]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/ext4/super.c
Merge tag 'sunxi-fixes-for-4.9-2' of https://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-artful-kernel.git] / fs / ext4 / super.c
1 /*
2 * linux/fs/ext4/super.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * Big-endian to little-endian byte-swapping/bitmaps by
16 * David S. Miller (davem@caip.rutgers.edu), 1995
17 */
18
19 #include <linux/module.h>
20 #include <linux/string.h>
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/vmalloc.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/parser.h>
29 #include <linux/buffer_head.h>
30 #include <linux/exportfs.h>
31 #include <linux/vfs.h>
32 #include <linux/random.h>
33 #include <linux/mount.h>
34 #include <linux/namei.h>
35 #include <linux/quotaops.h>
36 #include <linux/seq_file.h>
37 #include <linux/ctype.h>
38 #include <linux/log2.h>
39 #include <linux/crc16.h>
40 #include <linux/cleancache.h>
41 #include <asm/uaccess.h>
42
43 #include <linux/kthread.h>
44 #include <linux/freezer.h>
45
46 #include "ext4.h"
47 #include "ext4_extents.h" /* Needed for trace points definition */
48 #include "ext4_jbd2.h"
49 #include "xattr.h"
50 #include "acl.h"
51 #include "mballoc.h"
52
53 #define CREATE_TRACE_POINTS
54 #include <trace/events/ext4.h>
55
56 static struct ext4_lazy_init *ext4_li_info;
57 static struct mutex ext4_li_mtx;
58 static struct ratelimit_state ext4_mount_msg_ratelimit;
59
60 static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
61 unsigned long journal_devnum);
62 static int ext4_show_options(struct seq_file *seq, struct dentry *root);
63 static int ext4_commit_super(struct super_block *sb, int sync);
64 static void ext4_mark_recovery_complete(struct super_block *sb,
65 struct ext4_super_block *es);
66 static void ext4_clear_journal_err(struct super_block *sb,
67 struct ext4_super_block *es);
68 static int ext4_sync_fs(struct super_block *sb, int wait);
69 static int ext4_remount(struct super_block *sb, int *flags, char *data);
70 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
71 static int ext4_unfreeze(struct super_block *sb);
72 static int ext4_freeze(struct super_block *sb);
73 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
74 const char *dev_name, void *data);
75 static inline int ext2_feature_set_ok(struct super_block *sb);
76 static inline int ext3_feature_set_ok(struct super_block *sb);
77 static int ext4_feature_set_ok(struct super_block *sb, int readonly);
78 static void ext4_destroy_lazyinit_thread(void);
79 static void ext4_unregister_li_request(struct super_block *sb);
80 static void ext4_clear_request_list(void);
81 static struct inode *ext4_get_journal_inode(struct super_block *sb,
82 unsigned int journal_inum);
83
84 /*
85 * Lock ordering
86 *
87 * Note the difference between i_mmap_sem (EXT4_I(inode)->i_mmap_sem) and
88 * i_mmap_rwsem (inode->i_mmap_rwsem)!
89 *
90 * page fault path:
91 * mmap_sem -> sb_start_pagefault -> i_mmap_sem (r) -> transaction start ->
92 * page lock -> i_data_sem (rw)
93 *
94 * buffered write path:
95 * sb_start_write -> i_mutex -> mmap_sem
96 * sb_start_write -> i_mutex -> transaction start -> page lock ->
97 * i_data_sem (rw)
98 *
99 * truncate:
100 * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (w) -> i_mmap_sem (w) ->
101 * i_mmap_rwsem (w) -> page lock
102 * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (w) -> i_mmap_sem (w) ->
103 * transaction start -> i_data_sem (rw)
104 *
105 * direct IO:
106 * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (r) -> mmap_sem
107 * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (r) ->
108 * transaction start -> i_data_sem (rw)
109 *
110 * writepages:
111 * transaction start -> page lock(s) -> i_data_sem (rw)
112 */
113
114 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
115 static struct file_system_type ext2_fs_type = {
116 .owner = THIS_MODULE,
117 .name = "ext2",
118 .mount = ext4_mount,
119 .kill_sb = kill_block_super,
120 .fs_flags = FS_REQUIRES_DEV,
121 };
122 MODULE_ALIAS_FS("ext2");
123 MODULE_ALIAS("ext2");
124 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type)
125 #else
126 #define IS_EXT2_SB(sb) (0)
127 #endif
128
129
130 static struct file_system_type ext3_fs_type = {
131 .owner = THIS_MODULE,
132 .name = "ext3",
133 .mount = ext4_mount,
134 .kill_sb = kill_block_super,
135 .fs_flags = FS_REQUIRES_DEV,
136 };
137 MODULE_ALIAS_FS("ext3");
138 MODULE_ALIAS("ext3");
139 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type)
140
141 static int ext4_verify_csum_type(struct super_block *sb,
142 struct ext4_super_block *es)
143 {
144 if (!ext4_has_feature_metadata_csum(sb))
145 return 1;
146
147 return es->s_checksum_type == EXT4_CRC32C_CHKSUM;
148 }
149
150 static __le32 ext4_superblock_csum(struct super_block *sb,
151 struct ext4_super_block *es)
152 {
153 struct ext4_sb_info *sbi = EXT4_SB(sb);
154 int offset = offsetof(struct ext4_super_block, s_checksum);
155 __u32 csum;
156
157 csum = ext4_chksum(sbi, ~0, (char *)es, offset);
158
159 return cpu_to_le32(csum);
160 }
161
162 static int ext4_superblock_csum_verify(struct super_block *sb,
163 struct ext4_super_block *es)
164 {
165 if (!ext4_has_metadata_csum(sb))
166 return 1;
167
168 return es->s_checksum == ext4_superblock_csum(sb, es);
169 }
170
171 void ext4_superblock_csum_set(struct super_block *sb)
172 {
173 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
174
175 if (!ext4_has_metadata_csum(sb))
176 return;
177
178 es->s_checksum = ext4_superblock_csum(sb, es);
179 }
180
181 void *ext4_kvmalloc(size_t size, gfp_t flags)
182 {
183 void *ret;
184
185 ret = kmalloc(size, flags | __GFP_NOWARN);
186 if (!ret)
187 ret = __vmalloc(size, flags, PAGE_KERNEL);
188 return ret;
189 }
190
191 void *ext4_kvzalloc(size_t size, gfp_t flags)
192 {
193 void *ret;
194
195 ret = kzalloc(size, flags | __GFP_NOWARN);
196 if (!ret)
197 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL);
198 return ret;
199 }
200
201 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
202 struct ext4_group_desc *bg)
203 {
204 return le32_to_cpu(bg->bg_block_bitmap_lo) |
205 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
206 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
207 }
208
209 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
210 struct ext4_group_desc *bg)
211 {
212 return le32_to_cpu(bg->bg_inode_bitmap_lo) |
213 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
214 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
215 }
216
217 ext4_fsblk_t ext4_inode_table(struct super_block *sb,
218 struct ext4_group_desc *bg)
219 {
220 return le32_to_cpu(bg->bg_inode_table_lo) |
221 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
222 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
223 }
224
225 __u32 ext4_free_group_clusters(struct super_block *sb,
226 struct ext4_group_desc *bg)
227 {
228 return le16_to_cpu(bg->bg_free_blocks_count_lo) |
229 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
230 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
231 }
232
233 __u32 ext4_free_inodes_count(struct super_block *sb,
234 struct ext4_group_desc *bg)
235 {
236 return le16_to_cpu(bg->bg_free_inodes_count_lo) |
237 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
238 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
239 }
240
241 __u32 ext4_used_dirs_count(struct super_block *sb,
242 struct ext4_group_desc *bg)
243 {
244 return le16_to_cpu(bg->bg_used_dirs_count_lo) |
245 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
246 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
247 }
248
249 __u32 ext4_itable_unused_count(struct super_block *sb,
250 struct ext4_group_desc *bg)
251 {
252 return le16_to_cpu(bg->bg_itable_unused_lo) |
253 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
254 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
255 }
256
257 void ext4_block_bitmap_set(struct super_block *sb,
258 struct ext4_group_desc *bg, ext4_fsblk_t blk)
259 {
260 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
261 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
262 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
263 }
264
265 void ext4_inode_bitmap_set(struct super_block *sb,
266 struct ext4_group_desc *bg, ext4_fsblk_t blk)
267 {
268 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk);
269 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
270 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
271 }
272
273 void ext4_inode_table_set(struct super_block *sb,
274 struct ext4_group_desc *bg, ext4_fsblk_t blk)
275 {
276 bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
277 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
278 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
279 }
280
281 void ext4_free_group_clusters_set(struct super_block *sb,
282 struct ext4_group_desc *bg, __u32 count)
283 {
284 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
285 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
286 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
287 }
288
289 void ext4_free_inodes_set(struct super_block *sb,
290 struct ext4_group_desc *bg, __u32 count)
291 {
292 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
293 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
294 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
295 }
296
297 void ext4_used_dirs_set(struct super_block *sb,
298 struct ext4_group_desc *bg, __u32 count)
299 {
300 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
301 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
302 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
303 }
304
305 void ext4_itable_unused_set(struct super_block *sb,
306 struct ext4_group_desc *bg, __u32 count)
307 {
308 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
309 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
310 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
311 }
312
313
314 static void __save_error_info(struct super_block *sb, const char *func,
315 unsigned int line)
316 {
317 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
318
319 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
320 if (bdev_read_only(sb->s_bdev))
321 return;
322 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
323 es->s_last_error_time = cpu_to_le32(get_seconds());
324 strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func));
325 es->s_last_error_line = cpu_to_le32(line);
326 if (!es->s_first_error_time) {
327 es->s_first_error_time = es->s_last_error_time;
328 strncpy(es->s_first_error_func, func,
329 sizeof(es->s_first_error_func));
330 es->s_first_error_line = cpu_to_le32(line);
331 es->s_first_error_ino = es->s_last_error_ino;
332 es->s_first_error_block = es->s_last_error_block;
333 }
334 /*
335 * Start the daily error reporting function if it hasn't been
336 * started already
337 */
338 if (!es->s_error_count)
339 mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ);
340 le32_add_cpu(&es->s_error_count, 1);
341 }
342
343 static void save_error_info(struct super_block *sb, const char *func,
344 unsigned int line)
345 {
346 __save_error_info(sb, func, line);
347 ext4_commit_super(sb, 1);
348 }
349
350 /*
351 * The del_gendisk() function uninitializes the disk-specific data
352 * structures, including the bdi structure, without telling anyone
353 * else. Once this happens, any attempt to call mark_buffer_dirty()
354 * (for example, by ext4_commit_super), will cause a kernel OOPS.
355 * This is a kludge to prevent these oops until we can put in a proper
356 * hook in del_gendisk() to inform the VFS and file system layers.
357 */
358 static int block_device_ejected(struct super_block *sb)
359 {
360 struct inode *bd_inode = sb->s_bdev->bd_inode;
361 struct backing_dev_info *bdi = inode_to_bdi(bd_inode);
362
363 return bdi->dev == NULL;
364 }
365
366 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn)
367 {
368 struct super_block *sb = journal->j_private;
369 struct ext4_sb_info *sbi = EXT4_SB(sb);
370 int error = is_journal_aborted(journal);
371 struct ext4_journal_cb_entry *jce;
372
373 BUG_ON(txn->t_state == T_FINISHED);
374 spin_lock(&sbi->s_md_lock);
375 while (!list_empty(&txn->t_private_list)) {
376 jce = list_entry(txn->t_private_list.next,
377 struct ext4_journal_cb_entry, jce_list);
378 list_del_init(&jce->jce_list);
379 spin_unlock(&sbi->s_md_lock);
380 jce->jce_func(sb, jce, error);
381 spin_lock(&sbi->s_md_lock);
382 }
383 spin_unlock(&sbi->s_md_lock);
384 }
385
386 /* Deal with the reporting of failure conditions on a filesystem such as
387 * inconsistencies detected or read IO failures.
388 *
389 * On ext2, we can store the error state of the filesystem in the
390 * superblock. That is not possible on ext4, because we may have other
391 * write ordering constraints on the superblock which prevent us from
392 * writing it out straight away; and given that the journal is about to
393 * be aborted, we can't rely on the current, or future, transactions to
394 * write out the superblock safely.
395 *
396 * We'll just use the jbd2_journal_abort() error code to record an error in
397 * the journal instead. On recovery, the journal will complain about
398 * that error until we've noted it down and cleared it.
399 */
400
401 static void ext4_handle_error(struct super_block *sb)
402 {
403 if (sb->s_flags & MS_RDONLY)
404 return;
405
406 if (!test_opt(sb, ERRORS_CONT)) {
407 journal_t *journal = EXT4_SB(sb)->s_journal;
408
409 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
410 if (journal)
411 jbd2_journal_abort(journal, -EIO);
412 }
413 if (test_opt(sb, ERRORS_RO)) {
414 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
415 /*
416 * Make sure updated value of ->s_mount_flags will be visible
417 * before ->s_flags update
418 */
419 smp_wmb();
420 sb->s_flags |= MS_RDONLY;
421 }
422 if (test_opt(sb, ERRORS_PANIC)) {
423 if (EXT4_SB(sb)->s_journal &&
424 !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR))
425 return;
426 panic("EXT4-fs (device %s): panic forced after error\n",
427 sb->s_id);
428 }
429 }
430
431 #define ext4_error_ratelimit(sb) \
432 ___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state), \
433 "EXT4-fs error")
434
435 void __ext4_error(struct super_block *sb, const char *function,
436 unsigned int line, const char *fmt, ...)
437 {
438 struct va_format vaf;
439 va_list args;
440
441 if (ext4_error_ratelimit(sb)) {
442 va_start(args, fmt);
443 vaf.fmt = fmt;
444 vaf.va = &args;
445 printk(KERN_CRIT
446 "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
447 sb->s_id, function, line, current->comm, &vaf);
448 va_end(args);
449 }
450 save_error_info(sb, function, line);
451 ext4_handle_error(sb);
452 }
453
454 void __ext4_error_inode(struct inode *inode, const char *function,
455 unsigned int line, ext4_fsblk_t block,
456 const char *fmt, ...)
457 {
458 va_list args;
459 struct va_format vaf;
460 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
461
462 es->s_last_error_ino = cpu_to_le32(inode->i_ino);
463 es->s_last_error_block = cpu_to_le64(block);
464 if (ext4_error_ratelimit(inode->i_sb)) {
465 va_start(args, fmt);
466 vaf.fmt = fmt;
467 vaf.va = &args;
468 if (block)
469 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
470 "inode #%lu: block %llu: comm %s: %pV\n",
471 inode->i_sb->s_id, function, line, inode->i_ino,
472 block, current->comm, &vaf);
473 else
474 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
475 "inode #%lu: comm %s: %pV\n",
476 inode->i_sb->s_id, function, line, inode->i_ino,
477 current->comm, &vaf);
478 va_end(args);
479 }
480 save_error_info(inode->i_sb, function, line);
481 ext4_handle_error(inode->i_sb);
482 }
483
484 void __ext4_error_file(struct file *file, const char *function,
485 unsigned int line, ext4_fsblk_t block,
486 const char *fmt, ...)
487 {
488 va_list args;
489 struct va_format vaf;
490 struct ext4_super_block *es;
491 struct inode *inode = file_inode(file);
492 char pathname[80], *path;
493
494 es = EXT4_SB(inode->i_sb)->s_es;
495 es->s_last_error_ino = cpu_to_le32(inode->i_ino);
496 if (ext4_error_ratelimit(inode->i_sb)) {
497 path = file_path(file, pathname, sizeof(pathname));
498 if (IS_ERR(path))
499 path = "(unknown)";
500 va_start(args, fmt);
501 vaf.fmt = fmt;
502 vaf.va = &args;
503 if (block)
504 printk(KERN_CRIT
505 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
506 "block %llu: comm %s: path %s: %pV\n",
507 inode->i_sb->s_id, function, line, inode->i_ino,
508 block, current->comm, path, &vaf);
509 else
510 printk(KERN_CRIT
511 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
512 "comm %s: path %s: %pV\n",
513 inode->i_sb->s_id, function, line, inode->i_ino,
514 current->comm, path, &vaf);
515 va_end(args);
516 }
517 save_error_info(inode->i_sb, function, line);
518 ext4_handle_error(inode->i_sb);
519 }
520
521 const char *ext4_decode_error(struct super_block *sb, int errno,
522 char nbuf[16])
523 {
524 char *errstr = NULL;
525
526 switch (errno) {
527 case -EFSCORRUPTED:
528 errstr = "Corrupt filesystem";
529 break;
530 case -EFSBADCRC:
531 errstr = "Filesystem failed CRC";
532 break;
533 case -EIO:
534 errstr = "IO failure";
535 break;
536 case -ENOMEM:
537 errstr = "Out of memory";
538 break;
539 case -EROFS:
540 if (!sb || (EXT4_SB(sb)->s_journal &&
541 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
542 errstr = "Journal has aborted";
543 else
544 errstr = "Readonly filesystem";
545 break;
546 default:
547 /* If the caller passed in an extra buffer for unknown
548 * errors, textualise them now. Else we just return
549 * NULL. */
550 if (nbuf) {
551 /* Check for truncated error codes... */
552 if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
553 errstr = nbuf;
554 }
555 break;
556 }
557
558 return errstr;
559 }
560
561 /* __ext4_std_error decodes expected errors from journaling functions
562 * automatically and invokes the appropriate error response. */
563
564 void __ext4_std_error(struct super_block *sb, const char *function,
565 unsigned int line, int errno)
566 {
567 char nbuf[16];
568 const char *errstr;
569
570 /* Special case: if the error is EROFS, and we're not already
571 * inside a transaction, then there's really no point in logging
572 * an error. */
573 if (errno == -EROFS && journal_current_handle() == NULL &&
574 (sb->s_flags & MS_RDONLY))
575 return;
576
577 if (ext4_error_ratelimit(sb)) {
578 errstr = ext4_decode_error(sb, errno, nbuf);
579 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
580 sb->s_id, function, line, errstr);
581 }
582
583 save_error_info(sb, function, line);
584 ext4_handle_error(sb);
585 }
586
587 /*
588 * ext4_abort is a much stronger failure handler than ext4_error. The
589 * abort function may be used to deal with unrecoverable failures such
590 * as journal IO errors or ENOMEM at a critical moment in log management.
591 *
592 * We unconditionally force the filesystem into an ABORT|READONLY state,
593 * unless the error response on the fs has been set to panic in which
594 * case we take the easy way out and panic immediately.
595 */
596
597 void __ext4_abort(struct super_block *sb, const char *function,
598 unsigned int line, const char *fmt, ...)
599 {
600 struct va_format vaf;
601 va_list args;
602
603 save_error_info(sb, function, line);
604 va_start(args, fmt);
605 vaf.fmt = fmt;
606 vaf.va = &args;
607 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: %pV\n",
608 sb->s_id, function, line, &vaf);
609 va_end(args);
610
611 if ((sb->s_flags & MS_RDONLY) == 0) {
612 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
613 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
614 /*
615 * Make sure updated value of ->s_mount_flags will be visible
616 * before ->s_flags update
617 */
618 smp_wmb();
619 sb->s_flags |= MS_RDONLY;
620 if (EXT4_SB(sb)->s_journal)
621 jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO);
622 save_error_info(sb, function, line);
623 }
624 if (test_opt(sb, ERRORS_PANIC)) {
625 if (EXT4_SB(sb)->s_journal &&
626 !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR))
627 return;
628 panic("EXT4-fs panic from previous error\n");
629 }
630 }
631
632 void __ext4_msg(struct super_block *sb,
633 const char *prefix, const char *fmt, ...)
634 {
635 struct va_format vaf;
636 va_list args;
637
638 if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state), "EXT4-fs"))
639 return;
640
641 va_start(args, fmt);
642 vaf.fmt = fmt;
643 vaf.va = &args;
644 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
645 va_end(args);
646 }
647
648 #define ext4_warning_ratelimit(sb) \
649 ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state), \
650 "EXT4-fs warning")
651
652 void __ext4_warning(struct super_block *sb, const char *function,
653 unsigned int line, const char *fmt, ...)
654 {
655 struct va_format vaf;
656 va_list args;
657
658 if (!ext4_warning_ratelimit(sb))
659 return;
660
661 va_start(args, fmt);
662 vaf.fmt = fmt;
663 vaf.va = &args;
664 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
665 sb->s_id, function, line, &vaf);
666 va_end(args);
667 }
668
669 void __ext4_warning_inode(const struct inode *inode, const char *function,
670 unsigned int line, const char *fmt, ...)
671 {
672 struct va_format vaf;
673 va_list args;
674
675 if (!ext4_warning_ratelimit(inode->i_sb))
676 return;
677
678 va_start(args, fmt);
679 vaf.fmt = fmt;
680 vaf.va = &args;
681 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: "
682 "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id,
683 function, line, inode->i_ino, current->comm, &vaf);
684 va_end(args);
685 }
686
687 void __ext4_grp_locked_error(const char *function, unsigned int line,
688 struct super_block *sb, ext4_group_t grp,
689 unsigned long ino, ext4_fsblk_t block,
690 const char *fmt, ...)
691 __releases(bitlock)
692 __acquires(bitlock)
693 {
694 struct va_format vaf;
695 va_list args;
696 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
697
698 es->s_last_error_ino = cpu_to_le32(ino);
699 es->s_last_error_block = cpu_to_le64(block);
700 __save_error_info(sb, function, line);
701
702 if (ext4_error_ratelimit(sb)) {
703 va_start(args, fmt);
704 vaf.fmt = fmt;
705 vaf.va = &args;
706 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
707 sb->s_id, function, line, grp);
708 if (ino)
709 printk(KERN_CONT "inode %lu: ", ino);
710 if (block)
711 printk(KERN_CONT "block %llu:",
712 (unsigned long long) block);
713 printk(KERN_CONT "%pV\n", &vaf);
714 va_end(args);
715 }
716
717 if (test_opt(sb, ERRORS_CONT)) {
718 ext4_commit_super(sb, 0);
719 return;
720 }
721
722 ext4_unlock_group(sb, grp);
723 ext4_handle_error(sb);
724 /*
725 * We only get here in the ERRORS_RO case; relocking the group
726 * may be dangerous, but nothing bad will happen since the
727 * filesystem will have already been marked read/only and the
728 * journal has been aborted. We return 1 as a hint to callers
729 * who might what to use the return value from
730 * ext4_grp_locked_error() to distinguish between the
731 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
732 * aggressively from the ext4 function in question, with a
733 * more appropriate error code.
734 */
735 ext4_lock_group(sb, grp);
736 return;
737 }
738
739 void ext4_update_dynamic_rev(struct super_block *sb)
740 {
741 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
742
743 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
744 return;
745
746 ext4_warning(sb,
747 "updating to rev %d because of new feature flag, "
748 "running e2fsck is recommended",
749 EXT4_DYNAMIC_REV);
750
751 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
752 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
753 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
754 /* leave es->s_feature_*compat flags alone */
755 /* es->s_uuid will be set by e2fsck if empty */
756
757 /*
758 * The rest of the superblock fields should be zero, and if not it
759 * means they are likely already in use, so leave them alone. We
760 * can leave it up to e2fsck to clean up any inconsistencies there.
