count_lo) |
101 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
102 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
103 }
104
105 __u32 ext4_free_inodes_count(struct super_block *sb,
106 struct ext4_group_desc *bg)
107 {
108 return le16_to_cpu(bg->bg_free_inodes_count_lo) |
109 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
110 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
111 }
112
113 __u32 ext4_used_dirs_count(struct super_block *sb,
114 struct ext4_group_desc *bg)
115 {
116 return le16_to_cpu(bg->bg_used_dirs_count_lo) |
117 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
118 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
119 }
120
121 __u32 ext4_itable_unused_count(struct super_block *sb,
122 struct ext4_group_desc *bg)
123 {
124 return le16_to_cpu(bg->bg_itable_unused_lo) |
125 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
126 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
127 }
128
129 void ext4_block_bitmap_set(struct super_block *sb,
130 struct ext4_group_desc *bg, ext4_fsblk_t blk)
131 {
132 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
133 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
134 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
135 }
136
137 void ext4_inode_bitmap_set(struct super_block *sb,
138 struct ext4_group_desc *bg, ext4_fsblk_t blk)
139 {
140 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk);
141 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
142 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
143 }
144
145 void ext4_inode_table_set(struct super_block *sb,
146 struct ext4_group_desc *bg, ext4_fsblk_t blk)
147 {
148 bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
149 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
150 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
151 }
152
153 void ext4_free_blks_set(struct super_block *sb,
154 struct ext4_group_desc *bg, __u32 count)
155 {
156 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
157 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
158 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
159 }
160
161 void ext4_free_inodes_set(struct super_block *sb,
162 struct ext4_group_desc *bg, __u32 count)
163 {
164 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
165 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
166 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
167 }
168
169 void ext4_used_dirs_set(struct super_block *sb,
170 struct ext4_group_desc *bg, __u32 count)
171 {
172 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
173 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
174 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
175 }
176
177 void ext4_itable_unused_set(struct super_block *sb,
178 struct ext4_group_desc *bg, __u32 count)
179 {
180 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
181 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
182 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
183 }
184
185
186 /* Just increment the non-pointer handle value */
187 static handle_t *ext4_get_nojournal(void)
188 {
189 handle_t *handle = current->journal_info;
190 unsigned long ref_cnt = (unsigned long)handle;
191
192 BUG_ON(ref_cnt >= EXT4_NOJOURNAL_MAX_REF_COUNT);
193
194 ref_cnt++;
195 handle = (handle_t *)ref_cnt;
196
197 current->journal_info = handle;
198 return handle;
199 }
200
201
202 /* Decrement the non-pointer handle value */
203 static void ext4_put_nojournal(handle_t *handle)
204 {
205 unsigned long ref_cnt = (unsigned long)handle;
206
207 BUG_ON(ref_cnt == 0);
208
209 ref_cnt--;
210 handle = (handle_t *)ref_cnt;
211
212 current->journal_info = handle;
213 }
214
215 /*
216 * Wrappers for jbd2_journal_start/end.
217 *
218 * The only special thing we need to do here is to make sure that all
219 * journal_end calls result in the superblock being marked dirty, so
220 * that sync() will call the filesystem's write_super callback if
221 * appropriate.
222 */
223 handle_t *ext4_journal_start_sb(struct super_block *sb, int nblocks)
224 {
225 journal_t *journal;
226
227 if (sb->s_flags & MS_RDONLY)
228 return ERR_PTR(-EROFS);
229
230 /* Special case here: if the journal has aborted behind our
231 * backs (eg. EIO in the commit thread), then we still need to
232 * take the FS itself readonly cleanly. */
233 journal = EXT4_SB(sb)->s_journal;
234 if (journal) {
235 if (is_journal_aborted(journal)) {
236 ext4_abort(sb, __func__, "Detected aborted journal");
237 return ERR_PTR(-EROFS);
238 }
239 return jbd2_journal_start(journal, nblocks);
240 }
241 return ext4_get_nojournal();
242 }
243
244 /*
245 * The only special thing we need to do here is to make sure that all
246 * jbd2_journal_stop calls result in the superblock being marked dirty, so
247 * that sync() will call the filesystem's write_super callback if
248 * appropriate.
249 */
250 int __ext4_journal_stop(const char *where, handle_t *handle)
251 {
252 struct super_block *sb;
253 int err;
254 int rc;
255
256 if (!ext4_handle_valid(handle)) {
257 ext4_put_nojournal(handle);
258 return 0;
259 }
260 sb = handle->h_transaction->t_journal->j_private;
261 err = handle->h_err;
262 rc = jbd2_journal_stop(handle);
263
264 if (!err)
265 err = rc;
266 if (err)
267 __ext4_std_error(sb, where, err);
268 return err;
269 }
270
271 void ext4_journal_abort_handle(const char *caller, const char *err_fn,
272 struct buffer_head *bh, handle_t *handle, int err)
273 {
274 char nbuf[16];
275 const char *errstr = ext4_decode_error(NULL, err, nbuf);
276
277 BUG_ON(!ext4_handle_valid(handle));
278
279 if (bh)
280 BUFFER_TRACE(bh, "abort");
281
282 if (!handle->h_err)
283 handle->h_err = err;
284
285 if (is_handle_aborted(handle))
286 return;
287
288 printk(KERN_ERR "%s: aborting transaction: %s in %s\n",
289 caller, errstr, err_fn);
290
291 jbd2_journal_abort_handle(handle);
292 }
293
294 /* Deal with the reporting of failure conditions on a filesystem such as
295 * inconsistencies detected or read IO failures.
296 *
297 * On ext2, we can store the error state of the filesystem in the
298 * superblock. That is not possible on ext4, because we may have other
299 * write ordering constraints on the superblock which prevent us from
300 * writing it out straight away; and given that the journal is about to
301 * be aborted, we can't rely on the current, or future, transactions to
302 * write out the superblock safely.
303 *
304 * We'll just use the jbd2_journal_abort() error code to record an error in
305 * the journal instead. On recovery, the journal will compain about
306 * that error until we've noted it down and cleared it.
307 */
308
309 static void ext4_handle_error(struct super_block *sb)
310 {
311 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
312
313 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
314 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
315
316 if (sb->s_flags & MS_RDONLY)
317 return;
318
319 if (!test_opt(sb, ERRORS_CONT)) {
320 journal_t *journal = EXT4_SB(sb)->s_journal;
321
322 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
323 if (journal)
324 jbd2_journal_abort(journal, -EIO);
325 }
326 if (test_opt(sb, ERRORS_RO)) {
327 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
328 sb->s_flags |= MS_RDONLY;
329 }
330 ext4_commit_super(sb, 1);
331 if (test_opt(sb, ERRORS_PANIC))
332 panic("EXT4-fs (device %s): panic forced after error\n",
333 sb->s_id);
334 }
335
336 void ext4_error(struct super_block *sb, const char *function,
337 const char *fmt, ...)
338 {
339 va_list args;
340
341 va_start(args, fmt);
342 printk(KERN_CRIT "EXT4-fs error (device %s): %s: ", sb->s_id, function);
343 vprintk(fmt, args);
344 printk("\n");
345 va_end(args);
346
347 ext4_handle_error(sb);
348 }
349
350 static const char *ext4_decode_error(struct super_block *sb, int errno,
351 char nbuf[16])
352 {
353 char *errstr = NULL;
354
355 switch (errno) {
356 case -EIO:
357 errstr = "IO failure";
358 break;
359 case -ENOMEM:
360 errstr = "Out of memory";
361 break;
362 case -EROFS:
363 if (!sb || (EXT4_SB(sb)->s_journal &&
364 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
365 errstr = "Journal has aborted";
366 else
367 errstr = "Readonly filesystem";
368 break;
369 default:
370 /* If the caller passed in an extra buffer for unknown
371 * errors, textualise them now. Else we just return
372 * NULL. */
373 if (nbuf) {
374 /* Check for truncated error codes... */
375 if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
376 errstr = nbuf;
377 }
378 break;
379 }
380
381 return errstr;
382 }
383
384 /* __ext4_std_error decodes expected errors from journaling functions
385 * automatically and invokes the appropriate error response. */
386
387 void __ext4_std_error(struct super_block *sb, const char *function, int errno)
388 {
389 char nbuf[16];
390 const char *errstr;
391
392 /* Special case: if the error is EROFS, and we're not already
393 * inside a transaction, then there's really no point in logging
394 * an error. */
395 if (errno == -EROFS && journal_current_handle() == NULL &&
396 (sb->s_flags & MS_RDONLY))
397 return;
398
399 errstr = ext4_decode_error(sb, errno, nbuf);
400 printk(KERN_CRIT "EXT4-fs error (device %s) in %s: %s\n",
401 sb->s_id, function, errstr);
402
403 ext4_handle_error(sb);
404 }
405
406 /*
407 * ext4_abort is a much stronger failure handler than ext4_error. The
408 * abort function may be used to deal with unrecoverable failures such
409 * as journal IO errors or ENOMEM at a critical moment in log management.
410 *
411 * We unconditionally force the filesystem into an ABORT|READONLY state,
412 * unless the error response on the fs has been set to panic in which
413 * case we take the easy way out and panic immediately.
414 */
415
416 void ext4_abort(struct super_block *sb, const char *function,
417 const char *fmt, ...)
418 {
419 va_list args;
420
421 va_start(args, fmt);
422 printk(KERN_CRIT "EXT4-fs error (device %s): %s: ", sb->s_id, function);
423 vprintk(fmt, args);
424 printk("\n");
425 va_end(args);
426
427 if (test_opt(sb, ERRORS_PANIC))
428 panic("EXT4-fs panic from previous error\n");
429
430 if (sb->s_flags & MS_RDONLY)
431 return;
432
433 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
434 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
435 sb->s_flags |= MS_RDONLY;
436 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
437 if (EXT4_SB(sb)->s_journal)
438 jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO);
439 }
440
441 void ext4_msg (struct super_block * sb, const char *prefix,
442 const char *fmt, ...)
443 {
444 va_list args;
445
446 va_start(args, fmt);
447 printk("%sEXT4-fs (%s): ", prefix, sb->s_id);
448 vprintk(fmt, args);
449 printk("\n");
450 va_end(args);
451 }
452
453 void ext4_warning(struct super_block *sb, const char *function,
454 const char *fmt, ...)
455 {
456 va_list args;
457
458 va_start(args, fmt);
459 printk(KERN_WARNING "EXT4-fs warning (device %s): %s: ",
460 sb->s_id, function);
461 vprintk(fmt, args);
462 printk("\n");
463 va_end(args);
464 }
465
466 void ext4_grp_locked_error(struct super_block *sb, ext4_group_t grp,
467 const char *function, const char *fmt, ...)
468 __releases(bitlock)
469 __acquires(bitlock)
470 {
471 va_list args;
472 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
473
474 va_start(args, fmt);
475 printk(KERN_CRIT "EXT4-fs error (device %s): %s: ", sb->s_id, function);
476 vprintk(fmt, args);
477 printk("\n");
478 va_end(args);
479
480 if (test_opt(sb, ERRORS_CONT)) {
481 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
482 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
483 ext4_commit_super(sb, 0);
484 return;
485 }
486 ext4_unlock_group(sb, grp);
487 ext4_handle_error(sb);
488 /*
489 * We only get here in the ERRORS_RO case; relocking the group
490 * may be dangerous, but nothing bad will happen since the
491 * filesystem will have already been marked read/only and the
492 * journal has been aborted. We return 1 as a hint to callers
493 * who might what to use the return value from
494 * ext4_grp_locked_error() to distinguish beween the
495 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
496 * aggressively from the ext4 function in question, with a
497 * more appropriate error code.
498 */
499 ext4_lock_group(sb, grp);
500 return;
501 }
502
503 void ext4_update_dynamic_rev(struct super_block *sb)
504 {
505 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
506
507 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
508 return;
509
510 ext4_warning(sb, __func__,
511 "updating to rev %d because of new feature flag, "
512 "running e2fsck is recommended",
513 EXT4_DYNAMIC_REV);
514
515 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
516 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
517 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
518 /* leave es->s_feature_*compat flags alone */
519 /* es->s_uuid will be set by e2fsck if empty */
520
521 /*
522 * The rest of the superblock fields should be zero, and if not it
523 * means they are likely already in use, so leave them alone. We
524 * can leave it up to e2fsck to clean up any inconsistencies there.
525 */
526 }
527
528 /*
529 * Open the external journal device
530 */
531 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb)
532 {
533 struct block_device *bdev;
534 char b[BDEVNAME_SIZE];
535
536 bdev = open_by_devnum(dev, FMODE_READ|FMODE_WRITE);
537 if (IS_ERR(bdev))
538 goto fail;
539 return bdev;
540
541 fail:
542 ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld",
543 __bdevname(dev, b), PTR_ERR(bdev));
544 return NULL;
545 }
546
547 /*
548 * Release the journal device
549 */
550 static int ext4_blkdev_put(struct block_device *bdev)
551 {
552 bd_release(bdev);
553 return blkdev_put(bdev, FMODE_READ|FMODE_WRITE);
554 }
555
556 static int ext4_blkdev_remove(struct ext4_sb_info *sbi)
557 {
558 struct block_device *bdev;
559 int ret = -ENODEV;
560
561 bdev = sbi->journal_bdev;
562 if (bdev) {
563 ret = ext4_blkdev_put(bdev);
564 sbi->journal_bdev = NULL;
565 }
566 return ret;
567 }
568
569 static inline struct inode *orphan_list_entry(struct list_head *l)
570 {
571 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
572 }
573
574 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
575 {
576 struct list_head *l;
577
578 ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
579 le32_to_cpu(sbi->s_es->s_last_orphan));
580
581 printk(KERN_ERR "sb_info orphan list:\n");
582 list_for_each(l, &sbi->s_orphan) {
583 struct inode *inode = orphan_list_entry(l);
584 printk(KERN_ERR " "
585 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
586 inode->i_sb->s_id, inode->i_ino, inode,
587 inode->i_mode, inode->i_nlink,
588 NEXT_ORPHAN(inode));
589 }
590 }
591
592 static void ext4_put_super(struct super_block *sb)
593 {
594 struct ext4_sb_info *sbi = EXT4_SB(sb);
595 struct ext4_super_block *es = sbi->s_es;
596 int i, err;
597
598 flush_workqueue(sbi->dio_unwritten_wq);
599 destroy_workqueue(sbi->dio_unwritten_wq);
600
601 lock_super(sb);
602 lock_kernel();
603 if (sb->s_dirt)
604 ext4_commit_super(sb, 1);
605
606 if (sbi->s_journal) {
607 err = jbd2_journal_destroy(sbi->s_journal);
608 sbi->s_journal = NULL;
609 if (err < 0)
610 ext4_abort(sb, __func__,
611 "Couldn't clean up the journal");
612 }
613
614 ext4_release_system_zone(sb);
615 ext4_mb_release(sb);
616 ext4_ext_release(sb);
617 ext4_xattr_put_super(sb);
618
619 if (!(sb->s_flags & MS_RDONLY)) {
620 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
621 es->s_state = cpu_to_le16(sbi->s_mount_state);
622 ext4_commit_super(sb, 1);
623 }
624 if (sbi->s_proc) {
625 remove_proc_entry(sb->s_id, ext4_proc_root);
626 }
627 kobject_del(&sbi->s_kobj);
628
629 for (i = 0; i < sbi->s_gdb_count; i++)
630 brelse(sbi->s_group_desc[i]);
631 kfree(sbi->s_group_desc);
632 if (is_vmalloc_addr(sbi->s_flex_groups))
633 vfree(sbi->s_flex_groups);
634 else
635 kfree(sbi->s_flex_groups);
636 percpu_counter_destroy(&sbi->s_freeblocks_counter);
637 percpu_counter_destroy(&sbi->s_freeinodes_counter);
638 percpu_counter_destroy(&sbi->s_dirs_counter);
639 percpu_counter_destroy(&sbi->s_dirtyblocks_counter);
640 brelse(sbi->s_sbh);
641 #ifdef CONFIG_QUOTA
642 for (i = 0; i < MAXQUOTAS; i++)
643 kfree(sbi->s_qf_names[i]);
644 #endif
645
646 /* Debugging code just in case the in-memory inode orphan list
647 * isn't empty. The on-disk one can be non-empty if we've
648 * detected an error and taken the fs readonly, but the
649 * in-memory list had better be clean by this point. */
650 if (!list_empty(&sbi->s_orphan))
651 dump_orphan_list(sb, sbi);
652 J_ASSERT(list_empty(&sbi->s_orphan));
653
654 invalidate_bdev(sb->s_bdev);
655 if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) {
656 /*
657 * Invalidate the journal device's buffers. We don't want them
658 * floating about in memory - the physical journal device may
659 * hotswapped, and it breaks the `ro-after' testing code.
660 */
661 sync_blockdev(sbi->journal_bdev);
662 invalidate_bdev(sbi->journal_bdev);
663 ext4_blkdev_remove(sbi);
664 }
665 sb->s_fs_info = NULL;
666 /*
667 * Now that we are completely done shutting down the
668 * superblock, we need to actually destroy the kobject.
669 */
670 unlock_kernel();
671 unlock_super(sb);
672 kobject_put(&sbi->s_kobj);
673 wait_for_completion(&sbi->s_kobj_unregister);
674 kfree(sbi->s_blockgroup_lock);
675 kfree(sbi);
676 }
677
678 static struct kmem_cache *ext4_inode_cachep;
679
680 /*
681 * Called inside transaction, so use GFP_NOFS
682 */
683 static struct inode *ext4_alloc_inode(struct super_block *sb)
684 {
685 struct ext4_inode_info *ei;
686
687 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS);
688 if (!ei)
689 return NULL;
690
691 ei->vfs_inode.i_version = 1;
692 ei->vfs_inode.i_data.writeback_index = 0;
693 memset(&ei->i_cached_extent, 0, sizeof(struct ext4_ext_cache));
694 INIT_LIST_HEAD(&ei->i_prealloc_list);
695 spin_lock_init(&ei->i_prealloc_lock);
696 /*
697 * Note: We can be called before EXT4_SB(sb)->s_journal is set,
698 * therefore it can be null here. Don't check it, just initialize
699 * jinode.