761 */
762 }
763
764 /*
765 * Open the external journal device
766 */
767 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb)
768 {
769 struct block_device *bdev;
770 char b[BDEVNAME_SIZE];
771
772 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb);
773 if (IS_ERR(bdev))
774 goto fail;
775 return bdev;
776
777 fail:
778 ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld",
779 __bdevname(dev, b), PTR_ERR(bdev));
780 return NULL;
781 }
782
783 /*
784 * Release the journal device
785 */
786 static void ext4_blkdev_put(struct block_device *bdev)
787 {
788 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
789 }
790
791 static void ext4_blkdev_remove(struct ext4_sb_info *sbi)
792 {
793 struct block_device *bdev;
794 bdev = sbi->journal_bdev;
795 if (bdev) {
796 ext4_blkdev_put(bdev);
797 sbi->journal_bdev = NULL;
798 }
799 }
800
801 static inline struct inode *orphan_list_entry(struct list_head *l)
802 {
803 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
804 }
805
806 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
807 {
808 struct list_head *l;
809
810 ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
811 le32_to_cpu(sbi->s_es->s_last_orphan));
812
813 printk(KERN_ERR "sb_info orphan list:\n");
814 list_for_each(l, &sbi->s_orphan) {
815 struct inode *inode = orphan_list_entry(l);
816 printk(KERN_ERR " "
817 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
818 inode->i_sb->s_id, inode->i_ino, inode,
819 inode->i_mode, inode->i_nlink,
820 NEXT_ORPHAN(inode));
821 }
822 }
823
824 static void ext4_put_super(struct super_block *sb)
825 {
826 struct ext4_sb_info *sbi = EXT4_SB(sb);
827 struct ext4_super_block *es = sbi->s_es;
828 int i, err;
829
830 ext4_unregister_li_request(sb);
831 dquot_disable(sb, -1, DQUOT_USAGE_ENABLED | DQUOT_LIMITS_ENABLED);
832
833 flush_workqueue(sbi->rsv_conversion_wq);
834 destroy_workqueue(sbi->rsv_conversion_wq);
835
836 if (sbi->s_journal) {
837 err = jbd2_journal_destroy(sbi->s_journal);
838 sbi->s_journal = NULL;
839 if (err < 0)
840 ext4_abort(sb, "Couldn't clean up the journal");
841 }
842
843 ext4_unregister_sysfs(sb);
844 ext4_es_unregister_shrinker(sbi);
845 del_timer_sync(&sbi->s_err_report);
846 ext4_release_system_zone(sb);
847 ext4_mb_release(sb);
848 ext4_ext_release(sb);
849
850 if (!(sb->s_flags & MS_RDONLY)) {
851 ext4_clear_feature_journal_needs_recovery(sb);
852 es->s_state = cpu_to_le16(sbi->s_mount_state);
853 }
854 if (!(sb->s_flags & MS_RDONLY))
855 ext4_commit_super(sb, 1);
856
857 for (i = 0; i < sbi->s_gdb_count; i++)
858 brelse(sbi->s_group_desc[i]);
859 kvfree(sbi->s_group_desc);
860 kvfree(sbi->s_flex_groups);
861 percpu_counter_destroy(&sbi->s_freeclusters_counter);
862 percpu_counter_destroy(&sbi->s_freeinodes_counter);
863 percpu_counter_destroy(&sbi->s_dirs_counter);
864 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
865 percpu_free_rwsem(&sbi->s_journal_flag_rwsem);
866 brelse(sbi->s_sbh);
867 #ifdef CONFIG_QUOTA
868 for (i = 0; i < EXT4_MAXQUOTAS; i++)
869 kfree(sbi->s_qf_names[i]);
870 #endif
871
872 /* Debugging code just in case the in-memory inode orphan list
873 * isn't empty. The on-disk one can be non-empty if we've
874 * detected an error and taken the fs readonly, but the
875 * in-memory list had better be clean by this point. */
876 if (!list_empty(&sbi->s_orphan))
877 dump_orphan_list(sb, sbi);
878 J_ASSERT(list_empty(&sbi->s_orphan));
879
880 sync_blockdev(sb->s_bdev);
881 invalidate_bdev(sb->s_bdev);
882 if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) {
883 /*
884 * Invalidate the journal device's buffers. We don't want them
885 * floating about in memory - the physical journal device may
886 * hotswapped, and it breaks the `ro-after' testing code.
887 */
888 sync_blockdev(sbi->journal_bdev);
889 invalidate_bdev(sbi->journal_bdev);
890 ext4_blkdev_remove(sbi);
891 }
892 if (sbi->s_mb_cache) {
893 ext4_xattr_destroy_cache(sbi->s_mb_cache);
894 sbi->s_mb_cache = NULL;
895 }
896 if (sbi->s_mmp_tsk)
897 kthread_stop(sbi->s_mmp_tsk);
898 sb->s_fs_info = NULL;
899 /*
900 * Now that we are completely done shutting down the
901 * superblock, we need to actually destroy the kobject.
902 */
903 kobject_put(&sbi->s_kobj);
904 wait_for_completion(&sbi->s_kobj_unregister);
905 if (sbi->s_chksum_driver)
906 crypto_free_shash(sbi->s_chksum_driver);
907 kfree(sbi->s_blockgroup_lock);
908 kfree(sbi);
909 }
910
911 static struct kmem_cache *ext4_inode_cachep;
912
913 /*
914 * Called inside transaction, so use GFP_NOFS
915 */
916 static struct inode *ext4_alloc_inode(struct super_block *sb)
917 {
918 struct ext4_inode_info *ei;
919
920 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS);
921 if (!ei)
922 return NULL;
923
924 ei->vfs_inode.i_version = 1;
925 spin_lock_init(&ei->i_raw_lock);
926 INIT_LIST_HEAD(&ei->i_prealloc_list);
927 spin_lock_init(&ei->i_prealloc_lock);
928 ext4_es_init_tree(&ei->i_es_tree);
929 rwlock_init(&ei->i_es_lock);
930 INIT_LIST_HEAD(&ei->i_es_list);
931 ei->i_es_all_nr = 0;
932 ei->i_es_shk_nr = 0;
933 ei->i_es_shrink_lblk = 0;
934 ei->i_reserved_data_blocks = 0;
935 ei->i_reserved_meta_blocks = 0;
936 ei->i_allocated_meta_blocks = 0;
937 ei->i_da_metadata_calc_len = 0;
938 ei->i_da_metadata_calc_last_lblock = 0;
939 spin_lock_init(&(ei->i_block_reservation_lock));
940 #ifdef CONFIG_QUOTA
941 ei->i_reserved_quota = 0;
942 memset(&ei->i_dquot, 0, sizeof(ei->i_dquot));
943 #endif
944 ei->jinode = NULL;
945 INIT_LIST_HEAD(&ei->i_rsv_conversion_list);
946 spin_lock_init(&ei->i_completed_io_lock);
947 ei->i_sync_tid = 0;
948 ei->i_datasync_tid = 0;
949 atomic_set(&ei->i_unwritten, 0);
950 INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work);
951 return &ei->vfs_inode;
952 }
953
954 static int ext4_drop_inode(struct inode *inode)
955 {
956 int drop = generic_drop_inode(inode);
957
958 trace_ext4_drop_inode(inode, drop);
959 return drop;
960 }
961
962 static void ext4_i_callback(struct rcu_head *head)
963 {
964 struct inode *inode = container_of(head, struct inode, i_rcu);
965 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
966 }
967
968 static void ext4_destroy_inode(struct inode *inode)
969 {
970 if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
971 ext4_msg(inode->i_sb, KERN_ERR,
972 "Inode %lu (%p): orphan list check failed!",
973 inode->i_ino, EXT4_I(inode));
974 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
975 EXT4_I(inode), sizeof(struct ext4_inode_info),
976 true);
977 dump_stack();
978 }
979 call_rcu(&inode->i_rcu, ext4_i_callback);
980 }
981
982 static void init_once(void *foo)
983 {
984 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo;
985
986 INIT_LIST_HEAD(&ei->i_orphan);
987 init_rwsem(&ei->xattr_sem);
988 init_rwsem(&ei->i_data_sem);
989 init_rwsem(&ei->i_mmap_sem);
990 inode_init_once(&ei->vfs_inode);
991 }
992
993 static int __init init_inodecache(void)
994 {
995 ext4_inode_cachep = kmem_cache_create("ext4_inode_cache",
996 sizeof(struct ext4_inode_info),
997 0, (SLAB_RECLAIM_ACCOUNT|
998 SLAB_MEM_SPREAD|SLAB_ACCOUNT),
999 init_once);
1000 if (ext4_inode_cachep == NULL)
1001 return -ENOMEM;
1002 return 0;
1003 }
1004
1005 static void destroy_inodecache(void)
1006 {
1007 /*
1008 * Make sure all delayed rcu free inodes are flushed before we
1009 * destroy cache.
1010 */
1011 rcu_barrier();
1012 kmem_cache_destroy(ext4_inode_cachep);
1013 }
1014
1015 void ext4_clear_inode(struct inode *inode)
1016 {
1017 invalidate_inode_buffers(inode);
1018 clear_inode(inode);
1019 dquot_drop(inode);
1020 ext4_discard_preallocations(inode);
1021 ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS);
1022 if (EXT4_I(inode)->jinode) {
1023 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
1024 EXT4_I(inode)->jinode);
1025 jbd2_free_inode(EXT4_I(inode)->jinode);
1026 EXT4_I(inode)->jinode = NULL;
1027 }
1028 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1029 fscrypt_put_encryption_info(inode, NULL);
1030 #endif
1031 }
1032
1033 static struct inode *ext4_nfs_get_inode(struct super_block *sb,
1034 u64 ino, u32 generation)
1035 {
1036 struct inode *inode;
1037
1038 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
1039 return ERR_PTR(-ESTALE);
1040 if (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
1041 return ERR_PTR(-ESTALE);
1042
1043 /* iget isn't really right if the inode is currently unallocated!!
1044 *
1045 * ext4_read_inode will return a bad_inode if the inode had been
1046 * deleted, so we should be safe.
1047 *
1048 * Currently we don't know the generation for parent directory, so
1049 * a generation of 0 means "accept any"
1050 */
1051 inode = ext4_iget_normal(sb, ino);
1052 if (IS_ERR(inode))
1053 return ERR_CAST(inode);
1054 if (generation && inode->i_generation != generation) {
1055 iput(inode);
1056 return ERR_PTR(-ESTALE);
1057 }
1058
1059 return inode;
1060 }
1061
1062 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
1063 int fh_len, int fh_type)
1064 {
1065 return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1066 ext4_nfs_get_inode);
1067 }
1068
1069 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
1070 int fh_len, int fh_type)
1071 {
1072 return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1073 ext4_nfs_get_inode);
1074 }
1075
1076 /*
1077 * Try to release metadata pages (indirect blocks, directories) which are
1078 * mapped via the block device. Since these pages could have journal heads
1079 * which would prevent try_to_free_buffers() from freeing them, we must use
1080 * jbd2 layer's try_to_free_buffers() function to release them.
1081 */
1082 static int bdev_try_to_free_page(struct super_block *sb, struct page *page,
1083 gfp_t wait)
1084 {
1085 journal_t *journal = EXT4_SB(sb)->s_journal;
1086
1087 WARN_ON(PageChecked(page));
1088 if (!page_has_buffers(page))
1089 return 0;
1090 if (journal)
1091 return jbd2_journal_try_to_free_buffers(journal, page,
1092 wait & ~__GFP_DIRECT_RECLAIM);
1093 return try_to_free_buffers(page);
1094 }
1095
1096 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1097 static int ext4_get_context(struct inode *inode, void *ctx, size_t len)
1098 {
1099 return ext4_xattr_get(inode, EXT4_XATTR_INDEX_ENCRYPTION,
1100 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, ctx, len);
1101 }
1102
1103 static int ext4_key_prefix(struct inode *inode, u8 **key)
1104 {
1105 *key = EXT4_SB(inode->i_sb)->key_prefix;
1106 return EXT4_SB(inode->i_sb)->key_prefix_size;
1107 }
1108
1109 static int ext4_prepare_context(struct inode *inode)
1110 {
1111 return ext4_convert_inline_data(inode);
1112 }
1113
1114 static int ext4_set_context(struct inode *inode, const void *ctx, size_t len,
1115 void *fs_data)
1116 {
1117 handle_t *handle;
1118 int res, res2;
1119
1120 /* fs_data is null when internally used. */
1121 if (fs_data) {
1122 res = ext4_xattr_set(inode, EXT4_XATTR_INDEX_ENCRYPTION,
1123 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, ctx,
1124 len, 0);
1125 if (!res) {
1126 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT);
1127 ext4_clear_inode_state(inode,
1128 EXT4_STATE_MAY_INLINE_DATA);
1129 }
1130 return res;
1131 }
1132
1133 handle = ext4_journal_start(inode, EXT4_HT_MISC,
1134 ext4_jbd2_credits_xattr(inode));
1135 if (IS_ERR(handle))
1136 return PTR_ERR(handle);
1137
1138 res = ext4_xattr_set(inode, EXT4_XATTR_INDEX_ENCRYPTION,
1139 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, ctx,
1140 len, 0);
1141 if (!res) {
1142 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT);
1143 res = ext4_mark_inode_dirty(handle, inode);
1144 if (res)
1145 EXT4_ERROR_INODE(inode, "Failed to mark inode dirty");
1146 }
1147 res2 = ext4_journal_stop(handle);
1148 if (!res)
1149 res = res2;
1150 return res;
1151 }
1152
1153 static int ext4_dummy_context(struct inode *inode)
1154 {
1155 return DUMMY_ENCRYPTION_ENABLED(EXT4_SB(inode->i_sb));
1156 }
1157
1158 static unsigned ext4_max_namelen(struct inode *inode)
1159 {
1160 return S_ISLNK(inode->i_mode) ? inode->i_sb->s_blocksize :
1161 EXT4_NAME_LEN;
1162 }
1163
1164 static struct fscrypt_operations ext4_cryptops = {
1165 .get_context = ext4_get_context,
1166 .key_prefix = ext4_key_prefix,
1167 .prepare_context = ext4_prepare_context,
1168 .set_context = ext4_set_context,
1169 .dummy_context = ext4_dummy_context,
1170 .is_encrypted = ext4_encrypted_inode,
1171 .empty_dir = ext4_empty_dir,
1172 .max_namelen = ext4_max_namelen,
1173 };
1174 #else
1175 static struct fscrypt_operations ext4_cryptops = {
1176 .is_encrypted = ext4_encrypted_inode,
1177 };
1178 #endif
1179
1180 #ifdef CONFIG_QUOTA
1181 static char *quotatypes[] = INITQFNAMES;
1182 #define QTYPE2NAME(t) (quotatypes[t])
1183
1184 static int ext4_write_dquot(struct dquot *dquot);
1185 static int ext4_acquire_dquot(struct dquot *dquot);
1186 static int ext4_release_dquot(struct dquot *dquot);
1187 static int ext4_mark_dquot_dirty(struct dquot *dquot);
1188 static int ext4_write_info(struct super_block *sb, int type);
1189 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1190 struct path *path);
1191 static int ext4_quota_off(struct super_block *sb, int type);
1192 static int ext4_quota_on_mount(struct super_block *sb, int type);
1193 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1194 size_t len, loff_t off);
1195 static ssize_t ext4_quota_write(struct super_block *sb, int type,
1196 const char *data, size_t len, loff_t off);
1197 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
1198 unsigned int flags);
1199 static int ext4_enable_quotas(struct super_block *sb);
1200 static int ext4_get_next_id(struct super_block *sb, struct kqid *qid);
1201
1202 static struct dquot **ext4_get_dquots(struct inode *inode)
1203 {
1204 return EXT4_I(inode)->i_dquot;
1205 }
1206
1207 static const struct dquot_operations ext4_quota_operations = {
1208 .get_reserved_space = ext4_get_reserved_space,
1209 .write_dquot = ext4_write_dquot,
1210 .acquire_dquot = ext4_acquire_dquot,
1211 .release_dquot = ext4_release_dquot,
1212 .mark_dirty = ext4_mark_dquot_dirty,
1213 .write_info = ext4_write_info,
1214 .alloc_dquot = dquot_alloc,
1215 .destroy_dquot = dquot_destroy,
1216 .get_projid = ext4_get_projid,
1217 .get_next_id = ext4_get_next_id,
1218 };
1219
1220 static const struct quotactl_ops ext4_qctl_operations = {
1221 .quota_on = ext4_quota_on,
1222 .quota_off = ext4_quota_off,
1223 .quota_sync = dquot_quota_sync,
1224 .get_state = dquot_get_state,
1225 .set_info = dquot_set_dqinfo,
1226 .get_dqblk = dquot_get_dqblk,
1227 .set_dqblk = dquot_set_dqblk,
1228 .get_nextdqblk = dquot_get_next_dqblk,
1229 };
1230 #endif
1231
1232 static const struct super_operations ext4_sops = {
1233 .alloc_inode = ext4_alloc_inode,
1234 .destroy_inode = ext4_destroy_inode,
1235 .write_inode = ext4_write_inode,
1236 .dirty_inode = ext4_dirty_inode,
1237 .drop_inode = ext4_drop_inode,
1238 .evict_inode = ext4_evict_inode,
1239 .put_super = ext4_put_super,
1240 .sync_fs = ext4_sync_fs,
1241 .freeze_fs = ext4_freeze,
1242 .unfreeze_fs = ext4_unfreeze,
1243 .statfs = ext4_statfs,
1244 .remount_fs = ext4_remount,
1245 .show_options = ext4_show_options,
1246 #ifdef CONFIG_QUOTA
1247 .quota_read = ext4_quota_read,
1248 .quota_write = ext4_quota_write,
1249 .get_dquots = ext4_get_dquots,
1250 #endif
1251 .bdev_try_to_free_page = bdev_try_to_free_page,
1252 };
1253
1254 static const struct export_operations ext4_export_ops = {
1255 .fh_to_dentry = ext4_fh_to_dentry,
1256 .fh_to_parent = ext4_fh_to_parent,
1257 .get_parent = ext4_get_parent,
1258 };
1259
1260 enum {
1261 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1262 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro,
1263 Opt_nouid32, Opt_debug, Opt_removed,
1264 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl,
1265 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload,
1266 Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev,
1267 Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit,
1268 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1269 Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption,
1270 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota,
1271 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota,
1272 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err,
1273 Opt_usrquota, Opt_grpquota, Opt_prjquota, Opt_i_version, Opt_dax,
1274 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_mblk_io_submit,
1275 Opt_lazytime, Opt_nolazytime,
1276 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1277 Opt_inode_readahead_blks, Opt_journal_ioprio,
1278 Opt_dioread_nolock, Opt_dioread_lock,
1279 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable,
1280 Opt_max_dir_size_kb, Opt_nojournal_checksum,
1281 };
1282
1283 static const match_table_t tokens = {
1284 {Opt_bsd_df, "bsddf"},
1285 {Opt_minix_df, "minixdf"},
1286 {Opt_grpid, "grpid"},
1287 {Opt_grpid, "bsdgroups"},
1288 {Opt_nogrpid, "nogrpid"},
1289 {Opt_nogrpid, "sysvgroups"},
1290 {Opt_resgid, "resgid=%u"},
1291 {Opt_resuid, "resuid=%u"},
1292 {Opt_sb, "sb=%u"},
1293 {Opt_err_cont, "errors=continue"},
1294 {Opt_err_panic, "errors=panic"},
1295 {Opt_err_ro, "errors=remount-ro"},
1296 {Opt_nouid32, "nouid32"},
1297 {Opt_debug, "debug"},
1298 {Opt_removed, "oldalloc"},
1299 {Opt_removed, "orlov"},
1300 {Opt_user_xattr, "user_xattr"},
1301 {Opt_nouser_xattr, "nouser_xattr"},
1302 {Opt_acl, "acl"},
1303 {Opt_noacl, "noacl"},
1304 {Opt_noload, "norecovery"},
1305 {Opt_noload, "noload"},
1306 {Opt_removed, "nobh"},
1307 {Opt_removed, "bh"},
1308 {Opt_commit, "commit=%u"},
1309 {Opt_min_batch_time, "min_batch_time=%u"},
1310 {Opt_max_batch_time, "max_batch_time=%u"},
1311 {Opt_journal_dev, "journal_dev=%u"},
1312 {Opt_journal_path, "journal_path=%s"},
1313 {Opt_journal_checksum, "journal_checksum"},
1314 {Opt_nojournal_checksum, "nojournal_checksum"},
1315 {Opt_journal_async_commit, "journal_async_commit"},
1316 {Opt_abort, "abort"},
1317 {Opt_data_journal, "data=journal"},
1318 {Opt_data_ordered, "data=ordered"},
1319 {Opt_data_writeback, "data=writeback"},
1320 {Opt_data_err_abort, "data_err=abort"},
1321 {Opt_data_err_ignore, "data_err=ignore"},
1322 {Opt_offusrjquota, "usrjquota="},
1323 {Opt_usrjquota, "usrjquota=%s"},
1324 {Opt_offgrpjquota, "grpjquota="},
1325 {Opt_grpjquota, "grpjquota=%s"},
1326 {Opt_jqfmt_vfsold, "jqfmt=vfsold"},
1327 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
1328 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
1329 {Opt_grpquota, "grpquota"},
1330 {Opt_noquota, "noquota"},
1331 {Opt_quota, "quota"},
1332 {Opt_usrquota, "usrquota"},
1333 {Opt_prjquota, "prjquota"},
1334 {Opt_barrier, "barrier=%u"},
1335 {Opt_barrier, "barrier"},
1336 {Opt_nobarrier, "nobarrier"},
1337 {Opt_i_version, "i_version"},
1338 {Opt_dax, "dax"},
1339 {Opt_stripe, "stripe=%u"},
1340 {Opt_delalloc, "delalloc"},
1341 {Opt_lazytime, "lazytime"},
1342 {Opt_nolazytime, "nolazytime"},
1343 {Opt_nodelalloc, "nodelalloc"},
1344 {Opt_removed, "mblk_io_submit"},
1345 {Opt_removed, "nomblk_io_submit"},
1346 {Opt_block_validity, "block_validity"},
1347 {Opt_noblock_validity, "noblock_validity"},
1348 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"},
1349 {Opt_journal_ioprio, "journal_ioprio=%u"},
1350 {Opt_auto_da_alloc, "auto_da_alloc=%u"},
1351 {Opt_auto_da_alloc, "auto_da_alloc"},
1352 {Opt_noauto_da_alloc, "noauto_da_alloc"},
1353 {Opt_dioread_nolock, "dioread_nolock"},
1354 {Opt_dioread_lock, "dioread_lock"},
1355 {Opt_discard, "discard"},
1356 {Opt_nodiscard, "nodiscard"},
1357 {Opt_init_itable, "init_itable=%u"},
1358 {Opt_init_itable, "init_itable"},
1359 {Opt_noinit_itable, "noinit_itable"},
1360 {Opt_max_dir_size_kb, "max_dir_size_kb=%u"},
1361 {Opt_test_dummy_encryption, "test_dummy_encryption"},
1362 {Opt_removed, "check=none"}, /* mount option from ext2/3 */
1363 {Opt_removed, "nocheck"}, /* mount option from ext2/3 */
1364 {Opt_removed, "reservation"}, /* mount option from ext2/3 */
1365 {Opt_removed, "noreservation"}, /* mount option from ext2/3 */
1366 {Opt_removed, "journal=%u"}, /* mount option from ext2/3 */
1367 {Opt_err, NULL},
1368 };
1369
1370 static ext4_fsblk_t get_sb_block(void **data)
1371 {
1372 ext4_fsblk_t sb_block;
1373 char *options = (char *) *data;
1374
1375 if (!options || strncmp(options, "sb=", 3) != 0)
1376 return 1; /* Default location */
1377
1378 options += 3;
1379 /* TODO: use simple_strtoll with >32bit ext4 */
1380 sb_block = simple_strtoul(options, &options, 0);
1381 if (*options && *options != ',') {
1382 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n",
1383 (char *) *data);
1384 return 1;
1385 }
1386 if (*options == ',')
1387 options++;
1388 *data = (void *) options;
1389
1390 return sb_block;
1391 }
1392
1393 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1394 static char deprecated_msg[] = "Mount option \"%s\" will be removed by %s\n"
1395 "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n";
1396
1397 #ifdef CONFIG_QUOTA
1398 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args)
1399 {
1400 struct ext4_sb_info *sbi = EXT4_SB(sb);
1401 char *qname;
1402 int ret = -1;
1403
1404 if (sb_any_quota_loaded(sb) &&
1405 !sbi->s_qf_names[qtype]) {
1406 ext4_msg(sb, KERN_ERR,
1407 "Cannot change journaled "
1408 "quota options when quota turned on");
1409 return -1;
1410 }
1411 if (ext4_has_feature_quota(sb)) {
1412 ext4_msg(sb, KERN_INFO, "Journaled quota options "
1413 "ignored when QUOTA feature is enabled");
1414 return 1;
1415 }
1416 qname = match_strdup(args);
1417 if (!qname) {
1418 ext4_msg(sb, KERN_ERR,
1419 "Not enough memory for storing quotafile name");
1420 return -1;
1421 }
1422 if (sbi->s_qf_names[qtype]) {
1423 if (strcmp(sbi->s_qf_names[qtype], qname) == 0)
1424 ret = 1;
1425 else
1426 ext4_msg(sb, KERN_ERR,
1427 "%s quota file already specified",
1428 QTYPE2NAME(qtype));
1429 goto errout;
1430 }
1431 if (strchr(qname, '/')) {
1432 ext4_msg(sb, KERN_ERR,
1433 "quotafile must be on filesystem root");
1434 goto errout;
1435 }
1436 sbi->s_qf_names[qtype] = qname;
1437 set_opt(sb, QUOTA);
1438 return 1;
1439 errout:
1440 kfree(qname);
1441 return ret;
1442 }
1443
1444 static int clear_qf_name(struct super_block *sb, int qtype)
1445 {
1446
1447 struct ext4_sb_info *sbi = EXT4_SB(sb);
1448
1449 if (sb_any_quota_loaded(sb) &&
1450 sbi->s_qf_names[qtype]) {
1451 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options"
1452 " when quota turned on");
1453 return -1;
1454 }
1455 kfree(sbi->s_qf_names[qtype]);
1456 sbi->s_qf_names[qtype] = NULL;
1457 return 1;
1458 }
1459 #endif
1460
1461 #define MOPT_SET 0x0001
1462 #define MOPT_CLEAR 0x0002
1463 #define MOPT_NOSUPPORT 0x0004
1464 #define MOPT_EXPLICIT 0x0008
1465 #define MOPT_CLEAR_ERR 0x0010
1466 #define MOPT_GTE0 0x0020
1467 #ifdef CONFIG_QUOTA
1468 #define MOPT_Q 0
1469 #define MOPT_QFMT 0x0040
1470 #else
1471 #define MOPT_Q MOPT_NOSUPPORT
1472 #define MOPT_QFMT MOPT_NOSUPPORT
1473 #endif
1474 #define MOPT_DATAJ 0x0080
1475 #define MOPT_NO_EXT2 0x0100
1476 #define MOPT_NO_EXT3 0x0200
1477 #define MOPT_EXT4_ONLY (MOPT_NO_EXT2 | MOPT_NO_EXT3)
1478 #define MOPT_STRING 0x0400
1479
1480 static const struct mount_opts {
1481 int token;
1482 int mount_opt;
1483 int flags;
1484 } ext4_mount_opts[] = {
1485 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET},
1486 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR},
1487 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET},
1488 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR},
1489 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET},
1490 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR},
1491 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK,
1492 MOPT_EXT4_ONLY | MOPT_SET},
1493 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK,
1494 MOPT_EXT4_ONLY | MOPT_CLEAR},
1495 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET},
1496 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR},
1497 {Opt_delalloc, EXT4_MOUNT_DELALLOC,
1498 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1499 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC,
1500 MOPT_EXT4_ONLY | MOPT_CLEAR},
1501 {Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1502 MOPT_EXT4_ONLY | MOPT_CLEAR},
1503 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1504 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1505 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT |
1506 EXT4_MOUNT_JOURNAL_CHECKSUM),
1507 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1508 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET},
1509 {Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR},
1510 {Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR},
1511 {Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR},
1512 {Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT,
1513 MOPT_NO_EXT2},
1514 {Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT,
1515 MOPT_NO_EXT2},
1516 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET},
1517 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR},
1518 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET},
1519 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR},
1520 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR},
1521 {Opt_commit, 0, MOPT_GTE0},
1522 {Opt_max_batch_time, 0, MOPT_GTE0},
1523 {Opt_min_batch_time, 0, MOPT_GTE0},
1524 {Opt_inode_readahead_blks, 0, MOPT_GTE0},
1525 {Opt_init_itable, 0, MOPT_GTE0},
1526 {Opt_dax, EXT4_MOUNT_DAX, MOPT_SET},
1527 {Opt_stripe, 0, MOPT_GTE0},
1528 {Opt_resuid, 0, MOPT_GTE0},
1529 {Opt_resgid, 0, MOPT_GTE0},
1530 {Opt_journal_dev, 0, MOPT_NO_EXT2 | MOPT_GTE0},
1531 {Opt_journal_path, 0, MOPT_NO_EXT2 | MOPT_STRING},
1532 {Opt_journal_ioprio, 0, MOPT_NO_EXT2 | MOPT_GTE0},
1533 {Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1534 {Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1535 {Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA,
1536 MOPT_NO_EXT2 | MOPT_DATAJ},
1537 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET},
1538 {Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR},
1539 #ifdef CONFIG_EXT4_FS_POSIX_ACL
1540 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET},
1541 {Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR},
1542 #else
1543 {Opt_acl, 0, MOPT_NOSUPPORT},
1544 {Opt_noacl, 0, MOPT_NOSUPPORT},
1545 #endif
1546 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET},
1547 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET},
1548 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q},
1549 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA,
1550 MOPT_SET | MOPT_Q},
1551 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA,
1552 MOPT_SET | MOPT_Q},
1553 {Opt_prjquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_PRJQUOTA,
1554 MOPT_SET | MOPT_Q},
1555 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
1556 EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA),
1557 MOPT_CLEAR | MOPT_Q},
1558 {Opt_usrjquota, 0, MOPT_Q},
1559 {Opt_grpjquota, 0, MOPT_Q},
1560 {Opt_offusrjquota, 0, MOPT_Q},
1561 {Opt_offgrpjquota, 0, MOPT_Q},
1562 {Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT},
1563 {Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT},
1564 {Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT},
1565 {Opt_max_dir_size_kb, 0, MOPT_GTE0},
1566 {Opt_test_dummy_encryption, 0, MOPT_GTE0},
1567 {Opt_err, 0, 0}
1568 };
1569
1570 static int handle_mount_opt(struct super_block *sb, char *opt, int token,
1571 substring_t *args, unsigned long *journal_devnum,
1572 unsigned int *journal_ioprio, int is_remount)
1573 {
1574 struct ext4_sb_info *sbi = EXT4_SB(sb);
1575 const struct mount_opts *m;
1576 kuid_t uid;
1577 kgid_t gid;
1578 int arg = 0;
1579
1580 #ifdef CONFIG_QUOTA
1581 if (token == Opt_usrjquota)
1582 return set_qf_name(sb, USRQUOTA, &args[0]);
1583 else if (token == Opt_grpjquota)
1584 return set_qf_name(sb, GRPQUOTA, &args[0]);
1585 else if (token == Opt_offusrjquota)
1586 return clear_qf_name(sb, USRQUOTA);
1587 else if (token == Opt_offgrpjquota)
1588 return clear_qf_name(sb, GRPQUOTA);
1589 #endif
1590 switch (token) {
1591 case Opt_noacl:
1592 case Opt_nouser_xattr:
1593 ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5");
1594 break;
1595 case Opt_sb:
1596 return 1; /* handled by get_sb_block() */
1597 case Opt_removed:
1598 ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt);
1599 return 1;
1600 case Opt_abort:
1601 sbi->s_mount_flags |= EXT4_MF_FS_ABORTED;
1602 return 1;
1603 case Opt_i_version:
1604 sb->s_flags |= MS_I_VERSION;
1605 return 1;
1606 case Opt_lazytime:
1607 sb->s_flags |= MS_LAZYTIME;
1608 return 1;
1609 case Opt_nolazytime:
1610 sb->s_flags &= ~MS_LAZYTIME;
1611 return 1;
1612 }
1613
1614 for (m = ext4_mount_opts; m->token != Opt_err; m++)
1615 if (token == m->token)
1616 break;
1617
1618 if (m->token == Opt_err) {
1619 ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" "
1620 "or missing value", opt);
1621 return -1;
1622 }
1623
1624 if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) {
1625 ext4_msg(sb, KERN_ERR,
1626 "Mount option \"%s\" incompatible with ext2", opt);
1627 return -1;
1628 }
1629 if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) {
1630 ext4_msg(sb, KERN_ERR,
1631 "Mount option \"%s\" incompatible with ext3", opt);
1632 return -1;
1633 }
1634
1635 if (args->from && !(m->flags & MOPT_STRING) && match_int(args, &arg))
1636 return -1;
1637 if (args->from && (m->flags & MOPT_GTE0) && (arg < 0))
1638 return -1;
1639 if (m->flags & MOPT_EXPLICIT) {
1640 if (m->mount_opt & EXT4_MOUNT_DELALLOC) {
1641 set_opt2(sb, EXPLICIT_DELALLOC);
1642 } else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) {
1643 set_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM);
1644 } else
1645 return -1;
1646 }
1647 if (m->flags & MOPT_CLEAR_ERR)
1648 clear_opt(sb, ERRORS_MASK);
1649 if (token == Opt_noquota && sb_any_quota_loaded(sb)) {
1650 ext4_msg(sb, KERN_ERR, "Cannot change quota "
1651 "options when quota turned on");
1652 return -1;
1653 }
1654
1655 if (m->flags & MOPT_NOSUPPORT) {
1656 ext4_msg(sb, KERN_ERR, "%s option not supported", opt);
1657 } else if (token == Opt_commit) {
1658 if (arg == 0)
1659 arg = JBD2_DEFAULT_MAX_COMMIT_AGE;
1660 sbi->s_commit_interval = HZ * arg;
1661 } else if (token == Opt_max_batch_time) {
1662 sbi->s_max_batch_time = arg;
1663 } else if (token == Opt_min_batch_time) {
1664 sbi->s_min_batch_time = arg;
1665 } else if (token == Opt_inode_readahead_blks) {
1666 if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) {
1667 ext4_msg(sb, KERN_ERR,
1668 "EXT4-fs: inode_readahead_blks must be "
1669 "0 or a power of 2 smaller than 2^31");
1670 return -1;
1671 }
1672 sbi->s_inode_readahead_blks = arg;
1673 } else if (token == Opt_init_itable) {
1674 set_opt(sb, INIT_INODE_TABLE);
1675 if (!args->from)
1676 arg = EXT4_DEF_LI_WAIT_MULT;
1677 sbi->s_li_wait_mult = arg;
1678 } else if (token == Opt_max_dir_size_kb) {
1679 sbi->s_max_dir_size_kb = arg;
1680 } else if (token == Opt_stripe) {
1681 sbi->s_stripe = arg;
1682 } else if (token == Opt_resuid) {
1683 uid = make_kuid(current_user_ns(), arg);
1684 if (!uid_valid(uid)) {
1685 ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg);
1686 return -1;
1687 }
1688 sbi->s_resuid = uid;
1689 } else if (token == Opt_resgid) {
1690 gid = make_kgid(current_user_ns(), arg);
1691 if (!gid_valid(gid)) {
1692 ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg);
1693 return -1;
1694 }
1695 sbi->s_resgid = gid;
1696 } else if (token == Opt_journal_dev) {
1697 if (is_remount) {
1698 ext4_msg(sb, KERN_ERR,
1699 "Cannot specify journal on remount");
1700 return -1;
1701 }
1702 *journal_devnum = arg;
1703 } else if (token == Opt_journal_path) {
1704 char *journal_path;
1705 struct inode *journal_inode;
1706 struct path path;
1707 int error;
1708
1709 if (is_remount) {
1710 ext4_msg(sb, KERN_ERR,
1711 "Cannot specify journal on remount");
1712 return -1;
1713 }
1714 journal_path = match_strdup(&args[0]);
1715 if (!journal_path) {
1716 ext4_msg(sb, KERN_ERR, "error: could not dup "
1717 "journal device string");
1718 return -1;
1719 }
1720
1721 error = kern_path(journal_path, LOOKUP_FOLLOW, &path);
1722 if (error) {
1723 ext4_msg(sb, KERN_ERR, "error: could not find "
1724 "journal device path: error %d", error);
1725 kfree(journal_path);
1726 return -1;
1727 }
1728
1729 journal_inode = d_inode(path.dentry);
1730 if (!S_ISBLK(journal_inode->i_mode)) {
1731 ext4_msg(sb, KERN_ERR, "error: journal path %s "
1732 "is not a block device", journal_path);
1733 path_put(&path);
1734 kfree(journal_path);
1735 return -1;
1736 }
1737
1738 *journal_devnum = new_encode_dev(journal_inode->i_rdev);
1739 path_put(&path);
1740 kfree(journal_path);
1741 } else if (token == Opt_journal_ioprio) {
1742 if (arg > 7) {
1743 ext4_msg(sb, KERN_ERR, "Invalid journal IO priority"
1744 " (must be 0-7)");
1745 return -1;
1746 }
1747 *journal_ioprio =
1748 IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg);
1749 } else if (token == Opt_test_dummy_encryption) {
1750 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1751 sbi->s_mount_flags |= EXT4_MF_TEST_DUMMY_ENCRYPTION;
1752 ext4_msg(sb, KERN_WARNING,
1753 "Test dummy encryption mode enabled");
1754 #else
1755 ext4_msg(sb, KERN_WARNING,
1756 "Test dummy encryption mount option ignored");
1757 #endif
1758 } else if (m->flags & MOPT_DATAJ) {
1759 if (is_remount) {
1760 if (!sbi->s_journal)
1761 ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option");
1762 else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) {
1763 ext4_msg(sb, KERN_ERR,
1764 "Cannot change data mode on remount");
1765 return -1;
1766 }
1767 } else {
1768 clear_opt(sb, DATA_FLAGS);
1769 sbi->s_mount_opt |= m->mount_opt;
1770 }
1771 #ifdef CONFIG_QUOTA
1772 } else if (m->flags & MOPT_QFMT) {
1773 if (sb_any_quota_loaded(sb) &&
1774 sbi->s_jquota_fmt != m->mount_opt) {
1775 ext4_msg(sb, KERN_ERR, "Cannot change journaled "
1776 "quota options when quota turned on");
1777 return -1;
1778 }
1779 if (ext4_has_feature_quota(sb)) {
1780 ext4_msg(sb, KERN_INFO,
1781 "Quota format mount options ignored "
1782 "when QUOTA feature is enabled");
1783 return 1;
1784 }
1785 sbi->s_jquota_fmt = m->mount_opt;
1786 #endif
1787 } else if (token == Opt_dax) {
1788 #ifdef CONFIG_FS_DAX
1789 ext4_msg(sb, KERN_WARNING,
1790 "DAX enabled. Warning: EXPERIMENTAL, use at your own risk");
1791 sbi->s_mount_opt |= m->mount_opt;
1792 #else
1793 ext4_msg(sb, KERN_INFO, "dax option not supported");
1794 return -1;
1795 #endif
1796 } else if (token == Opt_data_err_abort) {
1797 sbi->s_mount_opt |= m->mount_opt;
1798 } else if (token == Opt_data_err_ignore) {
1799 sbi->s_mount_opt &= ~m->mount_opt;
1800 } else {
1801 if (!args->from)
1802 arg = 1;
1803 if (m->flags & MOPT_CLEAR)
1804 arg = !arg;
1805 else if (unlikely(!(m->flags & MOPT_SET))) {
1806 ext4_msg(sb, KERN_WARNING,
1807 "buggy handling of option %s", opt);
1808 WARN_ON(1);
1809 return -1;
1810 }
1811 if (arg != 0)
1812 sbi->s_mount_opt |= m->mount_opt;
1813 else
1814 sbi->s_mount_opt &= ~m->mount_opt;
1815 }
1816 return 1;
1817 }
1818
1819 static int parse_options(char *options, struct super_block *sb,
1820 unsigned long *journal_devnum,
1821 unsigned int *journal_ioprio,
1822 int is_remount)
1823 {
1824 struct ext4_sb_info *sbi = EXT4_SB(sb);
1825 char *p;
1826 substring_t args[MAX_OPT_ARGS];
1827 int token;
1828
1829 if (!options)
1830 return 1;
1831
1832 while ((p = strsep(&options, ",")) != NULL) {
1833 if (!*p)
1834 continue;
1835 /*
1836 * Initialize args struct so we know whether arg was
1837 * found; some options take optional arguments.
1838 */
1839 args[0].to = args[0].from = NULL;
1840 token = match_token(p, tokens, args);
1841 if (handle_mount_opt(sb, p, token, args, journal_devnum,
1842 journal_ioprio, is_remount) < 0)
1843 return 0;
1844 }
1845 #ifdef CONFIG_QUOTA
1846 /*
1847 * We do the test below only for project quotas. 'usrquota' and
1848 * 'grpquota' mount options are allowed even without quota feature
1849 * to support legacy quotas in quota files.
1850 */
1851 if (test_opt(sb, PRJQUOTA) && !ext4_has_feature_project(sb)) {
1852 ext4_msg(sb, KERN_ERR, "Project quota feature not enabled. "
1853 "Cannot enable project quota enforcement.");
1854 return 0;
1855 }
1856 if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
1857 if (test_opt(sb, USRQUOTA) && sbi->s_qf_names[USRQUOTA])
1858 clear_opt(sb, USRQUOTA);
1859
1860 if (test_opt(sb, GRPQUOTA) && sbi->s_qf_names[GRPQUOTA])
1861 clear_opt(sb, GRPQUOTA);
1862
1863 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) {
1864 ext4_msg(sb, KERN_ERR, "old and new quota "
1865 "format mixing");
1866 return 0;
1867 }
1868
1869 if (!sbi->s_jquota_fmt) {
1870 ext4_msg(sb, KERN_ERR, "journaled quota format "
1871 "not specified");
1872 return 0;
1873 }
1874 }
1875 #endif
1876 if (test_opt(sb, DIOREAD_NOLOCK)) {
1877 int blocksize =
1878 BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size);
1879
1880 if (blocksize < PAGE_SIZE) {
1881 ext4_msg(sb, KERN_ERR, "can't mount with "
1882 "dioread_nolock if block size != PAGE_SIZE");
1883 return 0;
1884 }
1885 }
1886 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA &&
1887 test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
1888 ext4_msg(sb, KERN_ERR, "can't mount with journal_async_commit "
1889 "in data=ordered mode");
1890 return 0;
1891 }
1892 return 1;
1893 }
1894
1895 static inline void ext4_show_quota_options(struct seq_file *seq,
1896 struct super_block *sb)
1897 {
1898 #if defined(CONFIG_QUOTA)
1899 struct ext4_sb_info *sbi = EXT4_SB(sb);
1900
1901 if (sbi->s_jquota_fmt) {
1902 char *fmtname = "";
1903
1904 switch (sbi->s_jquota_fmt) {
1905 case QFMT_VFS_OLD:
1906 fmtname = "vfsold";
1907 break;
1908 case QFMT_VFS_V0:
1909 fmtname = "vfsv0";
1910 break;
1911 case QFMT_VFS_V1:
1912 fmtname = "vfsv1";
1913 break;
1914 }
1915 seq_printf(seq, ",jqfmt=%s", fmtname);
1916 }
1917
1918 if (sbi->s_qf_names[USRQUOTA])
1919 seq_show_option(seq, "usrjquota", sbi->s_qf_names[USRQUOTA]);
1920
1921 if (sbi->s_qf_names[GRPQUOTA])
1922 seq_show_option(seq, "grpjquota", sbi->s_qf_names[GRPQUOTA]);
1923 #endif
1924 }
1925
1926 static const char *token2str(int token)
1927 {
1928 const struct match_token *t;
1929
1930 for (t = tokens; t->token != Opt_err; t++)
1931 if (t->token == token && !strchr(t->pattern, '='))
1932 break;
1933 return t->pattern;
1934 }
1935
1936 /*
1937 * Show an option if
1938 * - it's set to a non-default value OR
1939 * - if the per-sb default is different from the global default
1940 */
1941 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb,
1942 int nodefs)
1943 {
1944 struct ext4_sb_info *sbi = EXT4_SB(sb);
1945 struct ext4_super_block *es = sbi->s_es;
1946 int def_errors, def_mount_opt = nodefs ? 0 : sbi->s_def_mount_opt;
1947 const struct mount_opts *m;
1948 char sep = nodefs ? '\n' : ',';
1949
1950 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep)
1951 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg)
1952
1953 if (sbi->s_sb_block != 1)
1954 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block);
1955
1956 for (m = ext4_mount_opts; m->token != Opt_err; m++) {
1957 int want_set = m->flags & MOPT_SET;
1958 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) ||
1959 (m->flags & MOPT_CLEAR_ERR))
1960 continue;
1961 if (!(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt)))
1962 continue; /* skip if same as the default */
1963 if ((want_set &&
1964 (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) ||
1965 (!want_set && (sbi->s_mount_opt & m->mount_opt)))
1966 continue; /* select Opt_noFoo vs Opt_Foo */
1967 SEQ_OPTS_PRINT("%s", token2str(m->token));
1968 }
1969
1970 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) ||
1971 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID)
1972 SEQ_OPTS_PRINT("resuid=%u",
1973 from_kuid_munged(&init_user_ns, sbi->s_resuid));
1974 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) ||
1975 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID)
1976 SEQ_OPTS_PRINT("resgid=%u",
1977 from_kgid_munged(&init_user_ns, sbi->s_resgid));
1978 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors);
1979 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO)
1980 SEQ_OPTS_PUTS("errors=remount-ro");
1981 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
1982 SEQ_OPTS_PUTS("errors=continue");
1983 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
1984 SEQ_OPTS_PUTS("errors=panic");
1985 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
1986 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ);
1987 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME)
1988 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time);
1989 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME)
1990 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time);
1991 if (sb->s_flags & MS_I_VERSION)
1992 SEQ_OPTS_PUTS("i_version");
1993 if (nodefs || sbi->s_stripe)
1994 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe);
1995 if (EXT4_MOUNT_DATA_FLAGS & (sbi->s_mount_opt ^ def_mount_opt)) {
1996 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
1997 SEQ_OPTS_PUTS("data=journal");
1998 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
1999 SEQ_OPTS_PUTS("data=ordered");
2000 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
2001 SEQ_OPTS_PUTS("data=writeback");
2002 }
2003 if (nodefs ||
2004 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
2005 SEQ_OPTS_PRINT("inode_readahead_blks=%u",
2006 sbi->s_inode_readahead_blks);
2007
2008 if (nodefs || (test_opt(sb, INIT_INODE_TABLE) &&
2009 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)))
2010 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult);
2011 if (nodefs || sbi->s_max_dir_size_kb)
2012 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb);
2013 if (test_opt(sb, DATA_ERR_ABORT))
2014 SEQ_OPTS_PUTS("data_err=abort");
2015
2016 ext4_show_quota_options(seq, sb);
2017 return 0;
2018 }
2019
2020 static int ext4_show_options(struct seq_file *seq, struct dentry *root)
2021 {
2022 return _ext4_show_options(seq, root->d_sb, 0);
2023 }
2024
2025 int ext4_seq_options_show(struct seq_file *seq, void *offset)
2026 {
2027 struct super_block *sb = seq->private;
2028 int rc;
2029
2030 seq_puts(seq, (sb->s_flags & MS_RDONLY) ? "ro" : "rw");
2031 rc = _ext4_show_options(seq, sb, 1);
2032 seq_puts(seq, "\n");
2033 return rc;
2034 }
2035
2036 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
2037 int read_only)
2038 {
2039 struct ext4_sb_info *sbi = EXT4_SB(sb);
2040 int res = 0;
2041
2042 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
2043 ext4_msg(sb, KERN_ERR, "revision level too high, "
2044 "forcing read-only mode");
2045 res = MS_RDONLY;
2046 }
2047 if (read_only)
2048 goto done;
2049 if (!(sbi->s_mount_state & EXT4_VALID_FS))
2050 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
2051 "running e2fsck is recommended");
2052 else if (sbi->s_mount_state & EXT4_ERROR_FS)
2053 ext4_msg(sb, KERN_WARNING,
2054 "warning: mounting fs with errors, "
2055 "running e2fsck is recommended");
2056 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
2057 le16_to_cpu(es->s_mnt_count) >=
2058 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
2059 ext4_msg(sb, KERN_WARNING,
2060 "warning: maximal mount count reached, "
2061 "running e2fsck is recommended");
2062 else if (le32_to_cpu(es->s_checkinterval) &&
2063 (le32_to_cpu(es->s_lastcheck) +
2064 le32_to_cpu(es->s_checkinterval) <= get_seconds()))
2065 ext4_msg(sb, KERN_WARNING,
2066 "warning: checktime reached, "
2067 "running e2fsck is recommended");
2068 if (!sbi->s_journal)
2069 es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
2070 if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
2071 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
2072 le16_add_cpu(&es->s_mnt_count, 1);
2073 es->s_mtime = cpu_to_le32(get_seconds());
2074 ext4_update_dynamic_rev(sb);
2075 if (sbi->s_journal)
2076 ext4_set_feature_journal_needs_recovery(sb);
2077
2078 ext4_commit_super(sb, 1);
2079 done:
2080 if (test_opt(sb, DEBUG))
2081 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
2082 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
2083 sb->s_blocksize,
2084 sbi->s_groups_count,
2085 EXT4_BLOCKS_PER_GROUP(sb),
2086 EXT4_INODES_PER_GROUP(sb),
2087 sbi->s_mount_opt, sbi->s_mount_opt2);
2088
2089 cleancache_init_fs(sb);
2090 return res;
2091 }
2092
2093 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup)
2094 {
2095 struct ext4_sb_info *sbi = EXT4_SB(sb);
2096 struct flex_groups *new_groups;
2097 int size;
2098
2099 if (!sbi->s_log_groups_per_flex)
2100 return 0;
2101
2102 size = ext4_flex_group(sbi, ngroup - 1) + 1;
2103 if (size <= sbi->s_flex_groups_allocated)
2104 return 0;
2105
2106 size = roundup_pow_of_two(size * sizeof(struct flex_groups));
2107 new_groups = ext4_kvzalloc(size, GFP_KERNEL);
2108 if (!new_groups) {
2109 ext4_msg(sb, KERN_ERR, "not enough memory for %d flex groups",
2110 size / (int) sizeof(struct flex_groups));
2111 return -ENOMEM;
2112 }
2113
2114 if (sbi->s_flex_groups) {
2115 memcpy(new_groups, sbi->s_flex_groups,
2116 (sbi->s_flex_groups_allocated *
2117 sizeof(struct flex_groups)));
2118 kvfree(sbi->s_flex_groups);
2119 }
2120 sbi->s_flex_groups = new_groups;
2121 sbi->s_flex_groups_allocated = size / sizeof(struct flex_groups);
2122 return 0;
2123 }
2124
2125 static int ext4_fill_flex_info(struct super_block *sb)
2126 {
2127 struct ext4_sb_info *sbi = EXT4_SB(sb);
2128 struct ext4_group_desc *gdp = NULL;
2129 ext4_group_t flex_group;
2130 int i, err;
2131
2132 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
2133 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) {
2134 sbi->s_log_groups_per_flex = 0;
2135 return 1;
2136 }
2137
2138 err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count);
2139 if (err)
2140 goto failed;
2141
2142 for (i = 0; i < sbi->s_groups_count; i++) {
2143 gdp = ext4_get_group_desc(sb, i, NULL);
2144
2145 flex_group = ext4_flex_group(sbi, i);
2146 atomic_add(ext4_free_inodes_count(sb, gdp),
2147 &sbi->s_flex_groups[flex_group].free_inodes);
2148 atomic64_add(ext4_free_group_clusters(sb, gdp),
2149 &sbi->s_flex_groups[flex_group].free_clusters);
2150 atomic_add(ext4_used_dirs_count(sb, gdp),
2151 &sbi->s_flex_groups[flex_group].used_dirs);
2152 }
2153
2154 return 1;
2155 failed:
2156 return 0;
2157 }
2158
2159 static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group,
2160 struct ext4_group_desc *gdp)
2161 {
2162 int offset = offsetof(struct ext4_group_desc, bg_checksum);
2163 __u16 crc = 0;
2164 __le32 le_group = cpu_to_le32(block_group);
2165 struct ext4_sb_info *sbi = EXT4_SB(sb);
2166
2167 if (ext4_has_metadata_csum(sbi->s_sb)) {
2168 /* Use new metadata_csum algorithm */
2169 __u32 csum32;
2170 __u16 dummy_csum = 0;
2171
2172 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group,
2173 sizeof(le_group));
2174 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, offset);
2175 csum32 = ext4_chksum(sbi, csum32, (__u8 *)&dummy_csum,
2176 sizeof(dummy_csum));
2177 offset += sizeof(dummy_csum);
2178 if (offset < sbi->s_desc_size)
2179 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp + offset,
2180 sbi->s_desc_size - offset);
2181
2182 crc = csum32 & 0xFFFF;
2183 goto out;
2184 }
2185
2186 /* old crc16 code */
2187 if (!ext4_has_feature_gdt_csum(sb))
2188 return 0;
2189
2190 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
2191 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
2192 crc = crc16(crc, (__u8 *)gdp, offset);
2193 offset += sizeof(gdp->bg_checksum); /* skip checksum */
2194 /* for checksum of struct ext4_group_desc do the rest...*/
2195 if (ext4_has_feature_64bit(sb) &&
2196 offset < le16_to_cpu(sbi->s_es->s_desc_size))
2197 crc = crc16(crc, (__u8 *)gdp + offset,
2198 le16_to_cpu(sbi->s_es->s_desc_size) -
2199 offset);
2200
2201 out:
2202 return cpu_to_le16(crc);
2203 }
2204
2205 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group,
2206 struct ext4_group_desc *gdp)
2207 {
2208 if (ext4_has_group_desc_csum(sb) &&
2209 (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp)))
2210 return 0;
2211
2212 return 1;
2213 }
2214
2215 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group,
2216 struct ext4_group_desc *gdp)
2217 {
2218 if (!ext4_has_group_desc_csum(sb))
2219 return;
2220 gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp);
2221 }
2222
2223 /* Called at mount-time, super-block is locked */
2224 static int ext4_check_descriptors(struct super_block *sb,
2225 ext4_fsblk_t sb_block,
2226 ext4_group_t *first_not_zeroed)
2227 {
2228 struct ext4_sb_info *sbi = EXT4_SB(sb);
2229 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
2230 ext4_fsblk_t last_block;
2231 ext4_fsblk_t block_bitmap;
2232 ext4_fsblk_t inode_bitmap;
2233 ext4_fsblk_t inode_table;
2234 int flexbg_flag = 0;
2235 ext4_group_t i, grp = sbi->s_groups_count;
2236
2237 if (ext4_has_feature_flex_bg(sb))
2238 flexbg_flag = 1;
2239
2240 ext4_debug("Checking group descriptors");
2241
2242 for (i = 0; i < sbi->s_groups_count; i++) {
2243 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
2244
2245 if (i == sbi->s_groups_count - 1 || flexbg_flag)
2246 last_block = ext4_blocks_count(sbi->s_es) - 1;
2247 else
2248 last_block = first_block +
2249 (EXT4_BLOCKS_PER_GROUP(sb) - 1);
2250
2251 if ((grp == sbi->s_groups_count) &&
2252 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2253 grp = i;
2254
2255 block_bitmap = ext4_block_bitmap(sb, gdp);
2256 if (block_bitmap == sb_block) {
2257 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2258 "Block bitmap for group %u overlaps "
2259 "superblock", i);
2260 }
2261 if (block_bitmap < first_block || block_bitmap > last_block) {
2262 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2263 "Block bitmap for group %u not in group "
2264 "(block %llu)!", i, block_bitmap);
2265 return 0;
2266 }
2267 inode_bitmap = ext4_inode_bitmap(sb, gdp);
2268 if (inode_bitmap == sb_block) {
2269 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2270 "Inode bitmap for group %u overlaps "
2271 "superblock", i);
2272 }
2273 if (inode_bitmap < first_block || inode_bitmap > last_block) {
2274 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2275 "Inode bitmap for group %u not in group "
2276 "(block %llu)!", i, inode_bitmap);
2277 return 0;
2278 }
2279 inode_table = ext4_inode_table(sb, gdp);
2280 if (inode_table == sb_block) {
2281 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2282 "Inode table for group %u overlaps "
2283 "superblock", i);
2284 }
2285 if (inode_table < first_block ||
2286 inode_table + sbi->s_itb_per_group - 1 > last_block) {
2287 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2288 "Inode table for group %u not in group "
2289 "(block %llu)!", i, inode_table);
2290 return 0;
2291 }
2292 ext4_lock_group(sb, i);
2293 if (!ext4_group_desc_csum_verify(sb, i, gdp)) {
2294 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2295 "Checksum for group %u failed (%u!=%u)",
2296 i, le16_to_cpu(ext4_group_desc_csum(sb, i,
2297 gdp)), le16_to_cpu(gdp->bg_checksum));
2298 if (!(sb->s_flags & MS_RDONLY)) {
2299 ext4_unlock_group(sb, i);
2300 return 0;
2301 }
2302 }
2303 ext4_unlock_group(sb, i);
2304 if (!flexbg_flag)
2305 first_block += EXT4_BLOCKS_PER_GROUP(sb);
2306 }
2307 if (NULL != first_not_zeroed)
2308 *first_not_zeroed = grp;
2309 return 1;
2310 }
2311
2312 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at
2313 * the superblock) which were deleted from all directories, but held open by
2314 * a process at the time of a crash. We walk the list and try to delete these
2315 * inodes at recovery time (only with a read-write filesystem).