700 */
701 jbd2_journal_init_jbd_inode(&ei->jinode, &ei->vfs_inode);
702 ei->i_reserved_data_blocks = 0;
703 ei->i_reserved_meta_blocks = 0;
704 ei->i_allocated_meta_blocks = 0;
705 ei->i_da_metadata_calc_len = 0;
706 ei->i_delalloc_reserved_flag = 0;
707 spin_lock_init(&(ei->i_block_reservation_lock));
708 #ifdef CONFIG_QUOTA
709 ei->i_reserved_quota = 0;
710 #endif
711 INIT_LIST_HEAD(&ei->i_aio_dio_complete_list);
712 ei->cur_aio_dio = NULL;
713 ei->i_sync_tid = 0;
714 ei->i_datasync_tid = 0;
715
716 return &ei->vfs_inode;
717 }
718
719 static void ext4_destroy_inode(struct inode *inode)
720 {
721 if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
722 ext4_msg(inode->i_sb, KERN_ERR,
723 "Inode %lu (%p): orphan list check failed!",
724 inode->i_ino, EXT4_I(inode));
725 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
726 EXT4_I(inode), sizeof(struct ext4_inode_info),
727 true);
728 dump_stack();
729 }
730 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
731 }
732
733 static void init_once(void *foo)
734 {
735 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo;
736
737 INIT_LIST_HEAD(&ei->i_orphan);
738 #ifdef CONFIG_EXT4_FS_XATTR
739 init_rwsem(&ei->xattr_sem);
740 #endif
741 init_rwsem(&ei->i_data_sem);
742 inode_init_once(&ei->vfs_inode);
743 }
744
745 static int init_inodecache(void)
746 {
747 ext4_inode_cachep = kmem_cache_create("ext4_inode_cache",
748 sizeof(struct ext4_inode_info),
749 0, (SLAB_RECLAIM_ACCOUNT|
750 SLAB_MEM_SPREAD),
751 init_once);
752 if (ext4_inode_cachep == NULL)
753 return -ENOMEM;
754 return 0;
755 }
756
757 static void destroy_inodecache(void)
758 {
759 kmem_cache_destroy(ext4_inode_cachep);
760 }
761
762 static void ext4_clear_inode(struct inode *inode)
763 {
764 ext4_discard_preallocations(inode);
765 if (EXT4_JOURNAL(inode))
766 jbd2_journal_release_jbd_inode(EXT4_SB(inode->i_sb)->s_journal,
767 &EXT4_I(inode)->jinode);
768 }
769
770 static inline void ext4_show_quota_options(struct seq_file *seq,
771 struct super_block *sb)
772 {
773 #if defined(CONFIG_QUOTA)
774 struct ext4_sb_info *sbi = EXT4_SB(sb);
775
776 if (sbi->s_jquota_fmt) {
777 char *fmtname = "";
778
779 switch (sbi->s_jquota_fmt) {
780 case QFMT_VFS_OLD:
781 fmtname = "vfsold";
782 break;
783 case QFMT_VFS_V0:
784 fmtname = "vfsv0";
785 break;
786 case QFMT_VFS_V1:
787 fmtname = "vfsv1";
788 break;
789 }
790 seq_printf(seq, ",jqfmt=%s", fmtname);
791 }
792
793 if (sbi->s_qf_names[USRQUOTA])
794 seq_printf(seq, ",usrjquota=%s", sbi->s_qf_names[USRQUOTA]);
795
796 if (sbi->s_qf_names[GRPQUOTA])
797 seq_printf(seq, ",grpjquota=%s", sbi->s_qf_names[GRPQUOTA]);
798
799 if (sbi->s_mount_opt & EXT4_MOUNT_USRQUOTA)
800 seq_puts(seq, ",usrquota");
801
802 if (sbi->s_mount_opt & EXT4_MOUNT_GRPQUOTA)
803 seq_puts(seq, ",grpquota");
804 #endif
805 }
806
807 /*
808 * Show an option if
809 * - it's set to a non-default value OR
810 * - if the per-sb default is different from the global default
811 */
812 static int ext4_show_options(struct seq_file *seq, struct vfsmount *vfs)
813 {
814 int def_errors;
815 unsigned long def_mount_opts;
816 struct super_block *sb = vfs->mnt_sb;
817 struct ext4_sb_info *sbi = EXT4_SB(sb);
818 struct ext4_super_block *es = sbi->s_es;
819
820 def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
821 def_errors = le16_to_cpu(es->s_errors);
822
823 if (sbi->s_sb_block != 1)
824 seq_printf(seq, ",sb=%llu", sbi->s_sb_block);
825 if (test_opt(sb, MINIX_DF))
826 seq_puts(seq, ",minixdf");
827 if (test_opt(sb, GRPID) && !(def_mount_opts & EXT4_DEFM_BSDGROUPS))
828 seq_puts(seq, ",grpid");
829 if (!test_opt(sb, GRPID) && (def_mount_opts & EXT4_DEFM_BSDGROUPS))
830 seq_puts(seq, ",nogrpid");
831 if (sbi->s_resuid != EXT4_DEF_RESUID ||
832 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID) {
833 seq_printf(seq, ",resuid=%u", sbi->s_resuid);
834 }
835 if (sbi->s_resgid != EXT4_DEF_RESGID ||
836 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID) {
837 seq_printf(seq, ",resgid=%u", sbi->s_resgid);
838 }
839 if (test_opt(sb, ERRORS_RO)) {
840 if (def_errors == EXT4_ERRORS_PANIC ||
841 def_errors == EXT4_ERRORS_CONTINUE) {
842 seq_puts(seq, ",errors=remount-ro");
843 }
844 }
845 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
846 seq_puts(seq, ",errors=continue");
847 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
848 seq_puts(seq, ",errors=panic");
849 if (test_opt(sb, NO_UID32) && !(def_mount_opts & EXT4_DEFM_UID16))
850 seq_puts(seq, ",nouid32");
851 if (test_opt(sb, DEBUG) && !(def_mount_opts & EXT4_DEFM_DEBUG))
852 seq_puts(seq, ",debug");
853 if (test_opt(sb, OLDALLOC))
854 seq_puts(seq, ",oldalloc");
855 #ifdef CONFIG_EXT4_FS_XATTR
856 if (test_opt(sb, XATTR_USER) &&
857 !(def_mount_opts & EXT4_DEFM_XATTR_USER))
858 seq_puts(seq, ",user_xattr");
859 if (!test_opt(sb, XATTR_USER) &&
860 (def_mount_opts & EXT4_DEFM_XATTR_USER)) {
861 seq_puts(seq, ",nouser_xattr");
862 }
863 #endif
864 #ifdef CONFIG_EXT4_FS_POSIX_ACL
865 if (test_opt(sb, POSIX_ACL) && !(def_mount_opts & EXT4_DEFM_ACL))
866 seq_puts(seq, ",acl");
867 if (!test_opt(sb, POSIX_ACL) && (def_mount_opts & EXT4_DEFM_ACL))
868 seq_puts(seq, ",noacl");
869 #endif
870 if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) {
871 seq_printf(seq, ",commit=%u",
872 (unsigned) (sbi->s_commit_interval / HZ));
873 }
874 if (sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME) {
875 seq_printf(seq, ",min_batch_time=%u",
876 (unsigned) sbi->s_min_batch_time);
877 }
878 if (sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME) {
879 seq_printf(seq, ",max_batch_time=%u",
880 (unsigned) sbi->s_min_batch_time);
881 }
882
883 /*
884 * We're changing the default of barrier mount option, so
885 * let's always display its mount state so it's clear what its
886 * status is.
887 */
888 seq_puts(seq, ",barrier=");
889 seq_puts(seq, test_opt(sb, BARRIER) ? "1" : "0");
890 if (test_opt(sb, JOURNAL_ASYNC_COMMIT))
891 seq_puts(seq, ",journal_async_commit");
892 if (test_opt(sb, NOBH))
893 seq_puts(seq, ",nobh");
894 if (test_opt(sb, I_VERSION))
895 seq_puts(seq, ",i_version");
896 if (!test_opt(sb, DELALLOC))
897 seq_puts(seq, ",nodelalloc");
898
899
900 if (sbi->s_stripe)
901 seq_printf(seq, ",stripe=%lu", sbi->s_stripe);
902 /*
903 * journal mode get enabled in different ways
904 * So just print the value even if we didn't specify it
905 */
906 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
907 seq_puts(seq, ",data=journal");
908 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
909 seq_puts(seq, ",data=ordered");
910 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
911 seq_puts(seq, ",data=writeback");
912
913 if (sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
914 seq_printf(seq, ",inode_readahead_blks=%u",
915 sbi->s_inode_readahead_blks);
916
917 if (test_opt(sb, DATA_ERR_ABORT))
918 seq_puts(seq, ",data_err=abort");
919
920 if (test_opt(sb, NO_AUTO_DA_ALLOC))
921 seq_puts(seq, ",noauto_da_alloc");
922
923 if (test_opt(sb, DISCARD))
924 seq_puts(seq, ",discard");
925
926 if (test_opt(sb, NOLOAD))
927 seq_puts(seq, ",norecovery");
928
929 ext4_show_quota_options(seq, sb);
930
931 return 0;
932 }
933
934 static struct inode *ext4_nfs_get_inode(struct super_block *sb,
935 u64 ino, u32 generation)
936 {
937 struct inode *inode;
938
939 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
940 return ERR_PTR(-ESTALE);
941 if (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
942 return ERR_PTR(-ESTALE);
943
944 /* iget isn't really right if the inode is currently unallocated!!
945 *
946 * ext4_read_inode will return a bad_inode if the inode had been
947 * deleted, so we should be safe.
948 *
949 * Currently we don't know the generation for parent directory, so
950 * a generation of 0 means "accept any"
951 */
952 inode = ext4_iget(sb, ino);
953 if (IS_ERR(inode))
954 return ERR_CAST(inode);
955 if (generation && inode->i_generation != generation) {
956 iput(inode);
957 return ERR_PTR(-ESTALE);
958 }
959
960 return inode;
961 }
962
963 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
964 int fh_len, int fh_type)
965 {
966 return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
967 ext4_nfs_get_inode);
968 }
969
970 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
971 int fh_len, int fh_type)
972 {
973 return generic_fh_to_parent(sb, fid, fh_len, fh_type,
974 ext4_nfs_get_inode);
975 }
976
977 /*
978 * Try to release metadata pages (indirect blocks, directories) which are
979 * mapped via the block device. Since these pages could have journal heads
980 * which would prevent try_to_free_buffers() from freeing them, we must use
981 * jbd2 layer's try_to_free_buffers() function to release them.
982 */
983 static int bdev_try_to_free_page(struct super_block *sb, struct page *page,
984 gfp_t wait)
985 {
986 journal_t *journal = EXT4_SB(sb)->s_journal;
987
988 WARN_ON(PageChecked(page));
989 if (!page_has_buffers(page))
990 return 0;
991 if (journal)
992 return jbd2_journal_try_to_free_buffers(journal, page,
993 wait & ~__GFP_WAIT);
994 return try_to_free_buffers(page);
995 }
996
997 #ifdef CONFIG_QUOTA
998 #define QTYPE2NAME(t) ((t) == USRQUOTA ? "user" : "group")
999 #define QTYPE2MOPT(on, t) ((t) == USRQUOTA?((on)##USRJQUOTA):((on)##GRPJQUOTA))
1000
1001 static int ext4_write_dquot(struct dquot *dquot);
1002 static int ext4_acquire_dquot(struct dquot *dquot);
1003 static int ext4_release_dquot(struct dquot *dquot);
1004 static int ext4_mark_dquot_dirty(struct dquot *dquot);
1005 static int ext4_write_info(struct super_block *sb, int type);
1006 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1007 char *path, int remount);
1008 static int ext4_quota_on_mount(struct super_block *sb, int type);
1009 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1010 size_t len, loff_t off);
1011 static ssize_t ext4_quota_write(struct super_block *sb, int type,
1012 const char *data, size_t len, loff_t off);
1013
1014 static const struct dquot_operations ext4_quota_operations = {
1015 .initialize = dquot_initialize,
1016 .drop = dquot_drop,
1017 #ifdef CONFIG_QUOTA
1018 .get_reserved_space = ext4_get_reserved_space,
1019 #endif
1020 .alloc_inode = dquot_alloc_inode,
1021 .free_inode = dquot_free_inode,
1022 .transfer = dquot_transfer,
1023 .write_dquot = ext4_write_dquot,
1024 .acquire_dquot = ext4_acquire_dquot,
1025 .release_dquot = ext4_release_dquot,
1026 .mark_dirty = ext4_mark_dquot_dirty,
1027 .write_info = ext4_write_info,
1028 .alloc_dquot = dquot_alloc,
1029 .destroy_dquot = dquot_destroy,
1030 };
1031
1032 static const struct quotactl_ops ext4_qctl_operations = {
1033 .quota_on = ext4_quota_on,
1034 .quota_off = vfs_quota_off,
1035 .quota_sync = vfs_quota_sync,
1036 .get_info = vfs_get_dqinfo,
1037 .set_info = vfs_set_dqinfo,
1038 .get_dqblk = vfs_get_dqblk,
1039 .set_dqblk = vfs_set_dqblk
1040 };
1041 #endif
1042
1043 static const struct super_operations ext4_sops = {
1044 .alloc_inode = ext4_alloc_inode,
1045 .destroy_inode = ext4_destroy_inode,
1046 .write_inode = ext4_write_inode,
1047 .dirty_inode = ext4_dirty_inode,
1048 .delete_inode = ext4_delete_inode,
1049 .put_super = ext4_put_super,
1050 .sync_fs = ext4_sync_fs,
1051 .freeze_fs = ext4_freeze,
1052 .unfreeze_fs = ext4_unfreeze,
1053 .statfs = ext4_statfs,
1054 .remount_fs = ext4_remount,
1055 .clear_inode = ext4_clear_inode,
1056 .show_options = ext4_show_options,
1057 #ifdef CONFIG_QUOTA
1058 .quota_read = ext4_quota_read,
1059 .quota_write = ext4_quota_write,
1060 #endif
1061 .bdev_try_to_free_page = bdev_try_to_free_page,
1062 };
1063
1064 static const struct super_operations ext4_nojournal_sops = {
1065 .alloc_inode = ext4_alloc_inode,
1066 .destroy_inode = ext4_destroy_inode,
1067 .write_inode = ext4_write_inode,
1068 .dirty_inode = ext4_dirty_inode,
1069 .delete_inode = ext4_delete_inode,
1070 .write_super = ext4_write_super,
1071 .put_super = ext4_put_super,
1072 .statfs = ext4_statfs,
1073 .remount_fs = ext4_remount,
1074 .clear_inode = ext4_clear_inode,
1075 .show_options = ext4_show_options,
1076 #ifdef CONFIG_QUOTA
1077 .quota_read = ext4_quota_read,
1078 .quota_write = ext4_quota_write,
1079 #endif
1080 .bdev_try_to_free_page = bdev_try_to_free_page,
1081 };
1082
1083 static const struct export_operations ext4_export_ops = {
1084 .fh_to_dentry = ext4_fh_to_dentry,
1085 .fh_to_parent = ext4_fh_to_parent,
1086 .get_parent = ext4_get_parent,
1087 };
1088
1089 enum {
1090 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1091 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro,
1092 Opt_nouid32, Opt_debug, Opt_oldalloc, Opt_orlov,
1093 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl,
1094 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload, Opt_nobh, Opt_bh,
1095 Opt_commit, Opt_min_batch_time, Opt_max_batch_time,
1096 Opt_journal_update, Opt_journal_dev,
1097 Opt_journal_checksum, Opt_journal_async_commit,
1098 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1099 Opt_data_err_abort, Opt_data_err_ignore,
1100 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota,
1101 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota,
1102 Opt_noquota, Opt_ignore, Opt_barrier, Opt_nobarrier, Opt_err,
1103 Opt_resize, Opt_usrquota, Opt_grpquota, Opt_i_version,
1104 Opt_stripe, Opt_delalloc, Opt_nodelalloc,
1105 Opt_block_validity, Opt_noblock_validity,
1106 Opt_inode_readahead_blks, Opt_journal_ioprio,
1107 Opt_discard, Opt_nodiscard,
1108 };
1109
1110 static const match_table_t tokens = {
1111 {Opt_bsd_df, "bsddf"},
1112 {Opt_minix_df, "minixdf"},
1113 {Opt_grpid, "grpid"},
1114 {Opt_grpid, "bsdgroups"},
1115 {Opt_nogrpid, "nogrpid"},
1116 {Opt_nogrpid, "sysvgroups"},
1117 {Opt_resgid, "resgid=%u"},
1118 {Opt_resuid, "resuid=%u"},
1119 {Opt_sb, "sb=%u"},
1120 {Opt_err_cont, "errors=continue"},
1121 {Opt_err_panic, "errors=panic"},
1122 {Opt_err_ro, "errors=remount-ro"},
1123 {Opt_nouid32, "nouid32"},
1124 {Opt_debug, "debug"},
1125 {Opt_oldalloc, "oldalloc"},
1126 {Opt_orlov, "orlov"},
1127 {Opt_user_xattr, "user_xattr"},
1128 {Opt_nouser_xattr, "nouser_xattr"},
1129 {Opt_acl, "acl"},
1130 {Opt_noacl, "noacl"},
1131 {Opt_noload, "noload"},
1132 {Opt_noload, "norecovery"},
1133 {Opt_nobh, "nobh"},
1134 {Opt_bh, "bh"},
1135 {Opt_commit, "commit=%u"},
1136 {Opt_min_batch_time, "min_batch_time=%u"},
1137 {Opt_max_batch_time, "max_batch_time=%u"},
1138 {Opt_journal_update, "journal=update"},
1139 {Opt_journal_dev, "journal_dev=%u"},
1140 {Opt_journal_checksum, "journal_checksum"},
1141 {Opt_journal_async_commit, "journal_async_commit"},
1142 {Opt_abort, "abort"},