2316 *
2317 * In order to keep the orphan inode chain consistent during traversal (in
2318 * case of crash during recovery), we link each inode into the superblock
2319 * orphan list_head and handle it the same way as an inode deletion during
2320 * normal operation (which journals the operations for us).
2321 *
2322 * We only do an iget() and an iput() on each inode, which is very safe if we
2323 * accidentally point at an in-use or already deleted inode. The worst that
2324 * can happen in this case is that we get a "bit already cleared" message from
2325 * ext4_free_inode(). The only reason we would point at a wrong inode is if
2326 * e2fsck was run on this filesystem, and it must have already done the orphan
2327 * inode cleanup for us, so we can safely abort without any further action.
2328 */
2329 static void ext4_orphan_cleanup(struct super_block *sb,
2330 struct ext4_super_block *es)
2331 {
2332 unsigned int s_flags = sb->s_flags;
2333 int nr_orphans = 0, nr_truncates = 0;
2334 #ifdef CONFIG_QUOTA
2335 int i;
2336 #endif
2337 if (!es->s_last_orphan) {
2338 jbd_debug(4, "no orphan inodes to clean up\n");
2339 return;
2340 }
2341
2342 if (bdev_read_only(sb->s_bdev)) {
2343 ext4_msg(sb, KERN_ERR, "write access "
2344 "unavailable, skipping orphan cleanup");
2345 return;
2346 }
2347
2348 /* Check if feature set would not allow a r/w mount */
2349 if (!ext4_feature_set_ok(sb, 0)) {
2350 ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to "
2351 "unknown ROCOMPAT features");
2352 return;
2353 }
2354
2355 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2356 /* don't clear list on RO mount w/ errors */
2357 if (es->s_last_orphan && !(s_flags & MS_RDONLY)) {
2358 ext4_msg(sb, KERN_INFO, "Errors on filesystem, "
2359 "clearing orphan list.\n");
2360 es->s_last_orphan = 0;
2361 }
2362 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2363 return;
2364 }
2365
2366 if (s_flags & MS_RDONLY) {
2367 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs");
2368 sb->s_flags &= ~MS_RDONLY;
2369 }
2370 #ifdef CONFIG_QUOTA
2371 /* Needed for iput() to work correctly and not trash data */
2372 sb->s_flags |= MS_ACTIVE;
2373 /* Turn on quotas so that they are updated correctly */
2374 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2375 if (EXT4_SB(sb)->s_qf_names[i]) {
2376 int ret = ext4_quota_on_mount(sb, i);
2377 if (ret < 0)
2378 ext4_msg(sb, KERN_ERR,
2379 "Cannot turn on journaled "
2380 "quota: error %d", ret);
2381 }
2382 }
2383 #endif
2384
2385 while (es->s_last_orphan) {
2386 struct inode *inode;
2387
2388 /*
2389 * We may have encountered an error during cleanup; if
2390 * so, skip the rest.
2391 */
2392 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2393 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2394 es->s_last_orphan = 0;
2395 break;
2396 }
2397
2398 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan));
2399 if (IS_ERR(inode)) {
2400 es->s_last_orphan = 0;
2401 break;
2402 }
2403
2404 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan);
2405 dquot_initialize(inode);
2406 if (inode->i_nlink) {
2407 if (test_opt(sb, DEBUG))
2408 ext4_msg(sb, KERN_DEBUG,
2409 "%s: truncating inode %lu to %lld bytes",
2410 __func__, inode->i_ino, inode->i_size);
2411 jbd_debug(2, "truncating inode %lu to %lld bytes\n",
2412 inode->i_ino, inode->i_size);
2413 inode_lock(inode);
2414 truncate_inode_pages(inode->i_mapping, inode->i_size);
2415 ext4_truncate(inode);
2416 inode_unlock(inode);
2417 nr_truncates++;
2418 } else {
2419 if (test_opt(sb, DEBUG))
2420 ext4_msg(sb, KERN_DEBUG,
2421 "%s: deleting unreferenced inode %lu",
2422 __func__, inode->i_ino);
2423 jbd_debug(2, "deleting unreferenced inode %lu\n",
2424 inode->i_ino);
2425 nr_orphans++;
2426 }
2427 iput(inode); /* The delete magic happens here! */
2428 }
2429
2430 #define PLURAL(x) (x), ((x) == 1) ? "" : "s"
2431
2432 if (nr_orphans)
2433 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted",
2434 PLURAL(nr_orphans));
2435 if (nr_truncates)
2436 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up",
2437 PLURAL(nr_truncates));
2438 #ifdef CONFIG_QUOTA
2439 /* Turn quotas off */
2440 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2441 if (sb_dqopt(sb)->files[i])
2442 dquot_quota_off(sb, i);
2443 }
2444 #endif
2445 sb->s_flags = s_flags; /* Restore MS_RDONLY status */
2446 }
2447
2448 /*
2449 * Maximal extent format file size.
2450 * Resulting logical blkno at s_maxbytes must fit in our on-disk
2451 * extent format containers, within a sector_t, and within i_blocks
2452 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units,
2453 * so that won't be a limiting factor.
2454 *
2455 * However there is other limiting factor. We do store extents in the form
2456 * of starting block and length, hence the resulting length of the extent
2457 * covering maximum file size must fit into on-disk format containers as
2458 * well. Given that length is always by 1 unit bigger than max unit (because
2459 * we count 0 as well) we have to lower the s_maxbytes by one fs block.
2460 *
2461 * Note, this does *not* consider any metadata overhead for vfs i_blocks.
2462 */
2463 static loff_t ext4_max_size(int blkbits, int has_huge_files)
2464 {
2465 loff_t res;
2466 loff_t upper_limit = MAX_LFS_FILESIZE;
2467
2468 /* small i_blocks in vfs inode? */
2469 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2470 /*
2471 * CONFIG_LBDAF is not enabled implies the inode
2472 * i_block represent total blocks in 512 bytes
2473 * 32 == size of vfs inode i_blocks * 8
2474 */
2475 upper_limit = (1LL << 32) - 1;
2476
2477 /* total blocks in file system block size */
2478 upper_limit >>= (blkbits - 9);
2479 upper_limit <<= blkbits;
2480 }
2481
2482 /*
2483 * 32-bit extent-start container, ee_block. We lower the maxbytes
2484 * by one fs block, so ee_len can cover the extent of maximum file
2485 * size
2486 */
2487 res = (1LL << 32) - 1;
2488 res <<= blkbits;
2489
2490 /* Sanity check against vm- & vfs- imposed limits */
2491 if (res > upper_limit)
2492 res = upper_limit;
2493
2494 return res;
2495 }
2496
2497 /*
2498 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect
2499 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
2500 * We need to be 1 filesystem block less than the 2^48 sector limit.
2501 */
2502 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
2503 {
2504 loff_t res = EXT4_NDIR_BLOCKS;
2505 int meta_blocks;
2506 loff_t upper_limit;
2507 /* This is calculated to be the largest file size for a dense, block
2508 * mapped file such that the file's total number of 512-byte sectors,
2509 * including data and all indirect blocks, does not exceed (2^48 - 1).
2510 *
2511 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
2512 * number of 512-byte sectors of the file.
2513 */
2514
2515 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2516 /*
2517 * !has_huge_files or CONFIG_LBDAF not enabled implies that
2518 * the inode i_block field represents total file blocks in
2519 * 2^32 512-byte sectors == size of vfs inode i_blocks * 8
2520 */
2521 upper_limit = (1LL << 32) - 1;
2522
2523 /* total blocks in file system block size */
2524 upper_limit >>= (bits - 9);
2525
2526 } else {
2527 /*
2528 * We use 48 bit ext4_inode i_blocks
2529 * With EXT4_HUGE_FILE_FL set the i_blocks
2530 * represent total number of blocks in
2531 * file system block size
2532 */
2533 upper_limit = (1LL << 48) - 1;
2534
2535 }
2536
2537 /* indirect blocks */
2538 meta_blocks = 1;
2539 /* double indirect blocks */
2540 meta_blocks += 1 + (1LL << (bits-2));
2541 /* tripple indirect blocks */
2542 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2)));
2543
2544 upper_limit -= meta_blocks;
2545 upper_limit <<= bits;
2546
2547 res += 1LL << (bits-2);
2548 res += 1LL << (2*(bits-2));
2549 res += 1LL << (3*(bits-2));
2550 res <<= bits;
2551 if (res > upper_limit)
2552 res = upper_limit;
2553
2554 if (res > MAX_LFS_FILESIZE)
2555 res = MAX_LFS_FILESIZE;
2556
2557 return res;
2558 }
2559
2560 static ext4_fsblk_t descriptor_loc(struct super_block *sb,
2561 ext4_fsblk_t logical_sb_block, int nr)
2562 {
2563 struct ext4_sb_info *sbi = EXT4_SB(sb);
2564 ext4_group_t bg, first_meta_bg;
2565 int has_super = 0;
2566
2567 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
2568
2569 if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg)
2570 return logical_sb_block + nr + 1;
2571 bg = sbi->s_desc_per_block * nr;
2572 if (ext4_bg_has_super(sb, bg))
2573 has_super = 1;
2574
2575 /*
2576 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at
2577 * block 2, not 1. If s_first_data_block == 0 (bigalloc is enabled
2578 * on modern mke2fs or blksize > 1k on older mke2fs) then we must
2579 * compensate.
2580 */
2581 if (sb->s_blocksize == 1024 && nr == 0 &&
2582 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block) == 0)
2583 has_super++;
2584
2585 return (has_super + ext4_group_first_block_no(sb, bg));
2586 }
2587
2588 /**
2589 * ext4_get_stripe_size: Get the stripe size.
2590 * @sbi: In memory super block info
2591 *
2592 * If we have specified it via mount option, then
2593 * use the mount option value. If the value specified at mount time is
2594 * greater than the blocks per group use the super block value.
2595 * If the super block value is greater than blocks per group return 0.
2596 * Allocator needs it be less than blocks per group.
2597 *
2598 */
2599 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
2600 {
2601 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
2602 unsigned long stripe_width =
2603 le32_to_cpu(sbi->s_es->s_raid_stripe_width);
2604 int ret;
2605
2606 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
2607 ret = sbi->s_stripe;
2608 else if (stripe_width <= sbi->s_blocks_per_group)
2609 ret = stripe_width;
2610 else if (stride <= sbi->s_blocks_per_group)
2611 ret = stride;
2612 else
2613 ret = 0;
2614
2615 /*
2616 * If the stripe width is 1, this makes no sense and
2617 * we set it to 0 to turn off stripe handling code.
2618 */
2619 if (ret <= 1)
2620 ret = 0;
2621
2622 return ret;
2623 }
2624
2625 /*
2626 * Check whether this filesystem can be mounted based on
2627 * the features present and the RDONLY/RDWR mount requested.
2628 * Returns 1 if this filesystem can be mounted as requested,
2629 * 0 if it cannot be.
2630 */
2631 static int ext4_feature_set_ok(struct super_block *sb, int readonly)
2632 {
2633 if (ext4_has_unknown_ext4_incompat_features(sb)) {
2634 ext4_msg(sb, KERN_ERR,
2635 "Couldn't mount because of "
2636 "unsupported optional features (%x)",
2637 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
2638 ~EXT4_FEATURE_INCOMPAT_SUPP));
2639 return 0;
2640 }
2641
2642 if (readonly)
2643 return 1;
2644
2645 if (ext4_has_feature_readonly(sb)) {
2646 ext4_msg(sb, KERN_INFO, "filesystem is read-only");
2647 sb->s_flags |= MS_RDONLY;
2648 return 1;
2649 }
2650
2651 /* Check that feature set is OK for a read-write mount */
2652 if (ext4_has_unknown_ext4_ro_compat_features(sb)) {
2653 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
2654 "unsupported optional features (%x)",
2655 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
2656 ~EXT4_FEATURE_RO_COMPAT_SUPP));
2657 return 0;
2658 }
2659 /*
2660 * Large file size enabled file system can only be mounted
2661 * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF
2662 */
2663 if (ext4_has_feature_huge_file(sb)) {
2664 if (sizeof(blkcnt_t) < sizeof(u64)) {
2665 ext4_msg(sb, KERN_ERR, "Filesystem with huge files "
2666 "cannot be mounted RDWR without "
2667 "CONFIG_LBDAF");
2668 return 0;
2669 }
2670 }
2671 if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) {
2672 ext4_msg(sb, KERN_ERR,
2673 "Can't support bigalloc feature without "
2674 "extents feature\n");
2675 return 0;
2676 }
2677
2678 #ifndef CONFIG_QUOTA
2679 if (ext4_has_feature_quota(sb) && !readonly) {
2680 ext4_msg(sb, KERN_ERR,
2681 "Filesystem with quota feature cannot be mounted RDWR "
2682 "without CONFIG_QUOTA");
2683 return 0;
2684 }
2685 if (ext4_has_feature_project(sb) && !readonly) {
2686 ext4_msg(sb, KERN_ERR,
2687 "Filesystem with project quota feature cannot be mounted RDWR "
2688 "without CONFIG_QUOTA");
2689 return 0;
2690 }
2691 #endif /* CONFIG_QUOTA */
2692 return 1;
2693 }
2694
2695 /*
2696 * This function is called once a day if we have errors logged
2697 * on the file system
2698 */
2699 static void print_daily_error_info(unsigned long arg)
2700 {
2701 struct super_block *sb = (struct super_block *) arg;
2702 struct ext4_sb_info *sbi;
2703 struct ext4_super_block *es;
2704
2705 sbi = EXT4_SB(sb);
2706 es = sbi->s_es;
2707
2708 if (es->s_error_count)
2709 /* fsck newer than v1.41.13 is needed to clean this condition. */
2710 ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u",
2711 le32_to_cpu(es->s_error_count));
2712 if (es->s_first_error_time) {
2713 printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %u: %.*s:%d",
2714 sb->s_id, le32_to_cpu(es->s_first_error_time),
2715 (int) sizeof(es->s_first_error_func),
2716 es->s_first_error_func,
2717 le32_to_cpu(es->s_first_error_line));
2718 if (es->s_first_error_ino)
2719 printk(KERN_CONT ": inode %u",
2720 le32_to_cpu(es->s_first_error_ino));
2721 if (es->s_first_error_block)
2722 printk(KERN_CONT ": block %llu", (unsigned long long)
2723 le64_to_cpu(es->s_first_error_block));
2724 printk(KERN_CONT "\n");
2725 }
2726 if (es->s_last_error_time) {
2727 printk(KERN_NOTICE "EXT4-fs (%s): last error at time %u: %.*s:%d",
2728 sb->s_id, le32_to_cpu(es->s_last_error_time),
2729 (int) sizeof(es->s_last_error_func),
2730 es->s_last_error_func,
2731 le32_to_cpu(es->s_last_error_line));
2732 if (es->s_last_error_ino)
2733 printk(KERN_CONT ": inode %u",
2734 le32_to_cpu(es->s_last_error_ino));
2735 if (es->s_last_error_block)
2736 printk(KERN_CONT ": block %llu", (unsigned long long)
2737 le64_to_cpu(es->s_last_error_block));
2738 printk(KERN_CONT "\n");
2739 }
2740 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */
2741 }
2742
2743 /* Find next suitable group and run ext4_init_inode_table */
2744 static int ext4_run_li_request(struct ext4_li_request *elr)
2745 {
2746 struct ext4_group_desc *gdp = NULL;
2747 ext4_group_t group, ngroups;
2748 struct super_block *sb;
2749 unsigned long timeout = 0;
2750 int ret = 0;
2751
2752 sb = elr->lr_super;
2753 ngroups = EXT4_SB(sb)->s_groups_count;
2754
2755 for (group = elr->lr_next_group; group < ngroups; group++) {
2756 gdp = ext4_get_group_desc(sb, group, NULL);
2757 if (!gdp) {
2758 ret = 1;
2759 break;
2760 }
2761
2762 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2763 break;
2764 }
2765
2766 if (group >= ngroups)
2767 ret = 1;
2768
2769 if (!ret) {
2770 timeout = jiffies;
2771 ret = ext4_init_inode_table(sb, group,
2772 elr->lr_timeout ? 0 : 1);
2773 if (elr->lr_timeout == 0) {
2774 timeout = (jiffies - timeout) *
2775 elr->lr_sbi->s_li_wait_mult;
2776 elr->lr_timeout = timeout;
2777 }
2778 elr->lr_next_sched = jiffies + elr->lr_timeout;
2779 elr->lr_next_group = group + 1;
2780 }
2781 return ret;
2782 }
2783
2784 /*
2785 * Remove lr_request from the list_request and free the
2786 * request structure. Should be called with li_list_mtx held
2787 */
2788 static void ext4_remove_li_request(struct ext4_li_request *elr)
2789 {
2790 struct ext4_sb_info *sbi;
2791
2792 if (!elr)
2793 return;
2794
2795 sbi = elr->lr_sbi;
2796
2797 list_del(&elr->lr_request);
2798 sbi->s_li_request = NULL;
2799 kfree(elr);
2800 }
2801
2802 static void ext4_unregister_li_request(struct super_block *sb)
2803 {
2804 mutex_lock(&ext4_li_mtx);
2805 if (!ext4_li_info) {
2806 mutex_unlock(&ext4_li_mtx);
2807 return;
2808 }
2809
2810 mutex_lock(&ext4_li_info->li_list_mtx);
2811 ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
2812 mutex_unlock(&ext4_li_info->li_list_mtx);
2813 mutex_unlock(&ext4_li_mtx);
2814 }
2815
2816 static struct task_struct *ext4_lazyinit_task;
2817
2818 /*
2819 * This is the function where ext4lazyinit thread lives. It walks
2820 * through the request list searching for next scheduled filesystem.