1143 {Opt_data_journal, "data=journal"},
1144 {Opt_data_ordered, "data=ordered"},
1145 {Opt_data_writeback, "data=writeback"},
1146 {Opt_data_err_abort, "data_err=abort"},
1147 {Opt_data_err_ignore, "data_err=ignore"},
1148 {Opt_offusrjquota, "usrjquota="},
1149 {Opt_usrjquota, "usrjquota=%s"},
1150 {Opt_offgrpjquota, "grpjquota="},
1151 {Opt_grpjquota, "grpjquota=%s"},
1152 {Opt_jqfmt_vfsold, "jqfmt=vfsold"},
1153 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
1154 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
1155 {Opt_grpquota, "grpquota"},
1156 {Opt_noquota, "noquota"},
1157 {Opt_quota, "quota"},
1158 {Opt_usrquota, "usrquota"},
1159 {Opt_barrier, "barrier=%u"},
1160 {Opt_barrier, "barrier"},
1161 {Opt_nobarrier, "nobarrier"},
1162 {Opt_i_version, "i_version"},
1163 {Opt_stripe, "stripe=%u"},
1164 {Opt_resize, "resize"},
1165 {Opt_delalloc, "delalloc"},
1166 {Opt_nodelalloc, "nodelalloc"},
1167 {Opt_block_validity, "block_validity"},
1168 {Opt_noblock_validity, "noblock_validity"},
1169 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"},
1170 {Opt_journal_ioprio, "journal_ioprio=%u"},
1171 {Opt_auto_da_alloc, "auto_da_alloc=%u"},
1172 {Opt_auto_da_alloc, "auto_da_alloc"},
1173 {Opt_noauto_da_alloc, "noauto_da_alloc"},
1174 {Opt_discard, "discard"},
1175 {Opt_nodiscard, "nodiscard"},
1176 {Opt_err, NULL},
1177 };
1178
1179 static ext4_fsblk_t get_sb_block(void **data)
1180 {
1181 ext4_fsblk_t sb_block;
1182 char *options = (char *) *data;
1183
1184 if (!options || strncmp(options, "sb=", 3) != 0)
1185 return 1; /* Default location */
1186
1187 options += 3;
1188 /* TODO: use simple_strtoll with >32bit ext4 */
1189 sb_block = simple_strtoul(options, &options, 0);
1190 if (*options && *options != ',') {
1191 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n",
1192 (char *) *data);
1193 return 1;
1194 }
1195 if (*options == ',')
1196 options++;
1197 *data = (void *) options;
1198
1199 return sb_block;
1200 }
1201
1202 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1203
1204 static int parse_options(char *options, struct super_block *sb,
1205 unsigned long *journal_devnum,
1206 unsigned int *journal_ioprio,
1207 ext4_fsblk_t *n_blocks_count, int is_remount)
1208 {
1209 struct ext4_sb_info *sbi = EXT4_SB(sb);
1210 char *p;
1211 substring_t args[MAX_OPT_ARGS];
1212 int data_opt = 0;
1213 int option;
1214 #ifdef CONFIG_QUOTA
1215 int qtype, qfmt;
1216 char *qname;
1217 #endif
1218
1219 if (!options)
1220 return 1;
1221
1222 while ((p = strsep(&options, ",")) != NULL) {
1223 int token;
1224 if (!*p)
1225 continue;
1226
1227 token = match_token(p, tokens, args);
1228 switch (token) {
1229 case Opt_bsd_df:
1230 clear_opt(sbi->s_mount_opt, MINIX_DF);
1231 break;
1232 case Opt_minix_df:
1233 set_opt(sbi->s_mount_opt, MINIX_DF);
1234 break;
1235 case Opt_grpid:
1236 set_opt(sbi->s_mount_opt, GRPID);
1237 break;
1238 case Opt_nogrpid:
1239 clear_opt(sbi->s_mount_opt, GRPID);
1240 break;
1241 case Opt_resuid:
1242 if (match_int(&args[0], &option))
1243 return 0;
1244 sbi->s_resuid = option;
1245 break;
1246 case Opt_resgid:
1247 if (match_int(&args[0], &option))
1248 return 0;
1249 sbi->s_resgid = option;
1250 break;
1251 case Opt_sb:
1252 /* handled by get_sb_block() instead of here */
1253 /* *sb_block = match_int(&args[0]); */
1254 break;
1255 case Opt_err_panic:
1256 clear_opt(sbi->s_mount_opt, ERRORS_CONT);
1257 clear_opt(sbi->s_mount_opt, ERRORS_RO);
1258 set_opt(sbi->s_mount_opt, ERRORS_PANIC);
1259 break;
1260 case Opt_err_ro:
1261 clear_opt(sbi->s_mount_opt, ERRORS_CONT);
1262 clear_opt(sbi->s_mount_opt, ERRORS_PANIC);
1263 set_opt(sbi->s_mount_opt, ERRORS_RO);
1264 break;
1265 case Opt_err_cont:
1266 clear_opt(sbi->s_mount_opt, ERRORS_RO);
1267 clear_opt(sbi->s_mount_opt, ERRORS_PANIC);
1268 set_opt(sbi->s_mount_opt, ERRORS_CONT);
1269 break;
1270 case Opt_nouid32:
1271 set_opt(sbi->s_mount_opt, NO_UID32);
1272 break;
1273 case Opt_debug:
1274 set_opt(sbi->s_mount_opt, DEBUG);
1275 break;
1276 case Opt_oldalloc:
1277 set_opt(sbi->s_mount_opt, OLDALLOC);
1278 break;
1279 case Opt_orlov:
1280 clear_opt(sbi->s_mount_opt, OLDALLOC);
1281 break;
1282 #ifdef CONFIG_EXT4_FS_XATTR
1283 case Opt_user_xattr:
1284 set_opt(sbi->s_mount_opt, XATTR_USER);
1285 break;
1286 case Opt_nouser_xattr:
1287 clear_opt(sbi->s_mount_opt, XATTR_USER);
1288 break;
1289 #else
1290 case Opt_user_xattr:
1291 case Opt_nouser_xattr:
1292 ext4_msg(sb, KERN_ERR, "(no)user_xattr options not supported");
1293 break;
1294 #endif
1295 #ifdef CONFIG_EXT4_FS_POSIX_ACL
1296 case Opt_acl:
1297 set_opt(sbi->s_mount_opt, POSIX_ACL);
1298 break;
1299 case Opt_noacl:
1300 clear_opt(sbi->s_mount_opt, POSIX_ACL);
1301 break;
1302 #else
1303 case Opt_acl:
1304 case Opt_noacl:
1305 ext4_msg(sb, KERN_ERR, "(no)acl options not supported");
1306 break;
1307 #endif
1308 case Opt_journal_update:
1309 /* @@@ FIXME */
1310 /* Eventually we will want to be able to create
1311 a journal file here. For now, only allow the
1312 user to specify an existing inode to be the
1313 journal file. */
1314 if (is_remount) {
1315 ext4_msg(sb, KERN_ERR,
1316 "Cannot specify journal on remount");
1317 return 0;
1318 }
1319 set_opt(sbi->s_mount_opt, UPDATE_JOURNAL);
1320 break;
1321 case Opt_journal_dev:
1322 if (is_remount) {
1323 ext4_msg(sb, KERN_ERR,
1324 "Cannot specify journal on remount");
1325 return 0;
1326 }
1327 if (match_int(&args[0], &option))
1328 return 0;
1329 *journal_devnum = option;
1330 break;
1331 case Opt_journal_checksum:
1332 set_opt(sbi->s_mount_opt, JOURNAL_CHECKSUM);
1333 break;
1334 case Opt_journal_async_commit:
1335 set_opt(sbi->s_mount_opt, JOURNAL_ASYNC_COMMIT);
1336 set_opt(sbi->s_mount_opt, JOURNAL_CHECKSUM);
1337 break;
1338 case Opt_noload:
1339 set_opt(sbi->s_mount_opt, NOLOAD);
1340 break;
1341 case Opt_commit:
1342 if (match_int(&args[0], &option))
1343 return 0;
1344 if (option < 0)
1345 return 0;
1346 if (option == 0)
1347 option = JBD2_DEFAULT_MAX_COMMIT_AGE;
1348 sbi->s_commit_interval = HZ * option;
1349 break;
1350 case Opt_max_batch_time:
1351 if (match_int(&args[0], &option))
1352 return 0;
1353 if (option < 0)
1354 return 0;
1355 if (option == 0)
1356 option = EXT4_DEF_MAX_BATCH_TIME;
1357 sbi->s_max_batch_time = option;
1358 break;
1359 case Opt_min_batch_time:
1360 if (match_int(&args[0], &option))
1361 return 0;
1362 if (option < 0)
1363 return 0;
1364 sbi->s_min_batch_time = option;
1365 break;
1366 case Opt_data_journal:
1367 data_opt = EXT4_MOUNT_JOURNAL_DATA;
1368 goto datacheck;
1369 case Opt_data_ordered:
1370 data_opt = EXT4_MOUNT_ORDERED_DATA;
1371 goto datacheck;
1372 case Opt_data_writeback:
1373 data_opt = EXT4_MOUNT_WRITEBACK_DATA;
1374 datacheck:
1375 if (is_remount) {
1376 if ((sbi->s_mount_opt & EXT4_MOUNT_DATA_FLAGS)
1377 != data_opt) {
1378 ext4_msg(sb, KERN_ERR,
1379 "Cannot change data mode on remount");
1380 return 0;
1381 }
1382 } else {
1383 sbi->s_mount_opt &= ~EXT4_MOUNT_DATA_FLAGS;
1384 sbi->s_mount_opt |= data_opt;
1385 }
1386 break;
1387 case Opt_data_err_abort:
1388 set_opt(sbi->s_mount_opt, DATA_ERR_ABORT);
1389 break;
1390 case Opt_data_err_ignore:
1391 clear_opt(sbi->s_mount_opt, DATA_ERR_ABORT);
1392 break;
1393 #ifdef CONFIG_QUOTA
1394 case Opt_usrjquota:
1395 qtype = USRQUOTA;
1396 goto set_qf_name;
1397 case Opt_grpjquota:
1398 qtype = GRPQUOTA;
1399 set_qf_name:
1400 if (sb_any_quota_loaded(sb) &&
1401 !sbi->s_qf_names[qtype]) {
1402 ext4_msg(sb, KERN_ERR,
1403 "Cannot change journaled "
1404 "quota options when quota turned on");
1405 return 0;
1406 }
1407 qname = match_strdup(&args[0]);
1408 if (!qname) {
1409 ext4_msg(sb, KERN_ERR,
1410 "Not enough memory for "
1411 "storing quotafile name");
1412 return 0;
1413 }
1414 if (sbi->s_qf_names[qtype] &&
1415 strcmp(sbi->s_qf_names[qtype], qname)) {
1416 ext4_msg(sb, KERN_ERR,
1417 "%s quota file already "
1418 "specified", QTYPE2NAME(qtype));
1419 kfree(qname);
1420 return 0;
1421 }
1422 sbi->s_qf_names[qtype] = qname;
1423 if (strchr(sbi->s_qf_names[qtype], '/')) {
1424 ext4_msg(sb, KERN_ERR,
1425 "quotafile must be on "
1426 "filesystem root");
1427 kfree(sbi->s_qf_names[qtype]);
1428 sbi->s_qf_names[qtype] = NULL;
1429 return 0;
1430 }
1431 set_opt(sbi->s_mount_opt, QUOTA);
1432 break;
1433 case Opt_offusrjquota:
1434 qtype = USRQUOTA;
1435 goto clear_qf_name;
1436 case Opt_offgrpjquota:
1437 qtype = GRPQUOTA;
1438 clear_qf_name:
1439 if (sb_any_quota_loaded(sb) &&
1440 sbi->s_qf_names[qtype]) {
1441 ext4_msg(sb, KERN_ERR, "Cannot change "
1442 "journaled quota options when "
1443 "quota turned on");
1444 return 0;
1445 }
1446 /*
1447 * The space will be released later when all options
1448 * are confirmed to be correct
1449 */
1450 sbi->s_qf_names[qtype] = NULL;
1451 break;
1452 case Opt_jqfmt_vfsold:
1453 qfmt = QFMT_VFS_OLD;
1454 goto set_qf_format;
1455 case Opt_jqfmt_vfsv0:
1456 qfmt = QFMT_VFS_V0;
1457 goto set_qf_format;
1458 case Opt_jqfmt_vfsv1:
1459 qfmt = QFMT_VFS_V1;
1460 set_qf_format:
1461 if (sb_any_quota_loaded(sb) &&
1462 sbi->s_jquota_fmt != qfmt) {
1463 ext4_msg(sb, KERN_ERR, "Cannot change "
1464 "journaled quota options when "
1465 "quota turned on");
1466 return 0;
1467 }
1468 sbi->s_jquota_fmt = qfmt;
1469 break;
1470 case Opt_quota:
1471 case Opt_usrquota:
1472 set_opt(sbi->s_mount_opt, QUOTA);
1473 set_opt(sbi->s_mount_opt, USRQUOTA);
1474 break;
1475 case Opt_grpquota:
1476 set_opt(sbi->s_mount_opt, QUOTA);
1477 set_opt(sbi->s_mount_opt, GRPQUOTA);
1478 break;
1479 case Opt_noquota:
1480 if (sb_any_quota_loaded(sb)) {
1481 ext4_msg(sb, KERN_ERR, "Cannot change quota "
1482 "options when quota turned on");
1483 return 0;
1484 }
1485 clear_opt(sbi->s_mount_opt, QUOTA);
1486 clear_opt(sbi->s_mount_opt, USRQUOTA);
1487 clear_opt(sbi->s_mount_opt, GRPQUOTA);
1488 break;
1489 #else
1490 case Opt_quota:
1491 case Opt_usrquota:
1492 case Opt_grpquota:
1493 ext4_msg(sb, KERN_ERR,
1494 "quota options not supported");
1495 break;
1496 case Opt_usrjquota:
1497 case Opt_grpjquota:
1498 case Opt_offusrjquota:
1499 case Opt_offgrpjquota:
1500 case Opt_jqfmt_vfsold:
1501 case Opt_jqfmt_vfsv0:
1502 case Opt_jqfmt_vfsv1:
1503 ext4_msg(sb, KERN_ERR,
1504 "journaled quota options not supported");
1505 break;
1506 case Opt_noquota:
1507 break;
1508 #endif
1509 case Opt_abort:
1510 sbi->s_mount_flags |= EXT4_MF_FS_ABORTED;
1511 break;
1512 case Opt_nobarrier:
1513 clear_opt(sbi->s_mount_opt, BARRIER);
1514 break;
1515 case Opt_barrier:
1516 if (match_int(&args[0], &option)) {
1517 set_opt(sbi->s_mount_opt, BARRIER);
1518 break;
1519 }
1520 if (option)
1521 set_opt(sbi->s_mount_opt, BARRIER);
1522 else
1523 clear_opt(sbi->s_mount_opt, BARRIER);
1524 break;
1525 case Opt_ignore:
1526 break;
1527 case Opt_resize:
1528 if (!is_remount) {
1529 ext4_msg(sb, KERN_ERR,
1530 "resize option only available "
1531 "for remount");
1532 return 0;
1533 }
1534 if (match_int(&args[0], &option) != 0)
1535 return 0;
1536 *n_blocks_count = option;
1537 break;
1538 case Opt_nobh:
1539 set_opt(sbi->s_mount_opt, NOBH);
1540 break;
1541 case Opt_bh:
1542 clear_opt(sbi->s_mount_opt, NOBH);
1543 break;
1544 case Opt_i_version:
1545 set_opt(sbi->s_mount_opt, I_VERSION);
1546 sb->s_flags |= MS_I_VERSION;
1547 break;
1548 case Opt_nodelalloc:
1549 clear_opt(sbi->s_mount_opt, DELALLOC);
1550 break;
1551 case Opt_stripe:
1552 if (match_int(&args[0], &option))
1553 return 0;
1554 if (option < 0)
1555 return 0;
1556 sbi->s_stripe = option;
1557 break;
1558 case Opt_delalloc:
1559 set_opt(sbi->s_mount_opt, DELALLOC);
1560 break;
1561 case Opt_block_validity:
1562 set_opt(sbi->s_mount_opt, BLOCK_VALIDITY);
1563 break;
1564 case Opt_noblock_validity:
1565 clear_opt(sbi->s_mount_opt, BLOCK_VALIDITY);
1566 break;
1567 case Opt_inode_readahead_blks:
1568 if (match_int(&args[0], &option))
1569 return 0;
1570 if (option < 0 || option > (1 << 30))
1571 return 0;
1572 if (!is_power_of_2(option)) {
1573 ext4_msg(sb, KERN_ERR,
1574 "EXT4-fs: inode_readahead_blks"
1575 " must be a power of 2");
1576 return 0;
1577 }
1578 sbi->s_inode_readahead_blks = option;
1579 break;
1580 case Opt_journal_ioprio:
1581 if (match_int(&args[0], &option))
1582 return 0;
1583 if (option < 0 || option > 7)
1584 break;
1585 *journal_ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE,
1586 option);
1587 break;
1588 case Opt_noauto_da_alloc:
1589 set_opt(sbi->s_mount_opt,NO_AUTO_DA_ALLOC);
1590 break;
1591 case Opt_auto_da_alloc:
1592 if (match_int(&args[0], &option)) {
1593 clear_opt(sbi->s_mount_opt, NO_AUTO_DA_ALLOC);
1594 break;
1595 }
1596 if (option)
1597 clear_opt(sbi->s_mount_opt, NO_AUTO_DA_ALLOC);
1598 else
1599 set_opt(sbi->s_mount_opt,NO_AUTO_DA_ALLOC);
1600 break;
1601 case Opt_discard:
1602 set_opt(sbi->s_mount_opt, DISCARD);
1603 break;
1604 case Opt_nodiscard:
1605 clear_opt(sbi->s_mount_opt, DISCARD);
1606 break;
1607 default:
1608 ext4_msg(sb, KERN_ERR,
1609 "Unrecognized mount option \"%s\" "
1610 "or missing value", p);
1611 return 0;
1612 }
1613 }
1614 #ifdef CONFIG_QUOTA
1615 if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
1616 if ((sbi->s_mount_opt & EXT4_MOUNT_USRQUOTA) &&
1617 sbi->s_qf_names[USRQUOTA])
1618 clear_opt(sbi->s_mount_opt, USRQUOTA);
1619
1620 if ((sbi->s_mount_opt & EXT4_MOUNT_GRPQUOTA) &&
1621 sbi->s_qf_names[GRPQUOTA])
1622 clear_opt(sbi->s_mount_opt, GRPQUOTA);
1623
1624 if ((sbi->s_qf_names[USRQUOTA] &&
1625 (sbi->s_mount_opt & EXT4_MOUNT_GRPQUOTA)) ||
1626 (sbi->s_qf_names[GRPQUOTA] &&
1627 (sbi->s_mount_opt & EXT4_MOUNT_USRQUOTA))) {
1628 ext4_msg(sb, KERN_ERR, "old and new quota "
1629 "format mixing");
1630 return 0;
1631 }
1632
1633 if (!sbi->s_jquota_fmt) {
1634 ext4_msg(sb, KERN_ERR, "journaled quota format "
1635 "not specified");
1636 return 0;
1637 }
1638 } else {
1639 if (sbi->s_jquota_fmt) {
1640 ext4_msg(sb, KERN_ERR, "journaled quota format "
1641 "specified with no journaling "
1642 "enabled");
1643 return 0;
1644 }
1645 }
1646 #endif
1647 return 1;
1648 }
1649
1650 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
1651 int read_only)
1652 {
1653 struct ext4_sb_info *sbi = EXT4_SB(sb);
1654 int res = 0;
1655
1656 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
1657 ext4_msg(sb, KERN_ERR, "revision level too high, "
1658 "forcing read-only mode");
1659 res = MS_RDONLY;
1660 }
1661 if (read_only)
1662 return res;
1663 if (!(sbi->s_mount_state & EXT4_VALID_FS))
1664 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
1665 "running e2fsck is recommended");
1666 else if ((sbi->s_mount_state & EXT4_ERROR_FS))
1667 ext4_msg(sb, KERN_WARNING,
1668 "warning: mounting fs with errors, "
1669 "running e2fsck is recommended");
1670 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) >= 0 &&
1671 le16_to_cpu(es->s_mnt_count) >=
1672 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
1673 ext4_msg(sb, KERN_WARNING,
1674 "warning: maximal mount count reached, "
1675 "running e2fsck is recommended");
1676 else if (le32_to_cpu(es->s_checkinterval) &&
1677 (le32_to_cpu(es->s_lastcheck) +
1678 le32_to_cpu(es->s_checkinterval) <= get_seconds()))
1679 ext4_msg(sb, KERN_WARNING,
1680 "warning: checktime reached, "
1681 "running e2fsck is recommended");
1682 if (!sbi->s_journal)
1683 es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
1684 if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
1685 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
1686 le16_add_cpu(&es->s_mnt_count, 1);
1687 es->s_mtime = cpu_to_le32(get_seconds());
1688 ext4_update_dynamic_rev(sb);
1689 if (sbi->s_journal)
1690 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
1691
1692 ext4_commit_super(sb, 1);
1693 if (test_opt(sb, DEBUG))
1694 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
1695 "bpg=%lu, ipg=%lu, mo=%04x]\n",
1696 sb->s_blocksize,
1697 sbi->s_groups_count,
1698 EXT4_BLOCKS_PER_GROUP(sb),
1699 EXT4_INODES_PER_GROUP(sb),
1700 sbi->s_mount_opt);
1701
1702 return res;
1703 }
1704
1705 static int ext4_fill_flex_info(struct super_block *sb)
1706 {
1707 struct ext4_sb_info *sbi = EXT4_SB(sb);
1708 struct ext4_group_desc *gdp = NULL;
1709 ext4_group_t flex_group_count;
1710 ext4_group_t flex_group;
1711 int groups_per_flex = 0;
1712 size_t size;
1713 int i;
1714
1715 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
1716 groups_per_flex = 1 << sbi->s_log_groups_per_flex;
1717
1718 if (groups_per_flex < 2) {
1719 sbi->s_log_groups_per_flex = 0;
1720 return 1;
1721 }
1722
1723 /* We allocate both existing and potentially added groups */
1724 flex_group_count = ((sbi->s_groups_count + groups_per_flex - 1) +
1725 ((le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) + 1) <<
1726 EXT4_DESC_PER_BLOCK_BITS(sb))) / groups_per_flex;
1727 size = flex_group_count * sizeof(struct flex_groups);
1728 sbi->s_flex_groups = kzalloc(size, GFP_KERNEL);
1729 if (sbi->s_flex_groups == NULL) {
1730 sbi->s_flex_groups = vmalloc(size);
1731 if (sbi->s_flex_groups)
1732 memset(sbi->s_flex_groups, 0, size);
1733 }
1734 if (sbi->s_flex_groups == NULL) {
1735 ext4_msg(sb, KERN_ERR, "not enough memory for "
1736 "%u flex groups", flex_group_count);
1737 goto failed;
1738 }
1739
1740 for (i = 0; i < sbi->s_groups_count; i++) {
1741 gdp = ext4_get_group_desc(sb, i, NULL);
1742
1743 flex_group = ext4_flex_group(sbi, i);
1744 atomic_add(ext4_free_inodes_count(sb, gdp),
1745 &sbi->s_flex_groups[flex_group].free_inodes);
1746 atomic_add(ext4_free_blks_count(sb, gdp),
1747 &sbi->s_flex_groups[flex_group].free_blocks);
1748 atomic_add(ext4_used_dirs_count(sb, gdp),
1749 &sbi->s_flex_groups[flex_group].used_dirs);
1750 }
1751
1752 return 1;
1753 failed:
1754 return 0;
1755 }
1756
1757 __le16 ext4_group_desc_csum(struct ext4_sb_info *sbi, __u32 block_group,
1758 struct ext4_group_desc *gdp)
1759 {
1760 __u16 crc = 0;
1761
1762 if (sbi->s_es->s_feature_ro_compat &
1763 cpu_to_le32(EXT4_FEATURE_RO_COMPAT_GDT_CSUM)) {
1764 int offset = offsetof(struct ext4_group_desc, bg_checksum);
1765 __le32 le_group = cpu_to_le32(block_group);
1766
1767 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
1768 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
1769 crc = crc16(crc, (__u8 *)gdp, offset);
1770 offset += sizeof(gdp->bg_checksum); /* skip checksum */
1771 /* for checksum of struct ext4_group_desc do the rest...*/
1772 if ((sbi->s_es->s_feature_incompat &
1773 cpu_to_le32(EXT4_FEATURE_INCOMPAT_64BIT)) &&
1774 offset < le16_to_cpu(sbi->s_es->s_desc_size))
1775 crc = crc16(crc, (__u8 *)gdp + offset,
1776 le16_to_cpu(sbi->s_es->s_desc_size) -
1777 offset);
1778 }
1779
1780 return cpu_to_le16(crc);
1781 }
1782
1783 int ext4_group_desc_csum_verify(struct ext4_sb_info *sbi, __u32 block_group,
1784 struct ext4_group_desc *gdp)
1785 {
1786 if ((sbi->s_es->s_feature_ro_compat &
1787 cpu_to_le32(EXT4_FEATURE_RO_COMPAT_GDT_CSUM)) &&
1788 (gdp->bg_checksum != ext4_group_desc_csum(sbi, block_group, gdp)))
1789 return 0;
1790
1791 return 1;
1792 }
1793
1794 /* Called at mount-time, super-block is locked */
1795 static int ext4_check_descriptors(struct super_block *sb)
1796 {
1797 struct ext4_sb_info *sbi = EXT4_SB(sb);
1798 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
1799 ext4_fsblk_t last_block;
1800 ext4_fsblk_t block_bitmap;
1801 ext4_fsblk_t inode_bitmap;
1802 ext4_fsblk_t inode_table;
1803 int flexbg_flag = 0;
1804 ext4_group_t i;
1805
1806 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG))
1807 flexbg_flag = 1;
1808
1809 ext4_debug("Checking group descriptors");
1810
1811 for (i = 0; i < sbi->s_groups_count; i++) {
1812 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
1813
1814 if (i == sbi->s_groups_count - 1 || flexbg_flag)
1815 last_block = ext4_blocks_count(sbi->s_es) - 1;
1816 else
1817 last_block = first_block +
1818 (EXT4_BLOCKS_PER_GROUP(sb) - 1);
1819
1820 block_bitmap = ext4_block_bitmap(sb, gdp);
1821 if (block_bitmap < first_block || block_bitmap > last_block) {
1822 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
1823 "Block bitmap for group %u not in group "
1824 "(block %llu)!", i, block_bitmap);
1825 return 0;
1826 }
1827 inode_bitmap = ext4_inode_bitmap(sb, gdp);
1828 if (inode_bitmap < first_block || inode_bitmap > last_block) {
1829 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
1830 "Inode bitmap for group %u not in group "
1831 "(block %llu)!", i, inode_bitmap);
1832 return 0;
1833 }
1834 inode_table = ext4_inode_table(sb, gdp);
1835 if (inode_table < first_block ||
1836 inode_table + sbi->s_itb_per_group - 1 > last_block) {
1837 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
1838 "Inode table for group %u not in group "
1839 "(block %llu)!", i, inode_table);
1840 return 0;
1841 }
1842 ext4_lock_group(sb, i);
1843 if (!ext4_group_desc_csum_verify(sbi, i, gdp)) {
1844 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
1845 "Checksum for group %u failed (%u!=%u)",
1846 i, le16_to_cpu(ext4_group_desc_csum(sbi, i,
1847 gdp)), le16_to_cpu(gdp->bg_checksum));
1848 if (!(sb->s_flags & MS_RDONLY)) {
1849 ext4_unlock_group(sb, i);
1850 return 0;
1851 }
1852 }
1853 ext4_unlock_group(sb, i);
1854 if (!flexbg_flag)
1855 first_block += EXT4_BLOCKS_PER_GROUP(sb);
1856 }
1857
1858 ext4_free_blocks_count_set(sbi->s_es, ext4_count_free_blocks(sb));
1859 sbi->s_es->s_free_inodes_count =cpu_to_le32(ext4_count_free_inodes(sb));
1860 return 1;
1861 }
1862
1863 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at
1864 * the superblock) which were deleted from all directories, but held open by
1865 * a process at the time of a crash. We walk the list and try to delete these
1866 * inodes at recovery time (only with a read-write filesystem).
1867 *
1868 * In order to keep the orphan inode chain consistent during traversal (in
1869 * case of crash during recovery), we link each inode into the superblock
1870 * orphan list_head and handle it the same way as an inode deletion during
1871 * normal operation (which journals the operations for us).
1872 *
1873 * We only do an iget() and an iput() on each inode, which is very safe if we
1874 * accidentally point at an in-use or already deleted inode. The worst that
1875 * can happen in this case is that we get a "bit already cleared" message from
1876 * ext4_free_inode(). The only reason we would point at a wrong inode is if
1877 * e2fsck was run on this filesystem, and it must have already done the orphan
1878 * inode cleanup for us, so we can safely abort without any further action.
1879 */
1880 static void ext4_orphan_cleanup(struct super_block *sb,
1881 struct ext4_super_block *es)
1882 {
1883 unsigned int s_flags = sb->s_flags;
1884 int nr_orphans = 0, nr_truncates = 0;
1885 #ifdef CONFIG_QUOTA
1886 int i;
1887 #endif
1888 if (!es->s_last_orphan) {
1889 jbd_debug(4, "no orphan inodes to clean up\n");
1890 return;
1891 }
1892
1893 if (bdev_read_only(sb->s_bdev)) {
1894 ext4_msg(sb, KERN_ERR, "write access "
1895 "unavailable, skipping orphan cleanup");
1896 return;
1897 }
1898
1899 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
1900 if (es->s_last_orphan)
1901 jbd_debug(1, "Errors on filesystem, "
1902 "clearing orphan list.\n");
1903 es->s_last_orphan = 0;
1904 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
1905 return;
1906 }
1907
1908 if (s_flags & MS_RDONLY) {
1909 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs");
1910 sb->s_flags &= ~MS_RDONLY;
1911 }
1912 #ifdef CONFIG_QUOTA
1913 /* Needed for iput() to work correctly and not trash data */
1914 sb->s_flags |= MS_ACTIVE;
1915 /* Turn on quotas so that they are updated correctly */
1916 for (i = 0; i < MAXQUOTAS; i++) {
1917 if (EXT4_SB(sb)->s_qf_names[i]) {
1918 int ret = ext4_quota_on_mount(sb, i);
1919 if (ret < 0)
1920 ext4_msg(sb, KERN_ERR,
1921 "Cannot turn on journaled "
1922 "quota: error %d", ret);
1923 }
1924 }
1925 #endif
1926
1927 while (es->s_last_orphan) {
1928 struct inode *inode;
1929
1930 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan));
1931 if (IS_ERR(inode)) {
1932 es->s_last_orphan = 0;
1933 break;
1934 }
1935
1936 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan);
1937 vfs_dq_init(inode);
1938 if (inode->i_nlink) {
1939 ext4_msg(sb, KERN_DEBUG,
1940 "%s: truncating inode %lu to %lld bytes",
1941 __func__, inode->i_ino, inode->i_size);
1942 jbd_debug(2, "truncating inode %lu to %lld bytes\n",
1943 inode->i_ino, inode->i_size);
1944 ext4_truncate(inode);
1945 nr_truncates++;
1946 } else {
1947 ext4_msg(sb, KERN_DEBUG,
1948 "%s: deleting unreferenced inode %lu",
1949 __func__, inode->i_ino);
1950 jbd_debug(2, "deleting unreferenced inode %lu\n",
1951 inode->i_ino);
1952 nr_orphans++;
1953 }
1954 iput(inode); /* The delete magic happens here! */
1955 }
1956
1957 #define PLURAL(x) (x), ((x) == 1) ? "" : "s"
1958
1959 if (nr_orphans)
1960 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted",
1961 PLURAL(nr_orphans));
1962 if (nr_truncates)
1963 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up",
1964 PLURAL(nr_truncates));
1965 #ifdef CONFIG_QUOTA
1966 /* Turn quotas off */
1967 for (i = 0; i < MAXQUOTAS; i++) {
1968 if (sb_dqopt(sb)->files[i])
1969 vfs_quota_off(sb, i, 0);
1970 }
1971 #endif
1972 sb->s_flags = s_flags; /* Restore MS_RDONLY status */
1973 }
1974
1975 /*
1976 * Maximal extent format file size.
1977 * Resulting logical blkno at s_maxbytes must fit in our on-disk
1978 * extent format containers, within a sector_t, and within i_blocks
1979 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units,
1980 * so that won't be a limiting factor.
1981 *
1982 * Note, this does *not* consider any metadata overhead for vfs i_blocks.
1983 */
1984 static loff_t ext4_max_size(int blkbits, int has_huge_files)
1985 {
1986 loff_t res;
1987 loff_t upper_limit = MAX_LFS_FILESIZE;
1988
1989 /* small i_blocks in vfs inode? */
1990 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
1991 /*
1992 * CONFIG_LBDAF is not enabled implies the inode
1993 * i_block represent total blocks in 512 bytes
1994 * 32 == size of vfs inode i_blocks * 8
1995 */
1996 upper_limit = (1LL << 32) - 1;
1997
1998 /* total blocks in file system block size */
1999 upper_limit >>= (blkbits - 9);
2000 upper_limit <<= blkbits;
2001 }
2002
2003 /* 32-bit extent-start container, ee_block */
2004 res = 1LL << 32;
2005 res <<= blkbits;
2006 res -= 1;
2007
2008 /* Sanity check against vm- & vfs- imposed limits */
2009 if (res > upper_limit)
2010 res = upper_limit;
2011
2012 return res;
2013 }
2014
2015 /*
2016 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect
2017 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
2018 * We need to be 1 filesystem block less than the 2^48 sector limit.
2019 */
2020 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
2021 {
2022 loff_t res = EXT4_NDIR_BLOCKS;
2023 int meta_blocks;
2024 loff_t upper_limit;
2025 /* This is calculated to be the largest file size for a dense, block
2026 * mapped file such that the file's total number of 512-byte sectors,
2027 * including data and all indirect blocks, does not exceed (2^48 - 1).
2028 *
2029 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
2030 * number of 512-byte sectors of the file.
2031 */
2032
2033 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2034 /*
2035 * !has_huge_files or CONFIG_LBDAF not enabled implies that
2036 * the inode i_block field represents total file blocks in
2037 * 2^32 512-byte sectors == size of vfs inode i_blocks * 8
2038 */
2039 upper_limit = (1LL << 32) - 1;
2040
2041 /* total blocks in file system block size */
2042 upper_limit >>= (bits - 9);
2043
2044 } else {
2045 /*
2046 * We use 48 bit ext4_inode i_blocks
2047 * With EXT4_HUGE_FILE_FL set the i_blocks
2048 * represent total number of blocks in
2049 * file system block size
2050 */
2051 upper_limit = (1LL << 48) - 1;
2052
2053 }
2054
2055 /* indirect blocks */
2056 meta_blocks = 1;
2057 /* double indirect blocks */
2058 meta_blocks += 1 + (1LL << (bits-2));
2059 /* tripple indirect blocks */
2060 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2)));
2061
2062 upper_limit -= meta_blocks;
2063 upper_limit <<= bits;
2064
2065 res += 1LL << (bits-2);
2066 res += 1LL << (2*(bits-2));
2067 res += 1LL << (3*(bits-2));
2068 res <<= bits;
2069 if (res > upper_limit)
2070 res = upper_limit;
2071
2072 if (res > MAX_LFS_FILESIZE)
2073 res = MAX_LFS_FILESIZE;
2074
2075 return res;
2076 }
2077
2078 static ext4_fsblk_t descriptor_loc(struct super_block *sb,
2079 ext4_fsblk_t logical_sb_block, int nr)
2080 {
2081 struct ext4_sb_info *sbi = EXT4_SB(sb);
2082 ext4_group_t bg, first_meta_bg;
2083 int has_super = 0;
2084
2085 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
2086
2087 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_META_BG) ||
2088 nr < first_meta_bg)
2089 return logical_sb_block + nr + 1;
2090 bg = sbi->s_desc_per_block * nr;
2091 if (ext4_bg_has_super(sb, bg))
2092 has_super = 1;
2093
2094 return (has_super + ext4_group_first_block_no(sb, bg));
2095 }
2096
2097 /**
2098 * ext4_get_stripe_size: Get the stripe size.
2099 * @sbi: In memory super block info
2100 *
2101 * If we have specified it via mount option, then
2102 * use the mount option value. If the value specified at mount time is
2103 * greater than the blocks per group use the super block value.