2821 * When such a fs is found, run the lazy initialization request
2822 * (ext4_rn_li_request) and keep track of the time spend in this
2823 * function. Based on that time we compute next schedule time of
2824 * the request. When walking through the list is complete, compute
2825 * next waking time and put itself into sleep.
2826 */
2827 static int ext4_lazyinit_thread(void *arg)
2828 {
2829 struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg;
2830 struct list_head *pos, *n;
2831 struct ext4_li_request *elr;
2832 unsigned long next_wakeup, cur;
2833
2834 BUG_ON(NULL == eli);
2835
2836 cont_thread:
2837 while (true) {
2838 next_wakeup = MAX_JIFFY_OFFSET;
2839
2840 mutex_lock(&eli->li_list_mtx);
2841 if (list_empty(&eli->li_request_list)) {
2842 mutex_unlock(&eli->li_list_mtx);
2843 goto exit_thread;
2844 }
2845 list_for_each_safe(pos, n, &eli->li_request_list) {
2846 int err = 0;
2847 int progress = 0;
2848 elr = list_entry(pos, struct ext4_li_request,
2849 lr_request);
2850
2851 if (time_before(jiffies, elr->lr_next_sched)) {
2852 if (time_before(elr->lr_next_sched, next_wakeup))
2853 next_wakeup = elr->lr_next_sched;
2854 continue;
2855 }
2856 if (down_read_trylock(&elr->lr_super->s_umount)) {
2857 if (sb_start_write_trylock(elr->lr_super)) {
2858 progress = 1;
2859 /*
2860 * We hold sb->s_umount, sb can not
2861 * be removed from the list, it is
2862 * now safe to drop li_list_mtx
2863 */
2864 mutex_unlock(&eli->li_list_mtx);
2865 err = ext4_run_li_request(elr);
2866 sb_end_write(elr->lr_super);
2867 mutex_lock(&eli->li_list_mtx);
2868 n = pos->next;
2869 }
2870 up_read((&elr->lr_super->s_umount));
2871 }
2872 /* error, remove the lazy_init job */
2873 if (err) {
2874 ext4_remove_li_request(elr);
2875 continue;
2876 }
2877 if (!progress) {
2878 elr->lr_next_sched = jiffies +
2879 (prandom_u32()
2880 % (EXT4_DEF_LI_MAX_START_DELAY * HZ));
2881 }
2882 if (time_before(elr->lr_next_sched, next_wakeup))
2883 next_wakeup = elr->lr_next_sched;
2884 }
2885 mutex_unlock(&eli->li_list_mtx);
2886
2887 try_to_freeze();
2888
2889 cur = jiffies;
2890 if ((time_after_eq(cur, next_wakeup)) ||
2891 (MAX_JIFFY_OFFSET == next_wakeup)) {
2892 cond_resched();
2893 continue;
2894 }
2895
2896 schedule_timeout_interruptible(next_wakeup - cur);
2897
2898 if (kthread_should_stop()) {
2899 ext4_clear_request_list();
2900 goto exit_thread;
2901 }
2902 }
2903
2904 exit_thread:
2905 /*
2906 * It looks like the request list is empty, but we need
2907 * to check it under the li_list_mtx lock, to prevent any
2908 * additions into it, and of course we should lock ext4_li_mtx
2909 * to atomically free the list and ext4_li_info, because at
2910 * this point another ext4 filesystem could be registering
2911 * new one.
2912 */
2913 mutex_lock(&ext4_li_mtx);
2914 mutex_lock(&eli->li_list_mtx);
2915 if (!list_empty(&eli->li_request_list)) {
2916 mutex_unlock(&eli->li_list_mtx);
2917 mutex_unlock(&ext4_li_mtx);
2918 goto cont_thread;
2919 }
2920 mutex_unlock(&eli->li_list_mtx);
2921 kfree(ext4_li_info);
2922 ext4_li_info = NULL;
2923 mutex_unlock(&ext4_li_mtx);
2924
2925 return 0;
2926 }
2927
2928 static void ext4_clear_request_list(void)
2929 {
2930 struct list_head *pos, *n;
2931 struct ext4_li_request *elr;
2932
2933 mutex_lock(&ext4_li_info->li_list_mtx);
2934 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
2935 elr = list_entry(pos, struct ext4_li_request,
2936 lr_request);
2937 ext4_remove_li_request(elr);
2938 }
2939 mutex_unlock(&ext4_li_info->li_list_mtx);
2940 }
2941
2942 static int ext4_run_lazyinit_thread(void)
2943 {
2944 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
2945 ext4_li_info, "ext4lazyinit");
2946 if (IS_ERR(ext4_lazyinit_task)) {
2947 int err = PTR_ERR(ext4_lazyinit_task);
2948 ext4_clear_request_list();
2949 kfree(ext4_li_info);
2950 ext4_li_info = NULL;
2951 printk(KERN_CRIT "EXT4-fs: error %d creating inode table "
2952 "initialization thread\n",
2953 err);
2954 return err;
2955 }
2956 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
2957 return 0;
2958 }
2959
2960 /*
2961 * Check whether it make sense to run itable init. thread or not.
2962 * If there is at least one uninitialized inode table, return
2963 * corresponding group number, else the loop goes through all
2964 * groups and return total number of groups.
2965 */
2966 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
2967 {
2968 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
2969 struct ext4_group_desc *gdp = NULL;
2970
2971 for (group = 0; group < ngroups; group++) {
2972 gdp = ext4_get_group_desc(sb, group, NULL);
2973 if (!gdp)
2974 continue;
2975
2976 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2977 break;
2978 }
2979
2980 return group;
2981 }
2982
2983 static int ext4_li_info_new(void)
2984 {
2985 struct ext4_lazy_init *eli = NULL;
2986
2987 eli = kzalloc(sizeof(*eli), GFP_KERNEL);
2988 if (!eli)
2989 return -ENOMEM;
2990
2991 INIT_LIST_HEAD(&eli->li_request_list);
2992 mutex_init(&eli->li_list_mtx);
2993
2994 eli->li_state |= EXT4_LAZYINIT_QUIT;
2995
2996 ext4_li_info = eli;
2997
2998 return 0;
2999 }
3000
3001 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
3002 ext4_group_t start)
3003 {
3004 struct ext4_sb_info *sbi = EXT4_SB(sb);
3005 struct ext4_li_request *elr;
3006
3007 elr = kzalloc(sizeof(*elr), GFP_KERNEL);
3008 if (!elr)
3009 return NULL;
3010
3011 elr->lr_super = sb;
3012 elr->lr_sbi = sbi;
3013 elr->lr_next_group = start;
3014
3015 /*
3016 * Randomize first schedule time of the request to
3017 * spread the inode table initialization requests
3018 * better.
3019 */
3020 elr->lr_next_sched = jiffies + (prandom_u32() %
3021 (EXT4_DEF_LI_MAX_START_DELAY * HZ));
3022 return elr;
3023 }
3024
3025 int ext4_register_li_request(struct super_block *sb,
3026 ext4_group_t first_not_zeroed)
3027 {
3028 struct ext4_sb_info *sbi = EXT4_SB(sb);
3029 struct ext4_li_request *elr = NULL;
3030 ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count;
3031 int ret = 0;
3032
3033 mutex_lock(&ext4_li_mtx);
3034 if (sbi->s_li_request != NULL) {
3035 /*
3036 * Reset timeout so it can be computed again, because
3037 * s_li_wait_mult might have changed.
3038 */
3039 sbi->s_li_request->lr_timeout = 0;
3040 goto out;
3041 }
3042
3043 if (first_not_zeroed == ngroups ||
3044 (sb->s_flags & MS_RDONLY) ||
3045 !test_opt(sb, INIT_INODE_TABLE))
3046 goto out;
3047
3048 elr = ext4_li_request_new(sb, first_not_zeroed);
3049 if (!elr) {
3050 ret = -ENOMEM;
3051 goto out;
3052 }
3053
3054 if (NULL == ext4_li_info) {
3055 ret = ext4_li_info_new();
3056 if (ret)
3057 goto out;
3058 }
3059
3060 mutex_lock(&ext4_li_info->li_list_mtx);
3061 list_add(&elr->lr_request, &ext4_li_info->li_request_list);
3062 mutex_unlock(&ext4_li_info->li_list_mtx);
3063
3064 sbi->s_li_request = elr;
3065 /*
3066 * set elr to NULL here since it has been inserted to
3067 * the request_list and the removal and free of it is
3068 * handled by ext4_clear_request_list from now on.
3069 */
3070 elr = NULL;
3071
3072 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
3073 ret = ext4_run_lazyinit_thread();
3074 if (ret)
3075 goto out;
3076 }
3077 out:
3078 mutex_unlock(&ext4_li_mtx);
3079 if (ret)
3080 kfree(elr);
3081 return ret;
3082 }
3083
3084 /*
3085 * We do not need to lock anything since this is called on
3086 * module unload.
3087 */
3088 static void ext4_destroy_lazyinit_thread(void)
3089 {
3090 /*
3091 * If thread exited earlier
3092 * there's nothing to be done.
3093 */
3094 if (!ext4_li_info || !ext4_lazyinit_task)
3095 return;
3096
3097 kthread_stop(ext4_lazyinit_task);
3098 }
3099
3100 static int set_journal_csum_feature_set(struct super_block *sb)
3101 {
3102 int ret = 1;
3103 int compat, incompat;
3104 struct ext4_sb_info *sbi = EXT4_SB(sb);
3105
3106 if (ext4_has_metadata_csum(sb)) {
3107 /* journal checksum v3 */
3108 compat = 0;
3109 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3;
3110 } else {
3111 /* journal checksum v1 */
3112 compat = JBD2_FEATURE_COMPAT_CHECKSUM;
3113 incompat = 0;
3114 }
3115
3116 jbd2_journal_clear_features(sbi->s_journal,
3117 JBD2_FEATURE_COMPAT_CHECKSUM, 0,
3118 JBD2_FEATURE_INCOMPAT_CSUM_V3 |
3119 JBD2_FEATURE_INCOMPAT_CSUM_V2);
3120 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
3121 ret = jbd2_journal_set_features(sbi->s_journal,
3122 compat, 0,
3123 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
3124 incompat);
3125 } else if (test_opt(sb, JOURNAL_CHECKSUM)) {
3126 ret = jbd2_journal_set_features(sbi->s_journal,
3127 compat, 0,
3128 incompat);
3129 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3130 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3131 } else {
3132 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3133 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3134 }
3135
3136 return ret;
3137 }
3138
3139 /*
3140 * Note: calculating the overhead so we can be compatible with
3141 * historical BSD practice is quite difficult in the face of
3142 * clusters/bigalloc. This is because multiple metadata blocks from
3143 * different block group can end up in the same allocation cluster.
3144 * Calculating the exact overhead in the face of clustered allocation
3145 * requires either O(all block bitmaps) in memory or O(number of block
3146 * groups**2) in time. We will still calculate the superblock for
3147 * older file systems --- and if we come across with a bigalloc file
3148 * system with zero in s_overhead_clusters the estimate will be close to
3149 * correct especially for very large cluster sizes --- but for newer
3150 * file systems, it's better to calculate this figure once at mkfs
3151 * time, and store it in the superblock. If the superblock value is
3152 * present (even for non-bigalloc file systems), we will use it.
3153 */
3154 static int count_overhead(struct super_block *sb, ext4_group_t grp,
3155 char *buf)
3156 {
3157 struct ext4_sb_info *sbi = EXT4_SB(sb);
3158 struct ext4_group_desc *gdp;
3159 ext4_fsblk_t first_block, last_block, b;
3160 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3161 int s, j, count = 0;
3162
3163 if (!ext4_has_feature_bigalloc(sb))
3164 return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) +
3165 sbi->s_itb_per_group + 2);
3166
3167 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) +
3168 (grp * EXT4_BLOCKS_PER_GROUP(sb));
3169 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1;
3170 for (i = 0; i < ngroups; i++) {
3171 gdp = ext4_get_group_desc(sb, i, NULL);
3172 b = ext4_block_bitmap(sb, gdp);
3173 if (b >= first_block && b <= last_block) {
3174 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3175 count++;
3176 }
3177 b = ext4_inode_bitmap(sb, gdp);
3178 if (b >= first_block && b <= last_block) {
3179 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3180 count++;
3181 }
3182 b = ext4_inode_table(sb, gdp);
3183 if (b >= first_block && b + sbi->s_itb_per_group <= last_block)
3184 for (j = 0; j < sbi->s_itb_per_group; j++, b++) {
3185 int c = EXT4_B2C(sbi, b - first_block);
3186 ext4_set_bit(c, buf);
3187 count++;
3188 }
3189 if (i != grp)
3190 continue;
3191 s = 0;
3192 if (ext4_bg_has_super(sb, grp)) {
3193 ext4_set_bit(s++, buf);
3194 count++;
3195 }
3196 for (j = ext4_bg_num_gdb(sb, grp); j > 0; j--) {
3197 ext4_set_bit(EXT4_B2C(sbi, s++), buf);
3198 count++;
3199 }
3200 }
3201 if (!count)
3202 return 0;
3203 return EXT4_CLUSTERS_PER_GROUP(sb) -
3204 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8);
3205 }
3206
3207 /*
3208 * Compute the overhead and stash it in sbi->s_overhead
3209 */
3210 int ext4_calculate_overhead(struct super_block *sb)
3211 {
3212 struct ext4_sb_info *sbi = EXT4_SB(sb);
3213 struct ext4_super_block *es = sbi->s_es;
3214 struct inode *j_inode;
3215 unsigned int j_blocks, j_inum = le32_to_cpu(es->s_journal_inum);
3216 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3217 ext4_fsblk_t overhead = 0;
3218 char *buf = (char *) get_zeroed_page(GFP_NOFS);
3219
3220 if (!buf)
3221 return -ENOMEM;
3222
3223 /*
3224 * Compute the overhead (FS structures). This is constant
3225 * for a given filesystem unless the number of block groups
3226 * changes so we cache the previous value until it does.
3227 */
3228
3229 /*
3230 * All of the blocks before first_data_block are overhead
3231 */
3232 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
3233
3234 /*
3235 * Add the overhead found in each block group
3236 */
3237 for (i = 0; i < ngroups; i++) {
3238 int blks;
3239
3240 blks = count_overhead(sb, i, buf);
3241 overhead += blks;
3242 if (blks)
3243 memset(buf, 0, PAGE_SIZE);
3244 cond_resched();
3245 }
3246
3247 /*
3248 * Add the internal journal blocks whether the journal has been
3249 * loaded or not
3250 */
3251 if (sbi->s_journal && !sbi->journal_bdev)
3252 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_maxlen);
3253 else if (ext4_has_feature_journal(sb) && !sbi->s_journal) {
3254 j_inode = ext4_get_journal_inode(sb, j_inum);
3255 if (j_inode) {
3256 j_blocks = j_inode->i_size >> sb->s_blocksize_bits;
3257 overhead += EXT4_NUM_B2C(sbi, j_blocks);
3258 iput(j_inode);
3259 } else {
3260 ext4_msg(sb, KERN_ERR, "can't get journal size");
3261 }
3262 }
3263 sbi->s_overhead = overhead;
3264 smp_wmb();
3265 free_page((unsigned long) buf);
3266 return 0;
3267 }
3268
3269 static void ext4_set_resv_clusters(struct super_block *sb)
3270 {
3271 ext4_fsblk_t resv_clusters;
3272 struct ext4_sb_info *sbi = EXT4_SB(sb);
3273
3274 /*
3275 * There's no need to reserve anything when we aren't using extents.
3276 * The space estimates are exact, there are no unwritten extents,
3277 * hole punching doesn't need new metadata... This is needed especially
3278 * to keep ext2/3 backward compatibility.
3279 */
3280 if (!ext4_has_feature_extents(sb))
3281 return;
3282 /*
3283 * By default we reserve 2% or 4096 clusters, whichever is smaller.
3284 * This should cover the situations where we can not afford to run
3285 * out of space like for example punch hole, or converting
3286 * unwritten extents in delalloc path. In most cases such
3287 * allocation would require 1, or 2 blocks, higher numbers are
3288 * very rare.
3289 */
3290 resv_clusters = (ext4_blocks_count(sbi->s_es) >>
3291 sbi->s_cluster_bits);
3292
3293 do_div(resv_clusters, 50);
3294 resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096);
3295
3296 atomic64_set(&sbi->s_resv_clusters, resv_clusters);
3297 }
3298
3299 static int ext4_fill_super(struct super_block *sb, void *data, int silent)
3300 {
3301 char *orig_data = kstrdup(data, GFP_KERNEL);
3302 struct buffer_head *bh;
3303 struct ext4_super_block *es = NULL;
3304 struct ext4_sb_info *sbi;
3305 ext4_fsblk_t block;
3306 ext4_fsblk_t sb_block = get_sb_block(&data);
3307 ext4_fsblk_t logical_sb_block;
3308 unsigned long offset = 0;
3309 unsigned long journal_devnum = 0;
3310 unsigned long def_mount_opts;
3311 struct inode *root;
3312 const char *descr;
3313 int ret = -ENOMEM;
3314 int blocksize, clustersize;
3315 unsigned int db_count;
3316 unsigned int i;
3317 int needs_recovery, has_huge_files, has_bigalloc;
3318 __u64 blocks_count;
3319 int err = 0;
3320 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
3321 ext4_group_t first_not_zeroed;
3322
3323 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
3324 if (!sbi)
3325 goto out_free_orig;
3326
3327 sbi->s_blockgroup_lock =
3328 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
3329 if (!sbi->s_blockgroup_lock) {
3330 kfree(sbi);
3331 goto out_free_orig;
3332 }
3333 sb->s_fs_info = sbi;
3334 sbi->s_sb = sb;
3335 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
3336 sbi->s_sb_block = sb_block;
3337 if (sb->s_bdev->bd_part)
3338 sbi->s_sectors_written_start =
3339 part_stat_read(sb->s_bdev->bd_part, sectors[1]);
3340
3341 /* Cleanup superblock name */
3342 strreplace(sb->s_id, '/', '!');
3343
3344 /* -EINVAL is default */
3345 ret = -EINVAL;
3346 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
3347 if (!blocksize) {
3348 ext4_msg(sb, KERN_ERR, "unable to set blocksize");
3349 goto out_fail;
3350 }
3351
3352 /*
3353 * The ext4 superblock will not be buffer aligned for other than 1kB
3354 * block sizes. We need to calculate the offset from buffer start.
3355 */
3356 if (blocksize != EXT4_MIN_BLOCK_SIZE) {
3357 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3358 offset = do_div(logical_sb_block, blocksize);
3359 } else {
3360 logical_sb_block = sb_block;
3361 }
3362
3363 if (!(bh = sb_bread_unmovable(sb, logical_sb_block))) {
3364 ext4_msg(sb, KERN_ERR, "unable to read superblock");
3365 goto out_fail;
3366 }
3367 /*
3368 * Note: s_es must be initialized as soon as possible because
3369 * some ext4 macro-instructions depend on its value
3370 */
3371 es = (struct ext4_super_block *) (bh->b_data + offset);
3372 sbi->s_es = es;
3373 sb->s_magic = le16_to_cpu(es->s_magic);
3374 if (sb->s_magic != EXT4_SUPER_MAGIC)
3375 goto cantfind_ext4;
3376 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
3377
3378 /* Warn if metadata_csum and gdt_csum are both set. */
3379 if (ext4_has_feature_metadata_csum(sb) &&
3380 ext4_has_feature_gdt_csum(sb))
3381 ext4_warning(sb, "metadata_csum and uninit_bg are "
3382 "redundant flags; please run fsck.");
3383
3384 /* Check for a known checksum algorithm */
3385 if (!ext4_verify_csum_type(sb, es)) {
3386 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3387 "unknown checksum algorithm.");
3388 silent = 1;
3389 goto cantfind_ext4;
3390 }
3391
3392 /* Load the checksum driver */
3393 if (ext4_has_feature_metadata_csum(sb)) {
3394 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
3395 if (IS_ERR(sbi->s_chksum_driver)) {
3396 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver.");
3397 ret = PTR_ERR(sbi->s_chksum_driver);
3398 sbi->s_chksum_driver = NULL;
3399 goto failed_mount;
3400 }
3401 }
3402
3403 /* Check superblock checksum */
3404 if (!ext4_superblock_csum_verify(sb, es)) {
3405 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3406 "invalid superblock checksum. Run e2fsck?");
3407 silent = 1;
3408 ret = -EFSBADCRC;
3409 goto cantfind_ext4;
3410 }
3411
3412 /* Precompute checksum seed for all metadata */
3413 if (ext4_has_feature_csum_seed(sb))
3414 sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed);
3415 else if (ext4_has_metadata_csum(sb))
3416 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid,
3417 sizeof(es->s_uuid));
3418
3419 /* Set defaults before we parse the mount options */
3420 def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
3421 set_opt(sb, INIT_INODE_TABLE);
3422 if (def_mount_opts & EXT4_DEFM_DEBUG)
3423 set_opt(sb, DEBUG);
3424 if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
3425 set_opt(sb, GRPID);
3426 if (def_mount_opts & EXT4_DEFM_UID16)
3427 set_opt(sb, NO_UID32);
3428 /* xattr user namespace & acls are now defaulted on */
3429 set_opt(sb, XATTR_USER);
3430 #ifdef CONFIG_EXT4_FS_POSIX_ACL
3431 set_opt(sb, POSIX_ACL);
3432 #endif
3433 /* don't forget to enable journal_csum when metadata_csum is enabled. */
3434 if (ext4_has_metadata_csum(sb))
3435 set_opt(sb, JOURNAL_CHECKSUM);
3436
3437 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
3438 set_opt(sb, JOURNAL_DATA);
3439 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
3440 set_opt(sb, ORDERED_DATA);
3441 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
3442 set_opt(sb, WRITEBACK_DATA);
3443
3444 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC)
3445 set_opt(sb, ERRORS_PANIC);
3446 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE)
3447 set_opt(sb, ERRORS_CONT);
3448 else
3449 set_opt(sb, ERRORS_RO);
3450 /* block_validity enabled by default; disable with noblock_validity */
3451 set_opt(sb, BLOCK_VALIDITY);
3452 if (def_mount_opts & EXT4_DEFM_DISCARD)
3453 set_opt(sb, DISCARD);
3454
3455 sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid));
3456 sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid));
3457 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
3458 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
3459 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
3460
3461 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
3462 set_opt(sb, BARRIER);
3463
3464 /*
3465 * enable delayed allocation by default
3466 * Use -o nodelalloc to turn it off
3467 */
3468 if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) &&
3469 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
3470 set_opt(sb, DELALLOC);
3471
3472 /*
3473 * set default s_li_wait_mult for lazyinit, for the case there is
3474 * no mount option specified.
3475 */
3476 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
3477
3478 if (!parse_options((char *) sbi->s_es->s_mount_opts, sb,
3479 &journal_devnum, &journal_ioprio, 0)) {
3480 ext4_msg(sb, KERN_WARNING,
3481 "failed to parse options in superblock: %s",
3482 sbi->s_es->s_mount_opts);
3483 }
3484 sbi->s_def_mount_opt = sbi->s_mount_opt;
3485 if (!parse_options((char *) data, sb, &journal_devnum,
3486 &journal_ioprio, 0))
3487 goto failed_mount;
3488
3489 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
3490 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting "
3491 "with data=journal disables delayed "
3492 "allocation and O_DIRECT support!\n");
3493 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
3494 ext4_msg(sb, KERN_ERR, "can't mount with "
3495 "both data=journal and delalloc");
3496 goto failed_mount;
3497 }
3498 if (test_opt(sb, DIOREAD_NOLOCK)) {
3499 ext4_msg(sb, KERN_ERR, "can't mount with "
3500 "both data=journal and dioread_nolock");
3501 goto failed_mount;
3502 }
3503 if (test_opt(sb, DAX)) {
3504 ext4_msg(sb, KERN_ERR, "can't mount with "
3505 "both data=journal and dax");
3506 goto failed_mount;
3507 }
3508 if (test_opt(sb, DELALLOC))
3509 clear_opt(sb, DELALLOC);
3510 } else {
3511 sb->s_iflags |= SB_I_CGROUPWB;
3512 }
3513
3514 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
3515 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
3516
3517 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
3518 (ext4_has_compat_features(sb) ||
3519 ext4_has_ro_compat_features(sb) ||
3520 ext4_has_incompat_features(sb)))
3521 ext4_msg(sb, KERN_WARNING,
3522 "feature flags set on rev 0 fs, "
3523 "running e2fsck is recommended");
3524
3525 if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) {
3526 set_opt2(sb, HURD_COMPAT);
3527 if (ext4_has_feature_64bit(sb)) {
3528 ext4_msg(sb, KERN_ERR,
3529 "The Hurd can't support 64-bit file systems");
3530 goto failed_mount;
3531 }
3532 }
3533
3534 if (IS_EXT2_SB(sb)) {
3535 if (ext2_feature_set_ok(sb))
3536 ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
3537 "using the ext4 subsystem");
3538 else {
3539 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
3540 "to feature incompatibilities");
3541 goto failed_mount;
3542 }
3543 }
3544
3545 if (IS_EXT3_SB(sb)) {
3546 if (ext3_feature_set_ok(sb))
3547 ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
3548 "using the ext4 subsystem");
3549 else {
3550 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
3551 "to feature incompatibilities");
3552 goto failed_mount;
3553 }
3554 }
3555
3556 /*
3557 * Check feature flags regardless of the revision level, since we
3558 * previously didn't change the revision level when setting the flags,
3559 * so there is a chance incompat flags are set on a rev 0 filesystem.