2104 * If the super block value is greater than blocks per group return 0.
2105 * Allocator needs it be less than blocks per group.
2106 *
2107 */
2108 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
2109 {
2110 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
2111 unsigned long stripe_width =
2112 le32_to_cpu(sbi->s_es->s_raid_stripe_width);
2113
2114 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
2115 return sbi->s_stripe;
2116
2117 if (stripe_width <= sbi->s_blocks_per_group)
2118 return stripe_width;
2119
2120 if (stride <= sbi->s_blocks_per_group)
2121 return stride;
2122
2123 return 0;
2124 }
2125
2126 /* sysfs supprt */
2127
2128 struct ext4_attr {
2129 struct attribute attr;
2130 ssize_t (*show)(struct ext4_attr *, struct ext4_sb_info *, char *);
2131 ssize_t (*store)(struct ext4_attr *, struct ext4_sb_info *,
2132 const char *, size_t);
2133 int offset;
2134 };
2135
2136 static int parse_strtoul(const char *buf,
2137 unsigned long max, unsigned long *value)
2138 {
2139 char *endp;
2140
2141 *value = simple_strtoul(skip_spaces(buf), &endp, 0);
2142 endp = skip_spaces(endp);
2143 if (*endp || *value > max)
2144 return -EINVAL;
2145
2146 return 0;
2147 }
2148
2149 static ssize_t delayed_allocation_blocks_show(struct ext4_attr *a,
2150 struct ext4_sb_info *sbi,
2151 char *buf)
2152 {
2153 return snprintf(buf, PAGE_SIZE, "%llu\n",
2154 (s64) percpu_counter_sum(&sbi->s_dirtyblocks_counter));
2155 }
2156
2157 static ssize_t session_write_kbytes_show(struct ext4_attr *a,
2158 struct ext4_sb_info *sbi, char *buf)
2159 {
2160 struct super_block *sb = sbi->s_buddy_cache->i_sb;
2161
2162 return snprintf(buf, PAGE_SIZE, "%lu\n",
2163 (part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
2164 sbi->s_sectors_written_start) >> 1);
2165 }
2166
2167 static ssize_t lifetime_write_kbytes_show(struct ext4_attr *a,
2168 struct ext4_sb_info *sbi, char *buf)
2169 {
2170 struct super_block *sb = sbi->s_buddy_cache->i_sb;
2171
2172 return snprintf(buf, PAGE_SIZE, "%llu\n",
2173 (unsigned long long)(sbi->s_kbytes_written +
2174 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
2175 EXT4_SB(sb)->s_sectors_written_start) >> 1)));
2176 }
2177
2178 static ssize_t inode_readahead_blks_store(struct ext4_attr *a,
2179 struct ext4_sb_info *sbi,
2180 const char *buf, size_t count)
2181 {
2182 unsigned long t;
2183
2184 if (parse_strtoul(buf, 0x40000000, &t))
2185 return -EINVAL;
2186
2187 if (!is_power_of_2(t))
2188 return -EINVAL;
2189
2190 sbi->s_inode_readahead_blks = t;
2191 return count;
2192 }
2193
2194 static ssize_t sbi_ui_show(struct ext4_attr *a,
2195 struct ext4_sb_info *sbi, char *buf)
2196 {
2197 unsigned int *ui = (unsigned int *) (((char *) sbi) + a->offset);
2198
2199 return snprintf(buf, PAGE_SIZE, "%u\n", *ui);
2200 }
2201
2202 static ssize_t sbi_ui_store(struct ext4_attr *a,
2203 struct ext4_sb_info *sbi,
2204 const char *buf, size_t count)
2205 {
2206 unsigned int *ui = (unsigned int *) (((char *) sbi) + a->offset);
2207 unsigned long t;
2208
2209 if (parse_strtoul(buf, 0xffffffff, &t))
2210 return -EINVAL;
2211 *ui = t;
2212 return count;
2213 }
2214
2215 #define EXT4_ATTR_OFFSET(_name,_mode,_show,_store,_elname) \
2216 static struct ext4_attr ext4_attr_##_name = { \
2217 .attr = {.name = __stringify(_name), .mode = _mode }, \
2218 .show = _show, \
2219 .store = _store, \
2220 .offset = offsetof(struct ext4_sb_info, _elname), \
2221 }
2222 #define EXT4_ATTR(name, mode, show, store) \
2223 static struct ext4_attr ext4_attr_##name = __ATTR(name, mode, show, store)
2224
2225 #define EXT4_RO_ATTR(name) EXT4_ATTR(name, 0444, name##_show, NULL)
2226 #define EXT4_RW_ATTR(name) EXT4_ATTR(name, 0644, name##_show, name##_store)
2227 #define EXT4_RW_ATTR_SBI_UI(name, elname) \
2228 EXT4_ATTR_OFFSET(name, 0644, sbi_ui_show, sbi_ui_store, elname)
2229 #define ATTR_LIST(name) &ext4_attr_##name.attr
2230
2231 EXT4_RO_ATTR(delayed_allocation_blocks);
2232 EXT4_RO_ATTR(session_write_kbytes);
2233 EXT4_RO_ATTR(lifetime_write_kbytes);
2234 EXT4_ATTR_OFFSET(inode_readahead_blks, 0644, sbi_ui_show,
2235 inode_readahead_blks_store, s_inode_readahead_blks);
2236 EXT4_RW_ATTR_SBI_UI(inode_goal, s_inode_goal);
2237 EXT4_RW_ATTR_SBI_UI(mb_stats, s_mb_stats);
2238 EXT4_RW_ATTR_SBI_UI(mb_max_to_scan, s_mb_max_to_scan);
2239 EXT4_RW_ATTR_SBI_UI(mb_min_to_scan, s_mb_min_to_scan);
2240 EXT4_RW_ATTR_SBI_UI(mb_order2_req, s_mb_order2_reqs);
2241 EXT4_RW_ATTR_SBI_UI(mb_stream_req, s_mb_stream_request);
2242 EXT4_RW_ATTR_SBI_UI(mb_group_prealloc, s_mb_group_prealloc);
2243 EXT4_RW_ATTR_SBI_UI(max_writeback_mb_bump, s_max_writeback_mb_bump);
2244
2245 static struct attribute *ext4_attrs[] = {
2246 ATTR_LIST(delayed_allocation_blocks),
2247 ATTR_LIST(session_write_kbytes),
2248 ATTR_LIST(lifetime_write_kbytes),
2249 ATTR_LIST(inode_readahead_blks),
2250 ATTR_LIST(inode_goal),
2251 ATTR_LIST(mb_stats),
2252 ATTR_LIST(mb_max_to_scan),
2253 ATTR_LIST(mb_min_to_scan),
2254 ATTR_LIST(mb_order2_req),
2255 ATTR_LIST(mb_stream_req),
2256 ATTR_LIST(mb_group_prealloc),
2257 ATTR_LIST(max_writeback_mb_bump),
2258 NULL,
2259 };
2260
2261 static ssize_t ext4_attr_show(struct kobject *kobj,
2262 struct attribute *attr, char *buf)
2263 {
2264 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2265 s_kobj);
2266 struct ext4_attr *a = container_of(attr, struct ext4_attr, attr);
2267
2268 return a->show ? a->show(a, sbi, buf) : 0;
2269 }
2270
2271 static ssize_t ext4_attr_store(struct kobject *kobj,
2272 struct attribute *attr,
2273 const char *buf, size_t len)
2274 {
2275 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2276 s_kobj);
2277 struct ext4_attr *a = container_of(attr, struct ext4_attr, attr);
2278
2279 return a->store ? a->store(a, sbi, buf, len) : 0;
2280 }
2281
2282 static void ext4_sb_release(struct kobject *kobj)
2283 {
2284 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2285 s_kobj);
2286 complete(&sbi->s_kobj_unregister);
2287 }
2288
2289
2290 static struct sysfs_ops ext4_attr_ops = {
2291 .show = ext4_attr_show,
2292 .store = ext4_attr_store,
2293 };
2294
2295 static struct kobj_type ext4_ktype = {
2296 .default_attrs = ext4_attrs,
2297 .sysfs_ops = &ext4_attr_ops,
2298 .release = ext4_sb_release,
2299 };
2300
2301 /*
2302 * Check whether this filesystem can be mounted based on
2303 * the features present and the RDONLY/RDWR mount requested.
2304 * Returns 1 if this filesystem can be mounted as requested,
2305 * 0 if it cannot be.
2306 */
2307 static int ext4_feature_set_ok(struct super_block *sb, int readonly)
2308 {
2309 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT4_FEATURE_INCOMPAT_SUPP)) {
2310 ext4_msg(sb, KERN_ERR,
2311 "Couldn't mount because of "
2312 "unsupported optional features (%x)",
2313 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
2314 ~EXT4_FEATURE_INCOMPAT_SUPP));
2315 return 0;
2316 }
2317
2318 if (readonly)
2319 return 1;
2320
2321 /* Check that feature set is OK for a read-write mount */
2322 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT4_FEATURE_RO_COMPAT_SUPP)) {
2323 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
2324 "unsupported optional features (%x)",
2325 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
2326 ~EXT4_FEATURE_RO_COMPAT_SUPP));
2327 return 0;
2328 }
2329 /*
2330 * Large file size enabled file system can only be mounted
2331 * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF
2332 */
2333 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
2334 if (sizeof(blkcnt_t) < sizeof(u64)) {
2335 ext4_msg(sb, KERN_ERR, "Filesystem with huge files "
2336 "cannot be mounted RDWR without "
2337 "CONFIG_LBDAF");
2338 return 0;
2339 }
2340 }
2341 return 1;
2342 }
2343
2344 static int ext4_fill_super(struct super_block *sb, void *data, int silent)
2345 __releases(kernel_lock)
2346 __acquires(kernel_lock)
2347 {
2348 struct buffer_head *bh;
2349 struct ext4_super_block *es = NULL;
2350 struct ext4_sb_info *sbi;
2351 ext4_fsblk_t block;
2352 ext4_fsblk_t sb_block = get_sb_block(&data);
2353 ext4_fsblk_t logical_sb_block;
2354 unsigned long offset = 0;
2355 unsigned long journal_devnum = 0;
2356 unsigned long def_mount_opts;
2357 struct inode *root;
2358 char *cp;
2359 const char *descr;
2360 int ret = -EINVAL;
2361 int blocksize;
2362 unsigned int db_count;
2363 unsigned int i;
2364 int needs_recovery, has_huge_files;
2365 __u64 blocks_count;
2366 int err;
2367 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
2368
2369 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
2370 if (!sbi)
2371 return -ENOMEM;
2372
2373 sbi->s_blockgroup_lock =
2374 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
2375 if (!sbi->s_blockgroup_lock) {
2376 kfree(sbi);
2377 return -ENOMEM;
2378 }
2379 sb->s_fs_info = sbi;
2380 sbi->s_mount_opt = 0;
2381 sbi->s_resuid = EXT4_DEF_RESUID;
2382 sbi->s_resgid = EXT4_DEF_RESGID;
2383 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
2384 sbi->s_sb_block = sb_block;
2385 sbi->s_sectors_written_start = part_stat_read(sb->s_bdev->bd_part,
2386 sectors[1]);
2387
2388 unlock_kernel();
2389
2390 /* Cleanup superblock name */
2391 for (cp = sb->s_id; (cp = strchr(cp, '/'));)
2392 *cp = '!';
2393
2394 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
2395 if (!blocksize) {
2396 ext4_msg(sb, KERN_ERR, "unable to set blocksize");
2397 goto out_fail;
2398 }
2399
2400 /*
2401 * The ext4 superblock will not be buffer aligned for other than 1kB
2402 * block sizes. We need to calculate the offset from buffer start.
2403 */
2404 if (blocksize != EXT4_MIN_BLOCK_SIZE) {
2405 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
2406 offset = do_div(logical_sb_block, blocksize);
2407 } else {
2408 logical_sb_block = sb_block;
2409 }
2410
2411 if (!(bh = sb_bread(sb, logical_sb_block))) {
2412 ext4_msg(sb, KERN_ERR, "unable to read superblock");
2413 goto out_fail;
2414 }
2415 /*
2416 * Note: s_es must be initialized as soon as possible because
2417 * some ext4 macro-instructions depend on its value
2418 */
2419 es = (struct ext4_super_block *) (((char *)bh->b_data) + offset);
2420 sbi->s_es = es;
2421 sb->s_magic = le16_to_cpu(es->s_magic);
2422 if (sb->s_magic != EXT4_SUPER_MAGIC)
2423 goto cantfind_ext4;
2424 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
2425
2426 /* Set defaults before we parse the mount options */
2427 def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
2428 if (def_mount_opts & EXT4_DEFM_DEBUG)
2429 set_opt(sbi->s_mount_opt, DEBUG);
2430 if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
2431 set_opt(sbi->s_mount_opt, GRPID);
2432 if (def_mount_opts & EXT4_DEFM_UID16)
2433 set_opt(sbi->s_mount_opt, NO_UID32);
2434 #ifdef CONFIG_EXT4_FS_XATTR
2435 if (def_mount_opts & EXT4_DEFM_XATTR_USER)
2436 set_opt(sbi->s_mount_opt, XATTR_USER);
2437 #endif
2438 #ifdef CONFIG_EXT4_FS_POSIX_ACL
2439 if (def_mount_opts & EXT4_DEFM_ACL)
2440 set_opt(sbi->s_mount_opt, POSIX_ACL);
2441 #endif
2442 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
2443 sbi->s_mount_opt |= EXT4_MOUNT_JOURNAL_DATA;
2444 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
2445 sbi->s_mount_opt |= EXT4_MOUNT_ORDERED_DATA;
2446 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
2447 sbi->s_mount_opt |= EXT4_MOUNT_WRITEBACK_DATA;
2448
2449 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC)
2450 set_opt(sbi->s_mount_opt, ERRORS_PANIC);
2451 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE)
2452 set_opt(sbi->s_mount_opt, ERRORS_CONT);
2453 else
2454 set_opt(sbi->s_mount_opt, ERRORS_RO);
2455
2456 sbi->s_resuid = le16_to_cpu(es->s_def_resuid);
2457 sbi->s_resgid = le16_to_cpu(es->s_def_resgid);
2458 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
2459 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
2460 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
2461
2462 set_opt(sbi->s_mount_opt, BARRIER);
2463
2464 /*
2465 * enable delayed allocation by default
2466 * Use -o nodelalloc to turn it off
2467 */
2468 set_opt(sbi->s_mount_opt, DELALLOC);
2469
2470 if (!parse_options((char *) data, sb, &journal_devnum,
2471 &journal_ioprio, NULL, 0))
2472 goto failed_mount;
2473
2474 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
2475 ((sbi->s_mount_opt & EXT4_MOUNT_POSIX_ACL) ? MS_POSIXACL : 0);
2476
2477 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
2478 (EXT4_HAS_COMPAT_FEATURE(sb, ~0U) ||
2479 EXT4_HAS_RO_COMPAT_FEATURE(sb, ~0U) ||
2480 EXT4_HAS_INCOMPAT_FEATURE(sb, ~0U)))
2481 ext4_msg(sb, KERN_WARNING,
2482 "feature flags set on rev 0 fs, "
2483 "running e2fsck is recommended");
2484
2485 /*
2486 * Check feature flags regardless of the revision level, since we
2487 * previously didn't change the revision level when setting the flags,
2488 * so there is a chance incompat flags are set on a rev 0 filesystem.
2489 */
2490 if (!ext4_feature_set_ok(sb, (sb->s_flags & MS_RDONLY)))
2491 goto failed_mount;
2492
2493 blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
2494
2495 if (blocksize < EXT4_MIN_BLOCK_SIZE ||
2496 blocksize > EXT4_MAX_BLOCK_SIZE) {
2497 ext4_msg(sb, KERN_ERR,
2498 "Unsupported filesystem blocksize %d", blocksize);
2499 goto failed_mount;
2500 }
2501
2502 if (sb->s_blocksize != blocksize) {
2503 /* Validate the filesystem blocksize */
2504 if (!sb_set_blocksize(sb, blocksize)) {
2505 ext4_msg(sb, KERN_ERR, "bad block size %d",
2506 blocksize);
2507 goto failed_mount;
2508 }
2509
2510 brelse(bh);
2511 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
2512 offset = do_div(logical_sb_block, blocksize);
2513 bh = sb_bread(sb, logical_sb_block);
2514 if (!bh) {
2515 ext4_msg(sb, KERN_ERR,
2516 "Can't read superblock on 2nd try");
2517 goto failed_mount;
2518 }
2519 es = (struct ext4_super_block *)(((char *)bh->b_data) + offset);
2520 sbi->s_es = es;
2521 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
2522 ext4_msg(sb, KERN_ERR,
2523 "Magic mismatch, very weird!");
2524 goto failed_mount;
2525 }
2526 }
2527
2528 has_huge_files = EXT4_HAS_RO_COMPAT_FEATURE(sb,
2529 EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
2530 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
2531 has_huge_files);
2532 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
2533
2534 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
2535 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
2536 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
2537 } else {
2538 sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
2539 sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
2540 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
2541 (!is_power_of_2(sbi->s_inode_size)) ||
2542 (sbi->s_inode_size > blocksize)) {
2543 ext4_msg(sb, KERN_ERR,
2544 "unsupported inode size: %d",
2545 sbi->s_inode_size);
2546 goto failed_mount;
2547 }
2548 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE)
2549 sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2);
2550 }
2551
2552 sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
2553 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT)) {
2554 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
2555 sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
2556 !is_power_of_2(sbi->s_desc_size)) {
2557 ext4_msg(sb, KERN_ERR,
2558 "unsupported descriptor size %lu",
2559 sbi->s_desc_size);
2560 goto failed_mount;
2561 }
2562 } else
2563 sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
2564
2565 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
2566 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
2567 if (EXT4_INODE_SIZE(sb) == 0 || EXT4_INODES_PER_GROUP(sb) == 0)
2568 goto cantfind_ext4;
2569
2570 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb);
2571 if (sbi->s_inodes_per_block == 0)
2572 goto cantfind_ext4;
2573 sbi->s_itb_per_group = sbi->s_inodes_per_group /
2574 sbi->s_inodes_per_block;
2575 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb);
2576 sbi->s_sbh = bh;
2577 sbi->s_mount_state = le16_to_cpu(es->s_state);
2578 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
2579 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
2580
2581 for (i = 0; i < 4; i++)
2582 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
2583 sbi->s_def_hash_version = es->s_def_hash_version;
2584 i = le32_to_cpu(es->s_flags);
2585 if (i & EXT2_FLAGS_UNSIGNED_HASH)
2586 sbi->s_hash_unsigned = 3;
2587 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
2588 #ifdef __CHAR_UNSIGNED__
2589 es->s_flags |= cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
2590 sbi->s_hash_unsigned = 3;
2591 #else
2592 es->s_flags |= cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
2593 #endif
2594 sb->s_dirt = 1;
2595 }
2596
2597 if (sbi->s_blocks_per_group > blocksize * 8) {
2598 ext4_msg(sb, KERN_ERR,
2599 "#blocks per group too big: %lu",
2600 sbi->s_blocks_per_group);
2601 goto failed_mount;
2602 }
2603 if (sbi->s_inodes_per_group > blocksize * 8) {
2604 ext4_msg(sb, KERN_ERR,
2605 "#inodes per group too big: %lu",
2606 sbi->s_inodes_per_group);
2607 goto failed_mount;
2608 }
2609
2610 /*
2611 * Test whether we have more sectors than will fit in sector_t,
2612 * and whether the max offset is addressable by the page cache.