3560 */
3561 if (!ext4_feature_set_ok(sb, (sb->s_flags & MS_RDONLY)))
3562 goto failed_mount;
3563
3564 blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
3565 if (blocksize < EXT4_MIN_BLOCK_SIZE ||
3566 blocksize > EXT4_MAX_BLOCK_SIZE) {
3567 ext4_msg(sb, KERN_ERR,
3568 "Unsupported filesystem blocksize %d (%d log_block_size)",
3569 blocksize, le32_to_cpu(es->s_log_block_size));
3570 goto failed_mount;
3571 }
3572 if (le32_to_cpu(es->s_log_block_size) >
3573 (EXT4_MAX_BLOCK_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
3574 ext4_msg(sb, KERN_ERR,
3575 "Invalid log block size: %u",
3576 le32_to_cpu(es->s_log_block_size));
3577 goto failed_mount;
3578 }
3579
3580 if (le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) > (blocksize / 4)) {
3581 ext4_msg(sb, KERN_ERR,
3582 "Number of reserved GDT blocks insanely large: %d",
3583 le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks));
3584 goto failed_mount;
3585 }
3586
3587 if (sbi->s_mount_opt & EXT4_MOUNT_DAX) {
3588 err = bdev_dax_supported(sb, blocksize);
3589 if (err)
3590 goto failed_mount;
3591 }
3592
3593 if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) {
3594 ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d",
3595 es->s_encryption_level);
3596 goto failed_mount;
3597 }
3598
3599 if (sb->s_blocksize != blocksize) {
3600 /* Validate the filesystem blocksize */
3601 if (!sb_set_blocksize(sb, blocksize)) {
3602 ext4_msg(sb, KERN_ERR, "bad block size %d",
3603 blocksize);
3604 goto failed_mount;
3605 }
3606
3607 brelse(bh);
3608 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3609 offset = do_div(logical_sb_block, blocksize);
3610 bh = sb_bread_unmovable(sb, logical_sb_block);
3611 if (!bh) {
3612 ext4_msg(sb, KERN_ERR,
3613 "Can't read superblock on 2nd try");
3614 goto failed_mount;
3615 }
3616 es = (struct ext4_super_block *)(bh->b_data + offset);
3617 sbi->s_es = es;
3618 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
3619 ext4_msg(sb, KERN_ERR,
3620 "Magic mismatch, very weird!");
3621 goto failed_mount;
3622 }
3623 }
3624
3625 has_huge_files = ext4_has_feature_huge_file(sb);
3626 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
3627 has_huge_files);
3628 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
3629
3630 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
3631 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
3632 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
3633 } else {
3634 sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
3635 sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
3636 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
3637 (!is_power_of_2(sbi->s_inode_size)) ||
3638 (sbi->s_inode_size > blocksize)) {
3639 ext4_msg(sb, KERN_ERR,
3640 "unsupported inode size: %d",
3641 sbi->s_inode_size);
3642 goto failed_mount;
3643 }
3644 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE)
3645 sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2);
3646 }
3647
3648 sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
3649 if (ext4_has_feature_64bit(sb)) {
3650 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
3651 sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
3652 !is_power_of_2(sbi->s_desc_size)) {
3653 ext4_msg(sb, KERN_ERR,
3654 "unsupported descriptor size %lu",
3655 sbi->s_desc_size);
3656 goto failed_mount;
3657 }
3658 } else
3659 sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
3660
3661 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
3662 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
3663 if (EXT4_INODE_SIZE(sb) == 0 || EXT4_INODES_PER_GROUP(sb) == 0)
3664 goto cantfind_ext4;
3665
3666 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb);
3667 if (sbi->s_inodes_per_block == 0)
3668 goto cantfind_ext4;
3669 sbi->s_itb_per_group = sbi->s_inodes_per_group /
3670 sbi->s_inodes_per_block;
3671 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb);
3672 sbi->s_sbh = bh;
3673 sbi->s_mount_state = le16_to_cpu(es->s_state);
3674 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
3675 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
3676
3677 for (i = 0; i < 4; i++)
3678 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
3679 sbi->s_def_hash_version = es->s_def_hash_version;
3680 if (ext4_has_feature_dir_index(sb)) {
3681 i = le32_to_cpu(es->s_flags);
3682 if (i & EXT2_FLAGS_UNSIGNED_HASH)
3683 sbi->s_hash_unsigned = 3;
3684 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
3685 #ifdef __CHAR_UNSIGNED__
3686 if (!(sb->s_flags & MS_RDONLY))
3687 es->s_flags |=
3688 cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
3689 sbi->s_hash_unsigned = 3;
3690 #else
3691 if (!(sb->s_flags & MS_RDONLY))
3692 es->s_flags |=
3693 cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
3694 #endif
3695 }
3696 }
3697
3698 /* Handle clustersize */
3699 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size);
3700 has_bigalloc = ext4_has_feature_bigalloc(sb);
3701 if (has_bigalloc) {
3702 if (clustersize < blocksize) {
3703 ext4_msg(sb, KERN_ERR,
3704 "cluster size (%d) smaller than "
3705 "block size (%d)", clustersize, blocksize);
3706 goto failed_mount;
3707 }
3708 if (le32_to_cpu(es->s_log_cluster_size) >
3709 (EXT4_MAX_CLUSTER_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
3710 ext4_msg(sb, KERN_ERR,
3711 "Invalid log cluster size: %u",
3712 le32_to_cpu(es->s_log_cluster_size));
3713 goto failed_mount;
3714 }
3715 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) -
3716 le32_to_cpu(es->s_log_block_size);
3717 sbi->s_clusters_per_group =
3718 le32_to_cpu(es->s_clusters_per_group);
3719 if (sbi->s_clusters_per_group > blocksize * 8) {
3720 ext4_msg(sb, KERN_ERR,
3721 "#clusters per group too big: %lu",
3722 sbi->s_clusters_per_group);
3723 goto failed_mount;
3724 }
3725 if (sbi->s_blocks_per_group !=
3726 (sbi->s_clusters_per_group * (clustersize / blocksize))) {
3727 ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and "
3728 "clusters per group (%lu) inconsistent",
3729 sbi->s_blocks_per_group,
3730 sbi->s_clusters_per_group);
3731 goto failed_mount;
3732 }
3733 } else {
3734 if (clustersize != blocksize) {
3735 ext4_warning(sb, "fragment/cluster size (%d) != "
3736 "block size (%d)", clustersize,
3737 blocksize);
3738 clustersize = blocksize;
3739 }
3740 if (sbi->s_blocks_per_group > blocksize * 8) {
3741 ext4_msg(sb, KERN_ERR,
3742 "#blocks per group too big: %lu",
3743 sbi->s_blocks_per_group);
3744 goto failed_mount;
3745 }
3746 sbi->s_clusters_per_group = sbi->s_blocks_per_group;
3747 sbi->s_cluster_bits = 0;
3748 }
3749 sbi->s_cluster_ratio = clustersize / blocksize;
3750
3751 if (sbi->s_inodes_per_group > blocksize * 8) {
3752 ext4_msg(sb, KERN_ERR,
3753 "#inodes per group too big: %lu",
3754 sbi->s_inodes_per_group);
3755 goto failed_mount;
3756 }
3757
3758 /* Do we have standard group size of clustersize * 8 blocks ? */
3759 if (sbi->s_blocks_per_group == clustersize << 3)
3760 set_opt2(sb, STD_GROUP_SIZE);
3761
3762 /*
3763 * Test whether we have more sectors than will fit in sector_t,
3764 * and whether the max offset is addressable by the page cache.
3765 */
3766 err = generic_check_addressable(sb->s_blocksize_bits,
3767 ext4_blocks_count(es));
3768 if (err) {
3769 ext4_msg(sb, KERN_ERR, "filesystem"
3770 " too large to mount safely on this system");
3771 if (sizeof(sector_t) < 8)
3772 ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled");
3773 goto failed_mount;
3774 }
3775
3776 if (EXT4_BLOCKS_PER_GROUP(sb) == 0)
3777 goto cantfind_ext4;
3778
3779 /* check blocks count against device size */
3780 blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
3781 if (blocks_count && ext4_blocks_count(es) > blocks_count) {
3782 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
3783 "exceeds size of device (%llu blocks)",
3784 ext4_blocks_count(es), blocks_count);
3785 goto failed_mount;
3786 }
3787
3788 /*
3789 * It makes no sense for the first data block to be beyond the end
3790 * of the filesystem.
3791 */
3792 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
3793 ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
3794 "block %u is beyond end of filesystem (%llu)",
3795 le32_to_cpu(es->s_first_data_block),
3796 ext4_blocks_count(es));
3797 goto failed_mount;
3798 }
3799 blocks_count = (ext4_blocks_count(es) -
3800 le32_to_cpu(es->s_first_data_block) +
3801 EXT4_BLOCKS_PER_GROUP(sb) - 1);
3802 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
3803 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
3804 ext4_msg(sb, KERN_WARNING, "groups count too large: %u "
3805 "(block count %llu, first data block %u, "
3806 "blocks per group %lu)", sbi->s_groups_count,
3807 ext4_blocks_count(es),
3808 le32_to_cpu(es->s_first_data_block),
3809 EXT4_BLOCKS_PER_GROUP(sb));
3810 goto failed_mount;
3811 }
3812 sbi->s_groups_count = blocks_count;
3813 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
3814 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
3815 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
3816 EXT4_DESC_PER_BLOCK(sb);
3817 sbi->s_group_desc = ext4_kvmalloc(db_count *
3818 sizeof(struct buffer_head *),
3819 GFP_KERNEL);
3820 if (sbi->s_group_desc == NULL) {
3821 ext4_msg(sb, KERN_ERR, "not enough memory");
3822 ret = -ENOMEM;
3823 goto failed_mount;
3824 }
3825
3826 bgl_lock_init(sbi->s_blockgroup_lock);
3827
3828 for (i = 0; i < db_count; i++) {
3829 block = descriptor_loc(sb, logical_sb_block, i);
3830 sbi->s_group_desc[i] = sb_bread_unmovable(sb, block);
3831 if (!sbi->s_group_desc[i]) {
3832 ext4_msg(sb, KERN_ERR,
3833 "can't read group descriptor %d", i);
3834 db_count = i;
3835 goto failed_mount2;
3836 }
3837 }
3838 if (!ext4_check_descriptors(sb, logical_sb_block, &first_not_zeroed)) {
3839 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
3840 ret = -EFSCORRUPTED;
3841 goto failed_mount2;
3842 }
3843
3844 sbi->s_gdb_count = db_count;
3845 get_random_bytes(&sbi->s_next_generation, sizeof(u32));
3846 spin_lock_init(&sbi->s_next_gen_lock);
3847
3848 setup_timer(&sbi->s_err_report, print_daily_error_info,
3849 (unsigned long) sb);
3850
3851 /* Register extent status tree shrinker */
3852 if (ext4_es_register_shrinker(sbi))
3853 goto failed_mount3;
3854
3855 sbi->s_stripe = ext4_get_stripe_size(sbi);
3856 sbi->s_extent_max_zeroout_kb = 32;
3857
3858 /*
3859 * set up enough so that it can read an inode
3860 */
3861 sb->s_op = &ext4_sops;
3862 sb->s_export_op = &ext4_export_ops;
3863 sb->s_xattr = ext4_xattr_handlers;
3864 sb->s_cop = &ext4_cryptops;
3865 #ifdef CONFIG_QUOTA
3866 sb->dq_op = &ext4_quota_operations;
3867 if (ext4_has_feature_quota(sb))
3868 sb->s_qcop = &dquot_quotactl_sysfile_ops;
3869 else
3870 sb->s_qcop = &ext4_qctl_operations;
3871 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
3872 #endif
3873 memcpy(sb->s_uuid, es->s_uuid, sizeof(es->s_uuid));
3874
3875 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
3876 mutex_init(&sbi->s_orphan_lock);
3877
3878 sb->s_root = NULL;
3879
3880 needs_recovery = (es->s_last_orphan != 0 ||
3881 ext4_has_feature_journal_needs_recovery(sb));
3882
3883 if (ext4_has_feature_mmp(sb) && !(sb->s_flags & MS_RDONLY))
3884 if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block)))
3885 goto failed_mount3a;
3886
3887 /*
3888 * The first inode we look at is the journal inode. Don't try
3889 * root first: it may be modified in the journal!
3890 */
3891 if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) {
3892 if (ext4_load_journal(sb, es, journal_devnum))
3893 goto failed_mount3a;
3894 } else if (test_opt(sb, NOLOAD) && !(sb->s_flags & MS_RDONLY) &&
3895 ext4_has_feature_journal_needs_recovery(sb)) {
3896 ext4_msg(sb, KERN_ERR, "required journal recovery "
3897 "suppressed and not mounted read-only");
3898 goto failed_mount_wq;
3899 } else {
3900 /* Nojournal mode, all journal mount options are illegal */
3901 if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) {
3902 ext4_msg(sb, KERN_ERR, "can't mount with "
3903 "journal_checksum, fs mounted w/o journal");
3904 goto failed_mount_wq;
3905 }
3906 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
3907 ext4_msg(sb, KERN_ERR, "can't mount with "
3908 "journal_async_commit, fs mounted w/o journal");
3909 goto failed_mount_wq;
3910 }
3911 if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) {
3912 ext4_msg(sb, KERN_ERR, "can't mount with "
3913 "commit=%lu, fs mounted w/o journal",
3914 sbi->s_commit_interval / HZ);
3915 goto failed_mount_wq;
3916 }
3917 if (EXT4_MOUNT_DATA_FLAGS &
3918 (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) {
3919 ext4_msg(sb, KERN_ERR, "can't mount with "
3920 "data=, fs mounted w/o journal");
3921 goto failed_mount_wq;
3922 }
3923 sbi->s_def_mount_opt &= EXT4_MOUNT_JOURNAL_CHECKSUM;
3924 clear_opt(sb, JOURNAL_CHECKSUM);
3925 clear_opt(sb, DATA_FLAGS);
3926 sbi->s_journal = NULL;
3927 needs_recovery = 0;
3928 goto no_journal;
3929 }
3930
3931 if (ext4_has_feature_64bit(sb) &&
3932 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
3933 JBD2_FEATURE_INCOMPAT_64BIT)) {
3934 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
3935 goto failed_mount_wq;
3936 }
3937
3938 if (!set_journal_csum_feature_set(sb)) {
3939 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum "
3940 "feature set");
3941 goto failed_mount_wq;
3942 }
3943
3944 /* We have now updated the journal if required, so we can
3945 * validate the data journaling mode. */
3946 switch (test_opt(sb, DATA_FLAGS)) {
3947 case 0:
3948 /* No mode set, assume a default based on the journal
3949 * capabilities: ORDERED_DATA if the journal can
3950 * cope, else JOURNAL_DATA
3951 */
3952 if (jbd2_journal_check_available_features
3953 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE))
3954 set_opt(sb, ORDERED_DATA);
3955 else
3956 set_opt(sb, JOURNAL_DATA);
3957 break;
3958
3959 case EXT4_MOUNT_ORDERED_DATA:
3960 case EXT4_MOUNT_WRITEBACK_DATA:
3961 if (!jbd2_journal_check_available_features
3962 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
3963 ext4_msg(sb, KERN_ERR, "Journal does not support "
3964 "requested data journaling mode");
3965 goto failed_mount_wq;
3966 }
3967 default:
3968 break;
3969 }
3970 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
3971
3972 sbi->s_journal->j_commit_callback = ext4_journal_commit_callback;
3973
3974 no_journal:
3975 sbi->s_mb_cache = ext4_xattr_create_cache();
3976 if (!sbi->s_mb_cache) {
3977 ext4_msg(sb, KERN_ERR, "Failed to create an mb_cache");
3978 goto failed_mount_wq;
3979 }
3980
3981 if ((DUMMY_ENCRYPTION_ENABLED(sbi) || ext4_has_feature_encrypt(sb)) &&
3982 (blocksize != PAGE_SIZE)) {
3983 ext4_msg(sb, KERN_ERR,
3984 "Unsupported blocksize for fs encryption");
3985 goto failed_mount_wq;
3986 }
3987
3988 if (DUMMY_ENCRYPTION_ENABLED(sbi) && !(sb->s_flags & MS_RDONLY) &&
3989 !ext4_has_feature_encrypt(sb)) {
3990 ext4_set_feature_encrypt(sb);
3991 ext4_commit_super(sb, 1);
3992 }
3993
3994 /*
3995 * Get the # of file system overhead blocks from the
3996 * superblock if present.
3997 */
3998 if (es->s_overhead_clusters)
3999 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters);
4000 else {
4001 err = ext4_calculate_overhead(sb);
4002 if (err)
4003 goto failed_mount_wq;
4004 }
4005
4006 /*
4007 * The maximum number of concurrent works can be high and
4008 * concurrency isn't really necessary. Limit it to 1.
4009 */
4010 EXT4_SB(sb)->rsv_conversion_wq =
4011 alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
4012 if (!EXT4_SB(sb)->rsv_conversion_wq) {
4013 printk(KERN_ERR "EXT4-fs: failed to create workqueue\n");
4014 ret = -ENOMEM;
4015 goto failed_mount4;
4016 }
4017
4018 /*
4019 * The jbd2_journal_load will have done any necessary log recovery,
4020 * so we can safely mount the rest of the filesystem now.
4021 */
4022
4023 root = ext4_iget(sb, EXT4_ROOT_INO);
4024 if (IS_ERR(root)) {
4025 ext4_msg(sb, KERN_ERR, "get root inode failed");
4026 ret = PTR_ERR(root);
4027 root = NULL;
4028 goto failed_mount4;
4029 }
4030 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
4031 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
4032 iput(root);
4033 goto failed_mount4;
4034 }
4035 sb->s_root = d_make_root(root);
4036 if (!sb->s_root) {
4037 ext4_msg(sb, KERN_ERR, "get root dentry failed");
4038 ret = -ENOMEM;
4039 goto failed_mount4;
4040 }
4041
4042 if (ext4_setup_super(sb, es, sb->s_flags & MS_RDONLY))
4043 sb->s_flags |= MS_RDONLY;
4044
4045 /* determine the minimum size of new large inodes, if present */
4046 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) {
4047 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
4048 EXT4_GOOD_OLD_INODE_SIZE;
4049 if (ext4_has_feature_extra_isize(sb)) {
4050 if (sbi->s_want_extra_isize <
4051 le16_to_cpu(es->s_want_extra_isize))
4052 sbi->s_want_extra_isize =
4053 le16_to_cpu(es->s_want_extra_isize);
4054 if (sbi->s_want_extra_isize <
4055 le16_to_cpu(es->s_min_extra_isize))
4056 sbi->s_want_extra_isize =
4057 le16_to_cpu(es->s_min_extra_isize);
4058 }
4059 }
4060 /* Check if enough inode space is available */
4061 if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize >
4062 sbi->s_inode_size) {
4063 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
4064 EXT4_GOOD_OLD_INODE_SIZE;
4065 ext4_msg(sb, KERN_INFO, "required extra inode space not"
4066 "available");
4067 }
4068
4069 ext4_set_resv_clusters(sb);
4070
4071 err = ext4_setup_system_zone(sb);
4072 if (err) {
4073 ext4_msg(sb, KERN_ERR, "failed to initialize system "
4074 "zone (%d)", err);
4075 goto failed_mount4a;
4076 }
4077
4078 ext4_ext_init(sb);
4079 err = ext4_mb_init(sb);
4080 if (err) {
4081 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
4082 err);
4083 goto failed_mount5;
4084 }
4085
4086 block = ext4_count_free_clusters(sb);
4087 ext4_free_blocks_count_set(sbi->s_es,
4088 EXT4_C2B(sbi, block));
4089 err = percpu_counter_init(&sbi->s_freeclusters_counter, block,
4090 GFP_KERNEL);
4091 if (!err) {
4092 unsigned long freei = ext4_count_free_inodes(sb);
4093 sbi->s_es->s_free_inodes_count = cpu_to_le32(freei);
4094 err = percpu_counter_init(&sbi->s_freeinodes_counter, freei,
4095 GFP_KERNEL);
4096 }
4097 if (!err)
4098 err = percpu_counter_init(&sbi->s_dirs_counter,
4099 ext4_count_dirs(sb), GFP_KERNEL);
4100 if (!err)
4101 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0,
4102 GFP_KERNEL);
4103 if (!err)
4104 err = percpu_init_rwsem(&sbi->s_journal_flag_rwsem);
4105
4106 if (err) {
4107 ext4_msg(sb, KERN_ERR, "insufficient memory");
4108 goto failed_mount6;
4109 }
4110
4111 if (ext4_has_feature_flex_bg(sb))
4112 if (!ext4_fill_flex_info(sb)) {
4113 ext4_msg(sb, KERN_ERR,
4114 "unable to initialize "
4115 "flex_bg meta info!");
4116 goto failed_mount6;
4117 }
4118
4119 err = ext4_register_li_request(sb, first_not_zeroed);
4120 if (err)
4121 goto failed_mount6;
4122
4123 err = ext4_register_sysfs(sb);
4124 if (err)
4125 goto failed_mount7;
4126
4127 #ifdef CONFIG_QUOTA
4128 /* Enable quota usage during mount. */
4129 if (ext4_has_feature_quota(sb) && !(sb->s_flags & MS_RDONLY)) {
4130 err = ext4_enable_quotas(sb);
4131 if (err)
4132 goto failed_mount8;
4133 }
4134 #endif /* CONFIG_QUOTA */
4135
4136 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
4137 ext4_orphan_cleanup(sb, es);
4138 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
4139 if (needs_recovery) {
4140 ext4_msg(sb, KERN_INFO, "recovery complete");
4141 ext4_mark_recovery_complete(sb, es);
4142 }
4143 if (EXT4_SB(sb)->s_journal) {
4144 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
4145 descr = " journalled data mode";
4146 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
4147 descr = " ordered data mode";
4148 else
4149 descr = " writeback data mode";
4150 } else
4151 descr = "out journal";
4152
4153 if (test_opt(sb, DISCARD)) {
4154 struct request_queue *q = bdev_get_queue(sb->s_bdev);
4155 if (!blk_queue_discard(q))
4156 ext4_msg(sb, KERN_WARNING,
4157 "mounting with \"discard\" option, but "
4158 "the device does not support discard");
4159 }
4160
4161 if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount"))
4162 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. "
4163 "Opts: %s%s%s", descr, sbi->s_es->s_mount_opts,
4164 *sbi->s_es->s_mount_opts ? "; " : "", orig_data);
4165
4166 if (es->s_error_count)
4167 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
4168
4169 /* Enable message ratelimiting. Default is 10 messages per 5 secs. */
4170 ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10);
4171 ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10);
4172 ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10);
4173
4174 kfree(orig_data);
4175 #ifdef CONFIG_EXT4_FS_ENCRYPTION
4176 memcpy(sbi->key_prefix, EXT4_KEY_DESC_PREFIX,
4177 EXT4_KEY_DESC_PREFIX_SIZE);
4178 sbi->key_prefix_size = EXT4_KEY_DESC_PREFIX_SIZE;
4179 #endif
4180 return 0;
4181
4182 cantfind_ext4:
4183 if (!silent)
4184 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
4185 goto failed_mount;
4186
4187 #ifdef CONFIG_QUOTA
4188 failed_mount8:
4189 ext4_unregister_sysfs(sb);
4190 #endif
4191 failed_mount7:
4192 ext4_unregister_li_request(sb);
4193 failed_mount6:
4194 ext4_mb_release(sb);
4195 if (sbi->s_flex_groups)
4196 kvfree(sbi->s_flex_groups);
4197 percpu_counter_destroy(&sbi->s_freeclusters_counter);
4198 percpu_counter_destroy(&sbi->s_freeinodes_counter);
4199 percpu_counter_destroy(&sbi->s_dirs_counter);
4200 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
4201 failed_mount5:
4202 ext4_ext_release(sb);
4203 ext4_release_system_zone(sb);
4204 failed_mount4a:
4205 dput(sb->s_root);
4206 sb->s_root = NULL;
4207 failed_mount4:
4208 ext4_msg(sb, KERN_ERR, "mount failed");
4209 if (EXT4_SB(sb)->rsv_conversion_wq)
4210 destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq);
4211 failed_mount_wq:
4212 if (sbi->s_mb_cache) {
4213 ext4_xattr_destroy_cache(sbi->s_mb_cache);
4214 sbi->s_mb_cache = NULL;
4215 }
4216 if (sbi->s_journal) {
4217 jbd2_journal_destroy(sbi->s_journal);
4218 sbi->s_journal = NULL;
4219 }
4220 failed_mount3a:
4221 ext4_es_unregister_shrinker(sbi);
4222 failed_mount3:
4223 del_timer_sync(&sbi->s_err_report);
4224 if (sbi->s_mmp_tsk)
4225 kthread_stop(sbi->s_mmp_tsk);
4226 failed_mount2:
4227 for (i = 0; i < db_count; i++)
4228 brelse(sbi->s_group_desc[i]);
4229 kvfree(sbi->s_group_desc);
4230 failed_mount:
4231 if (sbi->s_chksum_driver)
4232 crypto_free_shash(sbi->s_chksum_driver);
4233 #ifdef CONFIG_QUOTA
4234 for (i = 0; i < EXT4_MAXQUOTAS; i++)
4235 kfree(sbi->s_qf_names[i]);
4236 #endif
4237 ext4_blkdev_remove(sbi);
4238 brelse(bh);
4239 out_fail:
4240 sb->s_fs_info = NULL;
4241 kfree(sbi->s_blockgroup_lock);
4242 kfree(sbi);
4243 out_free_orig:
4244 kfree(orig_data);
4245 return err ? err : ret;
4246 }
4247
4248 /*
4249 * Setup any per-fs journal parameters now. We'll do this both on
4250 * initial mount, once the journal has been initialised but before we've
4251 * done any recovery; and again on any subsequent remount.