2613 */
2614 if ((ext4_blocks_count(es) >
2615 (sector_t)(~0ULL) >> (sb->s_blocksize_bits - 9)) ||
2616 (ext4_blocks_count(es) >
2617 (pgoff_t)(~0ULL) >> (PAGE_CACHE_SHIFT - sb->s_blocksize_bits))) {
2618 ext4_msg(sb, KERN_ERR, "filesystem"
2619 " too large to mount safely on this system");
2620 if (sizeof(sector_t) < 8)
2621 ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled");
2622 ret = -EFBIG;
2623 goto failed_mount;
2624 }
2625
2626 if (EXT4_BLOCKS_PER_GROUP(sb) == 0)
2627 goto cantfind_ext4;
2628
2629 /* check blocks count against device size */
2630 blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
2631 if (blocks_count && ext4_blocks_count(es) > blocks_count) {
2632 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
2633 "exceeds size of device (%llu blocks)",
2634 ext4_blocks_count(es), blocks_count);
2635 goto failed_mount;
2636 }
2637
2638 /*
2639 * It makes no sense for the first data block to be beyond the end
2640 * of the filesystem.
2641 */
2642 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
2643 ext4_msg(sb, KERN_WARNING, "bad geometry: first data"
2644 "block %u is beyond end of filesystem (%llu)",
2645 le32_to_cpu(es->s_first_data_block),
2646 ext4_blocks_count(es));
2647 goto failed_mount;
2648 }
2649 blocks_count = (ext4_blocks_count(es) -
2650 le32_to_cpu(es->s_first_data_block) +
2651 EXT4_BLOCKS_PER_GROUP(sb) - 1);
2652 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
2653 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
2654 ext4_msg(sb, KERN_WARNING, "groups count too large: %u "
2655 "(block count %llu, first data block %u, "
2656 "blocks per group %lu)", sbi->s_groups_count,
2657 ext4_blocks_count(es),
2658 le32_to_cpu(es->s_first_data_block),
2659 EXT4_BLOCKS_PER_GROUP(sb));
2660 goto failed_mount;
2661 }
2662 sbi->s_groups_count = blocks_count;
2663 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
2664 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
2665 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
2666 EXT4_DESC_PER_BLOCK(sb);
2667 sbi->s_group_desc = kmalloc(db_count * sizeof(struct buffer_head *),
2668 GFP_KERNEL);
2669 if (sbi->s_group_desc == NULL) {
2670 ext4_msg(sb, KERN_ERR, "not enough memory");
2671 goto failed_mount;
2672 }
2673
2674 #ifdef CONFIG_PROC_FS
2675 if (ext4_proc_root)
2676 sbi->s_proc = proc_mkdir(sb->s_id, ext4_proc_root);
2677 #endif
2678
2679 bgl_lock_init(sbi->s_blockgroup_lock);
2680
2681 for (i = 0; i < db_count; i++) {
2682 block = descriptor_loc(sb, logical_sb_block, i);
2683 sbi->s_group_desc[i] = sb_bread(sb, block);
2684 if (!sbi->s_group_desc[i]) {
2685 ext4_msg(sb, KERN_ERR,
2686 "can't read group descriptor %d", i);
2687 db_count = i;
2688 goto failed_mount2;
2689 }
2690 }
2691 if (!ext4_check_descriptors(sb)) {
2692 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
2693 goto failed_mount2;
2694 }
2695 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG))
2696 if (!ext4_fill_flex_info(sb)) {
2697 ext4_msg(sb, KERN_ERR,
2698 "unable to initialize "
2699 "flex_bg meta info!");
2700 goto failed_mount2;
2701 }
2702
2703 sbi->s_gdb_count = db_count;
2704 get_random_bytes(&sbi->s_next_generation, sizeof(u32));
2705 spin_lock_init(&sbi->s_next_gen_lock);
2706
2707 err = percpu_counter_init(&sbi->s_freeblocks_counter,
2708 ext4_count_free_blocks(sb));
2709 if (!err) {
2710 err = percpu_counter_init(&sbi->s_freeinodes_counter,
2711 ext4_count_free_inodes(sb));
2712 }
2713 if (!err) {
2714 err = percpu_counter_init(&sbi->s_dirs_counter,
2715 ext4_count_dirs(sb));
2716 }
2717 if (!err) {
2718 err = percpu_counter_init(&sbi->s_dirtyblocks_counter, 0);
2719 }
2720 if (err) {
2721 ext4_msg(sb, KERN_ERR, "insufficient memory");
2722 goto failed_mount3;
2723 }
2724
2725 sbi->s_stripe = ext4_get_stripe_size(sbi);
2726 sbi->s_max_writeback_mb_bump = 128;
2727
2728 /*
2729 * set up enough so that it can read an inode
2730 */
2731 if (!test_opt(sb, NOLOAD) &&
2732 EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL))
2733 sb->s_op = &ext4_sops;
2734 else
2735 sb->s_op = &ext4_nojournal_sops;
2736 sb->s_export_op = &ext4_export_ops;
2737 sb->s_xattr = ext4_xattr_handlers;
2738 #ifdef CONFIG_QUOTA
2739 sb->s_qcop = &ext4_qctl_operations;
2740 sb->dq_op = &ext4_quota_operations;
2741 #endif
2742 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
2743 mutex_init(&sbi->s_orphan_lock);
2744 mutex_init(&sbi->s_resize_lock);
2745
2746 sb->s_root = NULL;
2747
2748 needs_recovery = (es->s_last_orphan != 0 ||
2749 EXT4_HAS_INCOMPAT_FEATURE(sb,
2750 EXT4_FEATURE_INCOMPAT_RECOVER));
2751
2752 /*
2753 * The first inode we look at is the journal inode. Don't try
2754 * root first: it may be modified in the journal!
2755 */
2756 if (!test_opt(sb, NOLOAD) &&
2757 EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) {
2758 if (ext4_load_journal(sb, es, journal_devnum))
2759 goto failed_mount3;
2760 } else if (test_opt(sb, NOLOAD) && !(sb->s_flags & MS_RDONLY) &&
2761 EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) {
2762 ext4_msg(sb, KERN_ERR, "required journal recovery "
2763 "suppressed and not mounted read-only");
2764 goto failed_mount4;
2765 } else {
2766 clear_opt(sbi->s_mount_opt, DATA_FLAGS);
2767 set_opt(sbi->s_mount_opt, WRITEBACK_DATA);
2768 sbi->s_journal = NULL;
2769 needs_recovery = 0;
2770 goto no_journal;
2771 }
2772
2773 if (ext4_blocks_count(es) > 0xffffffffULL &&
2774 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
2775 JBD2_FEATURE_INCOMPAT_64BIT)) {
2776 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
2777 goto failed_mount4;
2778 }
2779
2780 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
2781 jbd2_journal_set_features(sbi->s_journal,
2782 JBD2_FEATURE_COMPAT_CHECKSUM, 0,
2783 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
2784 } else if (test_opt(sb, JOURNAL_CHECKSUM)) {
2785 jbd2_journal_set_features(sbi->s_journal,
2786 JBD2_FEATURE_COMPAT_CHECKSUM, 0, 0);
2787 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
2788 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
2789 } else {
2790 jbd2_journal_clear_features(sbi->s_journal,
2791 JBD2_FEATURE_COMPAT_CHECKSUM, 0,
2792 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
2793 }
2794
2795 /* We have now updated the journal if required, so we can
2796 * validate the data journaling mode. */
2797 switch (test_opt(sb, DATA_FLAGS)) {
2798 case 0:
2799 /* No mode set, assume a default based on the journal
2800 * capabilities: ORDERED_DATA if the journal can
2801 * cope, else JOURNAL_DATA
2802 */
2803 if (jbd2_journal_check_available_features
2804 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE))
2805 set_opt(sbi->s_mount_opt, ORDERED_DATA);
2806 else
2807 set_opt(sbi->s_mount_opt, JOURNAL_DATA);
2808 break;
2809
2810 case EXT4_MOUNT_ORDERED_DATA:
2811 case EXT4_MOUNT_WRITEBACK_DATA:
2812 if (!jbd2_journal_check_available_features
2813 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
2814 ext4_msg(sb, KERN_ERR, "Journal does not support "
2815 "requested data journaling mode");
2816 goto failed_mount4;
2817 }
2818 default:
2819 break;
2820 }
2821 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
2822
2823 no_journal:
2824
2825 if (test_opt(sb, NOBH)) {
2826 if (!(test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)) {
2827 ext4_msg(sb, KERN_WARNING, "Ignoring nobh option - "
2828 "its supported only with writeback mode");
2829 clear_opt(sbi->s_mount_opt, NOBH);
2830 }
2831 }
2832 EXT4_SB(sb)->dio_unwritten_wq = create_workqueue("ext4-dio-unwritten");
2833 if (!EXT4_SB(sb)->dio_unwritten_wq) {
2834 printk(KERN_ERR "EXT4-fs: failed to create DIO workqueue\n");
2835 goto failed_mount_wq;
2836 }
2837
2838 /*
2839 * The jbd2_journal_load will have done any necessary log recovery,
2840 * so we can safely mount the rest of the filesystem now.
2841 */
2842
2843 root = ext4_iget(sb, EXT4_ROOT_INO);
2844 if (IS_ERR(root)) {
2845 ext4_msg(sb, KERN_ERR, "get root inode failed");
2846 ret = PTR_ERR(root);
2847 goto failed_mount4;
2848 }
2849 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
2850 iput(root);
2851 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
2852 goto failed_mount4;
2853 }
2854 sb->s_root = d_alloc_root(root);
2855 if (!sb->s_root) {
2856 ext4_msg(sb, KERN_ERR, "get root dentry failed");
2857 iput(root);
2858 ret = -ENOMEM;
2859 goto failed_mount4;
2860 }
2861
2862 ext4_setup_super(sb, es, sb->s_flags & MS_RDONLY);
2863
2864 /* determine the minimum size of new large inodes, if present */
2865 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) {
2866 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
2867 EXT4_GOOD_OLD_INODE_SIZE;
2868 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
2869 EXT4_FEATURE_RO_COMPAT_EXTRA_ISIZE)) {
2870 if (sbi->s_want_extra_isize <
2871 le16_to_cpu(es->s_want_extra_isize))
2872 sbi->s_want_extra_isize =
2873 le16_to_cpu(es->s_want_extra_isize);
2874 if (sbi->s_want_extra_isize <
2875 le16_to_cpu(es->s_min_extra_isize))
2876 sbi->s_want_extra_isize =
2877 le16_to_cpu(es->s_min_extra_isize);
2878 }
2879 }
2880 /* Check if enough inode space is available */
2881 if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize >
2882 sbi->s_inode_size) {
2883 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
2884 EXT4_GOOD_OLD_INODE_SIZE;
2885 ext4_msg(sb, KERN_INFO, "required extra inode space not"
2886 "available");
2887 }
2888
2889 if (test_opt(sb, DELALLOC) &&
2890 (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)) {
2891 ext4_msg(sb, KERN_WARNING, "Ignoring delalloc option - "
2892 "requested data journaling mode");
2893 clear_opt(sbi->s_mount_opt, DELALLOC);
2894 }
2895
2896 err = ext4_setup_system_zone(sb);
2897 if (err) {
2898 ext4_msg(sb, KERN_ERR, "failed to initialize system "
2899 "zone (%d)\n", err);
2900 goto failed_mount4;
2901 }
2902
2903 ext4_ext_init(sb);
2904 err = ext4_mb_init(sb, needs_recovery);
2905 if (err) {
2906 ext4_msg(sb, KERN_ERR, "failed to initalize mballoc (%d)",
2907 err);
2908 goto failed_mount4;
2909 }
2910
2911 sbi->s_kobj.kset = ext4_kset;
2912 init_completion(&sbi->s_kobj_unregister);
2913 err = kobject_init_and_add(&sbi->s_kobj, &ext4_ktype, NULL,
2914 "%s", sb->s_id);
2915 if (err) {
2916 ext4_mb_release(sb);
2917 ext4_ext_release(sb);
2918 goto failed_mount4;
2919 };
2920
2921 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
2922 ext4_orphan_cleanup(sb, es);
2923 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
2924 if (needs_recovery) {
2925 ext4_msg(sb, KERN_INFO, "recovery complete");
2926 ext4_mark_recovery_complete(sb, es);
2927 }
2928 if (EXT4_SB(sb)->s_journal) {
2929 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
2930 descr = " journalled data mode";
2931 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
2932 descr = " ordered data mode";
2933 else
2934 descr = " writeback data mode";
2935 } else
2936 descr = "out journal";
2937
2938 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s", descr);
2939
2940 lock_kernel();
2941 return 0;
2942
2943 cantfind_ext4:
2944 if (!silent)
2945 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
2946 goto failed_mount;
2947
2948 failed_mount4:
2949 ext4_msg(sb, KERN_ERR, "mount failed");
2950 destroy_workqueue(EXT4_SB(sb)->dio_unwritten_wq);
2951 failed_mount_wq:
2952 ext4_release_system_zone(sb);
2953 if (sbi->s_journal) {
2954 jbd2_journal_destroy(sbi->s_journal);
2955 sbi->s_journal = NULL;
2956 }
2957 failed_mount3:
2958 if (sbi->s_flex_groups) {
2959 if (is_vmalloc_addr(sbi->s_flex_groups))
2960 vfree(sbi->s_flex_groups);
2961 else
2962 kfree(sbi->s_flex_groups);
2963 }
2964 percpu_counter_destroy(&sbi->s_freeblocks_counter);
2965 percpu_counter_destroy(&sbi->s_freeinodes_counter);
2966 percpu_counter_destroy(&sbi->s_dirs_counter);
2967 percpu_counter_destroy(&sbi->s_dirtyblocks_counter);
2968 failed_mount2:
2969 for (i = 0; i < db_count; i++)
2970 brelse(sbi->s_group_desc[i]);
2971 kfree(sbi->s_group_desc);
2972 failed_mount:
2973 if (sbi->s_proc) {
2974 remove_proc_entry(sb->s_id, ext4_proc_root);
2975 }
2976 #ifdef CONFIG_QUOTA
2977 for (i = 0; i < MAXQUOTAS; i++)
2978 kfree(sbi->s_qf_names[i]);
2979 #endif
2980 ext4_blkdev_remove(sbi);
2981 brelse(bh);
2982 out_fail:
2983 sb->s_fs_info = NULL;
2984 kfree(sbi->s_blockgroup_lock);
2985 kfree(sbi);
2986 lock_kernel();
2987 return ret;
2988 }
2989
2990 /*
2991 * Setup any per-fs journal parameters now. We'll do this both on
2992 * initial mount, once the journal has been initialised but before we've
2993 * done any recovery; and again on any subsequent remount.
2994 */
2995 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
2996 {
2997 struct ext4_sb_info *sbi = EXT4_SB(sb);
2998
2999 journal->j_commit_interval = sbi->s_commit_interval;
3000 journal->j_min_batch_time = sbi->s_min_batch_time;
3001 journal->j_max_batch_time = sbi->s_max_batch_time;
3002
3003 spin_lock(&journal->j_state_lock);
3004 if (test_opt(sb, BARRIER))
3005 journal->j_flags |= JBD2_BARRIER;
3006 else
3007 journal->j_flags &= ~JBD2_BARRIER;
3008 if (test_opt(sb, DATA_ERR_ABORT))
3009 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
3010 else
3011 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
3012 spin_unlock(&journal->j_state_lock);
3013 }
3014
3015 static journal_t *ext4_get_journal(struct super_block *sb,
3016 unsigned int journal_inum)
3017 {
3018 struct inode *journal_inode;
3019 journal_t *journal;
3020
3021 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
3022
3023 /* First, test for the existence of a valid inode on disk. Bad
3024 * things happen if we iget() an unused inode, as the subsequent
3025 * iput() will try to delete it. */
3026
3027 journal_inode = ext4_iget(sb, journal_inum);
3028 if (IS_ERR(journal_inode)) {
3029 ext4_msg(sb, KERN_ERR, "no journal found");
3030 return NULL;
3031 }
3032 if (!journal_inode->i_nlink) {
3033 make_bad_inode(journal_inode);
3034 iput(journal_inode);
3035 ext4_msg(sb, KERN_ERR, "journal inode is deleted");
3036 return NULL;
3037 }
3038
3039 jbd_debug(2, "Journal inode found at %p: %lld bytes\n",
3040 journal_inode, journal_inode->i_size);
3041 if (!S_ISREG(journal_inode->i_mode)) {
3042 ext4_msg(sb, KERN_ERR, "invalid journal inode");
3043 iput(journal_inode);
3044 return NULL;
3045 }
3046
3047 journal = jbd2_journal_init_inode(journal_inode);
3048 if (!journal) {
3049 ext4_msg(sb, KERN_ERR, "Could not load journal inode");
3050 iput(journal_inode);
3051 return NULL;
3052 }
3053 journal->j_private = sb;
3054 ext4_init_journal_params(sb, journal);
3055 return journal;
3056 }
3057
3058 static journal_t *ext4_get_dev_journal(struct super_block *sb,
3059 dev_t j_dev)
3060 {
3061 struct buffer_head *bh;
3062 journal_t *journal;
3063 ext4_fsblk_t start;
3064 ext4_fsblk_t len;
3065 int hblock, blocksize;
3066 ext4_fsblk_t sb_block;
3067 unsigned long offset;
3068 struct ext4_super_block *es;
3069 struct block_device *bdev;
3070
3071 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
3072
3073 bdev = ext4_blkdev_get(j_dev, sb);
3074 if (bdev == NULL)
3075 return NULL;
3076
3077 if (bd_claim(bdev, sb)) {
3078 ext4_msg(sb, KERN_ERR,
3079 "failed to claim external journal device");
3080 blkdev_put(bdev, FMODE_READ|FMODE_WRITE);
3081 return NULL;
3082 }
3083
3084 blocksize = sb->s_blocksize;
3085 hblock = bdev_logical_block_size(bdev);
3086 if (blocksize < hblock) {
3087 ext4_msg(sb, KERN_ERR,
3088 "blocksize too small for journal device");
3089 goto out_bdev;
3090 }
3091
3092 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
3093 offset = EXT4_MIN_BLOCK_SIZE % blocksize;
3094 set_blocksize(bdev, blocksize);
3095 if (!(bh = __bread(bdev, sb_block, blocksize))) {
3096 ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
3097 "external journal");
3098 goto out_bdev;
3099 }
3100
3101 es = (struct ext4_super_block *) (((char *)bh->b_data) + offset);
3102 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
3103 !(le32_to_cpu(es->s_feature_incompat) &
3104 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
3105 ext4_msg(sb, KERN_ERR, "external journal has "
3106 "bad superblock");
3107 brelse(bh);
3108 goto out_bdev;
3109 }
3110
3111 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
3112 ext4_msg(sb, KERN_ERR, "journal UUID does not match");
3113 brelse(bh);
3114 goto out_bdev;
3115 }
3116
3117 len = ext4_blocks_count(es);
3118 start = sb_block + 1;
3119 brelse(bh); /* we're done with the superblock */
3120
3121 journal = jbd2_journal_init_dev(bdev, sb->s_bdev,
3122 start, len, blocksize);
3123 if (!journal) {
3124 ext4_msg(sb, KERN_ERR, "failed to create device journal");
3125 goto out_bdev;
3126 }
3127 journal->j_private = sb;
3128 ll_rw_block(READ, 1, &journal->j_sb_buffer);
3129 wait_on_buffer(journal->j_sb_buffer);
3130 if (!buffer_uptodate(journal->j_sb_buffer)) {
3131 ext4_msg(sb, KERN_ERR, "I/O error on journal device");
3132 goto out_journal;
3133 }
3134 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
3135 ext4_msg(sb, KERN_ERR, "External journal has more than one "
3136 "user (unsupported) - %d",
3137 be32_to_cpu(journal->j_superblock->s_nr_users));
3138 goto out_journal;
3139 }
3140 EXT4_SB(sb)->journal_bdev = bdev;
3141 ext4_init_journal_params(sb, journal);
3142 return journal;
3143
3144 out_journal:
3145 jbd2_journal_destroy(journal);
3146 out_bdev:
3147 ext4_blkdev_put(bdev);
3148 return NULL;
3149 }
3150
3151 static int ext4_load_journal(struct super_block *sb,
3152 struct ext4_super_block *es,
3153 unsigned long journal_devnum)
3154 {
3155 journal_t *journal;
3156 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
3157 dev_t journal_dev;
3158 int err = 0;
3159 int really_read_only;
3160
3161 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
3162
3163 if (journal_devnum &&
3164 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
3165 ext4_msg(sb, KERN_INFO, "external journal device major/minor "
3166 "numbers have changed");
3167 journal_dev = new_decode_dev(journal_devnum);
3168 } else
3169 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
3170
3171 really_read_only = bdev_read_only(sb->s_bdev);
3172
3173 /*
3174 * Are we loading a blank journal or performing recovery after a
3175 * crash? For recovery, we need to check in advance whether we
3176 * can get read-write access to the device.
3177 */
3178 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) {
3179 if (sb->s_flags & MS_RDONLY) {
3180 ext4_msg(sb, KERN_INFO, "INFO: recovery "
3181 "required on readonly filesystem");
3182 if (really_read_only) {
3183 ext4_msg(sb, KERN_ERR, "write access "
3184 "unavailable, cannot proceed");
3185 return -EROFS;
3186 }
3187 ext4_msg(sb, KERN_INFO, "write access will "
3188 "be enabled during recovery");
3189 }
3190 }
3191
3192 if (journal_inum && journal_dev) {
3193 ext4_msg(sb, KERN_ERR, "filesystem has both journal "
3194 "and inode journals!");
3195 return -EINVAL;
3196 }
3197
3198 if (journal_inum) {
3199 if (!(journal = ext4_get_journal(sb, journal_inum)))
3200 return -EINVAL;
3201 } else {
3202 if (!(journal = ext4_get_dev_journal(sb, journal_dev)))
3203 return -EINVAL;
3204 }
3205
3206 if (!(journal->j_flags & JBD2_BARRIER))
3207 ext4_msg(sb, KERN_INFO, "barriers disabled");
3208
3209 if (!really_read_only && test_opt(sb, UPDATE_JOURNAL)) {
3210 err = jbd2_journal_update_format(journal);
3211 if (err) {
3212 ext4_msg(sb, KERN_ERR, "error updating journal");
3213 jbd2_journal_destroy(journal);
3214 return err;
3215 }
3216 }
3217
3218 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER))
3219 err = jbd2_journal_wipe(journal, !really_read_only);
3220 if (!err)
3221 err = jbd2_journal_load(journal);
3222
3223 if (err) {
3224 ext4_msg(sb, KERN_ERR, "error loading journal");
3225 jbd2_journal_destroy(journal);
3226 return err;
3227 }
3228
3229 EXT4_SB(sb)->s_journal = journal;
3230 ext4_clear_journal_err(sb, es);
3231
3232 if (journal_devnum &&
3233 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
3234 es->s_journal_dev = cpu_to_le32(journal_devnum);
3235
3236 /* Make sure we flush the recovery flag to disk. */
3237 ext4_commit_super(sb, 1);
3238 }
3239
3240 return 0;
3241 }
3242
3243 static int ext4_commit_super(struct super_block *sb, int sync)
3244 {
3245 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
3246 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
3247 int error = 0;
3248
3249 if (!sbh)
3250 return error;
3251 if (buffer_write_io_error(sbh)) {
3252 /*
3253 * Oh, dear. A previous attempt to write the
3254 * superblock failed. This could happen because the
3255 * USB device was yanked out. Or it could happen to
3256 * be a transient write error and maybe the block will
3257 * be remapped. Nothing we can do but to retry the
3258 * write and hope for the best.
3259 */
3260 ext4_msg(sb, KERN_ERR, "previous I/O error to "
3261 "superblock detected");
3262 clear_buffer_write_io_error(sbh);
3263 set_buffer_uptodate(sbh);
3264 }
3265 /*
3266 * If the file system is mounted read-only, don't update the
3267 * superblock write time. This avoids updating the superblock
3268 * write time when we are mounting the root file system
3269 * read/only but we need to replay the journal; at that point,
3270 * for people who are east of GMT and who make their clock
3271 * tick in localtime for Windows bug-for-bug compatibility,
3272 * the clock is set in the future, and this will cause e2fsck
3273 * to complain and force a full file system check.
3274 */
3275 if (!(sb->s_flags & MS_RDONLY))
3276 es->s_wtime = cpu_to_le32(get_seconds());
3277 es->s_kbytes_written =
3278 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written +
3279 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
3280 EXT4_SB(sb)->s_sectors_written_start) >> 1));
3281 ext4_free_blocks_count_set(es, percpu_counter_sum_positive(
3282 &EXT4_SB(sb)->s_freeblocks_counter));
3283 es->s_free_inodes_count = cpu_to_le32(percpu_counter_sum_positive(
3284 &EXT4_SB(sb)->s_freeinodes_counter));
3285 sb->s_dirt = 0;
3286 BUFFER_TRACE(sbh, "marking dirty");
3287 mark_buffer_dirty(sbh);
3288 if (sync) {
3289 error = sync_dirty_buffer(sbh);
3290 if (error)
3291 return error;
3292
3293 error = buffer_write_io_error(sbh);
3294 if (error) {
3295 ext4_msg(sb, KERN_ERR, "I/O error while writing "
3296 "superblock");
3297 clear_buffer_write_io_error(sbh);
3298 set_buffer_uptodate(sbh);
3299 }
3300 }
3301 return error;
3302 }
3303
3304 /*
3305 * Have we just finished recovery? If so, and if we are mounting (or
3306 * remounting) the filesystem readonly, then we will end up with a
3307 * consistent fs on disk. Record that fact.
3308 */
3309 static void ext4_mark_recovery_complete(struct super_block *sb,
3310 struct ext4_super_block *es)
3311 {
3312 journal_t *journal = EXT4_SB(sb)->s_journal;
3313
3314 if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) {
3315 BUG_ON(journal != NULL);
3316 return;
3317 }
3318 jbd2_journal_lock_updates(journal);
3319 if (jbd2_journal_flush(journal) < 0)
3320 goto out;
3321
3322 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER) &&
3323 sb->s_flags & MS_RDONLY) {
3324 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
3325 ext4_commit_super(sb, 1);
3326 }
3327
3328 out:
3329 jbd2_journal_unlock_updates(journal);
3330 }
3331
3332 /*
3333 * If we are mounting (or read-write remounting) a filesystem whose journal
3334 * has recorded an error from a previous lifetime, move that error to the
3335 * main filesystem now.
3336 */
3337 static void ext4_clear_journal_err(struct super_block *sb,
3338 struct ext4_super_block *es)
3339 {
3340 journal_t *journal;
3341 int j_errno;
3342 const char *errstr;
3343
3344 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
3345
3346 journal = EXT4_SB(sb)->s_journal;
3347
3348 /*
3349 * Now check for any error status which may have been recorded in the
3350 * journal by a prior ext4_error() or ext4_abort()
3351 */
3352
3353 j_errno = jbd2_journal_errno(journal);
3354 if (j_errno) {
3355 char nbuf[16];
3356
3357 errstr = ext4_decode_error(sb, j_errno, nbuf);
3358 ext4_warning(sb, __func__, "Filesystem error recorded "
3359 "from previous mount: %s", errstr);
3360 ext4_warning(sb, __func__, "Marking fs in need of "
3361 "filesystem check.");
3362
3363 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
3364 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
3365 ext4_commit_super(sb, 1);
3366
3367 jbd2_journal_clear_err(journal);
3368 }
3369 }
3370
3371 /*
3372 * Force the running and committing transactions to commit,
3373 * and wait on the commit.
3374 */
3375 int ext4_force_commit(struct super_block *sb)
3376 {
3377 journal_t *journal;
3378 int ret = 0;
3379
3380 if (sb->s_flags & MS_RDONLY)
3381 return 0;
3382
3383 journal = EXT4_SB(sb)->s_journal;
3384 if (journal)
3385 ret = ext4_journal_force_commit(journal);
3386
3387 return ret;
3388 }
3389
3390 static void ext4_write_super(struct super_block *sb)
3391 {
3392 lock_super(sb);
3393 ext4_commit_super(sb, 1);
3394 unlock_super(sb);
3395 }
3396
3397 static int ext4_sync_fs(struct super_block *sb, int wait)
3398 {
3399 int ret = 0;
3400 tid_t target;
3401 struct ext4_sb_info *sbi = EXT4_SB(sb);
3402
3403 trace_ext4_sync_fs(sb, wait);
3404 flush_workqueue(sbi->dio_unwritten_wq);
3405 if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
3406 if (wait)
3407 jbd2_log_wait_commit(sbi->s_journal, target);
3408 }
3409 return ret;
3410 }
3411
3412 /*
3413 * LVM calls this function before a (read-only) snapshot is created. This
3414 * gives us a chance to flush the journal completely and mark the fs clean.
3415 */
3416 static int ext4_freeze(struct super_block *sb)
3417 {
3418 int error = 0;
3419 journal_t *journal;
3420
3421 if (sb->s_flags & MS_RDONLY)
3422 return 0;
3423
3424 journal = EXT4_SB(sb)->s_journal;
3425
3426 /* Now we set up the journal barrier. */
3427 jbd2_journal_lock_updates(journal);
3428
3429 /*
3430 * Don't clear the needs_recovery flag if we failed to flush
3431 * the journal.
3432 */
3433 error = jbd2_journal_flush(journal);
3434 if (error < 0) {
3435 out:
3436 jbd2_journal_unlock_updates(journal);
3437 return error;
3438 }
3439
3440 /* Journal blocked and flushed, clear needs_recovery flag. */
3441 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
3442 error = ext4_commit_super(sb, 1);
3443 if (error)
3444 goto out;
3445 return 0;
3446 }
3447
3448 /*
3449 * Called by LVM after the snapshot is done. We need to reset the RECOVER
3450 * flag here, even though the filesystem is not technically dirty yet.
3451 */
3452 static int ext4_unfreeze(struct super_block *sb)
3453 {
3454 if (sb->s_flags & MS_RDONLY)
3455 return 0;
3456
3457 lock_super(sb);
3458 /* Reset the needs_recovery flag before the fs is unlocked. */
3459 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
3460 ext4_commit_super(sb, 1);
3461 unlock_super(sb);
3462 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
3463 return 0;
3464 }
3465
3466 static int ext4_remount(struct super_block *sb, int *flags, char *data)
3467 {
3468 struct ext4_super_block *es;
3469 struct ext4_sb_info *sbi = EXT4_SB(sb);
3470 ext4_fsblk_t n_blocks_count = 0;
3471 unsigned long old_sb_flags;
3472 struct ext4_mount_options old_opts;
3473 ext4_group_t g;
3474 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
3475 int err;
3476 #ifdef CONFIG_QUOTA
3477 int i;
3478 #endif
3479
3480 lock_kernel();
3481
3482 /* Store the original options */
3483 lock_super(sb);
3484 old_sb_flags = sb->s_flags;
3485 old_opts.s_mount_opt = sbi->s_mount_opt;
3486 old_opts.s_resuid = sbi->s_resuid;
3487 old_opts.s_resgid = sbi->s_resgid;
3488 old_opts.s_commit_interval = sbi->s_commit_interval;
3489 old_opts.s_min_batch_time = sbi->s_min_batch_time;
3490 old_opts.s_max_batch_time = sbi->s_max_batch_time;
3491 #ifdef CONFIG_QUOTA
3492 old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
3493 for (i = 0; i < MAXQUOTAS; i++)
3494 old_opts.s_qf_names[i] = sbi->s_qf_names[i];
3495 #endif
3496 if (sbi->s_journal && sbi->s_journal->j_task->io_context)
3497 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio;
3498
3499 /*
3500 * Allow the "check" option to be passed as a remount option.
3501 */
3502 if (!parse_options(data, sb, NULL, &journal_ioprio,
3503 &n_blocks_count, 1)) {
3504 err = -EINVAL;
3505 goto restore_opts;
3506 }
3507
3508 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED)
3509 ext4_abort(sb, __func__, "Abort forced by user");
3510
3511 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
3512 ((sbi->s_mount_opt & EXT4_MOUNT_POSIX_ACL) ? MS_POSIXACL : 0);
3513
3514 es = sbi->s_es;
3515
3516 if (sbi->s_journal) {
3517 ext4_init_journal_params(sb, sbi->s_journal);
3518 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
3519 }
3520
3521 if ((*flags & MS_RDONLY) != (sb->s_flags & MS_RDONLY) ||
3522 n_blocks_count > ext4_blocks_count(es)) {
3523 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) {
3524 err = -EROFS;
3525 goto restore_opts;
3526 }
3527
3528 if (*flags & MS_RDONLY) {
3529 /*
3530 * First of all, the unconditional stuff we have to do
3531 * to disable replay of the journal when we next remount
3532 */
3533 sb->s_flags |= MS_RDONLY;
3534
3535 /*
3536 * OK, test if we are remounting a valid rw partition
3537 * readonly, and if so set the rdonly flag and then
3538 * mark the partition as valid again.
3539 */
3540 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
3541 (sbi->s_mount_state & EXT4_VALID_FS))
3542 es->s_state = cpu_to_le16(sbi->s_mount_state);
3543
3544 if (sbi->s_journal)
3545 ext4_mark_recovery_complete(sb, es);
3546 } else {
3547 /* Make sure we can mount this feature set readwrite */
3548 if (!ext4_feature_set_ok(sb, 0)) {
3549 err = -EROFS;
3550 goto restore_opts;
3551 }
3552 /*
3553 * Make sure the group descriptor checksums
3554 * are sane. If they aren't, refuse to remount r/w.
3555 */
3556 for (g = 0; g < sbi->s_groups_count; g++) {
3557 struct ext4_group_desc *gdp =
3558 ext4_get_group_desc(sb, g, NULL);
3559
3560 if (!ext4_group_desc_csum_verify(sbi, g, gdp)) {
3561 ext4_msg(sb, KERN_ERR,
3562 "ext4_remount: Checksum for group %u failed (%u!=%u)",
3563 g, le16_to_cpu(ext4_group_desc_csum(sbi, g, gdp)),
3564 le16_to_cpu(gdp->bg_checksum));
3565 err = -EINVAL;
3566 goto restore_opts;
3567 }
3568 }
3569
3570 /*
3571 * If we have an unprocessed orphan list hanging
3572 * around from a previously readonly bdev mount,
3573 * require a full umount/remount for now.
3574 */
3575 if (es->s_last_orphan) {
3576 ext4_msg(sb, KERN_WARNING, "Couldn't "
3577 "remount RDWR because of unprocessed "
3578 "orphan inode list. Please "
3579 "umount/remount instead");
3580 err = -EINVAL;
3581 goto restore_opts;
3582 }
3583
3584 /*
3585 * Mounting a RDONLY partition read-write, so reread
3586 * and store the current valid flag. (It may have
3587 * been changed by e2fsck since we originally mounted
3588 * the partition.)