4252 */
4253 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
4254 {
4255 struct ext4_sb_info *sbi = EXT4_SB(sb);
4256
4257 journal->j_commit_interval = sbi->s_commit_interval;
4258 journal->j_min_batch_time = sbi->s_min_batch_time;
4259 journal->j_max_batch_time = sbi->s_max_batch_time;
4260
4261 write_lock(&journal->j_state_lock);
4262 if (test_opt(sb, BARRIER))
4263 journal->j_flags |= JBD2_BARRIER;
4264 else
4265 journal->j_flags &= ~JBD2_BARRIER;
4266 if (test_opt(sb, DATA_ERR_ABORT))
4267 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
4268 else
4269 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
4270 write_unlock(&journal->j_state_lock);
4271 }
4272
4273 static struct inode *ext4_get_journal_inode(struct super_block *sb,
4274 unsigned int journal_inum)
4275 {
4276 struct inode *journal_inode;
4277
4278 /*
4279 * Test for the existence of a valid inode on disk. Bad things
4280 * happen if we iget() an unused inode, as the subsequent iput()
4281 * will try to delete it.
4282 */
4283 journal_inode = ext4_iget(sb, journal_inum);
4284 if (IS_ERR(journal_inode)) {
4285 ext4_msg(sb, KERN_ERR, "no journal found");
4286 return NULL;
4287 }
4288 if (!journal_inode->i_nlink) {
4289 make_bad_inode(journal_inode);
4290 iput(journal_inode);
4291 ext4_msg(sb, KERN_ERR, "journal inode is deleted");
4292 return NULL;
4293 }
4294
4295 jbd_debug(2, "Journal inode found at %p: %lld bytes\n",
4296 journal_inode, journal_inode->i_size);
4297 if (!S_ISREG(journal_inode->i_mode)) {
4298 ext4_msg(sb, KERN_ERR, "invalid journal inode");
4299 iput(journal_inode);
4300 return NULL;
4301 }
4302 return journal_inode;
4303 }
4304
4305 static journal_t *ext4_get_journal(struct super_block *sb,
4306 unsigned int journal_inum)
4307 {
4308 struct inode *journal_inode;
4309 journal_t *journal;
4310
4311 BUG_ON(!ext4_has_feature_journal(sb));
4312
4313 journal_inode = ext4_get_journal_inode(sb, journal_inum);
4314 if (!journal_inode)
4315 return NULL;
4316
4317 journal = jbd2_journal_init_inode(journal_inode);
4318 if (!journal) {
4319 ext4_msg(sb, KERN_ERR, "Could not load journal inode");
4320 iput(journal_inode);
4321 return NULL;
4322 }
4323 journal->j_private = sb;
4324 ext4_init_journal_params(sb, journal);
4325 return journal;
4326 }
4327
4328 static journal_t *ext4_get_dev_journal(struct super_block *sb,
4329 dev_t j_dev)
4330 {
4331 struct buffer_head *bh;
4332 journal_t *journal;
4333 ext4_fsblk_t start;
4334 ext4_fsblk_t len;
4335 int hblock, blocksize;
4336 ext4_fsblk_t sb_block;
4337 unsigned long offset;
4338 struct ext4_super_block *es;
4339 struct block_device *bdev;
4340
4341 BUG_ON(!ext4_has_feature_journal(sb));
4342
4343 bdev = ext4_blkdev_get(j_dev, sb);
4344 if (bdev == NULL)
4345 return NULL;
4346
4347 blocksize = sb->s_blocksize;
4348 hblock = bdev_logical_block_size(bdev);
4349 if (blocksize < hblock) {
4350 ext4_msg(sb, KERN_ERR,
4351 "blocksize too small for journal device");
4352 goto out_bdev;
4353 }
4354
4355 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
4356 offset = EXT4_MIN_BLOCK_SIZE % blocksize;
4357 set_blocksize(bdev, blocksize);
4358 if (!(bh = __bread(bdev, sb_block, blocksize))) {
4359 ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
4360 "external journal");
4361 goto out_bdev;
4362 }
4363
4364 es = (struct ext4_super_block *) (bh->b_data + offset);
4365 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
4366 !(le32_to_cpu(es->s_feature_incompat) &
4367 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
4368 ext4_msg(sb, KERN_ERR, "external journal has "
4369 "bad superblock");
4370 brelse(bh);
4371 goto out_bdev;
4372 }
4373
4374 if ((le32_to_cpu(es->s_feature_ro_compat) &
4375 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
4376 es->s_checksum != ext4_superblock_csum(sb, es)) {
4377 ext4_msg(sb, KERN_ERR, "external journal has "
4378 "corrupt superblock");
4379 brelse(bh);
4380 goto out_bdev;
4381 }
4382
4383 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
4384 ext4_msg(sb, KERN_ERR, "journal UUID does not match");
4385 brelse(bh);
4386 goto out_bdev;
4387 }
4388
4389 len = ext4_blocks_count(es);
4390 start = sb_block + 1;
4391 brelse(bh); /* we're done with the superblock */
4392
4393 journal = jbd2_journal_init_dev(bdev, sb->s_bdev,
4394 start, len, blocksize);
4395 if (!journal) {
4396 ext4_msg(sb, KERN_ERR, "failed to create device journal");
4397 goto out_bdev;
4398 }
4399 journal->j_private = sb;
4400 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &journal->j_sb_buffer);
4401 wait_on_buffer(journal->j_sb_buffer);
4402 if (!buffer_uptodate(journal->j_sb_buffer)) {
4403 ext4_msg(sb, KERN_ERR, "I/O error on journal device");
4404 goto out_journal;
4405 }
4406 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
4407 ext4_msg(sb, KERN_ERR, "External journal has more than one "
4408 "user (unsupported) - %d",
4409 be32_to_cpu(journal->j_superblock->s_nr_users));
4410 goto out_journal;
4411 }
4412 EXT4_SB(sb)->journal_bdev = bdev;
4413 ext4_init_journal_params(sb, journal);
4414 return journal;
4415
4416 out_journal:
4417 jbd2_journal_destroy(journal);
4418 out_bdev:
4419 ext4_blkdev_put(bdev);
4420 return NULL;
4421 }
4422
4423 static int ext4_load_journal(struct super_block *sb,
4424 struct ext4_super_block *es,
4425 unsigned long journal_devnum)
4426 {
4427 journal_t *journal;
4428 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
4429 dev_t journal_dev;
4430 int err = 0;
4431 int really_read_only;
4432
4433 BUG_ON(!ext4_has_feature_journal(sb));
4434
4435 if (journal_devnum &&
4436 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4437 ext4_msg(sb, KERN_INFO, "external journal device major/minor "
4438 "numbers have changed");
4439 journal_dev = new_decode_dev(journal_devnum);
4440 } else
4441 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
4442
4443 really_read_only = bdev_read_only(sb->s_bdev);
4444
4445 /*
4446 * Are we loading a blank journal or performing recovery after a
4447 * crash? For recovery, we need to check in advance whether we
4448 * can get read-write access to the device.
4449 */
4450 if (ext4_has_feature_journal_needs_recovery(sb)) {
4451 if (sb->s_flags & MS_RDONLY) {
4452 ext4_msg(sb, KERN_INFO, "INFO: recovery "
4453 "required on readonly filesystem");
4454 if (really_read_only) {
4455 ext4_msg(sb, KERN_ERR, "write access "
4456 "unavailable, cannot proceed");
4457 return -EROFS;
4458 }
4459 ext4_msg(sb, KERN_INFO, "write access will "
4460 "be enabled during recovery");
4461 }
4462 }
4463
4464 if (journal_inum && journal_dev) {
4465 ext4_msg(sb, KERN_ERR, "filesystem has both journal "
4466 "and inode journals!");
4467 return -EINVAL;
4468 }
4469
4470 if (journal_inum) {
4471 if (!(journal = ext4_get_journal(sb, journal_inum)))
4472 return -EINVAL;
4473 } else {
4474 if (!(journal = ext4_get_dev_journal(sb, journal_dev)))
4475 return -EINVAL;
4476 }
4477
4478 if (!(journal->j_flags & JBD2_BARRIER))
4479 ext4_msg(sb, KERN_INFO, "barriers disabled");
4480
4481 if (!ext4_has_feature_journal_needs_recovery(sb))
4482 err = jbd2_journal_wipe(journal, !really_read_only);
4483 if (!err) {
4484 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
4485 if (save)
4486 memcpy(save, ((char *) es) +
4487 EXT4_S_ERR_START, EXT4_S_ERR_LEN);
4488 err = jbd2_journal_load(journal);
4489 if (save)
4490 memcpy(((char *) es) + EXT4_S_ERR_START,
4491 save, EXT4_S_ERR_LEN);
4492 kfree(save);
4493 }
4494
4495 if (err) {
4496 ext4_msg(sb, KERN_ERR, "error loading journal");
4497 jbd2_journal_destroy(journal);
4498 return err;
4499 }
4500
4501 EXT4_SB(sb)->s_journal = journal;
4502 ext4_clear_journal_err(sb, es);
4503
4504 if (!really_read_only && journal_devnum &&
4505 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4506 es->s_journal_dev = cpu_to_le32(journal_devnum);
4507
4508 /* Make sure we flush the recovery flag to disk. */
4509 ext4_commit_super(sb, 1);
4510 }
4511
4512 return 0;
4513 }
4514
4515 static int ext4_commit_super(struct super_block *sb, int sync)
4516 {
4517 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
4518 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
4519 int error = 0;
4520
4521 if (!sbh || block_device_ejected(sb))
4522 return error;
4523 /*
4524 * If the file system is mounted read-only, don't update the
4525 * superblock write time. This avoids updating the superblock
4526 * write time when we are mounting the root file system
4527 * read/only but we need to replay the journal; at that point,
4528 * for people who are east of GMT and who make their clock
4529 * tick in localtime for Windows bug-for-bug compatibility,
4530 * the clock is set in the future, and this will cause e2fsck
4531 * to complain and force a full file system check.
4532 */
4533 if (!(sb->s_flags & MS_RDONLY))
4534 es->s_wtime = cpu_to_le32(get_seconds());
4535 if (sb->s_bdev->bd_part)
4536 es->s_kbytes_written =
4537 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written +
4538 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
4539 EXT4_SB(sb)->s_sectors_written_start) >> 1));
4540 else
4541 es->s_kbytes_written =
4542 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written);
4543 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeclusters_counter))
4544 ext4_free_blocks_count_set(es,
4545 EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive(
4546 &EXT4_SB(sb)->s_freeclusters_counter)));
4547 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeinodes_counter))
4548 es->s_free_inodes_count =
4549 cpu_to_le32(percpu_counter_sum_positive(
4550 &EXT4_SB(sb)->s_freeinodes_counter));
4551 BUFFER_TRACE(sbh, "marking dirty");
4552 ext4_superblock_csum_set(sb);
4553 lock_buffer(sbh);
4554 if (buffer_write_io_error(sbh)) {
4555 /*
4556 * Oh, dear. A previous attempt to write the
4557 * superblock failed. This could happen because the
4558 * USB device was yanked out. Or it could happen to
4559 * be a transient write error and maybe the block will
4560 * be remapped. Nothing we can do but to retry the
4561 * write and hope for the best.
4562 */
4563 ext4_msg(sb, KERN_ERR, "previous I/O error to "
4564 "superblock detected");
4565 clear_buffer_write_io_error(sbh);
4566 set_buffer_uptodate(sbh);
4567 }
4568 mark_buffer_dirty(sbh);
4569 unlock_buffer(sbh);
4570 if (sync) {
4571 error = __sync_dirty_buffer(sbh,
4572 test_opt(sb, BARRIER) ? WRITE_FUA : WRITE_SYNC);
4573 if (error)
4574 return error;
4575
4576 error = buffer_write_io_error(sbh);
4577 if (error) {
4578 ext4_msg(sb, KERN_ERR, "I/O error while writing "
4579 "superblock");
4580 clear_buffer_write_io_error(sbh);
4581 set_buffer_uptodate(sbh);
4582 }
4583 }
4584 return error;
4585 }
4586
4587 /*
4588 * Have we just finished recovery? If so, and if we are mounting (or
4589 * remounting) the filesystem readonly, then we will end up with a
4590 * consistent fs on disk. Record that fact.
4591 */
4592 static void ext4_mark_recovery_complete(struct super_block *sb,
4593 struct ext4_super_block *es)
4594 {
4595 journal_t *journal = EXT4_SB(sb)->s_journal;
4596
4597 if (!ext4_has_feature_journal(sb)) {
4598 BUG_ON(journal != NULL);
4599 return;
4600 }
4601 jbd2_journal_lock_updates(journal);
4602 if (jbd2_journal_flush(journal) < 0)
4603 goto out;
4604
4605 if (ext4_has_feature_journal_needs_recovery(sb) &&
4606 sb->s_flags & MS_RDONLY) {
4607 ext4_clear_feature_journal_needs_recovery(sb);
4608 ext4_commit_super(sb, 1);
4609 }
4610
4611 out:
4612 jbd2_journal_unlock_updates(journal);
4613 }
4614
4615 /*
4616 * If we are mounting (or read-write remounting) a filesystem whose journal
4617 * has recorded an error from a previous lifetime, move that error to the
4618 * main filesystem now.
4619 */
4620 static void ext4_clear_journal_err(struct super_block *sb,
4621 struct ext4_super_block *es)
4622 {
4623 journal_t *journal;
4624 int j_errno;
4625 const char *errstr;
4626
4627 BUG_ON(!ext4_has_feature_journal(sb));
4628
4629 journal = EXT4_SB(sb)->s_journal;
4630
4631 /*
4632 * Now check for any error status which may have been recorded in the
4633 * journal by a prior ext4_error() or ext4_abort()
4634 */
4635
4636 j_errno = jbd2_journal_errno(journal);
4637 if (j_errno) {
4638 char nbuf[16];
4639
4640 errstr = ext4_decode_error(sb, j_errno, nbuf);
4641 ext4_warning(sb, "Filesystem error recorded "
4642 "from previous mount: %s", errstr);
4643 ext4_warning(sb, "Marking fs in need of filesystem check.");
4644
4645 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
4646 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
4647 ext4_commit_super(sb, 1);
4648
4649 jbd2_journal_clear_err(journal);
4650 jbd2_journal_update_sb_errno(journal);
4651 }
4652 }
4653
4654 /*
4655 * Force the running and committing transactions to commit,
4656 * and wait on the commit.
4657 */
4658 int ext4_force_commit(struct super_block *sb)
4659 {
4660 journal_t *journal;
4661
4662 if (sb->s_flags & MS_RDONLY)
4663 return 0;
4664
4665 journal = EXT4_SB(sb)->s_journal;
4666 return ext4_journal_force_commit(journal);
4667 }
4668
4669 static int ext4_sync_fs(struct super_block *sb, int wait)
4670 {
4671 int ret = 0;
4672 tid_t target;
4673 bool needs_barrier = false;
4674 struct ext4_sb_info *sbi = EXT4_SB(sb);
4675
4676 trace_ext4_sync_fs(sb, wait);
4677 flush_workqueue(sbi->rsv_conversion_wq);
4678 /*
4679 * Writeback quota in non-journalled quota case - journalled quota has
4680 * no dirty dquots
4681 */
4682 dquot_writeback_dquots(sb, -1);
4683 /*
4684 * Data writeback is possible w/o journal transaction, so barrier must
4685 * being sent at the end of the function. But we can skip it if
4686 * transaction_commit will do it for us.
4687 */
4688 if (sbi->s_journal) {
4689 target = jbd2_get_latest_transaction(sbi->s_journal);
4690 if (wait && sbi->s_journal->j_flags & JBD2_BARRIER &&
4691 !jbd2_trans_will_send_data_barrier(sbi->s_journal, target))
4692 needs_barrier = true;
4693
4694 if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
4695 if (wait)
4696 ret = jbd2_log_wait_commit(sbi->s_journal,
4697 target);
4698 }
4699 } else if (wait && test_opt(sb, BARRIER))
4700 needs_barrier = true;
4701 if (needs_barrier) {
4702 int err;
4703 err = blkdev_issue_flush(sb->s_bdev, GFP_KERNEL, NULL);
4704 if (!ret)
4705 ret = err;
4706 }
4707
4708 return ret;
4709 }
4710
4711 /*
4712 * LVM calls this function before a (read-only) snapshot is created. This
4713 * gives us a chance to flush the journal completely and mark the fs clean.
4714 *
4715 * Note that only this function cannot bring a filesystem to be in a clean
4716 * state independently. It relies on upper layer to stop all data & metadata
4717 * modifications.
4718 */
4719 static int ext4_freeze(struct super_block *sb)
4720 {
4721 int error = 0;
4722 journal_t *journal;
4723
4724 if (sb->s_flags & MS_RDONLY)
4725 return 0;
4726
4727 journal = EXT4_SB(sb)->s_journal;
4728
4729 if (journal) {
4730 /* Now we set up the journal barrier. */
4731 jbd2_journal_lock_updates(journal);
4732
4733 /*
4734 * Don't clear the needs_recovery flag if we failed to
4735 * flush the journal.
4736 */
4737 error = jbd2_journal_flush(journal);
4738 if (error < 0)
4739 goto out;
4740
4741 /* Journal blocked and flushed, clear needs_recovery flag. */
4742 ext4_clear_feature_journal_needs_recovery(sb);
4743 }
4744
4745 error = ext4_commit_super(sb, 1);
4746 out:
4747 if (journal)
4748 /* we rely on upper layer to stop further updates */
4749 jbd2_journal_unlock_updates(journal);
4750 return error;
4751 }
4752
4753 /*
4754 * Called by LVM after the snapshot is done. We need to reset the RECOVER
4755 * flag here, even though the filesystem is not technically dirty yet.
4756 */
4757 static int ext4_unfreeze(struct super_block *sb)
4758 {
4759 if (sb->s_flags & MS_RDONLY)
4760 return 0;
4761
4762 if (EXT4_SB(sb)->s_journal) {
4763 /* Reset the needs_recovery flag before the fs is unlocked. */
4764 ext4_set_feature_journal_needs_recovery(sb);
4765 }
4766
4767 ext4_commit_super(sb, 1);
4768 return 0;
4769 }
4770
4771 /*
4772 * Structure to save mount options for ext4_remount's benefit
4773 */
4774 struct ext4_mount_options {
4775 unsigned long s_mount_opt;
4776 unsigned long s_mount_opt2;
4777 kuid_t s_resuid;
4778 kgid_t s_resgid;
4779 unsigned long s_commit_interval;
4780 u32 s_min_batch_time, s_max_batch_time;
4781 #ifdef CONFIG_QUOTA
4782 int s_jquota_fmt;
4783 char *s_qf_names[EXT4_MAXQUOTAS];
4784 #endif
4785 };
4786
4787 static int ext4_remount(struct super_block *sb, int *flags, char *data)
4788 {
4789 struct ext4_super_block *es;
4790 struct ext4_sb_info *sbi = EXT4_SB(sb);
4791 unsigned long old_sb_flags;
4792 struct ext4_mount_options old_opts;
4793 int enable_quota = 0;
4794 ext4_group_t g;
4795 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
4796 int err = 0;
4797 #ifdef CONFIG_QUOTA
4798 int i, j;
4799 #endif
4800 char *orig_data = kstrdup(data, GFP_KERNEL);
4801
4802 /* Store the original options */
4803 old_sb_flags = sb->s_flags;
4804 old_opts.s_mount_opt = sbi->s_mount_opt;
4805 old_opts.s_mount_opt2 = sbi->s_mount_opt2;
4806 old_opts.s_resuid = sbi->s_resuid;
4807 old_opts.s_resgid = sbi->s_resgid;
4808 old_opts.s_commit_interval = sbi->s_commit_interval;
4809 old_opts.s_min_batch_time = sbi->s_min_batch_time;
4810 old_opts.s_max_batch_time = sbi->s_max_batch_time;
4811 #ifdef CONFIG_QUOTA
4812 old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
4813 for (i = 0; i < EXT4_MAXQUOTAS; i++)
4814 if (sbi->s_qf_names[i]) {
4815 old_opts.s_qf_names[i] = kstrdup(sbi->s_qf_names[i],
4816 GFP_KERNEL);
4817 if (!old_opts.s_qf_names[i]) {
4818 for (j = 0; j < i; j++)
4819 kfree(old_opts.s_qf_names[j]);
4820 kfree(orig_data);
4821 return -ENOMEM;
4822 }
4823 } else
4824 old_opts.s_qf_names[i] = NULL;
4825 #endif
4826 if (sbi->s_journal && sbi->s_journal->j_task->io_context)
4827 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio;
4828
4829 if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) {
4830 err = -EINVAL;
4831 goto restore_opts;
4832 }
4833
4834 if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^
4835 test_opt(sb, JOURNAL_CHECKSUM)) {
4836 ext4_msg(sb, KERN_ERR, "changing journal_checksum "
4837 "during remount not supported; ignoring");
4838 sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM;
4839 }
4840
4841 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
4842 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
4843 ext4_msg(sb, KERN_ERR, "can't mount with "
4844 "both data=journal and delalloc");
4845 err = -EINVAL;
4846 goto restore_opts;
4847 }
4848 if (test_opt(sb, DIOREAD_NOLOCK)) {
4849 ext4_msg(sb, KERN_ERR, "can't mount with "
4850 "both data=journal and dioread_nolock");
4851 err = -EINVAL;
4852 goto restore_opts;
4853 }
4854 if (test_opt(sb, DAX)) {
4855 ext4_msg(sb, KERN_ERR, "can't mount with "
4856 "both data=journal and dax");
4857 err = -EINVAL;
4858 goto restore_opts;
4859 }
4860 }
4861
4862 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_DAX) {
4863 ext4_msg(sb, KERN_WARNING, "warning: refusing change of "
4864 "dax flag with busy inodes while remounting");
4865 sbi->s_mount_opt ^= EXT4_MOUNT_DAX;
4866 }
4867
4868 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED)
4869 ext4_abort(sb, "Abort forced by user");
4870
4871 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
4872 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
4873
4874 es = sbi->s_es;
4875
4876 if (sbi->s_journal) {
4877 ext4_init_journal_params(sb, sbi->s_journal);
4878 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
4879 }
4880
4881 if (*flags & MS_LAZYTIME)
4882 sb->s_flags |= MS_LAZYTIME;
4883
4884 if ((*flags & MS_RDONLY) != (sb->s_flags & MS_RDONLY)) {
4885 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) {
4886 err = -EROFS;
4887 goto restore_opts;
4888 }
4889
4890 if (*flags & MS_RDONLY) {
4891 err = sync_filesystem(sb);
4892 if (err < 0)
4893 goto restore_opts;
4894 err = dquot_suspend(sb, -1);
4895 if (err < 0)
4896 goto restore_opts;
4897
4898 /*
4899 * First of all, the unconditional stuff we have to do
4900 * to disable replay of the journal when we next remount
4901 */
4902 sb->s_flags |= MS_RDONLY;
4903
4904 /*
4905 * OK, test if we are remounting a valid rw partition
4906 * readonly, and if so set the rdonly flag and then
4907 * mark the partition as valid again.