3589 */
3590 if (sbi->s_journal)
3591 ext4_clear_journal_err(sb, es);
3592 sbi->s_mount_state = le16_to_cpu(es->s_state);
3593 if ((err = ext4_group_extend(sb, es, n_blocks_count)))
3594 goto restore_opts;
3595 if (!ext4_setup_super(sb, es, 0))
3596 sb->s_flags &= ~MS_RDONLY;
3597 }
3598 }
3599 ext4_setup_system_zone(sb);
3600 if (sbi->s_journal == NULL)
3601 ext4_commit_super(sb, 1);
3602
3603 #ifdef CONFIG_QUOTA
3604 /* Release old quota file names */
3605 for (i = 0; i < MAXQUOTAS; i++)
3606 if (old_opts.s_qf_names[i] &&
3607 old_opts.s_qf_names[i] != sbi->s_qf_names[i])
3608 kfree(old_opts.s_qf_names[i]);
3609 #endif
3610 unlock_super(sb);
3611 unlock_kernel();
3612 return 0;
3613
3614 restore_opts:
3615 sb->s_flags = old_sb_flags;
3616 sbi->s_mount_opt = old_opts.s_mount_opt;
3617 sbi->s_resuid = old_opts.s_resuid;
3618 sbi->s_resgid = old_opts.s_resgid;
3619 sbi->s_commit_interval = old_opts.s_commit_interval;
3620 sbi->s_min_batch_time = old_opts.s_min_batch_time;
3621 sbi->s_max_batch_time = old_opts.s_max_batch_time;
3622 #ifdef CONFIG_QUOTA
3623 sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
3624 for (i = 0; i < MAXQUOTAS; i++) {
3625 if (sbi->s_qf_names[i] &&
3626 old_opts.s_qf_names[i] != sbi->s_qf_names[i])
3627 kfree(sbi->s_qf_names[i]);
3628 sbi->s_qf_names[i] = old_opts.s_qf_names[i];
3629 }
3630 #endif
3631 unlock_super(sb);
3632 unlock_kernel();
3633 return err;
3634 }
3635
3636 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
3637 {
3638 struct super_block *sb = dentry->d_sb;
3639 struct ext4_sb_info *sbi = EXT4_SB(sb);
3640 struct ext4_super_block *es = sbi->s_es;
3641 u64 fsid;
3642
3643 if (test_opt(sb, MINIX_DF)) {
3644 sbi->s_overhead_last = 0;
3645 } else if (sbi->s_blocks_last != ext4_blocks_count(es)) {
3646 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3647 ext4_fsblk_t overhead = 0;
3648
3649 /*
3650 * Compute the overhead (FS structures). This is constant
3651 * for a given filesystem unless the number of block groups
3652 * changes so we cache the previous value until it does.
3653 */
3654
3655 /*
3656 * All of the blocks before first_data_block are
3657 * overhead
3658 */
3659 overhead = le32_to_cpu(es->s_first_data_block);
3660
3661 /*
3662 * Add the overhead attributed to the superblock and
3663 * block group descriptors. If the sparse superblocks
3664 * feature is turned on, then not all groups have this.
3665 */
3666 for (i = 0; i < ngroups; i++) {
3667 overhead += ext4_bg_has_super(sb, i) +
3668 ext4_bg_num_gdb(sb, i);
3669 cond_resched();
3670 }
3671
3672 /*
3673 * Every block group has an inode bitmap, a block
3674 * bitmap, and an inode table.
3675 */
3676 overhead += ngroups * (2 + sbi->s_itb_per_group);
3677 sbi->s_overhead_last = overhead;
3678 smp_wmb();
3679 sbi->s_blocks_last = ext4_blocks_count(es);
3680 }
3681
3682 buf->f_type = EXT4_SUPER_MAGIC;
3683 buf->f_bsize = sb->s_blocksize;
3684 buf->f_blocks = ext4_blocks_count(es) - sbi->s_overhead_last;
3685 buf->f_bfree = percpu_counter_sum_positive(&sbi->s_freeblocks_counter) -
3686 percpu_counter_sum_positive(&sbi->s_dirtyblocks_counter);
3687 buf->f_bavail = buf->f_bfree - ext4_r_blocks_count(es);
3688 if (buf->f_bfree < ext4_r_blocks_count(es))
3689 buf->f_bavail = 0;
3690 buf->f_files = le32_to_cpu(es->s_inodes_count);
3691 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
3692 buf->f_namelen = EXT4_NAME_LEN;
3693 fsid = le64_to_cpup((void *)es->s_uuid) ^
3694 le64_to_cpup((void *)es->s_uuid + sizeof(u64));
3695 buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL;
3696 buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL;
3697
3698 return 0;
3699 }
3700
3701 /* Helper function for writing quotas on sync - we need to start transaction
3702 * before quota file is locked for write. Otherwise the are possible deadlocks:
3703 * Process 1 Process 2
3704 * ext4_create() quota_sync()
3705 * jbd2_journal_start() write_dquot()
3706 * vfs_dq_init() down(dqio_mutex)
3707 * down(dqio_mutex) jbd2_journal_start()
3708 *
3709 */
3710
3711 #ifdef CONFIG_QUOTA
3712
3713 static inline struct inode *dquot_to_inode(struct dquot *dquot)
3714 {
3715 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_type];
3716 }
3717
3718 static int ext4_write_dquot(struct dquot *dquot)
3719 {
3720 int ret, err;
3721 handle_t *handle;
3722 struct inode *inode;
3723
3724 inode = dquot_to_inode(dquot);
3725 handle = ext4_journal_start(inode,
3726 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
3727 if (IS_ERR(handle))
3728 return PTR_ERR(handle);
3729 ret = dquot_commit(dquot);
3730 err = ext4_journal_stop(handle);
3731 if (!ret)
3732 ret = err;
3733 return ret;
3734 }
3735
3736 static int ext4_acquire_dquot(struct dquot *dquot)
3737 {
3738 int ret, err;
3739 handle_t *handle;
3740
3741 handle = ext4_journal_start(dquot_to_inode(dquot),
3742 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
3743 if (IS_ERR(handle))
3744 return PTR_ERR(handle);
3745 ret = dquot_acquire(dquot);
3746 err = ext4_journal_stop(handle);
3747 if (!ret)
3748 ret = err;
3749 return ret;
3750 }
3751
3752 static int ext4_release_dquot(struct dquot *dquot)
3753 {
3754 int ret, err;
3755 handle_t *handle;
3756
3757 handle = ext4_journal_start(dquot_to_inode(dquot),
3758 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
3759 if (IS_ERR(handle)) {
3760 /* Release dquot anyway to avoid endless cycle in dqput() */
3761 dquot_release(dquot);
3762 return PTR_ERR(handle);
3763 }
3764 ret = dquot_release(dquot);
3765 err = ext4_journal_stop(handle);
3766 if (!ret)
3767 ret = err;
3768 return ret;
3769 }
3770
3771 static int ext4_mark_dquot_dirty(struct dquot *dquot)
3772 {
3773 /* Are we journaling quotas? */
3774 if (EXT4_SB(dquot->dq_sb)->s_qf_names[USRQUOTA] ||
3775 EXT4_SB(dquot->dq_sb)->s_qf_names[GRPQUOTA]) {
3776 dquot_mark_dquot_dirty(dquot);
3777 return ext4_write_dquot(dquot);
3778 } else {
3779 return dquot_mark_dquot_dirty(dquot);
3780 }
3781 }
3782
3783 static int ext4_write_info(struct super_block *sb, int type)
3784 {
3785 int ret, err;
3786 handle_t *handle;
3787
3788 /* Data block + inode block */
3789 handle = ext4_journal_start(sb->s_root->d_inode, 2);
3790 if (IS_ERR(handle))
3791 return PTR_ERR(handle);
3792 ret = dquot_commit_info(sb, type);
3793 err = ext4_journal_stop(handle);
3794 if (!ret)
3795 ret = err;
3796 return ret;
3797 }
3798
3799 /*
3800 * Turn on quotas during mount time - we need to find
3801 * the quota file and such...
3802 */
3803 static int ext4_quota_on_mount(struct super_block *sb, int type)
3804 {
3805 return vfs_quota_on_mount(sb, EXT4_SB(sb)->s_qf_names[type],
3806 EXT4_SB(sb)->s_jquota_fmt, type);
3807 }
3808
3809 /*
3810 * Standard function to be called on quota_on
3811 */
3812 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
3813 char *name, int remount)
3814 {
3815 int err;
3816 struct path path;
3817
3818 if (!test_opt(sb, QUOTA))
3819 return -EINVAL;
3820 /* When remounting, no checks are needed and in fact, name is NULL */
3821 if (remount)
3822 return vfs_quota_on(sb, type, format_id, name, remount);
3823
3824 err = kern_path(name, LOOKUP_FOLLOW, &path);
3825 if (err)
3826 return err;
3827
3828 /* Quotafile not on the same filesystem? */
3829 if (path.mnt->mnt_sb != sb) {
3830 path_put(&path);
3831 return -EXDEV;
3832 }
3833 /* Journaling quota? */
3834 if (EXT4_SB(sb)->s_qf_names[type]) {
3835 /* Quotafile not in fs root? */
3836 if (path.dentry->d_parent != sb->s_root)
3837 ext4_msg(sb, KERN_WARNING,
3838 "Quota file not on filesystem root. "
3839 "Journaled quota will not work");
3840 }
3841
3842 /*
3843 * When we journal data on quota file, we have to flush journal to see
3844 * all updates to the file when we bypass pagecache...
3845 */
3846 if (EXT4_SB(sb)->s_journal &&
3847 ext4_should_journal_data(path.dentry->d_inode)) {
3848 /*
3849 * We don't need to lock updates but journal_flush() could
3850 * otherwise be livelocked...
3851 */
3852 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal);
3853 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal);
3854 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
3855 if (err) {
3856 path_put(&path);
3857 return err;
3858 }
3859 }
3860
3861 err = vfs_quota_on_path(sb, type, format_id, &path);
3862 path_put(&path);
3863 return err;
3864 }
3865
3866 /* Read data from quotafile - avoid pagecache and such because we cannot afford
3867 * acquiring the locks... As quota files are never truncated and quota code
3868 * itself serializes the operations (and noone else should touch the files)
3869 * we don't have to be afraid of races */
3870 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
3871 size_t len, loff_t off)
3872 {
3873 struct inode *inode = sb_dqopt(sb)->files[type];
3874 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
3875 int err = 0;
3876 int offset = off & (sb->s_blocksize - 1);
3877 int tocopy;
3878 size_t toread;
3879 struct buffer_head *bh;
3880 loff_t i_size = i_size_read(inode);
3881
3882 if (off > i_size)
3883 return 0;
3884 if (off+len > i_size)
3885 len = i_size-off;
3886 toread = len;
3887 while (toread > 0) {
3888 tocopy = sb->s_blocksize - offset < toread ?
3889 sb->s_blocksize - offset : toread;
3890 bh = ext4_bread(NULL, inode, blk, 0, &err);
3891 if (err)
3892 return err;
3893 if (!bh) /* A hole? */
3894 memset(data, 0, tocopy);
3895 else
3896 memcpy(data, bh->b_data+offset, tocopy);
3897 brelse(bh);
3898 offset = 0;
3899 toread -= tocopy;
3900 data += tocopy;
3901 blk++;
3902 }
3903 return len;
3904 }
3905
3906 /* Write to quotafile (we know the transaction is already started and has
3907 * enough credits) */
3908 static ssize_t ext4_quota_write(struct super_block *sb, int type,
3909 const char *data, size_t len, loff_t off)
3910 {
3911 struct inode *inode = sb_dqopt(sb)->files[type];
3912 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
3913 int err = 0;
3914 int offset = off & (sb->s_blocksize - 1);
3915 int tocopy;
3916 int journal_quota = EXT4_SB(sb)->s_qf_names[type] != NULL;
3917 size_t towrite = len;
3918 struct buffer_head *bh;
3919 handle_t *handle = journal_current_handle();
3920
3921 if (EXT4_SB(sb)->s_journal && !handle) {
3922 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
3923 " cancelled because transaction is not started",
3924 (unsigned long long)off, (unsigned long long)len);
3925 return -EIO;
3926 }
3927 mutex_lock_nested(&inode->i_mutex, I_MUTEX_QUOTA);
3928 while (towrite > 0) {
3929 tocopy = sb->s_blocksize - offset < towrite ?
3930 sb->s_blocksize - offset : towrite;
3931 bh = ext4_bread(handle, inode, blk, 1, &err);
3932 if (!bh)
3933 goto out;
3934 if (journal_quota) {
3935 err = ext4_journal_get_write_access(handle, bh);
3936 if (err) {
3937 brelse(bh);
3938 goto out;
3939 }
3940 }
3941 lock_buffer(bh);
3942 memcpy(bh->b_data+offset, data, tocopy);
3943 flush_dcache_page(bh->b_page);
3944 unlock_buffer(bh);
3945 if (journal_quota)
3946 err = ext4_handle_dirty_metadata(handle, NULL, bh);
3947 else {
3948 /* Always do at least ordered writes for quotas */
3949 err = ext4_jbd2_file_inode(handle, inode);
3950 mark_buffer_dirty(bh);
3951 }
3952 brelse(bh);
3953 if (err)
3954 goto out;
3955 offset = 0;
3956 towrite -= tocopy;
3957 data += tocopy;
3958 blk++;
3959 }
3960 out:
3961 if (len == towrite) {
3962 mutex_unlock(&inode->i_mutex);
3963 return err;
3964 }
3965 if (inode->i_size < off+len-towrite) {
3966 i_size_write(inode, off+len-towrite);
3967 EXT4_I(inode)->i_disksize = inode->i_size;
3968 }
3969 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
3970 ext4_mark_inode_dirty(handle, inode);
3971 mutex_unlock(&inode->i_mutex);
3972 return len - towrite;
3973 }
3974
3975 #endif
3976
3977 static int ext4_get_sb(struct file_system_type *fs_type, int flags,
3978 const char *dev_name, void *data, struct vfsmount *mnt)
3979 {
3980 return get_sb_bdev(fs_type, flags, dev_name, data, ext4_fill_super,mnt);
3981 }
3982
3983 #if !defined(CONTIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
3984 static struct file_system_type ext2_fs_type = {
3985 .owner = THIS_MODULE,
3986 .name = "ext2",
3987 .get_sb = ext4_get_sb,
3988 .kill_sb = kill_block_super,
3989 .fs_flags = FS_REQUIRES_DEV,
3990 };
3991
3992 static inline void register_as_ext2(void)
3993 {
3994 int err = register_filesystem(&ext2_fs_type);
3995 if (err)
3996 printk(KERN_WARNING
3997 "EXT4-fs: Unable to register as ext2 (%d)\n", err);
3998 }
3999
4000 static inline void unregister_as_ext2(void)
4001 {
4002 unregister_filesystem(&ext2_fs_type);
4003 }
4004 MODULE_ALIAS("ext2");
4005 #else
4006 static inline void register_as_ext2(void) { }
4007 static inline void unregister_as_ext2(void) { }
4008 #endif
4009
4010 #if !defined(CONTIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
4011 static struct file_system_type ext3_fs_type = {
4012 .owner = THIS_MODULE,
4013 .name = "ext3",
4014 .get_sb = ext4_get_sb,
4015 .kill_sb = kill_block_super,
4016 .fs_flags = FS_REQUIRES_DEV,
4017 };
4018
4019 static inline void register_as_ext3(void)
4020 {
4021 int err = register_filesystem(&ext3_fs_type);
4022 if (err)
4023 printk(KERN_WARNING
4024 "EXT4-fs: Unable to register as ext3 (%d)\n", err);
4025 }
4026
4027 static inline void unregister_as_ext3(void)
4028 {
4029 unregister_filesystem(&ext3_fs_type);
4030 }
4031 MODULE_ALIAS("ext3");
4032 #else
4033 static inline void register_as_ext3(void) { }
4034 static inline void unregister_as_ext3(void) { }
4035 #endif
4036
4037 static struct file_system_type ext4_fs_type = {
4038 .owner = THIS_MODULE,
4039 .name = "ext4",
4040 .get_sb = ext4_get_sb,
4041 .kill_sb = kill_block_super,
4042 .fs_flags = FS_REQUIRES_DEV,
4043 };
4044
4045 static int __init init_ext4_fs(void)
4046 {
4047 int err;
4048
4049 err = init_ext4_system_zone();
4050 if (err)
4051 return err;
4052 ext4_kset = kset_create_and_add("ext4", NULL, fs_kobj);
4053 if (!ext4_kset)
4054 goto out4;
4055 ext4_proc_root = proc_mkdir("fs/ext4", NULL);
4056 err = init_ext4_mballoc();
4057 if (err)
4058 goto out3;
4059
4060 err = init_ext4_xattr();
4061 if (err)
4062 goto out2;
4063 err = init_inodecache();
4064 if (err)
4065 goto out1;
4066 register_as_ext2();
4067 register_as_ext3();
4068 err = register_filesystem(&ext4_fs_type);
4069 if (err)
4070 goto out;
4071 return 0;
4072 out:
4073 unregister_as_ext2();
4074 unregister_as_ext3();
4075 destroy_inodecache();
4076 out1:
4077 exit_ext4_xattr();
4078 out2:
4079 exit_ext4_mballoc();
4080 out3:
4081 remove_proc_entry("fs/ext4", NULL);
4082 kset_unregister(ext4_kset);
4083 out4:
4084 exit_ext4_system_zone();
4085 return err;
4086 }
4087
4088 static void __exit exit_ext4_fs(void)
4089 {
4090 unregister_as_ext2();
4091 unregister_as_ext3();
4092 unregister_filesystem(&ext4_fs_type);
4093 destroy_inodecache();
4094 exit_ext4_xattr();
4095 exit_ext4_mballoc();
4096 remove_proc_entry("fs/ext4", NULL);
4097 kset_unregister(ext4_kset);
4098 exit_ext4_system_zone();
4099 }
4100
4101 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
4102 MODULE_DESCRIPTION("Fourth Extended Filesystem");
4103 MODULE_LICENSE("GPL");
4104 module_init(init_ext4_fs)
4105 module_exit(exit_ext4_fs)