4908 */
4909 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
4910 (sbi->s_mount_state & EXT4_VALID_FS))
4911 es->s_state = cpu_to_le16(sbi->s_mount_state);
4912
4913 if (sbi->s_journal)
4914 ext4_mark_recovery_complete(sb, es);
4915 } else {
4916 /* Make sure we can mount this feature set readwrite */
4917 if (ext4_has_feature_readonly(sb) ||
4918 !ext4_feature_set_ok(sb, 0)) {
4919 err = -EROFS;
4920 goto restore_opts;
4921 }
4922 /*
4923 * Make sure the group descriptor checksums
4924 * are sane. If they aren't, refuse to remount r/w.
4925 */
4926 for (g = 0; g < sbi->s_groups_count; g++) {
4927 struct ext4_group_desc *gdp =
4928 ext4_get_group_desc(sb, g, NULL);
4929
4930 if (!ext4_group_desc_csum_verify(sb, g, gdp)) {
4931 ext4_msg(sb, KERN_ERR,
4932 "ext4_remount: Checksum for group %u failed (%u!=%u)",
4933 g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)),
4934 le16_to_cpu(gdp->bg_checksum));
4935 err = -EFSBADCRC;
4936 goto restore_opts;
4937 }
4938 }
4939
4940 /*
4941 * If we have an unprocessed orphan list hanging
4942 * around from a previously readonly bdev mount,
4943 * require a full umount/remount for now.
4944 */
4945 if (es->s_last_orphan) {
4946 ext4_msg(sb, KERN_WARNING, "Couldn't "
4947 "remount RDWR because of unprocessed "
4948 "orphan inode list. Please "
4949 "umount/remount instead");
4950 err = -EINVAL;
4951 goto restore_opts;
4952 }
4953
4954 /*
4955 * Mounting a RDONLY partition read-write, so reread
4956 * and store the current valid flag. (It may have
4957 * been changed by e2fsck since we originally mounted
4958 * the partition.)
4959 */
4960 if (sbi->s_journal)
4961 ext4_clear_journal_err(sb, es);
4962 sbi->s_mount_state = le16_to_cpu(es->s_state);
4963 if (!ext4_setup_super(sb, es, 0))
4964 sb->s_flags &= ~MS_RDONLY;
4965 if (ext4_has_feature_mmp(sb))
4966 if (ext4_multi_mount_protect(sb,
4967 le64_to_cpu(es->s_mmp_block))) {
4968 err = -EROFS;
4969 goto restore_opts;
4970 }
4971 enable_quota = 1;
4972 }
4973 }
4974
4975 /*
4976 * Reinitialize lazy itable initialization thread based on
4977 * current settings
4978 */
4979 if ((sb->s_flags & MS_RDONLY) || !test_opt(sb, INIT_INODE_TABLE))
4980 ext4_unregister_li_request(sb);
4981 else {
4982 ext4_group_t first_not_zeroed;
4983 first_not_zeroed = ext4_has_uninit_itable(sb);
4984 ext4_register_li_request(sb, first_not_zeroed);
4985 }
4986
4987 ext4_setup_system_zone(sb);
4988 if (sbi->s_journal == NULL && !(old_sb_flags & MS_RDONLY))
4989 ext4_commit_super(sb, 1);
4990
4991 #ifdef CONFIG_QUOTA
4992 /* Release old quota file names */
4993 for (i = 0; i < EXT4_MAXQUOTAS; i++)
4994 kfree(old_opts.s_qf_names[i]);
4995 if (enable_quota) {
4996 if (sb_any_quota_suspended(sb))
4997 dquot_resume(sb, -1);
4998 else if (ext4_has_feature_quota(sb)) {
4999 err = ext4_enable_quotas(sb);
5000 if (err)
5001 goto restore_opts;
5002 }
5003 }
5004 #endif
5005
5006 *flags = (*flags & ~MS_LAZYTIME) | (sb->s_flags & MS_LAZYTIME);
5007 ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data);
5008 kfree(orig_data);
5009 return 0;
5010
5011 restore_opts:
5012 sb->s_flags = old_sb_flags;
5013 sbi->s_mount_opt = old_opts.s_mount_opt;
5014 sbi->s_mount_opt2 = old_opts.s_mount_opt2;
5015 sbi->s_resuid = old_opts.s_resuid;
5016 sbi->s_resgid = old_opts.s_resgid;
5017 sbi->s_commit_interval = old_opts.s_commit_interval;
5018 sbi->s_min_batch_time = old_opts.s_min_batch_time;
5019 sbi->s_max_batch_time = old_opts.s_max_batch_time;
5020 #ifdef CONFIG_QUOTA
5021 sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
5022 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
5023 kfree(sbi->s_qf_names[i]);
5024 sbi->s_qf_names[i] = old_opts.s_qf_names[i];
5025 }
5026 #endif
5027 kfree(orig_data);
5028 return err;
5029 }
5030
5031 #ifdef CONFIG_QUOTA
5032 static int ext4_statfs_project(struct super_block *sb,
5033 kprojid_t projid, struct kstatfs *buf)
5034 {
5035 struct kqid qid;
5036 struct dquot *dquot;
5037 u64 limit;
5038 u64 curblock;
5039
5040 qid = make_kqid_projid(projid);
5041 dquot = dqget(sb, qid);
5042 if (IS_ERR(dquot))
5043 return PTR_ERR(dquot);
5044 spin_lock(&dq_data_lock);
5045
5046 limit = (dquot->dq_dqb.dqb_bsoftlimit ?
5047 dquot->dq_dqb.dqb_bsoftlimit :
5048 dquot->dq_dqb.dqb_bhardlimit) >> sb->s_blocksize_bits;
5049 if (limit && buf->f_blocks > limit) {
5050 curblock = dquot->dq_dqb.dqb_curspace >> sb->s_blocksize_bits;
5051 buf->f_blocks = limit;
5052 buf->f_bfree = buf->f_bavail =
5053 (buf->f_blocks > curblock) ?
5054 (buf->f_blocks - curblock) : 0;
5055 }
5056
5057 limit = dquot->dq_dqb.dqb_isoftlimit ?
5058 dquot->dq_dqb.dqb_isoftlimit :
5059 dquot->dq_dqb.dqb_ihardlimit;
5060 if (limit && buf->f_files > limit) {
5061 buf->f_files = limit;
5062 buf->f_ffree =
5063 (buf->f_files > dquot->dq_dqb.dqb_curinodes) ?
5064 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0;
5065 }
5066
5067 spin_unlock(&dq_data_lock);
5068 dqput(dquot);
5069 return 0;
5070 }
5071 #endif
5072
5073 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
5074 {
5075 struct super_block *sb = dentry->d_sb;
5076 struct ext4_sb_info *sbi = EXT4_SB(sb);
5077 struct ext4_super_block *es = sbi->s_es;
5078 ext4_fsblk_t overhead = 0, resv_blocks;
5079 u64 fsid;
5080 s64 bfree;
5081 resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters));
5082
5083 if (!test_opt(sb, MINIX_DF))
5084 overhead = sbi->s_overhead;
5085
5086 buf->f_type = EXT4_SUPER_MAGIC;
5087 buf->f_bsize = sb->s_blocksize;
5088 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead);
5089 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
5090 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
5091 /* prevent underflow in case that few free space is available */
5092 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0));
5093 buf->f_bavail = buf->f_bfree -
5094 (ext4_r_blocks_count(es) + resv_blocks);
5095 if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks))
5096 buf->f_bavail = 0;
5097 buf->f_files = le32_to_cpu(es->s_inodes_count);
5098 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
5099 buf->f_namelen = EXT4_NAME_LEN;
5100 fsid = le64_to_cpup((void *)es->s_uuid) ^
5101 le64_to_cpup((void *)es->s_uuid + sizeof(u64));
5102 buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL;
5103 buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL;
5104
5105 #ifdef CONFIG_QUOTA
5106 if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) &&
5107 sb_has_quota_limits_enabled(sb, PRJQUOTA))
5108 ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf);
5109 #endif
5110 return 0;
5111 }
5112
5113 /* Helper function for writing quotas on sync - we need to start transaction
5114 * before quota file is locked for write. Otherwise the are possible deadlocks:
5115 * Process 1 Process 2
5116 * ext4_create() quota_sync()
5117 * jbd2_journal_start() write_dquot()
5118 * dquot_initialize() down(dqio_mutex)
5119 * down(dqio_mutex) jbd2_journal_start()
5120 *
5121 */
5122
5123 #ifdef CONFIG_QUOTA
5124
5125 static inline struct inode *dquot_to_inode(struct dquot *dquot)
5126 {
5127 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type];
5128 }
5129
5130 static int ext4_write_dquot(struct dquot *dquot)
5131 {
5132 int ret, err;
5133 handle_t *handle;
5134 struct inode *inode;
5135
5136 inode = dquot_to_inode(dquot);
5137 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5138 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
5139 if (IS_ERR(handle))
5140 return PTR_ERR(handle);
5141 ret = dquot_commit(dquot);
5142 err = ext4_journal_stop(handle);
5143 if (!ret)
5144 ret = err;
5145 return ret;
5146 }
5147
5148 static int ext4_acquire_dquot(struct dquot *dquot)
5149 {
5150 int ret, err;
5151 handle_t *handle;
5152
5153 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
5154 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
5155 if (IS_ERR(handle))
5156 return PTR_ERR(handle);
5157 ret = dquot_acquire(dquot);
5158 err = ext4_journal_stop(handle);
5159 if (!ret)
5160 ret = err;
5161 return ret;
5162 }
5163
5164 static int ext4_release_dquot(struct dquot *dquot)
5165 {
5166 int ret, err;
5167 handle_t *handle;
5168
5169 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
5170 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
5171 if (IS_ERR(handle)) {
5172 /* Release dquot anyway to avoid endless cycle in dqput() */
5173 dquot_release(dquot);
5174 return PTR_ERR(handle);
5175 }
5176 ret = dquot_release(dquot);
5177 err = ext4_journal_stop(handle);
5178 if (!ret)
5179 ret = err;
5180 return ret;
5181 }
5182
5183 static int ext4_mark_dquot_dirty(struct dquot *dquot)
5184 {
5185 struct super_block *sb = dquot->dq_sb;
5186 struct ext4_sb_info *sbi = EXT4_SB(sb);
5187
5188 /* Are we journaling quotas? */
5189 if (ext4_has_feature_quota(sb) ||
5190 sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
5191 dquot_mark_dquot_dirty(dquot);
5192 return ext4_write_dquot(dquot);
5193 } else {
5194 return dquot_mark_dquot_dirty(dquot);
5195 }
5196 }
5197
5198 static int ext4_write_info(struct super_block *sb, int type)
5199 {
5200 int ret, err;
5201 handle_t *handle;
5202
5203 /* Data block + inode block */
5204 handle = ext4_journal_start(d_inode(sb->s_root), EXT4_HT_QUOTA, 2);
5205 if (IS_ERR(handle))
5206 return PTR_ERR(handle);
5207 ret = dquot_commit_info(sb, type);
5208 err = ext4_journal_stop(handle);
5209 if (!ret)
5210 ret = err;
5211 return ret;
5212 }
5213
5214 /*
5215 * Turn on quotas during mount time - we need to find
5216 * the quota file and such...
5217 */
5218 static int ext4_quota_on_mount(struct super_block *sb, int type)
5219 {
5220 return dquot_quota_on_mount(sb, EXT4_SB(sb)->s_qf_names[type],
5221 EXT4_SB(sb)->s_jquota_fmt, type);
5222 }
5223
5224 static void lockdep_set_quota_inode(struct inode *inode, int subclass)
5225 {
5226 struct ext4_inode_info *ei = EXT4_I(inode);
5227
5228 /* The first argument of lockdep_set_subclass has to be
5229 * *exactly* the same as the argument to init_rwsem() --- in
5230 * this case, in init_once() --- or lockdep gets unhappy
5231 * because the name of the lock is set using the
5232 * stringification of the argument to init_rwsem().
5233 */
5234 (void) ei; /* shut up clang warning if !CONFIG_LOCKDEP */
5235 lockdep_set_subclass(&ei->i_data_sem, subclass);
5236 }
5237
5238 /*
5239 * Standard function to be called on quota_on
5240 */
5241 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
5242 struct path *path)
5243 {
5244 int err;
5245
5246 if (!test_opt(sb, QUOTA))
5247 return -EINVAL;
5248
5249 /* Quotafile not on the same filesystem? */
5250 if (path->dentry->d_sb != sb)
5251 return -EXDEV;
5252 /* Journaling quota? */
5253 if (EXT4_SB(sb)->s_qf_names[type]) {
5254 /* Quotafile not in fs root? */
5255 if (path->dentry->d_parent != sb->s_root)
5256 ext4_msg(sb, KERN_WARNING,
5257 "Quota file not on filesystem root. "
5258 "Journaled quota will not work");
5259 }
5260
5261 /*
5262 * When we journal data on quota file, we have to flush journal to see
5263 * all updates to the file when we bypass pagecache...
5264 */
5265 if (EXT4_SB(sb)->s_journal &&
5266 ext4_should_journal_data(d_inode(path->dentry))) {
5267 /*
5268 * We don't need to lock updates but journal_flush() could
5269 * otherwise be livelocked...
5270 */
5271 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal);
5272 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal);
5273 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
5274 if (err)
5275 return err;
5276 }
5277 lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA);
5278 err = dquot_quota_on(sb, type, format_id, path);
5279 if (err)
5280 lockdep_set_quota_inode(path->dentry->d_inode,
5281 I_DATA_SEM_NORMAL);
5282 return err;
5283 }
5284
5285 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
5286 unsigned int flags)
5287 {
5288 int err;
5289 struct inode *qf_inode;
5290 unsigned long qf_inums[EXT4_MAXQUOTAS] = {
5291 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
5292 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
5293 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
5294 };
5295
5296 BUG_ON(!ext4_has_feature_quota(sb));
5297
5298 if (!qf_inums[type])
5299 return -EPERM;
5300
5301 qf_inode = ext4_iget(sb, qf_inums[type]);
5302 if (IS_ERR(qf_inode)) {
5303 ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]);
5304 return PTR_ERR(qf_inode);
5305 }
5306
5307 /* Don't account quota for quota files to avoid recursion */
5308 qf_inode->i_flags |= S_NOQUOTA;
5309 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA);
5310 err = dquot_enable(qf_inode, type, format_id, flags);
5311 iput(qf_inode);
5312 if (err)
5313 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL);
5314
5315 return err;
5316 }
5317
5318 /* Enable usage tracking for all quota types. */
5319 static int ext4_enable_quotas(struct super_block *sb)
5320 {
5321 int type, err = 0;
5322 unsigned long qf_inums[EXT4_MAXQUOTAS] = {
5323 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
5324 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
5325 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
5326 };
5327 bool quota_mopt[EXT4_MAXQUOTAS] = {
5328 test_opt(sb, USRQUOTA),
5329 test_opt(sb, GRPQUOTA),
5330 test_opt(sb, PRJQUOTA),
5331 };
5332
5333 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE;
5334 for (type = 0; type < EXT4_MAXQUOTAS; type++) {
5335 if (qf_inums[type]) {
5336 err = ext4_quota_enable(sb, type, QFMT_VFS_V1,
5337 DQUOT_USAGE_ENABLED |
5338 (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0));
5339 if (err) {
5340 ext4_warning(sb,
5341 "Failed to enable quota tracking "
5342 "(type=%d, err=%d). Please run "
5343 "e2fsck to fix.", type, err);
5344 return err;
5345 }
5346 }
5347 }
5348 return 0;
5349 }
5350
5351 static int ext4_quota_off(struct super_block *sb, int type)
5352 {
5353 struct inode *inode = sb_dqopt(sb)->files[type];
5354 handle_t *handle;
5355
5356 /* Force all delayed allocation blocks to be allocated.
5357 * Caller already holds s_umount sem */
5358 if (test_opt(sb, DELALLOC))
5359 sync_filesystem(sb);
5360
5361 if (!inode)
5362 goto out;
5363
5364 /* Update modification times of quota files when userspace can
5365 * start looking at them */
5366 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
5367 if (IS_ERR(handle))
5368 goto out;
5369 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
5370 ext4_mark_inode_dirty(handle, inode);
5371 ext4_journal_stop(handle);
5372
5373 out:
5374 return dquot_quota_off(sb, type);
5375 }
5376
5377 /* Read data from quotafile - avoid pagecache and such because we cannot afford
5378 * acquiring the locks... As quota files are never truncated and quota code
5379 * itself serializes the operations (and no one else should touch the files)
5380 * we don't have to be afraid of races */
5381 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
5382 size_t len, loff_t off)
5383 {
5384 struct inode *inode = sb_dqopt(sb)->files[type];
5385 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5386 int offset = off & (sb->s_blocksize - 1);
5387 int tocopy;
5388 size_t toread;
5389 struct buffer_head *bh;
5390 loff_t i_size = i_size_read(inode);
5391
5392 if (off > i_size)
5393 return 0;
5394 if (off+len > i_size)
5395 len = i_size-off;
5396 toread = len;
5397 while (toread > 0) {
5398 tocopy = sb->s_blocksize - offset < toread ?
5399 sb->s_blocksize - offset : toread;
5400 bh = ext4_bread(NULL, inode, blk, 0);
5401 if (IS_ERR(bh))
5402 return PTR_ERR(bh);
5403 if (!bh) /* A hole? */
5404 memset(data, 0, tocopy);
5405 else
5406 memcpy(data, bh->b_data+offset, tocopy);
5407 brelse(bh);
5408 offset = 0;
5409 toread -= tocopy;
5410 data += tocopy;
5411 blk++;
5412 }
5413 return len;
5414 }
5415
5416 /* Write to quotafile (we know the transaction is already started and has
5417 * enough credits) */
5418 static ssize_t ext4_quota_write(struct super_block *sb, int type,
5419 const char *data, size_t len, loff_t off)
5420 {
5421 struct inode *inode = sb_dqopt(sb)->files[type];
5422 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5423 int err, offset = off & (sb->s_blocksize - 1);
5424 int retries = 0;
5425 struct buffer_head *bh;
5426 handle_t *handle = journal_current_handle();
5427
5428 if (EXT4_SB(sb)->s_journal && !handle) {
5429 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5430 " cancelled because transaction is not started",
5431 (unsigned long long)off, (unsigned long long)len);
5432 return -EIO;
5433 }
5434 /*
5435 * Since we account only one data block in transaction credits,
5436 * then it is impossible to cross a block boundary.
5437 */
5438 if (sb->s_blocksize - offset < len) {
5439 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5440 " cancelled because not block aligned",
5441 (unsigned long long)off, (unsigned long long)len);
5442 return -EIO;
5443 }
5444
5445 do {
5446 bh = ext4_bread(handle, inode, blk,
5447 EXT4_GET_BLOCKS_CREATE |
5448 EXT4_GET_BLOCKS_METADATA_NOFAIL);
5449 } while (IS_ERR(bh) && (PTR_ERR(bh) == -ENOSPC) &&
5450 ext4_should_retry_alloc(inode->i_sb, &retries));
5451 if (IS_ERR(bh))
5452 return PTR_ERR(bh);
5453 if (!bh)
5454 goto out;
5455 BUFFER_TRACE(bh, "get write access");
5456 err = ext4_journal_get_write_access(handle, bh);
5457 if (err) {
5458 brelse(bh);
5459 return err;
5460 }
5461 lock_buffer(bh);
5462 memcpy(bh->b_data+offset, data, len);
5463 flush_dcache_page(bh->b_page);
5464 unlock_buffer(bh);
5465 err = ext4_handle_dirty_metadata(handle, NULL, bh);
5466 brelse(bh);
5467 out:
5468 if (inode->i_size < off + len) {
5469 i_size_write(inode, off + len);
5470 EXT4_I(inode)->i_disksize = inode->i_size;
5471 ext4_mark_inode_dirty(handle, inode);
5472 }
5473 return len;
5474 }
5475
5476 static int ext4_get_next_id(struct super_block *sb, struct kqid *qid)
5477 {
5478 const struct quota_format_ops *ops;
5479
5480 if (!sb_has_quota_loaded(sb, qid->type))
5481 return -ESRCH;
5482 ops = sb_dqopt(sb)->ops[qid->type];
5483 if (!ops || !ops->get_next_id)
5484 return -ENOSYS;
5485 return dquot_get_next_id(sb, qid);
5486 }
5487 #endif
5488
5489 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
5490 const char *dev_name, void *data)
5491 {
5492 return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super);
5493 }
5494
5495 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
5496 static inline void register_as_ext2(void)
5497 {
5498 int err = register_filesystem(&ext2_fs_type);
5499 if (err)
5500 printk(KERN_WARNING
5501 "EXT4-fs: Unable to register as ext2 (%d)\n", err);
5502 }
5503
5504 static inline void unregister_as_ext2(void)
5505 {
5506 unregister_filesystem(&ext2_fs_type);
5507 }
5508
5509 static inline int ext2_feature_set_ok(struct super_block *sb)
5510 {
5511 if (ext4_has_unknown_ext2_incompat_features(sb))
5512 return 0;
5513 if (sb->s_flags & MS_RDONLY)
5514 return 1;
5515 if (ext4_has_unknown_ext2_ro_compat_features(sb))
5516 return 0;
5517 return 1;
5518 }
5519 #else
5520 static inline void register_as_ext2(void) { }
5521 static inline void unregister_as_ext2(void) { }
5522 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
5523 #endif
5524
5525 static inline void register_as_ext3(void)
5526 {
5527 int err = register_filesystem(&ext3_fs_type);
5528 if (err)
5529 printk(KERN_WARNING
5530 "EXT4-fs: Unable to register as ext3 (%d)\n", err);
5531 }
5532
5533 static inline void unregister_as_ext3(void)
5534 {
5535 unregister_filesystem(&ext3_fs_type);
5536 }
5537
5538 static inline int ext3_feature_set_ok(struct super_block *sb)
5539 {
5540 if (ext4_has_unknown_ext3_incompat_features(sb))
5541 return 0;
5542 if (!ext4_has_feature_journal(sb))
5543 return 0;
5544 if (sb->s_flags & MS_RDONLY)
5545 return 1;
5546 if (ext4_has_unknown_ext3_ro_compat_features(sb))
5547 return 0;
5548 return 1;
5549 }
5550
5551 static struct file_system_type ext4_fs_type = {
5552 .owner = THIS_MODULE,
5553 .name = "ext4",
5554 .mount = ext4_mount,
5555 .kill_sb = kill_block_super,
5556 .fs_flags = FS_REQUIRES_DEV,
5557 };
5558 MODULE_ALIAS_FS("ext4");
5559
5560 /* Shared across all ext4 file systems */
5561 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ];
5562
5563 static int __init ext4_init_fs(void)
5564 {
5565 int i, err;
5566
5567 ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64);
5568 ext4_li_info = NULL;
5569 mutex_init(&ext4_li_mtx);
5570
5571 /* Build-time check for flags consistency */
5572 ext4_check_flag_values();
5573
5574 for (i = 0; i < EXT4_WQ_HASH_SZ; i++)
5575 init_waitqueue_head(&ext4__ioend_wq[i]);
5576
5577 err = ext4_init_es();
5578 if (err)
5579 return err;
5580
5581 err = ext4_init_pageio();
5582 if (err)
5583 goto out5;
5584
5585 err = ext4_init_system_zone();
5586 if (err)
5587 goto out4;
5588
5589 err = ext4_init_sysfs();
5590 if (err)
5591 goto out3;
5592
5593 err = ext4_init_mballoc();
5594 if (err)
5595 goto out2;
5596 err = init_inodecache();
5597 if (err)
5598 goto out1;
5599 register_as_ext3();
5600 register_as_ext2();
5601 err = register_filesystem(&ext4_fs_type);
5602 if (err)
5603 goto out;
5604
5605 return 0;
5606 out:
5607 unregister_as_ext2();
5608 unregister_as_ext3();
5609 destroy_inodecache();
5610 out1:
5611 ext4_exit_mballoc();
5612 out2:
5613 ext4_exit_sysfs();
5614 out3:
5615 ext4_exit_system_zone();
5616 out4:
5617 ext4_exit_pageio();
5618 out5:
5619 ext4_exit_es();
5620
5621 return err;
5622 }
5623
5624 static void __exit ext4_exit_fs(void)
5625 {
5626 ext4_destroy_lazyinit_thread();
5627 unregister_as_ext2();
5628 unregister_as_ext3();
5629 unregister_filesystem(&ext4_fs_type);
5630 destroy_inodecache();
5631 ext4_exit_mballoc();
5632 ext4_exit_sysfs();
5633 ext4_exit_system_zone();
5634 ext4_exit_pageio();
5635 ext4_exit_es();
5636 }
5637
5638 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
5639 MODULE_DESCRIPTION("Fourth Extended Filesystem");
5640 MODULE_LICENSE("GPL");
5641 module_init(ext4_init_fs)
5642 module_exit(ext4_exit_fs)